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Preface

Many real-world problems arising in engineering, economics, medicine, and other
domains can be formulated as optimization tasks. Every day we solve optimization
problems. Optimization occurs in the minimizing time and cost or the maximization
of the profit, quality, and efficiency. Such problems are frequently characterized by
non-convex, non-differentiable, discontinuous, noisy or dynamic objective func-
tions and constraints which ask for adequate computational methods.

This volume is a result of very vivid and fruitful discussions held during the
Workshop on Computational Optimization. The participants have agreed that the
relevance of the conference topic and quality of the contributions have clearly
suggested that a more comprehensive collection of extended contributions devoted
to the area would be very welcome and would certainly contribute to a wider
exposure and proliferation of the field and ideas.

This volume includes important real problems such as job scheduling, wildfire
modeling, parameter settings for controlling different processes, capital budgeting,
data mining, finding the location of sensors in a given network, identifying the
conformation of molecules, algorithm correctness, decision support system, and
computer memory management. Some of them can be solved applying traditional
numerical methods, but others need huge amount of computational resources.
Therefore, for them is more appropriate to develop an algorithm based on some
metaheuristic methods such as evolutionary computation, ant colony optimization,
particle swarm optimization, and constrain programming.

Sofia, Bulgaria Stefka Fidanova
April 2017 Co-Chair

WCO’2016
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Sequential Predictive Scheduling
in Partitioned Data Domains

Jörg Bremer, Christian Hinrichs, Sönke Martens
and Michael Sonnenschein

Abstract Following the long-term goal of substituting conventional, fossil power
generation completely with cleaner, renewable energy will consequently lead to an
integration of a large share of small energy generation units imposing large problem
sizes for coordination. Hardly predictable, stochastic feed-inmakes the problem even
harder. Predictive scheduling is a frequent task in energy grid control and has been
widely studied for some decades. But, the expected huge number of entities leads
to a need for new techniques reducing the computational effort for coordination.
For a group of energy resources, a schedule has to be found for each single entity
in the group that fulfills several objectives at the same time and resembles jointly
a wanted target schedule. Considering day-ahead scenarios with 96-dimensional
schedules imposes additional challenges to this already hard combinatorial problem.
We explore the effects of reducing complexity by partitioning the data domain of
the optimization problem for a sequential approach that integrates energy models for
constraint handling directly into the optimization process. We explore the effects of
different partitioning schemes and evaluate the trade-off between accuracy and effort
with several simulation studies.

1 Introduction

In European countries, especially in Germany where currently a financial security
of guaranteed feed-in prices is granted, the share of distributed energy resources
(DER) is rapidly rising. Following the goal defined by the European Commission
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2 J. Bremer et al.

[17], concepts for integration into electricity markets will quickly become indispens-
able for both: active power provision as well as ancillary services to reduce subsidy
dependence [1, 28]. Consequently, combining smart measurement technologies for
decentralized information gathering on current operational grid state, new remote
control techniques, communication standards and decentralized self-organized con-
trol schemes will lead to a so called smart grid with power conditioning and control
of the production and distribution of electricity managed without central control; as
in the vision of [38] or similar in Europe [14].

Despite being environmentally friendly and sustainable, the increasing amount of
renewable electricity generation has a major drawback. In contrast to conventional
power plants, the generation from e.g. solar and wind power can neither be predicted
with high accuracy nor scheduled precisely. Furthermore, as storage of electrical
energy is a rather difficult and expensive task, balancing supply and demand in
the grid in real-time is one of the most important functions of power system control
centers. Thus, to incorporate renewables accordingly, methods have to be established
that can compensate for the missing flexibility of those energy sources. For instance,
controlling flexible loads to use electrical power in times of high availability (i.e.
high wind or solar radiation) can help using renewable power more efficiently [31].

From an algorithmic perspective, the task of scheduling energy units can be seen
as combinatorial optimization problem: For each unit (i.e. controllable load or gen-
eration), an optimal schedule has to be found such that for every time interval of a
predefined planning horizon, a specific amount of electrical power (positive or neg-
ative) is assigned. A combination of schedules is optimal if the aggregated power
equals a target profile that is given as defined by the use case. For example, given
the inverse of a predicted feed-in time series for wind and photovoltaic power plants
as target profile, an optimal schedule assignment for the controllable energy units
would lead to a perfect balancing of supply and demand in the considered system at
each interval of the prediction horizon. Another use case is the operation of a virtual
power plant (VPP) [15, 29, 30]. A VPP is a group of individually operated energy
resources, distributed over the grid and – from an control point of view – drawn
together by means of communication. In this way, the group is jointly controlled and
acts, seen from the outside, as a single, larger power plant.

Given a target power profile that is to be offered in an energy market, the members
of the VPP must collaborate in such a way that the VPP as a whole will produce
the target profile. From the outside perspective, no difference between a VPP and a
classical power plant would be evident [31].

However, the schedule optimization task becomes hard to solve in the presence
of device-specific restrictions. Many flexible generators and loads are controllable
in principle, but at the same time have to obey specific individual constraints. For
instance, a co-generation plant (i.e. a combined heat and power plant, CHP) produces
thermal and electrical power simultaneously. As the generation of those two forms of
power are strictly coupled within the unit and the use of the heat is subject to further
restrictions such as the size of an attached thermal buffer storage, the electrical gen-
eration is severely confined as well [2, 6]. Due to such constraints, many established
optimization algorithms cannot be applied to this task. For instance, meta-heuristics
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like evolutionary algorithms or simulated annealing are not able to cope with con-
straints per se and would have to be tailored specifically for the actual use case and
the involved energy units.

In [4], a method has been introduced that is able to transform a problem with
restrictions into a restriction-free representation using a machine learning approach.
This so-called support vector decoder model allows generic optimization algorithms
to operate in a restriction-free representation of the constrained search space of the
original optimization problem. The method has been successfully applied to the
schedule optimization problem [6] as well as to other problem classes from smart
grid control [5, 9]. In the context of predictive scheduling, the influence of the length
of the planning horizon on solution quality became apparent: Usually, the method is
applied to representations of the planning horizon as a whole by interpreting feasible
schedules of energy units as elements to the combinatorial problem. However, the
longer the planning horizon (and the schedules, consequently), the lower the solution
quality of the employed optimization algorithms. At first glance, this may seem
like an inherent restriction of the problem to solve. But interestingly, preliminary
experiments indicated a potentially increasing solution qualitywhen the optimization
algorithm is applied in a successive manner to sequential partitions of the planning
horizon.

In [20], the potential benefit of partitioning the search space of the given com-
binatorial problem in the data domain in combination with sequential optimization
of the individual data partitions have been explored for the first time. In this paper,
the results from [20] are further extended for an more in-depth discussion of the
underlying mechanisms.

In Sect. 2, the motivating optimization problem as well as the support vector
decoder model are briefly recapped from previous works. Following, Sect. 3 first
revisits relevant related work in the field of high-dimensionality optimization strate-
gies before describing the introduced concept of data partitions for the considered
combinatorial problem in more detail. Section4 then evaluates the approach by
employing a simulation study in the aforementioned application domain. Finally,
Sect. 5 concludes the paper.

2 Methodical Background

We start with some preliminary definitions. First, let U be the set of DER units in
the VPP and ZU be the set of operational states of unit U . We regard the schedule
of an energy unit as a vector p = (p1, . . . , pd) ∈ R

d of mean power pi generated
(or consumed) during the i th time interval. The starting time and the width of a
time interval (today usually 15min) are defined separately and have no effect on
this representation. For the used support vector decoder it is advantageous to use
schedules with scaled power values [10]. Scaling is done according to respective
minimum (pmin) and maximum (pmax ) nominal active power output (or input):
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ρ : Rd → X ⊂ [0, 1]d

p �→ x = ρ( p),with xi = pi − pmin

pmax − pmin
; (1)

For this paper we go with the example of predictive scheduling for active power
planning in day-ahead scenarios (not necessarily 24h but for some given future time
period).

One of the crucial challenges in operating a VPP arises from the complexity of the
scheduling task due to the large amount of (small) energy units in the distribution grid
[25]. In the following, we consider predictive scheduling, where the goal is to select
exactly one schedule xi for each energy unit Ui from a search space of feasible
schedules with respect to a future planning horizon, such that a global objective
function (e.g. a target power profile for theVPP) is optimized by the sumof individual
contributions [34]. A basic formulation of the scheduling problem is given by

δ

(
m∑
i=1

x, ζ

)
→ min (2)

such that
xi ∈ F (Ui ) ∀Ui ∈ U . (3)

In Eq. (2) δ denotes an (in general) arbitrary distance measure for evaluating the dif-
ference between the aggregated schedule of the group and the desired target schedule
ζ . W.l.o.g., in this contribution we use the Euclidean distance ‖ · ‖2. To each energy
unit Ui exactly one schedule xi has to be assigned. The desired target schedule is
given by ζ . F (Ui ) denotes the individual set of feasible schedules that are operable
for unit Ui without violating any (technical) constraint. Solving this problem with-
out unit independent constraint handling leads to specific implementations that are
not suitable for handling changes in VPP composition or unit setup without having
changes in the implementation of the scheduling algorithm [29].

In [3] a so called support vector decoder has been introduced. Basically, a decoder
is a constraint handling technique that gives an algorithm hints on where to look for
feasible solutions. It imposes a relationship between a decoder solution and a feasible
solution and gives instructions on how to construct a feasible solution [13]. For
example, [22] proposed a homomorphous mapping between an n-dimensional hyper
cube and the feasible region in order to transform the problem into an topological
equivalent one that is easier to handle. In order to be able to derive such a decoder
mapping automatically from any given energy unit model, [3] developed an approach
based on a support vector model [10]. We will briefly describe this method.

The basic idea is to start with a set X = {xi }n of feasible example schedules
derived from the simulation model of an energy unit and use this sample as a stencil
for the region (the sub-space in the space of all schedules) that contains only feasible
schedules. The setX can be easily generated after a sampling method from [7]. The
schedule sample is then used as a training set for a support vector based machine
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Fig. 1 General support vectormodel and decoder scheme for solution repair and constraint handling

learning approach [35] that derives a geometrical description of the sub-space that
contains the given data (in our case: the feasible schedules). Given a set of data
samples, the inherent structure of the scope of action of a unit where the data resides
in can be derived as follows: After mapping the data to a high dimensional feature
space by means of an appropriate kernel, the smallest enclosing ball in this feature
space is determined. When mapping back this ball to data space, it forms a set of
contours (not necessarily connected) enclosing the given data sample. An in-depth
discussion can for example be found in [35].

At this point, the set of alternatively feasible schedules of a unit is represented as
pre-image of a high-dimensional ball S . Figure1 shows the situation. This repre-
sentation has some advantageous properties. Although the pre-image might be some
arbitrary shaped non-continuous blob in R

d , the high-dimensional representation is
still a ball and thus geometrically easier to handle (right hand side of Fig. 1). The
relation is as follows: If a schedule is feasible, i.e. can be operated by the unit without
violating any technical constraint, it lies inside the feasible region (grey area on the
left hand side in Fig. 1). Thus, the schedule is inside the pre-image (that represents the
feasible region) of the ball and thus its image in the high-dimensional representation
lies inside the ball. An infeasible schedule (e.g. x in Fig. 1) lies outside the feasible
region and thus its image Ψ̂x lies outside the ball. But we know some relations: the
center of the ball, the distance of the image from the center and the radius of the
ball. Hence, we can move the image of an infeasible schedule along the difference
vector towards the center until it touches the ball. Finally, we calculate the pre-image
of the moved image Ψ̃x and get a schedule at the boundary of the feasible region:



6 J. Bremer et al.

a repaired schedule x∗ that is now feasible. We do not need a mathematical descrip-
tion of the original feasible region or of the constraints to do this. The decoder that
does the trick is derived directly from the training setX generated from the respec-
tive simulation model. More sophisticated variants of transformation are e.g. given
in [4]. For a detailed description of the support vector decoder approach we refer to
[4]. Formally, we have a mapping (the decoder γ )

γ : [0, 1]d → F[0,1] ⊆ [0, 1]d
x �→ γ (x)

(4)

that transforms any given (maybe in-feasible) schedule into a feasible one. Thus, we
are able to transform the scheduling problem given Eq. (2) into an unconstrained
formulation.

With these preliminaries in constraint handling we can now reformulate our opti-
mization problem as

δ

(
m∑
i=1

ρ−1
i ◦ γ (xi ), ζ

)
→ min, (5)

where γi is the decoder function of unit i that produces feasible, scaled schedules
from x ∈ [0, 1]d and ρ−1

i scales them unit specific entrywise to correct active power
values (inverse to Eq. (1)) resulting in schedules that are operable by that unit. Please
note, that this is a constraint free formulation. With this problem formulation, many
standard algorithms for optimization can be easily adapted as there are no longer
any constraints (apart from a simple box constraint x ∈ [0, 1]d ) to be handled and
no domain specific implementation (regarding the energy units and their operation
schedules) has to be integrated. Equation (5) is used as a surrogate objective to find
the solution to the constrained optimization problem Eq. (2).

Using a decoder fairly eases the implementation of a solver because no complex
constraints have to be considered. On the other hand, such a decoder may introduce
additional complexity into the optimization problem with this transformation. For
this reason, we scrutinized the fitness landscapes of both problems (untransformed
and transformed) to gain insight into the problem structure with means from standard
fitness landscape analysis [36]. Indeed, our findings indicate a slightly growing in
complexity by an increased ruggedness with a growing number of local minima [8].
But, this situation can be easily countered by using a heuristics that copes well with
rugged non-linear problems like Simulated Annealing (SA).

Simulated Annealing [21] is an established Markov Chain Monte Carlo Method
(MCMC) for non-linear optimization. It mimics a physical cooling process. In gen-
eral, MCMC methods are an effective tool for statistical sampling applied to opti-
mization problems [23]. The basic idea is a Markov Process that samples a target
probability distribution π(x) = 1

z e
−E(x) with z as a problem specific normalization

parameter and E measuring the error of the optimization objective. Originally, the
method has been mainly applied to physical problems finding a minimum energy
state and thus E is sometimes still denoted as HamiltonianH , e.g. in [27]. We will
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use the term E . In this process a new state σt+1 is generated from σt by drawing from
a proposal transition distribution Q(σt+1|σt ) [18, 26]. The new state is accepted with
probability

A(σt → σt+1) = min

(
1,

π(σt+1)Q(σt+1|σt )

π(σt )Q(σt |σt+1)

)
. (6)

The proposal distribution Q is a free parameter and must be adjusted to the
individual problem at hand. Starting from a random initial state σ0, the process needs
a while to reach equilibrium and independence from σ0. After this burn-in phase the
samples represent the target distribution π .

In systems with deep local minima the process can be trapped without escape in
reasonable time. This waiting time dilemma [39] is due to a stringent requirement
for equilibrium. To escape, the process must generate subsequent states with higher
energy and the probability for such a move declines roughly exponentially with the
energy differences that has to be overcome. Thus, the expected waiting time for such
escape grows also exponentially. For high-dimensional problems like the one that we
scrutinize here, this problem is even more prevalent [39]. Several techniques have
been proposed to overcome the problem of getting trapped, e.g. [12, 24, 39]; one is
the concept of Simulated Annealing (SA).

SA introduces a variable temperature T into the target distribution: π(x) =
1
z e

−E(x)/T . The effect is that the Markov Chain may escape local minima easier
at a higher temperature. The general idea of Simulated Annealing is to interpret the
fitness landscape of an optimization problem as a thermodynamic system with the
objective function E(x) denoting the error interpreted as the energy level of a pro-
posed solution x. Initially, the system is at a high temperature. During the Markov
process, the system is gradually cooled down to the ground state with the global
energy minimum.

Algorithm1 shows the basic flowwithin our SAwith integrated decoder. This inte-
gration has first been proposed in [8]. By mimicking a cooling process, temporarily
worse solutions are allowed – depending on temperature and difference in solution
quality – in order to escape local minima. In our approach, a solution is described by
two matrices X i j and M i j denoting for each energy unit i and for each time interval
j of the schedule a scaled active power value in [0, 1]. In many objective scenar-
ios, indicator values that describe the schedule with respect to different objectives
might additionally be prevalent. For demonstration purposes, we stick with the single
objective case here. In this sense, each row within the matrix is the schedule for one
of the units. X contains schedules from the unconstrained search space (hypercube
[0, 1]d not further constrained by technical issues from the units’ operations). X is
initialized with random values. M concurrently holds the respective feasible values
generated by the support vector decoder: M i = γi (X i ). Thus, M always represents
a feasible (scaled) solution to the problem.
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X and M represent the genotype and phenotype of a solution respectively. In each
iteration of the SA exactly one schedule x from X is randomly chosen and mutated.
Modification is done at a randomly chosen element xk by adding a random value
p ∼ N (0, 1):

xk ←

⎧⎪⎨
⎪⎩
xk + p − 1 if xk + p > 1

xk + p + 1 if xk + p < 0

xk + p else.

(7)

Additionally, it can be useful especially for high-dimensional schedules to allow
mutations at more than one element at a time. Only this mutated schedule has to be
mapped by the respective decoder in order to keep M consistent with X .

The system evolves as follows: at each temperature level T t a Markov chain
samples E(x). M always represents a feasible, mutated solution that can be evalu-
ated by Eq. (5). The new proposal solution part xt+1 is accepted (according to the
Metropolis-Hastings criterion) with probability

A(xt → xt+1) = min
(
1, e

−ΔE
T t

)
, (8)

withΔE = E(xt+1) − E(xt ). In each iteration, temperature T t is updated with with
cooling rate λ ∈ [0, 1[: T t+1 ← λ · T t .

Algorithm 1Basic scheme for the SimulatedAnnealing step (with integrated support
vector decoder).
1: X i j ← xi ∼ U (0, 1)d , 1 ≤ i ≤ n
2: M i j ← γi (X i ), 1 ≤ i ≤ n
3: ϑ ← ϑstart
4: while ϑ < ϑmin do
5: choose random k; 1 ≤ k ≤ n
6: x∗ ← Xk
7: mutate(x∗)
8: M∗ ← M; M∗

k ← γk(x∗)
9: if e− E(M∗)−E(M)

T > r ∼ U (0, 1) then
10: M ← M∗; Xk ← x∗
11: end if
12: T ← cooling(T )

13: end while

Amajor advantage of this approach is the anytime property: at any time, a feasible
solution exists. The Markov chain may evolve in [0, 1]d·n without taking care of
technical constraints of the individual energy units. The decoder guarantees (apart
from minor inaccuracies that might easily be corrected [4]) the feasibility of the
solution.
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3 Partitioning the Search Space

By employing the support vector decoder approach in combination with a heuristic
solver for the optimization problem as described in the previous section, we are able
to solve the scheduling problem for energy units efficiently without needing to adapt
any part of the process to unit-specific properties such as technical constraints. The
whole process is visualized in Algorithm2. The resulting matrix M comprises m
rows and d columns, where the i th row vector represents the chosen schedule for
energy unit Ui (for the remaining symbol definitions refer to Sect. 2).

Algorithm 2 Predictive Scheduling
1: m ← amount of energy units
2: n ← sample size per energy unit
3: d ← length of planning horizon
4: for all energy unit Ui ∈ U do
5: si ← predicted state of Ui at the beginning of the planning horizon
6: repeat
7: initialize simulation model for Ui with si
8: simulate feasible schedule of length d
9: until F (Ui ) contains n feasible schedules
10: scale sample F (Ui ) using ρi
11: calculate support vector model Si
12: build support vector decoder γi
13: end for
14: return M ←

(
solve δ

(∑m
i=1 ρ−1

i ◦ γ (xi ), ζ
)

→ min
)

In the considered application domain, predictive planning is commonly done for
day-ahead planning horizons, i.e. d corresponds to 24h with a schedule resolution
of 15min. In our problem formulation, this yields a 96-dimensional search space for
each energy unit. Due to the curse of dimensionality [16], this may introduce sig-
nificant negative effects. For instance, with larger problem dimensions, the required
amount of training data for the support vector model increases exponentially [37].
This affects both the generation of feasible schedule samples via simulation, as well
as learning the support vectormodels from these samples.Moreover, solving the opti-
mization problem itself gets more time-consuming due to combinatorial explosion.
Finally, as the support vector decoder model is based on approximation, mapping
accuracy deteriorates with larger dimensions. This may lead to infeasible schedules
being misleadingly recognized as feasible.

According to [32], strategies to circumvent the curse of dimensionality in such a
case can be categorized as follows:

• Decomposition: Given that the problem is separable, decomposition subdivides
the problem into smaller parts that are easier to solve.

• Screening: Less significant and redundant decision variables/dimensions are
pruned from the problem description in order to reduce dimensionality.
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• Mapping: The problem is mapped to a representation comprising less dimensions.
For example, by exploiting correlations between variables in the original space, a
mapping can be designed that yields a correlation-free space with less dimensions.

• Space Reduction: Using expert knowledge, parts of the search space are excluded
from optimization.

• Visualization: An expert prunes insignificant parts of the search space using visu-
alization techniques for high-dimensional data. In contrast to Space Reduction,
this is done interactively during the optimization process.

For the considered support vector decoder approach, the strategies Screening, Visu-
alization, and Space Reduction with expert’s help are inappropriate, as they rely on
specific knowledge about the individual problem instance to solve, which contradicts
themainmotivation for our approach. Because neighbouring values in the unit sched-
ules are often quite similar (i.e. the gradient between two time intervals is usually
rather small) and thus show some correlation, Mapping might be applicable. After
optimization, however, the resulting low-dimensional power profile would have to
be inversely mapped to a feasible high-dimensional schedule again, which would
introduce further problems.

Finally, Decomposition offers a viable solution.We cannot split the problem along
them axis with respect to the result matrix M in Algorithm2 (i.e. by optimizing over
disjunct sets of energy units), because in each time step along the d axis, the schedule
selections of all participating units have to be regarded in order to minimize δ. On
the other hand, the problem formulation might allow us to optimize over each time
step along the d axis independently: If the employed distance measure δ is a metric,
it gets minimal if the individual distances along the d axis are minimal. This holds
true for the Euclidean distance ‖ · ‖2 we are using in this paper. Therefore, from the
optimization point of view, the given problem seems to be separable along the d axis.
Formally, we define such a partitioning of the search space as

π : N2 → N

(d, j, k) �→ l = π(d, j, k),
(9)

where l = π(d, j, k) denotes the length of the j th partition along the d axis. The
parameter k may hold arbitrary implementation-specific values (cf. the equidistant
partitioning below). For a partitioning to be valid, the concatenation of all generated
partitions must yield the whole planning horizon:

∞∑
j=1

π(d, j, k) = d (10)

Moreover, for convenience we require

∀i : π(d, j, k) = 0 ⇒ π(d, j + 1, k) = 0, (11)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 2 Equidistant partitioning for d = 16 and k = 4

i.e. as soon as the partitioning function yields the first zero partition, every following
partition must be zero as well. Using this rather general definition of π , we may
now define different partitioning strategies. For example, the equidistant partitioning
subdivides the planning horizon into k partitions of equal size

πeq(d, j, k) =

⎧⎪⎨
⎪⎩

� d
k � if j ≤ k ∧ j ≤ d mod k,

� d
k � if j ≤ k ∧ j > d mod k,

0 else.

(12)

Figure2 shows an example for this partitioning with d = 16 and k = 4. There are
many other possible partitioning strategies, ranging from simple arithmetic frag-
mentations to more sophisticated strategies involving expert knowledge about the
use case at hand (i.e. the structure of the target profile or the δ function). A particular
promising approach is the entropy partitioning, which exploits the entropy in the
feasible schedule samples to determine intervals of high versus low flexibility in the
units’ scopes of actions, and partitions the search space accordingly.

Algorithm3 shows the possible approach for achieving such an entropy-based
partition. The entropy is determined for each time interval within the horizon and
compared with the previously calculated mean entropy; scaled by a parametrizable
factor. The length of a partition then reflects the deviation of the local from the mean
entropy. Figure3 shows an example result. Regions with a high variety in possible

Fig. 3 Entropypartitioning form = 0.8933 and k = 1.5 and thus thresholdm · k = 1.34; number of
time interval on x-axis. The left figure shows exemplarily one training schedule for each device (real
power on y-axis); the left figure shows the resulting entropy per time interval and the partitioning
according to the given threshold
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power levels and thus with a high flexibility result in shorter partitions due to the
high entropy there.

Nevertheless, in order to remain maximally independent from such expert knowl-
edge, we go with the example of equidistant partitioning in the remainder of this
paper.

Algorithm 3 Partitioning by entropy
function p(d, i)

1: m ←
∑d

t=1 − ∑
j Pt, j ·log2(Pt, j )
d mean entropy over all time intervals t

2: s ← ∑i−1
j=1 p(d, j)

3: l ← 0;
4: sum ← 0;
5: while sum < m · k ∧ s + l < d do
6: l + +
7: sum ← sum − ∑

j Ps+l, j log2(Ps+l, j ) sum up entropy until threshold reached
8: end while
9: return l length of partition

In order to implement a partitioning scheme like e.g. the equidistant partitioning
for the Simulated Annealing approach to high dimensional predictive scheduling, we
have to extend Algorithm2. Special care has to be taken regarding the simulation of
feasible schedules: Originally, in Algorithm2, each simulation model was initialized
with the state of the energy unit right at the beginning of the planning horizon, and
was executed for d time steps, such that each schedule sample exactly covers the
planning horizon. Using partitions, however, schedule samples cannot be generated
beforehand for the whole planning horizon. In order to identify a unit’s flexibility
for a certain partition, the exact state of the unit at the beginning of this partition
has to be known. Thus, before being able to process a partition, we have to assign
fixed schedules to the units for the preceding partition. As a consequence, the overall
process ranging from schedule simulation to solving the optimization problem has to
be executed for each partition separately. This ensures that, after the process finished
for all partitions, the concatenated result schedules are feasible overall. On the other
hand, with this approach we achieve a reduction of the design space (without expert
knowledge as proposed in [32]) as every subsequent optimization process is already
tackled to a fixed operational state of each unit at the beginning of a partition. The
resulting process is visualized in Algorithm4.

4 Evaluation

The objective of this paper is to explore the potential benefit of partitioning the search
space of the given combinatorial problem in the data domain, followed by sequen-
tial optimization of the individual partitions. In the previous section, a partitioning
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Algorithm 4 Predictive Scheduling with Partitioning
1: m ← amount of energy units
2: n ← sample size per energy unit
3: d ← length of planning horizon
4: for all energy unit Ui ∈ U do
5: si ← predicted state of Ui at the beginning of the planning horizon
6: end for
7: j ← 1
8: k ← implementation specific value
9: while π(d, j, k) �= 0 do
10: for all energy unit Ui ∈ U do
11: repeat
12: initialize simulation model for Ui with si
13: simulate feasible schedule of length π(d, j, k)
14: until F (Ui ) contains n feasible schedules
15: scale sample F (Ui ) using ρi
16: calculate support vector model Si
17: build support vector decoder γi
18: end for
19: M j ←

(
solve δ

(∑m
i=1 ρ−1

i ◦ γ (xi ), ζ
)

→ min
)

20: for all energy unit Ui ∈ U do
21: run simulation model for Ui using schedule xi
22: si ← predicted state of Ui after running xi
23: end for
24: j ← j + 1
25: end while
26: return M ← [

M j
]

framework has been introduced for this purpose, along with a detailed description of
the according optimization process chain. In order to evaluate the proposed approach
with respect to the objective, a simulation study has been conducted.

4.1 Simulation Setup

Following the considered example use case, we set up a simulated virtual power
plant for active power planning in day-ahead scenarios, comprising co-generation
units with an 800� thermal buffer store each. We used the simulation model of an
EcoPower CHP as described in [6]. For each of those devices, the thermal demand
for a four-family house during winter was simulated. The devices were operated in
heat driven operation and thus primarily had to compensate the simulated thermal
demand. Additionally, after shutting down, a device would have to stay off for at least
two hours. However, due to their thermal buffer store and the ability to modulate the
electrical power output within the range of [1.3, 4.7]kW, the devices still have some
flexibility available.
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For the generation of feasible schedule samples, a successive sampling strategy
was employed: Instead of guessing whole schedules and checking feasibility after-
wards (using a device’s simulation model), which leads to large rejection rates, a
period-wise guessing in combination with partial feasibility checks is applied repeat-
edly to construct feasible schedules in a successive manner, cf. [7]. Preliminary
experiments indicated 200 as an adequate size for F (Ui ), so we set n = 200 in the
present study.

The planning horizon was set to d = 96 time intervals, i.e. 24h in 15min res-
olution, which is a common use case in the application domain. As motivated in
the previous section, we employ the equidistant partitioning function πeq in this
study. Regarding the parameter k, which defines the length of the partitions and thus
inversely determines the number of partitions to be generated according to (12), sev-
eral experiments with k ∈ [1, 96] have been conducted. For instance, k = 1 yields
96 partitions of length 1, while k = 96 corresponds to a single partition of length 96,
i.e. no partitioning at all. This way, the influence of a partitioning on the optimization
can be explored in a structured manner.

While k represents the primary influence factor in our study, other parameters may
cause relevant interaction effects. Here, especially the magnitude of the problem size
along them axis (i.e. the number of energy units in theVPP, cf. Sect. 3) is of particular
interest, as it affects the problem complexity for each partition likewise. Similarly,
different target profiles ζ have to be examined with respect to the units’ available
flexibilities. For example, a target profile might turn out to be easily realizable due
to well matching schedule options in the units’ search spaces, or vice-versa. The
question arises whether this influences the potential benefit of a partitioning, and
how a partitioning should be done in order to gain optimal results.

In all experiments, we used the Simulated Annealing solver as outlined in Algo-
rithm4. Each examined parameter configuration was simulated 100 times, so that
the results can be interpreted with statistical soundness.

4.2 Results

The evaluation focuses on solution quality, which is calculated as remaining error
after optimization:

δ

(
m∑
i=1

ρ−1
i (xi ), ζ

)
, xi ∈ M (13)

where M denotes them × d schedule matrix after all partitions have been processed
(line 26 in Algorithm4). In the following, results are visualized as box-charts, where
the box spans from the upper to the lower quartile of the data. Themedian is shown as
horizontal line within a box, whereas the whiskers span over 1.5 × the interquartile
range. Outliers are illustrated by circle markers.
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Fig. 4 Remaining optimization error for different partition sizes

First of all, the general influence of different k values (i.e. different partition sizes)
is examined. As already stated in the introduction, preliminary experiments indicated
a potentially increasing solution quality when the optimization algorithm is applied
in a successive manner to sequential partitions of the planning horizon. For a more
thorough analysis, we conducted 100 simulations for each k ∈ {2, 8, 24, 48, 96}. The
results are visualized in Fig. 4. The optimization error clearly decreases with more
and thus smaller partitions (from right to left in the figure). Comparing the extreme
points, the partitioning even allows approaching the theoretical optimum δ = 0 when
the partitions are generated as small as possible (k = 2: despite a few outliers, the
box is squashed to a single line at δ = 0), while the no-partitioning case yields the
worst results most of the time (k = 96).

These results support our hypothesis strikingly, but they originate from a single
experiment configuration only: On the one hand, a fixed number of energy units
was involved, m = 10. On the other hand, the target profile ζ was generated by
aggregating randomly chosen sample schedules (one for each energy unit) at the
beginning of each experiment run. This way, ζ formed an “easy” target, because the
energy units were able to approach it optimally in principle. In the following, we
will vary this configuration in these two aspects, in order to gain more insights into
the involved effects.

4.2.1 Interaction with the Number of Energy Units

In the considered application use-case of predictive scheduling for active power plan-
ning in day-ahead scenarios, virtual power plants may comprise different amounts
of energy units, depending on e.g. regional conditions. From the optimization point
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Fig. 5 Remaining optimization error for different partition sizes and varying amounts of energy
units

Fig. 6 Remaining optimization error per energy unit for different partition sizes and varying
amounts of energy units

of view, this corresponds to the problem size along the m axis. In a partitioned set-
ting (i.e. k < d), each subproblem is of size m × k. Hence, m affects the problem
complexity for each partition likewise. To reveal possible interactions with the mag-
nitude of k, the previous experiment with k ∈ {2, 8, 24, 48, 96} was repeated for
m ∈ {2, 5, 10, 25}. Figure5 visualizes the results. Similar to Fig. 4, the optimization
error generally decreases with smaller partitions. Within each block, however, dif-
ferent effects with respect to the number of units m are visible: For the case of small
partitions, the optimization error is lower with larger values of m, while this trend
reverses for large partitions. As this is based on the absolute error, which is natu-
rally different for varying magnitudes of m, Fig. 6 complementarity shows the same
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results against the normed optimization error with respect to the number of units, i.e.
the remaining error per energy unit. Here, the trend towards a lower error for small
partitions is again clearly visible, whereas the magnitude of m results in a change of
the slope for this trend. Concluding, m seems to affect the problem complexity only
as a whole, and does not seem to interact with the partition size k.

4.2.2 Dependencies on the Target Profile

In active power planning, usually an application-specific target profile is given. For
instance, in day-ahead energy market scenarios, a target profile would be chosen
such that the economic outcome of the VPP is maximized. In contrast, in supply-
demand-matching scenarios, the target profile might be e.g. a constant zero value,
such that the considered set of energy units (flexible producers and consumers) can
be treated as autonomous energy-wise. While it is advisable to configure VPP and
target profile in a matching way, so that the latter is actually a feasible target for the
former, not all target profiles are equally easy to realize.

In our study, we abstract from application-specific scenarios as follows. As a first
step, a feasible target can be formed by aggregating randomly chosen sample sched-
ules (one for each energy unit). This way, the existence of the theoretical optimum
(δ = 0) is guaranteed.We denote this type of target with ζ0. To generatemore difficult
target profiles in an easy but structured way, ζ0 can simply be shifted in magnitude:

ζi = ζ0 + i (14)

Please note that ζ is a vector, and the summation is performed element-wise. Match-
ing the size of the considered VPP in the present study, we choose values for i
between 0 kW and ±1 kW in the following experiment, in order to deviate the tar-
get profile from “easy to solve optimally” towards “hard to solve optimally”. Thus,
as in the previous section, the original experiment with k ∈ {2, 8, 24, 48, 96} was
repeated for all ζi with i ∈ {−1,−0.5,−0.25, 0, 0.25, 0.5, 1} in kW. The results
are presented in Fig. 7. Similar to the results from Fig. 5, the general trend of better
optimization results with smaller partitions is visible. The case k = 2, i = −1 is an
exception. Here, the optimization was not able to find a feasible schedule at all in the
available time. This is due to the very low values in the target profile in combination
with a large number of partitions: Due to the independent optimization of individual
partitions, the simulated CHP units stay off at the beginning of the planning horizon
until the thermal buffer stores are exhausted. At that point in time, however, thermal
demand exceeds the available power from the CHPs, so that no feasible schedule can
be found anymore (Fig. 8).

Figure9 shows the situation for both of these extreme partitions: for partition
size 2 (depicted on the left), corresponding to the maximum number of subsequent
optimization problem and thus corresponding to the shortest visible (manageable)



18 J. Bremer et al.

Fig. 7 Remaining optimization error for different partition sizes and varying target profile devia-
tions

Fig. 8 Remaining optimization error for varying target profile deviations (horizontal axis) and
different partition sizes (individual data series)

Fig. 9 Example for premature exhaustion of flexibility along the example of remaining thermal
buffer capacity. On the left No remaining flexibility is preserved due to a partition size of 2. On the
right Buffer flexibility is properly exploited due to an anticipatory optimization with partition size
96
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time frames. For partition size 96 (on the right), the optimization has full information
(just one single optimization problem). As can be observed in the latter case, tem-
perature flexibility is not exhausted if the optimization has no timely notice about a
need for preserving remaining flexibility in succeeding time intervals. Of course, this
leads to an unavoidable degradation in solution quality but results in at least feasible
solutions.

With larger partitions, the effect is not present, as the optimization can act antici-
patory towards feasibility (i.e. by choosing schedules that lead to a poor optimization
error, but in turn form a feasible solution). This effect indicates that a strong parti-
tioning can yield better optimization results if enough flexibility is present, but might
also lead to infeasible solutions in extreme cases.

In addition to the general trend regarding the value of k, a u-shaped course can
be seen within each configuration of the same partition size. In other words, solution
quality seems to deteriorate with larger deviations from ζ0, which is not surprising
at all. In order to focus on the interaction between these two effects, Fig. 8 visualizes
the results in a transposed way, i.e. the deviation i is visualized along the horizontal
axis, while the partition sizes k are presented as line charts.

For visualization purposes, the shown data comprises mean values only. Fur-
thermore, in this experiment a larger amount of configurations was examined:
k ∈ {2, 4, 8, 16, 24, 32, 48, 96} and |i | ∈ {0, 0.25, . . . , 2}. The results reveal an inter-
esting relationship: For smaller target deviations, configurations with smaller par-
titions yield superior optimization results. In contrast, for larger target deviations,
larger partition sizes yield better results. In summary, the last experiment supports
our previous hypothesis: With enough flexibility in a given problem configuration
(in terms of feasible solution combinations with respect to the fitness function), the
solver significantly benefits from a partitioning. On the other hand, in more difficult
problem formulations (i.e. with less flexibility in terms of feasible solutions), the
solver cannot cope with a large number of independent partitions.

Finally, the sensitivity of algorithmparametrizationhas been scrutinized. Figure10
shows a result for the example of the mutation rate. For the used Simulated Anneal-
ing, basically two parameters have to be chosen. Other parameters apply to the search
space and decoder model and are discussed for example in [11, 19]. For the SA, a
mutation rate and a cooling rate have to be fixed. For the cooling rate that determines
how fast the process converges (with the risk of premature convergence with too fast
cooling), empirically a value of 0.9999 has been found which can be applied to a
wide range of problems and partition sizes. The mutation rate denotes the number
of mutated schedule elements that are modified in each iteration. The impact of the
mutation rate is described in Fig. 10. Here, the following relation can be observed:
for small partitions sizes smaller mutation rates are advantageous for large partitions
sizes higher rates pay off.
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Fig. 10 Sensitivity of the mutation rate (varying from 1 to 48) of the result quality for different
partition sizes

5 Conclusion

The objective of this paper was to explore the potential benefit of partitioning the
search space of a combinatorial problem in the data domain using the example of
predictive scheduling as a smart grid use case.Wecombined the partitioning approach
with a sequential optimization solving each partition successively. As predictive
scheduling is a constrained optimization problem, simulationmodels [33] of different
energy units have been integrated directly in the process for handling individual
search spaces and operational constraints.

Several methods to cope with the challenge of high dimensionality in optimiza-
tion problems have been proposed in the past. A good overview on methods for
computationally expensive black-box functions (as might be the case when using
simulation models for computing objectives) is e.g. given in [32]. Our approach is a
mixture of design space reduction and decomposition into sub-problems. To achieve
this we have to introduce simulation models as black-boxes into the optimization
process for sequencing. Introducing this sequence of independently solvable sub-
problems reduces the overall computationally effort and at the same time reduces the
design space so that modeling is more accurate and optimization effort is reduced
[32]. At the same time this reduction leads to a limited choice especially for later
sub-problems. Sub-space parts of the design space may be missed [32]. On the other
hand, with our method, we may focus on the whole sub-space at once without a need
for subsequent refinement like in other methods [32].

Our results support the hypothesis of an increasing solution quality when applying
the optimization algorithm in a successivemanner to sequential partitions of the plan-
ning horizon. For our experiments we mainly used a simulated annealing approach
as solver although our results can be generalized to other solvers. In general, any
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solver benefits for partitioned data domains in predictive scheduling if a problem
configuration contains enough flexibility in terms of feasible solution combinations.
With decreasing flexibility, additional complexity induced by a growing number of
partitions prevails.

So far all simulations have been done with scenarios regarding predictive schedul-
ing. Additional use cases like load balancing can be easily adapted by exchanging
the objective functions, as the problem structure is similar to predictive scheduling.
Future work will concentrate on methods to classify the situation at hand in order to
automatically decide on appropriate partition of the combinatorial problem.
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Wildfire Optimizations in Modeling
and Calibrations for Bulgarian Test Cases

Nina Dobrinkova

Abstract In this article we are going to present the optimizations that has been done
through different types of models applied on wildland fires for Bulgarian test cases.
We will present approaches where meteorological data along with terrain specific
relief and vegetation coverage are modeled in a way to present credible scenarios
for wildland propagation used for calibration purposes of the different cases. This
work aims to prove that the used modeling tools can be used as decision support
mechanism for the responsible authoritieswhen it is combinedwith field observations
and simulated propagation scenarios. In conclusion we will give as working example
a web-based system in USA which with adaptations can be applicable for Bulgarian
conditions.

1 Introduction

The work presented in this paper is a year’s long efforts which have been started
because of an accident that happened in Pirin Mountain near by the city of Razlok.
In the year 2003 a helicopter with water tank flew very low to a running fire trying to
suppress it dumping water quantities over the mountainous area. Unfortunately the
engine oxygen has been vacuumed because of the flames, which caused helicopter’s
crashwith four people crew that died that day [1]. This accident was very problematic
for the Bulgarian society. That is why in the Bulgarian scientific community has been
launched in the beginning of 2007 a pilot Ph.D. program dedicated to the wildland
propagation and its modeling opportunities as first attempts for computer based
simulations on wildland fires propagation in Bulgaria.

In 2007 small team fromBulgarianAcademyof Sciences (BAS) started adaptation
of a USmodel, which was running in parallel mode. Themodel was calledWRF-Fire
(in 2010 renamed SFIRE). The input data for the model had to be first collected for
a specific test area and second preprocessed for model calibration.
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The area of interest for theBAS teamat firstwas nearbySofia,where idealized case
has been run with the model functionalities in order to set the model parameters. No
real fire has been on this area. So no calibration has been done. However the second
attempt was run for a real test case wildland fire, which has occured near by the
village of Leshnikovo, region of Harmanli in the past. For the second test case we
tried as much as possible to do a model set up repeating the steps of fire propagation
as it was described by the forester’s department in Harmanli.

In this paperwewill show the basis of themathematical calculations and optimiza-
tions outlined from the research efforts and the achieved results as final outcomes.
This work is ongoing and more optimizations will occur in future.

2 WRF-Fire (SFIRE) Mathematical Basis

The mathematical background of the WRF-Fire model (SFIRE) is as position in the
(x, y) plane. The model is semi-empirical and it represents the spread of the fire
in direction of the fire line. This is the so called Rothermel modified formula. The
burning region is represented as � for time t, which is represented with the point
coordinates (x, y). The formula itself is:

S̃ = min{B0,R0 + φw + φs}, (1)

where B0 is the fire spread against the wind direction, R0 is the fire spread in absence
of wind, φw = a(�υ · �n)b is the wind correction and φ s = d∇z · �n is the terrain
correction, �υ is wind, ∇z is terrain variable along the normal �n of the fire line, a, b
id are constants. In this case WRF-Fire use:

S =
⎧
⎨

⎩

0, i f S̃ < 0
Smax, i f S̃ > Smax

S̃, i f 0 ≤ S̃ ≤ Smax

, (2)

where Smax is max fire spread. After the burning materials are burnt the model
decrease them in the points (x, y) exponentially and that is represented with the
formula:

F(x, y, t) = F0(x, y)e
−(t−t(x,y))/W(x,y)

i , (3)

where t is the time, ti is the time for the burning, F0 is the initial quantity of the burning
materials (before they started to burn) and W(x,y) does not depend on the time, but
from the burning materials. The heat transfer released by the fire, is represented in
the atmosphere model as layer above the surface, which is situated in height [2]. The
burning material quantity is represented by:
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� = −A(x, y)
∂

∂t
F(x, y, t) . (4)

This representation is needed because the atmosphere model WRF, does not support
border values for heat transfer. The coefficients B0, R0, Smax, a, b, d, W and A,
which describe the burning materials are measured in laboratory with experiments.
For every surface point in the plane the coefficients of the burning materials are
represented using the 13 Anderson categories [3]. These categories are developed
for US originally and they have been defined by usage of the different sea levels on
the surface. WRF-Fire (SFIRE) has internally representation of every category and
all additional characteristics, which gives opportunity for modifications when the
fire is outside US.

WRF-Fire use also level-set functions for the spread of the fire [4]. This approach
set as function ψ = ψ(x, y, t), which define for � subregions using the rule:

�(t) = {(x, y) ∈ � : ψ(x, y, t) < 0}. (5)

These subregions are burned and the fire line is defined as curve:

�(t) = {(x, y) ∈ � : ψ(x, y, t) = 0}. (6)

The function ψ(x, y, t) satisfy the equation:

∂ψ

∂t
+ S(x, y)|∇ψ| = 0, (7)

which can be solved numerically.
Formulas (1)–(7) are general description howmathematically thefire spread is rep-

resented inside theWRF-Fire (SFIRE)model. In the beginning the atmospheremodel
is interpolating the wind in order to get into the bigger domain of the atmosphere
the fire changes. Afterwards is applied numerical method for the level-set function.
The next step is to apply quadratic formulas for evaluation of the burnt material. In
parallel it is evaluated also the released heats transfer into the atmosphere layers.
The last step gives atmospheric change and that trigger the repetition of the model
to starts again.

3 Experimental Results with WRF-Fire (SFIRE)

The experimental results which were obtained after evaluation of the WRF-Fire
(SFIRE) model can be presented in brief summary in this section.

The first experimental run of the model was for an ideal case, nearby Sofia city
using coordinates and information for the village of Leshnikovo. The used version
of the model was WRF-Fire v.3.2 for the simulation. We did domain with size 4 by
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4km, with horizontal resolution of 50m, for the atmosphere mesh, the used grid was
80 by 80 cells and with 41 vertical levels from ground surface up to 100hPa. We
didn’t use nesting to keep the ideal case as basic as possible in order to evaluate the
model capacity and set up the needed initial conditions for a Bulgarian runs.

The domain, was set with a location 4km west from village Zheleznitsa in the
south-east part of Sofia city region. The domain was covering the lower part of the
forests of Vitosha mountain.

The ignition linewas set in the center of the domain and the ignition linewas 345m
long. The model at that stage of its development did not allow us to use ignition from
a point, because the atmospheric model did not cover such narrow measurements.
The ignition in parallel has been set to start 2 s after the simulation has begun. The
results from this first simulation gave us idea how the model can be initialized and
what the input data will be if we start calibration simulations with real wildland fire
test case.

That is why we selected from the national data base in the ministry of forests,
food and agriculture, a fire which has been burning in the period 14–17 August 2009
located near by the city of Harmanli. For the initialization of the model with the real
test case we had to use algorithm for implementation of the real data in a way that
WRF-Fire (SFIRE) was able to recognize it. We set for these purposes two domains:
the first was covering area of 48km2 with resolution 300m (160× 160). This domain
was producing boundary and initial meteorological conditions for the inner domain
and in this domain were no fire simulations.

The inner domain was located in the middle of the coarse domain. The resolution
in Domain 2 was set as 60m and the area covered is 9.6km2 (161× 161). Domain 2
was centered on the fire ignition line and it was covering the areas of villages Ivanovo,
Leshnikovo and Cherna Mogila. This area was located in South-East Bulgaria close
to the Bulgarian-Greece border nearby Harmanli city.

The first data source which was very important was the meteorological input. We
used USNCEPGlobal Analyses data for meteorological background input: The data
was with 1× 1 degree grid resolution covering the entire globe, the time resolution
was 6h. With this data we could simulate all over the world but with resolution of
around 100km.

The next data set, which was needed for input in WPS (WRF pre-processor) was
the topography data. The standard topo-data used in WPS was USGS 30s resolution
global data set (GTOPO30), but because terrain elevation is very important for correct
fire behavior we usedmuchmore detailed data for the area of Harmanli (this data was
available also for the whole country of Bulgaria) fromUSGS / SRTM 3s data (http://
eros.usgs.gov; Shuttle Radar Topography Mission (SRTM) Finished Grade Data) in
order to be used in WPS it had to be converted in a special format. The data received
from the server was through a GIS raster format (DTED format *.dt1) in Lat/Long
format, datum WGS84. The open source Quantum GIS (www.qgis.org) interpolate
the missing data of the raster (if any) with simple linear interpolation and then we
could change the projection to the one we were going to use in WRF – Lambert

http://eros.usgs.gov
http://eros.usgs.gov
www.qgis.org


Wildfire Optimizations in Modeling and Calibrations … 29

Conformal Conic (ref_lat = 41.84, ref_lon = 25.936, truelat1 = 41.82, truelat2 =
41.86, stand_lon= 25.936). After the reprojecting, we exported the raster in the new
format – GeoTiff. This format was used in the WPS program “convert_geotiff”. The
procedure we followed was explained in details at [5]. The resulting fails after con-
vert_geotiff were used by WPS/geogrid. In order to have fire behavior, we needed
fuel data for the simulation domain. Because there was no such data, for our test
case area we had to choose information about the vegetation from the project Corine
Landcover (funded by the European Environment Agency and the member states).
This landcover data for Bulgaria was with 100m resolution and 25haminimummap-
ping unit. (http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-
raster). The downloaded data (it gives options for GIS vector or raster formats) was
used to create fuel data, based on the land cover information. The applied classifi-
cation was the 13th Anderson classes from 1982 [6]. Also orthophoto data from the
geoportal of TheMinistry of Regional Development and PublicWorks (MRDPW) of
Bulgaria was used to make even more detailed the available fuel data for the domains
of interest, namely Harmanli region. All rivers, lakes, villages and forest areas have
been vectorized using the orthophoto images combined with CORINE2006. The
resulting fail was a GIS vector shape fail with very high accuracy of representation
of non burning areas like rivers and lakes, and areas with high burning fuel level, like
woods.

