


Notation 

For square or rectangular matrices A E cmxn, m ~ n: 

QR factorization: A = Q R 

Reduced QR factorization: A = Q R 

SVD: A= UEV* 

Reduced SVD: A = Ui:: V* 

For square matrices A E cmxm: 

L U factorization: P A = L U 

Cholesky factorization: A = R* R 

Eigenvalue decomposition: A = X AX-1 

Schur factorization: A= UTU* 

Orthogonal projector: P = QQ* 

Householder reflector: F = I - 2 vv* 
v*v 

QR algorithm: Ak = Q(k) R(k), A(k) = ( Q(k))T AQ(k) 

Arnoldi iteration: AQn = Qn+lifn, Hn = Q:AQn 

Lanczos iteration: AQn = Qn+lTn, Tn = Q;AQn 
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Preface 

Since the early 1980s, the first author has taught a graduate course in nu­
merical linear algebra at MIT and Cornell. The alumni of this course, now 
numbering in the hundreds, have been graduate students in all fields of engi­
neering and the physical sciences. This book is an attempt to put this course 
on paper. 

In the field of numerical linear algebra, there is already an encyclopedic 
treatment on the market: Matrix Computations, by Golub and Van Loan, 
now in its third edition. This book is in no way an attempt to duplicate 
that one. It is small, scaled to the size of one university semester. Its aim 
is to present fundamental ideas in as elegant a fashion as possible. We hope 
that every reader of this book will have access also to Golub and Van Loan 
for the pursuit of further details and additional topics, and for its extensive 
references to the research literature. Two other important recent books are 
those of Higham and Demmel, described in the Notes at the end (p. 329). 

The field of numerical linear algebra is more beautiful, and more funda­
mental, than its rather dull name may suggest. More beautiful, because it 
is full of powerful ideas that are quite unlike those normally emphasized in 
a linear algebra course in a mathematics department. (At the end of the 
semester, students invariably comment that there is more to this subject than 
they ever imagined.) More fundamental, because, thanks to a trick of his­
tory, "numerical" linear algebra is really applied linear algebra. It is here that 
one finds the essential ideas that every mathematical scientist needs to work 
effectively with vectors and matrices. In fact, our subject is more than just 

ix 



X PREFACE 

vectors and matrices, for virtually everything we do carries over to functions 
and operators. Numerical linear algebra is really functional analysis, but with 
the emphasis always on practical algorithmic ideas rather than mathematical 
technicalities. 

The book is divided into forty lectures. We have tried to build each lecture 
around one or two central ideas, emphasizing the unity between topics and 
never getting lost in details. In many places our treatment is nonstandard. 
This is not the place to list all of these points (see the Notes), but we will 
mention one unusual aspect of this book. We have departed from the cus­
tomary practice by not starting with Gaussian elimination. That algorithm is 
atypical of numerical linear algebra, exceptionally difficult to analyze, yet at 
the same time tediously familiar to every student entering a course like this. 
Instead, we begin with the QR factorization, which is more important, less 
complicated, and a fresher idea to most students. The QR factorization is 
the thread that connects most of the algorithms of numerical linear algebra, 
including methods for least squares, eigenvalue, and singular value problems, 
as well as iterative methods for all of these and also for systems of equations. 
Since the 1970s, iterative methods have moved to center stage in scientific 
computing, and to them we devote the last part of the book. 

We hope the reader will come to share our view that if any other mathe­
matical topic is as fundamental to the mathematical sciences as calculus and 
differential equations, it is numerical linear algebra. 
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Fundamentals 





Lecture 1. Matrix-Vector Multiplication 

You already know the formula for matrix-vector multiplication. Nevertheless, 
the purpose of this first lecture is to describe a way of interpreting such prod­
ucts that may be less familiar. If b =Ax, then b is a linear combination of 
the columns of A. 

Familiar Definitions 

Let x be an n-dimensional column vector and let A be an m x n matrix 
(m rows, n columns). Then the matrix-vector product b = Ax is the m­
dimensional column vector defined as follows: 

" 
bi = Eai;x;, i= l, ... ,m. (1.1) 

j=l 

Here bi denotes the ith entry of b, aii denotes the i, j entry of A ( ith row, 
jth column), and x1 denotes the jth entry of x. For simplicity, we assume in 
all but a few lectures of this book that quantities such as these belong to C, 
the field of complex numbers. The space of m-vectors is em, and the space of 
m X n matrices is cmxn. 

The map x H Ax is linear, which means that, for any x, y E C" and any 
a E C, 

A(x+y) = Ax+Ay, 

A(ax) - aAx. 

3 



4 PART I. FUNDAMENTALS 

Conversely, every linear map from en to em can be expressed as multiplication 
by an m x n matrix. 

A Matrix Times a Vector 

Let a; denote the jth column of A, an m-vector. Then {1.1) can be rewritten 

n 

b =Ax= Ex;a;· 
i=1 

This equation can be displayed schematically as follows: 

b 

{1.2) 

In (1.2), b is expressed as a linear combination of the columns a;. Nothing 
but a slight change of notation has occurred in going from {1.1) to {1.2). Yet 
thinking of Ax in terms of the form {1.2) is essential for a proper understanding 
of the algorithms of numerical linear algebra. 

We can summarize these different descriptions of matrix-vector products 
in the following way. As mathematicians, we are used to viewing the formula 
Ax= bas a statement that A acts on x to produce b. The formula {1.2), by 
contrast, suggests the interpretation that x acts on A to produce b. 

Example 1.1. Vandermonde Matrix. Fix a sequence of numbers { x11 x2, 

... , xm}· If p and q are polynomials of degree < n and a is a scalar, then 
p+q and ap are also polynomials of degree< n. Moreover, the values ofthese 
polynomials at the points xi satisfy the following linearity properties: 

(p + q)(xi) 

(ap)(xi) -

p(xi) + q(xi), 

a(p(xi)). 

Thus the map from vectors of coefficients of polynomials p of degree < n to 
vectors (p(x1),p(x2), ... ,p(xm)) of sampled polynomial values is linear. Any 
linear map can be expressed as multiplication by a matrix; this is an example. 
In fact, it is expressed by an m x n Vandermonde matrix 

1 x1 x2 n-1 
1 x1 

A= 
1 x2 X~ n-1 x2 

1 Xm x2 
m 

xn-1 
m 
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If c is the column vector of coefficients of p, 

c= 

then the product Ac gives the sampled polynomial values. That is, for each i 
from 1 to m, we have 

(Ac)i = c0 + c1xi + ~x~ + · · · + c,._1x:-1 = p(xi). {1.3) 

In this example, it is clear that the matrix-vector product Ac need not 
be thought of as m distinct scalar summations, each giving a different linear 
combination of the entries of c, as (1.1) might suggest. Instead, A can be 
viewed as a matrix of columns, each giving sampled values of a monomial, 

A = 1 X x2 . . . xn-l (1.4) 

and the product Ac should be understood as a single vector summation in the 
form of {1.2) that at once gives a linear combination of these monomials, 

Ac = Co+ c1x + ~x2 + · · · + c,._1x"-1 = p(x). 0 

The remainder of this lecture will review some fundamental concepts in 
linear algebra from the point of view of (1.2). 

A Matrix Times a Matrix 

For the matrix-matrix product B = AC, each column of B is a linear com­
bination of the columns of A. To derive this fact, we begin with the usual 
formula for matrix products. If A is l x m and C is m x n, then B is l x n, 
with entries defined by 

m 

bii = E ailcclc;· (1.5) 
1c=1 

Here bii' aile' and c1c; are entries of B, A, and C, respectively. Written in terms 
of columns, the product is 
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and (1.5) becomes 
m 

b; = Ac; = E C~c;a1c. 
lc=l 

Thus b; is a linear combination ofthe columns ale with coefficients c1c;· 

(1.6) 

Example 1.2. Outer Product. A simple example of a matrix-matrix prod­
uct is the outer product. This is the product of an m-dimensional column 
vector u with an n-dimensional row vector v; the result is an m x n matrix of 
rank 1. The outer product can be written 

u 

The columns are all multiples of the same vector u, and similarly, the rows 
are all multiples of the same vector v. 0 

Example 1.3. As a second illustration, consider B = AR, where R is the 
upper-triangular n x n matrix with entries ri; = 1 fori~ j and ri; = 0 for 
i > j. This product can be written 

The column formula (1.6) now gives 

j 

b; = Ar; = Ea1c. 
lc=l 

(1.7) 

That is, the jth column of B is the sum of the :first j columns of A. The 
matrix R is a discrete analogue of an indefinite integral operator. 0 

Range and N ullspace 

The range of a matrix A, written range( A), is the set of vectors that can be 
expressed as Ax for some x. The formula (1.2) leads naturally to the following 
characterization of range (A). 

Theorem 1.1. range(A) is the space spanned by the columns of A. 
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Proof. By {1.2), any Ax is a linear combination of the columns of A. Con­
versely, any vector y in the space spanned by the columns of A can be written 
as a linear combination of the columns, y = L:j=1 x;a;. Forming a vector x 
out of the coefficients X;, we have y =Ax, and thus y is in the range of A. D 

In view of Theorem 1.1, the range of a matrix A is also called the column 
space of A. 

The nullspace of A E cmxn' written null( A), is the set of vectors X that 
satisfy Ax = 0, where 0 is the 0-vector in em. The entries of each vector 
x E null (A) give the coefficients of an expansion of zero as a linear combination 
of columns of A: 0 = x1a1 + x2a2 + · · · + xnan. 

Rank 
The column rank of a matrix is the dimension of its column space. Similarly, 
the row rank of a matrix is the dimension of the space spanned by its rows. 
Row rank always equals column rank (among other proofs, this is a corollary 
of the singular value decomposition, discussed in Lectures 4 and 5), so we refer 
to this number simply as the rank of a matrix. 

An m x n matrix of full rank is one that has the maximal possible rank (the 
lesser of m and n ). This means that a matrix of full rank with m 2:: n must 
have n linearly independent columns. Such a matrix can also be characterized 
by the property that the map it defines is one-to-one. 

Theorem 1.2. A matrix A E cmxn with m 2:: n has full rank if and only if 
it maps no two distinct vectors to the same vector. 

Proof. ( ===>) H A is of full rank, its columns are linearly independent, so they 
form a basis for range(A). This means that every bE range(A} has a unique 
linear expansion in terms of the columns of A, and therefore, by (1.2), every 
b E range(A) has a unique x such that b = Ax. (-<==) ConverselY., if A is 
not of full rank, its columns a; are dependent, and there is a nontrivialliri.eat 
combination such that :Ej=1 c;a; = 0. The nonzero vector c formed from the 
coefficients C; satisfies Ac = 0. But then A maps distinct vectors to the same 
vector since, for any x, Ax = A(x +c). 0 

Inverse 

A nonsingular or invertible matrix is a square matrix of full rank. Note 
that the m columns of a nonsingular m x m matrix A form a basis for the 
whole space em. Therefore, we can uniquely express any vector as a linear 
combination of them. In particular, the canonical unit vector with 1 in the 
jth entry and zeros elsewhere, written e;, can be expanded: 



8 PART I. FUNDAMENTALS 

m 

e; = Ezi;ai. 
i=l 

{1.8} 

Let Z be the matrix with entries zi;, and let z; denote the jth column of 
Z. Then (1.8} can be written e; = Az;. This equation has the form {1.6}; it 
can be written again, most concisely, as 

e1 · · · em = I = AZ, 

where I is the m x m matrix known as the identity. The matrix Z is the 
inverse of A. Any square nonsingular matrix A has a unique inverse, written 
A-1, that satisfies AA-1 = A-1A. =I. 

The following theorem records a number of equivalent conditions that hold 
when a square matrix is nonsingular. These conditions appear in linear algebra 
texts, and we shall not give a proof here. Concerning (f), see Lecture 5. 

Theorem 1.3. For A E cmxm, the following conditions are equivalent: 

(a) A has an inverse A-1, 

{b) rank(A) = m, 
(c) range(A) =em, 
(d) null(A) = {0}, 
(e) 0 is not an eigenvalue of A, 
(f) 0 is not a singular value of A, 
(g) det(A) # 0. 

Concerning (g), we mention that the determinant, though a convenient notion 
theoretically, rarely finds a useful role in numerical algorithms. 

A Matrix Inverse Times a Vector 

When writing the product x = A-1b, it is important not to let the inverse­
matrix notation obscure what is really going on! Rather than thinking of x as 
the result of applying A -l to b, we should understand it as the unique vector 
that satisfies the equation Ax =b. By {1.2), this means that xis the vector 
of coefficients of the unique linear expansion of b in the basis of columns of A. 

This point cannot be emphasized too much, so we repeat: 

A-1b is the vector of coefficients of the expansion of b 
in the basis of columns of A. 

Multiplication by A-1 is a change of basis operation: 
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In this description we are being casual with terminology, using "b" in one 
instance to denote an m-tuple of numbers, and in another, as a point in an 
abstract vector space. The reader should think about these matters until he 
or she is comfortable with the distinction. 

A Note on m and n 

Throughout numerical linear algebra, it is customary to take a rectangular 
matrix to have dimensions m x n. We follow this convention in this book. 

What if the matrix is square? The usual convention is to give it dimensions 
n x n, but in this book we shall generally take the other choice, m x m. Many 
of our algorithms require us to look at rectangular submatrices formed by 
taking a subset of the columns of a square matrix. If the submatrix is to be 
m x n, the original matrix had better be m x m. 

Exercises 

1.1. Let B be a 4 x 4 matrix to which we apply the following operations: 
1. double column 1, 
2. halve row 3, 
3. add row 3 to row 1, 
4. interchange columns 1 and 4, 
5. subtract row 2 from each of the other rows, 
6. replace column 4 by column 3, 
7. delete column 1 (so that the column dimension is reduced by 1). 

(a) Write the result as a product of eight matrices. 
(b) Write it again as a product ABC (same B) of three matrices. 

1.2. Suppose masses m1, m2, m3, m4 are located at positions x1, x2, x3, x4 in a 
line and connected by springs with spring constants k12, k23 , k34 whose natural 
lengths of extension are l 12, l 23 , l 34• Let / 1, / 2 , / 3 , / 4 denote the rightward 
forces on the masses, e.g., / 1 = k12(x2 - x1 -i12). 
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(a) Write the 4 x 4 matrix equation relating the column vectors I and x. Let 
K denote the matrix in this equation. 

(b) What are the dimensions of the entries of K in the physics sense (e.g., 
mass times time, distance divided by mass, etc.)? 

(c) What are the dimensions of det(K), again in the physics sense? 

(d) Suppose K is given numerical values based on the units meters, kilograms, 
and seconds. Now the system is rewritten with a matrix K' based on centime­
ters, grams, and seconds. What is the relationship of K' to K? What is the 
relationship of det(K') to det(K )? 

1.3. Generalizing Example 1.3, we say that a square or rectangular matrix R 
with entries ri; is upper-triangular if ri; = 0 for i > j. By considering what 
space is spanned by the first n columns of Rand using (1.8), show that if R is a 
nonsingular m x m upper-triangular matrix, then R-1 is also upper-triangular. 
(The analogous result also holds for lower-triangular matrices.) 

1.4. Let 11, ... , Is be a set of functions defined on the interval [1, 8] with 
the property that for any numbers d1, ... , dg, there exists a set of coefficients 
c1, •.. , Cg such that 

8 

L c;l;(i) = di, i = 1, ... ,8. 
i=1 

(a) Show by appealing to the theorems of this lecture that d1, ••. , dg determine 
c1, ..• , Cg uniquely. 

(b) Let A be the 8 x 8 matrix representing the linear mapping from data 
d1 , .•. , d8 to coefficients c1 , ... , eg. What is the i,j entry of A-1 ? 



Lecture 2. Orthogonal Vectors and Matrices 

Since the 1960s, many of the best algorithms of numerical linear algebra have 
been based in one way or another on orthogonality. In this lecture we present 
the ingredients: orthogonal vectors and orthogonal (unitary) matrices. 

Adjoint 

The complex conjugate of a scalar z, written "l or z*, is obtained by negating 
its imaginary part. For real z, "l = z. 

The hermitian conjugate or adjoint of an m x n matrix A, written A •, is 
the n x m matrix whose i, j entry is the complex conjugate of the j, i entry of 
A. For example, 

If A= A*, A is hermitian. By definition, a hermitian matrix must be square. 
For real A, the adjoint simply interchanges the rows and columns of A. In 
this case, the adjoint is also known as the transpose, and is written AT. If a 
real matrix is hermitian, that is, A =AT, then it is also said to be symmetric. 

Most textbooks of numerical linear algebra assume that the matrices under 
discussion are real and thus principally use T instead of •. Since most of the 
ideas to be dealt with are not intrinsically restricted to the reals, however, we 
have followed the other course. Thus, for example, in this book a row vector 

11 



12 PART I. FUNDAMENTALS 

will usually be denoted by, say, a* rather than aT. The reader who prefers to 
imagine that all quantities are real and that * is a synonym for T will rarely 
get into trouble. 

Inner Product 

The inner product of two column vectors x, y E em is the product of the 
adjoint of x by y: 

(2.1) 

The Euclidean length of x may be written llxll (vector norms such as this are 
discussed systematically in the next lecture), and can be defined as the square 
root of the inner product of x with itself: 

(2.2) 

The cosine of the angle a between x and y can also be expressed in terms of 
the inner product: 

x*y 
cosa = llxllliYll. (2.3) 

At various points of this book, as here, we mention geometric interpretations 
of algebraic formulas. For these geometric interpretations, the reader should 
think of the vectors as real rather than complex, although usually the in­
terpretations can be carried over in one way or another to the complex case 
too. 

The inner product is bilinear, which means that it is linear in each vector 
separately: 

(x1 + x2)*y = x~y + x;y, 

x*(yl + Y2) = x*yl + x*y2, 

(ax)*(,By) - a,Bx*y. 

We shall also frequently use the easily proved property that for any matrices 
or vectors A and B of compatible dimensions, 

(AB)* = B*A*. (2.4) 

This is analogous to the equally important formula for products of invertible 
square matrices, 

(2.5) 

The notation A-• is a shorthand for (A*)-1 or (A-1)*; these two are equal, as 
can be verified by applying (2.4) with B = A-1. 
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Orthogonal Vectors 

A pair of vectors x and yare orthogonal if x*y = 0. If x andy are real, this 
means they lie at right angles to each other in m.m. Two sets of vectors X 
and Y are orthogonal (also stated "X is orthogonal to Y") if every x E X is 
orthogonal to every y E Y. 

A set of nonzero vectors S is orthogonal if its elements are pairwise orthog­
onal, i.e., if for x, y E S, x :f: y '* x*y = 0. A set of vectors is orthonormal if 
it is orthogonal and, in addition, every xES has llxll = 1. 

Theorem 2.1. The vectors in an orthogonal setS are linearly independent. 

Proof. H the vectors in S are not independent, then some vic E S can be 
expressed as a linear combination of other members v1, ... , v. E S, 

t1. 

vic= E c,vi. 
i=l 
¥• 

Since vic :f: 0, v:v1c = llv~cll 2 > 0. Using the bilinearity of inner products and 
the orthogonality of S, we calculate 

t1. 

v;vlc = E c,v;v, = 0, 
i=l 
#II: 

which contradicts the assumption that the vectors in S are nonzero. D 

As a corollary of Theorem 2.1 it follows that if an orthogonal set S ~ em 
contains m vectors, then it is a basis for em. 

Components of a Vector 

The most important idea to draw from the concepts of inner products and or­
thogonality is this: inner products can be used to decompose arbitrary vectors 
into orthogonal components. 

For example, suppose that {q1, q2, •.. , q.} is an orthonormal set, and let v 
be an arbitrary vector. The quantity qjv is a scalar. Utilizing these scalars as 
coordinates in an expansion, we find that the vector 

is orthogonal to { qh q2, ... , q.}. This can be verified by computing q;r: 

q;r = q;v- (q~v)(q;qd- · · ·- (q:v)(q;q.). 

This sum collapses, since qiq; = 0 fori :f: j: 

q;r = q;v- (q;v)(q;qi) - 0. 

(2.6) 
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Thus we see that v can be decomposed into n + 1 orthogonal components: 

n n 

v = r + ~)qiv)qi = r + L:(qiq;)v. (2.7) 
i=l i=l 

In this decomposition, r is the part of v orthogonal to the set of vectors 
{q1, q2 , ••• , qn}, or, equivalently, to the subspace spanned by this set of vectors, 
and (qiv)qi is the part of v in the direction of qi. 

If {qi} is a basis for em, then n must be equal tom and r must be the 
zero vector, so vis completely decomposed into m orthogonal components in 
the directions of the qi: 

m m 

v L:(qiv)qi = L:(qiq;)v. (2.8) 
i=l i=l 

In both (2. 7) and (2.8) we have written the formula in two different ways, 
once with (q;v)qi and again with (qiqi)v. These expressions are equal, but 
they have different interpretations. In the first case, we view v as a sum 
of coefficients q;v times vectors qi. In the second, we view v as a sum of 
orthogonal projections of v onto the various directions qi. The ith projection 
operation is achieved by the very special rank-one matrix qiqi. We shall discuss 
this and other projection processes in Lecture 6. 

Unitary Matrices 

A square matrix Q E emxm is unitary (in the real case, we also say orthogonal) 
if Q* = Q-1, i.e, if Q*Q =I. In terms of the columns of Q, this product can 
be written 

1 

1 

q~ 1 

In other words, qtq; = Oi;• and the columns of a unitary matrix Q form an 
orthonormal basis of em. The symbol oii is the Kronecker delta, equal to 1 if 
i = j and 0 if i =J j. 

Multiplication by a Unitary Matrix 

In the last lecture we discussed the interpretation of matrix-vector products 
Ax and A-1b. If A is a unitary matrix Q, these products become Qx and 
Q*b, and the same interpretations are of course still valid. As before, Qx is 
the linear combination of the columns of Q with coefficients x. Conversely, 
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Q*b is the vector of coefficients of the expansion of b 
in the basis of columns of Q. 

Schematically, the situation looks like this: 

15 

These processes of multiplication by a unitary matrix or its adjoint pre­
serve geometric structure in the Euclidean sense, because inner products are 
preserved. That is, for unitary Q, 

(Qx)*(Qy) = x*y, (2.9) 

as is readily verified by (2.4). The invariance of inner products means that 
angles between vectors are preserved, and so are their lengths: 

IIQxll = llxll. (2.10) 

In the real case, multiplication by an orthogonal matrix Q corresponds to a 
rigid rotation (if detQ = 1) or reflection (if detQ = -1) of the vector space. 

Exercises 

2.1. Show that if a matrix A is both triangular and unitary, then it is diagonal. 

2.2. The Pythagorean theorem asserts that for a set of n orthogonal vectors 
{xi}, 

(a) Prove this in the case n = 2 by an explicit computation of llx1 + x2 11 2 • 

(b) Show that this computation also establishes the general case, by induction. 

2.3. Let A E cmxm be hermitian. An eigenvector of A is a nonzero vector 
X E em such that Ax = AX for some A E c, the corresponding eigenvalue. 

(a) Prove that all eigenvalues of A are real. 
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{b) Prove that if z and y are eigenvectors corresponding to distinct eigenvalues, 
then x and y are orthogonal. 

2.4. What can be said about the eigenvalues of a unitary matrix? 

2.5. Let S E cmxm be skew-hermitian, i.e., S* = -S. 

(a) Show by using Exercise 2.1 that the eigenvalues of S are pure imaginary. 

{b) Show that I-S is nonsingular. 

(c) Show that the matrix Q =(I -s)-1(I +S), known as the Cayley transform 
of S, is unitary. {This is a matrix analogue of a linear fractional transformation 
(1 + s)/(1- s), which maps the left half of the complex s-plane conformally 
onto the unit disk.) 

2.6. If u and v are m-vectors, the matrix A = I+ uv* is known as a rank-one 
perturbation of the identity. Show that if A is nonsingular, then its inverse 
has the form A-1 =I+ auv* for some scalar a, and give an expression for a. 
For what u and v is A singular? If it is singular, what is null{ A)? 

2.7. A Hadamard matrix is a matrix whose entries are all ±1 and whose 
transpose is equal to its inverse times a constant factor. It is known that if 
A is a Hadamard matrix of dimension m > 2, then m is a multiple of 4. It is 
not known, however, whether there is a Hadamard matrix for every such m, 
though examples have been found for all cases m ~ 424. 

Show that the following recursive description provides a Hadamard matrix of 
each dimension m = 2"', k = 0, 1,2, ... : 

H0 = [ 1 ] , 



Lecture 3. Norms 

The essential notions of size and distance in a vector space are captured by 
norms. These are the yardsticks with which we measure approximations and 
convergence throughout numerical linear algebra. 

Vector Norms 

A norm is a function II . II : em -+ m. that assigns a real-valued length to 
each vector. In order to conform to a reasonable notion of length, a norm 
must satisfy the following three conditions. For all vectors x and y and for all 
scalars a E C, 

(1) llxll ~ 0, and llxll = 0 only if x = 0, 

(2) llx + Yll ~ llxll + IIYII, 
(3) llaxll = lalllxll. 

(3.1) 

In words, these conditions require that (1) the norm of a nonzero vector is 
positive, (2) the norm of a vector sum does not exceed the sum of the norms 
of its parts-the triangle inequality, and (3) scaling a vector scales its norm 
by the same amount. 

In the last lecture, we used II · II to denote the Euclidean length function 
(the square root of the sum ofthe squares of the entries of a vector). However, 
the three conditions (3.1) allow for different notions of length, and at times it 
is useful to have this flexibility. 

17 
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The most important class of vector norms, the p-norms, are defined below. 
The closed unit ball { x E em : llxll ~ 1} corresponding to each norm is 
illustrated to the right for the case m = 2. 

m 

llxl11 = :Eixil, 
i=l 

llxll2 = 
( m ) 1/2 
~ lxil2 = ../i*X, 

(3.2) 

llxlloo = max lx-1 
l~i~m '' 

(1 ~p < oo). • The 2-norm is the Euclidean length function; its unit ball is spherical. The 
1-norm is used by airlines to define the maximal allowable size of a suitcase. 
The Sergei plaza in Stockholm, Sweden has the shape of the unit ball in the 4-
norm; the Danish poet Piet Rein popularized this "superellipse" as a pleasing 
shape for objects such as conference tables. 

Aside from the p-norms, the most useful norms are the weighted p-norms, 
where each of the coordinates of a vector space is given its own weight. In 
general, given any norm II · II, a weighted norm can be written as 

llxllw = IIWxll. (3.3) 

Here W is the diagonal matrix in which the ith diagonal entry is the weight 
wi :j; 0. For example, a weighted 2-norm ll·llw on em is specified as follows: 

(3.4) 

One can also generalize the idea of weighted norms by allowing W to be an 
arbitrary nonsingular matrix, not necessarily diagonal (Exercise 3.1). 

The most important norms in this book are the unweighted 2-norm and 
its induced matrix norm. 

Matrix Norms Induced by Vector Norms 

An m x n matrix can be viewed as a vector in an mn-dimensional space: 
each of the mn entries of the matrix is an independent coordinate. Any mn­
dimensional norm can therefore be used for measuring the "size" of such a 
matrix. 



LECTURE 3. NORMS 19 

However, in dealing with a space of matrices, certain special norms are 
more useful than the vector norms (3.2)-(3.3) already discussed. These are 
the induced matrix norms, defined in terms of the behavior of a matrix as an 
operator between its normed domain and range spaces. 

Given vector norms II · ll(n) and II · ll(m) on the domain and the range of 
A E emxn, respectively, the induced matrix norm IIAIIcm,n) is the smallest 
number G for which the following inequality holds for all X E en: 

(3.5) 

In other words, IIAIIcm,n) is the supremum of the ratios IIAxllcm/llxllcn) over 
all vectors x E en-the maximum factor by which A can "stretch" a vector 
x. We say that II · llcm,n) is the matrix norm induced by II · ll(m) and II · ll(n)· 

Because of condition (3) of (3.1), the action of A is determined by its action 
on unit vectors. Therefore, the matrix norm can be defined equivalently in 
terms of the images of the unit vectors under A: 

(3.6) 

This form of the definition can be convenient for visualizing induced matrix 
norms, as in the sketches in (3.2) above. 

Examples 

Example 3.1. The matrix 

A=[~~] (3.7) 

maps e 2 to e 2 • It also maps 1R? to R 2 , which is more convenient if we want 
to draw pictures and also (it can be shown) sufficient for determining matrix 
p-norms, since the coefficients of A are real. 

Figure 3.1 depicts the action of A on the unit balls of R 2 defined by the 
1-, 2-, and co-norms. From this figure, one can see a graphical interpretation 
of these three norms of A. Regardless of the norm, A maps e1 = (1, 0)* to the 
first column of A, namely e1 itself, and e2 = (0, 1)* to the second column of A, 
namely (2, 2)*. In the 1-norm, the unit vector x that is amplified most by A is 
(0, 1)* (or its negative), and the amplification factor is 4. In the oo-norm, the 
unit vector x that is amplified most by A is (1, 1)* (or its negative), and the 
amplification factor is 3. In the 2-norm, the unit vector that is amplified most 
by A is the vector indicated by the dashed line in the figure (or its negative), 
and the amplification factor is approximately 2.9208. (Note that it must be 
at least J8 ~ 2.8284, since (0, 1)* maps to (2, 2)*.) We shall consider how to 
calculate such 2-norm results in Lecture 5. D 
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(2,2)* 

1-norm: ~~ IIAIIl =4 
,o)• 

2-norm: -$ ---+ IIAII2 R: 2.9208 

oo-norm: -$ ---+ IIAIIoo = 3 

Figure 3.1. On the left, the unit balls ofR2 with respect to 11·11 1, II· 11 2, and 
ll·lloo· On the right, their images under the matrix A o/(3.7). Dashed lines 
mark the vectors that are amplified most by A in each norm. 

Example 3.2. The p-Norm of a Diagonal Matrix. Let D be the diag­
onal matrix 

Then, a.s in the second row of Figure 3.1, the image of the 2-norm unit sphere 
under D is an m-dimensional ellipse whose semia.xis lengths are given by the 
numbers ldJ The unit vectors amplified most by D are those that are mapped 
to the longest semiaxis ofthe ellipse, of length m~{ld,l}. Therefore, we have 
IIDII2 = ma.x1<i<m{ldil}. In the next lecture we shall see that every matrix 
maps the 2-norm unit sphere to an ellipse-properly called a hyperellipse if 
m > 2-though the axes may be oriented arbitrarily. 

This result for the 2-norm generalizes to any p: if D is diagonal, then 
IIDII11 = ma.xl:Si:Sm ldJ 0 

Example 3.3. The 1-Norm of a Matrix. If A is any m x n matrix, then 
IIAII 1 is equal to the "maximum column sum" of A. We explain and derive 
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this result as follows. Write A in terms of its columns 

(3.8) 

where each a; is an m-vector. Consider the diamond-shaped 1-norm unit ball 
in C", illustrated in (3.2). This is the set {x E C" : Ej=1 lx;l $ 1}. Any 
vector Ax in the image of this set satisfies 

Therefore, the induced matrix 1-norm satisfies IIAII1 $ max1:$;:$n lla;ll1 . By 
choosing x = e;, where j maximizes lla;ll1 , we attain this bound, and thus the 
matrix norm is 

(3.9) 

0 

Example 3.4. The co-Norm of a Matrix. By much the same argument, 
it can be shown that the oo-norm of an m x n matrix is equal to the "maximum 
row sum," 

IIAIIoo = 1~~ llaillv 
where at denotes the ith row of A. 

