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Foreword

In the last half-century, mathematical models treating various kinds of uncertainty
are developed remarkably: fuzzy set theory, Dempster and Shafer’s theory of
evidence, rough set theory, interval analysis, imprecise probability, and so on. They
are not always expressed well by the conventional probability. The issues of
imprecise knowledge are acknowledged in information and computer sciences,
especially in artificial intelligence, while they have been investigated for a long time
by philosophers, logicians, and mathematicians. Those models are not competitive
but complement one another because they treat various aspects of uncertainty.

Among those, the rough set theory is proposed in 1982 by Prof. Zdzislaw I.
Pawlak. In rough set theory, objects are grouped together by their features as a
homogeneous family, and certain and uncertain members of a set are identified
group-wise by checking whether all members of a group belong to the set or not.
This treatment of rough sets is useful in the analysis of datasets concerning clas-
sification. By checking whether all objects having same features described by
attributes are classified into a same class or not, we find creditable, consistently
classified data, and dubious, conflicting data. We get minimally necessary attributes
by reducing attributes describing the feature of groups of objects with preserving all
creditable data. We obtain rules with minimal length conditions by simplifying the
description of credible data in a class without loss of the classification accuracy. In
these ways, rough sets play important roles of data analysis, and most of real-world
applications of rough sets utilize the attribute reduction and rule induction.

It is known that such a group-wise processing resembles human information
processing. Generally, this kind of information processing is called a granular
computing by Prof. Lotfi A. Zadeh, the father of fuzzy sets. In granular computing,
groups can be fuzzy sets, crisp sets, intervals, and so on. Human perception is
usually not numerical but categorical or ordinal. For example, let us consider
temperature. We, humans, say ‘hot,’ ‘cold,’ ‘comfortable,’ and so on and never say
‘31 Celsius’ or ‘64 Fahrenheit’ until we see a thermometer. Namely, the temper-
ature is granulated into ‘hot,’ ‘cold,’ ‘comfortable,’ and so on in our mind, and
human perception of the temperature is categorical. Granular computing is devel-
oping toward the realization of human-like information processing such as
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computing with words. Rough sets provide promising tools to formulate granular
computing, and further developments are expected.

The authors of this book are leading researchers in the fields of non-classical
logic, rough set theory, and granular computing. By its limitation of the repre-
sentability, human reasoning under uncertainty cannot be explained well by the
classical logic. Non-classical logic such as modal logic, many-valued logic, intu-
itionistic logic, paraconsistent logic has been investigated and developed since the
days of Aristotle. In this book, rough set theory is considered from viewpoints of
algebras and non-classical logic. After the fundamental discussions in non-classical
logic, logics for rough sets are formulated. Moreover, a granularity-based frame-
work of reasoning, which is a general approach to reasoning with rough sets is
proposed and investigated the relations to non-monotonic reasoning, association
rules in conditional logic, and background knowledge.

This book is unique and would be the initial attempt that rough sets and
granularity-based framework of reasoning are systematically developed from the
viewpoint of non-classical logic. It is well-structured, comprehensive, and clearly
written, considering the beginners and at the same time researchers in
non-monotonic reasoning, rough sets, and the related topics. The book is useful and
recommendable for wide range of people interested in rough sets and granular
computing. No doubt this book contributes significantly and remarkably to the
development of rough sets and granular computing.

Osaka, Japan
October 2017

Masahiro Inuiguchi
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Preface

Pawlak proposed rough set theory in 1982. It can be seen as an extension of set
theory, in which a subset of a universe is formalized by a pair of sets, i.e., the lower
and upper approximations. These approximations can be described by two opera-
tors on subsets of the universe.

In rough set theory, an equivalence relation, i.e., reflexive, symmetric, and
transitive relation, plays an important role. Namely, the lower approximation of a
given set is the union of all equivalence classes which are subset of the set, and the
upper approximation is the union of all equivalence classes which have a
non-empty intersection with the set.

The idea of a rough set has several connections with non-classical logics, in
particular, modal logic. A lot of work has been done to provide a logical foundation
for rough set theory. In the 1980s, a logic for reasoning about concepts, which is
essentially the modal logic S5, was developed based on rough sets by Orlowska.
A generalization of rough sets by modal logic using Kripke semantics was also
worked out by Yao and Lin.

Now, rough set theory becomes one of the most important frameworks for
imprecise and uncertain data and reasoning from data. It is also connected with
granularity computing. In fact, there are many issues on various types of reasoning
related to rough set theory.

This book explores reasoning with rough sets by developing some
granularity-based frameworks. We begin with a brief description of rough set
theory. Next, we examine some relations between rough set theory and
non-classical logics including modal logic. We also develop a granularity-based
framework for reasoning in which various types of reasoning can be formalized.
This book will be of interest to researchers working on the areas of artificial
intelligence, database, and logic.

The structure of the book is as follows.
Chapter 1 gives an introductory presentation to motivate our work on rough set

theory. Rough set theory is interesting theoretically as well as practically, and a
quick survey on the subject, including overview, history, and applications, is
helpful to the readers.
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Chapter 2 describes the foundations for rough set theory. We outline Pawlak’s
motivating idea and give a technical exposition. Basics of Pawlak’s rough set
theory and variable precision rough set model are presented with some related
topics. We also present variants and related theories.

Chapter 3 surveys some non-classical logics. They are closely related to the
foundations of rough set theory. We provide the basics of modal, many-valued,
intuitionistic, and paraconsistent logic.

Chapter 4 introduces several logical characterizations of rough sets. We outline
some approaches in the literature including double Stone algebras, Nelson algebras,
and modal logics. We also discuss rough set logics, logics for reasoning about
knowledge, and logics for knowledge representation.

Chapter 5 presents a granularity-based framework of deduction, induction, and
abduction using variable precision rough set models proposed by Ziarko and
measure-based semantics for modal logic proposed by Murai et al. This is of special
importance as a general approach to reasoning based on rough set theory. We also
discuss non-monotonic reasoning, association rules in conditional logic, and
background knowledge.

Chapter 6 gives some conclusions with the summary of the book. We evaluate
our work in connection with others. We also discuss several issues to be
investigated.

We are grateful to Prof. Lakhmi C. Jain and Prof. Masahiro Inuiguchi for useful
comments.

Kawasaki, Japan Seiki Akama
Chitose, Japan Tetsuya Murai
Muroran, Japan Yasuo Kudo
October 2017
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Chapter 1
Introduction

Abstract This gives an introductory presentation to motivate our work on rough
set theory. Rough set theory is interesting theoretically as well as practically, and a
quick survey on the subject, including overview, history and applications, is helpful
to the readers.

1.1 Rough Set Theory

Pawlak proposed rough set theory in 1982; see Pawlak [1, 2]. It can be seen as an
extension of (standard) set theory, in which a subset of a universe is formalized by a
pair of sets, i.e., the lower and upper approximations. These approximations can be
described by two operators on subsets of the universe.

Observe that, in rough set theory, an equivalence relation, i.e., reflexive, symmetric
and transitive relation, plays an important role. Based on an equivalence relation, we
can define the lower approximation of a given set as the union of all equivalence
classes which are subset of the set, and the upper approximation as the union of
all equivalence classes which have a non-empty intersection with the set. These
approximations can naturally represent incomplete information.

Of course, rough set theory canbedevelopedby relations other than an equivalence
relation. But the use of an equivalence relation enables an elegant formalization, and
we can obtain simple applications. However, after Pawlak’s work, versions of rough
set theory using various relations have been proposed in the literature.

Rough set theory is, in particular, helpful in extracting knowledge from data tables
and it has been successfully applied to the areas such as data analysis, decision
making, machine learning, etc.

We also observe that set theory and logic are strongly connected. This means that
rough set-based approaches to knowledge representation and logic-based ones have
intimate connections. In fact, rough set has several connections with non-classical
logics, in particular, modal logic. A lot of work has been done to provide a logical
foundation for rough set theory.

In the 1980s, a logic for reasoning about concepts, which is essentially the modal
logic S5, was developed based on rough sets by Orlowska [3]. A generalization of

© Springer International Publishing AG 2018
S. Akama et al., Reasoning with Rough Sets, Intelligent Systems
Reference Library 142, https://doi.org/10.1007/978-3-319-72691-5_1

1



2 1 Introduction

rough sets by modal logic using Kripke semantics was also worked out by Yao and
Lin [4].

Now, rough set theory becomes one of the most important frameworks for impre-
cise and uncertain data and reasoning from data. It is also connected with granular
computing. In fact, there are many issues on various types of reasoning related to
rough set theory.

This book explores reasoning with rough sets by developing a granularity-based
framework. We begin with a brief description on rough set theory. Next, we examine
some relations between rough set theory and non-classical logics including modal
logic.

We also develop a granularity-based framework for reasoning in which various
types of reasoning can be formalized; seeKudo,Murai andAkama [5]. This bookwill
be of interest to researchers working on the areas in Artificial Intelligence, database
and logic.

1.2 History

Here, we describe the history of rough set theory shortly. In 1981, Pawlak proposed
information system in Pawlak [6]. It shares many ideas with rough set theory, and it
is regarded as a forerunner of rough set theory.

In 1982, Pawlak proposed a concept of rough set to deal with reasoning from
imprecise data in [6]. His contributions were compiled in his monograph published
in 1991; see Pawlak [1].

Pawlak’s starting point is to give formal classification of knowledge. Thus, rough
set theory is closely related to logics for knowledge. In fact, Orlowska studied logical
aspects of learning concepts in Orlowska [7] in 1988.

She proposed a logic for reasoning about knowledge in [8] in 1989. These works
provided connections of rough set theory and modal logic, since her formal systems
are essentially the modal logic S5.

Fariñas del Cerro and Orlowska developedDAL, a logic for data analysis in 1985;
see [9]. DAL is a modal logic inspired by the ideas of rough set theory. Their work
reveals that modal logic is of special interest to data analysis.

Ziarko proposed the variable precision rough set (VPRS) models in 1993; see
Ziarko [10]. The work extends rough set theory capable of dealing with probabilistic
or inconsistent information.

Yao and Lin studied the connection of general rough set model and modal logics
by means of Kripke models in 1996 in Yao and Lin [4]. By their work, it became
clear that lower (upper) approximation in rough sets and necessity (possibility) are
closely related.

It is natural to consider the unification of rough set theory and fuzzy set theory,
because both theories can handle vagueness. There are several approaches in the
literature. For instance, Dubois and Prade [11] clarified the differences of these two,
and proposed a fuzzy rough set and rough fuzzy set in 1989.



1.2 History 3

The former fuzzifies an equivalence relation and the latter uses upper and lower
approximation on fuzzy sets. Depending on applications, we could choose one of
them. Nakamura and Gao [12] also proposed a fuzzy rough set in connection with
fuzzy data analysis in 1991. Their approach is based on modal logic, influenced by
DAL.

Pagliani proposed to use Nelson algebras to lay an alternative foundation for
rough set theory in 1996; see Pagliani [13]. Later, he discussed the roles of negations
in his theory in expressing vagueness; see Pagliani [14].

A logic for rough sets was first developed by Düntsch in 1997 in Düntsch [15].
Based on Pomykala’s results, he proposed a propositional logic for rough sets with
an algebraic semantics based on regular double Stone algebras.

Pomykala and Pomykala [16] showed that the collection of rough sets of an
approximation space forms a regular double Stone algebra in 1998. It is a famous
fact that the collection of all subsets of a set constitutes a Boolean algebra and that
its logic is exactly the classical propositional logic.

Rough set theory can serve as a semantic basis for non-classical logics. For exam-
ple, Akama and Murai developed a rough set semantics for some three-valued logics
in 2005; see Akama and Murai [17].

Miyamoto et al. used a family polymodal systems with the structure of lattices on
the polymodal indices in [18]. They considered two applications. One is generalized
possibility measures in which lattice-valued measures are proposed and relations
with the ordinary possibility and necessity measures are uncovered. The other is an
information system as a table such as the one in the relational database. The work
generalized rough sets which are called multi-rough sets.

Kudo et al. proposed a granularity-based framework of deduction, induction and
abduction based on VPRS models and measure-based semantics of modal logic due
to Murai et al. [19–21] in 2009; see Kudo et al. [5].

Their work provides a unified formulation of various types of reasoning within
the framework of rough set theory, and it can be applied to several AI problems. We
will present the framework in Chap.5.

Akama et al. proposed a Heyting-Brouwer rough set logic as an extension of
Düntsch’s logic for rough sets in 2013; see Akama et. al [22]. The logic is useful
for reasoning about rough information, because it has an implication. It is also noted
that its subsystem can be used as a logic for vagueness; see Akama et al. [23].

Rough set theory has been applied tomany areas and there is in fact a rich literature.
In the next section we will shortly overview on interesting applications of rough set
theory. There are some textbooks on rough set theory, e.g., Polkowski [24].

1.3 Applications

Although the present book deals with reasoning with rough sets, we here present
some examples of applications. Of course, our exposition on applications is not
complete, but rough set theory can be applied to many areas and it is of special

http://dx.doi.org/10.1007/978-3-319-72691-5_5


4 1 Introduction

interest for engineering applications. Promising areas include, as mentioned below,
machine learning, data mining, decision making, medicine, etc.

Rough set theory has an advantage over other theories in that it does not need any
preliminary information or additional information about data. Namely, it dispenses
with the notions like probability, basic probability assignment in Dempster-Shafer
theory and membership in fuzzy set theory. The feature leads to many successful
applications.

Machine Learning (ML) is the subfield of AI whose aim is to give computers the
ability to learn. Orlowska [7] studied logical aspects of learning concepts by modal
logic. A rough set approach to learning was explored by Pawlak [2] who discussed
learning from examples and inductive learning.

Data Mining is the area which studies the process of finding patterns in large
databases. It is also called knowledge discovery in database (KDD). Now, in the
presence of Big Data, many people in various fields are investigating Data Mining.
The reader should consult Adriaans and Zatinge [25] for details.

There are many different approaches to Data Mining, and rough set theory consti-
tutes one of the helpful approaches; see Lin and Cercone [26]. This is because rough
set theory can formalize information systems and the methods using decision tables
are very useful for Data Mining.

Decision making is the process of selecting a logical choice from possible options.
A system capable of doing decision making is called a decision support system.
Decision table and its simplification methods are applied to decision-making. For a
survey on the subject, see Slowinski et al. [27].

Image processing considers image data and their various treatments. Which is
the sub-field of pattern recognition. Rough set theory is helpful to segmentation and
extraction; see Pal et al. [28]. Other promising applications include image classifi-
cation and retrieval, which challenge standard approaches.

Switching circuit is a basis for hardware design and some effective methods like
Karnaugh maps have been already established. However, rough set theory can serve
as an alternative base for switching circuit.

In fact, switching function can be described as a decision table and we can employ
simplification methods for it. Note that the method is completely expressed in rough
set theory. See Pawlak [2] for details.

Robotics is the area of constructing a robot. There are several types of robotics
systems; from simple one to human-like one. In any case, it needs various disciplines
mainly for hardware and software.

As an actual robot faces uncertainty in various stages, we can make use of rough
set theory for its system. For an overview on the subject, the reader is referred to Bit
and Beaubouef [29].

Mathematics should be re-considered in the context of rough sets. Since rough set
is a generalization of standard set, rough set theory can be regarded as an extension
of standard one. It may be possible to work out intriguing mathematical results in
rough set theory. However, little work has been done on the subject.

Medicine is one of themost significant areas benefited from rough set theory, since
medical data canbe consideredboth incomplete andvague.However, physiciansmust
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diagnose a patient and decide the best way for a patient without obtaining complete
information.

There are many works onmedical science based on rough set theory. For instance,
Tsumoto [30] proposed a model for medical diagnostic rules based on rough sets.
Hirano and Tsumoto [31] applied rough set theory to the analysis of medical images.

Rough set theory gives us one of the important backgrounds of the so-called soft
computing whose aim is to deal with inexact solutions of computational problems.
Other backgrounds include fuzzy logic, evolutional computing, Machine Learning
and probability theory. Rough set theory seems to have many advantages over other
backgrounds.
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Chapter 2
Rough Set Theory

Abstract This chapter describes the foundations for rough set theory. We outline
Pawlak’s motivating idea and give a technical exposition. Basics of Pawlak’s rough
set theory and variable precision rough set model are presented with some related
topics. We also present variants and related theories.

2.1 Pawlak’s Approach

We begin with an exposition of Pawlawk’s approach to rough set theory based on
Pawlak [1]. His motivation is to provide a theory of knowledge and classification by
introducing a new concept of set, i.e. rough set.

By object, we mean anything we can think of, for example, real things, states,
abstract concepts, etc.. We can assume that knowledge is based on the ability to
classify objects. Thus, knowledge is necessarily connected with the variety of clas-
sification patterns related to specific parts of the real or abstract world, called the
universe of discourse (or the universe).

Now,we turn to a formal presentation.We assume the usual notation for set theory.
LetU be non-empty finite set of objects called the universe of discourse. Any subset
X ⊆ U of the universe is called a concept or a category inU . Any family of concepts
in U is called knowledge about U . Note that the empty set ∅ is also a concept.

We mainly deal with concepts which form a partition (classification) of a certain
universe U , i.e. in families C = {X1, X2, ..., Xn} such that Xi ⊆ U, Xi �= ∅, Xi ∩
X j = ∅ for i �= j, i, j = 1, ..., n and

⋃
Xi = U . A family of classifications over U

is called a knowledge base over U .
Classifications can be specified by using equivalence relations. If R is an equiv-

alence relation over U , then U/R means the family of all equivalence classes of R
(or classification of U ) referred to as categories or concepts of R. [x]R denotes a
category in R containing an element x ∈ U .

A knowledge base is defined as a relational system, K = (U, R), where U �= ∅
is a finite set called the universe, and R is a family of equivalence relations over U .
IND(K ) means the family of all equivalence relations defined in K , i.e., IND(K ) =
{IND(P) | ∅ �= P ⊆ R}. Thus, IND(K ) is the minimal set of equivalence relations,

© Springer International Publishing AG 2018
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8 2 Rough Set Theory

containing all elementary relations of K , and closed under set-theoretical intersection
of equivalence relations.

IfP ⊆ R andP �= ∅, then⋂
P denotes the intersection of all equivalence relations

belonging to P, denoted IND(P), called an indiscernibility relation of P. It is also an
equivalence relation, and satisfies:

[x]IND(P) =
⋂

R∈P

[x]R .

Thus, the family of all equivalence classes of the equivalence relation IND(P), i.e.,
U/IND(P) denotes knowledge associated with the family of equivalence relations
P. For simplicity, we will write U/P instead of U/IND(P).

P is also called P-basic knowledge. Equivalence classes of IND(P) are called
basic categories (concepts) of knowledge P. In particular, if Q ∈ R, then Q is called
a Q-elementary knowledge (aboutU in K ) and equivalence classes of Q are referred
to as Q-elementary concepts (categories) of knowledge R.

Now, we describe the fundamentals of rough sets. Let X ⊆ U and R be an
equivalence relation. We say that X is R-definable if X is the union of some R-basic
categories; otherwise X is R-undefinable.

The R-definable sets are those subsets of the universewhich can be exactly defined
in the knowledge base K , whereas the R-undefinable sets cannot be defined in K . The
R-definable sets are called R-exact sets, and R-undefinable sets are called R-inexact
or R-rough.

Set X ⊆ U is called exact in K if there exists an equivalence relation R ∈ IND(K )

such that X is R-exact, and X is said to be rough in K if X is R-rough for any
R ∈ IND(K ).

Observe that rough sets can be also defined approximately by using two exact
sets, referred as a lower and an upper approximation of the set.

Suppose we are given knowledge base K = (U, R). With each subset X ⊆ U
and an equivalence relation R ∈ IND(K ), we associate two subsets:

RX =
⋃
{Y ∈ U/R : Y ⊆ X}

RX =
⋃
{Y ∈ U/R : Y ∩ X �= ∅}

called the R-lower approximation and the R-upper approximation of X , respectively.
They will be simply called the lower-approximation and the upper-approximation if
the context is clear.

It is also possible to define the lower and upper approximation in the following
two equivalent forms:

RX = {x ∈ U : [x]R ⊆ X}
RX = {x ∈ U : [x]R ∩ X �= ∅}

or

x ∈ RX iff [x]R ⊆ X

x ∈ RX iff [x]R ∩ X �= ∅.
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The above three are interpreted as follows. The set RX is the set of all elements
ofU which can be certainly classified as elements of X in the knowledge R. The set
RX is the set of elements of U which can be possibly classified as elements of X in
R.

We define R-positive region (POSR(X)), R-negative region (NEGR(X)), and
R-borderline region (BNR(X)) of X as follows:

POSR(X) = RX

NEGR(X) = U − RX

BNR(X) = RX − RX.

The positive region POSR(X) (or the lower approximation) of X is the collection
of those objects which can be classified with full certainty as members of the set X ,
using knowledge R.

The negative region NEGR(X) is the collection of objects with which it can be
determined without any ambiguity, employing knowledge R, that they do not belong
to the set X , that is, they belong to the complement of X .

The borderline region BNR(X) is the set of elements which cannot be classified
either to X or to −X in R. It is the undecidable area of the universe, i.e. none of the
objects belonging to the boundary can be classified with certainty into X or −X as
far as R is concerned.

Now, we list basic formal results. Their proofs may be found in Pawlak [1].
Proposition 2.1 is obvious.

Proposition 2.1 The following hold:

(1) X is R-definable iff RX = RX
(2) X is rough with respect to R iff RX �= RX.

Proposition2.2 shows the basic properties of approximations:

Proposition 2.2 The R-lower and R-upper approximations satisfy the following
properties:

(1) RX ⊆ X ⊆ RX
(2) R∅ = R∅ = ∅, RU = RU = U
(3) R(X ∪ Y ) = RX ∪ RY
(4) R(X ∩ Y ) = RX ∩ RY
(5) X ⊆ Y implies RX ⊆ RY
(6) X ⊆ Y implies RX ⊆ RY
(7) R(X ∪ Y ) ⊇ RX ∪ RY
(8) R(X ∩ Y ) ⊆ RX ∩ RY
(9) R(−X) = −RX

(10) R(−X) = −RX
(11) RRX = RRX = RX
(12) RRX = RRX = RX
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The concept of approximations of sets can be also applied to that of membership
relation. In rough set theory, since the definition of a set is associated with knowledge
about the set, a membership relation must be related to the knowledge.

Then, we can define two membership relations ∈R and ∈R . x∈R X reads “x surely
belongs to X” and ∈R reads “x possibly belongs to X”. ∈R and ∈R are called the
R-lower membership and R-upper membership, respectively.

Proposition2.3 states the basic properties of membership relations:

Proposition 2.3 The R-lower and R-upper membership relations satisfy the follow-
ing properties:

(1) x ∈R X imply x ∈ X implies x∈R X
(2) X ⊆ Y implies (x∈R X implies x∈RY and x∈R X implies x∈RY )

(3) x∈R(X ∪ Y ) iff x∈R X or x∈RY
(4) x∈R(X ∩ Y ) iff x∈R X and x∈RY
(5) x∈R X or x∈RY implies x∈R(X ∪ Y )

(6) x∈R(X ∩ Y ) implies x∈R X and x∈RY
(7) x∈R(−X) iff non x∈R X
(8) x∈R(−X) iff non x∈R X

Approximate (rough) equality is the concept of equality in rough set theory. Three
kinds of approximate equality can be introduced. Let K = (U, R) be a knowledge
base, X,Y ⊆ U and R ∈ IND(K ).

(1) Sets X and Y are bottom R-equal (X
−−∼R Y ) if RX = RY

(2) Sets X and Y are top R-equal (X 
R Y ) if RX = RY

(3) Sets X and Y are R-equal (X ≈R Y ) if X
−−∼R Y and X 
R Y

These equalities are equivalence relations for any indiscernibility relation R. They

are interpreted as follows: X
−−∼R Y means that positive example of the sets X and

Y are the same, (X 
R Y ) means that negative example of the sets X and Y are the
same, and (X ≈R Y ) means that both positive and negative examples of X and Y
are the same.

These equalities satisfy the following proposition (we omit subscript R for sim-
plicity):

Proposition 2.4 For any equivalence relation, we have the following properties:

(1) X
−−∼ Y iff X ∩ X

−−∼ Y and X ∩ Y
−−∼ Y

(2) X 
 Y iff X ∪ Y 
 X and X ∪ Y 
 Y
(3) If X 
 X ′ and Y 
 Y ′, then X ∪ Y 
 X ′ ∪ Y ′

(4) If X
−−∼ X ′ and Y

−−∼ Y ′, then X ∩ Y
−−∼ X ′ ∩ Y ′

(5) If X 
 Y , then X ∪ −Y 
 U

(6) If X
−−∼ Y , then X ∩ −Y −−∼ ∅

(7) If X ⊆ Y and Y 
 ∅, then X 
 ∅
(8) If X ⊆ Y and Y 
 U, then X 
 U
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(9) X 
 Y iff −X
−−∼ −Y

(10) If X
−−∼ ∅ or Y

−−∼ ∅, then X ∩ Y
−−∼ ∅

(11) If X 
 U or Y 
 U, then X ∪ Y 
 U.

The following proposition shows that lower and upper approximations of sets can
be expressed by rough equalities:

Proposition 2.5 For any equivalence relation R:

(1) RX is the intersection of all Y ⊆ U such that X
−−∼R Y

(2) RX is the union of all Y ⊆ U such that X 
R Y .

Similarly, we can define rough inclusion of sets. It is possible to define three kinds
of rough inclusions.

Let X = (U, R) be a knowledge base, X,Y ⊆ U , and R ∈ IND(K ). Then, we
have:

(1) Set X is bottom R-included in Y (X
⊂∼R Y ) iff RX ⊆ RY

(2) Set X is top R-included in Y (X
∼⊂R Y ) iff RX ⊆ RY

(3) Set X is R-included in Y (X
∼
⊂∼R Y ) iff X

∼⊂R Y and X
⊂∼R Y .

Note that
⊂∼R,

∼⊆R and
∼
⊂∼R are quasi ordering relations. They are called the lower,

upper and rough inclusion relation, respectively. Observe that rough inclusion of sets
does not imply the inclusion of sets.

The following proposition shows the properties of rough inclusion:

Proposition 2.6 Rough inclusion satisfies the following:

(1) If X ⊆ Y , then X
⊂∼ Y, X

∼⊂ Y and X
∼
⊂∼ Y

(2) If X
⊂∼ Y and Y

⊂∼ X, then X
−−∼ Y

(3) If X
∼⊂ Y and Y

∼⊂ X, then X 
 Y

(4) If X
∼
⊂∼ Y and Y

∼
⊂∼ X, then X ≈ Y

(5) If X
∼⊂ Y iff X ∪ Y 
 Y

(6) If X
⊂∼ Y iff X ∩ Y

−−∼ Y

(7) If X ⊆ Y, X
−−∼ X ′ and Y

−−∼ Y ′, then X ′ ⊂∼ Y ′

(8) If X ⊆ Y, X 
 X ′ and Y 
 Y ′, then X ′ ∼⊂ Y ′

(9) If X ⊆ Y, X ≈ X ′ and Y ≈ Y ′, then X ′
∼
⊂∼ Y ′

(10) If X ′ ∼⊂ X and Y ′
∼⊂ Y , then X ′ ∪ Y ′

∼⊂ X ∪ Y

(11) X ′ ⊂∼ X and Y ′
⊂∼ Y , then X ′ ∩ Y ′

⊂∼ X ∩ Y

(12) X ∩ Y
⊂∼ Y

∼⊂ X ∪ Y

(13) If X
⊂∼ Y and X

−−∼ Z, then Z
⊂∼ Y
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(14) If X
∼⊂ Y and X 
 Z, then Z

∼⊂ Y

(15) If X
∼
⊂∼ Y and X ≈ Z, then Z

∼
⊂∼ Y

The above properties are not valid if we replace
−−∼ by 
 (or conversely). If R is

an equivalence relation, then all three inclusions reduce to ordinary inclusion.

2.2 Variable Precision Rough Set Models

Ziarko generalized Pawlak’s original rough set model in Ziarko [2], which is called
the variable precision rough set model (VPRS model) to overcome the inability to
model uncertain information, and is directly derived from the original model without
any additional assumptions.

As the limitations of Pawlak’s rough set model, Ziarko discussed two points. One
is that it cannot provide a classification with a controlled degree of uncertainty. Some
level of uncertainty in the classification process gives a deeper or better understanding
for data analysis.

The other is that the original model has the assumption that the universe U of
data objects is known. Therefore, all conclusions derived from the model are appli-
cable only to this set of objects. It is useful to introduce uncertain hypotheses about
properties of a larger universe.

Ziarko’s extended rough set model generalizes the standard set inclusion rela-
tion, capable of allowing for some degree of misclassification in the largely correct
classification.

Let X and Y be non-empty subsets of a finite universe U . X is included in Y ,
denoted Y ⊇ X , if for all e ∈ X implies e ∈ Y . Here, we introduce the measure
c(X,Y ) of the relative degree of misclassification of the set X with respect to set Y
defined as:

c(X,Y ) = 1− card(X ∩ Y )/card(X) if card(X) > 0 or

c(X,Y ) = 0 if card(X) = 0

where card denotes set cardinality.
The quantity c(X,Y ) will be referred to as the relative classification error. The

actual number of misclassification is given by the product c(X,Y ) ∗ card(X) which
is referred to as an absolute classification error.

We can define the inclusion relationship between X and Y without explicitly using
a general quantifier:

X ⊆ Y iff c(X,Y ) = 0

The majority requirement implies that more than 50% of X elements should
be in common with Y . The specified majority requirement imposes an additional
requirement. The number of elements of X in common with Y should be above 50%
and not below a certain limit, e.g. 85%.
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According to the specified majority requirement, the admissible classification
error β must be within the range 0 ≤ β < 0.5. Then, we can define the majority
inclusion relation based on this assumption.

X
β⊆ Y iff c(X,Y ) ≤ β

The above definition covers the whole family of β-majority relation. However, the
majority inclusion relation does not have the transitivity relation.

The following two propositions indicate some useful properties of the majority
inclusion relation:

Proposition 2.7 If A ∩ B = ∅ and B
β⊇ X, then it is not true that A

β⊇ X.

Proposition 2.8 If β1 < β2, then Y
β1⊇ X implies Y

β2⊇ X.

For the VPRS-model, we define the approximation space as a pair A = (U, R),
where U is a non-empty finite universe and R is the equivalence relation on U . The
equivalence relation R, referred to as an indiscernibility relation, corresponds to a
partitioning of the universe U into a collection of equivalence classes or elementary
set R∗ = {E1, E2, ..., En}.

Using a majority inclusion relation instead of the inclusion relation, we can obtain
generalized notions of β-lower approximation (or β-positive region POSRβ(X)) of
the set U ⊇ X :

RβX =
⋃
{E ∈ R∗ : X β⊇ E} or, equivalently,

RβX =
⋃
{E ∈ R∗ : c(E, X) ≤ β}

The β-upper approximation of the set U ⊇ X can be also defined as follows:

RβX =
⋃
{E ∈ R∗ : c(E, X) < 1− β}

The β-boundary region of a set is given by

BNRβX =
⋃
{E ∈ R∗ : β < c(E, X) < 1− β}.

Theβ-negative region of X is defined as a complement of theβ-upper approximation:

NEGRβX =
⋃
{E ∈ R∗ : c(E, X) ≥ 1− β}.

The lower approximation of the set X can be interpreted as the collection of all
those elements of U which can be classified into X with the classification error not
greater than β.
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The β-negative region of X is the collection of all those elements ofU which can
be classified into the complement of X , with the classification error not greater than
β. The latter interpretation follows from Proposition2.9:

Proposition 2.9 For every X ⊆ Y , the following relationship is satisfied:

POSRβ(−X) = NEGRβX.

The β-boundary region of X consists of all those elements of U which cannot be
classified either into X or into −X with the classification error not greater than β.

Notice here that the law of excluded middle, i.e. p∨¬p, where¬p is the negation
of p, holds in general for imprecisely specified sets.

Finally, the β-upper approximation RβX of X includes all those elements of U
which cannot be classified into −X with the error not greater than β. If β = 0
then the original rough set model is a special case of VPRS-model, as the following
proposition states:

Proposition 2.10 Let X be an arbitrary subset of the universe U:

(1) R0X = RX, where RX is a lower approximation defined as RX = ⋃{E ∈
R∗ : X ⊇ E}

(2) R0X = RX, where RX is an upper approximation defined as RX = ⋃{E ∈
R∗ : E ∩ X �= ∅}

(3) BNR0X = BNR X, where BNR X is the set X boundary region defined as
BNR X = RX − RX

(4) NEGR0X = NEGR X, where NEGR X is the set X negative region defined as
NEGR X = U − RX

In addition, we have the following proposition:

Proposition 2.11 If 0 ≤ β < 0.5 then the properties listed in Proposition 2.10 and
the following are also satisfied:

RβX ⊇ RX,

RX ⊇ RβX,
BNR X ⊇ BNRβX,
NEGRβX ⊇ NEGR X.

Intuitively, with the decrease of the classification error β the size of the positive
and negative regions of X will shrink, whereas the size of the boundary region will
grow.

With the reductionofβ fewer elementary setswill satisfy the criterion for inclusion
in β-positive or βnegative regions. Thus, the size of the boundary will increase.

The reverse process can be done with the increase of β.

Proposition 2.12 With the β approaching the limit 0.5, i.e., β → 0.5, we obtain the
following:
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RβX → R0.5X = ⋃{E ∈ R∗ : c(E, X) < 0.5},
RβX → R0.5X = ⋃{E ∈ R∗ : c(E, X) ≤ 0.5},
BNRβX → BNR0.5X = ⋃{E ∈ R∗ : c(E, X) = 0.5},
NEGRβX → NEGR0.5X = ⋃{E ∈ R∗ : c(E, X) > 0.5}.
The set BNR0.5X is called an absolute boundary of X because it is included in

every other boundary region of X .
The following Proposition2.13 summarizes the primary relationships between set

X discernibility regions computed on 0.5 accuracy level and higher levels.

Proposition 2.13 For boundary regions of X, the following hold:

BRN0.5X =
⋂

β

BNRβX,

R0.5X =
⋂

β

RβX,

R0.5X =
⋃

β

RβX,

NEGR0.5X =
⋃

β

NEGRβX.

The absolute boundary is very “narrow”, consisting only of those sets which have
50/50 aplite of elements among set X interior and its exterior. All other elementary
sets are classified either into positive region R0.5X or the negative region NEGR0.5X .

We turn to themeasure of approximation. To express the degreewithwhich a set X
can be approximately characterized bymeans of elementary sets of the approximation
space A = (U, R), wewill generalize the accuracymeasure introduced in Pawlak [3].

The β-accuracy for 0 ≤ β < 0.5 is defined as

α(R, β, X) = card(RβX)/card(RβX).

The β-accuracy represents the imprecision of the approximate characterization of
the set X relative to assumed classification error β.

Note that with the increase of β the cardinality of the β-upper approximation will
tend downward and the size of the β-lower approximation will tend upward which
leads to the conclusion that is consistent with intuition that relative accuracy may
increase at the expense of a higher classification error.

The notion of discernibility of set boundaries is relative. If a large classification
error is allowed then the set X can be highly discernablewithin assumed classification
limits.When smaller values of the classification tolerance are assumed inmaybecome
more difficult to discern positive and negative regions of the set to meet the narrow
tolerance limits.

The set X is said to be β-discernable if its β-boundary region is empty or, equiv-
alently, if

RβX = RβX.
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For the β-discernable sets the relative accuracy α(R, β, X) is equal to unity.
The discernable status of a set change depending on the value of β. In general, the
following properties hold:

Proposition 2.14 If X is discernable on the classification error level 0 ≤ β < 0.5,
then X is also discernable at any level β1 > β.

Proposition 2.15 If R0.5X �= R0.5X, then X is not discernable on every classifica-
tion error level 0 ≤ β < 0.5.

Proposition 2.16 emphasizes that a set with a non-empty absolute boundary can
never be discerned. In general, one can easily demonstrate the following:

Proposition 2.16 If X is not discernable on the classification error level 0 ≤ β <

0.5, then X is also not discernible at any level β1 < β.

Any set X which is not discernable for every β is called indiscernible or abso-
lutely rough. The set X is absolutely rough iff BNR0.5X �= ∅. Any set which is not
absolutely rough will be referred to as relatively rough or weakly discernable.

For each relatively rough set X , there exists such a classification error level β that
X is discernable on this level.

Let NDIS(R, X) = {0 ≤ β < 0.5 : BNRβ(X) �= ∅}.Then, NDIS(R, X) is a
range of all those β values for which X is indiscernible.

The least value of classification errorβ whichmakes X discernablewill be referred
to as discernibility threshold. The value of the threshold is equal to the least upper
bound ζ(R, X) of NDIS(X), i.e.,

ζ(R, X) = sup NDIS(R, X).

Proposition2.17 states a simple property which can be used to find the discerni-
bility threshold of a weakly discernible set X :

Proposition 2.17 ζ(R, X) = max(m1,m2), where

m1 = 1−min{c(E, X) : E ∈ R∗ and 0.5 < c(E, X)},
m2 = max{c(E, X) : E ∈ R∗ and c(E, X) < 0.5}.

The discernibility threshold of the set X equals a minimal classification error β

which can be allowed to make this set β-discernible.
We give some fundamental properties of β-approximations.

Proposition 2.18 For every 0 ≤ β < 0.5, the following hold:

(1a) X
β⊇ RβX

(1b) RβX ⊇ RβX

(2) Rβ∅ = Rβ∅ = ∅; RβU = RβU = U

(3) Rβ(X ∪ Y ) ⊇ RβX ∪ RβY
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(4) RβX ∩ RβY ⊇ Rβ(X ∩ Y )

(5) Rβ(X ∪ Y ) ⊇ Rβ ∪ RβY

(6) RβX ∩ RβY ⊇ Rβ(X ∩ Y )

(7) Rβ(−X) = −Rβ(X)

(8) Rβ(−X) = −Rβ(X)

Wefinish the outline of variable precision rough set model, which can be regarded
as a direct generalization of the original rough set model. Consult Ziarko [2] for more
details. As we will be discussed later, it plays an important role in our approach to
rough set based reasoning.

Shen andWang [4] proposed the VPRS model over two universes using inclusion
degree. They introduced the concepts of the reverse lower and upper approximation
operators and studied their properties. They introduced the approximation operators
with two parameters as a generalization of the VPRS-model over two universes.

2.3 Related Theories

There are many related theories which extend the original rough set theory in various
aspects. Very interesting are theories which integrate both rough set theory and fuzzy
set theory. In this section, we briefly review some of such theories.

Before describing related fuzzy-based rough set theories,we need to give a concise
exposition of fuzzy set theory, although there are many possible descriptions in the
literature.

Fuzzy set was proposed by Zadeh [5] to model fuzzy concepts, which cannot be
formalized in classical set theory. Zadeh also developed a theory of possibility based
on fuzzy set theory in Zadeh [6]. In fact, fuzzy set theory found many applications
in various areas.

Let U be a set. Then, a fuzzy set is defined as follows:

Definition 2.1 (Fuzzy set) A fuzzy set ofU is a function u : U → [0, 1].FU will
denote the set of all fuzzy sets of U .

Several operations on fuzzy sets are defined as follows:

Definition 2.2 For all u, v ∈ FU and x ∈ U , we put

(u ∨ v)(x) = sup{u(x), v(x)}
(u ∧ v)(x) = inf{u(x), v(x)}
u(x) = 1− u(x)

Definition 2.3 Two fuzzy sets u, v ∈ FU are said to be equal iff for every x ∈ U ,
u(x) = v(x).

Definition 2.4 1U and 0U are the fuzzy sets ofU such that for all x ∈ U , 1U = 1
and 0U = 0
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It is easy to prove that 〈FU ,∧,∨〉 is a complete lattice having infinite distributive
property. Furthermore, 〈FU ,∧,∨,− 〉 constitutes an algebra, which in general is not
Boolean (for details, see Negoita and Ralescu [7]).

Since both rough set theory and fuzzy set theory aim to formalize related notions,
it is natural to integrate these two theories. In 1990, Dubois and Prade introduced
fuzzy rough sets as a fuzzy generalization of rough sets.

They considered two types of generalizations. One is the upper and lower approx-
imation of a fuzzy set, i.e., rough fuzzy set. The other provided an idea of turning the
equivalence relation into a fuzzy similarity relation, yielding a fuzzy rough set.

Nakamura and Gao [8] also studied fuzzy rough sets and developed a logic for
fuzzy data analysis. Their logic can be interpreted as a modal logic based on fuzzy
relations. They related similarity relation on a set of objects to rough sets.

Quafafou [9] proposed α-rough set theory (α-RST) in 2000. In α-RST, all basic
concepts of rough set theory are generalized. He described approximations of fuzzy
concepts and their properties.

In addition, in α-RST, the notion of α-dependency, i.e., a set of attributes which
depends on another with a given degree in [0, 1]., is introduced. It can be seen as a
partial dependency. Note that α-RST has a feature of the ability of the control of the
universe partitioning and the approximation of concepts.

Cornelis et al. [10] proposed intuitionistic fuzzy rough sets to describe incomplete
aspects of knowledge based on intuitionistic fuzzy sets due to Atanassov [11] in 2003.
Their approach adopted the idea that fuzzy rough sets should be intuitionistic.1

These works enhance the power of rough set theory by introducing fuzzy concepts
in various ways. Fuzzy rough sets are more useful than the original rough sets, and
they can be applied to more complicated problems.

2.4 Formal Concept Analysis

As a different area, formal concept analysis (FCA) has been developed; see Ganter
andWille [12]. It is based on concept lattice to model relations of concept in a precise
way. Obviously, rough set theory and formal concept analysis share similar idea. We
here present the outline of formal concept analysis in some detail.

FCA uses the notion of a formal concept as a mathematical formulation of the
notion of a concept in Port-Royal logic. According to Port-Royal, a concept is deter-
mined by a collection of objects, called an extent which fall under the concept and a
collection of attributes called an intent covered by the concepts. Concepts are ordered
by a subconcept-superconcept relationwhich is based on inclusion relation on objects
and attributes. We formally define these notions used in FCA.

1By intuitionistic, it means that the law of excluded middle fails. However, this does not always
mean rough sets founded on the so-called intuitionistic logic.
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A formal context is a triplet 〈X,Y, I 〉, where X and Y are non-empty set, and I is
a binary relation, i.e., I ⊆ X × Y . Elements x from X are called objects, elements
y from Y are called attributes, 〈x, y〉 ∈ I indicates that x has attribute y.

For a given cross-tablewithn rows andm columns, a corresponding formal context
〈X,Y, I 〉 consists of a set X = {x1, ..., xn}, a set Y = {y1, ..., ym}, and a relation
I defined by 〈xi , y j 〉 ∈ I iff the table entry corresponding to row i and column j
contains ×.

Concept-forming operators are defined for every formal context. For a formal
context 〈X,Y, I 〉, operators ↑ : 2X → 2Y and ↓ : 2Y → 2X are defined for every
A ⊆ X and B ⊆ Y by

A↑ = {y ∈ Y | f or each x ∈ A : 〈x, y〉 ∈ I }
B↓ = {x ∈ X | f or each y ∈ B : 〈x, y〉 ∈ I }

Formal concepts are particular clusters in cross-tables, defined by means of
attribute sharing. A formal concept in 〈X,Y, I 〉 is a pair 〈A, B〉 of A ⊆ X and
B ⊆ Y such that A↑ = B and B↓ = A.

It is noticed that 〈A, B〉 is a formal concept iff A contains just objects sharing all
attributes from B and B contains just attributes shared by all objects from A. Thus,
mathematically 〈A, B〉 is a formal concept iff 〈A, B〉 is a fixpoint of the pair 〈↑,↓ 〉
of the concept-forming operators.

Consider the following table:

I y1 y2 y3 y4
x1 × × × ×
x2 × × ×
x3 × × ×
x4 × × ×
x5 ×

Here, formal concept

〈A1, B1〉 = 〈{x1, x2, x3, x4}, {y3, y4}〉

because

{x1, x2, x3, x4}↑ = {y3, y4}
{y3, y4}↓ = {x1, x2, x3, x4}

Here, the following relationships hold:

{x2}↑ = {y1, y3, y4}, {x2, x3}↑ = {y3, y4}
{x1, x4, x5}↑ = ∅
X↑ = ∅,∅↑ = Y

{y1}↓ = {x1, x2, x5}, {y1, y2}↓ = {x1}
{y2, y3}↓ = {x1, x3, x4}, {y2, y3, y4}↓ = {x1, x3, x4}
∅↓ = X,Y ↓ = {x1}
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Concepts are naturally ordered by a subconcept-superconcept relation. The
subconcept-superconcept relation, denoted ≤, is based on inclusion relation on
objects and attributes. For formal concepts 〈A1, B1〉 and 〈A2, B2〉 of 〈A,Y, I 〉,
〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1).

In the above example, the following hold:

〈A1, B1〉 = {{x1, x2, x3, x4}, {y3, y4}}
〈A2, B2〉 = {{x1, x3, x4}, {y2, y3, y4}}
〈A3, B3〉 = {{x1, x2}, {y1, y3, y4}}
〈A4, B4〉 = 〈{x1, x2, x5}, {y1}〉
〈A3, B3〉 ≤ 〈A1, B1〉
〈A3, B3〉 ≤ 〈A4, B4〉
〈A2, B2〉 ≤ 〈A1, B1〉
〈A1, B1〉‖〈A4, B4〉 (incomparable)

〈A2, B2〉‖〈A4, B4〉
〈A3, B3〉‖〈A2, B2〉

We denote byB(X,Y, I ) the collection of all formal concepts of 〈X,Y, I 〉, i.e.,

B(X,Y, I ) = {〈A, B〉 ∈ 2X × 2X | A↑ = B, B↓ = A}.

B(X,Y, I ) equipped with the subconcept-superconcept ordering ≤ is called a
concept lattice of 〈X,Y, I 〉. B(X,Y, I ) represents all clusters which are hidden in
data 〈X,Y, I 〉. We can see that 〈B(X,Y, I ),≤〉 is a lattice.

Extents and intents of concepts are defined as follows:

Ext(X, Y, I ) = {A ∈ 2X | 〈A, B〉 ∈ B(X, Y, I ) f or some B} (extent of concepts)
Int(X, Y, I ) = {A ∈ 2Y | 〈A, B〉 ∈ B(X, Y, I ) f or some A} (intent of concepts)

Formal concepts can be also defined as maximal rectangles in the cross-table: A
rectangle in 〈X,Y, I 〉 is a pair 〈A, B〉 such that A× B ⊆ I , i.e., for each x ∈ A and
y ∈ B we have 〈x, y〉 ∈ I . For rectangles 〈A1, B1〉 and 〈A2, B2〉, put 〈A1, B1〉 �
〈A2, B2〉 iff A1 ⊆ A2 and B1 ⊆ B2.

We can prove that 〈A, B〉 is a formal concept of 〈X,Y, I 〉 iff 〈A, B〉 is a maximal
rectangle in 〈X,Y, I 〉. Consider the following table.

I y1 y2 y3 y4
x1 × × × ×
x2 × × ×
x3 × × ×
x4 × × ×
x5 ×
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In this table, 〈{x1, x2, x3}, {y3, y4}〉 is a rectangle which is not maximal with
respect to�. 〈{x1, x2, x3, x4}, {y3, y4}〉 is a rectangle which is maximal with respect
to�. The notion of rectangle can server as a basis for geometrical reasoning in formal
concept analysis.

There are two basic mathematical structures behind formal concept analysis, i.e.,
Galois connections (cf.Ore [13]) and closure operators.AGalois connectionbetween
sets X and Y is a pair 〈 f, g〉 of f : 2X → 2Y and g : 2Y → 2X satisfying
A, A1, A2, B, B1, B2 ⊆ Y :

A1 ⊆ A2 ⇒ f (A2) ⊆ f (A1)

B1 ⊆ B2 ⇒ g(B2) ⊆ f (B1)

A ⊆ g( f (A))

B ⊆ f (g(B)).

For a Galois connection 〈 f, g〉 between sets X and Y , the set:

fix(〈 f, g〉) = {〈A, B〉 ∈ 2X × 2X | f (A) = B, g(B) = A}

is called a set of fixpoint of 〈 f, g〉.
Here, we show a basic property of concept-forming operators. That is, for a formal

context 〈X,Y, I 〉, the pair 〈↑I ,↓I 〉 of operators induced by 〈X,Y, I 〉 is a Galois
connection between X and Y .

As consequence of the property, it is shown that for a Galois connection 〈 f, g〉
between X and Y , f (A) = f (g( f (A))) and g(B) = g( f (g(B))) for any A ⊆ X
and B ⊆ Y .

Closure operators result from the concept-formingoperators by their composition.
If 〈 f, g〉 is aGalois connection between X andY , thenCX = g◦ f is a closure operator
on X and CY = f ◦ g is a closure operator on Y .

We can show that extents and intents are just the images under the concept-forming
operators as follows:

Ext(X,Y, I ) = {B↓ | B ⊆ Y }
Int(X,Y, I ) = {A↑ | A ⊆ X}.

The following relationships hold for any formal context 〈X,Y, I 〉:
Ext(X,Y, I ) = fix(↑↓)
Int(X,Y, I ) = fix(↓↑)
B(X,Y, I ) = {〈A, A↑〉 | A ∈ Ext(X,Y, I )}
B(X,Y, I ) = {〈B↓, B〉 | B ∈ Int(X,Y, I )}

The above definition of Galois connection can be simplified by the following sim-
plified form. 〈 f, g〉 is a Galois connection between X and Y iff for every A ⊆ X and
B ⊆ Y :

A ⊆ g(B) iff B ⊆ f (A).
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Galois connections with respect to union and intersection satisfy the following prop-
erties: Let 〈 f, g〉 be a Galois connection between X and Y . For A j ⊆ X, j ∈ J and
Bj ⊆ Y, j ∈ J , we have:

f (
⋃

j∈J
A j ) =

⋂

j∈J
f (A j )

g(
⋃

j∈J
B j ) =

⋂

j∈J
g(Bj )

Every pair of concept-forming operators forms a Galois connection, and every
Galois connection is a concept-forming operator of a particular formal context.

