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Preface

Applied environmental biotechnology is the field of environmental science 
and biology that involves the use of living organisms and their by-products in 
solving environmental problems like waste and wastewaters. It includes not 
only the pure biological sciences such as genetics, microbiology, biochemis-
try, and chemistry but also subjects from outside the sphere of biology, such 
as chemical engineering, bioprocess engineering, information technology, 
and biophysics.

Cleaning up the contamination and dealing rationally with wastes is, of 
course, in everybody’s best interests. Considering the number of problems 
in the field of environmental biotechnology and microbiology, the role of 
bioprocesses and biosystems for environmental cleanup and control based 
on the utilization of microbes and their products is highlighted in this work. 
Environmental remediation, pollution control, detection, and monitoring 
are evaluated considering the achievement as well as the perspectives in the 
development of environmental biotechnology. Various relevant articles are 
chosen up to illustrate the main areas of environmental biotechnology: indus-
trial waste water treatment, soil treatment, oil remediation, phytoremedia-
tion, microbial electroremediation, and development of biofuels dealing with 
microbial and process engineering aspects. The distinct role of environmen-
tal biotechnology in future is emphasized considering the opportunities to 
contribute new approaches and directions in remediation of a contaminated 
environment, minimizing waste releases, and developing pollution preven-
tion alternatives using the end-of-pipe technology. To take advantage of these 
opportunities, new strategies are also analyzed and produced. These methods 
would improve the understanding of existing biological processes in order to 
increase their efficiency, productivity, flexibility, and repeatability.

The responsible use of biotechnology to get economic, social, and environ-
mental benefits is highly attractive since the past, such as fermentation prod-
ucts (beer, bread) to modern technologies like genetic engineering, rDNA 
technology, and recombinant enzymes. All these techniques are facilitating 
new trends of environment monitoring. The twenty-first century has found 
microbiology and biotechnology as an emerging area in sustainable environ-
mental protection. The requirement of alternative chemicals, feedstocks for 
fuel, and a variety of commercial products has grown dramatically in the past 
few decades. To reduce the dependence on foreign exchange, much research 
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has been focussed on environmental biotechnology to develop a sustainable 
society with our own ways of recovery and reusing the available resources.

An enormous amount of natural and xenobiotic compounds are added 
to the environment every day. By exploring and employing the untapped 
potential of microbes and their products, there are possibilities of not only 
removing toxic compounds from the environment but also the conversion 
and production of useful end products. Basic methodologies and processes 
are highlighted in this book which will help in satisfying the expectations of 
different level of users/readers.

This work focuses on the alarming human and environmental problems 
created by the modern world, and thus provides some suitable solutions to 
combat them by applying different forms of environmental studies. With the 
application of environmental biotechnology, it enhances and optimizes the 
conditions of existing biological systems to make their course of action much 
faster and efficient in order to bring about the desired outcome. Various stud-
ies (genetics, microbiology, biochemistry, chemistry) are clubbed together 
to find solutions to environmental problems in all phases of the environment 
like, air, water, and soil. The 3R philosophy of waste reduction, reuse, and 
recycling is a universally accepted solution for waste management. As these 
are end-of-pipe treatments, the best approach is developing the approach of 
waste prevention through cleaner production. However, even after creation 
of waste the best solution to deal with is through biological means, and today 
by applying various interdisciplines we can create various by-products from 
this waste and utilize them best. Treatment of the various engineering sys-
tems presented in this book will show how an engineering formulation of 
the subject flows naturally from the fundamental principles and theories of 
chemistry, microbiology, physics, and mathematics and develop a sustainable 
solution.

The book introduces various environmental applications, such as bioreme-
diation, phytoremediation, microbial diversity in conservation and explora-
tion, in-silico approach to study the regulatory mechanisms and pathways 
of industrially important microorganisms, biological phosphorous removal, 
ameliorative approaches for management of chromium phytotoxicity, sus-
tainable production of biofuels from microalgae using a biorefinary approach, 
bioelectrochemical systems (BES) for microbial electroremediation, and oil 
spill remediation.

This book has been designed to serve as a comprehensive environmen-
tal biotechnology textbook as well as a wide-ranging reference book. The 
authors thank all those who have contributed significantly in understanding 
the different aspects of the book and submitted their reviews, and at the same 
time hope that it will prove of equally high value to advanced undergraduate 
and graduate students, research scholars, and designers of water, wastewater, 
and other waste treatment systems. Thanks are also due to Springer for pub-
lishing the book.

Kishangarh, Rajasthan, India Garima Kaushik
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1Bioremediation Technology: 
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Approach for Restoration 
of Environmental Pollution
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S. Srivastava ()
Amity School of Earth and Environmental Science, 
Amity University, Gurgaon, Haryana, India
e-mail: shailisrivastava05@gmail.com

Abstract

Bioremediation has the potential technique to restore the polluted environ-
ment including water and soil by the use of living plants and microorgan-
isms. The bioremediation technology is greener clean and safe technology 
for the cleanup of contaminated site. This chapter will focus on the biological 
treatment processes by microorganisms that currently play a major role in 
preventing and reducing the extent of organic and inorganic environmental 
contamination from the industrial, agricultural, and municipal waste. Biore-
mediation is concerned with the biological restoration of contaminated sites 
and content of the chapter also reflects the current trends of bioremediation 
technology and the limitations of bioremediation. Environmental genomics 
technique is the useful for the advanced treatment of waste site as well as ge-
nome-enabled studies of microbial physiology and ecology which are being 
applied to the field of bioremediation, and to anticipate additional applica-
tions of genomics that are likely in the near future.

1.1  Introduction

The organic and inorganic compounds are re-
leased during the production, storage, transport, 
and use of organic and inorganic chemicals into 
the environment every year as a result of various 
developmental activities. In some cases these re-
leases are deliberate and well regulated (e.g., in-
dustrial emissions) while in other cases they are 

accidental (e.g., chemical or oil spills). Detoxi-
fication of the contaminated sites is expensive 
and time consuming by conventional chemical 
or physical methods. Bioremediation is a com-
bination of two words, “bio,” means living and 
“remediate” means to solve a problem or to bring 
the sites and affairs into the original state, and 
“bioremediate” means to use biological organ-
isms to solve an environmental problem such 
as contaminated soil or ground water, through 
the technological innovations. The technique of 
bioremediation uses living microorganisms usu-
ally bacteria and fungi to remove pollutants from 
soil and water. This approach is potentially more 
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2 S. Srivastava

cost-effective than traditional techniques like in-
cineration of waste and carbon filtration of water.

Bioremediation technologies can be generally 
classified as in situ or ex situ. In situ bioremedia-
tion involves treating the contaminated material 
at the site while ex-situ involves removal of the 
contaminated material to be treated elsewhere. 
Some examples of bioremediation technologies 
are bioventing, landfarming, bioreactor, com-
posting, bioaugmentation, rhizofiltration, and 
biostimulation.

However, not all contaminants are easily 
treated by bioremediation using microorganisms. 
For example, heavy metals such as cadmium 
and lead are not readily absorbed or captured by 
organisms. The assimilation of metals such as 
mercury into the food chain may worsen mat-
ters. Phytoremediation is useful in these cir-
cumstances, because natural plants or transgenic 
plants are able to bioaccumulate these toxins in 
their above-ground parts, which are harvested for 
removal. The heavy metals in the harvested bio-
mass may be further concentrated by incineration 
or even recycled for industrial use. A wide range 
of bioremediation strategies is being developed 
to treat contaminated soils. In bioremediation, 
microorganism transform hazardous chemical 
compounds to nonhazardous end products, how-
ever, in phytoremediation plants are used for this 
purpose (Brar et al. 2006). Two basic methods 
are available for obtaining the microorganism to 
initiate the bioremediation: bioaugmentation—in 
which adapted and genetically coded toxicants 
degrading microorganism are added; biostimula-
tion—which involves the injection of necessary 
nutrients to stimulate the growth of the indige-
nous microorganism.

The bioremediation systems in operation today 
rely on microorganisms native to the contaminat-
ed sites, encouraging them to work by supplying 
them with the optimum levels of nutrients and 
other chemicals essential for their metabolism. 
Thus, today’s bioremediation systems are limited 
by the capabilities of the native microbes. How-
ever, researchers are currently investigating ways 
to augment contaminated sites with nonnative 
microbes, including genetically engineered mi-
croorganisms—especially suited to degrading the 

contaminants of concern at particular sites. It is 
possible that this process, known as bioaugmen-
tation, could expand the range of possibilities for 
future bioremediation systems.

The effectiveness of bioremediation is mainly 
influenced by degradability and toxicity of the 
chemical compounds. Based on this the chemi-
cal may be divided into degradable and nontoxic, 
degradable and toxic, nondegradable and toxic, 
and nondegradable and nontoxic chemical com-
pounds. The main goal of bioremediation can be 
fulfilled by enhancing the rate and extent of bio-
degradation of the pollutants, utilizing or devel-
oping microorganisms.

1.2  Current Practice  
of Bioremediation

The key players in bioremediation are bacteria—
microscopic organisms that live virtually every-
where. Microorganisms are ideally suited to the 
task of contaminant destruction because they pos-
sess enzymes that allow them to use environmen-
tal contaminants as food and because they are so 
small that they are able to contact contaminants 
easily. In situ bioremediation can be regarded as 
an extension of the purpose that microorganisms 
have served in nature for billions of years: the 
breakdown of complex human, animal, and plant 
wastes so that life can continue from one genera-
tion to the next. Without the activity of micro-
organisms, the earth would literally be buried in 
wastes, and the nutrients necessary for the con-
tinuation of life would be locked up in detritus.

The goal in bioremediation is to stimulate mi-
croorganisms with nutrients and other chemicals 
that will enable them to destroy the contami-
nants. The bioremediation systems in operation 
today rely on microorganisms native to the con-
taminated sites, encouraging them to work by 
supplying them with the optimum levels of nu-
trients and other chemicals essential for their me-
tabolism. Researchers are currently investigating 
ways to augment contained sites with nonnative 
microbes including genetically engineered mi-
croorganisms specially suited to degrading the 
contaminants of concern at particular sites. It is 
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possible that this process, known as bioaugmen-
tation, could expand the range of possibilities for 
future bioremediation systems (USEPA 1987).

Regardless of whether the microbes are native 
or newly introduced to the site, an understand-
ing of how they destroy contaminants is criti-
cal to understanding bioremediation. The types 
of microbial processes that will be employed in 
the cleanup dictate what nutritional supplements 
the bioremediation system must supply. Further-
more, the byproducts of microbial processes can 
provide an indication that the bioremediation is 
successful. Whether microorganisms will be suc-
cessful in destroying man made contaminants in 
the subsurface depends on three factors: the type 
of organisms, the type of contaminant, and the 
geological and chemical conditions at the con-
taminated site. Biological and nonbiological mea-
sures to remedy environmental pollution are used 
the same way. All remediation techniques seek 
first to prevent contaminants from spreading. In 
the subsurface, contaminants spread primarily as 
a result of partitioning into ground water. As the 
groundwater advances, soluble components from 
a concentrated contaminant pool dissolve, mov-
ing forward with the groundwater to form a con-
taminant plume. Because the plume is mobile, 
it could be a financial, health, or legal liability 
if allowed to migrate off-site. The concentrated 
source of contamination, on the other hand, often 
has settled into a fixed position and in this re-
gard is stable. However, until the source can be 
removed by whatever cleanup technology, the 
plume will always threaten to advance off-site.

Selection and application of a bioremediation 
process for the source or the plume require the 
consideration of several factors. The first factor 
is the goal for managing the site, which may vary 
from simple containment to meeting specific 
regulatory standards for contaminant concentra-
tions in the groundwater and soil. The second 
factor is the extent of contamination. Under-
standing the types of contaminants, their concen-
trations, and their locations, is critical in design-
ing in-situ bioremediation procedures. The third 
factor are the types of biological processes that 
are effective for transforming the contaminant. 

By matching established metabolic capabilities 
with the contaminants found, a strategy for en-
couraging growth of the proper organisms can be 
developed. The final consideration is the site’s 
transport dynamics, which control contaminant 
from spreading and influence the selection of 
appropriate methods for stimulating microbial 
growth.

1.3  Microorganisms  
in Bioremediation

In microbial bioremediation, living microorgan-
isms are used to convert complex toxic com-
pounds into harmless by-products of cellular 
metabolism such as CO2 and H2O. However, in 
phytoremediation plants are used to remove con-
tamination from the soil and water. In a nonpol-
luted environment, microorganisms are constant-
ly at work, utilizing toxic compounds; however, 
most of the organisms die in contaminated sites. 
A few of them due to their inherent genetic ma-
terial, grow, survive, and degrade the chemicals. 
The successful use of microorganisms in biore-
mediation depends on the development of a basic 
understanding of the genetics of a broad spectrum 
of microorganisms and biotechnological innova-
tions. Pure, mixed, enriched, and genetically en-
gineered microorganisms have been used for deg-
radation of these compounds. Routes of degrada-
tion of the major natural compounds have been 
well established. The entire spectrum of microbi-
al degradation is related to the breakdown of xe-
nobiotic chemicals, which are nondegradable and 
is recalcitrant. A large number of microorganisms 
have been isolated in recent years that are able 
to degrade compounds that were previously con-
sidered to be nondegradable. This suggests that, 
under the selective pressure of environmental 
pollution, a microbial capacity for the degrada-
tion of recalcitrant xenobiotics is developing that 
might be harnessed for pollutant removal by bio-
technological processes. Nevertheless, the fact 
that many pollutants persist in the environment 
emphasizes the current inadequacy of this cata-
bolic capacity to deal with such pollutants.
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1.3.1  Degradation by Fungi

The process of natural bioremediation of persis-
tent compounds involves a range of microorgan-
ism. Most fungi are robust organisms and are 
generally more tolerant to a high concentration 
of polluting chemicals than bacteria. A variety of 
fungi have been used for degradation of pollut-
ants in the environment. The contaminants pres-
ent in water and soil from industrial and agricul-
ture activities are degraded and utilized by fungi. 
But use of fungi for degradation of industrial 
pollutants such as chlorophenols, nitrophenols, 
and polyaromatic hydrocarbons are limited. In 
spite of the toxicity of the effluent and presence 
of chlorophenols, the microbial flora of tannery 
liquid wastes is relatively rich, with the Asper-
gillus niger group predominant. The extracel-
lular enzymes and cell mass from the pregrown 
Phanerochaete chrysosporium cultures were 
used by researchers for the degradation of penta-
chlorophenol (PCP). The lignin degrading fungi 
P. chrysosporium, Phanerochaete sordida, Tram-
etes hirusta, and Ceriporiopsis subvermispora 
were evaluated for their ability to decrease the 
concentration of pentachlorophenol.

Fungi are especially well suited to polycyclic 
aromatic hydrocarbon (PAH) degradation rela-
tive to other bacterial decomposers for a few rea-
sons. They can degrade high molecular weight 
PAHs, whereas bacteria are best at degrading 
smaller molecules. They also function well in 
nonaqueous environments where hydrophobic 
PAHs accumulate; a majority of other microbial 
degradation occurs in aqueous phase. Also, they 
can function in the very low oxygen conditions 
that occur in heavily PAH-contaminated zones. 
Fungi possess these decomposing abilities to deal 
with an array of naturally-occurring compounds 
that serve as potential carbon sources. Hydrocar-
bon pollutants have similar or analogous molec-
ular structures which enable the fungi to act on 
them as well. When an area is contaminated, the 
ability to deal with the contamination and turn it 
into an energy source is selected for the fungal 
population and leads to a population that is better 
able to metabolize the contaminant.

1.3.2  Degradation by Bacteria

Bacteria can be separated into aerobic types, 
which require oxygen to live, and anaerobic, 
which can live without oxygen. Aerobic bio-
remediation is usually preferred because it de-
grades pollutants 10–100 times faster than an-
aerobic bioremediation. Facultative types can 
thrive under both aerobic and anaerobic condi-
tions. Certain bacteria belonging to Bacillus and 
Pseudomonas species have these desirable char-
acteristics. They consume organic waste thou-
sands of times faster than the types of bacteria 
that are naturally present in the waste. Bacteria, 
Arthobacteria, Flavobacterium, Pseudomonas, 
and Sphingomonas, have been isolated and ap-
plied for the degradation of chlorinated phenol 
and other toxic organic compounds. A number 
of bacteria viz., Pseudomonas, Flavobacterium, 
Xanthomonas, Nocardia, Aeromonas, and Ar-
throbarterium are known to utilize lignocellu-
losic components of the bleached plant effluent 
containing lignosulphonics and chlorinated phe-
nols. One particularly promising mechanism for 
the detoxification of polychlorinated dibenzodi-
oxins (PCDDs) and polychlorinated dibenzofu-
rans (PCDFs) is microbial reductive dechlorina-
tion. In current scenario research data suggested 
that, only a limited number of phylogenetically 
diverse anaerobic bacteria have been found that 
couple the reductive dehalogenation of chlori-
nated compounds the substitution of chlorine 
for a hydrogen atom to energy conservation and 
growth in a process called dehalorespiration. Mi-
crobial dechlorination of PCDDs occurs in sedi-
ments and anaerobic mixed cultures from sedi-
ments, but the responsible organisms have not 
yet been identified or isolated. Various microbial 
cultures capable of aerobic polychlorinated bi-
phenyl (PCB) biodegradation have been isolated 
by researchers (Fetzner and Lingens 1994). Up 
to 85 % degradation of Arochlors 1248 and 1242 
has been shown. The more highly chlorinated 
1254 and 1260 Arochlors have not shown signifi-
cant aerobic biodegradation in the laboratory or 
in the field. Anaerobic degradation by dechlori-
nation reactions is widespread even for the 1254 
and 1260 Arochlors.
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1.4  Bioremediation Processes  
and Technologies

Bioremediation techniques are divided into three 
categories; in situ, ex situ solid, and ex situ slurry 
(Fig. 1.1). With in situ techniques, the soil and 
associated groundwater is treated in place with-
out excavation, while it is excavated prior to 
treatment with ex-situ applications. The poten-
tial applications of biotechnology can be applied 
in terms of the contaminated matrix, degrading 
organisms of the contaminants, the type of reac-
tor technology used, and the types of compounds 
present. The anaerobic and aerobic treatment 
methods applied for reducing the pollution load 
have been proved successful up to some extent. 
Pump-and-treat systems, which are applied to 
saturated-zone remediation, involve the removal, 
treatment, and return of associated water from 
a contaminated soil zone. The returned water is 
supplemented with nutrients and saturated with 
oxygen. Percolation consists of applying water, 
containing nutrients and possibly a microbial in-
oculum, to the surface of a contaminated area and 
allowing it to filter into the soil and mix with the 
groundwater, if present. Bioventing supplies air 
to an unsaturated soil zone through the installa-
tion of a well(s) connected to associated pumps 
and blowers, which draw a vacuum on the soil. 
Air sparging involves the injection of air into the 
saturated zone of a contaminated soil.

Ex situ solid-phase techniques consist of 
soil treatment units, compost piles, and engi-

neered biopiles. Soil treatment units consist of 
soil contained and tilled (to supply oxygen) with 
application of water, nutrients, and possibly mi-
crobial inocula to soil. Compost piles consist of 
soil supplemented with composting material (i.e., 
wood chips, straw, manure, rice hulls, etc.) to 
improve its physical handling properties and its 
water- and air-holding capacities. Compost piles 
require periodic mixing to provide oxygen to the 
soil. Biopiles are piles of contaminated soil that 
contain piping to provide air and water. Ex situ 
solid applications involve the addition of water, 
nutrients, and sometimes addition of cultured 
indigenous microbes or inocula. They are often 
conducted on lined pads to ensure that there is 
no contamination of the underlying soil. Ex situ 
slurry techniques involve the creation and main-
tenance of soil–water slurry as the bioremedia-
tion medium. The slurry can be maintained in ei-
ther a bioreactor or in a pond or lagoon. Adequate 
mixing and aeration are key design requirements 
for slurry systems. Nutrients and, perhaps, inocu-
lum may be added to the slurry.

1.5  Monitoring the Efficacy  
of Bioremediation

The general acceptance of bioremediation tech-
nology as an environmentally sound and eco-
nomic treatment for hazardous waste requires 
the demonstration of its efficacy, reliability and 
predictability, as well as its advantages over con-
ventional treatments. An effective monitoring 

Fig. 1.1  In vivo and in 
vitro design strategies. 
(Source: Biotechnology in 
Medicine and Agriculture 
Principles and Practices)
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design includes protocols for treatment-specif-
ic, representative sampling, control, and moni-
toring: these should take into account abiotic 
and biotic pollutant fate processes in all relevant 
process compartments. A number of well-estab-
lished and novel chemical and molecular bio-
logical monitoring techniques and parameters 
are available (Schneegurt and Kulp 1998).

Bioremediation research is generally con-
ducted at one of the three scales: laboratory, 
pilot scale, or field trial. To help ensure that 
results achieved at the first two scales can be 
translated to the field, the research program 
should be conceived as a continuum, with inves-
tigators working at each scale involved through-
out the research conceptualization and planning 
process. The aim is to translate research find-
ings from the laboratory into viable technolo-
gies for remediation in the field mechanisms of 
bioremediation that include bioaugmentation in 
which microbes and nutrients are added to the 
contaminated site or biostimulation in which 
nutrients and enzymes are added to supplement 
the intrinsic microbes. In the injection method, 
bacteria and nutrients are injected directly into 
the contaminated aquifer, or nutrients and en-
zymes, often referred to as “fertilizer,” that 
stimulate the activity of the bacteria that are 
added. In soil remediation, usually nutrients 
and enzymes are added to stimulate the natural 
soil bacteria, though sometimes both nutrients 
and bacteria are added. When the treatment is 
stopped, the bacteria die. This technique works 
best on petroleum contamination.

1.6  Types of Bioremediation

1.6.1  Ex situ Bioremediation 
Bioreactors—Place of Action 
of Microbes

The most promising areas for technology de-
velopment efforts as well as the critical issues 
have been identified, which must be addressed in 
moving from laboratory scale testing to the de-
velopment of commercially viable technologies. 
Experiments are conducted by operating a labo-

ratory scale completely mixed continuous flow 
activated sludge system to treat settled chrome 
tannery wastewater and to develop biokinetic 
parameters for the same. Occasionally, a large 
amount of phenol gets into the wastewater treat-
ment plant in the phenol discharging industries, 
creating shock loading conditions on activated 
sludge systems. The immobilization of microbial 
cells on solid supports, is an important biotechno-
logical approach introduced only recently in bio-
remediation studies. Treatment of industrial cells 
has also been attempted successfully. Bioreactors 
using immobilized cells have several advantages 
over conventional effluent treatment technolo-
gies. Various bioreactors have been designed for 
the application of microbial consortium for the 
treatment of tannery effluent. Upflow anaerobic 
sludge blanket (UASB) reactors were used to 
treat tannery waste water containing high sul-
fate concentration, competition between sulfate-
reducing (SRB) and methane-producing (MPB) 
bacteria. Bench scale continuous flow activated 
sludge reactors were used to study the removal of 
PCP mixed with municipal wastewater.

Ex situ solid phase techniques consist of soil 
treatment units, compost piles, and engineered 
biopiles. Soil treatment units consist of soil con-
tained and tilled (to supply oxygen) with appli-
cation of water, nutrients, and possibly micro-
bial inoculate to the soil. Compost piles consist 
of soil supplemented with composting material 
(i.e., wood chips, straw, manure, rice hulls, etc.) 
to improve its physical handling properties and 
its water- and air-holding capacities.

Flavobacterium cells are immobilized on poly-
urethane and the degradation activity of cells in 
semicontinuous batch reactor is studied. The abil-
ity of Arthrobacter cells to degrade PCP in min-
eral salt medium was evaluated for immobilized, 
nonimmobilized and coimmobilized cells. The 
immobilized cells were encapsulated in alginate. 
A microbial consortium able to degrade PCP in 
contaminated soil was used in a fed batch biore-
actor. The microorganism in the biofilm employs 
natural biological processes to efficiently degrade 
complex chemical process and can remediate 
high volume of waste more cheaply than other 
available cleanup procedures (Figs. 1.2 and 1.3).
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1.6.2  In situ Bioremediation

With in situ techniques, the soil and associated 
ground water is treated in place without excava-
tion, while it is excavated prior to treatment with 
ex situ applications. Pump-and-treat systems, 
which are applied to saturated-zone remediation, 
involve the removal, treatment, and return of as-
sociated water from a contaminated soil zone. 
The returned water is supplemented with nutri-
ents and saturated with oxygen. Percolation con-
sists of applying water, containing nutrients and 
possibly a microbial inoculum, to the surface of 
a contaminated area and allowing it to filter into 
the soil and mix with the groundwater, if pres-

ent. Bioventing supplies air to an unsaturated 
soil zone through the installation of a well(s) 
connected to associated pumps and blowers that 
draw a vacuum on the soil. Air sparging involves 
the injection of air into the saturated zone of a 
contaminated soil.

It has long been recognized that microorgan-
isms have distinct and unique roles in the de-
toxification of polluted soil environments and, 
in recent years, this process has been termed as 
bioremediation or bioreclamation. The role of 
microorganisms and their limitations for biore-
mediation must be better understood so that they 
can be more efficiently utilized. Application of 
the principles of microbial ecology will improve 

Fig. 1.3  Bioremedia-
tion treatment strategies 
in bioreactor. (Source: 
Biotechnology in Medicine 
and Agriculture Principles 
and Practices)

 

Fig. 1.2  Ex-situ bioreme-
diation technique
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methodology. The enhancement of microbial 
degradation as a means of bringing about the in-
situ clean-up of contaminated soils has spurred 
much research. The rhizosphere, in particular, is 
an area of increased microbial activity that may 
enhance transformation and degradation of pol-
lutants. The most common methods to stimulate 
degradation rates include supplying inorganic 
nutrients and oxygen, but the addition of deg-
radative microbial inocula or enzymes as well 
as the use of plants should also be considered. 
Approximately 750 tons of soil, which had been 
contaminated by a wood preservative, was bio-
remediated in North Carolina using white rot 
fungi. Primary contaminants of concern at the 
site included pentachlorophenol and lindane. 
The field degradation of PCDDs and PCDFs in 
soil at a former wood treatment facility in North 
Carolina has been demonstrated. Toxaphene-
contaminated soils present at a crop dusting 
facility in northern California were bioremedi-
ated using white rot fungi. The soils were mixed 
with a suitable substrate that had been inoculated 
with the fungi and placed in biotreatment cells. 
During operation of the project, toxaphene con-
centrations and environmental conditions (e.g., 
oxygen levels, moisture content, carbon dioxide 
levels, and temperature) within the treatment 
cells were monitored to track progress of fungal 
bioremediation. Chlorophenols are recalcitrant 
compounds that have been used for decades to 
impregnate wood, and many residues can be 

found in the environment long after the uses of 
chlorophenols have been discontinued. Chloro-
phenols are soluble in water and may leach from 
contaminated soil to groundwater. Therefore, the 
contaminated sites must be cleaned up to prevent 
further contamination into ground water. There 
have been only very limited field trials of PCB 
bioremediation. General Electric Corporation 
has carried out most in efforts to clean up their 
own contaminated sites. One in 1987 basically 
“land farmed” the PCB contaminated soils. They 
tilled the soils and added bacteria that degraded 
PCBs together with appropriate nutrients. The 
treatment result was less than laboratory results 
had shown and may have been due to bioavail-
ability problems with the PCBs in the field 
(Fig. 1.4).

 In situ Physical/Chemical Treatment

In situ Air Sparging (IAS)
IAS was first implemented in Germany in 1985 
as a saturated zone remedial strategy. It involves 
the injection of pressurized air into the saturated 
zone. IAS induces a transient, air-filled porosity 
in which air temporarily displaces water as air 
bubbles migrate laterally from the sparge point 
and also vertically toward the water table. IAS 
induces a separate phase flux in which air travels 
in continuous, discrete air channels of relatively 
smaller diameter from the sparge point to the 
water table. Air movement through the saturated 

Fig. 1.4  In situ bioremedi-
ation of contaminated site. 
(Source: Biotechnology in 
Medicine and Agriculture 
Principles and Practices, 
Kumar et al. 2013)
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zone typically does not occur as migrating air 
bubbles, with the exception of within homoge-
neous, highly permeable formations of uncon-
solidated course sand and gravel deposits. IAS 
enhances physical or biological attenuation pro-
cesses and physical attenuation by volatilizing 
polycyclic hydrocarbons (PHCs) adsorbed to the 
formation matrix and stripping those dissolved 
in groundwater. IAS stimulates aerobic biodeg-
radation of absorbed and dissolved-phase PHCs 
amenable to metabolism. Physical processes are 
a more significant attenuation mechanism for 
volatile PHCs, whereas biological processes are 
a more significant attenuation mechanism for 
PHCs of low volatility and varying aqueous solu-
bilities.

Blast-Enhanced Fracturing
A technique used at sites with fractured bedrock 
formations to improve the rate and predictabil-
ity of recovery of contaminated groundwater by 
creating “fracture trenches” or highly fractured 
areas through detonation of explosives in bore-
holes (shotholes). Blast-enhanced fracturing is 
distinguished from hydraulic or pneumatic frac-
turing in that the latter technologies do not in-
volve explosives, are generally conducted in the 
overburden, and are performed within individual 
boreholes.

Directional Wells
Encompasses horizontal wells, trenched or di-
rectly drilled wells are installed at any nonver-
tical inclination for purposes of groundwater 
monitoring or remediation. This technology can 
be used in the application of various remediation 
techniques such as groundwater and/or nonaque-
ous phase liquid extraction, air sparging, soil 
vapor extraction, in situ bioremediation, in situ 
flushing, permeable reactive barriers, hydraulic 
and pneumatic fracturing, etc.

Groundwater Recirculation Well
This technique encompasses in situ vacuum, vapor, 
or air stripping, in-well vapor stripping, in-well 
aeration, and vertical circulation wells. Creation of 
groundwater circulation “cell” through injection of 
air or inert gas into a zone of contaminated ground-

water through center of double-cased stripping well 
which is designed with upper and lower double-
screened intervals.

Hydraulic and Pneumatic Fracturing
Techniques to create enhanced fracture net-
works to increase soil permeability to liquids 
and vapors and accelerate contaminant re-
moval. The technique is especially useful for 
vapor extraction, biodegradation, and thermal 
treatments. Hydraulic fracturing involves injec-
tion of high pressure water into the bottom of a 
borehole to cut a notch; a slurry of water, sand 
and thick gel is pumped at high pressure into 
the borehole to propagate the fracture from the 
initial notch.

In situ Flushing
The technique is also known as injection/recircu-
lation or in situ soil washing. General injection 
or infiltration of a solution into a zone of con-
taminated soil/groundwater, followed by down 
gradient extraction of groundwater and elutriate 
(flushing solution mixed with the contaminants) 
and above-ground treatment and/or reinjection. 
Solutions may consist of surfactants, cosolvents, 
acids, bases, solvents, or plain water.

In situ Stabilization/Solidification
The technique is also known as in situ fixation, 
or immobilization. The process of alteration of 
organic or inorganic contaminants to innocuous 
and/or immobile state by injection or infiltration 
of stabilizing agents into a zone of contaminated 
soil/groundwater. Contaminants are physically 
bound or enclosed within a stabilized mass (so-
lidification), or their mobility is reduced through 
chemical reaction (stabilization).

Permeable Reactive Barrier
Encompasses passive barriers, passive treatment 
walls, treatment walls, or trenches. An in-ground 
trench is backfilled with reactive media to pro-
vide passive treatment of contaminated ground-
water passing through the trench. Treatment wall 
is placed at strategic location to intercept the con-
taminant plume and backfilled with media such 
as zero-valent iron, microorganisms, zeolite, 
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activated carbon, peat, bentonite, limestone, saw 
dust, or other.

Thermal Enhancements
Use of steam, heated water, or radio frequency 
(RF) or electrical resistance (alternating current 
or AC) heating to alter temperature-dependent 
properties of contaminants In-situ to facilitate 
their mobilization, solubilization, and removal. 
Volatile and semivolatile organic contaminants 
may be vaporized; vaporized components then 
rise to the vadose zone where they are removed 
by vacuum extraction and treated.

Electrokinetics
An in situ process involving application of low 
intensity direct electrical current across elec-
trode pairs implanted in the ground on each side 
of a contaminated area of soil, causing electro-
osmosis and ion migration. Contaminants mi-
grate toward respective electrodes depending 
upon their charge. Process may be enhanced 
through use of surfactants or reagents to in-
crease contaminant removal rates at the elec-
trodes. Process separates and extracts heavy 
metals, radionuclides, and organic contaminants 
from saturated or unsaturated soils, sludges, and 
sediments.

 Biological Treatment

Bioslurping
Use of vacuum-enhanced pumping to recover 
light nonaqueous phase liquid (LNAPL) and ini-
tiate vadose zone remediation through biovent-
ing. In bioventing, air is drawn through the im-
pacted vadose zone via extraction wells equipped 
with low vacuums to promote biodegradation of 
organic compounds.

Intrinsic Bioremediation
Natural, nonenhanced microbial degradation of 
organic constituents by which complex organic 
compounds are broken down to simpler, usually 
less toxic compounds through aerobic or anaero-
bic processes.

Monitored Natural Attenuation
Encompass intrinsic bioremediation process. 
Reliance on a variety of physical, chemical, or 
biological processes (within the context of a 
carefully controlled and monitored site cleanup 
approach) that, under favorable conditions, act 
without human intervention to reduce the mass, 
toxicity, mobility, volume, or concentration of 
contaminants in soil or groundwater.

Biocolloid Formation
Solid materials containing the basic elements 
produced by bacterial transformation assume a 
discrete particle which may be referred as bio-
colloids. Biological colloid is the negative charge 
that is usually present on the particle surface and 
forms the electric double layer surrounding the 
colloid particles. The biocolloid system may be 
appropriate in remediation of groundwaters and 
flowing surface water. The basic requirements 
would be the addition of bacteria and metabolism 
in the presence of the metal followed by recov-
ery of the biocolloids. Biocolloid methods can be 
used for treatment of contaminated ground water 
in-situ in recovery of metals (Lovley 1995).

1.7  Limiting Factors of Intrinsic 
Biodegradation

Physical, chemical, and biological factors have 
complex effects on hydrocarbon biodegradation 
in soil. For this reason, experts frequently rec-
ommend that soil bioremediation projects begin 
with treatability studies to empirically test the 
biodegradability of the (Spormann and Widdel 
2000) contaminants and to optimize treatment 
conditions. On the other hand, it is possible that 
the expense of such treatability studies could be 
avoided or minimized, if certain soil character-
istics could be measured and used to predict the 
potential for bioremediation of a site, the kinet-
ics of hydrocarbon removal or the optimal values 
for certain controllable treatment conditions. For 
example, certain cocontaminants such as heavy 
metals might preclude hydrocarbon bioremedia-
tion. Soil particle size distribution might partly 
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dictate the potential rate and extent of hydrocar-
bon removal.

Biodegradability potential depends on func-
tion of hydrocarbon type, size, structure, and 
concentration. Polycyclic hydrocarbon concen-
trations must be within specific ranges. If con-
centrations are too low, indigenous microbes 
may not use PHCs as a primary source of organic 
carbon in preference to dissolved organic carbon; 
however, PHCs may be inhibitory if concentra-
tions are too high. The availability of biodegrad-
able PHCs, microbial viability is controlled by 
a variety of factors including oxygen, inorganic 
nutrients, osmotic/hydrostatic pressure, tempera-
ture, and pH.

Indigenous microbes use ambient inorganic 
nutrients and organic carbon to maintain cell tis-
sue and increase biomass. Consequently, inorgan-
ic nutrient availability is reflected in microbial 
population densities within contaminant plumes 
in which intrinsic biodegradation is occurring. 
Although other factors that influence microbial 
viability are directly related to population density 
as inorganic nutrient and organic carbon avail-
ability. Population density is an indicator of am-
bient organic carbon and inorganic nutrient avail-
ability. According to USEPA (1987), groundwa-
ter samples collected from background locations 
hydraulically up-gradient/side-gradient of petro-
leum contaminant plumes typically contain total 
population densities of about 102–103 colony 
forming units per milliliter (cfu/ml). Microbial 
population densities within petroleum contami-
nant plumes typically increase in response to 
supplemental organic carbon supplied by dis-
solved/adsorbed-phase PHCs. Hence, there is a 
positive correlation between population densi-
ties and PHC concentrations within contaminant 
plumes under conditions in which intrinsic bio-
degradation is occurring. This correlation indi-
cates that indigenous heterotrophs are stimulated 
to metabolize PHCs, and that ambient inorganic 
nutrient levels are not limiting biodegradation in 
situ. Other potential limiting factors include hy-
drostatic pressure, temperature, and pH, however, 
these factors are frequently within the range of 
microbial viability and typically do not limit in-

trinsic biodegradation, with the possible excep-
tion of pH.

Researchers determined the effects on bio-
degradation kinetics of a number of factors, in-
cluding (i) intrinsic soil properties (particle size, 
carbon content, water holding capacity), (ii) soil 
contaminants (petroleum hydrocarbons, heavy 
metals), (iii) controllable conditions (tempera-
ture, nitrogen, and phosphorous content), and 
(iv) inoculation with hydrocarbon-degrading mi-
croorganisms. The hydrocarbon-degrading soil 
microfloras of polar regions are limited by N 
and P, as are such microflora in warmer regions. 
Addition of nitrogen and phosphorous stimulate 
hydrocarbon degradation.

1.8  Phytoremediation

Phytoremediation, the use of plants for environ-
mental restoration is an emerging cleanup tech-
nology to exploit plant potential to remediate soil 
and water contaminated with a variety of com-
pounds, several technological subsets have been 
proposed. Phytoextraction is the use of higher 
plants to remove inorganic contaminants, primar-
ily metals, from polluted soil. In this approach, 
plants capable of accumulating high levels of 
metals are grown in contaminated soil. At ma-
turity, metal-enriched above-ground biomass is 
harvested and a fraction of soil–metal contamina-
tion is removed. Plants have a natural propensity 
to take up metals. Some, such as Cu, Co, Fe, Mo, 
Mn, Ni, and Zn, are essential mineral nutrients. 
Others, however, such as Cd and Pb, have no 
known physiological activity. Perhaps, not sur-
prisingly, phytoremediation as an environmental 
cleanup technology was initially proposed for 
the remediation of metal-contaminated soil. The 
general use of plants to remediate environmental 
media through in-situ processes which includes 
rhizofiltration (absorption, concentration, and 
precipitation of heavy metals by plant roots), 
phytoextraction (extraction and accumulation of 
contaminants in harvestable plant tissues such as 
roots and shoots), phytotransformation (degra-
dation of complex organic molecules to simple 
molecules which are incorporated into plant 
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tissues), phytostimulation or plant-assisted bio-
remediation (stimulation of microbial and fungal 
degradation by release of exudates/enzymes into 
the root zone), and phytostabilization (absorption 
and precipitation of contaminants, principally 
metals, by plants). A wide range of organic and 
inorganic contaminants; most appropriate for 
sites where large volumes of groundwater with 
relatively low concentrations of contaminants 
must be remediate to strict standards. Most ef-
fective where ground-water is within 10 ft of the 
ground surface, and soil contamination is within 
3 ft of the ground surface.

Use of native plants in phytoremediation pro-
vides advantages over other species and helps 
bring back the heritage of flora lost through 
human activity. In addition to restoring biodiver-
sity in areas that have been disturbed, remediat-
ing superfund sites using native species provides 
for wildlife habitat enhancement and conserva-
tion and saves money over alternative cleanup 
methods. Unlike many introduced species, once 
established, native plants do not require fertiliz-
ers, pesticides, or watering. As encouraged by the 
Superfund Redevelopment Initiative, use of na-
tive plants in site restoration may serve to restore 
wetlands and other habitats and create nature 
parks, sanctuaries, and other green areas.

Phytoremediation is the use of specialized 
plants to clean up polluted soil. While most of 
the plants exposed to high levels of soil toxins 
will get injured or die, scientists have discovered 
that certain plants are resistant and even a smaller 
group actually thrive. Both groups of plants are 
of interest to researchers, but the thriving plants 
show a particular potential for remediation be-
cause it has been shown that some of them ac-
tually transport and accumulate extremely high 
levels of soil pollutants within their bodies. They 
are therefore aptly named hyperaccumulators.

Hyperaccumulators already are being used 
throughout the country to help clean up heavy 
metal-polluted soil. Heavy metals are some of 
the most stubborn soil pollutants. They can bond 
very tightly to soil particles, and they cannot 
be broken down by microbial processes. Most 
heavy metals are also essential plant nutrients, so 
plants have the ability to take up the metals and 

transport them throughout their bodies. However, 
on polluted soil, the levels of heavy metals are 
often hundreds of times greater than normal, and 
this overexposure is toxic to the vast majority of 
plants. Hyperaccumulators, on the other hand, 
actually prefer these high concentrations. Essen-
tially, hyperaccumulators are acting as natural 
vacuum cleaners, sucking pollutants out of the 
soil and depositing them in their above-ground 
leaves and shoots. Removing the metals is as sim-
ple as pruning or cutting the hyperaccumulators’ 
above-ground mass, not excavating tons of soil. 
Resistant, but not hyperaccumulating, plants also 
have a role in phytoremediation. Organic toxins, 
those that contain carbon such as the hydrocar-
bons found in gasoline and other fuels, can be 
broken down by microbial processes. Plants play 
a key role in determining the size and health of 
soil microbial populations. All plant roots secrete 
organic materials that can be used as food for mi-
crobes, and this creates a healthier, larger, more 
diverse, and active microbial population, which 
in turn causes a faster breakdown of pollutants. 
Resistant plants can thrive on sites that are often 
too toxic for other plants to grow. They in turn 
give the microbial processes the boost they need 
to remove organic pollution more quickly from 
the soil.

Both forms of phytoremediation have the 
added benefit of not disturbing the soil. While 
excavation is an effective way to get rid of pol-
lution, it removes the organic matter rich topsoil 
and, because of the use of heavy machinery, com-
pact the soil that is left behind. Phytoremediation 
does not degrade the physical or chemical health 
of the soil. Actually, it creates a more fertile soil. 
Soil organic matter is increased as a result of 
root secretions and falling stems and leaves, and 
the roots create pores through which water and 
oxygen can flow. Additionally, few would argue 
that a dusty excavation site is more aesthetically 
pleasing than a nicely planted field.

However, there are many limitations to phy-
toremediation. It is a slow process that may 
take many growing seasons before an adequate 
reduction of pollution is seen, whereas soil ex-
cavation and treatment clean up the site quick-
ly. Also, hyperaccumulators can be a pollution 
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hazard themselves. For instance, animals can eat 
the metal rich hyperaccumulators and cause the 
toxins to enter the food chain. If the concentra-
tion of metals in the plants is thought to be high 
enough to cause toxicity, there must be a way to 
segregate the plants from humans and wildlife, 
which may not be an easy task. Additionally, 
phytoremediation is in its infancy, and its effec-
tiveness in cleaning up various toxins compared 
to conventional means of treatment is not always 
known. However, with more research and prac-
tice, the practicality of using phytoremediation 
should increase.

Phytostabilization aims to retain contaminants 
in the soil and prevent further dispersal. Con-
taminants can be stabilized in the roots or within 
the rhizosphere. Revegetation of mine tailings is 
a common practice to prevent further dispersal 
of contaminants. Mine tailings have been stabi-
lized using commercially available varieties of 
metal tolerant grasses such as Agrostis tenuis cv. 
Goginan

Phytodegradation involves the degradation 
of organic contaminants directly, through the 
release of enzymes from roots, or through meta-
bolic activities within plant tissues (Fig. 1.5). In 
phytodegradation organic contaminants are taken 
up by roots and metabolized in plant tissues to 
less toxic substances. Phytodegradation of hy-
drophobic organic contaminants have been par-
ticularly successful. Poplar trees ( Populus sp.) 
have been used successfully in phytodegradation 
of toxic and recalcitrant organic compounds.

Phytovolatilization involves the uptake of 
contaminants by plant roots and its conversion to 
a gaseous state, and release into the atmosphere. 
This process is driven by the evapotranspiration 
of plants. Plants that have high evapotranspira-
tion rate are sought after in phytovolatilization 
(Fig. 1.5). Organic contaminants, especially vol-
atile organic compounds (VOCs) are passively 
volatilized by plants. For example, hybrid poplar 
trees have been used to volatilize trichloroethyl-
ene (TCE) by converting it to chlorinated acetates 
and CO2. Metals such as Se can be volatilized by 
plants through conversion into dimethylselenide 
[Se(CH3)2]. Genetic engineering has been used 
to allow plants to volatilize specific contami-

nants. For example, the ability of the tulip tree 
( Liriodendron tulipifera) to volatilize methyl-Hg 
from the soil into the atmosphere (as Hg0) was 
improved by inserting genes of modified Esch-
erichia coli that encode the enzyme mercuric ion 
reductase (merA).

Phytoextraction uses the ability of plants to ac-
cumulate contaminants in the above-ground, har-
vestable biomass. This process involves repeated 
harvesting of the biomass in order to lower the 
concentration of contaminants in the soil. Phy-
toextraction is either a continuous process (using 
metal-hyperaccumulating plants, or fast growing 
plants), or an induced process (using chemicals 
to increase the bioavailability of metals in the 
soil). Continuous phytoextraction is based on the 
ability of certain plants to gradually accumulate 
contaminants (mainly metals) into their biomass. 

Fig. 1.5  Schematic model of different phytoremediation 
technologies involving removal and containment of con-
taminants. (Source: Greipsson 2011)
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Certain plants can hyperaccumulate metals with-
out any toxic effects. These plants are adapted 
to naturally occurring, metalliferous soils. More 
than 400 plant species can hyperaccumulate vari-
ous metals. However, most plants can only hy-
peraccumulate one specific metal.

Hyperaccumulating plants can contain more 
than 1 % of a metal in their dry biomass. For ex-
ample, the hyperaccumulating plant Berkheya 
coddii was found to contain as much as 3.8 % of 
Ni in the dry, above-ground biomass, when grown 
in contaminated soil. It is possible to extract 
metals from the harvested biomass in a process 
termed phytomining. The underlying mechanism 
of hyper-accumulation of metals in plants is the 
overexpression of genes that regulate cell mem-
brane transporters. These include the Cu-trans-
porter (COPT1) and Zn-transporter (ZNT1). The 
main limitations on the use of hyperaccumulating 
plants in phytoextraction are slow growth and low 
biomass production. The effectiveness of phytoex-
traction is a function of a plant’s biomass produc-
tion and the content of contaminants in the har-
vested biomass.

Therefore, fast-growing crops that accumu-
late metals have a great potential in phytoextrac-
tion. The use of crops in phytoextraction can be 
improved by manipulation of their associated soil 
microbes. Inoculation of plant growth-promot-
ing bacteria (PGPR) and arbuscular mycorrhizal 
fungi (AMF) can increase plant biomass. The 
AMF–plant symbiosis usually results in reduced 
accumulation of metals in the above-ground 
biomass of plants. Therefore, suppressing AMF 
activity, by using specific soil fungicides, has re-
sulted in increased metal accumulation in plants. 
The role of AMF in regulating metal uptake by 
plants appears to vary depending on numerous 
factors, such as AMF populations, plant species, 
nutrient availability, and metal content in the 
soil. Also, this regulation of AMF is usually met-
al-specific; where the uptake of essential metals 
is generally increased, but the uptake of nones-
sential metals is inhibited. However, exceptions 
have been found where AMF increases uptake of 
Ni, Pb, and As in plants. Induced phytoextrac-
tion involves the use of fast-growing crops and 
chemical manipulation of the soil. Low bioavail-

ability of metals in the soil is a limiting factor 
in phytoextraction. The bioavailability of metals 
can be increased by the use of synthetic chelates 
such as ethylene diamine tetracetic acid (EDTA) 
or acidifying chemicals (e.g., NH4SO4). The 
use of synthetic chelates increases the absorp-
tion of metals to the root and the translocation 
of metals from the roots to the foliage. The tim-
ing of chelate application is critical, and should 
ideally take place at the peak of biomass pro-
duction. The effectiveness of using EDTA was 
demonstrated by growing corn ( Zea mays) in 
Pb-contaminated soil treated with 10 mmol kg−1 
EDTA. This resulted in a high accumulation of 
Pb (1.6 % of shoot dry weight), and facilitated 
the translocation of Pb from the roots to the foli-
age. Some drawbacks of using synthetic chelates 
in phytoremediation are the result of increased 
solubility of the metals within the soil. In turn, 
this increases the risk of metal migration through 
the soil profile and into the groundwater. How-
ever, a possible solution is to treat contaminated 
soil ex-situ in a confined site with an impervious 
surface. Also, periodic application of low doses 
of synthetic chelates reduces the risk of metal 
migration.

1.9  Molecular Approach 
of Bioremediation

Microbial removal of contaminants from the en-
vironment often takes place without human in-
tervention. This has been termed intrinsic biore-
mediation. Relying on intrinsic bioremediation is 
increasingly the bioremediation option of choice 
if it can be shown that the contamination does not 
pose an immediate health threat and it remains 
localized. If the rate of intrinsic bioremediation 
is too slow, then environmental conditions can be 
manipulated to stimulate the activity of microor-
ganisms that can degrade or immobilize the con-
taminants of concern. Engineered bioremediation 
strategies include: the addition of electron donors 
or acceptors that will stimulate the growth or 
metabolism of microorganisms that are involved 
in the bioremediation processes; the addition of 
nutrients that limit the growth or activity of the 
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microorganisms; and amendments to microor-
ganisms with desired bioremediation capabilities.

The 16S rRNA Approach A significant advance 
in the field of microbial ecology was the find-
ing that the sequences of highly conserved genes 
that are found in all microorganisms, most nota-
bly the 16S rRNA genes could provide a phylo-
genetic characterization of the microorganisms 
that comprise microbial communities. This was 
a boon to the field of bioremediation because it 
meant that by analyzing 16S rRNA sequences in 
contaminated environments, it was possible to 
determine definitively the phylogenetic place-
ment of the microorganisms that are associated 
with bioremediation processes.

Analysis of Genes Involved in Bioremedia-
tion Examining the presence and expression of 
the key genes involved in bioremediation can 
yield more information on microbial processes 
than analysis of 16S rRNA sequences. In general, 
there is a positive correlation between the relative 
abundance of the genes involved in bioremedia-
tion and the potential for contaminant degrada-
tion. However, the genes for bioremediation can 
be present but not expressed. Therefore, there has 
been an increased, emphasis on quantifying the 
levels of mRNA for key bioremediation genes. 
Often, increased mRNA concentrations can be, at 
least qualitatively, associated with higher rates of 
contaminant degradation. For example, the con-
centrations of mRNA for nahA, a gene involved 
in aerobic degradation of naphthalene were posi-
tively correlated with rates of naphthalene deg-
radation in hydrocarbon-contaminated soil. The 
reduction of soluble ionic mercury, Hg(II), to 
volatile Hg(0), is one mechanism for removing 
mercury from water; the concentration of mRNA 
for merA, a gene involved in Hg(II) reduction 
was highest in mercury contaminated waters with 
the highest rates of Hg(II) reduction. However, 
the concentration of merA was not always pro-
portional to the rate of Hg(II) reduction illustrat-
ing that factors other than gene transcription can 
control the rates of bioremediation processes. 
Highly sensitive methods that can detect mRNA 

for key bioremediation genes in single cells are 
now available. This technique, coupled with 16S 
rRNA probing of the same environmental sam-
ples, could provide data on which phylogenetic 
groups of organisms are expressing the genes of 
interest.

Application of Genomics Although the molec-
ular techniques have outlined to improve our 
understanding of bioremediation, investigations 
in this field are on the cusp of a new era which 
promises for the first time to provide a global 
insight into the metabolic potential and activity 
of microorganisms living in contaminated envi-
ronments. This is the “genomics era” of bio-
remediation. With the application of genome-
enabled techniques to the study of not only 
pure cultures, but also environmental samples, 
it will be possible to develop the models that 
are needed to model microbial activity predica-
tively under various bioremediation strategies 
(Fig. 1.6).

