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Chapter 1
The Multifaceted Functions of Exosomes 
in Health and Disease: An Overview

Claudia Arenaccio and Maurizio Federico

1.1  Introduction

Cytoplasm of eukaryotic cells contains several compartments, including trans- 
Golgi network, mitochondria, peroxisomes, endoplasmic reticulum, having differ-
ent functions. Transport of macromolecules among these dynamic structures is 
mediated by vesicles moving in a densely populated microenvironment [1, 2]. In 
some instances, part of these vesicles are released into the extracellular milieu. 
Extracellular vesicles (EVs) are part of mechanism of intercellular communication, 
a function of vital importance for multicellular organisms. For decades, intercellular 
communication has been thought to be solely regulated by cell-to-cell contact and 
release of soluble molecules into the extracellular space. These molecules transmit 
the signal through their uptake or binding to specific receptors on target cells. 
However, the discovery of vesicular structures released into the extracellular space 
containing a multitude of factors including signaling molecules, proteins and nucleic 
acids, has opened a new frontier in the study of signal transduction, thereby adding 
a new level of complexity to our understanding of cell-to-cell communication.

Body fluids (e.g., blood, urine, saliva, amniotic fluid, bronchoalveolar lavage 
fluid, synovial fluid, breast milk) contain various types of membrane-enclosed ves-
icles [3] recognizing different pathways of biogenesis. These vesicles possess dif-
ferent biophysical features and functions in health, e.g., protein clearance [4], 
immune regulation [5], cell signaling [6–8], as well as in disease, such as in infec-
tions [9–12] and cancer [13, 14]. Originally, EVs were thought to be garbage bags 
through which cells eject their waste. Today, it is widely accepted that EVs are key 
components of the intercellular communication network.
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All EV subtypes are limited by a lipid bilayer membrane surrounding a specific 
cargo of molecules, and having different sizes and buoyant densities. The variety of 
vesicles released from cells as well as the methods used to isolate them led to some 
confusion in their nomenclature. Current research mainly considers two types of 
EVs according to their biogenesis, i.e., ectosomes and exosomes. The term ecto-
somes indicates vesicles of 150–1000 nm in diameter directly budding from plasma 
membrane, whereas exosomes refer to vesicles of 30–150 nm in diameter generated 
intracellularly by inward invagination of endosome membranes leading to forma-
tion of intraluminal vesicles (ILVs). ILVs became part of multivesicular bodies 
(MVBs) which are released in the extracellular space upon fusion with plasma 
membrane [15]. The term exosomes was coined in 1981 by Trams and coll. who 
described the release from various normal and neoplastic cell lines of EVs with an 
average diameter of 500–1000 nm accompanied by a vesicle sub-population having 
a diameter of ~40 nm [16]. Some years later, it had been reported that reticulocytes 
actively secrete vesicles of 50–100 nm in diameter through a process mediated by 
fusion events of multivesicular endosomes with the plasma membrane [4].

Exosomes contain DNA, RNA, proteins, lipids, and metabolites of producing 
cells, and are released into the extracellular space under both physiological and 
pathological conditions. In recent years, the effects of exosomes are being studied 
in several pathological conditions, such as neurodegenerative, viral, cancer, and car-
diovascular diseases. Their presence in many biological fluids prompted many 
research groups to investigate their possible use as disease biomarkers and tools for 
the development of new therapies.

In this introductive chapter, an overview about biogenesis, structure, and func-
tions of exosomes in both physiological and pathological conditions is provided. In 
addition, some clues about current and future utilizations of exosomes in both diag-
nostic and therapy are summarized.

1.2  Biogenesis of Exosomes

Cell vesiculation can be induced by multiple stimuli, including cell differentiation, 
activation, senescence, hypoxia, transformation, and viral infections. Among the 
different types of EVs, exosomes are the best characterized. They have a buoyant 
density of 1.10–1.14 g/mL, and display either a round spherical shape (Fig. 1.1), or 
a cup-like morphology depending on the transmission electron microscopy tech-
nique used [17]. Exosomes are the only known secreted cellular vesicles originating 
from internal membranes. They are essentially ILVs generated by inward budding 
of endosomal MVBs and targeted to plasma membrane [18].

The processes leading to generation of ILVs in MVBs and their fusion with 
plasma membrane are not completely known. Two independent pathways have been 
proposed (Fig. 1.2). The first one involves the endosomal sorting complex required 
for transport (ESCRT). This multi-molecular machinery comprises ESCRT0, 
ESCRTI, ESCRTII and ESCRTIII, and is recruited to the endosomal membranes 
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where ILVs are generated. In detail, ESCRT0, ESCRTI and ESCRTII recognize 
ubiquitinated proteins, whereas ESCRTI and ESCRTII induce, together with addi-
tional factors, the invagination of the late endosomal membrane [7, 19]. Afterwards, 
ESCRTIII binds ESCRTII thereby leading to the deubiquitination of cargo proteins, 
the promotion of vesicle abscission and, ultimately, the generation of ILVs [20].

Recently published evidences describe the existence of an ESCRT-independent 
pathway based on the specific lipid composition of the endosomal membranes. This 
hypothesis stemmed from the evidence that MVB can be formed in cells depleted of 
the four ESCRT components [21]. Membranes of endosomal compartments include 
lipid rafts comprising high quantities of sphingolipids, which are substrates for the 
neutral sphingomyelinase 2 (nSMase2) [22]. This enzyme converts sphingolipids to 
ceramide, whose accumulation induces microdomain coalescence thereby trigger-
ing ILV budding. As a matter of fact, ILV formation and exosome release are 
reduced when nSMase2 is inhibited [23].

Once ILVs are released into MVBs, they are either forwarded to degradation 
through the lysosomal pathway, or transferred to the cell periphery for the secretory 
pathway. Both processes are regulated by RabGTPases. While Rab7 mediates the 
ILV degradation through the fusion of MVBs with lysosomes, several other Rab 
proteins (i.e., Rab27a, Rab27b, and Rab11) are responsible, together with 

Fig. 1.1 Exosomes as detected by transmission electron microscopy upon negative staining. Bar: 
0.1 μm

1 The Multifaceted Functions of Exosomes in Health and Disease: An Overview
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tetraspanins, for intracellular MVB trafficking and secretion [22, 24]. In detail, 
Rab27b induces the mobilization of MVBs to the actin-rich cortex beneath the 
plasma membrane to which MVBs contact and fuse as consequence of the action of 
Rab27a. In cells defective for Rab27a functions, the fusion of MVBs with plasma 
membrane is induced by Rab11 in response to increased cytosolic calcium [25].

Endosome-like domains rich in exosomal proteins, lipids, and carbohydrates 
have been found within the plasma membrane of certain cell types [26]. These 
domains are supposed to be involved in either trafficking of cargo from plasma 
membrane back to MVBs, or in vesicle formation and budding from the plasma 
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Fig. 1.2 Biogenesis and secretion of exosomes. Exosome biogenesis is mediated by ESCRT (1) 
and/or ceramide (2)-dependent pathways. In ESCRT depend pathway, sequential recruitment of 
ESCRT0, ESCRT I, ESCRT II to the endosomal membrane induces membrane curvature, as well 
as recruitment of ubiquitinated (Ub) proteins for sorting into the vesicles. Binding of ESCRTII to 
ESCRTIII leads to deubiquitination of cargo proteins, promotion of vesicle abscission, and thereby 
generation of ILVs. In ceramide dependent pathway, nSMase2 converts sphingolipids to ceramide 
whose accumulation leads to ILV budding. After ILV formation, MVBs fuse with plasma mem-
brane. ILVs released into extracellular space are referred to as exosomes
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membrane [20]. For instance, it was shown that vesicles with the typical size of 
exosomes bud from the plasma membrane of both lymphocytes [27] and muscle 
cells [28, 29].

1.3  Structure and Composition of Exosomes

In recent years, many research groups have focused their efforts on the identifica-
tion of the content of EVs and exosomes. These works led to the development of 
two constantly updated databases, i.e., Vesiclepedia (http://microvesicles.org), a 
compendium where the characteristics of all EVs are summarized [30], and 
ExoCarta (http://www.exocarta.org), a manually updated list of proteins, RNAs, 
and lipids identified in exosomes [31, 32].

Exosomes are formed by a lipid bilayer membrane enclosing a small organelle- 
free cytosol containing a heterogeneous array of macromolecules defined luminal 
cargo [33, 34]. It includes proteins, RNA, DNA, and lipid-derivatives, such as 
ceramide, cholesterol, phosphatidylserine and sphingolipids. Similarly to plasma 
membrane, the composition of lipid bilayer of these vesicles includes lipid rafts, 
i.e., detergent-resistant microdomains enriched in specific proteins such as flotillins 
and caveolins [35, 36]. At the same time, exosome membrane comprises compo-
nents not present in plasma membrane of the exosome-producer cells and vice 
versa. For instance, exosome membranes do not contain lysobisphosphatidic acid 
(LBPA) [37] which, on the contrary, has been isolated from both plasma membrane 
and ILVs [38]. Starting from this evidence, it was hypothesized that LBPA has an a 
role exclusively in the formation of MVBs targeted to lysosomes [39].

Recent studies based on mass spectrometry highlighted two key aspects regard-
ing the protein contents of exosomes. First, some exosome proteins are cell type- 
specific, while others are invariable part of exosomes independently from the cell 
of origin. Second, the exosome protein composition does not necessarily reflect the 
proteome of the parental cell. Typical proteins found in exosomes include those 
involved in MVB formation (e.g., Alix, TSG101), membrane transport and fusion 
(e.g., annexins, flotillins, GTPases), adhesion (e.g., integrins), tetraspanins (e.g., 
CD9, CD63, CD81, CD82), and antigen presentation (MHC class I and II mole-
cules). Heat shock proteins (e.g., HSP70, HSP90) and lipid-related proteins [17, 
40] were also found in exosomes. Some proteins are preferentially uploaded in 
exosomes, but it is still unclear how proteins are targeted specifically to exosomes. 
More studies are needed to unravel possible mechanisms of exosome sorting/incor-
poration, hence addressing the question of selectivity versus randomness. In par-
ticular, current research aimed at improving the methods of vesicle isolation, 
protein purification and detection will allow to identify the vesicle proteome more 
precisely [41].

Exosomes contain both short and long RNAs [42]. When transferred to target 
cells, mRNAs are translated into proteins [43, 44], and microRNAs (miRs) can 
silence target genes [45]. These findings have given way to study the role of 

1 The Multifaceted Functions of Exosomes in Health and Disease: An Overview

http://microvesicles.org
http://www.exocarta.org


8

exosome- delivered extracellular RNA in different biological processes, such as 
immune response, cancer, viral infections, formation of immunological syn-
apse, and angiogenesis. Besides mRNAs and miRs, other RNA species have 
been found within exosomes, such as viral RNAs, Y-RNAs, fragments of tRNAs, 
small nuclear RNA, small nucleolar RNA, piwi-interacting RNAs, and long 
non-coding RNAs [46–48]. However, mechanisms controlling the specific load-
ing of RNA species into exosomes are only partly known. Recently, it has been 
identified a short nucleotide motif regulating the sorting of RNA into exosomes 
through binding with the heterogeneous nuclear ribonucleoprotein (hnRNP)-
A2B1, i.e., a ubiquitously expressed RNA-binding protein [49]. Interestingly, 
an additional short nucleotide sequence has been identified as binding motif for 
the hnRNP–Q-mediated delivery of miRs into exosomes released by hepato-
cytes [50].

Exosomes also incorporate genomic DNA through unknown mechanism. Likely, 
this process is mediated by the release of DNA fragments in cytoplasm during mito-
sis after breaking of nuclear membrane. Genomic DNA has been found in a panel of 
tumor cell lines of nervous and gut origin [51]. They can contain oncogenes as well 
as transposable elements of the genomic DNA [52, 53]. However, the function of 
the DNA incorporated into exosomes is still unclear, and further studies are needed 
to understand its possible role in physiological and pathological processes.

1.4  Interaction of Exosomes with Bystander Cells

Experimental evidences indicate that exosomes can transfer their contents into the 
cytoplasm of target cells. Since exosomes have been isolated from many biological 
fluids [34], it is likely that these vesicles can reach very distant recipient cells while 
protecting their cargo from enzymatic degradation during transit into the extracel-
lular environment [54–56]. Exosome contents can be delivered through fusion of 
exosome lipid membrane with either plasma or endosomal membrane, in the latter 
case upon endocytosis. After release of luminal cargo inside the recipient cells, exo-
some macromolecules can induce pre- and/or post-translational alterations of gene 
expression [57].

Given the emerging role of exosomes in both physiological and pathological 
conditions, as well as their therapeutic potential, understanding the molecular 
processes by which they are taken up by recipient cells is relevant. Exosome 
uptake has been monitored mainly using both flow cytometry and confocal 
microscopy. These techniques allowed to analyze the dynamic localization of 
exosomes through the labeling with fluorescent lipid membrane dyes. Examples 
of such dyes include PKH67 [58], PKH26 [59], rhodamine B [60], DiI [61] and 
DiD [62]. The use of GFP-tagged exosomal proteins also (e.g., GFP-CD63) 
allowed direct vesicle  visualization, confirming their rapid incorporation into 
recipient cells [58, 63]. The treatment of target cells with either acidic buffers 
[63] or trypsin [64] allowed to discriminate between internalized and surface-
bound fluorescent vesicles.

C. Arenaccio and M. Federico
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Concerning the mechanisms underlying exosome internalization in target cells, 
four processes have been proposed (Fig. 1.3):

 1. a direct interaction of exosome lipids and/or trans-membrane proteins with 
receptors on plasma membrane of the target cell, thereby inducing intracellular 
signaling cascades;

Exosome-producing cell

Target cell

Y
Y

Cell signaling

1

2

4

6

Exosome cargo

Receptor-ligand
interaction

3

5

Membrane fusion

Phagocytosis and
macropinocytosis 

Clathrin-mediated
endocytosis

Caveolin-mediated
endocytosis

Lipid raft-mediated
endocytosis

Intracellular
compartments

Fig. 1.3 Pathways involved in exosome uptake by target cells. (1) Binding of exosome membrane 
proteins with cellular receptor inducing intracellular signaling cascades. (2) Direct fusion of exosome 
lipid bilayer with cell plasma membrane, delivering lumen cargo in the cytosol. (3) Phagocytosis and 
macropinocytosis of exosomes. (4) Clathrin-mediated endocytosis. (5) Caveolin- mediated endocytosis. 
(6) Lipid-raft mediated endocytosis dependent on specific ligand-receptor interaction. Exosomes after 
endocytosis blend with the intracellular endosomal membranes changing gene expression/phenotype
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 2. fusion events of exosome membrane with plasma membrane, delivering luminal 
cargo directly into the cytosol;

 3. phagocytosis and macropinocytosis of exosomes, with subsequent fusion with 
other endosomal structures;

 4. alternative endocytic internalization processes, including both clathrin- dependent 
and -independent pathways, the latter involving either caveolin or lipid rafts 
upon binding with specific receptors.

1.5  Exosomes in Health and Disease

During the past decade, the interest in the role of EVs, particularly exosomes, in 
both physiological and pathological conditions significantly increased. They are 
gaining recognition as multi-molecular messengers acting in both autocrine and 
paracrine ways modifying the activity and/or phenotype of recipient cells [34]. 
Recent studies have shown a wide range of pleiotropic functions of these vesicles in 
several biological processes. In physiological conditions, exosomes are involved in 
antigen presentation [65], neuronal communication [66], blood coagulation [67], 
wound healing [68], sperm maturation [69], and regulation of immune response 
against the fetus during pregnancy [70]. Exosomes are proposed to have an impor-
tant role also in pathogenic processes including cancer [14, 71], autoimmune dis-
eases [72], inflammation [73], infection [74], metabolic and cardiovascular diseases 
[75, 76]. A lot of knowledge about the functions of exosomes derived from cancer 
studies. The process of tumorigenesis leads to increased exosome secretion [77] 
and, consistently, an abnormally high number of circulating exosomes has been 
found in blood of cancer patients [78]. Recent studies have shown the importance of 
exosomes in multiple aspects of cancer biology and disease progression, including 
transformation [79], tumor growth [80], tumor microenvironment remodeling [14], 
invasion [81], cell migration [82], metastasis [83] and immune evasion [34].

Exosomes secreted by cells of the immune system can play a role of mediators 
of the immune response. Raposo and coll. demonstrated that exosomes carrying 
MHC class II molecules derived from B-lymphocytes induce antigen specific CD4+ 
cell responses [65]. Many researchers have also investigated the effects of exosomes 
released by dendritic cells (DCs) on cell activation [84]. It was found that exosomes 
from DCs carrying peptides MHC-I and II, as well as other costimulatory factors 
such as CD80 and CD86, can induce CD8+ and CD4+ T-lymphocyte activation [5].

In recent years, the relevance of exosomes in viral infections has been strongly 
highlighted. Exosomes generated by virus-infected cells can incorporate viral 
 proteins and fragments of viral RNA which can be functional in target cells. In par-
ticular, it has been shown that: (1) exosomes from HTLV-1 infected cells decrease 
apoptosis and cell migration [85]; (2) exosomes from HCV-infected cells contain 
non-enveloped virions which can enter target cells [10]; (3) exosomes from HHV-
6- infected cells contain mature virions, an event which was proven to be relevant for 
viral spread [86]; (4) exosomes from HSV-1 infected cells produce exosomes 
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 incorporating viral RNA [87] (5) and exosomes from EBV-infected cells increase 
cytokine expression in target cells, consequently inducing inflammation events [88].

In the last few years, the potential functions of exosomes during HIV-1 patho-
genesis began to emerge. Exosomes from HIV-1 infected cells contain viral proteins 
such as Nef [89] and viral RNAs [45, 57, 90]. Published evidence demonstrated that 
HIV-1 infected cells secrete large amount of nanovesicles in a Nef-dependent man-
ner [91]. Exosomes containing HIV-1 Nef protein have multiple pathogenic effects 
such as induction of T-cell apoptosis [89] and down-modulation of cell surface mol-
ecules (i.e., MHC-I and CD4) for immune evasion [92]. The expression of HIV-1 
Nef induces the release of exosomes incorporating active ADAM17 [93], i.e., a 
multi-domain, transmembrane, Zn2+-dependent proteinase whose most studied 
function is processing pro-TNFα to its active form [94]. Resting CD4+ T lympho-
cytes targeted by exosome-associated ADAM17 are induced to release TNFα. It 
initiates events leading to activation of quiescent human primary CD4+ T lympho-
cytes which thereby become competent for HIV-1 expression and replication [95, 
96]. A similar mechanism was found involved in the reactivation of HIV-1 latently 
infecting CD4+ T lymphocytes [97].

Exosomes are also involved in a wide range of non-infective human diseases, 
like obesity and metabolic syndromes. Obesity and other associated metabolic dis-
orders induce increased secretion of vesicles [75] incorporating specific RNAs and 
proteins as observed in both rodents and humans [98].

Many studies demonstrated the role of exosomes in neuronal protection, regen-
eration and development, as well as synaptic plasticity. Accordingly, exosomes have 
been found released by neurons [66], microglia [99], astrocytes [100], oligodendro-
cytes [101], and neural stem cells [102]. Furthermore, exosomes have the capacity 
to cross the blood barrier brain (BBB) making them excellent candidates for thera-
peutic interventions aimed at regenerating damaged CNS districts [103].

In the last years, results suggesting a key role of EVs in cardiovascular diseases 
is emerging. They are the primary cause of death worldwide, being both myocardial 
infarction and coronary artery diseases the most common cardiovascular disorders 
[104]. The progression of these disorders is very complex, involving a variety of 
pathological processes not fully characterized yet. Heart is composed by many cell 
types constituting myocardium, endocardium and epicardium communicating each 
other to control the organ homeostasis. EVs, notably exosomes, have a considerable 
importance in the transmission of intracardiac signals [105]. Usually, cardiac mus-
cle cells are not considered as typical secretory cells, but it has been demonstrated 
that cardiomyocytes, endothelial cells, and fibroblasts release exosomes at least in 
an inducible manner. Heart exosomes have been isolated for the first time from adult 
rat cardiac myocytes [106]. These vesicles contain both sarcomeric and mitochon-
drial proteins as well as HSP-60, relevantly contributing to cardiomyocyte apoptosis 
[107, 108]. The content of exosomes depends on the secretion stimulus. Hypoxia is 
a potent stimulator of exosome release. In this condition, cardiac exosomes are 
enriched with both angiogenic and pro-survival factors [106]. After myocardial 
infarction (MI), exosomes released by damaged cardiac muscle cells contain angio-
genic, mitogenic, anti-apoptosis and grow factors inducing cardiac repair. In 
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particular, exosomal miRs have been found fundamental in healing the infarcted 
myocardium [109]. Exosomes play a key role also in injury protection and regenera-
tion of cardiovascular system. Exosomes released from human cardiac progenitor 
cells (CPCs) after MI incorporate cardioprotective miRs, like miR146a-3p, as well 
as anti-apoptotic, anti-fibrotic and pro-angiogenic factors, meanwhile enhancing 
cardiac differentiation [110, 111].

The relevance of cardiovascular exosomes in both intramyocardial communica-
tion and cardiac repair will be detailed along the chapters of this book.

1.6  Exosomes as Biomarkers and Drug Delivery Tools

Exosomes are considered excellent diagnostic biomarkers in view of their ability to 
alter their cargo according to different cell stimuli. In cancer and other disorders, 
they can be useful to monitor disease progression as well as evaluate therapy 
responses. In fact, cargo of exosomes released from cancer cells can vary with the 
development of the disease. For example, in melanoma patients the proteome of 
circulating exosomes can be correlated with different clinical tumor stages. In a 
similar way, a distinctive set of miRs uploaded in exosomes marks the evolution of 
ovarian cancer [112]. In addition, seven miRNAs species derived from circulating 
exosomes have been identified as biomarkers of colorectal cancer [113]. Moreover, 
Skog and coll. demonstrated that exosomes derived from human glioblastoma cells 
contain proteins and miRs similar to those incorporated in exosomes detectable in 
the patients’ sera [114].

Exosome miRs can also be used as markers of additional pathologies. High lev-
els of exosomes associating miR-1 and miR-133a [115] as well as p53-responsive 
miRs (miR-192, miR-194, miR-34a) have been detected in sera from patients with 
acute MI [116]. The expression of miR-126 and miR-199a predicted the occurrence 
of cardiovascular events in patients with stable coronary artery disease [117].

Since the discovery of EVs and exosomes as messengers of biological informa-
tion, their potential use as drug delivery vehicles has gained considerable scientific 
interest. The ability of these vesicles to overcome natural barriers, their intrinsic cell 
targeting properties and stability in the circulation make them excellent drug deliv-
ery vehicles. Exosomes have distinct features, like high biocompatibility, safety, 
and nano-sized diameters which allow efficient drug loading capacity and overcome 
many of the limitations of cell-based therapeutics. On this subject, Sun and coll. 
shown that exosomes can deliver the anti-inflammatory agent curcumin which, in 
this form, was found more stable than free curcumin [118].

The majority of the studies carried out using exosomes as therapeutic agents was 
based on their capacity to modulate immune responses with the purpose to develop 
cell-free cancer vaccines. For instance, DC exosomes carrying melanoma- associated 
antigen (MAGE)-A3 peptides were used for vaccination of patients bearing 
MAGE-A3+ advanced melanomas. The vaccination of fifteen melanoma patients led 
to an objective response in one patient, a minor response in another one, and disease 
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stabilizations associated with tumor regression in two additional patients. An 
enhanced effector function of natural killer (NK) cells has been highlighted in eight 
patients [119].

Our group developed a strategy to engineer exosomes with full-length proteins 
which were proven effective in inducing specific, unrestricted cytotoxic T cell 
(CTL) immunity when injected in mice. For example, the inoculation of exosomes 
engineered with Human Papilloma Virus (HPV)-E7 protein induced production of 
HPV-E7 specific CTLs, blocked the growth of syngeneic tumor cells inoculated 
after immunization, and controlled the development of tumor cells inoculated before 
the exosome challenge [120].

Exosomes can be also engineered to incorporate mRNA and small interfering 
RNAs (siRNA), and were proven to be active in strategies of RNAi-based therapies. 
For instance, exosomes engineered with siRNA have shown to generate clear thera-
peutic effects in a mouse model of Parkinson’s disease [121].

In sum, exosomes have been proven to have great potentialities as disease bio-
markers as well as delivery tools of therapeutic/immunogenic molecules. Most 
recent findings pave the way for a wide use of exosomes and other EVs in both 
diagnosis and therapy.
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Chapter 2
Exosomes: Nanocarriers of Biological 
Messages

Alice Conigliaro, Simona Fontana, Stefania Raimondo, 
and Riccardo Alessandro

2.1  Introduction

Trafficking of biological materials across cellular membranes is part of normal cell 
homeostasis and the cellular release of molecules through extracellular membrane 
vesicles (EVs) is used by cells for a number of physiological functions including 
cell-cell communication, cellular differentiation, immunity and inflammation [1].

As such, EVs are a heterogeneous population of vesicles, which possess different 
biophysical properties, dimension and have different biogenesis routes. The release 
of EVs is a process extremely conserved across eukaryotes and prokaryotes as well 
as in plants [2]. In bacteria, low eukaryotes and in plants, EVs are involved in the 
host-pathogen interaction and in the release of compounds such as virulence factors 
or toxins in the microenvironment [2]. These vesicles have been named during these 
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last 15 years with a multitude of terms including ectosomes, shedding vesicles, 
microparticles, microvesicles and exosomes [3]. Contrary to other types of extracel-
lular vesicles, exosomes have a smaller diameter, between 30 and 100 nm, an endo-
cytic origin and are released into the extracellular compartment when the 
multivesicular bodies (MVB) fuse with the plasma membrane [4]. The secretion of 
exosomes occurs in a constitutive manner although cellular stress or receptor activa-
tion may modulate their secretion [5]. The mechanisms of assembly and sorting of 
exosomes are not well defined, but several molecules have been shown to regulate 
this process, such as RAB11, RAB27, RAB35 and syndecan-syntenin-ALIX [6, 7]. 
Moreover the ESCRT (endosomal sorting complex required for transport) member 
TSG101 (tumor susceptibility gene 101), and the tetraspanin CD63, which is 
enriched in specific plasma membrane domains involved in microvesicle budding, 
have been both described as involved in exosome formation [8]. The exosome 
molecular content is strictly related to the type and functional state of the producing 
cell and its characterization can be affected by the purification methods; the cur-
rently available techniques are based on ultracentrifugation, ultrafiltration and size- 
exclusion liquid chromatography, gradient methods, immunoaffinity, microfluidics, 
and polymeric precipitation [9]. Although all these methods have been successfully 
used for exosomes preparation they present limitations due to possible cellular con-
taminations caused by the well-known dynamic trafficking between the endosomal 
compartment and the plasma membrane, which makes the presence of the so-called 
exosomal markers often enriched, but not unique for exosomes. Anyhow, their bio-
chemical content consists of not only lipids, metabolites and proteins, but also 
miRNA and mRNA and more recently, the presence of DNA, such as genomic and 
mitochondrial, has been also reported (Fig. 2.1). In the following sections, a wider 
and more insight of these components will be given in order also to better under-
stand exosome function.

2.2  Lipids and Metabolites

Exosome lipid composition reflects that of the parental cell but has also some fea-
tures that share with vesicles of different origin, thus representing potential EV 
markers. The lipid composition of exosomes has not been completely clarified but 
several authors agree that common lipids components of extracellular vesicles are 
present in the lipid bilayer and consist of sphingomyelins, cholesterol, phosphati-
dylserine, phosphatidylcholine, phosphatidylethanolamine, and ganglioside GM3 
[10–13]. Phosphatidylserine has been found enriched in exosomal membrane com-
pared to the cellular one, while is the opposite for phosphatidylcholine [10, 14]. The 
specific lipid composition allows the in vivo exosomes stability.

In addition, lipid raft-like domains have been found in exosome membranes sug-
gesting a role in vesicle formation and structure [15]. Dubois and colleagues isolated 
lipid rafts from human prostasomes by gradient ultracentrifugation and analyzed 
them by mass spectrometry; they found several lipid raft associated proteins, some of 
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them involved in intraluminal vesicle formation [16]. One of the most extensive 
molecular lipidomic study was performed by Llorente in 2013 on exosome released 
by prostate cancer cell lines. The analysis highlighted the exclusive composition of 
exosome lipids compared with the parental cells; indeed exosomes were highly 
enriched in glycosphingolipids, sphingomyelin, cholesterol and phosphatidylserine 
[17]. A detailed lipidomic analysis was performed recently by Haraszti et al. that com-
pared the lipidomic profile of microvesicles and exosomes from three different cell 
lines: glioblastoma, hepatocellular carcinoma and bone marrow mesenchymal stem 
cells. Authors found that the enrichment in glycolipids and free fatty acids character-
ized exosomes, whereas enrichment in ceramides and sphingomyelins characterized 
microvesicles. They also observed that exosomes from Huh7 and MSC cells were 
enriched in cardiolipins, while U87 exosomes were enriched in sphingomyelins [18].

Vesicular lipids are essential for exosome biogenesis, release and interaction 
with target cells, Trajkovic et al. reported that central nervous system cell-derived 
exosomes are enriched in ceramide, involved in the budding of exosomes into the 
lumen of multivesicular bodies [12]; indeed, the release of exosomes was reduced 
by the inhibition of the synthesis of ceramide precursor, neutral sphingomyelin.

Fig. 2.1 Schematic representation of structure and content of exosomes. Exosomes are enclosed 
by a membrane phospholipid bilayer enriched in lipid raft-like domains and their cargo includes 
RNAs (mRNA, lncRNA and miRNA), DNA (both genomic and motochondrial), and several pro-
teins like annexins, tetraspanins, Alix, TSG101, MHC molecules, Integrins, Rab proteins, cyto-
skeletal proteins, enzymes, and signal transduction proteins, etc. Even if exosomes contain a 
number of common components, their molecular composition varies depending on specific fea-
tures of the originating cell
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In addition to structural function, lipids in exosomes can be considered as bioactive 
components involved in pathophysiological conditions. One of the first evidence came 
out in 2002 from Kim and colleagues that showed that tumor-derived extracellular 
vesicles induced an angiogenic phenotype and correlated these effects with the pres-
ence of vesicular sphingomyelin [19]. Some years later, prostaglandins (PGE), physi-
ologically active lipid compounds, have been found into exosomes, displaying 
biological effects related to inflammatory processes [20]. Authors found that exo-
somes transported PGE2 to target cells and induced prostaglandin- dependent biologi-
cal responses [20]. In addition, Xiang et  al. showed that PGE2 was contained in 
murine mammary adenocarcinoma-derived exosomes; tumor exosomes were internal-
ized by myeloid-derived suppressor cells and induced their expansion, thus promoting 
the tumor growth [21]. Exosomes also transport enzymes responsible for leukotrienes 
(LT) synthesis, thus influencing the lipid metabolism of recipient cells. Esser et al 
reported that exosomes from macrophages and dendritic cells contained active 
enzymes for leukotrienes biosynthesis, contributing to inflammatory responses [22].

In addition to lipids, exosomes contain and deliver a wide range of metabolites, 
reprogramming the metabolic state of recipient cells [23–25]. Metabolomics is a 
recent application of “omics” studies in the field of EVs, therefore the related litera-
ture is still scarce. The first report of extracellular vesicle metabolic content was 
provided by Altadill et al., that isolated extracellular vesicles from human plasma 
and cell cultures. Through a mass spectrometry approach, authors found that, in 
addition to glycerophospholipids, EVs contain metabolites such as organic acids, 
cyclic alcohols, steroids, phenols and amino acid conjugates, sugar and sugar con-
jugates [23]. A very recent study from Royo et al. indicated that EVs are “metaboli-
cally active” structures able to affect biological processes [25]. Authors performed 
a targeted ultra-high performance liquid chromatography–mass spectrometry 
(UHPLC–MS) metabolomic analysis of serum additionated with extracellular vesi-
cles from hepatocytes treated with different liver damage-inducing drugs. They 
observed that the metabolic profile of the serum is significantly affected by presence 
of hepatic EVs [25].

A very challenging aspect, not still fully resolved, to deeply define the exosomes 
molecular cargo, concerns the effective and selective isolation of these nanovesi-
cles. The plurality of developed protocols determinates qualitative and quantitative 
variability of the obtained exosomes, which considerably affects the results of 
downstream analyses and makes difficult to compare, reproduce and interpret data 
obtained by different research groups.

2.3  Proteins

Recent improvements in proteomic technologies, are allowing to perform a high- 
level qualitative and quantitative characterization of exosomal proteins, providing 
new information indispensable for functional characterization and clinical use of 
exosomes.
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Data from multiple proteomics studies have clearly demonstrated that exosome 
proteins can be sorted into two main groups. The first one is a conserved set of pro-
teins, considered as “exosomal markers”, largely associated to exosome biogenesis 
and irrespective of their cell origin. The second one is formed by proteins defining 
a unique exosome signature specifically related to the producing cell and that deter-
minate their role in several biological phenomena, such as disease progression, and 
may represent a source of biomarkers for disease diagnosis, prognosis and response 
to treatment.

The most common exosome proteins, belonging to the functional classes reported 
in Table 2.1, are cataloged in the ExoCarta website (http://www.exocarta.org/), a 
primary resource for high-quality exosomal datasets accessible also from 
Vesiclepedia (http://www.microvesicles.org) a manually curated compendium that 
contains molecular data identified in all classes of EVs, including apoptotic bodies, 
exosomes, large dense core vesicles, microparticles, and shedding microvesicles 
[26–28].

As more proteome studies are performed, it is becoming even more apparent that 
beyond the set of conserved proteins, exosomes contain proteins mirroring their cell 
origin. For example, numerous proteomic studies have demonstrated that tumor- 
derived exosomes (TDEs) express a discrete set of proteins specifically related to the 
tumor phenotype and involved in cell proliferation, antigen presentation, signal 
transduction, migration, invasion and angiogenesis, supporting the hypothesis that 
exosomes may play a crucial role in modulating tumor progression and preparing the 
metastatic niche [26]. Recently, it was demonstrated that exosomal integrins (ITGs) 
direct organ-specific colonization by interacting with receptors on target cells in a 
tissue-specific fashion, preparing pre-metastatic niche formation. In particular, the 
authors showed that the exosomal integrins α6β4 and α6β1 were associated with 

Table 2.1 Most common exosome proteins and related functional classes [26]

Functional Class Proteins

Membrane adhesion proteins Integrins
Components of the ESCRT 
machinery

alix, TSG101, vps-28, vps-4B, ubiquitin ubiquitin-like 
modifier-activating enzyme,

Membrane transport/trafficking Annexins, Rab protein family
Cytoskeletal components Actin, cytokeratins, ezrin, tubulin, myosin
Lysosomal markers Lysosome membrane protein 2, cathepsin-D, CD63, 

LAMP-1/2
Antigen presentation proteins HLA class I and II/peptide complexes
Metabolic enzymes GAPDH, pyruvate, enolase alpha
Heat shock proteins Hsc70, Hsp70, Hsp90
Kinases LYN, MINK1, and MAP4K4
Tetraspanins CD9, CD81, CD82, tetraspanin-8
Proteases ADAM10, DPEP1, ST14
Transporters ATP7A, ATP7B, MRP2, SLC1A4, SLC16A1, CLIC1
Receptors CD46, CD55, NOTCH1

2 Exosomes: Nanocarriers of Biological Messages
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lung metastasis, while exosomal integrin αvβ5 was linked to liver metastasis. This 
study also demonstrated that TDEs are sufficient to redirect metastasis of tumor cells 
that normally lack the capacity to metastasize to a specific organ [29].

Several studies have evidenced that treatment of cancer cells with anti-tumor 
compounds induces alterations of the basal protein composition of TDEs that reverts 
their pro-tumor actions. Taverna et al. reported that after treatment with curcumin, a 
plant-derived compound well known for its anticancer effects, Chronic Myeloid 
Leukemia cells released exosomes (curcumin/CML-exos) with significant differ-
ences in their protein composition in comparison to exosomes released by no-treated 
cells (CML-exos). In particular, it was reported that curcumin/CML-exos were sig-
nificantly depleted in pro-angiogenic proteins and enriched in proteins with anti- 
angiogenic activity and this reflected the loss of CML-exosome’s ability to promote 
the angiogenic phenotype and to alter the endothelial barrier organization [30].

Evidence accumulated in the last years has demonstrated that exosomes derived 
from mesenchymal stem cells (MSC) are able to mediate several of the functions tradi-
tionally associated with canonical secretory proteins such as growth factors of the MSC 
secretome [31–33]. In a recent proteomic study has been reported that MSC derived 
exosomes contain a robust profile of angiogenic paracrine effectors, with a potential 
use for the treatment of ischemic tissue-related diseases. Among them platelet derived 
growth factor, epidermal growth factor, fibroblast growth factor, and most notably 
nuclear factor-kappaB (NFkB) signaling pathway proteins were identified [34].

Fen et al. also reported that heat shock induces Sca-1+ stem cells to release exo-
somes enriched in the heat shock transcription factor 1 (HSF1) that directs ischemic 
cardiomyocytes toward a pro-survival phenotype by epigenetic repression of miR- 
34a [35].

As it was mentioned above, another interesting aspect, correlated with the peculiar 
protein exosome protein signature, is the possibility to use exosomes as source of 
biomarkers for several pathologies. Several data published in the last years strongly 
support the effective clinical impact of exosomes that as multimolecular aggregates 
also offer the unique opportunity to identify combination of different biomarkers.

Recently, by using mass spectrometry analyses, a cell surface proteoglycan, 
glypican-1 (GPC1), was found specifically enriched on cancer-cell-derived exo-
somes. GPC1-positive circulating exosomes were detected in the serum of patients 
with pancreatic cancer with absolute specificity and sensitivity, discriminating 
healthy subjects and patients with a benign pancreatic disease from patients with 
pancreatic cancer [36].

In another interesting paper, the role of exosomal-survivin as a diagnostic and/or 
prognostic marker in early breast cancer patients was proposed. The authors found 
that the levels of this protein (and of its splice variant) were significantly higher in 
all exosome serum samples of women affected by breast cancer compared to con-
trols. Moreover, the variable expression of Survivin-2B levels correlated with can-
cer stages [37]. Interestingly, in addition to plasma/serum, other biofluids, such as 
urine, may represent valuable sources of exosomal biomarkers.

The potential use of urinary exosomes was overall reported for the diagnosis and 
clinical management of urogenital cancers, such as bladder and prostate cancers.
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A comparative study of protein profiling by mass spectrometry-based proteomics 
highlighted the expression of ITGA3 and ITGB1 (proteins involved in migration/
invasion processes) on exosomes released by prostate cancer cell lines (LNCaP and 
PC3T). Afterwards, these proteins were found more abundant in urine exosomes of 
metastatic patients compared to benign prostate hyperplasia or prostate cancer 
(PCa), suggesting the potential use of urine exosomes for identification of patients 
with metastatic PCa in a non-invasive manner [38].

Beside their role in tumor biology, there is increasing evidence that exosomes can 
play a role in regulating tissue-specific and/or whole-body metabolism via the deliv-
ery of different exosomal cargo molecules to adjacent and remote tissues. Although 
there are still limited data on the clinical applicability of exosomal biomarkers for 
prediction of metabolic syndromes progression [39], some promising studies have 
supported the hypothesis that proteins of circulating or urinary exosomes may be 
potentially associated to obesity and metabolic complications in patients with mani-
fest cardiovascular disease [40] and to renal complications of diabetes [41–43].

Diabetic nephropathy (DN) is a major complication of diabetes mellitus and the 
most frequent cause of end-stage renal disease. Current markers for DN diagnosis 
(i.e. creatinine and urinary albumin excretion) have proven limitations and the dis-
covery of new candidate markers for better disease staging, outcome prediction, and 
monitoring of the response to clinical intervention is needed. Recent proteomic 
studies of urinary exosomes have provided promising indications for the potential 
use of these nanovesicles as source of DN biomarkers [41, 42]. For example, a label-
free quantitative comparison of DN urinary exosomes vs control group allowed to 
highlight a panel of three proteins (AMBP, MLL3 and VDAC1) which change in 
DN and which could be used to develop new diagnostic approaches for monitoring 
the disease onset and progression [42]. Interestingly, in another study it was under-
lined that urinary exosomes better reflect protein changes occurred in kidney of 
diabetic patients. The authors reported that, in agreement with the alterations found 
in the kidney tissue of diabetic patients, gelatinase and ceruloplasmin were found 
respectively with decreased activity and increased levels in the urinary exosomes of 
patients with DN. In contrast, the levels of these two proteins in whole urine were 
highly variable and did not correlate with levels in the diabetic kidney tissue [43].

Current studies on exosomes are providing promising indications about their 
effective use in clinical settings and deserve further advance in order to develop new 
and valid non-invasive diagnostic and prognostic tools in multiple diseases.

2.4  Nucleic Acids

2.4.1  mRNA

The exciting intuition of exosomes as mediators in cell-cell communication drove the 
efforts of two independent groups that, between 2007 and 2008, proved the horizon-
tal transfer of RNA molecules via exosomes. In these experiments, vesicles obtained 
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from mast cells and glioblastoma cells, were shown to carry and deliver functional 
messenger RNAs (mRNAs) [44, 45]. The analysis, done by Lotvall’s group, identi-
fied approximately 1300 different mRNA transcripts in exosomes from mast cells; 
moreover, the isolated poly adenylate mRNAs were demonstrated to be stable and 
functional in recipient cells, thus confirming exosomes as mediator of horizontal 
transfer of genetic information. The formal evidence that mRNAs in exosomes are 
biologically functional came from subsequent studies, demonstrating that an mRNA, 
coding for a luciferase reporter gene, could be transferred via exosomes leading, in 
the recipient cell, to luciferase activity. Interestingly, the enzymatic activity observed 
in the target cells, was dependent on the amount of exosomes used to treat them [44, 
46]. Thereafter, several groups identified mRNAs in exosomes released from differ-
ent cell types focusing on a better understanding of the mechanism underlying the 
phenotypic changes induced by these RNAs. Today, exosomes are widely accepted 
as mediators of cell communication, participating in the maintenance of tissue 
homeostasis and contributing to modulate cellular microenvironment; however, the 
majority of scientific publications have described their role into initiation and/or pro-
motion of pathological conditions. Exosome mRNAs, released by cancer cells, have 
been found to promote tumor growth and/or tumor progression, as well as to drasti-
cally transform a normal cell, as recently demonstrated by Gutkin et al. Their experi-
ments, in fact, indicated that hTERT mRNA, transported by tumor exosomes in 
normal fibroblasts, can be processed and translated, thus changing fibroblast proper-
ties such as proliferation rate, senescence and resistance to apoptosis [47].

Deeper analyses of exosomes content, in term of nucleic acids, revealed that the 
majority of normal and cancer cells load in exosomes different RNAs species with 
a size distribution between 25 and 700 nucleotides (nt). Small size RNAs (<700 nt) 
were found in human plasma [48], saliva and breast milk exosomes [49, 50]; more-
over, vesicles released by human mesenchymal stem cells [51] and human tracheo-
bronchial epithelial cells [52] were found to contain smaller RNA species (< 500 nt 
in length). Considering the pleiotropic properties attributed in the last years to small 
RNAs, great efforts have been focused on the identification of these small exosomal 
RNAs in order to (1) attribute them biological functions in cell-cell communication 
and to (2) use them as novel biomarkers.

2.4.2  Non Coding RNA

The human genome project drastically changed the paradigm that most of genetic 
information encodes for proteins. Recent evidences indicated that only 2% of 
nuclear DNA is transcribed in messenger RNA while, the majority of the genome of 
mammals, as well as of other complex organisms, is transcribed into non coding 
RNAs, most of which are alternatively spliced and/or processed into smaller prod-
ucts. To date, a wide repertoire of biological functions have been identified for non 
coding RNAs with a predominant role in gene regulation, as predicted 45 years ago 
by Jacob and Monod [53].
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2.4.3  Micro RNAs

Micro RNAs (miRNAs)are a class of noncoding RNAs, long 17–24 nucleotides, well 
conserved during evolution; these miRNAs produced in the nucleus, once fully pro-
cessed in the cytoplasm acquire a mature conformation that allow them to regulate 
gene expression. Mature miRNAs mediate post-transcriptional gene silencing by tar-
geting mRNAs, through a “Watsonian complementarity” binding, thus inducing 
dsRNA cleavage and translational repression [54]. MiRNAs have been found expressed 
in all tissues and their aberrant levels have been reported in numerous diseases.

First Valadi et al. identified the presence of a large amount of small RNAs in 
exosomes thus suggesting and proving that exosomes contain miRNAs [45]. 
Meanwhile, the first evidence that exosomal miRNA play a functional role in target 
cells, came from the experiments of Montecalvo et al. that properly demonstrated 
how miRNAs, once transported by exosomes, repress their specific mRNA targets 
in dendritic cells [55]. Moreover, a recent publication, demonstrated that exosomes, 
together with miRNAs and pre-miRNAs, can transport the whole molecular machin-
ery required to induce a miRNA mediated silencing so to “guarantee” their activity 
once reached the destination [56].

Several studies highlighted that the miRNA content of exosomes did not reflect 
the miRNA repertoire of the cells of origin and that, some miRNAs, independent by 
the cellular amount, are selectively exported or retained within the cells [57–59]. 
These data suggest the ability of cells to specifically load RNA species into the 
lumen of exosomes.

To date, mechanisms controlling the specific loading of miRNAs in exosomes are 
still largely unknown even if different pathways and molecules that regulate miR-
NAs sorting in different cell types and tissues have been described. In silico analysis 
of over-represented motifs and experiments of directed mutagenesis, allowed the 
identification of a specific EXO-motif (GGAG) that controls the loading of some 
miRNAs into exosomes. This conserved motif in fact, can be recognized by the ubiq-
uitous heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) that binds 
miRNAs controlling their loading into exosomes [60]. However, the EXO-motif 
characterizes only a sub set of miRNAs and it is supposed that other proteins and/or 
mechanisms are required thus suggesting cellular or tissue specificity. For example, 
it has been recently demonstrated that the RNA binding protein SYNCRIP is a cru-
cial component of exosomal miRNA sorting machinery in hepatocytes [61].

Overall, it is now largely accepted that miRNA secretion by exosomes is not only 
a mechanism whereby cells rapidly dispose miRNAs in excess to maintain mRNA 
homeostasis [62] but also a strategy for the horizontal transfer of RNA.  Small- 
RNAs, once packaged and surrounded by a lipid bilayer are physically protected 
from enzymatic degradation, and then free to travel in extracellular space including 
biologic fluids [48]. Once reached the target cells that, in theory, could be every-
where in the body, exosome miRNA can affect cell phenotype resulting in altered 
cellular function and subsequently promoting pathological conditions. Data 
obtained from miRNA registry [63] indicated the existence of more than 2000 
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human miRNA that can influence gene regulation of essential biological pathways 
such as cellular development [64], proliferation [65], apoptosis [66], cellular signal-
ing and disease progression [67, 68]. In cancer, a variety of processes has been 
found affected by exosomal miRNA [3, 69] e.g. exosomes released by tumor cells 
promote angiogenesis by transport of miR9 in endothelial cells [70, 71], exosome- 
mediated transfer of cancer-secreted miR-105 efficiently destroys tight junctions 
and the integrity of natural barriers thus favoring metastasis. Also the oncomiR, 
miR-21, has been found secreted in plasma exosomes from patients affected by dif-
ferent cancer types, and its presence has been positively correlated with tumor pro-
gression and aggressiveness [30]. MiRNA exosomes have been found involved also 
in several pathologies including cardio vascular diseases. MiR-21-3p contained in 
fibroblast exosomes led to the induction of cardiomyocyte hypertrophy [72] while 
endothelial exosomes induce in cardiomyocytes an increase of miR-146a levels 
leading to impaired metabolic activity and contractile function [73]. Moreover, dys-
regulation of intracellular miRNA expression has been linked to many clinically 
relevant cardiovascular conditions [74, 75].

Several evidences demonstrated that is possible to use microRNA as biomarkers 
for diagnosis and therapeutic monitoring of diseases such as cancer, neurodegenera-
tive disorders, heart disease and infection; furthermore these miRNAs are protected 
inside vesicles and can be easily obtained from biological fluids. As described, exo-
somes have been found almost in every body fluid including urine, plasma, breast 
milk, broncho-alveolar lavage (BAL) fluid, saliva, seminal fluid, amniotic liquid, 
ascites, synovial fluid, breast milk, and cerebrospinal fluid (CSF) [48, 76]. Exosomes 
provide a consistent source of miRNA for disease biomarker detection and can 
become the fingerprint of pathology. New technologies are emerging to purify exo-
somes from biologic fluids in order to develop more accurate and less invasive strate-
gies for diagnosis and prognosis. Today, once isolated the exosomes, the quantity and 
the quality of miRNAs can be easily estimated by various methods, such as Microarray, 
Hybridization, Deep-sequencing, qRT-PCR, and microbeads analysis. Shao H et al., 
recently, described the definition a sensitive and comprehensive microfluidic platform 
termed immuno-magnetic exosome RNA (iMER) analysis that, integrating immuno-
magnetic selection, RNA collection and real-time PCR into a single microfluidic chip 
format, allows the enrichment of cancer-specific exosomes from blood and subse-
quent, on-chip analysis, of their RNA contents. The authors, obtaining simultane-
ously exosome enrichment and RNA isolation, proved that exosomal mRNA profiles 
could be used as predictor to treatment response in patients with glioblastoma [77].

2.4.4  Long Non Coding RNAs

Even if less abundant than small RNAs, long non coding RNAs (lncRNAs) have 
been found in exosomes released by different cell types.

To date, several lncRNAs have been associated to carcinogenesis and cancer 
progression. However, a number of reports have also demonstrated a crucial role for 
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lncRNAs in development and disease including cardiac development and cardiac 
disorders [78].

LncRNAs are non-protein-coding RNAs, longer then >200 nucleotides. Located 
in different genomic regions they can be classified as long intergenic non-coding 
RNA (lincRNA), antisense lncRNA, intronic RNA and circular RNAs. They are 
transcribed by RNA polymerase II and exist as single-exon or multi-exon transcripts 
and often undergo 5′ capping and splicing [79]. LncRNAs are now recognized as 
important regulatory elements and exert this role by different molecular mecha-
nisms; they are actively involved at epigenetic, transcriptional and post- 
transcriptional level and interact with proteins, RNAs and DNA.  LncRNAs can 
work as scaffolds to bring together different subunits of protein complexes and 
maintain them in close proximity [80–82] while, intergenic RNA as lincRNA-p21 
can control protein translation [83], regulate alternative splicing as for MALAT1 
[84] or stabilize mRNA. Very interesting is the role of lncRNA in genetic repro-
gramming; HOTAIR [85], Braveheart [86] and FENDRR [87] are only few exam-
ples of lncRNAs able to recruit epigenetic modifiers at specific loci in the DNA thus 
regulating gene activity. Moreover, if a single miRNA can silence different mRNAs 
at the same way, through complementary regions, a single lncRNAs can be able to 
“sponge” different miRNAs from cell cytoplasm inducing their degradation, e.g. 
CARL, CHFR, HULC, linc-MD1, H19 [88].

Therefore, considering the multiple roles that a single lncRNA could play inside 
the cells is possible to appreciate as each single lncRNA, carried by exosomes, 
might completely modify the phenotype of receiving cells.

It was demonstrated that liver cancer stem cells release and deliver exosomes 
containing H19 to endothelial cells, thus promoting neo-angiogenesis [89]. Other 
lncRNAs have been found in exosomes from HCC [90], colon cancer cells [91], 
glioblastoma cells [92] and have been often recognized as promoters of tumor 
progression once delivered in target cells. The recent study conducted by Ahadi 
et al., demonstrated that a comparable abundance of lncRNAs can be found both 
in healthy and prostate cancer exosomes while significative differences have 
been discovered in their sequences [93]. They in fact, found an increase of 
lncRNAs carrying miRNA seed regions in prostate cancer exosomes, thus indi-
cating that the packaging of lncRNA, as it occurs for miRNAs, is a physiological 
process that is significantly affected by the cellular condition. The investigation 
of molecular mechanisms driving lncRNA packaging could shed light about their 
role inside or outside the cells but, to date, few information are known about this 
process.

Recently collected data indicated exosomal lncRNAs as new prognostic markers 
in tumour as recently suggested by Zhang et al. [94] that demonstrated the associa-
tion of exosomal lncRNAs HOTAIR, MALAT1, and MEG3 with cervical cancer. 
Moreover, urinary exosomes from bladder cancer patients have been found enriched 
in lncRNA HOTAIR [95].

However, even if several groups published exosomal lncRNA arrays, more strin-
gent analyses are required to formally proof that the intact long sequences, and not 
a part of them, are packaged and carried by exosomes.
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2.4.5  Genomic and Mitochondrial DNA

Circulating DNA (cDNA)is a heterogeneous population of molecules whose origin 
depends on processes that are still not fully understood. The stability of cDNA sug-
gests that it is protected and encapsulated in specific structures. Indeed, recently it 
has been demonstrated that cDNA is predominantly released in the extracellular 
space by exocytosis mediated by extracellular vesicles, including exosomes.

The discovery of cDNA in the blood was described for the first time in 1948 by 
Mandel and Matais [96] that purified the nucleic acid from human plasma. For sev-
eral years studies on circulating DNA were focused on autoimmune diseases where 
is possible to find large amount of cDNA. Some years later, in 1977, elevated levels 
of cDNA were found in the plasma of cancer patients, correlating with tumor pro-
gression [97].

The association between the level and composition of cDNA and morbidity 
opens to the possibility of considering cDNA as a rich source of biomarkers. 
Qualitative and quantitative alteration cDNA reflects disease features, thus provid-
ing information on disease development, progression and response to therapy. For 
these reasons cDNA is emerging as a non-invasive tool for patient’s stratification 
and disease monitoring.

Genomic single or double-stranded DNA and mitochondrial DNA has been 
recently detected in extracellular vesicles from different cell types [98–102]. It is 
now well established that nucleic acids are selectively packaged in extracellular ves-
icles [3, 102, 103], therefore the presence of DNA indicates a specialized function in 
cell to cell communication. Indeed, recent data suggest that EV-associated DNA 
(EV-DNA) exerts its biological function in physiological and pathological condi-
tions, thus influencing immunomodulation, cancer and cardiovascular diseases.

Accumulating evidences demonstrated that cDNA is contained in microvesicles 
released by prostate acinar epithelial cells (prostasomes) [101, 104, 105]. Ronquist 
and colleagues provided the first description in 2009; they purified prostasomes 
from seminal fluid and from PC-3-cells and found human chromosomal DNA, frag-
ments with a length from over 12 kb and lower, protected from enzymatic attack 
because encapsulated in vesicles [104]. The same group evaluated the specific role 
of prostasomal DNA few years later. In 2011 authors provided evidences of the 
transfer of DNA into sperm from DNA-stained prostasomes, thus demonstrating 
that the transfer of chromosomal DNA fragments is conceivable from human pros-
tasomes to human sperm [101].

In 2012 Waldenstrom and colleagues reported that also cardiomyocytes transfer 
genetic information (DNA and RNA) to fibroblasts though the release of microves-
icles/exosomes [106].

Recently, Fischer et al. observed high-molecular DNA in association with EV 
purified from human bone marrow mesenchymal stromal cells (BM-hMSC). They 
also demonstrated that EV-DNA was transferred to recipient cells and propagated 
into the host genome, providing the first evidences of horizontal DNA transfer in 
eukaryotic cells [107].
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Circulating DNA fragments contain genetic alterations that reflect those of tumor 
tissues, including point mutations, rearrangements and amplifications [108]. Several 
studies highlight the presence of cDNA in tumor-derived extracellular vesicles [98, 
109, 110] thus opening to the possibility to consider EV-DNA as marker of disease 
progression.

In 2011 Balaj and colleague analyzed the nucleic acid contents of glioblastoma 
and medulloblastoma (which had genomic amplification and high expression levels 
of the c-Myc oncogene) extracellular vesicles, providing one of the first evidence 
of the presence of amplified genomic DNA (gDNA), cDNA and retrotransposon 
in tumor vesicles. In particular authors found elevated levels of c-Myc sequences 
in microvesicles from medulloblastoma cell lines compared with those found in 
fibroblasts and tumor cells with diploid c-Myc copy numbers. These data, together 
with the presence of specific retrotransposon sequences, strongly support the 
concept that genetic material contained in extracellular vesicles represents useful 
biomarkers [98].

In 2013 Cai et al. provided evidences of pathophysiological significance of the 
transfer of EV genomic DNA. Authors first showed substantial amounts of double 
strand DNA, mostly around 17 kb, in EVs derived from human plasma and super-
natants of vascular smooth muscle cells, in addition they demonstrated that EV-DNA 
is shuttled to target cells, altering their cellular functions. Furthermore, a clear dem-
onstration of the transmission of oncogenic material through extracellular vesicles 
was provided by the incubation of exosomes, derived from chronic myeloid leuke-
mia cell carrying the BCR/ABL hybrid gene, with neutrophils; authors demon-
strated that this incubation led to the transfer of the oncogene to normal cells [111]. 
One year later the same authors showed that the injection of chronic myeloid leuke-
mia EVs in NOD/SCID mice caused de-novo transcription of BCR/ABL mRNA 
and protein synthesis, providing in vivo evidences of the functional significance of 
transferred genetic material by EVs [112].