Let 〈 f, g〉 be a Galois connection between X and Y . Consider a formal context
〈X,Y, I 〉 such that I is defined by

〈x, y〉 ∈ I iff y ∈ f ({x}) or equivalently, iff x ∈ g({y})

for each x ∈ X and y ∈ Y . Then, 〈↑I ,↓I 〉 = 〈 f, g〉, i.e., 〈↑I ,↓I 〉 induced by 〈X,Y, I 〉
coincide with 〈 f, g〉.

We can establish representation result in the following form, i.e., I �→ 〈↑I ,↓I 〉
and 〈↑I ,↓I 〉 �→ I〈↑,↓〉 are mutually inverse mappings between the set of all binary
relations between X and Y and the set of all Galois connections between X and Y .

We can also see the duality relationships between extents and intents. For
〈A1, B1〉, 〈A2, B2〉 ∈ B(X,Y, I ), we have that A1 ⊆ A2 iff B2 ⊆ B1. Then, we
have the following peoperties:

(1) 〈Ext(X,Y, I ),⊆〉 and 〈Int(X,Y, I ),⊆〉 are partially ordered sets.
(2) 〈Ext(X,Y, I ),⊆〉 and 〈Int(X,Y, I ),⊆〉 are dually isomorphic, i.e., there is a

mapping f : Ext(X,Y, I ) → Int(X,Y, I ) satisfying A1 ⊆ A2 iff f (A2) ⊆
f (A1)

(3) 〈B(X,Y, I ),≤〉 is isomorphic to 〈Ext(X,Y, I ),⊆〉
(4) 〈B(X,Y, I ),≤〉 is dually isomorphic to 〈Int(X,Y, I ),⊆〉.

We can also state the property of fixpoints of closure operators. For a closure
operator C on X , the partially ordered set 〈fix(C),⊆〉 of fixpoints of C is a complete
lattice with infima and suprema given by:

∧

j∈J
A j = C(

⋂

j∈J
A j )

∨

j∈J
A j = C(

⋃

j∈J
A j )

The following is the main result of concept lattices due to Wille.

(1) B(X,Y, I ) is a complete lattice with infima and suprema given by

∧

j∈J
〈A j , Bj 〉 = 〈

⋂

j∈J
A j , (

⋃

j∈J
B j )

↓↑〉,
∨

j∈J
〈A j , Bj 〉 = 〈(

⋃

j∈J
A j )

↑↓,
⋂

j∈J
B j 〉.
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(2) Moreover, an arbitrary complete latticeV = (V,≤) is isomorphic toB(X,Y, I )
iff there are mapping γ : X → V, μ : Y → X such that

(i) γ (X) is
∨
-dense in V , μ(Y ) is

∧
-dense in V

(ii) γ (x) ≤ μ(y) iff 〈x, y〉 ∈ I

In formal concept analysis,we can clarify and reduce formal concepts by removing
some of objects or attributes in a formal context. A formal context 〈X,Y, I 〉 is
called clarified if the corresponding table neither contain identical rows nor identical
columns. Namely, if 〈X,Y, I 〉 is clarified then:

{x1}↑ = {x2}↑ implies x1 = x2 for every x1, x2 ∈ X,

{y1}↓ = {y2}↓ implies y1 = y2 for every y1, y2 ∈ Y.

Clarification can be performed by removing identical rows and columns. If
〈X1,Y1, I1〉 is a clarified context resulting from 〈X2,Y2, I2〉 by clarification, then
B(X1,Y1, I1) is isomorphic toB(X2,Y2, I2).

For a formal context 〈X,Y, I 〉, an attribute y ∈ Y is called reducible iff there is
Y ′ ⊂ Y with y /∈ Y ′ such that

{y}↓ =
⋂

z∈Y ′
{z}↓

i.e., the column corresponding to y is the intersection of columns corresponding to
z’s from Y ′.

An object x ∈ X is called reducible iff there is X ′ ⊂ X with x /∈ X ′ such that

{x}↑ =
⋂

z∈X ′
{z}↑

i.e., the row corresponding to x is the intersection of columns corresponding to z’s
from X ′.

Let y ∈ Y be reducible in 〈X,Y, I 〉. Then, B(X,Y − {y}, J ) is isomorphic to
B(X,Y, I ), where J = I ∩ (X × (Y − {y})) is the restriction of I to X × Y − {y},
i.e., 〈X,Y − {y}, J 〉 results by removing y from 〈X,Y, I 〉.
〈X,Y, I 〉 is row reducible if no object x ∈ X is reducible; it is column reducible

if no attribute y ∈ Y is reducible; it is reduced if it is both row reduced and column
reduced.

Arrow relations can find which objects and attributes are reducible. For 〈X,Y, I 〉,
we define relations↗,↙,� between X and Y :

x ↙ y iff 〈x, y〉 /∈ I and if {x}↑ ⊂ {x1}↑ then 〈x1, y〉 ∈ I

x ↗ y iff 〈x, y〉 /∈ I and if {x}↓ ⊂ {x1}↓ then 〈x1, y〉 ∈ I

x � y iff x ↙ y and x ↗ y.
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Thus, if 〈x, y〉 ∈ I , then none of the above three relations occurs. Consequently,
the arrow relations can be entered in the table of 〈X,Y, I 〉. There is the following
connections between arrow relations and reducibility.

〈{x}↑↓, {x}↑〉 is
∨

-irreducible iff there is y ∈ Y such that x ↙ y

〈{y}↓, {y}↓↑〉 is
∨

-irreducible iff there is x ∈ X such that x ↗ y.

Formal concept analysis can also deal with attribute implication concerning
dependencies of data. Let Y be a non-empty set of attributes.

An attribute implication over Y is an expression

A ⇒ B

where A, B ⊆ Y .
An attribute implication A ⇒ B over Y is true (valid) in a set M ⊂ Y iff A ⊆ M

implies B ⊆ M . We write ‖A ⇒ B‖M = 1 (0) if A ⇒ B is true (false) in M .
Let M be a set of attributes of some object x , ‖A ⇒ B‖M = 1 says “if x has all

attributes from A then x has all attributes from B”, because “if x has all attributes
from C” is equivalent to C ⊆ M .

It is possible to extend the validity of A ⇒ B to collectionsM ofM’s (collections
of subsets of attributes), i.e., define validity of A ⇒ B inM ⊆ 2Y .

An attribute implication A ⇒ B over Y is true (valid) in M if A ⇒ B is true
in each M ∈ M . An attribute implication A ⇒ B over Y is true (valid) in a table
(formal context) 〈X,Y, I 〉 iff A ⇒ B is true inM = {{x}↑ | x ∈ X}.

We define semantic consequence (entailment). An attribute implication A ⇒ B
follows semantically from a theory T , denoted T |= A ⇒ B iff A ⇒ B is true in
every model M of T .

The system for reasoning about attribute implications consists of the following
deduction rules:

(Ax) infer A ∪ B ⇒ A,

(Cut) from A ⇒ B and B ∪ C ⇒ D infer A ∪ C ⇒ D.

Note that the above deduction rules are due to Armstrong’s work on functional
dependencies in databases; see Armstrong [14].

A proof of A ⇒ B from a set T of attribute implications is a sequence A1 ⇒
B1, ..., An ⇒ Bn of attribute implications satisfying:

(1) An ⇒ Bn is just A ⇒ B,
(2) for every i = 1, 2, ..., n:

either Ai ⇒ Bi ∈ T (assumption)
or Ai ⇒ Bi results by using (Ax) or (Cut) from preceding attribute implica-
tions A j ⇒ Bj ’s (deduction)

If we have a proof of A ⇒ B from T , then we write T  A ⇒ B. We have the
following derivable rules:
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(Ref) infer A ⇒ A,

(Wea) from A ⇒ B, infer A ∪ C ⇒ B,

(Add) from A ⇒ B and A ⇒ C, infer A ⇒ B ∪ C,

(Pro) from A ⇒ B ∪ C, infer A ⇒ B,

(Tra) from A ⇒ B and B ⇒ C, infer A ⇒ C,

for every A, B,C, D ⊆ Y .
We can show that (Ax) and (Cut) are sound. It is also possible to prove soundness

of above derived rules.
We can define two notions of consequence, i.e., semantic consequence and syn-

tactic consequence:

Semantic: T |= A ⇒ B(A ⇒ B semantically follows from T )

Syntactic: T  A ⇒ B(A ⇒ B syntactically follows from T )

Semantic closure of T is the set

sem(T ) = {A ⇒ B | T |= A ⇒ B}

of all attribute implications which semantically follows from T .
Syntactic closure of T is the set

syn(T ) = {A ⇒ B | T  A ⇒ B}

of all attribute implications which syntactically follows from T .
T is semantically closed if T = sem(T ). T is syntactically closed if T = syn(T ).

Note that sem(T ) is the least set of attribute implications which is semantically
closed containinig T and that syn(T ) is the least set of attribute implications which
is syntactically closed containinig T .

It can be proved that T is syntactically closed iff for any A, B,C, D ⊆ Y

(1) A ∪ B ⇒ B ∈ T ,
(2) if A ⇒ B ∈ T and B ∪ C ⇒ D ∈ T implies A ∪ C ⇒ D ∈ T .

Then, if T is semantically closed, then T is syntactically closed. It can also be
proved that if T is syntactically closed, then T is semantically closed. Consequently,
soundness and completeness follow:

T  A ⇒ B iff T |= A ⇒ B.

We turn to models of attribute implications. For a set T of attribute implications,
denote

Mod(T ) = {M ⊆ Y | ‖A ⇒ B‖M = 1 f or every A ⇒ B ∈ T }

That is, Mod(T ) is the set of all models of T .



26 2 Rough Set Theory

A closure system in a set of Y is any systemS of subsets of Y which contains Y
and is closed under arbitrary intersections. That is, Y ∈ S and

⋂
R ∈ S for every

R ⊆ S (intersection of every subsystem R ofS belongs toS .
There is a one-to-one relationship between closure systems in Y and closure

operators in Y . Namely, for a closure operator C in Y,SC = {A ∈ 2X | A =
C(A)} = fix(C) is a closure system in Y .

Given a closure system in Y , we set

CS (A) =
⋂
{B ∈ S | A ⊆ B}

for any A ⊆ X,CS is a closure operator on Y . This is a one-to-one relationship, i.e.,
C = CSC and S = SCS .

It is shown that for a set of T of attribute implications,Mod(T ) is a closure system
in Y . Since Mod(T) is a closure system, we can consider the corresponding closure
operator CMod(T ), i.e., the fixpoints of CMod(T ) are just models of T .

Therefore, for every A ⊆ Y , there exists the least model of Mod(T ) which
contains A, namely such least models is just CMod(T )(A).

We can test entailment via least models follows. For any A ⇒ B and any T , we
have:

T |= A ⇒ B iff ‖A ⇒ B‖CMod(T )(A) = 1.

It follows that the deductive system for attribute implications is sound and com-
plete. And it can serve as a basis for reasoning about dependencies.

As reviewed in this section, formal concept analysis offers an interesting tool
for data analysis. It has a mathematical foundation based on concept lattice with
reasoning mechanisms based on attribute implications. In addition, formal concept
analysis can visualize data.

Because formal concept analysis uses the notion of table, some similarities with
rough set theory may be found. In fact, it uses classical (two-valued) basis. However,
it is not clear whether it is possible to modify it, relating to some non-classical logic.

2.5 Decision Logic

Pawlak developed decision logic (DL) for reasoning about knowledge. His main
goal is reasoning about knowledge concerning reality. Knowledge is represented as
a value-attribute table, called knowledge representation system.

There are several advantages to represent knowledge in tabular form. The data
table can be interpreted differently, namely it can be formalized as a logical system.
The idea leads to decision logic.
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The language of DL consists of atomic formulas, which are attribute-value pairs,
combined by logical connectives to form compound formulas. The alphabet of the
language consists of:

1. A: the set of attribute constants
2. V = ⋃

Va : the set of attribute constants a ∈ A
3. Set {∼,∨,∧,→,≡} of propositional connectives, called negation, disjunction,

conjunction, implication and equivalence, respectively.

The set of formulas in DL-language is the least set satisfying the following con-
ditions:

1. Expressions of the form (a, v), or in short av, called atomic formulas, are formulas
of DL-language for any a ∈ A and v ∈ Va .

2. Ifφ andψ are formulas of DL-language, then so are∼ φ, (φ∨ψ), (φ∧ψ), (φ →
ψ) and (φ ≡ ψ).

Formulas are used as descriptions of objects of the universe. In particular, atomic
formula of the form (a, v) is interpreted as a description of all objects having value
v for attribute a.

The semantics for DL is given by a model. For DL , the model is KR-system
S = (U, A), which describes the meaning of symbols of predicates (a, v) in U ,
and if we properly interpret formulas in the model, then each formula becomes a
meaningful sentence, expressing properties of some objects.

An object x ∈ U satisfies a formula φ in S = (U, A), denoted x |=S φ or in short
x |= φ, iff the following conditions are satisfied:

1. x |= (a, v) iff a(x) = v
2. x |=∼ φ iff x �|= φ

3. x |= φ ∨ ψ iff x |= φ or x |= ψ

4. x |= φ ∧ ψ iff x |= φ and x |= ψ

The following are clear from the above truth definition:

5. x |= φ → ψ iff x |= ∼ φ ∨ ψ

6. x |= φ ≡ ψ iff x |= φ → ψ and x |= ψ → φ

If φ is a formula, then the set |φ |S defined as follows:

|φ |s = {x ∈ U | x |=S φ}

will be called the meaning of the formula φ in S.

Proposition 2.19 The meaning of arbitrary formulas satisfies the following:

|(a, v) |S = {x ∈ U | a(x) = v}
|∼ φ |S = − |φ |S
|φ ∨ ψ |S =|φ |S ∪ |ψ |S
|φ ∧ ψ |S =|φ |S ∩ |ψ |S
|φ → ψ |S = − |φ |S ∪ |ψ |S
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|φ ≡ ψ |S = (|φ |S ∩ |ψ |S) ∪ (− |φ |S ∩− |ψ |S)
Thus, the meaning of the formula φ is the set of all objects having the property

expressed by the formula φ, or the meaning of the formula φ is the description in the
KR-language of the set objects |φ |.

A formula φ is said to be true in a KR-system S, denoted |=S φ, iff |φ |S = U ,
i.e., the formula is satisfied by all objects of the universe in the system S. Formulas
φ and ψ are equivalent in S iff |φ |S=|ψ |S .
Proposition 2.20 The following are the simple properties of the meaning of a for-
mula.

|=S φ iff |φ | = U
|=S ∼ φ iff |φ | = ∅
φ → ψ iff |ψ | ⊆ |ψ |
φ ≡ ψ iff |ψ | = |ψ |
Themeaning of the formula depends on the knowledgewehave about the universe,

i.e., on the knowledge representation system. In particular, a formula may be true in
one knowledge representation system, but false in another one.

However, there are formulas which are true independent of the actual values of
attributes appearing them. But, they depend only on their formal structure.

Note that in order to find the meaning of such a formula, one need not be
acquainted with the knowledge contained in any specific knowledge representation
system because their meaning is determined by its formal structure only.

Hence, if we ask whether a certain fact is true in light of our actual knowledge,
it is sufficient to use this knowledge in an appropriate way. For formulas which are
true (or not) in every possible knowledge representation system, we do not need in
any particular knowledge, but only suitable logical tools.

To deal with deduction in DL , we need suitable axioms and inference rules. Here,
axioms will correspond closely to axioms of classical propositional logic, but some
specific axioms for the specific properties of knowledge representation systems are
also needed. The only inference rule will be modus ponens.

We will use the following abbreviations:

φ∧ ∼ φ =def 0

φ∨ ∼ φ =def 1

Obviously, |= 1 and |=∼ 0. Thus, 0 and 1 can be assumed to denote falsity and truth,
respectively.

Formula of the form:

(a1, v1) ∧ (a2, v2) ∧ ... ∧ (an, vn)

where vai ∈ Va, P = {a1, a2, ..., an} and P ⊆ A is called a P-basic formula or
in short P-formula. Atomic formulas is called A-basic formula or in short basic
formula.
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Let P ⊆ A, φ be a P-formula and x ∈ U . If x |= φ then φ is called the P-
description of x in S. The set of all A-basic formulas satisfiable in the knowledge
representation system S = (U, A) is called the basic knowledge in S.

We write
∑

S

(P), or in short
∑

(P), to denote the disjunction of all P-formulas

satisfied in S. If P = A then
∑

(A) is called the characteristic formula of S.
The knowledge representation system can be represented by a data table. And its

columns are labelled by attributes and its rows are labelled by objects. Thus, each
row in the table is represented by a certain A-basic formula, and the whole table is
represented by the set of all such formulas. In DL , instead of tables, we can use
sentences to represent knowledge.

There are specific axioms of DL:

1. (a, v) ∧ (a, u) ≡ 0 for any a ∈ A, u, v ∈ V and v �= u
2.

∨

v∈Va

(a, v) ≡ 1 for every a ∈ A

3. ∼ (a, v) ≡ ∨
a∈Va ,u �=v(a, u) for every a ∈ A

The axiom (1) states that each object can have exactly one value of each attribute.
The axiom (2) assumes that each attributemust take one of the values of its domain

for every object in the system.
The axiom (3) allows us to eliminate negation in such a way that instead of saying

that an object does not possess a given property we can say that it has one of the
remaining properties.

Proposition 2.21 The following holds for DL:

|=S

∑

S

(P) ≡ 1 for any P ⊆ A.

Proposition 2.21 means that the knowledge contained in the knowledge represen-
tation system is the whole knowledge available at the present stage. and corresponds
to the so-called closed world assumption (CWA).

We say that a formula φ is derivable from a set of formulasΩ , denotedΩ  φ, iff
it is derivable from axioms and formulas ofΩ by finite application ofmodus ponens.
Formula φ is a theorem of DL , denoted  φ, if it is derivable from the axioms only.
A set of formulas Ω is consistent iff the formula φ∧ ∼ φ is not derivable from Ω .

Note that the set of theorems of DL is identical with the set of theorems of
classical propositional logic with specific axioms (1)–(3), in which negation can be
eliminated.

Formulas in the KR-language can be represented in a special form called normal
form, which is similar to that in classical propositional logic.

Let P ⊆ A be a subset of attributes and let φ be a formula in KR-language. We
say that φ is in a P-normal form in S, in short in P-normal form, iff either φ is 0 or
φ is 1, or φ is a disjunction of non-empty P-basic formulas in S. (The formula φ is
non-empty if |φ | �= ∅).
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Table 2.1 KR-system 1 U a b c

1 1 0 2

2 2 0 3

3 1 1 1

4 1 1 1

5 2 1 3

6 1 0 3

A-normal form will be referred to as normal form. The following is an important
property in the DL-language.

Proposition 2.22 Letφ be a formula in DL-language and let P contain all attributes
occurring in φ. Moreover, (1)–(3) and the formula

∑

S

(A). Then, there is a formula

ψ in the P-normal form such that φ ≡ ψ .

Here is the example fromPawlak [1].Consider the followingKR-system (Table2.1).
The following a1b0c2, a2b0c3, a1b1c1, a2b1c3, a1b0c3 are all basic formulas (basic

knowledge) in theKR-system. For simplicity, wewill omit the symbol of conjunction
∧ in basic formulas.

The characteristic formula of the system is:

a1b0c2 ∨ a2b0c3 ∨ a1b1c1 ∨ a2b1c3 ∨ a1b0c3

Here, we give the following meanings of some formulas in the system:

|a1 ∨ b0c2 | = {1, 3, 4, 6}
|∼ (a2b1) | = {1, 2, 3, 4, 6}
|b0 → c2 | = {1, 3, 4, 5}
|a2 ≡ b0 | = {2, 3, 4}

Below are given normal forms of formulas considerred in the above example for
KR-system 1:

a1 ∨ b0c2 = a1b0c2 ∨ a1b1c1 ∨ a1b0c3
∼ (a2b1) = a1b0c2 ∨ a2b0c3 ∨ a1b1c1 ∨ a1b0c3
b0 → c2 = a1b0c2 ∨ a1b1c1 ∨ a2b1c3
a2 ≡ b0 = a2b0c1 ∨ a2b0c2 ∨ a2b0c3 ∨ a1b1c1 ∨ a1b1c2 ∨ a1b1c3

Examples of formulas in {a, b}-normal form are:

∼ (a2b1) = a1b0 ∨ a2b0 ∨ a1b1 ∨ a1b0
a2 ≡ b0 = a2b0 ∨ a1b1
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The following is an example of a formula in {b, c}-normal form:

b0 → c2 = b0c2 ∨ b1c1 ∨ b1c3

Thus, in order to compute the normal form of a formula, we have to transform by
using propositional logic and the specific axioms for a given KR-system.

Any implication φ → ψ is called a decision rule in the KR-language. φ and ψ

are referred to as the predecessor and successor of φ → ψ , respectively.
If a decision rule φ → ψ is true in S, we say that the decision rule is consistent

in S; otherwise the decision rule is inconsistent in S.
If φ → ψ is a decision rule and φ and ψ are P-basic and Q-basic formulas

respectively, then the decision rule φ → ψ is called a PQ-basic decision rule (in
short PQ-rule).

A PQ-rule φ → ψ is admissible in S if φ ∧ ψ is satisfiable in S.

Proposition 2.23 A PQ-rule is true (consistent) in S iff all {P, Q}-basic formu-
las which occurr in the {P, Q}-normal form of the predecessor of the rule, also
occurr in {P, Q}-normal form of the successor of the rule; otherwise the rule is false
(inconsistent).

The rule b0 → c2 is false in the above table for KR-system 1, since the {b, c}-
normal form of b0 is b0c2 ∨ b0c3, {b, c}-normal form of c2 is b0c2, and the formula
b0c3 does not occur in the successor of the rule.

On the other hand, the rule a2 → c3 is true in the table, because the {a, c}-normal
form of a2 is a2c3, whereas the {a, c}-normal form of c3 is a2c3 ∨ a1c3.

Any finite set of decision rules in a DL-language is referred to as a decision
algorithm in the DL-language. If all decision rules in a basic decision algorithm are
PQ-decision rules, then the algorithm is said to be PQ-decision algorithm, or in short
PQ-algorithm, and will be denoted by (P, Q).

A PQ-algorithm is admissible in S, if the algorithm is the set of all PQ-rules
admissible in S.

A PQ-algorithm is complete in S, iff for every x ∈ U there exists a PQ-decision
rule φ → ψ in the algorithm such that x |= φ ∧ ψ in S; otherwise the algorithm is
incomplete in S.

A PQ-algorithm is consistent in S iff all its decision rules are consistent (true) in
S; otherwise the algorithm is inconsistent.

Sometimes consistency (inconsistency) may be interpreted as determinism (inde-
terminism).

Given a KR-system, any two arbitrary, non-empty subset of attributes P, Q in the
system determines uniquely a PQ-decision algorithm.

Consider the following KR-system from Pawlak [1].
Assume that P = {a, b, c} and Q = {d, e} are condition and decision attributes,

respectively. Set P and Q uniquely associate the following PQ-decision algorithm
with the table.
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Table 2.2 KR-system 2 U a b c d e

1 1 0 2 1 1

2 2 1 0 1 0

3 2 1 2 0 2

4 1 2 2 1 1

5 1 2 0 0 2

a1b0c2 → d1e1
a2b1c0 → d1e0
a2b1c2 → d0e2
a1b2c2 → d1e1
a1b2c0 → d0e2

If assume that R = {a, b} and T = {c, d} are condition and decision attributes,
respectively, then the RT -algorithm determined by Table2.2 is the following:

a1b0 → c2d1
a2b1 → c0d1
a2b1 → c2d0
a1b2 → c2d1
a1b2 → c0d0

Of course, both algorithms are admissible and complete.
In order to check whether or not a decision algorithm is consistent, we have to

check whether all its decision rules are true. The following proposition gives a much
simpler method to solve this problem.

Proposition 2.24 A PQ-decision rule φ → ψ in a PQ-decision algorithm is con-
sistent (true) in S iff for any PQ-decision rule φ′ → ψ ′ in PQ-decision algorithm,
φ = φ′ implies ψ = ψ ′.

In Proposition 2.24, order of terms is important, since we require equality of
expressions. Note also that in order to check whether or not a decision rule φ → ψ

is true we have to show that the predecessor of the rule (the formula φ) discerns the
decision class ψ from the remaining decision classes of the decision algorithm in
question. Thus, the concept of truth is somehow replaced by the concept of indis-
cernibility.

Consider the KR-system 2 again. With P = {a, b, c} and Q = {d, e} as condition
and decision attributes. Let us check whether the PQ-algorithm:
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Table 2.3 KR-system 2 U a b c d e

1 1 0 2 1 1

4 1 2 2 1 1

2 2 1 0 1 0

3 2 1 2 0 2

5 1 2 0 0 2

a1b0c2 → d1e1
a2b1c0 → d1e0
a2b1c2 → d0e2
a1b2c2 → d1e1
a1b2c0 → d0e2

is consistent or not. Because the predecessors of all decision rules in the algorithm
are different (i.e., all decision rules are discernible by predecessors of all decision
rules in the algorithm), all decision rules in the algorithm are consistent (true) and
cosequently the algorithm is consistent.

This can be also seen directly from Table2.3.
The RT -algorithm, where R = {a, b} and T {c, d}
a1b0 → c2d1
a2b1 → c0d1
a2b1 → c2d0
a1b2 → c2d1
a1b2 → c0d0

is inconsistent bacause the rules

a2b1 → c0d1
a2b1 → c2d0

have the same predecessors and different successors, i.e., we are unable to discern
c0d1 and c2d0 by means of condition a2b1. Thus, both rules are inconsistent (false)
in the KR-system. Similarly, the rules

a1b2 → c2d1
a1b2 → c0d0

are also inconsistent (false).
We turn to dependency of attributes. Formally, the dependency is defined as below.

Let K = (U, R) be a knowledge base and P, Q ⊆ R.
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(1) Knowledge Q depends on knowledge P iff IND(P) ⊆ IND(Q).
(2) Knowlledge P and Q are equivalent, denoted P ≡ Q, if P ⇒ Q and Q ⇒ P.
(3) Knowledge P and Q are independent, denoted P �≡ Q, iff neither P ⇒ Q nor

Q ⇒ P hold.

Obviously, P ≡ Q iff IND(P) ≡ IND(Q).
The dependency can be interpreted in different ways as Proposition 2.25 indicates:

Proposition 2.25 The following conditions are equivalent:

(1) P ⇒ Q
(2) IND(P ∪Q) = INS(P)

(3) POSP(Q) = U
(4) PX for all X ∈ U/Q

where PX denotes IND(P)/X.

By Proposition 2.25, we can see the following: if Q depends on P then knowledge
Q is superflous within the knowledge base in the sense that the knowledge P ∪ Q
and P provide the same characterization of objects.

Proposition 2.26 If P is a reduct of Q, then P ⇒ Q− P and IND(P) = IND(Q).

Proposition 2.27 The following hold.

(1) If P is dependent, then there exists a subset Q ⊂ P such that Q is a reduct of P.
(2) If P ⊆ Q and P is independent, then all basic relations in P are pairwise

independent.
(3) If P ⊆ Q and P is independent, then every subset R of P is independent.

Proposition 2.28 The following hold:

(1) If P ⇒ Q and P′ ⊃ P, then P′ ⇒ Q.
(2) If P ⇒ Q and Q′ ⊂ Q, then P ⇒ Q′.
(3) P ⇒ Q and Q ⇒ R imply P ⇒ R.
(4) P ⇒ R and Q ⇒ R imply P ∪Q ⇒ R.
(5) P ⇒ R ∪Q imply P ⇒ R and P ∪Q ⇒ R.
(6) P ⇒ Q and Q ∪ R ⇒ T imply P ∪ R ⇒ T
(7) P ⇒ Q and R ⇒ T imply P ∪ R ⇒ Q ∪ T.

The derivation (dependency) can be partial, which means that only part of knowl-
edge Q is derivable from knowledge P. We can define the partial derivability using
the notion of the positive region of knowledge.

Let K = (U, R) be the knowledge base and P, Q ⊂ R. Knowledge Q depends in
a degree k (0 ≤ k ≤ 1) from knowledge P, in symbol P ⇒k Q, iff

k = γP(Q) = card(POSP(Q))

card(U )
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where card denotes cardinality of the set.
If k = 1, we say that Q totally depends from P; if 0 < k < 1, we say that Q

roughly (partially) depends from P, and if k = 1 we say that Q is totally independent
from P, If P ⇒1 Q, we shall also write P ⇒ Q.

The above ideas can also be interpreted as an ability to classify objects. More
precisely, if k = 1, then all elements of the universe can be classified to elementary
categories of U/Q by using knowledge P.

Thus, the coefficient γP(Q) can be understood as a degree of dependency between,
Q and P. In other words, if we restrict the set of objects in the knowledge base to
the set POSP(Q), we would obtain the knowledge base in which P ⇒ Q is a total
dependency.

The measure k of dependency P ⇒k Q does not capture how this partial depen-
dency is actually distributed among classes of U/Q. For example, some decision
classes can be fully characterized by P, whereas others may be characteriaed only
partially.

We will also need a coefficient γ (X) = card(PX)/card(X) where X ∈ U/Q
which shows howmany elements of each class ofU/Q can be classified by emplying
knowledge P.

Thus, the two numbers γ (Q) and γ (X), X ∈ U/Q give us full information about
“classification power” of the knowledge P with respect to the classification U/Q.

Proposition 2.29 The following hold:

(1) If R ⇒k P and Q ⇒l P, then R ∪Q ⇒m P, for some m ≥ max(k, l).
(2) If R ∪ P ⇒k Q then R ⇒l Q and P ⇒m Q, for some l,m,≤ k.
(3) If R ⇒k Q and R ⇒l P, then R ⇒m Q ∪ P, for some m ≤ max(k, l).
(4) If R ⇒k Q ∪ P, then R ⇒l Q and R ⇒m P, for some l,m ≥ k.
(5) If R ⇒k P and P ⇒l Q, then R ⇒m Q, for some m ≥ l + k − 1.

Here, we return to the decision algorithm for dependency. We say that the set of
attributes Q depends totally, (or in short depends) on the set of attributes P in S,
if there exists a consistent PQ-algorithm in S. If Q depends on P in S, we write
P ⇒S S, or in short P ⇒ Q.

We can also define partial dependency of attributes.We say that the set of attributes
Q depends partially on the set of attributes P in S, if there exists an inconsistent
PQ-algorithm in S.

The degree of dependency between attributes can be defind. Let (P, Q) be a PQ-
algorithm in S. By a positive region of the algorithm (P, Q), denoted POS(P, Q),
we mean the set of all consistent (true) PQ-rules in the algorithm.

The positive region of the decision algorithm (P, Q) is the consistent part (possi-
bly empty) of the inconsistent algorithm. Obviously, a PQ-algorithm is inconsistent
iff POS(P, Q) �= (P, Q) or what is the same card(POS(P, Q)) �= card(P, Q).

With every PQ-decision algorithm, we can associate a number
k = card(POS(P, Q))/card(P, Q), called the degree of consistency, of the algo-
rithm, or in short the degree of the algorithm, and we say that the PQ-algorithm has
the degree (of consistency) k.
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Obviously, 0 ≤ k ≤ 1. If a PQ-algorithm has degree k, we can say that the set of
attributes Q depend in degree k on the set of attributes P , denoted P ⇒k Q.

Naturally, the algorithm is consistent iff k = 1; otherwise, i.e., if k �= 1, the
algorithm. All these concepts are the same as in those discussed above. Note that
in the consistent algorithm all decisions are uniquely determined by conditions in
the decision algorithm. In other words, this means that all decisions in a consistent
algorithm are discernible by means of conditions available in the decision algorithm.

Decision logic provides a simple means for reasoning about knowledge only by
using propositional logic, and is suitable to some applications. Note here that the
so-called decision table can serve as a KR-system.

However, the usuability of decision logic seems to be restrictive. In other words,
it is far from a general system for reasoning in general. In this book, we will lay
general frameworks for reasoning based on rough set theory.

2.6 Reduction of Knowledge

One of the important problems in rough set theory is whether the whole knowledge
is always necessary to define some categories available in the knowledge considered.
This problem is called knowledge reduction.

There are two basic concepts in reduction of knowledge, i.e., reduct and core.
Intuitively, a reduct of knowledge is its essential part, which is sufficient to define
all basic concepts in the considered knowledge. The core is the set of the most
characteristic part of knowledge.

Let R be a family of equivalence relations and let R ∈ R. We say that R is
dispensable in R if IND(R) = IND(R − {R}); otherwise is indispensable in R.
The family R is independent if each R ∈ R is indispensable in R; otherwise R is
dependent.

Proposition 2.30 If R is independent and P ⊆ R, then P is also independent.

The following proposition states the relationship between the core and reducts.
Q ⊆ P is a reduct of P if Q is indenpendent and IND(Q) = IND(P). Obviously,

P may have many reducts. The set of all indispensable relations in P is called the
core of P denoted CORE(P).

Proposition 2.31 CORE(P) = ⋂
RED(P), where RED(P) is the famiy of all

reducts of P.

Here is an example fromPawlak [1]. SupposeR = {P, Q, R} of three equivalence
relations P, Q and R with the following equivalence classes:

U/P = {{x1, x4, x5}, {x2, x8}, {x3}, {x6, x7}}
U/Q = {{x1, x3, x5}, {x6}, {x2, x4, x7, x8}}
U/R = {{x1, x5}, {x6}, {x2, x7, x8}, {x3, x4}}
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Thus, the relation IND(R) has the equivalence classes:

U/IND(R) = {{x1, x5}, {x2, x8}, {x3}, {x4}, {x6}, {x7}}.

The relation P is indispensable in R, since

U/IND(R − {P}) = {{x1, x3}, {x2, x7, x8}, {x3}, {x4}, {x6}} �= U/IND(R)

For relation Q, we have:

U/IND(R − {Q}) = {{x1, x3}, {x2, x8}, {x3}, {x4}, {x6}, {x7}} = U/IND(R)

thus the relation Q is dispensable in R.
Similarly, for relation R, we have:

U/IND(R − {R}) = {{x1, x3}, {x2, x8}, {x3}, {x4}, {x6}, {x7}} = U/IND(R)

hence the relation R is also dispensable in R.
Thus, the classification defined by the set of three equivalence relations P, Q and

R is the same as the classification defined by relation P and Q or P and R.
To find reducts of the family R = {P, Q, R}, we have to check whether pairs

of relations P, Q and P, R are independent or not. Because U/IND({P, Q}) �=
U/IND(P) and U/IND({P, Q}) �= U/IND(Q), the relations P and Q are indepen-
dent. Consequently, {P, Q} is a reduct of R. Similarly, we can see that {P, R} is also
a reduct of R.

Thus, there are two reducts of the family R, namely {P, Q} and {P, R}, and
{P, Q} ∩ {P, R} = {P} is the core of R.

The concepts of reduct and core defined above can be generalized. Let P and
Q be equivalence relations over U . P-positive region of Q, denoted POSP(Q), is
defined as follows:

POSP(Q) =
⋃

X∈U/Q

PX

The positive region of Q is the set of all objects of the universe U which can
be properly classified to classes of U/Q employing knowledge expressed by the
classification U/P .

Let P and Q be families of equivalence relations over U . We say that R ∈ P is
Q-dispensable in P, if

POSIND(P)(IND(Q)) = POSIND(P−{R})(IND(Q))

otherwise R is Q-indispensable in P.
If every R in P is Q-indispensable, we say that P is Q-independent. The family

S ⊆ P is called a Q-reduct of P iff S is the Q-independent subfamily of P and
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POSS(Q) = POSP(Q). The set of all Q-indispensable elementary relation in P is
called the Q-core, denoted COREQ(P).

The following proposition shows the relationship of relative reduct and core.

Proposition 2.32 COREQ(P) =
⋂

REDQ(P), where REDQ is the family of all
Q-reducts of P.

Let POSP(Q) is the set of all objects which can be classified to elementary cate-
gories of knowledge Q employing knowledge Q. Knowledge P is Q-independent if
the whole knowledge P is necessary to classify objects to elementary categories of
knowledge Q.

The Q-core knowledge of knowldge P is the essential part of knowledge P, which
cannot be eliminated without disturbing the ability to classify objects to elementary
categories of Q.

The Q-reduct of knowledge P is the minimal subset of knowledge P, which
provides the same classification of objects to elementary categories of knowledge Q
as the whole knowledge P. Note that knowledge P can have more than one reduct.

KnowledgePwith only oneQ-reduct is, in a sense, deterministic, i.e., there is only
one way of using elementary categories of knowledge P when classifying objects to
elementary categories of knowledge Q.

If knowledge P has many Q-reducts, then it is non-deterministic, and there are in
general many ways of using elementary categories of P when clasifying objects to
elementary categories of Q.

This non-determinism is particularly strong if the core knowledge is void. But
non-determinism introduces synonymy to the knowledge, which in some cases may
be a drawback.

We turn to reduction of categories. Basic categories are pieces of knowledge,
which can be considered as “building blocks” of concepts. Every concept in the
knowledge base can be only expessed (exactly or approximately) in terms of basic
categories.

On the other hand, every basic category is “build up” (is an intersection) of some
elementary categories. Then, the question ariseswhether all the elementary categories
are necessary to define the basic categories in question.

The problem can be formulated precisely as follows. Let F = {X1, ..., Xn} be a
family of sets such that Xi ⊆ U . We say that Xi is dispensable, if

⋂
(F − {Xi }) =

⋂
F ; otherwise the set Xi is indispensable in F .
The family F is independent if all its complements are indispensable in F ; oth-

erwise F is dependent. The family H ⊆ F is a reduct of F , if H is independent
and

⋂
H =

⋂
F . The family of all indispensable sets in F is called the core of F ,

denoted CORE(F).

Proposition 2.33 CORE(F) =
⋂

RED(F), where RED(F) is the family of all
reducts of F.

Now, we introduce the example from Pawlak [1], Let the family of three sets be
F = {X,Y, Z}, where
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X = {x1, x3, x8}
Y = {x1, x3, x4, x5, x6}
Z = {x1, x3, x4, x6, x7}.

Hence,
⋂

F = X ∩ Y ∩ Z = {x1, x3}. Bacause
⋂

(F − {X}) = Y ∩ Z = {x1, x3, x4, x6}
⋂

(F − {Y }) = X ∩ Z = {x1, x3}
⋂

(F − {Z}) = X ∩ Y = {x1, x3}
sets Y and Z are dispensable in the family F and the family F is dependent. Set X iw
the core of F . Families {X,Y } and {X, Z} are reducts of F and {X,Y }∩{X, Z} = {X}
is the core of F .

We also need a method to elminate superfluous categories from categories which
are the union of some categories. The problem can be formulated in a way similar to
the previous one, with the exception that now instead of intersection of sets we will
need union of sets.

Let F = {X1, ..., Xn} be a family of sets such that Xi ⊆ U . We say that Xi is
dispensable in

⋃
F , if

⋃
(F−|Xi }) =

⋃
F ; otherwise the set Xi is indispensable

in
⋃

F .

The family F is independent with respect to
⋃

F if all its components are indis-

pensable in
⋃

F ; otherwise F is dependent in
⋃

F . The family H ⊆ F is a reduct

of
⋃

F , if H is independent with respect to
⋃

H and
⋃

H =
⋃

F .
Here is th example from Pawlak [1]. Let F = {X,Y, Z , T }, where
X = {x1, x3, x8}
Y = {x1, x2, x4, x5, x6}
Z = {x1, x3, x4, x6, x7}
T = {x1, x2, x5, x7}

Obviously,
⋃

F = X ∪ Y ∪ Z ∪ T = {x1, x2, x3, x4, x5, x6, x7, x8}.
Because we have:
⋃

(F − {X}) =
⋃
{Y, Z , T } = {x1, x2, x3, x4, x5, x6, x7} �=

⋃
F

⋃
(F − {Y }) =

⋃
{X, Z , T } = {x1, x2, x3, x4, x5, x6, x7, x8} =

⋃
F

⋃
(F − {Z}) =

⋃
{X,Y, T } = {x1, x2, x3, x4, x5, x6, x7, x8} =

⋃
F

⋃
(F − {T }) =

⋃
{X,Y, Z} = {x1, x2, x3, x4, x5, x6, x7, x8} =

⋃
F

thus the only indispensable set in the family F is the set X , and remaining sets Y, Z
and T are dispensable in the family.
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Hence, the following sets are reducts of F : {X,Y, Z}, {X,Y, T }, {X, Z , T }. That
means that the concept

⋃
F = X ∪ Y ∪ Z ∪ T , which is the union of X,Y, Z and

T can be simplified and represented as union of smaller numbers of concepts.
Here, we discuss the relative reduct and the core of categories. Suppose that

F = {X1, ..., Xn}, Xi ⊆ U and a subset Y ⊆ U such that
⋂

F ⊆ Y .

We say that Xi is Y -dispensable in
⋂

F , if
⋂

(F − {Xi }) ⊆ Y ; otherwise the

set Xi is Y -indispensable in
⋂

F .

The family F isY -independent in
⋂

F , if all its complements areY -indispensable

in
⋂

F ; otherwise F is Y -dependent in
⋃

F .

The family H ⊆ F is a Y -reduct of
⋂

F , if H is Y -independenct in
⋂

F

otherwise F and
⋂

H ⊆ Y .

The family of all Y -indispensable sets in
⋂

F is called the Y -core of F , denoted
COREF (F). We also say that a Y -reduct (Y -core) is a relative reduct (core) with
respect to Y .

Proposition 2.34 COREY (F) =
⋂

REDY (F), where REDY (F) is the family of
all Y -reducts of F.

Thus, superfluous elementary categories can be eliminated from the basic cate-
gories in a similar way as the equivalence relations.

As discussed above, reduction of knowledge is to remove superfluous partitions
(equivalence relations). For this task, the concept of reduct and core play significant
roles.

2.7 Knowledge Representation

In this section, we discuss a knowledge representation system (KR system), which
can be seen as a formal language. It is interpreted as data table and plays an important
role in practical applications.

A knowledge representation system is a pair S = (U, A), whereU is a non-empty
finite set called universe and A is a non-empty finite set of primitive attributes. Every
primitive attribute a ∈ A is a total function a : U → Va , where Va is the set of values
of a, called the domain of a.

For every subset of attributes B ⊆ A, we associate a binary relation IND(B),
called an indiscernibility relation, defined as:

IND(B) = {(x, y) ∈ U 2 | f or every a ∈ B, a(x) = a(y)}

Obviously, IND(B) is an equivalence relation and the following holds.
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IND(B) =
⋂

a∈B
IND(a)

Every subset B ⊆ A is called an attribute. If B is a single element set, then B is
called primitive, otherwise compound.

Attribute B may be considered as a name of the relation IND(B), or in other
words, a name of knowledge represented by an equivalence relation IND(B).

Thus, the knowledge representation system S = (U, A) may be viewed as a
description of a knowledge base K = (U, R). Here, each equivalence relation in
the knowledge base is represented by an attribute and each equivalence class of the
relation by an attribute value.

It is noted that there is a one-to-one correspondence between knowledge bases
and knowledge representation systems. To check it, it suffices to assign to arbitrary
knowledge base K = (U, R) a knowledge representation system S = (U, A) in the
following way.

If R ∈ R and U/R = {X1, ..., Xk}, then to the set of attributes A every attribute
aR : U → VaR such that VaR = {1, ..., k} and aR(x) = i iff x ∈ X for i =
1, .., k. Then, all notions of knowledge bases can be expressed in terms of notions
of knowledge representation systems.

Consider the following knowledge representation system from Pawlak [1]:
Here, the universeU consists of 8 elements numbered 1, 2, 3, 4, 5, 6, 7 and 8, the

set of attributes is A = {a, b, c, d, e}, whereas V = Va = Vb = Vc = Vd = Ve =
{0, 1, 2}.

In Table2.4, elements 1, 4 and 5 of U are indiscernible by attribute a, elements
2, 7 and 8 are indiscernible by the set of attriutes {b, c}, and elements 2 and 7 are
indiscernible by the set of attributes {d, e}.

Partitions generated by attributes in this system are given below:

U/I N D{a} = {{2, 8}, {1, 4, 5}, {3, 6, 7}}
U/I N D{b} = {{1, 3, 5}, {2, 4, 7, 8}, {6}}
U/I N D{c, d} = {{1}, {3, 6}, {2, 7}, {4}, {5}, {8}}
U/I N D{a, b, c} = {{1, 5}, {2, 8}, {3}, {4}, {6}, {7}}

Table 2.4 KR-system 3 U a b c d e

1 1 0 2 2 0

2 0 1 1 1 2

3 2 0 0 1 1

4 1 1 0 2 2

5 1 0 2 0 1

6 2 2 0 1 1

7 2 1 1 1 2

8 0 1 1 0 1
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For example, for the set of attributes C = {a, b, c} and the subset X =
{1, 2, 3, 4, 5} of the universe, we have CX = {1, 2, 3, 4, 5},CX = {1, 2, 3, 4, 5, 8}
and BNC(X) = {2, 8}.

Thus, the set X is rough with respect to the attribute C , which is to say that we
are unable to decide whether elements 2 and 8 are members of X or not, employing
the set of attributes C . For the rest of the universe classification of elements using
the set C of attributes is possible.

The set of attributes C = {a, b, c} is dependent. The attributes a and b are indis-
pensable, whereas the attribute c is superfluous. Here, the dependency {a, b} ⇒
{c} holds. Because I N D{a, b} has the blocks {1, 5}, {2, 8}, {3}, {4}, {6}, {7}, and
I N D{c} has the blocks {1, 5}, {2, 7, 8}, {3, 4, 6}, I N D{a, b} ⊂ I N D{c}.

We next compute the degree of dependency of attribute D = {d, e} from the
attributes C = {a, b, c} in Table2.4. The partition U/IND(C) consists of the
blocks, X1 = {1}, X2 = {2, 7}, X3 = {3, 6}, X4 = {4}, X5 = {5, 8}. The parti-
tion U/IND(D) consists of the blocks, Y1 = {1, 5},Y2 = {2, 8},Y3 = {3},Y4 =
{4},Y5 = {6},Y6 = {7}.

Because CX1 = ∅,CX2 = Y6,CX3 = Y3 ∪ Y5,CX4 = Y4 and CX5 = ∅, we
have POS(D) = Y3 ∪ Y4 ∪ Y5 ∪ Y6 = {3, 4, 6, 7}.

Namely, only these elements can be classified into blocks of the partition
U/IND(D) employing the set C = {a, b, c} attributes. Hence, the degree of depen-
dency between C and D is γC(D) = 4/8 = 0.5.

The set of attributes C is D-independent, and the attribute a is D-indispensable.
This means that the the D-core of C is one attribute set {a}. Thus, there are the
following dependencies: {a, b} ⇒ {d, e} and {a, c} ⇒ {d, e} in the table.

When speaking about attributes, it is obvious that they may have varying impor-
tance in the analysis of considered issues. To find out the significance of a specific
attribute (or group of attributes) it seems reasonable to drop the attribute from the
table and see how classification will be changed without this attribute.

If removing the attribute will change the classification considerably it means that
its significance is high-in the opposite case, the significance should be low. The idea
can be precisely employing the concept of a positive region.

As ameasure of the signignificance of the subset of attributes B ′ ⊆ B with respect
to the classification induced by a set of attributes C , we will mean the difference:

γB(C)− γB−B ′(C)

which expresses how the positive region of the classification U/IND(C) when clas-
sifying the object by means of attribute B will be affect if we drop some attributes
(subset B ′) from the set B.

Let us compute the significance of the attributes a, b and c with respect to the set
of attributes {d, e} in Table2.4. POSC(D) = {3, 4, 6, 7}, where C = {a, b, c} and
D = {d, e}. Because
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U/I N D{b, c} = {{1, 5}, {2, 7, 8}, {3}, {4}, {6}}
U/I N D{a, c} = {{1, 5}, {2, 8}, {3, 6}, {4}, {7}}
U/I N D{a, b} = {{1, 5}, {2, 8}, {3}, {4}, {6}, {7}}
U/I N D{d, e} = {{1}, {2, 7}, {3, 6}, {4}, {5, 8}}

we have:

POSC−{a}(D) = {3, 4, 6}
POSC−{b}(D) = {3, 4, 6, 7}
POSC−{c}(D) = {3, 4, 6, 7}

Consequently, corresponding accuracies are:

γC−{a}(D) = 0.125,

γC−{b}(D) = 0,

γC−{c}(D) = 0.

Thus, the attribute a is most significant, since it most changes the positive region
ofU/IND(D), i.e., without the attribute a we are unable to classify object 7 to classes
of U/IND(D).

Note that the attribute a is D-indispensable and the attributes b and c are D-
dispensable. Thus, the attribute a is the core of C with respect to D (D-core of C)
and {a, b} and {a, c} are reducts of C with respect to D (D-reducts of C).

Knowledge representation systems can be expressed by means of tables, but as
will be discussed in Chap.4 it can be also formalized in the framework of modal
logic.

We may find some similarities between knowledge representation systems and
relational databases (cf. Codd [15]) in that the concept of table plays a crucial role.
There is, however, an essential difference between these two models.

Most importantly, the relational model is not interested in the meaning of the
information stored in the table. It focusses on efficient data structuring and manipu-
lation. Consequently, the objects about which information is contained in the table
are not represented in the table.

On the other hand, in knowledge representation system, all objects are explicitly
represented and the attribute values, i.e., the table entries, have associated explicit
meaning as features or properties of the objects.

