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PREFACE TO THE THIRD EDITION, REVISED

A considerable number of typographical errors in the 2nd Edition have been
corrected. A few of the more recent literature citations have been brought up
to date. Some minor expository improvements have been inserted.

A symmetry of the book has been completed by the addition of Fifth and
Sixth Pauses in Chapter 3. This new material supplements and follows
Appendices A and B, respectively, with treatments of hyperbolic conservations
laws (Riemann problem) and shock capturing methods (e.g., Godunov
schemes). Both topics are of high current research interest.

This 3rd Edition conforms essentially to the Japanese Edition: Applied
Partial Differential Equations, Vol. 1 (1991), Vol. 2 (1992), Kaigai
Publications, Ltd., Tokyo (in Japanese).

For the present Dover Edition further typographical errors have been cor-
rected. Some bibliographical citations have been updated or augmented. An
added Epilogue treats distribution equations, semiconductor device equations,
and financial derivatives equations.

A NOTE TO THE READER

We have followed a pedagogical style of . . . once. . . twice. . . and then, again,
. . . because that is how the course evolved.

One may, if one likes, justify this in retrospect in terms of the old rules of
learning: attention, association, and repetition. The first encounter must be
brisk and must catch the attention; the second should better associate the con-
nections and the more general picture; the third should emphasize and repeat
important features and details.

And, as in all learning, one must have faith. One need not fall just because
one stumbles over a detail or two at the beginning.

KARL GUSTAFSON
Boulder, Colorado
1999



Vortex Splitting in Constant Accelerating Flow past a NACA 0015 Airfoil at
angle of attack a = 40° and Reynolds Number Re = 1000. Courtesy P.
Freymuth. Prog Aerospace Sci. 22 (1985). Numerical solution of partial dif-
ferential equations can now simulate such vortex dynamics. See pp. 346-347.
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PREFACE TO THE JAPANESE EDITION

This is the translation of the second edition of K.E. Gustafson’s Introduction
to Partial Differential Equations and Hilbert Space Methods, John Wiley &
Sons, New York, 1987 (revised version of the 1980 First Edition). We first
encountered the original English version around 1983. Its contents, structure,
style, and so on appeared quite extraordinary. It was a great surprise to find a
book on partial differential equations which was unlike any we had seen
before. Anyone who is interested in partial differential equations and mathe-
matical physics may be familiar with H. Hadamard (1932) and H. Bateman
(1932) from the old school, I.G. Petrowski (1945, Japanese translation 1958),
and R. Courant-D. Hilbert (1953, new edition 1962) from the recent past, and
one or two of the current works of F. John (1971, fourth edition 1982) and R.
Leis (1986) as well as other excellent literature within and outside our country.
The present book gives us a unique presentation, different from any of the
above-mentioned [works of} orthodox mathematical literature.

The importance of discussions concerning partial differential equations
needs no emphasis in the world of science and technology. This book aims at
science-engineering undergraduates, beginning level post-graduates, science
technologists in general, and specialists as well as educators. As he mentionsin
the preface to the first edition, Professor Gustafson’s motivation and purpose
in writing this book was to introduce to the readers the main topics of partial
differential equations, basic methods, and their application to related areas,
and to develop curricula for them. . . . There may be no other work on partial
differential equations which in richness of topics and multidimensional con-
tent is comparable to this book.

Critical reviews in such journals as Mathematical Reviews (1981, 81k: 35005;
1988, 88b: 35001), SIAM Review (1983, Vol. 25), Zentralblatt fur Mathematik
(1981, Vol. 434), . . . reconfirmed our first impression and made us realize the
value and the significance of publishing this book in Japanese translation (the
above reviews are recommended to those who are interested). . . . We would
like to emphasize what appear to us to be the three main characteristics of this
book.

The topics and subjects covered herein are abundant and varied, and are not
contained within the framework of mathematics but extend to the most
advanced field of natural science and engineering, including physics and chem-
istry. The development of modern methods and rapid computational mathe-
matics is explained from the classical through contemporary periods, using
Fourier’s series and basic concepts of integral calculus with many examples.
Furthermore, the book is concerned with questions of essential importance to

\/



vi PREFACE TO THE JAPANESE EDITION

partial differential equations (existence of solutions, stability, boundary con-
ditions, etc.), pursuing vigorously the foundation and methodological justifi-
cation of separation of variables, and demonstrating at the same time close
interrelationships among these methods which cannot be found in ordinary
textbooks. The main theme of the original work, however, is the application of
Fourier Analysis and Hilbert Space Methods to partial differential equations,
as well as the application of related analytical methods and computational
mathematics. Therefore, this book also serves as a basic introduction to
applied mathematics. Explanations of particular themes and problems are var-
ied in depth, but they are all stimulating, suggestive, and interesting. Historical
events are not added as an accessory, but rather to illustrate historical origins
and the significance of particular problems and methods, and often to raise
interesting questions. It may be irrelevant, but in relation to the pure theoreti-
cal aspect of the main theme of the book we should mention that there are
more comprehensive theories which are still actively studied such as those
advanced by Hormander and by Sato through his theory of distributions. The
purpose of this book, however, is well achieved within the theoretical frame-
work of standard theories without reference to the theories just mentioned.

The style of this book is free and unrestrained (from the viewpoint of con-
ventional mathematics literature) on the one hand, while the arguments are
advanced analytically with a critical spirit. Thoroughly introspective, almost
philosophical critical thinking underlies the book, as may be observed in com-
ments about the solutions of partial differential equations, physics observa-
tions, supplementary discussions and so on. The style represents a cultural
viewpoint which is rare among ordinary mathematics literature, and will serve
as a new “intellectual” model for mathematics textbooks.

The original work, which was based on lectures delivered at the University
of Colorado, the University of Minnesota, and Ecole Polytechnique Fédérale
de Lausanne, clearly has an educational purpose as is stated in the preface and
the guide for use. The content is structured to follow “the traditional steps of
learning” reflecting the author’s strategy for introducing the subject matter of
the book. Creative devices are seen in the arrangement of exercises, placing
Pauses between lessons, and introducing historical comments, and so on, all of
which turn this book into a new, dynamic type of reading unlike traditional
technical literature. Some objection may be raised to adopting the style of this
book directly for undergraduate and graduate education in Japanese universi-
ties, but the underlying thinking and plan of the book have important imph-
cations. The unusual impression that this unique book may tend to give at first,
to those who are accustomed to conventional technical literature, comes from
the author’s deep commitment to education on the subject.

We may say that this book combines and organizes three entities: abundant
material from mathematics as well as related fields, solid argumentation sup-

ported by philosophical insight, and realization of the author’s passionate



PREFACE TO THE JAPANESE EDITION vii

dedication to his educational mission. Occasional rebellious feelings which we
had during our translation are gone and we are humbled by this great work.

Although we were led to our task because of this book’s rich content, com-
plex illustrations, and unusual format, we often experienced the pains and dif-
ficulties of translating its lengthy sentences and penetrating written style which
are uncommon in mathematics literature. Somehow we managed the entire
translation of the first edition, but while we were correcting and modifying it,
the second edition came out . . . and so we had to start all over again. A great
deal of work, including proofreading, was involved . . . but the book’s excel-
lent content, philosophical insight and deep commitment to education encour-
aged us to keep going.

.. . We convey our deepest gratitude to Mr. Kuroda Hajime, the president
of the Overseas Publication Trading Co., for his understanding and assistance,
Mr. Mori Toshio, the head of the department of investigation, who undertook
the negotiation of translation rights with Wiley, the American publisher, and
Mr. Ono Tomiseki, the head of the first business division, for taking endless
trouble. We are very pleased to complete our translation of this valuable book,
thanks to the company’s assistance. We express our sincere thanks to these
three people. We would also like to give our thanks to Mr. Kamagata Masumi,
the head of the business division, Mr. Sato Susumu of the same division of the
Toppan Publishing Co., and to those who actually engaged in printing. We
cannot thank them enough for their efforts in carrying out a great number of
corrections and revisions. Furthermore, we deeply appreciate the kind respons-
es from the author, Professor Gustafson, to our inquiries and to our request
for a Preface for the Japanese translation. Despite the busy activities and
schedule, Professor Gustafson was concerned with various problems which we
had raised and frequently corresponded with us. We close this unusually
lengthy preface with our best wishes to Professor Gustafson for his future
scholarly activities.

February 1991
ABE TAKAHISA
ONDA Isao
Koio ToMoMI
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CHAPTER 1

THE USUAL TRINITIES

. . . the basics, and wherein the
problems lie . . .

A partial differential equation (often referred to as a PDE)

ou o
F(u, a—xl’ ce ,m,xl, ..., X, t, other parameters ] = 0 (1.1)
where u = u(x, . . ., x,, t, other parameters) is the unknown function or relation

and, where F is a function of the prescribed arguments, is a rather general entity
and somewhat meaningless in the abstract. Interest usually focuses on particular
equations from important applications or on generalized classes of those equations
whose properties are amenable to specific description. Because the dynamics of
most systems, be they physical, biological, economic, or other, usually involve at
most two derivatives (e.g., velocity and acceleration), equations of second order
(i.e., m = 21in (1.1)) are the most important and occur the most frequently.*

One should recall from calculus that the operation of taking an ordinary or
partial derivative is a linear operation, that is,

a(u + v)/dx = dulox + ov/ox.

Thus a partial differential equation appears as a linear operator equation (where
f(x) = data, presumed known)

Lu=f (1.2)

if L is a combination involving only sums and compositions of derivatives, and no
quadratic (or higher powers) terms such as (du/dx)?. We recall that a linear operator
is a transformation L satisfying

L(au + bv) = al(u) + bL(v) (1.3)

* First-order equations can often be reduced to a system of first-order ordinary differential equations
and will not be treated here. See, however, Appendix A.1, and also Problem 1.9.4. Equations of order
greater than two are treated in large part by the methods developed for second-order equations. See for
example the Second Pause.



2 THE USUAL TRINITIES

for all vectors or functions u, v in its domain D(L) and all numbers or scalars a, b.
The validity of linearizing assumptions when modeling physical problems varies
from application to application, but linearization is usually a good first approxi-
mation and allows the use of the powerful and general linear methods (e.g., Fourier
series, among others).

Thus for example the minimal surface operator

du 2 u du du d%u du 2 u
Lu=|1+|— —2—2-—— + |1+ = 5
ay ox dx dy dx dy ox ay

which describes a surface stretched across a wire loop,* although nonlinear in each
of its three terms, is rather well approximated by the linear Laplace operator

Pu,
ax? o ay?
when the slopes are small. Moreover, by a suitable change of variable? the nonlinear

minimal surface operator may be transformed into a linear operator (with variable
coefficients)

Pw w Pw
Aw = 1 + &)— + 2 + 0+
w = ( §)0§2 g"agan ( wrl)(m2
and by a further transformation into the Laplace operator
v
Av == + =

a2 a2 o

in one higher dimension.

For these reasons, among others, in this chapter as well as in most of this book
we will treat primarily second-order linear partial differential equations. Although
we depart from linearity, for example, in the considerations of bifurcation theory
and nonlinear waves in Section 1.8 and Problem 2.9.8, respectively, even there it
will be seen that the first approximation is linear and that linear methods are used
to the extent possible.

To conclude this introduction, we would like the reader to answer the following
three questions.

Question 1. How do you fit a line to two given points (Diagram 1a)?

Question 2. Given the temperature u, of an object at time ¢t = 0 and a law of
cooling which states that the rate at which the object cools is directly propor-

* For a fascinating discussion of the mathematical theory of soap films see the article by F.
Almgren and J. Taylor in Scientific American 235, July (1976).

t The details, which would unnecessarily delay us here, may be found for example in an exercise
in Problem 1.9.9.



THE USUAL TRINITIES 3

* *
L)
x t e .
(b) (c)

DiaGRaM 1. Elementary problems.

tional to the temperature difference between the object and its surroundings,
how do you find the temperature at time ¢ (Diagram 15)?

Question 3. In thinking of smoothly oscillating functions, what is the first one
that comes to mind (Diagram 1c¢)?

No doubt the reader, in his mind’s eye, has already filled in the solutions to
the questions. Let us do so here (Diagram 2). The answer to the first question is
a line u(x) = ax + b, which when fit to the two points becomes

U, — u Uy Xy — UpX
u(x) = (#)ij (M) X <X < x,

X2 — X X2 — X
The answer to the second question, if for simplicity we agree to measure temperature
relative to a surrounding temperature of zero, is obtained by solving the equation

W' (@) = —ku(®) fort > 0, u(0) = uy, k the given proportionality constant, which
yields the solution

u() = uge™", t=0.

We assume for the third question that the reader has imagined a sine function

u(x) = sin kx.
u(x) u(t) u(x)
L)
u|/ o x
L1 ,
S x; {
(a) (b) (c)

DiaGRaM 2. Elementary solutions.



4 THE USUAL TRINITIES

Question 1 was an example of a boundary value problem: Stretch a function
between two boundary points according to some given (e.g., physically motivated)
prescription on the function over the intervening domain. Here we used the pre-
scription that the connecting curve have minimal length, which geometrically must
be a line. Mathematically, we could have expressed that prescription by

u'(x) =0, x < x<x,.

Question 2 was an example of an initial value problem: Given a function
initially, determine its behavior thereafter, provided that you are given a prescription
(e.g., physically motivated) for how the function should evolve. The two cases in

which it will decay exponentially according to u' = —ku or grow exponentially
according to u’ = ku are both included in the prescription
w'x) = kfux), x=0.

Question 3 was an example of an eigenvalue problem, which is sometimes
called a characteristic value problem. The word eigen (Ger.) means characteristic
(Fr.), and perhaps a little more to the point here, it means inherent. What is inherent
about the sine function u(x) = sin kx? Its oscillatory properties, along with those
of its companion the cosine function, are a result of the prescription

W'x) = —kux), -0 < x < oo,
The above three types of problems

boundary value problems
initial value problems
eigenvalue problems

are among the most important encountered in partial differential equations.

1.0 Exercises

1. Integrate (by calculus):

(a) u'(x) =0, -0 < x < o,
®) u"(x) = 0, x>0, u0) =1,
©) W'(x) = —4u(x), 0<x<m.

2. Solve:

(a) u'(x) = 0, 0<x<, u0) =1, u(l) =0,

®) u'(x) = —2ux), x>0, u©0) =1,

©) u"(x) = —4u), 0<x<m, u(0) = u(w) = 0.
3. Solve:

@D _g —mcx<m  —m<y<o
X

2
(b)m=0, —0 < x < ®, - <y < oo

ax?
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Qu(x, y) _
ax?

(c) 0, x>0, w0,y =1

1.1 THE USUAL THREE OPERATORS AND CLASSES OF
EQUATIONS

The following three operators usually form the base for a study of partial differential
equations*:
2 82

0
(1) Laplace operator, A = ;}2 + -+ 56—2’

d
(2) Diffusion operator, Pl A,

2
(3) D’Alembert operator, [ = % - A
The three general classes of partial differential operators that one encounters are:
(1) elliptic operators, (2) parabolic operators, and (3) hyperbolic operators, re-
spectively. By a change of variables (see below, and Problem 1.9.1) of particular
type, one reduces an elliptic operator L to its canonical form, the Laplacian A in
another coordinate system. Likewise, parabolic and hyperbolic operators may be

*A remark on notations, of which there are many. Our preference is to minimize the importance
of notation while recognizing its validity. Let us, therefore, without further ado, become familiar with
several in use.

Usually we will take u(xy, . . . , x,, #) to be scalar (¢.g., real) valued; if u is vector valued, one
needs to be a little more careful with some of the notations. To illustrate briefly, several equivalent
notations for the Laplacian A:

Au = i uldx? Calculus form
= Uyttt U, PDE form
= uy Einstein or tensor summation convention
= div(grad u) Vector analysis form
= V% Electrostatic form
= Uy t Uy, Two-dimensional form

The notation for the other principal partial differential operators is similar and should cause no difficulty.
One will need to recognize that , = u,, = du/dt denotes the partial derivative with respect to 7, and
that ¢ often represents time.
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transformed to the diffusion and d’Alembert operators. respectively. The Laplace*
operator A is-sometimes called the potential operator the diffusion operator is often
called the heat operator. and the d’Alembert} operator is often called the wave
operator. due to their frequent appearance in applications bearing the latter names.
Although the relative importance of the various names and viewpoints could be a
subject for endless debate. we may summarize them in Table 1.1.

In Problem 1.9.1 the reader will find more details concerning the classification
procedure for a partial differential equation. and in Problem 1.9.2 how it relates
to certain properties of the equation.§ Let it suffice here to classify the general
second-order equation in two independent variables¥

Auy + 2Buy, + Cuy + Du, + Euy + Fu + G = 0

according to the discriminant rule (which is verified in Problem 1.9.1):

Discriminant Equation Type
d>0 elliptic
d=20 parabolic
d<o hyperbolic

where d = AC — B2. The names of the three equation types are thus seen to be
related to the conic sections of theé same name. The lower order terms are simply
ignored in this procedure. It follows that an elliptic equation may be transformed
by a linear 1-1 change of variables to the two-dimensional Laplacian form

ug + Uy, + (lower-order terms) = 0.

a parabolic equation to the canonical form

il
o

ug + (lower-order terms)

or

0.

Uy *+ (lower-order terms)

* After Laplace and his use of the operator in Mecanique Celeste in 1785.

1 There seems to be no person whose name has been traditionally attached to the general diffusion
operator. Although a number of diverse names spring to mind, such as Thompsonian. Joulean. Brownian.
Markovian. Eddingtonian. among a multitude of others. perhaps if history had been more accurate the
potential operator would have been called the Newtonian and the diffusion operator would have been
called the Fourierian. For an account of the lives and scientific contributions of Newton. Fourier.
d’Alembert (and Laplace). see E. Bell. Men of Mathematics. Simon and Schuster. New York. 1937.
for example.

1 After d'Alembert and his 1746 solution of the vibrating string problem.

§ In mathematics the student soon discovers that any *‘transformation to canonical form™ can be
an oversimplification and even a deception. Exactly what is *‘canonical.”” what are the invariants, and
0 on. must be clarified. On the other hand. often the canonical form itself is the one that appears most
frequently and is therefore of primary importance. and that is the case in partial differential equations.

1 Regard all coefficients as constant. Generally. A. B. C may depend on x. v. . u_,. but not on
Uy
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Table 1.1

Mathematical Physically Classification

Quantity Surnamed Named Type

A, Laplacian Potential operator Elliptic

% e (Heat) Diffusion operator Parabolic
02

O = Pl A,y d’ Alembertian Wave operator Hyperbolic

and a hyperbolic equation to one of the canonical forms
Ug — Uy, + (lower-order terms) = 0
or

ug, + (lower-order terms) = 0.

In particular the Laplacian, heat and wave operators are thus seen to be the canonical

forms for the three types of partial differential equations.*

Classification of higher-order operators (e.g., interesting fourth-order elliptic
operators appear in the theory of elasticity) is similar but more complicated, as are

systems of partial differential equations.

If an operator has nonconstant coefficients, the classification is only local (i.e.,
it may change as the point (x, y) moves from one part to another part of the domain
). This is the case, for example, in the Tricomi operator of gas dynamics

Lu = yu, + uy,

The difference in type can be quite crucial: the elliptic region (Fig. 1.1) corresponds

y
Elliptic

1
Parabolic x

0

-1 Region 2

Hyperbolic
FiG. 1.1

* There is a rather harmless joke about mathematicians at the University of Minnesota, one of
several centers for the study of partial differential equations. Whereas at most universities the mathe-
maticians ask whether a mathematical visitor be topologist, algebraist, analyst, and so on, the story is

that at Minnesota they ask whether he or she is elliptic, parabolic, or hyperbolic.
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to subsonic and smooth flow, the parabolic boundary to a sonic barrier, and the
hyperbolic region to supersonic propagation of shock waves. From the hyperbolic
region behavior in this example, from the Poisson formula for the solution to the
heat equation that we will see presently, and from the discussion in the introduction
of the minimal surface equation, we may let our intuition be directed as follows:

Equation Type Solution Behavior
Elliptic a stationary and energy-minimizing surface
Parabolic a very smoothing and spreading flow
Hyperbolic a disturbance-preserving wave

This induction does in fact provide a reasonably correct intuitive picture for our
future guidance.

Problem 1. (a) Using the discriminant rule, verify the classification stated
above for the Tricomi operator L. (b) Show that the minimal surface operator
L is indeed elliptic. (c) Show the same for the transformed operator A with
variable coefficients given on page 2.

Problem 2. (a) The d’Alembert (or wave) operator
Lu = u, - u,

is only one of two canonical forms for a hyperbolic equation. The other can-
onical form is

Uy,

Find a 1-1 linear change of variables r = c);t + c1ox, § = cut + cpx,
which transforms the equation &, — u,, = 0 into the equation #,, = 0. (b) For
a review exercise in elementary linear algebra, letting C denote the matrix of
the transformation found in part (a), calculate the inverse transformation

-~ ()-()

(c) Geometrically, what are the solutions to the one-dimensional Laplacian
equation u,, = 0?7 What are they when you also ask that u(x) = 0 atx = 0
and u(x) = latx = b # 0?

Problem 3. To develop some intuition, write down by inspection (i.e., trial
and error) some solutions of the basic equations mentioned above:

@ uy + 1y, =0

®b) uy, —u, =0

©) u, —u, =0

(d) yu, + uy, =0

© (I + W)uy — 2uuu, + (1 + (u)Pu, = 0.
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1.1 Exercises

1. Apply the classification rule to
(@) 4u, + 2uy,, + 27u, = 0,
(b) 4u, — 2u, =0,
() 4u, —u, = 0.
2. Verify that
(@) u = In r satisfies the Laplacian A,u = 0 for r = (x2 + y»)» # 0.
(b) the Gaussian (47f)~ e ") satisfies the Heat equation u, — u,,

=0, t #0.
(c) a moving sine wave sin(x + ¢) satisfies the Wave equation u, — u,
= 0.
3. (a) Show that if Au,, + 2Bu,, + Cu,, = 0is parabolic, then the change
of variables
{=x
n=rmn+y,
where r = —B/A, transforms the equation to the canonical form
(b) If Au,, + 2Bu,, + Cu,, = 0is hyperbolic, then the change of variables
{=rnx+y
m=rnx+y,

where ry and r, are the roots of Ar? + 2Br + C = 0, transforms the
equation to the canonical form

u;n = 0.

Hence u = f({) + g(m) = f(rix + y) + glrax + y), where fand g
are arbitrary (twice differentiable) functions, is always a solution of the
partial differential equation.

(c) Classify yu,, + 2xu,, + yu,, = 0.

1.2 THE USUAL THREE TYPES OF PROBLEMS

One thinks in terms of three types of problems occurring in applications,* although
as we shall see one runs into almost all combinations of the three types of operators
and the three types of problems.

* Further discussion of the physical derivation of such problems will be found later and, in
particular, in Section 1.7.
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1.2.1. Boundary Value Problems (hereafter sometimes abbreviated as
BVP)

An important example is the famous Dirichlet problem*

Au =0 “in Q”, ie., x € Q,
u=7f ‘“onod)”’, ie., x € 4,

where () is a specified domain (also called a region, an open connected set in
Euclidean n-space) and where fis the given boundary value defined on the boundary
Q). (Fig. 1.24a).

1.2.2. Initial Value Problems (hereafter sometimes abbreviated as IVP)
An illustrative example is the heat equation (in an infinite idealized rod)

u — u, =0, —o < x < o, t>0,
u(x, 0) = f(x), —o<x<®  t=0,

where f is the given initial temperature distribution and u(x, ) the evolving tem-
perature distribution for positive time ¢ (Fig. 1.2b).

1.2.3. Eigenvalue Problems?} (hereafter sometimes abbreviated as EVP)

A simple exampled is the ordinary differential equation (hereafter sometimes ab-
breviated as ODE)

—v" = Ay, 0<x<m,
v(0) = v(m) =0,

The given boundary value f

A .

T
Initial temperature distribution,
982 = boundary of for example

FIG. 1.2a FIG. 1.2b

* Which permeated (and caused) much of 18th- and 19th-century mathematics. In the Dirichlet
problem it is desired to obtain, for each data function f continuous on the boundary (2, a solution u
continuous on the closure of the domain €. The Dirichlet problem was theoretically regarded as solved
for a domain {) when the existence of such a solution could be demonstrated. With the work of Poincaré
and Hilbert, among others, this was accomplished for most reasonable domains. See Section 1.5.3 for
further historical remarks on this problem.

1 Also called characteristic value or fundamental frequency problems, among others.
} This is sometimes called the Rayleigh equation, after Lord Rayleigh.
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a solution (the second eigenfunction) illustrated in Figure 1.2¢. This equation arises
as we shall see below after an application of the method of separation of variables
to the vibrating string problem (Fig. 1.2d)

U, — Uy =0, 0<x<m, t>0,
u, ) = ulw, 1) =0, t=0,
ux, 0) = fix),  wuk, 0) = f(x).

The latter describes a vibrating string (with small displacements only, to keep the
description linear) with initial position and velocity given and held fixed at the
ends. The former (EVP) always has the trivial (zero) solution and one is only
interested in nonzero solutions (fundamental modes) v,(x) and in the corresponding
\,, (eigenvalues) from which the general solution to the vibration problem may be
constructed by the method of separation of variables.

We note that the vibration problem just mentioned involves boundary values,
initial values, eigenvalues, and both hyperbolic and elliptic operators.

For purposes of review and later use let us recall how one solves the Rayleigh
eigenvalue problem (1.2.3) above by clementary considerations from the theory of
ordinary differential equations. By trial of v(x) = e* in the equation

v'(x) + Mvx) = 0,
one is led to the so-called auxiliary equation
22+ A=0
and the two fundamental solutions
) = eo, »ax) = e,

where z, and z, are the roots =/ — \ from the auxiliary equation. All other solutions
are exactly the linear combinations of the two fundamental solutions. When A < 0,
this provides the two real valued fundamental solutions

nx) = e~ Y2(x) = e,

wherer = V' —X. When A = 0, one obtains from the above the constant functions,
and in order to have two linearly independent fundamental solutions one takes

v(x)

. > AN .
Nl ,

FiG. 1.2¢ FiG. 1.2d
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yix) = 1, y2(x) = x.

For A > 0, fundamental solutions e**"** found above are complex valued and in
order to obtain two linearly independent real valued fundamental solutions one takes
the real and imaginary parts

y1(x) = cos \2x, y2(x) = sin AV2x.

Upon trying v = ¢,¥, + ¢,¥, for arbitrary constants ¢, and ¢, for each of
these three cases A < 0, A = 0, A > 0, along with the boundary conditions, one
sees quickly that the first two cases permit only the trivial solution. Thus the
eigenfunctions for the problem are

v,(x) = sin A\}2x, n=1273 ...,
with corresponding eigenvalues
AN=1,4,9, ... .02 ...
Note that
v,(x) = ¢, sin A}2x

where ¢, is any arbitrary constant, is also a solution to the eigenvalue problem,
with the same eigenvalue A,,.

Problem 1. (a) Solve by inspection the Dirichlet problem, where  is the unit

square 0 = x = ], 0 = y = 1, and where the data is:

xfor0=x=<1, y
l forx = 1, 0=y
xfor0=x=1, y
0 forx = 0, 0=y=

flx, y) =

A LA

0,
1,
1,
1.

(b) Show that there is no polynomial solution to the problem of part (a) when
the data f(x, y) = x on the first and third sides is replaced by quadratic data
f(x, y) = x2. (c) For further exercise, either (i) keep trying to find a continuous
solution to the problem of part (b), or (ii) investigate the same problem with
the Laplacian replaced by the minimal surface operator.

Problem 2. Solve by inspection the heat equation given above for the initial

data (a) f(x) = 1; (b) f(x) = x; (c) fx) = x%

Problem 3. Solve by inspection the wave equation given above for the initial
data (a) fy(x) = sin x and f;(x) = 0; (b) fi(x) = 0 and f,(x) = sin x; (c) the
same as in (a) and (b) but with sin x replaced by sin 2x.

The notion of “‘characteristic curves’’ for a given partial differential equation,
and how those characteristic curves relate to where you may have initial data as
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concerns the solvability of an initial value problem, may be found in Problem 1.9.2
and in Chapter 3, Appendix A.

1.2 Exercises

1. Boundary value problems (BVP) should be distinguished as either interior
or exterior, and usually our first impressions take us to the former, on which
solutions are more readily understood.

(a) Show the interior BVP

W'ix) =0 in @ =(-1,1),
u(x) = f(x) on 0Q = {the points x = ¥1},

has exactly one solution.
(b) Show the unbounded BVP

Wx) =0 in Q= (0, ®),
u(x) = f(x) on 90 = {the points x = 0, =},

has exactly one, no, or an infinite number of solutions.
(c) Show the exterior BVP

w'ix) =0 in Q= (-0, —1)U(, «),
u(x) = f(x) on 3 = {the points x = F1},

has an infinite number of solutions.
2. Initial value problems (IVP) are usually the principal topic in a first course
in ordinary differential equations. For review and some geometrical intui-
tion, solve the following IVPs.

(@ Jux, 1 =0, —o<x<w, >0,
u(x, 0) = f(x), —o<x<w t=0.

) Jux, t) + 3u(x, 1) = 0, - < x < o, t>0,
u(x, 0) = f(x), —o < x < ®, t=0,

(©) Juylx, ) =0, —e<x<w, t>0,
u(-x’ 0) =f(-x)’ —oo<x<oo, t=0

3. Eigenvalue problems are concerned with fundamental modes of vibration
in a given physical system. There is a great conceptual difference between
linear and so-called nonlinear eigenvalue problems.

(a) Show that for any linear eigenvalue problem

Lu = \u

any scalar multiple of an eigenfunction u is also an eigenfunction.
(b) Confirm that v = 100 sin 5x is a solution to the Rayleigh eigenvalue
problem.
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(c) Verify that a scalar multiple of an eigensolution u,(x) of the nonlinear
eigenvalue problem

') = M)

is not in general an eigensolution, at least not for the same ‘‘eigenva-
lue’ \.

1.3 THE USUAL THREE QUESTIONS (AND THE OTHER THREE)
Given problems of the above type one usually asks the following three questions:

(1) Existence (of at least one solution u)
(2) Uniqueness (i.e., either one or zero solutions)
(3) Stability (often called continuous dependence of solutions {u} upon the data

{rH
There are three other questions of equal importance, especially in applications:

(1) Construction (of the ‘‘physical’’ solution)
(2') Regularity (e.g., how ‘‘differentiable’’ is the found solution)

(3') Approximation (especially when exact construction of the solution is not
possible)

Of course in practice the best method of demonstrating (1) existence is to (1')
construct* an exact solution that is sufficiently regular (2') to be substituted into
the original problem, meeting all requirements originally imposed. If uniqueness
(2) has been proven, then one has the solution. Unfortunately, and in contrast to
most ordinary differential equations, solution representations in partial differential
equations often involve limiting processes such as series or integrals, and the
solutions are generally found to be not representable in closed form as elementary
functions. Thus, for example, a truncated Fourier series solution used in practice
is in fact only an approximate solution (3') using approximate data f; however, if
stability (3) has been demonstrated, a small error in the data induces only a small
error in the solution, and this is usually a satisfactory state of affairs.

By the common terminology a problem for which (1), (2), and (3) have been
shown is said to be well-posed or properly posed. One might say instead that the
mathematical model is complete and consistent. Exactly the right type of data,
initial conditions, and boundary conditions are present to determine exactly the
mathematical solution. This does not say how well the mathematical model describes
the physical problem, which may possess different solution properties due to un-
accounted-for effects. The latter is a problem in model building that the mathematics
may or may not clarify.t

* Any method is acceptable, such as guessing, Fourier expansion, Green's function representation,
integral transform, formal arguments, change of variable, or whatever.

t For example, the solution formula given in the following Problem 2 shows that the heat equation
model given above is often not realistic. in that linearizing the model forces an infinite speed of heat
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Let us discuss further these questions, which are at the heart of the theory of
partial differential equations, in terms of the three examples given above. We
consider a two-dimensional Dirichlet problem on a ‘‘nice’’§ bounded domain £} as
depicted in Figure 1.3a. For intuitive purposes it is instructive to think first of the
nonlinear version of the Laplacian A, namely, the minimal surface operator

Lu = (1 + )Duy — 2umyu,, + (1 + @))u,,
and the nonlinear minimal surface problem

Lu =10 in Q,
u = f on o).

As discussed in the introduction, one may imagine f(x, y) as describing a wire loop;
the minimal surface can be thought of as the ‘‘soap film’* stretching across the
wire. Because the equation on {} is homogeneous (zero data), we are disregarding
gravity. If slopes are small, then L is approximately the Laplacian A, and the
Dirichlet problem

Au=0 in Q,
u=f on 8.

can be thought of as a problem involving a membrane stretched across the given
boundary data, even though the curvature requirements of L and A are not exactly
the same.

Proceeding with this intuitive view of the problem, one immediately rules out
the spurious solution (Fig. 1.3b) to the Dirichlet problem,

u(x,y) =0, for (x,y) in ,
ux, y) = f(x, y), for (x,y) on of}.

uix, y)
|

flx, yygiven on
the boundary 30

2

FiG. 1.3a Fic. 1.3b

propagation into the solution. The latter may be seen by considering data f(x) concentrated on a very
small interval of time r = 0. See Problem 2 at the end of this section.

$ The question of ‘‘nice’’ domains is subtle (see Section 1.6.]1 and Problem 1.9.5). However, it
turns out that most domains {1 of practical interest are all right.
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Thus we see that any interesting solution must be at least continuous at the boundary
3Q). This is anexample of the regularity requirement (2'). If we now regard the
Dirichlet problem as a linear system L of two linear conditions (namely, that Au = 0
in {) and Ju = fon 8(}, where [ just denotes the identity operator), we see that a
reasonable ‘‘domain’’ for L is the set of functions u(x, y) that are continuous on
0 = Q + 90, that is, on the closure of (). Similarly, because one wants to take
two derivatives, it is reasonable to réquire that u be twice continuously differentiable
in (2.* For such functions one easily shows (see Problem 1.9.3) the following.

Maximum Principle. Let (1 be any bounded domain, and let u(x, y) in
Co(Q)) N CX) be a harmonicT function in (. Then u attains its maximum value
on () somewhere on 3.

The following problems illustrate the three types of questions (1), (2), and (3).

Problem 1. (a) Use the Maximum Principle to show uniqueness (2) among
C%0) N CXQ) functions for the Dirichlet boundary value problem (1) on a
bounded domain. (b) Discuss whether the C? requirement is appropriate. (c) Can
you obtain a (3) stability statement from the Maximum Principle?

Problem 2. Given the Poisson representation formulaf for the heat propagation
initial value problem (2), namely, that

L
W0 = f_xe[_(’_”z/“"f(y) dy, 1>0,

discuss to what extent it provides a solution to the problem. Assume that the
data f is very nice.

Problem 3. Examine the following boundary value problem

U, + 4xu = 16, 0<x<2
u@0) =0
u2) = -1

as concerns the six [(1), (2), (3), (1), (2), (3")] questions.

* The shorthand is: D(L) = CO%Y) N C*&D), that is, functions u(x, y) continuous on {} possessing
second partial derivatives u,,, u,,, 4, 4,, all of which are continuous in Q. In general, the meaning
of C*(S) for an arbitrary set § should be clear to the reader. Notice that the word *‘domain’’ is used in
two different senses: the geometrical sense (for £2) and the function sense (for L). But both senses are
really the same; u is a function on the x in the domain {} and L is a function on the u(x) in the domain
D(L).

T That is. Au = 0 in £, as in the Dirichlet problem.

1 This is an example of a powerful solution method known as Green's Functions. which we shall
further discuss later. This method is, however, sometimes more powerful than usable. due to the difficulty
in many cases of writing down explicitly the Green's Function. even when it is known to exist.
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Some remarks on these three problems. Concerning Problem 1, there is a second
(for slightly less general domains (2) general method for demonstrating uniqueness,
known as the energy method, that we will discuss later in Section 1.6. Problem 2
involves the complications of an infinite domain and some review of differentiation
under the integral. We suggest leaving it somewhat open-ended at this time. On
the other hand, the student will profit by beginning its consideration as concerns
the three questions (and the other three) now. Problem 3, although an ordinary
differential equation, will already indicate a number of considerations that arise as
one asks the six questions of this section.

For a proof of the Maximum Principle, see Problem 1.9.3. Use of maximum
principles provides uniqueness results for elliptic and parabolic equations but gen-
erally speaking not for hyperbolic equations. For the latter, energy and characteristic
methods may be employed.

Existence results hold rather widely for initial value problems if the initial data
is good. One may recall for example the standard general existence statement (Picard
theorem) for the ordinary differential equation initial value problem

{y’(x) = f(x, ()
¥(0) = yo.

For completeness we include in Problem 1.9.4 a short discussion of the extension
of this result to initial value problems for partial differential equations, the so-called
Cauchy-Kowalewski theorem.

The other three questions:

(1") Construction of the solution
(2") Regularity (i.e., verification of the solution)
(3') Approximation of the solution

are of equal importance to those of (1) existence, (2) uniqueness, and (3) stability.
In the actual use of partial differential equations in science and other applications,
no doubt (1), and if not (1') then (3'), must be given the greatest attention. In this
book we have attempted to maintain some balance concerning the relative merits
of the Questions (1), (2), (3), (1), (2), and (3"), but overall have placed the major
emphasis on (1') the construction of the solution. A rigorous treatment of Question
(2") for certain types of problems will be found in Section 2.2. Numerical methods
for Question (3') will be found in Section 2.6 and Chapter 3, Appendix B.

1.3 Exercises
1. For the BVP

u'(x) = 0, 0<x<,
u0) = b, u'(l) = a,

discuss (a) existence, (b) uniqueness, and (c) stability.
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2. For the BVP of Exercise 1, discuss (a) construction, (b) regularity, and (c)
approximation.
3. For the BVP
ap(u'(x) + a,()u’'(x) + a,(u(x) = 0, 0<x<l,
u(0) = a, u(l) = b,

discuss (a) existence, (b) uniqueness, and (c) construction.

1.4 THE USUAL THREE TYPES OF ‘¢“BOUNDARY CONDITIONS>

We put ‘‘boundary conditions’’ in quotation marks because initial values as well
as boundary values often appear in one of the following three ways, and in com-
binations thereof. If we consider the Dirichlet problem (1), but interpret it as
describing a membrane hanging under a force F (e.g., of gravity), one has the so-
called Poisson equation

Au = F in {}
with the following types of boundary conditions:

(1) u = fon 6€), Dirichlet boundary condition

(2) du/dn = f on €}, Neumann boundary condition*

3) aw/an + ku = fon 3Q, k > 0, Robin boundary condition
corresponding to a (1) fixed-boundary membrane, (2) free membrane, and (3)
elastically supported membrane. A combination, a so-called “‘mixed”” problem,

might be one with the membrane fixed on part of 4{} and free on the other part,
for example. We will usually assume that {) is a nice domain, as in Figure 1.4.

a
FiG. 1.4 A typical nice domain.
* 3u/an denotes the outer normal derivative on (1, that is, ow/on = grad u - n, where n is the

unit vector pointing outward from and normal to the boundary 9{}. Unless stated to the contrary, both
the gradient grad « and the (unique) unit outer normal n are presumed to exist.
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All three types of boundary conditions may also occur, for example, in steady-
state heat conduction problems, plate and membrane problems, in problems in-
volving electrostatic or gravitational potentials, and in fluid dynamics and elsewhere
(see Section 1.7). Note that the vibrating string problem above employs fixed end,
that is, Dirichlet (1) boundary conditions and both Dirichlet (1) and Neumann (2)
initial data. If one is involved in a problem on an unbounded domain €2, one usually
imposes some kind of decay rate ‘‘boundary condition at infinity’’ to make the
problem properly posed. This may be as simple as u — 0 as x — ®, or more
complicated specifications may be required.

Thus, for example, we have the Dirichlet problem,

Au = 0in (,
u = fond,
the so-called Neumann problem,
Au =0in Q,
ou
—_—= a1,
n fon
and the Robin problem,*
Au = 01in (],
d
a—:+ku=fonaﬂ, k> 0.

In each of these problems it was assumed that no forcing data F were present within
the domain £). When such data F are present, we have for example the Dirichlet—
Poisson problem,

Au = Fin Q)
u = fonaf)

and similarly the Neumann-Poisson problem and the Robin—Poisson problem.
As mentioned above, the vibrating string problem given in Section 1.2, namely,

(i) wuy, —u, =0, O<x<m, t>0,
(1) u©,1t) = u(w,t) =0, tz0,
(iii) u(x, 0) = fi(x), O<x<m, t
iv) u(x, 0) = f,(x), 0<x<m, t

= O’

= O’

possesses (i) zero ‘‘Poisson’ data on the (x, f) domain for ¢ > 0; (ii) Dirichlet
boundary conditions at the ends of the string at x = 0 and x =  for all time ¢;
(iii) a “‘Dirichlet’’ initial condition; and (iv) a ‘‘Neumann’’ initial condition. Nor-
mally one does not belabor the naming of all these conditions but rather builds up
some intuition and experience as to what type of solution behavior one can expect

* The coefficient k may be variable or constant, depending on the context.
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in terms of the various conditions. A great aid in the latter is a willingness to think
physically about the various conditions.

For example, in the vibrating string problem one can imagine indeed a vibrating
string. For the linear model to be reasonably correct one should think in terms of
small vibrations only. The ‘‘Dirichlet’” boundary condition should be thought of
as a fixed-end condition in which the ends of the string are kept fixed and at the
same horizontal level. If you imagine yourself as thus holding the string rather
tautly, along comes a friend who (iii) lifts the string to a plucked position and then
at time ¢ = 0 instantancously releases it into vibration. The degree to which he
fails to release it ‘‘straight-down,”” owing to an imbalance between thumb and
forefinger, will show up in the initial velocity (iv) that he accidentally has thus
imparted to its motion.

A Neumann end condition for the vibrating string problem would be of the
form

i) #' 0,0 =u'(m =0, t=0,

the prime denoting derivative with respect to x. Here one visualizes a ‘‘flapping”’
string, where the vibrations level out near the ends, so that even though the ends
of the string may be going up and down, the string remains horizontal at the very
ends. This is what happens at the end of a snapped whip, for example. What
happens at the other end?

A Robin end condition for the vibrating string problem would take the form

Qi) W0, — ku©,n =0,
wim, t) + ku(w, 1) =0,

where k; and k, are positive constants. This may be thought of, for example, as a
string constrained by springs at each end, the restoring force being proportional to
the amount of distention of the string. Another situation of this type would be that
of a vibrating cord held by rings on poles at each end.

In the actual modeling of any of these situations one would need of course to
think about the degree of linearity in the actual physical situation, friction terms,
and so on. Nevertheless, a physical intuition, even though only approximate, of
what the partial differential equation may be describing is a valid asset in its further
mathematical consideration.

Problem 1. Solve the equation u"(x) = 0, 0 < x < 1, along with the following
boundary conditions: (a) #(0) = 0, u(l) = 1; (b) &'(0) = 0, u'(1) = 1;
(€) —u'(0) + u) = 1,u'(1) + u(1) = 1. The prime here denotes the ordinary
derivative d/dx.

Prablem 2. For the equation u"(x) = 0, 0 < x < 1, (a) solve with ‘‘mixed’’
boundary conditions (Neumann at one end, Robin at the other end): 1'(0) = 0,
u(l) + 2u’(1) = 1. (b) Given that #(0) = 0, what types of the three boundary
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conditions can you entertain at x = 17 (c) Synthesize a general statement from
(a) and (b), and prove it.

Problem 3. For the equation «"(x) = 0, 0 < x < 1, and for constant £ > 0,
(a) solve with ‘‘boundary condition’’ —u'(0) — ku(0) = 0, u'(1) — ku(l)
= 0. (b) Solve with boundary condition —u'(0) — ku(0) = 1, u'(1) — ku(l)
= 1. (c) Speculate on some type of general statement for the problem

Au =0 in (},
d
gg—ku=fonaﬂ.

This type of boundary condition should be contrasted with the Robin boundary
condition and is sometimes called a Steklov boundary condition.

As mentioned in Section 1.3, there is a general theorem guaranteeing the
existence of a unique analytic solution in a neighborhood of the initial data, provided
that the latter is analytic, the coefficients of the equation are analytic, and that
certain other conditions are satisfied. This theorem (Picard—Cauchy—Kowaleski)
will be found in Problem 1.9.4. In this way, for any of the ‘‘boundary conditions’’
considered in the present section, for example, Dirichlet, Neumann, Robin, elastic,
mixed, Steklov, and so on, the partial differential equations along with those ‘‘boundary
conditions’’ regarded as ‘‘local initial conditions'’ can usually be shown, if nec-
essary by adding more data, to possess local solutions near the boundary.

Thus, for a partial differential equation, especially a boundary value problem,
the task as concerns the existence question is that of establishing a global, rather
than a local, solution. And the best way to do this, when possible, is to actually
construct the solution.

1.4 Exercises

1. ldentify the following boundary conditions:

(@ ur =0 for r=(0 + %=1,

)  suor=0 for r =0+ y)2 =1,
©)du(r)/or + 3u =0 for r=0 + )% =1.
2. (a) Show that the exterior Dirichlet problem

Au=0 in r>1,
u=c on r =1,

has two solutions, where x = (x;, X, x3) and where r = (x} +

3 + 1Hh.

(b) What other boundary condition could you add to obtain just one solu-
tion?

(c) Obtain the other solution by another boundary condition at r = 1.
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3. Without solving, prove or disprove uniqueness of solutions of the following
general Dirichlet—Poisson problem

u'(x) = F(x), 0<x<l,
u0) = a, u(l) = b,

by means of (a) geometry, (b) maximum principle, and (c) calculus.

1.5 THE USUAL THREE SOLUTION METHODS (WITH HISTORICAL
REMARKS)

Roughly speaking there are three principal analytical methods for solving partial
differential equations:

(1) Separation of Variables (also called the Fourier method, or solution by
eigenfunction expansion)

(2) Green’s Function (also called fundamental singularities, or solution by
integral equations)

(3) Variational Formulation (also called the energy method, or solution by the
calculus of variations)

We will illustrate these three methods in terms of the examples of problems already
given above, and of course return to them in more detail in the later sections.

1.5.1. Separation of Variables Method

To illustrate the separation of variables method* let us consider again the vibrating
string problem (Fig. 1.5a) with fixed ends as considered earlier:
(PDE) u, — u, = 0, o<x<m, t>0,
(BV) u®©,? = u(w, 1) =0, t=0,
AV D u(x, 0) = f(x), 0<x<m,
aIv?2 wukx 0 =0, 0<x<m.

For simplicity we have assumed in the second initial condition (IV 2) that the initial

r

T
FiG. 1.5a

* Historically, the first use of this method is usually credited to Daniel Bernoulli in 1755, and for
the vibrating string problem.
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t-velocity has been taken to equal zero.* One hopes for a solution u(x, ) = v(x)w(1)
with the variables ‘‘separated’” (it is not) and substitutes into the PDE so that

()W) — V"(x)w(r) = 0.

One then hopes that the solution « is never zero (it is, at times) and divides by it,
arriving at
W"(I) " .X)

——= = some constant, say —A,
W o) y

i

since a function of ¢ equal to a function of x must be constant. For u(x, 1) =
v(x)w(?) to satisfy the BV u(0, 1) = u(m, 1) = 0, it suffices and is reasonable to
require that v(0) = v(w) = 0, and thus we have arrived at the Rayleigh eigen-
value problem given previously, namely

—v"(x) = (), o<x<m,
v(0) = v(mw)= 0.

From ODE (see Section 1.3) this problem has an infinite number of solutions
v,(x) = (arbitrary constant) - sin nx and corresponding eigenvalues A, = n? =
1,4,9,... ,wheren = 1,2,3,....Forux, 1) = v(x)w(s) to satisfy the IV 2
it is reasonable to require that w'(0) = 0 and thus for each now-determined A, we
have from the above relation the IVP

—w'(t) = \,w(1), t>0,
w'(0) = 0.

From ODE this problem has solution w,(f) = (arbitrary constant) - cos nt, and we
have thus arrived at an infinite number of solution candidates

u,(x, 1) = (arb. const.)v,(x)w,(t) = c, sin nx cos nt.

It is easily verified that each u,(x, 1) satisfies the PDE, BV, and IV 2 of the original
problems.

It remains then to satisfy the initial condition (IV 1): u(x, 9) = f(x). This
clearly will not be satisfied by any one of the u,(x, 7) candidates unless f is itself
a multiple of a fundamental mode sin nx. T

* Physically, this means that you are able to release the string from its initial position f(x) exactly
vertically. Mechanically, it means that you can do so without any imbalance between the thumb and
forefinger. But one can treat in the same way the other case f; = 0, f; given, where the string is held
straight across, taut, with no initial displacement, but with a push in the t-direction. One then finds the
combined solution for both data (IV 1 and IV 2) present, by adding. Mathematically, this is allowed
by the linearity of the problem.

+ Bernoulli’s controversial idea (1755) was that any initial displacement f(x) was itself a linear
combination of such sine functions and that thus a number of modes u,(x, 1) will suffice when properly
combined for the solution. The calculation of the coefficients was finally resolved by Euler in 1777. It
should be mentioned that Lagrange in 1760 independently employed separation of variables, for the
vibrating string problem, and that d’Alembert in 1746 had previously solved the vibrating string
problem by another method (see Section 2.5).
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If we go ahead and try the most general ‘‘linear combination’’ of the u,(x, ?),
that is,

o

ulx, ) = 2 Colty(x, 1) = 2 ¢, sin nx cos nt
n=1 n=1

we find ourselves facing three mathematical questions:

1. First, can we apply the PDE across the infinite series, that is, can we
differentiate term by term so that (with [J = 4%8r2 — 8%/ax? here)

Outx, ) 2 D, c,0u,x, 1) = 0.
If so,t then u(x, 1) satisfies the PDE, BV, and IV 2 requirements of the problem,

and then the second question presents itself.
2. Is

u(x, 0) = Zx ¢, sin nx X f(x);

that is, do we obtain with our solution candidate the initial displacement (IV 1)?
Restated, is ‘‘every’’ function f(x) representable in a Fourier sine series? If so,*
we have, formally and employing the Wallis formulas of calculus, that for each
m=1,2,3,...,

J:) f(x) sin mx dx = Elc,, . sin mx sin nx dx = ¢, - g
Thus the (Fourier) coefficients c,,, and thereby the separation of variables solution,
are determined.

3. Is u(x, 1) the “‘physical’’ solution? For this it would suffice to give a unique-
ness proof among a class of functions u (in the domain D(L) of the problem)
possessing enough continuity and regularity (2') so as to rule out other spurious
solutions such as u(x, £) = 0 for ¢ > 0, u(x, 0) = f(x), analogous to our previous
discussion in Section 1.3 of such pathological and uninteresting solutions. There
are several ways to argue this, but we defer them to later.

In like manner other PDEs may be solved by separation of variables, as will
be seen later. When the geometrical setting is different (e.g., spherical rather than

t And this should bring to mind that by advanced calculus one knows that what is needed here is
enough uniform convergence, as will be made precise later (Sec. 2.2).

* That it is the case for any square-integrable f is usually called the Riesz—Fishertt Theorem in
the Lebesgue integration theory. Although Euler first found the Fourier coefficents, the name Fourier
derives from the use of such expansions in the theory of heat conduction problems published by Fourier
in the book Théorie analytique de la chaleur in 1822.

t1 After F. Riesz and E. Fischer both in the Compt. Rend. Acad. Sci. Paris 144 (1907), who
showed [, equivalent to L2, and as a corollary, the cited result.
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rectangular) one sometimes encounters Fourier expansions most naturally in terms
of eigenfunctions other than sines and cosines.i If, however, the domain ( is
unbounded (for example), one encounters situations§ where the eigenfunctions
correspond to eigenvalues such as the X, = 1, 4,9, . . . above are not complete
enough for expansion of arbitrary functions; some aspects of these problems will
be discussed later in Section 2.7 and may be resolved in terms of eigenfunctions
ranging over a continuous set of X and solution u given by integrals in place of
series.

Problem 1. (a) Solve (formally) by separation of variables the Dirichlet prob-
lem (1) shown in Figure 1.5b with data zero on three sides. (b) Argue how to
solve that problem with data present on all four sides by breaking the problem
into four problems of type (a) by linearity and change of variable.

Problem 2. (a) Convert the Laplacian A to polar coordinates (as a review
exercise in calculus). (b) Solve formally by separation of variables the Dirichlet
problem (1) shown in Figure 1.5¢, where Q is the unit open disc.

Problem 3. (a) Solve explicitly, that is, find the Fourier coefficients, Problems
1 and 2, with f(x) = x, f(8) = 0, respectively. (b) Do (a) with data e*, €°
respectively.

Before leaving (for now) the separation of variables method, and as it concerns
Problems 1-3 above, let us mention a few conventions found in the literature. We
will use ¢, to denote as above a general Fourier coefficient; that is, if a function f
is expanded in terms of a set of eigenfunctions {¢,}, we will write

f= 2 cabn
n=1

y
1

u=0
4

u=0 Au=0 u=0
n P

0 u=f = *

FiG. 1.5 FiG. 1.5¢

¥ For example, Legendre in 1784-85, interested in attraction properties of solids of revolution,
solved the problem via separation of variables employing an eigenfunction expansion in terms of the
polynomials now bearing his name. Motivated to some extent by problems in the theory of sound
propagation (with experiments performed by Sturm and Colladon in Lake Geneva in 1826), Sturm and
Liouville in 1836 developed a general theory of eigenfunction expansions for second-order ordinary
differential equations (see Section 2.4).

§ The A, encountered thus far are called the ‘‘point-spectrum’’ of the differential operator L, but
in these situations just mentioned one has present also a ‘‘continuous-spectrum,’”’ as seen in spectroscopy
for example. Further amplification of these concepts will be found in Chapter 2.



26 THE USUAL TRINITIES

where ¢, = (f, @,) in the appropriate inner* product for the problem. Above we
had for example (but here ‘‘normalizing’’ the ¢,)

Cp = L Fx) @ (x) dx

where ¢,(x) = (2/m)"2 sin nx, the (2/m)"2 being a normalizing factor. Here the ¢,
are prenormalized so that the “‘length’’ (¢,, ¢,) = 1. For example, one has tacitly
prenormalized in this way in the case of Euclidean 3-space, where the {¢,} are the
base vectors i, j, and k; the need for later normalizations then disappears. On the
other hand, the classical treatments often just used the coefficients ¢, = (f, ¢,/
(x> ®n) for nonnormalized basis vectors such as the ¢,(x) = sin nx, which is
equivalent to the above procedure of normalizing first.

With reference to Problem 2 above and in general to the question of expansion
of a function f(8) in terms of sines and cosines on the interval —m < 8 < 1, one
needs both the sines and cosines for general functions because the former are all
odd functions and the latter are all even functions.} If the data f is even about zero
the sine terms will vanish, whereas if f is odd about zero, the cosine terms will
vanish, but in general all must be present. Classical notation is to write f = Z¢, ¢,
on —mw < 0 < 7 in the form

f=1lag+ 3 (a,cosn + b,sin no)
n=1

where a, = ! [T f(¢) cosne de,n =0,1,2, ..., and where b, = 7]
Jlofl@)sinng de,n = 1,2,3,. ... Thus the Fourier coefficients have been
split into the cosine coefficients {a,} and the sine coefficients {b,} as have been
the eigenfunctions {¢,}. The normalizing factor here would be

- -12
(Pns @) ™12 = (f_ﬂsin2 ne dcp)

. -12
(f cos? ng d(.p) =g~ 12
-

The expression just written above is commonly referred to as the Trigonometric or
Trigonometric Fourier Series of fto distinguish it from expansions in terms of other
types of eigenfunctions {¢,}, such as those to be enumerated in Section 2.1.

In solving Problem 2 above one tries solutions of the form u(r, 8) = R(r)©(0)
and arrives at the separated ODEs

—-0"(0) = AO(9), -—n<0<mi

* Other words used are ‘“scalar,”” “‘dot,"” and so forth. See Section 2.3 for a more precise statement.

T A function f is odd about the point zero if f(—8) = —f(8) and even about the point zero if
f(—8) = £(8); that is, *‘origin* and *‘y-axis”’ symmetry, respectively.

1 We could have used 0 < 8 < 21r or any other interval of length 24r to parameterize the unit
circle. The above is most common.
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and

r’R'(r) + rR'(r) — AR(r) = 0. 0=r<1.
Whatare the boundary conditious to determine the eigeuvalues A, and cigenfuuctions
©,? Here one remeubers the prescription of u € C *(Q) for the Dirichlet problem, and
in order to guarantee at least C' interior continuity* one specifics that

O(- 1) = O(x) and ©' (- ) = O'(x).

It then follows that ®”(~ xt) = ©"(x) due to the continuity at the end poiuts of the
resulting solutions of this ODE eigenvalue problem.

From the above eigenvalue problem for ©(8) one thus arrives at A, = 0, |, 4,
.. .,n% .. .and the corresponding trigonometric eigenfunctions @,. The resulting
equation for R(r) with X, in it has general solutions R,(r) = ¢;r" + cr " n#0,
Ry(r) = ¢; + ¢; In r.T Here one then imposes a boundary condition that R(r) be
bounded near r = 0 so that the ¢, terms drop out, so that again one has taken note
of the desired C%(()) interior regularity requirement of the original PDE. The rest
of the details in Problem 2 are left to the student.

The boundary data in Problem 3 above suffer discontinuities but, nonetheless,
as will be seen later, the separation of variables method still provides solutions u
to the PDEs in the interiors of the domains. In general the Fourier series can be
expected to converge to the average value of data which have jumps.§

A related question is solution regularity at *‘comners’’ of a domain such as in
Problem |, whether or not the data f are continuous. This is an interesting and more
complicated question that also arises, for example, in fourth-order (e.g., with
operator L = A?) elliptic problems describing plate stress and deformation, and
we do not go into these matters here.

To see the effect of discontinuities in the boundary 82 itself, one needs only
to take a soapfilm with a loop of square configuration having very slight raggedness
at the corner. You will find yourself making a smoother solder joint if the original
square loop was not smooth enough. Most treatments of boundary value problems
more or less assume a nice smooth boundary even when it is not so. Proper treatment
of corners needs more care.

With these remarks we leave the separation of variables method in its formal
status. The three mathematical questions—of existence, uniqueness, and stability—
will be treated further in terms of the separation of variables solution in the next
chapter by some considerations from advanced calculus, Fourier series, and the
theory of partial differential equations. It should be emphasized once more perhaps

* Many textbooks are surprisingly fuzzy on this point. stating a desire for periodic solutions. and
so forth. which although somewhat equivalent. nonetheless obscures the fact that regularity is the real
concept entering here.

+ As may be seen by recognizing the equation as an Euler equation from ODE. for example. or
alternately by using the power series method for ODEs with a regular singular point. See any eiementary
ODE book. or for example the references given in Problem 2.9.4.

§ See the Dini Tests of Section 1.9.6(2).
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that upon encountering a partial differential equation one is always encouraged to
try the separation of variables method inasmuch as it provides the most useful
concrete way of solving PDEs and thereby answering explicitly the questions —
construction, regularity, approximation—of the solution.

1.5(1) Exercises

1. Calculate the Fourier sine coefficients
2 (" .
¢, = — | f(x) sin nx dx, n=1,2,...
™ Jo

for the following functions
(a) fx) sin x,

(b) f(x) = sin® x,

(c) fx) = x(m — x).

2. Using the general solution formula

ux, 1) = 2 C, Sih nx cos nt

n=1
derived in the text, find the separation of variables solutions of the vibrating
string problem with initial position
(a) f(x) sin x, O0<x<m,
(b) f(x) = sin’ x, 0<x<mm,
(c) f(x) = x(7w — x), 0<x<m.

3. Solve the heat equation problem

(PDE) w4, — u, = 0, O0<x<m, t>0,

(BVP) u(0,0) = w(mw, 1) = 0, t=0,

aAVP)  u(x, 0) = f(x), 0<x<m,

with (a) f(x) = sin x, (b) f(x) = sin® x, and (c) fx) = x(m — x).

1.5.2. Green’s Function Method

The most general* theoretical way of “‘inverting’’ a PDE Lu = f is by use of
Green'sT functions. And “‘inverting’’ is the correct word here sinice one obtains an
“inverse’’ operator L™, and thus the solution u = L™, in much the same spirit
as when solving a matrix equation Ax = y by calculating the inverse matrix A1,

* For example, the separation of variables method breaks down if the domain £ is not of some
special geometry such as rectangular. spherical, cylindrical. and so forth; one need only try it on a
general two-dimensional domain to see this, the A, no longer being independent of one coordinate's
position. Generally speaking. the Green's function method works for arbitrary domains but with the
corresponding disadvantage that it yields the solution in a *‘pointwise " rather than ** global’ form. Also
there may be difficuity in explicitly obtaining the Green's function for the problem.

* As also the case with the Green's identities to be discussed later. Green's functions are named
after George Green. see his *‘Essay on the application of mathematical analysis to the theory of electricity
and magnetism.”’ 1828.
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As it usually turns out in this method one obtains a representation of L~! by means
of an integral operator: whose kernel G(P, Q) is the Green’s function for the
problem in question:

u(P) = J;) G(P, Q) f(Q) dVy, P e

One may interpret this solution representation as an ‘‘adding up and simultaneous
weighting”’ of the data f, much as A ™! can be regarded as a ‘‘weighting’’ of the
data y in the matrix case.

The ramifications of the theory of Green’s functions are many and sometimes
complicated. We restrict ourselves here to just three interpretations, both mathe-
matical and physical. For partial differential equations most Green’s functions are
singular as the point Q approaches P. Our first illustration of a Green’s function
is not singular, however, and is in fact no more than the variation of constants
formula from ODE.

Let L denote the one-dimensional Dirichlet—Poisson problem

—v"(x) = f(x), o<x<m,
v(0) = v(w) = 0,

which we denote loosely by Lv = f (understanding as usual that L also connotes,
in addition to the operator — A on the domain, that the identity operator / maps v
onto zero data on the boundary). From ODE we recall that the homogeneous equation
—2" = 0 has two fundamental solutions ¢, = 1 and ¢, = x, and, by the variation
of constants formula (see Problem 1), the inhomogeneous equation —v"(x) = f(x)
has the general solution

v(x) = ¢ + cx + fo (s — ) f(s) ds.
Substitution of the boundary conditions yields
=0 and ¢, = ﬁ_lJ;) (m — 8)f(s) ds,

and thus

v(x) o

fx [g + (s — x)]f(s) ds + f Xm — s)f(s) ds

f x(ﬁ—_i)f(s) ds + fx (s — x)f(s) ds
™ 0

0 x ™

v
fo G(x, $)f(s) ds,

} The use of such integral operators was pioneered by Liouville in 1832, His method was used
by Neumann in 1877 and improved by Fredholm and Hilbert in 1899 in finally resolving the Dirichlet
problem for general domains.
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where the Green's function G(x, s) is given by

s(m — x)/m, s = x,
x(m ~ s)m, s =X

Gx, 5) = {

This example illustrates a number of properties most Green’s functions enjoy,
including the symmetry G(x, s) = G(s, x) and the dependence (w here) on the
particular domain and on the particular boundary conditions.*

A second interpretation of the Green’s function is as a fundamental singularity
yielding a point source in a physical problem such as heat conduction. As will be
seen in Section 1.7, under linearizing assumptions the flow of heat in a cooling
body is described by the heat equation, with u(x, y, z, t) denoting the temperature,

u, — Au =0
and in the case of steady, that is, time-independent, flow, wherein u = u(x, y, z),
one has the equation
Au=0

for the temperature distribution. In imagining such a steady outward heat flow (Fig.
1.5d) one needs a source at P and this is provided by the singular function

1
41TrpQ

SP, Q) =

where P (which denotes (x, y, 2)) is regarded as fixed within {} and where Q (which
denotes another point in the body or on its boundary) varies over (1. Here Tpg
denotes the Euclidean distance between P and Q. The interpretation of the singular
function S(P, Q) as a source function for the heat flow then proceeds as follows,
first noting that S(P, Q) is harmonic in Q& — {P}:

ApS(P, Q) =0, P#Q.

Putting an e-sphere about P (see Fig. 1.5¢), one has the temperature rate of change
on [P — Q] = & given by the heat flow

Zkn

—k grad,S(P, Q) = Al

where n is the unit outer normal on |P — Q| = & and where kT denotes the thermal
conductivity of the material there. Normalizing the coefficient & to 1 and integrating
over the sphere [P — Q| = &, one has 1 calorie of heat entering the rest of () from

* In general, the Green's function for a PDE should be regarded as a nontrivial entity, perhaps
not so easy to find, inasmuch as it contains all information about the problem, such as the operators,
boundary conditions, and domain geometry.

+ Units of k are calories per second here. See Section 1.7 for a further discussion of heat conduction.
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the sphere |P — Q| = ¢ through the sphere [P — Q|
calculating the heat flux through the sphere [P — Q|

€ in 1 second, as seen by
&

fi,,_g,“ —k gradgS(P, Q) *nds = 1.

Since this argument does not depend on €, € may be taken arbitrarily small and
S(P, Q) may be interpreted as the temperature distribution in €} due to a unit heat
source located at P.

This brings us to a third interpretation of Green’s functions in terms of what
we shall loosely call the (Dirac) delta function property. More precisely the ar-
guments depend on the calculation of improper integrals, the details of which we
will postpone for the time being (see, however, Problems 2 and 3). In this third
interpretation, we may write (remembering from the second interpretation that S(P,
Q) is harmonic for P # Q) the ‘‘fundamental solution’’ or *‘delta function’’ relation

where the delta ‘‘function’” 8(P, Q) is defined to be the quantity* given by the
properties that 8(P, Q) = 0 when P # Q and

fn w(Q)3(P, Q) dVy = w(P)

for arbitrary smooth functions w on ). Let us use the latter ‘‘point evaluator’’
property to find the solution u(P) of the Poisson-Dirichlet problem

—Au = Fin(},
u = 0ong).

* It exists, but as a ‘‘measure’’ rather than a function. We do not need any measure-theoretic
aspects of the delta function here.
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We assume that the solution u exists and is sufficiently regular so that we may
multiply by an arbitrary function v also vanishing on d{) and integrate as follows:

va= —f vAu = —f u Av. *
") ") Q

Now supposing that there exists a function v = v(P, Q) =GP, Q) = SP, Q)
+ g(P, @), which is the fundamental singularity S(P, Q) given above plus an
adjustment term g(P, Q) satisfying Apg(P, @) = 0in Q and ‘““adjusting’’ S(P,
Q) so that the sum G(P, @) = 0 for Q on 42, on substitution into the last equation
and using the delta function property —ApG(P, Q) = 3(P, Q), one has

u(P) = fn G(P, Q)F (Q)aV,
and hence the solution to the Poisson—Dirichlet problem.

Problem 1. (Review of ODE). (a) Derive the variation of constants formula
used in this section for the equation —v" = f- (b) Find the Green's function
for the following mixed problem:

-v"'(x) = f(x), 0<x<m,
v(0) = 0,
v'(w) = 0.

Problem 2. (a) Show that the Dirichlet—Poisson Green's function G(x, s) given
above by variation of constants does in fact have the fundamental singularity
and “‘delta function'’ properties in the sense that it satisfies:

D.E.; -AG(x,5) =0, 5 # x,
d property; dGx, s) = H(x, 5), where H(x, s)T is the step function

ds shown in Figure 1.5f, s # x,

B.C,; G(x,0) = G(x, w) = 0.
(b) Graph carefully the G(x, ). (c) Repeat (a) and (b) for (b) of Problem 1.

Problem 3. Show that the Poisson kernel (41r) = V2 ¢l =& =»%41 is the Green's
function for the heat propagation problem (2) by noting (a) for fixed y, it

* The second equality is Green’s second identity (see Section 1.6.1). which may be justified
directly by an integration by parts using the divergence theorem. The student may wish, at this point,
to verify it in the case of one dimension, by the usual integration by parts formula from calculus.

Often in the following pages for brevity we will omit the expressions dV, ds, dx, and so forth,
when the meaning of the integral is clear. Also in the above a notation such as A, or 4V, means that
Q is the variable, P being regarded as arbitrary but fixed.

t H(x, s) for **Heavyside function,” as they are commonly called.
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satisfies the heat equation u,, — ¥, = 0in —®o < x < o, t > 0, and (b) it
has a ‘‘delta function’’ property for reproducing the initial values at ¢ = Q.

1.5(2) Exercises
1. For the ordinary differential equation
a'+ by +cy=0

with constant coefficients, review the three solution cases (a) roots real and
unequal, (b) roots real and equal, and (c) roots complex conjugate.

2. The Green’s function for ordinary differential equations results from ap-
plying boundary conditions to the general solution

y®) = yu(x) + yp(x)
of the equation

ay' + by + ¢y = f(x).

Here y,(x) denotes the solution c¢,y,(x) + c,y,(x) of the homogeneous

equation of Exercise 1, and yp(x) denotes any particular solution of the

nonhomogeneous equation.

(a) Review the three cases for y,(x) and y,(x).

(b) Recall the Variation of Parameters formula for yp(x).

(c) Why does the Green’s function turn out to involve integrals of products
of the form y,(x)y,(s)?

3. The ‘‘delta function’’ has behind it now a large theory of generalized func-
tions, measures, distributions, and indeed its full calculus warrants such
structures. However, much of the confusion it can cause can be avoided by
starting with the notion of *‘delta functional.’” The latter is defined simply
as the transformation 8, which maps a function u(Q) to its value at a
designated point Q = P.

(a) The term ‘‘functional’’ is usually reserved in mathematics for mappings
from functions to scalars, e.g., real or complex numbers. Is that the
case with the delta functional 8,7
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(b) ““Functionals’’ are also tacitly assumed unless stated to the contrary to
be linear. Is that the case for 85?7
(c) What then is the meaning of the Green's function solution

u(x) = L G(x, s)f(s)ds

for the example worked out in the text, in terms of the ‘‘delta function’’
and the ‘‘delta functional’’?

1.5.3. Variational Methodst

A discussion of variational methods leads to a number of questions in the general
calculus of variations; in later sections we will consider some further aspects of
these questions as they pertain to the study of partial differential equations. In these
introductory remarks we first restrict attention to the famous Dirichlet principle and
its historical significance in partial differential equations and to mathematics gen-
erally. 3

Let us consider the Dirichlet problem (specifying explicitly the regularity con-
ditions this time):

Au = 0in , u € CO0) N Cx,
u=fondd, fE€ CYIN).

The Dirichlet principle (stated here without any regularity assumptions on the
functions or domains involved) asserts that the solution u is realized by obtaining
from all functions v that are equal to f on d{) the one that minimizes the energy
integral

= 2
D) L |grad v].

1 Later we will also discuss certain numerical methods from this point of view (see Section 2.6).

1 Poisson solved the Dirichlet problem for the sphere in 1820. In 1839-40 Gauss attempted a
solution for arbitrary domains and concluded that some restriction might be necessary on the domain
). Green in his treatise of 1828 and again in 1833 asserted the eXistence of solutions to the Dirichlet
problem according to the physical evidence, but with reservations as to the eXistence of a Green's
function for arbitrary domains; Green’s proof depended on the unproven Dirichlet principle. Thompson
(Lord Kelvin) in 1847, Riemann in 1851, and Dirichlet in the early 1850s all assumed the validity of
the Dirichlet principle in their work in potential theory and complexX variable analytic function theory.
A major crisis arose in 1870 when Weierstrass successfully placed the Dirichlet principle in question
by giving examples of minimization problems in the calculus of variations wherein there are no continuous
functions solving the problem, and asserted correctly that although the energy integral D(v) has among
the C(2) N C!(€) trial functions a uniform lower bound, ‘‘whether there is a function & in the class
of continuously differentiable functions that furnishes the lower bound was not established.”’ The
Dirichlet principle fell into disrepute for 30 years, and during the period C. Neumann (1870), H. Schwarz
(1870), Poincaré (1887), and Picard (1888), among others, all obtained existence proofs for the Dirichlet
problem by other methods. However, in 1899 Hilbert rescued the Dirichlet principle by showing the
eXistence of a minimizing sequence with C1({2) N C%0Y) limit u that moreover satisfied the boundary
value condition and the differential equation for a wide class of domains ). This then resolved the
Dirichlet problem for all such domains €}.
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Let us illustrate what is involved here by considering the easiest Dirichlet
problem, namely,

u"(x) = 0, 0<x<l,
u0) = 0, u(l) =1,

which has solution u(x) = x. If we consider a priori as a possible choice of
minimizing functions u,(x) = x",n = 1,2, 3, ..., (see Fig.. 1.5g), we find that
Dw,) =1, % %, ..., n%2n — 1). Thus the minimizing trial function from
among this class of functions is the harmonic one, as asserted by the Dirichlet
principle.

More generally, if we consider any function v that is continuously differentiable
on the interval 0 = x = 1, we see by integration by parts+ that for any u € C?[0, 1]

1
D) = Io @')? dx
1 1 1
= I W' dx + I (v — w)')Pdx + 2] u@ — w' dx
o 0 o

1
=Dw) + Dw — uw) + 2((1) —wu'ly - IO w — wu" dx).

The last term vanishes if v and « have the same given boundary values and if u is
harmonic, so that by the positivity of the (energy) integral D(v — u) one has

D) = D).

The difficulties in the Dirichlet principle are in the other direction: in arguing the
existence of a function u that actually attains the minimum energy value and in
then demonstrating that u is in fact harmonic throughout the domain ) and suffi-
ciently regular on its closure ) so as to solve the differential equation completely.

Variational methods are perhaps even more important in eigenvalue problems,
especially since there are very important eigenvalue problems that have not been
solved* and for which one must approximate, by variational considerations, the
true eigenvalues A, by upper and lower bounds for them. To illustrate the variational

u,(x)

1

|

I

1
FiG. 1.5¢

The key identity is the bilinearity D(v - u) = D(v) + D(u) - 2D(v, u), a general property of quadratic
forms and inner products, see Section 2.3. This holds for general domain § and will be used again in Section

2.6. The bilinearity plus D(v, u) = D(u) when v = u on 3Q provides on alternate proof of the Dirichlet
variational inequality above.

* For example, in quantum mechanics, as will be discussed later. See Section 1.7.
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characterization of eigenvalues let us consider the previous example (Rayleigh
problem):

—" = M, 0<x<m,
v(0) = v(mw) = 0,

for which the eigenvalues were A, = n? and the corresponding eigenfunctions were
v,(x) = sinnx, n = 1,2, 3, ... . For an arbitrary real function v € C*0, m) N
C![0, ] vanishing on the boundary, that is, ¥(0) = v(w) = 0, one has by inte-
gration by parts that

fﬁ )P dx = — (" v()"(x) dx
0 Jo

and in particular for an eigenfunction v, that

A, =f |v,’,|2dx/f v2dx > 0.
0 0

Of course from ODE we previously deduced the A, exactly and therefore their
positiveness, but the above argument shows the latter fact more quickly and, as we
shall see later, more generally and for PDE problems as well.

The quotient on the right is called Rayleigh’s* quotient and, as in the case of
the variational characterization of the solution of the Dirichlet boundary value
problem just discussed, the energy integral [|v’|? plays a vital role. In this EVP the
variational characterization of the lowest eigenvaluet A is given by

A = inff0 [v']? dx/fo v? dx, v(0) = v(w) = 0,

and, as in the Dirichlet principle, the questions are: over which class of v is the
infimum actually attained by some v, and is such v; sufficiently regular so as to
satisfy the original PDE eigenvalue problem?

To illustrate the variational characterization in this problem, note that for v,
= sin nx one has

J§ waPdx _ n? [§cos? ixdx

fewtde Jgsnimxde
and that (by Wallis’ formula again) from calculus
w2, m=n

L Vu(X)V,(x) dx = {0, mEn

* After Lord Rayleigh, who did much work in diverse areas of classical spectral analysis of light,
sound, color, electromagnetism, resulting in his book Theory of Sound in 1877 (see also the discussion
in Section 2.8).

t The higher A, are similarly characterized but with the infimum taken only over v which are
‘‘orthogonal’’ to the lower eigenfunctions vy, . . . , v,_;.
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which, as will be made more precise later, means that the v, form an ‘‘orthogonal’”
set of functions.

Problem 1. (a) Prove that [J sin nx sin mx dx = w2 or O depending on

whether n = mornot; n, m = 1, 2,3, . ... (b) Prove that [ ¢,(x)¢,,(x)
dx has the same property (but different constant) when ¢,(x) and ¢, (x) range
over the functions sin nx. n = 1,2,3,...,and cos nx, n = 0, 1, 2, 3,

.. .. Such a set of functions {¢,(x)} is then said to be a mutually orthogonal
set with respect to the inner product (¢,, ¢,) = J ¢,¢» dx. The Fourier
theorem (as will be seen later) states that any square integrable function £} can
be written in terms of mutually orthogonal functions such as these, as we have
assumed in the separation of variables method, applied formally so far.

Problem 2. Let Rw) = [T (v')? dx/[T v? dx be the Rayleigh quotient discussed
in the eigenvalue problem above, for functions v € C 110, w], v(0) = v(m) =
0. Consider as a ‘“‘trial function’ for estimating the true first eigenfunction*
v,(x) = 2”7 ~" sin x the function v(x) = cx(w — x), where ¢ is an arbitrary
constant. (a) Calculate R(v) and observe how close it turns out to be to the
eigenvalue A, = 1. (b) Calculate the root-mean-square errori (/g [v— ;|2
dx)” for the best value of c. This is typical of variational trial functions: they
yield better eigenvalue estimates than one would expect.

Problem 3. Consider the minimization problem
1
A= minimumf0 v? dx,

v € CY0, 1],
v(0) =0, () =1,
and show, using the u,(x) = x" used previously above, that there is no solution.

In Problem 1.9.5(1) some further historical considerations are mentioned; there
are also certain historical exercises for the student. For example, the interesting
question ‘‘How did the Robin boundary condition come to be so named?’’ may
eventually alert the student to some of the more human aspects of the subject.

In Problem 1.9.5(2) we anticipate some technical details such as: Which do-
mains () are ‘‘sufficiently nice’’ so that one may work on them without undue
worry? In practice most domains {) cause no problems as concerns the existence
of a continuous solution to the Dirichlet problem, the yielding of a Green’s function
as discussed in this section above, the allowing of integration by parts and use of

2 5.4
+ That is. one of finite “length’* (f, )V? = Uf dx] <
* Here normalized to have “‘length’* equal to one as mentioned.
+ That is, the **distance’ between v and v, in the sense just mentioned. Other names are **metric’’
or “"norm.”" names that we will employ from time to time in the following.
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the divergence theorem as discussed in Section 1.6, and so on. We do not wish to
become too involved with ‘‘nonnice domains’’ €2, which turn out to be somewhat
pathological even though mathematically interesting. On the other hand, we do not
wish to discourage a curious student from reading further about them.

In Problem 1.9.5(3) we relate the variational formulation of a problem to the
corresponding (Euler) partial differential equation for the problem. To do so we
use the divergence theorem and Green’s identities for integration by parts for partial
differential equations as put forth in the following section.

1.5(3) Exercise

1. (a) Write the one-dimensional Dirichlet Principle for an interval (a, b).
(b) Prove that the functional f&v’(x)|? dx has a finite infimum over all v
being considered.
(c) What is the difference between infimum and minimum, in this context?
2. (a) Observe a good hint for starting the path from a differential equation
formulation to a variational formulation.
(b) Do (a) for the one-dimensional Dirichlet problem.
(c) Where is the ‘‘variation’’ of v in the variational formulation?
3. Give three reasons (a), (b), (c) why the regularity question becomes para-
mount in understanding a variational formulation of a differential equation.

FIRST PAUSE: EXAMPLES, EXPLANATIONS, EXERCISES*

Most of the fundamental concepts have now been introduced. This is a good place
to pause to reinforce some of the main points by means of additional examples and
exercises.

Normally, we write down the equations with convenient coefficients (e.g.,
equal to one) and on convenient intervals (e.g., on (0, 1) or (0, w)). There is no
difficulty in then treating more general situations.

Example
Solve, where k and / denote fixed physical constants,

u, — ku, =0, 0<x<l, t>0,
u@, 1) = u(l,t) =0, t>0,
u(x, 0) = x.

* The four Pauses in the book are intended as helpful and hopefully interesting auxiliary material
to aid in practice and understanding. They should not, however, be an excuse to get bogged down, so
it is recommended that one simultaneously push on.
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Solution. To separate variables we assume u(x, t) = X(x)T(r), which upon
substition into the equation requires

rO _ X@ _

() X&) —A

where — A denotes some as yet arbitrary constant. The minug sign is there just for
convenience, and the two functions in the equation must be constant due to the
independence of the variables x and z. Normally, one chooses the spatial ODE first
because its eigenfunctions will be more fundamental in the ensuing separation of
variables solution. It is also natural to incorporate the boundary conditions into this
contribution to the solution. The resulting ODE boundary-eigenvalue problem

{—kX"(x) = A\X(x), 0<x<l,

X0)=X(h=0
has an infinite number of solutions; namely, the eigenfunctions X,(x) = ¢, sin
(nmx/l) corresponding to the eigenvalues N, = kn*w%[?,n = 1,2, 3, .. . . These

acquired values A, determine the time factors 7,(f) = d,e ~** which we immediately
combine with the corresponding X, (x) factors to obtain the solutions

kn?a?
U (x, 1) = €, X ()T, (t) = c,sin (nmxil)e © '
Note that we have just absorbed the arbitrary constant d,, into the arbitrary constant
¢,,. Forming the linear superposition and going to the limit u(x, t) = 27_ | c,u,(x, 1)
provides our formal separation of variables solution. It vanishes on the boundary,
it (formally) satisfies the partial differential equation, and will (formally) equal the
initial data x if we take ¢, to be the Fourier sine coefficients of x, namely

2 1
C, = —f xsinﬂxdx
lJo l
_2f geme e
"1 | n2m? l am ST o
2 2 2
= = [———cos m'rJ = (—-1)*! -l—
l nm nw
Thus the solution is
20& (- opmx —'"'22"21
’t = - —— sin — f
u(x, t) g "gl . sin ] e

Note that the physical scales are reflected in the eigenfunctions, decay rates, and
Fourier coefficients of the solution.
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Exercises

1. In the Example let u(x, 0) = A, a fixed constant, and solve.
2. Modify Example (1) to

u, — 2u, = u, 0<x<10, t>0,
u(0, 1) = u(10,1) = 0, t>0,

ux,0) = a for 0 <x<3§,

ux,0) = —a for S<x<10.