Cauchy-Schwarz and Holder Inequalities 

(3.10) 

0 

Computing matrix p-norms with p =j:. 1, oo is more difficult, and to approach 
this problem, we note that inner products can be bounded using p-norms. Let 
p and q satisfy 1/p+ 1/q = 1, with 1 $ p,q $ oo. Then the Holder inequality 
states that, for any vectors x and y, 

lx*yl $ llxllpiiYIIq· (3.11) 

The Cauchy-Schwarz inequality is the special case p = q = 2: 

(3.12) 

Derivations of these results can be found in linear algebra texts. Both bounds 
are tight in the sense that for certain choices of x and y, the inequalities 
become equalities. 

Example 3.5. The 2-Norm of a Row Vector. Consider a matrix A 
containing a single row. This matrix can be written as A = a*, where a 
is a column vector. The Cauchy-Schwarz inequality allows us to obtain the 
induced matrix 2-norm. For any x, we have IIAxll2 = la*xl $ llallallxll2 • This 
bound is tight: observe that IIAall2 = llallt Therefore, we have 

0 
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Example 3.6. The 2-Norm of an Outer Product. More generally, con­
sider the rank-one outer product A = uv•, where u is an m-vector and v is an 
n-vector. For any n-vector x, we can bound IIAxlb as follows: 

Therefore IIAII2 ~ llull2 llvll2 • Again, this inequality is an equality: consider 
the case x = v. o 

Bounding IIABII in an Induced Matrix Norm 

The induced matrix norm of a matrix product can also be bounded. Let 11·11 (l), 

ll·ll(m)' and ll·ll(n) be norms on C1, em, and C", respectively, and let A be 
an l x m matrix and B an m x n matrix. For any x E C" we have 

Therefore the induced norm of AB must satisfy 

(3.14) 

In general, this inequality is not an equality. For example, the inequality 
IIA"II ~ IIAII" holds for any square matrix in any matrix norm induced by a 
vector norm, but IIA"II = IIAII" does not hold in general for n ~ 2. 

General Matrix N arms 

As noted above, matrix norms do not have to be induced by vector norms. In 
general, a matrix norm must merely satisfy the three vector norm conditions 
(3.1) applied in the mn-dimensional vector space of matrices: 

(1) IIAII ~ 0, and IIAII = 0 only if A= 0, 

(2) IIA + Bll ~ IIAII + IIBII, 
(3) llaAII = laiiiAII. 

(3.15) 

The most important matrix norm which is not induced by a vector norm 
is the Hilbert-Schmidt or Flrobenius norm, defined by 

(3.16) 

Observe that this is the same as the 2-norm of the matrix when viewed as 
an mn-dimensional vector. The formula for the Frobenius norm can also be 
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written in terms of individual rows or columns. For example, if a1 is the jth 
column of A, we have 

(3.17) 

This identity, as well as the analogous result based on rows instead of columns, 
can be expressed compactly by the equation 

IIAIIF = Jtr(A•A) = Jtr(AA•), {3.18) 

where tr(B) denotes the trace of B, the sum of its diagonal entries. 
Like an induced matrix norm, the Frobenius norm can be used to bound 

products of matrices. Let C = AB with entries cil., and let a; denote the ith 
row of A and b1 the jth column of B. Then cii = a;b1, so by the Cauchy­
Schwarz inequality we have lci;l ~ llaill2llb;lb· Squaring both sides and sum­
ming over all i, j, we obtain 

" m 
IIABII~ = E E lci;l2 

i=lj=l 

" m 2 

< E E (llaill2 llb;ll2) 
i=lj=l 

" 2 m 2 
= E (llailb) E (llb;ll2) = IIAII~ IIBII~-

i=l j=l 

In variance under Unitary Multiplication 

One of the many special properties of the matrix 2-norm is that, like the vector 
2-norm, it is invariant under multiplication by unitary matrices. The same 
property holds for the Frobenius norm. 

Theorem 3.1. For any A E cmxn and unitary Q E cmxm, we have 

Proof. Since 11Qxll2 = llxll2 for every x, by (2.10), the invariance in the 2-norm 
follows from {3.6). For the Frobenius norm we may use {3.18). D 

Theorem 3.1 remains valid if Q is generalized to a rectangular matrix with 
orthonormal columns, that is, Q E Cpxm with p > m. Analogous identities 
also hold for multiplication by unitary matrices on the right, or more generally, 
by rectangular matrices with orthonormal rows. 
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Exercises 

3.1. Prove that if W is an arbitrary nonsingular matrix, the function ll·llw 
defined by (3.3) is a vector norm. 

3.2. Let II · II denote any norm on em and also the induced matrix norm on 
emxm. Show that p(A) ~ IIAII, where p(A) is the spectral radius of A, i.e., 
the largest absolute value I .XI of an eigenvalue .X of A. · 

3.3. Vector and matrix p-norms are related by various inequalities, often 
involving the dimensions m or n. For each of the following, verify the inequal­
ity and give an example of a nonzero vector or matrix (for general m, n) for 
which equality is achieved. In this problem x is an m-vector and A is an m x n 
matrix. 

(a) llxlloo ~ llxll2, 
(b) llxll2 ~ ..foi llxlloo, 
(c) IIAIIoo ~ Vn IIAII2, 
(d) IIAII2 ~ ..foi IIAIIoo· 

3.4. Let A be an m x n matrix and let B be a submatrix of A, that is, a p. x v 
matrix (p. ~ m, v ~ n) obtained by selecting certain rows and columns of A. 

(a) Explain how B can be obtained by multiplying A by certain row and 
column "deletion matrices" as in step 7 of Exercise 1.1. 

(b) Using this product, show that IIBIIP ~ IIAIIP for any p with 1 ~ p ~ oo. 

3.5. Example 3.6 shows that if E is an outer product E = uv*, then IIEib = 
llull2 llvll2• Is the same true for the Frobenius norm, i.e., IIEIIF = lluiiFIIviiF? 
Prove it or give a counterexample. 

3.6. Let II · II denote any norm on em. The corresponding dual norm II · II' is 
defined by the formula llxll' = suplbtll=1 ly"'xj. 
(a) Prove that II· II' is a norm. 

(b) Let x,y E em with llxll = IIYII = 1 be given. Show that there exists a 
rank-one matrix B = yz* such that Bx = y and IIBII = 1, where IIBII is the 
matrix norm of B induced by the vector norm 11·11· You may use the following 
lemma, without proof: given X E em, there exists a nonzero z E em such that 
lz"'xl = llzll'llxll. 



Lecture 4. The Singular Value 
Decomposition 

The singular value decomposition (SVD) is a matrix factorization whose com­
putation is a step in many algorithms. Equally important is the use of the 
SVD for conceptual purposes. Many problems of linear algebra can be better 
understood if we first ask the question: what if we take the SVD? 

A Geometric Observation 

The SVD is motivated by the following geometric fact: 

The image of the unit sphere under any m x n matrix is a hyperellipse. 

The SVD is applicable to both real and complex matrices. However, in de­
scribing the geometric interpretation, we assume as usual that the matrix is 
real. 

The term "hyperellipse" may be unfamiliar, but this is just the m-dimen­
sional generalization of an ellipse. We may define a hyperellipse in m.m as 
the surface obtained by stretching the unit sphere in m.m by some factors 
0' 1, ... , 0' m (possibly zero) in some orthogonal directions u1, ... , um E R m. 

For convenience, let us take the ui to be unit vectors, i.e., llui lb = 1. The 
vectors { O"iui} are the principal semiaxes of the hyperellipse, with lengths 
0'1, ... , O'm. If A has rank r, exactly r of the lengths O'i will turn out to be 
nonzero, and in particular, if m 2:: n, at most n of them will be nonzero. 

25 
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Our opening statement about the image of the unit sphere has the following 
meaning. By the unit sphere, we mean the usual Euclidean sphere in n-space, 
i.e., the unit sphere in the 2-norm; let us denote it by S. Then AS, the image 
of S under the mapping A, is a hyperellipse as just defined. 

This geometric fact is not obvious. We shall restate it in the language of 
linear algebra and prove it later. For the moment, assume it is true. 

A 
--+ 

Figure 4.1. SVD of a 2 x 2 matrix. 

Let S be the unit sphere in R", and take any A E Rmxn with m ;::: n. For 
simplicity, suppose for the moment that A has full rank n. The image AS is a 
hyperellipse in Rm. We now define some properties of A in terms of the shape 
of AS. The key ideas are indicated in Figure 4.1. 

First, we define the n singular values of A. These are the lengths of the n 
principal semiaxes of AS, written u1, u2, .•• , u". It is conventional to assume 
that the singular values are numbered in descending order, u1 ;::: u2 ;::: • • • ;::: 

0'" > 0. 

Next, we define the n left singular vectors of A. These are the unit vectors 
{ u1, u2, ••. , u"} oriented in the directions of the principal semiaxes of AS, 
numbered to correspond with the singular values. Thus the vector uiui is the 
ith largest principal semiaxis of AS. 

Finally, we define the n right singular vectors of A. These are the unit 
vectors { v1, v2, .•• , v"} E S that are the preimages of the principal semiaxes 
of AS, numbered so that Av; = u;u;. 

The terms "left" and "right" in the definitions above are decidedly awk­
ward. They come from the positions of the factors U and V in ( 4.2) and 
(4.3), below. What is awkward is that in a sketch like Figure 4.1, the left 
singular vectors correspond to the space on the right, and the right singular 
vectors correspond to the space on the left! One could resolve this problem 
by interchanging the two halves of the figure, with the map A pointing from 
right to left, but that would go against deeply ingrained habits. 
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Reduced SVD 

We have just mentioned that the equations relating right singular vectors { V;} 
and left singular vectors { U;} can be written 

1 5: j 5: n. (4.1) 

This collection of vector equations can be expressed as a matrix equation, 

A 

or, more compactly, AV = (ri:.. In this matrix equation, ~is ann x n diagonal 
matrix with positive real entries (since A was assumed to have full rank n), U 
is an m x n matrix with orthonormal columns, and V is an n x n matrix with 
orthonormal columns. Thus V is unitary, and we can multiply on the right 
by its inverse V* to obtain 

(4.2) 

This factorization of A is called a reduced singular value decomposition, or 
reduced SVD, of A. Schematically, it looks like this: 

Reduced SVD (m ~ n) 

= 

A 

Full SVD 

In most applications, the SVD is used in exactly the form just described. 
However, this is not the way in which the idea of an SVD is usually formulated 
in textbooks. We have introduced the term "reduced" and the hats on U 
and :E in order to distinguish the factorization ( 4.2) from the more standard 
"full" SVD. This "reduced" vs. "full" terminology and hatted notation will 
be maintained throughout the book, and we shall make a similar distinction 
between reduced and full QR factorizations. Reminders of these conventions 
are printed on the inside front cover. 
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The idea is as follows. The columns of (J are n orthonormal vectors in 
the m-dimensional space em. Unless m = n, they do not form a basis of 
em, nor is U a unitary matrix. However, by adjoining an additional m - n 
orthonormal columns, (J can be extended to a unitary matrix. Let us do this 
in an arbitrary fashion, and call the result U. 

If U is replaced by U in ( 4.2), then I: will have to change too. For the 
product to remain unaltered, the last m-n columns of U should be multiplied 
by zero. Accordingly, let I: be the m x n matrix consisting of I: in the upper 
n x n block together with m- n rows of zeros below. We now have a new 
factorization, the full SVD of A: 

A= UI:V*. (4.3) 

Here U is m x m and unitary, V is n x n and unitary, and I: is m x n and 
diagonal with positive real entries. Schematically: 

Full SVD (m ~ n) 

A 

The dashed lines indicate the "silent" columns of U and rows of I: that are 
discarded in passing from ( 4.3) to ( 4.2). 

Having described the full SVD, we can now discard the simplifying as­
sumption that A has full rank.. If A is rank-deficient, the factorization ( 4.3) 
is still appropriate. All that changes is that now not n but only r of the left 
singular vectors of A are determined by the geometry of the hyperellipse. To 
construct the unitary matrix U, we introduce m- r instead of just m- n 
additional arbitrary orthonormal columns. The matrix V will also need n - r 
arbitrary orthonormal columns to extend the r columns determined by the 
geometry. The matrix E will now have r positive diagonal entries, with the 
remaining n - r equal to zero. 

By the same token, the reduced SVD (4.2) also makes sense for matrices 
A of less than full rank. One can take (J to be m x n, with I: of dimensions 
n x n with some zeros on the diagonal, or further compress the representation 
so that U is m x r and E is r x r and strictly positive on the diagonal. 

Formal Definition 

Let m and n be arbitrary; we do not require m ~ n. Given A E cmxn, 
not necessarily of full rank, a singular value decomposition (SVD) of A is a 
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factorization 

where 

A= U:EV* 

U E cmxm is unitary, 

V E C"x" is unitary, 
:E E m,mxn is diagonal. 
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(4.4) 

In addition, it is assumed that the diagonal entries u; of :E are nonnegative and 
in nonincreasing order; that is, u1 ~ u2 ~ · · · ~uP~ 0, where p = min(m, n). 

Note that the diagonal matrix :E has the same shape as A even when A is 
not square, but U and V are always square unitary matrices. 

It is clear that the image of the unit sphere in ffi." under a map A = U:EV* 
must be a hyperellipse in m.m. The unitary map V* preserves the sphere, the 
diagonal matrix :E stretches the sphere into a hyperellipse aligned with the 
canonical basis, and the :final unitary map U rotates or reflects the hyperellipse 
without changing its shape. Thus, if we can prove that every matrix has an 
SVD, we shall have proved that the image of the unit sphere under any linear 
map is a hyperellipse, as claimed at the outset of this lecture. 

Existence and Uniqueness 

Theorem 4.1. Every matrix A E cmxn has a singular value decomposition 
( 4.4). Jilurthermore, the singular values { u;} are uniquely determined, and, if 
A is square and the u; are distinct, the left and right singular vectors { u;} and 
{v;} are uniquely determined up to complex signs (i.e., complex scalar factors 
of absolute value 1}. 

Proof. To prove existence of the SVD, we isolate the direction of the largest 
action of A, and then proceed by induction on the dimension of A. 

Set u1 = IIAII2• By a compactness argument, there must be a vector 
v1 E C" with llv1 ll2 = 1 and llu1 11 2 = u1, where u1 = Av1• Consider any 
extensions of v1 to an orthonormal basis { V;} of C" and of u1 to an orthonormal 
basis { U;} of em, and let Ul and Vi_ denote the unitary matrices with columns 
u; and v;, respectively. Then we have 

(4.5) 

where 0 is a column vector of dimension m-1, w* is a row vector of dimension 
n -1, and B has dimensions (m- 1) x (n- 1). Furthermore, 
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implying IISII2 ~ (u~ + w*w)112. Since ul and vl are unitary, we know that 
IISII2 = IIAII2 = u1, so this implies w = 0. 

If n = 1 or m = 1, we are done. Otherwise, the submatrix B describes the 
action of A on the subspace orthogonal to v1• By the induction hypothesis, B 
has an SVD B = U2:E2V2*· Now it is easily verified that 

is an SVD of A, completing the proof of existence. 
For the uniqueness claim, the geometric justification is straightforward: if 

the semia.xis lengths of a hyperellipse are distinct, then the semia.xes them­
selves are determined by the geometry, up to signs. Algebraically, we can argue 
as follows. First we note that u1 is uniquely determined by the condition that 
it is equal to IIAib, as follows from (4.4). Now suppose that in addition to v1 , 

there is another linearly independent vector w with llwll2 = 1 and 11Awll2 = u1. 

Define a unit vector v2 , orthogonal to v1, as a linear combination of v1 and w, 

_ w- (viw)v1 

v2- llw- (viw)vlll2 . 

Since IIAII2 = u1, IIAv2 1l2 :5 u1; but this must be an equality, for otherwise, 
since w = v1c + v2s for some constants c and s with lcl2 + lsl2 = 1, we 
would have IIAwlla < u1• This vector v2 is a second right singular vector of 
A corresponding to the singular value u 1; it will lead to the appearance of 
a vector y (equal to the last n - 1 components of Vtv2 ) with IIYII2 = 1 and 
11Byll2 = u1 • We conclude that, if the singular vector v1 is not unique, then 
the corresponding singular value u1 is not simple. To complete the uniqueness 
proof we note that, as indicated above, once u1, v1, and u1 are determined, the 
remainder of the SVD is determined by the action of A on the space orthogonal 
to v1 . Since v1 is unique up to sign, this orthogonal space is uniquely defined, 
and the uniqueness of the remaining singular values and vectors now follows 
by induction. D 

Exercises 

4.1. Determine SVDs of the following matrices (by hand calculation): 

(a) [ ~ -~ ]. (b) [ ~ ~ J. (c) [ ~ ~ l· (d) [ ~ ~ ]. (e) [ ~ ~ ]· 
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4.2. Suppose A is an m x n matrix and B is then x m matrix obtained by 
rotating A ninety degrees clockwise on paper (not exactly a standard mathe­
matical transformation!). Do A and B have the same singular values? Prove 
that the answer is yes or give a counterexample. 

4.3. Write a MATLAB program (see Lecture 9) which, given a real 2 x 2 
matrix A, plots the right singular vectors v1 and v2 in the unit circle and also 
the left singular vectors u1 and~ in the appropriate ellipse, as in Figure 4.1. 
Apply your program to the matrix (3.7) and also to the 2 x 2 matrices of 
Exercise 4.1. 

4.4. Two matrices A, B E cmxm are unitarily equivalent if A = QBQ* for 
some unitary Q e cmxm. Is it true or false that A and B are unitarily 
equivalent if and only if they have the same singular values? 

4.5. Theorem 4.1 asserts that every A E cmxn has an SVD A = UEV*. 
Show that if A is real, then it has a real SVD (U E Rmxm, V E Rnxn). 



Lecture 5. More on the SVD 

We continue our discussion of the singular value decomposition, emphasizing 
its connection with low-rank approximation of matrices in the 2-norm and the 
Frobenius norm. 

A Change of Bases 

The SVD makes it possible for us to say that every matrix is diagonal-if only 
one uses the proper bases for the domain and range spaces. 

Here is how the change of bases works. Any b E em can be expanded in 
the basis of left singular vectors of A (columns of U), and any X E en can 
be expanded in the basis of right singular vectors of A (columns of V). The 
coordinate vectors for these expansions are 

b' = U*b, x' = V*x. 

By (4.3), the relation b =Ax can be expressed in terms of b' and x': 

b =Ax -<===:} U*b = U*Ax = U*UI:V*x -<===:} b' =:Ex'. 

Whenever b =Ax, we have b' =:Ex'. Thus A reduces to the diagonal matrix 
E when the range is expressed in the basis of columns of U and the domain is 
expressed in the basis of columns of V. 

32 
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SVD vs. Eigenvalue Decomposition 

The theme of diagonalizing a matrix by expressing it in terms of a new basis 
also underlies the study of eigenvalues. A nondefective square matrix A can 
be expressed as a diagonal matrix of eigenvalues A, if the range and domain 
are represented in a basis of eigenvectors. 

If the columns of a matrix X E emxm contain linearly independent eigen­
vectors of A E emxm, the eigenvalue decomposition of A is 

A= XAX-1, (5.1) 

where A is an m x m diagonal matrix whose entries are the eigenvalues of A. 
This implies that if we define, for b, x E em satisfying b = Ax, 

b' = x-1b, X1 = x-1X, 

then the newly expanded vectors b' and x' satisfy b' = Ax'. Eigenvalues are 
treated systematically in Lecture 24. 

There are fundamental differences between the SVD and the eigenvalue 
decomposition. One is that the SVD uses two different bases (the sets of 
left and right singular vectors), whereas the eigenvalue decomposition uses 
just one (the eigenvectors). Another is that the SVD uses orthonormal bases, 
whereas the eigenvalue decomposition uses a basis that generally is not orthog­
onal. A third is that not all matrices (even square ones) have an eigenvalue 
decomposition, but all matrices (even rectangular ones) have a singular value 
decomposition, as we established in Theorem 4.1. In applications, eigenvalues 
tend to be relevant to problems involving the behavior of iterated forms of A, 
such as matrix powers A" or exponentials etA, whereas singular vectors tend 
to be relevant to problems involving the behavior of A itseH, or its inverse. 

Matrix Properties via the SVD 

The power of the SVD becomes apparent as we begin to catalogue its con­
nections with other fundamental topics of linear algebra. For the following 
theorems, assume that A has dimensions m x n. Let p be the minimum of m 
and n, let r ~ p denote the number of nonzero singular values of A, and let 
(x, y, .. . , z) denote the space spanned by the vectors x, y, ... , z. 

Theorem 5.1. The rank of A is r, the number of nonzero singular values. 

Proof. The rank of a diagonal matrix is equal to the number of its nonzero 
entries, and in the decomposition A = UEV*, U and V are of full rank. 
Therefore rank(A) = rank(E) = r. D 

Theorem 5.2. range(A) = (u1, •.. ,u,.) and null(A) = (v,.+1, ... ,v"). 

Proof. This is a consequence of the fact that range(E) = (e1, ... , e,.) ~ em 
and null(E) = (e,.+1, ... ,e") ~ e". D 
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Theorem 5.3. IIAII 2 = u1 and IIAIIF = Ju~ + u~ + · · · + u~. 

Proof. The :first result was already established in the proof of Theorem 4.1: 
since A = UEV* with unitary U and V, IIAII2 = IIEII2 = max{lcr;ll = ul, 
by Theorem 3.1. For the second, note that by Theorem 3.1 and the remark 
following, the Frobenius norm is invariant under unitary multiplication, so 
IIAIIF = IIEIIF, and by (3.16}, this is given by the stated formula. 0 

Theorem 5.4. The nonzero singular values of A are the square roots of the 
nonzero eigenvalues of A*A or AA*. {These matrices have the same nonzero 
eigenvalues.) 

Proof. From the calculation 

A*A = (U~V*)*(UEV*) = V~*U*UEV* = V(~*E)V*, 

we see that A*A is similar to E*E and hence has the same n eigenvalues (see 
Lecture 24). The eigenvalues of the diagonal matrix ~·~ are u~, u~, ... , u~, 
with n - p additional zero eigenvalues if n > p. A similar calculation applies 
to the m eigenvalues of AA *. 0 

Theorem 5.5. If A = A*, then the singular values of A are the absolute 
values of the eigenvalues of A. 

Proof. As is well known (see Exercise 2.3), a hermitian matrix has a complete 
set of orthogonal eigenvectors, and all of the eigenvalues are real. An equiva­
lent statement is that (5.1) holds with X equal to some unitary matrix Q and 
A a real diagonal matrix. But then we can write 

A= QAQ* = QIAisign(A)Q*, (5.2) 

where IAI and sign(A) denote the diagonal matrices whose entries are the 
numbers 1-Xjl and sign(.X;), respectively. (We could equally well have put the 
factor signlA) on the left of IAI instead of the right.) Since sign(A)Q* is 
unitary whenever Q is unitary, (5.2) is an SVD of A, with the singular values 
equal to the diagonal entries of IAI, I-X; I· If desired, these numbers can be put 
into nonincreasing order by inserting suitable permutation matrices as factors 
in the left-hand unitary matrix of (5.2), Q, and the right-hand unitary matrix, 
sign(A)Q*. 0 

m 
Theorem 5.6. For A E cmxm, ldet(A)I =IT CT;. 

i=l 
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Proof. The determinant of a product of square matrices is the product of the 
determinants of the factors. Furthermore, the determinant of a unitary matrix 
is always 1 in absolute value; this follows from the formula U* U = I and the 
property det(U*) = (det(U))*. Therefore, 

m 

ldet(A)I = ldet(U~V*)I = ldet(U)IIdet(~)lldet(V*)I = ldet(~)l =II u,. 
i=l 

0 

Low-Rank Approximations 

But what is the SVD? Another approach to an explanation is to consider 
how a matrix A might be represented as a sum of rank-one matrices. 

Theorem 5. 7. A is the sum of r rank-one matrices: 

,. 
A= :Eu;u;vj. (5.3) 

j=l 

Proof. If we write ~ as a sum of r matrices ~i' where ~; = diag(O, ... , 0, u;, 0, 
... , 0), then (5.3) follows from (4.3). 0 

There are many ways to express an m x n matrix A as a sum of rank­
one matrices. For example, A could be written as the sum of its m rows, or 
its n columns, or its mn entries. For another example, Gaussian elimination 
reduces A to the sum of a full rank-one matrix, a rank-one matrix whose first 
row and column are zero, a rank-one matrix whose first two rows and columns 
are zero, and so on. 

Formula (5.3), however, represents a decomposition into rank-one matrices 
with a deeper property: the v th partial sum captures as much of the energy 
of A as possible. This statement holds with "energy" defined by either the 
2-norm or the Frobenius norm. We can make it precise by formulating a 
problem of best approximation of a matrix A by matrices of lower rank. 

Theorem 5.8. For any v with 0 :::; v :::; r, define 

, 
A,= 'E u;u;vj; 

j=l 

ifv = p = min{m,n}, define u,+l = 0. Then 

IIA- A,ll2 - inf IIA- Bll2 -
Be C"'x" 
rank(B):5v 

(5.4) 
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Proof. Suppose there is some B with rank(B) ~ v such that IIA - Bib < 
IIA-A,Ib = u,+l. Then there is an (n-v)-dimensional subspace W ~ C" such 
that wE W => Bw = 0. Accordingly, for any wE W, we have Aw = (A-B)w 
and 

IIAwlla = II(A- B)wlla ~ IIA - Bllallwlla < u,+lllwlla· 

Thus W is an (n- v)-dimensional subspace where IIAwll < u,+lllwll. But 
there is a (v + !)-dimensional subspace where IIAwll 2::: u,+1 llwll, namely the 
space spanned by the first v + 1 right singular vectors of A. Since the sum 
of the dimensions of these spaces exceeds n, there must be a nonzero vector 
lying in both, and this is a contradiction. D 

Theorem 5.8 has a geometric interpretation. What is the best approxima­
tion of a hyperellipsoid by a line segment? Take the line segment to be the 
longest axis. What is the best approximation by a two-dimensional ellipsoid? 
Take the ellipsoid spanned by the longest and the second-longest axis. Con­
tinuing in this fashion, at each step we improve the approximation by adding 
into our approximation the largest axis of the hyperellipsoid not yet included. 
After r steps, we have captured all of A. This idea has ramifications in areas 
as disparate as image compression (see Exercise 9.3) and functional analysis. 

We state the analogous result for the Frobenius norm without proof. 

Theorem 5.9. For any v with 0 ~ v ~ r, the matrix A, of (5.4) also satisfies 

Computation of the SVD 

In this and the previous lecture, we have examined the properties of the SVD 
but not considered how it can _be computed. As it happens, the computation of 
the SVD is a fascinating subject. The best methods are variants of algorithms 
used for computing eigenvalues, and we shall discuss them in Lecture 31. 

Once one can compute it, the SVD can be used as a tool for all kinds of 
problems. In fact, most of the theorems of this lecture have computational 
consequences. The best method for determining the rank of a matrix is to 
count the number of singular values greater than a judiciously chosen toler­
ance (Theorem 5.1). The most accurate method for finding an orthonormal 
basis of a range or a nullspace is via Theorem 5.2. (For both of these exam­
ples, QR factorization provides alternative algorithms that are faster but not 
always as accurate.) Theorem 5.3 represents the standard method for comput­
ing IIAII 2 , and Theorems 5.8 and 5.9, the standards for computing low-rank 
approximations with respect to II · 11 2 and II · IIF· Besides these examples, 
the SVD is also an ingredient in robust algorithms for least squares fitting, 
intersection of subspaces, regularization, and numerous other problems. 
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Exercises 

5.1. In Example 3.1 we considered the matrix (3.7) and asserted, among 
other things, that its 2-norm is approximately 2.9208. Using the SVD, work 
out (on paper) the exact values of umin(A) and umax(A) for this matrix. 

5.2. Using the SVD, prove that any matrix in cmxn is the limit of a sequence 
of matrices of full rank. In other words, prove that the set of full-rank matrices 
is a dense subset of cmxn. Use the 2-norm for your proof. (The norm doesn't 
matter, since all norms on a finite-dimensional space are equivalent.) 

5.3. Consider the matrix 

A= [ -2 11]. 
-10 5 

(a) Determine, on paper, a real SVD of A in the form A= U:EVT. The SVD 
is not unique, so find the one that has the minimal number of minus signs in 
U and V. 

(b) List the singular values, left singular vectors, and right singular vectors 
of A. Draw a careful, labeled picture of the unit ball in R 2 and its image 
under A, together with the singular vectors, with the coordinates of their 
vertices marked. 

(c) What are the 1-, 2-, oo-, and Frobenius norms of A? 

(d) Find A-1 not directly, but via the SVD. 

(e) Find the eigenvalues A1, A2 of A. 

(f) Verify that detA = A1A2 and ldetAI = u1u2. 

(g) What is the area of the ellipsoid onto which A maps the unit ball of R 2 ? 

5.4. Suppose A E cmxm has an SVD A = U:EV*. Find an eigenvalue 
decomposition (5.1) of the 2m x 2m hermitian matrix 
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Lecture 6. Projectors 

We now enter the second part of the book, whose theme is orthogonality. We 
begin with the fundamental tool of projection matrices, or projectors, both 
orthogonal and nonorthogonal. 

Projectors 

A projector is a square matrix P that satisfies 

p2=P. (6.1) 

(Such a matrix is also said to be idempotent.) This definition includes both or­
thogonal projectors, to be discussed in a moment, and nonorthogonal ones. To 
avoid confusion one may use the term oblique projector in the nonorthogonal 
case. 

The term projector might be thought of as arising from the notion that 
if one were to shine a light onto the subspace range(P) from just the right 
direction, then Pv would be the shadow projected by the vector v. We shall 
carry this physical picture forward for a moment. 

Observe that if v e range(P), then it lies exactly on its own shadow, and 
applying the projector results in v itself. Mathematically, we have v = Px for 
some x and 

Pv = P2x = Px = v. 

From what direction does the light shine when v =/: Pv? In general the answer 
depends on v, but for any particular v, it is easily deduced by drawing the 

41 
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Figure 6.1. An oblique projection. 

line from v to Pv, Pv- v (Figure 6.1). Applying the projector to this vector 
gives a zero result: 

P(Pv- v) = P2v- Pv = 0. 

This means that Pv - v E null( P). That is, the direction of the light may be 
different for different v, but it is always described by a vector in null(P). 

Complementary Projectors 

If Pis a projector, I- Pis also a projector, for it is also idempotent: 

(J-P)2 = I-2P+P2 = 1-P. 

The matrix I - P is called the complementary projector to P. 
Onto what space does I- P project? Exactly the nullspace of P! We 

know that range(/- P) ~ null(P), because if Pv = 0, we have (I- P)v = v. 
Conversely, we know that range(/- P) ~ null(P), because for any v, we have 
(I- P)v = v- Pv E null(P). Therefore, for any projector P, 

range(/- P) = null(P). 

By writing P =I- (I- P) we derive the complementary fact 

null(/- P) = range(P). 

(6.2) 

(6.3) 

We can also see that null(/ - P) n null(P) = {0}: any vector v in both sets 
satisfies v = v- Pv =(I- P)v = 0. Another way of stating this fact is 

range(P) n null(P) = {0}. (6.4) 

These computations show that a projector separates em into two spaces. 
Conversely, let 81 and 82 be two subspaces of em such that 81 n 82 = {0} 



LECTURE 6. PROJECTORS 

-...... range(P) .... .... .... .... .... .... .... .... .. .. .... .... .... 

v 

.. .. .... .... 

Figure 6.2. An orthogonal projection. 
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and 81 + 82 = em, where 81 + 82 denotes the span of 81 and 82, that is, the 
set of vectors 81 + 82 with 81 E 81 and 82 E 82. (Such a pair are said to be 
complementary subspaces.) Then there is a projector P such that range(P) = 
81 and null(P) = 82. We say that P is the projector onto 81 along 82. 
This projector and its complement can be seen as the unique solution to the 
following problem: 

Given v, find vectors v1 E 81 and v2 E 82 such that v1 + v2 = v. 

