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Preface

The purpose of this monograph is to expose a less-known decomposition result in
matroid theory that provides a structural characterization of graphic matroids, and
show how this can be extended to signed-graphic matroids. The immediate
algorithmic consequences of the decomposition are also examined. In order to
make the exposition self-contained we also provide a brief, but nevertheless solid
introduction to the elements of matroid theory, by presenting the way it exhibits
itself in three different contexts, namely graph theory, vector spaces, and trans-
versal theory. This book is intended for graduate students and researchers from
graph theory, operations research, and combinatorial optimization, who are
interested in theoretical and algorithmic applications of matroid theory.
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Chapter 1
Introduction

Matroids were initially conceived as a generalization of graphs and linear
independence in vector spaces, and they were introduced in the seminal paper
by Whitney (1935) where he laid the foundations of the core in matroid theory.
Whitney (1935) demonstrated the existence of equivalent axiomatic definitions,
which is a characteristic feature of matroids, and established fundamental proper-
ties such as representability, duality, and connectivity. The first set of basic structural
results on matroids appear in a series of papers by Tutte (1956, 1958a, b, 1959). Tutte
provided characterizations for several important classes of matroids, such as graphic
matroids, matroids representable over the binary field, and over any field, and in
doing so he expanded the theory by introducing notions such as higher connectivity
and the theory of bridges. The connection of matroids to optimization was estab-
lished by Jack Edmonds by recognizing that matroids can be defined algorithmically
by the greedy algorithm, and showing a number of important results on matroid par-
titioning and intersection, polymatroids, and submodular functions (see Edmmonds
(1970, 1971); Edmonds and Fulkerson (1965)).

1.1 Past Literature

Although a complete bibliography for matroid theory is beyond the scope of this
monograph, we will provide a representative list of books and chapters that have
appeared.

There are a number of books written on matroid theory. The earliest book on
the subject seems to be by Crapo and Rota (1970), where matroids or combinatorial
geometries as the authors called them at that time, were presented in a lattice theoretic
framework. Another early book on matroids is the book by Tutte (1971), which is
a collection of lectures that the author gave at RAND Corporation in 1965. The
book by von Randow (1975) can be described as a general introductory monograph,
with emphasis on the equivalent axiomatic definitions of matroids. One of the first

L. S. Pitsoulis, Topics in Matroid Theory, 1
SpringerBriefs in Optimization, DOI: 10.1007/978-1-4614-8957-3_1,
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2 1 Introduction

books aimed toward undergraduates is the book by Bryan and Perfect (1980). The
book by Welsh (1976) can be considered as the first comprehensive textbook on
matroid theory, since it contains almost all aspects of the theory up to that date in
a single volume, along with a number of exercises. The most comprehensive book
on matroid theory for researchers and graduate students is without doubt Oxley’s
treatise (Oxley 1992), and its second expanded edition (Oxley 2011). The book
by Truemper (1992) deals primarily with the notion of decomposition in matroid
theory, and it can also serve well as an introductory text. The books by Recski (1989)
and Murota (1999) are concerned mainly with applications of the theory to systems
analysis and structures. Finally, the textbook by Gordon and McNulty (2012) has a
strong geometric emphasis and is directed toward undergraduate students. There are
also three edited volumes devoted to matroid theory by White (1986, 1987, 1992),
which contain contributed chapters by leading experts in the field on most aspects
of matroid theory.

A number of expository papers and book chapters have appeared on matroid
theory. One of the earliest survey papers is by Tutte (1965), which some readers may
find hard to follow due to the author’s unique writing style and notation. Wilson’s
exceptional survey paper (Wilson 1973) presents an approach for illuminating the
unification properties of matroids, that we also adopted in Chap. 2. The chapters
by Welsh (1995), Seymour (1995), and Bixby and Cunningham (1995) appear on
the same volume edited by Graham et al. (1995). Most of the chapters on matroid
theory appear in textbooks on Combinatorial Optimization or Combinatorics, such
as Lawler (1979, Chaps. 7, 8, 9), Korte and Vygen (2001, Chaps. 13, 14), Lee (2004,
Chaps. 1, 3), Aigner (1979, Chaps. 6, 7), Schrijver (2003, Chaps. 39–49), Nemhauser
and Wolsy (1989, Chap. III.3), and Papadimitriou and Steiglitz (1982, Chap. 12).

1.2 Preliminaries

The set of natural numbers {1, 2, 3, . . .} is denoted by N, the set of integers by Z, the
set of non-negative integers by Z+, and the set of reals by R. While familiarity with
basic set theory is assumed, here we will just state some frequently used notations.
All the sets considered in this book are finite, unless otherwise stated. The number of
elements in a set A will be denoted by |A|. The power-set of a set A is the set of all
subsets of A, including the empty set and A, and we write 2A. We denote with A− B
the deletion of B from A, that is, the set which contains the elements of A which
are not in B. The set {A1, A2, . . . , Am} of nonempty subsets of A will be called a
partition of A if the Ai are pairwise disjoint, and their union is A. Given two sets
A and B, we will say that A meets B if neither one is contained in the other and
A ∩ B �= ∅. The symmetric difference of two sets A and B is defined as

A � B = (A ∪ B)− (A ∩ B).

http://dx.doi.org/10.1007/978-1-4614-8957-3_2
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For a set A and some index set I , by (ai : i ∈ I ) or {ai }i∈I we denote the family
of elements in A indexed by I , as defined by some mapping φ : I → A where
φ(i) = ai . Note that a family is not set, since order and multiplicity of elements are
of relevance. For the family of subsets of some set A we will write F = (Si : i ∈ I ),
where the corresponding mapping will be φ : I → 2A. We will refer to the tuple
(A,F ) as a set system. Given a set system (A,F ) a subset X ⊆ A is maximal
with respect to F , if X ∈ F and there does not exist Y ∈ F such that X ⊂ Y .
Moreover, X ⊆ A is minimal with respect to F , if X ∈ F and there does not exist
Y ∈ F such that Y ⊂ X .

A matrix A with n rows and m columns with elements ai j over a field F will be
written as A = (ai j ) ∈ F

n×m . The i-th row of A will be denoted by A(i, :) and the
j-th column by A(:, j). By rows(A) and columns(A) we mean the index sets of the
rows and columns of A respectively.We will use column notation for vectors, which
will be written using boldface letters. So by x ∈ F

n we mean the ordered n-tuple
of elements from F, arranged in a column. The identity matrix will be denoted by
In , and is an n × n matrix with ones in the diagonal and zero anywhere else. When
the dimension of the identity matrix follows from the context the subscript n will be
omitted. The unit vector ek is a vector with zeroes everywhere except at position k
that has a one. We write AT for the transpose of a matrix A.

We will deal with matrices with elements over the field of real numbers R, the
binary field GF(2) and the ternary field GF(3). The binary field has only two elements
0 and 1, and the operations of addition and multiplication are performed modulo 2
as follows:

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1

The ternary field has three elements 0, 1, and 2, and the operations of addition and
multiplication are performed modulo 3 as follows:

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

× 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

The following operations on the rows of a matrix over a field F are called elementary
row operations:

(i) Interchange two rows.
(ii) Multiply a row by some nonzero member of F.

(iii) Replace a row by its sum with a multiple of another row.

If matrix A is obtained from B by elementary row operations, then we say that A
and B are row equivalent. By pivoting on an element ai j of a matrix A, we mean
the application of elementary row operations (ii) and (iii) in order to make ai j = 1
and all other elements of column j zero. Given a matrix A ∈ F

m×n we can define
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the following three fundamental subspaces:

null space N (A) = {x ∈ F
n : Ax = 0},

column space R(A) = {y ∈ F
m : Ax = y, for some x ∈ F

n},
row space R(AT ) = {y ∈ F

n : AT x = y, for some x ∈ F
m}.

If S is a subspace of a vector space F
n the orthogonal complement of S is defined

as
S⊥ = {x ∈ F

n : xT y = 0 for every y ∈ S}.

The following fundamental theorem from Linear Algebra relates the column and
row spaces of a matrix.

Theorem 1.1 For a matrix A we have N (A) = R(AT )⊥ and N (AT ) = R(A)⊥.

1.3 Organization of the Book

We will use the symbol � to indicate the end of a proof or example. Text in boldface
indicates a new term definition which almost always is associated with an entry in
the index at the back of the book, while text in italics indicates a notion that needs
to be emphasized. We make extended use of figures to illustrate concepts, especially
since most of the concepts presented in this book are graph theoretic.

The book is organized into six chapters as follows. Chapter 1 is this introductory
chapter. Chapter 2 presents a set of propositions that are proved from first principles
and state common properties found in graphs, matrices, and transversals. In Sect. 2.4
these properties are combined and presented into an abstract setting, that will serve as
our starting point for the definition of matroids that will be given in Chap. 3. In Chap. 3
the axiomatic definition of matroids as motivated by Sect. 2.4 is given in Sect. 3.1,
and the rest of the sections in that chapter prove equivalent axiomatic definitions
with the exception of Sect. 3.7 where an algorithmic definition of matroids is given.
Chapter 4 contains fundamental results from matroid theory, such as representability,
the notions of duality and minors, and connectivity in matroids. Chapter 5 presents a
decomposition theory for graphic matroids as well as a recognition algorithm that is
a result of that theory. A detailed numerical example that illustrates the theoretical
results of that chapter is given in Sect. 5.4. In Chap. 6 we introduce signed-graphic
matroids and present a generalization of the results given in Chap. 5. At the end of
each chapter a short section with additional notes and references is provided.

http://dx.doi.org/10.1007/978-1-4614-8957-3_1
http://dx.doi.org/10.1007/978-1-4614-8957-3_2
http://dx.doi.org/10.1007/978-1-4614-8957-3_2
http://dx.doi.org/10.1007/978-1-4614-8957-3_3
http://dx.doi.org/10.1007/978-1-4614-8957-3_3
http://dx.doi.org/10.1007/978-1-4614-8957-3_2
http://dx.doi.org/10.1007/978-1-4614-8957-3_3
http://dx.doi.org/10.1007/978-1-4614-8957-3_3
http://dx.doi.org/10.1007/978-1-4614-8957-3_4
http://dx.doi.org/10.1007/978-1-4614-8957-3_5
http://dx.doi.org/10.1007/978-1-4614-8957-3_5
http://dx.doi.org/10.1007/978-1-4614-8957-3_6
http://dx.doi.org/10.1007/978-1-4614-8957-3_5


Chapter 2
Graph Theory, Vector Spaces,
and Transversals

In this chapter we will present a set of propositions that characterize common
properties of graphs, vector spaces, and transversals. In each case emphasis has
been given to derive the aforementioned properties from first principles. In the last
section of the chapter the results presented in Sects. 2.1–2.3, will be unified into a
common abstract framework which will serve as the starting point for the definition
of matroids that will be given in Chap. 3. The purpose of this chapter is to illuminate
the existence of common properties in these three seemingly different contexts.

2.1 Graph Theory

All the necessary definitions and results from graph theory will be presented in this
section. The main references for this section are the books by Diestel (2006) and
Wilson (1996).

By a graph G(V, E) we mean a finite set of vertices V , and a set of edges
which consists of 2-tuples of V . Given a graph G we will write V (G) for its set
of vertices and E(G) for its set of edges. A graph G with V (G) = {v1, v2, v3, v4}
and E(G) = {e1, e2, e3, e4, e5, e6, e7} is shown in Fig. 2.1. Note that this graph will
be referred to as a sample graph in various examples throughout the book. An edge
e = (v, v) is called a loop, while two equal edges are called parallel edges. A
graph with no loops and parallel edges is called simple. Some graph H is called
a subgraph of G and we write H ⊂ G if V (H) ⊆ V (G) and E(H) ⊆ E(G). A
subgraph H of G is called proper if H �= G. The order of a graph G is |V (G)|
while its size is |E(G)|. A graph of order 1 is called trivial. By G ∪ H we mean
the graph (V (G) ∪ V (H), E(G) ∪ E(H)), and by G ∩ H we mean the graph
(V (G) ∩ V (H), E(G) ∩ E(H)). Whenever applicable the vertices that define an
edge are called its end-vertices. For some V ′ ⊆ V (G) the induced subgraph of
V ′ in G is written as G[V ′], and is defined by V (G[V ′]) = V ′ and E(G[V ′]) =
{(v,w) ∈ E(G) : v,w ∈ V ′}. For E ′ ⊆ E(G) the induced subgraph of E ′ in
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Fig. 2.1 A sample graph G

G is written as G[E ′], and is defined as E(G[E ′]) = E ′ and V (G[E ′]) = {v ∈
V (G) : v is an end-vertex of some edge in E ′ }. The set

NG(v) = {w ∈ V (G) : (v,w) ∈ E(G)}

is called the neighborhood of v in G, while for some U ⊆ V (G) the neighborhood
of U is the union of the sets NG(v) for all v ∈ U , minus U . If for two vertices
v,w ∈ V (G) we have (v,w) ∈ E(G), then v and w are called adjacent vertices. If
for a graph G with n vertices any two vertices are adjacent, then we say that the graph
is complete and we write Kn . We say that an edge e is incident to a vertex v if v ∈ e,
while if two distinct edges have a vertex in common they are adjacent. The degree
dG(v) of a vertex v ∈ V (G) is the number of edges incident to v, or equivalently
|NG(v)|. Identifying two vertices u and v is the operation where we replace u and v

with a new vertex v′ in both V (G) and E(G). The deletion of an edge e from G is
the subgraph defined as G\{e} = (V (G), E(G)−{e}). The subgraph of G obtained
by a series of deletions of the edges X ⊆ E(G) is denoted by G\X . The contraction
of an edge e = (u, v) is the subgraph denoted by G/{e} which results from G by
identifying u, v in G\{e}. The subgraph of G obtained by a series of contractions of
the edges Y ⊆ E(G) is denoted by G/Y . Sometimes it will be more convenient to
use the complement operations of deletion and contraction. In order to make notation
less cumbersome, we will write G|X = G\(E(G) − X) for the deletion to X , and
G.Y = G/(E(G) − Y ) for contraction to Y . The deletion of a vertex v of G is
defined as the deletion of all edges incident to v and the deletion of v from V (G).
A graph G ′ is called a minor of G if it is obtained from a sequence of deletions and
contractions of edges and deletions of vertices of G. It can be easily shown that the
order upon which the operations are performed is not important, so for the minor
produced by the deletion of X ⊆ E(G) and the contraction of Y ⊆ E(G) we write
G\X/Y .

Any partition {T, U } of V (G) for nonempty T and U , defines a cut of G denoted
by E(T, U ) ⊆ E(G) as the set of edges incident to a vertex in T and a vertex in U .
A cut of the form E(v, V (G)−{v}) is called the star of vertex v. A v0−vn walk in a
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graph G(V, E) is a subgraph of G that is defined by a sequence of vertices and edges
in a consecutive manner, which starts with the vertex v0 and ends at the vertex vn ,

v0, e1, v1, e2, . . . , vn−1, en, vn,

where ei = (vi−1, vi ) for i = 1, . . . , n. A s − t walk with all distinct vertices is
called s − t path, while if it is closed, that is, s = t , then it is called a cycle.

If there is a partition of the vertex set V (G) = V1∪· · ·∪Vk such that E(G[Vi ]) = ∅
for all i = 1, . . . , k, then we say that G is a k-partite graph, where if k = 2 we
say bipartite. Equivalently, we can say that in k-partite graphs we only have edges
between vertices of different sets in the vertex partition. Note that any graph G
is n-partite for n = |V (G)|. If in a k-partite graph with V (G) = V1 ∪ · · · ∪ Vk

and |Vi | = ni for i = 1, . . . , k, we have edges between any pair of vertices in
different vertex sets of the partition, then we have a complete k-partite graph, and
write Kn1,n2,...,nk . Examples of complete graphs are shown in Fig. 2.2.

A graph that can be drawn in the plane such that no two edges intersect is called pla-
nar, while any such drawing of a planar graph is called a plane drawing. For example
the graph in Fig. 2.1 is planar, while the graphs K3,3 and K5 in Fig. 2.2 are not. The
continuous regions in the plane so formed by the deletion of the plane drawing of a
planar graph, are called faces. For example in the plane drawing in Fig. 2.1, there are
four faces as defined by the sets of edges {{e1, e4, e3}, {e5, e4, e6}, {e6, e7}, {e2}} as
well as an outer face defined by the edges {e1, e2, e3, e5, e7}. The geometric dual
G∗ of a planar graph G is constructed by considering any face in a plane drawing
of G to be a vertex of G∗ and connecting two vertices of G∗ if the corresponding
faces are adjacent. For example in Fig. 2.3 we draw the geometric dual of the graph
in Fig. 2.1.

If we assign a direction to any edge of a graph G, we obtain a directed graph
−→
G .

If e = (v,w) ∈ E(
−→
G ) is directed from v to w, then we say that v is the tail

and w is the head of e respectively. The edges in a directed graph are called arcs.
An orientation of a graph G(V, E) is a function that assigns to the end-vertices of
each edge e = (v,w) ∈ E(G) a sign in {+1,−1} such that o(e, v) = −o(e, w).
Interpreting v as the tail of e when o(e, v) = −1 and the head otherwise, any
orientation of a graph results in a directed graph.

Fig. 2.2 Complete graphs
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Fig. 2.3 The geometric dual
G∗ of G in Fig. 2.1

We will say that a graph is connected if for any v,w ∈ V (G) there exists a v−w

path. One can easily show that the connectivity relationship on V (G) × V (G) is
an equivalence relationship, thereby it partitions V (G) into the so-called connected
components or simply components, which are maximally connected subgraphs of G.
The number of connected components of a graph G will be denoted by kG . There are
several notions of higher connectivity or k-connectivity in graphs that have appeared
in the literature. The two most common ones are vertex connectivity and edge con-
nectivity. For k ∈ N we say that a graph G is k-vertex-connected, if |V (G)| > k
and G\X is connected for any X ⊆ V (G) with |X | < k. Equivalently, G is k-vertex-
connected if k is the minimum number of vertices that you can delete and make G
disconnected or the trivial graph K1. We will write κ(G) for the vertex connectiv-
ity number of a graph. For k ∈ N we say that a graph G is k-edge-connected, if
|E(G)| > k and G\Y is connected for any Y ⊆ E(G) with |Y | < k. Equivalently,
G is k-edge-connected if k is the minimum number of edges that you can delete
and make G disconnected or the trivial graph K1. We will write α(G) for the edge
connectivity number of a graph. Both vertex and edge connectivities defined above
use as a base notion the connectivity of a graph. Note however that while 1-vertex-
connectivity is equivalent to connectivity, this is not the case for 1-edge-connectivity.
Tutte introduced an alternative definition of the connectivity in a graph, in an attempt
to make the connectivity of a graph and its associated graphic matroid equal, and also
make the connectivity of a graph duality invariant. For k ≥ 0, a k-separation of a
connected graph G is a partition {A, B} of the edges such that min{|A|, |B|} ≥ k and
|V (G[A]) ∩ V (G[B])| = k. The connectivity number of a graph G is defined as

λ(G) = min{k : G has a k-separation}, (2.1)

and we say that G is k-connected for any k ≤ λ(G). Thus, a k-connected graph
is also l-connected for l = 0, . . . , k − 1. If G does not have a k-separation for any
number k ≥ 0, then λ(G) = ∞. We could equivalently say that that a graph has a
k-separation if there exist k vertices whose deletion will separate a set of k edges
from another set of k edges. A bond in a graph G is a set of edges Y ⊆ E(G) whose
deletion increases the number of connected components, and is minimal with respect
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to that property. It is easy to see that if Y is a bond in G, then kG\Y = kG + 1. Note
that any bond is a cut, but not the other way around. Given that G is connected, the
two connected components of G\Y will be called the end-graphs of Y .

The operation of twisting in graphs is defined as follows. Let {X, Y } be a
2-separation of G such that V (G[X ])∩ V (G[Y ]) = {v, u}. The twisting of G about
v and u is the graph obtained by interchanging u and v in every edge of X . We can
think of the operation as the separation of G[X ] and G[Y ] at the vertices u and v,
twisting either subgraph about an axis perpendicular to the line that passes through
u and v, and reconnecting them (see Fig. 2.4). Observe that if G ′ is the graph so
obtained by twisting from G the cycles and bonds in both graphs remain the same.
For example in Fig. 2.4 the set of edges {e1, e3, e4, e5} is a cycle, and {e3, e5, e6} is
a bond in both G and G ′. However, G and G ′ are not isomorphic since dG ′(v) = 4
while G does not have a vertex of degree four.

A graph which contains no cycles is called a forest or acyclic, while if it is also
connected it is called a tree. If G ′ is a subgraph of G and V (G ′) = V (G) then G ′
is called a spanning subgraph of G. If a tree is a spanning subgraph of a graph, then
it is called a spanning tree. A union of spanning trees of all connected components
in a graph is called a spanning forest. The following is a fundamental property of
trees.

Theorem 2.1 If T is a tree, then |E(T )| = |V (T )| − 1.

Proof By induction on |V (T )|. For |V (T )| = 1 we have the trivial graph with no
edges. Assume that it holds for |V (T )| < k and consider any tree T with |V (T )| = k.
For some e ∈ E(T ), the graph T \e will consist of two trees T1 and T2, with
|V (Ti )| < k for i = 1, 2. By the induction hypothesis we have |E(Ti )| = |V (Ti )|−1
for i = 1, 2. Therefore,

|E(T )| = |E(T1)| + |E(T2)| + 1 = |V (T1)| + |V (T2)| − 1 = |V (T )| − 1.

��
As a corollary to Theorem 2.1 we have that |E(T )| = |V (T )| − kT for any forest T .
The following result shows that spanning forests are maximally acyclic subgraphs.

Proposition 2.1 No spanning forest of a graph G contains another spanning forest
as a subgraph.

Fig. 2.4 Twisting
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Proof It is enough to show that no spanning tree T of some graph G contains another
spanning tree T ′ as a proper subgraph. Let |V (G)| = |V (T )| = |V (T ′)| = n
be the order of the graph, while for T ′ to be a proper subgraph of T we must
have E(T ′) ⊂ E(T ). Therefore, |E(T ′)| < |E(T )| = n − 1 which contradicts
Theorem 2.1. ��
Proposition 2.2 If X is a forest then it contains at least two vertices of degree 1.

Proof Enough to prove the theorem for trees. Let v0 − vn be a path in a tree T
where the number of edges n is maximum. Then clearly dT (v0) = dT (vn) = 1,
since otherwise T either contains a cycle, or a path with n + 1 edges. ��

In the discussion that follows, we will make the assumption that the graph G
under consideration is connected, unless otherwise stated. However, all the results
that will be stated are directly generalizable for disconnected graphs. The following
proposition is a fundamental property of acyclic graphs.

Proposition 2.3 If X and Y are two forests of a graph G with |E(X)| > |E(Y )|,
then there exists an edge e ∈ E(X)− E(Y ) such that Y ∪ {e} is also a forest of G.

Proof Assume that Y ∪ {e} is not a forest for all e ∈ E(X)− E(Y ). We will show
that E(Y ) ≥ E(X). If Y is not a forest with the addition of the edge e = (v,w) then
the vertices v,w must belong to the same connected component of Y . This implies
that V (X) = V (Y ) and each connected component of X is a subgraph of a connected
component of Y , which means that

kX ≥ kY . (2.2)

By Theorem 2.1 we have |E(X)| = |V (X)| − kX and |E(Y )| = |V (Y )| − kY , thus,
combining with (2.2) we have

|E(Y )| ≥ |E(X)|,

which is a contradiction. ��
Proposition 2.4 If T1 and T2 are two spanning trees of a graph G, and e ∈ E(T1)−
E(T2), then there exists an edge f ∈ E(T2)− E(T1) such that (T1\{e})∪{ f } is also
a spanning tree of G.

Proof Observe that T1\{e} is a forest of two nonempty trees, say A and B. Since
T2 is a spanning tree, it must contain an edge f distinct from e, such that f =
(v,w), v ∈ V (A), w ∈ V (B). Therefore, the subgraph (T1\{e}) ∪ { f }
(i) is spanning for G since V (A) ∪ V (B) = V (G),

(ii) contains a v − w path between any two vertices v and w, and
(iii) does not contain a cycle,

that is, a spanning tree for G. ��
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Proposition 2.5 If C1, C2 are distinct cycles of a graph G and e ∈ E(C1)∩ E(C2),
then the graph (C1 ∪ C2)\{e} contains a cycle of G.

Proof Let G ′ = (C1 ∪ C2)\{e} and e = (v,w). If G ′ does not contain any cycle
then it is a forest, and kG ′ ≥ 1. If the end-vertices of e reside in different connected
components of G ′, then C1∪C2 does not contain a cycle, a contradiction. Therefore,
both end-vertices of e are on the same connected component of G ′, say T , which
is a tree. The graph T ∪ {e} contains a unique cycle, for otherwise there exist two
distinct v−w paths in T , which imply the existence of a cycle in T . This means that
G ′ ∪ {e} = (C1 ∪ C2) should contain a unique cycle, a contradiction. ��

The following result which relates cycles and bonds is easy to prove, bearing in
mind that the deletion of bond from a graph always results in two components.

Proposition 2.6 If C is a cycle and C∗ a bond of G, then |E(C) ∩ E(C∗)| is even.

We will now introduce the notion of the rank of a graph. Consider any graph G
of order n and size m with kG connected components. The rank of G is denoted by
r(G), and is the number of edges in any spanning forest, which in this case is clearly
r(G) = n − kG . The minimum number of edges which must be deleted from G to
create spanning forest with kG components is m − n + kG , and we will denote this
number by γ (G).

Proposition 2.7 For a graph G the rank satisfies the following:

(i) 0 ≤ r(G) ≤ |E(G)|,
(ii) if H a subgraph of G then r(H) ≤ r(G),

(iii) for any pair of subgraphs H and K of G we have

r(H ∪ K ) ≤ r(H)+ r(K )− r(H ∩ K ).

Proof The first two properties follow directly from the definition of the rank. We
will prove the third property, which is called submodularity of a function. We can
identify three possible cases. If V (H)∩V (K ) = ∅ then E(H)∩E(K ) = ∅, it means
that H and K are disjoint subgraphs, therefore

r(H ∪ K ) = |V (H)| + |V (K )| − (kH + kK ) = r(H)+ r(K ),

where kH , kK are the number of connected components of H and K respectively. If
V (H) ∩ V (K ) �= ∅ and E(H) ∩ E(K ) = ∅, then V (H) ∩ V (K ) is a set of isolated
vertices, and the result follows easily.

Consider now the case where V (H) ∩ V (K ) �= ∅ and E(H) ∩ E(K ) �= ∅.
The subgraph H ∩ K of G is not empty by assumption, and let us say that T1 is a
spanning forest of H ∩ K . Since |E(H ∩ K )| < |E(H)|, by Proposition 2.3 T1 can
be extended into a spanning forest T1�T2. This set can be extended into a spanning
forest (T1�T2)�T3 of H ∪ K . So the subgraph defined by T1 ∪ T3 must be a forest
of K , but not necessarily maximal. Therefore, we have
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r(H)+ r(K ) ≥ |E(T1 ∪ T2)| + |E(T1 ∪ T3)|
= 2|E(T1)| + |E(T2)| + |E(T3)|
= |E(T1)| + |E(T1 ∪ T2 ∪ T3)|
= r(H ∪ K )+ r(H ∪ K ).

��
Finally, let us mention two results which relate cycles and bonds with spanning

forests.

Proposition 2.8 For any spanning forest X of a graph G,

(i) If C∗ is a bond of a G, then E(C∗) ∩ E(X) �= ∅.
(ii) If C is a cycle of G, then E(C) ∩ (E(G)− E(X)) �= ∅.
Proof (i) Let E(C∗) ∩ E(X) = ∅. Then X is also a spanning forest of G\E(C∗)
with |V (G)| − kG edges, which is a contradiction since according to Theorem 2.1 it
should have |V (G)| − kG\E(C∗) edges, where kG\E(C∗) = kG + 1.

(ii) Since C is a subgraph of a connected component G1 of G, we only consider
the spanning tree T of G1. If E(C) ∩ (E(G1)− E(T )) = ∅ then C is contained in
T , a contradiction since trees are acyclic. ��

2.2 Vector Spaces

In this section we will present elementary results about finite vector spaces and linear
independence. We provide as a basic reference the book by Nering (1970), but any
standard textbook on linear algebra will suffice. Some familiarity is assumed with
the definition of a vector space over a field F, and the operations of vector addition
and scalar multiplication. The elements of a field are called scalars and we will write
x , while those of a vector space are called vectors and we will write x.

Given a field F and set of m vectors xi ∈ F
n we say that y is a linear combination

of the vectors xi if there exist scalars ai ∈ F such that

y =
m∑

i=1

ai xi .

A linear relation is an expression among the xi of the form
∑

i ai xi = 0, where
ai �= 0 for some i . If ai = 0 for all i then we say it is a trivial linear relation. A set {xi }
of vectors is said to be linearly independent in F if there does not exist a nontrivial
linear relationship among them, or equivalently if

∑
i ai xi = 0 then ai = 0 for all i .

If a set of vectors is not linearly independent, then we say it is linearly dependent.

Theorem 2.2 A set of vectors {x1, . . . , xm} is linearly dependent if and only if some
xk is a linear combination of the xi for i < k.
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Proof (⇒) Say that {x1, . . . , xm} is a linearly dependent set of vectors, where xi �= 0
for all i . Then there exist scalars ai ∈ F, not all zero, such that

∑
i ai xi = 0. Rearrange

the vectors such that the corresponding scalars are

a1, a2, . . . , ak, ak+1, . . . , am,

and a j = 0 for j > k. Therefore, k ≥ 2 while

xk =
k−1∑

i=1

(
− 1

ak
ai

)
xi ,

and the result follows.
(⇐) By the definition of linear independence. ��

Let X be the set of vectors {x1, . . . , xm} ⊂ F
n . The span of X , denoted by 〈X〉,

is the set of all linear combinations of the vectors in X as

〈X〉 = {x ∈ F
n : x =

∑

i

ai xi , xi ∈ X,∀ai ∈ F}.

If for a vector space V and subspace X we have V = 〈X〉, then we say that X is a
spanning set of V . The following are some fundamental properties of the span.

Theorem 2.3 If X ⊆ 〈Y 〉 and Y ⊆ 〈Z〉, then X ⊆ 〈Z〉.
Proof If Y = {y1, . . . , yk} and Z = {z1, . . . , zl}, then for each x ∈ X there exist
scalars ai such that

x =
k∑

i=1

ai yi ,

while for each yi ∈ Y there exist scalars bi j such that

yi =
l∑

j=1

bi j z j .

Therefore, we can express x as

x =
k∑

i=1

ai

⎛

⎝
l∑

j=1

bi j z j

⎞

⎠ =
l∑

j=1

(
k∑

i=1

ai bi j

)
z j ,

that is, as a linear combination of the vectors in Z . ��
Theorem 2.4 If xk in X = {x1, x2, . . . , xk} is linearly dependent on {x1, x2, . . . ,

xk−1} then 〈X〉 = 〈X − xk〉.
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Proof Since every vector in X can be expressed as a linear combination of the vectors
in X − xk , we have that X ⊆ 〈X − xk〉, which in turn implies that 〈X〉 ⊆ 〈X − xk〉.
However, since (X − xk) ⊆ X we have that 〈X − xk〉 ⊆ 〈X〉. ��
Theorem 2.5 For any subset X of a vector space V , 〈X〉 = 〈〈X〉〉.
Proof Since X ⊆ 〈X〉 then 〈X〉 ⊆ 〈〈X〉〉 by Theorem 2.4. We also want to show
that 〈〈X〉〉 ⊆ 〈X〉. It can be shown that for any two vector spaces Y and Z if Y ⊆ 〈Z〉
then 〈Y 〉 ⊆ 〈Z〉 also. Since X ⊆ 〈X〉 then 〈X〉 ⊆ 〈X〉, which implies 〈〈X〉〉 ⊆ 〈X〉. ��
The following theorem is the so-called Steinitz Replacement Theorem, and its proof
technique will be used in subsequent results.

Theorem 2.6 If a finite set of vectors X = {x1, x2, . . . , xn} is a spanning set of a
vector space V , then every linearly independent set in V contains at most n elements.

Proof Consider any linearly independent set of vectors in V , say Y = {y1, y2, . . . ,

ym}. We will show that m ≤ n. The basic step in the proof would be to start replacing
vectors in X by vectors in Y , while maintaining a spanning set at every step.

Suppose that at step k, the spanning set is Xk = {y1, y2, . . . , yk, xk+1, . . . , xn}.
Since 〈Xk〉 = V , yk+1 can be expressed as a linear combination of vectors from Xk .
The main observation here is that these vectors have to include some of the xi ’s since
otherwise Y would be a linearly dependent set of vectors. Thus, we can assume that
xk+1 is linearly dependent on {y1, y2, . . . , yk+1, xk+2, . . . , xn}which we will denote
by Xk+1. By Theorem 2.4 we have that 〈Xk+1〉 = 〈Xk〉 = V . If we continue this
process and m > n, it would mean that Xn = {y1, y2, . . . , yn} is a spanning set of
V , therefore yn+1 is linearly dependent on Xn , contradicting our original hypothesis
that Y is a linearly independent set of vectors. ��

A linearly independent set of vectors which is a spanning set of a vector space V
is called a basis of V . The linear independence of the elements in a basis B,
implies the uniqueness of the coefficients in the linear combination of some vec-
tor x ∈ V expressed in terms of the vectors in B. Assume that x =∑

yi∈B ai yi and
x = ∑

yi∈B bi yi . Then
∑

yi∈B(ai − bi )yi = 0, but since the yi ’s are linearly inde-
pendent this would mean that ai − bi = 0 for all i . The cardinality of a basis in a
vector space V will be called the dimension of V , and we write dim(V ). The next
two theorems are fundamental in Linear Algebra.