Lyden group, by using two different specific approaches to detect EV-DNA on 
broad cancer models, found that the majority of exosome DNA is double-stranded, 
in addition, they found that the amount of EV-DNA is higher in tumor exosomes 
compared to normal ones. Whole genome sequencing allows a detailed character-
ization that reveals that the exosome DNA represents the whole genome, including 
tumor-specific genetic alterations [110].

Rak’s group found that H-ras-transformed rat intestinal epithelial cells release 
more vesicles than the normal counterparts; the vesicles can be internalized by tar-
get cells and contain double-stranded genomic DNA, representing the entire genome 
and including H-ras sequences [109]. Additional studies on the presence of double- 
stranded genomic DNA in cancer cells comes from Kahlert et al. that found genomic 
DNA, spanning all chromosomes, in exosomes from pancreatic cancer cells and 
from serum of patients with pancreatic ductal adenocarcinoma. In addition they 
observed the presence of DNA with mutated KRAS and p53, confirming the appli-
cability of EV-DNA as diagnostic tool [113].

More recently, Lazaro-Ibanez et al. showed that genomic double-stranded DNA 
is present in different EV subpopulations (apoptotic bodies, microvesicles and 
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exosomes) from malignant prostate cancer cell lines and from plasma of both PCa 
patients and healthy donors. Authors found part of both TP53 and PTEN genes, 
involved in cancer initiation, progression and treatment resistance in the EV sub-
populations. Analysis of genomic mutations, by using EV-associated DNA, could 
therefore represent a source of diagnostic biomarkers [100].

The possibility to use EV-DNA as a source of biomarkers for cancer diagnostics 
and prognostics is supported by a very recent study from Jin and colleagues that 
provided evidences of the stability of serum EV and EV DNA under different condi-
tions. In particular they purified EVs from serum stored at 4 °C, room temperature 
and after repeated freeze-thaw cycles and isolated EV-DNA, observing that the con-
tent and function of DNA in EVs was stable [114].

It is now known that mitochondria contain extranuclear DNA (mtDNA) mater-
nally inherited and with a high mutation rate. Mutations in mtDNA are often causes 
of many mitochondrial diseases. In addition, mtDNA mutations are found to be 
associated with neurodegenerative diseases, diabetes, cancer and aging. The pres-
ence of mtDNA in extracellular vesicles is a more recent report; it is conceivable to 
speculate that altered mtDNA can be delivered among cells, favoring the diffusion 
of several pathologies.

Guescini and colleagues provided the first evidence that human glioblastoma 
cell line and primary astrocyte cells package mtDNA in exosomes. In particular 
authors showed that mitochondrial DNA was confined inside the exosomes by 
treating them with DNaseI before DNA purification; in addition they quantified 
mtDNA by measuring, through Real-time PCR, the expression of specific mito-
chondrial encoded gene, NADH dehydrogenase subunit 1 (MT-ND1). Authors 
concluded that, although a marked portion of mtDNA released in the conditioned 
medium is free, the DNase- resistant mtDNA, enveloped in exosomes, is about 10% 
of the total [99]. In 2010 the same group reported that also cultured myoblasts-
derived microvesicles contained mtDNA, by measuring a region of the mitochon-
drial D-loop. Authors finally speculated that mtDNA, shuttled among cells, could 
have physiological relevance in restoring the proper mtDNA or, conversely, favor-
ing the spread of pathological phenotypes, such as skeletal muscle diseases [115].

Zhang and collaborators investigated if the stimulation of mast cell leads to secre-
tion of mitochondrial components that could elicit inflammatory effects. They found 
that, in response to allergic and neuropeptide trigger, human mast cells secrete mtDNA 
and that about 25% of this DNA is contained in exosomes. These findings highlight a 
potential role of EV-associated mtDNA also in inflammatory disorders [116].

2.5  Concluding Remarks

The results accumulated over the last years have shown that exosomes contain 
RNAs, microRNAs, long non-coding RNAs, DNA, lipids, metabolites and proteins, 
functioning as intercellular delivery system, even over a long distance. Considering 
these properties and the development of increasingly innovative technologies for 
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their isolation, characterization and manipulation, exosomes are nowadays consid-
ered biomarkers in several conditions as well as vehicles for the delivery of thera-
peutic cargoes.
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Chapter 3
Functional Role of Cardiovascular Exosomes 
in Myocardial Injury and Atherosclerosis

Maarten Vanhaverbeke, Diane Gal, and Paul Holvoet

3.1  Introduction

Exosomes are bi-lipid-membranous vesicles containing protein, lipid and nucleic 
acid material secreted from cells. They are smaller than shedding microvesicles and 
apoptotic bodies (approximately 40–100  nm for exosomes compared to 
100 nm–1 μm for shedding microvesicles and 1–4 μm for apoptotic bodies) and dif-
fer by their intracellular origin [19, 42]. Exosomes are identified by their compo-
nents including integrins and tetraspanins (CD63, CD89, CD81, CD9, and CD82), 
by maturation-related proteins (flotillin and annexin), and by heat shock proteins 
(HSP). Together, exosomes and microvesicles are often referred to as extracellular 
vesicles (EVs). They are not a result of random sampling; instead they contain 
selective cargo assembled through dedicated packing mechanisms [40, 44], deliver 
these loads to targeted cells and contain unique trafficking properties. All these 
mechanisms depend on the individual cell, its cellular state and different physiolog-
ical, pathological and stress conditions [19, 20]. EVs mediate horizontal, paracrine 
transfer, delivering microRNAs (miRs), mRNA and proteins between cells of differ-
ent origin, resulting in silencing or activation of signaling pathways [32]. However, 
the underlying mechanisms of transfer and the amount of content delivered to the 
cells remain controversial or unclear.

This chapter will discuss the functional roles of EVs in the prevention, repair or 
progression of cardiovascular disease, through the communication between several 
cell types in the heart and vasculature, with an emphasis on signaling pathways.
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3.2  Role of Extracellular Vesicles in Intracardial 
Communication

3.2.1  Cardiomyocytes, Myofibroblasts and Cardiac Injury

The heart contains cardiomyocytes (CMs), which represent only a third of all cells 
in the heart, endothelial cells (ECs), immune-system-related cells (macrophages), 
fibroblasts (FBs), smooth muscle cells (SMCs), sympathetic and parasympathetic 
neuronal cells, and stem cells. A tight balance between these cell types is needed to 
maintain the integrity of the heart [4]. Myocardial injury disrupts this integrity by 
inducing CM death and destroying the vasculature, triggering several effects to 
repair and maintain cardiac integrity, including cardiac fibrosis by activation of 
myofibroblasts. This activation involves a complex signaling network containing 
transforming growth factor (TGF)-β, endothelin-1 (EDN-1), angiotensin II (AGTII), 
connective tissue growth factor (CCN2), and platelet-derived growth factor (PDGF) 
(Fig. 3.1a). Myofibroblasts originate from several sources including quiescent tis-
sue FBs, circulating CD34+ fibrocytes, and the phenotypic conversion of various 
cell types including epithelial cells and ECs. To date, little is known about the inter- 
organ transfer mechanisms of cardioprotection but recent reports suggest that extra-
cellular vesicles (EVs) release may be involved [13]. In this section we will focus 
on EVs released from CMs, ECs, macrophages and FBs in cardiac injury and 
remodeling (Fig. 3.1).

3.2.2  Extracellular Vesicles from Cardiomyocytes, Endothelial 
Cells and Myofibroblasts

CMs and ECs have an intimate anatomical relationship that is essential for main-
taining normal development and function in the heart. Regulation mechanisms of 
cardiac and endothelial crosstalk in situations of acute stress remain elusive. This 
cardiac and endothelial crosstalk may involve EVs, among them exosomes. 
Recently, HSP20- enriched EVs secreted by CMs acted as a novel cardiokine in 
regulating myocardial angiogenesis through activation of the vascular endothelial 
growth factor receptor (VEGFR) signaling cascade [54] (Fig. 3.1b). Indeed, overex-
pression of HSP20  in streptozotocin (STZ)-induced diabetic mice significantly 
decreased cardiac dysfunction, hypertrophy, apoptosis, fibrosis, and restored angio-
genesis. This protective action against adverse cardiac remodeling involved p-Akt, 
survivin, and superoxide dismutase 1. In addition, HSP20 exosomes interacted with 
tumor susceptibility gene 101, an important regulator of cell cycle arrest and p-53 
independent cell death [47]. Diabetes also significantly impaired angiogenesis by 
inhibiting proliferation and migration of mouse cardiac endothelial cells (CECs). 
Mechanistically, higher levels of microRNA (miR)-320  in exosomes of diabetic 
animals functionally down-regulated its target genes such as insulin growth factor 
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(IGF-)1, HSP20 and ETS proto-oncogene 2, transcription factor (ETS2) in recipient 
CECs [48] (Fig. 3.1b).

In myocardial ischemia-reperfusion injury, both miR-1 and miR-133a in the exo-
some-rich fraction in plasma protected CMs by inhibiting cardiac hypertrophy [7] 

c. Cardioprotection
HSP20
pAKT

SURVIVIN
SOD1

AT1Rs
β-ARRESTIN

miR-1
miR-133a

miR-21-3p ↑

TLR4 ↑
HSP27/70 ↑

e. Hypertrophy ↑

FBs a. Fibrosis

Myocardial injury

d. CM death

Macrophage

TGF-β, EDN-1,
AGTII, CCN2,
PDGF

SORBS2 ↓
PDLIM5 ↓
MAPK ↑
AKT ↑

AGTII ↑

IGF-1 ↓
HSP20 ↓
ETS2 ↓

EC

VEGFR

b. Angiogenesis ↑

Diabetes

CMs

TNF-α

miR320

Fig. 3.1 Extracellular vesicles in cardiac remodeling: Myocardial injury induces CM death and trig-
gers several repair mechanisms, including cardiac fibrosis. The effector cells of fibrosis are activated 
FBs called myofibroblasts and involves a complex signaling network containing TGF-β, EDN-1, 
AGTII, CCN2 and PDGF leading to fibrosis (a). EVs secreted from CMs were shown to be enriched 
in HSP20, pAKT, survivin and SOD1, and were cardioprotective and induced angiogenesis (b). In 
contrast, diabetes induces CMs to secrete EVs enriched in miR-320 impairing the expression of IGF-
1, HSP20 and ETS2  in ECs resulting in impaired angiogenesis (b). CM-derived EVs containing 
A1TR, β-arrestin and miR-1 and miR133a increase TLR4/HSP27 signaling, resulting in cardiopro-
tection (c). During myocardial ischemia, TNF-α is mainly released in macrophage- derived exo-
somes, but with persistent ischemia it can also originate from exosomes released by CMs, inducing 
CM death (d). miR-21-3p (miR-21*) in FB-derived exosomes induced CM hypertrophy by inhibit-
ing SORBS2 and PDLIM5 (e). In addition, these FB-derived exosomes induced MAPK and AKT 
signaling resulting in intensified AGTII-induced cardiac hypertrophy. Abbreviations: AGT angioten-
sin, AKT AKT serine/threonine kinase 1, A1TR angiotensin II type I receptors, CM cardiomyocyte, 
CCN2 connective tissue growth factor, EC endothelial cell, EDN-1 endothelin-1, FB (myo)fibroblast, 
ETS2 ETS proto-oncogene 2, transcription factor, EV extracellular vesicle, HIF-1α hypoxia induc-
ible factor-1α, HSP heat shock protein, IGF-1 insulin growth factor 1, MAPK mitogen-activated 
protein kinases, miR microRNA, MQ macrophage, PDGF platelet-derived growth factor, PDLIM5 
PDZ and LIM domain 5, SOD superoxide dismutase, SORBS2 sorbin and SH3 domain-containing 
protein 2, TGF-β transforming growth factor, TLR toll like receptor, TNF tumor necrosis factor
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(Fig. 3.1c). Therefore, they may be utilized to suppress maladapted hypertrophy when 
blood flow and energy supply is limited [26]. A pro-survival signaling pathway was 
activated in CMs involving toll-like receptor (TLR)-4 and various kinases, leading to 
activation of the cardioprotective HSP27.

In addition to secreting microvesicles and exosomes, CMs were found to secrete 
cytokines, chemokines, and factors like ANP, BNP, TGF-β, and tumor necrosis 
factor-α (TNF-α) [15, 46]. Excessive TNF-α is thought to be harmful to CMs in 
acute myocardial infarction (MI). During myocardial ischemia, TNF-α is mainly 
released in macrophage-derived exosomes, but with persistent ischemia it can also 
originate from exosomes released by CMs, induced directly by hypoxia and activa-
tion of hypoxia inducible factor-1α (HIF-1α) [53] (Fig. 3.1d).

Finally, FBs also have an important function in the pathophysiology of CM 
death, fibrosis and hypertrophy. MiR-21-3p in cardiac FB-derived exosomes 
induced CM hypertrophy (Fig. 3.1e). Sorbin and SH3 domain-containing protein 2 
(SORBS2) and PDZ and LIM domain 5 (PDLIM5) were identified as miR-21-3p 
targets by proteome profiling. Silencing SORBS2 or PDLIM5 in CM and inhibition 
of miR-21-3p induced hypertrophy [5]. In addition, FB-derived exosomes induced 
mitogen-activated protein kinases (MAPKs) and Akt resulting in increased expres-
sion of the Renin Angiotensin System, thereby intensifying AGTII-induced patho-
logical cardiac hypertrophy [29].

3.3  Vesicles from Stem Cells and Progenitor Cells

3.3.1  Cardiac Stem Cells

By definition, a stem cell is capable of self-renewal and can differentiate into at least 
one cell type. Embryonic stem cells (ESCs) are pluripotent stem cells which were 
first isolated as a small cluster of cells within mouse blastocysts [11], later from 
human blastocysts [38]. Hematopoietic stem cells (HSCs) differentiate into differ-
ent blood cells and are CD34+. Mesenchymal stem cells (MSCs) are multipotent 
stromal cells that can differentiate into a variety of cell types like myocytes and 
adipocytes [39]. In contrast to HSCs, standardization of MSCs was hampered by the 
lack of molecular markers to discern MSCs from FBs. However, recently, specific 
DNA methylation patterns were used to discriminate between MSCs and FBs, and 
to distinguish between MSCs from bone marrow and adipose tissue [1]. In addition 
to ESCs, HSCs and MSCs, a population of resident cardiac stem cells (CPCs) have 
been identified in the heart; but they comprise less than 1% of the cells in the heart. 
As yet it is not known whether the CPCs actually migrate from bone marrow to the 
heart, or originate from remnants of embryonic cell populations in the right atrium 
and right ventricle. CPCs have been sub-classified into c-kit and Scal-1. C-kit car-
diogenic stem cells can differentiate into myogenic, vascular endothelial and smooth 
muscle lineages. Sca-1 are involved in cell signaling and cell adhesion [16]. Finally, 
induced pluripotent stem cells (iPSC) can generate an abundance of cells without 
the risk of immune rejection for cell therapy.
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3.3.2  Stem Cell Derived Vesicles

MSCs have been considered to be one of the most promising candidates for regen-
eration of cardiac cells lost upon injury. But with age, dysregulated MSCs differen-
tiate into dysfunctional inflammatory FBs leading to pathologic fibrosis. The 
phenotypic change is specific to the heart since MSCs originating from bone or FBs 
derived from MSCs were free of these defects [43]. In contrast with the original 
hypothesis that the regenerative capacity of MSCs was due to their potential to 
engraft, differentiate and replace damaged cardiac cells, recent studies suggested 
that this was primarily due to paracrine factors released from MSCs in exosomes 
[35]. For example, GATA binding protein 4 (GATA-4) enriched in exosomes 
released by MSCs at the border of an ischemic region significantly restored cardiac 
contractile function and reduced infarct size (Fig. 3.2). Mechanistically, these exo-
somes increased miR-19a in CMs, resulting in decreased expression of Phosphatase 
and Tensin Homolog (PTEN), a predicted target of miR-19a, and in the activation of 
the Akt and ERK signaling pathways [52] (Fig. 3.2). In addition to miR-19, miR 
profiling analysis revealed that cardiac stem cells exposed to MSC-derived exo-
somes secreted more miR-147, let-7i-3p, miR-503-5p, and miR-362-3p, and less 
miR-326-5p, miR-328a-5p, miR-207, miR-760-3pn, and miR-702-5p, associated 
with activation of target genes involved in angiogenesis and positive regulation of 
cell proliferation, cell migration, cell differentiation, and response to hypoxia [55]. 
They activated several signaling pathways important in wound healing (Akt, ERK, 
and STAT3) and induced the expression of a number of growth factors [hepatocyte 
growth factor (HGF), IGF1, nerve growth factor (NGF), and stromal-derived growth 
factor-1 (SDF1)] [37], ultimately leading to preserved cardiac performance after MI 
[6] (Fig. 3.2). Levels of ATP, NADH and phosphorylated-Akt and phosphorylated- 
inosine/guanosine kinase (GSK)-3β were increased, while phosphorylated-c-JNK 
was reduced, thereby decreasing oxidative stress and inflammation in ischemic/
reperfused hearts [3]. In addition, the proteome of MSCs and MSC-derived exo-
somes, from cells cultured under expansion conditions and under ischemic tissue 
simulated conditions, was shown to contain key angiogenic paracrine effectors and, 
potentially, differentially expressed in these conditions. In total, 6342 proteins were 
identified in MSCs and 1927 proteins in MSC-derived exosomes. They included 
PDGF, epidermal growth factor (EGF), fibroblast growth factor (FGF), and most 
notably nuclear factor-kappaB (NFkB) signaling pathway proteins. The latter was 
identified as a key mediator of MSC exosome induced angiogenesis in ECs [2] 
(Fig. 3.2).

Exosomes derived from iPSC-derived mesenchymal stem cells (iMSC), express-
ing CD63, CD81, and CD9 at their surface, enhanced microvessel density and blood 
perfusion in mouse ischemic limbs, consistent with an attenuation of ischemic 
injury [18], possibly by delivery of cardioprotective miRs, including nanog- 
regulated miR-21 and HIF-1α-regulated miR-210 [49] (Fig. 3.2).

Furthermore, CPC-derived EVs had the same beneficial effects as their parent 
cells in the treatment of chronic heart failure in mice [23]. Like MSCs, CPCs 
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Fig. 3.2 Stem and progenitor cells secrete EVs which protect CMs. EVs released by MSCs overexpress-
ing miR-19 and GATA-4 at the border of an ischemic region following ligation of the left anterior 
descending coronary artery significantly reduced infarct size and restored cardiac contractile function. 
Exosomes from iPSC protected against myocardial ischemia/reperfusion injury most likely by delivery 
of cardioprotective miRs, including nanog-regulated miR-21 and HIF-1α- regulated miR-210. CPCs 
release EVs containing GATA-4 and MEF2, which are important in the development of pre-cardiac 
cells. ESC-derived exosomes deliver ESC-specific miR-290-295 cluster and more particular miR-294 to 
CPCs and CMs, promoting increased survival, cell cycle progression, and proliferation in ECs and CMs. 
On aggregate, these EVs reduced infarct size and fibrosis and increased cell survival and cardiac func-
tion. ASC-derived exosomes carry c-kit and stem cell factor, which play a role in angiogenesis. Exosomes 
secreted by ASCs also promote EC angiogenesis by transferring miR-125a repressing the NOTCH 
ligand delta-like 4. HSCs induce angiogenesis by secreting exosomes with increased expression of Shh. 
CPCs also secrete exosomes with pro-angiogenic properties mediated via ERK/AKT-signaling. They 
contain high levels of EMMPRIN. MSCs exposed to ischemia secrete exosomes enriched in PDGF, 
EGF and FGF, and most notably, NFkB signaling pathway proteins inducing angiogenesis in ECs. In 
addition, MSC-derived exosomes activated several signaling pathways important in wound healing 
(AKT, ERK, and STAT3) and induced the expression of a number of growth factors (HGF, IGF1, NGF, 
and SDF1). On aggregate, these EVs induced angiogenesis, cell renewal and wound healing in endothe-
lium. Abbreviations: AKT AKT serine/threonine kinase 1, ASC adipose-derived mesenchymal cell, CPC 
cardiac progenitor cell, EGF epidermal growth factor, EMMPRIN extracellular matrix metalloprotein-
ase inducer, ERK extracellular signal–regulated kinase, ESC embryonic stem cell, FGF fibroblast 
growth factor, GATA-4 GATA binding protein 4, GSK inosine/guanosine kinase, HGF hepatocyte 
growth factor, HIF-1α hypoxia inducible factor-1α, HSCs hematopoietic stem cell, IGF-1 insulin growth 
factor 1, MEF2 myocyte enhancer factor 2, MSC mesenchymal stem cell, NFkB nuclear factor-kappaB, 
NGF nerve growth factor, PDGF platelet- derived growth factor, SCF stem cell factor, Shh sonic hedge-
hog, SDF1 stromal-derived growth factor-1, STAT3 signal transducer and activator of transcription 3
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secreted exosomes with pro-angiogenic properties mediated via ERK/Akt-signaling 
(Fig. 3.2). Analysis of pro-angiogenic factors revealed high levels of extracellular 
matrix metalloproteinase inducer (EMMPRIN) [45]. Also mouse ESC-derived exo-
somes augmented function in infarcted hearts by enhancing neovascularization and 
CM survival and by reducing fibrosis, most likely by delivery of ESC-specific miR- 
294 to CPCs, promoting increased survival, cell cycle progression, and proliferation 
[24] (Fig. 3.2).

Finally, adipose mesenchymal stem cell (ASC)-derived EVs induced in vitro 
vessel-like structure formation by human microvascular endothelial cells (MECs) 
(Fig. 3.2). Treatment of ASCs with PDGF stimulated secretion of EVs, carrying 
c-kit and stem cell factor, SCF, regulated by HIF-1α, inducing angiogenesis [28]. 
Exosomes secreted by ASCs also promoted EC angiogenesis by transferring 
miR- 125a, which repressed the NOTCH ligand delta-like 4 [27]. Similarly, neo-
vascularization was induced by transplantation of human HSCs to ischemic tis-
sues in preclinical models (Fig.  3.2). These cells secreted exosomes with 
increased expression of the angiogenic factor sonic hedgehog (Shh), to offset 
age- and health-related angiogenic declines [36]. They also reduced infarct size 
and increased border zone capillary density compared with unmodified CD34+ 
cells [30].

3.4  Role of Extracellular Vesicles in Endothelial 
to Mesenchymal Transition

Recent studies demonstrated that the phenotypic transition of ECs into MSCs, 
called Endothelial to Mesenchymal Transition or EndMT, plays an important role in 
the pathogenesis of fibrotic disorders. During EndMT, resident ECs acquire a mes-
enchymal phenotype characterized by an increased ability to migrate and invade, 
thereby contributing to tissue remodeling and fibrosis [25, 31].

Hypoxia was found to efficiently induce human coronary artery endothelial 
cells (CAECs) to undergo EndMT, resulting in EndMT-derived FBs (Fig. 3.3). 
This process was mediated through a HIF-1α-dependent pathway, TGF/SMAD 
signaling pathways and DNA (cytosine-5)-methyltransferase 3A (DNMT3a)-
mediated hypermethylation of Ras-Gap-like protein 1 (RASAL1) promoter and 
direct zinc-finger transcription factor Snail (SNAIL) induction [50]. Ultimately, 
this resulted in increased expression of extracellular matrix proteins such as col-
lagen COLI and COLIII [51]. Focal myocardial fibrosis is also a structural hall-
mark of diabetic cardiomyopathy resulting from hyperglycemia-induced 
endothelial injury leading to EndMT associated with reduced expression of EC 
markers, such as CD31 and CD34, and increased expression of multiple mesen-
chymal markers, such as COLI and COLIV, and vimentin. Mir-200b reverted 
diabetes-associated EndMT by directly interacting with VEGF, SMAD2/3 and 
regulating p300-dependant histone acetylation and expression of for example 
extracellular matrix proteins [12].
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Cardiac fibrosis does, however, not only result from a decrease in microvessels 
and oxygen supply but also from increased oxygen consumption by activated 
immune and inflammatory cells and fibroblasts leading to localized tissue hypoxia 
predominantly within inflammatory lesions (“inflammatory hypoxia”). Herein, 
HIF-1α, an oxygen-sensitive transcription factor that allows adaptation to hypoxia 
environments, plays an important role. Recent data suggest that the HIF-1 
α-mediated metabolic shift and fibrosis is not only related to cardiovascular diseases 
but also to immune-related disorders [10] (Fig.  3.3). A common direct target of 
HIF-1α in hypoxia-induced EndMT is SNAIL [51] (Fig. 3.3).
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Fig. 3.3 Endothelial to Mesenchymal Transition, fibrosis and atherosclerosis. Hypoxia and diabe-
tes induce secretion of EVs by FBs enriched in HIF-1α and TGF-β, respectively. They induce 
endothelial cells to undergo endothelial to mesenchymal transition (EndMT) through direct induc-
tion of SNAIL, a target of HIF-1α, and through TGF/SMAD signaling pathways and DNMT3a- 
mediated hypermethylation of RASAL1 promoter. EndMT results in the generation of 
EndMT-derived FBs with increased expression extracellular matrix proteins such as COLI, COLIII 
and FN. Hypoxia and diabetes cause endothelial dysfunction with increased secretion of leukocyte 
adhesion molecules leading to increased macrophage accumulation and oxidative stress. 
Macrophages secrete EVs enriched in CD36 and TNF-α which induce VSMC migration. 
Stimulated VSMCs secrete extracellular vesicles inducing matrix accumulation and calcification, 
resulting in complex atherosclerotic plaques. Collagen and fibronectin in extracellular vesicles 
secreted by EndMT-derived FBs exacerbate the growth of atherosclerotic plaques by inducing 
macrophage infiltration and making the atherosclerotic plaques more complex due to extracellular 
matrix deposition. Abbreviations: COL collagen, DNMT3a DNA (cytosine-5)-methyltransferase 
3A, EC endothelial cell, EV extracellular vesicle, FB fibroblast, FN fibronectin, HIF-1α hypoxia 
inducible factor-1α, ICAM-1 intercellular adhesion molecule 1, RASAL1 Ras-Gap-like protein 1, 
ROS reactive oxygen species, SMC smooth muscle cells, SNAIL zinc-finger transcription factor 
Snail, TGF-β transforming growth factor, TNF tumor necrosis factor, VCAM-1 vascular cell adhe-
sion molecule-1
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3.5  Role of Extracellular Vesicles in Atherosclerosis

Hypoxia and diabetes are known to cause endothelial dysfunction, with increased 
secretion of leukocyte adhesion molecules leading to increased macrophage accu-
mulation, reactive oxygen species (ROS) and oxidative stress, ultimately leading to 
atherosclerosis (Fig. 3.3). The circulation of atherosclerotic patients has been shown 
to contain more leukocyte-derived EVs promoting vascular SMC adhesion and 
migration, than those of healthy participants. In addition, macrophage-derived foam 
cells secrete EVs which promote increased levels of vascular SMC migration and 
adhesion, regulating the actin cytoskeleton and focal adhesion pathways to a greater 
extent than macrophage-derived EVs. Western blotting revealed that foam cell- 
derived EVs could also promote the phosphorylation of ERK and Akt in SMCs in a 
time-dependent manner. Foam cell-derived EVs could enter the SMCs and transfer 
integrins to the surface of these cells [33].

The calcification of SMC is also mediated by regulated exosome secretion. 
Comparative proteomics showed that vascular SMC-derived exosomes shared com-
ponents with osteoblast-derived EVs including calcium-binding and extracellular 
matrix proteins (Fig.  3.3). Elevated extracellular calcium was found to induce 
sphingomyelin phosphodiesterase 3 and the secretion of calcifying exosomes from 
vascular SMCs in vitro. Chemical inhibition of sphingomyelin phosphodiesterase 3 
prevented SMC calcification. In vivo, EVs containing exosomes were observed in 
vessels from chronic kidney disease patients on dialysis, and CD63 was located 
where there was calcification. Importantly, factors such as TNF-α and PDGF-BB 
were also found to increase exosome production, leading to increased calcification 
of SMC [22]. Comparison between exosomes from quiescent and activated SMCs 
showed evidence of 29 differentially expressed proteins which are involved in cyto-
skeleton organization, chaperones, cell adhesion, cell signaling, metabolic path-
ways, vesicle trafficking and extracellular matrix production [9] (Fig. 3.3). Foam 
cell formation and enhanced VSMC and extracellular matrix accumulation with 
calcification resulted in the generation of complex atherosclerotic plaques (Fig. 3.3). 
The extracellular matrix proteins COL and fibronectin, induced in EndMT, were 
associated with increased luminal endothelial expression of intercellular adhesion 
molecule 1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). 
Mechanistically, the relation between EndMT and atherosclerosis also depends on 
loss of endothelial fibroblast growth factor receptor 1 (FGFR1) expression and acti-
vation of endothelial TGF-β signaling [8].

3.6  Research Limitations and Future Outlook

Facing a shortage of human data we focused our review to studies containing in vivo 
data obtained in relevant preclinical models. Even with these restrictions, it proved 
to be difficult to compare the outcome of selected in  vivo studies because of 
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differences in isolation procedures of EVs (for example ultracentrifugation, size 
exclusion chromatography, or immunoadsorption) which may yield EVs with dif-
ferent sizes (not necessarily purified exosomes), use of different sets of surface 
markers which may yield information about cell origin of EVs and differences in 
extent of evaluation of cargo (miRs, proteins or none of them). Therefore standard-
ization of separation procedures and protocols to analyze biogenesis, composition 
and function are needed to improve our insight in the mechanistic role of EVs [34]. 
Novel isolation procedures may involve microfluidics devices for on-chip isolation 
and quantification of circulating micro-particles [21], and microchip-based RNA 
extraction, amplification and RT-PCR analysis [41].

A major shortcoming of many of the previous studies is that the full content of 
EVs was not all analyzed or that the selection of compounds to which functional 
roles were attributed was biased. Indeed, many of the reviewed studies focused on 
one of a few numbers of compounds without displaying information about the com-
plete cargo or specifying the reason why these compounds were selected. 
Furthermore, data on the signaling pathways involved in the mechanisms of action 
of EVs are rare and again incomplete. Therefore, an unbiased systems biology 
approach is needed to generate and test hypotheses about the effect of context (e.g. 
spatial organization of endothelial cells in relation to other cell-types like macro-
phages or myofibroblasts and interaction through paracrine factors) dependent on 
state of the disease on the functional role of specific EVs. To this end Gray and col-
leagues [14] proposed cue-signal-response studies using partial least square regres-
sion (PLSR) methods that study how signals (exosome content or cargo) translate 
cues from the secreting cell (its gene/protein expression state) to elicit a specific 
response in the recipient cells.

In reviewing the role of EVs in cardiovascular diseases it became obvious that, 
although it is generally accepted that macrophages play a crucial role in the devel-
opment of cardiac fibrosis and atherosclerosis, information about the role of their 
precursor cells, monocytes, and exosomes derived from monocytes is limited. 
Recently, we found that low mitochondrial cytochrome oxidase-1, a marker of mito-
chondrial dysfunction, in monocyte-derived exosomes predicted the risk of future 
cardiovascular events in the same way as low mitochondrial cytochrome oxidase-
 1 in monocytes. Therefore, the role monocyte-derived exosomes should be investi-
gated further [17].

3.7  Conclusions

The studies reviewed present evidence that extracellular vesicles secreted by CMs, 
ECs, immune-system-related cells (macrophages), fibroblasts (FBs) and stem cells 
play an important role in the regulation of endothelial cardiomyocyte and endothe-
lial function in relation to cardiovascular diseases. However, knowledge of the 
underlying signaling pathways is still too sparse to identify targets for EV-mediated 
treatment of these diseases.
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Chapter 4
Exosomes as Diagnostic Biomarkers 
in Cardiovascular Diseases

Felix Jansen and Qian Li

4.1  Role and Function of Exosomes in Cardiovascular 
Biology

Exosomes are a subgroup of extracellular vesicles (EVs), generally ranging from 40 
to 100  nm in diameter [1]. They are derived from exocytosis, through fusion of 
multivesicular bodies with cell membranes [1, 2]. Exosomes mediate intercellular 
communication by transporting biological molecules to recipient cells, playing vital 
roles in the regulation of vascular health [3]. Contents and quantities of exosomes 
are variable under different conditions and detectable in body fluids [3]. Therefore, 
circulating exosomes and their molecule cargos such as nucleic acids or proteins, 
may facilitate the diagnosis of cardiovascular diseases. Firstly, we summarize the 
current knowledge about the role and function of exosomes in cardiovascular 
biology.

4.1.1  Exosomes Participate in Cell-to-Cell Communication

Many types of cardiac cells are able to release exosomes, such as cardiomyocytes, 
fibroblasts, endothelial cells, cardiac progenitor cells (CPCs) and even stem cells. 
Numerous studies suggest that exosomes play important roles in cardiac cell-cell 
communication under physical and pathological conditions [1, 2]. Exosome- mediated 
cellular cross-talk relies on their capability to transport biomolecules from cell to cell [3]. 
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Exosomes carry biological cargos derived from their parent cells including mRNA, 
microRNA (miRNA), other non-coding RNA, DNA, cytoplasmic and membrane pro-
teins, growth factors, cytokines, lipids and others [4, 5]. After released from the cells 
of origin, exosomes can be taken up by adjacent or even distant cells [1, 4].

Previous studies have shown that the intercellular transfer of functional biomol-
ecules via exosomes affects function and phenotype of the recipient cell [6]. For 
example, miRNA from exosomes control gene expression by binding to mRNA in 
the target cells inducing mRNA degradation [7]. In this context, a recent study 
reported that exosomes derived from CPCs reduced cardiac hypertrophy and cardio-
myocyte apoptosis via exosome based miRNA-133-transfer from CPCs to cardio-
myocytes [8]. Endothelial exosomes were shown to transfer miRNA-214 to target 
cells and mediate angiogenesis [9]. MiRNA-133 in exosomes from CPCs reduced 
cardiac hypertrophy and cardiomyocyte apoptosis [8]. Another exosomal miRNA 
derived from CPCs, miRNA-451, was demonstrated to protect cardiomyocytes 
from oxidative stress [10]. Also, miRNA-143/145 in EVs were reported to deliver 
atheroprotective messages to smooth muscle cells [11].

Moreover, it was shown that the interaction between exosomes and target cells 
functions in a ligand-receptor mediated way [12]. Given the distinct identification 
between exosome surface ligands and recipient cell receptors, exosomes specifi-
cally interact with distinct recipient cells. One study exploring exosome-target cell 
interaction found that exosomes derived from antigen presenting cells express major 
histocompatibility complex (MHC) class I and II molecules, which enable exo-
somes to interact with CD8+ and CD4+ T cells [12].

4.1.2  Exosomes Content and Function Reflect the Condition 
of the Cell of Origin

Recent studies show that exosome compositions depend on the status of the original 
cells at the time of exosomes biogenesis [7, 13]. During this process, signaling pro-
teins, RNAs or other molecules expressed in parent cells can be selectively loaded 
into exosomes, though the specific mechanisms are still elusive [14]. In vitro experi-
ments indicated that biological contents in exosomes depend on the pretreatment 
with diverse stressors. De Jong et al. showed that in endothelial cell-derived exo-
somes, RNA and protein content reflects the effects of cellular stress induced by 
hypoxia, inflammation or hyperglycemia [13]. Hypoxia stimulation induced expres-
sion of lysyl oxidase like-2 and TNF-α treatment promoted ICAM-1 expression in 
exosomes [13]. Short-term exposure to hyperglycemia, however, only altered exo-
some protein composition without affecting its RNA expression [13].

In experimental conditions of myocardial injury conditions, increasing evidences 
show that both contents and quantities of exosomes display significant alterations 
[15, 16]. Chen et  al. demonstrated that miRNA-451 enriched in exosomes from 
CPCs show anti-apoptotic effects in ischemia/reperfusion-induced cardiomyocyte 
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cell damage [10]. Deddens and colleagues assessed EVs and circulating miRNAs in 
a porcine model of ischemia/reperfusion injury, suggesting that the amount of EVs 
increase 2.5  h after ischemia. However, alterations of circulating miRNA levels 
were detectable only after 1  h [16]. In addition, they found that miRNA-133b, 
-208b, and -499 were selectively increased in plasma-derived EVs [16].

As exosome composition reflects the status of the releasing cell, they provide a 
biological illustration of the individual health status [17, 18]. Therefore, exosomes 
may be regarded as a potential fingerprint of diseases.

4.1.3  Exosomes act as a Protective Carrier

Exosomes contain biomolecules and can be secreted by different cell types into 
body fluids, e.g. plasma, urine, semen, breast milk [5, 19]. As exosomes consists of 
a lipid bilayer, they represent an efficient protection barrier for the intravesicular 
molecules [20]. For example, due to the enzymes in plasma or other body fluids, 
naked RNAs or proteins without protection may be easily degraded, resulting in 
unstable detection results [20, 21]. Exosomes, with the help of the vesicle structure, 
protect their contents from being affected by external environments. Consequently, 
previous studies have shown associations between exosomes biological contents 
and diverse cardiovascular diseases, which is a crucial prerequisite for biomarkers 
[22]. In summary, given their function as carrier and protection device for intrave-
sicular biological contents, increasing evidences suggest exosomes and their con-
tents as reliable biomarkers for cardiovascular diseases.

4.2  Exosome Based Biomarkers as Diagnostic Tool 
in Cardiovascular Diseases

The contents and quantities of exosomes are variable under different pathological 
cardiovascular conditions. Therefore, exosomes may function as novel diagnostic 
biomarkers. Exosomes incorporated miRNAs and proteins are the most widely 
investigated components. In addition, other cargos such as lipids can also serve as 
potential biomarkers.

4.2.1  Exosomes Based miRNA

Extracellular circulating miRNAs can be detected in body fluids, including blood. 
Furthermore, exosomes and other EVs are a main source of circulating miRNAs. 
Compared to freely circulating miRNAs, the majority of plasma miRNAs are 
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concentrated in exosomes and bound to RNA-binding proteins [23, 24]. Therefore, 
exosomes-incorporated circulating miRNAs hold great potential as a novel diagnos-
tic biomarker for cardiac diseases. However, the investigation of exosomal miRNAs 
as biomarker for cardiac diseases is still in its infancy. In the following paragraphs, 
we summarize the current knowledge about exosomes-incorporated miRNAs as 
diagnostic biomarkers in diverse cardiovascular pathologies.

4.2.1.1  Exosomes as Biomarkers for Acute Coronary Syndromes (ACS) 
and Myocardial Infarction (MI)

Injured cardiomyocytes release exosomes which are enriched with cardiac-specific 
miRNAs, such as miRNA-1, miRNA-133a [25, 26]. Accoringly, alterations of exo-
somal cardiac-specific miRNAs can be detected in circulation during AMI or 
ACS. Kuwabara et al. included 29 patients with ACS and 42 healthy controls [26]. 
They compared the levels of miRNA-1 and miRNA-133a in serum samples between 
the two groups [26]. Results indicated that levels of miRNA-1 and miRNA-133a 
were up-regulated in patients with ACS compared with control group [26]. Notably, 
they suggested that miR-133a could be released into circulation via active secretion 
in exosomes [26].

Compared with established biomarkers for cardiac ischemia such as cardiac tropo-
nins (troponin I and troponin T), expression levels of exosomal miRNAs change 
much faster and earlier in the circulation [27]. Additionally, for diagnosing AMI, one 
study showed that detection of circulating cardiac-specific miRNAs had higher sensi-
tivity and specificity than troponin T [28]. The time course of miRNA release into the 
circulation has been explored in several studies. miRNA-1 and miRNA- 133a showed 
the highest plasma levels 2.5 h after the onset of symptoms in MI patients [26, 27].

4.2.1.2  Exosomes as Biomarkers for Heart Failure (HF)

Brain natriuretic peptide (BNP) and N-terminal probrain natriuretic peptide 
(NT-proBNP) are classical biomarkers for diagnosing HF. Additionally, evidences 
suggest that specific exosomes-associated miRNAs are differentially regulated in 
the failing heart [29–31], suggesting their potential complementary role in the diag-
nosis of HF. Matsumoto S et al. suggested that exosomes-bound miRNAs were pre-
dictive indicators of ischemic HF in post-AMI patients [31]. In their study, a panel 
of 377 miRNAs were examined from serum of registry patients who developed HF 
after acute AMI [31]. Results show that circulating levels of p53-responsive miR-
NAs, including miR-192, miR-194 and miRNA-34a, increase markedly in the 
patients with HF [31]. Moreover, they showed that levels of miRNA- 192, miRNA-
194, and miRNA-34a were highly enriched in the exosome fraction [31]. They con-
firmed their findings in a validation cohort of 21 patients, suggesting that exosomes 
based circulating p53-responsive miRNAs (miRNA-192, miRNA- 194 and miRNA-
34a) may be regarded as predictors of ischemic HF that develops after AMI [31].
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Peripartum cardiomyopathy (PPCM) associated HF has a high mortality, which 
lacks of specific diagnosis biomarkers. Recently, exosomes based circulating 
miRNA-146a is reported to be a potential hallmark for diagnosing PPCM associated 
HF [32]. A clinical study conducted by Halkein et  al. included 30 patients with 
dilated CM and 38 patients with acute PPCM [32]. Patients with acute PPCM 
showed significantly increased levels of circulating miRNA-146a [32]. Interestingly, 
the level of circulating exosomal miRNA-146a decreased in the patients with acute 
PPCM after undergoing the standard therapy of HF, suggesting miRNA-146a might 
reflect a promising biomarker for PPCM associated acute HF [32]. Moreover, many 
studies demonstrated that circulating miRNA-92 has a close connection with car-
diovascular disease [33, 34]. Goren et al. examined its concentration in the serum of 
HF and control groups, showing higher level of miRNA-92 in the exosomal fraction 
of the HF patients [35]. In summary, specific exosomes based circulating miRNAs 
are specifically regulated under different pathogenetic conditions of HF.

4.2.1.3  Exosomes as Biomarkers for Metabolic Diseases 
(Diabetes, Metabolic Syndrome)

Metabolic diseases, in particular type 2 diabetes mellitus (T2DM) and metabolic 
syndrome (MetS) increase the risk to develop cardiovascular diseases. T2DM is 
characterized by abnormal hyperglycaemia and insulin resistance. In patients with 
T2DM, the quantities of circulating exosomes are increased [36, 37], Additionally, 
the changes of exosomal contents are also indicators for T2DM. Wang et al. suggest 
that cardiomyocytes can secret exosomes containing higher levels of miRNA-320 
under diabetic conditions, a prominent regulator of endothelial dysfunction [38]. 
Kong et al. and Karolina et al. respectively demonstrated that circulating miRNA- 
29a, miRNA-30d, and miRNA-146a were strongly related to T2DM [39, 40]. 
Moreover, in a large prospective cohort of 822 individuals, the diagnostic ability of 
circulating miRNA-126 was successfully established in diabetic patients compared 
to a non-diabetic control group [41–43].

It is generally accepted that MetS includes insulin resistance, central obesity, 
high triglycerides, dyslipidaemia and hypertension [44]. The substantial issue with 
diagnosing MetS is to identify unique biomarkers, especially blood-based ones. 
Circulating miRNAs, carried by exosomes or other EVs, are currently explored 
and potentially represent novel biomarkers for MetS [45, 46]. Karolina et al. com-
pared EVs based circulating miRNAs between patients with MetS, hypertension 
and healthy controls. Results showed that circulating levels of miRNA-17, 
miRNA-197, miRNA-509-5p, miRNA-92a and miRNA-320a significantly 
increased in MetS patients [47]. In patients with T2DM, only miRNA-320a was 
found to have higher levels compared to non-diabetic patients [47]. In patients 
with hypertension, higher levels of miRNA-197, miRNA-92a and lower levels of 
miRNA-17, miRNA-509-5p and miRNA-320a were reported [47]. In summary, 
the changes of specific miRNAs in the circulation are reflections of different path-
ological conditions in MetS.
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4.2.2  Exosomes Based Proteins

In addition to non-coding RNAs, exosomes are also enriched with bioactive proteins 
such as chemokines, heat shock proteins and growth factors, all mediating signal 
transduction. Many studies discussed the change of protein cargos in EVs under 
hypoxic conditions, which is a substantial pathological process in CAD. DeJong 
et al. proved that exosomes secreted by cells under hypoxic conditions in vitro con-
tain fibronectin, collagen, and lysyl-oxidase-like 2 (LOXL2) [13]. Yu X et al. showed 
that exosomes derived from hypoxic cardiomyocytes mediate TNF-α production 
[48]. Besides, Pironti G et al. investigated exosomal proteins under pressure over-
load. They demonstrated that exosomes derived from cardiomyocytes contain up-
regulated levels of angiotensin II (AngII) type 1 receptor (AT1R) [49]. AT1R plays 
a vital part in maintaining blood pressure and heart function [49]. The results were 
from both in vitro experiments under hypotonic conditions(143 mOsm/kg; osmotic 
stretch) and in vivo studies using a model of pressure overload [49]. All these studies 
suggest that specific proteins enriched in exosomes can be detected in the circulation 
in cardiac diseases, which needs further validation in clinical studies.

De Hoog et al. performed multivariate logistic regression analysis between ACS 
and non-ACS patients [50]. They compared three selected proteins from plasma 
EVs, including polygenic immunoglobulin receptor (pIgR), cystatin C and comple-
ment factor C5a (C5a) [50]. Results suggested that the three selected proteins were 
independently associated with ACS and show gender differences [50]. Cheowet al. 
compared plasma protein cargos in EVs between MI and stable angina patients and 
conducted quantitative proteomics profiling analysis [51]. In this study, 252 EVs 
based circulating proteins were significantly modulated in patients with MI com-
pared to patients with stable angina [51]. Furthermore, they selected six up- regulated 
proteins after MI which reflected key factors in MI progression [51]. Specifically, 
Complement C1q subcomponent subunit A (C1QA) and Complement C5 (C5) are 
involved in post-infarct pathways of complement activation. Apoliporotein D 
(APOD) and Apolipoprotein C-III (APOCC3) participate in lipoprotein metabo-
lism, Platelet glycoprotein Ib alpha chain (GP1BA) and platelet basic protein 
(PPBP) represent surrogate parameters for platelet activation [51]. This is the first 
study exploring EV based proteins in plasma as diagnostic biomarkers for 
MI. However, large, prospective studies are urgently needed to assess the potential 
role of exosomes or EVs protein contents in diagnosing coronary artery diseases.

4.2.3  Other Contents in Exosomes

In addition to non-coding RNAs and proteins, exosomal components such as lipids, 
mRNAs as well as DNAs may also serve as biomarkers for cardiac diseases. Aswad 
et al. conducted lipiomic analysis of exosomes in a lipid-induced insulin resistant 
mouse model. They demonstrated that exosomes derived from palmitate-treated 
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cells are enriched in palmitate [52]. Furthermmore, exosomal palmitate participates 
in modifying muscle homeostasis, suggesting exosomes may mediate cell-cell com-
munication by transferring lipids [52]. Waldenström et al. analyzed total RNAs in 
cardiomyocytes derived exosomes and compared their profiles with original cells 
[14]. Results show that 1520 mRNAs are similar and shared by exosomes and their 
parent cells [14]. Remarkably, most of the mRNAs are related with biological 
mechanisms, including gene expression changes [14].

4.3  Clinical Application and Future Perspectives

Exosomal cargos, including non-coding RNAs, proteins or lipids, are potential diag-
nostic biomarkers for cardiac diseases. However, many issues remain unsolved, 
which have to be addressed, before exosome contents might be helpful in the clinical 
routine diagnosing cardiovascular diseases. Although current studies have given 
valuable insights into the formation of exosomes, the exact mechanisms of cargo 
selection and packaging remain unknown. Additionally, the interactions between 
exosomal contents, such as circulating miRNAs, and target cells have not been com-
pletely understood. Furthermore, exosomes are only one kind of carrier for extracel-
lular intravesicular bioactive molecules. Other EVs including microparticles and 
apoptotic bodies are also protective carriers of biological contents in the circulation. 
Besides, ideal biomarkers should be unique and sensitive for certain disease. 
However, the same variation of exosomal quantities or cargos can be observed under 
different pathological conditions. Therefore, more efforts should be put into identify-
ing specific exosomes based biomarkers. Ultimately, previous studies about exo-
somal biomarkers have limitations. Some of them fail to take time-dependent 
exosomes release kinetics into consideration; It is known that exosomal cargos 
depend on the pathological stage of diseases [16]. Most studies just analyzed exo-
somes number and contents at one time point without continuous measurements; The 
majority of studies only a selected number of miRNAs or proteins were analyzed, 
which are not able to fully cover all the differentially expressed exosomal contents.

To address the mentioned limitations and further explore the potential use of 
exosome-associated biomarkers for cardiac disease, we may take more factors into 
account. Firstly, for the sake of enhancing specificity and sensitivity of biomarkers, 
it is a potential way to combine multiple candidate biomarkers together to diagnose 
certain disease. Given different kinds of miRNAs have distinct release kinetics 
under MI, a combination of miRNA-208a, miRNA-133, miRNA-1, and miRNA- 
499- 5p in one test could potentially identify patients with MI in a broader time 
range [27]. The combinations of exosomal and traditional biomarkers may also 
enhance their diagnostic potential. On the other hand, beyond some small-scale 
studies by individual research groups, large randomized clinical trials are needed to 
address the mentioned limitations, which are necessary with carefully selected con-
trol groups. The mass of data gained from experimental and clinical science also 
calls for methods to deal with it, such as high quality meta-analysis. Additionally, it 
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is a tough task to balance good purity and high quantity of exosomal cargos derived 
from circulation. Therefore, clinical applications require efficient detection proto-
cols and methods, which may depend on the progression of novel technology, e.g. 
innovation of detection kits.

4.4  General Conclusion

Exosomes play important roles in the development and progression of cardiovascu-
lar diseases through modulating intercellular communication between different car-
diac cell types. Exosomes numbers and its cargos are reflections of the (patho) 
physiological status of their parent cells, which provides great potential to use them 
for diagnosing cardiac diseases. To establish exosomes as biomarkers in cardiovas-
cular diseases, convinced clinical trials as well as efficient and standardized detec-
tion methods are prerequisites.
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Exosomes-Based Biomarkers for the Prognosis 
of Cardiovascular Diseases
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5.1  Background

Cardiovascular diseases (CVDs), such as coronary artery diseases, heart failure, and 
stroke, have a high prevalence and annually increasing incidence with high mortal-
ity and morbidity. In 2012, approximately 17.5 million people died from CVDs and 
this number is predicted to increase up to 23 million by 2030. Although treatment 
for CVDs has made great progress in the past decades, the 5-year survival rate for 
CVDs patients fails to be considerably improved [1–3]. With the increasing hetero-
geneity and complexity observed in the progression of CVDs, the need for specific 
and accurate diagnosis of disease state and molecular monitoring of disease pro-
gression have become more urgent. Besides that, to identify a biomarker with high 
sensitivity and specificity for assessing the prognosis of CVDs is also necessary for 
optimizing personalized treatment and reducing mortality.

Exosomes, in some studies also called extracellular vesicles (EVs), are capable of 
carrying signaling molecules including mRNA, miRNA, and proteins, and can serve 
as a platform of complex intercellular communications [4, 5]. Exosomes have been 
proved to be accessible in nearly all body fluids including blood [6], urine [7, 8], 
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saliva, ascites [9], and bronchoalveolar lavage [10, 11]. The vast repertoire of pro-
teins and nucleic acids that can be packaged within exosomes appear to reflect the 
extensive, diverse, and complex signaling potential of these vesicles. The roles of 
exosomes have been investigated in many different areas such as immunology, preg-
nancy, cancer, neurodegenerative diseases, and cardiovascular diseases, and increas-
ing studies have focused on its potential in diagnostic and prognostic monitoring in 
recent years [12–16]. Along with numerous studies, it has been proved that exo-
somes could contain diverse biological contents and might be reflective of disease 
state, thus making them potential candidates for non-invasive biomarkers [17].

Exosome count is a simple and intuitional index in prognostic monitoring of dis-
eases as exosomes derived from different cells could show up first in quantity under 
pathological conditions. For example, higher levels of CD24-positive exosomes were 
reported to indicate poor prognosis and reduce patients’ survival rate with ovarian 
cancer [18]. Stage III and IV melanoma patients showed increased levels of plasmatic 
caveolin-1 and CD63-positive exosomes and exosomes associated with caveolin-1 
displayed a specificity of 96.3% and a sensitivity of 69% [19]. Meanwhile, analysis of 
contents within exosomes, such as proteins or miRNAs, is also a critical observed 
index and this index has already been widely applied in the field of cancer research. 
For example, different tumors are characterized by distinct and specific miRNA pro-
file [20], and exosomal miRNAs have been suggested as diagnostic and prognostic 
indicators for lung cancer, esophageal squamous cell carcinoma, prostate cancer, 
breast cancer, glioblastoma, ovarian cancer, and other cancer types. These miRNAs 
are also correlated with the stage and degree of cancer progression [21–25]. Exosomal 
miR-1290 and miR-375 were reported as prognostic markers in castration-resistant 
prostate cancer [26]. Exosomal miR-34 was suggested to be a predictive biomarker for 
response to docetaxel with clinical relevance to progression of prostate cancer [27]. 
miR-195 levels isolated from plasma exosomes are proved to be higher in breast tumor 
patients. miR-195 and let-7a levels decreased upon tumor removal, showing a possible 
application as a prognostic biomarker as well [28]. Besides that, identification of can-
cer aggressiveness is also an important marker in prognosis. Levels of EpCAM and 
CD24 present in exosomes were correlated with the aggressiveness of ovarian cancer 
and cytoplasmic localization of CD24 occurred in tumors with high invasive potential 
[29]. Exosomes isolated from metastatic cells were proved to be capable of making 
primary tumor aggressive by permanently converting bone marrow progenitors in 
melanoma [30]. Besides the studies of exosomes as biomarkers in cancer research, the 
potential of exosomes in the prognosis of CVDs has also been increasingly reported. 
Here we will summarize the advance of exosome-based biomarkers in CVDs, particu-
larly by focusing on their potential in the prognosis of CVDs.

5.2  Exosomes-Based Biomarkers for the Prognosis 
of Coronary Artery Diseases

Coronary artery diseases (CADs), including stable angina, unstable angina, myo-
cardial infarction, and sudden cardiac death, are among the most common causes of 
death in the world [31]. Treatments in acute phase of CADs, such as coronary 
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bypass surgery, balloon dilatation of coronary vessels and percutaneous translumi-
nal coronary angioplasty can alleviate the initial cardiac damage and decrease the 
mortality dramatically [32]. Treatments during the chronic phase are also eager. 
Atherosclerosis is a major pathological change of most CAD patients during the 
chronic phase, which could even be present at a young age. Identification of the 
people at high risk for an adverse cardiovascular event is challenging in a back-
ground of atherosclerosis already existing for decades. Meanwhile, tissue repair 
after the acute phase of CADs is also important for cardiac functional recovery.

Various methods of assessments have been used in individuals with CADs in 
order to predict or stratify their risk of mortality and also to provide a personalized 
treatment for patients. As an example, the Killip classification is a classic system 
used in the clinic to assess individuals with myocardial infarction and it is also well 
acknowledged that individuals with a low Killip class are less likely to die within 
the first 30 days after their myocardial infarction than those with a high one [33]. 
The Canadian Cardiovascular Society grading of angina pectoris (also referred to as 
the CCS Angina Grading Scale or the CCS functional Classification of Angina) is 
another classic assessment for patients with CADs. Increasing CCS class was 
proved to be associated with increased long-term mortality, and it has been reported 
that 8-year mortality rates were 20.5%, 24.1%, 40.4%, and 35.3% among CCS class 
I, II, III, and IV patients, respectively [34].

In addition to these cardiovascular risk stratification tools using established risk 
factors, several circulating biomarkers have also been shown to be associated with 
adverse cardiovascular outcomes. These prognostic biomarkers include high- 
sensitivity cardiac troponin (hs-cTn), high-sensitivity C-reactive protein (hs-CRP), 
and creatine kinase MB (CK-MB) [35]. Several studies have shown that the baseline 
troponin elevation was associated with a poor outcome after percutaneous coronary 
intervention (PCI) and an isolated elevation of cTnT was a predictor of long-term 
risk of death [36, 37]. However, none of these biomarkers have been included in the 
clinical guidelines yet. The progress of CADs always accompany with apoptosis of 
cardiomyocytes, activation of pro-inflammatory cytokines, and release of various 
signaling molecules while counts of exosomes and regulation of exosomal contents 
are also followed with these changes.