2.8 Decision Tables

Decision tables can be seen as a special, important class of knowledge representa-
tion systems, and can be used for applications. Let K = (U, A) be a knowledge
representation system and C, D ⊂ A be two subsets of attributes, called condition
and decision attributes, respectively.

http://dx.doi.org/10.1007/978-3-319-72691-5_4
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KR-system with distinguished condition and decision attributes is called a deci-
sion table, denoted T = (U, A,C, D) or in short DC. Equivalence clases of the
relations IND(C) and IND(D) are called condition and decision classes, respec-
tively.

With every x ∈ U , we associate a function dx : A → V , such that dx (a) = a(x)
for every a ∈ C ∪D; the function dx is called a decision rule (in T ), and x is referred
as a label of the decision rule dx .

Note that elements of the setU in a decision table do not represent in general any
real objects, but are simple identifiers of decision rules.

If dx is a decision rule, then the restriction of dx to C , denoted dx | C , and the
restriction of dx to D, denoted dx | D are called conditions and decisions (actions)
of dx , respectively.

The decision rule dx is consistent (in T ) if for every y �= x, dx | C = dy | C
implies dx | D = dy | D; otherwise the decision rule is inconsistent.

A decision table is consistent if all its decision rules are consistent; otherwise
the decision table is inconsistent. Consistency (inconsistency) sometimes may be
interpreted as determinism (non-determinism).

Proposition 2.35 A decision table T = (U, A,C, D) is consistent iff C ⇒ D.

From Proposition 2.35, it follows that the practical method of checking consis-
tency of a decision table is by simply computing the degree of dependency between
condition and decision attributes. If the degree of dependency equals to 1, then we
conclude that the table is consistent; otherwise it is inconsistent.

Proposition 2.36 Each decision table T = (U, A,C, D) can be uniquely decom-
posed into two decision tables T1 = (U, A,C, D) and T2 = (U, A,C, D) such
that C ⇒1 D in T1 and C ⇒0 D in T2 such that U1 = POSC(D) and
U2 =

⋃

X∈U/IND(D)

BNC(X).

Proposition 2.36 states that we can decompose the table into two subtables; one
totally inconsistent with dependency coefficient equal to 0, and the second entirely
consistent with the dependency equal to 1. This decomposition however is possible
only if the degree of dependency is greater than 0 and different from 1.

Consider Table2.5 from Pawlak [1].
Assume that a, b and c are condition attributes, and d and e are decision attributes.

In this table, for instance, the decision rule 1 is inconsistent, whereas the decision
rule 3 is consistent. By Proposition 2.36, we can decompose Decision Table1 into
the following two tables:

Table2.2 is consistent, whereas Table2.3 is totally inconsistent, which mens all
decision rules in Table2.2 are consistent, and in Table2.3 all decision rules are
inconsistent.

Simplification of decision tables is very important in many applications, e.g.
software engineering. An example of simplification is the redeuction of condition
attributes in a decision table.
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Table 2.5 Decision Table1 U a b c d e

1 1 0 2 2 0

2 0 1 1 1 2

3 2 0 0 1 1

4 1 1 0 2 2

5 1 0 2 0 1

6 2 2 0 1 1

7 2 1 1 1 2

8 0 1 1 0 1

In the reduced decision table, the same decisions can be based on a smaller number
of conditions. This kind of simplification eliminates the need for checking unneces-
sary conditions.

Pawlak proposed simplification of decision tables which includes the following
steps:

(1) Computation of reducts of condition attributes which is equivalent to elimination
of some column from the decision table.

(2) Elimination of duplicate rows.
(3) Elimination of superfluous values of attributes.

Thus, the method above consists in removing superfluous condition attributes
(columns), duplicate rows and, in addition to that, irrelevant values of condition
attributes.

By the above procedure, we obtain an “incomplete” decision table, containing
only those values of condition attributes which are necessary to make decisions.
According to our definition of a decision table, the incomplete table is not a decision
table and can be treated as an abbreviation of such a table.

For the sake of simplicity, we assume that the set of condition attribute is already
reduced, i.e., there are not superfluous condition attributes in the decision table.

With every subset of attributes B ⊆ A, we can associate partitionU/IND(B) and
consequently the set of condition and decision attributes define partitions of objects
into condition and decision classes.

We know that with every subset of attributes B ⊆ A and object x wemay associate
set [x]B , which denotes an equivalence class of the relation IND(B) containing an
object x , i.e., [x]B is an abbreviation of [x]IND(B).

Thus, with any set of condition attributes C in a decision rule dx we can associate
set [x]C = ∩a∈C [x]a . But, each set [x]a is uniquely determined by attribute value
a(x). Hence, in order to remove superfluous values of condition attributes, we have
to eliminate all superfluous equivalence classes [x]a from the equivalence class [x]C .
Thus, problems of elimination of superfluous values of attributes and elimination of
corresponding equivalence classes are equivalent.
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Consider the following decision table from Pawlak [1].
Here, a, b and c are condition attributes and e is a decision attribute.
It is easy to compute that the only e-dispensable condition attribute is c; conse-

quently, we can remove column c in Table2.4, which yields Table2.5:
In the next step, we have to reduce superfluous values of condition attributes in

every decision rule. First, we have to compute core values of condition attributes in
every decision rule.

Here, we compute the core values of condition attributes for the first decision rule,
i.e., the core of the family of sets

F = {[1]a, [1]b, [1]d} = {{1, 2, 4, 5}, {1, 2, 3}, {1, 4}}

From this we have:

[1]{a,b,d} = [1]a ∩ [1]b ∩ [1]d = {1, 2, 4, 5} ∩ {1, 2, 3} ∩ {1, 4} = {1}.

Moreover, a(1) = 1, b(1) = 0 and d(1) = 1. In order to find dispensable cate-
gories, we have to drop one category at a time and check whether the intersection of
remaining categories is still included in the decision category [1]e = {1, 2}, i.e.,

[1]b ∩ [1]d = {1, 2, 3} ∩ {1, 4} = {1}
[1]a ∩ [1]d = {1, 2, 4, 5} ∩ {1, 4} = {1, 4}
[1]a ∩ [1]b = {1, 2, 4, 5} ∩ {1, 2, 3} = {1, 2}

This means that the core value is b(1) = 0. Similarly, we can compute remaining
core values of condition attributes in every decision rule and the final results are
represented in Table2.6.

Then, we can proceed to compute value reducts. As an example, let us compute
value reducts for the first decision rule of the decision table.

Accordingly to the definition of it, in order to compute reducts of the family F =
{[1]a, [1]b, [1]d} = {{1, 2, 3, 5}, {1, 2, 3}, {1, 4}}, we have to find all subfamilies
G ⊆ F such that

⋂
G ⊆ [1]e = {1, 2}. There are four following subfamilies of F:

[1]b ∩ [1]d = {1, 2, 3} ∩ {1, 4} = {1}
[1]a ∩ [1]d = {1, 2, 4, 5} ∩ {1, 4} = {1, 4}
[1]a ∩ [1]b = {1, 2, 4, 5} ∩ {1, 2, 3} = {1}

Table 2.6 Decision Table2.2 U a b c d e

3 2 0 0 1 1

4 1 1 0 2 2

6 2 2 0 1 1

7 2 1 1 1 2
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and only two of them

[1]b ∩ [1]d = {1, 2, 3} ∩ {1, 4} = {1} ⊆ [1]e = {1, 2}
[1]a ∩ [1]b = {1, 2, 4, 5} ∩ {1, 2, 3} = {1} ⊆ [1]e = {1, 2}

are reducts of the family F. Hence, we have two values reducts: b(1) = 0 and
d(1) = 1 or a(1) = 1 and b(1) = 0. This means that the attribute values of attributes
a and b or d and e are characteristic for decision class 1 and do not occur in any other
decision classes in the decision table. We see also that the value of attribute b is the
intersection of both value reducts, b(1) = 0, i.e., it is the core value.

In Table2.7, we list value reducts fir all decision rules in Table2.1.
Seen from Decision Table2.7, for decision rules 1 and 2 we have two value

reducts of condition attributes. Decision rules 3,4 and 5 have only one value reducts
of condition attributes for each decision rule row. The remaining decision rules 6 and
7 contain two and three value reducts, respectively.

Hence, there are two reduced form of decision rule 1 and 2, decision rule 3, 4 and
5 have only one reduced form each, decision rule 6 has two reducts and decision rule
7 has three reducts.

Thus, there are 4×2×3 = 24 (not necessarily different) solutions to our problem.
One such solution is presented in Decision Table2.8.

Another solution is shown in Decision Table2.9.
Because decision rules 1 and 2 are identical, and so are rules 5, 6 and 7, we can

represent Decision Table2.10:
In fact, enumeration of decision rules is not essential, so we can enumerate them

arbitrary and we get as a final result Decision Table2.11:

Table 2.7 Decision Table2.3 U a b c d e

1 1 0 2 2 0

2 0 1 1 1 2

5 1 0 2 0 1

8 0 1 1 0 1

Table 2.8 Decision Table2.4 U a b c d e

1 1 0 0 1 1

2 1 0 0 0 1

3 0 0 0 0 0

4 1 1 0 1 0

5 1 1 0 2 2

6 2 1 0 2 2

7 2 2 2 2 2
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Table 2.9 Decision Table2.5 U a b d e

1 1 0 1 1

2 1 0 0 1

3 0 0 0 0

4 1 1 1 0

5 1 1 2 2

6 2 1 2 2

7 2 2 2 2

Table 2.10 Decision
Table2.6

U a b d e

1 _ 0 _ 1

2 1 _ _ 1

3 0 _ _ 0

4 _ 1 1 0

5 _ _ 2 2

6 _ _ _ 2

7 _ _ _ 2

Table 2.11 Decision
Table2.7

U a b d e

1 1 0 × 1

1′ × 0 1 1

2 1 0 × 1

2′ 1 × 0 1

3 0 × × 0

4 × 1 1 0

5 × × 2 2

6 × × 2 2

6′ 2 × × 2

7 × × 2 2

7′ × 2 × 2

7′′ 2 × × 2
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This solution is referred to as minimal. The presented method of decision table
simplification canbenamed semantic, since it refers to themeaningof the information
contained in the table.Another decision table simplification is alsopossible and canbe
named syntactic. It is described within the framework of decision logic (Table2.12).

To simplify a decision table, we should first find reducts of condition attributes,
remove duplicate rows and then find value-reducts of condition attributes and again,
if necessary, remove duplicate rows (Table2.13).

This method leads to a simple algorithm for decision table simplification, Note
that a subset of attributes may have more than one reduct (relative reduct). Thus, the
simplification of decision table does not yield unique results. Some decision tables
possibly can be optimized according to preassumed criteria (Table2.14).

Table 2.12 Decision
Table2.8

U a b d e

1 1 0 × 1

2 1 × 0 1

3 0 × × 0

4 × 1 1 0

5 × × 2 2

6 × × 2 2

7 2 × × 2

Table 2.13 Decision
Table2.9

U a b d e

1 1 0 × 1

2 1 0 × 1

3 0 × × 0

4 × 1 1 0

5 × × 2 2

6 × × 2 2

7 × × 2 2

Table 2.14 Decision
Table2.10

U a b d e

1, 2 1 0 × 1

3 0 × × 0

4 × 1 1 0

5, 6, 7 × × 2 2
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Table 2.15 Decision
Table2.11

U a b d e

1 1 0 × 1

2 0 × × 0

3 × 1 1 0

4 × × 2 2

We have finished the presentation of some topics in rough set theory. Pawlak also
established other formal results about rough sets and discusses advantages of rough
set theory. We here omit these issues; see Pawlak [1] (Table2.15).
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Chapter 3
Non-classical Logics

Abstract This chapter surveys some non-classical logics. They are closely related
to the foundations of rough set theory. We provide the basics of modal, many-valued,
intuitionistic and paraconsistent logic.

3.1 Modal Logic

Non-classical logic is a logic which differs from classical logic in some points. There
are many systems of non-classical logic in the literature. Some non-classical logics
are closely tied with foundations of rough set theory.

There are two types of non-classical logics. The first type is considered as an
extension of classical logic. It extends classical logic with new features. For instance,
modal logic adds modal operators to classical logic.

The second type is an alternative (or rival) to classical logic. It therefore denies
some of the features of classical logic. For example, many-valued logic is based on
many truth-values, whereas classical logic uses two truth-values, i.e. true and false.

These two types of non-classical logics are conceptually different and their uses
heavily depend on applications. In some cases, they can provide more promising
results than classical logic. In the following, we provide the basics of modal, many-
valued, intuitionistic, and paraconsistent logic.

Modal logic extends classical logic with modal operators to represent intensional
concepts. Intensional concepts are beyond the scope of truth and falsity. So new
mechanism for intensionality should be devised.

The role can be played by a modal operator. Generally, � (necessity) and ♦
(possibility) are used as modal operators. A formula of the form �A reads “A is
necessarily true” and� “A is possibly true”, respectively. These are dual in the sense
that �A ↔ ¬♦¬A.

Reading modal operators differently, we can obtain other intensional logics capa-
ble of formalizing some intensional concepts. Currently, many variants of modal
logics are known. We list some of them as follows: tense logic, epistemic logic,
doxastic logic, deontic logic, dynamic logic, intensional logic, etc.
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Now, we present proof and model theory for modal logic. The language of the
minimal modal logic denoted K is the classical propositional logic CPC with the
necessity operator �. The name “K” is after Kripke.

A Hilbert system for K is formalized as follows:

Modal Logic K
Axiom
(CPC) Axioms of CPC
(K) �(A → B) → (�A → �B)

Rules of Inference
(MP) � A,� A → B ⇒ � B
(NEC) � A ⇒ � �A

Here, � A means that A is provable in K. (NEC) is called the necessitation. The
notion of proof is defined as usual.

Systems of normal modal logic can be obtained by adding extra axioms which
describe properties of modality. Some of the important axioms are listed as follows:

(D) �A → ♦A
(T) �A → A
(B) A → �♦A
(4) �A → ��A
(5) ♦A → �♦A

The name of normal modal logic is systematically given by the combination of
axioms. For instance, the extension of K with the axiom (D) is called K

¯
D. However,

some such systems traditionally have the following names:

D = KD
T = KT
B = KB
S4 = KT4
S5 = KT5

Before the 1960s, the study of modal logic was mainly proof-theoretical due to
the lack of model theory. A semantics of modal logic has been developed by Kripke
and it is now called Kripke semantics; see Kripke [1–3].

Kripke semantics uses a possible world to interpret modal operators. Intuitively,
the interpretation of �A says that A is true in all possible worlds. Possible worlds
are linked with the actual world by means of the accessibility relation.

AKripke model for the normalmodal logicK is defined as a tripleM = 〈W, R, V 〉,
where W is a non-empty set of possible worlds, R is an accessibility relation on
W × W , and V is a valuation function: W × PV → {0, 1}. We here denote by PV
a set of propositional variables. F = 〈W, R〉 is called a frame.

We write M , w |= A to mean that a formula A is true at a world w in the model
M . Let p be a propositional variable and false be absurdity. Then, |= can be defined
as follows:
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M , w |= p ⇔ V (w, p) = 1
M , w 	|= false
M , w |= ¬A ⇔ M , w 	|= A
M , w |= A ∧ B ⇔ M , w |= A and M , w |= B
M , w |= A ∨ B ⇔ M , w |= A or M , w |= B
M , w |= A → B ⇔ M , w |= A ⇒ M , w |= B
M , w |= �A ⇔ ∀v(wRv ⇒ M , v |= A)

M , w |= ♦A ⇔ ∃v(wRv and M , v |= A)

Here, there are no restrictions on the property of R. We say that a formula A is
valid in the modal logic S, written M |=S A, just in case M , w |= A for every world
w and every model M .

We know that the minimal modal logic K is complete.

Theorem 3.1 �K A ⇔ |=K A.

By imposing some restrictions on the accessibility relation R, we can give Kripke
models for various normal modal logics. The correspondences of axioms and con-
ditions on R are given as follows:

Axiom Conditions on R
(K) No conditions
(D) ∀w∃v(wRv) (serial)
(T) ∀w(wRw) (reflexive)
(4) ∀wvu(wRv and vRu ⇒ wRu) (transitive)
(5) ∀wvu(wRv and wRu ⇒ vRu) (euclidean)

For example, the accessibility relation in a Kripke model for modal logic S4
is reflexive ad transitive since it needs axioms (K), (T) and (4). The completeness
results of several modal logics have been established; see Hughes and Cresswell [4]
for details.

If we read modal operators differently, then other types of modal logics listed
above can be obtained. These logics can deal with various problems, and modal
logic is of special importance to applications.

3.2 Many-Valued Logic

Many-valued logic, also known as multiple-valued logic, is a family of logics which
have more than two truth-values. Namely, many-valued logics can express other
possibilities in addition to truth and falsity.

The idea of many-valued logic is implicit in Aristotle’s thinking concerning future
contingents. Now, many-valued logics are widely used to treat problems in various
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areas. In particular, three-valued and four-valued logics are well known for applica-
tions in computer science. It is also noted that the so-called fuzzy logic is classified
as a many-valued (infinite-valued) logic.

We start with the exposition of three-valued logic. The first serious attempt to
formalize a three-valued logic has been done by Łukasiewicz in [5]. His system
is now known as Łukasiewicz’s three-valued logic, denoted L3, in which the third
truth-valued reads “indeterminate” or “possible”.

Łukasiewicz considered that future contingent propositions should receive the
third truth-value denoted by I , which is neither true nor false, although his interpre-
tation is controversial.

The language ofL3 comprises conjunction (∧), disjunction (∨), implication (→L)
and negation (∼). We will omit the subscript L when the context is clear. The seman-
tics for many-valued logics can be usually given by using the truth-value tables. The
truth-value tables for L3 are as follows:

Here, we should note that both the law of excluded middle A∨ ∼ A and the law
of non-contradiction ∼ (A∧ ∼ A), which are important principles of classical logic,
do not hold. In fact, these receive I when the truth-values of compound formulas are
I (Table3.1).

A Hilbert system for L3 is as follows:

Lukasiewicz’s Three-Valued Logic L3

Axiom
(L1) A → (B → A)

(L2) (A → B) → ((B → C) → (A → C))

(L3) ((A →∼ A) → A) → A

Table 3.1 Truth-value tables of L3

A ∼ A

T F

I I

F T

A B A ∧ B A ∨ B A →L B

T T T T T

T F F T F

T I I T I

F T F F T

F F F F T

F I F I T

I T I T T

I F F I I

I I I I T
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Table 3.2 Truth-value tables of K3

A ∼ A

T F

I I

F T

A B A ∧ B A ∨ B A →K B

T T T T T

T F F T F

T I I T I

F T F F T

F F F F T

F I F I T

I T I T T

I F F I I

I I I I I

(L4) (∼ A →∼ B) → (B → A)

Rules of Inference
(MP) � A,� A → B ⇒� B

Here, ∧ and ∨ are defined by means of ∼ and →L in the following way.

A ∨ B =def (A → B) → B
A ∧ B =def ∼ (∼ A∨ ∼ B)

Kleene also proposed three-valued logic K3 in connection with recursive function
theory; see Kleene [6]. K3 differs from L3 in its interpretation of implication →K .
The truth-value tables of K3 are given as Table3.2.

In K3, the third truth-value reads “undefined”. Consequently, K3 can be applied
to theory of programs. There are no tautologies in K3, thus implying that we cannot
provide a Hilbert system for it.

K3 is usually called Kleene’s strong three-valued logic. In the literature, Kleene’s
weak three-valued logic also appears, in which a formula evaluates as I if any com-
pound formula evaluates as I . Kleene’s weak three-valued logic is equivalent to
Bochvar’s three-valued logic.

Four-valued logic is suited as a logic for a computer which must deal with incom-
plete and inconsistent information. Belnap introduced a four-valued logic which can
formalize the internal states of a computer; see Belnap [7, 8].

There are four states, i.e. (T ), (F), (None) and (Both), to recognize an input in a
computer. Based on these states, a computer can compute suitable outputs.
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(T ) a proposition is true.
(F) a proposition is false.
(N ) a proposition is neither true nor false.
(B) a proposition is both true and false.

Here, (N ) and (B) abbreviate (None) and (Both), respectively. From the above,
(N ) corresponds to incompleteness and (B) inconsistency. Four-valued logic can be
thus seen as a natural extension of three-valued logic.

In fact, Belnap’s four-valued logic can model both incomplete information (N )
and inconsistent information (B). Belnap proposed two four-valued logics A4 and
L4.

The former can cope only with atomic formulas, whereas the latter can handle
compound formulas. A4 is based on the approximation lattice depicted as Fig. 3.1.

Here, B is the least upper bound and N is the greatest lower bound with respect
to the ordering ≤.

L4 is based on the logical lattice depicted as Fig. 3.2.
L4 has logical symbols; ∼,∧,∨, and is based on a set of truth-values 4 =

{T , F, N , B}. One of the features of L4 is the monotonicity of logical symbols.
Let f be a logical operation.

It is said that f is monotonic iff a ⊆ b ⇒ f (a) ⊆ f (b). To guarantee the mono-
tonicity of conjunction and disjunction, they must satisfy the following:

a ∧ b = a ⇔ a ∨ b = b
a ∧ b = b ⇔ a ∨ b = a

The truth-vaue tables for L4 are as follows (Table3.3).
Belnap gave a semantics for the language with the above logical symbols. A setup

is amapping a set of atomic formulasAtom to the set 4. Then, themeaning of formulas
of L4 are defined as follows:

Fig. 3.1 Approximation
lattice

B
/ \

T A4 F
\ /

N

Fig. 3.2 Logical lattice T
/ \

N L4 B
\ /

F
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Table 3.3 Truth-value tables of L4

N F T B

∼ B T F N

∧ N F T B

N N F N F

F F F F F

T N F T B

B F F B B

∨ N F T B

N N N T T

F N F T B

T T T T T

B T B T B

s(A ∧ B) = s(A) ∧ s(B)

s(A ∨ B) = s(A) ∨ s(B)

s(∼ A) = ∼ s(A)

Further, Belnap defined an entailment relation → as follows:

A → B ⇔ s(A) ≤ s(B)

for all setups s.
The entailment relation → can be axiomatized as follows:

(A1 ∧ ... ∧ Am) → (B1 ∨ ... ∨ Bn) (Ai shares some Bj)
(A ∨ B) → C ↔ (A → C) and (B → C)

A → B ⇔ ∼ B →∼ A
A ∨ B ↔ B ∨ A, A ∧ B ↔ B ∧ A
A ∨ (B ∨ C) ↔ (A ∨ B) ∨ C
A ∧ (B ∧ C) ↔ (A ∧ B) ∧ C
A ∧ (B ∨ C) ↔ (A ∧ B) ∨ (A ∧ C)

A ∨ (B ∧ C) ↔ (A ∨ B) ∧ (A ∨ C)

(B ∨ C) ∧ A ↔ (B ∧ A) ∨ (C ∧ A)

(B ∧ C) ∨ A ↔ (B ∨ A) ∧ (C ∨ A)

∼∼ A ↔ A
∼ (A ∧ B) ↔∼ A∨ ∼ B, ∼ (A ∨ B) ↔∼ A∧ ∼ B
A → B, B → C ⇔ A → C
A ↔ B, B ↔ C ⇔ A ↔ C
A → B ⇔ A ↔ (A ∧ B) ⇔ (A ∨ B) ↔ B

Note here that (A∧ ∼ A) → B and A → (B∨ ∼ B) cannot be derived in this
axiomatization. It can be shown that the logic given above is closely related to the
so-called relevant logic of Anderson and Belnap in [9]. In fact, Belnap’s four-valued
logic is equivalent to the system of tautological entailment.

Infinite-valued logic is a many-valued logic having infinite truth-values in [0, 1].
fuzzy logic and probabilistic logic belong to this family. Lukasiewicz introduced
infinite-valued logic L∞ in 1930; see Lukasiewicz [10]. Its truth-value tables can be
generated by the following matrix:
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| ∼ A | = 1− |A |
|A ∨ B | = max(|A |, |B |)
|A ∧ B | = min(|A |, |B |)
|A → B | = 1 (|A |≤|B |)

= 1− |A | + |B | (|A |>|B |)

A Hilbert system for L∞ is as follows:

Lukasiewicz’s Infinite-Valued logic L∞
Axioms
(IL1) A → (B → A)

(IL2) (A → B) → ((B → C) → (A → C))

(IL3) ((A → B) → B) → ((B → A) → A)

(IL4) (∼ A → ∼ B) → (B → A)

(IL5) ((A → B) → (B → A)) → (B → A)

Rules of Inference

(MP) � A, � A → B ⇒ � B

Since (IL5) derived from other axioms, it can be deleted.
It is known that L∞ was used as the basis of fuzzy logic based on fuzzy set due to

Zadeh [11]. Fuzzy logic is a logic of vagueness and is found in many applications.
Since the 1990s, a lot of important work has been done for foundations for fuzzy
logic.

Fitting [12, 13] studied bilattice, which is the lattice 4with two kinds of orderings,
in connectionwith the semantics of logic programs.Bilattices introduce non-standard
logical connectives.

A bilattice was originally introduced by Ginsberg [14, 15] for the foundations of
reasoning in AI, which has two kinds of orderings, i.e., truth ordering and knowledge
ordering.

Later, it was extensively studied by Fitting in the context of logic programming
in [16] and of theory of truth in [12]. In fact, bilattice-based logics can handle both
incomplete and inconsistent information.

A pre-bilattice is a structure B = 〈B,≤t,≤k〉, where B denotes a non-empty set
and ≤t and ≤k are partial orderings on B. The ordering ≤k is thought of as ranking
“degree of information (or knowledge)”. The bottom in ≤k is denoted by ⊥ and the
top by �. If x <k y, y gives us at least as much information as x (and possibly more).

The ordering ≤t is an ordering on the “degree of truth”. The bottom in ≤t is
denoted by false and the top by true. A bilattice can be obtained by adding certain
assumptions for connections for two orderings.

One of themostwell-knownbilattices is the bilatticeFOUR as depicted as Fig. 3.3.
The billatice FOUR can be interpreted a combination of Belnap’s lattices A4 and
L4.

The bilattice FOUR can be seen as Belnap’s lattice FOUR with two kinds of
orderings. Thus, we can think of the left-right direction as characterizing the ordering
≤t : a move to the right is an increase in truth.
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Fig. 3.3 The bilattice FOUR

The meet operation ∧ for ≤t is then characterized by: x ∧ y is rightmost thing
that is of left both x and y. The join operation ∨ is dual to this. In a similar way, the
up-down direction characterizes ≤k : a move up is an increase in information. x ⊗ y
is the uppermost thing below both x and y, and ⊕ is its dual.

Fitting [16] gave a semantics for logic programming using bilattices. Kifer and
Subrahmanian [17] interpreted Fitting’s semantics within generalized annotated log-
ics GAL.

Fitting [12] tried to generalize Kripke’s [18] theory of truth, which is based on
Kleene’s strong three-valued logic, in a four-valued setting based on the bilattice
FOUR.

A bilattice has a negation operation ¬ if there is a mapping ¬ that reverse ≤t ,
leaves unchanged ≤k and ¬¬x = x. Likewise a bilattice has a conflation if there is a
mapping − that reverse ≤k , leaves unchanged ≤t . and − − x = x. If a bilattice has
both operations, they commute if −¬x = ¬ − x for all x.

In the bilattice FOUR, there is a negation operator under which ¬t = f ,¬f = t,
and ⊥ and � are left unchanged. There is also a conflation under which −⊥ =
�,−� = ⊥ and t and f are left unchanged. And negation and conflation commute.
In any bilattice, if a negation or conflation exists then the extreme elements ⊥,�, f
and t will behave as in FOUR.

Bilattice logics are theoretically elegant in that we can obtain several algebraic
constructions, and are also suitable for reasoning about incomplete and inconsis-
tent information. Arieli and Avron [19, 20] studied reasoning with bilattices. Thus,
bilattice logics have many applications in AI as well as philosophy.

3.3 Intuitionistic Logic

Intuitionistic logic is a rival to classical logic in that it rejects the law of excluded
middle, i.e., A ∨ ¬A in classical logic. Intuitionistic logic is a logic for philosophy of
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mathematics called intuitionism due to Brouwer who claimed that mathematical rea-
soning should be based on mental activity. Based on Brouwer’s philosophy, Heyting
formalized intuitionistic logic with its Hilbert style axiomatization; see Heyting [21].

A Hilbert system for intuitionistic logic Int is formalized as follows:

Intuitionistic Logic Int
Axiom
(INT1) A → A
(INT2) A → (B → A)

(INT3) A → (A → B)) → (A → B)

(INT4) (A → (B → C)) → (B → (A → C))

(INT5) (A → B) → ((B → C) → (A → C))

(INT6) (A ∧ B) → A
(INT7) (A ∧ B) → B
(INT8) (A → B) → ((A → C) → (A → (B ∧ C)))

(INT9) A → (A ∨ B)

(INT10) B → (A ∨ B)

(INT11) (A → C) → ((B → C) → ((A ∨ B) → C))

(INT12) (A → B) → (A → ¬B) → ¬A)

(INT13) ¬A → (A → B)

Rules of Inference

(MP) � A,� A → B ⇒� B

The logical symbols used here are the same as the ones in classical logic. As in
classical logic, intuitionistic negation ¬A can be defined as A → false. �INT is also
used for provability.

If we add the law of excluded middle (LEM) or the law of double negation (LDN)
to INT, we can get classical logic CPC.

(LEM) A ∨ ¬A
(LDN) ¬¬A → A

A semantics of intuitionistic logic is also non-truth-functional. Kripke also devel-
oped a semantics for INT; see Kripke [22] and Fitting [13]. A Kripke semantics is
similar to the one formodal logic S4 due to the connection that INT can be embedded
into S4.

A Kripke model for INT is defined as a triple M = 〈W, R, V 〉, where
(1) W is a non-empty set of possible worlds,
(2) R is binary relation, which is reflexive and transitive, on W ,
(3) V is a valuation function which maps every propositional variable p to a subset

of W satisfying ∀w∗(w ∈ V (p) ⇒ w∗ ∈ V (p)).

Here, ∀w∗ abbreviates ∀w∗ ∈ W such that wRw∗.
We define a forcing relation |= for any propositional variable p and any w ∈ W

as follows:
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w |= p ⇔ w ∈ V (p)

Here, w |= p to mean that a formula p is true at a world w. Then, |= can be
extended for any formula A, B as follows:

w 	|= false
w |= ¬A ⇔ ∀w∗(w∗ 	|= A)

w |= A ∧ B ⇔ w |= A and w |= B
w |= A ∨ B ⇔ w |= A or w |= B
w |= A → B ⇔ ∀w∗(w∗ |= A ⇒ w∗ |= B)

We say that A is valid, written |=INT A, just in case w |= A for every world w and
every model M .

Note that the monotonicity of V holds for any formula. The striking feature
of Kripke model for INT lies in the fact that both implication and negation are
interpreted intensionally.

The completeness of INT holds.

Theorem 3.2 �INT A ⇔ |=INT A.

It is observed that we can provide an algebraic semantics for INT by Heyting
algebras. The reader is invited to consult Fitting [16] for details on intuitionistic
logic.

Intuitionistic logic was mainly studied from logical perspectives, but it receives
special attention in computer science. Intuitionistic logic and its extensions, i.e.,
intermediate logic offer foundations for rough set theory, in particular, rough set
logics.

The logics which are intermediate between intuitionistic logic and classical logic
are called intermediate logics or superintuitionistic logics.

Many intermediate logics have been proposed in the literature. We here introduce
some interesting ones. The logic of the weak excluded middle or Jankov’s logic,
denoted KC (or LQ), extends INT with ¬¬A ∨ ¬A; see Akama [23].

Gödel-Dummett logic, denotedLC, is an extension of INTwith (A → B) ∨ (B →
A); see Dummett [24].

Kreisel-Putnam logic, denoted KP, extends INT with (¬A → (B ∨ C)) →
((¬A → B) ∨ (¬A → C)); see Krisel and Putnam [25].

Several intermediate predicate logics have also proposed, but we omit their review
here. Observe that some intermediate logics are used as rough set logics; see Akama
et al. [26, 27].

In intuitionistic logic, negation is not constructive, and it is possible to introduce
strong negation into it. Nelson [28] proposed a constructive logic with strong negation
as an alternative to intuitionistic logic, in which strong negation (or constructible
negation) is introduced to improve some weaknesses of intuitionistic negation.

Constructive logic N extends positive intuitionistic logic Int+ with the following
axioms for strong negation ∼:

(N1) (A∧ ∼ A) → B
(N2) ∼∼ A ↔ A
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(N3) ∼ (A → B) ↔ (A∧ ∼ B)

(N4) ∼ (A ∧ B) ↔ (∼ A∨ ∼ B)

(N5) ∼ (A ∨ B) ↔ (∼ A∧ ∼ B)

In N, intuitionistic negation ¬ can be defined by means of strong negation and
implication. We can introduce it into N by one of the following:

¬A ↔ A → (B∧ ∼ B)

¬A ↔ A → ∼ A.
If we delete (N1) from N, we can obtain a paraconsistent constructive logic N−

of Almukdad and Nelson [29]. Akama [30–35] extensively studied Nelson’s con-
structive logics with strong negation including proof and model theory; also see
Wansing [36].

In 1959, Nelson [37] developed a constructive logic S which lacks contraction
(A → (A → B)) → (A → B) and discussed its aspects as a paraconsistent logic.
Akama [34] gave a detailed presentation of Nelson’s paraconsistent constructive
logics.

Semantics for N can be given by Kripke models or Nelson algebras. A Kripke
model for N is a tuple 〈W, R, VP, VN 〉, where W is a set of possible worlds, R is
binary relation, which is reflexive and transitive, on W , and VP and VN are functions,
each of which maps every propositional variable p to a subset of W satisfying:

(1) VP(p) ∩ VN (p) = ∅,
(2) ∀w∗(w ∈ VP(p) ⇒ w∗ ∈ VP(p)),
(3) ∀w∗(w ∈ VN (p) ⇒ w∗ ∈ VN (p)).

We define two forcing relations |=P and |=N for any propositional variable p and
any w ∈ W as follows:

w |=P p ⇔ w ∈ VP(p)

w |=N p ⇔ w ∈ VN (p)

Here, w |=P p to mean that a formula p is true at a world w and w |=N p to mean
that a formula p is false at a worldw, respectively. Then, |=P and |=N can be extended
for any formula A, B as follows:

w |=P ∼ A ⇔ w |=N A
w |=P A ∧ B ⇔ w |=P A and w |=P B
w |=P A ∨ B ⇔ w |=P A or w |=P B
w |=P A → B ⇔ ∀w∗(w∗ |=P A ⇒ w∗ |=P B)

w |=N ∼ A ⇔ w |=P A
w |=N A ∧ B ⇔ w |=N A or w |=N B
w |=N A ∨ B ⇔ w |=N A and w |=N B
w |=N A → B ⇔ w |=P A and w |=N B

We say that A is valid, written |=N A, just in case w |=P A for every world w and
every model M .

Note that themonotonicity of VP and VN holds for any formula. TheKripkemodel
for N is regarded as an extension of intuitionistic Kripke model in which both truth
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and falsity are interpreted intuitionistically. If the condtition VP(p) ∩ VN (p) = ∅ is
dropped, we can obtain a Kripke model for N−.

We have a completeness result of N (also N−).

Theorem 3.3 �N A ⇔ |=N A.

Algebraic semantics for constructive logic with strong negation has been studied
using the so-called Nelson algebras; see Rasiowa [38]. Nelson algebras can serve as
another basis for rough set theory, as will be discussed in Chap. 4.

3.4 Paraconsistent Logic

Paraconsistent logic is a logical system for inconsistent but non-trivial formal theo-
ries. It is classified as non-classical logic. Paraconsistent logic has many applications
and it can serve as a foundation for engineering because some engineering prob-
lems must solve inconsistent information. However standard classical logic cannot
tolerate it. In this regard, paraconsistent logic is promising.

Here, we give a quick review of paraconsistent logic, and it is helpful to the
reader. Let T be a theory whose underlying logic is L. T is called inconsistent when
it contains theorems of the form A and ¬A (the negation of A), i.e.,

T �L A and T �L ¬A
where �L denotes the provability relation in L. If T is not inconsistent, it is called
consistent.

T is said to be trivial, if all formulas of the language are also theorems of T .
Otherwise, T is called non-trivial. Then, for trivial theory T , T �L B for any formula
B. Note that trivial theory is not interesting since every formula is provable.

If L is classical logic (or one of several others, such as intuitionistic logic), the
notions of inconsistency and triviality agree in the sense that T is inconsistent iff T is
trivial. So, in trivial theories the extensions of the concepts of formula and theorem
coincide.

A paraconsistent logic is a logic that can be used as the basis for inconsistent but
non-trivial theories. In this regard, paraconsistent theories do not satisfy the principle
of non-contradiction, i.e., ¬(A ∧ ¬A).

Similarly, we can define the notion of paracomplete theory, namely T is called
paracomplete when neither A nor ¬A is a theorem. In other words,

T �L A and T �L ¬A
hold in paracomplete theory. If T is not paracomplete, T is complete, i.e.,

T �L A or T �L ¬A
holds. A paracomplete logic is a logic for paracomplete theory, in which the principle
of excluded middle, i.e., A ∨ ¬A fails. In this sense, intuitionistic logic is one of the
paracomplete logics.

Finally, a logic which is simultaneously paraconsistent and paracomplete is called
non-alethic logic. Classical logic is a consistent and complete logic.

http://dx.doi.org/10.1007/978-3-319-72691-5_4
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There are several systems of paraconsistent logic, which have been developed
from different perspective. We here review the following three systems, since they
are considered major ones.

• Discursive logic
• C-systems
• relevant (relevance) logic.

Discursive logic, also known as discussive logic, was proposed by Jaśkowski [39,
40], which is regarded as a non-adjunctive approach.Adjunction is a rule of inference
of the form: from � A and � B to � A ∧ B. Discursive logic can avoid explosion by
prohibiting adjunction.

It was a formal system J satisfying the conditions: (a) from two contradictory
propositions, it should not be possible to deduce any proposition; (b) most of the
classical theses compatible with (a) should be valid; (c) J should have an intuitive
interpretation.

Such a calculus has, among others, the following intuitive properties remarked
by Jaśkowski himself: suppose that one desires to systematize in only one deductive
system all theses defended in a discussion. In general, the participants do not confer
the same meaning to some of the symbols.

One would have then as theses of a deductive system that formalize such a dis-
cussion, an assertion and its negation, so both are “true” since it has a variation in
the sense given to the symbols. It is thus possible to regard discursive logic as one
of the paraconsistent logics.

Jaśkowski’s D2 contains propositional formulas built from logical symbols of
classical logic. In addition, the possibility operator ♦ in S5 is added. Based on the
possibility operator, three discursive logical symbols can be defined as follows:

discursive implication: A →d B =def ♦A → B
discursive conjunction: A ∧d B =def ♦A ∧ B
discursive equivalence: A ↔d B =def (A →d B) ∧d (B →d A)

Additionally, we can define discursive negation ¬d A as A →d false. Jaśkowski’s
original formulation of D2 in [40] used the logical symbols: →d ,↔d ,∨,∧,¬, and
he later defined ∧d in [40].

The following axiomatization due to Kotas [41] has the following axioms and the
rules of inference.

Axioms
(A1) �(A → (¬A → B))

(A2) �((A → B) → ((B → C) → (A → C))

(A3) �((¬A → A) → A)

(A4) �(�A → A)

(A5) �(�(A → B) → (�A → �B))

(A6) �(¬�A → �¬�A)
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Rules of Inference
(R1) substitution rule
(R2) �A,�(A → B)/�B
(R3) �A/��A
(R4) �A/A
(R5) ¬�¬�A/A

There are other axiomatizations of D2, but we omit the details here. Discursive
logics are consideredweak as a paraconsistent logic, but they have some applications,
e.g. logics for vagueness.

C-systems are paraconsistent logics due to da Costa which can be a basis for
inconsistent but non-trivial theories; see da Costa [42]. The important feature of
da Costa systems is to use novel interpretation, which is non-truth-functional, of
negation avoiding triviality.

Here, we review C-system C1 due to da Costa [42]. The language of C1 is based
on the logical symbols:∧,∨,→, and¬.↔ is defined as usual. In addition, a formula
A◦, which is read “A is well-behaved”, is shorthand for ¬(A ∧ ¬A).

The basic ideas ofC1 contain the following: (1)most valid formulas in the classical
logic hold, (2) the law of non-contradiction ¬(A ∧ ¬A) should not be valid, (3) from
two contradictory formulas it should not be possible to deduce any formula.

The Hilbert system of C1 extends the positive intuitionistic logic with the axioms
for negation.

da Costa’s C1

Axioms
(DC1) A → (B → A)

(DC2) (A → B) → (A → (B → C)) → (A → C))

(DC3) (A ∧ B) → A
(DC4) (A ∧ B) → B
(DC5) A → (B → (A ∧ B))

(DC6) A → (A ∨ B)

(DC7) B → (A ∨ B)

(DC8) (A → C) → ((B → C) → ((A ∨ B) → C))

(DC9) B◦ → ((A → B) → ((A → ¬B) → ¬A))

(DC10) (A◦ ∧ B◦) → (A ∧ B)◦ ∧ (A ∨ B)◦ ∧ (A → B)◦
(DC11) A ∨ ¬A
(DC12) ¬¬A → A

Rules of Inference
(MP) � A, � A → B ⇒ � B

Here, (DC1)–(DC8) are axioms of the positive intuitionistic logic. (DC9) and
(DC10) play a role for the formalization of paraconsistency.

A semantics for C1 can be given by a two-valued valuation; see da Costa and
Alves [43]. We denote by F the set of formulas of C1. A valuation is a mapping v
fromF to {0, 1} satisfying the following:
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v(A) = 0 ⇒ v(¬A) = 1
v(¬¬A) = 1 ⇒ v(A) = 1
v(B◦) = v(A → B) = v(A → ¬B) = 1 ⇒ v(A) = 0
v(A → B) = 1 ⇔ v(A) = 0 or v(B) = 1
v(A ∧ B) = 1 ⇔ v(A) = v(B) = 1
v(A ∨ B) = 1 ⇔ v(A) = 1 or v(B) = 1
v(A◦) = v(B◦) = 1 ⇒ v((A ∧ B)◦) = v((A ∨ B)◦) = v((A → B)◦) = 1
Note here that the interpretations of negation and double negation are not given

by biconditional. A formula A is valid, written |= A, if v(A) = 1 for every valuation
v. Completeness holds for C1. It can be shown that C1 is complete for the above
semantics.

Da Costa system C1 can be extended to Cn (1 ≤ n ≤ ω). Now, A(1) stands for A◦
and A(n) stands for A(n−1) ∧ (A(n−1))◦, 1 ≤ n ≤ ω.

Then, daCosta systemCn (1 ≤ n ≤ ω) can be obtained by (DC1)–(DC8), (DC12),
(DC13) and the following:

(DC9n) B(n) → ((A → B) → ((A → ¬B) → ¬A))

(DC10n) (A(n) ∧ B(n)) → (A ∧ B)(n) ∧ (A ∨ B)(n) ∧ (A → B)(n)

Note that the da Costa system Cω has the axioms (DC1)–(DC8), (DC12) and
(DC13). Later, da Costa investigated first-order and higher-order extensions of C-
systems.

Relevance logic, also called relevant logic, is a family of logics based on the notion
of relevance in conditionals. Historically, relevance logic was developed to avoid the
paradox of implications; see Anderson and Belnap [9, 44].

Anderson and Belnap formalized a relevant logic R to realize a major motivation,
in which they do not admit A → (B → A). Later, various relevance logics have
been proposed. Note that not all relevance logics are paraconsistent but some are
considered important as paraconsistent logics.

Routley and Meyer proposed a basic relevant logic B, which is a minimal system
having the so-called Routley-Meyer semantics. Thus, B is an important system and
we review it below; see Routley et al. [45].

The language of B contains logical symbols: ∼, &, ∨ and → (relevant implica-
tion). A Hilbert system for B is as follows:

Relevant Logic B
Axioms
(BA1) A → A
(BA2) (A&B) → A
(BA3) (A&B) → B
(BA4) ((A → B)&(A → C)) → (A → (B&C))

(BA5) A → (A ∨ B)

(BA6) B → (A ∨ B)

(BA7) (A → C)&(B → C)) → ((A ∨ B) → C)

(BA8) (A&(B ∨ C)) → (A&B) ∨ C)

(BA9) ∼∼ A → A
Rules of Inference
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(BR1) � A,� A → B ⇒ � B
(BR2) � A,� B ⇒ � A&B
(BR3) � A → B,� C → D ⇒ � (B → C) → (A → D)

(BR4) � A → ∼ B ⇒ � B → ∼ A

A Hilbert system for Anderson and Belnap’s R is as follows:

Relevance Logic R
Axioms
(RA1) A → A
(RA2) (A → B) → ((C → A) → C → B))

(RA3) (A → (A → B) → (A → B)

(RA4) (A → (B → C)) → (B → (A → C)

(RA5) (A&B) → A
(RA6) (A&B) → B
(RA7) ((A → B)&(A → C)) → (A → (B&C))

(RA8) A → (A ∨ B)

(RA9) B → (A ∨ B)

(RA10) ((A → C)&(B ∨ C)) → ((A ∨ B) → C))

(RA11) (A&(B ∨ C)) → ((A&B) ∨ C)

(RA12) (A →∼ A) →∼ A
(RA13) (A →∼ B)) → (B →∼ A)

(RA14) ∼∼ A → A
Rules of Inference
(RR1) � A,� A → B ⇒ � B
(RR2) � A,� B ⇒ � A&B

Routley et al. considered some axioms of R are too strong and formalized as rules
instead of axioms. Notice that B is a paraconsistent but R is not.

Next, we give a Routley-Meyer semantics for B. A model structure is a tuple
M = 〈K, N , R, ∗, v〉, where K is a non-empty set of worlds, N ⊆ K , R ⊆ K3 is a
ternary relation on K , ∗ is a unary operation on K , and v is a valuation function from
a set of worlds and a set of propositional variables P to {0, 1}.

There are some restrictions on M . v satisfies the condition that a ≤ b and
v(a, p) = 1 imply v(b, p) = 1 for any a, b ∈ K and any p ∈ P . a ≤ b is a pre-order
relation defined by ∃x(x ∈ N and Rxab). The operation ∗ satisfies the condition
a∗∗ = a.

For any propositional variable p, the truth condition |= is defined: a |= p iff
v(a, p) = 1. Here, a |= p reads “p is true at a”. |= can be extended for any formulas
in the following way:

a |= ∼ A ⇔ a∗ 	|= A
a |= A&B ⇔ a |= A and a |= B
a |= A ∨ B ⇔ a |= A or a |= B
a |= A → B ⇔ ∀bc ∈ K(Rabc and b |= A ⇒ c |= B)

A formula A is true at a inM iff a |= A. A is valid, written |= A, iff A is true on
all members of N in all model structures.



68 3 Non-classical Logics

Routley et al. provided the completeness theorem for B with respect to the above
semantics using canonical models; see [45].

A model structure for R needs the following conditions.

R0aa
Rabc ⇒ Rbac
R2(ab)cd ⇒ R2a(bc)d
Raaa
a∗∗ = a
Rabc ⇒ Rac∗b∗
Rabc ⇒ (a′ ≤ a ⇒ Ra′bc)

where R2abcd is shorthand for ∃x(Raxd and Rxcd). The completeness theorem for
the Routley-Meyer semantics can be proved for R; see [9, 44].

The reader is advised to consult Anderson and Belnap [9], Anderson, Belnap and
Dunn [44], and Routley et al. [45] for details. A more concise survey on the subject
may be found in Dunn [46].

In the 1990s paraconsistent logics became one of the major topics in logic in
connection with other areas, in particular, computer science. Below we review some
of those systems of paraconsistent logics.

The modern history of paraconsistent logic started with Vasil’ev’s imaginary
logic. In 1910, Vasil’ev proposed an extension of Aristotle’s syllogistic allowing the
statement of the form S is both P and not-P; see Vasil’ev [47].

Thus, imaginary logic can be viewed as a paraconsistent logic. Unfortunately,
little work has been done on focusing on its formalization from the viewpoint of
modern logic. A survey of imaginary logic can be found in Arruda [48].

In 1954, Asenjo developed a calculus of antinomies in his dissertation; see
Asenjo [49]. Asenjo’s work was published before da Costa’s work, but it seems that
Asenjo’s approach has been neglected. Asenjo’s idea is to interpret the truth-value
of antinomy as both true and false using Kleene’s strong three-valued logic.

His proposed calculus is non-trivially inconsistent propositional logic, whose
axiomatization can be obtained from Kleene’s [6] axiomatization of classical propo-
sitional logic by deleting the axiom (A → B) → ((A → ¬B) → ¬A).

In 1979, Priest [50] proposed a logic of paradox, denoted LP, to deal with the
semantic paradox. The logic is of special importance to the area of paraconsistent
logics. LP can be semantically defined by Kleene’s strong three-valued logic.

Priest re-interpreted the truth-value tables of Kleene’s strong three-valued logic,
namely read the third-truth value as both true and false (B) rather than neither true nor
false (I ), and assumed that (T ) and (B) are designated values. The idea has already
been considered in Asenjo [49] and Belnap [7, 8].

Consequently, ECQ: A,∼ A |= B is invalid. Thus, LP can be seen as a para-
consistent logic. Unfortunately, (material) implication in LP does not satisfy modus
ponens. It is, however, possible to introduce relevant implications as real implication
into LP.
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Priest developed a semantics for LP bymeans of a truth-value assignment relation
rather than a truth-value assignment function. Let P be the set of propositional
variables. Then, an evaluation η is a subset ofP × {0, 1}.