Theorem 2.7 If V is a subspace of F
n, then

dim(V )+ dim(V⊥) = n.

Theorem 2.8 If V, W two subspaces then

dim(V )+ dim(W ) = dim(V ∩W )+ dim(V +W ),

where V +W = {v + w : v ∈ V, w ∈ W }.
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Given any subset X of a vector space V , we can define a function r : V → Z+ which
is called the rank of X , as the dimension of the subspace spanned by the vectors
in X . In what follows we see that the dimension of a vector space is well-defined.

Theorem 2.9 In a vector space every basis has the same number of elements.

Proof Immediate consequence of Theorem 2.6. ��
The following two theorems demonstrate that a basis can be characterized as a max-
imally linearly independent set or, equivalently, as a minimal spanning set.

Theorem 2.10 Every spanning set in a vector space contains a basis.

Proof Let X be a spanning set and Y ⊆ X a maximally linearly independent subset.
We know from Theorem 2.6 that |Y | ≤ |X |. Now if |Y | = |X |, then Y is a basis.
If |Y | < |X |, then by repeated application of Theorem 2.4 we can conclude that
〈Y 〉 = 〈X〉, therefore Y is a spanning set. ��
Theorem 2.11 Every linearly independent set of vectors in a vector space can be
extended to a basis.

Proof Let A = {a1, . . . , an} be a basis and B = {b1, . . . , bm} a linearly independent
set, where from Theorem 2.6 we know that m ≤ n. If m = n then there is nothing to
prove. If m < n consider the ordered set of vectors C = (b1, . . . , bm, a1, . . . , an).
Clearly C is linearly dependent, so by Theorem 2.2 there exists some vector in C
which can be expressed as a linear combination of the vectors preceding it. But none
of the bi could be such a vector since B is linearly independent, therefore it has to
be one of the vectors in A, say ai . If we remove ai from C and repeat the process on
the resulting set, eventually we will end up with a linearly independent set of vectors
which will contain B, and by Theorem 2.4 will span the vector space, i.e., a basis. ��

We can now state the following regarding vector spaces.

Proposition 2.9 If X and Y are linearly independent sets of vectors in V with
|X | > |Y |, then there exists some x ∈ X − Y such that Y ∪ {x} is a linearly
independent set of vectors in V .

Proof If Y ∪ {x} is linearly dependent for all x ∈ X − Y then X ⊆ 〈Y 〉 by
Theorem 2.4, which implies that X is a linearly dependent set of vectors. ��
Proposition 2.10 If B1 and B2 both bases of V and x ∈ B1, then there exists some
y ∈ B2 such that (B1 − {x}) ∪ {y} is also a basis of V .

Proof The proof can be derived from the proof of either Theorem 2.6 or
Theorem 2.11. ��
Proposition 2.11 If X and Y are two distinct minimally linearly dependent sets of
vectors in V and z ∈ X ∩Y , then the set (X ∪Y )−{z} contains a minimally linearly
dependent set of vectors in V .
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Proof It is enough to show that the set of vectors (X∪Y )−{z} is linearly dependent.
Let X = {x1, . . . , xk, z1, . . . , zt+1}, Y = {z1, . . . , zt+1, y1, . . . , ys}, and assume that
z = zt+1. Since both X and Y are minimally linearly dependent, we can express z as
a linear combination of the vectors in X −{z} and Y −{z}, such that in both cases all
scalars used in the linear combination are not zero. Thus, there exist scalars ai , bi , ci

and di , all nonzero, such that

z = a1x1 + · · · + akxk + b1z1 + · · · + bt zt , (2.3)

z = c1x1 + · · · + ckxk + d1y1 + · · · + dsys . (2.4)

Subtracting (2.4) from (2.3) we get

a1x1 + · · · + akxk + (b1 − c1)z1 + · · · + (bt − ct )zt − d1y1 − · · · − dsys = 0,

where all the scalars are not zero, therefore (X ∪ Y )− {z} is linearly dependent. ��
Finally, the next proposition can be proved directly from the definition of the rank

and Theorem 2.8.

Proposition 2.12 The rank function r : 2V → Z+ satisfies:

(i) 0 ≤ r(X) ≤ |X |, for any X ⊆ V .
(ii) if X ⊆ Y then r(X) ≤ r(Y ).

(iii) for any X, Y we have r(X ∪ Y )+ r(X ∩ Y ) ≤ r(X)+ r(Y ) (submodularity).

2.3 Transversal Theory

Here we will present fundamental results in finite Transversal Theory. The main
references for this section are the works of Mirsky (1969, 1971).

Given some ground set E and a family F = (Si : i ∈ I ) of subsets of E , a
transversal of F is set X = {x1, x2, . . . , x|I |} ⊆ E of distinct elements such that
xi ∈ Si ∀i ∈ I . Given E and F as previously, a transversal of some subfamily
(Si : i ∈ J ⊂ I ) is called a partial transversal of F . So given a family of n subsets
of a ground set E , a transversal is a set of n distinct elements from E , such that
each subset contains at least one of these elements or is represented by at least one
element in the transversal. Transversals are also known in the literature as systems of
distinct representatives. Observe that for a given transversal X = {x1, x2, . . . , xn}
of (Si : i ∈ I ) we have no information regarding the membership of its elements
with respect to the subsets Si . If we wish to specify membership, we can index
the transversal according to I and obtain a family of elements of X , denoted by
X = {xi }i∈I , where xi ∈ Si for all i ∈ I . Note that a transversal may be indexed in
more than one way, while an indexed transversal corresponds to a unique transversal.
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Fig. 2.5 Bipartite graph of a
set system

Partial transversals can also be indexed to specify membership to the subsets of the
corresponding subfamily of subsets.

Example 2.1 Given E = {1, 2, 3, 4, 5} consider the subsets

S1 = {1, 3},
S2 = {1, 2},
S3 = {2},
S4 = {2, 3},
S5 = {1, 4, 5},

and let the index set be I = {1, 2, 3, 4, 5}. Then F = (Si : i ∈ I ) does not have
a transversal, since we cannot find five distinct elements of E each from a different
subset Si . But F has a partial transversal, say X = {1, 2, 3, 5}, which is a transversal
of the family of subsets (Si : i ∈ I − {3}). We can also index the partial transversal
and write {11, 22, 34, 55} or alternatively {31, 12, 24, 55}.
An equivalent way of graphically representing transversals is through bipartite
graphs. Given a set system (E,F ) where F = (Si : i ∈ I ), construct the bipartite
graph G(V1 ∪ V2, EG) where V1 = E , V2 = F and EG = {(i, j) : i ∈ E and
i ∈ S j }. So the edges of the bipartite graph represent the membership of the ele-
ments in E to the subsets in F . The bipartite graph corresponding to the set system
of Example 2.1 is shown in Fig. 2.5. A matching M ⊆ E(G) in a graph G is a set of
non-adjacent edges, while we say that M is a matching of some U ⊆ V (G) if every
vertex in U is an end-vertex of an edge in M . We can see that any matching in a
bipartite graph of a set system corresponds to a partial transversal, and any matching
of V2 corresponds to a transversal.

Transversal theory is concerned with the question of existence of transversals or
partial transversals in a set system, under some constraints. Examining the definition
of transversal, it is trivial to see that if the family (Si : i ∈ I ) of subsets of E has a
transversal, then the union of any k subsets from F will contain at least k elements.
Hall’s classical theorem also establishes the sufficiency of this condition.
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Theorem 2.12 (Hall 1935) The family F = (Si : i ∈ I ) of subsets of E has a
transversal if and only if

∣∣∣∣∣
⋃

i∈J

Si

∣∣∣∣∣ ≥ |J |, for each J ⊆ I. (2.5)

Proof Necessity follows from the definition of transversals. For sufficiency we will
first prove the following claim:

Claim If Hall’s condition in (2.5) is true for (Si : i ∈ I ) and one of the subsets,
say S1, contains more than one element, then deleting any element from S1 will not
make the condition false for the resulting family of subsets.

Assume by contradiction that there exist x, y ∈ S1 such that the deletion of any
one of these elements from S1 will make condition (2.5) false for the resulting family
of subsets. Therefore, there will be Ix , Iy ⊆ I − {1}, such that for

P =
⎛

⎝
⋃

i∈Ix

Si

⎞

⎠ ∪ S1 − {x} and Q =
⎛

⎝
⋃

i∈Iy

Si

⎞

⎠ ∪ S1 − {y},

we will have
|P| < |Ix | + 1, and |Q| < |Iy | + 1. (2.6)

It follows that

|P ∪ Q| =
∣∣∣∣∣∣

⎛

⎝
⋃

i∈Ix∪Iy

Si

⎞

⎠ ∪ S1

∣∣∣∣∣∣
, (2.7)

|P ∩ Q| =
∣∣∣∣∣∣

⎛

⎝
⋃

i∈Ix∩Iy

Si

⎞

⎠ ∪ S1 − {x, y}
∣∣∣∣∣∣
≥

∣∣∣∣∣∣

⋃

i∈Ix∩Iy

Si

∣∣∣∣∣∣
. (2.8)

Combining (2.6)–(2.8) we have

|Ix | + |Iy | ≥ |P| + |Q|
= |P ∪ Q| + |P ∩ Q|

≥
∣∣∣∣∣∣

⎛

⎝
⋃

i∈Ix∪Iy

Si

⎞

⎠ ∪ S1

∣∣∣∣∣∣
+

∣∣∣∣∣∣

⋃

i∈Ix∩Iy

Si

∣∣∣∣∣∣

≥ |Ix ∪ Iy | + 1+ |Ix ∩ Iy |
= |Ix | + |Iy | + 1,
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which is a contradiction. We thus have that the deletion of any x ∈ S1 will not affect
the validity of Hall’s condition (2.5), and the claim is proved.

Given now a family F = (Si : i ∈ I ) which satisfies (2.5), by a series of deletions
we can create a family (S′i : i ∈ I ) which also satisfies (2.5) and |S′i | = 1 for all
i ∈ I , which is a transversal of F . ��

Let us look at partial transversals now. Given a set system (E,F ) if F has
a transversal it obviously has a partial transversal, but the existence of a partial
transversal does not necessarily imply the existence of a transversal of F . The
following theorem by Ore generalizes Hall’s theorem, by providing a condition for
the existence of a partial transversal of given size.

Theorem 2.13 (Ore 1955) The family F = (Si : i ∈ I ) of subsets of E has a
partial transversal of size k if and only if

∣∣∣∣∣
⋃

i∈J

Si

∣∣∣∣∣ ≥ |J | + k − |I |, for each J ⊆ I. (2.9)

Proof For k = |I |we have Hall’s theorem. Let D be a subset of E , such that D �= ∅
and |D| = |I | − k. Consider now the family of subsets

F ∗ = {S1 ∪ D, S2 ∪ D, . . . , S|I | ∪ D}.

Observe that F has a partial transversal of size k if and only if F ∗ has a transversal.
This is so, since if we assume that T is a transversal of F ∗, then T can have at most
|I | − k distinct elements from D which implies that it has at least k elements from
the subsets Si , i ∈ I . Therefore, F has a partial transversal of size at least k. To
show the other direction we use the same argument.

Now for F ∗ to have a transversal it must satisfy (2.5), that is for any J ⊆ I

∣∣∣∣∣
⋃

i∈J

(Si ∪ D)

∣∣∣∣∣ ≥|J | ⇔
∣∣∣∣∣
⋃

i∈J

Si

∣∣∣∣∣+ |D| ≥|J | ⇔
∣∣∣∣∣
⋃

i∈J

Si

∣∣∣∣∣ ≥|J | + k − |I |.

��
For some family (Si : i ∈ I ) and X a transversal of (Si : i ∈ IX ) for some

IX ⊆ I , we say that S j is represented by X if j ∈ IX .
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Proposition 2.13 If X and Y partial transversals of F = (Si : i ∈ I ) with
|X | > |Y |, then there exists some x ∈ X−Y such that Y ∪{x} is a partial transversal
of F .

Proof Since X and Y are partial transversals of F = (Si : i ∈ I ) there exist
IX , IY ⊆ I with |IX | > |IY |, such that X and Y are transversals of (Si : i ∈ IX )

and (Si : i ∈ IY ) respectively. We will show that for any x ∈ X − Y there exists
I ′ ⊆ IX∪ IY such that Y ∪{x} is a transversal of (Si : i ∈ I ′), i.e., a partial transversal
of F .

Apply an arbitrary indexing to the elements of X and Y and obtain the two families
X = {xi }i∈IX and Y = {yi }i∈IY . Consider any xk ∈ X where k ∈ IX − IY , which
implies that Sk is not represented by Y . If xk �= yi for all i ∈ IY , then the result
follows for x = xk . If xk = yi for some i ∈ IY , then xk �= y j for all j ∈ IY different
from i . Moreover yi ∈ Sk and xk ∈ Si , which means that Y ∪ {xk} is a transversal of
(Si : i ∈ IY ∪ {k}). ��

An immediate consequence of Proposition 2.13 is that maximal partial transver-
sals, that is, partial transversals which are not properly contained in any other par-
tial transversal, are simply transversals. As the following proposition demonstrates,
transversals also obey an exchange type property, which provides a linkage for all
the transversals of a family of subsets.

Proposition 2.14 If X and Y two transversals of F = (Si : i ∈ I ) and x ∈ X − Y ,
then there exists y ∈ Y − X such that (X − {x}) ∪ {y} is a transversal of F .

Proof Let |I | = n while X = {xi }i∈I and Y = {yi }i∈I be two arbitrary indexings
of the transversals X and Y respectively. Without loss of generality let x = x1, and
define X1 = X−Y, X2 = X−X1 and Y1 = Y−X, Y2 = Y−Y1. Since the elements
of X and Y are distinct, we will have X2 = Y2, and assume that X2 = {xk+1, . . . , xn}.
Rearranging the elements of Y such that the last n − k elements will be Y2 we can
write the two sets as

X = {
X1︷ ︸︸ ︷

x1, x2, . . . , xk,

X2︷ ︸︸ ︷
xk+1, . . . , xn−1, xn},

Y = {yi1 , yi2 , . . . , yik︸ ︷︷ ︸
Y1

, yik+1 , . . . , yin−1 , yin︸ ︷︷ ︸
Y2

},

where xi = yi j for j = k + 1, . . . , n, and |X1| = |Y1| ≥ 1 by assumption.
Note that y1 would be the element of Y that represents S1. If y1 ∈ Y1, then

(X − {x1}) ∪ {y1} is a transversal of F , since y1 �= xl for l = 2, . . . , n and all
the subsets Si are represented. So let y1 ∈ Y2, and assume that in = 1, that is,
its unique equal element in X2 is xn . So we will have that xn = y1, therefore
{xn, x1} ⊆ S1, which means that an alternative indexing exists for X , where the
values of x1 and xn are interchanged. Let us consider the element yn now. If yn ∈ Y1,
then (X − {x1}) ∪ {yn} is a transversal of F , since S1 is represented by xn , Sn is
represented by yn , and yn �= xl for l = 2, . . . , n. If yn ∈ Y2, then we can assume that
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in−1 = n, which implies that xn−1 = yn therefore {xn−1, xn} ⊆ Sn . As previously,
we now consider yn−1 and if it is contained in Y1 then (X − {x1}) ∪ {yn−1} is a
transversal of F , since S1 is represented by xn , Sn by xn−1 and Sn−1 by yn−1, while
all the elements are distinct. Since Y1 �= ∅, if we continue this process eventually we
will have yk ∈ Y1 for some k ∈ {n, n− 1, . . . , k + 1}, and (X − {x1})∪ {yk} will be
a transversal of F . ��

We will consider now sets X ⊆ E , which are not partial transversals. A circuit
transversal of some family of subsets F = (Si : i ∈ I ) of E , is any X ⊆ E
which is not a partial transversal, and X − {e} is a partial transversal for any e ∈ X .
So, circuit transversals are subsets of E which are not partial transversals and are
minimal with respect to that property. It follows from the definition that an X ⊆ E
is not a partial transversal if and only if it contains a circuit transversal. In fact we
can make a stronger statement, similar to the exchange property of maximal partial
transversals given in Proposition 2.14.

Proposition 2.15 If X, Y circuit transversals of F = (Si : i ∈ I ), X �= Y and
e ∈ X ∩ Y , then the set (X ∪ Y )− {e} contains a circuit transversal.

Proof It is enough to show that C = (X ∪ Y ) − {e} is not a partial transversal.
Assume the contrary, and let an arbitrary indexing of C be the following:

C = {xi1 , xi2 , . . . , xin , y j1 , y j2 , . . . , y jm },

where for IX = {i1, . . . , in} and IY = { j1, . . . , jm}we have that X = {xik }k∈IX ∪{e}
and Y = {y jk }k∈IY ∪ {e}. So C is a transversal of (S j : j ∈ IX ∪ IY ). If e ∈ Sk

for some k ∈ IY or k ∈ IX , then X or Y is a transversal of (S j : j ∈ IX ∪ {k}) or
(S j : j ∈ IY ∪ {k}) respectively. If e ∈ Sk for some k ∈ I − (IX ∪ IY ) then both X
and Y are transversals of (S j : j ∈ IX ∪ IY ∪ {k}). We have that in all cases either
X or Y , or both, are partial transversal of F , a contradiction. ��

For a set system (E,F ) define the rank of a set X ⊆ E as the size of the
maximum partial transversal contained in X . We will write r(X).

Proposition 2.16 Given a ground set E and a family F = (Si : i ∈ I ) of subsets
of E, the rank function r : 2E → Z+ satisfies:

(i) 0 ≤ r(X) ≤ |X |, for any X ⊆ E;
(ii) if X ⊆ Y then r(X) ≤ r(Y );

(iii) for any X, Y we have r(X ∪ Y )+ r(X ∩ Y ) ≤ r(X)+ r(Y ).

Proof Properties (i) and (ii) follow from the definition of partial transversals. For
(iii) define

IX = {i ∈ I : Si ∩ X �= ∅}, IY = {i ∈ I : Si ∩ Y �= ∅},

and IX∪Y = IX ∪ IY , IX∩Y = IX ∩ IY . If IX∩Y = ∅ then X ∩ Y = ∅ which
implies that r(X ∩ Y ) = 0 and property (iii) holds with equality. So assume that
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IX∩Y �= ∅. Consider any J ⊆ IX∪Y , which will also be a subset of IX , IY , and IX∪Y .
By the definition of the rank and Theorem 2.13 we know that if F contains a partial
transversal of size r(X) then

∣∣∣∣∣
⋃

i∈J

Si

∣∣∣∣∣ ≥ |J | + r(X)− |IX |. (2.10)

Similarly for r(Y ), r(X ∪ Y ), and r(X ∩ Y ) we have

∣∣∣∣∣
⋃

i∈J

Si

∣∣∣∣∣ ≥ |J | + r(Y )− |IY |, (2.11)

∣∣∣∣∣
⋃

i∈J

Si

∣∣∣∣∣ ≥ |J | + r(X ∪ Y )− |IX∪Y |, (2.12)

∣∣∣∣∣
⋃

i∈J

Si

∣∣∣∣∣ ≥ |J | + r(X ∩ Y )− |IX∩Y |. (2.13)

Subtracting (2.10) and (2.11) from the addition of (2.12) and (2.13) we get

r(X)+ r(Y ) ≥ r(X ∪ Y )+ r(X ∩ Y )− |IX∪Y | − |IX∩Y | + |IX | + |IY |
= r(X ∪ Y )+ r(X ∩ Y ).

��

2.4 Abstract Independence

We are now in a position to raise the level of abstraction with respect to the one
upon which graphs, vector spaces, and transversals reside. It should be clear to the
reader from the results in Sects. 2.1–2.3, that certain sets of edges in graphs, vectors
in vector spaces, and elements in transversals exhibit common behavior. Specifically,
we can identify the following:

• Forests, linearly independent sets of vectors, and partial transversals have the
augmentation property as demonstrated in Propositions 2.3, 2.9, and 2.13.
• Spanning trees, bases, and transversals have the exchange property as demonstrated

in Propositions 2.4, 2.10, and 2.14.
• Cycles, minimally linearly dependent sets of vectors, and circuit transversals have

the elimination property as demonstrated in Propositions 2.5, 2.11, and 2.15.
• The notion of rank in graphs, vectors, and transversals obeys the submodularity

property in all three systems, as demonstrated in Propositions 2.7, 2.12, and 2.16.
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(a) (b)

Fig. 2.6 A graph and a transversal. (a) Graph G(V, E). (b) Bipartite graph of (E, F )

Therefore, we could argue that the above propositions do not describe properties
that graphs, vectors, or transversals have, but rather properties of a more general and
abstract notion that these systems follow. Consider a set E = {e1, e2, e3, e4, e5}, and
let us impose a structure on the elements of 2E as a consequence of letting E be:

– the set of edges of the graph depicted in Fig. 2.6a,
– the ground set of the set system (E,F ) with F = {{e1, e3, e4, e5}, {e3, e5}} as

illustrated by the bipartite graph in Fig. 2.6b,
– the set of columns of the matrix

AE =
[ e1 e2 e3 e4 e5

−1 0 −1 −1 0
2 0 1 2 1

]
.

The following subsets of 2E are of interest to us:

B = {{e1, e3}, {e1, e5}, {e3, e4}, {e4, e5}, {e3, e5}},
I = {∅, {e1}, {e3}, {e4}, {e5}} ∪B,

C = {{e2}, {e1, e4}, {e3, e4, e5}, {e1, e3, e5}}.

We can observe that for the graph G, set system (E,F ) and column space of AE ,
the above families of subsets correspond to:

– B is the set of spanning trees, transversals, and bases,
– I is the set of forests, partial transversals, and linearly independent columns,
– C is the set of cycles, circuit transversals, and minimally linearly dependent

columns.

Moreover, we can see that given one family we can define the other two. For example
if we had B we have

I = {X ⊆ E : ∃B ∈ B such that X ⊆ B}
C = {X ⊆ E : X ∈ 2E −I , X is sminimal}.
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In Chap. 3 we will show that the set systems (E,B), (E,I ), and (E,C ) are alter-
native representations of the same object, which will be called a matroid.

2.5 Notes

Various proofs of Theorem 2.12 which are simpler than Hall’s original proof have
appeared in the literature. The proof presented here is by Rado (1967), and the
reduction technique used in the argument can also be applied to prove generalizations
of Hall’s theorem, as demonstrated by Welsh (1971). The proof of Theorem 2.13 is
by Mirsky (1969).

http://dx.doi.org/10.1007/978-1-4614-8957-3_3


Chapter 3
Definition of Matroids

In this chapter the common properties of graphs, vectors, and transversals presented
in Chap. 2 will be considered as different sets of axioms and it will be proven that
they define the same object. Several equivalent axiomatic definitions of matroids
will be given, along with an algorithmic definition, which is the fundamental link
between matroids and combinatorial optimization.

3.1 Independent Sets

Definition 3.1 (Independence Axioms) Given some finite set E , the set system
(E,I ) is a matroid if the following are satisfied:

(I1) ∅ ∈ I .
(I2) If X ∈ I and Y ⊆ X then Y ∈ I .
(I3) If X, Y ∈ I and |X | > |Y | then there exists x ∈ X−Y such that Y ∪{x} ∈ I .

We write M(E,I ) or simply M if E and I are self-evident.

Axiom (I3) will be called the independence augmentation axiom and it generalizes
Propositions 2.3, 2.9, and 2.13. Any set system (E,I ) with I satisfying axioms
(I1) and (I2) will be called an independence system. Since any matroid is also an
independence system by definition, any future definition on independence systems
applies to matroids as well. Consider an independence system (E,I ). The members
of I are called independent while those of 2E − I dependent. The collection of
independent sets for some X ⊆ E will be

I (X) = {Y ⊆ X : Y ∈ I }.

Example 3.1 Consider for example the graph in Fig. 2.1 and let the ground set be
E = {e1, e2, . . . , e7}. If

I1 = {X ⊆ E : G[X ] does not contain any cycle},

L. S. Pitsoulis, Topics in Matroid Theory, 25
SpringerBriefs in Optimization, DOI: 10.1007/978-1-4614-8957-3_3,
© Leonidas S. Pitsoulis 2014
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then the set system (E,I1) trivially satisfies axioms (I1) and (I2), while (I3) is
Proposition 2.3. Therefore, (E,I1) is a matroid. Let now

I2 = {X ⊆ E : X is a matching in G}.

One can check that (E,I2) is an independence system since axioms (I1) and (I2)
are satisfied. However axiom (I3) is not satisfied, since if we take X = {e1, e6} and
Y = {e4} we have that both Y ∪ {e1} and Y ∪ {e6} are not in I2. �

The augmentation axiom can be further strengthened, as follows.

Theorem 3.1 Suppose that X, Y are independent sets in a matroid M(E,I ) and
|X | > |Y |. Then there exists some Z ⊆ X − Y such that |Y ∪ Z | = |X | and
Y ∪ Z ∈ I .

Proof Let Z ⊆ X − Y be a maximal set such that Y ∪ Z ∈ I and assume that
|Y ∪ Z | < |X |. We know from (I3) that such a Z exists, at least for |Z | = 1. Since
both X and Y ∪ Z are independent, there exists some x ∈ X − (Y ∪ Z) such that
(Y ∪ Z)∪{x} ∈ I . Since x /∈ Z it implies that Z is not maximal, a contradiction. �

Two matroids M1 and M2 are isomorphic and we write M1 ∼= M2, if there exists a
bijection φ : E(M1)→ E(M2) such that X ∈ I (M1) if and only if φ(X) ∈ I (M2)

for all X ⊆ E(M1). We are now in a position to define the three major classes of
matroids that arise from graphs, matrices, and transversals. In the definitions that
follow, the fact that the mentioned independent systems are matroids is proved in
Propositions 2.3, 2.9, and 2.13.

Definition 3.2 (Graphic Matroids) A matroid isomorphic to the matroid M(G)

with ground set E = E(G) and independence family

I = {X ⊆ E : G[X ] is a forest},

for a graph G, will be called graphic matroid.

Definition 3.3 (Representable Matroids) A matroid isomorphic to the matroid
M[A] with ground set E = {set of columns of A } and independence family

I = {X ⊆ E : X is a linearly independent set of vectors in F},

for a matrix A ∈ F
m×n in some field F, will be called F-representable matroid or

simply representable.

Definition 3.4 (Transversal Matroids) A matroid isomorphic to the matroid
M(E,F ) with independence family

I = {X ⊆ E : X is a partial transversal of F },

for a set system (E,F ), will be called transversal matroid.
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For a given a graph G the matroid M(G) will be called the cycle matroid of G,
while for a given matrix A the matroid M[A] will be called the vector matroid of A.
Moreover, GF(2)-representable matroids will be called binary.

3.2 Bases

Definition 3.5 (Bases) Given an independence system (E,I ), the maximal inde-
pendent sets will be called bases. The family of bases will be denoted by B.

The collection of bases for some X ⊆ E will be denoted by B(X) and is
defined as

B(X) = {Y ⊆ X : Y ∈ I , Y ∪ {x} /∈ I for all x ∈ X − Y }. (3.1)

It follows that B(E) = B. Note that bases in independence systems can have
different cardinalities. Consider for example X = {e1, e4, e6} for the independence
system (E,I2) given in Example 3.1, where we have that the two maximal matchings
contained in X are

B(X) = {{e1, e6}, {e4}}.

As the next important lemma shows, equal cardinality of bases is a necessary and
sufficient condition for an independence system to be a matroid.

Lemma 3.1 An independence system (E,I ) is a matroid if an only if for any
X ⊆ E all bases of X have the same cardinality.

Proof Let (E,I ) be a matroid and consider some X ⊂ E . Assume by contradiction
that there exist B1, B2 ∈ B(X) with |B1| > |B2|. Since B1, B2 ∈ I by axiom (I3)
we can find some x ∈ B1 − B2 such that B2 ∪ {x} ∈ I . Thus, B2 is not maximally
independent, a contradiction.

Let now (E,I ) be an independence system, X, Y ∈ I with |X | > |Y |, and
consider the set X ∪ Y . By assumption all bases of X ∪ Y have the same size, which
is at least |X | since X ∈ I . This implies that Y is not a base of X ∪ Y , so there
exists some x ∈ (X ∪ Y )− Y = X − Y such that Y ∪ {x} ∈ I , which is axiom (I3)
of Definition 3.1. �

Theorem 3.2 (Basis Axioms) A collection B ⊆ 2E is the set of bases of a matroid
M(E,I ) if and only if the following are satisfied:

(B1) B 	= ∅.
(B2) If B1, B2 ∈ B and x ∈ B1 − B2 then there exists y ∈ B2 − B1 such that

(B1 − {x}) ∪ {y} ∈ B.

Proof Let B be the set of bases of the matroid M(E,I ), where I satisfies axioms
(I1)–(I3) of Definition 3.1. We will show that B satisfies (B1) and (B2). Since by
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axiom (I1) I contains at least one element, the empty set, we have that B 	= ∅.
Consider now B1, B2 ∈ B, and x ∈ B1−B2. Then B1−{x} ∈ I by axiom (I2) and by
axiom (I3) there exists some y ∈ B2−(B1−{x}) such that B = (B1−{x})∪{y} ∈ I .
By Lemma 3.1 we have that B ∈ B since all bases of a matroid have the same
cardinality and (B2) is proved.

Let B ⊆ 2E satisfy (B1) and (B2). We will show that for

I = {X ⊆ E : there exists B ∈ B such that X ⊆ B} (3.2)

the set system (E,I ) satisfies axioms (I1)–(I3) of Definition 3.1. Axioms (I1) and
(I2) hold trivially.

To show (I3) consider any two X, Y ∈ I with |X | > |Y |. We have to show that
there exists x ∈ X − Y such that Y ∪ {x} ∈ I . Since X, Y ∈ I , by (3.2) there exist
B1, B2 ∈ B such that X ⊆ B1 and Y ⊆ B2. From all the possible B1, B2 such pairs,
choose the one such that |B1 ∩ B2| is maximum. If B2 ∩ (X − Y ) 	= ∅ then we are
done, since for any element x from this set we have Y ∪ {x} ⊆ B2, so the set Y ∪ {x}
is independent. Assume now by contradiction that B2∩ (X−Y ) = ∅. If |B1| > |B2|,
then by repeated application of (B2) we can create a set B = (B1∩ B2)∪ S for some
S ⊆ B1 − B2, such that B ∈ B and B ⊆ B1. This contradicts the maximality of
|B1 ∩ B2| and we must have |B1| = |B2|. We will partition B1 and B2 as illustrated
in Fig. 3.1, by ordering subsets of their elements as follows. Let X and Y in B1
and B2 respectively, appear first. Shaded areas indicate common subsets of elements
between B1 and B2. Partition now B2, by first indicating the common subsets X ∪Y ,
B2 ∩ (X − Y ) and (B1 − X) ∩ (B2 − Y ). From Fig. 3.1 it is now evident that if
B2 ∩ (X − Y ) = ∅ we will have

|B2| = |X ∩ Y | + |Y ∩ (B1 − X)| + |(B1 − X) ∩ (B2 − Y )| + |Y − B1|
+ |(B2 − B1)− Y |

= |B1 ∩ B2| + |Y − B1| + |(B2 − B1)− Y | (3.3)

= |B1|.

Fig. 3.1 The elements of B1 and B2
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From Fig. 3.1 we can also see that if B2 ∩ (X − Y ) = ∅ then

|B1| ≥ |B1 ∩ B2| + |X − Y |. (3.4)

Combining (3.3) and (3.4) we get

|Y − B1| + |(B2 − B1)− Y | ≥ |X − Y |. (3.5)

Since |X | > |Y | we have that

|X − Y | > |Y − X | ≥ |Y − B1|

which from (3.5) implies that (B2− B1)−Y 	= ∅. So for some y ∈ (B2− B1)−Y by
axiom (B2) there exists x ∈ B1 − B2 such that (B2 − {y})∪ {x} ∈ B, contradicting
the maximality of |B1 ∩ B2|. Therefore, (E,I ) is a matroid.

It remains to be shown that the family of maximal independent sets of (E,I )

is actually B, which follows directly from the definition of I in (3.2). A set B is
maximally independent in (E,I ) if and only if it is contained in a member of B and
B ∪ {x} is not contained in any member of B for all x ∈ E − B. This is equivalent
to B ∈ B. �

Axiom (B2) is called the base exchange axiom and is a generalization of Propo-
sitions 2.4, 2.10, and 2.14.

Given the definition of matroids with respect to the family of bases, we can see
that there exist simple combinatorial structures that are matroids. For example, it is
easy to see that all nonempty subsets of cardinality k of a finite set E satisfy the basis
axiom (B2) of Theorem 3.2.

Definition 3.6 (Uniform Matroid) A matroid isomorphic to the matroid Uk,n with
ground set |E | = n and independence family

I = {X ⊆ E : |X | ≤ k},

will be called uniform matroid.

3.3 Circuits

Definition 3.7 (Circuits) Given an independence system (E,I ) the minimal depen-
dent sets will be called circuits. The family of circuits will be denoted by C .