Hint: This equation has a zeroth-order term. Try to eliminate it by the
substitution u(x, 1) = €' W(x, 1)
3. Convert the Laplacian to spherical coordinates in 3 dimensions and perform
the separation of variables arguments (without solving the resulting ODEs).
4. Solve by separation of variables the plucked string problem

u, — Ku, =0, 0<x<|, t>0,
u, 1) = ul, 1) =0, t>0,

u(x, 0) = 24x/l for 0 =x=12,

u(x, 0) = 2A(1 — x/1) for IR=x=1,
u(x,0 =0, 0<x<l

5. Solve the inhomogeneous problem

U — Uy = Yx), 0<x<l, t>0,
u, ) = u(l,t) =0, t=0,
u(x, 0) = f(x) 0<x<1

by separation of variables. Consider y(x) = x, —e™*, and other easily
(Fourier) integrated forcing functions, and various similarly chosen f(x).
Hint: Let u(x, t) = v(x, ) + gx).
Green’s functions for partial differential equations can be hard to come by, but
for ordinary differential equations they come out of the variation of parameters
(i.e., constants) procedure.

Example
Find the Green’s function for

W'(x) + hulx) = f(x), 0<x<|
u0 =ull) =0

where the parameter \ is any real number.

Solution. First solving the homogeneous equation we consider three cases.
For A >0

Uy(x) = cicos \x + ¢, sin A\ x
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and we try a particular solution
u(x) = ¢;(x) cos Nx + c,(x)sin N"x
from which the variation of constants equations

¢} cos Nx + ¢4 sin \x = 0

i sin A%x — ¢} cos N%x = —f(x)/\*
yield
cix) = —f(x) sin N"x/\"
cy(x) = f(x) cos \"x/\"
so that

uy(x) = (—)\"/3 Lf(s) sin A\ s ds) cos Nx

+ ()\"”’ Lf(s) cos N s ds) sin A x.

The general solution being u(x) = uy(x) + up(x), now satisfying the boundary
conditions requires

0 = u(0) = ¢,
0 = u(l)
= ¢, sin A\ |
!
— A" cos A" lfof(s) sin A\ s ds
!
+ N"" sin A% fof(s) cos \* s ds
or
fl
= - ——— | sina%q - .
[ N sin N7 Jo S0 ( s)f(s) ds

Thus the general solution for arbitrary forcing data f(x) may be written

o [fsin N - 9) *sin A\ (x — §)
sin \"x J;) mf(s) ds + J;) Tf(s) ds

*[sin N\%xsin A% (s — 1) sin A% (x — §)
) + ],
fo [ N sin N%L N f(s) ds
f’sin AMxsinN2 (s = )
+ ) . )
x R/’ sin R/’l

u(x) =

f(s) ds.
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The quantity in the brackets with common denominator reduces to
sin \s sin A (x — 1)
A% sin A"

[...] =
so that we may write

1
u(x) = L G(x, s)f(s) ds

where
sin \"s sin N (x = 1) 0=s=x
A sin A% ’ ’
G(x, s) =
soaV L ezl
sin A”x sin A (s — 1) 5=

A" sin A2/ ’

Note that the Green’s function becomes singular exactly at the eigenvalues of the
problem, A = n*n%*[. A more advanced theory (called either Integral Equations
or Fredholm Theory) studies the Green’s functions at these singularities. When the
data f is orthogonal to the eigenfunctions, the solution often may still be represented
by a reduced Green’s function.

As the dimension of the space domain increases (i.€., as we move from ordinary
differential equations to partial differential equations), the singularity of the Green’s
function must increase to accommodate the desired delta function reproducing
property mentioned earlier. These singularities in n = 2 and 3 space dimensions
are best understood in terms of the Green's Identities of the next section.

Exercises
6. Show for the Example that for A = 0
_ st — b, 0=s=nqx,
Gl 8) = {x(s - I, xss=l,
and for A <0
: W% o AW —
sinh ((—\) .2 S}nh(( )\)-,’ (x I))’ 0ss=ux
(—N\)” sinh ((—N)"1)
G, s) =
sinh ((—\)*%x) sinh ((—\)"%(s — 1)) =s=1,

(—N\)*” sinh ((— M%) ’
7. Find the Green’s function for

Wx) + ulx) = fx), 0<x<m2,
u(0) = u(m/2) = 0.

Then find the solution when f(x) = x.
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8. Find the Green’s function for

u'x) + ulx) = f(x), 0<x<ml2,
u0) + «'(0) = 0,
u(w/2) + u'(w/2) = 0.

Then find the solution when f(x) = x.

After separation of variables and Green’s function representation, we have
categorized the third principal method for solving partial differential equations as
the variational method. This is the classical viewpoint. A modern viewpoint might
emphasize instead the numerical method. In compromise, we have accommodated
them both in a unified manner in Section 2.6 of Chapter 2. For those who wish at
this point to learn some of the essentials of numerical techniques, see also Appendix
B in Chapter 3.

The variational formulation of a given partial differential equation is often
obtained merely by multiplying through by u and integrating by parts. This leads
to the Green’s Identities of the next section. Some of the main ideas can often be
illustrated in one space dimension.

Example
Show variationally that the first eigenvalue A, of the clamped (elastic) rod

—u" = A, a<x<b,
u(@) = ub) = 0,
u'(a) = u'(b) =0,
is greater than or equal to the second eigenvalue A, of the fixed string
—-w' = A\w, a<x<b,
w(a) = wb) =0

on the same interval.

Solution. Of course we could in this ODE version* solve the two problems
exactly for all eigenvalues and eigenfunctions. Proceeding here variationally, we
recall an important integration by parts formula

b b
wv' — ')l = f w" — vu") dx
a
a

for any twice continuously differentiable functions « and v. Letting v = u” we
have, for all u satisfying the clamped rod boundary conditions,

b b
0 =f uu"" dx -f u")? dx.

* The PDE version was a conjecture of A. Weinstein and was shown to be generally true by L.
Payne, Arch. Rat. Mech. Anal. & (1955). See the Second Pause.
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Upon multiplying the rod eigenvalue equation by u, integrating, and substituting
into the above relation, we have for any eigenfunction u

b b b
f W dx = —Af wd dx = Af (u')? dx.

Thus the eigenvalues A, of the tod are given by the Rayleigh quotients

b b
A= Rt = | 60007 d / [ 02 as
rod

and moreover, as in the Dirichlet Principle of Section 1.5.3, they are characterized
variationally by

A, =  infR()
L ——
all wlug,..., Un—1,

u(@ = ub) = u'a) = u'h) = 0

Here we use the L symbol uLv to denote that fSuvdx = 0. In particular, A, 1s
the infimum of the Rayleigh quotient over all admissible « (e.g., those satisfying
the prescribed boundary conditions and possessing enough derivatives to do the
integrations by parts). For the Rayleigh fixed end string problem we already know
that the variational characterization of its eigenvalues is similarly given by

b b
Ao =R, (W) = inff w')? dx/f w? dx.

string

w@ = wb) =0

We now observe that u], where u, denotes the first eigenfunction of the rod
problem, satisfies the boundary conditions for the string problém. Should it also
be orthogonal to w;, the first string eigenfunction, we would have the desired result:

b b
A= J; (u'f)z/J; (u{)zé)\r

Assuming J ujw, # 0, we may modify the above trial function u; by forming the
new trial function

- '
V= oaup t+ou

in which we choose a = — [ u; wy/f% ujw, so that

0=fvw1=afu;w1+fu1w1
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This trial function yields the desired inequality
2 2
D) _ f (4 f @) o2A, + 1

Jor el s f“ o? +<f /fwy) "

The cross terms vanished because the boundary conditions gave

b 1 b
[Cutwi =2 [iry = o

b 1 b
fau;ul 2 f ("1)’ = 0.

The last inequality used [2 u})*f2 3 = A, = [5 @])*/f% (u})?. This follows from
integration by parts and Schwarz’s Inequality*

Lb(ui)2 = f uuy = (f (uy )2) ’ (f(u’{)z) N

A =

Exercises

9. (a) Solve the clamped rod and fixed string problems exactly. (b) Verify that
the eigenfunctions of the rod are orthogonal. (c) Show variationally that as
the length of the interval (a, b) is increased all eigenvalues in both problems
decrease.

1.6 THREE IMPORTANT MATHEMATICAL TOOLS

Among the mathematical tools that we employ we single out in this preliminary
chapter three of the most important, which we designate as:

(1) Divergence Theorem
(2) Inequalities
(3) Convergence Theorems

One could have labeled them instead as:

(1') Green’s Identities
(2') Schwarz’s Inequality
(3') Differentiation term by term,

* See the next section.
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to be overly specific; or to be overly general, as

(1") Exterior Differential Forms
(2") A priori Estimates
(3") Advanced Calculus

Here we will supply only some of the basic facts,* more general theory being
available in books on the just listed double-primed subjects.

1.6.1. Divergence Theorem

The divergence theoremf is the higher dimensional form of the fundamental theorem
of calculus and can be stated rather simply as

Inaa_,{,- = fmfn,-

where #; is the ith component of the unit outer normal to the surface 3 (Fig. 1.6a;
n is the unit outer normal).

We write this important theorem in several forms. The general assumption, as
in the fundamental theorem of calculus, is that the function being differentiated is
C!. Later we discuss the regularity assumptions more precisely, especially as they
concern the domain () and its boundary d€). For now we tacitly assume that the
outer normal derivative du/on = grad u - n is well defined. As it turns out, edges
and corners can be tolerated as they make no contribution to a higher dimensional
surface integral.

The Divergence Theorem:

o §
L ax anfn.- component form, most general
b
I @ dt = f(b) — fla) calculus ‘‘one-dim.’’ form
I divf = § f'n vector form
Q n

* A little time spent here in learning to manage these three tools is worthwhile. The student who
has had advanced calculus has probably seen the divergence theorem (but probably not enough of it),
almost certainly not enough inequalities, and not the applications of convergence theorems in the uniform
norm. On the other hand, for those who wish to push quickly ahead, they may do so, keeping well in
mind from calculus (1) integration by parts, (2) Schwarz’s inequality, and (3) that most nice things
converge.

+ Also often called the Gauss integral theorem, and sometimes Green's theorem. The latter is
usually reserved for the special two-dimensional form given in the listing below.
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FiG. 1.6a

f a f),: = § fini summation notation form
an

Q. — PJdxdy = § Pdx + Qd “Green’s Theorem” form,
fnf 0 y 4 a0 Qdy “Stoke’s Theorem’’ form

av

. _ w A y e
fn grad u - grad v ﬂn uo fn uldv  Green’s identity I

v du S
u— - v— = | uAv— | vAu Green’s identity II
. on a0 on 0 a

- [ g

1o, (L) Green’s identity III

- u
47 ong \rpg (n = 3 case)

0

A proof of the divergence theorem can get quite complicated and we defer to
the references for a more complete discussion.* We consider here only a ‘‘sim-
ple”’region ( or a region () that can be decomposed into a finite number of simple
regions, and this way we will see that a proof of the divergence theorem reduces
in fact to the fundamental theorem of calculus. A simple region here will be taken
to mean one cylindrical in one coordinate axis direction with disjoint top and bottom
surfaces that are C! surfaces themselves. See Fig. 1.6b for some simple regions.
Cubes are simple regions and a given large domain {} can often be decomposed
into a grid of cubes and a remainder of simple regions as shown in the figure. The

* The best general reference is perhaps O. D. Kellogg, Foundations of Potential Theory (Dover,
New York, 1953), although the proof for regular regions is scattered throughout the book. A modem
proof, focusing principally on {2 a cube, can be found in M. Spivak, Calculus on Manifolds (Benjamin,
New York, 1965). In this vein see also H. Flanders, Differential Forms (Academic Press, New York,
1963). The most general conditions from an integration theory viewpoint may be found in Hassler
Whitney’s book, Geometric Integration Theory (Princeton Univ. Press, Princeton, N.J., 1957).
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Small Q, simple ins
direction, with top
surface §

ds
' h i¢ = angle between tangent

P ipl:ﬂ\m to surface § and the
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!
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X
PS = Projection of §

$

Fia. 1.66

small region closest to the z axis in Fig. 1.6b is not simple but the same proof will
work for it; alternately, it may be further decomposed into two simple subregions.
Assuming that the divergence theorem holds for simple regions, the contributions
from opposing surfaces on the cubes cancel if the function fis continuous and one
is left with simple regions along the boundary of the domain to evaluate.

Looking at the simple region €} as shown in the figure, with top surface § and
bottomn surface parallel to the xy plane, the other sides being cylindrical, and
assuming the given function fis C! over the whole of this subregion and its boundary,
one has

oo [ L= [ [ 2
= II {f(x, y, top 2) — f(x, y, bottom z)] dx dy
PS

by the fundamental theorem of calculus and the definition of the iterated integral.
Having evaluated the volume integral, we next look at the surface integral, noting
that n, = 0 on the cylindrical sides, n, = —1 on the bottom:

§ fnzaﬁfcoswds - ﬁf(x,y, bottom 2) dx dy.
aQ s Ps
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Since ¢ is also the angle* between the horizontal and the infinitesimal tangent plane
(see Fig. 1.6b) at any point on the surface §,

fffCOS‘PdS = fff(x,y,topz)dxdy

s PS

and the theorem is proved.

Looking now at the vector form of the divergence theorem, we see that one
need only add up the component terms and use the just shown component form;
that is, if f = (f;, . . . , f,), then

fdindV=i g'ﬁdv=§":§ f‘.nids=§
Q =17

f -nds,
i=1 )0 dx; Q

a
since the integral? of a finite sum is the finite sum of the integrals. Likewise with
the summation notation form.

The Green’s theorem form of the divergence theorem will be considered next;
we have also mentioned that it is of the ‘‘Stokes Theorem’ form but the latter is
usually reserved for the three-dimensional version,f the proof there (and in higher
dimensions) being similar. Let ( be a two-dimensional domain with d() described
as the arcx=x(s) , y = y(s), in terms of arc length s (Fig. 1.6¢c). Let f be the
vector function

fx, y) = (fi(x, ), filx, y)) = (Q(x, ), — Plx, y)).
Then

fﬂf [0, — P, dx dy f ﬂf () + (f2)) = fﬂf div fdv = ﬂﬂ Fn, ds

& _ & _§
fm(f,ds fzds>ds— Qb+ Pax

* It is helpful to recall from calculus the formula for surface area,

A@S) = ff d + u?+ ul)? dx dy
Ps

for a surface u(x, y) over the xy plane.: The tangent plane to the surface at a point is given by z — z;
= u, - (x = x;) + u,(y — ;) and has attitude numbers (i, u,, —1), the xy plane has attitude numbers
0,0, —=1),cos ¢ = (0,0, = 1) (up, u, =1)/1 - (1 + w2 + u})"?, and

A(S) = lim D, AS = lim , dx; dy,/cos ¢, ” (1 + w2 + u?)"? dx dy
PS

by the usual limiting procedure in defining the integral. The argument in proving the divergence theorem
is thus essentially the same one.
t Being a linear operator.

$§IR, — 0) cosa + (P, — R,) cos B + (O, — P,) cos y] dS = $45 [Pdx + Qdy + Rdz)
s
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FIG. 1.6¢

We turn next to the Green’s identities I, II, and III that are vital in a study of
PDEs. The first two may be regarded as just integration by parts, (e.g., as a higher
dimensional version of integration by parts with the divergence theorem replacing
the fundamental theorem of calculus). Actually, the key is in reality just differ-
entiation by parts,* i.e., the product rule,

W), = w; + uv,
following by an integration over ()

In(uv,i),,dV= InuAvdV + Ingradu-gradvdV

and application of the divergence theorem

v
I(uv,-),dV=‘f uv,nidsE‘f u—ds,
[ ET R an on

which yields the first identity

_ a_v_f
Ingradu grad v = fmuan nuAv.

We have assumed that u and v are in C! (Q) N C? (£)) in order to differentiate
and integrate. A special case of Green’s first identity is that with u = v,

I |gradu|2=‘f u%—f uAu
Q an on 1)

* In one dimension this is the elementary calculus formula (wv)’ = wv’ + vu’, and in the same
way the given summation notation formula just adds up the corresponding partial derivatives. Written
out for n = 2 and n = 3 this becomes, respectively,

a( av) a( av) ( % azv) (auav du av)
—lu—=) +=(u—]) = +u— —— + ==
ax \ ox dy \ ay 3y? ax ox  dy dy
and

9 il 9 i 9 i
—lue—)+—lu—)+ —|u—
ax; ax, Xy axy 0%, 0x;
621) % ud  wy  u
=ul|l— + =)+ =+ ==
axl, axl ax} ax, ax, oax, axz 0Xx3 0X3
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where the Dirichlet integral [q|grad ul? represents energy, virtual mass, capacity,
torsional rigidity, and other important quantities.

Letting D(u, v) = [ grad u - grad v, as in the ODE case considered in the
discussion of variational methods, and noting that

D(u, v) = D(v, u)

by the symmetry of the ordinary dot product for vectors in n-space, we have Green’s

second identity,
av d
f u——f v—u=quv—vau.
n on n on Q Q

The validity of the third Green'’s identity follows from Green’s second identity with
vtaken to be vpp = S(P, Q) = 4 ‘n'rPQ)“, the singular source function discussed
in Section 1.5.2 along with the delta function property that

J;) ulv= J;) w(Q) Apvpg = - u(P)

at interior points P in §. The verification involves principally the observation that
the singular function vp in the integrands in Green’s second identity necessitates
a consideration of the integrals there as singular (or improper) integrals. For ex-
ample, by calculus the meaning of the above integral is (see Fig. 1.6d)

1 1
= |j A
fn ulo (41rrPQ) EI_T) Q, “ e (41rrPQ)

provided that the limit exists.*
Writing then Green's second identity for the region (), as shown in Figure
1.6d with P an interior point of the original region {} and with a small three-

FiG. 1.6d

* Which it does of course in this case, since

f u (—l-) =0
a, 4mrpg

due o the fact that 1/rpg is harmonic in €),.
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dimensional ball (solid sphere) B, centered at P, so that d(), is composed of the
two disjoint parts d(} and S, = dB,, one has

1
o[ ua
n,u Q41'rrpQ

=fvPQAQu—§ vPQ_‘ZE‘_+<f M%Q+§uaﬂ2_§vil‘_
Q, ETy) 0nQ E1s) 0nQ S, 0nQ S, 0nQ

1 ) ( 1 a( 1 )
v = and — | — = ——|—
dmrpg ang \rpg 5, or\req

The Green'’s third identity then follows from the above second identity upon taking
the limit of both sides as € — 0, provided that the first term on the right makes
sense and the last two terms on the right yield a contribution u(P). The first integral

1
fﬂ, (41TrpQ) A “

is regular and converges for u € C2({}) because the integration element dV is of
the form

where

€

S.

dV = r? drd (solid angle)

in three dimensions. The next to the last integral is seen to converge to u(P) by

use of the usual calculus mean value theorem for integrals for continuous functions

u, as follows:
3 1 1 4mre?

‘f u(Q) "—( ) = —‘f Q) dsg = —— u(Qe) = w(@e) = u(P),
s, ang s, 41re

4mrpg T 4me?

where Q, is a guaranteed but unspecified point on S,; by u € C%) one has
necessarily that Q, — P and u(Q.) — u(P) as € — 0. The last integral on the right
is similarly seen to converge to zero as € — 0, for u &€ C'({)), by the existence of
a Q; on §, converging to P,

(f 1 du 1 (f ou  4we? du

du
I Mo =2 () —o0.
s, 0ny  4me ang Qo) = ¢ ong Q)

s, 4mrpg ong T 4me

We wish to make three supplemental remarks at this point concerning the
divergence theorem and Green's identities before leaving them.

Remark 1

The constant 4w that occurred here for three dimensions is in general replaced
by w, = 2mw¥4T(n/2), the area of the unit sphere in n dimensions, and the
source function Vpp = Spp is replaced by
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5. 0) = ¢ ! n>2,

n = 2)o,rpe?
and

S®, Q) = 2iﬂln (é) n =2

Thus in particular the two-dimensional Green’s third identity is

1 1
ulP) = —Lffm<—>Au+—‘§ ln(—l—>ﬁu—
2‘" q rPQ 2‘" o rpQ anQ
1 ‘f 3 1
- — u—1In|—).
2w a0 dng T

Remark 2

Replacing the fundamental singularity S(P, Q), in Green’s third identity by the
Green’s function

GP,Q) = S5P, Q) + gP, Q),

where g(P, Q) is a smooth adjusting function that adds or subtracts just the
right amount to the fundamental singularity, for each fixed P, so that G(P, Q)
satisfies the boundary conditions for a given problem (this was also discussed
earlier in Section 1.5), yields interesting results. For example, for the Dirichlet
problem, g(P, Q) is required to satisfy (Fig. 1.6¢)

{Agg(P, Q0)=0, QinQ,
gP, Q)= -SSP, Q) Q € ¥

since its boundary value —S(P, Q) is continuous on 4§} the standard
existence theory for the Dirichlet problem guarantees* a harmonic solution
g € C}Q) N YY) for every P. Upon insertiont of the resulting Green’s
function G(P, Q) into Green’s III we get

FIG. 1.6e

* See for example the book by Kellogg cited previously in this section.

t This may be checked in either of two ways. One may repeat the argument given above in going
from Green'’s second to third identities but with S(P, Q) replaced by S(P, Q) + g(P, Q), or one may
use Green's second identity for g(P, Q) and then add those terms to the previous result.
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G
up) = [ 6@, 0F@ - fm g P+ 1@

as a representation formula for the solution of the general Dirichlet—Poisson
problem for general domains¥;

—~Au = Fin Q,
u = fon o).

For example, for the Poisson problem

—Au = Fin () . Lu = -A _(F 0
u = 0 onaf) ve, Lu=1 ¥ =10/ o0

regarded as a linear operator equation with two components, the above rep-
resentation formula is just the expression for the inverse operator | A

we=L1 (g) = fn G(P, Q)F(Q) dV,.

One proceeds similarly for the composite Dirichlet—Poisson problem. It is
intuitively reasonable that the inverse of a differential operator should be an
integral operator as in elementary calculus. Thus Green’s third identity inter-
preted as L™ ! completes the circle of ideas

Fund. Thm. of Calculus = divergence theorem = Green’s identity

U

f -1
4 Integral ops. to f A
f as (dx) < Invert. Diff. ops. < Q GP, Q) asAppc.

although it should be mentioned in qualification that there are many other
ramifications and consequences of the notion of integral operators.

Remark 3

One of the corollaries of the above is the mean value theorem for harmonic
functions,

u(P) = ——3—1f u(Q) do
w,r Spo=r
for n = 2, which states that a harmonic function is everywhere equal to its
own spherical averages. Indeed, this property may be taken to be the defining
property for harmonic functions and then shown to be equivalent to the re-
quirement that Au = 0. A similar ‘‘solid mean value* theorem”’ holds for
harmonic functions u, namely,

t As usual we do not define the most general domain. Some authors dodge this by defining a
regular domain to be one on which the divergence theorem holds, a tautological procedure at best. See
Problem 1.9.5.

* This is a mean value theorem by noting that the volume of the unit ball is w,/n.
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f,, U Q) dVy,.

upp) = —,
w,r rpg=

To see how the above mean value theorem results from Green’s third identity
we need the Green’s function G(P, Q) for the unit sphere. For the case n =
3 it may be seent that G(P, Q) is given by

1 1
G(P, = -
*. O Amrpg  4mrogrey

where Q' = 753 O (see Fig. 1.6f). By symmetry and trigonometry one has

1 1
Py = , = - .
GQ. P) =GP Q) 4mrpg  Amroprop

Holding P fixed and differentiating G(Q, P) with respect to O, one has by a
calculation

aG -1 1 1
— (P fixed inside, Q on d) = ( >+ 2 )—
anQ 4‘""})0 4‘n‘err rpQ
Noting by similar triangles that then ropr = rgp/rop, one thus has from the
representation formula of Remark 2, for the Dirichlet problem for the unit
sphere (Fig. 1.6g)

Au=0inr<l,
u=fonr =1,
that
9G 1 § 1 — rdp
=" —fas = — —_— d -3
u(P) §r=1 anfds 41 rog=1< r}3,Q f(Q) $Qs n 3

Note that the data is weighted more heavily as Q approaches P along the
boundary. This formula is sometimes called the Poisson integral representation

/ r
B’ —0 mo
N

FiG. 1.6f FiG. 1.6g

+ This may be verified directly. One way to derive it is by the *‘physical’” method of electrostatic
images, which is essentially what we have done here, by use of the image points P’ and Q'. For each
0O on the boundary, a *‘counterbalancing’’ point source is placed at P’ so that the ratio of the potentials
Vawrp, and Vamrgp: is the constant rop.
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of the solution. In particular, when P is taken at the origin, the boundary points
Q are all equidistant, the averaging is perfect, and one obtains the mean value
theorem

o)
u) = — u(Q) ds
) o Jiai=1 (Q) dsg
given at the beginning of this remark; by considering spheres of radius r rather
than r = 1, one obtains similarly the other versions given there.

To oversimplify: This all works because the fundamental singularity was
taken to be

1
S(Pv Q) = S(r) = (n _ Z)wnrn_z
so that upon differentiation one has
as 1 .
§'(r) = — = ——— = the reciprocal of the surface area of the

n—1
o  wr r sphere in n space.*

Problem 1.t By use of the divergence theorem, show uniqueness for the

Dirichlet—Poisson problem

Au = fin (],
u = gon ),

on a bounded nice domain €} (Fig. 1.6h). State some regularity assumptions

onf, g, u, and ).

Problem 2. Given nice ), d(), and g, do you think that a solution always

exists for the problem

Au = 0in (],

ou
—_ = o)?
n g on

Analyze this question via the divergence theorem and via the uniqueness ques-

tion for the same problem.

* For further variations on this theme see, for example, F. John, Plane Waves and Spherical
Means Applied to Partial Differential Equations (Wiley-Interscience, New York, 1955) and J.L. Synge,

The Hypercircle in Mathematical Physics (Cambridge Univ. Press, Cambridge, 1957).

t These problems are illustrative of the second main method for proving uniqueness, the so-called
energy method. Viewing D(u, ) as the energy, one shows D(#, u) = 0 for the case of zero data, as
one would expect physically. Then one concludes by sufficient regularity and the zero boundary data
that the solution must be zero for zero data. Recall that uniqueness for Lu = fis equivalent to showing

that Lu = O has only the trivial solution, for any linear operator L.
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FIG. 1.6A

Problem 3. Having considered the so-called first (Dirichlet) and second (Neu-
mann) boundary value problems above, consider now the third boundary value
problem,

Au = fin Q,

ad
—u+ku=g0naﬂ,
on

and make a uniqueness decision for both the cases k > 0 (Robin condition)
and k < 0 (Steklov condition: eigenvalues in boundary operator).

1.6 1) Exercises

1. (a) Let Q) be a bounded region in R* for which the divergence theorem
holds, and let x = (x;, X, X3). Show that the volume of ( is given by

1
vol () = —§ X n
3/
(b) Extend (a) to the case of R™, x = (x,, . . . , X,,), namely
1
vol (}) = —§ x-n.
mJaq

© IfQ =B,0r) = x €R™ x| < r}and 3Q = S,(") = {x € R™ x|
= r}, show that

vol (}) = i - Area (3Q2).

Check the validity of this formula when m = 2, 3.
2. (a) Check the validity for m = 2 of the formula

w2
Vol B,,(r)) = 2r Vol (B,,_1(r)) fo cos™8 do.

(b) Repeat (a) for the case m = 3 dimensions.
(c) Compute the volume and surface area of B4(r) in R4,
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1
3. (a) Check that the mean value theorem u(P) = ;—Fi u(Q)dS, holds
n Po=T

for solutions to u”(x) = 0, i.e., in the one-dimensional case.

(b) Check that solutions to A,u = 0 of the form u(x, y) = ax + by + ¢
also satisfy the mean value theorem.

(c) Show conversely that a C? function that satisfies the mean value theorem
in R! is harmonic, i.e., satisfies #’(x) = 0.

1.6.2. Inequalities

Inequalities are the basis of analysis and this is especially true for the theory of
partial differential equations.* That this is the case can be described roughly by
the statement that one cannot in general solve partial differential equations, one
can only approximate them.

As the second basic tool let us therefore briefly consider some inequalities that
are useful throughout mathematics and not just for partial differential equations.
Proofs of these inequalities will be found at the end of the section.

The most important inequality is Schwarz’st inequality, which is essential,
among others, for an understanding of Fourier series.

1. Schwarz’s Inequality: |(u, v)| < ||| ||v||l. Other notations are: (u, v), u - v,
(ulv), | u(xv(x) dx, [ w@x)o(x) dx, 3=, a;b;, Si=; a;b;, D(u, v) and so on, de-
pending on the context in which the so-called inner productf (1, v) is being used.
In all cases it is presupposed that one is working with an inner product space of
functions or vectors, that is, one in which there is a natural inner product defined
that possesses all the properties of the calculus dot product. This is made more
precise in the next chapter when the notion of a Hilbert space is discussed.

The geometrical way to understand Schwarz’s inequality$§ is as in calculus,

vy © Vp = |vy} [vy| cos 0.

There |v| denotes the Euclidean length of the vector v. In the same way for any
inner product

(u, v) = |lufl - |lv]| cos &
defines an angle (Fig. 1.6i) between # and v, and the norm ||| is defined by
w0, w) = |lu.
A related inequality to the Schwarz inequality is the following (any € > 0):

* Some of the basic differential inequalities are usually now called Sobolev inequalities, after the
Russian mathematician, Sobolev. An important one will be discussed in this section.

+ Other names are Cauchy’s inequality (by the French) and Buniakowsky's inequality (by the
Russians).

t Other terminology is: dot product, scalar product, ket. See Section 2.3 for the properties thereof.

§ Proofs of these inequalities follow this discussion of them.
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\ v,

FiG. 1.6

1'. Arithmetic-Geometric Mean Inequality: |(u, v)| = ellu|? + (4¢)~"||v|*.
This inequality (for short, the A—G Inequality) is useful from time to time when
it is desired to give different weights to the vectors u and v in bounding the inner
product. Let us illustrate this point by obtaining a stability result for the Dirichlet—
Poisson problem on a bounded domain, using a combination of Schwarz and A—
G Inequalities.

I", Stability and Approximation for the Dirichlet—Poisson Problem

Au = Fin(},
u = fon .

We seek an inequality* of the form

1]

for all nice (e.g., u € C%(€) N C'({Y)) functions u defined on (. Once obtained,
we have a bound on the particular solution u of the given problem in terms of the

given data,
2 < 2 2
Inu_clf b +c2LF.

Moreover, since the problem is linear, for u = u; — u, the difference of two
solutions, one has the stability statement

- 2 < — £.]2 C2 IF;—F 2
Inlul "2|—C|£n|fl L+ fn 2]

The latter becomes a method of approximation by considering any approximation
¢ to the true solution u, giving error bound (¢ = ¢;, see Problem 3a)

lIA

C) {m u2 + ¢ Iﬂ (Au)2 (EST)

le — ellxqy = cillf — @len + GIF — Adlliyq).

* Such inequalities are called a priori estimates in the PDE literature because they are shown a
priori (i.e., before the fact), that is, without talking about data F and f, for sufficiently nice but otherwise
arbitrary functions . As such they not only serve in stability and approximation considerations as shown
here but also are basic to general existence proofs in the theory of PDE. If you must see more on the
latter, see the references given in Problem 2.9.5.
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Let us then proceed to derive the desired estimate (EST) above.
The problem by linearity can be written as two separate problemst

AR =0in d Av = F=Auin Q
h =f=uondd a¢ 1y = 0on a0

Then by the A—-G inequality

where u = h + v.

fn = fn B+ 2 +2m =1+ ¢ fnhz + (1 + e va.

By a variational approach we may bound v in terms of F, as was done in Section
1.5.3 for the ODE case. The (see Section 1.9.5(3)) variational characterization of
the first eigenvalue \; for the membrane problem

{—Aw = Awin (),

w = 0 on 9},
is
, —fawAw
O< A = inf | ——————|,
! »:20[ Ja w?
on 3}

as may be seen formally by multiplying the equation by w and integrating. Of
course we have not specified the regularity class of w in the variational character-
ization, but it includes C2(2) N C*({}). From the variational characterization we
have then for an arbitrary nice function w vanishing on 9{} that, using Schwarz’s

inequality,
12 12
L 1 2
s (o)< (1) o)

and thus for the v in the second problem above,

fnv2<_ F2__f (Au)z

For h as defined above in terms of ¥ we use what is sometimes called the
auxiliary problem method, or, from a more mathematical viewpoint, an adjoint
problem; namely, let ¢ be defined by

Ay = hin Q
Y = 0on 3

Ah=0in Q

recalling that {h =u=fondf.

+ We write them in both the a priori (i.e., data is just 4 and Au for any given ) and the a
posteriori (i.e., assume the data f and F are given for the given Dirichlet—Poisson problem) ways for
‘‘both audiences.”
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Then by Green’s second identity we have

@_§ o _ _
fm h on a0 v on fn h Ay fn b Ak

and upon substitution of the defined quantities above, using Schwarz’s inequality,

oo G BT

By means of an auxiliary problem (see the discussion and Exercise 5 in the next
Pause) one can obtain an inequality

b\
S << 2
fm (M) < k() fn )

for functions Y vanishing on the boundary 3£}, where k = k((2) is a constant that
depends on the geometry of {) and 9{2. Accepting the latter fact we have

f hzﬁk§ u?
O a0

and thus, upon substitution into the original decomposition, the desired a priori

estimate
f uz_-<:c‘1§ u2+czf (Au)?
a an Q

with ¢, = k(1 + &) and c; = (1 + (4g)"")A[?, for arbitrary &€ > 0. An optimal
¢ could then be chosen in terms of the two domain constants X\ and k.

2. The Triangle Inequality: |lu + vl = |l + [lv|- The meaning of this
inequality lies in its name. See Figure 1.6/ in two-space, interpreting the norm [i-1l
as length. As shown for example in advanced calculus or elementary topology, the
triangle inequality* is typical of any metric spacet and is a property thereof usually
expressed as

dix, y) = d(x, z) + d(z, y)

for any x, y, z in the metric space. Since any set § can be made into a metric space
by defining d(x,, x,) = O or 1 as x, and x, are the same point or not, respectively,
this would seem to make the triangle inequality a priori very general. However,
in partial differential equations the set § is usually a rather carefully chosen vector
space and there is required a certain art (or experience) in picking the right metric.

* Another name is Minkowsky's inequality.

+ A metric space is a set S equipped with a “’length’’ d : § — reals that satisfies (i) d(xy, xp) =
0and d(x;, x;) = 0iff x, = xy, (ii) d(x;, x) = d(x2. x;), and most importantly the triangle inequality,
(iii) d(x,, x) = d(x;, x3) + d(x3, X2) A norm |lu| = d(u, 0) has all these properties and moreover the
property that |lcu| = |d] llul| so that, for example, |- ull = |lu.
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As a metric the triangle inequality above can be expressed as d(u, —v) =
d(u, 0) + d(0, —v) and likewise one has in metric notation d(u, v) = d(u, 0) +
d(0, v) and in norm notation

le — ol = fladl + It

A useful lower bound for |u — 7| obtained easily (see Problem 1) by addition and
subtraction is the following:

2'. Inverse Triangle Inequality (A< for short).
e — ol 2 | Jul = Il |-

The triangle (and therefore the inverse triangle inequality also) inequality holds
more generally than the Schwarz inequality because for the formula all one needs
is some vector space with a metric on it, whereas for the latter one needs an inner
product. That is, Schwarz’s inequality is intrinsically related to the notion of or-
thogonality. One may describe this situation roughly by saying that the triangle
inequality holds for all Banach spaces of vectors or functions, whereas the Schwarz
inequality is available only in the subclass of Banach spaces called Hilbert space.*
We will describe the very important concept of Hilbert space in Chapter 2 when
discussing Fourier series; but for the moment let us just mention the most important
examples; namely, the so-called LP({2) spaces, whose definition is as follows. Let
2 be an otherwise arbitrary set or domain in n space with the usual (dx) Lebesgue
measure on it; then

LF(QY) = {functions f®

fnlf(x)lpdxw}, ISpse,

Here f may be a real valued or complex valued function.t For p = 2 the space
L%(Q)) will be seen to be a Hilbert space. The others are Banach spaces. The special

* One can introduce a ‘‘semi’’ -inner product and a resulting type of Schwarz inequality even in
a Banach space. The resulting structure is very useful in describing energy dissipation of evolving
systems. See Bonsall and Duncan, Numerical Ranges I, Il (Cambridge Univ. Press, Cambridge, 1971,
1973) and Antoine and Gustafson, Adv. in Math. 41(1981). See also Gustafson and Rao, Numerical
Range (Springer, Berlin, 1997) for further information.

1 In many books on functional analysis and in some applications it must be complex valued. Here
for simplicity we will deal mostly with f(x) real valued. The latter suffices, for example, for many
applications in continuum mechanics.
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case of p = o is in fact the case of a ‘‘maximum norm’’ and is taken to mean
supq, . |f(®)| < «, where (1 a.e. means “‘almost everywhere,’” that is, except on
a subset of Lebesgue measure zero.

We will not get into the technicalities of Lebesgue measure and Lebesgue
integrable functions here,f but will instead make statements such as *‘think of a
sequence of piecewise C! functions and define the integral of the limit as the limit
of the integrals of the sequence.”” Most of our functions and data will in fact be
the usual smooth Riemann integrable functions familiar from calculus, but it will
be important to realize the principal merit of the larger class of Lebesgue integrable
functions of being closed under limits.§

Important special cases are L?(—, «) and L0, ), for example. Our dis-
cussion of Fourier series will be seen to emphasize L2(0, ), L*(—=, w), and
LY(—, 7). For all p the norm is given by

1/p
i, = [ [, lror |

A very important variation on Schwarz’s inequality is the Hélder inequality.

2". Holder Inequality (for L? spaces).

[l sumel, ot e =

Note that for the case p = 2, then the so-called conjugate index g has value g = 2
also, and the Hélder inequality reduces to the Schwarz inequality

IR

Stated another way, the Holder inequality asserts that if f € L” and g € L4, then
fg € LY, that is, fg is an integrable function, that is, its integral is finite.

3. The Sobolev Inequality.
u(P)S(P, Qllr2g3y = (1/27m)||grad ul| 2gs)

Stated another way, for any smooth function « of bounded support, that is, a function
u(x) that is zero outside of some sufficiently large sphere, one has for any fixed

y € R3 that
u?(x)
IT__)’P dx = 4] |grad u|? dx.

1 Among the many excellent references is the book by E. Asplund and L. Bungart, A First Course
in Integration (Holt, Reinhart, and Winston, New York, 1966). See also the Lebesgue dominated
convergence theorem in 1.9.6(3).

§ The instructor may wish to give his or her own qualifications of these remarks at this point.
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Here, and for later convenience we have used the notation x = P = (x, x,, x3),
y = Q = (¥, y2, y3) for two points in 3-space.

3'. Why the Atom Does Not Collapse. The Schwarz and Sobolev inequalities
may be used to show now why the atom is stable, that is, why the electron does
not just give up and allow itself to be pulled into the nucleus. With complications
the argument given below for the hydrogen atom extends to all atoms.

What is to be shown is that the kinetic energy due to the motion of an electron
about the nucleus is sufficiently large so as to counterbalance the potential energy
pulling the electron toward the nucleus. The kinetic energy is represented by
+D(u, u) and the potential energy due to the Coulomb potential 1/r by [(1/P)u - u.
The net energy level is given by X in the eigenvalue problem for the Schrodinger
equation

where u € L%(R®) and vanishes sufficiently rapidly at infinity. One may in fact
take u € Cg(R?), the infinitely differentiable functions of compact support,* that
is, functions u vanishing outside some sufficiently large sphere, since technical
considerations allow the passage by approximation to all required u in the domain
of the operator. We have written the equation in atomic, or Hartree, units, and Z
represents the charge.

Considering first the case of charge Z = 1, we obtain, as is our custom by
now with elliptic operators, the variational characterization of the energy spectrum
values of \, namely,

3D, u) — [(Uru?
= f u2 N

by multiplying the equation by u, integrating over {} = R>, and employing Green’s
first identity. If it can be shown that there exists a lower bound for all eigenvalues
A, then the atom is stable. Recall that in the Bohr model (Fig. 1.6k) of the atom
the electron is restricted to certain orbits, releasing energy \; — \; when dropping
down to a closer ith orbit from a jth orbit. The existence of a lower bound for all
energies A thus guarantees a minimal or ‘‘ground-state’’ orbit below which the
electron cannot drop.

Golouse e
e
FiG. 1.6k

* Also called the ‘‘test functions.”” See Problem 2.9.3 for a proof of the denseness of the test
functions Cg in L%((2).
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Now by the Schwarz, A-G, and Sobolev inequalities, we have for the potential
energy term, using the L(R>) norm notation |jul| = [[g:|u|?dx]"?, that

flu2§
r

1 1
~ul Il = 2D, 0Vl = eDw, 4y + ~ul?

so that
1 1
(— - E)D(u, u) — ~[lul?
2 €

el
Taking € = £ yields the lower bound for the energies A,
AEZ -2,

A

v

In the sequence of inequalities used above there was naturallysome precision
loss. The spectrum for the hydrogen operator may be found exactly (Fig. 1.6{) and
consists of the negative eigenvalues \, = —1/2n%, n = 1,2,3, ..., plus the
positive ‘‘continuous’’ spectrum* [0, «). The eigenfunctions u,(x) for the eigen-
values \,, correspond to ‘‘bound states’” and to orbits in which the electron is bound
about the nucleus, tending eventually to the lowest energy A, and the corresponding
“‘ground state.”’ The positive encrgies X in [0, ®) correspond to ‘‘scattering states’’
in which the kinetic energy wins out and the electrons eventually drift (or speed)
away.

We have considered above the case Z = 1, but the same result holds replacing
1/r by Z/r for higher charges.t In that case one takes € = 1/2Z and obtains lower
energy bound —2Z2 The true negative eigenvalues are N\, = —Z%2n?, n =
1,2,3,....

Proofs of the Inequalities

A simple proof of the Schwarz inequality in the real case is provided by the
fact that a real quadratic polynomial has real zeros if and only if the discriminant
is positive or zero. Letting

0 = + w,u + ) = Jlul® + 12, v)) + 2|,

|
1

|
-1 _1
2 %

|
0

FiG. 1.6/ The spectrum of the hydrogen operator.

* See Section 2.7 for a further discussion of the continuous spectrum.

t Even allowing artificial elements, the upper bound on realistic charges is 137. See the discussion
in Physics Today, August (1976), conceming new evidence for the existence of superheavy elements
corresponding to charges 116, 124, 126, and 127. Later work leaves this question unsettied.
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since Q(f) = |lu + w|> = 0, necessarily the discriminant B2 — 4AC = 0,
that is,

4(u, v)* - 4|uf?lv]? = 0,

yielding the inequality. Clearly u is a multiple of v if and only if equality holds
(see Problem 1). The complex case is handled by noting that (1, v) + (v, u)
= 2Re(u, v) since (v, u) = (&, v).

The A—G inequality follows from the simple fact that (@ — b)? Z 0, since
then

2ab = a? + b2,

This contains the classical arithmetic mean—geometric mean comparison

,—ab§a+b
2 ’

and by letting Va = (V2e)u and Vb = (1/\/2&)v in the above one has

w = eu? + (4e) L2

Likewise from Schwarz’s inequality one has the A—G inequality
|G, v)| = lulillvll = ellul® + 4e) =Y.
In the Hilbert space case the triangle inequality follows easily from the
Schwarz inequality since
lu + vl = Jlul® + [WI* + 2Re(u, v)
= (hull + vl
The inverse triangle inequality verification is left for Problem 1.

There are several ways to prove Holders inequality. It follows for example
from Young’s inequality* for two positive numbers a and b

a? b
ab=— + —, pl+ql=1,
p q 7
which is a generalization of the A—G inequality to the case p # 2. Putting
a = |flilfll, and b = |g|/gll, into Young’s inequality, we have upon inte-
grating that

[l 1Sl 1 flgle
IflNelly — 2 A1 a lgll

and thus Holders inequality.
Young’s inequality can be shown from the rational function

* There are inequalities more general than Young’s inequality also, roughly describable as cor-
responding to more general functions than the Q(7) and R(z) above.
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R@®) =p't" + g7 1179, pl4+qgl=1, t>0.

R(?) is seen to be strictly convex with a minimum at 1 = 1 by taking two
derivatives:

R(@) =t — 179D, Rt =087 =121=1,
R@)=(p—- Dr"2+ (¢ + Dr7@™?
=g 'ptP72 + (g + D179TD>0.
Young’s inequality then follows from R(a4b~'?) = R(1) = 1.

We may show the Sobolev inequality by use of Green’s first identity and
Schwarz’s inequality. Recall that we have stated the Sobolev inequality

1
lx =

= 2D(u, u)?
2

for any smooth function u that vanishes for sufficiently large x, y being fixed,
using here the notation D(u, u) = f|grad u|* as before, the integrals thus being
taken over all of 3-space R but in fact only over a bounded domain () that
supports the given function u (Fig. 1.6m). The calculation is as follows: Let
all volume integrals in the following be taken over the interior of an R-sphere
containing the support set of the function «(x), and let

P m )P Gt = ) =yl
Then by Green’s first identity we have
u*(x)

lx = y*’

a
D@w? Inr) = (§ uza—n(ln r - I wWwAlnr) = I
the surface integral vanishing and* A(ln r) = — 1/r2. On the other hand, by
(two applications of) Schwarz’s inequality, and observing that

S (x = i)

= l’
=l =2

* Some intermediate calculations were the following:

( 1 ) =_(Xi_)’i)' (lnr),.,=x‘_2yi=lr

[x — [x =y r re
— 3
Ty = = ; I from r? = 2(1.- -y
=1
rr— (=

Tey =

r3

1 1 2 (. — V) — (x, — V)2
(Inr )xin = Ty + (—> Iy = z (x' y')‘ (X, y’) .
r r/x r

67
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FiG. 1.6m

we have

D@2, Inr) = fgrad(uz) - grad(ln r)

1A

uz(x) 172
2[ —y,z] D(u, u)“z

which yields the Sobolev inequality.

Problem 1. (a) Prove that one obtains equality in the Schwarz’s inequality if
and only if « is a multiple of v. (b) Verify the inverse triangle inequality from
the triangle inequality and the discussed properties of the norm {lae]l.

Problem 2. (a) Consider the EVP

—Au = Auin Q,
u = 0on N,

on an arbitrary bounded smooth domain () in n-dimensional space, and derive
formally the variational characterization of the eigenvalues A,. (b) Solve for
the \,, and the corresponding eigenfunctions u,(x, ) by the method of separation
of variables for the case of () the square (Fig. 1.6n).

y

s

FiG. 1.6n
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Problem 3. With respect to the stability result for the Dirichlet—Poisson prob-
lem

ly = w)? = il i = £l + callFy — Fyf?

obtained in the text in terms of L? norms, consider the following questions:
(a) How does one go back and forth between inequalities such as

a<s C{bl + Cébz and a2 = Clb% + Czb%

as was done in the discussion there? (b) Obtain a similar stability result in the
maximum norms for the same problem. (c) What are your chances of getting
directly an a priori estimate of the form

Luz = (const)§ u?

;¢

for a given bounded domain () and functions u satisfying Au = 0in Q, u €
Q) N CY(Q)?

1.6(2) Exercises

1. Write down Schwarz’s Inequality for the cases (a) Euclidean three space,
(b) the Dirichlet integral D(v) = [q|grad v|?, and (c) infinite vectors x =
(xy, X2, X3, . . ).

2. Write down the Triangle Inequality for the cases (a), (b), (c) of Exercise 1.

3. (a) Prove b from (a) or (c) in Exercise 1.

(b) Verify Schwarz’s inequality for

x=04,506, y=(@89.

(c) Are these vectors close or far from pointing in the same direction?

1.6.3. Convergence Theorems

It will be convenient to later call upon the following convergence theorems when
discussing solutions or proposed solutions of certain partial differential equations.
Let us first recall three common types of convergence that one encounters not only
here but in numerical analysis, signal analysis, and elsewhere in mathematics and
applications. We will describe the results on a finite interval [a, b], but they hold
equally as well on any more general reasonable bounded closed domain £} in n-
space. Let u,(x), n = 1, 2, 3, . . . , be a sequence of functions definedona = x =< b.
Let u(x) be the candidate for limit function.

1. Pointwise Convergence of a Sequence of Functions. Forevery xin [a, b],
for every given & > 0, there exists N = N(x, €) such that |u,(x) — u(x)| < € is
guaranteed for all n > N. Then u,(x) — u(x) pointwise on [a, b). The meaning as
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r
+

FI1G. 1.60

illustrated in Figure 1.60 is that the u,(x) eventually all are contained within the
e-tube about u(x), at least at the point x.

2. Uniform (Pointwise) Convergence of a Sequence of Functions. For every
given € > 0, there exists N = N(g) such that |u, (x) — u(x)| < & is guaranteed for
all n > N. Then u,(x) = u(x) uniformly (pointwise) on [a, b]. The meaning as
illustrated in Figure 1.6p is that the u, eventually all are contained within the &-
tube about u, over the whole interval. In terms of the previous definition of just
pointwise convergence, the meaning is that N can be found independent of x. In
terms of norms, if we let

vl = max |v(x)|
asxsbh

for a continuous function (i.e., v € C%a, b]), then uniform convergence of u, to
u can be written as

llu, — ull > 0 as n— oo,

3. (Root) Mean Square (RMS) Convergence of a Sequence of Functions. For
every given € > 0, there exists N = N(e) such that

" 12
[f |u,,(x) - u(x)|2 dx] <e

is guaranteed for all n > N. Then u, — u in (root) mean square. The meaning as
illustrated in Figure 1.6gq is that the area squared between u,(x) and u(x) eventually
becomes arbitrarily small, although the relative pointwise errors on decreasing
subintervals can be rather out of control. In terms of norms, if we let |jv|2=
J2|v(x)|2dx for any square integrable function (i.e., v € L*a, b)), then RMS
convergence of u, to u can be written as

llu, — ul = 0 as n— .
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This is more commonly called L? convergence and represents convergence in the
Hilbert space L*a, b).

The same defintions apply with the uy (we use capital N rather than lower case
n when denoting partial sums, following a standard convention) taken to be the
partial sums of an infinite series, namely,

N

uy(@) = sy = 2, 4, (x)

n=1

and
u(x) = 2 u,(x) = lim sy(x)
n=1 N—x

since an (infinite) series is always defined as the limit of the partial sum (finite)
series sy. Usually in an infinite series the ‘‘lim’’ has been tacitly assumed to mean
the existence of the pointwise limit for each x in the sense of pointwise convergence.
However, it could just as well have been taken to mean ‘‘lim’’ in the third sense
above, and that is exactly what we do when discussing general Fourier series.

Nature of the Limit Function. Given a sequence u,(x) but possibly not given
in advance a candidate limit function u(x), the so-called Cauchy criteria for con-
vergence are very useful. In this criteria one guarantees an arbitrarily small u, — w«,,
for sufficiently large » and m. It then usually follows* that there exists a limit
function u to which the sequence u, converges.

Thus (1) pointwise convergence becomes |u,,(x) - u,,,(x)| < ¢ for all n, m
Z N; (2) uniform (pointwise) convergence becomes |u,(x) — u,(x)| < € for all

* To mathematicians this is an almost religious point. In fact, one could describe the situation
somewhat irreverently by saying that if the desired limit u(x) does not explicitly exist, the mathematician
will define it to exist. The resulting system will then be said to be ‘‘complete,”” although it may really
be complete only because it has been made so by the addition of idealized elements to *‘fill up any
Pinholes."” The meaning of the word ‘‘complete”’ should therefore always be ‘‘pinned down’> when
encountered. Completeness for pointwise convergence (1) above follows from the axioms in the con-
Struction of the real number system; roughly, that the limit of a Cauchy sequence of irrational numbers
Wwill be nothing new. Completeness for uniform convergence (2) above is described by mathematicians
by saying that C°[a, b) in the maximum norm is a Banach space. Completeness for RMS convergence
(3) becomes the statement that L(a, b) is a Hilbert space, and requires the notion of Lebesgue integral.

se notions will be further discussed in Section 2.3.
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n,m =N and for all x in [a, b]; and (3) RMS (L?) convergence becomes
F8lun(x) — un(x)|?dx < € for all n, m = N. Simple examples (e.g., the u,(x) = x"
of Problem 3, Section 1.5.3) show that the pointwise limit of a sequence of con-
tinuous functions need not be continuous. However, a sequence u,(x) that satisfies
the Cauchy criterion for uniform convergence will have a continuous limit function,
as is shown in advanced calculus. Likewise, the Lebesgue integration theory allows
sufficiently general integrable functions so as to guarantee an L? limit function u(x)
for every sequence u,(x) converging in L? in the Cauchy criterion sense.

Implications between the Three Types of Convergences. In brief, one has the

diagram:
{\Y-(Stmng Dini: f€ C'[a, b))

Uf(mnl £ Holder continuous)

The two heavy implications follow easily. By definition uniform pointwise
convergence (2) = pointwise convergence (1), and by use of Schwarz’s inequality
one has (2) = (3). The two light implications (called Dini tests) hold in the special
case in which uy = sy is the Nth partial sum of the Fourier (trigonometric) series
for a function u = f possessing the indicated continuity properties. For a further
discussion of such Dini tests, which guarantee pointwise convergence, see Problem
1.9.6(2).

The point here is that a Fourier series representation of a given function f will
always converge in the third (L?) sense (as will be shown in Chapter 2), but will
converge pointwise to f only in special cases and under additional hypotheses such
as those in the Dini tests (Problem 1.9.6(2)).

By way of further illustration and emphasis of this last-mentioned point, recall
as discussed in Section 1.5.1 that when using the separation of variables method
for solving a partial differential equation, we wrote the given data function f as a

Fourier series
f = 2 Cn¢n’
where ¢, was (f, ¢,) in the appropriate inner product for the application. For

example, and to be specific, on the interval 0 = x = 7 and for f € L¥0, m) we
employed the Fourier sine series expansion of £, in which we had

12
Pulx) = (}.) sin nx
-n

= fo f(8)o,(s) ds,

and
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n=1,2,3,....Letting uy(x) = sy(x) = ZN_, ¢,¢,(x) bethe Fourier series
truncated to the partial sums consisting of the first N terms therein, the question
then becomes, in what senses is f = 2, ¢,9,? The Fourier theory to be discussed
in Section 2.3 will establish that one always has sy — f in the L? sense, that is, in
convergence sense (3) above. If, moreover, f(x) is Holder continuous at xo,* then
(by the Dini test, see Problem 1.9.6) one has sy — fpointwise at xo, that is, in
convergence sense (1) above. If, moreover, f is continuously differentiable on the
interval, that is, f € C![0, w], and also satisfies the (necessary) condition that
f(0) = f(w), then sy — f uniformly pointwise on the interval.

Problem 1. Verify the implication (2) = (3) in the above diagram.

Problem 2. (a) Determine the Fourier sine series for f(x) = x on [0, 7].
(b) Discuss the three convergences for u,(x) = s,(x) the partial Fourier sums.

Problem 3. Discuss the three types of convergence for the sequence u,(x) = x"
on[0,1],n=1,2,3,....

Sufficient Conditions for the Three Types of Convergences. As concerns
pointwise convergence (1) of a series 2 u, of constant terms u, (or of a series
T u,(x) with x fixed), one obtains in calculus a number of tests. Let us recall here
for our later use the d’Alembert or ratio test: if there exist p < 1, N such that
|44 1/u,| < p for all n = N, then the given constant term series 2 u, converges
and moreover converges absolutely. Belaboring the point, that means there are
numbers A and B so that |A — sy| < € and |B — ry| < € for any given € > 0
whenever n = N, and n = Ny, respectively, where sy = 2., u, and ry =
SN_1 |u,| denote the converging partial sums of the series.

The most important test for uniform convergence (2) is the Weierstrass M-test:
Given the terms u,(x) of a series defined on an interval @ = x = b, if one can find
a dominating series of constant terms £ M, in the sense that |u,(x)] = M, on [a, b]
foreach n = 1, 2, 3, .. . and such that = M,, converges,t then X u, converges
uniformly pointwise on [a, b). It should be remarked that one needs only to dominate
a tail-end of the series = u,(x) since any finite number of first terms do not matter

in convergence questions. Also one need not be on an interval, any point set will
do.

* A function f is said to be Hélder continuous of exponent a (or satisfy a Lipschitz condition of
order @) at point xo in an interval [a, b] if |f(x) — f(xo)| = M,|x — xo|* for all x nearby and in [a, b],
for some a > 0 and M, > 0. Special cases are @ = 1 in which f is called Lipschitz continuous, and
@ = M, = | in which fis called contractive (or better, nonexpansive). The Holder continuity condition
is seen to be a restriction on the slope of f at x5, and places f somewhere between continuous and
differentiable (provided it is not already the latter) there.

t Thus, it is convenient to be familiar with a few common convergent series of constant terms to
try for comparison with the u,, in employing this test.
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A full study of the L? type of convergence (3) requires a knowledge of the
Lebesgue integral and elementary measure theory. For our purposes the most im-
portant fact, as will be further clarified in Section 2.3, is that a square integrable
function f € L2[a, b} possesses the property that its Fourier series partial sums
5.(x) = Zp_y cepe(x)* will always converge in the L? sense (root mean square
sense (3) above) to f, even if the function =1 CxPi(x) defined by the series is not
equal to f at every point. Thus when treating a PDE, and in assuming Fourier
expansions for any given data f and for a solution u, one is on rather safe ground
since all reasonable functions will be square integrable. Only afterward does one
need to see how the ‘‘pointwise’’ behavior goes.

Differentiation Term by Term.t The following criterion for differentiating a
series term by term will be of fundamental importance to us in verifying the validity
of the separation of variables method.

Theorem D

C u,(x))’ = Z u(x) provided that the functions u,(x) are continuously dif-
ferentiable (i.e., C'[a, b]), that the series 2 u,(x) converges pointwise, and
that the series T u/(x) of derivatives converges uniformly pointwise.

The prime in Theorem D can be an ordinary or a partial derivative, since the

proof is essentially the same.
Differentiation under the integral may be regarded as a generalization of Theo-
rem D from sums to integrals. For example, we recall the so-called Leibnitz formula
d (%

)
7 f(x, y)dx = f(b(y), »b'(y) = fla(y), y)a'(y)
y Ja(y)

Ib(y) 9
+ — f(x, y)dx
o) ayf(x y)

where it is sufficient, for example, that a’, b’, and df/dy be continuous.

To provide a little feeling for how one may generalize things to more general
functions by means of the Lebesgue integral let us mention the following gener-
alization of Theorem D. One has (Z u,)’ = 2 u,, ‘‘almost everywhere’” provided
that the u, have ‘‘locally bounded variation™ and that 2 (total variation of u,)
converges. For example, this is the case if the u,(x) are continuous increasing
functions with pointwise convergent series 2 u,(x).

Similarly, generalizations of differentiation under the integral may be obtained
by use of the Fundamental Lebesgue Dominated Convergence Theorem,t which

* Provided that the ¢;, k = 1,2, 3, . . . form what is called a maximal orthonormal set, as will
be discussed further in Section 2.3.

t See any advanced calculus book for a proof of Theorem D and other related facts concemning
uniform pointwise convergence and Leibnitz formulae.

1 See Problem 1.9.6(3) for a few more details about this.
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states that if the u,(x) converges pointwise (a.e.) to u(x), are integrable and uniformly
bounded |u,(x)| = M(x) by some integrable function M(x), then [ u,(x)dx — [ u(x)dx.
Letting u,(y) = f(x,y + A,y) — f(x, y), one then can obtain (d/dy) [ fx, y)dx
by the LDC Thm. via

—If(")’)dx“,l,‘_,“,‘oj 4y

Integration Term by Term. Integration term by term is no problem. As noted
above the Lebesgue dominated convergence theorem states that

e

under very general pointwise convergence assumptions about , — u. An advanced
calculus version commonly used is the following: If ¥ u,(x) converges uniformly
on an interval [a, b] and the u, are continuous there (so that they are certainly

integrable), then
b [ ® b
I (z u,,(x))dx = 2 (I u,,(x)dx).
a \n=1 n=1 \Ja

The sequence version is: If sy(x) are continuous and converge uniformly to f(x) on
[a, b, then [2sy(x)dx converges to [ f(x).

We have considered in this section three important mathematical tools used in
studying partial differential equations: the divergence theorem, inequalities, and
convergence theorems.

The divergence theorem as discussed above is just one aspect of a mathematical
subject called potential theory that now stretches from delicate problems in prob-
ability theory to a rather general theory of singular integral operators. In Problem
1.9.5(2) one will find a brief discussion of the question of exceptional domains on
which the use of the divergence theorem may not be justified. For most of the rest
of this book we will not be concerned with such domains.

The study of inequalities is a subject in its own right.*

Problem 1.9.6 contains a few additional historical remarks about the pointwise
convergence of Fourier series, a proof of a Dini test for pointwise convergence, a
mentioning of the so-called Gibb’s effect in which the partial Fourier sums tend to
pile up above and below a discontinuity in the function being so represented, and
a few more remarks about the Lebesgue convergence theorems.

* See, for example, the books G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, 2nd
ed. (Cambridge Univ. Press, London, 1952), E. F. Beckenbach and R. Bellman, Inequalities (Springer,
New York, 1971), and D. S. Mitrinovich, Analytic Inequalities (Springer, New York, 1970).
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Exercise
(a) Find a solution to the equation

W'x = ukx), x>0,
u0) =
as a power series u(x) = 2. _, a,x" using termwise differentiation.
(b) Find a solution to the heat equation problem
ut_uxx=0a -—CD<x<CD’ t>09
ux, 0) = x2, —o<x <o
5 l d"u
ol arn
(¢) Find a solution to the heat problem

as a series u(x, 1) = — (x, 0)r".

u, — u, =0, -0 < x < ® t>0,
u(x, 0) = sin x, —o < x < ™,
5= 14
=07 EI—': (x, O)r".
(a) Integrate e* = 1 + x + x22! + - termw1se and compare to f e ds

as a series u(x, f) =

(b) Use the ratio test to show u(x) = 2 x converges absolutely for
x| < 1.

(c) Conclude that it is possible to differentiate =;_; 1/n x" term by term
and therefore

ux) = —In(l — x) for |x| < 1.

. (a) Compute the gradient in polar (» = 2) coordinates.

(b) Recalling that the Laplacian A, in polar coordinates is given by
Au = u, + r u, + r2ug,,

verify that Ay(r™) = m?r™~2 and that grad(r™) = mr™~!(cos 6, sin 0).
©@Lltu=1{1-n=1+r+r 4+ - +rm+ -forr<lin2
dimensions. Verify the Neumann compatability relation

r=R<l ON rSR<1

by integrating the series expansions term by term.
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SECOND PAUSE: EXAMPLES, EXPLANATIONS, EXERCISES

The interplay between the divergence theorem and inequalities is a fascinating and
essential part of the theory and practice of partial differential equations. Let us
return to the last example of the First Pause, the plate problem now considered for
partial differential equations.

Example

Show variationally that the first buckling eigenvalue A, of a clamped (elastic) plate
of arbitrary shape is bounded below by the second vibration eigenvalue X\, of the
fixed membrane of the same original shape.

Solution. By original shape (or perhaps better, configuration) we mean here
the domain €. The only smoothness we need is that {} admit the use of the divergence
theorem on functions defined over it. We recall the two problems of interest

-A%2y = AAu in Q,
plate: u=20 on 3},
duon = 0 on 91},

and

—-Aw

w

Aw in (),
0 ondQd.

membrane: {

We also recall that at the end of the proof for the one-dimensional case in the
previous Pause, we needed the one-dimensional version of the following inequality:

2 2 < 2 2
Inlgrad ul /Inu = LIAuI /Inlgrad ul?.

This more general multidimensional version follows as before from a combination
of Green’s first identity and Schwarz’s inequality:

Jola e =~ = (L"’)m<fn<Au>’)m

Note that we used only that « vanished on Q).
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Turning to the problem at hand, itis easier and physically appropriate to consider
first the case of two space dimensions. The generalization to an arbitrary number
of space dimensions then follows easily. To proceed, we mimic the one-dimensional

proof.
First, we see that the eigenvalues are characterized by

= 2 2
A, = inf J’Q |Au| /J’Q |grad u|?,

e ————
allulugy, ... U1
u = u/dn = 0 on ).

and

o 2 2
A, me’Q |grad w| /J’Qw

P
al wiwp, . ooy Waoly
w = 0 on ).

These variational characterizations follow immediately by multiplying the differ-
ential equations by u and w, respectively, integrating over () and using Green’s
identities.

Dropping the subscripts, letu = u;and w = w, denote the first eigenfunctions,
respectively, and consider the trial function

v=au, t+ u
choosing a so that v L w. The special cases in which u, L w or u L w already can
be handled separately. Clamped plate eigenfunctions have the property that their
partial derivatives all vanish on a(). Leaving the verification of this as an exercise,
we see that v = 0 on € and hence we arrive at the inequality
Dw) _ a’D(u,) + D) _ D(u,) + a D)

. J’sz azJ’n(u")z + J’nuz i J’n(u")z * a_ZJ’nuz |

The cross terms have vanished as before because

1
Dl ) = | (Gt + i) = o+ @i = 0

by the divergence theorem and the boundary conditions.
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Clearly, with a second trial functionv = bu, + u with b chosen so that v L w,
one arrives at the same inequality with a replaced by b and u, by u,. Adding*
produces

D(u,) + D, + (@ ? + b~ )D(w)

A =
fn((ux)2 + ) + @+ b fnuz

f (Au)z/D(u) +(@?+b” 2)
1+ @?+b" Z)J /D(u)

where in the last inequality we use the inequality given at the beginning of this
example.

Exercises

1. Verify the variational characterizations of A, and A\, given above.

2. Verify that the eigenfunctions of a clamped plate have vanishing gradient
on dQ2. Draw a picture of a square clamped plate.

3. Farst for the clamped rod, then for the clamped plate, consider the special
cases in which u, L w or u L w. For the general case rewrite the proof with
trial vectors of the form v = u, + au, v = u, + bu. Discuss the pros and
cons about which is preferred. Write proofs for the general n-dimensional
case, using v; = a;u, + u,v; = u, + b;u, using if you like the summation
convention mentioned in Section 1.1.

4. Compare the problem

-AZy = AAu in Q,
u=20 on 3(},
Au=0 on .

Draw a picture of this kind of plate.
5. Denve the inequality for functions ¢ = O on (2,

v\’
—_ << 2
Ln<an> = k(mfn(mu),

*That N < o/, fori = 1,..., m and B, all positive implies the inequality A\ = (a; +
e (B, + - + B, is immediate from adding the AB, = «,.
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used in the preceding Section 1.6.2 to establish a stability bound for the
Dirichlet—Poisson Problem. Hinz: consider the Steklov eigenvalue problem

A2y =0 in Q,
Y = 0 on ],
Ay = pod/ion on 9.

The stability constant k is related to ;.

Just as the combined use of the divergence theorem and inequalities is an
essential part of the study of partial differential equations, so is the use of inequalities
in convergence arguments. Our main interest in the tools of convergence for partial
differential equations is to know that the separation of variables solutions indeed
converge. A full discussion of this depends on a knowledge of the convergence of
general Fourier series and is postponed until later, Section 1.9.6 and in several
sections of Chapter 2.

An important* tool in demonstrating the pointwise convergence of general
Fourier series expansions is the following theorem or variations of it.

Example

The Riemann—Lebesgue Lemma states that the Fourier coefficients cy = (h, by)
= [* h(x)dy(x)dx tend to zero in the limit as N — o, provided that the ¢y are an
orthonormal set, N = 1, 2, 3, . . . , with the additional property of being uniformly
bounded. It is important for applications that it be demonstrated for all integrable
functions A, i.e., h € LYa, b).

Solution. We recall the hypotheses:

b
® . 1 N=M
{dn}y=1 orthonormal, 1.e.,£ dydydx = {0 NEM®

&y uniformly bounded, i.e., [py(x)| =B < o, all x, all N,
b
he La, b), ie., f )| dx < .

The interval (a, b) is assumed bounded.

All Lebesgue integrable functions # € LYa, b) have the property that they are
the limits of their range-truncated values. This property follows easily from their
definition as limits in L(a, b) of characteristic functions.¥

All Lebesgue square integrable functions & € L¥a, b) already have the desired
property that their Fourier coefficients cy — 0 as N — . The proof of this is given
as an Exercise.

* Named for the two fathers of integration theory.
+A characteristic function xs(x) of a set S has the values xs(x) = 1 when x € S, xs(x) = 0
otherwise.
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That ¢y — 0 as N — o follows easily from these two facts. Let x¢ denote the
characteristic function of the subset of (a, b) on which |h(x)| does not exceed the
value C. Then the desired result follows immediately from

b b b
J; hoydx — J; hxcobndx| = BJ; |h - hXc|dx,

Cy -0 -0
asN—> » asC—>

noting that hxc is square integrable.

Exercises

6. Show that L%(a, b) C L!(a, b) when (a, b) is a bounded interval.

7. Show that for h € L%(a, b) and {$y)T any orthonormal set in L*(a, b), cy =
I hoydx — 0 as N— .

8. Show that for {¢dy} the classical Fourier trigonometric expansion functions
sin Nx, cos Nx, N = 1,2, ..., in L% —m, m), the hypotheses for the
Riemann—Lebesgue Lemma are satisfied. Also show it for the functions
dy(x) = sin((N + +)0) when normalized in L*(—m, ). The latter sc-
.quence is used importantly in the Dini convergence criteria of Section 1.9.6.

The last example and exercise in this second Pause illustrate some other im-
portant techniques useful in conjunction with the divergence theorem, inequalities,
and Fourier series, in treating questions of partial differential equations.

Example

There is always a positive lower bound A, for the first membrane eigenvalue A, of
any bounded domain . This fact is sometimes called Friedrich’s Theorem or
Poincare’s Lemma. Show how to obtain it in terms of an enclosing n-cube.

Solution. As the question is coordinate free, we may for convenience place

Q) within the n-cube (0, ) X --- X (0, ]). For any admissible function u vanishing
on 3() we let u = 0 outside (). We have

(Eux(s, .. .)ds)2
(f(:ds)([;ug(s, .. .)ds) = lfoluf(s, .. .)ds

wx, ..

h
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by the fundamental theorem of calculus and Schwarz’s inequality. Integrating over
the first coordinate x,

! I
fouz(x, LLo)dx = lzfou,%(x, .. )dx

followed by the integration over the remaining coordinates,

1 1 ! 1
f fuzdx, cdx, = IZI f uildxx - dx,
0 0 0 0

1 1
= IZJ;) J;)(ugl + -+ u},)dxl dx,,

and hence

D(w)

2

]=inf §k0=1_2>0.

u
Q
This is an example of a nonsharp bound. For one dimension and () = (0, m)
we have \; = 1and Ao = 7~ '. For () the square A, = 2 whereas A\, = 7~ Zand
the bound gets worse as dimension goes up. For existence proofs one can sometimes
get by with the existence of such a bound no matter how poor. For explicit appli-
cations one tries to sharpen these bounds.

Exercises

9. (a) The isoperimetric inequality, known already to the Greeks, states that
of all plane curves of given perimeter the circle encloses the largest
area. Thus for any such closed curve one has the lower bound

L2 = 47mA

in terms of the enclosed area. As equality is obtained for the circle,
A = @r?and L = 2mr, this bound is sharp. Prove this inequality by
use of Fourier series.

{b) The following type of inequality can sometimes be uséful when working
on arcs in the plane. Show that

b 2
(f Jv(t)dt) + (f y(t)dt) f V(X0 + (@) dt

for any continuously ditferentiable x(r) and y(r) parametrically describ-
ing a curve in the plane.

(c) Sharpen the Friedrich’s lower bound above. Also obtain it in terms of
an enclosing sphere. Show why (b) won’t work in (a).
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1.7 SOME PHYSICAL CONSIDERATIONS (AND EXAMPLES)

Partial differential equations are created by scientists through mental perception of
physical reality. Thus most important partial differential equations, although math-
ematical quantities in their own right, are intimately linked to physical considera-
tions.

It follows that an understanding of the latter can aid in an understanding of the
former, and that a better understanding of the latter is often a necessary ingredient
for a better understanding of the former. Many successes in the many and varied
applications of mathematics have required and finally have been based upon a full
understanding of the intricacies of the particular application under consideration.

In this section we wish to touch briefly on this aspect of the study of partial
differential equations. In (1) Three Physical Techniques we illustrate the use of
conservation principles, linearization assumptions, and perturbation techniques, in
a derivation and consideration of the heat equation. In (2) Three Physical Settings
{and Examples) we present and describe a number of important partial differential
equations from continuum (and classical) mechanics, statistical mechanics, and
quantum mechanics. In (3) Unsolved Problems it is our aim to make it clear, albeit
briefly, that a number of important questions involving partial differential equations
describing fundamental physical problems remain unresolved.

1.7.1. Three Physical Techniques

There are of course many techniques used in the formulation and analysis of physical
problems. Full competence in the use of just a few of them requires experience
over a significant part of a lifetime. Here we wish to introduce, in the context of
our study of partial differential equations, three important physically motivated
techniques, namely:

Conservation (e.g., of energy) principles
Linearization (e.g., of the equation) assumptions
Perturbation {e.g., of a simpler operator) methods

To illustrate them we restrict attention to the heat equation.

It should, however, be emphasized that conservation principles apply as well
to conservation of mass, momentum. and many other physical quantitics. Also
linearization can be imposed in a variety of ways, such as the dropping of higher
order nonlinear terms, in the form of quantization of a field, and so forth. Pertur-
bations can be singular or regular, linear or nonlinear; one may need to copsider-
perturbations of the domain £); and so on. In each use of any of these techniques
one must become familiar with the physical application in order to ascertain what
is needed.

The usual derivation of the heat equation goes as follows. One assumes the
Principle of conservation of energy in writing a heat-balance equation (recall that
heat is energy in transit) in the form
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| | o
% Jo, Ux, v, z, t, u(x, y, z, 1)) dx dy dz = a0, k(x, y, z, t, u(x, y, z, 1)) n ds
1)

where €1, is any infinitesimal portion (subdomain) of a given body () (domain) in
question (Fig. 1.7a), U denotes the energy per unit volume,* u the temperature at
the point (x, y, z) at time ¢, and k the coefficient of thermal conductivity for the
material in the body. Equation (1) states that the rate of change of the energy in
(), equals the net energy flux through the boundary o€}, , whether heat be flowing
in or out or both. The units of the coefficient of thermal conductivity k are (cal)/
(sec)(cm)(deg) and Equation (1) thus consists of two equivalent characterizations
of the number of caloriest per second flowing in or out of Q,.

Assuming that the total energy function U is C! in all of its arguments, the
left-hand side of Equation (1) may be written with the derivative under the integral.
The heat flux on the right-hand side of (1) is transformablef by the divergence
theorem to a volume integral provided that o€}, is not too irregular and that the
coefficient of thermal conductivity k is at least piecewise continuously differentiable.
Thus (1) becomes

fn U, + U, — (), + (kuy), + (ku,),)] dx dy dz = 0.

Assuming the temperature function u to be C 2 50 that the integrand is continuous,
by calculus then in fact the integrand must be identically zero, since otherwise one
obtains a nonzero integral about any point where the integrand might be nonzero
by taking Q, (which was arbitrary) sufficiently small about that point. Hence one
arrives at the partial differential equation

U, + U, — (kuy),; = 0in £,

FiG. 1.7a

* The postulating of an internal energy function U depends upon a presumption in the first law
of thermodynamics of path independence in changing temperatures along adiabatic (i.e., roughly,
““noninteracting’") paths, a presumption supported by but still lacking complete experimental verification.

+ Recall that a calorie is defined to be the amount of heat whose absorption by one gram of water
at constant atmospheric pressure gives a temperature rise from 14.5 to 15.5 degrees centigrade.

1 This is in fact a physical statement of the divergence theorem, namely, that a surface (temperature)
flux measures the (heat) quantity diverging from a (cooling) body. Similar interpretations of the diver-
gence may be found in fluid dynamics and elsewhere.
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which we have written in the summation convention for convenience. *
Assuming that the basic composition of the body is not going to change over

the time interval in question, it is very reasonable to assume that the internal energy

function of the body will also be time invariant, so that the equation becomes

U, — (kuy); = 0in Q.

Now one customarily imposes a linearizing assumption (2) on the equation by
assuming that U, and k are constant, which brings one (after normalizing the space
variable units by the constant k~1U,) to the usual linear heat equation

u, — Au = 0in ).

We wish however to belabor? this point and to confuse ourselves a bit with
some facts. The skeptical reader should sit in a cold bath and then run some hot
water in; the linear equation predicts (see Problem 1) an infinitely rapid speed of
heat propagation.

The coefficient of thermal conductivity k is greatly affected in some materials
by impurities therein. Although in some applications (e.g., metals formed via
catalysts) this may be very important, let us go on and suppose that the material
in question is pure and homogeneous so that & has no dependence on the point (x,
¥, 2) in {). Moreover, we assume no fatigue factors, changes in crystalline make
up, and so forth, that & has no time dependence.

Let us make the same assumptions for U,. However, to understand better the
content of such assumptions for U,, let us pause to note that in the absence of any
external work being done on the system in question, from the first law of ther-
modynamics:

A(heat) = A(energy) + A(work)
and the definition of specific heat (using volume here rather than mass)

A(heat)

= ——————— per unit volume
A(temperature) pe

We sce that the quantity U, may be regarded as the coefficient of specific heat ¢
for the material in question. Thus the assumptions for U, are that the specific heat

* And clearly the above argument holds in any dimension, although the case n = 3 is the most
interesting one physically.

1 This seems educational. The heat equation is, roughly speaking and especially in the extreme
Or critical temperature ranges, the ‘‘least linearizable’ of the three basic types of equations.

1 One of the earliest to comprehend that heat is related to energy and work and is not a substance
Was Benjamin Thompson, an American later to become Count Rumford of Bavaria, who in 1798
attributed the increased temperatures of brass residues from cannon borings to the work being done on

System. Not until Joule's work 50 years later was there any really convincing experimental evidence

for the first law of thermodynamics.
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¢, which in general is the measure of the heat capacity of a given system, has no
space or time dependence for the body (1.

Under these assumptions on thermal conductivity and specific heat for the
material, the (nonlinear) heat equation as derived above may be written as

u = 1 (k(uu ;) ; in €} )
c(w) '
The degree of nonlinearity of this equation depends on how much the thermal
conductivity k(u) and specific heat c(u) vary with the temperature u. Experiments
over the years have determined this dependence quite accurately, as summarized
in Figures 1.7b-1.7e.

k() = Thermal conductivity (in calories per sec centimeter degree-centigrade)

2
Eopper Sil\ller

Nickel
E Mercury
=
0.010F—
>
»
.0060}+—

.0010

.0004

Helium 6

1T

Lt EHEIENEERIEN RN
-300 —200 —100 :l’ 100 200 300 400 500 600 Temp. (°C)

——u

FiG. 1.7b. Some thermal conductivities (different scales).
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¢(u) = Specific heat {in calories per gram degree-centigrade)

| | | |
0 10L20 30 40 50 60 70 80 9 100

Temp. (°C}

- u

(14.5-15.5)
FIG. 1.7¢. Specific heats of water.

c(x) = {const.) «{Atime)/A{temp.)

100 200
Temp. (°C)

F1G. 1.7d. Specific heats of cadmium.

c(u) == {const) «® (at low temperatures)

0 10 20 30 40
Temp. (°C)

FiG. 1.7e. Specific heats of. sodium chloride.

Returning to the previously recommended bathtub experience, for example,
the heat propagation seems to take place in somewhat spherical outward spreading
waves, suggesting® a damped wave equation (ignoring units)

U = Uy — EUy. A3)

The damping term is u, and the effect of the nonlinearities (i.e., the temperature
dependence of k and c) is presumably carried in the (positive) constant €. This
would still amount to a forced linearization of the heat conduction model but now
in terms of a (3) perturbation term eu, in the equation. This is therefore also an
illustration of the third technique (3) that we wished to expose in this section. Such

* This has in fact been derived rather recently from a physically more rigorous point of view; see
C. Catteneo, “‘Sur une forme de I'equation de la chaleur eliminant le paradoxe d’une propagation
instantanée,’* Compte Rendus Acad. Sci. Paris 247 (1958).
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perturbation terms possessing derivatives of as high order as in the unperturbed
equation are commonly called singular perturbations.

A further example of the perturbation method (3) will be found in Problem 3
below, taken from quantum mechanics where perturbation methods are nothing less
than rampant.