The projection Pv gives v17 and the complementary projection (I- P)v gives 
v2 • These vectors are unique because all solutions must be of the form 

(Pv + v3) +((I- P)v- v3) = v, 

where it is clear that Va must be in both 81 and 82, i.e., Va = 0. 
One context in which projectors and their complements arise is particularly 

familiar. Suppose an m x m matrix A has a complete set of eigenvectors 
{v;}, as in (5.1), meaning that {v;} is a basis of em. We are frequently 
concerned with problems associated with expansions of vectors in this basis. 
Given X E em, for example, what is the component of X in the direction of 
a particular eigenvector v? The answer is Px, where P is a certain rank-one 
projector. Rather than give details here, however, we turn now to the special 
class of projectors that will be of primary interest to us in this book. 

Orthogonal Projectors 

An orthogonal projector (Figure 6.2) is one that projects onto a subspace 81 

along a space 82, where 81 and 82 are orthogonal. (Warning: orthogonal 
projectors are not orthogonal matrices!) 
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There is also an algebraic definition: an orthogonal projector is any projec­
tor that is hermitian, satisfying P* =Pas well as (6.1). Of course, we must 
establish that this definition is equivalent to the first. 

Theorem 6.1. A projector P is orthogonal if and only if P = P*. 

Proof. If P = P*, then the inner product between a vector Px E 81 and a 
vector (I - P)y E 82 is zero: 

x* P*(I- P)y = x*(P- P 2)y = 0. 

Thus the projector is orthogonal, providing the proof in the ''if' direction. 
For "only if," we can use the SVD. Suppose P projects onto 81 along 

82, where 81 .L 82 and 81 has dimension n. Then an SVD of P can be 
constructed as follows. Let { q1, q2, •.. , qm} be an orthonormal basis for em, 
where { q1, ... , q,J is a basis for S1 and { q"+l, ... , qm} is a basis for 82. For 
j ~ n, we have Pq; = q;, and for j > n, we have Pq; = 0. Now let Q be the 
unitary matrix whose jth column is q;. We then have 

PQ = q1 · · · q" 0 · · · 

so that 
1 

Q*PQ= 1 = :E, 
0 

a diagonal matrix with ones in the first n entries and zeros everywhere else. 
Thus we have constructed a singular value decomposition of P: 

p = Q:EQ*. (6.5) 

(Note that this is also an eigenvalue decomposition (5.1).) From here we see 
that Pis hermitian, since P* = (Q:EQ*)* = Q:E*Q* = Q:EQ* = P. D 
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Projection with an Orthonormal Basis 

Since an orthogonal projector ha.s some singular values equal to zero (except 
in the trivial case P =I), it is natural to drop the silent columns of Q in (6.5) 
and use the reduced rather than the full SVD. We obtain the marvelously 
simple expression 

p = QQ*, (6.6) 

where the columns of Q are orthonormal. 
In (6.6), the matrix Q need not come from an SVD. Let {q17 ••• , q.} be 

any set of n orthonormal vectors in em, and let Q be the corresponding m x n 
matrix. From (2. 7) we know that 

f& 

v = r + L(qiq;)v 
i=l 

represents a decomposition of a vector v E em into a component in the column 
space of Q plus a component in the orthogonal space. Thus the map 

" v H L(qiq;)v (6.7) 
i=l 

is an orthogonal projector onto range(Q), and in matrix form, it may be 
written y = QQ*v: 

I - I . 

y Q Q* v 

Thus any product QQ* is always a projector onto the column space of Q, 
regardless of how Q wa.s obtained, a.s long a.s its columns are orthonormal. 
Perhaps Q wa.s obtained by dropping some columns and rows from a full 
factorization v = QQ*v of the identity, 

1· .. 
= 

v Q Q* v 

and perhaps it wa.s not. 
The complement of an orthogonal projector is also an orthogonal projec­

tor (proof: I- QQ* is hermitian). The complement projects onto the space 
orthogonal to range( Q). 
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An important special case of orthogonal projectors is the rank-one orthog­
onal projector that isolates the component in a single direction q, which can 
be written 

P - • q- qq. (6.8) 

These are the pieces from which higher-rank projectors can be made, as in 
(6.7). Their complements are the rank m- 1 orthogonal projectors that 
eliminate the component in the direction of q: 

PLq =I- qq*. (6.9) 

Equations (6.8) and (6.9) assume that q is a unit vector. For arbitrary nonzero 
vectors a, the analogous formulas are 

aa• 
P=-, 

" a•a 

aa* 
PLG=l--. a• a 

Projection with an Arbitrary Basis 

(6.10) 

(6.11) 

An orthogonal projector onto a subspace of em can also be constructed be­
ginning with an arbitrary basis, not necessarily orthogonal. Suppose that the 
subspace is spanned by the linearly independent vectors {a1, ... , a.}, and let 
A be the m x n matrix whose jth column is a;. 

In passing from v to its orthogonal projection y E range( A), the difference 
y- v must be orthogonal to range(A). This is equivalent to the statement 
that y must satisfy aj(y- v) = 0 for every j. Since y E range( A), we can set 
y =Ax and write this condition as aj(Ax- v) = 0 for each j, or equivalently, 
A*(Ax- v) = 0 or A*Ax = A*v. It is easily shown that since A has full rank, 
A*A is nonsingular (Exercise 6.3). Therefore 

(6.12) 

Finally, the projection of v, y = Ax, is y = A(A *A)-1 A*v. Thus the orthogonal 
projector onto range(A) can be expressed by the formula 

(6.13) 

Note that this is a multidimensional generalization of (6.10). In the orthonor­
mal case A = Q, the term in parentheses collapses to the identity and we 
recover (6.6). 
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Exercises 

6.1. H P is an orthogonal projector, then I- 2P is unitary. Prove this 
algebraically, and give a geometric interpretation. 

6.2. Let E be the m x m matrix that extracts the "even part" of an m-vector: 
Ex = (x + F:r:}/2, where F is them x m matrix that flips (x1 , ... , xm)* to 
(:r:m, ... , x1)*. Is E an orthogonal projector, an oblique projector, or not a 
projector at all? What are its entries? 

6.3. Given A E cmxa with m 2: n, show that A* A is nonsingular if and only 
if A has full rank. 

6.4. Consider the matrices 

Answer the following questions by hand calculation. 
(a) What is the orthogonal projector Ponto range(A), and what is the image 
under P of the vector (1, 2, 3}*? 

{b) Same questions for B. 

6.5. Let p E cmxm be a nonzero projector. Show that IIPII2 2: 1, with 
equality if and only if Pis an orthogonal projector. 



Lecture 7. QR Factorization 

One algorithmic idea in numerical linear algebra is more important than all 
the others: QR factorization. 

Reduced QR Factorization 

For many applications, we find ourselves interested in the column spaces of 
a matrix A. Note the plural: these are the successive spaces spanned by the 
columns a1,a2, ... of A: 

Here, as in Lecture 5 and throughout the book, the notation {· · ·) indicates the 
subspace spanned by whatever vectors are included in the brackets. Thus {a1) 

is the one-dimensional space spanned by al, {al, a2) is the two-dimensional 
space spanned by a1 and a2, and so on. The idea of QR factorization is the 
construction of a sequence of orthonormal vectors q11 q2, ••• that span these 
successive spaces. 

To be precise, assume for the moment that A E cmxa (m ~ n) has full 
rank n. We want the sequence q1, q2, ••• to have the property 

j = l, ... ,n. (7.1) 

From the observations of Lecture 1, it is not hard to see that this amounts to 
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the condition 

(7.2) 

where the diagonal entries ru are nonzero-for if (7.2) holds, then a 1, ..• , a1: 

can be expressed as linear combinations of q1, ..• , ql:, and the invertibility of 
the upper-left k x k block of the triangular matrix implies that, conversely, 
q1, ... , ql: can be expressed as linear combinations of a 17 .•• , a1:. Written out, 
these equations take the form 

~ = r12q1 + r22q2, 

a3 = T13q1 + r23q2 + r33q3, (7.3) 

As a matrix formula, we have 

A=QR, (7.4) 

where Q is m x n with orthonormal columns and it is n x n and upper­
triangular. Such a factorization is called a reduced QR factorization of A. 

Full QR Factorization 

A full QR factorization of A E cmxn (m ~ n) goes further, appending an 
additional m - n orthonormal columns to Q so that it becomes an m x m 
unitary matrix Q. This is analogous to the passage from the reduced to the 
full SVD described in Lecture 4. In the process, rows of zeros are appended 
to it so that it becomes an m x n matrix R, still upper-triangular. The 
relationship between the full and reduced QR factorizations is as follows. 

Full QR Factorization ( m ~ n) 

A 
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In the full QR factorization, Q ism x m, R ism x n, and the last m-n columns 
of Q are multiplied by zeros in R (enclosed by dashes). In the reduced QR 
factorization, the silent columns and rows are removed. Now Q is m x n, R is 
n x n, and none of the rows of R are necessarily zero. 

Reduced QR Factorization (m ~ n) 

A 

Notice that in the full QR factorization, the columns qi for j > n are 
orthogonal to range( A). Assuming A is of full rank n, they constitute an or­
thonormal basis for range(A)l. (the space orthogonal to range(A)), or equiv­
alently, for null(A*). 

Gram-Schmidt Orthogonalization 

Equations (7.3) suggest a method for computing reduced QR factorizations. 
Given a1, a2, •.• , we can construct the vectors q1, q2, ••• and entries rii by a 
process of successive orthogonalization. This is an old idea, known as Gram­
Schmidt orthogonalization. 

The process works like this. At the jth step, we wish to find a unit vector 
qi E (a11 ••• , ai) that is orthogonal to q1, ••• , qi_1. As it happens, we have 
already considered the necessary orthogonalization technique in (2.6). From 
that equation, we see that 

vi = ai- (q~ai)q1 - (q;ai)q2 - · · ·- (qj_1ai)qi_1 (7.5) 

is a vector of the kind required, except that it is not yet normalized. If we 
divide by llv;ll2, the result is a suitable vector Q;· 

With this in mind, let us rewrite (7.3) in the form 

q1 = ~ ' ru 

q2 
a2- r12q1 

-
r22 

as - r13ql - r23q2 (7.6) 
q3 

r33 

E"-1 
q" = an - i=l rinqi 

r"" 
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From (7.5) it is evident that an appropriate definition for the coefficients ri; 
in the numerators of (7.6) is 

(i :f: j). (7.7) 

The coefficients r;; in the denominators are chosen for normalization: 
j-1 

lr;;l = II a;- Eriiqill2. (7.8) 
i=l 

Note that the sign of r11 is not determined. Arbitrarily, we may choose r11 > 0, 
in which case we shall finish with a factorization A= QR in which R has 
positive entries along the diagonal. 

The algorithm embodied in (7.6)-(7.8) is the Gram-8chmidt iteration. 
Mathematically, it offers a simple route to understanding and proving various 
properties of QR factorizations. Numerically, it turns out to be unstable be­
cause of rounding errors on a computer. To emphasize the instability, numer­
ical analysts refer to this as the classical Gram-Schmidt iteration, as opposed 
to the modified Gram-Schmidt iteration, discussed in the next lecture. 

Algorithm 7.1. Classical Gram-Schmidt (unstable) 

for j = 1 ton 

v1 = a1 

for i = 1 to j - 1 

rii = q;a; 

V; = V; - Tijqi 

r;; = llv;ll2 
q1 = v1jr11 

Existence and Uniqueness 

All matrices have QR factorizations, and under suitable restrictions, they are 
unique. We state first the existence result. 

Theorem 7.1. Every A E cmxn (m ~ n) has a full QR factorization, hence 
also a reduced QR factorization. 

Proof. Suppose first that A has full rank and that we want just a reduced 
QR factorization. In this case, a proof of existence is provided by the Gram­
Schmidt algorithm itself. By construction, this process generates orthonormal 
columns of Q and entries of R such that (7.4) holds. Failure can occur only 
if at some step, v1 is zero and thus cannot be normalized to produce q1. 
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However, this would imply a3 E (q1, ... , q3_1) = (a1, ... , a3_1), contradicting 
the assumption that A has full rank. 

Now suppose that A does not have full rank. Then at one or more steps 
j, we shall find that (7.5) gives v3 = 0, as just mentioned. At this mo­
ment, we simply pick q3 arbitrarily to be any normalized vector orthogonal to 
(q1, ... , q3_ 1), and then continue the Gram-Schmidt process. 

Finally, the full, rather than reduced, QR factorization of an m x n matrix 
with m > n can be constructed by introducing arbitrary orthonormal vectors 
in the same fashion. We follow the Gram-Schmidt process through step n, 
then continue on an additional m - n steps, introducing vectors q3 at each 
step. 

The issues discussed in the last two paragraphs came up already in Lec-
ture 4, in our discussion of the SVD. D 

We turn now to uniqueness. Suppose A = Q R is a reduced QR factor­
ization. If the ith column of Q is multiplied by z and the ith row of R is 
multiplied by z-1 for some scalar z with lzl = 1, we obtain another QR fac­
torization of A. The next theorem asserts that if A has full rank, this is the 
only way to obtain distinct reduced QR factorizations. 

Theorem 7.2. Each A E cmxn {m ~ n) of full rank has a unique reduced 
QR factorization A= QR with r33 > 0. 

Proof. Again, the proof is provided by the Gram-Schmidt iteration. From 
(7.4), the orthonormality of the columns of Q, and the upper-triangularity of 
R, it follows that any reduced QR factorization of A must satisfy (7.6)-(7.8). 
By the assumption of full rank, the denominators (7.8) of (7.6) are nonzero, 
and thus at each successive step j, these formulas determine rii and q3 fully, 
except in one place: the sign of rii, not specified in (7.8). Once this is fixed 
by the condition r33 > 0, as in Algorithm 7.1, the factorization is completely 
determined. 0 

When Vectors Become Continuous Functions 

The QR factorization has an analogue for orthonormal expansions of functions 
rather than vectors. 

Suppose we replace em by £ 2[-1, 1], a vector space of complex-valued func­
tions on [-1, 1]. We shall not introduce the properties ofthis space formally; 
suffice it to say that the inner product of f and g now takes the form 

(7.9) 
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Consider, for example, the following "matrix" whose "columns" are the mono­
mials xi: 

(7.10) 

Each column is a function in L2[-1, 1], and thus, whereas A is discrete as 
usual in the horizontal direction, it is continuous in the vertical direction. It 
is a continuous analogue of the Vandermonde matrix (1.4) of Example 1.1. 

The "continuous QR factorization" of A takes the form 

A=QR= 

where the columns of Q are functions of x, orthonormal with respect to the 
inner product (7.9): 

11 - { 1 if i = j, 
-1 qi(x) qj(x) dx = oij = 0 ifi=Fj. 

From the Gram-Schmidt construction we can see that qi is a polynomial 
of degree j. These polynomials are scalar multiples of what are known as 
the Legendre polynomials, Pi, which are conventionally normalized so that 
Pi ( 1) = 1. The first few Pi are 

P.2(x) - ~x2 - ! - 2 2' 

see Figure 7.1. Like the monomials 1,x,x2, ... , this sequence of polynomi­
als spans the spaces of polynomials of successively higher degree. However, 
P0( x), P1 ( x), P2 ( x), . . . have the advantage that they are orthogonal, making 
them far better suited for certain computations. In fact, computations with 
such polynomials form the basis of spectml methods, one of the most powerful 
techniques for the numerical solution of partial differential equations. 

What is the "projection matrix" QQ* (6.6) associated with Q? It is a 
"[-1, 1] x [-1, 1] matrix," that is, an integral operator 

(7.12) 

mapping functions in L2[-1, 1] to functions in L2[-1, 1]. 
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Figure 7.1. The first four Legendre polynomials (7.11). Apart from scale fac­
tors, these can be interpreted as the columns of Q in a reduced QR factorization 
of the "[-1,1) x 4 matrix" [1, x, x2, x3). 

Solution of Ax = b by QR Factorization 

In closing this lecture we return for a moment to discrete, finite matrices. 
Suppose we wish to solve Ax = b for x, where A E cmxm is nonsingular. H 
A= QR is a QR factorization, then we can write QRx = b, or 

Rx = Q*b. (7.13) 

The right-hand side of this equation is easy to compute, if Q is known, and the 
system of linear equations implicit in the left-hand side is also easy to solve 
because it is triangular. This suggests the following method for computing 
the solution to Ax = b: 

1. Compute a QR factorization A = QR. 

2. Compute y = Q*b. 

3. Solve Rx = y for x. 

In later lectures we shall present algorithms for each of these steps. 
The combination 1-3 is an excellent method for solving linear systems of 

equations; in Lecture 16, we shall prove this. However, it is not the standard 
method for such problems. Gaussian elimination is the algorithm generally 
used in practice, since it requires only half as many numerical operations. 
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Exercises 

7.1. Consider again the matrices A and B of Exercise 6.4. 

(a) Using any method you like, determine (on paper) a reduced QR factoriza­
tion A = Q R and a full QR factorization A = QR. 

(b) Again using any method you like, determine reduced and full QR factor­
izations B = QR and B = QR. 

7 .2. Let A be a matrix with the property that columns 1, 3, 5, 7, . . . are 
orthogonal to columns 2, 4, 6, 8, .... In a reduced QR factorization A= QR, 
what special structure does R possess? 

7.3. Let A be an m x m matrix, and let a; be its jth column. Give an 
algebraic proof of Hadamard's inequality: 

m 

ldetAI ~ II lla;lb· 
j=l 

Also give a geometric interpretation of this result, making use of the fact that 
the determinant equals the volume of a parallelepiped. 

7 .4. Let x<1>, y<1>, x<2>, and y<2> be nonzero vectors in m.3 with the property 
that x<1> and y<1> are linearly independent and so are x<2> and y<2>. Consider 
the two planes in m.3, 

Suppose we wish to find a nonzero vector v E R 3 that lies in the intersection 
P = p(l) n P<2>. Devise a method for solving this problem by reducing it to 
the computation of QR factorizations of three 3 x 2 matrices. 

7.5. Let A be an m x n matrix (m ~ n), and let A= QR be a reduced QR 
factorization. 
(a) Show that A has rank n if and only if all the diagonal entries of Rare 
nonzero. 

(b) Suppose R has k nonzero diagonal entries for some k with 0 ~ k < n. 
What does this imply about the rank of A? Exactly k? At least k? At most 
k? Give a precise answer, and prove it. 



Lecture 8. Gram-Schmidt 
Orthogonalization 

The Gram-Schmidt iteration is the basis of one of the two principal numerical 
algorithms for computing QR factorizations. It is a process of "triangular or­
thogonaJization," making the columns of a matrix orthonormal via a sequence 
of matrix operations that can be interpreted as multiplication on the right by 
upper-triangular matrices. 

Gram-Schmidt Projections 

In the last lecture we presented the Gram-Schmidt iteration in its classical 
form. To begin this lecture, we describe the same algorithm again in another 
way, using orthogonal projectors. 

Let A E cmxn, m ~ n, be a matrix of full rank with columns {a;}· 
Before, we expressed the Gram-Schmidt iteration by the formulas (7.6)-(7.8). 
Consider now the sequence of formulas 

. . . , Pnan 
qn = IIPnanll . (8.1) 

In these formulas, each P; denotes an orthogonal projector. Specifically, P; 
is the m x m matrix of rank m - (j - 1) that projects em orthogonally onto 
the space orthogonal to (qv ... , q;_1). (In the case j = 1, this prescription 
reduces to the identity: P1 =I.) Now, observe that qi as defined by (8.1) is 
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orthogonal to q1, ... , q;_1, lies in the space (a1, ... , a;}, and has norm 1. Thus 
we see that (8.1) is equivalent to (7.6)-(7.8) and hence to Algorithm 7.1. 

The projector P; can be represented explicitly. L:t Q;_1 denote them x 
(j- 1) matrix containing the first j- 1 columns of Q, 

(8.2) 

Then P; is given by 

(8.3) 

By now, the reader may be familiar enough with our notation and with or­
thogonality ideas to see at a glance that (8.3) represents the operator applied 
to a; in (7.5). 

Modified Gram-Schmidt Algorithm 

In practice, the Gram-Schmidt formulas are not applied as we have indicated 
in Algorithm 7.1 and in (8.1), for this sequence of calculations turns out to 
be numerically unstable. Fortunately, there is a simple modification that 
improves matters. We have not discussed numerical stability yet; this will 
come in the next lecture and then systematically beginning in Lecture 14. 
For the moment, it is enough to know that a stable algorithm is one that is 
not too sensitive to the effects of rounding errors on a computer. 

For each value of j, Algorithm 7.1 computes a single orthogonal projection 
of rank m- (j -1), 

(8.4) 

In contrast, the modified Gram-Schmidt algorithm computes the same result 
by a sequence of j- 1 projections of rank m- 1. Recall from (6.9) that PJ.11 

denotes the rank m - 1 orthogonal projector onto the space orthogonal to a 
nonzero vector q E em. By the definition of P;, it is not difficult to see that 

(8.5) 

again with P1 =I. Thus an equivalent statement to {8.4) is 

(8.6) 

The modified Gram-Schmidt algorithm is based on the use of (8.6) instead of 
(8.4). 
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Mathematically, (8.6) and (8.4) are equivalent. However, the sequences of 
arithmetic operations implied by these formulas are different. The modified 
algorithm calculates v; by evaluating the following formulas in order: 

v(1) 
J - a;, 

v(2) p (1) v~1) - q1 qiv~1), 
1 - .1.91 V; -

v(3) (2) v?> - q2q2v~2> (8.7) = pl.9.2 V; = 1 

vV> (j-1) v(i-1) - q. q~ v(i-1) V· - = p.l.llj-1 V; = 1 J J J-1 1-1 J • 

In finite precision computer arithmetic, we shall see that (8. 7) introduces 
smaller errors than ( 8.4). 

When the algorithm is implemented, the projector P l.q, can be conveniently 
applied to v~i) for each j > i immediately after qi is known. This is done in 
the description below. 

Algorithm 8.1. Modified Gram-Schmidt 

fori= 1 ton 

vi= ai 

fori= 1 ton 

rii = llvill 

qi = vJrii 

for j = i + 1 to n 
- . rii- qivi 

V; = V; - rijqi 

In practice, it is common to let vi overwrite ai and qi overwrite vi in order to 
save storage. 

The reader should compare Algorithms 7.1 and 8.1 until he or she is con­
fident of their equivalence. 

Operation Count 

The Gram-Schmidt algorithm is the first algorithm we have presented in this 
book, and with any algorithm, it is important to assess its cost. To do so, 
throughout the book we follow the classical route and count the number of 
ftoating point operations- ''lfops"-that the algorithm requires. Each addi­
tion, subtraction, multiplication, division, or square root counts as one ftop. 
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We make no distinction between real and complex arithmetic, although in 
practice on most computers there is a sizable difference. 

In fact, there is much more to the cost of an algorithm than operation 
counts. On a single-processor computer, the execution time is affected by 
the movement of data between elements of the memory hierarchy and by 
competing jobs running on the same processor. On multiprocessor machines 
the situation becomes more complex, with communication between processors 
sometimes taking on an importance much greater than that of actual "com­
putation." With some regret, we shall ignore these important considerations, 
because this book is deliberately classical in style, focusing on algorithmic 
foundations. 

For both variants of the Gram-Schmidt iteration, here is the classical re­
sult. 

Theorem 8.1. Algorithms 7.1 and 8.1 require "' 2mn2 flops to compute a 
QR factorization of an m X n matrix. 

Note that the theorem expresses only the leading term of the flop count. 
The symbol " "' " has its usual asymptotic meaning: 

lim number of flops = 1. 
m,n-oo 2mn2 

In discussing operation counts for algorithms, it is standard to discard lower­
order terms as we have done here, since they are usually of little significance 
unless m and n are small. 

Theorem 8.1 can be established as follows. To be definite, consider the 
modified Gram-Schmidt algorithm, Algorithm 8.1. When m and n are large, 
the work is dominated by the operations in the innermost loop: 

r .. = q'!'v., 
I:J I :J 

The first line computes an inner product lJiv;, requiring m multiplications and 
m-1 additions, and the second computes V;-ri;qi, requiring m multiplications 
and m subtractions. The total work involved in a single inner iteration is 
consequently ,...., 4m flops, or 4 flops per column vector element. All together, 
the number of flops required by the algorithm is asymptotic to 

n n n 

L L 4m "' E(i)4m ,...., 2mn2• (8.8) 
i=lj=i+l i=l 

Counting Operations Geometrically 

Operation counts can always be determined algebraically as in (8.8), and this 
is the standard procedure in the numerical analysis literature. However, it is 
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also enlightening to take a different, geometrical route to the same conclusion. 
The argument goes like this. At the first step of the outer loop, Algorithm 8.1 
operates on the whole matrix, subtracting a multiple of column 1 from the 
other columns. At the second step, it operates on a submatrix, subtracting a 
multiple of column 2 from columns 3, ... , n. Continuing on in this way, at each 
step the column dimension shrinks by 1 until at the final step, only column n 
is modified. This process can be represented by the following diagram: 

n 
(outer loop index) 

The m x n rectangle at the bottom corresponds to the first pass through the 
outer loop, the m x ( n - 1) rectangle above it to the second pass, and so on. 

To leading order as m, n --+ oo, then, the operation count for Gram­
Schmidt orthogonalization is proportional to the volume of the figure above. 
The constant of proportionality is four flops, because as noted above, the two 
steps of the inner loop correspond to four operations at each matrix location. 
Now as m, n --+ oo, the figure converges to a right triangular prism, with 
volume mn2 /2. Multiplying by four flops per unit volume gives, again, 

Work for Gram-Schmidt orthogonalization: ,...., 2mn2 flops. (8.9) 

In this book we generally record operation counts in the format (8.9), 
without stating them as theorems. We often derive these results via figures 
like the one above, although algebraic derivations are also possible. One reason 
we do this is that a figure of this kind, besides being a route to an operation 
count, also serves as a reminder of the structure of an algorithm. For pictures 
of algorithms with different structures, see pp. 75 and 176. 
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Gram-Schmidt as Triangular Orthogonalization 

Each outer step of the modified Gram-Schmidt algorithm can be interpreted 
as a right-multiplication by a square upper-triangular matrix. For example, 
beginning with A, the first iteration multiplies the first column a1 by 1/r11 

and then subtracts r 1; times the result from each of the remaining columns 
a;- This is equivalent to right-multiplication by a matrix R1: 

1 -r12 -r1a 

ru ru ru 

1 (2) v(2) vl v2 ... vn 1 - ql v2 ... 
n 

In general, step i of Algorithm 8.1 subtracts ri;/rii times column i of the 
current A from columns j > i and replaces column i by 1/rii times itself. This 
corresponds to multiplication by an upper-triangular matrix Ri: 

1 1 
1 -T23 1 

R2= 
T22 T22 Ra= 1 ' .... 

1 T33 

At the end of the iteration we have 

AR1Ra· ··R" = Q. _______.. (8.10) 

R,-1 

This formulation demonstrates that the Gram-Schmidt algorithm is a method 
of triangular orthogonalization. It applies triangular operations on the right 
of a matrix to reduce it to a matrix with orthonormal columns. Of course, in 
practice, we do not form the matrices Ri and multiply them together explicitly. 
The purpose of mentioning them is to give insight into the structure of the 
Gram-Schmidt algorithm. In Lecture 20 we shall see that it bears a close 
resemblance to the structure of Gaussian elimination. 

Exercises 

8.1. Let A be an m x n matrix. Determine the exact numbers of :floating point 
additions, subtractions, multiplications, and divisions involved in computing 
the factorization A= QR by Algorithm 8.1. 
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8.2. Write a MATLAB function [Q ,R] = m~sA(A) (see next lecture) that com­
putes a reduced QR factorization A = QR of an m x n matrix A with 
m ~ n using modified Gram-Schmidt orthogonalization. The output vari­
ables are a matrix Q E cmxn with orthonormal columns and a triangular 
matrix R E cnxn. 

8.3. Each upper-triangular matrix R; of p. 61 can be interpreted as the 
product of a diagonal matrix and a unit upper-triangular matrix (i.e., an 
upper-triangular matrix with 1 on the diagonal). Explain exactly what these 
factors are, and which line of Algorithm 8.1 corresponds to each. 



Lecture 9. MATLAB 

To learn numerical linear algebra, one must make a habit of experiment­
ing on the computer. There is no better way to do this than by using the 
problem-solving environment known as MATLAB ®. * In this lecture we illus­
trate MATLAB experimentation by three examples. Along the way, we make 
some observations about the stability of Gram-Schmidt orthogonalization. 

MAT LAB 

MATLAB is a language for mathematical computations whose fundamental 
data types are vectors and matrices. It is distinguished from languages like 
Fortran and C by operating at a higher mathematical level, including hundreds 
of operations such as matrix inversion, the singular value decomposition, and 
the fast Fourier transform as built-in commands. It is also a problem-solving 
environment, processing top-level comments by an interpreter rather than a 
compiler and providing in-line access to 20 and 3D graphics. 

Since the 1980s, MATLAB has become a widespread tool among numerical 
analysts and engineers around the world. For many problems of large-scale 
scientific computing, and for virtually all small- and medium-scale experimen­
tation in numerical linear algebra, it is the language of choice. 

* MATLAB is a registered trademark of The Math Works, Inc., 24 Prime Park Way, 
Natick, MA 01760, USA, tel. 508-647-7000, fax 508-647-7001, info<Dmathworks.com, 
http://www.mathworks.coDL 
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In this book, we use MATLAB now and then to present certain numerical 
experiments, and in some exercises. We do not describe the language system­
atically, since the number of experiments we present is limited, and only a 
reading knowledge of MATLAB is needed to follow them. 

Experiment 1: Discrete Legendre Polynomials 

In Lecture 7 we considered the Vandermonde "matrix" with "columns" con­
sisting of the monomials 1, x, x2, and x3 on the interval [-1, 1]. Suppose 
we now make this a true Vandermonde matrix by discretizing [-1, 1] by 257 
equally spaced points. The following lines of MATLAB construct this matrix 
and compute its reduced QR factorization. 

X= (-128:128) 1 /128; 
A= [x. -o x. -1 x. -2 x. -3]; 
[Q,R] = qr(A,O); 

Set x to a discretization of [ -1, 1]. 
Construct Vandermonde matrix. 
Find its reduced QR factorization. 

Here are a few remarks on these commands. In the first line, the prime 
, converts ( -128: 128) from a row to a column vector. In the second line, 
the sequences . - indicate entrywise powers. In the third line, qr is a built-in 
MATLAB function for computing QR factorizations; the argument 0 indicates 
that a reduced rather than full factorization is needed. The method used here 
is not Gram-Schmidt orthogonalization but Householder triangularization, 
discussed in the next lecture, but this is of no consequence for the present 
purpose. In all three lines, the semicolons at the end suppress the printed 
output that would otherwise be produced (x, A, Q, and R). 

The columns of the matrix Q are essentially the first four Legendre polyno­
mials of Figure 7.1. They differ slightly, by amounts close to plotting accuracy, 
because the continuous inner product on [-1, 1] that defines the Legendre 
polynomials has been replaced by a discrete analogue. They also differ in 
normalization, since a Legendre polynomial should satisfy P~:(1) = 1. We can 
fix this by dividing each column of Q by its final entry. The following lines of 
MATLAB do this by a right-multiplication by a 4 x 4 diagonal matrix. 

scale= Q(257,:); 
Q = Q•diag(1 ./scale); 
plot{Q) 

Select last row of Q. 
Rescale columns by these numbers. 
Plot columns ofrescaled Q. 

The result of our computation is a plot that looks just like Figure 7.1 
(not shown). In Fortran or C, this would have taken dozens of lines of code 
containing numerous loops and nested loops. In our six lines of MATLAB, not 
a single loop has appeared explicitly, though at least one loop is implicit in 
every line. 
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Experiment 2: Classical vs. Modified Gram-Schmidt 

Our second example has more algorithmic substance. Its purpose is to explore 
the difference in numerical stability between the classical and modified Gram­
Schmidt algorithms. 