The collection of circuits for some X ⊆ E will be denoted by C (X) and is defined
as

C (X) = {Y ⊆ X : Y /∈ I , Y − {y} ∈ I for ally ∈ Y }. (3.6)

A singleton e ∈ E(M) that is a circuit, will be called a loop of M .
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Theorem 3.3 (Circuit Axioms) A collection C ⊆ 2E is the set of circuits of a
matroid M(E,I ) if and only if the following are satisfied:

(C1) ∅ /∈ C .
(C2) If C1, C2 ∈ C and C1 ⊆ C2 then C1 = C2.
(C3) If C1, C2 ∈ C , C1 	= C2 and e ∈ C1 ∩ C2 then there exists C3 ∈ C such that

C3 ⊆ (C1 ∪ C2)− {e}.
Proof Let C be the set of circuits of the matroid M(E,I ), where I satisfies
axioms (I1)-(I3) of Definition 3.1. We will show that C satisfies (C1)-(C3). Axiom
(C1) follows from axiom (I1), while (C2) is true since if C1 	= C2 then C2 is not
minimally dependent. Consider now any C1, C2 ∈ C , C1 	= C2 and e ∈ C1 ∩ C2,
and assume by contradiction that (C1 ∪ C2)− {e} does not contain a member of C .
By Definition 3.7 we must have (C1 ∪ C2) − {e} ∈ I . Since by (C2) none of the
C1 and C2 is a subset of the other, we have that there exists at least two elements
x2 ∈ C2 − C1 and x1 ∈ C1 − C2. If we take the maximum independent subset X
of C1 ∪ C2, since X cannot contain either C1 or C2, we can assume without loss of
generality that x1, x2 ∈ X . Therefore, we have

|X | ≤ |(C1 ∪ C2)− {x1, x2}| < |(C1 ∪ C2)− {e}|.

Applying axiom (I3) to the independent sets X and (C1 ∪ C2) − {e} we get an
independent subset of C1 ∪ C2 which is larger than X , a contradiction.

Assuming now that C ⊆ 2E satisfies (C1)-(C3), we will show that for

I = {X ⊆ E : there does not exist Y ∈ C such that Y ⊆ X}, (3.7)

the set system (E,I ) is a matroid. Axiom (I1) is established by (C1) and the fact
that the empty set does not contain any member of C . Axiom (I2) follows directly
from the definition of I in (3.7). Therefore, (E,I ) is an independence system. We
will now show that for any X ⊆ E the bases of X have the same cardinality, thus by
Lemma 3.1 (E,I ) is a matroid. Consider any X ⊆ E and assume by contradiction
that there exist X1, X2 ∈ B(X) such that |X1| > |X2|, while we choose those X1
and X2 such that |X1 ∩ X2| is maximum. Take any x ∈ X1 − X2 and consider the
set X2 ∪ {x}. Since X2 ∈ B(X) we have that X2 ∪ {x} /∈ I , which by (3.7) implies
that it contains some Cx ∈ C , where x ∈ Cx . If there exists some C distinct from Cx

such that C ∈ C and C ⊆ X2 ∪ {x}, by (C3) we have that (C ∪Cx )−{x} contains a
member of C , which is a contradiction since (C ∪Cx )−{x} ⊆ X2. We can conclude
that Cx is the unique circuit in X2 ∪ {x}. So if we take some y ∈ Cx − X1 then
X3 = (X1 ∪ {x})− {y} ∈ I since we eliminate the unique circuit in X2 ∪ {x}. But
now we have |X3 ∩ X1| > |X2 ∩ X1|, which is a contradiction. Therefore, (E,I )

is a matroid.
It remains to be shown that the family of minimal dependent sets of (E,I ) is

actually C . This follows from the definition of I in (3.7), since C is a circuit of
(E,I ) if and only if C contains a member of C while C − {x} does not, for any
x ∈ C , which is equivalent to C ∈ C . �
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Axiom (C3) is called the circuit elimination axiom and is a generalization of
Propositions 2.5, 2.11, and 2.15.

In the second part of the proof in Theorem 3.3, we show that for any independent
set X in a matroid M(E,I ), if X ∪ {e} /∈ I for some e ∈ E , then X ∪ {e} contains
a unique circuit, which contains e. The following proposition is an immediate result
of this.

Proposition 3.1 If B ∈ B(E) for a matroid M(E,I ) and x ∈ E − B, then there
exists a unique circuit C(x, B) contained in B ∪ {x} and it contains x.

Any circuit in a matroid of the type defined in Proposition 3.1 will be called a
fundamental circuit of a base. Next we provide a characterization for the elements
in a fundamental circuit of a base.

Proposition 3.2 If B ∈ B(E) for a matroid M(E,I ), then for any x ∈ E − B the
set (B − {y}) ∪ {x} is a base of M if and only if y ∈ C(x, B).

Proof Assume by contradiction that (B − {y}) ∪ {x} is a base of M for some
y ∈ B − C(x, B). Then C(x, B) is contained in (B − {y}) ∪ {x}, a contradiction.
Consider now any y ∈ C(x, B) and assume that (B−{y})∪{x} /∈ I . Then B ∪{x}
contains a circuit other than C(x, B), which contradicts Proposition 3.1. �

We also state the following lemma that is used in the proof of the main result in
Chap. 5.

Lemma 3.2 If M1 and M2 are two matroids on the same ground set, such that any
circuit of M1 contains a circuit of M2 and vice versa, then M1 = M2.

Proof If X ∈ C (M1) there exists a circuit Y ∈ C (M2) such that X ⊆ Y and for Y
there exists a circuit Z ∈ C (M1) such that Z ⊆ Y . We have

Z ⊆ Y ⊆ X,

and by axiom (C2) we must have Z = X , which implies that X = Y . Similarly, we
show that any circuit of M2 is a circuit of M1, thus, both matroids have the same
family of circuits and they are equal. �

3.4 Rank

Definition 3.8 (Rank) Given an independence system (E,I ), the rank function
r : 2E → Z+ is defined as

r(X) = max{|Y | : Y ⊆ X, Y ∈ I } (3.8)

for any X ⊆ E .

http://dx.doi.org/10.1007/978-1-4614-8957-3_5


32 3 Definition of Matroids

Theorem 3.4 (Rank Axioms) A function r : 2E → Z is the rank function of a
matroid M(E,I ) if and only if the following are satisfied for all X, Y ∈ E :

(R1) 0 ≤ r(X) ≤ |X |.
(R2) If Y ⊆ X then r(Y ) ≤ r(X).
(R3) r(X)+ r(Y ) ≥ r(X ∪ Y )+ r(X ∩ Y ).

Proof Let r : 2E → Z be the rank function of a matroid M(E,I ), where I
satisfies axioms (I1)-(I3) of Definition 3.1. By Definition 3.8 r trivially satisfies
(R1) and (R2). For (R3), first note that by Theorem 3.1 for any X ⊆ E if Y ⊆ X
such that Y ∈ I , then Y can be extended to a basis of X . Consider now a basis
A ∈ B(X ∩Y ). Then A ∈ I (X), so by Theorem 3.1 there must exist some B ⊆ X ,
such that A ∩ B = ∅ and (A ∪ B) ∈ B(X). Similarly, since (A ∪ B) ∈ I (X ∪ Y )

there must exist some C ⊆ X ∪ Y , (A∪ B)∩C = ∅ and (A∪ B)∪C ∈ B(X ∪ Y ).
Therefore, (A ∪ C) ∈ I and we can now state the following:

r(X)+ r(Y ) ≥ |A ∪ B| + |A ∪ C |
= 2|A| + |B| + |C |
= |A ∪ B ∪ C | + |A|
= r(X ∪ Y )+ r(X ∩ Y ).

Let now r : 2E → Z satisfy (R1)-(R3). We will show that for

I = {X ⊆ E : r(X) = |X |}, (3.9)

the set system (E,I ) is a matroid. By (R1) we have that r(∅) = 0 which means
that ∅ ∈ I . For (I2), take any X ∈ I and Y ⊆ X . Assume by contradiction that
Y /∈ I . Then by (R1) and (3.9) we have that r(Y ) < |Y |. By (R3) we have

r(X − Y )+ r(Y ) ≥ r((X − Y ) ∪ Y )+ r((X − Y ) ∩ Y )

= r(X).

Since X ∈ I by assumption, and r(X − Y ) ≤ |X − Y | by (R2), substituting the
above we get

|X − Y | + |Y | > r(X − Y )+ r(Y ) ≥ r(X) = |X |,

which is a contradiction. For (I3), assume by contradiction that there exist X, Y ∈ I ,
|X | > |Y |, such that for all x ∈ X − Y , Y ∪ {x} /∈ I . By (R1) and (3.9) we
have that r(Y ∪ {x}) < |Y | + 1 for all x ∈ X − Y . Moreover, by (R2) we have
r(Y ∪{x}) ≥ r(Y ), where r(Y ) = |Y | since Y ∈ I by assumption. Therefore, since
r is an integer function we get

r(Y ∪ {x}) = r(Y ) = |Y |, for all x ∈ X − Y. (3.10)
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Consider now two distinct x1, x2 ∈ X − Y . By (R3) we have

r(Y ∪ {x1})+ r(Y ∪ {x2}) ≥ r((Y ∪ {x1}) ∪ (Y ∪ {x2}))+ r((Y ∪ {x1}) ∩ (Y ∪ {x2}))
= r(Y ∪ {x1, x2})+ r(Y ).

So by (3.10) and (R2)

|Y | ≥ r(Y ∪ {x1, x2}) ≥ r(Y ),

which implies that r(Y ∪ {x1, x2}) = |Y |. Thus, by repeated application of (R3) we
will get r(Y ∪ (X − Y )) = |Y |, which is a contradiction since Y ∪ (X − Y ) = X .

In order to show that the function r : 2E → Z which satisfies (R1)-(R3), is the
rank function of (E,I ) as stated in Definition 3.8, we have to show that

r(X) = max{|Y | : Y ⊆ X, r(Y ) = |Y |},

for any X ⊆ E . Given any X ⊆ E , by (R1) and (R2) we have that Y is the maximum
subset of X such that r(Y ) = |Y | if and only if for all x ∈ X−Y , r(Y ) ≤ r(Y∪{x}) <

|Y | + 1, which is equivalent to r(Y ∪ {x}) = |Y |. By repeated application of (R3) as
it is done above, we have r(X) = r(Y ). �

Axiom (R3) is called the submodularity of r and it is a generalization of Propo-
sitions 2.7 and 2.12. There is also an equivalent set of rank axioms, as stated in
Theorem 3.5 without proof.

Theorem 3.5 (Rank Axioms) A function r : 2E → Z is the rank function of
a matroid M(E,I ) if and only if the following are satisfied for all X ∈ E and
x, y ∈ E :

(R1′) r(∅) = 0.
(R2′) r(X) ≤ r(X ∪ {y}) ≤ r(X)+ 1.
(R3′) If r(X ∪ {x}) = r(X ∪ {y}) = r(X) then r(X ∪ {x, y}) = r(X).

Given a matroid M(E,I ) we can make the following observations regarding the
rank function and the families of independent sets, bases, and circuits:

(i) X ∈ I ⇔ |X | = r(X).
(ii) X ∈ B ⇔ |X | = r(X) = r(E).

(iii) X ∈ C ⇔ X 	= ∅ and for every x ∈ X, r(X − {x}) = |X | − 1 = r(X).

For an independence system (E,I ) the rank of some X ⊆ E is the cardinality
of the largest base of X . By Lemma 3.1, if (E,I ) is a matroid then all bases of X
have the same cardinality. If on the other hand (E,I ) is not a matroid, then X may
contain bases which are less in size than r(X).

Definition 3.9 (Low Rank) Given an independence system (E,I ), the low rank
function lr : 2E → Z is defined as
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lr(X) = min{|Y | : Y ⊆ X, Y ∈ I , Y ∪ {x} /∈ I for all x ∈ Y − X}

for any X ⊆ E .

So while rank is defined as the cardinality of the largest base of X , low rank is the
cardinality of the smallest base. Note that r(X) = |X | ⇔ lr(X) = |X |, that is, rank
and low rank are equivalent when X is an independent set. The importance of low
rank will become evident in Sect. 3.7 when we will discuss the relationship between
matroids and optimization. Given an independence system (E,I ) and X ⊆ E , the
cardinality of X will lie in the integer interval [0, |E |]. Any X with size r(E) <

|X | ≤ |E | is a dependent set. Any base B ∈ B will have size lr(E) ≤ |B| ≤ r(E),
while any X with size 0 ≤ |X | < lr(X) can be either independent or dependent.

3.5 Closure

The closure of a set resembles the span of a set of vectors as defined in Sect. 2.2.
Given an independence system (E,I ), a subset X ⊆ E and y ∈ E , we will say that
y depends on X and write y ∼ X , when r(X ∪ {y}) = r(X). The closure of X is
the set of those elements of E than depend on X .

Definition 3.10 (Closure) Given an independence system (E,I ) the closure
operator is a set function cl : 2E → 2E defined as

cl(X) = {y ∈ E : r(X ∪ {y}) = r(X)}. (3.11)

for any X ⊆ E .

For some X ⊆ E , it follows from the definition that X ⊆ cl(X), since r(X∪{x}) =
r(X) for all x ∈ X . Moreover, it follows from the definition that

cl(X) = E ⇔ r(X) = r(E).

Example 3.2 If M(E,I ) = M[A] for some matrix A ∈ F
m×n , then for X ⊆ E we

have
cl(X) = {x ∈ E : x =

∑

i

ai xi , xi ∈ X, for some ai ∈ F},

or equivalently cl(X) = 〈X〉 ∩ E .
Consider now that we have the graphic matroid M(G) of the graph G given in

Fig. 2.1. In this case for X = {e1, e3} we have cl(X) = X ∪ {e4, e2}, while for
X = {e5, e6} we have cl(X) = X ∪ {e4, e7, e2}. Actually, since r(e2) = 0 the loop
e2 is included in the closure of every subset of E .

For the transversal matroid of the set system (E,F ) in Example 2.1, for X =
{1, 3, 5} we have cl(X) = X ∪ {4} while for X = {1, 2} we have cl(X) = X . �

http://dx.doi.org/10.1007/978-1-4614-8957-3_2
http://dx.doi.org/10.1007/978-1-4614-8957-3_2
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Theorem 3.6 (Closure Axioms) A function cl : 2E → 2E is the closure operator
of a matroid M(E,I ) if and only if the following are satisfied for all X, Y ⊆ E and
x, y ∈ E:

(CL1) If X ⊆ E then X ⊆ cl(X).
(CL2) If X ⊆ Y ⊆ E then cl(X) ⊆ cl(Y ).
(CL3) If X ⊆ E then cl(cl(X)) = cl(X).
(CL4) If X ⊆ E, x ∈ E, y ∈ cl(X ∪ {x})− cl(X) then x ∈ cl(X ∪ {y}).
Proof Let cl : 2E → 2E be the closure operator of a matroid M(E,I ), where
I satisfies axioms (I1)-(I3) of Definition 3.1. Axiom (CL1) follows from Defin-
ition 3.10. For (CL2) let X ⊆ Y ⊆ E and take any x ∈ cl(X). If x ∈ X then
x ∈ Y and x ∈ cl(Y ). If x /∈ X , then since any base of X can be extended to a base
of Y by axiom (I3), we can find a base of Y that does not contain x . This implies
that r(Y ∪ {x}) = r(Y ), or x ∈ cl(Y ). Thus, we have shown that cl(X) ⊆ cl(Y ).
For (CL3) since by (CL1) we have that cl(X) ⊆ cl(cl(X)), enough to show that
cl(cl(X)) ⊆ cl(X). Take any x ∈ cl(cl(X)), where by the definition of closure we
know that r(cl(X) ∪ {x}) = r(cl(X)). Since cl(X) = X ∪ cl(X)− X , we have

r(X) = r(X ∪ cl(X)− X)

= r(cl(X)) (3.12)

= r(cl(X) ∪ {x}).

By axiom (R2) and the fact that X ∪ {x} ⊆ cl(X ∪ {x}) we have

r(cl(X) ∪ {x}) ≥ r(X ∪ {x}) ≥ r(X).

By (3.12) we get r(X ∪{x}) = r(X) and x ∈ cl(X). For (CL4) let y ∈ cl(X ∪{x})−
cl(X) for some X ⊆ E and x ∈ E . This implies that r(X ∪ {x, y}) = r(X ∪ {x})
and r(X ∪ {y}) 	= r(X). Now for any X ⊆ E and x ∈ E we have

r(X) ≤ r(X ∪ {x}) ≤ r(X)+ 1,

which by the integrality of r means that either r(X) = r(X ∪ {x}) or r(X ∪ {x}) =
r(X)+ 1. We can write then r(X ∪ {y}) = r(X)+ 1. Therefore, we have

r(X)+ 1 = r(X ∪ {y}) ≤ r(X ∪ {y} ∪ {x}) = r(X ∪ {x}) ≤ r(X)+ 1,

and the inequality collapses resulting in r(X ∪ {y} ∪ {x}) = r(X ∪ {y}) ⇔ x ∈
cl(X ∪ {y}).

Let cl : 2E → 2E satisfy (CL1)-(CL4). We will show that for

I = {X ⊆ E : x /∈ cl(X − {x}) for allx ∈ X}, (3.13)
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the set system (E,I ) is a matroid. Trivially, we have ∅ ∈ I . For (I2), consider
some X ∈ I and Y ⊆ X . Since Y−{x} ⊆ X−{x}, by (CL2) we have cl(Y−{x}) ⊆
cl(X − {x}). Thus if x /∈ cl(X − {x}) then x /∈ cl(Y − {x}) for all x ∈ Y , which
means that Y ∈ I .

To prove that (I3) holds, assume by contradiction that there exist X, Y ∈ I such
that |X | > |Y |, while for all x ∈ X−Y we have that Y ∪{x} /∈ I . From all such X, Y
take those that |X ∩ Y | is maximum. Consider the set X − {x} for some x ∈ X − Y .
Since we have shown already that (I2) is true, X − {x} ∈ I . If Y ⊆ cl(X − {x})
then by (CL2)

cl(Y ) ⊆ cl(cl(X − {x})) = cl(X − {x}),

thus, since x /∈ cl(X − {x}) because X ∈ I , we have x /∈ cl(Y ). This implies
that Y ∪ {x} ∈ I by the definition of I in (3.13), which is a contradiction. So let
Y � cl(X − {x}). There must exist some y ∈ Y − X such that y /∈ cl(X − {x}).
Since X − {x} ∈ I by (I2), we have that (X − {x}) ∪ {y} ∈ I by the definition of
I in (3.13). But

|((X − {x}) ∪ {y}) ∩ Y | > |X ∩ Y |,

which in turn implies that for Y and (X − {x}) ∪ {y} axiom (I3) is true, since we
assumed that |X ∩ Y | is maximum. Thus, there exists z ∈ ((X − {x}) ∪ {y}) − Y
such that Y ∪ {z} ∈ I . But z ∈ X − Y in this case, so (I3) is true for X, Y also, a
contradiction.

In order to show that cl : 2E → 2E which satisfies (CL1)–(CL4), is the closure
operator of (E,I ) as stated in Definition 3.10, we have to show that for any X ⊆ E
and y ∈ E

r(X ∪ {y}) = r(X)⇔ y ∈ cl(X).

Consider any X ⊆ E . For any y ∈ X , y ∈ cl(X) by (CL1) and r(X ∪ {y}) = r(X).
For some y ∈ E−X , assume that r(X∪{y}) = r(X) and y /∈ cl(X). Then y /∈ cl(B)

for some base B ∈ B(X) by (CL2) since B ⊆ X . This implies that B ∪ {y} ∈ I ,
that is

z /∈ cl((B ∪ {y})− {z}), for all z ∈ B ∪ {y},

for otherwise there must exist z ∈ cl(B ∪ {y}) − cl(B), and by (CL4) we will
have y ∈ cl(B ∪ {y}) = cl(B). Therefore, r(X ∪ {y}) = r(B ∪ {y}) > r(X),
a contradiction. Similarly, it can be shown that if y ∈ cl(X) then r(X ∪ {y})
= r(X). �

Axiom (CL4) is also known as the MacLane – Steinitz exchange property.
Given an independence system (E,I ), if X = cl(X) then X is called a flat or a

closed set. If X is a flat and r(X) = r(E) − 1 then we will call X a hyperplane,
while if cl(X) = E then X is called a spanning set of the independence system.

Due to the equivalency of the axiom systems of the previous sections, whenever
we are referring to a matroid we will interchangeably use the definitions based on the



3.5 Closure 37

independent sets M(E,I ), family of bases M(E,B), family of circuits M(E,C ),
rank function M(E, r), or closure operator M(E, cl).

3.6 Dependent Sets, Spanning Sets, and Hyperplanes

The procedure that we employed in Sect. 3.2 for establishing equivalence between
the two definitions of matroids, with respect to the axiom systems (I1)–(I3) and (B1),
(B2) that correspond to to the families of independent sets and bases, is the following.
An interpretation is provided in (3.1) to construct B from I and in (3.2) to construct
I from B. Based on these interpretations, in Theorem 3.2 we proved that one axiom
system implies the other. Similarly for the family of circuits, the rank function and
the closure operator, in Sects. 3.3, 3.4 and 3.5 respectively. In this section we will
provide similar interpretations between the family of independent sets and families
of dependent sets, spanning sets, and hyperplanes. The set of axioms that define a
matroid with respect to each family will also be provided.

The family D of dependent sets is complementary to the family of independent
sets, so we have

I = {X ⊆ E : X 	∈ D}.

Theorem 3.7 (Dependent Sets Axioms) A collection D ⊆ 2E is the set of depen-
dent sets of a matroid M(E,I ) if and only if the following are satisfied:

(D1) ∅ /∈ D .
(D2) If X ∈ D and X ⊆ Y then Y ∈ D .
(D3) If X, Y ∈ D and X ∩ Y /∈ D , then for every x ∈ E, (X ∪ Y )− {x} ∈ D .

Comparing the spanning set axioms in Theorem 3.8 with the independent sets
axioms in Definition 3.1, we notice a duality relationship, which will become evident
in Sect. 4.2.

Theorem 3.8 (Spanning Sets Axioms) A collection S ⊆ 2E is the set of spanning
sets of a matroid M(E,I ) if and only if the following are satisfied:

(S1) S 	= ∅.
(S2) If X ∈ S and X ⊆ Y then Y ∈ S .
(S3) If X, Y ∈ S and |X | > |Y |, then there exists x ∈ X−Y such that X−{x} ∈ S .

Given the family of hyperplanes, we can define the family of independent sets as
follows:

I = {X ⊆ E : for all x ∈ X, X − H = {x} for some H ∈H },

while the definition of matroids based on hyperplanes is the following.

Theorem 3.9 (Hyperplane Axioms) A collection H ⊆ 2E is the set of hyperplanes
of a matroid M(E,I ) if and only if the following are satisfied:

http://dx.doi.org/10.1007/978-1-4614-8957-3_4
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(H1) E /∈H .
(H2) If H1, H2 ∈H and H1 ⊆ H2 then H1 = H2.
(H3) If H1, H2 ∈ H and H1 distinct from H2, then for every x ∈ E there exists

H3 ∈H such that (H1 ∩ H2) ∪ {x} ⊆ H3.

3.7 Greedy Algorithm

Although in this section we will provide another equivalent definition of matroids, it
is unique in the sense that it is not based on a set of axioms, but rather on the output
of an algorithm to an optimization problem. This algorithmic definition of matroids
that will be given in Theorem 3.11, is a rare instance of a mathematical entity being
characterized by an algorithm. Moreover, the nature of the definition establishes the
fundamental role that matroids have in optimization.

Consider an independence system (E,I ) together with a weight function w :
E → R which is linear, that is, for any X ⊆ E we have

w(X) =
∑

e∈X

w(e).

We can state the following general discrete optimization problem on independence
systems

max(min) w(X) (3.14)

s.t. X ∈ B,

where w(∅) = 0 and B is the family of bases of E . Any X ∈ B will be called a feasi-
ble solution, while if it also solves (3.14) it will be called an optimum solution. Most
known combinatorial optimization problems can be stated as optimization problems
on independence systems, where the objective is to find a minimum or a maximum
weight basis. Consider for instance the following combinatorial optimization prob-
lems on graphs, where in each problem it is easy to show that I satisfies axioms (I1)
and (I2) of Definition 3.1. In each case we are given a connected undirected graph
G(V, E).

1. Minimum Spanning Tree. For some weight function w : E(G) → R find a
spanning tree T of G such that w(E(T )) is minimum. Set E = E(G) and
I = {X ⊆ E : G[X ] is a forest}.

2. Maximum Weight Matching. For some weight function w : E(G) → R find
a matching M ⊆ E(G) such that w(M) is maximum. Set E = E(G) and
I = {X ⊆ E : X is a matching}.

3. Traveling Salesman Problem. For some weight function w : E(G) → R+ find
a spanning cycle C of G such that w(E(C)) is minimum. Set E = E(G) and
I = {X ⊆ E : X ⊆ E(C), C is a spanning cycle of G}.
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4. Maximum Clique Problem. For a constant weight function w(v) = 1 for all
v ∈ V (G), find T ⊆ V (G) such that G[T ] is a complete graph and w(T )

maximum. Set E = V (G) and I = {X ⊆ E : G[X ] = K|X |}.
For the minimum spanning tree problem, we know that the corresponding indepen-
dence system (E,I ) is a graphic matroid since I satisfies axiom (I3) as we have
shown in Proposition 2.3. However, for the other problems it is easy to construct a
counterexample upon which axiom (I3) fails, as we have done in Example 3.1 for
the maximum weight matching problem. For those independent systems that are not
matroids, we have also defined the low rank in Definition 3.9, which is the cardinality
of the smallest base in a set. Consider now the ratio

q(E,I ) = min
X⊆E

lr(X)

r(X)
, (3.15)

which will be called the rank quotient of (E,I ). The rank quotient is directly
proportional to difference between the smallest and largest base of an independent
system, so in that sense, it could be used as a measure of how close the independent
system is from having a matroidal structure.

Perhaps the most naive algorithm for solving (3.14) is the so-called greedy algo-
rithm, which is described in Algorithm 3.1 for the maximization problem. The

Algorithm 3.1 Greedy
Input : independence system (E, I ), function w : E → R

Output: set X ∈ B

1. Sort E such that w(e1) ≥ w(e2) ≥ . . . ≥ w(e|E |)
2. X := ∅
3. for i = 1, . . . , |E | →
4. if X ∪ {ei } ∈ I →
5. X := X ∪ {ei }
6. end if
7. end for
8. return X

correctness of the Greedy, that is, the fact that it always produces a base of (E,I ),
is an immediate consequence of axiom (I2) and line 4 of the algorithm. We can
see that the Greedy algorithm starts from an empty solution, which by axiom
(I1) is independent, and inserts the best elements into a partial solution until it
becomes dependent. The procedure is myopic, in the sense that it never backtracks.
Apparently the computationally intensive task in Algorithm 3.1 is in line 4, where
we have to check whether some set X is independent or not. The corresponding
Greedy algorithm for the minimization problem in (3.14), is a slight modification of
Algorithm 3.1 where the order upon which the ground set E is sorted in line 1 is
reversed.
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The following result demonstrates that the approximation performance of the
Greedy algorithm is indeed bounded by the rank quotient of the corresponding
independence system.

Theorem 3.10 (Hausmann et al. (1980)) Let (E,I ) be an independence system
and w : E → R any weight function. If for the maximization problem in (3.14) G is
the solution found by the Greedy algorithm and O is the optimum solution then

q(E,I ) ≤ w(G)

w(O)
. (3.16)

Moreover, the bound is sharp.

Proof Let Ei = {ek : k = 1, . . . , i} for all i = 1, 2, . . . , n. Moreover, let Oi =
O ∩ Ei and Gi = G∩ Ei , while it is understood that On = O and Gn = G. Observe
that

|Gi | − |Gi−1| =
{

1 if ei ∈ G,

0 otherwise,
(3.17)

and similarly for Oi . Since Oi ⊆ Ei and Oi ∈ I we have by the definition of the
rank function that

|Oi | = r(Oi ) ≤ r(Ei ). (3.18)

By line 4 of Algorithm 3.1 and axiom (I2), Gi is a basis for Ei for every i = 1, . . . n,
therefore,

|Gi | ≥ lr(Ei ). (3.19)

Combining (3.17), (3.18) and (3.19), the fact that w(ei ) − w(ei+1) ≥ 0 for all
i = 1, . . . n, and setting w(en+1) = 0, we can relate the total weight of G and O as
follows:

w(G) =
n∑

i=1

(|Gi | − |Gi−1|)w(ei )

=
n∑

i=1

|Gi |w(ei )−
n∑

i=1

|Gi−1|w(ei )

=
n∑

i=1

|Gi |w(ei )−
n∑

i=1

|Gi |w(ei+1)

=
n∑

i=1

|Gi |(w(ei )− w(ei+1))

≥
n∑

i=1

lr(Ei )(w(ei )− w(ei+1))
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≥ q(E,I )

n∑

i=1

r(Ei )(w(ei )− w(ei+1))

≥ q(E,I )

n∑

i=1

|Oi |(w(ei )− w(ei+1))

= q(E,I )

n∑

i=1

(|Oi | − |Oi−1|)w(ei )

= q(E,I )w(O).

In order to show that the bound is sharp, we have to construct a weight function
w : E → R for any independence system, such that (3.16) holds with equality. For
any (E,I ) take the set X ⊆ E responsible for the value of the rank quotient of the
independent system, that is, there exist B1, B2 ∈ B(X) such that

|B1|
|B2| = q(E,I ).

It is enough to make B1 the solution found by the Greedy algorithm and B2 the
optimum for the maximization problem in (3.14). This can be easily done if we
consider the weight function

w(e) =
{

1 if e ∈ X,

0 otherwise,

and take any ordering of E where the first elements are those of B1. �

It is easy to see that the performance of the Greedy algorithm for the minimization
problem in (3.14) is not bounded. However, in (Hausmann et al. 1980) a dual variant
of the Algorithm 3.1 is presented, which has similar performance bounds as those
given in Theorem 3.10 for the minimization problem.

Example 3.3 Assume that we are interested in finding a maximum weight matching
in the graph K2,2 illustrated in Fig. 3.2. The corresponding independent system will
be described by E = {e1, e2, e3, e4} and the family of bases as

B = {{e1, e4}, {e2, e3}}.

If we have a weight function w : E → R such that w(e3) = 0 and

w(e2) ≥ w(e1) ≥ w(e4) ≥ 0,

then the solution that the Greedy algorithm will give is {e2, e3} with total weight

w(e2) ≥ 1

2
(w(e1)+ w(e4)).
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Fig. 3.2 Assignment problem

This is because for X = {e1, e2, e4} we have

lr(X)

r(X)
= 1

2
= q(E,I ),

while it can be easily verified that this is the case for any Kn,n since the size of any
circuit in the corresponding independent system will be two. Any set of two edges
incident to the same vertex is a circuit. On the other hand, if we were interested in
finding a minimum weight matching in the graph K2,2 of Fig. 3.2, we can see that
the ratio between the solution produced by the Greedy algorithm and the optimal is
unbounded. Set for instance w(e3) = 0, w(e1) = w(e4) = 1 and w(e2) = ∞. �

In view of Lemma 3.1, Theorem 3.10 yields the following algorithmic character-
ization of matroids.

Theorem 3.11 (Edmonds (1971)) An independence system (E,I ) is a matroid if
and only if the Greedy algorithm is optimal for the maximization problem in (3.14).

Proof If (E,I ) is a matroid, then by Lemma 3.1 we have q(E,I ) = 1, and by
Theorem 3.10 the Greedy is optimal.

Let w(e) = 1 for all e ∈ E and take any X ⊆ E . It can be easily verified that
for IX = {Y ⊆ X : Y ∈ I } the set system (X,IX ) is an independence system.
Consider now the Greedy algorithm for the maximization problem in (3.14) for the
independence system (X,IX ). Since the weight function is constant, the ground set
X can be ordered arbitrarily, which implies that the Greedy can provide as a solution
any base B ∈ B(X). Since the Greedy is optimal, this implies that all bases of X
must have cardinality r(X), and by Lemma 3.1 the independence system (E,I ) is
a matroid. �

The rank quotient q(E,I ) of an independence system can be considered as a
measure of the degree of matroid structure that the independence system exhibits, and
as it is stated in Theorem 3.10 it provides a bound on the approximate solution found
by the Greedy on the associated maximization problem. However, its definition in
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(3.15) does not seem to offer a direct way to efficiently compute its value for a given
independence system. In what follows, we will provide a bound on the rank quotient
that can be easily obtained, once the independence system has been defined in terms
of matroids. The following proposition is easy to show.

Proposition 3.3 Given matroids M1, . . . , Mn on a common ground set E, the set
system (E,I ) where

I = {X ⊆ E : X ∈ I (Mi ), i = 1, . . . , n}

is an independence system.

We will call the independence system (E,I ) the intersection of the matroids
M1, . . . , Mn and write M1 ∩ · · · ∩ Mn . It turns out that any independence system is
the intersection of a finite number of matroids.

Proposition 3.4 If (E,I ) is an independence system, then there exist matroids
M1, . . . , Mn on E such that for any X ⊆ E

X ∈ I ⇔ X ∈ I (M1 ∩ · · · ∩ Mn).

Proof Let C = {C1, . . . , Cn} be the family of circuits of (E,I ) and for each
Ci ∈ C define the family

ICi = {X ⊆ E : Ci 	⊆ X}.

We will show that the set system (E,IC ) is a matroid for each C ∈ C . The inde-
pendence axioms (I1) and (I2) are clearly satisfied. For (I3) consider any X, Y ∈ IC

with |X | > |Y |, and assume that for all x ∈ X − Y , C ⊆ Y ∪ {x}. We have that
X − Y ⊆ C . If |X − Y | ≥ 2 then C 	⊆ Y ∪ {x} for all x ∈ X − Y , therefore,
X − Y = {e}. Then C ⊆ Y ∪ {e} = X , a contradiction.