Problem 1. By using the Poisson representation formula (see Problem 2, Sec-
tion 1.3), demonstrate that the linear heat equation propagates an initial positive
unit heat impulse localized about some point x, with infinite speed.

Problem 2. Assure yourself of units consistency, in terms of calories, degrees,
centimeters, and seconds, in the heat equation

cu, — ku, = 0.

Problem 3. An important property of the equation for the hydrogen atom (see

1

Section 1.6.2) is that it be self-adjoint.* The Laplacian term Hy = — sAis a
self-adjoint operator in L2(R?) and a general theoremf states that the same will
be true for the full hydrogen operator

H= —:A—2Zr

provided that the perturbation V = —Z/r is small in the sense that
\Vul = allu|l + blHoul, & <1,

for some constants a and b, independent of «. Show this, using the Schwarz
and Sobolev inequalities, for nice u (e.g., u € C5(R%)).

1.7.2. Three Physical Settings (and Examples)

We have previously described problems involving partial differential equations in
the physical settings of vibrating strings, stretched membranes, heat conduction,
and atoms. Let us mention the three general physical settings of:

Continuum mechanics;
Statistical mechanics;
Quantum mechanics.

Many partial differential equations arise from one of these three settings.

* An operator H is self-adjoint if H = H*. For a precise meaning of H*, see Section 1.9.7. The
point of this problem is to establish the self-adjointness of H from that of H, by proving the stated
inequality. For a further discussion of self-adjointness see Problem 1.9.7(1).

+ Due to F. Rellich, B. Sz. Nagy, and T. Kato. See T. Kato, Perturbation Theory for Linear
Operators, 2nd ed. (Springer, New York, 1976).
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It would be an interesting but endless and hopeless task to categorize all of the
settings from which partial differential equations come. Instead we present this
brief discussion and some examples.

1. Continuum (and Classical) Mechanics. Many second-order PDEs are found in
continuum mechanics (and, more generally, in classical mechanics). We have al-
ready seen the following examples:

Heat equation (parabolic),
Vibrating string (hyperbolic),
Sagging membrane (elliptic).

Some others follow.
Stationary irrotational incompressible fluid flow.

Au = 01in Q,
d
i = fon &),

where u = velocity potential (i.e., the components v, v,, v of grad u are the
component velocities of the fluid).
Electrostatic potential.

A = —4wpin (),
¢ = fon o,

where @ = the electrostatic potential (i.e., the components E;, E,, E; of grad ¢
are the components of the electric field strength) and p is the charge density in {}.
Buckling plate (elastostatics).

—A%u = Nuin Q,
d

u= L. 0 on 412,
an

where u is the vertical displacement of the plate and where the boundary conditions
are those for a clamped plate € under edge loads that are increased until buckling
occurs. The fourth-order operator A2 = AA is called the biharmonic operator.
Fourth-order operators such as these occur in the theory of elasticity, and the methods
for treating them resemble those used for second-order operators, to the extent
possible. *
Torsional rigidity (e.g., of a beam).
—Av =2inQ,
v = 0 on 31,

* As seen, for example, in the preceding Second Pause. Fourth-order operators also arise in fluid
dynamics; see Appendix C.
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where the quantity of interest is the torsional rigidity T = D(v, v) = [q |grad v,
which measures resistance to twisting.

Electrostatic capacity.

Aw = 0 in exterior of Q,
w = 1 on 9Q},

where the quantity of interest is the capacity
C = D(w, w) = f |grad w|?
exterior of 2

which measures the charge required on o€} to raise the potential one unit.
Navier—Stokes equations (viscous incompressible flow).

d 1
P + ui(w) ; — EAu,- = —p,;inq}, i=1,2,3, t>0,
(ui)'i = 0in Q,

u(x, 0) = fi(x), i=1,2,3, x = (x5, Xz, X3) in ()
ux, 1) = 0, x € 4, t>0,

where we have used the summation convention for convenience. Here u = (u,,
u,, u3) are the velocity components of a fluid motion in a vessel (bounded three-
dimensional ). The fluid is put into motion at time ¢ = 0 with initial velocity (f},
fo. f5) and is thereafter governed by the first (Navier-Stokes) equations. The second
equation states that the motion is incompressible. The last (boundary) condition is
one of adherence of the fluid at the boundary.

The above examples involving a steady-state (nontime-varying) problem, are
elliptic. In like manner, many time-evolving problems yield examples of parabolic
PDEs, and vibrating or oscillating problems examples of hyperbolic PDEs.

2. Statistical Mechanics. We use the term loosely. Roughly speaking one finds
here more often first-order integrodifferential equations rather than second-order
equations. We list only a few.

Linear Boltzmann equation (transport equation).

an
ot
n(x, v, 0) = f(x, v),
where n = n(x, v, t) is a particle density function for a bounded domain (} C R3,
x = (x, X3, X3), ¥ = (v, ¥y, v3). The six-dimensional space (x, v) is called the
p-space or phase space in statistical mechanics. The bounded domain may be, for

example, a nuclear reactor (neutron transport problem) or a star (radiative transfer
problem). The equation describes the motion of a cloud of noninteracting particles,

= —v grad,n + L; k(x, v, vV)n(x, v', 1) dv' — o(x, v)n, t>0
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the first term on the right-hand side describing the free motion, the second the input
at (x, v) due to scattering from other regions in momentum space and production
by other particles, the third a loss due to absorption or scattering. The integral
operator [ k(x, v, v') - dv’ produces its value of particles when applied to a single
particle.

Carleman system (kinetic theory of gas).

fa_lf 0_14 2 _ 2y = < < >
0t+0x+a(u v?) =0, 0<x<l, t>0

W _X L w—ut)y=0, 0<x<l, >0
< at dax

u@0, =v1,1) =0, t>0

u(x,0) = f(x) = 0, 0<x<l1

\ Vx, 0) = gl =0, 0<x<l,

where a is a positive constant. The unknowns u(x, 7) and v(x, t) represent densities
of particles of two types that together comprise the gas, and the equations may be
regarded as simplified coupled Boltzmann equations.

Nonlinear Debye—Hiickel equation (plasma).

e —@(x+1/2)
{Acp(x) =2\ [l Toe- dx]’
where ¢ possesses certain periodic boundary conditions. Without going into further
details,* ¢ represents the potential for a jellium model in a self-consistent field
approximation corresponding to certain assumptions about the existence of long-
range ordering in Coulomb systems.

There are a great many nonlinear equations of physical importance and of recent
formulation. Some will be found in Section 1.8. We have included this particular
one here because it exhibits three properties of interest: (a) the x + $ represents a
spatial translation and this equation is thus an example of a whole class of equations
with displaced (advanced, retarded, delayed) arguments; (b) as an ODE one can
play with it in a number of interesting ways (see Problem 2); and (c) as a PDE it,
like many others, resists solution.

3. Quantum Mechanics. Again we will be brief. The unknown function
u(x, t) represents a probability of finding a particle at x at time ¢, in the sense that

Iﬂ |u(-x’ I)IZ dx, X = (Xl, X2, X;;),

* See P. Choquard, ‘‘Long-range ordering in one-component Coulomb systems,’’ Physical Reality
and Mathematical Description, Enz and Mehra (eds.), D. Reidel (1974), Dordrecht-Holland.
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is the probability that the particle is in ) at time z. Thus one wants the normalization
Spolutx, O dx = 1.
Schridinger equation (single free particle).

u _ —iAu, xE R, t>0
at
u(x, 0) = f(x),

where we have normalized the units. Because of the i this is not parabolic and
solutions have a somewhat different behavior than in the heat equation.
Klein—Gordon equation (relativistic free particle).

02

{I:—Au=)\u, x € R?, x>0,

where A\ corresponds to a positive continuous spectrum* of eigenvalues, under

physically appropriate normalization boundary conditions on the eigenfunctions u,

the latter called de Broglie waves. This is thus a hyperbolic eigenvalue problem.
Dirac equation (relativistic free particle with spin).

¢ ouy duy ,Oug  du;
— = —-——t i — - — imy,
ot 0x, 0x;  0x3
ou ou ou u,
-2 = ——é—i—3+-—4—imu2,
< ot 0x, 0x;  0x3
ou ou ou ou
= = ———2+i—2——l—imu3,
ot ox, 0x 0x;3
ou ou ou ou
L—“= ——L i+ =2t imu,.

ot 0xy 0x;  0x3

One can write the equation in more compact form using matrices, but we wrote it
out here to show the exact coupling. The Dirac equation is a first-order system for
u = (U, Uy, U3, uy) a four-component vector, u = u(x, t), x = (x3, X3, x3), —®
< t < », The Dirac equation is related to the Klein—Gordon equation and is
approachable mathematically in some ways via Schrodinger equation techniques.
Helium atom equation (nonrelativistic).
(a2 -2 L,
r r2 4]
where u = u(x, X3 X3, X1, X5, x3), A, is the Laplacian for x, A, is the Laplacian
forx', r; = (& + x3 + x3)'2, r, the same for x’, and ry; = ((x; — x1)? + (x2

* A further discussion and precise definition of continuous spectrum will be found in Section 2.7.
For our purposes here it means that the equation represents a continuous range of physically realizable
energy values all the way from 0 to .



SOME PHYSICAL CONSIDERATIONS 93

— x5)? + (x; — x3)H)"2. The normalizing boundary condition is that ¥ must be
square integrable, and since it is an eigenvalue problem, one may take

f lu(x, x")|? dx dx' = 1.

The spectrum is known to consist of a lower spectrum of distinct eigenvalues plus
a continuous spectrum [— 1, ).

Problem 1. For the vibrating clamped plate problem

A% =puin Q
u =0 on Q)
du/dn =0 on Q2

(a) show the eigenvalues to be positive, and (b) obtain a positive lower bound
for them.

Problem 2. Consider the one-dimensional version of the nonlinear Debye—
Hiickel equation stated above,

e—u(x+l/2)
"oy = _e 7 0sx=1, A>0,
WwWx) =2n |1 N | x

where N(u) = [} e “® dx, with periodicity condition
ux) = ux + 1) = u(l — x), —o < x < ®,

and normalization condition

1
f u(x) dx = 0.
0

(a) Set #(0) = 1 and try by graphical inspection to determine an appropriate
solution. (b) Try the substitution v = u’, differentiate to obtain V", and see
what results.

Problem 3. Try separation of variables for the helium atom equation given
above.

1.7.3. Some Unsolved Problems

For example, it is unknown when the first eigenfunction in the clamped plate
problem is always of one sign over the domain. The Navier—Stokes equation initial
value problem for data not necessarily small has not yet been completely resolved.
The Boltzmann equations have been solved only for certain geometries (1. Equations
such as the Debye—Hiickel equation are only beginning to be investigated. The
nonsolvability of the helium eigenvalue problem has been a longstanding one in
quantum mechanics, and its nonsolvability causes the consequent nonsolvability of
Schrédinger equations for lithium and all more complicated atoms.
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There are many other important partial differential equations that we have not
discussed that remain unresolved.

Problem 1. Could the geometry or topology of the plate {} influence whether
the first eigenfunction of the clamped plate changes sign?

Problem 2. Which of the main questions (1), (2), (3), (1), (2'), (3') for the
Navier-Stokes equation initial value problem are not resolved?

Problem 3. Why, intuitively, should you expect to have trouble solving the
Helium equation?

1.7 Exercises

1. Show that the Laplacian term Hy = Y2 A is *‘formally self-adjoint” in the
sense that

[, ooy ax = [, ueoxtigvcora

for all sufficiently smooth functions u and v vanishing outside some bounded
subdomain €} in R®.
2. Show that you may solve exactly the following plate eigenvalue problem.

— A =AAu in (1,
u=0 on 3(),
Au =0 on 3},

when () is a rectangular plate.
3. Can you separate variables in the other clamped plate problems?

1.8 ELEMENTS OF BIFURCATION THEORY

The word ‘‘bifurcation’’ means a *‘splitting,”” and in the context of nonlinear
differential equations it connotes a situation wherein at some critical (e.g., physical)
parameter \ the number of solutions to the equation changes. The critical value of
\ is often called a bifurcation point.*

This concept of a change in the number of solutions of a differential equation
is not, in and of itself, a new one to us. Let us recall the basic eigenvalue problem

—u'(x) = hu(x), 0<x<m,
u(0) = u(w) = 0.

* A more appropriate word would be *‘emanation’” point, since the splitting can be into any number
of new solutions.
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The solutions were the eigenfunctions u,(x) = ¢, sin nx at the eigenvalues A\, =
1,4,9,....n% ..., wherec, was an arbitrary constant. If we plot the eigenvalue
parameter \ along the horizontal axis and the solution norms? vertically, we have
the solution diagram (Fig. 1.8a). For all other values of A the only solution was
the trivial solution ¥ = 0, which is interesting only as the solution branch from
which the others emanate. In bifurcation problems especially in continuum me-
chanics one usually works with real valued solutions only, and often one wishes
to distinguish between a positive and negative solution (e.g., thinking physically,
the buckling up of a rod, as contrasted with the buckling down of it). This we can
easily do in the above example by taking the vertical axis to be ¢, rather than [lec.|l,
the *‘signed magnitude’’ of the solutions. See Figure 1.8b for the resulting diagram.

FiG. 1.8b

Figures 1.8a and 1.8b, although for a linear problem, are examples of what
are called the bifurcation diagram for a nonlinear problem. The eigenvalues A, are
the bifurcation points. At each of the A, the number of solutions changes from one
solution (the trivial one) to an infinite number of them.

In general, and as we shall see, the effect of a nonlinearity in a problem is to
bend the solution branches. Let us consider a simple example to see how that comes
about.

Consider first the mildly* nonlinear problem

t In this diagram it does not matter whether we use the L2 norm ||u[| = (J§ u?)!2 or the maximum
norm |ju|| = mAaXes,s. |u(x)|, although it will change the vertical scale. Unless stated otherwise, we
will use the L2 norm for ||u|.

* This type of nonlinearity consists only of a “‘rescaling’’ and in that sense is not a genuine
nonlinearity. Nonetheless, they occur in a few physical problems and are sometimes treated in the
literature. A genuine nonlinearity is one such as u® or more generally f(u)u, wherein f(u) is a vector
that actually “‘turns’’ the vector u to a new direction in the space. Mild nonlinearities such as lea|[Pee
could also be called pseudo-nonlinearities.
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—u"(x) = Nu|? u(x), 0<x<m,
u0) = u(mw) = 0.

As before the trivial solution ¥ = 0 is a solution branch for all A. Since for any
nontrivial solution # the quantity A|ju|?® is a constant bearing the same sign as A,
as above in the linear problem we are led by the boundary conditions to the solution
candidates u,(x) = ¢, sin nx. Substituting the latter into the equation then yields
the solution branches A|u|> = n?, which in terms of the coefficient amplitudes is

_+21/2n
C,,—_; W

The bifurcation diagram for this problem is thus Figure 1.8¢. The only ‘*bifurcation
point’’ in this example is at A = .

Fig. 1.8¢

To obtain a nonlinear example that more closely resembles the linear one, let
us put the linear term back in. Hence let us consider the example

—u"(x) = Au(x) + |ul? ux), o<x<m,
u(0) = u(w) = 0.

Again, if u(x) is a solution, so is — u(x), so that we can expect as above a bifurcation
diagram with solution branches occurring symmetrically above and below the hor-
izontal A axis. Also as above we see from the boundary conditions that the solution
candidates are u,(x) = ¢, sin nx, which upon substitution into the equation yields
the relation A + |2 = n?. Thus the solution branches are

172
c, = t(%) (n2 _ k)l/Z
us

and the bifurcation diagram is (see Fig. 1.8d) the branches emanating from the
bifurcation points A, = 1,4, .. ., n?, . .., which are the eigenvalues of the
original linear eigenvalue problem. If we change the nonlinearity from lleeli®u to
— ||u|?u, the branches become

1/2
c, = 1.(3) (k — n2)l/2
1T
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FiG. 1.84

and the bifurcation diagram becomes Figure 1.8¢. The latter two diagrams (Figs.

1.8d and 1.8¢) are quite typical of those found for a large number of nonlinear
problems.

— )

FiG. 1.8¢

We turn now to a consideration of some physical settings in which such prob-
lems arise: (a) buckling of a yard (or meter) stick; (b) a rotating string; and (c) chemical
kinetics.

(a) Buckling of a Yardstick

Suppose you push a yardstick against the wall. A picture of the physical situation
then is Figure 1.8f. It can be shown that a model equation for this situation is

—@"(x) = \ sin ¢(x), 0<x<l|
¢’ =¢'(h) =0.

Deflection

The tangent to the
defiected yardstick

¢ = Angle of
deflection —¢

o

> x
Fixed (e.g.. pinned)

A force is applied here. 2

Thevalue of A >0 is
proportional (in terms of a
physical unit) to that
applied force.

T

FiG. 1.8f
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Note that the maximum value of the angle of deflection is expected at the ends.
Let ¢(0) = @ be that maximum value for each given ‘‘force” A = 0. The model
equations can be solved (see Problem 1) by ordinary differential equation techniques
and the bifurcation diagram is Figure 1.8g. The first branch corresponds to a
buckling mode as drawn in Figure 1.8f, the second branch to the second buckling
mode (Fig. 1.8k), and so on. The actual attainability of the higher modes will
depend on the flexibility of the yardstick (eventually it will break).

'J ¢(0)

FiG. 1.8¢
|
| |
; —
|
|

FgG. 1.8k

(b) A Rotating String

A string, held at the top, of length /, and rotated faster and faster from the top,
will assume different shapes. Given that the string is sufficiently flexible and that
it is subject only to the force of gravity pulling it straight down and to the centrifugal
force caused by a rotation of constant angular velocity, the string satisfies a nonlinear
partial differential wave equation in space and time. For simplicity let us look only
for solutions that represent a string whose shape does not change as it is rotated at
a constant angular velocity around the vertical axis.* One then arrives at the non-
linear ordinary differential equation

—u"(s) = Nuk(s) + sV u(s), 0<s<lI,
u(0) = u'() = 0.

Here s measures arc length along the string, measured from the free end, and
differentiation is with respect to s. The eigenvalue parameter X is the angular rotation
speed (squared) divided by the (constant) force of gravity. The unknown u(s) is

* This in effect performs a nonlinear separation of variables for us, eliminating both time and
conceivable spatial nonsymmetrics from the problem.
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)7\

FiG. 1.8i

(modulo scale multiplication by a physical constant) the derivative with respect to
arc length of the radial distance r from the vertical axis, as shown in Figure 1.8i.
Thus the boundary conditions for the equation given above mean that at the bottom
end, r'(0) = O and the string is parallel to the vertical axis, as in the free end
condition for the linear vibrating string problems we considered in earlier sections,
and at the top end r"(/) = 0 so that the string looks linear there.

We will not solve this problem here.t Note that the trivial solution is u(s) =
r'(s) = 0, the case in which the string hangs vertically downward under the force
of gravity, rotating within that axis. When the ratio A of angular velocity to force
of gravity increases to an adequately large value (which turns out to be the first
eigenvalue of the linearized equation; see Problem 2) the string departs from the
trivial mode and is found in the mode drawn in figure 1.8i. More complicated
modes prevail as centrifugal force increases its advantage over gravity.

(c) Chemical Kinetics

In chemical kinetics* one finds systems of partial differential equations governing
chemical reactions between various agents, such as

(C), = KAC; + f(C;, T)
T, = kAT + f(C;, T)

along with appropriate initial and boundary values. The C; are concentrations and
T is the temperature in appropriate units. A special case that arises in combustion
theory and under the assumption that concentrations remain constant over the short
time interval in question leads to the single nonlinear parabolic equation

T, = kAT + ggcoe 7,

where qq is the heat of reaction, ag is a known gas energy constant, and where cg
is the initial concentration. Letting u(x, ¢) denote the temperature T(x, ?) in accor-
dance with our usual notation, and regarding A = k™ 'goc, as the eigenvalue pa-
rameter, we may consider the equation

t See L. Kolodner, *‘Heavy rotating string,”* Comm. Pure Appl. Math. 8 (1955).

* See, for example, the books by Gavalas, Nonlinear Differential Equations of Chemically Reacting
Systems (Springer, New York, 1968) and Prigogine and Nicolis, Self-organization in Nonequilibrium
Systems: From Dissipative Structures to Order Through Fluctuations (Wiley, New York, 1977).
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—Au = e %% InQ
u = uy on .

for the steady-state cquilibrium temperature u(x), given that a constant temperature
u, is to be maintained on the boundary.

For physical reasons let us consider only the case A = 0. For ease of visual-
ization let us take ) to be the unit disk in two dimensions. It may then be seen
that the bifurcation diagram for solutions is of the form shown in Figure 1.8;.

ul0)
A | !

Ho | 1

FiG. 1.85

Although such equations arise in a variety of nonlinear heat source problems, one
interesting interpretation is that in which the unit disk is a solid fuel rocket cross
section with u, representing a constant burn on the outside and with A representing
the concentration of the propellant in the cross section. Higher concentrations A
produce a higher center burn temperature u(0). Between critical concentrations A,
and A, there are three possible center burn temperatures. No doubt in certain
applications one would like to achieve the highest one.

For a more accessible version of this third type of problem, let us consider the
ordinary differential equation

—u"(x) = he4™®, -1 <x<l,
u(=1) = u(l) = 0.

For example, model equations of this type arise in the theory of gravitational
equilibrium of polytropic stars. This particular equation may be integrated exactly
(see Problem 3) and has a bifurcation diagram as shown in Figure 1.8k.

For the three physical examples given above the model equations were finally
formulated for ease of solution in reduced form as ordinary differential equations.
The first could then be solved by means of an associated initial value problem (see
Problem 1). The second can also be solved by that method. Both the second and
third problems may be solved by another approach often useful for nonlinear prob-
lems, which we now describe for the case of the third problem. This method carries
several names such as the method of Hammerstein integral equations, the method
of monotone iterations, application of the theory of positive cones in ordered Banach
spaces. It is highly dependent upon the fact that the inverse L~ of the differential
operator Lu = —u" with Dirichlet boundary conditions is both positive and com-
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max lu(x)|
-1<x <1

Ao

FiG. 1.8k

pact. These are strong conditions, but often prevail for elliptic operators on bounded
domains. Further discussion of some of these points will be found in Chapter 2.
This method also has the property of being quite amenable to numerical approxi-
mation procedures.

Considering then for illustration the last problem above, with nonlinearity e,
we employ our Green’s function method to rewrite the problem as the integral
equation

1
u(x) = X\ f_l G(x, 5)e"®ds,

where G(x, s) is the Green’s function for the operator Lu = —u" with Dirichlet
boundary conditions. G(x, s) is easily seen to be

1+ 51 — x), s=x,
Gix,s) =
;1 — 51 + x), s

v

X.

It is known* that if there can be demonstrated the existence of both an ‘‘upper
solution” v(x) Z N [ G(x, 5)e"®ds and a “‘lower solution” w(x) = \ [ G(x, s)e"ds,
then a solution exists. Moreover, this solution may be found as the limit of the
iteration

1
Uy () = A f_l G(x, s)e" O ds

where the initial approximation point u, to begin the iteration may be taken to be
either an upper or a lower solution. In practice it is usually the latter.
In particular, let us take

ugx) =0,

* See, for example, the survey paper by H. Amann, ‘‘Fixed point equations and nonlinear eigen-
value problems in ordered Banach spaces,”” SIAM Review 18 (1976).
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an easily seen lower solution to the problem for any A = 0. We then have

wm(x) = A1 - %),

1 x
uz(x) =1 - e(l/z))\(l—xl) + %ke(l/z»\[J‘ le—(l/z))\:lds + x(_J‘ le—(l/Z)x:zds

+ J‘le—“/z”“zds)].

It is left to the student (see Problem 3), as both a mathematical and philosophical
exercise, to consider further these iterations.

We close this section with a short discussion of the concepts of secondary
bifurcation and turbulence.

The initial or primary bifurcation usually occurs as a splitting off of a nontrivial
solution from the trivial (or a constant) solution u = 0. This was the case in the
examples above. The nontrivial solution branch may then bifurcate again. This is
called a secondary bifurcation. On a bifurcation diagram this second bifurcation
would look like Figure 1.81.

In certain problems in fluid dynamics, experiments have revealed a number of
secondary bifurcations, seemingly arranged in a hierarchy of increasing numbers
of bifurcations. This led to a famous conjecture by Landau that the state of turbulence
could be viewed as the end result of such an infinite chain of increasingly com-
plicated bifurcations. There is on the other hand countervailing evidence that in-
dicates that turbulence may result after only a few secondary bifurcations. Thus
our understanding of the nature of turbulence in a number of important physical

applications remains unclear. t
Secondary
/</bifurcation point
e

T — .
\ ——— Primary

bifurcation point

FiG. 1.81

Problem 1. (a) Solve the buckling yardstick problem by considering the cor-
responding initial value problem
¢"(x) + Asin@(x) = 0, x>0,

"P(O) = o,
¢'(0) =0,

+ For some further aspects of turbulence, see Appendix C.2.
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where A > 0 and 0 < ¢ < , accepting only the solutions that satisfy
¢'(l) = 0. (b) Determine to what extent your solution can be given explicitly
or only implicitly. (c) Deduce the bifurcation diagram for this problem as drawn
in this section (Fig. 1.8g).

Problem 2. One ‘‘linearizes’” a nonlinear equation by dropping the higher
order terms.* Rather general theorems and ‘‘metatheorems’” in bifurcation
theory?t then assert that the solution branches of the nonlinear equation emanate
from eigenvalues of the linearized equation. (a) Find the linearizations for the
six examples considered above. (b) Investigate how well the branches emanate
according to the stated assertion.

Problem 3. (a) Determine when the two nonlinear temperature source prob-
lems given above have no positive solutions for A < 0. (b) Integrate exactly
the nonlinear boundary value problem

—u'(x) = Ne*®, -1<x<1,
u(—1) = u(l) = 0.

Hint: Make a change of variable. (c) Investigate, analytically or by computer,
further iterations of the problem of part (b) as begun in the text above.

1.9 SUPPLEMENTARY DISCUSSIONS AND PROBLEMS

This section contains eight subsections, Problem 1.9.1 through 1.9.8, each with
material and exercises supplementing the same-numbered sections in the text. Then
there is a final subsection, Problem 1.9.9, containing three ‘‘confirmation’’ exer-
cises and further suggested exercises and problems.

Problem 1.9.1 contains some further details for the classification of partial
differential equations as discussed in Section 1.1. It is our feeling that in an intro-
duction to the subject one should not spend too much time on these classification
details. Similarly, in most of the supplementing material to follow, much has been
left to the instructor’s discretion and student’s curiosity as to how far to go in
pursuing those matters. For example, in Problem 1.9.2 we have given only a minimal
treatment of characteristics. That subject can on the other hand be studied in great

* There are other, more rigorous ways to describe the linearization of such equations, but this rule
applies well in practice. We are speaking here of ‘linearization about zero,’’ that is, ‘‘about the zero
solution in u.”” The idea is that, for small solutions, the higher-order terms are smaller and have only
2 secondary effect.

t For the large and rapidly growing literature on this important subject let us suggest the review
article by 1. Stakgold, SIAM Rev. 13 (1971), the recent book by M. M. Vainberg and V. A. Trenogin,
Theory of Branching of Solutions of Nonlinear Equations (Noordhoff, Leyden, 1974), and the treatises
of D. Joseph, Stability of Fluid Motions 1, Il (Springer, Berlin, 1976). There are so many other important
Works on this subject that we cannot include a full bibliography here. For more recent approaches see
:(- Golubitsky and D. Schaeffer, Singularities and Groups in Bifurcation Theory (Springer, New York,

985).
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detail, especially as it concerns the behavior of general hyperbolic partial differential
operators, solutions of equations of mixed type, and nonlinear problems. See
Appendix A.

Problem 1.9.3 outlines a proof of the maximum principles for elliptic and
parabolic equations. The basic Picard—Cauchy—-Kowalewski existence theorem for
initial value problems is given in Problem 1.9.4.

Problem 1.9.5 contains three parts that to some extent augment the three parts
of Section 1.5, but that also provide additional background material for the subject
as a whole. Because we develop rather fully the method of separation of variables
in this book, in Problem 1.9.5(1) we instead have chosen to stimulate a historical
perspective for the student. In Problem 1.9.5(2) we attempt to take care of, in an
admittedly summarily way, the questions about domain pathologies. In Problem
1.9.5(3) we give the derivation of a partial differential equation from its variational
formulation. Parts of Problem 1.9.5, especially (2) and (3), will require that the
reader begin the sixth section of the chapter, specifically, 1.6.1(1).

In an arrangement similar to that of Problem 1.9.5, Problem 1.9.6 contains
three parts: (1) a short history about mathematical developments concerning the
pointwise convergence of Fourier series; (2) a brief introduction to the methods of
proof of Dini tests, and to the Gibbs effect; and (3) a very brief discussion of the
Lebesgue dominated convergence theorem. We have no intention of getting into
the details of the Lebesgue theory per se, but we feel that the dominated convergence
theorem deserves emphasis here as a fundamental technique for *‘differentiating
under the integral.”” We in fact employ it in that capacity in Problem 1.9.7(3) in
an illustration there of a rigorous investigation of the ways in which the heat equation
attains its initial values. The first two parts of Problem 1.9.7 are (1) a brief exposition
of self-adjoint operators and (2) the related notion of distributional (or weak) de-
rivative. The self-adjointness of an operator is an important concept in physical
applications.

Problem 1.9.8 very briefly illustrates via the Van de Pol equation the phase
portrait method for analyzing nonlinear ordinary differential equations. Our view-
points there are that this is an important method that should not be overlooked for
the special cases in which a nonlinear problem has been reduced to a second-order
ordinary differential equation, and that it should be viewed as an important method
in the perturbation and bifurcation theories.

Problem 1.9.1 Classification

Study some of the following conventions and facts concerning the classification
procedure for second-order partial differential equations. Also feel free to come
back to this problem later, since we suggest not getting bogged down at this point.
A specific exercise is suggested near the end of the discussion.

Let us consider a PDE of second order in n variables and one unknown u on
a domain ) of points x = (x;, . . ., x,), n > L
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Fl, u,u;,uy) = 0.
A subclass is
Lu = Au + Nw) = 0,

where Au = a"u ;;, the second-order part, can be separated from the other terms.*
This equation is called quasilinear if a¥ = a¥(x;, u, u;), Nw) = N(x;, u, u;),
i.e., if whatever nonlinearity that is present in the equation does not involve second
derivatives of u. It is called almost linear or semilinear if a¥ = a”(x;) and N(w) =
N(x;, u, u ), i.e., if it is linear in the second-order terms. It is linear if a¥ =
a¥(x;), Nw) = au; + au + f, where @; = a;(x), a = a(x), f = f(x). In that case
L is a linear expression with possibly nonconstant coefficients. The f(x) are com-
monly called the ‘‘data’” and presumed to be known along with the coefficients.

Examples.
2 2. o
(ly,x,)" + (uy,,)" 1S not quasilinear.
2 2 . e
(Uy) Uy x, + () Uy, + u? is quasilinear.

Xylyy, + Xaly, + u?is almost linear.

2X2

Xyly x + Xaly . + XyXpu is linear.

Uy, t+ Uy, + uis’linear with constant coefficients.

Usually we will be dealing with the latter case of a linear partial differential
equation with constant coefficients. We will consider in the following paragraphs
principally the case n = 2, the classification for higher dimensions being similar.
Classification depends only on the highest order (here, the second-order) derivative
terms, and the lower-order terms may therefore be omitted.

The main idea is quite simple. Given

Au = aVu ;
one considers an arbitrary n-vector y = (yy, . . . , ¥,) and assigns the quadratic
form
. n n
0:(9) = alyy; = (Ay, y) = 21 2, alyy;.
i=]1j=

* It should be mentioned here that often it is convenient to have an equation in the so-called
divergence form

Lu = (a%u;); + lower-order terms,
rather than in the form given above,
Lu = a%u; + lower-order terms.

For classification one sticks with the latter. The former is advantageous for such things as integrating
by parts and uniqueness proofs, generally possesses better properties, and may be converted to the latter
by taking the jth derivatives.
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Since u ; = u; for twice continuously differentiable functions u, one may assume
that @/ = a’ so that the matrix A = [a¥]isann X n symmetric matrix. By linear
algebra we know that we can transform Q,(y) to principal axes form by a change
of variable fromy = (1, . . - s Yn) 10 2 = (zy, - - - » Zn), Where the z; are a
suitable basis such that one now has the canonical form

0,(2) = ki@l = 2 k(@)
The number of positive, negative, and zero k; are invariant under any (nonsingular)
linear change of variable (yy, . - - > V)= (21, - - -5 Zn)s and serve to classify the
operator. For example, if all the k; are of the same sign, the partial differential
equation is elliptic; if all but one are of the same sign, the partial differential equation
is hyperbolic.

The above classification is motivated by the n = 2 case and the canonical
conic section names of elliptic, hyperbolic, and parabolic, from elementary ge-
ometry. Also, there is the discriminant test (sec also Section 1.1), as in the just-
mentioned setting. Let n = 2 and consider the second-order partial differential
expression

Au = a¥uy; = aluy + aup + auy + auy,
u 2 u
= a2 4 207 + 2%
oxi ax, 0x, x5

where it may be assumed that a'? = a2, that is, the coefficients of the mixed
derivatives may be initially equalized.
Let the following linear change of basis be assigned*:

AR a?a\{ »
Z, 0 1 y2/°

Then (by completing the square) one has

0,(y) = @'y + @y, + @y + 6Ny
. a2\ alla? — (a2) ,
=a N + a" Y2 + (au)z y2
11,22 1232
alla?? - (a'?)
= a"(zl)2 + 11 (22)2 = QZ(Z)'
(@)
* If @l = 0, use a?* instead. If "' = @ = 0, the equation is hyperbolic, corresponding t0 the

alternate conic section canomical form for hyperbolas y.y, = 1, which by (easy) change of variable
goes over to the usual canonical form z? — z2 = 1 for hyperbolas.
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Classification. Let d = aa® — (a'?)? be called the discriminant. Then
(definition):
d > 0 © Au is elliptic
d < 0 & Au is hyperbolic
= 0 & Au is parabolic

This is the same as saying that the k; have equal or different signs as mentioned
above. In analytical geometry the corresponding canonical forms are

ki(z))? + ky(z2)* = 1

the three cases of ellipse, hyperbola, or (degenerate) parabola depending on whether
k, > 0, k, <0, or k, = 0, respectively, given k; > 0.

It must still, however, be shown that the above classification corresponds to
and permits, by an acceptable change of variable, the transformation of the given
partial differential expression Au into one of the three canonical forms:

#? *?
elliptic Laplace operator 5‘% a—x;

# #?
hyperbolic  d’ Alembert operator 5':; - :’)x_;

d #
parabolic Diffusion operator 3_:1 - a_x;

This may be verified as follows. For the given differential expression
Au = au,, + 2a"%u,,, + a’’u,,, + (lower-order terms)

with constant coefficients (the variable coefficient case in which one seeks a 1-1
but not necessarily linear change of variable is similar but involves a little more
care via the implicit function theorem), we seek a linear change of variable

(£) - (2 2a)) sevemen

which will change the expression A into one of the above three canonical forms.
By the calculus chain rule one has

ux, = u{,(cl)xl t+ ";,(gz)x,
and so on, arriving by direct substitution at the expression
= Al 12 22
Au = blugy, + 207wy, + b uyy,
Plus lower-order terms, where the new coefficients are

b" = a"((gl)x,)z + 2a12(§1)x,(§1)xz t+ a22((§l)xz)2’
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b12 a“(gl)xl(gz)x, + alz((gl)x,(gz)xz + (Cz)x,(§1)x,) + azz(§1)x,(§2)x,,

B2 = a(Ly),)? + 262 (L) (L)y, + @H(L)n)

(The above expression, depending only on the chain rule, holds for arbitrary change
of variable, not necessarily just the linear one we are considering for the case of
constant coefficients.) In terms of the matrix C one may write then

bll

a'c + 2a'%cycn + a”ch,

b2 = allc) oy + @Xcyon + encn) + @y,
b2 = gllcd + 2a'%cycpn + aPch.
One may now verify the discriminant relation
b1p2 — (') = (@a? — @DH(L)x L)y, = Cde(L2)n ]’
and for the present constant ceofficient case the latter factor is just
J = (enen = enen)

For 1-1 transformations (linear or not) this Jacobian is nonzero and hence the
classification of A remains the same in the new variables {; and {,.

The point is now of course to show (in the constant coefficient case this is just
an exercise, and we leave this as a specific exercise for this problem) that one may
in fact pick a 1-1 transformation so that one arrives at, in each of the three cases:

elliptic p2 =0, >0, H2>0,
hyperbolic ~ b'! = b2 =0, b2 #0,
parabolic b = p12 = 0, b2 # 0.

The other hyperbolic canonical form b'! > 0, b < 0, b'? = 0, is available by a
further change of variable. The heat equation parabolic canonical form u; —
uy,q, With the first derivative term present will come out (if it is present) by keeping
track of the lower-order terms under the change of variable.

Let us consider for example the parabolic case. Here we have the discriminant
vanishing, from which we know that

(b12)2 = b11b22
Thus when we make b'! = 0 we know also that b'> = 0, thereby leaving the
equation in the desired canonical form after just solving the b'! = 0 equation.

Using also the fact that a'? = (@2a')*, we thus have for the C transformation
the conditions for 522 = 1 and b!! = b'? = 0,

1 Vi -
aficy + aphep = 0,
1.

1 v
ajicy + ancn

These clearly have solutions.



SUPPLEMENTARY DISCUSSIONS AND PROBLEMS 109

It is instructive to mention some explicit parallels with the classification and
transformation procedures for the conic sections of analytical geometry. In so doing
one may also get a feel for the complications of classification for more dimensions,
which we will not treat here.

Consider the curve

9x2 — 24xy + 16y? — 18x — 101y + 19 = 0.

This represents a parabola with focus in the second quadrant. The usual procedures
of analytic geometry would first rotate away the cross term by introduction of the
new coordinates (x;, y;) according to an angle rule

3

Xy X

N y

Wniw i

5
4
5

from which the new equation is
25(y)? = 75x, — 70y, + 19 = 0.

Then the equation is in a standard form (y, — )2 = 3(x; + ) from which its
graph may be constructed. A further transformation to a form y3 = x, can be
effected by a translation of axes if desired.

Thus if asked to classify and transform to canonical form the partial differential
equation

u, — 24uy + 16u, — 184, — 10lu, + 19 = 0,
one could first be assured of a rotation change of variables to
25uyy — T5ug — T0u, + 19 = 0
with a further change of variable then taking you to

u, — u, = 0.

Problem. (a) Classify and transform the following:

(i)uu_uxt_uu_ux~ut=0
() 20 + 0y + 2u, + u=20
(i) —3u,, + 10w, — 3u, + Tu, — u, + u =0

(b) Verify the discriminant relation above, at least in the linear change of
variable. (c) Show for the hyperbolic and elliptic case that the linear change
of variable to canonical form always exists. Comment on its degree of unique-
ness. (d) Carry out both the geometrical and the differential transformations
for the conic parabolic example above.
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Problem 1.9.2 Characteristics

A subject related to classification (see problem 1.9.1 above) is that of characteristics
of the expression Au. Characteristics for linear second-order equations are princi-
pally of interest in the hyperbolic case inasmuch as they describe the trajectories
of outward spreading waves. It can be shown from the above classification procedure
that the classification change of variables transformations yield the characteristics
equation

de a12 T\ /(a12)2 — a22all

dxl a”

which, due to the sign of the discriminant, has no real solutions in the elliptic case,
one solution in the parabolic case, and two solutions in the hyperbolic case. These
solutions are called the characteristics or characteristic curves for the equation.
This connection between the classification change of variables and the char-
acteristics of an equation is contained in the following lemma: for { = {(x, y) a
“classification’” change of variable, one obtains a vanishing b'! (or 522) coefficient

an(@)? + 2apld, + an(l)* =0

if and only if {(x, y) = constant is the general solution of the characteristic equation

2
d d
a”<-ﬁ> - 2a12<zi]) + ay = 0.

Let us prove it. Recall the implicit differentiation rule from calculus for a function
z = {(x, y) for the special case when y = y(x): from the chain rule

d:

_Z = ?_E -1 + % Q X

dx ox dy dx
Letting F(x, y) = z — ¢, if F(x, y(x)) = 0 in a neighborhood of a point x,, then
the total derivative dz/dx = 0 there, from which emerges the important rule

F
Yy = —=.
F)’

Thus {(x, y) constant and a solution of the characteristics equation renders the b'!
classification coefficient zero by substituting into it the implicit derivative relation

d_ Lk

P

Conversely, given the relation b!2 (or 5?2) equal to zero, we have from the quadratic

equation
2
cx) (c)
apl=1 + 2a,|=) +an =0
“(Cy 12 Z, 2
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the solution ({./{,) = (—ay;, = Va}, — ay,a5)a;; which from the implicit
differentiation rule gives us the characteristic equation. Notice the importance of
the sign change, to which care must be paid.

Let us illustrate this classification-characteristics connection for the wave
equation

u, — u, = 0.
Following the classification procedure let us transform it to the form
u;,‘ = 0

To do so we want

b = an(L)? + 2ap88, + apl? = 0

and

b2 = ay () + 2amm, + axpn? = 0.

A number of such transformations { = r(x, ), n = s(x, #) were worked out in
Problem 2 of Section 1.1. Even within the class of linear transformations they need
not be unique. No matter how they are chosen, however, the solutions ¢ = #(x) to
the characteristics equation for the wave equation will be the same. From it, namely,

2
dt
—] - 1=0
dx

we have the wave equation characteristics
t=x+c,

t= —-x + c.

These are 45° lines in the (x, ¢) plane along which initial data impulses will prop-
agate, a subject we will take up later (e.g., see Section 2.5). On one { is constant,
on the other m is constant. Note that in the 45° rotated coordinates found in Problem
2 of Section 1.1, the characteristics equation for the u,, = 0 canonical form for
the wave equation gives characteristics equation dr/ds = 0 and characteristic curves
r = constant and s = constant.

Problem. (a) Classify and find the characteristics of the equation

Uy + 2u, + (sin?x)u, + u, = 0

(b) Find the characteristics of the heat equation 4, — u,, = 0 and relate them
to the infinite speed of heat propagation that it implies, see Problem 1 of Section
1.7. (c) Examine the characteristics of the Tricomi equation yu, + u, =0
mentioned in Section 1.1.
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Problem 1.9.3 Maximum Principles

The (strong) maximum principle asserts that if Au > 0 in Q and u is continuous on the
closure G where Q is a closed bounded domain in n-space, then u attains its maximum
only on 3. This follows simply from the calculus conditions fora maximum. Because
u € C°(Q) there is a maximum somewhere on Q . If this obtains at an interior point
(x1, . . ., X») then necessarily the uxi = O there and the uxx; s 0 so that Au s 0, a
contradiction. Such functions  are called strictly subharmonic because the condition
Au > 0 implies that they sag below their maximum and average values. An easily
remembered example is u(x) = X

The (weak) maximum principle states that if the inequality is not necessarily strict,
i.e., Auz0in Q, then  attains the maximum somewhere on 92, and also possibly
within Q. This follows easily from the (strong) maximum principle by letting

vau+er
where r2 = x* + .. .. + x2 Then Av = Au + 2ne > 0O for any positive ¢ so that v attains
its maximum only on 3. If the bounded domain £ now is put within an enclosing
ball of radius R we have v s maxsg u + eR” and hence
u=v-er svsmaxaQu +eR.

As € was arbitrary we may let it tend to zero to guarantee that u is bounded by its
maximum on 2.

The (usual) maximum principle states that for harmonic functions Au = 0,

maxg | #(x) | s maxso | u(x)|.

Sometimes this is stated as
Mmingg ¥ s 1inS2 s maxag U .

It follows easily from the (weak) maximum principle applied to u and — u.

Problem. (a) Verify the last statement. (b) By modifying the above arguments
establish the stability bound

Ju(x, y)| s maxao |u | + (R*/4) maxa |Ay|

for anyu EC*(Q) N C°(€2). Why is this a stability statement?
(c) State and prove a similar maximum principle for the heat equation,

w-Au=0inQ, >0
ugvenatz=0,
u maintained (given) on dQ for¢>0,

asserting that a body Q with no interior heat sources will attain its maximum temperature
either initially (if it is being cooled) or else later (if it is being extermally heated) on its
sides.
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(d) If you wish, read further in the literature about maximum principles
for partial differential equations and in analytic complex function theory. Also,
consider why hyperbolic equations do not have natural maximum principles.

As an additional exercise, consider a fourth-order elliptic operator (e.g., AAu
= 0).

Problem 1.9.4 Picard—Cauchy-Kowalewski Theorem

In almost every book on ordinary differential equations one will find the following
fundamental existence theorem for the initial value problem

y'&) = flx, yx)), x>0,
y(©0) = y,.

Picard Theorem. If f(x, y) and 9f(x, y)/dy are continuous in a neighborhood of
the point x = 0, y = y,, then there exists a unique solution to the above initial
value problem.

The proof usually consists of converting the ODE initial value problem to the
equivalent integral equation

yx) =y + L f(s, y(s)) ds

and then showing that the method of successive approximations converges.

Problem. (a) Consult a book on ordinary differential equations for this proof.
(b) Rewrite the proof in terms of the contraction mapping theorem (applied to
the integral equation) which guarantees a fixed point for any contracting map
in a complete metric space. (c) Demonstrate that the integral equation and the
differential equation initial value problem are indeed equivalent.

Not as well known is the fact that the Picard theorem has been generalized to

partial differential equations. Before stating that result let us recall the following
facts.

1. A function f(x,, . . ., x,) is analytic at a point (x{, . . . , x2) if there exists
a neighborhood N(x%) wherein f can be represented by a convergent power series
f(xh B ,X,,) = . 2 20 Q. .. kn (xl_ x(l))h cee (X,,“ xg)kn
where

. 1 ght e f(x0)
k1. . kn k' k! oaxd e gxdk
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2. Any partial differential equation initial value problem can be reduced to a
system of quasilinear (see Problem 1.9.1) equations of first order. This is done by
letting each du,/dx; be a new variable. Thus for the equation

3%u u ou 9*u 0%u
2 = t’ ‘x’ u’ ’—’ ’ 2
ot ot’ ax ot ax ox

one lets r = f(t, x, u, g, p, s, V), differentiates with respect to f to get arlot = -+
plus a list of the other relations, and then repeats this process after letting p = ar/
at. See (¢), (d), and (e) of the problem below.

3. The initial value problem for a general quasilinear system of first order, for
n independent variables plus a ¢ variable, in N unknowns u;, is the following (for
simplicity we have translated the initial point to the origin):

where
a =aP 4 x, .o XU uy),
G =clth Xy, o s Xy UL - s uy).

Cauchy~Kowalewski Theorem. If the a{’ and c; are analytic at ©,0,...,0,0,
..., 0), then there exists in a neighborhood N(0, o, . . . ,0) a unique solution to
the above initial value problem and passing through the initial point 0.

The proof of this theorem is interesting and goes roughly as follows. Since all
functions involved are analytic, one would expect to solve the problem by expanding
everything in power series and equating the coefficients. To prove that the resulting
formal power series for the solution converges, one needs to dominate it by a
majorizing convergent series. For the latter one uses the series expansion of

o-2) (3]

where M and R, are chosen appropriately. Thus the essence of the proof is proper
use of a geometric series.

Problem. (a) Investigate the proof of the theroem. (b) Research the literature
for more general Cauchy—Kowalewski theorems on (somewhat) arbitrary initial
data strips.

(c) Let us elaborate 2 above for the case given there, namely, the second-
order initial value problem

Uy = f(t» X, Uy Up Uyy Uppy Uy,
u@, x) = up(x),
10, x) = u(x),
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and show that the resulting quasilinear system is equivalent. The student should
verify each of the following steps.
From

r=u, =f@t x u qp s0),
we differentiate with respect to ¢ to arrive at
="+ 14 +fqr +fps + firs + fuSx

where the absence of some terms corresponding to x follows from the inde-
pendence of x and . The resulting quasilinear first-order system is

u = q
q =7
Pr = 4x
S =TIy
V, = 8

r, = f{t x, u, q, p, s, v) + f,q + the other terms above,
with initial conditions

u(0, x) = up(x)
q(0, x) = u,(x)
PO, x) = up(x)
50, x) = u(x)
v(0, x) = ug(x)
r(o’ .X) = f(o’ X, u()(-x)’ ul(-x)’ u(')(-x)’ ui(-x)’ ug(x))

Suppose we have functions (#, g, p, r, 5, v) that satisfy the quasilinear
problem. We claim they satisfy the change of variable equations. If so, the
equivalence with the original second-order problem has been established.

From the quasilinear system, ¥, = gq. Also we have u,, = g, = p, from
which (u, — p), = 0. Hence u, — p = some function a(x). Butat ¢ = 0,
we have a(x) = u (0, x) — p(0, x) = uy(x) — up(x) = 0, and hence
u, = p.

Because u, = q, = r, the variable r is justified immediately from the
definitions.

From (u,, — 5), = 0, we have u,, — s = some function B(x), which is
uy(x) — uj(x) = 0 att = O; similarly, u,, — v = some function vy(x), which
is uj(x) — ug(x) = O att = O, and hence u,, = s and u,, = v.

Clearly u from the quasilinear system satisfies the original two initial
conditions, and one may check in the same way as above that (w, — f), = 0
so that u,, — f = some function 8(x), which is u,(0, x) — f(0, x, up(x), u,(x),
uy(x), ui(x), ug(x)) = r@,x) — r(0, x) = 0att = 0.

(d) Reduce as in (c) the second-order wave equation problem

U, — u, = 0,
u(x, 0) = f(x),
ux, 0) = g(x),
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to an equivalent first-order system.
(e) Do it for f(x) = x and g(s) = 1 and solve.

Problem 1.9.5

(1) Some Historical Considerations. Almost everyone who has studied any ad-
vanced mathematics has heard of Dirichlet, Dirichlet’s principle, and the Dirichlet
problem. Brief historical remarks concerning this problem and its central role in
the development of mathematics in the latter half of the nineteenth century may be
found in Section 1.5. Let us go a bit further here.

Problem. (a) Find the exact papers in which Dirichlet himself addressed the
problem, principle, and boundary condition that now bear his name.

The Neumann boundary condition arises in applications in which it is
desired that there be no flux of the quantity in question through the boundary.
There have been several Neumanns in mathematics and more than one who
have treated boundary value problems.

Problem. (b) How many Neumanns are there who have made prominent con-
tributions to the study of partial differential equations? In particular, find the
particular Neumann and the exact papers in which he addresses the boundary
condition of his name.

But almost no one knows about Robin, whose name is (sometimes) attached
to the third boundary condition. Our curiosity got the best of us here and we obtained
a little information.* There is no doubt an interesting story here, and (although we
know more) we do not go to the end of it, instead leaving it as a historical adventure
for each student to pursue as he wishes.

Problem. (c) Find out more. In particular, find exactly where, if at all, Robin
studied the boundary condition that now carries his name. (d) What relates
Debye and Schrédinger? (¢) Which Hiickel, and why?

(2) Nice and Nonnice Domains. In our discussions thus far we have avoided,
beyond brief statements recognizing their existence, pathologies in domains () that

* The Oeuvres Scientifiques of G. Robin were compiled by Louis Raffy with the help of stu-
dents’ lecture notes from Robin’s courses given in Paris between 1892 and 1897. There are three vol-
umes: (1) Théorie nouvelle des fonctions, exclusivement fondée sur ['idée de nombre; (2a) Physique
mathématique. (2b) Thermodynamique générale. Robin’s favorite research subject was thermody-
namics, which he thought about from the age of 20 until the last months of his life. He died in his
early forties (1855-1897), after having apparently burned most of his papers.

More information may be found in T. Abe and K. Gustafson, GITOH41 (1995) (in Japanese)
and in T. Abe, K. Gustafson, “The third boundary condition—was it Robin's?” The Mathematical
Intelligencer 20 (1998).
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might cause technical difficulties. As was mentioned in Section 1.5, these questions
were finally successfully resolved by Hilbert and Lebesgue, among others. Almost
all domains {) encountered in applications cause no trouble although it is not hard
to imagine the physical situation in which an electrostatic charge can build up on
certain spikes on the boundary 82 of a domain, and not on others. Indeed, Le-
besgue’s examplet of a domain € on which the Dirichlet problem is not solvable
was a three-dimensional sphere punctured by the spine y = e~!* of revolution
(Fig. 1.9a).

PG, 1.9a

Problem. (a) Read through the references (especially those mentioned in Sec-
tion 1.6.1) to develop an understanding of nice domains in two senses:
(1) divergence theorem domains, those on which one can apply the divergence
theorem (called regular, normal, Gaussian domains, among others), and
(2) Dirichlet problem domains, those on which one can solve the Dirichlet
problem for any continuous boundary data f (called Dirichlet regions or do-
mains, among others). (b) Write down some contributions of Poincaré and
Lebesgue in particular. (c) Think about what a ‘‘cusp’’ or “‘punctured’’ con-
dition might mean physically in the case, for example, (i) electrostatics or (ii) a
Brownian motion inside £}, as relating to the borderline cases between € nice
and () not nice. (d) What effect does the connectivity of a domain have on
whether it is a (1) divergence theorem domain or (2) Dirichlet problem domain?
In particular, how about the (i) ring domain < x? + y? < 1 and (ii) the
punctured domain 0 < x2 + y2 < 1? (e) What is the effect of dimension on
these two classes of domains )? (f) In Section 1.5.2, the existence of the
Green’s function for a partial differential equation on the domain {2 in question
was assumed. A third class of nice domains {2 would be those in the sense (3)
for which the Green’s function G(P, Q) exists. Make this more precise and
relate the class (3) to the Dirichlet problem domains (2). In particular, do this
for two-dimensional domains by consulting the literature on analytic function
theory.

(3) Variational Principles and Euler Equations. In Section 1.5.3 we mentioned
the general relationship between a variationally formulated problem and the partial

t H. Lebesgue, **Sur des cas d’impossibilité du probleme de Dirichlet,”” Comptes Rendus Soc.
Math, France (1913).
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differential equation that can be derived from the variational formulation. This
differential equation is then called the Euler equation for the problem, and may be
linear or nonlinear. Conversely, from a given differential equation one can often
profitably go to a variational formulation of the problem. Ilustrations of ordinary
differential equations exhibiting this duality between variational and differential
problems were given in Section 1.5.3.

In this subsection we wish to illustrate for partial differential equations how
one obtains the Euler equation from the variational formulation. Further ramifi-
cations will be found in Section 2.6. A full treatment would lead to a course in the
Calculus of Variations.

Consider first the Dirichlet principle discussed in Section 1.5.3, wherein the
variational formulation of the Dirichlet problem

Au=0in Q,
u = fon oQ,

was asserted to be

D(u) = min D(v),

v=f
on 2

where D(w) = J;) |grad v(x)|? dx.

Let us derive the former as the Euler equation of the latter. In doing so we shall
not worry about any pathological domains {}, we will assume that we may freely
use the divergence theorem and integration by parts (see Section 1.6) on the functions
defined on 72, and we will assume that the minimizing solution u in the variational
characterization exists and is not a worrisome function.

Thus, as in elementary calculus, we may regard the functional* D(v) as a
quantity to be minimized by setting its derivative equal to zero. Since the underlying
vector space of functions v is a function space and infinite dimensional, we may
attempt to perform this minimization of the functional D(v) by setting all of its
directional derivatives to zero:

0= oD (u)
ow

. D + gw) — D(w)
= im .

e=0 =0 €

Since the minimization is to be taken over all reasonably nice functions v that equal
f on the boundary d(2, the w in the above expression are taken to be any functions
equal to 0 on o€} so that the v = u + ew then range over all of the specified v.

The difference quotient in the above expression is easily calculated from the
identity (just expand D(u + &w))

Du + ew) = D(u) + 2eD(u, w) + 2 D(w),

* Generally, a functional is a mapping from vectors to scalars. Here, it assigns a real number D)
to every reasonably nice function v defined over 1.
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where
D, w) = D(w, u) = L grad u(x) - grad w(x) dx,

from which
Dw, u) = 0.
By Green'’s first identity

d
Dw, u) = § w—uds - f w Au dx
q on Q
(see Section 1.6) and the vanishing of w on (), we thus may conclude that
fn w(x) Au(x) dx = 0

for all functions w(x). This is the so-called ‘‘weak’’ or ‘‘dual’’ form of the desired
statement that Au = 0 pointwise in (). The latter may then be concluded for functions
u that are C2(Q}) by supposing Au(x) to be not equal to zero at some point x, and
taking w to be a suitable continuous function of like sign and zero outside of a
suitably small neighborhood of x,, a contradiction.

As a second illustration of the calculation of the Euler equation from a vari-
ational formulation, let us consider the ecigenvalue problem

—Au = huin Q,
u = 0on 8,
variationally formulated for the lowest eigenvalue A as
. Dw
A= min ,
v=o0 |WIP
on 32

where |v|? = fn v2(x) dx.

As in the above example we may set equal to zero all directional derivatives of the
functional in order to obtain the minimum, that is,

D + &w) D)
_ d\@w) e + ewl®

dw

0 = lim

e=0 &0 €

for all reasonably nice functions w that vanish on (). Using again the identity D («
+ ew) = D(u) + 2eD(u, w) + €2D(w) and the similar identity [l + ew|? =
> + 2e fq uw dx + €3|w|?, the difference quotient, after forming the common
denominator, becomes
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[2D(u, w) + eDWIul* — D@)[2 [ uw dx + &|w|?]
lelPlliel® + 2e fo uw dx + lhwi’]
Taking the limit e—0 and using Green'’s first identity as above then yields in order
D(u)
Tz o ®

D(u, w) — wdx = 0

and
fn w(x)(—Au(x) — Au(x))dx = 0,
from which Au = Au in Q.

Problem. (a) Do the same as was done above for the Dirichlet problem for
the minimal surface equation (see the introduction to this chapter). That is,
obtain the Euler equation

(1 + () ug — 2uuuy, + (1 + (u)?)u, = 0in £,
u = fon o)

from the variational formulation

E(u) = min E(v),
on a0

where E(v) = fn [1 + |grad v(x)|*]¥? dx.

(b) Study the general relationships of Euler equations to their Lagrangian
and Hamiltonian formulations.

(c) Give an example of a Lagrangian for the wave equation u, — u,, —
u,, = 0.

Problem 1.9.6

(1) Some Historical Remarks. As in Problem 1.9.5(1) and elsewhere we have tried
to bring the student’s attention at least for a few moments to the historical and/or
human point of view. However, time and other needs limit this endeavor. Here we
restrict ourselves to a few brief remarks concerning the development of the under-
standing of pointwise convergence of Fourier series. Thus we are elaborating only
one aspect of Section 1.6 and in fact only a part of Section 1.6.3. On the other
hand, Fourier series and their pointwise convergence are, as we shall see more and
more, a most essential ingredient in a study of partial differential equations.

Because we are omitting similar important historical aspects of the topics
discussed in Sections 1.6.1 and 2, perhaps we should at least assign to the interested
reader the following problem.
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Problem. (a) Briefly trace some historical and/or human aspects of the de-
velopment of (1) the divergence theorem and/or (2) inequalities.

The historical comments below pertain, in general, only to pointwise conver-
gence for the trigonometric Fourier series and not for general Fourier series (see
Chapter 2). As will be seen in the proof of the weak Dini test in 1.9.6(2) below,
the establishing of pointwise convergence may depend heavily on the particular
expansion functions being used.*

As mentioned previously (Section 1.5), we attribute to D. Bernoulli the idea
of expanding an arbitrary function in terms of sine finctions, to Euler the calculation
of the Fourier coefficients, and to F. Riesz, E. Fischer, and Lebesgue the final
statement that the Fourier series for an arbitrary square integrable function on an
interval will converge in the mean to the given function.

Dubois—Reymond showed in 1876 that a continuous function f can have Fourier
series partial sums s4 that diverge at a point x,. Fejer and Lebesgue in 1904—1905
showed that on the Lebesgue set of an integrable function f (for these concepts see
1.9.6(3) and 1.9.7(3)), s is Cesaro summable (roughly; averaged partial sums
converge). Kolmogorov in 1926 found an integrable (L!) function f such that the
partial sums s4 diverged badly pointwise (almost everywhere in the interval). Carle-
son in 19661 showed that all square integrable functions f have the property that
their Fourier partial sums s converge pointwise to f at almost all x.

Problem. (b) Add to this just-given brief history.

(2) Dini Tests and the Gibbs Effect. Again we restrict attention to the pointwise
convergence of Fourier trigonometric series. Given a Fourier series solution to a
partial differential equation via the method of separation of variables, we will want
to know its pointwise convergence properties. The so-called Dini tests introduced
in Section 1.6.3 give sufficient conditions for this. The Gibbs effect is a refinement
showing the tendency of the partial sums to pile up to the left and right of a
discontinuity in the given function f.

We shall state three ‘‘Dini”’% tests, as follows:

The Dini Test states that the Fourier series of a piecewise continuously differ-
entiable function f(x) of period 27 will converge pointwise to the function f(x) at
points x at which the function f(x) is continuous, and to the average value of f(x)
at points x at which f(x) has a jump discontinuity (Fig. 1.95).

If (Strong Dini Test), moreover, f(x) is continuous with piecewise continuous
derivative, then the convergence is uniform on the interval (Fig. 1.9¢).

* On the other hand it can be shown in the Sturm-Liouville Theory (see Section 2.4), but is
beyond the scope of this book, that in many cases a general expansion and the trigonometric expansion
will converge or diverge pointwise together.

t Carleson, ‘‘On convergence and growth of partial sums of Fourier series,”” Acta Math. 116
(1966).

1 Named for U. Dini, an Italian mathematician, for his work on Fourier series and the theory of
real variables, at Pisa in the 1870s.
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Fic. 1.9¢

If (Weak Dini Test) f(x) is integrable on the interval (i.e., /™ |f(x)| dx < ©)
and Hélder continuous at x, then its Fourier series converges to f(x) there (Fig.
1.9d).

Problem. (a) Follow the proof sketch below for the (weak) Dini test. (b) Consult
the literature for other versions, and prove one of them.

Let f(x) satisfy J™ . |f(s)| ds <  on the interval — 7 = s = w and be Holder
continuous at x. We recall that this is a condition between those of continuity and
differentiability of a function, and means that there are constants M and a > 0
such that forall —w=s=m

|fG) = fo) = Mbx — s

It has been assumed that f has been periodically extended beyond the interval
[—, w].
The classical trigonometric Fourier series for f(x) is

a0 + 21 (a, cos nx + b, sin nx)
=

where @, = w1 [" . f(s) cos ns ds, b, = w~! [T f(s) sin ns ds. Let Sy(x)
denote the Nth partial sum, that is,

|
L

MJ

-%

&

:—th——

o

A .
=



SUPPLEMENTARY DISCUSSIONS AND PROBLEMS 123

N
Sn(x) = 1ao + 2 (a, cos nx + b, sin nx).
n=1

It is to be shown that Sy(x) — f(x).
Proof.

(Sketch.) (1) Establish the trigonometric identity

sin[(N + %)0]

1+ cos® + cos20 + - + cosNO = —
2sm(50)

as follows:

N
2 sin (%0)(% + Y cos nO)
n=1

N
sin (0) + 21 2 sin (30) cos n0

N
sin (10) + 21 (sin[(n + 1)6)

— sin[(n — 1)8])

sin[(N + %)0].

The right-hand side of the identity is sometimes called Dy(0), the Dirichlet
kernel.
(2) Substitute a, and b, into the partial Fourier sums at x as follows:

T N
Sy(x) = 7! j_ f(s) (; + Y, (cos nx cos ns + sin nx sin ns)) ds

n=1

0 N
| I f(s)(; + D cos n(x — s)) ds
- n=1

sin[(N + ;)(x )|

@em! I-,f(s)

sin[%(x - 5]

" sin(N + 2)0
= (2ﬂ)"f fx+0)———
-w sm(;O)

The identity in (1), a change of variable, and periodicity of the integrand have
been used.

(3) Note that Dy(0) has the property (by use of (1))

J':' Dy@®) ==
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so that upon subtraction

" (f(x + 0) — f(x)

— ) sin[(N + 1)8] d9.
sin (:0) 2

Syx) — fxy = @m~! f

(4) Call upon the Riemann-Lebesgue lemma (see Second Pause) that as-
serts: If a function h(0) is integrable on the interval (-, ), then

(h, sin[(N + 2)8]) = f_ h(8) sin[(N + )81d8 >0  asN—> .

Here one requires that the functions ¢y = sin[(N + %)9] are orthogonal in the
sense

f sin[(N + g)e] sin[(M + g)e] de = 0, N #M,

easily seen from 2 sinA sinB = cos (A-B) - cos (A+B), and that the @~
are uniformly bounded on the interval.

(5) Letting
fx +0) — f o

h(0) =
® sin(%@)

n-n"n=0=m7

and noting that lim sin(+0)/8 = 1 as 8 — 0, one sees from (4) that
Syx) — fx) >0 asN—>®
provided that any of the following hold:

f_ |h(8)] B < o, f

-1

fx + ) = £

do < =,
]

f Holder continuous or differentiable at x.

The Gibbs effect describes how the Fourier series of a function accom-
modates itself to the function’s discontinuities. It was first pointed out for
sawtooth waves by J. W. Gibbs.* Plotting the Nth partial sum of the Fourier
series for such functions yields a picture like Figure 1.9e. The graph of 4
approaches (uniformly in the plane) the slanted sawtooth slopes plus the vertical
lines shown. The amount of vertical ‘‘overshoot’’ can be determined (say, for
a piecewise differentiable function of period 2m); it is, both at the top and the
bottom, the magnitude of the jump of f at the point xo times the numerical
factor

1f sins o= 9281 _ ) ogos,
™wJn s ™

* J. W. Gibbs, in a letter to Nature 59 (1899). For this and other contributions Gibbs has been
honored by a prize in his name given each year by the American Mathematical Society for notable work
in applied mathematics.
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—

FiG. 1.9

Problem. (c) Investigate the Gibb’s effect for the square wave

_ -1 2n — Dw < x = 2nmw,
f(x)_{+l, e <x=(2n + )m.

Plot a few partial sums of the Fourier series for f. Then prove that the overshoot
is of the magnitude given above.

(3) Lebesgue Dominated Convergence Theorem. In Section 1.6.2 we introduced
the LP(Q) spaces. In 1.6.3 we discussed convergence in L?(a, b) essential to an
understanding of Fourier series. In Section 2.4 we will treat ‘‘weighted’” L? spaces
L%, b, r).

On the other hand and as has been mentioned elsewhere, the majority of specific
functions encountered will be integrable in the usual (Riemann) sense and there
will be no need of the more extended (Lebesgue) sense of integral. The student
may thus work in most cases with the L2 convergence without worry of pathology
(i.e., one may call it R% convergence, when it converges).

Yet there is one aspect of the Lebesgue theory extremely useful in many cases
and even meaningful in the Riemann context. That is, the Lebesgue dominated
convergence theorem, perhaps the most important convergence theorem in the
Lebesgue theory. In particular, it is useful ‘‘differentiating under the integral.”” We
will employ it in this way in a rigorous treatment of the attainment of initial values
by solutions of the heat equation (Problem 1.9.7(3)).

The Lebesgue dominated convergence theorem states that a sequence of in-
tegrable (i.e., L!(f})) functions u,(x) that are uniformly (i.e., |u,(x)] = M(x))
bounded by some integrable (i.e., L'({})) function M(x) and which converge point-
wise to a function u(x) (i.e., u,(x) = u(x) for all, or for ‘‘almost all,”” x in (2, as
n — x) possess the property that then u, converge to u(x) in the mean (i.e., in
LY(Q)). Specifically, this guarantees that the limit function u(x) is also integrable
and that fq|u,(x) — u(x)| dx > 0 as n— .

For differentiating under the integral, one can then for example obtain
(d/dy)[® f(x, y) dx by the Lebesgue dominated convergence theorem by letting u,(y)
= f(x, y + A,y) — f(x, y), where A,y denotes a small increment in y decreasing
to zero as n increases, and considering the expression
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d f” . f” Ua()
— , =1 ——== dx.
p Sy dx Bim | A

Problem. (a) Accepting the Lebesgue dominated convergence theorem for
L'[a, b] functions, justify the above differentiation under the integral. (b) Scan
any good book on Lebesgue integration theory and write down two or three
other important convergence theorems found there. (c) In the dominated con-
vergence theorem we encountered the concept that u, — u for ““almost all’’ x
in ). Equivalently one says u, — u ‘‘almost everywhere.”” While doing part (b),
gain some understanding of ‘‘almost everywhere’’ convergence in terms of a
few simple examples of what it means.

Problem 1.9.7

The concept of self-adjointness is important for partial differential equations and
even more so in applications, where it, for example, confirms that all boundary
conditions and eigenvalues have been accounted for in a given problem. For dif-
ferential operators, the establishing of self-adjointness is rather delicate and is
connected to the notion of distributional derivative. Let us illustrate these two
concepts and their connection, in (1) and (2) below.

(1) Self-Adjoint Operators. First recall the definition of the adjoint operator A*
for an n X n matrix operator A = [a¥] on real Euclidean n-space, given by

(Ay, x) = 21 21 aly;x; = 21 21 axyy; = (y. A* x).
mris ji=1i=

Here A* is just the (conjugate transpose in the complex case) transpose [a/]. For
a differential operator let us consider specifically L = d2/dx? in the L2[0, ] space
of real valued (the complex valued case is similar) square integrable functions u(x)
defined on the interval 0 = x = w. We reach a similar relation to that just given
for the matrix A if we consider functions u and v that are C%(0, w) N C![0, 7] and
vanish at the end points, that is, 0 = u(0) = u(w) = v(0) = v(w). Then (by
integration by parts)

{Lv, u) = J: " (X)u(x) dx = J: W) dx = (v, Lu).

In such a case L is called symmetric. Thus the operator L, defined by the operation
Lu = u" and operating on a domain D(L) consisting of all functions u € C%(0, )
N C'[0, ] satisfying the boundary condition u(0) = u(w) = 0, is symmetric.
The general definitions of symmetric and self-adjoint operators are as follows. T

+ We have tacitly assumed that D(L) is dense in L?[0, 7], a technicality always met in these
examples. See Problem 2.9.3, where it is shown that Cg functions « are dense in L0, ).
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Definition (adjoint operator L*). Given L, D(L*) = {all u such that there exists
a w (depending on ) such that

(Lv, uy = (v, w)

for all v in the domain D(L) of L}; and then (define) L*u = w. Thus
{Lv, u) = (v, L*uw)

for all v in D(L) and all u in D(L*).

Definition (symmetric operator). L is called symmetric if L C L*, that is, if D(L)
is contained in D(L*) and if Lv = L*v for all v in D(L).
In other words, a symmetric operator L is symmetric in the sense that

(Lv, u) = (v, Lu)
for all v and u in D(L).

Definition (self-adjoint operator). L is called self-adjoint if L = L*, that is, L is
symmetric and D(L) = D(L*).

In the matrix case above, since D(A) = D(A*) = all n-vectors, the notions
of symmetric and self-adjoint coincide, and A will be symmetric if and only if the
matrix [a?] is symmetric, that is, [a¥] = [a/]. The differential operator L defined
above with domain D(L) = {u € C%(0, w) N C'[0, w], u(0) = u(w) = O} is, by
the integration by parts argument done above, symmetric. As it turns out, one can
take second derivatives in the Lebesgue sense (equivalently: distributional sense)
of functions u that are not necessarily C? (example: a function that is C* but only
piecewise C2), and for this reason D(L) as given is not sufficiently large in order
for L to be self-adjoint. One can define distributional derivatives of all orders, but
in the following subsection we restrict attention to the second-order case.

Problem. (a) Show that the operator Lu = u" with domain D(L) = {u €
C2(0, w) N CY0, =], u(0) = u(w) = u'(0) = u'(mw) = O} is symmetric but
not self-adjoint, due to too many boundary conditions. (b) Show that the op-
erator Lu = u” with domain D(L) = {u € C?0, w) N C![0, =]} is not
symmetric, due to too few boundary conditions. (c) Verify some of the state-
ments in (1) above.

(2) Distributional Derivatives. If for all ‘‘test functions’’ ¢ in Cg(0, ), that is,
infinitely differentiable functions whose support is strictly contained within the
interval (0, ), one has the ‘‘integration by parts’’ relation

(Lo, u) = f

0

w

¢ oute) ds = || oCoweo dr = (o, w
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for a given function u(x), then u is said to have distributional second derivative,
defined by u” = w.

Note the resemblance to the definition of the adjoint operator L* given above.
If we had restricted D(L) originally to D(L) = Cg(0, ), then the functions u
possessing distributional second derivatives would have comprised exactly the larger
domain D(L*).

By taking into account the Lebesgue theory, one can show that the right domain
D(L) to make the operator L above self-adjoint is D(L) = {all square integrable u
possessing distributional first- and second-order derivatives that are also square
integrable, and also satisfying (in an appropriate weak sense) the boundary condition
u(0) = u(m) = 0}.

The terms distributional derivative, weak derivative, generalized derivative,
and strong derivative will be found in the literature. It can be shown that in most
cases (provided that they are appropriately integrable) they are the same, at least
locally, and correspond to *‘differentiation almost everywhere,”” in the Lebesgue
sense. Of course for all test functions and most other smooth functions encountered
in practice, they are simply the usual derivative in the Riemann sense. The same
statement applies to distributional partial derivatives.

Problem. (a) Assuming that integration by parts calculus works for distribu-
tional derivatives just as it does for usual derivatives (it does), show the above
operator L to be self-adjoint. (b) A function « is said to be harmonic in the
weak or distribution sense if [ u Ap dx = 0 for all test functions ¢ € C5 ().
Show in the one-dimensional case that if u is weakly harmonic on the interval
(0, ) and is also a C%(0, w) function, then u is harmonic in the usual sense
on (0, m).

(3) Heat Equation Rigorously. We wish to close this problem by a further ex-
amination of the heat equation initial value problem. In so doing we have the
following three aims in mind.

(i) The use of the Lebesgue theory (and, in particular, the Lebesgue dominated
convergence theorem and the Lebesgue set of a function, in a further
mathematical study of partial differential equations) will be illustrated.

(i) The physical understanding of the heat equation will be enhanced; in
particular, its extremely smoothing behavior.

(iii) The power of the Green’s function, once known, in providing a number
of existence, uniqueness, stability, construction, regularity, and approx-
imation conclusions, should become quite clear.

The linear heat equation

u, — u, =0, —o < x < o t>0,
ux, 0) = f(x), - < x < x,
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was considered briefly in Problem 2 of Section 1.3. As shown there the Green's
function

e—(x—y)2/4t —eJx<®
Gix,y,1) = ——— 1§ —0o<y< ®
E 0= {>0

satisfies the heat equation for r > 0. Hence verifying the existence of the solution

wx o= | Geyormd. >0,

reduced to giving conditions under which one can differentiate under the integral.

For the uniqueness question one needs to look rather carefully at regularity
conditions to be placed on the class {u} of solution candidates. All of this could be
done for example by reference to standard advanced calculus by restricting attention
to functions {u} and data { f} that are continuous with enough continuous derivatives
dying off rapidly enough at infinity in both x and . See also Section 2.2 and
Problem 1 therein.

We will now outline how one can obtain further results by use of elements of
Lebesgue integration theory. It will be left as a problem at the end of this section
that the student should verify some of the calculations. For a discussion of the 17
spaces and theory see Section 1.6.3 and Problem 1.9.6(3).

Theorem

Let f € If(—, ) for some 1 = p = «. Then the Green’s function repre-
sentation formula

u(x, t) = f—w G(-x! Yy, t)f(y) dy

provides an infinitely differentiable solution u(x, r) of the heat equation for
—o < x < o, t> 0. Moreover, u(x, 1) converges pointwise to f(x) as t —
0 for “‘almost all’’ x. If f is continuous with compact support, the pointwise
convergence as ¢+ — 0 is uniform in x and the solution u(x, ¢) is continuous
for —o0 < x <, t Z 0. Stability with respect to initial data holds in the sense

max |uy(x, 1) — wuy(x, 1)| < const||f; — Lillp-
— oo x<{o©
O<to=s

The solution u(x, 1) tends asymptotically to zero as t — o at the rate (V2)!?,
uniformly in —o < x < o,

The moral of the above results is that for all data, no matter how bad (with
the exception of data possessing very singular heat sources), the heat equation

immediately smooths them out and begins spreading the energy as widely as pos-
sible.
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Proof (outline)
Recall (see Section 1.6) that

o lp
Ihell, = ( f vk dy)

for any function w € [P(—®, ®), 1 S p < ®, |wll. = ess. sup|w(y)|, and
— o<y o
p~' + q~' = 1 defines the conjugate ¢ to any given p. Theyp = ® case,
and sometimes the p = 1 case, are often treated separately after the other p.
(1) For p = o one has ||G(x, ¥, ). = 1 and for 1 = p < % one has

c(p) 1

GG 3. O = Graya: <P = Gamma i

This follows easily by the change of integration variable s = V(p/4n)(y -
x), recalling that 2, e~ ds = w!2.

(2)For all n = 1, 2, 3, ... onc sees that @aMG(x, y, 1) is
e~ Y4 times a polynomial in (x — y)* with coefficients that are functions
of ¢ and bounded above and below for ¢ in any bounded positive interval 0 <
a=t=B < Since e”* 7P . (x — y)% can be seen to be in [P(—,
) for all x, p, and k, so is (3"/9"G(x, y, #). This calculation reduces to
showing [ e~ 5% ds < . Likewise for (3"/8x")G(x, y, #) for x in a bounded
interval ~®<a=x = b < .

(3) One can now differentiate under the integral, that is, for alln = 1, 2,
3, ...,

"u(x, 1) _ f )
6!" - — at'l G('x' y' t)f()’) dyr

"ulx, 1) _ f‘ "
= Jow e O Y OF0) dy.

This may be verified by induction and by consulting the Lebesgue differentiation
theorems. It works as follows. Bound the difference quotient, using (2) above,

AG(X, yr t) G(-xr yr t) - G(X, yr to)
At t— 1

= g,(%)

where g,,(x) is in LI (—% < x < ). Thus by Hélder’s inequality (see Section
1.6.2) AGf/At is in L' since AG/At is in L7 and f is in 7. Apply the Lebesgue
dominated convergence theorem (see Problem 1.9.6(3)) as follows:

Au ) = fm AG(x, y, 1)

&b At

Ar f(s) ds,

converges (o
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%(X,to) = f_ Mf()ds

(4) It follows that u(x, ) satisfies the heat equation and moreover is C*(— o
< x < ®, t > 0). The latter may be argued with €’s and &’s similarly to the
considerations of (2) and (3) or alternately by recourse to the Lebesgue theory.

(5) By Holder’s inequality one has the stability statement

Iul(-x’ t) - u2(-x’ t)I = ”fl - f2"p”G(-x’ ) t)"q'

(What about other stability statements, such as with |lu; — ull, o ,?) Taking
u; = f = 0 and by use of (1), one obtains the asymptotic convergence of u(x,
t) to zero as t — ®,

(6) A very interesting set for any given locally integrable function f(x),
and thus for any f in any IP, is the Lebesgue set {x}; of —% < x < o such
that

1 x+h
lim —f If&x) — f(s)| ds =
r—0 || Jx

The Lebesgue set {x}, contains almost all —® < x < «, excluding only a set
of measure zero. One can show the solution u(x, ) converges to f(x) as t —
0 for all x in the Lebesgue set {x},. In particular, this set contains all points x
of continuity of f(x). If desired, the convergence of u(x, ¢) to f(x) as t — 0
for x in the latter smaller set of continuity points of f may be shown more
directly.

Problem. (a) Verify some of the straightforward calculations in the above.
(b) Those who are already familiar with elements of the Lebesgue integration
theory should verify all details. (c) Interpret the Green’s function for the Heat
equation as the density function for the normal probability distribution of el-
ementary statistics.

Problem 1.9.8 Nonlinear Oscillations and the Van der Pol Equation

Let us first make three points concerning perspectives.

(1) In Section 1.8 we gave a brief introduction to bifurcation theory. The point
of view taken there, a currently prevalent one, was that of nonlinear boundary value
problems. Historically, however, the viewpoints taken were more varied. In par-
ticular, especially for the case of ordinary differential equations, the origins go back
to Poincaré and his work in celestial mechanics.* For ordinary differential equations
one may write a second-order equation as a system of first-order equations and then

* H. Poincaré, Les méthodi lles de la mécanique céleste (Gauthier—Villars, Paris, 1892).

4
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use the extremely well-developed methods (see below) of phase plane analysis of
trajectories of that system.

(2) In most of the examples in bifurcation theory considered thus far, for reasons
of simplicity, we have considered only the ordinary differential equation versions.
The original partial differential equations for the various applications carry greater
physical accuracy and increased mathematical richness and are of great interest,
but their systematic treatment is beyond the level of this book and in many cases
has not yet been carried out.

(3) The study of nonlinear oscillations is a large one that goes far beyond
bifurcation theory. Roughly speaking a bifurcation theory approach to a problem
in nonlinear oscillations is justified when addressing questions in which it seems
that according to physical or numerical evidence a radical change in the qualitative
behavior of solutions takes place at certain critical values of a parameter.

In this final section our principal objective is to mention and draw attention to
the fact that the phase plane methods for studying nonlinear equations should not
be overlooked when the equations involved are, or have under additional assump-
tions been simplified to, autonomous ordinary differential equations.

To illustrate this method let us consider the Van der Pol equation*

W) + ANt — Du'(t) + u@® =0, A>0,

which has application to self-excited oscillations in electron tube circuits as well
as elsewhere. T The nonlinear term here is A(1 — u2(t))u' (). We note that it includes
the parameter X as well as the nonlinearity, and represents a damping term that
will either supply or withdraw energy from the system, depending on the sign of
the term. So-called stationary states (also called limit cycles, see below) are expected
to prevail when the averaged increases and decreases in energy during one cycle
add to zero.