Following the description in [5] we got the intermediate fails which WPS could
use for topography and fuels. Along with the provided global datasets with WPS
we placed the newly created fails in the WPS working directory. The rest of the
procedures made input fails for WRF part of the model described in the WRF on-
line tutorial (http://www.mmm.ucar.edu/wrf/OnLineTutorial/index.htm). The only
difference was in the geogrid program, where the output fail had 2 extra varaibles –
NFUEL_CAT and ZSF. NFUEL_CAT for the 13th fuel categories done based on [6]
with the detailed topography. The result burnt simulated area compared to the real
one can be seen on the Figs. 1 and 2.

The simulation result on Fig. 1 has been done on a supercomputer at theUniversity
of Denver by distant connection. In Table1 the simulation outcomes were presented
according to the number of the cores used.

With this simulations for the test site nearby Harmanli city has been elaborated a
methodology for collection, processing and implementation of real data for test sites
on Bulgarian territory. The selected model was having as input meteorological data,
DEM and only 13 FBFMs (Fire Behavior FuelsModels) which led to the idea that we
can experiment also with other different models like BEHAVE Plus and FARSITE
for our next steps.

http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster
http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster
http://www.mmm.ucar.edu/wrf/OnLineTutorial/index.htm
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Fig. 1 The simulated burnt area

Fig. 2 The real fire burnt area
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Table 1 The time required for the simulation presented in seconds depending on the number of
processors running the parallel execution of processes showing that in 120 cores the simulations
run as fast as real time. Everything above this cores is performing faster than real fire propagation

Cores 6 12 24 36 60 120 240 360 480 720 960 1200

Fire line propagation in km. 1.91 1.08 0.50 0.34 0.22 0.13 0.08 0.06 0.06 0.04 0.10 0.04

Region 1 6.76 7.05 2.90 2.06 1.20 0.73 0.45 0.32 0.26 0.23 0.24 0.17

Region 2 0.00 0.00 0.00 0.02 0.02 0.04 0.04 0.06 0.06 0.08 0.07 0.15

Total sec. which is the
coeff. for real time

10.59 9.21 3.91 2.75 1.64 0.99 0.61 0.44 0.37 0.31 0.44 0.26

4 Experimental Implementation of BEHAVE Plus
and FARSITE Simulations in the Test Cases of Zlatograd,
Madan and Nedelino Municipal Areas in Bulgaria

In the framework of bilateral cooperation program between Greece and Bulgaria
2007–2013 the BAS team had the opportunity to work in the Zlatograd forestry
department located on the territories of Zlatograd, Madan and Nedelino municipal
areas in south – central part of Bulgaria. The study areawas the territorial state-owned
forestry department with its headquarters in Zlatograd. This department covers an
area of 33,532ha, where 31,856ha are state forests. Most forests are in early to
mid-serial succession stages, with only small amounts of mature to old forest. Stand
age was highly variable, ranging from 20 to 80 yrs; most stands range between 35 to
50 yrs with the average being 46 yrs. Average stem stock is 140m3 ha−1. The average
forest canopy cover was 81%.

In terms of climate, the region is part of the continental-Mediterranean climatic
region, south-Bulgarian climatic sub-region and East Rodopi mountain low climate
region. The average annual temperature for the area is 10.8 ◦C, with a maximum
temperature in July of 20.6 ◦C and minimum temperature in January of −0.8 ◦C,
indicating moderate summers and relatively mild winters. Extreme values of annual
averagemaximum andminimum temperatures could be respectively 17.1 and 4.9 ◦C,
the monthly maximum estimations are in the range in August (28.9 ◦C) and in
January (−3.9 ◦C). Average annual rainfall reaches 1000mm. Maximum precipi-
tation amounts for the period from April to October range from 10.0mm for 5min to
46.3mm for 60min and 59.7mm for more than 60min. The average annual relative
humidity is 75% which is an indication of good growing conditions; maximum rel-
ative humidity values of 85% which occur in November. The approximate relative
humidity less than or equal to 30% was estimated about 13–15 days per year.

The data we were working on was about fifteen wildfires that occurred in 2011 to
2012 within the Zlatograd municipal territory and it was provided by the Zlatograd
forestry department; this data included vegetation type, area burned (in decareswhere
10 decares= 1 hectare), date, and start and end hours of the fire event (Table2). These
wildfires burned in a variety of vegetation types and were more than likely started
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Table 2 Wildfire for the period 2011–2012. Information provided by theZlatograd ForestryDepart-
ment

Fire No. Vegetation type Burned area
in decares

Date of
occurrence

Hour of start Hour of end

1 Durmast 3.0 25 March 2012 1330 1530

2 Beechwood 5.0 29 March 2012 1400 1800

3 Scotch pine 1.0 16 June 2012 1500 1700

4 Scotch pine 7.0 6Aug. 2012 1640 1950

5 Scotch pine 5.0 6 Aug. 2012 1710 2130

6 European black pine 4.0 27 Aug. 2012 1200 1600

7 Scotch pine 3.0 5 Sept. 2012 1400 2030

8 Scotch pine 6.0 6 Sept. 2012 1400 1930

9 Scotch pine 2.0 6 Oct. 2012 1600 2320

10 Scotch pine 1.0 16 March 2011 1310 1400

11 Scotch pine 1.0 5 April 2011 1715 1900

12 Scotch pine 1.0 10 April 2011 1130 1530

13 Grassland 3.0 30 Aug. 2011 1400 1800

14 Scotch pine 4.0 12 Sept. 2011 1230 1900

15 Scotch pine 1.0 15 Sept. 2011 1600 1830

by humans to clear agricultural debris or prepare fields, based on the proximity to
villages. Paper maps from the forestry department identified the ignition location
and final fire shape; this data was digitized in a GIS which allowed each ignition
point to be viewed with background orthophotos and the spatial Zlatograd vegetation
classification showing pre-fire vegetation (Table2).

After we collected and located the forest fires we did runs with BehavePlus point
based prediction system in order to analyze fire growth and behavior for homoge-
neous vegetation with static weather data. We used standard fuel models developed
for US and we evaluated which fuel models were best able to produce estimates of
fire behavior and growth in BehavePlus similar to those observed on each of the
fifteen fires. In addition to fuel model, BehavePlus requires inputs for weather, fuel
moisture, slope, and duration of the burning period. We obtained weather data for
each fire from TV Met, a private company in Bulgaria, which provided the ability
to calculate fine dead fuel moisture values. Due to the paucity of available weather
data in Bulgaria, we had to assume that weather recorded for the weather station
closest to each particular fire is consistent with weather experienced on the wild-
fire. We estimated live herbaceous and live woody fuel moisture values based on
the expected phenological stage for the time of year that the fire occurred. To esti-
mate slope, we first acquired a 30m resolution digital elevation model (DEM) from
the National Institute of Geophysics, Geodesy, and Geography in Bulgaria, then
subsequently calculated the average slope for each fire using standard geospatial
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processing in ArcGIS (ESRI 2010). Burn period length for each fire was obtained
from the Zlatograd forestry department data (Table2).

Based on initial BehavePlus results using standard fuel models, custom fuel mod-
els were developed for some vegetation types not well represented by the US fuel
models. Custom fuel models were developed for native durmast oak and grass as
well as one of the Scotch pine sites by modifying fuel loading parameters to better
match local vegetation and reflect the lack of woody debris in the understory.

Following evaluation of fuelmodelswithBehavePlus,we then performed analyses
in FARSITE, a spatial fire growth system that integrates fire spread models with a
suite of spatial data and tabular weather, wind and fuel moisture data to project fire
growth and behavior across a landscape. We defined our test landscapes using a
500m buffer zone around each of the fifteen Zlatograd fires.

Input for FARSITE consists of spatial topographic, vegetation, and fuels parame-
ters compiled into amulti-layered “landscape file” format. Topographic data required
to run FARSITE include elevation, slope, and aspect. Using the aforementioned
30m DEM, we calculated an aspect layer, and then clipped elevation, aspect, and
slope rasters to the extent of our fifteen test landscapes. Required vegetation data
include fuel model and canopy cover. Fuel models within the 500m buffered analy-
sis area for each individual fire were assigned based on our BehavePlus analyses;
fuel model assignments were tied to the dominant vegetation for each polygon based
on the Zlatograd forestry department’s vegetation data. Canopy cover values were
visually estimated from orthophoto images and verified with stand data from the
Zlatograd forestry department. Additional canopy variables (canopy base height,
canopy bulk density, and canopy height) that may be included in the landscape file
were omitted, as these variables are most important for calculating crown fire spread
or the potential for a surface fire to transition to a crown fire. None of the fifteen fires
analyzed experienced crown fire.

Tabular weather and wind files for FARSITE were compiled using the weather
andwind data fromTVMet, Bulgarianmeteorological company that included hourly
records for the purposes of our research interests. Tabular fuel moisture files were
created using the fine dead fuel moisture values calculated for the BehavePlus analy-
ses for 1-h timelag fuels. The 10-h fuel moisture valuewas estimated by adding 1% to
the 1-h fuel moisture and the 100-h fuel moisture was generally calculated by adding
3% to the 1-h fuel moisture. The live fuel moisture values previously estimated for
BehavePlus analyses were used to populate live herbaceous and live woody moisture
values.

All simulations performed in FARSITE used metric data for inputs and outputs.
An adjustment value was not used to alter rate of spread for standard fuel models,
rather custom fuel models were created. Crown fire, embers from torching trees, and
growth from spot fires were not enabled.

As an example of one of our successful FARSITE runs, we present the results
from a single wildfire that burned in grassland vegetation, for which we developed
custom fuel models. This fire occurred on August 30, 2011, starting at 1400 and
ending around 1800, and burned a total area of 0.3 ha. We used the following input
parameters to model this small grassland fire in FARSITE:
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Fuel moisture values: 6 (1-h), 7 (10-h), 9 (100-h), 45 (live herbaceous), and 75%
(live woody);

Daily maximum temperatures: 17–21 ◦C;
Daily minimum relative humidity: 24–50%;
Winds: generally from the west-southwest at 1 − 2kh−1
The fire size as calculated using FARSITE was 0.5ha, which seems reasonable

considering the modeled size would not have included the suppression actions that
most likely occurred given the close proximity of a village to this fire Fig. 3.

Fig. 3 FARSITE run for a grassland fire, where size of the fire is very close to the real one, but the
shape is different, because of wind information discrepancies

Fig. 4 FARSITE run for wildfire that burned in a beechwood forest, where size of the fire is very
close to the real one, but the shape is different, because of wind information discrepancies
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Table 3 Summary of the working FBFMs for the territories in Zlatograd forestry department with
conclusions in which cases which type of fuel model can be applied

Vegetation type Possible fuel models Logic/Assumptions

Scots pine (Pinus
sylvestris)

188 (often used for pon-
derosa pine)
183-modified

Ponderosa pine (pinus ponderosa) may be a
suitable western US proxy. Otherwise, probably a
modified 183 (TL3) to increase rate of spread and
flame lengths.

Black
pine/Acacia
(Pinus
nigra/Acacia)

161
183-probably modified

FBFM 161 works best whwn the understory is
dominated by an herbaceous understory
including forbs and grasses (it is dynamic).
Creating a custom fuel model starting from
FBFM 183 is another solution, to increase the
rate of spread and flame lengths. Using FBFM
165 would assume ladder fuels to be present and
will probably overpredict rate of spread and
flame lengths.

Beechwood
(Fagus sylvatica)

182/186 (dormant sea-
son fire)
161 (growing season
fire)

FBFM 182 or 186(or a custom FBFM) may be
used when a fire is mostly burning through
hardwood (round leaf) litter. FBFM 186 tends to
have much higher rate of spread and flame
lengths than 182. FBFM 161 is dynamic and may
be used during the growing season when a fire
would be expected to burn through the
understory vegetation.

Durmast
(Quercus
dalechampii)

182/186 (dormast season
fire)
161 (growing season
fire)

FBFM 182 or 186 (or a custom FBFM) may be
used when a fire is mostly burning through
hardwood (round leaf) litter. FBFM 186 tends to
have much higher rate of spread and flame
lengths than 182. FBFM 161 is dynamic and may
be used during the growing season when a fire
would be expected to burn through the
understory vegetation.

Grasslands 101 (may be best for
grazed pasture)
102 (ungrazed pasture)
Custom FBFM (lower
ROS and FL than FBFM
101)

Assumes no irrigation. Rate of spread and flame
length drastically change depending on chosen
FBFM.

An example of another fire we modeled in FARSITE using standard fuel models
was a fire that occurred on March 29, 2012 in a beechwood forest. This fire burned
for a total of four hours, starting at 1400 and ending around 1800, and burned a total
area of 0.5ha.Wind speeds were variable throughout the burning period as they were
quite high during the early afternoon but tapered off throughout the day. In this case
we used the following input parameters in FARSITE:

Fuel moisture values: 3 (1-h), 4 (10-h), 5 (100-h), 40 (live herbaceous) and 70%
(live woody);
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Daily maximum temperatures: 7–10 ◦C;
Daily minimum relative humidity: 36–40%;
Winds: generally from the north-northeast at 10−2kh−1
The projected fire size from FARSITE was 0.9ha. Based on the close proximity

of a village to the fire location (Fig. 4) it is quite reasonable to assume that local
residents responded to the fire in a volunteer capacity; these suppression actions
could not be accounted for in the FARSITE analysis. Decreasing winds through the
afternoon may have significantly helped suppression activities.

From this two modeled fires we were able to estimate that the standard fuel
models established for US can be run also for Bulgarian cases, but only after a good
calibration with real case studies where vegetation and past events are well observed.
However FARSITE and BehavePlus provided reasonable outputs for future work in
the field of fire behavior fuel modeling on the Bulgarian territory. As a result of the
calculations with the simulations of the Fire Behavior Fuel Models we can have as
summary Table3with the used custom and non customFBFMsworking as calibrated
values for Bulgarian wildfire test cases.

Thework performedwith the FBFMs on the territory of Zlatograd forestry depart-
ment has been published in details in the articles [7–10] where more information can
be seen.

5 Potential for Implementation of the Simulated Results
in Web-Based ICT Application

Natural disasters and in particular wildfires are a major problem for many Euro-
pean societies threatening human lives and properties, often with disastrous impacts,
particularly at the wildland-urban interface. The reduction of wildfire hazard, but
mainly the reduction of damages and impacts induced by wildfires, requires inte-
grated approaches and new practices inwildland firemanagement, such as prescribed
burning and suppression fire, together with increasing the awareness and prepared-
ness through knowledge (education/training) and technology transfers.

In Europe themanagement of natural disasters is mostly within the Public Admin-
istration sector with a very small contribution from the private sector. In particular
the management of forest fires is under the responsibility and within the compe-
tences of specially qualified and organized state agencies and bodies such as the
Fire Departments, Forest Fires’ Fighting Corps and in some cases the Forest Service
itself.

To fulfill their mission, the personnel of these organizations have the necessary
education and training (Formal Training). They are the professionals of forest fire
fighting. In the management of natural disasters and in particular forest fires, a net-
work of volunteers in the framework of Civil Protection Agencies is also involved,
having different theoretical background and operational training levels (Informal
Training). The training of these groups is often general information around themech-
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anisms and behavior of forest fires, or demonstrations of the use of the equipment
used for the management of forest fires.

In most cases, volunteers and the professionals limit their action to logistical tasks
or even spontaneous and often not well planned actions that sometimes could cause
serious issues on personal safety.

That is why it becomes evident the need of creation of a system for a continuous
training targeted towards the volunteer’s groups and all involved professionals in
wildfire suppression activities, in accordance to their needs. The most effective way
to create such a system in rich forest vegetation areas and frequent episodes of
forest fires, is to exchange experiences and good practices on the subject with more
developed groups.

For example in Bulgaria, according to the Act of the Minister of the Interior
(2009), the Civil Protection Directorate-General (DG Civil Protection) became part
of the Ministry of the Interior of the Republic of Bulgaria and is responsible for
performing tasks related to prevention and preparedness, management, reaction and
recovery in case of natural and man-made disasters. Volunteers can participate in
intervention operations together with professional firefighters, under the decision of
the municipal council, and after training.

Quite the same is the situation in Greece the other south-east member state of EU
affected often by wildfires as Bulgaria. According to the Act of Civil Protection (Act
3013/2003) in Greece, the General Secretariat for Civil Protection (GSCP), under the
Ministry ofCitizen Protection is tasked towork out prevention plans and programmes
for all kinds of risks (natural and technological (CBRN included), in cooperationwith
all the relevant authorities at national, regional and local levels. GSCP is the authority
to register Voluntary Organisations, while the National Register is listing today 240
Volunteers’ Organizations.

That is why the management of natural disasters and in particular wildfires need
a network of volunteers and professional firefighters to be involved, at the Local
Authorities’ level, having different theoretical background and operational training
levels. There is a need to create a continuous and open system for the training of
the volunteers and professionals, so that their participation in wildfire suppression
activities to be as effective and safe as possible.

A framework for vocational training and preparedness of the volunteers and the
professionals who operate within the civil protection mechanisms in general need
support also from the nowadays ICT tools. Such tools already operate on the territory
of USA [11], where the main idea is to have web-based decision support tools for the
fire analysts who navigate the volunteer groups and the professional firefighters on
the fields. In general the main idea of the so calledWildfire Decision Support System
(WFDSS) is to collect information from the field by any type of observers, which is
transmitted to the Fire analysts. These analysts have on their disposal information
about the terrain in GIS formats (Geographical Information Systems Layers), mete-
orological conditions in the area and the predefined burning materials - fuel models
represented by the available 13 or 40 FBFMs [6, 12] or Custom Fuel models if no
available fuels from the standard ones is not suitable.
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All that information than can be calculated by a model which has in its origin
mathematical, physical and chemical representation of the different fire spread rate
depending on the type of the fire e.g. surface, crown, fire acceleration or spotting,
which is included in the crown fires models.

In Fig. 5 is presented a general structure how the information in cases of wildfires
can be collected, processed and then returned back with respective scenarios of fire
spread to the people on the field. However this kind of decision support systems is
not well developed outside US.

There are attempts for children education on how natural disasters can affect
everyday life of people and such initiatives are described in [13, 14].

Fig. 5 General scheme of receiving information from the field by person who spot a wildfire and
its process of getting supported through web-based Dession support tools such as WFDSS [11]
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6 Conclusion

The presented paper was having as main aim to provide a broader view on the tested
modeling options for the Bulgarian wild land fires and the achieved results. There
are still a lot of issues to be solved in the data collection and processing phase. The
accuracy of the meteorological inputs is still not that well developed as a network
in the test areas. However the achieved results after all computations give promising
options for future implementation of this modeling tools for more operational use
as described the web-based decision support tool which is nowadays available in
USA. Such tools and information is crucial when it comes to big wildfire events and
volunteer groups work together with professionals on the field.
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Process Control with the Variability
Constraints

Paweł Dra̧g and Krystyn Styczeń

Abstract In the article a new approach to process control with descriptor constraints
has been presented. The main result is a method, which enables us to obtain consis-
tent initial conditions. It has been proposed, that variability constraints can be used
to define the consistent initial values for the index-1 differential-algebraic (DAEs)
process. The variability constraints have an important practical application and have
never been considered previously.

Keywords Optimal control · DAE systems · Variability constraints

1 Introduction

The mathematical models of large-scale real-life technological processes can be
derived using appropriate physical laws describing observed physical phenomena
[3, 4]. As a result a general system of differential-algebraic equations (DAEs) can
be obtained. It means, that a state of the process can be described in a more general
way, than only by purely dynamical equations (ODEs). This generalized approach
can be observed in modern modeling methodologies, where the system should not
be limited to the specified equations type [5]. In the other words, the mathematical
model should be consisted of known relations. This approach indicates, that any
additional manipulations on system equations cannot be done [6, 7].

Moreover, vision-monitoring systems, as well as image processing algorithms can
be used supervise the process [1, 2]. The general scheme of the process supervised
by a camera was presented on the Fig. 1. An important task in process control with
the camera-basedmonitoring system can be connected with is a high changing rate of
observed parameters. If some process trajectories are changing too fast, then applied
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Fig. 1 The process
supervised by a
camera-based monitoring
system

monitoring systems may become useless. Therefore, this work is concentrated on
variability constraints, which can be treated as a new type of the process constraints.
In the context of the process control, the variability constraints have been discussed
together with the other differential-algebraic model equations.

The article is constructed as follows. In the Sect. 2 a control problem of DAE sys-
tem without variability constraints was considered. The consistent initial conditions
was discussed in Sect. 3. Then, in Sect. 4 the variability constraints were introduced,
as well as a newmethod for control of DAE processes with the variability constraints
was designed. Finally, a possible application of the presented considerations in the
camera-based monitoring systems was proposed in Sect. 5.

2 Control with Differential-Algebraic Constraints

Let us consider the optimal control problem with the differential-algebraic con-
straints. In the considered task, the DAE system takes a form of a descriptor model

Fd(yd(t), u(t), p, t) = 0, (1)
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where yd(t) ∈ Rnyd denotes the generalized state variables, u(t) ∈ Rnu is a control
function, by p ∈ Rnp the parameters constant in the time have been denoted. The
independent variable t ∈ [t0 tF ], in many application has a known physical inter-
pretation like time or a length of e tubular reactor. Then, the vector-valued function
Fd such, that is under considerations.

Fd : Rnyd × Rnu × Rnp × R → Rnyd (2)

In the descriptor processes, two main types of the generalized state variables have
been specified. There are differential state variables y(t) ∈ Rny , as well as alge-
braic state variables z(t) ∈ Rnz . Therefore, the vector of descriptor variables takes a
particular form

yd(t) =
[

y(t)
z(t)

]
. (3)

Moreover, in the descriptor process a differential, as well as an algebraic part of
equations system can be indicated. This specific representation is known as a semi-
explicit form of the descriptor model

BD ẏ(t) = F(y(t), z(t), u(t), p, t)
0 = G(y(t), z(t), u(t), p, t),

(4)

where
F : Rny × Rnz × Rnu × Rnp × R → Rny , (5)

and
G : Rny × Rnz × Rnu × Rnp × R → Rnz . (6)

Assumption 1. Let us assume, that

det BD �= 0. (7)

Then, the optimal control problem is to find the optimal control function u�(t), which
minimizes the following process performance index

min
u�(t)

∫ tF

0
L(yd(t), u(t), p, t)dt + E(yd(tF )), (8)

where
L : Rnyd × Rnu × Rnp × R → R, (9)

and
E : Rnyd → R. (10)
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In the next section consistent initial conditions of the descriptor system have been
discussed. After that, the descriptor system will be extended by the variability con-
straints.

3 Consistent Initial Conditions

Let us consider the algebraic part of the descriptor process

0 = G(y(t), z(t), u(t), t). (11)

The consistency of the model initial conditions can be easily checked by the Eq.
(11). Moreover, this step does not require any other complicated calculations. The
importance of this step has been highlighted by the Conditions 1 and 2.

Condition 1 For a given control function u(t) and at given time t = t0, the initial
conditions consistency for the descriptor model (4) can be checked by the following
equation

0 = G(y(t0), z(t0), u(t0), t0). (12)

Because the initial conditions of the algebraic state variables are often unknown,
therefore the Conditions 2 can be applied.

Condition 2 The model equation (11) can be used to define the algebraic state
variables z(t) as a function of the differential state variables y(t), given control
function u(t) and the independent variable t .

The local fulfillment of this two conditions can be checked by extension of function
G(·) in Taylor series around a given point (y(t), z(t)) = (xy, xz) for u(t) = u(t0)
and t = t0

G(xy + Δxy, xz + Δxz, u(t0), t0)

≈ ∂G
∂xy

Δxy + ∂G
∂xz

Δxz + G(xy, xz, u(t0), t0)

= 0,

(13)

which results in a system of linear equations

[
Gxy Gxz

]⎡
⎣Δxy

Δxz

⎤
⎦ = −G(xy, xz, u(t0), t0) (14)

and
GxzΔxz = −G(xy, xz, u(t0), t0)Δxz − GxyΔxy. (15)
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Theorem 1 For a given values xy = y(t0) Eq. (15) has an unique solution if and
only if, when

det Gxz �= 0. (16)

It means, that for the given initial values of the differential state variables y(t0), the
control function u(t0) and for a given time t = t0, then the algebraic state variables
can be well-defined.

4 Variability of the Differential State Variables

In this section, the differential part of the descriptor model (4) has been considered.
The differential equations from the semi-explicit descriptor model takes a following
form

BD ẏ(t) = F(y(t), z(t), u(t), t), (17)

with rankBD = ny, and

F : Rny × Rnz × Rnu × R → Rny . (18)

Let us assume, that BD = I and rank I = ny, and consider both left and right hand-
side of this equation extended in a Taylor series

ẏ + Δẏ = F(y + Δy, z + Δz, u(t), t)
= F(y, z, u(t), t) + FyΔy + FzΔz.

(19)

Let at the time t = t0 the variability of the state variables is defined as

ẏ(t0) = xẏ0 , (20)

with nẏ = ny = nxẏ0
. Moreover, for a given time t = t0, the control function u(t0)

and a vector of initial conditions

[
xy0
xz0

]
, the right hand-side equation of the system

(17) is equal to
F(xy0 , xz0 , u(t0), t0). (21)

Theorem 2 At a given time t = t0 and for a given control function u(t0), Eq. (17)
is satisfied if and only if, when

xẏ0 = F(xy0 , xz0 ,u(t0), t0). (22)
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Proof Let t = t0 and u(t0) are known. Moreover, let y(t0) = xy0 and z(t0) = xz0 .

Then
ẏ(t) = F(y(t), z(t), u(t), t)

t=t0= F(y(t0), z(t0), u(t0), t0)

= F(xy(t0), xz(t0), u(t0), t0)

= xẏ0 ,

(23)

and this should be proven.
Let us extend the left hand-side of the system (17) in the Taylor series

FL(ẏ + Δẏ) = FL(ẏ) + ∂FL
∂ ẏ Δẏ

= ẏ + BDΔẏ

= xẏ + BDΔxẏ.

(24)

Let us perform the same with the right hand-side of the Eq. (17)

FR(y(t) + Δy(t), z(t) + Δz(t))

= FR(y(t), z(t)) + ∂FR
∂y Δy + ∂FR

∂z Δz

= F(xy, xz) + ∂F
∂xy

Δxy + ∂F
∂xz

Δxz.

(25)

According to the Theorem 2, Eqs. (24), (25) can be compared to each other

xẏ + BDΔxẏ = F(xy, xz) + ∂F

∂xy
Δxy + ∂F

∂xz
Δxz (26)

and presented as a system of linear equations in the following matrix form

[
BD Fy Fz

]
⎡
⎢⎢⎢⎢⎣

Δxẏ

Δxy

Δxż

⎤
⎥⎥⎥⎥⎦ = F(xy, xz, u(t0), t0) − xẏ. (27)

The relation between generalized state variables, which is indicated by the system
(27), was obtained by an analysis of the differential part of the descriptor model (4).

The local approximation of both differential and algebraic parts of the descriptor
model (4) resulted in a new system of linear equations in the following form
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⎡
⎣ Fẏ Fy Fz

0 Gy Gz

⎤
⎦

⎡
⎢⎢⎢⎢⎣

Δxẏ

Δxy

Δxż

⎤
⎥⎥⎥⎥⎦ =

⎡
⎣ F(xy, xz, u(t0), t0) − xẏ

G(xy, xz, u(t0), t0)

⎤
⎦ . (28)

Because in the system (28) the number of unknown is equal to ny + ny + nz and

rank

⎡
⎣ Fẏ Fy Fz

0 Gy Gz

⎤
⎦ = ny + nz, (29)

then the system has infinitely many solutions.Moreover, according to the Kronecker-
Capelly theorem, the solution of the system (28) is dependent on ny parameters.

Before the system (28) will be solved, let us consider a homogeneous system

⎡
⎣ Fẏ Fy Fz

0 Gy Gz

⎤
⎦

⎡
⎢⎢⎢⎢⎣

Δxẏ

Δxy

Δxz

⎤
⎥⎥⎥⎥⎦ =

⎡
⎣0

0

⎤
⎦ . (30)

and let us find its null-solution.
In order to solve the system (30), let us write it in a new, but equivalent form

⎡
⎣Gz Gy 0

Fz Fy Fẏ

⎤
⎦

⎡
⎢⎢⎢⎢⎣

Δxz

Δxy

Δxẏ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎣0

0

⎤
⎦ . (31)

The form (31) enables us to solve the system (30) with respect to the variables Δxz

and Δxy, as well as to find the null space N of the system (30). Therefore, let us
obtain the (reduced row echelon form) of the considered matrix.

If detGz �= 0, then the reduced form of the system (31) can be obtained using
four linear transformations P1, P2, P3 and P4.

1. The transformation P1 denotes a such linear rows combination of the matrix Gz,
that enables us to transform Fz matrix into the null matrix

P1Gz + Fz = 0, (32)

then
P1 = −FzG

−1
z , (33)
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and it results in ⎡
⎣Gz Gy 0

0 −FzG−1
z Gy + Fy Fẏ

⎤
⎦ . (34)

2. The transformation P2 denotes a such linear rows combination of the matrix
(−FzG−1

z Gy + Fy), that enables us to transform Gy into the null matrix

P2(−FzG
−1
z Gy + Fy) + Gy = 0, (35)

then
P2 = −Gy(−FzG

−1
z Gy + Fy)

−1, (36)

and it results in
⎡
⎣Gz 0 −Gy(−FzG−1

z Gy + Fy)
−1Fẏ

0 −FzG−1
z Gy + Fy Fẏ

⎤
⎦ . (37)

3. The transformation P3 makes from the matrix Gz the identity matrix

P3Gz = 1, (38)

then
P3 = G−1

z (39)

and it results in
⎡
⎣ 1 0 −G−1

z Gy(−FzG−1
z Gy + Fy)

−1Fẏ

0 −FzG−1
z Gy + Fy Fẏ

⎤
⎦ . (40)

4. The transformation P4 makes from the matrix (−FzG−1
z Gy + Fy) the identity

matrix
P4(−FzG

−1
z Gy + Fy) = 1, (41)

then
P4 = (−FzG

−1
z Gy + Fy)

−1 (42)

and it results in
⎡
⎣ 1 0 −G−1

z Gy(−FzG−1
z Gy + Fy)

−1Fẏ

0 1 (−FzG−1
z Gy + Fy)

−1Fẏ

⎤
⎦ . (43)
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The system (43) indicates the necessary conditions of the problem solvability

Theorem 3 The necessary solvability condition of the system (43) is

det(−FzG
−1
z Gy + Fy) �= 0, (44)

which denotes the linear independence of the functions F and G according to the
unknown parameters Δxz and Δxy at a given point

⎡
⎣xy0

xz0

⎤
⎦ =

⎡
⎣ y(t0)

z(t0)

⎤
⎦ . (45)

The null solution, which can be obtained for a given value of a derivative xẏ at the
point [xy0 xz0 ]T , takes the following form

⎡
⎢⎢⎢⎢⎣

Δxz

Δxy

Δxẏ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

G−1
z Gy(−FzG−1

z Gy + Fy)
−1Fẏc

−(−FzG−1
z Gy + Fy)

−1Fẏc

c

⎤
⎥⎥⎥⎥⎦ , (46)

where c ∈ Rnẏ can take a given value.
As it can be observed, the null space can be defined as

N (A) = span

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

G−1
z Gy(−FzG−1

z Gy + Fy)
−1Fẏc

−(−FzG−1
z Gy + Fy)

−1Fẏc

c

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (47)

The next question is the form of a particular solution. Let us consider the system of
linear equations, which has been obtained by Taylor expansion of the differential-
algebraic system (28). The systems (28) after the transformation P1 = −FzG−1

z has
been taken a form

⎡
⎣Gz Gy 0

0 −FzG−1
z Gy + Fy Fẏ

⎤
⎦

⎡
⎢⎢⎢⎢⎣

Δxz

Δxy

Δxẏ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎣G(xy, xz)

F(xẏ, xy, xz) − FzG−1
z G

⎤
⎦ . (48)

Let Δxẏ ≡ 0, then

(−FzG
−1
z Gy + Fy)Δxy = −F(xẏ, xy, xz) + FzG

−1
z G. (49)
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If det(−FzG−1
z Gy + Fy) �= 0, then

Δxy = (−FzG
−1
z Gy + Fy)

−1(−F(xẏ, xy, xz) + FzG
−1
z G). (50)

The expression for Δxz can be obtained by the first relation in the system of linear
equations

GzΔxz + GyΔxy = −G(xy, xz), (51)

and
Δxz = −G−1

z (G(xy, xz) + GyΔxy), (52)

which can obtained if and only if G−1
z exists and Δxy is defined by the Eq. (50).

The presented considerations result in some important consequences

1. A new type of additional restrictions, which can be considered in the descriptor
processes, have been introduced. The variability constraints can be imposed on
the rate of changes.

2. The restrictions on the rate of changes can have important practical applications,
because they reflect the safety principles. The variability constraints can represent
the maximum allowable rate of changes of the aircraft’s flight parameters.

3. The constraints on the state variability define also the consistent initial conditions
of the generalized state variables

⎡
⎢⎢⎢⎢⎣

z(t0)

y(t0)

ẏ(t0)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

xz0

xy0

xẏ0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

xz

xy

xẏ

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

Δxz

Δxy

Δxẏ

⎤
⎥⎥⎥⎥⎦ , (53)

where
⎡
⎢⎢⎢⎢⎣

Δxz

Δxy

Δxẏ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−G−1
z (G(xy, xz) + GyΔxy)

(−FzG−1
z Gy + Fy)

−1(−F(xẏ, xy, xz) + FzG−1
z G)

0

⎤
⎥⎥⎥⎥⎦+

c

⎡
⎢⎢⎣
G−1

z Gy(−FzG−1
z Gy + Fy)

−1Fẏ

−(−FzG−1
z Gy + Fy)

−1Fẏ

1

⎤
⎥⎥⎦ . (54)
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5 Summary

The main result of the presented work is a new method to find the consistent initial
conditions for solving the DAE systems. To find the initial values of the descriptor
variables, the variability constraints have been introduced.

Then, the control of descriptor systems with the variability constraints has been
discussed. The presented considerations can be applied in the vision-based monitor-
ing systems.

The presented method can answer the important question, how quickly can the
state be changed, to preserve a failure-free process flow?

The future work will be concerned on the variability constraints applications in
various branches of environmental engineering and technology.
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Comparison of Different ACO Start
Strategies Based on InterCriteria Analysis

Olympia Roeva, Stefka Fidanova and Marcin Paprzycki

Abstract In the combinatorial optimization, the goal is to find the optimal object
from a finite set of objects. From computational point of view the combinatorial
optimization problems are hard to be solved. Therefore on this kind of problems
usually is applied some metaheuristics. One of the most successful techniques for a
lot of problem classes is metaheuristic algorithm Ant Colony Optimization (ACO).
Some start strategies can be applied on ACO algorithms to improve the algorithm
performance. We propose several start strategies when an ant chose first node, from
which to start to create a solution. Some of the strategies are base on forbidding some
of the possible starting nodes, for one or more iterations, because we suppose that no
good solution starting from these nodes. The aim of other strategies are to increase
the probability to start from nodes with expectations that there are good solutions
starting from these nodes. We can apply any of the proposed strategy separately or
to combine them. In this investigation InterCriteria Analysis (ICrA) is applied on
ACO algorithms with the suggested different start strategies. On the basis of ICrA
the ACO performance is examined and analysed.
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1 Introduction

Many real-world problems can be describe as combinatorial optimization problems.
We can mention Traveling Salesman Problem [22], Vehicle Routing [24], Minimal
Spanning Tree [18], Constrain Satisfaction [16], Knapsack Problem [12] and many
others. They are NP-hard problems and spends a lot of computational resources.
Therefore to find close to optimal solution for a reasonable time, metaheuristic meth-
ods are applied.

Ant Colony Optimization (ACO) is between of the very successful metaheuristics
[14]. The idea for ACO comes from real ants behaviour and more specifically, the
way they look for a food. TheACOalgorithm is proposed byMarcoDorigomore than
20years ago [11]. Later several variants and supplements are added to the algorithm
to improve its performance [10]. In [13] various ACO start strategies, which lead to
finding better solutions, are proposed.

InterCriteria Analysis (ICrA) is an approach aiming to go beyond the nature of the
criteria involved in a process of evaluation of multiple objects against multiple cri-
teria, and, thus to discover some dependencies between the ICrA criteria themselves
[4]. For the first time ICrA has been applied for the purposes of temporal, threshold
and trends analyses of an economic case-study of European Union member states’
competitiveness [5–7]. Further, ICrA has been used to discover the considered depen-
dencies in a lot of problems, for example for the in-depth analysis of deceases [23].
Another example is the ICrA application for investigation of correlations of the para-
meters in various mathematical models and performance criteria for metaheuristics
as GAs and ACO [1, 19, 20].

In this paper ICrA is applied for analysis of an ACO algorithm with various
start strategies. ACO is applied to find near-optimal solutions for Multiple Knapsack
Problem (MKP). The aim is to analyze the algorithm performance according the start
strategies and to study the correlations between the strategies.

The organization of the rest of the paper is as follows. In Sect. 2 theACOalgorithm
with start strategies is described. In Sect. 3 the problem onwhichwe test the strategies
influence is presented. Section4 is dedicated to ICrA and in Sect. 5 are studied the
relations between the start strategies. The conclusions is given in Sect. 6.

2 ACO Algorithm with Start Strategies

The idea for ACO algorithm comes from the observation of real ant behaviour when
they look for a food [10, 11]. The solved problem is represented by graph called graph
of the problem. The feasible solutions are represented by path in a graph. When we
solve the problem we look for a shorter path (if it is minimization problem) or longer
path (if it is maximization problem). The ACO is an constructive method and it
not needs an initial solution. In every iteration the ant starts from random node and
creates the solution. Random start is a way of search diversification in the search
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space. If the last selected node is u the ant selects the next node (v) to be included in
the decision applying probabilistic rule called transition probability.

puv = τα
uvη

β
uv

⎡
⎣ ∑

(u,w)∈ES :w �⊂X

(
τα
uwηβ

uw

)−1

⎤
⎦ , (1)

where α and β are transition probability parameters. At the beginning the value of
the pheromone on all elements is the same and is set to a value between 0 and 1. In
each iteration we update the pheromone on the elements of the graph, according to
the value of the objective function. The elements belonging to the better solutions
receive more pheromone then others. The pheromone shows the global memory of
the ants. The better paths (solutions) accumulate more pheromone than others. It is
kind of intensification of the search around good found solutions.

The random start is very important for good performance of the ACO algorithm,
but for some classes of problems the mode of choosing starting node can be signifi-
cant. Between them are subset problems. For better managing the search process we
include semi-random start of the ants. Our aim is to use the ants experience to solve
the problem in more efficient way. The set of nodes is divided into several subsets.
An estimation of how good and how bad is to start from some subset is introduced
according the number of good and bed solutions started from this subset.

Dj (i) = φ.Dj (i − 1) + (ψ − φ).Fj (i), (2)

E j (i) = φ.E j (i − 1) + (ψ − φ).G j (i), (3)

where i ≥ 1 is the current process iteration and for each j (1 ≤ j ≤ N ):

Fj (i) =
⎧⎨
⎩

f j,A/n j if n j �= 0

Fj (i − 1) otherwise
, (4)

G j (i) =
⎧⎨
⎩

g j,B/n j if n j �= 0

G j (i − 1) otherwise
, (5)

f j,A is the number of the solutions among the best A%, g j,B is the number of the
solutions among the worst B%, where A + B ≤ 100, i ≥ 2 and

N∑
j=1

n j = n, (6)

where n j (1 ≤ j ≤ N ) is the number of solutions obtained by ants starting from
nodes subset j , n is the number of ants. Initial values of the weight coefficients are:
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Dj (1) = 1 and E j (1) = 0. The parameters φ and ψ, 0 ≤ φ,ψ ≤ 1 and ψ ≥ φ, show
the weight of the information from the previous iterations and from the last iteration.
When φ = 0 only the information from the last iteration is taken in to account. If
φ = 0.5 × ψ the influence of the previous iterations versus the last is equal. When
φ = ψ only the information from the previous iterations is taken in to account.
When φ = 0.25 × ψ the weight of the information from the previous iterations is
three times less than this one of the last iteration. When φ = 0.75 × ψ the weight of
the previous iterations is three times higher than this one of the last iteration. This
kind of estimation, where the sum of the weight coefficients is less or equal to 1 is
called intuitionistic fuzzy estimation [3]. When ψ = 1 the estimation is fuzzy.

Several start strategies and combinations of them are proposed. For every subset
j , Dj (i) is the estimation how good is to start from the subset j and E j (i) is the
estimation how bad is to start from the subset j , where i is the iteration number. Than
a thresholds for good estimation D and for bad estimation E are fixed. The proposed
start strategies are as follows [13]:

(1) If E j (i)
Dj (i)

> E then for current iteration the subset j is forbidden. The starting
node is randomly chosen from { j | j is not forbidden};

(2) If E j (i)
Dj (i)

> E then for current simulation the subset j is forbidden. The starting
node is randomly chosen from { j | j is not forbidden};

(3) If E j (i)
Dj (i)

> E then for K1 consecutive iterations the subset j is forbidden. The
starting node is randomly chosen from { j | j is not forbidden};

(4) Let r1 ∈ [ 12 , 1) and r2 ∈ [0, 1] to be random numbers. If r2 > r1 a node from sub-
set { j |Dj (i) > D} is randomly chosen, otherwise a node from the not forbidden
subsets is randomly chosen. r1 is chosen and fixed at the beginning.

(5) Let r1 ∈ [ 12 , 1) and r2 ∈ [0, 1] to be random numbers. If r2 > r1 a node from
subset { j |Dj (i) > D} is randomly chosen, otherwise a node from the not for-
bidden subsets is randomly chosen. r1 is chosen at the beginning and increase
with r3 every iteration.

Here K1, K1 ∈ [0, number of iterations] is a parameter.
We can apply one of the start strategies or to combine some of them. The Strategies

1, 2, and 3 can be combined with Strategies 4 and 5. When an ant chooses a start
node first is applied Strategy 1, 2, or 3 and after that Strategy 5 or 6. Thus together
with completely random start there are 12 strategies. More details about ACO with
semi random start can be seen in [13].

3 Multiple Knapsack Problem

The start node selection is very important for subset problems. On this kind of
problems only part of the nodes of the graph of the problem belong to the solution.
Thus if the start node do not belong to any good solution, for the ant is impossible
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to construct close to optimal solution. The Multiple Knapsack Problem (MKP) is a
representative of the class of subset problems. A lot of problems can be defined as
MKP.

It also arise as a sub-problem in a group of more complex problems and these
algorithms will benefit from any improvement algorithm for solving MKP. Some of
important applications that can be formulated as MKP are cargo loading problems,
cutting stock, bin-packing, budget control and financial management. The MKP is
used in fault tolerance problem [21]. Authors in [9] designed a public cryptogra-
phy scheme whose security realize on the difficulty of solving the MKP. In [17]
two-processor scheduling problems are proposed to be solved as a MKP. We will
mention other applications as industrial management, naval, aerospace, computa-
tional complexity theory, etc.

Sportsmanagement dealswith theproblemofoptimal locationof limited resources
(money) to meet given objects (championships). The existing goal of any team’s
managements to find the subset of players capable of playing in the important gain
without exceeding the limited budget. In a transportation network the shortest path
problem determines the subset of the connected roads that collectively comprise (i)
the shortest driving distance, (ii) the smallest driving time or (iii) the cheapest fair
between two cities. The problem is what subset of lines gives the faster response
time for communication between them. Complexity theory is the part of the theory
of computation of the resources required to solve a given problem.

Where a general problems is transformed to a MKP or a MKP appears as a sub-
problem the more theoretical applications are appeared. When solving the general-
ized assignment problem (vehicle routing problem) MKP appears as a sub-problem.
Moreover,MKP can be presented as a generalmodel for binary problemwith positive
coefficients [15].

The MKP can be formulated as follows:

max
∑n

j=1 p j x j

subject to
∑n

j=1 ri j x j ≤ ci i = 1, . . . ,m

x j ∈ {0, 1} j = 1, . . . , n

(7)

x j =
{

1 iff the object j is chosen,

0 otherwise.

where m are the resources (the knapsacks), n are the objects, p j is a profit of every
object j , c j (knapsack capacity) is resource budget, ri j is the consumption of resource
i by object j .

The goal is maximizing the sum of the profits for a limited budget.
There are m constraints in this problem, so MKP is also called m-dimensional

knapsack problem. Let



58 O. Roeva et al.

I = {1, . . . ,m}, J = {1, . . . , n},

with ci ≥ 0 for all i ∈ I .
A well-stated MKP assumes that

p j > 0, ri j ≤ ci ≤
n∑
j=1

ri j

for all
i ∈ I, j ∈ J.

Note that the [ri j ]m×n matrix and [ci ]m vector are both non-negative.
One of the basic elements of the ACO metaheuristic is the representation of the

problem by graph, thus a path through the graph represents a solution to the problem.
The graph of the problem is defined as follows: the nodes correspond to the items,
the arcs fully connect nodes. Fully connected graph means that after the object i one
can chooses the object j for every i and j if there are enough resources and object
j is not chosen yet. When walking through the graph, the ants deposit a pheromone
on the arcs.

4 InterCriteria Analysis

Let us be given an index matrix (IM) [2] whose index sets for rows consist of the
names of the criteria and for columns – objects. We will obtain an IMwith index sets
consisting of the names of the criteria both for rows and for columns. The elements
intuitionistic fuzzy pairs (IFPs) of this IM corresponds to the degrees of “agreement”
and degrees of “disagreement” of the considered criteria.

Further, by O we denote the set of all objects O1, O2, . . . , On being evaluated,
and by C(O) the set of values assigned by a given criteria C to the objects, i.e.

O
def= {O1, O2, . . . , On},

C(O)
def= {C(O1),C(O2), . . . ,C(On)}.

Let xi = C(Oi ). Then the following set can be defined:

C∗(O)
def= {〈xi , x j 〉|i �= j & 〈xi , x j 〉 ∈ C(O) × C(O)}.

In order to find the degrees of “agreement” of two criteria the vector of all internal
comparisons of each criteria is constructed. This vector fulfil exactly one of the
following three relations – R, R and R̃. For a fixed criterion C and any ordered pair
〈x, y〉 ∈ C∗(O) it is required:
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〈x, y〉 ∈ R ⇔ 〈y, x〉 ∈ R (8)

〈x, y〉 ∈ R̃ ⇔ 〈x, y〉 /∈ (R ∪ R) (9)

R ∪ R ∪ R̃ = C∗(O) (10)

From the above it is seen that We only need to consider a subset ofC(O) × C(O)

for the effective calculation of V (C) (vector of internal comparisons). FromEqs. (8)–
(10) it follows that if we know what is the relation between x and y, we also know
what is the relation between y and x . Thus, we will only consider lexicographically
ordered pairs 〈x, y〉.

Let:
Ci, j = 〈C(Oi ),C(Oj )〉.

We construct the vector with exactly n(n−1)
2 elements:

V (C) = {C1,2,C1,3, . . . ,C1,n,C2,3,C2,4, . . . ,C2,n,

C3,4, . . . ,C3,n, . . . ,Cn−1,n}.

for a fixed criterion C .
Further, we replace the vector V (C) with V̂ (C), where for each 1 ≤ k ≤ n(n−1)

2
for the k-th component it is true:

V̂k(C) =

⎧⎪⎨
⎪⎩

1 iff Vk(C) ∈ R,

−1 iff Vk(C) ∈ R,

0 otherwise.

We determine the degree of “agreement” (μC,C ′) between the two criteria as the
number ofmatching components. The degree of “disagreement” (νC,C ′ ) is the number
of components of opposing signs in the two vectors.

It is obvious that:
μC,C ′ = μC ′,C ,

νC,C ′ = νC ′,C ,

and 〈μC,C ′ , νC,C ′ 〉 is an IFP.
The difference

πC,C ′ = 1 − μC,C ′ − νC,C ′ (11)

is considered as a degree of “uncertainty”.
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5 Numerical Results

We apply ICrA on the results achieved by ACOwith different start strategies applied
on MKP [13]. 10 test problems from “OR-Library” (available within WWW access
at http://people.brunel.ac.uk/mastjjb/jeb/orlib) are used. The
problem is considered with 100 objects and 10 constraints. To provide a fair compar-
ison for the above implemented ACO algorithm, a predefined number of iterations,
k = 100, is fixed for all the runs. The developed technique has been coded in C++
language and implemented on a Pentium 4 (2.8 GHz). The parameters are fixed as
follows: ρ = 0.5, a = 1, b = 1, number of used ants is 20, the start area is divided
to 50 subsets, A = 30, B = 30, D = 1, E = 0.1, K1 = K2 = 5, r3 = 0.01.

The ACO algorithm is performed with various number of the nodes in the nodes
subsets. The nodes subsets consist of the same number of nodes which vary from 1
to 10, namely 1, 2, 4, 5 and 10. The average results over the 10 test problems and 30
runs of the every problem with every one of the strategies are obtained. The ranking
is from 10 to 100. The obtained results are presented in Table1.

From Table1 it can be seen that the ICrA objects (O1, O2, . . . , O20) are the
different conditions, namely nodes 1, 2, 4, 5 and 10 in four cases of ϕ, ϕ =
[0 0.25 0.5 0.75]. The ICrAcriteria (C1,C2, . . . ,C12) are 12 different start strategies
for ACO. In the case of intuitionistic fuzzy estimation the ACO algorithm is again
performed with various number of the nodes. The results are presented in Table2.

Analogically the nodes subsets consist of the same number of nodes which vary
from 1 to 10, namely 1, 2, 4, 5 and 10. The average results over the 10 test problems
and 30 runs of the every problem with every one of the strategies are obtained. The
results are ranked in the scale from 10 to 100. The value of ϕ varies from 0 to 0.75,
and the value of ψ varies from 0.25 to 0.825.

Analysing the obtained results the proposed in [8] consonance and dissonance
scale will be used. The scheme for defining the consonance and dissonance between
each pair of criteria is presented in Table3.