5.2.1  Proteins from Exosomes in Coronary Artery Diseases

After 1 year of follow-up under controlled diet and drug treatment, patients with 
CADs from the study arms of the PREDIMED trial that did not have a future car-
diovascular event showed reduced exosomes shedding from lymphocytes (CD3+/
CD45+) and smooth muscle cells (α-SMA+) [38]. These two kinds of circulating 
exosomes have been shown to add prognostic value to Framingham Risk Score 
(FRS) in the cluster model for cardiovascular event prediction. The ROC curve 
analyses demonstrated that AUC increased from 0.548 ± 0.087 [95% CI: 0.377–
0.719] (P = 0.585) to 0.748 ± 0.078 [95% CI: 0.596–0.900] (P = 0.006), which 
indicated that these vesicles display a higher predictive value for cardiovascular 
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event than the commonly used FRS [38]. In another heterogeneous population of 
488 patients with CADs, CD144-positive EVs were found to be a reliable predictor 
for cardiovascular events. The incidences of cardiovascular death and acute coro-
nary syndrome were significantly higher in the high-EVs group than in the low-EVs 
group and Kaplan-Meier analysis based on high and low levels of biomarkers also 
showed a significantly higher probability of cardiovascular events in presence of 
this kind of EVs during the follow [39]. Likewise, after a 6-year follow- up, the level 
of CD31+/Annexin V+ (endothelial) EVs were proved to be an independent risk fac-
tor for major adverse cardiac events (MACE) and cardiovascular death in patients 
with CADs. Inclusion of these EV levels into a classical risk factor model increased 
predictive value (c-statistic from 0.637 to 0.702, P = 0.03) [40].

Cellular stress conditions can be reflected in the protein content of exosomes 
[41]. A study based on proteomics evaluated the risk of EV protein levels on the 
occurrence of new vascular events in patients with clinically vascular manifest in a 
large cohort (n = 1060). With a long-term follow-up (median 6.4 years), the EV 
Cystatin C, Serpin F2, Serpin G1, and CD14 levels were identified to be related to 
an increased risk for cardiovascular events and death. The Cystatin C and CD14 
levels were related to an elevated risk for vascular events (hazard ratio (HR): 1.27; 
95%CI: 1.07–1.52 and HR: 1.32; 95%CI: 1.12–1.55, respectively) and all-cause 
mortality (HR: 1.41; 95%CI:1.18–1.69 and HR: 1.36; 95%CI: 1.15–1.62, respec-
tively). These HRs were corrected for age, gender, and estimated glomerular filtra-
tion rate (eGFR) [42].

5.2.2  miRNAs from Exosomes in Coronary Artery Diseases

Injured cardiomyocytes were shown to release miRNAs via exosomes and many 
evidence suggested that EV-packaged miRNAs might represent functional media-
tors in CADs. Hergenreider et  al. described an atheroprotective communication 
between endothelial cells and vascular smooth muscle cells via endothelial cell- 
derived exosomes in a miR-143/145 dependent way [43]. It was also reported that 
cardiac progenitor cells (CPCs)-derived miR-146a enriched exosomes were cardio-
protective in myocardial infarction [44]. These findings suggest that exosomal miR-
NAs might have a potential as prognostic biomarkers in CADs. A study analyzing 
the records of patients with myocardial infarction registered in the OACIS reported 
that serum levels of p53-responsive miRNAs (including miR-192, miR-194, and 
miR-34a) particularly inside EVs were highly related to the development of heart 
failure [45]. Furthermore, a trail enrolling 181 patients with stable CAD quantified 
10 miRNAs involved in the regulation of vascular performance both in plasma and 
circulating EVs by reverse transcription polymerase chain reaction (RT-PCR). 
Interestingly, after a median follow-up duration of 6.1 years, increased expression 
of miR-126 and miR-199a in circulating EVs were found to be significantly associ-
ated with a lower MACE rate, while none of the plasma miRNA expression were 
predictive of cardiovascular events [46].
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5.3  Exosomes-Based Biomarkers for the Prognosis of Heart 
Failure

Chronic heart failure(HF) is the end stage of many CVDs. The frequencies of 
emerging cases of HF arise annually worldwide. A reliable and simple tool that 
enables physicians to have a realistic expectation of the prognosis and to guide treat-
ment options is a major challenge in the management of HF. European Society of 
Cardiology and the American Heart Association/American Colleges of Cardiology 
have published a series of guidelines for the diagnosis and treatments of patients 
with HF [47, 48] and have also recommended several biomarkers with high predic-
tive value, such as natriuretic peptides, pentraxin-3, galectin-3, and cardiac specific 
troponin [49]. Although these methods and biomarkers have some advantages, there 
are still limitations in risk stratification among HF patients. The New York Heart 
Association (NYHA) Functional Classification is a classical way to evaluate the 
extent of HF and remains arguably the most important prognostic method in routine 
clinical use. But this assessment still has its limitations such as challenge of consis-
tently classifying patients in class II or III. Moreover, relying on patients’ subjective 
statements instead of objective condition might greatly influence the accuracy of 
results [50]. B-type natriuretic peptide (BNP) is among the most studied and vali-
dated biomarkers used in chronic HF. They are used as aids in the diagnosis and 
assessment of severity of HF. But in some clinical trails, it was found that measure-
ment of BNP did not conclusively affect hospital mortality rates or had no apparent 
effects on clinical outcomes, making its prognostic value debatable [51]. The pro-
gression of HF accompanies cardiac remodeling and vascular dysfunction. 
Exosomes are reported to play important roles in regulating all these pathological 
processes, indicating its potential in assessing patients with HF [52, 53].

5.3.1  Proteins from Exosomes in Heart Failure

It is well known that a degeneration of vascular integrity and endothelial function, 
imbalanced angiogenesis, and inflammation critically contribute to the development 
of HF. The levels of circulating EVs derived from endothelial cells were previously 
reported to be closely related to vascular endothelial dysfunction. A cohort of 169 
HF patients with NYHA class I or more were studied for measurement of the plasma 
endothelium-derived EVs. The endothelium-derived EV levels were found to be 
significantly increased with NYHA functional class [EVs median (range): healthy, 
0.325 (0.164–0.354) × 106/mL; NYHA I, 0.484 (0.426–0.575); NYHA II, 0.646 
(0.439–0.795); and NYHA III/IV, 0.786 (0.569–1.026), P < 0.001]. The Kaplan-
Meier analysis demonstrated that the high-EVs group was associated with a signifi-
cantly higher probability of cardiovascular events [54]. Likewise, a cohort of 388 
patients with chronic HF during 3  years showed that CD144+/CD31+/Annexin 
V+EVs, and CD31+/AnnexinV+ EVs remained statistically significant for 
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cumulative endpoint. Notably, combining endothelial apoptotic EVs (CD144+/
CD31+/Annexin V+EVs and CD31+/AnnexinV+ EVs) to the standard ABC 
model(NYHA class, decreased LVEF < 45%, NT-pro-BNP, and hs-CRP) may fur-
ther improve the relative integrated discrimination indices(IDI) for cumulative end-
point by 11.4% and 10.5% respectively [53]. In another study, Berezin et al. reported 
that a higher ratio of endothelial-derived apoptotic microparticles (CD31+/Annexin 
V+EVs) to mononuclear progenitor cells (MPCs) is related to all-cause mortality in 
patients with chronic HF [55]. These vesicles may help determine HF patients at 
high risk and make biomarker-guided therapies possible for HF patients.

5.3.2  miRNAs from Exosomes in Heart Failure

Matusmoto et al. reported that several p53-responsive miRNAs, including miR-192, 
miR-194, and miR-34a, were elevated in the serum of HF patients enrolled in the 
Osaka Acute Coronary Insufficiency study [45]. Remarkably, these three miRNAs 
were found to be highly enriched in the exosome fraction in HF patients as com-
pared to controls [56]. Knockdown of all these three miRNAs enhanced cell sur-
vival after treatment with doxorubicin, while overexpression of these miRNAs 
decreased cell viability in vitro, suggesting that higher level of these miRNAs may 
lead to the deterioration of heart function.

5.4  Exosomes-Based Biomarkers for the Prognosis of Stroke

Stroke, which causes part of the brain not functioning properly, is a major cause of 
death and disability worldwide and also represents one important branch of CVDs 
[32, 57, 58]. About half of the patients who have a stroke history live less than 1 year 
[59]. Intracranial stenosis is one of the important causes of stroke and also critically 
contributes to the pathogenesis of cerebral vascular diseases. It is highly necessary 
to give a risk stratification to patients with intracranial vascular diseases which 
might help improve functional recovery after stroke and avoid the second hit from 
stroke recurrence.

Several modifiable risk factors have been combined into validated clinical pre-
diction tools such as the Framingham Stroke Risk Score (FSRS), CHA2DS2-VASc 
risk scores, and the National Institutes of Health Stroke Scale (NIHSS) [60–62]. 
Actually, these scores are not routinely used in clinic because of their complexity. 
Thus, combining the biomarkers into these risk scores might help discriminate the 
individuals at future risk for cardiovascular events. Recently, some unique RNA 
expression changes have been observed in peripheral blood after stroke and a large 
case-control study was used to identify novel RNA biomarkers of stroke. Peripheral 

Y. Bei et al.



77

blood MCEMP1 gene expression was proved to be able to predict 1-month dis-
ability and morality after stroke [63]. Importantly, exosomes can also be synthe-
sized and released from brain cells [64], serving as important intercellular players 
and participating in the pathological processes during stroke and neural injury 
[65]. Furthermore, exosomes are able to pass blood brain barrier (BBB) and can 
also be detected in the cerebrospinal fluid (CSF) [64, 66], making them possible to 
be ideal biomarkers to reflect the pathological progresses of cerebral vascular 
diseases.

5.4.1  Proteins from Exosomes in Stroke

The levels of platelet-derived EVs are reported to predict shorter event-free survival 
in patients with prior stroke [67]. EV protein levels of Cystatin C and CD14 are 
related to an elevated risk for vascular events in patients with coronary arterial dis-
eases. Moreover, these two proteins are also proved to be associated with the pro-
gression of cerebral atrophy in patients with manifest vascular disease [68]. 
Similarly, a proteomics analysis was performed based on EVs enriched plasma of 
patients with lacunar cerebral infarction (LACI) and different outcome events, such 
as cognitive decline and recurrent vascular events. A total of 45 patients following a 
non-disabling LACI along with 17 matched control subjects were enrolled and 
myelin basic protein, integrin alpha-IIb, talin-1, and filamin-A and proteins of coag-
ulation cascade (fibrinogen alpha chain and fibrinogen beta chain) were up- regulated 
while albumin was down-regulated in patients with recurrent vascular event or cog-
nitive decline without any recurrence of vascular events [69].

5.4.2  miRNAs from Exosomes in Stroke

Distinct miRNA expression patterns have been reported in various stroke patho-
genic processes, including hyperlipidaemia, hypertension and plaque rupture [70], 
and atherosclerosis [71]. Circulating miRNAs have also been demonstrated to be 
candidates as biomarkers for stroke. In a recent study, 65 patients with acute isch-
emic stroke (AIS) at the acute stage and 66 non-stroke volunteers were enrolled and 
serum exosome miRNAs were analyzed by qPCRs. Serum exosomal miR-9 and 
miR-124 levels were found to be significantly higher in stroke patients. These two 
exosomal miRNAs were also positively correlated with National Institutes of Health 
Stroke Scale(NIHSS) scores, infarct volumes, and serum IL-6 level. Thus, circulat-
ing exosomal miR-9 and miR-124 might be promising biomarkers for AIS diagno-
sis, though their potential as biomarkers in the prediction of post stroke complications 
remains to be further investigated [72].
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5.5  Exosomes-Based Biomarkers for the Prognosis 
of Other CVDs

5.5.1  Hypertension

Hypertension affects 16–37% of the population globally [73]. The angiotensin II 
type I receptor (AT1R) is a key receptor in cardiovascular system and plays a key 
role in hypertension [74]. Exosomes were demonstrated to be important mediators 
for transferring functional AT1Rs as evidenced in cellular stretch in vitro model 
[75]. In mice with cardiac pressure overload, it was further demonstrated that car-
diomyocytes are the major source of exosomes containing AT1R [75]. These exo-
somes are secreted into circulation upon pressure overload and are taken up by 
skeletal muscles and resistance vessels. The transfer of AT1Rs may increase circu-
lating AngII levels and further aggravate cardiac function during blood pressure 
overload [75]. Besides that, the adenosine 2A receptors and dopamine receptors can 
be released with EVs and transferred to other cells retaining their abilities to increase 
blood pressure and promote cardiac remodeling [76]. All these findings leave poten-
tial for using exosomes as prognostic biomarkers for assessing hypertension patients.

5.5.2  Cardiac Arrhythmia

Cardiac arrhythmia is a group of disorders with the electrical conduction system of 
the heart which affects millions of people. Atrial fibrillation (AF) is one of the major 
types of arrhythmia and will also increase the risk of HF, kidney failure, coronary 
heart diseases, and death [77]. Improved techniques have identified various biomark-
ers including vWF, D-dimer, and natriuretic peptides in the prediction of AF and 
related outcomes [78]. With the understanding of the pathogenesis of AF, more and 
more biomarkers have been identified to improve the predictive power of risk strati-
fication of AF. EVs are associated with AF due to their direct or indirect contribution 
to the noxious amplification loops [79] and may also have a predictive function in AF 
[80, 81]. Based on a specific monoclonal antibody AD-1, serum levels of EVs were 
found to be increased in nonvalvular atrial fibrillation, showing EVs-bound IL-1β as 
an independent predictor of platelet activation [82]. Besides that, high levels of plate-
let-derived EVs were proved to have a significantly direct relationship with the 
severity of rheumatic mitral stenosis in patients with valvular AF [83].

5.5.3  Cardiomyopathy

Cardiomyopathy is a group of diseases that affect the heart muscle, including hyper-
trophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), restrictive cardio-
myopathy (RCM), arrhythmogenic right ventricular dysplasia (ARVD), and broken 
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heart syndrome. Notably, DCM is a genetically heterogeneous disease with multi-
factorial pathogenesis, which is responsible for about 30% cases of congestive HF 
[84]. Cardiac stem cell-derived exosomes have previously been proved to be capa-
ble of improving cardiac function and reducing apoptosis and fibrosis in mice with 
doxorubicin-induced DCM [85]. Interestingly, cardiac-specific overexpression of 
HSP20 could attenuate cardiac dysfunction and adverse remodeling in mice with 
diabetic cardiomyopathy, through an increase in the number as well as a change of 
composite cargo in cardiomyocyte-derived exosomes [86]. Moreover, a study 
recruiting 13 patients with advanced congestive HF (NYHA III/IV) due to chronic 
inflammatory DCM found that immunoadsorption was able to improve endothelial 
function by reducing the release of EVs and endothelial-derived EVs into the circu-
lation [87]. These findings indicate that EVs are probably involved in the pathologi-
cal processes of cardiomyopathy and may also have a potential in reflecting the 
outcome or prognostics of cardiomyopathy patients, though further studies are 
highly needed.

5.5.4  Valvular Heart Diseases

Valvular heart disease is one important branch of CVDs which may progress to HF 
eventually without prompt treatment [88]. Treatment of valvular heart disease relies 
on surgery to improve outcomes, such as surgical valve repair or prosthetic valves 
implantation [88]. Although these treatments can improve symptoms immediately, 
patients are still necessary to be evaluated for long-term recovery. A study with 
6 months follow-up including 60 patients with severe mitral regurgitation showed 
that miR-133a, miR-199a-3p, and miR-221 were upregulated in patients with 
improved heart function and upregulation of miR-590-5p and miR-25 was associ-
ated with improved right ventricle function [89].

5.5.5  Pulmonary Arterial Hypertension

Pulmonary arterial hypertension (PAH) is a condition characterized by increased 
pulmonary arterial blood pressure and remodeling of distal pulmonary arterial cir-
culation. With a persistent increase in pulmonary vascular resistance, patients will 
ultimately develop right ventricular failure and death [90]. PAH is a heterogeneous 
disease which may be linked to other diseases, such as connective tissue disease, 
portal hypertension, and congenital heart disease [91]. The prognosis of PAH has an 
untreated median survival of 2–3 years after diagnosis [92]. Exosomes have been 
demonstrated to participate in the development of PAH. The circulating exosomes 
isolated from the monocrotaline (MCT)-treated mice were able to induce pulmo-
nary hypertension (PH) in healthy mice, while mesenchymal stem cell-derived exo-
somes can blunt the development of hypoxic PH.  The exosomes isolated from 
MCT-treated mice and idiopathic PAH patients contained increased levels of 
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miR- 19b, miR-20a, miR-20b, and miR-145 [93] . These dysregulated exosomal 
miRNAs may have a great potential for the diagnosis and prognosis of PAH, though 
large cohort studies are warranted.

5.6  Perspective

With the development of surgical and medical treatments, the acute therapeutic 
effect for CVD patients have been largely improved, however the long-term out-
come and survival remains poor. Because of the deteriorated cardiac function or 
second hit from the relapse, patients with previous heart diseases have very high 
mortality and are vulnerable to be disabled. It also leads to a new problem that 
patients with chronic CVDs are increased sharply, thus bringing serious burden 
to the society and families. Individualized treatment according to proper prog-
nostic assessment is a key point in the management of CVD patients. Effective 
and accurate assessment for prognosis is important for guiding treatment for 
CVD patients.

Exosomes play crucial roles in cell-to-cell communications and widely partici-
pate in various physiological and pathological progresses of human body. Exosomes 
have relatively stable structure which can protect their cargos from destruction and 
are present in almost all biological fluids, making them reliable biomarkers, which 
may reflect disease progression earlier and more precisely. Although great efforts 
have been made in basic and clinical studies to learn about the roles of exosomes in 
CVDs, the use of exosomes as biomarkers for CVDs is still years away. The review 
here shows the beginning of a new era into the exploration of exosomes as novel 
prognositic biomarkers to predict the outcome and survival of CVD patients 
(Table 5.1 and Fig. 5.1). However, multicenter studies and large cohorts of patients 
are still warranted. Moreover, compared to the present prognostic biomarkers that 
have been well-established for CVDs, if exosome-based biomarkers achieve addi-
tionally benefits remains to be determined.
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Chapter 6
Exosomes as New Intercellular Mediators 
in Development and Therapeutics 
of Cardiomyocyte Hypertrophy

Qi Huang and Benzhi Cai

6.1  Introduction

With the dramatic changes of human lifestyle and diet, the mortality and morbidity 
of cardiovascular diseases is increasing year by year. Cardiovascular diseases such 
as coronary heart disease and severe heart failure remain the main cause of people 
death all over the world. Now there is a growing body of evidence that indicates that 
cardiac hypertrophy is the precursor lesions and independent risk factors of coro-
nary heart disease, heart failure, sudden cardiac death and other heart diseases. In 
particularly, pathological myocardial hypertrophy leads to the impairment of car-
diac function and is a major determinant of these heart diseases.

6.2  Cardiac Hypertrophy

6.2.1  Classification of Cardiac Hypertrophy

Cardiomyocyte is a highly differentiated terminal cells, and functions to pumping 
the blood into the whole body. Hypertrophic growth of cardiomyocyte is closely 
associated with a variety of neurohumoral factors [1], activation of intracellular 
signaling pathways and alteration of functional proteins. Myocardial hypertrophy is 
usually categorized into two types: physiology myocardial hypertrophy and 
pathology myocardial hypertrophy. Physiological myocardial hypertrophy is 
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reversible and mostly caused by increased cardiac load from exercise, pregnancy 
and other physiological factors. The functional and structural changes occurring in 
physiological cardiac hypertrophy include the enlarged horizontal axis of cardio-
myocyte, the increased size of cardiomyocyte, the improved ventricular diastolic 
compliance, the stronger reserve capacity and contractility of heart, as well as the 
higher cardiac efficiency [2–4]. These structural and functional changes lead to 
effective cardiac output and compliance with physiological limits. So, to some 
extent physiological cardiac hypertrophy shows beneficial and effective cardiac out-
put in healthy people similar as in sports persons.

Pathological myocardial hypertrophy is caused by a long-term and chronic stress 
stimulation, or certain diseases such as primary or secondary hypertension, valvular 
heart disease and coronary artery diseases, which is considered as compensatory 
adoption of hearts in response to oxidant stress and its overload. Long-term patho-
physiological stimuli lead to the changes of contraction ability of cardiac muscles, 
and further form the substrate of pathological heart hypertrophy. At the early stage, 
myocardial hypertrophy does a favor to maintain normal cardiac function. However, 
at the late stage, it will result in the increase of myocardial oxygen consumption and 
the decrease of cardiac compliance and its contraction ability, finally leading to 
decompensated myocardial hypertrophy that is predisposed to heart failure and sud-
den cardiac death [5]. Pathological cardiac hypertrophy is usually irreversible at the 
late stage [6]. There are typical structural, functional and molecular alterations in 
pathological cardiac hypertrophy including the enlarged longitudinal axis of cardio-
myocyte and length of muscle, the more myocardial sarcomeres, the excessive 
deposition of collagen and myocardial fibrosis, the lower cardiac efficiency, the 
increased cardiomyocyte apoptosis, the upregulation of brain natriuretic peptide 
(BNP) and β-myosin heavy chain (β-MHC), and downregulation of α-myosin heavy 
chain (α-MHC) and SERCA2a (a sarcoplasmic endoplasmic reticulum calcium 
(Ca2+) ATPase) [2]. So in pathological cardiac hypertrophy, the muscles of heart are 
under the condition of oxidant stress which leads to lower cardiac output and seri-
ous pathological changes in structure.

6.2.2  Mechanism of Cardiac Hypertrophy

The detailed mechanisms underlying cardiac hypertrophy has not yet been fully 
elucidated, but a large number of studies have shown that cardiac hypertrophy is 
closely related to the activation of multiple signaling pathways induced by various 
stimuli, such as mitogen-activated protein kinase (MAPK) signaling pathway, Ca2+ 
and its dependent signaling pathways, Wnt signaling pathway and microRNAs 
(miRNAs), JAK-STAT signaling pathway, AMPK signaling pathway and so on [7–
13]. Mechanical stretch is thought to be one of the most important initial factors in 
cardiac hypertrophy [9–11, 13]. Mechanical tension directly stimulates cell growth, 
and also promotes the synthesis and secretion of various endocrine factors in myo-
cardial tissues such as Ang II, catecholamines, insulin-like growth factor 1 (IGF-1), 
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nitric oxide (NO), endothelin, etc. In addition, RASS also is an important mediator 
of blood pressure in human body. Ang II binds to ATR1 receptor in vascular smooth 
muscle cells, and promotes the contraction of vascular smooth muscle through Ca2+-
phospholipid-dependent protein kinase pathway, resulting in the increase of blood 
pressure and cardiac load [9]. The increased secretion of catecholamine after pres-
sure overload is able to aggravate the damage and induces the apoptosis of cardio-
myocytes. Catecholamine also promotes myocardial protein synthesis, collagen 
accumulation, myocardial fibrosis, and eventually lead to cardiac hypertrophy [10]. 
It has been proved that Norepinephrine (NE) increases protein synthesis and gives 
rise to cardiac hypertrophy [13]. Endothelin-1 is a potent vasoconstrictor peptide 
and plays an important role in regulating cardiovascular function. Endothelin-1 has 
been shown to promote the proliferation of cardiac fibroblasts and induce myocar-
dial hypertrophy [11]. WNT signaling pathway is silenced under the normal condi-
tion, but is activated during pressure load. It was demonstrated that blocking of 
WNT/frizzled signaling could reduce stress-mediated cardiac hypertrophy [12]. 
Recent studies have shown that miRNAs are involved in the regulation of cardiac 
hypertrophy. Van Rooij et al. analyzed 186 miRNAs and found that 7 of them were 
downregulated and 21 of them were upregulated under pathological stress loading 
[7]. Sayed D et al. found that the expression of miR-1 in myocardium was signifi-
cantly decreased after transverse aortic constriction (TAC) [14]. It suggests that 
miR-1 plays a essential role in the development of myocardial hypertrophy. 
Increasing evidence suggests that activation of AMPK can protect against myocar-
dial ischemia and limit cardiac hypertrophy caused by various factors [15]. The 
level of IGF-1 was positively correlated with myocardial hypertrophy, indicating 
that insulin-like growth factor 1 (IGF-1) is also involved in hypertensive hypertro-
phy [16, 17].

6.3  Exosomes

6.3.1  The Concept and Characteristics of Exosomes

In 1983, the exosomes were firstly found in reticulocytes of sheep, and it is a small 
vesicle secreted by reticulocytes [18]. In 1987 Johnstone named it “exosome” [19]. 
Nowadays, the exosomes are defined as nanomembrane vesicles with a diameter of 
50–100 nm and originated from multivesicular bodies (MVBs). A variety of cells 
such as epithelial cells, T cells, B cells, reticulocytes, mast cells, platelets, mono-
cytes and tumor cells have the ability to release the exosomes [20, 21]. With extra-
cellular environment stimuli, cell membrane inwardly fold to form a closed vesicle 
which is called early endosomes, and then gradually mature into late endosomes. 
The late endosomes containing ILVs are also called as multivesicular bodies 
(MVBs). The extracellular release of MVBs after fused with plasma membrane is 
known as exosomes [22, 23]. Exosomes were shown to be cup-shaped morphology 
by electron microscopy which has been shown for a majority of isolated exosomes 
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[24]. Moreover, exosomes are distinct from microvesicles (100–1000 nm in diam-
eter) and apoptotic bodies (1–4 μm in diameter) [25]. The exosomes contain a lot of 
biological active substances including cytokines, proteins, lipids, mRNA, miRNA 
and ribosomal RNA, and these substances contributes to the biological functions of 
exosomes [25, 26]. For instance, miR-21 and miR-29a secreted from nonsmall cell 
lung cancer (NSCLC) cells were found recruited in tumor microenvironment, which 
favors cancer growth and dissemination [27].

6.3.2  Biological Function of Exosomes

Recent studies have shown that exosomes participate in cellular communication, 
migration, proliferation, differentiation and angiogenesis. These findings support 
exosomes as important messengers between cells. A growing body of evidence sug-
gests that exosomes help to transfer mRNA and miRNA to adjacent cells and thus 
play an important role in cellular communications. Let-7, miR-1, miR-15, miR-16, 
miR-181 and miR-375 were found in the exosomes derived from mouse and human 
mast cell lines. These mRNAs and miRNAs can be further transported to target cells 
and produce biological actions [28]. Macrophages induced the secretion of miR- 
150 in the exosomes from THP-1 cells, which stimulates the migration of endothe-
lial cells (HMVEC) by inhibiting the translation of target gene c-Myb in endothelial 
cells [29]. It was also reported that the exosomes are capable of transferring proteins 
among cells. The cardiomyocytes with the higher levels of Hsp20, p-Akt, survivin, 
and SOD1, promote endothelial cell proliferation in a paracrine and autocrine man-
ner under high glucose conditions [30].

6.4  Roles of Exosomes in Cardiac Hypertrophy

6.4.1  The Exosomes from Cardiosphere-Derived Cells 
on Cardiac Hypertrophy After MI

Cardiosphere-derived cells (CDCs) are one kind of stem cells isolated from biopsy 
specimens of patients. Autologous CDCs transplantation has been shown to regen-
erate damaged hearts after MI in patients [31]. But its precise mechanism remained 
unclear. Recent studies showed that porcine CDCs-derived exosomes plays protec-
tive role in myocardial remodeling after myocardial infarction (Table 6.1). They 
found that CDCs exosomes not only reduced myocardial fibrosis in injection sites, 
but also had a global anti-fibrotic effect. In addition to decreasing fibrosis, CDCs 
exosomes also prevented cardiomyocyte hypertrophy associated with adverse 
remodeling. In the peri-infarct area, hypertrophic growth of cardiomyocyte was sig-
nificantly inhibited, but myocardial hypertrophy in the remote zone was not 
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inhibited after CDCs exosomes treatment. At the same time, it has been also found 
that treatment with CDCs exosomes contributes to angiogenesis characterized by 
more arterioles in the marginal and infarcted areas of MI.  In general, exosomes 
treatment improved ventricular remodeling, reduced scarring, promoted angiogen-
esis, enhanced cardiomyocyte proliferation in porcine models of acute (AMI) and 
convalescent myocardial infarction (CMI) [32].

6.4.2  Cardiac Fibroblasts-Derived Exosomes on Cardiac 
Hypertrophy

It was recently reported that Ang II-induced pathological cardiac hypertrophy is 
mediated by exosomes secreted by cardiac fibroblasts which act on cardiomyocytes 
through paracrine action (Table 6.1). The exosomes from cardiac fibroblasts upreg-
ulated the expression of renin, Agt, AT1R and AT2R, and downregulated ACE2 
expression in cultured neonatal cardiomyocytes. Besides, CF exosomes is able to 
activate MAPK, ERK, p38, Akt and JNK to promote the synthesis and release of 
Ang II, which is associated with EGFR and spp1. Thus, CF exosomes activate RAS 
in cardiomyocytes and promotes the production as well as secretion of Ang II, 
which leads to cardiomyocyte hypertrophy [33]. Additionally, it was found that CF 
exosomes are rich in miR-21*, and miR-21* in the exosomes leads to cardiomyo-
cyte hypertrophy. Further studies showed that overexpression of miR-21* can 
reduce the protein expression of SORBS2 (sorbin and SH3 domain containing 2) 

Table 6.1 Roles of exosomes in cardiac hypertrophy

Exosomes Cells microRNAs Functions

Exosomes [32] CDCs Unknown Improved ventricular remodeling, reduced scarring, 
promoted angiogenesis and enhanced cardiomyocyte 
proliferation

Exosomes [33] CFs Unknown Activate MAPK, ERK, p38, Akt and JNK to promote 
the synthesis and release of Ang II and cause 
cardiomyocyte hypertrophy

Exosomes [34] CFs miR-21* Reduce the protein expression of SORBS2 and 
PDLIM5 and cause cardiomyocyte hypertrophy

Exosomes [30] CMCs Unknown Exosomes containing high levels of Hsp20 are 
resistant to myocardial hypertrophy and other 
myocardial injury in diabetes mellitus

Exosomes [38] CPCs miR-21 Counter cardiomyocytes apoptosis by targeting 
PDCD4

Exosomes [42] MSCs miR-22 Reduce the apoptosis of CMCs by targeting Mecp2
Exosomes [43] MSCs miR-221 Inhibit the apoptosis of CMCs
Exosomes [45] ADs miR-200a Reduce TSC1 and subsequent mTOR activation of 

cardiomyocytes and cause cardiomyocyte 
hypertrophy
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and PDLIM5 (PDZ and LIM domain 5) in cardiomyocytes, while silencing of 
SORBS2 and PDLIM5 in cardiomyocytes induced cardiac hypertrophy. So, miR- 
21* in the exosomes can enter cardiomyocytes and cause cardiomyocyte hypertro-
phy [34].

6.4.3  Cardiomyocytes-Derived Exosomes on Cardiac 
Hypertrophy After MI

Diabetic cardiomyopathy is a leading cause of death of patients with diabetes. The 
reduction of heat shock protein (Hsp) expression in diabetes mellitus is a major 
contributor to organ damage. It was recently reported that diabetic cardiomyocytes 
release harmful exosomes with low level of Hsp20. Cardiac-specific overexpres-
sion of Hsp20 in transgenic mice confirmed that the exosomes from cardiomyo-
cytes contribute to the Hsp20-mediated myocardial remodeling of diabetic mice. 
The exosomes derived from cardiomyocytes in Type-2 diabetic rats were able to 
inhibit the proliferation, migration and tube formation of myocardial endothelial 
cells. In addition, the exosomes containing higher levels of Hsp20 may prevent 
cardiac hypertrophy, cardiomyocyte apoptosis, fibrosis and microvascular rarefac-
tion, thereby improving myocardial systolic function. These results suggest that 
exosomes containing high levels of Hsp20 are resistant to myocardial hypertrophy 
and other myocardial injury in diabetes mellitus [30]. Therefore, Hsp20 engi-
neered exosomes are likely to become a new therapeutic way for diabetic 
cardiomyopathy.

6.4.4  Cardiac Progenitor Cell-Derived Exosomes on Cardiac 
Hypertrophy

Many studies have pointed out that exosomes secreted by CPCs improve the func-
tion of injured heart, and participate in cardiac protection and repair [35, 36]. 
Ischemia-reperfusion may lead to the irreversible structural damage leading to 
organ dysfunction, whereas this process is strongly associated with the increased 
production of oxygen free radicals [37]. In vitro experiments showed that oxidative 
stress may increase the release of exosomes from CPCs, and the exosomes pro-
duced by CPCs with or without H2O2 treatment both inhibited H2O2-induced apop-
tosis of H9C2, but the exosomes derived from H2O2-treated CPCs were more 
effective in preventing the apoptosis of H9C2. Further studies showed that the level 
of miR-21  in the exosomes is increased by oxidative stress, and miR-21 inhibits 
H9C2 apoptosis by targeting Programmed Cell Death 4 (PDCD4) [38]. So, under 
oxidative stress condition, transplanted CPCs are able to promote secretion of exo-
somes enriched in miR-21 and counter cardiomyocytes apoptosis by targeting 
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PDCD4 pathway. However, the direct relationship between CPC-derived exosomes 
and cardiac hypertrophy has not been yet elucidated. It is well known that the inhi-
bition of apoptosis attenuates the decline of contraction function of cardiomyocyte 
and the compensatory hypertrophy of surviving cardiomyocytes [39, 40]. Thus, it 
can be proposed that CPCs-derived exosomes exerts protective effects on cardiac 
hypertrophy after MI.

6.4.5  Mesenchymal Stem Cells-Derived Exosomes on Cardiac 
Hypertrophy

The exosomes derived from mesenchymal stem cells (MSCs) were able to sup-
press myocardial remodeling and improve heart functions by anti-apoptotic, anti-
cardiac remodeling, anti-inflammatory and anti-vascular remodeling activities 
[20]. Its detailed mechanisms include increasing ATP levels, reducing oxidative 
stress, activating the PI3K/Akt pathway, etc. [41]. It was recently reported that 
miR-22 from the exosomes derived from MSCs can reduce the apoptosis of CMCs 
by targeting methyl CpG binding protein 2 (Mecp2) after ischemia/reperfusion 
injury [42] (Table 6.1). It was also proved that exosomes derived from MSCs can 
protect against CMCs apoptosis by releasing miR-221, which is associated with 
the inhibition of p53 upregulation of PUMA (apoptosis modulator, belonging to 
the Bcl-2 protein family of subclasses) [43]. Thus, the exosomes derived from 
MSCs have potential to become a novel therapeutic approach for myocardial 
infarction.

6.4.6  Adipose Cells-Derived Exosomes on Cardiac 
Hypertrophy

Adipose tissue is an important endocrine organ, which mediates insulin sensitivity, 
blood pressure, endothelial function, and inflammatory response. It has been showed 
that rosiglitazone (RSG) is able to treat diabetes, accompanied by adverse effects on 
cardiovascular system [44, 45]. But its molecular mechanisms remained incom-
pletely clear. Recently it was uncovered that RSG was able to activate the PPARγ (a 
member of the nuclear hormone receptor superfamily) signaling pathway in adipo-
cytes, which increases the expression and secretion of miR-200a [45] (Table 6.1). 
Notably, miR-200a is expressed abundantly in adipose tissue but hardly expressed 
in blood vessels, heart or skeletal muscle. Co-cultured adipocytes secret the exo-
somes containing a large number of miR-200a to reduce TSC1 (a repressor of 
mTOR signaling) and subsequent mTOR activation of cardiomyocytes, which leads 
to cardiomyocyte hypertrophy [45].
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6.5  Outlook

A large body of evidence suggests that the exosomes secreted by a variety of cells 
are inextricably linked to cellular physiological and pathological conditions. As a 
novel important carrier for intercellular communications, exosomes play important 
roles in regulating cellular proliferation, apoptosis, differentiation and growth of 
many types of cells. At present, the studies about exosomes mainly focused on the 
angiogenesis, metastasis and early diagnosis of cancers as well as biological func-
tions of stem cells. The role of exosomes in cardiovascular disease has not been 
elucidated completely yet, and requires more further investigations to clarify it. It is 
no doubt that the discovery of exosomes will not only provide a safe and convenient 
method for early diagnosis of cardiovascular diseases, but also be developed as new 
therapeutic strategy for heart conditions. Moreover, it also opens a brand-new idea 
for the future development of drug carriers using the exosomes due to its unique 
biological structure and function.
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Chapter 7
Dual Behavior of Exosomes in Septic 
Cardiomyopathy

Valter Vinícius Silva Monteiro, Jordano Ferreira Reis,  
Rafaelli de Souza Gomes, Kely Campos Navegantes, 
and Marta Chagas Monteiro

7.1  Introduction

Sepsis is one of the main causes of admission of patients to Intensive Care 
Units, which is related to a high morbidity and mortality rate of the patients 
affected by this syndrome [1]. It is characterized as a potentially fatal organ 
dysfunction caused by a dysregulated and exacerbated response of the host to 
an infection [2]. When nonfatal, sepsis may induce a series of comorbidities, 
which may lead to death in the following years after the disease. The main 
comorbidity due to sepsis is the septic cardiomyopathy, present in about 25% of 
the cases [3].

Sepsis can be caused by a series of microorganisms, such as, bacteria, fungi or 
viruses. The most common pathogen associated with sepsis are the gram-negative 
bacteria, followed by gram-positive [3]. The pathophysiological process of sepsis 
occurs after a generalized infection in which the immune system exacerbates after 
exposure to molecules that have high affinity with the immune system, the superan-
tigens [4]. The lipopolysaccharide (LPS) present in the gram-negative bacteria and 
the Peptidoglycan, presents in the gram-positives are the main endotoxins related to 
the septic process [3, 4].
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7.2  Sepsis Induced Cardiomyopathy

The initial phase of sepsis is characterized by exacerbated inflammation, probably 
related to the binding of superantigens to major histocompatibility complex (MHC) 
and T-cell receptors (TCR), as well as the activation of pattern recognition receptors 
(PRRs) such as Toll-like receptors (TLR) [4, 5]. These processes will trigger the 
activation of various cells of the immune system, such as macrophages, dendritic 
cells and T-cells, leading to a cytokine storm that will induce an uncontrolled inflam-
matory process [6, 7]. These cytokines and activation of the receptors will trigger 
suppression or activation of various pathways in cells systems [8].

The main inflammatory pathway activated by this binding is the nuclear transcrip-
tion factor kappa B (NF-κB), that will activate the gene transcription of inflamma-
tory cytokines, mainly Tumor necrosis factor (TNF)-α and Interleukin (IL)-1 [4, 9]. 
These cytokines will induce the production of other proinflammatory cytokines, 
such as IL-6 and IL-8, in addition to the induction of Reactive Oxygen Species 
(ROS), especially the Nitric Oxide (NO) [8, 10, 11].

The high concentrations of inflammatory cytokines and ROS will provoke an 
increased tissue damage. Inflammatory cytokines, especially IL-1β, IL-6 and TNF- α, 
will increase the migration of neutrophils [12]. However, these neutrophils will remain 
in the bloodstream for a longer time because of their delayed apoptosis, and it is pos-
sible to find several stages of maturation of these cells in patients with sepsis [4, 13].

In consequence of the great amount and the different stages of maturation of 
these neutrophils, they will act unspecifically [12]. This process can cause high 
endothelial damage, especially in the vascular endothelium, which will lead to 
series of dysfunctions, including structural and molecular dysfunction and also will 
lead to a myocardial dysfunction [14].

7.2.1  Decrease of Myofibril Response to Ca2+

Ion Calcium (Ca2+) is a molecule of extreme importance in the function of the car-
diac system [15]. Highly related to the cardiac contraction, the Ca2+ interacts with 
the troponin C complex, in which this interaction leads to a conformational change 
in the filaments of Troponin I, leading to the release of actin and promoting its bind-
ing to the myosin, leading to the fiber contraction [16].

Some studies have shown that during the course of sepsis, the myofilaments 
response to calcium is reduced, probably due to the increase in the phosphorylation 
of Troponin I [17]. In addition to the direct action on muscular contraction, some 
studies have shown that endotoxins and cytokines, such as IL-1β, promote the 
decrease of Ca2+ influx into cells, probably due to changes in the conformational 
structure of calcium channels [18–21]. Furthermore, in sepsis models the 
 concentration of Ryanodine receptors is decreased, which will significantly reduce 
the release of Ca2+ by the sarcoplasmic reticulum (SR) [22, 23].
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7.2.2  Mitochondrial Dysfunction

The circulatory system, especially the heart, is a system that needs a great amount 
of energy to operate, because of its constant functioning and the strength exerted to 
pump the blood [24]. Due to this function, the cardiomyocytes present a high con-
centration of mitochondria within their cytoplasm, to provide the necessary 
Adenosine Triphosphate (ATP) for its normal functionality [25, 26].

The main mechanism in which mitochondrial dysfunction occurs is due to lipid 
peroxidation. This mechanism occurs because the heart cells have a low level of 
antioxidants, been more prone to oxidative stress [27, 28]. In sepsis, the inflamma-
tory cascade will produce a high concentration of ROS, especially NO, that will 
interact with the mitochondrial macromolecules, causing a change or complete loss 
of its function [29, 30]. The change of the function will cause a decrease in the pro-
duction of ATP, consequently causing loss of cardiomyocyte function, that will lead 
to the activation of cell death pathways, such as apoptosis and necrosis especially in 
the cardiac cells [30, 31].

7.2.3  Downregulation of β-Adrenergic Receptor

Beta(β)-adrenergic receptors are important receptors present in most tissues [32]. In 
cardiac tissue, these receptors release the Ca2+ from the SR leading to contraction of 
the cardiac muscle, through the production of cyclic adenosine monophosphate 
(cAMP) by the adenylate cyclase [33, 34]. Being one of the most important recep-
tors in the performance of cardiac function [32].

In patients with septic shock, the number of these receptors is decreased, as 
is the concentration of adenylate cyclase [35, 36]. In addition, other studies 
show the decrease of stimulant G proteins and the increased expression of inhib-
itory G protein [37, 38]. These processes can lead to the malfunction of the 
cardiac muscles and increase the probability of the development of septic car-
diomyopathy [39].

7.2.4  Other Mechanisms

The main mechanism of septic induced cardiomyopathy is summarized in Fig. 7.1. 
In addition to these mechanisms other mechanisms have been suggested as induc-
ers of septic cardiomyopathy, such as the presence of TLR in cardiomyocytes 
inducing local activation of NF-κB [40], the expression of microRNA involved in 
the regulation of cytokine expression [41] and in the influence of exosomes related 
to the aggravation of cardiomyopathy that will be further discussed in this 
chapter.

7 Dual Behavior of Exosomes in Septic Cardiomyopathy
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7.3  Role of Exosomes in Septic Cardiomyopathy

As stated in previous chapters, exosomes are small cell-derived vesicles ranging 
from 30 to 100 nm originate from multivesicular bodies. Exosomes released from 
leukocytes, platelets and dendritic cells containing major histocompatibility com-
plex components and small amounts of phosphatidylserine are common at low lev-
els in peripheral blood [42]. However, in thrombotic conditions and severe traumas, 
such as septic cardiomyopathy derived from septic shock, those exosomes appear in 
increased concentrations, which can be correlated with a role in physiologic/patho-
logic balance [43]. Much of those exosomes contain procoagulant and proinflam-
matory proteins [44, 45].

The role of exosomes in septic cardiomyopathy can be divided in two main 
mechanisms, the NADPH and the microRNA-223, as will be explained in the next 
sections.

Immune System
Activation

TNF a + IL - 1b

¯ Ca+ Response
¯ b receptor

Mitochondrial
Dysfunction

Septic
Cardiomyopathy

IL-6 + ROS + NO

Fig. 7.1 The interaction super antigens with receptors of immune system, cause its activation in 
an uncontrolled manner, mainly through the NF-κB pathway, which will stimulate the transcription 
of TNF-α and IL-1β, these cytokines will stimulate immune system cells to produce other proin-
flammatory cytokines and also, the production of ROS, especially NO. The large amount of cyto-
kines and ROS will trigger a series of dysfunctions in the cardiovascular system, mainly the 
Decrease in Ca2+ response, Mitochondrial dysfunction and Decrease in β-adrenergic receptor 
response. These combined processes will lead to a series of dysfunctions, causing Septic 
Cardiomyopathy
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7.3.1  Mechanisms NADPH-Dependent

It is known until this moment that endothelial cells apoptosis is a mechanism mainly 
controlled by the caspase-3 cascade activation by tumor necrosis factor, which 
exposure is then regulated by superoxide generation, showing that reagent oxidative 
species (ROS) may be involved deeply in the regulation of vascular cell survival and 
death as it was reviewed elsewhere [46]. Some studies have showed that platelets 
have the innate ability to produce ROS, mainly superoxide, to regulate their func-
tions [47–49].

A research developed by Janiszewski and colleagues using flow cytometry anal-
ysis of microparticles obtained from septic patients and healthy individuals showed 
a surface containing CD42b and CD61 similar to exosomes and suggestive of plate-
let origin. Those exosomes also displayed the p22phox and gp91phox subunits of 
phagocyte-simile NADPH oxidase and exhibited intrinsic ROS production [50]. It 
was performed to investigate if, in septic shock, exosome could produce ROS 
through NADPH oxidase, showing that ROS in platelets may be produced in another 
via than the phospholipase A2 [51] discovered before. That same work showed a 
60% increase of exosomes in plasma of septic patients relating to healthy plasma 
indicating the importance of platelet-derived exosomes in the pathogenesis of car-
diomyopathy dysfunction.

In order to verify the theory of the pathogenesis proposed by Janiszewski, that 
the excess of exosomes produced by platelets in septic shock caused the cardiac 
inotropic dysfunction, Azevedo and collaborators collected samples from 55 
patients in septic shock and 12 healthy patients to prepare exosome samples and 
compare [52]. They came to the conclusion that exosomes from septic patients sig-
nificantly decreased positive and negative derivatives of left ventricular pressure in 
isolated rabbit hearts or developed tension and its first positive derivative in papil-
lary muscles [52].

On the same research, the authors could notice that platelet-derived exosomes 
also contained both constitutive and inducible nitric oxide synthase (NOS), 3 and 2, 
respectively, being both already related to myocardial dysfunction in sepsis [53–
55]. The same conclusions were drawn by Ferdinandy and collaborators, where they 
demonstrated that infusion of cytokines such as TNF-α or IL-1-β is associated with 
impairment of cardiac mechanical function in isolated hearts, accompanied by 
increased myocardial activities of NOS2 and NADH oxidase [56].

Azevedo and peers also pointed that peroxynitrite and by-products of the reac-
tions of NO and ROS, which was investigated after by Gambim and colleagues. In 
this research, they showed that exosomes from septic patients could induce a 
decrease in myocardial dysfunction in isolated rabbit hearts and in papillary muscle 
preparations. They showed those exosomes contained a high percentage of NOS, 
which would contribute to increase of myocardial NO production. The authors were 
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able to conclude that the NO must be a pathway for septic exosome-derived myo-
cardial dysfunction [57]. They also noticed the high amounts of Protein Disulfide 
Isomerase (PDI), a chaperone associated with protein transport in the cytosol to the 
membrane, and its association with NADPH activation. Other groups have also 
showed that caspase-3 apoptosis pathway could be initiated via by-products of NO 
metabolism, mainly peroxynitrite [58]. In fact, it has been shown that NO can mod-
ulate apoptosis in a variety of other tissues [59, 60]. The mechanisms of platelet- 
derived exosomes are summarized in Fig. 7.2.

7.3.2  Mechanisms miRNA-223 Dependent

microRNAs (miRNAs) are small non-coding fragments of RNA with only the regu-
latory function. They regulate a specific protein transcription as they generally inter-
act with the UTR of many mRNA, which is the three-prime untranslated region, 
impeding their translation and controlling the protein output in many different cells, 
being known that a single miRNA can globally regulates the expression of hundreds 
of proteins [61]. miRNAs are generally formed through transcription by RNA poly-
merase II as a long precursor RNA (pre-miRNA). This pre-miRNA is a double- 
stranded RNA that will be further transformed by RNase III endonuclease in a 
smaller miRNA (miRNA duplex), being one strand 3′ and the other 5′. Also, it has 
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Fig. 7.2 Sepsis-generated ROS activates platelets to release exosomes containing high levels of 
Nicotinamide adenine dinucleotide phosphate (NADPH) and Inducible nitric oxide synthase(iNOS), 
which inside the endothelium increases the production and concentrations of Nitric Oxide (NO) and 
Reactive oxygen species (ROS), that will lead to caspase-3 activation and apoptosis of these cells
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become clearer that in some cases both strands are able to bind to the UTR via the 
RNA-induced silencing complex (RISC) [62, 63].

Dysregulation of miRNAs is associated with a good assortment of human dis-
eases, including cancer, diabetes, obesity, viral infection and cardiovascular disor-
ders [64–66]. In the context of sepsis, some studies have correlated the organ failure 
and mortality to miRNA reduced levels in human individuals in septic shock. One 
of them, performed by Wang and collaborators enrolled 214 septic patients and 
quantified some miRNAs, being six of them downregulated in non-survival patients: 
miR-223, miR-15a, miR-16, miR-122, miR-193* and miR-483-5p [67]. The impor-
tance of miRNAs in sepsis was a target of a review from Benz and colleagues, 
where they put in perspective the importance of extracellular microRNAs as bio-
markers for sepsis [68].

In the sphere of septic cardiomyopathy, the microRNA, the one that is the most 
targeted from studies is miR-223, a oncomiR related to the onset of colon, breast, 
ovarian and prostate cancers [64], and it was first mentioned to have any relation-
ship with cardiac diseases by Taïbi and peers, where they showed its important role 
played in the regulation of several pathways [69]. However, the first time it was 
mentioned to regulate sepsis was in a study from Wang and collaborators (2014), 
where they showed its importance in aggravation of myocardial depression [70].

Wang and collaborators, in order to see the relevance of miR-223 in cardiac dys-
function under sepsis, performed an experiment comparing both wild type and miR- 
223 and its duplex miR-223*-knockout mice in a sepsis model [70]. Their data 
showed that the knocked-out mice had an exacerbation in the cardiac dysfunction 
and increased lethality. Also, they assessed the production of inflammatory cyto-
kines in the mice hearts under sepsis, mainly TNF-α, IL-6 and IL-1β and their col-
lected data showed an increase of production of TNF-α and IL-1β in cardiomyocytes, 
which suggests that the loss of miR-223 aggravates the inflammatory response in 
endothelial cells and cardiomyocytes [70].

In the same research previously described, the authors noticed that miR-223/-
223* negatively regulate the STAT3, a transcription factor that is implicated with a 
variety of autoimmune diseases [71, 72], and the Sema3A expression in mouse 
hearts. A study from Ieda and peers has shown that Sema3A plays a critical role in 
heart rate control [73] and Wang group concluded that excess of Sema3A is related 
to the sepsis-induced inflammation and cardiac dysfunction [70].

Another important research regarding the effect of miR-223 and the physiopa-
thology of septic cardiomyopathy was the one from Tabet and colleagues, where 
they noticed the action of extracellular miR-223 transported via HDL [74]. However, 
the authors also mentioned that this transportation could have been dealt by exo-
somes. In this research, the authors proved that miR-223 is directly responsible to 
the downregulation of ICAM-1, an adhesion protein related to migration of immune 
cells that enhance the inflammatory process in the tissue, in human coronary artery 
endothelial cells [74]. They also suggested that the miR-223 may be transferred 
from macrophages in the context of inflammatory diseases, mainly sepsis, in order 
to antagonize the inflammation [74].
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Even though the effects of circulating extracellular miR-223 were known in 
the septic cardiomyopathy, the first time that it was showed that the miR-223 
playing this major in the cardiac dysfunction was exosome-derived was the study 
from Wang and colleagues (2015), where they showed that mesenchymal stem 
cells (MSC)-derived exosomes containing miR-223 elicited cardio protection in 
polymicrobial sepsis [75]. Even though MSC are not found in the heart tissues, 
they showed that administration of miR-223-KO MSCs does not improve animal 
survival and cardiac function, which means that MSC-derived exosomes contain-
ing miR-223 may play a systemic role in septic cardiomyopathy [75]. The mech-
anisms of miR- 223 derived from mesenchymal stem cells are compiled in 
Fig. 7.3.

7.4  Concluding Remarks

The cardiomyopathy and cardiac dysfunction that occurs in septic patients might be 
explained by the fact that platelet-derived exosomes increase in concentration in the 
bloodstream of sepsis patients, leading to a higher rate of endothelial damage that 
will further propagate to the cardiomyocytes in the vicinity. Also, MSC-derived 
exosomes contain miR-223, which is a miRNA associated with cardio protection, 
are found in less quantities in the blood of septic shock patients, accounting even 
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Fig. 7.3 Mesenchymal stem cells-derived exosomes contain miR-223, which downregulates 
Intercellular Adhesion Molecule (ICAM)-1, Signal transducer and activator of transcription 
(STAT)3 and Semaphorin (Sema)3A in the endothelium. In the cardiomyocytes, miR-223 acts 
downregulating TNF-α, IL-6 and IL-1β. Both of them have a cardio protection effect
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more to a higher degree of cardiac dysfunction and increased mortality in patients 
with sepsis.
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Chapter 8
Pathological Effects of Exosomes in Mediating 
Diabetic Cardiomyopathy

Esam S.B. Salem and Guo-Chang Fan

8.1  Introduction

Diabetes mellitus (DM) is a chronic endocrine and metabolic disorder characterized 
by hyperglycemia due to defective insulin secretion, action, peripheral insulin resis-
tance or all of them [1, 2]. The global prevalence has reached epidemic proportions 
and approximately 285 million cases were diagnosed with diabetes in 2010, and this 
figure is estimated to reach 439 million in 2030 [3]. Recent studies suggest that 26 
million people in the USA are suffering from diabetes, and by 2030 the estimated 
economic burden would reach to $490 billion [4]. Most cases of diabetes can be clas-
sified into two groups: type 1 (T1DM) and type 2 (T2DM) with annual estimation of 
150,000 newly diagnosed patients with type 1 and 1.3 million with type 2 in the USA 
[5]. T1DM was previously known as “insulin dependent diabetes mellitus” (IDDM) 
[6]. It occurs in 0.3–0.5% of the population, and is characterized by insidious and 
sudden onset [7]. T1DM is a chronic autoimmune disorder characterized by an abso-
lute deficiency of insulin caused by selective destruction of pancreatic β-cells [8]. 
T2DM was previously known as “non-insulin-dependent diabetes mellitus” 
(NIDDM) [9]. It occurs in 3–5% of the population, and typically is characterized by 
slow and progressive onset [10]. T2DM is often associated with obesity, lack of exer-
cise and family history [11]. Moreover, the pathogenesis of T2DM involves a combi-
nation of insulin resistance and diminished insulin secretion from pancreatic β-cells 
[12]. Notably, patients with diabetes are at two to three folds higher risk of develop-
ing heart disease [13]. Indeed, the main cause of mortality and morbidity among 
subjects with diabetes is cardiovascular disease [14], accounting for more than 60% 
of death [15]. Although comorbidity factors such as chronic systemic hypertension 
and vascular atherosclerosis contribute to development of cardiovascular disease 
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among diabetic patients, but chronic hyperglycemia itself is considered as an inde-
pendent risk factor for cardiac damage [16]. In diabetic animal models, cardiac dys-
function could be occurred without systemic hypertension, coronary artery disease, 
or blood vessel atherosclerosis [17, 18]. Furthermore, the incidence of suffering from 
heart failure is still high even after pharmacological controlling of hypertension or 
ischemic heart disease in diabetic patients [19]. High levels of inflammatory cyto-
kines, adrenergic and renin-angiotensin hormones in the blood circulation, aug-
mented sympathetic outflow, hyperlipidemia and hyperglycemia enhance toxic 
effects on the myocardium and cause cardiac dysfunction and damage, and that path-
ological disorder together known as diabetic cardiomyopathy (DCM) [20–25].

More than a decade has passed since DCM was first described with a substantial 
amount of research; nonetheless, how DCM develops is still largely complex and 
remained unclear [26]. The heart is the most active and life-long beating organ, 
which continuously keeps pumping the blood to perfuse the whole tissues of the 
body with sufficient amount of oxygen and nutrient [27]. In fact, coordination, syn-
chronization and communication between different cell types of the heart are essen-
tial and required to maintain effective myocardial function and normal structure 
[28]. Histologically, the heart of an adult murine is composed of two to three billion 
cardiomyocytes, which accounts one-third of the total cellular mass of the heart 
[29]. However, it should be emphasized that, not only cardiomyocytes are important 
to maintain normal function and structure of myocardium, but also smooth muscle 
cells, endothelial cells, cardiac stem cells, fibroblasts, and immunological cells such 
as macrophages [30–33]. Therefore, it becomes clear that local or long-distance 
cell-to-cell communications have a major contribution to maintain normal cardiac 
homeostasis [34]. These include several pathways that are mediated via paracrine or 
autocrine growth factors, cell matrix interactions, cell gap junctions or adhesion 
molecules that control physiological cardiac homeostasis [35–38].