The application of genomics to bioremedia-
tion initially revolutionized the study of pure 
cultures, which serve as models for important 
bioremediation processes (Nierman and Nel-
son 2002). Complete, or nearly complete, ge-
nome sequences are now available for several 
organisms that are important in bioremediation 
(Table 1.1). Whole genome sequencing is espe-
cially helpful in promoting the understanding of 
bioremediation-relevant microorganisms, whose 
physiology has not previously been studied in 
detail. For example, as noted earlier, molecular 
analyses have indicated that Geobacter species 
are important in the bioremediation of organic 
and metal contaminants in subsurface environ-
ments. The sequencing of several genomes of 
microorganisms of the genus Geobacter, as well 
as closely related organisms, has significantly 
altered the concept of how Geobacter species 
function in contaminated subsurface environ-
ments. For instance, before the sequencing of 
the Geobacter genomes, Geobacter species were 
thought to be nonmotile, but genes encoding fla-
gella were subsequently discovered in the Geo-
bacter genomes. Further investigations revealed 
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that Geobacter metallireducens specifically pro-
duces flagella only when the organism is grow-
ing on insoluble Fe(III) or Mn(IV) oxides. Genes 
for chemotaxis were also evident in the Geo-
bacter genomes, and experimental investiga-
tions have revealed that G. metallireducens has 
a novel chemotaxis to Fe(II),which could help 
guide it to Fe(III) oxides under anaerobic con-
ditions (Nevin and Lovley 2002). Pili genes are 
present and are also specifically expressed dur-
ing growth on insoluble oxides. Genetic studies 
have indicated that the role of the pili is to aid in 
attachment to Fe(III) oxides, as well as facilitat-
ing movement along sediment particles in search 
of Fe(III) (Fig. 1.7).

This energy-efficient mechanism for locat-
ing and reducing Fe(III) oxides in Geobacter 
species contrasts with the strategies for Fe(III) 
reduction in other well-studied organisms, 
such as Shewanella and Geothrix species. 
These other organisms release Fe(III) chela-
tors, which solubilize Fe(III) from Fe(III) ox-
ides, and electron shuttling compounds, which 
accept electrons from the cell surface and then 
reduce Fe(III) oxides. These strategies make it 
possible for Shewanella and Geothrix species 
to reduce Fe(III) without directly contacting the 
Fe(III) oxide.

Fig. 1.6  Genome-enabled techniques contribute to the development of models of how microorganisms function in 
contaminated environments. (Source: Derek R. Lovley 2003 Nature Reviews)
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Abstract

Distilleries are one of the most polluting industries generating enormous 
amount of wastewater from which an average of 10–15 L of effluent is 
released with the production of 1 L of alcohol. The distillery wastewater 
known as spent wash is characterized by its dark brown color, high tem-
perature, low pH, and high percentage of dissolved organic and inorganic 
matter. It also contains nearly 2 % of the dark brown recalcitrant pigment 
called melanoidin which imparts dark brown color to the effluent. Various 
physical, chemical, and alternate treatment methods have been adopted for 
the removal of color from this wastewater. But these methods only change 
the form of contaminants rather than degrading them completely.

Biological methods produce relatively little amount of product after 
treatment by resolving a large amount of organism elements into carbon 
dioxide to be stabilized, or by removing organic matters contained in 
wastewater with the generation of methane gas. In the biological treat-
ment methods, pollutants in wastewater can be resolved, detoxified, and 
separated by using mainly microorganisms. Due to the relatively low cost 
and the variations of work progress, the biological methods have been 
most widely used all over the world. A number of fungi, bacteria, yeast, 
and algae have been reported to have effluent treatment capabilities by the 
process of absorption, adsorption, and enzymatic degradation techniques. 
Toxicity studies of the biologically treated wastewaters also suggested that 
the process is efficient enough to reduce the toxicity of the spent wash by 
around 80 %. Hence, compared to the common and expensive physical or 
chemical ways for decolorization, an efficient bioremediation system has 
been found successful through biosorption and enzymatic ways of decol-
orization.

2.1  Introduction

Alcohol distilleries in India are one of the most 
polluting industries; in addition, they are high 
consumers of raw water. In India, major distill-
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eries are an agro-based industry with around 300 
units located mainly in rural, sugarcane-growing 
regions. The total installed capacity is 3250 mil-
lion L alcohol per annum with an estimated 
production of 2300.4 million L in 2006–2007 
(Ethanol India 2007). Bioethanol is produced 
worldwide for beverage, industrial, chemical, 
and some fuel use, by fermenting agricultural 
products such as molasses, sucrose-containing 
juices from sugarcane or sugarbeets, potatoes, 
fruits, and grains (notably maize, wheat, grain 
sorghum, barley, and rye). With growing popula-
tion, industrialization, and energy consumption, 
coupled with an increasing reliance on fossil 
fuels, the energy security needs of the world con-
tinue to escalate.

2.2  Critical Review

2.2.1  Process of Ethanol Production

Alcohol manufacture in distilleries consists of 
four main steps, viz., feed preparation, fermenta-
tion, distillation, and packaging (Fig. 2.1).

a. Feed Preparation
 Ethanol can be produced from a wide range 

of feedstock. These include sugar-based (cane 
and beet molasses, cane juice), starch-based 
(corn, wheat, cassava, rice, barley), and cellu-
losic (crop residues, sugarcane bagasse, wood, 
municipal solid wastes) materials. In gen-
eral, sugar-based feedstock containing read-
ily available fermentable sugars are preferred 
while Indian distilleries almost exclusively 
use sugarcane molasses The composition of 
molasses varies with the variety of cane, the 
agroclimatic conditions of the region, sugar 
manufacturing process, and handling and stor-
age (Godbole 2002).

b. Fermentation
 Yeast culture is prepared in the laboratory and 

propagated in a series of fermenters. The feed 
is inoculated with about 10 % by volume of 
yeast ( Saccharomyces cerevisiae) inoculum. 
This is an anaerobic process carried out under 
controlled conditions of temperature and pH 
wherein reducing sugars are broken down to 
ethyl alcohol and carbon dioxide. The reaction 
is exothermic. To maintain the temperature be-

Fig. 2.1  Detailed process 
of alcohol production
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tween 25 and 32 °C, plate heat exchangers are 
used; alternatively some units spray cooling 
water on the fermenter walls. Fermentation 
can be carried out in either batch or continu-
ous mode. Fermentation time for batch opera-
tion is typically 24–36 h with an efficiency 
of about 95 %. The resulting broth contains 
6–8 % alcohol. The sludge (mainly yeast cells) 
is separated by settling and discharged from 
the bottom, while the cell free fermentation 
broth is sent for distillation.

c. Distillation
 Distillation is a two-stage process and is typi-

cally carried out in a series of bubble cap frac-
tionating columns. The first stage consists of 
the analyzer column and is followed by rec-
tification columns. The cell free fermentation 
broth (wash) is preheated to about 90 °C by 
heat exchange with the effluent (spent wash) 
and then sent to the degasifying section of the 
analyzer column. Here, the liquor is heated 
by live steam and fractionated to give about 
40–45 % alcohol. The bottom discharge from 
the analyzer column is the spent wash. The 
alcohol vapors are led to the rectification col-
umn where by reflux action, 96 % alcohol is 
tapped, cooled, and collected. The condensed 
water from this stage, known as spent lees is 
usually pumped back to the analyzer column.

d. Packaging
 Rectified spirit (~ 96 % ethanol by volume) 

is marketed directly for the manufacture of 
chemicals such as acetic acid, acetone, oxalic 
acid, and absolute alcohol. Denatured etha-
nol for industrial and laboratory use typically 
contains 60–95 % ethanol as well as between 
1–5 % each of methanol, isopropanol, methyl 

isobutyl ketone (MIBK), ethyl acetate, etc. 
(Skerratt 2004). For beverages, the alcohol is 
matured and blended with malt alcohol (for 
manufacture of whisky) and diluted to requi-
site strength to obtain the desired type of li-
quor. This is bottled appropriately in a bottling 
plant. Anhydrous ethanol for fuel-blending 
applications (power alcohol) requires concen-
tration of the ethanol to > 99.5 wt % purity.

The quantum and characteristics of wastewater 
generated at various stages in the manufactur-
ing process are provided in Tables 2.1 and 2.2, 
respectively. The main source of wastewater 
generation is the distillation step wherein large 
volumes of dark brown effluent (termed as spent 
wash, stillage, slop, or vinasse) is generated in 
the temperature range of 71–81 °C (Yeoh 1997; 
Nandy et al. 2002; Patil et al. 2003). The charac-
teristics of the spent wash depend on the raw ma-
terial used (Mall and Kumar 1997), and also it is 

Table 2.1  Wastewater generation in various operations 
in distillery unit. (Tewari et al. 2007)
Distillery operations Average waste-

water gen-
erationa (kLD/
distillery)

Specific waste-
water generation 
(kL wastewater/
kL alcohol)

Spent wash 
(distillation)

491.9 11.9

Fermenter cleaning 98.2 1.6
Fermenter cooling 355.1 2.0
Condenser cooling 864.4 7.9
Floor wash 30.8 0.5
Bottling plant 113.8 1.3
Othersb 141.6 1.2
a Data based on 36 distilleries, with average installed 
capacity of 53.5 kLD
b Domestic wastewater in sugar-distillery complex, 
boiler-blow down, leakages, and laboratory

Table 2.2  Typical characteristics of distillery wastewater streams. (Tewari et al. 2007)
Parameter Spent wash Fermenter 

cooling
Fermenter 
cleaning

Condenser 
cooling

Fermenter 
wash

Bottling plant

Color Dark brown Colorless Colorless Colorless Faint Colorless
pH 4–4.5 6.26 5.0–5.5 6.8–7.8 6 7.45
Total solids 
(mg/L)

100,000 1000–1300 1000–1500 700–900 550 400

Suspended 
solids (mg/L)

10,000 220 400–600 180–200 300 100

BOD (mg/L) 45,000–60,000 100–110 500–600 70–80 15 5
COD (mg/L) 80,000–120,000 500–1000 1200–1600 200–300 25 15
BOD biochemical oxygen demand, COD chemical oxygen demand
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estimated that 88 % of the molasses constituents 
end up as waste (Jain et al. 2002).

The spent wash is the most polluting stream 
and contains practically all unfermentable sol-
uble matter present in the molasses. Apart from 
the extremely high chemical oxygen demand 
(COD) and biochemical oxygen demand (BOD) 
load, the dark color is also a key concern. This 
dark color is mainly imparted by melanoidins 
that are low and high molecular weight polymers 
formed as one of the final products of Maillard 
reaction, which is a nonenzymatic browning re-
action resulting from the reaction of reducing 
sugars and amino compounds (Martins and van 
Boekel 2004). This reaction proceeds effectively 
at temperatures above 50 °C and pH 4–7. These 
are complex organic compounds, when released 
in environment without treatment, react with a 
wide variety of other chemicals in presence of 
light and heat to form highly toxic and recalci-
trant compounds (Kinae et al. 1981; Zacharewski 
et al. 1995). Thus, it is obligatory to treat the ef-
fluent before disposal into the environment.

2.3  Bioremediation

Generally, methods of treating wastewater in-
clude physical–chemical methods and biological 
methods. Methods such as sedimentation, flota-
tion, screening, adsorption, coagulation, oxida-
tion, ozonation, electrolysis, reverse osmosis, ul-
trafiltration, and nanofiltration technologies have 
been used for treatment of suspended solids, col-
loidal particles, floating matters, colors, and toxic 
compounds (Pokhrel and Viraraghavan 2004). 
The drawbacks of the physical–chemical meth-
ods include high costs and the need to re-treat 
the products, which further increases the cost 
of treatment. Biological method produces rela-
tively little amount of product after treatment by 
resolving a large amount of organism elements 
into carbon dioxide to be stabilized, or by remov-
ing organic matters contained in wastewater with 
the generation of methane gas. In the biological 
treatment method, pollutants in wastewater can 
be resolved, detoxified, and separated by using 
mainly microorganisms. Due to the relatively 

low cost and the variations of work progress, the 
biological methods have been most widely used 
all over the world.

2.4  Treatment of Distillery Spent 
Wash

Biological treatment can be divided into aero-
bic and anaerobic depending on the availability 
of oxygen. Aerobic treatment involves activated 
sludge treatment, aerated lagoons, and aero-
bic biological reactors. Anaerobic filter, upflow 
sludge blanket (UASB), fluidized bed, anaerobic 
lagoon, and anaerobic contact reactors are anaer-
obic processes, that are commonly used to treat 
distillery mill effluents. Among these treatments 
one thing is common, use of microbes (Pokhrel 
and Viraraghavan 2004). A number of fungi, bac-
teria, yeast, and algae have been reported to have 
effluent-treatment capabilities.

2.4.1  Decolorization of Effluent 
by Fungi

In recent years, several basidiomycetes and as-
comycetes type fungi have been used in the de-
colorization of wastewaters from distilleries. 
Filamentous fungi have lower sensitivity to vari-
ations in temperature, pH, nutrients, and aera-
tion, and have lower nucleic acid content in the 
biomass (Knapp et al. 2001). Coriolus sp. no. 20, 
in class basidiomycetes, was the first strain for 
the application of its ability to remove melanoi-
dins from molasses wastewater (Watanabe et al. 
1982). Published papers report the use of wide 
variety of fungi like Aspergillus fumigatus G-2-6 
(Ohmomo et al. 1987), Emericella nidulans var. 
lata (Kaushik and Thakur 2009a), Geotrichum 
candidum (Kim and Shoda 1999), Trametes sp. 
(González et al. 2000), Aspergillus niger (Patil 
et al. 2003), Citeromyces sp. (Sirianuntapiboon 
et al. 2003), Flavodon flavus (Raghukumar et al. 
2004), and Phanerochaete chrysosporium (Thak-
kar et al. 2006) for decolorization of distillery 
mill effluent.
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White rot fungi is another group of widely 
exploited microorganism in distillery effluent 
bioremediation. White rot fungi produce vari-
ous isoforms of extracellular oxidases including 
laccases, manganese peroxidases and lignin per-
oxidase, which are involved in the degradation of 
various xenobiotic compounds and dyes. Another 
important mechanism involved in decolorization 
of the distillery mill effluent by fungi is adsorp-
tion.

2.4.2  Decolorization of Effluent 
by Bacteria

Different bacterial cultures capable of both bio-
remediation and decolorization of distillery spent 
wash have been isolated. Different research-
ers have reported isolation of various bacterial 
strains acclimatized on higher concentrations 
of distillery mill effluent. These are Lactobacil-
lus hilgardii (Ohmomo et al. 1988), Bacillus sp. 
(Kambe et al. 1999; Kaushik and Thakur 2009b), 
Pseudomonas putida (Ghosh et al. 2002), Bacil-
lus thuringiensis (Kumar and Chandra 2006), 
and Pseudomonas aeruginosa (Mohana et al. 
2007). Some researchers carried out melanoidin 
decolorization by using immobilized whole cells. 
These strains were able to reduce significant lev-
els of BOD and COD. The major products left 
after treatment were biomass, carbon dioxide, 
and volatile acids.

Besides fungi and bacteria, yeast (Moriya 
et al. 1990; Sirianuntapiboon et al. 2003) and 
algae (Valderrama et al. 2002; Kumar and 
Chandra 2004) have also been utilized widely 
since long back for biodegradation of complex, 
toxic, and recalcitrant compounds present in dis-
tillery spent wash.

2.4.3  Decolorization of Effluent by 
Algae

Cyanobacteria are considered ideal for treatment 
of distillery effluent as they apart from degrading 
the polymers also oxygenate water bodies, thus 
reduce the BOD and COD levels. Kalavathi et al. 

(2001) explored the possibility of using a marine 
cyanobacterium for decolorization of distillery 
spent wash and its ability to use melanoidins as 
carbon and nitrogen source. A marine filamen-
tous, nonheterocystous form Oscillatoria bory-
ana BDU 92181 used the recalcitrant biopolymer 
melanoidin as nitrogen and carbon source lead-
ing to decolorization. The mechanism of color 
removal is postulated to be due to the production 
of hydrogen peroxide, hydroxyl anions, and mo-
lecular oxygen, released by the cyanobacterium 
during photosynthesis.

2.5  Role of Bioreactors in Effluent 
Treatment

a. Anaerobic Reactors
 Wastewater treatment using anaerobic process 

is a very promising reemerging technology, 
produces very little sludge, requires less en-
ergy, and can become profitable by cogenera-
tion of useful biogas (Mailleret et al. 2003). 
However, these processes have been sensi-
tive to organic shock loadings, low pH, and 
show slow growth rate of anaerobic microbes 
resulting in longer hydraulic retention times 
(HRT). This often results in poor performance 
of conventional mixed reactors. Biomethana-
tion using biphasic system is most appropriate 
treatment method for high strength wastewa-
ter because of its multiple advantages viz., 
possibility of maintaining optimal conditions 
for buffering of imbalances between organic 
acid production and consumption, stable per-
formance, and higher methane concentration 
in the biogas produced (Seth et al. 1995). In 
recent years, the UASB process has been suc-
cessfully used for the treatment of various 
types of wastewaters (Lettinga and Hulshoff 
Pol 1991). Jhung and Choi (1995) performed 
a comparative study of UASB and anaerobic 
fixed film reactors for treatment of molasses 
wastewater. The UASB technology is well 
suited for high strength distillery wastewaters 
only when the process has been successfully 
started up and is in stable operation. How-
ever, the conventional UASB reactors showed 
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severe limitations mainly related to mass 
transfer resistance or the appearance of con-
centration gradients inside the systems, slow 
primary startup requiring several weeks, and 
difficulty in controlling granulation process 
which depends upon a large number of param-
eters.

b. Aerobic reactors
 Anaerobically treated distillery spent wash 

still contains high concentrations of organic 
pollutants and as such cannot be discharged 
directly. Aerobic treatment of anaerobically 
treated distillery spent wash has been attempt-
ed for the decolorization of the major colo-
rant, melanoidin and for further reduction of 
the COD and BOD. A large number of micro-
organisms such as bacteria (pure and mixed 
culture), cyanobacteria, yeast, fungi, etc. have 
been isolated in recent years that are capable 
of degrading melanoidin and ultimately decol-
orizing the wastewater.

2.6  Enzymatic Processes 
for Decolorization

A large number of enzymes (e.g., peroxidases, 
oxidoreductases, cellulolytic enzymes, proteases 
amylases, etc.) from a variety of different sources 
have been reported to play an important role in 
an array of waste treatment applications (Ferrer 
et al. 1991; Dec and Bollag 1994). Paper and 
pulp mills, textiles and dye-making industries, al-
cohol distilleries, and leather industries are some 
of the industries that discharge highly colored ef-
fluents. The ligninolytic system consists of two 
main groups of enzymes: peroxidases (lignin per-
oxidases and manganese peroxidases) and lac-
cases (Leonowicz et al. 2001; Arana et al. 2004; 
Baldrian 2006). Although the enzymatic system 
associated with decolorization of melanoidin 
containing wastewater appears to be related to 
the presence and activity of fungal ligninolytic 
mechanisms, this relation is as yet not completely 
understood. Laccase is a multicopper blue oxi-
dase capable of oxidizing ortho- and para diphe-
nols and aromatic amines by removing an elec-
tron and proton from a hydroxyl group to form a 

free radical. These enzymes lack substrate speci-
ficity and are thus capable of degrading a wide 
range of xenobiotics including industrial colored 
wastewaters. The mechanism of action of these 
enzymes is as follows:
a. Lignin Peroxidase (LiP)
 LiP is a heme-containing glycoprotein, which 

requires hydrogen peroxide as an oxidant. LiP 
from different sources was shown to miner-
alize a variety of recalcitrant aromatic com-
pounds and to oxidize a number of polycyclic 
aromatic and phenolic compounds (Karam 
and Nicell 1997).

Fungi secrete several isoenzymes into their cul-
tivation medium, although the enzymes may 
also be cell wall-bound (Lackner et al. 1991). 
LiP oxidizes nonphenolic lignin substructures 
by abstracting one electron and generating cat-
ion radicals, which are then decomposed chemi-
cally (Fig. 2.2). LiP is secreted during secondary 
metabolism as a response to nitrogen limitation. 
They are strong oxidizers capable of catalyzing 
the oxidation of phenols, aromatic amines, aro-
matic ethers, and polycyclic aromatic hydrocar-
bons (Breen and Singleton 1999).
b. Manganese Peroxidase (MnP)
 MnP is also a heme-containing glycoprotein 

which requires hydrogen peroxide as an oxi-
dant. MnP oxidizes Mn(II) to Mn(IIl) which 
then oxidizes phenol rings to phenoxy radi-

Fig. 2.2  Mechanism of action for lignin peroxidase 
(LiP). ox oxidized state of enzyme. (Breen and Singleton 
1999)
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cals, which lead to decomposition of com-
pounds (Fig. 2.3). MnP catalyzes the oxida-
tion of several monoaromatic phenols and 
aromatic dyes, but depends on both divalent 
manganese and certain types of buffers. The 
enzyme requirement for high concentrations 
of Mn(III) makes its feasibility for wastewa-
ter treatment application doubtful (Karam and 
Nicell 1997). Evidence for the crucial role of 
MnP in lignin biodegradation are accumulat-
ing, e.g., in depolymerization of lignin (Warii-
shi et al. 1991) and chlorolignin (Lackner 
et al. 1991), in demethylation of lignin and 
delignification and bleaching of pulp (Paice 
et al. 1993), and in mediating initial steps in 
the degradation of high-molecular mass lignin 
(Perez and Jeffries 1992).

c. Laccase
 Laccase (EC 1.10.3.2, benzenediol:oxygen 

oxidoreductase) is a multicopper blue oxidase 
capable of oxidizing ortho- and para-diphe-
nols and aromatic amines by removing an 
electron and proton from a hydroxyl group to 
form a free radical. Laccase in nature can be 
found in eukaryotes as fungi (principally by 
basidiomycetes), plants, and insects. Howev-
er, in recent years, there is an increasing evi-
dence for the existence in prokaryotes (Claus 
2003). Corresponding genes have been found 
in gram-negative and gram-positive bacteria 
Azospirillum lipoferum (Bally et al. 1983), 
Marinomonas mediterranea (Sánchez-Amat 
and Solano 1997), and Bacillus subtilis (Mar-
tins et al. 2002).

Laccases not only catalyze the removal of a 
hydrogen atom from the hydroxyl group of 

methoxy-substituted monophenols, ortho- and 
para-diphenols, but can also oxidize other sub-
strates such as aromatic amines, syringaldazine, 
and nonphenolic compounds to form free radi-
cals (Bourbonnais et al. 1997; Li et al. 1999). 
After long reaction times there can be coupling 
reactions between the reaction products and even 
polymerization. It is known that laccases can cat-
alyze the polymerization of various phenols and 
halogen, alkyl- and alkoxy-substituted anilines 
(Hoff et al. 1985). The laccase molecule, as an ac-
tive holoenzyme form, is a dimeric or tetradimer-
ic glycoprotein, usually containing four copper 
atoms per monomer, bound to three redox sites 
(Fig. 2.4). The molecular mass of the monomer 
ranges from about 50–100 kDa. Typical fungal 
laccase is a protein of approximately 60–70 kDa 
with acidic isoelectric point around pH 4.0. Sev-
eral laccase isoenzymes have been detected in 
many fungal species. Several laccases, however, 
exhibit a homodimeric structure, the enzyme 
being composed of two identical subunits with a 
molecular weight typical for monomeric laccase.

Application of Laccases The interest in laccases 
as potential industrial biocatalysts has particu-
larly increased after the discovery of their abil-
ity to oxidize recalcitrant nonphenolic lignin 
compounds (Li et al. 1999). This capability has 
later been shown to be generally applicable to 
a number of biotechnological problems; all of 
them are related to the degradation or chemi-
cal modification of structurally diverse com-
pounds, being either xenobiotic or naturally 
occurring aromatic compounds. Laccase is cur-
rently being investigated by a number of research 

Fig. 2.3  Mechanism of 
action for manganese 
peroxidase (MnP). ox 
oxidized state of enzyme. 
(Breen and Singleton 
1999)
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groups, e.g., with respect to litter mineralization 
(Dedeyan et al. 2000), dye detoxification, and 
decolorization (Abadulla et al. 2000; Kaushik 
and Thakur 2013). Laccases in both free and 
immobilized form as well as in organic solvents 
have found various biotechnological applica-
tions such as analytical tools—biosensors for 
phenols, development of oxygen cathodes in 
biofuel cells, organic synthesis, immunoassays 
labeling, delignification, demethylation, and 
thereby bleaching of craft pulp (Bourbonnais and 
Paice 1992; Bourbonnais et al. 1995) In addition, 
laccases have also shown to be useful for the 
removal of toxic compounds through oxidative 
enzymatic coupling of the contaminants, lead-
ing to insoluble complex structures (Wang et al. 
2002). Laccase was found to be responsible for 
the transformation of 2,4,6-trichlorophenol to 
2,6-dichloro-1,4-hydroquinol and 2,6-dichloro-

1,4-benzoquinone (Leontievsky et al. 2000). 
Laccases from white rot fungi have been also 
used to oxidize alkenes, carbazole, N-ethyl-
carbazole, fluorene, and dibenzothiophene in 
the presence of hydroxybenzotriole (HBT) and 
2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic 
acid) (ABTS) as mediators (Niku-Paavola and 
Viikari 2000; Bressler et al. 2000). An isolate of 
the fungus Flavodon flavus was shown to be able 
to decolorize the effluent from a Kraft paper mill 
bleach plant. F. flavus decolorized several syn-
thetic dyes like azure B, brilliant green, congo 
red, crystal violet, and Remazol brilliant blue R 
in low nitrogen medium (Raghukumar 2000). 
Partial decolorization of two azo dyes (orange 
G and amaranth) and complete decolorization of 
two triphenylmethane dyes (bromophenol blue 
and malachite green) was achieved by cultures of 
Pycnoporus sanguineus producing laccase as the 

Fig. 2.4  Copper centers of 
the laccase. (Adapted from 
Claus 2004)
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sole phenoloxidase (Pointing et al. 2000). Lac-
case purified from Trametes hirsuta, was able to 
degrade triarylmethane, indigoid, azo, and athra-
quinonic dyes used in dyeing textiles (Abadulla 
et al. 2000) as well as 23 industrial dyes (Rodri-
guez et al. 1999).

2.7  Adsorption-Assisted 
Decolorization

Several methods for the treatment of colored 
wastewaters have been proposed in the literature. 
These include physicochemical treatment pro-
cesses, chemical oxidation, and biological deg-
radation. Among various physicochemical treat-
ment processes, adsorption has been found to be 
an attractive technique for the removal of most 
organic compounds in wastewaters, especially at 
lower concentrations. Activated carbon has been 
the most commonly used adsorbent. However, 
high cost of activation, regeneration, and the dis-
posal of the concentrate from the cleaning cycles 
pose problems in the use of activated carbon. 
Hence, the search of new low cost adsorbents 
has attracted a number of investigators. Several 
low cost adsorbents like wood, coir pith, coal fly 
ash, bagasse fly ash (BFA), and coal-fired boiler 
bottom ash have been used for the treatment of a 
wide variety of wastewaters.

An efficient, cost-effective, and environmen-
tally friendly technique; biosorption is mainly 
a physicochemical process involving the use of 
biological material-live or nonviable, can be used 
to concentrate and recover or eliminate the pol-
lutants from aqueous solutions. Various work-
ers have investigated the biosorption of various 
organic pollutants and color from wastewaters 
(Tsezos and Bell 1989; Fu and Viraraghavan 
2001). Biomass of some natural microbial spe-
cies, including bacteria, fungi, and algae, is ca-
pable of removing the different textile dyes by 
biosorption, biodegradation, or mineralization 
(Carliell et al. 1995). Some low-cost fungal bio-
mass has been used as biosorbent for the removal 
of dye and metal ions from or wastewater, which 
included Trametes versicolor (Bayramoglu et al. 

2003), and Corynebacterium glutamicum (Won 
et al. 2004).
a. Mechanism of Biosorption
 According to the dependence on the cell’s 

metabolism, biosorption mechanisms can be 
divided into:
1. Metabolism-dependent
2. Nonmetabolism-dependent

 According to the location where the sorbate 
removed from solution is found, biosorption 
can be classified as
1. Extracellular accumulation/precipitation
2. Cell surface sorption/precipitation and
3. Intracellular accumulation

Microbial biomass consists of small particles 
with low density, poor mechanical strength, and 
little rigidity. This phenomenon is generally 
based on a set of chemical and physical mecha-
nisms (involving physicochemical interactions 
such as electrostatic interactions, ion exchange, 
complexation, chelation, and precipitation) lead-
ing to the immobilization of a solute component 
on the microbial cell wall components. The com-
plexity of the microbial structure implies that 
there are many ways for the pollutant to be cap-
tured by the cells. Biosorption mechanisms are 
therefore various (physical adsorption, chemical 
binding of ionic groups, ion exchange, etc.) and 
in some cases they are still not very well under-
stood (Veglio and Beolchini 1997). Cell surface 
sorption is a physicochemical interaction, which 
is not dependent on metabolism. Cell walls of 
microbial biomass mainly composed of poly-
saccharides, proteins, and lipids, offer abundant 
functional groups such as carboxyl, hydroxyl, 
phosphate, and amino groups, as well as hydro-
phobic adsorption sites such as aliphatic carbon 
chains and aromatic rings (Ringot et al. 2005). 
This physicochemical phenomenon is quick and 
can be reversible.

Physical Adsorption If the attraction between 
the solid surface and the adsorbed molecules is 
physical in nature, the adsorption is referred to 
as physical adsorption (physiosorption). Gener-
ally, in physical adsorption the attractive forces 
between adsorbed molecules and the solid surface 
are van der Waals forces and they being weak in 
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nature result in reversible adsorption. Electro-
static interactions have been demonstrated to be 
responsible for copper biosorption by bacterium 
Zoogloea ramigera and alga Chlorella vulgaris 
(Aksu et al. 1992), and for chromium biosorption 
by fungi Ganoderma lucidum and Aspergillus 
niger (Srivastava and Thakur 2006).

Chemical Adsorption If the attraction forces are 
due to chemical bonding, the adsorption process 
is called chemisorption. In view of the higher 
strength of the bonding in chemisorption, it is 
difficult to remove chemisorbed species from the 
solid surface. Aksu et al. (1992) hypothesized 
that biosorption of copper by C. vulgaris and Z. 
ramigera takes place through both adsorption 
and formation of coordination bonds between 
metals and amino and carboxyl groups of cell 
wall polysaccharides. Microorganisms may also 
produce organic acids (e.g., citric, oxalic, glu-
onic, fumaric, lactic, and malic acids), which may 
chelate toxic metals resulting in the formation of 
metalloorganic molecules. These organic acids 
help in the solubilization of metal compounds 
and their leaching from the surfaces.

Ion Exchange Ion exchange is basically a 
reversible chemical process wherein an ion from 
solution is exchanged for a similarly charged 
ion attached to an immobile solid particle. Ion 
exchange shares various common features along 
with adsorption, in regard to application in 
batch and fixed-bed processes and they can be 
grouped together as ‘‘sorption processes’’ for a 
unified treatment to have high water quality. Ion 
exchange has been fruitfully used too for the 
removal of colors. By far the largest application 
of ion exchange (Clifford 1999) to drinking water 
treatment is in the area of softening that is the 
removal of calcium, magnesium, and other poly-
valent cations in exchange for sodium. Various 
studies have been carried out using ion exchange 
for the removal of dyes (Liu et al. 2007; Wu et al. 
2008). Delval et al. (2005) prepared starch-based 
polymers by a crosslinking reaction of starch-
enriched flour using epichlorohydrin as a cross-
linking agent in the presence of NH4OH.

b. Factors Affecting Biosorption
 The following factors affect the biosorption 

process:
1. Temperature seems not to influence the 

biosorption performances in the range of 
20–35 °C (Aksu et al. 1992).

2. pH seems to be the most important param-
eter in the biosorptive process: it affects the 
solution chemistry of the metals, the activ-
ity of the functional groups in the biomass 
(Galun et al. 1987).

3. Biomass concentration in solution seems 
to influence the specific uptake: for lower 
values of biomass concentrations there is 
an increase in the specific uptake. Interfer-
ence in between the binding sites due to 
increased biomass was suggested as a pos-
sible reason (Gadd et al. 1988).

c. Biosorption Equilibrium Models
 One of the most important characteristics of 

an adsorbent is the quantity of adsorbate it can 
accumulate which is usually calculated from 
the adsorption isotherms. The adsorption iso-
therms are constant-temperature equilibrium 
relationship between the quantity of adsorbate 
per unit of adsorbent (qe) and its equilibrium 
solution concentration (Ce). Several equa-
tions or models are available that describe this 
function like the Freundlich and the Langmuir 
equations.

2.8  Future Prospects

The present status described in the chapter has al-
lowed important information on the types of spe-
cies involved in decolorization and degradation 
of distillery spent wash in the various lab scale to 
pilot scale studies but their interaction with the 
native microbial communities is still being ques-
tioned. Future studies should, therefore, focus 
not only on identification of other communities 
as observed in denaturing gradient gel electro-
phoresis (DGGE) band pattern but also their 
quantification using reliable quantitative meth-
ods. Assessment of activity and the interactions 
between the introduced organisms will also be 
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important for the design and control of biological 
reactors. Another area of study scope lies with 
isolated and purified microbial enzymes and the 
focus lie on investigation of production strate-
gies such as recombinant expression in another 
organism.

2.9  Conclusion

Ethanol manufacture from molasses based in-
dustries generates large volumes of high strength 
wastewater, which is of serious environmental 
concern. It is estimated that in a large scale unit 
approximately 0.2 million L of molasses spent 
wash (MSW) is generated each day. The main 
source of wastewater generation is the distilla-
tion step wherein large volumes of dark brown 
effluent (termed as spent wash) is generated in 
the temperature range of 71–81 °C. This spent 
wash is dark brown colored polluting stream and 
contains practically all unfermentable soluble 
matter apart from the extremely high COD and 
BOD load. This dark color is mainly imparted 
by melanoidin, that are low and high molecu-
lar weight polymers formed as one of the final 
products of Maillard reaction. This colored 
waste stream contains highly toxic and recalci-
trant compounds and when released untreated in 
any nearby water stream causes eutrophication 
and blocks the sunlight (due to color), ultimately 
creating a toxic environment to the aquatic biota. 
Therefore, a comprehensive treatment strategy 
is required for decolorization and detoxification 
of distillery spent wash before its disposal into 
the environment. Compared to the common and 
expensive physical or chemical ways for decol-
orization, an efficient bioremediation system has 
been found successful through biosorption and 
enzymatic ways of decolorization. However, 
pollution from distillery effluents is a complex 
environmental problem; its permanent solution 
will require comprehensive system consider-
ations as well as multidisciplinary and holistic 
approaches.
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Abstract
Metabolic pathways and extreme pathways are the central paradigm of 
any life form. The detailed study and analysis of these pathways can yield 
better and engineered biological systems. This is the time when con-
ventional methods of studying microorganisms are no longer practiced 
because of their limited productivity and higher time consumption. Bio-
informatics has fulfilled the need for high-throughput experimental tech-
nologies, which are reliable and less time consuming too. With the help 
of computational biology, it is easy to study the whole microorganism’s 
metabolic and extreme pathways network and to obtain authentic results. 
Some in silico tools are designed to fulfill the need for high-throughput 
analysis of different pathways in microorganisms, like metagenome an-
alyzer (MEGAN) which works on short-read data, the Pathways Tool 
which helps in constructing the pathway database and the Model SEED, 
a resource for the generation, optimization, duration and analysis of ge-
nome-scale metabolic models. Thus, network-based pathways are emerg-
ing as an important paradigm for analysis of biological systems.

3.1  Introduction

3.1.1  Pathway Analysis

A pathway is a sequence of activities among mol-
ecules in a cell that leads to a certain product or 
change in the cell. Such a pathway can activate the 
assemblage of new molecules, such as a fat or pro-
tein. Pathways can also turn genes on and off. For a 
life form to develop correctly and stay well, many 
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things must work together at many different lev-
els—from organs to cells to genes. Cells are con-
stantly receiving cues from both inside and outside 
the body, which are prompted by such things as 
injury, infection, stress or even food. To react and 
adjust to these cues, cells send and receive signals 
through biological pathways. The molecules that 
make up biological pathways interact with signals, 
as well as with each other, to carry out their chosen 
tasks. Biological pathways can also produce small 
or large outcomes. Scientists are researching that 
biological pathways are far more complex than 
once believed. Most pathways do not start at point 
X and end at point Y. In fact, many pathways have 
no real restrictions, and they often work together 
to complete tasks. When multiple biological path-
ways interact with each other, it is known as a bio-
logical network (Fig. 3.1). These pathways have 
then been grouped conceptually as functional units 
such as glycolysis or the tricarboxylic acid cycle 
(TCA) cycle. This type of pathway definition is 
useful for identifying portions of the metabolic 
network, but the divisions are somewhat vague 
between the point where one pathway ends and 
another begins. In addition, this type of pathway 
definition does not relate to the overall functions 
of the network as a whole.

3.1.2  A Brief History of the Field  
of Pathway Analysis

The first work on pathways can be traced back 
to 1980 with the development of SNA by Bruce 

Clarke (Fig. 3.2). The theory was developed to 
study instability in inorganic chemical networks. 
This was the first attempt to apply convex analy-
sis to reaction networks but it was never extended 
to living systems. This was followed by some 
work using AI to search through reaction net-
works following along the lines of graph theory 
and was taken another step further by Mavro with 
the introduction of stoichiometric constraints. 
Both of these approaches lacked a sound theo-
retical basis. In 1994, Schuster became the first 
to apply convex analysis to metabolic networks 
with the introduction of a non-unique set of el-
ementary modes. This theory was applied a few 
years later by Liao to optimize bacterial strain de-
sign for the high-efficient production of aromatic 
amino acids. So at this point in time, pathway 
analysis was just beginning to be applied but still 
lacked a unified theoretical foundation, which is 
where the present work comes in.

3.2  Extreme Pathways

3.2.1  Definition

Extreme pathways are defined as vectors de-
rived mathematically and can be used to char-
acterize the phenotypic potential of a defined 
metabolic network (Schilling et al. 1999, 2000). 
Extreme pathway analysis has the following 
characteristics:

Fig. 3.1  An overview of pathway analysis. (Reproduced from http://www2.bio.ifi.lmu.de/lehre/SS2007/SEM_Ad-
vanced/Folien/Extreme_pathways.pdf)
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(1) It generates a unique and minimal set of sys-
temic pathways

(2) It describes all possible steady-state flux 
distributions that the network can achieve 
by non-negative linear combinations of the 
extreme pathways

(3) It enables the determination of time-invari-
ant, topological properties of the network

The calculation of extreme pathways is computa-
tionally challenging and for large networks, gen-
erates a tremendous amount of numerical data 
(Schilling et al. 2000; Samatova et al. 2002).

The phenotypic capabilities of a genome-scale 
metabolic network can be characterized by a set 
of systemically independent and unique extreme 
pathways (Schilling et al. 2000). Extreme path-
ways correspond to steady-state flux distribu-
tions through a metabolic network (Fig.  3.3). 
Thus, extreme pathways do not simply describe 
a linear set of reactions linking substrate to 
product, but instead, characterize the relative flux 

Fig. 3.3  Schematic representation of a convex cone char-
acterized by five extreme pathways. Extreme Pathways 
1–5 ( EP1, EP2, EP3, EP4, and EP5) circumscribe the solu-
tion space for the three fluxes indicated ( vA, vB, and vC). 
EP4 lies in the plane formed by fluxes vA and vB. Conse-
quently, flux vC does not participate in that extreme path-
way. EP3, EP4, and EP5 are all close and represent differ-
ent uses of a network to achieve a similar overall result. 
All points within the convex cone can be described as a 
nonnegative linear combination of the extreme pathways. 
(Reproduced from Papin et al. 2002)

 

Fig. 3.2  Schematic representation of historical footsteps in metabolic pathways analysis. (Reproduced from http://
gcrg.ucsd.edu/sites/default/files/Attachments/Images/classes/taiwan_notes/5_slides_expa. pdf)
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levels through all the reactions necessary to con-
vert substrates to products, to balance all cofac-
tor pools, and to secrete any byproducts needed 
to maintain the network in a homeostatic state. 
The sets of extreme pathways studied here lead 
to the synthesis of a target product, such as an 
individual amino acid or all the protein in a cell. 
Therefore, each extreme pathway in the set cor-
responds to a complete flux map that synthesizes 
the target product within the metabolic network. 
Extreme pathways are so named because they are 
the edges of a solution space and thus character-
ize the extreme functions of the network. The ex-
treme pathways can be thought of as generating a 
convex cone in high-dimensional space, circum-
scribing all possible steady-state metabolic phe-
notypes. (Papin et al. 2002)

It should be noted that the extreme pathways 
are an irreducible, non-redundant subset of el-
ementary modes (Pfeiffer et al. 1999; Schuster 
et al. 1999, 2000). Elementary modes for a given 
network are more numerous than the extreme 
pathways, but can all be represented by non-neg-
ative, linear combinations of the extreme path-
ways.

3.2.2  Types of Extreme Pathways

Extreme pathways can be classified into three 
types, based upon the metabolites that enter and 
leave the particular network, known as exchange 
fluxes (Fig. 3.4).

Type I extreme pathways have exchange 
fluxes that cross system boundaries, and repre-
sent primary metabolic pathways. These extreme 
pathways detail the conversion of substrates into 
products and byproducts.

Type II extreme pathways also have exchange 
fluxes that cross system boundaries, but these 
exchange fluxes only correspond to “currency” 
metabolites, such as ATP, NADH and so forth. 
Type II pathways can be through of as “futile” 
cycles, and must proceed “downhill” in terms of 
free energy.

Type III extreme pathways have no active ex-
change fluxes, and therefore represent internal 
cycles. Based upon thermodynamics, these cy-
cles cannot be active because there is no energy 
source to drive them. Thus, these type III extreme 
pathways can be eliminated from the convex basis 
without loss of phenotypic potential. (http://gcrg.
ucsd.edu/sites/default/files/Attachments/Images/
classes/taiwan_notes/5_slides_expa.pdf).

3.2.3  Pathway Tool

The Pathway Tools are the software environment 
for the quality production of model-organism 
databases (MODs), and are also reusable. The 
Model-Organism Databases formed are called 
pathways/genome databases (PGDB). Informa-
tion related to genes, proteins and the genetic and 
metabolic networks of an organism is stored in 
the PGDB. The Pathway Tool gives two different 
modalities for interacting with a PGDB:

Fig. 3.4  Showing the types of extreme pathways based on their exchange fluxes. (Reproduced from http://www2.bio.
ifi.lmu.de/lehre/SS2007/SEM_Advanced/Folien/Extreme_pathways.pdf)

 

http://www2.bio.ifi.lmu.de/lehre/SS2007/SEM_Advanced/Folien/Extreme_pathways.pdf
http://www2.bio.ifi.lmu.de/lehre/SS2007/SEM_Advanced/Folien/Extreme_pathways.pdf
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• A graphical environment is provided so that 
the user can easily interact with the PGDB

• It provides a sophisticated ontology and data-
base API that allows a program to perform 
complex queries, symbolic computations and 
data mining on the content of the PGDB (Karp 
et al. 2002)

Pathway Tools are the combination of four tools 
working on different aspects of the same query. 
They are known as the four components of the 
complete Pathway Tools software.

The first component is the Pathway/Genome 
Navigator which provides query, visualization 
and analysis services to PGDBs. It can serve both 
as a local application as well as a Web server. It 
helps in facilitating information fast, and allows 
the scientific community to exhibit information 
in various forms such as graphical and to distrib-
ute a PGDB to others via the web. The second 
component, known as PathoLogic, has a function 
for users to create a new PGDB, which contains 
information about genes, proteins and other pre-
dicted metabolic networks of the organism. The 
third component is known as the Pathway/Ge-
nome Editor, which provides the facility of edit-
ing the PGDB and its content in an interactive 
mode. It has a function for creating new path-
ways and establishing relationships amongst the 
newly discovered components. The fourth com-
ponent is Pathway Tool Ontology, which defines 
the rich set of classes, attributes and relationships 
for high-fidelity modelling of biological data. 
(Karp et al. 2002)

3.3  Metagenomics

Metagenomes are studied under this head-
ing, as well as the genetic material obtained 
directly from the environmental samples. It is 
the analysis of genomes of microorganisms by 
direct extraction and DNA cloning from an as-
semblage of microorganisms. The development 
of metagenomics stemmed from the ineluctable 
evidence that as-yet-uncultured microorgan-
isms represent the vast majority of organisms 
in most environments on earth. The approach 

of microbiologists towards many problems has 
been changed by the subject of metagenomics, 
which redefined the concept of a genome, and 
accelerated the rate of gene discovery. (Handles-
man 2004). In addition, the metagenomic librar-
ies derived from environmental DNA are use-
ful for characterizing uncultured microorgan-
isms. However, conventional library-screening 
techniques permit characterization of relatively 
few environmental clones. (Sebat et al. 2003). 
Jo Handelsman coined the term in 1998. There 
are a vast number of metagenome projects cur-
rently active, producing a huge amount of data 
related to DNA. Advances in the throughput 
and cost-efficiency of sequencing technology 
are fueling a rapid increase in the number and 
size of metagenomic datasets being generated. 
Researchers are now able to study the DNA of 
a wider range of microorganisms and genes on 
a more complete and detailed scale. The basic 
questions of interest are: which species are pres-
ent in a given environment, and what types of 
genes, functions or pathways are present in the 
DNA or actually active in the sample? As re-
search begins to answer these basic questions, 
the focus will shift to the comparison of differ-
ent datasets, because researchers will want to 
determine and understand the similarities and 
differences between the metagenomes of differ-
ent environments (Fig. 3.5).

Metagenomics has been defined as “the ge-
nomic analysis of microorganisms by direct ex-
traction and cloning of DNA from an assemblage 
of microorganisms.” (Handelsman 2004) The 
fact which made metagenomics more important 
is that 99 % of microorganisms are not cultur-
able. The goal of this new area is to achieve a 
better insight into the existence of different va-
rieties of microorganisms. The identification of 
these unknown microorganisms obtained from 
the environment is done by comparing them 
with a known sequence database. Developing 
sequencing-by-synthesis technologies with very 
high throughput are flagging the way to low-cost 
random “shotgun” approaches like MEGAN, a 
computer program that allows in silico analysis 
of large metagenomic datasets.
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3.4  MEGAN (MetaGenome Analyzer)

MEGAN is the first stand-alone tool for metage-
nome analysis. It allows the investigation of 
very large datasets from environmental samples 
using shotgun sequencing techniques in particu-
lar, and is designed to sample and investigate the 
unknown biodiversity of environmental samples 
where more precise techniques with smaller, 
better known samples cannot be used. In ME-
GAN’s processing pipeline, it initially performs 
the analysis of the metagenomic sample. First, 
reads are collected from the sample using any 
random shotgun protocol. Second, a sequence 
comparison of all reads against one or more 
databases of known reads is performed, using 
basic local alignment search tool (BLAST) or 
a similar comparison tool. Third, MEGAN pro-
cesses the results of the comparison to collect all 
hits of reads against known sequences, and as-

signs a taxon ID to each sequence based on the 
National Center for Biotechnology Information 
(NCBI) taxonomy. This produces a MEGAN file 
that contains all information needed for analyz-
ing and generating graphical and statistical out-
put. Fourth, the user interacts with the program 
to run the lowest common ancestor (LCA) algo-
rithm to analyze the data, inspect the assignment 
of individual reads to taxa based on their hits and 
to produce summaries of the results at different 
levels of the NCBI taxonomy (Fig. 3.6) (Huson 
et al. 2007)

MEGAN can be used to interactively explore 
the dataset in the following manner:

a.  Comparative visualization
To compare a collection of different datasets vi-
sually, MEGAN provides a comparison view that 
is based on a tree in which each node shows the 
number of reads assigned to it for each of the 

Fig. 3.5  Construction and screening of metagenomic libraries. (Reproduced from Handlesman 2004)
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datasets. This can be done either as a pie chart, 
a bar chart or as a heat map. To construct such a 
view using MEGAN, first, all the datasets must 
be individually opened in the program. Using 
a provided “compare” dialog, one can then set 
up a new comparison document containing the 
datasets of interest. The following figure shows 
the taxonomic comparison of all eight marine da-
tasets. Here, each node in the NCBI taxonomy 
is shown as a bar chart indicating the number of 
reads (normalized, if desired) from each dataset 
that have been assigned to the node (Fig. 3.7).

b.  Taxonomic analysis
MEGAN can be used to interactively explore the 
dataset. The following figure shows the assign-
ment of reads to the NCBI taxonomy (Fig. 3.8). 
Each node is labeled by a taxon and the number 
of reads assigned to the taxon. The size of a node 
is scaled logarithmically to represent the number 
of assigned reads. Optionally, the program can 
also display the number of reads summarized by 
a node, that is, the number of reads that are as-
signed to the node or to any of its descendants in 
the taxonomy. The program allows one to inter-
actively inspect the assignment of reads to a spe-
cific node, to drill down to the individual BLAST 

hits that support the assignment of a read to a 
node, and to export all reads (and their matches, 
if desired) that were assigned to a specific part 
of the NCBI taxonomy. Additionally, one can se-
lect a set of taxa and then use MEGAN to gen-
erate different types of charts for them. (http://
ab.inf.uni-tuebingen.de/software/megan5/ Dated 
5/16/2014)

MEGAN5 also provides a number of new 
plots and charts including a co-occurrence plot, 
space-filling radial trees, etc.

3.5  Conclusion

Pathway Analysis and Comparative Metagenom-
ics is a rapidly emerging field. Therefore, time 
saving and comprehensible tools are needed to 
study various sequences and datasets related to 
microorganisms. In this chapter, we have dis-
cussed some really good, user-friendly tools which 
provide a better understanding of relationships 
among individual microorganisms’ pathways as 
well as in the community of microorganisms. 
Pathway Tool, the combination of four different 
softwares, provides the user with the facility for 
making a whole new pathways-related database 

Fig. 3.6  For a given sample of organisms, a randomly 
selected collection of DNA fragments is sequenced. The 
resulting reads are then compared with one or more refer-
ence databases using an appropriate sequence comparison 

program such as BLAST. The resulting data are processed 
by MEGAN to produce an interactive analysis of the taxo-
nomical content of the sample. (Reproduced from http://
ab.inf.uni-tuebingen.de/software/megan5/)

 



Fig. 3.7  Phylogenetic diversity of the Sargasso Sea se-
quences computed by MEGAN. The microheterogeneity 
of sample 1 was investigated by comparing it to pooled 
samples 2, 3, and 4 (Venter et al. 2004). a Analysis of 
10,000 reads randomly chosen from Sample 1. b Analy-
sis of 10,000 reads randomly chosen from Sample 2. c, 
d A more detailed view of sample 1 and samples 2–4, 
respectively, illustrating a significant difference of rela-

tive frequencies of Shewanella and Burkholderia spe-
cies in the two data sets. In all such Figs. (Fig. 3.7), each 
circle represents a taxon in the NCBI taxonomy and is 
labeled by its name and the number of reads that are as-
signed either directly to the taxon, or indirectly via one of 
its subtaxa. The size of the circle is scaled logarithmically 
to represent the number of reads assigned directly to the 
taxon. (Huson et al. 2007)
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of microorganisms. It provides pathway-related 
information in various simpler forms; it also pro-
vides a graphical view of the output, which can 
be grasped easily. For studies related to metage-
nomics, we discussed the MEGAN tool which 
simplifies huge datasets into simple short ones 
by using shotgun techniques. MEGAN provides 
a simple solution to the complex problem of 
metagenomic study. Due to these fast and reli-
able computational tools, various advancements 
are taking place in the field of Pathways Analy-
sis and Metagenomics, making them the central 
paradigm of biological research.
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Abstract

Microbial diversity is fundamental to maintenance and conservation of 
global genetic resources. Actions must be taken to estimate, record, and 
conserve microbial diversity, not only to sustain human health, but also to 
enhance the human condition globally through sensible use and conserva-
tion of genetic resources of the microbial world. The microbial world is 
the largest unexplored reservoir of biodiversity on the earth. The explora-
tion of microbial diversity has been prompted by the fact that microbes 
are essential for life, since they perform numerous functions essential for 
the environment that include nutrient recycling and environmental detoxi-
fication. Priceless contribution of microbial diversity in commercial and 
industrial applications promoted the management of the same for sustain-
able use. Natural environment is diverse and the enormous potential of 
microorganisms to provide novel pharmaceuticals, fine chemicals, and 
new technologies, is used by the biotechnology industry. Unfortunately, 
despite the evident economic value of microbial diversity, microorgan-
isms have been mostly ignored in debates on the conservation and man-
agement of global diversity. There is, therefore, an urgent need to motivate 
researchers to be more apprehensive about the conservation, management, 
and exploitation of microbial diversity.
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4.1  Introduction

The microorganisms play a vital and often dis-
tinctive role in the functioning of the ecosys-
tems in maintaining a sustainable environment 
and its productivity. The loss of biodiversity and 
their ability to provide ecological services to hu-
mans has now become a central thought to be 
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considered in ecology. A number of major experi-
ments have recently shown that declining plant 
diversity may impair plant biomass, primary 
production and nutrient retention, and so many 
ecosystem properties. Presently, the relationship 
between biodiversity and ecosystem function-
ing in ecological and environmental sciences has 
emerged as a central issue. Microorganisms are 
invisible, less familiar and apparently considered 
primarily as agents of disease and these may be 
the few reasons for ignoring their management.