First, we construct a square matrix A with random singular vectors and 
widely varying singular values spaced by factors of 2 between 2-1 and 2-80. 

[U,X] = qr(randn(80)); 
[V,X] = qr(randn(80)); 
S=diag(2.ft(-1:-1:-80)); 

Set U to a random orthogonal matrix. 
Set V to a random orthogonal matrix. 
Set S to a diagonal matrix with expo­
nentially graded entries. 
Set A to a matrix with these entries as 
singular values. 

Now, we use Algorithms 7.1 and 8.1 to compute QR factorizations of A. In 
the following code, the programs clgs and mgs are MATLAB implementations, 
not listed here, of Algorithms 7.1 and 8.1. 

[QC,RC] = clgs(A); 

[QM,RM] = mgs(A); 

Compute a factorization Q(c) R(c) by 
classical Gram-Schmidt. 
Compute a factorization Q(m) R(m) by 
modified Gram-Schmidt. 

Finally, we plot the diagonal elements r;; produced by both computations 
(MATLAB code not shown). Since r;; = IIP;a;ll, this gives us a picture of the 
size of the projection at each step. The results are shown on a logarithmic 
scale in Figure 9.1. 

The first thing one notices in the figure is a steady decrease of r;; with 
j, closely matching the line 2-;. Evidently r;; is not exactly equal to the 
jth singular value of A, but it is a reasonably good approximation. This 
phenomenon can be roughly explained as follows. The SVD of A can be 
written in the form (5.3) as 

where {u;} and {v;} are the left and right singular vectors of A, respectively. 
In particular, the jth column of A has the form 

2-1- + 2-2- + 2-3- + + 2-80-a; = V;1U1 V;2u2 V;3U3 • • • V;,80u80• 

Since the singular vectors are random, we can expect that the numbers vii 

are all of a similar magnitude, on the order of 80-112 ~ 0.1. Now, when we 
take the QR factorization, it is evident that the first vector q1 is likely to be 
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Figure 9.1. Computed r;; versus j for the QR factorization of a matrix with 
exponentially graded singular values. On this computer with about 16 digits of 
relative accumcy, the classical Gmm-Schmidt algorithm produces the numbers 
represented by circles and the modified Gmm-Schmidt algorithm produces the 
numbers represented by crosses. 

approximately equal to u1, with r 11 on the order of 2-1 x so-112• Orthogo­
nalization at the next step will yield a second vector q2 approximately equal 
to u2, with r22 on the order of 2-2 x so-112-and so on. 

The next thing one notices in Figure 9.1 is that the geometric decrease of 
r;; does not continue all the way to j = 80. This is a consequence of rounding 
errors on the computer. With the classical Gram-Schmidt algorithm, the 
numbers never become smaller than about 10-8. With the modified Gram­
Schmidt algorithm, they shrink eight orders of magnitude further, down to the 
order of 10-16, which is the level of machine epsilon for the computer used in 
this calculation. Machine epsilon is defined in Lecture 13. 

Clearly, some algorithms are more stable than others. It is well established 
that the classical Gram-Schmidt process is one of the unstable ones. Conse­
quently it is rarely used, except sometimes on parallel computers in situations 
where advantages related to communication may outweigh the disadvantage 
of instability. 

Experiment 3: Numerical Loss of Orthogonality 

At the risk of confusing the reader by presenting two instability phenomena 
in succession, we close this lecture by exhibiting another, different kind of 



LECTURE 9. MATLAB 67 

instability that affects both the modified and classical Gram-Schmidt algo­
rithms. In floating point arithmetic, these algorithms may produce vectors 
Q; that are far from orthogonal. The loss of orthogonality occurs when A is 
close to rank-deficient, and, like most instabilities, it can appear even in low 
dimensions. 

Starting on paper rather than in MATLAB, consider the case of a matrix 

A = [ 0. 70000 0. 70711 ] 
0.70001 0.70711 

(9.1) 

on a computer that rounds all computed results to five digits of relative accu­
racy (Lecture 13). The classical and modified algorithms are identical in the 
2 x 2 case. At step j = 1, the first column is normalized, yielding 

[ 0.70000/0.98996] [ 0.70710] 
ru = 0·98996' q1 = a1/ru = 0.70001/0.98996 = 0.70711 

in five-digit arithmetic. At step j = 2, the component of a2 in the direction 
of q1 is computed and subtracted out: 

r 12 = q~~ = 0.70710 X 0.70711 + 0.70711 X 0.70711 = 1.0000, 

[ 0. 70711 ] [ 0. 70710 ] [ 0.00001 ] 
V2 = a2- r 12q1 = 0.70711 - 0.70711 = 0.00000 ' 

again with rounding to five digits. This computed v2 is dominated by errors. 
The final computed Q is 

Q = [ 0. 70710 1.0000 ] 
0. 70711 0.0000 ' 

which is not close to any orthogonal matrix. 
On a computer with sixteen-digit precision, we still lose about five digits of 

orthogonality if we apply modified Gram-Schmidt to the matrix (9.1). Here 
is the MATLAB evidence. The "eye" function generates the identity of the 
indicated dimension. 

A= [.70000 .70711 
. 70001 . 70711] ; 

[Q ,R] = qr(A); 
norm(Q'*Q-eye(2)) 

[Q,R] = mgs(A); 
norm(Q'*Q-eye(2)) 

Define A. 

Compute factor Q by Householder. 
Test orthogonality of Q. 

Compute factor Q by modified G-S. 
Test orthogonality of Q. 

The lines without semicolons produce the following printed output: 

ans = 2.3515e-16, ans = 2.3014e-11. 
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Exercises 

9.1. (a) Run the six-line MATLAB program of Experiment 1 to produce a 
plot of approximate Legendre polynomials. 

(b) For k = 0, 1, 2, 3, plot the difference on the 257-point grid between these 
approximations and the exact polynomials (7.11). How big are the errors, and 
how are they distributed? 

(c) Compare these results with what you get with grid spacings ~x = 2-" for 
other values of 11. What power of ~x appears to control the convergence? 

9.2. In Experiment 2, the singular values of A match the diagonal elements 
of a QR factor R approximately. Consider now a very different example. 
Suppose Q = I and A = R, the m x m matrix (a Toeplitz matrix) with 1 on 
the main diagonal, 2 on the first superdiagonal, and 0 everywhere else. 

(a) What are the eigenvalues, determinant, and rank of A? 
(b) What is A-1 ? 

(c) Give a nontrivial upper bound on um, the mth singular value of A. You 
are welcome to use MATLAB for inspiration, but the bound you give should 
be justified analytically. (Hint: Use part (b).) 

This problem illustrates that you cannot always infer much about the singular 
values of a matrix from its eigenvalues or from the diagonal entries of a QR 
factor R. 

9.3. (a) Write a MATLAB program that sets up a 15 x 40 matrix with entries 
0 everywhere except for the values 1 in the positions indicated in the picture 
below. The upper-leftmost 1 is in position (2, 2), and the lower-rightmost 1 
is in position {13, 39). This picture was produced with the command spy(A). 

(~) Call svd to compute the singular values of A, and print the results. Plot 
these numbers using both plot and semilogy. What is the mathematically 
exact rank of A? How does this show up in the computed singular values? 

(c) For each i from 1 to rank(A), construct the rank-i matrix B that is the 
best approximation to A in the 2-norm. Use the command pcolor(B) with 
colormap (gray) to create images of these various approximations. 



Lecture 10. Householder Triangularization 

The other principal method for computing QR factorizations is Householder 
triangularization, which is numerically more stable than Gram-Schmidt or­
thogonalization, tliough it lacks the latter's applicability as a basis for iterative 
methods. The Householder algorithm is a process of "orthogonal triangulariza­
tion," making a matrix triangular by a sequence of unitary matrix operations. 

Householder and Gram-Schmidt 

As we saw in Lecture 8, the Gram-Schmidt iteration applies a succession of 
elementary triangular matrices R~c on the right of A, so that the resulting 
matrix 

AR1Ra · · · Rn = Q ........___._., 
fl-1 

has orthonormal columns. The product R = R;;1 · · · .R;1R11 is upper-trian­
gular too, and thus A = Q R is a reduced QR factorization of A. 

In contrast, the Householder method applies a succession of elementary 
unitary matrices Q"' on the left of A, so that the resulting matrix 

Qn · · · Q2Q1 A= R --------Q* 

is upper-triangular. The product Q = QiQ2 · · · Q; is unitary too, and there­
fore A = Q R is a full QR factorization of A. 

69 
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The two methods can thus be summarized as follows: 

Gram-Schmidt: triangular orthogonalization, 

Householder: orthogonal triangularization. 

'I'riangularizing by Introducing Zeros 

At the heart of the Householder method is an idea originally proposed by 
Alston Householder in 1958. This is an ingenious way of designing the unitary 
matrices Q~e so that Qn · · · Q2Q1A is upper-triangular. 

The matrix Q"' is chosen to introduce zeros below the diagonal in the kth 
column while preserving all the zeros previously introduced. For example, in 
the 5 x 3 case, three operations Q,. are applied, as follows. In these matrices, 
the symbol x represents an entry that is not necessarily zero, and boldfacing 
indicates an entry that has just been changed. Blank entries are zero. 

X X X X X X X X X X X X 
X X X Ql 0 X X Q2 X X Qa X X 
X X X ---+ 0 X X ---+ 0 X ---+ X (10.1) 
X X X 0 X X 0 X 0 
X X X 0 X X 0 X 0 

A QlA Q2Q1A QaQ2QlA 

First, Q1 operates on rows 1, ... , 5, introducing zeros in positions (2, 1), (3, 1), 
(4,1), and (5,1). Next, Q2 operates on rows 2, ... ,5, introducing zeros in 
positions (3, 2), ( 4, 2), and (5, 2) but not destroying the zeros introduced by 
Q1• Finally, Q3 operates on rows 3, ... , 5, introducing zeros in positions ( 4, 3) 
and (5, 3) without destroying any of the zeros introduced earlier. 

In general, Q,. operates on rows k, ... , m. At the beginning of step k, there 
is a block of zeros in the first k - 1 columns of these rows. The application 
of Q,. forms linear combinations of these rows, and the linear combinations of 
the zero entries remain zero. After n steps, all the entries below the diagonal 
have been eliminated and Qn · · · Q2Q1A = R is upper-triangular. 

Householder Reflectors 

How can we construct unitary matrices Qlc to introduce zeros as indicated 
in (10.1)? The standard approach is as follows. Each Q,. is chosen to be a 
unitary matrix of the form 

(10.2) 

where I is the (k- 1) x (k- 1) identity and F is an (m- k + 1) x (m­
k + 1) unitary matrix. Multiplication by F must introduce zeros into the 
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Figure 10.1. A Householder reflection. 
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kth column. The Householder algorithm chooses F to be a particular matrix 
called a Householder reflector. 

Suppose, at the beginning of step k, the entries k, ... , m of the kth column 
are given by the vector x E cm-k+l. To introduce the correct zeros into the 
kth column, the Householder reflector F should effect the following map: 

X 

X 

X= X 

X 

F 
---+ 

llxll 
0 

Fx = 0 = llxlle1 . 

0 

(10.3} 

(We shall modify this idea by a ± sign in a moment.) The idea for ac­
complishing this is indicated in Figure 10.1. The reflector F will reflect the 
space cm-k+l across the hyperplane H orthogonal to v = llxllel- X. A hy­
perplane is the higher-dimensional generalization of a two-dimensional plane 
in three-space-a three-dimensional subspace of a four-dimensional space, a 
four-dimensional subspace of a five-dimensional space, and so on. In general, 
a hyperplane can be characterized as the set of points orthogonal to a fixed 
nonzero vector. In Figure 10.1, that vector is v = llxlle1 - x, and one can 
think of the dashed line as a depiction of H viewed "edge on." 

When the reflector is applied, every point on one side of the hyperplane H 
is mapped to its mirror image on the other side. In particular, x is mapped 
to llxlle1. The formula for this reflection can be derived as follows. In (6.11} 
we have seen that for any y E em, the vector 

( vv*) (v*y) Py = I-- y = y-v -
v*v v•v 
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Figure 10.2. Two possible reflections. For numerical stability, it is important 
to choose the one that moves x the larger distance. 

is the orthogonal projection of y onto the space H. To reflect y across H, 
we must not stop at this point; we must go exactly twice as far in the same 
direction. The reflection Fy should therefore be 

Fy = 

Hence the matrix F is 

( vv*) (v*y) I-2- y = y- 2v - . 
v•v v*v 

F=l-2vv*. 
v*v 

(10.4) 

Note that the projector P (rank m-1) and the reflector F (full rank, unitary) 
differ only in the presence of a factor of 2. 

The Better of Two Reflectors 

In (10.3) and in Figure 10.1 we have simplified matters, for in fact, there 
are many Householder reflections that will introduce the zeros needed. The 
vector x can be reflected to zllxlle1, where z is any scalar with lzl = 1. In 
the complex case, there is a circle of possible reflections, and even in the real 
case, there are two alternatives, represented by reflections across two different 
hyperplanes, H+ and H-, as illustrated in Figure 10.2. 

Mathematically, either choice of sign is satisfactory. However, this is a 
case where the goal of numerical stability-insensitivity to rounding errors­
dictates that one choice should be taken rather than the other. For numerical 
stability, it is desirable to reflect x to the vector zllxlle1 that is not too close to x 
itself. To achieve this, we can choose z = -sign(x1), where x1 denotes the first 
component of x, so that the reflection vector becomes v = -sign(x1)llxlle1 -x, 
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or, upon clearing the factors -1, 

v = sign(x1)1lxlle1 + x. (10.5) 

To make this a complete prescription, we may arbitrarily impose the conven­
tion that sign(x1) = 1 if x1 = 0. 

It is not hard to see why the choice of sign makes a difference for stability. 
Suppose that in Figure 10.2, the angle between n+ and the e1 axis is very 
small. Then the vector v = llxlle1 - xis much smaller than x or llxlle1. Thus 
the calculation of v represents a subtraction of nearby quantities and will tend 
to suffer from cancellation errors. If we pick the sign as in {10.5), we avoid 
such effects by ensuring that llvll is never smaller than llxll. 

The Algorithm 

We now formulate the whole Householder algorithm. To do this, it will be 
helpful to utilize a new (MATLAB-style) notation. If A is a matrix, we define 
Ai:i',;:;• to be the (i'-i+1) x (j'-j+1) submatrix of A with upper-left corner a,; 
and lower-right corner a,,.;•· In the special case where the submatrix reduces 
to a subvector of a single row or column, we write Ai,;:;• or Ai:i',i' respectively. 

The following algorithm computes the factor R of a QR factorization of an 
m x n matrix A with m ~ n, leaving the result in place of A. Along the way, 
n re:O.ection vectors v1, ... , v" are stored for later use. 

Algorithm 10.1. Householder QR Factorization 

fork=1ton 

X= Ak:m,k 

v~o = sign(x1)1lxll2e1 + x 

v~o = v~:fllvTcll2 

Alc:m,Tc:n = Alc:m,Tc:n - 2v,.( vZA~::m,A::n) 

Applying or Forming Q 
Upon the completion of Algorithm 10.1, A has been reduced to upper-trian­
gular form; this is the matrix R in the QR factorization A = Q R. The unitary 
matrix Q has not, however, been constructed, nor has its n-column submatrix 
Q corresponding to a reduced QR factorization. There is a reason for this. 
Constructing Q or Q takes additional work, and in many applications, we can 
avoid this by working directly with the formula 

{10.6) 

or its conjugate 
{10.7) 
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(No asterisks have been forgotten here; recall that each Q; is hermitian.) 
For example, in Lecture 7 we saw that a square system of equations Ax = b 

can be solved via QR factorization of A. The only way in which Q was used 
in this process was in the computation of the product Q*b. By (10.6), we can 
calculate Q*b by a sequence of n operations applied to b, the same operations 
that were applied to A to make it triangular. The algorithm is as follows. 

Algorithm 10.2. Implicit Calculation of a Product Q*b 

fork=1ton 

bl::m = bl::m - 2v,.( v; bl::m) 

Similarly, the computation of a product Qx can be achieved by the same 
process executed in reverse order. 

Algorithm 10.3. Implicit Calculation of a Product Qz 

for k = n downto 1 

Xl::m = Xl::m - 2v,.( Vk Xl::m) 

The work involved in either of these algorithms is of order O(mn), not O(mn2) 

as in Algorithm 10.1 (see below). 
Sometimes, of course, one may wish to construct the matrix Q explicitly. 

This can be achieved in various ways. We can construct QI via Algorithm 10.3 
by computing its columns Qe1, Qe2, ••• , Qem. Alternatively, we can construct 
Q*I via Algorithm 10.2 and then conjugate the result. A variant of this idea 
is to conjugate each step rather than the final product, that is, to construct 
IQ by computing its rows e!Q, e2Q, ... , e:nQ as suggested by (10.7). Of these 
various ideas, the best is the first one, based on Algorithm 10.3. The reason 
is that it begins with operations involving Qn, Qn_1, and so on that modify 
only a small part of the vector they are applied to; if advantage is taken of 
this sparsity property, a speed-up is achieved. 

If only Q rather than Q is needed, it is enough to compute the columns 
Qe1, Qe2 , ••. , Qen. 

Operation Count 

The work involved in Algorithm 10.1 is dominated by the innermost loop, 

(10.8) 

If the vector length is l = m- k + 1, this calculation requires 4l-1 "' 4l scalar 
operations: l for the subtraction, l for the scalar multiplication, and 2l - 1 for 
the dot product. This is "' 4 :O.ops for each entry operated on. 
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We may add up these four flops per entry by geometric reasoning, as in 
Lecture 8. Each successive step of the outer loop operates on fewer rows, 
because during step k, rows 1, ... , k - 1 are not changed. Furthermore, each 
step operates on fewer columns, because columns 1, ... , k- 1 of the rows 
operated on are zero and are skipped. Thus the work done by one outer step 
can be represented by a single layer of the following solid: 

m 
(row index) 

n 
(outer loop index) 

The total number of operations corresponds to four times the volume of the 
solid. To det~rmine the volume pictorially we may divide the solid into two 
pieces: 

n + n 

The solid on the left has the shape of a ziggurat and converges to a pyramid as 
n-+ oo, with volume in3• The solid on the right has the shape of a staircase 
and converges to a prism as m, n-+ oo, with volume !(m- n)n2• Combined, 
the volume is"' !mn2 - in3• Multiplying by four flops per unit volume, we 
:find 

2 2 3 Work for Householder orthogonalization: "'2mn - 3n flops. (10.9) 
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Exercises 

10.1. Determine the (a) eigenvalues, (b) determinant, and (c) singular values 
of a Householder re:ftector. For the eigenvalues, give a geometric argument as 
well as an algebraic proof. 

10.2. (a) Write a MATLAB function [W ,R] = house(A) that computes an 
implicit representation of a full QR factorization A= QR of an m x n matrix 
A with m ~ n using Householder re:ftections. The output variables are a 
lower-triangular matrix WE cmxn whose columns are the vectors V1: defining 
the successive Householder re:ftections, and a triangular matrix R E cn,n. 

(b) Write a MATLAB function Q = formQ(W) that takes the matrix W pro­
duced by house as input and generates a corresponding m x m orthogonal 
matrix Q. 

10.3. Let Z be the matrix 

1 2 3 
4 5 6 

z 7 8 7 
4 2 3 
4 2 2 

Compute three reduced QR factorizations of Z in MATLAB: by the Gram­
Schmidt routine mgs of Exercise 8.2, by the Householder routines house and 
formQ of Exercise 10.2, and by MATLAB's built-in command [Q,R] = qr(Z,O). 
Compare these three and comment on any differences you see. 

10.4. Consider the 2 x 2 orthogonal matrices 

F = [ -c s] 
s c ' 

J=[ cs], 
-s c 

(10.10) 

where s =sinO and c =cosO for some 0. The first matrix has detF = -1 
and is a re:ftector-the special case of a Householder re:ftector in dimension 2. 
The second has det J = 1 and effects a rotation instead of a re:ftection. Such 
a matrix is called a Givens rotation. 

(a) Describe exactly what geometric effects left-multiplications by F and J 
have on the plane R 2• (J rotates the plane by the angle 0, for example, but 
is the rotation clockwise or counterclockwise?) 

(b) Describe an algorithm for QR factorization that is analogous to Algo­
rithm 10.1 but based on Givens rotations instead of Householder re:ftections. 

(c) Show that your algorithm involves six :Hops per entry operated on rather 
than four, so that the asymptotic operation count is 50% greater than {10.9). 



Lecture 11. Least Squares Problems 

Least squares data-fitting has been an indispensable tool since its invention by 
Gauss and Legendre around 1800, with ramifications extending throughout the 
mathematical sciences. In the language of linear algebra, the problem here is 
the solution of an overdetermined system of equations Ax= b-rectangular, 
with more rows than columns. The least squares idea is to "solve" such a 
system by minimizing the 2-norm of the residual b- Ax. 

The Problem 

Consider a linear system of equations having n unknowns but m > n equa­
tions. Symbolically, we wish to find a vector x E e" that satisfies Ax = b, 
where A E emxn and bE em. In general, such a problem has no solution. A 
suitable vector x exists only if b lies in range(A), and since b is an m-vector, 
whereas range( A) is of dimension at most n, this is true only for exceptional 
choices of b. We say that a rectangular system of equations with m > n is 
overdetermined. The vector known as the residual, 

r = b-Ax E em, {11.1) 

can perhaps be made quite small by a suitable choice of x, but in general it 
cannot be made equal to zero. 

What can it mean to solve a problem that has no solution? In the case 
of an overdetermined system of equations, there is a natural answer to this 
question. Since the residual r cannot be made to be zero, let us instead make 

77 
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it as small as possible. Measuring the smallness of r entails choosing a norm. 
If we choose the 2-norm, the problem takes the following form: 

Given A E cmxa, m ~ n, bE em, 
find X E c· such that lib - Axll2 is minimized. 

(11.2) 

This is our formulation of the general (linear) least squares problem. The 
choice of the 2-norm can be defended by various geometric and statistical 
arguments, and, as we shall see, it certainly leads to simple algorithms­
ultimately because the derivative of a quadratic function, which must be set 
to zero for minimization, is linear. 

The 2-norm corresponds to Euclidean distance, so there is a simple geo­
metric interpretation of (11.2). We seek a vector x E c• such that the vector 
AxE em is the closest point in range(A) to b. 

Example: Polynomial Data-Fitting 

As an example, let us compare polynomial interpolation, which leads to a 
square system of equations, and least squares polynomial data-fitting, where 
the system is rectangular. 

Example 11.1. Polynomial Interpolation. Suppose we are given m dis­
tinct points x1, ••. , xm E C and data y1, ... , Ym E C at these points. Then 
there exists a unique polynomial interpolant to these data in these points, that 
is, a polynomial of degree at most m- 1, 

(11.3) 

with the property that at each xi, p(xi) = Yi· The relationship of the data 
{xi}, {Yi} to the coefficients {ci} can be expressed by the square Vandermonde 
system seen already in Example 1.1: 

1 x1 x2 m-1 
Co Y1 1 x1 

1 x2 X~ m-1 x2 c1 Y2 
1 Xs x2 m-1 c2 Ys (11.4) 3 X a = 

1 xm x2 m-1 cm-1 Ym m xm 

To determine the coefficients { ci} for a given set of data, we can solve this 
system of equations, which is guaranteed to be nonsingular as long as the 
points {xi} are distinct (Exercise 37.3). 

Figure 11.1 presents an example oft his process of polynomial interpolation. 
We have eleven data points in the form of a discrete square wave, represented 
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by crosses, and the curve p(x) passes through them, as it must. However, 
the :fit is not at all pleasing. Near the ends of the interval, p(x) exhibits 
large oscillations that are clearly an artifact of the interpolation process, not 
a reasonable reflection of the data. 

Figure 11.1. Degree 10 polynomial interpolant to eleven data points. The axis 
scales are not given, as these have no effect on the picture. 

This unsatisfactory behavior is typical of polynomial interpolation. The 
fits it produces are often bad, and they tend to get worse rather than better if 
more data are utilized. Even if the fit is good, the interpolation process may 
be ill-conditioned, i.e., sensitive to perturbations of the data (next lecture). To 
avoid these problems, one can utilize a nonuniform set of interpolation points 
such as Chebyshev points in the interval [-1, 1]. In applications, however, it 
will not always be possible to choose the interpolation points at will. D 

Example 11.2. Polynomial Least Squares Fitting. Without changing 
the data points, we can do better by reducing the degree of the polynomial. 
Given x1, ... , xm and y1, ... , Ym again, consider now a degree n-1 polynomial 

(11.5) 

for some n < m. Such a polynomial is a least squares fit to the data if it 
minimizes the sum of the squares of the deviation from the data, 

m 

E jp(xi)- Yil 2 • (11.6) 
i=l 
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This sum of squares is equal to the square of the norm of the residual, llrll~, 
for the rectangular Vandermonde system 

1 x1 n-1 x1 Co Y1 
1 x2 n-1 x2 c1 Y2 
1 X a n-1 

Ya (11.7) X a ~ 

cn-1 
1 Xm 

n-1 xm Ym 

Figure 11.2 illustrates what we get if we fit the same eleven data points from 
the last example with a polynomial of degree 7. The new polynomial does not 
interpolate the data, but it captures their overall behavior much better than 
the polynomial of Example 11.1. Though one cannot see this in the figure, it 
is also less sensitive to perturbations. D 

Figure 11.2. Degree 7 polynomial least squares fit to the same eleven data 
points. 

Orthogonal Projection and the Normal Equations 

How was Figure 11.2 computed? How are least squares problems solved in 
general? The key to deriving algorithms is orthogonal projection. 

The idea is illustrated in Figure 11.3. Our goal is to find the closest 
point Ax in range(A) to b, so that the norm of the residual r = b- Ax is 
minimized. It is clear geometrically that this will occur provided Ax = Pb, 
where P E emxm is the orthogonal projector (Lecture 6) that maps em onto 
range(A). In other words, the residual r = b- Ax must be orthogonal to 
range(A). We formulate this condition as the following theorem. 

Theorem 11.1. Let A E emxn (m ;::: n) and b E em be given. A vector 
X E en minimizes the residual norm llrll2 = lib- Axll21 thereby solving the 
least squares problem (11.2), if and only ifr .l range(A), that is, 

A*r = 0, (11.8) 
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Figure 11.3. Formulation of the least squares problem (11.2) in terms of or­
thogonal projection. 

or equivalently, 
A*Ax = A*b, (11.9) 

or again equivalently, 
Pb=Ax, (11.10) 

where p E cmxm is the orthogonal projector onto range(A). Then X n system 
of equations (11.9), known as the normal equations, is nonsingular if and only 
if A has full rank. Consequently the solution x is unique if and only if A has 
full rank. 

Proof. The equivalence of (11.8) and (11.10) follows from the properties of 
orthogonal projectors discussed in Lecture 6, and the equivalence of (11.8) 
and {11.9) follows from the definition of r. To show that y = Pb is the unique 
point in range(A) that minimizes lib- yll2, suppose z =f. y is another point 
in range(A). Since z- y is orthogonal to b-y, the Pythagorean theorem 
(Exercise 2.2) gives lib - zll~ = lib - Yll~ + IIY - zll~ > lib - Yll~, as required. 
Finally, we note that if A*A is singular, then A*Ax = 0 for some nonzero 
x, implying x*A*Ax = 0 (see Exercise 6.3). Thus Ax = 0, which implies 
that A is rank-deficient. Conversely, if A is rank-deficient, then Ax = 0 for 
some nonzero x, implying A*Ax = 0 also, so A*A is singular. By (11.9), this 
characterization of nonsingular matrices A*A implies the statement about the 
uniqueness of x. D 

Pseudo inverse 

We have just seen that if A has full rank, then the solution x to the least 
squares problem (11.2) is unique and is given by x = (A*A)-1A*b. The matrix 
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(A*A)-1A* is known as the pseudoinverse of A, denoted by A+: 

A+ = (A*A)-1 A* E en,m. (11.11) 

This matrix maps vectors b E em to vectors x E en, which explains why it 
has dimensions n x m-more columns than rows. 

We can summarize the full-rank linear least squares problem (11.2) as 
follows. The problem is to compute one or both of the vectors 

y=Pb, (11.12} 

where A+ is the pseudoinverse of A and Pis the orthogonal projector onto 
range(A). We now describe the three leading algorithms for doing this. 

Normal Equations 

The classical way to solve least squares problems is to solve the normal equa­
tions (11.9). H A has full rank, this is a square, hermitian positive definite 
system of equations of dimension n. The standard method of solving such 
a system is by Cholesky factorization, discussed in Lecture 23. This method 
constructs a factorization A*A = R*R, where R is upper-triangular, reducing 
(11.9) to the equations 

R*Rx = A*b. (11.13) 

Here is the algorithm. 

Algorithm 11.1. Least Squares via Normal Equations 

1. Form the matrix A*A and the vector A*b. 

2. Compute the Cholesky factorization A*A = R*R. 

3. Solve the lower-triangular system R*w = A*b for w. 

4. Solve the upper-triangular system Rx = w for x. 

The steps that dominate the work for this computation are the first two (for 
steps 3 and 4, see Lecture 17). Because of symmetry, the computation of A *A 
requires only mn2 :Hops, half what the cost would be if A and A* were arbitrary 
matrices of the same dimensions. Cholesky factorization, which also exploits 
symmetry, requires n3 /3 :Hops. All together, solving least squares problems by 
the normal equations involves the following total operation count: 

1 
Work for Algorithm 11.1: "'mn2 + 3n3 :Hops. (11.14) 
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QR Factorization 

The "modern classical" method for solving least squares problems, popular 
since the 1960s, is based upon reduced QR factorization. By Gram-Schmidt 
orthogonalization or, more usually, Householder triangularization, one con­
structs a factorization A = QR. The orthogonal projector P can then be 
written P = Q{J* (6.6), so we have 

y= Pb = QQ*b. (11.15) 

Since y E range( A), the system Ax = y has an exact solution. Combining the 
QR factorization and (11.15) gives 

QRx = QQ*b, 

and left-multiplication by Q* results in 

Rx = Q*b. 

(11.16) 

(11.17) 

(Multiplying by :R-1 now gives the formula A+ = :R-1{J for the pseudoinverse.) 
Equation (11.17) is an upper-triangular system, nonsingular if A has full rank, 
and it is readily solved by back substitution (Lecture 17). 

Algorithm 11.2. Least Squares via QR Factorization 

1. Compute the reduce~ QR factorization A= {JR. 
2. Compute the vector Q*b. 

3. Solve the upper-triangular system Rx = Q*b for x. 

Notice that (11,:17) <;_~ alsoA b~ derived from the Anorm~ equations. If 
A*Ax = A*b, then R*Q*QRx = R*Q*b, which implies Rx = Q*b. 

The work for Algorithm 11.2 is dominated by the cost of the QR factor­
ization. If Householder reflections are used for this step, we have from (10.9) 

2 
Work for Algorithm 11.2: I"V 2mn2 - 3n3 flops. (11.18) 

SVD 

In Lecture 31 we shall describe an algorithm for computing the reduced singu­
lar value decomposition A = UEV*. This suggests another method for solving 
least squares problems. Now Pis represented in the form P = UU*, giving 

y = Pb= UU*b, 

and the analogues of (11.16) and (11.17) are 

utv·x = UU*b 

(11.19) 

(11.20) 
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and 
i::V*x = U*b. (11.21) 

(Multiplying by v~-1 gives A+= vi::-1U*.) The algorithm looks like this. 