Thus, Mi (E,ICi ) is a matroid for i = 1, . . . , n, and we have

X ∈ I (M1 ∩ · · · ∩ Mn)⇔ X contains no circuit from C ⇔ X ∈ I .

�

The following theorem can be thought of as a generalization of Proposition 3.1
for independent systems.

Theorem 3.12 (Hausmann et al. (1980)) Let (E,I ) be an independence system.
If for every X ∈ I and e ∈ E − X the set X ∪ {e} contains at most p circuits, then

q(E,I ) ≥ 1

p
.
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Proof Consider any X ⊆ E and B1, B2 ∈ B(X). We have to show that

|B1|
|B2| ≥

1

p
.

Let B1 − B2 = {b1, . . . , bt }. The set K1 = B2 ∪ {e1} contains at most p circuits by
assumption and each circuit must contain {e1} and at least one element from B2− B1
since (B1 ∩ B2) ∪ {e1} ∈ I . Denote by X1 ⊆ B2 − B1 the set that contains one
element from each circuit, where we have that |X1| ≤ p, since otherwise B2 ∪ {e1}
can contain more than p circuits. Now let Ki = (Ki−1 − Xi−1) ∪ {ei } and Xi be
computed in the same way, for i = 1, . . . , t . We will have

|B2 − B1| =
∣∣∣∣∣

t⋃

i=1

Xi

∣∣∣∣∣ ≤ pt = p|B1 − B2| ⇒

|B2| − |B1 ∩ B2| = |B2 − B1| ≤ p(|B1| − |B1 ∩ B2|)⇒
|B2| ≤ p|B1| + |B1 ∩ B2|(1− p) ≤ p|B1| ⇒

|B1|
|B2| ≥

1

p
.

�

We have the following corollary from Theorem 3.12.

Corollary 3.1 If the independence system (E,I ) is the intersection of p matroids
then

q(E,I ) ≥ 1

p
.

Proof Let (E,I ) be the intersection of matroids M1, . . . , Mp on E . By Proposi-
tion 3.1, if X ∈ I (M1 ∩ · · · ∩ Mp) and e ∈ E then X ∪ {e} contains at most one
circuit in each Mi , i = 1, . . . , n. Therefore, X contains at most p circuits in (E,I )

and the result follows from Theorem 3.12. �

Combined with Theorem 3.10, Corollary 3.1 provides an approximation ratio of
the solution provided by Greedy algorithm for the maximization problem in (3.14)
and the optimum solution, with respect to the number of matroids used to describe
the independence system.

Example 3.4 Consider the maximum weight bipartite matching problem, an instance
of which was discussed in Example 3.3. We are given a bipartite graph G(V1, V2, E)

where V (G) = V1∪V2, and a nonnegative weight function w : E → R. Each vertex
set defines a partition on the edges of the graph. Let the partition of E defined by the
vertex set V1 be the family S = (Sv : v ∈ V1) where

Sv = {e ∈ E(G) : e incident to v},
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while let the partition defined by V2 be the family T = (Tv : v ∈ V2) where

Tv = {e ∈ E(G) : e incident to v}.

It follows that the independence system that describes the maximum weight matching
in G(V1, V2, E), is the intersection of the transversal matroids (E,S ) and (E,T ).
Therefore, as illustrated in Example 3.3, the Greedy algorithm will have an approx-
imation ratio of 1

2 . This is readily generalizable to k-partite matching, also known as
multidimensional assignment problems. �

3.8 Notes

The main references for Sects. 3.1–3.5 are the books of Oxley (1992) and Welsh
(1976). The proof of Theorem 3.6 is by Oxley (1992). Theorems 3.10 and 3.12 in
Sect. 3.7 are from Hausmann et al. (1980).

The pairs of the equivalent axiom systems from Sects. 3.1–3.6 are called cryp-
tomorphic, while the related interpretations cryptomorphisms. There are at least
13 known cryptomorphic axiom systems for matroids, which provide equivalent
axiomatic definitions with respect to the families of non-spanning sets, open sets,
and flats among others. These are listed by Brylawski (1986), where the author
also provides interpretations of the corresponding families to graphs, vector spaces,
and transversals. Moreover, in the same volume there is also a chapter by Nicoletti
and White (1986), where equivalence is proved for nine of these, as we did here in
Theorems 3.2–3.6.

The greedy algorithm is one of the oldest and simplest algorithms in optimization.
The term greedy was coined by Edmonds (1971) for discrete optimization problems,
but the algorithm is also encountered with other names such as steepest descent in
continuous optimization. There have been several attempts in the past with varying
degrees of success, to fully characterize the family of problems for which the greedy
algorithm provides the optimal solution. Theorem 3.11 by Edmonds (1971) was also
established independently by Rado (1957) and Gale (1968). Korte and Lovász (1981)
considered introducing order into the independence systems and defined greedoids
which generalize matroids. They have provided necessary and sufficient conditions
upon which the greedy algorithm produces the optimal solution on greedoids. Faigle
(1979) characterized those independence systems on partially ordered sets, where
the greedy algorithm is optimal. Probably the most complete characterization of
the problem structure where the greedy is optimal for linear objective functions is
that of matroid embeddings, introduced by Helman et al. (1993). Theorem 3.10 first
appeared in Jenkyns (1976), and the proof given here is by Korte and Hausmann
(1978). Furthermore, an extension of the greedy algorithm to examine more than
one element while constructing a solution is given by Korte and Hausmann (1978),
while an analysis of its worst case performance for independence systems which are
not necessarily matroids is given by Hausmann et al. (1980).



Chapter 4
Representability, Duality, Minors,
and Connectivity

The material in this chapter constitutes a brief look at what can be considered as
the fundamental core of matroid theory. We will present equivalent matrix repre-
sentations of graphic matroids, the concept of duality, minors, and connectivity, and
show how these apply to the two main classes of matroids presented in this book,
namely, graphic and representable matroids. The focus will be on results needed for
the exposition that follows in Chap. 5.

4.1 Representability

We have seen that graphs, matrices, and transversals can be thought of as represen-
tations of the same abstract object called matroid, in different settings. Any graph,
or matrix, has a well-defined matroid associated with it, and namely, the cycle and
vector matroid respectively. Assume now that we are given a matroid not by a graph,
or a matrix, but by a ground set E and an independence oracle, that is, a proce-
dure that provides an answer on whether some set X ⊆ E is independent or not.
We could define similar oracles for bases, circuits, rank, etc. Given a matroid by an
independence oracle it is not clear what, if any, representation there exists of this
matroid as a graph or a matrix. In Chap. 5 we will answer this question for graphic
matroids, by establishing a decomposition theorem that could be used to decide in
polynomial time whether a given binary matroid has a representation as a graph.
In this section, we will demonstrate that graphic matroids are representable on any
field. For matrices, however, representability is a much harder question to resolve.
Establishing conditions upon which a matroid is representable by a matrix in some
field F, is a deep and rich area of research in matroid theory.

Let us associate a matrix with any given graph. The incidence matrix of a graph
G(V, E), is a matrix AG = (ai j ) ∈ GF(2) defined by

ai j =
{

1 if non-loop edge e j is incident to vertex vi ,

0 otherwise.
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For example, the graph in Fig. 2.1 has the following incidence matrix

AG =

⎡

⎢⎢⎣

e1 e2 e3 e4 e5 e6 e7

v1 1 0 0 1 1 0 0
v2 1 0 1 0 0 0 0
v3 0 0 1 1 0 1 1
v4 0 0 0 0 1 1 1

⎤

⎥⎥⎦. (4.1)

Observe that for loop-less graphs, there is a one-to-one correspondence between
graphs and matrices in GF(2) with exactly two nonzero elements in each column.
A zero column in such matrix corresponds to a loop in the graph, but the end-vertex
of the loop is not uniquely determined. However, as we shall see in Sect. 4.4 this is
of no importance in our context, since a loop may be placed in any vertex of a graph
without affecting the corresponding cycle matroid. The next theorem shows that the
incidence matrix of a graph G is a representation of M(G) in GF(2).

Theorem 4.1 Graphic matroids are GF(2)-representable.

Proof Let AG be the incidence matrix of a graph G(V, E). We shall prove that
M(G) = M[AG] by showing that X is a linearly dependent set of columns in AG

if and only if G[X ] contains a cycle in G. Note that in GF(2) a set of vectors X
is linearly dependent if there exists some {x1, . . . , xk} ⊆ X for k ≥ 1 such that
x1 + · · · + xk = 0.

Assume that G[X ] contains a cycle G[C] for some C = {e1, . . . , en} ⊆ X . The
corresponding columns {a1, . . . , an} in AG form the submatrix AC , which is the
incidence matrix of the cycle C , and we must have

n∑

i=1

ai = 0, (4.2)

since each row of AC has exactly two ones. Assume now that X is a linearly dependent
set of columns in AG . Thus, there exists some C ⊆ X such that (4.2) is true. This in
turn implies that the submatrix of AG formed by the columns in C , has no row with
odd number of nonzero elements, which means that the subgraph G[C] has no vertex
of degree one, therefore by Proposition 2.2 it is not a forest, and it must contain a
cycle. ��

Consider now that we have a directed graph
−→
G (V, E). The incidence matrix of−→

G is a matrix A−→
G
= (ai j ) ∈ R defined by

ai j =

⎧
⎪⎨

⎪⎩

+1 if vertex i is the head of the non-loop arc j,

−1 if vertex i is the tail of the non-loop arc j,

0 otherwise.

http://dx.doi.org/10.1007/978-1-4614-8957-3_2
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Since each column in an m× n incidence matrix of a directed graph contains zero or
two nonzero entries with different sign the addition of its rows will result in a zero
row, implying that the rank cannot exceed m−1. The following theorem demonstrates
that the incidence matrix of any orientation of a graph is a representation matrix of
the associated cycle matroid.

Theorem 4.2 Graphic matroids are R-representable.

Proof For any graph G(V, E), let A−→
G

be the incidence matrix of the directed graph
−→
G so obtained by applying an arbitrary orientation on G. Similarly as in the proof of
Theorem 4.1, we shall prove that M(G) = M[A−→

G
] by showing that X is a linearly

dependent set of columns in A−→
G

if and only if G[X ] is contains a cycle in G. Assume
that G[X ] contains a cycle G[C] for some C = {e1, . . . , en} ⊆ X . The corresponding
columns {a1, . . . , an} in A−→

G
form the submatrix A−→

C
, which is the incidence matrix

of the directed cycle
−→
C , while each row of A−→

C
has exactly two nonzero elements.

Choose an arbitrary direction to traverse the cycle, say clockwise, and let ai = +1
if edge ei has the same direction and ai = −1 otherwise. We have

n∑

i=1

ai ai = 0. (4.3)

The reverse direction is the same as in the proof of Theorem 4.1. ��
By a similar argument to the one in the proof of Theorem 4.2 it can be shown that

graphic matroids are representable over any field F.
For a matrix A over a field F, we have seen that the sets of linearly indepen-

dent columns of A constitute the family of independent sets of the vector matroid
M[A]. It may happen that the representation matrix A contains more information
than necessary to define M[A]. For example, we may delete any row that is a lin-
ear combination of others without altering the matroid. Given an F-representable
matroid M with a representation matrix A, the matrix [ I | D ] obtained from A
by applying elementary row operations in F, column interchanges and deletions of
zero rows, is called a standard representation matrix for M , and the matrix D a
compact representation matrix. Each standard and compact representation matrix
of a matroid is associated with a base of the matroid, as defined by the basis of the
matrix. Given a connected directed graph G, the compact representation matrix of
M(G) in R is also known in the literature as the network matrix of G and it is equal
to R−1S, where [ R | S ] is obtained from the incidence matrix of an arbitrary orien-
tation of G minus an arbitrary row. As it will be demonstrated in Example Sect. 4.1,
there is also a combinatorial method of computing the network matrix of a graph.

Example 4.1 Consider the representation matrix in GF(2) for the matroid M(G) of
the graph in Fig. 2.1, which by Theorem 4.1 is the matrix AG given in (4.1). Applying
elementary row operations on AG in GF(2) we obtain a standard representation
matrix for M(G) as follows.

http://dx.doi.org/10.1007/978-1-4614-8957-3_2
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Fig. 4.1 Standard representation matrix of M(G) in GF(2)

⎡

⎢⎢⎣

e1 e2 e3 e4 e5 e6 e7

1 0 0 1 1 0 0
1 0 1 0 0 0 0
0 0 1 1 0 1 1
0 0 0 0 1 1 1

⎤

⎥⎥⎦
AG (1, :) = AG (1, :)+ AG (2, :)
AG (4, :) = AG (4, :)+ AG (3, :)−−−−−−−−−−−−−−−−−−−→

⎡

⎢⎢⎣

e1 e2 e3 e4 e5 e6 e7

0 0 1 1 1 0 0
1 0 1 0 0 0 0
0 0 1 1 0 1 1
0 0 1 1 1 0 0

⎤

⎥⎥⎦AG (4, :) = AG (4, :)+ AG (1, :)−−−−−−−−−−−−−−−−−−−→

⎡

⎢⎢⎣

e1 e2 e3 e4 e5 e6 e7

0 0 1 1 1 0 0
1 0 1 0 0 0 0
0 0 1 1 0 1 1
0 0 0 0 0 0 0

⎤

⎥⎥⎦
remove row 4

permute columns−−−−−−−−−−→

⎡

⎣

e5 e1 e6 e4 e2 e3 e7

1 0 0 1 0 1 0
0 1 0 0 0 1 0
0 0 1 1 0 1 1

⎤

⎦ = [ I | NG,T ].

The matrix NG,T is the compact representation matrix of M(G) for the basis T =
{e5, e1, e6}. We observe that the columns of NG,T represent characteristic vectors of
cycles in G, formed by the inclusion of the corresponding edge into the spanning
tree T (see Fig. 4.1). Equivalently, each column ek is the characteristic vector of the
set of elements from the base T ∈ B(M(G)) that belong to the fundamental circuit
C(ek, T ). Pivoting on nonzero elements in DG,T has the effect of replacing elements
from the basis. For example, if we want to insert e4 into the basis, we can see that it
can replace any of the elements in C(e4, T ), which are e5 or e6. If we want to replace
e5, then we pivot on the (1, 4)th element of the standard representation matrix, by
adding the first row to the fourth, to obtain

⎡

⎣

e4 e1 e6 e5 e2 e3 e7

e4 1 0 0 1 0 1 0
e1 0 1 0 0 0 1 0
e6 0 0 1 1 0 0 1

⎤

⎦,

which is the standard representation matrix that corresponds to the base {e4, e1, e6}.
If we take the incidence matrix of an orientation

−→
G of G and apply elementary

row operations, we get a standard representation matrix for M(G) in R as shown
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Fig. 4.2 Standard representation matrix of M(G) in R

in Fig. 4.2. The matrix N−→
G ,T

is the network matrix of
−→
G for the spanning tree

T = {e5, e1, e6}, and we have that N−→
G ,T
= NG,T mod 2. The elements in a column

e of N−→
G ,T

can also be obtained by considering the cycle formed by the inclusion
of e into the spanning tree T . If we traverse the edges of the cycle in the direction
defined by e, we place a +1 if an edge has opposite direction and −1 otherwise. ��

If we consider the cycles C1 = {e1, e3, e5, e7} and C2 = {e4, e5, e6} of the
graph G in Fig. 2.1, we notice that C1 � C2 = {e1, e3, e4, e6, e7} is the edge set of a
disjoint union of cycles of G, while this is the case for any symmetric difference of
cycles in the graph. This is a well- known property of graphs, and it is stated in the
next theorem.

Theorem 4.3 If C1, C2, . . . , Ck are cycles in a graph G then the graph G ′ = G[E ′]
where

E ′ = C1 � C2 � · · · � Ck,

is a disjoint union of cycles of G.

Proof The main observation here is that the degree of every vertex v ∈ V (G ′) is
even because every symmetric difference operation Ci � Ci+1 increases dG ′(v) by
either 0 or 2. We will find a cycle in G ′. Consider a v0 − vl path in G ′ of maximum
length. Since dG ′(v0) is even v0 is adjacent to a vertex y other than v1, which belongs
to the v0−vl path, for otherwise the y−vl path has greater length than l, contradicting
our hypothesis. If y = vi for some i ∈ {2, . . . , l}, we have a cycle C formed by the
closed path v0, v1, . . . , vi , v0. Deleting the edges of C from G ′ will result in a graph
whose vertices have also even degree, therefore the same procedure can be applied.
We conclude that E(G ′) can be partitioned into edge sets of cycles from G. ��
We can deduce that the symmetric difference of circuits in a graphic matroid is a
disjoint union of circuits. As it is stated in the theorem that follows, this property is
not only a necessary condition for graphic matroids, but characterizes the class of
binary matroids.

http://dx.doi.org/10.1007/978-1-4614-8957-3_2
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Theorem 4.4 A matroid M is binary if and only if for any set of circuits C1, C2, . . . ,

Ck ∈ C (M)
C1 � C2 � · · · � Ck,

is a disjoint union of circuits of M.

4.2 Duality

The notion of duality in matroids is similar to the one in optimization, and it gener-
alizes the concepts of orthogonality in vector spaces, and planarity in graphs. As the
next theorem demonstrates, for any matroid M we can define another matroid M∗ on
the same ground set called the dual of M , such that independent sets, bases, circuits,
rank, and any other property of M have well-defined dual counterparts in M∗.

Theorem 4.5 Given a matroid M(E,B), then

B∗ = {X ⊆ E : there exists a base B ∈ B, such that X = E − B}, (4.4)

is the family of bases of a matroid M∗ on E, called the dual of M.

Proof We have to show that the elements of B∗ satisfy axioms (B1) and (B2) of
Theorem 3.2. For (B1), sinceB 
= ∅ there exists some B ∈ B, therefore E−B ∈ B∗.

For (B2), consider any two B∗1 , B∗2 ∈ B∗ and x ∈ B∗1 − B∗2 . We have to show
that there exists y ∈ B∗2 − B∗1 such that (B∗1 − {x}) ∪ {y} ∈ B∗, which by (4.4) is
equivalent to the existence of a base B ∈ B such that E − B = (B∗1 − {x}) ∪ {y}.
Order the elements of E as determined by its partition into B1−B2, B1∩B2, B2−B1
and E − (B1 ∪ B2), and set B1 = E − B∗1 and B2 = E − B∗2 as it is illustrated in
Fig. 4.3. By (4.4) we have that B1, B2 ∈ B. Moreover, B∗1 −B∗2 = B2−B1 therefore
x ∈ B2 − B1.

Consider now the set B1∪{x}. Since B1 ∈ B, by Proposition 3.1 B1∪{x}will con-
tain a unique circuit C(x, B1) which will contain x . We also have that C(x, B1)−{x}
is not contained in B1 ∩ B2, since (B1 ∩ B2) ∪ {x} ⊆ B2. Therefore

(C(x, B1)− {x}) ∩ (B1 − B2) 
= ∅,

Fig. 4.3 Proof of Theorem 4.5
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and for any y ∈ C(x, B1) ∩ (B1 − B2), we have that (B1 − {y}) ∪ {x} ∈ I since it
does not contain a circuit. By Lemma 3.1 we have (B1 − {y}) ∪ {x} ∈ B since all
bases of M have the same cardinality. Noting that

E − (B1 − {y}) ∪ {x} = (B∗1 − {x}) ∪ {y},

axiom (B2) is proved. ��
Clearly, for any matroid M we have (M∗)∗ = M , since E − (E − B) = B for any
B ∈ B. We will use the prefix co whenever referring to a dual notion of a matroid,
and an asterisk for the corresponding notation. So we have the dual M∗ of the matroid
M , which is defined by the families of coindependent sets I ∗(M), cobases B∗(M),
cocircuits C ∗(M), the corank function r∗(M),etc. It follows from Theorem 4.5 that

r(M)+ r∗(M) = |E(M)|.

The following theorem establishes the corank of a set.

Theorem 4.6 For a matroid M and X ⊆ E(M)

r∗(X) = |X | − r(M)+ r(E − X).

Proof Let B∗X ∈ B∗(X) be a maximal coindependent set contained in X , where by
Lemma 3.1 we have that r∗(X) = |B∗X |. There exists a cobase B∗ ∈ B∗(M) that
contains B∗X , and its complement set B = E−B∗ is a base of M by Theorem 4.5. The
set BE−X = B ∩ (E − X) is a maximal independent set contained in E − X , which
implies that |BE−X | = r(E − X). The situation is depicted in Fig. 4.4. Therefore we
have

r∗(X) =|B∗X |
=|X | − |X − B∗X |
=|X | − (|B| − |BE−X |)
=|X | − r(M)+ r(E − X).

��

Fig. 4.4 Proof of Theorem 4.6
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The following proposition states some immediate relations between a matroid and
its dual.

Proposition 4.1 The following are true for a matroid M(E,I ).

(i) X ∈ I (M) if and only if E − X is cospanning.
(ii) X ∈H (M) if and only if E − X is a cocircuit.

Proof (i) A set X ⊆ E of M(E,I ) is spanning if for every x ∈ E we have
x ∈ cl(X). If X ∈ I (M) then there exists a base B ∈ B(M) such that X ⊆ B. So
E − X contains a cobase B∗ = E − B, and the corank is r∗(E − X) = r∗(B∗).
Therefore, for any x ∈ E we have that r∗(E− X ∪{x}) = r∗(E− X), which implies
that the set E − X is spanning in M∗. Reversing the argument proves sufficiency.
(ii) A set X ⊆ E of M(E,I ) is a hyperplane if cl(X) = X and r(X) = r(E)− 1.
Since for a hyperplane X we have r(X) < r(E) then X is not spanning. But cl(X) =
X , so for any y /∈ X we have r(X ∪ {y}) = r(X) + 1 = r(E) which implies
that X ∪ {y} is a spanning set. By the dual of (i) we have that (E − X) ∪ {y} is
coindependent, which implies that E − X is a cocircuit. Again, we could state the
argument in reverse. ��

Let us now examine duality with respect to the two main classes of matroids in
this book, graphic and representable.

Theorem 4.7 If G is a planar graph with geometric dual G∗ then M∗(G) = M(G∗).

Proof We can assume without loss of generality that G is connected, since on the
contrary we can consider each connected component separately. By the definition
of the geometric dual we have an one-to-one correspondence between the edges of
G and G∗, thus, we can assume that E(G) = E(G∗) and M∗(G) and M(G∗) have
a common ground set. We will show that both M(G)∗ and M(G∗) have the same
family of bases, or equivalently T is a spanning tree of G if and only if E − T is
a spanning tree of G∗. Since G is also the geometric dual of G∗, one direction will
suffice.

Let T ∗ = E − T . For T ∗ to be a spanning tree of G∗ it must

(i) contain no cycles,
(ii) contain all vertices of G∗, and

(iii) be connected.

Assume that T ∗ contains the cycle

f1, e1, f2, e2, . . . , fn, en, f1,

where fi ∈ V (G∗) and ei ∈ E(G∗) for i = 1, . . . , n. By the definition of the
geometric dual, the pairs of vertices fi , fi+1 correspond to adjacent faces of G
which share a common edge ei /∈ T . Then the graph G\{e1, . . . , en} is disconnected
since V (G[e1, . . . , en]) 
= ∅, contradicting the fact that T is a tree in G (see Fig. 4.5).
For condition (ii), since T ∗ does not contain any cycles in G∗ we will have
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Fig. 4.5 Cycle in G∗

|V (T ∗)| ≥ |E(T ∗)| + 1

= |E(G)| − |E(T )| + 1 (4.5)

= |E(G)| − |V (G)| + 2

= V (G∗),

where the last equality is derived from the well-known Euler’s formula for the number
of faces in a planar graph, since each face of G is a vertex of G∗. Since T ∗ ⊆ G∗ we
have V (T ∗) = V (G∗). For (iii), since T ∗ contains no cycles it will be a forest and
we have

|E(T ∗)| = |V (T ∗)| + k(T ∗),

and by (4.5) we have that k(T ∗) = 1. ��
In Sect. 5.1 we will prove that the matroids M∗(K3,3) and M∗(K5) are not graphic
matroids. Using this fact, Kuratowski’s Theorem which states that a graph is planar if
and only if it does not contain as a topological minor K5 and K3,3, and Theorem 4.7,
we can prove the following characterization of planar graphs based on the dual of
the cycle matroid.

Theorem 4.8 G is planar if and only if M(G) = M∗(G).

Therefore, the class of graphic matroids is not dual-closed, and the duals of graphic
matroids which are not graphic will be called cographic. Those matroids which are
both graphic and cographic are called planar.

In contrast with the class of graphic matroids, the following theorem states that rep-
resentable matroids are dual-closed and provides the standard representation matrix
for the dual of any vector matroid. It also demonstrates how duality in matroids
generalizes the concept of orthogonality in vector spaces.

Theorem 4.9 If A = [ I | D ] is a standard representation matrix for a matroid M
then A∗ = [ I | − DT ] is a standard representation matrix for M∗.

http://dx.doi.org/10.1007/978-1-4614-8957-3_5


56 4 Representability, Duality, Minors, and Connectivity

Proof We have to show that B ∈ B(M[A]) if and only if (E − B) ∈ B(M[A∗]).
Let

A = [ I | D ], and A∗ = [ I | − DT ]

be matrices in F
r×n . We will first show that the rows of A∗ constitute a basis for the

nullspace of A. Note that by construction any row of A∗ is orthogonal to all the rows
of A, that is,

A(i, :)A∗( j, :)T = 0,

for all i ∈ rows(A) and j ∈ rows(A∗). Therefore, each row of A∗ belongs to the
nullspace of A. We know from Theorems 1.1 and 2.7 that the dimension of the row
space R(AT ) plus the dimension of the nullspace N (A) = R(AT )⊥ equals to n.
Since the dimension of the row space of a matrix equals the dimension of its column
space, we have that the dimension of N (A) is n − r , therefore the n − r linearly
independent rows of A∗ constitute a basis for N (A).

Consider now any base B = {e1, . . . , er } of M[A], which implies that the cor-
responding columns form a basis in A. Each column in {er+1, . . . , en} in A can be
written as a linear combination of the columns in B, so there exist scalars cek ,i ∈ F

such that
A(:, ek)+ cek ,1 A(:, e1)+ · · · + cek ,r A(:, er ) = 0,

for each k = r + 1, . . . , n. Let the (n − r)× n matrix formed by these scalars be

A′ =

⎡

⎢⎢⎢⎣

e1 e2 ··· er er+1 er+2 ··· en

cer+1,1 cer+1,2 · · · cer+1,r 1 0 · · · 0
cer+2,1 cer+2,2 · · · cer+2,r 0 1 · · · 0

...
...

. . .
...

...
...

. . .
...

cen ,1 cen ,2 · · · cen ,r 0 0 · · · 1

⎤

⎥⎥⎥⎦.

Then the columns with labels {er+1, . . . , en} form a basis for A′, while since its rows
are in N (A), we have that M[A′] = M[A∗] and E − B is a base of M[A∗]. The
argument can be reversed to show that if E − B is a base of M[A∗] then B is a base
of M[A]. ��
Example 4.2 Consider the standard representation matrix AG for the matroid M(G)

in Example 4.1. The matrices AG and A∗G as well as the graph G and its geometric
dual G∗ can be seen in Fig. 4.6. We observe that the columns {e4, e2, e3, e7} in A∗G
correspond to a spanning tree of G∗, and the complement of that set to a spanning
tree in G. Moreover, each cycle in G is a bond of G∗ and vice versa. ��

We get the following corollary to Theorem 4.9.

Corollary 4.1 A matroid M is binary if and only if M∗ is binary.

Duality in matroids resembles duality in optimization. To see this, consider the
discrete optimization problem in (3.14) for a matroid M(E,B). Let

http://dx.doi.org/10.1007/978-1-4614-8957-3_3
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Fig. 4.6 Standard representation matrix of M∗(G)

Bmin = arg min{w(X) | X ∈ B(M)},
Bmax = arg max{w(X) | X ∈ B∗(M)},

be the minimum and maximum weight bases for the M and M∗, respectively. Then
we have the relationship

Bmax = E − Bmin.

Assuming the contrary, let there exist some cobase B∗ ∈ B∗(M) such that w (E −
Bmin) < w(B∗). Then w(B∗) = w(E\B) for some B ∈ B(M), and since w is a
linear function we have w(E − X) = w(E)− w(X) for all X ⊆ E , which implies
that w(Bmin) > w(B), a contradiction.

4.3 Minors

In Sect. 2.1 we have defined the operations of deletion and contraction for graphs.
In this section we will show that these operations are dual to each other, and can be
generalized to operations in matroids.

Consider for instance the graph G\{e1, e7} obtained from the graph G of Fig. 2.1.
We observe that any cycle of G which has an empty intersection with the set of edges
{e1, e7} remains a cycle in G\{e1, e7} while all other cycles become acyclic graphs.
So we could characterize the set of cycles of G\{e1, e7} as

{C ⊆ E(G)− {e1, e7} : C is a cycle in G}.

Alternatively, the spanning forests of G\{e1, e7} are the spanning forests of G which
are contained in E(G)−{e1, e7}. The following proposition generalizes the operation
of deletion in graphs to matroids.

http://dx.doi.org/10.1007/978-1-4614-8957-3_2
http://dx.doi.org/10.1007/978-1-4614-8957-3_2
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Proposition 4.2 (Deletion) For a matroid M(E,C ) and X ⊆ E, the set

C (M\X) = {C ⊆ E − X : C ∈ C (M)}, (4.6)

is the family of circuits of a matroid on E − X.

Proof The circuit axioms in Theorem 3.3 are trivially satisfied since C (M\X) ⊆
C (M). ��
We will call the matroid M\X the deletion of X from M . Alternatively, we could
define the deletion to X in M as the matroid M |X on the ground set X and family
of circuits

C (M |X) = {C ⊆ X : C ∈ C (M)}. (4.7)

With respect to the other families that define a matroid as well as the rank and closure,
the deletion operation behaves as stated in the next proposition.

Proposition 4.3 For a matroid M and X ⊆ E(M) we have the following with
respect to the operation of deletion.

(i) I (M\X) = {Y ⊆ E(M)− X : Y ∈ I (M)},
(ii) B(M\X) = maximal{B − X : B ∈ B(M)},

(iii) H (M\X) = maximal proper subsets of {H − X : H ∈ B(M)},
(iv) rM\X (Y ) = rM (Y ) for all Y ⊆ E − X,
(v) clM\X (Y ) = clM (Y )− X for all Y ⊆ E − X.

Proof We have to prove that (i)–(v) are consequences of the family of circuits
of M\X given in (4.6). The independence family of M\X in (i) follows from the
cryptomorphism between circuits and independent sets given in (3.7). For (ii), since
we have B−X ∈ I (M\X) for any B ∈ B(M), we simply have the definition of the
family of bases for M\X as given in Sect. 3.2. Analogously for (iii). For (iv), since
Y ⊆ E\X its rank in M is not affected by the deletion of X . Finally for (iv), recall
that clM (Y ) is the set of elements in E(M) that depend on Y , as defined by the rank

clM (Y ) = {y ∈ E(M) : r(Y ∪ {y}) = r(Y )}.

Since the rank of Y is not affected in M\X , the result follows. ��
Let us now examine the operation of contraction in graphs. Consider the graph G

and its geometric dual G∗ as illustrated in Fig. 2.3. If we delete edge e4 from G, then
the graph G\{e4} will remain a planar graph with a geometric dual (G\{e4})∗ =
G∗/{e4}. This is because the deletion of any edge in a planar graph will merge the
two neighboring faces into one, which has the effect of identifying the corresponding
vertices in the dual graph, or equivalently contracting the edge that connects them.
So we can conclude that for a planar graph G and X ⊆ E(G), the operations of
contraction and deletion of edges are dual operations, that is,

G/X = (G∗\X)∗.

http://dx.doi.org/10.1007/978-1-4614-8957-3_3
http://dx.doi.org/10.1007/978-1-4614-8957-3_3
http://dx.doi.org/10.1007/978-1-4614-8957-3_2
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Although the above can only be stated for planar graphs, there is no obstacle in
extending the concept to the matroid realm.

Definition 4.1 (Contraction) For a matroid M and X ⊆ E(M), the contraction
of X in M is the matroid M/X on E(M)− X defined as

M/X = (M∗\X)∗. (4.8)

As in the operation of deletion, we can also define the contraction to X in M as the
matroid M.X on X defined as

M.X = M/(E − X). (4.9)

By the definition of the contraction operation in (4.8) and the fact that (M∗)∗ = M
for a matroid we have the following easy to prove proposition.

Proposition 4.4 For a matroid M and X ⊆ E(M) we have

(i) (M\X)∗ = M∗/X,
(ii) (M/X)∗ = M∗\X.

Proof For (ii) take the dual of (4.8), and for (i) do the same for the dual expression
of (4.8) which is M∗/X = (M\X)∗. ��

Let us examine how the family of circuits in a matroid is affected by the operation
of contraction.

Proposition 4.5 For a matroid M and X ⊆ E(M)

C (M/X) = minimal {C − X : C ∈ C (M), C − X 
= ∅}.