However, few experiments have directly 
tested the consequences of changing the diver-
sity of ecosystem components other than plants, 
and simultaneously manipulated the diversity 
of primary producers (algae) and decomposers 
(bacteria) in aquatic microorganisms and found 
complex interactive effects of algal and bacte-
rial diversity on algal and bacterial biomass pro-
duction. Both algal and bacterial diversity had 
significant effects on the number of the carbon 
source used by bacteria, suggesting nutrient 
cycling associated with microbial exploitation 
of organic carbon source as the link between 
bacterial diversity and algal production. There 
are several explanations but the exact theory is 
greatly missing.

Producers and decomposers are the two key 
functional groups that form the basis of all eco-
systems interactions. Obviously, their diversity 
might have major consequences on the function-
ing of ecosystems. Thus, it is now generally ac-
cepted that the extent of microbial diversity has 
not been adequately characterized and there is a 
huge mismatch between the knowledge of that 
diversity and its importance in both ecosystem 
process and economic development. Soil qual-
ity has been defined as the capacity of the soil 
to function within ecosystem limitations to sus-
tain biological productivity, maintain environ-
mental quality, and promote plant and animal 
health. Nutrient immobilization by decomposers 
and competition for inorganic nutrients between 
plants and decomposers are known to occur, but 
at equilibrium, the two functional groups must 
be limited by different factors in order to allow 
their consistence and ecosystem persistence. Mi-
crobial diversity is an unseen national resource 
that deserves greater attention. It is too small to 

be seen and studied or valued. Microbial diver-
sity includes the spectrum of variability among 
all types of microorganisms (bacteria, fungi, vi-
ruses, and many more) in the world and is greatly 
changed by human intervention. Microorgan-
isms are the ubiquitous custodians of the Earth 
occurring in all climate areas including Arctic 
and Antarctic, the heat of geysers etc. They are 
decomposers, converting nutrients in the organic 
wastes from dead organisms into molecules that 
are reused within ecosystems.

4.2  Microbes: Necessity of Life

Conserving microbial diversity will often, in 
a practical sense, equate to the conservation of 
the ecosystem microbial gene pool. From a ra-
tional point of view, the conservation of the gene 
pool and microbial diversity itself equates to the 
conservation of the physical and chemical con-
ditions within an environment that best support 
the indigenous microbiota. Figure 4.1 clearly de-
picts the relationship between various microbial 
species.

Extremophile Life Forms Majority of life 
forms found in extreme environmental conditions 
are microbes. These extreme physico-chemical 
conditions may be pH, heat, salinity, pressure, 
radiation, etc. These microbes can be character-
ized by using r-RNA comparative sequencing 
technology. These microbes may be capable of 
producing a wide array of enzymes in extreme 
conditions which may be used in various indus-
trial applications such as lipase, protease, DNA 
polymerase, etc (Tripathi et al. 2007). These 
microorganisms hold many secrets such as 
genetic instructions which make them able to 
produce these enzymes in extreme conditions.

4.3  What Are the Drivers Causing 
Decrease of Microbial 
Biodiversity

The diversity of microscopic life forms (includ-
ing viruses, archaea, bacteria, and small eukary-
otic microorganism) are recently coming to light, 
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and their varieties, abilities, distributions, eco-
system functions, and conservation status need 
to be further investigated. The primary cause is 
habitat fragmentation, degradation, and destruc-
tion due to land use, change arising from con-
version, strengthening of production systems, 
abandonment of traditional (which were often 
biodiversity friendly) practices, construction, 
and catastrophic events including fires. There 
are some other key causes which include exces-
sive exploitation of the environment, pollution, 
and the spread of invasive alien species (Nardini 
et al. 2010).

Commonly used measures of biodiversity, 
such as the number of species present, are strong-
ly scale dependent and only report a change after 
a species is lost. There is no worldwide accepted 
set of methods to assess biodiversity. The main 
problem is that the data is much diverse and it 
is physically discrete and disorganized. The so-
lution is to organize the information, and create 
systems whereby data of different kinds, from 
many sources, can be pooled. This will improve 
our understanding of biodiversity and will allow 
the development of measures of its condition 
over time.

4.3.1  Impact of Anthropogenic 
Activities

There are many reports depicting effect of 
chemical pollutants such as polycyclic aromatic 
hydrocarbons (PAHs) on microbial community 
structure. PAHs are present in oil and coal and 
produced by incomplete combustion of wood and 
coal. They are widespread over the world and 
are considered as heavy pollutants due to their 
toxic, carcinogenic, and mutagenic effects on or-
ganisms. The study of bacterial communities in 
PAH contaminated soils at an electronic waste 
processing center in China shows that different 
levels of PAHs might affect the bacterial com-
munity by suppressing or favoring certain groups 
of bacteria, for instance, uncultured Clostridium 
sp. and Massilia sp., respectively (Zhang et al. 
2010).

4.3.2  Reef Ecosystem

Most coral reefs are moderately to severely de-
graded by local human activities such as fishing 
and pollution as well as global change; hence, it 
is difficult to separate local from global effects. 

Fig. 4.1  Microbial loop and aquatic food web. (Nardini et al. 2010)
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Sandin et al. (2008) surveyed coral reefs on de-
serted islands in the northern Line Islands to pro-
vide a baseline of reef community structure, and 
on increasingly populated islands to document 
changes associated with human activities.

4.3.3  Climate Change

Effects of climate change on biodiversity (such 
as changing distribution, migration, and repro-
ductive patterns) are already observable. Average 
temperature is expected to rise between 2 and 
6.3 °C by the year 2100. Predicted impacts asso-
ciated with such temperature increase include a 
further rise in global mean sea level of 9–88 cm, 
more precipitation in temperate regions and 
Southeast Asia, in turn a higher probability of 
floods (Nardini et al. 2010). On the contrary Cen-
tral Asia, the Mediterranean region, Africa, parts 
of Australia and New Zealand will get less pre-
cipitation which can result in greater probability 
of droughts, more frequent and powerful extreme 
climatic events, such as heat waves, storms, and 
hurricanes, an prolonged range of some danger-
ous “vector-borne diseases”, such as malaria, and 
further warming of the Arctic region (Nardini 
et al. 2010). Pollution from nutrients such as 
nitrogen, introduction of invasive species, over 
harvesting of wild animals can all reduce resil-
ience of ecosystems. In the atmosphere, green-
house gases such as water vapor, carbon dioxide, 
ozone, and methane act like the glass roof of a 
greenhouse by trapping heat and warming the 
planet. The natural levels of greenhouse gases are 
being supplemented by emissions resulting from 
human activities, such as the burning of fossil 
fuels, farming activities, and land-use changes. 
As a result, the Earth’s surface and lower atmo-
sphere are warming. This will have profound ef-
fects on the biodiversity.

4.3.4  Effect of Temperature on 
Microbial Communities

Pearce (2008) and Rodriguez-Blanco et al. 2009 
has demonstrated the effects of factors such 
as temperature, nutrient availability, grazing, 

salinity, seasonal cycle, and carbon dioxide 
concentration on bacterial community structure 
in the polar and alpine ecosystems. The results 
suggest that the spatial distribution of genetic 
variation and, hence, comparative rates of evolu-
tion, colonization, and extinction are particularly 
important when considering the response of mi-
crobial communities to climate change. Although 
the direct effect of a change in, e.g., temperature 
is known for very few Antarctic microorganisms, 
molecular and genomic techniques are starting to 
give us an insight into what the potential effects 
of climate change might be at the molecular/cel-
lular level (Friedmann 1993).

4.4  Utility of Microbial Diversity

Microbial diversity existing in natural ecosys-
tems has the following major applications:

4.4.1  Biogeochemical Cycling  
of Matter

Soil acts as the source of nutrition for the growth 
of a spectrum of microorganisms which have re-
markable ability to degrade a vast variety of com-
plex organic compounds due to their metabolic 
bioremediation agents. They also play a vital role 
in providing conditions for functions of humans 
and animals and for the continuation of all life-
forms on Earth. Many microorganisms carry out 
unique geochemical processes critical to the op-
eration of the biosphere (Gruber and Galloway 
2008) and no geochemical cycle is carrying out 
without their involvement. Metabolic variety 
of microbes is enormous, ranging from being 
photo- and chemosynthetic and to degrade vari-
ous anthropogenic xenobiotic compounds. For 
example, the global nitrogen cycle in nature is 
dependent on microorganisms. Unique processes 
carried out by microorganisms include nitrogen 
fixation, oxidation of ammonia and nitrite to 
nitrate, and nitrate reduction with formation of 
dinitrogen and nitrous oxide gases (Gruber and 
Galloway 2008). Similar important and unique 
roles are played in other cycles, such as the sul-
fur and carbon cycles. In addition, microbes run 
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less visible elemental cycles of metals, carrying 
out oxidation/reduction of metals (e.g., manga-
nese and iron). Microorganisms are the primary 
organisms responsible for degradation of a great 
variety of natural organic compounds, includ-
ing cellulose, hemicellulose, lignin, and chitin, 
which are the most abundant organic matter on 
Earth (Mishra and Thakur 2012). Due to their 
versatility, microbes not only provide ecological 
services but also play a major role in semiarti-
ficial systems such as sewage treatment plants, 
landfills, and in toxic waste bioremediation. To 
mention few examples in which microbes are re-
sponsible for degradation of toxic chemicals de-
rived from anthropogenic sources such as PAH, 
PCBs (polychlorinated biphenyls), dioxins, pes-
ticides, etc (Jaiswal et al. 2011). In most cases 
these microbes are genuine members of natural 
communities. Some organisms are obligatory de-
graders, frequently switching their metabolism 
on degradation and consumption to acquire car-
bon and/or energy.

4.4.2  Microbes in Industrial Products

Many products useful to mankind are synthe-
sized at commercial level using microbes. Bev-
erages, antibiotics, alcohol, enzymes (glucose 
oxidase, amylase, protease, lipase, cellulose, xy-
lanase, etc.), proteins, vaccines, steroids, amino 
acids are the few important examples. Microbial 
biochemicals are also used as biocontrol agents 
as an alternative to insecticides, pesticides etc.

4.4.3  Biodegradation of Xenobiotics

Human kind is increasingly using pesticides such 
as BHC, DDT, 2,4-D, 2,4,5-T for getting rid of 
unwanted weeds, insect pests, or pathogenic 
microorganisms. Removing chemicals from 
the environment can be achieved easily and in 
an environment-friendly manner by biological 
methods that involve use of microbes and plants 
to degrade xenobiotic compounds and thus de-
contamination of the polluted site.

It also participates in bioremediation and puri-
fication of hazardous wastes in water. Biological 
treatments are more effective as these methods 
convert toxic chemicals to less toxic ones and 
possess a significant degree of self-regulation 
(Mishra et al. 2013). Microorganisms have di-
verse capacities to biotransform and, in some 
cases, completely destroy toxic chemicals from 
our environment. Since these transformations 
alter the chemistry of the hazardous chemicals, 
they may also alter toxicity, environmental fate, 
and bioaccumulation potential (Das et al. 2012). 
Several halogenated chemicals such as the chlo-
rinated aromatic compounds, which are major 
contaminants, nitro aromatics and other conju-
gated hydrocarbons-polluted contaminated sites 
could be reclaimed by use of the vanguard organ-
isms isolated from contaminated sites by enrich-
ment cultures. Spingomonas paucimobilis BPSI-
3 that was isolated from PCB contaminated soil 
was observed to degrade halogenated PAHs and 
biphenyls (Davison et al. 1999). Head and Swan-
nell (1994) reported bioremediation of petroleum 
hydrocarbon contaminates in marine habitats by 
anaerobic hydrocarbon metabolism via bioaug-
mentation and stressed to reject the approach of 
nutrient amendment as it can potentially exert 
an oxygen demand due to biological ammonia 
oxidation. Samanta et al. isolated Ralstonia sp. 
SJ98 from pesticide-contaminated agricultural 
soil using a chemotactic enrichment technique 
(Samanta et al. 2000).

In nature majority reactions result in mineral-
ization of the contaminant but sometime recalci-
trant formed during the process act as potent toxic 
compound than the original xenobiotic chemical. 
Pseudomonas putida and Burkholderia cepacia 
have even been genetically engineered to cover a 
wider range of contaminants though Pseudomo-
nas sp. possesses metabolic plasmids too. Lajoie 
et al. (1994) studied the use of surfactant based 
field application vectors for PCB degradation, as 
single microbe barely possesses all the enzymes 
for mineralization of a xenobiotic chemical. The 
specificity of the pollutant and the microbe de-
grading it depends upon the enzymes involved in 
the selective chemotaxis of the microbe toward 
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the contaminant. The second phenomenon is of 
great interest as it increases the bioavailability of 
a pollutant to bacteria. As heavy metals are com-
mon contaminants worldwide and are a threat to 
the quality and sustainability of natural soil re-
source, rescuing of the heavy metal contaminated 
soils by microbes (in situ bioremediation) is a low 
cost and effective tool to minimize environment 
pollution and is in use today. Evdokimova (2000) 
have shown that in copper, nickel, cobalt, and 
sulphur compound contaminated sites in Kola 
Peninsula, the microbial diversity decreased a 
lot. But the fungi, bacteria, and actinomycetes 
were found to bioconcentrate these heavy metals 
by volatilizing or accumulating in cell capsules 
etc. P. flourescens AF39 accumulated heavy met-
als such as nickel and others and the whole pro-
cess was observed to be rapid and pH dependent. 
Several biomarkers or technically biosensors are 
available now to obtain the presence of specific 
contaminant at a particular site.

4.4.4  Microbial Products Used in 
Novel Chemical Synthesis

Bioprocesses, which involve biocatalysts for the 
production of useful compounds, are expected to 
play a key role in green chemistry. Microbial di-
versity constitutes an infinite pool of novel chem-
istry, making up a valuable source for innovative 
biotechnology. So far we have only scratched the 
surface of it. The most recent estimates suggest 
that by now we only know approximately 5 % of 
the total species of fungi and may be as little as 
0.1 % of the bacteria and among the ones already 
described, only a small fraction has been exam-
ined for metabolite profile.

The microbial secondary metabolites can be 
brought in use in three different ways: the bio-
active molecule can be produced directly by fer-
mentation; or the fermentation product can be 
used as starting material for subsequent chemi-
cal modification (derivatization); or thirdly the 
molecules can be used as lead compounds for 

a chemical synthesis. Remarkable milestone in 
the medicinal use of microbial metabolites and 
their derivatives was the introduction of the im-
mune suppressants cyclosporin A, and rapamycin 
(Chen et al. 1995, Van Middlesworth and Cannell 
1998). Other examples are the commercialization 
of the antihyperlipidemic lovastatin and gug-
gulsterone (Urizar et al. 2002). Microbial natural 
products have also been developed as antidiabet-
ic drugs, hormone (ion-channel or receptor) an-
tagonists, anticancer drugs, and agricultural and 
pharmaceutical agents (Zhang 2005).

4.5  Genetic Diversity  
and Metagenomics

Genetic diversity is manifested as biological di-
versity through the structure, organization, regu-
lation, and expression of DNA. Presence and 
expression of DNA in the biological systems of 
a given environment determine the physiological 
functions of the biotic and abiotic components of 
the environment. Metagenomics (also referred 
to as environmental and community genomics) 
is the genomic analysis of microorganisms by 
direct extraction and cloning of DNA from an 
assemblage of microorganisms. It is a new field 
combining molecular biology and genetics to iso-
late, identify, and characterize the genetic mate-
rial from environmental samples and express it in 
suitable host. The metagenomic DNA is inserted 
into a model organism that lacks a specific gene 
function. Restoration of a physical or chemical 
phenotype can then be used to detect genes of in-
terest. A genotype is the specific sequence of the 
DNA and offers another means of analyzing the 
metagenomic DNA fragment. The sequences of 
the bases in DNA can be compared to the data-
base of known DNA to get information regard-
ing the structure and organization of the metage-
nomic DNA. Comparisons of these sequences 
can provide insight into how the gene proteins 
function.
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4.6  Analysis of Microbial Diversity

4.6.1  Conventional and Biochemical 
Methods

Both conventional and biochemical methods are 
of high significance in the study of microbial 
diversity. The diversity can be described using 
physiological diversity measures too, which 
avoid the difficulties that may arise in grouping 
of similar bacteria into species or equivalents. 
These measures include various indices (toler-
ance, nutrition, etc.). Multivariate data analyses 
have also been used for extracting relevant infor-
mation in the large data-sets frequently obtained 
in diversity studies.

a. Plate counts

The most traditional method for assessment of 
microbial diversity is selective and differential 
plating and subsequent viable counts. Being fast 
and inexpensive, these methods provide informa-
tion about active and culturable heterotrophic 
segment of the microbial population. There are 
many limiting factors in this assessment method 
including the difficulties in removing bacteria or 
spores from soil particles or biofilms, selecting 
suitable growth media (Tabacchioni et al. 2000), 
arrangement of specific growth conditions (tem-
perature, pH, light), inability to culture a large 
number of bacterial (Barnes et al. 1994) and 
fungal species using techniques available at pres-
ent, and the potential for inhibition or spreading 
of colonies other than that of interest (Trevors 
1998).

b. Sole carbon source utilization (SCSU)

Garland and Mills (1991) introduced biochemi-
cal identification systems (such as API and Bio-
log), the sole carbon source utilization (SCSU) 
system, also known as community level physi-
ological profiling (CLPP) system. This was ini-
tially developed as a tool for identifying pure cul-
tures of bacteria in the species level, based upon a 
broad survey of their metabolic properties. SCSU 
examines the functional capabilities of the micro-

bial population, and the resulting data can be ana-
lyzed using multivariate techniques to compare 
metabolic capabilities of communities (Preston-
Mafham et al. 2002). However, as microbial 
communities are composed of both fast and slow 
growing organisms, the slow growers may not be 
included in this analysis. Growth on secondary 
metabolites may also occur during incubation.

c. Phospholipid fatty acid (PLFA) analysis

The fatty acid composition of microorganisms 
has been used extensively in characterizing mi-
croorganisms. Taxonomically, fatty acids in the 
range C2–C24 have provided the greatest infor-
mation and are present across a diverse range 
of microorganisms (Banowetz et al. 2006). The 
fatty acid composition is stable and is indepen-
dent of plasmids, mutations, or damaged cells. 
The method is quantitative, cheap, robust and 
with high reproducibility. However, it is impor-
tant to notice that the bacterial growth conditions 
are reflected in the fatty acid pattern. This meth-
od is also known as the fatty acid methyl ester 
(FAME) analysis.

4.6.2  Molecular Techniques for 
Studying Microbial Biodiversity

An effort must be made to study microbial di-
versity to make sure its conservation. The exact 
extent of microbial diversity remains unknow-
able. Nevertheless, fingerprinting patterns dena-
turing gradient gel electrophoresis (DGGE), sin-
gle strand conformation polymorphism (SSCP) 
provide an image of a microbial ecosystem and 
contain diversity data (Loisel et al. 2006). An as-
tonishingly small amount of research is devoted 
to bacterial diversity, as opposed to the genetics 
and molecular biology of select species (Ehrlich 
and Wilson 1991). Clearly, this must be changed, 
for all microorganisms, not just the prokaryotes 
(Fig. 4.2).

New techniques allow for environmental 
screening to determine the presence of nucleic 
acids within environmental samples. These mo-
lecular genetics techniques allow screening of 
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organisms that could be maintained in culture 
along with those that cannot be cultured. Those 
uncultivable microorganisms cannot be identi-
fied by standard means. Pace, for example, ex-
tracted DNA directly from samples, then used 

the polymerase chain reaction (PCR) to amplify 
small subunit ribosomal RNA (rRNA) genes, se-
lectively amplifying those found in archaea and 
eukaryotes.

Fig. 4.2  DGGE: PCR products of mixed communities 
are loaded on a gel with a gradient of denaturant (typi-
cally 20–80 % formamide). Double stranded DNA will 

run down the gel until it melts. Melting is determined by 
sequence and GC content. Different sequences migrate 
different distances (a), You obtain a “barcode” of the com-
munity (b)
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Then the comparison of the ribosomal DNA 
sequences with known rRNA sequences was 
done. (Muyzer and Smalla 1998; Nakatsu et al. 
2000) Although this technique does not give the 
full description but numbers and lineages of mi-
croorganisms within environmental samples can 
be determined, remarkably their phylogenetic re-
lationships and genetic similarity to sequences in 
known databases.

Many scientists have amplified 16S rRNA 
genes from environmental samples, and have 
produced important results from such works 
(Giovannoni et al. 1990; Fuhrman et al. 1993a; 
Mishra and Thakur 2010). This is still a time-
consuming technique even after simplification of 
steps and is not suitable for analysis of hundreds 
of samples and along with requires a relatively 
large database (Colwell and Hawksworth 1991).

It is now possible to study microbial commu-
nities using the randomly-amplified polymor-
phic DNA (RAPD) method. This generates DNA 
fingerprinting characteristics of the community. 
This technique also does not allow the identifica-
tion of individual microorganism.

Restriction fragment length polymorphism 
(RFLP) is another tool used to study microbial diver-
sity and community structure (Moyer et al. 1996).  

This method relies on DNA polymorphisms. In 
this method, electrophoresed DNA bands are 
blotted from agarose gels onto nitrocellulose or 
nylon membranes and hybridized with appropri-
ate probes prepared from cloned DNA segments  
of related organisms (Fig. 4.3). RFLP has been 
found to be very useful particularly in combina-
tion with DNA–DNA hybridization and enzyme 
electrophoresis for the differentiation of closely 
related strains (Rastogi and Sani 2011). RFLPs 
may provide a simple and powerful tool for the 
identification of bacterial strains at and below 
species level (Kauppinen et al.1994). This meth-
od is useful for detecting structural changes in 
microbial communities. But this technique can-
not be used as an extent of diversity or for de-
tection of specific phylogenetic groups (Liu et al. 
1997). Banding patterns in diverse communities 
become too complex to analyze using RFLP since 
a single species could have four to six restriction 
fragments (Tiedje et al. 1999).

Terminal restriction fragment length poly-
morphism (T-RFLP) is a technique that talks 
about some of the limitations of RFLP (Zhang 
et al. 2008). This technique is an extension of 
the RFLP/amplified ribosomal DNA restriction 

Fig. 4.3  RFLP helps us see the differences between the DNA
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analysis (ARDRA) and provides an alternative 
method for rapid analysis of microbial commu-
nity diversity in various environments. It follows 
the same principle as RFLP except that one PCR 
primer is labeled with a fluorescent dye (Fig. 4.4).

Similar in principle to RFLP and T-RFLP, ri-
bosomal RNA (rRNA) intergenic spacer analysis 
(RISA), automated ribosomal RNA (rRNA) in-
tergenic spacer analysis (ARISA), and ARDRA 
provide ribosomal-based fingerprinting of the 
microbial community. In RISA and ARISA, the 
intergenic spacer region between the 16S and 
23S ribosomal subunits is amplified by PCR, 
denatured and separated on a polyacrlyamide gel 
under denaturing conditions. This region may en-
code tRNAs and is useful for differentiating be-
tween bacterial strains and closely related species 
because of heterogeneity of the intergenic space 
length and sequence (Scheinert et al. 1996). Se-
quence polymorphisms are generally detected by 

silver staining in RISA. In ARISA, as the name 
suggests fluorescently labeled forward primer is 
detected automatically (Fisher and Triplett 1999). 
Both methods can provide highly reproducible 
bacterial community profiles. The process of 
RISA requires large quantities of DNA, relative-
ly longer time requirement, insensitivity of silver 
staining in some cases, and low resolution which 
can be taken as its limitations. ARISA has better 
sensitivity than RISA and is less time consum-
ing but traditional limitations of PCR also applies 
for ARISA (Brown and Fuhrmans 2005). RISA 
has been used to compare microbial diversity in 
soil, in the rhizosphere of plants (Borneman and 
Triplett 1997), and in contaminated soil (Ranjard 
et al. 2000).

Presently, DNA–DNA hybridization has been 
used along with DNA microarrays to detect and 
identify bacterial species or to evaluate microbial 
diversity (Rastogi and Sani 2011). This tool could 

Fig. 4.4  Diagrammatic representation showing T-RFLP. 
Mixed population is amplified using a 16S primer with a 
fluorescent tag. PCR product is cut with a 4 bp cutting re-

striction endonuclease. Different sequences will give dif-
ferent length fragments. Sample is injected into a capillary 
sequencer to sort fragments by size
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be valuable in bacterial diversity studies since a 
single array can contain thousands of DNA se-
quences (De Santis et al. 2007) with high speci-
ficity. Specific target genes coding for enzymes 
such as nitrogenase, nitrate reductase, naphtha-
lene dioxygenase, etc., can be used in microarray 
to elucidate functional diversity information of 
a community. Sample of environmental “stan-
dards” (DNA fragments with less than 70 % hy-
bridization) representing different species likely 
to be found in any environment can also be used 
in microarray (Greene and Voordouw 2003).

There are some other molecular methods that 
have been used potentially to study the micro-
bial community. Fluorescent in situ hybridiza-
tion (FISH) (Dokić et al. 2010), DNA sequencing 
based community analysis such as pyrosequenc-
ing based community analysis (Fakruddin and 
Chaudhary 2012), illumina-based high through-
put microbial community analysis (Degnan and 
Ochman, 2012) etc. are some examples for these 
techniques. Most of these methods are not as ap-
propriate as previously mentioned methods.

Viruses in marine samples can be studied by 
nonmolecular methods: transmission electron 
microscopy (TEM) and epifluorescent micros-
copy (DAPI stain) by differential filtration. The 
development of improved methods for isolating 
and characterizing virus in the marine environ-
ment now makes it possible to study their role in 
ecosystem (Table 4.1).

4.7  Conservation of Microbial 
Diversity

The problem of biodiversity is essentially one of 
conflict resolution between the human kind on 
one side and living organisms inhabiting differ-
ent environment on the other side. The UNCED 
(United Nations Conference on Environment and 
Development) process has helped place the loss 
of biodiversity and its conservation on global 
agenda. The Convention on Biological Diversity 
(CBD) that emerged from the UNCED or Earth 
Summit at Rio de Janerio in June 1992 is now a 
treaty.

World Conservation Monitoring Center has 
described 1,604,000 species at the global level. 
India accounts for 8 % of global biodiversity ex-
isting in only 2.4 % land area of the world. Mi-
crobial diversity conservation requires certain 
specialized techniques for applications in recla-
mation of a tainted habitat. Both ex situ and in 
situ techniques can be employed to preserve the 
biodiversity.

4.7.1  Ex Situ Preservation

The most effective and efficient mechanism for 
conserving biodiversity is to prevent the destruc-
tion or degradation of the habitat. Because of 
the uncertainties associated with in situ conser-
vation of microorganisms, ex situ preservation 
plays a major role in microbiology and includes 
the gene banks, culture collections, and micro-
bial resource centers forming the repository for 
microbial isolates and do away with need for 
costly and time consuming reisolation protocols. 
The CBD encourages adoption of measures for 
ex situ conservation of biodiversity, preferably 
in the country of origin. Application of this ap-
proach is supported by the World Federation for 
Culture Collection (WFCC) and Directory of 
Collection of Cultures of Microorganisms. More-
over, four other associations that directed toward 
this effort are Oceanic and Atmospheric Admin-
istration for marine microbial diversity, National 
Institute of Health for deciphering the emerging 
microbial pathogen diversity, American Society 
for Microbiology, and American Phytopathologi-
cal Society.

In India, this work has been carried out by 
the Ministry of Environment and Forests and 
the Ministry of Science and Technology that in-
cludes various departments such as the Depart-
ment of Agriculture Research and Education, 
Indian Council of Forestry Research and Educa-
tion, Department of Biotechnology. The level of 
the microbial type culture collection section of 
IMTECH, Chandigarh has now been upgraded 
to an International Depository Authority (IDA) 
and it involves the culture collection and main-
tenance as well as distribution of pure cultures 
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Method Advantages Disadvantages
Mole % (G + C) Not influenced by PCR Requires large quantities of DNA

Includes all DNA extracted Dependent on lysing and extrac-
tion efficiency

Includes rare members of community Less sensitive resolution
Nucleic acid reassociation and 
hybridization

Total DNA extracted Lack of sensitivity

Not influenced by PCR biases Sequences need to be in high copy 
number for detection

Can study DNA or RNA Dependent on lysing and extrac-
tion efficiency

Can be studied in situ
DNA microarrays and DNA 
hybridization

Same as nucleic acid hybridization Only detect the most abundant 
species

Process thousands of genes simultaneously Need to culture organisms
If using genes or DNA, fragments specificity 
increases

Only accurate in low diversity 
systems

Single strand conformation 
polymorphism (SSCP)

Same as DGGE/TGGE PCR biases

No GC clamp Some ssDNA can form more than 
one stable conformation

No gradient
Denaturing and temperature gra-
dient gel electrophoresis (DGGE 
and TGGE)

Large number of samples can be analyzed 
simultaneously

PCR biases

Reliable, reproducible, and rapid Dependent on lysing and extrac-
tion efficiency
Way of sample handling can 
influence community, i.e., the 
community can change if stored 
for too long before extraction
“One band-one species” is not 
always true
Cannot compare bands between 
gels
Only works well with short frag-
ments ( < 500 bp), thus limiting 
phylogenetic characterization
Only detects dominant species

Restriction fragment length 
polymorphism (RFLP)

Detect structural changes in microbial 
community

PCR biases

Banding patterns often too 
complex

Terminal restriction fragment 
length polymorphism (T-RFLP)

Simpler banding patterns than RFLP Dependent on extraction and lys-
ing efficiency

Can be automated PCR biases
Can process large number of samples Type of Taq can increase 

variability
Highly reproducible Choice of restriction enzymes will 

influence community fingerprint
Ability to compare differences between 
microbial communities

Table 4.1  Advantages and disadvantages of some molecular-based methods to study soil microbial diversity. 
(Source: Fakruddin and Mannan 2013 and Kirk et al. 2004)
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internationally. The ex situ collections of microor-
ganisms form the key repositories of biodiversity 
and an essential resource for the future as these 
could be linked to the research programs and 
developmental aspects of the country that owns 
it by assimilating the microbiological aspects, 
molecular evolution, systematics, and microbial 
chemistry with genome science. Enhanced fund-
ing of stock centers and greater emphasis on edu-
cation and research in microbial systematics will 
amplify the broad base of research into microbial 
diversity.

4.7.2  In Situ Preservation

Basically, in situ preservation involves on-site 
conservation of the microbial flora involving 
the conservation of the ecosystems and on-site 
conservation of the microbial flora involving the 
conservation of the ecosystems and natural habi-
tats and the maintenance as well as recovery of 
viable populations of species in their natural sur-
roundings and in case of the domesticated or cul-
tivated species, in surroundings where they have 
developed their distinctive properties. Conserva-
tion of all subsets of life existing in interplaying 
networks will lead to preservation of microbes as 
well. Avoiding deforestation and planting trees 
(aforestation) will not allow the surface soil to 
be washed out by torrential rains, which contains 
diverse microflora. Further, avoiding pollution of 
water bodies such as oceans, rivers, or lakes will 
preserve phytoplanktons, zooplanktons (rotifer-
ans, microalgae, diatoms, dinoflagellates), and 
other floating microbes such as Vibrio parahae-
molyticus, Bacillus sp., Spirillum sp., Aquaspi-
rillum sp. and others. Certain countries such as 

Italy, Canada, Brazil, Mexico, Chile, Argentina 
are facing new kind of natural conservation on 
account of widespread jungle fires. Microbial di-
versity in forest soils is a key factor in ecosystem 
function. Staddon et al. (1996) have described 
the role of fire and its impact on conservation of 
microbial diversity of forest soil. Large-scale en-
demic fires in Andes Mountain ranges increased 
the carbon content besides considerable increase 
in phosphorus, calcium, zinc, and other trace ele-
ments. This contributed toward increase in num-
ber and variety of microorganisms in soil after 
second or third rains. National Biodiversity Con-
servation Board has taken interest in microbial 
diversity and its preservation. The corporate-led 
globalization and economic models imposed by 
WTO were also discussed and were found to be 
the main driving force and underlying cause of 
biodiversity loss.

Forest conservations were reviewed with ex-
clusion on large-scale monoculture tree planta-
tions and time-bound action plants for stopping 
the convention of natural forests. The convention 
also issued statement that a tough and clear stand-
point on the spread of genetically modified (GM) 
crops and genetic pollution, invasion by alien 
species that threaten the ecosystem as well as ban 
on terminator technologies is needed. An integral 
component of conservation biology will be of 
proper economic valuation. The direct value of 
microbes rests in their utilization in biotechnol-
ogy, as single cell protein products, as biofertiliz-
ers, while indirect value involve their role as de-
composers and involvement in recycling of plant 
and animal matter, as indicators of environmental 
pollution, as bioremediation agents and in other 
subtle functions of human life.

Method Advantages Disadvantages
Ribosomal intergenic spacer 
analysis (RISA)/automated 
ribosomal intergenic spacer 
analysis (ARISA)/amplified 
ribosomal dna restriction analy-
sis (ARDRA)

Highly reproducible community profiles Requires large quantities of DNA 
(for RISA)

PCR biases

Table 4.1 (continued) 
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4.8  Consequences of Ignoring 
the Conservation of Microbial 
Diversity

In today’s scenario the research is mainly focused 
on the profitable and producible projects where 
one can make his future. Due to some funding 
constraints, the hard core taxonomy projects are 
not going on in a massive scale. If this philosophy 
continues, the role and identification of numer-
ous unknown microorganisms will be lost. Major 
ecological changes are occurring already which 
may result into deleterious ecosystem conditions.

4.9  Conclusion

With respect to the role of microorganisms in 
sustainable development, little is known about 
the potential contribution of microbial diversity 
to the national economy, to wealth creation and to 
improvements in the quality of life. An apprecia-
tion of these factors might be one way of chang-
ing government and public perception of micro-
organisms by showing that the sustainable use of 
microbial diversity has positive economic value. 
This would help justify the costs involved in con-
serving microbial diversity, but equally provide a 
useful indicator of the costs of inaction. In terms 
of the scientific rationale needed to underpin pol-
icy, quantification of microbial diversity has been 
limited. This makes it difficult to indicate what 
needs to be conserved in order to support the bio-
technology industries and to understand fully the 
interactions between organisms responsible for 
maintaining a functional ecosystem.

Microbial diversity in natural environments is 
extensive. Methods for studying diversity vary 
and diversity can be studied at different levels, 
i.e., at global, community, and population lev-
els. The molecular perspective gives us more 
than just a sight of the evolutionary past; it also 
brings a new future to the discipline of microbial 
ecology. Since the molecular-phylogenetic iden-
tifications are based on sequences, as opposed 
to metabolic properties, microbes can be iden-
tified without being cultivated. Consequently, 
all the sequence-based techniques of molecular 

biology can be applied to the study of natural mi-
crobial ecosystems. These methods characterize 
the microbial processes and thereby can be used 
to reach a better understanding of microbial di-
versity. In future, these techniques can be used 
to analyze microbial diversity quantitatively and 
expand our understanding of their ecological pro-
cesses to make our ecosystem livelier.
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Abstract

Phytoremediation, a growing sector of bioremediation, exploits the natural 
ability of a large variety of plants to filter chemicals through their root sys-
tems and to aerate the soil, allowing different microorganisms to grow. Phy-
toremediation has many advantages over other existing technologies in terms 
of safe and nondisturbing natural surroundings of contaminated sites. The 
modification in technology leads to different methods of phytoremediation, 
including phytotransformation, rhizoremediation, phytostabilization, phyto-
extraction and rhizofiltration. The application of a selected method depends 
on the nature and site of contaminant. To understand the mechanism of hyper-
accumulation, various studies have been conducted on model ( Arabidopsis 
thaliana) and commonly grown plants such as Populus, Brassica, Hydrilla 
etc. in phytoremediation. Further, based on mechanism and identified genes 
such as those involved in uptake, sequestration, remobilization and homeo-
stasis, transgenic plants were designed and used efficiently to remove heavy 
metals and organic chemicals from the soil. However, further efforts are re-
quired for advancements in efficiency and robustness of transgenic plants 
and to popularize the phytoremediation technology on a commercial scale.

5.1 Introduction

Worldwide technological advancements, uncon-
trolled anthropogenic activity (mining, metal 
extraction, fertilizers, pesticide industries, house-
hold activities and vehicles) and natural events 
(seepage from rocks, volcanic eruption and forest 
fires) cause environmental deterioration in terms 
of heavy and toxic metal contamination in soil, 
aqueous water streams and groundwater, thus 
posing a major community problem that needs to 
be addressed. The main threats to environment 
and human health from heavy toxic metals and 
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minerals are associated with exposure to lead, 
mercury, chromium, cadmium, copper, arsenic 
and aluminium. These enter the human system 
mainly through contaminated water, food and air, 
leading to various health complications. Global 
environmental agencies such as United Nations 
Environment Programme (UNEP), European 
Environment Agency (EEA), World Nature Or-
ganization (WNO) and in India Ministry of En-
vironment (MoE), Government of India, work 
for finding preventive and remedial solutions for 
management. Existing options involve expensive 
technology and recurring investments, thus mak-
ing them difficult to be affordable to most of the 
developing countries like India. Therefore, con-
sidering developing countries’ economic status, 
increasing population and malnutrition, appropri-
ate intervention in terms of indigenous research 
towards mitigation and remediation needs to be 
pondered and designed for effective and efficient 
application.

In general, heavy metal toxicity can cause 
chronic degenerative diseases, with the symp-
toms of mental disorders, pain in muscles and 
joints, gastrointestinal disorders, vision prob-
lems, chronic fatigue and susceptibility to fungal 
infections. Sometimes the symptoms are vague 
and difficult to diagnose at early stages and lead 
to genotoxicity and cancers. Industrial workers 
and populations living near the polluting indus-
tries are more susceptible and need to be moni-
tored regularly. Malnourished people and preg-
nant women are vulnerable. Crippling effects 
of fluoride and arsenic toxicity due to nonavail-
ability of safe water for drinking and farming has 
become a major public health problem and needs 
to be addressed. Management strategies are being 
prioritized to mitigate such problems. Consider-
ing the fact that the metal once out of the rock 
is destined to mix in the environment, different 
physicochemical and bioremediation strategies 

are being implemented to reduce the environment 
load, preferably at the site of generation. How-
ever, large industries should be forced to set up 
their own effluent treatment plants, and smaller 
industries should use common effluent treatment 
facilities. Industries as sources of heavy metals 
are summarized in Table 5.1.

Although heavy metals and minerals (fluoride 
arsenic salts) are reported to be hazardous be-
yond safe limits, smaller quantities of Fe, Zn, Cu, 
Co, Cr, Mn and Ni are required for proper human 
metabolism. However, Pb, Hg, Cd, and As have 
no beneficial role and are absolutely toxic. Small 
amounts of fluoride help to prevent dental cavi-
ties, but excess is harmful. In the environment, 
these elements have a tendency to get stabilized 
in the form of organic salts and complexes and 
are bioaccumulative. Consequently, deriving 
their safe limits is very difficult. The toxicity of 
metals also depend on their chemical form and 
oxidation state which further complicate the 
toxicity assessment. Toxicity studies therefore 
required the consideration of metal speciation in 
terms of valency and oxidation state e.g. CrIII 
(non-toxic) and CrVI  (toxic).

To alleviate these microbial hazards, bioreme-
diation strategy has been emphasized, and exten-
sive funding has been provided to research and 
development (R&D). Bioremediation is using mi-
croorganisms to degrade pollutants in situ. Since 
heavy metals and radionuclide wastes cannot be 
chemically degraded, application of microbial 
bioremediation is limited to the immobilization 
of heavy metals by precipitation or reduction or 
conversion of toxic to nontoxic forms in situ.

The use of plants for cleaning the environ-
ment has been implemented from ancient times 
and considered as indigenous knowledge. The 
physiological exploration of plants revealed ion 
exchange pumps and transporters that can extract 

D. Singh et al.

Keywords

Heavy metals · Phytoextraction · Phytoremediation · Phytostabilization · 
Rhizofiltration



615 Phytoremediation: A Biotechnological Intervention

and concentrate elements from the environment. 
These metals include Fe, Mn, Zn, Cu, Mg, Mo 
and Ni, essential for growth and development; 
whereas Cd, Cr, Pb, Co, Ag, Se and Hg are also 
reported to be accumulated in plants but have no 
known biological function. Thus, green plants 
being used to remove pollutants from the en-
vironment is referred to as phytoremediation. 
Under phytoremediation, plants exhibit the abil-
ity to tolerate elevated levels of heavy metals and 
accumulate them to unusually high concentra-
tions either independently or in combination and 
have been reported for Ni, Co, Cu, Mn, Pb, Zn 
and Se (Brooks et al. 1978, 1979, 1981; Reeves 
and Brooks 1983; Banuelos and Meeks 1990).

5.2  Phytoremediation: Need 
or Necessity

Phytoremediation is very competitive with 
other treatment alternatives. It is simple to use 
and has high public acceptability. Due to its 
advantages over microbial bioremediation it is 
considered as a need of the present time, but the 
industrial revolution and increasing population 
manipulate this need into necessity. Efficiency 
and effectiveness are the two scales that we 
have compared and summarized in Table 5.2, 
in which 5-year costs are compared between 
phytoremediation by hybrid poplar trees, and 
conventional pump and treatment with a reverse 

osmosis system. Phytoremediation costs less 
than half of the pump and reverse osmosis 
treatment technology. According to a report 
by Phytotech (1997), phytoextraction provides 
significant cost advantages over in situ fixa-
tion, excavation and landfilling in a Resource 

Table 5.1  Industries as sources of heavy metal contaminants
Metal Industry
Chromium (Cr) Mining, industrial coolants, chromium salts manufacturing, leather tanning
Lead (Pb) Lead acid batteries, paints, e-waste, smelting operations, coal-based thermal power plants, 

ceramics, bangle industry
Mercury (Hg) Chlor-alkali plants, thermal power plants, fluorescent lamps, hospital waste (damaged thermom-

eters, barometers, sphygmomanometers), electrical appliances etc.
Arsenic (As) Geogenic/natural processes, smelting operations, thermal power plants, fuel burning
Copper (Cu) Mining, electroplating, smelting operations
Vanadium (Va) Spent catalyst, sulphuric acid plants
Nickel (Ni) Smelting operations, thermal power plants, battery industry
Cadmium (Cd) Zinc smelting, waste batteries, e-waste, paint sludge, incinerations and fuel combustion
Molybednum (Mb) Spent catalyst
Zinc (Zn) Smelting, electroplating

Table 5.2  Five-year cost comparison between phytore-
mediation by hybrid poplar trees, and conventional pump 
and treatment with reverse osmosis system
Phytotransformation Cost in dollars ($)
Design and implementation 50,000
Monitoring equipment
Capital 10,000
Installation 10,000
Replacement 5,000
Five-year monitoring
Travel and administration 50,000
Data collection 50,000
Reports (annual) 25,000
Sample analysis 50,000
Total 250,000
Pump and treatment (three wells and reverse osmosis 

system)
Equipment 100,000
Consulting 25,000
Installation/Construction 100,000
Five-year cost
Maintenance 105,000
Operation (electricity) 50,000
Waste disposal 180,000
Waste disposal liability 100,000
Total 660,000
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 Conservation and Recovery Act (RCRA)-ap-
proved hazardous waste facility, and soil extrac-
tion. The only limitation of cheap and effective 
phytoremediation technology is the requirement 
of a long time period compared to competing 
technologies (Table 5.3). Phytoremediation is 
most comparable with in situ bioremediation 
and natural attenuation.

5.3 Phytoremediation Methods

Phytoremediation consists of a collection of four 
different plant-based technologies, each having a 
different mechanism of action for the remedia-
tion of metal-polluted soil, sediment and water 
(Fig. 5.1). The main processes that involve the 
treatment of environmental problems by using 
plants are:

5.3.1 Phytotransformation

Phytotransformation, also known as phytodegra-
dation, is the breakdown of organic and nutrient 
contaminants present in soil and groundwater 
after sequestration by plants via metabolic pro-
cesses within the plant and specific enzymes pro-
duced by the plant. The organic contaminants are 
degraded into simpler compounds that are inte-
grated with plant tissue, which in turn, support 
plant growth. Remediation of any site by phy-
totransformation is dependent on the efficiency 
of direct uptake of contaminants from soil water 
and the accumulation in form of metabolites in 
plant tissue. The metabolites which are nontoxic 
or significantly less toxic should be accumulated 
in vegetation. Potential applications include phy-
totransformation of petrochemical sites and their 
storage areas, ammunition wastes, fuel spills, 
chlorinated solvents, landfill leachates and ag-
ricultural chemicals (pesticides and fertilizers). 
Sometimes phytoremediation is used in combina-
tion with other approaches such as ex situ treat-
ment of highly contaminated wastes, or removal 
actions or polishing treatment. Plants either di-
rectly uptake contaminants from the soil water 
or release exudates that help to degrade organic 
pollutants via cometabolism in the rhizosphere.

Direct uptake of organics by plants is general-
ly observed at shallow-depth contaminated sites 
with moderately hydrophobic organic chemicals, 
including benzene, toluene, ethylbenzene and xy-
lene (BTEX) chemicals, chlorinated solvents and 
short-chain aliphatic chemicals. Hydrophobic 
chemicals (log Kow > 3.5) are not easily translo-
cated within the plant due to strong bonding to 
the surface of roots and soils. Chemicals which 
are readily water-soluble (log Kow < 1.0) are not 

Table 5.3  Cost advantage of phytoextraction for metals (Schnoor 1997)
Type of treatment Cost/m3 ($) Time required 

(months)
Additional factors/expense Safety issues

Fixation  90–200  6–9 Transport/excavation long-
term monitoring

Leaching

Landfilling 100–400  6–9 Long-term monitoring Leaching
Soil extraction, 
leaching

250–500  8–12 5000 m3 minimum
Chemical recycle

Residue disposal

Phytoextraction  15–40 18–60 Time/land commitment Residue disposal

Fig. 5.1  Different methods of phytoremediation are ex-
hibiting involved mechanism. (Source: http://www.per-
sonal.psu.edu/dgh5037/extEssay.html)
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sufficiently absorbed by roots and also not active-
ly transported through plant membranes (Briggs 
et al. 1982). It was found that highly hydropho-
bic chemicals (log Kow > 3.5) are candidates for 
phytostabilization and/or rhizosphere bioreme-
diation. The uptake efficiency consequently de-
pends on physical–chemical properties, chemical 
speciation of contaminant and the type of plant.

Chemical uptake also depends on transpira-
tion where its rate depends on the plant type, 
leaf area, nutrients, soil moisture, temperature, 
wind conditions and relative humidity. Once an 
organic chemical is translocated within plants, it 
can either be stored into new plant structures via 
lignification (chemical contaminant or its frag-
ments covalently bound to lignin of the plant) 
or volatilized, metabolized or mineralized com-
pletely to carbon dioxide and water. Chlorinated 
aliphatic compounds such as trichloroethylene 
(TCE) have been reported to be mineralized to 
CO2 and less toxic aerobic metabolites such as 
trichloroethanol, trichloroacetic acid and dichlo-
roacetic acid (Newman et al. 1997). These prod-
ucts are consistent with those found in the human 
liver as a result of action of cytochrome P450 on 
TCE. Cytochrome P450 is an abundant enzyme in 
plants as well as humans, thus plants are some-
times referred as “green livers” in terms of their 
enzyme biochemistry.

Another form of phytotransformation is phy-
tovolatilization, where volatile chemicals or their 
metabolic products are released to the atmosphere 
through plant transpiration. Many recalcitrant or-
ganic chemicals in the subsurface environment 
react rapidly in the atmosphere with hydroxyl 
radicals, oxidants formed in the photochemi-
cal cycle. Nitroreductase and laccase enzymes 
in plants can break down ammunition wastes 
such as TNT (2,4,6-trinitrotoluene) and might 
incorporate the broken ring structures into new 
plant material or organic detritus. Detoxification 
mechanisms may transform the parent chemical 
into nonphytotoxic metabolites that are stored in 
plant tissues (Schnoor et al. 1995). Typical plants 
used in various applications of phytoremediation 
are summarized in Table 5.4.

5.3.2 Rhizosphere Bioremediation

Rhizosphere bioremediation is also referred to as 
phytostimulation or plant-assisted bioremedia-
tion, since phytoremediation of the rhizosphere 
takes place by initially providing increased soil 
organic carbon and nitrogen content required for 
bacterial and mycorrhizal fungi, which altogether 
encourage degradation of organic chemicals in 
soil. Similar observations are recorded around 
poplar trees where numbers of beneficial bacteria 
increased in the root zone, including denitrifiers, 
Pseudomonas sp., BTEX-degrading organisms 
and general heterotrophs, relative to an unplanted 
reference site (Jordahl et al. 1997). Plants may 
release exudates in the soil environment to help 
microbial communities metabolize organic con-
taminants by inducing enzyme systems of exist-
ing bacterial populations, stimulating growth of 
new species that are able to degrade pollutants 
and/or increase soluble substrate concentrations. 
These exudates comprise sugars, alcohols and 
acids that amount to 10–20 % of plant photosyn-
thesis products annually (Foth 1990).

The most widely used plants in rhizosphere 
bioremediation are grasses and Papilionaceae, 
which possess rich root systems that hold a larg-
er soil volume compared to other plant species 
(Smreczak and Maliszewska-Kordybach 2005). 
The study conducted on hybrid poplar trees re-
vealed distribution of short-chain organic acids, 
phenolics and small concentrations of high mo-
lecular weight compounds (enzymes and pro-
teins) in exudates based on molecular weight 
characterization. Five plant enzyme systems: 
dehalogenase, nitroreductase, peroxidase, lac-
case and nitrilase are identified in sediments and 
soils released from plant exudates. Dehalogenase 
enzymes are important in dechlorination reac-
tions of chlorinated hydrocarbons. Nitroreduc-
tase is needed in the first step for degradation 
of nitroaromatics, while laccase enzyme serves 
to break aromatic ring structures in organic con-
taminants. Peroxidase and nitrilase are important 
in oxidation reactions. These enzymes are active 
in rhizosphere soils in close proximity to the root 
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(1 mm) for transformation of organic contami-
nants. When plants are grown in soil or sediment 
slurries, pH is buffered, metals are biosorbed or 
chelated and enzymes remain protected inside 
the plant or absorbed to plant surfaces. In US 
Environmental Protection (EPA) studies of TNT 
breakdown, plants like hornwort increase soil 
water pH from 3 to 7 and sorb high concentra-
tions of metals that usually inhibit bacteria, while 
the plants remain healthy and viable. Overall, 
plants and their root systems can accommodate 
mixed wastes (organic and metals) and other 
harsh conditions (Schnoor et al. 1995).

Shaw and Burns (2007) have demonstrated the 
importance of biodegradation in the rhizosphere. 

Plants are associated with microbial transforma-
tions in many ways, such as: mycorrhiza fungi 
associated with plant roots metabolize the organ-
ic pollutants; plant exudates stimulate bacterial 
transformations (enzyme induction); build-up of 
organic carbon increases microbial mineraliza-
tion rates (substrate enhancement); plants pro-
vide habitat for increased microbial populations 
and activity; oxygen is pumped to roots ensuring 
aerobic transformations.

Narasimhan et al. (2003) have reported that 
flavonoids and coumarin are released by root 
turnover from trees like mulberry, orange and 
apple that selectively stimulate polychlorinated 
biphenyl (PCB)- and PAH-degrading organisms. 