Algorithm 11.3. Least Squares via SVD 

1. Compute the reduced SVD A = U~V*. 

2. Compute the vector U*b. 

3. Solve the diagonal system ~w = U*b for w. 

4. Set x = Vw. 

Note that whereas QR factorization reduces the least squares problem to a 
triangular system of equations, the SVD reduces it to a diagonal system of 
equations, which is of course trivially solved. If A has full rank, the diagonal 
system is nonsingular. 

As before, (11.21) can be derived from the normal equations. If A*Ax = 
A*b, then V~*U*U~V*x = V~*U*b, implying ~V*x = U*b. 

The operation count for Algorithm 11.3 is dominated by the computation 
of the SVD. As we shall see in Lecture 31, form::> n this cost is approximately 
the same as for QR factorization, but for m ~ n the SVD is more expensive. 
A typical estimate is 

Work for Algorithm 11.3: "'2mn2 + lln3 flops, (11.22) 

but see Lecture 31 for qualifications of this result. 

Comparison of Algorithms 

Each of the methods we have described is advantageous in certain situations. 
When speed is the only consideration, Algorithm 11.1 may be the best. How­
ever, solving the normal equations is not always stable in the presence of 
rounding errors, and thus for many years, numerical analysts have recom­
mended Algorithm 11.2 instead as the standard method for least squares 
problems. This is indeed a natural and elegant algorithm, and we recom­
mend it for "daily use." If A is close to rank-deficient, however, it turns out 
that Algorithm 11.2 itself has less-than-ideal stability properties, and in such 
cases there are good reasons to turn to Algorithm 11.3, based on the SVD. 

What are these stability considerations that make one algorithm better 
than another in some circumstances yet not in others? It is time now to 
undertake a systematic discussion of such matters. We shall return to the 
study of algorithms for least squares problems in Lectures 18 and 19. 



LECTURE 11. LEAST SQUARES PROBLEMS 85 

Exercises 

11.1. Suppose the m x n matrix A has the form 

where A1 is a nonsingular matrix of dimension n x n and A2 is an arbitrary 
matrix of dimension (m- n) x n. Prove that IIA+Ib::; IIA11 11 2 • 

11.2. (a) How closely, as measured in the L2 norm on the interval [1, 2], can 
the function /( x) = x-1 be :fitted by a linear combination of the functions ez, 
sin x, and r( X) ? (r( X) is the gamma function, a built-in function in MATLAB.) 
Write a program that determines the answer to at least two digits of relative 
accuracy using a discretization of [1, 2] and a discrete least squares problem. 
Write down your estimate of the answer and also of the coefficients of the 
optimal linear combination, and produce a plot of the optimal approximation. 

(b) Now repeat, but with [1, 2] replaced by [0, 1]. You may :find the following 
fact helpful: if g(x) = 1/r(x), then g'(O) = 1. 

11.3. Take m = 50, n = 12. Using MATLAB's linspace, define t to be 
the m-vector corresponding to linearly spaced grid points from 0 to 1. Using 
MATLAB's vander and fliplr, define A to be them x n matrix associated 
with least squares :fitting on this grid by a polynomial of degree n - 1. Take b 
to be the function cos(4t) evaluated on the grid. Now, calculate and print (to 
sixteen-digit precision) the least squares coefficient vector x by six methods: 

(a) Formation and solution of the normal equations, using MATLAB's \, 

(b) QR factorization computed by mgs (modified Gram-Schmidt, Exercise 8.2), 

(c) QR factorization computed by house (Householder triangularization, Ex­
ercise 10.2), 

(d) QR factorization computed by MATLAB's qr (also Householder triangu­
larization), 

(e) x = A\b in MATLAB (also based on QR factorization), 

(f) SVD, using MATLAB's svd. 

(g) The calculations above will produce six lists of twelve coefficients. In 
each list, shade with red pen the digits that appear to be wrong (affected by 
rounding error). Comment on what differences you observe. Do the normal 
equations exhibit instability? You do not have to explain your observations. 
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Conditioning and Stability 





Lecture 12. Conditioning and Condition 
Numbers 

In this third part of the book we turn to a systematic discussion of two fun­
damental issues of numerical analysis that until now we have only skirted. 
Conditioning pertains to the perturbation behavior of a mathematical prob­
lem. Stability pertains to the perturbation behavior of an algorithm used to 
solve that problem on a computer. 

Condition of a Problem 

In the abstract, we can view a problem as a function I : X --+ Y from a 
normed vector space X of data to a normed vector space Y of solutions. This 
function I is usually nonlinear (even in linear algebra), but most of the time 
it is at least continuous. 

Typically we shall be concerned with the behavior of a problem I at a 
particular data point x E X (the behavior may vary greatly from one point to 
another). The combination of a problem I with prescribed data x might be 
called a problem instance, but it is more usual, though occasionally confusing, 
to use the term problem for this notion too. 

A well-conditioned problem (instance) is one with the property that all 
small perturbations of x lead to only small changes in l(x). An ill-conditioned 
problem is one with the property that some small perturbation of x leads to 
a large change in I( x ). 

89 
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The meaning of "small" and "large" in these statements depends on the 
application. In particular, sometimes it is most appropriate to measure pertur­
bations on an absolute scale, and sometimes it is most appropriate to measure 
them relative to the norm of the object being perturbed. 

Absolute Condition Number 
Let ox denote a small perturbation of x, and write of = f(x +ox)- f(x). 
The absolute condition number K, = K,( x) of the problem f at x is defined as 

K, = lim sup llo/11. 
6->0 ll6zll:s;6 lloxll 

(12.1) 

For most problems, the limit of the supremum in this formula can be in­
terpreted as a supremum over all infinitesimal perturbations ox, and in the 
interest of readability, we shall generally write the formula simply as 

(12.2) 

with the understanding that ox and o I are infinitesimal. 
If f is differentiable, we can evaluate the condition number by means of 

the derivative of f. Let J(x) be the matrix whose i,j entry is the partial 
derivative 8fJ8x; evaluated at x, known as the Jacobian of I at x. The 
definition ofthe derivative gives us, to first order, of~ J(x)ox, with equality 
in the limit lloxll -+ 0. The absolute condition number becomes 

K, = IIJ(x)ll, (12.3) 

where IIJ(x)ll represents the norm of J(x) induced by the norms on X andY. 

Relative Condition Number 

When we are concerned with relative changes, we need the notion of relative 
condition. The relative condition number K = K(x) is defined by 

K, - lim sup ( llolll jlloxll) 
- 6->0 ll6zll:s;6 11/(x)ll llxll ' 

or, again assuming ox and 61 are infinitesimal, 

( llolll I lloxll) 
K = s~? 11/(x)ll W · 

(12.4) 

(12.5) 

If I is differentiable, we can express this quantity in terms of the Jacobian: 

IIJ(x)ll 
K = lll(x)ll/llxll" (12.6) 
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Both absolute and relative condition numbers have their uses, but the 
latter are more important in numerical analysis. This is ultimately because the 
floating point arithmetic used by computers introduces relative errors rather 
than absolute ones; see the next lecture. A problem is well-conditioned if "' is 
small (e.g., 1, 10, 102), and ill-conditioned if"' is large (e.g., 106, 1016). 

Examples 

Example 12.1. Consider the trivial problem of obtaining the scalar x/2 from 
x E C. The Jacobian of the function f : x ~--+ x/2 is just the derivative 
J = !' = 1/2, so by (12.6), 

IIJII 
"' = 11/(x)ll/llxll = 

1/2 = 1. 
(x/2)/x 

This problem is well-conditioned by any standard. D 

Example 12.2. Consider the problem of computing -/X for x > 0. The 
Jacobian off : x ~--+ -/X is the derivative J = f' = 1/(2../i), so we have 

IIJII 1/(2../i) 
"' = 11/(x)ll/llxll = .;ijx 

Again, this is a well-conditioned problem. 0 

Example 12.3. Consider the problem of obtaining the scalar f(x) = x1 - x2 

from the vector x = (x17 x2)* E C2 • For simplicity, we use the oo-norm on the 
data space C2• The Jacobian of I is 

J = [ of !.L ] = [ 1 -1 ] , 
8x1 8x2 

with IIJIIoo = 2. The condition number is thus 

IIJIIoo 2 
"' = 11/(x)ll/llxll = -:--lx-1 --x2-:-l/=--m-ax~{:-:-lx~11:-:, l-x2-:-::-lf 

This quantity is large if lx1 - x21 ~ 0, so the problem is ill-conditioned when 
x1 ~ x2 , matching our intuition of the hazards of "cancellation error." 0 

Example 12.4. Consider the computation of f(x) = tanx for x near 10100• 

In this problem, minuscule relative perturbations in x can result in arbitrar­
ily large changes in tan x. The result: tan(10100) is effectively uncomputable 
on most computers. The same minuscule perturbations result in arbitrary 
changes in the derivative of tan x, so there is little point in trying to calculate 
the Jacobian other than to observe that it is not small. For a story whose 
punch line depends on precisely this ill-conditioning of tan(10100), see "Lucky 
Numbers" in Richard Feynman's Surely You're Joking, Mr. Feynman. 0 
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Example 12.5. The determination of the roots of a polynomial, given the 
coefficients, is a classic example of an ill-conditioned problem. Consider x2 -

2x + 1 = (x - 1)2 , with a double root at x = 1. A small perturbation 
in the coefficients may lead to a larger change in the roots; for example, 
x2 - 2x + 0.9999 = (x - 0.99)(x - 1.01). In fact, the roots can change in 
proportion to the square root of the change in the coefficients, so in this case 
the Jacobian is infinite (the problem is not differentiable), and "'= oo. 

Polynomial rootfinding is typically ill-conditioned even in cases that do not 
involve multiple roots. If the ith coefficient ai of a polynomial p( x) is perturbed 
by an infinitesimal quantity oai, the perturbation of the jth root X; is OX; = 
(oai)xj/]l(x;), where ]I denotes the derivative ofp. The condition number of 
X; with respect to perturbations of the single coefficient ai is therefore 

(12. 7) 

This number is often very large. Consider the "Wilkinson polynomial" 

20 

p(x) = fl(x- i) = a0 + a1x + · · · + a19x19 + x20• (12.8) 
i=l 

The most sensitive root of this polynomial is x = 15, and it is most sensitive 
to changes in the coefficient a15 ~ 1.67 x 109 • The condition number is 

Figure 12.1 illustrates the ill-conditioning graphically. 0 

Example 12.6. The problem of computing the eigenvalues of a nonsymmet­
ric matrix is also often ill-conditioned. One can see this by comparing the two 
matrices 

[ 1 1000] 
0 1 I 

[ 1 1000] 
0.001 1 I 

whose eigenvalues are {1,1} and {0,2}, respectively. On the other hand, if a 
matrix A is symmetric (more generally, if it is normal), then its eigenvalues 
are well-conditioned. It can be shown that if A and A+ OA are corresponding 
eigenvalues of A and A + oA, then I6AI ~ II6Aib, with equality if oA is a 
multiple of the identity (Exercise 26.3). Thus the absolute condition number 
of the symmetric eigenvalue problem is K. = 1, if perturbations are measured 
in the 2-norm, and the relative condition number is"'= IIAib/IAI. 0 
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Figure 12.1. Wilkinson's classic example of ill-conditioning. The large dots 
are the roots of the unperturbed polynomial (12.8). The small dots are the 
superimposed roots in the complex plane of 100 randomly perturbed polynomials 
with coefficients defined by ii11 = a11(1 + 10-10r11), where r1c is a number from 
the normal distribution of mean 0 and variance 1. 

Condition of Matrix-Vector Multiplication 

Now we come to one of the condition numbers of fundamental importance in 
numerical linear algebra. 

Fix A E cmxn and consider the problem of computing Ax from input 
x; that is, we are going to determine a condition number corresponding to 
perturbations of x but not A. Working directly from the definition of K, with 
II· II denoting an arbitrary vector norm and the corresponding induced matrix 
norm, we find 

( IIA(x +ox)- Axil jlloxll) IIAoxll jiiAxll 
K = s~f IIAxll W = s~f lloxll W ' 

that is, 

(12.9) 

(a special case of (12.6)). This is an exact formula forK, dependent on both 
A and x. 

Suppose in the above calculation that A happens to be square and non­
singular. Then we can use the fact that llxii/IIAxll ~ IIA-1 11 to loosen (12.9) 
to a bound independent of x: 

(12.10) 

Or, one might write 
(12.11) 
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with 
llxll I -1l a= IIAxll IIA I· (12.12) 

For certain choices of x, we have a = 1, and consequently , = IIAIIIIA-1 11· 
If II · II = II · lb, this will occur whenever x is a multiple of a minimal right 
singular vector of A. 

In fact, A need not have been square. If A E cmxn with m ~ n has full 
rank, equations (12.10)-(12.12) hold with A-1 replaced by the pseudoinverse 
A+ defined in (11.11). 

What about the inverse problem: given A, compute A - 1b from input b? 
Mathematically, this is identical to the problem just considered, except that 
A has been replaced by A-1 . Thus we have already proved the following 
theorem. 

Theorem 12.1. Let A E cmxm be nonsingular and consider the equation 
Ax= b. The problem of computing b, given x, has condition number 

(12.13) 

with respect to perturbations of x. The problem of computing x, given b, has 
condition number 

(12.14) 

with respect to perturbations of b. If II · II = II · lb, then equality holds in 
(12.13) if x is a multiple of a right singular vector of A corresponding to the 
minimal singular value um, and equality holds in (12.14) if b is a multiple of 
a left singular vector of A corresponding to the maximal singular value u 1 • 

Condition Number of a Matrix 

The product IIAIIIIA-1 11 comes up so often that it has its own name: it is the 
condition number of A (relative to the norm 11·11), denoted by K(A): 

(12.15) 

Thus, in this case the term "condition number" is attached to a matrix, not 
a problem. If K(A) is small, A is said to be well-conditioned; if K(A) is large, 
A is ill-conditioned. If A is singular, it is customary to write K(A) = oo. 

Note that if 11·11 = 11·112 , then IIAII = u1 and IIA-1 11 = 1/um. Thus 

(12.16) 

in the 2-norm, and it is this formula that is generally used for computing 2-
norm condition numbers of matrices. The ratio u dum can be interpreted as 
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the eccentricity of the hyperellipse that is the image of the unit sphere of em 
under A (Figure 4.1). 

For a rectangular matrix A E cmxn of full rank, m ~ n, the condition 
number is defined in terms ofthe pseudoinverse: ~t(A) =II All IIA+II. Since A+ 
is motivated by least squares problems, this definition is most useful in the 
case II · II = II · 11 2 , where we have 

~t(A) = CT1. 
u .. 

(12.17) 

Condition of a System of Equations 

In Theorem 12.1, we held A fixed and perturbed x or b. What happens if we 
perturb A? Specifically, let us hold b fixed and consider the behavior of the 
problem A I-+ X = A-1b when A is perturbed by infinitesimal oA. Then X 

must change by infinitesimal ox, where 

(A+ oA)(x +ox) = b. 

Using the equality Ax = band dropping the doubly infinitesimal term ( oA)( ox), 
we obtain (oA)x +A( ox)= 0, that is, ox = -A-1(oA)x. This equation im­
plies lloxll ~ IIA-1IIIIoAUIIxll, or equivalently, 

Uoxll jlloAII < IIA-liiiiAII = ~t(A) 
llxll IIAII - · 

Equality in this bound will hold whenever oA is such that 

and it can be shown by the use of dual norms (Exercise 3.6) that for any A and 
band norm 11·11, such perturbations oA exist. This leads us to the following 
result. 

Theorem 12.2. Let b be fixed and consider the problem of computing x = 
A-1b, where A is square and nonsingular. The condition number of this prob­
lem with respect to perturbations in A is 

(12.18) 

Theorems 12.1 and 12.2 are of fundamental importance in numerical linear 
algebra, for they determine how accurately one can solve systems of equations. 
If a problem Ax = b contains an ill-conditioned matrix A, one must always 
expect to "lose log10 ~t(A) digits" in computing the solution, except under 
very special circumstances. We shall return to this phenomenon later, and 
analogous results for least squares problems will be discussed in Lecture 18. 
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Exercises 

12.1. Suppose A is a 202 x 202 matrix with IIAII2 = 100 and IIAIIF = 101. 
Give the sharpest possible lower bound on the 2-norm condition number K(A). 

12.2. In Example 11.1 we remarked that polynomial interpolation in equi­
spaced points is ill-conditioned. To illustrate this phenomenon, let x1, ... , x" 
a~d y1, ... , Ym be n and m equispaced points from -1 to 1, respectively. 

(a) Derive a formula for them x n matrix A that maps ann-vector of data 
at {x;} to an m-vector ofsampled values {p(y;)}, where pis the degree n -1 
polynomial interpolant of the data (see Example 1.1). 

(b) Write a program to calculate A and plot IIAIIoo on a semilog scale for 
n = 1, 2, ... , 30, m = 2n - 1. In the continuous limit m - oo, the numbers 
IIAIIoo are known as the Lebesgue constants for equispaced interpolation, which 
are asymptotic to 2" j(e(n- 1) log n) as n- oo. 

(c) For n = 1, 2, ... , 30 and m = 2n-1, what is the co-norm condition number 
K of the problem of interpolating the constant function 1? Use (12.6). 

(d) How close is your result for n = 11 to the bound implicit in Figure 11.1? 

12.3. The goal of this problem is to explore some properties of random matri­
ces. Your job is to be a laboratory scientist, performing experiments that lead 
to conjectures and more refined experiments. Do not try to prove anything. 
Do produce well-designed plots, which are worth a thousand numbers. 

Define a random matrix to be an m x m matrix whose entries are indepen­
dent samples from the real normal distribution with mean zero and standard 
deviation m-112• (In MATLAB, A = randn(m,m)/sqrt(m).) The factor .;m 
is introduced to make the limiting behavior clean as m-oo. 

(a) What do the eigenvalues of a random matrix look like? What happens, 
say, if you take 100 random matrices and superimpose all their eigenvalues in a 
single plot? If you do this form= 8, 16, 32, 64, ... , what pattern is suggested? 
How does the spectral radius p(A) (Exercise 3.2) behave as m-oo? 

(b) What about norms? How does the 2-norm of a random matrix behave as 
m - oo? Of course, we must have p(A) ~ IIAII (Exercise 3.2). Does this 
inequality appear to approach an equality as m - oo ? 
(c) What about condition numbers-or more simply, the smallest singular 
value u min? Even for fixed m this question is interesting. What proportions 
of random matrices in 1Rmxm seem to have umin ~ 2-1, 4-1, s-1, ... ? In other 
words, what does the tail of the probability distribution of smallest singular 
values look like? How does the scale of all this change with m? 
(d) How do the answers to (a)-( c) change if we consider random triangular in­
stead of full matrices, i.e., upper-triangular matrices whose entries are samples 
from the same distribution as above? 
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It did not take long after the invention of computers for consensus to emerge 
on the right way to represent real numbers on a digital machine. The secret is 
floating point arithmetic, the hardware analogue of scientific notation. Before 
we can begin to study the accuracy of the algorithms of numerical linear 
algebra, we must examine this topic. 

Limitations of Digital Representations 

Since digital computers use a finite number of bits to represent a real number, 
they can represent only a finite subset of the real numbers (or the complex 
numbers, which we discuss at the end ofthis lecture). This limitation presents 
two difficulties. First, the represented numbers cannot be arbitrarily large or 
small. Second, there must be gaps between them. 

Modern computers represent numbers sufficiently large and small that the 
first constraint rarely poses difficulties. For example, the widely used IEEE 
double precision arithmetic permits numbers as large as 1. 79 x 10308 and as 
small as 2.23x 10-308, a range great enough for most of the problems considered 
in this book. In other words, overflow and underflow are usually not a serious 
hazard (but watch out if you are asked to evaluate a determinant!). 

By contrast, the problem of gaps between represented numbers is a con­
cern throughout scientific computing. For example, in IEEE double precision 
arithmetic, the interval [1, 2] is represented by the discrete subset 

1, 1 + 2-52, 1 + 2 X 2-52, 1 + 3 X 2-52 , ••• , 2. (13.1) 
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The interval [2, 4] is represented by the same numbers multiplied by 2, 

2, 2 + 2-51, 2 + 2 X 2-51 , 2 + 3 X 2-51, ••• , 4, 

and in general, the interval [2i,2i+l] is represented by (13.1) times 2i. Thus 
in IEEE double precision arithmetic, the gaps between adjacent numbers are 
in a relative sense never larger than 2-52 ~ 2.22 x 10-16• This may seem 
negligible, and so it is for most purposes if one uses stable algorithms (see the 
next lecture). But it is surprising how many carelessly constructed algorithms 
tum out to be unstable! 

Floating Point Numbers 

IEEE arithmetic is an example of an arithmetic system based on a floating 
point representation of the real numbers. This is the universal practice on 
general purpose computers nowadays. In a :O.oating point number system, the 
position of the decimal (or binary) point is stored separately from the digits, 
and the gaps between adjacent represented numbers scale in proportion to the 
size of the numbers. This is distinguished from a fixed point representation, 
where the gaps are all of the same size. 

Specifically, let us consider an idealized :O.oating point number system de­
fined as follows. The system consists of a discrete subset F of the real numbers 
R determined by an integer {J ;::: 2 known as the base or radix (typically 2) 
and an integer t;::: 1 known as the precision (24 and 53 for IEEE single and 
double precision, respectively). The elements ofF are the number 0 together 
with all numbers of the form 

(13.2) 

where m is an integer in the range 1 ~ m ~ pt and e is an arbitrary integer. 
Equivalently, we can restrict the range to pt-1 ~ m ~ pt- 1 and thereby 
make the choice of m unique. The quantity ±(m/{Jt) is then known as the 
fraction or mantissa of x, and e is the exponent. 

Our :O.oating point number system is idealized in that it ignores over- and 
under:O.ow. As a result, F is a countably infinite set, and it is self-similar: 
F = {JF. 

Machine Epsilon 

The resolution of F is traditionally summarized by a number known as ma­
chine epsilon. Provisionally, let us define this number by 

1(.l1-t 
€machine = 2fJ · (13.3) 

(We shall modify the definition after (13.7).) This number is half the distance 
between 1 and the next larger :O.oating point number. In a relative sense, this 
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is as large as the gaps between floating point numbers get. That is, emachine 

has the following property: 

For all x E 1R, there exists x' E F such that lx- x'l ~ Emachinelxl. (13.4) 

For the values of {3 and t common on various computers, emachine usually lies be­
tween 10-6 and 10-35• In IEEE single and double precision arithmetic, emachine 

is specified to be 2-24 ~ 5.96 x 10-8 and 2-53 ~ 1.11 x 10-16, respectively. 
Let fl : 1R ~ F be a function giving the closest floating point approxi­

mation to a real number, its rounded equivalent in the floating point system. 
(For our purposes, ties can be broken arbitrarily, though the treatment of ties 
so as to avoid statistical bias is an interesting matter in itself.) The inequality 
(13.4) can be stated in terms of fl: 

For all x E 1R, there exists f with lei ~ €machine 

such that fl(x) = x(1 +e). 
(13.5) 

That is, the difference between a real number and its closest floating point 
approximation is always smaller than emachine in relative terms. 

Floating Point Arithmetic 

It is not enough to represent real numbers, of course; one must compute with 
them. On a computer, all mathematical computations are reduced to certain 
elementary arithmetic operations, of which the classical set is +, -, x , and +. 
Mathematically, these symbols represent operations on 1R. On a computer, 
they have analogues that are operations on F. It is common practice to denote 
these floating point operations by ffi, e, ®, and @. 

A computer might be built on the following design principle. Let x and 
y be arbitrary floating point numbers, that is, x, y E F. Let * be one of the 
operations +, -, x, or +, and let ® be its floating point analogue. Then 
x ® y must be given exactly by 

(13.6) 

If this property holds, then from (13.5) and (13.6) we conclude that the com­
puter has a simple and powerful property. 

Fundamental Axiom of Floating Point Arithmetic 

For all x, y E F, there exists e with lei ~ €machine such that 

(13.7) 

In words, every operation of floating point arithmetic is exact up to a relative 
error of size at most €machine· 
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Machine Epsilon, Again 

The rounding error analysis in this book is based on (13.5) and (13. 7), not on 
the other details of :Boating point arithmetic described above. This means that 
we can be generous in allowing for hardware implementations that may not 
perform :Boating point computations as perfectly as indicated by (13.6). For 
such a machine, (13.5) and (13.7) may still be satisfied if «:machine is replaced by 
a somewhat larger value. For example, on a computer in which intermediate 
quantities are truncated rather than rounded, (13.7) may hold with Emachine 

replaced by 2Emachine· 

The simplest way to allow for such complications is to retain (13.5) and 
(13.7) as written, but to modify the definition of Emachine· From now on, let 
us assume that Emachine is defined not by (13.3), but as the smallest number 
for which (13.5) and (13.7) hold. For most computers, including all those 
implementing IEEE arithmetic, this change in the definition of Emachine makes 
no significant change in its value. 

Occasionally an unexpectedly large value of «:machine may be needed to 
make (13.7) hold. In late 1994 the Intel Pentium™ microprocessor acquired 
notoriety when it was discovered that because of a bug in a table used in 
implementing the double precision IEEE standard, its effective precision was 
eleven orders of magnitude too coarse, Emachine ~ 6.1 x 10-5• (The bug was 
soon corrected.) In fact, there are machines for which (13.7) holds only with 
«:machine = 1. For example, :Boating point subtraction on Cray computers 
produced up to the mid-1990s had this property, because the operation of 
subtraction was implemented without a "guard digit." Such computers are 
not useless, but they demand a different style of error analysis from the one 
in this book. 

Fortunately, the benefits of the axiom (13.7), and of the adoption of uni­
form standards of computer arithmetic, have become widely accepted by com­
puter manufacturers in recent years, and the number of machines on the mar­
ket that fail to satisfy ( 13. 7) with a small value of «:machine is dwindling. Indeed, 
IEEE arithmetic itself is rapidly becoming the standard for computers of all 
sizes, including, as of 1996, all IBM-compatible personal computers and all 
workstations manufactured by SUN, DEC, Hewlett-Packard, and IBM. 

Complex Floating Point Arithmetic 

Floating point complex numbers are generally represented as pairs of :Boating 
point real numbers, and the elementary operations upon them are computed 
by reduction to real and imaginary parts. The result is that the axiom (13. 7) 
is valid for complex as well as real :Boating point numbers, except that for ® 
and@, Emachine must be enlarged from (13.3) by factors on the order of 2 312 

and 2 512, respectively. Once «:machine is adjusted in this manner, rounding error 
analysis for complex numbers can proceed just as for real numbers. 
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Exercises 

13.1. Between an adjacent pair of nonzero IEEE single precision real numbers, 
how many IEEE double precision numbers are there? 

13.2. The :O.oating point system F defined by (13.2) includes many integers, 
but not all of them. 

(a) Give an exact formula for the smallest positive integer n that does not 
belong to F. 
(b) In particular, what are the values of n for IEEE single and double precision 
arithmetic? 

(c) Figure out a way to verify this result for your own computer. Specifically, 
design and run a program that produces evidence that n- 3, n- 2, and n- 1 
belong to F but n does not. What about n + 1, n + 2, and n + 3? 

13.3. Consider the polynomialp(x) = (x- 2)9 = x9 -18x8 + 144x7 - 672x6 + 
2016x5 - 4032x4 + 5376x3 - 4608x2 + 2304x- 512. 
(a) Plot p(x) for x = -1.920,-1.919,-1.918, ... ,2.080, evaluating p via its 
coefficients 1, -18, 144, .... 

(b) Produce the same plot again, now evaluating p via the expression (x- 2)9 • 

13.4. The polynomial p(x) = x5 - 2x4 - 3x3 + 3x2 - 2x- 1 has three real 
zeros. Applying Newton's method top with initial guess x0 = 0 produces a 
series of estimates x1, x2, x3 ••• that converge rapidly to a zero x. ~ -0.315. 

{a) Compute x1, ••• , x6 in floating point arithmetic with €machine ~ 10-16• How 
many digits do you estimate are correct in each of these numbers? 

(b) Compute x1, ... , x 6 again exactly with the aid of a symbolic algebra system 
such as MAPLE or MATHEMATICA. Each X; is a rational number. How many 
digits are there in the numerator and the denominator for each j? 



Lecture 14. Stability 

It would be a fine thing if numerical algorithms could provide exact solu­
tions to numerical problems. Since the problems are continuous while digital 
computers are discrete, however, this is generally not possible. The notion 
of stability is the standard way of characterizing what is possible--numerical 
analysts' idea of what it means to get the "right answer," even if it is not 
exact. 

Algorithms 

In Lecture 12, we defined a mathematical problem as a function f : X -+ Y 
from a vector space X of data to a vector space Y of solutions. 

An algorithm can be viewed as another map j : X -+ Y between the 
same two spaces. We make this definition precise as follows. Let a problem 
j, a computer whose :O.oating point system satisfies (13.7) {but not necessarily 
(13.6)), an algorithm for f (in the loose sense of the term), and an implemen­
tation of this algorithm in the form of a computer program be fixed. Given 
data x E X, let this data be rounded to :O.oating point in a matter satisfying 
{13.5) and then supplied as input to the computer program. Now, run the 
program. The result is a collection of :O.oating point numbers that belong to 
the vector space Y (since the algorithm was designed to solve f). Let this 
computed result be called /(x). 

The situation couldn't be uglier! As a minimum, /(x) will be affected by 
rounding errors. Depending on the circumstances, it may also be affected by all 
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kinds of other complications such as convergence tolerances or even the other 
jobs running on the computer, in cases where the assignment of computations 
to processors is not determined until runtime. Thus the "function" j(x) may 
even take different values from one run to the next; it may be multivalued. {In 
fact, the problem f should really be allowed to be multivalued too; this permits 
handling of cases where a nonunique solution is acceptable, e.g., either of the 
two square roots of a complex number.) Yet despite all these complications, 
we shall find that we can make surprisingly clean statements about j(x), and 
hence about the accuracy of the algorithms of numerical linear algebra, based 
only on the fundamental axioms {13.5) and {13.7). 

The tilde (-) notation is very convenient. Just as f is the computed ana­
logue of f, other computed quantities in this book will frequently be marked 
by tildes. For example, the computed solution to a system of equations Ax = b 
may be denoted by x. 

Accuracy 

Except in trivial cases, j cannot be continuous. Nevertheless, a good algo­
rithm should approximate the associated problem f. To make this idea quan­
titative, we may consider the absolute error of a computation, llf{x)- f(x)ll, 
or the relative error, 

llf(x)- f(x)ll 
llf(x)ll 

{14.1) 

In this book we mainly utilize relative quantities, and thus (14.1) will be our 
standard error measure. 

If j is a good algorithm, one might naturally expect the relative error to 
be small, of order €machine· One might say that an algorithm J for a problem 
f is accurate if for each x E X, 

llf(x)- f(x)ll 
IIJ{x)ll = O(Emachine)· (14.2) 

Loosely speaking, the symbol O(Emachine) in (14.3) means "on the order of 
machine epsilon." However, 0( €machine) also has a precise meaning, which we 
shall discuss in a moment. That discussion will also clarify how a formula like 
{14.2) is to be interpreted if the denominator is zero. 

Stability 

If the problem f is ill-conditioned, however, the goal of accuracy as defined by 
(14.2) is unreasonably ambitious. Rounding of the input data is unavoidable 
on a digital computer, and even if all the subsequent computations could 
be carried out perfectly, this perturbation alone might lead to a significant 
change in the result. Instead of aiming for accuracy in all cases, the most it 
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is appropriate to aim for in general is stability. We say that an algorithm j 
for a problem I is stable if for each x E X, 

11/(x) - l(x)ll = O( . ) 
lll(x)ll €machine 

for some x with 
llx-xll 

In words, 

llxll = O(fmachine)· 

A stable algorithm gives nearly the right answer 
to nearly the right question. 

(14.3) 

{14.4) 

The motivation for this definition will become clear in the next lecture and in 
applications throughout the remainder of this book. 