A proposition may only relate to 1 (true), it may only relate to 0 (false), it may
relate to both 1 and 0 or it may relate to neither 1 nor 0. The evaluation is extended
to a relation for all formulas as follows:

¬Aη1 iff Aη0
¬Aη0 iff Aη1
A ∧ Bη1 iff Aη1 and Bη1
A ∧ Bη0 iff Aη0 or Bη0
A ∨ Bη1 iff Aη1 or Bη1
A ∨ Bη0 iff Aη0 and Bη0

If we define validity in terms of truth preservation under all relational evaluations,
then we obtain first-degree entailment which is a fragment of relevance logics.

Using LP, Priest advanced his research program to tackle various philosophical
and logical issues; see Priest [51, 52] for details. For instance, in LP, the liar sentence
can be interpreted as both true and false.

It is also observed that Priest promoted the philosophical view called dialetheism
which claims that there are true contradictions. And dialetheism has been extensively
discussed in philosophical logic by many people.

Since the beginning of the 1990s, Batens developed the so-called adaptative logics
in Batens [53, 54]. These logics are considered as improvements of dynamic dialecti-
cal logics investigated in Batens [55]. Inconsistency-adaptive logics as developed by
Batens [53] can serve as foundations for paraconsistent and non-monotonic logics.

Adaptive logics formalized classical logic as “dynamic logic”. Here, “dynamic
logic” is not the family of logics with the same name studied in computer science. A
logic is adaptive iff it adapts itself to the specific premises to which it is applied. In
this sense, adaptive logics can model the dynamics of human reasoning. There are
two sorts of dynamics, i.e., external dynamics and internal dynamics.

The external dynamics is stated as follows. If newpremises become available, then
consequences derived from the earlier premise set may bewithdrawn. In other words,
the external dynamics results from the non-monotonic character of the consequence
relations.

Let � be a consequence relation, Γ, Δ be sets of formulas, and A be a formula.
Then, the external dynamics is formally presented as: Γ � A but Γ ∪ Δ � A for
some Γ, Δ and A. In fact, the external dynamics is closely related to the notion of
non-monotonic reasoning in AI.

The internal dynamics is very different from the external one. Even if the premise
set is constant, certain formulas are considered as derived at some stage of the reason-
ing process, but are considered as not derived at a later stage. For any consequence
relation, insight in the premises is gained by deriving consequences from them.

In the absence of a positive test, this results in the internal dynamics. Namely, in
the internal dynamics, reasoning has to adapt itself by withdrawing an application
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of the previously used inference rule, if we infer a contradiction at a later stage.
Adaptive logics are logics based on the internal dynamics.

An Adaptive Logic AL can be characterized as a triple:

(i) A lower limit logic (LLL)
(ii) A set of abnormalities
(iii) An adaptive strategy.

The lower limit logic LLL is any monotonic logic, e.g., classical logic, which is the
stable part of the adaptive logic. Thus, LLL is not subject to adaptation. The set of
abnormalities Ω comprises the formulas that are presupposed to be false, unless and
until proven otherwise.

Inmany adaptive logics,Ω is the set of formulas of the formA∧ ∼ A. An adaptive
strategy specifies a strategy of the applications of inference rules based on the set of
abnormalities.

If the lower limit logic LLL is extended with the requirement that no abnormality
is logically possible, one obtains a monotonic logic, which is called the upper limit
logic ULL. Semantically, an adequate semantics for the upper limit logic can be
obtained by selecting that lower limit logic models that verify no abnormality.

The name “abnormality” refers to the upper limit logic. ULL requires premise
sets to be normal, and ‘explodes’ abnormal premise sets (assigns them the trivial
consequence set).

If the lower limit logic is classical logic CL and the set of abnormalities comprises
formulas of the form ∃A ∧ ∃ ∼ A, then the upper limit logic obtained by adding to
CL the axioms ∃A → ∀A. If, as is the case for many inconsistency-adaptive logics,
the lower limit logic is a paraconsistent logic PL which contains CL, and the set of
abnormalities comprises the formulas of the form ∃(A∧ ∼ A), then the upper limit
logic is CL.

The adaptive logics interpret the set of premises ‘asmuch as possible’ in agreement
with the upper limit logic; it avoids abnormalities ‘in as far as the premises permit’.

Adaptive logics provide a newway of thinking of the formalization of paraconsis-
tent logics in view of the dynamics of reasoning. Although inconsistency-adaptive
logic is paraconsistent logic, applications of adaptive logics are not limited to para-
consistency. From a formal point of view, we can count adaptive logics as promising
paraconsistent logics.

However, for applications, wemay face several obstacles in automating reasoning
in adaptive logics in that proofs in adaptive logics are dynamic with a certain adaptive
strategy. Thus, the implementation is not easy, and we have to choose an appropriate
adaptive strategy depending on applications.

Carnelli proposed theLogics of Formal Inconsistency (LFI), which are logical sys-
tems that treat consistency and inconsistency as mathematical objects; see Carnelli,
Coniglio and Marcos [56]. One of the distinguishing features of these logics is that
they can internalize the notions of consistency and inconsistency at the object-level.

Andmany paraconsistent logics including daCosta’sC-systems can be interpreted
as the subclass of LFIs. Therefore, we can regard LFIs as a general framework for
paraconsistent logics.
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A Logic of Formal Inconsistency, which extends classical logic C with the con-
sistency operator ◦, is defined as any explosive paraconsistent logic, namely iff the
classical consequence relation � satisfies the following two conditions:

(a) ∃Γ ∃A∃B(Γ, A, ¬A � B)

(b) ∀Γ ∀A∀B(Γ, ◦A, A, ¬A � B).

Here, Γ denotes a set of formulas and A, B are formulas. With the help of ◦, we can
express both consistency and inconsistency in the object-language. Therefore, LFIs
are general enough to classify many paraconsistent logics.

For example, da Costa’s C1 is shown to be an LFI. For every formula A, let ◦A
be an abbreviation of the formula ¬(A ∧ ¬A). Then, the logic C1 is an LFI such that
◦(p) = {◦p} = {¬¬(p ∧ ¬p} whose axiomatization as an LFI contains the positive
fragment of classical logic with the axiom ¬¬A → A, and some axioms for ◦.

(bc1) ◦A → (A → (¬A → B))

(ca1) (◦A ∧ ◦B) → ◦(A ∧ B)

(ca2) (◦A ∧ ◦B) → ◦(A ∨ B)

(ca3) (◦A ∧ ◦B) → ◦(A → B)

In addition, we can define classical negation ∼ by∼ A =def ¬A ∧ ◦A. If needed, the
inconsistency operator • is introduced by definition:

•A =def ¬ ◦ A.
Carnielli, Coniglio, and Marcos [56] showed classifications of existing logical

systems. For example, classical logic is not an LFI, and Jáskowski’s D2 is an LFI.
They also introduced a basic system of LFI, called LFI1, with a semantics and
axiomatization.

We can thus see that the Logics of Formal Inconsistency are very interesting
from a logical point of view in that they can serve as a theoretical framework for
existing paraconsistent logics. In addition, there are tableau systems for LFIs; see
Carnielli andMarcos [57], and they can be properly applied to various areas including
computer science and AI.

Annotated logic is a logic for paraconsistent logic programming; see Subrahma-
nian [58, 59]. It is also regarded as one of the attractive paraconsistent logics; see da
Costa et al. [60, 61] and Abe [62]. Note that annotated logic has many applications
for several areas including engineering.

Annotated logics were introduced by Subrahmanian to provide a foundation for
paraconsistent logic programming; see Subrahmanian [58] and Blair and Subrah-
manian [59]. Paraconsistent logic programming can be seen as an extension of logic
programming based on classical logic.

Now, we formally introduce annotated logics. We denote by the language of
propositional annotated logicsPτ by L. Annotated logics are based on some arbitrary
fixed finite lattice called a lattice of truth-values, denoted by τ = 〈|τ |,≤,∼〉, which
is the complete lattice with the ordering ≤ and the operator ∼:|τ |→|τ |.

Here,∼ gives the “meaning” of atomic-level negation of Pτ . We also assume that
� is the top element and ⊥ is the bottom element, respectively. In addition, we use
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two lattice-theoretic operations: ∨ for the least upper bound and ∧ for the greatest
lower bound.1

Definition 3.1 (Symbols) The symbols of Pτ are defined as follows:

1. Propositional symbols: p, q, ... (possibly with subscript)
2. Annotated constants: μ, λ, ... ∈ |τ |
3. Logical connectives: ∧ (conjunction), ∨ (disjunction), → (implication), and ¬

(negation)
4. Parentheses: (and)

Definition 3.2 (Formulas) Formulas are defined as follows:

1. If p is a propositional symbol and μ ∈ |τ | is an annotated constant, then pμ is a
formula called an annotated atom.

2. If F is a formula, then ¬F is a formula.
3. If F and G are formulas, then F ∧ G, F ∨ G, F → G are formulas.
4. If p is a propositional symbol andμ ∈ |τ | is an annotated constant, then a formula

of the form¬kpμ (k ≥ 0) is called a hyper-literal. A formula which is not a hyper-
literal is called a complex formula.

Here, some remarks are in order. The annotation is attached only at the atomic level.
An annotated atom of the form pμ can be read “it is believed that p’s truth-value is
at least μ”. In this sense, annotated logics incorporate the feature of many-valued
logics.

A hyper-literal is special kind of formula in annotated logics. In the hyper-literal
of the form ¬kpμ, ¬k denotes the k’s repetition of ¬. More formally, if A is an
annotated atom, then ¬0A is A, ¬1A is ¬A, and ¬kA is ¬(¬k−1A). The convention is
also use for ∼.

Next, we define some abbreviations.

Definition 3.3 Let A and B be formulas. Then, we put:
A ↔ B =def (A → B) ∧ (B → A)

¬∗A =def A → (A → A) ∧ ¬(A → A)

Here, ↔ is called the equivalence and ¬∗ strong negation, respectively.

Observe that strong negation in annotated logics behaves classically in that it has all
the properties of classical negation.

We turn to a semantics for Pτ . We here describe a model-theoretic semantics
for Pτ . Let P is the set of propositional variables. An interpretation I is a function
I : P → τ . To each interpretation I , we associate a valuation vI : F → 2, where F is
a set of all formulas and 2 = {0, 1} is the set of truth-values. Henceforth, the subscript
is suppressed when the context is clear.

1We employ the same symbols for lattice-theoretical operations as the corresponding logical con-
nectives.



3.4 Paraconsistent Logic 73

Definition 3.4 (Valuation) A valuation v is defined as follows:
If pλ is an annotated atom, then

v(pλ) = 1 iff I(p) ≥ λ,
v(pλ) = 0 otherwise,
v(¬kpλ) = v(¬k−1p∼λ), where k ≥ 1.

If A and B are formulas, then
v(A ∧ B) = 1 iff v(A) = v(B) = 1,
v(A ∨ B) = 0 iff v(A) = v(B) = 0,
v(A → B) = 0 iff v(A) = 1 and v(B) = 0.

If A is a complex formula, then
v(¬A) = 1 − v(A).

Say that the valuation v satisfies the formula A if v(A) = 1 and that v falsifies A if
v(A) = 0. For the valuation v, we can obtain the following lemmas.

Lemma 3.1 Let p be a propositional variable and μ ∈ |τ | (k ≥ 0), then we have:
v(¬kpμ) = v(p∼kμ).

Lemma 3.2 Let p be a propositional variable, then we have:
v(p⊥) = 1

Lemma 3.3 For any complex formula A and B and any formula F, the valuation v
satisfies the following:

1. v(A ↔ B) = 1 iff v(A) = v(B)

2. v((A → A) ∧ ¬(A → A)) = 0
3. v(¬∗A) = 1 − v(A)

4. v(¬F ↔ ¬∗F) = 1.

We here define the notion of semantic consequence relation denoted by |=. Let Γ
be a set of formulas and F be a formula. Then, F is a semantic consequence of Γ ,
written Γ |= F , iff for every v such that v(A) = 1 for each A ∈ Γ , it is the case that
v(F) = 1.

If v(A) = 1 for each A ∈ Γ , then v is called a model of Γ . If Γ is empty, then
Γ |= F is simply written as |= F to mean that F is valid.

Lemma 3.4 Let p be a propositional variable and μ, λ ∈|τ |. Then, we have:

1. |= p⊥
2. |= pμ → pλ, μ ≥ λ

3. |= ¬kpμ ↔ p∼kμ, k ≥ 0.

The consequence relation |= satisfies the next property.

Lemma 3.5 Let A, B be formulas. Then, if |= A and |= A → B then |= B.

Lemma 3.6 Let F be a formula and p a propositional variable. (μi)i∈J be an anno-
tated constant, where J is an indexed set. Then, if |= F → pμ, then F → pμi , where
μ = ∨

μi .
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As a corollary to Lemma 3.6, we can obtain the following lemma.

Lemma 3.7 |= pλ1 ∧ pλ2 ∧ ... ∧ pλm → pλ, where λ =
m∨

i=1

λi.

Next, we discuss some results related to paraconsistency and paracompleteness.

Definition 3.5 (Complementary property) A truth-value μ ∈ τ has the complemen-
tary property if there is a λ such that λ ≤ μ and ∼ λ ≤ μ. A set τ ′ ⊆ τ has the
complementary property iff there is some μ ∈ τ ′ such that μ has the complementary
property.

Definition 3.6 (Range) Suppose I is an interpretation of the language L. The range
of I , denoted range(I), is defined to be range(I) = {μ | (∃A ∈ BL)I(A) = μ}, where
BL denotes the set of all ground atoms in L.

For Pτ , ground atoms correspond to propositional variables. If the range of the
interpretation I satisfies the complementary property, then the following theorem can
be established.

Theorem 3.4 Let I be an interpretation such that range(I) has the complementary
property. Then, there is a propositional variable p and μ ∈ |τ| such that v(pμ) =
v(¬pμ) = 1.

Theorem 3.1 states that there is a case in which for some propositional variable
it is both true and false, i.e., inconsistent. The fact is closely tied with the notion of
paraconsistency.

Definition 3.7 (¬-inconsistency) We say that an interpretation I is ¬-inconsistent
iff there is a propositional variable p and an annotated constant μ ∈ |τ | such that
v(pμ) = v(¬pμ) = 1.

Therefore,¬-inconsistency means that both A and¬A are simultaneously true for
some atomic A. Below, we formally define the concepts of non-triviality, paracon-
sistency and paracompleteness.

Definition 3.8 (Non-triviality) We say that an interpretation I is non-trivial iff there
is a propositional variable p and an annotated constant μ ∈ |τ | such that v(pμ) = 0.

By Definition 3.8, we mean that not every atom is valid if an interpretation is
non-trivial.

Definition 3.9 (Paraconsistency) We say that a interpretation I is paraconsistent iff
it is both ¬-inconsistent and non-trivial. Pτ is called paraconsistent iff there is an
interpretation of I of Pτ such that I is paraconsistent.

Definition 3.9 allows the case in which both A an ¬A are true, but some formula
B is false in some paraconsistent interpretation I .
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Definition 3.10 (Paracompleteness)We say that an interpretation I is paracomplete
iff there is a propositional variable p and a annotated constant λ ∈ |τ | such that
v(pλ) = v(¬pλ) = 0. Pτ is called paracomplete iff there is an interpretation I of Pτ

such that I is paracomplete.

From Definition 3.10, we can see that in the paracomplete interpretation I , both
A and ¬A are false. We say that Pτ is non-alethic iff it is both paraconsistent and
paracomplete.

Intuitively speaking, paraconsistent logic can deal with inconsistent information
and paracomplete logic can handle incomplete information.

This means that non-alethic logics like annotated logics can serve as logics for
expressing both inconsistent and incomplete information. This is one of the starting
points of our study of annotated logics.

As the following Theorems 3.2 and 3.3 indicate, paraconsistency and paracom-
pleteness in Pτ depend on the cardinality of τ .

Theorem 3.5 Pτ is paraconsistent iff card(τ ) ≥ 2, where card(τ ) denotes the car-
dinality (cardinal number) of the set τ .

Theorem 3.6 If card(τ ) ≥ 2, then there are annotated systems Pτ such that they
are paracomplete.

The above two theorems imply that to formalize a non-alethic logic based on
annotated logics we need at least both the top and bottom elements of truth-values.
The simplest lattice of truth-values is FOUR in Belnap [7, 8].

Definition 3.11 (Theory) Given an interpretation I , we can define the theory Th(I)
associated with I to be a set:
Th(I) = Cn({pμ | p ∈ P and I(p) ≥ μ}).
Here, Cn is the semantic consequence relation, i.e.,
Cn(Γ ) = {F | F ∈ F and Γ |= F}.
Here, Γ is a set of formulas.

Th(I) can be extended for any set of formulas.

Theorem 3.7 An interpretation I is ¬-inconsistent iff Th(Γ ) is ¬-inconsistent.

Theorem 3.8 An interpretation I is paraconsistent iff Th(I) is paraconsistent.

The next lemma states that the replacement of equivalent formulas within the
scope of ¬ does not hold in Pτ as in other paraconsistent logics.

Lemma 3.8 Let A be any hyper-literal. Then, we have:

1. |= A ↔ ((A → A) → A)

2. 	|= ¬A ↔ ¬(((A → A) → A))

3. |= A ↔ (A ∧ A)

4. 	|= ¬A ↔ ¬(A ∧ A)
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5. |= A ↔ (A ∨ A)

6. 	|= ¬A ↔ ¬(A ∨ A).

As obvious from the above proofs, (1), (3) and (5) hold for any formula A. But,
(2), (4) and (6) cannot be generalized for any A.

By the next theorem, we can find the connection of Pτ and the positive fragment
of classical propositional logic C.

Theorem 3.9 If F1, ..., Fn are complex formulas and K(A1, ..., An) is a tautology of
C, where A1, ..., An are the sole propositional variable occurring in the tautology,
then K(F1, ..., Fn) is valid in Pτ . Here, K(F1, ..., Fn) is obtained by replacing each
occurrence of Ai, 1 ≤ i ≤ n, in K by Fi.

Next, we consider the properties of strong negation ¬∗.

Theorem 3.10 Let A, B be any formulas. Then,

1. |= (A → B) → ((A → ¬∗B) → ¬∗A)

2. |= A → (¬∗A → B)

3. |= A ∨ ¬∗A.

Theorem 3.10 tells us that strong negation has all the basic properties of classical
negation. Namely, (1) is a principle of reductio ad abusurdum, (2) is the related
principle of the law of non-contradiction, and (3) is the law of excluded middle.
Note that ¬ does not satisfy these properties. It is also noticed that for any complex
formula A |= ¬A ↔ ¬∗A but that for any hyper-literal Q 	|= ¬Q ↔ ¬∗Q.

From these observations, Pτ is a paraconsistent and paracomplete logic, but
adding strong negation enables us to perform classical reasoning.

Next, we provide an axiomatization of Pτ in the Hilbert style. There are many
ways to axiomatize a logical system, one of which is the Hilbert system. Hilbert
system can be defined by the set of axioms and rules of inference. Here, an axiom
is a formula to be postulated as valid, and rules of inference specify how to prove a
formula.

We are now ready to give a Hilbert style axiomatization of Pτ , called A τ . Let
A, B, C be arbitrary formulas, F, G be complex formulas, p be a propositional vari-
able, and λ,μ, λi be annotated constant. Then, the postulates are as follows (cf.
Abe [62]):

Postulates for A τ

(→1) (A → (B → A)

(→2) (A → (B → C)) → ((A → B) → (A → C))

(→3) ((A → B) → A) → A
(→4) A, A → B/B
(∧1) (A ∧ B) → A
(∧2) (A ∧ B) → B
(∧3) A → (B → (A ∧ B))

(∨1) A → (A ∨ B)

(∨2) B → (A ∨ B)
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(∨3) (A → C) → ((B → C) → ((A ∨ B) → C))

(¬1) (F → G) → ((F → ¬G) → ¬F)

(¬2) F → (¬F → A)

(¬3) F ∨ ¬F
(τ1) p⊥
(τ2) ¬kpλ ↔ ¬k−1p∼λ

(τ3) pλ → pμ, where λ ≥ μ

(τ4) pλ1 ∧ pλ2 ∧ ... ∧ pλm → pλ, where λ =
m∨

i=1

λi

Here, except (→4), these postulates are axioms. (→4) is a rule of inferences called
modus ponens (MP).

In da Costa, Subrahmanian and Vago [60], a different axiomatization is given, but
it is essentially the same as ours. There, the postulates for implication are different.
Namely, although (→1) and (→3) are the same (although the naming differs), the
remaining axiom is:

(A → B) → ((A → (B → C)) → (A → C))

It is well known that there are many ways to axiomatize the implicational fragment
of classical logic C. In the absence of negation, we need the so-called Pierce’s law
(→3) for C.

In (¬1), (¬2), (¬3),F andG are complex formulas. In general,without this restric-
tion on F and G, these are not sound rules due to the fact that they are not admitted
in annotated logics.

Da Costa, Subrahmanian and Vago [60] fuses (τ1) and (τ2) as the single axiom in
conjunctive form. But, we separate it in two axioms for our purposes. Also there is
a difference in the final axiom. They present it for infinite lattices as
A → pλj for every j ∈ J , then A → pλ, where λ =

∨

j∈J

λj.

If τ is a finite lattice, this is equivalent to the form of (τ2).
As usual, we can define a syntactic consequence relation in Pτ . Let Γ be a set

of formulas and G be a formula. Then, G is a syntactic consequence of Γ , written
Γ � G, iff there is a finite sequence of formulas F1, F2, ..., Fn, where Fi belongs to
Γ , or Fi is an axiom (1 ≤ i ≤ n), or Fj is an immediate consequence of the previous
two formulas by (→4). This definition can extend for the transfinite case in which n
is an ordinal number. If Γ = ∅, i.e. � G, G is a theorem of Pτ .

LetΓ,Δ be sets of formulas andA, B be formulas. Then, the consequence relation
� satisfies the following conditions.

1. if Γ � A and Γ ⊂ Δ then Δ � A.
2. if Γ � A and Δ, A � B then Γ,Δ � B.
3. if Γ � A, then there is a finite subset Δ ⊂ Γ such that Δ � A.

In the Hilbert system above, the so-called deduction theorem holds.
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Theorem 3.11 (Deduction theorem) Let Γ be a set of formulas and A, B be
formulas. Then, we have:

Γ, A � B ⇒ Γ � A → B.

The following theorem shows some theorems related to strong negation.

Theorem 3.12 Let A and B be any formula. Then,

1. � A ∨ ¬∗A
2. � A → (¬∗A → B)

3. � (A → B) → ((A → ¬∗B) → ¬∗A)

From Theorems 3.11 and 3.12 follows.

Theorem 3.13 For arbitrary formulas A and B, the following hold:

1. � ¬∗(A ∧ ¬∗A)

2. � A ↔ ¬∗¬∗A
3. � (A ∧ B) ↔ ¬∗(¬∗A ∨ ¬∗B)

4. � (A → B) ↔ (¬∗A ∨ B)

5. � (A ∨ B) ↔ ¬∗(¬∗A ∧ ¬∗B).

Theorem 3.13 implies that by using strong negation and a logical connective
other logical connectives can be defined as in classical logic. If τ = {t, f }, with its
operations appropriately defined, we can obtain classical propositional logic inwhich
¬∗ is classical negation.

Now, we provide some formal results of Pτ including completeness and decid-
ability.

Lemma 3.9 Let p be a propositional variable and μ, λ, θ ∈ |τ |. Then, the follow-
ing hold:

1. � pλ∨μ → pλ

2. � pλ∨μ → pμ

3. λ ≥ μ and λ ≥ θ ⇒ � pλ → pμ∨θ

4. � pμ → pμ∧θ .
5. � pθ → pμ∧θ .
6. λ ≤ μ and λ ≤ θ ⇒ � pμ∧θ

7. � pμ ↔ pμ∨μ, � pμ ↔ pμ∧μ

8. � pμ∨λ ↔ pλ∨μ, � pμ∧λ ↔ pλ∧μ

9. � p(μ∨λ)∨θ∨ → pμ∨(λ∨θ), � p(μ∧λ)∧θ∨ → pμ∧(λ∧θ)

10. � p(μ∨λ)∧μ → pμ, � p(μ∧λ)∨μ → pμ

11. λ ≤ μ ⇒ � pλ∨μ → pμ

12. λ ∨ μ = μ ⇒ � pμ → pλ

13. μ ≥ λ ⇒ ∀θ ∈|τ | (� pμ∨θ → pλ∨θ and � pμ∧θ → pλ∧θ )

14. μ ≥ λ and θ ≥ ϕ ⇒ � pμ∨θ → pλ∨ϕ and pμ∧θ → pλ∧ϕ
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15. � pμ∧(λ∨θ) → p(μ∧λ)∨(μ∧θ), � pμ∨(λ∧θ) → p(μ∨λ)∧(μ∨θ)

16. � pμ ∧ pλ ↔ pμ∧λ

17. � pμ∨λ → pμ ∨ pλ.

Consider the complete lattice τ = N ∪ {ω}, whereN is the set of natural numbers.
The ordering on τ is the usual ordering on ordinals, restricted to the set τ . Consider
the set Γ = {p0, p1, p2, ...}, where pω /∈ Γ . It is clear that Γ � pω, but an infinitary
deduction is required to establish this.

Definition 3.12 Δ = {A ∈ F | Δ � A}
Definition 3.13 Δ is said to be trivial iffΔ = F (i.e., every formula in our language
is a syntactic consequence of Δ); otherwise, Δ is said to be non-trivial. Δ is said to
be inconsistent iff there is some formula A such that Δ � A and Δ � ¬A; otherwise,
Δ is consistent.

From the definition of triviality, the next theorem follows:

Theorem 3.14 Δ is trivial iff Δ � A ∧ ¬A (or Δ � A and Δ � ¬∗A) for some for-
mula A.

Theorem 3.15 Let Γ be a set of formulas, A, B be any formulas, and F be any
complex formula. Then, the following hold.

1. Γ � A and Γ � A → B ⇒ Γ � B
2. A ∧ B � A
3. A ∧ B � B
4. A, B � A ∧ B
5. A � A ∨ B
6. B � A ∨ B
7. Γ, A � C and Γ, B � C ⇒ Γ, A ∨ B � C
8. � F ↔ ¬∗F
9. Γ, A � B and Γ, A � ¬∗B ⇒ Γ � ¬∗A

10. Γ, A � B and Γ,¬∗A � B ⇒ Γ � B.

Note here that the counterpart of Theorem 3.15 (10) obtained by replacing the
occurrence of ¬∗ by ¬ is not valid.

Now, we are in a position to prove the soundness and completeness of Pτ . Our
proof method for completeness is based on maximal non-trivial set of formulas;
see Abe [62] and Abe, Akama and Nakamatsu [63]. da Costa, Subrahmanian and
Vago [60] presented another proof using Zorn’s Lemma.

Theorem 3.16 (Soundness) Let Γ be a set of formulas and A be any formula. A τ

is a sound axiomatization of Pτ , i.e., if Γ � A then Γ |= A.

For proving the completeness theorem, we need some theorems.
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Theorem 3.17 Let Γ be a non-trivial set of formulas. Suppose that τ is finite. Then,
Γ can be extended to a maximal (with respect to inclusion of sets) non-trivial set
with respect to F.

Theorem 3.18 Let Γ be a maximal non-trivial set of formulas. Then, we have the
following:

1. if A is an axiom of Pτ , then A ∈ Γ

2. A, B ∈ Γ iff A ∧ B ∈ Γ

3. A ∨ B ∈ Γ iff A ∈ Γ or B ∈ Γ

4. if pλ, pμ ∈ Γ , then pθ ∈ Γ , where θ = max(λ, μ)

5. ¬kpμ ∈ Γ iff ¬k−1p∼μ ∈ Γ , where k ≥ 1
6. if A, A → B ∈ Γ , then B ∈ Γ

7. A → B ∈ Γ iff A /∈ Γ or B ∈ Γ .

Theorem 3.19 Let Γ be a maximal non-trivial set of formulas. Then, the character-
istic function χ of Γ , that is, χΓ → 2 is the valuation function of some interpretation
I : P → |τ |.

Here is the completeness theorem for Pτ .

Theorem 3.20 (Completeness) Let Γ be a set of formulas and A be any formula. If
τ is finite, then A τ is a complete axiomatization for Pτ , i.e., if Γ |= A then Γ � A.

The decidability theorem also holds for finite lattice.

Theorem 3.21 (Decidability) If τ is finite, then Pτ is decidable.

The completeness does not in general hold for infinite lattice. But, it holds for
special case.

Definition 3.14 (Finite annotation property) Suppose that Γ be a set of formulas
such that the set of annotated constants occurring in Γ is included in a finite sub-
structure of τ (Γ itself may be infinite). In this case, Γ is said to have the finite
annotation property.

Note that if τ ′ is a substructure of τ then τ ′ is closed under the operations ∼,∨
and ∧. One can easily prove the following from Theorem 3.20.

Theorem 3.22 (Finitary Completeness) Suppose that Γ has the finite annotation
property. If A is any formula such that Γ � A, then there is a finite proof of A from
Γ .

Theorem 3.20 tells us that even if the set of the underlying truth-values of Pτ

is infinite (countably or uncountably), as long as theories have the finite annotation
property. The completeness result applied to them, i.e.,A τ is complete with respect
to such theories.

In general, when we consider theories that do not possess the finite annotation
property, it may be necessary to guarantee completeness by adding a new infinitary
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inference rule (ω-rule), similar in spirit to the rule used by da Costa [64] in order to
cope with certain models in a particular family of infinitary language. Observe that
for such cases a desired axiomatization of Pτ is not finitary.

From the classical result of compactness,we can state a version of the compactness
theorem.

Theorem 3.23 (Weak Compactness) Suppose that Γ has the finite annotation prop-
erty. If A is any formula such that Γ � A, then there is a finite subset Γ ′ of Γ such
that Γ ′ � A.

Annotated logics Pτ provide a general framework, and can be used to reasoning
about many different logics. Below we present some examples.

The set of truth-values FOUR = {t, f ,⊥,�}, with ¬ defined as: ¬t = f ,¬f =
t,¬⊥ = ⊥,¬� = �. Four-valued logic based on FOUR was originally due to Bel-
nap [7, 8] to model internal states in a computer.

Subrahmanian [58] formalized an annotated logic with FOUR as a foundation
for paraconsistent logic programming; also see Blair and Subrahmanian [59]. Their
annotated logic may be used for reasoning about inconsistent knowledge bases.

For example, we may allow logic programs to be finite collections of formulas of
the form:

(A : μ0) ↔ (B1 : μ1)&...&(Bn : μn)

where A and Bi (1 ≤ i ≤ n) are atoms and μj (0 ≤ j ≤ n) are truth-values in
FOUR.

Intuitively, such programs may contain “intuitive” inconsistencies–for example,
the pair

((p : f ), (p : t))

is inconsistent. Ifwe append this program to a consistent programP, then the resulting
union of these two programs may be inconsistent, even though the predicate symbols
p occurs nowhere in program P.

Such inconsistencies can easily occur in knowledge based systems, and should
not be allowed to trivialize the meaning of a program. However, knowledge based
systems based on classical logic cannot handle the situation since the program is
trivial.

In Blair and Subrahmanian [59], it is shown how the four-valued annotated logic
may be used to describe this situation. Later, Blair and Subrahmanian’s annotated
logic was extended as generalized annotated logics by Kifer and Subrahmanian [17].

There are also other examples which can be dealt with by annotated logics. The
set of truth-values FOUR with negation defined as boolean complementation forms
an annotated logic.

The unit interval [0, 1] of truth-values with ¬x = 1 − x is considered as the base
of annotated logic for qualitative or fuzzy reasoning. In this sense, probabilistic and
fuzzy logics could be generalized as annotated logics.

The interval [0, 1] × [0, 1] of truth-values can be also used for annotated logics for
evidential reasoning. Here, the assignment of the truth-value (μ1, μ2) to proposition
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p may be thought of as saying that the degree of belief in p is μ1, while the degree
of disbelief is μ2. Negation can be defined as ¬(μ1, μ2) = (μ2, μ1).

Note that the assignment of [μ1, μ2] to a proposition p by an interpretation I does
not necessarily satisfy the condition μ1 + μ2 ≤ 1. This contrasts with probabilistic
reasoning. Knowledge about a particular domain may be gathered from different
experts (in that domain), and these experts may different views.

Some of these views may lead to a “strong” belief in a proposition; likewise, other
experts may have a “strong” disbelief in the same proposition. In such a situation,
it seems appropriate to report the existence of conflicting opinions, rather than use
ad-hoc means to resolve this conflict.

Asmentioned above, daCosta, Subrahmanian andVago [60] investigated proposi-
tional annotated logics Pτ , and suggested their predicate extension Qτ (also denoted
QT ). We can look at the detailed formulation of Qτ in da Costa, Abe, and Subrah-
manian [61]; also see Abe [62]. But, we here omit the exposition of Qτ .

Our exposition of non-classical logics has finished. We only considered non-
classical logics which are related to rough set theory. They serve as foundations for
rough set logics as will be discussed Chap. 4.
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Chapter 4
Logical Characterizations of Rough Sets

Abstract This chapter introduces several logical characterizations of rough sets.We
outline some approaches in the literature, including double Stone algebras, Nelson
algebras and modal logics. We also discuss rough set logics, logics for reasoning
about knowledge, and logics for knowledge representation.

4.1 Algebraic Approaches

One of the most basic approaches to rough sets is an algebraic approach, which
provides mathematical characterization. There are several algebraic approaches, and
the first one is due to Iwinski [1] in 1987.

A suitable algebra for rough sets is a double Stone algebra (DSA). Below we
review several algebraic approaches. We here assume basics of algebras.

Definition 4.1 (Double Stone Algebra) A double Stone algebra 〈L ,+, ·, ∗,+ , 0, 1〉
is an algebra of type (2, 2, 1, 1, 0, 0) such that:

(1) 〈L ,+, ·, 0, 1〉 is a bounded distributive lattice,
(2) x∗ is the pseudocomplement of x , i.e., y ≤ x∗ ⇔ y · x = 0,
(3) x+ is the dual pseudocomplement of x , i.e., y ≥ x+ ⇔ y + x = 1.
(4) x∗ + x∗∗ = 1, x+ · x++ = 0.

Note that conditions (2) and (3) can be described as the following equations:

x · (x · y)∗ = x · y∗,
x + (x + y)+ = x + y+,
x · 0∗ = x ,
x + 1+ = x ,
0∗∗ = 0,
1++ = 1.

DSA is called regular if it additionally satisfies:

x · x+ ≤ y + y∗

which is equivalent to x+ = y+ and x∗ = y∗ imply x = y.

© Springer International Publishing AG 2018
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The center B(L) = {x∗ | x ∈ L} of L is a subalgebra of L and a Boolean algebra,
in which ∗ and + coincide with the Boolean complement −.

An element of the center of L is called a Boolean element. The dense set {x ∈
L | x∗ = 0} of L is denoted by D(L) or simply D. For any M ⊆ L , M+ is the set
{x+ | x ∈ M}.

Lemma 4.1 is a construction of regular double Stone algebras.

Lemma 4.1 Let 〈B,+, ·,−, 0, 1〉 be a Boolean algebra and F be a not necessarily
proper filter on B. Set

〈a, b〉∗ = 〈−b,−b〉,
〈a, b〉+ = 〈−a,−a〉.
Furthermore B(L) 
 B as Boolean algebras, and D(L) 
 F as lattices. Note that
B(L) = {〈a, a〉 | a ∈ B}, D(L) = {〈a, 1〉 | a ∈ F}.
Conversely, if M is a regular double Stone algebra, B = B(M), F = D(M)++ then
the mapping which assigns to each x ∈ M the pair 〈x++, x∗∗〉 is an isomorphism M
and 〈B, F〉.

It follows that each element x of a regular double Stone algebra is uniquely
described by the greatest Boolean element below x and the smallest Boolean element
above x .

Now, suppose 〈U, θ〉 is an approximation space. Then, the classes of θ can be
regarded as atoms of a complete subalgebra of the Boolean algebra Sb(U ). Con-
versely, any atomic complete subalgebra B of Sb(U ) yields an equivalence relation
θ on U , where this correspondence is a bijection. The elements of B are ∅ and the
unions of its associated equivalence relations.

If a ∈ B, then for every X ⊆ U , if a ∈ Xu , then a ∈ X , and the rough sets
of the corresponding approximation space are the elements of the regular double
Stone algebra 〈B, F〉, where F is the filter of B which is generated by the union of
singleton element of B. If θ is the identity on U , then F = {U }.

Other algebraic approaches can be also found in the literature. For instance,
Pomykala and Pomykala [2] showed that the collection Bθ (U ) of rough sets of
(U, θ) can be made into a Stone algebra (Bθ (U ),+, ·, ∗, (∅,∅), (U,U )) by defin-
ing,

(X , X) + (Y ,Y ) = (X ∪ Y , X ∪ Y )

(X , X) · (Y ,Y ) = (X ∩ Y , X ∩ Y )

(X , X)∗ = (−X ,−X)

where for X ⊆ U , the complement of Z in U is denoted by −Z .
We can also characterize rough sets by Nelson algebras and three-valued

Łukasiewicz algebras. We will discuss Nelson algebras for characterizing rough
sets in Sect. 4.4.
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4.2 Modal Logic and Rough Sets

It has been argued that modal logic offers foundations for rough set theory. In this
line, Yao and Lin [3] provided a systematic study on the generalization of the modal
logic approach. Consult Liau [4] for a comprehensive survey.

Let apr = 〈U, R〉 be an approximation space. Given an arbitrary set A ⊆ U , it
may be impossible to describe A precisely using the equivalence classes of R. In this
case, one may characterize A by a pair of lower and upper approximations:

apr(A) = ⋃
[x]R⊆A[x]R,

apr(A) = ⋃
[x]R∩A �=∅[x]R ,

where [x]R = {y | x Ry} is the equivalence class containing x . The pair 〈apr(A),

apr(A)〉 is the rough set with repect to A.
Since the lower approximation apr(A) is the union of all the elementary sets

which are subsets of A and the apr(A) is the union of all the elementary sets which
have a non-empty intersection with A, they can be described as follows:

apr(A) = {x | [x]R ⊆ A}
= {x ∈ U | f or all y ∈ U, x Ry implies y ∈ A}

apr(A) = {x | [x]R ∩ A = ∅}
= {x ∈ U | there exists a y ∈ U such that x Ry and y ∈ A}

These interpretations are closely related to those of the necessity and possibility
operators in modal logic.

Here, we list some properties of apr and apr . For any subsets A, B ⊆ U , we
have the following about apr :

(AL1) apr(A) = ∼ apr(∼ A)

(AL2) apr(U ) = U
(AL3) apr(A ∩ B) = apr(A) ∩ apr(B)

(AL4) apr(A ∪ B) ⊇ apr(A) ∪ apr(B)

(AL5) A ⊆ B ⇒ apr(A) ⊆ apr(B)

(AL6) apr(∅) = ∅
(AL7) apr(A) ⊆ A
(AL8) A ⊆ apr(apr(A))

(AL9) apr(A) ⊆ apr(apr(A))

(AL10) apr(A) ⊆ apr(apr(A))

and the following about apr :

(AU1) apr(A) = ∼ apr(∼ A)

(AU2) apr(∅) = ∅
(AU3) apr(A ∪ B) = apr(A) ∪ apr(B)

(AU4) apr(A ∩ B) ⊆ apr(A) ∩ apr(B)

(AU5) A ⊆ B ⇒ apr(A) ⊆ apr(B)

(AU6) apr(U ) = U
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(AU7) A ⊆ apr(A)

(AU8) apr(apr(A)) ⊆ A
(AU9) apr(apr(A)) ⊆ apr(A)

(AU10) apr(Apr(A)) ⊆ apr(A)

where ∼ A = U − A denotes the set complement of A. Moreover, lower and upper
approximations obey properties:

(K) apr(∼ A ∪ B) ⊆ ∼ apr(A) ∪ apr(B)

(ALU) apr(A) ⊆ apr(A)

Properties (AL1) and (AU1) state that two approximation operators are dual oper-
ators. In fact, properties with the same number may be regarded as dual properties.

However, these properties are not independent. For example, properties (AL3)
implies properties (AL4). Properties (AL9), (AL10), (AU9) and (AU10) are expressed
in terms of set inclusion.

Rough sets described above are called Pawlak rough sets. They are constructed
from an equivalence relation. The pair of lower and upper approximations may be
interpreted as two operators apr and apr of U .

Pawlak rough set model can be interpreted by the notions of topological space and
topological Boolean algebra, where the operators apr and apr can be used together
with the usual set-theoretic operators ∼,∩ and ∪.

Since the modal logic S5 can be understood algebraically by topological Boolean
algebra, it is natural to expect that there is a connection of Pawlak rough set and
modal logic S5.

Now, we describe the presentation of modal logic as in Chap.3. Let Φ be a
non-empty set of propositions, which is generated by a finite set of logical symbols
∧,∨,¬,→, modal operators�,♦, propositional constants�,⊥, and infinitely enu-
merable set P = {φ,ψ, ...} of propositional variables. �φ states that φ is necessary
and ♦φ states that φ is possible.

Let W be a non-empty set of possible worlds and R be a binary relation called
accessibility relation on W . The pair (W, R) is called a Kripke frame. An interpre-
tation in (W, R) is a function v : W × P → {true, f alse}, which assigns a truth
value for each propositional variable with respect to each particular world w. By
v(w, a) = true, we mean that the proposition a is true in the interpretation v in the
world, written w |=v a.

We extend v for all propositions in the usual way. We define v∗ : W × Φ →
{true, f alse} as follows:
(m0) for a ∈ P,w |=v∗ a iff w |=v a
(m1) w �|=v∗ ⊥, w |=v∗ �
(m2) w |=v∗ φ ∧ ψ iff w |=v∗ φ and w |=v∗ ψ

(m3) w |=v∗ φ ∨ ψ iff w |=v∗ φ or w |=v∗ ψ

(m4) w |=v∗ φ → ψ iff w �|=v∗ φ or w |=v∗ ψ

(m5) w |=v∗ ¬φ iff w �|=v∗ φ

(m6) w |=v∗ �φ iff ∀w′ ∈ W (wRw′ ⇒ w′ |=v∗ φ)

(m7) w |=v∗ ♦φ iff ∃w′ ∈ W (wRw′ and w′ |=v∗ φ).

http://dx.doi.org/10.1007/978-3-319-72691-5_3
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Here, �|= means that not |=. For simplicity, we will write w |=v φ, and we will
drop v when it is clear from context. The necessity and possibility are dual in the
sense that the following hold:

�φ =def ¬♦¬φ,
♦φ =def ¬�¬φ.

If the accessibility relation R is an equivalence relation, then themodal logic is S5.
We can characterize a proposition by the set of possible worlds in which it is true

using a valuation function v. Based on the idea, we can define amapping t : Φ → 2W

as follows:

t (φ) = {w ∈ W : w |= φ}
Here, we call t (φ) the truth set of the proposition φ. In the truth set representation,

we have:

(s1) t (⊥) = ∅, t (�) = W
(s2) t (φ ∧ ψ) = t (φ) ∩ t (ψ)

(s3) t (φ ∨ ψ) = t (φ) ∩ t (ψ)

(s4) t (φ → ψ) = ∼ t (φ) ∪ t (ψ)

(s5) t (¬φ) =∼ t (φ)

(s6) t (�φ) = apr(t (φ))

(s7) t (♦φ) = apr(t (φ))

The last two properties can be derived as follows:

t (�φ) = {w ∈ W : w |= �φ}
= {w ∈ W : ∀w′(wRw′ ⇒ w′ |= φ)}
= {w ∈ W : ∀w′(wRw′ ⇒ w′ ∈ t (φ))}
= apr(t (φ))

t (♦φ) = {w ∈ W : w |= ♦φ}
= {w ∈ W : ∃w′(wRw′ and w′ |= φ)}
= {w ∈ W : ∃w′(wRw′ and w′ ∈ t (φ))}
= apr(t (φ))

In the truth set interpretation above, approximation operators in Pawlak rough set
model are related to modal operators in S5. There are manymodal systems according
to the properties on the accessibility relation in Kripke models.

Following Chellas’s naming, axioms of modal logic corresponding to (AK),
(ALU), (AL7)–(AL10) are given by:

(K) �(φ → ψ) → (�φ → �ψ)

(D) �φ → ♦φ

(T) �φ → φ

(B) φ → �♦φ

(4) �φ → ��φ

(5) ♦φ → �♦φ.
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Pawlak rough set model can be characterized by modal logic S5. In fact, the
standard logical operators are interpreted by usual set-theoretic operators and modal
operators by rough set operators.

Since different systems of modal logic can be obtained by using various types of
accessibility relations. It is thus possible to construct different rough set models by
means of Kripke models for modal logic.

Yao and Lin worked out the idea by generalizing Pawlak’s rough set models to
provide different rough set models depending on the accessibility relation in Kripke
models in Yao and Lin [3]. Their work seems to be of special interest of foundations
for rough set theory. We simply review their work here.

Given a binary relation R and two elements x, y ∈ U , if x Ry then we say that y
is R-related to x . A binary relation can be represented by a mapping r : U → 2U :

r(x) = {y ∈ U | x Ry}
Here, r(x) consists of all R-related elements of x . We then define two unary

set-theoretic operators apr and apr :

apr(A) = {x : r(x) ⊆ A}
= {x ∈ U | ∀y ∈ U (x Ry ⇒ y ∈ A)}

apr(A) = {x : r(x) ∩ A �= ∅}
= {x ∈ U | ∃y ∈ U (x Ry and y ∈ A)}

The set apr(A) consists of those elements where R-related elements are all in
A, and apr(A) consists of those elements such that at least one of whose R-related
elements is in A.

The pair (apr(A), apr(A)) denotes the generalized rough set of A induced by R.
Operators apr , apr : 2U → 2U are referred to as the generalized rough set operators.
The induced system (2U ,∩,∪,∼, apr , apr) is called an algebraic rough set model.

The equations (s6) and (s7) hold for generalized rough set operators. When R is
an equivalence relation, generalized rough set operators reduce to the operators in
Pawlak rough set model.

We are now ready to present the classification of algebraic rough set models. First
of all, we do not expect that generalized rough set operators satisfy all the properties
in Pawlak rough set models. But properties (AL1)–(AL5) and (AU1)–(AU5) hold in
any rough set model.

In modal logic, properties corresponding to (AK) and (AL6)–(AL10) yield dif-
ferent systems, and we can use these properties for various rough set models. Here,
we relabel some properties used in modal logic:

(K) apr(∼ A ∪ B) ⊆ ∼ apr(A) ∪ apr(B)

(D) apr(A) ⊆ apr(A)

(T) apr(A) ⊆ A
(B) A ⊆ apr(apr(A))

(4) apr(A) ⊆ apr(apr(A))

(5) apr(A) ⊆ apr(apr(A))
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We need certain conditions on the binary relation R to construct a rough set model
so that the above properties hold.

A relation R is serial if for all x ∈ U there exists a y ∈ U such that x Ry. A
relation is reflexive if for all x ∈ U, x Rx holds. A relation is symmetric if for all
x, y ∈ U , x Ry implies yRx . A relation is transitive if for all x, y, z ∈ U , x Ry and
yRz imply x Rz. A relation is Euclidian if for all x, y, z ∈ U , x Ry and x Rz imply
yRz. The corresponding approximation operators are as follows:

(serial) for all x ∈ U, r(x) �= ∅
(reflexive) for all x ∈ U, x ∈ r(x)
(symmetric) for all x, y ∈ U, if x ∈ r(y), then y ∈ r(x)
(transitive) for all x,y ∈ U, if y ∈ r(x), then r(y) ⊆ r(x)
(Euclidian) for all x,y ∈ U, if y ∈ r(x), then r(x) ⊆ r(y)

Theorem 4.1 says rough set models with specific properties:

Theorem 4.1 The following relationships hold:

1. A serial rough set model satisfies (D).
2. A reflexive rough set model satisfies (T).
3. A symmetric rough set model satisfies (B).
4. A transitive rough set model satisfies (4).
5. A Euclidean rough set model satisfies (5).

Proof (1) In a serial rough set model, for any x ∈ apr(A), we have r(x) ⊆ A and
r(x) �= ∅. This implies r(x) ∩ A �= ∅., i.e., x ∈ apr(A). Thus, property (D) holds
in a serial rough set model.
(2) In a reflexive rough set model, for any x ∈ U, x Rx implies x ∈ r(x). Suppose
x ∈ apr(A), which is equivalent to r(x) ⊆ A. Combining x ∈ r(x) and r(x) ⊆ A,
we have x ∈ A. Thus, property (T) holds.
(3) In a symmetric rough set model, suppose x ∈ A. By the symmetry of R, for
all y ∈ r(x), we have x ∈ r(y), i.e., x ∈ r(y) ∩ A. This implies that for all
y ∈ r(x), y ∈ apr(A). Hence, r(x) ⊆ apr(A). It means that x ∈ apr(apr(A)).
Therefore, property (B) holds.
(4) In a transitive rough set model, suppose x ∈ apr(A), i.e., r(x) ⊆ A. Then, for
all y ∈ r(x), r(y) ⊆ r(x) ⊆ A, which is equivalent to say that for all y ∈ r(x), y ∈
apr(A). Thus, r(x) ⊆ apr(A) and in turn x ∈ apr(apr(A)). That is, property (4)
holds.
(5) Conider an Euclidean rough set model. Suppose x ∈ apr(A), i.e., r(x)∩ A �= ∅.
By the Euclidean property of R, for all y ∈ r(x), r(x) ⊆ r(y). Combining this with
the assumption r(x) ∩ A �= ∅, we can conclude that for all y ∈ r(x), y ∈ apr(A).
This is equivalent to say r(x) ⊆ apr(A). Therefore, (5) holds.