Table 5.4  Typical plants used in various phytoremediation applications
Application Media Contaminants Key plants
Phytotransformation Soil, groundwater, land-

fill leachate, land applica-
tion of wastewater

Herbicides (atrazine, alachlor)
Aromatics (BTEX)
Chlorinated aliphatics (TCE)
Nutrients (NO3

+, NH4
+, PO4

3−)
Ammunition waste (TNT, 
RDX)

Phreatophyte trees (pop-
lar, willow, cottonwood 
aspen); grasses (rye, ber-
muda, sorghum, fescue); 
legumes (clover, alfalfa, 
cowpeas)

Rhizosphere bioremediation Soil, sediments, land 
application of wastewater

Organic contaminants (pesti-
cides, aromatics and poly-
nuclear aromatic hydrocarbons 
(PAHs))

Phenolic releasers 
(mulberry, apple, orange); 
grasses with fibrous roots 
(rye, fescue, Bermuda) 
for contaminants 0–3 ft 
deep; phreatophytes trees 
for 0–10 ft; aquatic plants 
for sediments

Photostabilization Soil, sediments Metals (Pb, Cd, Zn, As, Cr, 
Cu, Se, U)
Hydrophobic organics (PAHs, 
PCBs, dioxins, furans, PCP, 
DDT, dieldrin)

Phreatophyte trees to 
transpire large amount of 
water for hydraulic con-
trol; grasses with fibrous 
roots to prevent soil ero-
sion; dense root system to 
sorb/bind contaminants

Phytoextraction Soil, brownfields, 
sediments

Metals (Pb, Cd, Zn, Ni, Cu) 
with EDTA addition for Pb and 
Se (volatilization)

Sunflowers, Indian 
mustards, rapeseed plants, 
barley, crucifers, serpen-
tine plants, dandelions

Rhizofiltration Groundwater, water and 
wastewater in lagoons or 
created wetlands

Metals (Pb, Zn, Cu, Ni, Cd)
Radionuclides (137Cs, 90Sr, U)
Hydrophobic organics

Aquatic plants; Emer-
gents (billrush, cattail, 
coontail, pondweed, 
arrowroot, duckweed); 
Submergents (algae, 
stonewort, parrot feather, 
Eurasian water milfoil, 
Hydrilla)

BTEX benzene, toluene, ethylbenzene and xylene, TCE trichloroethylene, TNT 2,4,6-trinitrotoluene, RDX Research 
Department explosive, PCB polychlorinated biphenyl, PCP pentacholorophenol, DDT dichlorodiphenyltrichloroeth-
ane, EDTA ethylenediaminetetraacetic acid
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Certain organics are not solely degraded by bac-
teria, but instead utilize the enzymatic pathways 
of other plant symbionts such as fungi. In addi-
tion to soluble exudates, the rapid decay of fine 
root biomass can become an important addition 
of organic carbon to soils which serves to re-
tard organic chemical transport. Microbial min-
eralization of atrazine is directly related to the 
fraction of organic carbon in the soil (Zabloto-
wicz et al. 2006). Rhizofiltration is effective and 
economically utilized under low concentrations 
of contaminants and large volumes of water, 
therefore particularly applicable to radionuclide-
contaminated water. The cationic and anionic 
radionuclide contaminants are substantially or 
completely removed from water using selective 
metal-accumulating plants under an optimized 
rhizofiltration system, although mechanism of 
uptake is not fully studied (Macaskie 1991).

5.3.3 Phytostabilization

Phytostabilization refers to stabilization of heavy 
metal contaminants in soil and sediments through 
revegetation with metal-tolerant plant species. 
Generally heavy metal-polluted soils lack veg-
etation cover due to the toxic effects of pollut-
ants, which makes such soil prone to erosion and 
leaching, leading to the spread of pollutants in the 
environment (Salt et al.1995). The rooted vegeta-
tion established at contaminated sites prevents 
windblown dust, thus preventing human expo-
sure of hazardous waste. Migration of leachate 
can be prevented through transpiration-mediated 
hydraulic control of groundwater or receiving 
waters. Phytostabilization is preferred for metal 
contaminants at waste sites where confinement 
of contaminants is required at a localized place. 
Since metals do not ultimately degrade, the best 
alternative is capturing them in situ at sites with 
low contamination levels (below risk thresholds) 
or vast contaminated areas where a large-scale 
removal action. For phytostabilization, vigorous-
ly growing plants are necessary to exert hydrau-
lic control and immobilization at the site where 
plants cannot die or removed during the phytosta-
bilization design period. Low-level radionuclide 

contaminants can also be confined in place by 
phytostabilization, and result in significant risk 
reduction under small half-lived contaminants. 
Soil amendments such as phosphate, lime and 
organic matter are sometimes needed to immo-
bilize toxic metals such as lead, cadmium, zinc 
and arsenic. Cadmium is readily translocated to 
leaves in many plants, which represents a risk to 
the food chain, and this pathway may be the lim-
iting consideration in applying phytostabilization 
at some metal-contaminated sites.

5.3.4 Phytoextraction

Phytoextraction refers to the use of metal-accumu-
lating plants that translocate and concentrate met-
als from the soil to roots and shoots or leaves. It has 
been used effectively at brownfield sites with rela-
tively low-level lead and cadmium contamination 
and proposed for extraction of radionuclides from 
sites with mixed wastes (Mulligana et al. 2001). 
Phytoextraction offers significant cost advantages 
over alternative schemes of soil excavation and 
treatment or disposal. The issue that needs to be 
considered in phytoextraction is whether the met-
als can be recovered economically from the plant 
tissue or directly disposed as waste. Design con-
siderations include the accumulation factor (ratio 
of metal in the plant tissue to that in the soil) and 
the plant productivity (kilogram of dry matter that 
is harvestable each season). In order to use phyto-
extraction as regular practice, one needs a vigor-
ously growing plant (> 3 tons dry matter/ha year) 
accumulating large concentrations of metal in the 
harvestable portion (> 1000 mg/kg metal) which is 
easy to harvest. Metals like cadmium, nickel, zinc, 
arsenic, selenium and copper are generally consid-
ered to be readily bioavailable for phytoextraction. 
Moderately bioavailable metals are cobalt, manga-
nese and iron; while lead, chromium and uranium 
are not readily bioavailable. Bioavailability of lead 
can be enhanced by greatly adding ethylenediami-
netetraacetic acid (EDTA) to soils. The disadvan-
tage with this technology is longer time require-
ment than other technologies; thus many crops are 
usually required to reduce all the contaminants to 
the desired levels.
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5.3.5 Rhizofiltration

In rhizofiltration, plant roots are used to absorb, 
concentrate and precipitate metal contaminants 
from the surface or groundwater. Prior to grow-
ing at the contamination site, suitable plants with 
stable root systems are supplied with contaminat-
ed water to acclimate the plants, and then these 
plants are transferred to the site of contamination 
for maximum absorption. Further saturated roots 
are harvested and processed. Rhizofiltration al-
lows in situ treatment, a process that does not 
disturb the environment (Salt et al. 1995). Rhizo-
filtration has been employed by Phytotech using 
sunflowers at a US Department of Energy (DOE) 
pilot project with uranium wastes at Ashtabula, 
OH and on water from a pond near the Chernobyl 
nuclear plant in Ukraine. Shallow lagoons have 
been engineered as wetlands and maintained as 
facultative microbial systems with low dissolved 
oxygen in the sediment. Groundwater or waste-
water is pumped through the system for the re-
moval of contaminants by rhizofiltration.

Usually this technology is intended for metals 
or mixed wastes but also suited for ammunition 
wastes. TNT is an organic contaminant that gets 
strongly absorbed by roots but is not efficiently 
translocated to other parts, and is confined to 
roots. An engineered wetland technology has 
been used at the Milan, TN, and Volunteer Army 
Ammunition Plants with bulrush. Rhizofiltration 
is also used in large-scale treatment of a Compre-
hensive Environmental Response, Compensation 
, and Liability Act (CERCLA) site at the Iowa 
Army Ammunition Plant at Middletown, IA, for 
TNT and RDX polishing of soil and groundwater 
after removal actions. Long-term utilization of 
wetland plants and sulphate-reducing conditions 
resulted in increased pH and decreased toxic 
metal concentrations after treatment of acid mine 
drainage (Adams et al. 2014). Root systems and 
sediments in wetlands are facultative (aerobic 
and anaerobic zones), which facilitates sorption 
and precipitation of toxic metals.

5.4  Plant Systematics of Heavy 
Metal Accumulation

The study of molecular mechanism in plants that 
are capable of hyperaccumulation will provide 
further insights towards engineering plants for 
phytoremediation in the future. Heavy metals are 
the main group of pollutants where the molecular 
mechanism of plant stress response against them 
has been under progress, especially in herbaceous 
plants such as Arabidopsis thaliana, Arabidopsis 
halleri and Thlaspi caerulescens (Verbruggen 
et al. 2009; Thapa et al. 2012). High-throughput 
technologies, such as microarray and next gen-
eration sequencing technologies, have allowed 
the complexity of plant stress response to be 
tackled. Much work has been reported recently 
in this field and presented in different plants. The 
genes involved in heavy metal uptake, accumula-
tion, remobilization, vacuolar sequestration and 
homeostasis have been summarized in Table 5.5.

5.4.1 Arabidopsis thaliana

A. thaliana with its completely sequenced ge-
nome played a very important role in uncovering 
the molecular mechanism of plant response to 
pollutants since the genes involved can be easily 
identified through mutation studies. Three Ara-
bidopsis genes, oxophytodienoate reductases 1 
( OPR1), OPR2, and OPR3 were found to be up-
regulated by exposure to TNT where biochemi-
cal characterization revealed that two of the three 
OPR1 lines and all of the OPR2-overexpressing 
lines exhibited enhanced tolerance to TNT (Bey-
non et al. 2009). Rao et al. (2009) identified the 
potential target gene in A. thaliana for phytore-
mediation and phytosensing of the chemical con-
taminants RDX and TNT by microarray analysis. 
Genes that were differentially expressed included 
oxidoreductases, cytochrome P450s, transferases, 
transporters and several unknown expressed 
proteins. Two transcription factors, bZIP19 and 
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bZIP23, were reported to regulate the adapta-
tion to zinc deficiency and zinc homeostasis in 
plants (Assunção et al. 2010). Based on microar-
ray analysis on the seedlings grown on toluene-
containing media, potential genes related to the 
sensing mechanism and metabolisms of toluene 
are detected; Among them 202 are induced and 
67 are suppressed in response to toluene, mostly 
including genes encoding cytochrome P450s, glu-
cosyl transferases and transporters (Gao et al. 
2012). Pineau et al. (2012) revealed crosstalk 
between Fe homeostasis and Zn tolerance in A. 
thaliana by analysing natural variation at the 
FRD3 MATE transporter locus.

5.4.2 Populus

In recent years Populus tree has been used either 
in natural form or as a transgenic for phytoreme-
diation. Its genes have been identified and char-
acterized as playing a role in heavy metal uptake, 
but prior selection of potential hyperaccumulat-
ing genotype is required. Gaudet et al. (2011) 
selected two Populus nigra L. genotypes origi-

nating from contrasting environments in northern 
(genotype 58-861) and southern (genotype Poli) 
Italy for studying the physiological and molecu-
lar response to cadmium stress, and found that 
Poli was more tolerant to cadmium stress. The 
study also revealed that the glutathione pathway 
was also involved in the differential cadmium 
tolerance of the two genotypes. He et al. (2013) 
conducted the transcript analysis of Populus × ca-
nescens response to cadmium and found 48 % of 
the differentially regulated transcripts involved 
in coregulation networks; among them, 43 hub 
genes played a significant role in crosstalk dur-
ing distinct biological processes. These include 
a putative wall-associated kinase, a GDP disso-
ciation inhibitor family protein/Rab GTPase ac-
tivator family protein, and a chloroplast sensor 
kinase actively involved in signalling; the study 
enhanced our understanding about the molecular 
mechanism of woody plant response to heavy 
metal.

Quantitative trait loci (QTL) analysis in re-
sponse to cadmium revealed a total of 16 QTL 
where whole-genome microarray analysis 
showed 9 cadmium-responsive genes, including 

Table 5.5  Potential genes involved in uptake, vacuolar sequestration, remobilization and homeostasis of heavy metals 
in plants
Function Genes involved Annotation
Metal uptake into cells ZIP4, ZIP6, ZIP9, ZIP10 ZIP family of metal transporters

IRT1, IRT3, ZIP7 ZIP family of metal transporters
Metal vacuolar sequestration MTP1, MTP8, MTP11 Cation diffusion facilitator

CAX2 Ca2+ cation antiporter
AtHMA3 P-type metal ATPase

Metal remobilization from the vacuole NRAMP1, NRAMP3, NRAMP5 Natural resistance-associated 
macrophage

Xylem loading/unloading of metal/ligands/
metal–ligand complexes

HMA4 P-type metal ATPase
FRD3 Multidrug and toxin efflux family 

transporter
YSL3, YSL6, YSL7 Yellow-stripe-like transporter

Synthesis of metal ligands NAS1, NAS2, NAS3, NAS4 Nicotinamine synthase
SAMS1, SAMS2, SAMS3 S-adenosyl-methionine synthetase
AOSA2 Cysteine synthase

Other roles in iron homeostasis FER1, FER2 Ferritin Fe(III) binding
IREG2 Iron regulated transporter 2
At4g35830 Cytoplasmic aconitase

Stress protection/response PDI1, PDI2 Protein disulfide isomerise 1
At1g45145 H-type thioredoxin

Homeostasis of macronutrient PHT1-4 Phosphate H1 symporter family
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NHL repeat membrane-spanning protein, a metal 
transporter and a putative transcription factor 
providing cadmium tolerance. Additional can-
didates in the QTL intervals include a putative 
homolog of a glutamate cysteine ligase, and a 
glutathione-S-transferase. Functional character-
ization of these candidate genes further enhances 
our understanding of cadmium metabolism and 
transport and phytoremediation capabilities of 
Populus (Induri et al. 2012).

5.4.3 Brassica juncea

Brassica juncea is another promising plant species 
that can be used for phytoremediation of heavy 
metals. B. juncea root proteome was analysed in 
response to cadmium exposure, and it was found 
that enzymes such as peptide methionine sulf-
oxide reductase and 2-nitropropane dioxygenase 
play a role in alternative redox regulation mecha-
nisms, whereas O-acetylserine sulfhydrylase, 
glutathione-S-transferase and glutathione-conju-
gate membrane transporter were involved in the 
Cd hyperaccumation and tolerance of B. juncea 
(Alvarez et al. 2009). Another study reported that 
under stress condition of Zn, Cd, NaCl or Polyeth-
ylene glycol (PEG), the transcript levels of two B. 
juncea cation-efflux family proteins, BjCET3 and 
BjCET4, substantially increased, suggesting their 
roles in stress resistance (Lang et al. 2011).

5.4.4 Crambe abyssinica

Crambe abyssinicais a member of Brassicaceae 
and an ideal candidate for phytoremediation due 
to nonfood, fast-growing, high biomass crop. 
Thirty-eight genes encoding glutathione-S-trans-
ferases, antioxidants, sulphur metabolism, heat 
shock proteins, metal transporters and enzymes 
in the ubiquitination pathway of protein degrada-
tion as well as several unknown novel proteins in-
volved in arsenic metabolism and detoxification 
were analysed and isolated successfully (Paulose 
et al. 2010). Zulfiqar et al. (2011) reported 72 
differentially expressed transcripts after com-
parative Cr exposure analysis using PCR-based 

suppression subtraction hybridization (SSH) and 
found 43 genes specifically involved in Cr de-
toxification (Zulfiqar et al. 2011).

5.4.5 Other Plants

Elsholtzia splendens is a Cu-tolerant and high 
metal-accumulating plant species, thus a likely 
candidate for phytoremediation of Cu-contami-
nated soils. Li et al. (2009) conducted proteomic 
analysis of copper stress response in E. splendens 
roots and leaves by two-dimensional gel electro-
phoresis and found that 45 protein spots were 
significantly changed in roots, but only 6 were 
changed in leaves. The identified root proteins 
were involved in various cellular processes such 
as signal transduction, regulation of transcription 
and translation, energy metabolism, regulation 
of redox homeostasis and cell defence, while the 
leaf proteins were mainly degraded fragments of 
RuBisCo and antioxidative protein. Lyubenova 
et al. (2009) showed that when tobacco ( Nico-
tiana tabacum) plants originating from different 
mutants were grown under field conditions with 
varying fertilizer application, the uptake of cad-
mium and zinc from soil increased with increas-
ing biomass. Depending on Cd and Zn uptake, 
several antioxidant enzymes showed signifi-
cantly different activities. Among them SOD and 
CAT were usually elevated; however, isoforms 
of GST and several other enzymes were strongly 
inhibited.

Zhou et al. (2009) revealed the broccoli ( Bras-
sica oleraceavar. italica) COQ5 methyltrans-
ferase ( BoCOQ5-2) gene’s involvement in the 
ubiquinone biosynthetic pathway. It was found 
to promote Se volatilization in both bacteria and 
transgenic Arabidopsis ( A. thaliana) plants. Bac-
teria expressing BoCOQ5-2 showed an over 160-
fold increase in volatile Se compounds under sel-
enate exposure and exhibited enhanced tolerance 
to selenate. Transgenic Arabidopsis expressing 
BoCOQ5-2 volatilized three times more Se than 
the vector-only control plants when treated with 
selenite and exhibited an increased tolerance to 
Se. Ding et al. (2011) showed As concentration 
in different tissues of maize using a set of re-
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combinant inbred line (RIL) populations derived 
from an elite hybrid, Nongda108, and found 11 
QTLs for arsenic accumulation in maize ( Zea 
maysL.). In Portulaca oleracea, the peroxidase 
2a (PoPRX2a) is potentially useful in the remedi-
ation of phenolic pollutants (Matsui et al. 2011).

In Se hyperaccumulator Astragalus racemo-
sus, 125 Se-responsive candidate genes were 
identified, among which 6 responded to both 
selenate and selenite treatments. In the same 
study, a novel gene CEJ367 was reported to be 
highly induced by both selenate (1920-fold) and 
selenite (579-fold) and to provide lead to gener-
ate Se-enriched transgenic plants (Hung et al. 
2012). HvHMA2, a P (1B)-ATPase from barley, 
is highly conserved among cereals and functions 
in Zn and Cd transport (Mills et al. 2012). So-
lanum nigrum is a cadmium (Cd) accumulator, 
whereas Solanum torvum is a low Cd-accumu-
lating plant. Their comparative transcriptome 
analyses revealed that increased Cd loading into 
the root xylem was responsible for the differen-
tial Cd accumulation in the two Solanum species. 
The higher expression of genes encoding several 
metal transporters as well as antioxidant-related 
genes, and several organic and amino acid bio-
synthesis/metabolism-related genes in Cd-treated 
S. nigrum, indicate different responsive mecha-
nisms of the transporter genes, which under dif-
ferent metal deficiency (Fe), might be respon-
sible for differential uptake and redistribution of 
the metals in the two Solanum species (Xu et al. 
2012). A major latex-like protein is a key factor 
in Cucurbitaceae family crop contamination by 
persistent organic pollutants (Inui et al. 2013). 
TaHMA2 is another gene from wheat ( Triticum 
aestivum L.), which belongs to heavy metal 
ATPase 2 (HMA2; Tan et al. 2013).

5.5 Plants Used in Phytoremediation

5.5.1 For Heavy Metals

Hydrilla verticillata (L.f.) Royle, a submerged 
macrophyte widely distributed throughout the 
world, has the ability to accumulate arsenic (As). 
The phytofiltration studies revealed that shoots 

of this plant possess high potential for As accu-
mulation (Xue and Yan 2011). To provide some 
insight on the possibility of using serpentine 
adapted plants for phytoextraction of Cd, Bar-
zanti et al. (2011) investigated variations in cad-
mium tolerance, accumulation and translocation 
in three Alyssum plants, and the results indicated 
that the serpentine adapted population of Alys-
sum montanum showed significantly higher cad-
mium tolerance and accumulation than Alyssum 
bertolonii  and the ones not adapted to serpentine 
soil. Plants of two aquatic macrophytes, Cerato-
phyllum demersumand Lemna gibba showed po-
tential for removing two toxic heavy metals Pb 
and Cr (Abdallah 2012). The study also revealed 
that L. gibbawas more efficient at the removal 
of selected heavy metals than C. demersum. L. 
gibba was reported to accumulate heavy metals 
without the production of toxins.

Brachiaria mutica (Forssk) Stapf was found 
to have luxuriant growth with massive fibrous 
roots when grown in Cr-contaminated soils 
(11,170 mg/kg dry soil). These results indicated 
that para grass could be used to remediate chro-
mium-contaminated soils in situ as it showed 
rapid growth even with a high concentration of 
Cr present (Mohanty and Patra 2012). Meeinkuirt 
et al. (2012) analysed six tree species for phy-
toremediation abilities of Pb in sand tailings and 
found that Acacia mangium with the addition of 
organic fertilizer gives the best results. Adki et al. 
(2013) performed various studies taking Nopa-
lea cochenillifera and revealed its potential as a 
chromium (VI) hyperaccumulator plant.

Amer et al. (2013) assessed the potential for 
phytoremediation of heavy metals (Ni, Pb and 
Zn) in three endemic Mediterranean plant spe-
cies—Atriplex halimus, Portulaca oleracea and 
Medicago lupulina—and found that A. halimu-
sand M. lupulina had the potential to be used in 
phytoremediation and phytostabilization. The 
potential of kenaf ( Hibiscus cannabinus L.) 
and corn ( Z. mays L.) for phytoremediation of 
dredging sludge contaminated with trace met-
als was tested by Arbaoui et al. (2013), and after 
tolerance and bioaccumulation studies, it was 
found that both species could be used in phy-
toremediation. Pratas et al. (2013) assessed the 
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phytoremediation potential of flora that are toler-
ant to heavy metal in the contaminated soils of 
an abandoned Pb mine in Central Portugal and 
found several plants exhibiting high uptake of 
metals, including Cistus salvifolius (Pb 548 mg/
kg), Digitalis purpurea(Zn 1017 mg/kg and Fe 
4450 mg/kg), Mentha suavolens (Ag 1.9 mg/kg) 
and Ruscus ulmifolius (Ag 1 mg/kg). Ruiz et al. 
(2011) reported development of a transplastomic 
approach showing expression of mouse metallo-
thionein gene ( mt1) in a plant chloroplast result-
ed in high accumulation of mercury within plant 
cells. Recently, Wolffia globosa was found to be a 
strong Cd accumulator and has great potential for 
Cd phytoremediation (Xie et al. 2013).

5.5.2 For Other Pollutants

Besides heavy metals, plants are also screened 
for the phytoremediation of other pollutants such 
as PCB, benzo[a]pyrene (B[a] P) and tetracy-
cline (TC). Ficko et al. (2011) investigated the 
effects of plant age, contaminant characteristics 
and species-specific properties on PCB uptake 
and accumulation patterns in plant tissues of the 
three perennial weed species (L. ( ox-eye daisy), 
L. ( curly dock), and L. ( Canada goldenrod)) and 
correlated that shoot contaminant concentrations 
and total biomass are dependent on plant age and 
life cycle (vegetative and reproductive stages).

Sun et al. (2011) showed that the French 
marigold ( Tagetes patula) might be useful for 
phytoremediation of B[a] P and B[a] P–Cd con-
taminated sites. The presence of veterinary and 
human antibiotics in soil and surface water is also 
an emerging environmental concern. Datta et al. 
(2013) evaluated the potential of vetiver grass 
( Chrysopogon zizanioides L.) for removing TC 
from aqueous media and provide a base for the 
development of a cost-effective, in situ phytore-
mediation technique to remove antibiotics con-
sisting of TC groups from wastewater. Ma et al. 
(2013) reported the use of legume (alfalfa, Medi-
cago sativa L.) grass (perennial ryegrass, Lolium 
perenne L. and tall fescue, Festuca arundinacea) 
for removing phthalic acid esters (PAEs) by in-
tercropping in e-waste contaminated agricultural 

soils in China. Their study revealed that alfalfa 
was effective in both monoculture and intercrop-
ping for removing PAEs from contaminated soils.

Saiyood et al. (2013) found that an evergreen 
mangrove tree, Bruguiera gymnorhiza gymno-
rhiza, is tolerant to bisphenol A (BPA) and has 
the capability to remove BPA. Souza et al. (2013) 
showed that Myriophyllum aquaticum can reduce 
oxygen demand (COD), biochemical oxygen de-
mand (BOD), and total phosphorus (TP) in 15 
days, and ammoniacal nitrogen (AN) as well as 
total Kjeldahl nitrogen (TKN) in 30 days, indi-
cating potential as a candidate for phytoremedia-
tion of polluted water.

5.6  Genetic Engineering in Phytore-
mediation

Phytoremediation, although having potential for 
cleaning up the environment, alone cannot suc-
cessfully detoxify or interconvert the metals, 
PCBs and other contaminants to more benign 
forms. But biotechnological approaches, espe-
cially the application of genetic engineering, 
may prove to be a potential technique through 
which the gene from other organisms can be inte-
grated to enhance phytoremediation capabilities 
in plants.

In case of mercury pollution the plants have 
been genetically engineered both via nuclear ge-
nome and chloroplast genome (Ruiz and Daniel 
2009). The cloning of merA (mercuric ion reduc-
tase) and merB (organomercurial lyase) genes 
from bacteria for the remediation of Hg (Bizly 
et al. 2003; Che et al. 2003; Heaton et al. 2003; 
Lyyra et al. 2007) is a well-understood protocol. 
The chloroplast has been the main target for mer-
cury poisoning (Bernier and Carpentier 1995; 
Sinha et al. 1996; Sabat 1996). The protection 
of essential metabolic reactions occurring within 
plastids has been working area for expressing 
merA and merB genes within plant chloroplasts 
(Ruiz et al. 2003).

For iron phytoremediation, the FRO2 gene, 
which encodes ferric chelate reductase was found 
to restore ferric chelate reductase activity in an 
Arabidopsis mutant deficient in this enzyme 
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(Robinson et al. 1999). FRE1 and FRE2 genes 
isolated from Saccharomyces cerevisae (Dancis 
et al. 1990; Georgatsou and Alexandra 1994) were 
cloned in tobacco (Samuelsen et al. 1998) and the 
double mutants ( FRE1 + FRE2) were found to be 
more tolerant, having high Fe concentration in 
leaves than the control and FRE1 plants. Ferritin 
gene from soybean increased Fe accumulation 
in Nicotiana and rice (Goto et al. 1998, 1999). 
The gene for the phytoremediation of arsenic, 
γ-glutamyl cysteine synthetase ( g-ECS), was iso-
lated from Escherichia coli and cloned in Ara-
bidopsis with an actin promoter. The plant had 
moderate tolerance for arsenic. Selenium is an-
other major environmental hazard and is lethal 
if amounts go larger than required dose. The 
oxidized selenium (selenate or selenite) is less 
hazardous than the inorganic ones because the 
inorganic selenium (selenide or elemental Se) is 
insoluble, and therefore, available in low quanti-
ties for degradation (Eapen and D’Souza 2005). 
Genes such as ATP sulphurylase activates the 
assimilation of sulphate and selenium and con-
verts it into adenosine phosphoselenite, which 
gets converted to selenite (DeSouza et al. 2000). 
The APS transgenics are more tolerant to Se and 
grow at a faster pace than the wild type (Pilon-
Smits et al. 1999). Various metallothionein (MT) 
genes such as MT2 gene from humans, MT1 gene 
from mice and MTA gene from pea has been 
transferred to Nicotiana sp. and Arbidopsis sp. 
(Misra and Gedamu 1989; Evans et al. 1992; Pan 
et al. 1994) for Cd tolerance. MTA gene in Ara-
bidopsis augmented copper (Cu) accumulation. 
The CUP1 gene from yeast provided Cd toler-
ance in Nicotiana and B. oleracea (Hasegawa 
et al. 1997; Thomas et al. 2003). YCF1 gene from 
yeast provided Cd and Pb tolerance in Arabidop-
sis. NtCBP4 gene in Nicotiana showed Ni toler-
ance and Pb accumulation (Arazi et al. 1999).

Besides metal, genetic engineering also aided 
in the phytoremediation of PCBs. Pioneering 
work was done by Francova et al. (2003), but the 
plants were not tested for their capability to me-
tabolize PCB. But then the bPh gene from Bur-
kholderia xenovorans LB400 was transformed 
into Nicotiana sp., and the purified enzymes 
showed that it was capable of oxidizing 4-chlo-

robiphenyl into 2,3-dihydro-2,3-dihydroxy-4′-
chlorobiphenyl (Mohammadi et al. 2007). bphC 
gene from Pseudomonas testosteroni B-356 
when transferred in Nicotiana sp. and grown in 
the presence of 2,3-dihydroxybiphenyl (0.5 mM), 
then one of the transgenic lines exhibited greater 
toxic resistance than the wild type (Novakova 
et al. 2009).

More development is required for the success-
ful application of this innovative strategy such as 
improvement of metal and PCB-degrading en-
zymes through genetic engineering and studies 
on molecular level to bring success regarding the 
coordinated expression of different genes respon-
sible for degrading different contaminants.

5.7  Future Research Prospects and 
Impact

Presently, trends for phytoremediation technol-
ogy are approaching commercialization. Concur-
rently, short-term advances in phytoremediation 
are likely to occur through selection of more ef-
ficient plant varieties and soil amendments and 
from optimizing agronomic practices used for 
plant cultivation. Major long-term improvements 
achieved through identification of potential can-
didate genes from plants and microorganisms 
and through understanding of hyperaccumulation 
mechanisms in plants, leading to biotransforma-
tion or biodegradation of organics. Additionally, 
genetically modified rhizospheric bacteria for 
bioremediation and symbiotic association with 
plants are required to increase the efficiency of 
the future phytoremediation efforts. Transgenic 
plants also represent the candidates for the most 
efficient and cost-effective phtoremediation. 
Transgenic events include modifications in spec-
ificity of trnasporters, overexpression of trans-
porters resulted in increased number of trans-
porters, intracellular ligand production directing  
metal targeting into vacuoles without disturbing 
cellular processes and biochemical transforma-
tion of metal volatile forms. The biology alone 
cannot make phytoremediation work. Multidisci-
plinary research efforts are required that integrate 
plant biologists, microbiologists, soil chemists 
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and environmental engineers. The acceptance of 
phytoremediation technology will depend on its 
socioeconomical impact. Removing heavy met-
als and hazardous contaminants from the envi-
ronment using plants prevent industrial-level 
cleaning efforts involving costly machines and 
chemicals. Plants used in phytoremediation offer 
greenery on contaminated, dusty, barren lands, 
and also help in minimizing the greenhouse ef-
fect and global warming. Thus, initiatives are 
required for increasing awareness of this green 
technology and encouraging basic and applied 
research to improve existing technology.
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Abstract

Chromium is a heavy metal of serious environmental implications in ex-
cess amounts as it poses a threat to human health as well as plant growth 
and development. Considering limited agricultural land for such a large 
population and increasing heavy metal pollution in soil, there is an im-
mense need of strategies for alleviation of phytotoxic effects of chromium 
and its removal from soil. Several studies have been carried out in relation 
to the aforementioned problems with emphasis on application of plant 
growth regulators (kinetin, gibberellic acid, brassinosteroids, salicylic 
acid) and metal chelators (EDTA), bioremediation using microbial inocu-
lants, and reduction of the toxic form of chromium to a nontoxic form. 
These approaches have been shown to be promising in one or more soil 
and environmental conditions and plant types. In this chapter, these strate-
gies are discussed considering their chromium amelioration potential from 
supporting evidences and challenges ahead for successful implementation 
of any strategy as a universal approach.
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6.1  Introduction

Since the beginning of the industrial revolution, 
pollution of the biosphere with toxic metals has 
accelerated dramatically (Swaminathan 2003). 
Chromium (Cr) is a heavy metal that causes 
serious environmental contamination in soil, sed-
iments, and groundwater (Shanker et al. 2005). 
Cr contamination is rising due to use of wastewa-
ter and industrial effluents as irrigation sources 
for crop production, mostly in the urban lands 
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(Mushtaq and Khan 2010). Cr exists in several 
oxidation states and the two most stable forms 
present in soils are Cr(VI) and Cr(III). Among 
these two, Cr(III) is considered as less toxic in 
comparison to bioavailable Cr(VI) compounds in 
the form of chromate (CrO4

− 2) and dichromate 
(Cr2O7

− 2) (Messer et al. 2006). Cr (VI) can be 
toxic to plants up to concentrations of 0.5 mg L− 1 
in solution and 5 mg kg− 1 in soil (Turner and Rust 
1971). Cr(VI) is a very toxic, powerful epithe-
lial irritant and an established human carcinogen 
by International Agency for Research on Can-
cer (IARC 1980), the Environmental Protection 
Agency (EPA 1984), and the World Health Or-
ganization (WHO 1988). Toxicity of Cr has been 
studied in many plants and its excess amount 
causes inhibition of chlorophyll biosynthesis in 
terrestrial plants (Vajpayee et al. 2000), affected 
germination process, plant growth, yield and total 
dry matter production; causes deleterious effects 
on plant physiological processes such as photo-
synthesis, water relations, and mineral nutrition 
(Shanker et al. 2005); generates reactive oxygen 
species (ROS) and alters metabolic enzymes 
(Yadav 2010); and leads to nutrient imbalance, 
wilting of tops, and root injury (Scoccianti et al. 
2006; Yadav 2010). Cr phytotoxicity also affects 
fodder nutritive value (Sangwan et al. 2014a); ac-
tivities of nitrogen metabolism enzymes (Sang-
wan et al. 2014b) and carbohydrate, protein, and 
guar gum content of cluster bean (Sangwan et al. 
2013). The activities of antioxidant enzymes, viz., 
superoxide dismutase (SOD), catalase (CAT), 
ascorbate peroxidase (APX), and glutathione re-
ductase are also significantly affected by Cr(VI) 
treatment in wheat (Subrahmanyam 2008), and 
no seed formation was observed even at 1.0 mM 
Cr(VI) (Sharma et al. 1995). It has been reported 
that the toxic property of Cr(VI) originates from 
the formation of ROS, i.e., superoxide radical, 
hydrogen peroxide and hydroxyl radical, and in 
higher concentrations, these ROS produce cyto-
toxic effects due to their ability to oxidize lipids, 
proteins, and nucleic acids (Shanker et al. 2004; 
Panda 2007; Pandey et al. 2009). In order to 
mitigate deleterious effects of ROS, plants pos-
sess complex defense mechanisms that involve 
both enzymatic and nonenzymatic antioxidants 

(Panda 2007). The simultaneous action of vari-
ous antioxidant enzymes is essential for regula-
tion of ROS levels within the cell (Shanker et al. 
2004; Panda 2007). Nonenzymatic antioxidants 
such as ascorbate and glutathione (GSH) also 
play an important role in preventing oxidative 
stress (Noctor and Foyer 1998). Considering 
the negative effects of Cr(VI), the development 
of efficient, cost-effective, and environmentally 
sound methods for removing Cr(VI) from con-
taminated sites or alleviation of its phytotoxic 
effects is important to safeguard the quality of 
drinking water, agricultural products, and the en-
vironment (Diwan et al. 2008). In India, Cr(VI) 
contamination is a big problem around various 
industries using Cr compounds, which causes 
considerable negative impact on crop produc-
tion. This problem further gets exacerbated due 
to the use of Cr-contaminated water by farmers 
in irrigation. Thus, the cleanliness of the environ-
ment for safer food production is a major con-
cern. Therefore, methods are needed to alleviate 
Cr toxicity, and also to decrease the Cr content in 
crops, which may be helpful to minimize health 
risks (Tripathi et al. 2012).

6.2  Promising Approaches  
for Amelioration of Chromium 
Phytotoxicity and Its Removal 
from Contaminated Sites

In this section of the chapter, we have discussed 
several studies in support of alleviation of toxic 
effects of Cr(VI) to understand the best possible 
way to avoid the phytotoxic effects of Cr(VI). 
Most studies have been focused on application 
of plant growth regulators (PGRs), metal chela-
tors, modification of soil nutrients, and Silicon 
(Si) application. Further, a variety of other meth-
ods have also been developed for remediation of 
contaminated soil to protect plants from phyto-
toxic effects of Cr. Some commonly used soil 
remediation methods are chemical immobiliza-
tion (Kumpiene et al. 2008), phytoremediation 
(Memon and Schroder 2009), and soil washing 
(Davezza et al. 2011). Among them, chemical 
immobilization is a cost-effective and promising 



796 Ameliorative Approaches for Management of Chromium Phytotoxicity

soil remediation technique, and has been exten-
sively used in immobilization of heavy metals in 
contaminated soils (Kumpiene et al. 2008). The 
application of silicon, H2O2, and iron are also 
discussed.

6.2.1  Phytohormones Application 
for Amelioration of Chromium 
Phytotoxicity

1. Salicylic acid application

Several reports were published in the last decade 
demonstrating the role of salicylic acid (SA) 
applied as a seed soaking treatment on various 
physiological processes. In several recent stud-
ies, application of SA through different modes 
was found to be beneficial for the growth of Ara-
bidopsis thaliana under arsenic stress (Odjegba 
2012), wheat under salinity stress (Shakirova 
2007), tomato and amaranth under water stress 
(Umebese et al. 2009), garlic under drought 
stress (Bideshki and Arvin 2010), and common 
bean under water stress (Sadeghipour and Aghaei 
2012). Hayat et al. (2010) reported that presoak-
ing of pea seeds in SA had a beneficial effect on 
growth and photosynthesis with decreased oxida-
tive injuries caused by heavy metal stress. Simi-
larly, Fariduddin et al. (2003) investigated that 
dry matter accumulation was significantly in-
creased in Brassica juncea with spray of SA. Fur-
thermore, Farooq et al. (2010) demonstrated ap-
plication of some other chemicals such as glycine 
betaine (GB), nitric oxide, brassinosteroid (BR), 
and spermine along with SA to improve growth 
of rice under drought stress with a possible effect 
on improved carbon assimilation, enhanced syn-
thesis of metabolites, and maintenance of tissue 
water status. Addition of SA could induce activity 
of H + -ATPase (Gordon et al. 2004), which plays 
an important role in the transport of multiple ions 
through plasma membrane (Shi and Zhu 2008). 
Application of SA was also reported to increase 
the Zn concentration, which is required for the 
synthesis of indole-3-acetic acid (IAA) and has 

the ability to inhibit nicotinamide adenine di-
nucleotide phosphate (NADPH) oxidation and 
centered free radical generation (Cakmak 2000).

Aly and Soliman (1998) studied the effect of 
SA on iron uptake in soybean genotypes. They 
found that SA was effective in correcting iron 
chlorosis in soybean genotypes grown in calcar-
eous soils. Al-Hakimi and Hamada (2001) also 
observed similar effects of SA in the Na, K, Ca, 
and Mg content of wheat plants grown under sa-
linity, whereas in maize, exogenous SA applica-
tions inhibited Na + accumulation, but stimulated 
N, P, K, Mg, Fe, Mn, and Cu uptake (Gunes et 
al. 2007). According to El-Tayeb (2005), an in-
crease in concentrations of K and Ca in plants 
under salt stress could ameliorate the deleterious 
effects of salinity on growth and yield. Therefore, 
alteration of mineral uptake from SA applications 
may be one mechanism for the alleviation of salt/
metal stress (Karlidag et al. 2009).

Recently, Singh and Chaturvedi (2012) ob-
served that SA at concentration of 10 µM was 
inducing nitrate reductase (NR) activity. On the 
contrary, Fariduddin et al. (2003) reported low 
concentrations of SA increased NR activity, 
while higher concentrations were inhibitory in B. 
juncea. The concentration of SA might play an 
active role in such a regulation, where the lower 
concentration favored an increase in the NR pro-
tein and higher quantity of SA decreased it by 
affecting the balance between its synthesis/acti-
vation and degradation/inactivation. The increase 
in the content of nitrates and thereby activity of 
NR due to exogenous SA treatment under normal 
growth conditions was also reported by Hayat 
et al. (2012). Incorporation of NH4

 + into gluta-
mate is brought about by successive and highly 
regulated actions of nitrogen metabolism en-
zymes (glutamine synthetase, GS; glutamate syn-
thase, GOGAT; and glutamate dehydrogenase, 
GDH). SA, due to its action at transcriptional 
and/or translational levels, might have acceler-
ated the synthesis and thereby activity of GDH, 
GS, and GOGAT (Hayat et al. 2010). Hence, it 
might be possible that lower concentration of SA 
might enhance the release of auxins and increase 
the activity of GS, GOGAT, and GDH enzymes 
(Hayat et al. 2012).
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2. Brassinosteroid Application

Recent research advances have shown the 
promising effects of PGRs like auxins, abscisic 
acid (ABA), cytokinins, gibberellins, BRs, and 
polyamines (PAs) in abiotic stress mitigation 
(Choudhary et al. 2012). BRs and PAs are well-
established growth regulators playing key roles 
in stress management among plants. BRs are a 
steroidal sixth group of phytohormones with 
significant growth-promoting effects and are es-
sential for many processes in plant growth and 
development (Anuradha and Rao 2007). Besides 
growth stimulation they have an ability to confer 
resistance to plants against various abiotic stress-
es (Priti 2003). BRs are able to regulate the up-
take of ions into plant cells and can be used to re-
duce the accumulation of heavy metals (Sharma 
and Bhardwaj 2007), because they can reduce the 
metal uptake by roots and can also stimulate the 
synthesis of some ligands such as the phytochela-
tins (PCs), which are combined with metal ions 
(Choudhary et al. 2010; Vázquez et al. 2013). 
Epibrassinolide was found to increase drought 
tolerance in wheat (Nilovskaya et al. 2001). 
Among PGRs, BRs form a group of steroidal lac-
tones with a wide array of roles in physiological 
activities, such as stem elongation, xylem dif-
ferentiation, leaf bending, epinasty, pollen tube 
growth, fruit development, ethylene biosynthesis, 
photosynthesis, and proton pump activation (Xia 
et al. 2009). Their ability to improve antioxidant 
system by elevating the activities and levels of 
enzymatic and nonenzymatic antioxidants have 
made them a favorite tool to increase resistance 
potential of important agricultural crops against 
various abiotic stresses such as heavy metal ex-
cess (Vázquez et al. 2013). PAs are small aliphat-
ic nitrogenous compounds with ubiquitous distri-
bution and implication of PAs in amelioration of 
various abiotic and biotic stresses has made them 
an essential component of plant defense mecha-
nism (Hussain et al. 2011). Enhanced expression 
of spermidine (Spd) synthase (SPDS) and Spd 
titers has been associated with improved heavy 
metal and salinity tolerance in three transgenic 
European pears (Wen et al. 2011).

Choudhary et al. (2012) evaluated the effects 
of 24-epibrassinolide (EBL), an active BR, and 
Spd, an active PA, on the contents of endogenous 
PAs, auxins, and ABA, as well as on the antioxi-
dant systems, stress markers, and growth param-
eters in seedlings of radish grown under Cr(VI) 
stress. They demonstrate that coapplication of 
BRs and PAs is more effective in alleviation of 
Cr-stress than individual treatments and provid-
ed a unique, ecofriendly strategy to overcome 
heavy metal stress mitigation, and abiotic stress 
in general, in radish. The significant influence of 
EBL on the synthesis of IAA, ABA and PAs of 
radish seedlings under Cr(VI) metal stress was 
demonstrated by Choudhary et al. (2010). On the 
one hand, EBL could enhance the synthesis of 
IAA in order to promote normal seedling growth 
under Cr(VI) metal stress. On the other hand, it 
also slightly improved the production of ABA to 
increase Cr(VI) stress tolerance. Altered synthe-
sis of PAs observed under the influence of EBL 
may be helpful in protecting the seedlings against 
Cr(VI) stress by enhancing one pool of PAs (pu-
trescine and Spd) and decreasing the other pool 
(cadaverine). Increased levels of antioxidants 
and antioxidant enzymes activities upon EBL ap-
plication with Cr(VI) metal stress also indicate 
its significant effect on the antioxidant system of 
radish plants. Similarly, reduced membrane dam-
age; enhanced proline, photosynthetic pigments, 
sugars; and radical scavenging activities also 
show a major impact of EBL on radish seedling 
metabolism under Cr(VI) metal stress. Earlier, 
Arora et al. (2010) had reported the effect of EBL 
treatment to regulate the diminution of Cr metal 
toxicity in mustard plants.

Concomitantly, Sharma et al. (2011) evaluated 
effect of another BR, 28-homobrassinolide (28-
HBL), on the seeds of Raphanus sativus L. (Pusa 
Chetaki) which were pretreated with different 
concentrations of 28-HBL and raised under vari-
ous concentrations of Cr(VI). Upon analysis of 
morphological and biochemical parameters of 
7-day-old radish seedlings, the 28-HBL treatment 
considerably reduced the impact of Cr stress on 
seedlings. The toxic effects of Cr in terms of re-
duced growth; lowered contents of chlorophyll, 
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protein, and proline; increased malondialdehyde 
(MDA) content; and elevated metal uptake were 
ameliorated by applications of 28-HBL. In addi-
tion, the activities of all the antioxidant enzymes 
except guaiacol peroxidase (POD), increased 
significantly when subjected to Cr stress in com-
bination with 28-HBL. Overall, seed presoaking 
treatment of 28-HBL at 10− 7 M was most effec-
tive in ameliorating Cr stress.

3. Kinetin application

Heavy metals have been reported to reduce the 
contents of cytokinins probably as a result of 
hormone breakdown or by enhancing the activ-
ity of cytokinin oxidase (Kaminek et al. 1997). 
Hence, exogenous application of kinetin to al-
leviate the deleterious effects of heavy metal 
toxicity in plants is gaining importance (Hussain 
et al. 2007). Hussain et al. further studied the 
role of kinetin in alleviating the toxic effects of 
Pb and Cr on four black gram cultivars com-
monly cultivated in Pakistan. In the roots of one 
line (Mash ES1), they reported relatively higher 
concentration of both metals as compared to its 
shoot, suggesting its importance for phytoreme-
diation, while in another line (Mash 80), heavy 
metal content was lower in both shoot and roots 
suggesting its utilization in future breeding pro-
grams and cultivation as a fodder crop in the riv-
erine areas of Pakistan and other places which are 
prone to excessive heavy metal contamination, 
particularly Pb and Cr (Hussain et al. 2007).

4. Gibberellic acid application

Gibberellic acid (GA) is one of the key plant 
hormones influencing seed germination, stem 
elongation, leaf expansion, and reproductive 
development (Hooley 1994; Matsuoka 2003). 
Studies have shown that exogenous application 
of GA provides protection to plants against abi-
otic stresses and increases crop yield (Tuna et al. 
2008; Wen et al. 2010). However, excess appli-
cations of GA have shown to increase ethylene 
production, ROS generation, and alterations in 
defense mechanisms of plants, causing tissue 
damage and retarded growth (Celik et al. 2007; 

Gangwar et al. 2011). Furthermore, Gangwar 
et al. (2011) also studied effects of exogenous 
GA (10 and 100 μM) application on growth, pro-
tein and nitrogen contents, ammonium (NH4+) 
content, enzymes of nitrogen assimilation, and 
antioxidant system in pea seedlings under Cr(VI) 
phytotoxicity. They showed that exogenous ap-
plication of GA led to different changes in pea 
seedlings, that Cr and 100 µM GA alone as well 
as in combination decreased growth and altered 
nitrogen assimilation in pea seedlings compared 
to control, which was attributed to decreased 
levels of antioxidants. In contrast, application of 
10 µM GA together with Cr was able to alleviate 
Cr phytotoxicity appreciably. This 10 µM GA-
mediated amelioration of Cr phytotoxicity was 
assigned to the better antioxidant system and sus-
tained activities of enzymes of nitrogen assimila-
tion. Therefore, it is suggested that GA may play 
different roles based on its exogenous concentra-
tions and plant species used under specific devel-
opmental and environmental conditions.

6.2.2  Glutathione Application for 
Amelioration of Chromium 
Phytotoxicity

GSH is a tripeptide detected virtually in all cell 
compartments such as cytosol, chloroplast, en-
doplasmic reticulum, vacuole, and mitochondria. 
The chemical reactivity of the thiol group of GSH 
makes it particularly suitable to serve a broad 
range of biochemical functions in all organisms, 
and it is one of the major sources of nonprotein 
thiols in most plant cells. The nucleophilic nature 
of the thiol group is also important in the forma-
tion of mercaptide bonds with metals and for re-
acting with selected electrophiles. This reactivity 
along with the relative stability and high water 
solubility of GSH makes it an ideal biochemical 
to protect plants against stresses including oxida-
tive stress, heavy metals, and certain exogenous 
and endogenous organic chemicals (Millar et al. 
2003; Foyer and Noctor 2005; Rausch et al. 
2007; Yadav 2010). Reduced GSH acts as an an-
tioxidant and is involved directly in the reduc-
tion of most ROS generated during stress (Millar 
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et al. 2003; Foyer and Noctor 2005; Shao et al. 
2008). In addition to the above, GSH also acts 
as a precursor for the synthesis of PCs. These are 
a set of novel heavy metal-binding peptides also 
found in higher plants (Gekeler et al. 1989). PCs 
are synthesized inductively by exposure not only 
to Cd but also to other heavy metals. Thereafter, 
numerous physiological studies have indicated 
their role in heavy metal detoxification as well 
as in the maintenance of ionic homeostasis (Zenk 
1996; Hirata et al. 2005). A survey of the plant 
kingdom has provided evidence for the occur-
rence of PCs in angiosperms, gymnosperms, and 
bryophytes (Gekeler et al. 1989; Yadav 2010). 
Recently, the role of reduced GSH in maintaining 
cellular oxidation balance and protection against 
drought, salinity, and heavy metals has been 
proven (Chen et al. 2010; Cai et al. 2011; Zeng 
et al. 2012). In one such study, a hydroponic ex-
periment was conducted to determine the pos-
sible effect of exogenous GSH in alleviating Cr 
stress through examining plant growth, chloro-
phyll contents, antioxidant enzyme activity, and 
lipid peroxidation in rice seedlings exposed to Cr 
toxicity (Zeng et al. 2012). The results showed 
that plant growth and chlorophyll content were 
dramatically reduced when rice plants were ex-
posed to 100 μM Cr. Addition of GSH in the 
culture solution alleviated the reduction of plant 
growth and chlorophyll content. It also enhanced 
antioxidant capacity in Cr-stressed plants as an-
tioxidant enzymes like SOD, CAT, glutathione 
reductase, and glutathione peroxidase showed 
increased activities under Cr stress in both leaves 
and roots. Furthermore, exogenous GSH also 
caused significant decrease of Cr uptake and 
root-to-shoot transport in the Cr-stressed rice 
plants, assuming that GSH was involved in Cr 
compartmentalization in root cells (Zeng et al. 
2012). The effects of exogenous reduced GSH 
on alleviation of Cr(VI) toxicity to rice seedlings 
and its physiological mechanisms were also in-
vestigated in a series of experiments by Qiu et al. 
(2013). The addition of GSH alleviates negative 
effects due to Cr-induced toxicity. It was con-
cluded that the alleviation of Cr(VI) toxicity by 
exogenous GSH is directly attributed to its regu-

lation on forms of Cr ions in the rhizosphere and 
their distribution at subcellular levels. In addition 
to reduced GSH, Cao et al. (2013) conducted a 
series of experiments to determine the alleviating 
effects of GSH, Se, and Zn under combined con-
tamination of Cd and Cr in rice. GSH and GSH 
+ Zn application significantly alleviated growth 
inhibition induced by combined stress of Cd and 
Cr in rice plants. Exogenous GSH and GSH + Zn 
effectively decreased Cr accumulation.

6.2.3  Iron Application  
for Amelioration of Chromium 
Phytotoxicity

Iron (Fe) is a cofactor for approximately 140 en-
zymes that catalyze unique biochemical reactions 
(Brittenham 1994). It is also required at several 
steps in the biosynthetic pathways and fills many 
essential roles in plant growth and development, 
including chlorophyll synthesis, thylakoid syn-
thesis, and chloroplast development (Miller et al. 
1995). Fe is also required by both legume and 
root nodule bacteria for many metabolic func-
tions at several key stages in the symbiotic N2 
fixation process and is critical for N2 fixation due 
to its role in the activity of both leghemoglobin 
and nitrogenase (Kaiser et al. 2003). Symbiotic 
N2 fixation was shown to have a high require-
ment for iron in lupine (Tang et al. 2006) because 
Fe is an essential component of nitrogenase, 
leghemoglobin, and ferrodoxins (Evans and Ros-
sel 1971). Several theories have been proposed 
to explain the underlying protection mechanism 
of Fe to heavy metal toxicity. Supplemental Fe 
on roots was suggested to act as: (a) a shield that 
protects roots by coprecipitation of other heavy 
metals, (b) a nutrient reservoir, and (c) a reser-
voir for active ferrous (Fe2 +)–Fe inside cells 
that could compete with heavy metals for meta-
bolically sensitive sites inside plants (Sinha et al. 
2005). Improvement in growth characters as a 
result of application of micronutrients might also 
be due to the enhanced photosynthetic and other 
metabolic activity, which leads to an increase 
in various plant metabolites responsible for cell 
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division and elongation (Hatwar et al. 2003). 
Adverse effect of Cr was found to be nullified 
by the supply of suitable amount of Fe and Zn 
in moong, gram, and pea plants, possibly due to 
the importance of these two essential nutrients 
in growth and metabolism of plants (Vazquez 
et al. 1987). Among the factors which may limit 
NO3

− assimilation, Fe plays a crucial role, being 
a metal cofactor of enzymes of the reductive as-
similatory pathway (NR, nitrite reductase (NiR), 
and GOGAT, all requiring Fe as Fe–heme group 
or Fe–S cluster (Borlotti et al. 2012). Fe is also 
suggested to induce NR activity and/or prevent 
degradation of the enzyme. It might induce NR 
synthesis by mobilization of intracellular NO3

− 
and provide protection to in vivo NR degradation 
in absence of NO3

− (Singh et al. 1997). Yadav 
et al. (2007) observed that the fresh weight, shoot 
length, and chlorophyll in leaves of 2 mM Cr + 
0.2 mM Fe-treated maize plants was higher than 
that in 2 mM Cr-treated plants, both after 45 and 
90 days. To overcome the toxic effects of Cr in 
R. sativus, Nath et al. (2009) used Fe in the re-
covery treatments and reported a significant re-
covery in most of the studied plant growth pa-
rameters. Hasegawa et al. (2012) also observed 
that foliar spray of Fe or increased Fe supply to 
roots also ameliorated the chlorosis in rice plants 
under exposure to high Ni concentrations. Sinha 
et al. (2005) conducted an experiment to deter-
mine whether the ill effects of excess Cr can be 
ameliorated by Fe application in spinach by with-
drawal of Cr by iron application through different 
modes. After 14 days of metal supply, the pots 
of spinach with excess Cr were divided into five 
lots and different recovery treatments were given 
with a separate lot of control pots without Cr. 
With all these various treatments, recovery from 
ill effects of Cr was observed, and most con-
spicuously when Fe was supplied through roots 
(250 μM) and through spray (250 μM) together. 
This resulted in changes in the Biomass, concen-
tration of chlorophylls, ferrous content, Hill reac-
tion activity, relative water content; and recovery 
in activity of CAT, peroxidase, ribonuclease, and 
starch phosphorylase; along with lowered Cr 
concentration.