After ICrA application we obtained the two IM with the relations between con-
sidered 12 criteria. The resulting IMs for μC,C ′ and νC,C ′ values are shown in Tables4
and 5.

The obtained ICrA results are visualized on Fig. 1 within the specific triangular
geometrical interpretation of intuitionistic fuzzy sets, thus allowing us to order these
results according simultaneously to the degrees of “agreement” and “disagreement”
of the IFPs.

Figure1 shows that there are some of the results with very high degree of “uncer-
tainty”. These results are due to the fact that for some of the strategies there are the
same results for the several ICrA objects. For example, see results for the Strategys
4 and 5 in the Table1. Further, these results will not be discussed.
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Table 1 Estimation of strategies

Criteria Strategies ϕ = 0 ϕ = 0.25

10 5 4 2 1 10 5 4 2 1

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10

C1 Random 32 32 32 32 32 32 32 32 32 32

C2 Strategy 1 84 84 87 83 83 83 88 86 90 90

C3 Strategy 2 33 31 36 53 74 32 31 36 61 81

C4 Strategy 3 79 86 86 88 86 62 86 84 84 96

C5 Strategy 4 86 86 86 86 86 86 86 86 86 86

C6 Strategy 5 86 86 86 86 86 86 86 86 86 86

C7 Strategies 1–4 83 89 84 81 89 84 91 87 92 96

C8 Strategies 1–5 83 89 84 81 89 84 91 87 92 96

C9 Strategies 2–4 33 36 35 53 82 34 33 35 59 85

C10 Strategies 2–5 33 36 35 63 82 34 33 35 59 85

C11 Strategies 3–4 69 89 88 87 90 69 83 86 84 97

C12 Strategies 3–5 69 89 88 87 90 69 83 86 84 97

Criteria Strategies ϕ = 0.5 ϕ = 0.75

10 5 4 2 1 10 5 4 2 1

O11 O12 O13 O14 O15 O16 O17 O18 O19 O20

C1 Random 32 32 32 32 32 32 32 32 32 32

C2 Strategy 1 78 86 88 92 96 71 81 85 89 92

C3 Strategy 2 34 35 38 51 78 35 55 52 60 87

C4 Strategy 3 61 86 88 94 97 56 76 88 95 95

C5 Strategy 4 86 86 86 86 86 86 86 86 86 86

C6 Strategy 5 86 86 86 86 86 86 86 86 86 86

C7 Strategies 1–4 79 90 87 94 97 67 83 89 94 95

C8 Strategies 1–5 79 90 87 94 97 67 83 89 94 95

C9 Strategies 2–4 35 40 44 56 83 39 47 48 58 85

C10 Strategies 2–5 35 40 44 56 83 39 47 48 58 85

C11 Strategies 3–4 68 92 88 92 96 56 81 87 94 97

C12 Strategies 3–5 68 92 88 92 96 56 81 87 94 97

For better understanding of the results the values of the μC,C ′ , νC,C ′ , πC,C ′ of the
criteria pairs are sorted by the value of the μC,C ′ . The list is presented in Tables6 and
7. Table6 shows the criteria pair with high degrees of “agreement” (μC,C ′) and low
value for the degree of “disagreement” (νC,C ′). Table7 shows the criteria pair with
high degree of “uncertainty”.
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Table 2 Intuitionistic fuzzy estimation of strategies
Criteria Strategies ϕ/ψ

0.125/0.25 0.125/0.5 0.125/0.75 0.125/0.875 0.25/0.5

O1 O2 O3 O4 O5

C1 Random 32 32 32 32 32

C2 Strategy 1 95 93 93 93 93

C3 Strategy 2 82 79 79 79 79

C4 Strategy 3 93 92 92 92 92

C5 Strategy 4 83 83 83 83 83

C6 Strategy 5 83 83 83 83 83

C7 Strategies 1–4 96 96 96 96 96

C8 Strategies 1–5 96 96 96 96 96

C9 Strategies 2–4 84 83 83 83 83

C10 Strategies 2–5 84 83 83 83 83

C11 Strategies 3–4 94 93 93 93 93

C12 Strategies 3–5 94 93 93 93 93

Criteria Strategies ϕ/ψ

0.25/0.75 0.25/0.875 0.5/0.75 0.5/0.875 0.75/0.875 0.5/1

O6 O7 O8 O9 O10 O11

C1 Random 32 32 32 32 32 32

C2 Strategy 1 92 92 94 93 93 96

C3 Strategy 2 85 85 82 77 83 78

C4 Strategy 3 93 94 99 94 93 97

C5 Strategy 4 83 83 83 83 83 83

C6 Strategy 5 83 83 83 83 83 83

C7 Strategies 1–4 96 96 92 94 95 97

C8 Strategies 1–5 96 96 92 94 95 97

C9 Strategies 2–4 83 83 82 81 86 83

C10 Strategies 2–5 83 83 82 81 86 83

C11 Strategies 3–4 94 94 93 93 97 96

C12 Strategies 3–5 94 94 93 93 97 96

Regarding Tables6 and 7 we observe that relations between criterion C1 and
criteria C5, C6 have the highest value of μC,C ′ (μC,C ′ = 1), i.e., these criteria are in
strong positive consonance. It means that the ACO algorithm performs in a similar
way with random start and start Strategies 4 and 5.

In strategies 4 and 5 there are not forbidden regions similar to the random start. In
these cases only the probability to choose the next element in the solution is different.
The criteria pairs that also have the highest value of μC,C ′ (μC,C ′ = 1) are C7 − C8

and C11 − C12. These strategies (Strategies 1–4, Strategies 1–5, Strategies 3–4 and
Strategies 3–5) also show some very similar performances.
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Table 3 Consonance and dissonance scale [8]

Interval of μC,C ′ Meaning

[0.00-0.05] Strong negative consonance

(0.05-0.15] Negative consonance

(0.15-0.25] Weak negative consonance

(0.25-0.33] Weak dissonance

(0.33-0.43] Dissonance

(0.43-0.57] Strong dissonance

(0.57-0.67] Dissonance

(0.67-0.75] Weak dissonance

(0.75-0.85] Weak positive consonance

(0.85-0.95] Positive consonance

(0.95-1.00] Strong positive consonance

Table 4 Index matrix for μC,C ′

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

C1 1.000 0.042 0.016 0.079 1.000 1.000 0.037 0.037 0.026 0.026 0.026 0.026

C2 0.042 1.000 0.642 0.742 0.042 0.042 0.826 0.826 0.637 0.621 0.737 0.737

C3 0.016 0.642 1.000 0.670 0.016 0.016 0.653 0.653 0.889 0.884 0.695 0.695

C4 0.079 0.742 0.670 1.000 0.079 0.079 0.758 0.758 0.705 0.700 0.821 0.821

C5 1.000 0.042 0.016 0.079 1.000 1.000 0.037 0.037 0.026 0.026 0.026 0.026

C6 1.000 0.042 0.016 0.079 1.000 1.000 0.037 0.037 0.026 0.026 0.026 0.026

C7 0.037 0.826 0.653 0.758 0.037 0.037 1.000 1.000 0.695 0.679 0.800 0.800

C8 0.037 0.826 0.653 0.758 0.037 0.037 1.000 1.000 0.695 0.679 0.800 0.800

C9 0.026 0.637 0.889 0.705 0.026 0.026 0.695 0.695 1.000 0.984 0.753 0.753

C10 0.026 0.621 0.884 0.700 0.026 0.026 0.679 0.679 0.984 1.000 0.747 0.747

C11 0.026 0.737 0.695 0.821 0.026 0.026 0.800 0.800 0.753 0.747 1.000 1.000

C12 0.026 0.737 0.695 0.821 0.026 0.026 0.800 0.800 0.753 0.747 1.000 1.000

The criteria pairs that still in a consonance (strong positive consonance, positive
consonance or weak positive consonance) are pairs between criteria C2, C3, C4 and
C7, C8, . . . ,C12. They correspond to the Strategies 1, 2 and 3, and combinations of
them. In all this strategies there are forbidden regions, therefore the ACO algorithm
performs in a similar way when we apply some of these strategies.

The criteria pairs with value of μC,C ′ = [0.75 − 0.25) are in dissonance, i.e. there
are not anydependencies between these criteria.According considered scale (Table3)
these criteria are independent. The ACO algorithm with random strategies and the
ACO algorithm with strategies with forbidden regions perform in a very different
way, thus we can not find any relation between them.
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Table 5 Index matrix for νC,C ′

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

C1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C2 0.000 0.000 0.300 0.137 0.000 0.000 0.095 0.095 0.295 0.311 0.195 0.195

C3 0.000 0.300 0.000 0.237 0.000 0.000 0.295 0.295 0.079 0.079 0.263 0.263

C4 0.000 0.137 0.237 0.000 0.000 0.000 0.137 0.137 0.189 0.195 0.084 0.084

C5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C7 0.000 0.095 0.295 0.137 0.000 0.000 0.000 0.000 0.242 0.258 0.137 0.137

C8 0.000 0.095 0.295 0.137 0.000 0.000 0.000 0.000 0.242 0.258 0.137 0.137

C9 0.000 0.079 0.079 0.189 0.000 0.000 0.242 0.242 0.000 0.016 0.205 0.205

C10 0.000 0.084 0.084 0.195 0.000 0.000 0.258 0.258 0.016 0.000 0.211 0.211

C11 0.000 0.263 0.263 0.084 0.000 0.000 0.137 0.137 0.205 0.211 0.000 0.000

C12 0.000 0.263 0.263 0.084 0.000 0.000 0.137 0.137 0.205 0.211 0.000 0.000

Fig. 1 Presentation of ICrA
results in the intuitionistic
fuzzy interpretation triangle
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As we mentioned above the results for the criteria pairs with high πC,C ′-value,
more than 0.9, will not be discussed. Based on these results we can not make any con-
clusions about the relation between different ACOperformances based on considered
strategies.

After ICrA application of results with different start strategies with intuitionistic
fuzzy estimations we obtained the two IM with the relations between considered 12
criteria. The resulting IMs for μC,C ′ and νC,C ′ values are shown in Tables8 and 9.
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Table 6 Values of μC,C ′ , νC,C ′ , πC,C ′ of the criteria pairs – part 1

Criteria pairs μC,C ′ νC,C ′ πC,C ′

C1 − C5 1.000 0.000 0.000

C1 − C6 1.000 0.000 0.000

C5 − C6 1.000 0.000 0.000

C7 − C8 1.000 0.000 0.000

C11 − C12 1.000 0.000 0.000

C9 − C10 0.984 0.016 0.000

C3 − C9 0.889 0.079 0.032

C3 − C10 0.889 0.079 0.032

C2 − C7 0.826 0.095 0.079

C2 − C8 0.826 0.095 0.079

C4 − C11 0.821 0.084 0.095

C4 − C12 0.821 0.084 0.095

C7 − C11 0.800 0.137 0.063

C7 − C12 0.800 0.137 0.063

C8 − C11 0.800 0.137 0.063

C8 − C12 0.800 0.137 0.063

C4 − C7 0.758 0.137 0.105

C4 − C8 0.758 0.137 0.105

C9 − C11 0.753 0.205 0.042

C9 − C12 0.753 0.205 0.042

C10 − C11 0.747 0.211 0.042

C10 − C12 0.747 0.211 0.042

C2 − C4 0.742 0.137 0.121

C2 − C11 0.737 0.195 0.068

C2 − C12 0.737 0.195 0.068

C4 − C9 0.705 0.189 0.105

C4 − C10 0.700 0.195 0.105

C3 − C11 0.695 0.263 0.042

C3 − C12 0.695 0.263 0.042

C7 − C9 0.695 0.242 0.063

C8 − C9 0.695 0.242 0.063

C8 − C10 0.679 0.258 0.063

C7 − C10 0.679 0.258 0.063

C3 − C4 0.670 0.237 0.084

C3 − C7 0.653 0.295 0.053

C3 − C8 0.653 0.295 0.053

C2 − C3 0.642 0.300 0.058

C2 − C9 0.637 0.295 0.068

C2 − C10 0.621 0.311 0.068
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Table 7 Values of the μC,C ′ , νC,C ′ , πC,C ′ of the criteria pairs – part 2

Criteria pairs μC,C ′ νC,C ′ πC,C ′

C1 − C4 0.079 0.000 0.921

C4 − C5 0.079 0.000 0.921

C4 − C6 0.079 0.000 0.921

C1 − C2 0.042 0.000 0.958

C2 − C5 0.042 0.000 0.958

C2 − C6 0.042 0.000 0.958

C1 − C7 0.037 0.000 0.963

C1 − C8 0.037 0.000 0.963

C5 − C7 0.037 0.000 0.963

C5 − C8 0.037 0.000 0.963

C6 − C7 0.037 0.000 0.963

C6 − C8 0.037 0.000 0.963

C1 − C9 0.026 0.000 0.974

C1 − C10 0.026 0.000 0.974

C1 − C11 0.026 0.000 0.974

C1 − C12 0.026 0.000 0.974

C5 − C9 0.026 0.000 0.974

C5 − C10 0.026 0.000 0.974

C5 − C11 0.026 0.000 0.974

C5 − C12 0.026 0.000 0.974

C6 − C9 0.026 0.000 0.974

C6 − C10 0.026 0.000 0.974

C6 − C11 0.026 0.000 0.974

C6 − C12 0.026 0.000 0.974

C1 − C3 0.016 0.000 0.984

C3 − C5 0.016 0.000 0.984

C3 − C6 0.016 0.000 0.984

The obtained in this case ICrA results are visualized on Fig. 2 within the specific
triangular geometrical interpretation of intuitionistic fuzzy sets.

The value of πC,C ′ is high when one of the strategies is with only probabilistic start
(controlled or not) and other is with only forbidden regions. When the two strategies
are with only probabilistic start or with only forbidden strategies, the value ofμC,C ′ is
close to 1. It means that the forbidden strategies performs in a very different way than
the probabilistic strategies. When one of the strategies is combination of forbidden
and probabilistic, the value of πC,C ′ is not so high, than in a previous cases, it means
that there is some similarity of the algorithms performance in this case.
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Table 8 Index matrix for μC,C ′ (intuitionistic fuzzy estimations)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

C1 1.000 0.291 0.145 0.182 1.000 1.000 0.382 0.382 0.382 0.382 0.327 0.327

C2 0.291 1.000 0.327 0.509 0.291 0.291 0.364 0.364 0.364 0.364 0.509 0.509

C3 0.145 0.327 1.000 0.564 0.145 0.145 0.382 0.382 0.564 0.564 0.600 0.600

C4 0.182 0.509 0.564 1.000 0.182 0.182 0.309 0.309 0.291 0.291 0.564 0.564

C5 1.000 0.291 0.145 0.182 1.000 1.000 0.382 0.382 0.382 0.382 0.327 0.327

C6 1.000 0.291 0.145 0.182 1.000 1.000 0.382 0.382 0.382 0.382 0.327 0.327

C7 0.382 0.364 0.382 0.309 0.382 0.382 1.000 1.000 0.600 0.600 0.473 0.473

C8 0.382 0.364 0.382 0.309 0.382 0.382 1.000 1.000 0.600 0.600 0.473 0.473

C9 0.382 0.364 0.564 0.291 0.382 0.382 0.600 0.600 1.000 1.000 0.527 0.527

C10 0.382 0.364 0.564 0.291 0.382 0.382 0.600 0.600 1.000 1.000 0.527 0.527

C11 0.327 0.509 0.600 0.564 0.327 0.327 0.473 0.473 0.527 0.527 1.000 1.000

C12 0.327 0.509 0.600 0.564 0.327 0.327 0.473 0.473 0.527 0.527 1.000 1.000

Table 9 Index matrix for νC,C ′

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

C1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C2 0.000 0.000 0.492 0.236 0.000 0.000 0.218 0.218 0.218 0.218 0.273 0.273

C3 0.000 0.491 0.000 0.327 0.000 0.000 0.345 0.345 0.164 0.164 0.182 0.182

C4 0.000 0.236 0.327 0.000 0.000 0.000 0.382 0.382 0.364 0.364 0.182 0.182

C5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C7 0.000 0.218 0.345 0.382 0.000 0.000 0.000 0.000 0.182 0.182 0.145 0.145

C8 0.000 0.218 0.345 0.382 0.000 0.000 0.000 0.000 0.182 0.182 0.145 0.145

C9 0.000 0.218 0.164 0.364 0.000 0.000 0.182 0.182 0.000 0.000 0.018 0.018

C10 0.000 0.218 0.164 0.364 0.000 0.000 0.182 0.182 0.000 0.000 0.018 0.018

C11 0.000 0.273 0.182 0.182 0.000 0.000 0.145 0.145 0.018 0.018 0.000 0.000

C12 0.000 0.273 0.182 0.182 0.000 0.000 0.145 0.145 0.018 0.018 0.000 0.000

Again for better understanding of the results the values of the μC,C ′ , νC,C ′ , πC,C ′ of
the criteria pairs are sorted by the value of the μC,C ′ . The list is presented in Tables10
and 11. Table10 shows the criteria pair starting with high degrees of “agreement”
(μC,C ′) and low value for the degree of “disagreement” (νC,C ′).

We observe that for all pairs of criteria, the degree of disagreement is low. It
means that there are not pairs of strategies where the algorithm performance to be in
an opposite way. Table11 shows the criteria pair with high degree of “uncertainty”.
Comparingwith the results fromTables8 and 9we can conclude that the intuitionistic
fuzzy estimation gives more realistic estimation.
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Fig. 2 Presentation of ICrA
results (intuitionistic fuzzy
estimations) in the
intuitionistic fuzzy
interpretation triangle
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6 Conclusion

In this paper an ICrAofACOperformancewith different start strategies is considered.
TheACOalgorithmwith start strategies is tested onMKPas a representative of subset
problems. The ICrA is applied to establish the relations and dependencies between
the ACO performance based on different start strategies. The studied start strategies
are 12. Part of them use disallowance of some of the regions of the search space for
one or more iterations. The obtained ICrA results are discussed on the basis of the
scale for defining consonance and dissonance between the considered criteria. We
can conclude that criteria corresponding to the strategies without forbidden regions
are in positive consonance, as well as the criteria corresponding to the strategies with
forbidden regions. The criteria corresponding to the strategies with forbidden regions
are in dissonance with criteria corresponding to strategies without forbidden regions.
Comparing fuzzy estimation with intuitionistic fuzzy estimation, the intuitionistic
fuzzy estimation gives more realistic results. When we apply intuitionistic fuzzy
estimation the ICrA shows some even small similarity of the algorithm performance
between only random strategies and strategieswhich are combination of probabilistic
and forbidden.
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Table 10 Values of the μC,C ′ , νC,C ′ , πC,C ′ of the criteria pairs – part 1 (Intuitionistic fuzzy esti-
mations)

Criteria pairs μC,C ′ νC,C ′ πC,C ′

C1 − C5 1.000 0.000 0.000

C1 − C6 1.000 0.000 0.000

C5 − C6 1.000 0.000 0.000

C7 − C8 1.000 0.000 0.000

C9 − C10 1.000 0.000 0.000

C11 − C12 1.000 0.000 0.000

C3 − C11 0.600 0.182 0.218

C3 − C12 0.600 0.182 0.218

C7 − C9 0.600 0.182 0.218

C7 − C10 0.600 0.182 0.218

C8 − C9 0.600 0.182 0.218

C8 − C10 0.600 0.182 0.218

C3 − C4 0.564 0.327 0.109

C3 − C9 0.564 0.164 0.273

C3 − C10 0.564 0.164 0.273

C4 − C11 0.564 0.182 0.255

C4 − C12 0.564 0.182 0.255

C9 − C11 0.527 0.018 0.455

C9 − C12 0.527 0.018 0.455

C10 − C11 0.527 0.018 0.455

C10 − C12 0.527 0.018 0.455

C2 − C4 0.509 0.236 0.255

C2 − C11 0.509 0.273 0.218

C2 − C12 0.509 0.273 0.218

C7 − C11 0.473 0.145 0.382

C7 − C12 0.473 0.145 0.382

C8 − C11 0.473 0.145 0.382

C8 − C12 0.473 0.145 0.382

C1 − C7 0.382 0.000 0.618

C1 − C8 0.382 0.000 0.618

C1 − C9 0.382 0.000 0.618

C1 − C10 0.382 0.000 0.618

C3 − C7 0.382 0.345 0.273
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Table 11 Values of the μC,C ′ , νC,C ′ , πC,C ′ of the criteria pairs – part 2 (Intuitionistic fuzzy esti-
mations)

Criteria pairs μC,C ′ νC,C ′ πC,C ′

C3 − C8 0.382 0.345 0.273

C5 − C7 0.382 0.000 0.618

C5 − C8 0.382 0.000 0.618

C5 − C9 0.382 0.000 0.618

C5 − C10 0.382 0.000 0.618

C6 − C7 0.382 0.000 0.618

C6 − C8 0.382 0.000 0.618

C6 − C9 0.382 0.000 0.618

C6 − C10 0.382 0.000 0.618

C2 − C7 0.364 0.218 0.418

C2 − C8 0.364 0.218 0.418

C2 − C9 0.364 0.218 0.418

C2 − C10 0.364 0.218 0.418

C1 − C11 0.327 0.000 0.673

C1 − C12 0.327 0.000 0.673

C2 − C3 0.327 0.491 0.182

C5 − C11 0.327 0.000 0.673

C5 − C12 0.327 0.000 0.673

C6 − C11 0.327 0.000 0.673

C6 − C12 0.327 0.000 0.673

C4 − C7 0.309 0.382 0.309

C4 − C8 0.309 0.382 0.309

C1 − C2 0.291 0.000 0.709

C2 − C5 0.291 0.000 0.709

C2 − C6 0.291 0.000 0.709

C4 − C9 0.291 0.364 0.345

C4 − C10 0.291 0.364 0.345

C1 − C4 0.182 0.000 0.818

C4 − C5 0.182 0.000 0.818

C4 − C6 0.182 0.000 0.818

C1 − C3 0.145 0.000 0.855

C3 − C5 0.145 0.000 0.855

C3 − C6 0.145 0.000 0.855
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Evolutionary Approach for Tuning
of Longwall Scraper Conveyor Model

Piotr Przystałka and Andrzej Katunin

Abstract The modeling of machines and their operation modes is a key approach
for optimization of their performance as well as for avoiding unwanted operational
states which may lead to the occurrence of faults, and finally, to the breakdown. The
developedmodel of amachine should be always parametrized, i.e. the certain number
of parameters should be selected in the certain ranges. The most of the parameters
can be selected based on engineering documentation and experts’ knowledge, how-
ever, for some of them this knowledge cannot be directly acquired which leads to
the parameter uncertainty. One of the approaches allowing selection of these uncer-
tain parameters is a tuning procedure of a model. The paper deals with a heuristic
optimizationmethod for automatic tuning of key parameters of longwall scraper con-
veyor model. In the first part of the paper, the analytical model and simulator of the
conveyor system are described as well as the evolutionary algorithm for tuning this
model is proposed. In the case study, the merits and limitations of the evolutionary
approach are analysed. The obtained results prove that the proposed tuning method
has high practical potential and it may be applied in real mining conditions.

1 Introduction

The longwall scraper conveyors are the machines used in the mechanized under-
ground coal mines for transporting a coal. Since these machines usually work in
extremely difficult operational conditions it is essential to monitor their performance
in order to prevent unwanted operational modes and machinery downtime as well
as to implement the knowledge obtained from the monitoring process into the re-
designing processeswhich allows increasing their reliability, effectiveness and safety.
However, considering the operational conditions in the underground coal mines as
well as difficulties in physical access to sources of various signals and difficultieswith
their measurement, the monitoring of physical working parameters is often limited
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to few main quantities, which causes that the measurement data is incomplete, and
makes the diagnosis and prognosis of these machines difficult. In order to predict an
inappropriate behavior of a conveyor and prevent its unwanted operational modes, it
is essential to develop a simulator (or mathematical/numerical model) which allows
testing various operational scenarios, including the occurrence of various types of
faults.

The model-based approach in diagnostics and condition monitoring of under-
ground mines machinery is widely applicable in numerous industrial solutions. To
date, many of such models were developed for scraper and belt conveyors. From the
variety of types of such models one can distinguish analytical models of dynami-
cal behavior of such conveyors, and models based on numerical formulations like
Finite Element Method or Discrete Element Method (see e.g. [1]). Numerous ana-
lytical models which describe motion and dynamics of longwall scraper conveyors
were studied by the team of Dolipski [2–4]. Similar studies on analytical mod-
eling of mining conveyors were performed by Mao et al. [5], where the authors
developed a dynamic mathematical model of a scraper conveyor in order to inves-
tigate the chain behavior under certain operation conditions; Zhang and Meng [6],
where the scraper conveyor sprocket transmission system was simulated in order
to analyze dynamic loading of a conveyor during transporting of excavated mater-
ial; Eshin [7], where the dynamic behavior of a scraper conveyor was simulated in
Matlab®/Simulink® environment in order to test a performance of dynamic control
algorithms; Fan et al. [8], where the authors developed procedures of coordination
control of a shearer, dynamic support and a scraper conveyor; and finally Cenacewicz
and Przystałka [9], Cenacewicz and Katunin [10] developed the models of belt and
scraper conveyors for evaluation of their dynamical behavior under certain opera-
tional scenarios. An interesting study was performed by Herbuś et al. [11], where the
authors developed a model in order to perform numerical simulations for developing
generalized and parametrized control algorithm for a scraper conveyor.

This short survey shows wideness and importance of development of mathemat-
ical models for diagnosis and control purposes of mining machinery. However, in
the most cases, modeling of dynamic behavior of such machinery is difficult, since
many operational parameters are not available or even not measurable or impossible
to acquire. This leads to the incompleteness and uncertainty of a developed model.
Thus, in order to achieve such parameters one can perform simplifications of the
model, assume them basing on literature data and experts’ knowledge, or use knowl-
edge discovery and optimization techniques. Currently, the most common approach
in this task is the manual adjustment of values of behavioural parameters of the
model taking into account the data included in technical documentation or in domain
literature as well as domain expert’s knowledge. Obviously, such an approach is
ineffective and leads to the increasing error with an increase of number of uncertain
parameters and overall level of model uncertainty. On the other hand, in the recent
years, heuristic methods based on the natural phenomena of evolution, such as sim-
ulated annealing algorithm, genetic algorithms, differential evolution, harmony or
tabu search ideas, swarm-inspired methods, etc. have been developed and applied
to model and solve real-life global optimization problems [12]. Furthermore, this
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kind of optimization algorithms has long been applied for tuning values of unknown
parameters of different types of models [13, 14].

As one can observe, the problem of unknown parameter estimation is not enough
discussed in many studies related to analytical modeling of mining conveyors, see
e.g. [3, 4, 10]. To the best knowledge of the authors of this paper, this is one of the
first attempts on applying a heuristic optimization technique for automatic tuning
of parameters of longwall scraper conveyor model. The main goal of this study is
the introduction of the new approach based evolutionary tuning of the mathematical
model of the longwall scraper conveyor. This approach allows for adjusting the
values of uncertain parameters of the model, and thus make it fully defined. This,
in turn, allows for using this model for modeling of various scenarios of operation
as well as for diagnosing the considered machine using the model-based diagnostics
approach. The tuned model was validated, and the validation studies confirmed the
effectiveness of the proposed evolutionary approach.

The paper is composed as follows. In Sect. 2 we present an analytical model
and simulator of longwall scraper conveyor. Section3 deals with the evolutionary
approach for tuning of conveyor model. Section4 shows the pros and cons of the
proposed tuning method. The paper ends with conclusions on development of the
model, tuning procedure as well as further directions of research.

2 Analytical Model and Simulator of Longwall
Scraper Conveyor

The mathematical model of a scraper conveyor consists of the following submodels:
model of a doubled main drive, model of auxiliary drive, model of mine breaker
and contactor control, power supply model, model of equations of motion, model of
masses, and model of motion resistance. A detailed mathematical and phenomeno-
logical description can be found in [10]. In this study we limit to the expressions that
reflect the tuned parameters only.

The scraper conveyor was modeled as a 4-segment discretised model similar to
the approach used byDolipski [2] (see Fig. 1). The equations ofmotion for thismodel
are given by:

V̇ ( j)m ( j) l ( j) = F ( j + 1) − F ( j) + P ( j) − W ( j) l ( j) , (1)

Ḟ ( j + 1) l ( j) = AE [V ( j + 1) − V ( j)] , (2)

where j denotes j-th segment of a conveyor, V ( j) and F ( j) are the velocity and
force in j-th segment of a conveyor, respectively (dots on top denote derivatives), l ( j)
and m ( j) are the length and the mass of j-th segment, respectively, W ( j) denotes
motion resistance of j-th segment, P ( j) is the internal force in j-th segment, and A
and E are the area of a cross-section andmodulus of elasticity of a chain, respectively.
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Fig. 1 The discretised model of a longwall scraper conveyor

In Eqs. (1) and (2)m ( j) represents a submodel of masses for tendons and sprock-
ets. Following [2] the model of masses for operating tendon is described by:

mxx ( j) =
(
mk + mz

2pz
+ cu,xx ( j)mu,xx ( j)

)
L , (3)

where mxx ( j) – the mass of j-th segment of a conveyor, mk – the unitary mass of
a chain, mz – the mass of a scraper, pz – pitch of bearing elements, cu,xx ( j) – mass
coefficient for chain vibration, mu,xx ( j) – unitary mass of excavated material, and
L is the whole length of a conveyor.

For non-operating tendon (3) simplifies to the following form:

mxx ( j) =
(
mk + mz

2pz

)
L . (4)

In the case of sprockets the masses can be determined using the following equa-
tions:

mgnnap ( j) =
(
mk + mz

2pz
+ Jnnap ( j)

l ( j) r2nnap ( j)

)
L , (5)

mgnap ( j) =
(
mk + mz

2pz
+ 1

2l ( j) r2b ( j)
(Jb ( j)

+i2p ( j) ηp ( j) + i2p ( j + 1) ηp ( j + 1) Jp ( j + 1)
) )

L , (6)

where mgnnap ( j), mgnap ( j) – equivalent masses of the j-th segment of a turning
and driving sprockets, respectively, rb – radius of a sprocket, i p – gear ratio, Jb –
moment of inertia of a sprocket, ηp – gear efficiency.

The motion resistance, based on [2], can be described as follows:

Wxx ( j) = gmxx ( j) axx ( j) , (7)
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where g is the gravitational acceleration, and axx ( j) is the coefficient of approxima-
tion of external friction.

The torque losses which should be considered in the model can be determined
based on the following relationship:

ΔMp = Mb
(
1 − ηp

)
ω0ηp

, (8)

where ΔMp denotes the torque losses of a gear, Mb is the torque of the drive drum,
and ηp is the gear efficiency. The engine torque relegated to the drive shaft of the
driving sprocket can be determined basing on the following relationship [15]:

Mn = (
Ms − ΔMp

)
ηi, (9)

where Ms is the drive torque of the engine relegated to the drive shaft sprocket, and
η = ηsηp, ηs is the efficiency of the coupling.

The output torque can be described as:

Mout = (Me + Js)
dωs

dt
, (10)

where Js is the moment of inertia of the motor, ωs is the angular velocity of the
motor, and Me is the elastic torque given by:

Me = cφ + μ
dφ

dt
, (11)

where c is the elasticity coefficient, φ is the angle of rotation, and μ is the damping
coefficient.

Basing on the described mathematical model the of a scraper conveyor was devel-
oped and implemented in the Matlab®/Simulink® environment. The model assumes
the ability to simulate different operational scenarios of a conveyor, and the ability
to simulate operational faults typical for scraper conveyors working underground.
The simulator consists of several subsystems, related to the above-described mathe-
matical model, which are responsible for various actions and operational scenarios.

3 Evolutionary Algorithm for Tuning of Conveyor Model

The dynamic behavior of the described model strongly depends on values of key
parameters corresponding to physical properties of the real conveyor system. The
total number of these parameters can be declared as D. As it is mentioned above,
the most of them can be easily established in the direct way because there is the
possibility for gauging and quantifying physical properties of the plant. On the other
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hand, the rest values declared as x = [x1 x2 . . . xd ] can be indirectly found using
signals of process variables which are collected during monitoring of the object
and simulation of the model. We assume that the number of observed signals (real
and simulated) is equal to J , whereas the number of experiments (scenarios) is I .
Henceforth, real (r ) and modeled (m) time series that are needed for tuning purposes
may be denoted as

yi j
r = [

yi jr (1) yi jr (2) . . . yi jr (K )
]
,

and

yi j
m (x) = [

yi jm (1, x) yi jm (2, x) . . . yi jm (K , x)
]
,

where j is the j-th signal (real or artificial) collected in the i-th experiment scenario,
K is the number of samples.

Themain objective of the tuning procedure is to adjust the values of the parameters
x1, x2, . . ., xd in order to obtain the smallest difference between the response of
the system and the response predicted by the proposed model for each scenario.
Therefore, the optimization problem can be written as follows:

Minimize C (x) = f
[
yi j
r , yi j

m (x) , I, J, K
]

subject to Ω (x) ,
(12)

where f represents a function (with constant arguments I , J , K ) for comparison
of two time series, whilst Ω denotes boundaries and constraints in the optimization
process. The optimal solution x∗ is found if the criterion function C has a relative
minimum value at x = x∗, that means if

x∗ = argmin
x∈Ω

C (x) . (13)

As to be expected, the criterion function C can be formulated in several ways. In
this study, the authors propose two variants of this function. The first one is prepared
applying the Minkowski distance of order p

C (x, p) =
I∑

i=1

J∑
j=1

p

√√√√ K∑
k=1

∣∣∣yi jr (k) − yi jm (k, x)

∣∣∣p. (14)

This measure is a metric in a normed vector space which is considered as a
generalization of both theEuclidean distance and theManhattan distance. The second
function is composed of three sub-criteria

C (x, w) = w1C1 (x) + w2C2 (x) + w3C3 (x) , (15)
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where w1, w2 and w3 are used in order to control the significance of each component.
The first criterion function in Eq. (15) is grounded on the mean absolute percent error
and therefore it can be written as

C1 (x) = 100

I J K

I∑
i=1

J∑
j=1

K∑
k=1

∣∣∣∣∣
yi jr (k) − yi jm (k, x)

z j

∣∣∣∣∣ , (16)

where z j corresponds to the range of the j-th sensor.
The second function is declared making use of cross-correlation as the base of a

measure of the total lag τ between real and simulated signals

C2 (x) = τ =
I∑

i=1

J∑
j=1

τ i j
[
Rxy

(
yi j
r , yi j

m (x)
)]

. (17)

The last component is used in order to find the aggregate value of the maximum
absolute errors which are present in signals collected under all scenarios

C3 (x) =
I∑

i=1

J∑
j=1

max

∣∣∣∣∣
yi j
r − yi j

m (x)

z j

∣∣∣∣∣ . (18)

The solution of the optimization problem can be found using a limited number
of strategies. Derivative-based approaches cannot be employed in this paper, mainly
due to the form of the objective function C . Moreover, one can easily observe, that
the return value of this function depends on the measurement noise in the real-
world data as well as the virtual measurements (with simulated disturbances, noise
and computing errors as well) obtained during numerical computations. In contrast,
pure stochastic optimization methods, for example, Monte Carlo techniques will not
be able to find an accurate solution with guaranteeing polynomial-time convergence
because of the time of numerical computations of the conveyor model. Therefore, the
authors decided to use the evolutionary algorithm which is known as one of the most
common heuristic optimization methods. The general scheme of the evolutionary
optimization strategy for tuning of parameters of longwall scraper conveyor model
can be viewed in Fig. 2.

Evolutionary algorithms are based on the natural selection process that mimics
biological evolution. In order to apply such an optimization technique for finding
a solution of the problem it is necessary to define the following properties of the
algorithm [16]: the representation of the individuals, the fitness function, selection
and succession methods, crossover and mutation operators. It is assumed, that the
number of individuals in the population is fixed at each epoch of the evolutionary
process and that individuals are composed of genes representing real numeric values
of adjustable model parameters. The length of the chromosome is dependent on the
number of these parameters and equals the length of the vector x:
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Fig. 2 General scheme of the optimization strategy used for tuning purposes

chr = x = [x1 x2 . . . xd ] . (19)

The initial population is generated using the normal distribution. The fitness value
of an individual is computed using the objective function (14 or 15). The best fitness
value for a population is the smallest fitness value for every individual in the popula-
tion. Stochastic uniform is applied to choose parents for the next generation, whereas
succession operations are realized by defining the reproduction rules characterized
by two parameters: elite count (δs) and crossover fraction (pc). The first parameter
is the number of individuals with the best fitness values in the current generation
that are guaranteed to survive to the next generation. The second one is the fraction
of individuals in the next generation, other than elite children, that are created by
crossover. It is decided to use a simple heuristic crossover operator. On the basis of
two individuals x1 and x2, in the case if C (x1) < C (x2), then the new one x3 is
created according to the formula mentioned below

x3 = x2 + λh (x1 − x2) , (20)

where λh is a fraction pointing at the better adapted individual.
Amutation operator is responsible for generating heterogeneous individuals. This

operator is based on an adaptive feasiblemethod and it randomly generates directions
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with respect to the last successful or unsuccessful generation. The mutation operator
finds a direction and step length satisfying bounds and linear constraints.

The algorithm is also described by two important parameters such as the pop-
ulation size and the number of generations. The values of theses parameters are
arbitrarily selected during optimization experiments.

4 Case Study

4.1 Description of JOY BLS Conveyor and Its Operating
Scenarios

The developed mathematical model was based on construction and parameters of
the scraper conveyor of type JOY® BLS with the doubled and auxiliary drives. The
parametrization of the described simulator was performed based on technical docu-
mentation of the modeled conveyor, and data available in the literature [2, 17]. The
developed model is characterised by nearly fifty adjustable parameters. The main
parameters of the modeled conveyor are presented in Table1. The operational para-
meters were determined theoretically or selected basing on the experts’ knowledge.

The simulator of a scraper conveyor provides a possibility of simulation of eight
operating scenarios, which represent the characteristic considering the operations
performed during work. They consist of:

Table 1 Parameters of the conveyor JOY® BLS

Parameter Symbol Value Unit

Productivity Qp 2160 t/h

Chain type – diameter dc φ34 mm

Chain type – pitch pc 126 mm

Chain type – spacing sc 200 mm

Diameter of the driving sprocket Dgn 200 mm

Diameter of the turning sprocket Dgp 200 mm

Number of chains nc 2 –

Velocity of the conveyor vp 1.3 m/s

Length of the conveyor l p 250 m

Gear ratio i 13 –

Drive power Pn 3 × 250 kW

Supply voltage Un 500 V

Sectional area of the chain A 9.0792 · 10−6 m2

Young modulus of the chain E 2.1 · 1011 Pa
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• S1 – idle run-up;
• S2 – idle run-up and run-down;
• S3 – idle run-up, loading, run-down;
• S4 – idle run-up, loading, unloading, run-down;
• S5 – run-up with excavated material;
• S6 – run-up with excavated material, unloading, run-down;
• S7 – run-up with loading of excavated material;
• S8 – run-up with loading of excavated material, unloading, run-down.

The loading of excavated material is modeled as a linear increase of the coefficient kz
(when it equals 1 – the full rated loading is obtained). For the performed study four
of them were selected, namely S3, S4, S5 and S8 due to the significant differences
between these scenarios.

Besides the parameters presented in Table1, some of them cannot be measured
and were assumed according to literature data and technical data sheets. Therefore,
it is essential to tune up the model in order to simulate its behavior during realization
of considered scenarios properly. The five parameters (d = 5) that are subject to the
tuning process in this study are as follows:

• the efficiency of the drive system: x1 = η [-] (see (9));
• the damping factor: x2 = μ [-] (see (11));
• the torque losses of flexible and hydrodynamic couplings: x3 = ΔMp [Nm]
(see (8));

• the approximation friction coefficient: x4 = a [-] (see (7));
• the unitary mass of excavated material: x5 = mu [kg/m] (see (3)).

These parameters are selected since it is not possible to obtain their values in the
direct way.

4.2 Tuning Experiments and Results

The verification tests were carried out with the assumption corresponding to the
process variables collected during operational states of the machine. It was decided
that only nine process variables (J = 9) could be used for tuning:

• the load of the engines y1 = Mgn [Nm];
• the torque of the engines y2 = Mn [Nm] (see (9));
• the linear velocity of the chain y3 = vn [m/s];
• the phase currents of the first and second engine y4 = I N Z1A, y5 = I N Z1B,

. . ., y9 = I N Z2C [A] (see [10] for details).

It was also assumed that the sampling rate of the sensors was equal to 500Hz,
whereas the analog-to-digital converter resolution was set to 32bits. The noise
powers of selected signals were as follows: σvn = 10E−08, σMgn = σMpg = 100,
σI = 10E−02. The reference signals yi j

r were gatheredwhile simulation of themodel
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for S3, S4, S5 and S8 scenarios (I = 4). The optimal values of parameters were cho-
sen as follows: xr1 = 0.957, xr2 = 0.1, xr3 = 5, xr4 = 3 and xr5 = 461.54. The time of
the simulation was set to 40s. The error measure in the form of

δx = 100%

d

d∑
i=1

δxi = 100%

d

d∑
i=1

∣∣∣∣ x
r
i − x∗

i

xri

∣∣∣∣ , (21)

was defined in order to evaluate the performance results.
The evolutionary algorithm implemented in Global Optimization Toolbox of

Matlab® software was applied in this paper. For each optimization experiment,
the boundary values of parameters were chosen taking into account literature data:
0.8 ≤ x1 ≤ 0.99, 0 ≤ x2 ≤ 10, 2 ≤ x3 ≤ 8, 2 ≤ x4 ≤ 4, 300 ≤ x5 ≤ 570. In the first
step, the performance of the evolutionary algorithmwas examined through analysing
the influence of the variant of the criterion functionC and the values of its parameters.
The feasible populationmethodwas adapted to create a randomwell-dispersed initial
population satisfying all constraints and bounds. Fitness scaling was done using the
rankmethod, whereas the selection of the parents to the next generation was obtained
by means of the stochastic uniform method. The elite count δs = 2 and crossover
fraction pc = 0.8 were chosen. The heuristic crossover function was employed with
the user-defined parameter λh = 1.2. The remaining individuals were mutated with
the use of the adaptive feasible method. The population size was equal to 50, whilst
the total number of generations was set to 20. Nine trials were performed in this part
of the study:

• trials from1 to5: fitness functionwasdeclaredusingEq. (14) for p = {1, 2, . . . , 5};
• trials from 6 to 9: fitness function was declared using Eq. (15) for w = [1 0 0],

w = [0 1 0], w = [0 0 1], w = [0.9 0.01 0.09].

The results of experiments from this stage of the study are included in the first part
of Table2. It can be stated that in the average sense, the minor errors can be achieved
using the criterion function C in the form of Eq.14. For this function, in each case
beyond the 5th trial the mean error δx was close to 10%. Nevertheless, the smallest
error was reached for the second criterion function that has been declared using
Eq.15 with w = [0.9 0.01 0.09]. Hence, this variant of the fitness function was used
in the next two steps. Convergence plots of two evolutionary tuning processes are
presented in Fig. 3. The first one (Fig. 3a) shows the lowest efficiency of the algorithm
obtained in the trial No. 6. On the other hand, the second plot (Fig. 3b) illustrates
the highest efficiency of the algorithm in the trial No. 9. Using this two figures, it is
possible to compare the convergences for both trials. One can see that, in the second
case the dispersion of mean scores is higher than in the first one. Moreover, Fig. 4
shows examples of simulation results obtained for different values of parameters
determined by the evolutionary optimization algorithm in the 6th and 9th trial.

In the second step, the authors analysed the influence of the population size and
the crossover probability on the performance of the evolutionary algorithm. In order
to examine this issue six experiments were conducted:
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Table 2 The errors and final values of parameters determined by the evolutionary optimization
algorithm

Trial x∗
1 [−] x∗

2 [−] x∗
3 [Nm] x∗

4 [−] x∗
5

[
kg

]
δx [%]

No. δx1 [%] δx2 [%] δx3 [%] δx4 [%] δx5 [%]

1st step

1 0.949 0.13 6.33 3.01 457.95 11.88

0.75 30.64 26.76 0.46 0.78

2 0.950 0.09 2.91 3.02 455.64 9.26

0.72 1.76 41.79 0.76 1.28

3 0.958 0.11 7.00 3.00 462.21 10.89

0.14 13.97 40.09 0.08 0.15

4 0.956 0.08 3.37 3.00 461.23 8.98

0.09 12.26 32.49 0.02 0.07

5 0.941 0.20 4.59 2.93 471.84 23.27

1.60 102.19 8.08 2.26 2.23

6 0.919 0.27 2.25 2.67 507.01 49.99

3.96 170.47 54.87 10.79 9.85

7 0.873 0.29 5.32 2.33 405.70 48.46

8.76 192.92 6.48 22.02 12.10

8 0.899 0.061 2.01 3.06 409.92 23.53

6.03 38.74 59.62 2.08 11.18

9 0.955 0.10 6.18 2.87 486.54 7.65

0.21 4.78 23.72 4.13 5.42

2nd step

10 0.958 0.09 7.88 2.99 463.24 12.33

0.18 3.27 57.67 0.19 0.37

11 0.934 0.06 2.84 2.98 450.75 16.13

2.36 32.17 43.11 0.66 2.34

12 0.959 0.26 3.90 2.86 492.54 39.82

0.23 165.68 21.93 4.53 6.72

13 0.957 0.10 5.66 2.99 463.24 4.14

0.06 6.74 13.34 0.19 0.37

14 0.941 0.14 6.34 3.04 440.88 16.32

1.64 46.92 26.90 1.65 4.48

15 0.958 0.10 6.92 3.00 461.55 8.72

0.19 4.83 38.49 0.10 0.00

3rd step

16 0.965 0.18 7.86 2.96 474.40 28.64

0.92 80.97 57.29 1.22 2.79

17 0.954 0.09 3.52 3.00 459.83 6.38

0.22 1.63 29.60 0.09 0.37

18 0.943 0.08 2.53 2.97 456.95 13.12

1.38 13.24 49.31 0.69 0.99
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(a) Trial No. 6 (b) Trial No. 9

Fig. 3 Convergence plots of the evolutionary tuning process

• trials 10 and11: fitness functionwas declared usingEq. (15) forw= [0.9 0.01 0.09]
and the population size was equal to {30, 40}, the rest properties were the same as
in the first step;

• trials from 12 to 14: fitness function was declared using Eq. (15) for w =
[0.9 0.01 0.09] and the crossover fraction was equal to {0.6, 0.7, 0.9}, the rest
properties were the same as in the first step;

• trial 15: fitness function was declared using Eq. (15) for w = [0.9 0.01 0.09], the
population size was equal to 50 and the crossover fraction was equal to 0.7, the
rest properties were the same as in the first step.

This part of the research led us to state that, the smallest error could be achieved
with the use of 20 individuals in the population,whereas the crossover fraction should
be set to 0.7. It is easy to observe that, these settings can provide the mean error result
smaller than 5%.

In the last part of the study, the analysis of the accuracy of the evolutionary
optimization was carried out in the context of the sampling rate and resolution as
well as the number of the available sensors. The last three trials were done as follows:

• trial 16: fitness function was declared using Eq. (15) for w = [0.9 0.01 0.09], only
three sensors were used vn , I N Z1A and I N Z2A, the rest properties were the
same as in the second step;

• trial 17: fitness function declared using Eq. (15) for w = [0.9 0.01 0.09], all sen-
sors were used, the sampling rate was equal to 1Hz, the resolution was set to
16bits, the rest properties were the same as in the second step;

• trial 18: fitness function declared using Eq. (15) for w = [0.9 0.01 0.09], only
three sensors were used vn , I N Z1A and I N Z2A, the sampling rate was equal to
1Hz, the resolution was set to 16bits, the rest properties were the same as in the
second step.

The last analysis is very important from a technical point of view. It can be pointed
out, that in mining engineering practice it is possible to use measuring devices with
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(a) Trial No. 6 (b) Trial No. 9

Fig. 4 Examples of simulation results obtained for different values of parameters determined by
the evolutionary optimization algorithm in the 6th and 9th trial (yr - black line, ym - red line)

lower sampling rate and resolution for accurate tuning of a longwall scraper conveyor
model. The sampling rate equals to 1Hz with the resolution equals to 16bits can be
enough for this kind of problems to have the mean error significantly less than 10%
provided that it involves the required number of measuring sensors.

Taking into account overall results of the study presented in Table2 it can be
concluded that the most important parameter is the damping factor. Even a small
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change in the value of this parameter can have a strong influence on the results of
the simulation. On the other hand, the value of the loss of the torques of flexible and
hydrodynamic couplings has almost no effect on the simulation.

5 Conclusions

In this paper, the authors proposed and verified a heuristic optimization method
for tuning values of parameters of longwall scraper conveyor model. In the consid-
ered model five of parameters were defined as uncertain, and the tuning problem was
defined over these parameters. In turn, nine output parameters of the longwall scraper
conveyor model were selected for tuning procedures. The tuning procedure was per-
formed using four selected operational scenarios which were the most representative
for the performed task.

As it was shown in the introduction section, this problem was not enough inves-
tigated before in known studies related to analytical modeling of mining conveyors.
Following this, the authors have formulated the optimization problem and applied
the evolutionary computation in order to find the final solution. Two kinds of the
criterion function was proposed. The first one was based on Minkowski’s distance,
whilst the second was prepared by means of weighted sub-criteria such as the mean
absolute percent error, the cross-correlation function and the aggregate value of the
maximum absolute errors. The study was performed in three steps, where the first
step was focused on optimal tuning of model parameters with an error minimization
criterion, while the second and third steps were focused on estimation of appropriate
parameters of an evolutionary algorithm, and quality of measurement signals and
the number of sensors available for signal acquisition, respectively. It was shown
that the second type of the criterion function should be used in order to obtain the
smallest mean errors during searching optimal values of parameters. The validation
tasks confirm that the proposed tuning method is characterized by the high precision
of tuning of uncertain parameters of the model and has high potential from a prac-
tical point of view and what is more, it may be successfully applied in real mining
conditions.