In the phase plane approach to second-order ordinary differential equations,
one lets

x(1) = u(?),
x2(t) u’(t),
and plots x, against x;. The motivation for this approach is the basic sinusoidal
oscillation u(7) = sin ¢, which clearly has for its phase portrait a circle (Fig. 1.9f).
Other oscillations for nonlinear equations depart from this phase portrait in various
ways.
The unperturbed Van der Pol equation is just
W) + u@) =0

* B. Van der Pol, “‘On relaxation oscillations,”” Phil. Mag. 2 (1926).

+ Although vacuum tubes are being replaced in numerous applications by solid-state devices, the
Van der Pol equation remains a classic prototype of the types of equations successfully investigated by
phase plane analysis. For some nonlinear equations currently encountered in electronics theory, se€
Problem 2.9.8.




SUPPLEMENTARY DISCUSSIONS AND PROBLEMS 133

xz(t)

t=0, 2x, -

x1(’)

Fe. 1.9f

which has solutions

u(t)

c;sint + ¢cycost

asin(t + o).

where ¢;, ¢,, a, and o represent the usual arbitrary constants. The unperturbed
problem thus has a phase portrait like that drawn in Figure 1.9f but with radius a.
The bifurcation viewpoint would then indicate that, for small A at least, the above
unperturbed phase portrait could be an approximate ‘‘limit-cycle’’ for the nonlinear
equation. By this reasoning one would expect that solutions of the nonlinear equation
would spiral or be otherwise attracted to or from some slight distortion (depending
on \) of the above circular trajectory. The latter distorted closed loop or *‘limit-
cycle’” would represent a ‘‘periodic orbit’* of the nonlinear equation. This indeed
can be shown* (Fig. 1.9g), even though the exact solutions of the Van der Pol
equation cannot be found.

Further consideration of these matters would take us too far afield. For some
beautiful and complicated phase portraits of the forced Van der Pol equation

4@ + N — D)) + wdu(t) = oA cos wt

xz(t)

NN}

0\\ ) / > x4 ()

FiG. 1.9g

* See, for example, S. Lefschetz, Differential Equations: Geometric Theory, 2nd ed. (Wiley, New
York, 1963).
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we refer the reader to the paper of Sideriades. T For a little exercise we suggest the
following.

Problem. (a) Substitute u(t) = a(t) sin[t + b(7)] as an initial approximate
solution into the Van der Pol equation and see how much you can conclude.
(b) Show by a little trigonometry that there are no circular solutions when
X # 0. (c) Establish interesting energy facts for the periodic solution, such as
J u? = D(u) = ID(u?), integrals taken over the period.

Problem 1.9.9 Confirmation Exercises

The reader should work the following three exercises before going on to the next
chapter. See also the ninth exercise for further practice.

1. (a) On what property of limits does the linearity of d/dx and d/dx depend?
(b) Determine which of the following operators are nonlinear:

du %u u u
= == huliied — gy — 2z
Lu = 5 + xzaxz, Lu = uaxz, Lu = ¢ ’axz’
. b
Lu = Au + Lsinxcosy u(x, y) dy, Lu = f u(y) dy,
a

Lu = Au - uf u? , L(x‘) = [%n %o (x,)'
Q ) dy X2 a1 axn |\X2
(c)Classify ( as far as possible)the operators in part (b) as elliptic, parabolic,
or hyperbolic.

2. (a) Show that

ux, ) = ——== | e GTNM
(x, 1) m . f(y) dy
satisfies the heat equation
u, — u, =0 fort+#0, -0 < x < oo,

assuming that one may differentiate under the integral. Then show that
the following initial value problem (backward heat equation) is not
well-posed due to lack of stability with respect to initial data:

u, — u, =0, —o < x < oo, 1t <0,
u(x, 0) = fx), —o < x < oo,

(b) Show that the following initial value problem (Cauchy problem of Had-
amard for the Laplace equation) is not well-posed due to lack of initial
data stability:

t L. Sideriades, in I’Onde Electrique 463 (Editions CHIRON, Paris, 1965).
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Uy + u, = 0, O0<x<m, t>0,
u@©, 9 = u(m, 9 = 0, t>0,
u(x, 0 =0, 0<x<m,
ux,0) = fx), O<x<m.

(c) Why is the problem
—u" — 25u = sin 5x, O0<x<m,
u(0) = u(m) = 0,

not well-posed?

3. (a) Solve formally by separation of variables the heat conduction problem
(Fig. 1.9h):

u, — 3u, =0,
u(0, ) =
u(x, 0)

O0<x<m,

u(m, 1) =0, t>0,
-xa

t>0,

0<x<m.

(b) Solve formally by separation of variables the Dirichlet problem (Fig.
1.9i):

u,, + r_]u, + r_zueo = 0,

r<l,
_ )1, 0<6<m,
ul, 8) = {0, -—m<0<0.
u(x,t)
0 T >
Fig. 1.94

w(r,8)

P, 194
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(c) Solve formally by separation of variables the wave equation problem
(Fig. 1.9j):

Uy — Uy = 0, 0<x<m, t>0,
u@, 0 = u(m, t) = 0, t>0,
u(x,0=0 0<x<m,

X/, 0<x<n/2,
1 — x/=m, n2 <x<m

u(x, 0) = {

(d) Solve formally by separation of variables the Dirichlet problem of Sec-
tion 1.2, Problem 1(b).

(e) From the general theory of the Dirichlet problem, what do you know
about the solution found in part (d) above?

The following problems contain supplementing information and are varied in
content and difficulty.

4. (a) Liouville’s theorem states that a harmonic function on the whole plane
must be a constant. That is, u € CX{}), Au = 0, {} the plane, implies
that u(x, y) = c¢. Show this.

(b) Bemnstein’s theorem states similarly that a C? solution u of the minimal
surface equation (1 + ())u,, — 2uuyuy, + (1 + (u)Hu,, = 0on
the plane must be linear, that is, ¥ = ax + by + c. Show this.

(c) Jorgen’s theorem states in like fashion that a C? solution of the slicing
equation (gravitational theory) w1, — u,%y = 1 is quadratic, that is,
u=ax*+ cy* + bxy + dx + ey + f. Show this.

(d) Show Jorgen’s theorem implies Bernstein’s theorem and that Bernstein’s
theorem implies Liouville’s theorem.

5. As stated in the introduction to this chapter, the minimal surface equation
1+ (uy)z)uxx = 2uuyu,, + (1 + (u,)z)uyy =0 @)

may be transformed into the linear equation

u(x,t)

0 /2 L
FIG. 1.9j
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(1 + EDYwge + 28w, + (1 + MH)w,, =0 (i)
and the latter may be transformed into the linear Laplace equation
VU, + Vs + 0V, =0 (iii)

by suitable change of variable. This is done by means of the theory of the
Legendre transformation, in which the solution surface u of a partial dif-
ferential equation is regarded as the envelope of its tangent planes. Recalling
that a surface u(x, y) has a tangent plane uy — u = (xp — x)u(xp, yo) +
(yo — ¥)u,(xo, yo) at a point ug(xo, yo), we see that the coordinates in the
tangent plane are u, (for xp), u, (for yo), and xu, + yu, — u (for up).
Labeling these as new variables, namely, £ = u,, n = u,, and 0 = xu,
+ yu, — u, they describe the surface by means of  as a function of § and
n. That is, if we know the surface u(x, y), then we know & and m and hence
w as a function of x and y. Moreover, we may regain x and y from x =
and y = a,. The so-called Legendre transformation here is thus

u(x, y) + o(§, m) = xg + ym,
E=u, M=u;, x=oa, y=a,

The general Legendre transformation is accordingly given by
W o x) + ol &) = 2 i

g,-=ux,_, X = Wy, i=1,...,n.

(a) Verify the above conversions (i) to (ii) to (iii) by means of Legendre
transformation theory.

(b) Read further about the related general Hamilton—Jacobi theory and about
the hodograph method for problems in fluid flow.

(c) Think further about the Dirichlet problem and the minimal surface
problem for parametric and nonparametric surfaces.*

6. (a) As an exercise, write down a rigorous proof of the fact that a harmonic
function u on a region (1 in the plane can have no local flats, that is,
u cannot be constant in any subregion.
(b) Do this using not that Au = 0 and u € C%(}), but rather only that u
satisfies the mean value property that u(P) = 27r)™' §jp_g -, u(Q) dS
for all points P and Q on the region, given in Section 1.6.1.

* And for additional accounts, see the articles by J. Serrin, “The solvability of boundary value
Pl'(fblems” (Hilbert’s problem 19) and E. Bombieri, “Variational problems and elliptic equations”
(Hilbert’s problem 20) in Mathematical Developments Arising from Hilbert'’s Problems (American
Mathematical Society, F. Browder (ed.), Providence, Rhode Island, 1976).
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7. (a) Show that the only solution to the following stationary problem for the
nonlinear heat equation

(—kwu;); =0 in ),
u = 0 on £},

where k(-) is positive and smooth enough, isu = 0.
() Does this yield a uniqueness result for the problem

(—k(u)u',-)',- = F in Q,
u = fondd?

(c) Try your hand at uniqueness for the following four problems.

Au - = 0in (),
foe [ o

u = fon .
Au — uf u¥y) dy = 0in %,
(i) e
u = fon .
(i) Au — ¥ =0in Q,
! u = fon .

(i) Au — u? = 0in (),
u = fon .

8. (a) Investigate further the following version of the problem Au = Ae“ in
|x] <1,u = 0at |x] = 1, discussed in Section 1.8; namely, the prob-
lem

—(@ 'y = At le, o<r<l,
u(l) = «'(0) = 0,

forn=1,2,3,....
(b) How does this result from the original partial differential equation prob-
lem on a unit sphere? What additional assumptions have been made?
(c) Study it by means of the phase portrait methods of Section 1.9.8.
9. The following exercises are for additional practice as one proceeds through

the first chapter.
(1) Classify

* Nonlinear problems of this type (although somewhat more complicated) occur in the numerical
approximation theory of quantum mechanics. See for example E. Lieb and B. Simon, *‘The Hartree—
Fock Theory for Coulomb Systems,”” Comm. Math. Phys. 53, (1977), and K. Gustafson, *‘Recent
progress on the nonlinear Hartree—Fock, concentration-diffusion, and Navier—Stokes equations,”” Pro-
ceedings of the Bielefeld Conference on Bifurcation Theory: Applications of Nonlinear Analysis in the
Physical Sciences (Pitman, London, 1981).




SUPPLEMENTARY DISCUSSIONS AND PROBLEMS 139

@) uy + Su,, — 4u,
() u + 4uy,, — 4u,
©) uy + uy + ug
) u, — 4u,, + u,,
©) uy + 2u, — 2u,
®) uy — uy — uy, + 2u,
(g) uy, + tu,
) u, + @) u, + ud.
(2) Find transformations C converting some of them, e.g., parts (¢), (f),
to canonical form.
(3) Calculate the Fourier trigonometric series representations of the follow-

ing.

(@) fx) = x on (0, ).

®b)fx) = - — xon (—m,0), f(0)=0, f(xX) = w — x on
©, =«}.

©) fx) = x¥(mw — x) on (0, 7).
d) fx) = —xon(—m, 0), fx) = xon (0, w).
(4) For Sy the first N terms of the Fourier series for f(x) = x on (0, m),
find the smallest N such that |f(w/2) — Sy(w/2)| < € for (a) ¢ = 0.5,
(b) e = 0.15.
(5) Letf(x) = —w/don [—m, 0], f(x) = 7/4 on (0, 7).
(a) Compute its Fourier series.
(b) Investigate its convergence.
(c) Consider x = w/2toshow 1 — 1/3 + 1/5 — /T + --- = =w/4.

1
(d) Find a way to show D = = .
n=1

(6) Prove the Linearity Lemma: for a linear operator L, the following two
statements are equivalent: (i) Lu = 0> u = 0. (ii) The equation Lu = f
has at most one solution.

(7) Show uniqueness of the solution for the following problems

Au = 3xy® inx? + y2<1,
@ {g—:+7u=x8 onx? + y*=1.
Au = F(x,y) inQQ,
® {z_: = g(x,y)  onpartof ), u = f(x, y) on the rest.

= Fin (),

I kB

A
© { = g on d{) and (i) 4(P) = 3 at a point P on 4{},
n ..
or (i) §,ou = 9.

O
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(e*u,), + (e’u,), = 8x%y sin xy in 0 CR?,
(d y)y
u = x* on 3.

(8) By mean value reasoning determine the value of #(0, 0) in each of the
following problems

Au=0 inr<l1,
(@) qu(1,0) =1 for0<6<m,
=0 form < 6 <2m.
®) Au=0 inx2 +y? +z22<1,
u=1 onx2 +y* + 22 =1
© Au=0 inx?+y*<l,
u(x,y) = y? onx? +y?=1

Au=0 in ) the square —1 <x <1, -1 <y<l,
@ qu=1 onx=1, -1=y=1,
=0 on the other three sides.

(9) Consider existence and uniqueness of solutions of the problem

Au = x*y + cin{}

d

0—‘; = g(x, y) on df},

where (1 is the rectangle 0 < x < 4,0 <y <2, and where g has values
g(x, ) = 0 on the bottom and left side, g(x, y) = x — 2 on the top, and
g(x, y) = y — 1 on the right side. Determine the appropriate value of the con-
stant ¢, and construct the solution by separation of variables.



CHAPTER 2

FOURIER SERIES AND
HILBERT SPACE

. . . one and the same . . .

Roughly speaking. given a partial differential equation and auxiliary conditions one
may always try ‘‘separation of variables to ODEs’’ provided that:

(1) The domain 2 in question can be described in some coordinate system
so that o) consists of straight line segments in that coordinate system.

(i1) The operators L of the PDE actually ‘‘separate’’ into functions of the
separate variables.

(iii) The domain () is bounded.
(iv) The resulting ODEs are solvable.

Thus approaching a partial differential equation from the separation of variables
point of view one usually (i) writes the problem in the most natural coordinate
system for the geometry of the domain ) on which the problem is posed, then
(ii) plugs in a function u(x,, . . . , x,,) = X,(x)) -+ X (Xx) as a trial solution, but
(iii) ends up trying a Fourier Series u(x, . . . , X,) = 2, Cattn(Xys . . . , X,) Of
such functions, wherein (iv) the X,(x;) have been found from the resulting ODEs
Plus the auxiliary conditions. Let us discuss the four procedural points (i)-(iv) a
bit more.

Usually the domain must be rectangular, spherical, cylindrical, or a combination
thereof. In most problems L has simple coefficients and if of second order the
resulting ODEs are solvable.* Although in some cases one can solve an infinite

* The theory of such solvable second-order ODEs is usually called **special functions'” and is a
branch of mathematics in itself, including as eigenfunctions and related functions the well-known function
classes of Bessel functions, Hankel functions, Legendre functions, Airy functions, Hypergeometric
f‘mCtiOns, Elliptic functions, Theta functions, Gamma functions, Zeta functions, Lamé functions, Ma-
thiey functions, Abel functions, Jacobi functions, Tchebycheff polynomials, Neumann functions, Ge-
8enbauer functions, Hermite polynomials, Laguerre polynomials, among others. A classic treatment is

ittaker and Watson, Modern Analysis (Cambridge Univ. Press, Cambridge, 1902). See aiso Section
2.4 herein for the associated Sturm—Liouville theory.

141
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domain problem by separation of variables,T in general in that case there are either
not enough (or too many, depending on which viewpoint one takes) eigenfunctions
X,(x,) to adequately represent solutions to the problem. Physically this often means
that, in addition to a discrete set of eigenvalues A,, one has also present effects
caused by a continuous spectrum. For these infinite domain problems one resorts
to other methods, among them the Fourier transform and spectral methods, topics
we will take up briefly later.%

One might ask, why solve all of these special classes of ODEs resulting from
separation of variables, why not just expand everything in terms of the trigonometric
functions and hope for the best? One can indeed adopt the latter viewpoint in many
cases, accepting the resulting ‘‘approximate’ solutions given by the partial sums
of the Fourier trigonometric expansion. But those solutions are not as good as those
resulting from the natural expansion functions, the error may be harder to determine,
and the ‘‘physically correct’ fit has been lost.

To further emphasize this point consider for example a linear problem

Lu = F

and suppose one tried a set of functions {Us,} other than the eigenfunctions {¢,} of
L. Writing blindly

u= 3 b F= 2 di

n=1

one would have upon formal substitution into the equation the relation

3, ealby = 2, dat
In the case that the {{s,} are exactly the eigenfunctions {@,} of L one has L¢, =
A.¢,, and one may then equate coefficients to obtain

cn = du/\,

and thus the formal solution. In the case that the {{s,} are some set of functions
other than the naturally occurring eigenfunctions {¢,}, this equating of coefficients
cannot be done. A good example of the validity of this preference for an expansion
in terms of the true eigenfunctions of an operator is that of the main theorem (Jordan
form) of linear algebra, in which one much prefers a basis {@,}¥_ in which a given

1 Especially if the data is periodic, in which case the problem may be essentially solved on only
semi-infinite or finite domains. For a theoretical study of PDEs on infinite domains from this point of
view in some sense see L. Bers, F. John, and M. Schechter, Partial Differential Eqns. (Wiley, New
York, 1964). For a discussion of how most unbounded domains generate enough continuous spectra s©
that the eigenfunction expansion method is no longer by itself adequate, see 1. Glazman, Direct Methods
of Qualitative Spectral Analysis of Singular Differential Operators (Israel Sci. Transl. Ltd., Jerusalem,
1965).

1 See Sections 2.7 and 2.8.
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N by N linear transformation may be represented in diagonal, or almost diagonal,
form.

This chapter has been entitled Fourier series and Hilbert space. A principal
message in this chapter is that, in the abstract, Fourier series and Hilbert space are
one and the same. From the more practical point of view and for solving partial
differential equations, we may therefore say that each of the subjects

Separation of Variables
Fourier (Eigenfunction) Series
Hilbert Space Representations

although differing conceptually in some ways, are nonetheless concerned with the
same procedures on the same underlying objects. All three of the above theories
may be included in the general

Method of Eigenfunction Expansion,
which may in turn be described as a part of the
Method of Best Least Squares Fit.

Understanding the meanings and content of the above subject names is im-
portant. However, to do so, we must cut short any further discussion of semantics,
and begin.

2.1 LOTS OF SEPARATION OF VARIABLES

Let us first recall the problems we have already solved (formally) by separation of
variables.

Vibrating String Problem (hyperbolic, rectangular (Fig. 2.1a)):

U, — Uy = 0, 0<x<m, t>0,
u@©, ) = u(w, 1) = 0, t=0,

ux, 0) = fx), O0<x<m,

u(x,0) =0, 0<x<m,

— X

0 7«
FiG. 2.1a
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Solution:

S

. 2 (7 .
u(x, t) = 2 ¢, sin nx cos nt, Cp = — fo f(s) sin ns ds.
n=1 ™

Dirichlet Problem (elliptic, rectangular (Fig. 2.1b)):
Uy, + u, =0, 0<x<m, O<y<m,
u(x, 0) = fi(x), 0<x<m,
um, y) = fo(y), 0<y<m,
ulx, ™) = f(x), 0<x<m,
u@©,y) = fo(3», 0<y<m,

Solution:
u(xv y) = ul(‘x? y) + u2(‘x? y) + u3(xv y) + u4(xv y)v
where
u(x,y) = 21 ¢, sin nx sinh n(w — y), Cc, = ﬁTnhr; f fi(s) sin ns ds,
- . . 2 " .
Uy(x, y) = 2 ¢, sin ny sinh nx, Cc, = o sinb i Jo f>(s) sin ns ds,

n=1
x

us(x, y) = 2 ¢, sin nx sinh ny, Cy

f f3(s) sin ns ds,

™ smh nm

f J4(s) sin ns ds.

Us(x, y) = 2 ¢, sin ny sinh n(w — x), Cp = ——F/———
n=1 ™ smh nw

Dirichlet Problem (elliptic, spherical (Fig. 2.1¢)):

U, +r lu, + r g =0, r<l,
u(l, 6) = f(0),

Solution

u(r, 8) = jao + 21 r*(a, cos n® + b, sin no),

y
] y
,
ary
1x
| e

FiG. 2.1 FiG. 2.1¢
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where

i Y
a, = - _ﬁf(s) cos ns ds, b, = - _ﬁf(s) sin ns ds.

Eigenvalue Problem (elliptic, rectangular (Fig. 2.1d)):
{ —Au = Auin (],

u = 0 on 91,
where
Au = u,, + u,,
Solution
eigenvalues \,, = n? + m?, n=12173 ...,
m=1,2,3,...,
eigenfunctions ¢, = sin nx sin my, n=12173 ...,
m=1,2,3,

In the above cases we have thus seen that the separation of variables method works
for initial value problems, boundary value problems, eigenvalue problems, and
combinations thereof, on rectangular and spherical geometries, for the hyperbolic
and elliptic types of operators. The parabolic case (see examples below) is similar
provided the domain ) is bounded in the x variable.

There are an unlimited number of similar problems that have been, or can be,
treated by this method. We list a few below, along with a few remarks about the
salient properties of each.

Let us first comment that one may change the () lengths rather easily and we
usually just take a convenient one. For example, the solution to the vibrating string
problem above in the case that {} of length  is changed to a length of ! becomes

® !
wix, ) = Zl ¢, sin n(wl™Vx cos n(wl™YHt, ¢, = %Io f(s) sin n(wl™Ys ds.

k,

FiG. 2.1d
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Likewise the Dirichlet problem on a sphere of radius R has solution

u(r, 8) = yao + 2, (rR™'Y'(a, cos nb + b, sin nb),
n=1

with the a, and b, Fourier coefficients remaining the same as before since the 0
length of the domain has not changed.

In like manner the occurring of different but constant coefficients in the op-
erators will also result in corresponding dilated variables in the Fourier series
solution. For example, if in the wave equation of the vibrating string problem above
one considers instead the equation

u, — ctu, =0, 0<x<m, t>0,

the ¢ makes its appearance only in the ¢ part of the solution

-]

u(x, 1) = 2 ¢, sin nx cos nct,

n=1

the ¢, and x parts of the solution remaining the same as before since the x-domain
length has not changed.

Just as the Dirichlet problem on the square above was by linearity written as
four simpler problems as concerns the data, the same linearity decompositions can
be applied to other problems. For example, the vibrating string problem with
nonhomogeneous data present everywhere possible, ‘

u, — u, = F(x, 0, 0<x<m, t>0,
u©, 9, u(w,t) = hy(r), hy(?), respectively, ¢t >0,
u(x, 0) = f(x), O<x<m,

ux, 0) = gx) 0<x<m,

may be written as five separate problems with nonzero data ocurring only once in
each one. Some of these separate problems are harder to solve than others, as
experience will show. Once in a while one is lucky and can shift data from one
less desirable place to another by a change of unknown suchas v = u + ¢, where
¢ is a known function, but for general data this is not often the case.*

Let us illustrate with a Dirichlet—Poisson problem how one formally solves a
nonhomogeneous PDE by separation of variables in terms of eigenfunctions for the
corresponding eigenvalue problem. Let () be as in Figure 2.1d.

* When this can be done for a general class of operators the resulting method of change of variable
is often called a Stoke’s or Duhamel rule or formula. Such methods are most useful when treating wave
equations.
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Poisson Problem (Elliptic, nonhomogeneous):

—Au = F(x, y) in Q, assuming* F(xy)=3 Y  d,n sin nx sin my,
u =0 onafl,

=l m=l

Solution:

x x
. dnm
u(x, y) = 2 2 Cpm SIN NX SIN My, Com = _n2 T
n=1m=1

The verification of the above solution formally is as follows. Remembering that
by separation of variables it was found in the above eigenvalue problem

~Au = Auin Q,
u = 0ond,

that the eigenvalues were N, = n? + m,n =1,2,3,. .. ,m=12,3,. ..,

with the corresponding eigenfunctions @,, = sin nx sin my, we have (formally)

(fornlmlly) x =
= 2 Cnm(—A)(pnm

n=1m=

—Au

® = (w%nt) x =
= ,,21 ,..2=1 ComMam@m = 2 21 Ay Prm = F

n=1m=

which is solved by taking Cpy = dym/Nnm. We have assumed that we can differentiate
term by term, that is, that we can interchange the two limiting operations

62 62 x x

ax? ayZ n=1m=1
and this requires justificationt as has been discussed previously.

* Since F(x, y) is a function of two rather than one variable, this is called a double Fourier series
for F. The solution is of the same type.

+ Unless of course the eigenfunction expansion for F(x, y) terminates after a finite number of
terms. Then linearity alone suffices. For example, if F(x, y) = sin 2x sin 307y + 5 sin 3x sin Ty, then
the solution is

| 5
ulx, y) = msin 2x sin 307y + gsin 3x sin 7y.
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The third type of equation, the parabolic case, is solved similarly under sep-
aration of variables. Note that the z-components of the solution now decay expo-
nentially, as the body cools in the heat conduction interpretation.* That is, we have

Heat Conduction Problem (domain as in Fig. 2.1a):

u, — u, =0, 0<x<m, t>0,
u(x, 0) = f(x), 0<x<m,

u,17 =0, t>0,

u(m, 1) =0, t>0,

Solution:

20 , 2 T
ulx, t) = 2 c,e” "t sin nx, Ccp, = —f f(s) sin ns ds.
n=1 ™Jo
The verification is straightforward. One tries as usual u(x, t) = X(x)TI(t), which
upon substitution into the differential equation yields

X _TO _ _
Xx) TG

with A some arbitrary constant. The eigenvalue problem

-X"(x) = AX(x), o<x<m,
X(0) = X(m) = 0,

yields as always the infinite number of solutions X,(x) = (const) sin nx and the
eigenvalues A, = n?,n =1, 2,3, .. ., whichyields the corresponding first-order
linear ordinary differential equations

T'() + n?T(t) = 0, t>0,

with solutions T, (¢) = (const) * e, Upon then trying u(x, 0) = o1 CaX ()T (D),
one sees as before that c, is determined by the matching of the Fourier series
expansions for u(x, 0) and f(x)1:

® szn
ulx, 0) = 2 c, 8in nx =

n=1

t £
S d, sin nx = f(x).
n=1

* Corresponding physically to a linearized model for a slab of homogeneous material in the
appropriate units. The initial temperature f(x) is given and assumed to be the same at all horizontal
levels of the slab, and the boundary (left and right sides) faces of the slab are kept cooled to zero. The
slab is sufficiently tall so that the top and bottom effects may be ignored.

t We have given these arguments before but want to emphasize the comparison with the matching
procedure for coefficients given in the Poisson (nonhomogeneous) equation above. Here, in the initial
value problem set-up, the matching of ¢, = d, is trivial because the relevant operator is just the identity
operator I operating on u at t = 0.
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Finally, as in the elliptic and hyperbolic problems discussed above, one easily
generalizes the problem and solution to other lengths and constants. For example,
consider the problem with thermal conductivity constant k and slab width /:

u, — ku, = 0, 0<x<| t>0,

u(x, 0) = f(x), 0<x<|,
u0,1 =0, t>0,

u(l, ) = 0, t>0,
Solution:
ux, ) = 2, cpe "k sin n(wl)x,
2 1
cp = 7]0 f(s) sin n(wl™Ys ds.

We now list with minimal explanation, since most of the explanation is the
same as the above except for the study of the special eigenfunctions themselves,*
an assortment of separation of variables solutions to PDE problems.

Vibrating Membrane Problem (hyperbolic, rectangular (Fig. 2.1¢)):

u, — Au = 0in (2, t>0,
u = 0 on £}, t>0,
u(x, y, 0) = f(x, y) in {1,

u(x, y,0) =0,
Solution:
U, y, 1) = O, D, Cum Sin nx sin my cos(m? + n2)'2s,
A=l m=1

4 & F . . &
Com™="3 fis,7) sin ns sin mrv ds dt.
x fofo

’ s
// // Ve
y 4 /b ’
A ’
7
//
" 4
Q .
7
7
4
I X
0 4
FiG. 2.1e

* Such a study is usually carried out in a course on special functions or on Sturm-Liouville theory.
We will here note only certain important properties of these special classes of eigenfunctions as we
need them. See however the footnote at the beginning of this chapter, and Section 2.4, where a part of
the general theory is presented.
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Vibrating Membrane Problem (hyperbolic, spherical (Fig. 2.10)):
u, — Au = 0in £, t>0,
u = 0 on 4}, t>0,
u(r, 9, 0) = f(r, 8) in 0,

ut(r’ 9’ 0) = 0,
Solution:
u(r, 0,0 = 1S ao ol A1 cos O] + 3 2 JnlND'r)
n=1 m=1n=1
X [a,, C0S MO + by, sin mo] cos[(A\)1?1],
where
1 1 (w
m = 7 L f (5, WIulNY25] cos ms dy sdis,
" m=0,1,2,3,...,
n=1,273,...,
and
1 1 (7@
bum = 7 L f £(5, W T [N)25) sin mis d sds,
m=0,1,2,3 ...,
n=123 ...,

where the normalizing factors d,,, are (evaluating the trigonometric part)
1
dp = ﬁjo J2[(AY2s)s ds.

Here J,, is the so-called Bessel function of the first kind of order m and the A7 are
the squares of the zeros of J,,. Thus J,,[(A7)"2r] = O onthe boundary whenr = 1.
To obtain this solution, one tries u(r, 8, ) = R(NOOT(), and recalling that in
polar coordinates Au = U, + r~'u, + r~%ug, one arrives at

r

R"
= — 4l + = -
1 R
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and
" ! "

R
r2;+r7e—+)\r2=——=v.

Solving first the eigenvalue problem, as we did before for the Dirichlet problem,

-0 =0, -n< 0 <m,
O(m) = O(-m),
0'(m) = 0'(—m),
one obtains the eigenvalues v = m%, m = 1,2,3, .. ., and the corresponding

pairs of eigenfunctions ®,, = cos mb and ®,, = sin m0. Next the Bessel equation
eigenvalue problem for A with v = m2 now known is considered for each fixed m,
~R" — r'R" + r2m?R = AR, 0<r<lI,
R(1) = 0,
R(0) and R’'(0) bounded,
yielding* as solutions Ry,(r) = J,,[(\™)2r] with an infinite number of positive
eigenvalues A7 (the squares of the zeros of J,), n = 1,2, 3, .... With the A}
now determined, one solves
T" + \*T = 0, t>0,
T'0) =0,

obtaining, due to the positivity of A7, T;* = (const) cos[(\™)124].

Dirichlet Problem (elliptic, cube (Fig. 2.1h)):

Au = 0in Q,
u = fon o),
where
Au = Uy + uy + Uy

* We recall that the Bessel equations are of nonconstant coefficient but are of the type usually
described as those with a regular singular point at r = 0. These equations are treated in ODE by seeking
a solution in the form of a power series 25~ ¢, r*. For example, one finds for m = 0 the solution Jo(r)
= 32_, cur?t, where the coefficient ¢5, = (— D}(2kk 2. Jo(r) looks like Figure 2.1g and is not unlike
a damped cosine function. Approximate values of the first three eigenvalues A are A = 5.7831860,
Ag = 30.471262, A} = 74.887007.

ST

24 55 865
FiG. 2.1g
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% f=0o0on the
other five sides

— >y

) (]
"
I-——— f given on the bottom

FiG. 2.1

and

o«

fix,y) = 2 2 d,, sin nx sin my.
n=1m=1

Solution:

u(x, y, z) = S Y, Com sin nx sin my sinh[(m? + n?)2(mw — 2)].
n=1m=1

Dirichlet Problem (elliptic, sphere (Fig. 2.10)):

Au = 0in Q,
u = fondQ,
where
Au = u, + 2r 'u, + r-%(sin 8) !(sin Bug)y + r2(sin 0) " 2ug,
and
£0, ¢) = 12 aoPa(cos 8) + 2 2 P™(cos 6)
n=0 n=0 m=1
X [@py €OS M@ + by sin Mm@, 0<6<2m, 0<eo<m.
Solution:

u(r, 8, ¢) = 12, anor"Pylcos 6) + 2 2 r"Pm(cos 8)

n=0 n=0 m=1

X [y COS Mm@ + by, sin me].

Bia. 2.4
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Here P are the so-called associated Legendre functions and the composite functions
r"P™(cos 0) - (cos me or sin me) are called spherical harmonics. The associated
Legendre functions are obtained in terms of derivatives of the Legendre polynomials
P,.*

Heat Equation (parabolic, any {} (Fig. 2.1)):

u, — Au = 0in (, t>0,
u = 0 on o1}, t>0,
u(x, 0) = f(x) in €,
where
Au=u,, +  + U, x=X=Q&, ..., %)

X1X)

Solution:

u(x, ) = 2, cpe Mo (), Cp = fnfcpndX/L P2drx,

where @,(x) are the eigenfunctions to the €igenvalue problem

—A@ = Aein (),
¢ = 0ondéfd.

We have assumed that ) is such that the ¢,(x) are at most countable,t and we
have assumed several other things, of course, such as the usual formal operations
of the separation of variables method, but additionally that the ¢,, n = 1,2, 3,
..., have a property of completeness,t which we discuss in the next sections.

P 2.1

* P,(x) is the nth eigenfunction of the Legendre equation

[ - Dwl, =,  —I<x<l,
(1 - x2)"24, bounded at the end points,

corresponding to the eigenvalue A, = n(n + 1),n =0, 1,2, ..., and is found by the power series
method similar to the Bessel equation. It turns out that P,(x) is a polynomial of degree n.

+ That is, can be indexed by the integers n = 1, 2, 3, . . . . For unbounded domains it is usually
not the case.

1 This property will guarantee a Fourier expansion of any reasonable data f(x) in terms of the
eigenfunctions @,(x;, . . ., X,).
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In the case that §) is rectangular, one finds the @a(x) to be sine functions, that
is, products of them, in accordance with the above examples. The spherical cases
yield Bessel functions, Legendre functions, and the like, depending on the boundary
conditions (one does not need to take a Dirichlet boundary condition as was done
above). Cylinders and certain other geometries can be handled similarly to get
explicitly the expansion functions @, The general theory of PDEs guarantees their
existence for all nice bounded domains {2.

We close this section by noting a few of the special eigenfunctions that solve
the special ODEs that come out in various PDE problems.*

Bessel’s Equation:

(') — x"'mPu 4+ Au =0, u(0) < 0, u(l) = 0.
Eigenvalues: \, = (zeros)? of J, (see above).
Eigenfunctions: J,(AY2x) Bessel functions.

Legendre’s Equation:

(@ = xu') = (A = x)7'm*u + ru =0, u(—1) < oo, u(l) < o,
Eigenvalues: \, = n(n + 1), n=20,12,....
Eigenfunctions: P7(x) associated Legendre functions,

PR=1, Pl=3x, P=332-1, P§ = 3x3 — 3x,

7-5 5-3 3-1 9.7 7-5 5-3
P°= 4_2___2+__ 0 — 2 _ 5 _ 9Q—— -
= T e BT 277 Y

1 4" 2_1n m+agre2 n
P,?(x) = _M’ P,',"(x) = -l_.(l — x2)m12d_i‘_l)_)‘

2"n! dx" 2"n! dxmtn

Jacobi Equation:

QA = x)P~ ') + M1 — )P x99l = 0, u@0) <o,  u(l) <o
Eigenvalues: \, = n(n + p), n=2012,....
Eigenfunctions: G,(x) Jacobi functions (hypergeometric polynomials),

Ga (p, g, %) = F(=n, pn; g;x) = ' (1 —x)"%!(;Tn)i;,—(x'"" 1-xy*"9

*Theintervnlonwhichd:eODEnctsisclwfmmd!ebwnduyconditions. We leave it to the
reader as an exercise to find the originating PDE. We also leave it to the interested student as an ODE
exercise to solve the given equations for the given solutions.
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Tchebycheff Equation:

(1 — x4y + (1 — x5 "hu = 0, u(—1) < =, u(l) < .
Eigenvalues: A, =n?, n=0,1,2,....

Eigenfunctions: T,(x) Tchebycheff polynomials,

Tolx) = 1, T, (x) = 2”@ Dcos(n cos ™' x).

Hermite Equation:

(e~ u') + Ne Fu =0, u(£x) = O(xsomeN),

Eigenvalues: \, = n, n=20,1,2,....

Eigenfunctions: H,(x) Hermite polynomials,

Hy, =1, H; = 2x, H,=4x -2, H;=8*-12&,  HW®x=

-1y e,’ p (e"‘z) Jd* (eqn. alternately: 5" _ x u’ + Au = 0).

Harmonic Oscillator Equation:

2 o
W - %u + zu =0, I W2 (x)dx < oo*,

Eigenvalues: \, =n + %, n=2012,....
Eigenfunctions: @a(x) = e"‘z/ * H, (x/vZ )Hermite functions (see above for H,(x)).

Laguerre Equation:

Il

') + (@ — x)u’ + hu =0, Io W (x)x%e *dx < ®,

Eigenvalues: A\, =n, n=0,1,2,....

e x~® d™(e " x"t®)
n! dx"

Li=1, Li=1-x L=E-4+2)/2

Ly= (- + 9% - 18x +6)/6 (eqn. alternately: (xe ')’ + Ne *u = 0).

Eigenfunctions: Lj(x) = Laguerre polynomials

* One may impose boundary conditions in either of two ways, by requiring a certain growth rate
or finiteness at the boundary as in the examples above, or by requiring the eigenfunctions to lie in a L?
space as was done in this example. Note that the condition that [= ., @2(x)dx < o just corresponds to
. H,E(.\:)e‘xz 72 dx < . The Hermite equation as first written is in the so-called Sturm~Liouville form;
as alternately written, in what we shall call the ODE form. There is a third standard form called the
normal form; see Section 2.4, Problem 1.
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Whittaker’s Equation (o > —1):

u - ! + o ~ 1 u+Ax'u=0 I” Wx)x " tdx <
4 4 T Jo '

a+1
2 t

Eigenvalues: A, = n + n=0,12,....

12
n! . .
Eigenfunctions: ¢,(x) = (m) x(a+D2p=x2] «(xy Whittaker functions

(see above for Ly (x)).

Balmer’s Equation:

W+,

1,1 -1 -1 _
U+ x u’+<Zx >

)u+)\u=0,

Io w(x)xtdx < o, 1=0,1,2,....

. z?
Eigenvalues: A\, = -—EP, n=1273....
Eigenfunctions: R, (x) radial eigenfunctions of hydrogen Z=1),
RlO = 28-", Rzo = 2—1,28_(1,2)" N (l - %x),

— 2 - X 2 2
Ry = wie oM. (1 - Ix + £x%),

Ry = je™ W9 (1 - 3x + px% - ),

Ru=e™ 212 (% x)

The following three problems serve to refresh and facilitate the reader’s review
of the application of the separation of variables method to particular problems. In
Problem 2.9.1, the reader will find a more abstract interpretation of separation of
variables as a tensor product.

Problem 1. (a) Solve formally by separation of variables the vibrating string
problem (Fig. 2.1k)

Uy — Uy = 0, 0<x<m, t>0,
u@©, 1) = u(w, ) =0, t=0,

u(x,0) = 0, 0<x<m,

u(x, 0) = gx), 0<x<m.

(b) Try to sketch the solution for the case in which g(x) = 1 for w/3 =
x = 2m/3, g(x) = O elsewhere on the interval [0, ]
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Fic. 2.1k

Problem 2. (a) Solve formally by separation of variables the Dirichlet problem
(Fig. 2.10)

u, + u, =0, 0<x<m, O<y<m,
u(x, 0) = x(w — x), o<x<m,

u(m,y) = 0, O<y<m,

u(x, ™) = 0, o<x<m

u@©,y) =y, o<y<m.

(b) Try to sketch the solution.

Problem 3. (a) Solve formally by separation of variables the heat problem
(Fig. 2.1m)

u — u, =0, O<x<m, t>0,
u(x,0) = 0, 0<x=m7/2,

u(x,0) = 1, m2<x=m,

u0,n =0, t>0,

u(w, t) = 0, t>0.

(b) How does the Fourier series solution u behave along and near the lines
x=0,x = w2, x = w?(c) Try to sketch the solution.

u(x,y)
u(x,t) t
| y
1
|
// —
—— X Y — X
0 x 0 /2 | ]

Fig. 2.1/ FiG. 2.1m
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2.2 MATHEMATICAL JUSTIFICATIONS OF THE METHOD

Before proceeding to Fourier series from the Hilbert space viewpoint (Section 2.3),
we return in this section to the three questions raised in Section 1.5 concerning the
rigorous justification of the separation of variables method. That is, we accept for
the moment the separation of variables method and the resulting Fourier series
(formal) solution, and concern ourselves only with finding conditions under which
its substitution into the partial differential equation may be validated. By restricting
attention to sufficiently continuous functions, we need employ only methods of
calculus and advanced calculus. Roughly speaking, this amounts to working in the
maximum norms rather than in the more efficient Hilbert space norms.

1. Can we differentiate term by term in the Fourier solution?

2. Does the Fourier series solution provide pointwise equality with the given
data on the domain and boundary?

3. Is the Fourier series solution the only *‘physical’’ solution?

As mentioned previously, Question 3 can be resolved by (i) uniqueness proofs
showing at most one solution within the class of functions having enough regularity
from the physical point of view, plus (ii) demonstrating that degree of regulanty
for the Fourier series solution. Question 2 comes down to the Dini tests (see 1.6.3
and 1.9.6.2) and will be discussed later in this section. As concerns Question 1,
from calculus or advanced calculus we know that sufficient conditions for differ-
entiating a series term by term are available by showing enough uniform conver-
gence, and it is to this first question that we turn now.

We first make two heuristic comments to indicate how we shall proceed in this
section.

As is clear from the uniform convergence theorems stated in Section 1.6.3,
the concept of uniform convergence is that of convergence in the maximum norm.
Thus it is not unreasonable that maximum principles could (and will) play a role
in demonstrating a uniform convergence. Maximum principles are strongest for
elliptic partial differential equations and weakest for hyperbolic partial differential
equations. For this reason we will illustrate uniform convergence proofs of the
separation of variables solution first for an elliptic problem.

A second and related comment is that, as we have seen, the solutions to elliptic
(by the mean value property, for example) and parabolic (by the Poisson represen-
tation formula, for example) problems tend to immediately smooth out as one leaves
the boundary, even for bad data. This makes it easier to prove uniform convergence.
Solutions to hyperbolic equations do not smooth out, and indeed we would not
want it to be the case, for a wave should remain a wave and a shock should remain
a shock.*

* Our heuristic comments here were on the basis of linear intuition. For nonlinear equations.
shocks and other solution discontinuities can develop regardless of type. For a recent survey of such
problems, see the article by P. Lax, Am. Math. Monthly 79 (1972).
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For these two reasons, then, the separation of variable proofs are easier in the
elliptic and parabolic cases, and require less regularity of the data.

Let us now, after the above comments, give proofs of the separation of variables
Fourier solutions to problems of the three types.

Dirichlet Problem (Fig. 2.2a)

Au = 0in Q,
u=fon0=x=m, y =0,
u = O other three sides.

The formal solution via separation of variables was

2

T sinh n

ulx,y) = E ¢, sin nx sinh n(m — y), C, = J:) f(s) sin ns ds.

n=1
Let us for convenience write the solution also in the form

= N

u(x, y) = Zl un(x, ) = lim 21 un(x, y) = lim sy(x, ).
To apply the Weierstrass M-test of calculus we need = u, bounded by a = M, in
the sense |u,(x, )| = M,. To differentiate term by term* we need similarly = u;,
bounded by a = M,, and 2 u, bounded by a 3 M", where the prime here has been
used to symbolize any partial derivative.

Let us begin with the question of whether we may perform rigorously the

operation of one differentiation with respect to x of the series, that is,

3 < S d

o n\As = U, y).

ax ,,21 (%, ) ,,21 ax x, )
One has immediately the bound

luy(x, )| = lea| Isinh n(m — )|

2 J'“ sinh n(m — y) _
= — ds - |—(————— = (const .
w Jo ol sinh nm ( e

y
Q
p= — X
FiG. 2.2a

* See Section 1.6.3.
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where we have used* that foralln = 1,2, 3, ...

sithn(m —y) e""e™™ — e ""e™
sinh nw e — e "

(1 — e"2™) 1 _
= e~
(1 — e—Zrm) (l —_ e—z-n) ’

and where we have also made the assumption that f € L'(0, ), that is,

= e W

foﬂ |f)] ds = M < .

Let us fix a value Y of y arbitrarily small but positive and consider uniform con-
vergence possibilities on the closed set () as indicated in Figure 2.2b. Letting

5 d;
M, = (const)e™™ = 2o |f(s)] ds Js |f(s)_| se"'"
w(l — e™2™)
we have by the above bound
[a(x, )| =M,  forall (x,y)in

so thatt by the Weierstrass M-test 3 u,(x, y) converges at each point in (1, in
fact, uniformly. For term by term differentiation we also need |du,(x, ¥)/0x| bounded
by some M, from a convergent series of constants 3 M,. But since

a b 1
M = nc, cos nx sinh n(w — y)
ax
and
0%u,(x, i i
% = —n?c, sin nx sinh n(w — y)

we must just take M, and M, to be nM, and n?M,, which are from convergent

y

V///JY

—_—

E

E

FiG. 2.2b

* Recall that sinh u = (e — e “)2.
+ The point here is that £ M, that is, 2 e~ " apart from the common term constant, converges
for Y > 0 by the ratio test of calculus, since one has M, ,,/M, = ¢V < 1.
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series in the same way as M, by the ratio test. Thus* we may apply the operator
9/dx to the series by applying it term by term, throughout Qy; and, in turn, regarding
S du,(x, y)/ax as the convergent series to be differentiated, 9/dx may be applied
again term by term to obtain

3 3 2

d
TS ux,y) = D, = ualx, ¥).

0x2 n=1 n=1 0x2

We proceed in the same fashion for differentiation with respect to y. Since

du,(x, .
_Ly) = —nc, sin nx cosh n(®w — y)
ay
and
& 2 .
Wu,,(x, y) = —n?c, sin nx sinh n(w — y)

one may take M, = M, = M, = 2(const)n®e"Y, where the constant is the same
as above, the n? accommodates all three series 2 u,, 2 u,, and = u,, and the extra
2 comes from

cosh ngn_m - e_"y(l + e~ 2T - 2 oy

sinh e T—em —(-em

in the first derivative series. Therefore, againt by the Weierstrass M-test we arrive
at the validity of the term by differentiation

3 3 2

o? 3
'5),—2 2 un(-x’ )’) = 2 —'u,,(x, y).

n=1 n=1 0)’2
Thus
Au = AD u, = > Au, = 0

provided that the data f € L'(0, w), that is, that I3 1f(s)l ds < oo.

We also note that since each of the u,(x, y) is zero on the other three sides,
the same is true of the series u = 2 u,. Also (as noted in Section 1.6.3), since
the limit of a sequence of uniformly continuous functions is continuous, by the
above arguments, we have u(x, y) € CX((2) (sinceu € C 2((),) for arbitrary ¥ > 0)
and also that u(x, y) = O as (x, y) — any boundary point on the other three sides
of €. In fact, the above differentiation arguments may be repeated indefinitely,

* In the viewpoint of a more advanced course in functional analysis, the meaning of this is that
the derivative operator d/9x is a closed operator in the sense that sy —=0 , 4 and ¥/dx SN e,
“‘something’’ imply that the ‘‘something’ is of necessity d/dx u. The concept of the closed operator is
weaker than that of the continuous operator, the latter being best exemplified by integral operators and
the fact that sy —=— u implies that [ sy — J u. (See Problems 2.9.2 and 2.9.5.)

+ The S M, again converges by the ratio test since M,./M, = (1 + 2/in + lUnt)e Y < | for
sufficiently large n.
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showing that u(x, y) € C*(Q)). This of course we also know from the fact that u
is harmonic, hence analytic. To complete the answering of the three questions raised
at the beginning of this section, it therefore remains only to investigate the regularity
of u on the ‘‘data’’ line segmenty = 0,0 = x = .

For the latter we call upon the Dini tests* and assume that f is continuously
differentiable (i.e., f € CY0, w}]) and that f(0) = f(w) = 0. Then, since the
separation of variables construction made the Fourier series for f(x) and u(x, 0)
equal, namely,

2 ™
) 0) = n\Xs 0= dn 1 ’ dn = . f i
u(x, 0) 2 u,(x, 0) 2 sin nx wsinb e Jo f(s) sin ns ds,

we have u(x, 0) = f(x) everywhere on 0 = x = w. Moreover, and as just mentioned,
by the additional assumed regularity on f we know its Fourier series X d, sin nx
converges uniformly to f(x) on [0, 7], which in terms of the Cauchy criterion for
convergence means that for arbitrary € > 0 one can guarantee that

|SM(X, 0) - SN(X, 0)| < €
for all sufficiently large M and N. Since for any given M and N, M > N,

M M

A(SM(X’ }’) - SN(X, }’)) = A( 2 un(-x’ }’)) = 2 Aun(-x’ }’) = 09
N+1 N+1

by the maximum principle applied to the function v(x, y) = splx, y) — snlx, y)
on the domain ) we have maxg|v(x,y)| = maxyq|v(x, y)|, that is,

lsp(x, ¥) — swlx, y)| < e, x,yED

which by the Cauchy convergence criterion means that sy(x, y) converges uniformly
to u(x, y) on . In particular, then, u(x, y) is the limit of a uniformly convergent
sequence of sums sy(x, ¥) of continuous functions and is hence itself continuous
on $; thus as the point (x, ) — (xo, 0) along any path (Fig. 2.2¢), u(x, y) =
u(xo, 0) = flxo).

Let us summarize what has thus been shown in the above for the separation
of variables solution u(x, y) = X u, to the Dirichlet problem with data present on
all four sides, as shown in Figure 2.2d.

y
J

Q

(xy)
S

(xo.'o) ¥
FiG. 2.2¢

- X

* See Section 1.6.3 and Problem 1.9.6(2).
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u(x.y)
/3—0
|
=X
x
FiG. 2.2d
Problem (Dirichlet):
Au = 0in ,
u = fonodQ,

fE C%BQ), fE PC'oQ),
£(0,0) = f(w, 0) = f(w, m) = f(0, w).*

Answers (to the six questions):

(1) Existence (by the verification above that the separation of variables
“‘solution’’ u = X u, is a solution)

(2) Uniqueness (by the maximum principle, among functions () N
(o (1))

(3) Stability (in the maximum norms)

(1) Construction (u = 2 u,)

Q') Regularity (u € C*(2) N C°(Y))

(3") Approximation (1 = lim sy partial Fourier series, both pointwise (uni-
formly) and in L? convergence)

Proofs in the second (i.e., parabolic) case are similar, although different ma-
jorizing series = M,, £ M,,, and £ M,,, appear of course. The heat initial boundary
value problem is left as an exercise (see Problem 1 following). Again, the equation
immediately smooths the data into the solution and uniform convergences are easily
shown.

The third type of equation, the hyperbolic one, does not smooth out the data.
Indeed it is desired that a sharp wave impulse produce a sharp wave, so that
smoothing would be unexpected. Data discontinuities are thus preserved in the
solutions, and uniform convergence is not so easily verified. Moreover, there is no
maximum principle to transfer uniform convergence from the Fourier series for the
data to the Fourier series for the solution.

Let us proceed however to prove in the same manner as above the validity of
the separation of variables Fourier solution to a problem, the wave initial boundary

* This somewhat artificial restriction at the corners can be removed by subtracting from the solution
a function @y + a,x + a,y + asxy that fits any given comer values. In general, one expects a Fourier
series representation of a discontinuous function to converge to the average value at a jump.
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value problem, of hyperbolic type. To do so, we shall assume too much regularity
on the data.*

Vibrating String Problem (Fig. 2.2¢)

(u,,—uxx=0, O<x<m, t>0,

u©, 8 = u(w, 1) = 0, =0,
u(x, 0) = f(x), O=x=m,

§ “x,0 =0 0=x=m,
where

f€ C*0, n] and

\_ f0) = f(m) = f(0) = f'(m) = 0.

The formal solution via separation of variables was found to be

ux, 1) = ;

¢, sin nx cos nt

2 ™
u, (X, 1) =5 J:) f(s) sin ns ds.

For finding majorizing series we first note that

d &
lu(x, O] = |cal, au,,(x, D| = njc,, aiu,,(x, )| = nc,,
d &
a—tu,,(x, 0| = njcal, a—tzu,,(x, | = n?c,l.

In order to force M, ~ ¢,, M, ~ nc,, and M, ~ n’c, to come from convergent
series, we integrate by partst to see if some regularity of the data f will be reflected

t

u(x,t)
- ]

0 w *
Meaning of
boundary
condition

0 4

FiG. 2.2¢

* By slightly more involved arguments it is sufficient that f € C2[0, ] and that f(0) = f(w) =
f"©) = f"(w) = 0. This is most easily seen from a ‘‘Green’s function” approach to the problem as
discussed in Section 2.5.

+ Once again we sce in treating partial differential equations that integration by parts is often the
key. The meaning of the calculation can be stated in another way, namely, that the Fourier cosine
coefficients c, for the differentiated function f'(x) are nc, in terms of the Fourier (sine) coefficients Cx

for the given function f(x). Likewise the Fourier (sine) coefficients c; for the function f"(x) are — n’c,.
(Footnote continued on page 165)
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in sufficiently rapid decrease of the Fourier coefficients ¢, for the data f. Recalling
that we assumed f € C*[0, w}, f(0) = f(mw) = 0, we have

f f(s) sin ns ds ! f f'(s) cos ns ds
0 nJo

l N " :
7 fo f"(s) sin ns ds

B Ch s S UNE fo £(s) cos ns ds
- L@ED =IO LT ey i as

Recalling that we also assumed f"(0) = f"(mw) = 0,* we thus have the bounds

2 f" 1 ou 2 f" 1
<= Z " . — _n < Z " .
|un(x, ] = e 8 |£"(s)| ds et L] I | F"(s)| ds ek
& 2™ 1
a—xgun(x, | = ;L [ £ ()| ds - pt
3 2 (" . 1
s-tu,,(x, nl= - L | £"(s)| ds - 2
82 2 N " l
b-t_zu"(x’ Dl = ;J;) |f (s)| ds - P’

so that taking the M,,, M, and M}, to be the right-hand sides of the above inequalities,
and remembering that Z(1/n%) converges,t we have by the Weierstrass M-test that

02 02 02 02
(55 - (—)?) 2 ux, t) = 2 (5?2 T a2 uy(x, t) = 0.

Thus the wave equation is satisfied. The boundary conditions are satisfied by the
separation of variables construction. The convergences above being uniform ev-
erywhere for 0 = x = m and ¢ Z 0 guarantees that the solution u(x, 7) € C?[0, ]
X [0, ), that is, for all 0 = x = 7 and all # = 0. We have thus answered affir-
matively the questions of (1) Existence, (1') Construction, (2') Regularity, and
(3') Approximation. Uniqueness (2) and a result on Stability (3) may be shown by
the energy method in the following Problem 3.

Problem 1. Justify mathematically the separation of variables solution to the
heat conduction problem (Fig. 2.2f)

(Footnote continued from page 164)
The latter integration by parts provides also a clue as to the use of Fourier transforms (see the later
Section 2.7.3) under which the operation d2u/dx? — —k?u, that is, F(d 2u/dx?) = —Kk2F(u), where F
denotes Fourjer transform and k is a real variable playing a role analogous to # in the above.

* This assumption was not used in the calculation above, for the sake of the following Problem 2.

t By the integral test of calculus, for example.
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FiG. 2.2f

u, — uy = 0, 0=x<m, t>0,
u(x, 0) = f(x), 0=x=m,

u©,1 = 0, t=0,

u(w, 1) = 0, t=0,

in the following two ways:

(a) Use a maximum principle and the Dini test as was done for the Dirichlet
problem above. Assume f € C'[0, 7] and f(0) = f(w) = 0. First recall (see
Problem 1.9.3) the heat equation maximum principle: A smooth solution to
the heat equation attains its maximum and minimum values (€.g., temperatures)
either initially or at the boundary. More precisely: u € C%([0, w] x [0, T)),
that is, u twice continuously differentiable on the domain of the figure, u, — u
= 0 in the interior of that domain, implies that

XX

max |u(x, )] = max{ max |u(x, 0)|, max u(0, ), max u(m, 0}
0sx=7 0=x=n 0=r=T 0st=T
0==T
for arbitrary T > 0.
(b) Use an excess of regularity on f as was done for the vibrating string
problem above. Assume f € C4[0, =] and f(0) = f(w) = f'(0) = f"(w) = 0.

Problem 2. Examine the term [f"(w)(—1)* — f"(0))/n? in the integration by
parts above. (a) What is wrong with the argument that one needs only f'(0) = 0
because the alternating series with terms (— 1)"/n is a convergent one? (b) For
what values f"(tr) and f"(0) is this term zero. (c) A question related to another
solution method (see Section 2.5) in which f needs to be extended to all —» <
x < ® is the following: Given f(x) € C?[0, =] and f(0) = f(mw) = 0, and then
if possible extended oddly and periodically about 0 and w to f € C?(—, ),
does it follow that necessarily f"(0) = f"(mw) = 0?

Problem 3. Using the total energy functional

T 2 2
E(t) = E(u(®) = § fo [(%ﬁ) + (au(gt, z)> ]dx

show uniqueness and a stability result for the vibrating string problem
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uy — uy =0, 0<x<m, t>0,
w0, ) = u(w, 1) = 0, t=0,

u(x, 0) = f(x), 0=x=m,

u(x, 0) = g(x), 0=x=m.

Assume u € C? on the closed T domain shown in Figure 2.2f and make use
of differentiation under the integral, the divergence theorem, Schwarz’s in-
equality, or whatever.

2.3 FOURIER SERIES AND HILBERT SPACE

In this section we first give an axiomatic description of Hilbert space, and then
explain what it means in terms of Fourier series. The main result is given in Theorem
H. In Section 2.4 we couple the present section concerning Hilbert space to the
method of separation of variables and to a variety of resulting important Hilbert
spaces, many of which correspond to examples given previously (Section 2.1).
Although Section 2.2 may have seemed to depend only upon methods of
calculus and advanced calculus, it should be noted that Hilbert space methods also
entered there, in the integration by parts calculations and in the orthogonality
arguments implicit in proving a Dini test. Thus it may be said that whenever one
writes down a Fourier series, one is, like it or not, working in a Hilbert space.
One may view the Hilbert space structure as being built up in four stages

algebraic
topological
analytical
geometrical

which we describe as follows in terms of the notions of

linear space
normed linear space
complete normed linear space
complete normed inner product linear space

and for which an instructive sequence of corresponding examples is

C[0, 7], the continuous functions* on 0 = x = =,
C[0, w], with RMST norm |lu|| = [fq |u(x)|>dx]'?,

* We will usually state function space concepts for the case of real valued functions. The case of
complex valued functions u(x) + iv(x) is similar, but one needs a complex conjugate inserted at the
right places, for example, (u, V) = I u(x)v(x) dx (mathematicians) or (u, v) = [§ u(x)v(x)dx (phy-
sicists). Most functional analysis books either explicitly or tacitly treat primarily the complex case
because the resulting theorems are stronger, and one must be careful in applying those results to the
real case.

+ Root mean square, and alternately, L? norm. See Section 1.6.3.
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C[O0, ], with maximum norm |u]| = max|u(x), 0 = x =,
L?[0, ), with inner product (u, v) = fo u(x)v(x)dx.

As another instructive example sequence in only the RMS norm one may consider

R*[0, 1], the Riemann (square) integrable functions on 0 = x = m,
R2[0, ], with the above RMS norm |ju]| = [fq |u(x)]dx]"2,

L[0, 7], the Lebesgue square integrable functions on 0 = x = m,
L?[0, 1], with the inner product (u, v) = [ o u(x)v(x)dx.

Historically the continuous functions, being Riemann integrable, were extended to
all Riemann integrable functions, which, lacking the completeness property, were
in turn extended to the Lebesgue integrable functions.

The linear or vector space structures mentioned above are the following.

Linear Spacet
Vectors such that:

ut+tv=v+u

ut+@W+w=@W@+tv)+w that is, a commutative
unique O such that u + 0 = u additive group

unique negative such that —u + u = 0

and scalars such that

au +v) = au + av
(@ + bDu = au + bu
(ab)u = a(bu)
l-u=u

scalars taken from a
‘‘field’’ that is usually
the real or complex numbers.

Normed Linear Space

Linear space equipped with a norm ||u||, norm properties are:
lulf =0, lul =0&u=0 positive definite,
le + vl = llull + Holl triangle inequality,
locud| = x| el homogeneous.

* Also called a vector space. One need not take infinite dimensional examples such as C[0, ]
ot R2[0, =]; n-space R* will suffice. However, the point is that almost any function space satisfics the
linear space axioms; for example, C%((2), C*(Q), C5(f}), LF(Q}), and many others. An exception to
this occurs however if one attempts to include a specific nonhomogeneous boundary condition; for
example, f(1) = g(1) = 1 =g the same for f + g.
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Complete Normed Linear Space

Normed linear space that is Cauchy complete*: |, — u,||— Oasn— «©, m — ©
implies the existence of a limit vector u in the space such that |lu, — u|| — 0 as
n—

Complete Normed Inner Product Linear Space (= Hilbert Space)

Complete normed linear space in which the norm is given by an inner product
lu|> = (u, u), where the inner productt has the following properties:

(au + bv, w) = a(u, w) + b'('v, w) bilinear,
(u, w) = (w, u) symmetric
(u, u) = ||u|? norm compatible.

A few remarks about the completeness property of a Hilbert space.

The notion of completeness is an idealization in which one defines a limit
element even if it is not very constructible or realizable. Thus the axioms of the
real number system define the irrational numbers as *‘limits’” of Cauchy sequences
|a; — a,] — O of rational numbers, it then being shown (in the traditional treat-
ments¥) that after one has the rationals and irrationals, there are no more. That is,
if one takes a Cauchy sequence of irrationals or of mixed irrationals and rationals
one does not generate any further idealized limits. This fact is fundamental in the
same way to the completeness of 2-space, 3-space, n-space, I, (the infinite dimen-
sional coordinate Hilbert space), L?, and practically all complete function spaces
used in analysis and differential equations.

Likewise the notion of Lebesgue integrability is an idealization created in order
to complete the Riemann integrable functions.§ In the above examples of normed
linear spaces one may thus regard L?[0, ] as the completion of R2[0, 7] in the
RMS norm. It turns out that the smaller function space C[0, 7] also has as RMS
completion L?[0, w]. This is even the case for C'{0, w], C"(0, ], and even for
C5[0, ], the infinitely differentiable functions of compact support strictly within
[0, w].1 Any such subspace of L2[0, 7] with completion L2[0, 7] is called a dense
subspace of L2[0, 7] and is an example of what are sometimes called pre-Hilbert
spaces: a linear space, with norm given by an inner product, but not complete. It
should be stressed that in both the theory and application of Hilbert space methods
one usually ends up going back to some dense pre-Hilbert space of nice functions

* The fundamental example from which all others follow is the one-dimensional vector space of
real numbers with norm |lall = |a, the absolute value of a. The completeness follows from the con-
struction of the irrationals from the (incomplete) rationals.

t Scaler (real, or complex) valued.

¥ In “‘nonstandard’’ analysis one creates an enlargement of the traditional real number system.

. § Consult books on integration theory for examples of Riemann integrable functions converging
In various senses to nonRiemann integrable functions.
9 See Problem 2.9.3, where a proof of this important fact is given.
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to do all calculations, arguing then for the general case by going to the limit to
obtain the desired result for the whole Hilbert space.

The maximum norm ||ju]| = max|u(x)|, 0 = x = m, is stronger than the L?
norm.* In fact, it is strong enough to make C[0, ] complete, since the uniform
pointwise limit of a sequence of continuous functions is continuous. The price one
pays for this completeness is the lack of an inner product consistent with the norm. ¥

The existence of an inner product in a Hilbert space allows generalization of
the usual geometric interpretations that one uses in discussing analytical vector
dynamics in 2-space or 3-space to the infinite dimensional function spaces. This is
the content of the following basic theorem, namely, that any function may be
regarded as the (infinite) sum of its projected components on a basis of perpendicular
vectors, just as in the Pythagorean theorem for 2- and 3-space.

Definition. If (u, v) = 0, u and v are called orthogonal (i.e., perpendicular to
each other). If also [lu| = |lv|| = 1, u and v are called orthonormal. A set of vectors
{¢.} is called an orthonormal set if they are all mutually orthonormal, that is, if
any one of them is orthonormal to all the rest. A set of vectors {@;} is called a
maximal} orthonormal set (n.0.s.) in a given Hilbert space H if it is impossible
to find another vector in H that is orthonormal to all the {¢;}.

Examples of orthogonal vectors are (1, 0) and (0, 3) in 2-space and sin nx,
n=1,23,...inL%0, w). They become orthonormal when normalized, that
is, when divided by their length or norm, for example, (1, 0) and (0, 1) in 2-space
and @7~ )2 sinnx, n = 1,2, 3, . .. in L¥0, ). The most traditional maximal
orthonormal set in Fourier analysis is the so-called trigonometric basis {¢;} =
{v@®¥2, = Y2 cosnx, n= 1,2,3,..., = Ysinnx, n-=
1,2, 3,...}. The fact that it is maximal in L2(—, ) is of course nontrivial and
was not proved until the beginning of this century.

Theorem H
Let {¢;} be an orthonormal set in a Hilbert space H. Then equivalently:

(1) {¢;} is a maximal orthonormal set (m.0.s.);
(2) Any u in H orthogonal to all ¢; is necessarily 0;
(3) Every u in H has (Fourier) representation 4 = Z (4, ;)¢;;

* See Section 1.6.3, Problem 1, where it is shown that uniform convergence implies L? conver-
gence.

+ Complete normed linear spaces are called Banach spaces. C[0, ] with the maximum norm is
a Banach space but is not a Hilbert space.

 Many books use the term complete orthonormal set (c.0.s.). The property is however one of
maximality, although both adjectives, maximal and complete, may be used loosely to mean the same
thing, namely, that there are no *‘missing’” basis elements that have been left out of the basis {¢;}. The
adjective *‘complete>” has already been used above to describe a convergence (analytical) property of
Hilbert space so we prefer the adjective ‘‘maximal’’ for the above (geometrical) property.
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(4) Every u in H has norm given by the (Parseval’s) equation |u|? =
2 |, ¢

Before proving the theorem, we note the following three facts stated as lemmas
and to be proved below.

Lemma 1

The inner product is jointly continuous, that is, when u, converges in H to u
and v, converges in H to v, then the inner products

(g, V) = (0, V).

Lemma 2

Whether or not the orthonormal set {¢,} is maximal in H, one has the Bessel’s
Inequality

lul> = 2 [, ). @

Lemma 3*

For any Hilbert space H the sums (3) and (4) make sense and involve only a
countable (i.e., indexed by i = 1, 2, 3, . . .) number of the {¢;} for each u.

Proof of the Theoremt
We may show (1) = (2) = (3) = @) = ().

(1) = (2). Suppose not. Then there exists some u L {¢;}, u # 0. We let

¢ = ul||u|l, note that (¢, ¢;) = 0 for all ¢;, so that {¢, ¢;} is an enlarged
orthonormal set, which is a contradiction.

(2) > (3). Consider u — =7, (u, ¢;)¢;. This is a vector in the Hilbert
space because by Lemma 3 there are only a countable number of the ¢; for
which (u, ¢;) # 0 and because the infinite sum 27_; (4, ¢;)¢; is the limit of
the partial sums sy = 2, (u, ¢,)¢; that converge by Lemma 2 (see the

* We were purposely vague in the sums in (3), (4), (4’) and in the indexing {¢;} by i. Some
Hilbert spaces need an uncountable number of {¢;} but as Lemma 3 shows, in all cases each u has a
countably indexed representation. Most Hilbert spaces used here will have a single countable {¢;} like
the sine functions @,(x) = 22w " sinnx,n = 1,2,3, ..., for H = L*[0, n).

. t To avoid complex conjugation we just consider real Hilbert spaces, although Theorem H and
1ts proof remain the same for the complex and any other scalar field.
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discussion below). “‘Dotting’” this difference u — =72, (u, ¢,)¢; by any ¢;
yields

(‘-Pj’ u - ; (u, ‘-Pi)‘-Pi) = (@;, u) — (‘-Pj, ; (u, ‘-Pi)‘-Pi)

N
= ("Pj’ u) - 13]"11 (‘Pj’ ; (1, "Pl) "Pl)

= (‘PJ’ u) - (u’ ‘PJ)
=0
which by (2), implies (3). In the second step above we used the separate

continuity of the inner product, which is implied by the joint continuity of

Lemma 1.
(3) = (4). This follows from the joint continuity of the inner product by

N N
Jud? = lim (2} : 9)@ir 2, W, cp»cp.-)

N
= lim 3, @, )2 = 2, I, @)%

Noxi=1 i=1

(4) > (1). Suppose the {¢;} are not maximal. For an enlarged set {¢, ¢;}
applying (4) to ¢ yields the contradiction

1= el = 21 (e, @) = 0.

Proof of Lemma 1

Let|u, — u|— Oand|jv, — v||— 0. Then, employing the Schwarz inequality,
we have

Gy v) = (0, V)| = |, — 4, ,) + (u, v, — V)|
= |, — u, va)| + |4, v, — W)
= lu, — ullllvall + lladll v, =
= lu, — ulllv, — vl + . — dllvl + lulllv. — ol

— 0.

Proof of Lemma 2

By Lemma 3 we know that for a given u we need consider at most a countable
number of the ¢;, those for which the components (u, ¢;) # 0. We consider
any finite number 7 of these ¢; and obtain Bessel’s inequality as follows:
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Os " u- é (u, @i)pi “2
i1

= P - 20, 3 (5 )p) + 3, 16 @)

im1 iml
=l - 3 N, 90
Thus for any finite number 7 of t;; Qi we have2°:_1 |(e, qai)l2 < ||u||2. This means that
the series Eill(u, q>,~)|2 converges absolutely, and to some limit no greater than

lell®. It also means that the partial sums s, = 27—1("’ @) g; converge ( a fact used

above in the proof of (2) => (3))since they form a Cauchy sequence by
“S,, = S"'“2 = 2 |(ua (Pl')|2 s 2 K",(Pi)|2 — 0=

imptl imnt+l

Proof of Lemma 3

Let us begin with any maximal orthonormal set {9, }, where we use the index o to
denote either the countable or a possibly uncountable index set. 9 For any given & in
H, and let us take |juf| = 1, the set

®(u) = { all pa such that (4, ga) = 0}

is clearly given by ®(u) =U vy @n(u), where
®,(u) = {all @q such that j(, ga)f = 1/n}.

n
By the finite Bessel’s inequality 2 [, 0:)F < lulf? (which stands independently of
inl
these Lemmas) there can be at most n vectors @a in ®,(u). Since ®(u) is the countably
indexed union of finite numbers of vectors, it is itself countable (see Problem 2 foran
exercise on this type of reasoning).

*Moreover, since 2:1 (u, cp,-)l2 converges absolutely and since by calculus absolutely convergent
series have the same limit independent of rearrangement, it follows that sy —> u regardless of the order in
which the ¢; are put in.

9 An interesting example of a nonseparable Hilbert space is the Hilbert space of almost periodic
functions on —® < x < . One beguns with all continuous functions f{x} such that for every € > O there
exists an interval length [ such that with every Linterval there exists at least one number T such that
|fx + 1) - fix)] <& forall - <x <o, It can be shown that an inner product is given by

1 T
(f,g) =lim == [ fx+gx+1) d,
tim o7,

which exists, independent of x. The completion is called the almost periodic function Hilbert space
and was introduced by Harold Bohr, mathematician and brother of the physicist Niels Bohr. Anorthonormal

basis is @a = &% -® <a <o, Lemma 3 asserts that for any given almost periodic function f(x), only a
countable number of the @ are required to Fourier represent f (x).
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Problem 1. (a) Show from the inverse triangle inequality that when u, — u
in a Hilbert space H (or more generally in any normed linear space) one has
the norms converging also, that is, [l,]| — lull. (b) Use part (a) to shorten the
proof of Lemma 1 by one line.

Problem 2. In the proof of Lemma 3 we used a set theory fact that a countable
union of finite sets is countable. Prove that in fact a countable union of countable
sets is countable.

Problem 3. One uses a set-theoretic fact-axiom known as Zorn’s lemma to
prove that any Hilbert space contains at least one maximal orthonormal set.
One can also use it to guarantee the existence of such things as a maximal
dissipative extension for every dissipative partial differential operator,* and so
on. In general one can assert that it forms an interesting bridge between analysis
and logic. We have accordingly included this problem to provide some practice
on this bridge for those who are so inclined.

The argument establishing the existence of a maximal orthonormal set is
as follows. Let @ be the class of all orthonormal sets in H. H nonempty implies
@ nonempty. One partially orders @ by saying {¢s} C {@a} if all the ¢,’s are
already @p’s. By the following two sentence ordering argument Zorn’s lemma
now asserts the existence of a maximal orthonormal set. For any chain of
orthonormal sets the union ¥ of all elements thereof is an upper bound for the
chain, because any {¢,} in the chain is upperbounded by ¥ in the set inclusion
sense. Moreover, ¥ C ® because any ¢, and ¢, in ¥ are elements of or-
thonormal sets {¢,} and {@g} in the chain such that either {¢o} C {@p} or
{eg} C {¢.}, and in either case (¢a, ¢p) = 0.

Consult the literature while doing the following exercises. (a) Complete
the checking of the details for the above proof. (b) It was long conjectured that
a similar basis result held in Banach spaces, but recently a counterexample
was given.t (i) State the properties of such a Banach space basis (Schauder
basis) and write down one concrete example. (ii) Look up the counterexample
and determine some of its properties. (c) Every normed linear space contains
an algebraic (linear) basis. (i) Determine the properties and dimension of such
a basis (Hamel basis). (ii) Does Zorn’s lemma enter into its existence? (d) Think
about why Zorn’s lemma cannot be used to guarantce a Schauder basis for
Banach spaces.

2.4 FOURIER SERIES AND STURM-LIOUVILLE EQUATIONS

Coupled with Theorem H of the previous section. which asserts that we may Fourier-
expand all reasonable functions in terms of any maximal orthonormal set {p.}. 18

* For the notion of dissipative differential operators see R. Phillips Trans. Am. Math. Soc. 90

(1959).

+ For this counterexample. see P. Enflo. Acta Mathematica 130 (1973).
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the Sturm—Liouville theorem, which asserts that a large class of ordinary differential
equations have the property that their eigenfunctions are indeed a maximal ortho-
normal set {¢,}. As nature (or perhaps just mathematical consistency) would have
it, this class of ordinary differential equations contains most of those that we are
led to when solving a partial differential equation on a given domain €} by separation
of variables. Moreover, the {¢,} thus obtained are usually the most natural and the
most efficient basis for Fourier-expanding solutions to the given partial differential
equation.

Let L%(a, b, r) be those functions u(x) defined on any given interval (a, b)*
and square integrable there with respect to the ‘‘weight-function’” r(x), that is,

b
f lu(x)2r(x) dx < o,

L%(a, b, r) is always a separable Hilbert space (see Problem 2.9.3). Consider any
ordinary differential equation of the form

—(pu') + qu = \ru, a<x<b ()

where u is in L%(a, b, r) and moreover is sufficiently nice so that the operations
in (1) can be performed while staying within L?(a, b, r), and such that the following
conditionsT hold:

(i) p is a real measurable function defined on (a, b), p(x) # O there, and p
and p~! are locally integrable in (a, b).1

(ii) ¢ is a real measurable function defined on (a, b) and locally integrable
there.

(iii) r is a real measurable function defined on (a, b), r(x) > 0 there, and r
is locally integrable in (a, b).

Definition. Under the above conditions the Equation (1) is called a Sturm—
Liouville equation. If additionally (a, b) is finite and p~!, ¢, and r are integrable
on all of (a, b), then (1) is called regular. Otherwise (1) is called singular.

* Finite, a half line, or the whole real line. Actually these functions must be complex valued
functions #(x) + iv(x), u and v real valued, but except for technical considerations one may think of
real valued functions and real valued solutions of Equation (1).

t The conditions, in order to be sufficiently comprehensive, are stated here in the technical language
of Lebesgue integration theory. However, one may for example just think in terms of reasonable
<Conditions such as all of p, p’, p~!, q, and r being positive continuous functions on (a, b).

The standard example is our familiar (Rayleigh’s) equation

—u'(x) = Aufx), O<zx<m.

For other examples see Section 2.1.
% That is, integrable on any bounded interval [c, ] contained in (a, b).
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For simplicity in stating the following theorem we restrict attention to the
regular case* and so-called separated boundary conditions of the form

u(a) cos o — u'(@p(a) sina = 0, )
u(b) cos B — u'(b)p(b) sinp = 0,

where o and P are any numbers o € [0, ), B € [0, m).

Theorem (Sturm-Liouville)

The eigenfunctions of the Equation (1) subject to the boundary conditions (2)
form a maximal orthonormal set (m.o.s.) {¢.}z-, for the Hilbert space H =
L*a, b, r).

In other words, the Equation (1) with boundary conditions (2) behaves just
like the “‘canonical’’ Rayleigh equation with Dirichlet boundary conditions in per-
mitting a Fourier representation

@«

u(®) = D, €@n(0

n=1
of an arbitrary square integrable function u. This justifies then in principle the
separation of variables procedure of trying a solution candidate of the form
u(xl’ X25 o+ - ) = Z Cninz... u’ll’l2-..(xl’ X25 - - )
nLN2, e

where the u,(x1, X2, - - -) = @n/(X1)Pr, (x,) **- is the product of special Sturm—
Liouville eigenfunctions and related initial value problem solutions depending on
the original partial differential equation and the given boundary and initial condi-
tions. Of course for a mathematically complete treatment, one must go further in
each case and actually solve for (or estimate) the solutions in order to establish
enough properties for the associated eigenfunctions so as to be able to prove (e.g.,
by verifying differentiation term by term) that the formal solution constructed in
this way is in fact the bona fide regular solution of the partial differential equation
satisfying the existence, uniqueness and stability statements.

Let us give here briefly the essentials of a proof of the above Sturm-Liouville
theorem. The details are left to the student (Problem 3).

Proof
One begins with the Wronskian

* In the singular case, the eigenfunctions sometimes are and sometimes are not a maximal or-
thonormal set. For example, if one has the so-called limit circle case at both ends of the interval, then
under appropriate boundary conditions one obtains a maximal orthonormal set of eigenfunctions as in
the regular case. In the limit point case, it may go either way. See Problem 2.9.4.
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W, D)x) = p@uxw’ () — u' (xwk)

which comes from the integration by parts
b b b g
f Lu® dx — f ulv dx = f p W(u, T)(x) = W, )5

Here
Lu= —(pu') + qu

is the Sturm—Liouville operator given in (1) above. In order that L be a sym-
metric operator in L(a, b),* it is both necessary and sufficient that

W, Dt = 0.

For this, the separated boundary conditions (2) above, among others, suffice.
The Sturm-Liouville operator (1), (2) is thus seen to be symmetric on any
reasonable subspace of sufficiently regular functions. Moreover, it may be said
to be formally self-adjoint (meaning that its closure on the Cg(a, b) functions
will be self-adjoint), and by extending its domain D(L) to distributional deriv-
atives (see Problem 1.9.7(2)), it will be a self-adjoint operator. Any self-adjoint
operator has only real eigenvalues, as may be seen for the Sturm—Liouville
operator (1), (2) by substituting Lu = Au into the integration by parts above.

From the theory of ordinary differential equations under the suitable con-
tinuity or weaker assumptions on the coefficients we know that there exists for
each A\ a two-parameter family ¢(x) = ¢;¢;(x) + c2¢,(x) of solutions to the
homogeneous equation

Lu — zru = 0.

Let a particular nontrivial solution ¢(x, ) be determined for all X by the left
end condition

¢e(a, \) = sin a, ¢'(a, \) = p~Ya) cos a.

Note then that @(x, A) satisfies the left boundary condition of (2). Thus
¢(x, A) will be an eigenfunction for the operator (1), (2) and \ the corresponding
eigenvalue if and only if @(x, \) satisfies the right boundary condition of (2),
that is, if and only if

* See Problem 1.9.7. L symmetric in L%(a, b) is easily seen to be equivalent to (1/r)L being
Symmetric in L%(a, b, r).
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FO) = ¢(b, N) cos B — ¢'(b, Mp(®) sin B = 0.

There can be no other linearly independent eigenfunction { for (D), (2) at A.
For if there were, by the Wronskian test for linear independence of solutions,
one must have W(p, ¥) # 0 on the interval (a, b), but to the contrary we
would have

p@b(@)e’ @, N) — ¥ (@e@, V] = 0.

It will be advantageous now to construct in the same way a particular
nontrivial solution y(x, A) determined by the right end condition

(b, \) = sin B, U'(b, \) = p~L(b) cos B.

This solution Y(x, \) satisfies the right boundary condition of (2) and will be
an eigenfunction for the operator 1), (2) if and only if it satisfies the left
boundary condition of (2), in which case it will be a multiple of ¢(x, A).
Otherwise ¢ and s are two fundamental solutions for the homogeneous equa-
tion.

Substituting the assigned right-end boundary values for y(x, A) into the
above f(\) yields

fO) = Wy(e, ¥)b).