6.2.4  Application Potential  
of Chelating Agent EDTA  
for Amelioration

Chelation is simply defined as a process by which 
a molecule encircles and binds to the metal. Che-
lating agents such as low molecular weight or-
ganic acids (LMWOAs), e.g., citric acid, oxalic 
acid, tartaric acid, etc., and synthetic chelators 
(ethylenediaminetetraacetic acid, EDTA and di-
ethylene triamine pentaacetic acid, DTPA) are 
the amendments most commonly applied for 
chemically assisted phytoextraction of metals 
from soils (Nascimento et al. 2006). Such sub-
stances are capable of forming complexes with 
metal ions, thereby increasing the bioavailability 
of heavy metals in soils. Synthetic chelators like 
EDTA form chemically and microbiologically 
stable complexes with heavy metals, which oth-
erwise contaminate groundwater (Satroutdinov 
et al. 2000). LMWOAs provide alternative che-
lators by being easily biodegradable and more 
environmentally compatible (Meers et al. 2005; 
Nowack et al. 2006; Bala and Thukral 2011). 
Synthetic chelating agents have considerable ef-
fects on the fraction and solubility of heavy met-
als in soils. EDTA is a synthetic chelating agent 
commonly used in various fields (pulp and paper 
industry, detergents industry, food industry, med-
icine, biomedical labs) in order to remove harm-
ful metal ions from many processes and products 
(Iranshahi et al. 2011). It also reflects a promising 
alternative in plant protection under heavy metal 
toxicity. In a supporting evidence, Mohanty and 
Patra (2011) observed that total chlorophyll 
content in the rice ( Oryza sativa L.) seedlings 
treated with Cr(VI)–EDTA (10 μM) solution was 
more as compared to the untreated. The alfalfa 
( Medicago sativa cv. Trifolium alexandrinum) is 
a sensitive plant to heavy metal (e.g., Co and Cr) 
stress. Zeid et al. (2013) investigated the effect of 
different concentrations of Co and Cr on alfalfa 
growth, photosynthesis, antioxidant enzymes, 
carbohydrate, protein, and mineral ion content 
with an aim to overcome the toxic effects of these 
heavy metals. There was a gradual reduction in 
growth, metabolic activities, and the antioxidant 
enzyme activity with increasing concentrations 
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of Co and Cr, while the precipitation and EDTA 
treatments reduced and alleviated the inhibitory 
effects of the high concentrations of Co and Cr, 
and returned all the measured parameters to be-
come around the control values. So the applica-
tion of these treatments can be recommended, 
considering that it is cheap, simple, and easy to 
apply and also safe on the plant, soil, and envi-
ronment; this will in turn help maintain soil fertil-
ity, then plant, animal, and human health.

6.2.5  Silicon Application  
for Amelioration of Chromium 
Phytotoxicity

Silicon (Si) is the second most abundant element 
both on the earth’s surface and in the soil (Gong 
et al. 2006). Majority of Si in soil is insoluble 
and combined with other elements to form ox-
ides or silicates, therefore, not available for 
plants (Richmond and Sussman 2003). Si con-
centrations vary greatly with plant species and 
tissues ranging from 0.1 to 10 % of dry weight 
(Liang et al. 2007). Rice plants are typical Si ac-
cumulators and are able to accumulate Si up to 
10 % of dry weight (Ma et al. 2006). Although 
Si has not been evidenced as an essential ele-
ment for higher plants, it is generally considered 
as a beneficial element for higher plants, espe-
cially for those grown under abiotic stressed en-
vironments, in particular for gramineous plants, 
including rice (Richmond and Sussman 2003; 
Liang et al. 2007). Many evidences demonstrated 
that Si can reduce the toxicity of heavy metals 
to plants such as Cd (Liang et al. 2005; Shi et al. 
2010), Mn (Shi 2005), and Zn (Kaya et al. 2009). 
Previous studies suggested that Si-mediated in-
crease in metal tolerance is based on several pos-
sibilities such as decrease in metal accumulation 
and transportation, improved mineral elements 
status, decreased oxidative stress, increased an-
tioxidant capacity, and maintained ultrastruc-
ture. Therefore, a better understanding of these 
mechanisms associated with exogenous Si ad-
dition in plants could shed light on mechanisms 
related to Cr tolerance (Tripathi et al. 2012). In an 

attempt to analyze the effect of Si application on 
growth, photosynthesis and ultrastructure of bar-
ley under Cr stress, Ali et al. (2013) carried out a 
hydroponic experiment. The treatments consisted 
of three Si (0, 1, and 2 mM) and two Cr (0 and 
100 μM) levels. The study revealed that Si appli-
cation at both levels enhanced plant growth rela-
tive to the control, and alleviated Cr toxicity by 
significant increase in growth and photosynthetic 
parameters and also alleviated the ultrastructural 
disorders both in roots and leaves, with 2 mM Si 
having greater effect than 1 mM Si. Exogenous 
Si, apparently behaved antagonistically to Cr, 
suggesting Si as a candidate for Cr detoxification 
in crops under Cr-contaminated soil. In another 
study using rice plants, Zeng et al. (2011) inves-
tigated the alleviatory effect of Si on Cr toxic-
ity using a hydroponic experiment with two Cr 
levels (0 and 100 μmol L− 1), three Si levels (0, 
1.25, and 2.5 mmol L− 1), and two rice genotypes, 
differing in grain Cr accumulation. The results 
showed that toxic effects of 100 μmol L− 1 Cr 
treatments on antioxidant enzymes (SOD and 
APX in leaves; CAT and APX in roots) and other 
parameters were greatly alleviated due to Si ad-
dition to the culture solution. Compared with the 
plants treated with Cr alone, Si addition mark-
edly reduced Cr uptake and translocation in 
rice plants. No significant differences were ob-
served between the two Si treatments (1.25 and 
2.5 mmol L− 1) in this case. It was concluded that 
Si alleviated Cr toxicity mainly through inhibit-
ing the uptake and translocation of Cr and en-
hancing the capacity of defense against oxidative 
stress induced by Cr toxicity (Zeng et al. 2011). 
Tripathi et al. (2012) have also observed the role 
of exogenous Si addition in increasing Cr(VI) 
tolerance in rice seedlings, where Si addition al-
leviated Cr toxicity and promoted growth of rice 
by decreasing Cr accumulation, root-to-shoot Cr 
transport, and MDA level. It is significant in re-
duction of Cr content in edible parts as Si addi-
tion in Cr-contaminated soils can help to reduce 
Cr contamination of grains by inhibiting Cr ac-
cumulation, and therefore, its transport into the 
edible parts.
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6.2.6  Hydrogen Peroxide  
in Amelioration of Cr(VI) 
Phytotoxic Effects

The exogenous application of hydrogen peroxide 
(H2O2) has been found to counter toxic effects of 
several abiotic stresses (Yıldız et al. 2013). There 
are evidences from several studies that H2O2 in-
creases tolerance of plants to salinity, drought, 
heavy metal, and heat stress (Uchida et al. 2002; 
Xu et al. 2008; Hu et al. 2009). To evaluate the 
ameliorating effects of H2O2 (200 μM) on Cr(VI) 
toxicity in canola ( Brassica napus L.), Yıldız 
et al. (2013) observed plant growth, chlorophyll 
content, thiol contents, lipid peroxidation, anti-
oxidant enzymes, and the expression of metallo-
thionein protein (BnMP1) mRNA. Cr(VI) at 
50 μM significantly decreased the plant growth 
(fresh and dry weights) accompanied by in-
creased lipid peroxidation and decreased chlo-
rophyll content in leaves. H2O2 pretreatment, 
however, enhanced plant growth parameters and 
led to the reduced levels of lipid peroxidation 
and higher levels of pigment. In addition, H2O2 
pretreatment increased Cr accumulation in aerial 
parts of seedlings. The tendency of increase in 
thiol content under Cr(VI) stress was further in-
creased with H2O2 pretreatment. The activities of 
antioxidant enzymes such as SOD, APX, POD, 
and CAT were differentially altered. SOD and 
POD activities increased under Cr(VI) stress, 
whereas APX and CAT activities decreased. This 
study suggested that H2O2 may act as a signal 
that triggers defense mechanisms which in turn 
protects canola seedlings from Cr(VI)-induced 
oxidative damage.

6.3  Soil Amendments for Enhanced 
Cr Tolerance in Plants

6.3.1  Potential of Micro- and 
Macronutrient Amendments  
in Soil

Many plant enzymes require Zn ions for their 
activity and for chlorophyll biosynthesis, while 
Zn deficiency is associated with an important 

carbohydrate metabolism and protein synthesis 
(Taiz and Zeiger 2002). Similarly, potassium (K) 
also plays an important role in regulation in os-
motic potential in plant cells and also activates 
many enzymes in respiration and photosynthe-
sis (Bassi et al. 1990). In protein synthesis, K is 
probably involved in several steps of the trans-
lation processes, including the binding of tRNA 
to ribosomes (Evans and Wildes 1971). The high 
K concentrations in the sieve tubes are probably 
related to the mechanism of phloem loading of 
sucrose. The adverse effect of Cr was found to 
be nullified by the supply of suitable amounts 
of Fe and Zn in moong, gram, and pea plants, 
possibly due to importance of these two essen-
tial nutrients in growth and metabolism of plants 
(Vazquez et al. 1987). In addition, Fe also plays 
an important role as a component of enzymes in-
volved in the transfer of electron redox reaction, 
like with cytochromes, and it is reversibly oxi-
dized from Fe2+ to Fe3+ during electron transfer. 
Under condition of Fe deficiency, the activity of 
both types of enzyme declines. Nath et al. (2009) 
have shown that lower levels of tannery effluent 
can be used for irrigation of R. sativus L. plants 
in combination with Zn, K, and Fe sulfate. The 
application of Zn in combination with tannery ef-
fluent has been shown to reduce the toxicity of 
Cr, leading to increased growth.

6.3.2  Amendment in Phosphorus 
Levels and Addition of Glucose 
in Soil

Phosphorus (P) is well known as an essential and 
limiting nutrient for plant growth and develop-
ment. P and Cr compete with each other during 
the plant uptake process. Sayantan (2013) studied 
the role of P in moderating the Cr toxicity in R. 
sativus L. The toxic effects of Cr and the modera-
tion of toxicity due to P amendment were deter-
mined as accumulation of Cr, nitrogen, and P in 
root tissues, and their effects were also examined 
in the changes in biomass, chlorophyll, and anti-
oxidant enzyme levels. Cr and N accumulation 
were almost doubled at the highest concentration 
of Cr supply, without any P amendment, whereas 
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at the highest P concentration, the accumulation 
was reduced to almost half. Therefore, P amend-
ment moderates the toxicity caused by the sup-
plied Cr in R. sativus. This finding can be utilized 
to develop a novel technology for the ameliora-
tion of Cr stressed fields. Generally, Cr(VI) nega-
tively affected both the size and activity of soil 
microbial biomass. Recently, Leita et al. (2011) 
reported that with the addition of glucose in-
creased the reduction rate of Cr(VI) as it induced 
soil microbial biomass size and activity with an 
indirect role in the increased rate of Cr(VI) re-
duction, by promoting growth of indigenous mi-
crobial biomass.

6.3.3  Effect of Biochar Application 
on Soil Properties and Plant 
Nutrient Uptake Under Cr 
Toxicity

The addition of biochar increased soil pH, elec-
trical conductivity (EC), organic carbon, total 
nitrogen, available P, cation exchange capacity 
(CEC), and exchangeable cations of Cr-polluted 
and Cr-unpolluted soils (Topoliantz et al. 2002). 
Uptake of nitrogen, P, and K were also increased 
by addition of biochar. The presence of plant nu-
trients and ash in the biochar, high surface area 
and porous nature of the biochar, and the capacity 
of biochar to act as a medium for microorganisms 
are identified as the main reasons for the increase 
in soil properties and highest nutrient uptake at 
biochar-treated soils (Verheijen et al. 2009). The 
increase in the availability of major plant nutri-
ents due to application of biochar was also re-
ported by Glaser et al. (2002) and Lehman et al. 
(2003). Application of biochar on Cr-polluted 
and Cr-unpolluted soils significantly ( p < 0.01) 
increased the mean values of soil organic C and 
total N (Nigussie et al. 2012). The increases in 
organic carbon were observed in soils treated and 
total nitrogen upon addition of biochar due to 
presence of high amounts of carbon and nitrogen 
in the maize stalk. High organic carbon in soils 
treated with biochar has been also reported by 
Lehmann (2007).

6.4  Application of Biosludge  
as Metal Chelator

Recently, National Environmental Engineering 
Research Institute (NEERI), India has started 
to develop cost-effective and ecofriendly tech-
nologies that use microorganisms and industrial 
wastes for cultivation of petro-crops in lands 
degraded due to metals (Juwarkar et al. 2006). 
Juwarkar et al. (2008) evaluated the effect of 
different concentrations of As-, Cr-, and Zn-
contaminated soils, amended with biosludge and 
biofertilizer on the growth of Jatropha curcas, 
which is a biodiesel crop. The study revealed 
that biosludge alone and in combination with 
biofertilizer significantly improved survival rates 
and enhanced the growth of the plant. With the 
amendments, the plant was able to grow and 
survive up to 250 mg kg− 1 of Cr-contaminated 
soil. In absence of biosludge, heavy metal accu-
mulation in the plant increased with increasing 
concentrations of heavy metals in soil, whereas 
in soils amended with biosludge, a significant 
reduction in the metal uptake in the plant was 
observed. It was assumed that the organic mat-
ter present in the biosludge acted as a metal che-
lator, thereby reducing the toxicity of metals to 
the plant. Findings suggest that plantation of J. 
curcas may be promoted in metal-contaminated 
soils, degraded soils, or wastelands suitably after 
amending with organic waste. Role of other or-
ganic amendments, such as fermented compost, 
has also been reported in the reestablishment 
of vegetation on contaminated sites by decreas-
ing the bioavailability of heavy metals in soil 
(Tordoff et al. 2000; Walker et al. 2004).

6.5  Bioremediation of Cr Using 
Microbial Inoculants

The bioremediation is an approach to exploit the 
naturally occurring biodegradative processes to 
clean up contaminated sites. In situ, ex situ, and 
intrinsic bioremediation are receiving increas-
ing attention as viable remediation alternatives. 
The application of the bioremediation approach 
depends on the type of pollutant or pollutant 
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mixtures present and the type of microorganisms 
present as well as environmental conditions and 
nutrient availability (Abdel-Sabour 2007). For in-
stance, the microbes resistant to high Cr(VI) are 
promising source for the Cr(VI) bioremediation. 
Further, the use of plant growth-promoting rhi-
zobacteria is one of the inexpensive and environ-
ment-friendly ways to alleviate the Cr toxicity in 
plants (Khan et al. 2012, 2013; Kang et al. 2012). 
Rhizobacteria are the root-colonizing bacteria 
that exert beneficial effects on plant development 
via direct or indirect mechanisms (Nelson 2004) 
and have potential to decrease the toxic effects of 
heavy metals (Bertrand et al. 2000). Rhizobac-
teria having 1-aminocyclopropane-1-carboxylate 
deaminase (ACC deaminase) enzyme could im-
prove the plant growth under stress conditions 
(Nadeem et al. 2006). Harms of Cr on plants 
could be minimized by rhizobacteria via differ-
ent mechanisms like biosorption and bioaccumu-
lation, bioreduction to a less toxic state, and chro-
mate efflux (Nazir et al. 2011; Khan et al. 2012). 
Cr(VI)-resistant rhizobacterial isolates might 
cause changes in plant growth and development 
due to involvement of single or multiple pos-
sible mechanisms of action, i.e., solubilization 
of insoluble phosphate (Yasmin and Bano 2011); 
production of siderophore (Meyer 2000); produc-
tion of phytohormones (Humphry et al. 2007); 
indirect mechanisms of action, i.e., reduction of 
Cr(VI) to Cr(III) by which it decreases the harm-
ful effects of Cr(VI) to the plants (Salunkhe et al. 
1998); biocontrol (Chandra et al. 2007); or induc-
tion of systemic resistance in plants against phy-
totoxicity of Cr(VI) (Mishra et al. 2006). Turick 
et al. (1996) investigated several bacteria from 
various soils for Cr(VI) resistance and reducing 
potential. Microbes selected from both Cr(VI)-
contaminated and Cr(VI)-noncontaminated soils 
and sediments were capable of catalyzing the 
reduction of Cr(VI) to Cr(III) a less toxic, less 
water-soluble form of Cr. Cr reduction capac-
ity of these isolates was compared with that of 
Pseudomonas aeruginosa and Bacillus circulans. 
Bacillus coagulans, isolated and identified from 
Cr-polluted soil, gave maximum reduction poten-
tial among all organisms studied. Morales et al. 
(2007) isolated Streptomyces sp. CG252, which 

was highly tolerant to Cr(VI) and has the ability 
to reduce Cr(VI) into Cr(III). Similarly, Mistry 
et al. (2009) reported that Cr-resistant bacterial 
strain Pseudomonas olevorans had the ability to 
reduce the Cr(VI) into Cr(III) and to bioreme-
diate Cr(VI)-containing waste. Recently, Datta 
et al. (2011) reported Cr(VI) tolerance capability 
of different varieties of wheat and several other 
studies showed that rhizosphere bacteria stimu-
late plant growth and development under stress 
conditions. Kumar et al. (2009) suggested that 
plant growth-promoting bacteria ( Enterobacter 
aerogenes and Rahnella aquatilis) reduce the 
toxicity of Ni and Cr in B. juncea (Indian mus-
tard) and promoted plant growth.

6.6  Phytoremediation of Cr Using 
Potential Plants

A new research area of using plants for the bio-
remediation (phytoremediation) of contaminated 
soil and water was reviewed by Brown (1995). 
Reduction of heavy metals in situ by plants may 
be a useful detoxification mechanism for phy-
toremediation. The key role is played by plant 
roots, and they are a significant metal sink. Metal 
uptake by plants can be passive, facilitated, or 
active. The regulation of metal uptake by both 
soil–root and root–shoot interfaces varies within 
plant species and cultivars. Plants are effective 
at removing metals because they require certain 
trace elements to survive. Some plant species, 
known as hyperaccumulate toxic metal and they 
accumulate upto 5 % of their dry weight and as 
on to date about 400 plants that hyperaccumulate 
metals are reported. One of the earliest examples 
of a hyperaccumulator was the Italian serpentine 
plant Alyssum bertolonii and another more re-
cently identified is the Alpine pennycress Thlaspi 
caerulescens. Abdel-Sabour et al. (2002) studied 
the use of hyperaccumulator plant species to ex-
tract Cr from contaminated soils. They investi-
gated three soils (A, B, and C) and four plant spe-
cies, i.e., sorghum ( Sorghum vulgare L.), clover 
( Trifolium pratense L.), panikum ( Panicum an-
tidotal), and canola ( Brassica napus), and con-
cluded that canola accumulated the highest Cr 
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quantity among the four plant species, irrespec-
tive of the clipping or soil type. Calculation of 
recovery percentage based on Cr removed from 
the soil after cultivation ranged between 3.7 and 
40.6 % of total initial Cr. The highest values were 
noticed in case of clover and canola. Diwan et al. 
(2008) also reported the ability of Pusa Jai Kisan 
genotype of Indian mustard to grow in the pres-
ence of high Cr(VI) levels in the hydroponic as 
well as natural environmental conditions, and 
the amounts of Cr concentrated in the aerial part 
of this plant indicate that there is great potential 
for its use in the remediation of Cr-contaminated 
sites. On the other hand Azolla (an aquatic water 
fern) biosystem has already been proven to be a 
potent tool for biofiltration of various toxic met-
als. In a report by Rai (2008), high increase of 
the metal content in the biomass suggests that 
Azolla pinnata has tremendous potential to take 
up Cr(III) and Cr(VI) (70–88 %) and may be 
used as a bioaccumulator to polish heavy met-
als in ash slurry, coal mines, and tannery efflu-
ent. The concentration of metals in the A. pin-
nata biomass was directly related to that of the 
solution. Aquatic macrophytes can also be a good 
remediation option, and duckweeds have proven 
to be promising prospective scavengers of heavy 
metals from polluted waters (Zurayk et al. 2001; 
Zhang et al. 2007). Lemna gibba and Lemna 
minor L. are the most studied species for phy-
toremediation (Mkandawire and Dudel 2005). 
They exhibit relatively high tolerance to Cr tox-
icity and are capable of active uptake and accu-
mulation of this element against the concentra-
tion gradient (Staves and Knaus 1985). Chandra 
and Kulshreshta (2004) revealed that Spirodela 
polyrrhiza is a potential accumulator of Cr(VI). 
Since phytoremediation generally removes only 
a small percentage of heavy metals from con-
taminated sites and can only be used in situations 
with low-level contamination, for extremely 
contaminated sites other approaches must be ap-
plied (Lasat 2002). Peterson and Girling (1981) 
reported other plants for phytoextraction, such 
as Sutera fodina, Dicoma niccolifera and Lep-
tospermum scoparium, which accumulate Cr to 
high concentrations in their tissues. Hyperaccu-
mulators are generally metal-specific and yield 

a low annual biomass production, thus limiting 
the overall amount of heavy metals that can be 
extracted per harvest (Meers et al. 2004). In most 
cases, limited translocation of Cr following up-
take by the roots is the bottleneck limiting the 
overall efficiency of phytoextraction from the 
environment.

6.7  Other Techniques for Cr 
Remediation

Overall, the cleanup goals discussed so far are 
based on the Cr(VI) concentration in the soils 
and the volume and physical–chemical proper-
ties of the Cr-containing soils. Therefore, most 
of the available treatment technologies consist 
of following these three mechanistic approaches, 
i.e., (1) removing the Cr(VI)-containing soils 
from the site; (2) immobilizing the Cr so that it 
will not leach after treatment under field condi-
tions; or (3) reducing the Cr(VI) in the soils to 
the Cr(III) state (Abdel-Sabour 2007). As an ex-
ample of first technology, “soil washing and in 
situ flushing” involves the addition of water with 
or without additives, including organic and inor-
ganic acids, sodium hydroxide, methanol, EDTA, 
acids in combination with complexation agents 
or oxidizing/reducing agents as well as biosur-
factants, which enhance removal of metals from 
contaminated soils and sediments (Mulligan 
et al. 2001). According to United States Environ-
mental Protection Agency (USEPA), efficiency 
of metal removal by soil washing ranges from 75 
to 99 % (USEPA 1992), depending on a number 
of factors, including the length of time the soil 
has been exposed to the metals of concern, the 
amount of fines in the soil, and the affinity of the 
contaminants for the washing solution. It is be-
lieved that if a soil has greater than 20–30 % fines 
(with particle sizes less than 0.06 mm in diam-
eter), soil washing may not be the most effective 
technology (Oravetz et al. 1992).

The second technology for alleviation includes 
“in situ immobilization” of the pollutants has the 
advantage of minimizing the exposure of site 
works and local residents to airborne pollutants 
as well as minimizing disruption to or demolition 
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of existing structures. Mobility is strongly related 
to the physicochemical state and the location of 
pollutants. If elements or organic compounds 
(pesticides) become trapped within the structure of 
minerals or humic substances, they are neither mo-
bile nor bioavailable and, particularly in the case 
of organics, they are physically protected and not 
accessible to microorganisms that might be able 
to transform them (Abdel-Sabour 2007). “Clay 
and clay minerals,” a mixture of clay minerals and 
natural zeolites with calcium compounds can also 
be used as liner material at solid waste disposal 
sites (particularly soils polluted by Cr(VI)) as their 
impermeability and sorption properties prevent 
migration of toxic metals from waste sites (Minato 
and Shibue 1998). “Organic matter” content and 
bioactivity are considered as important factors in 
reducing almost 96 % of the added Cr(VI) under 
aerobic, field moist conditions (Losi et al. 1994). 
Similarly, Cifuentes et al. (1996) added easily de-
gradable organic substances of a very narrow C:N 
ratio and found marked Cr(VI) reduction.

The third technology, “chemical reduction,” 
can also be used to convert Cr(VI) to the trivalent 
valence state, which is generally less toxic and 
less soluble (Patterson 1985). Reducing agents 
(such as ferrous sulfate, ferrous ammonium sul-
fate) can be delivered to the soil subsurface by 
injection wells or in situ soil mixing equipment. 
James et al. (1997) stated that effective remedia-
tion of Cr(VI)-contaminated soils by reduction 
depends on: (1) reduction of Cr(VI) to Cr(III) 
which is inert toward reoxidation; (2) absence of 
undesirable reaction products; and (3) establish-
ment or maintenance of soil pH and Eh condi-
tions that favor the reduction of Cr(VI) and disfa-
vor oxidation of Cr(III). The extent of oxidation 
of Cr(III) in soils amended with wastes is based 
on four interacting parameters: (1) solubility and 
form of Cr(III) related to oxidation waste oxida-
tion potential; (2) reactive soil Mn(I, IV) hydrox-
ide levels (soil oxidation potential for Cr(III); (3) 
soil potential for Cr(VI) reduction (soil reduction 
potential); and (4) soil waste pH as a modifier 
of the first three parameters (pH modification 
value). Each of these four parameters can be 
quantified with laboratory tests and ranked nu-
merically; the sum of which is the potential Cr 

oxidation score (PCOS) for assessing the relative 
hazard of a waste–soil combination as proposed 
by James et al. (1995). Patterson and Fendorf 
(1998) reported that the reduction of Cr(VI) to 
Cr(III) decreases the toxicity and mobility of Cr 
contaminants in soils and water. In addition, the 
formation of a highly insoluble Cr(III) product 
would decrease the likelihood of future Cr(III) 
reoxidation. They noticed that amorphous iron 
sulfide minerals like mackinawite (FeS1-x) have 
the potential to reduce large quantities of Cr(VI) 
and in the process form very stable [Cr, Fe](OH)3 
solids. In their study the effectiveness of amor-
phous FeS as a reductant of Cr(VI) was assessed 
by identifying the solution and solid phase prod-
ucts of the reaction between FeS suspensions 
and chromate. Results showed that iron sulfide 
removed all of the added Cr(VI) from solution 
for the reaction conditions studied and reduced 
between 85 and 100 % of the Cr(VI) to Cr(III). 
Chromate reduction occurred dominantly at the 
FeS surface and resulted in [Cr0.75,Fe0.25](OH)3; 
while less extensive, reduction of Cr(VI) by 
Fe(II) (aq) was noted and produced a solid with 
the opposite Cr:Fe ratio, [Cr0.25,Fe0.75](OH)3 
(Abdel-Sabour 2007).

6.8  Current Challenges and Future 
Directions

Heavy metal stress is one of the major problems 
affecting agricultural productivity of plants. Nat-
ural flora show relative differences in their heavy 
metal tolerance capacity. Some plants grow well 
in a soil enriched with toxic levels of heavy met-
als while others cannot. The roles of several ef-
fectors in amelioration of Cr have been discussed 
above. Additionally, several natural plant species 
have been identified showing heavy metal accu-
mulator behaviors. These natural heavy metal ac-
cumulators could be a potential source for genetic 
manipulation of other important agricultural crop 
plants. However, this needs a further detailed ac-
count of experimental validation. Metal chelation 
proves to be of high importance as a generalized 
means of heavy metal removal from soil and 
water. However, in situ application of chelat-
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ing agents can also cause groundwater pollution 
by uncontrolled metal dissolution and leaching. 
Therefore, the risk assessment must be carried out 
thoroughly in the use of EDTA or other chelators 
for phytoextraction before taking further steps 
towards development and commercialization of 
this remediation technology. There is a need for 
further experimental validation of such promises 
under different soil and environmental conditions 
with major crops. Further, complications due to 
soil and water contamination by multiple heavy 
metals demands integrative approaches and tri-
als to get conclusive results. This would lead to 
development of more generalized and effective 
strategies for amelioration of phytotoxic effects. 
Another important aspect that must be considered 
during the study of any approach is “maintenance 
of natural beneficial microbial population” under 
such experimental conditions. This would be im-
portant in case of bioremediation using microbial 
inoculants. There are no doubts about symbiotic 
and beneficial relationship between plants and 
microbes. Therefore, use of microbes with dual 
characteristics of Cr tolerance and plant growth 
promotion will be of high significance for ame-
lioration as well as increased crop productivity 
for increased population. Apart from bioreme-
diation and metal chelation, PGRs are also being 
studied extensively for amelioration of differ-
ent heavy metals, and SA has been shown to be 
highly effective in several such studies. BRs are 
again of high importance considering the sup-
porting relevant studies for Cr. Integrative use 
of such growth regulators and inclusion of major 
crops under further experiments with multifield 
and multisite trials will lead to development of 
consensus among outcomes and final recommen-
dations. Again, combined effect of heavy metals 
and their effective amelioration will require in-
depth research on molecular mechanisms behind 
such effects. Current research trends toward un-
derstanding of key genes under different abiotic 
stresses and transcriptomics studies would be a 
benchmark for development of these strategies. 
The actual success of any of the above strategies 
will be governed by a thorough understanding of 
the molecular basis of their action by extensive 

research, its cost effectiveness, user-friendliness, 
and environmental impact of course.
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Abstract

Phosphorus is an important element for plant and animal nutrition con-
sidering its diverse roles in their growth and development. It is derived 
from different organic and inorganic sources rich in phosphorus. Inorganic 
sources are most commonly used for development of phosphorus fertilisers 
while organic sources like phytic acid phosphorus of plant origin is a major 
source of phosphorus in animal nutrition. Excessive application of phos-
phorus fertilisers without proper analysis of its soil concentration results 
in high phosphorus and associated heavy metals deposition in agricultural 
soils. This has multiple environmental consequences like loss of biological 
diversity in aquatic system due to phosphate runoff from soil by rain water. 
Further, inability of monogastric animals to hydrolyse phytate phospho-
rus and utilise it makes it necessary to supplement external phosphorus in 
animal feed. This leads to increased phosphorus load and release of excess 
phosphorus in faecal material at intensive livestock production area, which 
contributes to environmental phosphorus pollution. The supplementation 
of animal feeds with microbial phytases increases the bioavailability of 
phosphorus and minerals besides reducing the aquatic phosphorus pollu-
tion in the areas of intensive livestock production. Phytases are of signifi-
cant value in effectively combating environmental phosphorus pollution. 
This chapter describes different application of phosphorus, its pollution 
consequences and use of phytases for strategic management of this prob-
lem phosphorus pollution and various promises and challenges therein.
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7.1 Introduction

Phosphorus (P) is a macronutrient for plants 
and plays important roles in the biosynthesis of 
nucleic acids, cell membranes and regulation 
of many enzymes. It is available in soil either 
as inorganic or organic fractions in significant 
amounts and not readily accessible to plants, 
leading to P deficiency in soil as a major problem 
for agricultural production. The major storage 
form of organic P in soil is phytate (salts of phytic 
acid), which is not readily provide P to plants be-
cause of its complex with cations or adsorption 
to various soil components. This form of P is also 
the principal storage form in plants. Phytic acid 
P constitutes 1–5 % weight in cereals, legumes, 
oils, seeds and nuts (Sapna et al. 2013). The phy-
tate P is generally unavailable to monogastric 
animals (chicken, swine, fish, humans) due to ei-
ther absence or insufficient secretion of enzymes 
essential for phytate hydrolysis in digestive tract 
(Kumar et al. 2014). Consequently, P remains un-
absorbed in the digestive tract and gets excreted 
along with faeces as such in the environment 
leading to P pollution. To supplement P require-
ment, animal feeds are commonly supplemented 
with inorganic P. Further, the excretion of undi-
gested phytate along with inorganic P imposes 
global ecological problems of P eutrophication at 

the sites of intensive livestock production. This 
excessive P in soil runs off under different cli-
matic cycles to different water sources such as 
ponds and rivers causing rapid growth of phy-
toplanktons, algae, creating dense population 
of cyanobacterial blooms, hypoxia and death of 
marine animals. These blooms also make plants 
unable to photosynthesise and produce food for 
their survival (Vats and Banerjee 2005).

Adopting a suitable approach for phytic acid 
P hydrolysis may lead to decreased environmen-
tal pollution and feed cost. Several interventions 
have been suggested for phytic acid hydrolysis 
comprising physical methods, e.g. autoclaving, 
cooking; and chemical methods, e.g. ion exchange 
and acid hydrolysis, but reported to compromise 
the nutritional value of the food (Singh et al. 
2011). Therefore as an alternative, enzymatic hy-
drolysis is preferred for the reduction of phytic 
acid content in food and feed in several studies 
(Vohra and Satyanarayana 2003; Vats and Baner-
jee 2004; Greiner and Konietzny 2006; Rao et al. 
2009; Singh and Satyanarayana 2011; Singh et al. 
2011; Kumar et al. 2014). These studies showed 
considerable interest of food and feed industries 
towards phytate-degrading enzymes, mainly phy-
tases (myo-inositol hexakisphosphate phospho-
hydrolase), which catalyse the hydrolysis of the 
phosphate moieties in phytic acid (Fig. 7.1). Since 

Fig. 7.1  Phytic acid hydrolysis by phytase enzyme
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last 20 years, interest in phytases has increased re-
markably, not only because of its wide range of ap-
plications in animal and human nutrition, but also 
in response to heightened concerns over phospho-
rous pollution in the environment (Lei and Porres 
2003). Suzuki et al. first detected phytase activ-
ity in rice bran in 1907, but it was not until 1991 
that the first phytase feed enzyme became com-
mercially available (Haefner et al. 2005; Cao et al. 
2007). Phytase can be found in plants, bacteria, 
fungi, yeast and animals. However, among mi-
croorganisms phytase activity has been observed 
most commonly in fungi, particularly in Aspergil-
lus species (Kim et al. 1998). Until now, a number 
of phytase producing organisms have been re-
ported, but the search for a thermostable and acid-
stable phytase with broad substrate specificity and 
high specific activity has been under progress for 
animal nutrition purposes. The aforementioned 
parameters were considered as key factors in the 
use of phytase for animal nutrition. Additionally, 
the low yield and high cost of enzyme produc-
tion are major limiting factors in use of phytase 
enzyme in animal diet.

In this chapter, importance of P and phytic 
acid in agriculture and animal nutrition leading 
to P pollution is outlined. The consequences of 
P pollution are discussed. Further, an insight in 
phytases from different sources and various con-
siderations during their uses in phytic acid re-
moval and environmental pollution management 
are discussed for better understanding and imple-
mentation of future strategies.

7.2  Importance and Need of P  
in Animal and Plant Nutrition

7.2.1  Phosphorous: A Vital Source  
of Animal Nutrition

Phosphorus is the 11th most abundant element on 
earth. It exists in soil either in dissolved (i.e. solu-
tion) or solid form (particulate P), the solid form 
being dominant. In solid form, P is classified as 
inorganic P (P bound to Al, Fe, Ca, Mg etc. as 
complex salts) and organic P (P bound to organic 
material such as dead and living plant material 

and micro-organisms, soil organic matter etc.). 
Both forms of P are interconvertible with the aid 
of soil bacteria and growing plants (Magette and 
Carton 1996). Mineral soil contains 33–90 % of 
total P in inorganic form. In common with other 
major elements, the concentration of total P in 
soils is relatively higher considering the crop re-
quirements and available P fraction. The typical 
range for total P content of agricultural soils is 
estimated between 0.20 to 2.0 g/kg. Dissolved P 
is typically less than 0.1 % of the total soil P and 
usually exists as orthophosphate ions, inorganic 
polyphosphates and organic P (Magette and Car-
ton 1996).

In animal nutrition, P plays a key metabolic 
role with more physiological functions than 
any other mineral. These functions include P 
as a major constituent of nucleic acids and cell 
membranes, major constituent of the structural 
components of skeletal tissues (80 % P found in 
the bones and teeth), and is directly involved in 
all energy-producing cellular reactions, mainte-
nance of osmotic pressure and acid–base balance, 
protein synthesis, transport of fatty acids, amino 
acid exchange, growth and cell differentiation, 
appetite control, efficiency of feed utilisation and 
fertility (NRC 1993; Dobrota 2004). The P nu-
tritional requirements for most farm animals are 
well documented (dairy cattle 85–95 g/day, beef 
cattle 35–40 g/day). The variation in P content 
of natural feed has been observed in plants at 
the species level. For example, the P content of 
barley, maize and oats is very low compared to 
rape seed meal. The P present in animal diet is 
digested and metabolised differently by ruminant 
and monogastric animals (Bomans et al. 2005). P 
deficiency in animal diet can affect the animal’s 
physical well-being including compromise of the 
immune system, bone breakage, loss of appetite, 
reduction in fertility and loss in live weight gain 
due to low feed efficiency (Aehle 2007). Diets 
with low P content can be considerably improved 
by the use of P feed supplement in the form of 
compound feed or as separate mineral supple-
ments. P supplements are manufactured in many 
chemical and physical forms to suit different 
feeding and handling practices (http://www.nhm.
ac.uk/mineralogy/phos/) (Bomans et al. 2005).
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7.2.2 Role and Behaviour of P in Plants

In plant nutrition, P is usually the critical limiting 
element for plant production, and throughout the 
history of natural production and human agricul-
ture, P has been short in supply. P is absorbed by 
plants from the soil as monovalent (H2PO4) and 
divalent (HPO4) orthophosphate anions, where 
the percent composition of each varies with re-
spect to soil pH. For instance, H2PO4 and HPO4 
represent 50 % of total P at pH 6–7 while at pH 
8, H2PO4 represents 20 % and HPO4 represents 
80 % of total P. H2PO4 is about 100 % of total P in 
soil solution at pH 4–6 (Black 1968). The seeds 
and grains must store ample P so that the seedling 
has enough to develop its first roots and shoots. 
In the natural environment, P is supplied through 
the weathering and dissolution of rocks and 
minerals with very slow solubility. Maximum P 
absorption occurs during the vegetative growth 
of plants, and thereafter, most of it is retranslo-
cated into fruits and seeds during reproductive 
stages. After absorption into the plant, much of 
the phosphate reacts very quickly to form or-
ganic compounds (Wild 1988). Less absorption 
of P through situations that inhibit root growth, 
such as soil compaction or cold soil tempera-
ture may lead to its deficiency. Deficiency of P 
often appears early in plant growth as stunting, 
with purple or reddish tints in the leaf and veg-
etative tissues. It affects not only plant growth, 
development and crop yield but also the quality 
of the fruit and the formation of seeds. Therefore, 
increases in productivity require external nutri-

ent inputs where external P inputs are available 
on a large scale from the mining of P deposits 
(Bomans et al. 2005).

7.2.3  Phytic Acid Phosphorus: 
Significance in Nutrition  
and Agriculture

Phytic acid or myo-inositol 1,2,3,4,5,6-hexakis 
(dihydrogen phosphate), IP6 is a naturally occur-
ring compound that can significantly influence 
the functional and nutritional properties of foods. 
Phytic acid is a simple ringed carbohydrate with 
one phosphate group per carbon. Its molecular 
formula is C6H18O24P6 and its molecular weight 
is 660.035 g/mol. Three terms, namely phytate, 
phytin and phytic acid, are used in the literature 
to describe it. Phytate, the most commonly used 
term, refers to the mixed salt of IP6. Phytin spe-
cifically refers to the deposited complex of IP6 
with potassium (K), magnesium (Mg) and cal-
cium (Ca) as it occurs in plants, whereas phytic 
acid is the free form of IP6 (Selle and Ravindran 
2007). Phytic acid is a strong chelator and is the 
principal storage form of P in the plant seeds and 
can account for up to 80 % of the total P in the 
seed (Lopez et al. 2002). Phytic acid is found 
within legumes, cereals, oil seeds, pollens as well 
as in the hulls of nuts, constituting about 1–5 % of 
their weight (Table 7.1) (Vats and Banerjee 2004; 
Singh et al. 2011). It accumulates in seeds and 
grains during ripening along with other storage 
substances such as starch and lipids, and plays an 

Table 7.1  Total P, phytate P content and phytase activity of plant origin feedstuffs. (Source: Paik 2001)
Ingredients Phytate P Total P Phytate P Phytase activity

mg/100 mg mg/100 mg % of Total P U/kg
Corn 60 182 32.7 0.2
Lupin 55 307 17.8 3.2
Tropica 7 59 11.9 18.8
Wheat 199 295 67.5 1120
Sesame meal 542 816 66.4 3.0
Soybean meal 286 577 49.6 7.5
Cotton seed meal 303 678 44.7 2.4
Rape seed meal 532 1.16 52.7 103
Rice bran 12.1 1886 63.7 –
Wheat bran 742 893 83.1 2935
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important role in P storage, as an energy store, as 
a source of cations and as a source of myo-inosi-
tol and also helps in initiating dormancy (Singh 
et al. 2011). In cereals and legumes, phytic acid 
accumulates in the aleurone particles and globoid 
crystals, respectively (Reddy et al. 1982; Tyagi 
and Verma 1998). Graf et al. (1987) suggested 
that phytic acid in seeds acts as a natural anti-
oxidant during dormancy. The unique phytate ion 
structure, with 12 replaceable protons and high 
density of negatively charged phosphate groups 
(responsible for its characteristic properties), al-
lows it to form very stable complexes with mul-
tivalent cations (Dost and Tokul 2006). A consid-
erable number of researchers have reported the 
chelating ability of the phytate ion with several 
mineral elements including, Cu2+, Zn2+, Co2+, 
Cd2+, Mg2+, Mn2+, Fe2+, Fe2+, Ni2+ and Ca2+ to 
form phytate–mineral and/or other protein–min-
eral–phytate complexes (Sapna et al. 2013). In-
testinal absorption is a key and complex stage 
for maintaining normal mineral homeostasis and 
requires that minerals remain in the ionic state 
for absorption (Lopez et al. 2002). Due to the in-
ability of monogastric animals to hydrolyse the 
phytate–mineral complex, minerals are not ab-
sorbed in the intestine and are excreted out. Also, 
binding or interaction of phytic acid with dietary 
proteins reduces their digestibility due to steric 
hindrance to proteases through changes in pro-
tein solubility or by altering the protein structure 
(Cowieson et al. 2006). According to Liu et al. 
(2010), phytate can also interfere with lipid me-
tabolism and consequently energy regulation in 
chickens. The inhibition of activity of important 
digestive enzymes such as α-amylase, trypsin, 
lipase, acid phosphatase and pepsin was also re-
ported to be affected by phytic acid (Harland and 
Morris 1995; El-Batal et al. 2001).

Apart from some antinutritional effects given 
above, phytic acid has been shown to exert an 
antineoplastic effect in animal models of both 
colon and breast carcinomas (Iqbal et al. 1994). 
The inositol phosphate intermediates synthesised 
from phytic acid hydrolysis play a role in the cel-
lular transport, whereas inositol triphosphates 
play a role in signal transduction and regulation 
of cell functions in plant and animal cells (Vohra 

and Satyanarayana 2003; Greiner and Konietzny 
2006; Rao et al. 2009; Singh and Satyanarayana 
2011; Sapna et al. 2013).

7.3  Consequences of Phosphorus 
Pollution

7.3.1  Phosphorus Loss, Buildup  
and Environmental Impacts

Phosphorus remains in short supply over large 
parts of the globe, still some developed coun-
tries with a long history of P fertiliser applica-
tion and intensive animal farming despite having 
small lands are facing problems of P pollution. 
There are two major aspects related to P depo-
sition and pollution. First, elaborated systems 
of fertility management and prolonged use of P 
fertiliser in some developed countries have built 
up an extensive level of soil P up to the extent 
that further limited or no addition of P is required 
for crop production. However, continued use of 
P fertilisers and use of P-supplemented animal 
feed is leading to the deposition/production of 
P waste resulting in P pollution (Howarth et al. 
2000; Bomans et al. 2005). The problem is fur-
ther perplexed by variation in plant capability 
for P uptake with crop type, crop yield and soil 
type. The low uptake of P by crops can allow P to 
accumulate in soils, which can eventually create 
P runoff and contaminate nearby surface water 
(Garikipati 2004).

Second, intensive animal production on farms 
with little land produces manure in excess of 
the nutrient requirements of crops and pasture 
lands. Generally, the application this manure to 
field is determined by measuring N content of 
the manure and the N requirement of the crop. 
Because animal manures are typically rich in P 
(P concentrations range from 4 to 7 mg/g dry 
weight of dairy manure, compared to 0.08–
1.56 mg/g dry weight of benchmark soils and 
0.486–2.439 mg/g dry weight of surface soils), 
its use leads to accumulation of excess P to the 
soil (Garikipati 2004). According to NRC (2001), 
among all dietary mineral elements for dairy ani-
mals, P represents the greatest potential risk if 
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an excess amount is released into the environ-
ment, contaminating surface waters and causing 
eutrophication. The waste/unutilised P from the 
animal manure accumulates in the surface soils 
and, thereafter, leads to increased leaching and 
erosion losses of that P to aquatic environments 
(Bohn et al. 2008). This leaching as “run-off” is 
more pronounced in P saturated soils and even 
more easy from soils with low retention capac-
ity, e.g. highly organic (especially peat) soils and 
sandy soils. P transferred in this way can be ei-
ther in soluble (dissolved) or “attached” (sorbed 
to or part of soil inorganic and organic materials) 
forms. These losses of P that may not regarded as 
significant in agronomic terms can be significant 
in environmental terms due to the fact that a very 
small concentration (ca. 20 μg/L) in susceptible 
surface waters can lead to eutrophic conditions. 
It has possible consequences in water use for 
fisheries, recreation, industry or drinking due to 
the increased growth of algae and aquatic weeds 
and oxygen shortages (Bomans et al. 2005). Ma-
nure-borne P is a serious environmental hazard 
that has been reviewed by several researchers 
(Centner 2004; Shigaki et al. 2006; Powers and 
Angel 2008).

In a survey, Bertrand et al. (1999) found that 
dairy diets in the USA were formulated with 20 % 
more P than the recommended limit released 
by NRC (2001). This P oversupplementation 
(~ 20 %) to the national dairy herd was reported 
to cost $ 100 million p.a. and contributed to un-
desirable high manure P levels (Satter and Wu 
2001). According to Wu et al. (2000), the extra 
P was not needed as no difference in animal per-
formance parameters was reported. A reduction 
of 25–30 % in manure P and a saving of $ 10–15/
year-cow could occur with reduction in this P 
over supplementation.

7.3.2  Eutrophication and Loss of 
Biodiversity

Eutrophication of aquatic systems is further con-
sidered as a result of external loading (nutrient 
inputs from outside the aquatic system) and inter-
nal loading (nutrient recycling within the water 

column and sediments). External loading of P 
in streams and rivers is usually contributed by 
anthropogenic processes through nutrient inputs 
from the fertilisation of soils, soil erosion, animal 
farming waste and disposal of municipal or in-
dustrial effluents, and atmospheric deposition of 
P enhanced by emissions (Bomans et al. 2005). 
Internal loading, which is particularly important 
in shallow lakes, estuaries and near-shore seas 
while less significant in deep lakes and ocean 
basins, results from seasonal or annual return to 
the water column of nutrients that have sunk and 
accumulated in sediments. In general, the effects 
of anthropogenic eutrophication are negative, 
and the beneficial effects are rare or accidental 
(Bomans et al. 2005). The eutrophication of P in 
water bodies may result in a number of conse-
quences in aquatic ecosystems. The potential P 
eutrophication of fresh water streams, lakes and 
near-coastal areas can cause algal blooms, hy-
poxia and death of aquatic animals followed by 
production of nitrous oxide, a potential green-
house gas (Mallin and Cahoon 2003). The popu-
lation explosions of algal species are called red 
tides or algal blooms and their proliferation and 
occasional dominance by particular species is 
a result of the combination of physical, chemi-
cal and biological mechanisms and interactions. 
Algal species have wide differences in their toler-
ance and requirements of nutrients; where some 
are tolerant to high levels of P, others are adapted 
to low P conditions. The change in nutrients, light 
conditions due to high algal growth and oxygen 
availability favour growth of some species over 
others and cause shifts in the structure of phyto-
plankton and zooplankton, thus altering commu-
nity structure. It may trigger reduced growth and 
recruitment of fish species and death of fishes, 
causing low fishery production. Moreover, mod-
erate nutrient enrichment can sometimes also 
lead to an increase in population of economically 
valuable fishes in some ecosystems.

Another consequence of eutrophication is 
decreased availability of silica, which diatoms 
require to form their glasslike shells. This can 
also alter the phytoplankton community by limit-
ing growth of diatoms or causing a shift in other 
types of diatoms. Studies off the German coast 
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lasting more than two decades revealed a striking 
change in the composition of the phytoplankton 
community, as diatoms decreased and flagellates 
increased more than tenfold because of fourfold 
increase in the ratio of available N and P to silica. 
Further, eutrophication also results in higher lev-
els of dissolved organic matter (DOM) and affects 
the availability of biologically useable forms of 
iron and other essential metals. Since iron must 
be in soluble form to be bioavailable and higher 
DOM leads to higher soluble iron, this leads to 
changes in the species composition of the phy-
toplankton community and poses enormous con-
sequences for animal grazers and predators. The 
degradation or complete loss of seagrass beds in 
an aquatic ecosystem is another consequence of 
nutrient eutrophication, because plant growth in 
these beds is often light-limited and lower light 
availability by nutrient-stimulated growth of 
phytoplankton and algal bloom. It brings marked 
changes in the associated animal life. Coral reefs, 
one of the most diverse ecosystems in the world 
and sensitive to nutrient pollution, are found in 
naturally nutrient-poor surface waters in the trop-
ics and subtropics; however, a high nutrient level 
is generally detrimental to reef health and lead 
to shifts away from corals towards algal turfs or 
seaweeds that overgrow or cover the reefs (Bo-
mans et al. 2005).

7.3.3 Heavy Metal Pollution

Phosphorus is a major limiting factor to crop pro-
ductivity on many types of soils, including acidic 
and infertile soils. Therefore, they require appli-
cations of fertilisers for better productivity in the 
form of organic and inorganic P fertilisers. Dur-
ing the production process of inorganic P fertilis-
ers from phosphate rock (PR), varying amounts 
of heavy metals (minor constituents in the PR 
ores) are transferred to P fertilisers. These heavy 
metals may accumulate in the soil with repeated 
fertiliser applications. The main organic fertilis-
ers, animal manure and sewage sludge (biosol-
ids) are also applied for better crop production 
and may also contain heavy metal contaminants. 
Their repeated application will cause pollution of 

constituent heavy metals in agricultural soil and 
may also be hazardous for human health. Several 
heavy metals that are present as contaminants 
include cadmium (Cd), arsenic (As), chromium 
(Cr), lead (Pb), mercury (Hg), nickel (Ni) and 
vanadium (V). However, the metal that is of the 
most concern is Cd because of its maximum bio-
availability on acid soils, while the rest are not 
as readily absorbed by plants on P-fertilised soils 
(Mortvedt and Beaton 1995; Bomans et al. 2005).