The five properties of a binary relation, namely the serial, reflexive, symmet-
ric, transitive and Euclidean properties, induce five properties of the approximation
operators, namely
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serial: property (D) holds.
reflexive: property (T) holds.
symmetric: property (B) holds.
transitive: property (4) holds.
Euclidean: property (5) holds.

Combining these properties, it is possible to construct more rough set models. As
a consequence of Theorem 4.1, we have:

Theorem 4.2 The following hold:

1. A T = KT rough set model satisfies (K), (T).
2. A B = KB rough set model satisfies (K), (B).
3. A S4 = KT4 rough set model satisfies (K), (T), and (4).
4. A S5 = KT5 (Pawlak) rough set model satisfies (K), (T), and (5).

We can construct a rough set model corresponding to a normal modal system.
Note that S5 (Pawlak) model is the strongest model. Yao and Lin’s work established
the connection of (normal) modal logic and rough set theory.

4.3 Graded and Probabilistic Modal Logics and Rough Sets

Yao and Lin generalized their modal logic approaches for graded and probabilistic
modal logic. Here we review their approach.

Yao and Lin’s work has been expanded in various ways. They presented graded
and probabilistic versions. Because the quantitative information about the degree of
overlap of r(x) and A is not considered in modal logic approach, such extensions
are interesting.

Graded modal logics extend modal logic by introducing a family of graded modal
operators�n and♦n , where n ∈ N and N is the set of natural numbers; see Fattorosi-
Barnaba et al. [5–7]. These operators can be interpreted as follows:

(gm6) w |= �nφ iff |r(w) | − | t (φ) ∩ r(w) |≤ n
(gm7) w |= ♦nφ iff | t (φ) ∩ r(w) |> n.

where | · | denotes the cardinality of a set. t (φ) is the set of possible worlds in which
φ is true and r(w) is the set of possible worlds accessible from w.

The interpretations of�nφ is that φ is false in at most n possible worlds accesible
from w, and the interpretaion of ♦nφ is that φ is true in more than n possible worlds
accessible from n.

Graded necessity and possibility operators are dual:

�nφ =def ¬♦n¬φ

♦nφ =def ¬�n¬φ.

If n = 0, they reduce to normal modal operators.
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�φ =def ¬♦¬φ

♦φ =def ¬�¬φ.

Further, we introduce a new graded modal operator♦!n , defined as♦!nφ = �0¬φ

and ♦!nφ = ♦n−1φ ∧ ¬♦nφ for n > 0. The interpretation of ♦!nφ is that φ is true in
exactly n possible worlds accessible from w.

We can formalize graded modal systems. The basic graded modal logic is called
Gr(K), in which axiom (K) is replaced by the following three axioms:

(GK1) �0(φ → ψ) → (�nφ → �nψ)

(GK2) �nφ → �n+1φ

(GK3) �0¬(φ ∧ ψ) → ((♦!nφ ∧ ♦!mψ) → ♦n+m(φ ∨ ψ))

The graded modal logic Gr(T) is obtained by adding (GT) to Gr(K), and Gr(S5)
is obtained by adding (G5) to Gr(T). The two axioms (GT) and (G5) are defined as
follows:

(GT) �0φ → φ

(G5) ♦nφ → �0♦nφ.

Based on gradedmodal logic, we introduce the notion of graded rough sets. Given
the universe U and a binary relation R on U , a family of graded rough set operators
are defined as:

apr
n
(A) = {x | | r(x) | − | A ∩ r(x) |≤ n}

aprn(A) = {x | | A ∩ r(x) | > n}.
An element of U belongs to apr

n
(A) if at most n of its R-related elements are

not in A, and belongs to aprn(A) if more than n of its R-related elements are in A.
We establish a link between graded modal logics and rough sets:

(gs6) t (�nφ) = apr
n
(t (φ))

(gs7) t (♦nφ) = aprn(t (φ))

We can interpret graded rough set operators in terms of graded modal operators.
Independent of the types of binary relations, graded rough set operators satisfy the
following properties:

(GL0) apr(A) = apr
0
(A)

(GL1) apr
n
(A) = ∼ aprn(∼ A)

(GL2) apr
n
(A) = U

(GL3) apr
n
(A ∩ B) ⊆ apr

n
(A) ∩ apr

n
(A)

(GL4) apr
n
(A ∪ B) ⊇ apr

n
(A) ∪ apr

n
(A)

(GL5) A ⊆ B ⇒ apr
n
(A) ⊆ apr

n
(B)

(GL6) n ≥ m ⇒ apr
n
(A) ⊇ apr

m
(A)

(GU0) apr(A) = apr0(A)

(GU1) aprn(A) = ∼ apr
n
(∼ A)

(GU2) aprn(∅) = ∅
(GU3) aprn(A ∪ B) ⊇ aprn(A) ∪ aprn(B)

(GU4) aprn(A ∩ B) ⊆ aprn(A) ∩ aprn(B)
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(GU5) A ⊆ B ⇒ aprn(A) ⊆ aprn(B)

(GU6) n ≥ m ⇒ aprn(A) ⊆ aprm(A)

Properties (GL0) and (GU0) show the relationship between graded rough set
operators and normal rough set operators.

Properties (GL1)–(GL5) and (GU1)–(GU5) correspond to properties (AL1)–
(AL5) and (AU1)–(AU5) of algebraic rough sets.

For properties (GL3) and (GU3), set equality is replaced by set inclusion.
Properties (GL6) and (GU6) characterize the relationships between graded modal

operators. In fact, (GL6) corresponds to a graded version of (GK2) of graded modal
logic. Properties corresponding to (GK1) and (GK3) can be easily constructed.

It is possible to construct different graded rough setmodels based on the properties
satisfied by the binary relation. If the binary relation R is an equivalence relation, we
obtain the graded version of Pawlak rough sets.

The operators in graded Pawlak rough sets satisfy properties corresponding to
axioms of graded modal logic:

(GD) apr
0
(A) ⊆ apr0(A)

(GT) apr
0
(A) ⊆ A

(GB) A ⊆ apr
0
(apr0(A))

(G4) apr
n
(A) ⊆ apr

0
(apr

n
(A))

(G5) aprn(A) ⊆ apr
0
(aprn(A))

We turn to probabilistic rough sets. Although we only use the absolute number
of possible worlds accessible from a world w and in which a proposition φ is true
(false) in the definition of graded modal operators, the size of r(w) is not considered.
In probabilistic modal logic, all such information will be used.

Let (W, R) be a frame. For each w ∈ W , we define a probabilistic function
Pw : Φ → [0, 1]:
Pw(φ) = | t (φ) ∩ r(w) |

|r(w) |
where t (φ) is the set of possible worlds in which φ is true, and r(w) is the set of
possible worlds accessible from w. Here, we implicitly assume that R is at least
serial, i.e., for all w ∈ W , | r(w) |≥ 1. Then, we define a family of probabilistic
modal logic operators for α ∈ [0, 1]:

(pm6) w |= �αφ iff Pw(φ) ≥ 1 − α

iff
| t (w) ∩ r(w) |

|r(w) | ≥ 1 − α

(pm7) w |= ♦αφ iff Pw(φ) > α

iff
| t (w) ∩ r(w) |

|r(w) | > α

These probabilistic modal operators are dual, i.e.,

�αφ =def ¬♦α¬φ

♦αφ =def ¬�α¬φ.
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If α = 0, then they agree to normal modal operators:

�0φ =def �φ

♦0φ =def ♦φ.

The definition of probabilistic modal operators is consistent with that of Murai
et al. [8, 9]. It is also a special case of the probabilistic Kripke model of Fattorosi-
Barnaba and Amati in [10].

In fact, the probabilisticmodal operators are related to the gradedmodal operators.
If both sides of inequalities in (gm6) and (gm7) are divided by |r(w) |, and n/ |r(w) |
is replaced by α, the probabilistic modal operators are obtained.

But, these operators are different. Consider two possible worlds w,w′ ∈ W with
|r(w) ∩ t (φ) | = |r(w′) ∩ t (φ) | = 1 and |r(w) | �= |r(w′) |. We have:

w |= ♦0φ

w′ |= ♦0φ

and

w |= ¬♦nφ

w′ |= ¬♦nφ

for n ≥ 1. That is, evaluations of ♦nφ are the same in both worlds w and w′. The
difference in the size of r(w) and r(w′) is reflected by operators �n . On the other
hand, since 1/ |r(x) |�= 1/ |r(y) |, evaluations of both ♦αφ and �α will be different
in worlds w and w′.

We can then define probabilistic rough sets. Let U be the universe and R be a
binary relation on U . We define a family of probabilistic rough set operators.

apr
α
(A) = {x | | A ∩ r(x) |

|r(x) | ≥ 1 − α}

aprα(A) = {x | | A ∩ r(x) |
|r(x) | > α}.

With this definition, we can establish the connections between probabilisticmodal
logic and probabilistic rough sets:

(ps6) t (�αφ) = apr
α
(t (φ))

(ps7) t (♦αφ) = aprα(t (φ)).

By definition, for a serial binary relation and α ∈ [0, 1], probabilistic rough set
operators satisfy the following properties:

(PL0) apr(A) = apr
0
(A)

(PL1) apr
α
(A) = ∼ aprα(∼ A)

(PL2) apr
α
(U ) = U

(PL3) apr
α
(A ∩ B) ⊆ apr

α
∩ apr

α
(B)

(PL4) apr
α
(A ∪ B) ⊆ apr

α
∪ apr

α
(B)

(PL5) A ⊆ B ⇒ apr
α
(A) ⊆ apr

α
(B)

(PL6) α ≥ β ⇒ apr
α
(A) ⊇ apr

β
(A)
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(PU0) apr(A) = apr0(A)

(PU1) aprα(A) = ∼ apr
α
(∼ A)

(PU2) aprα(∅) = ∅
(PU3) aprα(A ∪ B) ⊇ aprα(A) ∪ aprα(B)

(PU4) aprα(A ∩ B) ⊆ aprα(A) ∩ aprα(B)

(PU5) A ⊆ B ⇒ aprα(A) ⊆ aprα(B)

(PU6) α ≥ β ⇒ aprα(A) ⊆ aprβ(A)

They are counterparts of the properties of graded rough set operators. Moreover, for
0 ≤ α < 0.5,

(PD) apr
α
(A) ⊆ aprα(A)

which may be interpreted as a probabilistic version of axiom (D).
Probabilistic rough setswere first introduced byWong andZiarko [11] using prob-

abilistic functions. Murai et al. also proposed similar probabilistic modal operators
in [8, 9], which will be presented in Chap.5.

4.4 Nelson Algebras and Rough Sets

Although rough set can be interpreted in terms of double Stone algebras, there are
other algebraic approaches. One of the notable approaches is Pagliani’s algebraic
characterization based on Nelson algebras in Pagliani [12, 13].

Nelson algebras give an algebraic semantics for constructive logic with strong
negation; see Rasiowa [14] and Vakarelov [15]. In 1996, Pagliani studied relations
of Nelson algebras and rough sets in [12].

Recently, in 2013, Järvinen et al. proved an algebraic completeness for construc-
tive logic with strong negation by using finite rough set-based Nelson algebras deter-
mined by quasiorders in [13].

We here present Pagliani’s approach following [13]. Before doing it, we briefly
state preliminary concepts.

A Kleene algebra is a structure (A,∨,∧,∼, 0, 1) such that A is a 0, 1-bounded
distributed lattice and for all a, b ∈ A:

(K1) ∼∼ a = a
(K2) a ≤ b iff ∼ b ≤∼ a
(K3) a ∧ ∼ a ≤ b ∨ ∼ b.

A Nelson algebra (A,∨,∧,→,∼, 0, 1) is a Kleene algebra (A,∨,∧,∼, 0, 1) sat-
isfying the following:

(N1) a ∧ c ≤∼ a ∨ b iff c ≤ a → b
(N2) (a ∧ b) → c = a → (b → c).

In Nelson algebras, an operation ¬ can be defined as ¬a = a → 0. The operation
→ is called the weak relative pseudocomplementation, ∼ the strong negation, and
¬ the weak negation, respectively.

http://dx.doi.org/10.1007/978-3-319-72691-5_5
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A Nelson algebra is semi-simple if a ∨ ¬a = 1 for all a ∈ A. It is well known
that semi-simple Nelson algebras coincide with three-valued Łukasiewicz algebras
(cf. Iturrioz [16]) and regular double Stone algebras.

An element a∗ in a lattice L with 0 is called a pseudocomplement of a ∈ L , if
a ∧ x = 0 ⇔ x ≤ a∗ for all x ∈ L . If a pseudocomplement of a exists, then it is
unique.

A Heyting algebra H is a lattice with 0 such that for all a, b ∈ H , there is a
greatest element x of H with a ∧ x ≤ b.This element is called the relative pseudo-
complement of a with respect to b, denoted a ⇒ b. A Heyting algebra is represented
as (H,∨,∧,⇒, 0, 1), where the pseudocomplement of a is a ⇒ 0.

LetΘ be a Boolean congruence on a Heyting algebra H . Sendlewski [17] showed
the construction of Nelson algebras from the pairs of Heyting algebras. In fact, the
set of pairs

NΘ(H) = {(a, b) ∈ H × H | a ∧ b = 0 and a ∨ bΘ1}
can be seen as a Nelson algebra, if we add the operations:

(a, b) ∨ (c, d) = (a ∨ c, b ∧ d)

(a, b) ∧ (c, d) = (a ∧ c, b ∨ d)

(a, b) → (c, d) = (a ⇒ c, a ∧ d)

∼ (a, b) = (b, a)

Note that (0,1) is the 0-element and (1,0) is the 1-element. In the right-hand side of
the above equations, the operations are those of the Heyting algebra H . Sendlewski’s
construction can give an intuitive meaning of Vakarelov’s construction for Nelson
algebras.

We now move to Pagliani’s constructions. LetU be a set and E be an equivalence
relation. Approximations are then defined in terms of an indiscernibility space, that
is, a relational structure (U, E) such that E is an equivalence relation on U .

For a subset of X ofU , we define the lower approximation XE of X which consists
of all elements whose E-class is included in X and the upper approximation XE of
X which is the set of the elements whose E-class has non-empty intersection with X .

Therefore, XE can be viewed as the set of elements which certainly belong to
X and XE is the set of objects that possibly are in X , when elements are observed
through the knowledge synthesized by E .

In this setting, we can use arbitrary binary relations instead of equivalence rela-
tions. For this purpose, we introduce approximations (·))R and (·)R , where R is
reflexive. They can be regarded as “real” lower and upper approximation operators.

Definition 4.2 Let R be a reflexive relation onU and X ⊆ U . The set R(X) = {y ∈
U | x Ry for some x ∈ X} is the R-neghbourhood of X . If X = {a}, then we write
R(a) instead of R({a}). The approximations are defined as XR = {x ∈ U | R(x) ⊆
X} and X R = {x ∈ U | R(X) ∩ �= ∅}. A set X ⊆ U is called R-closed if R(X) = X
and an element x ∈ U is R-closed, if its singleton set {x} is R-closed. The set of
R-closed points is denoted by S.
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The rough set of X is the equivalence class of all Y ⊆ U such that YE = XE and
Y E = XE . Since each rough set is uniquely determined by the approximation pair,
it is possible to represent the rough set of X as (XE , XE ) or (XE ,−XE ). We call the
former increasing representation and the latter disjoint representation.

These representations induce the sets:

I RSE (U ) = {(XE , XE ) | X ⊆ U }
and

DRSE (U ) = {(XE ,−XE ) | X ⊆ U },
respectively. The set I RSE (U ) can be ordered componentwise

(XE , XE ) ≤ (YE ,Y E ) ⇔ XE ⊆ YE and XE ⊆ Y E ,

and DRSE (U ) is ordered by reversing the order for the second components of the
pairs:

(XE . − XE ) ≤ (YE ,−Y E ) ⇔ XE ⊆ YEand − XE ⊇ −Y E

⇔ XE ⊆ YEand XE ⊆ Y E

Therefore, I RSE (U ) and DRSE (U ) are order-isomorphic, and they form completely
distributive lattices.

Every Boolean lattice B, where x ′ denotes the complement of x ∈ B, is a Heyting
algebra such that x ⇒ y = x ′ ∨ y for x, y ∈ B. An element x ∈ B is dense only if
x ′ = 0, that is, x = 1.

Because it is known that on a Boolean lattice each lattice-congruence is such that
the quotient lattice is a Boolean lattice, also the congruence ∼=S on BE (U ), defined
by X ∼=S Y , if X ∩ S = Y ∩ S, is Boolean whenBE (U ) is interpreted as a Heyting
algebra.

Pagliani [12] showed that the disjoint representation of rough sets can be charac-
terized as

DRSE (U ) = {(A, B) ∈ BE (U )2 | A ∩ B = ∅ and A ∪ B ∼=S U }
Thus, DRSE (U ) coincides with the Nelson lattice N∼=S (BE (U )). Since BE (U )

is a Boolean lattice, N∼=S (BE (U )) is a semi-simple Nelson algebra. Consequently,
we obtain that rough sets defined by equivalences determined also regular double
Stone algebras and three-valued Lukasiewicz algebras.

Järvinen et al. [13] further extended Pagliani’s results for the so-called effective
lattice, which expands Nelson algebras with a modal operator capable of expressing
the classical truth. The feature is of special importance for the problems in computer
science, AI, and natural language semantics.
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4.5 Three-Valued Logics and Rough Sets

Since rough sets are used to describe incompleteness of information, it is natural to
consider a foundation for rough set theory based on three-valued logic. This line of
study can be found in Akama and Murai [18] and Avron and Konikowska [19]. In
this section, we review briefly Avron and Konikowska’s approach.

Let K = (U,R), R ∈ R and X ⊆ U . Then, as presented in Chap.2, in rough
set theory, one can classify the three regions, i.e., R-positive region POSR(X), R-
negative region NEGR(X) and R-boundary region BNR(X).

The elements of POSR(X) certainly belong to X , the elements of NEGR(X)

certainly do not belong to X , and we cannot tell if the elements of BNR(X) belong
to X or not. Because the classification can be related to three-valued language, the
idea led Avron and Konikowska to a three-valued logic approach to rough sets.

They use a simple three-valued logic Lrs , whose formulas are all expressions of
the form Ax where A is an expression representing a subset ofU and x is a variable
representing an object in U .

The semantics of Lrs uses logical values in T = {t, f, u}, where
• t represents the classical value true,
• f represents the classical value false,
• u represents a non-classical value unknown.

As designated values we can take either {u, t}-obtaining a weaker logic-or only
{t}, obtaining a strong logic.

The truth-values of formulaLrs with respect to a knowledge base k = 〈U,R〉, a
relation R ∈ R, an interpretation | · | of set expressions, and a valuation v of object
variables, as follows:

(1)‖Ax‖v =
⎧
⎨

⎩

t if v(x) ∈ POSR(| A |)
f if v(x) ∈ NEGR(| A |)
u if v(x) ∈ BNR(| A |)

Unfortunately, the logic Lrs has a major drawback, namely its semantics is not
decompositional. This follows from the fact that the lower and upper approximations
of a set obey the rules:

(2)
R(A ∪ B) = RA ∪ RB R(A ∪ B) ⊇ RA ∪ RB
R(A ∩ B) = RA ∩ RB R(A ∩ B) ⊆ RA ∪ RB
R(−A) = −RA R(−A) = −RA

where the inclusions cannot be in general replaced by equalities.
Clearly, these inclusions imply that the values of (A ∪ B)x and (A ∩ B)x are not

always uniquely determined by the values of Ax and Bx , which is exactly the factor
that makes the semantics of Lrd non-decompositional. Namely, we have:

If ‖Ax‖ = u and ‖Bx‖ = u, then
‖(A ∪ B)x‖ = {u, t} and ‖(A ∩ B)x‖ = { f, u}

http://dx.doi.org/10.1007/978-3-319-72691-5_2
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and we cannot in general say in advance which of the respective two values will be
assigned by the interpretation to the considered two formulas.

The ordinary logical matrix cannot provide a semantics of Lrs . To give a proper
semantics, we need to use a non-deterministic logical matrix (Nmatrix) [20], which
is a generalization of an ordinary matrix modelling non-determinism, with inter-
pretations of logical connectives returning sets of logical values instead of single
values.

Definition 4.3 A non-deterministic matrix (Nmatrix) for a propositional language
L is a tupleM = (T ,D,O), where:

• T is a non-empty set of truth-values.
• ∅ ⊂ D ⊆ T is the set of designated values.

• For every n-ary connective � of L , O includes a corresponding n-ary function
∼�

from T n to 2T − {∅}.
LetW be the set of well-formed formulas of L . A (legal) valuation in an Nmatrix

M is a function v : W → T that satisfies the following condition:

v(�(ψ1, ..., ψn)) ∈ ∼� (ψ1, ..., ψn))

for every n-ary connective � of L and any ψ1, ..., ψn ∈ W .
Let VM dente the set of all valuations in the NmatrixM . The notions of satisfaction
under a valuation, validity and consequence relation are defined as follows:

• Aformulasφ ∈ W is satisfied by a valuation v ∈ VM , denoted v |= φ, if v(φ) ∈ D .
• A sequent 	 = Γ ⇒ Δ is satisfied by a valuation v ∈ VM , denoted v |= 	, iff
either v does not satisfy some formula in Γ or v satisfies some formula in Δ.

• A sequent 	 is valid, denoted |= 	, if it is satisfied by all valuations v ∈ VM .
• The consequence relation on W defined by M is the relation �M on sets of
formulas in W such that, for any T, S ⊆ W, T �M S iff there exist finite sets
Γ ⊆ T,Δ ⊆ S such that the sequent Γ ⇒ Δ is valid.

We can define a three-valued logic for modelling rough sets with semantics based
on Nmatrix; see Avron and Lev [20]. Avron and Konikowska used a simple predicate
language with atomic formulas expressing membership of objects in sets.

Definition 4.4 The alphabet of a simple predicate language LP contains:

• a set Pn of n-ary predicate symbols for n = 0, 1, 2, ... .
• a setOk

n of symbols for k-ary operations on n-ary predicates for n, k = 0, 1, 2, ... .
• a set of V of individual variables.

The set En of predicate expressions of arity n is the least set such that:

• Pn ⊆ En .
• if � ∈ Ok

n and e1, ..., ek ∈ En , then �(e1, ..., ek) ∈ En .
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• The consequence relation on W defined by M is the relation �M on sets of
formulas in W such that, for any T, S ⊆ W, T �M S iff there exist finite sets
Γ ⊆ T,Δ ⊆ S such that the sequent Γ ⇒ Δ is valid.

The set W of well-formed formulas of LP consists of all expressions of the form
e(x1, ..., xn)

where n ≥ 0, e ∈ En and x1, ..., xn ∈ V.

The semantics of LP is defined based on an Nmatrix for LP and a structure
for LP .

Definition 4.5 An Nmatrix for LP is a non-deterministic matrix M = (T ,D,O)

with O containing an interpretation
∼�: T k → 2T /{∅} for every k-ary operation �

on n-ary predicate in Ok
n, n ≥ 0.

Definition 4.6 A T -structure for LP is a pair M = (X, | · |), where
• X is a non-empty set.
• | · | is an interpretation of predicate symbol, with | p |: Xn → T for any

p ∈ Pn, n ≥ 0.

To define the interpretation of LP in a given structure, we use a non-deterministic
matrix for interpreting the operators of that language.

Definition 4.7 Let M = (T ,D,O) be an Nmatrix for LP , and letM = (X, | · |)
be a T -structure for LP .

An interpretation of LP under the Nmatrix M = (T ,D,O) in the structure
M = (X, | · |) for a valuation c : V → X is a function ‖ · ‖M

v : W → T such that:

• ‖p(x1, ..., xn)‖ =| p | (v(x1), ..., v(xn)) for any p ∈ Pn, n ≥ 0.

• ‖ � (e1, ..., en)(x1, ..., xn)‖M
v ∈∼� (‖e1(x1, ..., xn))‖M

v , ..., ‖ek(x1, ..., xn)‖M
v )

for any k-ary operation on n-ary predicates � ∈ Ok
n , and n-ary predicate expressions

e1, ..., en ∈ En , and any individual variables xi ∈ V, i = 1, ..., n.

To simplify notation, in what follows we will drop the decoration on ‖ · ‖ symbol.
Avron and Konikowska define propositional rough set logic. The predicate lan-

guage LRS for describing rough sets uses only unary predicate symbols representing
sets, object variables, and the symbols −,∪,∩, i.e.,
• P1 = {P, Q, R, ...},Pn = ∅ for n �= 1
• O1

1 = {−},O2
1 = {∪,∩},Ok

n = ∅ otherwise.

Thus, the set WRS of well-formed formulas of LRS contains all expressions of
the form Ax , where A is a unary predicate expression representing a set, built of the
predicate symbols in P1 and using the operation symbols −,∪,∩, while x ∈ V is an
individual variable.

The semantics of LRS is given by the Nmatrix MRS = (T ,D,O), where T =
{ f, u, t},D = {t}, and −,∪,∩ are interpreted as set-theoretic operations on rough
sets, with their semantics given by:
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∼− f u t
t u f

∼∪ f u t
f f u t
u u {u, t} t
t t t t

∼∩ f u t
f f f f
u f { f, u} u
t f u t

where f, u and t stand for the appropriate singleton sets.
By the rules (2) governing the interplay between the operations of lower and

upper approximations and set-theoretic operations in the rough sets framework, the
interpretation of the latter operations in theNmatrixMRS corresponds to the intended
interpretation (1) of the Ax type of formulas in that framework.

Note that complement is deterministic, while union and intersection are non-
deterministic. In fact, the results of the operation on two undefined arguments for
union and intersection are non-deterministic.

Now, we present a three-valued rough set logicLRS defined by the language LRS

with the semantics given by MRS , in which the implication is defined as:
A → B = ¬A ∨ B

where ¬,∨ correspond to −,∪ inMRS .
A propositional rough set logicL I

RS is defined by propositional variables in P =
{p, q, r, ...} and connectives¬,→. The formulas ofL I

RS are denoted by A, B,C, ...,

and the set of all well-formed formulas by WI .
The Nmatrix corresponding to L I

RS is M I
RS = (T ,D,OI ), where T ,D are

the same as before, and OI contains the interpretations of ¬ and → defined by the
following:

∼¬ f u t
t u f

∼→ f u t
f t t t
u u {u, t} t
t f u t

Observe that the logic based on M I
RS can be seen as a “common denominator”

of three-valued logics of Kleene and Lukasiewicz. This is because these two famous
three-valued logics are distinguished by the non-deterministic part of the above truth-
value table for implication.

Avron and Konikowska described a sequent calculus for the logic generated by
M I

RS with a completeness result. In addition, they discuss the relations of Kleene’s
and Lukasiewicz’s three-valued logics, claiming that L I

RS is the common part of
these two three-valued logics.
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A sequent calculus was proposed by Gentzen [21] for classical and intuitionistic
logic. He also developed natural deduction. Sequent calculus is considered to be
more convenient than natural deduction for some technical reasons.

L I
RS is based on M I

RS . The logic has no tautologies, but only valid entailment,
representedbyvalid sequents. Thus, the appropriate formulation is a sequent calculus.
IRS is the sequent calculus over L I

RS .
Let Γ, Δ be sets of formulas, and A, B be formulas. A sequent is an expression

of the form Γ ⇒ Δ, where Γ is called the antecedent and Δ is called the succedent,
respectively. Note that formulas in the antecedent are interpreted conjunctively and
formulas in the succedent are interpreted disjunctively.

A sequent calculus is formalized by sets of axioms and rules. Rules are divided
into structural rules and logical rules.

IRS
Axioms
(A1) A ⇒ A,
(A2) ¬A, A ⇒
Inference Rules

Weakening on both sides, together with the following rules:

(Weakening)
Γ ⇒ Δ

Γ ′ ⇒ Δ′
In(Weakening), Γ ⊆ Γ ′,Δ ⊆ Δ′.

(¬¬ ⇒)
Γ, A ⇒ Δ

Γ,¬¬A ⇒ Δ
(⇒ ¬¬)

Γ ⇒ Δ, A

Γ ⇒ Δ,¬¬A

(⇒→ I )
Γ ⇒ Δ,¬A

Γ ⇒ Δ, A → B
(⇒→ I I )

Γ ⇒ Δ, B

Γ ⇒ Δ, A → B

(→⇒ I )
Γ ⇒ Δ, A Γ, B ⇒ Δ

Γ, A → B ⇒ Δ
(→⇒ I I )

Γ,¬A ⇒ Δ Γ ⇒ Δ,¬B

Γ, A → B ⇒ Δ

(⇒ ¬ →)
Γ ⇒ Δ, A Γ ⇒ Δ,¬B

Γ ⇒ Δ,¬(A → B)

(¬ →⇒ I )
Γ, A ⇒ Δ

Γ,¬(A → B) ⇒ Δ
(¬ →⇒ I I )

Γ,¬B ⇒ Δ

Γ,¬(A → B) ⇒ Δ

It is possible to obtain a set of rules which is more compact than the above.
Namely, rules (⇒→ I ) and (⇒→ I I ) can be combined to:

Γ ⇒ Δ,¬A, B

Γ ⇒ Δ, A → B

while rules (→⇒ I ) and (→⇒ I I ) can be combined to:

Γ,¬A ⇒ Δ Γ, B ⇒ Δ Γ ⇒ Δ, A,¬B

Γ, A → B ⇒ Δ

and, finally,rules (¬ →⇒ I ) and (¬ →⇒ I I ) can be combined to:
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Γ, A,¬B ⇒ Δ

Γ,¬(A → B) ⇒ Δ
.

As we can see, there is a clear trade-off between the size of the set of rules and
complexity of the individual rules. So the choice of a particular option should depend
on the intended application.

Lemma 4.2 The following hold:

1. The axioms of the system IRS are valid.
2. For any inference rule r of IRS and any valuation v, if v satisfies all the premises

of r then v satisfies the conclusion of r .

As a corollary of Lemma 4.2, the inference rules of IRS are sound, i.e., they
preserve the validity of sequents.

Theorem 4.3 The sequent calculus IRS is sound and complete for �M I
RS
.

As disjunction and conjunction can be represented by negation and implication
according to the relationships:

A ∨ B =def ¬A → B
A ∧ B =def ¬(A → ¬B),

they can be treated as derived operations in our language.
From the above representation and IRS, we can derive the following sequent rule

for conjunction and disjunction:

Γ ⇒ Δ, A

Γ ⇒ Δ, A ∨ B

Γ ⇒ Δ, B

Γ ⇒ Δ, A ∨ B
Γ ⇒ Δ,¬A Γ ⇒ Δ,¬B

Γ ⇒ Δ,¬(A ∨ B)

Γ,¬A ⇒ Δ

Γ.¬(A ∨ B) ⇒ Δ

Γ,¬B ⇒ Δ

Γ.¬(A ∨ B) ⇒ Δ

Γ, A ⇒ Δ Γ ⇒ Δ,¬B

Γ, A ∨ B ⇒ Δ

Γ, B ⇒ Δ Γ ⇒ Δ,¬A

Γ, A ∨ B ⇒ Δ

Γ ⇒ Δ, A Γ ⇒ Δ, B

Γ ⇒ Δ, A ∧ B
Γ ⇒ Δ,¬A

Γ ⇒ Δ,¬(A ∧ B)

Γ ⇒ Δ,¬B

Γ ⇒ Δ,¬(A ∧ B)

Γ, A ⇒ Δ

Γ A ∧ B ⇒ Δ

Γ, B ⇒ Δ

Γ A ∧ B ⇒ Δ
Γ,¬A ⇒ Δ Γ ⇒ Δ, B

Γ,¬(A ∧ B) ⇒ Δ

Γ,¬B ⇒ Δ Γ ⇒ Δ, A

Γ,¬(A ∧ B) ⇒ Δ

The above system, with the negation rule of IRS, can be used for reasoning in the
rough set logic LRS . If we first apply a translation τ from the language of LRS to
the languageL ′

RS of atomic predicate expressions combined with ¬,∨,∩ such that:
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τ((A ∪ B)x) = τ(Ax) ∨ τ(Bx)
τ ((A ∩ B)x) = τ(Ax) ∧ τ(Bx)
τ ((−A)x) = ¬τ(Ax)

then the systemmentioned above, togetherwith the substitution principle, is complete
forL ′

RS , and so also for LRS .
Avron and Konikowska further discussed the relations with Kleene and

Lukasiewicz three-valued logics, by showing L I
RS as the common part of these

three-valued logics.
Let us denote by LK and LL Kleene’s and Lukasiewicz’s three-valued logics,

respectively. Recall that L I
RS is given by the Nmatrix M I

RS = (T ,D, {∼¬,
∼→}),

where the following are satisfied.

∼¬ f u t
t u f

∼→ f u t
f t t t
u u {u, t} t
t f u t

Now, using the same notational convention, we can say that the {¬,→} version
of Kleene and Lukasiewicz logics are given by ordinary mattricesML andML with

T ,D and the common interpretation
∼¬ of negation as in the NmatrixM I

RS .
But, different interpretations of implication, given, respectively, by →K and →L

are defined below:

→L f u t
f t t t
u u t t
t f u t

→K f u t
f t t t
u u u t
t f u t

From these three mattrices,MK andML are included in the NmatirixM I
RS , and

represent its two different “determinizations”. Then, we have the following:

Lemma 4.3 The system IRS is sound for both Kleene and Lukasiewicz logics.

To make IRS also complete for LK and LL , it suffices to add just one sequent
rule for each logic:

Theorem 4.4 Let (K ) and (L) be the two following sequent rules:

(K )
Γ, ¬A ⇒ Δ Γ, B ⇒ Δ

Γ, A → B ⇒ Δ
(L)

Γ, A ⇒ Δ Γ,¬B ⇒ Δ

Γ ⇒ Δ, A → B
Then, we have the following:

1. The system IRSK obtained by adding rule (K ) to IRS is sound and complete for
Kleene logic.

2. The system IRSL obtained by adding rule (L) to IRS is sound and complete for
Lukaisewicz logic.
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The three-valued logic approach appeared to open a new possibility of developing
rough set theory. If we consider other three-valued logics, we could have a new type
of rough set theory. In addition, we should explore other many-valued logics, e.g.,
four-valued logic for this purpose.

4.6 Rough Set Logics

It is necessary to advance a logical system based on rough sets for practical applica-
tions. Such a logic is called a rough set logic. The first approach to a rough set logic
was established by Düntsch [22] in 1997. Here, we quickly review his system and
related ones.

Düntsch developed a propositional logic for rough sets inspired by the topological
construction of rough sets using Boolean algebras. His work is based on the fact that
the collection of all subsets of a set forms a Boolean algebra under the set-theoretic
operation, and that the collection of rough sets of an approximation space is a regular
double Stone algebra. Thus, we can assume that regular double Stone algebras can
serve as a semantics for a logic for rough sets.

To understand his logic, we need some concepts. A double Stone algebra DSA is
denoted by 〈L ,+, ·, ∗.+, 0, 1〉with the type 〈2, 2, 1, 1, 0, 0〉 satisfying the following
conditions:

(1) 〈L ,+, ·, 0, 1〉 is a bounded distributed lattice.
(2) x∗ is the pseudocomplement of x , i.e., y ≤ x∗ ⇔ y · x = 0.
(3) x+ is the dual pseudocomplement of x , i.e., y ≥ x+ ⇔ y + x = 1.
(4) x∗ + x∗∗ = 1, x+ · x++ = 0

DSA is called regular if it satisfies the additional condition: x · x+ ≤ x + x∗. Let
B be a Boolean algebra, F be a filter on B, and 〈B, F〉 = {〈a, b〉 | a, b ∈ B, a ≤
b, a + (−b) ∈ F}.

We define the following operations on 〈B, F〉 as follows:
〈a, b〉 + 〈c, d〉 = 〈a + c, b + d〉,
〈a, b〉 · 〈c, d〉 = 〈a · c, b · d〉,
〈a, b〉∗ = 〈−b,−b〉,
〈a, b〉+ = 〈−a,−a〉.

If 〈U, R〉 is an approximation space, the classes of R can be viewed as a complete
subalgebra of the Boolean algebra B(U ). Conversely, any atomic complete subalge-
bra B of B(U ) yields an equivalence relation R on U by the relation: x Ry ⇔ x
and y are contained in the same atom of B, and this correspondence is bijective.

If {a} ∈ B, then for every X ⊆ U we have: If a ∈ RX , then a ∈ X, and the
rough sets of the corresponding approximation space are the elements of the regular
double Stone algebra 〈B, F〉, where F is the filter of B which is generated by the
union of the singleton elements of B.
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Based on the construction of regular double Stone algebras, Düntsch proposed a
propositional rough set logic RSL . The language L of RSL has two binary con-
nectives ∧ (conjunction), ∨ (disjunction), two unary connectives ∗,+ for two types
of negation, and the logical constant � for truth.

Let P be a non-empty set of propositional variables. Then, the set Fml of for-
mulas with the logical operators constitutes an absolutely free algebra with a type
〈2, 2, 1, 1, 0〉. Let W be a set and B(W ) be a Boolean algebra based on W .

Then, a model M of L is seen as a pair (W, v), where v : P → B(W ) × B(W )

is the valuation function for all p ∈ P satisfying: if v(p) = 〈A, B〉, then A ⊆ B.

Here, v(p) = 〈A, B〉 states that p holds at all states of A and does not hold at any
state outside B.

Düntsch relates the valuation to Lukasiewicz’s three-valued logic by the following
construction. For each p ∈ P , let vp : W → 3 = {0, 1

2 , 1}. v : P → B(W ) × B(W )

is defined as follows: v(p) = 〈{w ∈ W : vp(w) = 1}, {w ∈ W : vp(w) �= 0}〉. In
addition, Düntsch connected the valuation and rough sets as follows:

vp(w) = 1 if w ∈ A,
vp(w) = 1

2 if w ∈ B \ A,
vp(w) = 0 otherwise.

Given a model M = (W, v), the meaning function mng : Fml → B(W ) × B(W ) is
defined to give a valuation of arbitrary formulas in the following way:

mng(�) = 〈W,W 〉,
mnf(→ p) = 〈W,W 〉,
mng(p) = v(p) for p ∈ P .
If mng(φ) = 〈A, B〉 and mng(ψ) = 〈C, D〉, then
mng(φ ∧ ψ) = 〈A ∩ C, B ∩ D〉,
mng(φ ∨ ψ) = 〈A ∪ C, B ∪ D〉,
mng(φ∗) = 〈−B,−B〉,
mng(φ+) = 〈−A,−A〉.
Here,−A denotes the complement of A in B(W ).We can understand that themeaning
function assigns the meaning to formulas.

The class of all models of L is denoted by Mod. A formula A holds in a model
M = 〈W, v〉, written M |= A, if mng(A) = 〈W,W 〉. A set Γ of sentences entails
a formula A, written Γ � A, if every model of Γ is a model of A.

We can define additional operations on Fml by

A → B = A∗ ∨ B ∨ (A+ ∧ B∗∗)
A ↔ B = (A → B) ∧ (B → A)

Düntsch proved several technical results including completeness.

Theorem 4.5 If M = 〈W, c〉 ∈ Mod and φ,ψ ∈ Fml, then

1. M |= φ ↔ ψ iff mng(φ) = mng(ψ)

2. M |=→ p ↔ φ iff M |= φ.
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Theorem 4.5 states completeness, compactness, and Beth definability property of
RSL .

Theorem 4.6 The following hold:

1. RSL has a finitely complete and strongly sound Hilbert style axiom system.
2. RSL has a compactness theorem.
3. RSL does not have the Beth definability property.

The implication in RSL is interesting, but it has no intuitive appeal. It is thus
promising to extend RSL with another implication. Such extensions can be found
in Akama et al. in [23, 24], which relate rough set logics to Heyting-Brouwer logic
and its sub-logic.

As discussed in Chap. 3, Nelson algebras give rise to an algebraic interpretation
of rough sets. Since Nelson algebras is an algebraic semantics for constructive logic
with strong negation, it may be possible to employ constructive logic with strong
negation as another rough set logic. The idea has been explored in Pagliani’s approach
to rough sets reviewed above.

Düntsch’s rough set logic is a starting point of the work of logics for rough sets.
His logic is three-valued, and it should be compared to the logics of Avron and
Konikowska presented in the previous section.

4.7 Logics for Reasoning About Knowledge

A first approach to connect rough set theory and modal logic was due to Orlowska’s
series of papers [25–27]. She implicitly showed the relation of Pawlak’s rough sets
and modal logic S5. However, she did more than this. Here, we review her logics for
reasoning about knowledge.

Orlowska proposed a logic with knowledge operators which are relative to indis-
cernibility relations associated with agents, with a semantics based on rough sets.
Orlowska’s approach has the following three intuitions:

1. Knowledge of an agent about a predicate F can be reflected by the ability of the
agent to classify objects as instances or non-instances of F .

2. Knowledge of an agent about a sentence F can be reflected by the ability of the
agent to classify states into those in which F is true and those in which F is false.

3. With each agent there is associated to an indiscernibility relation, and the agent
decides membership of objects or states up to this indiscernibility. As a conse-
quence, knowledge operators are relative to indiscernibility.

Let U be a universe (of states or objects) and let AGT be a set of agents. For
each a ∈ AGT , let ind(a) ⊆ U × U be an indiscernibility relation corresponding
to agent a.

http://dx.doi.org/10.1007/978-3-319-72691-5_3
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For a set A of agents, we define indiscernibility ind(A) as follows:

(s, t) ∈ ind(A) iff (s, t) ∈ ind(a) for all a ∈ A
ind(∅) = U ×U.

Indiscernibility relations are equivalence relation (reflexive, symmetric and tran-
sitive) or similarity relations (reflexive and symmetric). Below, we confine ourselves
to equivalence relations.

We here state the following properties of indiscernibility relations.

Proposition 4.1 Indiscernibility relations satisfy the following:

1. ind(A ∪ B) = ind(A) ∩ ind(B)

2. (ind(A) ∪ ind(B))∗ ⊆ ind(A ∩ B)

3. A ⊆ B implies ind(B) ⊆ ind(A)

Here, (ind(A) ∪ ind(B))∗ = ind({A, B}∗) is the set of all finite sequences with
elements from the set {A, B}.
Proposition 4.2 The family {ind(A)}A⊆AGT is a lower semilattice in which
ind(AGT ) is the zero element.

Now, we assume a subset X of the universe U and an indiscernibility relation
ind(A) for a certain set of agents. Since agents recognize elements of U up to
ind(A), they grasp X within the limit of tolerance determined by lower and upper
approximation of X .

The lower approximation ind(A)X of X with respect to ind(A) is the union of
those equivalence classes determined by ind(A)which are included in X . The upper
approximation ind(A)X of X with respect to ind(A) is the unionof those equivalence
classes determined by ind(A) which have an element in common with X .

For non-transitive indiscernibility relations the respective definitions of approxi-
mations are obtained by taking similarity classes instead of equivalence classes.

Proposition 4.3 ind(A)X and ind(A)X satisfy the following:

1. x ∈ ind(A)X iff for all t ∈ U if (x, t) ∈ ind(A), then t ∈ X.
2. x ∈ ind(A)X iff there is t ∈ U such that (x, t) ∈ ind(A) and t ∈ X.

Proposition 4.4 The following relations hold.

1. ind(A)∅ = ∅, ind(A)U = U
2. ind(∅)X = ∅ for X �= U, ind(∅)U = U,

ind(∅)X = U for X �= ∅, ind(∅)∅ = ∅,

3. ind(A)X ⊆ X ⊆ ind(A)X
4. ind(A)ind(A)X = ind(A)X, ind(A)ind(A)X = ind(A)X,

ind(A)ind(A)X = ind(A)X, ind(A)ind(A)X = ind(A)X
5. X ⊆ Y implies ind(A)X ⊆ ind(A)Y and ind(A)X ⊆ ind(A)Y
6. ind(A) ⊆ ind(B) implies ind(B)X ⊆ ind(A)X and ind(A)X ⊆ ind(B)X for

any X ⊆ U.
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Proposition 4.5 The following relations for complement hold.

1. ind(A)X ∪ ind(A)(−X) = U
2. ind(A)X ∩ ind(A)(−X) = ∅
3. −ind(A)X = ind(A)(−X)

4. −ind(A)X = ind(A)(−X),

Proposition 4.6 The following relations for union and intersection hold.

1. ind(A)X ∪ ind(A)Y ⊆ ind(A)(X ∪ Y )

2. X ∩ Y = ∅ implies ind(A)(X ∪ Y ) = ind(A)X ∪ ind(A)Y
3. ind(A)(X ∩ Y ) = ind(A)X ∩ ind(A)Y
4. ind(A)(X ∪ Y ) = ind(A)X ∩ ind(A)Y
5. ind(A)(X ∩ Y ) ⊆ ind(A)X ∩ ind(A)Y

A set X ⊆ U is said to be

A-definable iff ind(A)X = X = ind(A)X or X = ∅
roughly A-definable iff ind(A)X �= ∅ and ind(A)X �= U
internally A-definable iff ind(A)X = ∅
externally A-definable iff ind(A)X = U
totally A-non-definable iff it is internally A-non-definable

and externally A-non-definable

We can define sets of A-positive, A-negative and A-bordeline instances of a set
X ⊆ U .

POS(A)X = ind(A)X ,
NEG(A)X = −ind(A)X ,
BOR(A)X = ind(A)X − ind(A)X

Intuitivelly, if s ∈ POS(A)X , then in view of agents from A element s is a
member of X . If s ∈ NEG(A)X , then in view of agents from A element s is not
a member of X . BOR(A)X is the range of uncertainty. Element s ∈ BOR(A)X
whenever agents from A cannot decide whether s is a member of X or not.

For these sets, we have the following propositions:

Proposition 4.7 We have the following:

1. POS(A)X, NEG(A)X, BOR(A)X are pairwise disjoint.
2. POS(A)X ∪ NEG(A)X ∪ BOR(A)X = U.
3. POS(A)X, NEG(A)X, BOR(A)X are A-definable.

Proposition 4.8 We have the following:

1. A ⊆ B implies POS(A)X ⊆ POS(B)X, NEG(A)X ⊆ NEG(B)X,

BOR(B)X ⊆ BOR(A)X.
2. ind(A) ⊆ ind(B) implies POS(B)X ⊆ POS(A)X, NEG(B)X ⊆

NEG(A)X, BOR(A)X ⊆ BOR(B)
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Proposition 4.9 We have the following:

1. POS(A)X ⊆ X, NEG(A)X ⊆ −X
2. POS(A)∅ = ∅, NEG(A)U = ∅
2. POS(∅)X = ∅ if X �= U, POS(∅)U = U
4. N EG(∅)X = ∅ if X �= ∅, NEG(∅)∅ = U
5. X ⊆ Y implies POS(A)X ⊆ POS(A)Y, NEG(A)Y ⊆ NEG(A)X.

Proposition 4.10 We have the following:

1. POS(A)X ∪ POS(A)Y ⊆ POS(A)(X ∪ Y )

2. If X ∩ Y = ∅ then POS(A)(X ∪ Y ) = POS(A)X ∪ POS(B)Y
3. POS(A)(X ∩ Y ) = POS(A)X ∩ POS(A)Y
4. N EG(A)(X ∪ Y ) = NEG(A)X ∩ NEG(A)Y
5. N EG(A)X ∪ NEG(A)Y ⊆ NEG(A)(X ∪ Y )

6. N EG(A)(−X) = POS(A)X

Proposition 4.11 We have the following:

1. BOR(A)(X ∪ Y ) ⊆ BOR(A)X ∪ BOR(A)Y
2. X ∩ Y = ∅ implies BOR(A)(X ∪ Y ) = BOR(A)X ∪ BOR(A)Y
3. BOR(A)(X ∩ Y ) ⊆ BOR(A)X ∩ BOR(A)Y
4. BOR(A)(−X) = BOR(A)X

Proposition 4.12 We have the following:

1. POS(A)X ∪ POS(B)X ⊆ POS(A ∪ B)X
2. POS(A ∩ B)X ⊆ POS(A)X ∩ POS(B)X
3. N EG(A)X ∪ NEG(B)X ⊆ NEG(A ∪ B)X
4. N EG(A ∩ B)X ⊆ NEG(A)X ∩ NEG(B)X.

Proposition 4.13 We have the following:

1. POS(A)POS(A)X = POS(A)X
2. POS(A)NEG(A)X = NEG(A)X
3. N EG(A)NEG(A)X = −NEG(A)X
4. N EG(A)POS(A)X = −POS(A)X

We define a family of knowledge operators K (A) for A ∈ AGT :
K (A)X = POS(A)X ∪ NEG(A)X .

Intuitively, s ∈ K (A)X whenever s can be decided by agents from A to be A-
positive or A-negative instance of X .

Proposition 4.14 We have the following:

1. K (A)∅, K (A)U = U
2. K (∅)X = ∅ if X �= U
3. ind(A) ⊆ ind(B) implies K (B)X ⊆ K (A)X for all X ⊆ U
4. A ⊆ B implies K (A)X ⊆ K (B)X for all X ⊆ U
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5. If X is A-definable, then K (A)X = U

We say that knowledge of agents A about X is:

complete iff K (A)X = U
incomplete iff BOR(A)X �= ∅
rough iff POS(A)X, NEG(A)X, BOR(A)X �= ∅
pos-empty iff POS(A)X = ∅
neg-empty iff NEG(A)X = ∅
empty iff it is pos-empty and neg-empty.

If knowledge of A about X is complete, then A can discern X from its complement.
Every A has a complete knowledge about any A-definable set, in particular, about ∅
and U . The fact that knowledge of any agent about the whole universe is complete
should not be considered to be a paradox.

A predicate whose extension equals U provides a trivial, in a sense, information.
In any particular example U represents the set of “all things perceivable by agents”.
However, if U consists of all formulas of the predicate calculus, and X ⊆ U is the
set of all the valid formulas, then clearly not every agent has the complete knowledge
about X , although he has the complete knowledge about U .