Acknowledgements The research presented in the paper was financed by the National Centre of
Research and Development (Poland) within the framework of the project titled “An integrated shell
decision support system for systems of monitoring processes, equipment and hazards” carried out
in the path B of Applied Research Programme - grant No. PBS2/B9/20/2013. This publication is
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of Technology in 2016.
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Solving Graph Partitioning Problems
with Parallel Metaheuristics

Zbigniew Kokosiński and Marcin Bała

Abstract In this article we describe computer experiments while testing a family of
parallel and hybrid metaheuristics against a small set of graph partitioning problems
like clustering, partitioning into cliques and coloring. In all cases the search space is
composed of vertex partitions satisfying specific problem requirements. The solver
application contains two sequential and nine parallel/hybrid algorithms developed on
the basis of SA andTSmetaheuristics. A number of tests are reported and conclusions
concerning metaheuristics’ performance that result from the conducted experiments
are derived. The article provides a case study in which partitioning numbers ψk(G),
k ≥ 2, of DIMACS graph coloring instances are evaluated experimentally by means
of H-SP metaheuristic which is found to be the most efficient in terms of solution
quality.

Keywords Simulated annealing · Tabu search · Parallel metaheuristic · Hybrid
metaheuristic · Graph partitioning problem · Graph partitioning number

1 Introduction

Computational optimization attracts researchers and practitioners interested in solv-
ing combinatorial problems bymeans of various computationalmethods and tools. In
particular, many NPO problems require new versatile tools in order to find approxi-
mate solutions [1, 10]. Parallel and hybridmetaheuristics are among themost promis-
ing methods to be developed in the nearest time [2, 20]. Many new algorithms have
been already designed and compared with existing methodologies [7, 15], but there
is still a room for significant progress in this area.
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In this article we focus on a class of partitioning problems that appear in many
application areas like data clustering [3], column-oriented database partitioning opti-
mization [19], design of digital circuits, decomposition of large digital systems into
a number of subsystems (models) for multi-chip implementation, task scheduling,
timetabling, assignment of frequencies in telecommunication networks, etc. Parti-
tioning problems are in general simpler than permutation problems but their search
spaces are too huge for exhaustive search or extensive search methods [4–6, 11, 13,
21, 22].

The paper describes two computer experiments. The aim of the first one is deter-
mining of efficient metaheuristics for the given problem taking into account both
quality of the solution (cost function) and the computation time. In many cases the
tradeoff is not easy to find, similarly as the best algorithms’ settings. However, from
our research some general recommendations can be derived. In the second experi-
ment a single algorithm with the best solution quality is used for finding solution of
the Graph Partitioning Problem (GPP) for a class of graphs from DIMACS graph
repository [8, 9]. Originally, they were used as instances of Graph Coloring Problem
(GCP), which is known to be NP-complete. The obtained computational results pro-
vide additional characteristic of this collection of graphs, since the objective function
used represents the cost of graph partitioning into exactly k clusters (partition blocks),
2 ≤ k ≤ 5. The cost function minima found experimentally are the upper bounds for
the partitioning numbers ψk(G), which represent cost of the optimal clustering.

The rest of the paper is organized as follows. In the next section the graph partition-
ing problems are defined and characterized. Then, in Sect. 3, SA and TS algorithms
as well as their parallelization and hybridization methods are sketched. The design
assumptions and features of the developed solver application are described in Sect. 4.
Testingmethodology and initial experimental results are shown in Sect. 5. The exper-
imental evaluation of ψk(G) for 18 DIMACS graphs is described in detail in Sect. 6.
The conclusions of the article point out the directions of future research in this area.

The presented researchwas conducted within the frame of statutory activity (grant
No. E3/627/2016/DS) at Faculty of Electrical and Computer Engineering, Cracow
University of Technology and was financially supported by Ministry of Science and
Higher Education, Republic of Poland.

2 Graph Partitioning Problems

In this section formulations of several partitioning problems are given that are to be
solved by a collection of algorithms used in the experimental part of the paper.

We assume that G = (V, E) is a connected, undirected graph. Let |V | = n,
|E | = m.
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2.1 Graph Partitioning Problem (GPP)

A partition C = (C1, . . . ,Ck) of V is called a partitioning (clustering) of G and Ci

clusters.C is called trivial if either k = 1, or all clustersCi contain only one element.
We will identify a cluster Ci with the induced subgraph of G, i.e. the graph Gi =
(Ci , E(Ci )), where E(Ci ) = {{u, v} ∈ E : u, v ∈ Ci }. Hence, E(C) = ∑k

i=1 E(Ci )

is the set of intra-cluster edges and E \ E(C) the set of inter-cluster edges [3].
The number of intra-cluster edges is denoted by m(C) and the number of inter-

cluster edges by M(C).
The coverage(C) of a graph clustering C is a fraction of intra-cluster edges

within the complete set of edges E : coverage(C) = m(C)/m. The larger the value
of coverage(C) does not necessarily mean the better quality of a clustering C .

Constructing a k-clustering with a fixed number of k, k ≥ 3 of clusters is NP-hard
[1].

In general, for k-clustering problems in weighted graphs the total weight of the
set E \ E(C) shall be minimized.

Unweighted graph instances G, like DIMACS graphs investigated in Sect. 6, can
be characterized by the partitioning numberψk(G)which equals to minimum M(C).

2.2 Clique Partitioning Problem (CPP)

A partition C = (C1, . . . ,Ck) of V is called a partition of G into cliques iff every
subgraph Gi = (Ci , E(Ci )) induced by a cluster Ci is a clique, i.e. all vertices in Ci

are pairwise connected. The goal is to find the minimal k, for which a partition into
at most k cliques exists.

The clique partitioning problem is NP-complete [18]. The dual problem to CPP
is graph partitioning into independent sets (ISs). It is equivalent to the CPP for
G(V, E ′), where E ′ is a complement of the set E .

2.3 Clique Partitioning Problem with Minimum
Clique Size (CPP)

In the present paper a solution of clique partitioning problem is also searched for
given clique size at least s: is there a graph partition into k cliques satisfying a
condition related to the minimum clique size s? For given n and k the minimum size
of cliques in G is s = �n/k�. Weighted version of the problem are also known, with
additional conditions related to cliques’ weights [11].
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2.4 Graph Coloring Problem (GCP)

Classical vertex coloring problem in a graphs is another formulation of graph
partitioning into independent sets (ISs). Such ISs can be assigned different colors,
satisfying the property that all pairs of adjacent vertices in G are assigned noncon-
flicting colors. Formally:

For given graphG(V, E), the optimization problemGCP is formulated as follows:
find theminimumpositive integer k, k ≤ n, and a function c : V −→ {1, . . . , k}, such
that c(u) 	= c(v)whenever (u, v) ∈ E . The obtained value of k is referred to as graph
chromatic number χ(G).

GCP belongs to the class of NP-complete problems [10].

2.5 Restricted Coloring Problem (RCP)

In practical applications a conflict-free vertex/edge coloring is searched, often sat-
isfying additional requirements. Therefore, a large number of particular coloring
problems arised and has been investigated [17].

One well known example is vertex coloring with some restrictions set on available
colors for the given graph vertex. In RCP each vertex is assigned a list of forbidden
colors and a proper solution meeting such set of constraints is searched [16].

3 Sequential and Parallel Metaheuristics

The reported research is based on two sequential and nine parallel algorithms. The
sequential metaheuristics include classical simulated annealing (SA) and tabu search
(TS) that belong to the class of iterative methods [20]. Parallel algorithms can be
splitted into three categories: parallel metaheuristics derived from SA, parallel meta-
heuristics derived from TS and hybrid methods.

3.1 Simulated Annealing (SA)

Classical simulated annealing [20] is a well known technique widely used in opti-
mization and present in most of the textbooks. It can be easily parallelized in various
ways. Parallelmoves enable singleMarkov chain to be evaluated bymultiple process-
ing units calculating possible moves from one state to another. Multiple threads
compute independent chains of solutions and periodically exchange the obtained
results. The key question in parallel implementation remains setting of algorithm’s
parameters like initial temperature, and a cooling schedule. For the problem at hand
it is necessary to define an appropriate solution representation, cost function and a
neighborhood generation scheme.
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3.2 Tabu Search (TS)

Tabu search [20] is an improvement of local search method in which so called tabu
list contains a number of recent moves that must not be considered as candidates in
the present iteration. This feature helps the method to escape from local minimawhat
is impossible in local search. The question is to define the solution representation,
cost function, neighborhood and a single move, the size of the neighborhood and
the number of candidate moves, aspiration level which decides on the possibility to
accept forbidden moves if it leads to a solution improvement etc.

3.3 MIR Model of Parallelization

Multiple independent runs (MIR) model is a very popular way of parallelization of
iterative algorithms. A number of algorithm instances with different input data are
executed simultaneously. All computational processes run independently and do not
exchange data during computation. At the end, the best solution from all processes
is selected. This simple model can be made more sophisticated by introducing an
information exchange scheme, exchange rate etc.

3.4 MS Model of Parallelization

In Master-Slave (MS) model the master executes the sequential part of an algorithm,
distributes computational tasks among slaves, collects results from slaves, process
and aggregates this results. In certain versions of MS model the master splits the
whole search space among slaves, synchronizes their work, checks the termination
condition and collects the best solution from subspaces.

3.5 PA Model of Parallelization

Parallel asynchronous (PA) model provides maximum flexibility: various algorithms
with different initial data search the whole search space in an asynchronous man-
ner. Usually an efficient update scheme for the best solution must be implemented
as well as occasional distribution of best solutions to asynchronous computational
processes. One possibility is to employ a communication process. In some cases
shared memory (SM) can be used for information updates and exchange. The sec-
ond solution helps to avoid generation of interrupts in asynchronous processes. The
processes communicate the SM in predictable moments of time.
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3.6 Hybrid Models

Hybrids models include: 1. two-phase algorithms, when each phase - restriction
of the search space and solution refinement - is performed by a different method;
2. combined algorithms, when known elements of existing methods are composed
in a single algorithm; 3. combined algorithms consisting original components like
problem-oriented operations or heuristics; and 4. concurrent algorithm which is par-
allel execution of known methods with data exchange patterns.

In this paper three parallel metaheuristic algorithms are used.
Parallel hybrid asynchronous (H-PA) algorithm splits computational processes

into “even” performing SA and “odd” performing TS. Best solutions are updated via
shared memory SM, where they are immediately made available for all processes.

Hybrid serial-parallel algorithm (H-SP) process in parallel p threads in which
SA and TS sections are performed alternately starting from SA section. SA section
modifies tabu list while TS section modifies current temperature for the next section,
respectively. Switching conditions are related to the progress achieved in improving
best solution.

Parallel hybrid algorithm (H-P) is developed on the basis MIR method. Single
step combines properties of both SA and TS: if new solution satisfies aspiration
criterion (AC) it is always accepted, otherwise, it is accepted according to SA rules.
This means that probability of acceptance of worse solution decreases in time.

4 The Solver

For all tests the “Partitioning problems solver” application was used. It was written
in C++ (Visual Studio), while .NET Framework 3.5 provided necessary libraries and
runtime environment.

The main program window contains three tabs: Program, Generator and Help. In
appropriate fields of Program tab it is possible to select one of five basic problems
(GPP, CPP, CPP-MIN, GCP, RGCP) and one of eleven algorithms. After that, one
can select the input file format and read input data. A numerous algorithm parameters
and problem constrains must be filled in the forms including multiple runs, enabling
statistics and write options. The cost of best solution and the total computation time
are also displayed in this tab.

The Generator tab opens possibilities to generate input graphs or weighted input
graphs after setting its parameters and lists of forbidden colors. The unweighted
graphs are kept in .col format, weighted graphs are in .ecl format, which is extension
of .col by adding edge weights as well as edge weight range (in the header). The type
.rcp contains lists of forbidden colors for all vertices, if any. File formats .xpp and
.xcp are used for preserving input graph and the partition being the best solution for
the given problem together with its cost, respectively. Output data in CSV format are
written into the .txt file and enable easy import of data to a spreadsheet.
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5 Computational Experiments with Metaheuristics

For experiments Intel Pentium T2300 machine was used with two 1.66 GHz cores
and 4GB RAM, running under Windows XP Pro SP2 and .NET Framework 3.5
platform.

All five problemswere tested against all eleven algorithmswith eight basic settings
(stop criterion, no of iterations in a single step, initial temperature for SA, size of the
tabu list). The specific setting that were selected in the initial phase of the experiment
are shown in Table1.

Other parameters are: coefficient of cost function = 1, no of parallel processes
(threads) = 20, communication parameter = 20, no of algorithm repetitions = 20,
no of clique extension trials = 5, no of repetitions for H-SP algorithm = 5.

In Tables2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 computational data are presented. All
experiments were conducted for random graph instances generated for each class
of the graph partitioning problems in .ecl format. Relatively small graph instances
were used with 20, 50 and 100 vertices and graph densities 10, 20 and 30%. Cost
functions from20 trials are collected in Tables2, 3, 4, 5 and 6while the corresponding
computation times in Tables7, 8, 9, 10 and 11, respectively.

Analysis of the results obtained for the five partitioning problems justifies several
conclusions.

The shortest processing times are obtained by pure TS and SA methods. How-
ever, their solutions are not satisfactory. Parallelization and hybridization require
additional computational work, and their aim is to improve search for a better sub-
optimal solution rather then providing significant speedup.

For GPP the fastest parallel algorithms is P-TSmetaheuristic. PSA and two hybrid
methods (H-PA, H-P) are less time-efficient. The slowest algorithm is H-SP, which
is very time consuming. On the other hand H-SP finds the best solutions for all
eight available settings. Average results of SA-MIR and H-P algorithms are also
outstanding and obtained approximately five times faster than by H-SP. The best
setting in average is no 6 (minimum cost for six methods), but the best result for

Table 1 Basic settings of algorithms

No. Stop criterion (it) Number of
iterations/step

SA - initial
temperature

TS - size of tabu
list

1 20 5 3 10

2 20 5 10 40

3 20 10 3 10

4 20 10 10 40

5 50 5 3 10

6 50 5 10 40

7 50 5 3 10

8 50 5 10 40
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Table 2 Graph partitioning problem (GPP). Cost functions (11 algorithms, 8 settings, 20 runs)

SA PSA TS PTS Hybrid Avg.

MIR MS A MIR MS A H-PA H-SP H-P

1 295 238 255 251 338 284 285 287 286 230 240 271.7

2 296 237 254 253 330 286 285 282 246 228 234 266.5

3 293 243 257 259 338 283 285 288 254 234 238 270.2

4 293 238 257 257 331 282 285 283 252 232 235 267.7

5 292 234 249 247 341 276 286 288 245 226 237 265.5

6 286 235 245 244 338 274 284 281 238 227 235 262.5

7 289 242 252 256 332 280 286 286 249 238 242 268.4

8 289 240 252 252 329 271 280 283 252 235 239 265.6

Avg. 291.6 238.4 252.6 252.4 334.6 279.5 284.5 284.8 252.8 231.2 237.5

Table 3 Clique partitioning problem (CPP). Cost functions (11 algorithms, 8 settings, 20 runs)

SA PSA TS PTS Hybrid Avg.

MIR MS A MIR MS A H-PA H-SP H-P

1 26 24 24 24 25 23 24 24 24 21 24 23.9

2 26 24 24 24 25 23 24 24 24 21 24 23.9

3 23 22 22 22 24 22 23 23 23 21 22 22.5

4 24 22 22 22 24 22 23 23 23 21 22 22.5

5 25 24 24 24 24 22 23 23 23 21 24 23.4

6 26 24 24 24 24 22 23 23 23 21 24 23.5

7 23 22 22 22 23 22 22 22 22 21 22 22.1

8 24 22 22 22 23 22 22 22 22 21 22 22.2

Avg. 24.6 23 23 23 24 22.3 23 23 23 21 23

Table 4 CPP with min. clique size (CPP-MIN). Cost functions x103 (11 algorithms, 8 settings, 20
runs)

SA PSA TS PTS Hybrid Avg.

MIR MS A MIR MS A H-PA H-SP H-P

1 114 107 108 108 147 126 135 134 134 101 106 120

2 115 107 108 108 144 127 135 134 110 101 106 118

3 111 105 105 105 137 122 129 129 108 100 104 114

4 112 105 105 105 137 123 129 128 107 100 105 114

5 112 105 106 106 140 114 131 130 108 101 106 114

6 113 106 106 106 139 114 130 130 108 101 106 114

7 112 105 105 105 133 113 126 126 107 99 105 112

8 112 104 105 105 132 112 126 126 107 99 104 112

Avg. 113 105 106 106 139 119 130 130 111 100 105
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Table 5 Graph coloring problem (GCP). Cost functions (11 algorithms, 8 settings, 20 runs)

SA PSA TS PTS Hybrid Avg.

MIR MS A MIR MS A H-PA H-SP H-P

1 86 51 52 53 84 55 55 55 55 55 54 59.5

2 80 52 52 52 85 55 54 55 53 53 53 58.5

3 85 52 51 52 83 54 55 54 54 54 53 58.8

4 86 51 52 51 78 53 53 53 53 53 53 57.8

5 82 52 52 52 86 54 56 55 54 54 53 59.1

6 87 52 52 52 86 53 54 55 54 53 53 59.2

7 84 50 51 52 83 53 54 55 54 53 53 58.4

8 86 52 51 52 85 53 54 53 52 53 53 58.5

Avg. 84.5 51.5 51.6 52 83.8 53.8 54.4 54.4 53.6 53.5 53.1

Table 6 Restricted GCP (RGCP). Cost functions (11 algorithms, 8 settings, 20 runs)

SA PSA TS PTS Hybrid Avg.

MIR MS A MIR MS A H-PA H-SP H-P

1 36 26 26 27 39 29 30 29 30 27 29 29.8

2 37 26 26 26 37 28 29 29 27 26 28 29

3 36 26 26 27 39 28 29 28 28 26 28 29.2

4 36 27 27 27 36 28 28 28 27 26 28 28.9

5 37 26 26 26 38 28 29 29 27 26 28 29.1

6 36 26 27 26 38 27 28 29 27 27 28 29

7 36 26 27 27 37 28 28 28 27 26 28 28.9

8 36 26 27 27 36 27 28 28 27 26 27 28.6

Avg. 36.3 26.1 26.5 26.6 37.5 27.9 28.6 28.5 27.5 26.3 28

Table 7 Graph partitioning problem (GPP). Computation times (11 algorithms, 8 settings, 20 runs)

SA PSA TS PTS Hybrid Avg.

MIR MS A MIR MS A H-PA H-SP H-P

1 1.70 19.4 14.6 15.3 0.57 6.83 5.23 5.13 5.49 70.0 34.2 16.2

2 1.76 18.3 13.4 14.2 0.60 6.75 5.40 5.51 14.1 67.5 18.4 15.1

3 6.28 64.2 48.4 50.0 2.48 26.5 21.9 21.3 40.1 27.0 64.9 56.0

4 5.71 58.3 42.8 41.5 2.85 29.8 26.9 25.6 40.1 258 58.7 53.7

5 3.77 35.0 32.2 30.4 1.5 25.3 13.1 13.5 27.8 149 35.4 33.3

6 3.33 34.4 31.3 32.4 1.76 33.4 15.1 15.0 28.2 149 34.9 34.4

7 10.7 106 97.7 98.1 6.59 114 55.4 54.8 85.9 626 109 124

8 10.2 101 91.7 92.5 6.98 128 67.1 65.6 86.5 605 104 123

Avg. 5.4 54.8 46.5 46.8 2.92 46.3 26.3 25.8 41.0 274 57.5
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Table 8 Clique partitioning problem (CPP). Computation times (11 algorithms, 8 settings, 20 runs)

SA PSA TS PTS Hybrid Avg.

MIR MS A MIR MS A H-PA H-SP H-P

1 1.03 9.86 10.0 9.82 1.05 10.8 10.0 10.5 10.5 76.4 10.0 14.5

2 0.95 9.46 9.59 9.40 1.06 11.0 10.5 10.4 10.2 76.6 9.62 14.4

3 3.45 33.9 33.3 32.7 3.30 34.0 31.8 31.5 32.7 280 33.7 50.1

4 3.09 30.9 30.5 30.8 3.33 33.3 31.6 31.9 32.6 282 31.1 49.2

5 1.89 18.2 18.3 18.4 2.14 23.5 21.5 21.7 22.1 168 18.2 30.4

6 1.78 17.6 17.9 17.9 2.27 23.5 22.0 21.6 21.2 158 17.4 29.2

7 6.50 63.8 63.8 63.5 7.25 77.9 70.2 71.4 73.5 653 64.8 110

8 6.10 61.8 60.9 60.9 7.30 76.3 72.5 70.2 72.4 645 61.2 109

Avg. 3.10 30.7 30.5 30.4 3.46 36.3 33.8 33.7 34.4 292 30.8

Table 9 CPP with min. clique size (CPP-MIN). Computation times (11 algorithms, 8 settings, 20
runs)

SA PSA TS PTS Hybrid Avg.

MIR MS A MIR MS A H-PA H-SP H-P

1 1.74 17.6 16.3 17.2 1.25 18.1 13.0 13.6 13.3 91.2 18.0 20.1

2 1.76 17.0 16.7 17.3 1.28 17.5 13.4 13.6 16.6 89.4 16.6 20.1

3 3.89 39.9 39.6 39.4 3.82 53.3 40.5 39.3 40.0 337 39.7 61.6

4 3.90 38.4 38.2 39.2 3.90 52.1 39.4 39.5 40.1 332 38.4 60.5

5 2.93 27.6 29.6 29.3 2.60 50.5 26.7 26.4 30.0 193 26.9 40.5

6 2.85 27.4 29.9 29.3 2.58 49.6 27.1 27.3 29.7 185 27.4 39.9

7 7.24 72.3 72.1 73.4 8.60 169 89.1 83.0 77.6 795 71.9 138

8 7.33 71.9 73.1 71.8 9.04 167 90.4 86.6 76.6 840 71.9 142

Avg. 3.96 39.0 39.4 39.6 41.4 72.2 42.4 41.2 40.5 358 38.9

Table 10 Graph coloring problem (GCP). Computation times (11 algorithms, 8 settings, 20 runs)

SA PSA TS PTS Hybrid Avg.

MIR MS A MIR MS A H-PA H-SP H-P

1 0.62 7.09 7.14 6.97 0.64 7.06 7.01 6.88 6.84 49.3 8.13 9.79

2 0.60 6.56 6.57 6.63 0.68 8.05 7.68 7.35 6.36 48.9 8.08 9.77

3 2.36 26.9 26.2 26.2 2.38 27.2 24.6 25.2 23.3 201 27.9 37.6

4 2.24 25.1 24.6 24.9 2.31 27.1 26.0 26.1 22.4 201 27.5 37.2

5 1.37 14.4 14.4 14.3 1.51 17.9 15.9 15.6 15.6 121 18.3 22.8

6 1.31 13.9 14.0 14.0 1.45 19.2 17.6 18.0 20.4 122 18.9 23.7

7 5.35 56.9 56.4 56.1 5.73 65.1 61.3 60.0 55.8 498 68.3 90.0

8 5.24 54.5 55.3 54.7 5.37 61.3 56.3 56.8 52.8 499 59.6 87.4

Avg. 2.39 25.7 25.6 25.5 2.51 29.1 27.1 27.0 25.4 218 29.6
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Table 11 Restricted GCP (RGCP). Computation times (11 algorithms, 8 settings, 20 runs)

SA PSA TS PTS Hybrid Avg.

MIR MS A MIR MS A H-PA H-SP H-P

1 0.77 7.73 7.58 7.92 0.66 7.58 6.56 6.61 6.59 49.0 7.35 9.85

2 0.72 7.15 7.25 7.07 0.71 7.80 7.35 7.24 6.20 49.1 8.01 9.87

3 2.78 28.7 2.89 29.4 2.51 27.1 25.7 25.2 23.1 199 28.1 38.3

4 2.64 26.9 26.7 26.7 2.57 28.7 26.9 26.2 22.9 199 28.9 38.0

5 1.51 14.9 15.2 15.3 1.58 18.3 15.6 16.1 14.1 121 18.4 22.9

6 1.45 14.3 14.5 14.6 1.68 19.2 17.5 16.5 14.6 121 19.2 23.2

7 5.84 57.9 58.6 58.7 6.26 72.3 63.6 62.7 55.0 497 72.4 91.8

8 5.61 56.4 56.1 56.7 5.79 66.0 63.6 61.9 55.3 496 66.6 90.0

Avg. 2.66 26.8 26.9 27.1 2.72 30.9 28.3 27.8 24.7 217 31.1

GPP is obtained with setting no 5. In terms of the computation time settings no 2
and 1 obviously win, and the fastest method is the TS-PA algorithm with moderate
success in optimization.

For CPP the fastest parallel algorithms are PSAmetaheuristics. Two hybrid meth-
ods (H-PA, H-P) are also timeefficient. Among the parallel algorithm SA-PA is the
fastest one with minimum obtained for four settings. The slowest algorithm is again
H-SP, which finds the best solutions for all eight parameter settings. The second
result provides TS-MIR which is eight times faster than H-SP. Setting no 7 provides
the best solution quality for all algorithms. In terms of the computation time settings
no 2 and 1 win, and the fastest method is the SA-PA algorithm.

For CPP-MIN the fastest parallel algorithms are hybrid and PSA metaheuristics.
The winner is H-P algorithm with setting no 2. The slowest algorithm is H-SP,
which wins the quality competition for all eight parameter settings. SA-MIR and
H-P has been themost prospective challengers. Setting no 8 provides the best solution
quality for nine algorithms. In terms of the computation time settings no 1 and 2 are
the winners.

For GCP the fastest parallel methods are PSAs which provide also best approxi-
mate solutions (SA-MIR wins for six out of eight settings). The fastest parallel algo-
rithm is H-PA, the best setting for seven algorithms is no 2. The slowest algorithm is
H-SP, which is 4th in terms of solution quality. The best setting for cost-optimality
is no 4 in average.

The last problem - RGCP - brings also interesting results. The fastest parallel
algorithms are PSAs, but the winner in this category is H-PA with seven winning
settings. The best settings for all methods are 1 and 2. The best solution in average
is found by PSA-MIR (the winner for seven out of eight settings), the runner-up is
H-SPwhichwas about eight time slower, the next positions are occupied by PSA-MS
and PSA-A. Most good results (9) were obtained for the setting no 8.
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6 Graph Partitioning Problem - A Case Study

Graphs are often characterized by their combinatorial properties. For instance, in the
second DIMACS Implementation Challenge: 1992–1993, chromatic numbers χ(G)

were searched for a collection of hard to color graph instances by means of virtu-
ally all known computational techniques. Gradually, most graph instances from this
repository were assigned these distinctive numbers. The first parallel metaheuristic
used for searching chromatic numbers χ(G) was Parallel Evolutionary Algorithm
(PEA) [15].Another example of graph characteristics are graph chromatic sum

∑
(G)

and graph chromatic sum number s(G) [17]. In the research on sum coloring PEA
as well as many new computational methods were highly successful [12, 14].

We believe that DIMACS graphs could be further characterized with respect to
other graph partitioning problems. In this context GPP seems to be one of the most
important and promising candidates. In the next experiment we will investigate 18
DIMACS graphs in search for their clustering numbers ψk(G), for different number
of clusters k ≥ 2. For our computations hybrid serial–parallel algorithm (H-SP) has
been selected due to its efficiency in solving majority of partitioning problems. The
time efficiency is not a priority, but the number of algorithm’s runs shall be reasonably
restricted.

The algorithm H-SP uses p threads, each with a pair of modified SA and TS
algorithms. SA section creates a tabu list for TS on exit while TS section updates
temperature for SA on exit. Starting from SA section, both H-SP components work
by turns improving the current and the best solutions, respectively. Alternate runs
are continued till the stop criterion is reached. Details of SA and TS algorithms are
omitted here.

The pseudocode of the H-SP algorithm used in our experiment is as follows.

H-SP(input: p,stop_criterion,iter_number,initial_temp,

list_size, alternat_coeff; output: best_sol,cost(best_sol));

best_sol(1):= random_vertex_partition(1)

best_sol:= best_sol(1)

cost_best_sol:=cost(best_sol(1))

for j=1 to p do in parallel

current_sol(j):= random_vertex_partition(j)

best_sol(j):=current_sol(j)

tabu_list(j):=empty

T(j):=initial_temp

repeat

alternat_counter:=0

repeat

for iter_counter=1 to iter_number do

SA(T(j),temp_coeff,current_sol(j),best_sol(j));

if (cost(best_sol(j)) < cost_best_sol)

then best_sol:=best_sol(j)
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cost_best_sol:=cost(best_sol(j))

iter_counter:=0

else Inc(alternat_counter)

until (alternat_counter > alternat_coeff)

update(tabu_list(j))

alternat_counter:=0

repeat

for iter_counter=1 to iter_number do

TS(tabu_list(j),list_size,current_sol(j),best_sol(j));

if (cost(best_sol(j)) < cost_best_sol)

then best_sol:=best_sol(j)

cost_best_sol:=cost(best_sol(j))

iter_counter:=0

else Inc(alternat_counter)

until (alternat_counter > alternat_coeff)

update(T(j))

Inc(main_counter)

until (main_counter = stop_criterion)

For H-SP algorithm the setting no. 2 from Table1 was chosen what is justified by
results of the reported testing. Other program settings for H-SP were as follows: no.
of repetitions = 10, no. of parallel processes = 20, no. of algorithm’s runs = 10, 50.

For this experiment the machine with Intel Core i7 4700MQ CPU was used with
four 2.4GHz cores and 8 GB RAM, running under Windows 10 Home OS.

The results of computations are shown in Tables12 and 13. In Table12 nine
DIMACS graphs are gathered (5 book graphs, games120 and 3miles graphs). Due to
excessive time homer graph was processed only with 10 algorithm’s runs. Table13
contains nine queen graphs. All computed upper bounds for ψk(G), 2 ≤ k ≤ 5, are
distinguished in a bold font. Let us notice, that in several cases the bounds obtained
with 10 algorithm’s runs are better than with 50 runs. The presented computational
results should be considered as the first attempt in evaluation of numbers ψk(G) for
DIMACS graph coloring benchmarks.

7 Conclusions

In this article some research results related to parallel metaheuristics and their appli-
cations were reported. The conducted experiments gave certain limited insight to
computational behaviour of parallel and hybridmetaheuristics developed on the basis
of SA and TS algorithms, and applied to a class of popular partitioning problems in
graphs. Some algorithms were better than others for solving particular problems. We
were focused mostly on solution quality, the computation time was the secondary
factor in our comparison. Many obtained results were not obvious and difficult to
predict without experimental verification.
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Table 12 Evaluation of ψk(G) for GPP (DIMACS graphs, algorithm H-SP, no. of runs = 10, 50)

Graph No of
blocks

10 runs 50 runs

Best
cost

Iterations best/total Best
run (s)

Best
cost

Iterations best/total Best
run (s)

anna 2 139 28056/75840 1.703 142 85440/133200 1.703

3 151 56232/104160 2.343 148 104448/152400 2.828

4 158 62832/110640 2.421 150 98088/145920 3.185

5 157 99048/146880 3.156 155 87840/135600 3.015

david 2 141 39696/231360 2.468 132 80352/272160 2.703

3 142 251712/443520 4.390 136 65976/257760 2.546

4 148 205152/396960 3.937 147 55368/247200 2.468

5 149 184776/376320 4.031 147 104976/296640 3.093

homer 2 445 576456/768000 278.6 n.a. n.a. n.a.

3 420 356232/548160 187.2 n.a. n.a. n.a.

4 434 439152/630720 215.9 n.a. n.a. n.a.

5 444 453888/645600 219.7 n.a. n.a. n.a.

huck 2 61 56328/248160 1.765 59 101832/293760 2.078

3 64 17232/208800 1.468 63 23880/215520 1.578

4 69 139176/330720 2.625 67 193632/385440 2.765

5 72 339000/530880 3.937 72 31440/223200 1.546

jean 2 52 188664/380640 3.125 51 38136/229920 2.031

3 53 176856/368640 3.035 54 113400/305280 2.734

4 60 240264/432000 3.890 59 50976/242880 2.187

5 62 48096/230400 2.031 61 49320/240960 2.140

games120 2 133 65064/256800 4.640 128 48600/240480 4.641

3 128 461424/653280 12.04 123 86256/277920 5.359

4 127 282792/474720 8.718 136 301992/493920 9.594

5 149 47592/239520 4.359 138 218184/409920 7.968

miles250 2 33 314592/506400 9.484 29 290568/482400 9.797

3 34 59064/251040 4.859 30 307944/499680 9.859

4 35 77136/268800 5.000 37 73968/265920 5.219

5 43 92400/284160 5.250 46 75048/266880 5.770

miles500 2 159 89256/280800 6.906 155 39072/230880 5.826

3 160 84504/276480 6.468 156 54696/246240 6.209

4 171 256104/447840 10.93 163 128904/320640 8.125

5 168 63960/255840 6.140 167 48792/240480 6.015

miles750 2 534 73776/265440 9.328 524 469200/660960 23.56

3 529 278544/470400 16.82 475 101064/292800 10.56

4 534 89040/280800 9.578 530 614904/806880 28.28

5 539 132648/324480 11.59 535 338136/529920 18.26
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Table 13 Evaluation of ψk(G) for GPP (DIMACS graphs, algorithm H-SP, no. of runs = 10, 50)

Graph No of
blocks

10 runs 50 runs

Best
cost

Iteration best/total Best
run (s)

Best
cost

Iteration best/total Best
run (s)

queen5.5 2 81 34080/225600 0.531 74 25704/217440 0.375

3 80 41640/233280 0.546 80 31272/223200 0.375

4 102 10512/202080 0.484 90 42456/234240 0.390

5 102 27240/218880 0.515 92 4536/196320 0.343

queen6.6 2 141 15096/206880 0.703 137 54360/246240 0.843

3 155 20496/212160 0.734 149 20736/212640 0.578

4 158 106032/297600 1.062 148 71328/263040 0.718

5 164 36264/228000 0.609 157 104976/296640 0.999

queen7.7 2 249 32016/223680 1.078 238 32256/224160 0.937

3 247 35232/227040 1.093 237 164400/356160 1.484

3 251 278160/469920 2.328 244 29088/220800 1.078

4 253 22104/214080 0.890 244 16488/208320 1.046

queen8.8 2 373 88176/279840 1.984 338 125568/317280 2.218

3 377 45048/236640 1.640 360 27360/218880 1.546

4 369 296928/488640 3.531 353 102648/294240 2.062

5 384 273576/465120 3.281 376 354576/546240 3.453

queen8.12 2 665 263808/455520 5.968 664 90360/282240 4.359

3 667 130656/322560 5.164 670 219768/411360 6.562

4 670 180264/372000 5.945 674 379728/571680 9.156

5 687 103008/294720 4.709 678 47280/239040 3.781

queen9.9 2 532 339816/531360 5.562 521 62832/254400 2.859

3 498 44280/236160 2.421 531 53304/245280 2.734

4 540 217584/409440 4.250 537 60216/252000 2.609

5 533 229440/420960 4.812 533 63192/254880 2.671

queen10.10 2 725 64512/256320 3.562 725 239352/431040 6.062

3 735 51552/243360 3.718 726 39816/231360 3.265

4 730 141360/333120 4.986 730 606768/798720 11.34

5 738 139296/331200 4.671 734 48384/240000 3.531

queen11.11 2 974 137496/329280 6.984 962 244488/436320 9.437

3 970 58272/250080 5.460 967 78384/270240 6.031

4 971 105000/296640 6.459 971 126456/318240 6.750

5 981 56808/248640 5.577 974 59328/251040 5.344

queen12.12 2 1254 258216/354000 11.36 1242 125544/221520 6.750

3 1249 37416/133200 4.296 1241 264984/360960 11.12

4 1247 187992/283920 8.750 1236 335544/431520 13.71

5 1270 31128/126960 3.828 1250 233064/329040 10.09
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An original contribution of our research is evaluation of graph partitioning num-
bers ψk(G), 2 ≤ k ≤ 5, for 18 DIMACS graph coloring instances, which were so
far characterized by chromatic number χ(G), chromatic sum

∑
(G) and graph chro-

matic sum number s(G). Now, they have got also 72 experimentally computed upper
bounds for ψk(G).

We believe that the presented results justify further experiments with our solver.
It would be interesting to extend our second experiment and include PSA-MIR algo-
rithm which also provides quality results in a reasonable computation time. Another
research direction is to continue evaluation of graph partitioning numbers for the
remaining DIMACS graphs.
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Comparison of Selected Fuzzy PSO
Algorithms

Tomasz Krzeszowski, Krzysztof Wiktorowicz and Krzysztof Przednowek

Abstract This paper presents a comparison of selected fuzzy particle swarm
optimization algorithms. Two non-fuzzy and four fuzzy algorithms are considered.
The Takagi–Sugeno fuzzy system is used to change the parameters of these algo-
rithms. A modified fuzzy particle swarm optimization method is proposed in which
each of the particles has its own inertia weight and coefficients of the cognitive and
social components. The evaluation is based on the common nonlinear benchmark
functions frequently used for testing optimization methods. The ratings of the algo-
rithms are assigned on the basis of the mean of the objective function final value.

1 Introduction

Particle swarm optimization (PSO) is a stochastic optimization method that was
developed by Kennedy and Eberhart [10]. The PSO is mainly inspired by the social
behavior of organisms that live and interact within large groups, for example, schools
of fish, flocks of birds or swarms of bees. The usefulness of PSO in solving a wide
range of optimization problems has been repeatedly confirmed. It has been applied
to: the intelligent identification and control of a dynamic system [3]; human motion
tracking [20]; solving an economic dispatch problem in power systems [19]; feature
selection [2]; automatic incident detection [22]; the open shortest path first weight
setting problem [17]; fuzzy anomaly detection in networks [9]; the estimation of
hurdles clearance parameters [12]; clustering [7] and many more problems. Many
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modifications of the PSO have been developed since it was introduced in 1995 [10].
The most common are algorithms with a constriction factor [4] and with a linear
inertia weight [5]. Among the PSO modifications we can distinguish algorithms that
utilize fuzzy systems [1, 3, 8, 14, 15, 18, 19, 21, 24]. For example, in papers [3,
21] a fuzzy system was used to dynamically modify the inertia weight. In the paper
[14], the authors present a fuzzy PSO with a cross-mutated operation (FPSOCM),
where a fuzzy logic determines the inertia weight and the control parameter of the
proposed cross-mutated operation. Another approach was presented in [19], where a
fuzzy system is used to change the inertia weight and the coefficients of the cognitive
and social components.

The main contributions of this paper are summarized as follows:

• we propose theMFPSO algorithm, inwhich each of the particles has its own inertia
weight and the coefficients of the cognitive and social components,

• we compare selected fuzzy PSO algorithms using common benchmark functions,
• we apply the Takagi–Sugeno fuzzy system [23] which is more computationally
efficient than the Mamdani system [16].

In our research, we consider six different versions of PSO, including two non-fuzzy,
and four fuzzy algorithms. The evaluation is based on nonlinear benchmarks in the
form of Ackley, Griewank, Rastrigin and Rosenbrock functions. The calculations are
conducted using Matlab software and the “PSO Research Toolbox” by Evers [6].

2 Particle Swarm Optimization

The particle swarm model consists of particles that are randomly initialized in the
d-dimensional search space. The particles explore this space during an iterative
process and exchange information to find the optimal solution. Each i-th particle is
described by its position xi , velocity vi , and personal best position pbesti . Moreover,
the particles have access to the best global position gbest that has been found by any
particle in the swarm.

In the basic PSO algorithm [10], the velocity and the position of each particle in
the k-th step of iteration are updated according to the equations

vk+1
i = vki + c1r1(pbestki − xki ) + c2r2(gbestk − xki ) (1)

xk+1
i = xki + vk+1

i (2)

where r1, r2 are vectors with uniformly distributed random numbers in the interval
[0, 1], and c1, c2 are positive constants equal to 2.

The velocity of particles is determined by three components. The first component
is the inertia that models the particle’s tendency to continue moving in the same
direction. The second component is cognitive and attracts particles towards their
personal best positions.The last component is a social component thatmoves particles
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towards the best position found earlier by any particle. Selection of the best global
position and the best position for i-th particle is based on the objective function
(denoted later by f (·)).

2.1 PSO1: Clerc, Kennedy Algorithm [4]

Many approaches have been developed to improve the performance of the basic PSO
algorithm. One of them is to use the constriction factor χ that was proposed by Clerc
and Kennedy [4]. The application of this factor controls the velocity magnitude.

The velocity equation has the form

vk+1
i = χ [vki + c1r1(pbestki − xki ) + c2r2(gbestk − xki )] (3)

where χ is calculated as χ = 2

|2−ϕ−
√

ϕ2−4ϕ| and ϕ = c1 + c2, ϕ > 4. In this paper,

the following typical values are used: c1 = c2 = 2.05, ϕ = 4.1 and χ = 0.7298.

2.2 PSO2: Eberhart, Shi Algorithm [5]

Another way to improve the performance of PSO is to use the inertia weight ω.
This parameter is significant because it balances the global exploration and local
exploitation abilities of the swarm. Exploration is facilitated when the inertia weight
is high, but convergence is slower. On the other hand, when the inertia weight is low
then convergence is faster, but it sometimes leads to local solutions. Hence, linearly
decreasing inertia weight is proposed in [5].

The velocity equation has the form of

vk+1
i = ωkvki + c1r1(pbestki − xki ) + c2r2(gbestk − xki ) (4)

The inertia weight ω is calculated from the formula

ωk = ωmax − ωmax − ωmin

itermax
· k (5)

where ωmax is the initial weight, ωmin is the final weight and itermax is the maximum
number of iterations. The limits for ω are set to ωmax = 0.9 and ωmin = 0.4.
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3 Takagi–Sugeno System

Consider the Takagi–Sugeno (T–S) fuzzy system [23] with two inputs y1, y2 and one
output u. For the input y1 we define m triangular fuzzy sets Ai (Fig. 1), for which
the vertices are placed in points pi , where i = 1, . . . ,m. Similarly, for the input
y2, we define n fuzzy sets Bj with vertices in points q j , where j = 1, . . . , n. The
membership grades Ai (y1) and Bj (y2) are calculated from the formulas

Ai (y1) = triang(y1; pi−1, pi , pi+1)

= max

(
0,min

(
y1 − pi−1

pi − pi−1
,
pi+1 − y1
pi+1 − pi

))
(6)

and
Bj (y2) = triang(y2; q j−1, q j , q j+1)

= max

(
0,min

(
y2 − q j−1

q j − q j−1
,
q j+1 − y2
q j+1 − q j

))
(7)

For the first and the last fuzzy sets we assign the memberships grades equal to unity
if y1 ≤ p1 or y1 ≥ pm , y2 ≤ q1 or y2 ≥ qn . The coordinates pi and q j are written
in the form of the vectors p = [pi ] = [p1, . . . , pm] and q = [q j ] = [q1, . . . , qn],
respectively.

The T–S system is described by m · n fuzzy inference rules of the form

Ri j : IF y1 ∈ Ai AND y2 ∈ Bj ,THEN u = zi j (8)

where zi j ∈ R is the consequent of the rule Ri j . The rules (8) are written in the
following table:

y1\y2 B1 B2 . . . Bn−1 Bn

A1 z11 z12 . . . z1,n−1 z1n
A2 z21 z22 . . . z2,n−1 z2n
...

...
... . .

. ...
...

Am−1 zm−1,1 zm−1,2 . . . zm−1,n−1 zm−1,n

Am zm1 zm2 . . . zm,n−1 zmn

(9)

n

n n

n

Fig. 1 Fuzzy sets for the inputs y1 and y2
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The output u is calculated as the weighted average of the consequents zi j and deter-
mined by

u = TS(y1, y2) =
∑m

i=1

∑n
j=1 wi j (y1, y2)zi j∑m

i=1

∑n
j=1 wi j (y1, y2)

(10)

wherewi j (y1, y2) = Ai (y1) · Bj (y2) denotes the degree of fulfillment of the rule Ri j .

4 Fuzzy PSO

4.1 FPSO1: Algorithm Based on the Work
by Shi, Eberhart [21]

The better PSO performance can be achieved using the nonlinearly changing inertia
weight that balances global and local search abilities. Because it is difficult to design
a mathematical model to adapt the inertia weight, therefore this problem may be
solved using a linguistic description of the search process. For example, we can use
a fuzzy inference system for tuning the inertia weight dynamically [21].

In the FPSO1 algorithm, the inertia weight is described by the formula

ωk+1 = ωk + Δω (11)

where the change of inertia weight is determined by the T–S fuzzy system (10):

Δω = TS(nf k, ωk) (12)

The input nf k is the normalized objective function value described by

nf k = fgk − fmin
fmax − fmin

(13)

where fgk = f (gbestk), fmin is the optimal solution (for the benchmark functions
applied in this paper, it is equal to 0), fmax is the worst solution (in our paper fmax =
f (gbest0)). The fuzzy sets for the inputs nf k and ωk have vertices in points p =
[0, 0.5, 1], q = [0.4, 0.7, 1], respectively, and the fuzzy rules are of the form

nf k \ωk B1 B2 B3

A1 Z N N
A2 P Z N
A3 P Z N

(14)

where N = −0.1, Z = 0 and P = 0.1. For example, the rule R11 means that if nf k

is about 0 and ωk is about 0.4, then Δω is 0.
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4.2 FPSO2: Algorithm Based on the Work by Alfi, Fateh [3]

The improvement of the FPSO1 algorithm was proposed by Alfi and Fateh [3]. In
their method, the inertia weight is calculated for each particle according to its current
state. This is justified because each particle in the swarm is in a different place in
a complex environment and may have a different balance between global and local
search abilities.

In the FPSO2 algorithm, the T–S system (10) is used to obtain the change of
inertia weight for each particle:

Δωi = TS(nf ki , ω
k
i ) (15)

where

nf ki = fpki − fmin
fp0i − fmin

(16)

and fpki = f (pbestki ). The vertices of fuzzy sets for nf ki and ωk
i are chosen as p =

[0, 0.5, 1], q = [0.4, 0.6, 0.8] respectively, and the fuzzy rules are of the form

nf ki \ωk
i B1 B2 B3

A1 P N N
A2 P Z N
A3 P Z N

(17)

where N = −0.1, Z = 0 and P = 0.1. For example, the rule R13 means that if nf ki
is about 0 and ωk

i is about 0.8, then Δωi is −0.1.

4.3 FPSO3: Algorithm Based on the Work by Niknam [19]

In the FPSO3 algorithm, a fuzzy system proposed by Niknam [19] is used to change
not only ω, but also the coefficients c1 and c2. These coefficients determine the
influence of the personal best position pbesti and the global best position gbest on
the particle velocity. For example, if c1 is larger than c2, then the particle has the
tendency to move to the personal best position, rather than to the global best position
found by the swarm.

In the FPSO3 algorithm, three T–S systems (10) are used to determine the para-
meters ω, c1 and c2:

ω = TS(nf k, nuk) (18)

c1 = TS(nf k, nuk) (19)

c2 = TS(nf k, nuk) (20)
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The input nf k is defined in (13) and nuk is the normalized number of iterations
without change of the best global position:

nuk = uk − umin
umax − umin

(21)

where uk is the number of iterations without change of the best global posi-
tion, umin = 0 and umax = itermax. The fuzzy sets are defined by the vectors p =
[0.2, 0.4, 0.6, 0.8], q = [0.2, 0.4, 0.6, 0.8]. The fuzzy rules for the inertia weight ω
have the form of

nf k \ nuk B1 B2 B3 B4

A1 PS PM PB PB
A2 PM PM PB PR
A3 PB PB PB PR
A4 PB PB PR PR

(22)

In table (22) we have PS = 0.4, PM = 0.6, PB = 0.8 and PR = 1. The fuzzy rules
for the parameter c1 are defined as

nf k \ nuk B1 B2 B3 B4

A1 PR PB PB PB
A2 PB PM PM PS
A3 PB PM PS PS
A4 PM PM PS PS

(23)

and for the parameter c2 they are defined as

nf k \ nuk B1 B2 B3 B4

A1 PR PB PM PM
A2 PB PM PS PS
A3 PM PM PS PS
A4 PM PS PS PS

(24)

In tables (23) and (24) we have PS = 1.2, PM = 1.4, PB = 1.6 and PR = 1.8.

4.4 MFPSO: Authors’ Proposition

Themodified fuzzy PSO (MFPSO) algorithm proposed by the authors [11] combines
the previously described concepts developed by Alfi, Fateh [3] and Niknam [19].
In this algorithm, each of particles has its own coefficients ω, c1 and c2 changing
according to the linguistic description represented by the fuzzy rules. In this way,
each of the particles may be treated individually. For example, if a particle has found
the new local best position pbesti , then the inertia weight ω should be decreased and
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the coefficients c1 and c2 should be increased. On the other hand, if pbesti has not
changed for a long time, ω should be increased and c1, c2 should be decreased to
improve the ability of exploration.

In theMFPSO algorithm, the authors propose the parametersω, c1 and c2 for each
particle to be determined using three T–S systems (10):

ωi = TS(nf ki , nu
k
i ) (25)

(c1)i = TS(nf ki , nu
k
i ) (26)

(c2)i = TS(nf ki , nu
k
i ) (27)

where nf ki is defined in (16), nuki has the form of

nuki = uki − umin
umax − umin

(28)

and uki is the number of iterations without change to the best personal position for
the i-th particle. It should be noted that in Eq. (21), nuk is calculated on the basis
of the global best position gbest, whereas in Eq. (28), nuki is calculated on the basis
of the personal best position pbesti . The vertices of fuzzy sets for nf ki and nuki are
defined as p = [0.2, 0.45, 0.65, 0.9], q = [0.2, 0.45, 0.65, 0.9].