7.4  Phytases: An Introduction 
to Their Use in Phosporous 
Pollution Management

Considering the aforementioned consequences of 
P pollution and eutrophication, several alterna-
tive approaches have been suggested for reduc-
tion of phytic acid levels in animal feed and are 
categorised as chemical methods (e.g. extraction 
and precipitation), feed processing and enzymat-
ic method (phytase application). Chemical meth-
ods affect the nutritional quality of the products 
and are generally expensive (Pandey et al. 2001); 
however, phytase application for P management 
is considered as the most promising alternative. 
Numerous animal trials have shown that add-
ing phytase to feed at 500–1000 phytase units/
kg may replace inorganic P supplements for pigs 
and poultry and reduce their P excretion by ap-
proximately 50 % (Lei et al. 1993; Augspurger 
et al. 2003).

Phytases are acid phosphohydrolases that ca-
talyse the hydrolysis of phosphate from phytic 
acid to inorganic phosphate and myo-inositol 
phosphate derivatives (Roopesh et al. 2006). 
Phytases can be classified into three classes de-
pending on the position of the first dephosphory-
lation of phytate, namely, 3-phytases, 4/6-phy-
tases and 5-phytases. Within each class, there are 
not only structural differences but also different 
mechanisms for the hydrolysis of phytic acid. 
The 3-phytase ( myoinositol hexakisphosphate-
3-phosphohydrolase, E.C.3.1.38) removes the 
phosphate from the 3-position of phytate and is 
found typically in microorganisms. The 4/6-phy-
tase ( myo-inositol-hexakisphosphate-4/6-phos-
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phohydrolase; E.C.3.1.3.26) hydrolyses the phos-
phate ester at the L-6 (or D-4) position of phytic 
acid and is generally present in seeds of higher 
plants. The 5-phytase ( myo-inositolhexakispho-
sphate 5-phosphohydrolase, E.C.3.1.3.72) was 
identified by Barrientos et al. (1994) in pollen 
from the lily flower. The initial hydrolysis of 
the phosphate ester occurs at the D-5 position 
of phytic acid. Phytase was first discovered by 
Suzuki et al. (1907) in the course of rice bran hy-
drolysing studies. The enzyme was identified in 

rice bran and reported to catalyse the hydrolysis 
of phytic acid to inositol and orthophosphoric 
acid. These resultant products can be found in 
plants, certain animal tissues and microorgan-
isms like fungi, bacteria and yeast. The phytase 
activity of microorganisms has been comprehen-
sively studied (Table 7.2). Shieh and Ware (1968) 
screened more than 2000 cultures of microorgan-
isms isolated from 68 soil samples and identi-
fied Aspergillus niger as the most active group 
producing phytases. In 1982, Powar and Jagan-

Table 7.2  Different microbial sources with reported phytase production
Source organism Reference
Fungi
Aspergillus terreus Mitchell et al. (1997)
Aspergillus carneus Ghareib (1989)
Aspergillus oryzae Shimizu (1993)
Aspergillus niger Vats and Banerjee (2005)
Aspergillus fumigatus Mullaney et al. (2000)
Aspergillus ficuum Ullah and Gibson (1987)
Aspergillus heteromorphus Lata et al. (2013)
Rhizopus oligosporus Casey and Walsh (2004)
Rhizopus oryzae Ramachandran et al. (2005)
Myceliophthora thermophila Mitchell et al. (1997)
Penicillium simplicissimum Tseng et al. (2000)
Mucor racemosus Bogar et al. (2003)
Sporotrichum thermophile Singh and Satyanarayana (2008)
Mucor hiemalis Boyce et al. (2007)
Rhizomucor pusillus Chadha et al. (2004)
Yeast
Saccharomyces cerevisiae Haraldsson et al. (2005)
Pichia anomala Vohra and Satyanarayana (2001)
Pichia spartinae, Pichia rhodanensis Nakamura et al. (2000)
Hanseniaspora guilliermondii Hellstrom et al. (2010)
Pichia stipitis, Candida tropicalis Jeffries et al. (2007)
Debaryomyces castellii Ragon et al. (2008)
Kodamaea ohmeri Li et al. (2009)
Hansenula fabianii Watanabe et al. (2008)
Bacteria
Lactobacillus sanfranciscensis Angelis et al. (2003)
Lactobacillus amylovorus, Lactobacillus rhamnosus Raghavendra and Halami (2009)
Bacillus subtilis Powar and Jagannathan (1982)
Bacillus amyloliquefaciens Idriss et al. (2002)
Bacillus licheniformis Kumar et al. (2014)
Bacillus sp. Kumar et al. (2013)
Advenella sp. Singh et al. (2014)
Escherichia coli Greiner et al. (1993)
Serratia sp. Zhang et al. (2011)
Actinomycetes sp. Ghobarbani-Nasrabadi et al. (2012)
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nathan showed that an enzyme that hydrolysed 
only phytate was present in culture filtrates of 
Bacillus subtilis (Powar and Jagannathan 1982). 
Nayini and Markakis (1984) first reported the 
extraction of phytase from baker’s yeast, Sac-
charomyces cerevisiae, and performed charac-
terisation and purification studies. The first com-
mercial phytase was prepared by fermentation of 
a genetically modified A. niger strain in 1991 by 
Gist-Brocades and marketed by BASF in Europe 
under the brand name NatuphosTM (Haefner et al. 
2005). Ever since, the commercial application 
and the research on phytase developed a sym-
biotic relationship and became an increasingly 
important area of interest. To date, only a hand-
ful of commercial phytase products are available 
(Haefner et al. 2005).

7.4.1 Sources of Phytase

Phytases occur widely among plants, animals 
and microorganisms. Microbial sources of phy-
tase are widespread and can be found in soils, 
aquatic systems and animals. In the last 15 years, 
research has indicated that several strains of bac-
teria, yeast and fungi can produce high yields of 
phytase with application at the industrial scale. 
With this objective in mind, scientists started to 
purify and express phytase in a wide range of 
hosts using various biochemical methods. De-
pending on the source and/or expression host, 
phytases can present different biophysical and 
biochemical properties (Rao et al. 2009).

1. Fungal phytases

One of the first systematic studies on fungal 
phytase was reported by Shieh and Ware (1968), 
where various microorganisms where tested for 
extracellular phytase production and a strain of 
A. niger known as Aspergillus ficuum NRRL 
3135 was identified as the most efficient. This 
strain exhibited highest phytase activity with-
out sporulation which is a prerequisite in large 
scale production. Wodzinski and Ullah (1996) 
reviewed production and activity of A. ficuum 
NRRL 3135 and observed that the selected strain 

produces more phytase activity in liquid culture 
than any other naturally occurring organism. 
Numerous studies have documented on other 
phytase producing fungi, however, they yielded 
lower phytase activity. The genus Aspergillus 
( A. niger in particular) continues to be preferred 
for production of phytase, other enzymes and 
organic acids. The reason behind this preference 
is generally recognised as safe (GRAS) status, 
its great secretory potential and the in-depth 
knowledge with respect to growth cultivation 
(Shivanna and Govindarajulu 2009). Two pH op-
tima, at 2.5 and 5.0–5.5, can be observed for the 
A. niger NRRL 3135 phytase, phy-A (Wodzinski 
and Ullah 1996; Dvoráková 1998). Only one pH 
optimum has been noted for the pH 2.5 optimum 
acid phosphatase, which has been referred to as 
phy-B phytase (Ehrlich et al. 1993).

Phytases from Aspergillus species usually ex-
hibit optimum temperature between 50 and 65 °C 
(Vats and Banerjee 2004). A. niger phytase (EC 
3.1.3.8) has been well characterised by Ullah and 
Gibson (1987) and reported as an extracellular 
glycoprotein with the mass of 85 kDa. A. niger 
phy-B phytase has also received attention from 
enzymologists and protein chemists because of 
its high catalytic activity and enhanced thermal 
stability (Ullah et al. 2008). However, restric-
tive and narrow pH optima limit its use in animal 
feed industries or enzyme producers (Ullah et al. 
2008). The production of phytase from this fun-
gus has been achieved by three different cultiva-
tion methods, i.e. solid state (Ebune et al. 1995), 
semisolid (Han et al. 1987) and submerged fer-
mentation (Howson and Davis 1983; Vats and 
Banerjee 2004). Due to acid tolerance and high 
yield (Kim et al. 1998) fungal phytases are wide-
ly used as an animal feed additive in comparison 
with bacterial phytases (Soni and Khire 2007).

2. Yeast phytases

Yeasts are ideal candidates for phytase and phos-
phatase research due to their mostly nonpatho-
genic and GRAS status; however, they have not 
been utilised to their full potential (Satyanaraya-
na and Kunze 2009). To date, only a few studies 
have been published on yeast phytase, such as 



106 V. Kumar et al.

S. cerevisiae (Howson and Davis 1983; Greiner 
et al. 2001), Saccharomyces castellii (Segueilha 
et al. 1993) and Arxula adeninivorans (Sano et al. 
1999). Nakamura et al. (2000), identified among 
numerous yeast species that Pichia spartinae and 
Pichia rhodanensis exhibited the highest levels 
of extracellular phytase with optimal tempera-
tures at 75–80 °C and 70–75 °C and optimum pH 
at 3.6–5.5 and 4.5–5.0, respectively. The pres-
ence of intracellular phytase was also verified 
in S. cerevisiae. In a recent work, Olstorpe et al. 
(2009) developed a reliable, fast and easy-to-use 
screening method that clarifies the ability of dif-
ferent yeast strains to utilise phytic acid as the 
sole phosphorous source. After measuring the 
specific phytase they established that A. adenini-
vorans displayed the highest intra- and extracel-
lular specific activities and that the extracellu-
lar phytase activity detected in Pichia anomala 
was strain-specific. The authors also concluded 
that there were large differences in both extra- 
and intracellular phytase activities amongst the 
screened species. Recently yeasts present in the 
gut of aquatic species have also been studied for 
phytase activity. Hirimuthugoda et al. (2007), 
isolated and identified two phytase-producing 
strains, Yarrowia lipolitica and Candida tropica-
lis in the intestine of sea cucumber. These strains 
produced high amounts of extracellular and cell-
bound phytase. Li et al. (2008) isolated a marine 
yeast strain Kodamea ohmeri BG3 in the gut of a 
marine fish that produced phytase and showed its 
highest activity at pH 5.0 and temperature 65 °C. 
Yeasts have been reported to be a rich genetic 
resource for heat-resistant phytase; however, 
the possibility of applying these phytases in the 
industry has not been extensively investigated 
(Kaur and Satyanarayana 2009).

3. Bacterial phytases

Phytases have been detected in several types of 
bacteria, such as bacilli, enterobacteria, anaero-
bic ruminal bacteria and Pseudomonas (Jorquera 
et al. 2008; Kumar et al. 2013). Although it was 
only after 1980s that several bacterial strains 
(wild or genetically modified) such as Lactoba-

cillus amylovorus, Escherichia coli, B. subtilis, 
Bacillus amyloliquefaciens and Klebsiella sp., 
have been applied for phytase synthesis (Pandey 
et al. 2001). Gram-negative bacteria are known 
to produce phytase intracellularly, while Gram-
positive bacteria and fungi produce it extracellu-
larly (Greiner et al. 1993). An enzyme which lib-
erated phosphate from phytic acid was shown to 
be present in culture filtrates of B. subtilis. This 
enzyme differed from other previously known 
phytases in its metal requirement and in its speci-
ficity for phytate. It required Ca2+ specifically 
for its activity (Powar and Jagannathan 1982). 
Greiner et al. (1993), purified two periplasmatic 
phytases, named P1 and P2 from E. coli. The P2 
enzyme was characterised as a 6-phytase based 
on its hydrolysis of phytate. Sreeramulu et al. 
(1996), identified that L. amylovorus could have 
the potential to improve the nutritional qualities 
of cereal and pulse-based food fermentations. 
After the screen of a range of strains of lactic ac-
id-producing bacteria, for the synthesis of extra-
cellular phytase, they verified that L. amylovorus 
B4552 under submerged cultivation conditions 
was the highest producer. The strain Bacillus sp. 
DS11A was isolated by Kim et al. (1998), as a 
producer of a thermostable phytase (DS11 phy-
tase), which could improve the value of some 
grains, rice flour in particular. In their work, 
Sajidan et al. (2004) showed that a Klebsiella 
sp. strain ASR1 hydrolysed phytate. A recombi-
nant version of this enzyme was identified as a 
3-phytase and was different from other general 
phosphatases and phytases. These researchers 
proposed the phyK gene product as an interesting 
candidate for industrial and agricultural applica-
tions. In general, the phytases from bacteria have 
a pH optimum between neutral and alkaline (Vats 
and Banerjee 2004) and have temperature optima 
from 40 up to 70 °C (Kim et al. 1998; Cho et al. 
2003). According to Igbasan et al. (2000) within 
bacterial phytases, an enzyme with high thermal 
stability ( Bacillus phytase) or high proteolytic 
stability ( E. coli phytase) does exist. The future 
of bacterial phytases will depend on them being 
developed for their favourable properties as feed 
additives.
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4. Plant phytases

Many plant seeds contain significant amounts 
of phytic acid that is degraded during germina-
tion by one or more phytases. Seeds contain both 
constitutive phytase activity and phytases that are 
synthesised again during germination; however, 
this last mechanism is not well understood. The 
activity of phytase has been well reported from 
Arabidopsis thaliana AtPAP15 (Li et al. 2012), 
Glycine max GmPhy (Hegeman and Grabau 
2001), and Medicago truncatula MtPHY1 (Xiao 
et al. 2005). The optimum temperature and pH 
measured for most plant phytases ranges from 
45 to 60 °C and from 4.0 to 7.2 pH, respectively. 
Alkaline phytases with unique catalytic proper-
ties have been identified in plants. Garchow et al. 
(2006) purified alkaline phytase from pollen 
grains of Lilium longiflorum. These investiga-
tors suggested that the unique properties of this 
alkaline phytase attributed to it the potential to be 
useful as a feed and food supplement.

5. Animal phytases

The existence of the first animal phytase was 
demonstrated in the blood and liver of calves in 
1908 by McCollum and Hart. Since then, con-
troversy has persisted regarding the existence of 
phytases in animals in the digestive tract of ani-
mals (especially monogastric animals). Accord-
ing to Rapoport et al. (1941), other investigators 
failed to find phytase in the extracts of intestine, 
pancreas, kidney, bone, liver and blood of sev-
eral species of animals. Preliminary work on the 
activity of phytase produced by rumen microor-
ganisms was initiated by Raun et al. (1956) and 
undertaken again by Yanke et al. (1998). They 
further examined the presence of phytase activ-
ity in species of obligatory anaerobic ruminal 
bacteria and concluded that the most highly ac-
tive strain was Selenomonas ruminantium. With 
the objective of outlining the complete system of 
phytate degradation in the gut of humans and the 
enzymes involved, Schlemmer et al. (2001), car-
ried out a study using pigs as model for humans 
and concluded that negligent amounts of endog-

enous phytase activity were found in stomach 
chyme and small intestine, though in the colon 
the phytate hydrolysis was of an endogenous ori-
gin. Intestinal bacteria with endogenous phytase 
activity were discovered in several species of 
fish. Huang et al. (2009) screened the intestinal 
contents of grass carp and found the phytate-
degrading isolates, Pseudomonas, Bacillus and 
Shewanella species.

7.4.2  Consideration in Use of Phytases 
in Animal Feeds

Over the past 20 years, animal producers raised 
the issues and interventions demanding a more ef-
ficient, economical and environmentally friendly 
approach to the industry. Phytase supplementa-
tion to animal feed is an effective way of increas-
ing the availability of P to animals, thus improv-
ing their performance and reducing manure-
borne P pollution. In addition to its major appli-
cation in animal nutrition, phytase is also used for 
processing of human food. Wodzinski and Ullah 
(1996), recognised that the addition of phytase 
to the diet of every monogastric animal reared in 
the USA would not only diminish the P released 
into the environment by 8.23 × 107 kg, but also 
would save the animal producers $ 1.68 × 108/
year in its supplementation. Since then, the use 
of phytase as a feed additive has become widely 
accepted and several commercial phytase prepa-
rations (e.g. NatuphosTM, Ronozyme P, Phyzyme 
XP) are used in Europe and the USA (Selle and 
Ravindran 2007). From their commercialisation 
in the early 1990s, the sales value for phytase 
was estimated at $ 50 million within the decade 
(Sheppy 2001), where today it represents more 
than half of all feed enzyme sales (< $ 250 mil-
lion) (Wyatt et al. 2008).

Microbial phytase is one of the most com-
monly used enzymes in monogastric animal diets 
(Shim et al. 2004). Paik (2003) conducted a series 
of experiments in broilers and layers to evaluate 
the effects of microbial phytase on several miner-
als such as N, P, Cu, Zn and K and showed that the 
dietary treatment could reduce P excretion enor-
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mously. Further, based on such studies, the use of 
selected brands of wheat bran as a source of phy-
tase in broiler feeding has been recommended. 
Supplementation of phytase in low nonphytate 
P diets improved growth performance, relative 
retention of nutrients and minerals in blood and 
bone of broilers (Singh et al. 2003). Selle et al. 
(2003) demonstrated the feasibility of reduc-
ing protein, amino acids, energy and P levels in 
broiler diets with an appropriate level of phytase 
supplementation to formulate least-cost rations. 
The contents of crude ash, Ca, P, Mg and Zn were 
adversely affected by lowering nonphytate P lev-
els in the diet of broiler chickens, but partially re-
covered by enzyme supplementation from A. fic-
cum (Paik et al. 2000). Further, supplementation 
of diets for growing–finishing pigs had improved 
growth performance and nutrient availability 
with 33 % reduction in manure P (Hong et al. 
2001; Abioye et al. 2010). In addition to this, 
Forsberg et al. (2013) reported the development 
of transgenic pigs producing phytase in salivary 
glands to reduce the impact of P on the environ-
ment and pigs’ faecal P. In another study, Rosu 
et al. (2012), reported that phytase supplementa-
tion of combined fodder recipes (NC) composed 
of corn/soybean for laying hens do not require 
the addition of fodder phosphates in food. Excess 
of P supplements excreted over nutritional needs 
of laying hens at the national level is 313.43 t per 
year which is equal to 68.95 t monocalcic phos-
phate which is unjustified wasted.

Different studies have used different phytase 
doses in actuality (500–12,500 U phytase/kg) and 
reported a reduction in P excretion. These studies 
concluded that the maximum effective concen-
tration of phytase yet remains unknown. These 
studies should be considered while planning phy-
tase addition for management of P excretion and 
its pollution management. According to Golovan 
et al. (2001), addition of 250–1000 U phytase/kg 
diet can fully replace P supplementation in poul-
try feed. Also, its supplementation significantly 
increased serum concentrations of Ca, P, Mg, Zn, 
Fe and Cu. Harper et al. (1997) and Oryschak 
et al. (2002) observed a 27–28 % reduction in P 
excretion when phytase was supplemented to the 
diets of growing–finishing pigs while Lei et al. 

(1993) reported a larger reduction of 35–45 % 
for weanling pigs. However, Angel et al. (2005) 
found no statistical difference in total P excre-
tion in pigs that were fed diets supplemented 
with 515 U phytase/kg accompanied by 0.1 % 
unit reduction in available P. Further reduction 
of 0.2 % units in available P at the same level of 
phytase inclusion reduced poultry litter P con-
centration (Angel et al. 2005). Thus, there is a 
need to investigate the effect of further reduc-
tion in dietary available P on the forms of P in 
the manure. Supplementation of diet with higher 
levels of phytase has been considered as a good 
replacement for inorganic P addition in pig diets. 
Rosen (2002) reported that microbial phytase at 
2500 U phytase/kg of low P diet could triple the 
improvement in feed efficiency of broiler chicks 
compared to the industry level of 634 U phytase/
kg of diet. Veum et al. (2006) supplemented low 
P diet fed to growing pigs by up to 12,500 U phy-
tase/kg and observed improved apparent absorp-
tion of P, Ca and Mg. According to a study by 
Aiboye et al. (2010), phytase enzyme can wholly 
substitute for inorganic P in pig diet when added 
at high levels (2000 U/kg).

Phytase has also been used in combination 
with other enzymes to improve growth perfor-
mance and nutrient digestibility in pigs fed corn/
soybean meal based diets (Shim et al. 2004). 
Addition of phytase in isolation or in combina-
tion with xylanase replacing 0.08 % dietary inor-
ganic P increased body weight and feed utilisa-
tion efficiency of broilers fed with wheat-based 
diets and decreased overall mortality (Peng et al. 
2003). Simultaneous addition of phytase and car-
bohydrases improved feed efficiency ratio, nutri-
ent digestibility and nutritional value of soybean 
meal, rape seed meal and cotton seed meal by im-
proving amino acid digestibilities in growing pigs 
(Shim et al. 2003). Phytase and xylanase were re-
ported to have a synergistic effect for enhancing 
amino acid digestibility in broilers, which was 
attributed to their complementary modes of ac-
tion (Selle et al. 2003). However, combination of 
phytase and glucanase had no positive effects on 
laying performance of Leghorn hens and excre-
tion of nitrogen and P (Jacob et al. 2000).
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7.5  Current Challenges and Future 
Prospects

The growth of the market for P to supplement 
animal feed has been critical for the commercial 
development of phytase enzyme. At present, phy-
tase constitutes about 20 % of the total enzyme 
use in the livestock or allied sector, which is ex-
pected to increase many fold in the future due 
to increasing productive research leads. Recent 
trends in the market have clearly shown phytase 
as an important enzyme and feed supplement. 
Due to serious concerns about environmental 
pollution, 22 countries have adopted the use of 
phyA, produced from A. niger NRRL 3135, as 
a feed additive. Industrial production of phytase 
currently utilises the soil fungus Aspergillus, on 
which considerable research has been conducted. 
Phytases are being recognised for their beneficial 
environmental role in reducing the P levels in ma-
nure and minimising the need to supplement P in 
diets. Increasing the use of phytase in aquaculture 
offers a tremendous opportunity in order to allow 
the use of low cost plant meals. Further, contin-
ued research on lowering the production cost and 
expanding its utilisation to other applications also 
suggests its importance in the immediate future. 
With so many beneficial effects reported so far, 
the actual usefulness of such enzymes are lim-
ited due to high variation in activity of phytase 
production, lack of farmer awareness regarding 
their uses, cost factor, availability, nonexistence 
of a single phytase with applicability in all kind 
of feeds or applications, storage stability, narrow 
pH and substrate specificity, dose response varia-
tion, high processing temperature susceptibility 
and low enzyme production. Phytase with broad 
substrate specificity is better suited for animal 
nutrition purposes as it will readily liberate all 
equatorial phosphate groups of phytic acid. Sev-
eral studies are being carried out for construction 
of commercially viable phytase through enzyme 
engineering for high specific activity and broad 
substrate specificity along with thermostability. 
Similarly, phytases of broad pH optima, with 
suitable effectiveness for all types of fish, should 
be developed. Moreover, as stated above, there is 
a lack of consensus about the optimum dose of 

phytase addition to animal feed. A lot of research 
data are required to decide the optimum dose of 
dietary phytase for different species. Considering 
the eutrophication of aquatic system with excess 
P, development and use of a suitable phytase 
(preferably a beta propeller phytase with high 
activity at neutral pH and 37 °C temperature) in 
herbivorous fish diet is very encouraging. Inten-
sification of livestock or aquaculture farming 
without considering the P discharge may threaten 
the environment in long run. Therefore, develop-
ment of novel ideal phytase with required indus-
trial properties is desirable.

In addition to development of commercially 
viable ideal phytase, some recent studies also 
focus on expression of microbial phytase into 
animal (e.g. pig) and plant roots (e.g. soybean). 
It is therefore considered that development of 
transgenic monogastric animals which are able to 
produce phytase and hydrolyse phytate would be 
of immense benefit to livestock and fish farm-
ers. Production of canola seeds with improved 
phytase activity has paved the way for future 
research to develop transgenic soybean, cot-
ton, sunflower and other grain and cereal plants, 
which have potential uses in fish feed. These 
plants with improved phytase production from 
roots might have better P utilisation efficiency. 
Development of genetically modified grains and 
cereals with reduced phytic acid content can also 
serve the purpose.

It is also important here to mention about 
possible roles of microbes present in soil in P 
management. Among various macronutrients for 
plants, the poorly available insoluble inorganic 
and organic forms of soil P to plants is reported 
to be converted to a plant accessible form by P-
solubilising bacteria (PSB) in the rhizosphere 
mainly by means of organic acid production. In 
this regard, a few studies on addition of phytase 
or phytase-producing microbes to the soil also 
revealed increased P uptake by plants. Further 
studies with specified target for maintaining soil 
P level and decreasing fertiliser application might 
be highly promising considering environmental 
P pollution and increasing cost of fertilisers. In 
this context, bacteria with activities like produc-
tion of organic acids to solubilise inorganic P and 
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production of phytase to mineralise phytate, will 
have potential to be used in soil with high content 
of organic P.

Considering the facts and problems, an inte-
grated approach from a combined agricultural 
and environmental perspective is recommended 
in order to achieve better P management with 
reduced environmental pollution. The follow-
ing four recommendations would contribute to 
a more equilibrated use of the available P re-
sources. First, consistent and regular quality 
analysis of soils and fertilisers for optimum P 
concentration is required for determining actual 
P concentration and the dose of fertiliser to be ap-
plied. Possible changes in management practice 
such as better soil conservation; better precision 
in applications of fertiliser and extensification of 
agricultural systems such as livestock reductions 
may be useful in tackling the problem. Second, 
because many farmers are not familiar with the 
use of manure products, its proper use, disposal 
and related P content, the methodology and ad-
vantages in the use of phytases as a new approach 
should be made known to them through aware-
ness campaigns. Third, cost monitoring of phy-
tase-supplemented animal feed is also required 
for its maximum utilisation and reach to farmers. 
Fourth, development of biofertilisers that aid in 
better P solubility and its availability to plants 
will certainly be useful in the long term control 
of P pollution.
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Abstract

Biorefinery has emerged as a new concept to derive more than one utility 
product from biomass. The products from biorefinery include one or more 
biofuels (biodiesel, bioethanol, biomethane, and biohydrogen) along with 
other energy sources (syngas and bio-oil), pharmaceutical products, and 
commercially important chemicals. Biorefineries, thus could simultane-
ously produce biofuels, bio-based chemicals, heat, and power. The bio-
mass production and its utilization as biofuel has a higher water footprint 
(WF) than fossil derived fuel. The biorefinery approach has the potential 
to bring down the WF. Similarly, biorefinery approach has the potential to 
bring down the carbon footprint. The value added product derived from 
biorefinery basket includes pigments, nutraceuticals, and bioactive com-
pounds. The use of industrial refusals for biomass production includes 
wastewater as nutrient medium and utilization of flue gases (CO2) as the 
carbon source for culture of microalgae. These processes have the poten-
tial to reduce fresh WF and carbon footprint.

8.1  Introduction

A biofuel is one that contains energy from geo-
logically recent fixed carbon. The source of bio-
fuel is biogenic viz., derived from plant or micro-
algae. As the carbon content in biofuel is recent, 
it belongs to the category of renewable resource. 
The first generation biofuels are those that are 
produced from the raw materials in completion 
with food and feed. These included cereals, sugar 
cane, and oil seeds mostly from edible oil. Later, 
the usage of fuel crops instead of agricultural 
crops was debated that led to exploration of the 
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second generation feedstock for biofuel. The sec-
ond generation feedstock included nonfood bio-
mass of lignocellulosic materials viz., bagasse, 
stover from sugar, forest and crop residues, mu-
nicipal solid wastes, vegetative grass, and short 
rotation forest crops. The second generation 
feedstock provided oil from the plant seeds and 
the lignocellulosic material present in the residue 
of the seeds after oil extraction was used for the 
synthesis of bioethanol. Microalgae have been 
considered as a third generation feedstock for 
biofuels as they grow in water and thus do not 
compete with the land based food crops. Biohy-
drogen and bioelectricity has recently been ex-
plored as a fourth generation feedstock (Sharma 
et al. 2011). At present, the common biofuels pro-
duced in the world today are biodiesel, bioetha-
nol, and biogas (comprising methane) (Cherubini 
and Ulgiati 2010). International Energy Agency 
(IEA) estimates that biofuels will fulfill 27 % of 
global energy demand in the transport sector in 
2050 due to its growing interest and popularity 
(Fornell et al. 2013).

To mitigate the climate change and to enhance 
the energy security along with maintaining sus-
tainability has led to exploration of biorefinery 
concept (Cherubini and Ulgiati 2010). A biorefin-
ery approach integrates multifunctional process, 
as various material products of utility and energy 
are coproduced simultaneously (Cherubini et al. 
2011). As per the definition of IEA Bioenergy 
Task 42 “Biorefining is the sustainable process-
ing of biomass into a spectrum of marketable 
products and energy.” A wide range of technolo-
gies separate biomass (viz., wood, grasses, corn) 
from useful products (protein, carbohydrate, and 
lipids) which, depending on their suitability, can 
thereafter be converted to value added products, 
biofuels, and chemicals. The biobased products 
that are already in the market include starch, 
oil, cellulose, and chemicals (lactic acid, amino 
acids). A variety of other compounds that are also 
derived from biomass include adhesives, clean-
ing compounds, detergents, dielectric fluids, 
dyes, hydraulic fluids, inks, lubricants, packag-
ing materials, paints and coatings, paper and box 
board, plastic fillers, polymers, solvents, and sor-
bents. However, the biofuels and biochemicals 

are usually produced independently as a single 
chain product that results in their competition 
with the food and feed industry. A biorefinery 
based on lignocellulosic feedstock can produce 
large biomass as the whole crop is available as 
compared to only a part with the conventional 
crops (Cherubini 2010). In a biorefinery, the con-
sumption of nonrenewable energy is minimized 
and the complete and efficient use of biomass 
gets maximized (Cherubini 2010). The advan-
tages of biofuels over the conventional fossil 
fuels are: renewability, CO2 sequestration, envi-
ronmental friendly and biodegradability, and sus-
tainability. According to the National Renewable 
Energy Laboratory, a biorefinery is defined as “a 
facility that integrates conversion processes and 
equipment to produce fuels, power, and chemi-
cals from biomass.” The integrated biorefinery 
approach could produce fuels as well as platform 
chemicals, and thus could complement the petro-
leum industry and refineries.

Cherubini (2010) stated that bio-industries 
can combine their material flows for a complete 
utilization of all biomass components. This resi-
due from one bioindustry can be utilized as an 
input for the other bio-industry. As an example, 
lignin from a lignocellulosic ethanol production 
plant becomes an input for other industries, giv-
ing rise to integrated bio-industrial systems. As 
biomass resources are locally available, their use 
may contribute to reduce dependence on fossil 
fuels. In a biorefinery approach, a continuous 
supply of feedstock is maintained as the feed-
stock comes from various sources of crops viz., 
agriculture, forestry, and industrial activities. The 
biomass feedstock is grouped in the following 
category: carbohydrates and lignin, triglycerides, 
and mixed organic residues (Cherubini 2010).

As microalgae comprises a variety of constit-
uents (lipids, proteins, and carbohydrates), these 
substrates has the potential to serve products 
for different markets (Koopmans et al. 2013). 
Among the various constituents, lipids and pro-
teins are the largest fraction present in the mi-
croalgae. While, lipids can be utilized for the 
production of biofuel, the proteins may be puri-
fied and utilized as food, feed, health, and bulk 
chemical market. The carbohydrates (starch and 
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glycogen present in cytoplasm; and cellulose in 
the inner cell wall) of microalgae can be utilized 
in the production of ethanol and chemicals. The 
cultivation of microalgae only for production of 
biofuel is cost intensive. The cost incurred during 
cultivation is due to colossal water requirement. 
Also, the downstream processing requires sub-
stantial production cost. Thus, various products 
can be derived from a single source of feedstock 
(Koopmans et al. 2013). The carbohydrate from 
microalgae could be utilized for the production of 
ethanol and chemicals. However, the techniques 
that could be applied for a biorefinery will vary 
according to the species selected. Some of the 
microalgae species do not have a cell wall which 
makes the cell disruption technique less energy 
intensive. The microalgal cell usually consists of 
lysosomes, mitochondria, and endoplasmic re-
ticulum. It is more practical to disrupt the cells to 
release lipids, proteins, and carbohydrates from 
the cytoplasm and later fractionates the larger 
cell compartments (organelles) to obtain specific 
compounds (Koopmans et al. 2013).

Though there exists a vast reserve of oil 
amounting 90 billion (bn) barrels in Arctic re-
gion, environmental issues will be a major con-
straint for their accessibility. Nevertheless, the 
fossil fuel reserves are finite and nonrenewable. 
National Renewable Energy Laboratory defines 
“biorefinery” as a facility that can integrate bio-
mass conversion process and equipment for the 
production of a variety of utility products from 
biomass viz., fuels, power, and chemicals (Charl-
ton et al. 2009). Charlton et al. 2009 reports that 
in order to make a biorefinery sustainable, the 
whole plant along with its fibrous fraction should 
be utilized as feedstock. In the first generation 
process, microbes are used to transform readily 
fermentable sugars and starch. In the second gen-
eration process, the “locked-up” sugar and other 
molecules in the lignocellulosic fraction are also 
utilized. The novel technologies include steam, 
acid, alkali, and enzymatic processes to produce 
fermentable sugars which can then further be 
utilized as substrate for production of various 
chemicals. The integrated approach in a biore-
finery, thus, could provide a range of useful end 
products viz., biofuels (e.g., biodiesel, bioetha-

nol), other energy sources (syngas and bio-oil), 
pharmaceutical products (e.g., cancer drugs), and 
commercially important platform chemicals (or-
ganic acids) (Charlton et al. 2009). Among the 
feedstocks, grass can be utilized as a low cost 
material to obtain high value products. Hence, 
the biorefinery extracts the maximum value 
from the biomass by the production of a variety 
of valuable products and make the overall pro-
cess sustainable as well as economically viable. 
Combined production of biofuel and generation 
of heat makes biorefinery an attractive opera-
tion. The biorefinery market utilizing the entire 
biomass is estimated to reach US$ 295 billion 
by 2020 (Hernandez et al. 2013). The products 
from the biorefinery has the potential to replace 
compounds that are chemically identical (ethyl-
ene from bioethanol could replace ethylene ob-
tained from natural gas) and those with similar 
functionality (Hernandez et al. 2013). In biore-
fineries, high value products (biofuels, specialty 
chemicals, pharmaceuticals) could be derived. 
An integrated processes viz., digestion, fermen-
tation, pyrolysis, gasification, results in enhance-
ment of energy efficiency and material recovery 
(Ng 2010).

8.2  A Biorefinery Approach for 
Production of Biofuels

The term biofuel is referred to soild, liquid, or 
gaseous fuel that is obtained from biorenewable 
feedstocks. The biorefinery concept is applied to 
biomass in a similar way as that is adopted in re-
fining of petroleum where a variety of products 
are obtained. Hence, biorefineries simultaneous-
ly produce biofuels, bio-based chemicals, heat, 
and power.

8.2.1  Biodiesel

Biodiesel that is derived from the oil from crops, 
waste cooking oil, or animal fats is unable to 
fulfill the demand for the transport fuel as it is 
required in bulk amount. It is envisaged that mi-
croalgae has the potential to fulfill the demand of 
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feedstock for biodiesel (Chisti 2007). In addition 
to lipids and oils, microalgae also contain pro-
teins, carbohydrates, and other nutrients. Hence, 
after extraction of the oil from microalgae, the 
residual biomass can be used for other utilities 
viz., animal feed. A part of the residual biomass 
can also be utilized for the production of meth-
ane by anaerobic digestion. The energy generated 
from the methane then could further be used in 
biodiesel production facility which could lower 
the overall production cost of biodiesel (Chisti 
2007). Ekman and Börjesson (2011) reported 
production of propionic acid by fermentation of 
glycerol that was obtained as a by-product from 
biodiesel production. A simultaneous production 
of biodiesel and bioethanol has been suggested 
by Gutierrez et al. 2009. The palm shell can be 
utilized for the production of bioethanol; where-
as, oil from palm seed can be used for production 
of biodiesel.

8.2.2  Biomethane

Charlton et al. 2009 proposed a green biorefinary 
approach utilizing grass as a biomass. The advan-
tages with grass as feedstock are its high digest-
ibility, high sugar, and low lignin. Grass compris-
es cellular material (45 %) and cell wall compo-
nents (55 %). The grass juice has been proposed 
to be separated from the lignocellulosic portion 
of the grass. Once the liquid from the grass gets 
separated, the transport of the fiber will be easier. 
The sugar rice juice has been proposed to be fer-
mented on the farm for production of methane 
by anaerobic digestion, or for bulk chemical such 
as lactic acid. The fiber could be converted to 
fermentable sugar using specific enzymes or be 
used as animal feed owing to its protein content.

8.2.3  Biohydrogen

Ferreira et al. (2013) reported production of bio-
hydrogen from the dark fermentation of leftover 
biomass of microalga, Nannochloropsis sp. In 
the biorefinery approach, biodiesel was produced 
as the main product from the oil of Nannochlo-

ropsis sp.; whereas, pigments and biohydrogen 
were produced as the coproduct. Nobre et al. 
(2013) proposed a biorefinery approach for the 
feedstock, Nannochloropsis sp. wherein, the oil 
and pigment was extracted from the microal-
gae. While, oil was utilized for the synthesis of 
biodiesel, the left over biomass was utilized for 
the production of high value compounds (ca-
rotenoids) and biohydrogen. High lipid content 
33 % (w/w) of dried biomass was reported from 
the microalgae using supercritical CO2 extraction 
under operating conditions of 40 oC, 300 bar, and 
CO2 flow rate of 0.62 g/min. The lipid content 
was enhanced to 45 % (w/w) of dried biomass 
with 70 % recovery of pigments when 20 % (w/w) 
ethanol was doped along with supercritical CO2. 
Biohydrogen was produced by dark fermentation 
using Enterobacter aerogenes with H2 yield of 
60.6 mL/g dry biomass.

8.2.4  Bioethanol

Fornell et al. (2013) reported simultaneous pro-
duction of bioethanol and dimethyl ether from 
kraft pulp-mill-based biomass as a biorefinery 
approach. It is reported that cost of CO2 capture 
and storage by adopting this method will be low. 
Goh and Lee (2010) reported that carbohydrate 
derived from seaweed that contains hexose sugar 
could be fermented to produce bioethanol. Ligno-
cellulosic feedstock is used for the production of 
ethanol and dimethyl ester (DME). The conver-
sion efficiency of the raw material to ethanol of 
fuel grade is in the range of 30–50 % as estimated 
by taking in account the lower heating value. The 
low conversion efficiency is attributed to heat 
loss and the side reaction that occurs at various 
processing steps (Fornell et al. 2013). Rosen-
berg et al. (2011) proposed growing microalgae 
in combination with an ethanol biorefinery. The 
excess heat from the ethanol biorefinery could be 
used to maintain the algal culture at constant tem-
perature in winter seasons. Sequestration of CO2 
released from ethanol biorefinery by microalgae 
will lead to reduction in the operating cost by up 
to 20 %. Jung et al. (2013) reported that the car-
bohydrate content in the macroalgae (seaweed) 
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could be diverted to utilization in a biorefinery. 
As macroalgae contain low amount of lignin, 
they can be a better substrate in the production 
of various utility products in a biorefinery. Un-
like microalgae, the macroalgae has a low protein 
content (7–15 % dry wt.) and lipid content (1–5 % 
dry wt.). The microalgae possess a comparative-
ly high content of protein and lipid of 40–60 % 
dry wt. and 10–20 % dry wt. respectively. This 
is due to high water and alkali metal content of 
70–90 % fresh wt. and 10–50 % dry wt. respec-
tively in macroalgae (Jung et al. 2013). Goh and 
Lee (2010) utilized a macroalgae (seaweed) for 
the production of bioethanol. The carbohydrate 
content in the seaweed present as hexose sugars 
was utilized for the production of bioethanol.

Luo et al. (2011) proposed complete utiliza-
tion of rapeseed plant (seed and straw) for the 
production of biofuels (biodiesel and bioetha-
nol) as a biorefinery concept. Using straw as the 
feedstock, a bioethanol yield of 0.15 g ethanol/g 
dry straw was obtained with pretreatment with 
alkaline peroxide and stream. The coproducts 
and by-products obtained as rapeseed cake, glyc-
erol, hydrolysate, and stillage were utilized for 
production of methane and mixture of hydrogen 
and methane. The energy recovery process that 
was only 20 % with the production of conven-
tional biodiesel increased to 60 % by adopting the 
biorefinery approach that produced bioethanol, 
biohydrogen, and methane along with biodiesel. 
Lohrasbi et al. (2010) described the economic 
feasibility of a biorefinery from citrus waste. On 
hydrolysis by dilute sulfuric acid, the citrus waste 
can be converted to limonene, ethanol, and bio-
gas. The total cost estimated for the production 
of ethanol was 0.91 USD/L with the production 
capacity of 100,000 tons/year inclusive of the 
transportation and handling cost. The production 
of limestone and biogas (methane) along with 
enhancement of plant capacity could reduce the 
production cost of ethanol to 0.46 USD/L which 
makes the process economical and sustainable.

The lignin present in the lignocellulosic bio-
mass is not easily degraded, hence needs ex-
pensive pretreatment. Plant genetic engineering 
technology can lead to lower the cost of produc-
tion of biofuel from lignocellulosic materials. 

Recent advancements in research have led to new 
opportunities in manipulation of lignin for devel-
opment of biofuel. The cell degrading enzymes 
that include cellulases and hemicellulases could 
be produced in the crop biomass itself (Menon 
and Rao 2012).

8.3  Environmental Impact of 
Microalgal Biorefinery

8.3.1  Water Footprint (WF)

The sustainability of a biofuel can be measured 
in terms of its ecological footprint. Water, as a 
scarce commodity, can be a limiting factor for 
cultivation of energy crops. WF measures the 
water use intensity of a nation. It is estimated 
that the water requirement for the production of 
primary energy from biomass is two to threefold 
greater than that required from the fossil fuel 
(Tan et al. 2009). WF is an indicator of direct as 
well as indirect usage of freshwater. Gerbens-
Leenes et al. (2012) reports that by 2030, the 
global blue biofuel WF would have grown to 
5.5 % of the total blue water available for human 
consumption thus creating pressure on freshwa-
ter resources. A significant amount of global WF 
(86 %) is attributed to agriculture. Any increase 
in diversion of the biomass for development of 
energy will require additional load on the water 
that may lead to water shortages. The WF can be 
reduced by utilizing multiple feedstocks for pro-
duction of biofuel. IEA estimated that the energy 
use attributed to biomass will increase to 71 EJ in 
2030. The production of biocrops for bioethanol 
and biodiesel will require large amount of fresh-
water that includes both green water (precipita-
tion water) and blue water (irrigation water from 
ground and surface water) (Gerbens-Leenes et al. 
2012). Hence, biorefinery approach is expected 
to minimize the WF of biofuels.

Batan et al. (2013) estimated the WF of a 
closed photo-bioreactor based biofuel and as-
sessed the WF on the basis of blue, green, and 
lifecycle WF. Blue WF comprised of the water 
directly used for cultivation and process needs 
for both consumptive and nonconsumptive use. 
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Green water comprised of difference between 
water obtained as precipitation and that lost 
through soil moisture evaporation and evapo-
transpiration. The microalgae-based biofuel had 
a blue WF varied as a function of pathway in-
volved in the production of fuel and location and 
ranged from 23–85 m3·GJ−1. It has been reported 
that the process water uses during cultivation, 
harvesting, and extraction accounts for majority 
of the blue WF (97.6 %) which was followed by 
fuel conversion (2.4 %) and transportation and 
distribution (0.002 %). The green WF from mi-
croalgae based biofuel has been reported to be 
negative thus showing water gain in the basin. 
The green WF has been reported to vary among 
the geographic locations from 1.3–17 m3·GJ−1. 
The total WF comprising both blue and green 
water ranged from 18–82 m3·GJ−1. The sustain-
ability of production of biofuel from microalgae 
in terms of WF lies in the usability of wastewa-
ter. Utilization of domestic and industrial waste-
water for the culture of microalgae thus has the 
potential to lower the total WF in synthesis of 
biodiesel.

8.3.2  Carbon Footprint

With the increasing environmental concerns, the 
usage of biofuels has increased considerably. 
Hence, just like the carbon footprint is accounted 
for fossil fuels, the biofuels also should be mea-
sured in terms of carbon footprints (Johnson and 
Tschudi 2012). Hammond and Seth (2013) esti-
mated the global carbon footprint of biofuels to 
be 0.248 bn global hectares (gha) in 2010 and 
may reach to 0.449 bn gha by 2019. It was also 
estimated that the total environmental footprint 
of the global biofuel produced was 0.720 bn gha 
for 2010 and could reach 1.242 bn gha by 2019. 
Fahd et al. (2012) reported the carbon footprint 
during the production of biodiesel. It was re-
ported that the emission of CO2 and other green 
house gases were relatively low during the pro-
duction of seeds that amounted to 0.53 gCO2-

equiv per g dry seed. In the processing steps, i.e., 
oil extraction and biodiesel production, the emis-
sions reported is 0.99 and 1.72 gCO2-equiv per g 

of oil and biodiesel respectively. This has been 
attributed to high demand for energy in the pro-
duction process. With biorefinery approach, the 
carbon footprint is expected to get lower owing 
to production of more than one utility product.

8.4  Sustainable Production of 
Biofuels

8.4.1  Value Added Product Basket: 
Pigments, Nutraceuticals and 
Bioactive Compounds

Microalgae are a very diverse group of organ-
isms that are the key components of ecosystems 
and produce a variety of valuable compounds as 
secondary metabolites in different phases of life 
cycle (Pulz and Gross 2004; Skjanes et al. 2013). 
Microalgal biomass cultivation is regarded as a 
potential way to overcome our current depen-
dence on fossil fuels, as microalgal biomass can 
be utilized for synthesis of number of biofuels 
like biodiesel, bioethanol, biohydrogen (Guldhe 
et al. 2014; Singh et al. 2014). High production 
cost has become a major bottleneck for biofu-
els production from microalgae (Spolaore et al. 
2006). However, integrated biorefinary approach 
can make microalgal biofuel production econom-
ically viable (Vanthoor-Koopmans et al. 2013). 
Commercial realization of the microalgae as 
a source of renewable biofuel is feasible when 
constituents of the algal biomass are exploited 
for biofuels as well as for value added coprod-
ucts (Yen et al. 2013). Thus, the development and 
focus was changed toward the potential of grow-
ing microalgae commercially for its applications 
in field of health food for human consumption, 
aquaculture and animal feed, coloring agents, 
cosmetics, and other commercial products. Car-
bohydrate, protein, and lipids are the major con-
stituents of microalgae which can be exploited 
commercially for different markets (Borowitzka 
2013). Other compounds viz., fatty acids and 
steroids, carotenoids, phycocolloids, lectins, 
mycosporine-like amino acids, halogenated com-
pounds, polyketides, and toxins, synthesized by 
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microalgae makes it an attractive platform for 
biorefinary concept (Skjanes et al. 2013).

a. Pigments

Colorful appearance of the microalgae is because 
of the pigments which capture light and initiate 
photosynthesis (Spolaore et al. 2006). Algae can 
be classified on the basis of pigmentation, as 
particular class of algae contains specific pig-
ments such as chlorophyll in green algae, phyco-
bilin pigments phycocyanin in blue-green algae, 
phycoerthirine in red algae, and fucoxanthin in 
brown algae (Borowitzka 2013). Chlorophyll a is 
the most abundant pigment in all photosynthetic 
organisms, and it absorbs energy from the light, 
and then serves as a primary electron donor in the 
electron transport chain (Spolaore et al. 2006). 
Chlorophyll can be used as an anti-inflammatory 
and wound healing additive to pharmaceuticals 
(Yen et al. 2013). Pheophorbide a is a chlorophyll 
derivative compound which is used in photody-
namic therapy (PDT) used for the treatment of 
cancer (Yen et al. 2013). Carotenoids are pig-
ments present in all classes of algae and serve 
as photoprotectors against the photooxidative 
damage resulting from excess energy captured 
by light-harvesting antenna (Cardozo et al. 2007; 
Skjanes et al. 2013). Some of the carotenoids iso-
lated from microalgae like β-carotenoids, astax-
anthin, cantaxanthin, zeaxanthin, and lutein have 
commercial importance (Skjanes et al. 2013). 
These pigments found their application in food, 
pharma, and cosmetic industry and attract high 
cost in commercial market (Lamers et al. 2012; 
Vanthoor-Koopmans et al. 2013). In the biofuel 
production process, coproduction of these high 
value pigments greatly improves the econom-
ics (Draaisma et al. 2013). Astaxanthin is an 
oxidized from of carotenoid with high oxidation 
capacity. Astaxanthin has many applications in 
healthcare industry as it can be used for preven-
tion and treatment of various conditions, such as 
chronic inflammatory diseases, eye diseases, skin 
diseases, cardiovascular diseases, cancers, neuro-
degenerative diseases, liver diseases, metabolic 
syndrome, diabetes, diabetic nephropathy, and 
gastrointestinal diseases (Wayama et al. 2013). 

β-carotenoids has high antioxidant properties and 
are used in food industry. β-carotenoids from Du-
naliella salina (Cowan et al. 1995) and astxan-
thin from Haematococcus pluvialis (Guerin et al. 
2003) are the most successful commercial prod-
ucts (Lamers et al. 2012; Skjanes et al. 2013). 
Astaxanthin has been approved by the US Food 
and Drug Administration (US FDA) as a food ad-
ditive for use in the aquaculture as well as for use 
as a dietary supplement (Guerin et al. 2003). The 
annual worldwide market for astaxanthin was 
estimated at US$ 200 million in 2004, with es-
timations of the global astaxanthin market rising 
to US$ 257 million in 2009. Synthetic astaxan-
thin is valued at US$ 2500/kg, while the natural 
product is sold for over US$ 7000/kg (Yen et al. 
2013). Phycobillins are another category of algal 
pigments which exhibit high fluorescence, and 
have wide absorption spectrum. These properties 
of phycobillins make them useful in diagnostic 
industry (Spolaore et al. 2006). Spirullina sp. 
produces blue phycobiliproteins (APC) (Sarada 
et al. 1999) and red algae such as Porphyridium 
produces red phycobillins (R-PE) (Munier et al. 
2014). The global phycobillins market was es-
timated to be approximately US$ 50 million in 
1997, with prices varying from US$ 3/mg to 
US$ 25/mg (Yen et al. 2013). Green microalgae 
produce some other pigments such as, Scenedes-
mus obliquus and Botrycococcus sp. are the pro-
ducers of lutein, Dunaliella Salina and Chlorella 
pyrenoidosa are the producers of zeaxanthin, and 
Chlorella vulgaris and Chlorococcum sp. are the 
producers of canaxanthin (Table 8.1).

b. Nutraceuticals

Nutraceuticals are the group of compounds 
which can be used for consumption as food with 
medicinal benefits. Humans and animals are de-
pendent on plants for many nutrient supplements 
as they cannot be synthesized in their body. Mi-
croalgae can synthesize numerous compounds 
that have nutraceutical values. Microalgae have 
become a ubiquitous source of nutraceuticals 
due to the capability of producing necessary vi-
tamins including A (Retinol), B1 (Thiamine), B2 
(Riboflavin), B3 (Niacin), B6 (Pyridoxine), B9 
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(Folic acid), B12 (Cobalamin), C (L-Ascorbic 
acid), D, E (Tocopherol), and H (Biotin). Mi-
croalgae contains essential elements including: 
Potassium, Zinc, Iodine, Selenium, Iron, Man-
ganese, Copper, Phosphorus, Sodium, Nitrogen, 
Magnesium, Cobalt, Molybdenum, Sulfur, and 
Calcium and also produces essential amino acids 
and Omega-6 (Arachidonic acid) and Omega-3 
(Docosahexaenoic acid, eicosapentaenoic acid) 
fatty acids (Spolaore et al. 2006; Yen et al. 2013).

Chlorella sp. is the most successfully com-
mercialized green algae with an annual produc-
tion of 2000 metric t of dry powder. Chlorella 
and Spirullina are consumed in Taiwan and Japan 
as health food. Chlorella (lutein, vitamin B12), 
Spirullina (single-cell protein) Haematococcus 
(antioxidant) and Dunaliella (β- carotene) are 

the most popular nutraceuticals sources. Human 
and animal lack essential enzymes for synthesis 
of polyunsaturated fatty acids which is essential 
for growth. Docosahexaenoic acid (DHA) is a 
major structural fatty acid in the grey matter of 
the brain, heart tissue, and in the retina of the eye 
while eicosapentaenoic acid is a precursor for 
hormone like substances which play crucial role 
in regulatory physiology (Cardozo et al. 2007). 
Use of microalgae as animal feed is more popular 
nowadays. Some microalgae play an important 
role during the life cycle of fish, shrimps, and 
molluscs during their larval stage. The most com-
monly used microalgae as animal and fish feed 
are Chlorella, Arthospira, Tetraselmis, Isochry-
sis, Pavlova, Phaeodactylum, Chaetoceros, Nan-
nochloropsis, Skeletonema, and Thalassiosira. In 

Product Microalgal species Application Reference
Pigments
β-carotene Dunaliella salina, Botrycococ-

cus sp.
Pigment (food), pro-
vitamin A

(Jayappriyan et al. 2013)

Astaxanthin Heamatococcous pluvialis, 
Chlorella zofingiensis, Chlam-
ydomonas nivalis, Scenedesmus 
obliquus, Chlorococcum sp.