Large amount of evidence has suggested that extracellular vesicles generated and 
released from different mammalian cells’ have a potential role for cardiac cells 
communication [39, 40]. These extracellular vesicles composed of a phospholipid 
bilayer and contain a specific code of genetic materials, proteins and lipids [40–43]. 
Several types of extracellular vesicles can be produced by different cells of the 
heart, including apoptotic bodies, microvesicles and exosomes [43–45]. These dif-
ferent sorts of vesicles are distinguished from each other on the basis of their site of 
origin, diameter and contents. For example, apoptotic bodies are originated from the 
plasma membrane of cells when they undergo the last stage of apoptosis with 
1–5 μm in diameter [46]. They harbor different cytoplasmic organelles, and many 
nuclear DNA fragments. Even though the precise role of apoptotic bodies is not 
completely emphasized, but it is widely accepted that apoptotic bodies can induce 
the elimination of other damaged cells [47]. On the other hand, microvesicles are 
200–1000 nm in diameter and synthesized from cells by a direct external budding 
(Exocytosis) of the plasma membrane when they are exposed to physiological or 
pathological stimuli such as cellular proliferation or differentiation, and cellular 
apoptosis or necrosis [48–50]. Microvesicles can be derived from non-nucleated 
cells include platelets and red blood corpuscles, or nucleated endothelial and other 
viable cells [49]. Microvesicles contain variable amounts of bioactive molecules, 
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including cytokines and chemokines, cytoplasmic proteins, plasma membrane pro-
teins and lipids, non-coding RNAs (e.g., miRNAs, lncRNAs, circRNAs) and 
mRNAs [48, 49, 51]. Whereas, exosomes are defined as types of extracellular vesi-
cles whose diameter ranges between 10 and 200 nm. They are characterized by very 
unique properties that distinct them from apoptotic bodies or microvesicles (Fig. 8.1) 
[52, 53]. Synthesis and release of exosomes from viable cells was considered as a 
mechanism through which their waste products can be discard into extracellular 
environment. However, accumulated reports have suggested that exosomes are 
appeared to have an important function as biological messengers in mediating inter- 
cellular communication both in physiological (e.g. myocardial angiogenesis) and 
pathological conditions (e.g. metastasis of malignant cancer) [54–56]. This chapter 
will focus and summarize the available data concerning the detrimental effects of 
exosomes in diabetic cardiomyopathy.

8.2  Diabetic Cardiomyopathy: What We Have Known 
and Do Not Know

8.2.1  Concept and Characterizations of Diabetic 
Cardiomyopathy

In 1972, diabetic cardiomyopathy (DCM) was first identified by Rubler et  al. 
based on postmortem observations of the cardiac autopsy from diabetic patients 
who were diagnosed with heart failure without other cardiovascular 
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complications [57]. These observations were suggested as specific impairment of 
the heart muscle itself [57]. DCM has a higher 12% prevalence in type 2 diabetic 
patients compared to healthy subjects [58], and been described as a long-term and 
serious complication of sustained toxic effects of hyperglycemia that leads to 
enhance cardiac oxidative stress [59, 60], inflammation [61], abnormal Ca2+ han-
dling and mitochondrial function [62–64], myocardial apoptosis and fibrosis [65, 
66]. Type 1 diabetic patients have also been clinically diagnosed with reduced 
cardiac function, left ventricular hypertrophy [67], and eventually heart failure 
independent of other comorbidities including blood vessel atherosclerosis, coro-
nary arteries disease or chronic systemic hypertension [68]. Moreover, develop-
ment of cardiomyopathy has also been reported in animal models which are 
rodents resistant to atherosclerosis with type 1 or 2 diabetes, providing strong 
evidence for the occurrence of DCM comparable with that seen in human diabetic 
subjects [69].

While multiple and different signaling pathways are involved in the onset and 
development of DCM, it is difficult to distinguish between a pure hyperglycemic 
toxic effect and other cardiovascular comorbidity factors effect [70]. Consequently, 
the medical diagnosis or terminology of DCM as an independent cardiac disease 
has been unpopular among physicians [71], and even the existence of DCM has 
been disproved among some scholars for a long time [72, 73]. However, large 
accumulation of data from in vivo and in vitro studies, both have shown that 
hyperglycemia itself can cause functional abnormalities and structural changes of 
the heart. These studies strongly support the existence of DCM [74, 75]. In dia-
betic heart, cardiomyocytes have to increase β-oxidation of fatty acids in order to 
generate ATP, which results in an elevation of reactive oxygen species (ROS) 
production [76]. ROS have harmful effects on cell homeostasis by damaging 
DNA, proteins, plasma membrane lipids, subcellular organelles, and inhibiting 
enzymes of the oxidative- phosphorylation mechanism, thereby further reducing 
efficiency of ATP generation [77–81]. During the early stage, intracellular anti-
oxidant buffers counteract the effects of increased levels of ROS, but these buffer-
ing agents are depleted quickly. The cardiomyocytes thereafter undergo an energy 
deficit, alteration of gene transcription and protein translation, certainly leading 
to apoptosis [82–85].

DCM clinical presentation can be divided into an initial stage which is pre-
ceded by abnormal myocardial metabolism, and the early stage that is character-
ized by diastolic dysfunction [86]. Then, the late well-established stage which is 
presented with systolic dysfunction or heart failure [17, 18]. In clinical practice, he 
initial stage of DCM is asymptomatic and difficult to be diagnosed, but the early 
stage of DCM is characterized by diastolic dysfunction (including: ventricular 
hypertrophy and stiffness, high end-diastolic volume and pressure) [87, 88], and 
cardiac inter- cellular matrix remodeling (including: an accumulation of insoluble 
type VI collagen and fibrous connective tissue) [89, 90]. Several mechanisms con-
tribute to ventricular stiffness in diabetic heart mainly due to hyperglycemia and 
formation of advanced glycation end-products (AGEs) [91]. Consequently, AGEs 
can interact and bind with extracellular matrix proteins including collagen and 
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elastin, leading to a change in the properties of myocardium compliance and even-
tually impairing ventricular relaxation [92–94]. Also, the diastolic dysfunction 
prevalence is much higher in type 2 diabetic patients compared to healthy subjects 
with same age and gender [95, 96]. A diabetic subject with DCM is clinically 
diagnosed as the impairment of his left ventricle (LV) function in the absence of 
other concomitant risk factors, including coronary artery disease (CAD), chronic 
systemic hypertension, or other congenital cardiac anomalies [74]. Additionally, 
many studies have demonstrated that there is a link between cardiac systolic dys-
function and sustained hyperglycemia [97]. Other studies have indicated that sys-
tolic function during the physical rest was not altered in the most patients with 
type 2 diabetes, as clinically evaluated by measuring the left ventricular ejection 
fraction (LVEF) [98, 99]. However, some diabetic subjects have cardiac systolic 
dysfunction during an extensive exercise, which suggests that LVEF is not a sensi-
tive indicator of myocardium contraction to detect early changes in myocardial 
function during rest [100].

In fact, during the course of hyperglycemia, these processes are exacerbated and 
led to hypertrophy, apoptosis and fibrosis of myocardium. When the hypertrophy of 
myocardium can’t overcome or compensate for apoptosis and fibrosis, systolic dys-
function appears, indicating the irreversible stage of DCM towards congestive heart 
failure [101]. At the beginning, DCM is similar and diagnosed as restrictive cardio-
myopathy with normal left ventricle ejection fraction [102, 103]. After that, the late 
stage of DCM is similar and diagnosed as dilated cardiomyopathy with reduced left 
ventricle ejection fraction [103, 104]. In general, human subjects or animal models 
with cardiac systolic dysfunction have a worse prognosis and could be exacerbated 
further in the presence of diabetes [105–107]. Therefore, the main pathophysiologi-
cal features of DCM include the metabolic changes of cardiomyocytes during the 
initial stage, followed by increased ROS production and ATP deficiency, altered 
intracellular calcium transport and recycling, enhanced myocardial hypertrophy, 
and then cardiac apoptosis and fibrosis, leading to ultimate congestive heart failure 
[108, 109].

8.2.2  The Mechanisms Underlying the Development 
of Diabetic Cardiomyopathy

At present, it has been elucidated that diabetes-induced cardiac dysfunction cor-
relates with abnormal changes in Ca2+ handling that reduce efficiency of the sarco-
mere and thereby the electromechanical coupling mechanism, resulting in 
impairment of myocardium contraction [110]. Furthermore, the cardiac sarco-
endo- plasmic reticulum Ca2+-ATPase 2 (SERCA2), the Na+/Ca2+ exchanger 1 
(NCX1), and ryanodine receptor (RyR) functions are significantly inhibited in 
DCM, causing to a reduction in release and slow in recycling of Ca2+ from and to 
endoplasmic reticulum during the relaxation phase [62, 111–115]. Using diabetic 
animal models to investigate underlying mechanisms, and to understand how 
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hyperglycemia damages the myocardium would be beneficial to develop therapeu-
tic agents to protect or retard onset of heart failure in human diabetic subjects [59, 
77]. Hyperglycemia, hyperlipidemia, oxidative stress, apoptosis, autophagy, non-
coding RNAs, and epigenetic effects have been investigated as underlying etiolo-
gies and mechanisms of DCM [116–118]. For example, there is an evidence that 
hyperglycemia directly activates caspase-3 resulting in increased cardiac fibrosis 
due to apoptosis of cardiomyocytes. So enhanced myocardium apoptosis is an 
essential etiology in the development and progression of heart failure from revers-
ible compensated to irreversible decompensated stage [77, 119]. Recently, studies 
have been reported that insulin- resistance contributes to the development of 
DCM. Even though the myocardial insulin signaling is impaired in patients with 
DCM; however, the underlying mechanisms that could be involved in the insulin 
resistance are not extensively investigated or deeply understood [17, 120, 121]. 
Based on previous results, medical therapeutic interventions were developed to 
treat DCM. For example, administration of antioxidant buffers was failed to pro-
tect diabetic heart in the clinical practice [122, 123]. Furthermore, tight control of 
hyperglycemia also failed to retard the onset or progression of DCM towards heart 
failure in diabetic patients [124]. To highlight more on the same theme, we will 
briefly discuss about several sorts of miRNAs and their potential roles in DCM 
pathogenesis [116]. Structurally, miRNAs are a family of small (~22 nucleotide) 
and single-strand noncoding RNAs that act as post-transcriptional regulators of 
target genes via degradation or translation inhibition of their targeted mRNAs 
[125]. For instance, a recent study has found that miRNA-195 levels were higher 
in the hearts of STZ-induced diabetic mice, which was negatively correlated with 
lower expression levels of its targeted molecules including Sirtuin 1 (SIRT-1) and 
B-cell leukemia/lymphoma 2 (BCL-2) in comparison to wild type mice. In addi-
tion, inhibition of miRNA-195 reduced hypertrophy, oxidative stress, and apopto-
sis in STZ diabetic myocardium [126]. Moreover, same study has observed that 
restoration of normal cardiac function, improvement of coronary blood flow, an 
elevation of expression levels of SIRT-1 and BCL-2 and SIRT-1 after miRNA-195 
blockade, demonstrating that reduction of miRNA-195 levels can retard the onset 
or propagation of DCM towards complete heart failure [126]. In the same context, 
a study has shown that expression levels of miRNA-133a/b were participated in 
diminishing the protein expression of glucose co-transporter isoform 4 (GLUT4) 
and then the rate of glucose uptake into neonatal rat cardiomyocytes (NRCMs) 
[127]. Of interest, another study has emphasized that miRNA-133a expression lev-
els were significantly decreased in diabetic hearts, and simultaneously there was 
an elevation in the expression levels of cardiac fibrosis markers. Additionally, the 
same study has found that higher levels of miRNA-133a ameliorate cardiac fibro-
sis and prevent development of HF in diabetic hearts [128]. In spite of the contro-
versial between these two previous studies that have been conducted on different 
animal models, more investigations are required to explore the function of miR-
NAs in DCM pathogenesis [129–131]. Furthermore, higher levels of miRNA-
223 in NRCMs were significantly increased the glucose uptake with a similar rate 
of glucose uptake that measured in cells stimulated with insulin [132]. 
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Overexpression of miRNA-223 in cardiomyocytes also observed to enhance total 
GLUT4 expression levels and translocation of GLUT4-contained vesicles from the 
cytoplasm to the cell membrane [132]. By contrast, blockage of myocardial 
miRNA- 223 caused a reduction inexpression levels of insulin-regulated glucose 
transporter, GLUT4 [132]. Another study has revealed that miRNA-141 levels 
were significantly higher in a diabetic mouse heart, which was associated with a 
significant decrease in the phosphate transporter/solute carrier family 25 member 
3 (Slc25a3) of inner-mitochondrial membrane in the mouse atrial cardiomyocyte 
cell line (HL- 1), demonstrating that miRNA-141 can impact the mitochondrial 
function of myocardium [133]. In the same context for the importance of miRNAs 
in the pathogenesis of DCM, miRNA-451 expression levels were highly increased 
in palmitate- stimulated NRCMs and high fat diet (HFD)-induced obesity mice 
hearts [134]. Furthermore, cardiac hypertrophy was improved in miRNA-451 
knockout mice fed with HFD via inhibition of the LKB1/AMPK signaling cas-
cade. As well as, in vitro miRNA-451 knockdown protein expression was pro-
tected from toxic and harmful effects of the lipid via the inhibition of LKB1/
AMPK pathway [134]. Additionally, induction of miRNA-143 in cardiomyocytes 
via release activin-(A) from adipose tissue of epicardium membrane can attenuate 
insulin action due to inhibition the AKT signaling pathway through down-regula-
tion of ORP8. However, further studies are needed to confirm the functional role 
of miRNA-143/ORP8  in the pathogenesis of DCM [135]. In regard to insulin 
action, a study has exhibited that miRNA-29 was participated in the development 
of DCM. In the same context, a recent study has shown that insulin inhibits the 
expression levels of miRNA-29a, b and c, which was associated with an increase 
of the mRNA levels of the pro-survival protein myeloid cell leukemia 1 (MCL-1) 
in (HL-1)-cells [136]. Also, the same study has revealed that dis-balance of the 
(miRNA-29)-(MCL-1) levels due to mTORC1 inhibition or lower insulin levels in 
Zucker Diabetic Fatty (ZDF) rats was involved in the myocardium destruction, and 
contributed to cardiac malfunction [136]. Additionally, a recent study has found 
that miRNA-322 modulates the insulin signaling cascade, protects the myocar-
dium against the malfunction and structural damage detected in HFD-fed mice, 
revealing that overexpression ofmiRNA-322 attenuated insulin-induced AKT 
phosphorylation [137]. Indeed, miRNA-322 can modulate insulin signaling, pro-
tect the cardiac function and structure against pathological effects of hyperinsu-
linemia as seen in pre-diabetic subjects and patients with type 2 diabetes [137]. On 
the other hand, a recent study has demonstrated that detrimental effects of cardiac 
miRNAs induced by sustained hyperglycemia were irreversible even after the nor-
malization of hyperglycemia with anti-diabetic medications because altered levels 
of miRNAs profile in the diabetic heart were involved in autophagy, oxidative 
stress, apoptosis, fibrosis and eventually HF. Based on the in vitro and in vivo data 
presented above, miRNAs are clearly involved in the pathophysiology mechanisms 
of DCM.  Nonetheless, further studies are needed to investigate the underlying 
mechanisms of DCM, and thus clear understanding of these mechanisms will con-
trol their therapeutic potential by protecting the heart from the toxic effects of 
hyperlipidemia and hyperglycemia.
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8.3  Role of Exosomes in Diabetes: What We Have Known 
and Do Not Know

8.3.1  Diabetes Affects the Exosome Generation and Exosomal 
Compositions

Exosomes are generated from inward invagination of the cell plasma membrane to 
form and produce an early endosome [138]. During the maturation of an early endo-
some, the inward luminal buddings of the endosomal membrane form and produce 
multi-vesicular bodies (MVBs) that contain intraluminal vesicles (ILVs) [139]. 
These newly formed vesicles contain different cytoplasmic components, including 
proteins, lipids, DNA and several types of RNAs [140]. Then, the endosomal sorting 
complexes required for cellular transport machinery are essential for the formation 
of ILVs in MVBs [141]. When MVBs are formed, the ILVs (exosomes) are released 
to the extracellular environment by docking and fusion of the MVBs with the cell 
plasma membrane, which is mediated by small GTPase-dependent proteins such as 
Rab-proteins (e.g., Rab27, Rab35) [142–145]. Alternatively, MVBs can fuse with a 
lysosome, where the contents of the MVBs are degraded as cell waste products 
[146, 147]. The functions of secreted exosomes can be exerted directly via interac-
tion of their transmembrane integral proteins or lipid with receptors of recipient 
cells, or indirectly by delivering their contents, including transcription factors, cyto-
plasmic proteins, mRNAs, miRNAs into cytoplasm of recipient cells via an endocy-
tosis mechanism (e.g., cell drinking or eating) [148]. Several of the regulatory 
exosomes are sensitive and regulated by changing of glucose concentration levels 
[149, 150]. Expression levels of miRNA-9, miRNA-15a, miRNA-30d and miRNA- 
133a were up-regulated, whereas expression levels of miRNA-375 was down- 
regulated, by high glucose levels [151, 152]. Also, fatty acids can affect miRNA 
expression levels; for example, miRNA-34a and miRNA-146 expression levels 
were up-regulated by increased levels of fatty acids concentrations [153, 154]. 
Functionally, biologic effects of exosomes can be local or remote by delivering 
coded messages from the cell of origin to recipient cell via releasing them into inter-
cellular fluid or blood circulation [155].

8.3.2  Detrimental Effects of miRNAs and Exosomes 
in the Development of Diabetes Mellitus

Currently, exosomes have been implicated as pathological factors in the pathogen-
esis of several diseases, including malignant tumors, autoimmune and inflammatory 
diseases; as well as, cardiovascular and chronic metabolic disorders [156–158]. 
Indeed, recent studies have also demonstrated that exosomes can orchestrate insulin 
signaling cascade in peripheral tissues and different organs, indicating the pivotal 
role of exosomes in regulation of glucose metabolism in T2DM [159–161]. Large 
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amount of data has shown that miRNAs regulate pancreatic β-cell activity, but 
recently some studies reported that these miRNAs are also can be transferred from 
β-cells to another recipient cells via exosomes [162, 163]. Additionally, exosomes- 
enriched miRNAs regulate a wide spectrum of genes that are important for pancre-
atic β-cell homeostasis, and a chronic exposure to high concentrations of glucose 
and fatty acids impact negatively on their synthesis and secretion of insulin hor-
mone. Therefore, exosomes-enriched with a specific set of miRNAs can participate 
in progressive β-cell dysfunction or devastation in both types of diabetes [164, 165]. 
In order to investigate if miRNAs directly involved in mediating pancreatic β-cells 
dysfunction and apoptosis, miRNAs expression levels have been investigated indif-
ferent cell lines, type 1 and type 2 diabetic animal models, exploring the functional 
roles of several miRNAs in β-cells dysfunction, and their potential roles in the apop-
tosis of pancreatic β-cells under hyperglycemic condition [166–168]. For instance, 
cytokine-treated Min6B1 cells (pancreatic β-cell line) secrete exosomes containing 
miRNAs that are transferred to neighboring β-cells, leading to apoptosis [169, 170]. 
Exosomes were also isolated from the culture media of pancreatic islet cells of 
human and non-obese diabetic (NOD) mice (type 1 diabetes model); as well as, 
Min6B1-cells treated with pro-inflammatory cytokines (TNFα, IL-1β, IFN𝛾). Then, 
by incubating these isolated exosomes with untreated mice pancreatic β-cells or 
Min6B1-cells leads to apoptosis in the recipient cells [169–171]. The pro- 
inflammatory cytokines induce β-cells expression of miRNA-21, miRNA-29, 
miRNA-34a and miRNA-146a, thereby an increase levels of these miRNAs can 
contribute at least partially in destroying of insulin-secreting pancreatic β-cells and 
then in the development of diabetes [153, 162, 164, 172]. Additionally, over- 
expression of miRNA-29, miRNA-34a, miRNA-146a or miRNA199a-5p in 
Min6B1-cells enhance apoptosis [173], while knockdown of miRNA-34a, miRNA-
 203, miRNA-210 and miRNA-383 diminishes β-cell apoptosis [173, 174]. High 
levels of miRNA-34a were also negatively associated with the anti-apoptotic pro-
tein Bcl-2 (B-cell lymphoma 2), demonstrating that pro-apoptotic effects of miRNA-
34a could be exerted via inhibition of Bcl-2 [175]. Whereas, the pro- apoptotic effect 
of miRNA-29 was due to its ability to block translation of another pro-survival 
protein Mcl-1 (Myeloid Cell Leukemia 1) [136]. On the other hand, mRNA transla-
tion of the tumor suppressor programmed cell death protein 4 (PDCD4) in pancre-
atic β-cells was reduced by miRNA-21. Additionally, PDCD4 expression levels 
were significantly attenuated as result of higher miRNA-21 expression levels in 
NOD mice [176]. Subsequently, the same study has shown that inhibition of 
miRNA-21 activity significantly increased β-cell apoptosis. Moreover, β-cells-
specificPDCD4Knockoutwas correlated with an elevation in the expression levels 
of the anti-apoptotic genes (e.g., Bcl-xL), whereas with a reduction in the expres-
sion levels of the pro-apoptotic genes (e.g., Bax family), leading to the delay in the 
onset of diabetes development. Therefore, over-expression of miRNA-21 could be a 
pivotal protective mechanism of pancreatic β-cells after exposure to pathological 
stimuli via shifting the balance from pro-apoptotic to anti-apoptotic proteins [176]. 
In the same route, a recent study has reported that higher expression levels of 
miRNA-200  in a mouse pancreatic β-cells promote apoptosis ofβ-cells and 
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development of diabetes via inhibition of tumor suppressor (Trp53) and ameliora-
tion of pro-apoptotic (Bax) signaling pathway [177]. Mocharla et al., was success-
fully able to detect that CD34+ peripheral blood mono-nuclear cells (PBMCs) 
release higher levels of miRNA-126 containing exosomes than CD34− PBMC, and 
to observe that these exosomes enriched higher miRNA-126 levels had higher pro- 
angiogenic effects on endothelial cells (ECs) in comparison to lower miRNA-126 
levels enriched exosomes [178]. At the same time, same author also reported that 
treatment of CD34+ PBMC with anti-miRNA-126 or inhibition of their release 
diminished their pro-angiogenic effects on ECs. In addition, same study has revealed 
that treatment of CD34+ PBMCs with high glucose concentration was associated 
with impairment of their pro-angiogenic properties, which could be rescued by 
miRNA-mimic-126 treatment [178]. Even though there is still a gap of knowledge 
and limitation of studies that clearly demonstrate the biological nature of several 
types extracellular vesicles (EVs), but also there are several studies reported that the 
levels of EVs are higher in the plasma of type 2 diabetic subjects compared to 
healthy subjects [179–181]. In specific, the membrane proteins or lipids of EVs 
which are released from skeletal muscle, platelets, or T lymphocytes increase the 
risk of metabolic dysfunction and cardiovascular diseases [182, 183]. In addition, 
an elevation levels of EVs has been reported and positively linked with obesity, 
diabetic micro or macrovascular complications, and inflammations, suggesting that 
the exosomes quantity can be clinically used as an early indicator (e.g.; urinary or 
blood marker) of previous diseases and their complications [184–187]. For exam-
ple, exosomes released from visceral adipose tissue (VAT) in diabetic mice can fuse 
with blood monocytes and stimulate their differentiation into mature and active 
macrophages [160]. Various studies have provided an interesting attention into the 
way miRNA-containing endothelial micro-particles (EMPs) influence inflamma-
tory effects under hyperglycemic condition [188]. Studies both in vitro and in vivo 
have shown that extracellular membrane-bonded micro-vesicles (EMVs) contribute 
to anti-inflammatory effects by diminishing endothelial ICAM-1 expression since 
they act as carriers to transfer functional miRNA-222 into recipient cells. 
Interestingly, their anti-inflammatory effects were reduced under hyperglycaemic 
condition due to a reduce of miRNA-222 levels of newly generated EMPs [170]. 
Exosomes released from VAT in type 2 diabetic mice also induce the development 
of insulin resistance when they were administered to wild type healthy mice. 
Adipocyte-derived exosomes contain numerous sorts and sets of proteins, which is 
indicated the important roles of exosomes in the extracellular and intercellular 
transmission of signals [189]. Further, exosomes released from skeletal muscle, 
which is another critical tissue regulating blood glucose metabolism, have an auto-
regulation effect on skeletal muscle homeostasis as well as on other organs, includ-
ing the pancreas and liver [159]. Barutta et  al., also has provided additional 
information about the role of exosomes and underlying mechanisms that taking 
place in diabetes. The author reported that urinary exosomes from micro- albuminuric 
patients contain higher concentrations of miRNA-130a and miRNA-145, whereas 
the concentrations of miRNA-155 and miRNA-424 were lower [190]. In a mouse 
model of diabetic nephropathy, urinary levels miRNA-145-enriched exosomes were 
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elevated while miRNA-145 were overexpressed within the glomeruli, which was 
simultaneously associated with higher levels of urinary miRNA-145-containing 
exosomes as detected in the urine specimens from type 2 diabetic patients, reflect-
ing a higher shedding rate of exosomes from the renal parenchyma into the urine 
[191, 192]. In addition, renal mesangial cells cultured with high glucose concentra-
tion showed an increase in miRNA-145 levels in these mesangial cells and their 
released exosomes [191]. Human β-cells exhibit specific miRNAs sets and profiles 
which are involved in activation or inhibition specific genes associated with the 
development of type 2 diabetes [193–196]. Moreover, similar miRNAs setting and 
profiling of β-cells from diabetic Goto-Kakizaki rat (non-obese type 2 diabetes 
model) have been identified and detected upregulation levels of miRNA-130a, 
miRNA-132, miRNA-212 and miRNA-335 [197]. In 2010, Zampetaki et al., inves-
tigated and generated an expression profile of miRNAs in plasma of type 2 diabetic 
subjects. The author observed a significant decrease in plasma levels of miRNA- 
15a, miRNA-20b, miRNA-21, miRNA-24, miRNA-126, miRNA-191, miRNA-
 197, miRNA-223, miRNA-320, and miRNA-486, whereas a moderate increase of 
miRNA-28 and miRNA-3p levels. Additionally, high glucose concentration was 
attributable to the reduction of miRNA-126 levels in endothelial apoptotic bodies 
[198]. Furthermore, it has been suggested that type 1 and 2 diabetes are associated 
with multiple variations of mouse miRNA-encoding genes and miRNA-binding 
sites in 3′-UTR of mRNA-encoding genes, speculating the importance of preceded 
alteration in the miRNAs profile that incorporated in diabetes pathogenesis [199, 
200]. Fundamentally, the ongoing research are still at the early phase of understand-
ing the ultimate role of exosomes in pathogenesis of both types of diabetes, and 
demonstrating how we can use them clinically as an effective therapy for the pre-
vention or retardation onset of diabetes, or as an early and sensitive biomarker for 
its long-term complications including DCM [187, 201].

8.4  Role of Exosomes in Diabetic Cardiomyopathy

The cellular cross-talk mechanisms involving exosomes are often multidirectional 
and multifunctional rather than unidirectional and unifunctional [55, 202]. Exosomes 
enclose and carry both numerous species of miRNAs and different types of proteins, 
of which transfer several and specific signaling codes from the cell of origin to 
another cells of different tissues and organs at the adjacency, at the proximity or at 
the distance [203, 204]. In this context, accumulated evidence has emphasized that 
a major portion of the plasma miRNAs are enveloped in exosomes [205, 206]. On 
the another hand, a study has suggested that plasma miRNAs can be bound to high 
density lipoproteins in the blood circulation in addition to exosomes [207]. Recently, 
based on the multiple properties of cardiac-derived exosomes from all different cell 
types of the heart, scientific community has speculated that exosomes can be 
involved in the pathophysiology of cardiovascular disorders including DCM [49]. 
However, the available data on a such context is still limited due to either gap of 
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knowledge or technical difficulties on exosomes. In fact, we will cover and 
summarize the present studies that investigated the roles of exosomes in diabetes- 
induced cardiomyopathy, as reviewed below.

8.4.1  Diabetic Cardiomyocytes Secrete Antiangiogenic 
Exosomes

During the initial course of diabetes, hyperglycemia can lead to endothelial and 
microvascular dysfunctions [208, 209]. Interestingly, it has been reported that dys-
regulation of myocardial angiogenesis is the pivotal cause of diabetic cardiovascu-
lar disease [210–212]. Indeed, cardiac endothelial cells play a critical role in 
cardiomyocyte contraction and structure [213, 214]. However, under hyperglycemic 
condition, whether cardiomyocytes have an ability to modulate cardiac endothelial 
cell function remains uncertain [215, 216]. In the context of understanding the 
mechanism, recent studies have shown that cardiomyocytes-derived exosomes con-
tain variable amounts of mRNAs and miRNAs, proteins and lipids, all of which can 
transfer to the adjacent cardiac endothelial cells and regulate their functions [217–
220]. In prior study by Dr. Fan’s team has provided an evidence that cardiomyocyte- 
derived exosomes can affect cardiac endothelial cells’ contents and release (ECs) in 
the variable ways that are dependent upon the condition to which the cardiomyo-
cytes were exposed to or cultured with. As an example, isolated exosomes from 
diabetic Goto-Kakizaki (GK) rat’s cardiomyocytes diminished the migration and 
proliferation of cardiac ECs. In contrast, isolated exosomes from control non- 
diabetic Wistar rat’s cardiomyocytes promoted the migration and proliferation of 
cardiac ECs (Fig. 8.2) [220]. Further, the effects of generated exosomes from both 
diabetic GK and non-diabetic Wistar rat’s cardiomyocyte on cardiac ECs were 
reversed by blocking their release using an inhibitor of neutral  sphingomyelinase/
ceramide GW4869. Consequently, previous results suggest that pathological exo-
somes can transfer and distribute harmful molecules that participating in the devel-
opment of diabetic cardiomyopathy [220–222].

In addition, the same study has emphasized that cardiomyocytes-derived exo-
somes from diabetic GK cardiomyocytes enriched with higher levels of miRNA-
 320, and lower levels of miRNA-126 and heat shock protein 20 (Hsp20) in 
comparison to non-diabetic Wistar rat’s cardiomyocyte-derived exosomes [220]. 
They also observed that the cardiomyocyte enriched-miRNA-320 exosomes can 
transfer to cardiac ECs, and subsequently downregulate the expression of IGF-1, 
Hsp20, and Ets-2, resulting in impairment of angiogenic function of adjacent car-
diac ECs (Fig. 8.2). Therefore, these observations provide a strong evidence that 
exosomes-isolated from diabetic cardiomyocytes reduced the angiogenesis in the 
diabetic myocardium via transferring detrimental factors that are able to induce, 
amplify and spread the downstream cascade of anti-angiogenic effects to cardiac 
ECs [220]. Garcia et al., has been recently shown that exosomes-derived from con-
tractile cardiomyocytes can regulate glucose transport into the cardiac ECs. Same 
study reported that under hypoglycemic condition, cardiomyocytes produced larger 
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amount of exosomes-enriched with glucose transporters and enzymes involved in 
glucose metabolism, resulting in increased in the rate of glucose uptake and gly-
colysis in cardiac ECs under condition of glucose deprivation [223].

8.4.2  Beneficial Effects of Gene-Modified Exosomes 
in Diabetic Cardiomyopathy

It has recently been elucidated that loaded contents of exosomes could be directly 
mediated by gene transfection or indirectly modified in parental cells, thereby we can 
convert diseased exosomes to be beneficial ones [224]. Along this line, it has been 
reported that Hsp20, an important chaperone protein involves in cellular defense 
mechanisms against multiple pathological stimuli, can promote the production of 
exosomes from cardiomyocytes via interacting with tumor susceptibility gene 101 
(Tsg101) [225, 226]. Tsg101 is an upstream and integral protein of regulated endo-
somal membrane transport, thereby it involves in the exosome biogenesis, traffick-
ing, sorting and secretion pathways [139, 222, 227]. An interesting study by Wang 
et al., has revealed that Hsp20 expression levels were decreased in diabetic cardio-
myocytes and inhibited by miRNA-320 post-transcriptionally. In addition, Hsp20 
response was sensitive to both acute and chronic course of hyperglycemia in a mouse 

Hsp20 miRNA-126 miRNA-320 pAkt, SOD1, Survivin Multivesicular Endosome

Improved Heart Function.
Improved Angiogenesis.

Impaired Heart Function.
Impaired Angiogenesis.

Normal Heart Function.

Endothelial Cells

Healthy Cardiomyocyte Diabetic Cardiomyocyte
Hsp20 Overexpressed

Diabetic Cardiomyocyte

miRNA-126

miRNA-320Hsp20

miRNA-126

Hsp20 Hsp20

Beneficial ExosomesDiseased ExosomesNormal Exosomes

pAkt
SOD1
Survivin

Endothelial Cells Endothelial Cells
Normal Angiogenesis.

Fig. 8.2 Schematic representation of healthy cardiomyocytes can release Hsp20 and miRNA-126 
enriched exosomes, which transfer Hsp20 and miRNA-126 to adjacent endothelial cells, leading to 
normal angiogenesis and cardiac functions. By contrast, exosomes release from type 2 diabetic 
cardiomyocytes contain higher levels of miRNA-320 and lower levels of Hsp20, compared with 
those from non-diabetic healthy cardiomyocytes. Accordingly, miRNA-320 enriched exosomes 
are transported to endothelial cells, resulting in impairment of angiogenesis and cardiac functions. 
In Hsp20 overexpressed diabetic cardiomyocytes, Hsp20 promotes quantitative and qualitative 
changes in cardiomyocyte-derived exosomes, transforming diseased exosomes to beneficial exo-
somes, and resulting in improvement of angiogenesis and amelioration of cardiac functions
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heart, implying that reduced levels of Hsp20 could be involved in the development of 
DCM and propagation towards heart failure [226]. Consequently, chemical-induced 
type 1 diabetes in transgenic mice with cardiac-specific Hsp20 overexpression were 
generated and used to investigate the underlying mechanisms regard the functional 
role of Hsp20  in diabetic heart. In fact, this study also observed that deleterious 
effects of exosomes released from diabetic cardiomyocytes can be transformed to 
beneficial exosomes after Hsp20 overexpression via altering contents and the secre-
tion pattern of cardiomyocyte-generated exosomes, as result restoring normal car-
diac functions under hyperglycemic condition. Importantly, the same author also 
reported that altered exosomes contain cellular protective proteins, including phos-
phorylated AKT, SOD1, and Survivin, all of which distributed to adjacent cardiac 
cells promoting myocardial angiogenesis, alleviating oxidative stress, ameliorating 
fibrosis and apoptosis in a mouse diabetic heart (Fig. 8.2) [226]. Even though it has 
been confirmed that beneficial exosomes deliver functionally active Hsp20 to the 
recipient cardiac cells of type 1 diabetic mouse, but also it is interesting to further 
investigate in-depth the molecular alterations induced in Hsp20 transgenic cardio-
myocytes under hyperglycemia and emphasize what are the pivotal mediators that 
mediate a such deviation from releasing detrimental exosomes to beneficial exo-
somes [222]. In the same avenue, a study reported that cardiomyocyte- derived exo-
somes do not have only local cardiac effects, but also have systemic effects. 
Interestingly, a study by Pironti et al., revealed that both in vitro cellular stretch and 
in vivo pressure overload promote the cardiomyocytes to produce exosomes- enriched 
with angiotensin II type 1 receptor (AT1R) into the culture media and blood circula-
tion, respectively [228]. Transferring functionally active AT1R to other distinct tis-
sues and organs, principally mesenteric vasculature and skeletal muscles can 
modulate peripheral vascular resistance and thus blood pressure, when these specific 
exosomes were injected into the tail vein of AT1 knockout mice [228]. Clearly, the 
functional role of exosomes in the regulation of different cellular mechanisms can be 
altered in diabetes and contribute to the onset and development of cardiovascular 
complications. Finally, the exosomes can deliver and distribute sustained informa-
tion between distinct cardiovascular cells under hyperglycemic condition has large-
scale clinical implications in terms of diabetic cardiomyopathy pathogenesis [222, 
226, 229]. Considering all the previous data and taken these findings together, exo-
somes have potential and functional roles on the pathophysiology of DCM; as well 
as, promising and possible roles for exosomes to act as therapeutic targets or agents 
that can be used in the treatment of diabetic cardiomyopathy.

8.5  Conclusion and Future Directions

DCM is still the main cause of morbidity and mortality among diabetic patients. 
The complete understanding of DCM pathophysiology and the role of exosomes in 
this pathologic disorder are still under investigations. However, there has been 
emerging in vitro, ex-vivo and in vivo experimental data about different underlying 
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mechanisms that might be helpful to answer important questions during the study of 
DCM. In addition, exosomes are considered and studied as microRNA-carriers that 
are essential for local tissue-specific or inter-systemic cells’ communication. Of 
interest, miRNAs-enriched exosomes play an important role in the development of 
DCM based on present evidences such as alteration of miRNAs profile in the dia-
betic heart, suggesting their sustained detrimental effects on DCM despite normal-
ization of hyperglycemia. As matter of fact, exosomes can be generated and derived 
from different cell types of the body under different pathological conditions, impli-
cating that molecular pathological messages can be spread throughout the body 
organs via exosomes. Clearly, exosomes are involved in all stages of DCM, includ-
ing altered insulin signaling and glucose metabolism, hypertrophy, apoptosis and 
fibrosis of the myocardium. In this context, the functional and expressional pheno-
type of exosomes from different sort of cells contributing to the onset and propaga-
tion of DCM to HF can be an alternative medical therapy, in which external artificial 
exosomes will be administered in order to counteract the molecular defects in 
DCM. Nonetheless, further studies are necessary to emphasize and elucidate the 
complete molecular mechanisms underlying the development of DCM and the bio-
logical nature of exosomes: First, could we be able to isolate normal exosomes from 
the blood of healthy subjects?; Second, could isolated normal exosomes reverse the 
phenotype and restore normal cardiac function in patients diagnosed with DCM?; 
Third, could we be able to use host cells to overexpress beneficial factors that can 
be loaded and delivered via exosomes?; Fourth, is it clinically possible to intervene 
the generation or secretion of harmful exosomes?; also, we do not know if blockade 
of harmful exosomes generation or secretion during DCM pathogenesis is able to 
have beneficial effects? In general, deep understanding of mechanisms that are con-
tributed to exosome generation, secretion or uptake will be important to modulate 
the quality and quantity of exosomes in order to develop an effective therapy and 
improve efficacy of therapeutic intervention for the treatment of DCM. To sum up, 
there are clear evidence that exosomes play a critical role in the regulation of tissue- 
specific and/or whole body glucose metabolism. Future studies in the understanding 
of cell-to-cell communication pathways via exosomes in the setting of diabetic car-
diomyopathy will facilitate clinical research towards the identification of effective 
medical therapy for DCM.
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Chapter 9
Peripartum Cardiomyopathy: Do Exosomes 
Play a Role?

Huanyu Gu, Qiying Dai, Zhuyuan Liu, Hongbao Wang, Jianhua Yao, 
and Lei Zhou

9.1  Introduction of PPCM

In the 18th, PPCM has been widely accepted as one of the most dreadful complica-
tions during and after pregnancy. It was finally recorded in the medical literature until 
early in the 19th [1, 2]. It was correlated to heart failure induced by dilated cardiomy-
opathy initially at that time [3]. The term PPCM was used to name this dangerous 
disease. Classical definition are: (1) the symptoms of heart failure occur in the last 
month of pregnancy or within the 5 month after delivery; (2) the absence of pre-
existing cardiac disease leading to heat failure before the last month of pregnancy; 
(3) no other determinable cause of heart failure is found [1]. PPCM is mainly a diag-
nosis of exclusion. The 6 months’ time limit is very important, and all other causes 
of heart failure must be ruled out. Echocardiogram diagnostic criteria of PPCM 
includes left ventricular ejection fraction (EF) less than 45%, or fractional shortening 
less than 30%, or both [2]. Unfortunately, echocardiography is not accessible in 
some developing countries, left ventricular systolic dysfunction is hard to confirm.
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9.2  Epidemiology of PPCM

It is not uncommon that PPCM can occur in healthy young women. This means that 
all women at reproductive age share the same risk of developing PPCM. However, 
epidemiologic data on PPCM remains insufficient. Separated diagnostic criteria, 
different population and individual studies have been blamed for. In addition, lack 
of systematic reporting, misdiagnosis and under-diagnosis, the true morbidity of 
PPCM is hard to ascertain. Incidence as high as 1  in 100 to 1  in 300 pregnant 
women were reported in Haiti and Nigeria, where are two global hotpots in the 
world map [3, 4]. The reasons for variation in the incidence among countries 
remains unclear. PPCM seem to be more common in African women. The incidence 
rate of South Africa is 1 in 1000 live births. What’s more, the prognosis is poorest 
in African women [5]. Even in the same country, the prevalence of PPCM is differ-
ent based on geographical regions, races and social classes. For example, the inci-
dences range from 1  in 1149 to 1  in 4350  in the United States, where the most 
studies have been conducted [6]. Hispanics have a comparatively lower morbidity, 
as opposed to African races. Most of the studies were conducted in the three coun-
tries mentioned above. The rest of the studies were done in other parts of the world, 
including Europe where the cases are relatively rare [7]. Although PPCM is rare, it 
is associated with a high maternal mortality rate, especially in African females [8]. 
About 28% of the patients died after 6 months despite conventional treatment [9]. 
Increasing studies have be done to explore the underlying mechanism of the disease 
in order to find more specific treatment.

9.3  Etiology of PPCM

Factors like black race, multiple pregnancy, advanced maternal age, pregnancy 
induced hypertension, multiparity, abuse of tocolysis medications, smoking, mal-
nutrition, breastfeeding are all related to the development of PPCM [10, 11]. 
Among these risks, black race is considered to be the greatest risk for PPCM. This 
is often confused by socioeconomic and ethic risk factors [8]. Women of advanced 
maternal age are associated with increased risk, whereas risk still exists in young 
group [12]. Multiparity has been considered as risk factors for all the complica-
tions for a lot time. However, its role in PPCM is controversial since most of the 
studied females are at first or second pregnancy [13]. In contrast to traditional 
thought, breast- feeding is not associated with worsened outcomes in PPCM.  In 
fact, about 67% of PPCM patients choose to breast feed without any adverse 
effects.

The pathology of PPCM presents as a general cardiomyocyte damage which is 
provoked by myocarditis, increased myocyte apoptosis, inflammation, abnormal 
autoimmune responses, viral infection, stress-induced release of cytokines and hor-
monal abnormality [14].
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Myocarditis was the first recognized as a cause for PPCM 30 years ago, but 
the reported incidence rate of myocarditis is high variable over the years. 
Sanderson showed that 45% PPCM patients could suffer from myocarditis by 
histological detection [15]. Another study showed supportive evidence on this 
association [16]. Moreover, a 62% incidence rate of myocarditis was found in 
PPCM patients [17]. Even with the results provided, sampling error cannot be 
excluded since these studies did not group patients by race and had no unified 
diagnostic criteria.

Apoptosis refers to the programmed cell death. In vivo study has proven that 
apoptosis occurs in PPCM [18]. Fas and Fas ligand, located in cell surface, are piv-
otal molecules in the process of apoptosis. During a 6 month’s longitudinal study 
with 100 PPCM patients from South Africa, 15 patients died and they had higher 
levels of Fas/Apo-1 in serum [12]. A caspase inhibitor can rescue the apoptosis in 
PPCM mouse model, thus provide a novel therapeutic strategies for PPCM and an 
evidence for the role of apoptosis in PPCM [19].

Inflammation has been found to play an important role in many pathological 
process of PPCM. Levels of serum markers of inflammation like interferon-gamma 
(IFN-γ), tumor necrosis factor (TNF), interleukin-6 (IL-6) and C-reactive protein 
are higher in serum of patients with PPCM than in healthy controls. Besides that, 
these inflammatory mediators are closely related with echocardiographic outcomes 
of impaired left ventricular function. Adding anti-inflammatory agent Pentoxifylline 
to conventional therapy could improve clinical presentation in a trial of 59 PPCM 
patients [12].

During pregnancy, maternal immune system is suppressed to ensure the safety 
and normal development of fetus. A maladaptive response with the feature of auto-
immunity could occur. It can produce high titers of antibodies recognizing maternal 
cardiac tissue and initiate inflammatory damage. These antibodies is detectable in 
patients with PPCM, but not in normal controls [20]. The inflammatory damage to 
the heart tissue will lead to autoimmune myocarditis. One explanation to the devel-
opment of these autoantibodies is that rapid degeneration of uterus after delivery 
triggers the release of myosin, actin and lots of other proteins into maternal circula-
tion. Antibodies against these proteins will make cross-reacting with analogous pro-
teins of myocardium, leading to auto attack.

Viral infection is one of common causes of myocarditis. It could also contribute 
to the pathological changes of PPCM.  Similar to the autoimmune attack theory, 
autoantibodies against hear tissue can develop after episode of viral infection. 
Epstein Barr virus (EBV), human cytomegalovirus (CMV), human herpes virus 6 
(HHV6) and parvovirus B19’s viral genomes have been found in biopsy specimens 
in 31% PPCM patients [21]. The ejection fraction of PPCM patients can be improved 
from 50.2 to 58.1% by anti-viral therapy, while the ejection fractions of those with 
persisted viral titers are decreased from 54.3 to 51.4% [22]. Among these known 
viruses, human immunodeficiency virus (HIV) have not been found involved in 
PPCM [16]. Animal study further confirmed this theory by providing the result that 
pregnant mice can develop worse myocarditis after experimentally infected with 
echovirus or coxsachievirus than those non-pregnant mice [17].
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It is obvious to suspect hormone may contribute to PPCM since hormonal changes 
extremely dramatically in pregnancy. It is found that levels of prolactin, progesterone 
and estrogen are lower in serum of PPCM patients. These hormones are important 
vasodilatory elements to prevent hypertension from intravascular volume expansion 
[18]. Prolactin precipitates oxidative cascade through cathepsin. Initial mild oxida-
tive stress can activate cathepsin D which cleaves prolactin into 16-kDa prolactin. 
The 16-kDa prolactin enhance cardiomyocytes apoptosis, contributing to PPCM 
[23]. Higher levels of activated cathepsin D, total prolactin and cleaved 16-kDa pro-
lactin fragment are found in PPCM patients’ serum. In animal study, this effect can 
be prevented by inhibiting secretion of prolactin [23]. PGC- 1alpha is a transcrip-
tional regulator for angiogenesis and metabolism. It modulates the expression of 
SOD2, which is able to enhance oxidative stress. It is demonstrated that down regu-
lation of PGC-1alpha in heart make female mice prone to develop PPCM [24].

9.4  Clinical Presentation of PPCM

Pregnancy is a physiological state in which there is a dramatic change in maternal 
hemodynamic. The most common clinical presentation is heart failure [25]. These 
symptoms overlap with physiological changes in pregnancy, such as persistent 
cough, fatigue, dyspnea, peripheral edema and atypical chest pain. Progression of 
PPCM can be as fast as a couple of days. Classical signs of late PPCM include jugu-
lar venous distension, positive hepatojugular reflex, tachycardia, tachypnea, gallop 
rhythm, hepatomegaly, and ascites. Blood pressure fluctuates in PPCM. Multiple 
organ failure is the most dangerous complication of PPCM [26].

Approximately 78% of PPAM patients are symptomatic in the first 4 months 
after delivery. Only 9% of PPCM patients develop symptoms in the last month of 
pregnancy. The rest of patients have symptoms either after 4 month postpartum or 
before the last month of pregnancy [27]. The initial presentation might vary from 
NYHA I to IV. The majority of patients fall into NYHA functional class III or IV 
[5]. In rare circumstances, cardiac arrest or complex ventricular arrhythmias can 
happen if treatment is delayed or not appropriate [28].

PPCM is associated more to thromboembolic events than cardiomyopathy from 
other causes. Left ventricular thrombosis is common in PPCM patients who have a left 
ventricular ejection fraction less than 35% [29]. Peripheral embolic such as mesenteric 
embolism, coronary embolism and cerebral embolism can happen occasionally [30].

9.5  Diagnosis of PPCM

As mentioned above, PPCM is possible even in patients has no history of heart dis-
ease. The diagnoses usually can be delayed or missed as most symptoms are similar 
to physiological changes during pregnancy [31]. Early diagnosis and treatment 
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correlates to better outcomes for PPCM [32]. As a diagnosis of exclusion, a thor-
ough investigation is required to rule out other alternatives, such as thyroid disor-
ders, sepsis, myocardial infarction, idiopathic dilated cardiomyopathy, postpartum 
depression, severe preeclampsia, anemia and pulmonary vasculitis [33]. Routine 
assessment of PPCM includes history, basic physical examination, blood analysis 
and imaging.

Although there has no specific biomarkers of PPCM, routine blood work is still 
helpful for early diagnosis of PPCM. Inflammatory markers including IL-6, TNF-α 
and CRP are elevated. Markers of apoptosis, Fas/Apo-1 is also elevated. Brain natri-
uretic peptide (BNP) and N-terminal portion of proBNP (pro-NT BNP) are sensitive 
biomarkers to heart failure but not specific for PPCM. High level of pro-NT BNP is 
associated with worse prognosis [34]. In addition, microRNA (miRNA, miR) has 
recently revealed its potential to detect cardiac disease. miR-146a is a promising 
specific biomarker for PPCM. It is reported that a higher level of miR-146a can be 
detected in PPCM patients than healthy control or patients with cardiomyopathy 
from other causes [35]. Other studies suggested that troponin and endomyocardial 
biopsy (EMB) could also be useful for testing PPCM. In a study on 106 newly diag-
nosed PPCM patients, elevated troponin level is related to persistent left ventricular 
dysfunction for up to 6 months [36]. EMB is seldom used but could be very specific. 
Given its invasive nature and comparatively high risks, it should be performed at 
professional hospital [37].

Imaging studies are recommended for PPCM. The combination of blood work 
and imaging is helpful not only for diagnosis, but also for risk stratification. There 
is no particular electrocardiogram (EKG) patterns for PPCM. Sixty-six percent of 
PPCM patients can present left ventricular hypertrophy pattern on EKG, and 96% 
of them may have abnormal ST-T wave. Other abnormalities such as atrial fibrilla-
tion, ventricular tachycardia and bundle branch block could also present [38]. 
Through EKG, different degrees of left ventricular dilatation can be shown. 
Suppression of systolic function vary from moderate to severe. Left ventricular 
thrombus can been found on initial echocardiography in 10–17% of PPCM patients 
[32, 39]. Cardiomegaly, pleural effusion and pulmonary venous congestion can be 
found by chest X ray [40, 41]. MRI is more precise in measuring ventricular func-
tion and chamber volumes. However, it is less commonly used since it is more time 
consuming and there is no definite imaging finding for PPCM after all.

9.6  Treatment of PPCM

The basic treatment of PPCM is similar to heart failure, but also needs to be indi-
vidualized [42]. The most important concept is to relief afterload and increase con-
tractility. As we all know, traditional medication for heart failure involves 
angiotensin-converting enzyme inhibitor (ACEI) β blocker, spironolactone and 
digoxin [43]. Medication for PPCM is different depend on whether patient develop 
the disease in pregnancy or not. ACEI is contraindicated during pregnancy.
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Digitalis is an effective inotropic agent which can improve contractility and con-
trol rate. More importantly, it is safe both for women and fetus. However, it needs to 
be closely monitored for that pregnant women are more sensitive to the effect of 
digitalis. High level of digoxin in serum indicates a worse outcome in PPCM [44].

Diuretics are commonly used to relief preload. Loop diuretics like furosemide 
can reduce intravascular volume rapidly. Though it can be excreted by breast milk, 
no adverse effects has been reported [45].

ACEI has been recognized as one of the fundamental medication for heart failure 
for many years. It decrease mortality and is recommended for any tolerated heart 
failure patients. Despite of all the benefits, numerous adverse effects on the fetus has 
been reported, including prematurity, bony malformation, oligohydramnios, limb 
contractures, intrauterine growth retardation, neonatal death and pulmonary hypo-
plasia [46]. For sake of safety, ACEI is usually replaced by hydralazine.

Β blockeris another significant medication for PPCM. It suppresses arrhythmia, 
decrease risk for sudden death and is associated with decreased mortality [47]. 
Metoprolol is detectable in breast milk, but the drug level in milk can be tolerated 
well for infants [48]. Among all the different types of β blockers, β1 selective 
blocker is more favorable. Because other non-selective β blocker can interfere with 
the uterus activity [47].

It is necessary to add anticoagulation considering the high risk of thromboembo-
lism in PPCM. Anticoagulation is advised to be used at the time of diagnosis until 
the EF recovers to more than 35% [49]. Common anticoagulation medication is 
warfarin. PPCM patients with EF less than 35% requires warfarin. Heparin is also 
often used and is considered to be safe since it can’t cross placenta [50]. Effective 
and safety issues regarding to other newer anticoagulation agents remains unad-
dressed. More data are necessary before putting them on recommendation.

Prolactin levels contributes to the specificity of pathologic progression of 
PPCM.  The mechanism has been previously discussed. This raise the question 
whether prolactin inhibitor could be a targeted therapy for this disease. It has been 
used in post-partum mothers to stop lactation during the past 20 years. Study have 
provided evidence that there is beneficial effects by adding bromocriptine to stan-
dard treatment [29]. The safety of bromocriptine was assured in 1400 mothers who 
had been taking bromocriptine during the first few weeks of pregnancy. No signifi-
cant increase in congenital malformation or abortion has been reported [51]. It pro-
vided a new prospect in treating PPCM, but more trials regarding to the mortality 
and side effects are needed.

Modulating immune response is another target for exploring treatment for 
PPCM. Intravenous immunoglobulin has showed its potential to ameliorate cardiac 
damage and accelerate recovery of ventricular function [52]. However, its beneficial 
effect is nonrepeatable in other studies [53]. Further researches are obligatory to 
clarify its use in PPCM.

Apart from drug therapy, monitoring before and 24 h after delivery is also of 
great significance. Cardiovascular monitoring is necessary according to the severity 
of PPCM. It includes continuous EKG and full invasive haemodynamic monitoring. 
ICU level of care is required for severe clinical cases. Continuous monitoring can 
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also be recommended as an early detection of heart decomposition or a guideline in 
the treatment for PPCM [54].

In rare conditions, cardiac transplantation is warranted in patients with worsen-
ing symptoms despite maximal drug therap. Unfortunately, only fewer than 3000 
patients have access to the procedure per year in the world. In this case, ventricular 
assist device (VAD) has emerged as an important bridge to transplantation [55]. 
Defibrillator implantation is useful for PPCM patient who has symptomatic ven-
tricular arrhythmias [56].

9.7  Prognosis of PPCM

In general, most of PPCM patients have higher rate of spontaneous recovery than 
those cardiomyopathy caused by other reasons. Twenty-three to fifty-four percent of 
PPCM patients’ left ventricular function is able to fully recover to baseline [57]. It 
had been found that mortality of PPCM in the US was the lowest through the world. 
Report suggested that survival rates of PPCM are similar in the USA, South Africa 
and Haiti [58].

Available studies in the USA, South Africa, Haiti and Turkey indicate that prog-
nosis of PPCM varies depend on geography [59]. They have reported that mortality 
rates range from 1.4 to 30% [60].

Factors that can predict mortality of PPCM are: African descent, older age, 
increased left ventricular size and multiparity.

9.8  Exosomes and PPCM

Exosome is a nanosized extracellular vesicles, secreted by different types of cells. 
It has proven itself as a crucial mediator for cell-cell communications. Exosome 
carries molecules like proteins, nucleic acids and lipids. The role of exosomes in 
tumor has been well established. Its function in heart has become a research hot-
pot in recent years. Exosomes are found to be secreted from cardiomyocytes, car-
diac fibroblasts, endothelial cells and cardiac progenitor cells. They are also 
proven to have cardioprotective and proangiogenic effect, help to improve cardiac 
function [52].

The detailed function of exosome in cardiac tissue and the relationship between 
exosome and some other cardiac diseases have been described in other chapters. As 
a matter of fact, very few publications have investigated the role of exosome in 
PPCM.

As discussed above, 16-kDa N-terminal prolactin can trigger PPCM. 16-kDa 
prolactin is reported to enhance the expression of miR-146a in endothelial cells, 
thus inhibiting angiogenesis. miR-146a is a key factor in inflammatory diseases, 
sepsis and innate immunity [53]. It can regulate the activation of NF-κB through 
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tumor necrosis factor receptor associated factor 6 (TRAF6) and interleukin-1 asso-
ciated Kinase 1(IRAK1) [61]. 16-kDa prolactin can also promote miR-146a- 
enriched exosomes release from endothelial cells [35]. These exosomes will be 
taken up by targeted cardiomyocytes, resulting in upregulating of expression of 
miR- 146a. Downstream factors of miR-146a, Notch1, Irak1 and Erbb4 are decreased 
then. These changes can trigger cellular mitogenesis and differentiation. Besides 
endothelial cells, fibroblasts are also capable of secreting miR-146a-enriched exo-
somal in hearts after being stimulated by 16-kDa prolactin. Significant elevated 
level of exosomal miR-146a are detected in 38 acute PPCM patients. In contrast, no 
change are observed in 30 dilated cardiomyopathy patients or 18 healthy postpar-
tum mothers. Based on these evidence, exosomal miR-146a can be developed as a 
distinct biomarker for diagnosis and risk stratification for PPCM patients [35].