By the integration by parts above and the symmetry of the operator (1), (2),
for A complex and not real f(A\) may be seen to be nonzero. Moreover, f(\)
has the important property of being analytic in A, and belongs to the class of
entire functions of order less than or equal to one-half. As seen above the zeros
of f(\) are exactly the eigenvalues of the operator (1), (2). It may be deduced
from theorems in analytic function theory that the number of zeros of f(\) in
any bounded interval function is finite and moreover can be estimated. This,
coupled with the observation that the operator is self-adjoint but unbounded,
guarantees that the totality of eigenvalues \, is an unbounded but countable
set of real numbers. For each \, we have as constructed above the eigenfunction
(x, Ap)-

To show the maximality of the eigenfunctions {¢,} one may now proceed
in a number of ways. One approach is to consider the Green’s function

e, VU, V)
o T =xsy=b,
Wi wo oY
- Gy(x, }’) = " N0 N
x’ ¢ t
—_— sSy=x=b,
e wd S T

as is done in the variation of parameters solution to the inhomogeneous problem.
One may then show that for any A the corresponding integral operator (see
Problem 2.9.5)
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b
7L — N7 lwk) = f G\(x, y)w(y) dy

is “‘compact” on L2(a, b, r) and indeed as indicated by notation does invert
the operator (1), (2) at any noneigenvalue . From elementary spectral theory
one knows that the eigenfunctions of a compact self-adjoint operator are max-
imal, and from the relation

Ly = Nreg iff 7)o, = N g,
one sees that the eigenfunctions of L and those of (r 71L) ™! are the same.*

One can sometimes prove the maximality of a given orthonormal set directly
without recourse to the Sturm—Liouville theorem. In so doing one avoids solving
a Sturm-Liouville equation. On the other hand, one usually needs some corre-
spondingly strong result. We illustrate such direct proofs of the maximality of a
given orthonormal set by two examples.

First consider our familiar sine function basis {¢, = (2/7)2 sin nx} in L2(0,
7). By the Sturm-Liouville theorem above applied to the Rayleigh equation with
Dirichlet boundary conditions, {¢,} is a maximal orthonormal set for L2(0, ).

To prove this fact directly, we use the strong Dini test (see Problem 1.9.6)
and the fundamental fact (see Problem 2.9.3) that the Cg functions are always
dense in L2%(a, b, r). By Theorem H of the previous section, it suffices to show
that for any f in L?(0, 7) one can make

If - s;{”LZ(o,ﬁ)

arbitrarily small for N sufficiently large, where we recall
N

S0 = D an(x) and ¢, = (f, @) = fo F(s) @,(s) ds.

n=1

For any given € > 0 one may find by the above-mentioned denseness of the C§
functions an approximating function % in Cg(0, ) such that

If — &l < er2.

As in the proof of Lemma 2 (Bessel’s inequality) of the previous section, one hast

* Variations on this type of proof occur. For example, to avoid showing the inverse of L to be
Compact self-adjoint with discrete spectra, one may find a recourse to the variational characterization
of the eigenvalues A, But the rigorous equivalence of the spectral properties of the differential equation
and those of its variational characterization is roughly equivalent to the demonstrating of a compact
inverse. For further information about spectral theory see Section 2.7.2.

T This completing of the squares shows also that the best least squares approximation to f by a
Weighted sum of the o, is obtained by using the Fourier coefficients for the weights.
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N N
If — k2 = IA? — 2<f, > cpn)cp"> + "§=‘,1 h, ¢,

n=1
N
=If = sfP + 2 [k 00 — (f @)
and thus
If = sl = 1f = sl

By the strong Dini test the Fourier series s,':,(x) for h(x) converges uniformly point-
wise to h on the interval [0, 7], and hence (see Problem 1 of Section 1.6.3) also
in the mean, so that

Ik — skl < &2

for N sufficiently large. Combining these facts by the triangle inequality we therefore
have
If = s{l=1If — syl
=|f ~ &l + Ik — syl

<g2+ e =c¢

for N sufficiently large.

For a second example of a direct proof of the maximality of a given sequence
of functions {¢,}, consider the powers ¢,(x) = 1, x, 233, ..., X ... ,n=
0, 1,2, ..., suitably normalized for L%(a, b) for any finite interval (a, b). For
simplicity let us consider the case L2(—1, 1). We use the Weierstrass approximation
theorem, which asserts that for any h in C 0[ -1, 17 there exists a polynomial p
such that

max |h(x) — pO)| < €/2V2

—-1=x=1

for any given € > 0. This clearly implies that

lh = pliea-1,1 < &/2.

By employing also the denseness of the C > functions in L?(—1, 1), we therefore
have for any fin L?(— 1, 1) a suitable approximating h in C§ and a corresponding
polynomial p such that

If = pll = IIf — &l + & = pl
< g2+ €2 =c¢

This means that we can approximate f arbitrarily closely by a linear combination
N

2

n=0
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ofthe ¢, = x", n =0, 1,2, . ... These {p,} are thus maximal in the sense (3)
of Theorem H even though they cannot be mutually orthonormal. Properly combined
(see Problem 2 below) they become the maximal orthonormal set of Legendre
polynomials given in Section 2.1.

In summary then we have seen three ways to show {¢,} to be a maximal
orthonormal set.

1. By use of:
(1) the Fundamental Approximation Theorem (Problem 2.9.3) that the
Cy test functions are dense, plus
(ii) some other already established fundamental auxiliary fact such as a
Dini test or a variational characterization, plus
(iii) some basic orthogonality argument such as Bessel’s inequality.
2. By use of:
(i) the Fundamental Approximation Theorem for Cg functions, plus
(i) another powerful theorem such as the Weierstrass theorem, plus
(1i1) orthogonalizing in some way such as Gram—Schmidt (see Problem
2.9.3).
3. By use of:
(1) the Sturm-Liouville theorem of this section, plus
(i) the establishing that the operator L involved is self-adjoint, plus
(iii) the determining of its regularity or acceptable type of singularness
(Problem 2.9.4).

Problem 1. (a) One can eliminate the coefficient p and weight function r by
transforming the equation from the Sturm—-Liouville form (1) to the so-called
normal form

—v"(y) + cv(y) = Av(y), a <y<b, '
by the change of independent variable
y= f r(s)V7p(s) V2 ds
X0
and the change of dependent variable
v(y) = u()r(x)"p(x)",

the new interval (a’, b') depending on the choice of x, in (a. b). Do this,
finding the new coefficient c(y).

(b) Convert the Hermite and Legendre equations (see Section 2.1) in and
out of normal form (1)’ and Sturm-Liouville form (1).

(c) For additional practice convert both equations in and out of the third
or ordinary differential equation form
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ax)w"(x) + a(w' (x) + ;xwh) = 0. (n

Problem 2. (a) Check that the Rayleigh equation
—u"(x) = Au(x), o<x<m,

is a regular Sturm~Liouville equation. (b) Verify that the Hermite and Legendre
equations (see Section 2.1) are singular Sturm-Liouville equations. (c) By
Gram—Schmidt (se¢ Problem 2.9.3) orthonormalize the ¢, = x given above.

Problem 3. (a) ldentify o and B in the general separated boundary condition
(2) to obtain (i) Dirichlet, (ii) Neumann, and (iii) Robin boundary conditions
for the Rayleigh equation and the interval (0, w). (b) From the separated
boundary condition (2), what additional spectral information does one obtain,
beyond the self-adjointness of the operator and the existence of a countable
number of eigenvalues A,? (c) Fill in the details in the proof of the Sturm-
Liouville theorem given above.

2.5 FOURIER SERIES AND GREEN’S FUNCTIONS

Quite clearly there must exist certain connections between the (1) Fourier series
(via separation of variables) representations of solutions of partial differential equa-
tions and (2) Green’s function representations of these solutions. Although we do
not go too far into those connections, we will illustrate what one may expect by
looking at three problems: a hyperbolic one, and both a homogeneous and a non-
homogeneous elliptic one. The parabolic case can be approached in similar ways
(see Problem 3).

Let us remark that, since we have the three basic methods of solutions for
partial differential equations, namely (1) separation of variables, (2) Green’s func-
tions, and (3) variational methods, one could discuss going back and forth between
them in all six directions, and for all three classes of equations, for the homogeneous
and nonhomogeneous cases, for different boundary conditions, and so on. Thus
our discussion here is of necessity limited. In Section 2.6, however, one will find
some connections with the third basic solution method, for an elliptic problem.

Let us consider first the wave initial boundary value problem (Fig. 2.5a)

2%

FiG. 2.5a
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Uy, — Uy = 0, O0<x<m, t>0,
u,(x, 0) = 0, 0<x<m,

u(x, 0) = f(x), o<x<m,

u©,1) = u(m, 1) =0,

where f(x) has Fourier sine expansion
@x 2 ™
fx) = 2 ¢, sin nx, c, = — J:) f(s) sin ns ds.
n=1 k)

By separation of variables (see Sections 1.5 and 2.1) we have found the solution

ulx, t) = 2 ¢, Sin nx cos nt.
n=1

If we extend f(x) oddly about x = 0 and x = 7 as shown in the figure, it is easily
seen that the Fourier expansion above for f(x) remains valid for all —o < x < o,
since it just repeats itself periodically. Using the fact

sinnxcos nt = tsinn(x — 1) + %sin nx + 1)

!
2
we have, using also the fact that the limit of a sum is the sum of the limits when
all exist,

o

ux, 1) = Lsinn(x — 1) + % Y ¢, sinnx + 1)
n=1

%n=1c
=f(x—t)+f(x+t)
2 i

the so-called d’Alembert Formula for the solution to the wave initial value problem.
This formula may be, in accordance with the point of view being taken in this
section, regarded as a Green'’s function representation for the solution

ux, t) = f_w G(x, y, )f (y) dy

to the given problem, where

Sx —16y)+dx +1y
2 i

G,y t) =

8 denoting the ‘‘delta function’” measure that gives the point evaluation of an
integrand at the point at which the two arguments of the delta function coincide.
The general wave initial value problem

u, — u, = F(x, 1), —00 < x < ™, t>0,
u(x, 0) = f(x), —o <x <,
u(x, 0) = gx), -0 <x <o,
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may be integrated directly (see Problem 1) to obtain the more general d’ Alembert
formula

x+1t
u(x, t) = %[f(x -+ fx++ f_, g(s) ds

X
t [(x+(t—9)

+ L L_“_” F(y, s) dy ds].
This expression may also be regarded, from the point of view being taken in this
section, as the Green’s function representation formula for the solution to the given
problem. It would be, however, more complicated to arrive at this expression via
the separation of variables solution as was done in the instance above, and in fact,
it should be regarded as a more general solution valid for data that need not be
periodic.

For our second illustration of the connections between Fourier series and Green’s
functions, we next show how we may deduce the Poisson formula for the solution
of the Dirichlet problem on the two-dimensional unit sphere by summing the Fourier
series solution obtained previously by separation of variables. We recall that the
Dirichlet problem (Fig. 2.5b)

Au =0, r<l,
u(l, 8) = £(8),

has separation of variables solution
u(r, 6) = 3ao + ’21 r*(a, cos n® + b, sin nb)
with coefficients
a, =7 ! ffﬂf(cp)cos ne de, b, = nl fjﬂf(cp) sin ne de.
Let us assume that fis C! and of period 27, and recall (see Problem 1.9.6) that

when deriving the Dini test the first step was the insertion of a, and b,, so that the
partial Fourier sums were in the form

0 N
) = ifﬂj(s)(% + 21 cos n(x — s))ds.
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Using the same approach here, we have for sy(r, 0), after inserting the values of
the Fourier coefficients a, and b, into the partial sum for u(r, ), the expression

1 ™
sy(r, 8) = gf_"f(cp) de

N ™
+ 2 o ( f f(@)cos n6 cos ne + sin nd sin mp)dcp)
n=1 -

= lfﬂ f(cp)<l + i rtcos n(8 — @) | do
mJ/-n 2 n=1 )

By the assumption that f € C' we know from the strong Dini test that the Fourier
series for f on the boundary converges uniformly pointwise to f, that is, sy(1, 0)
— £(0) uniformly for —w = 8 = w. By use of the maximum principle it then
follows as in Section 2.2 that the partial sums sy(r, ) = u(r, 8) uniformly on the
closed unit sphere (3. Thus pointwise we have for r = 1

u(r, 9) = lim sy(r, 9) = hm —f f((.p)( + 2 r* cos n(0 — (.p)) deo.

N—x

The integration has as usual strengthened convergence; the geometric type series
under the integral need not converge at r = 1. Let us continue, however, and
consider this series, for r < 1, as analogous to the consideration for the Dirichlet
kernel we encountered in the proof of the Dini test, namely,

sin(N + )8

N
2 cos nf = —
n=1 2 sin 50

[ SRR

and show that the series in the expression above may be summed into the so-called

Poisson kernel,
1 —r?

2r2 + 1 = 2rcos(8 — @)}

)

1 x
5+ > ricosn@® — ¢) =
n=1

If so, we will have arrived at the Poisson Formula of the Green’s function repre-
sentation of the solution to the Dirichlet problem,

! 1 -r?
= _— < .
u(r, 9) f—’rr 2% [r2 + 1 — 2rcos(® — cp)] f@de,  r<l

The summing of the series is obtained by the method of *‘telescoping,”” which
was also employed in the case of the Dirichlet kernel and the Dini tests. The idea
is to cross-multiply the left-hand side of the claimed identity (*) by the denominator
of the right-hand side and see what drops out. The first term in this cross multi-
Plication is just
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[r2 + 1 — 2rcos(®d — ¢)].

Let us look then at the series term. We have, upon multiplying the series term of
the left-hand side by r2, 1, and — 2r cos(6 — @) in that order,

2 21 ricos n(® — ¢) = r3cos(® — ¢) + r* cos 2(0 — ¢)
+ rScos 30 — @) + -,
1 in rmcos n(@ — @) = rcos(8 — @) + r’cos 20 — @)
+ Peos3(0-¢)+ricosd(@-9)+. .,

—2rcos(® — ¢) O, rcosn(d — @)= — 2r2 cos( — ¢) cos(®0 — @)
e 23 cos(8 ~ @) cos 28 — @)
2r4 cos(® — @) cos 3(0 — @)
2r5 cos(0 — @) cos 40 — @) + -,

all series converging absolutely and uniformly for r < 1 by the ratio test. Recalling
that

2 cos(® —¢@) cos n(6 — @) = cos(n + 1)(6 — ¢) + cos(n — 1X6 — @),

we see that the term — 2r2 cos(@ — @) cos(8 — @) cancels the term r? cos
2(0 — ¢) leaving the term —r?, the term —2r3 cos(8 — @) cos 2(8 — ¢) cancels
the terms r* cos(d — ¢) and r* cos 3(8 — ¢), the term —2r* cos(0 — @) cos 3(8
— ) cancels the terms r4 cos 2(8 — ¢) and r* cos 48 — @), and so on, sO that
upon adding the three series above we have

2r? + 1 — 2r cos(® — ¢)] 2, r"cos n(® — ¢) = 2r cos(® — @) — 2r2,
n=1

Upon adding to this the first term already cross-multiplied above, we thus have the
desired identity (*) and the stated Poisson kernel formula.

Let us relate the latter formula more explicitly to a Green’s function. According
to Section 1.6.1 (see also Remarks 1, 2, and 3 there), from Green’s third identity
for the case of two dimensions we should have the solution of the Dirichlet problem

Au = 0in {}
u = f on o)

represented in terms of the Green’s function G(P, Q) for the problem as (Fig. 2.5¢,
where P = (r, 0) in general, @ = (1, ¢) on oQ, and Q = (p, ¢) in general)

aG
up) = —j %(P, O)f(Q) dsg,

"
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P

\‘/

FiG. 2.5¢

the other terms having vanished in Green’s third identity due to the conditions Agu
= 0in Q and G(P, Q) = 0 for Q € 3(2. We also know that the Green's function
will have general form

1 1
G(P, Q) = E;IH;I; + g(P, Q),

where the term g(P, Q) must be harmonic dnd selected to adjust the fundamental
singularity (1/2m)In(1/rpg) so that the sum G(P, Q) vanishes for Q on the boundary.
As in Section 1.6.1, Remark 3, we see that we may take
1 1 1 1
GP,Q)=—Inh— - In
27

-2_—_ 1
rPQ 13 roper'

where by the law of cosines and the definition of the image point P’ = ro2P one
has

rho = P + p* — 2rp cos(6 — ),
1
2
rhp rhp = 1 + r’p? — 2rp cos(d — ¢),

2 =

2
rhp + p? - —rgcos((-) - 9),

and thus
1
GP, Q) = i In[r2 + p% — 2rp cos(8 — )]

+ 4—1; In{l + r2p? — 2rp cos(® — 9)].

On the boundary 9(} of the unit sphere we have
G oG

0nQ 0p p=l,

therefore,
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aG(P, Q)
0nQ

__l_. 2p — 2rcos(® — ¢)
4w r? + p* — 2rpcos(d — ¢)

[ol=1:11) p=1
1 2r%p — 2r cos(d — @)

dm 1+ rp? — 2rpcos(d — ¢)

p=1

-1 1 -r

T 2m|r2+ 1 — 2rcos(® — @)
thus verifying that the Poisson kernel arrived at above by separation of variables
is in fact in agreement with the direct Green’s function representation of the solution
of the Dirichlet problem.

For a third illustration of the connections between Fourier series solutions and
Green’s function solutions consider the Dirichlet—Poisson problem (Fig. 2.5d)

—Au = F(x, y)in £,
u = 0 on 3.

As seen in Section 2.1, if we Fourier expand the data

F(x,y) = 2 d, sin nx sin my,
1

n=1m=

we arrive at the solution

o «© d"m ) )
u(x, y) = ———=— sin nx sin my.
Y ,.Zl ,,,2-;1 n? + m? Y

However, we may also expect in general from Green’s third identity that the solution
may be given in terms of a Green’s function representation

uP) = [ e, 0F©@ v,

B Io Io G(x, y, & MF (£, n)dE dn,

where P = (x, y) and Q = (£, m). Substituting the values

dpm = ﬁ;j I F (&, m) sin n€ sin mm d€ dn
mweJo JO
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into the separation of variables solution u(x, y), we arrive* at the Green's function
representation

> (sin n& sin my sin nx sin m
u(x, y) = ffo 1 ) £ sin Y) p (¢, ) dE dn,

(n® + m?)(w*4)
G(P. Q) = G(x. y. £, m)

Stated another way, if we let ¢,,, denote the normalized orthonormal basis vectors
(2/) sin ax sin my, we have the eigenfunction expansion

1
Gy £, M) = 2, = @um(® YPum(E: M)

nm knm

representing the Green’s function in terms of the eigenfunctions and eigenvectors
of the problem

—Ap = \ein {,
= 0 on 0{).

This is typically the case for such problems on bounded domains for which the
eigenfunctions form a maximal orthonormal set.

Problem 1. (a) Derive (Fig. 2.5e¢ should help) the d’Alembert formula by
making the change of variable

6=

1\

The line

n=x9 ¥ (xq,20)

The line

/E=xo+'o

The line § =17

n
FI1G. 2.5¢

* Formally, by interchanging the sums and integrals. However, this may be made rigorous by
reference to Parseval's equation and Theorem H of Section 2.3. See the next Pause.
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to change canonical forms (see Problem‘1.9.1)

Uy — Uy = — gy

Note that the Jacobian of the transformation above changing variables is

J_‘l——l‘— 2

which explains the factor% in the d’Alembert formula.

(b) Verify the general d’Alembert formula given for the wave pure
initial value problem by differentiating and substitution into the problem.

(c) Justify that the solution u(x, %) depends only on the data present
in the shaded region of Fig. 2.5e. This region is called the domain of depend-
ence.

Problem 2. (a) Without worrying about convergence show that

L [[[[ ey emaganacay =3

o Jo Jo Jo o Nam

in the case of the Dirichlet—Poisson problem considered above. (b) Verify that
this quantity exists, that is, that it is indeed finite. (c) Why for this problem
may we therefore write

ulx, y) = f J’ G(P, Q)F (@) dVg = L' F(x, y)?

0 JO

Problem 3. For the following wave initial value problems, find the specific
value u(xy, &):

@ u, — ctuy =0, —o < x < 0, t>0,

u(x, 0) = x2, ux, 0) = 0, find u(100, 100),
) u,, — du, = e, — o< x <o, y >0,

u(x, 0) = 2, u(x, 0 =1, find u(1/2, 3/2),
©) u, — uy = 0, 0<x<l, t>0,

u(x,0) = 1, u,(x,0) = sinmx,

w0, 8) = u(l, ) =0, find u(1/2, 2).
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THIRD PAUSE: EXAMPLES, EXPLANATIONS, EXERCISES

In Sections 2.3 and 2.4 the presentation deviated toward the abstract.* This was
done in order to group together within two general theorems most of the special
function expansions that occur in applications. As we mentioned in Section 2.1,
and will illustrate again in Section 2.6, all of this theory can be thought of in terms
of a single classical metatheorem: try to obtain a best least squares fit.t

Example

Parseval’s Equation of Theorem H of Section 2.3 states that

£

> 2= J;) wlrdx

n=1

”uH]z,z'(n,r)

when u(x) is given a Fourier expansion u = 37 ¢,$, in terms of a maximal
orthonormal set {¢,}>_, in a Hilbert space L2({2, r). The Sturm—Liouville Theorem
of Section 2.4 indicates the wide range of L2(a, b, r) spaces available in the case
when () is an interval (a, b). If possible, the best choice for applications will be
to take the {$,} to be the exact eigenfunctions of the partial differential equation
under treatment, if you know them.

As indicated above, Parseval’s Equation should be regarded as an instance of
the Principle of Best Least Squares Fit. Show this, given that the {d,};-, has
already been chosen.

Solution. This fact is already implicit in each of

(i) the answer to Exercise 7 in the Second Pause,
(i) the proof of Lemma 2 in Section 2.3,
(iii) the direct proof of maximality of {¢, = (2/m)" sin nx} in Section 2.4.

The general proof is therefore evident. Consider an approximant

N

uy®) = 2, cubax)

n=1

and the corresponding mean square €rror

* Abstract, elegant, general mathematics possesses an advantage of precision of statement, with
a corresponding disadvantage of loss of specific information. Between the two extremes of abstraction
and detail, where one should choose to work will depend on the task at hand.

+This point of view can hardly be overemphasized in mathematical science.
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N N
J;) (u — uy)?dx = J;) wdx — 2"21 Cy Qud),,dx + nzl c2
N 2
= fnuzdx+ "Zl<fnu¢,,dx—c,,>
N 2
—EXLﬂ%ﬂ»

where we have completed the square of the last two terms of the error. The only
adjustable term is the second, which gives the best least squares fit when the ¢,
are chosen to be the Fourier coefficents

o = | uwe s

Exercises
1. Prove Parseval’s Equation with the {¢,,} orthogonal but not normalized and
for the case when the weight 7 is not 1.

2. Prove that fo (Inx) (cos nx)dx — 0 as n — .

ko

3. Prove thatf cos
— \/m

4. Justify that for the nonhomogeneous Dirichlet Poisson problem —Au = F
in 0, u = 0 on 3} of Section 2.5, one can perform the step

u=33

dx— Qasn—

IF
M sin nx Sin my = ff GF.
n? + m? Y

5. Prove the inner product form of Parseval’s Equality:

o

(, v) = 2, Cudy,

n=

where u = 3 ¢,b, and v = = d,b,, {d,} a maximal orthonormal sequence.

There are far too many special function Fourier eigenfunction expansions (as
evidenced by the examples given in Section 2.1 and Section 2.4) coming out of
mathematical physics from a separation of variables of a partial differential equation,
to consider here. However, let us inspect more closely one example, namely, that
requested in Problem 1(b) of Section 2.4, the Hermite functions as eigenfunctions
coming out of a quantum mechanical harmonic oscillator.
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Example
The behavior of a quantum mechanical particle in a three-dimensional isotropic
harmonic oscillator potential V = mw?r?%2 is governed by the Schrodinger equation

2
L AY(x, y, 2) + :molrix, y, 2) = Ed(x, y, 2)
2m 2

where £ = k2w = 1.054 x 1073 joule second, h being Planck’s constant, m
the mass of the particle, E its energy, o its angular frequency, r the radial space
coordinate V/x2 + y2 + z2. Reduce this partial differential equation to a system
of ordinary differential equations by separation of variables.

Solution. From §(x, y, x) = X(x)Y(¥)Z(z) we obtain
_h2 X!I YH ZH l
—_ | — _ =) + = 2(x2 + y2 + 2y = E
2m<X+Y+Z> 2m(n)(x y z%)

from which we conclude that

__iz_x"_i_l ZXZX_E,,X
2m 2 e

—h? 1

—VY' + = 2Y = E
o 2m(n)zy Y
_h2 1 -
—_— - =E
> Z' + 2mmzZ Z

where E,, E,, E, denote as yet arbitrary constants which must sum to the energy
E.

Exercises

6. Convert the one-dimensional harmonic oscillator equation

=k u'(x) + T 02x2u = Eu

2m 2
to dimensionless normal form.

7. The postulates of quantum mechanics require that such equations possess
a complete set of eigenfunctions. Show this for the harmonic oscillator
equation.

8. Show that the resulting eigenfunctions are the Hermite polynomials.

Although we have emphasized that the most useful maximal orthonormal sets
{®,} arise from such differential equations, one should not conclude that all do.
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Example
The Haar system
$1(t) = Xy (O
by (1) = 2% [xpo @t -2i+2
- Xy @'t = 2j + DI
wherej=1,...,2n =0, 1,2, ..., forms a basis for all spaces L’[’O_”, 1

< p < », Haar introduced this system to show that maximal orthonormal sets need
not come from a differential equation. Write out a few of these functions.

Solution. These functions just repeatedly cut the preceding signed support intervals
in half so as to remain orthogonal. We have

o0 = 1, 0=t=1,

1, 0=t1<¥
(1) = {—1, B<t=l,

[ 0=t<VY%
w<t< W
BL<t<¥s
Yo<t=1

0=t<W
y<t< W
Wh<t<¥%
2 Ya<t=1

bs(t) = <

L ooél&

ba(t) = <

%o

and so on.

Exercises

9. (a) Sketch a few of these functions and prove that they are orthonormal.
(b) How can you be sure that they do not come as eigenfunctions of some
(strange) differential equation? (c) What are two of Haar’s other contribu-
tions to mathematics?

2.6 FOURIER SERIES AND VARIATIONAL AND NUMERICAL
METHODS

The idea of numerical approximation of a solution of a partial differential equation
can be illustrated by the following simple boundary value problem:

Au = 0in (),
u = fon .
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Here for example u(x, y) may be regarded as the temperature at the point (x, y) of
a square slab of material whose boundary temperature fis known at the 12 boundary
points shown in Figure 2.64, it being desired to approximate or estimate the tem-
perature u at the four interior lattice points. For example, let f be zero on three
sides, that is, (0, 0) = (0, 1) = f(0, 2) = f(©, 3) = f(1, 3) = f(2, 3) = f(3,
3)=f3,2) =f(3,1) = f(3,0) = 0,and let f(1,0) = 1 and f(2,0) = 2. It
is now desired to estimate the temperature u(1, 1), u(1, 2), u(2, 1), and u(2, 2).

In order to determine an efficient way in which to proceed with this temperature
estimation, we accumulate evidence from three different viewpoints, all leading to
the same conclusion. For numerical methods, it is always nice to have corroborating
evidence.

First, from the mean value theorem for harmonic functions (see Section 1.6.1)
a reasonable approximation to u(x, y) at interior lattice points is the average of the
values of u at the four adjacent lattice points.* Second, it is quite reasonable from
the physical point of view to ask that a steady state temperature obey this isotropic
self-averaging law. There is, moreover, a third point of view that puts a little more
precision into these reasonability statements and illustrates the so-called finite dif-
ferences method of approximating solutions of differential equations. For if one
replaces the partial derivatives by their approximating difference quotients as fol-
lows:

dux, y) _ ulx + h, y) — u(x, y)
ox h ’
u(x + h,y) — ulx, y) _ u(x,y) — ulx — h, y)
Pulx, y) _ h h
oxz h ’

that is, if one takes first a single forward difference, and then, for the second

FiG. 2.6a

* This amounts to an approximation of the integral fu, taken over the unit circle centered at the
lattice point (x, y), by the Riemann sum for the integral

ry
2 u(x;, y;) A8 with A8 = /2.
<

T This method clearly works in a similar way for the parabolic and hyperbolic cases.
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derivative, if one takes a single backward difference, and likewise for the other
independent variable, one has
Pulx, y) _ ulx. y + k) — 2ulx, y) + ulx.y — k)
ay* K2 '

Then upon solving (taking b = k for simplicity) the equation
0=Au=ulx+hy + u(x — by + u(x,y + k)
+ ulx,y — k) — 4ulx, y)

one arrives at the same approximation discussed above by taking k = k = 1.
In this way then the boundary value problem reduces to a problem in matrix
algebra as follows:

u(l, 1) = @, D + w1, +u@ D+ u(l, 0)),
u(l,2) = Mu©,2) +u@, D + w22+ u(l, 1)),
w2, 1) =, 1) +u@ 2+ u(3, 1) + u(2,0)),
u(2,2) = fu,2) +u2,3) + u(3,2) + u@2,1),

which in matrix form becomes

4 -1 -1 0] «i, 1)
-1 4 0 -1]]«1,2
-1 0 4 -1 |lu2 1)

0 -1 -1 4 1Lu@,2)

OO -

which has (see Problem 1) the solution

wd, D =5 w2 =g @ D= 5 andu(,2) =3

The finite difference method has been a mainstay in the numerical treatment
of differential equations. By taking smaller mesh size k and k and by using more
refined differencing approximations the accuracy is greatly increased.* In the re-
mainder of this section we will consider briefly a more recent development in the
numerical solution of differential equations, namely, the finite element method,
which may be regarded in some cascs as a variational form of the finite difference
method.T We will also consider in a similar context other variational methods, all
of which depend on a best least squares approximation in a suitable energy norm.

* See the following Pause.

+ A further introduction to numerical methods, more from the implementation point of view, is
given in Appendix B of Chapter 3. For more extensive treatments let us refer to books such as Forsythe
and Wasow, Finite-Difference Methods for Partial Differential Equations (Wiley, New York, 1960)
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Let us return for a moment to the above example, and let us now suppose for
simplicity that we know the boundary value f at all points on the boundary; and to
be specific, let f(x) be given as the piecewise linear function (Fig. 2.6b)

_x, 0=x=2,
fo = {2(3—x), 2=x=3.

Or, if you wish, we may just assign this linear interpolation to fit the original data
given at the original boundary lattice points. As mentioned above, the finite dif-
ference method then decomposes the square () into finer and finer grids of mesh
size h and k and approximates u(x, y) at the lattice grid points by the solutions to
the corresponding larger and larger algebraic linear systems. The data as just in-
terpolated will now be available during this process at the finer and finer boundary
lattice points.

Now we wish to similarly interpolate to establish values for our approximation
to u(x, y) at all of the interior nonlattice points (x, y). By the reasoning that led to
the finite difference method, we would approximate u(x, y) over each of the nine
squares by a step function with value equal to the average of the finite difference
values found at the corners. For the above example we would then arrive at the

approximate solutions as shown in Figure 2.6¢, (where heights = g, %, % and so
on).

A better interpolation, and one consistent with the above interpolation of the
data f, is obtained by using piecewise linear, or more correctly, piecewise planar,
interpolations, as shown in Figure 2.6d. This better accommodates both the bound-

ary data and the finite difference values found at the interior corners, which are

FiG. 2.6b FIG. 2.6¢

and R. Varga, Marrix Iterative Analysis (Prentice-Hall, Englewood Cliffs, New Jersey, 1962), as standard
texts for further reading on the finite difference methods and other numerical methods used in treating
partial differential equations. For more recent developments, see O. Zienkiewicz, The Finite Element
Method in Structural and Continuum Mechanics (McGraw-Hill, New York, 1971) and B. Finlayson,
The Method of Weighted Residuals and Variational Principles (Academic Press, New York, 1972). For
4 comprehensive treatment of the subject, see Ames, Numerical Methods for Partial Differential Equa-
tions, 2nd Ed. (Academic Press, New York, 1977).
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FiG. 2.6d

both fit exactly in this example. There is an ambiguity in the choice of diagonals
used, but that does not offend us; one can try any of the possible configurations
on the computer. The fact that three points determine a plane thereby inducing a
triangular grid is characteristic (although far from the full story*) of the finite element
method, of which the scheme just discussed is an example.

There now appears the question of convergence of these approximate solutions
to the actual solution u(x, y). One may investigate this question in a variety of
convergence norms, but we will restrict attention to an energy norm related to a
variational approach.

The key to the next step is to g0 back to the Dirichl€t (variational) principle
(see 1.5.3 and 1.9.5(3)), which asserted that the solution to the Dirichlet problem
(Fig. 2.6e)

Au = 0in ,
u = fon o,

FIG. 2.6e

is obtained by the function u that minimizes the energy integral D(v) = fq |grad v|?
dQ over all functions v which have value f on aQd.

Indeed, as shown in Section 1.5.3 for the case of one dimension, and as follows
in exactly the same way in higher dimensions (see Problem 2), by appropriately
integrating by parts one shows immediately that the solution u to the Dirichlet
problem on any nice domain € has the minimizing property§:

* In more complicated or higher order problems one may wish to use rectangular or other grids,
depending on the boundary, and higher order piecewise polynomial interpolations, leading to the theory
of *‘splines.”’

§ The harder part is to go in the other direction, showing that the variational solution u determined
by
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D(u) = D(v), v = fon dQ,
v smooth enough for the integration by parts.

It is typical of variational methods that one minimizes successfully by taking
the largest possible class {v} that could reasonably be considered. For the case of
D) = [q |grad v|* dx, this means the class of functions v in L2({2) with first
partial derivatives square-integrable. This class includes, for example, the C1(f})
functions and further, many other functions that possess square integrable distri-
butional first derivatives; see the discussion in Problem 1.9.7 concerning weak or
distributional derivatives. The space of such functions {v} is called the Sobolev
space

HY(Q) = {v € L)) such that% eLX, i=1,... ,n}*

]

with inner product

u, w) = fn uw + fn grad u - grad w,

and norm (squared)t
W = [ o + [ lerad u = 1ol + g u,

where ||u|| denotes the L? or root-mean-square norm [fq #2]Y2. It is a property of
functions v in H!(€}), for {1 a one-dimensional open set, that a suitable representative
of v will be continuous (see Third Pause). For n = 2 and 3 dimensions one must
g0 to H%(()) to assure the continuity of the functions therein. Similar regularity
results hold for H™(Y) in higher dimensions.¥

D) = min D(v) = infimum D(v)
pr——. e —
v=f on o} v=f on 31
actually exists and moreover that u is C2 and Au = 0 (see Problem 1.9.5(3)). To show this one needs
to be more careful and one must in particular specify exactly over which class the infimum is obtained.
* Other notations are H'2(2), W!(}), W'2({2). In the same way one has
H*(Q) = {v € LX), L € L2(QY), -ﬁ (S LZ(Q)},
ax; ax;dx;
the ‘‘second”” Sobolev space, and so on for the ‘‘higher’’ Sobolev spaces H™((}).
T For convenience we will take the liberty of using the term ‘‘norm’’ hereafter in cases involving
a bonafide-norm, or a norm squared, or D(u), or D(u)'?2, and so on, when the entity involved is clear.
1 In fact the Sobolev lemma asserts that v in 2% 1+ ¥(Q) will be CX(QY), where n is the dimension
and where [n/2] means ‘‘rounded down to an integer.”” Thus as dimension increases one must take
higher order Sobolev spaces to guarantee the continuity of functions therein.
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The Dirichlet principle now states (for reasonable data f, see below) that

D(u) = min D(v) = inf D(v),
y=fon 3 v=f on 301
vEH(Q) vEHY)
Looked at in another way, upon subtracting off the data f (let us assume for the
moment that f as given is a function (e.g., a polynomial) already defined throughout
Q), the Dirichlet principle asserts that

D(u) = inf D(v).
v~fEHKD)

Here
HL() = {h € L2() such that grad h € L2(}) and h = 0 on 32},

with the same norm and inner product as H'(Q)). The principal part of this norm
(squared) is the energy term

D) = L |grad vf?

and we will sometimes purposely neglect the other part,* both for simplicity and
in order to emphasize the principal role of the Dirichlet energy integral in these
considerations.

The principal links between the Dirichlet principle, the methods of orthogonal
projection (which include least squares, Galerkin, Rayleigh—Ritz, and others), and
finite element approximation, may now be seen via Green’s identity as follows.

We have for any two C? functions & and w (and by taking limits, for any two
H'(Q) functions h and w) by Green’s first identity that

D, w) = h w _ h Aw.
aq on a

If h = 0 on 3 and w is harmonic so that Aw = 01in £, then
D(h, w) = 0.

Since D(h, w) is an inner product,T this means that h and w are orthogonal to each
other.

* The two norms (squared, and hence the norms themselves, as in Section 1.6.2, Problem 3) D)
and i} = Il + D(v) are equivalent for v in HY(Q). That is, there are constants ¢, ¢ such that
;D) = Wi} = D). One may take ¢; = 1, and ¢z follows from the Poincaré inequality, namely.
that fju? < ¢;D(v), where the constant ¢; turns out to be (see Section 1.6.2. Problem 2) \['. We recall
that the first eigenvalue A, for the problem is strictly positive. For H 1(€}) (no boundary condition) on¢
has D(v) = O for v nonzero and constant, but this causes no essential difficulty and moreover seldom
occurs for the functions encountered in practice. In the theory it may also always be taken care of (€.
see the next footnote) without difficulty.

+ Again for simplicity (see the previous footnote) we just do everything modulo the constant
functions. If » = ¢ a constant on¢ has D(v) = 0. which (as a technicality) interferes with the idea that
for a norm D(v) = 0 should imply v = 0. To get around this point many authors consider instead of
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hlw

in the sense of this inner product. One may write this fact as

ER
HY() = Hy(Q) & UQ)

where H{(€)) is the subspace of H'((}) functions vanishing on 3§ and where U is
the subspace of harmonic functions.*

Now we go back to the Dirichlet problem and we assume that the boundary
data f can be extended (see Problem 2) into the domain  as an H'() function
fe- By the above orthogonal decomposition the extended function £, has unique
decomposition into components

Je(®) = h(x) © wix),

where h(x) = 0 on {2 and where Aw(x) = 0 in 2. On 30 we have w(x) = f,(x)
= f(x) and thus w is the solution u to the Dirichlet problem.

In geometric language one may say that the solution u is obtained as the
projection of £, in H! onto the subspace U, that is,

u=Pgf,

For a useful picture of the Dirichlet principle, see Figure 2.6f, which shows that
““the shortest way up, is straight up,”’ that is, that indeed

the operator Av the operator Av+ v, which ‘‘agrees’’ exactly with the H'()) norm; but this remains
nonetheless an artifice. In terms of the decomposition given on this page, constant functions find
themselves in U and functions w in U may differ by constants without affecting the norm D(w).

* Actually the fact that functions & vanishing on the boundary and harmonic functions w are
orthogonal in the energy inner product is not enough to write H! = H} @®+ U, for it still must be shown
that their orthogonal sum fills out the whole space. Thus one defines U as the orthogonal complement
in H! of Hy so that all of H' is guaranteed in the sum. Then one shows as follows that fanctions w in
U are indeed harmonic. Let k be an arbitrary C5(£)) “‘test function’ and let w be in U defined as the
orthogonal complement of H§. Thus D(h, w) = 0 and hence by Green’s first identity [ w Ak = 0
for all such . Hence Aw = 0 in the weak or distributional sense (see Problem 1.9.7). This is the sense
in which an H'(£)) function is harmonic.

t We may assume the boundary data f is not constant, the Dirichlet problem otherwise being
trivial. Then w is not constant and the arbitrary constant referred to in the previous footnote may be
taken equal to zero.
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D) = D(v)

for vin {v} = f. + {H&.*

Let us summarize our considerations up to this point. We started the section
with the question of how to numerically approximate the solution to a Dirichlet
problem. The method of finite differences was first considered, and this then led
in turn rather naturally to a finite element approximation method. This was followed
by the question of convergence, Or put another way, the question of the amount of
error in any approximation. To measure the error one needed a norm, and going
back to the Dirichlet principle provided us with such a norm. Namely, if u is the
solution to the Dirichlet problem and vy is the Nth approximant to the solution,
the error in ‘‘energy’’ is given by

D@ — vy) = J;) |grad(u — vy dx.

One could for example take the vy to be the successively refined finite difference
or finite element approximations to the solution. Or one could take the vy (more
variationally) to be a minimizing sequence according to the Dirichlet principle.
Each procedure for choosing vy leads to a convergence question, for which the
energy norm may be used as one measure of error.

More generally the Dirichlet problem (Fig. 2.6g)

Au = 0in Q,
u = fond

* The critically intelligent student might at this point object that the extension f. of f into the
domain €2 is not at all unique, so that the picture is not complete in this respect. But any other extension
f! will be represented by a vector ending somewhere on the “dotted line’’ of {v} as represented in Figure
2.6f, since any such extension will have the same harmonic component in U. Let f, = h @ wand f,
= h' ® w'. Then

D(w—w’)=§m(w—w')a—a'-l(w—w’)ds
—§ (- foZow-wyds
=T, D3 w

- CnS e wds =
= fm(f f)an(w w)ds = 0,
because h and k' vanish on 3. Thus w = w’ = u in the above picture.

+ For the reasons evident from Figure 2.6f, the Dirichlet principle is sometimes called the method
of orthogonal projection. But the latter is more general and need not be variational, and is itself 2
special case of a still more general Hilbert space approximation method called the method of best least
squares fit. This method applied in diverse contexts such as statistics and elsewhere, and is itself just
one (although fundamental) aspect of Fourier series. When applied to partial differential equations the
latter method is often called the Galerkin method, especially when the projections and operators involved
are not necessarily self-adjoint. The self-adjoint case when approximating eigenvalues is called the
Rayleigh—Ritz method.
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FiG. 2.6g

for an arbitrary bounded domain in any number of dimensions can be similarly
approached numerically as we have discussed here (in order of progress) via finite
differences, finite elements, and then convergence considerations. Finite differences
provide approximate solutions at a grid of interior points. Finite elements provide
interpolation by approximate solutions satisfying

Au =0

approx.
everywhere except on the grid lines. The Dirichlet principle provides a convergence
proof by taking approximating solutions in a variational prescription as shown in
Figure 2.6h.

To close this section we wish to relate the Dirichlet principle and variational
methods to the general method of best least square’s approximation, of which they
are special cases.

The general idea for any method of least squares approximation to an operator
equation*®

Lu=F
is to choose a maximal orthonormal set {¢,} in the sense of Theorem H of Section

2.3 in an appropriate’ Hilbert space, and approximate the solution u by a partial
sum

N
Uy = 21 CnPn
n=

with the coefficients cy determined by the requirement
<LuN_F"Pm)=0, m=],2,3,...,N.

U  Approximating sotutions

N, 7 7 S (v} =f, +H}
Solution u

| "
FiG. 2.6k

* Here it is perhaps useful to think first in terms of the Poisson problem —Au = Fin (), u =
0 on 39}, although we will later come back to the Dirichlet problem again. See also Problem 2.9.5 for
Some of the concepts used here.

 Finding the ‘‘appropriate’” Hilbert space is often the trick.
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If Py is the projection onto the span of the @1, . . - > #n» this amounts to requiring
that

PyLuy — F) = 0,

that is, that the operator equation* be solved approximately when *“projected’” onto
the approximating subspace. Since the {¢,} were maximal one has Py — ITasN—
« and, depending on how well the Py and the operator L ‘‘commute,”’ One can
reasonably expect the uy to often converge to the solution. We give here a little
argument? to show why this is so, assuming for simplicity that the operator L is
continuous,} that is, assuming that there exists a number M such that

ILwll = M|lw|| for all w.

The infimum of all such M is called the norm |L|| of the operator L. We also
suppose that the projections Py are symmetric and that L is strongly positive (also
called coercive): There exists a number m > 0 such that

(Lw, w) = mljw|? for all w.

The convergence argument then goes as follows.
We first note that if the {¢,} are maximal, one has as noted above the con-
vergence

lu — Pyull— 0

for any u and in particular for the solution u. The projected equation above may
be written as

PyLPyuy = PyF
from which the least squares approximant 4y is obtained as
uy = (PNLPN)—leFa

the inverse therein being guaranteed§ by the assumed strong positiveness of L, the
orthogonality (i.e., the symmetry) of Py and Schwarz’s inequality:

* When the operator equation is a partial differential equation, this is often called Galerkin’s
method, after the Russian mathematician Galerkin.

t This argument is indeed a basic one in numerical analysis. The fact that {¢,} is maximal is called
consistency; the fact that the projected operators are uniformly invertible is called stability, and then
the method converges. Partial differential operators are not continuous in a Hilbert space (although they
can be made continuous in other spaces by going to the theory of distributions, which is done, however.
at a certain cost in geometry). Integral operators and matrix operators are often continuous in a Hilbert
space norm.

t For a discussion of continuous, that is, bounded, operators, sce Problem 2.9.5. Note that in the
present discussion we are in fact assuming that both L and L~! (the latter by the strong positivity of Ly
see part (b) of 2.9.5) are continuous operators.

§ This is a rather standard technique in handling operators. Strongly positive operators (such as,
for example, most elliptic differential operators with appropriate boundary conditions) always have
bounded inverses by this argument. Let us also note that [Pyl = 1 if Py is an orthogonal projections
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v

wll IPNLPywll = (PNLPyw, w)
(LP W, P NW)

v

m||Pywl?.

The last inequality states in particular that for w which lie within the range of Py,
that is, w in the span of the ¢,, n = 1, ..., N, then if P\LPyw = v, one has
w = (PyLPy)~ v, and moreover

1
Iwll = — ((PNLPy)WI.
m

Thus the projected operator PyLPy is invertible on the range of P as claimed,
with inverse bounded (uniformly in N) by

1
PyLPy) Y = =
I(PuLPw) 1l = —

Since we may write Pyu
therefore have

(PNLPN) " Y(PyLPy)u and uy = (PyLPy) " 'PyF, we

1
e — upll = m IPNLPyu — PyF|| + (I — Pyull

A

Py Lul + | = Pyul

('—lL—” + l) [Py — ull = 0,
m

the desired convergence of the method.
Let us illustrate the above general method by looking first at the Poisson problem

with Dirichlet boundary conditions
—Au = FinQ,
u = 0on o).

A

We assume that (2 is bounded and nice, for which there are a countable number
of eigenfunctions {e,} for the given operator L, which in this case means — A¢,
= N, in Q, ¢, = 0 on 8. Let Py be the projection of H = L2({2) onto the
8pan sp(¢,, . . ., ¢y) of the first N eigenfunctions. The set {¢,} is a maximal
orthonormal set in the sense of Theorem H of Section 2.3, as may be shown from

nd also that we have not worried at all about the domain D(L) when taking compositions of operators
in these arguments. As noted in the previous footnote, L is usually not bounded if it is a differential
Operator. Nonetheless the above argument, suitably fixed up, is acommon one in numerical convergence
‘Considerations for differential operators. L = A for example becomes a bounded operator if one uses
h H? norm |lul} = Jjul? + {lgrad u|> + [Aul?, but then one loses other properties desired in the
‘Simplified argument given above, such as positivity and ease of projection.
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more advanced considerations in higher dimensions similar to the Sturm-Liouville
theory given in Section 2.4. The operator L is also strongly positive, as seen from

(Lu, u) = —J;) Au()u(x) de = A J;) u?(x) dx

and the positiveness of the first eigenvalue A, for the corresponding eigenvalue
problem. Letting uy = SN_| C.n the equation

PNLPNMN = PNF

becomes

N N
2 ann"Pn = El dn"Pm
n=

n=1
where the data F has been Fourier expanded F = s*_, d,¢, in terms of the
eigenfunctions ¢,. Thus we may take ¢, = du/A,. By the strong positivity of L we
have a continuous inverse L~ ! and thus can show convergence directly:

x N
w=LF=L1Y de,=L"lim 2 do,
n=1

N—-x n=1

I

N
lim L™ D, d,o,
n=1

N—©
Nod
= lim D, 2 ¢, = lim uy.
Nesos n=1 A N>

This may be done for all data F in the range of L, and the latter is in fact (see
Problem 2.9.5(d)) all of L2(€)).
From this example we would like to make three remarks:

(i) In being able to take ¢, = d,/\,, we should be led to realize that in this
case the Galerkin method is exactly the Fourier method.

(i) It should also be remarked that for many domains €} one will not be able
to find the ¢, explicitly. In that case normally one will be forced to use
some approximations to the ¢, or some other base U, for the approximation
procedure.

(iii) Finally, we note that the convergence proof for the above Poisson problem
worked because L™ 'Py = PyL™'. In the previously mentioned general
situation wherein some inexact or convenient ¢, other than the true ei-
genfunctions ¢, must be used, one will not have this exact commuting of
the operators L and L~ with the projections Py. Note also that the com-
muting relation LPy = PyL gives convergence, as in the above Poisson
problem, whether L is continuous or not.

As a second illustration of the general least squares approximation method, let
us mention any eigenvalue problem
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Lu = Au.

For this problem and any chosen {¢,} the Galerkin equation becomes, with uy =
3N, a9, the N X N system

L — Nuy, @) =0, m=1,2,3,..., N,

which yields the coefficients ¢,. When L is self-adjoint, this method usually goes
by the name Rayleigh-Ritz method. It has been extremely valuable and very much
used in applications. *

For a third illustrationt of the general method of least squares approximation
let us return to the Dirichlet problem

Au = 0in Q,
u = fondd.

The data f are extended to a function f, defined on (2 and in H'(€2). Let {¢,} be a
maximal orthonormal set in #}(€2): This can always be arranged by smoothing step
functions into Cy functions and then orthonormalizing as in Problems 2.9.3 and
2.9.4, but using of course the norm D(w). Let Py be the projection of H'({2) onto
the span of ¢q, . . . , @y. What is the operator L here? It is comprised of two parts,
the Laplacian A applied to functions over {) and the identity / on 8}, with data F
being thought of as also comprised of two parts, namely, 0 in (1 and f on 8Q2. If
we take (admittedly apparently ad hoc at this point)

N

Uun =fe - 2 CnPn

and require that the ¢, be determined by
(Auy, @) =0, m=1,2,... N,

we are in spirit at least following the above general method, in that the uy ‘‘ap-
proximates the identity on the boundary’’ and the orthogonality condition just given
follows the general Galerkin coefficient-determining procedure as applied to this
case of zero data F on ().

That is, in operator language, we have required that Py — / in H} and that
PyAuy = 0, which is the Galerkin prescription for the case of zero domain data.

From this it is easily seen that ¢,, = D(f,, ¢,,)/D(d,,, d,). Moreover, we
have

0=D(uy — u) = D(uy) — D(w),

the picture (Fig. 2.6i), and (upon further verification) the fact that the {uy} form
what is czllcd a Rayleigh—Ritz sequence, which indeed converges to the solution
u from above:

* See for example H. Weinberger. Variational Methods for Eigenvalue Approximation (SIAM,
; Philadelphia, 1974).
+ The reader should fill in some of the details here. see Problem 3(c) at the end of this section.
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FiG. 2.6i

D) = - Dluy+1) = D(un).

In general, any such approximating sequences from above are called Ritz se-
quences. *

In general, and in order to complete the verification of the above, we note that
one may thus obtain a Ritz sequence as follows. Since HA()) is separable, there
are many maximal orthonormal sets {¢,} in H(Q) in the D(¢) norm. Let Py be
the projection onto the span sp{ey, - - - » en} and note that Py — identity in
HL(Q), so that Py— I — P in HY(), where P = PH' is the previously noted
Dirichlet projection of H'(£2) onto U. Letting

uy = (U — Pofe,
one has therefore that
uy— Pf,=u
in HY()), so that
D@y — w)— 0.
By the Pythagorean theorem one has then the desired convergence from above,
D(uy) = DWU — PYf.) 2DW — Prned)fe) = D(Pf,) = D).

One may obtain an approximating sequence from below in the same way. Such
lower-bounding sequences are called, among others, Trefftz sequences.t Let {¢,}
be a maximal orthonormal set in U in the D(¢) norm, and let Py be the projection
onto the span sp{e@y, - - - » @y} so that Py — identity in U and thus Py— P in
HY(€)). Letting

uy = Pnfe,
one has therefore that
uy—> Pf,=u
so that

* Or Rayleigh—Ritz sequences, among others.

+ Lower bounding sequences, that is, sequences approximating from below are sometimes also
called Thompson sequences (for the Thompson principle). A general method for getting lower bounds
is the Weinstein—Aronszajn method (see A. Weinstein and W. Stenger, Methods of Intermediate Prob-
lems for Eigenvalues (Academic, New York, 1972)).
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d

D(uy — u) = % Pnfe — W —(Pyfe — w)— 0.
a0 an

By the Pythagorean theorem

D(uy) = D(Pnf.) = D(Py..f.) = D(PL,) = D),

anu thus the convergence from below.

Other approximating sequences, such as those of H. A. Schwarz and H. Poin-
caré, may converge in a manner alternating from above and below D(u).

Problem 1. (a) Verify and solve the 4 X 4 linear system yielding the finite
difference approximation in the temperature estimation problem at the beginning
of this section. (b) Approximating the data by the piecewise linear function
f(x), solve the problem by separation of variables. (c) Change (several times)
the value of f(1, 0) and f(2, 0) and repeat part (a) of this problem, noting the
ease with which the finite difference values may be cranked out.

Problem 2. (a) Prove the converse to the Dirichlet principle for an arbitrary
Dirichlet problem on any reasonable (i.e., Dirichlet) domain (2, as was shown
in Section 1.5.3 for the case of one dimension, namely, that the solution of

Au = 0in Q,
u = fon o)
FiG. 2.6j
has the property that
D(u) = D(v)

for *“‘any’’ v such that v = f on (). (b) Concern yourself with the ‘‘any’’.
(c) Prove for 3{) € C™ and f € C™(3)) that there exists an extension f, of f
such that f, € C™(R"). (d) Investigate other sufficient conditions for the ex-
tension of f on o to £, € HY((}).

Problem 3. Show Thompson’s Principle: among all harmonic functions,

R(v) = 2% fovion — f |grad v|?
a0 Q

is maximized by the solution of the Dirichlet problem.
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FOURTH PAUSE: EXAMPLES, EXPLANATIONS, EXERCISES

The variational setting taken in Section 2.6 allowed us to cast all at once the three
basic numerical approaches of finite difference, finite element, and least squares
(i.e., spectral) approximations within a single theoretical frame. The finite difference
approximations are the classical *‘tried and true’’ method. To get more accuracy,
in practice one usually just takes a finer grid.

Example

Double the mesh on the sample problem of Section 2.6 and inspect the accuracy
improvement.

Solution. We refine the previous in whichs = k = 1tothe finermeshh = k = 0.5.
This 6 X 6 grid creates 25 interior mesh points, which we have numbered as shown
in Fig. 4Pa. Using the same (centered difference) approximation, we arrive at the

25 x 25 coefficient matrix below, with the data shown to the right. This is a 6-
band matrix due to the ordering used above. The matrix equation is solved by the
usual Gauss—Jordan elimination which yields the solution vector given below..
Below are the mentioned 25 X 25 matrix problem, right-hand-side data, so-
lution, and, with no claims of coding expertise, the codes* that produced these

results.

—

3
25 21 22 |23 [24 (25
2 16 [17 |18 |19 20
15 1 12 13 14 15
1 6 7 8 9 10
0s 1 2 3 4 5
0 — X

0 05 1 15 2 25 3
FiG. 4Pa. Finer Mesh.

* The few codes given in this book are now somewhat archaic but are retained for illustration, theif
original purpose in the book.
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Right-hand

Vector

Coefficient Matrix

.500

1.000

1.000

0

0

Solution Vector
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UNIVERSITY OF MINNESOTA FORTRAN COMPILER (VERSION 5.4 - 79/03/01) ON THE 6400 UNDER
KRONOS 2.1.0 ON 81/08/24 AT 19,52 UNIVERSITY COMPUTING CENTER - UNIVERSITY OF

COLORADO
l MNF ( | sGAUSS,PL,BL)

eAAXNERSEENERRRERAXCURENRNERRARE
» THIS PROGRAM CALCULATES THE SO
= PROBLEM IN A (3X3) SPACE DOMA!

ll!iilllllilll'!ill‘llll!

LUTION OF THE DIRICHLET
N BY MEANS OF A FINITE

» DIFFERENCE PROCEDURE. THE NUMBER OF INTERIOR MESH

llllx-ll!llllllxlllllnlllulltltlllxxll!xllillllulll!ltlll

1. 0000008 DIMENSION c(25,25),0(2%),U(25

)

... INPUT NUMBER OF INTERIOR MESH POINTS

2. 0021318

c
c
c
c
¢ = POINTS IS 25.
c
c
c
READ (5,108} N
c
c

.. .SET COEFFICIENT MATRIX )

3. 0034008 Do 1 121,25
4, 0034013 po 1 J=1,25
. 0034038 c(1,J)=0.0
6. 0034038 1 CONTINUE
7. 0034138 Do 2 1=1,24
8. 0034138 PEIRA]
9. 0034138 L=1+3
10. 0034178 c(1,1)=4.0
1. 0034218 {F (1.LE.20) C(],L)=-1.0
12. 0034318 {F (1.LE.20) C(L,1)=-1.0
13, 0034368 RFFLOAT(I)/S.
14, 0034378 IF (R.EQ.IFIX(R)) GO TO 2
15, 0034428 c(1,J)=-1.0
16. 0034468 c(J,1)2-1.0
17. 0034508 2 CONTINUE
18, 0034538 c(25,25)%4.0
c
c .. .SET RIGHT-HANO VECTOR ()]
19. 0034548 Do 4 131,25
20. 0034568 IF (1.LE. 4) D(1)=0,.5=xFLOAT(1)
21, 0034638 i1F (1.EQ.5) D(1)=1.0
22. 0034668 IF (1.67.5) D(1)=0.0
23. 0034718 4 CONTINUE
c
c ...PRINT GOEFFICIENT MATRIX AND RI1GHT-HAND VECTOR
24. 0034738 WRITE (6,101)
2%, 0034778 po 3 1=1,25
26. 0035008 WRITE (6,1Q0) (ct1,J),J=1,25),0()
27. 0035168 3 CONTINUE
c
c ...CALCULATE SOLUTICN VECTOR (V)
28. 0035208 CALL GAUSS(C,D,U,N)
<
c .. .PRINT SOLUTIGN VECTOR
29. 0035228 WRITE (6,102)
30. 00352%8 00 B 1#1,2%5
3. 0035268 WRITE (6,103) 1,U(D)
32. 0035358 S CONTINUE
33, 0035378 STOP
c
c
[ xaxsxxsyEesxsanxxxs  FORMAT STATEMENTS ANEEEXSERRERERREES
34. 0035408 100 FORMAT (/25(1X,F3.0),15X,F6.3)

35, 0035408 101 FORMAT (777737, VBHCOEFF{CIENT MATRIX, 38X,
1

1 7HR1GHT -HAND VECTOR/
36. 0035408 102 FORMAT (YH1////760X, 1 SHSCLUTIO

37. 0035408 103 FORMAT (/59X%,2HU(,12,4H) = ,F
39, 0035408 108 FORMAT (!S)
39. 0035408 END

7
N VECTOR//)
10.6)

The Gauss Elimination linear solver called is the following code. For very

large systems (i.e., very fine meshes) one would pre

fer other linear solvers.
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1. 0000008 SUBROUTINE GAUSS(A,B,X,N)
C AR AR A N AR EAAEEAAAEARA AN KA AR KRR RN KRR AR SRR
C x SOLVE UP TO 25 SIMULTANEOUS LINEAR ALGEBRAIC EQUATIONS «x
C x BY GAUSS-JORDAN ELIMINATION METHOD
[+3 xttl:txtxxxtxxttt:ttxtlxttltxxttttlxtlxlxllllt:llllllxllxl
c
2. ooocooB DIMENSION A(25,25),B(25),X(25)
c
c .. .PERFORM MANI]PULATIONS
3 0000008 DO 4 1=1,N
4 0000028 DO 2 K=1,N
S. 000004B IF (K.EQ.I1) GO TO 2
6. 000006B CONST=-A(K, 1) /A(],1)
7 0000148 0O 1 J=1,N
8 0000178 A(K,J)=A(K,J)+CONST*A(],J)
9. 0000268 IF (J.EQ.1) A(K,J)=0.0
10. 0000338 1 CONTINUE
1. 0000358 B(K)=B(K)+CONST*B(])
12. 0000418 2 CONTiNUE
13. 0000448 CONST=A(I, 1)
14. 0000478 DO 3 J=1,N
15. 0000518 A(l,J)=A(1,J)/CONST
16. 0000518 3 CONT INUE
17. 0000578 ACl,I)=1.0
18. 0000628 B(1)=B(1)/CONST
19. 0000648 4 CONTINUE
c
c ...0BTAIN SOLUTION VECTOR
20, 0000678 0O S5 I=1,N
21, 000070B X(1)=B(I)
22. 0000708 S CONTINUE
23. 0000748 RETURN
24, 0000768 END

Let the separation of variables solution (see Problem 1 of Section 2.6)

z 18sin(2nm/3)  nmx b ((3 - y)mf)

ux, y) = ,,21 (n? 7 sinh nw) Sn st 3

summed to 50 terms be called the ‘‘analytic solution.’’ Then we have the following
comparison

Analytical FD Solution Error FD Solution Error
Solution h=k=1 (%) h=k=05 (%)

u1, 1) 0.43051 0.45833 6.5 0.43845 1.8
u(l, 2) 0.14285 0.16667 16.7 0.14962 4.7
u2, 1) 0.51732 0.66667 28.9 0.55871 8.0
u2,?2) 0.15310 0.20833 36.1 0.16572 8.2

The percentage error is reduced by a factor of about 4 as the discretization length
h s halved. This bears out the fact that this method is 0(h2), i.e., halving A quarters
the error.
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Exercises
1. Do the above problem with b = k = 0.75.
2. Do Problem 2 of Section 2.1, first using h = k = /3.
3. Repeat (2) with h = k = /4.
4. Inspect the error in (3) by computing a partial sum of the analytic solution.

5. Prepare a sketch or a graph of the solutions of Problem 2.

We return to the other main theme of Section 2.6, the analytic variational
method. As seen there, a proper theoretical understanding of the Dirichlet Principle
requires the notion of weak or distributional derivatives and spaces, such as HY().
Let us prove one instance of the Sobolev Lemma mentioned in Section 2.6.

Example

Show H[0, 1] C C°[0, 1],.that is, show that functions u (that are square integrable
along with their derivative) are in fact continuous.

Solution. We use the fact (see e.g., Section 2.9.3, for the arguments needed to
establish this) that H'[0, 1] is the completion of C1[0, 1] in the H'[0, 1] norm.
Accepting this, we then obtain the bound

lulicro,y = max |ux)| = |utto)] (for some 7 € [0, 1])

0=x=1

(u(sp) = min u, for some sp € [0, 1D

o) + | )

A

1 1 1
|u(so)| + J'o lu' ()| = J'o |lu(T)| + J'o |u' (7))

1 172 1 12
= (J'O |u(T)|2> + (J'O |u’(T)|2> = “u"H‘[O.l] .

For any u in H' there exists a sequence i in C! such that
L L
u,—> u and U, — (something, say w or u').
By the bound just established,

I, = Umlcoy = Iy = mllerio.n = 0.

Hence (u,,) is uniformly convergent to some continuous function v. However,
uniform convergence implies (see Section 1.6.3) L? convergence

1
j |u, — v|2dx = max |u, - v|—0

0 0=r=1

so by the uniqueness of L? limits . = v (almost everywhere). Thus, we may select
the continuous v to represent u within H'.
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Exercises

6. Give an alternate proof, using the notion of weak derivative, to show that
the H! functions are in fact absolutely continuous.

7. Construct a counterexample to show that H'! functions are not continuously
differentiable.

8. ForwinL?[0, 7l and ¢, = 2/m)2sinnx,n = 1,2,3, ..., let

£

1
ux) = > ~(w, 40,0,

n=1

Show that u(x) is continuous on (0, ).

Weak solutions of partial differential equations were defined in Section 1.9.5(3)
and mentioned in Sections 1.9.7 and 2.6. Generally, the finite element and other
numerical solutions (no matter how fine the mesh or how high the order of the
elements or how large the series partial sum) are not weak solutions.

Example

Show that “‘tent functions’’ such as those of Figure 2.6d are not weak solutions.

Solution. We recall that a locally integrable function on {1 is said to be a weak
solution of Ai = 0if fquAd = 0 for all test functions ¢ in Cg({)). Project the
planar pieces of the function u vertically downward onto €). This creates a trian-
gulation of Q, the particular form of it not being important.

Within one of the cut rectangles, place a ball B of radius r centered at the
center x, of the diagonal y. Construct an approximate characteristic function ¢ €
Co(B) such that its support is in the shaded region shown in Fig. 4Pb. This can be
done by molification, see Section 2.9.3.

Letw; = ur, where T, and T, denote the two triangular parts of the cut rectangle.
With the T, and T, outer normals as shown, for each of the two subdomains i =

1, 2, we have
_ 9 9
LAd)u B fr,¢Aui ir,d)an,- * ir,.uiani
_ 9 _ o
- fm(u,- an, ¢8ni)'

ou du
0= f Adbu = _§ -1 % -2
0 d) aTld)a"l aT; 8"2

= J;‘b grad (u; — uy) - my

Consequently
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T,

ny

Y T,

Xy

FiG. 4Pb. Projected Triangulation.

because

+ 3¢ + ad f ad 36
T + U— = uy_— - Up— = 0,

oT, 8n1 a7, 8n2 Y 3"1 Y 8n1

using u; = u and n; = —ny along the diagonal y. Because grad (4, — ) - m
is a constant for the piecewise-linear tent functions, and [, ¢ # O for ¢ chosen as
a molified characteristic function, grad (u; — ) - m = 0.Asu; = ax + byand
u, = ax + By this means that (0 — @, B — b) - n; = 0. Because X, and x, lie
under the intersection of the u; and u; planes, (o —a,p—b)- (o — x) = 0.
But #; and X, — %; are orthogonal so necessarily (a — 4, B — b) = 0, that is,
o = a, B = b. This says that the only piecewise planar continuous weak solution
of Au = 0is a plane.*

Exercises

9. (a) The above idea is that the condition fquAd = 0 as Ad runs through
all ¢ € C5(2) is a very strong One, as the latter are dense in L%(£)).
One cannot quite conclude that the A form a dense set, but the residual
subspace allowed for u is a small one indeed. Verify this in one di-
mension.
(b) Show that e~* "is C” but not analytic.
(c) Show that the following function is Cg with support [— 1, 1].
1
1—x?

. e -1 <x<1,
Jj® =1y

otherwise.

* For the theory of spaces of weakly differentiable functions see, €.g., R. Adams, Sobolev
Spaces (Academic, New York, 1975).
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In Section 2.6 and this Fourth Pause we have discussed numerical solution
methods for elliptic partial differential equations. In Problem 2.9.6 we give a marching
(i.c., ODE) method for numerically solving parabolic equations. We also present there
an important differential equation in the secondary recovery of oil, the Buckley-Lev-
crett equation. The solution of this and related equations requires combinations of
elliptic, parabolic, and hyperbolic numerical methods, and continues to spur their
development.

A more complete introduction to numerical methods from the computational point
of view has been deferred, to alow instructorand reader choice, to Chapter 3, Appendix
B. Included there one will find computational solutions of the following problems
already studied analytically in this book:

Section 1.2 Problem 1; Section 1.9.6(2)c (Gibb’s Effect computed to 1,000,000
terms); Section 2.1 Problems 1, 2, and 3; Section 2.9.8(a) (Traffic flow problem).

Additionally, some of the most recent results in computational fluid dynamics are
illustrated in Chapter 3. The Sixth Pause presents the essentials of shock capturing
methods. Appendix C considers briefly the theory and computation of the full
(viscous) Navier-Stokes equations.

2.7 SOME UNBOUNDED DOMAIN CONSIDERATIONS
(AND CONTINUOUS SPECTRA)

Partial differential equations, when encountered on an unbounded domain, require
additional considerations. In this section we wish to consider some of these new
features. In Section 2.8 we look at a particularly important problem occurring on
unbounded domains: that of scattering theory.

In particular, in this present section we wish to emphasize the following natural
progression out of which the Fourier transform may be seen to come:

Fourier transform

Unbounded The appearance representation of
domains €, ofacontinuwous | _,  |arbitrary functions fin
especiallywhole  |™ | spectrum A for terms of the

space domains the PDE (improper)

eigenfunctions ¢
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To begin let us recall our three basic solution methods of separation of variables,
Green’s functions, and variational methods.

The separation of variables method often breaks down for unbounded domains
because one no longer has a countable number of square integrable eigenfunctions.*
However, the Fourier series ;.. c,¢, may often be replaced by a Fourier integral

o to accommodate the *‘uncountable number of eigenfunctions.” Although
it is not quite that simple, the occurrence and use of Fourier transforms may indeed
be viewed conceptually as the extension of the separation of variables method to
unbounded domains € that are the whole space ({2 = n-space E” for some n). In
like manner one may similarly employ the Laplace transform, especially for initial
value problems and for problems in which Q is a half-space. For arbitrary unbounded
domains both the Fourier and Laplace intcgral methods have severe limitations.
The latter fact should not surprise us since the same limitations occurred for the
Fourier series (how to find the exact eigen functions for a domain with irregular
geometry).

For () an unbounded domain the Green's function for a problem often exists
and can sometimes be found.t In those cases this method remains a good one,
although one must, as we shall see in some examples, exercise more care in its
use. The finding of a Green's function sometimes requires use of the Fourier
transform.

For unbounded domains one may still sometimes employ variational methods.
In practice even their formal application often leads to physically important results.
However, their validity and convergence is generally harder to prove due to loss
of “‘compactness.’’ The latter can sometimes be replaced by arguments of convexity
and lower semicontinuity of certain functionals.

One can get around some of these difficulties of unbounded domains by working
Jocally, that is, by working on bounded subdomains of the given domain {. Much
of the modern theory of partial differential equations does just that. Such treatments
yield general existence proofs but do not in general provide the construction of
actual solutions.

We will proceed via three subsections. In (1) Recapitulation and Initial Ob-
servations we recount what we already know or may expect. In (2) Continuous
Spectrum we discuss some aspects of elementary spectral theory from the points
of view of eigenvalues A, as the so-called point spectra of an operator and continuous
spectra \ as other A for which the partial differential equation

L-Nu=f

is not well posed. In (3) Fourier Transform we take a very brief look at how the

* This depends on whether one is in the “limit-circle’* or *‘limit-point’’ case, for example, when
the separated ordinary differential equation is of singular Sturm-Liouville type on an infinite interval.
(See 2.4 and 2.9.4.)

+ Indeed we treated an unbounded domain in Problem 2 of Section 1.2 at the beginning of the
book. But how did we find the Green's function?
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Fourier transform plays the same role for ‘‘integrating’’ the equation over the
continuous spectrum as did the Fourier series for the case of point spectra.

2.7.1 Recapitulation and Initial Observations

In order to consolidate our thinking, and to develop a little preliminary intuition
for problems on unbounded domains, let us at this point pause to collect certain
observations already available to us, and to consider (at least on an initial basis)
some exterior domain problems.

To begin, let us consider the first problem considered in the book—the Dirichlet
problem (see Section 1.2)—and for simplicity let us consider the one-dimensional
case. For () the interval (— 1, 1) and boundary condition u(—1) = a and u(1) =
b we had the solution as shown in Figure 2.7a. The exterior problem, that is, for
Q) the exterior of the interval [—1, 1], with the same boundary conditions u(— 1)
= a and u(l) = b, is different in that we no longer get unique solutions (see
Figure 2.7b). Thus we are reminded that 8(} in the exterior domain problem includes
also the points at infinity, and to get a well-posed problem we need appropriate
boundary conditions at x = *o. Notice that in the one-dimensional problem that
we have just considered one needs a Neumann boundary condition at x = *o
rather than a Dirichlet condition there, and in no case (other thana = b = 0) is
the solution square integrable on (1.*

The second problem considered in this book, that of the heat equation initial
value problem for — < x < « and ¢t > 0, was as mentioned above already an
unbounded domain problem. Although it is true that unboundedness in ¢ is indeed
present, as we saw in the heat equation initial boundary value problems for x in a

-1 [¢] 1
FiG. 2.7a
: |
N\ 3=
|
a l )
1 i
-1 0 1
RG. 2.7

* The n = 2 and higher-dimensional Dirichlet problems for {) the exterior of the unit ball are
actually a little better due to a combination of facts such as the connectedness of {) in those cases and
the very much larger number of harmonic functions that occur in higher dimensions. However, the
square integrability is lost. See Problem 1 at the end of this subsection, and Problem 1 at the end of
the next subsection.
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finite interval [a, b] as solved by separation of variables, and as we saw in showing
uniqueness via the maximum principle (see Section 2.2), the t-unboundedness
(which is always present in initial value problems regardless of type) is not the
distinguishing factor. Rather it is whether the problem has bounded or unbounded
domain € in the x variable. The discussion of uniqueness and stability, for example,
for the unbounded domain —o < x < @ as in Problem 2 of Section 1.3 was made
more difficult due to the unboundedness of the domain, even when given the
existence and explicit representation of a solution by means of the Poisson kernel

Green’s function.
Let us turn now to exterior domain considerations for the third problem con-

sidered in the book, the Rayleigh eigenvalue problem. To begin let us consider the
problem on an interior domain of length 21:

—u"(x) = Au(), —l<x <l
w(—0 = u(l) = 0.
The eigenfunctions, except for the normalizing constant, were

@2n - 1) -
21 ’

2
_ @2n - m
- (__—21 )

Suppose | — . Note (as shown in Fig. 2.7c) that the eigenvalues slide to the left

toward zero and at the same time begin filling up the enlarging interval ©, ).

Moreover, the norm (squared) of the eigenfunctions
! ,(2n — mx

2 =
Nl GOl J_  cos Y

u,(x) = cos

with eigenvalues

dx =1

blows up as | — *.

Let us consider this last example a bit further. Also, rather than getting involved
in the exterior (disconnected) domain considerations that would prevail if we con-
sidered Q) the exterior of the interval [ — 1, 1], such as those that we already discussed

-

) 2= (i £=100x
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relative to the exterior Dirichlet problem above, we will look only at the whole
space problem

—u"(x) = Au(x), —o < x < ™,
u(xx)= 0.

The Dirichlet boundary condition at +o, u(+®) = 0, can be specified more
precisely in terms of the functions actually in the domain of the operator, via Sobolev
spaces as in Section 2.6; but let us forego that for now and ask only that u be good
enough so that integration by parts asserts as usual* that

A= fjm(u')zdx/ffmuzdxéo

for any nontrivial solution to the problem. Then from elementary ordinary differ-
ential equations we know the solution to be

u(x) = cp sin A2x + cycos A%x, A >0,
up(x) = ¢; + ¢, A =0,

and we see immediately that the problem has no nontrivial solutions that go to zero
at + . Moreover, none of the solutions is square integrable on {} = (—®, ),
whether or not they go to zero at £ .

Yet, continuing with this last example, the u,(x) are clearly eigenfunctions
satisfying the Rayleigh differential equation. Such eigenfunctions, satisfying the
differential eigenvalue problem in question but not lying within the L? space of
square integrable functions in which the problem is set, are called improper eigen-
functions. As we shall see later there is nothing improper about them physically
except that they describe scattering states rather than bound states, radiation rather
than vibration, continuous spectrum rather than point spectrum, to use the termi-
nology of differing important contexts in which they are found.

Some further recapitulation and review will be found in the observation of the
next subsection as we pursue the related occurrences of unbounded domains and
continuous spectrum.

Problem 1. Let (1 = the exterior of the unit ball in R?, that is, = {x =
(x1, X2, x3)]x3 + x3 + x3 > 1}. (a) Consider the uniqueness question for {1
for Dirichlet, Neumann, and Robin boundary conditions, given that Au = 0
in ). Assume that you can integrate by parts, as in the uniqueness questions
for the corresponding interior problem. (b) Write down your *‘boundary con-
ditions at ®’’ as you have employed them in part (a). What regularity have
you assumed on #? (c) Can you use maximum principles or any other ‘‘interior
problem™ uniqueness techniques?

* See Problem 2.
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Problem 2. (a) Try to state exactly the condition on u needed at x = £ 10
ensure that A = 0 for the problem considered above in the text, namely, —u"(x)
= @) in @ = (==, ©). (b) Do you believe the eigenfunctions to be
symmetric, that is, even functions? (c) Consider the same problem as in part
(a) on = (0, =) subject to the left boundary condition u'(0) = 0.

Problem 3. The problem of symmetry of solutions is an interesting one in
general and extends beyond the problems mentioned above, for both bounded
and unbounded symmetric domains and for both linear and nonlinear problems.

(a) For the Problem 2(a) above, show how the question of symmetry of
solutions is related to the complex valued solutions to the ordinary differential
equations, namely, e =M,

(b) Show the nonlinear eigenvalue problem —u" = Af(u) on — 1 <x<
1, u(—=1) = u(1) = 0, has only symmetric solutions. Assume f 1o be positive
and continuous.

(c) Repeat (b) if possible on the unbounded domain — < x < ®, with
appropriate boundary conditions at = .

(d) Investigate whether (b) and (c) remain true for the ‘‘nonautonomous’’
equation —u"(x) = Ap(x)f(w), where p(x) is a nice positive continuous weight
function.

2.7.2 Continuous Spectrum

Problems on unbounded domains bring directly before us examples of what is called
the continuous spectrum. In our previous use of Fourier series and separation of
variables we were working essentially with the easier case of point spectra (e.g.,
the eigenvalues A,).

In this section we want to make these terms precise, for they permeate much
of differential equations and the more abstract operator theory.t We will illustrate
them in terms of operators with which we are already familiar.

We consider an equation

Lu — \u = f, *)

+ Historically, the differential equations came first, and therefore with considerable justification
they should be presented first. The more abstract theory (called spectral theory) is clarifying but often
not needed for the actual solution of the partial differential equations. It is our intent here to present
some of the essential elements of the spectral theory, without a full development. For a more complete
discussion, although the literature is very large, we can recommend for the reader’s convenience the
classic F. Riesz and B. Sz. Nagy, Functional Analysis (Ungar, New York, 1955), and the encyclopedic
Dunford and Schwartz, Linear Operators 1, 11, 111 (Wiley-Interscience, New York, 1958, 1963, 1971).
among others.
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where \ is a real or complex number. If (*) is well-posed, which we remember
from Section 1.3 means that (*) has all the good qualities of (1) existence,
(2) uniqueness, and (3) stability of solutions, then we say that A is in the resolvent
set p(L) of L. That is, we can ‘‘resolve’’ the problem completely. It can be easily
shown that the resolvent set for any closed operator (see Problem 2.9.2) is an open
subset of the complex plane. The complement in the complex plane of the resolvent
set p(x) is the spectrum o(L) of L. As the complement of an open set we know
that the spectrum o(L) is always a closed set.

All self-adjoint operators L = L* must be closed operators, since it can be
shown that all adjoint operators are necessarily closed. The closedness of an op-
erator, as important also to the convergence of separation of variables solutions,
was indicated in Problem 2.9.2. For spectral theory one must use closed operators
and almost all operators encountered in practice in differential equations are either
closed or closeable.

For the Rayleigh problem —u” = Auon 0 < x < m, u(0) = u(w) = 0, the
spectrum o(L) was exactly the eigenvalues A, = n?=1,4,9,.... Similarly
all of the Sturm-Liouville problems of Section 2.4 possessed a similar spectrum
a(L) consisting only of the eigenvalues of the operator. This is typical of bounded
domain problems (although there are exceptions). The point spectrum a,(L) of an
operator consists of those A such that there exists a nontrivial solution of

(L —Nu=0

and consists, as we have just seen, of the eigenvalues of the operator. Thus o,(L)
is those A for which the uniqueness property (2) of well-posed problems fails.

It can occur that the uniqueness property (2) holds but the existence property
(1) fails. An example of this is given in Problem 1 at the end of this subsection,
and indeed as mentioned above the occurrence of this situation is important to a
number of physical phenomena. Such X, that is, A such that the equation (*)(L —
Mu = fis solvable for most (a properly dense set) but not quite all data f and yet
uniquely solvable in each such case, are called the continuous spectrum o (L) for
the operator L.7 The term continuous derives from the fact that in most cases such
A form a continuum in the plane, that is, the set [0, *) mentioned in the above
subsection in the example describing ‘‘improper eigenfunctions.”” We will see
further examples of this type later in this section (the Helmholtz equation in Problem
3 below) and in the next section. There is also a precise ‘‘continuous’’ meaning of
a.(L) for self-adjoint operators L in terms of the associated spectral measures but

+ We must insist here in fact that (*) is solvable for a properly dense set of data f in the space in
question. It can happen that (*) possesses the uniqueness property but can be solved only for a certain
nondense subspace of data f. That third spectrum o, (L) is called the residual spectrum, which we shall
ignore here. For self-adjoint L there is no residual spectrum.
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we do not discuss this meaning here.t Finally, there are examples in which o,
occurs as isolated points; good examples of the latter are o (L !) for L a Sturm-
Liouville operator.

Consider, for example, the Rayleigh operator Lu = — u” with boundary con-
ditions u(0) = u(w) = 0, which had for its spectrum o(L) = a,(l) = 1, 4,9,
., n? ...,asshowninFig. 2.7d. A general theorem (the spectral mapping

theorem) asserts that (L~ 1y = g(L)"! so that the inverse of the Rayleigh operator

L7 = J:T G(x, 5)f(s) ds

has spectrum A, = n~ 2. Because the spectrum is closed, the value A = 0 is also
in o(L~1). In Problem 1 it will be demonstrated directly that L~ ! cannot be defined
for all f € L*(0, w). Hence op(L™") = n~? and o (L") = 0, as shown in
Fig. 2.7e.