Observe that X ⊆ Y does not imply K (A)X ⊆ K (A)Y , and K (A)X is not
necessarily included in X . By these facts, we can avoid the well-known paradoxes of
epistemic logic, where all the formulas known by anyone are valid, and every agent
knows all the logical consequences of his knowledge.

Proposition 4.15 The following conditions are equivalent:

1. K (A)X is complete.
2. X is A-definable.
3. BOR(A)X = ∅.

4. POS(A)X = −NEG(A)X.

It follows that if agents A have complete knowledge about X , then they can tell
X from its complement.

Proposition 4.16 The following conditions are equivalent:

1. K (A)X is rough.
2. X is roughly A-definable.
3. ∅ �= BOR(A)X �= U.

4. POS(A)X ⊆ −NEG(A)X.

Proposition 4.17 The following conditions are equivalent:

1. K (A)X is pos-empty.
2. X is internally A-non-definable.
3. K (A)X = POS(A)X.

4. BOR(A)X = −NEG(A)X.
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Proposition 4.18 The following conditions are equivalent:

1. K (A)X is neg-empty.
2. X is externally A-non-definable.
3. K (A)X = POS(A)X.

4. BOR(A)X = −POS(A)X.

Proposition 4.19 The following conditions are equivalent:

1. K (A)X is empty.
2. X is totally A-non-definable.
3. BOR(A)X = U.

Proposition 4.20 The following hold:

1. K (A)X ⊆ K (B)X for all X ⊆ U implies ind(B) ⊆ ind(A).
2. ind(A) = ind(B) iff K (A)X = K (B)X for all X ⊆ U.
3. ind(A) ⊆ ind(B) implies K (B)X ⊆ POS(B)K (A)X and POS(A)K (B)X ⊆

K (A)X.
4. ind(A) is the identity on U iff K (A)X is complete for all X.

Proposition 4.21 The following hold:

1. K (A)X = K (A)(−X)

2. K (A)K (A)X = U
3. K (A)X ∪ K (B)X ⊆ K (A ∪ B)X
4. K (A ∩ B)X ⊆ K (A)X ∩ K (B)X.

Next, we discuss the independence of agents. A set A of agents is said to be
dependent iff there is B ⊂ A such that K (A)X = K (B)X for all X ⊆ U . A set A is
independent if it is not dependent.

Proposition 4.22 The following conditions are equivalent:

1. A is independent.
2. For every B ⊂ A there is X ⊆ U such that K (B)X ⊂ K (A)X.

Proposition 4.23 The following hold:

1. If A is independent, then every of its subsets is independent.
2. If A is dependent, then every of its supersets is dependent.

Proposition 4.24 If AGT is independent, then for any A, B ⊆ AGT , the following
conditions are satisfied:

1. K (A)X ⊆ K (B)X for all X implies A ⊆ B.
2. ind(A ∩ B) = (ind(A) ∪ ind(B))∗.
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The intuitive meaning of independence of a set of agents is that if we drop some
agents from the independent set, then knowledge of the group of the remaining agents
is less than knowledge of the whole group.

Similarly, if a set is dependent, then some of its elements are superfluous, we can
drop them without changing knowledge of the group.

We say that a set B of agents is superfluous in a set A iff for all X ⊆ U , we have
K (A − B)X = K (A)X .

Proposition 4.25 The following hold:

1. If a set A is dependent, then there is B ⊂ A such that B is superfluous in AGT .
2. A set S is dependent iff there is B ⊂ A such that B is superfluous in A.

Next, we concern joint knowledge and common knowledge. Knowledge relative
to indiscernibility ind(A ∪ B) can be considered to be a joint knowledge of A and
B. ind(A ∪ B) is not greater than indiscernibility relations ind(A) and ind(B).

Proposition 4.26 K (A)X, K (B)X ⊆ K (A ∪ B)X.

Hence, a joint knowledge of a group of agents is not less than knowledge of any
member of the group.

Knowledge relative to indiscernibility ind(A ∩ B) can be considered to be a
common knowledge of A and B. To discuss common knowledge, we have to admit
non-transitive indiscernibility relations. Here, we introduce the following notation:

ind(A) ◦ ind(B) = ind(AB), where ◦ is the composition of relations,
(ind(A) ∪ ind(B))∗ = ind({A, B}∗).

Here, {A, B}∗ is the set of all finite sequences with elements from the set {A, B}.
For S ∈ {A, B}∗, ind(S) is the composition of ind(A) for all the elements A of

sequence S.

Proposition 4.27 The following hold:

1. ind(A), ind(B) ⊆ ind(AB)

2. ind({A, B}∗) ⊆ ind(A ∩ B)

3. If ind(AB) = ind(BA), then ind({A, B}∗) = ind(AB)

4. If ind(A) ⊆ ind(B), then ind(AC) ⊆ ind(BC) and ind(CA) ⊆ ind(CB) for
any C ⊆ AGT

5. If AGT is independent, then ind({A, B}∗) = ind(A ∩ B).

Observe that for S ∈ {A, B}∗, the relation ind(S) is not necessarily transitive.

Proposition 4.28 K (A ∩ B)X ⊆ K (S)X for any S ∈ {A, B}∗.
Hence, common knowledge of A and B is included in the knowledge relative to

composition of relations ind(A) and ind(B).



4.7 Logics for Reasoning About Knowledge 115

Orlowska defined a propositional language with a family of relative knowledge
operators. Each operator is determined by a set of parameters interpreted as knowl-
edge agents.

Let CON AGT be a set of constants which are to be interpreted as sets of agents.
We define the set EX PAGT of agent expressions:

CON AGT ⊆ EX PAGT ,
A, B ∈ EX PAGT imples −A, A ∪ B, A ∩ B ∈ EX PAGT .

Let V ARPROP be a set of propositional variables. The set FOR of formulas
is the smallest set satisfying the following conditions:

V ARPROP ⊆ FOR
F,G ∈ FOR implies ¬F, F ∨ G, F ∧ G, F → G, F ↔ G ∈ FOR
A ∈ EX PAGT, F ∈ FOR imply K (A)F ∈ FOR

The set FOR is closed with respect to classical propositional connectives and
knowledge operators determined by agent expressions.

Let an epistemic system E = (U, AGT, {ind(A)}A∈AGT ) be given. By a model,
we mean a system M = (E,m), where m is a meaning function assigning sets of
states to propositional variables, sets of agents to agent constants, and moreover m
satisfies the following conditions:

m(p) ⊆ U for p ∈ V ARPROP ,
m(A) ⊆ AGT for A ∈ CON AGT ,
m(A ∪ B) = m(A) ∪ m(B),
m(A ∩ B) = m(A) ∩ m(B),
m(−A) = −m(A).

Wedefine inductively a family of set extM F (extension of formula F inmodelM)
for any F ∈ FOR:

extM p = m(p) for p ∈ V ARPROP ,
extM (¬F) = −extM F ,
extM (F ∨ G) = extM F ∪ extM G,
extM (F ∧ G) = extM F ∩ extM G,
extM (F → G) = extM(¬F ∨ G),
extM (F ↔ G) = extM((F → G) ∧ (G → F)),
extM K (A)F = K (m(A))extM F .

We say that a formula F is true in a model M (|=M F) iff extM F = U and a
formulas F is valid (|= F) iff it is true in all models.

Observe that formulas of the form K (A)F → F and (F → G) ∧ K (A)F →
K (A)G are not valid. This means that if F is known by an agent, then F is not
necessarily true, and agents do not know all the consequences of their knowledge.
Thus, the system can avoid well-known paradoxes in epistemic logic.

In the following, we list some facts about knowledge of agents which can be
expressed in the logic.
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Proposition 4.29 The following hold:

1. |= (F ↔ G) implies |= (K (A)F ↔ K (A)G)

2. |= F implies |= K (A)F
3. |= K (A)F → K (A)K (A ∪ N )F
4. |= K (A ∪ B)K (A)F → K (A ∪ B)F
5. |= (K (A)F ∨ K (B)F) → K (A ∪ B)F
6. |= K (A ∩ B)F → K (A)F ∧ K (B)F
7. |= K (A)F ↔ K (A)(¬F)

8. |= K (A)(K (A)F → F)

Here, (4) says that knowledge of a group of agents exceeds knowledge of a part
of the group. (7) results from the fact that agents A can tell extension of F from its
complement iff they can tell extension of ¬F from its complement.

Observe that |= F implies |= K (A)F . This fact is often considered to be a
paradox of ideal knowers. However, it seems to be less paradoxical by using the
interpretations of knowledge as the ability to decide the membership question.

It follows from the fact that the whole universe U is A-definable for any A. In
other words, whatever a perception ability of A is (whatever ind(A) is), equivalence
classes of all the elements from U over U .

Orlowska’s logic is significantly different from standard epistemic logic
(cf. Hintikka [28], Fagin et al. [29], Halpern et al. [30, 31]), although it is based
on Kripke semantics. Her logic can in fact overcome several defects of epistemic
logic, and can be considered to be an interesting alternative for a logic of knowledge.

Orlowska only developed the semantics for her logics, and complete axiomatiza-
tions are open. However, for applications to real problems, we have to investigate a
proof theory for logics for reasoning about knowledge.

In Orlowska’s approach, approximation operators are based on Pawlak’s rough
set theory, but they can be generalized in several ways. One of the interesting gener-
alizations is to define knowledge operators relative with respect to arbitrary binary
relations byusing the generalized notion of approximation of a set; seeOrlowska [25].

Let R be a binary relation in a set U . For x ∈ U , we define a neighbourhood of
x with respect to R:

nR(x) = {y ∈ U | (x, y) ∈ R or (y, x) ∈ R}
Then, by lower (upper) approximation of a set X ⊆ U , we mean the union of

those neighbourhoods which are included in X (which have an element in common
with X ).

To define the respective knowledge operators, we assume that with every set A
of agents there is associated a relation R(A) in the set U . The corresponding epis-
temic structure is (U, AGT, {R(A)}A⊆AGT , {K (A)}A⊆AGT ), where R : P(AGT ) →
P(U ×U ) assigns binary relations to sets of agents, and K : P(AGT ) → P(U ) is
an operator such that K (A)(X) is the union of the lower approximation of X and the
complement of the upper approximations of X with respect to R(A).



4.7 Logics for Reasoning About Knowledge 117

Thus, Kripke structures can be generalized with accessibility relations determined
by sets of parameters as:

(KR) K = (W, PAR, RL , {R(P)}P⊆PAR,R∈REL)

where W is a non-empty set of worlds (or states, objects, etc.), PAR is a non-
empty set whose elements are called parameters, elements of set REL are mapping
R : P(PAR) → P(W × W ) which assign binary relation in set W to subseteq of
set PAR. Moreover, we assume that R(P) satisfies the following conditions:

R(∅) = W × W
R(P ∪ Q) = R(P) ∩ R(Q)

The first condition says that the empty set of parameters does not enable us to
distinguish any worlds. The second condition says that if we have more parameters
then the relation is smaller, less worlds will be glue together.

We here observe that the axiomatization of logics based on Kripke models with
relative accessibility relations is an open problem.

4.8 Logics for Knowledge Representation

Although Orlowska’s logic is concerned with reasoning about knowledge, we can
find several (modal) logics for knowledge representation in the literature, some of
which are closely related to rough set theory.

In this section, we review these logics. The starting point of such approaches
is an information system introduced by Pawlak [32]. An information system is a
collection of pieces of information which have the form: object, a list of properties
of the object. Object is anything that can be used in a subject position of a natural
language sentence.

Although object can be composed and structured in information systems, they are
treated as indivisible wholes. Properties of objects are expressed by attributes and
their values.

By formal terms, an information system is determined by specifying a non-empty
set OB of objects, a non-empty set AT of attributes, a family {V ALa}a∈AT of sets
of values of attributes, and an information function f which assigns properties to
objects.

There are two types of information functions.Deterministic information function
is a function of the form f : OB × AT → V AL = ⋃{V ALa | a ∈ AT } which
assigns a value of attribute to object. It is assumed that for any x ∈ OB and a ∈ AT
we have f (x, a) ∈ V ALa .

Functions of this type determines properties of objects in deterministic way,
namely property is uniquely assigned to object.

The other type of information function is non-deterministic information function
of the form f : OB × AT → P(V AL), which assigns a subset of the set of values
of attribute to object.
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Non-deterministic information function reflects incompleteness of information
about properties of objects. The function says what is the range of possible values
of every attribute for an object, but the value itself is not known.

An information system is defined as a structure of the form:

S = (OB, AT, {V ALa}a∈AT , f )

If f is a deterministic information function, then system S is called deterministic
information system, and if f is non-deterministic information function, then S is
called non-deterministic information system, respectively.

Information about properties of objects is a basic explicit information included in
information systems. From that information, we can derive some other information
which is usually expressed in terms of binary relations in the set of objects.

Let A ⊆ AT be a set of attributes. By an indiscernibility relation determined by
a set A, we mean the relation ind(A) ⊆ OB × OB defined as:

(x, y) ∈ ind(A) iff f (x, a) = f (y, a) for all a ∈ AT

For the empty set of attributes, we assume ind(∅) = OB × OB. Thus, two objects
stand in relation ind(A) whenever they cannot be distinguished one from the other
by means of properties determined by the attribute from the set A.

The following proposition states the basic properties of indiscrniblity relations:

Proposition 4.30 The following properties hold for ind:

1. ind(A) is reflexive, symmetric and transitive.
2. ind(A ∪ B) = ind(A) ∩ ind(B).

3. (ind(A) ∪ ind(B))∗ ⊆ ind(A ∩ B).

4. A ⊆ B imples ind(B) ⊆ ind(A).

Here, (1) says that indiscernibility relations are equivalence relations. Equivalence
class of ind(A) consists of those objects which are indistinguishable up to attributes
from the set A.

(2) says that discrimination power of the union of sets of attributes is better than
that of the parts of the union. Consequently, the algebra ({ind(A)}A⊆AT ,∩) is a lower
semilattice with the zero element ind(AT ).

Indiscernibility of objects plays a crucial role inmany applications in which defin-
ability of the set of objects is important in terms of properties of single objects. Indis-
cernibility relations can be derived both from deterministic and non-deterministic
information systems.

In connection with non-deterministic information systems, several other relations
have been discussed; see Orlowska and Pawlak [33].

Let S be a non-deterministic information system. We define a family of similarity
relations for A ⊆ AT , denoted sim(A):

(x, y) ∈ sim(A) iff f (x, a) ∩ f (y, a) �= ∅ for all a ∈ A.
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We can also consider weak similarity of objects:

(x, y) ∈ wsim(A) iff there is a ∈ A such that f (x, a) ∩ f (y, a) �= ∅.
For some applications, negative similarity might be interesting:

(x, y) ∈ nsim(A) iff − f (x, a) ∩ − f (y, a) �= ∅ for all a ∈ A.

Information inclusionof objects (in(A)) andweak information inclusion (win(A))
are defined as follows:

(x, y) ∈ in(A) iff f (x, a) ⊆ f (y, a) for all a ∈ A
(x, y) ∈ win(A) iff there is a ∈ A such that f (x, a) ⊆ f (y, a).

Observe that the given relations are not independent, they satisfy the following
conditions:

Proposition 4.31 The following conditions hold:

1. (x, y) ∈ in(A) and (x, z) ∈ sim(A) imply (y, z) ∈ sim(A).
2. (x, y) ∈ ind(A) implies (x, y) ∈ in(A).
3. (x, y) ∈ in(A) and (y, x) ∈ in(A) imply (x, y) ∈ ind(A).

It is natural to connect information systems and modal logics. A Kripke structure
is of the formK = (W, R), whereW is a non-empty set of possible worlds or states,
and R ⊆ W × W is a binary relation called a accessibility relation.

With every information system of the form (S), we can associate a corresponding
Kripke structure K(S), where set OB is considered to be the universe and relations
determined by the system is considered to be accessibility relations (cf. [34]).

Accessibility relations for indiscernibility are assumed to be equivalence rela-
tions. Similarity relations are reflexive and symmetric, and information inclusion is
reflexive and transitive.

However, we have to assume that a family of indiscernibility relations is closed
under intersection, that conditions (1), (2), (3) in Proposition 4.31 are satisfied in
K(S), providing relationships between indiscernibility, similarity and information
inclusion.

Several modal logics for reasoning about objects in information systems have
been proposed. Fariñas del Cerro and Orlowska [35] developed data analysis logic
DAL . The logic can handle inferences in the presence of incomplete information.

Data analysis can be understood as a process of obtaining patterns in a set of data
items. They considered two main tasks involved in data analysis in DAL , namely

(1) to aggregate data into sets according to their properties,
(2) to define properties adequate for characterization of sets of data.

Obviously, these two tasks are necessary for data analysis.
DAL defined formal counterparts of sets of data and properties. Namely, sets of

data are defined by means of the language of DAL and properties are defined by
means of relational expressions.
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Thus, data are identified with a non-empty set of objects and a family of equiv-
alence relations on this set. Objects will be interpreted as data items and relations
correspond to properties of data items. Each property induces an equivalence relation
such that an equivalence class of the relation consists of those objects which are the
same with respect to this property.

The language of DAL includes modal operators interpreted as operations of
lower and upper approximations determined by indiscernibility relations. Semantics
of DAL is given by Kripke structures with indiscernibility relations. An algebraic
structure is assumed in the set of indiscernibility relations, namely the set is closed
under intersection and transitive closure of union of relations.

Expressions of DAL are built with symbols from the following pairwise disjoint
sets:

V ARPROP: a denumerable set of propositional variables
{I N Di }: a denumerable set of relational constants (i is a natural number)
{∩,∪∗}: the set of relational operations of intersection and transitive closure of
union
{¬,∨,∧,→}: the set of classical propositional operations of negation, disjunction
and implication
{[ ], 〈 〉}: the set of modal operators.

The set EREL of relational expressions is the smallest set satisfying the following
conditions:

CON REL ⊆ EREL
I ND1, I N D2 ∈ EREL implies I N D1 ∩ I N D2, I N D1 ∪∗ I N D2 ∈ EREL

The set FOR of formulas is the smallest set such that:

V ARPROP ⊆ FOR
F,G ∈ FOR implies ¬F, F ∨ G, F ∧ G, F → G ∈ FOR
F ∈ FOR, I N D ∈ EREL imply [I N D]F, 〈I N D〉F ∈ FOR.

A semantics for DAL is given by the Kripke model of the form:

(MD) M = (OB, {Sp}p∈V ARPROP , {indi },m)

where OB is a non-empty set of objects, for any propositional variable p set Sp is
a subset of OB, for any natural number i indi is an equivalence relation inOB, and
m is a meaning function satisfying the following conditions:

(m1) m(p) = Sp for p ∈ V ARPOP , m(I N Di ) = indi for any i
(m2) m(I N D1 ∩ I N D2) = m(I N D1) ∩ m(I N D2)

(m3) m(I N D1 ∪∗ I N D2) = m(I N D1) ∪∗ m(I N D2)

(m4) m(¬F) = −m(F)

(m5) m(F ∨ G) = m(F) ∨ m(G)

(m6) m(F ∧ G) = m(F) ∧ m(G)

(m7) m(F → G) = m(F) → m(G)
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(m8) m([I N D]F) = {x ∈ OB | for all y ∈ OB if (x, y) ∈ m(I N D) then y ∈
m(F))

(m9) m(〈I N D〉F) = {x ∈ OB | there is y ∈ OB such that (x, y) ∈
m(I N D) and y ∈ m(F))

A formula is true in model M (|=M F) iff m(F) = OB. A formula F is valid
(|= F) iff F is true in all models.

In the semantics for DAL above, formulas are interpreted as subsets of the set
of objects from a model, classical propositional operations are the counterparts of
set-theoretical operations, and the modal operators [I N D] and 〈I N D〉 correspond
to operations of lower and upper approximation, respectively, with respect to indis-
cernibility relation m(I N D).

Proposition 4.32 The following hold:

(1) |=M F → [I N D]F iff m(F)ism(I N D)-definable
(2) |=M [I N D]F iff POS(m(I N D))m(F) = OB
(3) |=M ¬[I N D]F iff POS(m(I N D))m(F) = ∅
(4) |=M ¬〈I N D〉F iff N EG(m(I N D))m(F) = OB
(5) |=M 〈I N D〉F iff N EG(m(I N D))m(F) = ∅
(6) |=M 〈I N D〉F ∧ 〈I N D〉¬F iff BOR(m(I N D))m(F) = OB
(7) |=M 〈I N D〉F ∧ [I N D]¬F iff BOR(m(I N D))m(F) = ∅

Since indiscernibility relations, their intersections and transitive closures of union
are equivalence relations, operators [I N D] and 〈I N D〉 are S5 operators of neces-
sity and possibility, respectively. Hence, all the formulas which are substitutions of
theorems of S5 are valid in DAL .

Proposition 4.33 The following hold.

1. |= [I N D1]F ∨ [I N D2]F → [I N D1 ∩ I N D2]F
2. |= [I N D1 ∪∗ I N D2]F → [I N D1]F ∧ [I N D2]F

Note here that it is an open problem of finding a Hilbert style axiomatization of
DAL .

Model of the form (MD)presented above is said to be amodelwith local agreement
of indiscernibility relation whenever for any relations ind1 and ind2, and for any
object x , the equivalence class of ind1 determined by x is included in the equivalence
class of ind2 determined by x , or conversely, the class of ind2 is included in the
respective class of ind1.

The complete axiomatization of DAL with respect to the class of models with
local agreement is the following:
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(D1) All formulas having the form of classical propositional tautology
(D2) [I N D](F → G) → ([I N D]F → [I N D]G)

(D3) [I N D]F → F
(D4) 〈I N D〉F → [I N D]〈I N D〉F
(D5) [I N D ∪∗ I N D2]F → [I N D1]F ∧ [I N D2]F
(D6) (([I N D1]F → [I N D2]F) ∧ ([I N D1]F → [I N D2]F)) → ([I N D2]F →

[I N D2 ∪∗ I N D3]F)

(D7) [I N D1]F ∨ [I N D2]F → (I N D1 ∩ I N D2]F
(D8) (([I N D1]F → [I N D3]F) ∧ ([I N D2]F → [I N D3]F)) → ([I N D1 ∩

I N D2]F → [I N D3]F).

The rules of inference aemodus pones and necessitation for all operators [I N D],
i.e., A/[I N D]A. Axioms (D1)–(D4) are the standard axioms of modal logic S5.

Fariñas del Cerro and Orlowska [35] proved completeness of DAL . DAL can be
extended in various ways. Such extensions involve other operations on relations. For
example, we can add the composition of relations. Another possibility is to assume
relations which are not necessarily equivalence relations.

Balbiani [36] solved the axiomatization problem of DAL and proposed DAL∪
with a completeness result. He used a Kripke semantics with ∪-relative accessibility
relation for DAL∪. See Balibiani [36] for details.

To reason about non-deterministic information logic N I L (non-deterministic
information logic) has been introduced with modal operators determined by sim-
ilarity and information inclusion of objects; see Orlowska and Pawlak [33].

The set of formulas of the language of logic N I L is the least set including a set
V ARPOP of propositional variables and closed under classical propositional oper-
ations and modal operations [SI M], 〈SI M〉, [I N ], 〈I N 〉, [I N−1], 〈I N−1〉, where
SI M and I N are relational constants interpreted as similarity and informational
inclusion and I N−1 denotes the converse of relation I N .

Kripke models of logic N I L are systems of the form:
(MN) M = (OB, {Sp}p∈V ARPOP , {sim, in},m)

where OB is a non-empty set of objects, Sp ⊆ OB for every p ∈ V ARPROP ,
sim is a reflexive and transitive relation in OB, and moreover, we assume that the
relations satisfy the condition:

(n1) If (x, y) ∈ in and (x, z) ∈ sim, then (y, z) ∈ sim.

Meaning function m is defined as follows: m(p) = Sp for p ∈ V ARPROP ,
m(SI M) = sim,m(I N ) = in,m(I N−1) = m(I N )−1; for complex formulas built
with classical propositional operationsm is given by conditions (m4),..., (m9), where
I N D is replaced by SI M, I N , I N−1, respectively.

Set of axioms of logic N I L consists of axioms of logic B for formulas with
operators [SI M] and 〈SI M〉, axioms of logic S4 for formulas with operators
[I N ], 〈I N 〉, [I N−1], 〈I N−1〉, and the axiom corresponding to condition (n1):

(N1) [SI M]F → [I N−1][SI M][I N ]F
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Rules of inference are modus ponens and necessitation for the three modal oper-
ators of the language.

Vakarelov [37] proved thatmodels of N I L represent adequately non-deterministic
information systems, as the following proposition:

Proposition 4.34 For anymodel of the form (MN) there is a non-deterministic infor-
mation system of the form (S) with the same set OB of objects such that for any
x, y ∈ OB we have:

(x, y) ∈ sim iff f (x, a) ∩ f (y, a) �= ∅ for all a ∈ AT
(x, y) ∈ sim iff f (x, a) ⊆ f (y, a) for all a ∈ AT

Vakarelov [38] introduced information logic I L as an extension of N I L . The
language of I L includes the operators of N I L and [I N D] and 〈I N D〉 determined
by indiscernibility relation.

In the corresponding Kripkemodel, it is assumed that indiscernibility relation ind
is an equivalence relation and relations sim, in, ind satisfy condition (n1) and the
following conditions:

(n2) ind ⊆ in
(n3) in ∩ in−1 ⊆ ind

Axioms of I L include axioms of N I L , axioms of S5 for [I N D] and 〈I N D〉, and
the following axiom corresponding to (n2):

[I N ]F → [I N D]F .
Note that condition (n3) is not expressible by means of a formula of I L .
Vakarelov proved completeness of the given set of axioms for the class of models

satisfying conditions (n1) and (n2) and the class of models satisfying conditions (n1),
(n2) and (n3). He also introduced some other information logics which correspond
both to deterministic and non-deterministic information systems.

Logic N I L can reason about objects which are incompletely defined. Here, we
understand incompleteness as lack of definite information about values of attributes
for objects. By using modal operators, we can compare objects with respect to infor-
mational inclusion and similarity.

In logic I L , it is possible to deal with two kinds of incomplete information:
objects are defined up to indiscernibility, and their properties are specified non-
deterministically.

Vakarelov also investigated a duality between Pawlak’s knowledge representation
system and certain information systmes of logical type, called bi-consequence sys-
tems. He developed a complete modal logic I N F for some informational relations;
see Vakarelov [39].

Konikowska [40] proposed a modal logic for reasoning about relative similarity
based on the idea of rough set theory. She presented aKripke semantics and aGentzen
system and proved a completeness result.

As discussed in this section, logics for data analysis and knowledge representation
are also of interest to describe incompleteness of knowledge based on the concept of
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indiscernibility.We can point out that they aremore powerful than current knowledge
representation languages used in AI.

However, on the theoretical side, the problem of axiomatization remains open for
many such logics. The lack of practical proof methods is serious, and detailed studies
are needed.
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Chapter 5
A Granularity-Based Framework
of Reasoning

Abstract This chapter presents a granularity-based framework of deduction, induc-
tion, and abduction using variable precision rough set models proposed by Ziarko
and measure-based semantics for modal logic proposed by Murai et al. This is of
special importance as a general approach to reasoning based on rough set theory. We
also discuss non-monotonic reasoning, association rules in conditional logic, and
background knowledge.

5.1 Deduction, Induction and Abduction

Reasoning processes in our daily life consist of various styles of reasoning under
uncertainty, such as logical reasoning with some non-monotonicity, probabilistic
reasoning, and reasoning with ambiguity and vagueness; for example, implying con-
clusions logically from information we currently possess, finding rules from obser-
vations, and speculate reasons behind observed (or reported) facts.

In general, logical aspects of these types of reasoning processes are divided into
the following three categories:

• Deduction: A reasoning process for concluding specific facts from general rules.
• Induction: A reasoning process for providing general rules from specific facts.
• Abduction: A reasoning process for providing hypotheses that explain the given
facts.

Moreover, when we consider these types of reasoning processes, we consider not all
possible scenarios or situations that match the propositions used in them, but some
typical scenarios or situations.

For example, suppose we consider the following deduction: from the propositions
“the sun rises in the east” and “if the sun rises in the east, then the sun sets in the
west,” we conclude that “the sun sets in the west”.

In this deduction process, we do not consider all days when the sun rose in the
east, and we may consider only a small number of examples of days when the sun
rose in the east as typical situations. Moreover, because the sun set in the west on
any typical day when the sun rose in the east, we conclude that the sun sets in the
west.

© Springer International Publishing AG 2018
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In other words, typical situations in which the sun rises in the east are also typical
situations in which the sun sets in the west. This example indicates that considering
the relationship between typical situations captures aspects of deduction, induction,
and abduction in our daily life.

In this chapter, we consider the semantic characterization of deduction, induction,
and abduction by the possible world semantics of modal logic. In possible world
semantics, each non-modal sentence that represents a fact is characterized by its
truth set, i.e., the set of all possible worlds in which the non-modal sentence is true
in the given model.

We consider the truth set of a non-modal sentence as the correct representation
of the given fact. However, as we have discussed, we need to treat typical situations
related to facts, and treating only the truth sets of nonmodal sentences that represent
facts is not suitable, because these truth sets correspond to all situations that match
the facts.

Thus, we must represent typical situations based on some theory. To represent
typical situations about the facts, we consider introducing rough set theory to the
possible world semantics of modal logic as reviewed in Chap.4.

Combining the above discussions, we propose a unified framework of deduction,
induction, and abduction using granularity based on VPRS models and measure-
based semantics for modal logic. As reviewed in Chap.2, VPRS is based on the
majority relation.

LetU be a universe and X,Y be any subsets ofU . The majority inclusion relation
is defined by the measure c(X,Y ) of the relative degree of misclassification of X
with respect to Y .

Formally, the majority inclusion relation
β⊆ with a fixed precision β ∈ [0, 0.5) is

defined using the relative degree of misclassification as follows:

X
β⊆ Y iff c(X,Y ) ≤ β

where the precision β provides the limit of permissible misclassification.
Let X ⊆ U be any set of objects, R be an indiscernibility relation on U , and

the degree β ∈ [0, 0.5) be a precision. The β-lower approximation Rβ(X) and the

β-upper approximation Rβ(X) of X are defined as follows:

Rβ(X) = {x ∈ U | [x]R
β⊆ X} = {x ∈ U : c([x]R, X) ≤ β},

Rβ(X) = {x ∈ U | c([x]R, X) < 1− β}.

As mentioned in Chap.2, the precision β represents the threshold degree of mis-
classification of elements in the equivalence class [x]R to the set X . Thus, in VPRS,
misclassification of elements is allowed if the ratio of misclassification is less than β.
Note that the β-lower and -upper approximations with β = 0 correspond to Pawlak’s
lower and upper approximations.

http://dx.doi.org/10.1007/978-3-319-72691-5_4
http://dx.doi.org/10.1007/978-3-319-72691-5_2
http://dx.doi.org/10.1007/978-3-319-72691-5_2
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Table 5.1 Some properties of β-lower and upper approximations

Properties Conditions β = 0 0 < β < 0.5

Df♦ Rβ(X) = Rβ(Xc)c ◦ ◦
M Rβ(X ∩ Y ) ⊆ Rβ(X) ∩ Rβ(Y ) ◦ ◦
C Rβ(X) ∩ Rβ(Y ) ⊆ Rβ(X ∩ Y ) ◦ ×
N Rβ(U ) = U ◦ ◦
K Rβ(Xc ∪ Y ) ⊆ (Rβ(X)c ∪ Rβ(Y )) ◦ ×
D Rβ(X) ⊆ Rβ(X) ◦ ◦
P Rβ(∅) = ∅ ◦ ◦
T Rβ(X) ⊆ X ◦ ×
B X ⊆ Rβ(Rβ(X)) ◦ ◦
4 Rβ(X) ⊆ Rβ(Rβ(X)) ◦ ◦
5 Rβ(X) ⊆ Rβ(Rβ(X)) ◦ ◦

Table5.1 represents some properties of the β-lower and -upper approximations.
The symbols “◦” and “×” indicate whether a property is satisfied (◦) or may not be
satisfied (×) in the case of β = 0 and 0 < β < 0.5, respectively.

For example, by the definition of the β-lower approximation, it is easy to confirm
that the property T. Rβ(X) ⊆ X is not guaranteed to be satisfied in the case of
0 < β < 0.5. Note that symbols assigned to properties such that T correspond to
axiom schemas in modal logic, as will be mentioned later.

5.2 Measure-Based Semantics

One of the interesting extensions of modal logic approach to rough sets is what we
call measure-based semantics. It was developed by Murai et al. in [1, 2]. Instead of
using accessibility relations to interpret modal sentences, measure-based semantics
of modal logic uses fuzzy measures.

Let LML(P) be the language of modal logic ML constructed from a infinite set
of atomic sentencesP = {p1, p2, ...}. We say that a sentence is modal if it contains
at least one modal operator; else it is non-modal.

A function μ : 2U → [0, 1] is called a fuzzy measure on U if the function μ

satisfies the following three conditions:

(1) μ(U ) = 1,
(2) μ(∅) = 0,
(3) ∀XY ⊆ U (X ⊆ Y ⇒ μ(X) ≤ μ(Y )),

where 2U represents the power set of U .
Formally, a fuzzy measure model Mμ is the following triple,
Mμ = 〈U, {μx }x∈U , v〉
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where U is a set of possible worlds, and v is a valuation. {μx }x∈U is a class of fuzzy
measures μx assigned to all possible worlds x ∈ U .

In measure-based semantics of modal logic, each degree α ∈ [0, 1] of fuzzy mea-
sures corresponds to a modal operator �α . Thus, fuzzy measure models can provide
semantics of multi-modal logic with modal operators �α (α ∈ [0, 1]). However, we
here fix a degreeα and consider α-level fuzzymeasuremodels that provide semantics
of modal logic with the two modal operators � and ♦.

Similar to the case of Kripke models, Mμ, x |= p indicates that the sentence
p is true at the possible world x ∈ U by the α-level fuzzy measure model Mμ.
Interpretation of non-modal sentences is identical to that in Kripke models. On the
other hand, to define the truth value of modal sentences at each world x ∈ U in
the α-level fuzzy measure model Mμ, we use the fuzzy measure μx assigned to the
world x instead of accessibility relations.

Interpretation of modal sentences �p at a world x is defined as follows:

Mμ, x |= �p⇔ μx (‖p‖Mμ) ≥ α

where μx is the fuzzy measure assigned to x . By this definition, interpretation of
modal sentences ♦p is obtained by dual fuzzy measures as follows:

Mμ, x |= ♦p⇔ μ∗x (‖p‖Mμ) > 1− α

where the dual fuzzy measure μ∗x of the assigned fuzzy measure μx is defined as
μ∗x = 1− μx (Xc) for any X ⊆ U .

Note that the modal systems EMNP is sound and complete with respect to the
class of all α-level fuzzy measure models [1, 2]. EMNP consists of all inference
rules and axiom schemas of propositional logic and the following inference rules
and axiom schemas:

(Df♦) ♦p↔ ¬�¬p
(RE) p↔ q/�p↔ �q
(M) �(p ∧ q)→ (�p ∧�q)

(N) ��
(P) ¬�⊥

Next, we introduce α-level fuzzy measure models based on background knowledge
to characterize typical situations as amodality of modal logic using granularity based
on VPRS and measure-based semantics for modal logic.

As a basis of reasoning using granularity based on VPRS and measure-based
semantics, suppose that we have a Kripke model M = 〈U, R, v〉 consisting of the
given approximation space (U, R) and a valuation v. In the Kripke model M , any
non-modal sentence p that represents a fact is characterized by its truth set ‖p‖M .

When we consider the fact represented by the non-modal sentence p, we may not
consider all possible worlds in the truth set ‖p‖M . In such cases, we often consider
only typical situations about the fact p.
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To capture such typical situations, we examine the lower approximation of the
truth set ‖p‖ by the indiscernibility relation R, and consider each possible world in
the lower approximation of the truth set ‖p‖ as a typical situation about p based on
background knowledge about U .

Moreover, it may be useful to consider situations that are not typical about the
facts as exceptions to typical situations. Here, we represent this characteristic using
β-lower approximations of the truth sets of sentences that represent facts.

Thus, using background knowledge from the Kripke model M , we can consider
the following two sets of possible worlds about a fact p:

• ‖p‖M : correct representation of fact p
• Rβ(‖p‖M): the set of typical situations about p (situations that are not typical may
also be included)

Using the given Kripke model as background knowledge, we define an α-level fuzzy
measure model to treat typical situations about facts as β-lower approximations in
the framework of modal logic.

Definition 5.1 LetM = 〈U, R, v〉 be a Kripkemodel that consists of an approxima-
tion space (U, R) and a valuation function v : P×U → {0, 1} and α ∈ (0.5, 1] be a
fixed degree. An α-level fuzzy measure model MR

α based on background knowledge
is the following triple:

MR
α = 〈U, {μR

x }x∈U , v〉
whereU and v are the same as in M . The fuzzy measure μR

x : 2U → [0, 1] assigned
to each x ∈ U is a probability measure based on the equivalence class [x]R with
respect to R, defined by

μR
x (X) = |[x]R ∩ X |

| [x]R | , ∀X ⊆ U .

Similar to the case of Kripkemodels, we denote that a sentence p is true at a world
x ∈ U by an α-level fuzzy measure model MR

α by MR
α , x |= p. Truth valuation of

modal sentences is defined as

MR
α , x |= �p ⇔ μR

x (‖p‖MR
α ) ≥ α,

MR
α , x |= ♦p ⇔ μR

x (‖p‖MR
α ) > 1− α.

We also denote the truth set of a sentence in the α-level fuzzy measure model MR
α

by ‖p‖, which is defined by

‖p‖ = {x ∈ U : MR
α , x |= p}.

The constructed α-level fuzzy measure model MR
α from the given Kripke model

M has the following good properties:
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Theorem 5.1 Let M be a finite Kripke model such that it accessibility relation R
is an equivalence relation and MR

α be the α-level fuzzy measure model based on
the background knowledge M. For any non-modal sentence p ∈ LML(P) and any
sentence q ∈ LML(P), the following equations are satisfied:

(1) ‖p‖MR
α = ‖p‖M

(2) ‖�q‖MR
α = R1−α(‖q‖MR

α )

(3) ‖♦q‖MR
α = R1−α(‖q‖MR

α )

Proof (1) is clear from the definition of |=.
For (2), it is enough to show that any sentence q ∈ LML(P) MR

α x |= �q holds
if and only if x ∈ R1−α(‖q‖M). Suppose MR

α , x |= �q holds. By Definition 5.1,
we have μR

x (‖r‖MR
α ) ≥ α. By the definition of the relative degree of misclassifica-

tion c(X,Y ) in V PRS and the definition of the fuzzy measure μR
α , the property

μR
x (‖q‖M) ≥ α holds if and only if c([x]R, ‖q‖M ) ≤ 1 − α. Therefore, we have

x ∈ R1−α(‖q‖). (3) is also similarly proved.

We here intend to use α-level fuzzy measure models MR
α as the basis of a unified

framework for deduction, induction and abduction based on the concept of typical
situations of facts and rules used in these reasoning processes.

Thus, as we discussed in Sect. 5.1, we represent facts and rules in reasoning
processes as non-modal sentences and typical situations of facts and rules as lower
approximations of truth sets of non-modal sentences.

From (1) and (2) in Theorem 5.1, the α-level measure model MR
α based on back-

ground knowledge M exhibits the characteristics of correct representations of fact
by the truth sets of non-modal sentences and typical situations of the facts by the
(1− α)-lower approximations of truth sets of non-modal sentences.

Thus, we can read a modal sentence �p as “typically p” and represent the rela-
tionship between typical situations by modal sentences. This indicates that the mod-
els MR

α are a sufficient basis for a unified framework for deduction, induction, and
abduction.

Moreover, we have the following soundness properties of systems of modal logic
with respect to the class of all α-level fuzzy measure models based on background
knowledge.

Theorem 5.2 For any α-level fuzzy measure model MR
α based on any finite Kripke

model M such that its accessibility relation R, the following properties are satisfied
in the case of α = 1 and α ∈ (0.5, 1), respectively:

If α = 1, then all theorems of system S5 are true in MR
α ,

If α ∈ (0.5, 1), then all theorems of EMND45 are true in MR
α ,

where system EMND5 consists of the inference rules and axioms of the system EMNP
and the following axiom schemas: D: �p → ♦p, 4 : �p → ��p, 5 : ♦p →
�♦p.
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Proof It is clear from the correspondence relationship between axiom schemas and
the properties of β-lower approximations shown in Table5.1.

Theorem 5.2 indicates that the properties of α-level fuzzy measure models based
on background knowledge depend on the degree of α. If we fix α = 1, we do not
allow any exception in typical situations; else, we allow some exceptions depending
on α.

This is because, if α = 1, any α-level fuzzy measure models MR
α based on

background knowledge satisfy the axiom schema T.�p→ p; else, MR
α does not

satisfy T. Thus, if α ∈ (0.5, 1), a non-modal proposition p and a possible world
x ∈ U may exist such that x ∈ ‖�p‖MR

α but x /∈ ‖p‖MR
α ; i.e., x is considered a

typical situation of p even though p is not true at x in MR
α .

5.3 Unified Formulation of Reasoning

In this section, we characterize the reasoning processes of deduction, induction, and
abduction in α-level fuzzy measure models on the basis of background knowledge
as reasoning processes based on typical situations.

Now, we treat deduction based on typical situations. Deduction is a reasoning
process with the following form:

p→ q If P, then Q.

p P.

q Therefore, Q.

where the left side illustrates the formulation of deduction, and the right side illus-
trates the meaning of the sentence appearing in each deductive step. It is well known
that deduction is identical to the inference rule modus ponens used in almost all
two-valued logic.

Note also that deduction is a logically valid inference, where “logically valid”
means that if both the antecedent p and the rule p → q are true, the consequent
q is guaranteed to be true. Hereafter, we assume that all sentences p, q, etc. that
represent facts and rules such as p→ q are non-modal sentences.

Let M = (U, R, v) be a Kripke model that consists of an approximation space
(U, R) and a valuation function v that is given as background knowledge. In the
framework of possible world semantics, we can illustrate deduction as follows:

M |= p→ q (In any situation) If P, then Q.

M, x |= p (In a situation) P.

M, x |= q (In the situation) Q.

Here, we consider deduction based on typical situations. Let MR
α be an α-level fuzzy

measure model based on background knowledge with a fixed degree α ∈ (0.5, 1].
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True rules are represented by inclusion relationships between truth sets as follows:

MR
α |= p→ q ⇔ ‖p‖MR

α ⊆ ‖q‖MR
α . (5.1)

As the monotonicity of β-lower approximation is satisfied for all β ∈ [0, 0.5); thus,
we have the relationship,

MR
α |= �p→ �q ⇔ ‖�p‖MR

α ⊆ ‖�q‖MR
α . (5.2)

If we consider the truth set of�p as the set of typical situations of p, then from (5.2),
every element x ∈ ‖�p‖MR

α is also an element in the truth set of �q, and therefore,
we can conclude that all situations typical of p are also typical of q.

Consequently, using the α-level fuzzy measure model MR
α , we can characterize

deduction based on typical situations by the following valid reasoning:

MR
α |= �p→ �q If (typically) P, then (typically) Q.

MR
α , x |= �p (Typically) P.

MR
α , x |= �q (Typically) Q.

Note that the reasoning process of deduction based on typical situations is not affected
by a difference in the degree α. This is because property (5.2) is true for any fixed
degree α ∈ (0.5, 1], and therefore, if a possible world x is a typical situation of a
fact p and a modal sentence �p→ �q is valid in the α-level fuzzy measure model
MR

α , then x is also a typical situation of the fact q.
As an example of deduction, suppose sentences p and q have the following mean-

ings:

• p: The sun rises in the east.
• q: The sun sets in the west.

Thus, deduction is illustrated as follows:

MR
α |= �p→ �q If the sun rises in the east, then the sun sets in the west.

MR
α , x |= �p Today, the sun rises in the east.

MR
α , x |= �q The sun will set in the west today.

Wenow turn to induction based on typical situations. Induction is a reasoning process
with the following form:

p P.

q Q.

p→ q. Therefore, if P, then Q.

It is well known that induction is not logically valid. However, we often use induction
to provide general rules from specific facts.
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Induction has the following characteristic: From the fact that all observed objects
satisfying a property p also satisfy a property q, we conclude that if objects satisfy
p, they also satisfy q. Suppose that the (1− α)-lower approximation of the truth set
‖p‖MR

α of the sentence p illustrates the set of observed objects satisfying p. From the
characteristics of induction, we consider that induction based on typical situations
needs to have the form:

MR
α |= �p→ q If observed objects satisfy P, then the objects also satisfyQ.

MR
α |= p→ q If P, then Q.

This form of reasoning is not valid; however, we can consider this reasoning as
valid by assuming the property:

MR
α |= �p↔ p. (5.3)

This assumption means that we consider the set ‖�p‖MR
α of observed objects

satisfying p is identical to the set ‖p‖MR
α of all objects satisfying p; i.e., we generalize

from the typical situations of p to all situations of p. This assumption is essential
in formulating induction based on typical situations. Combining these processes of
reasoning, we characterize induction based on typical situations as follows:

MR
α |= �p→ q If observed objects satisfy P, then the objects also satisfy Q.

MR
α |= �↔ p Generalization of observation.

MR
α |= p→ q If P, then Q.

By repeating observations, we obtain more detailed background knowledge, and
assumption (5.3) may become more probable. As shown in Table5.1, in VPRS mod-
els, even though the partition becomes finer (that is, the current equivalence relation
R changes to another equivalence relation R′ such that R′ ⊆ R, the β-lower approx-
imation may not become large.

However, the following situation may result from the more detailed equivalence
relation R′:

For any q, MR
α |= �p→ q but MR′

α �|= �p→ q

This situation illustrates that by obtaining more detailed background knowledge,
we find exceptions in the observed objects such that they do not satisfy q even while
satisfying p. Therefore, in the framework of the α-level fuzzy measure model based
on background knowledge, induction has non-monotonicity.

This consideration indicates that, unlike deduction based on typical situations, the
degree of α ∈ (0.5, 1] may affect the result of induction based on typical situations;
assumption (5.3) with α = 1 may be more reliable than the assumption with α ∈
(0.5, 1). This is because if α = 1 then the modal sentence �p → p is valid in any
α-level fuzzy measure model MR

α based on background knowledge.
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On the other hand, if α ∈ (0.5, 1), this modal sentence may be not true in some
observed object x ∈ ‖�p‖MR

α , and such an object x becomes a counterexample of
the assumption.

As an example of induction and nonmonotonic reasoning, suppose sentences p
and q have the following meanings:

• p: It is a bird.
• q: It can fly.

Thus, induction and non-monotonic reasoning are illustrated as follows:

MR
α |= �p→ q All observed birds can fly.

MR
α |= �p↔ p Generalization of observation.

MR
α |= p→ q Therefore, all birds can fly.

The equivalence relation R changes to a more detailed equivalence relation R′ by
repeating observations.

MR
α �|= �p→ q Not all birds can fly.

Next, we discuss abduction which is a reasoning process with the following form:

q Q,

p→ q If P, then Q,

p Therefore, P.

From a fact q and a rule p → q, abduction infers a hypothesis p that produces the
fact q. Therefore, abduction is also called hypothesis reasoning.

Note that the form of abduction corresponds to affirming the consequent; thus,
abduction is not logically valid if the hypothesis p is false and the fact q is true.
However, we often use this form of reasoning to generate new ideas.

In general, many rules may exist that produce the fact q, and in such cases, we
need to select one rule from many pi → q (pi ∈ {p1, ..., pn}) that imply q. Thus,
using fuzzy measures assigned to typical situations of the fact q, we introduce a
selection mechanism to decide which rule to use in abduction.

Similar to the case of deduction, we consider the truth set ‖�q‖MR
α of �q as the

set of typical situations about q. For each rule pi → q that implies the fact q, we
consider the followingminimal degree of the antecedent pi in typical situations about
q.

Definition 5.2 Let p → q, q ∈ LML(P) be non-modal sentences. Then, degree
α(p | q) of p in typical situations about q is defined as follows:

α(p | q) =
{
min{μR

x (‖p‖MR
α ) | x ∈ ‖�q‖MR

α }, if ‖�q‖MR
α �= ∅,

0, otherwise.

To demonstrate the calculation of the degree α(p | q), we present an example.
Let M = (U, R, v) be a Kripke model that consists of the set of possible worlds
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U = {w1, ..., w10}, an equivalence relation R, and a valuation function v. The equiv-
alence relation R provides the following three equivalence classes:
[w1]R = {w1, w2, w3},
[w4]R = {w4, w5, w6, w7},
[w8]R = {w8, w9, w10}.

Moreover, the truth sets of three non-modal sentences p1, p2, and q in M are:
‖p1‖M = {w1, w2, w3, w4, w5, w6},
‖p2‖M = {w2, w3, w4, w5, w6, w7},
‖q‖M = {w1, w2, w3, w4, w5, w6, w7, w8}.
Note that both p1 and p2 conclude q.

Suppose we fix α = 0.7, and consider the α-level fuzzy measure mode MR
α a

based on background knowledge M . Here, for the two rules p1 → q and p2 → q,
we calculate the degrees α(p1 | q) and α(p2 | q), respectively. The set of typical
situations of q in MR

α is the set
‖�q‖ = [w1]R ∪ [w4]R = {w1, w2, w3, w4, w5, w6, w7}
For α(p1 | q), we need to calculate the degrees of the truth set ‖p‖M by the fuzzy

measures μR
x as follows:

μR
wi

(‖p1‖M) = |[w1]R ∩ ‖p1‖M |
| [w1]R | = |{w1, w2, w3} |

| {w1, w2, w3} | = 1, wi ∈ [w1]R ,

μR
w j

(‖p1‖M) = |[w4]R ∩ ‖p1‖M |
| [w1]R | = |{w4, w5, w6} |

| {w4, w5, w6, w7} | =
3

4
, w j ∈ [w4]R

Thus, we have the degree α(p1 | q) as follows:

α(p1 | q) = min

{
1,

3

4

}
= 3

4
.