The fuzzy rules for the inertia weight ω are the same as in (22). The fuzzy rules
for the parameters c1 and c2 are given in tables (23) and (24), where PS = 1.5,
PM = 1.7, PB = 1.9 and PR = 2.1. For example, the rule R11 has the form

R11 : IF nf ki ∈ A1 AND nuki ∈ B1,

THEN ω = PS AND c1 = PR AND c2 = PR
(29)

and the rule R23 has the form

R23 : IF nf ki ∈ A2 AND nuki ∈ B3,

THEN ω = PB AND c1 = PM AND c2 = PS
(30)

Other rules can be interpreted similarly.

5 Results and Discussion

In order to evaluate the algorithms, four common nonlinear benchmark functions
[13, 21] were used:
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• Ackley function

f1(x) = −20 exp

(
−0.2

√√√√ 1

d

d∑
i=1

x2i

)
− exp

(
1

d

d∑
i=1

cos(2πxi )

)
+ 20 + e (31)

• Griewank function

f2(x) = 1

4000

d∑
i=1

x2i −
d∏

i=1

cos

(
xi√
i

)
+ 1 (32)

• Rastrigin function

f3(x) =
d∑

i=1

(x2i − 10 cos(2πxi ) + 10) (33)

• Rosenbrock function

f4(x) =
d−1∑
i=1

(
100 (xi+1 − x2i )

2 + (xi − 1)2
)

(34)

where d is the dimension. For these functions, the asymmetric initialization method,
as in the paper [21],was used. The velocity of particleswas clamped to vmax , however,
the position of the particles was not limited. The initialization ranges and vmax for the
test functions are listed in Table1. In our experiments, three dimension sizes were
chosen: d = 10, d = 30 and d = 100. The number of iterations was set to 1000,
2000 and 5000 corresponding to the dimensions 10, 30 and 100. The number of
particles was equal to 30 and the number of trials was equal to 30 in all experiments.
The calculations were conducted using Matlab software and the “PSO Research
Toolbox” by Evers [6]. The average time of execution for one trial of the MFPSO
algorithm with 30 particles and 1000 iterations on a mobile workstation equipped
with Intel(R) Core(TM) i7-2820QM was about 5 s.

The objective function values for gbest for trials in which the algorithms achieved
the value closest to themean are shown in Figs. 2 and 3. The results for the considered

Table 1 Parameters of
benchmark functions

Function Initialization
ranges

vmax

Ackley (15, 30)d 30

Griewank (300, 600)d 600

Rastrigin (2.56, 5.12)d 5.12

Rosenbrock (15, 30)d 30
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Fig. 2 Objective function values for gbest for trials in which the algorithms achieved the value
closest to the mean
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Fig. 3 Objective function values for gbest for trials in which the algorithms achieved the value
closest to the mean
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Table 2 Results for the Ackley function

d, iter Algorithm Mean Sd Min Max Rating

10,1000 PSO1 2.223e−05 1.218e−04 3.553e−15 6.669e−04 4

PSO2 6.685e−01 3.662e+00 8.882e−14 2.006e+01 3

FPSO1 1.332e+00 5.068e+00 3.553e−15 2.006e+01 1

FPSO2 3.790e−15 9.013e−16 3.553e−15 7.105e−15 6

FPSO3 9.000e−01 3.662e+00 3.553e−15 2.006e+01 2

MFPSO 5.566e−15 2.412e−15 3.553e−15 1.421e−14 5

30,2000 PSO1 8.218e+00 7.791e+00 1.421e−14 1.980e+01 2

PSO2 6.909e−01 3.784e+00 6.994e−07 2.073e+01 6

FPSO1 9.953e−01 3.781e+00 1.421e−14 2.079e+01 5

FPSO2 4.146e+00 8.032e+00 2.807e−13 2.003e+01 3

FPSO3 8.351e+00 7.650e+00 1.344e+00 1.998e+01 1

MFPSO 4.104e+00 8.348e+00 8.846e−11 2.087e+01 4

100,5000 PSO1 1.980e+01 4.430e−02 1.970e+01 1.992e+01 4

PSO2 1.696e+01 6.888e+00 1.708e+00 2.067e+01 6

FPSO1 2.038e+01 2.155e+00 1.097e+01 2.112e+01 1

FPSO2 1.983e+01 1.933e−01 1.899e+01 2.017e+01 3

FPSO3 1.934e+01 2.292e+00 7.226e+00 1.988e+01 5

MFPSO 1.993e+01 2.799e+00 9.303e+00 2.114e+01 2

Table 3 Results for the Griewank function

d, iter Algorithm Mean Sd Min Max Rating

10,1000 PSO1 7.258e−02 3.584e−02 3.197e−02 2.115e−01 6

PSO2 1.050e−01 5.726e−02 7.396e−03 2.172e−01 1

FPSO1 8.642e−02 3.961e−02 1.969e−02 1.796e−01 4

FPSO2 7.701e−02 3.531e−02 3.201e−02 1.847e−01 5

FPSO3 9.796e−02 5.344e−02 1.970e−02 2.511e−01 2

MFPSO 8.690e−02 4.569e−02 9.857e−03 2.017e−01 3

30,2000 PSO1 2.701e−02 4.005e−02 0.000e+00 1.858e−01 2

PSO2 1.303e−02 1.775e−02 2.092e−11 9.064e−02 6

FPSO1 1.375e−02 1.688e−02 0.000e+00 5.888e−02 5

FPSO2 1.492e−02 2.037e−02 0.000e+00 9.562e−02 4

FPSO3 3.036e+00 2.411e+00 1.049e+00 1.128e+01 1

MFPSO 1.661e−02 2.176e−02 0.000e+00 8.558e−02 3

100,5000 PSO1 2.841e+00 6.539e+00 4.998e−03 2.589e+01 2

PSO2 1.186e−01 1.255e−01 2.093e−02 6.304e−01 3

FPSO1 9.915e−02 1.467e−01 1.056e−11 6.202e−01 4

FPSO2 2.237e−02 3.622e−02 9.593e−09 1.645e−01 5

FPSO3 4.572e+02 1.202e+02 1.990e+02 6.533e+02 1

MFPSO 9.624e−03 1.698e−02 1.361e−05 6.498e−02 6
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Table 4 Results for the Rastrigin function

d, iter Algorithm Mean Sd Min Max Rating

10,1000 PSO1 7.097e+00 3.969e+00 1.990e+00 1.890e+01 2

PSO2 3.715e+00 1.865e+00 0.000e+00 7.960e+00 6

FPSO1 5.804e+00 2.575e+00 2.985e+00 1.293e+01 3

FPSO2 4.743e+00 3.394e+00 0.000e+00 1.791e+01 4

FPSO3 1.270e+01 5.817e+00 9.950e−01 2.388e+01 1

MFPSO 4.053e+00 2.627e+00 4.421e−03 8.955e+00 5

30,2000 PSO1 1.053e+02 2.743e+01 4.676e+01 1.512e+02 1

PSO2 3.819e+01 9.564e+00 2.389e+01 6.766e+01 6

FPSO1 4.580e+01 8.148e+00 3.084e+01 6.368e+01 4

FPSO2 4.852e+01 1.391e+01 2.388e+01 8.457e+01 3

FPSO3 9.155e+01 2.314e+01 5.330e+01 1.353e+02 2

MFPSO 4.024e+01 1.019e+01 1.293e+01 5.771e+01 5

100,5000 PSO1 7.682e+02 1.328e+02 4.636e+02 1.094e+03 2

PSO2 2.806e+02 4.189e+01 2.062e+02 3.612e+02 3

FPSO1 2.781e+02 3.371e+01 2.040e+02 3.512e+02 4

FPSO2 2.776e+02 4.333e+01 1.991e+02 3.691e+02 5

FPSO3 1.197e+03 7.490e+02 5.457e+02 2.344e+03 1

MFPSO 2.627e+02 4.685e+01 1.733e+02 3.384e+02 6

Table 5 Results for the Rosenbrock function

d, iter Algorithm Mean Sd Min Max Rating

10,1000 PSO1 2.155e+01 3.702e+01 1.381e−02 1.261e+02 4

PSO2 3.602e+01 1.308e+02 6.977e−01 7.244e+02 2

FPSO1 1.761e+01 3.553e+01 2.459e−03 1.371e+02 5

FPSO2 2.529e+01 5.990e+01 7.227e−02 2.577e+02 3

FPSO3 7.058e+01 2.101e+02 2.104e+00 1.152e+03 1

MFPSO 1.742e+01 5.445e+01 8.144e−03 2.854e+02 6

30,2000 PSO1 3.793e+01 5.813e+01 6.057e−02 2.642e+02 6

PSO2 8.484e+01 7.490e+01 5.490e+00 3.359e+02 3

FPSO1 6.247e+01 7.706e+01 3.930e−01 3.082e+02 4

FPSO2 5.779e+01 4.336e+01 1.420e+00 1.683e+02 5

FPSO3 8.847e+04 1.825e+05 2.877e+02 8.705e+05 1

MFPSO 9.524e+01 1.533e+02 5.333e+00 8.481e+02 2

100,5000 PSO1 4.937e+02 4.707e+02 1.488e+02 2.073e+03 4

PSO2 1.360e+03 1.526e+03 4.846e+02 8.401e+03 2

FPSO1 2.390e+02 9.148e+01 9.722e+01 6.008e+02 6

FPSO2 2.653e+02 9.099e+01 1.230e+02 5.349e+02 5

FPSO3 2.416e+09 4.259e+08 2.170e+08 2.635e+09 1

MFPSO 1.177e+03 1.916e+03 3.616e+02 1.078e+04 3
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Table 6 Ratings of the PSO algorithms

Algorithm d = 10 d = 30 d = 100
∑

PSO1 16 11 12 39

PSO2 12 21 14 47

FPSO1 13 18 15 46

FPSO2 18 15 18 51

FPSO3 6 5 8 19

MFPSO 19 14 17 50

benchmark functions are presented in Tables2, 3, 4 and 5. These tables contain
the basic statistics for the final value of the objective function and the ratings of
the algorithms. These ratings were assigned in such a way that the best algorithm
received six points and the worst received one point. The ratings of the algorithms
are summarized in Table6. For the dimension d = 10, the highest rating has the
algorithm MFPSO proposed by the authors. For d = 30 and d = 100 the highest
ratings have the algorithms PSO2 and FPSO2, respectively. The MFPSO achieved
the fourth result in case of d = 30 and the second result in case of d = 100.Analyzing
the sum of ratings it can be seen that the best is the FPSO2 algorithm and the second
is the MFPSO algorithm.

6 Conclusion

In this paper, a comparison of selected fuzzy particle swarm optimization algorithms
was presented. A modified fuzzy PSO algorithm was proposed, in which each of the
particles has its own inertia weight and the coefficients of the cognitive and social
components. The Takagi–Sugeno fuzzy system was used instead of the Mamdani
fuzzy system because it has a shorter processing time. Six different versions of PSO
were considered, including two non-fuzzy and four fuzzy algorithms. The evaluation
was based on nonlinear benchmarks in the form of Ackley, Griewank, Rastrigin and
Rosenbrock functions. The calculations were conducted using Matlab software and
the “PSO Research Toolbox” [6].

Further work will focus on improving the proposed algorithm, its application in
tracking objects in images, the analysis of athletes’ technique [12], and building
models to support the training process in sport [25].

References

1. Abdelbar,A.M.,Abdelshahid, S.,Wunsch,D.C.: Fuzzy PSO: a generalization of particle swarm
optimization. In: Proceedings. IEEE International Joint Conference onNeural Networks, vol. 2,
pp. 1086–1091 (2005). doi:10.1109/IJCNN.2005.1556004

http://dx.doi.org/10.1109/IJCNN.2005.1556004


Comparison of Selected Fuzzy PSO Algorithms 121

2. Adamczyk, M.: Parallel feature selection algorithm based on rough sets and particle swarm
optimization. In: 2014 Federated Conference on Computer Science and Information Systems
(FedCSIS), pp. 43–50 (2014). doi:10.15439/2014F389

3. Alfi,A., Fateh,M.M.: Intelligent identification and control using improved fuzzy particle swarm
optimization. Expert Syst. Appl. 38(10), 12312–12317 (2011). doi:10.1016/j.eswa.2011.04.
009

4. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidi-
mensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002). doi:10.1109/4235.
985692

5. Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm
optimization. In: EvolutionaryComputation, 2000. Proceedings of the 2000Congress on, vol. 1,
pp. 84–88 (2000). doi:10.1109/CEC.2000.870279

6. Evers, G.: PSO Research Toolbox (Version 20110515), M.S. thesis code (2016). http://www.
georgeevers.org/pso_research_toolbox.htm

7. Izakian, H., Abraham, A., Snášel, V.: Fuzzy clustering using hybrid fuzzy c-means and fuzzy
particle swarm optimization. In: 2009 World Congress on Nature Biologically Inspired Com-
puting (NaBIC), pp. 1690–1694 (2009). doi:10.1109/NABIC.2009.5393618

8. Juang, Y.T., Tung, S.L., Chiu, H.C.: Adaptive fuzzy particle swarm optimization for global
optimization of multimodal functions. Inf. Sci. 181(20), 4539–4549 (2011). Special Issue on
Interpretable Fuzzy Systems. doi:10.1016/j.ins.2010.11.025

9. Karami, A., Guerrero-Zapata, M.: A fuzzy anomaly detection system based on hybrid PSO-
Kmeans algorithm in content-centric networks. Neurocomputing 149, Part C, 1253–1269
(2015). doi:10.1016/j.neucom.2014.08.070

10. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International
Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE Press, Piscataway, NJ (1995).
doi:10.1109/ICNN.1995.488968

11. Krzeszowski, T., Wiktorowicz, K.: Evaluation of selected fuzzy particle swarm optimization
algorithms. In: 2016 Federated Conference on Computer Science and Information Systems
(FedCSIS), pp. 571–575 (2016). doi:10.15439/2016F206

12. Krzeszowski, T., Przednowek, K., Wiktorowicz, K., Iskra, J.: Estimation of hurdle clearance
parameters using a monocular human motion tracking method. Comput. Methods Biomech.
Biomed. Eng. 19(12), 1319–1329 (2016). doi:10.1080/10255842.2016.1139092

13. Liang, J.J., Suganthan, P.N., Deb, K.: Novel composition test functions for numerical global
optimization. In: Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005.,
pp. 68–75 (2005). doi:10.1109/SIS.2005.1501604

14. Ling, S.H., Nguyen, H.T., Leung, F.H.F., Chan, K.Y., Jiang, F.: Intelligent fuzzy particle swarm
optimization with cross-mutated operation. In: 2012 IEEE Congress on Evolutionary Compu-
tation, pp. 1–8 (2012). doi:10.1109/CEC.2012.6252934

15. Liu, H., Abraham, A., Zhang, W.: A fuzzy adaptive turbulent particle swarm optimisation. Int.
J. Innov. Comput. Appl. 1(1), 39–47 (2007). doi:10.1504/IJICA.2007.013400

16. Mamdani, E., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller.
Int. J. Man Mach. Stud. 7(1), 1–13 (1975). doi:10.1016/S0020-7373(75)80002-2

17. Mohiuddin, M.A., Khan, S.A., Engelbrecht, A.P.: Fuzzy particle swarm optimization algo-
rithms for the open shortest path first weight setting problem. Appl. Intell. 45(3), 598–621
(2016). doi:10.1007/s10489-016-0776-0

18. Nesamalar, J.J.D., Venkatesh, P., Raja, S.C.: Managing multi-line power congestion by using
Hybrid Nelder-Mead - Fuzzy Adaptive Particle Swarm Optimization (HNM-FAPSO). Appl.
Soft Comput. 43, 222–234 (2016). doi:10.1016/j.asoc.2016.02.013

19. Niknam, T.: A new fuzzy adaptive hybrid particle swarm optimization algorithm for non-linear,
non-smooth and non-convex economic dispatch problem.Appl. Energy 87(1), 327–339 (2010).
doi:10.1016/j.apenergy.2009.05.016

20. Saini, S., Zakaria, N., Rambli, D.R.A., Sulaiman, S.: Markerless human motion tracking using
hierarchical multi-swarm cooperative particle swarm optimization. PLoS ONE 10(5) (2015).
doi:10.1371/journal.pone.0127833

http://dx.doi.org/10.15439/2014F389
http://dx.doi.org/10.1016/j.eswa.2011.04.009
http://dx.doi.org/10.1016/j.eswa.2011.04.009
http://dx.doi.org/10.1109/4235.985692
http://dx.doi.org/10.1109/4235.985692
http://dx.doi.org/10.1109/CEC.2000.870279
http://www.georgeevers.org/pso_research_toolbox.htm
http://www.georgeevers.org/pso_research_toolbox.htm
http://dx.doi.org/10.1109/NABIC.2009.5393618
http://dx.doi.org/10.1016/j.ins.2010.11.025
http://dx.doi.org/10.1016/j.neucom.2014.08.070
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.15439/2016F206
http://dx.doi.org/10.1080/10255842.2016.1139092
http://dx.doi.org/10.1109/SIS.2005.1501604
http://dx.doi.org/10.1109/CEC.2012.6252934
http://dx.doi.org/10.1504/IJICA.2007.013400
http://dx.doi.org/10.1016/S0020-7373(75)80002-2
http://dx.doi.org/10.1007/s10489-016-0776-0
http://dx.doi.org/10.1016/j.asoc.2016.02.013
http://dx.doi.org/10.1016/j.apenergy.2009.05.016
http://dx.doi.org/10.1371/journal.pone.0127833


122 T. Krzeszowski et al.

21. Shi,Y., Eberhart,R.C.: Fuzzy adaptive particle swarmoptimization. Proc.Congr. Evol.Comput.
1, 101–106 (2001). doi:10.1109/CEC.2001.934377

22. Srinivasan, D., Loo, W.H., Cheu, R.L.: Traffic incident detection using particle swarm opti-
mization. In: Proceedings of the IEEE Swarm Intelligence Symposium. SIS ’03, pp. 144–151
(2003). doi:10.1109/SIS.2003.1202260

23. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and
control. IEEE Trans. Syst. Man Cybern. SMC-15(1), 116–132 (1985). doi:10.1109/TSMC.
1985.6313399

24. Tian, D.P., Li, N.Q.: Fuzzy particle swarm optimization algorithm. In: 2009 International Joint
Conference on Artificial Intelligence, pp. 263–267 (2009). doi:10.1109/JCAI.2009.50

25. Wiktorowicz, K., Przednowek, K., Lassota, L., Krzeszowski, T.: Predictive modeling in race
walking. Comput. Intell. Neurosci. 2015, 9 (2015). doi:10.1155/2015/735060. Article ID
735060

http://dx.doi.org/10.1109/CEC.2001.934377
http://dx.doi.org/10.1109/SIS.2003.1202260
http://dx.doi.org/10.1109/TSMC.1985.6313399
http://dx.doi.org/10.1109/TSMC.1985.6313399
http://dx.doi.org/10.1109/JCAI.2009.50
http://dx.doi.org/10.1155/2015/735060


On the Exact Solution of the Distance
Geometry with Interval Distances
in Dimension 1

Antonio Mucherino

Abstract Distance Geometry consists in embedding a simple weighted undirected
graph in a given space so that the distances between embedded vertices correspond
to the edge weights. Weights can be either exact real values, or real-valued intervals.
In this work, the focus is on problems where the embedding space is the Euclidean
1-dimensional space, and the general situation where distances can be represented
by intervals is taken into consideration. A previously proposed branch-and-prune
algorithm is adapted to the 1-dimensional case, and the proposed variant turns out
to be deterministic even in presence of interval distances. Backtracking pruning
is introduced in the algorithm for guaranteeing that all vertex positions in a given
solution are actually feasible. The proposed algorithm is tested on a set of artificially
generated instances in dimension 1.

1 Introduction

Given a simple weighted undirected graph G = (V, E, d) and a dimension K > 0,
the Distance Geometry Problem (DGP) asks whether an embedding x : V −→ R

K

of G exists in the K -dimensional Euclidean space RK so that the following distance
constraints are satisfied:

∀{u, v} ∈ E, ||xu − xv|| ∈ duv.

Notice that the symbol “∈” can stand either for an equality, when the distance duv is
exact, or rather for two inequalities, in which case duv is actually represented by a
real-valued interval [dL

uv, d
U
uv]. The subset of E corresponding to the exact distances

in E will be referred in the followingwith the symbol E ′. The focus of this short paper
is onDGPs arising in dimension K = 1 and forwhich all distances are represented by
intervals (the set E ′ may therefore be empty). The DGP is NP-complete in dimension
K = 1, and strongly NP-hard in any other dimensions [21].
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Several real-life problems can be formulated as a DGP [15, 18, 19]. Classical
problems include the one of finding the location of sensors in a given network by
exploiting point-to-point distance approximations [5, 7, 22], and the one of iden-
tifying the conformation of molecules from interatomic distances obtained through
experimental techniques [1, 6, 12]. While the embedding space has dimension 3 in
the latter, the dimension can be either 2 or 3 in the former application.

In dimension 1, the clock synchronization problem can be formulated as a DGP
[8, 23]. The problem consists in computing the internal clock time for machines in a
given network by exploiting their own offset with respect to a predefined clock,which
is used as a reference. When all offsets are precisely provided, the identification of
solutions can be performed by employing a discrete approach to the DGP, as far
as there exists a vertex order on V such that every clock has known offset with a
preceding one (see Sect. 2). However, when the offsets are represented by intervals,
the DGP search space cannot be discretized by employing existing approaches.

This short paper presents a variant on a branch-and-prune (BP) algorithm. The
BP algorithm was initially conceived for discretizable instances of the DGP [14].
The proposed variant, named BP1, is particularly designed for problems arising in
dimension 1, where a search space having the structure of a tree can be defined
even in presence of interval distances. In this search space, the tree nodes are not
vertex positions, but rather an interval of feasible positions for a given vertex can be
associated to each tree node.A new feature of BP1 is the backtracking pruning, which
allows to remove infeasible parts of vertex position intervals when backtracking
during the tree search. This way, all generated intervals for vertex positions are
feasiblewith respect to some positions belonging to intervals related to other vertices.

This paper is organized as follows. In Sect. 2, a brief description of the assumptions
allowing for the discretization of DGPs, in any dimension, is given, together with a
sketch of the general BP algorithm. Section3 presents the proposed variant of the BP
algorithm in dimension 1, while some experiments on artificially generated instances
are presented in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Discretizable DGPs

Let G = (V, E, d) be a simple weighted undirected graph representing an instance
on the DGP in dimension K > 0. It is supposed that a vertex ordering is associated to
the vertex set V , so that a unique rank is associated to each vertex (in the following,
the vertex and its rankwill be denotedwith the same symbol). TheDiscretizableDGP
(DDGP) is a class of instances of the DGP that satisfy the following assumptions
[11, 12, 17]:

(a) G[{1, 2, . . . , K }] is a clique;
(b) ∀v ∈ {K + 1, . . . , |V |}, there exist K vertices u1, u2, . . . , uK ∈ V such that
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1. u1 < v, u2 < v, …, uK < v;
2. {{u1, v}, {u2, v}, . . . , {uK−1, v}} ⊂ E ′ and {uK , v} ∈ E ;

for which
VS(u1, u2, . . . , uK ) > 0 (if K > 1),

where G[·] is the subgraph induced by a subset of vertices of V , and VS(·) is the
volume of the simplex generated by an embedding of the vertices u1, u2, . . . , uK .
Notice that volume-invariant embeddings for such vertices can be identified, before
the solution of the instance, as far as they form a K -clique in G; if not, this verifi-
cation cannot be performed in advance. However, the volume VS can be zero with
probability 0, and it is therefore common use to neglect this assumptionwhen dealing
with real-life instances [12]. Also notice that, for K = 1, the simplex reduces to a
singleton.

Vertex orders satisfying assumptions (a) and (b) are also named discretization
orders. Assumption (a) ensures the existence of an initial clique, which can be
exploited for fixing the coordinate system for the solutions, in order to avoid to regen-
erating solutions that can be obtained from others by applying rotations and trans-
lations. Assumption (b) allows for reducing the search space for the DGP instance
to a discrete domain having the structure of a tree, where the positions of vertices
are organized layer by layer. Since the K reference vertices u1, u2, . . . , uK for the
current vertex v precede v in the vertex ordering, it is supposed that a position is
already available for them, when positions for v are searched. By exploiting the cor-
responding reference distances, K spheres can be defined, whose intersection gives
the set of possible positions for the vertex v. This set of positions has cardinality 2
with probability 1 [17]. If one of the reference distances is represented by an interval,
then the intersection of the spheres gives two disjoint arcs with probability 1 [12].

The branch-and-prune (BP) algorithm was initially conceived for solving this
class of instances [14]. The basic idea is to recursively explore the search tree that
can be obtained by applying assumptions (a) and (b) above. For the current vertex v,
the algorithm generates either 2 positions, or two arcs. In the first case, the algorithm
subsequently invokes itself for the two computed positions. Otherwise, in the second
possible situation, samples positions are extracted from each arc, and the algorithm
is invoked as many times as the number of chosen sample positions [12]. This is the
branching phase of BP; its pruning phase consists in verifying, when this is possible,
the feasibility of the computed vertex positions, by checking whether any additional
distances (that were not used yet in the computations) are also satisfied. Depending
on which phase of the BP algorithm they are employed, the reference distances can
be classified in discretization distances and pruning distances.

Algorithm 1 is a sketch of the BP algorithm for DDGP instances in dimension
K > 0. It is supposed that the initial clique is already embedded, and that the search
starts from v = K + 1. Apart from the vertex v, which is the current one to be
embedded, and the information about the graph G, the algorithm accepts an integer
and strictly positive value D, that indicates the number of sample positions to be
taken from computed arcs. Naturally, when the arc C0

v , or C1
v , reduces to a singleton,
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Algorithm 1 The BP algorithm.
1: BP(v,G, D)

2: compute the arc C0v by sphere intersection;
3: extract D different sample positions x0,�v from C0v ;
4: for each � ∈ {1, 2, . . . , D} do
5: if (x0,�v is feasible wrt the pruning distances) then
6: if (v = |V |) then
7: print solution;
8: else
9: BP(v + 1,G, D);
10: end if
11: end if
12: end for
13: compute the arc C1v by sphere intersection;
14: extract D different sample positions x1,�v from C1v ;
15: for each � ∈ {1, 2, . . . , D} do
16: if (x1,�v is feasible wrt the pruning distances) then
17: if (v = |V |) then
18: print solution;
19: else
20: BP(v + 1,G, D);
21: end if
22: end if
23: end for

then only one position is extracted. For every new call to BP, the vertex positions,
computed on the current branch of the tree, are supposed to be kept into the global
memory.

It is important to point out that the BP algorithm is deterministic when all available
distances are exact. When the pruning distances are allowed to be represented by a
real-valued interval (and the discretization distances are kept exact), it was observed
empirically that the uncertainty on the pruning distances implies an increase on the
total number of found solutions [16]. However, in this situation, the BP algorithm is
still deterministic. It becomes a heuristic when at least one interval distance is con-
tained in the set of discretization distances. Even with large values for the parameter
D, the selection of a predefined number of sample positions from an arc unavoidably
introduces errors, which are likely to propagate over the layers of the search tree.

With the aim of reducing the magnitude of such introduced errors, two main
strategies have been proposed in the scientific literature, both aimed at improving
the selection procedure of samples positions from the obtained arcs [2–4, 9, 13]. In
both cases, the main idea is to select, at level v of the search tree, only the sample
positions that are feasible with respect to all available distances, and not only to the
ones used for defining the spheres in the intersections. In other words, instead of
generating vertex positions that are only feasible with respect to the discretization
distances (and then to apply the pruning phase), the idea is to perform the pruning
phase during the branching phase, by selecting only positions that also satisfy the
pruning distances.
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The description of these two strategies goes beyond the purposes of this paper, and
the reader is mainly referred to [9, 13] for additional information. It is important to
remark however that both strategies allow to represent the selected arc parts in alge-
braic form. Therefore, one may consider replacing sample positions with equations,
at each node of the search tree. This would overcome the problem of introducing
errors while selecting sample positions. However, the centers of the spheres used in
the intersections need to be represented by singletons, and not by equations, which
makes the sample selection process strictly necessary.

3 A Branch-and-Prune (BP) Algorithm in Dimension 1

Let G = (V, E, d) be a simple weighted undirected graph representing an instance
of the DGP in dimension 1 for which there exists a vertex ordering on V such that,
for every vertex v ∈ V , there is at least one vertex u that is a reference vertex for v

(i.e., u < v and {u, v} ∈ E). This is equivalent to requiring that the DGP instance
satisfies the DDGP assumptions in dimension 1 (see Sect. 1).

Since the focus is on general problems consisting of interval distances, it is reason-
able to associate, to every vertex v, intervals of positions (rather than singletons) for
which the distance constraints are satisfied. In the following, the notation [zLv , zUv ]
will be employed for referring to a suitable interval for v, where zLv is its lower
bound, and zUv is its upper bound. The minimal and the maximal distance between
two distinct position intervals [zLu , zUu ] and [zLv , zUv ] can be defined as follows:

dmin

(
[zLu , zUu ], [zLv , zUv ]

)
=

{
max{zLu , zLv } − min{zUu , zUv } if [zLu , zUu ] ∩ [zLv , zUv ] = ∅
0 otherwise,

dmax

(
[zLu , zUu ], [zLv , zUv ]

)
= max{zUu , zUv } − min{zLu , zLv }.

Let I be the set of all intervals inR. When replacing single positions with position
intervals for the vertices, it is reasonable to seek a set of mappings

z : v ∈ V −→ [zLv , zUv ] ∈ I

such that all distance constraints are satisfied, i.e.:

∀{u, v} ∈ E dL
uv ≤ dmin

([zLu , zUu ], [zLv , zUv ]) ≤ dmax
([zLu , zUu ], [zLv , zUv ]) ≤ dU

uv.

Each mapping z will be referred to as a “BP1 solution”; a set of embeddings x can
be identified from a given BP1 solution.

BP1 is a variant on the classical BP algorithm (see Sect. 2) and has two fundamen-
tal features: it performs a search over a tree even in presence of interval distances; it
implements an additional pruning phase, during backtracking. Since the embedding
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Algorithm 2 The BP1 algorithm.
1: BP1(v,G)

2: let w be the reference vertex of v with rank closest to v;
3: let Iv = [zLw − dUwv, z

U
w − dL

wv] ∪ [zLw + dL
wv, z

U
w + dUwv];

4: for (all other reference vertices u) do
5: let J1 = [zLu − dUuv, z

U
u − dL

uv]; J2 = [zLu + dL
uv, z

U
u + dUuv];

6: let Iv = Iv ∩ (J1 ∪ J2);
7: end for
8: for (all reference vertices u (including the initial one: w)) do
9: let Q = Iu ∩ ⋃([zLv − dUuv, z

U
v − dL

uv] ∪ [zLv + dL
uv, z

U
v + dUuv]

)
;

10: if (Q �= Iu) then
11: let back = u;
12: let Iu = Q;
13: end if
14: end for
15: for (all intervals in Iv) do
16: if (v = |V |) then
17: print intervals I∗ belonging to the current branch;
18: else
19: if (back = 0) then
20: call BP1(v + 1,G);
21: else if (back = v) then
22: recall BP1(v,G) with the updated Iv ;
23: let back = 0;
24: end if
25: end if
26: end for

dimension is 1, the distance constraints define intervals in the 1-dimensional Euclid-
ean space, and the intersection of such intervals (in case more than one constraint
concerns the same vertex) still consists in a set of intervals. Branching can therefore
be performed over the intervals of the set obtained by performing such intersections.
Extreme situations are the ones where this intersection is empty, or it reduces to only
one interval (or even to one singleton). In the former situation, the BP1 algorithm,
as the classical BP, prunes the current branch and backtracks the search.

A sketch of the BP1 algorithm is given in Algorithm 2. As the general BP algo-
rithm, BP1 accepts as arguments the current vertex v, in the given vertex ordering,
together with the graph G. Differently from BP, it is not necessary to specify the
value of D in the BP1 call. The fact that the dimension of the Euclidean space is
set to 1 makes the computation of the vertex position intervals easy to perform. Let
[zLw, zUw ] be an interval for the feasible positions for the vertex w that precedes v

in the vertex ordering. If {w, v} ∈ E , then the two possible intervals for v that are
compatible with w are:

[zLw − dU
wv, z

U
w − dL

wv], [zLw + dL
wv, z

U
w + dU

wv]. (1)

If the two intervals are not disjoint, then their union can be taken into consideration.
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In the BP1 algorithm, the two intervals are stored in the set Iv (notice that Iv is in
fact a set of intervals, and not a single one). In the situation where another reference
vertex u for v exists, then two other intervals of possible positions for v can be
generated, and they can be intersected with the ones already included in Iv . The for
loop in lines 4–7 computes all position intervals related to every reference vertex,
and updates Iv . This process of updating the set Iv with the additional reference
vertices u is equivalent to performing the pruning phase in the BP algorithm. As in
the two strategies mentioned in Sect. 2, the branching phase is performed only after
the verification of all distances concerning the current vertex v, and is implemented
at line 15 in BP1. Instead of branching over positions, BP1 branches over disjoint
intervals of positions, and performs therefore a search on a tree where, layer by
layer, intervals of feasible positions for a given vertex v are kept. When a leaf node
is reached, all position intervals on the current tree branch provide a solution to the
problem. It is important to point out that BP1 can enumerate the entire solution set.

The novel pruning phase included in BP1 is performed during backtracking. It
allows for refining all position intervals in Iu such that u was used as a reference
for the vertex v > u. The execution of lines 4–7 ensures that all positions for v in
Iv are compatible with all reference vertices. However, when proceeding with the
exploration of the current branch, it may turn out that some of the vertex positions
included in the interval Iv are actually infeasible with respect to subsequent vertices
in the order. The role of the backtracking pruning is to remove those infeasible
positions from the intervals in Iv .

After the execution of lines 4–7, the initial two intervals used for initializing Iv
at line 3 and the various intervals J1 and J2 defined at line 5 can be either included
in Iv , or only partially included in Iv , or not at all. The last two cases are the most
interesting ones. If only a subset of J1, related to a certain reference vertex u, is
included in Iv , this implies that the positions belonging to J1 \ Iv are not feasible
with respect to all available distances. Since these positions were computed by using
as a reference some positions in Iu , these positions are in fact infeasible. The idea
therefore is, by “projecting” the final set Iv on the set Iu , to identify the positions in
Iu that are not feasible. When the backtracking pruning refines the set Iu , the branch
rooted at Iu is removed and BP1 restarts the search from an updated set of intervals.
In Algorithm 2, the variable back is supposed to be global, and is used for controlling
the restarts after the backtracking pruning phase.

Differently from BP, the BP1 algorithm is deterministic, even when working on
instances containing interval data. On the other hand, when all distances are exact,
BP1 reduces to BP, because in this case the backtracking pruning is implicit in the
branching and pruning mechanism of the original BP. As for BP, BP1 can have a
linear best-case complexity, and an exponential worst-case complexity.

The BP1 algorithm ensures that, for every vertex u, every position in the interval
[zLu , zUu ] is compatible with at least one position in [zLv , zUv ], when {u, v} ∈ E . Algo-
rithm 3 gives a sketch of a procedure for extracting an embedding x from a given
BP1 solution z. Notice that the backtracking pruning of BP1 makes sure that the sets
Ju cannot become empty when updated at line 8 of Algorithm 3.
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Algorithm 3 Extracting an embedding x from a given BP1 solution z.
1: Extract(z, x)
2: for all v ∈ V do
3: set Jv = [zLv , zUv ];
4: end for
5: for all v ∈ V do
6: choose one position xv from Jv ;
7: for all u ∈ V , such that {u, v} ∈ E , do
8: let Ju = Ju ∩ {[xv − dUuv, xv − dL

uv] ∪ [xv + dL
uv, xv + dUuv]

}
;

9: end for
10: end for

Algorithm 4 An algorithm for generating DGP instances in dimension 1.
1: Instance_Generation(n, pt ’s,ε,G)

2: set V = {1, 2, . . . , n};
3: set E = ∅;
4: set m = 0;
5: randomly select positions xv for all vertices v in the real interval [0, 1];
6: for every v ranked from 2 to n do
7: randomly select t such that pt > 0;
8: let pt = pt − 1;
9: let t = min(t, v);
10: for all t do
11: randomly select a reference vertex u for v (not selected yet if t > 1);
12: let E = E ∪ {{u, v}};
13: set σ to a random value in [0, 1];
14: let dL

uv = |xv − xu | − σε and dUuv = |xv − xu | + (1 − σ)ε;
15: end for
16: let m = m + t ;
17: end for

4 Some Computational Experiments

This section presents some computational experiments on artificially generated
instances of the DGP in dimension 1 such that E ′ = ∅ (all distances are repre-
sented by intervals). For all instances, it is supposed that a vertex ordering exists so
that every vertex v has at least one reference vertex. The BP1 algorithm was imple-
mented in C programming language, and compiled with the gcc compiler, version
4.9.2, under Linux. All experiments have been carried out on computer equipped
with a 12M Cache, 2.40 GHz, 5.86 GT/s Intel(R) Xeon(R) CPU, running Linux.

The following procedure was implemented for the generation of the instances. Let
n be the size of the instance to be created. Let ε be the error introduced on the true
distances, when an interval is generated randomly so that it contains a given distance.
Let pt , with t ∈ {1, 2, 3, 4}, be four real values representing four percentages (0 ≤
pt ≤ 1), where

∑
t pt = 1. Every value pt indicates the percentage of vertices in the

instance that will have t reference vertices (in the implicitly created vertex ordering).
Algorithm 4 sketches the used procedure for generating the instances. Given
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in input the number n of vertices, the percentages pt multiplied by 100 and a real
positive value ε, the procedure outputs a graphG representing an instance of theDGP
in dimension 1. The number of reference vertices per vertex, as well as the ranks of
these reference vertices, are randomly chosen. The distances that can be computed
by using the preselected positions xv are subsequently perturbed for generating a
random interval having range ε and containing the true distance. The positioning of
the true distance in the interval is random because of the random selection of the
real value σ in [0, 1]. All generated instances contain m distances, each of them
represented by a suitable interval. In the vertex ordering that is associated to the
instance, every vertex (that is not the first one) has at least one reference vertex.

Table1 shows the computational experiments with different values for n and for
the percentages pt . The value of ε is set to 0.1 for the generation of all instances. The
implementation of the BP1 algorithm allows to choose whether to perform or not
the backtracking pruning. For every run, the total number nsols of found solutions
and the computational time (in microseconds) are reported. Moreover, in case BP1
performs the backtracking pruning, the number restarts of times the exploration of
a branch is restarted is reported as well. Finally, the table contains the values of �,
computed as

� = rangebackpmax

rangenobackpmax

,

where rangemax is the maximal range of the intervals [zLv , zUv ] composing BP1 solu-
tions; the superscripts “backp” and “nobackp” indicate whether the backtracking
pruning was executed or not, respectively, for obtaining the considered solutions.
The value of � gives the reduction over the largest interval ranges achieved when
performing the backtracking pruning.

The experiments took from a few microseconds (10−6 s) for the small-sized
instances, to some milliseconds (10−3 s) for n ≥ 50, until reaching the threshold of
1 or more seconds for n ≥ 100. The effect of the backtracking pruning is to increase
the total number of solutions, and to provide a final set of mappings where intervals
are tighter. In fact, the backtracking pruning ensures that no interval parts can be
infeasible, and this leads intervals at lines 4–7 of Algorithm 2 to be split (increased
number of solutions) and/or reduced in size (see � values) by applying the back-
tracking pruning. Naturally, the execution of the backtracking pruning, together with
the possibility to prune an entire branch and to restart its exploration from a new
set of intervals, makes the overall computational cost increase. The percentages pi ,
which control the number of reference vertices, strongly influence the total number
of found solutions. From all BP1 solutions, it was possible to construct embeddings
x by executing Algorithm 3.
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5 Discussion and Conclusion

The DGP in dimension 1 can be solved exactly by the proposed variant of the BP
algorithm even when interval distances are given. The BP1 algorithm integrates the
so-called “backtracking pruning”, which allows to refine all vertex position intervals,
so that they only contain feasible positions with respect to the overall set of distances.
BP1 can be applied to all instances in dimension 1 for which, in the given vertex
order, there exists at least one reference vertex for every vertex of the graph.

It is still an open problem to conceive methods and algorithms for a complete
exploration of the solution set of DGPs in dimension K > 1. The need to select
sample positions from the arcs obtained with the intersections (see Sect. 2) makes the
BP algorithm become a heuristic: some of the limitations of this approach were very
recently discussed in [10]. When distances are represented by intervals, and K > 1,
these intersections provide Euclidean objects having dimension 1 [20]. Differently
from the intervals obtained during the execution of BP1, however, these Euclidean
objects lie in a space that has a higher dimension [12]. This makes the main ideas at
the basis of the proposed BP1 not easy to extend to DGPs in any dimensions.

Acknowledgements The author is thankful to the anonymous referees.
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Verification of Correctness of Parallel
Algorithms in Practice

Jakub Nalepa and Miroslaw Blocho

Abstract Verification of the correctness of parallel algorithms is often omitted in the
works from the parallel computation field. In this paper, we discuss in detail how to
show that a parallel algorithm is correct. This process involves proving its safety and
liveness. In our case study, we prove the correctness of our two parallel algorithms
for the NP-hard pickup and delivery problem with time windows. Both algorithms
(for minimizing the number of routes and the travel distance) were already shown to
be extremely efficient in practice—the implementations were thoroughly examined
using the famous Li and Lim’s benchmark dataset.

1 Introduction

Parallel algorithms became a standard tool for solving complex optimization
problems from many fields, including the computational biology, genomics, text
processing, pattern recognition, machine learning, optimization, medical imaging
and many others, due to the availability of various parallel architectures. They can
be used to quickly traverse the solution space in search of high-quality (and feasible)
solutions. Proving the correctness of such parallel approaches is a challenging task
(it is much more difficult compared with serial algorithms). However, this issue is
very often ignored in works from the parallel computation field.

In this paper, we show how to prove the correctness of a parallel algorithm
at hand. Our parallel guided ejection search technique (P–GES) for minimizing
the number of trucks in the NP-hard pickup and delivery problem with time win-
dows (PDPTW), along with our parallel memetic algorithm (P–MA, being a hybrid
of an evolutionary approach coupled with local-search improvement procedures
[17, 34, 42]) for optimizing the travel distance in the PDPTW serve as the case study.
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We carefully investigate their correctness, and show how to accomplish that in a step-
by-stepmanner that can be easily tailored to other parallel algorithms. In our previous
works [9, 27, 32], we experimentally evaluated theMessage Passing Interface imple-
mentation of P–GES and P–MA. The extensive experimental studies revealed that
these algorithms are quite efficient, and they are able to extract very high-quality
feasible routing schedules (often better than the world’s best known solutions at that
time) in practice. The analysis of their correctness complements our previous efforts
and theoretically proves that P–GES and P–MA are correct parallel algorithms. This
work substantially extends our very recent paper on verifying the correctness of such
parallel techniques [30].

This paper is organized as follows. Section2 formulates of the PDPTW. Section3
reviews the state of the art on solving the PDPTW, and on parallel heuristic and
evolutionary algorithms. In Sect. 4, we present the background on verifying the cor-
rectness of parallel algorithms. The correctness of our parallel guided search is proven
in Sect. 5, whereas the correctness of our parallel memetic algorithm is investigated
in Sect. 6. The paper is concluded in Sect. 7, which also presents the directions of
our future work.

2 Pickup and Delivery Problem with Time Windows

The PDPTW is an NP-hard discrete optimization problem of serving transportation
requests, each being a pair of the pickup and delivery operations. The PDPTW is
defined on a directed graph G = (V, E), with a set V ofC + 1 vertices. The vertices
vi , i ∈ {1, . . . ,C}, are the travel points, whereas v0 denotes the depot (the start and
the finish point of each route). A set of edges E = {(vi , vi+1)|vi , vi+1 ∈ V, vi �= vi+1}
are the travel connections between each pair of travel points. The travel costs ci, j ,
i, j ∈ {0, 1, . . . ,C}, i �= j , are equal to the distances (they are often given in the
Euclidean metric) between the travel points. Each request hi , i ∈ {0, 1, . . . , N },
where N = C/2, is a coupled pair of pickup (P) and delivery (D) customers—these
customers are given as ph and dh , respectively, where P ∩ D = ∅, and P ∪ D =
V \ {v0}. The amount of delivered (qd(hi )) and picked up (q p(hi )) goods is defined
for each hi , where qd(hi ) = −q p(hi ). Each vi defines its demand, service time si
(where s0 = 0), and time window [ei , li ] within which the service of this customer
should be started (it can finish after closing this time window). The fleet (containing
K vehicles) is homogenous—the capacity of each truck is equal to Q. Each route r
in the solution σ , starts and finishes at the depot, and it is an ordered list of visited
travel points.

The PDPTW is a two-objectiveNP-hard discrete optimization problem—themain
objective is to minimize the fleet size K , whereas the secondary one is to optimize
the distance T = ∑K

i=1 Ti , where Ti is the distance of the i-th route. Let σA and
σB denote two PDPTW solutions. σA is then of a higher quality compared with σB

(assuming that both solutions are feasible), if (K (σA) < K (σB)) or (K (σA) = K (σB)

and T (σA) < T (σB)).
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3 Related Literature

3.1 Solving the Pickup and Delivery with Time Windows

State-of-the-art algorithms for rich routing problems encompass exact and approxi-
mate methods [18]. The former algorithms deliver the exact solutions [3, 7, 12, 35],
however they are very difficult to apply in practice, because of their unacceptably
large execution times (especially in the case of massively large, real-life problem
instances). Also, handling the dynamic changes which are very common in many
circumstances (e.g., updating the traffic networks to avoid congestion) are not trivial
to incorporate in such algorithms [6]. In a majority of exact algorithms, a single
objective is considered (e.g., minimizing the travel distance). Exact techniques were
discussed in several very interesting and thorough works [4, 13].

Approximation algorithms include construction and improvement heuristics and
metaheuristics [1, 2]. The construction (very often referred to as insertion-based)
techniques create feasible solutions from scratch by inserting consecutive requests
iteratively into the partial solution (not all of the requests are served in a partial
solution) [22, 43]. The partial solution encompasses a subset of all transportation
requests, therefore is not acceptable and should be expanded to serve all other (cur-
rently unserved) transportation requests. On the other hand, improvement heuristics
modify an initial solution by applying local search moves—the neighborhood of
the initial solution in therefore explored [21, 38]. A number of metaheuristics have
been adopted for solving rich vehicle routing problems (VRPs), including various
tabu searches [35], variable neighborhood searches [40], greedy randomized adaptive
search procedures, population-based [11, 25, 37], and agent-based approaches [19],
guided ejection searches [29], simulated annealing [38], and more [24].

In evolutionary algorithms (both sequential and parallel), a population of solutions
undergoes the biologically-inspired evolution [39]. The individuals (representing
routing schedules) are selected for mating, then they are crossed over and mutated.
In memetic algorithms (also known as hybrid genetic algorithms), this evolution
process is enhanced by the local-search procedures aimed at boosting the quality of
already-found solutions (this process, commonly called education, often extends the
mutation operation). Such evolutionary approaches can be conveniently terminated
once the solution of desired quality has been obtained, or the execution time surpassed
the imposed time limit. They were shown very efficient and have been applied to
solving a plethora of various rich vehicle routing problems [26].

3.2 Parallel Heuristic Algorithms

Parallel heuristic algorithms have been explored for solving a bunch of differ-
ent optimization problems [15], including various VRPs [19, 26]. Co-operative
strategies in such parallel heuristic techniques have been discussed and classi-
fied in several taxonomies, with the one presented by Crainic et al. being quite
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well-established [14]. This taxonomy encompasses three dimensions: the first dimen-
sion specifies if the global solving procedure is controlled by a single process
(1-control—1C) or by a group of processes (p-control—pC). These processes may
co-operate (in co-operative algorithms1) or not (if the processing is in the batch
mode). The second dimension reflects the quantity and quality of the information
exchanged between the parallel processes, along with the additional knowledge
derived from these exchanges (note that the co-operation is useful only if it occurs
on time and if the data being transferred is meaningful). The four classes are defined
for this dimension: Rigid (RS), Knowledge Synchronization (KS), Collegial (C)
and Knowledge Collegial (KC). The third dimension concerns the diversity of the
initial solutions and search strategies: Same Initial Point/Population, Same Search
Strategy (SPSS), Same Initial Point/Population, Different Search Strategies (SPDS),
Multiple Initial Points/Populations, Same Search Strategies (MPSS), Multiple Initial
Points/Populations, Different Search Strategies (MPDS).

As already mentioned, parallel heuristic and metaheuristic algorithms were
successfully applied to solve numerous challenging optimization problems from
a variety of science and engineering fields, including medical imaging, text catego-
rization, banking, pattern recognition and many more. Such approaches were very
intensively explored for solving rich routing problems as well [26, 41], including the
PDPTW [9, 27]. The implementations of these algorithms take advantage from the
massively-parallel architectures (both with the shared and distributed memory [5],
and those equipped with GPU co-processors [20]). These parallel architectures are
easily accessible nowadays, and they are relatively easy to exploit efficiently. The
parallel techniques are able to deliver extremely high-quality routing schedules in
short time (very often the best known solutions of rich vehicles routing problems
are retrieved using parallel evolutionary algorithms [26]), even for enormously large
problem instances and those with multiple real-life constraints.