We caution the reader that whereas the definitions of stability given here 
are useful in many parts of numerical linear algebra, the condition 0( €machine) 

is probably too strict to be appropriate for all numerical problems in other 
areas such as differential equations. 

Backward Stability 

Many algorithms of numerical linear algebra satisfy a condition that is both 
stronger and simpler than stability. We say that an algorithm j for a problem 
I is backward stable if for each x E X, 

1-() I(-) .r _ • h llx-xll O( ) 
X = X tOr SOme X Wit llxll = €machine • (14.5) 

This is a tightening of the definition of stability in that the 0( €machine) in 
(14.3) has been replaced by zero. In words, 

A backward stable algorithm gives exactly the right answer 
to nearly the right question. 

Examples are given in the next lecture. 

The Meaning of 0( €machine) 

We now explain the precise meaning of" O(Emachine)" in (14.2)-(14.5). 
The notation 

~(t) = O(~(t)) {14.6) 

is a standard one in mathematics, with a precise definition. This equation 
asserts that there exists some positive constant C such that, for all t sufficiently 
close to an understood limit (e.g., t --+ 0 or t --+ oo ), 

l~(t)l ~ C~(t). (14.7) 
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For example, the statement sin2 t = O(t2 ) as t ~ 0 asserts that there exists a 
constant C such that, for all sufficiently small t, I sin2tl ~ Ct2 • 

Also standard in mathematics are statements of the form 

rp(s, t) = O(.,P(t)) uniformly ins, {14.8) 

where rp is a function that depends not only on t but also on another variable 
s. The word "uniformly" indicates that there exists a single constant C as in 
(14.7) that holds for all choices of s. Thus, for example, 

holds uniformly as t ~ 0, but the uniformity is lost if we replace sin2 s by s2• 

In this book, our use of the "0" symbol follows these standard definitions. 
Specifically, we often state results along the lines of 

II computed quantity II = 0( €machine)· {14.9) 

Here is what (14.9) means. First, "llcomputed quantityll" represents the norm 
of some number or collection of numbers determined by an algorithm / for a 
problem /, depending both on the data x E X for f and on €machine· An exam­
ple is the relative error (14.1). Second, the implicit limit process is «:machine~ 0 
(i.e., €machine is the variable corresponding to t in (14.8)). Third, the "0" ap­
plies uniformly for all data x E X (i.e., x is the variable corresponding to s ). 
We shall rarely mention the uniformity with respect to x E X, but it is always 
implicit. 

In any particular machine arithmetic, the number «:machine is a fixed quan­
tity. In speaking of the limit «:machine ~ 0 , we are considering an idealization 
of a computer, or perhaps one should say, of a family of computers. Equation 
(14.9) means that if we were to run the algorithm in question on computers 
satisfying {13.5) and {13.7) for a sequence of values of «:machine decreasing to 
zero, then llcomputed quantityll would be guaranteed to decrease in propor­
tion to «:machine or faster. These ideal computers are required to satisfy (13.5) 
and (13. 7) but nothing else. 

Dependence on m and n, not A and b 

It cannot hurt to discuss the meaning of O(c:machine) in (14.2)-(14.5) a bit 
further. The uniformity of the constant implicit in the "0" can be illustrated 
by the following example. Suppose we are considering an algorithm for solving 
a nonsingular m x m system of equations Ax = b for x, and we assert that 
the computed result x for this algorithm satisfies 

{14.10) 
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This assertion means that the bound 

llx-xll 
llxll ~ c~(A) Emachine (14.11) 

holds for a single constant C, independently of the matrix A or the right-hand 
side b, for all sufficiently small «:machine· 

If the denominator in a formula like (14.11) is zero, its meaning is defined 
by the following convention. When we write (14.11), what we really mean is 

(14.12) 

There is no difference if llxll =f. 0, but if llxll = 0, {14.12) makes it clear that 
the precise meaning of (14.10) is that llx- xll = 0 for all sufficiently small 
Emachine• 

Though the constant C of (14.11} or (14.12) does not depend on A orb, 
it does depend, in general, on the dimension m. Formally speaking, this is a 
consequence of our definition of a problem in Lecture 12. If the dimensions 
such as m or n that define a problem f change, then the vector spaces X 
and Y must change too, and thus we have a new problem, f'. As a practical 
matter, too, the effects of rounding errors on the algorithms of numerical linear 
algebra generally grow with m and n. However, this growth is usually slow 
enough that it is not serious. The dependence on morn is typically linear, 
quadratic, or cubic in the worst case (the exponent depends on the choice of 
norm as well as the choice of algorithm), and the errors for most data are 
much smaller than in the worst case, thanks to statistical cancellation. 

In principle, a statement like (14.9} might conceal a dimension-dependent 
factor such as 2m that would make the bound useless in practice. However, 
there is only one place in this book where such a thing happens-in the dis­
cussion of Gaussian elimination with partial pivoting-and we shall give the 
reader ample warning at that point to avoid misunderstanding. As a rule, 
when the expression 0( Emachine) is printed in this book, the chances are that 
in an actual calculation on an actual machine, the quantity in question will 
be at most 100 or perhaps 1000 times as large as «:machine· 

Independence of Norm 

Our definitions involving 0( Emachine) have the convenient property that, pro­
vided X andY are finite-dimensional, they are norm-independent. 

Theorem 14.1. For problems f and algorithms j defined on finite-dimension­
al spaces X andY, the properties of accuracy, stability, and backward stability 
all hold or fail to hold independently of the choice of norms in X and Y. 

Proof. It is well known (and easily proved) that in a finite-dimensional vector 
space, all norms are equivalent in the sense that if 11·11 and 11·11' are two norms 
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on the same space, then there exist positive constants C1 and C2 such that 
C1 llxll ~ llxll' ~ C2 llxll for all x in that space. It follows that a change of 
norm may affect the size of the constant C implicit in a statement involving 
0( €machine), but not the existence of such a constant. D 

Exercises 

14.1. True or False? 

(a) sinx = 0(1) as x- oo. 

(b) sinx = 0(1) as x- 0. 

(c) logx = O(x11100) as x- oo. 

(d) n! = O((nfe)•) as n- oo. 

(e) A= O(V213) as V- oo, where A and V are the surface area and volume 
of a sphere measured in square miles and cubic microns, respectively. 

(f) :8(1r)- 7f = O(emachine)· (We do not mention that the limit is €machine- 0, 
since that is implicit for all expressions 0( €machine) in this book.) 

(g) :O.(n7r) -n1r = O(emachine), uniformly for all integers n. (Here n1r represents 
the exact mathematical quantity, not the result of a :Boating point calculation.) 

14.2. (a) Show that {1 + O{t:machine))(1 + O(emachine)) = 1 + O(emachine)· 
The precise meaning of this statement is that if f is a function satisfying 
/(t:machine) = (1 + O(t:machine))(1 + O(t:machine)) as t:machine - 0, then J also 
satisfies /( €machine) = 1 + 0( €machine) as €machine - 0. 

(b) Show that (1 + O(emachine))-1 = 1 + O(t:machine)· 



Lecture 15. More on Stability 

We continue the discussion of stability by considering examples of stable and 
unstable algorithms. Then we discuss a fundamental idea linking conditioning 
and stability, whose power has been proved in innumerable applications since 
the 1950s: backward error analysis. 

Stability of Floating Point Arithmetic 

The four simplest computational problems are+, -, x, and...;-. There is not 
much to say about choice of algorithms! Of course, we shall normally use 
the :O.oating point operations$, e, ®, and@ provided with the computer. 
As it happens, the axioms (13.5) and (13.7) imply that these four canonical 
examples of algorithms are all backward stable. 

Let us show this for subtraction, since this is the elementary operation one 
might expect to be at greatest risk of instability. As in Example 12.3, the 
data space X is the set of 2-vectors, C2, and the solution space Y is the set of 
scalars, C. By Theorem 14.1, we need not specify the norms in these spaces. 

For data x = (x1,x2)* E X, the problem of subtraction corresponds to 
the function /(x1, x2) = x1 - x2, and the algorithm we are considering can be 
written 

/(xl, x2) = :O.(xl) e :O.(x2). 

This equation means that we first round x1 and x2 to :O.oating point values, 
then apply the operation 8· Now by (13.5), we have 

:O.(x1) = x1(1 + c:1), :O.(x2) = x2(1 + c:2) 
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for some IE3 1 ~ Emachine· Combining these equations gives 

fl(xl) e fl(x2) = [x1(1 + €1)- x2(1 + f2)](1 + fs) 
= x1(1 + e1)(1 + e3)- x2(1 + e2)(1 + e3 ) 

= x1(1 + e4)- x2(1 + e5 ) 
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for some le4 1, le51 ~ 2ew.achine + O(e!achine) (see Exercise 14.2). In other words, 
the computed result f(x) = fl(xl) e fl(x2) is exactly equal to the difference 
zl - x2, where xl and x2 satisfy 

and any C > 2 will suffice for the constants implicit in the "0" symbols. For 
any choice of norm 11·11 in the space C2, this implies (14.5). 

Further Examples 

Example 15.1. Inner Product. Suppose we are given vectors x, y E em 
and wish to compute the inner product a= x*y. The obvious algorithm is to 
compute the pairwise products XiYi with® and add them with EB to obtain 
a computed result a. It can be shown that this algorithm is backward stable; 
this is done implicitly in Lecture 17. o 

Example 15.2. Outer Product. On the other hand, suppose we wish to 
compute the rank-one outer product A = xy* for vectors X E em' y E en. 
The obvious algorithm is to compute the mn products X/Y; with® and collect 
them into a matrix A. This algorithm is stable, but it is not backward stable. 
The explanation is that the matrix A will be most unlikely to have rank 
exactly 1, and thus it cannot generally be written in the form (x+6x)(y+6y)*. 
As a rule, for problems where the dimension of the solution space Y is greater 
than that of the problem space X, backward stability is rare. 0 

Example 15.3. Suppose we use ffi to compute x + 1, given x E e: J(x) = 
fl(x)ffil. This algorithm is stable but not backward stable. The reason is that 
for x ~ 0, the addition EB will introduce absolute errors of size O(fmachine). 
Relative to the size of x, these are unbounded, so they cannot be interpreted 
as caused by small relative perturbations in the data. This example indicates 
that backward stability is a rather special property, a reasonable goal in some 
contexts but not others. Note that if the problem had been to compute x + y 
for data x and y, then the algorithm would have been backward stable. 0 
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Example 15.4. What is it reasonable to expect of a computer program or 
calculator that computes sinx or cosx? Again the answer is stability, not 
backward stability. For cos x, this follows from the fact that cos 0 ::/= 0, as 
in the previous example. For both sin x and cos x, backward stability is also 
ruled out by the fact that the function has derivative equal to zero at certain 
points. For example, suppose we evaluate f(x) = sinx on a computer for 
x = 7r/2- 6, 0 < 6 « 1. Suppose we are lucky enough to get as a computed 
result the exactly correct answer, rounded to the floating point system: /(x) = 
:O.(sinx). Since f'(x) = cosx ~ 6, we have /(x) = f(x) for some x with 
X- x ~ (/(x)- f(x))/6 = O(Emachine/6). Since 6 can be arbitrarily small, this 
backward error is not of magnitude O(Emachine)· D 

An Unstable Algorithm 

These are toy examples. Here is a more substantial one: the use of the char­
acteristic polynomial to find the eigenvalues of a matrix. 

Since z is an eigenvalue of A if and only if p(z) = 0, where p(z) is the 
characteristic polynomial det(zl- A), the roots of pare the eigenvalues of A 
(Lecture 24). This suggests a method for computing the eigenvalues: 

1. Find the coefficients of the characteristic polynomial, 

2. Find its roots. 

This algorithm is not only backward unstable but unstable, and it should 
not be used. Even in cases where extracting eigenvalues is a well-conditioned 
problem, it may produce answers that have relative errors vastly larger than 
€machine· 

The instability is revealed in the rootfinding of the second step. As we 
saw in Example 12.5, the problem of finding the roots of a polynomial, given 
the coefficients, is generally ill-conditioned. It follows that small errors in the 
coefficients of the characteristic polynomial will tend to be amplified when 
finding roots, even if the rootfinding is done to perfect accuracy. 

For example, suppose A= I, the 2x2 identity matrix. The eigenvalues of A 
are insensitive to perturbations of the entries, and a stable algorithm should 
be able to compute them with errors O(Emachine)· However, the algorithm 
described above produces errors on the order of y'Emachine· To explain this, we 
note that the characteristic polynomial is x2 - 2x + 1, just as in Example 12.5. 
When the coefficients of this polynomial are computed, they can be expected 
to have errors on the order of €machine' and these can cause the roots to change 
by order y'Emachine· For example, if €machine = w-16, the roots ofthe computed 
characteristic polynomial can be perturbed from the actu·al eigenvalues by 
approximately w-8, a loss of eight digits of accuracy. 

Before you try this computation for yourself, we must be a little more 
honest. If you use the algorithm just described to compute the eigenvalues of 
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the 2 x 2 identity matrix, you will probably find that there are no errors at 
all, because the coefficients and roots of x2 - 2x + 1 are small integers that 
will be represented exactly on your computer. However, if the experiment is 
done on a slightly perturbed matrix, such as 

A = [ 1 + 10-14 0 ] 
0 1 ' 

the computed eigenvalues will differ from the actual ones by the expected 
order Jemachine· Try it! 

Accuracy of a Backward Stable Algorithm 

Suppose we have a backward stable algorithm j for a problem f: X--. Y. 
Will the results it delivers be accurate? The answer depends on the condition 
number K. = ~t( x) of f. If ~t( x) is small, the results will be accurate in the 
relative sense, but if it is large, the accuracy will suffer proportionately. 

Theorem 15.1. Suppose a backward stable algorithm is applied to solve a 
problem f : X --. Y with condition number K. on a computer satisfying the 
axioms (13.5) and (13.7). Then the relative errors satisfy 

llf(x)- f(x)ll 
llf(x)ll = O(~t(x)emachine)· (15.1) 

Proof By the definition (14.5) of backward stability, we have J(x) = f(x) for 
some x E X satisfying 

By the definition (12.5) of ~t(x), this implies 

llf(x)- f(x)ll < (~t(x) + o(1)) IIi- xll 
11/(x)ll - llxll ' 

(15.2) 

where o(1) denotes a quantity that converges to zero as €machine --. 0. Com­
bining these bounds gives (15.1). o 

Backward Error Analysis 

The process we have just carried out in proving Theorem 15.1 is known as 
backward error analysis. We obtained an accuracy estimate by two steps. 
One step was to investigate the condition of the problem. The other was 
to investigate the stability of the algorithm. Our conclusion was that if the 
algorithm is stable, then the final accuracy reflects that condition number. 
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Mathematically, this is straightforward, but it is certainly not the first idea 
an unprepared person would think of if called upon to analyze a numerical 
algorithm. The first idea would be forward error analysis. Here, the rounding 
errors introduced at each step of the calculation are estimated, and somehow, 
a total is maintained of how they may compound from step to step. 

Experience has shown that for most of the algorithms of numerical linear 
algebra, forward error analysis is harder to carry out than backward error 
analysis. With the benefit of hindsight, it is not hard to explain why this is 
so. Suppose a tried-and-true algorithm is used, say, to solve Ax = b on a 
computer. It is an established fact (see Lecture 22) that the results obtained 
will be consistently less accurate when A is ill-conditioned. Now, how could 
a forward error analysis capture this phenomenon? The condition number 
of A is so global a property as to be more or less invisible at the level of the 
individual floating point operations involved in solving Ax = b. (We dramatize 
this by an example in the next lecture.) Yet one way or another, the forward 
analysis will have to detect that condition number if it is to end up with a 
correct result. 

In short, it is an established fact that the best algorithms for most problems 
do no better, in general, than to compute exact solutions for slightly perturbed 
data. Backward error analysis is a method of reasoning fitted neatly to this 
backward reality. 

Exercises 

15.1. Each of the following problems describes an algorithm implemented 
on a computer satisfying the axioms {13.5) and (13.7). For each one, state 
whether the algorithm is backward stable, stable but not backward stable, or 
unstable, and prove it or at least give a reasonably convincing argument. Be 
sure to follow the definitions as given in the text. 

(a) Data: x E C. Solution: 2x, computed as x EB x. 

(b) Data: x E C. Solution: x2, computed as x ® x. 

(c) Data: x E C \{0}. Solution: 1, computed as x(t)x. (A machine satisfying 
{13.6) will give exactly the right answer, but our definitions are based on the 
weaker condition (13.7).) 

(d) Data: X E c. Solution: 0, computed as X ex. (Again, a real machine 
may do better than our definitions based on {13.7).) 

(e) Data: none. Solution: e, computed by summing :Ek::o 1/k! from left to 
right using ® and ffi, stopping when a summand is reached of magnitude 
< €machine· 

(f) Data: none. Solution: e, computed by the same algorithm as above except 
with the series summed from right to left. 
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(g) Data: none. Solution: 1r, computed by doing an exhaustive search to find 
the smallest :fioating point number x in the interval [3,4] such that s(x) ® 
s(x') ~ 0. Here s(x) is an algorithm that calculates sin(x) stably in the given 
interval, and x' denotes the next :fioating point number after x in the :fioating 
point system. 

15.2. Consider an algorithm for the problem of computing the (full) SVD 
of a matrix. The data for this problem is a matrix A, and the solution is 
three matrices U (unitary), E (diagonal), and V (unitary) such that A = 
UEV*. (We are speaking here of explicit matrices U and V, not implicit 
representations as products of re:fiectors.) 

(a) Explain what it would mean for this algorithm to be backward stable. 

(b) In fact, for a simple reason, this algorithm cannot be backward stable. 
Explain. 
(c) Fortunately, the standard algorithms for computing the SVD (Lecture 31) 
are stable. Explain what stability means for such an algorithm. 



Lecture 16. Stability of Householder 
Triangularization 

In this lecture we see backward error analysis in action. First we observe in 
a MATLAB experiment the remarkable phenomenon of backward stability of 
Householder triangularization. We then consider how the triangularization 
step can be combined with other backward stable pieces to obtain a stable 
algorithm for solving Ax= b. 

Experiment 

Householder factorization is a backward stable algorithm for computing QR 
factorizations. We can illustrate this by a MATLAB experiment carried out in 
IEEE double precision arithmetic, emachine ~ 1.11 x 10-16• 

R = triu(randn(50)); 

[Q,X] = qr(randn(50)); 

[Q2,R2] = qr(A); 

Set R to a 50 x 50 upper-triangular 
matrix with normal random entries. 
Set Q to a random orthogonal matrix 
by orthogonalizing a random matrix. 
Set A to the product QR, up to round­
ing errors. 
Compute QR factorization A ~ Q2R2 

by Householder triangularization. 
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The purpose of these four lines of MATLAB is to construct a matrix with a 
known QR factorization, A = Q R, which can then be compared with the QR 
factorization A = Q2~ computed by Householder triangularization. Actually, 
because of rounding errors, the QR factors of the computed matrix A are not 
exactly Q and R. However, for the purposes of this experiment they are close 
enough. The results about to be presented would not be significantly different 
if A were exactly equal to QR (which we could achieve, in effect, by calculating 
A= QR in higher precision arithmetic on the computer). 

For Q2 and R2, as it happens, are very far from exact: 

norm(Q2-Q) 
ans = 0.00889 

norm(R2-R)/norm(R) 
ans = 0.00071 

How accurate is Q2? 

How accurate is ~? 

These errors are huge! Our calculations have been done with sixteen digits 
of accuracy, yet the final results are accurate to only two or three digits. The 
individual rounding errors have been amplified by factors on the order of 1013• 

(Note that the computed Q2 is close enough to Q to indicate that changes in 
the signs of the columns cannot be responsible for any of the errors. H you 
try this experiment and get entirely different results, it may be that you need 
to multiply the columns of Q and rows of R by appropriate factors ±1.} 

We seem to have lost twelve digits of accuracy. But now, an astonishing 
thing happens when we multiply these inaccurate matrices Q2 and ~: 

norm(A-Q2•R2)/norm(A) 
ans = 1.432e-15 

How accurate is Q2~? 

The product Q2R2 is accurate to a full fifteen digits! The errors in Q2 and 
~must be "diabolically correlated," as Wilkinson used to say. To one part 
in 1012, they cancel out in the product Q2~. 

To highlight how special this accuracy of Q2~ is, let us construct another 
pair of matrices Q3 and R3 that are equally accurate approximations to Q and 
R, and multiply them. 

Q3 = Q+le-4•randn(50); 

R3 = R+le-4•randn(50); 

norm(A-Q3•R3)/norm(A) 
ans = 0.00088 

Set Q3 to a random perturbation of Q 
that is closer to Q than Q2 is. 
Set Ra to a random perturbation of R 
that is closer toR than~ is. 
How accurate is Q3Ra? 

This time, the error in the product is huge. Q2 is no better than Q3, and~ is 
no better than R3, but Q2R2 is twelve orders of magnitude better than Q3R3• 
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In this experiment, we did not take the trouble to make R3 upper-triangular 
or Q3 orthogonal, but there would have been little difference had we done so. 

The errors in Q2 and ~ are forward errors. In general, a large forward 
error can be the result of an ill-conditioned problem or an unstable algorithm 
(Theorem 15.1). In our experiment, they are due to the former. As a rule, 
the sequences of column spaces of a random triangular matrix are exceedingly 
ill-conditioned as a function of the entries of the matrix. 

The error in Q2R2 is the backward error or residual. The smallness of this 
error suggests that Householder triangularization is backward stable. 

Theorem 

In fact, Householder triangularization is backward stable for all matrices A 
and all computers satisfying (13.5) and (13.7). We shall now state a theorem 
to this effect. As with most stability results in this book, we shall not give a 
proof. 

Our result will take the form 

(16.1) 

where 6A is small. In words, the computed Q times the computed R equals a 
small perturbation of the given matrix A. However, a subtlety arises in the way 
we shall use these symbols. By R, we mean just what one would expect: the 
upper-triangular matrix that is constructed by Householder triangularization 
in :Boating point arithmetic. By Q, however, we mean a certain matrix that is 
exactly unitary. Recall that Q is equal to the product Q = Q1Q2 • • • Q,. (10.7), 
where Qk is the Householder re:ftector defined by the vector vk (10.4) deter­
mined at the kth step of Algorithm 10.1. In the :Boating point computation, 
we obtain instead a sequence of vectors vk. Let Qk denote the exactly unitary 
re:ftector defined-mathematically, not on the computer-by the :Boating point 
vector vk. Now define 

(16.2) 

This exactly unitary matrix Q will take the role of our "computed Q." This 
definition may seem odd at first, but it is the natural one. In applications, 
as discussed in Lecture 10, the matrix Q is generally not formed explicitly 
anyway, so it would not be useful to define a "computed Q" of the more 
obvious kind. It is the vectors vk that are formed explicitly, and these are 
what enter into (16.2). 

Here is the theorem that explains our MATLAB experiment. 

Theorem 16.1. Let the QR factorization A= QR of a matrix A E cmxn be 
computed by Householder triangularization {Algorithm 10.1} on a computer 
satisfying the axioms (13.5) and (13.7), and let the computed factors Q and R 
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be defined as indicated above. Then we have 

(16.3) 

for some 6A E cmxn. 

As always in this book, the expression 0( Emachine) in (16.3) has the precise 
meaning discussed in Lecture 14. The bound holds as €machine __. 0, uniformly 
for all matrices A of any fixed dimensions m and n, but not uniformly with 
respect to m and n. Because all norms on a finite-dimensional vector space 
are equivalent, we need not specify the norm (Theorem 14.1). 

Analyzing an Algorithm to Solve A:.c = b 

We have seen that Householder triangularization is backward stable but not 
always accurate in the forward sense. (The same is true of most of the matrix 
factorizations of numerical linear algebra.) Now, QR factorization is generally 
not an end in itself, but a means to other ends such as solution of a system of 
equations, a least squares problem, or an eigenvalue problem. Is its backward 
stability enough to make it a satisfactory piece of a larger algorithm? That is, 
is accuracy of the product Q R enough for applications, or do we need accuracy 
of Q and R individually? 

The happy answer is that accuracy of Q R is indeed enough for most pur­
poses. We can show this by surprisingly simple arguments. 

The example we shall consider is the use of Householder triangularization 
to solve a nonsingular m x m linear system Ax = b. This idea was discussed at 
the end of Lecture 7. Here is a more complete statement of that algorithm. 

Algorithm 16.1. Solving Az = b by QR Factorization 
QR =A Factor A into QR by Algorithm 10.1, with Q represented 

as the product of reflectors. 

y = Q*b Construct Q*b by Algorithm 10.2. 

x = R-1y Solve the triangular system Rx = y by back substitution 
(Algorithm 17.1). 

This algorithm is backward stable, and proving this is straightforward, 
given that each of the three steps is itself backward stable. Here, we shall 
state backward stability results for the three steps, without proof, and then 
give the details of how they can be combined. 

The first step of Algorithm 16.1 is QR factorization of A, leading to com­
puted matrices R and Q. The backward stability of this process has already 
been expressed by (16.3). 

The second step is computation of Q*b by Algorithm 10.2. (Note that for 
the purposes of this argument we do not write Q*b, for at this point of the 
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computation, the first step is complete, and the matrix it has produced is not 
Q but Q.) When Q*b is computed by Algorithm 10.2, rounding errors will be 
made, so the result will not be exactly Q*b. Instead it will be some vector 
y. It can be shown that this vector satisfies the following backward stability 
estimate: 

(16.4) 

Like (16.3), this equality is exact. In words, the result of applying the House­
holder reflectors in :O.oating point arithmetic is exactly equivalent to multiply­
ing b by a slightly perturbed matrix, (Q + 8Q)-1. 

The final step of Algorithm 16.1 is back substitution to compute .R-1y. 
(Again, it is R and y that are available at this stage; R and y have nothing 
to do with it.) In this step new rounding errors will be introduced, but once 
more, the computation is backward stable. This time the estimate takes the 
form 

(R+8R)x = y, {16.5) 

As always, the equality on the left is exact. It asserts that the :O.oating point 
result x is the exact solution of a slight perturbation of the system Rx = y. 

In the next lecture we shall derive (16.5) in full detail-more interesting 
than it sounds! The result is stated as Theorem 17.1. 

Now, taking (16.3)-(16.5) as given, here is the theorem that results. This 
is typical of backward stability theorems that can be proved for many of the 
algorithms of numerical linear algebra. 

Theorem 16.2. Algorithm 16.1 is backward stable, satisfying 

(A+ .dA)x = b, (16.6) 

for some .dA E cmxm. 

Proof Composing (16.4) and (16.5), we have 

b = (Q + 8Q)(R + 8R)x = [QR + (8Q)R + Q(8R) + (8Q)(8R)]x. 

Therefore, by (16.3), 

b = [A+ 8A + (8Q)R + Q(8R) + (8Q)(8R)]x. 

This equation has the form 

b = (A+ .dA)x, 

where .dAis a sum of four terms. To establish (16.6), we must show that each 
of these terms is small relative to A. 
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Since QR =A+ oA and Q is unitary, we have 

IIRII < IIQ*IIIIA + oAII = o(1) 
IIAII- IIAII 

as Emachine --+ 0, by (16.3). (It is 1 + O(Emachine) if II ·II = 11·112, but we have 
made no assumptions about II · II·) This gives us 

by (16.4). Similarly, 

IIQ(oR)II - lloRII IIRII 
IIAII < IIQII IIRII iiAif = O(c:machine) 

by (16.5). Finally, 

ll(oQ)(oR)II lloRII 2 
IIAII ~ II6QIIliAif = O(c:machine)· 

The total perturbation AA thus satisfies 

11.1-AII II6AII ll(oQ)RII IIQ(oR)II ll(oQ)(oR)II 
lAil ~ lfAil + II All + II All + II All = o( c:machine), 

as claimed. 0 

Combining Theorems 12.2, 15.1, and 16.2 gives the following result about 
accuracy of solutions of Ax = b. 

Theorem 16.3. The solution i computed by Algorithm 16.1 satisfies 

(16. 7) 

Exercises 

16.1. (a) Let unitary matrices Q1, ... , Qlc E cm,m be fixed and consider the 
problem of computing, for A E cmxn, the product B = Qlc · • · Q1A. Let 
the computation be carried out from right to left by straightforward :Boating 
point operations on a computer satisfying {13.5) and (13. 7). Show that this 
algorithm is backward stable. (Here A is thought of as data that can be 
perturbed; the matrices Q; are fixed and not to be perturbed.) 
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(b) Give an example to show that this result no longer holds if the unitary 
matrices Q; are replaced by arbitrary matrices X; E cmxm. 

16.2. The idea of this exercise is to carry out an experiment analogous to the 
one described in this lecture, but for the SVD instead of QR factorization. 

(a) Write a MATLAB program that constructs a 50 x 50 matrix A=U•S•V', 
where U and V are random orthogonal matrices and S is a diagonal matrix 
whose diagonal entries are random uniformly distributed numbers in [0, 1], 
sorted into nonincreasing order. Have your program compute [U2,S2, V2] = 
svd(A) and the norms of U-U2, V-V2, S-S2, and A-U2•S2•V2'. Do this for 
five matrices A and comment on the results. (Hint: Plots of diag(U2'•U) and 
diag(V2'•V) may be informative.) 

(b) Fix the signs in your computed SVD so that the difficulties of (a) go away. 
Run the program again for five random matrices and comment on the various 
norms. Do they have a connection with cond (A)? 
(c) Replace the diagonal entries of S by their sixth powers and repeat (b). Do 
you see significant differences between the results of this exercise and those of 
the experiment for QR factorization? 



Lecture 17. Stability of Back Substitution 

One of the easiest problems of numerical linear algebra is the solution of a 
triangular system of equations. The standard algorithm is successive substi­
tution, called back substitution when the system is upper-triangular. Here we 
show in full detail that this algorithm is backward stable, obtaining quantita­
tive bounds on the effects of rounding errors, with no "0( Emachine)". 

Triangular Systems 

We have seen that a general system of equations Ax = b can be reduced to 
an upper-triangular system Rx = y by QR factorization. Lower- and upper­
triangular systems also arise in Gaussian elimination, in Cholesky factoriza­
tion, and in numerous other computations of numerical linear algebra. These 
systems are easily solved by a process of successive substitution, called for­
ward substitution if the system is lower-triangular and back substitution if it 
is upper-triangular. Although the two cases are mathematically identical, for 
definiteness, we treat back substitution in this lecture. 

Suppose we wish to solve Rx = b, that is, 

ru r12 rlm xl bl 

r22 x2 b2 
(17.1) = 

rmm Xm bm 
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where b E C.,. and R E cmxm, nonsingular and upper-triangular, are given, 
and x E em is unknown. We can do this by solving for the components 
of x one after another, beginning with xm and finishing with x1. For later 
convenience we write the algorithm as a sequence of formulas rather than a 
loop. 

Algorithm 17.1. Back Substitution 

xm - bmfrmm 

xm-1 (bm-1- xmrm-1,m)/ rm-1,m-1 

x.,._2 (bm-2- xm-1r m-2,m-1- xmr m-2, ... ) I r m-2,m-2 

The structure is triangular, with a subtraction and a multiplication at each 
position. The operation count is accordingly twice the area of an m x m 
triangle: 

Work for back substitution: "' m2 flops. (17.2) 

Backward Stability Theorem 

In the last lecture, back substitution appeared as one of three steps in the 
solution of Ax = b by QR factorization. In (16.3}-(16.5) we asserted that 
each of these steps is backward stable, but we did not prove these claims. In 
this lecture we shall fill one of these gaps by deriving a bound that implies 
(16.5). Our argument is an example of how proofs of backward stability are 
organized. This will be the only case in this book in which we give all the 
details of such a proof. 