Similarly, we also calculate the degree α(p2 | q) = 2
3 .

For any non-modal sentence p → q, the degree α(p | q) satisfies the following
good property.

Proposition 5.1 Let p, q ∈ LML(P) be a non-modal sentences. For any α-level
fuzzy measure model based on background knowledge MR

α with the fixed degree
α ∈ (0.5, 1], if the condition ‖�q‖MR

α �= ∅ holds, the following property is satisfied:
MR

α |= �q → �p ⇔ α(p | q) ≥ α.

Proof (⇐): Suppose that α(p | q) ≥ α holds. Because we have |�q‖MR
α �= ∅ by

the assumption of the proposition, there is a possible world y ∈ ‖�q‖MR
α such that

α(p | q) = μR
y (‖p‖MR

α ) and μR
y (‖p‖MR

α ) ≤ μR
x (‖p‖MR

α ) for all typical situations

x ∈ ‖�q‖MR
α . Because α(p | q) ≥ α holds,μR

x (‖p‖ |MR
α ) ≥ α for all x ∈ ‖�q‖MR

α .
Therefore, we have ‖�q‖MR

α ⊆ ‖�p‖MR
α , which leads to MR

α |= �q → �p.
(⇒): Suppose that MR

α |= �q → �p holds. This property implies that
‖�q‖MR

α ⊆ ‖�p‖MR
α . Moreover, because we have ‖�q‖MR

α �= ∅ by assumption,
at least one typical situation of q exists. Thus, for all typical situations x ∈ ‖�q‖MR

α

of q,
μR

x (‖p‖MR
α ) ≥ α holds. Therefore, by the definition of the degree α(p | q), we

conclude that α(p | q) ≥ α holds.
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Proposition 5.1 indicates that we can use the degree α(p | q) as a criterion to
select a rule p → q that implies the fact q. For example, from many rules pi → q
(pi ∈ {p1, ..., pn}) that imply q, we can select a rule p j → q with the highest degree
that α(p j | q) such that α(p j | q) ≥ α.

In this case, we consider the selected rule p j → q as the most universal rule to
explain the fact q in the sense that all typical situations of q fit the typical situations
of p j . Thus, in the above example, we select the rule p1 → q because we have
α(p1 | q) ≥ α = 0.7 but α(p2 | q) < α.

On the other hand, we can consider the case that no rule satisfiesDefinition 5.2 as a
situation inwhichwe cannot explain the fact q by the current background knowledge.

Therefore, by selecting the rule p → q with the highest degree α(p | q) such
that α(p | q) ≥ α, we can characterize abduction that infers p from the fact q based
on typical situations by the following form of valid reasoning:

MR
α , x |= �q (Actually) Q,

MR
α |= �q → �p Selection of a rule “if P, then Q,

MR
α , x |= �p (Perhaps) P.

By this formulation of abduction based on typical situations, it is clear that the
difference of the degree α ∈ (0.5, 1] affects the result of abduction.

As an example of abduction (or hypothesis reasoning), we consider reasoning
based on fortune-telling. Suppose sentences p1, p2, and q used in the above example
have the following meanings:

• p1: I wear some red items.
• p2: My blood type is AB.
• q: I am lucky.

Then, using the α-level fuzzy measure model MR
α based on background knowledge

M in the above example, reasoning based on fortune-telling is characterized by
abduction as follows:

MR
α , x |= �q I am very lucky today!

MR
α |= �q → �p In a magazine, I saw that “wearing red items makes you lucky”

MR
α , x |= �p Actually I wear red socks!

In this section, we have introduced an α-level fuzzy measure model based on back-
ground knowledge and proposed a unified formulation of deduction, induction, and
abduction based on this model.

Using the proposed model, we have characterized typical situations of the given
facts and rules by (1− α)-lower approximation of truth sets of nonmodal sentences
that represent the given facts and rules.

We have also proven that the system EMND45 is sound with respect to the class
of all α-level fuzzy measure models based on background knowledge. Moreover,
we have characterized deduction, induction, and abduction as reasoning processes
based on typical situations.
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In the proposed framework, deduction and abduction are illustrated as valid rea-
soning processes based on typical situations of facts. On the other hand, induction is
illustrated as a reasoning process of generalization based on observations.

Furthermore, in the α-level fuzzy measure model based on background knowl-
edge, we have pointed out that induction has non-monotonicity based on revision of
the indiscernibility relation in the given Kripke model as background knowledge and
gave an example in which a rule inferred by induction based on typical situations is
rejected by refinement of the indiscernibility relation.

5.4 Non-monotonic Reasoning

Common-sense reasoning is not generally monotonic. This means that new infor-
mation cannot invalidate old conclusions and that classical logic is not adequate to
formalize common-sense reasoning. Minsky [3] criticized classical logic as a knowl-
edge representation language. Here, some words may be in order.

Let Γ, Γ ′ be a set of formulas and A, B be formulas. In classical logic CL, if we
can prove A from Γ , then A is seen as a theorem. CL is monotonic, i.e., if Γ ⊆ Γ ′
then Th(Γ ) ⊆ Th(Γ ′), where Th(Γ ) = {B | Γ �CL B}.

Common-sense reasoning is, however, not monotonic, as Minsky observed. We
may revise old conclusions when new information is available. But, inconsistency
arises in such a case since classical logic is monotonic.

Now, consider the famous Penguin example.

(1) All birds fly.
(2) Tweety is a bird.

(1) and (2) are represented as formulas in CL as follows:

(3) ∀x(bird(x)→ f ly(x))
(4) bird(tweety)

From (3) and (4), we have:

(5) f ly(tweety)

Namely, we can conclude that Tweety flies. But, assume that new information
“Tweety is a penguin”. Consequently, the following two formulas are added to the
database:

(6) penguin(tweety)
(7) ∀x(penguin(x)→ ¬ f ly(x))

From (6) and (7), (8) can be derived:

(8) ¬ f ly(tweety)
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This is a new conclusion. If our underlying logic is classical logic, then (5) and (8)
are contradictory. In classical logic, everything can be derived, and we cannot obtain
correct information about a penguin. On the other hand, in non-monotonic logics,
we think that non-monotonic reasoning, i.e. from (5) to (8), happens.

Since the 1980s, AI researchers have proposed the so-called non-monotonic logic
which is a logical system capable of formalizing non-monotonic reasoning. There are
several non-monotonic logics, which include the non-monotonic logic ofMcDermott
andDoyle, autoepistemic logic ofMoore, default logic of Reiter, and circumscription
of McCarthy. Below, we concisely survey major non-monotonic logics.

First, we review McDermott and Doyle’s non-monotonic logic NML1; see
McDermott and Doyle [4]. The language of NML1 extends the language of first-
order classical logic with the consistency operator, denoted M. The formula MA
reads “A is consistent”. The basic idea of NML1 is to formalize non-monotonic
logic as a modal logic. In this sense, non-monotonicity can be expressed at the
object-level.

In NML1, (1) is represented as follows:

(9) ∀x(bird(x)&M( f ly(x))→ f ly(x))

The interpretation of (9) is that x is a bird and we have no counter-examples to flying,
x flies. Here, the consistency of f ly(x) means the underivability of ¬ f ly(x).

Thus, if we have the information “Tweety is a penguin”, then we have
¬ f ly(tweety). Thus, (1) cannot be applied. And the conclusion that Tweety flies
can be withdrawn due to new informarion.

In NML1, non-monotonic inference relation |∼ is defined. T |∼ A means that a
formula A is non-monotonically proved from the theory T . However, the definition
is circular, and McDermott and Doyle defined |∼ by means of fixpoint as follows:

T |∼ A ⇔ A ∈ Th(T ) = ∩{S | S = NMT (S)}
Here, the existence of the fixpoint of NMT is assumed.When there are no fixpoints

of NMT , Th(T ) = T . We define NMT as follows:

NMT (S) = Th(T ∪ AST (S))

AST (S) = {MA | A ∈ L and ¬A /∈ S} − Th(T )

Although McDermott and Doyle defined fixpoint in this way, there are several
difficulties. Indeed, the definition is mathematically strict, but it is not compatible to
our intuition. In addition, there are cases that several fixpoints exist.On these grounds,
the formalization of non-monotonic reasoning in NML1 is not appropriate.

To overcome such defects in NML1, McDermott proposed NML2 in [5]. The
essential difference of NML1 and NML2 is that the latter is based on modal logic
and the former is based on classical logic. Thus, NML2 describes non-monotonic
reasoning in terms of Kripke semantics for modal logic. Therefore, NML2 uses
ThX (T ) instead of Th(T ):

ThX (T ) = ∩{S | S = X−NMT (S)}.
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McDermott introduced a noncommittal model and proved that T |∼X A iff A is
true for every X -noncommittal model in which T is true, where X = {T,S4,S5}.
Unfortunately, the relation cannot capture the intuitive meaning of non-monotonic
reasoning. Further, as McDermott proved, monotonic and non-monotonic S5 agree.

Thus, one considered that non-monotonic modal logics have some limitations
for modeling non-monotonic reasoning. Later, the defects have been overcome by
Moore’s autoepistemic logic, and we saw some theoretical developments for non-
monotonic modal logics themselves; see Marek, Shvarts and Truszczynski [6].

Reiter proposed default logic in Reiter [7]. Its aim is to describe default reasoning
which is a reasoning by default in the lack of counter-examples. Default reasoning
is expressed by means of the inference rule called default.

Default logic is an extension of classical first-order logic and default is a meta-
level concept. This means that non-monotonic reasoning cannot be formalized in the
object-level unlike in NML1 and NML2.

A default theory is expressed as a pair 〈D,W 〉, where W is a set of formulas of
first-order logic (i.e., theory) and D is a default of the form:

(1)
A : B1, ..., Bn

C

where A is a prerequisite (prerequisite), B1, ..., Bn are a justification, and C is a
consequent, respectively. We call a default theory containing free variables a open
default and a default not containing free variables closed default, respectively.

The default of the form (2) is called normal default and (3) semi-normal default,
respectively.

(2)
A : B
B

(3)
A : B&C

C

Default (1) reads “If A is provable and B1, ..., Bn are all consistent, then we may
conclude C”. Thus, the above penguin example is described as follows:

bird(x) : f ly(x)
f ly(x)

Reiter introduced the concept of extension to describe default reasoning.An exten-
sion of the default theory δ = 〈D,W 〉 with a set E of formulas of first-order logic is
defined as a least set satisfying the following conditions:

(1) W ⊆ Γ (E)

(2) Th(Γ (E)) = Γ (E)

(3) (A : B1, ..., Bn/C) ∈ D and A ∈ Γ (E),¬B1, ...,¬Bn /∈ E ⇒ C ∈ Γ (E).

The extension of δ is defined as a fixpoint E of Γ , i.e., Γ (E) = E . Therefore,
default reasoning is expressed by means of the notion of extension. The extension
for a default theory does not always exist, but Reiter proved that for normal default
theory at least one extension exists; see [7].
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A proof theory for default logic is given by a default proof, which is different
from the one in standard logical systems. In other words, it provides a procedure for
proving whether certain formula is included in an extension.

Let δ = 〈D,W 〉 be a normal default and A be a formula. A default proof for δ is
a finite sequence D0, D1, ..., Dn each of which is a finite subset of D, satisfying the
following properties:

(1) W ∪ CONS(D0) � A
(2) for every F ∈ PRE(Di−1), W ∪ CONS(Di ) � F (1 ≤ i ≤ n)

(3) Dn = ∅
(4)

n⋃
i=0

CONS(Di ) is consistent with W .

Here, PRE(Di ) is a prerequisite, CONS(Di ) is a consequent, respectively. Reiter
showed that linear resolution can serve to give a default proof.

Etherington proposed amodel theory for default logic in [8]. It is, however, pointed
out that it is too complicate to capture the intuitive meaning of default reasoning.
Lukasiewicz developed a version of default logic to guarantee the existence of exten-
sion as an improvement of Reiter’s default logic in Lukasiewicz [9, 10]. For details
on default logic, see Etherington [8] and Besnar [11].

Autoepistemic logic was proposed by Moore [12, 13] as an alternative to McDer-
mott and Doyle’s non-monotonic logic NML1. It is a non-monotonic logic to model
beliefs of a rational agent who can reflect by himself. An agent’s beliefs always
change as the information he can obtain increases, and consequently autoepistemic
logic is a non-monotonic logic. However, autoepistemic reasoning should be distin-
guished by default reasoning performed by the lack of information.

Autoepistemic logic is an extension of classical propositional logicwith themodal
operator L. A formula LA reads “A is believed by the agent”. Thus, L corresponds
to the belief operator Bel (believe) in belief logic (cf. Hintikka [14]). Now, consider
how the beliefs of a rational agent are formalized. The point is that he should infer
about what he believes and what he does not believe.

In 1980, Stalnaker proposed the conditions the rational agent’s beliefs satisfy in
Stalnaker [15].

(1) P1, ..., Pn ∈ T and P1, ..., Pn � Q ⇒ Q ∈ T
(2) P ∈ T ⇒ LP ∈ T
(3) P /∈ T ⇒ ¬LP ∈ T

An autoepistemic theory which is a set of formulas is called stable if it satisfies
the above three conditions.

To give a semantics for autoepistemic logic,Moore later introduced autoepistemic
interpretation and autoepistemic model in Morre [12]. An autoepistemic interpreta-
tion I for autoepistemic theory T is a truth assignment to a formula satisfying the
following conditions:

(1) I satisfies the truth conditions of propositional logic PL
(2) LA is true in I ⇔ A ∈ T .
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An autoepistemic model for autoepistemic theory T is the autoepistemic inter-
pretation satisfying that all the formulas in T are true. T is semantically complete iff
T contains every formulas that is true in every model.

Moore proved that the concept stability characterizes semantically complete
autoepistemic theory. He also introduced the notion of groundedness, which cor-
responds to soundness of autoepistemic logic.

An autoepistemic theory is grounded for an agent’s assumption S, iff all the
formulas of S are contained in the logical consequence of (4):

(4) S ∪ {LA | A ∈ T } ∪ {¬LA | A /∈ T }
An autoepistemic theory T is sound if it is grounded in S. The beliefs of a rational

agent is both semantically complete and grounded with respect to his beliefs. An
autoepistemic theory T is a stable expansion of the assumption P , iff T is a logical
consequence of (5):

(5) P ∪ {LA | A ∈ T } ∪ {¬LA | A /∈ T }
Here, P is a set of formulas not containing L and A is a formulas not containing L.

Although autoepistemic and default logics are essentially different, there are con-
nections by translations as Konolige [16] showed.

Autoepistemic model is considered to be a self-referential model, but Moore [12]
proposed a Kripke type possible world model for it. It is not surprising that there is a
possible world semantics for autoepistemic logic. This is because a possible world in
a Kripke model is a world an agent believes like the actual world. Namely, an agent
believes A when it is true in a world believed to be the actual world by him.

It is known that the accessibility relation of Kripke model for modal logic S5 is
an equivalence relation. We call S5 model in which all worlds are accessible from
all worlds complete S5 model. Moore proved that a set of formulas which are true in
every complete S5 model coincides with stable autoepistemic theory.

Let K be complete S5model and V be truth assignment. Then, (K , V ) is a possible
world interpretation of T iff T is a set of formulas which are true in every world in
K . We define that (K , V ) is a possible world model for T if every formula in T is
true in (K , V ). Moore proved that there is a possible world model for autoepistemic
model of stable theory (and its converse).

Moore’s possible world model is an alternative formulation of autoepistemic
model, but in Kripke model for belief logic the belief operator is interpreted as
the necessity operator. In this sense, Moore’s possible world model is different from
standard Kripke model.

It is thus interesting to consider whether the operator L can be directly in a Kripke
model. This is to identify a modal system underlying autoepistemic logic. As Stal-
naker pointed out, autoepsitemic logic corresponds to weak S5. It is exactly the
modal system KD45. If we allow that an agent’s beliefs are inconsistent, then the
corresponding modal system is K45.

It is difficult to formalize L in autoepistemic since it is non-monotonic. If we
interpret autoepistemic reasoning inmonotonicmodal logic, difficultieswithMoore’s
model can be avoided. Such an attempt was done by Levesque [17] who introduced
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a logic of All I know, denoted OL . OL extends first-order logic with the three modal
operators L, N and O. OA reads “All I know is A”, NA reads “At least I know is
A”, and L is the one in Moore’s autoepistemic logic, respectively. OA is defined as
LA&N¬A.

Levesque axiomatized O instead of L to formalize autoepistemic reasoning. The
reason is that O can be formalized in monotonic modal logic. The Hilbert system for
OL extends first-order logic with the following axioms:

(OL1) ∗A (A is a formula not containing modal operators)
(OL2) ∗(A→ B)→ (∗A→ ∗B)

(OL3) ∀x ∗ A(x)→ ∗∀x A(x)
(OL4) A→ ∗A (All predicates in A are in the scope of modal operators)
(OL5) NA→ ¬LA (¬A is a satisfiable formula not containing modal operators)

Here, inference rules are the same as in first-order logic. The symbol ∗ denotes a
modal operator L or N.

The semantics for OL is given by a Kripke model 〈W, R, V 〉 for K D45. The
truth relation W, w |= A is defined as w(A) = 1 for all atomic formulas A. A set of
possible worlds is assumed to be a set of truth assignments w. Thus, formulas LA
and NA are interpreted as follows:

(1) W, w |= LA ⇔ ∀w′ ∈ W,W, w′ |= A
(2) W, w |= NA ⇔ ∀w′ /∈ W,W, w′ |= A

From (1) and (2), we have the interpretation of OA:

(3) W, w |= OA ⇔ W, w |= LA and ∀w′ ∈ W (W, w′ |= A⇒ w′ ∈ W )

Levesque proved that the propositional fragment of OL is complete for theKripke
semantics.

In OL , non-monotonic inference relation |∼ is defined at the object-level as fol-
lows:

(4) P |∼ A ⇔ OP → LA

The major advantage of OL is that non-monotonic reasoning can be described in
the object-language. For example, the lack of extension is written as ¬O(¬LA →
¬A), which is a theorem of OL .

The above non-monotonic logics extend classical logic to formalizing non-
monotonic reasoning. There are, however, non-monotonic theories within the frame-
work of classical logic. Circumscrption is one of such non-monotonic theories.

Circumscriptionwas introduced byMcCarthy. There are two sorts of circumscrip-
tion. One is predicate circumscription (cf. McCarthy [18]) and formula circumscrip-
tion (cf. McCarthy [19]).

In 1980, McCarthy proposed predicate circumscription which can minimize cer-
tain predicate. Let A be a first-order formula containing a predicate P(x) and A(�)

be the formula obtainable from A by substituting predicate expression � for all P
in A. Here, a predicate P is n-place predicate.
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Predicate circumscription of A(P) is defined as the following second-order for-
mula:

A(�)&∀x(�(x)→ P(x))→ ∀x(P(x)→ �(x))

Here, we describe some inferences in the block world by using circumscription.
Assume that a block world is given as follows:

(1) is_block(A)&is_block(B)&is_block(C)

(1) states that A, B and C are a block. If we minimiz the predicate is_block in (1),
then the following holds.

(2) �(A)&�(B)&�(C)&∀x(�(x) → is_block(x)) → ∀x(is_block(x) →
�(x))

Here, if we substitute (3) for (2) and use (1), then we have (4):

(3) �(x)↔ (x = A ∨ x = B ∨ x = C)

(4) ∀x(is_block(x)→ (x = A ∨ x = B ∨ x = C))

Semantics for predicate circumscription is based onminimal model. Andminimal
entailment is defined by means of minimal model. A formula q is minimally entailed
by a formula A iffq is true in allminimalmodels for A. Therefore,minimal entailment
is seen as a model-theoretic interpretation of predicate circumscription.

Here, we precisely define the concept of minimal model. Let M, N be models of
a formula A. If domains of M and N are equal, and the extensions (interpretations)
of predicates except P are equal, and the extension of P in M is included in the
extension of P in N , then M is called a submodel of N , written M ≤P N . We say
that model M is P-minimal model of A iff every model M ′ of A which is P-minimal
model of M is equal to M . Namely,

M ′ ≤P M ⇒ M ′ = M .

A minimally entails q with respect to P iff q is true in every P-minimal model
of A, written A |=P q.

McCarthy proved soundness of predicate circumscription for the above semantics.
Namely,

A �circ q ⇒ A |=P q

where �circ denotes the inference relation of circumscription. But, it is known that
its converse, i.e., completeness does not in general hold.

Predicate circumscription minimizes certain predicate by fixing other predicates.
Thus, it cannot generally deal with non-monotonic reasoning, since the extensions
of various predicates vary according to the increase of information.

For instance, even if we minimize exceptional birds (e.g. penguin), a set of flying
objects may increase. Consequently, the whole formulas in a database should be
minimized for non-monotonic reasoning.

In 1986, McCarthy proposed formula circumscription to overcome the defect
of predicate circumscription in [19]. It can minimize the whole formula and uses a
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special predicate abnormal to handle exceptions. Formula circumscription is defined
as the following second-order formula:

Circum(A; P; Z) = A(P, Z) & ¬∃pz(A(p, z) & p < P).

where P denotes a tuple of predicate constants, Z a tuple of predicate constants not
occurring in P , and A(P, Z) a formula in which the elements of P, Z occur.

There are two differences of predicate and formula circumscriptions. First, the
former speaks of a specific predicate, whereas the latter speaks of specific formula.
However, formula circumscription is reducible to predicate circumscription, provided
that we allow as variables predicates besides the one being minimized.

Second, in the above definition of formula circumscription, we use an explicit
quantifier for the predicate variable, whereas in predicate circumscription the formula
is a scheme.

By this definition, formula circumscription yields minimal interpretation of cer-
tain predicate and the predicates which is false in the interpretation means negative
information. In formula circumscription, the penguin example is described as fol-
lows:

(1) ∀x((bird(x) & ¬ab1(x))→ f ly(x))
(2) bird(tweety)

Here, (1) reads “Birds fly unless it is not an exception (ab1)”. Now,wewrite A1 for
conjunction of (1) and (2). Then, formula circumscription can give an interpretation
of minimizing the exception (ab1) about flying.

Applying formula circumscription to (1), we have (3):

(3) A1(ab1, f ly) & ¬∃p1z(A1(p1, z) & p1 < ab1)

In (3), we substitute ab1 and f ly for p1 and z, respectively, and (4) is obtained:

(4) A1(ab1, f ly) & ¬∃p1z(∀x(bird(x) & ¬p1(x) → z(x)) & bird(tweety)
& ∀x(p1(x)→ ab1(x)) & ¬∀x(ab1(x)↔ p1(x)).

Next, we substitute f alse for p1 and true for z, respectively. Then, we have (5):

(5) A1(ab1, f ly) & ¬p1z(∀x(bird(x) & ¬ f alse → true) & bird(tweety)
& ∀x( f alse→ ab1(x)) & ¬∀x(ab1(x)↔ f alse))

If ¬∀x(ab1(x) ↔ f alse) is true, there there exist predicates p1 and z, making
the second conjunct of (3) true. However, (3) intends that there are no such p1, z.
Thus, (6) holds:

(6) ∀x(ab1(x)↔ f alse)

which is equivalent to (7).

(7) ∀x¬ab1(x)
(7) is a conclusion which is obtainable from Circum(A1; ab1; f ly). Namely, from
(1) and (2), it follows that there are no exceptions. This is obvious since we do not
have the description of exceptions
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Next, we explain the representation of non-monotonic reasoning in formula cir-
cumscription. Assume that the new information (8) is added to the database A1.

(8) ¬ f ly(tweety)

Let the new database A1 & (8) be A2. Then, Circum(A2; ab1; f ly) becomes the
following:

(9) A2(ab1, f ly) & ¬∃p1z(∀x(bird(x) & ¬p1(x)→ z(x)))
& bird(tweety) & ¬z(tweety) & ∀x(p1(x)→ ab1(x))
& ¬∀x(ab1(x)↔ p1(x))).

From (8), Tweety is clearly an exception for flying, and it satisfies ab1. Here, we
substitute x = tweety for p1 corresponding to ab1. Thus, from Circum(A2; ab1;
f ly), (10) is derived.

(10) ∀x(ab1(x)↔ (x = tweety))

Consequently, the conclusion drawn from (7) is withdrawn. And substituting (10)
for (1) yields:

(11) ∀x(bird(x) & ¬(x = tweety)→ f ly(x))

which says that if x is a bird and is not Tweety then it flies. This is the formalization
of non-monotonic reasoning, which can be described in classical logic.

After McCarthy’s formula circumscription, several variants have been developed.
For example, Lifschitz proposed prioritized circumscription capable of giving a pri-
ority ofminimization of predicates in [20]. Such amechanism is of special importance
for the formalization of common-sense reasoning.

Indeed many non-monotonic logics have been developed from different perspec-
tives, it is necessary to seek general properties of non-monotonic reasoning. This
is to work out a meta-theory for non-monotonic reasoning. If meta-theory is estab-
lished, we can understand the relations of different non-monotonic logics and it is
appropriate for applications.

One of the fundamental approaches to reasoning (or logic) is to study consequence
relation. It can be seen as axiomatizing consequence relations. Gabbay firstly inves-
tigated a meta-theory for non-monotonic reasoning in this direction in Gabbay [21].

He axiomatized non-monotonic inference relation based on the minimal condi-
tions it should satisfy. In other words, non-monotonic inference relation |∼ is an
inference relation satisfying the following three properties:

(1) A ∈ Γ ⇒ Γ |∼ A
(2) Γ |∼ A and Γ |∼ B ⇒ Γ |∼ A&B
(3) Γ |∼ A and Γ, A |∼ B ⇒ Γ |∼ B

Here Γ is a set of formulas and A and B are a formula. (1) is called Reflexivity,
(2) is called Restricted Monotonicity, and (3) is called Cut, respectively.

Non-monotonic inference relation |∼ is related to monotonic inference relation �
by (4).

(4) Γ � A ⇒ Γ |∼ A
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But the converse of (4) does not hold.
Makinson studied a general theory for non-monotonic inference relations with

model theory and established some completeness results; see Makinson [22, 23] for
details.

Meta-theory for non-monotonic reasoning can be also advanced semantically. The
first such approach was done by Shoham [24]. Shoham developed preference logic
P based on preference consequence relation.

P can be formalized by the following axioms:

� A↔ B and A |∼ C ⇒ B |∼ C (Left Logical Equivalence: LLE)
� A→ B and C |∼ A ⇒ C |∼ B (Right Weakning: RW)
A |∼ A (Reflexivity)
A |∼ B and A |∼ C ⇒ A |∼ B&C (And)
A |∼ C and B |∼ C ⇒ A ∨ B |∼ C (Or)
A |∼ B and A |∼ C ⇒ A&B |∼ C (Cautious Monotonicity: CM)

Here, � denotes classical consequence relarion.
Later, Kraus, Lehmann and Magidor proved that P is complete for preference

model in [25]. Additionally, they investigate the system R which extends P with the
axiom (Rational Monotonicity; RM):

A |∼ C and A |� ¬B ⇒ A&B |∼ C (Rational Monotonicity: RM).

Preference consequence relation satisfying RM is called rational consequence
relation. Lehmann and Magidor proposed a theory of non-monotonic consequence
relation for knowledge bases in [26].

Knowledgebase is a set of knowledgewith an inference engine, and it is considered
as a generalization of database. The first formal model of database was proposed by
Codd [27], and it is the underlying basis of relational database. However, relational
database is not suited for knowledge base, since relational database has no inference
mechanisms needed for AI systems.

Therefore, a theory of knowledge base was worked out. Logic-based approaches
to knowledge base is called logic database or deductive database. It can precisely
model knowledge base in terms of formal logic, and logic programming language
like Prolog can serve as a query language.

Logic database is viewed as an extension of relational database. A relation in
relational database can be expressed as tuple. For example, assume that the tuple
(0, 1) is in the relation R in which the first element is less than the second one. Thus,
relational data (0, 1) corresponds to the predicate R(0, 1) in first-order predicate
logic. It is possible to regard a set of relational data as a set of formulas.

This implies a database can be formalized as a theory in first-order logic, and a
query is identified with deduction. The feature has a merit in that both a data model
and query can be described in first-order logic.

However, to use logic database as knowledge base, we need to represent negative
information and non-monotonic reasoning. Logic database is expressed as a set of
formulas, i.e., logic program, but we need more than facts and rules.
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To proceed our exposition, we have to give basics of logic programming: see
Kowalski [28, 29]. In 1974, Kowalski proposed to use predicate logic as a pro-
gramming language by using Robinson’s [30] resolution principle. This is a starting
point of logic programming. The first logic programming language called Prolog
was implemented in 1972; see Colmerauer [31].

Logic programming is based on the subset of first-order logic, called Horn clause
logic. A clause is of the form:

(1) A1, ..., Ak ← B1, ..., Bn

Here, A1, ..., Ak, B1, ..., Bn are an atomic formula and← denotes implication. All
variables occurring in A1, ..., Ak, B1, ..., Bn are universally quantified. Thus, (1) is
equivalent to (2) in classical logic:

(2) ∀((B1&...&Bn)→ (A1 ∨ ... ∨ Ak))

Horn clause is a clause which has at most one positive literal, and is classified as
the following three forms. A program clause is of the form (3):

(3) A← B1, ..., Bn

where A is called head and B1, ..., Bn is called body, respectively.
Unit clause is of the form (4):

(4) A←
Goal clause is of the form (5):

(4) ← B1, ..., Bn

A logic program is a finite set of Horn clauses. Computation of logic programming
is performed by resolution principle, i.e., SLD-resolution.

There are two types of semantics for logic programs, i.e., declarative semantics,
and operational semantics.

Declarative semantics declaratively interprets themeaning of programs in terms of
mathematical structures. We have model-theoretic semantics and fixpoint semantics
as declarative semantics. Operational semantics describes the input-output relation
of programs, which corresponds to the interpreter of programming language.

Van Emden and Kowalskip [32] systematically studied these semantics for Horn
clause logic programs and proved these equivalence. Let S be a set of closed formulas
ofHorn logic. Then,Herbrandmodel for S isHerbrand interpretation for S.Amodel-
theoretic semantics for logic programs is given bymeans of the leastHerbrandmodel.

We here write M(A) for all sets of Herbrand models for A. Then, the intersection
∩M(A) of all Herbrand models for A is also Herbrand model. This is called the
model intersection property.

The intersection of all Herbrand models for the program P is called the least
Herbrandmodel, denotedMP . Van Emden andKowalski proved the following result:

Theorem 5.3 Let P be a logic program and BP be Herbrand base of P. Then, the
following holds:

MP = {A ∈ BP | A is a logical consequence of P}.
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From Theorem 5.3, we can see that atomic formulas belonging to BP is a logical
consequence of P . Note that Theorem 5.3 does not in general hold for non-Horn
clause.

Fixpoint semantics defines the meaning of recursive procedure by the least fix-
point. Since the computation rules of logic programming are recursively applied to
goal clauses, it is possible to give fixpoint semantics. Observe that fixpoint semantics
is a basis of denotational semantics for programming languages; see Stoy [33] for
details.

In fixpoint semantics, the concept of lattice plays an important role. Let S be a set
and R is a binary relation on S. (S, R) is a lattice if for any s, t ∈ S there are their
least upper bound (lub) denoted s ∨ t and greast lower boud (glb) denoted s ∧ t . S
is a complete lattice if S is an ordered relation and for each subset X ⊆ S there exist
both lub and glb.

Now, we define a mapping T : S → S for complete lattie (S,≤). We say that a
mapping T is monotonic when T (s) ≤ T (s ′) if s ≤ s ′. We say that T is continuous
if T (lub(X)) = lub(T (X)) for every directed subset X ⊆ S.

We say that s ∈ S is a fixpoint of T if T (s) = s. If s ∈ S is a fixpoint of T and
for every s ′ ∈ S if T (s ′) = s ′ then s ≤ s ′, then T is the least fixpoint l f p(T ) of T .
If s ∈ S is a fixpoint of T and for every s ′ ∈ S if T (s ′) = s ′ then s ≥ s ′, then T is
the greatest fixpoint g f p(T ) of T .

Knaster-Tarski’s fixpoint theorem states there exists a fixpont of monotonic map-
ping on complete lattice. We here define transfinite sequences T ↑ ω and T ↓ ω for
lattice (S,≤) as follows:

T ↑ 0 = T (⊥)

T ↑ n + 1 = T (T ↑ n) (0 ≤ n)

T ↑ ω = lub({T ↑ n | 0 ≤ n})
T ↓ 0 = T (�)

T ↓ n + 1 = T (T ↓ n) (0 ≤ n)

T ↓ ω = glb({T ↓ n | 0 ≤ n})
where ⊥ is the minimal element of S and � is the maximal element, respectively.

If T is monotonic and continuous, then we have the following:

l f p(T ) = T ↑ ω

g f p(T ) = T ↓ ω

A basic idea of fixpoint semantics is to interpret the meaning of recursive proce-
dures by fixpoint. Let P be a program and 2BP be a set of its all Herbrand interpre-
tations. Then, the set is complete lattice with ⊆.

Next, we define transformation function TP : BP → BP corresponding to the
operation of procedures. Let I be an interpretation and P be a program. Then, TP is
defined as follows:

TP(I ) = {A ∈ BP | A ← A1, ..., An is a ground instance in P and
{A1, ..., An} ⊆ I }
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The intuitive meaning of TP is the operator on Herbrand base which corresponds to
the resolution rule.

In practice, an interpreter for logic programming language computes an answer
by applying the rule corresponding to TP in a finite time.

Theorem 5.4 MP = l f p(TP) = TP ↑ ω.

From Theorems 5.3 and 5.4, the equivalence of model-theoretic and fixpoint
semantics is established.

Theorem 5.5 The Herbrand interpretation I of a set A of procedures in a logic
program is amodel of A iff I is closedwith respect to the transformation T associated
with A.

Operational semantics for logic programming is described by resolution princi-
ple. The equivalence of operational and model-theoretic semantics follows from the
completeness of resolution.

The resolution principle for logic programming is called the SLD resolution. It
uses SL resolution for definite (Horn) clauses.

As a result, van Emden and Kowalski proved the equivalence of above three
semantics for Horn clause logic programming; see [32]. Later, Apt and van Emden
extended their results and proved soundness and completeness of SLD resolution
using fixpoint semantics in [34].

Let P be a program, G be a goal and R be a computation rule. A SLD derivation
is a finite (or infinite) sequence of goals G1,G2, ..., sequences of variants of goals
C1,C2, ..., and sequences of most general unifier (mgu) θ1, θ2, ... . Here, the variant
Ci+1 is derivable from Gi and Ci using θi and R. Computation rule R specifies how
to select a literal from a goal.

An SLD refutation is a finite derivation of P ∪ {G} with R in which the last goal
is the empty clause. A success set of program P is a set of A ∈ BP in which there
exists a SLD refutation of P ∪ {← A}.

Clark [35] proved soundness of SLD resolution.

Theorem 5.6 If there exists a SLD derivation of P ∪ {G} using R, then P ∪ {G} is
unsatisfiable.

Consequently, the success set of a program is included in the least Herbrand
model. Theorem 5.7 states soundness of SLD resolution.

Theorem 5.7 If P ∪ {G} is unsatisfiable, then there exists a SLD derivation of
P ∪ {G} with R.

In logic programming, negation is introduced by means of negation as failure
(NAF) as introduced byClark [35].Note thatNAF is different fromclassical negation.
In Prolog, NAF is defined as follows:

not(P) <- P, !, fail

not(P) <-
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Here, the procedure fail guarantees failure. In this definition, the first clause proves
P and fails by fail. If the first clause fails, then by the second clause, not(P) is
proved. The second clause is exactly the definition of CWA.

Clark proposed to interpret NAF within classical logic. Since in NAF negA is
proved when A is finitely fails, then we need to formalize the concept of “finite
failure”.

A finitely failed SLD tree of P∪{G} is a finite tree which contains success leaves.
Thus, SLD finitely failed set is a set of A ∈ BP in which there exists a finitely failed
tree of P ∪ {G},

A SLD finitely failed set FP is defined as follows;
FP = BP \ TP ↓ ω.
SLD derivation is fair if every literal in the derivation is selected in finite step.

Theorem 5.8 Let P be a program and A ∈ BP. Then, the following are equivalent:

(1) A ∈ FP

(2) A /∈ TP ↓ ω

(3) SLD tree for P ∪ {← A} with every fair computation rule R is finitely fails.

Clark introduced the notion of completion to give an interpretation of NAF in
classical logic. Completion provides the if-and-only-if definition of a clause. Since
a clause uses the if definition, it cannot derive negative information.

To deal with complete database, Clark extended the form of a clause as follows:

A(t1, ..., tn)← L1, ..., Lm

Then, we can transform a clause into the following general form:

A(t1, ..., tn)← ∃y1...∃yk(x1 = t1&....&xn = tn&L1&...&Lm)

Here, x1, ..., xn denote new variables and y1, ..., yk variables in the orginal clause,
respectively.

If the original form of a program is:

A(x1, ..., xn)← E1

...

A(x1, ..., xn)← E j

then, complete definition of a predicate A is expressed as follows:

A(x1, ..., xn)↔ E1 ∨ ... ∨ E j

The complete database comp(P) of a program P consists of a set of complete
definition of all predicates in P and assumes the following axioms:

(1) For all different constants c, d, c �= d
(2) For all different function symbols f, g, f (x1, ..., xn) �= g(x1, ..., xn)
(3) For every constant c and function symbol f , f (x1, ..., xn) �= c
(4) For every term t (x) containing x , t (x) �= x
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(5) For every function symbol f , (x1 �= y1 ∨ ... ∨ xn �= yn) → f (x1, ..., xn) �=
f (y1, ..., yn)

(6) x = x
(7) For every function symbol f , (x1 = t1&...&xn = tn) → f (x1, ..., xn) =

f (t1, ..., tn)
(8) For every predicate symbol A, (x1 = t1&...&xn = tn) → A(x1, ..., xn) →

A(t1, ..., tn).

Clearly, P is a logical consequence of comp(P). The following is an example of
completion. Let P be a program given by:

mortal(X) <- man(X)

man(socrates) <-

man(aristotle) <-

Let <- mortal(socrates) be a goal. Then, unifying with the first clause, we
have:
<- man(socrates)
where mgu is X = socrates. Next, the new goal unifies the second clause and
the empty clause is derived:
<-

Then, the original goal succeeds and we can conclude that Socrates is mortal. Here,
we give a complettion of P:
man(X)↔ (X = socrates) ∨ (X = aristotle)

From comp(P), it is possible to prove both man(socrates) and man(aristotle). If
we consider contraposition of comp(P), we get:
¬man(X)↔ (X �= socrates)&(X �= aristotle)

Consequently, we can classically prove ¬man(mary). If P is a Horn clause logic
progrm, then comp(P) is conistent, but it is generally not the case for non-Horn
clause logic programs.

For complete logic programs, the following theorem holds:

Theorem 5.9 Let P be a program and A ∈ BP. Then, A /∈ g f p(TP) iff there exist
no Herbrand models for comp(P) ∪ {A}.

The operational semantics for NAF is called SLDNF resolution or query eval-
uation procedure, which extends SLD resolution with NAF. In SLDNF resolution,
when the computation rule R selects a negative literal, it always ground one to avoid
infinite loop, i.e., floundering. The computation rule satisfying this condition is called
safe.

An SLDNF derivation of P ∪ {G} with R is a finite sequence of goals G1 =
G,G2, ..., a finite sequence of variants of program clause C1,C2, ..., and a finite
sequence of mgu θ1, θ2, ... .
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Here, Gi+1 is derivable from Gi , and there are two possibilities.

(1) G1 is← L1, ..., Lm , R selects a positive literal Lk . Aussume A← B1, ..., Bn is
unifiable input clause by Lk and A with mgu θ . Then, Gi+1 is← (L1, ...., Lk−1,
B1, ..., Bn, Lk+1, ..., Lm)θ .

(2) Gi is← L1, ..., Lm , R selects negative literal Lk = ¬A. If← A succeeds, then
¬A fails and the goal Gi also fails. If← ¬A succeeds (i.e.,← A finitely fails),
then Gi+1 is the one from Gi by deleting Lk ,
i.e.,← L1, ..., Lk+1, Lk+1, ..., Lm .

An SLDNF refutation of P ∪{G}with R is a finite SLDNF derivation of P ∪{G}
with R and its last goal is the empty clause.

Clark proved soundness of SLDNF resolution:

Theorem 5.10 Let P be a general program, G be a general goal, and R is safe
computation rule. If P ∪ {G} fails, then G is a logical consequence of comp(P).

The converse of Theorem 5.10, i.e., completeness, was proved by Jaffar, Lassez
and Lloyd [36], provided that the computation rules are restricted to fair ones.

Theorem 5.11 If A ∈ FP, then ¬A is a logical consequence of comp(P).

In logic programming, we have three means to derive negative information, i.e.,
NAF, CWA, and the Herbrand rule (cf. Lloyd [37, 38]). We have already discussed
NAF and CWA.Herbrand rulewas introduced by Lloyd, which assumes¬A if there
exist no Herbrand models for comp(P) ∪ {A}.

Lloyd summarized the relationships of these three rules.

Theorem 5.12 {A ∈ BP | ¬A is derived by NAF} = BP \ TP ↓ ω.

{A ∈ BP | ¬A is derived by Herbrand rule} = BP \ g f p(TP).

{A ∈ BP | ¬A is derived by CWA} = BP \ TP ↑ ω.

From Theorem 5.12, we can understand that CWA is the strongest rule, and the
next is CWA and the weakest is NAF. Logic programming can in fact handle negative
information. Recently, further extensions of logic programming have been done, but
we omit their survey here.

Logic database is based on first-order logic which can be used both as data model
and query language. And it is implemented by logic programming language. How-
ever, if we consider logic database as knowledge base then it has to represent negative
information and non-monotonic reasoning.

As in relational database, logic database needs integrity constraint (IC), which is
described by goal clause. IC describes the properties a database should satisfy. Logic
database DB satisfies IC when IC is a logical consequence of comp(DB). Thus, we
can see that DB must incorporate NAF. Reiter [39] have proposed a formal model
for logic database,

There are two approaches to logic database, namely proof-theoretic approach and
Model-theoretic approach. The proof-theoretic approach corresponds to the opera-
tional semantics for logic programming, we need the following three meta-rules to
enhance expressive power:
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• closed world assumption (CWA)
• unique name axiom (UNA)
• domain closure axiom (DCA)

CWA is a default rule to derive negative information, as discussed above.

(CWA) � A ⇒� ¬A
where A is a ground literal. It means that the information not derived from a

database is assumed to be false by interpreting that the information in a database is
ideally represented.

UNA assumes different entities have different names.

(UNA) a1 �= a2 & a1 �= a3 & a1 �= a4 &...

DCA assumes that existing entities belong to the domain.

(DCA) ∀x(x = a1 ∨ x = a2 ∨ ...)

In addition to these meta-rules, we assume the axioms of completion.
The model-theoretic approach to logic database is based on the model-theoretic

semantics for logic programming. Therefore, we can formalize it by means of the
least Herbrand model.

By CWA, the positive literal which is false in the least Herbrand model is inter-
preted as its negation. UNA assumes that in Herbrand interpretations constants in
the language agree with constants in the domain. By DCA, we mean that constants
which are not in the language do not exist in the domain in Herbrand interpretations.
It is also obvious that the least Herbrand model of DB is also the one of IC.

We denote by M the least Herbrand model of logic database DB. Then, a query
A(x) represents a set of constants c such that A(c) is true in M . Let ‖A(x)‖ be the
truth-value of a query A(x). Then, we have the following:

‖A(x)‖;= {c ||=M A(c)}.
Thus, the truth-value of CWA is:

‖¬A(x)‖ = {c |�|=M A(c)}
which means that positive ground literal A(c) is false in M .

Here, we focus on non-monotonic reasoning in logic database. CWA is not clas-
sical negation, and it is in fact a non-monotonic rule.

Consider the following database DB:

DB = {A→ B}
Neither A nor B can be derived from DB, namely

(1) DB � A
(2) DB � B

Then, by CWA, (3) and (4) are derived:

(3) DB + CW A � ¬A
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(4) DB + CW A � ¬B
Next, the new information A is added.

(5) DB ′ = DB ∪ {A} = {A, A→ B}
From (5), (6) holds.

(6) DB ′ + CW A � B

Thus,¬B derived in (4) is withdrawn. CWA is a simple non-monotonic rule. This
means that logic database can serve as knowledge base.

Unfortunately, CWAdoes not hold for non-Horn database. Consider the following
database DB: DB = {A ∨ B} By CWA, the following hold:

(1) DB + CW A � ¬A
(2) DB + CW A � ¬B
From (1) and (2), by CWA, we have the following:

(3) DB + CW A � ¬A&¬B
(3) is equivalent to (4).

(4) DB + CW A � ¬(A ∨ B)

But, (4) is inconsistent with DB. As in the example, CWA cannot adequately handle
disjunctive information. This implies that logic data base should be extended to
overcome the defect.

Indefinite deductive database, as proposed by Minker [40], improves deductive
database. Data in the form of non-Horn clause are allowed and CWA is replaced by
generalized closed world assumption (GCWA).

GCWA is of the form:

(GCWA) � A ∨ C ⇒� ¬A
where C is included in the set E of positive clauses which are not provable and � C .

Consider the following I DDB:

I DDB = {A ∨ B ∨ ¬C}
By GCWA, (1) is derived:

(1) I DDB + GWCA � ¬C
Assume that the information C is added. Then, (2) holds.

(2) I DDB ∪ {C} � ¬C .

which means GCWA is, like CWA, a non-monotonic rule.
GWCA can also solve the problem of null value. Its formalization considered to

be very important in incomplete database. Consider the following DB:

DB = {A(ω), B(a), B(b)}
where ω denotes a null-value (or skolem constant). Now, suppose the domain D =
{a, b}. Then, the existential statement ∃x A(x) is expressed as (1):
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(1) ∃x A(x)↔ A(a) ∨ A(b)

Here, it can be considered that A(ω) is shorthand for A(a)∨A(b). Thus, if we give
a null value A(a) ∨ A(b), then from (1), we can employ GCWA to derive negation.
Namely, we cannot deduce ¬A(a) from (1), and it is compatible to our intuition.

Another approach for disjunctive information is the stratified database due toApt,
Blair and Walker [41]. It is based on the idea that we can logically interpret negation
in deductive database when NAF and classical negation agree.

In stratified database, the representation of disjunctive information leads different
derivations of negation. Consider the following I DDB:

I DDB = {A ∨ B}
which can be written in classical logic in two forms:

(1) I DDB1 = {A← ¬B}
(2) I DDB2 = {B ← ¬A}

In (1), the stratification is ({B}, {A}), andwedenote by DB1 the stratifieddatabase.
Then, (3) holds:

(3) DB1 � A&¬B
In (2), the stratification is ({A}, {B}) and we denote by DB2 the stratified database.
Then, (4) holds:

(4) DB2 � B&¬A
There are intimate connections between stratified database and non-monotonic

reasoning, but we omit the discussion here.
The semantics of logic programs in connection with non-monotonic reasoning is

hot area. The stable model semantics was proposed by Gelfond and Lifschitz [42]
for NAF. Van Gelder et al. [43] proposed well-founded semantics for NAF.

Gelfond and Lifschitz proposed extended logic programming, which has two
kinds of negation, i.e., NAF and classical (explicit) negation in [44] and its semantics
called the answer set semantics. A similar extension may be in logic programming
with exceptions of Kowalski and Sadri [45]. Unfortunately, logically speaking, their
explicit negation in both extensions is not classical negation.

We gave an exposition of the existing non-monotonic logics. But, none of them
can be regarded as a logical system in the sense of standard logic. We prefer to use
formal logic as a basis for common-sense reasoning.

As shown in the previous section, our granularity-based framework can properly
represent non-monotonicity based on rough set theory. We can thus claim that one
dispenses with non-monotonic logics.
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5.5 Paraconsistency, Chellas’s Conditional Logics,
and Association Rules

Paraconsistency and its dual, parcompleteness are now counted as key concepts in
intelligent decision systems because so much inconsistent and incomplete informa-
tion can be found around us.

In this section, a framework of conditional models for conditional logic and their
measure-based extensions are introduced in order to represent association rules in
a logical way. Then, paracomplete and paraconsistent aspects of conditionals are
examined in the framework.

Finallywe apply conditionals into the definition of association rules in datamining
with confidence and consider their extension to the case of Dempster-Shafer theory
of evidence serving double-indexed confidence.

In classical logic, inconsistency means triviality in the sense that all sentences
become theorems. Paraconsistency means inconsistency but non-triviality. Thus, we
need new kinds of logic like paraconsistent and annotated logics [46]. Paracom-
pleteness is the dual concept of paraconsistency where the excluded middle is not
true.

We now put association rules in a framework of conditional models [47] and their
measure-based extensions (cf. [1, 2]) and examine their paracomplete and paracon-
sistent aspects in the framework. Then, we notice that the standard confidence [48]
is nothing but a conditional probability where even weights are a priori assigned to
each transaction that contains the items in question at the same time.

All of such transactions, however, donot necessarily give us such evidencebecause
some co-occurrences might be contingent. For describing such cases we further
introduce double-indexed confidence based on Dempster-Shafer theory [49, 50].
Here, we give standard and minimal conditional models.

Given a finite set P of items as atomic sentences, a language LCL(P) for con-
ditional logic is formed from P as the set of sentences closed under the usual
propositional operators such as �, ⊥, ¬, ∧, ∨,→, and↔ as well as �→ and ♦→1

(two conditionals) in the following usual way.