4 Verification of the Correctness of Parallel Algorithms

Verification of the correctness of a given sequential algorithm encompasses perform-
ing the following steps:

1. Showing that this algorithm will finish (at least one of the termination conditions
will be finally met).

2. Showing that this algorithm will give a correct result for any correct set of the
input data.

More formally, the correctness may be stated as:

{p}A{q}, (1)

1It is worth mentioning that the co-operation schemes—defining the co-operation topology,
frequency and strategies for handling sent and received solutions have tremendous impact on the
capabilities and behavior of parallel algorithms, as shown in our previous works: [26, 33].



Verification of Correctness of Parallel Algorithms in Practice 139

where A denotes the algorithm (a set of statements executed in the pre-defined order),
p is the pre-condition, and q represents the post-condition. The pre-condition spec-
ifies which conditions must hold for the input data, and the post-condition reflects
what must be satisfied by the results retrieved using the algorithm A to consider
such results feasible. The algorithm is partially correct if for any input data sat-
isfying the pre-condition, it gives the correct output data (in accordance with the
post-condition) [23] (the input-output relation holds). The algorithm is totally cor-
rect, if it is partially correct, and—for any input data—it reaches the termination
condition and returns the correct output. Therefore, proving the total correctness of a
sequential algorithm consists of proving its partial correctness, along with showing
that every execution of this algorithm will be finally terminated [8].

In the case of parallel algorithms, proving their correctness includes verifying
their safety and liveness. The algorithm is safe, if it never ends up in a forbidden
state. To prove the safety of a parallel algorithm, we need to show that:

1. The parallel algorithm is partially correct.
2. There are no deadlocks (i.e., the processes do not wait for the infinite amount of

time for each other to continue the execution).
3. The processes can safely access the shared resources (mutual exclusion).

The liveness property of a parallel algorithm is satisfied, if it can be proven that
a certain desired condition will eventually happen during the execution [16, 36].
In the case of message-passing techniques—as shown in [8]—it is important to show
that the messages are properly sent and received (no matter if the communication is
synchronous or asynchronous).

If all of the above-mentioned properties of a parallel algorithm are proven, then
this algorithm is correct.

5 Correctness of the Parallel Guided Ejection Search
for the PDPTW

The baseline (sequential) version of theGESwas proposed in [24], and later enhanced
and parallelized in our very recent works [9, 27, 29]. According to the taxonomy
presented in Sect. 3.2, P–GES is of the pC/C/MPSS type (p-Control, Collegial, Mul-
tiple Initial Points, Same Search Strategies). In Sect. 5.1, we give the overview of
this parallel GES, whereas its correctness is verified in Sect. 5.2.

5.1 Algorithm Outline

In P–GES, which is an improvement parallel heuristic technique, p processes are
executed in parallel (Algorithm 1, line 1). The initial feasible solution σ contains
the number of routes which is equal to the number of transportation requests—each



140 J. Nalepa and M. Blocho

Algorithm 1 A parallel algorithm to minimize K (P–GES).
1: for Pi ← P1 to Pp do in parallel
2: τlast ← τcurr ;
3: Create an initial solution σ ;
4: finished ← false;
5: while not finished do
6: Save the current feasible solution;
7: Put requests from a random route r into EP;
8: Set penalty counters p[i] ← 1(i = 1, 2, . . . , N );
9: while (EP �= ∅) and (not f inished) do
10: Select and remove request hin from EP;
11: if S f e

in (hin, σ ) �= ∅ then

12: σ ← random σ ′ ∈ S f e
in (hin, σ );

13: else
14: σ ← Squeeze(hin, σ );
15: end if
16: if hin is not inserted into σ then
17: p[hin] ← p[hin] + 1;
18: for k ← 1 to km do
19: Get S f e

ej (hin, σ ) with min. Psum ;

20: if S f e
ej (hin, σ ) �= ∅ then

21: σ ← random σ ′ ∈ S f e
ej (hin, σ );

22: Add (h(1)
out , h

(2)
out , …, h(k)

out ) to EP;
23: break;
24: end if
25: end for
26: end if
27: σ ← Perturb(σ );
28: if τcurr ≥ τlast + τcoop then
29: finished← Cooperate(σ );
30: τlast ← τcurr ;
31: end if
32: end while
33: if EP �= ∅ then
34: Backtrack to previous feasible solution;
35: end if
36: end while
37: Get the best solution σbest ;
38: end for

request is served by a separate truck (line 3). Then, the number of vehicles in is
consecutively decreased until the total computation time exceeds the imposed time
limit τM (lines 5–36), or the desired number of routes has been obtained (it is possible
to determine the minimal number of trucks of a given capacity that are necessary to
serve all transportation requests feasibly [26]).
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A random route r is removed from the solution σ , and the excluded requests
are pushed into the ejection pool (EP), which stores those transportation requests
that have been removed from the schedule, and which remain currently unserved
(the solution becomes the partial solution; line 7). The penalty counters (denoted as
p’s) are reset (line 8). These counters reflect the difficulty of re-inserting a given
request back into the partial solution (the higher counter value, the more difficult is
to re-insert the corresponding request into σ ).

If the EP contains unserved transportation requests (lines 9–32), then a single
request hin is popped from the EP at the time (line 10), and the attempts to re-insert
it into the partial solution are undertaken. If there exist any feasible insertion posi-
tions (i.e., those which do not violate the constraints) for this request (the set of
such positions S f e

in (hin, σ ) is not empty), then a random position is drawn (line 12).
Otherwise, the request is inserted into σ infeasibly (it violates the constraints), and
the feasibility of the solution is being restored in the squeezing procedure (line 14).
The solution penalty is quantified using the penalty function given as:

Fp(σ ) = Fc(σ ) + Ftw(σ ), (2)

where Fc(σ ) and Ftw(σ ) are the sum of capacity exceeds in σ , and the sum of the
time windows violations. The squeeze function (presented in Algorithm 2) is aimed
at decreasing the value of the penalty function until it reaches zero (thus, the solution
becomes feasible). This is a steepest-descent local search procedure, in which the
set Sinf (hin, r, σt ) of infeasible solutions is created (considering the insertion of the
transportation request at hand), and the solutionwith theminimal value of the penalty
function is selected. This process continues until the feasibility is restored, or it is
impossible to retrieve a feasible solution (in this case, the solution is backtracked to
the initial state).

Algorithm 2 Squeezing an infeasible (possibly partial) solution σ .
1: function Squeeze(hin , σ )
2: σt ← σ ′ ∈ Sinf (hin, σ ) such that Fp(σ

′) is minimum;
3: while (Fp(σt ) �= 0) do
4: Randomly choose an infeasible route r in σt ;
5: Find σ ′′ ∈ Sinf (hin, r, σt ) with min. Fp(σ

′′);
6: if Fp(σ

′′) < Fp(σt ) then
7: σt ← σ ′′;
8: else
9: break;
10: end if
11: end while
12: if Fp(σt ) = 0 then
13: return σt ;
14: else
15: return σ ;
16: end if
17: end function
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If the squeeze procedure fails, the penalty counter of the appropriate request
(p[hin]) is updated (Algorithm1, line 17), and other requests are ejected fromσ (up to
km requests are ejected; lines 18–25) to insert hin . The set S

f e
ej (hin, σ ) is formed, and

it encompasses the solutions with various combinations of ejected requests (the hin
request is inserted to this solution on various positions). Finally, the solution σ ′—
with the minimal sum of the penalty counters is selected from S f e

ej (hin, σ ) (line 21).
The ejected requests are added to the EP (line 22). The solution σ is finally perturbed
by the local search procedure, in which I feasible local moves (out-relocate and
out-exchange) are executed (line 27). This process is visualized in Algorithm 3.

Algorithm 3 Perturbing a feasible (possibly partial) solution σ .
1: function Perturb(σ )
2: σt ← σ ;
3: for i ← 1 do I
4: Find σ ′ through local search moves on σt ;
5: if σ ′ is feasible then
6: σt ← σ ′;
7: end if
8: end for
9: return σt ;
10: end function

The parallel processes in P–GES co-operate periodically every τcoop seconds
(Algorithm 1, line 29) using the asynchronous co-operation scheme. In our previous
works [26, 27], we investigated a number of co-operation schemes (as already men-
tioned, they define the co-operation topology, frequency, and the strategies for han-
dling emigrants/immigrants—the solutions being sent/received in the co-operation
phase) and showed, that a proper selection of such scheme has a crucial influence on
the algorithm capabilities and behavior.

In P–GES, the master process (P1) controls the execution time of the parallel
algorithm—the signals from P1 to either continue or terminate the execution are
transferred in each co-operation phase. Eventually, all solutions from all processes
are gathered in P1, and the best solution σbest is retrieved—this is the final solution
delivered by P–GES (line 37).

More details on P–GES can be found in our previous works [9, 27]. These papers
include the in-depth analysis of the Message Passing Interface (MPI) implementa-
tion of the algorithm, and discuss the experimental results retrieved for famous Li
and Lim’s benchmark sets (these tests reflect various real-life scheduling scenarios,
e.g., different positions of the travel points, tightness of time windows, and different
capacities of the available trucks).



Verification of Correctness of Parallel Algorithms in Practice 143

5.2 Proving the Correctness of P–GES

The input data passed to P–GES include:

• p (p ≥ 1)—the number of parallel processes. If p = 1, then P–GES becomes a
serial algorithm, and its certain components are disabled (e.g., the co-operation
between the processes).

• Kd ≥ 0—the desired number of trucks serving the requests. If Kd = 0, then the
best feasible solution found using P–GES is returned (i.e., there is no “desired”
number of routes, however K should be as minimum as possible).

• τMAX—the maximum execution time (in seconds) of P–GES.
• τcoop—the co-operation frequency (in seconds).
• km (km ≥ 1)—the maximum number of requests that can be ejected from a (pos-
sibly partial) solution while inserting a request popped from the EP.

• I (I ≥ 0)—the number of local search moves applied to perturb a solution.
• Test instance—the definition of the test instance. It specifies the number of trans-
portation requests, the positions of the travel points, their time windows, service
times, and demands (either pickup or delivery), and the maximum capacity of
trucks. Real-life problems may encompass travel points which are clustered, ran-
domly scattered around the map, or combine both (i.e., there are some customer
clusters, but lots of them are random). The problem instances belonging to the Li
and Lim’s benchmark set perfectly mimic these scenarios.2

The solution retrieved using P–GES must satisfy all the constraints discussed in
Sect. 2. Therefore, this solution must be feasible (otherwise, the routing schedule is
incorrect and cannot be accepted).

Asmentioned in Sect. 5.1, P–GES startswith an initial feasible solution (therefore,
the constraints are not violated at the beginning of the algorithm execution), in which
every transportation request is served in a separate route. Then, the attempts to reduce
the fleet size are performed, until the execution reaches the termination condition
(Algorithm 1, line 5)—one random route is analyzed at any time. The current (best)
solution is stored (line 6). If removing the selected random route fails, then the
partial solution is backtracked to this state (line 34), hence the routing schedule
remains feasible.

Once the ejected customers are pushed into the EP, the solution becomes a partial
feasible schedule (no constraints are violated). Then, the EP transportation requests
are put back into this partial solution—first, using the feasible insertion positions (if
any). In this case, the feasibility is not violated, and the next request from the EP is
popped for insertion. However, if there are no feasible insertion positions available,
then the infeasible solution is created (in which the request has been re-inserted back
infeasibly), and it is further processed with the squeeze procedure. This squeezing
retrieves either the feasible solution (if it is possible to restore the correctness of σ ), or

2For the instance definitions, and the world’s best solutions see: https://www.sintef.no/projectweb/
top/pdptw/li-lim-benchmark/. Reference date: January 30, 2017.

https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/
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backtracks it to the state before this squeezing has been called. In the latter case, other
transportation requests are ejected to restore the feasibility of the partial solution—
it finally becomes feasible. Perturbing a feasible (potentially partial) schedule can
deteriorate its quality, however it cannot cause violating the constraints—after calling
this procedure, the solution remains feasible. If the EP is empty, then the feasible
solution—with the decreased fleet size—becomes the next solution, which is to be
processed in the next algorithm iteration. Therefore, the PDPTW solution obtained
using P–GES is eventually always feasible.

The co-operation of parallel processes cannot affect the feasibility of the solutions.
Depending on the co-operation scheme, the receiving process may e.g., replace its
own solution with the immigrant (if the immigrant is of a higher quality). This
analysis shows that P–GES is partially correct—assuming that the input data are
correct, it always retrieves a feasible PDPTW solution.

P–GES may be terminated if (i) a solution of a desired quality (i.e., with the
desired number of routes, Kd ) is found, or (ii) if the maximum execution time has
been exceeded. In the former case, the final solution may be retrieved either by the
master process (which also controls the execution of other processes, and may send
the termination request), or by any other process (not a master process). If the master
retrieves this solution, then it sends the termination requests to other processes (thus,
one co-operation phase is enough to stop the execution). However, if another process
ends up with the desired solution, then two co-operation phases are necessary—
first, this process sends its best solution to the master, and then the master sends
the termination request to other processes. In either case, P–GES finally reaches its
stopping condition.

P–GES is a distributed algorithm (there are no shared resources). The co-operation
is asynchronous, and the execution (i.e., optimization of the solution run by a given
process) interleaves with the send/receive operations. The order of send/receive oper-
ations matters—they are executed in an appropriate order depending on the process
type (either the master on non-master). Additionally, receiving data is acknowledged
by the receiving process during the co-operation (the status of this acknowledgement
is periodically checked by the sending process). Since there are no deadlocks and
shared resources in P–GES, its safety is proven. The same reasoning may be used
to prove the liveness of the algorithm. Since only the master process can force other
processes to stop, the situation in which a given process sends to or waits for a mes-
sage from the process that has already been terminated is not possible. This shows
the liveness property of P–GES.

The above-presented investigation revealed that all of the conditions imposed on
the parallel algorithms to be correct are fulfilled by P–GES—for the correct input
data (e.g., assuming that the test instance is solvable). Therefore,P–GES is a correct
parallel algorithm. �
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6 Correctness of the Parallel Memetic Algorithm
for the PDPTW

In the parallel memetic algorithm (abbreviated as P–MA) for minimizing the travel
distance in the PDPTW, a population of feasible solutions undergoes the memetic
optimization. This is the island-model parallel evolutionary algorithm, inwhich every
process (also referred to as the island) evolves its own population, and the islands
communicate periodically to exchange the best solutions found so far, and to guide
the search effectively (P–MA is therefore of the pC/C/MPSS type according to the
taxonomy presented in Sect. 3.2). The initial population can be generated using any
route minimization algorithm. In our work, we exploit the parallel GES discussed at
length in the previous section (however, it can be very easily replaced with any other
technique, without influencing the parallel memetic approach). P–MA is discussed
in Sect. 6.1, and its correctness is proven in Sect. 6.2.

6.1 Algorithm Outline

In P–MA (Algorithm 4), the number of trucks is minimized first (line 1), and then
the initial population of size Npop containing only feasible solutions is generated
(lines 3–5). Here, each individual (being a PDPTW solution) has the same number
of routes m. Afterwards, each (out of p) island performs the memetic optimization
of its population (lines 6–26).

During the evolution, the pairs of parents are selected for crossover (line 9)—here,
we utilize the AB-selection scheme, in which every individual from the population
serves exactly once as the first parent, and once as the second one. If the parents
are of the same structure (note that the solution of the PDPTW can be represented
as a directed graph), then one individual is perturbed (line 12) (we exploit the same
perturb method as in P–GES). This parent structure is modified because crossing
over the individuals representing exactly the same solution would most likely not
result in retrieving higher-quality children. The parents are then crossed over (line 15)
using the improved selective route exchange crossover (SREX), proposed in [24], and
very recently substantially improved in our work [10] (applying this operator cannot
lead to obtaining not feasible routing schedules). After generating Nch children (in
order to fully exploit each pair of mating parents), these offspring solutions are
educated. The education process is visualized in Algorithm 5—it resembles the
perturb operation (a number of local-search edge-exchange and relocation moves
are performed), however it cannot lead to lower-quality neighboring solutions (only
the solutions with lower T values are accepted in the course of this procedure). Once
the child individuals are educated, the best one replaces the first parent and survives
to the next generation (Algorithm 4, line 22). It is worth noting that the elitism is
implicitly applied here—the best solution always survives.

The parallel islands periodically co-operate (see Sect. 5.1 for details—we use the
same co-operation strategy). Finally, the termination conditions are verified (line 25).
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Algorithm 4 Parallel memetic algorithm for the PDPTW (P–MA).
1: σ1 ← MinimizeRoutes(); 
 P–GES
2: m ← routes count of σ1;
3: for Pi ← P1 to Pp do in parallel
4: Generate the population of Npop feasible solutions;
5: end for
6: for Pi ← P1 to Pp do in parallel
7: done ← false;
8: while not done do
9: Determine Npop random pairs (σ p

A , σ
p
B );

10: for all pairs (σ p
A , σ

p
B ) do

11: if σ
p
A = σ

p
B then

12: σ
p
A ← Perturb(σ p

A );
13: end if
14: σ c

best ← σ
p
A ;

15: {σ c
1 , σ c

2 , . . . , σ c
Nch

} ← execute Nch times Crossover(σ p
A , σ

p
B );

16: for i ← 1 to Nch do
17: σ c

i ← Educate(σ c
i );

18: if T (σ c
i ) < T (σ c

best ) then
19: σ c

best ← σ c
i ;

20: end if
21: end for
22: σ

p
A ← σ c

best ;
23: end for
24: Co-operate();
25: done ← VerifyStoppingCondition();
26: end while
27: end for
28: return best solution σbest across all populations;

P–MAmay be stopped if (i) the solution of desired quality has been already retrieved,
(ii) the maximum execution time has been surpassed, (iii) the maximum number
of generations have been processed, or (iv) there is no significant improvement in
the solutions quality between several consecutive generations (it indicates that the
memetic algorithm converged and the best individual will likely not be improved
any further). Finally, the best solution (across all the islands) is returned (line 28).
More details on the parallelmemetic algorithm, alongwith the implementation details
(P–MAwas implemented as a distributed algorithm usingMPI) and the experimental
results can be found in [10, 26, 28, 32].

6.2 Proving the Correctness of P–MA

The input data passed to P–GES include:

• p (p ≥ 1)—the number of parallel processes. If p = 1, then P–MA becomes a
serial algorithm, and its certain components are disabled (e.g., the co-operation
between the processes).
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Algorithm 5 Educating a feasible solution σ .
1: function Educate(σ )
2: σt ← σ ;
3: for i ← 1 do I
4: Find σ ′ through local search moves on σt ;
5: if σ ′ is feasible and T(σ ′)<T(σ ) then
6: σt ← σ ′;
7: end if
8: end for
9: return σt ;
10: end function

• Npop (Npop ≥ 2)—the size of the population evolved in each island.
• Nch (Nch ≥ 1)—the number of children generated for each pair of mating parents
in the crossover process.

• τ K
MAX—the maximum execution time of P–GES (during the route minimization
phase).

• τ
Pop
MAX—the maximum execution time of P–GES (during the population generation
phase).

• τMAX—the maximum execution time (in seconds) of P–MA.
• τcoop—the co-operation frequency (in seconds).
• Test instance—the definition of the test instance.

As already mentioned, the initial steps of P–MA involves executing P–GES to
minimize the number of trucks, and to generate the initial populations for each
island. The correctness of our parallel GES has been proven in Sect. 5.2. Similarly,
the routing schedules retrieved using P–MA must satisfy all the constraints imposed
on the PDPTW solutions presented in Sect. 3.

The initial populations encompass only feasible PDPTW solutions (no constraints
are violated). Then, these populations undergo the evolution to optimize the travel
distance. The perturb method (executed for some parental solution in Algorithm 4,
line 12), cannot violate the constraints, therefore the solution remains feasible. Then,
Nch are created in the recombination process. As presented in [10], the improved
SREX retrieves only feasible offspring solutions (if obtaining such schedules is
possible). Afterwards, those feasible children are educated (line 17; similarly, this
procedure cannot cause violating the constraints). The best child solution survives,
and replaces one parent in the post-selection process (note that if there are no children
of higher quality than the parent, this parent is not removed from the population).
Therefore, the T optimization process will always lead to obtaining feasible PDPTW
solutions. As presented in the previous section, the co-operation between processes
does not affect the feasibility of the transferred individuals. Hence, P–MA is partially
correct (for any correct input data, it always retrieves a feasible PDPTW solution).

There are the time limits imposed on the route minimization phase (τ K
MAX), and

the population generation phase (τ Pop
MAX). If the execution time surpasses these limits,

the parallel GES is terminated and the current solutions (with the current number of
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trucks) are considered final. If this happens for the population generation phase, then
the already-retrieved routing schedules are copied and perturbed to meet the desired
population size (Npop). P–MA (i.e., its T optimization phase) may be terminated
if (i) the solution of desired quality has been already retrieved, (ii) the maximum
execution time has been surpassed, (iii) the maximum number of generations have
been processed, or (iv) there is no significant improvement in the solutions quality
between several consecutive generations. In either case, the master process sends the
termination request to other processes during the next co-operation phase (according
to the selected co-operation scheme). Then, those processes terminate and the final
solution is retrieved. Hence, P–MA will finally reach its termination condition.

The proofs for the safety and liveness of P–MA are analogous to those presented
for P–GES. Therefore, P–MA is a correct parallel algorithm, and the entire frame-
work, consisting of the parallel guided ejection search for minimizing the number of
trucks in the PDPTW, and the parallel memetic algorithm for optimizing the travel
distance is fully correct. �

7 Conclusions and Outlook

In this paper, we analyzed the correctness of our (i) parallel guided ejection search
algorithm for minimizing the number of trucks in the PDPTW, and our (ii) parallel
memetic algorithm to optimize the travel distance in the PDPTW (those approaches
are combined into a single parallel framework for solving this NP-hard discrete
optimization problem). We proved that both algorithms are correct—this involved
showing their liveness and safety. The investigation served as an extensive case study
for showing how to prove the correctness of parallel algorithms. Our approach may
be easily tailored for proving the correctness of other parallel algorithms, especially
those tackling complex discrete optimization problems.

Our current research is focused on designing a generic optimization framework
which will allow for solving other complex transportation problems. This will be
possible by implementing a mechanism for adding the appropriate constraints. Also,
we work on machine learning based methods which are aimed at retrieving the
best possible algorithm variant (e.g., with the desired parameter values) for a given
problem instance (in our previousworkswe showed that improperly tuned parameters
can easily jeopardize the search capabilities ofmetaheuristicmethods for solving rich
routing problems [28, 31]).
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Application of Fuzzy Cognitive Maps
with Evolutionary Learning Algorithm
to Model Decision Support Systems Based
on Real-Life and Historical Data

Katarzyna Poczeta, Łukasz Kubuś, Alexander Yastrebov
and Elpiniki I. Papageorgiou

Abstract Fuzzy cognitive map (FCM) is a universal tool for modeling dynamic
decision support systems. It can be constructed by the experts or learned based on
historical data. FCM models learned from data are denser than those created by
humans. We developed an evolutionary learning approach for fuzzy cognitive maps
based on density and system performance indicators. It allows to select only the most
significant connections between concepts and receive the structure more similar to
the FCMs initialized by experts. This paper is devoted to the application of the
developed approach to model decision support systems with the use of real-life and
historical data.

1 Introduction

Fuzzy cognitive map (FCM) is a directed graph for representing causal reasoning [9].
Nodes are variable concepts important for the analyzed problem and links are causal
connections. FCM can be used for modeling decision support systems [12], e.g. for
political decision making [3], artificial emotions forecasting [18] or prediction of
work of complex systems [20].
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Fuzzy cognitive map can be initialized based on expert knowledge. Experts select
the concepts of the map and determine the weights of the connections between them
(connection matrix). The second way to build the FCM model are supervised [8]
and evolutionary learning algorithms [1, 5, 12, 21, 23] that allow to determine the
connection matrix based on available data.

The resulting matrices are much denser than the models created by the humans.
The density of the FCMs developed by experts is usually in the range of 30–40% [22].
They choose only the most significant connections between concepts. FCMswith the
smaller density are more readable for humans. Developing the learning algorithms
that allow to build models in a manner more similar to human reasoning is an impor-
tant part of research related to the fuzzy cognitive maps. A sparse real-coded genetic
algorithmwas proposed to utilize the density of the FCMmodel [22]. In [15], a struc-
ture optimization genetic algorithm was introduced. A multi-objective evolutionary
algorithm for learning maps with varying densities was analyzed in [6].

In [11], we proposed a new evolutionary learning approach for fuzzy cognitive
maps learning based on density and system performance indicators (SPI) analysis.
System performance indicators introduced by Borisov [4] and Silov [19] allow to
analyze reliability of the FCM model and determine the total (direct and indirect)
influence between concepts. In the proposed approach, the evaluation of the candi-
date FCMs is based on data error, connection matrix density and the total influence
between concepts. The obtained results based on the synthetic and real-life data gen-
erated from the reference matrices provided by experts proved that the developed
approach allows to receive structure of the FCMmodel more similar to the reference
object keeping the similar level of data error. In [16] the proposed evolutionary learn-
ing algorithm has been effectively used to construct the economic decision support
system using historical data.

This paper is devoted to further analysis of the application of fuzzy cognitivemaps
with the developed evolutionary algorithmbased onSPI inmodeling decision support
systems. The aimof the analysis is to approximate the real-life and historical data. The
comparison of the developed approach with the standard one based on data error and
the approach based on densitywas done. The learning processwas accomplishedwith
the use of Elite Genetic Algorithm (EGA) and Individually Directional Evolutionary
Algorithm (IDEA) [10].

Section2 presents fuzzy cognitive maps. Section3 describes system performance
indicators. The developed evolutionary algorithm for fuzzy cognitive maps learning
is described in Sect. 4. In Sect. 5, the results of experiments based on real-life [17]
and historical [7] data are presented. Section6 contains the conclusion of the paper.

2 Fuzzy Cognitive Maps

Fuzzy cognitive map is a directed graph in the form [9]:

< X,W > (1)
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where X = [X1, . . . ,Xn]T is the set of the concepts, W is the connection matrix
describing weights of the connections, wj,i is the weight of the direct influence
between the j-th concept and the i-th concept, taking on the values from the range
[−1, 1]. A positive weight of the connection wj,i means that Xj causally increases Xi.
A negative weight of the connection wj,i means that Xj causally decreases Xi.

Fuzzy cognitive map can be used for modeling behavior of dynamic systems.
The state of the FCM model is determined by the values of the concepts at the t-th
iteration. The simulation of the FCM behavior requires an initial state vector. Next,
the values of the concepts can be calculated according to the selected dynamicmodel.
Simulations show the effect of the changes in the states of the map and can be used
in a what-if analysis [2]. In the paper a popular dynamic model was used [21]:

Xi(t + 1) = F

⎛
⎝

n∑
j=1,j �=i

wj,i · Xj(t)

⎞
⎠ (2)

whereXi(t) is the value of the i-th concept at the t-th iteration, i = 1, 2, . . . , n, n is the
number of concepts, t is discreet time, t = 0, 1, 2, . . . ,T . Transformation function
F(x) normalizes values of the concepts to a proper range. A logistic function is most
often used [21, 22]:

F(x) = 1

1 + e−cx
(3)

where c is a parameter determined experimentally, c > 0.

3 System Performance Indicators

System performance indicators allow to evaluate the structure of the FCM model
e.g. by analysis the influence between concepts. Connection matrix W describes
the direct influence between concepts. The total influence pj,i between concepts
means the maximum direct or indirect influence between concepts. To determine
this system performance indicator the total causal effect path between concepts can
be calculated [4, 19].

Algorithm for determining SPI contains the following steps [4, 19]:

1. First, connectionmatrixW with positive and negative direct relationships between
concepts passes to matrix R size 2n × 2n with positive relationships as follows:

if wj,i > 0
then r2j−1,2i−1 = wj,i, r2j,2i = wj,i

if wj,i < 0
then r2j−1,2i = −wj,i, r2j,2i−1 = −wj,i

(4)
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2. Next, operation of transitive closure of the matrix R is used:

R∗ = R ∨ R2 ∨ R3 ∨ . . . (5)

where ∨ means maximum operation, Rk is calculated in accordance with the
max-product composition:

Rk = Rk−1 ◦ R (6)

3. Elements of the matrix R∗ are transformed into matrix V as follows:

vj,i = max(r2j−1,2i−1, r2j,2i)
v′
j,i = −max(r2j−1,2i, r2j−1,2i)

(7)

4. On the basis of the matrix V the total (direct and indirect) influence between the
j-th concept and the i-th concept is calculated:

for vj,i �= v′
j,i

pj,i = sign(vj,i + v′
j,i)max(|vj,i|, |v′

j,i|) (8)

where pj,i takes value in the range of [−1, 1].
5. The total influence between concepts can be used to determine the impact of the

j-th concept on the system (9) and the impact of the systemon the i-th concept (10):

−→
Pj = 1

n

n∑
i=1

pj,i (9)

←−
Pi = 1

n

n∑
j=1

pj,i. (10)

4 Evolutionary Learning Algorithm Based on SPI

Evolutionary algorithms (likeRCGAor EGA) can be applied to learn the FCMmodel
(determine the weights of the connections between concepts) based on the available
historical data. Each individual in the population is represented by a floating-point
vector [21]:

W ′ = [w1,2, . . . ,w1,n,w2,1,w2,3, . . . ,w2,n, . . . ,wn,n−1]T (11)

where wj,i is the weight of the connection between the j-th and the i-th concept.
The individuals are decoded into the candidate FCMs and the response of every

model are calculated based on the learning initial state vectors. The aim of the stan-
dard evolutionary algorithms for fuzzy cognitive maps learning is to minimize a total
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difference between the normalized historical data and themodel response (data error),
described as follows [21]:

TE =
P∑

p=1

T∑
t=1

n∑
i=1

|Zp
i (t) − Xp

i (t)| (12)

where t = 0, 1, 2, . . . ,T , T is the learning record length, Zp
i (t) is the reference value

of the i-th concept at iteration t for the p-th learning record, Xp
i (t) is the value of

the i-th concept at iteration t of the candidate FCM started from the p-th initial state
vector, p = 1, 2, . . . ,P, P is the number of the learning records.

Fuzzy cognitivemaps learnedwith the use ofmethods based on data error properly
perform the task of the input data approximation. However, the resulting connection
matrices are denser than those initialized by experts [22]. Density of the FCMmodel
can be expressed as a ratio of the number of non-zero weights and number of all
possible non-zero weights according to the formula:

density = wnon−zero

n2 − n
(13)

where wnon−zero is the number of non-zero weights wj,i, n is the number of the con-
cepts.

To solve the problem of density the extensions of the standard evolutionary algo-
rithms based on density analysis were proposed:

• sparse real-coded genetic algorithm [22],
• structure optimization genetic algorithm [15],
• multi-objective evolutionary algorithm for learning FCM models with varying
densities [6].

In [11], we introduced a new evolutionary approach for fuzzy cognitive maps
learning that allow to determine the weights of the connections in the way similar to
human reasoning. It is based on the analysis of data error, density and total influence
between concepts in order to select only the most significant connections. Exper-
iments performed with the use of synthetic and real-life data (generated from the
reference FCMs) confirm that the resulting models are more similar to the reference
systems.

The developed algorithm has the following objectives [11]:

• to minimize the data error (12),
• to minimize the FCM model density (13),
• tomaximize the ratio of the number of significant total influences between concepts
to the number of all possible influences described as follows:

PChRR = prelevant
n2

(14)
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where prelevant is the number of total influences with the absolute value greater than
0.5 (|pj,i| > 0.5).

To obtain some compromise between data error, density and significance of the
influences between concepts, weighting method for determine the objective function
was used [14]:

Error = a1 · TE + a2 · density · TE+
+a3 · (1 − PChRR) · TE (15)

where a1, a2, a3 are parameters that meet the following condition:

3∑
i=1

ai = 1 (16)

Density and total influence objectives are multiplied by the total error in order to lie
in the same range.

Each candidate FCM is evaluated with the use of the following fitness function:

fitness(Error) = −Error (17)

The developed approach consists of the following steps [11]:
STEP 1. Initialize random population.

Random initial population is generated and evaluated with the use of the fitness
function. Each generated individual has density greater or equal to 20% and lower
or equal to 50%.

STEP 2. Check stop condition.
If the number of iterations is greater than iterationmax then stop the learning process.

STEP 3. Use evolutionary algorithm to generate new population.
In the simulation analysis of the proposed approach Elite Genetic Algorithm and
Individually Directed Evolutionary Algorithm were used [10].

STEP 4. Analyze population.
The values from [−0.05, 0.05] are rounded down to 0 as suggested in [21]. The total
influence between concepts pj,i is calculated. The weight value wj,i is rounded down
to 0 if the value of pj,i is in the interval [−b, b], where b is a parameter selected
experimentally. Additionally, density is checked. Go to STEP 2.

STEP 5. Choose the best individual and test it.

4.1 Elite Genetic Algorithm

Elite Genetic Algorithm (EGA) [13] uses floating-point encoding as Real-Coded
Genetic Algorithm (RCGA) and elite strategy. In the first step, random initial popu-
lation is generated and evaluated. Next, temporary population Tt is created from
current base population Pt by proportionate selection (roulette-wheel selection)
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with dynamic linear scaling of fitness function. Individuals of temporary population
Tt are modified by UniformCrossover operator and Non-UniformMutation operator
[13]. The Uniform Crossover uses a fixed mixing ratio between two parents called
exchange probability and usually it is equal to 0.5. Non-Uniform Mutation (NUM)
operator keeps the population from stagnating in the early stages and decreases
the range of mutation in later stages of evolution. In the last step, the temporary
population Tt becomes new base population Pt+1 after evaluation of the temporary
population individuals.

4.2 Individually Directed Evolutionary Algorithm

Individually Directional Evolutionary Algorithm (IDEA) [10] uses floating-point
encoding as EGA expanded by the additional mutation direction vector (DV ). The
DV is used by the mutation operation and correction of mutation direction process
in post-selection stage. Random initial population is generated and evaluated as
for EGA. Next, the roulette-wheel selection with dynamic linear scaling of fitness
function is used to create temporary population Tt . Next, Directional Non-Uniform
Mutation operator (DNUM) is used to create the second population T

′t based on the
temporary population Tt [10]. Individuals of temporary population T

′t are evaluated
and the next base population is created with the use of post-selection. The individual
of temporary population Tt is compared to the corresponding individual from tempo-
rary population T

′t . Better individual is selected for the next base population. If the
mutated individual is worse than the corresponding individual, the corresponding
element of directional vector of the primary individual is corrected (correction of
mutation direction).

5 Experiments

The aim of the experiments is to build the decision support systems that allows to
approximate the input data and analyze the influence between concepts. The compar-
ative analysis of the developed approach with the standard one based on data error
and the approach based on density was done.

5.1 Evaluation Criteria

To evaluate the resulting FCM models, the following criteria were calculated:

1. Similarity between the input learning data and the data generated by the FCM
candidate [21]:
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initialerror = 1

P · T · n
T∑
t=1

P∑
p=1

n∑
i=1

|Zp
i (t) − Xp

i (t)| (18)

where t = 0, 1, 2, . . . ,T , T is the learning record length, Zp
i (t) is the reference

value of the i-th concept at iteration t for the p-th learning record, Xp
i (t) is the

value of the i-th concept at iteration t of the candidate FCM started from the p-th
initial state vector, p = 1, 2, . . . ,P, P is the number of the learning records.

2. Generalization capabilities of the candidate FCM (similarity between the input
testing data and the data generated by the FCM candidate) [21]:

behaviorerror = 1

P · T · n
P∑

p=1

T∑
t=1

n∑
i=1

|Zp
i (t) − Xp

i (t)| (19)

where t = 0, 1, 2, . . . ,T , T is the testing record length, Zp
i (t) is the reference

value of the i-th concept at iteration t for the p-th testing record, Xp
i (t) is the value

of the i-th concept at iteration t of the candidate FCM started from the p-th initial
state vector, p = 1, 2, . . . ,P, P is the number of the testing records.

3. Similarity between the candidate FCM structure and the real-life model [22]:

weightserror = 1

n2

n∑
i=1

n∑
j=1

|w′
j,i − wj,i| (20)

where wj,i is the weight of the connection between the j-th and the i-th concept
in the FCM candidate and w′

j,i is the weight of the connection between the j-th
and the i-th concept in the input model.

5.2 Datasets

To analyze the performance of the developed evolutionary algorithm for fuzzy cog-
nitive maps learning real-life [17] and historical [7] data were used.

Real-Life Data

Real-life data were obtained based on the fuzzy cognitive map for a mobile payment
system project with the following concepts [17]:

• X1 – your phone is always with you,
• X2 – remote control of everyday things,
• X3 – independence of time and place,
• X4 – flexibility,
• X5 – multiple mobile cash accounts,
• X6 – convenience,
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• X7 – interface easy to use,
• X8 – efficiency,
• X9 – direct debiting from account,
• X10 – comfort,
• X11 – bank commission from network operator for each transaction,
• X12 – economy.

Figure1 shows the analyzed decision support system based on fuzzy cognitive
map. Table1 presents its connection matrix.

The input data for the learning and testing process were generated starting from
the random initial vectors. The FCM models were learned using 10 learning state
vectors (P = 10). The resulting models were tested on the basis of the 10 following
testing state vectors (P = 10) and evaluated with the use of criteria (18)–(20).

Historical Data

Historical data were obtained on the basis of the dataset that contains the hourly
averaged responses from an array of 5 metal oxide chemical sensors embedded in an
Air Quality Chemical Multisensor Device deployed on the field in an Italian city [7].
The following concepts were determined based on data attributes:

Fig. 1 Fuzzy cognitive map for the mobile payment system project
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Table 1 Connection matrix for the mobile payment system project

wj,i X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

X1 0 0.71 0.83 0.78 0 0 0 0 0 0 0 0

X2 0 0 0 0 0 0.76 0 0 0 0 0 0

X3 0 0.74 0 0.87 0 0.79 0 0 0 0 0 0

X4 0 0 0 0 0 0 0 0.88 0 0 0 0

X5 0 0 0 0.65 0 0 0 0.61 0 0 0 0

X6 0 0 0 0 0 0 0 0 0 0.79 0 0

X7 0 0 0 0 0 0.76 0 0.89 0 0.85 0 0

X8 0 0 0 0 0 0 0 0 0 0 0 0

X9 0 0 0 0 0.62 0 0 0.74 0 0 0 0

X10 0 0 0 0 0 0 0 0 0 0 0 0

X11 0 0 0 0 0 0 0 0 0.7 0 0 −0.56

X12 0 0 0 0 0 0 0 0 0 0 0 0

• X1 – true hourly averaged concentration CO (reference analyzer),
• X2 – PT08.S1 (tin oxide) hourly averaged sensor response (nominally CO
targeted),

• X3 – true hourly averaged overall Non Metanic HydroCarbons concentration
(reference analyzer),

• X4 – true hourly averaged Benzene concentration (reference analyzer),
• X5 – PT08.S2 (titania) hourly averaged sensor response (nominally NMHC
targeted),

• X6 – true hourly averaged NOx concentration (reference analyzer),
• X7 – PT08.S3 (tungsten oxide) hourly averaged sensor response (nominally NOx
targeted),

• X8 – true hourly averaged NO2 concentration (reference analyzer),
• X9 – PT08.S4 (tungsten oxide) hourly averaged sensor response (nominally NO2
targeted),

• X10 – PT08.S5 (indium oxide) hourly averaged sensor response (nominally O3
targeted),

• X11 – temperature,
• X12 – relative humidity,
• X13 – AH absolute humidity.

The data were normalized according to the following equation:

f (x) = x − min

max − min
, (21)

where x is an input numeric value, min is the minimum of the dataset, max is the
maximum of the dataset.
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The FCM models were learned using historical normalized data from 5 consecu-
tive days (P = 5). The resulting models were tested on the basis of the data from 5
following days (P = 5) and evaluated with the use of criteria (18) and (19).

5.3 Learning Parameters

Learning parameters were selected by trial and error. In this paper selected results
of the analysis are presented. The following parameters were used for the EGA
algorithm:

• selection method: roulette wheel selection with linear scaling,
• recombination method: uniform crossover,
• crossover probability: 0.75,
• mutation method: non-uniform mutation,
• mutation probability: 0.02,
• population size: 10,
• number of elite individuals: 2,
• maximum number of iterations: 500,
• parameter b: 0.1.

The following parameters were used for the IDEA algorithm:

• selection method: roulette wheel selection with linear scaling,
• mutation method: directed non-uniform mutation,
• mutation probability: 1

n2−n ,• population size: 10,
• maximum number of iterations: 500,
• parameter b: 0.1.

5.4 Results with Real-Life Data

Table2 summarizes the results of the experiments with real-life data obtained for the
standard approach (STD), the approach based on density (DEN) and the proposed
approach (SPI). 10 experiments were performed for every set of the learning para-
meters and the average values (Avg) and standard deviations (Std) were calculated.

The obtained results show that the developed approach allows to approximate
the real-life data with satisfactory accuracy similar to the standard approach and
the approach based on density and receive the structure of the FCM model more
similar to the real-life system. The lowest average values of the weights error were
obtained for the developed approach based on SPI (weightserror = 0.238 ± 0.349 for
the IDEA learning algorithm and weightserror = 0.224 ± 0.350 for the EGA learn-
ing algorithm). Moreover, appropriate selection of the parameters a1, a2, a3 allows
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Table 2 Experimental results with real-life data

Approach Method Parameters initialerror
Avg ± Std

behaviorerror
Avg ± Std

weightserror
Avg ± Std

STD IDEA a1 = 1 a2 = a3 = 0 0.017 ± 0.002 0.017 ± 0.001 0.498 ± 0.352

STD EGA a1 = 1 a2 = a3 = 0 0.016 ± 0.001 0.018 ± 0.001 0.500 ± 0.363

DEN IDEA a1 = 0.9 a2 = 0.1 a3 = 0 0.011 ± 0.001 0.012 ± 0.002 0.287 ± 0.351

a1 = 0.8 a2 = 0.2 a3 = 0 0.025 ± 0.047 0.026 ± 0.046 0.263 ± 0.353

a1 = 0.7 a2 = 0.3 a3 = 0 0.010 ± 0.001 0.011 ± 0.001 0.266 ± 0.346

a1 = 0.6 a2 = 0.4 a3 = 0 0.010 ± 0.001 0.011 ± 0.002 0.271 ± 0.358

a1 = 0.5 a2 = 0.5 a3 = 0 0.011 ± 0.002 0.012 ± 0.002 0.294 ± 0.372

DEN EGA a1 = 0.9 a2 = 0.1 a3 = 0 0.018 ± 0.003 0.020 ± 0.003 0.331 ± 0.383

a1 = 0.8 a2 = 0.2 a3 = 0 0.018 ± 0.004 0.020 ± 0.003 0.330 ± 0.387

a1 = 0.7 a2 = 0.3 a3 = 0 0.019 ± 0.002 0.019 ± 0.002 0.331 ± 0.382

a1 = 0.6 a2 = 0.4 a3 = 0 0.018 ± 0.001 0.019 ± 0.002 0.318 ± 0.375

a1 = 0.5 a2 = 0.5 a3 = 0 0.019 ± 0.003 0.021 ± 0.004 0.333 ± 0.388

SPI IDEA a1 = 0.8 a2 = 0.1 a3 = 0.1 0.015 ± 0.009 0.016 ± 0.009 0.270 ± 0.350

a1 = 0.1 a2 = 0.8 a3 = 0.1 0.019 ± 0.016 0.021 ± 0.016 0.247 ± 0.347

a1 = 0.1 a2 = 0.1 a3 = 0.8 0.014 ± 0.003 0.015 ± 0.002 0.348 ± 0.398

a1 = 0.7 a2 = 0.0 a3 = 0.3 0.026 ± 0.038 0.027 ± 0.038 0.238 ± 0.349

a1 = 0.4 a2 = 0.3 a3 = 0.3 0.014 ± 0.007 0.015 ± 0.007 0.277 ± 0.360

a1 = 0.3 a2 = 0.4 a3 = 0.3 0.024 ± 0.021 0.025 ± 0.021 0.280 ± 0.368

a1 = 0.3 a2 = 0.3 a3 = 0.4 0.013 ± 0.006 0.014 ± 0.005 0.290 ± 0.373

a1 = 0.6 a2 = 0.0 a3 = 0.4 0.013 ± 0.007 0.015 ± 0.008 0.301 ± 0.369

SPI EGA a1 = 0.8 a2 = 0.1 a3 = 0.1 0.044 ± 0.022 0.045 ± 0.022 0.275 ± 0.369

a1 = 0.1 a2 = 0.8 a3 = 0.1 0.061 ± 0.027 0.062 ± 0.027 0.224 ± 0.350

a1 = 0.1 a2 = 0.1 a3 = 0.8 0.030 ± 0.011 0.032 ± 0.012 0.356 ± 0.408

a1 = 0.7 a2 = 0.0 a3 = 0.3 0.038 ± 0.024 0.039 ± 0.023 0.313 ± 0.382

a1 = 0.4 a2 = 0.3 a3 = 0.3 0.041 ± 0.022 0.042 ± 0.022 0.320 ± 0.396

a1 = 0.3 a2 = 0.4 a3 = 0.3 0.032 ± 0.013 0.033 ± 0.012 0.323 ± 0.392

a1 = 0.3 a2 = 0.3 a3 = 0.4 0.024 ± 0.010 0.025 ± 0.010 0.323 ± 0.388

a1 = 0.6 a2 = 0.0 a3 = 0.4 0.034 ± 0.013 0.035 ± 0.013 0.322 ± 0.392

to obtain some compromise between data errors (initialerror and behaviorerror) and
similarity between the candidate FCMstructure and the real-lifemodel (weightserror).

To illustrate the proposed approach the best solutions for the selected simulations
are presented below. Table3 presents the resulting connection matrix obtained for
the standard approach (weightserror = 0.489). Connection matrix for the approach
based on density (weightserror = 0.285) is shown in Table4. Table5 presents the con-
nection matrix obtained for the proposed approach (weightserror = 0.218). Table6
contains impact of the j-th concept on the system (9) and impact of the system on
the i-th concept (10) for the real-life model and the obtained FCM models.

The FCM models obtained for the developed approach and method based on
density are more readable and easier to interpret than the map obtained with the
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standard learning algorithm based only on data error. The developed approach allows
to keep only the most significant connections between concepts and receive the
structure most similar to the real-life model.

5.5 Results with Historical Data

Table7 summarizes the results of the experiments with historical data obtained for
the standard approach (STD), the approach based on density (DEN) and the proposed
approach (SPI).

Table 7 Experimental results with historical data

Approach Method Parameters initialerror
Avg ± Std

behaviorerror
Avg ± Std

STD IDEA a1 = 1 a2 = a3 = 0 0.090 ± 0.001 0.099 ± 0.001

STD EGA a1 = 1 a2 = a3 = 0 0.090 ± 0.001 0.099 ± 0.001

DEN IDEA a1 = 0.9 a2 = 0.1 a3 = 0 0.090 ± 0.001 0.099 ± 0.001

a1 = 0.8 a2 = 0.2 a3 = 0 0.090 ± 0.001 0.099 ± 0.001

a1 = 0.7 a2 = 0.3 a3 = 0 0.090 ± 0.001 0.099 ± 0.001

a1 = 0.6 a2 = 0.4 a3 = 0 0.090 ± 0.001 0.099 ± 0.001

a1 = 0.5 a2 = 0.5 a3 = 0 0.090 ± 0.001 0.099 ± 0.001

DEN EGA a1 = 0.9 a2 = 0.1 a3 = 0 0.095 ± 0.003 0.102 ± 0.003

a1 = 0.8 a2 = 0.2 a3 = 0 0.093 ± 0.002 0.102 ± 0.002

a1 = 0.7 a2 = 0.3 a3 = 0 0.094 ± 0.002 0.103 ± 0.003

a1 = 0.6 a2 = 0.4 a3 = 0 0.095 ± 0.004 0.103 ± 0.003

a1 = 0.5 a2 = 0.5 a3 = 0 0.094 ± 0.003 0.101 ± 0.003

SPI IDEA a1 = 0.8 a2 = 0.1 a3 = 0.1 0.094 ± 0.008 0.103 ± 0.008

a1 = 0.1 a2 = 0.8 a3 = 0.1 0.108 ± 0.019 0.113 ± 0.019

a1 = 0.1 a2 = 0.1 a3 = 0.8 0.091 ± 0.001 0.099 ± 0.001

a1 = 0.7 a2 = 0.0 a3 = 0.3 0.090 ± 0.001 0.099 ± 0.002

a1 = 0.4 a2 = 0.3 a3 = 0.3 0.094 ± 0.011 0.102 ± 0.011

a1 = 0.3 a2 = 0.4 a3 = 0.3 0.094 ± 0.009 0.102 ± 0.008

a1 = 0.3 a2 = 0.3 a3 = 0.4 0.090 ± 0.001 0.099 ± 0.001

a1 = 0.6 a2 = 0.0 a3 = 0.4 0.091 ± 0.002 0.099 ± 0.001

SPI EGA a1 = 0.8 a2 = 0.1 a3 = 0.1 0.109 ± 0.018 0.114 ± 0.016

a1 = 0.1 a2 = 0.8 a3 = 0.1 0.175 ± 0.050 0.174 ± 0.047

a1 = 0.1 a2 = 0.1 a3 = 0.8 0.098 ± 0.008 0.105 ± 0.005

a1 = 0.7 a2 = 0.0 a3 = 0.3 0.107 ± 0.021 0.114 ± 0.021

a1 = 0.4 a2 = 0.3 a3 = 0.3 0.100 ± 0.011 0.106 ± 0.010

a1 = 0.3 a2 = 0.4 a3 = 0.3 0.100 ± 0.014 0.107 ± 0.012

a1 = 0.3 a2 = 0.3 a3 = 0.4 0.095 ± 0.004 0.101 ± 0.007

a1 = 0.6 a2 = 0.0 a3 = 0.4 0.098 ± 0.004 0.105 ± 0.003
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The obtained results show that the developed approach allows to approximate
the historical data with satisfactory accuracy similar to the standard approach and
the approach based on density. The best solutions for the analyzed approaches are
presented below. Table8 presents the resulting connection matrix obtained for the
standard approach. Connection matrix for the approach based on density is shown in
Table9. Table10 presents the connection matrix obtained for the proposed approach.