9.9  Summary

PPCM is a rare complications but associated with high mortality. Although influ-
enced by various risk factors, it still can affect both previously healthy patients and 
patients with history of cardiac disease. As most of the early symptoms resemble the 
physiologic changes in pregnancy, it is not uncommon to miss the diagnosis. Delay 
in treatment may result in increased mortality. Current treatment of PPCM are simi-
lar to treatment for dilated heart failure. Extra caution should be taken given the 
vulnerability of fetus. Progress has been made in recent years both for the lab test 
and treatment strategy. Increasing evidence support that exosomes and miRNA have 
great potential in the field. However, more trials are needed to testify the availability 
and safety of these new regimen.
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Chapter 10
Vascular Calcification Regulation  
by Exosomes in the Vascular Wall

Marcel Liberman and Luciana Cavalheiro Marti

10.1  Introduction

Exosomes were described initially as microvesicles (MVs) containing 5′-nucleotid-
ase activity that were released from neoplastic cell lines [1]. A few years later, in 
1983 and 1985, other groups reported in electron micrographic studies the secretion 
of vesicles from endocytic origin by cultured sheep reticulocytes [2, 3]. They sug-
gested that after endocytosis occurs the formation of MVs (~50 nm in diameter) 
containing transferrin receptors. These MVs were present inside large multivesicu-
lar endosomes eventually fused with the plasma membrane and releasing these MVs 
50 nm buds in the extracellular milieu (Fig. 10.1) [3].

Later, Johnstone et al., reported to have found two major peptide bands in these 
released vesicles, the 94-kDa monomer of the transferrin receptor and a 70-kDa 
peptide identified as a clathrin uncoating ATPase [4]. Next, they found that microves-
icles (exosomes) released during sheep reticulocyte maturation exhibited several 
plasma membrane functions. Using an antibody coated with magnetic core bead, 
they were able to demonstrate that the vesicles containing transferrin receptor also 
contained other plasma membrane activities, such as the nucleoside transporter and 
acetylcholinesterase. Lysosomal activities, normally found in the same pellet, were 
excluded from the transferrin receptor-containing exosomes, suggesting that there 
was a common mechanism to isolate and externalize specific plasma membrane 
proteins. In addition to the sheep, electron micrographic studies show that exosomes 
can be recovered from the circulation of anemic pigs, rats and rabbits [5].

Several electron-microscopy studies, however, have established the existence of 
fusion profile between multivesicular late endosomes and the plasma membrane in 
living cells of hematopoietic origin, such as cytotoxic T lymphocytes (CTLs) [6], 
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Epstein–Barr virus (EBV)-transformed B cells [7], mast cells [8], dendritic cells [9] 
and platelets [10]. These cells types, and perhaps every cell that contains multive-
sicular endocytic compartments, could potentially secrete exosomes. Indeed, lipid 
vesicles purified from the culture supernatant of various hematopoietic cells [11–
14], tumors of hematopoietic or non-hematopoietic origin [15], or epithelial cells 
[16] have been described in several studies and recently in vascular smooth muscle 
cell—VSMC [17]. Assembling the data from these studies they were able to define 
the characteristic properties of exosomes that distinguish them from vesicles that 
originate from other cellular sites, such as the plasma membrane.

10.2  Exosomes Physical Properties and Purification

The most common procedure to purify exosomes from cell culture supernatants 
includes a series of centrifugations to remove dead cells and large debris, followed 
by a final high-speed ultracentrifugation to pellet exosomes [7, 18]. However, this 
technique is not sufficient to discriminate between exosomes and other small vesic-
ular structures, or large protein aggregates. Additional criteria must be used to con-
firm exosomes identity. Since, exosomes float on sucrose gradients, as all lipid 
vesicles, and their density ranges from 1.13 g mL−1 (for B-cell-derived exosomes) 
to 1.19 g mL−1 (for intestinal cell-derived exosomes) [7, 9, 10, 15, 16]. Contaminating 

Fig. 10.1 Summary of the observations that led to the first description of exosomes. The secretion 
of vesicles present inside multivesicular endocytic compartments was reported in 1983 by Harding 
et al., and confirmed in 1985 by Pan et al.
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material such as protein aggregates or nucleosomal fragments released by apoptotic 
cells are separated from exosomes by a different density and gradient of flotation on 
sucrose.

When analyzed by electron microscopy, exosomes have a characteristic ‘dish- 
like’ morphology, a compacted sphere that is limited by a lipid bi-layer. Generally, 
they are between 30 and 100 nm in diameter, with B-cell-derived exosomes being 
the most homogeneous in size (60–80  nm). These characteristics are consis-
tent with the observed size and morphology of inner vesicles in multivesicular 
endosomes [7].

Since, other membrane vesicles can be secreted by cells, it is essential to purify 
exosomes generated in cell-culture supernatants. Filtration of the cell-culture super-
natant through 0.22 μm filters, followed by direct high-speed ultracentrifugation 
reduces the contamination of exosome preparations with larger vesicles that are 
detached from the plasma membrane [11].

In addition, because exosomes are present in serum [19], it is crucial to avoid 
contamination with bovine exosomes from the fetal calf serum that is used to cul-
ture the exosome-producing cells. For this reason, these cells are cultured in medium 
in which fetal calf serum is substituted with insulin–transferrin–sodium-selenite 
supplement [12] or with bovine/human serum albumin [16]. Alternatively, culture 
medium that contains up to 20% fetal calf serum can be depleted from endogenous 
exosomes by overnight highspeed ultracentrifugation [14]. In previous studies, the 
purification of exosomes from metabolically radiolabeled cells showed that exo-
somes are originated from the cells, rather than from the fetal calf serum, due to the 
presence of radioactive labeled proteins inside the exosomes.

10.2.1  Molecular Composition of Exosomes

The presence of known cellular proteins in exosome preparations from various cel-
lular sources has been analyzed by western blotting [14, 15, 20] and by fluorescence- 
activated cell sorting (FACS) analysis of exosome-coated beads [19–21]. The 
available proteomic studies define a subset of cellular proteins that are targeted spe-
cifically to exosomes. The function of most of these proteins in exosomes is 
unknown at present. Importantly, these studies also showed that exosomes are 
clearly distinct from the vesicles that are produced by apoptotic cells and they are 
only secreted by living cells.

Both general and cell-specific proteins might be targeted selectively to exo-
somes. These proteins are probably involved in exosome biogenesis and, possibly, 
in some unknown exosome functions. They include cytosolic proteins—such as 
tubulin, actin and actin-binding proteins as well as Annexins and RAB proteins. 
They also include molecules that are involved in signal transduction such as protein 
kinases and heterotrimeric G proteins. Various metabolic enzymes are found in exo-
somes from enterocytes and human dendritic cells. Exosomes also contain  heatshock 
proteins, such as constitutive isoforms of HSP70 and HSP90. MHC class I molecules 
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are also present in exosomes from most cell types. Finally, one of the most abundant 
protein families that are found in exosomes comprises the tetraspanins. Several 
members of this family—including CD9, CD63, CD81 and CD82—are highly 
enriched in exosomes from virtually any cell type. Tetraspanins interact with many 
protein partners—including MHC molecules and integrins, which indicates that 
they are involved in the organization of large molecular complexes and membrane 
subdomains.

10.3  Vascular Calcification and Vascular Smooth  
Muscle Cells

Recent advances have shown that vascular calcification is a tightly regulated pro-
cess resembling bone mineralization [22] driven by VSMC osteogenic conversion 
and commonly observed in the aged population and patients with chronic kidney 
disease and type 2 diabetes. Deposition of insoluble calcium phosphate crystals 
reduces vascular homeostasis, promotes inflammation and stimulates VSMC death 
resulting in plaques with biomechanical instability [23–26].

The phenotypic plasticity of vascular smooth muscle cells (VSMC) is associated 
with expression of multiple antigens expression including those present in macro-
phages, mesenchymal stem cells, myofibroblasts and osteoblasts [27–29] and this is 
especially observed within the atherosclerotic plaque. Importantly, the functionality 
of newly acquired phenotypes is limited and often maladaptive; take for example 
osteogenic VSMCs, which mediate vascular calcification [27, 29, 30]. A break-
through in calcification studies came from the identification of small membrane- 
enclosed extracellular vesicles found within the matrix and secreted by VSMCs [31, 
32] as well as infiltrating macrophages in atherosclerotic plaques [33].

10.3.1  Exosome Fusion in Vascular Calcification

Changes in cell phenotype, specifically the epithelial-to-mesenchymal transition, 
were previously linked to elevated exosome-like vesicle secretion, although specific 
mechanisms between these phenotypic changes and exosome production are 
unknown [34]. In order to counterbalance calcifying milieu, MVs secreted by 
VSMCs are physiologically loaded with calcification inhibitors, such an endoge-
nously expressed matrix Gla protein (MGP) and circulating fetuin-A (α2-Heremens–
Schmid glycoprotein) [35] in physiological conditions. Fetuin A is a glycoprotein 
secreted mainly by the liver. On contrary, in patients with exaggerated vascular 
calcification, circulating fetuin-A is reduced [36].

In parallel, investigators established a pivotal role of MGP, which is able to atten-
uate vascular calcification in murine models of vascular calcification and diabetes 
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(db/db) and in human islet amyloid polypeptide transgenic (HIP) rats, by specifi-
cally inhibiting BMP-2 signaling [37]. However, a prolonged mineral imbalance 
and/or inflammation induces reduction of MGP and fetuin-A inside MVs and 
enrichment with a protein–lipid complex consisting of phosphatidylserine (PS) and 
Annexin A6, which converts MVs into a nest for calcification (Fig. 10.2) [35, 36, 
38, 39].

Conversely, until recently it was unclear whether MV were derived from apop-
totic cells or formed in an intracellular compartment and budded from live cells. 
Using fetuin-A as a tracer, Kapustin et al. performed an elegant study to identify the 
origin of calcifying VSMC MVs. They demonstrated that Alexa488-labelled fetuin-
 A is rapidly taken up by human VSMCs and delivered to early and late endosomal 
compartments [40].

From here a subset of late endosomal compartment, multivesicular bodies 
(MVBs), is involved in the production of small (100 nm), extracellular microves-

Fig. 10.2 Schematic representation of exosome and proteins related to calcification (Adapted 
from Shanahan CM et al.). PS phosphatidylserine, MMP2 matrix metallopeptidase 2, MGP matrix 
Gla protein, TNF-α tumor necrosis factor-α
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icles or exosomes which are generated by the inverted budding of the MVBs 
limiting membrane into their own lumen. MVBs are transported to the cell 
periphery where the fusion of the MVB limiting membrane and plasma mem-
brane releases these intraluminal exosomes to the extracellular matrix [2, 41]. 
Moreover, they showed co-localization of fetuin-A positive intracellular organ-
elles and a MVB marker in VSMCs indicating that fetuin-A is delivered to 
MVBs and recycled via the exosome pathway. Interestingly, proteomic compari-
son revealed high levels of similarity between VSMC-derived MVs and exo-
somes secreted by other cells.

Furthermore, inhibition of Sphingomyelin phosphodiesterase 3 (SMPD3), 
which is a crucial protein for exosome biogenesis, will block exosome secretion 
and consequently VSMC calcification [40, 42]. Conversely, elevated extracellu-
lar calcium, a known cause of calcification, induces SMPD3 expression and exo-
some production [40]. In osteoblast-derived MVs calcium phosphate crystal 
formation is triggered by nucleation sites consisting of phosphatidylserine and 
annexin A5 [43]. Osteogenic conditions in vitro results in elevated cytosolic cal-
cium levels followed by accumulation of Annexins A2, A5 and A6 in calcifying 
MVs from condrocytes [44, 45]. Accumulation of alkaline phosphatase in calci-
fying chondrocyte-derived MVs, which are mediated by SMPD3, has been 
observed in a number of studies and these data directly implicate osteogenic 
transcription factors in MV composition regulation [44–46]. Moreover oxLDLs, 
TNF-α and oxidative stress stimulate SMPD3 activity and proliferation of 
VSMCs and fibroblasts [47–49]. Given the role of the SMPD3 pathway in exo-
some biogenesis, inhibition of SMPD3 reduced exosome production [40, 42]. 
Secretion of calcifying exosomes by VSMCs is also driven by pathological 
changes in cytosolic calcium homeostasis that triggers dramatic changes in exo-
some composition including enrichment with nucleating phosphatidylserine/
Annexin A6 complexes, loss of MGP and appearance of amorphous calcium 
phosphate [39, 40].

Furthermore, alterations in cytosolic calcium also stimulate exosome secretion, 
probably by regulating calcium-dependent fusion events or by activation of 
calcium- dependent calpains, proteases involved in the remodeling of the cortical 
cytoskeleton required for plasma membrane dynamics [50, 51]. Interestingly, MVs 
obtained from the media of coronary artery VSMCs were enriched with alkaline 
phosphatase [26, 52] after long-term treatment in osteogenic media [52, 53]. 
Consequently, osteogenic conditions may affect the VSMC extracellular vesicle 
composition in a cell and related osteogenic transcription factors in the production 
of calcifying extracellular vesicles by VSMCs, but this data is yet to be 
determined.

Additionally, recent studies showed that BMP2-activated Runx2 up-regulates 
SMPD3 expression in C2C12 myoblasts and chondrocytes which directly links the 
exosome biogenesis machinery with osteogenic master genes [54, 55].
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10.4  Final Remarks

In conclusion, although there are missing data about the relationship between path-
ological factors and activation of calcifying exosomes, the modulation of exosome 
biogenesis may be a novel therapeutic approach to help improvement in vascular 
repair.
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Chapter 11
Cardioprotective Effects of Exosomes 
and Their Potential Therapeutic Use

Shengguang Ding, Jingying Zhang, Qiying Dai, Mengfei Zhao, Haitao Huang, 
Yiming Xu, and Chongjun Zhong

11.1  Introduction

Cardiovascular disease is the leading cause of mortality and morbidity in human 
beings. It is estimated that approximately one third of American adults have at least 
one type of cardiovascular disease, particularly among older Americans. Of these 
estimated 85.6 million American adults, 80 million have high blood pressure and 
15.5 million have chronic heart disease. In 2013, about one in three people died from 
cardiovascular disease in the United States. More specifically, more than 2200 
Americans died from cardiovascular disease each day, an average of one death every 
40 s [1]. The total medical cost of cardiovascular disease and stroke in the United 
States increased from $315.4 billion in 2010 to $316.6 billion in 2013 [1, 2]. 
Consequently, the huge medical expenses will put a burden on the whole society. 
Therefore, it is imperative to identify novel therapeutics for cardiovascular diseases.
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11.2  Mammalian Heart

Mammalian heart is composed of various types of cells, including cardiac fibro-
blasts, myocardial cells, vascular cells, and neural cells [3]. In the past few years, 
cardiac stem cells have been identified in postnatal hearts by using a variety of 
approaches, such as expression of surface markers like c-Kit, or physiological prop-
erties like the ability to efflux fluorescent dye or come into being multicellular 
spheroids [4–6]. Due to its limited capacity to replace itself, loss of terminally dif-
ferentiated cardiomyocytes will result in irreversible heart damage [3, 6, 7]. Cardiac 
fibroblasts play an important role in heart structural coordination and development 
[8, 9]. Cardiac myocytes serve as a source of diverse paracrine signals that can 
adjust the vascular tone to meet myocardial requirements for oxygen and nutrients. 
Apart from that, cardiomyocyte also have an effect on the long-term growth and 
development of coronary arterial, venous, and lymphatic trees [10]. Cardiac micro-
vascular endothelial cell protects cardiomyocytes against acute ischemic- reperfusion 
injury (IR injury) through a peptide called intermedin. Intermedin could reduce 
oxidative damage to cellular proteins, preserve the cellular cytoskeleton, attenuate 
the apoptotic signaling cascade and maintain cellular viability by acting in a para-
crine manner on cardiomyocytes [11]. Cardiac progenitor cell is able to differentiate 
into three cardiovascular lineages both in vitro and in vivo [7]. Furthermore, a recent 
study shows that cardiac stem cell regulates cardiac responses to injury and physi-
ological turnover during aging [12]. Consequently, well-organized and efficient 
communication among different cell types within the heart is warranted to make the 
heart function properly. The process includes paracrine/autocrine and endocrine 
signals, cell-cell contacts, and cell-extracellular matrix interactions [13–16]. The 
balance in between relies on a wide array of cell types, such as smooth muscle cells, 
endothelial cells, other connective tissue cells, mast cells, immune system-related 
cells, and pluripotent cardiac stem cells [10].

11.3  Extracellular Vesicles

Extracellular vesicles (EVs) are membrane-contained vesicles which are highly 
abundant in cytoskeletal-, cytosolic-, heat shock- and plasma membrane proteins, as 
well as in proteins involved in vesicles trafficking. They could be released by differ-
ent types of cells [17]. Accumulating evidence suggests that extracellular membrane 
vesicles released by cells into extracellular space have been recognized as a novel 
mode for cardiac cellular crosstalk [12, 18–20]. This is attributed to their capacity 
to transfer multiple messenger molecules to other cells thereby affecting various 
physiological and pathological processes of both recipient and parent cells, such as 
inflammation, immune dysfunction, neurological diseases, and cancer [21]. EVs 
have been extracted from many body fluids, including blood, milk, saliva, malignant 
ascites, amniotic fluid and urine [22]. However, they vary in origins, content and 
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size. Based on their biogenesis, EVs can be classified into three main subgroups: (1) 
exosomes derived from exocytic fusion of multivesicular bodies (MVBs), (2) 
microvesicles generated by budding of vesicles directly from the plasma mem-
branes, and (3) apoptotic bodies released from the plasma membrane as blebs when 
cells undergo apoptosis [23–25]. Apoptosis is a biological process in which cells 
undergo a series of programmed changes involving chromatin condensation, inter-
nucleosomal DNA fragmentation, cytochrome c release, proteolytic cleavage of the 
cytoskeleton, externalization of phosphatidylserine, plasma membrane blebbing, 
cell shrinkage, and finally formation of apoptotic bodies. Apoptotic bodies are the 
largest extracellular vesicles, with a diameter range of 1–4 μm [26]. They are able 
to float on a sucrose substance with a density between 1.16 and 1.28 g/mL. The 
release of apoptotic bodies is dependent on Rho-associated kinase I (ROCK) and 
myosin ATPase activity. Apoptotic bodies consist of multiple cellular organelles, 
intercellular fragments, histones and fragmented DNA, and accompanied by exter-
nalization of phosphatidylserine [18]. It is believed that apoptotic bodies could be 
served as an active signal to promote the elimination of other damaged cells. But the 
exact role of apoptotic bodies is not fully elucidated. Recently, it was found that 
apoptotic bodies are responsible for transferring oncogenes from cancer to recipient 
cells, precipitating metastasis. Membrane permeability increased during early stage 
of apoptosis, which allow release of death signals to neighbor cells, causing subse-
quent cell damage [21].

Microvesicles, another type of extracellular vesicles, often referred as micropar-
ticles, ectosomes, and membrane particles. Microvesicles are small membrane- 
enclosed vesicles which appear to be rather heterogeneous in size, ranging from 100 
to 1000 nm in diameter. Generally, microvesicles are secreted from cell by outward 
budding and fission of the plasma membrane when they respond to various physio-
logical or psychological response including prothrombotic and pro-inflammatory 
stimulations as well as cellular differentiation and senescence [27, 28]. Microvesicles 
have been isolated from peripheral blood, urine and ascitic fluids at 100,000 g [29]. 
As the general features of EVs, these microvesicles contains various factors which 
regulate cell-cell communication. The functions of these vesicles differ depends on 
the cell type from which they originate [29]. For example, microvesicles originated 
from skeletal cells contribute to bone mineralization [30], whereas those originated 
from normal endothelial cells participate in angiogenesis [31]. Once shed, these 
microvesicles affect both surrounding environment and distant organs. These 
microvesicles are able to horizontally transfer biological molecules and deposit 
packaged biological effectors at distal sites [29]. For instance, microvesicles derived 
from glioma cells expressing epidermal growth factor receptor variant III (EGFRvIII) 
play a role in inducing morphological transformation and accelerating cancer 
growth by transferring EGFRvIII to EGFRvIII-negative cancer cells in the same 
primary tumor [32]. Glioblastoma-derived microvesicles also promote primary 
tumor growth as well as endothelial cell proliferation by transporting miRNA and 
angiogenic proteins to recipient cells [33]. Consequently, microvesicles are deemed 
to have essential roles in multiple biological process and diseases, such as tumor 
invasion and metastases, inflammation, coagulation, and angiogenesis [29, 34]. 

11 Cardioprotective Effects of Exosomes and Their Potential Therapeutic Use



166

This, in turn, may make microvesicles potential diagnostic and prognostic 
biomarkers as well as therapeutic targets.

Exosomes are the smallest and a more uniform population of these extracellular 
vesicles, with a diameter range of 30–100 nm [35–38]. The density of exosomes 
ranges from 1.10 to 1.20 g mL−1 [39], which enables these vesicles to float on a 
sucrose gradient at a density of 1.13–1.19 g/mL [18]. Exosomes are initially released 
intracellularly into a structure known as multivesicular bodies by invagination of the 
endosomal membrane. The multivesicular body then fuses with the plasma mem-
brane and release its cargo of exosomes into the extracellular space [40]. Exosomes 
have membranes rich of lipid proteins [41]. Exosomes also contain a wide range of 
functional nucleic acids, including mRNAs, microRNAs (miRNAs, miRs), and 
other non-coding RNAs (ncRNAs) [12, 42]. Carrying these information, exosomes 
work as messengers between different cells. Their potential to serve as biomarkers 
in the diagnosis, prognosis and surveillance of a variety of health conditions, has 
heightened the level of interest in these structures [43].

11.4  Exosomes

Exosomes have been widely detected in eukaryotes, such as amoeboid protists, 
fungi, plants, and animals [44]. They are characterized by size (30–100 nm), density 
(1.10–1.20 g mL−1), protein and lipid content [40], which separate it from the other 
extracellular vesicles. By electron microscopy, people could observe the morphol-
ogy, structure, positional relationship with neighboring cells, and most importantly, 
to explore the rules of proper sampling. Murine cardiomyocytes-derived exosomes 
are small and rounded vesicles enclosed by a bilayered membrane, which revealed 
by transmission electron microscopy. However, they appear to be rather heteroge-
neous in electron density [45]. Exosomes are generated by a series of biological 
process. It starts with the inward budding of the cell membrane to form early endo-
somes, followed by second inward budding of the endosomal membrane. The sec-
ond inward budding of the endosomal membrane results in the formation of various 
intraluminal vesicles (ILVs) (late endosomes). The late endosomes containing ILVs 
are also known as multivesicular bodies (MVBs) [18, 43, 44]. Some of the multive-
sicular bodies may move towards the perinuclear space of the cell where they can 
directly merge with lysosomes for degradation, resulting in hybrid and degradative 
organelles [23]. Surface proteins lied on the plasma membrane may be sequestered 
into the inner membrane of these endocytic vesicles during the process [46]. 
Invaginations of the plasma membrane fuse to these sequestered cargoes sorted into 
the endoplasmic reticulum and processed in the Golgi complex [44]. Finally, intra-
luminal vesicles are released into the extracellular space in an exocytotic way when 
the multivesicular bodies fuse with the plasma membrane. These intraluminal vesi-
cles are thought to be exosomes. The endosomal network has been implicated in the 
intake and processing of various molecules from the extracellular space, and the 
transfer of proteins and lipids to the trans-Golgi network. Thus, the endosomal 
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network plays a vital role in regulating the dynamic state of various receptors 
recycling between the cell surface, endosomes, and the trans-Golgi network to 
maintain cell homeostasis [47].

Despite the fact that exosome has been discovered for decades, the mechanism for 
multivesicular bodies biogenesis and exosome release remains unclear. Several mod-
els have been suggested as a mechanism for exosome formation. One of the well-
studied theory is the endosomal sorting complexes required for transport (ESCRT) 
system, which regulates protein sequestration and budding [48–51]. Endosomal 
sorting complexes is required for transport (ESCRT) not only arranges for multi-
vesical formation [52], but also recruits exosomal cargo content [17]. The endo-
somal sorting complex consists of four soluble multi-protein complexes: ESCRT-0, 
ESCRT-I, ESCRTII and ESCRT-III, and their associated proteins [43]. ESCRT-0 
is responsible for cargo clustering and transferring via its ubiquitin- interacting 
domains [53]. Furthermore, it recruits other soluble multi-protein complexes of 
ESCRT to the endosomal membrane, including ESCRT-I, ESCRT-II and ESCRT-
III [54, 55]. ESCRT-I and ESCRT-II participate in the bud formation. ESCRT-
III promotes vesicle fission and regulates the formation of polymeric filaments, 
resulting in membrane invagination and intraluminal vesicles formation [52, 56].  
The associated proteins (especially the VPS4 ATPase) could affect the dissociation 
and recycle of the ESCRT machinery [44]. Accumulating evidence supports that the 
ESCRT machinery plays a role in exosome formation [57, 58]. However, a number of 
studies oppose this theory by reporting ESCRT-independent mechanisms for intralu-
minal vesicles formation and exosome release [59–62]. One of the studies mentioned 
that cytoskeletal adapter molecules, one of the intraluminal components of the EV 
membrane, may also edit and maintain the morphology of the vesicles. Other stud-
ies argue that the post-synaptic density protein, disc-large, zonulin I (PDZ) protein 
syntenin is also involved in the formation of intraluminal vesicles, multivesicular 
bodies and exosomes [49, 63].

Exosomes are characterized with the typical membrane proteins tetraspanins, 
such as CD81, CD82 CD63, and CD9. The membrane proteins also include GPI- 
anchored proteins and receptors like Tumor Necrosis Factor Receptor 1 (TNFR1) 
[43]. Other types of proteins contained in exosomes include proteins involved in 
exosome biogenesis (ESCRT complex, i.e.Tsg101, Alix), proteins that direct traf-
ficking and membrane fusion (Annexins, Rab protein family, ARF), and heat shock 
proteins (Hsp90, Hsp70, Hsp60) [64, 65]. Lipid specific to exosomes are ceramide, 
cholesterol, PS, and sphingolipids [60, 61]. In addition, emerging evidences suggest 
that exosomes also contain a wide range of nucleic acids, including double-stranded 
DNA, mRNA and noncoding RNA (microRNA and lncRNA) [66–69]. These exo-
somal RNAs can be recognized by neighboring cells or distant cells when exosomes 
are released [70–72].

The process that protein and RNA sorting into exosomes is changed when cell 
are subjected to different patho-physiological stress [73]. This, in turn, allows cells 
to produce specific type of exosomes. Thus, these exosomes could reflect the status 
of their parent cells. By studying the circulating exosomes, one could obtain infor-
mation of the status of the original organ status. These suggested the potential of 
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exosomes as biomarkers for diagnosis and prognosis of disease [12, 66, 74]. As a 
consequence, the discovery of their novel function and properties has brought 
increasing attention to exosomes.

11.5  Exosomal Therapy in Cardiovascular Disease

11.5.1  Myocardial Infarction

Myocardial infarction can result in myocardial ischemia, and chronic heart failure 
and death eventually if blood flow is not restored [75, 76]. Myocardial infarction is 
regarded as the most common cause of death worldwide [77, 78]. In 2012, the 
Global Myocardial Infarction Task Force has issued the third universal definition of 
myocardial infarction (MI) expert consensus document. Myocardial infarction (MI) 
is characterized by cardiac myocyte necrosis and content change of cardiac troponin 
(cTn) in plasma [79]. Myocardial necrosis due to ischemia triggers an intense 
inflammatory response by releasing factors like box-1, heat shock proteins, adenos-
ine, extracellular RNA, matrix fragments, and Interleukin (IL)-1α [80–83]. This, in 
turn, contributes to the formation of collagen-based scar tissue [84]. Due to the 
absence of contractile function, scar tissue leads to global left ventricular (LV) dys-
function and finally to heart failure [75, 76].

Nowadays, coronary artery by-pass grafting (CABG) surgery is thought to be 
one of the most commonly performed operations in the world [85]. Coronary artery 
by-pass grafting (CABG) has become established as the optimal strategy in achiev-
ing complete revascularization in patients with moderately severe and severe stable 
ischemic heart disease [86–88]. By grafting arteries or veins from the patient’s 
body or synthetic conduits to the stenotic coronary arteries, CABG surgery is able 
to improve and rebuild the blood supply to the coronary circulation and bypass the 
atherosclerotic narrowing [89]. In general, CABG is indicated for high-risk patients 
with other severe complications, such as those with severe coronary artery dis-
eases, severe ventricular dysfunction or diabetes mellitus [90]. Exosomes are 
found to be increased at 24 and 48 h after the procedure. Plasma concentrations of 
cardiac- enriched, ischemia responsive miRs (miR-1, miR-133a and miR-133b) 
and high sensitive cardiac troponin I (hs-cTn-I) were all found to be upregulated in 
the similar period of time. There was a positive correlation between the concentra-
tion of total exosomes and the concentration of these substances [85]. This evi-
dence suggests that the circulating exosomes secreted from heart may serve as 
novel  biomarker of cardiac damage though their roles in the treatment for cardiac 
damage is unclear.

Chronic heart failure (CHF) is commonly caused by myocardial infarction [91–
93]. New evidence proved that repeated remote ischemic conditioning could attenu-
ate left ventricular remodeling and oxidative stress on chronic heart failure. Exosome 
has been related closely to the protective effect of repeated remote ischemic condi-
tioning treatment [94]. Remote ischemic conditioning (RIC) is a clinically applicable 
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method which has been successfully testified on animals and humans [95, 96]. Rats 
were first induced myocardial infarction for 4 weeks, and followed by RIC treat-
ment for another 4 weeks [94]. Exosomes were found to be increased after RIC 
treatment compared to controlled group. The expression of or exosomal miR-29a 
and miR-30a, which are recognized as anti-fibrosis factor were also found to be 
increased in the RIC group. However, the level of miR-21, known as positive regu-
lator for fibrosis, has no difference between the two groups [94].

In a study investigating exosome’s cardioprotective effects, clusterin is detected 
by shotgun proteomics analysis. It is a heterodimeric secreted glycoprotein detect-
able in exosomes. It improves cardiac function after ischemic injury by reducing 
cardiomyocyte apoptosis and inducing vascular regeneration. It is also an impor-
tant mediator in the regulation of TGF-β-induced epithelial-to-mesenchymal tran-
sition [97]. Exosomes isolated from mouse embryonic stem cells were found to be 
positively related to the improvement of ejection fraction, fractional shortening 
and decreased left ventricular end-systolic diameter [98]. Similarly exosomes 
derived from bone marrow mesenchymal stem cells could reduce infarct size, and 
preserve cardiac systolic and diastolic performance, thereby improving heart 
function in rat myocardial infarction model [99]. Another example is the GATA-4 
expressed in marrow mesenchymal stem cells. Overexpression of GATA-4 down-
regulates apoptosis and increases cardiomyocyte survival in neonatal rats [100]. It 
promotes angiogenesis in the ischemic myocardium and consequently protects 
against ischemic injury [101]. Apart from these direct benefits from GATA-4, a 
paracrine effect is also identified. After direct transplanting stem cells at the bor-
der of an ischemic region for 4 weeks, it was discovered that the expression of 
miR-19a was significantly increased in released exosomes. Theses exosomes 
originated from stems cells that overexpress GATA-4 are enriched in miR-19a. 
miR-19a preserve the cardiac function by decreasing apoptosis through Akt and 
ERK pathway [102]. Unlike mesenchymal stem cell-derived exosomes, exosomes 
released by dendritic cells preserve cardiac function by a modified immune sys-
tem activation [103].

11.5.2  Myocardial Ischemia/Reperfusion Injury

Ischemia refers to deficient blood supply to cardiac tissues and causes an imbalance 
between oxygen/nutrients demand and supply, leading to damage or dysfunction of 
the cardiac tissue [104].

Generally, early and fast restoration of blood supply is regarded as the preferred 
treatment. However, significant cardiac injury could still happen after restoration of 
blood flow. This type of damage is known as myocardial ischemia/reperfusion 
injury (IR injury) [104, 105], which has been associated with high morbidity and 
mortality [75]. It is a process involves a series of biological response, like reduction 
in cellular adenosine triphosphate (ATP) levels, accumulation of hydrogen ions, 
calcium overload, and production of reactive oxygen species (ROS).
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An emerging new concept of ischemic preconditioning (IPC) has been coming 
up because of its protective effect against ischemia. IPC consists of repeated short 
episodes of ischemia and the subsequent brief phases of reperfusion, leading to 
tolerance to ischemia [106]. The tolerance is brought up by underlying biological 
defense reactions [107]. In a myocardial ischemia/reperfusion injury rat model, 
hearts were exposed to remote ischemic preconditioning including 3  ×  5–5  min 
ischemia and reperfusion before the surgery. Results demonstrated that an increase 
level of exosomes and microvesicles from the heart after preconditioning. Further 
evaluation suggested that cardioprotection induced by remote ischemic precondi-
tioning was mediated by these exosomes and microvesicles [108]. As mentioned 
above, exosomes carry various miRs, which serves as modifiers for target cells. 
miR-144 is one of these miRs carried by exosomes. It was found that miR-144 lev-
els decreased in mouse myocardium during IR injury, and it increased after IPC 
treatment. miR-144 precipitates functional recovery and reduces infarct size by 
involving P-Akt,P-GSK3β and P-p44/42 MAPK, decrease in p-mTOR level and 
initiation of autophagy signaling, Importantly, miR-144 precursor was found to be 
increased in the exosome, while no changes was observed in plasma microparticle. 
This, in turn, means that the role of miR-144 was mediated by exosome [109]. 
Several other studies also show cardioprotective effects’ of exosome, implying its 
therapeutic role [110–112].

Cardiac progenitor cells (CPC) derived from adult heart have the capacity for 
cardiac repair as well [113] and the effect has been found to be mediated by exo-
somes. Both in vitro and in vivo study showed that CPC derived exosomes inhibit 
apoptosis [111]. Exosomes secreted by mesenchymal stem cell also protect against 
IR injury by reducing the infarct size in a mouse model [112].

11.6  Conclusion

Exosomes are considered as novel therapeutic approaches for cardiovascular dis-
eases. First, exosomes play a therapeutic role by serving as carriers of biological 
therapeutics to target cells. Second, exosomes seem a direct source to exploit for 
cardiac regeneration therapy. This provides a new therapeutic perspective with 
intercellular mediation of tissue injury and repair. With the development of experi-
mental techniques and molecular technologies, exosome therapy may become a 
clinically available and practical treatment in cardiovascular diseases including 
coronary heart disease, heart failure, myocardial infarction, and other related dis-
eases in the future. However, we should aware that the therapeutic role of exosomes 
has only been identified in animal experiments and in multiple cardiac- related cells. 
It is imperative that such experiments on other mammals and human should be per-
formed in the future.
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Chapter 12
Therapeutic Effects of Mesenchymal Stem 
Cell-Derived Exosomes in Cardiovascular 
Disease

Etsu Suzuki, Daishi Fujita, Masao Takahashi, Shigeyoshi Oba, 
and Hiroaki Nishimatsu

12.1  Introduction

Mesenchymal stem cells (MSCs) are multipotent stem cells that reside in various 
organs, such as bone marrow, subcutaneous adipose tissue, skeletal muscles, lungs 
and dental pulp [1–4]. They have the capacity to differentiate into various cell types, 
such as bone, cartilage, cardiac muscle, skeletal muscle, vascular endothelial cells 
(VECs), and vascular smooth muscle cells (VSMCs) [5, 6]. Among of the various 
MSCs, bone marrow-derived MSCs (BMMSCs) have been widely used for treating 
acute myocardial infarction (AMI) and ischemic heart failure (IHF). The efficacy of 
BMMSCs for treating AMI and IHF has been demonstrated in both preclinical [7–
10] and clinical studies [11–16]. Although the earliest preclinical studies suggested 
that BMMSCs have the potential to differentiate into multiple cardiac cell types, 
including cardiomyocytes, VECs, and VSMCs [9, 7, 8], subsequent studies did not 
demonstrate the potent differentiation capacity of MSCs. Most intravenously 
injected cells are trapped in the lungs rather than engrafted in the heart [17, 18]. 
Even when MSCs are injected to the swine heart via the coronary artery following 
AMI induction, only 6% of the injected cells remain in the infarct zones 14 days 
after AMI induction [17]. Furthermore, the supernatant of MSC cultures improves 
cardiac function to the same extent as MSCs per se [19–21]. These results suggest 
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that MSCs improve cardiac function via the secretion of paracrine factors rather 
than via the direct differentiation of MSCs to cardiac cell types. In this context, 
MSC-derived exosomes have recently gained much attention as a vehicle to trans-
port cardioprotective molecules to the heart. Although clinical studies for treating 
cardiovascular diseases (CVDs) using MSC-derived exosomes have not been 
initiated, we review preclinical studies in which MSC-derived exosomes are being 
used for treating CVDs (summarized in Table 12.1).

Table 12.1 A summary of the effects of MSC-derived exosome administration on CVD therapy

Origin of exosomes
Experimental 
model Findings References

Human ESC-derived 
MSCs

Ischemia/
reperfusion 
injury

Reduction in infarct size Lai et al. [22]
Recovery of cardiac function
Decrease in oxidative stress
Activation of Akt and GSK3
Inhibition of c-JNK

Human MSCs AMI Reduction in infarct size Bian et al. 
[24]Recovery of cardiac function

Increase in angiogenesis
Mouse MSCs AMI Exosomes were enriched in miR-22 Feng et al. 

[25]miR-22 was implicated in the 
anti-apoptotic effect of exosomes

Rat MSCs 
overexpressing 
GATA-4

AMI Reduction in infarct size Yu et al. [26]
Recovery of cardiac function
Exosomes were enriched in miR-19a

Human MSCs AMI Reduction in infarct size Wang et al. 
[27]Recovery of cardiac function

Stimulation of angiogenesis
miR-21 mediates cardioprotective effect

Rat MSCs Stroke Recovery of neurological function Xin et al. [28]
Stimulation of neurogenesis and 
angiogenesis

Rat MSCs 
overexpressing 
miR-133b and those 
whose expression of 
miR-133b was 
knocked down

Stroke Recovery of neurological function 
was mediated by miR-133b expressed 
in exosomes

Xin et al. [29]

Human MSCs Stroke Both MSC and MSC-derived 
exosome administration restored 
neurological function to the same 
extent

Doeppner 
et al. [30]

Mouse MSCs Pulmonary 
hypertension

Reduction in the progression of 
pulmonary hypertension and right 
ventricular hypertrophy

Lee et al. [31]

Mouse MSCs Sepsis Recovery of cardiac function was 
mediated by miR-223

Wang et al. 
[32]

MSCs mesenchymal stem cells, AMI acute myocardial infarction, GSK3 glycogen synthase kinase 
3, c-JNK c-jun N-terminal kinase
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12.2  Application of MSC-Derived Exosomes 
in the Treatment of CVDs

12.2.1  AMI and Ischemia/Reperfusion Injury

Lai et al. fractionated the supernatant of human embryonic stem cell (ESC)-derived 
MSCs and found that a fraction containing small particles (50–100 nm in diameter) 
had cardioprotective effects [22]. This fraction included particles that corresponded 
to exosomes. When administered to a mouse myocardial ischemia/reperfusion injury 
model, these exosomes remarkably reduced the infarct size. The same group also 
administered exosomes secreted from human ESC-derived MSCs to a mouse myo-
cardial ischemia/reperfusion injury model and demonstrated a reduced infarct size 
and improved cardiac function [23]. In addition, they found that tissue levels of ATP 
and nicotinamide adenine dinucleotide were significantly increased, whereas those 
of reactive oxygen species were significantly decreased after exosome administra-
tion. Furthermore, they demonstrated that following exosome administration, phos-
phorylation of Akt and glycogen synthase kinase 3 (which has anti-apoptotic effects) 
significantly increased and that of c-jun N-terminal kinase (which has proapoptotic 
effects) significantly decreased in cardiac tissue. Finally, they showed that exosome 
administration significantly reduced neutrophil and macrophage infiltration in the 
heart after reperfusion, suggesting that exosome treatment has an anti- inflammatory 
effect. Bian et  al. collected extracellular vesicles (EVs) from hypoxic human 
BMMSCs [24]. The mean diameter of EVs was 100 nm, suggesting that EVs are a 
mixture of microvesicles and exosomes. They administered these EVs to human 
umbilical vein endothelial cells (HUVECs) and demonstrated that EVs were inter-
nalized by HUVECs and that the proliferation and migration of HUVECs signifi-
cantly increased. They also administered EVs to a rat AMI model and showed that 
EV administration significantly reduced infarct size, restored cardiac function, and 
stimulated angiogenesis in the ischemic zone. Feng et  al. demonstrated that exo-
somes secreted from mouse BMMSCs after ischemic preconditioning contained a 
large amount of miR-22 and that exosome-derived miR-22 was internalized into 
cultured cardiomyocytes [25]. When administered to mice with AMI, these miR- 22- 
enriched exosomes significantly reduced infarct size and cardiac fibrosis probably 
via the downregulation of methyl-CpG-binding protein 2. Yu et al. used rat BMMSCs 
overexpressing the transcription factor GATA-4 (MSC_GATA-4) and demonstrated 
that administering MSC_GATA-4-derived exosomes had an anti-apoptotic effect 
under hypoxic conditions in vitro [26]. They also showed that MSC_GATA-4- 
derived exosome administration restored cardiac function and reduced the infarct 
size in a rat AMI model. Furthermore, the authors showed that MSC_GATA-4- 
derived exosomes expressed a greater amount of miRs, particularly miR-19a, than 
control MSCs and that miR-19a appeared to be involved in the cardioprotective 
effect of MSC_GATA-4-derived exosomes via the downregulation of phosphatase 
and tensin homolog (PTEN) and subsequent activation of anti-apoptotic Akt and 
extracellular signal-regulated kinase. Wang et  al. compared the cardioprotective 
effects of human BMMSCs, adipose tissue-derived MSCs, and endometrium- derived 
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MSCs (EnMSCs) [27]. They administered these MSCs to a rat AMI model and dem-
onstrated EnMSCs were the most effective in reducing infarct size, restoring cardiac 
function, and stimulating angiogenesis in the ischemic zone. They also demonstrated 
that miR-21 contained in EnMSC-derived exosomes mediated cardioprotective 
effects via the downregulation of PTEN and subsequent activation of Akt, resulting 
in the upregulation of Bcl-2 and vascular endothelial growth factor.

12.2.2  Stroke

Preclinical studies have also reported favorable effects of exosome administration 
on neurological recovery following stroke induction. Xin et al. found that the sys-
temic administration of rat BMMSC-derived exosomes after inducing stroke by 
ligating the middle cerebral artery significantly accelerated neurological recovery 
and stimulated neurogenesis and angiogenesis in the ischemic boundary zone [28]. 
The same group prepared BMMSCs overexpressing miR-133b (MSCs_miR-133b+) 
and BMMSCs with miR-133b knockdown (MSCs_miR-133b−), in addition to wild 
type BMMSCs (MSCs_wt) [29]. They administered these MSCs to a rat stroke 
model and demonstrated that compared with MSC_wt administration, MSCs_miR- 
133b+ enhanced the recovery of neurological function, whereas MSCs_miR-133b− 
decreased the recovery of neurological function. Furthermore, they showed that 
compared with the group administered MSCs_wt, miR-133b levels in exosomes 
isolated from cerebrospinal fluid were higher in the group that received MSCs_
miR-133b+ and lower in the group that received MSCs_miR- 133b−. They also 
demonstrated that MSC-derived exosomes could be transferred to neighboring 
cells. Finally, they showed that the expression of connective tissue growth factor 
(CTGF), a target for miR-133b, was significantly reduced in the ischemic boundary 
zone after MSCs_miR-133b+ administration compared with after MSCs_wt admin-
istration, whereas CTGF expression remained unchanged after MSCs_miR-133b− 
administration compared with after MSCs_wt administration. They concluded that 
exosome-derived miR-133b was implicated in the MSC- mediated recovery of neu-
rological function in this model. Doeppner et al. compared the effect of BMMSC 
administration and BMMSC-derived EV administration on the neurological func-
tion after inducing stroke by ligating the middle cerebral artery [30]. They demon-
strated that both treatments improved neurological function and stimulated 
neurogenesis and angiogenesis at the ischemic boundary zone to the same extent.

12.2.3  Pulmonary Hypertension

The beneficial effects of MSC-derived exosome administration have also been 
reported in a mouse hypoxic pulmonary hypertension model. Lee et  al. demon-
strated that administering BMMSC-derived exosomes significantly ameliorated the 
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progression of pulmonary hypertension and right ventricular hypertrophy, possibly 
via the suppression of signal transducer and activator of transcription 3 (STAT3) and 
the subsequent modulation of the expression of miR-17 and miR-204 (i.e., suppres-
sion of proproliferative miR-17 expression and an increase in miR-204 expression 
that inhibits STAT3 activation in a feed-forward loop) [31].

12.2.4  Sepsis

Wang et al. prepared exosomes from wild-type murine BMMSCs and miR-223 null 
BMMSCs (miR-223-KO BMMSCs) [32]. They administered these exosomes to a 
murine sepsis model that was induced by cecal ligation and puncture, and examined 
their cardioprotective effect in sepsis. They demonstrated that restoration of cardiac 
function was observed when wild-type BMMSC-derived exosomes were adminis-
tered, whereas diminished effect was observed when miR-223-KO BMMSC- 
derived exosomes were administered. In addition, they demonstrated that 
administering wild type BMMSC-derived exosomes suppressed the expression of 
the miR-223 targets semaphorin-3A and STAT3, which might be implicated in the 
cardioprotective effect of wild type BMMSC-derived exosomes.

12.3  Conclusion

MSC-derived exosomes appear to protect the heart and brain via their anti- apoptotic, 
anti-inflammatory, proangiogenic, and immunomodulatory effects in animal mod-
els. Clinical trials will be required in the future to confirm the beneficial effects of 
MSC-derived exosomes in treating CVDs.
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Chapter 13
Exosomes Derived from Embryonic Stem Cells 
as Potential Treatment for Cardiovascular 
Diseases

Yao-Hua Song, Lianbo Shao, Yu Zhang, Jin Zhou, Bin Liu, Xiangbin Pan, 
Yong-jian Geng, Xi-yong Yu, and Yangxin Li

13.1  Introduction

Cardiovascular disease (CVD) resulting from ischemic heart diseases remain to be 
the main causes of heart failure (HF) and death despite significant advances in med-
ical treatment, such as percutaneous coronary intervention and bypass surgery. 
Patients develop heart failure due to the death of cardiomyocytes, which are replaced 
by fibrotic tissue. As the induction of the proliferation and differentiation of cardiac 
stem cells remains challenging, heart transplantation is still the best treatment 
option for end stage HF. However, heart transplantation is complicated by donor 
availability and infections resulting from immunosuppression. The development of 
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new therapies for HF is thus required to improve the outcome in these patients, and 
this has led to the development of cell-based therapies.

Cell therapy is now considered as an alternative option to treat cardiovascular 
diseases. Animal studies showed interesting results using various cell types, which 
include bone marrow stem cells (BMSCs) [1], cardiac stem cells (CSCs) [2], cardio-
spheres [3], embryonic stem cells (ESCs) [4, 5], and induced pluripotent stem cells 
(iPSCs) [6]. Some stem cell based therapies have been tested in clinical trials [7, 8]. 
Although the results were encouraging, challenges remain. Tumorigenic potential, 
immune rejection, and low engraftment and survival rate of transplant cells have 
hindered the widespread application of stem cells in the clinic. Recent studies sug-
gested that stem cell secrete exosomes, which can protect injured myocardium [9–11] 
(Table 13.1). It was shown that exosomes functions as communicators between car-
diomyocytes and endothelial cells under glucose-deprived condition [12]. Exosomes 
are microvesicles with phospholipid bilayer, ranging between 30 and 100 nm in size 
[13]. Most exosomes express specific biomarkers such as CD9, CD63, CD81, and 
Tsg101, regardless their cellular source. Exosomes have been found in almost all 
body fluids, including blood, saliva, urine, and breast milk. Until recently, exosomes 
have been regarded as cell debris. Exosomes carries a wide  variety of cargo, includ-
ing mRNA, miRNA, lncRNA, proteins and cytokines (Fig. 13.1). The exosomes do 
not form tumor or induce immune response, therefore, have many advantages 

Table 13.1 Exosomes derived from different cell types and their roles in cardiac regeneration

Sources of 
exosomes Animal model Exosome function Reference

Rat cardiospheres Rat AMI Improves cardiac function by inducing 
fibroblast to secrete SDF-1 and VEGF

[9]

hCSCs Mouse dilated 
cardiomyopathy

Reduced apoptosis and fibrosis in the 
myocardium and improved heart 
function

[10]

mESCs AMI Delivery of ESC specific miRNA-294 to 
CPCs augment cardiac function by 
promoting angiogenesis and 
cardiomyocytes survival and, reducing 
fibrosis

[19]

hCPCs AMI Promotes angiogenesis and cell survival 
by releasing miRNA-210, miRNA-132, 
and miRNA-146a-3p

[17]

mCPCs AMI Contains high level expression of 
GATA4-responsive-miRNA-451

[20]

Inhibited cardiomyocyte apoptosis
hESC-derived 
MSCs

AMI Reduces infarction by releasing 20S 
proteasome

[21]

MI/R Improves cardiac function by restoring 
bioenergetics, reducing oxidative stress 
and activating pro-survival signaling

[16]

CSCs cardiac stem cells, ESCs embroynic stem cells, CPCs cardiac progenitor cells, MSCs mesen-
chymal stem cells
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 compared to stem cells in clinical application [14]. Exosomes protect injured heart 
by promoting angiogenesis [15], cell survival [16, 17] and inhibiting fibrosis [18].

In this chapter, we will discuss recent development in ESCs-derived exosomes 
and their potential roles to treat cardiovascular diseases. Because iPSCs have simi-
lar functions as ESC, we also address iPSCs-derived exosomes and their potential 
roles to treat cardiovascular diseases.

13.2  Embryonic Stem Cells in Cardiac Regeneration

Stem cells are defined as undifferentiated cells that can self-renew and differentiate 
to all types of somatic cells. Embryonic stem cells have the capacity to produce all 
types of cells present in the adult organism, therefore, hold great potential for regen-
erative medicine. Murine derived embryonic stem cells (ESCs) were first isolated 
and cultured in vitro over 30 years ago. It was shown that human embryonic stem 
cell-derived cardiomyocytes (hESC-CMs) can remuscularize substantial amounts of 
the infarcted monkey heart although non-fatal ventricular arrhythmias were observed 
[5]. It was shown that ESCs overexpressing Thymosin β4 can differentiate into car-
diomyocytes improve cardiac function in a mouse myocardial infarction model [22]. 
However, ESCs can also differentiate into other cell types, which could form tera-
toma [23]. To solve this problem, researchers have developed a serum free system to 
obtain pure contracting cardiomyocytes from ESCs [4]. Other problems associated 
with ESCs are low differentiation efficiency and poor survival after transplantation. 
It was shown that tumour-necrosis factor could promote ESCs differentiation toward 
cardiac lineage [24]. Furthermore, the survival of ESCs derived cardiomyocyte can 
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be enhanced by culturing the cells in a pro-survival cocktail prior transplantation 
[25]. Ethical issue is another concern for using ESCs for treating human diseases, 
but this can be solved by using human inducible pluripotent stem cells (hiPSCs) 
which have also been shown to have the potential to differentiate into cardiomyo-
cytes [26]. iPSCs have been generated from both human somatic and adult mice 
cells by ectopic expression of a cocktail of transcription factors, such as Oct3/4, 
Sox2, Kfl4 and c-Myc [27, 28]. These cells were almost indistinguishable from 
ESCs in terms of DNA methylation, gene expression, and pluripotency, suggesting 
that iPSCs can be used to substitute ESCs for regenerative medicine. It was shown 
that iPSCs induced from H9C2 cells differentiated into cardiomyocytes and inte-
grated into native myocardium through newly formed gap junction [29]. Induced 
cardiospheres (iCS) was generated from adult skin fibroblasts via somatic repro-
gramming by Sox2, Klf4, and Oct4 transfection and a cocktail of Gsk3β inhibitor-6-
Bromoindirubin-3′-oxime and Oncostatin M. The iCS differentiated into functional 
cardiomyocytes and improved left ventricular ejection fraction, anterior/septal ven-
tricular wall thickness and capillary density in the infarcted region 4 weeks after 
transplantation [30]. Importantly, iPSCs derived from patients’ own somatic cells 
can overcome immunorejection issue associated with allogeneic donor cells.

In addition to direct differentiation, stem cell can repair injured tissue through 
paracrine mechanism [31, 32]. It was shown that ESCs derived exosomes enhances 
neovascularization, reduces fibrosis and promotes the survival of c-kit+ cardiac pro-
genitor cells [19].

13.3  The Exosomes Derived from ESCs

Exosomes are small secreted vesicles that contain many different types of bioactive 
molecules, including proteins, mRNAs, miRNAs and lncRNAs. Exosomes release 
bioactive molecules to recipient cells and represent a cell-free source for tissue 
repair. Recent studies suggest that exosomes derived from iPSCs and ESCs can 
regenerate injured myocardium by inducing cardiomyocyte proliferation and pro-
moting neovascularization. These exosomes were also found to have anti-apoptotic 
and anti-fibrotic property (Table 13.2). Currently, the therapeutic value of these exo-
somes is being investigated, and if successful, will provide a novel cell free system 
to enhance myocardial repair.

13.3.1  The Effect of ESCs-Derived Exosomes on Cell 
Proliferation, Apoptosis, and Differentiation

Previous studies have demonstrated that hESC-MSCs or fetal tissues derived MSCs’ 
conditioned medium reduced infarction size in a mouse model of myocardial isch-
emia reperfusion injury, and the conditioned medium contains microparticles with a 
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hydrodynamic radius of 50–65  nm [38, 39]. Subsequent studies confirmed these 
microparticles carry pre-miRNA [40]. Khan et al. reported that exosomes derived 
from mouse ESCs restored cardiac function by promoting neovascularization and 
cardiomyocyte survival in a mouse model of AMI. They showed that miRNA-294-3p 
treatment led to accumulation of CPCs in S-phase and significant reduction of the 
G1-phase compared to non-treated CPCs. mRNA expression of cyclins (E1, A2 and 
D1) was increased in CPCs treated with miRNA-294-3p mimic [19]. These results 
suggest that miRNA-294-3p enhanced increased S-phase transition.

MiRNA-294 is a member of the miRNA 290–295 cluster which is comprise 
about 70% of miRNA contents in ESCs and in ESCs-derived exosomes [41]. All 
miRNA 290–295 cluster members contain a common sequence (AAAGUGC). 
miRNA-291, miRNA-294 and miRNA-295 are involved in early development by 
regulating cell cycle, self-renewal [42], differentiation [43, 44], survival [45] and 
proliferation [42]. The expressions of miRNA-294 become undetectable as ESCs 
differentiate into mature cells. miRNA-294, miRNA-291-3p, and miRNA-295 also 
promote induced pluripotency by increasing the efficiency of reprogramming by 
Oct4, Sox2 and Klf4 [46].

MiRNA-21 and miRNA-210 have also been found in the exosomes derived from 
mouse iPSCs [37]. Previous studies have shown that miRNA-210 can be induced by 
hypoxia to protect cells from apoptotic stimuli by targeting E2F3 [47]. MiRNA-21 
protects H9C2 cardiac cells from oxidative stress induced apoptosis by down 

Table 13.2 The functional molecules in ESCs-derived exosomes

Molecule 
types Component type Functional molecules

Exosome 
source Reference

Protein Exosome-associated 
proteins

CD9, CD63, CD81, Tsg101 hESC- 
MSCs

[33]

Proteasome subunit 20S proteasome hESC- 
MSCs

[21]

TGF superfamily Lefty protein hESCs, 
mESCs

[34]

mRNA Stem cell self-renew 
and expansion

Wnt3 mESCs [35]

Transcription factors Upregulates Oct4, Sox2, 
Nanog, Rex1 to maintain 
pluripotency

mESCs, 
hiPSCs

[35]

GATA-2, GATA-4, 
NKX2.5, TRP63 
(differentiation factors 
towards cardiac lineage)

[36]

miRNA Cardioprotective 
miRNAs

miRNA 290–295 cluster mESCs, 
hiPSCs, 
miPSCs

[19, 36, 37]

hESC-MSCs human embryonic stem cells derived mesenchymal stem cells, hiPSC-MSCs human 
induced pluripotent stem cells derived mesenchymal stem cells, miPSCs mouse induced pluripo-
tent stem cells, hESCs human embryonic stem cells, mESCs mouse embryonic stem cells, hiPSCs 
human induced pluripotent stem cells
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regulating PDCD4 (programmed cell death 4) [48]. These studies suggest that 
iPSCs derived exosomes may protect the injured myocardium via releasing specific 
miroRNAs.

It was shown that mature somatic cell can be reprogrammed when cocultured 
with ESCs or their extracts [49]. Exosomes derived from ESCs contain mRNA and 
protein of several pluripotent molecules such as Oct4 and Sox2 [35]. It was con-
firmed that the exosomal mRNAs could be translated in their recipient cells. For 
example, when ESCs derived exosomes were incorporated to hematopoietic pro-
genitor cells, Oct4 mRNA was translated into Oct4 protein [35]. Exosome mediated 
transfer of miRNA and mRNA may be involved in transdifferentiation of fibroblasts 
into induced pluripotent cells. For example, exosomes from partially reprogrammed 
iPSCs may reprogram nearby cells by releasing exosomes [36].