Proof By the Definition 4.8 we know that the matroid M/X is dual to M∗\X , so by
(ii) in Proposition 4.1 we have that C is a circuit of M/X if and only if (E − X)−C
is a hyperplane of M∗\X . By (iii) in Proposition 4.3 we have that (E − X) − C is
a maximal proper subset Y − X where E − Y ∈ C (M), which is equivalent to C
being a minimal nonempty subset (E − Y )− X (see Fig. 4.7). ��

Fig. 4.7 Proof of Proposition 4.5
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Fig. 4.8 Contraction operation

Example 4.3 Say that we have a matroid M with C (M) = {C1, C2, C3, C4, C5, C6}
and some X ⊆ E(M). In Fig. 4.8 the membership of the circuits of M in E(M) is
given schematically for an ordering of E(M) such that X appears as depicted. We
will have

C (M\X) = {C1}

since X meets all circuits except C1. For the contraction we will have

C (M/X) = {C3 − X, C4 − X, C5 − X, C6 − X}

since C6 − X ⊂ C1 and C4 − X ⊂ C2 − X . ��
In the proof of Proposition 4.5, we described C (M/X) via H (M∗\X) using the

fact that M/X and M∗\X are dual matroids, and the relationship between circuits
and hyperplanes given in Proposition 4.1. Similar argument can be employed for the
descriptions of I (M/X) and B(M/X) given in the following proposition.

Proposition 4.6 For a matroid M and X ⊆ E(M) we have the following with
respect to the operation of contraction.

(i) I (M/X) = {Y ⊆ E(M)− X : Y ∪ B ∈ I (M), B ∈ B(M |X)},
(ii) B(M/X) = {Y ⊆ E(M)− X : Y ∪ B ∈ B(M), B ∈ B(M |X)},

(iii) rM/X (Y ) = rM (X ∪ Y )− rM (X) for all Y ⊆ E − X,
(iv) clM/X (Y ) = clM (X ∪ Y )− X for all Y ⊆ E − X.

Proof For (i) and (ii) we follow the same argument as in the proof of Proposition 4.5,
where for the dual matroids M/X and M∗\X we have

Y ∈ I (M/X)⇔ (E − X)− Y ∈ S (M∗\X),

and
B ∈ B(M/X)⇔ (E − X)− B ∈ B(M∗\X).

For (iii) we know from Theorem 4.6 that the corank of Y is

r∗(Y ) = |Y | − r(M)+ r(E − Y ),

and rM\X (Y ) = rM (Y ). Since M/X and M∗\X are dual matroids we have
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rM/X (Y ) = r(M∗\X)∗(Y )

= |Y | + rM∗\X (E(M)− X − Y )− rM∗\X (E(M)− X)

= |Y | + rM∗(E(M)− X − Y )− rM∗(E(M)− X)

= |Y | + |E(M)− X − Y | + rM (X ∪ Y )− |E(M)− X | − rM (X)

= rM (X ∪ Y )− rM (X).

For the closure operator in (iv), we know from Definition 3.10 that

clM/X (Y ) = {y ∈ E(M)− X : rM/X (Y ∪ y) = rM/X (Y )}. (4.10)

From (iii) we have

rM/X (Y ∪ y) = rM (Y ∪ X ∪ y)− rM (X),

rM/X (Y ) = rM (Y ∪ X)− rM (X).

Replacing the above in (4.10) we get

clM/X = {y ∈ E(M)− X : rM (Y ∪ X ∪ y) = rM (Y ∪ X)}
= {y ∈ E(M) : rM ((Y ∪ X) ∪ y) = rM (Y ∪ X)} − X

= clM (Y ∪ X)− X. ��

The following are basic properties of the operations of deletion and contraction in
matroids.

Proposition 4.7 For a matroid M and disjoint X, Y ⊆ E(M) we have

(i) (M\X)\Y = M\(X ∪ Y ).
(ii) (M/X)/Y = M/(X ∪ Y ).

(iii) (M/X)\Y = (M\Y )/X.

Proof We will use the characterizations of the independence family and rank for
deletion and contraction, given by Propositions 4.3 and 4.6. For (i) we have

I ((M\X)\Y ) = {Z ⊆ E(M)− Y : Z ∈ I (M\X)}
= {Z ⊆ E(M)− (X ∪ Y ) : Z ∈ I (M)}
= I (M\(X ∪ Y )).

For any Z ⊆ E(M)− (X ∪ Y ), for (ii) we have

r(M/X)\Y (Z) = rM/X (Z ∪ Y )− rM/X (Y )

= rM (Z ∪ X ∪ Y )− rM (X ∪ Y )

= rM/(X∪Y )(Z),
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and for (iii)
r(M/X)\Y (Z) = rM/X (Z)

= rM (Z ∪ X)− rM (X)

= rM\Y (Z ∪ X)− rM\Y (X)

= r(M\Y )/X .

��
In the following theorem, we provide some additional properties of the complemen-
tary operations of deletion and contraction on non-disjoint sets that will be used in
the exposition given in Chap. 5.

Theorem 4.10 For a matroid M(E,C ) and Y ⊆ X ⊆ E we have

(i) (M |X)|Y = M |Y .
(ii) (M.X).Y = M.Y .

(iii) (M.X)|Y = (M |(E − (X − Y ))).Y .
(iv) (M |X).Y = (M.(E − (X − Y )))|Y .

Proof Property (i) follows directly from the Definition 4.6. For property (ii), we
will first show that any circuit of (M.X).Y is contained in a circuit of M.Y , and vice
versa. For any C ∈ C ((M.X)/Y , by (4.8) there exists a circuit C ′ ∈ C (M.X) such
that

C = C ′ ∩ Y,

and for C ′ there exists a circuit C ′′ ∈ C (M) such that

C ′ = C ′′ ∩ X.

Therefore C = (C ′′ ∩ X) ∩ Y , but since T ⊆ X we have C = C ′′ ∩ Y , for C 
= ∅.
Thus, C is contained in a circuit of M.Y . Consider now any circuit C ∈ C (M.Y ).
There must exist a circuit C ′ ∈ C (M) such that

C = C ′ ∩ Y ⊆ C ′ ∩ X since Y ⊆ X .

Therefore C ′ is contained in a circuit of M.X , say C ′′. But C ′′ ∩ Y is contained
in a circuit C ′′′ ∈ C ((M.X)/Y ) and C ⊆ C ′′′. So for any X ∈ C ((M.X).Y )

there exists Y ∈ C (M.Y ) such that X ⊆ Y . Furthermore, there also exists some
Z ∈ C ((M.X)/Y ) such that Y ⊆ Z . Therefore

X ⊆ Y ⊆ Z ,

and by axiom (C1) we have X = Y , implying that C ((M.X)/Y ) = C (M.Y ), which
in turn implies that these two matroids are equal.

For property (iii) we will follow a similar approach. Specifically, we will show
that any circuit of (M.X)\Y contains a circuit of (M |(E − (X − Y )).Y ), and vice

http://dx.doi.org/10.1007/978-1-4614-8957-3_5
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versa. Consider any C ∈ C ((M.X)|Y ). Then C ∈ C (M.X) such that C ⊆ Y , which
means that there exists a circuit C ′ ∈ C (M) such that

C = C ′ ∩ Y and C ′ ∩ (X − Y ) = ∅.

So we have C ′ ⊆ E − (X |Y ), and C ′ ∈ C (M |(E − (X − Y ))). Thus, there exists
a circuit C ′′ ∈ C (M |(E − (X − Y )).Y ) such that C ′′ ⊆ C ′ ∩ Y = C . Now take a
circuit C ∈ C (M |(E − (X − Y )).Y ), which means that there exists a circuit C ′ of
M |(E− (X −Y )) such that C = C ′ ∩Y . Therefore, C ′ is a circuit of M contained in
E − (X − Y ), so C ′ ∩ (X − Y ) 
= ∅. Since C ′ ∈ C (M), there exists C ′′ ∈ C (M.X)

such that
C ′′ ⊆ C ′ ∩ X ⊆ C ′ ∩ Y = C.

So we have that C ′′ ⊆ Y which implies that C ′′ ∈ C ((M.X)|Y ). Thus, we have
that for any X ∈ C ((M.X)|Y ) there exists Y ∈ C (M |(E − (X − Y )).Y ) such that
Y ⊆ X , and there exists some Z ∈ C ((M.X)|Y ) such that Z ⊆ Y . Therefore by
axiom (C1) we have X = Y , and the two matroids are equal since they have identical
circuit families.

For property (iv), set X = E − (X − Y ) in property (iii). ��
Given a matroid M there may exist an X ⊆ E(M) such that deletion or contraction

of X from M results in the same matroid. For instance, the loop {e4} of graph G
in Fig. 2.1 is such a set for the cycle matroid M(G). Examining the definitions
of C (M\X) and C (M/X) given in Propositions 4.2 and 4.5, respectively, we can
deduce that a set X ⊆ E(M) that satisfies M\X = M/X must not meet any circuit of
M . For instance it is evident that M\E(M) = M/E(M). As it will be demonstrated
in Sect. 4.4, minimal sets with the aforementioned property essentially define the
connectivity of a given matroid. The following theorem characterizes such sets with
respect to their rank.

Theorem 4.11 For a matroid M and X ⊆ E(M), M\X = M/X if and only if

r(X)+ r(E(M)− X) = r(M).

Proof (⇒) We know that if B ∈ B(M\X) then r(E(M) − X) = r(B), and by
assumption B ∈ B(M/X). By (ii) in Proposition 4.6 there exists a base BX ∈
B(M |X) such that B ∪ BX ∈ B(M). Thus, r(M) = r(B ∪ BX ) or equivalently

r(M) = r(B)+ r(BX ) = r(E(M)− X)+ r(X).

(⇐) Given I (M\X) and I (M/X) as defined in Propositions 4.3 and 4.6, respec-
tively, by the independence axiom (I2) we can easily see that I (M/X) ⊆ I (M\X).
Thus, to prove that the matroids M\X and M/X are equal, it is enough to show that

http://dx.doi.org/10.1007/978-1-4614-8957-3_2
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I (M\X) ⊆ I (M/X). For some Y ∈ I (M\X), we have that Y ⊆ B for some
base B ∈ B(M\X), and since B ∈ I (M) there is also a base in M which contains
B, say B ∪ B ′. So we have

r(M) = r(B ∪ B ′) = |B ∪ B ′| = |B| + |B ′| = r(E(M)− X)+ |B ′|.

Since by assumption we have r(M) = r(X) + r(E(M) − X), |B ′| = r(X) which
implies that B ′ ∈ B(M |X). Using the definition for B(M/X) in Proposition 4.6 we
have that Y ∈ I (M/X) since Y ⊆ B. ��
Recall that a loop in a matroid is a single element circuit, while a coloop a single
element cocircuit. So a loop is not contained in any base, while a coloop is contained
in all bases of a matroid. Theorem 4.11 enables us to characterize loops and coloops.

Proposition 4.8 For a matroid M, an element e ∈ E(M) is a loop or a coloop if
and only if M\{e} = M/{e}.
Proof Both directions are an immediate consequence of Theorem 4.11.
(⇒) If e is a loop then r(e) = 0 so r(e) + r(E(M) − {e}) = r(M), so by duality
M\{e} = M/{e}. If e is a coloop then r∗(e) = 0 and, by Theorem 4.6, we will have

r∗(e) = |e| − r(M)+ r(E(M)− {e}) = 0

⇒ r(e)+ r(E(M)− {e}) = r(M),

since if e is a coloop then r(e) = |e| = 1.
(⇐) If M\{e} = M/{e} then r(e)+ r(E(M)−{e}) = r(M). Assume that e is not a
loop. Then r(e) = 1 and r(E(M)−{e})+1 = r(M), which means that E(M)−{e}
does not contain a basis of M , therefore it is not a spanning set. So by duality the set
E(M)− (E(M)− {e}) = e is not coindependent, and e is a coloop. ��

In view of Proposition 4.7, the order upon which a sequence of deletions and
contractions is applied to a matroid is irrelevant. We can group all elements to be
contracted into a set, and all elements to be deleted into another set, the elements
in both sets with no specific order. This enables us to define the matroids that are
produced by those operations.

Definition 4.2 (Minor) For a matroid M and disjoint X, Y ⊆ E(M) the matroid
M\X/Y is called a minor of M , while if X or Y nonempty it is called proper.

A class of matroids M is called minor-closed if every minor of a matroid M ∈M
is also a member of the class M . It is easy to find classes of matroids that are not
closed under minors. For example, if we define by Mn the class of matroids with n
elements, then both M\X and M/Y are not in Mn for any nonempty X, Y ∈ E(M).

Let us examine now the minors of graphic and representable matroids. The next
proposition shows that the class of graphic matroids is minor-closed.
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Proposition 4.9 If G is a graph then

M(G)\X/Y = M(G\X/Y )

for all X, Y ⊆ E(G).

Proof By Proposition 4.2 and the definition of deletion in graphs given in Sect. 2.1,
it follows that

C (M(G)\X) = C (M(G\X)),

for any X ⊆ E(M), hence, these two matroids are equal. Similarly, for the contraction
operation, it is easily verified that for any edge e ⊆ E(G) the set

minimal {C − {e} : C is a cycle of G}

is the set of cycles of G/{e}, therefore, by repeated application of (ii) in Proposi-
tion 4.7 it follows that

C (M(G)/X) = C (M(G/X)).

��
In order to state an analogous result as that of Proposition 4.9 for the class of
F-representable matroids, we have to define the operations of deletion and con-
traction for matrices. Given a matrix A over a field F

m×n and some column e, the
m × (n − 1) matrix obtained by deleting column e is called the deletion of e, and
we write A\{e}. A series of deletions of columns in X ⊆ columns(A) is denoted by
A\X . The (m−1)× (n−1) matrix obtained by applying elementary row operations
to make column e a unit vector ek and deleting column e and row k from A is called
the contraction of e, and we write A/{e}. A series of contractions of columns in
Y ∈ columns(A) is denoted by A/Y .

Proposition 4.10 If A is a matrix over a field F
m×n then

M[A]\X/Y = M[A\X/Y ]

for all X, Y ⊆ columns(A).

Proof By Proposition 4.2 and the definition of deletion in matrices it follows that

I (M[A]\X) = I (M[A\X ]),

for any X ⊆ columns(A). For contraction, by (ii) in Proposition 4.7 it suffices to
show that

M[A]/{e} = M[A/{e}]

http://dx.doi.org/10.1007/978-1-4614-8957-3_2
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for a column e ∈ columns(A). If e is a loop it is not contained in any base of M ,
and we know by Proposition 4.8 that

M/{e} = M\{e}.

Assume that Ā is a standard representation matrix for M[A] that corresponds to
a base that includes e, that is,

Ā = [ X Y

X In D
]
,

for a partition {X, Y } of the columns of A with e ∈ X , where D ∈ F
n×(m−n). By

Theorem 4.9 we have M∗[ Ā] = M[ Ā∗] where

Ā∗ = [ Y X

Y Im−n −DT
]
,

and by the proof for the deletion operation given above we have M[ Ā∗]\{e} =
M[ Ā∗\{e}], where

Ā∗\{e} = [ Y X−{e}
Y Im−n −DT \{e} ]

. (4.11)

By the definition of the contraction operation on matroids in (4.8), we have that
the matroid M[A]/{e} = M[ Ā]/{e} is dual to M∗[ Ā]\{e} = M[ Ā∗]\{e}, hence its
representation matrix is the dual of (4.11), that is,

( Ā∗\{e})∗ = [ X−{e} Y

X−{e} In−1 D̄
] = A/{e},

where D̄ is the matrix D with row e deleted. ��
Example 4.4 Consider the matroid M = M[AG] = M(G) for the graph G and the
matrix AG in Example 4.2. We want to compute the standard representation matrix
AG\{e7}/{e3} and the graph G\{e7}/{e3} for the minor M\{e7}/{e3}. We will have

AG\{e7} =
⎡

⎣

e5 e1 e6 e4 e2 e3

1 0 0 1 0 1
0 1 0 0 0 1
0 0 1 1 0 1

⎤

⎦AG (1, :) = AG (1, :)+ AG (2, :)
AG (3, :) = AG (3, :)+ AG (2, :)−−−−−−−−−−−−−−−→

⎡

⎣

e5 e1 e6 e4 e2 e3

1 1 0 1 0 0
0 1 0 0 0 1
0 1 1 1 0 0

⎤

⎦⇒

AG\{e7}/{e3} =
[ e5 e1 e6 e4 e2

1 1 0 1 0
0 1 1 1 0

]
=

[ e5 e6 e1 e4 e2

1 0 1 1 0
0 1 1 1 0

]
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Fig. 4.9 Deletion and contraction operations

It is easily verifiable that the matrix AG\{e7}/{e3} is a standard representation matrix
for the cycle matroid of the graph G\{e7}/{e3} shown in Fig. 4.9. Moreover, the matrix

(AG\{e7}/{e3})∗ =
⎡

⎣

e1 e4 e2 e5 e5

1 0 0 1 1
0 1 0 1 1
0 0 1 0 0

⎤

⎦

is a standard representation matrix for the cycle matroid of the graph G∗/{e7}\{e3}
shown in Fig. 4.9. ��

Classes of matroids which are closed under minors can be characterized by the set
of matroids which are not in the class, and are minimal with respect to this property.
Specifically, if M is a minor-closed class of matroids, a matroid M /∈M is called an
excluded minor for M if all its proper minors belong to M . It so happens that the
set of excluded minors for major matroid classes are finite. In the following theorems
we state excluded minor characterizations for some major classes of matroids.

Theorem 4.12 (Tutte 1958a, b) A matroid M is binary if and only if it has no minor
isomorphic to U2,4.

The set of excluded minors for matroids representable over GF(3) is attributed to
Reid who, however, never published his results.

Theorem 4.13 (Bixby 1979; Seymour 1979) A matroid M is ternary if and only if
it has no minor isomorphic to U2,5, U3,5, F7, F∗7 .

The matroid F7 is the Fano matroid, with a compact representation matrix in GF(2)

⎡

⎣
1 1 0 1
1 0 1 1
0 1 1 1

⎤

⎦.

Theorem 4.14 (Tutte 1959) A matroid M is graphic if and only if it has no minor
isomorphic to U2,4, F7, F∗7 , M∗(K5), and M∗(K3,3).
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A regular matroid is a matroid that can be represented over any field. The real
representation matrices of regular matroids are totally unimodular, that is, matrices
where each of their square submatrices has determinant in {0,±1}.
Theorem 4.15 (Tutte 1958b) A matroid M is regular if and only if it has no minor
isomorphic to U2,4, F7, F∗7 .

4.4 Connectivity

Connectivity is a fundamental structural property of matroids, and can be thought
of as a measure of correlation between the elements of the ground set with respect
to the structure imposed by the family of independent sets, circuits, etc. The more
connected a matroid is, the less probable is the existence of sets of elements that
are not members of the family that defines the matroid. There are several equivalent
ways to define connectivity in matroids. Here, we will adopt the approach by Tutte
(1971) as the most appropriate one for the discussion that will follow in Chap. 6 and
as the one that more naturally extends to higher connectivity.

Observe that both k-vertex-connectivity and k-edge-connectivity in graphs use
the definition of connectivity in graphs, where a path is required between any two
vertices for a graph to be connected. Since the notion of a vertex in a matroid is not
well-defined, it is not clear how to generalize connectivity to matroids. To exemplify
this, consider the two graphs G1 and G2 in Fig. 4.10, and their corresponding graphic
matroids M(G1) and M(G2). We know that the set of cycles in a graph G defines a
matroid on E(G), therefore we have that M(G1) = M(G2), while G1 is connected
and G2 is not. Given a matroid M(E,C ) assume that there exists a partition {X, Y }
of E such that if C ∈ C then C ⊆ X or C ⊆ Y . We could say then that the elements
of X are not related with the ones in Y with respect to the family C , in the sense that
C (M\X) ∪ C (M\Y ) = C (M). Let us now define the base notion of a separator.

Definition 4.3 For a matroid M(E,C ) a set X ⊆ E is called a separator of M if
any circuit C ∈ C is contained in either X or E − X .

It follows from the definition of separators that both E and ∅ are trivial separators
for any matroid. Minimal nonempty separators will be called elementary separators.

Fig. 4.10 Connectivity in matroids

http://dx.doi.org/10.1007/978-1-4614-8957-3_6
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Fig. 4.11 Elementary separators

A matroid will be called connected if it has no separators other than the trivial E
and ∅. Note that a singleton e ∈ E is a separator if and only if e is a loop or there
does not exist a circuit that contains e; it is a coloop. To illustrate the aforementioned
concepts, consider a matroid M(E,C ) where the elements of E(M) are arranged in
the horizontal axis as defined by the partition induced by the elementary separators
of M , and the members of C are in the vertical axis as illustrated in Fig. 4.11 for
a matroid with six circuits. In this case the elementary separators of M will be
X1 = C1 ∪ C2 and X2 = C3 ∪ C4, the loops e1 and e2, and the coloops e3 and
e4 which are independent in M and not contained in any circuit. Essentially, the
Definition 4.3 states that a separator is a set of elements that does not meet any
circuit of the matroid, in the sense that a circuit is either contained in the set or is
disjoint with the set. It follows that the rank of a separator and the rank of the rest
of the elements equals the rank of the matroid. This property is also sufficient to
characterize separators.

Proposition 4.11 For a matroid M(E,C ) some set X ⊆ E is a separator of M if
and only if r(X)+ r(E − X) = r(E).

Proof (⇒) Assume that X is a separator. By the rank axiom (R3) we have that
r(X)+ r(E − X) ≥ r(E), and let us assume that r(X)+ r(E − X) > r(E). There
exist bases BX ∈ B(X) and BE−X ∈ B(E − X) such that |BX | + |BE−X | > r(E).
Since X is a separator no circuit of M meets both BX and BE−X , which implies that
BX ∪ BE−X contains no circuits, a contradiction since we found an independent set
in M with size more than r(E).

(⇐) Let r(X)+ r(E − X) = r(E) and assume that there exists a circuit C that
meets both X and E− X , where CX = C ∩ X and CE−X = C ∩ (E− X). Since both
CX and CE−X are independent in M , they can be extended to bases BX ∈ B(X)

and BE−X ∈ B(E − X), respectively. By Definition 3.10 of the closure operator we
have that X ⊆ cl(BX ) and (E − X) ⊆ cl(BE−X ), thus by the closure axiom (C L2)

we have
E ⊆ cl(BX ) ∪ cl(BE−X ) ⊆ cl(BX ∪ BE−X ).

Therefore, cl(BX ∪ BE−X ) = E implying that r(BX ∪ BE−X ) = r(E). Combining
the above we get



70 4 Representability, Duality, Minors, and Connectivity

r(BX ∪ BE−X ) = r(E)

= r(X)+ r(E − X)

= |BX | + |BE−X |
= |BX ∪ BE−X |,

which means that BX ∪ BE−X is independent, which is a contradiction since it
contains the circuit C . ��
We also have the following easy corollary that characterizes separators with respect
to the deletion and contraction operations.

Corollary 4.2 Given a matroid M, a set X ⊆ E(M) is a separator of M if and only
if M\X = M/X.

Proof By Proposition 4.2 and Theorem 4.11. ��
In view of Proposition 4.2 we can easily prove that the connectivity of a matroid and
its dual coincide.

Proposition 4.12 Given a matroid M, a set X is separator of M if and only if X is
a separator of M∗.

Proof By Corollary 4.2 and Proposition 4.4, a set X is a separator of M if and only
if

M\X = M/X ⇔
(M\X)∗ = (M/X)∗ ⇔

M∗/X = M∗\X,

if and only if X is a separator of M∗. ��
Corollary 4.3 A matroid M is connected if and only if M∗ is connected.

Given a matroid M , let X be a union of circuits C1, . . . , Ck of M . Then

E − X = E −
k⋃

i=1

Ci =
k⋂

i=1

(E − Ci ) =
k⋂

i=1

Hi ,

where each Hi is a cohyperplane, since if C is a circuit of a matroid then by Propo-
sition 4.1 the set E − C is a cohyperplane. We also know that the intersection of
hyperplanes is a flat, therefore E − X has to be a coflat. The following lemma
appears in Tutte (1959), and states a useful structural result about unions of circuits,
that will be used in the proof of Theorem 5.1.

Lemma 4.1 Given a matroid M and Y ∈ C (M), let X be a union of circuits of
M\Y where M\Y |X is connected. Then either X ∪Y is a union of circuits of M such
that M |(X ∪ Y ) connected, or M/Y |X = M |X.
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Proof Since any circuit of M\Y is a circuit of M by the definition of the deletion
operation, then clearly X ∪ Y is a union of circuits of M . If M |(X ∪ Y ) is connected
then there is nothing left to prove. If M |(X∪Y ) is not connected, then we can assume
that it has two separators S1 and S2. Given that M\Y |X is connected, we must have
S1 = X and S2 = Y . Using now the properties (i) and (ii) of Theorem 4.10 and
Corollary 4.2, since X ⊆ E − Y we have

(M/Y )|X = (M.(E − Y ))|X
= (M |(E − (E − Y − X︸ ︷︷ ︸

Y∪X

))).X

= (M |(Y ∪ X)).X

= (M |(Y ∪ X))|X
= M |X.

��
The reason for the multiple definitions for higher connectivity in graphs given in

Sect. 2.1, has to do with the various attempts to generalize the concept to matroids.
In what follows, we will present two alternative notions of higher connectivity in
matroids by quantifying the concept of a separator.

Definition 4.4 (Matroid k-connectivity) For a matroid M and a positive integer k,
a partition {X, Y } of E(M) is a k-separation of M if

(i) min{|X |, |Y |} ≥ k,
(ii) r(X)+ r(Y ) ≤ r(M)+ k − 1.

The connectivity number of matroid M is defined as

λ(M) = min{k : M has a k-separation for k ≥ 1}, (4.12)

while if M does not have a k-separation for any number k ≥ 1 then λ(M) = ∞. We
say that a matroid M is k-connected for any 1 ≤ k ≤ λ(M).

If {X, E − X} is a 1-separation of a matroid M then by definition we have that
r(X) + r(E − X) − r(M) ≤ 0, and by the submodularity of the rank function
r(X)+r(E−X)−r(M) ≥ 0, which by Proposition 4.11 means that X is a separator
of M . So 1-separations are separators, which implies that a matroid is connected if and
only if it is 2-connected. As it was the case with matroid connectivity, k-connectivity
in matroids is also duality invariant.

Proposition 4.13 For a matroid M, {X, Y } is a k-separation of M if and only if
{X, Y } is a k-separation of M∗.

Proof Let {X, Y } be a k-separation of M . From Theorem 4.6 and since
r(X)+ r(E − X) ≤ r(M)+ k − 1 by (ii) in Definition 4.4 we have

http://dx.doi.org/10.1007/978-1-4614-8957-3_2
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r∗(X)+ r∗(E − X) = |X | − r(M)+ r(E − X)+ |E − X | − r(M)+ r(X)

= |E | + r(X)+ r(E − X)− 2r(M)

≤ |E | − r(M)+ k − 1

= r∗(M)+ k − 1.

Letting {X, Y } be a k-separation of M∗ the above computation also applies for the
rank of M since the statement of Theorem 4.6 is self-dual. ��
Corollary 4.4 For a matroid M we have λ(M) = λ(M∗).

The next theorem states that k-connectivity in matroids is indeed a generalization of
k-connectivity in graphs.

Theorem 4.16 (Tutte 1960) If G is a connected graph then λ(G) = λ(M(G)).

From the discussion above we can conclude that the notion of k-connectivity in
matroids is duality invariant and generalizes the corresponding notion of
k-connectivity in graphs. It is easy to see that a minimal set of k vertices in a
graph whose deletion makes the graph disconnected induces a k-separation, there-
fore, a graph if G is k-connected then it is also k-vertex-connected. The other direc-
tion though is not always true, and k-connectivity in matroids does not generalize
k-vertex-connectivity in graphs. This prompted for the following alternative notion
of higher connectivity in matroids which generalizes vertex connectivity in graphs.

Definition 4.5 (Matroid vertical k-connectivity) For a matroid M and a positive
integer k, a partition {X, Y } of E(M) is a vertical k-separation of M if

(i) min{r(X), r(Y )} ≥ k,
(ii) r(X)+ r(Y ) ≤ r(M)+ k − 1.

The vertical connectivity number of matroid M is defined as

κ(M) = min{k : M has a vertical k-separation for k ≥ 1}, (4.13)

while if M does not have a vertical k-separation for any number k ≥ 1 then
κ(M) = ∞. We say that a matroid M is vertical k-connected for any 1 ≤ k ≤ κ(M).

Since |X | ≥ r(X) for any X ⊆ E(M) in a matroid M , a vertical k-separation in
M induces a k-separation. Hence, if a matroid is k-connected then it is also vertical
k-connected. As the next theorem states vertical k-connectivity in matroids general-
izes k-vertex-connectivity in graphs, however it is not duality invariant.

Theorem 4.17 (Cunningham 1981; Inukai and Weinberg 1981; Oxley 1981) If G
is a connected graph then κ(G) = κ(M(G)).

Example 4.5 Consider the graphs G1, G∗1 and G2 given in Fig. 4.12. We have that
κ(G1) = 3 = α(G1) while λ(G1) = 2 = λ(M(G1)) since we have the 2-separation
defined by {e1, e2}. On the other hand, for G∗1 the dual graph of G1, we have that
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Fig. 4.12 Higher connectivity

κ(G∗1) = λ(G∗1) = α(G∗1) = 2 which shows that the vertex-connectivity and edge-
connectivity functions are not duality invariant. For G2 we have κ(G2) = 1 =
λ(G2) and α(G2) = 2. The set {e1, e2} is a vertical 1-separation of M(G2), hence
κ(M(G2)) = κ(G2) as expected. ��

4.5 Notes

Network matrices constitute a well-known class of totally unimodular matrices.
Being totally unimodular, network matrices are of importance in optimization since
integer programming problems with network constraint matrices have integral poly-
hedra and they can be solved as linear programs. Moreover, if the constraint matrix of
a linear program is a network matrix, then the network simplex algorithm can be used
to solve to problem in a more efficient way that the simplex algorithm. In Sect. 5.3 a
polynomial time recognition algorithm for network matrices will be presented.

The concept of basic matroid connectivity was included in Whitney’s seminal
paper (Whitney 1935). Higher connectivity in matroids was introduced by Tutte
(1966), where he characterized the class of 3-connected matroids where the deletion
or contraction of any element destroys 3-connectivity. Vertical k-connectivity was
introduced independently by Cunningham (1981), Oxley (1981), and Inukai and
Weinberg (1981), and all three works provided proofs for the Theorem 4.17.

Under certain conditions, the existence of a k-separation in a matroid implies
that this matroid can be composed of two smaller matroids which are minors of the
original matroid joined together by an operation called k-sum, for k = 1, 2, 3. One
of the most celebrated results in matroid theory is the structural characterization of
regular matroids by Seymour (1980), where it is proved that any regular matroid
can be decomposed via k-sums into graphic and cographic matroids and one special
matroid with ten elements.

http://dx.doi.org/10.1007/978-1-4614-8957-3_5


Chapter 5
Decomposition of Graphic Matroids

In the series of papers (Tutte 1956, 1958a, b, 1959) Tutte developed a rich theory
regarding the structure of regular, binary, and graphic matroids, and provided among
other results the excluded minor characterizations stated in Theorems 4.12 and 4.14.
Consider the following problem, which will serve as our primary motivation for the
material presented in this chapter.

Problem 5.1 (Graph Realization) Given a matrix A in G F(2) find a graph G such
that M[A] = M(G), or decide that no such graph exists.

The graph realization problem is equivalent to the question of whether a binary
matroid given by a representation matrix is graphic. The characterization of graphic
matroids given in Theorem 4.14 does not lead to an algorithm for solving the graph
realization problem, since there is no efficient way of checking whether a matroid
contains a given minor or not.1

Apart from the excluded minor characterization for graphic matroids, Tutte (1959)
also provided a decomposition theorem for graphic matroids which, as it is often with
decomposition results, leads to an efficient recursive recognition algorithm that solves
the graph realization problem (Tutte 1960). A decomposition result for a matroid class
typically consists of a set of well-defined decomposition and composition operations
on minors, and a theorem that proves that the class is closed under these operations.
Usually the direction which proves that the composition of minors from a class
results in a matroid within the class is the most difficult. There are relatively few
characterizations of matroid classes based on decomposition results, the most notable
one being the decomposition of regular matroids by Seymour (1980). In this chapter
we will present the theory related to the decomposition of graphic matroids, and give
an algorithm that solves the graph realization problem which is a direct consequence
of that theory.

1 Although recent work on Matroid Minor Theory by J. Geelen, B. Gerards and G. Whittle may
provide a polynomial time algorithm for checking whether a matroid representable over a finite
field contains a given minor.
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5.1 Bridges

Let Y be a cocircuit of a binary matroid M . We define the bridges of Y in M to be
the elementary separators of M\Y . If M\Y has more than one bridge then we say
that Y is a separating cocircuit; otherwise it is non-separating. Let B be a bridge
of Y in M ; the matroid M.(B ∪ Y ) is called a Y -component of M . The following is
a useful result regarding the connectivity of the Y -components.

Theorem 5.1 If M is a connected matroid then each Y -component of M is con-
nected.

Proof By duality it is enough to show that M∗|(B ∪ Y ) is connected. Consider
any bridge B of Y in M . Then B is also an elementary separator of M∗/Y , since a
matroid is connected if and only if its dual is connected. Observe that B cannot be
an element {e} ∈ I (M∗.Y ), that is, a coloop of M∗.Y . This would imply that {e} is
a loop of (M∗.Y )∗ = M\Y which means that it is a loop of M and a coloop of M∗,
thus, M∗ is not connected contradicting the fact that M is connected. Therefore, we
can assume that the elementary separator B is a union of circuits of M∗.Y , such that
(M∗.Y )|B is connected. By Lemma 4.1, either M∗|(B ∪ Y ) is connected, or

(M∗/Y )|B = M∗|B.