The FCM models obtained for the developed approach and method based on
density are more readable and easier to interpret than the map obtained with the
standard learning algorithm based only on data error. For further analysis, impact of
the j-th concept on the system (9) and impact of the system on the i-th concept (10)
were calculated and presented in Table11. The developed approach allows to select
only the most significant connections between concepts and receive the readable
structure keeping satisfactory accuracy of modeling of historical data.

6 Conclusion

The paper presents the application of fuzzy cognitive maps with the developed evo-
lutionary algorithm for fuzzy cognitive maps learning to model decision support
systems based on real-life and historical data. The presented approach is based on
data error, density and system performance indicators analysis. The obtained results
show that the developed approach allows to approximate the available data with satis-
factory accuracy similar to the standard approach and the approach based on density
and receive the structure of the FCMmodel more similar to the fuzzy cognitive maps
developed by experts. The resulting FCM models are readable and easier to inter-
pret. The proposed approach allows to select only the most significant connections
between concepts keeping satisfactory accuracy of modeling of data.
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Meeting the Challenges of Optimized
Memory Management in Embedded Vision
Systems Using Operations Research

Khadija Hadj Salem, Yann Kieffer and Stéphane Mancini

Abstract The ever growing complexity of signal and image processing applications,
and the stringent constraints related to their implementation makes their design, sim-
ulation, and implementation more and more challenging. Memory management is
among the main challenge that electronic designers have to face. In fact, it impacts
heavily the main cost metrics, including area, performance (real-time aspect) and
energy consumption, of modern-day electronic devices. For some particular cases
of image treatments, with non-linear access patterns to the memory addresses, a co-
designed architectural solution and its optimization process, calledMemoryManage-
ment Optimization (MMOpt), was proposed by Mancini et al. (Proc. DATE, 2012).
It creates an ad-hoc memory hierarchy for accelerating the accesses to the memories
holding large image data. This chapter studies the optimization challenge reflect-
ing the efficient operation of the MMOpt tool, which is formalized as a 3-objective
scheduling problem. New algorithms are proposed for producing efficient solutions,
leading to enhance the run-time performance and reduce both energy consumption
and cost of the circuits produced by MMOpt. The performance of these algorithms
is compared, on the same real-world data set as used by Mancini et al. [14], against
the one currently in use in the MMOpt tool. The results show that our algorithms
perform well in terms of computational efficiency and solution quality.
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1 Introduction

The design of embedded vision systems carries many challenges, one of which is the
efficient access to the image memory. This calls for new methods, tools, algorithms,
and architectures that can help circuit designers meet their goals. An architectural
solution, called Memory Management Optimization (MMOpt), was proposed by
Mancini et al. [14] in the form of a software tool that creates an ad-hoc memory
hierarchy for non-linear image accesses. But operating this kind of systems is itself
an optimization challenge. We formalized this electronic problem as a scheduling
problem, involving 3 objectives reflecting 3 main electronic design characteristics.
They correspond to the energy consumption, performance, and size/cost of the cir-
cuit. To the best of our knowledge, this problem has not been studied before in the
Operations Research (OR) literature.

In this chapter, we first give a brief description of the MMOpt design software
arising in the context of embedded vision systems, and a clear explanation about the
related optimization problematic set by the efficient operation of the circuits produced
by MMOpt. A specific multi-objective mathematical model for this problem is then
detailed and the basic assumptions are listed, as well as several sub-problems of
interest. We then review the state of the art. After giving lower bounds for the 3-
objective problem, we analyze the complexity of some of the mono-objective sub-
problems. The description of new approaches is then given. Numerical experiments
follow, which are conducted on real-world data for validating their efficiency, and a
conclusion and perspectives section closes this chapter.

2 Embedded Vision Systems Context: Architectural
Solution and Optimization Problematic

2.1 The Memory Management Optimization Tool

Among modern-day electronic devices, embedded vision systems such as picture
and video cameras represent a specific design challenge with respect to memory
management. Image sizes are measured in 100s of Kbs or even Mbs, while the
access times must be short enough to allow the quick handling of the input image.
For example, a live video feed may have 30 frames per second, meaning that the
handling of one image (frame) must take less than 1/30 s. But it is a well-known fact
in electronic memory design that access times grow with the size of the memory to
be accessed. Due to this fact, it is not possible to reach good performance using only
the standard memories. Something has to be added to improve the access times.

In image processing, a kernel denotes digital image treatment that works by oper-
ating each pixel value of the output image using straightforwardmathematical opera-
tions to construct a new image. For the case of kernels that have linear access patterns
to the memory addresses, usual caches as used for CPUs will solve this problem.
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Input image Output image

Produced DataShared Data

Needed data

Fig. 1 Example of a non-linear kernel

However, the problem remains a big hurdle for the easy and efficient design of non-
linear kernel circuit designs.

Figure1 gives an example of a non-linear kernel, namely the fisheye transform.
As shown in this figure, to compute a pixel O(x, y) of the output image, the kernel
needs apixel I(x′, y′)of the input imageusing anon-linearmapping function (x, y) �→
(x′, y′). The pixels of the output image are computed by iterating over the coordinates
(x, y). For each loop iteration the kernelmakes a reference to the corresponding pixels
(single pixel or a few adjacent pixels) in the input image.

The main difficulty of optimizing the memory management of non-linear kernels
relies in the disparity of the function to compute the indices of the input data. An
effective strategy to increase the data reuse and to optimize a memory hierarchy
is to subdivide the input image into tiles, also defined as a set of pixels, that are
small enough to fit the local memory and that can be processed independently. In
this scheme, the output image is produced tile by tile, one after the other, while each
output tile requires a fixed set of input tiles (needed data) from the input image,
whatever the non-linear kernel. In Fig. 1, we can see that each set of required input
tiles (left image) varies both in shape and in area, as well as in the case of output
tiles (right image).

In order to deal with the non-linearity of kernels, a co-designed architectural solu-
tion, that creates ad-hoc memory hierarchies, was proposed by Mancini et al. [14] to
address this challenge. This software tool, called Memory Management Optimiza-
tion (MMOpt), takes as input a non-linear kernel for which the memory hierarchies
is to be produced, such as the one shown in Fig. 1; it analyzes its access patterns;
it then designs a run-time behavior for the whole resulting block, a so-called Tile
Processing Unit (TPU); and it finally outputs the design of the TPU, together with
the information needed to orchestrate its operational behavior.

We give some details about the architecture of the TPU, as shown in Fig. 2. It is
made of (a) a Prefetching Unit (PU) that loads data from external memory to local
buffers, and (b) a Processing Engine (PE), that implements the kernel and requests
the prefetched data into input tiles buffers to compute output data. MMOpt computes
and encodes into the TPU a schedule of prefetches, a mapping of tiles to buffers,
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Fig. 2 Architecture
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and a schedule of computations. Hence memory accesses in the final system are
deterministic (i.e. independent of pixel values), and this is a requirement of the input
kernel for the whole MMOpt scheme to work out.

2.2 The MMOpt’s Optimization Challenge

When designing electronic circuits, some of the important design criteria are the
area of the circuit produced, since it is directly related to production costs; the energy
consumption, whichmay be limited, andwhich conditions the battery life for battery-
powered devices; and the performance, which is usually a design parameter reflecting
reactivity, and fluidity in the case of moving images.

TPUs produced by MMOpt embed schedules for the prefetches of input tiles and
the computations of output tiles (see Fig. 3). In this figure, it is also possible to have
pauses in between computations, so as to limit the number of necessary buffers.

The architecture of the TPU and those schedules will impact the three design
characteristics in the following way: the number of buffers of the TPU will account
for most of its area; the number of prefetches reflects the main part of the energy
consumption; and the performance is related to the completion time of the whole
prefetches-computations schedule for the computation of one image.
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Fig. 3 Prefetches and computations schedules
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Since MMOpt is a fully automatic electronic design software, computing good
schedules is both a necessity and an opportunity for the circuit designers to deliver,
with the help ofMMOpt, low-cost, low-energy and efficient TPUs. Thus, this chapter
introduces a set of new optimization algorithms that allow us to provide efficient
solutions for MMOpt’s user.

3 The 3-Objective Process Scheduling
and Data Prefetching Problem

It is well known that the Integer Linear Programming (ILP) formulation is used in
the OR as a modeling approach for the optimization problems. In this study, we
have chosen to formulate our optimization issue by an off-line 3-objective schedul-
ing model, with clearly delineated inputs and outputs, which we now present. This
multi-objective formulation is a very flexible modeling approach that allows to deal
precisely with specific sub-problems.

3.1 Problem Statement and Assumptions

The main multi-objective optimization problem considered in this paper is called 3-
objective Process Scheduling and Data Prefetching Problem (3-PSDPP). It involves
the definition of the scheduling of output tiles computations and the scheduling of
input tiles prefetches, whilemeeting a requirement constraint between prefetches and
computations, and simultaneously minimizing the number of prefetches, the number
of buffers of the TPU, and the total completion time.

Before giving a formal presentation of 3-PSDPP, we list some assumptions to
clarify some constraints that all TPUs produced by MMOpt, which are set up by
Mancini et al. [14], have to satisfy. These assumptions can be summarized as follows:

• Input tile sizes are identical and each input tile fits exactly into one buffer.
• There is no distinction between buffers, i.e. any input tile may be prefetched into
any buffer.

• All input (respectively output) tiles and the subset of input tiles required to compute
each output tile are known in advance.

• Only one input (output) tile can be prefetched (computed) at a time.
• The prefetch operations and the computation steps may be carried out simultane-
ously.

• Input (output) tile prefetch (respectively computation) times are constant and
identical.
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Table 1 Mathematical formulation for 3-PSDPP

Inputs X = {1, . . . ,X},Y = {1, . . . ,Y}, where X,Y ∈ N
∗

Ry ⊆ X ,∀ y ∈ Y
α, β ∈ N

∗

Outputs (pi)i∈N , where pi = (di, bi, ti) and N = {1, . . . ,N}
(cj)j∈M, where cj = (sj, uj), M = {1, . . . ,M} and M = Y

(N,Z,Δ), where N,Z,Δ ∈ N
∗

Constraints (1) ∀ y ∈ Y, ∃ j ∈ M / sj = y

(2) ∀ j ∈ M,∀x ∈ X , x ∈ Rsj ⇒ (∃ a ∈ {1, . . . , uj − α}, ∃ i ∈ N/ti =
a, di = x & (∀a′ ∈ {a + α, . . . , uj + β − 1},∀i′ ∈ {i + 1, . . . ,N}, ti′ =
a′ ⇒ bi′ �= bi))

(3) ∀ i ∈N\{1}, ti ≥ ti−1 + α

(4) ∀ j ∈M\{1}, uj ≥ uj−1 + β

Objectives min N,min Z,min Δ

3.2 Formulation for 3-PSDPP

We now describe the input data of our 3-PSDPP scheduling problem, the expected
output, the constraints, and the 3 formal objectives reflecting the 3 electronic design
characteristics. A mathematical formulation is summarized in Table1.

3.2.1 Inputs

A 3-PSDPP instance is represented by a 5-tuple (X , Y , (Ry)y∈Y , α, β), where X is
the set of input tiles to be prefeteched, and Y is the set of output tiles to be computed
successively without preemption. Each output tile y requires its own set of input tiles,
denoted by Ry. Also, the duration of a prefetch step α, and that of a computation
step β, have to be given as input.

3.2.2 Outputs

A feasible solution to such an instance is defined by ((pi)i∈N , (cj)j∈M, Z , N , Δ),
which are described as follows:

• Configuration of the prefetched input tiles: we denote by (pi)i∈N the prefetch
sequence, where pi = (di, bi, ti) encodes which input tile di is prefetched in which
buffer bi and at which time ti.

• Configuration of the computed output tiles: we denote by (cj)j∈M the compu-
tation sequence, where cj = (sj, uj) encodes which output tile sj is to be computed
at which time uj.
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• The values for the three criteria (Z ,N ,Δ): we denote by Z the number of buffers;
N is the total number of prefetched input tiles; and Δ is the total completion
time, meaning the total time it takes for the whole operation of the TPU from the
beginning of the first prefetch to the end of the last computation of one full image.

3.2.3 Constraints

The first constraint (1) on solutions is that for each output tile y, there exists a
computation step j in which this output tile is computed. The second and main
constraint (2) ensures that all the input tiles Ry required by y have to be prefetched
from the external memory to the internal storage area (buffers) before the start date
uj of its associated computation step, and will not be overwritten until its end date.
Input tiles already prefetched earlier can be reused, provided they have not been
overwritten. Constraints (3) and (4) guarantee that different input (output) tiles cannot
be prefetched (computed) simultaneously.

3.2.4 Objectives

In the formulation above, the three objectives have to be minimized are: (i) the
number of prefetches N reflects the main part of the energy consumption due to
the data transfer between external memory and the TPU; (ii) the number of buffers
Z of the TPU will account for most of its area, and is related to cost; and (iii) the
completion time Δ accounts for the performance of the TPU.

3.3 Sub-problems of 3-PSDPP

From this multi-objective problem 3-PSDPP, we derive several mono- and bi-
objective sub-problems. The three natural mono-objective sub-problems are:

• Minimum Buffers of 3-PSDPP (MB-PSDPP), in which the number of buffers Z
is to be minimized.

• Minimum Prefetches of 3-PSDPP (MP-PSDPP), in which the number of
prefetches N is to be minimized.

• Minimum Completion Time of 3-PSDPP (MCT-PSDPP), in which the comple-
tion time Δ is to be minimized.

For the remaining sub-problems to be presented, the number of buffers Z will be
fixed as input data. Hence, we consider three variants which are described as follows:

• Prefetching and Scheduling Problem (PSP), where the number of buffers Z is
fixed as input, the completion time Δ has to be determined as an output data and
the number of prefetches N is to be minimized.
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• Data Prefetching Problem (DPP), which is the variant of PSP, where the com-
putation sequence is given as part of the input.

• Buffer-Constrained Minimum Completion Time Problem (B-C-MCTP),
where the number of buffers Z is fixed as input, the number of prefetches N has
to be determined as an output data and the completion time Δ is to be minimized.

• 2-objective Process Scheduling and Data Prefetching Problem (2-PSDPP),
where the number of buffers Z is fixed, and both N and Δ are to be minimized.

4 State of the Art

We now review the state of the art regarding the previous work that proposed by
Mancini et al. [14, 15] and the relation with some closest classical optimization
problems found in the OR literature.

4.1 Previous Work on MMOpt’s Optimization

Since the use of OR methods for optimizing the running of the TPU produced by the
MMOpt tool is still an emerging field, we found only one systematic study of the
published literature ofMMOpt from 2012, done byMancini et al. [14, 15]. This study
is the only generic proposition that allows a significant performance improvement,
and that is applicable to any non-linear kernel. It only gives a description of two
algorithms that provide solutions, without defining a formal sketch, to the related
optimization problem which represents the main focus of our work.

The first algorithm is M1, for which both the number of prefetches N and the
completion time Δ are minimized. The second one, called M2, aims at minimizing
both the number of prefetches N and the number of buffers Z . The algorithm M1

proceeds in three steps which we call, respectively, Computations, Prefetches, and
Destinations. Furthermore, M2 comprises four steps, the first two, and the last of
which are those of M1. The third step is Delay Computations.

We now give some explanations about the flowchart shown in Fig. 4, which out-
lines the various steps already mentioned in the previous paragraph.

• Step1 - Computations: this step encodes the order in which a batch of output tiles
has to be successively computed, one at a time. The traffic to the external memory
is minimized by performing this step.
To construct the computation sequence, Mancini et al. [15] solve an instance of
the Asymmetric Traveling Salesman Problem (ATSP) to find a Hamiltonian Path
in the complete directed graph

−→
G whose vertices are the set of output tiles, and

whose arcs are weighted by ϕ(k, l), where (k, l) is a pair of output tiles, in which
the output tile k will be computed before the output tile l. The function ϕ(k, l)
defines the number of additional input tiles to be prefetched for computing the
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Start

Inputs: X , Y, (Ry)y∈Y , α, β

Step1: Computations

Computation Sequence: (sj)j∈M

Step2: Prefetches

Prefetch Sequence (di)i∈N , N , Δ

Step3: Delay Computations

Z, Δ Step4: Destinations

Sequence of Destination Buffers: (bi)i∈N

End

M1
M2

Fig. 4 Flowchart for algorithms M1 and M2

output tile l (|Rl\Rk|), when all input tiles shared between k and l are already
prefetched.

• Step2 - Prefetches: in this step, the authors determine the schedule of prefetches
associated to the computation sequence given by step 1. This schedule encodes
which input tile should be prefetched from the external memory to the buffers
at each moment. In fact, in parallel to each computation step, they prefetch the
additional input tiles needed for the next computation.

• Step3 - Delay Computations: in this step, in order to reduce buffer usage, the
authors simply delay some computations when necessary.

• Step4 - Destinations: this step computes in which buffer to place each prefetched
input tile.

4.2 Related Problems from the OR Literature

To the best of our knowledge, the 3-PSDPP scheduling problem introduced in this
paper has not been studied before in the OR literature. We now relate some of its
sub-problems to similar ones in the OR literature.
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We first focus on the uniform variant of Tool Switching Problem (ToSP) arising
in the flexible manufacturing context. In this problem, we consider a set of jobs to be
processed sequentially without preemption on a single machine, and a set of tools to
be loaded on a magazine with a limited capacity. Each job requires a subset of tools
to be loaded on the tool magazine of the machine before the job can be processed. In
most practical situations, themagazine cannot hold all tools at once, so that some tool
switches may be necessary when performing two jobs in succession. A tool switch
consists of removing a tool from the magazine and inserting another one in its place.

The ToSP involves optimally sequencing jobs and assigning tools to a capacitated
magazine in order to minimize the total number of tool switches. Several variants
and extensions of the ToSP are surveyed in Blazewicz and Finke [7], in Crama [9]
and in Balakrishnan and Chakravarty [3].

The general ToSP was first considered by Tang and Denardo [17]. They showed
that the ToSP for a given job sequence, called Tooling Problem (TP), can be solved
in polynomial time by means of a Keep Tools Needed Soonest (KTNS) algorithm.
The KTNS policy states that when tool changes are necessary, the tools required the
soonest for an upcoming job should be kept first in the magazine.

On the other hand, when the job sequence is to be determined, Crama et al. [10]
showed that the ToSP is already NP-Hard for any fixed tool magazine capacity larger
than or equal to 2. Different optimization techniques, including exact — based on
Integer Linear Programming (ILP) formulation— and heuristic methods, have been
applied to its resolution (see Bard [4]; Privault et Finke [16]; Laporte et al. [13];
Konak et al. [12]; Amaya et al. [1]; Catanzaro et al. [8]).

5 Models Analysis

For validating the efficiency of the proposed approaches, we first develop three lower
bounds lbN , lbZ , and lbΔ for the different optimization criteria (N,Z,Δ). We then
give complexity results for the different mono-objective sub-problems of 3-PSDPP
problem described in Sect. 3.3.

5.1 Lower Bounds

Proposition 1 X − |Ω| is a lower bound on the number of prefetches for the 3-
PSDPP, where Ω denotes the set of input tiles which are not required by any output
tile.

Proof For any solution to some given instance of 3-PSDPP, all input tiles that are
required at least once for the computation of an output tile have to be prefetched
at least once to some buffer. Hence the total number of prefetches cannot be less
than X − |Ω|.
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Proposition 2 max
y∈Y

|Ry| is a lower bound on the number of buffers for the 3-PSDPP.

Proof Fix an instance of 3-PSDPP, and a feasible solution for that instance.When an
output tile is computed, all the required input tiles have to be simultaneously present
in the buffers. Hence max

y∈Y
|Ry| is a lower bound for the number of buffers in the

solution.

Proposition 3 lb1 = α ∗ X ′ + β and lb2 = α + β ∗ Y are lower bounds on the com-
pletion time Δ for the 3-PSDPP.

Proof Fix an instance of 3-PSDPP, and a feasible solution for that instance. Since
all the input tiles have to be loaded before the last computation starts, the completion
time is at least α ∗ X ′ (for the prefetches) plus β (for the computation of the last
output tile).

Likewise, all output tiles have to be computed, and no computation can start before
a first input tile has been prefetched. Hence the completion time is lower bounded
by β ∗ Y (computation time for all output tiles) plus α (prefetch time for the first
prefetch).

Thus, the completion time Δ is lower bounded by the maximum between the two
lower bounds lb1 and lb2: lbΔ = max{lb1, lb2}.

5.2 Basic Complexity Results

Theorem 1 MB-PSDPP is solvable in polynomial time (MB-PSDPP ∈ P)

Proof Consider a particular instance ofMB-PSDPP, we give a polynomial algorithm
for which the number of buffers Z equals its lower bound (Zmin = lbZ ).

The main idea of this algorithm is that the prefetch steps can not be carried out in
parallel with the computation steps. In this method, we first fix the number of buffers
Z to max

y∈Y
|Ry|. Then, for each output tile, we prefetch all its required input tiles into

the Z buffers before the corresponding computation step starts.

Theorem 2 MP-PSDPP is solvable in polynomial time (MP-PSDPP ∈ P)

Proof To any given instance of MP-PSDPP, we give a polynomial algorithm for
which the number of prefetches N equals its lower bound (Nmin = lbN ).

In this method, we first prefetch successively all the input tiles in X ′, where
X ′ = X \Ω and Ω denotes the set of the input tiles which are not required by any
output tile. Then, when the prefetch steps are finished, all output tiles are successively
computed.

Theorem 3 PSP is NP-hard for any fixed number of buffers Z ≥ 2
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Theorem 4 DPP is solvable in polynomial time (DPP ∈ P)

Proof Consider a particular instance of PSP,we have proved the equivalence between
PSP and the ToSP, which is described in Sect. 4.2. In the description of the PSP
problem, both input and output tiles (X , Y) are regarded as ToSP data (tools, jobs).
The incidence matrix Tools×Jobs can then be regarded as the requirements of input
tiles needed to compute all the output tiles (Ry)y∈Y . The fixed number of buffers Z is
the analogue of the capacity of the tool magazine. In addition, finding a computation
sequence for minimizing the total number of prefetches corresponds to finding a
job sequence for minimizing the total number of tools loadings. Thus, PSP is NP-
Complete.

When the the computation sequence is given as input data, we have proved the
equivalence between DPP and the TP, a polynomial variant of ToSP. Hence, DPP is
polynomially solvable.

This equivalence allows us to adapt the KTNS (Keep Tools Needed Soonest)
algorithm, as described by Tang and Denardo [17] for solving the TP, to give an
optimal solution for DPP. We call this adaptation KTNS (Keep Tiles Needed Soonest)
Adapted to DPP (KAD). A more detailed description of this specific adaptation
can be found in [11]. On the other hand, in the case of PSP, we have developed an
algorithm, named KTNS Adapted to PSP (KAP), to solve it.

Theorem 5 B-C-MCTP is NP-Complete

Proof Note that the B-C-MCTP can be easily solved by a polynomial time nonde-
terministic algorithm (B-C-MCTP ∈ NP), we then give a polynomial-time reduction
from the “Edge Hamiltonian Path” (EHP) problem to B-C-MCTP problem: EHP
∝ B-C-MCTP.

The EHP problem is a combinatorial optimization problem for general graphs.
Let G = (V,E) be an undirected graph comprising a set V of vertices together with
a set E of edges and H = (E, I) be its edge-graph, where each vertex E of H is an
edge of G and each pair {e, f } (e, f ∈ E) is an edge of H if and only if e and f share
a common vertex in G. The EHP problem consists in finding a Hamiltonian Path
in H. Note that a Hamiltonian Path is a path that visits each vertex exactly once.

We are going to prove that the EHP problem can be formulated as a special
case of the B-C-MCTP problem, where Z is fixed as input (Z = max

y∈Y
|Ry|), β = 1

and α = β ∗ Y = Y units of time. Let G = (V,E), where V = {1, 2, . . . ,X ′} and
E = {e1, e2, . . . , eY ′ }, be an instance of the EHP problem, we then define an X × Y
matrix R, with rows associated to X ′ vertices of G, columns associated to the Y ′
edges of G, and such that rxy = 1, if edge ey contains vertex x, and 0 otherwise. Note
that the number of prefetches N is the only relevant information to the B-C-MCTP
under consideration. Meaning that the completion time can be determined, in this
case, by the quantity α ∗ N + β = α ∗ N + 1 (since β = 1).

Consider nowR as an instance of the B-C-MCTP, where Z = max
y∈Y

|Ry|. A com-

putation sequence for this problem corresponds to a permutation of E. Also, we can
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see that the number of prefetches between two successive computations j and k, cor-
responding to the edges ej and ek ofG, equals Z − 1, and henceN equals Y ′ + Z − 1.

Therefore, finding an optimal computation sequence, with aminimum completion
time Δ, amounts to finding aHamiltonian Path inH, in which Δ equals α(Y ′ + Z −
1) + 1. Since EHP is NP-Complete [6], we conclude that the general B-C-MCTP
is NP-Complete.

For the MCT-PSDPP sub-problem, in which the completion time Δ is to be min-
imized, we have not yet been able to determine its complexity. In contrast, we have
developed a set of three heuristics methods— called Earliest Computations forMCT
(ECM), Computation Grouping for MCT (CGM) and Computation Classes for MCT
(CCM) — to solve it. A detailed description of these algorithms will be given in
Sect. 6.3.

6 Solution Methods

Dealing with a multi-objective optimization problem (3-PSDPP), with contradictory
objectives such as low cost, low energy and high performance, it is difficult to find
a unique solution to solve it. Therefore, an important question is the existence of
polynomial time algorithms to find good solutions to it. We then focus on the devel-
opment of polynomial constructive heuristics to solve some of its sub-problems.
These approaches allow us to provide useful solutions for MMOpt’s user.

6.1 Algorithm KAP for PSP

We have developed the KTNS Adapted to PSP (KAP) algorithm for solving the
PSP sub-problem of 3-PSDPP, in which the number of buffers Z is fixed as input
(Z ≥ max

y∈Y
|Ry|), the total completion time Δ has to be determined and the number

of prefetches N is to be minimized. In contrast to DPP, the order in which the
computations have to be carried out is not given as input, and has to be determined.

The KAP algorithm proceeds in two steps as follows:

• Step1 - Find a Computation Sequence: in this step,wedetermine the computation
sequence by solving the same instance of an ATSP as step 1 of both algorithms
M1 and M2 (see Sect. 4.1).

• Step2 - KAD Algorithm: in this step, we determine the schedules of both the
prefetches and computations with an optimal number of prefetches N by apply-
ing the polynomial KTNS (Keep Tiles Needed Soonest) Adapted to DPP (KAD)
algorithm (see the proof of Theorem 4 given in Sect. 5.2).
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Note that the KAD algorithm will be also an intermediate step in the SPbP
algorithm presented in the following subsection.

6.2 Algorithm SPbP for 2-PSDPP

We have developed a solution approach called Shifted Prefetches for bi-PSDPP
(SPbP) for solving the 2-PSDPP sub-problem of 3-PSDPP, in which the number of
buffers Z is fixed as input (Z ≥ max

y∈Y
|Ry|), and both the number of prefetches N and

the completion time Δ are to be simultaneously minimized.
The SPbP algorithm proceeds in the following steps:

• Step1 - Find a Computation Sequence: this step is the same as the first step of
the KAP algorithm described in Sect. 6.1.

• Step2 - KAD Algorithm: this step is the same as the second step of the KAP
algorithm described in Sect. 6.1.

• Step3 - “Shifting Prefetches”: in this step, in order to minimize the total com-
pletion time Δ, we shift in the resulting schedules of prefetches — given by the
KAP algorithm— those that can be carried out in parallel with the previous com-
putation step, by checking that no required input tiles of the output tile in this step
were overwritten until its end date. The new start dates of both the prefetches and
computations schedules together with the value of the total completion time Δ are
then computed.

6.3 Algorithms for MCT-PSDPP: ECM, CGM and CCM

For solving theMCT-PSDPP sub-problem of 3-PSDPP, inwhich the total completion
time Δ is to be minimized, we have developed a set of three algorithms to solve it.
They are called Earliest Computations for MCT (ECM), Computation Grouping for
MCT (CGM) and Computation Classes for MCT (CCM). For all these algorithms,
the number of prefetches N equals its lower bound lbN and the number of buffers Z
equals its number of required input tiles X ′, where X ′ = X \Ω .

We now give a brief description of the different steps for each one of them in the
following subsections.

6.3.1 Algorithm ECM for MCT-PSDPP

The main idea of the ECM algorithm is to compute the output tiles at the earliest,
while respecting the input tiles requirement constraint.

The ECM algorithm consists of two steps as follows:
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• Step1 - Find a Prefetches Schedule: we first calculate the number of occurrences
Oc(x), for each input tile x in (Ry)y∈Y . Then, the prefetchesdi, i ∈ N are sequenced
in their decreasing order of Oc(x),∀x ∈ X .

• Step2 - Find a Computations Schedule “At Earliest”: for each computation j, j ∈
M, it is determined when it can be scheduled at the earliest. The corresponding
date is the end of the loading of the latest prefeteched tile among its required input
tiles. Computations sj, j ∈ M are scheduled greedily in this order, while making
sure to respect these “at earliest” dates.

6.3.2 Algorithm CGM for MCT-PSDPP

The main idea of the CGM algorithm is to find a set of groups G, where a Group G
defines a set of output tiles y, y ∈ Y which share the same required input tiles. More
formally, consider an output tile y, y ∈ Y , a Group G of y is defined by G(y) = {g :
g ∈ Y, g �= y, and Rg ⊆ Ry}.

The CGM algorithm proceeds in two steps as follows:

• Step1 - Find a Computation Sequence Using Groups G: we first determine the
set of groups Y ′, associated to the set output tiles y, y ∈ Y , while ensuring that
each output tile y, y ∈ Y belongs to exactly one group G. Note that a Group G(y)
is a set of output tiles to be successively computed after y while the required input
tiles by y are prefetched in the internal buffers. Then, the computations sj, j ∈ M
are sequenced in their increasing order of |Ry|,∀y ∈ Y ′ and Y ′ ⊆ Y .

• Step2 - Find Prefetches and Computations Schedules: in this step, for each
output tile y, y ∈ Y ′, when the corresponding computation step j is started, we
prefetch the set of input tiles which are required by the computation step j + 1
but have never been prefetched during all the previous computations j − k, k ∈
{1, . . . , j − 1} and j ∈ {1, . . . , |Y ′|}. This ensures that each input tile x, x ∈ X
is prefetched only once. Then, prefetches di, i ∈ N are scheduled in this order,
while making sure to respect the corresponding buffer, which means that each
prefetch is performed in its own buffer. The start dates of both the prefetches and
computations schedules together with the value of the total completion time Δ are
then computed.

6.3.3 Algorithm CCM for MCT-PSDPP

The main idea of the CCM algorithm is to construct a set of classes C, where a Class
C defines a set of output tiles y, y ∈ Y that together require at most Z0 input tiles.
More formally, C is a Class if and only if

∣
∣
⋃

y∈C
Ry

∣
∣ ≤ max

y∈Y
|Ry|.
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The CCM algorithm proceeds in the following steps:

• Step1 - Find a Computation Sequence Using Classes C: this step consists in
finding a feasible partition of classes P , associated to the set of output tiles Y . We
make sure that each output tile y, y ∈ Y belongs to exactly one set Pk in P and Pk

is a Class. Note that a Class C is a set of output tiles that can be computed without
incurring any new input tile prefetches, while making sure that all its required
input tiles are being available in the internal buffers.
For the sequencing of the set of classes in this partition, we have proposed three
ideas which can be outlined as follows:

1. CCM1: we first calculate the number of shared input tiles Ns(C), for each class
C in P . Ns(C) defines the total number of shared input tiles between the class C
and each class C′ in P\C. More formally, given a pair of two classes (C,C′), the
number Ns(C) between C et C′ equals |C ∩ C′|: Ns(C) =

∑

C′∈P

∣
∣C ∩ C′∣∣. Then,

the set of classes inP are sequenced in their decreasing order of Ns(C),∀C ∈ P .
2. CCM2: we first calculate the number of occurrence No(C), for each class

C in P . No(C) defines the total number of Oc(x) for the class C, where
x ∈ Ry(C) =

⋃

y∈C
Ry and Oc(x) represents the number of occurrences for the

input tile x in Ry(C)C∈P : No(C) =
∑

x∈Ry(C)

Oc(x). Then, the set of classes in P

are sequenced in their decreasing order of No(C),∀C ∈ P .
3. CCM3: in this case, the set of classes in P are sequenced in the decreasing order

of the number of output tiles that belong to each class C: |C|,∀C ∈ P .

Note that the set of output tiles in the same class C, in the context of the three
ideas given above (CCM1, CCM2 and CCM3), are sequenced in their decreasing
order of |Ry|,∀y ∈ C and ∀C ∈ P .

• Step2 - Find Prefetches and Computations Schedules: in this step, we compute
successively the set of output tiles that belong to the same class C, while making
sure that their Z corresponding required input tiles (

∣
∣
⋃

y∈C
Ry

∣
∣) are prefetched and

being available in the internal buffers. Then, prefetches are scheduled in this order,
while making sure that each input tile x, x ∈ X is prefetched only once and each
prefetch is performed in its own buffer. The start dates of both the prefetches and
computations schedules together with the value of the total completion time Δ are
then computed.

In the next section, we give an extension of the different heuristics under consid-
eration by taking into account, the minimization of the different optimization criteria
(N , Z and Δ) simultaneously.
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6.4 Solutions for 3-PSDPP

As it has been mentioned in Sect. 2.2, our main optimization challenge related to the
MMOpt tool is formalized as a 3-objective optimization problem, with contradictory
objectives such as low cost (Z), low energy (N) and high performance (Δ). To solve
it, we have developed four extensions of some of our proposed heuristics named,
respectively, Extended SPbP (E-SPbP), Extended ECM (E-ECM), Extended CGM
(E-CGM) and Extended CCM (E-CCM) for 3-PSDPP. The main idea of each one of
them can be summarized as follows:

• Algorithm E-SPbP for 3-PSDPP: on the basis of the previously described SPbP
algorithm (see Sect. 6.2), we can reuse it as an efficient resolution method for
producing solutions to the main 3-PSDPP problem. By varying the number of
buffers Z , from its lower bound lbZ to an upper value uvZ (may be defined as
uvZ = ∑

y∈Y |Ry| or uvZ = X ′), MMOpt’s user can explore the design space to
choose his favorite compromise solution.

• Extended MCT’s Algorithms for 3-PSDPP: for each one of the three algorithms
(ECM, CGM and CCM), which were proposed for solving the MCT-PSDPP (see
Sect. 6.3), we consider three extended versions to solve the main 3-PSDPP. These
algorithms are E-ECM, E-CGM and E-CCM. For each one of them, we added
a third step, called Reduce Buffers Usage, in order to minimize the number of
buffers Z . In this step, we simply reuse some buffers when the corresponding
prefetched input tile will no longer be used after its last associated computation
step.

6.5 Flowcharts for Our Proposed Methods

We now give a set of four flowcharts — shown in Figs. 5, 6, 7 and 8 — that defines
the list of shared or combined steps, between all our proposed algorithms.

The different steps of both KAP and SPbP algorithms are outlined in Fig. 5. As
shown in this figure, the KAP algorithm represents the first two steps of the SPbP
algorithm.

In the same way, the different steps of both ECM and E-ECM algorithms are
outlined in Fig. 6, as well as the steps of both CGM and E-CGM algorithms which
are outlined in Fig. 7. As shown in these figures, the ECM algorithm represents the
first two steps of the E-ECM algorithm and, similarly, the CGM algorithm represents
the first two steps of the E-CGM algorithm.

The flowchart of Fig. 8 summarizes the main steps of the CCM algorithm. As
shown in this figure, the CCM algorithm represents the first two steps of the E-CCM
algorithm.
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Fig. 5 Flowchart of KAP and SPbP algorithms
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(bi)i∈N , Z End

ECM
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Fig. 6 Flowchart of ECM and E-ECM algorithms
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Fig. 7 Flowchart of CGM and E-CGM algorithms
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Fig. 8 Flowchart of CCM and E-CCM algorithms
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7 Experiments and Results

In this section, we present a series of simple numerical experiments to evaluate the
performance of the developed algorithms, namely KAP, SPbP, ECM, CGM, CCM,
E-ECM, E-CGM, E-CCM and E-SPbP for 3-PSDPP, which are described in Sect. 6.

7.1 Data Sets

Experiments were conducted using a set of 5 benchmarks from real-life non-linear
image processing kernels already used byMancini et al. [14]. Note that the incidence
matrices of the kernels are our input, not the image processed by the kernel.

Table2 shows the characteristics of the test instances that were used, together with
the values forX (number of input tiles) andY (number of output tiles to be computed).
As summarized in this table, the benchmarks are variations of four kernels (fisheye,
polar, fd resize, and fd haar) for which the input data structure (multi-resolution
(an)isotropic mipmap input data) is modified. In fact, the first four kernels represent
geometric non-linear transformations (see Thornton et al. [18] and Bellas et al. [5]).
The fifth kernel, which represents a kernel of a face detection (fd) application based
on haar features, creates a pyramidal multi-resolution image (see Viola et al. [19]).
The input image tiles number varies between 350 and 7000, and the number of the
output tiles varies between 150 and 1200 tiles.

Table2 also gives for each kernel the values of the different lower bounds
(lbZ , lbN , lb1, lb2, lbΔ), that are developed in Sect. 5.1. These lower bounds allow
us to evaluate the performances of our proposed approaches.

Table 2 Parameter values of data sets and lower bounds for N , Z , and Δ

No Kernel Input data
type

X Y lbZ lbN lb1 lb2 lbΔ

1 Fisheye Mipmap
isotropic

352 158 13 224 452 477 477

2 Fisheye Mipmap
anisotropic

704 158 21 360 724 477 724

3 Polar Mipmap
anisotropic

4225 112 20 244 492 339 492

4 Fd
Resize

Mipmap
isotropic

1280 1186 13 429 862 3561 3561

5 Fd
Haar

Pyramidal
integral
image

7040 428 96 2272 4548 1287 4548
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7.2 Numerical Results

This section presents an experimental analysis of the performance of the different
algorithms. All the algorithms were coded in Python, except the ATSP part which
was re-encoded as a TSP, and run throughConcorde’s implementation of the Chained
Lin-Kernighan heuristic for the TSP (see Applegate et al. [2]). Tests were run on a
computer powered by an Intel Core i5 processor clocked at 2.60 GHz. All our tests
were carried out for the case where α = 2 and β = 3 time units. The running time of
all the different algorithms is in the order of a few minutes, which is very reasonable
given the application context.

We first analyze the performance of both KAP and SPbP algorithms. We recall
that the number of buffers Z is considered as an input data, where Z ≥ max

y∈Y
|Ry|. In

order to compare our proposed methods to the ones formerly used in the MMOpt
tool (M1 and M2), we define two different values of Z , Z1 and Z2, as follows:

• The value of Z1 is larger than the lower bound lbZ (Z1 � lbZ ), for which the
MMOpt’s algorithmM1 reaches the maximum number of buffers and the comple-
tion time is minimized.

• Whereas, Z2 gives the minimum number of buffers (Z2 equals its lower bound lbZ ).

Table3 summarizes the numerical results for both KAP and SPbP algorithms,
where Z is fixed to Z1, respectively to Z2, and those of the algorithmsM1, andM2 on
different data sets described in Table2. For the 5 kernels shown on row 1, the third
row gives the number of prefetches N , the number of buffers Z , and the completion
time Δ for the algorithmsM1, andM2 specified on row 2. For both cases Z1, and Z2
specified on row 4, the N and Δ achieved by the KAP algorithm are then given in
row 5. The sixth row (Gain 1) shows the relative improvements of KAP — on each
problem instance I given in Table2 — with respect toM1/M2 relatively to the lower
bound, which is measured by the following formula:

�KAP(I) =
((

MMOpt(I) − KAP(I)
)

/
(

MMOpt(I) − Bound(I)
)) ∗ 100

Similarly, both N and Δ achieved by the SPbP algorithm are then given in row 7.
The eighth row (Gain 2) shows the relative improvements of SPbP with respect to
M1/M2 relatively to the lower bound using the same previous formula �SPbP(I).

The three last rows give for each of the algorithms M1, M2, KAP, and SPbP, the
ratio of the achieved completion time Δ to the lower bound lbΔ (given in Table3).
The column Average provides the average gains (%) for all the kernels in the case of
Z1 (Av. 1), respectively, of Z2 (Av. 2).

As illustrated in Table3, the number of prefetches, by running the KAP algorithm,
is reduced with an average reduction of 57.5% (Z1), respectively, of 36.8% (Z2). In
contrast, the completion time is increased, with an average increase of 14.9% (Z1),
respectively, of 22% (Z2). This is due to the absence of overlap between the prefetches
and computations in the schedules produced by the KAP algorithm.
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In addition, due to the reuse of the KAP algorithm as a subroutine of the SPbP
algorithm, the traffic to the external memory is reduced with the same average reduc-
tion of 57.5% (Z1), respectively, of 36.8% (Z2). In contrast to KAP, minimizing Δ

by SPbP leads to a 37.1% (Z1), respectively, to a 25% (Z2) decrease in average of the
completion time.

In the same way, a comparison between the completion time Δ achieved by each
of MMOpt’s original algorithms (M1 andM2), KAP, and SPbP and the lower bound
lbΔ, is considered. A comparison against the lower bound provides a measure of
deviation from optimality. It is used as a performance indicator, and calculated by
taking the ratio of Δ to lbΔ.

As shown in Table3, for both cases Z1, and Z2, the completion time Δ of SPbP
algorithm is in average closer to the value of lbΔ than the different values given by
each of the algorithmsM1,M2, and KAP. It is at most twice the value of lbΔ. This is
achieved by delaying computations as ameasure to spare the buffers. Thismeans also
that the SPbP algorithm gives a better completion time Δ than the other methods.

We next analyze the performance of the ECM, CGM, E-ECM and E-CGM algo-
rithms. We recall that the number of prefetches equals its lower bound lbN in the
context of the different algorithmsunder consideration:NECM = NE−ECM = NCGM =
NE−CGM = lbN . However, the number of buffers Z is larger than its lower bound lbZ
(ZECM = ZCGM � lbZ ) and the completion time Δ is minimized in the context of
both ECM and CGM algorithms. Whereas, Z is minimized and Δ has the the same
values as those provided by both ECM and CGM algorithms, which are used as a
subroutine in the context of both E-ECM and E-CGM algorithms: ΔECM = ΔE−ECM

and ΔCGM = ΔE−CGM .
Figures 9 and 10 show, respectively, the completion time Δ found by each of the

ECM and CGM algorithms and the number of buffers Z provided by each of the
E-ECM and E-CGM algorithms for all the non-linear kernels given in Table2.

As shown in Fig. 9, the value of Δ provided by the CGM algorithm, for the first
four kernels, seems much closer to the one found by the ECM algorithm. In contrast,
the valueΔ found by the ECM algorithm equals its lbΔ in the case of the fifth kernel.
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Fig. 9 ECM and CGM results
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Fig. 10 E-ECM and E-CGM results

Table 4 Comparison of ECM, CGM, E-ECM and E-CGM against bounds

Kernel No 1 2 3 4 5 Average

ΔECM / lbΔ 1.14 1.01 1.11 1.02 1.00 1.05

ΔCGM / lbΔ 1.11 1.08 1.13 1.04 1.10 1.09

ZE−ECM /
lbZ

7.07 7.19 9.15 23.76 11.98 11.83

ZE−CGM /
lbZ

9.38 9.04 9.80 27.07 16.21 14.30

Similarly, Fig. 10 shows that the number of buffers Z found by the E-ECM algo-
rithm seems much better than the one provided by the E-CGM algorithm.

In the same way, Table4 gives a comparison between Δ, found by each of the
ECM and CGM algorithms, and its lower bound lbΔ, together with a comparison
between Z , provided by each of the E-ECM and E-CGM algorithms and its lower
bound lbZ . This comparison is calculated by taking the ratio, respectively, ofΔ to lbΔ

and of Z to lbZ .
As illustrated in Table4, the completion time Δ provided by the ECM algorithm

is very close, more than the one found by the CGM algorithm, to the value of its
lower bound lbΔ. This implies that the lbΔ is a good lower bound on the completion
time Δ for the main 3-PSDPP.

In addition, the number of buffersZ found by bothE-ECMandE-CGMalgorithms
is much larger than its lower bound lbZ .

We also analyze the performance of both CCM and E-CCM algorithms, which
are described in Sects. 6.3.3 and 6.4. Note that the CCM algorithm is used as a
subroutine of the E-CCM algorithm. Both CCM and E-CCM algorithms have the
same values for N , which equals its lower bounds (NCCM = NE−CCM = lbN ), and
forΔ. However, the number of buffers provided by the CCM algorithm is larger than
its lower bound lbZ (Z1 � lbZ ), which equals its number of required input tiles X ′,
and it is minimized in the context of the E-CCM algorithm.
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Fig. 12 E-CCM: results of Z

Figures 11 and 12 show the completion time Δ found by both CCM and E-CCM
algorithms together with the number of buffers Z provided by the E-CCM algorithm
— for the three ideas (CCM1, CCM2 and CCM3) proposed to sequence the partition
of classes found in the first step of this algorithm — for all the non-linear kernels
given in Table2.

As shown in these figures, all the values of Δ are close to each other. This means
that the minimization of the completion time can be done with a large variety of
methods that give almost the same value of Δ. In contrast, the value of Z provided
by the E-CCM algorithm for both CCM1 and CCM2 ideas, seems much better than
the one found in the context of the CCM3 proposition.

In the same way, Table5 gives a comparison between both Δ and Z values, found
by both CCM and E-CCM algorithms for each one of the three ideas (CCM1, CCM2
and CCM3), and its lower bounds lbΔ and lbZ .
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Table 5 Comparison between CCM and E-CCM against bounds

Kernel No 1 2 3 4 5 Average

ΔCCM /
lbΔ

CCM1 1.33 1.18 1.19 1.01 1.00 1.14

CCM2 1.33 1.17 1.18 1.01 1.00 1.13
CCM3 1.14 1.11 1.20 1.01 1.02 1.09

ZE−CCM /
lbZ

CCM1 11.30 11.28 8.45 21.46 11.64 12.82

CCM2 11.15 11.42 8.35 21.30 11.51 12.74
CCM3 12.00 12.61 10.45 28.61 14.33 15.60
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Fig. 13 E-SPbP - Energy versus Area

As shown in this table, all the values of Δ are very close to the value of its lower
bound lbΔ. However, the value of Z provided by each one of the three ideas is much
larger than its lower bound lbZ .

We finally analyze the performance of the E-SPbP algorithm, which is described
in Sect. 6.4. Figures13, 14 and 15 consider kernel 5 which is the biggest one tested
with more than 7000 input tiles. By varying the value of Z from Z2 = 96 to Z1 = 139
(note that the exploration of the whole interval is not executed), Fig. 11 presents for
each pair of criteria — (N,Z), (Δ,Z) and (Δ,N) — a set of ten different solutions,
giving three different views on the same solution set in order to let MMOpt’s user to
make a more informed decision-making about his favorite compromise solution.

As shown in both Figs. 13 and 14, when we increase the number of buffers Z , the
values of both N andΔ provided by the E-SPbP algorithm decrease. This means that
both energy and time decrease in the same way with respect to the increase of the
parameter area. However, Fig. 15 shows the simultaneous increase of both N and Δ

parameters. As shown in this figure, when the number of buffers is small, the E-SPbP
algorithm gives a large number of both N and Δ. In contrast, to find a good value for
both N and Δ, the number of buffers Z has the big value. This means that by varying
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the embeddedmemory area (Z), new trade-offs between the energy consumption (N)
and the computing time (Δ) can be then reached.

In summary, numerical experiments, which are conducted on a set of benchmarks
from real-life non-linear image processing kernels as used by Mancini et al. [14,
15], show that the schedules produced by each of our proposed algorithms give good
results for the different optimization criteria (N , Z , Δ).

According to contradictory needs of MMOpt’s user — which are the low cost,
the low energy and the high performance of the produced circuit —, his choice
depends on his decision about which criterion he first wants minimized. In fact, if
MMOpt’s user wants to optimize a one criterion at a time, he can then choose his
preferred algorithm from the set of polynomial heuristics described in Sect. 6, which
were proposed for solving each one of themono-objective sub-problems described in
Sect. 3.3. However, if he wants to optimize two or three criteria simultaneously, new
trade-offs between the embedded memory area, the computing time and the energy
consumption can be then reached:
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• The E-ECM, E-CGM and E-CCM algorithms, the provided number of prefetches
N has an optimal value, which equal its lower bound lbN , and a completion time
Δ close to its lower bound lbΔ. However, they use a large value of Z , which equals
in average 13.45 ∗ lbZ .

• In the context of the E-SPbP algorithm, by varying the number of buffers Z , a set
of compromise solutions was proposed that allows us to provide useful ones for
MMOpt’s user. In this case, he can choose his favorite compromise solution from
the design space that he wants or needs.