One does not need the spectral mapping theorem for the above example. Clearly
for A # 0 and L invertible one has

(L — Nu= 0<:><L—1 - i—)u = 0.
More generally one easily verifies that for a closed operator L one has A € p(L)
iff \~1 € p(L ™). The spectral mapping theorem is more comprehensive and very
useful when considering *‘functions of an operator.” The ‘‘function’’ considered
here was the inverse, a relatively simple one.
It was shown in Section 2.5, Problem 2 that, similarly, the partial differential

operator Lu = —Auon (0 = (0, ) X (0, ) with u = 0 on 82 had a compact
ofr 4 ) >
Fic. 2.7d
o| 11 T A
G
FiG. 2.7¢

t A self-adjoint operator L may be written as a Lebesgue-Stieltjes integral in the sense that the
inner product (Lu, u) = [ N d(Exu, u) for all u in the domain D(L). The E, are called the spectral
family for L, the d(Exu, u) the associated spectral measures, and for X in the continuous spectrum o.(L)
the (E,u, «) are continuous for all u.
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inverse L™! = [o G(P, Q), since the expressibility of [|G|* as the sum of the
eigenvalues squared is a known (Hilbert-Schmidt) condition for L~ ! to be compact.
Compactness of an operator is a stronger condition than just boundedness*; that
L~ in this case is bounded is easier to establish (see the discussions in Problem 2
of Section 2.5 and in Problem 2.9.5). The eigenvalues and hence 0, (L) were already
found (see Section 2.1) and were n> + m>, n = 1, 2,3, ..., m =1, 2, 3,
... Thuso,(L™") = (n* + m*)"!and 0(L™') = 0 and the qualitative picture
of o.(L™1) is the same as for the Rayleigh operator inverse. It can be shown that
this qualitative picture is characteristic of the spectrum of any (nonsingular) self-
adjoint compact operator.

As argued in the previous subsection, the operator Lu = —u” on the infinite
domain {} = (—c, ) with appropriate conditions on u at =+ is expected to have
continuous spectrum [0, «) as shown in Figure 2.7f. This will be demonstrated in
Problem 2.

An important operator with the same spectrum (see Problem 2) is the ‘‘free
Hamiltonian”’ Lu = — Au in L%(R®) already encountered in Section 1.6.3. Upon
introduction of the Coulomb potential 1/r, the hydrogen operator Lu = —jAu —
(1/r)u retains the same continuous spectrum but also possesses the eigenvalues A,
= —1/12n%, n = 1, 2, 3, ... (Fig. 2.7g). See the discussion already given in
Section 1.6.3.

The Helmholtz operator, namely, the Laplacian Lu = — Au on an unbounded
domain occurs in a wide variety of physical situations, and is analyzed in one of
them in Problem 3. As will be seen in Section 2.8 the eigenvalue problems for the
Helmholtz operators

—Au = \u, QO = R",
(—A + VO))u = \u, ) an exterior domain,
(—A + V(x) — Nu = f, () an exterior domain,

A
0
FiG. 2.7f
L
RERT r
2 8
FiG. 2.7¢

* The precise meaning of compactness of an operator A is that the set {A(x):|x]| = 1} has a compact
closure. From this it follows indeed that {A(x):(|x]] = 1} is bounded, that is, that A is a bounded operator.
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are important and arise from separation of variables of the corresponding wave
equation

u, — Au + Vu = flx, 1.

Problem 1. () Show directly that 0 € o (L™ 1y for the Rayleigh problem as
discussed above. (b) Explain why then 0= O'C(L_l), that is, why there are
no other points in the continuous spectrum of that L™". (c) For A not in o,(L)
for the Rayleigh operator, write out explicitly the solution to

(L—MNu=f

for all f in L2(0, w). You may just assume f € C§(0, ) in order not to worry
about the Lebesgue integration classes, if you wish.

Problem 2. (a) Consider the operator Lu = —u"on Q = (—, ®) and show
that each A = 0 fulfills the conditions needed for A to be in the continuous
spectrum o (L). (b) Consider the Hamiltonian Lu = —Au in L2(R?), that is,
() = the whole space R® and we consider only data and solutions in L2(R%).
Show A = 0 is not an eigenvalue but that on the other hand —Au = F cannot
be solved for all data F in L2(€). (c) If interested, show the same for all A >
0, and that for all other complex A the equation (L — Nu = F is well posed.

Problem 3. (a) Solve the Helmholtz equation
—Au = \u

for O = RY, R?, R?, and R" in general, by formal separation of variables in
polar coordinates. You may use complex valued solutions if you wish.
(b) Comment on the L2-ness or non-L2-ness of the solutions. (c) Solve formally
the hydrogen equation (for {} = R?

1
—lAu — —u = hu
r
by separation of variables. (d) Distinguish the L? solutions form the non-L?

solutions.

2.7.3 Fourier Transform

Let us define and utilize the Fourier transform to illustrate its use on whole space
problems.
Let f(x) be integrable and square integrable, that is, f € L' (=%, @) N L2(—00,

). The Fourier transform F(H = f" is defined as:

” 1 o
F(f)k) = f(k) = Vin I_x e®f(x) dx, —wo < k<
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It may be shown* that F maps L2(—, ) one to one onto L2( —,), preserving
norms and inner products:

1A =1 (F 8 =(f o

Such a transformation is called a unitary transformation and may be thought of in
a number of useful ways, such as a change of basis, a rotation, and so on.

Thus every fin L?(— o, ) has an equivalent representation given by its Fourier
transform [ e®* f(x) dx. This is analogous to what was done by means of Fourier
series in Theorem H of Section 2.3. Recalling that

e™ = cos kx + i sin kx

and letting k = \, the Fourier integral in the transform may thus be regarded as
the ‘‘continuous’’ Fourier coefficients of f,

o = QML @)
where &, are L*(—, ®) “‘basis’’ functions @,(x) = €™, —o < A\ < », To
recover f from its Fourier coefficients f(\) and to see more explicitly the analogy
with Theorem H, we apply the inverse Fourier transform:

f=FG = emn [ e oy an = @mn [ B

£

Compare Theorem H (3) of Section 2.3.
One defines similarly the Fourier transform F : L2(R") — L?(R") by

flky = @m)— f f f €% £(x) dx.
2

Except for convergence questions it is quite easy to show (Problem 1) the important
property of the Fourier transform that

A
ou i kil
ax;

From this one has the resulting transformation of the Lapalacian operator

* This is also a Parseval’s theorem; proofs may be found in many books. Theorem H of Section
2.3 may be regarded as a special case of a general Parseval’s Theorem. However we shall adhere to
the other point of view that the latter is a generalization of the former, as is the inner product form of
Parseval’s equation in the Third Pause.
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Thus the Fourier transform converts a differential operator into a mutiplication
operator. In particular, — A goes to multiplication by | K|?.*
Let us illustrate then the use of this transform on the unbounded domain problem

—u' = hu, Q= (—=, ®).
By Fourier transform (which is a linear operator) we have
k% = \u,

which shows immediately that the eigenfunction ¥ must be such that u(k) = O for
all k except k = =A"2. From this the solutions u = sin A2 x and cos \*? x may
be deduced.

In like manner a Poisson problem

—Au = f, Q=FR"

has solution by Fourier transform
Za S

w=F (L mw) = o
|kl |&l?

where we have used two common notations to illustrate them. The singularity at
zero of the inverse L ™! of the Laplacian is shown well here in terms of the kernel
1/|k|?, and lends force to the fact that we cannot invert this problem for all data f

By means of the Fourier transform one can establish the Malgrange-Ehrenpreis
theorem in the abstract theory of partial differential operators. This result asserts
that for whole space problems on {} = R" every linear partial differential equation
with constant coefficients

Lu=f

possesses a Green’s function G(P, Q) in the sense that the solution is given by

u®) = |, 6 - )@ dvg

for all test functions f € Cy(R™). Recall (see Section 1.5.2) that we gave three
interpretations to Green’s functions G(P, Q):

(1 fGP, Q) =L,
(2 G(P,Q)isa fundamental singularity,
(3) LoG(P, Q) = 3(P, Q) the delta function.

The sense (1) here means that the integral of the Green’s function provides a formal
right inverse for L; for smooth functions f one has LJG(P, Q)f(Q) dvp) = f(P).

* To be more precise here, especially when transforming differential equations, one should des-
ignate exactly which u are being treated. For dw/dx; it is sufficient that u possess square integrable
distributional derivatives, and for Au, that u possess square integrable second order distributional
derivatives. See Problem 1.9.7(2) and Section 2.6.
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The sense (2) is borne out, for example, by the fact that for the Laplacian L =
—Aon R? one has G(P, Q) = 1/4w|P — (), as the student will be asked to show
in Section 2.8, Problem 1. The sense (3) states that G(P, Q) is the fundamental
solution for the problem, in that G satisfies the differential equation except at P =
Q where it then combines the senses (2) and (1) by possessing just the right amount
of singularity to integrate the problem in sense (1).

Note that for whole space problems one finds generally that the notions of
Green’s function, fundamental singularity, and fundamental solution all coincide.
That is, the adjusting function g(P, Q) (see Section 1.6.1, Remark 2) is not needed.

As a final remark, for the Poisson problem above for R* we found (using P
= xand @ = y now, and putting in the variables)

~ikex gikey
u(x) = ff R e fO) dy dk, 1)
which we know by the Malgrange-Ehrenpreis theorem must also be given by
u(x) = fy Gix = yf(y) dy, 2
which must also, as noted above, be given by
ux) = — f = |f(y) dy. &)
From this it should be apparent to the reader that the uses (1) of the Fourier transform,

(2) of the theory, and (3) of explicit solution representation, while in principle
equivalent, may appear in different forms and may be of different efficacity.

Problem 1. (a) Show the properties of the Fourier transform

du /2:‘\ N
Ex-.—zku and e -k

by means of one and two integration by parts respectively. (b) Do the same
for du/dx; and — Au in several dimensions. (c) Think about the fact that the
use of Fourier transform seems to require that (2 be a whole space.

Problem 2. (a) Prove the so-called convolution theorem:

P .
frg=(@m)™"fg,

where f *g is the so-called conyolution product

(f*8)x) = f_xf(x = »)8(y) dy.
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(b) Justify to some extent the following four steps to show how this may be
used to generate the Poisson kernel solution

u(x, 1) = @mwn)~ 2 J_ e~ CTVMHS(y) dy
for the heat equation initial value problem

{u,—u”=0, —o < x <, t>0

4, = ki,
40) = f.
2. Solution of latter is by ODE (k) = flye .

1. Taking transforms > {

3, e—kzr — (41”)—1/2e—x2/4r.
4. Convolution theorem = the result.
(c) Justify from the discussion at the end of the section above that
-1
1

K2 = .
[ 4|

Problem 3. (a) Consult the literature for the Laplace transform. (b) Use it as
in Problem 2(b) above to resolve in a similar way the heat initial value problem
there.

2.8 ELEMENTS OF SCATTERING THEORY
Scattering theory is concerned with solutions to the wave equation
u, — Au = f(x, t, u), x€Q,

in exterior domains, and as such is a proper subject for investigation as a mathe-
matical question involving hyperbolic partial differential equations. Its roots ar€
however so deep within the context of physical experiments that one cannot ignore
them when treating the subject. Therefore we shall begin this section by looking
at three physical settings from which scattering problems arise: (a) classical scat-
tering; (b) quantum scattering; and (c) inverse scattering. We will then close the
section with a brief look at the original work of Rayleigh on classical scattering.
This work explains for example why the sky is blue, and, although done approx-
imately 100 years ago, remains historically valuable for a basic introductory un-
derstanding of the subject of scattering.

As in Section 1.8 (Elements of Bifurcation Theory), we can do no more here
than to scratch the surface of this important subject. Scattering methods have
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developed over the last century as a fundamental tool in physics and engineering.
This can be expected to continue due to the very basic occurrences of propagation
of energy by scattering, whether that energy comes out of an elementary particle
experiment, off a power transmission line, or from the sunlight scattered out of the
rainbow. *

(a) Classical Scattering

There are many types of classical scattering. One that is rather easy to visualize is
that of the scattering of acoustic waves off an obstacle. In Figure 2.8a we have
indicated a schematic illustration of this situation, in which incoming (plane) waves
are reflected off a nonabsorbing rigid obstacle as outward going spherical waves.
In the optical (ray) approximation, also drawn in Figure 2.8a, Snell’s reflection
law governs the basic direction of reflection, but in the actual wave mechanics the
situation is much richer and much more complicated.

To continue with this description, if we consider the case in which the obstacle
is submerged in an infinite homogeneous fluid, if the incoming wave packet consists
of sound waves, and if we accept the linearized model from fluid dynamics with
constant speed of sound ¢ in (), we are led to the wave equation

u, —c?*Au = 0in Q, —00 < t < o0,

9
g 0 on 3().
on

incoming wave packet

{
Outgoing
wave packets \\\

*We mention for the reader a few references, with apologies for all others not listed. For the general
theory of scattering from the point of view of mathematics and physics, there is the excellent treatise
of R. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New York, 1966). For classical
scattering of obstacles see the monograph by P. Lax and R. Phillips, Scattering Theory (Academic,
New York, 1967). For quantum scattering and inverse scattering one is fortunate to have the very recent
books by W. Amrein, J. Jauch, and K. Sinha, Scattering Theory in Quantum Mechanics (W. A.
Benjamin, Inc., Reading, Massachusetts, 1977) and K. Chadan and P. Sabatier, Inverse Problems in
Quantum Scattering Theory (Springer, Berlin, 1977). For general surveys of recent results see also
Scattering Theory in Mathematical Physics, J. La Vita and J. Marchand, eds. (Reidel, Doortrecht,
1974).
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This is an exterior domain problem of the type discussed in Section 2.7. Here u
= u(x, y, z. 1) is the velocity potential, and the Neumann boundary condition states
that although the velocity need not be zero on aQ) when being reflected, there is
no movement of the obstacle B. Thus the velocity components of the sound wave
are v;(x, 1) = cou(x, 1)/ox;, i = 1, 2, 3, the quantity du(x, t)/dr represents the
excess pressure caused by the sound wave, 92u(x, 1)/3t® measures the rate of change
of said pressure, and the wave equation states the conservation law that the time
rate of change in pressure is equal to the spatial rate of change (c times the diver-
gence) of the velocity.

One may think of the problem of submarine detection by sonar, for example,
as a concrete setting for this type of scattering problem.

Separation of variables for this problem yields the Helmholtz equation

Au + k*u = 0in Q.

We will return briefly to this aspect of the problem after discussing the two other
physical situations (b) and (c) below.

(b) Quantum Scattering

Here one scatters a particle off another. Two situations are easily envisioned (Fig.
2.8b), in which there is (i) an attraction and (i) a repulsion. In accelerator exper-
iments one usually must direct a whole cloud of particles against a cloud of the
other type. However for the theory we may consider single particles, and we may
also assume the larger is at rest by taking into account only their relative motion.
Moreover we may assume for the description here that the attractive or repulsive
force may be given by a potential function V(r) dependent only on the relative
distance r between the particles.

One of the simplest examples is the hydrogen atom equation we encountered
in Section 1.6, namely,

. 1
—EAu - Ju= Au.

The time dependence and certain units have been factored out of the original
Schrodinger equation

ou@r) —h? Ze?
i =—Au— —u
ot 2m r

o+

(4] t]
FiG. 2.8b
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by a separation of variables and the use of so-called atomic (Hartree) units. In the
original equation e is the charge of the electron, Ze is the charge on the nucleus,
m is the mass of the electron, the nucleus has a presumed infinite rest mass, and
fi is Planck’s constant. The above reduced stationary Schrédinger equation for u is
an eigenvalue problem that plays the same role as did the Helmholtz equation for
the classical scattering described in (a) above. Its spectrum was given in Section 1.6.
In Problem (3) of Section 2.7.2 one was asked to formally solve the Helmholtz
equation and the stationary Schrédinger equation by separation of variables.

(c) Inverse Scattering

This is one of the most important types of scattering from the experimental point
of view. In the accelerators various types of prepared particles are sent in and
detectors measure what comes out (Fig. 2.8¢). Sometimes different types of par-
ticles come out, sometimes the same as went in come out but with perhaps a phase
change. The inverse scattering problem is: What happened in the *‘scattering center,”’
that is, in the target region?

In particular one would like to recover from all of the data collected in such
experiments, run as repetitively as necessary, the potentials V(r) between the various
particles as mentioned in the previous section. One of the important questions in
physics, the answer in many cases elusive to this day, is to determine the *‘interaction
laws’* V(r) from the data. Most of the large physical accelerator experiments may
be thought of as being concerned with this problem.

Looked at mathematically, and in a simple example, given the boundary value
problem

—u"(x) + V() = Au(x), 0<x<m,
u(0) = u(m) = 0,

how much does one need to know in order to determine completely V(x)? In some
cases this problem can be solved. It would take us too far afield to discuss further
this interesting problem. Physically, its solution depends on knowing enough **scat-
tering data.’’ Mathematically, one needs to be able to deduce enough about the

Guns Detectors
E Target region Q
—— /
0 — —

_, :
00— N
— ¢

FiG. 2.8¢
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spectrum and eigenfunctions for the operator. Intuitively and classically, the ques-
tion can be thought of in such ways as: (i) What information (sounds) are required
to “‘hear’’ the shape of a drum,* or in terms of the acoustic scattering described
in (a) above, (ii) how much information do we need scattered back to distinguish
a submarine from a whale?

Rayleigh Scattering Off a Small Sphere

Rayleigh observed and provedt that when energy is propagated against a small
hard sphere, the higher frequency waves scatter more. His argument proceeded as
follows (see Fig. 2.8d).

Let an incident plane wave-train be directed downward along the z axis toward
a small sphere centered at the origin; let the resulting scattered wave-train be
spherical with amplitude depending on the angle 9 that the outgoing direction makes
with the z axis; and let the full wave u(t) satisfy the wave equation

u, — c*Au = 0in &,

Q the exterior of the small sphere. As in part (a) of this section, here u(r) is a
velocity potential (¢ a propagation speed in the exterior medium) of a wave prop-
agating with a given fixed wave length ., and correspondingly k = w/c = 2m/
is the given fixed single frequency of the propagation. Thus the full wave u(r)
consists of a mixture of the incoming wave-train and the resulting scattered wave,
the latter being assumed (as is often justified) to be spherically scattered and retaining
the same propagation frequency. We may therefore write

Incident

: ]
wavetrain.___ é —'___%

Outgoing W *
scattered - ]
wave-train ~€ - [

-]

FiG. 2.8d

* See for example M. Kac, “Can one hear the shape of adrum,” Am. Math. Monthly 73 (1966),
and R. Prosser, addendum to “Can one see the shape of a surface,” Am. Math. Monthly 84 (1977
The answer turns out to be no. See C. Gordon, D. Webb, S. Wolpert, Invent. Math. 110 (1992). But
the counterexamples would make strange music, at best.

t A good accounting of this is given in Rayleigh’s book The Theory of Sound (Macmillan, London.
1877: Dover, New York, 1945), Vol. I, pp. 272-2717.
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u(t) = Uincident + Uscattered

ei(kr*ml)

ei(kz —wt) + f(e)

r
= e“"”u,
where
) eikr
u=e* + f(0) —r'

Here we have factored u(¢) into its time-dependent part and its stationary part,

which amounts to a preseparation of variables. The scattered amplitude f(0) depends

only on the outgoing angle . An elementary dimensional analysis shows that for

such spherical scattering the radial amplitude attenuation by ! is appropriate.
Substitution of u(t) into the wave equation yields

ce M Au = c2Au(t) = u, = —wle iy,
so that u satisfies the Helmholtz equation
Au + k*u = 0in Q.

Thus separation of variables, with the ¢-part predetermined, has been performed on
the original wave equation, leading immediately to the Helmholtz eigenvalue prob-
lem

—Au = A in Q,

where A = k? is now the eigenvalue parameter. Boundary conditions of Neumann,
Dirichlet, or other type may now be imposed, depending on the application.

Rayleigh was interested for example in the application of electromagnetic ra-
diation impinging on a small water droplet in the earth’s outer atmosphere. From
the above model, by an expansion of e** in terms of spherical harmonics (which
are essentially the associated Legendre functions mentioned in Section 2.1), and
by a similar expansion of f(8)e* /r in terms of spherical harmonics and Bessel
functions, it was then concluded by Rayleigh that for a sphere sufficiently small
relative to the frequency band under consideration one has indeed a scattered am-
plitude

f®) ~ k*(1 — 2cos 6).

Hence higher frequency waves do scatter more.

This type of analysis would indicate for example in the sonar application
mentioned in (a) that the scattering amplitude is very frequency dependent. In sonar
one sends out a band of frequencies but gets back (essentially) only one frequency
from the target. The dissipation of the other frequencies is caused by damping and
other more complicated effects in the water. The same frequency selection is ob-
served in listening to a bell struck under water.
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In the application of Rayleigh to electromagnetic radiation on the atmosphere
the above analysis shows why the sky is blue. Recall (Fig. 2.8¢) that blue is near
the upper end of the color spectrum, the lower colors being too attenuated to make
it down.

A few aspects of a nonlinear scattering theory will be given in Problem 2.9.8,
together with a number of interesting examples.

In Section 2.7 the separation of variables and Fourier transform methods were
used for exterior problems. The first problem below illustrates the Green’s function
method for such problems. Variational methods can also be employed in some
cases but we do not discuss them here.

The second and third problems below introduce the student to the wave operators
W.. and to the scattering operator S.

Problem 1. (a) Show for —Au = fin L2(R%) the solution is given by
u(P) = f f f Go(P, Q)f(@) dVo,
R3
where Go(P, Q) is the Green's function
1
Gy(P, = ——.
0( Q) 411_‘ P — Ql
(b) Show that for any complex A such that X is not in the real spectrum
a(—4) = [0, ), the solution u of the inhomogencous Helmholtz equation
(-A-Nu=f
is given by the Green's function representation for the resolvent operator (-A
— A las
u(P) = (A = N7f = f“ G\(P, Q)f(@) 4V,
R3

where

ei\/X\P—Q|
G\(P, Q) = m .

l l . INCreasing

Red Yeliow Blue Violet frequency
Orange Green

FiG. 2.8¢




ELEMENTS OF SCATTERING THEORY 237

(c) Investigate the validity of the limit of the above as A = x + iy
tends to the nonnegative real axis, for example, as x = 0 is fixed and as 0 <
y— 0.

Problem 2. Two fundamental entities in scattering theory are the wave oper-
ators
W.p = lim eitHo*V)g~itHog

= xx
and the scattering operator
S =wiw_.

These operators provide a base for the mathematical study of waves propagating
according to an ‘‘interaction Hamiltonian”® H, + V as compared to waves
propagating *‘freely’’ under a ‘‘bare Hamiltonian’’ H,. We have here used the
formalism of quantum mechanics in which an interaction is governed by the
potential V, but similar formulations of W_.. and § hold for acoustic scattering,
by replacing V with the effect of an obstacle, and in other scattering theories.
For the present situation the reader may think in terms of Figure 2.8b, imagining
a “‘free trajectory’’ e ¢ as a straight line and an *‘interaction trajectory’’ as
a straight line coming into the target region, there being bent by the interaction,
then coming out eventually as a straight line in a changed direction.

There are a number of interesting and profound mathematical considera-
tions involved in defining and investigating the above quantities. However,
working formally, one may see here some of the basic ideas.

Let us suppose that the interaction V commutes with H, so that

W.e = lim e?o.
1—x
Let us consider a standing plane state ¢ = e, k a fixed frequency. Then
formally
W,@ = lim ei®+¥),
1—x

Thus V sets up a time-dependent oscillation. If V = V(x) — 0 for large x (far
away from the target region), then the phase kx + Vt eventually settles down
to the original time-independent phase kx and W, ¢ reapproaches ¢ asymp-
totically. If V = kyx/t, the basic frequency of ¢ is changed so that W, ¢ =
e'®*kix (3 Find formally S¢ for the ¢ = e and V(x) — 0 discussed above.
(b) Repeat (a) for V(x, 1) = kox/t.

Problem 3. To see how cavalier we have been in the above, g0 back to linear
algebra and let Hy = A and Hy + V = B, where A and B are two n X n

T That is, treating all objects as scalars.
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matrices on a finite-dimensional Hilbert space. (a) Define e*. (b) Investigate
W = eA*Be~A. (c) Consider also § = (e A)*(ertBy*(e " ATD)(eh).

2.9 SUPPLEMENTARY DISCUSSIONS AND PROBLEMS

As in Section 1.9, this section contains problem and reading material supplementing
each of the eight previous sections 2.1 through 2.8, and then there is a final Problem
2.9.9 containing three *‘confirmation” exercises and further exercises and problems.

In Problem 2.9.1 a brief exposition is given to hint at the connections between
separation of variables, tensor products, and group representations. Problem 2.9.2
relates the convergence of our solutions found as limits of Fourier partial sums to
the notion of a closed operator. The related and fundamental facts that the Hilbert
spaces L%(a, b, r) are all separable and that the test functions Cg are always dense
are proved in Problem 2.9.3. The Sturm—Liouville theory of Section 2.4 is aug-
mented in Problem 2.9.4 by the inclusion of a short discussion of the limit-point
and limit-circle cases for use on singular problems. The notion of Green's functions
as kernels of bounded inverses of the given differential operators is elaborated in
Problem 2.9.5. Problem 2.9.6 contains additional numerical considerations to sup-
plement Section 2.6, including (1) a connection between finite element convergence
and Fourier series, (2) a typical numerical solution of an initial value problem
(Section 2.6 did only boundary value problems and eigenvalue problems), and (3) a
short treatment of the Buckley—Leverett equation, which occurs importantly and
recently in moving interface problems such as those encountered in secondary oil
recovery and in other significant applications. The use of the Riemann mapping
theorem as a clasical method for solving the Dirichlet problem on both bounded
and unbounded domains in two dimensions is explained in Problem 2.9.7(1). The
aspects of spectral theory discussed in Section 2.7 are augmented in Problem
2.9.7(2) by a brief look at the resolvent equation. Problem 2.9.7(3) contains Kir-
choff’s formula and Huygen's principle for the wave equation. Some elements of
the recently developing theories of nonlinear waves and solutions are presented in
Problem 2.9.8.

Problem 2.9.1 Separation of Variables and Tensor Products

From the strictly practical point of view, one may regard separation of variables
as a way of solving a partial differential equation by reduction to ordinary differential
equations. The solutions to the latter are then pieced together in a way so as to fit
the initial or boundary data. In a historical perspective, this corresponds to the
physical context and the notion, as used for example by Bernoulli and DesCartes.,
that the fundamental modes in the data reproduce themselves in the solutions.

To more fully understand a concept it is often both amusing and enlightening
to try to cast it in more than one context. We have seen in this chapter for example
that the separation of variables scheme may be placed in the contexts of Fourier
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series and Hilbert space, and related to Green’s functions, among others. We wish
now to make a further conceptual connection not often made in the literature,
namely, to try to view the separation of variables solution in the context of tensor
products. *

This asserted connection between separation of variables and tensor products
may seem a bit esoteric at first though and indeed for most applications it would
be an indulgence rather than a necessity. On the other hand it provides a fundamental
conceptual link between the method of separation of variables and the more advanced
theory of group representations (useful in theoretical physics for example) and may
be taken as a motivation of the latter by the former, or of the former by the latter,
depending on your disposition.T We wish here only to indicate this connection,
leaving its further processing to the interested student.

We have already become familiar (e.g., Sections 1.6.2 and 2.3) with the notion
of the inner product (4, v) of two vectors or functions u and v. For example, if u
= (a1, a5, a3) and v = (b,, by, b3) are each vectors in 3-space E>, then one may
find the inner product calculation symbolically displayed in matrix notation as

a;
(u, v) = a, | (b, by, b3) = a)b; + ayb, + azb,.
as

The tensor product ¥ of u and v consists of all multiples a;b; and may symbolically
be displayed in matrix notation as

ab, ab, ab;
u ® v = azb, a2b2 a2b3
a3b;  asb, a3b;

The tensor product should not be confused with the outer product§ u# X v, which
is vector valued. Recall that the inner product is scalar valued and the tensor product
as above is matrix valued.

Actually the tensoring of two vectors is more complicated and one must be a
bit more careful. First one forms the tensor product U ® V of the two vector spaces
in question (in the case above, U = V = E?) by taking all pairs of elements of U
and V as an algebraic basis, forming their linear combinations, then factoring that
vector space into equivalence classes so that the tensor product operation ® pos-
sesses the bilinearity property

n m

ié:l Cild; ®J§ dv;, = iz z cidiu; @ v

1j=1

* One may wish to have a book on tensor jproducts at hand in working through this problem.

t See K. Gustafson, review of the book Unitary group representations in physics, presability,
and number theory by G. Mackey, Bull. Amer. Math. Soc. 2 (1980).

1 Another name used: direct product.

§ Other names for the outer product are: cross product, vector product.
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There is also another (less direct) prescription for U ® V, using linear functionals.

Without going further into the algebraic details let us continue, and in particular
let us note two further examples of tensor products.

If U is the vector space of polynomials X(x) of degree n or less and V is the
vector space of polynomials Y(y) of degree m or less, then U ® V may be identified*
with a vector space of polynomials Z(x, y) in the two variables x and y so that the
““simple tensor’” X(x) ® Y(y) of two vectors X(x) and Y(y) may be identified with
the polynomial product X)X ().

IfU = L%a, b) and V = L%(c, d), then U ® V may be identified with L*((a,
b) X (c. d)).

Let us now return to partial differential equations and in particular to the
Dirichlet problem on a square Q,

Au = 0in 2,
u = fon o,

where f = 0 on the three sides other than the base y = 0,0 <x <. The separation
of variables solution was

u(e.y) = 2 eXa(OYl)
in terms of known functions X,(x) and Y,(y) that solve associated ordinary differ-
ential equations. We may thus regard the solution as a ‘‘simple tensor’’ in L*((0,
w) x (0, m)).

Problem. Do one of the following, if it interests you. (a) Do some reading
and then elaborate further on the above connection. (b) Look at the way one
may tensor product two operators on given vector spaces. Then demonstrate
for example how 8%dx dy may be regarded as the tensor product of the operators
d/ox and 9/dy. (c) Experienced mathematicians often believe in the “‘meta-rule’’
that ““when things don’t commute the right way,”” just “‘tensor the heck out
of them.”’T The corollaries of this are that the resulting tensor products can
be hard to work with and that it may be hard to put things back together again.
Think about this, especially as concerns separation of variables, and comment
upon it.

Problem 2.9.2 Fourier Series Convergence and Closed Operators

In showing that a Fourier series partial sum converges to the solution of a differential
equation, one is in fact working with the concept of a closed operator. Most

* In mathematical precision, “‘may be identified”” means ‘‘is isometrically isomorphic”’

+ We have already accepted this “meta-rule’’ for the case of partial differential equations, 35
evidenced by our growing faith in the separation of variables method. This amounts to a procedure of.
when in doubt, just ‘‘eigenfunction-expand the heck out of them’".



SUPPLEMENTARY DISCUSSIONS AND PROBLEMS 241

differential operators L are closed operators when placed in any correct setting.
Very often (see 2.9.5) their inverses L ™! are continuous operators.

The concept of closed operator is weaker than that of continuous operator, so
let us recall the latter first. A linear operator A from one normed linear space X
(see Section 2.3) to another normed linear space Y is called continuous if u, — u
implies Au, — Au. This is no different than the original concept of a continuous
function as encountered in a first calculus course. All matrix operators on finite
dimensional spaces have this property, as well as many integral operators.

Differentiation tends to weaken convergence, and for that reason differential
operators usually fail to be continuous in their natural settings.* A linear operator
A from a domain D(A) in one normed linear space X to another normed linear space
Y is called closed if u, € D(A), u, = u, and Au, — y imply that u € D(A) and
Au, = Au.

Problem. (a) Show that L = d/dx is a closed operator from X = Y = C?[0,
1], the space of continuous functions on the interval 0 = x = 1, if one takes
D(L) = C'[0, 1] and uses convergence in the maximum norm el =
maxos,,S,Iu(x)l, the so-called uniform convergence norm.

The above problem is solved by reference to the fact (see any advanced
calculus book) that uniform convergence of u,(x) to anything and uniform
convergence of u,(x) to u(x) imply that lim,_,.u,(x) = u’'(x). We used this
property extensively in Section 2.2 in the proofs of the validity of the separation
of variables solutions.

In the same way d/0x and 8%/dx? turn out to be closed operators in the right
settings. In the L2(0, 1) norm to get d/dx and d%/dx? closed one needs to use
domains H(0, 1) and H%(0, 1), the Sobolev spaces of weak derivatives (see
Section 2.6 for more information on these spaces). Even though the continuous
function space C"({}) norms as in the problem above are easier to work with
initially, the L2({2) and Sobolev space H"({}) norms are often more appropriate
physically.

Problem. (b) Given that the Laplacian A is a closed operator in X = ¥ =
L%(R®), as in Section 1.7, Problem (3), show that the full hydrogen operator
given there is also a closed operator.

In Section 2.2, in the proofs that A(lim sy) = O the argument was really
an aspect of the fact that A was a closed operator. That is, let sy — u and note
that Asy = 0 for each N. Then if A is known to be closed, one has immediately
that Au = 0.

Problem. (c) Elaborate on the paragraph immediately above, in terms of both
the maximum norm and the L2 norm.

* Differential operators can be forced to be continuous operators. The doing of it underlies much

:fsthe modem theory of distributions and topological vector spaces. A certain naturalness is however
t.



242 FOURIER SERIES AND HILBERT SPACE

Problem 2.9.3 Separability and Test Functions
In this problem we establish the related and fundamental facts that:

(i) L%a, b, r) is always a separable Hilbert space;
(ii) the test functions C >(a, b) are always dense therein.
For (i) we also clarify, in a preliminary lemma, the equivalence of the notions of:
(iii) (1) separability;
(2) countable denseness;

(3) countable completeness,
(4) countable maximalness.

The latter brings in, in a natural way, the
(iv) Gram-Schmids orthogonalization procedure.

The proof of (ii) introduces the reader to the key technique of the
(v) mollification.

of a given function into a Cg function

This section can thus be seen to contain the principal key ingredients for a
further study of the abstract theory of ordinary and partial differential operators in
function spaces.

A Hilbert space H is said to be separable if there exists a dense countable set
{{,}. By this we mean that for every h in H and for every € > O there is a i, such
that

I — dll <e.
For a full understanding of this concept let us establish the following lemma.

Lemma (Separability)
The following are equivalent for a Hilbert space H:

(1) H is separable, that is, there exists a dense countable {{,} as stated
above.

(2) There exists a ‘‘complete’’ countable sequence {n.}: spim.t = H*

(3) There exists a ‘‘maximal’’ countable orthonormal sequence {@n} in
the sense of Theorem H of Section 2.3.

* Recall sp{n,} means the closure of the span of the {n,}. The span of the {n,} consists of all
finite linear combinations 7 a;m; of the {n.}, said span then required to be dense in H under condition
(2) of the lemma.



SUPPLEMENTARY DISCUSSIONS AND PROBLEMS 243

Proof

(1) = (2). Let H be separable. Then {{,} is a ‘‘complete’ sequence in the
sense (2), even without taking the linear combinations. That (2) => (3) may
be seen with the aid of the Gram—Schmidt orthogonalization procedure as
follows. Let {n,} be independent and complete. Let

n
cp,,=_21a,,,-'q,-, n=1,...,
=

where by prescription
<‘Pn’ni>=0 f0ri=1,...,n—1,
leall = 1, @ > 0.

Solving this system for m; yields

7]"=21bm'q>i, n=1,...,
i=

and thus sp{¢,} = sp{m,}. The implication (3) > (1) follows by the count-
ability and denseness of the span sp,,, {¢,} of linear combinations Z"_, a;¢; of
the {¢,} taken over rational coefficients {a;} only.

Problem. (a) Write out the above proof in more detail.

In Section 2.4 the Hilbert spaces L*(a, b, r) play a fundamental role. L*(a, b, r)
consists of those functions defined on any interval (a, b) and square integrable
there with respect to the weight function r(x), that is, [2]u(x)]*r(x)dx < .
The weight function is to be strictly positive and locally integrable in (a, b).

Proposition. (Separability of L%(a, b, r)). Leta < ¢ < b, and let (Fig. 2.9a)

— 1 Xie.n®), c=sy,
x 3
n’( ) {_X[,’C](x), t<ec.

Let {#;} be an ordering of all rationals in (a, b). Then {m,} is ‘‘complete’” in
L*(a, b, r) in the sense (2) of the lemma above.

n,,®)

WA/
a ‘2.% t

O~

FiG. 2.9a
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Proof

Each m, is in L%(a, b, r) because the weight function r is positive and locally
integrable, since then

b :
f (,)*r(@) dtéf rt) dt < .

It is sufficient to show that (f, m,) = O for all i implies in turn that f = 0, as
in the proof of Theorem H of Section 2.3. Proceeding, we have:

(f,m,) =0 foralli=f L sp{n,}
> f L sp{e,} via Gram-Schmidt (see above)

= {IfI"", ¢,} is an enlargement of {e,}

if f # 0. Proceeding backwards in the Gram—Schmidt relations from {FIA~Y,
¢,}, we reach a contradiction of (f, m,) = 0 for all ,.

Problem. (b) Write out in more detail the argument just given. (c) Validate
the details in the following alternate proof. With the situation as above, let
F@o = (f,m) = [t f(s)r(s) ds. F is a continuous function of ¢ in (a, b), F(t;)
= 0 on adense set of {t;} in (a, b), so F is identically zero on (a, b). Therefore
the integrand f(s)r(s) = O almost everywhere by differentiation, and hence
f = 0 almost everywhere.

The separability of L*(a, b, r) established above depended on constructing
a dense set of step-functions. For those who know the Lebesgue theory of
integration, that is an entirely natural way to proceed. For dense sets of functions
for use in differential equations one prefers instead very smooth functions that
can be differentiated without worry.

The fact, to be proved below, that C3(€)), the infinitely differentiable
functions of compact support, are dense in any LP(Q) space, | = p <>, is
the basic connection between the classical analysis and the modern functional
analysis treatments of differential equations. Roughly stated, it means that with
additional work and care the usual formal classical arguments, which just
assume as much smoothness as needed, go over at least in a so-called weak
form to all functions involved in the problem. That is, one may work with .
smooth functions first, then try by limiting arguments (using the denseness) to
complete the discussion needed for all data involved and for all functions (e.g.,
only the weakly differentiable ones, or distributions) in the domain of the
operator under study.

The proofs that C3({) is dense in LP(€2) and in particular in L%()) are
usually similar to the proof given below for L*a, b, r) in one dimension.*

* For a general proof in the general situations, see for example N. Dunford and J. Schwartz,
Linear Operators Il (Wiley, New York, 1963).
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Fundamental Approximation Theorem. (Test functions)

Co(£Y) is dense in LP(Q) for any reasonable €} and any | = p < . In particular,
Co(a, b) is a dense subspace of L(a, b, r).

Proof

As mentioned, we will prove only the latter, for simplicity. The idea here is
a key one: that of mollifying the m, of the above proposition into C functions
while at the same time retaining their denseness. Mollification is a fundamental
tool in the theory of partial differential equations. *

Let (Fig. 2.9b)

e e, x| < e,
%(x) = {0, |x| > e,

where

1
Ce = J‘e_ e—l/(ez—xz) dx
Then 8.(x) is a Cg function, 8,(x) > 0, and J2.8.(0)dx = 1. For any y in
(a, b), 3.(x — y) is in Ci(a, b) if € is small, that is, if € < d(y, d(a, b)).
Recall that for ¢ in (a, b), tin (a, b), we had m,in L%(a, b, r) in the proposition
above. Let

b
N,e(x) = f Ny 8 (x — y) dy.

a

This is the mollified (mollification of, if you wish) .. It may be verified that
M::(x), as a Cg smoothing of the step function v,, is in Cola, b) for & small,
that is, fore <min[b — ¢,c — a,b — 1,1 — a]. Since J2.8,(0) dx = 1,

b
M) — Mx) = L M(y) — M8 (x — y) dy
and

M) ~ m0) = max 1 [y =m0

yE[x—g, x+¢

0, for all x such that [x — ¢| > ¢

- {2, for all x in (a, b),
and |x — ¢ > e.

Thus |, .(x) — M,x)| = 0 for almost all x as € — 0.
This fact, that the mollification M,,.(x) converges pointwise almost every-
Where to the original v,(x), is interesting in itself.

* This is an additional reason for exposing it here.
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To complete the proof of the theorem, we now need to show in addition
that 1, .(x) converges to 1,(x) in the L%(a, b, r) norm. This follows immediately
now by recourse to the Lebesgue dominated convergence theorem (see Section
1.6.3), which asserts that for the case that |7, . (x) — m,(x)|? converges bound-
edly to zero almost everywhere as ¢, — 0, then also

b
“Tlt,e,, - Tlr”%’(a,b,r) = J; ITI:,E(X) - Tl,(x)|2r(x) dx — 0.

In summary: Any function f in L*(a, b, r) can be approximated arbitrarily
closely by a finite linear combination of the n,, which can in turn be approx-
imated arbitrarily closely by their C5 mollifications.

Problem. (d) Prove that 3,(x) is indeed C5. (¢) For more exercise, prove that
M..(x) is also Cg.

Problem 2.9.4 Limit-Point and Limit-Circle

No discussion of Sturm—Liouville theory would be complete without at least brief
mention of the limit-point and limit-circle cases for singular problems.*

Recall that the Sturm-Liouville theorem given in Section 2.4 was stated for
the regular case: The eigenfunctions {¢,} of

—(pu') + qu = Aru, a<x<b, @)

with a self-adjoint boundary condition provide a Fourier expansion for all functions
fin L*%(a, b, r). On the other hand, we saw in Problem 2 of Section 2.4 that familiar
equations such as the Hermite and Legendre equations are not regular, and yet they
do have maximal eigenfunction sets.

Herman Weylt analyzed this situation in the complex domain, that is, for A
in the complex plane, and found that there are two cases, which are in fact inde-
pendent of A. Let A be nonreal, and let ¢ be chosen in (a, b) so that we may look
at the singular behavior first near the endpoint b, (then similarly near a).

* For more information see for example E. Titchmarsh, Eigenfunction Expansions Associated With
Second-Order Differential Equations 1, 2nd ed. (Oxford Press. Oxford, 1962), and E. Coddington and
N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955).

t H. Weyl, Math. Annalen 68 (1910).
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Case 1. Limit-circle case. Every solution of (1) is square integrable, that is
is in L(c, b, r). ’

Case 2. Limit-point case. There is one fundamental solution of (1) that is square
integrable, that is, which is in L2(c, b, r), and there is another fundamental solution
that is not square integrable.

Recall that under very general conditions one knows what an ordinary differ-
ential equation such as (1) possesses two linearly independent (thereafter called
fundamental) solutions (not at all unique) and that all solutions are then linear
combinations of any two fundamental solutions. The two cases in Weyl’s result are
exhaustive since it can be shown that there always is at least one square-integrable
solution. The terminology *‘limit-circle” and ““limit-point’” come from the proof,
50 let us look at that now. However, let us first state somewhat more precisely the
facts described above for the equation (1), regular or singular, a < ¢ < b. Thinking
in terms of pairs of fundamental solutions, by “‘the other’”” solution we mean any
other linearly independent solution, similarly by “‘both’” we mean all solutions.

Theorem (Weyl)

(1) For any X nonreal there always exists one solution in L2(c, b, r).

(i1) If for any A, real or nonreal, both solutions are in L2(c, b, r), then
both solutions are in L2(c, b, r) for all A. In this case the Sturm-Liouville
equation (1) is said to be in the limit-circle case at b.

(iii) If for some Ay, real or nonreal, one solution is not in L¥c, b, r), the
Sturm-Liouville equation (1) is said to be in the limit-point case at b. Subcases
are: (a) Ao nonreal; then by (i) the other solution is in L¥c, b, r). (b) A real;
then the other solution may or may not be in L¥c, b, r).

Although we do not give here a proof of the theorem in its entirety (its proof
may be found in most books on the theory of ordinary differential equations), let
us see how the limit-circle and limit-point terminology comes out of the proof. In
so doing we will in fact see all the essentials of the proof. We begin as usual with
a key fact using the Wronskian.

1. For A nonreal a solution u of (1) is in L¥(c, b, r) iff lim,_,,- W(u, B)(x) is
finite. This follows immediately from the integration by parts

=X J:lulzrds = W(u, m(x) — W(u, u)(c).

2. Define two fundamental solutions ¢1(x) and @,(x) of (1) by: ¢,(c) = 1,
P(©)¢y(c) = 0, and ¢4(c) = O, P(©)¢3(c) = 1. Note that from 1 above, for any
solution u the quantity (A — N7 W, #)(x) is an increasing function of x. In
Particular, consider any u = z¢, + ¢2, z an arbitrary complex number. Then a
Straightforward calculation shows
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A — N Wu, D) = A — )7 Wen gz - 2> = rdW)l,

where
V4 (x) = _M
° Wier, $1))
and where
r2(x) = [W(g,, TDW)* + Wies, ALCTR 1
’ —W(or, 1)? Wien, S0

3. Let zo(x) be the center and ro(x) the radius of a circle C(x) in the complex
plane (Fig. 2.9¢). From 2 above, the increasing function of x is seen to be negative
for z inside the circle, from which we may conclude that C(x,) is contained inside
C(x;) for x; > x;. Thus these circles nest inward as x increases.

4. Now as x — b, either (a) the circles contract to a circle C(b) with center
zo(b) and radius ro(b), or (b) the contraction goes all the way down to the point
zo(b). In case (a) one is in the “‘limit-circle’’ case and from 1 and 2 above, all
quantities, and in particular, (\ — X) J? |u|*rds for z inside the limit-circle C(b),
are finite. In case (b) one is in the ‘‘limit-point’’ case, and from 1 and 2 above
one has

= X[ foiPrds = Weew, a0l = 7300 ==

Problem. (a) Complete the details in the proof sketched above. (b) Show that
the Legendre equation is in the limit-circle case and the Hermite equation is
in the limit-point case. (c) Prove that the regular case of Section 2.4 is limit-
circle.

C(x)

FiG. 2.9¢
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Problem 2.9.5 Green’s Functions and Continuous Operators

In Problem 2.9.2 we discussed briefly the notion of closed operators. Recall an
operator L is said to be closed if u, — u and Lu, — f imply that  is in the domain
D(L) and that Lu = f. For the Dirichlet problem this concept was illustrated as
follows. The partial sums sy of the separation of variables solution-candidate u
converging to u, sy — u, and the fact that Asy = O for all sy, yield that « is in
the domain D(A) and that Au = 0, provided that it has been shown that A acts as
a closed operator in that situation. The latter can be shown explicitly, although we
do not do so here.*

Many differential operators L have continuous inverses L™ !, and these inverses
are often represented as integral operators with Green’s functions as kernels. We
have already seen (Section 1.6.1, Remark 2) how this can come about by deducing
Green’s I identity for the Dirichlet—Poisson problem

—Au=F inQ,
u =0 onadf},

namely, that the solution is given by
ulP) = LG(P, QF(Q) dVy.

As shown there, letting L denote the negative Laplacian — A acting on functions
that are zero on 80}, L ™! was given by the integral operator [o G(P, Q)(*)dV,,.

Let us show now that this L™ ! is indeed a continuous operator. Recallt that
an operator A is continuous if v, — v implies Av, — Av. For the case at hand this
would mean that as Poisson data F, L F 1 we would have the resulting solutions
u,, of the Dirichlet—Poisson problem also converging, that is,

uy = LF, 2B L =

This can be shown for example by working directly with the Green’s formula and
showing that as Fy converges in the L2(2) norm to F, then [ G(P, Q)Fy(Q)dV,
converges in the L2(Q) norm to [ G(P, Q)F(Q)dV,,. The argument goes as follows
and depends essentially on the fact that G(P, Q) is jointly square-integrable. By
Schwartz’s inequality, we have

* For a concise proof using the Lax-Milgram theorem see Yosida, Functional Analysis (Springer,
Berlin, 1968). An important early paper was that of Garding, Math. Scand. 1 (1953). For an extensive
general treatment see F. Browder, Math. Ann. 142 (1961). A recent survey and L? theory is Simader,
**On Dirichlet’s Boundary Value Problem,”” Springer Lec. Notes 268 (1972).

+ See Problem 2.9.2. See also Section 2.6 for related considerations.

t To speak of continuity one needs to have chosen a metric. Although such a choice is usually
not unique, it is natural to use the Hilbert space norm L2(€Y). In this norm L~ ! is, as shown, continuous.
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IL~F, = Ll = L(LG(P, OF MO @V,
2

- LG(P, QF(©Q) dvg> vy

= J;}(J;}Gz(P, Q) dVQ) (JQ‘FN(Q) - F(Q)‘deQ> dve

= |GlZxaxey * Fy = Flingy = 0.

Problem. (a) In Hilbert space or Banach spacef an operator A is continuous
if and only if it is bounded: There exists a number M such that

lAul|l = Mju|

for all u in the space. The smallest such number M is called the norm ||Al| of
the operator A. Show for A on a Hilbert space H that A is continuous if and
only if A is bounded.

(b) An operator A on a Hilbert space is said to be strongly positive} if
there exists a positive number m such that

(Au, u) = mllul?

for all u in the space. Show that then A-! is continuous and that A Y| =
m-L

() In the above discussion we showed directly that L~ for the Dirichlet—
Poisson problem was continuous. To do so we assumed without proof that the
Green's function G(P, Q) was jointly square integrable (see Problem 2, Section
2.5). Show L ™! continuous for that problem by the method of part (b). (Hint:
Recall the variational characterization of the eigenvalues of L.)

(d) A strongly positive self-adjoint operator maps onto the whole space.
Try to give a rough proof of this important fact.

(¢) A more general theorem of Banach asserts that (L*) ! bounded implies
that L is onto, for all closed operators L. Relate this fact§ to the comments
about a priori estimates made in the footnote of Section 1.6(2)1".

Problem 2.9.6 Additional Numerical Considerations

The field of numerical solution of partial differential equations is a relatively new
and rapidly growing one, and far from complete. Here we supplement Section 2.6

+ In more general topological vector spaces the boundedness of A and the continuity of A need
not be equivalent concepts.

1 Such A are called in some contexts *‘coercive.”" Perhaps a better terminology would be *‘uni-
formly positive.”

§ More information may be found in K. Gustafson, J Math. Mech. (now Indiana Univ. Math.
J) 18 (1968). and K. Gustafson. “Operator Spectral States.” Computers Math. Applic. 34 1997).
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with (1) an illustration of finite element convergence, (2) an example of the iterative
marching methods for initial value problems, and (3) a treatment of the Buckley—
Leveritt equation as it occurs in oil recovery problems. In so doing, we have barely
scratched the surface of these subjects: see Chapter 3 Appendix B for further
numerical considerations.

(1) Finite Element Convergence. One can sometimes establish convergence rates
for finite element approximations by Fourier expansions. We give here an illustrative
example of this type of connection between variational methods and Fourier meth-
ods.

Consider the Poisson problem

—-u'kx) = f(x), O<x<m,
u(0) = u(mw) = 0,

to be numericaly approximated (Fig. 2.9d) by the finite element method using
piecewise linear continuous functions as the approximating functions (usually called
the elements). A basis (mutually orthogonal except for adjacent ones) are the so-
called roof functions (Fig. 2.9€) so that the approximating piecewise linear function
uy over a grid of N subintervals can always be written

N
un(x) = 3, u(nh),(x).

e
Note that at each ‘‘node’’ we have uy(nh) = u(nh), thus tacitly assuming that we
“know’’ the unknown solution u; but close estimates can be obtained by finite
differences and in fact what we wish to show is the convergence of the finite element
approximations to any given function u, whether u originates from a differential
equation or not.

Problem. (a) Derive the Poincaré inequality

h h
IO vi(x)dx = h’Dy(v), Dy(v) = IO '(x))*dx

for any function (C?) on an interval of length k and vanishing at the end-points.
(b) Letting v(x) = u(x) — uy(x) on any grid interval (n — 1)k = x = nh,
show by Fourier expansion,

[

[

| I B
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that for u a C? function one has the estimates

Il
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and hence
nh h2 nh
Diw) = f( WP = f( NG
Upon adding and noting that v"(x) = u"(x) in the intervals one thus has
h? (™
D(u — uy) = fo (f"0)?d.

Thus the finite element approximations converge in the Dirichlet energy norm
at the rate A2 in terms of mesh size.

(2) Marching Methods for Initial Value Problems. As an additional exercise on
numerical methods, consider the initial boundary value problem

u, — u, =0, 0=x=1, t=0,

u(x, 0) = f(»), 0=sx=1,

uw®, ) = u(l, 1) = 0.
Let x;, i = 0, ..., N be a regular partition, increment length &, of the interval
[0, 1}, and approximate by finite differences as in Section 2.6, that is,

d Ui, 1) — 2u(x;, 1) + ulx;-y, t) -

—ulx;, t) = Ei=N-1,
dt u(xn t) h2 l 1 N

u(x;, 0) = fx), 1=isN-1,

u(xg, 1) = u(xy, t) = 0, t=0,

Problem. (a) Solve this system by the methods of ordinary differential equa-
tions. (b) Discretize also in time by letting ¢;, j = 0, . . . , M, be a regular
partition, increment length &, of [0, T, arriving at the system
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u(x;, 5q) = ux;, L)+ %(u(xfﬂ, 5 — 2u(x, 5+ ulx;_y, 9),
I1=isN -1,

u(x;, 0) = f(x,), 1=i=N -1,

ulxg, ) = u(xy, t;) = 0, O=sj=M

(c) Assigning the initial value f&) = x(1 — x) and mesh sizes N = M = 2,
5, or 10, begin at ¢+ = 0 and iterate (march) upward one step at a time in ¢.
(d) Read about ADI methods for such problems in higher space dimensions. *

(3) The Buckley—Leverett Equation in Secondary 0il Recovery. An important
but lesser-known equation occurs in secondary oil recovery problems, in certain
military applications in which a light liquid is forced into a heavier liquid, and as
a general equation in the theories of the mixing of immiscible fluids.t Numerical
methods have been rather important for the study of equations of this type.

Let us briefly describe an interesting situation in which this equation occurs,
that of secondary oil recovery.i We may imagine a situation as shown in Figure
2.9f, in which (i) depicts a horizontal flow section in a porous media in which no
flow takes place in the y direction out of () (due to imagined solid rock walls there),
water being forced into € on the left (from a hole far above), oil being forced by
the water to the right (to a recovery hole somewhere). We have ignored gravity
and any vertical flow aspects of the problem. The water—oil interface appears as a
rightward-moving shock in the water saturation function s(x, y) as shown in (ji).

For plane horizontal flow with an internal interface as indicated in Figure 2.9f,
and with the assumptions of no gravity, capillary, or density variations, one arrives
at the partial differential equations

(Au,), + (Auy), = 0 in Q,
ms; — AuF, — Au,F, = 0 in Q,

with boundary conditions

* In Section 2.6 and the present 2.9.6 we have only briefly introduced numerical methods. See
Appendix B of Chapter 3 for more about numerical techniques for partial differential equations. A good
basic reference is for example R. Richtmyer and K. Morton, Difference Methods for Initial-Value
Problems, 2nd ed. (Wiley, New York, 1967).

T See for example the initial papers and photographs by Taylor and Lewis, Proc. Royal Soc.
London, Ser. A 201, 202 (1950), respectively, and the recent paper by Pimbley, J. Math. Anal. Appl.
55 (1976). The Buckley-Leverett equation itself was formulated earlier in Buckley and Leverett, Amer.
Inst. Mining Eng. 146 (1942). For an account of such oil recovery problems see the book of Peaceman,
Fundamentals of Reservoir Engineering (Elsevier, N.Y., 1977). The relations between the Rayleigh—
Taylor interface instability and the oil displacement in sand problems seem to be not generally known.

 In the common terminology, primary oit recovery is that resulting from natural oil pressures,
Secondary recovery comes by the forcing of water into the oil field, tertiary recovery by adding chemical
sulfactants to the secondary recovery procedure to break down surface tensions and other impediments
to the flow.
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y s
1
b Interfice_
> | == Shock
Water = == 0il
- |I->
2 X Ol ; = X
) t]
FIG. 2.9f
u, =0, y=0ory=bh, 0=x=a,
u=f(y1, x = a, 0<y=bh,
u, = gy, /A, x =0, 0<y=h,
s = h(y, D, x =0, 0=y=h,

and with initial condition

s = So(x, )’), t = 0’ (xa )’) E Qa
where Q = {(x, )0 =x=a,0=<y=b}

The first of the coupled partial differential equations is second-order elliptic and
the second is first-order quasilinear. These equations are derived from Darcy’s law
for porous media, which states that filtration rates are proportional to pressure
gradients, and from conservation of mass (continuity) equations, in a manner similar
to that of Section 1.7.

The principal unknowns are

u(x, y, 1) = the pressure at (x, y) at time ¢
and
s(x, y ©) = the saturation at (x, y) at time Z,

where s is taken to be the percent saturation by water. The corresponding oil
saturation is thus given by 1 — s. The other two principal quantities are the perme-
ability coefficient A(s, x, y), and the Buckley—Leverett function F(s), which is a
measure of the percent water flow. More specifically,

k,  k k
Azk(—W+—°> and F = ——*—
[T ko + pk,

where k,,(s) = water permeability, ko(x) = oil permeability, w,, = water viscosity,
po = oil viscosity, p = Ho/i,, all presumed known experimentally, and where
k(s, x, y) is the absolute permeability coefficient for the material. The function
m(x, y) represents an average (known) porosity, and f, g, &, and s known data.
The boundary conditions correspond to no pressure variation in the (nonmoving)
lateral walls. to a known (e.g., atmospheric) pressure on the outlet side, and to



SUPPLEMENTARY DISCUSSIONS AND PROBLEMS 255

controllable pressure rates and saturations on the input side. The initial condition
presumes a known (e.g., all oil) relative saturation at the beginning.

Problem. (a) Take A and m constant (and for simplicity equal to unity) and
investigate the uniqueness of solutions for this problem. Make some simpli-
fications if you like and consider the uniqueness question only for the first
equation (Laplacian) for the portion of the domain ) to the left of the interface
at a fixed time, along with the boundary conditions.

A large amount of numerical work has been done on such equations and on
more complicated versions thereof. As a simple illustration, let us ignore the y
direction and write down the first-order difference scheme for the second equation,

sl — sr . F(sf) — F(s/_y) -
k * h

m 0,
where k denotes the time step discretization length and # the space step length. The
schemes become more complicated when the pressure and second-order equation

are also discretized. More efficient (e.g., Lax—Wendroff) schemes have also been
employed. *

Problem. (b) Try to write down a discretization of the first (elliptic) equation.

Ignoring the y direction in the first equation, we have (Ax,), = 0, from which
Au, = q(¢). Substituting this back into the second (Buckley—Leverett) equation
yields the first-order equation

m(x)sx, 1) — g()F (s(x, 1)) = 0.

Problem. (c) Investigate the analytical solution of such equations by the method
of characteristics (see Appendix A).

Problem 2.9.7 Additional Analytical Considerations

(1) Two-Dimensional Domains and the Riemann Mapping Theorem. Histori-
cally, the first step from ordinary differential equations to partial differential equa-
tions came in going from dimension # = 1 and ordinary differential equations to
dimension » = 2 and partial differential equations. Although many physical prob-
lems occur only on domains {} in dimension » = 3, by additional physical as-

* For a finite element approach see J. Douglas, T. Dupont, and H. Rachford, J. Canadian Pet.
Tech. 8 (1969). For a further reference see V. Entov and V. Taranchuk, ‘‘Numerical simulation of
Process of unstable displacement of oil by water,”” Iz. Akad. Nauk SSSR, Mech. Zhid. i Gaza, No. 3,
1979 (translated as FI. Dyn. 14, 3 (1979)).
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sumptions they often can be reduced to two-dimensional or even one-dimensional
problems.

For treatment of partial differential equations on two-dimensional domains {2,
there was developed in the latter half of the nineteenth century the powerful analytic
function theory (i.e., complex variables). There are too many facets of the interplay
between analytic function theory and partial differential equations to treat here. We
therefore focus attention on an important and illustrative example, the Riemann
mapping theorem and its use in attacking the Dirichlet problem on an arbitrary
domain { in two dimensions.

Consider such a Dirichlet problem and suppose by a mapping w = g(z), that
is, w(£, m) = g(x, y), one could transform it to the Dirichlet problem for the unit
sphere (Fig. 2.9g). In trying such a change of coordinates, in the same way as was
done in the classification procedures of Problem 1.9.1onelets & = &x, y), n =
1(x, y) for the mapping g, and for the inverse mapping f=g¢g LYx=x€n,y=
y(£, ). One then plugs these into the Laplacian operator and uses the chain rule
of calculus, from which (see the problem at the end of this subsection)

Ag qu(E, M) = uglxd + x2] + 2ug[xeye + xqyq] + u, [y + y3
+ ufxg + Xl + u(yee + Yl
Thus, in the same fashion as in Problem 1.9.1, we may try to find such a 1-1
transformation by setting
() x + x2 =y + 2,

(i) xgye + xXqyq = 0,

(i) xgg + Xq = Vg + Y = 0.
If we can somehow solve the system (i), (ii), (iii) to obtain a 11 change of variables,
then Ag ,u(§, m) = 0. Of course we do not yet have any idea where {2 will go
under such a transformation.

The system (i), (ii), (iii) involves only derivatives of x(€, m) and y(§, m).
Solving (i) and (ii) we arrive at x; = *y, and X, = Fy¢, which are then seen to

y

I 3 plane . o 1 wplane ¢
3=x+iy w=E+in
A, yu(xy)=0in AE,wu(S.n)=0in Qv
u(x,y) =h(x,y) on 3Q u(¢(m) = h(km) on 32’

Fig. 2.9¢
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satisfy (iii). Although either sign choice will work in the following, we choose the
first sign and thus a transformation x = x(§, m),y = y(£, ) satisfying the equations
ox _ 9 x _ %
& om’ am %
These equations are called the Cauchy—Riemann equations for the transformation
z = f(w), that is,

x& m) + & m) = fig + ).

Whenever they are satisfied it can be shown that f is an analytic function.

An analytic function possesses a power series representation (as in Problem
1.9.4). However, here we have an analytic function of a single complex variable,
and as such it may be shown that f possesses the additional property that its derivative
dfldw exists and is independent of direction.* In our application we want f to
represent a 11 transformation. From the theory in calculus of mappings from two
variables to two variables we know that a sufficient condition for a 1-1 mapping
is the nonvanishing of the Jacobian of the mapping, which in our case comes to

0 # J[" Y ] =
€ m
Thus we wish the additional property beyond f(w) analytic that f'(w) # O on the
domain in question, which is in our case the unit sphere ),. Such a mapping z =
f(w) is said to be a conformal mapping, the name deriving from the additional
property that such mappings preserve angles between arcs.

The Riemann mapping theoremt now guarantees such maps. Let ( be simply
connected (no holes) and not the whole complex plane, and let zg = xo + iyg be
any chosen point in (). Then there exists a unique conformal mapping g(z) taking
Zo t0 the origin O in the w plane such that|g'(z)|> 0 and such that g(z) is 1-1 from
{1 to the unit sphere |w| < 1. Under additional assumptions on 3 it can be shown
that g(z) has a continuous 1-1 extension mapping o€} to |w| = 1.

Thus for application to the Dirichlet problem on any such (bounded or un-
bounded) domain ) we may map g:  in z plane — unit sphere in w plane and
We may take the f derived above to be f = g~!: unit sphere in w plane — () in
the z plane. This gives us the desired change of variables x = x(§,m) and y =
¥(&, m). Since we know the Green’s function for the Dirichlet problem on the unit
sphere, namely,

Xg Xy

=x}+ 3y =[x+ ivl]? = |f w2
Ve v § = + iyl = |Fw)

1 1
G(p, q) = —glnlp - q| + E;Inll - pq|

* Such a derivative in the more general setting of Banach spaces is called a Frechet derivative.
One reason why analytic function theory is so powerful is because one is working with Frechet differ-
entiable functions from a one-dimensional (complex) Hilbert space to itself.

t For a short proof see for example L. Ahlfors, Complex Analysis (McGraw-Hill, New York,
1953),
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where p and q are two points in |w| = 1, we then have the Green’s function for
the Dirichlet problem on £}, namely,

1 1 —
GP, Q) = -5 In|g(P) — &(Q)| + 2 In|1 — g(P)s(Q)|

where P and Q are the two points in {) that are mapped by the conformal mapping
g to p and q in |w| = 1, respectively. Upon getting the Green’s function for a
problem, as we know, the problem is, in principle, completely solved. Such then
is the case for the Dirichlet problem on ) treated above, although it remains to
check the details, e.g., to verify that G(P, Q) is indeed the Green’s function, to
check the Poisson representation for the solution to the boundary value problem
given in terms of dG/dng, and so on. It also remains to calculate actual solutions
for given data.

Problem. (a) Verify the chain rule calculation, and if you like, other calcu-
lations in the above. (b) Conformal maps can be easy or hard to compute. Try
the following ones: (i) { the z upper half plane — unit sphere |w| < 1. Find
the map g. (i) Unit sphere |w| < 1 — € in z plane given by z = f(w) =
(w + 2)2. Find the domain Q. (c) For (i) and (ii) of part (b) solve the Dirichlet
problem for {2 by finding the Green’s function and writing the solution u(P)
at a point P in {) by means of the Poisson integral formula

oG
uP) = —+ — (P, Qh(Q) dsg.
a0 dng

(2) Resolvent Operator and Resolvent Equation. In Section 2.7.2 the spectrum
o(L) of an operator L was defined to be those complex X such that (L — Nu = f
was not well-posed. The remaining A are called the resolvent set p(L) for L. For
X\ in the latter set p(L) the equation (L — Nu = f is well-posed, with solution
given formally by

u=@L-N7"

In many cases by means of a Green’s function one has a specific solution repre-
sentation

up) = | 6P, 0@ do

the integral taken over the appropriate region (e.g., (1 or d2) on which the data f
are given. In any case, with or without a Green’s function representation, the
operator

R=C-N"

for X in the resolvent set p(L) is called the resolvent operator.
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A very important equation holds for the resolvent operator, the so-called re-
solvent equation

Rx, - sz =\ - )\2)R>\,sz-

From this equation it can be seen that R, possesses analytic function properties like
those discussed in subsection (1) above.*

Resolvent equations and their variations enter in many important applications
involving partial differential equations. For example, for the Helmholiz equation

(-A+V—-Nu=fonl =R

mentioned in Section 2.7.2, in scattering theory one attempts to compare solutions
u to those of the (easier) unperturbed problem

(A = Nw=FfonQ = R3.

For A complex and not real, by the self-adjointness of —A and —A + V, V taken
here to be a nice multiplicative real potential V = V(x), we know that both equations
are well-posed in L*(R3). For such \, letting

R=(-A-N"!
and
R\=(-A+V-)N"1
we see that we may write the modified resolvent equation
R.f = R} — RYVR)).
Assuming that we can explicitly write down solutions w = R f for the unperturbed
problem, we see that the Helmholtz equation with potential V has now been *‘in-
verted”” by this resolvent equation to the equation
u=w- RdVu
This often is an integral equation
d-Kdu=w,

Where w = RYf is the presumed known data and where K, = ROV is, for the
example, compact by virtue of a Green’s function representation for RY and suitably
hice properties of V. Integral equations of this type are called Fredholm equations,
for which there exists an extensive theory.

Problem. (a) Verify formally the resolvent equation above. (b) Verify formally

the modified resolvent equation for the Helmholtz operator given above. (c) The
so-called Lippmann—Schwinger equation of quantum physics is the formal limit

* For more on resolvent operators see any of the references given in Section 2.7.2.
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of the above-given modified resolvent equation, as A = x + iy is allowed to
tend to the real axis. Why is there any problem in writing such a limit, often
written in the physics notation as

pt =p - G\ + i0)Vp*,
the A + i0 denoting the limit from the upper half plane?

(3) Kirchoff’s Formula and Huygen’s Principle. By use of the Fourier transfor-
mation introduced in Section 2.7.3 one may deduce some important Green’s function
representations for solutions of partial differential equations. Here we illustrate how
this is done by deriving the Poisson integral solution to the three-dimensional wave
equation

u, — Asu = 0in Q = R3, t>0,
u(x, 0) = fin ,
u,(x,0) = gin Q,

where x = (x;, X3, x3) and where f = f(x) = f(x, x2, x3) and similarly g are the
initial data. Before doing so, however, let us recall the d’Alembert formula for the
solution to the corresponding one-dimensional problem

Uy — U, = 0, - < x < ®, t>0,
u(x, 0) = flx), —o < x <o,
ul('x9 O) = g(-x)a —x < X < W’

obtained in Section 2.5. There the solution was given by the ‘‘Poisson Integral”’
formula*

PR SRS T BT o

2 2),, 8W ds.

From this we can see that the solution u at point x, and time #, depends only on
the data on the interval [xo — f5, Xo + fo]. This interval (Fig. 2.94) is called the

/| Xo "l Xo xg Yo

FI1G. 2.9h

* To distinguish it from all other *‘Poisson Integral’’ formulas, it is commonly called the d’Alembert
formula. In like manner the *‘Poisson Integral>> formula to be found in the following for the three-
dimensional problem is often called Kirchoff’s formula.




SUPPLEMENTARY DISCUSSIONS AND PROBLEMS 261

domain of dependence of the solution. As drawn schematically in Figure 2.9A for
the case in which g is taken to be zero, the physical meaning of the domain of
dependence is just the fact that for the wave equation (with propagation speed ¢
taken equal to one as we have done here), only the waves at Xp — tyand xg + 1
at time t = O will be felt at position x, at later time ty. Had we considered the
wave equation u, — cZu, = 0 with local wave velocity ¢, the only change in
d’Alembert’s formula would be to average on the interval [xo — cto, xp + ctp],
from which

_ +er
u(xo 1) = fGo + cty) + flxg — cty) + if“

> e g(s) ds.

Xo—Clp

The only change in Figure 2.9 would be that the characteristic lines from the point
(xo, o) would angle back to the initial data line + = 0 with slope 1/c. For larger
¢, the initial waves influencing the solution u at (%0, o) just arrive more quickly.

Turning now to the case of the three-dimensional wave initial value problem,
we will see the same ‘‘averaging of initial data” taking place, yielding the so-
called Kirchoff’s ‘‘Poisson Integral’’ formula for the solution u(x, 1). Let us recall
the problem, namely,

Osu = 0 in R3, t>0,
u(x, 0) = f,
u(x, 0) = g,

where we have here used the rather standard notation [J,u for the wave equation
in n-space dimensions. From the properties of the Kirchoff formula to be found
below it can be verified (see the problem at the end of this section) that the solution
u is given by

d
u=u, + E(uf),

where u, and ug are the solutions of

Ou, = 0 in R?, Ous = 0 in R,
u(x, 0) = 0, u(x, 0) = 0,
ulx, 0) = 8, ulx, 0) = f

Accepting this fact (which is not a priori very obvious), it therefore suffices for
the general problem to solve the initial value problem with only u(x, 0) data g
present. The Kirchoff formfula for the solution in that case is

t T 27w
u(x,y,z,t)=aﬁ)fo g(x+tsin9coscp,y+tsin9sin<.p,
z + tcos 0) sin 0 do d0.

This states that at any point (x, o, Zo, 1) the solution u(xo, Yo, Zo, o) is the average
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of g on a ‘‘domain of dependence’’ the S, (*o» Yo, Zo) sphere (Fig. 2.97) and may
be written as

1,
u(x0’ Yo, 2o0s IO) = ﬁT’ % g(s) ds.

§1, sphere

Note the resemblance between the Kirchoff formula for n = 3 and the
d’Alembert formula for n = 1, namely, in the three-dimensional case

u(Xo, Yo» Zo» o) = avg. of g(s) on a two-sphere 7o units away
in space from (xo, Yo, Zo),

whereas in the one-dimensional case

u(xg, t;) = avg. of g(s) on a one-ball of radius #, units in
space surrounding Xo.

Note also a fundamental difference: For n = 3 the initial data g (and even f) arrives
at (xg, Yo» Zo) fo Units later and thereafter has no effect, whereas for n = 1 the
initial data g continues to affect the solution for all times ¢ = t,. This feature of
solutions of the wave initial value problem is called Huygen’s principle and asserts
more generally that for [J,# = 0 and n odd and n > 1, the initial data represents
sharp signals with no after-effect. Without Huygen’s principle radio communication
would be rather messy because after the initial sounds reached you, you would be
obliged to continue listening to them while trying to ungarble from them the signals
transmitted later. Thus it is apparently fortunate that we live in a three-dimensional
world.

The point {8.¥4,5)
The §, o sphere of radius 1,

FIG. 2.9i
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Let us close this section by formally deriving Kirchoff’s formula by means of
the Fourier transform (see Section 2.7.3). From the given initial value problem we
have after transforming

Uy + (k3 + K3 + k3Hu=0in, = R, >0
ﬁ(kl’ ky, k3, 0) = 0,
ur(kl’ k2’ k3’ 0) = g(kla k2, k3),
an easily solved ordinary differential equation initial value problem with solution

. . sin k|
u(kl, k2’ k}; t) = g(kl’ k2’ k3) |k|
where |k| denotes [k|> = k? + k% + k?. By inverse Fourier transform we have the
solution
el thaxy+kaxy) sin|k|t

Ikl

ux,y, z, ) = (Zﬁ)_3/2fff gk, ky, k3) dk, dk, dk, .
R3

At this intermediate point, recalling the formula e® = cos 0 + isin 0, and
in the shorthand vector notation, we may note that the solution

L efkextll] o pitkex—lk]
ux, 1) = (211)‘”[[[ gk) - dk
25 2ilk|

is the transform of the data ¢ multiplied by both ‘‘incoming’’ and *‘outgoing’’ plane
waves and averaged over all frequencies k, and as such is still a three-dimensional
integral.

There are several ways to proceed from this point. Perhaps the shortest is to
recall the convolution theorem of Section 2.7.3 in the form

\ -1
fxg=r-¢
It is an easy exercise to show in one dimension that (sin k#)/k is the Fourier transform
of a suitable constant times the characteristic function x[—¢, t] of the interval

[—t, 1]. In this way we may write the above inverse Fourier transform formula for
the solution as

A A -1
u(-x’ Yy, z, t) = const - 8 * Xi-ball

which by the convolution theorem yields
u(x, y, z, 1) = const - f f f X(Y)g(x = y) dy dy, dy;.
R3

Changing to spherical coordinates and noting that x,(y) = 1 for |y| = and 0
elsewhere then yields the Kirchoff formula.
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Problem. (a) Verify carefully, by eventually differentiating under the integral,
that Kirchoff’s formula is indeed the solution to the wave initial value problem
with initial data u,(x, 0) = g. (b) Show that the formula u = u, + (up),
is valid for the problem in which initial data u(x, 0) = fis also present.
(c) Consider if you like the wave initial value problem with domain forcing
data [J;u = F(x, t) present, and attempt to obtain a formula similar to the
d’Alembert formula of Section 2.5 in that case. (d) For the student further
interested in Fourier transform techniques, complete the calculation indicated
above in using the convolution theorem to arrive at Kirchoff’s formula.

Problem 2.9.8 Nonlinear Waves and Solitons

Because it is a rapidly growing and increasingly important theory, from both the
physical and mathematical points of view, we wish in this final problem to discuss
certain rudiments of the theory of nonlinear wave motion. Our discussion will be
of necessity limited to some examples and basic concepts.*

Let us go back to the one-dimensional linear wave equation

u, — uy, =0, —o < x <>, t>0,
u(x, 0) = f(x), —o < x < ™,
u(x,0) = 0, —00 < x < 0,

with solution

fx + e + flx —cn)
ulx, 1) = .
2
One way to find this solution was (Section 2.5, Problem 1) by change of coordinates
E=x+a, n=x-ct

according to the characteristics (Problem 1.9.2) for the equation. This corresponds
to factoring the wave operator as

ad ad ad d
——c—)l=+c=)Ju=0
at dx/ \ot ax
If one takes this latter point of view, then the simplest linear wave equation is
seen to be the first-order equation
u, + cu, = 0.

Following this line of reasoning, the simplest nonlinear wave equation would then
be of the form

u, + c(wu, = 0.
* An excellent reference for further study is the book of G. Whitham, Linear and Nonlinear Waves

(Wiley-Interscience, New York, 1974). Other material concerning similarity solutions and local group
invariance has been added in Appendix A, parts A.2 and A.3.
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Such equations are indeed occurring more often now in the modeling of various
real problems, and correspond to situations where u represents a small disturbance
on some basic flow.and where the local speed of propagation depends on the
disturbance. We look at an example below, that of traffic congestion.

For the approach taken above, solution of either the linear or nonlinear versions
or systems thereof of nonlinear wave equations would proceed by attempting to
integrate along the characteristic curves of the problem, in the same manner by
which one obtains the d’ Alembert formula by changing the wave equation to char-
acteristic coordinates. Because they are susceptible to treatment by such hyperbolic
methods, equations of this type, or those composed of factors of this type, may be
categorized as ‘‘hyperbolic.”’

A second and growing class of nonlinear wave equations are the so-called
**dispersive’” equations. These may be of ‘hyperbolic’’ type but can as well be of
parabolic or mixed type. The term ‘‘dispersive’’ has come to mean that the phase
speed is significantly nonconstant with respect to wave length, or, stated another
way, modes (solutions) with different spatial oscillation lengths will propagate with
different speeds. Moreover, if a nonlinear equation has a solution of the form

u(x, ) = A costkx — wt),

then to be ‘‘nonlinearly dispersive’” it is required that @ = (k) vary with k to the
extent that »"(k) # 0. We will see some concrete examples below.
Note that the linear wave equation

u, — ctu, =0
with solutions (as discussed in Section 2.8)
u(x, 1) = Ae'®™"9" = A cos(kx ~ wf) + IA sintkx ~ wf)

wherein the frequency @ = ck = 2mwch depended linearly on the wave number
(or length) k (or A, as you prefer), is not ‘‘nonlinearly dispersive’ even though it
is dispersive and its phase = kx — wf has phase speed ¢ = w/k dependent on
k. On the other hand, the linear vibrating beam equation

U, + cCug, = 0.

which by dimensional analysis must enjoy the relation w(k) = =ck? between
frequency and wave numbers, is ‘‘nonlinearly dispersive’” with phase speed ¢ =
* w/k?. In both cases, different Fourier components will travel with different speeds.

Let us note a third and interesting class of nonlinear wave equations, the
“‘dissipative’” equations. Dissipative operators usually in mathematics connote op-
erators corresponding to physical situations in which conservation (e.g., of energy)
laws are not satisfied, the dissipation (e.g., of energy) usually resulting in solution
decay unless counterbalanced by continuous sources (e.g., of energy). Moreover,
different Fourier components will travel with different amplitudes. An important
example of this type of equation is found below.

The three categories of equations outlined above are neither mutually exclusive
Bor exhaustive, but serve rather as a useful guide to intuition for the various equations
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to be encountered. Let us close this final section of Chapter 2 by a brief look at
some important examples of each of the three types of equations described above.

(i) Traffic Flow. Let p(x, 7) be the density of cars at point x and time  on a
stretch of highway between two points A and B. For example, p(x) may be the
number of cars per kilometer. We assume a continuous density, and a conservation
law (of traffic):

d b
;1_tj plx, t) dx = F(a, 1) — F,1).

This states that the net time rate of change (e.g., three cars per minute) of the
number of cars in any subinterval [a, b] of the highway is given by the net flux of
cars out of and into the ends of that stretch of highway. Proceeding exactly as in
the derivation of the heat equation in Section 1.7, we may use the divergence
theorem to convert the right-hand side ‘‘boundary integral”” into a ‘‘domain inte-
gral.”’ Differentiating under the integral on the left-hand side at the same time, we
thus have

b
I [p(x, 1) + Fx, N dx = 0.

Making the additional assumption now that at each x the flux F is a function only
of the density p at x, we have by the chain rule that F, = F,p,. Letting c(p) = F,
and by the usual infinitesimal argument as in Section 1.7 for the above conservation
law on arbitrarily small intervals [a, b], we thus have the density equation

p, + cp)p. = 0, A=<x=B, t=0.

This is of hyperbolic type.
The overall traffic flow velocity is density dependent and is given by the flux/
density, that is,

v(p) = F(p)lp.
The propagation velocity for waves of traffic is therefore given by

c(p) = v(p) + pv'(p)

the first term representing the general flow velocity. Since the velocity v(p) must
clearly decrease with increasing density p, the second term pv'(p) is negative. Thus
the propagation velocity c(p) is negative as waves warning the drivers of higher
densities ahead are propagated back through the column of traffic.

Experiments have shown the validity of a logarithmically dependent flux law
F(p) = a,p In(a,/p), where a, and a, are constants dependent on number of lancs
and so on. From this, c(p) is of the form by — by Inp, a decreasing function of
p. Any local increase in density propagates into a shock forming near the back of
the column (Fig. 2.9j).
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o(x,t)

FiG. 2.9

(i1) The Burgers’ Equation. One may go from the traffic flow model (shown
in Figure 2.9j) to a second equation,

u, + uu, — vu, = 0.