Mouse embryonic stem cell derived microvesicles (ESMV) induced de- 
differentiation and pluripotency in human retinal progenitor Müller cells by trans-
ferring mRNAs for Oct4 and Sox2, and the miRNAs of the  miRNA-290 cluster 
[50]. Exosomes isolated from murine ES cells can enhance survival and improve 
expansion of murine hematopoietic progenitor cells by up regulating early pluripo-
tent (Oct-4, Nanog and Rex-1) and early hematopoietic stem cells (Scl, HoxB4 and 
GATA 2) markers in these cells [35]. It is possible that ESC derived exosomes might 
be able to select certain mRNAs that are critical for pluripotency before they are 
released from ESCs. Thus the ESCs derived exosomes have the potential tool to 
cure myocardium infarction by reprogramming somatic cells.

In a post-infarct mouse heart failure model, Kervadec et al. investigated whether 
post-infarction administration of exosomes released by human embryonic stem cell- 
derived cardiovascular progenitors (hESC-Pg) can provide equivalent benefits to 
administered hESC-Pg. The exosomes were delivered into the peri-infarct myocar-
dium by percutaneous injections under echocardiographic guidance. The results 
showed that the exosomes were as efficient as the stem cells in improving cardiac 
function, which was mediated by paracrine factors that promote cell survival and 
proliferation [51].

13.3.2  ESCs-Derived Exosomes and Angiogenesis

Angiogenesis is a process to form new blood vessels from existing endothelial cells, 
and plays a central role during cardiac repair following myocardial infarction. 
Vascular endothelial cells are located in the inner vessel wall, and are responsible to 
form new blood vessels when needed. The process of angiogenesis occurs in both 
physiological and pathological conditions such as normal development, tumorigen-
esis, inflammation, cardiac repair. The process of angiogenesis starts with increased 
vascular permeability, degradation of basement membrane, followed by migration, 
proliferation of endothelial cells and formation of sprout to connect neighboring 
vessels, and then, vessel lumen is formed from the sprout [52]. Studies have demon-
strated that exosomes secreted by human iPSCs derived MSCs promote bone 
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regeneration and angiogenesis in critical-sized calvarial defects in ovariectomized 
rats in a dose dependent manner [53]. Mouse ESCs-derived exosomes stimulated 
neovascularization in a myocardial infarction model [19]. Exosomes released from 
the iPSCs derived MSCs attenuated limb ischemia by promoting angiogenesis in 
mice [54].

It was shown that ESC derived exosomes are enriched in mRNA of certain angio-
genic cytokines such as VEGF and FGF2 compared to parental ES-D3 cells [35]. 
VEGF stimulate angiogenesis by banding to VEGF receptor (VEGFR) on endo-
thekial cells. Activation of VEGFR triggers PI3K/Akt pathway to promote survival 
and the p38MAPK and focal adhesion kinase pathway to induce cytoskeletal reor-
ganization, proliferation and migration of endothelial cells. FGF2 is also known as 
basic fibroblast growth factor, which is synergistic to VEGF in promoting angiogen-
esis. In addition, FGF2 is also necessary to maintain ESC cells in an undifferenti-
ated state.

MicroRNA molecules also regulate angiogenesis. MiRNA-21 is highly expressed 
in mouse iPSCs derived exosomes. It was shown that miRNA-21 promote angio-
genesis by targeting PTEN, leading to activation of Akt and ERK1/2 signaling path-
ways, which stimulate HIF-1α and VEGF expression [55] (Fig. 13.2). By contrast, 
another study showed that miRNA-21 overexpression inhibited tube formation of 
endothelial cells by targeting Rho B [56].

Using microRNA microarrays, Hu et al. discovered that miRNA-210 was highly 
expressed in mouse HL-1 cardiomyocytes exposed to hypoxia. They further showed 
that intramyocardial injections of miRNA-210 precursor improved neovasculariza-
tion and cardiac function in a mouse myocardial infarction model [57]. Recent stud-
ies showed that exosomes secreted from cardiac fibroblast derived iPSC (CF-iPSC) 
protected against ischemia induced injury by releasing miRNA-210 [37].

Matrix metalloproteinases (MMPs) belong to a family of enzymes that are 
involved in the degradation of extracellular matrix proteins under physiological or 
pathological conditions such as cell migration, invasion, wound healing and angio-
genesis. Angiogenesis requires MMPs because the vascular basement membranes 
need to be degraded in order to allow endothelial cells to migrate from exiting ves-
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sels and invade into the neighboring tissue. MMPs participate in this remodeling of 
basement membranes and ECM. In addition, MMPs have also been shown to induce 
angiogenesis by releasing ECM-bound angiogenic growth factors (Table  13.2), 
Johnson et al. [58] have further confirmed that MMP-9 involved in capillary branch-
ing in ischemic muscle. The pro-angiogenic factors carried by exosomes also 
include extracellular matrix metalloproteinase inducer (EMMPRIN). It was shown 
that knockdown of EMMPRIN on cardiomyocyte progenitor cells (CMPC) dimin-
ished the pro-angiogenic effect [59]. EMMPRIN stimulates angiogenesis through 
upregulation of MMPs and VEGF [60, 61]. Therefore, the delivery of EMMPRIN to 
endothelial cells by exosomes can induce angiogenesis by enhancing VEGF signal-
ing. It was shown that exosomes from stem cells overexpressing Akt promote angio-
gensis through upregulation of PDGF-D [62]. Intravenous infusion of these 
exosomes improved cardiac function in a rat myocardial infarction model.

13.3.3  ESCs-Derived Exosomes Improve 
the Microenvironment After AMI

It has been shown that human heart has the capacity of continuous regeneration [63, 
64]. However, the endogenous regenerative capacity of the heart is limited and the 
regeneration process is hampered by the hostile microenvironment resulting from 
inflammation after infarction. Therefore, improvement of the microenvironment of 
infarcted region is the key for the cardiac repair post AMI. Previous studies showed 
that mesenchymal stem cell derived exosomes were able to improve the microenvi-
ronment after AMI [65].

In the infarct region, cell death triggers activation of complement cascade, gen-
eration of free radicals, release of cytokines, infiltration of neutrophils which induce 
further damage to myocardium through the release of proteolytic enzymes. In addi-
tion, the released cytokines such as TGF-β can induce myofibroblast transdifferen-
tiation, leading to excessive fibrosis and adverse remodeling and eventually to heart 
failure. Therefore, improvement of post-infarct microenvironment through the mod-
ulation of the inflammatory response can prevent or delay the development of heart 
failure.

The transfer of exosomal miRNAs from stem cells to recipient cells is an impor-
tant process to regulate microenvironment during tissue regeneration. MiRNA-21 
could improve microenvironment by regulating macrophage phenotype. MiRNA- 
146a could target NF-κB and reduce the expression of TNFα, IL-6 and IFN-γ. 
MiRNA-181 could protect host against endotoxin shock by reprogramming immune 
response [66–68].

In a mouse peritonitis model, an increase in miRNA-21 expression in macro-
phages resulted in a decrease in TNF-α and IL-6 production and an increase in 
IL-10, suggesting an anti-inflammatory effect [69, 70] Other have shown that the 
transcription of miRNA-21 requires the binding and activation by the p65 subunit of 
NF-κB [71].
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It was shown that miRNA-210 is negative regulator of inflammation by targeting 
molecules down stream of IKKβ to inhibit NF-κB1 signaling. Transfection of 
miRNA-210 mimics to macrophages inhibited LPS-induced production of inflam-
matory cytokines such as IL-6 and TNF-α [72]. Both miRNA-21 and miRNA-210 
have been found in mouse iPSCs derived exosomes and play an important role in 
regulating inflammatory response after myocardial infarction.

Although stem cell based therapy showed some promising result in animal stud-
ies, hurdles on poor cell engraftment and survival, immune response, teratoma 
remain to be overcome before this approach can be applied in the clinic. Recent 
studies suggest that exosome-based therapy can overcome these limitations of cell 
therapy [73]. In a murine model of hypoxic pulmonary hypertension, it was shown 
that exosomes suppressed the infiltration of macrophages and the release of proin-
flammatory and proproliferative mediators, including monocyte chemoattractant 
protein-1 and hypoxia-inducible mitogenic factor. The improvement of microenvi-
ronment by exosomes was mediated by miRNAs. MiRNA-204 was inhibited by 
STAT3 under pathological condition such as chronic hypoxia, but this inhibitory 
effect was reversed by exosomes. On the other hand, the pro-proliferative miRNA-
 17 was induced by hypoxia but inhibited by exosomes [74]. Kalani et al. [75] deliv-
ered tested the effect of exsomes on ischemic reperfusion injury (IR) in mice. The 
IR injury was created by inserting a silicon-rubber coated monofilament into the 
middle cerebral artery for 40 min. Then then delivered a nano-formulation with an 
anti-inflammatory molecue curcumin and embryonic stem cell exosomes (MESC- 
exocur) to mice by intranasal administration for 7  days. They demonstrated that 
MESC-exocur treatment reduced the expression levels of inflammation mediators 
such as ROS, TNF-α, but increased the levels of endothelial vascular junction pro-
tein (VE-cadherin).

13.4  Exosomes and Therapeutic Approaches

Though many reports have shown that ESCs-derived exosomes have the potential to 
enhance endogenous cardiac repair, exosomal content need to be modified to 
improve therapeutic efficacy.

13.4.1  Modification of ESCs-Derived Exosomes

Exosomes carry a wide variety of molecules, including mRNA, miRNA, proteins, 
lipid and signalling molecules. Some of the molecules act as communicators con-
stantly shuttling between cells to control cellular signaling in recipient cells [76, 
77]. Because of the specificity of exsome mediated cellular delivery and the ability 
to enter cells, exosomes are being exploited as a vehicle to deliver small RNAs such 
as siRNA and miRNA for therapeutic purpose [78]. RNAi refers to a biological 
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process in which double stranded RNA interrupt gene expression through the deg-
radation of complementary mRNA [78–80]. This approach has been tested in sev-
eral disease models. To target brain cells, the cells were transfected with a construct 
to express exosomal membrane protein Lamp2b, which is fused to a neuron-specific 
RVG peptide. Purified exosomes were loaded with siRNA targeting BACE1, a ther-
apeutic target in Alzheimer’s disease. The intravenously injected exosomes were 
found in the brain, resulting in a specific gene knockdown of BACE1 [81]. This 
technique has been used to treat Huntington’s disease. Hydrophobically modified 
siRNA targeting Huntingtin mRNA were loaded into exosomes purified from con-
ditioned media of glioblastoma U87 cells. Infusion of siRNA-loaded exosomes 
resulted in significant bilateral silencing of up to 35% of Huntingtin mRNA [80]. 
Exosomes from peripheral blood have been loaded with siRNA targeting MAPK1 
by electroporation to silence MAPK1  in monocytes and lymphocytes [82]. Both 
human embryonic kidney 293 and mesenchymal stem cell exosomes were used to 
knockdown PLK-1 in bladder cancer cells [83]. Exosomes carrying TGF-β1 siRNA 
efficiently decreased the viability and migration of tumor cells [84]. In summary, 
the transfer of small RNAs for gene modification represents an efficient approach to 
improve microenvironment after AMI.

Exosomes have been used as drug carrier. Exosome loaded with curcumin was 
able to inhibit inflammation in a LPS-induced septic shock mouse model [85]. 
Microvesicles carrying Paclitaxel demonstrated a strong anti-proliferative activity 
on human pancreatic cell line CFPAC-1 [86]. In order to reduce toxicity to host, 
exosomes have also been used to deliver doxorubicin to kill cancer cells [87]. 
Exosomes released from the heart under conditions of cellular stress are enriched 
in AT1Rs (Angiotensin II Type 1 receptors) and injection of AT1R-containing 
exosomes restored AngII-induced blood pressure response in AT1R knock out 
animals [88].

Another way to enhance exosome based delivery is to modify proteins associated 
with exosomal membrane. Peptides expressed on the N terminus of Lamp2b are 
usually cleaved from exosomes, which hampered targeted delivery of exosomes to 
recipient cells. To overcome this problem, Hung et al. added a glycosylation motif 
to the protein at various positions to protect the peptide from degradation [88]. 
Importantly, they showed that the glycosylated peptides enhanced the delivery of 
exosomes to neuroblastoma cells.

Exosomes can also be optimized through genetic modification. Trivedi M et al. 
[89] modified exosomal content by transfecting cells with plasmid expressing p53 
(wt-p53) and miRNA-125b. They showed that the modified exosomes have a repro-
gramed global miRNA profile, which were mainly related to p53 signaling and 
genes associated with apoptosis. Such modification could create a hostile microen-
vironment for tumor cells. Huang and his colleagues [90] showed that a non-viral 
minicircle vector that express HIF-1alpha in the heart, could improve transfection 
efficiency, duration of transgene expression, and cardiac function [91].

Exosomes derived from stem cells over expressing GATA-4 prevent ischemia 
induced apoptosis [92]. The protective effect was mediated by miRNA-19a, which 
target PTEN, leading to activation of Akt signaling pathway. It was shown that the 
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survival of transplanted cardiac progenitor cells (CPCs) can be improved by code-
livery of CPCs with a nonviral minicircle plasmid expressing HIF1 (MC-HIF1) into 
the ischemic myocardium. The prosurvial benefit was provided by miRNA-126 and 
miRNA-210 from exsomes released by cardiac endothelial cells [93].

Therefore, the modification of exosome structure and content represents a new 
direction for targeted therapy. However, the yield of exosomes isolated from cells 
are usually very low and the procedures for isolating exosomes are tedious and time 
consuming, which limited the widely use of exosomes for research and clinical 
therapy. To overcome this problem, Jeong et al. [94], prepared nanovesicles by pass-
ing ES cells through micro-sized pores. The cells were ruptured into plasma mem-
brane fragments, which assembled into nanovesicles due to the inherent features of 
the amphiphilic molecules present in the plasma membrane. The size and content of 
the nanovesicles were similar to exosomes. When treating primary murine skin 
fibroblasts with the nanovesicles, the treated cells showed enhanced cell prolifera-
tion rate, accompanied by higher expression levels of VEGF-α, TGF-β collagen I, 
PCNA, and Ki-67. The authors suggested that the nanovesicles could potentially 
contribute to tissue repair.

Yoon et al. [95] designed a cell-slicing system to generate nanovesicles (NVs) 
from fragments of sliced ES cells. They employed an array of 500 nm-thick low- 
stress silicon nitride blades along microchannels to slice living cells and the NVs 
contain both ICAM-1 (marker of plasma membrane protein) and Oct 3/4 (marker of 
ES cells). They also showed that the NVs contain miRNA, rRNA and tRNA, sug-
gesting that the NVs can be used as vehicles for RNA delivery. Interestingly, they 
demonstrated that the NVs could encapsulate fluorescent beads and then delivered 
to recipient cells. Therefore, it is possible that the NVs can used for drug delivery.

Large quantity of cell-derived nanovesicles can be generated by using centrifugal 
force and a filter with micro-sized pores [96]. This technique can produce 250 times 
more nanovesicles than t naturally secreted exosomes. Nanovesicles generated from 
murine embryonic stem cells contain more intracellular contents can transfer RNAs 
to target cells such as NIH-3 T3 fibroblasts and mouse embryonic fibroblasts.

13.4.2  Precondition of ESCs-Derived Exosomes

It is known that ischemic pre-conditioning can produce therapeutic effect on 
infarcted myocardium. New evidence suggests that exosomes are involved in this 
process. There are no report regarding precondition of ESCs-derived exosomes, but 
the precondition of other stem cell-derived exosomes would provide a clue.

Exosomes purified from MSC subjected to ischemic preconditioning (IPC) are 
enriched with miRNA-22. Furthermore, the miRNA-22 enriched exosomes can 
migrate into cardiomyocytes in a co-culture system. Importantly, cardiomyocytes 
that have received the exosomes were more resistant to ischemic stress [97]. 
Yasukatsu Izumi et al. [98] first demonstrated that remote ischemic conditioning 
(RIC) can prevent deterioration of LV diastolic function, and attenuate LV intersti-
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tial fibrosis after myocardial infarction. In this rat model, RIC was performed by 
repeated bilateral hindlimb ischemia and reperfusion once a day for 4  weeks. 
MicroRNA-29a (miRNA-29a), a negative regulator of tissue fibrosis, was highly 
enriched in the exosomes found in the marginal area of the infarction from the RIC 
group. They further showed that exosomes derived from a myoblast line C2C12 
cells subjected to ischemia also contain high levels of miRNA-29a and 
IGF-1R. Therefore, these results suggest that the cardiac protection by RIC was 
afforded by miRNA-29a and IGF-1R, which were transported by muscle derived 
exosomes. Ferdinandy et al. [99] also confirmed that the release of EVs from the 
heart after preconditioning was responsible for the transfer of remote conditioning 
signals for cardioprotection using hearts of male Wistar rats isolated and perfused in 
Langendorff mode.

Gray et al. showed that exosomes derived from cardiac progenitor cells (CPCs) 
subjected to hypoxic condition enhanced tube formation of endothelial cells and 
inhibited profibrotic gene expression in TGF-β-stimulated fibroblasts. They further 
demonstrated that exosomes from hypoxic CPCs decreased levels of CTGF, 
Vimentin, and Collagens I and III in cardiac fibroblasts. They suggested that the 
anti-fibrosis effects of hypoxia-derived CPC exosomes could be due to the increased 
levels of miRNA-17, -199a, -210, and -292, whereas the proangiogenic effects were 
due to increase the levels of miRNA-17 and -210 in exosomes [100].

Electrical stimulation (EleS) has been used as a pre-conditioning method to pro-
mote stem cell survival post-transplantation within the ischemic heart. Kim et al. 
showed that cardiac stem cells preconditioned by EleS are more resistant to  apoptotic 
stimuli due to the release of connective tissue growth factor, which is regulated by 
miRNA-378 [101].

The release of exosomes are regulated by nearby cells via paracrine mechanism. 
Gleboy et al. showed that microglial cells express serotonin receptors and the release 
of exosomes from microglia are regulated by serotonin released by embryonic stem 
cell-derived serotonergic neurons [102].

13.5  The Benefit and Potential Risk of Exosome Based 
Therapies

Exosome based therapies are convenient to store, easier to use and do not trigger 
immune rejection. Stem cell-derived exosomes provide beneficial miRNA and 
growth factors to promote angiogenesis, differentiation and cell survival. In addi-
tion, exosomes can improve post infarction microenvironment by inhibiting inflam-
matory response.

Patients with myocardial infarction often need immediate intervention. This is 
the problem with cell based therapy because it takes time to isolate cells and grown 
to desired numbers. One alternative is to use frozen cells, but many cells do not 
survive the freeze/thaw procedure. Another problem is poor engraftment and sur-
vival in a proinflammatory post-infarction microenvironment. By contrast,  exosomes 
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are cell free particles which can be purified with standard techniques and stored in 
freezer until use. Exosomes are encircled by rigid lipid bilayer membrane which can 
withstand freeze-thaw cycles without the need of toxic cryopreservative agents. 
Although animal studies demonstrated good results using stem cell based therapy, 
the cells were usually injected directly into myocardium, which is not applicable for 
curing human infarction. An ideal intervention would be delivered intravenously. 
However, most cells would be trapped in the lung when injected through the vein. 
On the other hand, exosomes are small enough that allow them to pass the lung and 
reach to circulation. Importantly, exosomes have the capability to reach their target 
cells with precision. Another main advantage with exsomes based therapy is that the 
content within the exosomes can be modified by either preconditioning or genetic 
engineering. It was shown that intra-articular injections of 100 μg human embryonic 
MSC exosomes promote cartilage repair in a rat model of osteochondral defects 
[103]. The injections were performed weekly for a period of 12 weeks.

Despite these advantages associated with exosome based therapy, there are 
potential problems that need to be addressed before exosomes can be used in the 
clinic. The pro-angiogenic and pro-survival effects of exosomes can promote the 
growth of cancer cells. It was shown that MSC-exosomes enhanced VEGF expres-
sion in tumor cells by activating ERK1/2 pathway [104]. Another concern is exo-
somes may carry undesired molecules that may produce side effects (Fig. 13.3). It 
was shown that exosomes from serum of patients with cardiomyopathy induces 
pathological changes in gene expression in pluripotent stem cells [105]. Therefore, 
the function of transplanted stem cells can be influenced by host environment.

Cell-free nanocomponent

Random packing of cargo

Risk of cancer
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Less drug degradation

Cell-specific signaling

Low immune response

Convenient storage

Fig. 13.3 The benefit and risk of ESCs-derived exosome in organ regeneration
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13.6  Perspective

Although stem cell based therapy showed promise for myocardial regeneration, 
challenges remain. The main hurdles for cell therapy include poor engraftment and 
survival in the pro-inflammatory post-infarction microenvironment. In addition, the 
transplanted stem cells might generate electric signal which could become a poten-
tial source of arrhythmia. Fortunately, exosome based therapy could avoid these 
problems associated with cell therapy. Future research should focus on how various 
molecules are sorted into exosomes and this information will help to design better 
exosomes for treatment of cardiovascular diseases. Recent studies suggest that exo-
some content can vary depending on how cells are challenged. It would be impor-
tant to find out exactly what types of cellular stress is needed for producing most 
useful exosomes. Alternatively, specific molecules can be introduced into exosomes 
by genetic engineering in order to treat specific conditions and to improve efficacy.

13.7  Conclusion

The main concern with ESCs based therapy is the possibility of generating tera-
toma. This problem can be solved by using exosomes derived from ESCs. It was 
confirmed that exosomes derived from ESCs contain miRNAs that can promote cell 
proliferation, differentiation, survival, angiogenesis and inhibit apoptosis and 
inflammation (Fig. 13.4). Thus ESCs derived exosomes represent a promising ther-
apeutic modality for myocardium regeneration.
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Fig. 13.4 Mechanisms exosome mediated cardiac repair. Exosomes improve myocardial function 
by promoting cell cycle activation, angiogenesis, improving the microenvironment, and reducing 
apoptosis in the infarcted region
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Chapter 14
Cardiac Progenitor-Cell Derived Exosomes 
as Cell-Free Therapeutic for Cardiac Repair

E.A. Mol, M.J. Goumans, and J.P.G. Sluijter

14.1  Introduction

Myocardial infarction (MI) is one of the leading causes of death in the western 
world [1]. MI is induced by occlusion of one or more coronary arteries that supply 
oxygen to the heart, resulting in necrosis and apoptosis of cardiomyocytes that are 
highly dependent of oxygen. As a result, different molecular and cellular mecha-
nisms are activated roughly in two phases. First, as necrotic cardiomyocytes release 
danger signals into the myocardium, the immune system is activated via toll-like 
receptors and complement activation [2]. This inflammatory response causes the 
attraction of neutrophils and monocytes to the infarcted area and is necessary to 
remove cellular debris. An overactive immune system can promote further tissue 
damage and infarct expansion [3]. The second step is a reparative phase character-
ized by activated fibroblasts (myofibroblasts) that produce excessive amounts of 
extracellular matrix, resulting in the formation of scar tissue [4]. Initially this scar 
tissue replaces the lost cardiomyocytes and provides strength to the heart to main-
tain its integrity, however, later progressive matrix deposition by activated 
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myofibroblasts might lead to myocardial stiffening and impaired contraction. Since 
the initial myocardial damage is caused by a perfusion defect, stimulating neovessel 
formation or promoting arteriogenesis could contribute to cardiac regeneration [5, 
6]. Cardiac repair mechanisms may be improved by interfering in these reparative 
mechanisms that play a role after MI by down-tuning the dentrimental processes, 
such as cardiomyocyte apoptosis, the inflammatory response, and fibrosis, and pro-
moting further reparative signals like angiogenesis (Fig. 14.1).

Of all patients that suffer from MI, approximately 25% will develop heart failure 
within 1 year [7]. Currently, the only long-term treatment option for heart failure 
patients is heart transplantation, but donor availability is limited. Although patients 
waiting for heart transplantation can benefit from a left ventricular assist device 
(LVAD) taking over the pump function of the heart, this is usually a temporary solu-
tion [8]. Therefore, new treatment options are explored to replace the lost cardiomyo-
cytes and improve contractility in cardiac diseases, especially for heart failure patients.

14.2  Cardiac Progenitor Cells as Potent Potential Cell Type 
for Myocardial Repair

One of the first authors describing the existence of cardiomyocyte regeneration was 
Oberpriller et al. [9]. Amputation of the ventricular apex of the newt heart resulted 
in the renewal of cardiomyocytes by re-entry into the cell cycle and proper 

Fig. 14.1 Processes that need additional adaptations to further induce cardiac repair after myocar-
dial infarction. Adjusted from Servier Medical Art at www.Servier.com, licensed under a Creative 
Commons Attribution 3.0 Unported License
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engraftment in the myocardium. Also resection of the ventricular apex in zebrafish 
resulted in complete apical regeneration, mainly due to proliferation of progenitor 
cells in the heart and possibly also by dedifferentiation of residing cardiomyocytes 
[10, 11].

For decades it was believed that the mammalian heart had no regenerative capac-
ity. Recent studies provided evidence for a limited but true regenerative potential of 
the heart [12–14]. Bergmann et al. demonstrated the ability of the heart to regener-
ate by quantifying carbon-14 incorporation into the DNA of human cardiomyocytes 
[13]. Approximately 1% of the cardiomyocytes is renewed at an age of 25; this 
capacity is fast reduced upon aging and in sharp contrast to cardiac resident non- 
cardiomyocytes with a renewel rate of approximately 15% [15]. Recently, a human 
case study of a newborn reported functional recovery of the human heart suffering 
from MI at this early age [16]. As a result of these observations, several new strate-
gies have been explored to stimulate the regenerative capacity of the mammalian 
heart.

One of the strategies is the use of progenitor cell treatment as potential therapy 
to improve cardiac repair and prevent further damage in cardiac diseases. Several 
cell sources have been studied over the years and used to stimulate myocardial 
repair; these so-called first generation patient-derived cells include bone-marrow 
mononuclear cells (BM-MNCs) [17–19] and mesenchymal progenitor cells 
(MSCs) [20, 21]. The use of BM-MNCs and MSCs for cardiac repair are explored 
extensively due to their quick and relative easy clinical application. Furthermore, 
large numbers of cells could be achieved by culturing MSCs under good manufac-
turing practice conditions for clinical use [21, 22]. Meta-analysis of pre-clinical 
and clinical studies showed that injection of MSCs, in contrast to BM-MNCs, 
resulted in beneficial effects on cardiac function [23, 24]. MSC therapy was, how-
ever, limited to its potential to activate endogenous repair systems in the heart 
[25]. More recently, second-generation cells, including cardiac-derived progeni-
tor cells (CPCs) [26–29] and induced pluripotent stem cell (iPSC)-derived cardio-
myocytes [30, 31], have gained interest as a cell source for myocardial repair, 
mainly because of their promising regeneration capacity and their intrinsic ability 
to form contractile cells. iPSC- derived cardiomyocytes are cardiomyocytes gen-
erated by reprogramming fibroblasts to pluripotent stem cells using several tran-
scription factors [30, 31]. Despite their true potential to form cardiomyocytes, the 
main effect of second-generation cells, observed upon cardiac transplantation, has 
been of paracrine origin. Excellent recent reviews describing the most relevant 
results and current limitations of cell- based therapies have been recently reported 
[32, 33].

The existence of progenitor cells in the heart was first described by Beltrami 
et  al. [34], but since then several cardiac progenitor cell populations have been 
 identified [26–29, 34]. CPCs are potentially the most promising adult cells for car-
diac therapy as they can generate all cardiovascular lineages in vitro and in vivo [27, 
35, 36]. Since they originate from the heart itself, CPCs may be destined to activate 
endogenous repair mechanisms. Therefore, CPCs hold greater cardiac regeneration 
potential compared to BM-MNCs or MSCs.
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In different animal models for myocardial infarction, injection of CPCs increased 
cardiac performance [36–39]. However, although cardiac function was improved, 
cell engraftment of the injected cells in the myocardium was low, as indicated before 
for BM-MNC and MSCs. To stimulate cell survival upon myocardial injection, pre- 
treatment of CPCs with e.g. pim-1 or necrostatin-1 before CPC injection has been 
investigated [40, 41]. To further improve cell retention and prevent immediate flush- 
out [42], different approaches have been investigated, e.g. the use of cell clusters or 
a combination of cells with microcarriers [33, 43]. These approaches resulted in 
increased cell retention and survival, however, the additional beneficial effects on 
cardiac function was minimal.

Injection of autologous CPCs requires cell expansion in vitro, therefore, injection 
in the chronic phase is more clinically relevant. Therefore, while most studies inves-
tigate the effect of CPCs in the acute setting after MI (within a few hours), Tang 
et al. studied the effect of CPC treatment on an old infarct [37]. Intracoronary infu-
sion of autologous CPCs in rats one month after MI resulted in less fibrotic tissue and 
improved cardiac function. The fact that CPCs still seem to have regenerative effects 
after a longer time period is promising for patients with chronic cardiac diseases.

14.3  Comparison of CPC Types

Although the heart has poor regenerative potential, many cardiac progenitor cell 
types have been identified based on marker expression/morphology, including 
Sca1+, c-kit+, cardiosphere-derived cells (CDCs) and cardiospheres (CSPs), and 
all these types can be isolated from the heart successfully [26–29, 34]. As the exis-
tence of so many CPC populations is counterintuitive, Gaetani et al. have compared 
the different CPC types [44]. Using their individual isolation methods, several of 
these progenitor cell types have been cultured and the gene expression profiles were 
compared to define differences between culture propagated CPCs. The gene expres-
sion profile of CSPs was most distinct from the Sca1+, c-kit+, and CDCs, most 
likely due to the monolayer and 3D culture conditions. Additionally, the difference 
between individual patients was larger than differences between different cell types 
from a single individual and expression partners are highly overlapping. 
Interestingly, when these cells were freshly isolated directly from the rodent heart 
some differences could be observed, indicating that c-kit positive cells were the 
most primitive progenitor cell [45]. However, this difference is abolished upon cul-
ture propagation. Furthermore, Zwetsloot et al. recently compared effect sizes of 
different types of CPCs [46], and observed that small differences in effect size can 
be found based on cell type; CSP treatment resulted in the largest increase in ejec-
tion fraction after injection in different animal models compared to e.g. Sca1+ and 
c-kit + CPCs, that showed a lower increase in cardiac function. Therefore, the mode 
of action of different CPC types on the myocardium is largely similar, although 
slight variations in effect size and transcriptome are described. Interestingly, a 
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strong drop in functional benefit was observed upon their use in rodent and preclini-
cal large animal models.

To date, two clinical trials have used CPCs as cell type for cardiac repair after 
MI. The SCIPIO (c-kit + CPC)s and CADUCEUS trial (CDCs) showed that intra-
coronary infusion of CPCs is safe in patients and led to enhanced cardiac func-
tion. Therefore, CPCs are a promising cell type for stem cell therapeutics [47, 48].

14.4  Paracrine Secretion

Originally, the concept for myocardial repair by progenitor cells was that they 
would engraft in the infarcted area and differentiate into functional cardiomyocytes 
upon injection. Recently, it has become more and more clear from both animal stud-
ies and clinical trials that injected progenitor cells do not engraft properly in the 
cardiac tissue, despite beneficial effects on cardiac function [36, 43, 47, 48]. 
Moreover, cardiomyocyte, endothelial, and blood vessel numbers were increased, 
which led to the hypothesis that the injected progenitor cells exert their effect via 
release of factors into their environment, called paracrine factors [36, 41, 49]. To 
study the effect of paracrine secretions, Timmers et al. injected MSC conditioned 
medium intravenously at the moment of reperfusion in pigs after MI and showed 
that MSC secretions could mimic the increased cardiac function [50]. This para-
crine effect was observed for bone-marrow derived-, and mesenchymal progenitors, 
but also CPC secretions have these effects. CPC conditioned medium lowered car-
diomyocyte apoptosis, stimulated endothelial cell migration, and increased tube 
formation of endothelial cells in vitro [39, 43, 51, 52].

In addition to paracrine molecules, the release of extracellular membrane vesicles 
such as exosomes are of increasing interest. Besides their use as biomarkers to detect 
early diseases [53], these nano-sized vesicles have also shown to be important medi-
ators in repair after cardiac injury. Upon receiving stress signals, cells can influence 
their communication to other cells by adjusting membrane markers and vesicle con-
tent. Interestingly, Lai et al. identified the active cardioprotective component in the 
conditioned medium of MSCs to be exosomes [54]. They showed that upon separa-
tion of MSC conditioned medium in fractions of different sizes, the beneficial effects 
on ischemia/reperfusion injury observed after injection with fractionated MSC con-
ditioned medium could only be reproduced by injecting the fraction containing com-
plexes larger than 1000 kDa. Since progenitor-derived exosomes were found to be 
the paracrine factors mainly responsible for the observed beneficial effects after 
progenitor cell injection [54–57], the idea that CPC exosomes could be used for this 
purposes have emerged as potential off-the-shelf therapeutics.

CPC exosomes carry a variety of different proteins, growth factors, mRNAs, and 
microRNAs (miRNAs). MiRNAs are small non-coding RNAs that can inhibit or 
degrade mRNA, thereby preventing protein translation. Studies that investigate the 
effect of CPC exosomes on cardiac repair in vitro and in vivo are described below.
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14.5  Functional Benefits of CPC Exosome Treatment

To study the functional benefits of CPC exosomes, CPC exosomes were intramyo-
cardially injected in mice undergoing ischemia-reperfusion of the left coronary 
artery [38]. Injection of CPC exosomes reduced cardiomyocyte apoptosis by 53%. 
In addition, Barile et al. showed that intramyocardial injection of CPC exosomes in 
mice improved cardiac function after MI [39]. Morphological analysis after CPC 
exosome treatment in the myocardium revealed reduced scar tissue, lowered cardio-
myocyte apoptosis, and increased blood vessel density.

To investigate if the release of exosomes from CPCs is critical for cardiac repair 
in vivo, Ibrahim et al. treated CPCs with GW4869, a reversible inhibitor of neutral 
sphingomyelinase that blocks, among others, exosome production [52]. The CPC- 
mediated benefits in mice after MI were completely abolished after treatment with 
GW4869, indicating that exosome release from CPCs is necessary to accomplish 
the beneficial effects on cardiac function. Altogether, these in vivo studies suggest 
that CPC exosomes induce cardiac repair, by interfering in processes such as cardio-
myocyte apoptosis, fibrosis, and vessel formation. The following in vitro studies 
aim to identify the key cardioprotective processes stimulated by CPC exosomes.

14.6  Key Mechanisms Targeted by CPC Exosomes

Targeting the different processes that either prevent or reduce cardiac injury or con-
tribute to cardiac regeneration after MI might lead to new treatment options. As 
described before, MI induces a cascade of molecular and cellular mechanisms in 
mainly two phases. The first phase is characterized by cardiomyocyte apoptosis and 
subsequent activation of the immune system. Cardiomyocyte apoptosis is a large 
contributor to impaired cardiac function after MI, as the major loss of contracting 
cells is responsible for the reduced contraction capacity of the heart. Preventing 
cardiomyocyte apoptosis could therefore be one of the mechanisms to improve car-
diac injury. Interestingly, CPC exosomes have shown to have anti-apoptotic effects. 
Chen et al., for example, showed that CPC exosomes prevent apoptosis of H2O2- 
treated cardiomyocytes in vitro [38]. Caspase 3/7 activity in cardiomyocytes was 
lowered after treatment with CPC exosomes, which is an important mediator of 
H2O2-induced apoptosis. To further identify how CPC exosomes affect oxidative-
stress related apoptosis of cardiomyocytes, Xiao et al. focused on exosomal- derived 
miRNAs [58]. They found that miRNA-21 is upregulated in CPC exosomes exposed 
to oxidative stress compared to non-exposed CPC exosomes. Interestingly, miRNA-
21 targets programmed cell death 4 (PDCD4) in cardiomyocytes, thereby reducing 
oxidative-stress related apoptosis. Furthermore, miRNA analysis revealed that 
miRNA-210, miRNA-132, and miRNA-146a are highly enriched in CPC exosomes 
compared to fibroblast exosomes [39]. By inhibiting downstream targets such as 
RasGAP-p120, ephrin A3, and PTP1b, these miRNAs inhibit cardiomyocyte 
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apoptosis and enhance endothelial migration after MI. Likewise, CDC and CSP-
derived exosomes promote cardiac regeneration, as was shown after injection of 
these exosomes in the ischemic myocardium [52]. MiRNA analysis comparing 
CDC exosomes to fibroblast-derived exosomes revealed that miRNA-146a was the 
most highly enriched in CDC exosomes. Reduced cardiac function after MI was 
observed for miRNA-146a knockout mice compared to wild-type mice, indicating 
a role for miRNA-146a in cardiac repair. Pathway analysis revealed that miRNA-
146a is involved in cell survival, cell cycle, and cellular organization, which are 
important processes involved in cardiac injury.

Upon MI, necrotic/apoptotic cardiomyocytes release danger signals into the 
environment, thereby activating the immune system via complement activation and 
toll-like receptors [2]. Although the immune response is required to clear tissue 
debris after MI, an overactive immune system might aggravate cardiac damage and 
infarct size [3]. Therefore, modulating the immune response might prevent/reduce 
cardiac injury. Progenitor exosomes might be able to modulate this balance in 
immune responses after MI by delivery of miRNAs, anti-inflammatory cytokines, 
or other molecules involved in inflammation. This anti-inflammatory response was 
described for MSC exosomes, as MSC exosomes were capable of switching the 
macrophage phenotype from the pro-inflammatory M1 to the anti-inflammatory M2 
phenotype and suppress T-cell activation [59]. Until now, the immune- modulating 
properties of CPC exosomes have not been described in literature yet.

The second phase after MI involves myofibroblasts that are responsible for reor-
ganizing the structure of the heart, a process called remodeling. Reducing the 
fibrotic tissue may be a promising way to improve cardiac repair, however, as fibro-
sis is initially a reparative response, a fine balance between pro- and anti-fibrotic 
factors is needed. Interestingly, the physiological state of CPCs can influence the 
secretion and cargo of CPC exosomes. Culturing CPC exosomes under hypoxic 
conditions resulted in higher tube formation and lowered pro-fibrotic gene expres-
sion compared to exosomes cultured under normoxic conditions [60]. Indeed, 
administration of hypoxic CPC exosomes in mice reduced fibrosis and increased 
cardiac function compared to normoxic CPC exosomes in an ischemia-reperfusion 
model. Microarray analysis revealed that 11 miRNAs with anti-fibrotic and pro- 
angiogenic properties were upregulated compared to normoxic exosomes. Whether 
the observed beneficial effects of hypoxic CPC exosomes on cardiac function are 
established through these miRNAs only or if other molecules are also involved 
needs to be investigated [61]. Although several in vivo studies indeed observed 
 anti- fibrotic effects of CPC exosome treatment after MI [37, 60], to our knowledge 
there are no further studies addressing the possible anti-fibrotic mechanism of CPC 
exosomes so far.

Other cardioprotective mechanisms that could be important for cardiac regenera-
tion are stimulating angiogenesis or arteriogenesis, since the initial myocardial 
injury is due to a perfusion defect [5, 6]. Progenitor exosomes derived from several 
cell sources have been described to have pro-angiogenic effects. Sahoo et al., for 
example, showed that exosomes from human CD34+ progenitor cells mediate their 
pro-angiogenic activity [55]. After adding exosomes, derived from CD34+ progeni-
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tor cells to endothelial cells in vitro, they observed increased viability, proliferation, 
and tube formation of endothelial cells. Furthermore, subcutaneous injection of a 
matrigel plug containing CD34+ exosomes in mice showed higher vessel formation 
compared to injection of a matrigel plug alone. They found that the presence of a 
pro-angiogenic protein in CD34+ exosomes, sonic hedgehoc, was largely respon-
sible for the preserved cardiac function after MI [56].

This pro-angiogenic property of exosomes was also observed for CPC-derived 
exosomes. Vrijsen et al. reported that CPC exosomes stimulated migration of endo-
thelial cells in a wound scratch assay [51]. Analyzing the presence of pro- angiogenic 
factors in CPC exosomes revealed high expression levels of extracellular matrix 
metalloproteinase inducer (EMMPRIN), which is present on the exosomal mem-
brane. The migration of endothelial cells upon stimulation with CPC exosomes was 
not observed upon stimulation with exosomes depleted for EMMPRIN (KD 
EMMPRIN exosomes). Furthermore, KD EMMPRIN exosomes also inhibited 
angiogenesis in vivo, demonstrated by a reduced influx of cells into a matrigel plug 
compared to control exosomes after application in mice [62]. Therefore, EMMPRIN 
is an important mediator of the pro-angiogenic effect of CPC exosomes.

14.7  Future Perspectives

Altogether, these studies provide insights into the ability of CPC exosomes to 
enhance cardiac repair after injury and the involved mechanisms. The key mecha-
nisms that are influenced by CPC exosomes described so far are neovessel forma-
tion and cardiomyocyte apoptosis (Fig.  14.2). Despite considerable efforts have 
been made to study the effect of CPC exosomes on cardiac repair, many challenges 
have to be overcome before deployment of exosomes in clinical trials. Firstly, most 
of the described studies investigated the effect of CPC exosomes on the acute setting 
after MI [38, 39]. Due to better revascularization therapy and medication planning, 
the survival of patients after acute MI is increased last decades. These surviving 
patients, however, have a higher chance to develop a more chronic disease like heart 
failure. From a clinical perspective it would therefore be useful to study regenera-
tion by CPC exosomes in these more chronic phases after cardiac injury. Another 
important challenge is retention of exosomes after injection. Van den Akker et al. 
performed intramyocardial injection of stem cells and observed immediate flush- 
out of the cells upon injection [42]. It is thus likely that the same flush-out can be 
expected upon exosome injection into the myocardium, since the exosomes sizes 
are even smaller (30–100 nm) compared to cells (8–12 μm). Furthermore, accurate 
mapping of the in vivo biodistribution of exosomes after systemic injection is also 
an important objective before using exosomes in clinical trials. Lai et al. developed 
an excellent technique to allow multimodal imaging of exosomes in vivo. Membrane- 
bound Gaussia luciferase was combined with metabolic biotinylation to visualize 
exosomes after systemic injection in athymic nude mice via bioluminescent signals 
[63]. The highest uptake of exosomes was observed in the liver and spleen, there-
fore, systemic administration of exosomes might require targeted therapy towards 
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the injured heart. Aiming to target exosomes to the brain, Alvarez-Erviti et al., engi-
neered cells to express an exosomal membrane protein (lysosome-associated mem-
brane glycoprotein 2b) fused to a brain-specific peptide that targets the acetylcholine 
receptor [64]. They showed increased delivery of functional exosomes to the brain. 
Thus, although some achievements have been made to engineer exosomes in a way 
that they target tissues aimed for, by using specific ligands, non-specific accumula-
tion of exosomes in other tissues remains an issue to be solved [63–65]. Lastly, to 
cover the high demand of exosomes needed for clinical application, a reproducible 
and standardized exosome isolation technique is required that allows for upscaling 
[66]. In addition, the characteristics of exosome-based therapeutics have to be 
defined properly, which requires more in-depth research into the mechanism of how 
exosomes exert their therapeutic effects. Nonetheless, CPC exosomes can be con-
sidered as potential off-the-shelf therapeutics, as they are able to stimulate the 
regenerative capacity of the heart mainly by increasing vessel density and lowering 
apoptosis of cardiomyocytes.
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Fig. 14.2 Key mechanisms targeted by CPC exosomes. Adjusted from Servier Medical Art at 
www.Servier.com, licensed under a Creative Commons Attribution 3.0 Unported License
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Chapter 15
Therapeutic Potential of Hematopoietic Stem 
Cell-Derived Exosomes in Cardiovascular 
Disease

Jana Radosinska and Monika Bartekova

15.1  Introduction

Blood and the system that forms it, known as the hematopoietic system, consist of 
many cell types with specialized functions. Many blood cells are short-living and 
need to be replenished continuously; the average human requires approximately one 
hundred billion new hematopoietic cells each day. The continued production of these 
cells depends directly on the presence of hematopoietic stem cells (HSCs) as the 
ultimate, and only, source of all blood cells. HSCs are present primarily in the bone 
marrow, but also in the peripheral blood and umbilical cord blood [1]. HSCs exert a 
number of unique properties, the combination of which defines them as such. Among 
the core properties, the ability to choose between self-renewal (remain a stem cell 
after cell division) or differentiation (start the path towards becoming a mature hema-
topoietic cell) is one of the most prominent. In addition, HSCs migrate in regulated 
fashion, and are subjected to regulation by apoptosis (programmed cell death). The 
balance between these processes determines the number of stem cells that are present 
in the body at the moment. As many other cell types, HSCs are able to produce extra-
cellular vesicles (EVs) including exosomes and microvesicles and release them pri-
marily into the bone marrow, but they may penetrate into the peripheral blood 
circulation consequently [2]. EVs released from the HSCs may play pleiotropic 
effects in the body: they contribute to the cell-to-cell communication, are proposed 
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to be biomarkers of the condition of the bone marrow, and are suggested also to be 
potentially used for the prevention and/or treatment of different diseases including 
cardiovascular as an alternative type of stem cells-based therapies.

This chapter will summarize the knowledge about the production of EVs by the 
HSCs in the organism, their role in the intercellular communication, and will dis-
cuss the cargo of these EVs as well as the protective effects of HSCs-derived exo-
somes and microvesicles in cardiovascular diseases (CVD) including cardiac 
ischemia-reperfusion injury and acute myocardial infarction.

15.2  Production of Extracellular Vesicles in HSCs

As known, EVs such as exosomes and microvesicles are produced in many types of 
cells and released into the extracellular environment. EVs can consequently release 
carried substances and thus function as paracrine mediators, and also may be poten-
tially taken up by other cells and act in the remote parts of the body. In fact, most of 
cells including endothelial cells, immune cells, cancer cells, hematopoietic cells, 
platelets, and erythrocytes are able to produce EVs [3] which are consequently 
released into the corresponding extracellular compartment.

The direct evidence of HSCs-derived exosomes and microvesicles documented 
by Aoki et  al. [2] suggested that hematopoietic precursor cells (HPCs)-derived 
mRNAs in plasma exosomes and microvesicles may represent new biomarkers for 
the assessment of bone marrow condition. Bone marrow-derived EVs has been 
reported previously also by other authors; the bone marrow cells in these reports 
were stromal cells [4], stem cells [5], dendritic cells [6], and mesenchymal stem 
cells [7]. Several types of hematopoietic cells have been shown to secrete exosomes 
in culture [8]. Among them, exosome secretion has first been reported for reticulo-
cytes during their differentiation [9, 10]. Exosomes produced during reticulocyte 
maturation into erythrocytes are formed in the endosomal compartment and released 
in the extracellular medium. The evidence of their origin is referred by HBB gene 
expression, the gene coding the subunit of hemoglobin. Hemoglobin protein is 
abundantly expressed in red blood cells (RBC), but owing to the lack of a nucleus 
in RBCs, HBB gene mRNA cannot be produced in RBC. Thus the origin of HBB 
mRNA is the erythroblasts in bone marrow and reticulocytes [11]. This is in concor-
dance with the fact that HSCs first grow in bone marrow to produce various HPCs, 
then after a series of maturation processes, white blood cells, red blood cells and 
platelets are released into peripheral blood circulation. More recently, other hema-
topoietic cells including B lymphocytes [12], dendritic cells (DCs) [13–15], T lym-
phocytes [16–18] and mast cells [19, 20] have been shown to secrete exosomes. 
EVs can be produced also by erythroid and myeloid precursor cells and megakaryo-
cytes. It has been shown in an ex vivo co-culture system consisting of human pri-
mary hematopoietic stem and progenitor cells growing on multipotent mesenchymal 
stromal cells that EVs which are released into the peripheral blood are produced 
rather by myeloid and erythroid precursor cells and megakaryocytes than by mature 
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white and red blood cells or platelets. These EVs influence the mesenchymal stem 
cells in the bone marrow and the cargo of these vesicles contains the stem cell 
marker prominin-1, also known as CD133 antigen [21]. In addition, the internaliza-
tion of prominin-1-EVs by feeder cells has been demonstrated suggesting an addi-
tional function of these vesicles in intercellular communication either by stimulating 
target cells as signaling devices via cell surface expressed ligands or by transferring 
surface receptors/adhesion molecules or small RNAs between cells [22–25]. Such a 
phenomenon is in line with exosome-like vesicles acting as vesicular carriers for 
intercellular communication [26, 27]. However, additional investigation is urged to 
reveal whether prominin-1-EVs modify the biochemistry of the recipient mesen-
chymal stem cells [28] as it was proposed upon the direct contact of Hematopoietic 
Stem-Progenitor Cells (HSPCs) with osteoblasts [29]. Thus, the intercellular com-
munication of HSPCs with their bone marrow microenvironment is a novel research 
field that requires further investigation [30] and the development of animal models 
to demonstrate its in vivo impact.

15.3  Therapeutic Potential of HSCs-Derived EVs

It is generally accepted that the therapeutic potential of stem cells may be mediated 
largely by the paracrine factors. Thus EVs produced by stem cells are the hot candi-
dates to be carriers of stem cell-related therapies [31].

Most of the reported active ingredients in EVs are largely in two classes: nucleic 
acids including mRNAs and miRNAs and proteins, especially surface receptors and 
intravesicular enzymes or transcription factors [32]. In addition to tissue factor 
(CD142) [33] and various mRNAs [2] exosomes secreted by HSCs may contain the 
stem cell marker prominin-1 (CD133) which plays important roles in maintaining 
the properties of stem cells as well as in the endocytic-exocytic pathway [21]. Thus 
CD133+ cells purified from hematopoietic tissues represent a potential source of 
stem cells. EVs derived from these cells were shown to express mRNAs of several 
pro-angiopoietic and anti-apoptotic factors which promote angiogenesis, providing 
a theoretical basis for application of CD133+ cells in regenerative medicine [34]. 
Exosomes from granulocyte colony-stimulating factor (GCSF)-mobilized bone 
marrows were shown to contain abundant microRNA-126 (miR-126) and GCSF, 
promoting the accumulation of exosomes in the bone marrow [35]. Exosomes- 
delivered miR-126 reduces the expression of vascular cell adhesion molecule-1 
(VCAM-1) which is crucial to the retention of HSPCs in the bone marrow. The 
reduced level of VCAM-1 leads to the mobilization of HSCs from the bone marrow 
to the peripheral blood. In addition, chronic myeloid leukemia-derived exosomes 
promote the proliferation and survival of tumor cells via the anti-apoptotic effects 
mediated by selectively expressed miRNAs [36, 37].

When referring to therapeutic effect, it has been found that HSCs-secreted exo-
somes express mRNAs of several anti-apoptotic and pro-angiopoietic factors like 
the vascular endothelial growth factor (VEGF), insulin growth factor-1, basic fibro-
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blast growth factor, and interleukin-8 [34]. These mRNAs exert anti-apoptotic 
effects, increase the proliferation and survival of endothelial cells, and thus stimu-
late tube formation. Since exosomes are produced in chronic myeloid leukemia, 
vaccines based on leukemia cells-derived exosomes might be a promising strategy 
for enhancing survival in patients suffering from HSCs transplantation and chemo-
therapy [36]. Accordingly, improvements are suggested to be seen in terms of thera-
peutic effects of HSCs-derived EVs toward the blood diseases such as the chronic 
myeloid leukemia in the near future.

15.3.1  HSCs-Derived EVs in the Regenerative Therapy 
of the Heart

Stem cell-based therapies aimed to regenerate the heart after pathological insults 
such as myocardial infarction have been studied extensively [38]. It should be men-
tioned that there are only limited data documenting cardioprotective therapeutic 
potential of HSCs and HSCs-derived EVs exclusively, thus the potential therapeutic 
effects of bone marrow-derived stem cells and vesicles in general will be partially 
discussed as well.

The early promise of stem cells in cardiac regeneration generated much excite-
ment for their potential to improve function by differentiating into new cardiomyo-
cytes. However, huge amount of data indicate that most cells transplanted into the 
heart do not survive long time, thus the concept of paracrine effects by substances 
released from injected cells has become popular, despite only indirect evidence for 
this theory [39, 40]. An intriguing possibility is that some of these paracrine effects 
may be mediated by EVs [41]. In concordance with this hypothesis are findings 
showing that in addition to the in vitro modulation of the extracellular milieu [42] 
the effect of transplanted bone-marrow-derived cells on improving cardiac function 
may be primarily due to the paracrine effects [40, 43–45]. It has been shown in 
genetically engineered mice that intramyocardial delivery of bone marrow-derived 
cells after myocardial infarction improves ventricular function of the heart. This 
protective effect could not be explained by direct transdifferentiation of injected 
cells into cardiomyocytes, but suggest that activation of endogenous progenitors 
may depend on paracrine communication between donor and recipient cells [40]. 
Also in the case of human cardiosphere-derived cells (derived from human myocar-
dium) the benefits of cell-based therapy may due to paracrine effects. The factors 
secreted or released from injected cells that benefit cardiac function remain to be 
identified; however, due to the ability of EVs to be released from the cell and be re- 
uptaken by other cells, make the stem cells-derived exosomes and microvesicles the 
prime candidates for carriers of cardioprotective substances which are mediators of 
beneficial effects of injected stem cells into the heart. The mechanism by which 
exosomes exert cardioprotection is almost entirely unknown. It seems to involve a 
direct interaction with cells in the heart, rather than blood components, because 
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cardioprotection has been observed both in vitro and in vivo [41]. At least in specific 
cases, exosomes have been demonstrated to be capable of direct transfer of RNA 
[46–48] or protein [49]. If there is a specific combination of multiple factors from a 
defined population of cells, then unraveling the paracrine cocktail may be very chal-
lenging. Furthermore, as improved methods to enhance cell survival and engraft-
ment are developed, distinguishing between independent cell effects and paracrine 
effects will become even more difficult.

As mentioned, exosomes-delivered miR-126 leads to the mobilization of HSCs 
from the bone marrow to the peripheral blood via reduced expression of VCAM-1. 
Interestingly, miR-126 seems to act not only as intrinsic regulator of cell function 
but is also released and acts as a paracrine factor enhancing neovascularization [50]. 
The release of exosomes and microvesicles, which among other substances contain 
miRNAs, is known to mediate cell-to-cell communication between different cell 
types [47, 51, 52].

Different markers, such as CD34, CD71, or CD235a were used to characterize 
EVs derived from human HSCs [53]. Among them, CD34 is the main hematopoietic 
stem cell marker. It has been shown that exosomes derived from CD34+ cells 
improve neovascularization after ischemia [54]. A recent study demonstrated that 
miR-126 is preferentially enriched in microvesicles derived from CD34+ cells com-
pared with other cell types, and contributes to the proangiogenic activity of the cell 
supernatants [55]. In addition, release of miR-126 and miR-296–containing 
microvesicles by proangiogenic cells can induce angiogenesis in endothelial cells 
[56]. It has been also reported that miR-126-knockouts had an impaired angiogenic 
response in the heart in the setting of myocardial ischemia and promote endothelial 
cell tube formation [57]. In patients with diabetes mellitus, an impaired expression 
of miR-126 was demonstrated in microvesicles isolated from supernatants of 
peripheral blood CD34+ cells, and overexpression of miR-126 restored the proan-
giogenic activity of diabetic CD34+ cells [55]. These findings are consistent with the 
lower circulating levels of miR-126 detected in patients with diabetes mellitus or 
coronary artery disease, and may contribute to the known impaired neovasculariza-
tion capacity observed in patients with diabetes mellitus [58, 59].

In the BOOST randomised controlled clinical trial [60], intracoronary autolo-
gous bone-marrow cell transfer after myocardial infarction were performed in 30 
patients, and the same number of patients served as controls non-treated by bone 
marrow cells. All patients received optimum post-infarction medical treatment inde-
pendently on the presence or absence of stem cell transfer therapy. The results of the 
study have shown that intracoronary transfer of autologous bone-marrow-cells pro-
motes improvement of left-ventricular systolic function in patients after acute myo-
cardial infarction. Even though the study was not designed to assess underlying 
mechanisms, it is apparent that transdifferentiation of bone-marrow-derived HSCs 
to cardiomyocytes cannot account for the beneficial effects [61, 62]. Recent studies 
have highlighted the potential of bone-marrow cells to promote paracrine effects in 
ischemic tissues which may include also release of EVs, and suggest that paracrine 
signaling promotes functional recovery rather than cell incorporation [63–66].
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Myocardial infarction is followed by mobilization of the bone marrow stem 
cells, and subsequently increases levels of circulating endothelial progenitor cells 
(EPCs), HSCs, CD34+ positive stem cells, as well as mononuclear cells. These cells 
express early cardiac and endothelial markers as the injury signal produced by the 
damaged heart attracts reparative cells and promotes their migration into the target 
tissue. The most likely candidates for the cardiac repair are bone marrow-derived 
stem cells, a heterogenous population of cells that can be divided into HSCs, EPCs 
and mesenchymal stem cells [67–70]. Ischemic preconditioning as an endogenous 
adaptive mechanism protecting the heart against ischemia/reperfusion injury 
induced a rapid and permanent decrease in the number of circulating mesenchymal 
stem cells. High number of recruited cells was found mainly in the border zone of 
infarction but also in the infarcted area suggesting a rapid homing of the mesenchy-
mal stem cells in the ischemic heart, imbalanced by their slower mobilization from 
the bone marrow. In contrast, the early phase of ischemic preconditioning led to 
amoderately higher level of HSCs mobilization into the blood stream as compared 
with the infarction without preventive intervention [71]. Additionally, the number of 
recruited but not the mobilized stem cells (both hematopoietic and mesenchymal) 
correlated significantly with the infarct size in the infarcted as well as borderline 
areas of the infarcted hearts. In a human study performed on patients with primary 
percutaneous coronary angioplasty and patients post myocardial infarction (MI) 
with ST segment elevation (post-STEMI) an increase in HSCs and decrease in cir-
culating mesenchymal stem cells days after acute myocardial infarction was dem-
onstrated, parallel with increase in plasma levels of VEGF and SDF-1 [72]. The 
discrepancy between the results of experimental study [71] and clinical data regard-
ing the changes in circulating mobilizing factors [72] might be explained by the 
relatively short (120 min) follow-up post-infarction reperfusion in the experimental 
study.