Before we can prove that Algorithm 17.1 is backward stable, however, we 
must pin down one detail of the algorithm that is not specified by the formulas 
as written. Let us decide, arbitrarily, that in the expressions in parentheses 
above, the subtractions will be carried out from left to right. (Other orders 
are also stable; only the details of the estimates are different.) Now we can 
state our theorem. 

Theorem 17 .1. Let Algorithm 17.1 be applied to a problem ( 17.1) consisting 
of floating point numbers on a computer satisfying (13.7). This algorithm is 
backward stable in the sense that the computed solution x E em satisfies 

(R+6R)x = b (17.3) 
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for some upper-triangular 6R E cmxm with 

Specifically, for each i,j, 

l6ri;l 2 
-,-, ~ memachine + 0( €machine). 

ri; 

123 

(17.4) 

(17.5) 

In (17.5) and throughout this lecture, we continue to use the convention 
of (14.12) that if the denominator is zero, the numerator is implicitly asserted 
to be zero also (for all sufficiently small €machine). 

To keep the ideas clear and interesting, our proof will be most leisurely. 

m=l 
According to (17.3), our task is to express every floating point error as a 
perturbation of the input. Let us begin with the simplest case, where R is of 
dimension 1 x 1. Back substitution in this case consists of a single step, 

fl=b1@ru. 

(Recall from Lecture 13 that @, ®, ffi, and 8 denote :O.oating point opera­
tions.) The axiom (13.7) for@ guarantees that the computed solution is close 
to correct: 

However, we would like to express the error as if it resulted from a perturbation 
in R. To this end, we set 4 = -ed(1 + E1), whereupon the formula becomes 

f1 = (:1 t.)' 141 ~ emachine + O(e~achine)· 
ru + 1 

(17.6) 

Note that e~ is equal to -e1 plus a term of order e12• We can freely move 
small relative perturbations from numerators to denominators or vice versa, 
and the result changes by terms of order E~achine (Exercise 14.2(b )). 

In (17.6}, the equality is exact; the division is mathematical, not :O.oating 
point. The formula states that 1 x 1 back substitution is backward stable, for 
f 1 is exactly the correct solution to a perturbed problem, namely 

(r11 + 6r11)x1 = b1, 

l6rul ( 2 ) 
-,-, ~ €machine + 0 €machine • ru 
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m=2 
The 2 x 2 case is slightly less trivial. Suppose we have an upper-triangular 
matrix R E C2x2 and a vector b E C2. The computation of x E C2 proceeds 
in two steps. The first is the same as in the 1 x 1 case: 

i2 = b2@ r22 = (:2 )' le1l ~ fmachine + O(e!achine)· (17.7) 
r22 + f1 

The second step is defined by the formula 

xl = (bl e (x2 ® r12)) ffi ru. 

To establish backward stability, we must express the errors in these three 
floating point operations as perturbations in the entries rii" 

The multiplication is easy; we use the axiom (13.7) directly, interpreting 
the floating point multiplication as a perturbation in r12: 

X1 = (bl e X2T12(l + f2)) ffi Tu, lf2l ~ fmachine• 

The division and subtraction are more subtle. First, we write the formula 
with exact mathematics according to (13.7): 

i 1 = (b1 - x2r12(1 + f2))(1 +fa)@ r11 (17.8) 

(bl - X2T12(1 + f2))(1 + fa) (1 ) 
- +~-

ru 
(17.9) 

Here (13.7) guarantees lfal, k4 1 ~ fmachine· Now we shift the fa and f4 terms 
from the numerator to the denominator, as before. This gives 

_ bl - X2T12(1 + f2) 
x1 = r11(1 + €a)(1 + ~)' 

with lc:SI, 1«=41 ~ fmachine + O(f!achine), or equivalently, 

_ bl - X2T12(1 + f2) 
xl = ru(1 + 2fs) ' (17.10) 

with lfsl ~ fmachine + O(f!achine)· This formula states that xl would be exactly 
correct if r22, r12, and r11 were perturbed by factors (1 + f1), (1 + f2), and 
(1+2e5), respectively. These perturbations can be summarized by the equation 

(R+oR)x = b, 

where the entries orii of oR satisfy 

[ lorul/lrul lor12l/lr12l ] = [ 2lfsl lf2l ] [ 2 1 ] ~ 
lor221/lr221 lfll ~ 1 fmachine + 0( machine)· 

(The "~" here and in similar results below is to be interpreted entrywise.) 
This formula guarantees lloRII/IIRII = O(fmachine) in any matrix norm and 
thus that 2 x 2 back substitution is backward stable. 
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m=3 
The analysis for a 3 x 3 matrix includes all the reasoning necessary for the 
general case. The first two steps are the same as before: 

ba 
Xa - ba @ raa = raa(1 + t:l), (17.11) 

(b e (- 101 )) e _ b2- Xar2s(1 + €2) 
X2 = 2 Xa 101 r23 \V T22 - (1 2 ) ' r22 + fa 

(17.12) 

where 

[ 2lt:al :::: ] ~ [ 2 ~ ] €machine + O(t:!aclrine)· 

The third step involves the computation 

(17.13) 

We convert the two ® operations in (17.13) to mathematical multiplication 
by introducing perturbations t:4 and t:5 : 

We convert the 8 operations to mathematical subtractions via perturbations 
€6 and €7: 

Finally, the @ is eliminated using t:8 ; let us immediately replace this by ~ 
with lt:8 1 :::; €machine + 0( f~achine) and put the result in the denominator: 

Now, the expression above has everything as we need it except the terms 
involving t:6 and t:7, which originated from operations 9. IT these are dis­
tributed, they will affect the number b1, whereas our aim is to perturb only 
the entries r;,;- The term involving t:7 is easily dispatched: we change t:7 to 4 
and move it to the denominator as usual. The term involving t:6 requires a 
new trick. We move it to the denominator too, but to keep the equality valid, 
we compensate by putting the new factor (1 + ~) into the r13 term as well. 
Thus 

_ b1 - x2r12(1 + t:4 ) - x3r13(1 + t:5)(1 + €'6 ) 

x1 = r11(1 + €e)(1 + €'7)(1 + t:~) 
Now r13 has two perturbations of size at most €machine, and r11 has three. 
In this formula, all the errors in the computation have been expressed as 
perturbations in the entries of R. 
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The result can be summarized as 

(R+ oR)x = b, 

where the entries or,; satisfy 

[ 
lorul/lrnl lor12l/lr12l lor1al/lr1all [ 3 1 

lor22l/lr22l 1or2al/lr2al ::; 2 

lor331/lraal 

General m 

The analysis in higher-dimensional cases is similar. For example, in the 5 x 5 
case we obtain the componentwise bound 

5 1 2 3 4 

IoRI 4 1 2 3 
::; 3 1 2 €machine + 0 ( f~achine) • (17.14) lRf 2 1 

1 

The entries of the matrix in this formula are obtained from three components. 
The multiplications xkr;k introduce €machine perturbations in the pattern 

®: 

0 1 1 1 1 
0 1 1 1 

0 1 1 
0 1 

0 

The divisions by rkk introduce perturbations in the pattern 

1 

G'l,.. 
'i/ . 

1 
1 

1 
1 

(17.15) 

(17.16) 

Finally, the subtractions also occur in the pattern (17.15), and, due to the 
decision to compute from left to right, each one introduces a perturbation on 
the diagonal and at each position to the right. This adds up to the pattern 

4 0 1 2 3 
3 0 1 2 

e = 2 o 1 (17.17) 
1 0 

0 

Adding (17.15), (17.16), and (17.17) produces the result in (17.14). This 
completes the proof of Theorem 17 .1. 
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Remarks 

The analysis leading to (17.14) is typical of backward error analysis for all 
kinds of floating point computations. The only raw ingredient is the floating 
point axiom (13.7), ensuring that each operation ffi, e, ®,or® (sometimes 
also floating point v) introduces a small relative error. One utilizes this 
axiom repeatedly and carefully, interpreting each error in the course of the 
calculation as an error in the initial data. Perturbations of order €machine are 
composed additively and moved freely between numerators and denominators, 
since the difference is of order t:!achine· 

More than one error bound can be derived for a given algorithm. In the 
present case, we could have perturbed b; as well as rii' avoiding the need for 
the trickery represented in (17.17). On the other hand, a final result in which 
only R is perturbed is appealingly clean. 

Equation (17.5) is a componentwise backward error bound, meaning that 
each entry ri; is perturbed by a quantity that is small relative to itself, not 
just relative to the norm of R. For example, if rii = 0, this entry undergoes no 
perturbation at all: oR has the same sparsity pattern as R. Some algorithms 
of numerical linear algebra satisfy componentwise backward error estimates, 
and some do not; in the latter case we must settle for a weaker normwise 
estimate such as (17.4). In the early decades of numerical analysis after the 
Second World War, most error estimates were obtained in the normwise form, 
whereas in more recent years there has been a shift toward componentwise 
analysis, since such results are sharper and algorithms that satisfy component­
wise bounds are less sensitive to scaling of variables. However, we shall not 
pursue these matters in this book. 

We close with a comment about the relationship between quantitative 
bounds like (17.5) or (17.14) and those such as (17.4) that we express in 
the O(t:machine) notation (Exercise 17.1). Why do we not dispense with crude 
statements like (17.4)? The reason is that quantitative bounds must include 
factors such as .;m or m, and these are norm-dependent, unmemorable, and 
often pessimistic in practice anyway because of statistical cancellation. We 
prefer to avoid such complications by expressing most of our results in terms 
of 0( fmachine)-which is, most assuredly, the form in which numerical analysts 
remember them. 

Exercises 

17.1. For any particular choice of norm II· 11, the bound (17.5) implies a more 
quantitative normwise bound than (17.4). Derive such bounds for the norms 
(a) II· 1!1, (b) II· 1!2, (c) II· lloo· 
17.2. A triangular system (17.1) is solved by back substitution. Exactly what 
does Theorem 17.1 imply about the error llx - xll? 
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17.3. Let L E cmxm be a unit lower-triangular matrix (i.e., with diagonal 
entries equal to 1). For convenience, write Lin the form 

1 

-£21 1 
' 

L = -i3,1 -i3,2 1 

-i 2 -i 3 m, m, 1 

and define M = L-1. 

(a) Derive a formula for mii (which may involve other entries of M). Which 
entries of L does mi; depend on? 
(b) Suppose the subdiagonal entries of L are independent random numbers 
±1 with equal probability. Fix k and define J..t.1 = m1c1:' J.1.2 = mlc+l,lc, J..t.3 = 
mlc+2,1c, • • • • Write down a system of recurrence relations with random coeffi­
cients for the numbers J..t.;. 
(c) Experiments show that random triangular matrices with entries ±1 are ex­
ponentially ill-conditioned in the sense that if K.m denotes the 2-norm condition 
number of a matrix ofthis kind of dimension m, then limm-+oo(K.m)1/m = C for 
some constant 1 < C < 1.5. (The limit process can be made precise in various 
ways, but we shall not go into the technicalities; think of it as holding ''with 
probability 1.") Perform numerical experiments involving random matrices 
of various dimensions to estimate C to 10% accuracy or better. 

(d) Larger scale experiments become feasible if the random matrices of (c) 
are replaced by the random sequences J..t.1 ,J..t.2 ,J.1.3, •.• of (b). Explain (without 
proof) why the constant C can also be obtained by considering these sequences, 
and carry out numerical experiments to estimate C to 1% accuracy or better. 



Lecture 18. Conditioning of Least Squares 
Problems 

The conditioning of least squares problems is a subtle topic, combining the 
conditioning of square systems of equations with the geometry of orthogo­
nal projection. It is important because it has nontrivial implications for the 
stability of least squares algorithms. 

Four Conditioning Problems 

In this lecture we return to the linear least squares problem (11.2), illustrated 
again in Figure 18.1. We assume the matrix defining the problem is of full 
rank, and write throughout this lecture 11·11 = II · 11 2: 

Given A E cmxn of full rank, m ~ n, b E em, 

find x E C" such that lib- Axil is minimized. 
(18.1) 

The solution x and the corresponding point y = Ax that is closest to b in 
range (A) are given by 

y=Pb, (18.2) 

where A+ E cnxm is the pseudoinverse (11.11) of A and P = AA+ E cmxm 

is the orthogonal projector onto range(A). We consider the conditioning of 
(18.1) with respect to perturbations. Just as the last lecture represented the 
most detailed analysis of stability in this book, the present lecture represents 
our most detailed analysis of conditioning. We pick the least squares problem 
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b 

r=b-Ax 

Figure 18.1. The least squares problem (repetition of Figure 11.3). 

because the details are interesting and because they have an important prac­
tical consequence, to be discussed in the next lecture: the instability of the 
normal equations as a general purpose least squares algorithm. 

Conditioning pertains to the sensitivity of solutions to perturbations in 
data. For (18.1), we shall investigate two choices of each. The data for the 
problem are the m x n matrix A and the m-vector b. The solution is either 
the coefficient vector x or the corresponding point y = Ax. Thus 

Data: A,b, Solution: x, y. 

Together, these two pairs of choices define four conditioning questions that we 
shall consider, all of which have application in certain contexts. 

Theorem 

The centerpiece of this lecture is Theorem 18.1, which provides answers to 
these questions. The results are expressed in terms of three dimensionless 
parameters that appear repeatedly in the analysis of least squares problems. 
The first is the condition number of A. For a square matrix, this is ~t( A) = 
IIAIIIIA-111, and in the rectangular case, the definition generalizes to (12.17), 

{18.3) 

The second is the angle() marked in Figure 18.1, a measure of the closeness 
of the fit: 

() = cos-1 IIYII 
llbll" {18.4) 
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The third is a measure of how much IIYII falls short of its maximum possible 
value, given IIAII and llxll: 

'fJ = IIAIIIIxll = IIAIIIIxll {18.5) 
IIYII IIAxll · 

These parameters lie in the ranges 

1 ~ ~~:(A) < oo, 0 ~ () ~ 1r /2, 1 ~ 'fJ ~~~:(A). {18.6) 

Theorem 18.1. Let b E em and A E cmxn of full mnk be fixed. The least 
squares problem {18.1) has the following 2-norm relative condition numbers 
(12.5) describing the sensitivities of y and x to perturbations in b and A: 

y X 

b 
1 ~~:(A) 

--
cos() 'fJCOS0 

~~:(A) ~~:(A) + ~~:(A)2 tan() 
cosO 'fJ 

A 

The results in the first row are exact, being attained for certain perturbations 
ob, and the results in the second row are upper bounds. 

In the special case m = n, (18.1) reduces to a square, nonsingular system 
of equations, with () = 0. In this case, the numbers in the second column of the 
theorem reduce to ~~:(A)/'fJ and ~~:(A), which are the results (12.14) and (12.18) 
derived earlier, and the number in the lower-left position can be replaced by 0 
(Exercise 18.4). 

Transformation to a Diagonal Matrix 

As a first step in the proof of Theorem 18.1, we note that the least squares 
problem becomes easier to analyze if we transform to a convenient choice of 
bases. Let A have an SVD ofthe form A= UI:V*, where I: is an mxn diagonal 
matrix with positive diagonal entries. Since perturbations are measured in 
the 2-norm, their sizes are unaffected by a unitary change of basis, so the 
perturbation behavior of A is the same as that of I:. Therefore, without loss 
of generality, we can deal with I: directly. For the remainder of the discussion, 
we assume A = I: and write 

A= (18.7) 
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Here A1 is n x n and diagonal; the rest of A is zero. 
The orthogonal projection of b onto range(A) is now a triviality. Write 

where b1 contains the first n entries of b. Then the projection y = Pb is 

y=[~]· 
To find the corresponding x we can write Ax = y as 

which implies 
X= A11b1. (18.8) 

From these formulas it is evident that the orthogonal projector and pseudo­
inverse are the block 2 x 2 and 1 x 2 matrices (see Exercise 11.1) 

P = [ ~ ~ ] , A+ = [ A11 0 ] . (18.9) 

Sensitivity of y to Perturbations in b 

We begin with the simplest of our four conditioning results. By (18.2), the 
relationship between bandy is just the linear equation y = Pb. The Jacobian 
of this mapping is P itself, with IIPII = 1 by (18.9). By (12.6) and {18.4), the 
condition number of y with respect to perturbations in b is accordingly 

IIPII 1 
K.bl--+y = IIYII/IIbll = cos(J" 

This establishes the upper-left result of Theorem 18.1. The condition number 
is realized (that is, the supremum in (12.5) is attained) for pert.urbations ob 
with IIP{ob)ll = ll6bll, which occurs when obis zero except in the first n entries. 

Sensitivity of x to Perturbations in b 

The relationship between b and x is also linear, x = A+b, with Jacobian 
A+. By (12.6), (18.4), and (18.5), the condition number of x with respect to 
perturbations in b is consequently 

IIA+II = IIA+II.!l~1L!1ltll = IIA+II - 1- ~ = K.(fl) 
K.b,....z = llxll/llbll IIYIIIIxll cosO 17 TJCoso· 

This establishes the upper-right result of Theorem 18.1. Here, the condition 
number is realized by perturbations ob satisfying IIA+(ob)ll = IIA+IIII6bll = 
ll6bll/u,., which occurs when ob is zero except in the nth entry (or perhaps 
also in other entries, if A has more than one singular value equal to u,.). 
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Tilting the Range of A 

The analysis of perturbations in A is a nonlinear problem and more subtle. 
We could proceed by calculating J acobians algebraically, but instead, we shall 
take a geometric view. Our starting point is the observation that perturbations 
in A affect the least squares problem in two ways: they distort the mapping of 
en onto range(A), and they alter range(A) itself. Let us consider this latter 
effect for a moment. 

We can visualize slight changes in range( A) as small ''tiltings" ofthis space. 
The question is, what is the maximum angle of tilt oo. that can be imparted 
by a small perturbation 6A? The answer can be determined as follows. The 
image under A of the unit n-sphere is a hyperellipse that lies fiat in range(A). 
To change range(A) as efficiently as possible, we grasp a point p = Av on 
the hyperellipse (hence II vii = 1) and nudge it in a direction op orthogonal 
to range(A). A matrix perturbation that achieves this most efficiently is 
6A = (6p)v*, which gives (6A)v = op with II8AII = ll8pll (Example 3.6). Now 
it is clear that to obtain the maximum tilt with a given ll8pll, we should take 
p to be as close to the origin as possible. That is, we want p = unun, where 
u8 is the smallest singular value of A and u. is the corresponding left singular 
vector. With A in the diagonal form (18.7), pis equal to the last column of A, 
v* is the n-vector (0, 0, ... , 0, 1}, and 6A is a perturbation of the entries of A 
below the diagonal in this column. Such a perturbation tilts range( A) by the 
angle 6o. given by tan(oo.) = II6PII/un. Since II6PII = II6AII and 6o. ~ tan(oo.), 
we have 

(18.10) 

with equality attained for choices 6A of the kind just described, provided they 
are infinitesimal (so that 6o. = tan(6o.)). 

Sensitivity of y to Perturbations in A 

Now we are prepared to derive the second row of the table in Theorem 18.1. 
We begin with its left-hand entry. Since y is the orthogonal projection of b 
onto range(A), it is determined by band range( A) alone. Therefore, to analyze 
the sensitivity of y to perturbations in A, we can simply study the effect on y 
of tilting range( A) by some angle 6o.. 

An elegant geometrical property becomes apparent when we imagine fixing 
b and watching y vary as range(A) is tilted (Figure 18.2). No matter how 
range(Aj is tilted, the vector y E range(A) must always be orthogonal to 
y- b. That is, the line b-y must lie at right angles to the line 0-y. In other 
words, as range(A) is adjusted, y moves along the sphere of radius llbll/2 
centered at the point b/2. 

Tilting range( A) in the plane 0-b-y by an angle 6o. changes the angle 2() at 
the central point b/2 by 26o.. Thus the corresponding perturbation oy is the 
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Figure 18.2. Two circles on the sphere along which y moves as range(A) 
varies. The large circle, of radius llbll/2, corresponds to tilting range(A) in 
the plane 0-b-y, and the small circle, of rodius (llbll/2) sinO, corresponds to 
tilting it in an orthogonal direction. However range( A) is tilted, y remains on 
the sphere of radius llbll/2 centered at b/2. 

base of an isosceles triangle with central angle 2t5a and edge length llbll/2. This 
implies llt5yll = llbll sin(&~). Tilting range(A) in any other direction results in 
a similar geometry in a different plane and perturbations smallet by a factor 
as small as sin(). Thus for arbitrary perturbations by an angle t5a we have 

(18.11) 

By (18.4) and (18.10), this gives us llt5yll ~ II8AII~~:(A)IIYII/IIAII cosO, that is, 

llt5yll I llt5AII < ~~:(A). 
IIYII IIAII - cos() 

(18.12) 

This establishes the lower-left result of Theorem 18.1. 

Sensitivity of a; to Perturbations in A 

We are now ready to analyze the most interesting relationship of Theorem 18.1: 
the sensitivity of x to perturbations in A. 

A perturbation 6A splits naturally into two parts: one part t5A1 in the first 
n rows of A, and another part t5A2 in the remaining m - n rows: 
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First, let us consider the effect of perturbations cA1 • Such a perturbation 
changes the mapping of A in its range, but not range(A) itself or y. It perturbs 
A1 by cA1 in the square system (18.8) without changing b1. The condition 
number for such perturbations is given by (12.18), which here takes the form 

llcxll jii6A11! < K(A ) = K(A) 
llxll IIAII - 1 · 

(18.13) 

Next we consider the effect of (infinitesimal) perturbations cA2 • Such a 
perturbation tilts range(A) without changing the mapping of A within this 
space. The point y and thus the vector b1 are perturbed, but not A 1. This 
corresponds to perturbing b1 in (18.8) without changing A1. The condition 
number for such perturbations is given by (12.14), which takes the form 

(18.14) 

To finish the argument we need to relate 6b1 to 6A2• Now the vector b1 

is y expressed in the coordinates of range(A). Therefore, the only changes 
in y that are realized as changes in b1 are those that lie parallel to range(A); 
orthogonal changes have no effect. In particular, if range(A) is tilted by an 
angle ca. in the plane 0-b-y, the resulting perturbation oy lies not parallel to 
range(A) but at an angle 7r/2- 0. Consequently, the change in b1 satisfies 
llob1 ll = sinOII8YII· By (18.11}, we therefore have 

(18.15) 

Curiously, if range(A) is tilted in a direction orthogonal to the plane Q-b-y, 
we obtain the same bound, but for a different reason. Now oy is parallel to 
range(A), but it is a factor of sinO smaller, as discussed above in connection 
with Figure 18.2. Thus we have lloyll ~ (llblloa.) sin 0, and since llob1ll ~ ll6yll, 
we again arrive at (18.15). 

All the pieces are now in place. Since llb1 ll = llbll cosO, we can rewrite 
(18.15) as 

(18.16) 

Relating oa. to II6A2 II by (18.10) and combining (18.14) with (18.16}, we obtain 

Adding this to (18.13) establishes the lower-right result of Theorem 18.1. 
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Exercises 

18.1. Consider the example 

A = [ ~ 1.0~01 l , 
1 1.0001 

b = [ 0.0~01 ]· 
4.0001 

(a) What are the matrices A+ and P for this example? Give exact answers. 

(b) Find the exact solutions x andy= Ax to the least squares problem Ax~ b. 

(c) What are K(A), (),and 17? From here on, numerical answers are acceptable. 

(d) What are the four condition numbers of Theorem 18.1? 

(e) Give examples of perturbations ob and oA that approximately attain these 
four condition numbers. 

18.2. Social scientists depend on the technique of regression, in which a vector 
of observations of some quantity is approximated in the least squares sense 
by a linear combination of other vectors. The coefficients of the fit are then 
interpreted as representing, say, the effects on annual income of IQ, years of 
education, parents' years of education, and parents' income. 

One might think that the more variables one included in such 1a model, the 
more information one would obtain, but this is not always true. Explain this 
phenomenon from the point of view of conditioning, making specific reference 
to the results of Theorem 18.1. 

18.3. Suppose you look across Lake Cayuga at a light from a house on the 
other side. If the lake surface is rippled, the reflected light appears as a long 
vertical streak. The same effect appears with taillights of the car ahead of you 
on a rainy road, or even with reflections of hallway lights on a shiny waxed 
floor. It is a real effect, not an optical illusion, and the explanation is a matter 
of geometry. 

(a) Derive a quantitative theory explaining this phenomenon. Specifically, 
suppose you and the house across the lake are each fifty meters above the 
surface, and the lake is one kilometer wide. What is the length-to-width ratio 
of the streak as it appears in your visual field? 

(b) Describe a connection between this problem and one of the geometrical 
arguments of this lecture. 

18.4. Explain why, as remarked after Theorem 18.1, the condition number 
of y with respect to perturbations in A becomes 0 in the case m = n. 



Lecture 19. Stability of Least Squares 
Algorithms 

Least squares problems can be solved by various methods, as described in Lec­
ture 11, including the normal equations, Householder triangularization, Gram­
Schmidt orthogonalization, and the SVD. Here we compare these methods 
and show that the use of the normal equations is in general unstable. 

Example 

To illustrate the behavior of our algorithms, we shall apply them to a numerical 
example with m = 100, n = 15. Here is the MATLAB setup: 

m = 100; n = 15; 
t = (O:m-1)'/(m-1); 
A=[]; for i=1:n, 

A= [A t.-(i-1)]; end 
b = exp(sin(4•t)); 
b = b/2006.787453080206; 

Set t to a discretization of [0, 1]. 
Construct Vandermonde matrix. 

Right-hand side. 
Normalization (see text). 

The idea behind this example is the least squares fitting of the function 
exp(sin(4r)) on the interval [0, 1] by a polynomial of degree 14. First we 
discretize [0, 1], defining a vector t of 100 points equally spaced from 0 to 1. 
The matrix A is the 100 x 15 Vandermonde matrix whose columns are the 
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powers 1, -r, ... , -r14 sampled at the points oft, and the right-hand side b is the 
function exp(sin(4-r)) sampled at these points. 

The reason for the bizarre final line of the code is as follows. For sim­
plicity, we are going to compare just the coefficients x15 computed by our 
various algorithms. Without this final line, the correct value of x15 would be 
2006.787453080206 ... (this figure was obtained with an extended precision 
arithmetic package). By dividing by this number, we obtain a problem whose 
solution has x15 = 1, making our comparisons easier to follow. 

To explain our observations, we shall need the quantities (18.3)-(18.5). 
One can determine these to sufficient accuracy by solving the least squares 
problem numerically with the aid of MATLAB 's \ operator: 

x = A\ b; y = A•x; Solve least squares problem. 
kappa = cond(A) 

kappa = 2.2718e+10 ~(A) 
theta = asin(norm(b-y)/norm(b)) 

theta= 3.7461e-06 0 
eta = norm(A)•norm(x)/norm(y) 

eta= 2.1036e+05 ~ 

The result ~(A) ~ 1010 indicates that the monomials 1, t, ... , t14 form a highly 
ill-conditioned basis. The result 0 ~ w-6 indicates that exp(sin(4t)) can be 
fitted very closely by a polynomial of degree 14. (The fit is so close that we 
computed 0 with the formula(}= sin-1(llb-yll/llbll) instead of (18.4), to avoid 
cancellation error.) As for~' its value of about 105 is about midway between 
the extremes 1 and ~(A) permitted by (18.6). 

Inserting these numbers into the formulas of Theorem 18.1, we find that 
for our example problem, the condition numbers of y and x with respect to 
perturbations in b and A are approximately 

y X 

b 1.0 

A 2.3 X 1010 

1.1 X 105 

3.2 X 1010 

Householder Triangularization 

As mentioned in Lecture 11, the standard algorithm for solving least squares 
problems is QR factorization via Householder triangularization (Algorithm 
11.2). Here is what we get with a MATLAB experiment: 

[Q , R] = qr (A, 0) ; 
X= R\(Q'•b); 
x(15) 

ans = 1.00000031528723 

Householder triang. of A. 
Solve for x. 
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What can we make of this result? Thanks to our normalization, the correct 
answer would be x15 = 1. Thus we have a relative error of about 3 x w-7• Since 
the calculation was done in IEEE double precision arithmetic with emachine ~ 
10-16, this means that the rounding errors have been amplified by a factor of 
order 109 • At first sight this looks bad, but a glance at the table above reminds 
us that the condition number of x with respect to perturbations in A is of order 
1010• Thus the inaccuracy in x15 can be entirely explained by ill-conditioning, 
not instability. Algorithm 11.2 appears to be backward stable. 

Above, we formed Q explicitly, but as emphasized in Lectures 10 and 16, 
this is not necessary. It is enough to store the vectors vlc determined at the 
kth step of Algorithm 10.1 (equation (10.5)), which can then be utilized to 
compute Q*b by Algorithm 10.2. In MATLAB, we can achieve this effect by 
computing a QR factorization not just of A but of the m x ( n+ 1) "augmented" 
matrix [A b). In the course of this factorization, then Householder reflectors 
that make A upper-triangular are applied to b also, leaving the vector Q*b in 
the first n positions of column n + 1. An additional ( n + 1 )st reflector is then 
applied to make entries n + 2, ... , m of column n + 1 zero, but this does not 
change the first n entries of that column, which are the ones we care about. 
Thus: 

[Q2,R2] = qr([A b],O); 
R2 = R2(1:n,1:n); 
Qb = R2(1:n,n+1); 
X = R2\Qb; 
x(15) 

ans = 1.00000031529465 

Householder triang. of [A b). 
Extract R ... 

... and Q*b. 
Solve for x. 

The answer is almost the same as before. This indicates that the errors intro­
duced in the QR factorization of A swamp those introduced in the computation 
of Q*b. 

There is also a third way to solve the least squares problem via Householder 
triangularization in MATLAB. We can use the built-in operator \, as we did 
already in finding ~(A), (), and 17: 

X = A\b; 
x(15) 

ans = 0.99999994311087 

Solve for x. 

This result is distinctly different from the others, and an order of magnitude 
more accurate. The reason for this is that MATLAB's \ operator makes use 
of QR factorization with column pivoting, based on a factorization AP = QR, 
where Pis a permutation matrix. In this book we shall not discuss column 
pivoting. 
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From the point of view of normwise stability analysis, these three variants 
of QR factorization are equal. All of them, it can be proved, are backward 
stable. 

Theorem 19.1. Let the full-rank least squares problem (11.2) be solved by 
Householder triangularization (Algorithm 11.2} on a computer satisfying (13.5) 
and ( 13. 7). This algorithm is backward stable in the sense that the computed 
solution x has the property 

II(A + oA)x- bll =min, (19.1) 

for some 6A E cmxn. This is true whether Q*b is computed via explicit 
formation of Q or implicitly by Algorithm 10.2. It also holds for Householder 
triangularization with arbitrary column pivoting. 

Gram-Schmidt Orthogonalization 

Another way to solve a least squares problem is by modified Gram-Schmidt 
orthogonalization (Algorithm 8.1). Form ~ n, this takes somewhat more 
operations than the Householder approach, but for m ~ n, the :Hop counts 
for both algorithms are asymptotic to 2mn2 • 

The following MATLAB sequence implements this algorithm in the obvi­
ous fashion. The function mgs is an implementation (not shown) of Algo­
rithm 8.1-the same as in Experiment 2 of Lecture 9. 

[Q ,R] = mgs(A); 
X= R\(Q'•b); 
x(15) 

ans = 1.02926594532672 

Gram-Schmidt orthog. of A. 
Solve for x. 

This result is very poor. Rounding errors have been amplified by a factor 
on the order of 101\ far greater than the condition number of the problem. 
In fact, this algorithm is unstable, and the reason is easily identified. As 
mentioned at the end of Lecture 9, Gram-Schmidt orthogonalization produces 
matrices Q, in general, whose columns are not accurately orthonormal. Since 
the algorithm above depends on that orthonormality, it suffers accordingly. 