In the traffic flow model the added term vu,,, where v > 0 is a suitable constant,
could describe a ‘‘viscosity correction’’ by which drivers reduce their speed to
account for an increasing density ahead. This equation is parabolic, and the effect
of adding singular perturbations in this way is usually to greatly smooth the solutions.
In problems of type (i), one therefore sometimes first solves the perturbed problem
and then lets v — 0 to obtain if possible the less regular solution of the original
problem. *

Burgers was interested in the equation as a one-dimensional model of viscous
compressible flow. It can be shown that solutions for v > 0 do tend to a solution
for v = 0, which possesses a discontinuity representing a shock. The equation
satisfies the conservation law (i.e., it is an exact divergence in some coordinate
system):

W), = (vu, = %),

c

Hence there exists a ‘‘stream function”’ ¢ such that ¢, = u and ¢, = vu, —

4u?, from which

@~ Vo, + 392 = 0.

Then by the change of variable In w = — @/2v one obtains the linear heat equation

* Just as experience shows that the addition of a little viscosity can yield smooth solutions of a
nonlinear equation, experience also shows that often the addition of a little nonlinearity can stabilize a
linear equation. It depends always on a close scrutiny of the application to determine whether the
viscosity or the nonlinearity really deserves to be present.
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w, — vw,, = 0,
t XX

and thus the solutions to Burgers’ equation.
(iii) The Born-Infeld Equation.

(1 — )iy + 2uuuy, — (1 + (@)hu, = 0.

This equation possesses wave solutions moving with positive and negative veloc-
ities. It resembles the minimal surface equation mentioned at the beginning of the
book, and in the hyperbolic region it may be transformed in a similar manner (see
Problem 1.9.9, Exercise 5) by a Legendre transformation to a linear wave equation

w,, = 0.
Perhaps the most well-known nonlinear equation of the second order or “‘dis-
persive’’ type is the following:
(i) Korteweg—deVries Equation. This equation
u, + u, + Uy, =0
models the lossless propagation of shallow water waves, as well as other phenomena.
It satisfies the conservation law
(u)t = (—uxx - 'lz'uz)x’
as well as
Jud), = —(Gu? + uuy — jud),,

and in fact an infinite number of such conservation laws. While we cannot go into
it, this is the case for most such equations.

The Korteweg—de Vries equations are best known by their property of possessing
soliton solutions. A soliton is usually defined to be a solitary traveling wave with
the additional property of persisting through an interaction with another soliton.
After they pass through one another, they emerge in the same shape and velocity,
having suffered no more than perhaps a phase shift. Let us see how such a solitary
wave solution looks.

We presume that there is a solitary traveling wave solution with velocity c,

u(x, ) = u(§ = x — ct).

When substituted into the partial differential equation this yields the ordinary dif-
ferential equation

ug(u - C) + Uge =0.

One integration yields

ug = ¢ + cu — u??2,
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and after multiplying both sides by u, a second integration yields

3

. _ ¢ u

s = ¢ + cu + 5“2 o
By a third integration this may be solved implicitly (in a manner similar to that of
elementary ordinary differential equations for the nonlinear pendulum) in terms of
an elliptic integral

j" du
=Xx — ct,
w V2, + 2ciu + cu? — w3

where i, is the initial value u(0 = x — c?).

We now place a boundary condition on any such solitary wave solution u by
requiring that it be solitary indeed (i.e., localized along the characteristics), that
is, we require that u, and g must tend to zero for large €. This forces the arbitrary
constants of integration above to satisfy ¢; = ¢, = 0. Then the integral above may
be evaluated explicitly, from which

ux — ct) = 3¢ sech2<\/7_c x — ct)).

(ii) A second important nonlinear dispersive equation that occurs for example
in solid-state electronics is the Sine—Gordon Equation:

U, — Uy + sinu =0,

The nonlinearity here is interesting because it contains arbitrary (albeit odd) high
powers of u.

(ili) An equation historically important in this theory is the Fermi—Pasta—Ulam
Equation:

u, — (1 + wuy, + Uy, = 0.

One may go (approximately) from this equation to the Korteweg—de Vries equations
by means of the varniable changes w = u, or u,. The original version of the Fermi—
Pasta—Ulam equation consisted of ordinary differential equations in a lattice as a
model of a nonlinear vibrating string, and numerical simulation yielded not an
expected ergodic behavior but rather a preservation of nonlinear mode behavior
similar to that of solitons.

Time and space permit very little discussion of the third or *‘dissipative’’ type
of wave equations. A rather important one in the biological study of nerve impulse
propagation is the following.

(i) The Hodgkin—-Huxley Equations for the state of a nerve axon, wherein
u(x, r) represents a voltage across a membrane, is of the form

U — Uy = N(u’ W),
w, — A(w = M(u),
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where w = (w,, w,, w3) measures the degree of permeability of the membrane for

the ions being described. Here A(u) is a3 X 3 matrix, M(u) = (my(u), my(u),

m,(x)), both are nonlinear in u, and N(u, w) is nonlinear in w although linear in

u. These equations are rather complicated and a simplified model is the following.
(1) Nagumo Equations,

u, — Uy = u(l — wWu — o) + vw,
w,—u=0
wherein 0 < o < 1, v > 0. Presuming solitary traveling wave solutions with the
same velocity ¢, namely,
ux, ) = ulE =x — o),
wix, 1) = wg = x — o),

yields upon substitution into the partial differential equation the ordinary differential
equations

u =,
v = —cv — u(l — wu — a) + vw,
w = —c lu

The localizing requirement of solitary waves will specify also, as in the Kor-
teweg—deVries equation above, that u, w, ug, and w; tend asymptotically to zero.
This system of ordinary differential equation is thus amenable to treatment by the
phase portrait approach of Problem 1.9.8. One would like to find propagation speeds
¢ such that orbits which begin at (0, 0, 0) and end near the same point exist.*

(iii) Nonlinear Diffusion Equations. It is not necessary that traveling wave
solutions exist only along paths £ = x — ct. Ina number of applications, for
example, of flow in porous media under continuous input and in other problems
in chemistry and biology, one finds solutions along quadratic and other paths. We
mention a specific example (along the lines of Section 1.7), namely, the initial
boundary value problem

u, — (kG@u,), = 0, 0=x<oo, t>0,
u(x, 0) = f(x), 0=x<c,

ut,0) = a,

u(t, ©) = 0,

where k(#) = 01s a solution-dependent diffusion coefficient, where o > 0 i1s a
maintained (e.g., concentration) boundary value along the left side of an infinite
strip of media (0 = x < ), where it is presumed that the filtration process slows
down asymptotically as x — %, and where f(x) is the initial concentration.

* For some results on this problem see for example S. Hastings, **Some mathematical problems
from neurobiology,”” Am. Math. Monthly 82 (1975).

+ Such problems may be called «‘concentration-diffusion’’ equations. A particularly important on¢
is the porous media equation ¥, = (™), which we will encounter later in Problems A-5 and A-6-
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Problem. (a) In the traffic flow problem, put in a specific nice symmetric
density profile p(x, 0) as shown in Figure 2.9; and try the propagation velocity
c(p) = 76.184 — 17.2 In p and determine (numerically, or other) how soon
and where the shock develops. (b) Go backward as indicated from solutions
of the linear heat equation to solutions of Burgers’ equation. (c) Check the
integrations performed in obtaining the solitary wave solution of the Korteweg—
deVries equation, and sketch the solution. (d) For the nonlinear diffusion prob-
lem above, assume a traveling wave solution of the form u = u(§¢ = x/
V't + 1) and thereby reduce the partial differential equation to the ordinary
differential equation

%gug + (k(u)ug)g = 0, 0< g < o0,
u) = a,
u(®) = 0,

and solve this problem for some specified data f = 0 and k(4) = u. (¢) Look
at the traffic flow equation of part (a) via the theory in Appendix A.1.
Problem 2.9.9 Confirmation Exercises

Any reader who has completed a significant part of this book should work the
following three exercises. See also the ninth exercise for more practice.

1. (a) Solve by separation of variables the vibrating membrane problem

0<x<m,

0<y<m, >0,

Uy — (g + uy) =OinQ={
u = 0 on dQ, t>0,
u(x, y, 0) = fx)f(y), fls) = {

u(x, y,0) = 0.

sfor0 <s = w2,
- sform2 <s<wm,

(b) Repeat part (a) with f(s) = 52, 0 < s < w. Does that initial data give
you any misgivings about the solution?

(c) Repeat part (a) with (2 now given by 0 < x < 1,0 <y < 1, and f(s)
=s5(1 —5),0<s<1.

(d) Let  be a square plate 0 < x < w, 0 < y < 7 whose four edges are
kept at a constant temperature (which we normalize to be zero). Assume
there are no heat sources within the plate and that the top and bottom

—

Difficulties can arise when the diffusion coefficient k(u) nears zero. For another class of nonlinear
quations, the reaction-diffusion equations, in which the derivative portion is linear (e.g., the first of
the Nagumo equations given above), see P. Fife, Mathematical Aspects of Reacting and Diffusing
Systems (Springer, Berlin, 1979).
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faces are completely insulated. Let the initial temperature be u(x, y, 0)
= f(x, y) and find the temperature u(x, y, t) fort 2 0.

(¢) Evaluate the answer for part (d) in the case that f(x, y) = FOOf(y) with
fis) = sfor0 <s<m.

(f) Sketch the initial temperature distribution of part (e), calculate a few
values of the solution for r = 1, and sketch the latter.

(g) One states that the vibrating membrane of part (a) gives off a musical
note if the solution is periodic in r. Show that this is the case if f(s) =
sin ks for any integer &, and find the solution and the period.

. (a) Solve the eigenvalue problem

—u" = Au, o<x<m,
u(0) = u(m),
u'(0) = u'(m).

(b) Comment on the multiplicity of the eigenvalues for part (a). Order and
graph the first few eigenfunctions so that ¢,(x) has n — 1 nodes (i.e.,
interior zeros).

(c) Are the boundary conditions of the separated type that were considered
in Section 2.4?

(d) Show whether or not the problem is self-adjoint.

(e) Consider the equation of Rayleigh type

—u" = \u, 0 < x <o,

and determine whether it is of limit-circle or limit-point type.

(f) Solve completely the problem of part (e) for \ real and complex, com-
menting on square integrability.

(g) Arrive at the Legendre equations by solving by separation of variables
the Dirichlet problem on the unit sphere ) in three dimensions,

Au = 0in ,
u = fon .
. @) (i) Solve the one-dimensional vibrating string problem
u, — u, =0, -0 < x < %, t>0,
u(x,0) =0, —o < x < o,
ux,0) = glx), —R®<x<®,

by separation of variables. (ii) In particular, solve for gx) = sin x.
(iii) Then, solve for g(x) = x sin X.

(b) Solve by integrating, that is, by the Green’s function approach.

(c) Show, with suitable decay assumptions on the solution, that the total
energy in the string is conserved while the string vibrates.

(d) Solve the problem of part (a) by Fourier transform.
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(¢) For the problem of part (a), let the initial conditions by changed to u,(x,
0) = 0 and u(x, 0) = x(w — x) for 0 < x =< r, then extended oddly
to all —% < x < o, Using this data, show that the wave operator lacks
the smoothing properties of the potential and heat operators.

(f) For the Dirichlet problem for the square slab of Section 2.6, extend the
data f(x) to f,(x, ¥) = f(x) (1 — y/3) on Q). Why isn’t £, the solution?
Compare f, to the numerical and to the analytical (i.e., separation of
variables) solutions.

(8) Prove directly that D(uy,,) = D(uy) in the Rayleigh—Ritz approxi-
mation procedure for the Dirichlet problem given in Section 2.6.

The following problems contain supplementing information and are varied in
content and difficulty.

4. (a) Show the result of Section 2.6, Problem 3, that H}(0, 1) functions are
continuous, another way.
(b) Show that u € H{(0, 1) implies that [u| € HL(O, 1).

5. (a) Consider the two-dimensional Dirichlet problem

Au=0inQ:y>0,
u=fondd:y =0,
u—0asx? + y?— oo,

for {) the upper half-plane. Derive in some way the Poisson integral
formula

1 (" y
u(-x’ )’) - - f_m (X - S)2 + yzf(s) ds
for the solution.
(b) From this write down the Green’s function G(P, Q) for the problem,
(c) For general application to the spectral theory of an arbitrary self-adjoint
operator L with ‘‘spectral family”> E(\), —o < \ < o, show that the
“‘matrix element’’ (R,h, h) for the resolvent operator R, = (L — z),
z = N + ig, possesses the very important properties:

& d(E(\R, k)
=N —5)2+ &  dn

Im(R,4, ) = €|R,h|? = ﬁ_lf_

6. The theory of ‘‘pseudodifferential operators** is becoming a useful tool in
the study of partial differential equations. The ideas therein are related to
the solution of partial differential equations by transform techniques. For
example, for the Poisson problem

—Au = fin R?

the solution by Fourier transform from Section 2.7 was
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u = F k| "2(F (),
which one would express in the pseudodifferential operator terminology as
u=T7f

thinking of the composite operator as a single operator. Unfortunately, the
“‘symbol’* |k| "2 is not a good one. Converting the Poisson problem directly
gives

f= (FkPFu = Tu
and a good *‘symbol’’ [k|*. General pseudodifferential operators including
p(x, Dyu = F'p(x, k)Fu

for a wide class of symbols p(x, k) can be considered.

(a) Consult the recent literature for more about pseudodifferential operators.

(b) Consult the classical literature for other types of integral transforms and
try to relate them to pseudodifferential operators.

(c) Fourier integral operators are also a recent development, and may be
thought of as corresponding to the replacement of the Fourier transform
kernel ™ by ¢*™*. Think about this, and what it might mean in
terms of general eigenfunction expansions.

7. Consider the Helmholtz equation in L),
(-=A = Nu=fin{

for 0 = R? and for A > 0. Let xz(0) denote the characteristic function of
the ball B(0, R) with center at the origin and radius R, that is,

xr©) = {

(a) Show that some characteristic functions X(0) are in the range of the
Helmholtz operator, and others are not.

(b) Find exactly those that are in the range.

(c) What do you then suspect concerning whether or net the test functions
CZ(R?) are all in the range?*

1 forx2 + y* + 22 S R?,
0 otherwise.

8. There are interesting linear models of nerve-axon equations that do not
involve the nonlinear features found in those models discussed in Problem
2.9.8. One assumes a conservative electrostatic field E = —grad ¢ with
potential ¢ and a model in which the neuron is visualized as a cylindrical
core surrounded by a negligibly thin cylindrical membrane. Then employing

* For further information see K. Gustafson and G. Johnson, **A Study of the Helmholtz or,oeratol"'~
Proceedings of the Boulder AMS Special Sessionon Topics in Mathematical Physics, Quantum Mechanics
in Mathematics, Chemistry and Physics (Plenum, New York, 1981).



SUPPLEMENTARY DISCUSSIONS AND PROBLEMS 275

the classical dipole surface potential theory and Green’s identities, one
obtains (ignoring end effects)

_lg¢ 9 1 _o
¢(P) = i in n (lP — Q[) (‘-Po(Q) P ‘-PI(Q)) dsg,

where 9Q) is the outer surface of the neuron, @(P) is the exterior (extra-
cellular) potential, and where ¢ is the outside surface potential, ¢, is the
inside surface potential, oy is the outside conductivity, and o, is the inside
surface conductivity. By voltage clamp techniques the latter data is all
measurable to some extent.

(a) Further study the classical dipole potential theory of partial differential

equations.
(b) If interested read further about the nerve models.*

. The following exercises are for additional practice as one proceeds through

the second chapter of the book.

1. It should not be thought that the separation of variables ODE solutions
are always easily compiled into the PDE solution infinite sum. Compare

u, —u, =0 —n<x<mw
u(x,0) =1+ cosx
u(—mt)=u'(m,t) =0 (a),

and the same problem with the Neumann boundary condition (a) replaced
by the Robin boundary condition

{—u’(—Tr, ) + 2u(—=m,t) =0

w(m, 1) + 2u(w, 1) =0 (b).

2. Approximate the ‘‘ground state’’ of the one-dimensional quantum me-
chanical harmonic oscillator by means of a Rayleigh—Ritz trial function

1 = x¥MP for | =4,
b0 = {0 for x| > 1.

3. Prove the convergence of the polar partial sums sy(r, 0) — u(r, 6),
alluded to in Section 2.5, along the lines of Section 2.2.
4. Show for u € C*(}) N C1(N) in two dimensions

-1 1 1 1 o
u(P)=—ffln—Au+—§ ln——u
21T Q0 rPQ 21T N ran"Q
1

f o, 1
- — u—lIn—,
2w len  dng  rpp

harkening back to the three-dimensional proof given in Section 1.6.1.

* E.g., see C. Stevens, Neurophysiology: A Primer (Wiley, New York, 1966).
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5. Let Q, be the open square in the plane with sides of length n parallel
to the coordinate axes and with southeast corner at (n2, 0) on the x-axis.
Let ) be the union U=, ©,. (a) Find all exgenvalues X, for the problem

Yy

1

—Au = \uin (], B
u = 0 on . Q,

2] |

1
Fic. 2.9k

(b) Accepting that the spectrum of an operator must be a closed set,
what may you conclude?

6. Let u £ C2(Q), Au = 0 on () the whole space R™. Suppose u is not
identically 0. Show [q u? does not exist.

7. Show by appeal to the domains of dependence and influence how
d’ Alembert’s formula may be used to accommodate boundary conditions
for the wave initial value problem.

8. Going back to the equation of Problem 3 of Section 1.3, namely, u,, +
4xu = 16, show that it is of Airy’s type, which comes from partial
differential equations of caustics, fluid dynamics, and other applications.
Hence its solutions may be expressed in terms of the Airy functions.
Write down an ODE two point boundary value problem which does not
come from any application and which may not be solved.

9. It sometimes seems that a nonlinear partial differential equation is never
completely solved. Let us go back to the first equation mentioned in this
book, the minimal surface equation

(0 + )y — 2y, + (1 + (u,))u,, = 0.

(a) Verify that the helicoid and catenoid are solutions.

(b) Read about the third type of complete embedded minimal surface
recently obtained* with the aid of computer graphics.

(c) Try an ‘‘additive separation of variables’’

u(x, y) = X(x) + Y(3)

to obtain a new local solution.
(d) Try the same trick on the Born—Infeld equation of Section 2.9.8 and
on the slicing equation of Problem 1.9.9.4(c).

* An excellent exposition is given in Science News 127 (March 16, 1985). See also Omni Magazine
8: 7, 1986, pp. 88-90 for nice color graphics of these surfaces. Graphics are becoming a valuable tool
for understanding solutions of nonlinear partial differential equations. See Appendix B.3 for graphicle
views of the “*sag’’ difference between Laplacian and minimal surface solutions of Problem 1, Section
1.2, and Problem 2, Section 2.1.



CHAPTER 3
APPENDICES

. . . past, present, and future ...

For expositional convenience we have placed here, later in the book, introductions to three
important topics:

A. First-Order Equations
B. Computational Methods
C. Advanced Fluid Dynamics

These can provide a basis for a third-semester course. If one wishes, they may be taken into
the second or even the first semester. To permit this flexibility we have written them to be
essentially self-contained, although for continuity we often explicitly connect their devel-
opment to other parts of the book.

(A) The treatment of first-order partial differential equations is intimately connected a
fortiori to the notions of characteristics first encountered in the classification procedures at
the beginning of the book, see Sections 1.1, 1.9.1, 1.9.2. For nonlinear equations (e.g.,
such as those treated in Sections 1.8, 1.9.8, 2.9.8), a very important related concept is that
of a self-similar solution. Current attempts to fully understand all such solutions lead us to

a theory of local transformation groups, currently developing along lines originally introduced
by Lie.

(B) The explosive acceleration of high-speed computing technology in recent years has
greatly enhanced the viability of using computational methods to enable practical solutions
to otherwise intractible partial differential equations. The three principal computational meth-
ods—namely, finite difference methods, finite element methods, and (finite) spectral (least
Square) methods—were already presented in Section 2.6. Here we wish to introduce some
basic elements of theirimplementatio: as well as mentioning a few of the important modern
schemes, in a way that leaves their actual coding as an option not necessarily pursued here.

(C) An important area of current research in partial differential equations is that of fluid
dynamics. Whole journals are now devoted, for example, just to computational fluid dy-
Damics. In this final Appendix we present a glimpse of the current state of the art for
important aspects of this topic (viz.. the Navier~Stokes equations).

Each of Appendices A, B, and C has been arranged in three parts. In a sense one may

Perceive those parts 1, 2, 3, as reflections of the past, present, and future study of partial
differential equations.

277
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APPENDIX A: FIRST-ORDER EQUATIONS

The word characteristic is overused in mathematics. Thus the French characteristic vector
is giving way to the German eigenvector, at least in part to decrease the confusion of
meanings of the adjective characteristic. On the other hand, for the treatment of firrst-order
partial differential equations, or systems of them, the uses of terms such as characteristic
curves, characteristic directions, characteristic manifolds, characteristic strip, charac-
teristic surface, method of characteristics, characteristic data, and so on, is S0 ingrained
as to constitute integral and important parts of the subject.

The philosophy of treatment of first-order equations and systems is in many ways
different from that of the more commonly encountered second-order and higher-order
partial differential equations of physics, engjneering, and science. As will be seen below,
it is more akin to the viewpoints found in the theories of systems of nonlinear ordinary
differential equations. Because it goes in directions other than those we have wanted to
emphasize heretofore, and because their separate study can be quite time-consuming,* we
have postponed where possible their treatment unitl now.

In the first part5 of this first appendix we provide some essentials of the theory of
firstorder partial differential equations. In the second part we then go on to an important
topic, that of self-similar solutions of first - and higher - order equations. An introduction
to a general theory of transformation group treatment of partial differential equations,
currently under intense development and use, is given in the third part.

These three parts of the appendix are intimately related. Because whole books have been
or currently are being written about just parts of each, our goal here has been to provide
some accessibility to the key ideas, and no generality.

A.1 PDE to ODE

First-order partial differential equations may always be reduced to a system of ordinary
differential equations. Under rather minimal smoothness conditions on the partial differ-
ential equation, its solvability via the ordinary differential equations is then guaranteed, in
principle. A number of interesting geometrical considerat‘ons appear, however, and the
complete integration of the equation should not be regarded as always trivial.

At this point the reader should recall his first course in ordinary differential equation. Let
us help in that regard by posing the following straightforward review exercises.

Problem A.1

(a) Solve the first order inhomogeneous linear equation initial value problem
u'(x) + plx)u(x) = g(x),
u(xo) = Uo,

by the method of integrating factor.
(b) Show that the initial value problem

u’(x) -ﬂx1 u)y
u(0) = uo,

*Indeed, this author remembers as a student his first course in partial differential equations, which
in a whole semester never got beyond first-order equations and systems.
§ This part, Part A.1, is essentially the Appendix of the first edition of the book.
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where f(0, u) = 0, f(x # 0, u) = 1, has no solution.
(c) For the initial value problem

u'(x) = ™,
u(0) = 0,

solve by the power series method, compute the first five coefficients, and determine
the radius of convergence.

Generally speaking, first-order partial differential equations are usually encountered and
treated as initial value problems. If they are twice continuously differentiable in the unknowns
and first derivatives thereof, the further property of analyticity is not needed for their local
integrability. Rather, what turns out to be needed for their exact integrability is that the
initial data is not characteristic, in the sense to be described below.

Let us consider the general quasilinear partial differential equation of first order in two
independent variables,

9 )
a(x, y, u) a—z + b(x, y, u) ﬁ = c(x, y, u). 1)

It will be useful to begin with a picture (Fig. A.1). The solution u(x, y) to Equation (1), as
a three vector (x, y, u), determines the three vector (3u/dx, du/dy, — 1), and the corresponding
perpendicular three vector (a, b, c¢). The vector (a, b, ¢) is called the characteristic direction
at (x, y, u). Thus the solution u(x, y) as x, y ranges over a region in the plane determines
the vector field (a, b, ¢) lying in the tangent plane to the surface u(x, y) at each point (x,
y). In other words, u(x, y) as a surface in the (x, y, ) space is a solution to Equation (1)
if and only if the direction field (a(x, y, u), b(x, y, u), c(x, y, u)) lies in the tangent planes
at each (x, y, u). This is the necessary geometry of any solutions of (1).
Let us now consider the initial value problem

au, + bu, = c,
u = I(x, y) a given curve.

Charscteristic direction {ad,0}
et byl

Tangent plane to the surface

alx,y} = solution
= integral surface of {1)
Characteristic curve

¥

Fro. A
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By this we mean that u is given as an initial curve parameterized by ¢, ¢ in some interval

[a, b]:
x()\
y(t)}l ,
= u(t)

where for future reference we let I’ denote the projection of ! down onto the x, y, plane.
We wish to extend the initially given curve [ into an integral surface representing the solution
u(x, y) over the x, y plane. See Figure A.2, where for simplicity we have drawn the integral
surface extending from / in one direction only.

It turns out that this initial value problem is well-posed if the initial data curve ! is not
characteristic, that is, if the projected characteristic direction line does not fall on the tangent
line of the projected initial curve I. Let us sketch the proof of this fact, which we state here
as a theorem.

o~
== o=
I

Theorem

For Equation (1) au, + bu, = ¢ with initial curve ! € C! and with coefficients a, b,
¢ € CV, if the tangent line to I’ # the projected characteristic direction line, then there
exists exactly one solution u(x, y) defined in a neighborhood of I'.

The C! conditions have to do with a use of the inverse function theorem, as will be
seen below.

Let us see now why the theorem just stated is so. Imagining that we already have the
solution u(x, y) as an integral surface, we may fix a point (xo, Yo, 1p) on the initial curve [.
We wish to consider the characteristic curve (x(s), y(s), u(x(s), y(s))) emanating from (xo,
Yo Ug), and we therefore parametrize it by s, as we have just done. We know that necessarily,
by Equation (1), that along this characteristic curve we must satisfy the equation

ou ou
a— + b— =c
ox ay

e S1BTECTOY IstiC direction

Characteristic curve w{x{s), y(s})

initial data Lale(e), y(2)

¥

Frojection of the acteristic dirsction

Tangent Hine to € at {xy, 3o}
2’ = projection of the initisl data curve

{xg, ¥o)

Fia. A2
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The projected characteristic direction line has direction numbers (a, b) and hence the left-
hand side of the equation is just the directional derivative of « in the characteristic direction.
Equation (1) thus states the requirement that

(du(x(s), ¥(s))

s )(a’ N = c(x(s), y(s), u(s)),

the left-hand side denoting the directional derivative of u in the characteristic direction
(a, b). If the tangent line to I’ coincides with the projected characteristic direction line, then
we cannot integrate the above and at the same time move off / into the integral surface. That
is, we are constrained to the situation u(x(s), y(s)) = u(x(t), y()) on !’ and in l. This is
why the theorem works, for in all other cases we may integrate the above directional derivative
and in so doing move off the initial data curve .

The unique determination of the characteristic curve u(x, y) then follows from unique
integrability of ordinary differential equations and the inverse function theorem. Let s be a
coordinate parameter for the projection of the characteristic curve. By the nontangential
condition of the theorem, s is independent of t. That is, we fix a value % in {a, b], the
corresponding (x, yo) in I, the corresponding (xo, Yo, 1) in I, and set s = 0. We may then
consider the ordinary differential equation system

(
dx
£~ atet6), 560, ulx), YD)
B~ hats), y06), utets), ¥,
d

L = x5, ¥6), ulas), Y,
x(0) = xo,
y(©@) =y,
\u(O) = uy.

This initial value problem, with C' right-hand side, possesses a unique C' solution for
small s.

As 7 runs from a to b, the initial point (xo(f), yo(f), uo(?)) runs through the initial data
curve [, and the characteristic curves (x(s), y(s), u(s)) solving the above system may be
written, with ¢ dependence included, as

x = x(s, D),
y = y(s 1),
u = u(s, t).

Since s and ¢ are independent by the assumed nontangential condition, the Jacobian

ax(s, 1) ax(s, 1)

a(x, y) B as at

A, | ay(s, 1) ay(s. 1)

as ot
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ats = 0and t € [a, b] is nonvanishing:

a(x, dyq(t dx(t
H = a0, yo), e y—d"f—) — bxo(), Yo(t), Uo(0)) ;f)

t€{a.b]

# 0.

Therefore by the inverse function theorem, in a neighborhood of s = 0,1 = £, € [a, b],
we may express s and ¢ as functions of x and y, and hence we may write the solution
u(s, ¢) as an integral surface u(x, y) in a neighborhood of /"

u(s, 1) = uls(x, y), t(x, y)) = ulx, y).

To recapitulate: Given the ODE system with a, b, c all C ! we obtain a local solution
in s for each t € [a, b]. Considering only the first two components x(s, t) and y(s, t), we
invert them to obtain s(x, ¥) and #(x, y). The dependence of t(x, y) was already present in
I' and we have done the inversion of coordinates principally to obtain s(x, y) and the
corresponding u(x, y). The integral surface u(x, y) is indeed a surface in the sense of being
a C! function. It satisfies the initial data because u(xo(t), yo()) = u(0, 1) = up(t). It satisfies
the partial differential equation (1) because

au, + bu, = alus, + ut) + blugs, + ut))
= uy(as, + bs,) + ulat, + bt)
= us(xssx + yssy) + ur(xstx + ysty)
= us(ss) + ur(ts)
= ul(l) + u(0)
=c

Let us consider the following example:

uu, + u, = 1,
I xg(t) = ¢, yot) = ¢, ug(t) = /2, 0=r=1.

First we check the nontangential condition. In this example we have a = u, b = 1, ¢ =
1, and

a(xo(1), Yolt))

30, 1) = a(yo()), — b(x(1),

ug()(yo()); — o))
w2 — 1,

which is nonvanishing for t € [0, 1]. The associated ODE initial value problem

x, = uDx(s, 1) = s¥2 + us + xo(t) = s¥2 + st/2 + ¢,
=12y 0 =5 +y0) =5 +¢

u, = 1u(s 1) =5+ u0) =s + /2,

x(0) = t,

() =1,

u(0) = 1/2,

is solved as just indicated (by moving in direction upward in the implications). The solution
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u(x, y), as a solution in terms of x and y rather than in terms of s and ¢, is easily seen to
be

2y — x — y2

“r ) = 0=

Problem A.2

(a) Sketch the above example, indicating /, !’ and the solution u(x, y). For which
(x, y) does u(x, y) remain a solution to the differential equation (1)?

(b) We assumed in the above disccussion that the nontangential condition was satisfied
all along the initial curve /. There are three other possibilities: (i) First, the Jacobian
vanishes all along !’ and the initial value problem nonetheless possesses a solution.
Then the initial data curve [ is itself a characteristic curve and the problem has in
fact an infinite number of solutions. (ii) The Jacobian vanishes all along !’ but no
solutions exist, (iii) The Jacobian vanishes on a proper subset of !’

(i) Show that exceptional case (i) prevails for the example above with

Lx(t) = 822,  yt) = 8, u(t) = ¢, 0=:=1

Find all solutions and sketch some of them.
(ii) Show that exceptional case (ii) prevails for the example above with

I xo(8) = 22, yo(t) = 2¢, u(t) = t, 0=t=1.

Try to solve anyway, to see what happens.
(iii) Examine the example above for 0 = ¢t = 3.
(c) Give a uniqueness proof, for the nonexceptional case, by showing that any char-
acteristic curve with a point in common with an integral surface of Equation (1),
lies completely within the integral surface.

The general first-order partial differential equation in two independent variables
F(x, y, u, ou/dx, dul/dy) = 0
may be investigated in like manner, and similarly, that in n independent variables
Fxy, - ooy X Uy Uy, .., Uy,) =0,

as well as systems of such equations in more than one dependent variable. The theory so
found is extensive and will not be developed here. We confine ourselves in closing this
appendix to some remarks about the case n = 2.

Adopting a rather common notation, we may write the general first-order equation in
the form (p = u/dx, g = duldy)

F(x,y,u, p, q) =0 2)

As in the geometrical picture for the special quasilinear case of Equation (1), a tangent plane
at a point (xy, yg, 4p) is given by (see Fig. A.1)

X — X
Pog. =Dy —x]=0,
u = u
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where (p, g, —1) are direction numbers of the normal to the plane. Given the values of xg,
yo, and 1 in Equation (2), different values of p therein will yield different values of q and
hence a one parameter family of tangent planes parametrized by p. This envelope of tangent
planes is called the Monge cone for Equation (2) at (xo. yo. #p). The Monge cone locus may
be described by:

P(x'"xo)*'q(y_)’o)_(u—“o):(),
d
(x—xo)+d—"(y—yo)=o,
/4

where the second equation was derived from differentiating the first with respect to p and
requiring that du/dp = 0, recalling the definition of p and the fact that u is to lie in the
tangent plane.

In the quasilinear case, Equation (1) described a vector field of characteristic direction
lines. These lines were degenerate Monge cones. The general equation (2) thus describes a
cone field as shown in Figure A.3. A surface in 3-space solves Equation (2) if and only if
it remains tangent to the cones, as the latter vary from point to point.

Practice with specific equations shows that a constructive way to proceed is to differ-
entiate Equation (2) with respect to p, solve for dg/dp, thereby arriving at the Monge cone.
From F (p, q) = 0 we have

dF _oF  oFdq _

dp 9 9dqdp

which, together with the Monge cone determining equations above, yields the line-of-contact
equation

o,

X~ X _ Yy~ Yo_ _UT U

F, F, pF, + qF,

for the intersection of the integral surface and the Monge cone.
Turning now to the initial value problem corresponding to Equation (2),

Fix,y, u,p,q) =0,
u = l(x, y) a given curve,

proceeding exactly as in the quasilinear case we are led to consider the associated ordinary
differential equation initial value problenr

(&
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p.q. Y

Characteristic tine

Monge cone

Fig. A3

for each fixed t. Unfortunately, this system has three equations in five unknowns. Implicit
differentiation of Equation (2) yields two more equations,

d_p = —(Fx + PFu),
ds

dq

hut S +

s (F, + gF)),

and we assume that we can find in some way initial values for p and q on the initial curve [,
p0) = po,
q(0) = qo.

From these five equations we may then in principle integrate (2).
Thus, in practice, one need not find the general Monge cone, line of contact equations,
and so on. Rather, one may proceed as follows:

1. Find po(f) and go(¢) satisfying (i) the partial differential equation
F(xg, Yo 40, po» 90) = 0
along /, and (ii) the so-called *‘strip condition’’

duy _ dxo dyo
a Pg Ty

along l.
2. Check that the Jacobian ‘‘noncharacteristic’’ condition
dyo dx,
F o I - F, % I #0

is satisfied along /.

3. Integrate the five ordinary differential equations written above as an initial value
problem.
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Then under general conditions one is guaranteed a unique (i.e., for each given (p, qo) pair)
solution u(x, y) of the partial differential equation (2) in a neighborhood of the initial data
curve /. For example, it is sufficient that the equation F € C? with respect to x, y, u, p, q,
that F2 + F2 5 0 so that the characteristic curves are never perpendicular to the x, y plane,
that the initial curve / is C? for t € [a, b], and that C! quantities py(t) and qy(z) have been
established satisfying along / the equation F, the strip condition, and the noncharacteristic
condition.

Let us illustrate this discussion with a simple example:

uu, = 1,
I xg(t) = 2t, Yolt) = 21, ug(r) = 5t

Letting p = u, and ¢ = u,, from F = pgq — 1 we have F,=¢q F,=p andF, = F, =
Fy = 0. To find initial conditions py(z) and uy(r) we use the strip condition combined with
the given equation,

{5=2p+2q
pg =1

from which we obtain the 2 initial condition sets (D) po = 2, qo = 112, or (i) py = 112, %
= 2. The 2 corresponding ODE systems are, respectively, with solutions shown:

(D x =12>x =52+ x(0) = 52 + 21,
y$s=2>y
u, = 2>>u =25 + u) = 2s + 5t,

2s + y(0) = 25 + 2,

ps=0>p=p, =2,
4 =049 =¢q = 112,
from which u(x, y) = 2x + y/2; and

(i) xx=2>x=2s + 2t
YV=12>2>y =52+ 2t
Uy =2>>u =25 + 5t

ps=0>p =112
%=0=>¢=2

from which u(x, y) = 2y + x/2. This second solution could have been obtained from the
first by the symmetry of the equation and the initial conditions. Further information on first-
order equations may be found in the cited literature . *

* See for example Courant and Hilbert, Methods of Mathematical Physics, Vol. Il (Wiley-Inter-
science, New York, 1962) for a further treatment of first-order equations. A good introductory view
may be found in Garabedian, Partial Differential Equations (Wiley, New York, 1964). For a concise
treatment in an interesting context see Courant and Friedrichs, Supersonic Flow and Shock Waves
(Wiley-Interscience, New York, 1948).
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Problem A.3

Solve the following first-order equations:

uwau, — 2 =0,
@ {1: xolr) =
0,

uu, —
®) {l: oM =1
© {(mz ) = 1

I xg(1) = sin ¢, volt) = cos ¢, ug(r) = 0, 0=r=1.

i
>

yolt) = 1, ug(t) = 31, O0=r=1.

| =
S

I, ugt) = 1, 0=r=1.

A.2 Self-Similar Solutions

The theory of self-similar solutions of a partial differential equation, although incomplete,
originated in engineering design problems. When creating a large structure such as a ship
or airplane by use of a small model (e.g., in a tank or wind tunnel) it is quite important that
the observed results be scale invariant. That is, if flow be understood about a model, one
wants the flow about the actual large object to be geometrically similar.

To secure this effect, dimensional analysis is performed on the governing structure or
flow partial differential equations to render those equations dimensionless. This amounts to
scale changes of variable. These methods go far back* and have been applied to pipe flow,
frictional torque, aerodynmamic lift, shock decay, nozzle condensation, atomic explosion,
boundary layer theory, turbulence, vortex theory, hypersonic flow, flame theory, porous
media equations, etc. Although it is impossible to catalogue all of its applications, this theory
is less widely known than many theories of smaller importance.

Here we can only provide a few insights. We will stress some elementary viewpoints
that are quite useful for keeping the theory in bounds. In particular in this section we will
emphasize the idea that the right change of variables can reduce a second-order partial
differential equation in two independent variables, say x and ¢, to an ordinary differential
equation in one independent variable m, say a judicious combination of x and 1, thereby
providing from the solutions of the ordinary differential equation some special solutions of
the partial differential equation. Moreover, we will assert that the judiciously chosen com-
bined variable m should often be thought of in terms of the characteristics of the partial
differential equation.

An example to impress this view, and already available to us, is the wave equation
initial value problem as studied in Sections 1.1, 1.9.2, and 2.5. We recall the equations

Uy, — u,, = 0,all x, 1,
ulx, 0) = f(0,t =0,
u(x, Gy =0,r = 0.

* Some say, t0 Galilei. H. Helmholtz, Mcnatsber. der preuss. Akademic der Wiss. zu Berlin
(1873) developed a systematic similarity theory for the equations of fluid dynamics.
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In converting the equation to the other canonical form u;,, = 0 we employed the linear
change of variable

{=x+1t
m=x—1

Was the new v variable judiciously chosen? Along the m direction, i.e., setting m constant,
e.g., as in Fig. A4,

T]=x—t=x0

the d’Alembert solution

u(t, ) = L) + Q]

was found by integrating the equation uy, = 0 as an ordinary differential equation in the
(orthogonal) direction {. Notice that m = constant is a characteristic curve along which
initial data propagates. If all data is concentrated at the point xo, then along the curve x —
t = x, the solution is constant. Reversing the roles of m and { in the above gave us a second
ordinary differential equation of { = constant in the n direction. For this example the special
solutions of these two ordinary differential equations combined to give us the complete
solution to the partial differential equation.

Another ‘‘right’” change of variables may be found from those which leave a partial
differential equation invariant. Under what changes of independent variable { = {(x, 1), m
= m(x, 1), is the wave equation invariant:

ugg(C, T]) - unn(C, T]) =07

Clearly the above classification linear change of variable, useful as it was to convert the
equation to an exact derivative, was not intended to leave the form of the equation invariant.
However, the uniform scale changes of variable

{=ox
m= o
do. Moreover, they form a (one parameter) group* of transformations. The partial reflections
X — X, X—> —Xx
t— —t, t—t

also leave the equation invariant. The uniform scale transformation suggests the *‘velocity
coordinate’’

r=1{n = xit,

and phase plane reasoning (see for example Section 1.9.8 and Problem 8 of Section 1.9.9)
suggests the ‘‘singularity coordinate’’

s = logt.
* Recall a group must satisfy axioms of closure, associativity, identity, and inverse. One would

not have to insist on full group structure for the changes of variable. On the other hand, to transform
back to the original variables once the problem is solved, the inverse transformation is needed.
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FiG. A4

In these the wave equation is transformed to
« = ru, — 2ru,) — (u, — u) + 2ru,, = 0.

From this we see that a function u(r) of r only will be a solution if it satisfies the ordinary
differential equation

(= rHu,, — 2ru, = 0,
and similarly a function u(s) will be a solution if it satisfies the ordinary differential equation
U, — u, = 0
Problem A.4
(a) Determine all of the nonsingular linear transformations
9- [zl
m € Cn j\!

which leave the wave equation invariant.

(b) Solve the two ordinary differential equations resulting from the ‘‘velocity’’ and
“‘singularity’’ changes of variable above.
(c) Prove that the uniform scale changes form a transformation group. A similarity

solution* is a solution of the form

u = u(x t,m, gl

where g(m) is an explicitly postulated but @ priori unknown function of v, its
existence arrived at for example by dimensional analysis or transformation group
considerations. For example, g(n) can be thought of as the solution of the ordinary
differential equation from which the similarity solution u(m) will be found.

For a second example we consider the heat equation initial value problem

W — Uy =0, allx, t > 0,
ux, 0) = fx), allx,t = 0.

In Section 1.7 we derived this equation from physical principles. An examination of the
Physical units will show that there is no way to functionally combine the independent variables

* The exact definition is sometimes hard to come by in the literature, and in fact varies.
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t=constantare ¢
characteristics

’N‘ /
A

7 = constant curves

FG. A5

t and x into a single new independent variable representing a new length or time scale. This
is the usual first step in a dimensional analysis: isolate the important physical parameters
that will determine the solution behavior. The heat equation has no such characteristic space
or time parameters.

Accepting then possibly nonphysical new variables, a second-dimensional analysis pro-
cedure for homogeneous equations is to take as changed variable the relative differential
order of the independent variables. For the heat equation this means we should try something
like (see Fig. A.5)

_ox X
n= e orm ==,

o a Yet to be determined constant depending, for example, on the local propagation speed.
Let us see how this variable can be arrived at by dimensional reasoning.
Going back to Section 1.7 and the linearized heat equation

cu, — ku, =0

we recall that ¢ had units cal/deg - cm?® and & had units cal/deg - sec - cm. From the ratio

we see that = x2 c/tk is dimensionless and hence a good candidate for a similarity variable.
Letting u = u(n) with m = ox¥t, if u satisfies the heat equation then u, =

(~002/ ik, e = (200/ ik, e = (20/1)ty + (402x%/1})uyy. These substituted into

the heat equation, after multiplying through by ¢, give the ordinary differential equation

dnug, + 2 + Mju, = 0.

This is easily solved with solution
axit
u(.n) - f sT12 gmsla 4o
o

Let us next try a general scale change of both the independent variables and the dependent
variable

ox

Bt
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Substitution into the heat equation gives

2
a
%vn - Ty'vvm =0
and hence for invariance of the equation we must take
B=ol=y.

Because this equation is linear homogeneous <y plays no role and we may as well take y =
1 and 4 = v. Formally differentiating

u(x, y) = u(@, m) = u(ax, a’)
with respect to the scale parameter o we have
0 = xug(L, m) + 2atuy(l, M)
from which*

L den  w@w  2a
dc " d@)  u@m x

This is a separable first-order equation with solution t = cx? where c is an arbitrary constant.
Thus the scale change of variables brought us back to the same similarity variable n =
x%/t found by dimensional analysis.

Problem A.5

(a) Solve the ordinary differential equation in the similarity independent variable n =
ax?t. Then verify that the resulting solution u(n) = u(x, t) satisfies the heat
equation expressed in x and .

(b) Remembering that s is a dummy integration variable for n = ax?/t, the integrand

exponential resembles the Poisson Kemel in the Green’s function representation of

the solution given in Section 1.3, Problem 2. Try to make more precise this con-
nection.

Nonlinear diffusion equations were mentioned at the end of Section 2.9.8. Show

that the porous media equation

(c

~

U, = (U™, 0<x<oo, t>0

has a similarity variable n = x(¢ + 1) for which solutions of the form u(x, r)
= g(m) must satisfy the ordinary differential equation

@M + %ng' = 0.

For the case of m = 1 (heat equation) show how this solution reduces to the one
referred to in (b) above.

Recently there has been an upsurge in the theoretical development of (Lie) group methods
fo determine all **symmetries” of nonlinear differential equations. We will inspect this theory
1 the next section. However, the importance of the use of scaling arguments from dimensional

* Remember the implicit differentiation formula y'(x) = — F,/F, from calculus.
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analysis to find similarity solutions should not be underestimated. Not only do such methods
often pick out the most important (e.g., geometrically scale invariant) physical solutions but
they also can lead to important simplified differential equations.

We close this section with two important examples, the derivation of the Prandtl*
boundary layer approximation to the Navier-Stokes equation, and a similarity solution
analysis of an atomic bomb blast. T

The two-dimensional Navier-Stokes equations for viscous incompressible flow (see
Section 1.7) are the momentum equations

uu, + vuy = — px t+ V(g + uy)
wp, + vy, = —p, + V(U + Vyy)

along with the continuity equation
u, + v, =0

We select the scaling region (Fig. A.6 below) with incoming flow velocity U with the thin
boundary layer assumption 8 << L. Scaling arguments usually assume that differentiations
do not change the orders of magnitude involved. This restricts the oscillations that may be
accounted for.T Proceeding then with the scaling, we have

Au ~ U, x~L
Ay ~ 1, y ~ 3§,

which from the continuity equation gives

and hence v, Ay << U,. The first momentum equation yields

y_i+ng~('))+ Qf %
ARG VEI Y

from which the smaller terms vU,/L* will be dropped. The second momentum equation
gives

dU: dUz 8U, U,

—=+

— o~ 7 —_—
L L R VY

< L

FiG. A.6

* L. Prandtl, Verhandlg 3rd Math. Congress, Heidelberg, 1904.

+ G. Taylor, Proc. Roy. Soc. A 200, A 201, 1950, although done 8 years earlier. Sedov, Prikl.
Mat. Mekh. 10, 1946, had independently found a similarity solution during the same period. Apparently
so had John Von Neumann in the United States.

+ A similar restriction is built into the group methods of the next section, although its extent is
somewhat obscured.
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from which all terms will be dropped. The largest of those is the last one, and from it and
the scaled first momentum equation we deduce

U.

£

py~v8L Px

U. U,

v U
ST VS

e

From these we see that p /p, ~ 3/L. An argument similar to this led Prandtl to there-
fore assume p,, to be negligible within the boundary layer.
In summary, we have obtained the Prandtl equations

w, + w, = —p + vy,
u +v,=0

We see that scaling arguments have eliminated the second momentum equation.
Furthermore, all second x derivatives have vanished so that the first momentum equa-
tion has changed type, from elliptic to parabolic. The latter is more amenable to solution
and the model now contains fewer boundary conditions to satisfy. The pressure p = p(x)
now may be regarded as a known function, imposed from the outer flow.

These equations are of well-known importance and a wide literature exists. It turns out
that by a change of variables they may be converted to porous media equations such as those
mentioned in Problem A.5 above. See the following Problem A.6. From the porous media
equations many of the Prandtl equation’s mathematical properties may be investigated. *

Finally, we mention the interesting story of how the amount of energy released in an
atomic bomb blast may be surmised from a similarity analysis of sequential photos of such
an explosion. For an explosion with a spherical symmetry let r = r(E, 1, py, po, M) be the
position of the ensuing wave front. Here E denotes the initial energy of the blast, and p,
and py the pressure and density before the blast, m the ratio of specific heats before and
after. Treating v as the new independent similarity variable, and treating E and r as fun-
damental parameter and basic dependent variable, one may deduce dimensionally the de-
pendence (where g is an as yet unknown function)

5
= 800 por'lE)

Wave front

Thus the wave front position is thus given by

E 1/5
) = <p—> 125 g(m, por¥/E). Explosion
0

point

Fic. A.7

* O. Oleinik, Seminari 1962/63 Anal. Alg. Geom. e. Topol. Vol. 1, Ist. Naz. Alta. Mat., Ediz.
Cremonese, Rome, 1965.
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One may simplify this by the physical assumption that a gasdynamic shock has much higher
pressure behind it: p > po. Dropping po, the function g = g(n) is now dependent only on
the similarity variable v. Basic gas dynamics then yields an explicit specific heat dependence
g(n) and hence the position of the wave front 7(r). Conversely, photographs of the latter at
two or more times yield the energy E initially released.

Problem A.6

(a) Show that the boundary layer thickness 3 is proportional to Re™ 2 where Re denotes
the Reynolds number

U.L
L

Re =

(b) For the Prandtl equations written as

uu, + Vuy = —p, + uyy
u +Vy =0,

where V = ReV2p, ¥ = Re!?y, use the Von Mises stream function transformation
u = Yy, v= -
to arrive at the porous media equations
u(uity)y = ubty + px.

(c) The Prandt] equations can be described as setting up a two-deck structure describing
a fluid near a wall: very near the wall the boundary layer equations, outside that
small region the full Navier—Stokes equations. This has been extended to the so-
called triple-deck model* and even more “‘decks.” These theories contain many
interesting mathematical and physical questions. Read about these.

A.3. Local Transformation Groups

The transformation of a partial differential equation under a class of variable changes was
evident right at the beginning of this book, in the classification procedures of Section 1.1,
1.9.1 for rendering a linear second equation to its elliptic, parabolic, or hyperbolic canonical
form. For nonlinear equations, classification was still formally possible but a suitable trans-
formation of independent variables to canonical form (now that the coefficients depend on
the dependent variable) becomes less tangible. Permitting the dependent variable u to enter
into the class of allowable transformations thus makes sense.

The occurrences of the self-similar solutions of part A.2 above and other preserved
entities of a partial differential equation were seen to be related to invariance properties of
the equation with respect to transformations of the underlying space of independent variables
and even to transformations involving both the independent and the dependent variables.
The latter case describes the approach taken by Lie long ago,T principally for ordinary
differential equations but with some application to partial differential equations. An instance

* K. Stewartson, SIAM J. Appl. Math. 28 (1975).
+ 8. Lie, Verhandlungen der Gesellschaft der Wissenshaften zu Christiania (Oslo before Norway's
independence from Sweden) (1874).
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of those techniques are the Legendre transformations mentioned earlier in Problem 5 of
Section 1.9.9. As seen there, they permit one to *‘linearize’’ a given nonlinear partial
differential equation by introducing additional variables. Because linear problems are easier
to handle, these methods have recently enjoyed greatly renewed interest for use in solid-
state physics, engineering control theory, transonic flow, and elsewhere. *

We have also seen in part A.]l above the introduction of new variables, e.g., p = dw/
dx, g = du/dy as a useful, even essential, device to enable a geometrical picture of the
solution locus of a general first-order partial differential equation. Earlier, in Section 1.9.4,
we saw how by assigning new variables to each partial derivative, any analytic partial
differential initial value problem could be transformed to a system of quasilinear partial
differential equations of first order. The latter was then guaranteed a (local) solution by the
Cauchy-Kowalewski Theorem.

Recall the exact equation rule of elementary ordinary differential equations: given the
expression

Mdx + Ndy = 0,
if 9M/dy = AN/dx, the expression is an exact differential
ddé = Mdx + Ndy = 0
and the differential equation
M(x, y) + N(x, y)y'(x) = 0

is easily solved by first integrating one of M = d¢/dx or N = d/dy to obtain d(x, y), for
which the partial constant of integration is then determined by substituting into the other of
M and N.

For example, the differential equation

x+ =0

satisfies M, = N, = 0 and hence has solution

ox, y) = fXM = x¥2 + c(y)
which by
by =c'(y) =y
provides the solution
dx,yy=x2 +y2 =g

where c is the arbitrary constant of integration.

* Group theory for the analysis of linear partial differential equations has been used extensively
in mathematical and theoretical physics for some time now. The use of infinitesimal transformation
8roups and their relation to finite transformation groups for the analysis of nonlinear ordinary and partial
differentjal equations has recently seen a resurgence, with a number of excellent mathematical references.
See for example G. Bluman and J. Cole, Similarity Methods for Differential Equations (Springer, New
York, 1974), L. Ovsiannikov, Group Analysis of Differential Equations (Academic Press, New York,
1982), and the references cited therein.
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Under what change of variables does this solution locus x2 + y = ¢ remain invariant?
As the solution locus consists of circles, clearly a rotation of coordinates x and y through
any angle will not affect it. Remember that, in contrast to the situation in the classification
procedure of Section 1.1.1 wherein we wanted to alter the equation and hence solution form,
here we are interested in not altering at all the form of the solution. If that is to be the case,
the solution must be invariant under even a very small portion of the envisioned change of
variables { = {(x, y), m = m(x, y). Therefore we restrict attention to the very small move-
ment

X =x+ eX(x,y) + 0(&?

y + e¥(x,y) + 0(e?).

y

1

To do so amounts to assuming that the envisioned transformation is analytic. Dropping all
terms of order 0(e2), we are then linearly approximating it for very small

Ax = x — x = €X,
Ay =y —y = ¢Y.
For x and y in the solution locus x> + y* = ¢ we then have
x — eX)? + ¢y — eY)? =,
and upon requesting the invariance X2 + y2 = ¢ we obtain
—2e(X% + 13) = 0.

The very small increments €X = Ax and eY = Ay may be approximated by their differ-
=ntials dx and dy, from which we have

xdx + ydy = 0.

We recognize this as the differential equation from which we started. From the assumed
analyticity of the transformation we have X(x, y) = —y and Y(x, y) = x and the envisioned
change of variables can be only a rotation.

Generally, in this approach one quickly writes down the above characteristic equation

Here we have also allowed a change in the dependent variable. When X and Y do not depend
on u, the solutions curves d(x, y) = c of the first equality of the characteristic equation are
called the invariant curves (of the given differential equation), and m = ¢ is called the
similarity variable and regarded as a new independent variable. In the example above, ¢ =
m = r? is just the radial direction squared. Seen in polar coordinates, the characteristic
equation

cos Bdr — sin 840 _ sin 8dr + cos 846
—rsin 0 rcos @

becomes 2r dr = 0. Thus in the polar similarity variable the differential equation in two
variables x and y has been reduced to the one-variable equation n' = 0.
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Problem A.7

(a) Above we asserted that an expansion x = x + €X + 0(e?),5 =y + Y + 0(g?)
led to the characteristic equation dx/X = dy/Y. Show more generally that the
expansions

Il

x + eX(x, y, u) + 0(e?)
y + €¥(x, y, u) + O(e?)
u+ eU(x,y, u) + 0(?)

[N
Il

I

leads to the characteristic equation

& _dy _ du

X Yy U

(b) Ruminate on and relate the following notions.

@

(i)

(iii)

@iv)

)

Divergence Theorem. See Section 1.6.1. The tangent plane to a surface u(x, y)
is given by

u—ug=(x ~ xo)u, + (y — you,.

Characteristics. See Section 1.9.2. When u = u(x, y) is requested to contain
an implicit relation y = y(x) between the independent variables, along which
u is constant, then from implicit differentiation

0 = du = dxu, + dyu,

Legendre transformation. See Problem 1.9.9(4). Regarding the solution sur-
face u(x, y) of a partial differential equation as the envelope of its tangent
planes, note that the Legendre transformation is of the form (extended, old
literature; prolonged, new literature)

u(x, y) + o(u,, u,)) = xu, + yuy .
First-order equations. See Appendix A.l. The solution of the equation
clx, y, w) = alx, y, wu, + b(x, y, wu,

may be obtained from the ODE system

dx
i alx, y, u)
% = b(x, y, u)
du
i clx, y, u

integrated in the s direction.
Cauchy-Kowalewski Theorem. See Appendix A.l and Problem 1.9.4. The
solution of the first-order equation

Flx, y, u, uy, u,) =0
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may be obtained from the ODE system

rg_:n

by

=F

&1&

By

3 du Fou, + F,u,

&

du,

]

_Fx - uxFu

&

a_ _p

%= F

(vi) Group Invariance. See this Appendix. The infinitesimal change of variables

Ax = x — x = eX(x, y, w)
Ay =y —y = e¥Yl(x,y, w)
Au=u—u=¢eUxy, uw

plus equation invariance requires the invariant surface condition
UGx, y, u) = Xu, + Yu,

which is solved by the characteristics equation

(c) How do you solve the simple case of the first characteristic equation

dx dy

X~ Y()
to always obtain a similarity variable?

For an important example of the application of this method of local transformation
groups, let us consider the transonic flow equation

Uy — Uylhy, = 0
This is a type of *‘full potential’” approximation to flow over a wing, where u, is the velocity
(v — Vs)/V. relative to an assumed far-field steady velocity and where we have normalized
to one other gas dynamic constants.
Proceeding as above, we consider the transformation

i=x+ eXlx, y, u) + 0(e?)
5=y + e¥(x,y, u) + 0(?)
i =u+ eUlx, y, w + 0(?)

The method of equation invariance under such infinitesimal transformations involves three
steps:
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1. By use of the chain rule, replace the equation by its version in the £, ¥, & variables.

2. Use the original relation u,u,, = u,, and drop all O(¢?) terms to simplify the expres-
sion of [.

3. Set all coefficients of the remaining dependent variables equal to zero to obtain the
determining equations for the coefficients X, ¥, and U.

For the equation at hand, a very horrendous chain rule calculation leads to
U + QUy — X208, + (U, — 2X,,)87
- X0} + X,8,6, — X,6,0,0,
+ (Y — U8, + (Y, — 2U,,)82
+ (2%, — U8 + Y68 + 3Y, — U, — 2X,)8,8,,
+ 2X,6,6,, — 2Y,6,, — 27,868, + 37,620,
+ 2X,6,,02 + U6,

as the coefficient of € that must therefore vanish. All 0(e?) terms have been dropped and 6
denotes the sought solution. Setting all coefficients of the dependent variables to zero produces
the simultaneous equations (some are redundant) below, where we have also indicated their
implications in the same fashion as in part A.l:

X, =0 _
_X“=0}:x—x<x>
—2Y, =0 _
_zyuzo}:Y—Ym
U, =0 _
Yyy—zuy,‘—o}:w'“"y+B
Uy =0 _
2, U““_O}:>U—'rxu+)\u+'yx+(r
3, -U,-2X,=0 :>X=-_4—Tx2+<§£-—%)x+x
U, - Xe=0]127=0

Hence

3 A
X_<2 —E)x+x,

Y =ay + B,
U=Nu+ yx + 0.*

As the o, B, 6, , A, o are all arbitrary constants, one has a wide range of freedom in
choosing specific changes of variable that will leave the form of the equation invariant.

The more important goal being to reduce the PDE to an ODE from which at least one
solution may be extracted, let @ = A = 1 and the other constants be 0. Then we are back
to the characteristic equation

* This important invariance group for the transonic flow equation was first obtained in G. Nariboli,
Appl. Sci. Res. 22 (1970).
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Integrating the first equation dx/x = dyly = ds we have
Inx ~Inxy,=Iny —Iny, = s
hence

."; = l = et

X Yo
Integrating the second equation dyly = du/u = ds gives

P

Yo

= e'.

&=

Hence the choice @ = A = 1, others = 0 gave us the stretching transformation group

x = xge’
y = Yo'
u = uge®.

Each of the two integrations above produces an arbitrary constant of integration. We
could choose as new similarity independent variable m any constant of integration of the
first equation

Inx =lny + Inc

and we choose ; = ¢ = x/y. Then the constant of integration of the second equation depends
on m and becomes a new dependent variable g(n). Thus

Iny =Ilnu + g(n)
from which

e~ 8M

u=e My = x.

Had we used the dx/x = du/u equation for the second integration we would have arrived at
the same place

u = f(m)x
where f is an (essentially) arbitrary function of m.

Note that u = f(m)x is now, by use of the similarity change of variables, in a separated
variables form. This is, as always in separation of variables procedures, a special choice of
solution. From it we may now find an ordinary differential equation satisfied by f. Substituting
u = f(n)x with m = x/y into the transonic flow equation yields

I+ AR+ f 2 =0

where ' denotes derivative with respect to 7. Letting 4 denote ' and trying solutions of the
form h = am® yields a solution witha = —1 and b = —4, from which
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u=x(m"33 + ¢ = y¥3x? + ¢cx

is a solution.
The stipulating of invariance under a local transformation group has thus enabled us to
find solutions of a nonlinear partial differential equation by separation of variables.

Problem A.8

(a) Perform the chain rule calculations and collections of terms to obtain the coefficient
of € above.

(b) Investigate other possible solutions to the ordinary differential equation found above.

(c) Forothera, B, v, k, A, o parameter choices, solve the corresponding characteristics
equations to find the local group represented and the resulting similarity variables,
ordinary differential equations, and resultant special separated variables solutions.

As three last topics in this appendix, we want to just mention the methods of prolon-
gation, generalized symmetries, and conservation laws.

Each arbitrary group constant «;, such as the six parameters a, B, v, k, A, o for the
invariance group for the transonic flow equation, may be associated with an infinitesimal
operator V;. The latter are sometimes called the symmetries, or symmetry generators, or
better, the group generators of the invariance group,* and each may be obtained explicitly
from the expression

vexZiyliypl
ox ay ou

with o; = 1, all other o; = 0.

In searching for the group generators V; in cases where the invariance group is not yet
known, one tries the above expression with unknown coefficients X(x, y, u), Y(x, y, u),
Ulx, y, u). Note that by letting these coefficients depend on u we are envisioning a change
of variables not only in the independent variables x and y but also in the dependent variable u.

Very much in the spirit of both the Legendre transformation (see Section 1.9.9.4) which
transforms not only variables but also surface elements, (x, y, u, u,, uy) to {wg, wy, @, §, M),
and the Cauchy—Kowalewski quasilinearization procedure in which derivatives are regarded
as new variables, one may consider coefficients X, Y, and U depending also on the additional
derivative variables p = u,and ¢ = u,, and even selected higher derivatives. This especially
makes sense for partial differential equations possessing nonlinearities explicitly in those
derivatives. Once you allow new variables such as p = u, and ¢ = u, it is also natural to
consider (extended, old literature; prolonged, new literature) expressions such as

9 d 9 9

Ve=X—+Y—+U—+P— + Q—
ax dy az ap Q

* The invariance group is defined as the largest local group of transformations acting on the
independent and dependent variables which transform solutions of the equation to other solutions of the
€quation. From our point of view those would be the changes of variable that leave the form of the
®quation unaltered. The use of local infinitesimals to find the group means that there may be other **far
away" varjable changes (e.g., reflections) which leave the equation invariant. Also, of course, there
€an be other changes of variable which alter the equation while simplifying it.
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These prolongations (generalized symmetries) allow for investigation of further changes
of variables and provide the possibility of further simplification (e.g. , linearization ) of
the differential equation.

There results a very extensive, still developing theory. Let us, solely for informational
purposes, portray it as follows, in a hierarchy of increasingly general settings for change
of variables. We admit to over-emphasizing the latter viewpoint rather than more theoreti-
cal ones. The names given below are meant to be indicative rather than precise, complete,
or exhaustive in any way whatsoever.

Coefficients of V Theory Associated Names
X; (xj only) Similarity Variables Galileo, Helmholtz
Xi (xj, w) Banal Case Galois, Lie

X; (x, Uy Uy j, Uxjt) Contact Transformations Cartin, Vessiot

Xi (x), U Uxjy U - - - ) Conservation Laws Lax, Zakharov

We conclude with a comment about conservation laws for partial differential equations.
As is well-known, many important partial differential equations are derived from physical
conservation laws (see Section 1.7). Often these are associated with a variational principle.
For partial differential equations which are of the Euler equations (see Section 1.9.5(3))
of a variational extremum there is an important result, sometimes called a generalized
Noethers theorem,* under which the generalized symmetries V; found above may be seen
to be in a 1-1 correspondence with generalized conservation laws.* The latter may be
regarded as generalizations of the fact that a similarity variable 1} is constant along a
similarity curve.

Probiem A.9

(a) Write down the six group generators Vi for the transonic flow equation. If you wish
to approach the algebraic aspect of this theory, show that they form a Lie algebra
under the commutator operation.

(b) Accepting a "universal conservation law" as epitomized for example by the saying
"you don’t get something for nothing," what really underlies this theory?

(c) Connect this theory to an important scheme in the numerical analysis of partial
differential equations.

FIFTH PAUSE: EXAMPLES, EXPLANATIONS, EXERCISES

In Appendix A. 1 we considered the single first order quasilinear partial differential
equation a(x, y, Wi, + b(x, y, )iy = o(x,y, u) in a rather general setting. Considerable
interest attaches to systems of such equations of the form

u + (f(u))x =0
called hyperbolic systems of conservation laws, coming from fluid and gas dynamics, for
example. But before we sketch that theory, it will be instructive to gain intuition about
solution behavior from the scalar case.

* For E. Noether, Nachr. Ges. Géttingen (math. phys. KI. 1981).
Some exampies for the Korteweg-deVries equation were given in Section 2.9.8.
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Example

The conservation law u + (f (1)), = O can be written, assuming that the flux function fis
differentiable, in the quasilinear form u; + f, 4, = 0. Here we want to consider three special
scalar equations, which we call
W+cu =0 translation equation,
U+ ult, =0 convection equation,
Us +c(u)u, =0  advection equation.
For a discussion of our choice of names, see the Exercise 2 below.

For each of these equations, consider qualitatively the solution behavior for the pure
initial value problem

U+ Cly=0 ~0<x<® >0
u(x, 0) = up(x) given - <x <o,

Solution. The key to this theory is the chain rule from calculus, specifically, the total
derivative

du_dudr oudx
=t ar

If we can find x(#) curves in the x — plane such that we may set dx/dt = c on those curves,
then on those curves, (called characteristics of the conservation law)

_du_duds dudx 1
= a =gt dt-u.+cu,=(u.,u,).(c),

which we may interpret as follows.

See Fig. SPa, and we consider the constant coefficient translation equation first, with
¢ taken positive. Fix an initial point xo. From dx/df = ¢ we have the curve x(f) = ct + xo
emanating from (xo, 0) on which the total derivative du/dt of the solution u(x,) vanishes.
Therefore u(x, £) is constant on that curve, and therefore the solution retains the initial value
#o along that curve. Doing this for all — ® <Xy < % reveals the solution ¥(x?) as nothing
more than the initial profile translating to the right with speed ¢. Thus u(x,z) = uo(x - ct).
!-Jet us also note that the relationship the characteristics must have with the solution gradient
1s that of normality. We have illustrated this in Fig. SPb for the initial profile and translation
equation of Fig. SPa.

Does this reasoning work as well for the convection and advection equations? For the
Convection equation, the characteristic curves x(t) are set to satisfy dx/dt = u(x, t). But
use the total derivative du/dt must vanish on such a curve, w(x,?) will be constant, and
hence just up, along it. Thus, once we fix the initial point xo, we have fixed the initial value
Yo, which propagates along the characteristic. Hence dx/dt = ug there and the characteristic
is again a straight line, x(£) = o £ + Xo . Note now, however, that a shock discontinuity is
Produced if an initial value u at some x1 greater than Xo is smaller than ug, see Fig. 5Pc.
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line

X
FiG 5Pa. Translated wave solution

characteristic directions (1, c)

gradient normal directions (u,, u,)

FIG 5Pb. Topographic normality

ufxt) t

T 1 shock

X,

X
X

FiG 5Pc. Convection induced shock
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For the advection equation, the same reasoning holds, producing characteristic lines again,
X(t) = co + X where o = c(ug) . Note that the c{up) will now determine the fanning out or
fanning in of the characteristics.

Exercises
1. Use the shock initial profile ug(x) = 1 for x < 0, ug(x) = O for x > O for the translation
equation initial value problem. What does the solution look like?

2.We could also have used the names ‘Burger’s equation’ or “Material or Substantial’
equation for what we called the convection equation? Why do we prefer the latter?

Why do we call &, + c(u) u, = 0 the advection equation? What other names could be
considered?
3. Reconcile this presentation of u; + uu, = 0 with that of Appendix A.1, especially, for
example, with the worked example uu, + i, = 1 given there.

4. What are the jump, entropy, criteria for uniqueness of (weak) solutions to these
equations? Consult the literature about the shock dynamics of advection equations.

5. Observe a connection to the similarity solution of Appendix A.2. State a connection
to the group point of view of Appendix A.3.

Now we want to consider hyperbolic systems of conservation laws,

U+ (f(u))x =0,
where u, f, and x are vectors.
Example
Consider the one space variable case, with u(x,f) and fu) n-vectors. Convert from
conservation law form to quasilinear form
w+AW)u;=0
and analyze by the characteristics methods used above in the scalar case.

Solution. The key will again be the chain rule and conversion to total derivatives on
characteristics. First, however, let us define what is meant by hyperbolic in this context,
and why it is useful to us.

If at each point (x, ¢, u1, . . . ., Us) there is an invertible matrix Q such that

F .
MO

Q'AQ=D=

0

Where the eigenvalues A; of A are all real, then the quasilinear first order system of
Partial differential equations is said to be hyperbolic at that point. If the eigenvalues
A; are all distinct, the system is called strictly hyperbolic there. The interest in the
Quasilinear form of the system and its hyperbolicity lies in the fact that we can then
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decouple the system. Indeed, letting v=0"u, we have u+A(uu,=0=>
U + QDO 'ty = 0 =50 u, + DQ™ t = 0 => v, + Dv, = 0,a diagonal and hence decou-
pled system, provided that in the last step we ignore the fact that @ depends on the
point (x, £, u).

Let us turn then to the conversion from conservation law form to quasilinear form.
By the chain rule applied to the first component of (f(u))x we have

A= T o,

so that by doing the same to the other components of fwe arrive at the quasilinear system
U+ A(U)u, =0

wvhere A(u) is the n x n Jacobian matrix whose §j-th element is 8fi/ du;. We will assume

hat A is hyperbolic, i.¢., real diagonalizable, at all points (% 1, 43, ... un). This is the case,

‘or example, when A is a symmetric matrix, and also in important applications in which A

§ not symmetric.

Remembering that an n x n matrix is diagonalizable if and only if both A and its
transpose A* possess n linearly independent eigenvectors, and also remembering that the
eigenvalues A; of A and A* are the same when real, we form the inner products of the
equation with the n eigenvectors v; of A* to get n orthogonality (or normal) equations:
0 = (1 + Att) = (s ) + (e, A V) = (thy V) + (s K v)) = (s + N s ), e,

O=(+Nus,v), J=1..,n

To now bring in characteristic directions, we would like to express each component of the
vector u; + \; U, as a total derivative

du; dwidt  dus dx
& - adtud

Thus, just as in the scalar case above, we assume that we can find characteristic curves
x{t) in the x — r plane satisfying

dxi(t)

=N L, ).

Given such curves x{f) in the x — ¢ plane, the n orthogonality equations above become
the n ordinary differential equations

du du du, ,
—dt—lvu(u) +—‘f vil) +. ... + 2 vin)=0 j=1

dul ﬂg dun _ P
n vm(U) + @t V(W) +. . . 7 Vi) =0 j=n,



APPENDIX: FIRST-ORDER EQUATIONS 307

each holding only on the j-th characteristic curve x; ().

The PDE system has thus been reduced to ODE's along characteristics, just as in the scalar
case. These ODE’s are sometimes called the normal equations or normal forms for the
original system. As ODE’s they, along with the ODE’s defining the characteristics, enable
(in principle) the integration of the PDE system via ODE solvers.

Exercises

6.Review some linear algebra about diagonalizability.
7. What are the eigenvalues and eigenvectors in the three scalar equations above?
8.Integrate the vector conservation law and interpret.

Important first order hyperbolic systems of conservation laws occur in fluid dynamics
when one ignores viscous effects.

Example

Show that the one dimensional Euler equations of inviscid compressible gas dynamics are
a hyperbolic system of conservation laws, and find the eigenvalues A, A2, and A3 of the
system.

Solution. These equations can be written

P pv | o]
pul| +|pif +p =|0|

el |le+pu| {9]

where p is gas density, m=pu is the mass, u is the velocity, p is the pressure,
€ = pe + pu’/2 is the total energy per unit volume, € being a postulated internal energy
per unit mass. The three equations in the system represent conservations of mass,
momentum, and energy, respectively. Additionally* we assume a perfect gas law
P =(y - 1)pe, wherey > 1is amaterial dependent constant called the ratio of specific heats:
for definiteness one can just take y = 1.4 for air, for example. This additional equation of
state permits the elimination ( note that p = (y — 1)(e ~ pi’/2)) of both the total energy e
and the internal energy & from the equations, in favor of the primitive variables, p, 4, and
P {see Bxeicise 9).

Still written in terms of density, mass, and energy variables, using the additional state
€quation, we have the conservation system

) *We refer to any book on gas dynamics for the derivation of these equations. However, as an
Interesting sidetight, recall the discussion in Section 1.7.1, where the postulated internal energy function U
Played a similarly somewhat disconcerting, or at least, intangible role. There, we simplified Uy to c(u) to an
assumed constant specific heat c throughout the body and temperature range under consideration, in order
% produce linearity. Here, it is embarrassingly convenient to simplify the internal energy € to be proportional
® the ratio of pressure to density, in order to produce three equations in three unknowns.
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P m fol
m| +{(y-De+(3-y)m’/2p| =|0|
e|, |vemp-tr-1mr2e’], |°)

The Jacobian matrix A = [3fy/3u;} may be easily computed to convert to quasilinear form

P 0 1 o]([e] [0l
ml +| (y-3ui2 (3-yu y-1| |m| =|o0
e (-1 yew'p ye/p-3-Dl/2 yu | |el, 0

14

from which, less easily, the eigenvalues Ay mu, lo mu +¢, Aamu—c of A are found. Here

c=(yp/ p)”2 may be regarded acoustically as a local sound speed. Because y, p, and p are
all assumed to be positive, the eigenvalues are real and distinct. Hence the system is strictly
hyperbolic and diagonalizable.

Exercise

9. A somewhat simpler quasilinear form of the gasdynamics equations is possible when
writing them in terms of the primitive variables p, & p, resulting in the system

pl [« e 0][e] fol
u| +[0 u 1/p| juj =|0].
pl, |ow «||p|, °

Find its eigenvalues, eigenvectors, and decompose the system to ODE’s as above.

APPENDIX B: COMPUTATIONAL METHODS

Computational methods, namely, those using computers, have recently come to the
forefront. Although the development of computational methods for the solution of partial
differential equations traces back to at least the beginning of this century, *and for ordinary
differential equations much earlier, § their widespread development and application was
restricted by technology: hand calculation or mechanical calculator. The advent of high-
speed, large-memory, low-cost (per operation) electronic computers has changed all that,
and in so doing, has changed the role of mathematics and the way it is perceived, not only

*For example C. Runge, Z. Math. Phys. 56 (1908), and L. Richardson, Trans. R. Soc. A 210(1910),
employed finite difference methods for problems in two-space dimensions.
§ L. Euler, Institutiones Calculi Integralis, St. Petersburg(1768).
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within mathematics but to an even larger extent within science.

Because each of the subjects

computational methods for elliptic equations

computational methods for parabolic equations

computational methods for hyperbolic equations
is a large one, we shall restrict ourselves here to the presentation of some basic and recent
methodology for elliptic equations, less for parabolic equations, and very little for the
hyperbolic ones. Space and time limitations preclude any systematic numerical analysis
(eg, error estimation, operation counts, algebraic features, and the like).

B.1 Finite Difference Methods

These methods have already been introduced in Sections 2.6 and 2.9.6. They are at the
heart of all numerical approaches to solving partial differential equations and are sued
extensively. A valuable key to both the theory and the impiementation of finite difference
methods is the notion of stencil.* Werecall the problem of Section 2.6: find numerically
a good approximate solution to Au = 0in the 3 x 3 square portrayed in Figure B.1, given
the values of u at the indicated points on 9Q. Reasoning from the mean value theorem for
harmonic functions we arrived at the set of 4 equations in 4 unknowns

4-1-10 u Ui, 0+ Uo, 1
-1 4 0-1} juzt Uz 0+ Us 1
-1 0 4-1| {2 - U1, 3+ Ug 2
0 -1-1 4| {422 Uz 3+ U3 2

Notice that we have shifted notation here from that of Section 2.6. Hereu; ; denotes the ith

row and the j column of the grid in Figure B.1. This notation is commonly used in the

numerical literature. Also when a numerical scheme is being finalized for implementation
¥

f

3 : T
| |
! ‘.
24— —lg 13— —Up 23— —
! I
[ !
14 My Uy — — ¢
! |
! |
0 i d —>x
0 1 2 3
FiGg. B.1

* Sometimes called the computationa! molecule.
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capital letters U are often used to denote the discretized solution as contrasted to the use of
Jower case letters for the analytic solution u, and we shall sometimes do this.

The stencil of our method is the graph of Figure B.2. This is called the five-point stencil
for discretizing the Laplacian operator A. It catalogues which points are used in the scheme.
By including more points in the averaging (i.e., larger stencils) one can obtain higher-order
approximations to u, but at a higher cost in computing time. Five-point stencils, perhaps
with weights, remain in wide use for second-order elliptic partial differential equations. For
fourth-order equations one may be forced to a more extensive stencil. The accuracy of a
scheme, usually given in terms of an error guaranteed to be 0(h") where h denotes the grid
spacing, can always be determined in principle from a Taylor series expansion.

Below in Figure B.3 are three other important stencils, two for parabolic equations and
one for hyperbolic equations.

Figure B.3a is the stencil for the forward-Euler treatment of the heat equations, it being
understood from the stencil that one takes a forward first-order time difference anda centered
second-order space difference to approximate the equation. The discretized partial differential
equation is thus

Uijs1 — Uij - Uiprj = 2Ui; + Uiy

At (Ax)?

from which the algorithm of the scheme is seen to be

At
Uyja1 = U

i T (TA';')‘E (Uiery — 2U; + Uil

This scheme is said to be explicit because the solution U on the next j+ st level may be
explicitly calculated from known values of U on the jth level. Writing the algorithm as

Uijor = (1 = 20U, + rUiery Ui p)

reveals the ratio r = (Ar)/(Ax)? as an important one. Clearly if r = 0 the solution does not
advance in time and is hence uninteresting. On the other hand, there would be little hope
of convergence of the algorithm if the ratio U, j+1/U;; were to exceed 1. As this ratio, if
we ignore the two-side contributions, is exactly (I — 2r)~1, it would appear that we should

j+1

—J

-1 i i+1
Fic. B.2
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take r << 1/2 to avoid any divergence. In fact a more careful stability analysis shows that
for

0<r=112

the finite difference solution U; ; converges to the solution u, ; of the differential equation as
Ar and Ax go to zero. Recall that in Section 2.6 it was demonstrated that for consistent
schemes, convergence and stability often go together.

There are two customary approaches to showing stability of a scheme. Numerical
stability is usually taken to mean that a bounded initial error remains bounded. This is
stability in the maximum norm as we have used the concept in this book. Both approaches
are already implicit in the argument we gave above. The only effect that we have not taken
into account is that of the coupled side terms.

The Von Neumann method, also called the Fourier method or the method of mode
analysis, expresses the initial data errors in a (finite) Fourier series, separates variables just
as we did in the continuous case, and then assures that no Fourier components grow ex-
ponentially. Thus, for the forward Euler scheme, if u o = u,, k = 0, . . ., n denotes an
initial error distribution, it may be represented by a Fourier sum

where the ¢, are the discrete Fourier coefficients found from the (n + 1) X (n + 1) linear
equations U(x,) = u,. In other words, one constructs a continuous fit to the initial errors,
which is exact at the grid points. Linearity then enters strongly. First, we need only consider
errors U superimposed on any solution. Secondly, we may set all 4, = 0 except one, solve,
and then construct the total error from each of its n + 1 constituent parts. As far as growth
or nongrowth of an error is concerned, the numerical ¢, initial value is irrelevant. Thus one
thm xy tkm

need only look at a single modee ! = e " . This is why the method is sometimes called
mode analysis.

Assuming, therefore, just as in continuous separation of variables for the hear cquation,
that the solution error is of the form

ikmwm

Ux, 1) = e " M
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we substitute into the forward Euler discretization of the heat partial differential equation to
obtain

ikmm ikmm ikm(m + 1) ikmm ikn(m — 1)
e "Mt g n g gom N _ g M e N M
At (Ax)?
from which
ik_‘n —ikm
At — " _ n
ed — 1 =r(e 2+e )
ke

]
~
TN
[ 8]
[}
[=]
7]
|
[ 8]
~——

n
kT
= - in2 [ 22
4r sin ( )

For stability the time step must be taken small enough to guarantee le* = |1 — 4r sin?
km2n)| = 1,ie.,0Z — 4rsin? (kn/2n) £ -2, which is assured when

r=1/.2.

The above mode analysis of stability takes no note of boundary conditions. These are
usually treated by a second method, that of the amplification matrix. For Dirichlet boundary
conditions (0, ) = u(l, £) = 0 the discrete Euler approximation is advanced the next time
step by

Un+r = AUy
where
0 0
1=-2r r 0
r 1-2r r
A= 0 r
r
r (1-r)
0 0

The vectors {Uy}5 =, will remain bounded provided that all eigenvalues of A are of magnitude
no greater than 1. For if some [\¢| exceeds 1, we may use its corresponding eigenvector as
an initial error which will blow up. Conversely if each mode cannot blow up. then neither
can any combination of them.

The eigenvalues of A may be found to be Aq = A, = 0 (due to the boundary conditions)
and thenfork = 1,...,n - 1,

kn
=1 — 4r sin? —.
=1 r sin >

Note that this is the same amplification factor found in the above Von Neumann analysis.
Hence to guarantee |\,| = | we need r = 1/2. Different boundary conditions will change at
Jeast the first and last rows of A and hence can change the largest [A;| and thus the permissible
range of r.
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Problem B.1.