Since B is an elementary separator of M∗/Y , we have

M∗|B = (M∗/Y )|B
= (M∗/Y ).B

= M∗.(E − Y ).B

= M∗.B

by property (ii) of Theorem 4.10 since B ⊆ E − Y . Therefore, B is a separator of
M∗ which is a contradiction. ��

For any bridge B of Y in M , we denote by π(M, B, Y ) the family of all mini-
mal non-null subsets of Y which are intersections of cocircuits of M.(B ∪ Y ). The
following theorem and its corollary relate π(M, B, Y ) for binary matroids with the
family of cocircuits of a given minor.

Theorem 5.2 Let Y be a cocircuit of a matroid M. Two elements a and b of Y belong
to the same members of π(M, B, Y ) if and only if they belong to the same cocircuits
of M.(B ∪ Y )|Y .

Proof (⇐) Suppose that a, b ∈ W ∈ π(M, B, Y ). Then for any cocircuit X of
M.(B ∪ Y ) either X ∩ W = ∅ or W ⊆ X , since otherwise W will not be minimal.
This implies that a and b belong to exactly the same cocircuits of M.(B ∪ Y ). Thus,
by the definition of the matroid operations of contraction and deletion we have that
a and b belong to the same cocircuits of M.(B ∪ Y )|Y .
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(⇒) Since a and b belong to the same cocircuits of M.(B ∪ Y )|Y then by the
definition of matroid contraction and deletion we obtain that there is no cocircuit Z
of M.(B ∪ Y ) such that Z ∩ {a, b} = {a} or Z ∩ {a, b} = {b}. Therefore, by the
definition of the members of π(M, B, Y ), the result follows. ��

Tutte (1965) proved that if M is binary, then the members of π(M, B, Y ) are
disjoint and their union is Y . We usually refer to π(M, B, Y ) as the partition of Y
determined by B. By this result, Theorem 5.2 has the following useful corollary.

Corollary 5.1 Let Y be a cocircuit of a matroid M. If M is binary then

π(M, B, Y ) = C ∗(M.(B ∪ Y )|Y ).

It can be shown that for a given graph G, a set of edges X is an elementary separator
of M(G) if an only if

(i) G|X is 2-connected,
(ii) each connected component of G[E(G)− X ] has at most one vertex in common

with G|X .

Let us call any subgraph of G which satisfies properties (i) and (ii) a separate of G.
Therefore, the separates of a graph correspond to the elementary separators of its
cycle matroid, and vice versa. So if {B1, . . . , Bk} is the set of bridges of Y in M(G),
then each bridge Bi will appear as a separate G|Bi in one of the end-graphs of G\Y .
Moreover, given the structure of the separates in the graph and the fact that each
component is connected, all the bridges of the same component will form a tree-like
structure in the sense that any path between a pair of vertices from distinct bridges
will pass through a unique set of bridges. Note that by Corollary 5.1 and the fact
that the cocircuits of a graphic matroid are bonds in the associated graph, we have
a graphical characterization of π(M(G), B, Y ) for some cocircuit Y and bridge B.
Suppose now that B is a bridge of Y in M(G) and let Gi be the component of G\Y
such that G|B ⊆ Gi . Then, if v is a vertex of V (G|B), we denote by C(B, v) the
component of Gi\B having v as a vertex. Moreover, we denote by Y (B, v) the set of
all y ∈ Y such that one end of y in G is a vertex of C(B, v). The following provides
an alternative direct characterization in G of the partition of Y as determined by B,
in a graphic matroid M(G)

Theorem 5.3 Let M(G) be a graphic matroid and Y ∈ C ∗(M(G)). If G|B is
a separate of an end-graph Gi of G\Y , then π(M(G), B, Y ) is the class of all
nonempty Y (B, v) such that v ∈ V (G|B).

Proof Let G1 and G2 be the end-graphs of the bond Y in G. We know from Corol-
lary 5.1 and Proposition 4.9 that

π(M(G), B, Y ) = C ∗(M(G).(B ∪ Y )|Y )

= C ∗(M(G.(B ∪ Y )|Y )).
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Thus, it is enough to show that the set of bonds of G.(B ∪ Y )|Y is

L = {Y (B, v) �= ∅ : v ∈ V (G|B) }.

Assume that G|B is a subgraph of G1. The graph G.(B ∪ Y ) is obtained from G
by contracting G2 into a single vertex u, and C(B, v) into a vertex v, for every
v ∈ V (G|B). Therefore, in the graph G.(B ∪ Y )|Y each vertex v �= u is connected
only to u by the set of parallel edges Y (B, v), which means that Y (B, v) is a bond
in G.(B ∪ Y )|Y . It remains to show that G.(B ∪ Y )|Y contains no other bonds.
By Corollary 5.1, the cocircuits of C ∗(M(G.(B ∪ Y )|Y )), which are the bonds of
G.(B ∪ Y )|Y , are disjoint. Given that L is a partition of the edges of G.(B ∪ Y )|Y ,
the existence of a bond not in L would imply the existence of two bonds which are
not disjoint, a contradiction. ��

The following example illustrates the definitions given so far.

Example 5.1 We will illustrate how bridges and Y -components manifest as separates
in graph representations of graphic matroids. Let M(G) be the cycle matroid of the
graph G in Fig. 5.1. If Y = {y1, y2, y3, y4} ∈ C ∗(M(G)) then Y is a bond of G, and
the bridges of Y are the separates of G\Y , that is, B1, B2 and B3. The corresponding
Y -components are the graphs G.(Bi ∪ Y ), while the partitions of Y by its bridges
π(M, Bi , Y ) are the sets of bonds of the graphs G.(Bi ∪ Y )|Y , for i = 1, 2, 3.
Moreover, we have

C(B1, v1) = G[{v1, v4}]
C(B1, v2) = G[{v2}]
C(B1, v3) = G[{v3}]

resulting in Y (B1, v1) = {y3, y4}, Y (B1, v2) = {y1, y2} while Y (B1, v3) = ∅.
Therefore, π(M, B1, Y ) = {Y (B1, v1), Y (B1, v2)}. Similarly for π(M, B2, Y ) and
π(M, B3, Y ). ��

Let us see now how the bridges of a cocircuit in a graphic matroid relate to
each other, with respect to the associated graph. Assume that B1 and B2 are two
bridges of Y in M . The bridges B1 and B2 are said to avoid each other if there exist
S ∈ π(M, B1, Y ) and T ∈ π(M, B2, Y ) such that S ∪ T = Y ; otherwise we say
that B1 and B2 overlap one another. A cocircuit Y is called bridge-separable if its
bridges can be partitioned into two classes U and V such that all members of the
same class avoid each other.

Example 5.2 For the cocircuit Y of Example 5.1, we have

π(M, B1, Y ) = {{y1, y2}, {y3, y4}},
π(M, B2, Y ) = {{y1, y2, y3}, {y4}},
π(M, B3, Y ) = {{y1}, {y3}, {y2, y4}},
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Fig. 5.1 Bridges and Y -components

therefore, B2 avoids B1 and B3, but B1 overlaps with B3. So we have that Y is
bridge-separable, since any bipartition of its bridges with B1 and B3 in different
classes will suffice. We can also observe that C(B1, v1) = B2 and C(B2, v1) = B1,
since we only have two 2-connected components in the end graph that results from
the deletion of Y from G. ��

It turns out that bridge-separability of cocircuits is a necessary condition for
graphic matroids.

Theorem 5.4 If M is a graphic matroid and Y ∈ C ∗(M) then Y is bridge-separable.

Proof Let the graph G be such that M = M(G), and G1, G2 be the end-graphs of
G\Y . Denote with

Li = {B ⊆ E(M) : G|B is a subgraph of Gi },
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for i = 1, 2, the partition of the bridges of Y as defined by their membership in the
end-graphs G1 and G2.

Assume that Y is not bridge-separable. This means that any partition of its bridges
into two classes will contain an overlapping pair in the same class. Let B1, B2 ∈ L1
be such an overlapping pair of bridges. Then G|B1 and G|B2 are both separates of
G\Y , thus, there exist v1 ∈ V (G|B1) and v2 ∈ V (G|B2) such that

G|B1 ⊆ C(B2, v2) and G|B2 ⊆ C(B1, v1).

Now if v ∈ V (G1) then v ∈ V (C(B1, v1)) ∪ V (C(B2, v2)), and by Theorem 5.3
we have Y (B1, v1) ∪ Y (B2, v2) = Y , which is a contradiction since B1 and B2 are
overlapping. ��

Let us apply Theorem 5.4, to show that the matroids M∗(K5) and M∗(K3,3) are
not graphic matroids. Note that in view of Theorem 4.7, this implies the well-known
fact from graph theory that K5 and K3,3 are not planar graphs. The cocircuits of
M∗(K5) will be the circuits of M(K5), which will be the sets of edges that induce
cycles in K5. Let Y = {y1, y2, y3, y4, y5} be a cocircuit of M∗(K5), as depicted in
Fig. 5.2. The bridges of Y in M∗(K5) will be the separates of (K5/Y )∗, which are
G|{ei } for i = 1, . . . , 5. To determine π(M∗(K5), {ei }, Y ) for each bridge ei , by
Corollary 5.1 it suffices to consider the cocircuits of M∗(K5).(Y ∪ {ei })|Y , which
by duality are the circuits of M(K5)|(Y ∪ {ei }).Y = M(K5|(Y ∪ {ei }).Y ), which in
turn are the cycles of the graph K5|(Y ∪ {ei }).Y . We will have

π(M∗(K5), {e1}, Y ) = {{y1, y5}, {y2, y3, y4}},
π(M∗(K5), {e2}, Y ) = {{y2, y3}, {y1, y4, y5}},
π(M∗(K5), {e3}, Y ) = {{y1, y2}, {y3, y4, y5}},
π(M∗(K5), {e4}, Y ) = {{y4, y5}, {y1, y2, y3}},
π(M∗(K5), {e5}, Y ) = {{y3, y4}, {y1, y2, y5}}.

Fig. 5.2 Overlapping bridges in M∗(K5)



5.1 Bridges 81

Fig. 5.3 Overlapping bridges in M∗(K3,3)

Upon inspection we observe that all bridges of Y overlap with one another, therefore,
by Theorem 5.4 the matroid M∗(K5) cannot be graphic.

Consider now K3,3 as depicted in Fig. 5.3. For Y = {y1, y2, y3, y4, y5, y6} a
cocircuit of M∗(K3,3), the bridges of Y will be {{e1}, {e2}, {e3}} and

π(M∗(K3,3), {e1}, Y ) = {{y1, y5, y6}, {y2, y3, y4}},
π(M∗(K3,3), {e2}, Y ) = {{y1, y2, y3}, {y4, y5, y6}},
π(M∗(K3,3), {e3}, Y ) = {{y3, y4, y5}, {y1, y2, y6}}.

As previously, we can see that any pair of bridges is overlapping, and M∗(K3,3) is
not a graphic matroid.

If a matroid has a cocircuit which is not bridge-separable, then it will contain a
minor isomorphic to M∗(K5), M∗(K3,3) or F∗7 .

Instead of cocircuits with overlapping bridges consider now cocircuits that have
bridges which avoid each other. The graphical significance of all avoiding bridges in
a cocircuit of a graphic matroid is illustrated in Example 5.3.

Example 5.3 For the graph G in Fig. 5.1, take the graph G ′ = G\{y2}, and the bond
Y ′ = {y1, y3, y4} in this graph, as shown in Fig. 5.4. In this case Y ′ has the same
bridges B1, B2, and B3 in G ′ as Y in G, but now we have

π(M, B1, Y ′) = {{y1}, {y3, y4}},
π(M, B2, Y ′) = {{y1, y3}, {y4}},
π(M, B3, Y ′) = {{y1}, {y3}, {y4}},

where one can check that all bridges of Y avoid each other. Note that we can find
2-separations in G ′ such that after two consecutive twistings about the defining
vertices {v,w} we can get G ′′′. The bond Y is now a star in G ′′′, which has the same
set of cycles as G ′, so we have that M(G ′′′) = M(G ′). ��
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Fig. 5.4 All avoiding bridges

In Theorem 5.5 we prove that if a cocircuit of a graphic matroid has all avoiding
bridges, then there is a graph representation of the matroid where this cocircuit is a star
of a vertex. This result is vital for the proof of the composition part of the Theorem 5.6,
since it provides the link between graphic matroids and their representations as
graphs. Specifically, given that a cocircuit Y of a graphic matroid is bridge-separable,
then its bridges can be arranged into two distinct classes of all avoiding bridges, and
we know that the corresponding matroids have graph representations with Y being a
star. A simple composition operation then can be defined where the stars of the two
graphs identify into a bond of a union of the graphs.

Theorem 5.5 Let Y be a cocircuit of a connected graphic matroid M such that any
two bridges of Y avoid each other. Then there exists a 2-connected graph G where
Y is a star of a vertex, and M = M(G).

Proof There exists a 2-connected graph G such that M(G) = M , and Y is a bond
in G. Let G1, G2 be the two components of G\Y . We shall show that there exist
disjoint 2-separations in G, such that, by a series of twistings on the associated
vertices of the 2-separations we can reduce the size of G1 by one separate at a time,
until we are left with a single vertex whose star will be Y .

Fix an arbitrary bridge B0 of Y in M(G) where G|B0 is a separate of G2. For any
bridge B1 of Y such that G|B1 is a separate of G1, we know, by Theorem 5.3 and the
fact that all bridges of Y are avoiding, that there exist a pair of vertices v0 ∈ V (G|B0)

and v1 ∈ V (G|B1) such that

Y (B0, v0) ∪ Y (B1, v1) = Y. (5.1)

Choose B1, v1 and v0 such that the number of edges of C(B1, v1) is the least possible.
For a bridge B and v ∈ V (G|B), if Gi is the component of G\Y such that G|B ⊆ Gi ,
define F(B, v) = Gi\E(C(B, v)). Let B1, B2, . . . , Bk be the bridges of Y that
contain vertex v1, and consider any one of them, say Bi . The situation for k = 4 is
depicted in Fig. 5.5. We know that there exist w ∈ V (G|Bi ) and v ∈ V (G|B0) such
that

Y (Bi , w) ∪ Y (B0, v) = Y. (5.2)
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Fig. 5.5 Groups of bridges as
2-separations in G

We will show that w = v1 for all i = 1, . . . , k. From (5.1) and the fact that G
is 2-connected, we can deduce that there exists at least one edge e ∈ Y with one
end-vertex in F(B1, v1) and the other end-vertex in C(B0, v0). Suppose now that
w �= v1. Then e /∈ Y (Bi , w) which implies that v = v0 for (5.2) to be true. This
contradicts the choice of B1, v1 and v0 since E(C(Bi , w)) ⊂ E(C(B1, v1)).

Let Q(v)be the group of bridges Bi such that (5.2) holds (with B0 fixed). For exam-
ple, in Fig. 5.5, both B2 and B3 satisfy (5.2) with B0. Each such group Q(v) defines
a 2-separation in G with defining vertices v and v1 and a partition {T, E(G)\T } of
E(G), where

T = E(C(B0, v)) ∪ Y (B0, v) ∪
⎛

⎝
⋃

Bi∈Q(v)

E(F(Bi , v1))

⎞

⎠ ,

since for any Bi ∈ Q(v) for i = 1, . . . , k, there are no edges of Y with one end-
vertex in F(Bi , v1) and the other in F(B0, v) due to the avoidance between Bi and B0.
Therefore, by twisting about v1 and v for every group of bridges Q(v), we can create
a graph G ′ where Y is a bond such that one of the components of G ′\Y is G2 with
B0 replaced by a vertex, while the other component is G1 with v1 replaced by B0. ��

5.2 Decomposition

The main result of this chapter is the following theorem, which in contrast with
Theorem 4.14, provides a structural characterization of graphic matroids.
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Theorem 5.6 (Decomposition of Graphic Matroids) Let M be a connected binary
matroid and Y ∈ C ∗(M). M is graphic if and only if

(i) Y is bridge-separable, and
(ii) for any bridge B of Y , the minor M.(B ∪ Y ) is graphic.

Proof Necessity follows from Theorem 5.4 and the fact that graphic matroids are
closed under minors, as implied by Proposition 4.9.

The proof for sufficiency will be divided into three parts. Assume that there exist
a binary matroid M and a cocircuit Y ∈ C ∗(M) such that the theorem is not true,
and among those pairs choose the one with the least |E(M)|. We will prove that
there exists a graph G such that M = M(G). If Y has only one bridge B, then
M = M.(B∪Y ) and M is a graphic matroid by assumption. So assume that Y has at
least two bridges. Since Y is bridge-separable, we can partition its bridges into two
classes U1 and U2 such that any two bridges in the same class avoid each other. Let

Ei =
⋃

B∈Ui

B, i = 1, 2,

be the elements in E(M) of the members in each class. For the rest of the proof
assume that i = 1, 2.

Part 1 The matroids M.(E1 ∪ Y ) and M.(E2 ∪ Y ) are graphic matroids. Assume
that M.(Ei ∪ Y ) is not connected, and has a separator S ⊆ Ei ∪ Y . Then, there must
exist a bridge B ∈ Ui of Y in M such that S ∩ (B ∪ Y ) �= ∅. By the definition
of the contraction operation, S ∩ (B ∪ Y ) would also be a separator of M.(B ∪ Y )

which is a contradiction since, by Theorem 5.1, we know that every Y -component
is connected. Thus, M.(Ei ∪ Y ) is connected. The cocircuits of M.(Ei ∪ Y ) are the
circuits of (M.(Ei ∪ Y ))∗ = M∗|(Ei ∪ Y ), which are the cocircuits of M contained
in Ei ∪Y , so Y is a cocircuit of M.(Ei ∪Y ). For any bridge B ∈ Ui of Y in M , since
B is a separator of M\Y , then it is also a separator of (M.(Ei ∪ Y ))\Y . Therefore,
we have that B is a bridge of Y in M.(Ei ∪ Y ) and

π(M.(Ei ∪ Y ), B, Y ) = π(M, B, Y ),

which implies that any two bridges of Y in M.(Ei ∪ Y ) avoid each other; therefore,
Y is bridge-separable. Finally, the corresponding Y -component of Y in M.(Ei ∪ Y )

for the bridge B is
(M.(Ei ∪ Y )).(B ∪ Y ) = M.(B ∪ Y ),

by property (ii) of Theorem 4.10, and this matroid is a graphic matroid. We conclude
that M.(Ei ∪Y ) satisfies the conditions of the theorem, and since it has less elements
than M it is a graphic matroid by assumption.
Part 2 Construction of a graph G. Since all the bridges of Y in Ui avoid each other,
by Theorem 5.5 there exists a 2-connected graph Gi such that Y is a star of a vertex
wi and
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Fig. 5.6 Proof of Theorem 5.6

M.(Ei ∪ Y ) = M(Gi ). (5.3)

Construct a graph G with E(G) = E(M) by adjoining G1\Y and G2\Y as follows:
For any edge e ∈ Y , add an edge between the end-vertex of e in G1 to the corre-
sponding end-vertex of e in G2 and name that edge e (see Fig. 5.6). Since the graphs
G1 and G2 are 2-connected and Y is a star of a vertex in both, G\Y will have two
connected components by construction, which implies that Y is a bond of G and
a cocircuit in the cycle matroid M(G). We can now relate M and M(G) through
M(Gi ), since by Proposition 4.9 and (5.3) we have

M(G).(Ei ∪ Y ) = M(G.(Ei ∪ Y )) = M(Gi ) = M.(Ei ∪ Y ). (5.4)

Part 3 Prove that M = M(G). In this part we will make use of the characterization
of binary matroids given in Theorem 4.4, which can be stated for the cocircuits of a
binary matroid due to Corollary 4.1. Having established a relationship between M
and M(G) as given by (5.4), we will now employ a matroid argument to prove that
these two matroids are, in fact, equal. Consider the following family of cocircuits
of M(G)

K = {X ∈ C ∗(M(G)) : ∃ Xi ∈ C ∗(M) such that X = �Xi }.
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Note that for X1, X2 ∈ K such that X1 ∩ X2 �= ∅, since M(G) is binary, we have
that X1�X2 ∈ C ∗(M(G)) and X1�X2 ∈ K .

Claim There exists some X ∈ C ∗(M(G))−K such that X − Y is a cocircuit of
M(G)\Y .

Proof We can assume that for all X ∈ C ∗(M(G)) − K we have X ∩ Y = ∅,
since otherwise by the deletion operation we have that X − Y ∈ C ∗(M(G)\Y ).
Choose such an X and assume that it is not a cocircuit of M(G)\Y . Then there
exists T ∈ C ∗(M(G)) such that T ⊂ X ∪ Y and, since M(G) is binary X�T is a
cocircuit of M(G). If X�T or T do not belong to K the result follows. Therefore,
(X�T )�T = X which implies that X ∈ K , which is a contradiction.

By the above claim and the fact that E1 and E2 are separators for M(G)\Y by
construction, we can conclude that either X ⊆ (E1∪Y ) or X ⊆ (E2∪Y ). Therefore,
since X ∈ C ∗(M(G)), we have that X is either a cocircuit of M(G).(E1 ∪ Y ) =
M.(E1 ∪ Y ) or a cocircuit of M(G).(E2 ∪ Y ) = M.(E2 ∪ Y ). In both cases X is
a cocircuit of M . But since M is connected and binary this is a contradiction to the
fact that X /∈ K . So for any cocircuit X ∈ C ∗(M(G)) we have

X = X1�X2� . . .�Xn

for Xi ∈ C ∗(M). But by the dual of Theorem 4.4 in binary matroids the symmetric
difference of cocircuits contains a cocircuit, or it is empty. So, we can conclude that
there exists some X ′ ∈ C ∗(M) such that X ′ ⊆ X .

Reversing the above argument we can also conclude that any cocircuit X ′ of
M contains a cocircuit X of M(G), and by Lemma 3.2 we have M = M(G), a
contradiction to our original hypothesis. ��

The argument for proving sufficiency in the above proof can be seen schematically
in Fig. 5.6. For a binary matroid M two smaller matroids M.(E1∪Y ) and M.(E2∪Y )

are constructed and it is proved that they are graphic matroids and Y is a cocircuit
with all-avoiding bridges in both. Therefore, by Theorem 5.5 we can find two graphs
G1 and G2 where Y is a star of a vertex in both, thus, we can compose a larger
graph G and prove that M = M(G).

The above theorem can be viewed as a decomposition of graphic matroids in the
sense that if some well-defined minors of a matroid are graphic then the matroid is
also graphic, and vice versa. In other words, the property of graphicness is not only
inherited to the minors of the matroid, but even more importantly, it is maintained in
the composition of the matroid from these minors. A direct consequence of this, is a
recognition algorithm, that we will discuss in the next section.
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5.3 Recognition Algorithm for Graphic Matroids

Theorem 5.6 can be used to construct a polynomial-time recognition algorithm which
determines whether a binary matroid given by a {0, 1} representation matrix is graphic
and provide the corresponding graph in the affirmative. We will first provide a sketch
of the algorithm and then describe it in full detail. Given a binary matroid M , first we
have to find a cocircuit Y such that M\Y is not connected. As we will see later on, if
M is graphic then there is always a separating cocircuit which is easy to compute. For
each separator B of M\Y , if the collection of cocircuits of the minor M.(B ∪ Y )|Y
does not partition Y , then the matroid is not graphic. Equivalently, if we cannot
partition the bridges of Y into two classes of all-avoiding bridges, the matroid is not
graphic. If the aforementioned conditions are satisfied, we apply the same procedure
to each minor M.(B ∪Y ) for any bridge B of Y . Eventually, the size of these minors
will become small enough such that they will be graphic matroids.

Before describing the recognition algorithm in detail, we have to define some
preliminary operations and procedures that will be used by the algorithm as sub-
routines. Although Theorem 5.6 is stated for matroids and graphs, the recognition
algorithm description will be restricted to matrices representing matroids and graphs.
All matrices as well as any operations on them are defined on the binary field G F(2).
Consider two incidence matrices RG1 and RG2 , and let Y be the star of a vertex in
both G1 and G2. Let

RG1 =
[ E1 Y

V1 R11 R12
w1 0 · · · 0 1 · · · 1

]
, RG2 =

[ E2 Y

V2 R21 R22
w2 0 · · · 0 1 · · · 1

]
,

where E1, E2, and V1, V2 are the index sets of the columns and rows, respectively, and
w1, w2 are the rows of the matrices RG1 and RG2 that correspond to the characteristic
vector of Y . The incidence matrix of the star composition of G1 and G2 in Y , is
defined as

RG1 �Y RG2 =
[ E1 E2 Y

V1 R11 0 R12
V2 0 R21 R22

]
,

where 0 denotes the matrix of all zeros of appropriate size. The star composition
defined above is the equivalent matrix operation to the one described for graphs
in part 2 of the proof of Theorem 5.6. In the following, assume that we have an
incidence matrix R of a graph G. The procedure Standard(R) returns the standard
representation matrix [I |R′], by performing elementary row operations, permutations
of the columns, and deletion of any zero row or column in R. For a set of columns
Y , the procedure Star(R, Y ) returns the incidence matrix of a graph where Y is the
star of a vertex by applying elementary row operations on R, provided that such a
representation exists.
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The algorithm is shown in pseudocode in Algorithm 5.1. As an input to the algo-
rithm Graphic we give a binary matrix R, and the algorithm returns the incidence
matrix RG of a graph G such that M(G) = M[R], if the matroid M[R] is graphic.
If not, the algorithm terminates without any output. The algorithm is recursive in
nature, and it terminates if one of the conditions upon which M[R] is not graphic is
satisfied in lines 11, 20, and 23, or if R is trivially the incident matrix of a graph.

In lines 1–6, we initially transform R into a standard representative matrix for
M[R] and check to see if each column contains at most two nonzeros. In the affir-
mative, we adjoin the mod 2 sum of the rows in line 4, thereby, constructing a binary
matrix with exactly two nonzeros in each column which is the incidence matrix of a
graph by definition. Note that the operation in line 4 does not affect linear indepen-
dence in G F(2), which implies that M[R] = M[RG].

Algorithm 5.1 Graphic
Input: matrix R in G F(2)

Output: incidence matrix RG of graph G such that M(G) = M[R]
R := Standard(R)
if each column of R has at most two nonzeros→

r :=∑
i∈rows(R) R(i, :)

RG :=
[

R
r

]
#M[R] = M[RG ] is graphic

return RG
end if
Choose a column j and rows i1, i2, i3 such that R(ik , j) = 1, k = 1, 2, 3
for k = 1, . . . , 3→

Y := { j : R(ik , j) = 1}
{B1, . . . , Bn} := Separators(R\Y )
if n = 1 and k = 3→ exit # is Y separating?
if n > 1→ continue

end for
for each Bk ∈ {B1, . . . , Bn} →

Rk := Standard(R.(Bk ∪ Y )|Y )
for each i ∈ rows(Rk)→

Ci := { j : Rk(i, j) = 1}
π(Bk)← Ci

end for
if π(Bk) is not a partition of Y → exit # does Bk partitions Y ?

end for
{U1, U2} := Avoiding({π(B1), . . . , π(Bn)})
if U1 = ∅ and U2 = ∅→ exit # is Y bridge-separable?
for k = 1, 2→

for each Bk ∈ Ui →
Rk := Graphic( R.(Bk ∪ Y ) ) # is M[R].(Bk ∪ Y ) graphic?
Rk := Star(Rk , Y )
RUi := Star( RUi �Y Rk , Y )

end for
end for
RG := RU1 �Y RU2

return RG
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In the case where R has a column j with at least three nonzero elements, from the
rows in R that have a nonzero element in column j , one of them has to be a separating
cocircuit for M[R] to be graphic. This is so, since a non-separating cocircuit in a
graphic matroid corresponds to a star in any graphical representation and an edge of
a graph cannot be a member of three distinct stars. This is examined in lines 8–13,
where for each row with a nonzero element of column j we compute the separators of
M[R]\Y , where Y is the cocircuit defined by that row. The procedure Separators
partitions the matrix R\Y , and returns the partition of the columns {B1, . . . , Bn}.
This can be done efficiently in a number of ways, one possibility is the following.
Pick an arbitrary column j and add it to a set B1. Now add to B1 any column that has
a nonzero element in the rows that have nonzero element in column j , and repeat
this procedure for any column in B1 that has not been examined yet. In the same
fashion construct B2, . . . , Bn until all columns of R\Y have been included. If at any
time during that process we find two or more separators, then we exit the loop in
line 12, while if all cocircuits are non-separating, then in line 11 we conclude that
the matroid is not graphic and terminate the algorithm without any output.

At this point we have a separating cocircuit Y of M[R], as well as a set
{B1, . . . , Bn} of bridges of Y , where n > 1. The next task is to check whether
each Bk partitions Y , that is, to check whether the members of π(M[R], Bk, Y ) are
disjoint and their union is Y . By Corollary 5.1, we know that π(M[R], Bk, Y ) is
the collection of cocircuits of M[R].(Bk ∪ Y )|Y . Therefore, it is enough to check
whether each column in a standard form of R.(Bk ∪ Y )|Y has exactly one nonzero
entry, which is done in lines 16–20. The procedure Avoiding in line 22, partitions
the bridges {B1, . . . , Bn} into two disjoint classes U1 and U2, such that any two
bridges in a class are avoiding. This can be done as follows. Given π(M[R], Bi , Y )

and π(M[R], B j , Y ) for any two bridges Bi and B j , it is trivial to check whether
they avoid each other. Construct a graph with vertices {B1, . . . , Bk}, and join any
two vertices by an edge if the corresponding pair of bridges is overlapping. If the
resulting graph is bipartite, which can be checked easily, then the procedure Avoid-
ing returns the vertex partitions as U1 and U2. If not, then Y is not bridge-separable
and the procedure returns U1 = U2 = ∅, where in this case the algorithm terminates
in line 23.

The algorithm now has to check whether the Y -components Mk = M[R].(Bk∪Y )

for each bridge Bk are graphic matroids, and if they are, compose the graph G from
the graphs Gk . This is done in lines 24–30. In line 26, we get the incident matrix for
the graph Gk such that M(Gk) = M[R.(Bk ∪Y )] if the corresponding Y -component
is graphic. If not, then the algorithm terminates with no output. By Theorem 5.5
we know that the binary matroid M[R.(∪B∈U1 B ∪ Y )] has a 2-connected graphical
representation where Y is a star of a vertex. The incidence matrix of this graph is
constructed in line 28, by taking the star compositions one pair at a time. The fact that
star representations of the matrices Rk and RUi in lines 27 and 28 exist, is guaranteed
by Theorem 5.5. Similarly for the bridges of U2. Finally, the incidence matrix of G
is computed by the star composition of the resulting graphs in line 31, and returned
by the algorithm.
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Note that in view of Theorem 4.7 algorithm Graphic can also be used to test
whether a given graph G is planar or not.

5.4 Numerical Example

In this section we will go through a numerical example step-by-step in order to get a
better understanding of the Algorithm 5.1. Consider that we are given the following
standard representation matrix in G F(2)

R =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14

1 1 0 0 0 0 0 0 1 1 1 1 1 0 0
2 0 1 0 0 0 0 0 1 0 1 0 0 0 1
3 0 0 1 0 0 0 0 0 1 0 1 0 0 1
4 0 0 0 1 0 0 0 1 0 1 0 0 0 0
5 0 0 0 0 1 0 0 1 1 1 1 1 0 0
6 0 0 0 0 0 1 0 0 0 0 1 1 1 0
7 0 0 0 0 0 0 1 0 1 1 1 1 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.5)

and let M = M[R]. We want to find a graph G such that M = M(G), or decide
conclusively that no such graph exists. Each row in R is the characteristic vector
of a cocircuit of M . Choose a row from R that has a nonzero in a column with
three or more nonzero elements, say row 1. This corresponds to the cocircuit Y1 =
{e1, e8, e9, e10, e11, e12}. The representation matrix for the matroid M\Y1 is obtained
from R by deleting the columns that correspond to the elements of Y1

R\Y1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

e2 e3 e4 e5 e6 e7 e13 e14

2 1 0 0 0 0 0 0 1
3 0 1 0 0 0 0 0 1
4 0 0 1 0 0 0 0 0
5 0 0 0 1 0 0 0 0
6 0 0 0 0 1 0 1 0
7 0 0 0 0 0 1 1 0

⎤

⎥⎥⎥⎥⎥⎥⎦
,

and its columns and rows can be partitioned as

R\Y1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

e2 e3 e14 e4 e5 e6 e7 e13

2 1 0 1 0 0 0 0 0
3 0 1 1 0 0 0 0 0
4 0 0 0 1 0 0 0 0
5 0 0 0 0 1 0 0 0
6 0 0 0 0 0 1 0 1
7 0 0 0 0 0 0 1 1

⎤

⎥⎥⎥⎥⎥⎥⎦
.
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Therefore, we can conclude that Y1 is a separating cocircuit, and its bridges in M are

B1 = {e2, e3, e14}, B2 = {e4}, B3 = {e5}, B4 = {e6, e7, e13}.