Nutraceuticals, pharma-
ceuticals, food and feed 
industries

(Guerin et al. 2003; Jian-Ping 
Yuan et al. 2002; Qin et al. 
2008; Rezanka et al. 2013; 
Sun et al. 2008)

Canthaxanthin Chlorella vulgaris, Chlorococ-
cum sp.

Synthetic pigment (Gouveia et al. 2007; Jian-
Ping Yuan et al. 2002)

Phycobilins (Phyco-
cyanin, allophycocyanin, 
phycoerythrin)

Spirulina sp., Porphyridium sp. Fluorescent dye, 
antioxidant

(Munier et al. 2014; R. 
Sarada et al. 1999)

Zeaxanthin Chlorella pyrenoidosa, 
Dunaliella salina

Antioxidant (Cowan et al. 1995; Inbaraj 
et al. 2006)

Lutein Scenedesmus obliquus, Botryo-
coccus braunii

Nutraceuticals, pharma-
ceuticals, food and feed 
industries

(Ho et al. 2014; Yen et al. 
2013)

Nutraceuticals
Protein Spirulina platensis, Chlorella 

sp.
Human dietary 
supplement

(Coca et al. 2014; Szabo 
et al. 2013)

Animal food Chlorella, Scenedesmus, 
Monoraphidium

aquaculture (Isik et al. 1999; Skjanes 
et al. 2013)

EPA Ankistrodesmus sp., Nannochlo-
ris sp., Chlamydomonas

Dietary supplement (Wijffels et al. 2013; Xie 
et al. 2013)

Bioactive compounds
Phycolectins Chlamydomonas sp., Chlorella 

sp.
Hemagglutinin activity (Plaza et al. 2010)

Polysaccharides Chlorella pyrenoidosa Anticancer activity (Cardozo et al. 2007; Erma-
kova et al. 2013)

Halogenated compounds Laurencia sp. Taxonomical marker (Faulkner 2001)

Table 8.1  Different value added products from microalgae and their application 
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the biodiesel production process, lipid extracted 
algae (LEA) has great potential to be used as 
animal and fish feed as it is still rich in carbohy-
drates and proteins (Table 8.1).

c. Bioactive compounds

Bioactive compounds are the group of active 
chemical products synthesized as secondary me-
tabolite in microalgae. Most of them are having 
antimicrobial, antiviral, and antioxidant proper-
ties which are important for microalgae as they 
act as protective mechanism during stress condi-
tions. Number of bioactive compounds such as 
indoles, terpenes, acetogenins phenols, polysac-
charides, toxins can be obtained from microal-
gae. Marine red algae Laurencia sp. is reported as 
the most prominent producer of these bioactive 
compounds, especially halogenated compounds 
(Faulkner 2001). These bioactive compounds 
can be used as pharmaceuticals due to its anti-
microbial, antitubercular, and anticancer activity. 
A high-weight polysaccharide from Chlorella 
pyrenoidosa has very high immunostimulatory 
and antitumor effect with potential use in can-
cer therapy (Shi et al. 2007). Chlorella vulgaris 
produces glycoprotein which shows anticancer 
activity through antimetastatic immunopotentia-
tion. Integrated biorefinary with the aim of biofu-
el production from microalgae along with value 
added compounds as coproducts is a sustainable 
and economically feasible approach. Table 8.1 
depicts the different value added products from 
microalgae and their application.

8.4.2  Use of Industrial Refusals for 
Biomass Production: Wastewater 
Nutrient Medium and Flue Gases

Microalgae are simple unicellular photosynthetic 
organisms which utilize nutrients from growth 
medium and capture atmospheric CO2 for its en-
ergy requirements and growth. More than half 
of energy requirement for microalgal biomass 
generation is utilized by carbon dioxide (CO2) 
and fertilizers supplementation (Orfield et al. 
2014). Economical feasibility of microalgal bio-

mass production can be improved by use of in-
dustrial refusals like wastewater and flue gases. 
This strategy not only lowers the cost involved in 
biomass generation, but also has several environ-
mental significances. Integrated biorefinary ap-
proach of utilizing industrial wastewater and flue 
gases for microalgal biomass generation provides 
effective resource management, environmental 
benefits, and makes it economically competitive. 
Microalgae can assimilate nutrients in wastewa-
ter and CO2 from flue gases into cellular com-
ponents like carbohydrates and lipids. Microalgal 
biomass generated using such industrial refusals 
can be directed to synthesis of various end prod-
ucts like biodiesel, biomethane, and animal feed.

a. Wastewater nutrient medium

Wastewater effluent after primary and second-
ary treatment has various organic and inorganic 
constituents. Release of such effluent into envi-
ronment can cause severe problems like eutro-
phication and pollution. Inorganic constituents 
of wastewater effluent primarily consists of ni-
trogen and phosphorous. European Commission 
Directive 98/15/EEC have specified limits of 
10 mgL−1 total nitrogen and 1 mgL−1 total phos-
phorous for discharge. Normal values of total 
nitrogen and phosphorous in wastewater effluent 
are 20–70 and 4–12 mgL−1 (Arbib et al. 2014; 
Cabanelas et al. 2013). Discharge of industrial 
and domestic wastewater are adding organic and 
inorganic nutrients, pathogens, heavy metals, 
suspended solids, and oxygen demanding mate-
rial to the existing water resources. Biological 
treatment of such tertiary effluent is the possible 
solution for this problem. Availability of fresh 
water is facing severe risks due to rapid indus-
trialization and socioeconomic development. In 
biorefinary concept cultivation of microalgae 
using wastewater serves dual purpose of biomass 
generation as well as polishing of the effluent 
by removing inorganic nutrients (Rawat et al. 
2011; Singh et al. 2014). Microalgae cultivation 
using wastewater for valuable biomass genera-
tion, which can be utilized for several purposes 
fulfilling energy and feed requirements, is a 
sustainable approach. Water requirement for mi-
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croalgae cultivation in open pond is as high as 
11–13 million L ha−1year−1 (Chinnasamy et al. 
2010). Wastewater utilization for microalgae cul-
tivation can reduce fresh WF as well as can pro-
vide treated water for other use. Wastewater has 
very high concentrations of nutrients specifically 
N and P along with some toxic metals. Costly 
chemical treatment methods are required to re-
move these nutrients. The potential shown by mi-
croalgae to grow with minimal fresh water and 
accumulate nutrients and metals can be exploited 
to treat such domestic and industrial wastewa-
ter. Cultivation of microalgae needs water and 
supply of inorganic nutrients like nitrogen and 
phosphorous. Nitrogen and phosphorous plays 
a very important role in microalgal physiology, 
and thus needs to be supplied through growth 
medium. The nutrient supplementation contrib-
utes a major portion in the overall cost of micro-
algae cultivation. Utilization of tertiary industrial 
or domestic wastewater as growth medium can 
supply required nutrients for microalgae. Nutri-
ents cost can be reduced if wastewater effluent 
is used as the nutrient medium. Various microal-
gal strains have been studied for their growth in 
wastewater nutrient medium. Most studied strain 
for wastewater utilization is Chlorella sp, due to 
its robustness and application in biodiesel pro-
duction (Huo et al. 2012; Ramanna et al. 2014). 
Table 8.2 shows different microalgal strains 
grown on various industrial wastewater and their 
biomass and lipid yields. Wastewater medium 
has lower N and P content as compared to com-
mercial media used for microalgae cultivation. 
Limitation of nutrients for stress induced lipid 

accumulation is a well accepted method in mi-
croalgal biofuel process. Ramanna et al. (2014) 
when grew Chlorella sorokiniana on wastewater 
medium and standard BG11 medium, lipid yield 
was found to be higher in wastewater grown bio-
mass (10.7 % DCW) compared to BG11 grown 
biomass (8.08 % DCW). Utilization of wastewa-
ter growth medium for microalgal biomass gen-
eration thus provides several benefits like cheap 
nutrient source, enhanced lipid productivity, re-
ducing risk of eutrophication, reduce fresh WF, 
and polished tertiary treated wastewater for other 
uses. Overall, this approach provides sustainabil-
ity, commercial compatibility, and environmental 
benefits for microalgal biofuel production pro-
cess.

b. Utilization of flue gases

CO2 is a major contributor of green house gases 
(GHG) which causes global warming. Global 
warming poses serious threat causing climate 
changes, glacial melting, rise in ocean level, re-
duced food production, extinction of species, and 
many other environmental problems. Globally, it 
has seen as a serious issue, and thus Kyoto Proto-
col has been promoted by United Nations with the 
objective of reducing GHG emission by 5.2 % on 
the basis of emission in 1990 (Pires et al. 2012). 
Several strategies are practiced for capture and 
sequestration of CO2. Most widely used method 
is carbon capture and storage. CO2 is captured 
from emission sources like power plants and ce-
ment industries. CO2 can be captured by several 
methods viz., adsorption, absorption, separation 

Microalgae Wastewater N removal 
(%)

P removal 
(%)

Biomass 
(gL−1D−1)

Lipid yield 
(%)

Reference

Chlorella 
zofingiensis

Dairy wastewater 51.7 97.5 – 17.9 (Huo et al. 2012)

Microalgae 
consortium

Carpet mill effluent > 96 > 96 0.039 12 (Chinnasamy 
et al. 2010)

Chlamydomonas sp. 
TAI-2

Industrial wastewater 100 33 – 18.4 (Wu et al. 2012)

Chlorella 
saccharophila

Carpet mill effluent – – 0.023 18.1 (Chinnasamy 
et al. 2010)

Botryococcus 
braunii

Carpet mill effluent – – 0.034 13.2 (Chinnasamy 
et al. 2010)

Table 8.2  Microalgae grown on various industrial wastewater and their biomass and lipid yields 
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membranes, and cryogenic distillation. Cap-
tured CO2 is transported to storage locations, and 
stored in geological or ocean storage or mineral-
ized. However, with this approach of capture and 
storage several technological, economical, and 
environmental issues are related. Biological CO2 
capture is a sustainable approach and provides al-
ternatives to conventional CO2 capture methods.

Microalgae have the ability to fix atmospher-
ic CO2 through photosynthesis, with ten times 
greater efficiency than terrestrial plants (Pires 
et al. 2012). Carbon is the key component of mi-
croalgal cell which constitutes 36–56 % of dry 
matter. 1.3–2.4 kg CO2 is fixed by microalgae for 
per kg of dry biomass generation (Van Den Hende 
et al. 2012). Microalgae cultivated by supplying 
CO2 from flue gases produce biomass which can 
be utilized for biofuels, value added products, 
and animal feed. Microalgae can be cultivated 
in open or closed system for biomass generation. 
For microalgae cultivation either CO2 is separat-
ed from flue gases and used or directly flue gases 
are applied. Direct use of flue gases is beneficial 
in terms of energy and cost saving; however, 
microalgal strain should be resistant toward the 
high percentage of CO2 (15 %) and presence of 
SOX and NOX (Maeda et al. 1995). Maeda et al. 
(1995) screened several microalgal species, and 
found a Chlorella sp. strain with high growth rate 
at a temperature of 35 °C and 15 % CO2 concen-
tration. Table 8.3 depicts the studies using flue 
gases for microalgae cultivation. CO2 can direct-
ly diffuse through the microalgal plasma mem-
brane. CO2 is assimilated to 3-phosphoglycerate 
by enzyme rubisco (ribulose 1,5-bisphosphate 
carboxylase/oxygenase) in the Calvin cycle. 
Fixed CO2 through various metabolic pathways 
assimilated into carbohydrates, proteins, and 
lipids in microalgae. CO2 has low mass transfer 

coefficient, and thus mass transfer from gaseous 
phase to liquid phase could be a limiting step in 
application of this technology. High flow rate in 
closed system or proper mixing in open cultiva-
tion could be the possible solutions to overcome 
mass transfer limitations (Pires et al. 2012). Flue 
gases contain many compounds like SOX, NOX, 
CO, CxHy, halogen acids, and particulate matter 
apart from CO2. Direct utilization of flue gases 
can pose problems for microalgae cultivation as 
some of these compounds could have toxic ef-
fect on microalgae (Van Den Hende et al. 2012). 
Thus, a better understanding of the effect of these 
individual compounds and their concentration 
limits on microalgal physiology is needed. Ef-
fective utilization of flue gases for microalgae 
cultivation can reduce environmental concerns 
as well as earn carbon credits. Application of in-
novative scientific technologies for utilization of 
flue gases by microalgae, can aid in improving 
economics of biomass production.

8.5  Conclusion

Microalgae have shown a promising future with 
simultaneous production of more than one biofu-
els viz., biodiesel, biomethane, biohydrogen, and 
bioethanol to cater the energy demands. High 
energy input and the cost associated with pro-
duction of microalgal biofuels are still a bottle-
neck which has to be overcome for its industrial 
viability. The biorefinary concept could be the 
possible answer to this problem, where with the 
production of biofuels, emphasis is also given on 
the coproduction of value added products and 
utilization of refusals. For commercial feasibil-
ity of microalgal biofuel production, it is neces-
sary to produce other valuable products along 

Microalgae CO2 concentration (%) Biomass (gL−1D−1) Lipid yield (%) Reference
Chlorella sp. 6–8 19.4–22.8a – (Doucha et al. 2005)
Chlorella sp. MTF7 25 0.48 25.2 (Chiu et al. 2011)
Scenedesmus obliquus SJTU-3 10 0.155 19.25 (Tang et al. 2011)
Chlorella pyrenoidosa SJTU-2 10 0.144 24.25 (Tang et al. 2011)
a Biomass in g m−2 D−1  

Table 8.3  Microalgae grown using flue gases and their biomass and lipid yields
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with the biofuel production. Microalgal carbo-
hydrate, protein, lipid, and pigments can be used 
in pharmaceutical, nutraceutical, food and feed 
industries with various applications. High energy 
demand for biofuels production can be reduced 
by producing valuable coproduct. Utilization of 
wastewater as a nutrient source and flue gases as a 
source of CO2 for microalgal cultivation reduces 
the environmental concerns as well as improves 
carbon and WF. Biorefinary approach of micro-
algal biofuel production thus becomes imperative 
for sustainable application. Thus, practicing this 
approach could make biofuels production from 
microalgae sustainable, economically viable, and 
environmentally friendly.
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Abstract

Oil spills are a major environmental concern in today’s world. With the 
increase in anthropogenic activities, accidental and incidental spillage of 
oil has severely affected the environment, causing both ecological and 
economic damage. Mechanical, chemical, and biological approaches have 
been utilized as remediation strategies for oil spill cleanup. The time pe-
riod just after oil spillage being the most crucial for oil spill cleanup, it is 
imperative that primary and secondary oil spill cleanup response and con-
tingency plans should be in place for mediating immediate intelligent re-
medial action. On the basis of type of oil spilled, weather conditions, and 
topography of the surrounding area, careful selection of remedial methods 
should be done. Mechanical approaches such as booms, skimmers, and 
sorbents are utilized in conjunction with one another for cleanup opera-
tions and are one of the widely used primary responses. Chemical disper-
sants when sprayed on oil slick accelerate the rate of natural dispersion 
of medium- and light-weight oils and also increase the availability of oil 
for microbial colonization. Close monitoring of economic and ecologi-
cal implications of addition of dispersants has to be done before under-
taking dispersant application since they are known to be detrimental or 
ineffective if not applied intelligently. Biostimulation, bioaugmentation, 
phytoremediation, and genetically modified organisms (GMOs) have all 
been tried as remedial strategies for oil spills with varying success. As 
biological strategies are safest, we need to redesign them with the help of 
genomic and molecular tools to make them more successful.

9.1  Introduction

When we talk of oil spill, liquid petroleum comes 
in our mind as oil and the affected area as a sea 
or an ocean. However, it should be noted that oils 
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can be of various types, such as vegetable oils, 
animal fats, and other nonpetroleum oils, which 
are manufactured and utilized on large scale. In 
addition, the affected area can be a freshwater 
body or land. In this chapter, we will use the term 
oil in the context of liquid petroleum hydrocar-
bon and the affected area, in major discussions, 
as open systems such as seas and oceans.

Crude oil consists of more than 17,000 dis-
tinct chemical components as discerned by ul-
trahigh resolution mass spectrometry (Marshall 
and Rodgers 2003). This number is an approxi-
mate value as different crude oils have differ-
ent compositions, which are subject to change 
due to weathering and biodegradation. Crude 
oil composition can be broadly classified into 
four major fractions: saturated hydrocarbons, 
aromatic hydrocarbons, resins, and asphaltenes. 
Saturated (absence of double bonds) hydrocar-
bons are major constituents of crude oil; common 

examples of saturated hydrocarbons are alkanes 
(paraffin) and cycloalkanes (naphthalene). Aro-
matic hydrocarbons have one or more aromatic 
rings with or without alkyl substitution(s). Resins 
and asphaltenes are nonhydrocarbon polar com-
pounds with complex chemical structures (Ha-
rayama et al. 2004). Typically, heavy oils have 
higher content of more polar compounds, resins, 
and asphaltenes and lower content of saturated 
and aromatic hydrocarbons, whereas light oils 
have higher content of saturated and aromatic 
hydrocarbons and lower content of resins and as-
phaltenes (Head et al. 2003, 2006).

Spilled petroleum on water surface is subject 
to many modifications and its composition chang-
es with time. This is called weathering. Evapora-
tion, dissolution, emulsification, and photochem-
ical oxidation occur during weathering (Fig. 9.1). 
Low-molecular weight fractions ( n-alkanes with 
chain length shorter than C14) and monocyclic 
aromatic hydrocarbons (benzenes and xylenes) 
are subject to both evaporation as well as dis-
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Fig. 9.1  Fate of spilled oil
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solution. Polar fraction increases and aromatic 
fraction decreases in petroleum when subjected 
to photochemical oxidation under sunlight (Dutta 
and Harayama 2000). Biodegradation of crude 
oil also results in similar changes in its composi-
tion, with loss of saturated and aromatic hydro-
carbons and relative increase in polar fractions 
(Head et al. 2006).

Nature of oil (physical and chemical proper-
ties) and natural conditions (water, temperature, 
weather, and topography of surrounding area) 
prevailing at the time of oil spill influence the 
weathering and biodegradation of oil. Oil spills 
contaminate drinking water, disrupt food chain, 
endanger public health, destroy natural resourc-
es, and disrupt economy. Thus, it is of utmost im-
portance to develop in situ strategies for cleanup 
of marine oil spills (Fig. 9.1).

9.2  What Are Oil Spills?

Accidental or incidental release of liquid petro-
leum hydrocarbon into the environment (marine 
or inland) due to human activity is called oil spill. 
During Gulf War (1991), retreating Iraqi forces 
opened valves of oil wells and pipelines and set 
them to fire in a bid to slow down onslaught of 
invading American forces. An estimated 240–
360 million ga of crude oil flowed into Persian 
Gulf. This exacted little damage to the marine eco-
system as per a report by the Intergovernmental 
Oceanographic Commission at UNESCO. Deep-
water Horizon/BP oil spill (2010) caused by well-
head blowout at the Deepwater Horizon oil rig is 
the most devastating and the largest marine oil 
spill. The explosion at the rig killed 11 men work-
ing on the platform and injured 17 others. It spilled 
220 million ga of oil into the Gulf of Mexico, caus-
ing extensive damage to gulf’s fishing and tourism 
industry. Though Exxon Valdez oil spill (1989) is 
the second largest oil spill in the USA, it is notable 
because it led to serious reexamination of policies 
and framework for oil spill cleanup in the country. 
It occurred in Prince William Sound, Alaska, when 
Exxon Valdez, an oil tanker, ran aground, releas-
ing 10.8 million ga of crude oil, which impacted 
1609 km of Alaskan coast. Table 9.1 lists some of 
the largest oil spills in the world.

9.3  Impact of Oil Spills on 
Environment and Society

Flora and fauna as well as the topography of the 
surrounding areas bear the brunt of oil spills. An-
imals may be smothered in oil and killed or seri-
ously injured soon after coming in contact with 
oil. However, many other effects of oil spills are 
more subtle and long lasting.

Aquatic animals like turtle, seal, walrus, and 
dolphin which live close to the shore, endanger 
themselves when they consume oil-contaminated 
prey. Kelps and sea grasses are often used for 
food, shelter, and nesting by birds and aquatic 
animals. These are destroyed by oil contamina-
tion, thus affecting their reproductive cycle and 
nursing of the young. Direct physical contact 
of oil with fur of mammals causes loss of their 
insulating properties, leading to hypothermia-
induced death. Feathers also lose their architec-
ture as well as their insulating properties, which 
help birds in keeping warm, flying, and floating, 
when in contact with oil. Seepage of oil onto the 
surface of eggs often seals their pores and pre-
vents gaseous exchange leading to the death of 
the embryo. Aquatic mammals and birds often 
starve to death when they refuse to eat oil-stained 
unpleasant-smelling prey (EPA 1999b).

Coral reefs, which serve as nurseries for fin-
gerlings of fish, are often smothered in oil and 
risk exposure to toxic substances in oil. Tidal 
flats, sheltered beaches, salt marshes, and man-
grove forests harbor rich biodiversity, which on 
exposure to oil, gets disturbed, damaged, and de-
stroyed (EPA 1999b).

Human activities like fishing, aquaculture, 
recreational activities, tourism industry, and 
human health are adversely affected because of 
oil spills. Fishing and shellfish fishing are often 
closed to prevent catching oil-tainted fish. Severe 
economic losses are incurred by tourism indus-
try and operators of recreational activities (scuba 
diving, angling, and boating). Water is often used 
for cooling purposes in nuclear desalination, 
and power plants. These industries risk intake of 
oiled water into their piping and machinery. Per-
sonnel engaged in containment of oil spills risk 
ill health by inhaling or touching oil products and 
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Sl. No. Name and 
Location

Cause Type of 
oil spill

Amount 
(million 
gallons)

Year Area of 
damage

Comment

Gulf War, 
Kuwait (Briney 
2011)

Deliberate 
Sabotage

Inland 
and 
marine

240–360 1991 Persian Gulf Little damage. Largest 
oil spill

Deepwater Hori-
zon/BP oil spill, 
Gulf of Mexico 
(Cleaveland 
2010; Briney 
2011; Cohn 
2010)

Wellhead 
blowout at the 
Deepwater 
Horizon

Marine 205 2010 Gulf of 
Mexico

Extensive damage to 
gulf’s fishing and tour-
ism industry. Largest 
marine oil spill

Ixtoc 1 oil well 
(ERCO 1982)

Wellhead 
blowout

Marine 140 1979 Bay of 
Campeche, 
Mexico

Little damage to 
benthic and epibenthic 
community. Littoral 
and intertidal commu-
nities affected

Atlantic 
Empress, Trini-
dad, and Tobago 
(Casselman 
2011; Briney 
2011)

Collision of 
supertank-
ers, Atlantic 
empress, 
and Aegean 
Captain

Marine 90 1979 – Minor shore pollution 
reported

Fergana Valley, 
Uzbekistan 
(Briney 2011; 
Casselman 
2011)

Unknown Inland 88 1992 Fergana 
Valley

Largest inland oil spill

ABT Summer, 
off the coast of 
Angola (Cas-
selman 2011; 
Briney 2011)

Explosion Marine 80 1991 High seas, off 
the coast of 
Angola

Little damage

Nowruz oil 
field, Persian 
Gulf (Briney 
2011; Casselman 
2011)

Collision and 
bombing

Marine 80 1983 Persian Gulf No information

Castellio de 
Bellver, off 
Saldanha Bay, 
South Africa 
(Briney 2011)

Fire Marine 79 1983 Off Saldanha 
Bay, South 
Africa

Damage to local fish-
ing stocks minimal; 
however, 1500 gannets 
who gathered on nearby 
island were oiled

Amoco Cadiz, 
off Brittany, 
France (Bourne 
1979; Briney 
2011)

Collision Marine 69 1978 Brittany, 
France

200 miles of coastline 
of Brittany polluted

Odyssey oil 
spill, Nova 
Scotia, Canada 
(Briney 2011)

Bad weather 
and fire

Marine 43 1988 Off Nova 
Scotia coast, 
Canada

No information

Table 9.1  Ten most disastrous oil spills in the world. (Cohen 2002; Briney 2011)
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 consumers may suffer from eating contaminated 
fish and shellfish (ITOPF 2013).

9.4  Approaches for Cleanup of Oil 
Spills

Containment and recovery of oil are major con-
cerns in the event of an oil spill. Containment 
aims at minimizing the area of oil spill, thus cur-
tailing its adverse effects on lives of animals and 
plants, economics of surrounding area, and en-
vironment. Containment is the preliminary step 
that allows recovery or dispersal of oil at later 
stages. The following are the approaches for 
cleanup of oil spills.

9.4.1  Mechanical Approaches

Careful selection and proper use of equipment 
for combating oil spill is the key to successful oil 
spill cleanup. Booms, skimmers, and varieties of 
sorbents are utilized for such cleanup operations, 
which are often used in conjunction with one an-
other. Type of oil spilled, weather conditions, and 
topography of the surrounding area need to be 
considered while choosing the method of cleanup 
(EPA 1999c).

Containment booms
Containment booms and skimmers are utilized to 
block spreading of oil, concentrating and recov-
ering it. They are temporary floatation devices 
used to contain oil spills. Containment booms are 
most successful in gentle seas. In choppy waters, 
booms are prone to failure due to environmen-
tal constraints. Oil entrapped in the area under 
the containment boom can be scooped and col-
lected by ships, which then return to the shore 
for its proper disposal and recycling (Castro et al. 
2010). Wang et al. made a superhydrophobic and 
superoleophilic miniature oil containment boom 
(MOCB) based on Cu2O film-coated stainless 
steel (SS) mesh. MOCB has high efficiency in 
excluding oil from the water surface (it repels 
water absolutely), is reusable, and has good 
water pressure and corrosion resistance. The oil 

contained in the MOCB can be collected and re-
cycled (Wang et al. 2014).

Skimmers
Oil skimmers are devices that separate oil float-
ing on water. Skimmers are of three types—weir, 
oleophilic, and suction skimmers. Weir skimmers 
allow oil floating on water to spill over the weir, 
which can be then entrapped in a well. They tend 
to get jammed and clogged by floating debris and 
need to be monitored. Oleophilic skimmers use 
mop, belts, drums, and discs made of oleophilic 
material to attract oil, which then can be scrapped 
off or squeezed out into a recovery tank for fur-
ther processing. Oleophilic skimmers are effec-
tive against oil layers of varying thickness (Broje 
and Keller 2006). Suction skimmer is quite simi-
lar to the household vacuum cleaner and operates 
on the same principle: it sucks the oil floating on 
water, which is then pumped into storage tanks. 
Suction skimmers often suffer from clogging by 
debris and work best in scenarios where oil has 
been already contained against a boom.

Sorbents
Natural and synthetic sorbents are used to recover 
oil. Sorbents are materials that tend to absorb or 
adsorb liquids. Peat, corn cobs, hay, and saw dust 
are some examples of natural organic sorbents, 
which tend to absorb 3–15 times their weight in 
oil. These are relatively inexpensive and readily 
available. They tend to absorb oil as well as water 
causing them to sink; moreover, they tend to be 
loose, hence they need to be packaged for their 
easy disposal (EPA 1999c).

Inorganic natural sorbents include clay, glass, 
vermiculite, volcanic ash, and wool. They absorb 
4–20 times their weight in oil and, like natural 
organic sorbents, are relatively inexpensive and 
readily available. Synthetic sorbents like poly-
urethane, nylon, and polyethylene can absorb 70 
times their weight in oil and can be cleaned and 
reused several times. Factors like rate of absorp-
tion, ease of application, and oil retention are 
considered while choosing sorbents for oil spill 
cleanup. Heavy oils have slower rate of absorp-
tion than light oils. Rate of absorption also var-
ies with the thickness of oil. Oil may be released 
from the pores of sorbents while recovering from 
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oil-saturated sorbents. Moreover, lighter oils 
tend to be released more easily than heavier oils. 
Blowers and fans are often used for application 
of loose sorbents. However, in windy conditions, 
application of clay and vermiculite is particu-
larly difficult. Also, clay and vermiculite are in-
jurious to health if inhaled as they spread in the 
surrounding area as dust (EPA 1999c; Al-Majed 
et al. 2012).

9.4.2  Chemical Approaches

Dispersants are mixture of surfactants and sol-
vents, which when sprayed on oil slick accelerate 
the rate of natural dispersion (EPA 1999a). They 
are capable of rapidly removing medium- and 
light-weight oil from the sea surface to the water 
column, wherein by the action of wave energy, 
oil slick breaks into minute droplets and gets di-
luted rapidly. Microbial action is at the oil–water 
interface—dispersion of oil into minute droplets 
increases the area of microbial colonization. Mi-
croorganisms degrade the oil droplets and prevent 
formation of water-in-oil emulsions. Dispersants 
are most effective when applied immediately 
after oil spill, before the evaporation of lightest 
components of oil. Wax and asphaltene content 
of the oil affect the manner of weathering, emul-
sification, and dispersion of oil in sea (Strøm-
Kristiansen et al. 1997). Therefore, knowledge 
of properties of spilled oil and how they change 
with weathering is an important factor for deter-
mining the use of dispersants (Chapman et al. 
2007). The state of sea and probable weather 
conditions in the approaching weeks after the oil 
spill also affect the success of oil spill cleanup by 
dispersants. Rough and windy seas tend to inhibit 
interaction of oil and dispersant, as they are often 
overwashed by waves. Thus, dispersants unable 
to interact with oil are washed or blown off into 
sea. Application of dispersants in calm conditions 
is effective only if the wave energy is predicted 
to increase with reasonable time period (Nedwed 
et al. 2006). Use of dispersants is generally dis-
couraged in unique ecological areas, such as Bal-
tic Sea, where sea is shallow and is characterized 
by low-water exchange and low salinity (35‰). 
Low salinity encourages increased solubility of 

surfactant and, therefore, the dispersant is less 
available to interact with oil (Chapman et al. 
2007). Efforts are currently active to increase the 
salt content of surfactant in order to reduce its 
solubility in sea water (George-Ares et al. 2001).

Close monitoring of economic implication 
of addition of dispersants has to be done before 
undertaking dispersant application. Spraying of 
dispersants may be decided against in areas close 
to aquaculture activities, where dispersant-taint-
ed oil may interfere with spawning of fish. Dis-
persant spraying is often undertaken to prevent 
potential damage to coastal amenities, intertidal 
marine life, and aquatic birds, even at the cost of 
potentially tainting fish stocks. Therefore, the de-
cision on whether dispersants should be applied 
or not has to be taken only after weighing care-
fully the cost effectiveness of the operation and 
conflicting priorities for protection of different 
resources from potential damage (ITOPF 2013).

Dispersants have been used with varying suc-
cess in real incidents. In case of M/V Red Seagull 
(1998) and Sea Empress (1996), successful use 
of dispersants was reported, whereas in case of 
Natuna Sea incident in Singapore Strait (2000), 
it was proved ineffective. In case of M/V Red 
Seagull, oil spilled was light to medium Arabian 
crude oil that was dispersed readily on applica-
tion of dispersants, whereas Nile Blend crude 
oil spilled in Natuna incident had high viscosity. 
Moreover, the weather conditions (calm weather 
and little wave energy) at Natuna oil spill further 
exacerbated the situation. Thus, it can be inferred 
that successful chemical dispersion results from 
accurate understanding of components of spilled 
oil, weather, and sea conditions (Chapman et al. 
2007).

Dispersants suffer from limitations and, hence, 
their use has to be carefully planned and judi-
ciously controlled. The effectiveness of disper-
sant application needs to be carefully examined 
and should be immediately stopped once it is no 
longer effective. Submerged flow-through sys-
tem using ultraviolet fluorescence spectrometry 
(UVF) and in situ florometry can be used to mon-
itor oil concentration and confirm visual observa-
tion (successful chemically dispersed oil yields 
a brown-colored plume) about  amenability of oil 
to chemical dispersion. Currently  dispersants are 
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claimed to be less toxic to marine microorgan-
isms than in past. During Deepwater Horizon 
blowout, more than 700,000 ga of dispersant 
Corexit was applied directly at the wellhead. Co-
rexit was reported to have increased the toxicity 
of oil by 52 times after 2 years of the incident 
(Rico-Martinez et al. 2013). The debate is still 
active about the perceived success of Corexit as 
oil spill response in Deepwater Horizon incident. 
Current research in this area should focus to en-
hance our understanding about functional inter-
action of dispersants with different components 
of oil and better technology to predict real-time 
information on oil removal from water surface as 
a result of dispersant application.

9.4.3  Biological Approaches

Biological approaches for biodegradation pri-
marily include bioremediation (biostimulation 
and bioaugmentation) which enhances the rate 
of natural biodegradation. Phytoremediation has 
been suggested as one of the biological approach-
es. As the name suggests, biodegradation is the 
conversion of complex compounds by biological 
agents (fungi, bacteria, and yeasts) into simpler 
compounds for obtaining energy and nutrients. 
Addition of nutrients, enzymes, and naturally oc-
curring or genetically modified microorganisms 
(GMOs) and application of phytoremediating 
plants are key biological approaches for oil spill 
cleanup. We will discuss bioremediation with 
reference to biostimulation and bioaugmentation.

Biostimulation
Biostimulation is the addition of growth-limiting 
nutrients and other cosubstrates to the contami-
nated environment for stimulating the growth of 
indigenous oil degraders. Biostimulation is one 
of the most environmentally safe methods for 
combating oil spills. Indigenous oil degraders 
generally subside on natural oil seeps and plant 
synthesis; however, the rate of biodegradation is 
slow (Fehler and Light 1970). In case of natu-
ral and anthropogenic oil spills, indigenous oil 
degrading bacteria are unable to degrade the oil 
due to limiting abiotic factors such as molecular 

oxygen, nitrogen, and phosphate concentrations 
in sea water. Therefore, P and N-based fertilizers 
are applied to alleviate nutrient limitation, which 
stimulates the growth of oil degrading bacteria. P 
and N fertilizers such as ammonium phosphate, 
nitrates, phosphates, and urea can be used. How-
ever, being highly soluble, they risk rapid dis-
solution and dispersion in open systems such as 
seas. Water soluble fertilizers are best applicable 
in low-energy fine-grained shorelines where 
water transport is limited (Nikolopoulou and 
Kalogerakis 2009). Thus, efforts are being made 
to provide a suitable alternative that can work on 
other conditions.

Oleophilic (oil-loving) and slow-release fertil-
izers have been suggested as other alternatives. 
Inipol EAP22 containing oleic acid, urea, and 
lauryl phosphate has been utilized for oil spill 
cleanup in the shoreline of Prince William Sound 
(Zhu et al. 2001). Inipol EAP22 was found to 
be effective in sandy beaches with coarse sedi-
ments and not with fine sediments due to its in-
ability in penetrating fine sediments (Sveum and 
Ladousse 1989). Inipol EAP22 suffers from at 
least three problems—oleic acid component con-
tributes as alternative carbon source, urea com-
ponent dissolves in water phase and is unavail-
able to microbes working at the oil phase, and 
toxicity of 2-butoxy-ethanol component in Inipol 
EAP22 (Ron and Rosenberg 2014). Polymerized 
urea and formaldehyde formulations have been 
used successfully to remediate oil spill in sandy 
beaches. However, they were found unsuitable in 
open seas where they tend to sink due to their 
high density.

Slow-release fertilizers provide continuous 
source of nutrients in oil-contaminated areas, 
overcome washout problems characteristic of 
intertidal environments, and forgo the need for 
frequent application of fertilizers. Slow-release 
fertilizers are soild formulations containing 
inorganic fertilizers coated with paraffin or veg-
etable oil. Customblen, a formulation of calcium 
phosphate, ammonium phosphate, and ammo-
nium nitrate, coated with vegetable oil has been 
used in oil spill cleanup in the shorelines of 
Prince William Sound along with Inipol EAP22 
with moderate success. Studies on slow-release 



136 S. Chatterjee

fertilizers indicate that rapid release is detrimen-
tal to the sustenance of microbes in the long run, 
and very slow release rates are unsuitable for 
maintenance of rapid biodegradation rates. The 
challenge that still remains is to design a slow-
release fertilizer whose release rates can be con-
trolled to allow optimal nutrient concentrations 
over longer periods of time in the marine envi-
ronment (Nikolopoulou and Kalogerakis 2009).

Some other exciting alternatives are: use 
of nitrogen-fixing, hydrocarbon-oxidizers and 
uric acid as a natural fertilizer. Nitrogen being 
a limiting factor in biodegradation following an 
oil spill, a strong selection for nitrogen-fixing, 
hydrocarbon-oxidizers is important. However, 
few reports exist that unequivocally demonstrate 
nitrogen fixation coupled with growth on hydro-
carbons larger than ethane. Consortia of bacteria 
degrading hydrocarbon through nitrogen fixation 
have been reported (Foght 2010). Azotobacter 
chroococcum isolated from oil-polluted site is 
currently the sole example of a marine nitrogen-
fixing, hydrocarbon-oxidizers microbe (Thavasi 
et al. 2006). Another option is addition of nutri-
ent amendments to the oil spill using thin-filmed 
minerals comprised largely of Fuller’s Earth 
Clay. Together with adsorbed N and P fertilizers, 
filming additives, and organoclay, clay flakes can 
be engineered to float on seawater, attach to the 
oil, and slowly release contained nutrients. Large 
amount of oil is converted in bacterial biofilm 
and there is significant reduction in alkane con-
tent (Warr et al. 2013).

Studies on uric acid, a biostimulant, during 
oil spill are rapidly gaining credence in scientific 
circles. Uric acid has low solubility in water, has 
adherence to hydrocarbons, is major nitrogen 
waste in animals, and is readily available as inex-
pensive commercially available fertilizer, guano 
(Ron and Rosenberg 2014). Many bacterial spe-
cies including Alcanivorax strains have been 
documented to use uric acid as a natural source 
of nitrogen (Knezevich et al. 2006). Uric acid has 
been suggested as a potential biostimulant for 
bioremediation of oil spills (Ron and Rosenberg 
2014).

Bioaugmentation
Seeding of microorganisms at the site of oil spill 
to enhance the oil biodegradation is called bio-

augmentation. Of particular interest to bioaug-
mentation are groups of microbes that utilize 
hydrocarbon as sole source of carbon and energy. 
Such microbes are called hydrocarbonoclastic 
bacteria. They include strains of Alcanivorax 
(Yakimov et al. 1998; Kostka et al. 2011), Cyclo-
clasticus (Dyksterhouse et al. 1995), Oleiphilus 
(Golyshin et al. 2002), Oleispira (Yakimov et al. 
2003), Thalassolituus (Yakimov et al. 2004), 
and Planomicrobium (Engelhardt et al. 2001). 
Alcanivorax sp. grows only on n-alkanes and 
branched alkanes as carbon and energy source. 
Similarly, Cycloclasticus strains grow on aro-
matic hydrocarbons such as naphthalene, phena-
nanthrene, and anthracene while Oleiphilus and 
Oleispira sp. grow on aliphatic hydrocarbons, 
alkanoles and alkanoates (Head et al. 2006).

The predominant growth of Alcanivorax after 
biostimulation in oil-impacted marine environ-
ment has been shown by conventional methods 
and also proved by 16S rRNA gene sequencing 
studies (Syutsubo et al. 2001; Roling et al. 2002, 
2004). It has been suggested that growth is due to 
the higher ability of this genus to use branched-
chain alkanes. Alcanivorax borkumensis relies 
exclusively on alkanes as energy source, thus it is 
unsurprising that it has multiple alkane-catabolism 
pathways including alkane hydroxylases (AlkB1 
and AlkB2) and 3 cytochrome P450-dependent 
alkane monooxygenases (Schneiker et al. 2006). 
In cold marine environments, Oleispira sp. is the 
dominant alkane-degrading microbe associated 
with oil spills (Coulon et al. 2007) rather than 
Alcanicorax sp., whereas in temperate environ-
ments, Thalassolituus spp. are the dominant spe-
cies (McKew et al. 2007). Generalists (microbes 
capable of using alkanes and/or polyaromatic hy-
drocarbon as well as nonhydrocarbons) such as 
Acinetobacter (diverse array of alkane hydroxy-
lases capable of degrading wide array of short- 
and long-chain alkanes is present), Roseobacter, 
Marinobacter, Pseudomonos, and rhodococcus 
sp. are important constituents of hydrocarbon-
degrading community. Although Cycloclasticus 
sp. is the leading polycyclic aromatic hydro-
carbon (PAH) degrader, Vibrio, Marinobacter, 
Microbacterium, Pseudoalteromonas, Halomo-
nas, and others contribute significantly to PAH 
degradation (McGenity et al. 2012). In estuarine 
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waters enriched with naphthalene, Cycloclasticus 
and Pseudomonas were found to be abundant, 
but Pseudomonas appeared in the latter stages 
of the enrichment (Niepceron et al. 2010). It is 
envisaged that though there is single carbon and 
energy source, both species are able to coexist 
presumably, because not all PAHs are oxidized to 
CO2 and H2O by a single organism; intermediate 
oxidation products are formed, which are utilized 
by other microbes as carbon and energy source 
(McGenity et al. 2012). One of the lesser appre-
ciated microbes in the context of oil spill biore-
mediation are fungi found in marine mats (Allen 
et al. 2009) and many of them are also reported 
to be salt adapted (Valentin et al. 2006), which 
may play a major role in degradation of coastal 
PAH (Frey-Klett et al. 2011). Filamentous fungal 
networks provide the so-called “fungal highway” 
of continuous liquid films in which chemoattrac-
tants provide a gradient for directional transport 
of hydrocarbon-degrading bacteria to the pollut-
ant (Furuno et al. 2010). High molecular weight 
PAHs strongly adsorb minerals and associated 
organic matter and, thus their bioavailability de-
creases. Microbes often circumvent this problem 
by either colonizing on the surface of minerals 
or producing biosurfactants (biological surface 
active agents with dual hydrophobic and hydro-
philic moieties), which minimize the diffusion 
time and enhance bioavailability and desorption 
of PAHs (Guerin and Boyd 1992; Perfumo et al. 
2010). A. borkumensis produces surfactants that 
increase the bioavailability of PAHs for other mi-
crobes. Though it does not use the PAHs as car-
bon or energy source itself, the biosurfactants so 
produced may be helpful in reducing the stress 
due to accumulation of toxic PAHs (McGenity 
et al. 2012). Knowledge about cooperative be-
havior of microbes in establishing self-sufficient 
community, which is pivotal in biodegradation of 
petroleum fractions, will help choosing the mi-
crobe or consortium of microbes for bioaugmen-
tation.

In a real-life incident of oil spill, it is essential 
to know which type of microbe is best suited for 
bioaugmentation. The above discussion throws 
some light on potential candidates for bioaug-
mentation, however, to unequivocally decide on 

the right candidate, it is essential to know more 
about microbial interactions and isolate more of 
the still uncultivable marine bacterial species for 
oil spill bioremediation. Conventional methods 
to cultivate marine bacteria have been unsuccess-
ful, since many of them live as oligotrophs and 
do not adapt to high carbon-containing media. 
“Extinction culturing” has been used to isolate 
hydrocarbon-degrading marine bacteria. In ex-
tinction culturing, microorganisms are grown in 
natural sea water as medium at a density rang-
ing from 1 to 10 cells per tube. The recovery of 
bacteria by this method is 2–60 % in comparison 
to 0.1 % obtained from conventional culturing 
methods (Button et al. 1993). Several culture-
independent rRNA based approaches such as 16S 
rRNA gene (rDNA) clone libraries, fluorescence 
in situ hybridization (FISH) with rRNA-targeted 
oligonucleotide probes (Pernthaler et al. 2002), 
and denaturing gradient gel electrophoresis 
(DGGE) of PCR-amplified rDNA (Baker et al. 
2003) have revealed a surprising diversity in ma-
rine bacteria (Harayama et al. 2004). It has been 
suggested that uncultivability of such bacteria in 
axenic culture is due to the unavailability of sec-
ondary factors (metabolites and/or signaling mol-
ecules), which are produced by other microbes. 
Metabolites such as biosurfactants, N-acyl ho-
moserine lactones, and cyclic AMP (cAMP) have 
been documented to increase the cultivability 
of bacteria. Extracellular polysaccharides from 
Rhodococcus rhodochrous function as biosur-
factant and encourage the growth of Cycloclas-
ticus sp. (Iwabuchi et al. 2002). The addition of 
N-acyl homoserine lactones helps in cell-to-cell 
communication in Gram-negative bacteria and 
brings enhanced cultivability of marine bacteria 
(Bruns et al. 2002). Presence of cAMP (cyclic 
adenosine monophosphate) also increases the re-
suscitation (recovery of cultivability) of starved 
marine bacteria (Bruns et al. 2002). Anaerobic 
degradation of hydrocarbons can take place in 
environments where oxygen concentration is 
often limiting such as mangroves, aquifers, and 
sludge digesters. Despite the absence of oxygen 
for the activation of hydrocarbons in anaerobic 
species, diverse metabolic pathways exist which 
help petroleum hydrocarbon degradation. These 
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species utilize varied terminal electron acceptors 
such nitrate, sulfate, or Fe (III) in place of oxygen 
(Peixoto et al. 2011). Phototroph–heterotroph in-
teractions are also significant in the context of 
degradation of petroleum fractions. Many algae 
produce hydrocarbons and nearly all produce 
volatile hydrocarbons, isoprene which may be 
essential in the sustenance of hydrocarbon de-
graders in absence of oil spill (Shaw et al. 2010; 
McGenity et al. 2012), thus it is unsurprising that 
Alcanivorax spp. are often associated with micro- 
and macroalgae (Green et al. 2004; Radwan et al. 
2010). Moreover, PAHs tend to strongly adsorb 
to the cell surface of marine microalgae encour-
aging the growth of associated microbes (Binark 
et al. 2000). Algae produce O2 and encourage 
the growth of hydrocarbon degraders, which in 
turn produce CO2 and reciprocally encourage 
the growth of algae. Algal biosurfactants also 
contribute to the emulsification of hydrocarbons 
(Cohen 2002).

Successful bioaugmentation requires the seed-
ing of microbes best suited to degrade the spilled 
oil. Choice of the microbes is entirely based on 
the type of oil, type of primary oil response un-
dertaken, and characteristics of the area under the 
oil spill. Most of the organisms used for bioaug-
mentation are obtained from enriched cultures 
from previously contaminated sites or similar 
strains enriched in laboratories. Bioaugmenta-
tion has not been very effective in cleaning up 
oil spills. Some of the reasons for this failure 
are: poor survival or low activity of laboratory 
strains because of sudden exposure to environ-
mental stress, absence of mutualistic interspe-
cies interaction that improves bioavailability and 
biodegradation, biomass-limiting nutrients (N 
and P), and predation by protozoa. Moreover, in 
bioremediation strategies, the focus is on biodeg-
radation strains and use of a single species for 
this purpose. Use of microbial consortium with 
complementary catabolic pathways and the abil-
ity to adapt to local environment, disperse, and 
increase the bioavailability of the pollutants has 
been proved to be more successful in the biore-
mediation of simulated oil spills (Gallego et al. 
2007; Jacques et al. 2008).

Phytoremediation
Wetlands serve as distinct ecological areas with 
high biodiversity and productivity and which 
provide protection agencies against shoreline 
erosion (Mitsch and Gosselink 1986). Marshy 
vegetation is easily damaged by fresh light oils 
and oils tend to coat prop roots of mangroves 
which are essential for their respiration. Man-
groves require decades to grow hence, once dam-
aged they cannot be easily replaced. In light of 
the above discussion, it is of utmost importance 
to save wetlands from detrimental effects of oil 
spills (EPA 1999b). Phytoremediation is one of 
the bioremediation tools that can be utilized for 
this purpose. It is defined as the employment of 
plants and/or associated microbes to eliminate, 
contain, or render harmless environmental pol-
lutants in situ. This strategy is environmentally 
friendly, cost effective, and is proved to be effec-
tive for heavy metals, radionuclides, and organic 
pollutants (Cunningham and Ow 1996; Cunning-
ham et al. 1996; Dzantor et al. 2000; Njoku and 
Oboh 2009). However, in the context of oil spill 
cleanup, phytoremediation is best suited for the 
remediation of oil-contaminated marshes and 
shorelines and not for open systems such as seas. 
Plants through their roots oxygenate their rhizo-
sphere and exude organic compounds, which ul-
timately stimulate the activity, density, and diver-
sity of microbes in the rhizosphere. Plants have 
also been documented to initiate fungal degra-
dation of PAHs through rhizosphere effect (Mc-
Genity et al. 2012). Studies on salt marsh grass, 
Sparta patens indicate its potential to phytoreme-
diate oil spills. S. Patens could survive 320 mg 
oil/g dry sediment and, at oil doses between 40 
and 160 mg/g, the oil degradation was found to 
be significantly higher than in control samples 
(Lin and Mendelssohn 2008). Rhizosphere-asso-
ciated bacteria of mangroves have been studied 
and are found to promote plant growth as well as 
oil degradation (do Carmo et al. 2011). Glycine 
max (soyabean) was reported to grow in oil-con-
taminated soil and also enhance the degradation 
of crude oil. It was reported to reduce the oil tox-
icity as observed by the growth of weeds in soils 
supplemented by G.max and their absence where 
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no G.max was planted (Njoku and Oboh 2009). 
In a study, Liu et al. found that typical ornamental 
species including Gaillardia aristata, Echinacea 
purpurea, Fawn ( Festuca arundinacea Schreb), 
Fire Phoenix (a combined F. arundinacea), and 
Medicago sativa L. can be adopted in the phy-
toremediation of oil-contaminated soil. Since 
these do not enter the food chain and provide 
ornamental cover to the revegetated land, they 
can serve as better alternative than using crops 
for phytoremediation of petroleum hydrocarbons 
(Liu et al. 2012). Phytoremediation might be 
most effective during the vegetative growth stag-
es as greater abundance of hydrocarbon-degrad-
ing bacteria containing alkB and tol genes was 
observed at these stages in the phytoremediating 
species, Phragmites australis (Nie et al. 2011). A 
greater understanding of rhizosphere-associated 
bacteria and need of bioaugmentation for in situ 
bolstering of hydrocarbon-degrading bacteria are 
required to chart out potential candidates for the 
phytoremediation of oil spills in wetlands and 
coastal zones.

Role of genetically modified organisms
The use of GMOs, especially designed for petro-
leum hydrocarbon degradation, has been given 
serious consideration. However, due to the com-
plex nature of oil and accompanied change in its 
components due to weathering and multifaceted 
and interconnected metabolic pathways integral 
to degradation of petroleum hydrocarbon, this 
field has remained in infancy. Moreover, GMOs 
do not find public acceptance and there are only 
few takers of such organisms. Regulatory bodies 
across the world have strong reservations against 
GMOs and the recent decline in funding of biore-
mediation research projects has also further im-
pacted this field (Fox 2011). Thus, only few stud-
ies are currently available. Cycloclasticus strain 
A5 is capable of growing on naphthalenes, diben-
zothiophenes, phenanthrenes, and fluorenes with 
or without alkyl substitution. The genes encoding 
the a and b subunits of an iron–sulfur protein, a 
ferredoxin and a ferredoxin reductase, respec-
tively termed phnA1, phnA2, phnA3, and phnA4 
were isolated from it. Transformed Escherichia 
coli cells containing the phnA1, A2, A3, and A4 

genes were able to convert phenanthrene, naph-
thalene, methylnaphthalene, dibenzofuran, and 
dibenzothiophene to their hydroxylated forms. 
Furthermore, these E. coli cells also transformed 
biphenyl- and diphenylmethane, which are ordi-
narily the substrates of biphenyl dioxygenases 
(Kasai et al. 2003; Harayama et al. 2004). Exhibi-
tion of such broad substrate specificity can make 
Cycloclasticus the key player in oil-contaminated 
sea water (Harayama et al. 2004). Bacteriophages 
offer steady supply of nutrients needed for bac-
terial hydrocarbon degradation through phage-
mediated biomass turnover. Phages, together with 
various mobile genetic elements, are also impor-
tant tool for dissemination of valuable genetic 
material, including hydrocarbon-degradation 
genes and the generation of new catabolic path-
ways via lateral gene transfer (Herrick et al. 1997; 
Top et al. 2002). Thus, studies based on phage-
mediated gene transfer can also be targeted as po-
tential tool for transfer of genes into indigenous 
species. PAH detoxification can also be achieved 
by laccase enzyme. Taking this into account, lac-
case from Myceliophthora thermophila (MtL) 
was successfully expressed in Saccharomyces 
cerevisiae with the help of directed evolution 
in an attempt to bioremediate petroleum spills 
(Bulter et al. 2003). Often, the role of GMOs in 
bioremediation is considered as a lost cause due 
to steep impediments in this field. However, as 
Ananda Chakraborty says “oil spills are old love” 
(Fox 2011), this field is not dead yet; synthetic 
biology approaches are being made to understand 
the natural pathways better. Without this knowl-
edge, it is impossible to tweak the existing under-
performing metabolic pathways in the potential 
candidates for bioremediation (Fox 2011).