(a) Show from Taylor Series that the forward Euler scheme is 0(4?) in x and O(k) in
t, where h denotes Ax and k denotes At.
(b) Find good weights for the nine point stencil for the Laplacian.

(c) Show that an n X n tridiagonal matrix

a4 4 0
— | 4-1 3. G .
A 0 a_y. .

has eigenvalues a, + 2(a;a_;)"" cos (kw/n + 1),k = 1, . .., n. Thus (ignoring the first
and last zero rows) the forward Euler interior amplification matrix has eigenvalues
(1 — 2r) + 2rcos kw/n = 1 — 4r sin? (kw/2n).

The stencil of Figure B.3b is that of the Crank—Nicolson scheme for the heat equation

Uijri — Uy - Wisijer — 2Uijey + Uiy jiad + Wiy — 2U;; + Uiyl
At 2(Ax)? .

Notice that this scheme amounts to averaging the space central differences at both the jth
and j+ Ist levels. In so doing it becomes implicit: U,y must be solved for implicitly rather
than being given explicitly in terms of j values as in the forward Euler scheme above. Letting
r = At/(Ax)? the Crank—Nicolson equations may be written as

—rigoyjer Q@ F 20Uy — ey = Tl 2 - 2r)u;; + rupgy

where the three unknowns are grouped on the left side. For Dirichlet boundary conditions
the interior approximation Uy is advanced by

U,y = AIBU;
-1
2+ 2n -r.. 0. 2-2n r. . 0. Uy,
_ -r.. 2+2) ro.o@=2) ' :
- 0. . '. ’ 0. '.

Un—l,j
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It can be shown that the eigenvalues of A !B are all of magnitude less than one and hence
the Crank-Nicolson scheme for this problem is unconditionally stable (i.e., stable for any
value of r).

Here are some numerical problems that may be done by hand.

Problem B.2.

(a) Usc the forward Euler scheme to advance two time-steps the problem
u, — u, = 0, O<x<l, t>0,
u(0, ) = u(l, 1) =0, t>0,
ulx, 0) = —x(x — 1), 0<x <],

with h = Ax = 1/4, k = At = 1/64, to determine U(1/2, 1/32).
(b) Use the Crank—Nicolson scheme to advance one time-step the problem

u, — U, = 0, 0<x<l, t> 0,
u©,8) =u(l,t) =0, t >0,
ulx, 0) =1, 0<x<l,

withh = Ax = 1/4, k = At = 1/32.
(c) Use the Crank—Nicolson scheme to advance one time-step the problem

u, — uy = 0, 0<x<m, t> 0,
u©, ) = u(m, ) = 0, t> 0,
u(x, 0) = sin x, O<x<mm,

with Ax = 7/4 and At = w¥32. Compare to the analytic solution.

The third stencil above, Figure B.3c¢, is that of a so called ‘‘leap frog’’ scheme

Upjer = Ui jy _ Ui £ Uiy
At Ax

useful for hyperbolic partial differential equations. The ratio A#/Ax should be adjusted to
the coefficients (propagation speeds) of the particular equation, and the choice of + depends
on whether the equation is second- or first-order. These methods* are related to the theories
of characteristics and conservation laws treated in Appendix A and are best understood in
that context.

Here are some numerical problems that may be done on a machine.
Problem B.3.
(a) Solve Problem 1 of Section 2.1 by use of the discretization

Upjorr + Uij— - Uisrj + Uisy
At Ax

* We will not elaborate them here. Examples were touched on briefly in Section 2.9.6 (Buckley—
Leverett equation) and Problem 2.9.8(a) (Traffic flow equation). An especially good treatment of
numerical theory for hyperbolic systems may be found in Kreiss and Oliger, Methods for the Approximate
Solution of Time Dependent Problems, Global Atmospheric Research Program Publications No. 10
(World Meteorological Organization, 1973).
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To get started, introduce the fictitious values

Uiy = Uy — 28()At
from which
U_ o+ U
U, = '_‘;()Z_Uﬂg + g(x‘-)At.

() Solve (b) of Problem B.2 computatiorally. Run time out a long way.
(¢) Compare the analytical and numerical solutions of ).

B.2 Finite Element Methods

As finite element methods were discussed in Section 2.6 and Section 2.9.6 and because the
subject is becoming so large, this section will be very brief. A number of references were
given in Section 2.6. Finite element methods were pioneered principally by civil engineers
for use in structural design. More recently they have been applied to problems in fluid
dynamics.* Finite elements may be placed in increasing density around corners and obstacles
and therefore possess great advantages in modeling partial differential equations in irregular
regions. Implementing the input and output can be tedious.

Table B.1 presents a comparison of the Fourier Series, Finite Difference, and Finite
Element methods applied to the problem of Section 2.6. The Fourier series converges with
10 terms, the Finite Differences approximate to about 5 percent with a 10 X 10 grid, and
the Finite Elements approximate to about 10 percent with 10 X 10 nodes. The latter is not
as good here because a linear plate element code with only 12 fixed degrees of freedom
permitting only deflection and rotation was used. A quadratic element would presumably
produce much better results. The boundary function of Figure 2.6b is really too sharp for
the use of a plate code.

Table B.1
Fourier series Finite difference Finite element
(x, y) 10 terms 10 x 10 (9 X 9 interior) 10 x 10 (9 X 9 interior)
1,0 0.988 1.0 1.0
2,0 1.913 2.0 1.99
1,1 0.431 0.434 0.47
2, 1 0.517 0.535 0.55
1,2 0.143 0.146 0.16
2,2 0.153 0.159 0.17

* Good recent references, among many, are F. Thomasset, Implementation of Finite Element
Methods for Navier-Stokes Equations (Springer, New York, 1981), R. Peyret and T. Taylor, Com-
putational Methods for Fluid Flow (Springer, New York, 1983), and A. Baker, Finite Element Com-
Putational Fluid Mechanics (McGraw-Hill, New York, 1983).
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When an irregular domain () is triangulated into tetrahedral or rectangular elements,
and the approximating functions thereupon are only loosely connected to one another, very
wild matrices in the resulting linear system can result. This can even happen in a square
when the approximating spline structure over the triangulation is complicated, (e.g., by the
need to approximate vector valued rather than scalar functions). Without going into the
details, here is (Fig. B.4) a sparse matrix from a quadratic finite element basis for incom-
pressible flow.* There are many interesting combinatorial and algebraic questions that arise
in the process of assembling finite elements. T Interesting combinatorial and analytic *‘Green’s
Function’’ pole and dipole placement questions arise in using (method of panels) combined
finite element/finite difference schemes for irregular regions about aerodynamic structures.

Rather than delving into such multidimensional element combination problems, we offer
some further practice with variational quadratic approximation, which, stretching the defi-
nitions, could be regarded as approximation on a single element.

Problem B 4.

@) Solve w” + u' = 4o0n0 <x< 1 with boundary conditions (0) = u(l) = 0
using an approximating function $(x) = x(x — 1) and the Galerkin method of
Section 2.6.

(b) Solve it analytically.

(¢) Compare atx = 0.2, 0.5, and 0.8.

Problem B.5.

(a) Solve the Airy’s equation problem of Sections 1.3 and 2.9.909) «" + 4xu = 16
on 0 < x < 2 with boundary conditions #(0) = 0, u(2) = —1, using quadratic
Galerkin functions ¢ = 1/2x(1 — x) and ¢; = x(2 — X).

(b) Solve it also by Finite differences at x = 0, 0.5, 1.0, 1.5, and 2.0.

(c) Compare.

Problem B.6.

(a) Solve " + u = x2on 0 < x < | with boundary conditions #(0) = 0 and (1)
= 1, using first & = x and then ¢; = x and ¢, = x? as approximants.

(b) Solve it analytically.

(c) Compare atx = 0.2, 0.5, and 0.8.

B.3 Finite Spectral Methods

The terminology spectral methods has come into the numerical solution of differential equa-
tions as a rather general lumping together of a number of methods employing Fourier or
other transforms. Their increasing popularity is based for example on the great speed with

* See K. Gustafson and R. Hartman, “Graph theory and fluid dynamics,” SIAM J. Alg. Disc.
Math. 6 (1985). The V', V2, ¥* are discrete versions of Hy, H, H,of Appendix C.1.

% These are also being pursued by the French School, see for example F. Hecht, RAIRO Anal.
Numer. (1981).

t See K. Gustafson, K. Halasi, D. P. Young, Intern. J. Num. Meth. in Fluids 5 (1985).
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FIiG. B.4. Sparseness matrix, with Helmholtz components indicated.
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which one can take a Fast Fourier Transform (FFT). These methods include the Galerkin
and Rayleigh-Ritz methods discussed in Section 2.6
From our point of view expressed at the beginning of Chapter 2, that of generalized
Fourier expansions (e.g., eigenfunction expansions), spectral methods could as well be
called Fourier methods. In their implementation one posits and approximation such as
N

un(x, 1) = S IN(OX(x)*
n=1
where the X,(x) expansion functions are specified. Although these need not be eigenfunc-
tions, that is, they could be pulled arbitrarily out of the air, experience with a few examples
will indicate the desirability that they satisfy the boundary conditions and hopefully have
other properties common to the given problem. Indeed, as already seen in Section 2.6, in
most cases the exact eigenfunctions X,(x), when known, provides the optimal choice. ¥
Let us consider the example

Uy — Uy, O<x<m >0,

ux,0) =fix), O<x<m,

u(0, 1) = u(n,t) =0, t>0.
Were we to proceed analytically by separation of variables, we would be led to the
expansion

ux, 1) = 3 To(t)X,(x)
n=l
where X,(x) = sinax, the eigenfunctions of the space part of the heat operator with the given
Dirichlet boundary condition. Rather than then solving directly from the separation of
variables relation for the Tx(¢), the spectral numerical procedure truncates the Fourier series
at N terms and then asks that this approximation satisfy the partial differential equation

exactly Fourier

in projected sense Galerkin

at specified points Collocation
orthogonally Tau

in weighted sense Weighted residual
weighted, locally Finite element

We have taken some liberties but the matchings just given are essentially correct.

*The spectral method literature appears to prefer the notation a,(?) for T,(2). perhaps to connote thal
the a,x(t) are coefficients approximatin the exact coefficients

ay(t) = Zf u(x, t) sinnx dx.
Tt

The latter coefficients {a,}n=1 are sometimes called the (Fourier) Sine Transform of the solution u(x,
8.

% In Section 2.6 we emphasized the point of view that the numerical approximations uy correspond
to Projections in a Hilbert space. For other (c.g, Tchebycheff) basis functions Xx(x) or ¢» they may more
naturally he regarded as Projections in a Banach space. The main point is, however, whether one be a
functional analyst or numerical analyst, to get Projections as naturally related to the given partial differential
operator as possible. Then good results wil! follow, in either context.
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For the example at hand, for the *‘exact’’ solution we would use the relations of T,(t)
to X,(x) by the separation of variables procedure, from which T,(f) = c,e~"". Of course
then fitting the initial data f(x) exactly would require that f(x) happen to lie in the subspace
spanned by the X,(x), n = I, . . ., N. Otherwise we would take the ¢, to be the first N
Fourier coefficients in the X,(x) expansion of f(x).

The Galerkin procedure, see Section 2.6, approximates the solution by a projection

N

uy(x, 1) = D a,(0d,x)

n=1

in the subspace spanned by a prechosen set {¢,}. That the equation also be approximated
within this subspace is implemented by the set of N equations,

d 92
<<5‘t—5x—2>u,q,¢m>=0, m=1,...,N.

This becomes the set of N equations in N unknowns a,

a(0{dy, &) + - + ay((dy, &1) = (0], by + - + ay()dy, by)

aj(t)dy, dy) + -+ ay(O){dn, dy) = a(IXd], b)Y + - + ay() b, by)

which is to hold for each time ¢. This is a first-order ODE system of the form
Ad'(t) = Ba(r)

with constant coefficient matrices and with the initial condition a(0) taken from the system
(f, o0

Aa(0) = : .
(f ’ ¢N)

Notice how convenient it is when the {d,} are chosen to be orthonormal. Then not only
is A invertible but it is the identity. By choosing the {¢,} to be the natural eigenfunctions
¢,(x) = X,(x) = sin nx the eigenfunction reproducing property ¢ = —n?d, renders B
diagonal and the ODE system uncouples. The fast numerical approximation of the Fourier
sine coefficients 2/7 3 f(x) sin nx dx then sets up the initial value a(0), from which we
recover the above *‘exact’’ solution. The only error is in the spectral transform ¢, = a,(0)
= (f, dn).

Generally one is not so lucky as to know the exact eigenfunctions. Then to minimize
the errors uniformly in x, and especially near the boundary, Tchebycheff polynomials {d,}
are often employed for the Galerkin spectral expansion. Care must be taken to meet the
boundary conditions of the problem as well as possible. Other special functions (e.g.,
Laguerre, Legendre, see Section 2.1) are sometimes chosen, depending on the geometry of
the problem and the availability of fast spectral transforms to provide the coefficients.

Collocation combined with Fourier eigenfunction expansion approximants is often called
a pseudospectral method. This, because collocation, by itself, obviates the need to take any

rtral transforms. In collocation one requires that the equation residual be identically zero,
t s,
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9 &
g_ 2 =0
(Bt axz) uN(xmv t)
at specified points x,,, (¢.g., m = 1, ..., N). For a trial approximation uy in the {dn}
subspace this sets up a first order N X N ODE system

Aa’'(t) = Ba(t)

similar to that above, except that now the coefficients are values of the ¢, and ¢y, at the
collocation points x,,. This can be a powerful method, faster than Galerkin, and avoiding
problems at the boundary.

The so-called Tau (or Lanczos*) method may be regarded as a variation of the Galerkin
method which offers a way to satisfy M boundary condition constraints by allowing the
approximation M additional degrees of freedom while no longer demanding that each of the
{d,} satisfy all of the boundary conditions. For such

N N+M
uyoul® ) = 2 G060 + 2 bud6:()

the residual turns out to be

2 -
(5"; - f;;) s, D = 3 1,00,
where {¢,} is assumed here to be a complete orthonormal set. Recalling Section 2.3, this
means that the residual lies in the orthogonal complement of the space spanned by the
{dV_1. As such, this method is also sometimes referred to as a method of orthogonal
collocation: the part of the residual in the basic approximating subspace exactly vanishes.

The name Tau is obviously evidenced in the coefficients 7,(f) above. The implementation
of this algorithm goes as follows. As in the Galerkin method, to effect a projected approx-
imation of the solution and the equation, one forms scalar products with the {¢,}. This leads
to the N + M equations in N + M unknowns

&
a::(t) = (ExiuN+Mv d)n)v n = lv e ,N,

and, for the case at hand of M = 2 boundary constraints,

un+m©0) = uy y(w) = 0.

. . . &
It turns out that the T coefficients in the residual are given by 7, = — (;2 Un oMo ¢,,) for

n=N+ M+ 1,... and with the intermediate 7, forn = N + 1, ..., N + M de-
termined implicitly by the above system. Rather than getting more involved in this method,
we will content ourselves with the example and exercises below.

There are other weighted residual methodst into which we shall not delve. These are
all variational methods in the sense that the equation is multiplied by a finite set of weighting
functions {&;} and then integrated over the full domain () or some subdomain such as the
support of the weighting function. The latter case includes the finite element method discussed

* C. Lanczos, J. Math. Physics 17 (1938); Applied Analysis, Prentice Hall (1956).
T For example, see Ames, Finlayson, op. cit. in Section 2.6.
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in Sections 2.6, 2.9.6, and in part B.2 above. Whether or not the method should also be
considered a finite spectral method will turn on whether the coefficient integrals need be
obtained by spectral for example, Fast Fourier, transform techniques.

Problem B.7.

(a) For the heat equation example, write out the Galerkin equations Aa'(?) = Ba(r) for
&, the orthogonal functions sinnx,n = 1, ..., N.

(b) Write out the Collocation equations Aa’() = Ba(?) in general and then for the ¢,
as in (a).

(c) Read further about spectral methods, where other examples and problems may be
found.

A discussion of computational methods would not be complete without remarks on
linear algebra and graphics output. Unfortunately these are subjects in themselves. Therefore
we content ourselves here with a few examples of the value of the latter in understanding
solutions.

Consider Problem 1 of Section 1.2. With the data x* on two sides, the graphics at first
shows very little difference between the solution for the Laplacian operator and that for the
Minimal Surface operator (Fig. B.5). However, the linearization error multiplied by 100
shows that the minimal surface solution sags considerably below that of the Laplacian.*
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FiG. B.5. Computational Solution of Problem 1 of Section 1.2.

* The linear algebra was done with SOR with @ = 1.816 in most of these examples.
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Laplacian Minimal Surface 100 (LP-MS)

FiG. B.6. Computational Solution of Problem 2 of Section 2.1.

More interesting is a comparison of the numerical solution of Problem 2 of Section 2.1
first with the Laplacian approximation and then with the full minimal surface equation. The
views here (Fig. B.6) are from a perspective from the left of Figure 2.11.

The Fourier series *‘spectral method’” approximation of the square wave was requested
in Problem 1.9.6(2)(c) to illustrate the Gibbs effect at initial data discontinuities. The square

it 4
wave f(x) = —1 on (-, 0) and f(x) = +1 on (0, ¥) has Fourier series 2 (Zn__l)
n=1 -
sin (2n — 1)x. The maximum value occurs one-fourth of the shortest wave length from the
discontinuity and for the square wave at a jump from —1to +1 one expects the series to
reach above | to the value

1 + 2(0.0895) = 1.179

according to the discussion of Section 1.9.6(2). This series was evaluated to a large number
of terms to find

Terms Gibbs Effect
N = 20,000 1.17897974530
N = 200,000 1.17897974448
N = 2,000,000 1.17897974447

as graphically portrayed for N = 100, 10,000, 100,000, and 1,000,000 terms in Fig. B.7.
The effect is instantly smoothed by parabolic equations but persists in hyperbolic ones.
Some additional computational practice is provided by the following problems.

Problem B.8.

(a) Solve computationally Problem 3 of Section 2.1.
(b) Solve computationally

U = Uy =0, 0<x<l|, t>0,
0,0 = u(l,n) =0, t >0,

u(x, 0) = 2x, for 0<x=0.5,

2 - 2x, for 0.5 =x=1.

(c) Read about the recently developed important Multigrid Approximation Schemes.
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Problem B.9.
Solve computationally the traffic flow problem of Section 2.9.8, namely,
p. + c(p)p, = 0

with initial profile

o S(x - 0.5)Z
p(x, 0) = 200 + 100e "\ o
and with propagation coefficient
c(p) = 76.184 — 172 1Inp

by means of (a) a Leapfrog scheme, (b) a Lax—~Wendroff scheme, and (c) a Method of
Characteristics scheme. Which is more natural to the problem?

.18

(a)
S - 0

Fig. B.7. Computational Solution of Problem (c) of Section 1.9.6(2). (a) 100 Fourier terms (b) 10,000
Fourier terms (c) 100,000 Fourier terms (d) 1,000,000 Fourier terms.
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n = 10,000

L .13 1.2
(b) 1.1789
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§9.999% 7 n = 1,000,000 T

@

08

FiG. B.7 Computational Solution of Problem (c) of Section 1.9.6(2). (a) 100 Fouricr terms (b) 10.000
Fourier terms (¢) 100,000 Fourier terms (d) 1,000,000 Fourier terms.

SIXTH PAUSE: EXAMPLES, EXPLANATIONS, EXERCISES

In the Fifth Pause we noticed that shocks could develop in solutions of advection equations
or advective systems, even when starting from smooth initial values. This has led to the
development of shock capturing schemes, computational methods which can find and
resolve the shock dynamics of an evolving hyperbolic system.
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Example

The most used test problem for such schemes in the Riemann Problem, also called the

Shock Tube Problem,* Some shock capturing schemes actually use the exact analytical

solutions of Riemann Problems at each time step. Discuss this test problem ** and the

principal types of schemes used for numerical solution of hyperbolic conservation laws.
Solution. We recall the Euler equations of inviscid gas dynamics from the Fifth Pause,

namely

P pu (o)
pu| +|pt+p| =|0]|,

e|, ((e+pm), \0)

with the same ideal gas state equation assumptions as before. Physically, the Riemann
problem imagines a thin tube in which gas on the left at constant high pressure is separated
from gas on the right at constant low pressure, separated by a diaphragm. At ¢ =0 the
diaphragm is punctured and the flow is viewed as a piston moving to the right, ahead of
which is an induced compressive wave. Trailing behind the "piston” is an expansive wave.
Analytically, the problem is treated as a pure initial value problem,the equations to
determine the flow of the physical primitive variables density p, velocity u, and pressure
p from their given initial values plx, 0), u(x, 0), p(x, 0) . Computationally, because shocks
are expected to develop, it is customary to start with a shock, to test the robustness of the
numerical scheme being developed.

Although the position of the origin is arbitrary, a standard Riemann Solver test problem
uses the following initial data:

density €;=1.000 ,=0.125
velocity % =0.000 u =0.000
pressure py=1000 p,=0.100

with origin placed at x = 0.500. The flow is then computed for a short time in the interval
0 <x s 1 and compared to the exact analytical solution. The most used stopping time is ¢
= 0.140, short enough that no dynamics has reached the "ends" of the tube 0 s x < 1s0
that no reflections, etc., need be considered.

The exact analytical solution at £ = 0.140 is shown in Fig. 6Pa. In Fig. 6Pb we have
sketched the evolution of the density from its initial values to its final values at = 0.140.
Notice that the flow evolves forward (in time) in 5 regjons. In the farthest left region 1,

*Since this problem involves the gasdynamics equations in only one space dimension, it is helpful
to realize that this is pot a "tube” problem atall. Ina "tube” one could envision all kinds of highly complicated
two and three dimensional wave interactions. This test problem is a "shock ray" problem, analogous to the
"rod" setting of the First Pause. Movement is tracked only in a fixed single space direction. The resulting
shock dynamics are usually called wave dynamics, but we will seek some conceptual simplification by
thinking in terms of ray dynamics for this one space dimensional setting.

Although analytically the extension to two or three space dimensions is a large one, the oomputational
schemes discussed here have been successfully applied to complicated acrodynamics and other gasdynam-
ics applications in two and three space dimensions.

*% An excellent reference is G. Sod, J. Computational Physics 27 (1978). Like many others, we use
Sod’s initial values and terminal time ¢ = 0.14. Sod also describes how to find the analytical solutions.
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FiG 6Pb. (i) Sketch of Evolution of Density Profile from Initial State at 1 = 0 to Final State at
¢ = 0.14. (ii) The Five Evolution Regions for the Riemann Test Problem
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nothing has yet changed, the initial constant e,, u,, p, are not yet affected. The next region
T represents a rarefaction action of high pressure and high density onthe left being reduced
by the generally rightward flow. In the middle region III a maximum velocity behind the
"piston” has been achieved. A particle initially at the data discontinuity (the piston) is now
at the rightmost point of region HI. This point is called a contact discontinuity and
represents a translation action (e.g., of the initial density discontinuity). Region IV
separates the "piston" front from the advection-induced shock ahead of it. This compressive
action, due to decreasing solution profiles, induces discontinuous shocks in all flow
variables, in the manner explained in Pause 5. Ahead of the shock is the as yet undisturbed
region V of right initial values p,, ur, pr Computational simulations of this Riemann Test
Problem are given in the last Example and Fig. 6Pc in pages 329 to 330.

Let us at this point observe an analytical fact of some importance: the invariance of
the Euler cquations under the uniform stretching group. Consider the Euler equations in
primitive variable (nonconservative) form

Pt + Upx = — Plix

1
Ug+ Uy = — —Dx
p

Pt + UPs = — YUz

If we replace x and ¢ with new variables Ax and Af, A a fixed constant, we see that if
plx, ), u(x, 1), p(x, £) is a solution, then py(x, £) = p(hx, M), ua(x, £) m u(hx, M), py,
(x, £) = p(Ax, \) i$ also a solution: the A comes out as ! in each derivative. In other words,
a classical solution may be continued outon rays x/¢ = n = constant, and more generally,
on rays (x — xq)/(t — to) =n = constant.*

Thus for the Riemann Solver test problem, because the initial data is classical (flat, in fact)
eXcept at the origin x = 0.5, we may view the evolving solution as mostly classical ( flat,
in fact) continued along rays from the initial profile. The four possible exceptions occur
at the interior boundaries of the five regions described above, where the ray solutions may
be weak solutions. If one sits at a point x to the right or left of the origin, there are

* All first order conservation systems ut + (f(4)k = O in one space dimension enjoy this property, as
may be varified by the chain rule. We (and others) have used it, for example, in scalar equations when
choosing the rarefaction fan solutions u(x8) = u(x/t), see Exercise 4 of Pause 5. But we have not seen it
emphasized as a general analytical principle for the selection of the (unique) pbysical solutions,which we
might call (see previous footnote) ray solutions. More to the point: we may call them particle solutions.

The same scale invariance will hold for conservation laws in higher space dimensions. solutions
would be viewed as plane, sphere, solutions but we are not prepared to go into that bhere. This observation
is just scale invariance,using the arguments of dimensional analysis or local transformation groups, as obt
prefers. The continued solutions are similarity solutions on rays. See Appeadix A. When one uses the group
viewpoints, one is ignoring initial and houndary value constraints, and imagining infinite domains
—®wex< @,

This analysis depends on the solutions being classical, and breaks down at solution or derivative
discontinuities, ¢.g., at shocks, contact disoontinuities, and fan boundaries. But by suitable reinitialization,
¢.g., along the lines of our discussion of shock dynamics in Pause S, one can in principle continue ray
solutions even from those points. For example, for the convection equation ur + tux = 0, at a shock point
we "reinitialized” the ray direction to the average of the two incoming characteristic directions. If one viewS
this as a fast particle overtaking a slow one, hoth of the same mass, our various criteria (Ranldne-HugOﬂi""
Weak Solution, Regularity) just produce a "lumped" particle whose speed is the average of the incoming
speeds, and whose direction is the average of the incoming directions.
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Roe’s 2nd order Time=0.035, # of G.P=1001, dt=0.00014
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Fig 6Pc. (i) High Resolution fine-grid ( Ax = 0.001 ) small time-step ( A = 0.00014 )
Computational Solution of Riemann Shock Tube test problem for the Euler Flow
Equations Hyperbolic System
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Rpe’s 2nd order Time=0.035, # of G.P=1001, dt=0.00014
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Fig 6Pc. (i) High Resolution fine-grid ( Ax = 0.001 ) small time-step ( Ar = 0.00014 )
Computational Solution of Riemann Shock Tube test problem for the Euler Flow
Equations Hyperbolic System
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Roe’s 2nd order Time=0.070, # of G.P=1001, dt=0.00014
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Fig 6Pc. (4) High Resolution fine-grid ( Ax = 0.001 ) small time-step ( A; = 0.00014 )
Computational Solution of Riemann Shock Tube test problem for the Euler Flow
Equations Hyperbolic System
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Roe’s 2nd order Time=0.070, # of G.P=1001, dt=0.00014
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Fig 6Pc. (i) High Resolution fine-grid ( Ax = 0.001 ) small time-step ( At = 0.00014 )
Computational Solution of Riemann Shock Tube test problem for the Euler Flow
Equations Hyperbolic System
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Roe’s 2nd order Time=0.105, # of G.P=1001, dt=0.00014
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Fig 6Pc. (i) High Resolution fine-grid ( Ax = 0.001 ) small ume-step ( Ay = 0.00014 )
Computational Solution of Riemann Shock Tube test problem for the Euler Flow
Equations Hyperbolic Sysiem
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Roe’s 2nd order Time=0.105, # of G.P=1001, dt=0.00014
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Fig 6Pc. (i) High Resolution fine-grid ( Ax = 0.001 ) small ume-step ( At = 0.00014)
Computational Solution of Riemann Shock Tube test problem for the Euler Flow
Equations Hyperbolic System
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Roe’s 2nd order Time=0.14, # 1001 (Solid:FDM Dashed:Acoustic)
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Roe's 2nd order Time=0.14, # 1001 (Solid:FDM Dashed:Acoustic)
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Roe’s 2nd order Time=0.035, # of G.P=1001, dt=0.00035
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Roe’s 2nd order Time=0.140, # of G.P=101
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Roe's 2nd order Time=0.140, # of G.P=101
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Roe’s 2nd order Time=0.035, # of G.P=1001, dt=0.00035
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discontinuities passing through at just two instants. Once they have passed, the solutions
are steady forever.

See Exercises 1 and 2 for further qualitative discussion.

Turning now to quantitative methods, the computational schemes in use may be
categorized into three classes:

Upwinding (Godunov, Glimm, Roe, Van Leer, Steger, Osher,...)

Centered (Lax, Wendroff, MacCormack, Yee,...)

Total Variation Diminishing (Harten, Boris, Book, Colella, Jameson,...)
See, respectively, Exercises 3, 4, 5 below. Limited space and time permit only a very brief
description of the essentials of these schemes, there is some overlap in the categories, many
authors’ names are missing.

Exercises

1. Provide some further qualitative insight into the nature of Riemann Solver solutions.

2.Discuss qualitatively the contact discontinuity, the so-called Riemann Invariants,

and the roles of the eigenvalues and eigenvectors of the system.

3. Give a brief description of some upwind schemes.

4. Give a brief description of some centered schemes.

5. Give a brief description of some TVD schemes.

Overall, the computational picture for hyperbolic systems can be held together con-
veniently by a brief discussion of flux- splitting*. Consider a general hyperbolic system
in quasilinear form, then diagonalized:

U+ FU)=0— U + A(U)U: =0 =y + Duy = 0
where U and F(U) are the physical quantities and fluxes of interest, A is the Jacobian
dF/3U, D = Q7' AQ is the diagonal eigenvalue matrix, Q is the eigenvector (columns)

matrix, and u = Q"'U.

Example

Given such a diagonalized system, examine the stability of one-sided differencing. Relate
these considerations to flux splitting and to the Euler equation system.

Solution. The uncoupled general hyperbolic system consists of n equations

where the eigenvalues A; may be assumed to be real and distinct. If we use a backward
spatial difference (see Appendix B)

o S
ox |5 - jax
then the uncoupled PDE system becomes the semidiscrete ODE system

+0AY) i=1,...,n

du; Uj — uj.
oo S G il
d Ax
*See R. Warming and R. Beam. Symposium on Computational Fluid Dynamics. SIAM-AMS
Proceedings 11 (1978). pp. 85-129, for a good exposition of Flux Splitting and its application to the Euler
gasdynamic equations in one and two space dimensions.

=0 j=1....m
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By the Von Neumann method (see Appendix B.1), the stability of this scheme may be
tested by the single Fourier mode u{z) = (t)¢ kj&x which when substituted yields

~ikAx
& M1-e*e)

a Ax y=0.

The solution v(z) is bounded for all 7 > 0iff A = O (see Exercise 6).
In the same way the forward spatial semidiscrete ODE system

du; | U - U .
7{1+)\.”Ti=0 J=1...,m,

for stability needs A s 0.

For the Euler equations we know (Pause 5, Exercise 9) that the eigenvalues are
M=U—-Chy=UAs=u+c. When the speed u is greater than the sound speed
c=(yp/ p)”", all three eigenvalues are positive and backward differencing would be
favored. This is upwinding: the upstream slope (4 - #;-1)/Ax is used to predict the next
downstream values on the right-moving wave. Similarly, when the speed « is less than ¢,
downwinding, i.e., forward differencing, would be preferred. But generally, the eigenval-
ues are of mixed sign.

The way out of this apparent incompatibility is to "split” the flux: decompose the flux
in the conservation law so that

F=F'+F -A=A"+A"all N(A") 20, all i (A7) <0.
Then the explicit conservative first order difference scheme

Uyt + Af) “Uj(ts) | (Vs F}(tn) + A Fj(0n)
At Ax

0,

where V, means forward differencing, A: means backward differencing, will be stable
A\* | At/Ax < 1 s satisfied for

whenever the Courant-Friedrichs-Levy stability condition
all of the eigenvalues.

The Euler gasdynamic equations possess an important analytical property: the flux
vectors F(U) are homogeneous functions of degree one in U, i.e., F(AU) = AF(U).* This
property implies that F(U) = F'(U)U, F'(U) being the Jacobian A(U) we have seen in the
quasilinear formulation of a conservation system. Thus in conservation form the system
is

U +(AU), =0
*]1 is interesting to combine this property with the invariance under uniform space-time scaling which
we observed earlier. Letting x = Ax,7 = A, and & = Aw, we see that the Euler equations are invariant under
this enlarged Lie stretching group. This gives a further dimension to our view of solutions as ‘ray’ solutions.
Both invariances hold as well for two and three space dimensions. But now one needs to visualize the
solution in four or five dimensions, which is barder.
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whereas in quasilinear formulation we had
U, 1+ AU, x - 0

In other words, the A(U) can move in or out of the spatial derivative, as if it were constant.
Use of this property enables the flux splitting above according to F*=
A*U,A* =0D* Q" ,where D* is D with the A <O entries set equal to 0. Similarly
F =AUA -QDQ", (see Exercise 7).

Any upwinded scheme introduces in a subtle way a numerical viscosity. Let us illustrate
this with the simple scalar translation equation

W+cuy=0, -w<x<ot>0,

with the eigenvalue A = ¢ > 0. The forward-time backward-spatial differencing

“;ol _4“1’1 A (M;l - u;‘l.]) -0

& Ax

can be rewritten
u! -A’—M;’_l +]1 DY uf.
Ax Ax

Under the CFL condition AA¢/Ax s 1, this scheme is stable and monotone: in the maximum
norm,

o o 22 L,

Rewritten again as
(ufer - uf1) . Ak (1 - 24 + u)
24x 2Ax

U =i - A

this stable upwind monotone scheme can be viewed as a second order discretization of the
continuous viscous equation

u,+u,-(x%"—]u,-o.

Exercises

6. Complete the stability discussion for one-sided backward and forward differences.
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7. Carry out the details of the flux-splitting argument for a general hyperbolic system.
Look at it also for the Euler equation eXxample.
8. Reflect upon viscosity, physically, analytically, or computationally as mentioned
above.
Having discussed shock capturing schemes and the Riemann Shock Tube test problem,
a computational simulation is now in order.

Example

Code* and implement a numerical solution of the Riemann test problem for the Euler
hyperbolic system.

Solution. A Roe's second order scheme produced the best result. The initial values for
density, velocity, and pressure as described above were prescribed at 1=0forO=sx =1
and the flow was allowed to evolve until terminal time 0.14. The schematics of the eXpected
flow were given above in Figs. 6Pa and 6Pb. We have plotted the evolution at £ =0.035,
0.070, 0.105, and 0.140 in Figure 6Pc(i). Note that on this fine grid (Ax = 0.001) and small
time step (A = 0.00014) it is almost impossible to distinguish the computational solution
(solid lines ) from the analytic solution { dashed lines). The velocity in the first few time
steps ( not shown here) shoots up to its maximum value with a ( finite) delta-function-like
profile to begin driving the flow.

In order to see better the discrepancies between numerical and analytic solution profiles,
in Figure 6Pc(ii) we show a small Gibbs oscillation occurring for a larger time step, and
in Figure 6Pc(ii1) some smearing when the space discretization is coarser.

Exercise

9. Summarize or comment on the usual three questions (eXistence, uniqueness,stability)
and the other three questions { construction, regularity, approXimation) for the
hyperbolic systems of conservation laws treated in Pause 5 and Pause 6. To complete
this "confirmation" exXercise, reflect upon the other "trinities” of Chapter I in this
context.

APPENDIX C: ADVANCED FLUID DYNAMICS

By"advanced" fluid dynamics we mean advanced in time: that is, what is going on currently
in mathematical fluid dynamics research. Many of the older difficult problems in fluid
dynamics, both theoretical and experimental, remain unresolved. But the advent or the
computer has allowed a third window, beyond those of pure theory and laboratory physical
experiment, to enable knowledge of fluid behavior. The combination of the analytical,
experimental, and computational methods has stimulated advances in each.

We can only touch on this subject here, with a brief look at the Navier-Stokes equations
recent views as to the makeup of final fluid states and turbulence and a whole new field
of mathematics called computational fluid dynamics.

* Speaking here about all computational solutions shown in this book, some code was written by the
author, some code was written by coworkers during research, and some code was written by students at the
author’s request. It is a pleasure to thank everyone who helped. In particular, the code for this simulation
was written by Kisa Matsushima, a visiting student from Japan who took my PDE course 1990-91.
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C.1 Navier—Stokes Equations

The Navier—Stokes equations* correctly describe many fluid flows. Their validity extends
to very high speeds, even higher than one might first imagine.t Assuming the body forces
to be zero and the density to be uniform, consider the general viscous incompressible Navier—
Stokes equations given in Section 1.7, namely, written out, the momentum equation

u, — v(u, + u, + u;) + uu, + vu, + wu, = —p,
v, = vV, + Uy + V) +uy, + v, + Wy, = —p,
w, — v(wy, + w, + w,) + uw, + owy, + ww, = —p,,

and the mass continuity equation
u +v, +w, =0

Here 1 = (u, v, w) = (uy, Uy, u3) = u in different notations is the velocity and p is the
(unknown) pressure whose effect is felt only through its gradient. For simplicity we shall
consider only a closed container £, and Dirichlet boundary and initial conditions: u(x, 1)

known on 3£} for all time, 1;(;, 0) given initially. The viscosity v = 1/Re where Re denotes
the Reynolds number which briefly described is a specified average flow velocity.

Problem C.1.

(a) It is always instructive** to look at the one-dimensional versions of important
physical partial differential equations. Write down the one-dimensional version of
the Navier—Stokes equations.

(b) For the one-, two-, or three-dimensional equation, apply the incompressibility con-
straint to the momentum equation to arrive at a Neumann—Poisson Problem for the
pressure.

(c) What does (b) mean for the one-dimensional version?

From this problem we may induce the importance of dimension for the Navier—Stokes
equations. For two dimensions the basic existence, regularity, and uniqueness theory is in
reasonably good shape.f For three dimensions the important question of when the solution
can develop singularities remains unresolved.

When body forces are present (e.g., for gravity effect), the nonhomogeneous Navier—
Stokes equations

u,—tAu+(u'V)u=—Vp+f

are generally treated by the methods for parabolic equations, essentially thinking first of the
heat-like (vector) equation

1
u,—ﬁAu=f

* Originally obtained by C. Navier, Memoire sur les lois du mouvement des fluides (Mem. Acad.
Sci. 6, 1823), and corrected by G. Stokes (Cambridge Phil. Soc. Trans. 8, 1849).

t See D. Tritton, Physical Fluid Dynamics (Van Nostrand, 1977).

** We sometimes must remind ourselves of this.

t See R. Temam, Navier—Stokes Equations and Nonlinear Functional Analysis (SIAM, Phila-
delphia, 1983).
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and then trying to accommodate the (nonlinear) perturbation terms (¢ - V)u. An important
orthogonality relation between the pressure gradient and the incompressible fluid velocity
arises here. We call this Helmholtz’s theorem and it may be regarded as a type of gener-
alization of the Dirichlet Orthogonality Projection Theorem of Section 2.6, extended now
to the projection of vector fields, i.e., vector valued functions u = (u;, u,, 43). One may
write this Helmholtz Projection Theorem for such functions u with 7 components defined
on a region {) as

€Ly = Hy ® Hy, ® Hipy
= H,®H ®H,
where
H, = {u|divu = 0, curlu = 0}
H,. = {u|divu =0, curl u # 0}
Hy= {uldivu#0, curlu=0}

denote subspaces which we call here the potential subspace, the solenoidal subspace, and
the divergence subspace. The last subspace can also be called the irrotational subspace but
we have taken the subscript d because it is shorter and to remind us that for any u decomposed
into its three orthogonal constituent parts u = u, @ u. @ u, one has div u = div uy. Sim-
ilarly, one has curl 4 = curl u,.*

The following algorithm establishes the above theorem in an operational way.

Problem C.2.
(a) Solve the Dirichlet—Poisson problem
{A¢,=dwuin0,

¢; = 0 on M)
let u; = Vé,.
(b) Solve the Neumann—Poisson problem
Ad; =0 inQ,
%=n-u—% on 3(};
let u, = Vo,

() Letu. = u — u, — us. Then u = u, ® u, O uy.

Taking advantage of the Helmholtz decomposition we may eliminate the pressuret from
the momentum equation by noting that gradients are othogonal to solenoidal functions v-
That is, differentiating by parts

* Discrete versions of Helmholtz’s theorem also hold. See Fig. B.4, which exhibits a basis support
matrix for projected quadratic elements. Also see the paper cited there for further details.

t It must be admitted that this slights the pressure, which may be rather important to find in real
applications.
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il

(”11’): V1 Px + vl,p

Vpy + Vo p
(v3p), = v3p; + V3.p

we have v - Vp = div(p(v,, v;, v3)) — p div v and hence

J’nv-Vp=§mpv-n=0

when div v = 0. We have also used its (immiscibility) form v - n = 0 on 8(}, a special
case being the often assumed no-slip condition v = 0 on (2. Continuing, we may now cast
the momentum equation into the weak (Galerkin) form by multiplying by an arbitrary v in
the divergence-free subspace H, = H, ® H_ and integrating over Q

%J’nv-u—El—éJ’nv-Vu+J’nv-(u-Vu)=J’nv-f

This form is very useful not only for theory but also for numerical approximation.
Assuming that there exists a unique or at least attainable long-time steady limit of the
flow, the first term drops out and we have the weak-form steady flow equations. For low
Reynolds numbers (highly viscous flows) the nonlinear term u - Vu is often neglected, and
absorbing Re in the data f we arrive at the weak form Dirichlet—Poisson Problem

(v2p),

J’n(—AuA—f) v =20.
It may be shown that this weak form is equivalent to the steady Stokes problem

—Au+Vp=fin{},
divu =0 in (],
u = 0 on d).

- Problem C.3.

(a) It would be very convenient if the nonlinear term Ja(u - Vu)v would vanish in the
weak formulation. Show [ (# - Vv)v does.
(b) Argue essentially how one gets from the weak form to the strong Stokes formulation

above.
(c) Verify the following solution to the full three-dimensional Navier—Stokes equations
in the steady case.
[ -6 x ,, 6,6
u=-lg)3—3cly +?+)3,
b =51
) Re y’
w= 12X 4oy + 22 4 20
Re yg 1y yg y‘ ’
po 8, 121
L Re v (Re? y*°
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C.2 Turbulence and Attractors

Many physical flows display a turbulent behavior for sufficiently high parameter values.
Fluid turbulence has long been an important scientific problem and there are many approaches
to its study. Ad hoc models for simulating turbulent effects have been developed for airplane
design and other applications. However, a satisfactory mathematical foundation has not yet
been found.

Recent advances in the theory of dynamical systems have shown that solution trajectories
can exhibit wildly chaotic yet deterministic behavior. This behavior is often controlled by
an attracting set to which the trajectories periodically, often, intermittently, or eventually
return. There is currently much study of these (strange) attractors to see how well they can
be used as a foundation for understanding turbulent behavior. *

Let us consider swirling flow in a unit square or cube. Kolmogorovt postulated that,
although viscosity will not affect the larger eddies of the flow, there is a critical small length
1;, dependent on viscosity, below which the eddies cannot persist. This length may be seen
on a physical basis to be

l; = (eRe)™™

where € is a local average rate of energy dissipation. From this it may be deduced that a
flow will go turbulent or at least very chaotic provided that it has a sufficiently large but
finite number of degrees of freedom N = 0(/; "), for n = 2 or 3 dimensions. Assuming
that we can get enough (unit) energy dissipation € into some small part of (2, this means
that a flow of

N ~ Re3m

degrees of freedom might be necessary before one could achieve a flow with true turbulence.
As Re must be iarge itself, e.g., Re ~ 10° to 10¢ depending on the situation, the estimated
N ~ 10° is beyond the capabilities of the largest computers available today.

We content ourselves here with a brief consideration of the so-called space periodic
model: Q is all space R? or R? latticed into unit squares or cubes with comers at the multi-
integer point Z*, and the velocity vectors u are laterally periodic on these squares or cubes
in each coordinate direction. Then we may write u in its Fourier series expansion

u= Dyce?mts ke zn
divu = E,‘ k - cp(2mi) e¥mikx
from which div 4 = 0 iff k - ¢, = O for all k € Z". Thus, for the simplified case of the
Stokes equation, the real divergence-free eigenfunctions are
ckezm'k‘x + Eke-Zm'k'x

provided k - ¢; = 0. For example, for k = (1, 2, 4) in R3, the eigenfunctions are all of the
above functions for which 1 - ¢, + 2c, + 4cs = 0. The eigenvalues are the numbers
Akt + kF + K3).

* For surveys of this work see G. Barenblatt, G. Iooss, D. Joseph, Noniinear Dynamics and
Turbulence (Pitman. Boston, 1983).
t See the account in L. Landau, E. Lifschitz, Fluid Dynamics (Addison-Wesley, New York, 1953)-
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The idea now is that, if we think of the Kolmogorov critical length as the side of a
small cube within which eddy structure no longer maintains itself, then /, small means that
k, = 7! is a large frequency of the motion, at or above which disorderly motion will set
in. The number of frequencies to monitor to describe the flow will be the number of integers
ky, ky, and k; such that

B+ K+ =k=10

F1G. C.1. Kolmogorov Box 1y - 1

and thus the required number of degrees of freedom to obtain a turbulent flow is N ~ 7"
for n = 2 or 3 dimensions.

Moreover, the fact that it is more and more difficult to satisfy the Pythagorean relation
as k, increases should be taken as an indication that it is more difficult to compose an orderly
flow at the higher frequencies.

Problem C.4.

(a) Given the Kolmogorov postulate of a critical small length [, below which eddies
lose structure, deduce on a physical basis that the number of degrees of freedom
needed for a flow to become “‘turbulent’’ is 0((ly/l,)") for n = 2 or 3 dimensions.
Here [, is the physical seale of the whole flow (e.g., the diameter of the containing
vessel).

(b) Recently it has been shown rigorously that the number of degrees of freedom of a
turbulent flow ~ the fractal dimension of a corresponding universal attractor. How
can this be done?

(c) Why in the answer to (b) did we denote the limiting average of the energy dissipation
rate €(x, 1) = v|grad u(x, 1| by vA¥?

We have been speaking above of an attracting set to which all flows tend. Because we
have no intention of going into the theory of such sets, let us simply describe them here as
generalizations of the Poincaré limit cycles one finds in the phase plane analyses of nonlinear
second-order ordinary differential equations. An example of such was the Van der Pol limit
cycle given in Section 1.9.8. In two dimensions the theory of all possible limit sets of second-
order equations has a good structure. The problem with three dimensions is that the extra
degree of freedom eliminates such a simple final limit set structure.

A classical fluid dynamics physical experiment has been the Taylor Problem of flow
between two long cylinders, the outer fixed and the inner turning at a controlled steady
angular acceleration w. Physically one sees a steady Couette flow for an interval of small
o, for the next w interval bands of horizontal counter-rotating Taylor vortices superimposed
on the steady rotating flow, then a next interval in which the horizontal bands of Taylor
vortices develop a wavyness or helical upward pattern. The appearance of the Taylor vortices
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represents a primary bifurcation off the basic Couette flow, in the manner described in
Section 1.8. The wavy solutions at higher Reynolds number would appear to be a secondary
bifurcation, called a Hopf bifurcation which means a loss of steady flow to a periodic flow.

> 7 R T T T T T T
| | [ |
=T 1zl o] ollel o] [3T 1=
-1 =[O 10| O 101 I 15
— | | — | | ~>~ =~ | [
202110 OO 10 |I_1 1K
DY | X X .
= o1 o [0 O] |T 18
- | | = | | ~— — | |
b [ [SH N ] | (OO B L
1 121|010 |01 10| |41 1%
Low Re intermediate Re Higher Re High Re
Couette Flow Taylor Flow Wavy Flow Fuzzy Flow
Fi1G. C.2. Taylor Cylinders
Problem C.5.

(a) Has the existence of a Hopf bifurcation been proven mathematically analytically
for the Navier-Stokes equations?

(b) Has a Hopf bifurcation been demonstrated mathematically numerically for the Na-
vier—Stokes equations?

(c) Give an example of a Hopf bifurcation for ordinary differential equations.

After a possible Hopf bifurcation to a wavy pattern (i.e., at higher Reynolds numbers)
the flow in physical experiments appears to become chaotic. There are two views toward
the mathematical understanding of this. The classical view pictures a rapid transition through
an infinite sequence of higher-order bifurcations to a final chaotic state. A modemn view
predicts a chaotic state right after a wavy one.

Problem C.6.

(a) How could a chaotic state occur right after two or three bifurcations?

(b) Give an example of a system of differential equations producing very chaotic
trajectories.

(c) Is it necessary to have three dimensions to produce real turbulence?

C.3 Computational Fluid Dynamics

For flows of a reasonable number of degrees of freedom, computational methods for the
numerical treatment of the Navier—Stckes equations have greatly increased our understanding
of fluid dynamics. This is a rapidly expanding field, in some sense becoming an entity in
itself, and we give here only one example—flow within a driven cavity. This flow contains
within a simple geometry a sufficient richness of separation, bifurcation, and vortex dynamics
50 as to become a fundamental model for understanding the laminar and recirculation patterns
of flow along surfaces and near geometrical discontinuities such as corners. Although it is
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far from being understoed, the fluid features found easily transfer to other geometries such
as flow against marine obstructions or over aerodynamic structures (e.g., see Fig. C.5).

For brevity we consider only two cases, the unit cavity and the cavity of aspect ratio
A = depth/width = 2. In each case a no-slip condition (u, v) = (0, 0) will be imposed on
the sides and bottom, and the top lid will move steadily to the left with (4, v) = (-1, 0)
there. We will consider only the two-dimensional case, in which we still cannot resolve all
features, and will use formulations in both the primitive variables velocity (#, v) and pressure
p and also in the stream function, vorticity variables ({, w).

——

(a)

Unit cavity
FiG. C.3. Cavity Flow Problems (a) A = 1 (b)) A = 2.

-

s

(®
Depth 2 cavity
Problem C.7.
(a) Derive from the steady Stokes equations
—-Au=-Vp|.
Vu=0 } in )

u = 0 on sides, base
= (-1,0) ontop }°“‘m
in primitive variables, the stream function-vorticity formulation

Ay = -l .

Aw =0 }mﬂ

ay/on = 0 on sides, base

ap/on = —1 on top on 3}

0 on all boundaries
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for the cavity flow problem. Here (4, v) = (¥,, —,), { being the stream function,
o denoting the vorticity w = v, — u,.

(b) In using discrete finite difference Poisson solvers to solve for the stream function
and vorticity one needs boundary conditions for the vorticity. Show that using

w(x, 0) = —2(x, Ay)(Ay)

w0, y) = —2W(Ax, y)/(Ax)

o(l,y) = —24(1 — Ax, y)(Ax)?

o, 1) = —24(x, 1 — Ay)(Ay? + 2Ay

are O(h) accurate, where Ax = Ay = h is the grid size.

(c) For large (e.g., 256 X 256) grids, one is led for efficiency to employ iterative
matrix solvers rather than straight Gauss elimination. These go under the names of
Gauss—Seidel, Jacobi, Successive-overrelaxation, Conjugate Gradient, Multigrid
methods. In using them, for computing the vorticity how can you assure that they
will converge?

Very early Lord Rayleigh* analyzed the steady motion of viscous incompressible flow
in a comer:

The general problem thus represented is one of great difficulty, and all that will be
attempted here is the consideration of one or two particular cases. We inquire what
solutions are possible such that s, as a function of 7 (the radius vector from the comer),
is proportional to r™.

Assuming the slow motion (Stokes) linearized equations

A% =0 inQ,
Y = al/on = 0 on N,

i a flow region {} near the corner, Rayleigh was unable to fit the boundary conditions with
an assumed stream function of the form

U(r, 8) = r f(0)

because he restricted these trial solutions to m = nw/a where « was the comer angle. For
a 90° comer this would require m to be an integer.

The reader should immediately recognize the separated trial form of ¢ as that of a
candidate similarity solution.t It is the fourth-order nature of the Stokes operator which
makes the attempted separation of variables difficult, just as it did for plate problems (see
the Second Pause, and Section 1.7.2 Problem 1).

Later studies tried similarity solutions of the form

Wr, ) = r'f(9)

for noninteger A and found the rather remarkable fact that there is an infinite sequence of
vortices descending into the corner for corner angles a < 146.3°. Two or three of these

* Lord Rayleigh, Phil. Magazine 21 (1911). For a full history and recent results see K. Gustafson,
Applied Numerical Analysis 3 (198
t The guessing of self-similar sofutions has been a practically important way of finding them, and
::;edie advantage of providing explicitly the functional relation (n, g(n)) on which their existence
nds.
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have been recently verified experimentally.* Because their intensity drops off 0(10~#) from
one to the next, finding them is a delicate task.

In a demonstration of the great power of adaptive iterative relaxation methods, we
recently found ¥ more than 20 of these corner eddies. Here are the first 10 stream function
intensities §; and the locations of the zeros z; between the stream function relative extrema
measured along the 45° comer bisector, z, being the zero between the first main central
vortex U, in the cavity and the first coner vortex .

Local Maximum Stream Stream Function Zero
Function Intensity Measured Along Diagonal
1.0006 x 107! 697 x 1072
—-2.232 x 1076 4.205 x 1073
6.155 x 1071 2.534 x 1074
—-1.703 x 1079 1.535 x 1073
471 x 1072 9.247 x 1077
—-1.30 x 10°% 5.602 x 108
359 x 107® 3.370 x 10~°
-993 x 107 2.040 x 10”10
275 x 107 1.236 x 1071
-7.59 x 1074 7.421 x 1071
Problem C.8.

(a) Show that Rayleigh’s attempted trial solution leads to the fourth-order ordinary
differential equation
4 2.
% + [(m - 2)* + mzlj—;‘- + (m — 2)m*y =0
and that one obtains real solutions only for angles a = ar or 2.

(b) Show that from the more general similarity trial solution y(r, 6) = r*. (A cos \O
+ C cos( — 2)0) one may determine the existence of an infinite progression of
vortices descending into the corner.

(c) Show that the Stokes flow in the cavity is uniquely determined (hint, not needed,
but of possible related interest: see the plate equations discussed in the Second
Pause of Chapter 1, and Section 1.7.2 Problem 1).

Returning to the primitive variables formulation of the full nonlinear unsteady Navier—
Stokes flow equations, by taking 360,000 time steps (with Az = .001) ina staggered mesh
scheme we were able to follow the full dynamics of the flow evolution at the relatively high
Reynolds number Re = 10,000 in a depth 2 cavity § See Fig. C.4, where velocities have
been normalized in the flow portrait. As can be seen, these contain transient off-wall eddies,

® S.Taneda, J. Phys. Soc. Japan 46 (1979).
. YK Gustafson, R. Leben, Applied Mathematics and Computation 19 (1986) and Proc. Ist Interna-
tional Symp. on Domain Decomposition of Partial Differential Equations (SIAM Philadelphia, 1988).
These intensities and locations agres very closely 1o those predicted by theory.

(1987)§ K. Gustafson, K. Halasi, J. Computational Physics, 64(1986) and J. Computational Physics; 70
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recirculation structures near a separation point, vortex fission after collision with a wall,
sublayer bursting, multiple vortex shedding and fusion sequences, and a final persistent
(Hopflike) wavyness. These patterns would appear to be related to the simulated fluid’s
absolute adherence to certain vortex parity matching rules for flow in a closed region. *
The cavity model provides a foundation for the investigation of a variety of other
interesting domains exhibiting subvortical structure. By mapping techniques (grid genera-
tion) a cavity multigrid scheme has been adapted to wedges, multiple-corner regions, and
flow over an airfoil ¥ As Fig. C.S shows, the agreement of the resulting numerical
simulation (on the right) with physical flow visualization*™ (on the left) is remarkable.§

Problem C.9.

(a) Analytically, there are no mathematical proofs yet for the flow features found above
computationally. Nonetheless, argue the existence of an infinite sequence of comner
eddies for the final state of the full Navier-Stokes flow.

(b) Assign "+" to counterclockwise rotating vortices and "—" to clockwise rotating
vortices and examine a parity rule which asserts that opposite signed states, once
generated, cannot merge.

(c) The crux of all such large computations are the linear solvers. A number of these
were mentioned in Problem C.7(c). Read about them. How well will the relative
speed advantage of the iterative ones persist into the coming days of Parallel
Computations?

* A rather general vortex theory is put forth in K. Gustafson, “Four Principles of Vortex
Motion,” Vortex Methods and Vortex Motion (SIAM, Philadelphia, 1991). Rather conclusive
(numerical) proof that the (depth 2) driven cavity has a periodic solution for Re as low as 5000 may
be found in J. Goodrich, K. Gustafson, K. Halasi, J. Computational Physics 90 (1990). See also K..
Gustafson, Mathl. Comput. Modelling 22 (1995) for a survey of the cavity flow problem results,
both theoretical and computational.

t See K. Gustafson, R. Leben, “Robust Multigrid Computational Visualization of Separation
and Vortex Evolution in Aerodynamic Flows,” Proceedings Ist National Fluid Dynamics Congress
(AIAA/ASMF/SIAM/APS, 1988), and K. Gustafson, R. Leben, “Computation of Dragonfly
Aerodynamics,” Computer Physics Communication 65 (1991). See also K. Gustafson, R. Leben, J.
McArthur, M. Mundt, Theor. and Comput. Fl. Dyn. 8 (1996).

t1 P. Freymuth, Prog. Aerospace Science 22 (1985).

§ And the end of all our exploring

Will be to arrive where we started
And know the place for the first time. . . . T. S. Eliot
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SELECTED ANSWERS,
HINTS, AND SOLUTIONS

1.0 EXERCISES

1. (@) u(x) = c;x + ¢3, ¢, and c, arbitrary constants of integration, —® <x < .
®) ux) =cx + 1, x20.
(c) u(x) = ¢, sin 2x + ¢, cos 2x, ¢; and ¢, arbitrary constants of integration,
0<x<m
2. @ ux) = —x+ 1,05x= 1.
®) ux) = e 2, xz0.
(c) u(x) = c; sin 2x, c, arbitrary, 0 = x = 7.
3. (@) u(x, y) = c;(»), c, an arbitrary function of y.
®) ulx, y) = ci(y)x + coy), ¢, an arbitrary function of y.
©) ulx,y) = a(»x + 1.

SECTION 1.1

1. (a) d = y. Thus the operator is elliptic for y > 0, parabolic fory = 0, and hy-
perbolic for y < 0.
®d=1+ @w’+ @?>0.
1 ~1

2. @C = ) ) , among others.
. 1l 1
®)C = [_i i],forCas given in (a).
7 2
3.() u=ax + by + cxy + d, x* — y}, &sinx, . ..
b)) u=ax+ b,x*+ 2t e sinx, ...
© u=ax+ bt +oxt+d x2+ 82 e witha? = b2, . ..
(D u=ar+by+oy+d3x2-—y, ..
e u=ax+ by +c

1.1 EXERCISES

1. (@) d = AC — B? = 8. Hence the equation is elliptic. Note that the lower-order
derivatives are ignored.
(b) d = —8, hyperbolic equation.
(c) d = 0, parabolic equation. Note that the discriminant rule given here applies
only to the case of two independent variables.

348
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2. (a) Note that In r = %ln(x2 + y?) and differentiate.
(b) Substitute and verify. Note that \/2¢ may be interpreted as the spread (standard
deviation o) of the solution, and that this spread increases with r.
(c) Substitute and verify. Note that the symmetry in x and ¢ guarantee this function
to be a solution.

3. (a) Direct computation (chain rule) yields
U = Uy + 2rugy + Py,
Uy = Upq T+ Tty
Uy = Uy
which upon substitution into the equation gives
Auy, + 2Buy, + Cuy = Aug + (Ar? + 2Br + Qu,y + 2(rA + B)uy,
= Auy.

Note that r = —BJA is a root of Ar2 + 2Br + C = 0 because the equation
was parabolic and hence d = AC - B*= 0

(b) Direct computation, substitution, and collecting terms yield the canonical form.
Partial integration yields the general solution form. See Problem 1.9.1 for further
ramifications of the discriminant classification rule, and see Section 2.5 for a
full integration of the wave equation.

(c) Asd = AC — B2 = y2 — x2 = (y + x)(y — x), this equation has type as
indicated below:

Parabolic

Hyperbolic
(=) -

=)

Parabolic

SECTION 1.2

3.(a) u=sinxcost

1.2 EXERCISES

1. (a) Solutions to the Dirichlet Problem in one dimension are straight lines u(x) =
€1x + c3, with the ¢ and ¢, determined by the boundary data. For the interior
problem in which  is a finite interval, ¢, and c, are uniquely determined by
the two given values f(—1) and f(1).

(b) Again, as in (a), the coefficients c, and c;, of the general solution of the differential
equation, u(x) = cjx + c,, are determined by the boundary data. In particular,
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(©)

2. (a)

(b)
(©)

3. (@)

®

(c

~—
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¢, = f(0), but now we must take care on the interpretation of the condition at
x = o, In applications usually we need u(x) —> 0 as x — o, and in that case
there is a solution only if f(0) = 0. More generally, if f() is any finite quantity,
there will be a solution (again, a horizontal line) iff f(0) = f(%). Should we
allow the boundary condition: f(®) = ©, —®, or *%®, there are an infinite
number of solutions whose determination and meaning have become rather
vague.

The considerations are the same as in (b), except now we have both a left
unbounded domain,  _ = (—o, — 1), a right unbounded domain, O, =(, »),
on which the solutions are independent. For further discussion of unbounded
exterior domain implications, see Section 2.7.

For each fixed x, the solution u(x, f) is a line horizontal in ¢ of height f(x). The
solution set is thus an f(x) cylinder.

ulx, 1) = fx)e ™.

ux, f) = ;01 + c(x) = ()1 + f(x) where ¢,(x) is arbitrary for each x.
From ordinary differential equations, we know we need another initial condition
to determine the solution uniquely.

If Lu = Au, then L(cu) = cLu = ch\u = M(cu), remembering the properties
of linear transformations put forth on p. 1.

The function vs(x) = sin Sx is the fifth principal eigenfunction, corresponding
to the fifth eigenvalue A5 = (5)* = 25. Because the ordinary derivative operator
d¥dx? is linear, any multiple of s is also an eigenfunction solution.

Recalling from ODE the variable change v = duldx, the expression becomes
the separable one

vdv = Nildu

from which

duy’ % u+c
(@) =24+
Without integrating this equation, it suffices to note that substituting u = cu,
will not retain the eigensolution property at X\, although it does generate an
eigensolution at c2.See Section 1.8 for more details on nonlinear eigenvalue
problems.

SECTION 1.3

1 (a)

()

Letu; and u be C%(&2) N CX(§2) solutions to the Dirichlet problem for the sam
data f. Then uy — U2 is harmonic in Qwith zero boundary value, from which
Uy = Uz by the maximum principle.

The C*(Q) is necessary to the validity of the maximum principle. The quter'
example u(x, y) = 209/ (¢ + y*)* for (x, y) = (0, 0) u(0, 0) = 0, shows this.

A straightforward computation yields u,, = 24xy(x? — y)/x* + y2)*, and
hence u,, = 24xy(y? — x2)/(x* + y?)* by symmetry. Thus Au = Oat all points
except possibly (0, 0). From the difference quotient limits one also verifies that
Au(0,0) = O. But along y = x, # = x~2 which blows up as x — 0. The
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C%({T) N CX(N) requirement along with Au = O guarantees in fact that a function
u is analytic.

(c) For Au; = 0in ), u; = f, on 3}, and Au; = 0in £}, u; = f, on {2, we have
from the Maximum Principle

maxg|u; — u;] = maxan|fy — £l

Hence if the data f, is close to f,, the solutions are close, an instance of continuous
dependence of the solutions on the data.

2. Differentiate under the integral, in the classical way. Denoting the integral kernel
of the integrand by P, for ¢ # 0,

P = (4ms)~V2el~t-yan
= (4mt)" V2el-G-p¥i . [~ 2(x — y)y41]
Py = (4w~ 12el-0M . [—(120) + (x — y)¥41?]
= (4w~ V2el~G 94 . [(x — y)Y412]
+ el . [(1/4,;)"‘2 (-r% /2)]
= (Amp)~Rel=6=9¥1 . [(x — y)2ar2 — (1/21)]
=P,

Thus &, — u,, = 0. Thus, granting the gift of this solution, we have obtained (1)
existence of a solution and (1) construction of a solution. In just setting u = f at
t = 0, the solution could well be spurious as discussed in the text for the Dirichlet
problem. Later we will establish that it continuously attains the initial datafas ¢ — 0
and that it possesses the related regularity (2'), stability (3), and uniqueness (2)
properties. Numerical approximation (3') methods are discussed in Chapter 3.

3. (1) Existence of a solution to the differential equation is guaranteed by the analytic
theory of linear ordinary differential equations. One needs only that the coef-
ficients be continuous. However, the existence question is not settled until the
boundary conditions are obtained. We will come back to this question. For
construction (1') we will use the familiar power series method from ODE.
Assume u(x) = Zp_q apxt.

It is convenient to first consider the uniqueness (2) of such solutions.
Substituting the assumed series solution into

{u,,+4xu=0, 0<x<2,

u0) = u2) =
yields
+ D (k + 3)k + ag,; + da)xttl,
k=0
Thus @, = 0 and a443 = —4a/tk + 3)k + 2), k= 0,1,2, . The

boundary condition #(0) = 0 makes ag = 0. Induction then gives a3, = a3,+2
= 0 and a3+, = (— 4)"a1/ 11' (3j + 1)(3j). Hence the formal series solution

is
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u(x)-al ,:x + 2 _i‘\}kwl :|
) T+ 06

J=1

For convenience call this 4 = a, 23 e * 1, The radius of convergence is

limlc*" | If lim 4

_— =0
ko Gk %% k_.,,(3k+4)(3k+3)
so that the series converges absolutely for all x. Hence « is real analytic.
Now apply the other boundary condition #(2) =0 to obtain @ 3% ci2**' = 0. To

show that the series 3% 2! is nonvanishing, we can for example proceed as follows:
6

S 281 o _ 0.454088581
=0
whereas

| S ci2%1 | 5 22 esf = 0.00025609%.
b=

Hence a; =0 and thus 4 = 0. Since the original problem was linear, this guarantees
uniqueness.

We now return to the construction of the solution. From

Un + 4dxu = 16,
u(0) = 0,
we have
ur)=a,y b + 8Y 2
=0 =0
where now

k k
be=(-4/T[G + 1D)E)),  c=(-H/[]Gj+2)3j +1)
m 1
and in which we made use of 2a;=16. Applying the right boundary condition
u(2) = - 1 gives
-1 _82‘60 ckzahz

z: bk23*¢l

Let us summarize. Existence (1), uniqueness (2), regularity (analyticity in this problem)
(2", and construction (1') have been accomplished. Approximation (3') by truncating the
series solution to a finite number of terms is in fact implicit in the construction (1) in cases
such as this where one has taken a series solution. Even if summable, the closed form

solution generally involves elementary functions that need to be approximated when
calculating actual solution values.

Which kind of stability (3) one wants will depend on the problem or application. Following
our use of the power series method, suppose €o, €2, and

a=
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g are errors in #(0), u(2), and f(x) = 16 for 0 < x < 2, respectively. Then if
u is the solution of the perturbed equation with slightly erroneous data, we have
(roughly) that

u— u=goalx) + £f(x) + g (x)y(x)

where © ® -~
+.
zagx"‘ T _Yox
@= 4 B =25 bx™, y= ~

where @, = (—H¥wk(3k)3k ~ 1) and b, and c; are as above.
One could go further with this example, e.g., in terms of the Sturm-—
Liouville theory, but this suffices to illustrate the six (3 + 3) questions here.*

1.3 EXERCISES

1. The existence (a) and uniqueness (b) of the solution u(x) = ax + b were guaranteed
by its construction (by methods of elementary calculus) and by the fitting of the
boundary conditions. The degree of stability (c) of the solution under the varying
of the data a and b is evident geometrically regarding the solution as a line dependent
on those two parameters.

2. Aspointed outin 1, construction (a) depended on our knowledge of calculus (although
in this simple example, geometry would have sufficed), the regularity (b) of the
solution is its analyticity, as is so often the case in ordinary differential equations,
and its approximation (c) is unnecessary.

3. Consult any ODE book to find that the differential equation possesses a two-parameter
solution family under general conditions (e.g., the coefficients a;(x) be continuous).
However, the existence (a), which depends on the ability to satisfy the boundary
conditions, and similarly the uniqueness (b), e.g., in the case a3 = 1, a, = 0,
a, = A, depends on the nature of the coefficients, and the construction (c) has still
not been resolved in all equations.

SECTION 1.4

1. (b) No solution.

2. (c¢) For u"(x) = 0 on an interval [a, b] with left boundary condition u(a) = 0, there
exists a unique solution for any of the three boundary conditions u(b) = ¢, u'(b)
= d,oru'(b) + ku(b) = 0 withk # (a — b)~ 1. For the latter case the solution
isu(x) = c¢(b — a)"'(x — a), where ¢ may be chosen arbitrarily.

3. (a) The solution for k > 0is u = Ounless k = 2. Recall uniqueness fails atk = 0
also.

(c) For f = 0O the problem is called a Steklov eigenvalue problem (with eigenvalue
k in the boundary condition). Nontrivial solutions can exist. Recall the ODE
versions of parts (a) and (b). See also Problem 3 of Section 1.6.1.

]

* Its solutions are in fact important special functions (see 2.9.9(9)).
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1.4 EXERCISES
1. (a) Dirichlet, (b) Neumann, (c) Robin.
2. (@) u(x) = c and uy(x) = c/r | from the radial equation u” + 2r'u’' = 0.
(b) u(x) — 0 as x — = leaves only u,(x).
(c) du/dr = 0 leaves only u(x), ¢ # 0.
3. By linearity of the problem, the difference u(x) = u;(x) — u,(x) of any two possibly
different solutions u,(x) and u,(x) satisfies

uW'(x) = 0, 0<x<l,
u(0) = u(l). =

Recognizing the solution geometrically (a) to be the line passing through x = 0 and
1, we see that the difference u(x) is identically zero. (b) The maximum principle of
Section 1.3 asserts that both u(x) and its negation —u(x), as harmonic (1-dimensional,
here) functions, take their maxima on the boundary x = 0 and x = 1. Therefore,
since both the maximum and minimum values of  are zero, so is the whole function.
(c) Multiplying u”"(x) = 0 by u(x) and integrating by parts, we obtain

1
fo (' (x))2dx.

. 1
0= J;u(x)u"(x)d.x = u()u'(x)| —
0

Because u(0) = u(l) = 0, we may conclude that %'(x) = 0 throughout the interval
0 = x = 1. Hence u(x) is constant arid by its boundary values, identically zero.

SECTION 1.5.1
1. (@) u(x,y) = 2 ¢, Sin nx sinh n(w — y),

€ = f f(s) sinns ds.

m smh nw.
2. @) uy +rtu +r zuw.

(®) u(r, 8) = lag + X r'(a,cos nd + b, sin n8),
n=1
= lf f()cosnsds, b, = lf f(s) sin ns ds.
KU ml-=

o 2(= 1)t .
3. (@) ulx,y) = 2} msih S sinh n(m — y)

2 2(— l)"*‘r"

n=1

u(r, 0) = sin n#.

1.5(1) EXERCISES

1. (a) All ¢, vanish except for ¢, = 1. A Fourier series expansion thus perfectly
preserves any one of its fundamental modes.
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{b) An interesting identity*

sin’x = 3 sinx - 1 sin 3x
4 4
represents the given data in terms of the two fundamental modes sin x and sin 3x.
Hence ¢, = 3/4, ¢; = — 1/4, and all other ¢, vanish.

(c) After some work (integration by parts) one arrives at ¢, = 0 for n even, ¢, =
8/n’w for n odd. The even-numbered coefficients vanish because the even-
numbered modes are odd about the interval midpoint x = /2, whereas the given
function is even about that point. The same remark applies to parts (a) and (b).

2. One needs only assert the Fourier coefficients calculated in Exercise 1 above. Thus

(@) u(x,t) = sinxcos!?

(b) u(x, 1) = 2sinxcost — Lsin 3x cos 3¢

®

© ux )= 3 (z—njsmsin(Zn - Dxcos2n — .

3. The separation of variables procedure yields the general solution formula
u(x, t) = 2 c,.e"‘z’ sin nx
n=1

and thus the solutions are, as in Exercise 2 above,
(@) u(x,t) = e 'sinx

-9t .
(b) u(x,t) = 2e*sinx — 7€ *sin 3x

© 2
©) ulx, 1) = % 2 e'(z”_‘) ¥ sin(2n ~ Dx.
= -1y
SECTION 1.5.2
=s=1x,
Cwonn-f; PEIEE

3. (b) There are several ways to do this, including the following:
(i) We recall that [ = e~ ds = /. One way to establish that is from

* We would like to note here an instance of how interpersonal communication often plays a vital
role in the development and application of mathematics. This identity, when pointed out by the author
to Professor N. Baziey over fondue in Geneva, Switzerland one day in the early 1970s, led to a theory
of “‘reproducing nonlinearities.”” See N. Bazley, Manuscripta Math. 18 (1976), P. Rutkowski, J.A.
Math. and Physics (ZAMP) 34 (1983), for an account and applications of this theory.

The identity follows immediately from De Moivres Theorem:

[r(cos ® + i sin 8))" = r"[cos n® + isin n6).

Nonetheless one could speculate that it reveals a possibly far-reaching *‘theory of nonlinear Fourier
analysis’* which has not yet, to the author’s knowledge, been fully developed. Other instances of such
a theory would include for example the Clebsch—Gordan relations of elementary particle theory and
other fundamental relations within classes of special functions.
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[Fars] - [Fareonan= [[rorom-e

(ii) By letting s = _'{—Z_m—y in the Poisson kernel we then have

48 &1 .
J;—a \/me‘("‘”z’" dy = n"”J’_m’me" ds— 1 as t— 0%,

(iii) It is easily checked that

x—8
J’ i e~y i dy—0

- !
and
i 1 - x~yHar +
o VaAm © 0 e o0,
for fixed & > 0.

(iv) Now let € > 0 and let f be continuous and bounded (i.e., | f(y)| = M for
all-® < y < ), Given €, there exists a & > 0 such that | f(x;) — f(x)|
< ¢/4 provided that |x; — x| < 8. If also |y — x;| <8, then |f(y) —
f(xy)| < e/2. Since by (i) above,

® l )
fo) - f_m T IO &

1 Xy +8 z
- \/z.,,_,[J; (f&x) — f(y)e®—n'ar gy

(x3+8, ®) z
* f— x (f(x,) - f(y))e‘(xz )4 dy:l

we thus have, by (iii) above, for all 0 < ¢ = T for T chosen sufficiently
small, that

o0 l 2
s - [ e dy‘

(48, ©)

€ 1
< -+ 2M
2 (~», x;-8) VZ‘H‘I

e~ —yYiar dy < % +

1.5(2) EXERCISES

1. The discriminant b* — 4ac determines the cases
@ d>0, )d=0, (c)d<O0.
2. (@) yix) = €, yox) = ™% yy(x) = €™, yolx) = xe™; y,(x) = e cos Bx, y2(0)
= ¢™ sin Bx, forroots r = a * if.
() Let y,(x) = c(x)y(x) + c2(x)yz(x) and require that
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ciyi+ciy:=0
ciyi +ciy; =f/a.

(c) Solving (b) by, for example, Cramer’s rule.

3.(a)

Yes, for each fixed P. (b) Yes, since

8p(u(Q) + Q) = u(P) + W(P) = 8,(u(Q0) + 8,(1Q)).

© u(x)= f: G(x, 5) fls)ds

o &
= | G(x,s)(-—) u(s
j; 22 Hos
-
o(x, 5)
—_—
0x(s)
where the ds is understood to be there in both.

SECTION 1.5.3
2. (a) R(v) = 10172 = 1.013.

o) llv-

%1 II ~0.038.

1.5(3) EXERCISES

1.(a)

(b)

(©
2.(a)

(®)

©

3.(a)
(®)

©

The solution of #''(x) = 0 for a <x<b is obtained by minimizing f,” | V(x) Pdx
over all functions v(x) which take on the prescribed Dirichlet Boundary

conditions f(a) and f(b).

Clearly Ois a lower bound, hence an infimum exists. Later (Poincaré Inequality)

we will see that the lower bound can be taken to be greater than zero.

An infimum is merely a limit which need not actually be attained.

Integration by parts, especially after multiplication of the equation by u or some

other relevant expression in u.

From u"(x) = 0, uu’" =0, f? wu" =0, hence D(v) =w/| & - [ w" would ap-
pear to be minimized by requiring the second term to vanish, i.e., V' =0
Roughly, there are two variation, first in v on the boundary, and then in v’ over
the domain.

Stipulating too much regularity can "lose" the solution, see Problem 3 above.
Weakening regularity allows proofs of the existence of at least weak solutions.

Exactly the right amount of regularity will be evident once the problem is fully
understood.

FIRST PAUSE

1.

cn = 4A/ nx for n odd, ¢, = 0 for n even. Hence the solution is

. @n-1mx K-
1n 1 e 12

u(x, t) -47? 2 (2n1— D s
=]
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2. Letting u(x, ) = 4 V(x, £) reduces the problem to v, — 2v,, = 0, with the same
boundary conditions and initial condition. The calculation of the Fourier coefficients
of the initial value is more laborious but finally one arrives at the solution

. —2(4n+2¢n?
(x, 1) = &e' E 1 sin (@n + 2)“xe-_;:2_ﬁl
“ “han + 2 10

3. After much chain rule
Au = r-2(r2ur)r + r-2 (Sille)-l (Sineue)e +(rsin9)'2 Upy

Then insert u(r, 8, ¢) = R(r)O0)P(d).
8A i (- . @n = Dux k2n - hm

4. ==
u(x, 1) w2 a2n - 17 sin 7 co! ]
5. Find g(x) so that v satisfies
U — Uy =0, 0<x<l1, t>0,

v(0, ) = v, =0, 120,
v(x, 0) = f(x) — gWx),
and then solve the latter.
6. u(x) =c; + c;x + [5(x — s)f(s)ds for A = 0,

u(x) = ;N + e (N 4 () fo sinh((—N)2(x — 5))f(s) ds
for A < 0. Then do the boundary conditions, algebra, and trigonometry.
7. Either directly or by plugging into the above G(x, s) found for A > 0,

G, 5) = —sin s cos x, 0=s=nx,
! —sin x cos s, x=s5s=mw2.

The solution for f(x) = xis u(x) = x — %sin x.

_ Jlcos(x + s) + sin(x — s))/2, 0=s=1x,
8. Gix.s) = {[cos(x + 5) — sin(x — $))/2, x=s=qR,

T . .
u(x) = 1 (cos x — sin x) — sin x -+ x.

9. (a) ODE gives 2 — 2cos(A'2 (b — a)) — A2 (b — a)sin(A2 (b — a)) = 0.
(b) Integration by parts shows Dirichlet orthogonality: D(u,,u,) = 0.
(c) All shorter length trial functions are trial functions for the longer length varia-
tional quotients when extended.

SECTION 1.6.1

1. It suffices by linearity of the operators involved to show that zero data implies
necessarily the zero solution. (Write this out as a useful general lemma for linear
operators.) Thus the regularity per se of f and g does not matter. We assume the
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domain to be a regular or divergence domain and functions ¥ to be in cxQ) N
C'(QY). Then from Green's first identity and zero data we have

§ du
24 = —ds — =
f |grad u|? dx %3 ds f uldu=0

and hence (write out why) u is constant over Q. Since u was assumed continuous
on ), u = 0 there.

1.6(1) EXERCISES
1. (a) By the divergence theorem

1

1f . _
ifmx ‘n = an div(x)dV = fn dv = vol(})

(b) As in part (a).

© vol(ﬂ)=l§ x~n=l§ X = § ds = L Area(aQ)
mJ mJsn II a0 m

X

3|~

2. (a) and (b). The relation
* a m-1 m-2
fo cos™ (6) 6 = ~— fo cos™ (6) do

is helpful here.
(€) Vol(B4(r) = 2r Vol(By(r)) [T cos*® do = w2r¥2,

Area(Sy(r)) = %Vol(&(l‘)) = 2ur,

3. (a) Solutions of «"(x) = 0 are of the form u(x) = ax + b,
‘l‘§ wQ)dSy = 'l'[u(—r) + u(n] = b = u(0) for any r.
Wy JSpp=r 2

(b) Let o(t) = (r cos(r), r sin()), t € (0, 27), be a parameterization of Spy = r.
Then

2

1 ] '
@rira:ru(Q)dSQ = 3k u(o()|a’ (1]t

2T
= ﬁfo [a cos(t) + bsin(t) + ¢] = ¢ = u(0).

ux +r) + uix — 1)
2

(c) The mean value theorem implies u(x) =
theorem to conclude

. Use Taylor’s

W0 = lim ux +r) — 2u(x) + ux — r) _

>
r—0 re

0.
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SECTION 1.6.2
2. (a) A, = inf [q |grad u|? dx/[q «? dx, the infimum taken over all sufficiently regular

u that are orthogonal to all eigenfunctions u;, . . . , u,_; corresponding to the
previous eigenvalues Ay, . . ., Ay, that is, [ uuy dx = O for all such u,.
O Ay =m+nt,m=1,2,3,...,n=1,23,...,and the Uy, = Cp,

sin mx X sin ny, c,, arbitrary.

3.@ ascab + by Da=( + e)cthl + (1 + e )cib3.

@ = cibf 