1. If x ∈P then x ∈ LCL(P).
2. �,⊥ ∈ LCL(P).
3. If p ∈ LCL(P) then ¬p ∈ LCL(P).
4. If p, q ∈ LCL(P) then p ∧ q, p ∨ q, p → q, p ↔ q, p �→ q, p ♦→

q ∈ LCL(P).

Chellas [47] introduces two kind of models called standard and minimal. Their
relationship is similar to Kripke and Scott-Montague models for modal logics.

Definition 5.3 A standard conditionalmodelMCL for conditional logic is a structure
〈W, f, v〉 where W is a non-empty set of possible worlds, v is a truth-assignment
function v :P ×W → {0, 1}, and f is a function f : W × 2W → 2W .

1In [47], Chellas used only �→. The latter connective ♦→ follows Lewis [51].
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The truth conditions for �→ and ♦→ in standard conditional models are given
by

1. MCL, w |= p�→q
def⇐⇒ f (w, ‖p‖M CL) ⊆ ‖q‖M CL ,

2. MCL, w |= p♦→q
def⇐⇒ f (w, ‖p‖M CL) ∩ ‖q‖M CL �= ∅,

where‖p‖M CL = {w ∈ W |MCL, w |= p}. Thus,wehave the following relationship
between the two kind conditionals:

p�→q ↔ ¬(p♦→¬q).

The function f can be regarded as a kind of selection function. That is, p�→q
is true at a world w when q is true at any world selected by f with respect to p and
w. Similarly, p♦→q is true at a world w when q is true at least at one of the worlds
selected by f with respect to p and w.

A minimal conditional models is a Scott-Montague-like extension of standard
conditional model [47].

Definition 5.4 Aminimal conditional modelMCL for conditional logic is a structure
〈W, g, v〉 where W and v are the same ones as in the standard conditional models.
The difference is the second term g : W × 2W → 22

W
.

The truth conditions for �→ and ♦→ in a minimal conditional model are given
by

1. MCL, w |= p�→q
def⇐⇒ ‖q‖M CL ∈ g(w, ‖p‖M CL),

2. MCL, w |= p♦→q
def⇐⇒ (‖q‖M CL)

C
/∈ g(w, ‖p‖M CL),

Thus, we have also the following relationship:

p�→q ↔ ¬(p♦→¬q).

Note that, if the function g satisfies the following condition
X ∈ g(w, ‖p‖M CL)⇔ ∩g(w, ‖p‖M CL) ⊆ X

for every world w and every sentence p, then, by defining

fg(w, ‖p‖M CL)
def= ∩g(w, ‖p‖M CL),

we have the standard conditional model 〈W, fg, V 〉 that is equivalent to the original
minimal model.

Next, we introducemeasure-based extensions of the previousminimal conditional
models. Such extensions are models for graded conditional logics.

Given a finite setP of items as atomic sentences, a languageLgCL(P) for graded
conditional logic is formed from P as the set of sentences closed under the usual
propositional operators such as�,⊥, ¬, ∧, ∨,→, and↔ as well as �→k and ♦→k
(graded conditionals) for 0 < k ≤ 1 in the usual way.

1. If x ∈P then x ∈ LgCL(P).
2. �,⊥ ∈ LgCL(P).
3. If p ∈ LgCL(P) then ¬p ∈ LgCL(P).
4. If p, q ∈ LgCL(P) then p ∧ q, p ∨ q, p→ q, p↔ q ∈ LgCL(P),
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5. If [p, q ∈ LgCL(P) and 0 < k ≤ 1] then p �→k q, p ♦→k q ∈LgCL(P).

A graded conditional model is defined as a family of minimal conditional model
(cf. Chellas [47]):

Definition 5.5 Given a fuzzy measure
m : 2W × 2W → [0, 1],
a measure-based conditional modelM m

gCL for graded conditional logic is a struc-
ture

〈W, {gk}0<k≤1, v〉,
whereW and V are the same ones as in the standard conditional models. gk is defined
by a fuzzy measure m as

gk(t, X)
def= {Y ⊆ 2W | m(Y, X) ≥ k}.

The model M m
gCL is called finite because so is W . Further, we call the model M m

gCL
uniform since functions {gk} in the model does not depend on any world in M m

gCL.
The truth conditions for �→k and ♦→k in a measure-based conditional model are
given by

M m
gCL, t |= p�→kq iff ‖q‖M m

gCL ∈ gk(t, ‖p‖M m
gCL),

M m
gCL, t |= p♦→kq iff (‖q‖M m

gCL)
C

/∈ gk(t, ‖p‖M m
gCL).

The basic idea of these definitions is the same as in fuzzymeasure-based semantics
for gradedmodal logic defined in [1, 2].Whenwe takem as a conditional probability,
the truth conditions of graded conditional becomes

M Pr
gCL, t |= p�→kq iff Pr(‖q‖M Pr

gCL | ‖p‖M Pr
gCL) ≥ k.

We have several soundness results based on probability-measure-based semantics
(cf. [1, 2]) shown in Table5.2.

As Chellas pointed out in his book [47], conditionals p�→q (and also p♦→q)
is regarded as relative modal sentences like [p]q (and also 〈p〉q). So we first see
paraconsistency and paracompleteness in the usual modal setting for convenience.

Let us define some standard language L for modal logic with two modal oper-
ators � and ♦. In [52], we examined some relationship between modal logics and
paraconsistency and paracompleteness.

Let us assume a language L of modal logic as usual. In terms of modal logic,
paracompleteness and paraconsistency have a close relation to the following axiom
schemata:

D �p→ ¬�¬p,
DC ¬�¬p→ �p,

because they have their equivalent expressions
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¬(�p ∧�¬p),
�p ∨�¬p,

respectively. That is, given a system of modal logic 	, define the following set of
sentences

T = {p ∈ L | �	 �p},
where �	 �p means �p is a theorem of 	. Then the above two schemata mean
that, for any sentence p

not(p ∈ T and¬p ∈ T )

p ∈ T or¬p ∈ T

respectively, and obviously the former describes the consistency of T and the latter
the completeness of T . Thus

• T is inconsistent when 	 does not contain D.
• T is incomplete when 	 does not contain DC.

A system 	 is regular when it contains the following rule and axiom schemata

p↔ q ⇒ �p↔ �q

(�p ∧�q)↔ �(p ∧ q)

Note that any normal system is regular.
In [52], we pointed out the followings. If 	 is regular, then we have

Table 5.2 Soundness results of graded conditionals by probability measures

0 < k ≤ 1
2

1
2 < k < 1 k = 1 Rules and axiom schemata

© © © RCEA. p↔q
(p�→kq)↔(q�→kq)

© © © RCEC. q↔q ′
(p�→kq)↔(p�→kq ′)

© © © RCM. q→q ′
(p�→kq)→(p�→kq ′)

© RCR. (q∧q ′)→r
((p�→kq)∧(p�→kq ′))→(p�→kr)

© © © RCN. q
p�→kq

© RCK. (q1∧···∧qn)→q
((p�→kq1)∧···∧(p�→kqn))→(p�→kq)

© © © CM. (p�→k(q ∧ r))→ (p�→kq) ∧ (p�→kr)

© CC. (p�→kq) ∧ (p�→kr)→ (p�→k(q ∧ r))

© CR. (p�→k(q ∧ r))↔ (p�→kq) ∧ (p�→kr)

© © © CN. p�→k�
© © © CP. ¬(p�→k⊥)

© CK. (p�→k(q → r))→ (p�→kq)→ (p�→kr)

© © CD. ¬((p�→kq) ∧ (p�→k¬q))

© CDC. (p�→kq) ∨ (p�→k¬q)
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(1) (�p ∧�¬p)↔ �¬�
where ⊥ ↔ ¬� and ⊥ is falsity constant, which means inconsistency itself. Thus
we have triviality:

T = L .

But if 	 is not regular, then we have no longer (1), thus, in general

T �= L ,

which means T is paraconsistent. That is, local inconsistency does not generate
triviality as global inconsistency.

Next, we apply the previous idea into conditional logics. In conditional logics,
the corresponding axiom schemata

CD. ¬((p�→q) ∧ (p�→¬q))

CDC (p�→q) ∨ (p�→¬q)

Given a system CL of conditional logic, define the following set of conditionals
(rules):

R = {p�→q ∈ LCD | �CL p�→q}.
where LCD is a language for conditional logic and �CL p�→q means p�→q is a
theorem of CL . Then the above two schemata mean that, for any sentence p

not(p�→q ∈ R and p�→¬q ∈ R)

p�→q ∈ R or p�→¬q ∈ R

respectively, and obviously the former describes the consistency of R and the latter
the completeness of R. Thus, for the set R of conditionals (rules)

• R is inconsistent when CL does not contain CD.
• R is incomplete when CL does not contain CDC.

Next, we discuss paraconsistency and paracompleteness in association rules. Let
I be a finite set of items. Any subset X in I is called an itemset in I . A database
is comprised of transactions, which are actually obtained or observed itemsets. For-
mally, we give the following definition:

Definition 5.6 A database D on I is defined as 〈T, V 〉, where
1. T = {1, 2, · · · , n} (n is the size of the database),
2. V : T → 2I .

Thus, for each transaction i ∈ T , V gives its corresponding set of items V (i) ⊆ I .
For an itemset X , its degree of support s(X) is defined by
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s(X)
def= |{t ∈ T | X ⊆ V (t)}|

|T | ,

where | · | is a size of a finite set.
Definition 5.7 Given a set of items I and a database D on I , an association rule
is an implication of the form X =⇒ Y, where X and Y are itemsets in I with
X ∩ Y = ∅.

The following two indices were introduced in [48].

Definition 5.8 1. An association rule r = (X =⇒ Y ) holds with confidence c(r)
(0 ≤ c(r) ≤ 1) in D if and only if

c(r) = s(X ∪ Y )

s(X)
.

2. An association rule r = (X =⇒ Y ) has a degree of support s(r) (0 ≤ s(r) ≤ 1)
in D if and only if

s(r) = s(X ∪ Y ).

Here, we will deal with the former index.
Mining of association rules is actually performed by generating all rules that

have certain minimum support (denoted minsup) and minimum confidence, denoted
minconf, that a user specifies. See, e.g., [48] for details of such algorithms for finding
association rules.

For example, consider the movie database in Table5.3, where AH and HMmeans
Ms. Audrey Hepburn and Mr. Henry Mancini, respectively.

If you have watched several (famous) Ms. Hepburn’s movies, you might hear
some wonderful music composed by Mr. Mancini. This can be represented by the
association rule

r = {AH} =⇒ {HM}
with its confidence

c(r) = s({AH} ∪ {HM})
s({AH}) = 0.5

and its degree of support

s(r) = | {T | {AH} ∪ {HM} ⊆ T } |
|D | = 4

100
= 0.04.

We now describe measure-based conditional models for databases. Let us regards
a finite set I of items as atomic sentences. Then, a language LgCL(I ) for graded
conditional logic is formed from I as the set of sentences closed under the usual
propositional operators such as�,⊥, ¬, ∧, ∨,→, and↔ as well as �→k and ♦→k
(graded conditionals) for 0 < k ≤ 1 in the usual way.

1. If x ∈ I then x ∈ LgCL(I ).
2. �,⊥ ∈ LgCL(I ).
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Table 5.3 Movie database

No. Transaction (movie) AH HM

1 Secret people 1

2 Monte Carlo baby 1

3 Roman holiday 1

4 My fair lady 1

5 Breakfast at Tiffany’s 1 1

6 Charade 1 1

7 Two for the road 1 1

8 Wait until dark 1 1

9 Days of wine and rose 1

10 The great race 1

11 The pink panther 1

12 Sunflower 1

13 Some like it hot

14 12 Angry men

15 The apartment

· · · · · ·
100 Les aventuriers

3. If p ∈ LgCL(I ) then ¬p ∈ LgCL(I ).
4. If p, q ∈ LgCL(I ) then p ∧ q, p ∨ q,p→ q, p↔ q ∈ LgCL(I ),
5. If [p, q ∈ LgCL(I ) and 0 < k ≤ 1] then p �→k q, p ♦→k q ∈ LgCL(I ).

A measure-based conditional model is defined as a family of minimal conditional
model (cf. Chellas [47]):

Definition 5.9 Given a database D = 〈T, V 〉 on I and a fuzzy measure m, a
measure-based conditional modelM m

gD forD is a structure 〈W, {gk}0<k≤1, v〉,where
(1) W = T , (2) for any world (transaction) t in W and any set of itemsets X in 2I ,

gk is defined by a fuzzy measure m as gk(t, X)
def= {Y ⊆ 2W | m(Y, X) ≥ k}, and

(3) for any item x in I , v(x, t) = 1 iff x ∈ V (t).

The modelM m
gD is called finite because so isW . Further, we call the modelM m

gD
uniform since functions {gk} in the model does not depend on any world inM m

gD .
The truth condition for �→k in a grade conditional model is given by

M m
gD , t |= p�→kq iff ‖q‖M m

gD ∈ gk(t, ‖p‖M m
gD ),

where

‖p‖M m
gD

def= {t ∈ W (= T ) |M m
gD , t |= p}.
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The basic idea of this definition is the same as in fuzzy-measure-based semantics
for graded modal logic defined in [1, 2].

For example, the usual degree of confidence [48] is nothing but the well-known
conditional probability, so we define function gk by conditional probability.

Definition 5.10 For a given database D = 〈T, V 〉 on I and a conditional proba-
bility

pr(B|A) = |A ∩ B|
|A| ,

its corresponding probability-based graded conditional modelM pr
gD is defined as

a structure 〈W, {gk}0<k≤1, v〉, where gk(w, X)
def= {Y ⊆ 2W | pr(t (Y ) | t (X)) ≥ k},

where t (X)
def= {w ∈ W | X ⊆ w}.

The truth condition of graded conditional is given by

M
pr
gD , t |= p�→kq iff pr(‖q‖M pr

gD | ‖p‖M pr
gD ) ≥ k.

Then, we can have the following theorem:

Theorem 5.13 Given a database D onI and its corresponding probability-based
graded conditional model

M
pr
gD , for an association rule X =⇒ Y ,

we have

c(X =⇒ Y ) ≥ k iff M pr
gD |= pX�→k pY , where | pX | = X and | pY | = Y.

We formulated association rules as graded conditionals based on probability.
Define the following set of rules with confidence k:

Rk
def= {p�→kq ∈ LgCD | �gCL p�→kq}.

Agraded conditional p�→kq is also regarded as a relative necessary sentences [p]kq
and the properties of relative modal operator [·]k are examined in Murai et al. [1, 2]
in the following correspondence:

Confidence k Systems
0 < k ≤ 1

2 EMDCN P
1
2 < k < 1 EMDN P
k = 1 K D

The former two systems are not regular, so Rk may be paraconsistent. The last one
is normal so regular.

For 0 < k ≤ 1
2 , Rk is complete but for some p and q, the both rules p�→kq and

p�→k¬q may be generated. This should be avoided.
For 1

2 < k < 1, Rk is consistent but may be paracomplete.
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The standard confidence [48] described above is based on the idea that co-
occurrences of items in one transaction are evidence for association between the
items. Since the definition of confidence is nothing but a conditional probability,
even weights are a priori assigned to each transaction that contains the items in
question at the same time. All of such transactions, however, do not necessarily give
us such evidence because some co-occurrences might be contingent.

Thus, we need a framework that can differentiate proper evidence from contingent
one and we introduce Dempster-Shafer theory of evidence (D-S theory) [49, 50] to
describe such a more flexible framework to compute confidence.

There are a variety of ways of formalizing D-S theory and, here we adopt
multivalued-mapping-based approach, which was used by Dempster [49]. In the
approach, we need two frames, one of which has a probability defined, and a multi-
valued mapping between the two frames. Given a database D = 〈T, V 〉 on I and
an association rule r = (X =⇒ Y ) in D , one of frames is the set T of transactions.

Another one is defined by

R = {r, r},
where r denotes the negation of r .

The remaining tasks are (1) to define a probability distribution pr on T : pr : T →
[0, 1], and (2) to define a multi-valued mapping Γ : T → 2R . Given pr and Γ , we
can define the well-known two kinds of functions in Dempster-Shafer theory: for
X ⊆ 2R ,

Bel(X)
def= pr({t ∈ T | Γ (t) ⊆ X}),

Pl(X)
def= pr({t ∈ T | Γ (t) ∩ X �= ∅}),

which are called belief and plausibility functions, respectively. Now, we have the
following double-indexed confidence:

c(r) = 〈Bel(r),Pl(r)〉.
Next, we introduce multi-graded conditional models for databases. Given a finite

set I of items as atomic sentences, a language LmgCL(I ) for graded conditional
logic is formed from I as the set of sentences closed under the usual propositional
operators as well as �→k and ♦→k (graded conditionals) for 0 < k ≤ 1 in the usual
way. Note that, in particular,

p, q ∈ LmgCL(I ) and 0 < k ≤ 1)⇒ p�→kq, p♦→kq ∈ LmgCL(I ).

Definition 5.11 Given a databaseD onI , amulti-graded conditional modelMmgD

for D is a structure 〈W, {{g
k
, gk}}0<k≤1, v〉, where (1) W = T , (2) for any world

(transaction) t in W and any set of itemsets X in 2I , gk is defined by belief and
plausibility functions:
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Table 5.4 Soundness results of graded conditionals by belief and plausibility functions

Belied function Rules and

axiom

schemata

Plausibility function

0 < k ≤ 1
2

1
2 < k < 1 k = 1 0 < k ≤ 1

2
1
2 < k < 1 k = 1

© © © RCEA © © ©
© © © RCEC © © ©
© © © RCM © © ©
© © © RCR ©
© © © RCN © © ©

© RCK

© © © CM © © ©
© © © CC ©
© © © CR ©
© © © CN © © ©
© © © CP © © ©

© CK

© © CD

CDC ©

g
k
(t,X )

def= {Y ⊆ 2W | Bel(Y ,X ) ≥ k},
gk(t,X )

def= {Y ⊆ 2W | Pl(Y ,X ) ≥ k},

and (3) for any item x in I , v(x, t) = 1 iff x ∈ V (t).

The modelMmgD is called finite because so isW . Here, we call the modelMmgD

uniform since functions {g
k
, gk} in themodel does not depend on anyworld inMmgD .

The truth conditions for �→k and ♦→k are given by

MmgD , w |= p�→kq iff ‖q‖MmgD ∈ g
k
(t, ‖p‖MmgD )

MmgD , w |= p♦→kq iff ‖q‖MmgD ∈ gk(t, ‖p‖MmgD ),

respectively. Its basic idea is also the same as in fuzzy-measure-based semantics for
graded modal logic defined in [1, 2, 53].

Several soundness results based on belief- and plausibility-function-based seman-
tics (cf. [1, 2, 53]) are shown in Table5.4.

Here are two typical cases. First we define a probability distribution on T by

pr(t)
def=

{
1
a , if t ∈ ‖pX‖MmgD ,
0, otherwise,
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No. Transaction (movie) AH HM pr
1 Secret people 1 1

8
2 Monte Carlo baby 1 1

8
3 Roman holiday 1 1

8
4 My fair lady 1 1

8

5 Breakfast at Tiffany’s 1 1 1
8

6 Charade 1 1 1
8

7 Two for the road 1 1 1
8

8 Wait until dark 1 1 1
8

9 Days of wine and rose 1 0
10 The great race 1 0
11 The pink panther 1 0
12 Sunflower 1 0
13 Some like it hot 0
14 12 Angry men 0
15 The apartment 0

· · · · · ·
100 Les aventuriers 0

Γ

{r,r} 0

{r} 1
2

{r} 1
2

/0 0

Fig. 5.1 An example of the strongest cases

where a = |‖pX‖MmgD |. This means that each world (transaction) t in ‖pX‖MmgD

is given an even mass (weight) 1
a . To generalize the distribution is of course another

interesting task.
Next, we shall see two typical cases of definition of Γ . First we describe strongest

cases. When we define a mapping Γ by

Γ (t)
def=

{ {r}, if t ∈ ‖pX‖MmgD ,
{r}, otherwise.

This means that the transactions in ‖pX ∧ pY‖MmgD contribute as evidence to r ,
while the transactions in ‖pX ∧ ¬pY‖MmgD contribute as evidence to r . This is the
strongest interpretation of co-occurrences.

Then, we can compute:

Bel(r) = 1

a
× b and Pl(r) = 1

a
× b,

where b = |‖pX ∧ pY‖MmgD |. Thus the induced belief and plausibility functions
collapse to the same probability measure pr: Bel(r) = Pl(r) = pr(r) = b

a , and thus

c(r) =
〈b
a

,
b

a

〉
.

Hence this case represents the usual confidence. According to this idea, in our movie
database, we can define pr and Γ in the way in Fig. 5.1.

That is, any movie in ‖AH ∧ HM‖MmgD contributes as evidence to that the rule
holds (r ), while all movie in ‖AH ∧¬HM‖MmgD contributes as evidence to that the
rule does not hold (r ). Thus we have
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No. Transaction (movie) AH HM pr
1 Secret people 1 1

8
2 Monte Carlo baby 1 1

8
3 Roman holiday 1 1

8
4 My fair lady 1 1

8

5 Breakfast at Tiffany’s 1 1 1
8

6 Charade 1 1 1
8

7 Two for the road 1 1 1
8

8 Wait until dark 1 1 1
8

9 Days of wine and rose 1 0
10 The great race 1 0
11 The pink panther 1 0
12 Sunflower 1 0
13 Some like it hot 0
14 12 Angry men 0
15 The apartment 0

· · · · · ·
100 Les aventuriers 0

Γ

{r,r} 1
2

{r} 0
{r} 1

2
/0 0

Fig. 5.2 An example of the weakest cases

({AH} =⇒ {HM}) = 〈0.5, 0.5〉.

Next, we describe weakest cases. In general, co-occurrences do not necessarily mean
actual association. The weakest interpretation of co-occurrences is to consider trans-
actions totally unknown as described as follows: When we define a mapping Γ by

Γ (t)
def=

{ {r, r}, if t ∈ ‖pX‖MmgD ,
{r}, otherwise.

This means that the transactions in ‖pX ∧ pY‖MmgD contribute as evidence to R =
{r, r}, while the transactions in ‖pX ∧¬pY‖MmgD contribute as evidence to r . Then,
we can compute Bel(r) = 0 and Pl(r) = 1

a × b, and thus

c(r) =
〈
0,

b

a

〉
.

According to this idea, in our movie database, we can define pr and Γ in the way
in Fig. 5.2.

That is, all movie in ‖AH ∧ ¬HM‖MmgD contributes as evidence to that the rule
does not hold (r ), while we cannot expect whether each movie in ‖AH∧HM‖MmgD

contributes or not as evidence to that the rule holds (r ). Thus we have

c({AH} =⇒ {HM}) = 〈0, 0.5〉.
In the case, the induced belief and plausibility functions, denoted respectively Belbpa′
and Plbpa′ , become necessity and possibility measures in the sense of Dubois and
Prade [54].

We have several soundness results based on necessity- and possibility-measure-
based semantics (cf. [1, 2, 53]) shown in Table5.5.

Finally, we describe an example of general cases. In the previous two typical cases,
one of which coincides to the usual confidence, any transaction in ‖AH∧HM‖MmgD
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Table 5.5 Soundness results of graded conditionals by necessity and possibility measures

Necessity measure
0 < k ≤ 1

Rules and
axiom schemata

Possibility measure
0 < k ≤ 1

© RCEA ©
© RCEC ©
© RCM ©
© RCR

© RCN ©
© RCK

© CM ©
© CC

CF ©
© CR ©
© CN ©
© CP ©
© CK

© CD

CDC ©

(or in ‖AH ∧ ¬HM‖MmgD ) has the same weight as evidence. It would be, however,
possible that some of ‖AH∧HM‖MmgD (or ‖AH∧¬HM‖MmgD ) doeswork as positive
evidence to r (or r ) but other part does not. Thus, we have a tool that allows us to
introduce various kinds of ‘a posteriori’ pragmatic knowledge into the logical setting
of association rules.

As an example, we assume that (1) the music of the first and second movies was
not composed by Mancini, but the fact does not affect the validity of r because they
are not very important ones, and (2) the music of the seventh movie was composed
by Mancini, but the fact does not affect the validity of r .

Then we can define Γ in the way in Fig. 5.3.
Thus, we have

c({AH} =⇒ {HM}) = 〈0.375, 0.75〉.
In general, users have such kind of knowledge ‘a posteriori.’ Thus the D-S based
approach allows us to introduce various kinds of ‘a posteriori’ pragmatic knowledge
into association rules.

In this section, we examined paraconsistency and paracompleteness that appear in
association rules in a framework of probability-based models for conditional logics.
For lower values of confidence (less than or equal to 1

2 ), both p�→kq and p�→k¬q
may be generated so we must be careful to use such lower confidence.

Further, we extended the above discussion into the case ofDempster-Shafer theory
of evidence to double-indexed confidences. Thus, the D-S based approach allows
a sophisticated way of calculating confidence by introducing various kinds of ‘a
posteriori’ pragmatic knowledge into association rules.
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No. Transaction (movie) AH HM pr
1 Secret people 1 1

8
2 Monte Carlo baby 1 1

8
3 Roman holiday 1 1

8
4 My fair lady 1 1

8

5 Breakfast at Tiffany’s 1 1 1
8

6 Charade 1 1 1
8

7 Two for the road 1 1 1
8

8 Wait until dark 1 1 1
8

9 Days of wine and rose 1 0
10 The great race 1 0
11 The pink panther 1 0
12 Sunflower 1 0
13 Some like it hot 0
14 12 Angry men 0
15 The apartment 0

· · · · · ·
100 Les aventuriers 0

Γ

{r,r} 3
8

{r} 3
8

{r} 1
4

/0 0

Fig. 5.3 An example of general cases

5.6 Background Knowledge in Reasoning

In this section, we examine some relationship between several kinds of reasoning
processes and granularity generated by background knowledge based on Murai,
Kudo and Akama [55]. We introduce two levels of objective and subjective under
background knowledge.

In particular, we put much emphasis on the role of lower approximation, whose
size depends on the granularity based on background knowledge, in several kinds of
reasoning such as deduction, conflict resolution in expert systems and robot control.

Recently in Japan, Kansei engineering provides very interesting and important
applications of rough set theory. There the concept of reducts plays an important part
in such applications. We expect this section would give Kansei community another
aspect of rough set theory, that is, adjustment of granularity.

LetU be a universe of discourse and R be an equivalence relation onU . In general,
a relation on U is a subset of the direct (Cartesian) product of U , i.e., R ⊆ U ×U .
When a pair (x, y) is in R, we write x Ry.

A relation R on U is said to be an equivalence relation just in case it satisfies the
following three properties: for every x, y, z ∈ U ,

(1) x Rx (reflexivity)
(2) x Ry ⇒ yRx (symmetry)
(3) x Ry and yRz ⇒ x Rz (transitivity)

The set [x]R defined by

[x]R = {y ∈ U | x Ry}
is called the equivalence class of x with respect to R.
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Fig. 5.4 Two kinds of approximations

The family of all equivalence classes of each element in U with respect to R is
denoted U/R, that is,

U/R = {[x]R | x ∈ U }. It is called the quotient set of U with respect to R.

Equivalence classes satisfy the following properties:

(1) x Ry ⇒ [x]R = [y]R,

(2) not (x Ry) ⇒ [x]R ∩ [y]R = ∅.
Then, the quotient set U/R gives a partition of U .

Thus, we can deal with equivalence classes as building blocks under background
knowledge induced from relation R. In fact, we can approximate a set X (unknown
object) in the two ways just illustrated in Fig. 5.4.

One way is to make an approximation from inside using the building blocks of
U/R that are contained in X :

R(X) = ∪{[x]R | [x]R ⊆ X}.
It is called the lower approximation of X with respect to R. The other is to make
an approximation from outside of X by deleting the building blocks that have no
intersection with X . Equivalently, it comes to

R(X) = ∪{[x]R | [x]R ∩ X �= ∅}.
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It is called the upper approximation of X with respect to R. Obviously, we have
the following inclusion:

R(X) ⊆ X ⊆ R(X).

Further, we use the following three terms:

(1) Positive region of X : Pos(X) = R(X)

(2) Borderline region of X : Bd(X) = R(X)− R(X)

(3) Negative region of X : Neg(X) = X − R(X).

The pair

(R(X), R(X))

is called the rough set of X with respect to R. And the pair

(U, R)

is referred as an approximation or Pawlak space.
Intuitively speaking, the size of building blocks depends on the granularity gener-

ated by a given approximation space or its quotient set. In Fig. 5.5, U/R has coarser
granularity thatU/R′ has. Thus, in general, we can understand thatU/R′ gives better
approximation that U/R.

In order to deal with degrees of granularity in a quantitative way, several kinds
of measures are introduced for the finite universe case. Among them, the following
measure is called the accuracy of X with respect to R:

αR(X) = | R(X) | / | R(X) | .
Another well-known measure is

γR(X) = | R(X) | / | X |,
which is called the quality of X with respect to R. By these measures we can have
the degree of granularity of X under background knowledge.

Now, we examine several kinds of reasoning under granularity generated from
background knowledge. Compare the present discussion with the previous one.

Here, we note objective and subjective levels of knowledge. When fact p is given,
its proposition P is just the maximum set of accessible worlds.

In ordinary reasoning, however, we cannot enumerate the total of them when
carrying out reasoning processes. In general, we could imagine some proper subset
of P at most.

One possible way of specifying such subset is that we can consider some relevant
worlds under background knowledge to be the lower approximation�P of P . This is
based on the idea that background knowledge formulates its own context with some
granularity, in which our way of observing worlds is determined.

Size of lower approximation�P depends on granularity generated by background
knowledge. P is in objective level while �P in subjective level. There are several
kinds ofmeaningof�P in each context such as set of ‘essential’ or ‘typical’ elements.
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Fig. 5.5 Adjusment of glanurarity

Logical reasoning in the usual sense, that is, deduction does not consider back-
ground knowledge. A typical rule of inference is well-known modus ponens:

p, p→ q ⇒ q (From p and p→ q infer q).

This means that we can obtain a conclusion q from a fact p and rule p → q. We
examine modus ponens in the framework of possible world semantics.

Let M = (U, R, v) be a Kripke model, where U is a set of possible worlds, R is
an accessibility relation, and v is a valuation function. Then, in M , rule p → q is
represented as set inclusion between propositions:

M |= p→ q ⇔ P ⊆ Q.

Then the rule means the following procedure:

(1) Fact p restricts the set of possible worlds that we can access under p.
(2) Then, by rule p→ q, we can find that conclusion q is true at every world in the

restricted set. That is, q is necessary under fact p.

Thus, the rule implies the monotonicity of deduction. In fact we have

p→ q ⇒ �p→ �q
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which holds in every Kripke models. We can rewrite it in a propositional level as
follows (Fig. 5.6):
P ⊆ Q ⇒ �P ⊆ �Q.

Next, we discuss non-monotonic reasoning, which is one of most typical kind of
ordinary reasoning. The Tweety example is well-known:

(1) Tweety is a bird.
Most birds fly.
Then he flies.

(2) Tweety is a penguin.
Penguins do not fly.
Then he does not fly.

Thus, the conclusion in (1) is withdrawn in (2).
Thus, the set of conclusions in non-monotonic reasoning no longer increase in

a monotonic manner and in this sense the above kind of reasoning is said to be
non-monotonic.

As stated before, the usual monotonic reasoning satisfies the monotonicity:

P ⊆ Q ⇒ �P ⊆ �Q.

while in non-monotonic reasoning in general,

P �⊂ Q, but �P ⊆ �Q

In the Tweety case, let BIRD and FLYING be the set of birds and flying objects,
respectively. Then in the objective level

BIRD �⊂ FLYING

but in the subjective level, the inclusion

�BIRD ⊆ �FLYING

holds (see Fig. 5.7).

Fig. 5.6 Deduction
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Fig. 5.7 Non-Monotonic reasoning

We turn to abduction, which has the form of reasoning:

q, p→ q ⇒ p.

Apparently it is not valid because, in general, there are many sentences which imply
q.

In 1883, Peirce introduced abduction as the inference of a case from a rule and
a result; see Peirce [56]. He argued that abduction plays a very important role in
scientific discovery in the 19th century.

Also abduction is important in human plausible reasoning, which is not necessary
correct, like fortune-telling. When possible candidates of sentences which imply q
are given, we can give an order between the candidates using lower approximation
of Q.

For example, in Fig. 5.8, we have three candidates, that is, we have three possible
implications:

p1→ q,

p2 → q,

p3→ q.

Now when q is given, we must select one of them.
For the purpose, let us consider the inclusionmeasure between Pi and�Q defined

by

Inc(Pi ,�Q) =| Pi ∩�Qi | / | Pi |.
Then, we can calculate

0 = Inc(P,�Q3) < Inc(P,�Q2) < Inc(P,�Q1) = 1

hence we can introduce the following ordering,

p1 ≥ p2 ≥ p3.

Therefore, we can first choose p1 as possible premise of abduction.
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Fig. 5.8 Abduction

Note that, in the example, the following implications with modality hold:

p1→ �q,

p2 → q,

p3→ (q ∧ ¬�q).

Wecan see the difference of strength of each possible premise for the same conclusion
q.

The similar idea in abduction can be applied to conflict resolution in expert sys-
tems. Reasoning from an expert system may need conflict resolution to extract apro-
priate conclusions from conflicts.

We are given, for example, three monotonic rules:

p→ q1,

p→ q2,

p→ q3.

Then, in a usual logical framework, we have conclusion

q1 ∧ q2 ∧ q3

In many application areas, however, like expert systems and robot control, each
conclusion is associated with action or execution, thus more than two conclusions
cannot be carried out. Hence we must choose one of them (cf. Fig. 5.9).

Again let us consider the inclusion measure between P and �Qi defined by

Inc(P,�Qi ) =| P ∩�Qi | / | P | .
Then, we can calculate

0 = Inc(P,�Q3) < Inc(P,�Q2) < Inc(P,�Q1) = 1

hence we can introduce the following ordering, q1 ≥ q2 ≥ q3.
Therefore, it is plausible that we first select q1 as possible conclusion with execution.
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Fig. 5.9 Conflict resolution

Note that, in the example, the following implications with modality hold:

p1→ �q1,

p2 → q2,

p3→ (q3 ∧ ¬�q3).

We can see the difference of strength of each possible conclusion for the same
premise p.

We have shown an important role of background knowledge and granularity in
several kinds of reasoning such as (monotonic) deduction, non-monotonic reasoning,
abduction, and conflict resolution.

Thereby we have a foundation of applying Kansei representation into reason-
ing. Adjustment of granularity with topology could provide us another important
characteristic of rough set theory in Kansei engineering as well as reducts.

Rough set theory has a close relationship with topological spaces [57] and adjust-
ment of granularity can be regarded as homomorphism between topological spaces.
Thus, we may introduce several useful concepts in topological spaces into Kansei
engineering via rough set theory.

It is worth exploring rough set theory in the context of Kansei engineering. Also
important is to implement a Kansei reasoning system and its application to recom-
mendation systems [58] and image retrieval systems [59].

Kudo et al. [58] proposed a simple recommendation system based on rough set
theory. Their recommendation method constructs decision rules from user’s query
and recommends some products by estimating implicit conditions of products based
on decision rules.

Murai et al. [59] examined a logical representation of images by means of multi-
rough sets. They introduced a level of granularization into a color space and then
defined approximations of images. Further, they extended the idea to conditionals in
images, which is expected to give a basis of image indexing and retrieval by images
themselves.



References 179

References

1. Murai, T., Miyakoshi, M., Shinmbo, M.: Measure-based semantics for modal logic. In: Lowen,
R., Roubens, M. (eds.) Fuzzy Logic: State of the Arts, pp. 395–405. Kluwer, Dordrecht (1993)

2. Murai, T., Miyakoshi, M., Shimbo,M.: Soundness and completeness theorems between the
Dempster-Shafer theory and logic of belief. In: Proceedings of the 3rd FUZZ-IEEE (WCCI),
pp. 855–858 (1994)

3. Minsky, M.: A framework for representing knowledge. In: Haugeland, J. (ed.), Mind-Design,
pp. 95–128. MIT Press, Cambridge, Mass, (1975)

4. McDermott, D., Doyle, J.: Non-monotonic logic I. Artif. Intell. 13, 41–72 (1980)
5. McDermott, D.: Nonmonotonic logic II. J. ACM 29, 33–57 (1982)
6. Marek, W., Shvartz, G., Truszczynski, M.: Modal nonmonotonic logics: ranges, characteriza-

tion, computation. In: Proceedings of KR’91, pp. 395–404 (1991)
7. Reiter, R.: A logic for default reasoning. Artif. Intell. 13, 81–132 (1980)
8. Etherington, D.W.: Reasoning with Incomplete Information. Pitman, London (1988)
9. Lukasiewicz, W.: Considerations on default logic. Comput. Intell. 4, 1–16 (1988)
10. Lukasiewicz, W.: Non-Monotonic Reasoning: Foundation of Commonsense Reasoning. Ellis

Horwood, New York (1992)
11. Besnard, P.: Introduction to Default Logic. Springer, Berlin (1989)
12. Moore, R.: Possible-world semantics for autoepistemic logic. In: Proceedings of AAAI Non-

Monotonic Reasoning Workshop, pp. 344–354 (1984)
13. Moore, R.: Semantical considerations on nonmonotonic logic. Artif. Intell. 25, 75–94 (1985)
14. Hintikka, S.: Knowledge and Belief. Cornell University Press, Ithaca (1962)
15. Stalnaker, R.: A note on non-monotonic modal logic. Artifi. Intell. 64, 183–1963 (1993)
16. Konolige, K.: On the relation between default and autoepistemic logic. Artifi. Intell. 35, 343–

382 (1989)
17. Levesque, H.: All I know: a study in autoepistemic logic. Artifi. Intell. 42, 263–309 (1990)
18. McCarthy, J.: Circumscription—a form of non-monotonic reasoning. Artifi. Intell. 13, 27–39

(1980)
19. McCarthy, J.: Applications of circumscription to formalizing commonsense reasoning. Artifi.

Intell. 28, 89–116 (1984)
20. Lifschitz, V.: Computing circumscription. In: Proceedings of IJCAI’85, pp. 121–127 (1985)
21. Gabbay, D.M.: Theoretical foundations for non-monotonic reasoning in expert systems. In:

Apt, K.R. (ed.) Logics and Models of Concurrent Systems, pp. 439–459. Springer (1984)
22. Makinson, D.: General theory of cumulative inference. In: Proceedings of the 2nd International

Workshop on Non-Monotonic Reasoning, pp. 1–18. Springer (1989)
23. Makinson, D.: General patterns in nonmonotonic reasoning. In: Gabbay, D., Hogger, C., Robin-

son, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3,
pp. 25–110. Oxford University Press, Oxford (1994)

24. Shoham, Y.: A semantical approach to nonmonotonic logics. Proc. Logic Comput. Sci., 275–
279 (1987)

25. Kraus, S., Lehmann,D.,Magidor,M.:Non-monotonic reasoning, preferencemodels and cumu-
lative reasoning. Artifi. Intell. 44, 167–207 (1990)

26. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artifi. Intell.
55(1992), 1–60 (1992)

27. Codd, E.: A relational model of data for large shared data banks. Commun. ACM 13, 377–387
(1970)

28. Kowalski, R.: Predicate logic as a programming language. In: Proceedings of IFIP’74, pp.
569–574 (1974)

29. Kowalski, R.: Logic for Problem Solving. North-Holland, Amsterdam (1979)
30. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12, 23–41

(1965)



180 5 A Granularity-Based Framework of Reasoning

31. Colmerauer, A., Kanoui, H., Pasero, R., Roussel, P.: Un Systeme de Comunication Homme-
machine en Fracais. Universite d’Aix Marseille (1973)

32. van Emden, M., Kowalski, R.: The semantics of predicate logic as a programming language.
J. ACM 23, 733–742 (1976)

33. Stoy, J.: Denotational Semantics: The Scott-Strachey Approach to Programming Language
Theory. MIT Press, Cambridge Mass (1977)

34. Apt, K.R., van Emden, M.H.: Contributions to the theory of logic programming. J. ACM 29,
841–862 (1982)

35. Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp.
293–322. Plenum Press, New York (1978)

36. Jaffar, J., Lassez, J.-L., Lloyd, J.: Completeness of the negation as failure rule. In: Proceedings
of IJCAI’83, pp. 500–506 (1983)

37. Lloyd, J.: Foundations of Logic Programming. Springer, Berlin (1984)
38. Lloyd, J.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1987)
39. Reiter, R.: On closed world data bases. In: Gallaire, H., Minker, J. (eds.) Logic Data Bases, pp.

55–76. Plenum Press, New York (1978)
40. Minker, J.: On indefinite deductive databases and the closedworld assumption. In: Loveland, D.

(ed.), Proceedings of the 6th International Conference on Automated Deduction, pp. 292–308.
Springer, Berlin (1982)

41. Apt, K., Blair, H., Walker, A.: Towards a theory of declarative knowledge. In: Minker, J. (ed.),
Foundations of Deductive Databases and Logic Programming, pp. 89–148.Morgan Kaufmann,
Los Altos (1988)

42. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings
of ICLP’88, pp. 1070–1080 (1988)

43. Van Gelder, A., Ross, K., Schipf, J.: The well-founded semantics for general logic programs.
J. ACM 38, 620–650 (1991)

44. Gelfond,M., Lifschitz, V.: Logic programswith classical negation. In: Proceedings of ICLP’90,
pp. 579–597 (1990)

45. Kowalski, R., Sadri, F.: Logic programs with exceptions. In: Proceeding of ICLP’90, pp. 598–
613 (1990)

46. Abe, J.M., Akama, S., Nakamatsu, K.: Introduction to Annotated Logics. Springer, Heidelberg
(2015)

47. Chellas, B.: Modal Logic: An Introduction. Cambridge University Press, Cambridge (1980)
48. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large

databases. In: Proceedings of the ACM SIGMOD Conference on Management of Data, pp.
207–216 (1993)

49. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math.
Stat. 38, 325–339 (1967)

50. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)
51. Lewis, D.: Counterfactuals. Blackwell, Oxford (1973)
52. Murai, T., Sato, Y., Kudo,Y.: Paraconsistency and neighborhood models in modal logic. In:

Proceedings of the 7thWorldMulticonference on Systemics, Cybernetics and Informatics, vol.
XII, pp. 220–223 (2003)

53. Murai, T.,Miyakoshi,M., Shinmbo,M.:A logical foundation of gradedmodal operators defined
by fuzzy measures. In: Proceedings of the 4th FUZZ-IEEE, pp. 151–156, Kluwer, Dordrecht
(1995); Semantics for modal logic. Fuzzy Logic State of the Arts, 395–405 (1993)

54. Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncer-
tainty. Springer, Berlin (1988)

55. Murai, T., Kudo, Y., Akama, S.: Towards a foundation of Kansei representation in human
reasoning. Kansei Eng. Int. 6, 41–46 (2006)

56. Peirce, C: Collected Papers of Charles Sanders Peirce, vol. 8. In: Hartshone, C., Weiss, P.,
Burks, A. (eds.) Harvard University Press, Cambridge, MA (1931–1936)

57. Munkers, J.: Topology, 2nd edn. Prentice Hall, Upper Saddle River, NJ (2000)



References 181

58. Kudo, Y., Amano, S., Seino, T., Murai, T.: A simple recommendation system based on rough
set theory. Kansei Eng. 6, 19–24 (2006)

59. Murai, T., Miyamoto, S., Kudo, Y.: A logical representation of images by means of multi-
rough sets for Kansei image retrieval. In: Proceedings of RSKT 2007, pp. 244–251. Springer,
Heidelberg (2007)



Chapter 6
Conclusions

Abstract This chapter gives some conclusions with the summary of the book. We
evaluate our work in connection with others. We also discuss several issues to be
investigated.

6.1 Summary

Rough set theory is very suitable to model imprecise and uncertain data, and it has
many applications. Clearly, it is also applied tomodel general reasoning. In this book,
we developed a granularity-based framework for reasoning based on modal logic.
This can characterize deduction, induction and abduction within the possible world
semantics for modal logic.

There are many logic-based approaches to reasoning in the literature. We believe
that rough set theory can serve as a promising framework. Our approach has a firm
foundation, namely a generalization of the approach to rough set theory based on
modal logic.

We have introduced an α-level fuzzymeasure model based on background knowl-
edge andproposed a unified formulation of deduction, induction, and abduction based
on this model. Using the proposed model, we have characterized typical situations of
the given facts and rules by (1− α)-lower approximation of truth sets of non-modal
sentences that represent the given facts and rules.

We have also proven that the modal system EMND45 is sound with respect to
the class of all α-level fuzzy measure models based on background knowledge.
Moreover, we have characterized deduction, induction, and abduction as reasoning
processes based on typical situations.

In the proposed framework, deduction and abduction are illustrated as valid rea-
soning processes based on typical situations of facts. On the other hand, induction
is illustrated as a reasoning process of generalization based on observations. This
means that our framework can properly model resoning processes for deduction,
induction and abduction.

Furthermore, in the α-level fuzzy measure model based on background knowl-
edge, we have pointed out that induction has non-monotonicity based on revision of
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the indiscernibility relation in the given Kripke model as background knowledge and
gave an example in which a rule inferred by induction based on typical situations is
rejected by refinement of the indiscernibility relation.

Our approach can provide a novel and generic framework for reasoning based on
modal logic, which is derived from previous modal logic approaches. This means
that standard non-classical logic, i,e., modal logic, is attractive without developing a
new theory of non-monotonicity.

We can characterize deduction, induction and abduction in a single framework.
It is difficult to deal with these three types of reasoning in a unified manner. For
example, classical logic is appropriate to deduction, but it fails tomodel induction and
abduction. Since classical logic was developed to formalize mathematical reasoning,
it is not surprising.

There are other types of logics for induction and abduction. A fuzzy (or prob-
abilistic) formulation is attractive for induction. For abduction, we generally have
to advance a specific formalization for abduction, i.e., abductive logic. Logics for
induction and abduction can be developed from different persprctives, and there is
in fact a rich literature.

We can also accommodate to non-monotonicitywhich is fundamental to common-
sense reasoning. It is known that the so-called non-monotonic logic was developed
to formalize non-monotonic reasoning. Our approach revealed that we can dispense
with non-standard logics like non-monotonic logics.

We have discussed the role of background knowledge for various types of rea-
soning. We have introduced two levels of objective and subjective under background
knowledge. The use of these levels depends on the applications under consideration.
We have also addressed the role of background knowledge for Kansei engineering.

We believe that rough set theory is of special use for providing a unified basis for
reasoning. In fact, our granularity-based framework offers one of such formulations,
which has several advantages mentioned above.

6.2 Further Issues

The work presented in this book established the foundations for general reasoning
based on rough set theory. It can properly handle various types of reasoning in AI
and related areas and opens a number of theoretical and practical problems which
should be addressed in the future research.

One of the most important directions is the treatment of iteration of deduction,
induction, and abduction in the proposed framework. All reasoning processes we
have treated in this book are one-step reasoning in that the reasoning processes are
complete after using either deduction, induction, or abduction only once. However,
for real applications, we must deal with iteration of deduction, induction, and abduc-
tion.
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Therefore, we need to extend the proposed framework to treat multiple-step rea-
soning, and we think that this extension will be closely connected to belief revision
[1, 2] and belief update [3] in the proposed framework.

Segerberg [4] proposed dynamic doxastic logic for belief revision. His logic can
describe belief revision in the object level as opposed to the orginal formulation of
belief revision. Thus, it would be further possible to incorporate fuzzy (or proba-
bilistic) measures into Segerberg’s logic.

Notice that choice of the degree α ∈ (0.5, 1] affects the results of reasoning
directly in the sense of whether and to what degree we allow the existence of excep-
tions to typical situations. However, we assumed that α is given in this book, and we
have not discussed how to choose α. Considering and introducing some criteria for
choosing α are also important for the proposed framework.

We have used modal logics based on α-level fuzzy measure model for our frame-
work, and showed their axiomatizations. Although we did not show their complete-
ness, it is interesting to prove it. For applications, we need to work out practical proof
methods using sequent and tableau calculi.

Our modal logics can cope with fuzziness, and have intimate connections with
related logics, e.g., graded modal logics. Therefore, we need to clarify precise rela-
tionships between our modal logic and related ones.

The presented framework can accommodate to paraconsistency and paracom-
pleteness. This implies that it can also formalize incomplete and inconsistent infor-
mation in intelligent systems. In formal logic, several non-classical logics for such
concepts have been developed. Unfortunately, relations to such logics are not obvi-
ous, and it is necessary to clarify the relations.

Although our framework is based on possible worlds semantics for modal logic,
it is interesting to explore alternative foundations. There are some candidates for
this purpose. Orlowska’s logic for reasoning about knowledge is very powerful for
knowledge representation, and we should further study it. In particular, we have to
find its complete axiomatization with a proof theory. Various logics for knowledge
representations should be also studied in relation to rough set theory.

For other non-classical logics, many-valued logic seems attractive. We know that
the work in this direction has been done within three-valued logic as in Avron and
Knonikowska’s approach. We believe that their approach can be extended in various
ways. The approach can be in fact expanded for four-valued logic and other many-
valued logics.

We also note that it is also promising to investigate an alternative formulation
of rough set logics on the basis of relevance logic and paraconsistent logic. Since
relevance logic is inspired by the correct interpretation of implication, it is of help
to the formulation of association rule. Paraconsistent logic may be useful to the
treatments of inconsistency in rough set theory.

Recently, Lin proposed granular computing based on rough set theory to motivate
a new type of computing in Lin [5]. This is obviously an interesting idea. It would be
thus possible to apply the idea of granular computing into various (human) reasoning
processes. The work in this line may be found in Murai et al. [6, 7]. It is clear that
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the approach is also closely related to Kansei engineering, and more work should be
done.

We hope to tackle these issues in our future papers and books. We should also
work out several applications using our framework in a number of areas from AI to
engineering.
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