The Y1-components M.(Bi ∪ Y1) for i = 1, . . . , 4 are given by the following repre-
sentation matrices:

R.(B1 ∪ Y1) =
⎡

⎣

e1 e2 e3 e8 e9 e10 e11 e12 e14

1 1 0 0 1 1 1 1 1 0
2 0 1 0 1 0 1 0 0 1
3 0 0 1 0 1 0 1 0 1

⎤

⎦, (5.6)

R.(B2 ∪ Y1) =
[ e1 e4 e8 e9 e10 e11 e12

1 1 0 1 1 1 1 1
4 0 1 1 0 1 0 0

]
, (5.7)

R.(B3 ∪ Y1) =
[ e1 e5 e8 e9 e10 e11 e12

1 1 0 1 1 1 1 1
5 0 1 1 1 1 1 1

]
, (5.8)

R.(B4 ∪ Y1) =
⎡

⎣

e1 e6 e7 e8 e9 e10 e11 e12 e13

1 1 0 0 1 1 1 1 1 0
6 0 1 0 0 0 0 1 1 1
7 0 0 1 0 1 1 1 1 1

⎤

⎦. (5.9)

Note that R.(B1 ∪ Y1) = R/{e4, e5, e6, e7, e13}, so in order to contract the elements
{e4, e5, e6, e7}, since these are basic elements, we simply delete the corresponding
rows. The columns of the non-basic elements, {e13} in this case, will become zero
and they can be simply deleted since contraction of a loop in a matroid is equal to
deletion. Similarly for the other Y1-components.

Now we have to compute π(Bi , M, Y1) = C ∗(M.(Bi ∪ Y1)|Y1) for each bridge
Bi of Y1. The standard representation matrix for M.(B1 ∪ Y1)|Y1 is obtained from
the matrix in (5.6) by deleting the columns that correspond to the elements of B1,
and performing elementary row operations. We will have

R.(B1 ∪ Y1)|Y1 =
⎡

⎣

e1 e8 e9 e10 e11 e12

1 1 1 1 1 1 1
2 0 1 0 1 0 0
3 0 0 1 0 1 0

⎤

⎦→
⎡

⎣

e1 e8 e9 e10 e11 e12

1 1 0 0 0 0 1
2 0 1 0 1 0 0
3 0 0 1 0 1 0

⎤

⎦,

where we added rows 2 and 3 to row 1. Since all the columns in the standard rep-
resentation matrix of M.(B1 ∪ Y1)|Y1 have only one nonzero element, it means that
the cocircuits defined by the rows of R.(B1 ∪ Y1)|Y1 are the only cocircuits of this
matroid and they partition the ground set Y1. Therefore, we have
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π(B1, M, Y1) = {{e1, e12}, {e9, e11}, {e8, e10}}.

Similarly for B2, B3 and B4 we compute

R.(B2 ∪ Y1)|Y1 =
[ e1 e8 e9 e10 e11 e12

1 1 1 1 1 1 1
4 0 1 0 1 0 0

]
→

[ e1 e8 e9 e10 e11 e12

1 1 0 1 0 1 1
4 0 1 0 1 0 0

]
,

with π(B2, M, Y1) = {{e1, e9, e11, e12}, {e8, e10}},

R.(B3 ∪ Y1)|Y1 =
[ e1 e8 e9 e10 e11 e12

1 1 1 1 1 1 1
5 0 1 1 1 1 1

]
→

[ e1 e8 e9 e10 e11 e12

1 1 0 0 0 0 0
5 0 1 1 1 1 1

]
,

with π(B3, M, Y1) = {{e1}, {e8, e9, e10, e11, e12}}, and

R.(B4 ∪ Y1) =
⎡

⎣

e1 e8 e9 e10 e11 e12

1 1 1 1 1 1 1
6 0 0 0 0 1 1
7 0 0 1 1 1 1

⎤

⎦→
⎡

⎣

e1 e8 e9 e10 e11 e12

1 1 1 0 0 0 0
6 0 0 0 0 1 1
7 0 0 1 1 0 0

⎤

⎦,

with π(B4, M, Y1) = {{e1, e8}, {e9, e10}, {e11, e12}}. We can conclude that each
bridge B1, B2, B3, and B4 partitions Y1. Moreover, we can see that B1 and B2 overlap
with B4 while any other pair of bridges is avoiding. Thus, the collections U1 =
{B1, B2, B3} and U2 = {B4} consist of avoiding bridges, which means that Y1 is
bridge-separable.

We now have to see if the Y1-components are graphic matroids. Let M1 =
M.(B1 ∪ Y1) and R1 = R.(B1 ∪ Y1). Each column of R1 has at most two nonzero
entries, therefore, by adjoining an extra row that is the mod 2 sum of its rows, it will
become the incidence matrix of a graph, while the matroid will remain the same. Let
R′1 be such a matrix, where we apply an arbitrary labeling in its rows and row w is
the mod 2 sum of the rows of R1

R′1 =

⎡

⎢⎢⎣

e2 e3 e14 e1 e8 e9 e10 e11 e12

v1 1 0 1 0 1 0 1 0 0
v2 0 1 1 0 0 1 0 1 0
v3 1 1 0 1 0 0 0 0 1
w1 0 0 0 1 1 1 1 1 1

⎤

⎥⎥⎦.

Note that M1 = M[R1] = M[R′1] and Y1 will also be a cocircuit of M1. The graph G1
that corresponds to the incidence matrix R′1 is shown in Fig. 5.7, where the bond Y1
is indicated. It is also clear from the graph that the cocircuits of M.(B1 ∪ Y1)|Y1
which are the bonds of G1|Y1, are given by π(B1, M, Y1).

If we let M2 = M.(B2 ∪ Y1), M3 = M.(B3 ∪ Y1) and R2 = R.(B2 ∪ Y1),
R3 = R.(B3 ∪ Y1), we observe that the matrices R2 and R3 also have at most two
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Fig. 5.7 Graph G1 such that M(G1) = M.(B1 ∪ Y1)

nonzero elements in each column. Applying the same procedure as we did for the
matrix R1 we get the incidence matrices

R′2 =
⎡

⎣

e4 e1 e8 e9 e10 e11 e12

v4 1 0 1 0 1 0 0
v5 1 1 0 1 0 1 1
w2 0 1 1 1 1 1 1

⎤

⎦

R′3 =
⎡

⎣

e5 e1 e8 e9 e10 e11 e12

v6 1 0 1 1 1 1 1
v7 1 1 0 0 0 0 0
w3 0 1 1 1 1 1 1

⎤

⎦

of the graphs G2 and G3 shown in Fig. 5.8.
Thus far we have concluded that the Y1-components M1, M2, and M3 are graphic

matroids, and we have found corresponding graphical representations G1, G2,
and G3. It remains to examine M4 = M.(B4 ∪ Y1). Letting R4 = R.(B4 ∪ Y1)

in (5.9), we observe that R4 has columns with more than three nonzero elements,
hence we cannot readily conclude that M4 is graphic as in the previous cases. First
we have to find a separating cocircuit. Consider row 1 of R4, that is, the cocircuit
Y = {e1, e8, e9, e10, e11, e12}. The representation matrix for M4\Y will be

Fig. 5.8 Graphs G2 and G3
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R4\Y =
⎡

⎣

e6 e7 e13

1 0 0 0
6 1 0 1
7 0 1 1

⎤

⎦,

and we can see that R4\Y cannot be partitioned into at least two blocks, which
means that Y is a non-separating cocircuit. Consider row 6, which corresponds to
the cocircuit Y = {e6, e11, e12, e13}. We get

R4\Y =
⎡

⎣

e1 e7 e8 e9 e10

1 1 0 1 1 1
6 0 0 0 0 0
7 0 1 0 1 1

⎤

⎦,

and, as previously, we can see that Y is non-separating. For row 7 of R4 we have the
cocircuit Y = {e7, e9, e10, e11, e12, e13} and

R4\Y =
⎡

⎣

e1 e8 e6

1 1 1 0
6 0 0 1
7 0 0 0

⎤

⎦,

where we see from the partition of the matrix that M4\Y has two separators, and
namely B1 = {e1, e8} and B2 = {e6}. Let Y2 = {e7, e9, e10, e11, e12, e13}. If the
cocircuit of row 7 was also a non-separating cocircuit we would have concluded that
M4 is not a graphic matroid, which would in turn imply that M is not graphic, since
graphic matroids are closed under minors as stated in Proposition 4.9. Working as
we did before for M , the Y2-components M4.(Bi ∪ Y2), for i = 1, 2, are given by
the following representation matrices:

R4.(B1 ∪ Y2) =
[ e1 e7 e8 e9 e10 e11 e12 e13

1 1 0 1 1 1 1 1 0
7 0 1 0 1 1 1 1 1

]
, (5.10)

R4.(B2 ∪ Y2) =
[ e6 e7 e9 e10 e11 e12 e13

6 1 0 0 0 1 1 1
7 0 1 1 1 1 1 1

]
. (5.11)

Initially we have to check if B1, B2 partition Y2 and if Y2 is bridge-separable. For
doing so we have to compute π(Bi , M4, Y2) for i = 1, 2. We will have

R4.(B1 ∪ Y2)|Y2 =
[ e7 e9 e10 e11 e12 e13

1 0 1 1 1 1 0
7 1 1 1 1 1 1

]
→

[ e7 e9 e10 e11 e12 e13

1 0 1 1 1 1 0
7 1 0 0 0 0 1

]
,
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which gives π(B2, M4, Y2) = {{e9, e10, e11, e12}, {e7, e13}}, and

R4.(B2 ∪ Y2)|Y2 =
[ e7 e9 e10 e11 e12 e13

6 0 0 0 1 1 1
7 1 1 1 1 1 1

]
→

[ e7 e9 e10 e11 e12 e13

6 0 0 0 1 1 1
7 1 1 1 0 0 0

]
,

which give π(B2, M4, Y2) = {{e7, e9, e10}, {e11, e12, e13}}. Therefore, B1 avoids B2
and both bridges partition Y2. Now we have to check whether the binary matroids
given by the representation matrices in (5.10) and (5.11) are graphic matroids. Letting
M5 = M4.(B1 ∪ Y2), M6 = M4.(B2 ∪ Y2) and their representation matrices R5 =
R4.(B1 ∪ Y2) and R6 = R4.(B2 ∪ Y2), we observe that both R5 and R6 have at most
two nonzero elements in each column, hence, the matroids are graphic. To construct
the incidence matrices R′5, R′6 of the graphs G5, G6 such that M(G5) = M5 and
M(G6) = M6, we work as we did previously for constructing R′1, R′2 and R′3.
Specifically, we will have

R′5 =
⎡

⎣

e1 e8 e7 e9 e10 e11 e12 e13

v8 1 1 0 1 1 1 1 0
v9 1 1 1 0 0 0 0 1
w5 0 0 1 1 1 1 1 1

⎤

⎦

R′6 =
⎡

⎣

e6 e7 e9 e10 e11 e12 e13

v10 1 0 0 0 1 1 1
v11 1 1 1 1 0 0 0
w6 0 1 1 1 1 1 1

⎤

⎦.

The associated graphs G5 and G6 are shown in Fig. 5.9.
Therefore, the matroid M4 is graphic since it satisfies the conditions of Theo-

rem 5.6. In order to construct the graph G4 such that M(G4) = M4, we take the star
composition of the matrices R′5 and R′6 at Y2. Specifically, we will have

Fig. 5.9 Graphs G5 and G6
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R′5 �Y2 R′6 =

⎡

⎢⎢⎣

e1 e8 e6 e7 e9 e10 e11 e12 e13

v8 1 1 0 0 1 1 1 1 0
v9 1 1 0 1 0 0 0 0 1
v10 0 0 1 0 0 0 1 1 1
v11 0 0 1 1 1 1 0 0 0

⎤

⎥⎥⎦.

Although R′5 �Y2 R′6 is the incidence matrix of a graph corresponding to the graphic
matroid M4, among all possible graphical representations of M4, we want the one
where Y1 is the star of a vertex, so as to be able to compose its graph with the one
derived from the respective star composition of G1, G2 and G3. In this case we see
that in R′5 �Y2 R′6 the cocircuit Y1 appears in row v8, therefore, we have the following
incident matrix of G4 after permuting some columns and rows

R′4 =

⎡

⎢⎢⎣

e6 e7 e13 e1 e8 e9 e10 e11 e12

v9 0 1 1 1 1 0 0 0 0
v10 1 0 1 0 0 0 0 1 1
v11 1 1 0 0 0 1 1 0 0
v8 0 0 0 1 1 1 1 1 1

⎤

⎥⎥⎦.

The graph G4 is given in Fig. 5.10.
We can conclude that the Y1-components M1, M2, M3, and M4 are all graphic

matroids, hence, the matroid M is graphic, since it fulfills the conditions of Theo-
rem 5.6. In order to construct the graph G which represents M we have to construct
two graphs as the star compositions of the graphs that correspond to the two col-
lections of avoiding bridges, where Y1 appears as a star of a vertex in both graphs,
and then take the star composition of these. This has been done already for G4, so it
remains to take the star compositions of the graphs G1, G2, and G3. The star com-
positions will have to be done in pairs, since for each incident matrix which results
from a star composition we will probably have to apply elementary row operations
to compute an equivalent incident matrix, where Y1 appears as a star of a vertex. For
G1 and G2, we have the incidence matrix

Fig. 5.10 Graph G4
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R′1 �Y1 R′2 =

⎡

⎢⎢⎢⎢⎣

e2 e3 e14 e4 e1 e8 e9 e10 e11 e12

v1 1 0 1 0 0 1 0 1 0 0
v2 0 1 1 0 0 0 1 0 1 0
v3 1 1 0 0 1 0 0 0 0 1
v4 0 0 0 1 0 1 0 1 0 0
v5 0 0 0 1 1 0 1 0 1 1

⎤

⎥⎥⎥⎥⎦

where we see that Y1 does not appear as a cocircuit. Adding row v4 to rows v5 and
v1 we get the incident matrix for the graph G1,2

R′1,2 =

⎡

⎢⎢⎢⎢⎣

e2 e3 e14 e4 e1 e8 e9 e10 e11 e12

v1 1 0 1 1 0 0 0 0 0 0
v2 0 1 1 0 0 0 1 0 1 0
v3 1 1 0 0 1 0 0 0 0 1
v4 0 0 0 1 0 1 0 1 0 0
v5 0 0 0 0 1 1 1 1 1 1

⎤

⎥⎥⎥⎥⎦

where Y1 is a star of the vertex v5. The graph G1,2 is given in Fig. 5.11. Note that the
graph G1,2 can be obtained from the graph that corresponds to the incidence matrix
R′1 �Y1 R′2 by twisting about the vertices v1 and v5. Continuing in this way we can
compose R′1,2 with R′3 at Y1 to get

R′1,2 �Y1 R′3 =

⎡

⎢⎢⎢⎢⎢⎢⎣

e2 e3 e14 e4 e5 e1 e8 e9 e10 e11 e12

v1 1 0 1 1 0 0 0 0 0 0 0
v2 0 1 1 0 0 0 0 1 0 1 0
v3 1 1 0 0 0 1 0 0 0 0 1
v4 0 0 0 1 0 0 1 0 1 0 0
v6 0 0 0 0 1 0 1 1 1 1 1
v7 0 0 0 0 1 1 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Adding row v7 to rows v6 and v3, and interchanging rows v6 and v7 we get the
incidence matrix of G1,2,3 where Y1 appears as a cocircuit

Fig. 5.11 Graph G1,2
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R′1,2,3 =

⎡

⎢⎢⎢⎢⎢⎢⎣

e2 e3 e14 e4 e5 e1 e8 e9 e10 e11 e12

v1 1 0 1 1 0 0 0 0 0 0 0
v2 0 1 1 0 0 0 0 1 0 1 0
v3 1 1 0 0 1 0 0 0 0 0 1
v4 0 0 0 1 0 0 1 0 1 0 0
v7 0 0 0 0 1 1 0 0 0 0 0
v6 0 0 0 0 0 1 1 1 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎦
,

while the graph G1,2,3 is given in Fig. 5.12.
Finally, we compose R′1,2,3 with R′4 at Y1 to get the incidence matrix of the graph G

shown in Fig. 5.13.

R′1,2,3 �Y1 R′4 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e2 e3 e14 e4 e5 e6 e7 e13 e1 e8 e9 e10 e11 e12

v1 1 0 1 1 0 0 0 0 0 0 0 0 0 0
v2 0 1 1 0 0 0 0 0 0 0 1 0 1 0
v3 1 1 0 0 1 0 0 0 0 0 0 0 0 1
v4 0 0 0 1 0 0 0 0 0 1 0 1 0 0
v7 0 0 0 0 1 0 0 0 1 0 0 0 0 0
v9 0 0 0 0 0 0 1 1 1 1 0 0 0 0
v10 0 0 0 0 0 1 0 1 0 0 0 0 1 1
v11 0 0 0 0 0 1 1 0 0 0 1 1 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that Y1 is a bond of G, however, it does not appear as the star of a vertex
in the incidence matrix, and we cannot find a set of elementary row operations to
make this so. This is because we have overlapping bridges of Y1 in the composing
graphs G1,2,3 and G4, therefore, Theorem 5.5 is no longer applicable. The reader
should be able to verify that the columns e8, . . . , e12 of the matrix R in (5.5) are
characteristic vectors of fundamental cycles with respect to the spanning tree of G
induced by {e1, . . . , e7}.

Fig. 5.12 Graph G1,2,3
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Fig. 5.13 Graph G

5.5 Notes

With the exception of Theorem 5.2 and its corollary, all the results that appear in
Sects. 5.1 and 5.2 of this chapter are more or less dual versions of the results from
Tutte (1959, 1960, 1965). Tutte preferred to work with cographic matroids, that is,
by a graphic matroid he was referring to the matroid which is isomorphic to the
bond matroid of a graph. For instance in (Tutte 1959), the bridges are defined as the
elementary separators of M/Y for some circuit Y of a cographic matroid M . For
the most part of this chapter we chose to adopt Tutte’s original terminology for the
convenience of the reader that wishes to consult the original works. For anything else
in matroids and graphs, we tried to use standard terminology and notation, as the
one used by Oxley (1992) and Diestel (2006). For example, Tutte called the circuits
of a matroid points in (Tutte 1959) or atoms in (Tutte 1965), and the elements of
the ground set cells, while the cycles of a graph circuits in (Tutte 1959) or polygons
in (Tutte 1965). The majority of the proofs given in this chapter are based on the
original proofs by Tutte (1959), with various simplifications and clarifications, or
alternative parts in the proof. In some results a different proof is given altogether.

Apart from the Theorem 4.12 on excluded minors and the decomposition result in
Theorem 5.6 by Tutte, there are also other characterizations for graphic matroids in
the literature. Fournier (1974) provided a characterization based on a condition for
the intersection of any three cocircuits. Mighton (2008) proved that this condition
combined with bridge-separability of fundamental cocircuits in any given base are
necessary and sufficient conditions for a binary matroid to be graphic. This leads also
to an efficient algorithm for checking whether a binary matroid is graphic. Recently,
Geelen and Gerards (2013) provided a characterization based on the existence of a
solution of a linear system formed by the binary representation matrix.

In the proof of Theorem 5.5 we used the fact that if a graph is obtained by another
graph by a sequence of twistings, then both graphs have the same cycle matroid.
The operation of twisting was introduced in Whitney (1933), where the reverse
direction of the previous statement is proved, that is, all graph representations of a
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graphic matroid are related by twistings. Twistings are also known in the literature
as Whitney-flips.

A number of polynomial-time algorithms have appeared in the literature for solv-
ing the graph realization problem, and can be found in the works of Auslander and
Trent (1959), Cunningham (1982), Tamari 1977), and Rajappan and Stone (1971) to
name a few. Currently, the best known algorithms are those by Bixby and Wagner
(1988) and Fujishige (1980) which are almost linear-time in the number of nonzero
elements of the representation matrix. One of the main applications of a graph realiza-
tion algorithm is to identify and convert linear programming problems into network
flow problems, which can be solved efficiently. This has been done by Bixby and
Cunningham (1980), which use the results by Tutte (1959). An algorithm to test
whether a general matroid, not necessarily binary, given by an independence oracle
is graphic is given by Seymour (1981).



Chapter 6
Signed-Graphic Matroids

Signed graphs are ordinary graphs with an additional structure that results from the
assignment of signs to the edges of the graph. In this chapter we will demonstrate
how signed-graphic matroids arise from signed graphs and present a decomposition
theory which extends the one presented in Chap. 5 for graphic matroids.

6.1 Signed Graphs

Let us extend the definition of a graph given in Sect. 2.1, by allowing the edges to
be n-tuples of the vertex set for n = 0, 1, 2. Therefore, given two distinct vertices
v, u ∈ V an edge e can be one of the following four different types: a link e =
(v, u), a loop e = (v, v), a half-edge e = (v), and a loose-edge e = ∅. Given an
underlying graph G(V, E), a signed graph is defined as � = (G,σ), where σ
is a sign function σ : E(G) → {±1}, such that σ(e) = −1 if e is a half-edge and
σ(e) = +1 if e is a loose-edge. Therefore, a signed graph is a graph where the edges
are labelled as positive or negative while all the half-edges are negative and all the
loose-edges are positive. We denote by V (�) and E(�) the vertex and edge sets of a
signed graph �, respectively. All operations on signed graphs may be defined through
the corresponding operation on the underlying graph and the sign function. In the
following definitions assume that we have a signed graph � = (G,σ). The operation
of switching at a vertex v results in a new signed graph (G, σ̄) where σ̄(e) = −σ(e)
for each link e incident to v, while σ̄(e) = σ(e) for all other edges. We say that σ̄
is a switching at vertex v. Deletion of an edge e is defined as �\{e} = (G\{e},σ).
The contraction of an edge e consists of three cases:

(i) If e is a positive loop, then �/{e} = (G\{e},σ).
(ii) If e is a half-edge, negative loop or a positive link, then �/{e} = (G/{e},σ).

(iii) If e is a negative link, then �/{e} = (G/{e}, σ̄) where σ̄ is a switching at either
one of the end-vertices of e.
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The connectivity of a signed graph is the connectivity of its underlying graph. So a
signed graph is k-connected if and only if its underlying graph is k-connected. The
sign of a cycle in a signed graph is the product of the signs of its edges, so we have
a positive cycle if the number of negative edges in the cycle is even, otherwise the
cycle is a negative cycle. Both negative loops and half-edges are negative cycles with
a single edge. A signed graph is called balanced if it contains no negative cycles.
A vertex v ∈ V (�) is called a balancing vertex if �\{v} is balanced.

The incidence matrix of a signed graph �(G,σ), is a |V (G)| × |E(G)| matrix
A� ∈ G F(3) with columns ae for each e ∈ E(�) defined as follows:

(i) if e = (v,w) is a positive link then ae is

⎡

⎣

e

v 1

w 2

⎤

⎦ or

⎡

⎣

e

v 2

w 1

⎤

⎦,

(ii) if e = (v,w) is a negative link then ae is

⎡

⎣

e

v 1

w 1

⎤

⎦ or

⎡

⎣

e

v 2

w 2

⎤

⎦,

(iii) if e = (v) is a half-edge or e = (v, v) is a negative loop then ae is

⎡

⎣

e

v 1

⎤

⎦ or

⎡

⎣

e

v 2

⎤

⎦,

(iv) if e = (v, v) is a positive loop then ae = 0,

where all the other unspecified elements in the columns are zero. So negative edges
have columns with two 1’s or two 2’s, while positive edges have a 1 and a 2 in the
rows corresponding to the end-vertices of the edge. Half-edges and negative loops
have columns that have a 1 or a 2, and positive loops are represented by zero columns.
The reason behind the alternative columns in the definition of the incidence matrix
is that linear independence is not affected under column scaling in G F(3) and in
each case the alternative column is produced after multiplying by 2. A signed graph
� and its incidence matrix A� are illustrated in Fig. 6.1, where negative edges are
shown in light gray color, and positive edges by solid black color.

A bidirected graph
−→
� is a signed graph �(G,σ) with an orientation o applied to

the underlying graph G such that−o(e, v)o(e, w) = σ(e) for any edge e = (v,w) ∈
E(�). Therefore, positive edges will have end-vertices with different signs and neg-
ative edges with the same sign. The sign of an end-vertex of a half-edge is always
positive. Bidirected graphs can be thought of as the oriented signed-graphic analog of
directed graphs with edges that can be directed and bidirected. The incidence matrix
of a bidirected graph

−→
� , is a |V (G)| × |E(G)| matrix A−→

�
= (ai j ) ∈ R defined as

follows:
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Fig. 6.1 A signed graph and its incidence matrix

Fig. 6.2 A bidirected graph and its incidence matrix

ave =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

+1 if vertex v is the head of the non-loop arc e,

−1 if vertex v is the tail of the non-loop arc e,

+2 if vertex v is the head of the loop arc e,

−2 if vertex v is the tail of the loop arc e,

0 otherwise.

Note that in the case of a vertex v being both the tail and the head of a loop arc e, then
by the above definition ave = 0. The bidirected graph and its associated incidence
matrix so obtained for an orientation of the signed graph in Fig. 6.1 is given in Fig. 6.2.
Applying elementary row operations to A−→

�
we get

⎡

⎢⎢⎢⎢⎣

e1 e2 e3 e4 e5 e6 e7 e8 e9

e1 1 0 0 0 0 −2 0 −2 2
e2 0 1 0 0 0 1 1 1 −2
e3 0 0 1 0 0 0 0 −1 1
e4 0 0 0 1 0 −1 −1 0 1
e5 0 0 0 0 1 0 −1 1 0

⎤

⎥⎥⎥⎥⎦
= [ I | B−→

� ,T
]. (6.1)
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The matrix B−→
� ,T

is called the binet matrix of
−→
� . Specifically, we have that if

[ R | S ] is a full row incidence matrix of a bidirected graph
−→
� and R is a

basis, then R−1S is a binet matrix. In general an m × n binet matrix has entries
in {0,± 1

2 ,±1,±2}, but it can be shown that by at most 2m pivots it can be con-
verted into an integral binet matrix (Kotnyek 2002). Moreover, note that A−→

�
= A�

mod 3 and this will always be true, as for the case of incidence matrices of graphs
and directed graphs. A combinatorial algorithm to compute the entries of a binet
matrix associated with a bidirected graph, similar to the one described for network
matrices in Example 4.1, is given independently by Appa and Kotnyek (2006) and
Zaslavsky (2006).

Binet matrices are important in optimization since they define a well-solved class
of combinatorial optimization problems. In Appa et al. (2007) it is proved that linear
programming problems with binet constraint matrices can be solved via the gen-
eralized network simplex algorithm and integer programming problems with binet
constraint matrices can be converted into a generalized matching problem. Specifi-
cally, we have the following result.

Theorem 6.1 (Appa et al. (2007)) The integer programming problem

max{cT x : Bx ≤ b, x ≥ 0, x ∈ Z}

where B is an integral binet matrix and b an integral vector, can be solved in strongly
polynomial time.

Moreover, in (Appa et al. 2007) it is also proved that integral binet matrices have
strong Chvátal rank 1. Therefore, a polynomial time recognition algorithm for binet
matrices would provide the means of recognizing the aforementioned classes of
well-solved integer programming problems.

6.2 Signed-Graphic Matroids

Given a signed graph �(G,σ) we wish to define a matroid that captures its structure
much in the same way as we did for graphic matroids. The obvious cycle matroid
of the underlying graph M(G) is of little importance since it does not take into
account the sign function σ. In Theorems 4.1 and 4.2 we saw that the cycle matroid
of a graph is the vector matroid of the associated incidence matrix. The situation is
similar for signed graphs. Applying elementary row operations in G F(3) and column
interchanges to A� in Fig. 6.1, we can obtain the following standard representation
matrix of M[A�]:
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(a) (b) (c) (d)

Fig. 6.3 Fundamental circuits in M[A�]. (a) C(e6, T ) (b) C(e7, T ) (c) C(e8, T ) (d) C(e9, T )

⎡

⎢⎢⎢⎢⎣

e1 e2 e3 e4 e5 e6 e7 e8 e9

e1 1 0 0 0 0 1 0 1 2
e2 0 1 0 0 0 1 1 1 1
e3 0 0 1 0 0 0 0 2 1
e4 0 0 0 1 0 2 2 0 1
e5 0 0 0 0 1 0 2 1 0

⎤

⎥⎥⎥⎥⎦
= [ I | B�,T ]. (6.2)

The matrix B�,T is a compact representation matrix of M[A�]. The elements of T =
{e1, e2, e3, e4, e5} constitute a base for M[A�], while the characteristic vectors of the
other columns represent fundamental circuits with respect to the base T . In Fig. 6.3
we can see the subgraphs of � induced by these fundamental circuits of M[A�].
We can distinguish three types of graphs that correspond to circuits in M[A�]; a
positive cycle as in the case of C(e7, T ), two negative cycles with a common vertex
as in the cases of C(e6, T ), C(e8, T ), or two vertex-disjoint negative cycles joined
by a path as in the case of C(e9, T ). The following theorem states that edge sets in a
signed graph that induce the aforementioned types of subgraphs constitute a family
of circuits of a matroid which we will call signed-graphic matroid.

Theorem 6.2 (Zaslavsky 1982) Given a signed graph � let C be the family of edge
sets inducing a subgraph in � which is either:

(i) a positive cycle, or
(ii) two negative cycles which have exactly one common vertex, or

(a) (b) (c)

Fig. 6.4 Circuits in a signed graph � (a) Positive cycle (b) Tight handcuff (c) Loose handcuff
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(iii) two vertex-disjoint negative cycles connected by a path which has no common
vertex with the cycles apart from its end-vertices.

Then M(�) = (E(�),C ) is a matroid on E(�) with circuit family C .

M(�) is also known in the literature as the frame matroid of the signed graph �. The
subgraphs of � induced by the edges corresponding to a circuit of M(�) are called
the circuits of �, while those described by (ii) and (iii) of Theorem 6.2 are called tight
and loose handcuffs respectively. The types of circuits in a signed graph are shown
in Fig. 6.4. Having established a link between the circuits of M(�) with the circuits
of � we can apply similar techniques as the ones used in the proofs of Theorems 4.1
and 4.2, to establish representability of signed-graphic matroids over G F(3) and R.
The signs of the edges in the circuits of the graph will determine the coefficients of a
linear combination of linearly dependent columns in the incidence matrix. We have
the following theorem regarding the representability of signed-graphic matroids:

Theorem 6.3 (Papalamprou and Pitsoulis 2012) Given a signed graph �

(i) A� is a representation of M(�) in G F(3), and
(ii) A−→

�
is a representation of M(�) in R, where

−→
� is a bidirected graph obtained

by an arbitrary orientation of �.

A non-constructive proof of the fact that signed-graphic matroids are ternary is given
in (Zaslavsky 1982). Observe that for the matrices in (6.1) and (6.2) we have that
B�,T = B−→

� ,T
mod 3. As the following theorem states this defines the relationship

between ternary and real representations of a signed-graphic matroid.

Theorem 6.4 (Papalamprou and Pitsoulis 2012) Let B be an integral binet matrix
and M(�) be the signed-graphic matroid represented by B over R. The matrix
B ′ = B mod 3 is a compact representation matrix of M(�) over G F(3).

Let us turn our attention now to the cocircuits of signed-graphic matroids. We
know by Theorem 4.9 that the rows of the standard representation matrix (6.2) are
characteristic vectors of the fundamental cocircuits of M[A�] with respect to the
base E(�)− T . We will have the following cocircuits:

C∗1 = {e1, e6, e8, e9},
C∗2 = {e2, e6, e7, e8, e9},
C∗3 = {e3, e8, e9},
C∗4 = {e4, e6, e7, e9},
C∗5 = {e5, e7, e8}.

In graphic matroids cocircuits correspond to bonds in a graph representation, thus,
the deletion of the corresponding edges from the graph increases the number of
connected components and these sets of edges are minimal with respect to this
property. In Fig. 6.5 we can see the subgraphs of � so obtained by the deletion of
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(a) (b) (c)

Fig. 6.5 Fundamental cocircuits in M[A�]. (a) �\C∗1 (b) �\C∗2 (c) �\C∗3

(a) (b) (c)

Fig. 6.6 Bonds in a signed graph �. (a) Balancing bond (b) Unbalancing bond (c) Double bond

the cocircuits C∗1 , C∗2 and C∗3 , while C∗4 and C∗5 are similar to C∗3 as they are also
stars of a vertex. We observe that in all cases the cocircuits consist of minimal sets
of edges whose deletion increases the number of balanced components. Moreover,
the resulting graph can be connected as for the case of C∗1 or disconnected as in
the other cases. The graph �\C∗1 has one connected balanced component, the graph
�\C∗2 has the balanced component induced by the edges e3 and e4, and the graph
�\C∗3 has the trivial graph v2 as the balanced component created by the deletion of
C∗3 which is the star of this vertex. The following theorem characterizes the sets of
edges in a signed graph � that correspond to cocircuits of M(�).

Theorem 6.5 (Zaslavsky 1982) Given a signed graph � and its corresponding
matroid M(�), Y ⊆ E(�) is a cocircuit of M(�) if and only if Y is a minimal
set of edges whose deletion increases the number of balanced components of �.