Pre-clinical and clinical studies have documented the beneficial effects of human 
bone marrow-derived CD34+ stem cells in treatment of cardiovascular diseases such 
as myocardial ischemia including refractory angina [73, 74] and acute myocardial 
infarction [75]. A therapeutic paracrine mechanism of CD34+ cells has been identi-
fied recently as mediated at least in part by the secretion of extracellular vesicles 
particularly exosomes [54] known to carry RNAs, miRNAs and different proteins 
[76]. Previous studies documented that the use of CD34+ cells as a strategy to 
enhance perfusion preserved and/or improved cardiac function [77–79] thus improv-
ing the quality of life for the patients. However, patient diversity in age, disease 
burden and environmental factors may alter the therapeutic efficacy of isolated 
CD34+ cells [80–82]. A study revealing the therapeutic efficacy of CD34+ cells 
modified to express an established angiogenic protein, sonic hedgehog (Shh), was 
aimed to circumvent age and health related declines in CD34+ cell function [49]. 
The modified cells were observed to improve functional preservation of cardiac 
 tissue as compared to control cells. Results of this study provide a novel insights 
including findings that modification with Shh improves the short-term retention of 
CD34+ cells, that CD34Shh deposit a proportionately greater amount of Shh in exo-
somes as compared to other Shh modified cell types, that Shh-containing exosomes 
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derived from CD34Shh are capable of transferring Shh to other cell types and that 
exosomes containing Shh activate Shh signaling pathways in other cell types. 
Similarly, T-lymphocyte-derived microvesicles enriched with the morphogen Shh 
increased neoangiogenesis and restored endothelial function after injection in mice 
by stimulating the NO synthesis pathway [83, 84]. From a clinical perspective, the 
findings presented above point toward the advantages of applying the concept of 
EVs as therapeutic devices for the treatment of myocardial injury: the ability to 
carry and deliver specific content to the target, the possibility for in vitro expansion 
of the EVs, and the avoidance of damaging clearance mechanisms after transplanta-
tion. Thus, the potential of EVs in enhancing stem cell activity after genetic engi-
neering may provide a key tool for developing novel therapeutic strategies to 
improve cardiac remodeling, function of the heart, and prognosis of patients after 
myocardial infarction. However, only gaining further insights into the complexity of 
the molecular interactions may allow the identification of responsible mechanisms, 
their connections, and how these mechanisms can be modulated for development of 
reliable therapies [85].

15.3.2  Therapeutic Potential of EVs Released from HSCs- 
Derived Cells in CVD

Not only HSCs themselves but also cells derived from HSCs such as dendritic cells 
(DCs) or endothelial progenitor cells (EPCs) are able to produce and release EVs 
including exosomes and microvesicles with promising therapeutic potential in treat-
ment of CVD including ischemic heart disease and myocardial infarction. As thera-
peutic potential of these HSCs-derived cells and EVs produced by these cells is not 
discussed in other chapters of this book, but should be mentioned, we summarize 
these effect here.

Dendritic cells (DCs), as one type of cells derived from HSCs, are antigen- 
presenting cells (also known as accessory cells) of the mammalian immune system 
[86]. Their main function is to process antigen material and present it on the cell sur-
face to the T cells of the immune system. Recent studies have shown that exosomes 
secreted from DCs which express immune-stimulatory molecules, deliver antigen-
specific signals and are regarded as inert vehicles that target and activate T cells [87–
89]. In addition to the ability of DCs to modulate immune responses, the injection of 
exosomes derived from donor bone marrow DCs was found to modulate response to 
heart transplantation [90]. Moreover, exosomes derived from DCs have been shown 
to improve cardiac function after myocardial infarction via activation of CD4+ T lym-
phocytes [91] which is in concordance with finding that CD4+ T cell activation plays 
a key role in improving myocardial wound healing post myocardial infarction [92].

It is believed that the majority of EPCs originate from the bone marrow. The 
hematopoietic and vascular systems develop in parallel but in an interdependent 
manner during embryogenesis. Multi-lineage hematopoietic progenitors are derived 
from the endothelium within the yolk sac [93] and embryo proper [94]. Whether the 
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same is true in adults has not been ruled out; however, there is a close physical asso-
ciation between endothelial and hematopoietic stem cells (EPCs and HSCs) in post-
natal bone marrow [95]. As vascular endothelial and hematopoietic cell types share 
many cell surface markers [96] it is not surprising that several identified EPCs popu-
lations exhibit hematopoietic characteristics, although non-hematopoietic sources 
of EPCs have also been identified [97].

Endothelial progenitor cells (EPCs) reside in the bone marrow and are mobilized 
into the circulation by specific stimuli such as certain drugs, ischemia, and exercise 
training. Although the understanding of the molecular pathways leading to a mobi-
lization of EPCs from the bone marrow is not fully clear, several studies in the cur-
rent literature demonstrate that VEGF is one of the most potent molecules triggering 
EPCs release [98]. VEGF expression is dramatically upregulated by hypoxia, which 
represents a critical force that drives adult vasculogenesis. Erythropoietin is another 
factor influencing EPCs mobilization [99]. It was demonstrated that the amount and 
function of EPCs is significantly impaired in CVD and that the level of circulating 
EPCs predicts the occurrence of cardiovascular events and death from cardiovascu-
lar causes. Recently, the beneficial effect of applied EPCs in treatment of CVD was 
demonstrated in several animal experiments, and later these cells were also used to 
treat humans with different types of CVD [100].

Regarding therapeutic potential of EPCs-derived EVs in the treatment of CVD, 
the study of Ratajczak et  al. [25] as well as the study of Deregibus et  al. [101] 
opened research perspectives on the use of EVs to transfer RNA-based information 
from stem cells/precursors to target differentiated cells. In particular, the later study 
indicated that microvesicles derived from EPCs may activate an angiogenic pro-
gram in quiescent endothelial cells. Moreover, it has been shown that EVs, particu-
larly exosomes, are an active component of the paracrine secretion of human EPCs 
and can promote vascular repair in rat models of balloon injury by up-regulating 
endothelial cells function [102]. EPCs-derived exosomes delivered into ischemic 
myocardium via an injectable hydrogel enhanced peri-infarct angiogenesis and 
myocardial hemodynamics in a rat model of myocardial infarction. The shear- 
thinning gel greatly increased therapeutic efficiency and efficacy of exosome- 
mediated myocardial preservation [103].

EPCs-based approaches to repair the heart after ischemic events by neovascular-
ization can result in improvement of vascular perfusion and might offer clinical 
benefit. However, although functional improvement is observed, the lack of long- 
term engraftment of EPCs into neovessels has raised controversy regarding their 
mechanism of action. It has been hypothesized that after ischemic injury, EPCs 
induce neovascularization through the secretion of cytokines and growth factors, 
which act in a paracrine fashion and induce sprouting angiogenesis by the surround-
ing endothelium. Thus the demonstration that human EPCs secrete paracrine sig-
nals that induce neovascularization offers great therapeutic potential [104]. As EVs 
have been shown to be an active component of the paracrine secretion of human 
EPCs, there is a possibility that at least some of paracrine effects of EPCs may be 
mediated by EVs, and that exosomes and/or microvesicles act as carriers of pro- 
angiogenic and potentially cardioprotective substances released from EPCs.
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15.4  Conclusions

Hematopoietic stem cells (HSCs) and HSCs-derived progenitor cells have been 
reported to exert beneficial effects in prevention/treatment of several cardiovascular 
diseases including ischemic heart disease and acute myocardial infarction. As the 
cardioprotective action of injected cells could not be explained by direct transdif-
ferentiation of injected cells into cardiomyocytes, this effect is suggested to be 
mediated via paracrine communication between donor and recipient cells. Since it 
was evidenced that HSCs release EVs including exosomes and microvesicles into 
the surrounding environment that could be transferred and re-uptake by recipient 
cells, it might be assumed that at least some of these paracrine effects may be medi-
ated by EVs. Among the cargo molecules of HSCs-derived vesicles several miR-
NAs, particularly miR-126, and pro-angiogenic and anti-apoptotic proteins are 
proposed to me the mediators of heart regeneration, mostly via neovascularization. 
However, the direct evidence of cardioprotective effects of HSCs-derived exosomes 
and microvesicles is still lacking in the literature, and the theory is based mostly on 
the indirect evidences of paracrine action of HSCs. On the other hand, EVs pro-
duced in HSCs-derived cells, specifically DCs and EPCs, have been shown to pro-
vide direct cardioprotective effects in CVD. Anyway, further studies are needed to 
be performed to assess the therapeutic potential of HSCs-derived EVs-based car-
diac regenerative therapies.
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Chapter 16
Cardiac Telocyte-Derived Exosomes and Their 
Possible Implications in Cardiovascular 
Pathophysiology

Mirca Marini, Lidia Ibba-Manneschi, and Mirko Manetti

16.1  Introduction

Intercellular crosstalk is essential to survival and maintenance of tissue and organ 
homeostasis within a multicellular system [1]. The communication between living 
cells may occur by different modalities, which include either intercellular contacts, 
such as adhesion molecules, gap junctions and nanotubes, or the exchange of a vari-
ety of cell-released factors including cytokines, growth factors and hormones acting 
in an autocrine, paracrine, or endocrine manner [2].

Of note, an additional intercellular signaling mechanism that can act over both 
short and long distances has recently emerged, based on the release and uptake of 
membrane-bound vesicles which are referred to as extracellular vesicles (EVs) 
 [1–4]. These circular membrane fragments enriched for mRNAs, small, single-
stranded RNAs called microRNAs (miRNAs), long non-coding RNAs, proteins, 
and bioactive lipids may be released by exocytosis from the intracellular endosomal 
compartment or are formed by budding from the cell surface membrane [1–5]. 
Increasing evidence indicates that EVs may play important roles in a variety of 
physiological processes, including stem cell self-renewal and differentiation, tissue 
repair, immune surveillance and vascular homeostasis [2, 6, 7]. Furthermore, EVs 
appear to be implicated in several pathologies, such as cancer, neurodegenerative, 
cardiovascular, and metabolic disorders [1–3, 6, 7]. Nowadays, the importance of 
EVs is further highlighted by the evidence that they can also be considered as dis-
ease biomarkers, as well as possible drug, vaccine, or gene vector delivery tools 
with potential therapeutic applications [2, 3, 6–10]. Among the different types of 
EVs, the term ‘exosomes’ specifically refers to nano-sized EVs deriving from the 
endosomal compartment [3, 5, 6]. Exosomes are released and taken up by most cell 
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types, thereby playing a pivotal role in the maintenance of tissue and organ homeo-
stasis via horizontal transfer of cargos between cells [3, 5, 6]. Thus, the properties 
and roles of exosomes are now being increasingly investigated in a variety of physi-
ological and pathological settings, with a main focus on their possible diagnostic 
and therapeutic utility in different conditions [1, 6, 9–11].

In this context, EVs and, in particular, exosomes are being increasingly impli-
cated in multiple biological effects possibly exerted by a recently identified intersti-
tial (stromal) cell type known as telocytes (TCs) [2, 12]. TCs, firstly identified by 
Popescu’s group in 2005 as interstitial Cajal-like cells and officially renamed in 
2010, have been described in the stromal compartment of many organs in humans 
and other vertebrates [13, 14]. As distinctive morphological features, TCs are char-
acterized by a small cell body from which extremely long and slender processes, 
named telopodes (Tps), originate [13, 14]. The latter typically display a moniliform 
silhouette conferred by the alternation of thin segments (podomers) and small dila-
tions (podoms) which accommodate caveolae, mitochondria and endoplasmic reticu-
lum cisternae [13, 14]. Within the stromal compartment, Tps make a three-dimensional 
labyrinthine system establishing multiple intercellular communications by direct 
homocellular and heterocellular junctions [14, 15]. Moreover, Tps may release dif-
ferent types of EVs either in vivo or in vitro suggesting that TCs may profoundly 
influence the activity of neighboring cells by vesicular paracrine signals [2, 12].

In the heart, TCs have been reported to be ubiquitously distributed in the epicar-
dium, myocardial interstitium, endocardium and in cardiac valves, where they are 
supposed to participate in the regulation of cardiac homeostasis and regeneration 
[16–22]. TCs appear to be in close contact with virtually all cell types in the human 
heart, such as cardiomyocytes, cardiac stem cells, blood capillaries, nerve endings 
and other cells found in the stromal compartment [16, 23, 24]. Noteworthy, it has 
been demonstrated that cardiac TCs are able to release at least three different types 
of EVs, namely exosomes, ectosomes and the so-called multivesicular cargos [2, 
12, 25]. Indeed, the heart seems characterized by a complex intercellular shuttle 
mechanism which involves EV-mediated bidirectional paracrine signals either 
between TCs and tissue-resident stem cells or between TCs and cardiomyocytes 
[26]. In particular, TC-released exosomes, containing a cell-specific cargo of pro-
teins, lipids and nucleic acids, seem to play a pivotal role in the crosstalk between 
TCs and other cardiac cells, thus making substantial contribution to cardiac physiol-
ogy and response to injury [26]. In addition, TCs have been proposed to guide or 
‘nurse’ putative stem cells and cardiomyocyte progenitors within cardiac stem cell 
niches [27, 28]. Of note, a number of studies have indicated that the TC interstitial 
network is reduced and impaired during myocardial infarction either in humans or 
in animal models [29]. Interestingly, there is also experimental evidence that trans-
plantation of cardiac TCs in the infarcted and border zones of the heart may be 
effective in decreasing the infarction size and improving myocardial function [30].

This review summarizes the recent research findings on cardiac TCs and their 
EVs. We first provide an overview of the general features of TCs, including their 
morphological traits and immunophenotypes, intercellular signaling mechanisms 
and possible functional roles. Thereafter, we describe the distribution of TCs in the 
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cardiac stromal compartment and the emerging role of cardiac TCs as intercellular 
communicators via the release of different EVs with particular focus on exosomes. 
Finally, the involvement of TCs in cardiovascular diseases and the potential utility 
of TC-derived exosomes in cardiac regeneration and repair are discussed.

16.2  General Characteristics of Telocytes

16.2.1  Morphological Features and Immunophenotypes 
of Telocytes

TCs are a novel type of stromal cells widely distributed in the interstitium of many 
tissues and organs [14, 31]. The shortest possible definition of TCs is ‘cells with 
Tps’ [14]. In fact, TCs display unique ultrastructural features characterized by a 
small piriform-, spindle- or triangular-shaped cell body (9–15 μm) giving rise to a 
variable number of extremely long (10–1000 μm) and thin prolongations which 
have been named Tps and distinguish them from ‘classical’ stromal cells, such as 
fibroblasts [13, 14, 32]. The cellular nucleus occupies about 25% of the cell body 
and contains clusters of heterochromatin attached to the nuclear envelope, while the 
surrounding scarce cytoplasm accommodates mitochondria, endoplasmic reticulum 
and Golgi apparatus. The Tps display an uneven caliber (mostly below 0.2 μm under 
light microscopy, and about 0.1–0.5 μm under transmission electron microscopy) 
with a distinctive moniliform appearance due to the alternation of thin segments 
(podomers) (~80 nm) and small dilated portions (podoms) (250–300 nm) contain-
ing mitochondria, endoplasmic reticulum cisternae and caveolae [14, 32]. In the 
interstitial space, Tps are typically organized to form a three-dimension labyrinthine 
network and establish multiple intercellular communications either between TCs 
through homocelullar junctions or between TCs and other cell types through hetero-
cellular junctions [14, 15, 32]. Moreover, TCs and their Tps can release different 
types of EVs, which act as important transporters involved in intercellular signaling, 
including the transfer of genetic material consisting mainly of miRNAs [2, 12, 33].

Electron microscopy is commonly considered the gold standard method to iden-
tify TCs [14]. However, double immunolabeling for CD34 and c-kit/CD117, vimen-
tin, platelet-derived growth factor receptor (PDGFR)-α or PDGFR-β may help in 
distinguishing TCs from other stromal cells under light microscopy [14, 26, 32]. 
Even if TCs do not display a unique antigenic profile, CD34 and PDGFR-α are cur-
rently regarded as the most suitable markers for their in situ identification by immu-
nohistochemistry [14]. In fact, coexpression of CD34 and PDGFR-α has been 
extensively found in TCs from different tissues and organs [14, 34, 35]. However, 
there is also increasing evidence that the immunophenotypical features of TCs may 
vary among different organs/systems and that TC subtypes characterized by the 
expression of different markers may even coexist within the same organ [36, 37]. For 
instance, TCs may exhibit either CD34, PDGFR-α or c-kit/CD117 in some organs, 
such as the heart, while they are CD34/PDGFR-α double-positive and c-kit- negative 
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in others, such as the gastrointestinal tract [34, 35, 38]. A growing number of studies 
also indicate that TCs display gene expression and proteomic profiles and miRNA 
signatures that are rather different from those of ‘classical’ fibroblasts [14, 39–43].

16.2.2  Telocytes as Intercellular Communicators: Telocyte’s 
Contacts and Telocyte-Derived Extracellular Vesicles

In a variety of either cavitary or non-cavitary organs, TCs make a three-dimensional 
interstitial network which consists of their long Tps establishing either homocellu-
lar contacts between Tps or heterocellular contacts with other neighboring cell 
types, such as tissue-specific parenchymal cells, vessels, nerve endings, stem/pro-
genitor cells, and other stromal cells including fibroblasts and immunoreactive cells 
like macrophages and mast cells [14, 15].

In particular, the homocellular contacts may be of several types and are formed 
by either simple appositions of the plasma membranes of contiguous TCs or by 
complex junctional areas accomplishing mechanical functions or allowing func-
tional intercellular exchanges [15]. Junctional complexes with a mechanical func-
tion can be found in all the TCs and, since they resemble various types of the 
adherens junctions, have been named ‘puncta adhaerentia minima’ and ‘processus 
adhaerens’, which usually connect the overlapping Tps, and ‘recessus adhaerens’ or 
‘manubria adhaerentia’ having a cuff-like appearance [15]. Instead, junctional com-
plexes that functionally allow intercellular exchanges and signaling are mostly rep-
resented by gap junctions. Heterocellular contacts between TCs and other cell types 
consist mainly of minute junctions (e.g. point contacts, nanocontacts and planar 
contacts) typically with an inter-membrane distance of 10–30 nm, but more often by 
variably extended simple apposition of the contiguous TC plasma membranes [15].

Furthermore, increasing evidence indicates that TCs may participate in intercel-
lular signaling through the release of a variety of EVs which regulate multiple neigh-
boring cell functions [2, 12]. In fact, EVs are currently regarded as a new important 
way of communication for either short- or long-distance intercellular signaling 
events. EVs, characterized by a lipid bilayer membrane, carry a rich cargo of various 
bioactive materials including DNAs, RNAs, proteins, and lipids that are released 
into the extracellular space during both physiological and pathological processes [3, 
5, 7, 44]. These EVs can interact with different cell types by ligand- receptor interac-
tions, membrane fusion, and subsequent internalization via receptor-mediated endo-
cytosis or macropinocytosis [44]. According to the classification criteria based on 
biogenesis mechanisms, different types of EVs can be distinguished, namely exo-
somes, ectosomes (also known as shedding microvesicles, microparticles or plasma 
membrane-derived vesicles), apoptotic bodies as well as a recently described novel 
EV type termed multivesicular cargos [1–3, 5, 7, 12, 25, 44].

Among the aforementioned EV subtypes, exosomes have been most extensively 
studied and characterized in recent years. These nano-sized vesicles are originated 
from the fusion of the plasma membrane with the multivesicular bodies, which are 
large cytoplasmic endosomal structures characterized by multiple intraluminal 
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 vesicles [1, 3, 5, 6, 44]. In fact, multivesicular bodies can either traffic to lysosomes 
for degradation or, alternatively, to the plasma membrane where, upon fusion, they 
may release their contents into the surrounding extracellular space. Once released into 
the extracellular space by exocytosis, the multivesicular body-derived vesicles are 
referred to as ‘exosomes’ [1, 3, 5, 6]. These exosomes, released into tissue interstitial 
spaces and bodily fluids, appear as multiple homogenous vesicles of around 30–150 nm 
in diameter containing numerous macromolecules including mRNAs, miRNAs, long 
non-coding RNAs, cytokines, chemokines, growth factors and various endosomal 
proteins such as tetraspanins (e.g. CD9, CD63, CD81), ALG-2 interacting protein X 
(Alix), tumour susceptibility gene 101 (TSG101), and annexin A5 (ANXA5), which 
are commonly used as markers for exosomal identification [1, 3, 5, 6, 12].

Unlike exosomes, ectosomes are small EVs with a diameter of about 50–1000 nm 
which originate directly from the plasma membrane by outward budding [1, 2, 5, 7, 
44]. The molecular composition of ectosomes is still poorly characterized, although 
they seem to contain matrix metalloproteinases, glycoproteins (e.g. GPIb, GPIIb–
IIIa and P-selectin), and integrins (e.g. Mac-1), depending on the ectosome- releasing 
cell type. Apoptotic bodies are instead heterogeneous vesicles (50 nm–5 μm) released 
upon programmed cell death via outward blebbing of the cell membrane [1, 2]. 
Finally, multivesicular cargos (0.4–1 μm) are large EVs which contain tightly packed 
endomembrane-bound smaller vesicles and have been recently reported to be secreted 
by cardiac TCs [2, 12, 25, 33]. Under transmission electron microscopy, multivesicu-
lar cargos appear frequently clustered in the subplasmallemal space of TCs, bulging 
from the plasma membrane of either the cell body or Tps, and released in an envelope 
formed by the plasma membrane [25]. The subsequent disruption of this envelope 
results in the release of individual or grouped small vesicles into the extracellular 
space [25]. Consistent with these electron microscopy observations, a peculiar struc-
ture with a cup-shaped or ellipsoid morphology, usually containing between 60 and 
500 tightly packed endomembrane vesicles of varying shapes and dimensions, has 
been highlighted for multivesicular cargos by electron tomography [25].

16.2.3  Potential Roles of Telocytes

According to the distinctive morphological features, distribution and intercellular 
communications of the three-dimensional network-building Tps either in normal or 
in diseased tissues, multiple potential biological functions have been suggested for 
the TCs [14, 26, 29]. It is commonly believed that TCs may be functionally commit-
ted to the maintenance of local tissue homeostasis, as well as the regulation of tissue 
differentiation and renewal by short- and long-distance intercellular crosstalk mech-
anisms [14, 26, 29]. In particular, it has been proposed that during organ morpho-
genesis TCs might act as inductors and regulators of cell differentiation due to their 
capability to release paracrine molecular signals and to structurally build the three- 
dimensional scaffold driving parenchymal organization, while in the adulthood, 
these cells might behave as mesenchymal stromal cells with stemness properties and 
the potential to differentiate toward different mature cell types [14, 16, 21, 26, 45]. 
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TCs have also been proposed to participate in immunomodulation and immunosur-
veillance, and possibly in the regulation of the activity of neighboring stromal cells, 
such as fibroblasts [29]. Moreover, TCs might be essential for the maintenance, pro-
liferation, differentiation, maturation and guidance of the local stem/progenitor cells 
found within the niches of various organs, eventually stimulating and sustaining 
tissue regenerative and reparative processes [14, 26, 28]. Interestingly, increasing 
evidence also suggests that TCs may be involved in different pathologies including 
cancers, liver fibrosis, systemic sclerosis, inflammatory bowel diseases, and cardio-
vascular diseases [29, 45–52]. Therefore, currently there is growing research interest 
on the possible applications of TCs in regenerative medicine [26, 53].

16.3  Cardiac Telocytes and Their Extracellular Vesicles

The cardiac stroma plays a fundamental role in the building and maintenance of the 
normal heart architecture, as well as in any changes occurring in a variety of cardiac 
diseases [16]. Numerous electron microscopy studies have demonstrated that the 
heart contains typical TCs (Fig. 16.1) which are found in the epicardium, myocar-
dial interstitium, endocardium, and cardiac valves [16–24]. Noteworthy, TCs were 
also identified in epicardial stem cell niches, where they appear located in close 
relationship with tissue-resident stem cells and putative cardiomyocyte progenitors, 
possibly contributing to form an interstitial scaffold which supports cardiomyocyte 
precursors during their self-renewal process and differentiation into new mature 
cardiomyocytes [27, 28]. During heart morphogenesis, TCs may even guide the 
process of cardiac tissue compaction from the embryonic myocardial trabeculae 
[16, 21, 54]. In addition, considering that cardiac TCs and epicardial progenitor 
cells share the expression of some stemness markers (e.g. c-kit/CD117), it has also 

Fig. 16.1 Representative scanning electron micrograph of monkey left ventricular myocardium. 
The image shows a typical telocyte located across the cardiomyocytes. The three-dimensional 
view reveals close interconnections of the telocyte body and telopodes with cardiomyocytes and 
blood capillaries (Reproduced with permission from Kostin and Popescu [19])
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been suggested that TCs might represent a subpopulation of progenitor cells which 
could therefore be directly implicated in cardiac development and regenerative pro-
cesses [21, 53]. Of note, it also appears that both TCs and tissue-resident stem cells 
are decreased in the adult heart compared with newborns, which might contribute to 
the reduced cardiac regenerative capacity during aging [26, 55]. A recent experi-
mental study in mice also reported that the number of cardiac TCs was significantly 
increased following physical exercise training, which is consistent with the evi-
dence that exercise-induced cardiac growth is an important way to promote cardiac 
regeneration and repair [56].

At present, cardiac TCs are clearly the best ex vivo, in vitro and in vivo charac-
terized TCs. In the adult heart, TCs display immunopositivity for different markers, 
such as CD34, c-kit/CD117 (Fig. 16.2), vimentin, PDGFR-α or PDGFR-β [26, 30, 
35, 38]. Moreover, cardiac TCs in primary culture have been reported to express the 
embryonic stem cell marker Nanog and the myocardial stem cell marker Sca-1, sug-
gesting that these cells may possess pluripotent properties [26, 38]. In addition, 
cardiac TCs exhibit a distinctive miRNA signature that further differentiates them 
from other interstitial cells. In particular, at variance with cardiac fibroblasts, car-
diac TCs do not express miR-193, which has been shown to repress the expression 
of c-kit/CD117 [42]. Interestingly, this seems consistent with the evidence that car-
diac TCs display c-kit/CD117 immunopositivity either ex vivo or in vitro [30, 38, 
42]. Furthermore, miRNAs which are usually expressed by cardiomyocytes and 
other muscle cells (e.g. miR-133a, miR-208a) are undetectable in cardiac TCs [42]. 
Cultured cardiac TCs also behave differently from fibroblasts in terms of adherence, 
spreading, and extension of their cell prolongations when seeded on various matrix 
proteins [57]. Overall, these data clearly support the notion that TCs are a unique 
type of cardiac interstitial cells definitely distinct from ‘classical’ fibroblasts [58].

Although it appears that TCs represent a small fraction of interstitial cells in the 
human heart, their very long and convoluted Tps form a dynamic and extensive 
three-dimensional network within the cardiac stroma [24, 53, 55]. In addition to 
transmission electron microscopy studies, three-dimensional reconstruction of car-
diac TCs has been recently performed by focused ion beam scanning electron 
microscopy (FIB-SEM) tomography, which confirmed that these cells have very 
long, slender and flattened (ribbon-like) Tps, with humps along their length due to 
the presence of podoms [59]. FIB-SEM tomography also highlighted that TCs make 
a network in the cardiac interstitium through wide adherens junctions connecting 
Tps [59]. Moreover, TCs build a supportive network in the myocardial interstitium 
and may communicate with the surrounding cells, namely cardiomyocytes, stem/
progenitor cells, blood vessels, nerve endings, fibroblasts and immune cells 
(Fig. 16.3) [26, 55]. In particular, heterocellular connections between Tps and car-
diomyocytes consist mainly of small point junctions with electron-dense nanocon-
tacts, presumably forming a ‘functional unit’ which might help in mediating the 
electrical coupling of cardiomyocytes [26, 60–62]. Consistent with the well- 
documented spatial relationship between TCs and stem cell niches in cardiac tissue, 
different types of junctions have also been observed between cardiac TCs and car-
diac stem cells in vitro [27, 28, 63].

16 Cardiac Telocyte-Derived Exosomes in Cardiovascular Pathophysiology



244

Fig. 16.2 Identification of rat cardiac telocytes in culture. (a) Primary culture of isolated cardiac 
telocytes reveals that under phase-contrast microscopy cardiac telocytes display piriform/spindle/
triangular cell bodies and very long and slender telopodes formed by the alternation of small 
dilated segments (podoms, arrows) and thin segments (podomers, dotted line arrows). (b) Cardiac 
telocytes with unique morphology are c-kit+ and CD34+ (Adapted with permission from Zhao 
et al. [30])
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Besides intercellular contacts, paracrine signaling also plays an important role in 
the crosstalk between different cardiac cells, contributing substantially to cardiac 
physiology, responses to injury, regeneration and repair [26]. One pivotal compo-
nent of this paracrine signaling machinery is represented by different specialized 
subtypes of EVs, such as exosomes and shedding microvesicles [2, 12, 26]. Indeed, 
growing evidence indicates that both types of EVs may function as shuttles to trans-
locate genetic material (e.g. mRNAs and miRNAs) between cells over a long dis-
tance thereby modulating the gene expression and phenotype of the recipient cells 
[2, 12, 26]. In particular, recent studies demonstrated the importance of exosome- 
encased miRNAs in multiple intercellular communications within the cardiovascu-
lar system [6]. This specific exchange mechanism may be of crucial importance in 

Fig. 16.3 (a–c) Representative transmission electron micrographs of human atrial interstitium. (a, 
b) General views of human atrial interstitium showing the distribution of telocytes and their telo-
podes. (c) A telopode is enfolding a putative stem cell with very few mitochondria and numerous 
ribosomes in the cytoplasm. TC telocyte, Tp telopode, CM cardiomyocyte, E endothelial cell, P 
pericyte, N nerve ending, pSC putative stem cell, coll collagen (Adapted with permission from 
Popescu et al. [55])
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cardiac tissue regeneration and remodeling [6, 11, 26]. For instance, it has been 
shown that post-mytotic cardiomyocytes are capable to deliver miRNAs to cardiac 
stem cells promoting their differentiation [64]. Moreover, stem cell-derived exo-
somes contain cardioprotective enzymes, which may exert beneficial effects on car-
diomyocytes as demonstrated in a rat model of myocardial infarction and reperfusion 
[6, 65]. Noteworthy, it also appears that different types of TC-released EVs may act 
as important transporters for paracrine molecular signal exchange between cardiac 
TCs and cardiomyocytes or tissue-resident progenitor cells [25, 26, 33]. Using 
transmission electron microscopy and electron tomography, it could be demon-
strated that cardiac TCs in culture release at least three different types of EVs, 
namely exosomes released from intracellular endosomes, ectosomes budding 
directly from the plasma membrane, and multivesicular cargos, these latter contain-
ing tightly packaged endomembrane-bound vesicles (Fig.  16.4) [25]. Electron 
tomography further highlighted that such endomembrane vesicles are released into 
the extracellular space as a cargo enclosed by plasma membranes [25]. These differ-
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Fig. 16.4 (a) Schematic representation of the three types of extracellular vesicles released by 
cardiac telocytes, namely exosomes, ectosomes and multivesicular cargos. (b–d) Electron micros-
copy of cardiac telocytes in culture demonstrates: (b) the presence of numerous intraluminal vesi-
cles (small arrows) in two multivesicular bodies, precursors of exosomes; (c) the ectosome budding 
(arrow) from the plasma membrane of a telopode; (d) a multivesicular cargo emerging (arrow) 
from a telopode. TC telocyte, Tp telopode, mvb multivesicular bodies, m mitochondria, er endo-
plasmic reticulum, r ribosome (Adapted with permission from Fertig et al. [25])
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ent types of EVs, which are also released in situ by TCs within the cardiac tissue, 
likely represent an essential component of the intercellular signaling machinery of 
cardiac TCs and may be directly involved in the complex physiological and regen-
erative mechanisms of the heart [26]. Of note, in vitro studies have shown that the 
secretome of myocardial TCs may modulate the activity and increase the self- 
renewal capacity of cardiac stem cells [41]. Using fluorescent labeling of cells and 
EVs with calcein and Cy5-miR-21 oligos, it could be demonstrated that cardiac TCs 
deliver EVs loaded with miRNAs to cardiac stem cells [33]. Similarly, cardiac stem 
cells were found to deliver miRNA-loaded EVs to TCs, suggesting the existence of 
a reciprocal (bidirectional) post-transcriptional signaling between cardiac TCs and 
stem cells (Fig. 16.5) [33]. Collectively, the aforementioned observations support 
the notion that cardiac TCs may exert an epigenetic control over stem and progeni-
tor cells, thus contributing to the regulation of post-natal cardiac tissue homeostasis 
and renewal. Depending of the specific types of miRNAs delivered by EVs, cardiac 
TCs might contribute substantially to the local balance between quiescent and pro-
liferative states of stem cells, as well as between self-renewal and differentiation of 
putative cardiomyocyte progenitors [26, 33].

16.4  Telocytes in Cardiovascular Diseases

The infarcted myocardium experiences a loss of cardiomyocytes via ischemia- 
induced necrosis and apoptosis followed by neoangiogenesis and fibrotic changes, 
resulting into pathological tissue remodeling and, eventually, end-stage organ fail-
ure [26]. Recently, it has been demonstrated that the number of myocardial TCs is 
also dramatically decreased during heart failure due to dilated, ischemic or inflam-
matory cardiomyopathy [29, 66]. In particular, in the failing human heart TCs 
exhibit several ultrastructural degenerative changes culminating into apoptotic cell 
death [66]. It was also shown that the composition of the extracellular matrix may 
substantially influence the distribution of TCs within the cardiac interstitium [66]. 

Telocytes

Stem

MicroRNA

Extracellular vesicles

Fig. 16.5 Cardiac 
telocytes and stem cells 
exchange microRNAs by 
extracellular vesicles 
(Reproduced with 
permission from Cismaşiu 
and Popescu [33])
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Indeed, in fibrotic areas of the failing myocardium which were characterized by the 
deposition of tightly packed collagen fibers, the TCs and Tps were severely reduced 
or even almost completely undetectable. Moreover, the few remaining TCs exhib-
ited a variety of ultrastructural alterations, such as cytoplasmic vacuolization and 
shrinkage/shortening of the Tps along with the loss of the typical Tp labyrinthine 
arrangement [66]. On the contrary, in interstitial areas rich in amorphous material, 
TCs were more numerous and displayed typical morphological features and organi-
zation of Tps. As further evidenced by semiquantitative analysis, the number of 
cardiac TCs and Tps was negatively correlated to the amount of mature fibrillar 
collagens [66]. Therefore, the interstitial distribution of TCs and Tps appear to 
closely reflect any quantitative and qualitative changes in the extracellular matrix 
composition of the failing human myocardium. Of note, TCs might also be involved 
in the formation of cardiac amyloid deposits in patients with long-standing atrial 
fibrillation [67]. In particular, Tps were found to intimately surround the amyloid 
deposits, likely in the attempt to prevent their expansion in the adjacent areas of the 
cardiac interstitium [67].

The pathophysiological consequences of the TC reduction and loss in the failing 
human heart are not completely understood, but it has been proposed that such a 
severe impairment of the TC interstitial network could largely contribute to the 
disruption of the normal three-dimensional myocardial organization and complex 
intercellular signaling mechanisms [29, 66]. Besides building a supportive struc-
tural network within the myocardial stroma, in the adult heart TCs have also been 
detected in the cardiogenic niches, where they establish close communications and 
may exchange paracrine signals through EVs with the tissue-resident stem cells 
possibly acting as nursing and guiding cells [27, 28, 33]. Therefore, the extensive 
damage and reduction of TCs occurring in the failing heart may profoundly hamper 
the TC ability to maintain stem cell niches with consequent impairment and loss of 
the pool of cardiac stem cells and putative cardiomyocyte progenitors [29]. Of note, 
experimental studies in a rat model of myocardial infarction showed that TCs were 
strongly reduced in fibrotic zones of the myocardium, while exogenous transplanta-
tion of cardiac TCs in the infarcted and border zones effectively decreased the 
infarction size with significant improvement of post-infarcted cardiac function [30, 
68]. Histological analyses further revealed that a reconstruction of the stromal net-
work of TCs paralleled by an impressive reduction in tissue fibrosis occurred in the 
exogenous TC-injected myocardium [30, 68]. The aforementioned beneficial effects 
could also depend on the ability of transplanted cardiac TCs to promote the expan-
sion, recruitment and differentiation of local cardiomyocyte progenitors [26, 30, 
68]. In another study, transplantation of human induced pluripotent stem cell- 
derived mesenchymal stem cells was able to reduce myocardial infarction improv-
ing cardiac function in mice, and this positive effect was accompanied by the 
rebuilding of the interstitial network of TCs within the infarcted myocardium [69]. 
Interestingly, TCs may also behave as key players in neoangiogenesis after experi-
mental acute myocardial infarction [70]. In fact, it was demonstrated that TCs are 
markedly increased in the border zone of the infarcted myocardium during the post- 
infarction neoangiogenesis phase, with multiple Tps exhibiting numerous close 
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intercellular connections either with pre-existing or neoformed microvessels [70]. 
Besides such physical contacts, TCs may presumably contribute to neoangiognesis 
through paracrine secretion of proangiogenic factors, including VEGF, NOS2 and 
several proangiogenic miRNAs (e.g. let-7e, 10a, 21, 27b, 100, 126-3p, 130a, 143, 
155, and 503) [70].

Overall, the currently available experimental data support the possible therapeu-
tic application of exogenous TC transplantation in the treatment of cardiac diseases. 
Nevertheless, further preclinical in vivo studies and the use of in vitro cardiac tissue 
engineering will help to better decipher the specific roles exerted by TCs during 
cardiac repair and regenerative processes [53, 62]. In this context, it is worth men-
tioning that a recent study highlighted the importance of TCs in the architectural 
organization of three-dimensional engineered heart tissue [71]. Indeed, electron 
microscopy revealed that typical TCs surrounded and contacted the cardiomyocytes 
with their long Tps exhibiting cardiomyocyte nursing properties during the con-
struction of engineered heart tissue. Thus, engineered heart tissues may represent a 
very useful model system to clarify the specific functions of TCs during cardiac 
morphogenesis and post-injury regeneration [71].

16.5  The Potential Utility of Telocyte-Derived Exosomes 
in Cardiac Homeostasis, Regeneration and Repair

Exosomes seem to play a preferential role in the paracrine crosstalk between differ-
ent cardiac cells, making substantial contribution to cardiac physiology, response to 
injury, regeneration and repair [6, 11, 26]. Therefore, exosomes are now being 
increasingly investigated for their possible diagnostic and therapeutic use in cardio-
vascular diseases [6, 11, 26, 72]. Interestingly, intramyocardial delivery of stem 
cell-derived exosomes resulted in the reduction of cardiomyocyte apoptosis and 
fibrosis, stimulated neoangiogenesis, and ameliorated cardiac function after experi-
mental myocardial infarction [73–76]. In this experimental setting, the cardiopro-
tective effects of exosomes were mostly ascribed to their enriched content in a 
variety of angiogenic and anti-apoptotic miRNAs [73, 74].

Besides tissue-resident stem cell-derived exosomes, either electron microscopy 
or electron tomography studies provided direct evidence that cardiac TCs are an 
additional important source of exosomes within the heart microenvironment [25, 
26, 33]. As already mentioned, increased numbers of cardiac TCs were observed in 
the proangiogenic phase of the post-infarcted heart, with numerous secreted exo-
somes being detectable around the TC cell bodies and Tps [70]. Of note, TC-derived 
exosomes bear a cocktail of molecular signals (e.g. proangiogenic miRNAs) which 
may regulate the activity of neighboring vascular endothelial cells with consequent 
promotion of angiogenesis via an epigenetic paracrine mechanism [70]. In vitro 
studies further suggest that cardiac TCs could influence mesenchymal stem cell 
functions via exosomes [33, 41]. Considering that intramyocardial injection of car-
diac TCs showed therapeutic utility in reducing the infarction size and myocardial 
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fibrosis in rodent models, further research is required to elucidate the possible 
implication of TC-secreted exosomes in cardiac response to injury [30, 68]. An in- 
depth molecular characterization of cardiac TC-derived exosomes will also be of 
fundamental importance to decipher the TC paracrine machinery and its possible 
targeting in cardiovascular diseases. Anticipating a new avenue for potential thera-
peutic applications, TC-derived exosomes could be employed in the not-too-distant 
future as novel therapeutic nanovectors to deliver specific biological signals that 
may foster cardiomyocyte survival, cardiac neovascularization, and tissue-resident 
progenitor cell activation/differentiation to promote myocardial regeneration and 
repair [26, 72, 77].

16.6  Conclusions and Future Perspectives

Growing evidence supports a pivotal role of TCs in cardiac pathophysiology [16, 
26, 29, 47]. Among cardiac interstitial cells, TCs appear to possess the unique abil-
ity to organize a proper three-dimensional scaffold consisting of their cell bodies 
and very long and convoluted Tps, and stimulate the growth and differentiation of 
putative cardiomyocyte progenitors to build the complex multicellular architecture 
of the heart [16, 21]. In fact, due to their close spatial relationship and intimate con-
nections with other cell types, TCs are seen as ‘connecting cells’ mostly specialized 
to orchestrate the intercellular signaling mechanisms that constitute the basis for 
either a proper heart development or the maintenance of cardiac homeostasis in 
post-natal life [16, 21, 26]. In this context, recent studies have highlighted that mul-
tiple paracrine signaling effects possibly exerted by TCs in the adult heart largely 
depend on the secretion of EVs and, in particular, exosomes [2, 25, 26, 33, 41]. On 
the basis of the current knowledge, it is believed that the exogenous transplantation 
of TCs or the delivery of TC-derived exosomes might have great potential as future 
therapeutic strategies to foster cardiac regeneration and repair [26, 30, 33, 41, 68]. 
Given their biophysical properties, among the various types of EVs exosomes are 
particularly easy to isolate and their mRNA, miRNA and protein contents can be 
easily manipulated for therapeutic purposes [6]. Therefore, the possible use of exo-
somes, either natural exosomes or exosome-mimetic nanovesicles, as carriers/vec-
tors of biological or synthetic therapeutics might be a promising strategy to allow 
efficient delivery of drugs across different physiological barriers to specific target 
cells [6]. Interestingly, beneficial effects of stem cell-derived exosomes for ischemic 
myocardial tissue regeneration and repair have already been reported in different 
preclinical studies [6, 78, 79]. As far as cardiac TCs are concerned, the specific 
molecular cargo of their exosomes and the mechanisms that promote their secretion 
still require a thorough characterization. The exact biodistribution of cardiac 
TC-derived exosomes also remains to be established. Finally, whether the manipu-
lation of cardiac TC-released exosomes might represent a novel therapeutic strategy 
to counteract heart failure and other cardiovascular diseases will need to be compre-
hensively addressed in future translational studies.
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Chapter 17
Circulating Exosomes in Cardiovascular 
Diseases

Yihua Bei, Ting Chen, Daniel Dumitru Banciu, Dragos Cretoiu, 
and Junjie Xiao

17.1  Circulating Exosomes and Exosomal Cargos

Numerous studies demonstrated that exosomes in the early phase are formed into a 
structure which is regarded as a multivesicular body (MVB) through endocytic 
invagination [1, 2]. Subsequently, the MVB fuses with the cytoplasmic membrane 
and is secreted with its cargos of lipids, proteins, functional mRNAs, and microR-
NAs (miRNAs, miRs) into the extracellular environment. The Rab-family GTPases, 
Annexins, SNAREs, and Endosomal Sorting Complexes Required for Transport 
(ESCRT) associated proteins are essentially involved in the formation and secretion 
of exosomes [2, 3]. Some of the exosomes are eventually released into the circula-
tion, known as circulating exosomes [4]. Circulating exosomes could arrive in 
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distant tissues via blood circulation, thus directly communicating with target cells 
and rapidly regulating intracellular signalings.

In various physiological and pathological conditions, different patterns of pro-
teins, lipids, and non-coding RNAs such as miRNAs can be detected in the circula-
tion [5, 6]. The cell-free non-coding RNAs could be stably present in blood 
circulation via being packaged into exosomes [7]. The circulating exosomes can be 
uptaken by recipient cells, whereby transferring the composite cargos or activating 
the signaling pathways [8–11]. Particularly, the various types of cargos loaded in 
exosomes and the signaling diversity are closely related to the different tissue and 
cell types from which exosomes are originated [12–15]. Among the diverse exo-
somal cargos, miRNAs can effectively regulate the target genes and influence the 
biological functions of target cells. miRNAs are a large group of small (18–25 
nucleotides in length) noncoding RNAs that regulate target gene expressions at post 
transcriptional level [16, 17]. It has been increasingly reported that exosomal com-
ponents, especially miRNAs, play important roles in regulating cardiac function 
and protecting the heart against acute myocardial infarction (AMI) and ischemia 
reperfusion injury (IRI) [18, 19]. For example, exosomes derived from chemokine 
receptor CXCR4-overexpressing mesenchymal stem cells (MSCs) were reported to 
activate the IGF-1/PI3K/Akt signaling pathway in cardiomyocytes, thereby reduc-
ing myocardial apoptosis, promoting angiogenesis, decreasing ventricular remodel-
ing, and protecting cardiac function after MI [20]. Since it is difficult to obtain 
cardiac tissue samples from patients, detecting changes of circulating exosomes 
from peripheral blood might be useful strategy to attain information about the 
pathophysiological processes of cardiovascular diseases [21–23] as well as to guide 
the treatment for patients [24–26].

17.2  Circulating Exosomes in Cardiovascular 
Pathophysiology

Intercellular communication is one of the essential mechanisms for cells exerting 
their biological functions in all multicellular organisms. Almost all cells exchange 
messages by direct interaction or the secretion of signaling molecules. Studies have 
revealed that circulating exosomes can mediate comprehensive interactions among 
various cell types and exert biological functions by transmitting exosomal cargos to 
recipient cells [2, 27]. Exosomes were proved to be secreted from the injured heart 
and participate in cardiovascular pathophysiology [28–30]. Although real success 
has been achieved in experimental studies of exosomes in cardiovascular physiolog-
ical and pathological progresses, the molecular mechanisms remain incompletely 
understood [2, 31, 32].

Exosomes derived from cardiomyocytes are initially found under the hypoxia 
and reoxygenation condition, which may contain biological molecules such as 
HSP70 [33–35]. Likewise, exosomes function as messenger of intercellular 
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 communication among cardiomyocytes, fibroblasts, smooth muscle cells, and endo-
thelial cells, and participate in the regulation of cardiac regeneration, ventricular 
remodeling, and angiogenesis in cardiovascular diseases [31]. Due to the perfect 
peculiarity as carriers of signal molecules, circulating exosomes deliver both pro-
tective and detrimental information [36–39]. Circulating exosomes generally regu-
late cardiovascular pathophysiology, such as cardiomyocyte hypertrophy, apoptosis, 
and angiogenesis (Fig. 17.1).

17.2.1  Cardiomyocyte Hypertrophy

Various forms of stress in the heart can contribute to activate cardiac myocyte 
hypertrophy [40, 41]. The general cardiac hypertrophy is characterized by myocyte 
enlargement and the re-expression of embryonic genes. Cardiomyocyte hypertro-
phy is a common response upon the increased heart hemodynamic state (such as 
high blood pressure or valvular stenosis), myocardial injury, and neurohormonal 
stress in the compensatory period. Early compensatory cardiac hypertrophy can be 
adapted to the enhanced post-ventricular load and maintain normal cardiac output. 
However, sustained cardiac hypertrophy will eventually lead to cardiac ventricular 
dilatation, reverse remodeling, and heart failure [40].

Circulating exosomes were reported to be involved in the regulation of patho-
logical cardiac hypertrophy. Circulating exosomes loaded with miR-1 and  miR- 133a 
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Fig. 17.1 Circulating exosomes regulate cardiomyocyte hypertrophy, apoptosis, and 
angiogenesis
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were found to be significantly increased in the serum of patients with AMI [42].
miR-1 and miR-133 are preferentially expressed in skeletal muscle and cardiac tis-
sue and are involved in the pathogenesis of cardiac hypertrophy [43]. It was previ-
ously demonstrated that miR-133a via targeting RhoA, Cdc42, and NELF-A/
WHSC2, while miR-1 via targeting Ras GTPase-activating protein (RasGAP), 
Cdk9, Rheb, and fibronectin, could inhibit cardiac hypertrophy [42, 44–46].

It was previously demonstrated that fibroblast-derived exosomes enriched with 
miR-21-3p were able to induce cardiomyocyte hypertrophy via targeting SH3 domain-
containing protein 2 (SORBS2) and PDZ and LIM domain 5 (PDLIM5). Inhibition of 
miR-21-3p resulted in reduced cardiac hypertrophy in Angiotensin II-treated animals 
[47]. In addition to circulating miR-29 and miR-30 that have been identified as possi-
ble biomarkers for left ventricle hypertrophy, the relevance of circulating miR-21 in 
the diagnosis and prognosis of cardiac hypertrophy deserves further investigation [48].

17.2.2  Cardiomyocyte Apoptosis

Cardiomyocyte apoptosis is a significant issue underlying ischemic cardiac diseases 
[49], and occurs with dilated cardiomyopathy [50] and aging-related cardiac dys-
function [51]. Myocardial ischemic injury is associated with a shared characteristic 
patterns of cell death and metabolic changes which could result in irreversible myo-
cardial injury [52, 53]. Apoptosis is involved in the whole process of myocardial 
ischemic injury, which could range from the initial phase after myocardial infarc-
tion to reperfusion stage [54, 55]. However, the specific molecular mechanisms 
underlying cardiomyocyte apoptosis are not fully understood.

Inhibition of miR-155 was previously demonstrated to inhibit cardiomyocyte 
apoptosis and cardiac dysfunction in lipopolysaccharide (LPS)-treated mice, via 
targeting Pea15a. Furthermore, increased circulating miR-155 was found to be 
associated with cardiac dysfunction in sepsis patients [56]. In this regard, the 
increased circulating miRNA-155, whether packaged in circulating exosomes or 
not, deserves further investigation in sepsis-induced cardiac dysfunction [56]. 
Notably, plasma exosomes isolated from healthy human and rats were recently 
demonstrated to be able to protect against cardiomyocyte apoptosis and ischemia 
reperfusion injury, indicating that endogenous circulating exosomes at baseline 
have protective effect for the heart [57].

17.2.3  Angiogenesis

Angiogenesis is a biological process of growing new vessels from the existing vas-
cular structure and promoting endothelial cell proliferation to form vascular net-
work. Many factors, such as fibroblast growth factor (FGF) and vascular endothelial 
growth factor (VEGF) can stimulate the formation of new vessels. Exosomes were 
reported to participate in the regulation of angiogenesis which is an essential 
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process contributing to cardiac repair after injury. The CD34-positive stem cell-
derived exosomes enriched with angiogenesis-related miR-126 and miR-130a were 
found to be significantly reduced in the peripheral blood of patients with chronic 
heart failure [58]. miR-126 and miR-130a were previously reported to stimulate 
angiogenesis by down-regulating the angiogenic negative regulator SPRED1 and 
HOXA5, respectively [59–61]. SPRED1, the member of Sprouty protein family, 
blocks angiogenesis through negatively regulating the VEGF-C/VEGFR-3 signal-
ing [62]. HOXA5 also suppresses angiogenesis by upregulating the anti-angiogenic 
gene Thrombospondin-2. Besides that, HOXA5 also downregulates many pro- 
angiogenic genes including VEGFR2, Ephrin A1, HIF1alpha, and COX-2 [63].

17.3  Circulating Exosomes in Myocardial Ischemia 
Reperfusion Injury

The early reperfusion of the myocardium is considered as an important intervention 
in the treatment of myocardial ischemia which can efficiently attenuate further dam-
age to the myocardium [64]. However, some infarct areas could be expanded when 
the blood flow regains after ischemia, which is known as myocardial ischemia 
reperfusion injury (MIRI) [65]. Ultimately, MIRI can lead to ventricular remodeling 
and even progressive heart failure [66, 67]. MIRI is associated with a complexity of 
multiple pathophysiological features [68], such as calcium overload, accumulation 
of oxygen free radicals, endothelial dysfunction, immune activation, mitochondrial 
dysfunction, cardiomyocyte apoptosis and autophagy, platelet aggregation, and 
microembolization [69–74]. However, the molecular mechanisms underlying MIRI 
are not completely understood.

Circulating exosomes can be markedly altered after MIRI and may serve as extra-
cellular messengers through endocytosis, membrane fusion, and cell-receptor interac-
tion to facilitate cell-cell communication [32]. Mounting evidence has shown that 
exosomes, especially stem cell-derived exosomes, have protective effects against 
MIRI [19, 28, 75, 76]. Mesenchymal stem cell-derived exosomes were demonstrated 
to promote cardiomyocyte viability and prevent adverse remodeling after MIRI, by 
enhancing the generation of ATP, reducing oxidative stress, and activating the PI3K/
Akt pathway [28]. More interestingly, circulating exosomes isolated from healthy 
human and rats were also proved to be able to transmit signals to the heart and provide 
protective effects against MIRI [57]. The exosomes packed with HSP70, could acti-
vate Toll-like receptor 4 (TLR4) signaling and induce ERK1/2 and p38MAPK activa-
tion and subsequent HSP27 phosphorylation in cardiac myocytes (Fig. 17.2) [57]. 
Increasing evidence suggests that the activation of ERK1/2 and/or PI3K/AKT signal-
ing pathways are crucial for the cardioprotective effects [77, 78]. HSP70, a member 
of small HSP family, can be loaded in exosomes [33] and is present in the circulation 
of normal individuals [79]. Moreover, the HSPs, especially HSP27 which is abundant 
in the myocardium, can be generated upon adverse stresses (e.g. heat) thus offering 
protective effects for the heart [80]. These studies highly suggest that circulating exo-
somes may provide a promosing non-cellular approach for the treatment of MIRI.
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17.4  Circulating Exosomes in Myocardial Infarction

Myocardial infarction (MI) is occurred when the flow of oxygen-rich blood is 
blocked in a section of myocardium, which is frequently caused by atherosclerosis- 
related coronary artery luminal occlusion and plaque rupture [81]. Simultaneously, 
MI is usually associated with a dramatic decrease of myocardial contractility and 
reduction of cardiac output [82]. In addition, MI may cause arrhythmia, cardiogenic 
shock, and heart failure. In pathophysiological aspects, cardiomyocyte apoptosis 
and necrosis are the essential causes of cardiomyocyte damage and loss in MI [83]. 
In the late stage, severe MI will ultimately progress to adverse cardiac remodeling 
and heart failure [84]. In these cases, controlling excessive inflammatory response, 
inhibiting cardiomyocyte death, preventing ventricular fibrosis, and facilitating 
angiogenesis are considered as potential therapeutic strategies for improving the 
prognosis of MI patients.

It has been reported that exosomes are highly involved in the pathophysiological 
processes of MI [20, 29]. Some exosomes derived from stem cells such as embry-
onic stem cells (ESCs), mesenchymal stem cells (MSCs), and cardiac progenitor 
cells (CPCs) were proved to improve cardiac function after MI, likely by reducing 
cardiomyocyte apoptosis, inhibiting myocardial fibrosis, and promoting angiogen-
esis [75, 85, 86]. However, some exosomes may exacerbate myocardial injury after 
MI and also be associated with vascular damage and cardiovascular risk [87, 88]. 
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For example, exosomes containing HSP60, released from highly differentiated 
adult cardiomyocytes in an anoxic condition, are detrimental to cardiomyocytes 
during acute MI [34, 89]. Extracellular HSP60 was shown to cause cardiomyocyte 
apoptosis through activating TLR4 [90]. Nonetheless, HSP20 contained in circulat-
ing exosomes derived from cardiomyocytes was identified as a novel cardiokine 
which may promote myocardial neovascularization via activating vascular endothe-
lial growth factor receptor 2 (VEGFR2) after MI [91].

Intriguingly, circulating miRNAs that are changed upon MI could also be pack-
aged in the exosomes (Fig.  17.2). It was found that miR-1 and miR-208 which 
might be contained in exosomes were significantly increased in the serum of rats 
with AMI and in the urine of AMI patients [92]. Equally, the cardiac muscle-specific 
miRNAs including miR-208b and miR-499 were shown to be increased in the cir-
culation of MI patients [93, 94]. As well, circulating p53-responsive miR-192, miR-
194, and miR-34a, particularly enriched in exosomes, were significantly increased 
in the early stage of MI [95]. Notably, the miR-194 and miR-34a levels were cor-
related with left ventricle end-diastolic dimension 1 year after MI, indicating that 
circulating miR-194 and miR-34a might serve as predictors for heart failure devel-
opment in MI patients [95].