8 Conclusion and Future Work

In this chapter, we have investigated a new multi-objective scheduling optimiza-
tion problem, 3-PSDPP, arising in the context of embedded vision systems. This
optimization challenge reflects the efficient operation of the TPUs produced by the
MMOpt tool, which is proposed byMancini et al. [14, 15] as an architectural solution
that creates an ad-hoc generator of memory hierarchies suited for non-linear access
patterns to alleviate the problematic of memory management (“Memory Wall”). We
demonstrated how optimization techniques from OR help us build efficient solutions
to enhance the electronic characteristics of the circuits produced by MMOpt, such
as production cost, energy consumption and performance.

We gave a specific mathematical model to formulate this problem, as well as sev-
eral sub-problems (mono- and bi-objective) of interest, proved some lower bounds,
and analyzed the complexity of its mono-objective sub-problems. Several polyno-
mial constructive heuristics were proposed to solve the main 3-PSDPP together
with its sub-problems. To evaluate their effectiveness, numerical experiments were
conducted on the same real-world data set as used byMancini et al. [14, 15]. A com-
parison against MMOpt’s original algorithms shows a very significant improvement
in terms of a reduction of both the amount of transferred data and the total completion
time.

An interesting area for further research may be the improvement of the proposed
methods, the complexity analysis of the MCT-PSDPP sub-problem, in which the
completion timeΔ is to be minimized, and the development of an exact optimization
procedure (e.g., Integer Linear Programming: ILP) for solving the NP-Complete
3-PSDPP sub-problems. It would also seem interesting to develop specific multi-
objective optimization techniques to solve our main 3-PSDPP — such as theMulti-
Objective Evolutionary Algorithms (MOEAs). Additional research is also required
to use our own heuristics approaches to solve other variants of the ToSP problem.
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Analysis and Experimental Study
of Heuristics for Job Scheduling
Reoptimization Problems

Elad Iwanir and Tami Tamir

Abstract Many real-life applications involve systems that change dynamically over
time. Thus, throughout the continuous operation of such a system, it is required
to compute solutions for new problem instances, derived from previous instances.
Since the transition from one solution to another incurs some cost, a natural goal is
to have the solution for the new instance close to the original one (under a certain
distance measure). We study reoptimization problems arising in scheduling systems.
Formally, due to changes in the environment (out-of-order or newmachines,modified
jobs’ processing requirements, etc.), the schedule needs to be modified. That is, jobs
might be migrated from their current machine to a different one. Migrations are
associated with a cost – due to relocation overhead and machine set-up times. In
some systems, a migration is also associated with job extension. The goal is to find a
good modified schedule, with a low transition cost from the initial one. We consider
reoptimization with respect to the classical objectives of minimum makespan and
minimum total flow-time. We first prove that the reoptimization variants of both
problems are NP-hard, already for very restricted classes. We then develop and
present several heuristics for each objective, implement these heuristics, compare
their performance on various classes of instances and analyze the results.

1 Introduction

Reoptimization problems arise naturally in dynamic scheduling environments, such
as manufacturing systems and virtual machine managers. Due to changes in the
environment (out-of-order or new resources,modified jobs’ processing requirements,
etc.), the schedule needs to be modified. That is, jobs may be migrated from their
current machine to a different one. Migrations are associated with a cost due to
relocation overhead and machine set-up times. In some systems, a migration is also
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associated with job extension. The goal is to find a good modified schedule, with a
low transition cost from the initial one.

This work studies the reoptimization variant of two classical scheduling prob-
lems in a system with identical parallel machines: (i) minimizing the total flow-
time (denoted in standard scheduling notation by P||ΣCj [15]), and (ii) minimum
makespan (denoted by P||Cmax).

The minimum total flow-time problem for identical machines can be solved effi-
ciently by the simple greedy Shortest Processing Time algorithm (SPT) that assigns
the jobs in non decreasing order by their length. The minimum makespan prob-
lem is NP-hard, and has several efficient approximation algorithms, as well as a
polynomial-time approximation scheme [17]. These algorithms, as many other algo-
rithms for combinatorial optimization problems, solve the problem from scratch, for
a single arbitrary instance without having any constraints or preferences regarding
the required solution - as long as they achieve the optimal objective value. How-
ever, many of the real-life scenarios motivating these problems involve systems that
change dynamically over time. Thus, throughout the continuous operation of such
a system, it is required to compute solutions for new problem instances, derived
from previous instances. Moreover, since the transition from one solution to another
consumes energy (used for the physical migration of the job, for warm-up or set-up
of the machines, or for activation of the new machines), a natural goal is to have
the solution for the new instance close to the original one (under certain distance
measure). Solving a reoptimization problem involves two challenges:

1. Computing an optimal (or close to the optimal) solution for the new instance.
2. Efficiently converting the current solution to the new one.

Each of these challenges, even when considered alone, gives rise to many theoretical
and practical questions. Obviously, combining the two challenges is an important
goal, which shows up in many applications.

1.1 Problem Description

An instance of our problem consists of a set J of n jobs and a setM0 of m0 identical
machines. Denote by pj the processing time of job j. An initial schedule S0 of the
jobs is given. That is, for every machine, it is specified what are the jobs it processes.
At any time, a machine can process at most one job and a job can be processed by at
most one machine. We consider the scenario in which a change in the system occurs.
Possible changes include addition or removal of machines and/or jobs, as well as
modification of processing times of jobs in J . We denote by M the set of machines
in the modified instance and let m = |M|.

Our goal is to suggest a new schedule, S, for the modified instance, with good
objective value and small transition cost form S0. Assignment of a job to a different
machine in S0 and S is denoted migration and is associated with a cost. Formally,
we are given a price list θi,i′,j, such that it costs θi,i′,j to migrate job j from machine i
to machine i′. Moreover, in some systems job migrations are also associated with an
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extension of the job’s processing time. Formally, in addition to the transition costs,
we are given a job-extension penalty list δi,i′,j ≥ 0, such that the processing time of
job j is extended to pj + δi,i′,j when it is migrated from machine i to machine i′.

For a given schedule, let Cj denote the flow-time (also known as ‘completion
time’) of job j, that is, the time when the process of j completes. The makespan of a
schedule is defined as the maximal completion time of a job, that is,Cmax = maxj Cj.

While the schedule does not specify the internal order of jobs assigned to a
machine, we assume throughout this work that jobs assigned to a specific machine
are always processed in SPT-order (Shortest Processing Time), that is, p1 ≤ p2 ≤ . . ..
For a given set of jobs, SPT-order is known to achieve theminimal possible total flow-
time, min

∑
j Cj [9, 25]. Clearly, the internal order has no effect on the makespan.

Given S0, J and M, the goal is to find a good schedule for J that is close to the
initial schedule S0. We consider two problems:

1. Rescheduling to an optimal schedule using the minimal possible transition cost.
2. Given a budget B, find the best possible modified schedule that can be achieved

without exceeding the budget B.

If the modification includes machines’ removal, and the budget is limited, then
we assume that a feasible solution exists. That is, the budget is at least the cost
of migrating the jobs on the removed machines to some machine. Formally, B ≥∑

j on i∈M0\M mini′∈M θi,i′,j.

Applications: Our reoptimization problems arise naturally in manufacturing sys-
tems, where jobs may be migrated among production lines. Due to unexpected
changes in the environment (out-of-order or new machines, timetables of task
processing, etc.), the production schedule needs to be modified. Rescheduling tasks
involves energy-loss due to relocation overhead and machine set-up times. In fact,
our work is relevant to any dynamic scheduling environment, in which migrations
of jobs are allowed though associated with an overhead caused due to the need to
handle the modification and to absorb the migrating jobs in their new assignment.

With the proliferation of cloud computing, more and more applications are
deployed in the data centers. Live migration is a common process in which a running
virtual machine (VM) or application moves between different physical machines
without disconnecting the client or application [8]. Memory, storage, and network
connectivity of the virtual machine are transferred from the original host machine
to the destination. Such migrations involve a warm-up phase, and a memory-copy
phase. In pre-copy memory migration, the Hypervisor typically copies all the mem-
ory pages from source to destination while the VM is still running on the source.
Alternatively, in post-copymemorymigration theVM is suspended, aminimal subset
of the execution state of the VM (CPU state, registers and, optionally, non-pageable
memory) is transferred to the target, and the VM is then resumed at the target. Live
migration is performed in several VMmanagers such as Parallels Virtuozzo [21] and
Xen [27]. Sequential processing of jobs thatmight bemigrated among several proces-
sors is performed also in several implementations of MapReduce (e.g., [4]), and in
RPC (Remote Procedure Call) services, in which virtual servers can be temporarily
rented [5].
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1.2 Related Work

The work on reoptimization problems started with the analysis of dynamic graph
problems (see e.g. [12, 26]). These works focus on developing data structures sup-
porting update and query operations on graphs. A different line of research, deals
with the computation of a good solution for an NP-hard problem, given an optimal
solution for a close instance. Among the problems studied in this setting are TSP [1,
6] and Steiner Tree on weighted graphs [13].

The paper [24] suggests the framework we adopt for this work, in which the solu-
tion for the modified instance is evaluated also with respect to its difference from the
initial solution. Formally, an algorithm A is an (r, ρ)-reapproximation algorithm if
it achieves a ρ-approximation for the optimization problem, while paying a transition
cost that is at most r times the minimum required for solving the problem optimally.
For this definition, the paper [24] characterizes classes of combinatorial reoptimiza-
tion problems that obey a fully polynomial time (1 + ε1, 1 + ε2)-reapproximation
schemes, and suggest reapproximation algorithms for the metric k-Center problem,
and for subset-selection problems. This framework of reapproximation is in use also
in [23], to analyze algorithms for data placement in storage area network.

Job scheduling reoptimization problems with respect to the total flow-time objec-
tive was studied in [2]. The paper includes optimal algorithms for the problem of
achieving an optimal solution using the minimal possible transition cost. For the
modification of machines’ addition, where jobs are only allowed to migrate to new
machines, an optimal algorithm for achieving the best possible schedule using a
given limited budget is also presented. The paper [3] analyze the problem as a load
balancing game: each job corresponds to a selfish agent, whose cost depends on the
load on the machine it is assigned. Thus, when machines are added, jobs have an
incentive to migrate to the new unloaded machines. When machines are removed,
the jobs assigned to them must be reassigned. Migration is associated with a cost,
taken into account by the agents. The paper [3] analyzes the stability of these games
and the inefficiency caused due to the agents’ selfish behaviour.

Lot of attention, in both the industry and the academia, is given recently to the prob-
lem of minimizing the overhead associated with migrations (see e.g., [8, 16]). Using
our notations, this refers to minimizing the transition costs and the job-extension
penalties associated with rescheduling a job. Our work focuses in determining the
best possible schedule given these costs.

1.3 Our Contribution

Our study includes both theoretical and comprehensive experimental results. We
consider reoptimization with respect to the two classical objectives of minimum
makespan and minimum total flow-time, and distinguish between instances with
unlimited and limited budget. Our results are presented in Table1. For completeness,
we include in the table previous results regarding the minimum total flow-time with
unlimited budget [2].
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We first analyze the computational complexity status of these problems.While the
hardness result for the minimum makespan problem is straightforward, the hardness
for the minimum total flow-time problem with limited budget is complex and a bit
surprising - given that the minimum flow-time problem is solvable even on unrelated
machines [7, 18], and that the dual variant of achieving an optimal reschedule using
minimum budget is also solvable [2]. Our hardness results, given in Sect. 2 are valid
already for very restricted classes, with a single added machine and no job-extension
penalties. In Sect. 3 we consider the minimum makespan reoptimization problem
assuming that the modification consists of machines’ removal and the budget is the
minimal possible, that is, sufficient only for reassignment of the jobs on the removed
machines.We present tight bounds on our ability to compete against an optimal algo-
rithm with unlimited budget, and present a polynomial time approximation scheme
where the approximation ratio is measured with respect to a solution achieved using
the same minimal budget.

The second part of the paper includes an experimental study of the problem. In
order to be able to evaluate our heuristics against an optimal solution, we develop
and implement an optimal solver based on branch and bound technique. Naturally,
the solver could not handle very large instances, but we were able to run it against
small but diverse instances to compare the different heuristics to the optimum. For
example, problems instances with 4 machines and 20 jobs were easily solved.

We then present several heuristics for each objective function. Some of the heuris-
tics distinguish between modifications that involve addition or removal of machines.
For both objectives we also developed and applied a genetic algorithm [10, 22].
All the heuristics were implemented, their performance on various classes of
instances have been compared, and the results were analyzed. Our experimental
study concludes the paper.

2 Computational Complexity

In this sectionwe analyze the computational complexity of reoptimization scheduling
problems. We distinguish between the minimum makespan and the minimum total
flow problems, as well as between the problem of finding an optimal solution using
minimum budget and finding the best solution that can be obtained using limited
budget.

We use the following notations: For a multiset A = {a1, a2, . . . , a|A|} of integers,
let MAX(A) = max|A|

j=1 aj and SUM(A) = ∑|A|
j=1 aj. Also, let A denote the vector

consisting of the elements of A in non-decreasing order and define SPT(A) = A ·
(|A|, . . . , 2, 1). For example, for A = {5, 3, 1, 5, 8} it holds that SUM(A) = 22,A =
(1, 3, 5, 5, 8) andSPT(A) = (1, 3, 5, 5, 8) · (5, 4, 3, 2, 1) = 5 + 12 + 15 + 10 + 8 =
50. Note that SPT(A) is the value of an optimal solution for the minimum total-flow
problem on a single machine for an instance consisting of |A| jobs with lengths in A.
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For the minimum makespan reoptimization problem, our result is not
surprising - the classical load-balancingproblemP||Cmax is known to beNP-complete
even with no transition costs or extensions. For completeness we show that this hard-
ness carry over to the simplest class of the reoptimization variant.

Theorem 1 The minimum makespan reoptimization problem is NP-complete even
with a single added machine, unlimited budget, and no job-extension penalty.

Proof The reduction is from the Partition problem: given a set A = {a1, a2, . . . , an}
of integers, whose total sum is 2B, the goal is to decide whether A has a subsetA′ ⊂ A
such that SUM(A′) = SUM(A \ A′) = B. The Partition problem is known to be NP-
complete [14]. Given an instance of Partition A = {a1, a2, . . . , an}, let Z = SPT(A).
We construct the following instance for the reoptimization problem:The initial sched-
ule S0 consists of a single machine and n jobs having lengths corresponding to the
Partition elements, that is, for 1 ≤ j ≤ n let pj = aj. The modification is simply an
addition of one machine. Clearly, a balanced solution with makespan B exists if and
only if A has a partition.

The analysis of theminimum total flowproblem ismore involved. The correspond-
ing classical optimization problem P||∑Cj is known to be solvable in polynomial
time by the simple SPT algorithm. For the reoptimization problem, an efficient opti-
mal algorithm for finding an optimal solution using minimum budget is presented in
[2]. The algorithm is based on a reduction to a minimum weighted perfect matching
in a bipartite graph. This reduction cannot be generalized to consider instances with
limited budget, and the complexity status of the problem of finding the best solution
that can be obtained using limited budget remains open in [2]. We show that this
problem is NP-complete, even with no job-extension penalties and a single added
machine.

Our proof refers to the compact representation of the problem. In a compact
representation, the jobs assigned on each machine are given by a set of pairs 〈pj, nj〉,
where nj is the number of jobs of length pj assigned on the machine. We first prove
two simple observations:

Observation 2 Let A′ be a subset of A then SPT(A′) + SPT(A \ A′) < SPT(A).

Proof By definition, SPT(A) = A · (|A|, . . . , 2, 1). That is, every element is multi-
plied by its rank in the sorted list. Clearly, for every element in A′, its rank in A′ is
not higher than its rank in A. Similarly, for every element in A \ A′, its rank in A \ A′
is not higher than its rank in A.

Given a multiset A, and an integer Z , let x > MAX(A). Extend A to a multiset A∗
by adding to it Z elements of value x.

Observation 3 SPT(A∗) = Z(Z+1)
2 x + Z · SUM(A) + SPT(A).

Proof Assume w.l.o.g., that A = {a1, a2, . . . , an}, where a1 ≤ a2 ≤ . . . ≤ an. That
is, A∗ = (a1, a2, . . . , an, x, x, . . . , x) with x repeated Z times in the suffix of A.
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By definition, SPT(A∗) = (a1, a2, . . . , an, x, x, . . . , x) · (Z + n,Z + n − 1, . . . , 1).
This dot-product can be divided into two parts to get SPT(A∗) = (a1, a2, . . . , an) ·
(Z + n,Z + n − 1, . . . ,Z + 1) + (x, x, . . . , x) · (Z,Z − 1, . . . , 1). It can now be
easily verified that the left component equals Z · SUM(A) + SPT(A) and the right
component equals Z(Z+1)

2 x.

Using the above observations, we are now ready to prove the hardness result.

Theorem 4 The minimum total flow-time reoptimization problem with limited bud-
get is NP-complete even with a single added machine, and no job-extension penalty.

Proof The reduction is from the Partition problem: given a set A = {a1, a2, . . . , an}
of integers, whose total sum is 2B, the goal is to decide whether A has a subset
A′ ⊂ A such that SUM(A′) = SUM(A \ A′) = B. The Partition problem is known to
be NP-complete [14].

Given an instance of Partition A = {a1, a2, . . . , an}, whose total sum is 2B, let
Z = SPT(A). We construct the following instance for the reoptimization problem:
The initial schedule, S0, consists of a single machine and n + Z jobs. The first n jobs
correspond to the Partition elements, that is, for 1 ≤ j ≤ n let pj = aj. Each of the
additional Z dummy jobs have length x for some x > B. Assume that one machine is
added, and that the transition cost of migrating job j from the initial machine to the
new machine is pj. Assume also that the budget is B.

Since the budget is B and each dummy jobs have length more than B, none of
these jobs can be migrated to the new machine. Thus, a modified schedule S is
characterized by a subset A′ ⊂ A of jobs corresponding to the partition elements,
whose total length is at most B. These jobs are migrated to the new machine and
assigned in SPT order on it. The remaining jobs are assigned in SPT order on the
initial machine. Since x is larger than any ai, the Z jobs of length x will be assigned
after the jobs corresponding to A \ A′.

Finally, we note that the reduction is polynomial. Calculating SPT(A) requires
sorting and is performed in time O(nlogn). The instance constructed in the reduc-
tion consists of n + Z jobs where Z = SPT(A). The compact representation of this
instance includes at most n + 1 different pairs, where all 〈pj, nj〉 values are polyno-
mial in n.

claim The minimum total flow-time in an optimal modified schedule is less than
Z(Z+1)

2 x + (B + 1)Z if and only if a partition of A exists.

Proof Assume that a partition exists and let A′ be a subset of A such that SUM(A′)
= SUM(A \ A′) = B. Consider the modified schedule in which jobs corresponding
to the elements of A′ migrate to the new machines. Since the transition cost of job j
equals pj, and SUM(A′) = B, the budget B exactly fits this modification.

Denote by A∗ the multiset produced by adding Z elements of value x to A \ A′.
Note that A∗ is exactly the multiset corresponding to job lengths that remain on the
initial machine. By Observation 3, the total flow-time of the jobs that remain on
the first machines is SPT(A∗) = Z(Z+1)

2 x + Z · SUM(A \ A′) + SPT(A \ A′). Also,
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the total flow-time of the jobs that migrate to the new machine is SPT(A′). Sum-
ming the jobs’ flow-time on the two machines, we get that the total flow-time is
Z(Z+1)

2 x + Z · SUM(A \ A′) + SPT(A \ A′) + SPT(A′). By Observation 2, SPT(A \
A′) + SPT(A′) < SPT(A) = Z . Also, since A′ defines a Partition, it holds that
SUM(A \ A′) = B. We get that the total flow-time is less than Z(Z+1)

2 x + ZB + Z =
Z(Z+1)

2 x + (B + 1)Z .
For the other direction of the reduction proof, assume that a partition of A does not

exist. This implies that the budget B cannot be fully exploited and thus, the set A′′ of
jobs migrating to the new machine includes jobs of total length strictly less than B.
Thus, the set A \ A′′ of jobs that remain on the initial machine has total length at least
B + 1. By Observation 3, the total flow-time of the jobs that remain on the initial
machines is at least Z(Z+1)

2 x + Z · (B + 1) + SPT(A \ A′′). The total flow-time of the
jobs on the newmachine is SPT(A′′). Since SPT(A \ A′′) + SPT(A′′) > 0, we get that
if a partition does not exist, then the total flow-time ismore than Z(Z+1)

2 x + Z · (B + 1)
as required.

The above claim completes the hardness proof.

Remark It is possible that two multisets A,B will have the same cardinality, and
that SUM(A) > SUM(B)while SPT(A) < SPT(B). For example, for A = {1, 2, 10}
and B = {3, 4, 5}, we have |A| = |B| = 3, SUM(A) = 13 > 12 = SUM(B) while
SPT(A) = 15 < 24 = SPT(B). This emphasis an additional challenge of the reopti-
mization problem: an optimal solutionmay not use thewhole budget. Such anomalies
also explains why our hardness proof cannot be a simple reduction from the subset-
sum problem, and the dummy jobs are required.

3 Approximation Algorithms for Machines’ Removal
and Minimum Budget

In this sectionwe consider theminimummakespan reoptimization problem assuming
that the modification consists of machines’ removal and the budget is the minimal
possible, that is, sufficient only for reassignment of the jobs on the removedmachines.
Recall thatM0 is the set of machines in the initial instance,M is the set of machines in
the modified instance, and letM ′ = M0 \ M be the set of removed machines. Denote
m0 = |M0|,m = |M|, and m′ = |M ′|. We assume that the cost and the extension
penalty for migrating a job j is independent of the target machine, that is, for all
j, and all i′, it holds that θi,i′,j = θi,j and δi,i′,j = δi,j. The given budget is exactly
Bmin = ∑

j on machine i∈M ′ θi,j. Denote by OPT(Bmin) the minimum makespan that
can be achieved using this minimal budget, and let OPT(B∞) denote the minimum
makespan that can be achieved using unlimited budget. We first analyze the ratio
OPT(Bmin)/OPT(B∞). Note that OPT(B∞) refers to a schedule that can assign
‘from scratch’ all the jobs in J , independent of their original machines. Clearly, if S0
is far from being optimal, then we cannot expect to be competitive against unlimited
budget. The following theorem provides tight analysis of the minimal r, such that
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if S0 is an r-approximation, then OPT(Bmin)/OPT(B∞) ≤ r. Let Cmax and C∗(S0)
denote the makespan and the minimal possible makespan respectively, of the initial
instance S0.

Theorem 5 For every instance, and every number of initial and removed machines,
if Cmax(S0) ≤ (2 − 1

m )C∗(S0), then OPT(Bmin)/OPT(B∞) ≤ 2 − 1
m .

Proof We show that this bound is achieved by a simple List-Scheduling method.
Specifically, the jobs onM ′ are considered in arbitrary order; each job is assigned on
a machine inM with minimal load. Ties are broken arbitrarily.

For every job j assigned to machine i ∈ M ′, let p′
j = pj + δi,j. Note that p′

j is the
processing time of job j after its migration - independent of the target machine. Let
CLS(S) be themakespan of the resulting assignment, and let Jk , of length pk (including
the extension penalty), be the job determining the makespan. If Jk was onM before
the modification, then the makespan was not increased due to the migrating jobs, and
CLS(S) = Cmax(S0) ≤ (2 − 1

m )C∗(S0) ≤ (2 − 1
m )C∗(S). The last inequality follows

from the fact that C∗(S0) ≤ C∗(S), as S is a schedule of the same set of jobs on fewer
machines.

Assume Jk was migrated from some removed machine. As all machines are busy
at time CLS(S) − pk , it holds that

∑
j pj ≥ (m − 1)(CLS(S) − pk) + CLS(S). There-

fore, CLS ≤ 1
m

∑
j pj + pk

m−1
m . Clearly, C∗(S) ≥ 1

m

∑
j pj, and C∗(S) ≥ pk . There-

fore, CLS(S) ≥ OPT(Bmin) ≥ OPT(B∞).
The above analysis is tight as demonstrated in Fig. 1. This tight bound is identical

to the tight bound of the analysis of List-Scheduling. For any number of machines
m0, the initial schedule is depicted in Fig. 1a. Assume m′ = 1, that is, m0 = m +
1. Each of the remaining m machine is assigned m − 1 unit-length jobs, and the
removed machine is assigned one job of length m, that should be migrated. If the
budget is sufficient only for migrating the job on the removed machine, then the
schedule depicted in Fig. 1b is optimal andOPT(Bmin) = 2m − 1. On the other hand,
if additional jobs may be migrated, then, as shown in Fig. 1c, OPT(B∞) = m. The
ratio is 2 − 1

m .

(a)

m0 m

(b) (c)
1 1 1

1 1 1
1 1 1
1 1 1

m
1 1 1

1 1 1
1 1 1
1 1 1 m

1 1 1

1 1 1
1 1 1 1

1

1

m

m-1

m

Fig. 1 a An initial schedule, b An optimal reschedule with minimal budget. Cmax = 2m − 1, c An
optimal reschedule with unlimited budget, Cmax = m
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We note that this example can be generalized to any number m′ of removed
machines – by assigning them jobs of length ε → 0 in the initial schedule. This
example also demonstrates that even if S0 is optimal, a minimal budget cannot guar-
antee approximation ratio better than 2 − 1

m .
The above bound suggests that the performance of a reapproximation algorithm

should not be measured compared to an algorithm with unlimited budget, but com-
pared to an algorithm with unlimited computational power and the same budget.
We present a polynomial time approximation scheme (PTAS) for this measure. For-
mally, for any instance S0, and any given ε > 0, our algorithm calculates a reas-
signment S of the jobs on the removed machines, using budget Bmin, such that
Cmax(S) ≤ (1 + ε)OPT(Bmin).

We reduce the reapproximation problem to the minimummakespan problem with
processing set restrictions [20]. In this scheduling problem, each job j is associated
with a subset P(j) of the machines on which it can be processed. The paper [11]
presents polynomial time approximation schemes for several variants of this problem,
in particular, the one we use below. The idea of our algorithm is to glue, for every
machine i ∈ M, all the jobs assigned tomachine i in S0 into a single job. This jobmust
be assigned to its original machine in S0, while the migrating jobs are not limited in
their processing set.

Clearly, every valid schedule of the instance constructed in Step 3 corresponds to
a modified schedule in which the only migrating jobs are the jobs from the removed
machines. We can therefore use as a black-box the PTAS of [11] to conclude:

Theorem 6 For any ε > 0 and any instance of removed machines, Algorithm 1
uses budget Bmin and produces an assignment S such that Cmax(S) ≤ (1 + ε)

OPT(Bmin).

Algorithm 1 PTAS for machines’ removal and minimum budget
1: For every job assigned to a removed machine i ∈ M ′, let p′

j = pj + δi,j .
2: Let �0(i) be the load on machine i ∈ M in S0, that is, the total length of jobs assigned to machine

i before the modification.
3: Construct an instance for the minimum makespan problem with m identical machines and the

following jobs and processing restrictions:

• Every job j assigned to a removed machine i in S0 contributes one job of length p′
j , for which

P(j) = M.
• Every machine i ∈ M contributes one job of length �0(i), for which P(j) = {i}.

4: Run a PTAS for the minimum makespan problem with processing set restrictions [11] on the
resulting instance, and the given parameter ε > 0.
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4 Optimal Algorithms

4.1 A Brute-Force Solver Based on Branch and Bound

Our brute-force solver was designed to utilize high performancemulti-coremachines
in order tofindoptimal solutions for the problems thatwere shown tobeNP-complete.
The solution space for a scheduling problem can be described by a tree of depth
n, where depth k corresponds to the assignment of job k, for 1 ≤ k ≤ n. Specifically,
the root (depth 0) corresponds to an empty schedule - none of the jobs were assigned;
at level 1 there are m nodes, representing job 1 being assigned to each of the m
machines. At level k there are mk nodes, corresponding to all possible assignment
of the first k jobs. This implies that the brute-force solver may need to consider mn

assignments find the optimal one.
We note that, as detailed in Sect. 1.1, once the partition of jobs among themachines

is determined, the internal job order on each machine either has no effect on the
solution (in the minCmax problem), or is the unique SPT-order (in the min

∑
j Cj

problem). Thus, the solution space need not distinguish between assignments with
different internal order of the same set of jobs on every machine.

Obviously, even without considering different internal orders, iterating over all of
the mn configurations is not feasible when dealing with large instances. Our solver
uses a branch and bound technique combined with other optimizations to effectively
trim tree-branches that are guaranteed not to yield an optimal solution.

In particular, the solver keeps in memory the best solution it found so far (its
objective value and its transition cost). When processing a tree node if the already
accumulated transition cost is larger than the budget or if the objective-function value
is larger than the current best, then the solver can safely discard this tree branch as
it is guaranteed not to yield a feasible optimal solution. For partial assignments, the
objective-value is calculated by combining the value (makespan or total flow-time)
of the already assigned jobs, and a lower bound on the yet-to-be-assigned jobs. For
the minimummakespan problem, the lower bound is calculated by assuming perfect
load-balancing (

∑
j pj/m), and for total flow-time the lower bound is calculated by

assuming SPT-order with no job-extension penalties.
In addition, we find out that considering the jobs from longest to shortest, that

is, depth 1 corresponds to the longest job in the initial assignment, etc.) drastically
helps in trimming branches earlier in the process.

The solver was designed to use multi-core machines in order to shorten the run
time, by doing the work in parallel on the different cores. In the heart of the design
stands a concurrent queue towhich tasks are enqueued.Different threads concurrently
dequeue these tasks, in a consumer-producer likemechanism. A ‘task’ for that matter
is a request to process a tree node. That is, when the solver starts the queue is empty
and a task to process the root node is added, which ignites the process. The solver is
done when the queue is empty.

The solver’s ability to solve problems instances of different sizes is determined
by the given machine, to be more specific, by the CPU’s clock speed, the number
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of available cores and sufficient memory (as the entire process is in memory). For
example, the solver was able to handle a problem with 9 machines and 20 jobs in
about 100 minutes, when ran on a machine with 8 cores and 32GB of RAMmemory.

4.2 An Optimal Algorithm for ΣjCj

An algorithm for finding an optimal reschedule with respect to the minimum total
flow-time objective is presented in [2]. The algorithm returns an optimal modified
schedule using the minimal possible budget. The algorithm is based on reducing
the problem to a minimum-weight complete-matching problem in a bipartite graph.
The algorithm fits the most general case - arbitrary modifications, arbitrary transition
costs and arbitrary job-extension penalties.

We have implemented this algorithm, and use its results as a benchmark so
we can evaluate how well our heuristics perform. The algorithm is based on match-
ing the jobs with possible slots on the machines. For completeness, we give here
the technical details that are relevant to its implementation. Recall that n and m
represent, respectively, the number of jobs and machines in the modified instance.
Let G = (V,E), where V = J ∪U . The vertices J correspond to the set of n jobs
(a single node per job). The set U consists of mn nodes, qik , for i = 1, . . . ,m and
k = 1, . . . , n, where node qik represents the kth from last position on machine i.
The edge set E includes an edge (vj, qik) for every node in J and every node in U
(a complete bipartite graph). The edge weights consist of two components: a domi-
nant component corresponding to the contribution of a job assigned in a specific posi-
tion to the total flow-time, and a minor component corresponding to the associated
transition cost. Both components are combined to form a single weight. Formally,
for a large constant Z ,

• For every job that is assigned to i in S0, let w(vj, qik) = Zkpj.
• For every i′ 
= i, let w(vj, qi′k) = Zk(pj + δi,i′,j) + θi,i′,j.

These weights are based on the observation that a job assigned to the k-th from last
position, contributes k times its processing-time to the total flow-time (see details in
[2]).We implemented the algorithm by using the Hungarianmethod [19], a combina-
torial optimization algorithm that solves the assignment problem in polynomial time.
The solver’s run time is O(|V |3), where |V | = n(m + 1). In practice, this optimal
solver can easily handle instances with 30 machines and 300 jobs.

5 Our Heuristics

In this section we describe the heuristics we have designed and implemented. Some
heuristics were designed for specific modification (e.g. machines removal, limited
budget), or for specific objective function, while some are general and fit all our
reoptimization variants.
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5.1 Heuristics for Minimum Makespan

Wesuggest two greedy heuristics, both intended to solve theminimalmakespan prob-
lem (minCmax). In the first, we select the next migration to be performed according
to the job’s processing times, while in the second, we select the next migration
according to the loads on the machines. Both algorithms begin with S0 as the ini-
tial configuration. If the modification involves machines’ removal, we first perform
migrations of jobs assigned to the removed machines and migrate each such job j
assigned to a removed machine i, to a machine i′ ∈ M for which θi,i′,j is minimal.
Ties are broken in favor of short extension penalty. As mentioned in the introduction,
we assume that the budget is sufficient for this reschedule, as otherwise no feasible
solution exists. Following the above preprocessing, we perform the following:

1. LPT-Based: In every iteration we consider the jobs in non-increasing processing-
time order. When considering job j, we check whether migrating it to one of the two
least loaded machines increases the load-balancing, formally, assume j is assigned to
machine i, and we consider moving it to machine i′, we check whether pj + θi,i′,j +
Li′ < Li. If the answer is positive and the remaining budget allows, the migration
is performed. We repeat the iterations until a complete pass over the jobs yields no
migration.
2. Loads-Based: In every iteration we try to migrate some job out of the most loaded
machine.Wefirst consider the pair ofmost-loaded and least-loadedmachines.Denote
these machines by i and i′. We consider jobs on machine i according to order θi,i′,1 ≤
θi,i′,2 ≤ . . .. When considering job j we check whether migrating it to machine i′
increases the load-balancing, that is, pj + θi,i′,j + Li′ < Li. If the answer is positive
and the remaining budget allows, the migration is performed, and a new iteration
begins (maybewith a different pair ofmost- and least-loadedmachines). If the answer
is negative for all the jobs on i, we move to the next candidate for target machine
i′ - the second least-loaded machine, etc. The iteration ends when some beneficial
migration from the most-loaded machine is detected. If none such migration exists,
the algorithm terminates.

5.2 Heuristics for Minimum Total Flow-Time

Theminimum total flow-time reoptimization problemcanbe solvedoptimally assum-
ing unlimited budged.While the optimal algorithm presented in Sect. 4.2 solves opti-
mally the ΣjCj problem using the minimal possible budget, it cannot be modified to
solve the problem when the budget is limited. In fact, as shown in Sect. 2, this variant
is NP-hard. We propose two heuristics that use the optimal algorithm as a first step
and then each, in its own way, change the assignment to reach a feasible solution
which obeys the budget constraints. A third algorithm that we propose, tries to reach
an SPT-like schedule.
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1. Greedy Reversion: The optimal algorithm returns an assignment S minimizing the
total flow-time, which might not conform to the budget limitation. The following
steps are performed to reach a feasible solution. First, we sort all the jobs which
migrated in the transition from S0 to S in non-increasing order according to the
transition cost their migration caused.

We then distinguish between two cases:

1. The modification consists of only machines’ addition. We revert the transitions
one by one until we reach an allowed budget.

2. The modification includes machines’ removal. We revert the transitions of jobs
which do not originate from a removed machine, one by one until we reach an
allowed budget. If after all possible reverts were done, the budget is still not met,
we continue to the next step: ‘Handling jobs of removed machines’.

Handling jobs of removed machines: This step is performed only when removed
machines are involved, and all the jobs assigned to remaining machines are back
in their initial machines. We sort the jobs originated from removed machines in
non-increasing order according to the transition cost their migration (determined by
the optimal algorithm) caused. Job after job, we migrate a job j assigned in S0 to
a removed machine i ∈ M0 \ M to the machine i′ ∈ M for which θi,i′,j is minimal,
breaking ties in favor of better objective value. As explained in the introduction, we
assume that the budget is sufficient to complete all these migrations.
2. Cyclic Reversion: The optimal algorithm returns an assignment S minimizing
the total flow-time, which might not conform to the budget limitation. Similar to
the previous heuristic, we choose the most expensive transition involved, denote by
j the corresponding job. We migrate job j back to its origin machine,M0,j. Since we
wish to keep jobs distributed as evenly as possible, we now choose a job that migrated
toM0,j and migrate it back to its initial machine. We choose the job whose migration
to M0,j was most expensive. We keep these cyclic reverts until one of following
conditions holds: (a) We made a complete loop and reached back the machine from
which we started. (b) We have reached a machine to which no job was migrated. If
the budget conforms to the limitation, we stop, Otherwise we choose a job with the
most expensive transition cost and start a new revert cycle.

If the modification includes machines’ removal, jobs originated from the removed
machines cannot be selected to migrate back to their original machine. If the budget
is not met after all the allowed reverts were performed, we continue to the step
‘Handling jobs of removed machines’, as described in the greedy heuristic.
3. SPT-like: It is known that SPT ordering is optimal for P||ΣjCj. We therefore try
to reach a schedule that fulfils the following basic properties of an SPT schedule:

1. In any optimal schedule the number of jobs on any machine is either
⌊

n
m

⌋
or

⌈
n
m

⌉
.

2. The jobs can be partitioned into
⌊

n
m

⌋
rounds, such that the k-th round consists of

all the jobs that are k from last on some machine. In an SPT schedule, each of the
jobs in the k-th round is not shorter than each of the jobs in the k + 1st round.
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This heuristic consists of three stages. The first stage, applied when machines were
removed, is tomove to some feasible schedule - each of the jobs assigned to a removed
machine, is migrated into a machine for which the transition cost is the lowest.

In the second stage, we try to make the machines as balanced as possible in terms
of number of jobs. While the budget allows and while there exists a pair of machines,
one with more than

⌈
n
m′

⌉
jobs and the other with less than

⌊
n
m′

⌋
jobs, we migrate the

cheapest-to-move job on the first machine, to the second one.
In the third phase, we try to make our solution as close to the SPT ordering as

possible, we compare the solution round after round to the desired SPT ordering,
and switch jobs whenever required, as long as the budget allows.

5.3 Genetic Algorithm

In the Genetic algorithm the idea is for the solution to be obtained in a way that
resembles a biological evolution process [10, 22]. That is, we let the method’s evo-
lutionary process find the solution by itself. The idea is to define the Genome of a
single solution and a Ranking method Rank : Genome → R. The genome of a sin-
gle solution represents and gives all the needed information regarding the solution.
In our case the Genome is simple, for a problem instance with m machines and n
jobs, a solution genome id, g, defined as g = (g1, g2, . . . , gn), where gi ∈ [1,m] and
gi /∈ {x|x is a removed machine id}, in other words each cell with index i represents
the i − th jobs and the cell’s value is the machine this job is assigned to in the modi-
fied schedule. The ranking method is used to define how good is a given solution. In
our case the ranking method sorts the different genomes first by the objective method
value (Cmax or ΣjCj) and then by the transition cost. We create a population (gener-
ation 1), which is a collection of genomes, we rank each member of the population
and sort them from best to worst.

When solving a reoptimization problem with limited budget, to guarantee the
algorithm end up with a feasible solution, we create at least one feasible genome
in generation1. In the case of ‘machines addition’, this solution will be S0 as it is
both valid and requires no transition cost. In the case of ‘machines removal’, a job j
assigned in S0 to a removed machine i ∈ M0 \ M is assigned in the feasible genome
to the machine i′ ∈ M for which θi,i′,j is minimal. We assume that the budget is
sufficient for this reschedule, as otherwise no feasible solution exists.

The next step is the evolutionary-like step, in which we create the next generation
according to the following methods:

1. Elitism mechanism: We take the best 5% genomes and move them ‘as-is’ to the
next generation. This guarantee that the next generation will be at least as good
as the current one. To deal with the case of limited budget, we also pass ‘as-is’
the best solution which meets the given budget. This must be done since the
genetic process is pushing the genomes population for a better objective values
as a primary goal and to minimize the transition cost as a secondary goal.
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2. Cross over: From the entire genomes population, we choose randomly 2 elements,
denoted gx and gy, we choose a pivot point from the range of ind ∈ [1, n − 1],
and create two new items:

newItem1i =
{
gxi if i ≤ ind

gyi if i > ind

and

newItem2i =
{
gyi if i ≤ ind

gxi if i > ind

43% of the next generation is a result of this operator.
3. Mutate: We choose a random genome, we choose from its genome a random cell

and change its value. 43% of the next generation is a result of this operator.
4. Fresh Items: We generate new genomes. These new elements have the potential

of shifting the results in a new direction and to help avoid local optimum. 9% of
the next generation is be a result of this operator.

Each genome in the newly created population is then re-evaluated, meaning, its score
is computed. The process repeats itself until it fails to improve any further and the
genome with the best ranking is selected as output from the most recent generation.
Obviously if we examine the best solution from generation i + 1 compared to that
of generation i we will notice that the ‘quality’ of the best solution is non decreasing
over the generations as we have the ‘Elitism mechanism’ which ensures us that the
best individuals will survive to the next generation.

6 Experimental Results

The datasets for our experiments were created using our own data generator which
supports any parameters combination of number of machines and jobs, number of
added or removed machines, number of added or removed jobs, as well as the dis-
tributions of job lengths, job-extension penalty, and transition costs.

Instances onwhichwe run our heuristics could be very large (hundreds of jobs, and
several dozens ofmachines). Instances onwhichwe run our brute-force solver (intro-
duced in Sect. 4.1) had to be smaller. In particular, we ran the brute-force solver on
instances with 20 jobs and 4machines.We find out that even such small instances can
provide a good comparison between different heuristics; therefore, the brute-force
solver is helpful for concluding how far from the optimum our heuristics perform.
The optimal algorithm for minΣjCj, based on a reduction to perfect matching (intro-
duced in Sect. 4.2), was able to handle relatively large instances of 15 machines and
300 jobs. In our basic template for job creation, the jobs’ lengths were uniformly
distributed in [1, 20]. The job-extension penalty of job j was uniformly distributed
in [1, pj

2 ], and the transition costs were uniformly distributed in [1, 5].
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To generate problems instances for a specific experiment we took a template
instance, decided on one parameter that will vary in the different runs, and set the
rest of the parameters to basic values. For example, to understand how the num-
ber of added machines affects the heuristics performance, we fixed all the other
parameters (jobs’ lengths, transition costs, etc.), and run the heuristics on multiple
instances which vary only in the number of added machines. To avoid anomalies,
we have generated for each experiment 5 instances with the same parameters, based
on 5 templates instances (same configuration, different instance) and considered the
average performance as the result.

Another parameter that could affect the performance of our heuristics is the initial
assignment - which may be random, SPT or LPT. We found out that in practice the
initial assignment does not affect the results significantly and the results we present
in the sequel were all generated with a randomize initial assignment - which is a bit
more ‘challenging’ and therefore emphasizes the differences among the heuristics.

The results of our experiments are presented and analyzed below. In all the figures,
the bars show the objective value (ΣjCj orCmax), and the lines show the corresponding
transition cost.

6.1 Results for the Minimal Total Flow-Time Problem

6.1.1 Machines’ Addition

The template for heuristics that analyze the minΣjCj problem consists of 15
machines and 300 jobs.We start by showing how the different heuristics performs on
instances with both transition costs and job-extension penalties, where the number
of added machines was set to m/2. As shown in Fig. 2, with unlimited budget the
genetic algorithm is the closest to the known optimum, calculated by the perfect
matching algorithm result. As budget is limited, the performance of the genetic algo-
rithm drops. As expected, the lower the budget, the higher the objective value. Also,
the differences between the heuristics are less significant as the budget decreases,
as less transitions are allowed. Interesting fact is that the genetic algorithm has a
slight improvement as the limitation is getting stricter. We explain this by the fact
that before starting the algorithm we include in the population items that obey the
allowed budget. Later, these items are influencing the genetic process and are helping
the algorithm to converge to a good solution, better than with a more relaxed budget
limitation.

The goal of our next experiment was to see how close the heuristics get to the
actual optimum. For this test we have used our brute-force solver on relatively small
problem instances (4 machines and 20 jobs), two machines were added and the
budget was set to 20. The results for various extension penalties are shown in Fig. 3.
We observe that both ‘Greedy-reversion’ and ‘Cyclic-reversion’ heuristics were very
close to the optimum.



Analysis and Experimental Study of Heuristics … 225

Fig. 2 Results for minΣjCj with m/2 added machines and variable budget

6.1.2 Machines’ Removal

Figure4 presents the performance of the different heuristics when the modification
is machines’ removal and the budget is limited to 150. According to our parameters,
this budget is expected to be sufficient for the migration of about 20% of the jobs.
The initial assignment was of 300 jobs on 15 machines. Not surprisingly, we see
an increase of the objective value as the number of removed machines increases.
All of the heuristics performed more or less the same, both in terms of the achieved
objective value and in term of the budget utilization, with an exception of the Genetic
algorithm which manage to use a significantly lower budget.

Figure5 presents the results for the same instance and the same modification
only with unlimited budget. This problem is the one for which we have an efficient
optimal algorithm (see Sect. 4.2). The genetic algorithm perform very close to the
optimum for every number of removed machines. In fact, for two removed machines
its transition cost is lower than the optimum and only slightly higher in the total
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Fig. 3 Results for minΣjCj with variable extension penalty

flow-time (recall that the optimal algorithm ‘insists’ on finding a reschedule that
minimizes the total flow-time). On the other hand the SPT-Like heuristic is both
very costly and gives poor results. This can be explained by the fact that insisting
on a complete SPT order requires many transition, and involves many job-extension
penalties.

6.2 Results for the Minimum Makespan Problem

6.2.1 Machines’ Addition

Our template for experiments analyzing the minCmax problem consists of 30
machines and 500 jobs. Figure6 presents results for adding 15 machines and vari-
able budget. The ‘Loads-based’ heuristic is the best heuristic. The genetic algorithm
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Fig. 4 Results for ΣjCj for machines’ removal and limited budget

perform poorly compared to the other heuristics, but on the other hand, it does not
utilize the whole budget.

In the our next experimentwemeasure howclose the heuristics get to the optimum.
We have used our brute-force solver on relatively small problem instances, consisting
of 4 machines, 20 jobs, and a limiting budget of 20. The results for various extension
penalties are shown in Fig. 7. Once again, the ‘Loads-based’ heuristic outperform
the others, and is relatively close to the optimum. The ‘LPT-based’ heuristic seems
to perform (relatively) better as the job-extension penalty increases.

6.2.2 Removing Machines

Our next experiments compare the performance of the different heuristics when the
modification is machines’ removal. We performed two experiments - with budget
limited to 250 and with unlimited budget. The results are shown in Figs. 8 and 9
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Fig. 5 Results for ΣjCj for machines’ removal and unlimited budget

respectively. Our results show that with unlimited budget, all three heuristics (LPT-
based, Loads-based and genetic) perform more or less the same. While a similar
makespan is achieved, the Loads-based heuristic requires the lower transition cost,
then the LPT-based (that needs 10% higher cost) and the genetic (15 − 20% higher
than Loads-based). With limited budget, the Loads-based and LPT-based heuristics
perform significantly better than the genetic algorithm, but they also require a much
higher budget.

7 Conclusions and Future Work

Wepresented theoretical and experimental results for the reoptimization variant of job
scheduling problems.We have shown that the problems of finding the minimum total
flow-time with limited budget, finding the minimum makespan with limited budget
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Fig. 6 Results for minCmax with m/2 added machines and variable budget

and finding the minimum makespan with unlimited budget are NP-Complete. We
have designed and implemented several heuristics for each of these problems, and
performed a comprehensive empirical study to analyze their performance. To see how
well these heuristics perform compared to the actual optimum, an efficient branch-
and-bound brute-force solver was designed and implemented. An optimal algorithm
for the minimum total-flow problem with unlimited budget was also implemented.

In general, our experiments reveal that while the problems are NP-hard, heuristics
whose time complexity is polynomial in the number of jobs and machines, perform
very well in practice. Simple algorithms, that are based on adjustment of known
heuristics for the one-shot problem (with no modifications) are both simple to imple-
ment and provide results that are, on average, within 10 − 15% from the optimum.
More complex algorithms, that are based on a preprocessing in which a perfect
matching algorithm is implemented, perform on average even better.
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Fig. 7 Results for minCmax with variable extension penalty

We have observed that while the Genetic algorithm does not perform well when
given a limited budget, it performs relatively well with unlimited budget for the
minimum Cmax problem, and close to optimum for ΣjCj. It also takes a considerable
amount of time to run. In some scenarios, its objective value may not be competitive
compared to other heuristics, however, its budget utilization is impressively good
(see for example Fig. 4). A known issue of genetic algorithm is that the parameters
must be carefully tuned in order for the algorithm to converge into a good solution.
Future work on this algorithmmight refactor the population size or operators we have
used (Elitism, Crossover, Mutation) by adding new operators, modify the existing
or change the possibilities of each to create a more optimized genetic algorithm.
Another direction to explore is to create a dedicated score method for each variant
of the problems. For real life applications where budget utilization is a big concern,
we are sometimes allowed to use lot of budget but strive to use as less as possible.
The genetic algorithm is a good choice for such scenarios.
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Fig. 8 Performance for minCmax for machines’ removal and limited budget

Our greedy heuristics performedwell, both on theΣjCj and theCmax problems.We
have observed that the ‘Loads-based’ heuristic outperformed the ‘LPT-based’ both
in terms of objective value and budget utilization. With unlimited budget, the bud-
get utilization difference was more significant. For minΣjCj, the ‘Cyclic-reversion’
showed better performance compared to the ‘Greedy-reversion’, This result does not
surprise us as a more balanced solution is expected to yield better results for the
minimum total flow-time problem. In terms of budget utilization, it was expected
that this greedy, budget oriented method will utilize as much budget as possible.

An additional direction for future work is to develop algorithms for the minimum
makespan problem with a guaranteed approximation ratio. While tuning existing
approximation-algorithm for the classical one-shot problem seems to be a promising
direction, the presence of transition-costs and job-extension penalties give rise to new
challenges and considerations. Finally, it would be interesting to consider different
objective functions, or different scheduling environments, for example, jobs with
deadlines or precedence constraints, as well as unrelated or restricted machines.
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Fig. 9 Performance for minCmax for machines’ removal and unlimited budget
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