The sets of edges defined in Theorem 6.5 are called the bonds of a signed graph and
are illustrated in Fig. 6.6, where the edges of the bond are shown with dashed lines
and continuous shaded areas correspond to connected components. As we have seen
in Fig. 6.5 we have three types of bonds in a signed graph. A balancing bond is a
minimal set of edges Y ⊆ E(�) such that �\Y is balanced and connected. If �\Y
has a balanced component and an unbalanced component then it is a double bond,
while if each edge of Y in a double bond is neither a loop nor a half-edge and has its
end-vertices contained in both components, then it is called an unbalancing bond.
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Fig. 6.7 B-necklace

So far we have characterized the subgraphs in a signed graph � that correspond
to the circuits and cocircuits of the signed-graphic matroid M(�). For the discus-
sion in Sect. 6.3 we also need to characterize the subgraphs of a signed graph that
correspond to elementary separators of a signed-graphic matroid. From Sect. 5.1 we
know that for a graph G the elementary separators of M(G) correspond to maximally
2-connected subgraphs of G. Given the nature of circuits defined in Theorem 6.2 the
situation is more complicated in signed graphs. Specifically, we may have a signed
graph whose underlying graph is 1-connected, such as a tight or loose handcuff for
instance, while the corresponding signed-graphic matroid is connected. Before we
present the signed-graphic representations of separators in Theorem 6.6, we need to
provide some necessary definitions. Given a signed graph �(G,σ) define a block as
a maximally 2-connected subgraph of G. Any block which is unbalanced or lies on a
path between two unbalanced blocks is called inner block, while any other block is
called outer. The core of � is the union of all inner blocks. A B-necklace is a special
type of 2-connected unbalanced signed graph, which is composed of balanced blocks
�i joined in a cyclic fashion as illustrated in Fig. 6.7. So, while each signed subgraph
�i of the B-necklace is balanced, there exists a negative cycle that passes through
all the subgraphs which makes their union unbalanced. The unique common vertex
between consecutive subgraphs in a B-necklace is called vertex of attachment. In
the following theorem the subgraphs in a signed graph that correspond to elementary
separators of the signed-graphic matroid are characterized.

Theorem 6.6 (Zaslavsky 1991) Let � be a connected signed graph. The elementary
separators of M(�) are the edge sets of each outer block and the core, except when
the core is a B-necklace where each block in the B-necklace is also an elementary
separator.

The subgraphs defined in Theorem 6.6 will be called the separates of a signed graph.
Given the Definition 4.3 of separators in a matroid and the nature of circuits in signed
graphs, we can see why the separates in a signed graph are the subgraphs described
in Theorem 6.6. The circuits of a signed graph are partitioned by the outer blocks
and the core, where each outer block contains only positive cycles, while the core
contains positive cycles and handcuffs. This is a key feature of connected signed
graphs where the part of the graph which contains all the negative cycles appears as

http://dx.doi.org/10.1007/978-1-4614-8957-3_5
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one connected component in the corresponding signed-graphic matroid, since any
two negative cycles form a circuit.

Let us state some fundamental properties of signed-graphic matroids with respect
to certain graph operations. By Theorems 6.3 and 4.10 we can prove the following
signed-graphic counterpart of Theorem 4.9 which states that signed-graphic matroids
is a minor-closed class.

Proposition 6.1 If � is a signed graph then

M(�)\X/Y = M(�\X/Y )

for all X, Y ⊆ E(�).

The proofs of the following two propositions can be derived from the results in
(Slilaty and Qin 2007; Zaslavsky 1982, 1991). Proposition 6.2 states operations on
a signed graph that do not alter its family of circuits.

Proposition 6.2 Let � be a signed graph. If �′

(i) is obtained from � by switchings, or
(ii) is the twisted graph of � about (u, v) with �1, �2 the twisting parts of �,

where �1 (or �2) is balanced or all of its negative cycles contain u and v,

then M(�) = M(�′).

Note the additional conditions in (ii) of Proposition 6.2, in contrast with graphs where
the unconditional application of twistings did not change the family of cycles of the
graph. The following proposition states some relatively simple necessary conditions
upon which a signed graph has a graphic matroid.

Proposition 6.3 Let �(G,σ) be a signed graph. If �

(i) is balanced then M(�) = M(G),
(ii) has no negative cycles other than negative loops and half-edges then

M(�) = M(G),
(iii) has a balancing vertex, then M(�) = M(G ′) where G ′ is obtained from G by

adding a new vertex v and replacing all negative loops and half-edges by links
that connect to v.

Note that by (iii) of Proposition 6.3 a B-necklace has a graphic matroid since each
vertex of attachment is a balancing vertex.

We conclude this introductory section on signed graphs by stating the following
problem as a generalization of Problem 5.1 for graphs.

Problem 6.1 (Signed Graph Realization) Given a matrix R in G F(3) find a signed
graph � such that M[R] = M(�), or decide that no such signed graph exists.

An algorithm for solving Problem 6.1 together with an appropriate signing scheme
would imply a recognition algorithm for binet matrices.
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Fig. 6.8 Graphic and signed-graphic matroid representability

6.3 Binary Signed-Graphic Matroids

By Theorem 6.3 we know that signed-graphic matroids are ternary. Moreover, since
any graph G is a signed graph �(G,σ) with σ(e) = +1 for all e ∈ E(G), we
have that any graphic matroid is a signed-graphic matroid. Hence, signed-graphic
matroids can be binary. Zaslavsky (1982) has shown that signed-graphic matroids are
representable over all fields with characteristic not 2. Combining the above with the
results of Pagano (1998) we have the following with respect to the representability
of a signed-graphic matroid M :

(i) M is representable over all fields of characteristic not 2;
(ii) if M is representable over G F(2), then it is representable over all fields;

(iii) if M is representable over G F(4) but not G F(2), then it is representable over
all fields except G F(2).

In Fig. 6.8 the relationship between the classes of graphic and signed-graphic
matroids with respect to representability in the binary and ternary fields is depicted.
Any graphic matroid is signed-graphic, and any cographic matroid is cosigned-
graphic. There exist binary signed-graphic matroids which are not graphic, such as the
matroids M∗(K3,3) and M∗(K5) whose signed graph representations are depicted in
Fig. 6.9. Another well-known binary signed-graphic matroid which is neither graphic
nor cographic, is the matroid R10 with a binary compact representation matrix given
in (6.3)

⎡

⎢⎢⎢⎢⎣

1 1 1 1 1
1 1 1 0 0
1 0 1 1 0
1 0 0 1 1
1 1 0 0 1

⎤

⎥⎥⎥⎥⎦
, (6.3)
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Fig. 6.9 Signed graph
representations of the matroids
M∗(K3,3) and M∗(K5).
(a) �3,3 (b) �5

(a) (b)

Fig. 6.10 Signed graph
representation of the
matroid R10

and a signed graph representation depicted in Fig. 6.10. By a well-known theorem
of Seymour (1980) we know that any regular matroid admits a decomposition into
graphic and cographic matroids and copies of R10. A connected signed graph is
called tangled if it has no balancing vertex and no two vertex-disjoint negative
cycles. Therefore, the only possible types of circuits in a tangled signed graph are
positive cycles and tight handcuffs. Alternatively, the only possible bonds in tangled
signed graphs are balancing bonds and unbalancing bonds. The next theorem can
be derived from the results in (Pagano 1998; Slilaty and Qin 2007) and states that
tangled signed graphs are precisely the graphs of binary signed-graphic matroids.

Theorem 6.7 If � is a connected signed graph then M(�) is binary if and only if

(i) � is tangled, or
(ii) M(�) is graphic.

Examples of tangled signed graphs are the graphs in Figs. 6.9 and 6.10. The connec-
tivity of a signed graph is defined as the connectivity of its underlying graph. The
next theorem shows that tangled signed graphs behave as graphs with respect to the
connectivity of their corresponding matroids.

Theorem 6.8 Let � be a tangled signed graph. Then � is 2-connected if and only
if M(�) is connected.

Proof For the "only if’" part, assume that for a 2-connected tangled signed graph
� the matroid M(�) is disconnected. By Theorem 6.6, this is possible only if � is a
B-necklace. But then � contains a balancing vertex and thus, � is not tangled which
is in contradiction with our assumption.

For the "if" part, suppose that M(�) is 2-connected and it does have a tangled rep-
resentation � which is not 2-connected. Therefore � contains at least two blocks, and
exactly one of them will be unbalanced. By Theorem 6.6 then � has two separates,
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which implies that M(�) has more than one elementary separators contradicting our
hypothesis about the connectivity of the matroid. �

6.4 Decomposition

In this section we will present the results from (Papalamprou and Pitsoulis 2013)
where the theory of bridges described in Chap. 5 is extended to binary signed-graphic
matroids. All the definitions for binary matroids given in Sect. 5.1 regarding bridges,
Y-components, separating cocircuits, and bridge-separability apply in this section
also. All proofs that are not included in this section can be found in (Papalamprou
and Pitsoulis 2013).

There are two main theorems in Chap. 5 which are essential for the decomposition
Theorem 5.6; Theorem 5.4, which states that bridge-separability is a property of
all cocircuits in graphic matroids, and Theorem 5.5, which enables us to derive
a graph representation of a graphic matroid where a given cocircuit is a star of a
vertex if the deletion of the cocircuit results in a set of bridges which all avoid each
other. By combining these two theorems we were able to prove in Theorem 5.6 that
graphic matroids admit a structural characterization, which also leads to an efficient
recognition algorithm described in Sect. 5.3. It turns out that the situation is similar
for signed-graphic matroids, however, due to the nature of circuits in signed graphs
we have to incorporate the existence of positive and negative cycles. For a matroid
M , call a cocircuit Y ∈ C ∗(M) graphic if M\Y is a graphic matroid. We will show
that binary signed-graphic matroids can be decomposed into graphic matroids and
one non-graphic matroid with only graphic cocircuits. Furthermore, we provide an
excluded minor characterization of binary matroids with only graphic cocircuits.

Recall that since we are dealing with binary signed-graphic matroids, by Theo-
rem 6.7 we are only interested in tangled signed graphs. Therefore, the only possible
circuits will be positive cycles and tight handcuffs, and the only possible bonds
are balancing and unbalancing bonds. We begin with the following lemma which
shows that balanced bridges of non-graphic cocircuits result in graphic minors in the
signed-graphic matroid. The proof of the lemma illustrates the graphical effect of
the operations of deletion and contraction when applied to bridges of non-graphic
cocircuits that correspond to balanced and unbalanced subgraphs.

Lemma 6.1 Let M(�) be a binary signed-graphic matroid, Y a non-graphic cocir-
cuit and B a bridge of Y in M(�). If �|B is balanced then M(�).(Y ∪B) is graphic.

Proof Since Y is a non-graphic cocircuit, M(�) is not a graphic matroid, which
by Theorem 6.7 it implies that � is a tangled signed graph. Moreover, Y will be
either a star or unbalancing bond in � such that the core of �\Y is not a B-necklace.
Let B+ be any bridge of Y such that �|B+ is balanced, and let B− be the bridge
corresponding to the unique unbalanced block of �\Y . Perform switchings in the
vertices of � such that all the edges in the balanced blocks of �\Y become positive.

http://dx.doi.org/10.1007/978-1-4614-8957-3_5
http://dx.doi.org/10.1007/978-1-4614-8957-3_5
http://dx.doi.org/10.1007/978-1-4614-8957-3_5
http://dx.doi.org/10.1007/978-1-4614-8957-3_5
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Fig. 6.11 B+ in the balanced component of �\Y

Fig. 6.12 B+ in the unbalanced component of �\Y

Now the bridge B+ can be in either the balanced or the unbalanced component
of �\Y .

If B+ is in the balanced component of �\Y , then Y is an unbalancing bond.
Contract any other balanced block to obtain �.(B+ ∪ B− ∪ Y ). Contracting the
edges of the unbalanced block B−, where if an edge is negative switching, one of
its end-vertices will result in one or more negative loops and half-edges since this
block contains negative cycles. Contraction of these negative loops and half-edges
will result in the signed graph �.(B+ ∪ Y ) where the only negative cycles are the
negative loops and half-edges of Y . The whole procedure can be seen schematically
in Fig. 6.11, where the dashed lines are the edges of the bond Y and the shaded circles
are the subgraphs corresponding the bridges of Y , with a sign that indicates whether
the subgraph is balanced or unbalanced. Therefore, by Proposition 6.3 we have that
the matroid M(�.(B+ ∪ Y )) = M(�).(B+ ∪ Y ) is a graphic.

If B+ is in the unbalanced component of �\Y , then Y can be either an unbalancing
or a star bond, and the argument is similar as before. Contract again any other
balanced block to obtain �.(B+ ∪ B− ∪ Y ) (see Fig. 6.12). Contraction now of the
edges in the unbalanced block B− will result in the edges in B+, which are incident
to the unique common vertex v of B+ and B−, to become negative loops and half-
edges. Therefore �.(B+ ∪ Y ) will contain a balanced component B̄, which is not
necessarily 2-connected, and a number of negative loops and half-edges from Y and
B+. If �.(B+∪Y ) contains a negative cycle C other than the negative loops and half-
edges, then C would be a negative cycle in � which is disjoint from v, and therefore,
vertex disjoint with any negative cycle in B− implying that � is not tangled. �

To establish bridge-separability for a cocircuit Y of a signed-graphic matroid
M(�), we need provide a graphical characterization of π(M(�), B, Y ) for any
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bridge B of Y , as we did for graphic matroids in Theorem 5.3. We will do this in
Theorem 6.9, whose proof requires the following technical lemma.

Lemma 6.2 Let Y be an unbalancing bond of a tangled signed graph � such that
the core of �\Y is not a B-necklace and let �|B be an unbalanced separate of �\Y .
Then

(i) M(�) is graphic, or
(ii) there exists a series of switchings on the vertices of � such that all the edges of

the separates other than �|B become positive and the edges for all nonempty
Y (B, v) have the same sign for any v ∈ V (�|B).

The condition (ii) of Lemma 6.2 is central in the discussion that will follow,
and essentially forces Y (B, v) to be a bond of �.(B ∪ Y )|Y , thus, a cocircuit in
the corresponding signed-graphic matroid. This fact enables us to use Corollary 5.1
since the matroid under examination is binary.

Theorem 6.9 Let M(�) be a binary signed-graphic matroid and Y an unbalancing
bond of � such that the core of �\Y is not a B-necklace. If �|B is a separate of
an end-graph �i of �\Y then π(M(�), B, Y ) is the class of all nonempty Y (B, v)

such that v ∈ V (�|B).

Proof Let L = {Y (B, v) : v ∈ V (�|B) and Y (B, v) �= ∅}. By Corollary 5.1, we
know that

π(M(�), B, Y ) = C ∗((M(�).(B ∪ Y ))|Y )

and since signed-graphic matroids are closed under the operations of deletion and
contraction, we have

π(M(�), B, Y ) = C ∗(M((�.(B ∪ Y ))|Y )).

Let M be the family of bonds of �d = (�.(B ∪ Y ))|Y . Since there is one-to-one
correspondence between the members of C ∗(M((�.(B ∪ Y ))|Y ) and the bonds of
�d , we shall equivalently show that, for any bridge B of Y in M(�), L =M . This
will be shown only for the case in which Y is an unbalancing bond since the proof
for the case in which Y is a star bond follows easily.

The signed graph �\Y will consist of two components �1 and �2 and con-
tain exactly one unbalanced block. Without loss of generality, we assume that this
unbalanced block, say B0, is contained in �1. Since C(B0, v) is balanced for any
v ∈ V (�|B0) and �2 is balanced, there exists a series of switchings on the vertices
of �1\B0 and �2 such that all the edges in �1\B0 and �2 become positive. We call
�′, �′1, �′2 and �′d the graphs so-obtained from �, �1, �2 and �d , respectively.
Figure 6.13 depicts such a signed graph �′, where negative edges will appear only
on the unbalanced block B0 and the bond Y . A bridge B of Y in M(�′) = M(�)

can be either one of the following three cases based on the form of the corresponding
separates in �′\Y :
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Fig. 6.13 �′ for the proof of
Theorem 6.9

• Case 1, the separate �′|B of �′\Y is a balanced block in �′1,
• Case 2, the separate �′|B of �′\Y is a balanced block in �′2,
• Case 3, the separate �′|B of �′\Y is the unbalanced block in �′1.

The subgraphs B0, B1, and B2 in Fig. 6.13 illustrate the above cases. In what follows
we shall show that L is contained in M for any bridge B in each case.

Case 1: Let X be the set of common vertices of �′|B and �′\B and u the ver-
tex so obtained from contracting �′2. Clearly, there exists an v j ∈ X such that
C(B, v j ) contains the unbalanced block of �′1. For any v ∈ V (�′|B)− {v j } such
that Y (B, v) �= ∅, Y (B, v) is a set of parallel edges incident to u and v in �′d , while
all the edges in Y (B, v j ) are negative loops or half-edges incident with u in �′d .
See Fig. 6.14a for bridge B1 of the signed graph in Fig. 6.13. Furthermore, for any
v ∈ V (�′|B)− {v j } such that Y (B, v) �= ∅, the edges of Y (B, v) must be of the
same sign, since otherwise �′ would have two vertex disjoint negative cycles con-
tradicting the fact that �′ is tangled. Thus, any Y (B, v) �= ∅ is a bond of �′d . This

(a) (b) (c)

Fig. 6.14 Three different cases in the proof of Theorem 6.9. (a) Case 1 (b) Case 2 (c) Case 3
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result and the fact that the signed graphs �d and �′d have equal classes of bonds
imply that L is contained in M .
Case 2: Since �′2 consists of positive edges and �′1 contains a negative cycle, for
any v ∈ V (�′|B) such that Y (B, v) �= ∅, Y (B, v) will be a set of negative loops
or half-edges incident with v in �′.(B ∪ Y ). Thus, the edges of each Y (B, v) will
form a bond of �′d which implies that L is contained in M . See Fig. 6.14b for the
bridge B2 of the signed graph in Fig. 6.13.
Case 3: Since both �′2 and �′1\B consist of positive edges, the graph �′.(B ∪ Y ) is
obtained from �′ by contracting �′2 to a vertex u and by contracting each C(B, v)

(where v ∈ V (�′|B)) to v. Therefore, the edges of each Y (B, v) become incident
with u and v which implies that the edges of each Y (B, v) are parallel edges in �′d .
See Fig. 6.14c for the bridge B0 of the signed graph in Fig. 6.13. Furthermore, by
Lemma 6.2 and since M(�) is not graphic, each Y (B, v) in �b consists of edges
of the same sign. Thus, each Y (B, v) is a bond of �′b which implies that L is con-
tained in M .

Finally, �′d in all three cases has no other bonds, since otherwise it should have two
bonds having at least one common edge. This would imply that M(�′d) would have
two cocircuits which have a common element and thus, by Corollary 5.1, M(�′)
would not be binary. By Theorem 6.7, this contradicts the fact that �′ is tangled and
thus, L =M . �

In contrast with graphic matroids, not all cocircuits of signed-graphic matroids are
bridge-separable. The next theorem states that the cocircuits that correspond to the
bonds described in Theorem 6.9 have the property of being bridge-separable.

Theorem 6.10 Let Y be a cocircuit of a binary signed-graphic and non-graphic
matroid M(�). If Y is an unbalancing bond of � such that the core of �\Y is not a
B-necklace then Y is bridge-separable.

Proof Let �1 and �2 be the two distinct components of �\Y . Arrange the bridges
of Y in M(�) in two classes T1 and T2 such that a bridge B is in T1 or T2 if �|B
is a separate of �1 or �2 respectively. Suppose now that two bridges B1 and B2 of
T1 overlap. Then �|B1 and �|B2 are separates of �1. Thus, there exist vertices v1
of �|B1 and v2 of �|B2 such that �|B2 is a subgraph of C(B1, v1) and �|B1 is a
subgraph of C(B2, v2). Furthermore, every vertex of V (�1) is a vertex of C(B1, v1)

or C(B2, v2), therefore we have that Y (B1, v1)∪Y (B2, v2) = Y . Thus, by Theorem
6.9 we can find some K ∈ π(M(�), B1, Y ) and J ∈ π(M(�), B2, Y ) such that
K ∪ J = Y . This contradicts our assumption that B1 and B2 overlap and the result
follows. �

Theorem 6.11 is an extension of Theorem 5.5 to signed-graphic matroids. It shows
that for any binary signed-graphic matroid M and non-graphic cocircuit Y with no
two overlapping bridges there exists a signed graph representation of M where Y is
the star of a vertex.



6.4 Decomposition 117

Theorem 6.11 Let Y be a non-graphic cocircuit of a connected binary signed-
graphic matroid M such that no two bridges of Y in M overlap. Then there exists a
2-connected signed graph � where Y is the star of a vertex and M = M(�).

The proof of Theorem 6.11 follows the lines of the proof of Theorem 5.5. It shows
that the condition that any pair of bridges is avoiding induces disjoint 2-separations
in �, and we can perform a sequence of twistings in these 2-separations to reduce
one of the components of �\Y to a single vertex. Moreover, it is proved that these
switchings satisfy condition (ii) of Proposition 6.2 so the signed-graphic matroid is
not altered.

The main result in (Papalamprou and Pitsoulis 2013) is the following theorem
which states that a binary signed-graphic matroid can be decomposed into minors
which are all graphic, apart from one which is signed-graphic, while these conditions
are also sufficient for a binary matroid to be signed-graphic.

Theorem 6.12 (Decomposition of Binary Signed-Graphic Matroids) Let M be
a connected binary matroid and Y ∈ C ∗(M) be a non-graphic cocircuit. Then M is
signed-graphic if and only if:

(i) Y is bridge-separable, and
(ii) for any bridge B of Y , the minor M.(B ∪ Y ) is graphic apart from one which is

signed-graphic.

Proof Assume that M is signed-graphic. Since it is binary and not graphic, by The-
orem 6.7, there exists a tangled signed graph � such that M = M(�). Moreover,
since M\Y is not graphic, Y cannot be a balancing bond or an unbalancing bond of �

such that �\Y contains a B-necklace. Therefore, Y is either a star bond or an unbal-
ancing bond such that �\Y does not contain a B-necklace and, by Theorem 6.10, we
can conclude that Y is a bridge-separable cocircuit of M . �\Y will contain exactly
one unbalanced block, say �|B− which is not a B-necklace, and k balanced blocks
�|Bi where k ≥ 0. By Theorem 6.6, these blocks are the elementary separators of
M(�\Y ) = M(�)\Y , and therefore the bridges of Y in M(�). By Lemma 6.1, we
have that each M(�).(Bi ∪ Y ) is a graphic matroid for each i = 1, . . . , k. Since
M(�).(B− ∪ Y ) is a minor of M(�) it can be either a signed-graphic or graphic
matroid. If M(�).(B− ∪ Y ) is graphic then Y is a bridge-separable cocircuit of a
connected binary matroid such that all of its Y -components are graphic matroids,
and by Theorem 5.6 we have that M is a graphic matroid, a contradiction.

The proof of sufficiency follows the argument of the proof of Theorem 5.6, and
it will not be given here. The main difference here is that the matroids in first part of
the proof of Theorem 5.6 are now a graphic matroid G1 and a signed graphic matroid
�1 where Y is a star of a vertex in both, and an appropriate signing is performed in
part two in order to create a signed graph � from the star composition of G1 and �1.
In order to show that M(�) = M the same matroid argument as in part three of the
proof of Theorem 5.6 is used. �

Note that if Y is a non-separating cocircuit of M then M\Y has only one separate
B, which implies that M.(B ∪Y ) = M and Theorem 6.12 holds trivially. Therefore,
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in order to decompose a binary matroid into proper minors based on Theorem 6.12
the existence of a cocircuit which is both separating and non-graphic is required. An
excluded minor characterization of the binary signed-graphic matroids with graphic
cocircuits is given by the following theorem, where the graph K−4,4 is K4,4\e for any
edge e ∈ E(K4,4).

Theorem 6.13 Let M be a binary matroid such that all its cocircuits are graphic.
Then, M is signed-graphic if and only if M has no minor isomorphic to M∗(K3,5),
M∗(K−4,4), F7 or F∗7 .

The following theorem shows that the non-existence of non-graphic separating cocir-
cuits is a property inherited to minors created by the operation of deletion of a
cocircuit.

Theorem 6.14 If M(�) is a binary signed-graphic matroid such that every non-
graphic cocircuit Y ∈ C ∗(M(�)) is non-separating then any non-graphic cocircuit
Y ′ of M(�)\Y is also non-separating.

Proof Assume that Y ′ is a separating non-graphic cocircuit of M(�)\Y = M(�\Y ).
Letting �′ = �\Y , and since Y ′ is an unbalancing bond of �′, we have that �′\Y ′
consists of two components �′1 and �′2 which are nonempty of edges, and we may
suppose that M(�′1) is not graphic. Therefore, Ȳ = Y ′ ∪ S is a cocircuit of M(�)

where S is a possibly empty subset of Y . Due to the fact that Y is a star bond of �,
all the edges in S have a common end-vertex v in �. Let S1 ⊂ S be the edges which
have their end-vertices other than v in �1. Then, Ŷ = Y ′ ∪ S1 is a minimal set of
edges such that �\Ŷ consists of two components, one of which is �1, where M(�1)

is not graphic. This implies that Ŷ is an unbalancing bond of � and therefore, Ŷ is
a separating and non-graphic cocircuit of M(�); a contradiction. �

Finally, we also have the characterization of those tangled signed graphs that their
corresponding singed-graphic matroids have cocircuits which are all non-graphic
and non-separating.

Theorem 6.15 M(�) is a connected, binary, signed-graphic, non-graphic matroid
such that every non-graphic cocircuit Y ∈ C ∗(M(�)) is non-separating if and
only if � is a 2-connected signed graph such that every non-graphic cocircuit Y ∈
C ∗(M(�)) is a star of � and �\Y is 2-connected.

Proof We will prove necessity first. Since M(�) is binary and connected, by The-
orem 6.8, � is tangled and 2-connected. Furthermore, any non-graphic cocircuit of
M(�) is non-separating and therefore, by our classification of bonds, Y is a star
bond of �. �\Y has exactly two components and one unbalanced block. Moreover,
M(�)\Y is connected since Y is non-separating and therefore, by Theorem 6.6, �\Y
can not be a necklace or contain any other block except for the unbalanced one.
To prove sufficiency, since M(�) is non-graphic, by Theorem 6.7, � is tangled.
Furthermore, � is 2-connected and thus, by Theorem 6.8, M(�) is connected. Any
non-graphic cocircuit Y is such that �\Y is 2-connected; moreover, �\Y is not a
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necklace since Y is non-graphic. Thus, by Theorem 6.6, M(�)\Y is connected and
therefore, any non-graphic cocircuit of M(�) is non-separating. �

We can combine the above results to decompose a binary signed-graphic matroid
to graphic matroids and possibly one binary matroid with no M∗(K3,5), M∗(K−4,4),
F7 or F∗7 minors by successively deleting cocircuits. While there exist non-graphic
separating cocircuits we apply Theorem 6.12, which dictates that the deletion of such
a cocircuit will result in graphic matroids and one signed-graphic matroid M(�). If
all the non-graphic cocircuits of M(�) are non-separating then, by Theorems 6.14
and 6.15, it is evident that all these cocircuits will correspond to stars in � and they can
be deleted, resulting to either a graphic matroid or a signed-graphic matroid with no
M∗(K3,5), M∗(K−4,4), F7, F∗7 minors. This decomposition however does not directly
lead to an algorithm for solving the recognition Problem 6.1 for binary signed-graphic
matroids as it was the case for graphic matroids, since there is no efficient way of
checking whether a matroid with only graphic cocircuits is signed-graphic or not.
However, Papalamprou and Pitsoulis (2009) present a polynomial time algorithm to
test whether a cographic matroid with graphic cocircuits is signed-graphic or not.

6.5 Notes

Signed graphs were defined by Harary (1954) and were motivated by problems in
social psychology. Zaslavsky (1998) provides an extended bibliography on signed
graphs. Signed-graphic matroids have been introduced by Zaslavsky (1982, 1990,
1991), and have been studied by Pagano (1998), Slilaty (2005, 2006), and Slilaty
and Qin (2007) among others. Recently it has been conjectured by Mayhew et al.
(2013) that they may be the building blocks of a k-sum decomposition of dyadic and
near-regular matroids.

Bidirected graphs were introduced by Edmonds (1967) as a generalization of both
directed and undirected graphs. Binet matrices were introduced by Appa and Kotnyek
(2004, 2006), and can be viewed as generalizations of totally unimodular network
matrices. Apart from their importance in optimization as stated in Theorem 6.1,
they also have theoretical importance in structural results such as the decomposition
theorem of totally unimodular matrices by Seymour (1980), which states that any
totally unimodular matrix can be obtained by k-sums from network matrices and their
transposes, and two binet matrices. Given that any network matrix is a binet matrix of
a bidirected graph with only directed edges, we conclude that binet matrices are the
building blocks of totally unimodular matrices. Moreover, in (Pitsoulis et al. 2009) it
is shown that the k-sum between a binet and a network matrix is a binet matrix, which
provides the means of constructing a bidirected graph representation of any totally
unimodular matrix. A polynomial time recognition algorithm for binet matrices is
given by Musitelli (2007), where in (Musitelli 2010) some of the main concepts of
this recognition algorithm are presented. Papalamprou and Oitsoulis (2012) used the
binet matrix recognition algorithm of Musitelli, to provide a recognition algorithm
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that determines whether a matroid given by an independence oracle is binary signed-
graphic.

Given the representability classes of signed-graphic matroids in the beginning of
Sect. 6.3 the question that naturally arises is whether it is possible to derive similar
decomposition results as Theorem 6.12 for signed-graphic matroids representable
over G F(4), or over all fields of characteristic not two. Although this is part of
an ongoing research effort, preliminary results indicate that the results of Sect. 6.4
do not seem to be readily extendible to the G F(4) case. This is partly due to the
fact that although for the binary case we had a relatively simple characterization of
signed graphs and their matroids given by Theorem 6.7, for G F(4) representable
signed-graphic matroids the corresponding characterization involves more compli-
cated signed graphs (Gerards 1990; Pagano 1998; Slilaty and Qin 2007). Moreover,
for signed-graphic matroids which are not G F(2) or G F(4) representable, there is
no such characterization.
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Symbols
Y -component, 76
k-connectivity

in graphs, 8
matroids, 71

k-partite, 7
k-separation

in graphs, 8
matroids, 71

A
Adjacent

edges, 6
vertices, 6

Algorithm
Graphic, 88
Greedy, 39

Arc, 7
Avoiding bridges, 78

B
B-necklace, 108
Balanced, 102
Balancing bond, 107
Balancing vertex, 102
Base, 27
Basis, 14
Bidirected graph, 102
Binary field, 3
Binary matroid, 27
Binet matrix, 104
Bipartite, 7
Block, 108

inner, 108

outer, 108
Bond

of a graph, 8
of a signed graph, 107

Bridge, 76
Bridge-separable cocircuit, 78

C
Circuit

of a signed graph, 106
definition, 29
fundamental, 31
transversals, 21

Closed set, 36
Closure, 34
Cobase, 53
Cocircuit, 53
Cographic, 55
Column space, 4
Compact representation matrix, 49
Complete, 6
Connected

graph, 8
Contraction

elements in a matroid, 59
columns in a matrix, 65
edges in a graph, 6
edges in a signed graph, 101

Corank, 53
Core, 108
Cryptomorphisms, 45
Cut, 6
Cycle, 7
Cycle matroid, 27

L. S. Pitsoulis, Topics in Matroid Theory, 125
SpringerBriefs in Optimization, DOI: 10.1007/978-1-4614-8957-3,
© Leonidas S. Pitsoulis 2014



126 Index

D
Degree of a vertex, 6
Deletion

elements in a matroid, 58
columns in a matrix, 65
edges in a graph, 6
edges in a signed graph, 101
sets, 2

Dependent set, 25
Dimension of a vector space, 14
Double bond, 107

E
Edge-connectivity, 8
End-graph, 9

F
Family, 3
Flat, 36
Forest, 9

G
Graph

directed, 7
orientation, 7

Graphic cocircuit, 112
Graphic matroid, 26

H
Half-edge, 101
Head, 7
Hyperplane, 36

I
Incidence matrix

directed graph, 48
signed graph, 102
bidirected graph, 102
graph, 47

Incident edges, 6
Independence oracle, 47
Independence system, 25
Independent set, 25
Induced graph, 6
Intersection of matroids, 43
Isomorphic, 26

L
Linear

combination, 12
dependence, 12
independence, 12
relation, 12

Link, 101
Loop

in a graph, 5
in a matroid, 29

Loose-edge, 101
Low rank

function of an independence system, 33

M
Matching, 17
Matroid

basis axioms, 27
circuit axioms, 30
closure axioms, 35
dependent sets axioms, 37
hyperplane axioms, 37
rank axioms, 32, 33
spanning sets axioms, 37
dual, 52
greedy characterization, 42
independence axioms, 25

Maximal set, 3
Maximum clique problem, 39
Maximum weight matching, 38
Meets, 2
Minimal set, 3
Minimum spanning tree problem, 38
Minor, 64

in a graph, 6
Minor-closed, 64

N
Negative cycle, 102
Nullspace, 4

O
Order, 5
Orthogonal complement, 4
Overlapping bridges, 78

P
Parallel, 5
Partial transversal, 16
Partition, 2
Path, 7
Planar

graph, 7



Index 127

matroid, 55
Positive cycle, 102
Power-set, 2

R
Rank

of a graph, 11
function of an independence system, 31
of a set of vectors, 15
quotient, 39

Regular matroid, 68
Row equivalent, 3
Row space, 4

S
Separate

of a graph, 77
of a signed graph, 108

Separating cocircuit, 76
Separator, 68

elementary, 68
Set system, 3
Signed graph, 101

tangled, 111
Signed-graphic matroid, 105
Simple graph, 5
Size, 5
Span, 13
Spanning

forest, 9
subgraph, 9
tree, 9

Spanning set, 13, 36
Standard representation matrix, 49

Star, 6
Star composition, 87
Subgraph, 5

proper, 5
Submodularity, 33

T
Tail, 7
Ternary field, 3
Totally unimodular matrix, 68
Transversal, 16
Transversal matroid, 26
Traveling salesman problem, 38
Tree, 9
Twisting, 9

U
Unbalancing bond, 107
Uniform matroid, 29

V
Vector matroid, 26, 27
Vertex-connectivity, 8
Vertical k-connectivity

matroids, 72
Vertical k-separation

matroids, 72

W
Walk, 7
Whitney-flips, 100
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