17.5  Circulating Exosomes in Other Cardiovascular Diseases

17.5.1  Atherosclerosis

Atherosclerosis, the primary cause of MI, is a chronic inflammatory-immune dis-
ease of vasculature [96]. Atherosclerosis is associated with the thickening of vessel 
walls and the formation and deposition of lipid plaques in the cerebral, aortic, and 
peripheral arteries, which can be regulated by multiple cellular and molecular 
mechanisms. It was previously reported that high shear-stress or the shear- responsive 
transcription factor Krüppel-like factor 2 (KLF2) can induce vascular endothelial 
cells to secret exosomes enriched with miR-143 and miR-145 and subsequently 
regulate the target genes such as CAMK2d and ELK1 in smooth muscle cells [97], 
thus may regulate proliferation and de-differentiation of smooth muscle cells [98]. 
In addition, extracellular vesicles derived from KLF2-expressing endothelial cells 
can attenuate atherosclerosis formation in vivo [97]. Equally important, macrophage- 
derived exosomes from both atherosclerotic plaques and the peripheral blood were 
demonstrated to participate in the development of atherosclerosis [99, 100]. The 
atherosclerotic patients have higher levels of leucocyte-derived extracellular vesi-
cles in the circulation compared to healthy participants [101]. Furthermore, the cir-
culating exosomes originated from macrophage foam cells were proved to promote 
smooth muscle cell adhesion and migration in atherosclerotic lesion through acti-
vating the ERK and AKT pathways [101].
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17.5.2  Hypertension

The renin-angiotensin system (RAS), principally composed of renin, angiotensino-
gen, angiotensin-converting enzyme (ACE), angiotensin II (Ang II), and Ang II type 
1 and type 2 receptors (AT1R and AT2R), plays key roles in the development of 
hypertension. It was previously reported that the AT1R-enriched exosomes were 
secreted from cardiomyocytes into the serum of mice undergoing cardiac pressure 
overload, thus regulating the blood pressure under hemodynamic stress [102]. 
Moreover, exogenously delivered AT1R-enriched exosomes were demonstrated to 
be uptaken by recipient cells such as smooth muscle cells and endothelial cells, 
which contributed to the regain of blood pressure response induced by Ang II in 
AT1R knockout mice [102]. Thus, the circulating exosomes containing AT1R, 
released from cardiomyocytes during pressure overload, may play important roles 
in regulating the blood pressure in detrimental conditions such as hypertension and 
heart failure.

17.5.3  Sepsis Cardiomyopathy

Sepsis cardiomyopathy is common in clinic and is predominantly caused by sys-
temic bacterial infection. Although the pathogenesis of sepsis cardiomyopathy is 
quite complex, the out-of-control immuno-inflammatory response, oxidative stress, 
cardiomyocyte apoptosis, and mitochondrial dysfunction are recognized as critical 
mechanisms. The platelet-derived extracellular vesicles isolated from septic patients 
were previously shown to induce vascular cell apoptosis through the NADPH 
oxidase- dependent release of superoxide [103]. The nitric oxide (NO) and bacterial 
toxin were proved to be positive factors for the secretion of platelet-derived exo-
somes. The circulating exosomes may further induce endothelial cell apoptosis via 
generating the peroxinitrite radical and activating Caspase 3 [104]. Further studies 
will be needed to investigate the potential of circulating exosomes and exosomal 
cargos in the diagnosis and prognosis of sepsis cardiomyopathy.

17.6  Perspective and Future Directions

Cardiovascular diseases are one of the major threats to human health [105, 106]. To 
date, a detailed understanding is available for stem cell transplantation in the treat-
ment of myocardial injury and heart failure, however, there are still many problems 
in stem cell therapy such as ethical issue, limited source, low viability in  local 
damaged myocardium, and immune rejection [107–109]. Although the induced 
pluripotent stem cells (iPSCs) are more likely to survive in the damaged myocar-
dium compared to mesenchymal stem cells (MSCs) [110], iPSCs-associated 
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tumorigenesis remains a critical issue. Initially, it is thought that stem cells can 
differentiate into cardiomyocytes and promote cardiac regeneration and repair. 
Nevertheless, subsequent detection revealed few new cardiomyocytes derived from 
transplanted stem cells, suggesting that stem cells are likely to promote the process 
of myocardial regeneration and angiogenesis by other mechanisms [111]. 
Circulating exosomes enriched with various types of bioactive molecules can be 
changed not only in the number but also in the composite cargos upon cardiac 
injury, which may influence cardiomyocyte function and contribute to cardiac 
regeneration and repair [57, 112]. In particular, compared with stem cell therapy, 
exosome-based therapeutic strategy would also decrease the risk of disordered dif-
ferentiation and tumorigenesis induced by stem cells [75, 112, 113].

Circulating exosomes can mediate local and distant cell communication through 
the horizontal transfer of their contents such as miRNAs and proteins or the activa-
tion of signaling pathways in the target cells [12, 36]. Notably, the exosomal con-
tents can be selectively enriched or modified by bioengineering, thus providing 
desirable effects in the treatment of cardiovascular diseases [114]. Moreover, given 
the particular lipid bilayer structure, exosomes can be used as a new drug carrier 
though it remains to be solved whether and how the delivered exosomes would 
reach the specific target tissues and cells to exert their biological therapeutic effects 
[115–117]. Also importantly, exosomes are naturally secreted into the extracellular 
environments, which may faultlessly overcome immunogenicity compared with 
other developed delivery devices. Last but not least, more preclinical and clinical 
studies will be needed to investigate the potential of circulating exosomes as bio-
markers for the diagnosis, risk stratification, treatment, and prognosis of cardiovas-
cular diseases [118, 119].
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Chapter 18
Therapeutic Effects of Ischemic- 
Preconditioned Exosomes in Cardiovascular 
Diseases

Shengguang Ding, Zhiqing Fan, Che Lin, Qiying Dai, Jinzhe Zhou, 
Haitao Huang, Yiming Xu, and Chongjun Zhong

18.1  Introduction

Cardiovascular disease (CVD) has been an immense health and economic burdens 
globally for years. From 2003 to 2013, death rates attributable to CVD declined 
28.8%. In the same 10-year period, the actual number of CVD deaths per year 
declined by 11.7%. Yet in 2013, CVD still accounted for 30.8% (800,937) of all 
2,596,993 deaths, or ≈1 of every 3 deaths in the United States [1].

Acute myocardial infarction (MI) as the hallmark of CVD has been considered 
as the leading cause of mortality worldwide. For now, percutaneous intervention is 
the most effective strategy to save dying myocardium. However, the reperfusion of 
acute ischemic myocardium itself is able to cause cardiomyocyte death. The 
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 underlying oxidative stress, intracellular Ca2+ overloading, rapid change in PH, 
inflammatory reaction and mitochondrial dysfunction all put the myocardium in 
danger [2]. Ischemic preconditioning (IPC) is a phenomenon that produce resis-
tance to loss of blood supply by creating intermittent short episodes of ischemia. 
Having been reviewed detailed, IPC might be a potential treatment for ischemic/
reperfusion (IR) injury [3–5]. A new concept that extracellular vesicles encompass-
ing exosomes participates in the ischemic preconditioning has been brought out [6]. 
In this chapter, we summarize the protective effects of IPC exosomes in CVD and 
the most relevant discoveries in basic science.

18.2  Ischemic Preconditioning

As early as 1990s, it was hypothesized that episodes of brief ischemia would pre-
condition the myocardium for the following ischemia. It is a strategy of creating 
brief short cycles of non-lethal ischemia-reperfusion stimulus and followed by per-
sistent ischemia. It is expected that IPC would initiate a cardioprotective phenotype 
and render the myocardium resistant to a subsequent more severe sustained isch-
emic insult. The principle is to increase the myocardium tolerance to ischemia in 
various pathways.

To prove this, an ischemic model on the dogs was created. One group was 
treated with four 5 min circumflex occlusions, each separated by 5 min of reperfu-
sion, followed by a sustained 40 min occlusion. The other group got a single 40 min 
occlusion. Results shown that preconditioned group had a limited infarct size to 
25% of that seen in the non-preconditioned group [7]. Encouraging by this, another 
similar study was carried out to testify whether this protective effect also works in 
the remote virgin myocardium. Conclusions agree with the hypothesis and imply 
that preconditioning may be mediated by factors transported throughout the heart 
during brief ischemia/reperfusion [8]. Later, several studies found that short peri-
ods of ischemia and reperfusion of a tissue can protect a distant tissue against 
subsequent ischemia [9–13]. Furthermore, a reduction in the coronary resistance 
and subsequent increase in coronary artery flow was observed in a model exposed 
to intermittent ischemic conditioning [14]. Similar results were also obtained in 
human study [15]. With these evidence, remote ischemic preconditioning (RIPC) 
has been increasingly accepted as an effective method to improve cardiac function 
after IR injury. Some studies suspected that it is opioid receptor dependent [9, 16], 
while others support that the activity of a vagal pre-ganglionic neurons is essential 
in the remote ischemic preconditioning [17]. With all the evidence, the role of 
RIPC in IR injury is strongly supported [18]. Apart from that, myocardial postcon-
ditioning has been shown to benefit in reducing myocardial infarct size [19]. In 
spite of this, disagreement still exist. Researchers have been arguing that RIPC 
does not decrease ischemia-associated mortality, nor it reduce major adverse car-
diovascular events [20].
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18.3  Mechanism of IPC

Several systems have been proven to participate in this process, including ATP- 
sensitive potassium channels, reactive oxygen species, nitric oxide and various pro-
tein kinases [21]. In an ischemic rat model, remote ischemic preconditioning (RIPC) 
group was treated with four cycles of 5 min of limb ischemia. Followed by 5 min of 
reperfusion and subjected to 45 min of sustained ischemia by occluding the left coro-
nary artery. Controlled group were treated just with 45 min of sustained artery occlu-
sion. Mitochondrial ATP-sensitive K(+) (K(ATP)) channels were identified as an 
effector mechanisms for remote preconditioning [22]. Comparable conclusion was 
also made in a study for modulation of K(ATP) channels in endothelial IPC in human 
[23]. Another well explored mechanism is the regulation of inflammatory response 
during IPC.  It has been proven that RIPC stimulus modifies human inflammatory 
gene expression, leading to cardioprotective effect due to affecting the inflammatory 
process [24]. Circulating cytokines and hypoxia induced factor-1α were found to be 
influenced as well [25]. Other factors, including oxygen radicals [26], neurotransmis-
sion [27–29], cannabinoids [30], nitric oxide synthase [31], connexin 43 phosphory-
lation [32], mitogen-activated protein kinases (MAPKs) [33], miR-144 [34] and 
phosphatidylinositol-3-kinase system [35] are all testified. However, little is known 
about the role of exosomes in IPC. Exosomes has recently been gaining attention with 
regards to its inter-cellular communication during IR injury. It contains nucleic acid 
and other important messenger factors. Understanding the underlying mechanism 
will help us understand how the heart respond to injury and stress at a deeper level.

18.4  Exosomes

Exosomes are small microvesicles (EV) that are released from late endosomal compart-
ments of cells [36]. They are 40–199-nm vesicles released during reticulocyte differentia-
tion as a consequence of multivesicular endosome fusion with the plasma membrane. 
They have been isolated from diverse body fluids, including semen, saliva, breast milk, 
amniotic fluid, ascites fluid, cerebrospinal fluid, and bile. EVs can be secreted and specifi-
cally taken up by other cells, mediating intercellular signal exchange [37]. Similarly to 
cytokines that constitute a network of communication, EVs may also exert their functions 
in a network, affecting distal organs [38]. In a study, rat’s heart was exposed to 3 × 5–5 min 
global ischemia and reperfusion or 30 min aerobic perfusion. The presence or absence of 
EVs was confirmed by dynamic light scattering, the EV marker HSP60 based on Western 
blot, and electron microscopy. It was found that IPC markedly increased EV release from 
the heart, indicating that EV is necessary for cardioprotection by RIPC [37]. mRNA 
intended for both small and large ribosomal subunits as well as mRNA coding for proteins 
involved in mitochondrial energy generation are found in the cardiomyocyte-derived EVs, 
which implies EVs might participate in some protein production in the targeted cells. 
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These EVs, proven to belong to the exosome family, could be denoted “cardiosomes”. 
Microscopic findings suggested its role in metabolism of microenvironment [39]. 
Furthermore, by introducing the exosomes from the newts to the rat’s heart tissue, new 
proliferation of the rat cardiomyocyte and improvement in its function were observed 
[40]. These evidence confirm that exosome is closely associated with cardiac restoration.

18.5  Exosomes and IPC

Ischemic preconditioning effects can be transferred to nonpreconditioned animals 
via whole blood transfusion [41] or directly cell implantation [40]. These findings 
suggested a humoral mechanism for preconditioning at a distance. Exosomes con-
tain many unique features like surface proteins/receptors, lipids, mRNAs, microR-
NAs, transcription factors and other proteins [41]. Stimulated by RIPC, exosomes 
acutely activate pro-survival kinases that rapidly prepare the heart against ischemia- 
reperfusion injury [42]. For now, it has been well established that exosome play an 
essential role in tumor and infection disease, but increasing studies proposed that it 
is also crucial for cardioprotection during IR injury.

Cells from different organ systems are able to produce exosomes and working 
actively in RIPC.

18.6  Cardiogenic Exosomes

It was discovered that human cardiomyocytes can produce exosomes-like vesicles 
via multivesicular endosome (MVE)-dependent pathway [43]. Released from the 
injured tissue, it carries signaling molecules to activate tissue repair. Isolated cardiac 
progenitor cells (CPC)-exosomes are found to express cardiac transcription factor, 
GATA4 and could be recognized by cardiac cells by H9C2. In vivo study demon-
strated that exosomes from CPC could inhibit apoptosis induced by IR injury [44]. 
Emerging evidence demonstrated that exosomes participate in RIPC-induced cardio-
protection. Coronary perfusates from preconditioned hearts contained more EVs than 
perfusates isolated from control. Correlating to the result that preconditioned group 
had smaller infarct size than the control group, it is concluded that the release of EVs 
from the heart after preconditioning stimuli is increased and that EVs are responsible 
for the transmission of remote conditioning signals for cardioprotection [37].

18.6.1  Mesenchymal Stem Cell (MSC) Derived Exosome

MSC is one type of adult stem cell that have great plasticity and has shown great 
potential for the replacement of damaged tissues such as bone, cartilage, tendon, 
and ligament [45]. In skeletal muscle, it has been proven that hypoxic precondi-
tioned murine MSC enhanced muscle regeneration [46]. MSC are emerging as an 
extremely promising therapeutic agent for tissue regeneration and repair, proven by 
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animal models [47, 48]. Exosomes have been recognized as part of MSC’s paracrine 
system that potentiates its cardioprotective effect. These exosomes carry various of 
miRNA and humoral factors to the target cells [49]. miR-22, miR-210, miR-21 and 
HIF-1α are found in exosomes isolated from preconditioned MSCs. miR-22, previ-
ously known as a critical regulator of cardiomyocyte hypertrophy and cardiac 
remodeling [50], was shown to protect ischemic hearts by targeting Mecp2 [6]. 
Preceding study established miR-210 exerts cytoprotective effects in cardiomyo-
cytes [51]. It is elucidated that miR-210 as a potent negative regulator of stem cell 
apoptosis during ischemic preconditioning downstream of HIF-1α. During ischemic 
injury, MSC acts as a major source to deliver miR-210 to protect heart tissue [52]. 
More researches looking into the clinical therapeutic effect of MSC derived exo-
somes suggested the potential for using human embryonic stem-cell derived vascu-
lar cells on rescuing peri-scar border zone in myocardial infarction [53]. On the 
other hand, in an in vitro cardiac injury model, insulin-like growth factor 1 (IGF1) 
is proven to be part of the signal pathway in exosome-mediated cardiac repair [54].

18.7  Endothelial Cell Derived Exosome

Cardiac endothelial cells could also communicate and regulate myocardium by pro-
ducing exosomes. Similarly, these exosomes are testified to have nearly twofold 
increase after preconditioning, and have more potent in reducing cardiac cell death 
[55]. What’s more, endothelial derived exosomes are found to overexpress hypoxia- 
inducible factor-1 (HIF1) and higher contents of microRNAs. These factors increase 
tolerance of cardiac progenitor cells under hypoxic stress [56].

18.8  IPC and Proteasome

Proteasome protects against ischemic injury by removing damaged proteins. It is a 
major intracellular proteolytic system which degrades oxidized and ubiquitinated 
forms of protein intracellularly. One of important mechanism of cardiac injury dur-
ing IR injury is the decrease in its function by oxidative modification and inhibition 
of fluorogenic peptide hydrolysis [57]. In recent studies, it has been proven that MSC 
derived exosomes ameliorates IR injury through proteomic complementation [58].

The combination of proteasome, ubiquitin, the ubiquitination machinery and the 
deubiquitinases, is called ubiquitin proteasome system (UPS). The major function 
of UPS is to prevent accumulation of non-functional, potentially toxic proteins. It 
contains one 20S subunit and two 19S regulatory cap units. The 20S proteasome is 
the central proteolytic structure which consists of two pairs of rings each contains 
seven subunits while the 19S subunit contains multiple ATPase active sites and 
ubiquitin binding sites. It confers selectivity for ubiquitin-conjugated proteins. 
Dysfunction of UPS was observed during IR injury, which could be one of the 
important factor contributing to the heart injury. Recent studies also revealed that 
IPC protect against ischemic injury by preserving UPS function [59]. IPC protects 
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UPS by diminishing oxidative damage to 19S regulatory subunits [60] and increas-
ing the degradation of δPKC [61]. A way to quantify the cardioprotective effect 
from IPC could be to measure the postischemic levels of oxidized and/or ubiquiti-
nated proteins. These levels could predict eventual cardiac function [62].

The 20S subunit of the UPS is found to be attached to the cell plasma membrane 
and certain observations are interpreted as to suggest that they may be released into 
the extracellular medium [63]. Once released, they are recognized as circulating 
proteasomes. Study comparing the features of circulating proteasomes with those of 
proteasomes isolated from major blood cells found out that the subtype patterns of 
the circulating ones are clearly different [64]. Circulating proteasome is related to 
cell damage. Increased serum level is seen in various autoimmune disease [65].

18.9  Exosome and Proteasome

Several studies have been done to explore the correlation between exosome and 
proteasome. Profiled by mass spectrometry and antibody array, proteasomes of exo-
somes have been found to contain 857 unique gene products. A predominant feature 
of MSC exosome proteome is the presence of α and β chain of the 20S proteasome. 
Further work was done to explore the proteomic profiling of exosome. In vivo 
mouse myocardial infarction model was created by temporarily ligation of the 
LCA. Exosomes were injected in the treatment group before reperfusion. Proteins 
in the LCA ligated area was extracted, using a cell extraction buffer. Then sequenced 
protein analysis confirm the hypothesis that 20S proteasome exists in exosomes and 
could contribute to the cardioprotective activity. The presence of 20S proteasome in 
MSC exosomes further suggested that cells extruded 20S proteasome through exo-
somes [66]. Using the exosome as a carrier, we could deliver therapeutic protea-
some specifically to different part of the organ systems.

18.10  Therapeutic Effect of Exosomes and Undetermined 
Questions

Exosomes have great impact on recipient cells. The distinct transmembrane proteins 
of exosomes directly interact with the receptors from the target cells [67]. This pro-
tein-receptor relationship makes exosomes as ideal carriers to deliver treatment or 
miRNA to specific cells. What’s more, exosomes are non-immunogenic in nature, 
and have no accumulation in the liver. Based on this, exosomes are hypothesized as 
a promising medication-carrier [68]. Also, many aspects of exosome suggested itself 
as a novel means to identify cancer biomarkers for early detection and therapeutic 
targets, and therapeutic devices to ameliorate the progression of the disease [69].

Great interest has been raising on the remedial role of exosomes in coronary 
artery disease. Both in vitro and in vivo study have proven that MSC preserve car-
diac function by paracrine system in which exosomes is fundamental. Since there is 
concern for potential tumor formation in vivo in stem cell therapy [70], the paracrine 
theory provide an alternative method for using MSC in treatment of coronary artery 
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disease. In addition, exosomes could accumulate in human atherosclerotic plaques, 
where they affect the physiologic balance [71]. The emergence of exosomes as alter-
native to cell therapy, opens a new insight into the treatment of cardiac disease. 
However, our knowledge of the transport, target cell biologic reaction and the com-
plexity of interaction of pathways in exosomes remains immature. It is highly urgent 
to determine if exosomes from plasma after IPC would be more cardioprotective.

18.11  Summary

CVD has been considered as the number one killer worldwide. Tons of researches 
have been done to look into the ischemic process and mechanisms during ischemia. 
IPC is cardioprotective. Various factors, such as inflammatory factors, miRNA and 
proteins have been proved to play a role in mediating the cardioprotective effects of 
IPC. Increasing evidence suggested that exosome, a well-known messenger in cell- to- 
cell communication, is associated with IPC-related cardioprotection. Encouraged by 
this, exosomes are testified to apply to the injured heart tissue and was found that it 
improves cardiac function. These finding brings up a possible new treatment for CVD.

Traditional management for ischemia is timely effective restoration of blood flow. 
Besides that, cell and targeted molecular therapy have gained increasing interest as 
potential therapies. Large amount of cardiomyocytes dead during ischemia. Although 
emerging evidence support that human heart has the capacity to regenerate itself [72, 
73], the endogenous proliferation rate of cardiomyocytes is too low to compensate for 
the loss of cardiomyocytes [54]. Stem cell based therapy solved this problem but still 
has its limitations, since it may also has the tumorigenic potential [70]. Based on this, 
the idea of exosome-centered therapy was developed and testified [74, 75]. However, 
more clinical studies need to be done to confirm the therapeutic effect of exosomes.
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mRNA Messenger RNA
MSC-CM MSC-derived condition medium
MSCs Mesenchymal stem cells
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nCPC Neonatal cardiac progenitor cell
nTCM Neonatal total condition medium
siRNAs Small interfering RNAs
VEGF Vascular endothelial growth factor

19.1  Introduction

According to the World Health Organization, 17.3 million deaths were caused by 
various heart diseases in 2008 and heart disease is the number one reason for death 
globally. The large number of deaths are due to cardiovascular diseases (CVDs) 
which include atherosclerotic coronary artery disease and myocardial ischemia. The 
prevalence of CVDs is projected to rise to about 40.5% of the USA population by 
2030 [1]. The prognosis of these diseases is poor despite presently available therapies. 
Therefore, intense CVDs research continues to grow with the quest of developing 
more targeted treatment options that promote the avenues of personalized medicine. 
Furthermore, early detections of functional or damage-related cardiac biomarkers are 
needed for proper diagnosis to reduce the death rates in humans. Even though there 
have been significant developments in the field of CVDs, stem cell-based therapies 
are one of the most promising approaches for improving cardiac regeneration and 
function. Recently, a number of studies reported that innovative stem cell therapies in 
patients with CVDs have proven effective in improving ventricular remodeling and 
quality of life. This increase in the number of beneficial effects further confirmed the 
therapeutic utility of stem cells in CVDs [2–5]. Although stem cell therapy is showing 
significant therapeutic benefits by forming new capillaries and cardiomyocytes 
around the infarcted zone by the transplanted cells, the major regeneration potential 
is resulted by the release of paracrine factors [6, 7]. Recent studies have revealed that 
the paracrine secretions from stem cells contained in membrane-bound nanovesicles 
called exosomes, when treated to an ischemic mouse heart, were therapeutic, and 
mimicked the beneficial effects of the parent stem cells [8–12].

Exosomes are endocytic vesicles that have been found to facilitate communica-
tion between cells [13]. They are membrane-bound nanovesicles and range between 
30–150 nm in size [14]. The electron microscopic image analysis showes many dif-
ferent sizes of mouse bone marrow mesenchymal stem cell (MSC)-derived nanoves-
icles, including exosomes (Fig. 19.1). These exosomes bud within the endosomal 
compartments internally and form intraluminal vesicles. When these vesicles fuse 
with the plasma membrane they release their contents into the extracellular fluid, but 
they are not released by plasma membrane shedding [15, 16]. Another view points 
out that exosomes are endocytic vesicles which have common proteins. These pro-
teins seem to originate from the cell cytosol and endosomal compartments, but not 
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from the endoplasmic reticulum, Golgi apparatus, mitochondria, or nucleus [17]. It 
is also thought that exosomes are derived from a conserved evolutionary process to 
allow for intercellular signaling processes [18]. More recently it has come to light 
that the cargos originally localized to the rough endoplasmic reticulum, and theoreti-
cally bound for the conventional secretory pathway, may possibly be diverted to 
unconventional pathways to generate exosomes and other extracellular vesicles [19, 
20]. A greater understanding about the basic pathways that are being followed and in 
what situations cells utilize nonconventional pathways may provide insight into how 
secretory proteins are released in the context of myocardial repair and regeneration. 
Also, exosomes have been demonstrated to contribute a minor amount of adiponec-
tin secretion from cells and were demonstrated to be released more when stimulated 
with docosahexaenoic acid [21]. Understanding the specific signaling events that 
cause exosome release is critical to study the role of exosomes in the body.

Exosomes are shown to be involved in cellular communication and the antigen 
 presentation process, suggesting its role in fundamental immunological processes 
[22, 23]. Exosome may also serves as a vector for helping to transfer genetic infor-
mation in the form of messenger RNAs (mRNAs) and microRNAs [24]. Furthermore, 
exosomes play a role in shuttling proteins from cell to cell [25]. While their function 
is not well understood, recent research indicates that exosomes play a critical role in 
modulating events such as inflammatory processes. Due to their cargos and carrying 
capacity to tissues, exosomes may have vast application in therapy. The therapeutic 
use of stem cells raises concerns regarding undesirable proliferative cells that are 
not relevant for the disease. In this context, stem cell-derived exosomes are 

Fig. 19.1 Electron microscopic image of exosomes and nanovesicles derived from MSCs. The image 
shows many nanovesicles, including exosomes in LPS-induced mouse bone marrow derived MSCs 
Exosomes are less than 120 μm size and indicated in white arrows, magnification 10,000 times
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 considered as a major emerging tool for curing many diseases including CVDs. 
There are several avenues that have been explored related to the role of exosomes in 
cardiovascular health. This report gives a brief overview of topics that have been 
studied in relation to exosomes in cardiovascular research, and then to more broadly 
discuss the future of exosomes in cardiovascular therapy.

19.2  Exosomes and Their Composition

The inner contents of exosomes are varying among different cell types. Exosomes 
have been found to carry a variety of important biological molecules, including lipids, 
proteins, mRNAs, non-coding RNAs, and rarely DNA out of cells and into other areas 
[26, 27]. The important proteins are cytoskeletal proteins, metabolic enzymes, pro-
teins involved in microvesicular body (MVB) formation, synuclein, flotillin and heat 
shock proteins (HSP). Apart from important lipids such as sphingomyelin, phosphati-
dylcholine, phosphatidylserine and phosphatidylinositol, they also contain mRNAs, 
microRNAs (miRNAs) and other noncoding RNAs [15]. The non-coding RNAs are 
involved in post-transcriptional regulation [28], and some miRNAs are carried within 
the exosomes [29]. Exosomes have been shown to have roles in both paracrine and 
endocrine mechanisms [30]. Recent studies have demonstrated that circulating miR-
NAs may be utilized as biomarkers for early detection of many diseases, including 
CVDs, cancers, diabetes and kidney diseases [18, 27]. Moreover, these miRNAs are 
often protected from degradation by being packaged inside the membrane bound 
microvesicles [26]. Studies have proven that miRNAs are found abundantly in micro 
vesicles and they are released by different types of cells [31, 32]. miRNAs containing 
exosomes are described as great biomarkers for diseases. Recent studies have shown 
that the miRNAs are considered as a key modulator of lung and cardiovascular dis-
eases [33]. miRNAs specific knockdown studies have shown its involvement in vari-
ous diseases. In many conditions, miRNAs are aberrantly expressed, demonstrating 
either up regulation or down regulation depending on the physiological state of the 
cells. Understanding the roles of these molecular modulators and the signaling path-
ways with their target genes is a great challenge in future research.

19.3  Exosomes Derived from Different Types of Cells

Comparing the utility of different types of stem cells will be useful in future research. 
It has been shown that the physicochemical and pharmacokinetic, characteristics of 
exosomes may be different in different cell types [34]. There is little known about the 
utility and benefits of exosomes from different MSC sources. There has been evi-
dence that the source and culture conditions of the exosomes derived from stem cells 
can modulate the regenerative potential. Studies have shown that bioactive paracrine 
factors secreted by the transplanted cells may potentially influence inflammation, 
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cytoprotection, neovascularization, fibrosis, contractility and regeneration of new 
cell formation, thereby improving cardiac function after injury [35, 36]. These out-
comes may vary depending upon the cell types used for the treatment.

19.3.1  Exosomes from Induced Pluripotent Stem Cells (iPSCs)

Like embryonic stem cells (ESCs), iPSCs have the ability to proliferate and differ-
entiate into any type of cell in our body regardless of the parent cells. Studies have 
shown that exosomes from ESCs promote cardiac repair and enhance heart function 
after acute myocardial ischemia [37]. Similarly, iPSC-derived exosomes and their 
content have recently been investigated. It has been shown that iPSC-derived exo-
somal contents are beneficial for wound repair and reduce fibrosis [38], provide 
protective effects on the injured myocardium [39] and attenuate limb ischemia by 
promoting angiogenesis [40]. In addition, promising results from iPSC derived 
microvesicles suggest that they are useful for differentiating cardiac derived MSC 
into cardiac and endothelial cells [41] and also in maintaining iPSC pluripotency 
[42]. These studies suggest that iPSC-derived exosomes are good for treating degen-
erative diseases and also useful for differentiating purpose.

19.3.2  Exosomes from Adult Cardiomyocytes and iPSC- 
Derived Cardiomyocytes

Discovery of the heart as a self-renewing organ capable of supporting limited cell 
replacement under pathological insult has altered the prevalent view of cardiac med-
icine. Studies have shown that iPSC-derived cardiomyocytes attenuate cardiac injury 
and regain cardiac function in acute myocardial infarction (MI) models [43–46]. 
Another study also has shown that the transplantation of cardiac progenitors derived 
from epigenetically modified bone marrow derived progenitor cells into infarcted 
mouse hearts significantly improved left ventricular function that was coupled to 
differentiation of the injected cells into cardiomyocytes and endothelial cells at sites 
of transplantation [47]. Recently, cell-free therapeutic approaches using stem cell- 
derived exosomes have been shown to successfully augment cardiac function by 
multiple means, such as reducing fibrosis, increasing angiogenesis and augmenting 
endogenous repair processes [8, 37, 48]. Moreover, transplantation of induced car-
diomyocytes generated from human placenta amniotic MSCs have been shown to 
improve cardiac function and repair the injured cardiac tissues after MI.  Similar 
kinds of benefits also have been noticed when human placenta amniotic MSCs 
induced cardiomyocytes-derived exosomes were used for post MI therapy [49, 50]. 
A study noted that when human iPSC-derived cardiomyocytes and neonatal rat ven-
tricular myocytes were treated with serum from pediatric patients with dilated 
 cardiomyopathy, there was an induction of pathological change in the normal 
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cardiomyocytes exposed to patient serum but not the control cells. More specifically, 
exosomes from the serum of dilated cardiomyopathy patients induced pathological 
changes in the normal cells [51]. Additionally, cardiomyocyte-derived exosomes 
have been shown to be a part of glucose transport in the form of glucose transporters 
and glycolytic enzymes, making these exosomes a portion of the cardio- endothelial 
communication system [52]. Thus, exosomes could be purified from a variety of 
cardiovascular disease states and examined to see their role in modulating gene 
expression of healthy cells to understand more about the disease pathogenesis and 
target for therapy. Overall, the exosomes derived from iPSC- derived cardiomyocytes 
has better therapeutic potential for cardiac related diseases when compared to the 
exosomes from other cell types. The beneficial effects of this novel cell-free approach 
in the cardiac regenerative medicine field remains to be further determined.

In addition to the MSCs discussed, there are also tissue-specific stem cells such as 
cardiac progenitor cells and other fetal stem cells. With the growth of the stem cell 
field, there is room now to ask how exosomes related to different kinds of mesenchy-
mal stem cells may be used either therapeutically or as biomarkers. The question of 
how exosomes from other branches play a role in the future of cardiovascular therapy. 
Human cardiospheres have been put forward as having multipotent stem and progeni-
tor cell potential [53]. These have been demonstrated to have primitive cells and 
committed progenitors for cardiomyocytes, endothelial cells, and smooth muscle 
cells. These cardiosphere-derived cells have been demonstrated to secrete a variety of 
components, including exosomes, in the case of myocardial infarction [54]. This was 
accomplished via the modulation of macrophage polarization. While the study 
focused on the role of YRNA in the modulation of interleukin-10 (IL-10) protein 
secretion, the study highlights the fact that better understanding the way exosomes 
from different types of stem cells interact with other organelles, may provide novel 
ways to manipulate pathogenesis such as that related to myocardial infarction [54]. 
Transplantation of exosomes are involved in protection against cancer, autoimmune, 
vascular damage, regenerative therapy for brain, heart, liver, kidney and lungs isch-
emic injury and infectious diseases (Fig. 19.2).

Exosome Therapy

Neurological

Kidney Injury

Vascular

Infectious

Degenerative

Autoimmune

Neoplastic

Myocardial Ischemia

Fig. 19.2 Therapeutic potential of exosomes on different types of diseases. Transplantation of 
exosomes are involved in protection against cancer, autoimmune, infectious diseases, vascular 
damages, regenerative therapy for brain, heart, liver, kidney and lung ischemic injuries
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19.3.3  Exosomes from MSCs

MSCs are adult multipotent cells that have been identified in various adult tissues, 
including adipose tissue, in dental pulp, placenta, umbilical cord blood, amniotic 
fluid, umbilical cord Wharton’s jelly and the brain [14, 25, 55–59]. MSCs are most 
widely being used stem cells in clinical trials for cardiac diseases. It has been shown 
that intravenous and intracoronary treatment with MSC-derived condition medium 
(MSC-CM) showed significant reduction in infarct size in porcine myocardial isch-
emia and reperfusion model [60]. Moreover, the administration of purified exo-
somes from the MSC-CM revealed cardioprotection in the mouse MI injury model 
[61]. Therapeutic potential of MSCs has been studied both animals and human 
patients indicating its therapeutic efficiency in a variety of diseases [62, 63]. Among 
these MSCs, the use of umbilical cord derived MSCs is promising due to its nonin-
vasive isolation and proliferative and immunomodulatory properties [48, 64]. 
Studies have provides and analyzed the therapeutic benefit of transplantation of 
exosomes from endometrium-derived MSCs (EnMSCs), human bone marrow- 
derived MSCs (BMMSCs) or adipose-derived MSCs (AdMSCs) on the rat myocar-
dium after myocardial infarction [59]. The results indicated a greater protection of 
myocardial tissue by the exosomes derived from EnMSCs compared to BMMSCs 
or AdMSCs. These beneficial effects may be due to miR-21 from secreted exosomes 
from EnMSCs compared to the other types of MSCs [59]. This is one of few studies 
that compare different origins of MSC-derived exosomes and provide better under-
standing of future therapeutic efforts. Another study focused specifically on adipose 
stem-cell (ASC) derived nanovesicles used to study the possible therapeutic options 
in emphysema [57].

Thus, there is room not only to further compare the different stem cells sources 
in regenerative attempts compared to exosomes from those stem cell sources, but 
also to do even more detailed studies about the subtypes of these additional stem 
cell sources. For example, one study found that MSC-derived exosomes provided 
superior effectiveness in repairing infarcted heart models when compared to MSCs 
alone by modulating specific miRNA expression profiles [65]. This type of com-
parative analysis would be beneficial with other types of stem cell sources as well. 
Another group demonstrated the importance of the role of exosomes from cardio-
myocyte progenitor cells and mesenchymal stem cells in vessel formation and 
angiogenesis and how this is largely via their modulation of extracellular matrix 
metalloproteinase inducer [66].

19.4  Exosomes in Drug Delivery System

Drug delivery systems such as liposomes and polymeric nanoparticles have been 
used to deliver drugs like anti-cancer drugs, anti-fungal drugs and analgesics [67]. 
However, these systems have their own limitations such as immunogenicity, 
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stability, toxicity, biocompatibility and safety [68, 69]. Exosomes are considered as 
a useful drug carrier because of overcoming the limitations observed by the lipo-
somes and polymeric delivery systems. Research has been done on the therapeutic 
advantages of exosomes being used as vehicles for drug delivery. It has been shown 
that exosomes are employed to deliver small molecules such as curcumin, doxyru-
bicin for the anti-inflammatory and anti-cancer effects, respectively [70, 71].

Studies have shown that exosomes are being used for nucleic acid delivery such 
as small interfering RNAs (siRNAs) and miRNAs [72, 73]. There have been varying 
attempts to use the exosomes as delivery agents of the siRNAs. siRNAs have been 
promoted as potential cancer therapeutics, however, pose the issue of being degraded 
rapidly [74]. While research has been conducted on the therapeutic advantages of 
exosomes in areas such as cancer research [75], little research has been done on 
using exosomes as drug delivery vehicles for cardiovascular disease. Relating to 
cardiovascular health, it has been noted that using stents in combination with deliver-
ing DNA, siRNA or miRNA, instead of the conventional use of anti-inflammatory 
and anti-thrombotic drugs may be beneficial to preventing plaque formation at the 
site of the stent [76]. Thus, there should be greater exploration of the utility of exo-
somes as a drug delivery system because of size and nature’s own biological mole-
cules. There are many hurdles and challenges existing for the use of exosomes as a 
safe, therapeutic drug delivery system in terms of drug loading and assembly. There 
are concerns about the exosomes from donor origin eliciting unwanted immune reac-
tions. These immune reactions can be overcome by using autologous exosomes.

19.5  Exosomes and Gene Therapy

Studies have shown that exosomes have been used as a therapeutic delivery system 
of genetic materials that improve gene expression in certain diseases. Unlike other 
vectors, exosomes have been shown to have several advantages for gene delivery. 
These exosomes are a cell-free natural system capable of ferrying mRNA and miR-
NAs between cells. The membrane-bound inner contents of exosomes are protected 
from cellular digestion and easily taken up by the target cells. Studies have shown 
that use of exosomes as a delivery vehicle for exogenous siRNAs into the recipient 
cells has been successful. The combination of exosomes with siRNAs technology is 
a reliable and promising strategy to control tumor growth [77–79]. This technology 
has been used for modulating the target genes for therapy [77, 80]. Recently, it has 
been shown that exosome-associated adeno-associated virus can serve as an effec-
tive vector to deliver transgenes and rescue hearing in mouse models with heredi-
tary deafness [81]. Thus, there is potential to use exosomes as vectors in battling 
hereditary diseases.

Recently, with the notion of extracellular vesicles as carriers for biological thera-
peutics, exosome mimetics has been created with the help of natural exosomes and 
liposomes through the biological engineering technology [82, 83]. It is more likely 
that exosomes can be targeted to specific tissues, such as cardiac tissues and other 
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tissues. One study found that tetherin along with glycosylphosphatidylinositol- 
anchor was found to be a critical component of the exosomes that was responsible 
for appropriate interactions with the target tissues [84]. A greater understanding of 
the specific molecules on the surface of exosomes that promote interactions in a tis-
sue specific way is critical for the potential use of exosomes as a future drug- delivery 
vehicle. Cardiac amyloidosis has been studied as a model to pursue gene therapy 
using siRNAs and antisense oligonucleotides to treat cardiac related pathologies 
[85]. These studies suggest that exosomes and exosome mimetics are the important 
biological tool for treating various types of diseases.

19.6  Exosomes as Biomarkers

Exosomes also may play a role in the future as a biomarker for cardiovascular 
injury. Biomarkers are useful in evaluating normal biological and pathogenic pro-
cesses, and also to evaluate in response to therapeutic intervention [86]. Studies 
have indicated that different types of diabetes demonstrate different exosomal bio-
molecules. This was discussed in context of how blood-based exosomal markers 
could be used to measure the progression of various types of diabetes [86]. Studies 
pointed to the fact that miRNAs that often undergo degradation can be considered 
as potential markers to examine endothelial regeneration or circulate in fibroblast- 
derived exosomes to target cardiac cells [87]. Related to myocardial infarction, it 
has been noted that after a myocardial infarction, exosomes are the key communica-
tor for cardiac repair and monitoring these exosomes may serve as diagnostic and 
prognostic indicators [88]. Furthermore, there has been an association described 
between ficolin-3 isolated from microparticles obtained from activated platelets and 
the abdominal aortic aneurysm (AAA). AAA is often deadly because they are often 
asymptomatic for long periods of time. Increased ficolin-3 levels are associated 
with the presence of AAA and progression [89]. More recently, the roles of exo-
somal miRNAs have been reported and considered as diagnostic biomarkers for 
lung cancer, ovarian cancer, and cardiovascular diseases [56, 90]. The exosomes 
containing miRNA-21 and miRNA-146a, are up regulated in cervical cancers, and 
are considered as potential novel biomarkers for cervical cancer diagnosis [91]. 
miRNA-208a is identified and determined as a potential marker for the early stage 
of myocardial infarction. Dysfunctional endothelial cells released microvesicles 
and it is a kind of biomarker for endothelial damage [92]. A recent study has shown 
that the heart can have damage directly to the myocardium by myocardial infarc-
tion, and also face damage due to cardiotoxicity from chemotherapeutic agents [93]. 
There may be differences in the exosome expression based on the etiology underly-
ing the cardiovascular disease and research. These studies suggest that the exosome 
cargo varies depending on the health status of the cell of origin. Thus, exosomes can 
serve as a biomarker for health status. It would be beneficial for future studies to 
focus on comparing these differences in etiology and targeting the important mole-
cules that are abundantly present in the exosomes.
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19.7  Exosomes in Modulating Immunity

Studies have shown the role of exosomes in inducing an antigen specific response 
restricted to major histocompatibility complex of T-cells [94]. Dendritic cells are 
key antigen presenting cells involved in immune and inflammatory function. They 
work to capture antigens and present these to lymphoid organs, utilizing cytokines 
as the stimulatory molecules to differentiate T cells [95]. Studies have demonstrated 
that dendritic cell-derived exosomes can stimulate an immune response by activat-
ing naïve T lymphocytes both in vivo and in vitro [17]. Many facets of cardiovascu-
lar disease such as atherosclerosis and cardiac ischemia are modulated by the 
immune response [96, 97]. Furthermore, modulation of immunity via exosomes has 
also been shown to play a role in tumor growth [98]. Understanding the link between 
exosomes, tumor growth, inflammation and immunity may reveal the exact mecha-
nisms by which exosomes can be protective or pathogenic. One study noted that 
exosomes derived from human amniotic epithelial cells have positive effects on 
scarless wound healing [99]. This study demonstrates the critical role that exosomes 
play in modulating the inflammatory response that leads to scars. Thus, the modula-
tion of the immune response with exosomes provides an avenue for further explora-
tion in finding therapeutic options in CVDs and many other diseases.

19.8  Exosome Involvement in Systemic and Pulmonary 
Hypertension

Hypertension is a critical risk factor related to cardiovascular disease. Exosomes 
from macrophages were found to induce inflammatory factors in endothelial cells on 
hypertensive rat models. Under hypertension induced conditions in rats via continu-
ous Angiotensin II infusion, exosomes increased expression of intracellular adhesion 
molecule-1 and plasminogen activator inhibitor-1 in human coronary artery endothe-
lial cells. The results demonstrated that inflammatory processes related to hyperten-
sion are in some ways modulated by macrophage-derived exosomes. This area of 
research provides potential for modulation in the control of hypertension [100]. It 
has been shown that MSC-derived exosomes mediate the cryoprotective beneficial 
effect on hypoxia-induced pulmonary hypertension. In this study, they identified that 
miRNA-17 family of miRNAs are the key effector for MSC paracrine function [101].

Pulmonary hypertension is an affliction of high blood pressure within the transport 
of blood to and from the lung and is associated with various types of cardiac malfunc-
tions [102]. MSC-derived exosomes contributed to the prevention of hypoxic signaling. 
Monocyte chemoattractant protein-1 (MCP-1) and hypoxia- induced mitogenic factor 
(HIMF)/found in inflammatory zone-1 (FIZZ1), along with other pro-inflammatory 
mediators, are upregulated in hypoxia and have been shown to contribute to pulmonary 
hypertension development in animal models and in humans. MCP-1 contributed to be 
thickening of arterioles within the pulmonary system, and HIMF/FIZZ1 was a marker 
for activated macrophages. It was demonstrated that the administration of MSC-derived 
exosomes modulated the MCP-1 and HIMF/FIZZ1 responses. This was associated 
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with a deterrence of pulmonary hypertension. Furthermore, IL6 which generally acti-
vates STAT3 was also reduced [25]. This study demonstrates that exosome research can 
propel forward therapeutic options related to pulmonary hypertension.

19.9  Exosomes in Cardiovascular Diseases

Early research has been conducted studying the role of exosomes in varying cardio-
vascular disease processes, some of which are mentioned above. However, there is 
much left to be discovered. Every facet discussed can be analyzed for etiologies of 
cardiovascular disease rooted in vascular, infectious, neoplastic, degenerative, iatro-
genic, congenital, autoimmune, traumatic, and endocrine or metabolic origins. 
Studies have shown that the survivors of acute MI eventually develop chronic heart 
failure, and there are an estimated over five million cases in the United States alone 
[103]. Stem cell therapy has emerged as a promising therapeutic tool for the treat-
ment of acute or chronic MI. However, an ideal stem cell source remains elusive, 
and they have drawbacks such as limited engraftments and differentiation potential, 
ethical issues, immunologic incompatibility, or teratoma formation [104–107]. 
Several studies suggested MSC-derived exosomes, which promote angiogenesis 
activity, but therapeutic mechanism of MSC-exosomes on an ischemic heart is 
unclear. It has been recently reported that the role of human bone marrow MSCs 
derived extracellular vesicles promoted angiogenesis in a rat myocardial infarction 
model [108]. This study suggests that extracellular vesicles contain some of the 
important bioactive factors to induce protection against myocardial infarction and 
promote angiogenesis.

Growing evidence indicates that the protective and regenerative angiogenic 
effects of several stem cell therapies have been attributed to the paracrine actions in 
many CVDs [109]. miRNA containing exosomes have been reported in a variety of 
cell types, including vascular cells, cardiomyocytes, cardiac fibroblasts and cardiac 
progenitors [110]. One study analyzed patients with aortic stenosis who also had 
left ventricular hypertrophy undergoing aortic valve replacement. Upon examina-
tion, the study found that pericardial fluid-derived exosomes and their miRNAs pro-
tected myocardial tissue in times of ischemia by promoting angiogenesis both 
in vitro and in vivo. Overall, these data suggest that perivascular fluid derived exo-
somes orchestrate aortic vascular repair [110]. Vascular endothelial growth factor 
(VEGF) induces angiogenesis and has been found to be useful for stem cell based 
treatments. In an in vivo study, an inducible VEGF secreting MSCs that controls the 
expression of VEGF seeding onto a cardiac patch significantly improved the left 
ventricular ejection fraction and fractional shortening in a rat MI model upon VEGF 
activation. Moreover, the controlled usage of VEGF has been found to improve stem 
cell based therapeutic efficacy in myocardial infarction in animal models [111]. 
This study demonstrates that the VEGF-secreting stem cell system is an effective 
therapeutic approach for the myocardial ischemia. In addition, when exosomes 
derived from Akt-overexpressing MSCs were placed into an acute myocardial 
infarction model, improved cardiac function was noted with an enhanced endothe-
lial cell proliferation, migration, and tube like structure formation. Furthermore, 
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platelet derived growth factor-D was found to be upregulated which is responsible 
for AKT mediated angiogenesis [112]. Another study which implicated the interac-
tion of MiR-15b-5p and AKT3  in describing potential pathogenesis of collateral 
artery formation, found that an injection of Chol-AKT3-siRNA induced an AKT3 
deficiency which helped to promote blood recovery in an ischemic heart model 
[113]. Another risk factor for heart disease is hyperlipidemia and miRNAs involved 
with exosomes may be implicated in hyperlipidemia and the progression of athero-
sclerosis [114]. Understanding the role of exosomes more clearly in terms of risk 
factors is critical. These types of studies indicate exosomes may provide novel tar-
gets in therapeutic treatment of risk factors for cardiovascular diseases. These stud-
ies documented that exosomes are the potential therapeutic biomolecules that can 
be used for regulating the pathological conditions of ischemic injury.

Pu et al., have attempted to understand how ASCs and their derivatives can affect 
ischemia/reperfusion related to flap necrosis [58]. Cardiovascular research can be pro-
pelled forward by more fully investigating how the content of exosomes from various 
cardiovascular tissues in normal states and in different disease states differ from one 
another. This brings about important questions of whether endocardium, myocardium, 
and pericardium may interact with different exosomes. Evidence demonstrates that 
epicardial progenitor cells, and more specifically the pericardial fluid, interacted with 
exosomes in a way that was potentially protective in the case of infarction [115]. This 
suggests that specific parts of the heart should be analyzed both individually and col-
lectively when discussing the modulation of phenotypes based on exosomes (Fig. 19.3).

There is a lack of consensus on the most dependable route for exosome isolation 
from any given source. Thus, another avenue that needs exploration is to establish a 
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reliable universal protocol for exosome purification and analysis [116]. There are 
studies that suggest that using specific types of isolation techniques can promote or 
inhibit certain factors. One study demonstrated that secreted extracellular vesicles 
(EVs) derived from umbilical cord MSCs when isolated by size-exclusion 
 chromatography (SEC) had higher immunosuppressive effect when compared to non-
 EV fraction or when less purified EV fractions were utilized [117]. In contrast, a 
recent study has shown that treatment of post MI with neonatal total condition medium 
(nTCM) showed significantly higher functional benefits when compared with neona-
tal cardiac progenitor cell (nCPC) derived exosomes [118]. The superior beneficial 
effect observed in nTCM is because of harboring multiple biological factors such as 
proteins, mRNAs, extracellular vesicles and exosomes. Further studies are needed to 
delineate the importance of purified exosomes and total conditioned medium. Thus, 
understanding the immunosuppressive factors that are abundantly present in exo-
somes based on the cell types and isolation protocol for the therapeutic exosome 
usage needs to be uncovered. Another study found that when comparing exosome 
preparations from plasma and urine of healthy people and oncological disease patients, 
the blood was found to contain the highest level of non-vesicle contaminants which 
were similar in size to the exosomes [119]. To overcome these drawbacks from natural 
exosomes, a recent study has shown that artificial nanovesicles generated from ASC 
has similar beneficial effects to the natural nanovesicles derived from ASCs [57]. 
Additional work may also be completed in classifying specific types of exosomes and 
their contents based on their biological function within the body. Exosomal miRNAs 
from adipose have recently been classified as a form of adipokine [120]. Extracellular 
vesicles can play a role in cell-cell communication between macrophage foam cells 
and vascular smooth muscle cells (VSMCs) in atherosclerotic lesion. Moreover, 
authors also found that foam cell-derived EVs from macrophage could enter the 
VSMC and transfer integrins to the surface of these cells [121]. This study suggests 
that one can consider the fact that artificial nanovesicles (exosome mimics) may have 
economic and other purification advantages for the future therapeutic purpose.

It is also of vital importance to improve purification techniques if there ever reaches 
a time where there are further attempts to use exosomes as drug delivery vessels. One 
novel mechanism to detect exosomes is via digital detection by Single Particle 
Interferometric Reflectance Imaging Sensor [122]. These kinds of advancements are 
of high importance if exosomes are going to serve as a novel mechanism to understand 
and treat cardiovascular disease. There is vast room for growth in finding markers that 
determine prognosis in a broad range of cardiac dysfunctions. Work should be con-
ducted to further improve the sensitivity and specificity of these types of modalities.

19.10  Exosomes in Other Diseases

A greater understanding of exosome interactions from different organelles may pro-
vide a greater overall understanding of the mechanisms and identify new targets for 
future therapy. This also means that the research needs to be conducted in an interdis-
ciplinary manner, focusing, on exosomes at different disease states. While analyzing 

19 Exosomes: Outlook for Future Cell-Free Cardiovascular Disease Therapy



298

exosomes from an interdisciplinary standpoint, a recent finding suggested that uri-
nary exosomal activating transcriptional factor-3 may serve as a diagnostic marker 
for acute kidney injury in the case of sepsis [123]. Similarly, there is little information 
on the progression of sepsis-induced Takotsubo cardiomyopathy [124]. This disease 
could be studied further to see any specific markers exist to identify this disease.

One example is the use of exosomal miRNAs in determining prognosis of mul-
tiple myelomas [125]. Another study showed that the exosomes derived from 
Alzheimer’s patients have increased amount of amyloid beta 42 and the exosomes 
from prion disease patients have the abundant amount of prion proteins being trans-
ported [12]. Research related to traumatic cardiac damage such as that seen in cases 
of motor vehicle collisions or gunshot wounds may also benefit from exploring the 
utility of exosomes. It has been demonstrated that when traumatic brain injury rat 
models were given intravenous MSC-derived exosomes, there was an improvement 
of neuroplasticity and neurological recovery [126]. In a similar way, perhaps trau-
matic cardiac pathologies could benefit from examining the utility of exosomes to 
improve patient outcomes. Not only this, but exosomes provide a novel way to 
understand unknown mechanisms underlying a huge variety of cardiovascular 
injury. One study depicted how this could be done by using exosomes and HL-60 
cells to demonstrate how miRNA-mRNA networks underlie the toxicity of toluene, 
a substance toxic to many systems of the body, including the cardiovascular system 
[127]. These different types of materials available in the exosomes serve as a cargo 
to communicate the status of the disease type as well as to treat the diseased condi-
tion. Using exosomes to learn mechanisms of disease should be further explored.

Recent work has suggested that the exosomes from specific tumor cells have 
certain functional miRNA that may promote their growth [13]. Studies have shown 
that the miRNAs present in the serum exosome is considered as a promising poten-
tial biomarker for cancer [128–130]. Tumor derived exosomes which are found in 
the plasma could be a good biomarker for cancers [131].

It has been reported that the placenta releases exosomes and that the total number 
of exosomes can be higher when there are complications during pregnancy. 
Furthermore, maternal body mass index was reported to influence the variability of 
exosomes from the placenta during pregnancy [132]. Another study pointed to the 
fact that placenta-derived exosomes may serve as a marker for gestational diabetes 
mellitus in early pregnancy [133]. It has been noted that gestational diabetes may 
cause harm to the child prior to its birth with fetal autonomic nervous system poten-
tially altered by maternal gestational diabetes [134]. It was also found that maternal 
exosomal miRNA from mice with gestational diabetes were different than those 
without gestational diabetes, and also found that these exosomes could cross the 
placenta barrier and infiltrate cardiac tissues [55]. Thus, an area of cardiovascular 
research should focus on how exosomes may play roles in impacting fetuses’ future 
cardiovascular health. There is room to study how the release of exosomes from the 
mother may be different during pregnancy, what factors may reach the fetus, how 
the exosomes may impact the fetus, and the type of exosomes the fetus may release 
in various conditions including in normal and in times of stress. Furthermore, CVDs 
can look to the way other fields have utilized exosomes as prognostic indicators.
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19.11  Summary

Beneficial effects of exosomes derived from different stem cell types in cardiac regen-
eration have recently unfolded (Fig. 19.4). Growing evidence suggests that exosomes 
are intercellular communicators and carry signals to distant places during disease 
progression and prevention. Exosomes, unlike cells, need not to be viable to be func-
tional. Exosomes possess many membrane adhesion proteins for efficient binding and 
retention in the target tissues. Furthermore, they have a resistant membrane that helps 
for long-term storage and high self-life period which will be an advantage for multi-
ple transplantation options for cardiovascular disease patients. The cell-free exosome 
size and nature’s own biological molecules have the capacity to evade the macro-
phagic degradation and circulate all over the body to perform its function. However, 
the utility of exosomes in the field of regenerative medicine is currently at infancy due 
to an inadequate understanding of the nature of exosomes, making it unpredictable 
for long-term therapeutic safety. Currently, the exosome field faces many problems 
beginning from lack of optimal isolation procedure to at the end of transplantation 
stage. The low quantities of exosomes from the isolation method and the clinical drug 
approval is expensive. One main concern that remains in the field is due to heteroge-
neous content present. Another concern is minimal human leukocyte antigen present 
in the membrane may show immunogenicity effects to the recipients. In the future, 
one may consider personalized exosome mimetics that have the ability to overcome 
the unwanted immune reaction.
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19.12  Conclusion

Although, there are a few drawbacks that exist with stem cell-derived exosomes, 
they have shown great promises in cell-free application in regenerative medicine. 
Many avenues are open for exploration towards developing novel methods of manu-
facturing pure populations of exosomes. Once these problems are resolved, the exo-
somes will have the potential to change the sphere of cardiovascular research and 
eventually therapeutic interventions in cardiovascular disease.
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