9.5  Perspective

The most crucial phase after an oil spill is the 
first few days. Oil if not dispersed, reclaimed, or 
evaporated, tends to sediment to the benthic re-
gion where it can remain for decades. Therefore, 
it is imperative that resources, norms, and logis-
tics necessary for the in situ trial should be readi-
ly accessible to enable a quick decision to initiate 
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primary and secondary oil spill response. Use 
of conventional oil spill response is not always 
advisable as in the case of Deepwater Horizon 
BP oil spill, application of chemical surfactant, 
Corexit increased the toxicity of oil by 52 times 
(Rico-Martinez et al. 2013). Bioremediation does 
not remove toxic compounds from one to another 
environment, rather it converts them into simpler 
compounds that enter the biogeochemical cycle. 
Thus, bioremediation that is often visualized as 
a primary polishing step after conventional me-
chanical cleanup should be reconsidered after 
carefully evaluating its utility and potential harm 
on case by case basis (Atlas and Hazen 2011).

Intelligent application of genomic and molec-
ular tools in understanding microbial community 
metabolic networking will be influential in un-
raveling hydrocarbon degradation in the context 
of petroleum hydrocarbon degradation. Use of 
enzymatic remediation has also been suggested 
as a suitable alternative to bioremediation, since 
it does away with the risk of introduction of exot-
ic or GMOs to new environments. The use of ex-
tremozymes in cold or hypersaline environments 
is beneficial, since it does not suffer microbial 
competitiveness (Peixoto et al. 2011). Genome 
sequencing of A. borkumensis showed the pres-
ence of a membrane protein that brings iron into 
the cell (Schneiker et al. 2006). Information such 
as these can translate failure into success when 
we know beforehand the ingredients of the cock-
tail needed to stimulate these oil degraders. After 
all at stake are our habitat and future, in order to 
save them, we have to be ever vigilant in pre-
venting pollution and committed in our pursuit 
of a greener and cleaner technology that is eco-
friendly, useful, as well as cost effective.
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Abstract

Bioelectrochemical systems (BES) have been employed for various ap-
plications in recent years including energy production, wastewater treat-
ment, electrosynthesis and desalination. The present chapter emphasizes 
the advantages and potential applications of BES for the remediation of 
recalcitrant pollutants present in various types of wastewaters. Bioelec-
tricity generated from the treatment of these wastewaters is an additional 
energy output from the process along with the possible environmental so-
lution. Since, the treatment mechanism of BES is combination of both 
microbial and electrochemical reactions, the process can be termed as mi-
crobial electroremediation. The current chapter depicts the principles of 
bioelectrochemical remediation, possible mechanisms at anode and cath-
ode. Further, a comprehensive overview on different types of wastewater 
as well as nutrients, pollutants and toxic substances, utilized as electron 
donors or acceptors for their treatment, is discussed in detail under differ-
ent categories. Microbial electroremediation is still an emerging field of 
science aimed at harnessing energy from wastewater treatment and it has 
a potential to boon the waste remediation with net positive energy gain.

10.1  Introduction to Bioelectro-
chemical Systems

Globally, huge amount of capital and resources 
are being spent for treating trillions of litres of 
wastewater annually, consuming significant 
amounts of energy. The new strategies of envi-
ronmental management are focused specifically 
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on the energy-efficient or energy-gaining pro-
cesses for the waste remediation. Bioprocess en-
gineering certainly comes under environmentally 
benign treatment strategies. Bioelectrochemical 
systems (BES) are multidimensional systems that 
can accomplish significant change in wastewa-
ter treatment by considering them as renewable 
energy based repository units (ElMekawy et al. 
2014). Microbial fuel cells (MFCs) and microbial 
electrolysis cells (MECs) are two examples of 
BES, which are rapidly developing towards envi-
ronmental sustainability. Conventional treatment 
processes cannot handle some of the wastewa-
ter components, especially coloured compounds 
(dyes), complex organic and inorganic chemicals, 
toxic substances, etc. due to the metabolic limi-
tations of the microbes. Similarly, the existing 
electrochemical process also has some limitations 
in treating this type of waste in terms of energy 
input and additional waste generation. At this 
point, BES combines both biological and electro-
chemical processes for waste remediation along 
with the energy generation in terms of electricity, 
hydrogen or other useful chemicals. This multi-
faceted application of BES has been attracting 
several researchers across the globe. Figure 10.1 
shows the increasing interest in this field of re-
search in terms of publications from the past de-
cade. Combination of multiple disciplines, viz. 
environmental science, biotechnology, microbi-
ology, electrochemistry, etc., involved in the de-
velopment of this particular area. Microbial elec-
troremediation is aimed at the use of biological 
energy generated during BES operation for the 
extended treatment of wastewaters and specific 
pollutants present in wastewater. Various types of 
bioreactors have been designed and operated in 
the literature for the targeted processes. Several 
microbial species are reported in such biopro-
cesses for their specific function towards waste/
pollutant treatment. In this chapter, basic princi-
ples of microbial electroremediation processes at 
both the electrodes (anode and cathode) of BES 
are discussed in detail. Further to this, different 
types of wastewater used in BES are discussed 
followed by a comprehensive discussion on the 
specific pollutant, viz. nutrients, metals, dye, re-
moval and microbial desalination processes.

10.2  Basic Mechanisms of BES

Energy generation in microbial metabolism, in-
cluding both anabolism and catabolism, is com-
bination of fermentation (substrate oxidation) and 
respiration (reduction) processes. This process 
requires an electron source (substrate) which falls 
in the metabolic flux of the microbe (can be uti-
lized by the microbe) and a strong/weak electron 
sink (acceptor) to complete the electron transport 
chain. Separating these two processes (fermenta-
tion and respiration) by an ion permeable mem-
brane (optional) in a system equipped with elec-
trodes (artificial electron acceptors) creates an 
environment to harness the energy generated by 
the microbe in the form of current density, against 
the potential difference generated between these 
two processes (Venkata Mohan et al. 2014a). The 
microbes utilize the available substrate (fermen-
tation) generating the reducing equivalents [pro-
tons (H + ) and electrons (e−)] at anode. Protons are 
transported to cathode through the solution elec-
trode interface across ion selective membrane, 
generating a potential difference between anode 
and cathode against which the electrons will flow 
through the circuit (current) across the external 
load (Pant et al. 2012). The reducing equivalents 
generated during BES operation have multiple 
applications in the energy generation as well as 
waste remediation areas. Broadly, BES applica-
tion can be classified as a power generator, waste-
water treatment unit and system for the recovery of 
value-added products. Reducing equivalents gen-
erated from substrate metabolism gets oxidized in 
presence of an electron acceptor at a physically 
distinct component of BES (cathode) and results 
in power generation. Alternatively, when the 
waste/wastewater functions as an electron donor 
or acceptor, its remediation gets manifested either 
through anodic oxidation or cathodic reduction 
under defined conditions (Pant et al. 2010). Very 
recently, reduction of some substrates or carbon 
dioxide (CO2) as electron acceptors during BES 
operation is also being reported, increasing its 
commercial viability (Srikanth et al. 2014). The 
current chapter fully focuses on the remediation 
aspects of BES with respect to different wastewa-
ter, specific pollutants and desalination.
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10.2.1  Anodic Mechanism

Anode chamber plays a pivotal role in treatment 
of wastewater, mainly through the microbial me-

tabolism and partly due to the induced electro-
chemical oxidation (EO) mechanism. Apart from 
EO, direct and indirect anodic oxidation (DAO 
and IAO) mechanisms are two possible ways 

a

b

Fig. 10.1  Scopus search depicting the prominence of re-
search on bioelectrochemical treatment of wastewater in 
BES. a Number of articles yearwise. b Various sciences’ 

contribution in BES showing it as pluridisciplinary re-
search area. (Keywords for search: bioelectrochemical 
systems OR microbial fuel cells AND wastewater treat-
ment on 19 May 2014)
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described for the pollutants treatment at anode 
of BES (Venkata Mohan and Srikanth 2011). 
Substrate degradation in the anode chamber is 
mainly influenced by the oxygen in the cathode 
chamber acting as terminal electron acceptor 
(TEA). The strong electron acceptor conditions at 
cathode enhances the electron flow in the circuit 
and in turn their release from the microbial me-
tabolism of wastewater. The presence of oxidiz-
ing agents (which gain electrons) like chlorine, 
bromine and ozone increases the potential dif-
ferences between electrodes and thus the redox 
potential of the system which in turn favours EO, 
resulting in both pollutant as well as carbon re-
moval. In general, pollutants are adsorbed on the 
anode surface and get destroyed by the anodic 
electron transfer reactions during DAO, while 
during the IAO, these pollutants will be oxidized 
by the oxidants (primary and secondary) formed 
electrochemically on the anode surface under in 
situ biopotential. DAO facilitates formation of 
primary oxidants which further react on the anode 
yielding secondary oxidants such as chlorine di-
oxide and ozone, which will have significant pos-
itive impact on treatment, especially for colour 
removal efficiency. Furthermore, the reactions 
between water and free radicals near the anode 
yields secondary oxidants, viz. nascent oxygen, 
free chlorine and hydrogen peroxide, hypochlo-
ric acid, etc. which can also help in colour/organ-
ic oxidation (Venkat Mohan and Srikanth 2011). 
On the other hand, these pollutants can also act as 
mediators for electron transfer between microbes 
and anode which helps in their reduction with si-
multaneous power enhancement.

Initially, the simple organic fraction of waste 
will be oxidized at anode through microbial me-
tabolism releasing reducing equivalents [e− and 
H + ], which interact with the water molecules 
under in situ biopotential forming hydroxyl radi-
cals (Israilides et al. 1997; Venkat Mohan and 
Srikanth 2011). These hydroxyl radicals will 
get adsorbed onto the active sites of anode and 
initiates DAO, either alone or in combination 
with free Cl−, (chloro hydroxyl radical) if pres-
ent in wastewater. Oxygen and water molecules 
react with the radicals adsorbed on the electrode, 
forming secondary oxidants (O3, ClO2 and H2O2) 

which initiate the IAO process. As the concen-
tration of primary oxidants increases, the forma-
tion of secondary oxidants also increases in the 
electrolysed solution (Israilides et al. 1997; Wilk 
et al. 1987). These oxidants also have a quite long 
life which can also diffuse away from the elec-
trodes to the solution and enhance the IAO pro-
cess (Israilides et al. 1997). Efficient cathodic re-
duction reaction also can influence the substrate 
degradation at anode by inducing the oxidation 
reaction (induced EO) at anode under in situ de-
veloped bio-potential.

General mechanism of oxidants formation:

 (10.1)

 (10.2)

 (10.3)

where ‘O’ is oxidant, ‘O* is excited oxidant’, 
‘E[]’ is the electrode with active site and ‘S’ is 
the substrate.

Formation of primary oxidants:

 

(10.4)

 

(10.5)

 

(10.6)
Generation of secondary oxidants:

 
(10.7)

 

(10.8) 

(10.9)

 O e  O*−+ →

[ ]O* E  []  E O*+ →

[ ]S E O*  S O* []E+ → − +

[ ]2H O E  Cl E ClOH H 2e− − + −  +→ ++ +

[ ]
2

2 2

H O E ClOH Cl
Cl E  O 3H e

− −

+ −

+ +
→ + + +


+



[ ]C E ClOH  E  CO H Cl e− + − −  + → + + + +

[ ]
2 2

 
2 

H O E ClOH Cl
E  ClO 3H 2Cl e

−

+ − −

  + +
→ + + + +

[ ]2 3O  E OH  E  O H e− + −+ → + +  +

[ ]  
2 2 2 H O E OH  E  H O H e− + −  ++ + +→



14910 Bioelectrochemical Systems (BES) for Microbial Electroremediation

10.2.2  Cathodic Mechanism

Similar to anode, cathode is also involved in ef-
fective remediation of waste streams and pol-
lutants such as azo dyes, nitrobenzene, nitrates, 
sulphates etc. Hypothetically, it can be assumed 
that, these pollutants act as terminal electron ac-
ceptors at cathode to make the electrical circuit 
closed in absence of oxygen. However, their 
function as electron acceptor is based on the ther-
modynamic hierarchy. Unlike anode, cathode 
chamber can be maintained under different mi-
croenvironments (aerobic, anaerobic and micro-
aerophilic) to increase the treatment efficiency 
based on the nature of pollutant (Venkat Mohan 
and Srikanth 2011; Srikanth et al. 2012). Gener-
ally, oxygen is considered as the TEA at cathodes 
but in biocathodes, microorganisms will be used 
as the catalyst for the terminal reduction reac-
tion. The biological redox tower shows a wide 
range of TEA for the possible cathodic reduction 
reactions. Depending on the terminal electron 
acceptors adopted at cathode, they can be clas-
sified as aerobic and anaerobic biocathodes (He 
and Angenent 2006). However, the efficiency of 
treatment as well as energy output vary among 
the microenvironments studied.

In the case of aerobic biocathode operation, 
aerobic oxidation process undergoing in the cath-
ode chamber results in higher substrate removal. 
Consumption of H + and e− during the aerobic 
metabolic process (along with oxygen as TEA) 
will be higher and this in turn helps in additional 
substrate removal efficiency. Manifestation of 
gradual substrate oxidation at anode in response 
to the cathodic function facilitates the mainte-
nance of cell potential for longer periods and this 
also helps in increasing the treatment efficiency 
(Srikanth and Venkat Mohan 2012). Multiple 
treatment processes undergoing simultaneously 
in the system initiates the bioelectrochemical re-
actions that result in increased pollutant removal. 
Oxygen as terminal electron acceptor encour-
ages the release of hydroxyl (OH−) ion at cathode 
and increases the formation of oxidation species 
(Fig. 10.2). Formation of oxidation species and 
radicals at cathode under biopotential increases 
the possibility of other pollutant removal at cath-

ode (Aulenta et al. 2010). The oxidizing species 
also react with primary cationic species, viz. 
Na + and K + , under biopotential leading to their 
removal as salt. Biocarbonates will be formed 
from the reaction between CO2 (from air sparg-
ing or aerobic metabolism) and water which 
further reacts with the cationic species form-
ing respective salts. These salts can also act as 
buffering agents (Eqs. 10.10–10.12) decreasing 
the chances of strong redox shifts (pH changes) 
during constant reduction reactions as well as the 
formation of oxidizing species. The possibility of 
salt removal at BES cathode under in situ bio-
potential through salt splitting mechanism was 
depicted in Eqs. 10.13 and 10.14.

 

(10.10)

 
(10.11)

 

(10.12)

where ‘c’ is cationic species and ‘a’ is anionic 
species

 

(10.13)

 

(10.14)

Maintenance of cathodic pH is very crucial to sus-
tain the microbial activity at cathode, in spite of 
continuous reduction reactions. The in situ bicar-
bonate buffering mechanism formed at cathode 
helps to overcome this drop in cathodic pH which 
is essential in continuing the reduction reaction 
as well as maintaining the metabolic activities of 
microbes. Physiologically favourable redox con-
ditions in the cathode chamber support the rapid 
metabolic activities of aerobic consortia, thus 
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Fig. 10.2  Schematic 
illustration of the possible 
bioelectrochemical reac-
tions happening at anode 
and cathode during BES 
operation (Venkata Mohan 
and Srikanth 2011)
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resulting in higher substrate removal (Mahmoud 
et al. 2014; Torres 2014).

Similarly, the anaerobic biocathode chamber 
also supports the reduction reactions which help 
in the removal of pollutants and toxic compo-
nents of wastewater, especially when they act 
as electron acceptors. Instead of oxygen, other 
substances like nutrients, viz. nitrogen, sulphur, 
and metal ions, viz. iron, manganese and chro-
mium, will act as TEAs in the case of anaerobic 
biocathode. This helps in the removal of those 
toxic substances from the wastewater along 
with power generation (Clauwaert et al. 2007; 
Hamelers et al. 2010; Huang et al. 2011). Both 
the anode and cathode chambers function as an-
aerobic treatment units in this case except for the 
variation that the presence of electrodes in each 
chamber and connected in the circuit across an 
external resistance/load. Generally, the biopoten-
tial maintenance in this type of operation will be 
very low due to the fact that the microbes in both 
chambers follow the similar metabolic function 
and compete as electron donors, instead of one 
acting as acceptor. This situation will not allow 
the system to carry out the induced oxidation 
reactions. However, the strong reduction condi-
tions prevailing in both the chambers support the 
substrate removal. When the wastewater contains 
a specific pollutant or component, viz. metal ions 
(Fe2 + , Mn2 + ), dyes, nitrates, sulphates, etc., 
which can act as an electron acceptor, treatment 
efficiency will increase along with the power 
output.

On the other hand, the microaerophilic en-
vironment at cathode switches between aerobic 
and anaerobic microenvironments. This has an 
advantage over aerobic and anaerobic biocathode 
operations, especially in wastewater treatment 
sector. Some pollutants like azo dye need both 
the environments for complete mineralization. 
The anaerobic condition helps in splitting the azo 
bond, while the aerobic condition helps in min-
eralization of dye metabolites (Venkata Mohan 
et al. 2013). The lower DO levels maintained at 
cathode during this operation helps in initiating 
electrochemical oxidation reactions as well as 
maintaining strong reduction reactions. The sur-
vival of facultative microbes which can carry out 

both metabolic functions will increase the treat-
ment efficiency (Srikanth et al. 2012).

10.3  Merits of BES in Microbial 
Electroremediation

The BES function as wastewater treatment unit 
has been gaining prominence more recently due 
to the higher efficiency of waste remediation 
compared to conventional anaerobic treatment 
process (Velvizhi and Venkata Mohan 2011; Mo-
hanakrishna et al. 2010a). The principle of bio-
electrochemical treatment (BET) relies on the fact 
that electrochemically active microorganisms can 
transfer electrons from a reduced electron donor 
to an electrode and finally to an oxidized electron 
acceptor generating power (Pant et al. 2013; Ven-
kata Mohan et al. 2014b). Coupling of bioanode 
to a counterelectrode (abiotic/biotic cathode) will 
have positive influence on overall wastewater 
treatment efficiency along with energy recov-
ery, which has to be tapped. The possibility of 
integrating diverse components, viz. biological, 
physical and chemical components, during BES 
operation provides an opportunity to initiate 
diverse reactions such as biochemical, electro-
chemical, bioelectrochemical, physicochemical, 
etc. which are cohesively termed as bioelectro-
chemical reactions. In situ generated biopotential 
helps in the enhancement of the degradability of 
different pollutants in both the anode and cathode 
chambers. Formation of oxidants and reactive 
species like OH−, O−, etc. is an added advantage 
of BES over conventional treatment systems, es-
pecially for the treatment of complex wastewater 
streams (Israilides et al. 1997; Mohanakrishna  
et al. 2010a). Sometimes the pollutants/compo-
nents of wastewater themselves act as mediators 
in electron transfer. For instance, elemental sul-
phur present in the wastewater acts as a media-
tor at anode and converts itself to sulphate which 
is the easier form for degradation (Dutta et al. 
2009). Similarly, azo dyes act as mediators and 
decolorize during reduction (Mu et al. 2009a) and 
estrogenic compounds get oxidized in BES sys-
tem (Kiran Kumar et al. 2012). BES is also prov-
en for considerable reduction of toxicity, colour 
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and TDS from wastewater, apart from carbon 
content (Mohanakrishna et al. 2010a; Pant et al. 
2012; Venkata Mohan et al. 2014). Application 
of BES was also extended to treat solid waste, as 
well as toxic aromatic hydrocarbons under in situ 
biopotential (Venkata Mohan and Chandrasekhar 
2011). Studies related to the mechanism of pol-
lutant reduction and their role in electron transfer 
will give a spectrum of practical feasibility of this 
technology for the sustainable removal of toxic 
pollutants.

10.4  Wastewater Treatment

The nature of the substrate is regarded as one of 
the most important biological factors that can 
influence the treatment efficiency of BES, thus 
affecting the electron recovery. BES can utilize 
a wide range of substrates as electron donors/
acceptors, including inorganic and organic mol-
ecules. However, the efficiency of electron re-
covery depends on the oxidation state of the elec-
tron donor and it’s ratio to the microbe that can 
oxidize it. Among the simple substrates, glucose 
and acetate are most widely used anodic fuels but 
other simple substrates, viz. sucrose, starch, bu-
tyrate, dextran, peptone, ethanol, etc. were also 
evaluated in BES, with a prime motto of power 
generation. Apart from these simple substrates, 
BES also depicted versatility in utilizing a wide 
range of simple to complex organic wastes. Waste 
generated from different origins, viz. industries, 
commercial areas, residential areas, etc. were 
considered as potential electron donors in BES. 
The waste having higher biodegradability such 
as domestic wastewater, dairy based wastewater, 
food wastewater, vegetable waste, etc. will have 
good power generation capacity, while the indus-
trial wastewater having low biodegradability will 
depict lower power output. Still wastewater is a 
potential substrate for MFC because of its dual 
advantages of converting negative valued waste 
into bioenergy.

10.4.1  Highly Biodegradable 
Wastewater

The characteristics of wastewater vary based on 
the raw materials used as the source for its gen-
eration. Domestic wastewater is considered to be 
simple and highly biodegradable in nature with 
low substrate load and hence its treatment in BES 
is highly efficient and faster but the power gen-
eration lasts only for few hours (Venkata Mohan 
et al. 2009a). Dairy wastewater rich in milk-based 
waste components such as lactate, proteins, etc. 
is also simple in nature and depicted higher treat-
ment efficiency (Venkata Mohan et al. 2010a). 
Similarly, kitchen waste, food waste, vegetable 
waste, cheese waste, potato wastewater, etc. 
comes under highly biodegradable wastewater 
(Pant et al. 2010; ElMekawy et al. 2013). Waste-
water from these sources mainly contains a lot of 
organic carbon in the form of carbohydrates and 
proteins, which can be easily degraded by almost 
all the bacteria. The energy gain from this type of 
wastes is also very high along with higher treat-
ment efficiency. Moreover, microbes can also 
function effectively under higher organic loading 
rates this type of wastewaters, that avoids the ne-
cessity of feed dilution. Various types of biode-
gradable wastewater used in BES including their 
treatment efficiency are depicted in Table 10.1.

10.4.2  Complex/Low Biodegradable 
Wastewater

On the other end, BES can also handle highly 
complex and low biodegradable wastewater such 
as distillery-based wastewater, pharmaceutical 
wastewater, lignin-based wastewater etc. A de-
tailed list of complex wastewater used as sub-
strates in BES was provided in Table 10.1. The 
complex nature and low biodegradability of these 
wastewaters creates difficulty in conversion to 
the reducing equivalents, and moreover, the elec-
trons and protons generated will be accepted by 
the pollutants/components of wastewater them-
selves (intermediary acceptors) for further oxida-
tion, generating lower current densities. Colour 
removal from industrial wastewater such as dis-
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tillery and pharmaceutical wastewater is one of 
the critical aspects of wastewater but BES can 
easily remove colour at anode. Similarly, toxic 
halogens and other hydrocarbons are recalcitrant 
to aerobic remediation but they also can serve as 
electron acceptors in BES under anaerobic respi-

ration. Solid wastes such as kitchen waste, food 
waste, vegetable waste, etc. were also can be uti-
lized by BES without higher dilutions for the effi-
cient treatment and power generation. Similarly, 
lignocellulosic biomass (Ren et al. 2007; Wang 
et al. 2009), dye wastewater (Sun et al. 2009), 

Wastewater MFC configuration Removal effi-
ciency (%)

Reference

Highly biodegradable wastewater
Domestic wastewater Single chamber 66.7 Venkata Mohan et al. 2009a
Domestic wastewater Double chamber 85 Jiang et al. 2012
Dairy wastewater Single chamber 95.5 Venkata Mohan et al. 2010a
Dairy wastewater Double chamber 90 Elakayya and Matheswaran 

2013
Canteen based food waste Single chamber 65 Goud et al. 2011
Chocolate Industry wastewater Single chamber 95.5 Patil et al. 2009
Cereal wastewater Double chamber 95 Oh et al. 2005
Potato processing wastewater Three compartment 

tubular
62 Durruty et al. 2012

Rice mill wastewater Double chamber – Behera et al. 2010
Cheese wastewater Two chamber 59±9.3 Kelly and He 2014b
Cattle dung Single chamber – Zhao et al. 2012
Dairy Manure Three chamber 39.8# Zhang et al. 2012

Low biodegradable wastewater
Pharmaceutical wastewater Single chamber 85.8 Velvizhi and Venkata Mohan 

2011
Paper recycling wastewater Single chamber 51 Huang and Logan 2008
Swine waste Single chamber 86 Min et al. 2005
Brewery wastewater Single chamber 87 Feng et al. 2008
Wheat straw hydrolysate Double chamber 37# Zhang et al. 2009
Distillery wastewater Single chamber 72.8 Mohanakrishna et al. 2010a
Meat packing wastewater Single chamber 87* Heilmann and Logan 2006
Molasses wastewater Single chamber cuboid 

MFC
53.2 Zhang et al. 2010

Molasses wastewater Single chamber 59 Sevda et al. 2013
Vegetable wastewater Single chamber 62.9 Venkata Mohan et al. 2010b
Composite chemical Single chamber 66 Venkata Mohan et al. 2009b
Cassava mill wastewater Single chamber 20# Kaewkannetra et al. 2011
Slaughter house wastewater Dual chamber 93 Katuri et al. 2012
Penicillin wastewater Single chamber 90 Wen et al. 2011
Palm oil mill effluent Two chamber 96.5 Cheng et al. 2010

Integration with fermentation process
Mixed volatile fatty acids Double chamber 39 Freguia et al. 2010
Fermented vegetable waste Single chamber 80 Mohanakrishna et al. 2010b
Anaerobic food waste leachate Single chamber 91 Li et al. 2013
Primary effluent Single chamber 84 Yang et al. 2013
Fermented sludge Single chamber 94 Yang et al. 2013
Dark fermentation effluent Single chamber 72 ElMekawy et al. 2014
#Coulumbic efficiency; *Removal based on BOD

Table 10.1   Detailed list of wastewaters studied in BES for their treatment
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landfill leachates (Kjeldsen et al. 2002; Zhang 
et al. 2008; Gálvez et al. 2009; Greenman et al. 
2009), cellulose and chitin (Yazdi et al. 2007), 
and reed mannagrass (Strik et al. 2008), etc., also 
studied in MFC as electron donors. MFC can 
also be operated with the substrate in solid phase 
(Venkata Mohan and Chandrasekhar 2011).

10.4.3  Integrated Process for 
Additional Treatment

BES were also reported to be used for the deg-
radation of effluent from fermentation and pre-
liminary treatment processes, which contain 
the acid and solvent metabolites of first process 
along with the residual organic carbon. Few stud-
ies have been reported in the literature based on 
utilizing organic acids (pure/mixed) and effluents 
from different processes as primary substrates for 
the power generation in MFC. Table 10.1 depicts 
the comparative MFC performances in various 
studies reported. All these studies were carried 
out in a membrane based single/dual chambered 
fuel cell configurations. The conversion efficien-
cies of the system were similar to the regular fuel 
cells, indicating the higher efficiency of this sys-
tem. All the studies have reported the coulombic 
efficiency (CE) between 12–75 %, but the stud-
ies with real fermentation effluents range only 
between 12 and 45 %, which is comparable to 
the regular wastewater. The biocatalyst enriched 
in presence of acid metabolites such as acetate 
and butyrate is reported to depict higher treat-
ment efficiencies and power output which could 
effectively oxidize the higher concentrations of 
metabolites present in the effluents (ElMekaway 
et al. 2014; Mohanakrishna et al. 2010b). Espe-
cially, the treatment gained in this type of system 
is additional to the first process, which increases 
the valorization capacity of the waste.

10.5  Specific Pollutant Remediation

The possibility of utilizing waste as both elec-
tron donor and acceptor in BES, raised a choice 
of treating toxic and recalcitrant pollutants from 

wastewater. This treatment is in addition to the 
treatment that can happen with any other biologi-
cal treatment process. The unique ability of che-
motrophic (autotrophic/heterotrophic) microbes 
to utilize various pollutants at anode (electron 
donors) or at cathode (electron acceptors) facili-
tates effective remediation of these substances 
along with power generation. Removal of pollut-
ants such as sulphide (Rabaey et al. 2006), ni-
trates (Clauwaert et al. 2007; Virdis et al. 2008), 
perchlorate (Thrash et al. 2007) and chlorinated 
organic compounds (Aulenta et al. 2007) were 
also reported in BES. In absence of oxygen, these 
compounds can also function as electron accep-
tors at cathode to accomplish the terminal reduc-
tion reaction (respiration) which facilitates their 
remediation. Some of the compounds, viz. sul-
phur, metals, estrogens, etc. can also act as elec-
tron carriers at anode which also results in their 
treatment (Chandrasekhar and Venkata Mohan 
2012; Kiran Kumar et al. 2012). Nitrates are the 
best known electron acceptors after O2 account-
ing for denitrification, while some microbes and 
archea use sulphate and elemental sulphur as 
their electron acceptor and reduce them. On the 
other hand, some microbes oxidize (assimilatory 
reduction) or reduce (dissimilatory reduction) 
metal ions as electron acceptors or donors. BES 
can also use the coloured dye compounds as al-
ternate electron acceptors which results in their 
removal. Apart from these, nitrobenzenes, poly-
alcohols and phenols have also been studied for 
their treatment either through oxidation or reduc-
tion in BES. The comprehensive table depicting 
some of the specific pollutants treatment in BES 
was reported in Table 10.2. Detailed discussion 
pertaining to the removal of these specific pol-
lutants was made in the further sections of this 
chapter.

10.5.1  Nitrogen/Sulphate Removal

Nitrogen is one of the common and key contami-
nants of wastewater. Its overload can cause eu-
trophication of a water body that also threatens 
aquatic life and biogeochemistry associated with 
water body (Camargo and Alonso 2006). Reduc-
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ing nitrogen concentration in the treated effluent 
is critical factor to achieve the concerned envi-
ronmental regulations. Compared to physical and 
chemical methods, biological processes such as 
nitrification and denitrification are widely applied 
for nitrogen removal in wastewater due to their 
low cost and effectiveness (Peng and Zhu 2006). 
Integrating the electrochemical process with bio-
logical process (in BES) is found to be more cost-
effective and efficient for nitrogen removal, es-
pecially from high nitrogen strength wastewater 
(Kelly and He 2014a). An investigation by Zhang 
and He (2012) resulted in more than 96 % ammo-
nium removal in 150 days using a dual cathode-
tubular MFC consisting of two biocathodes to 
accomplish nitrification in its outer cathode and 
denitrification in the inner cathode while the total 
nitrogen removal was between 66.7 and 89.6 %, 
largely affected by the remaining nitrate in the 
effluent of the inner cathode. This operation also 
resulted in 96 % of COD removal. In another 
study, a submerged desalination denitrification 
cell (SMDDC) for in situ removal of nitrate from 
groundwater, production of electric energy and to 
treat wastewater was operated in subsurface en-

vironments. The SMDDC produced 3.4 A/m2 of 
current density, while removing 91 % of nitrate 
from groundwater within 12 h of hydraulic reten-
tion time (HRT) (Zhang and Angelidaki 2013). 
Clauwaert and Verstraete (2009) suggest that en-
hanced denitrifying biocatalytic activity requires 
appropriate pH-neutralizing actions since the 
bioelectrochemical active microorganisms tend 
to deteriorate their own environment. Continu-
ous monitoring of cathode pH helps to achieve 
effective nitrogen removal.

The pharmaceutical and paper production 
wastewater contains higher concentration of sul-
phate, which is harmful to the environment and 
human health if not handled properly. Biological 
sulphate reduction process is energy intensive 
as it requires electron donors. Recently, MFCs, 
and MECs were observed as suitable process by 
using sulphate-reducing bacteria (SRB) for the 
treatment of sulphate-rich compounds (Su et al. 
2012). As the SRB are sensitive to pH changes, 
it was also observed that pH 4.5 as the optimum 
for SRB in MFC. In the case of MEC operation, 
at cathode, sulphate reduction consumes H + 
ions which results in increase in pH (Coma et al. 

Table 10.2  Detailed list of pollutants treated in BES at cathode or anode
Pollutants treated at anode
Specific pollutant TEA at cathode MFC configuration Removal efficiency 

(%)
Reference

Phenol Oxygen Double chamber 90 Luo et al. 2009
Polyalcohols Oxygen Single chamber 90 Catal et al. 2008
Indole Ferricyanide Double chamber 88 Luo et al. 2010
Estriol Oxygen Single chamber 54 Kiran Kumar et al. 

2012
Ethenylestradiol Oxygen Single chamber 38 Kiran Kumar et al. 

2012
2–fluoroaniline Oxygen Single chamber 43 Zhang et al. 2014
Pollutants treated at cathode
Specific pollutant Electron donor at 

anode
MFC configuration Removal efficiency 

(%)
Reference

Nitrate Acetate Double chamber 84 Lefebvre et al. 2008
Sulfide Acetate Double chamber 87 Dutta et al. 2009
Perchlorate Acetate Double chamber 97 Butler et al. 2010
Azo dye Glucose Double chamber 77 Mu et al. 2009a
Nitrobenzene Acetate Double chamber 98 Mu et al. 2009b
Selenite Acetate Double chamber 99 Catal et al. 2009
Nitrophenols Acetate Double chamber 70 Zhu and Ni 2009
Pyridine Glucose Double chamber 95 Zhang et al. 2009
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2013). By employing the Desulfovibrio desulfur-
icans which is a sulphate-reducing bacteria dem-
onstrated electricity generation along with 99 % 
of sulphate removal (Zhao et al. 2008). Sharma 
et al. (2013) investigated various materials such 
as activated carbon fabric and stainless steel for 
cathodic SRB biofilm formation, and it was re-
ported that stainless steel as the more suitable 
material for sulphate reduction.

10.5.2  Metal Oxidation/Reduction

Metal oxide-reducing bacteria have been discov-
ered over the last 30 years. The microbes, ca-
pable for metal oxide reduction, were called as 
dissimilatory metal-reducing bacteria (DMRB). 
These bacteria have more interest due to their 
applications in geobiological phenomena, biore-
mediation and biotechnology. Organisms such as 
Clostridium (Park et al. 2001), Geobacter (Bond 
and Lovley 2003; Holmes et al. 2006), Aeromo-
nas (Pham et al. 2003), Rhodoferax (Chaudhuri 
and Lovley 2003), Desulfobulbus (Holmes et al. 
2004), and Shewanella (Chang et al. 2006) in-
cluded in DMRB group. All of these DMRB have 
also been shown to produce current in MFC sys-
tems (Bond and Lovley 2003; Logan et al. 2006) 
as well as provens as good biocatalysts to produce 
higher current densities. Shewanella oneidensis 
MR-1 is a Gram-negative facultative anaerobe 
capable of utilizing a broad range of electron ac-
ceptors for bioelectricity generation. S. oneiden-
sis MR-1 can reduce Mn(IV) and Fe(III) oxides 
and can produce current in MFCs. Deletion mu-
tants of this bacteria were generated and tested 
for current production and metal oxide reduction 
was evidenced that cytochromes play a key role in 
bioelectricity generation (Bretschger et al. 2007). 
Metal oxidation is also possible in biocathode 
configured BESs. Microorganisms present on 
biocathode assist the oxidation of transition metal 
compounds, such as Mn(II) or Fe(II), for electron 
delivery to oxygen. In addition, bacteria in the 
cathode benefited the reaction by supplying oxy-
gen. Rhoads et al. (2005) have operated a MFC 
in which glucose was oxidized by Klebsiella 

pneumoniae in the anodic compartment and bio-
mineralized manganese oxides were deposited 
through electrochemical reduction reaction in the 
cathode compartment by Leptothrix discophora. 
The cathodic reduction reaction occurs directly 
by accepting electrons on graphite electrode sur-
face. These depositions of manganese oxide do 
not need any mediators. It was also demonstrated 
that biomineralized manganese oxides are supe-
rior to oxygen by two times. To further explore 
the viability of such a biocathode, Shantaram 
et al. (2005) also used manganese anode sedi-
ment MFC, which is different from conventional 
MFCs. Here, the oxidation of manganese helps 
to drive the electrons from magnesium oxidation. 
On complete oxidation, the anode needs to be re-
placed. Due to the high redox potential of man-
ganese oxide, this BES produced a maximum 
voltage of 2.1 V. The voltage was further ampli-
fied to 3.3 V, which was sufficient to power a 
wireless sensor. The study demonstrated, for the 
first time, the application of BES to power small 
electronic sensors and manganese compounds as 
promising biocathodes for sediment BES. Iron, 
which is also an abundant element also showed 
its function in biocathode reduction. Although 
iron compounds have been used as electron me-
diators in abiotic cathodes, previous studies have 
revealed that Fe(II) is oxidized to Fe(III) through 
microbial activity by Thiobacillus ferrooxidans 
(Nemati et al. 1998). Researchers have adopted 
this process to oxidize organics in an electrolytic 
cell in which electrical energy is converted into 
chemical energy, requiring an external voltage 
supply (Lopez-Lopez et al. 1999). In the cath-
ode chamber of this reactor, T. ferrooxidans was 
grown to regenerate the ferric irons by obtaining 
energy from the reaction and methanol was oxi-
dized in anode. A study by Lefebvre et al. (2013) 
used metal scraps as cathodes and it was found 
that metal scraps can be recycled in BES for en-
ergy generation. Even though this study was not 
focused on any remediation, but it is providing 
future possibilities microbial electroremediation 
of metals oxides.
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10.5.3  Azo Dye Degradation

Residual dyes present in textile wastewater have 
attracted a lot of interest due to their intense co-
lour which is also closely associated with toxicity 
and aesthetics of the discharged effluents (Pant 
et al. 2008; Venkata Mohan et al. 2013). Textile 
dyes exhibit high resistance to microbial degra-
dation. Particularly azo dyes are readily convert-
ed to hazardous aromatic amines under anoxic 
conditions (Yemashova and Kalyuzhnyi 2006). 
These dyes are highly stable under light, during 

washing and also resistant to microbial degrada-
tion. The aromatic compounds with one or more 
–N = N– groups present in azo dyes makes them 
recalcitrant. Azo dyes and their break down prod-
ucts are toxic and mutagenic (Scheme 10.1; Mu 
et al. 2009; Solanki et al. 2013). About 10–15 % 
of the dyes used in textile industry are discharged 
in the effluents. (Rajaguru et al. 2000). An elec-
tron donor is required for the anaerobic biologi-
cal decolorization of azo dyes to create reductive 
conditions. Generally it can be an organic cosub-
strate. The decolorization rate of conventional 

Scheme 10.1  Proposed 
bioelectrochemical decol-
orization mechanism for 
AO7 was elucidated by  
Mu et al. (2009a)
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anaerobic biological methods is very slow. More-
over, the cosubstrate addition makes the process 
noneconomical. Addition of organic cosubstrate 
also leads to the methane formation (van der Zee 
and Villaverde 2005; Mu et al. 2009).

The application of BES for azo dye degrada-
tion in cathode compartment is showing an ad-
vantage of BES processes. It was already known 
that in an electrochemical cell, the chromophoric 
linkage of azo dyes can be reduced by accepting 
the cathodic electrons. The resultant colourless 
aromatic amines are more biodegradable (Frijters 
et al. 2006). A similar mechanism prevails in 
BES, which acts for the degradation of azo dyes. 
(Mu et al. 2009; Ding et al. 2010). But the azo 
dye reduction occurs at high cathodic over po-
tential that imparts system efficiency (Mu et al. 
2009). Several dyes such as methyl orange, acid 
orange 7, active brilliant red X-3B, amaranth, 
congo red, etc. were studied for the degradation 
in BES (Table 10.3). The concentration of dyes 
was varied between 10–900 mg/l concentrations 
in single and double chamber BES. The reduc-
tion of dyes in a conventional biological reactor 
follows different decolorization mechanisms in-
volving enzymes, low molecular weight redox 
mediators, chemical reduction by biogenic re-
ductants like sulphide or a combination of these 
(Pandey et al. 2007). The mechanism of dye 
degradation in cathode is similar to the anaerobic 
anodic degradation, except that there is an addi-
tional mode of electron and proton transfer to the 
dye, through the external circuit and the mem-
brane respectively. In BES, the colour removal 
was primarily observed due to biodegradation 
rather than biosorption by living cells (Sun et al. 
2009). Mu et al. (2009) proposed the decoloriza-
tion mechanism of AO7 (Scheme 10.1). At the 
anode, the substrate is oxidized by bacteria to 
produce protons and electrons, which are trans-
ferred to the cathode via proton exchange mem-
branes and external circuit respectively. The azo 
bonds of dye are broken at cathode by using pro-
ton and electron generated in anode, resulting in 
the formation of toxic intermediates. Ding et al. 
(2010) reported on methyl orange reduction via 
photogenerated electrons in a BES containing an 
irradiated rutile-coated cathode.

The performance of a BES for decolorization 
depends on the concentration and the type of dye 
used. Mu et al. (2009) investigated the effect of 
concentration of azo dye acid orange 7 (AO7). 
Circuit configuration also showed a consider-
able effect on dye degradation. It was shown that 
during closed-circuit operation, decolorization 
efficiency decreased from 78 to 35 % with an in-
crease in influent dye concentration from 0.19 to 
0.70 mM, while the dye decolorization rate in-
creased from 2.48 to 4.08 mol m−3 NCC d−1 with 
an increase in the influent dye concentration from 
0.19 to 0.70 mM, maintained at constant HRT and 
pH. The BES power output increased from 0.31 
to 0.60 W/m3 with increase in AO7 concentration 
from 0.19 to 0.70 mM. Sun et al. (2009) reported 
that the percent decolorization decreased with in-
crease in ABR-X3 (Active Brilliant Red X-3B). 
The decolorization rate decreased slightly from 
90 to 86 % as ABRX3 concentration increased 
from 100 to 900 mg/L within 48 h. It was predict-
ed that decolorization efficiency decreases with 
increase in dye concentration. Besides concentra-
tion of azo dye, other factors like operating pH, 
structure of dye, HRT, type of wastewater used 
in the anode and cathode etc., also influence the 
process of dye degradation in BES. These factors 
were also found to influence the power genera-
tion capacity of the BES.

10.6  Microbial Desalination

Application of BES in desalination of saline 
water and industrial wastewater is found to be a 
promising technology that utilizes the microbio-
logical energy from the wastewater treatment to 
drive the ions through ion exchange membranes 
(IEMs), resulting in desalination (ElMekawy 
et al. 2014). This new method that can reduce or 
completely eliminate the electricity requirement 
for desalination is called as microbial desalina-
tion cell (MDC). The main feature of the MDC 
is that exoelectrogenic microorganisms produce 
electrical potential from the degradation of or-
ganic matter, which can then be used to desali-
nate water by driving ion transport through IEMs 
(Cao et al. 2009; Kim and Logan 2013). When 
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wastewater is used as the source of the organic 
matter that required for development of potential 
gradient, the MDC can achieve three goals such 
as desalination, energy production and wastewa-
ter treatment (Kim and Logan 2013). Basic de-
sign of MDCs consists of three chambers sepa-
rated by two membranes (Fig. 10.3, Table 10.3). 
As the desalination chamber is fixed in middle, 
both anode and cathode chambers were attached 
to the both sides of the desalination chamber. 
Anode and desalination chambers separated by 
anion exchange membrane (AEM) whereas, 
cathode and desalination chambers separated by 
cation exchange membrane (CEM). In another 
way, it can be viewed as inserting an AEM next 
to the anode and a CEM next to the cathode of 
a MFC, with the salt solution to be desalinated 
filled in the middle desalination chamber. The 
electricity-generating mechanism of MDC is 
similar to that of MFC. Current is generated by 
the bacteria on the anode from oxidization or-
ganics, and electrons and protons are released to 
the anode and anolyte, respectively (Logan et al. 
2006; Chen et al. 2011). As cations are prevented 
from leaving the anode chamber by the AEM, 
anions (such as Cl−) move from the middle de-
salination chamber to the anode. In the cathode, 
protons are consumed in the reduction reaction of 

oxygen, while cations (such as Na+) in the middle 
chamber transfer across the CEM to the cathode. 
This proceeds to water desalination in the middle 
chamber, without consuming additional external 
energy. On top of it, electricity can be produced 
from the treatment of wastewater by exoelectro-
genic bacteria in anode (Cao et al. 2009; Chen 
et al. 2011). The electrode reactions create an 
electric potential gradient up to about 1.1 V (open 
circuit condition with acetate as organic source 
at pH = 7 and partial pressure of oxygen in air is 
0.2 atm) (Kim and Logan 2013). This potential 
drives the process of desalination as explained 
above.

On compilation of various studies for the 
minimum and maximum salinity removal by 
MDCs, it was found between 11 % and 100 %, 
respectively, using 30 g/L salt water (Jacobson 
et al. 2011). Salinity removals can be above 90 % 
when the salt water concentration is increased to 
35 g/L NaCl solutions which have similar con-
ductivities like marine water (Cao et al. 2009; 
Kim and Logan 2011). However, very high sa-
linity removals require large volume of nonsalty 
water in both anolyte and catholyte with 55–133 
times the volumes of desalinated water (Kim and 
Logan 2013). The use of stacked MDCs can re-
duce the need for large amounts of nonsalty elec-

Fig. 10.3  Schematic 
diagram of microbial 
desalination cell ( AEM 
anion exchange membrane, 
CEM cation exchange 
membrane)
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trolyte. Up to 98 % salinity removals from 35 g/L 
NaCl were achieved using stacked MDCs consist 
of five pairs of cells. These results imply that, for 
practical applications, MDCs are more likely to 
be used for partial salt removal from seawater. 
The requirement of fresh water also depends on 
the initial salinity of salt water. MDCs can also be 
used for brackish water desalination. Many stud-
ies were performed using acetate as the organic 
substrate in anode and phosphate buffer as catho-
lyte. Few other studies also considered real-field 
wastewater as anolyte. Microbial oxidation of or-
ganics was the sole mechanism involved in elec-
tric potential in anode, whereas oxygen reduction 
reaction (ORR), ferricyanide reduction reaction 
and HER were considered for cathodic reduction 
mechanism. The maximum CE of MDC mecha-
nism is found to be 80 % (Kim and Logan 2011)

A system consisting of two membrane-based 
bioelectrochemical reactors, an osmotic microbial 
fuel cell (OsMFC) containing a forward-osmosis 
(FO) membrane and MDC that had ion exchange 
membranes was designed to treat wastewater and 
to desalinate saline water. Both the reactors were 
coupled hydraulically. This design significantly 
improved desalination efficiency through both 
dilution in the OsMFC and salt removal in the 
MDC along with extended organic removal effi-
ciency (Zhang and He 2013). Other systems were 
also developed with stalk design using more than 
one membrane pair between electrodes (Chen 
et al. 2011) and similar to the stack design used 
for electrodialysis (ED) desalinating systems. 
The IEM stack consists of alternating AEMs and 
CEMs, creating repeating pairs of desalting and 
concentrating (concentrate) cells (Chen et al. 
2013). The MDC stacks should be designed po-
tential energy generated by exoelectrogens with 
oxygen reduction and the resistance of individual 
cell pairs. Chen et al. (2011) found that the rate 
of desalination with two cell pairs was faster 
than that with three cell pairs by increasing the 
inter membrane distance compared to electrodi-
alysis systems (0.2–3 mm) (Strathmann 2004). 
Many MDCs designed were having intermem-
brane distance between 1 and 2.4 cm, resulting 
in very high internal resistances (Mehanna et al. 
2010a, b; Chen et al. 2011; Luo et al. 2011, 2012; 

Qu et al. 2012). Performance can be improved by 
reducing the internal resistance with minimized 
intermembrane distance. The internal resistance 
of an MDC also increases with the number of 
IEM pairs in the stack. In an ED system, the ap-
plied voltage is controllable depending on the 
stack size. In an MDC, however, the voltage used 
for desalination is limited to that produced by the 
electrode reactions, and therefore the voltage per 
cell pair decreases with an increase in the number 
of cell pairs (Kim and Logan 2013).

Another design, submerged microbial desali-
nation denitrification cell (SMDDC) to in situ 
remove nitrate from groundwater and to produce 
electric energy along with treatment of wastewa-
ter (Zhang and Angelidaki 2013). The SMDDC 
can be easily applied to subsurface environ-
ments. When current was produced by bacteria 
on the anode, NO3

− and Na+  were transferred 
into the anode and cathode through anion and 
cation exchange membranes, respectively. The 
anode effluent was directed to the cathode where 
NO3

− was reduced to N2 through autotrophic de-
nitrification. This design was removed 90.5 % of 
nitrate from groundwater in 12 h and generated 
3.4 A/m2 of current density. External nitrifica-
tion was beneficial to the current generation and 
nitrate removal rate, but was not affecting total 
nitrogen removal (Zhang and Angelidaki 2013). 
Photosynthetic MDC was designed and operated 
using algae as catalyst in cathode (biocathode) 
which enhanced the COD removal and utilized 
treated wastewater as the growth medium to ob-
tain valuable biomass for high value bioproducts 
(Kokabian and Gude 2013). The increase in sa-
linity concentrations in anode chamber provide 
more favourable conditions for certain types of 
microbes than others resulting in enrichment 
of selective bacteria with simultaneous elimi-
nation of the bacteria that can withstand saline 
conditions (Mehanna et al. 2010). Integration of 
multiple bioprocess with diverse products can 
be beneficial in enhancing the sustainability of 
microbial desalination cells. Besides advantages 
of MDCs in desalination along with wastewater 
treatment at low energy consumption, few limi-
tations were also associated. They can be listed 
as salt removal can be very high (> 95 %) but it 
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requires large amount of wastewater and fresh 
water, low current densities, pH, membrane in-
tegrity and fouling, and safety issues. Addressing 
these issues with relevant investigations helps to 
commercialize MDC as the technology (Kim and 
Logan 2013; Ping et al. 2013).

10.7  Future Directions

Among the multifaceted applications of BES, 
treatment of recalcitrant pollutants present in 
wastewaters is quite interesting and already few 
studies have been reported with synthetic as well 
as real field substrates. The unique ability of 
these systems to treat complex pollutants, which 
are difficult to treat in conventional processes, is 
based on the integrated function of microbial me-
tabolism with electrochemistry in a single reac-
tor. Important fact is that the application of BES 
for the removal of toxic pollutants and xenobiot-
ics is currently being extensively studied to en-
hance the treatment efficiency. Experiments with 
real-field wastewater differs a lot compared to the 
synthetic pollutants, especially in terms of energy 
recovery. Application of BES for the treatment of 
real-field wastewater should be more focused, 
considering the energy recovery as one of the ob-
jective, to make the system/process economically 
viable. Treatment of petroleum based chemicals 
such as aromatic hydrocarbons and pharmaceu-
tical based wastewater are some of the burning 
problem of the industrial sector. Application of 
BES to treat complex structures to simple carbon 
chains (breaking aromatic rings) would be very 
interesting. Similarly, application of BES for the 
treatment of solid wastes such as kitchen-based, 
vegetable, slaughter house, municipal etc., would 
be very innovative and reduces the pretreatment 
costs. Treatment of chlorinated aliphatic hy-
drocarbons such as trichloroethene (TCE) and 
perchloroethylene, widely used solvents and 
degreasing agents, is also being studied by few 
researchers in BES. Detailed studies towards 
complete elimination of these highly toxic sub-
stances (carcinogenic also) from being disposed 
into soil and groundwater by treating them in 
BES would be highly interesting. On the other 

hand, BES can also be integrated to the effluents 
of conventional treatment process (rich in acid 
metabolites) to generate value added chemicals 
and solvents under small applied potential. Mul-
tiple advantages of BES are mainly limited by the 
problems in upscaling, especially with the design 
issues. Working in the direction of constructing 
BES to treat large volumes and higher loading 
rates is very important to make this technology 
competitive to the existing conventional pro-
cesses.
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