The instability can be avoided by a reformulation of the algorithm. Since 
the Gram-Schmidt iteration delivers an accurate product Q R, even if Q does 
not have accuratelr op;ho~onal columns, one approach is to set up the normal 
equations Rx = ( Q*Q}-1Q*b for the vector Rx, then get x by back substitu­
tion. As long as the computed Q is at least well-conditioned, this method will 
be free of the instabilities described below for the normal equations applied to 
arbitrary matrices. However, it involves unnecessary extra work and should 
not be used in practice. 
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A better method of stabilizing the Gram-Schmidt method is to make use 
of an augmented system of equations, just as in the second of our two House­
holder experiments above: 

[Q2,R2] = mgs([A b]); 
R2 = R2(1:n,1:n); 
Qb = R2(1:n,n+1); 
X = R2\Qb; 
x(15) 

ans = 1.00000005653399 

Gram-Sc~midt orthog. of [A b]. 
Extract R ... 

. . . and Q*b. 
Solve for x. 

Now the result looks as good as with Householder triangularization. It can be 
proved that this is always the case. 

Theorem 19.2. The solution of the full-rank least squares problem (11.2) 
by Gram-Schmidt orthogonalization is also backward stable, satisfying (19.1), 
provided that Q*b is formed implicitly as indicated in the code segment above. 

Normal Equations 

A fundamentally different approach to least squares problems is the solution 
of the normal equations (Algorithm 11.1), typically by Cholesky factorization 
(Lecture 23). Form:> n, this method is twice as fast as methods depending 
on explicit orthogonalization, requiring asymptotically only mn2 flops (11.14). 
In the following experiment, the problem is solved in a single line of MATLAB 
by the \ operator: 

X= (A'*A)\(A'*b); 
x(15) 

ans = 0.39339069870283 

Form and solve normal equations. 

This result is terrible! It is the worst we have obtained, with not even a 
single digit of accuracy. The use of the normal equations is clearly an unstable 
method for solving least squares problems. We shall take a moment to explain 
this phenomenon, for the explanation is a perfect example of the interplay of 
ideas of conditioning and stability. Also, the normal equations are so often 
used that an understanding of the risks involved is important. 

Suppose we have a backward stable algorithm for the full-rank problem 
(11.2) that delivers a solution x satisfying II(A+6A)x- bll =min for some 6A 
with II6AII/IIAII = O(emachine)· (Allowing perturbations in bas well as A, or 
considering stability instead of backward stability, does not change our main 
points.) By Theorems 15.1 and 18.1, we have 

(19.2) 
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where "' = K(A). Now suppose A is ill-conditioned, i.e., "' ~ 1, and () is 
bounded away from 1r /2. Depending on the values of the various parameters, 
two very different situations may arise. If tan() is of order 1 (that is, the least 
squares fit is not especially close) and 'TJ ~ ,, the right-hand side (19.2) is 
0(K2Emachine)· On the other hand, if tan() is close to zero (a very close fit) or 
'TJ is close to K, the bound is O(Kemachine)· The condition number of the least 
squares problem may lie anywhere in the range "' to K.2 • 

Now consider what happens when we solve (11.2) by the normal equations, 
(A*A)x = A*b. Cholesky factorization is a stable algorithm for this system of 
equations in the sense that it produces a solution x satisfying (A*A + oH)x = 
A*b for some 6H with II8HII/IIA*AII = O(emachine) (Theorem 23.3). However, 
the matrix A *A has condition number K.2 , not "'· Thus the best we can expect 
from the normal equations is 

llx-xll 2 
llxll = O(K. €machine)· (19.3) 

The behavior of the normal equations is governed by K.2 , not "'· 
The conclusion is now clear. If tan() is of order 1 and 'TJ ~ "'' or if "' 

is of order 1, then (19.2) and (19.3) are of the same order and the normal 
equations are stable. If "' is large and either tan() is close to zero or 'TJ is close 
to"'' however, then (19.3) is much bigger than (19.2) and the normal equations 
are unstable. The normal equations are typically unstable for ill-conditioned 
problems involving close fits. In our example problem, with K? ~ 1020, it is 
hardly surprising that Cholesky factorization yielded no correct digits. 

According to our definitions, an algorithm is stable only if it has satis­
factory behavior uniformly across all the problems under consideration. The 
following result is thus a natural formalization of the observations just made. 

Theorem 19.3. The solution of the full-rank least squares problem (11.2) via 
the normal equations (Algorithm 11.1) is unstable. Stability ~an be achieved, 
however, by restriction to a class of problems in which K(A) is uniformly 
bounded above or (tanO)/TJ is uniformly bounded below. 

SVD 

One further algorithm for least squares problems was mentioned in Lecture 11: 
the use of the SVD (Algorithm 11.3). Like most computations based on the 
SVD, this one is stable: 

[U,S,V] = svd(A,O); 
X= V*(S\(U'*b)); 
x(15) 

ans = 0.99999998230471 

Reduced SVD of A. 
Solve for x. 
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In fact, this is the most accurate of all the results obtained in our experiments, 
beating Householder triangularization with column pivoting (MATLAB 's \ ) by 
a factor of about 3. A theorem in the usual form can be proved. 

Theorem 19.4. The solution of the full-rank least squares problem (11.2) by 
the SVD {Algorithm 11.3} is backward stable, satisfying the estimate (19.1). 

Rank-Deficient Least Squares Problems 

In this lecture we have identified four backward stable algorithms for linear 
least squares problems: Householder triangularization, Householder triangu­
larization with column pivoting, modified Gram-Schmidt with implicit calcu­
lation of Q*b, and the SVD. From the point of view of classical normwise 
stability analysis of the full-rank problem (11.2), the differences among these 
algorithms are minor, so one might as well make use of the simplest and 
cheapest, Householder triangularization without pivoting. 

However, there are other kinds of least squares problems where column 
pivoting and the SVD take on a special importance. These are problems 
where A has rank < n, possibly with m < n, so that the system of equations 
is underdetermined. Such problems do not have a unique solution unless one 
adds an additional condition, typically that x itself should have as small a norm 
as possible. A further complication is that the correct solution depends on 
the rank of A, and determining ranks numerically in the presence of rounding 
errors is never a trivial matter. 

Thus rank-deficient least squares problems are not a challenging subclass 
of least squares problems, but fundamentally different. Since the definition 
of a solution is new, there is no reason that an algorithm that is stable for 
full-rank problems must be stable also in the rank-deficient case. In fact, the 
only fully stable algorithms for rank-deficient problems are those based on the 
SVD. An alternative is Householder triangularization with column pivoting, 
which is stable for almost all problems. We shall not give details. 

Exer<;ises 

19.1. Given A E cmxn of rank nand bE em, consider the block 2 x 2 system 
of equations 

(19.4) 

where I is the m x m identity. Show that this system has a unique solution 
( r, x )T, and that the vectors r and x are the residual and the solution of the 
least squares problem (18.1). 

19.2. Here is a stripped-down version of one of MATLAB's built-in m-files. 
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[U,S,V] = svd(A); 
S = diag(S); 

PART III. CONDITIONING AND STABILITY 

tol = max(size(A))•S(1)*eps; 
r = sum(S > tol); 
S = diag(ones(r,1)./S(1:r)); 
X= V(:,1:r)*S*U(:,1:r)'; 

What does this program compute? 
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Systems of Equations 





Lecture 20. Gaussian Elimination 

Gaussian elimination is undoubtedly familiar to the reader. It is the simplest 
way to solve linear systems of equations by hand, and also the standard method 
for solving them on computers. We first describe Gaussian elimination in its 
pure form, and then, in the next lecture, add the feature of row pivoting that 
is essential to stability. 

L U Factorization 

Gaussian elimination transforms a full linear system into an upper-triangular 
one by applying simple linear transformations on the left. In this respect it is 
analogous to Householder triangularization for computing QR factorizations. 
The difference is that the transformations applied in Gaussian elimination are 
not unitary. 

Let A E cmxm be a square matrix. (The algorithm can also be applied to 
rectangular matrices, but as this is rarely done in practice, we shall confine our 
attention to the square case.) The idea is to transform A into an m x m upper­
trianglilar matrix U by introducing zeros below the diagonal, first in column 
1, then in column 2, and so on-just as in Householder triangularization. 
This is done by subtracting multiples of each row from subsequent rows. This 
"elimination" process is equivalent to multiplying A by a sequence of lower­
triangular matrices L~c on the left: 

Lm-1 · · · £2£1 A = U. 

£-1 

147 

(20.1) 
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Setting L = L11 L21 · · · L-;,1_1 gives A= LU. Thus we obtain an LU factor­
ization of A, 

A=LU, (20.2) 

where U is upper-triangular and Lis lower-triangular. It turns out that Lis 
unit lower-triangular, which means that all of its diagonal entries are equal 
to 1. 

For example, suppose we start with a 4 x 4 matrix. The algorithm proceeds 
in three steps (compare (10.1)): 

[ ~ ~ ~ ~ ]2 [ ~ ~ ~ ~] ~ [X ~ ~ ~] ~ [X : ~ ~] 
A L1A L2L1A L3L2L1A 

(As in Lecture 10, boldfacing indicates entries just operated upon, and blank 
entries are zero.) The kth transformation L~c introduces zeros below the diag­
onal in column k by subtracting multiples of row k from rows k + 1, ... , m. 
Since the first k - 1 entries of row k are already zero, this operation does not 
destroy any zeros previously introduced. 

Gaussian elimination thus augments our taxonomy of algorithms for fac­
toring a matrix: 

Gram-Schmidt: A = Q R by triangular orthogonalization, 

Householder: A = Q R by orthogonal triangularization, 

Gaussian elimination: A = LU by triangular triangularization. 

Example 

In discussing the details, it will help to have a numerical example on the table. 
Suppose we start with the 4 x 4 matrix 

A (20.3) 

(The entries of A are anything but random; they were chosen to give a simple 
L U factorization.) The first step of Gaussian elimination looks like this: 
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In words, we have subtracted twice the first row from the second, four times 
the first row from the third, and three times the first row from the fourth. 
The second step looks like this: 

This time we have subtracted three times the second row from the third and 
four times the second row from the fourth. Finally, in the third step we 
subtract the third row from the fourth: 

Now, to exhibit the full factorization A= LU, we need to compute the product 
L = L11 L21 L:J1. Perhaps surprisingly, this turns out to be a triviality. The 
inverse of L1 is just L1 itself, but with each entry below the diagonal negated: 

(20.4) 

Similarly, the inverses of L2 and L 3 are obtained by negating their subdiago­
nal entries. Finally, the product L11 L21 L31 is just the unit lower-triangular 
matrix with the nonzero subdiagonal entries of L11, L21, and L31 inserted in 
the appropriate places. All together, we have 

{20.5) 

General Formulas and Two Strokes of Luck 

Here are the general formulas for an m x m matrix. Suppose x1c denotes the 
kth column of the matrix at the beginning of step k. Then the transformation 
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L~c must be chosen so that 

0 

To do this we wish to subtract l;~c times row k from row j, where l;~c is the 
multiplier 

The matrix L"' takes the form 

1 

(k < j ~ m). (20.6) 

-lmlc 1 

with the nonzero subdiagonal entries situated in column k. This is analogous 
to (10.2) for Householder triangularization. 

In the numerical example above, we noted two strokes of luck: that L1c 
can be inverted by negating its subdiagonal entries (20.4), and that L can be 
formed by collecting the entries .eflc in the appropriate places (20.5). We can 
explain these bits of good fortune as follows. Let us define 

0 

Then L~c can be written L~c = I - l~cek, where e"' is, as usual, the column 
vector with 1 in position k and 0 elsewhere. The sparsity pattern of l1c implies 
eklk = 0, and therefore (I - l~cek)(I + l~ce;) = I - l~ceklkek = I. In other 
words, the inverse of L~c is I+ l~cek, as in (20.4). 

For the second stroke of luck we argue as follows. Consider, for example, 
the product L-;;1 L-;;~1 . From the sparsity pattern of llc+v we have ekllc+1 = 0, 
and therefore 

L-;;1 L-;;~1 = (I+ l~cek)(I + ilc+1 ek+l) = I+ l~cek + llc+l ek+l· 
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Thus Li/ Li_~1 is just the unit lower-triangular matrix with the entries of both 
Li/ and L;;~1 inserted in their usual places below the diagonal. When we take 
the product of all of these matrices to form L, we have the same convenient 
property everywhere below the diagonal: 

1 

£21 1 

L L-1L-1 L-1 = ia1 ia2 1 {20.7) - 1 2 · · · m-1 

im1 £m2 lmm-1 1 , 

Though we did not mention it in Lecture 8, the sparsity considerations 
that led to {20.7) also appeared in the interpretation (8.10) of the modified 
Gram-Schmidt process as a succession of right-multiplications by triangular 
matrices R~c. 

In practical Gaussian elimination, the matrices L~c are never formed and 
multiplied explicitly. The multipliers i;~c are computed and stored directly 
into L, and the transformations L~c are then applied implicitly. 

Algorithm 20.1. Gaussian Elimination without Pivoting 

U =A, L=l 
for k = 1 to m - 1 

forj=k+1tom 
i;~c = U;~cfuu 
Uj,lc:m = Uj,lc:m - i;kUic,lc:m 

(Three matrices A, L, U are not really needed; to minimize memory use 
on the computer, both L and U can be written into the same array as A.) 
See Exercise 20.4 for an alternative "outer product" formulation of Gaussian 
elimination, involving one explicit loop rather than two. 

Operation Count 

As usual, the asymptotic operation count of this algorithm can be derived 
geometrically. The work is dominated by the vector operation in the inner 
loop, u;,k:m = u;,k:m -i;kuk,k:m' which executes one scalar-vector multiplication 
and one vector subtraction. If l = m - k + 1 denotes the length of the row 
vectors being manipulated, the number of :O.ops is 2l : two :O.ops per entry. 

For each value of k, the inner loop is repeated for rows k + 1, ... , m. The 
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work involved corresponds to one layer of the following solid: 

This is the same :figure we displayed in Lecture 10 to represent the work done in 
Householder triangularization (assuming m = n). There, however, each unit 
cube represented four :O.ops rather than two. As before, the solid converges as 
m--+ oo to a pyramid, with volume lm3. At two :O.ops per unit of volume, 
this adds up to 

Work for Gaussian elimination: (20.8) 

Solution of Ax = b by L U Factorization 

If A is factored into L and U, a system of equations Ax = b is reduced to 
the form LUx= b. Thus it can be solved by solving two triangular systems: 
:first Ly = b for the unknown y (forward substitution), then Rx = y for the 
unknown x (back substitution). The :first step requires "' ~m3 flops, and the 
second and third each require "' m2 :O.ops. The total work is "' im3 flops, half 
the :figure of"' ~m3 flops (10.9) for a solution by Householder triangularization 
{Algorithm 16.1). 

Why is Gaussian elimination usually used rather than QR factorization to 
solve square systems of equations? The factor of 2 is certainly one reason. 
Also important, however, may be the historical fact that the elimination idea 
has been known for centuries, whereas QR factorization of matrices did not 
come along until after the invention of computers. To supplant Gaussian 
elimination as the method of choice, QR factorization would have to have had 
a compelling advantage. 

Instability of Gaussian Elimination without Pivoting 

Unfortunately, Gaussian elimination as presented so far is unusable for solving 
general linear systems, for it is not backward stable. The instability is related 
to another, more obvious difficulty. For certain matrices, Gaussian elimination 
fails entirely, because it attempts division by zero. 

For example, consider 

A=[~~]· 
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This matrix has full rank and is well-conditioned, with ~t(A) = (3 + v'5 )/2 ~ 
2.618 in the 2-norm. Nevertheless, Gaussian elimination fails at the first step. 

A slight perturbation of the same matrix reveals the more general problem. 
Suppose we apply Gaussian elimination to 

- [ w-2o 1 ] A- . 
1 1 

{20.9) 

Now the process does not fail. Instead, 1020 times the first row is subtracted 
from the second row, and the following factors are produced: 

[ 1 o ] [ w-2o 1 ] 
L = 1020 1 ' U = 0 1 - 1020 • 

However, suppose these computations are performed in floating point arith­
metic with €machine ~ 10-16• The number 1 - 1020 will not be represented 
exactly; it will be rounded to the nearest floating point number. For sim­
plicity, imagine that this is exactly -1020• Then the floating point matrices 
produced by the algorithm will be 

- [ 1 0] 
L = 102o 1 , 

u = [ w-2o 1 ] . 
0 -1020 

This degree of rounding might seem tolerable at first. After all, the matrix 
U is close to the correct U relative to IIUII· However, the problem becomes 
apparent when we compute the product Lu: 

Lu = [ 10:20 ~ ] . 

This matrix is not at all close to A, for the 1 in the (2, 2) position has been 
replaced by 0. If we now solve the system L(J x = b, the result will be nothing 
like the solution to Ax= b. For example, with b = (1,0)* we get x = (0, 1)*, 
whereas the correct solution is x ~ (-1, 1)*. 

A careful consideration of what has occurred in this example reveals the 
following. Gaussian elimination has computed the LU factorization stably: 
L and U are close to the exact factors for a matrix close to A (in fact, A 
itself). Yet it has not solved Ax= b stably. The explanation is that the LU 
factorization, though stable, was not backward stable. As a rule, if one step 
of an algorithm is a stable but not backward stable algorithm for solving a 
subproblem, the stability of the overall calculation may be in jeopardy. 

In fact, for general m x m matrices A, the situation is worse than this. 
Gaussian elimination without pivoting is neither backward stable nor stable as 
a general algorithm for L U factorization. Additionally, the triangular matrices 
it generates have condition numbers that may be arbitrarily greater than those 
of A itself, leading to additional sources of instability in the forward and back 
substitution phases of the solution of Ax = b. 
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Exercises 

20.1. Let A E cmxm be nonsingular. Show that A has an LU factorization 
if and only if for each k with 1 ~ k ~ m, the upper-left k x k block A1:,. l:A: 

is nonsingular. (Hint: The row operations of Gaussian elimination leave the 
determinants det(A1:A:,l:A:) unchanged.) Prove that this LU factorization is 
unique. 

20.2. Suppose A E cmxm satisfies the condition of Exercise 20.1 and is 
banded with bandwidth 2p + 1, i.e., aii = 0 for li- il > p. What can you say 
about the sparsity patterns of the factors L and U of A? 

20.3. Suppose an mxm matrix A is written in the block form A= [ ~u 1~: ] 
where Au is n x nand A22 is (m- n) x (m- n). 21 

Assume that A satisfies the condition of Exercise 20.1. 

(a) Verify the formula 

[ I ] [ Au A12 ] [ Au A12 ] 
-A21Ail I A21 A22 - A22- A21Ai"f A12 

for "elimination" of the block A21. The matrix A22 - A21A1f A12 is known as 
the Schur complement of A11 in A. 

{b) Suppose A21 is eliminated row by row by means of n steps of Gaussian 
elimination. Show that the bottom-right (m-n) x (m-n) block ofthe result 
is again A22 - A21 Ail A12. 

20.4. Like most of the algorithms in this book, Gaussian elimination involves 
a triply nested loop. In Algorithm 20.1, there are two explicit for loops, 
and the third loop is implicit in the vectors u;,A::m and ulo:,A::m. Rewrite this 
algorithm with just one explicit for loop indexed by k. Inside this loop, U 
will be updated at each step by a certain rank-one outer product. This "outer 
product" form of Gaussian elimination may be a better starting point than 
Algorithm 20.1 if one wants to optimize computer performance. 

20.5. We have seen that Gaussian elimination yields a factorization A= LU, 
where L has ones on the diagonal but U does not. Describe at a high level 
the factorization that results if this process is varied in the following ways: 

(a) Elimination by columns from left to right, rather than by rows from top 
to bottom, so that A is made lower-triangular. 

{b) Gaussian elimination applied after a preliminary scaling of the columns of 
A by a diagonal matrix D. What form does a system Ax = b take under this 
rescaling? Is it the equations or the unknowns that are rescaled by D ? 

(c) Gaussian elimination carried further, so that after A (assumed nonsingular) 
is brought to upper-triangular form, additional column operations are carried 
out so that this upper-triangular matrix is made diagonal. 



Lecture 21. Pivoting 

In the last lecture we saw that Gaussian elimination in its pure form is unsta­
ble. The instability can be controlled by permuting the order of the rows of 
the matrix being operated on, an operation called pivoting. Pivoting has been 
a standard feature of Gaussian elimination computations since the 1950s. 

Pivots 

At step k of Gaussian elimination, multiples of row k are subtracted from rows 
k + 1, ... , m of the working matrix X in order to introduce zeros in entry k 
of these rows. In this operation row k, column k, and especially the entry x1c1c 

play special roles. We call x1c1c the pivot. From every entry in the submatrix 
Xlc+l:m,lc:m is subtracted the product of a number in row k and a number in 
column k, divided by x1c1c: 

X X X X X X X X X X 

Z1c1c X )( )( xlclc x X X 

X X X X -+ 0 )( X )( 

X X X X 0 )( )( )( 

X X X X 0 )( )( )( 

However, there is no reason why the kth row and column must be chosen 
for the elimination. For example, we could just as easily introduce zeros in 
column k by adding multiples of some row i with k < i ~ m to the other rows 

155 
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k, ... , m. In this case, the entry xilc would be the pivot. Here is an illustration 
with k = 2 and i = 4: 

X X X X X 

X X X X 

X X X X 

Zilc X X X 
X X X X 

X X X X X 

0 X X X 

0 X X X 

Xifc X X X 

0 X X X 

Similarly, we could introduce zeros in column j rather than column k. Here 
is an illustration with k = 2, i = 4, j = 3: 

X X X X X X X X X X 

X X X X X 0 X X 

X X X X --+ X 0 X X 

X Zij X X X Xij X X 

X X X X X 0 X X 

All in all, we are free to choose any entry of X~::m,k:m as the pivot, as long 
as it is nonzero. The possibility that an entry x~:11 = 0 might arise implies 
that some :O.exibility of choice of the pivot may sometimes be necessary, even 
from a pure mathematical point of view. For numerical stability, however, 
it is desirable to pivot even when xu is nonzero if there is a larger element 
available. In practice, it is common to pick as pivot the largest number among 
a set of entries being considered as candidates. 

The structure of the elimination process quickly becomes confusing if zeros 
are introduced in arbitrary patterns through the matrix. To see what is going 
on, we want to retain the triangular structure described in the last lecture, 
and there is an easy way to do this. We shall not think of the pivot xi; 
as left in place, as in the illustrations above. Instead, at step k, we shall 
imagine that the rows and columns of the working matrix are permuted so 
as to move Xi; into the (k, k) position. Then, when the elimination is done, 
zeros are introduced into entries k + 1, ... , m of column k, just as in Gaussian 
elimination without pivoting. This interchange of rows and perhaps columns 
is what is usually thought of as pivoting. 

The idea that rows and columns are interchanged is indispensable con­
ceptually. Whether it is a good idea to interchange them physically on the 
computer is less clear. In some implementations, the data in computer mem­
ory are indeed swapped at ~a.ch pivot step. In others, an equivalent effect is 
achieved by indirect addressing with permuted index vectors. Which approach 
is best varies from machine to machine and depends on many factors. 

Partial Pivoting 

H every entry of X~r:m,k:m is considered as a possible pivot at step k, there are 
O((m- k)2 ) entries to be examined to determine the largest. Summing over 
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m steps, the total cost of selecting pivots becomes O(m3) operations, adding 
significantly to the cost of Gaussian elimination, not to mention the potential 
difficulties of global communication in an unpredictable pattern across all the 
entries of a matrix. This expensive strategy is called complete pivoting. 

In practice, equally good pivots can be found by considering a much smaller 
number of entries. The standard method for doing this is partial pivoting. 
Here, only rows are interchanged. The pivot at each step is chosen as the 
largest of the m - k + 1 subdiagonal entries in column k, incurring a total cost 
of only O(m- k) operations for selecting the pivot at each step, hence O(m2) 

operations overall. To bring the kth pivot into the (k, k) position, no columns 
need to be permuted; it is enough to swap row k with the row containing the 
pivot. 

X X X X X X X X X X X X X X X 

X X X X pl Zik X X X Ll xik x X X 

X X X X --+ X X X X --+ 0 X X X 

Zik X X X X X X X 0 X X X 
X X X X X X X X 0 X X X 

Pivot selection Row interchange Elimination 

As usual in numerical linear algebra, this algorithm can be expressed as 
a matrix product. We saw in the last lecture that an elimination step cor­
responds to left-multiplication by an elementary lower-triangular matrix L,. 
Partial pivoting complicates matters by applying a permutation matrix P, 
on the left of the working matrix before each elimination. (A permutation 
matrix is a matrix with 0 everywhere except for a single 1 in each row and 
column. That is, it is a matrix obtained from the identity by permuting rows 
or columns.) After m- 1 steps, A becomes an upper-triangular matrix U: 

(21.1) 

Example 

To see what is going on, it will be helpful to return to the numerical example 
(20.3) of the last lecture, 

(21.2) 
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With partial pivoting, the first thing we do is interchange the first and third 
rows (left-multiplication by P1): 

The first elimination step now looks like this (left-multiplication by £ 1): 

Now the second and fourth rows are interchanged (multiplication by P2): 

8 7 9 
7 9 
4 4 
3 5 -4 -4 
1 3 -2 -2 

The second elimination step then looks like this (multiplication by £ 1): 

1 

1 
3 
7 
2 
7 

1 

8 7 9 5 

1 

8 7 9 5 
7 9 17 
4 4 4 

2 4 
-7 7 

6 2 -7 -7 

Now the third and fourth rows are interchanged (multiplication by P3): 

The :final elimination step looks like this (multiplication by £ 3): 

1 8 7 9 5 8 7 9 5 

1 7 9 17 7 9 17 
4 4 4 4 4 4 

6 2 - 6 2 1 -7 -;:; -7 -7 
1 1 2 4 2 -3 -7 7 3 
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PA = LU Factorization and a Third Stroke of Luck 

Have we just computed an LU factorization of A? Not quite, but almost. In 
fact, we have computed an LU factorization of PA, where Pis a permutation 
matrix. It looks like this: 

1 

1 II~ 
1 1 

~I 
1 8 7 9 

~I 3 3 3 1 l 1l 
= 4 4 4 

1 7 9 1 2 1 6 2 • 
2 -1 -7 -1 

1 7 9 1 3 1 1 2 
4 -1 3 3 

p A L u 
{21.3) 

This formula should be compared with (20.5). The presence of integers there 
and fractions here is not a general distinction, but an artifact of our choice of 
A. The distinction that matters is that here, all the subdiagonal entries of 
L are ~ 1 in magnitude, a consequence of the property lxul = max; lx;kl in 
{20.6) introduced by pivoting. 

It is not obvious where {21.3) comes from. Our elimination process took 
the form 

L3P3L2P2L1 P1 A = U, 

which doesn't look lower-triangular at all. But here, a third stroke of good 
fortune has come to our aid. These six elementary operations can be reordered 
in the form 

L3P3L2P2L1P1 = L~L~L~P3P2P11 {21.4) 

where L~ is equal to Lk but with the subdiagonal entries permuted. To be 
precise, define 

Since each of these definitions applies only permutations P; with j > k to 
Lk, it is easily verified that L~ has the same structure as Lk. Computing the 
product of the matrices L~ reveals 

as in {21.4). 
In general, for an m x m matrix, the factorization {21.1) provided by 

Gaussian elimination with partial pivoting can be written in the form 

{21.5) 

where L~ is defined by 

(21.6) 
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The product of the matrices LA, is unit lower-triangular and easily invertible 
by negating the subdiagonal entries, just as in Gaussian elimination without 
pivoting. Writing L = (£:,._1 • • • L~LD-1 and P = Pm_1 • • • P2P1 , we have 

PA=LU. (21.7) 

In general, any square matrix A, singular or nonsingular, has a factoriza­
tion (21. 7), where P is a permutation matrix, L is unit lower-triangular with 
lower-triangular entries ~ 1 in magnitude, and U is upper-triangular. Partial 
pivoting is such a universal practice that this factorization is usually known 
simply as an L U factorization of A. 

The famous formula (21.7) has a simple interpretation. Gaussian elimina­
tion with partial pivoting is equivalent to the following procedure: 

1. Permute the rows of A according to P 

2. Apply Gaussian elimination without pivoting to P A. 

Partial pivoting is not carried out this way in practice, of course, since P is 
not known ahead of time. 

Here is a formal statement of the algorithm. 

Algorithm 21.1. Gaussian Elimination with Partial Pivoting 

U = A, L =I, P =I 
for k = 1 to m - 1 

Select i ;:::: k to maximize I uiAr I 
u~r,Ar:m +-+ ui,Ar:m (interchange two rows) 

.elr,1:Ar-1 +-+ .ei,1:Ar-1 

P~r,: +-+ Pi,: 
for j = k + 1 to m 

l;11 = u;11 fuu 
U;,Ar:m = U;,Ar:m - f;kUk,k:m 

To leading order, this algorithm requires the same number of floating point 
operations (20.8) as Gaussian elimination without pivoting, namely, ~m3 . As 
with Algorithm 20.1, the use of computer memory can be minimized if desired 
by overwriting U and L into the same array used to store A. 

In practice, of course, P is not represented explicitly as a matrix. The rows 
are swapped at each step, or an equivalent effect is achieved via a permutation 
vector, as indicated earlier. 
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Complete Pivoting 

In complete pivoting, the selection of pivots takes a significant amount of 
time. In practice this is rarely done, because the improvement in stability is 
marginal. However, we shall outline how the algebra changes in this case. 

In matrix form, complete pivoting precedes each elimination step with a 
permutation P., of the rows applied on the left and also a permutation Q., of 
the columns applied on the right: 

Once again, this is not quite an L U factorization of A, but it is close. If the 
L~ are defined as in (21.6) (the column permutations are not involved), then 

Setting L = (L~_1 • • • L2LD-l, P = Pm_1 · · · P2P1, and Q = Q1Q2 • • · Qm_1, 

we obtain 
PAQ=LU. (21.10) 

Exercises 

21.1. Let A be the 4 x 4 matrix (20.3) considered in this lecture and the 
previous one. 

(a) Determine det A from (20.5). 

(b) Determine det A from (21.3). 

(c) Describe how Gaussian elimination with partial pivoting can be used to 
find the determinant of a general square matrix. 

21.2. Suppose A E cmxm is banded with bandwidth 2p+ 1, as in Exercise 20.2, 
and a factorization P A = LU is computed by Gaussian elimination with 
partial pivoting. What can you say about the sparsity patterns of L and U ? 

21.3. Consider Gaussian elimination carried out with pivoting by columns 
instead of rows, leading to a factorization AQ = LU, where Q is a permutation 
matrix. 

(a) Show that if A is nonsingular, such a factorization always exists. 

(b) Show that if A is singular, such a factorization does not always exist. 

21.4. Gaussian elimination can be used to compute the inverse A - 1 of a 
nonsingular matrix A E cmxm, though it is rarely really necessary to do so. 

(a) Describe an algorithm for computing A-1 by solving m systems of equa­
tions, and show that its asymptotic operation count is 8m3 /3 :Hops. 
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(b) Describe a variant of your algorithm, taking advantage of sparsity, that 
reduces the operation count to 2m3 :Hops. 

(c) Suppose one wishes to solve n systems of equations Ax; = b;, or equiv­
alently, a block system AX = B with B E cmxn. What is the asymptotic 
operation count (a function of m and n) for doing this (i) directly from the 
LU factorization and (ii) with a preliminary computation of A-1? 

21.5. Suppose A E cmxm is hermitian, or in the real case, symmetric (but 
not necessarily positive definite). 
(a) Describe a strategy of symmetric pivoting to preserve the hermitian struc­
ture while still leading to a unit lower-triangular matrix with entries lli;l ~ 1. 

(b) What is the form of the matrix factorization computed by your algorithm? 

(c) What is its asymptotic operation count? 

21.6. Suppose A E cmxm is strictly column diagonally dominant, which 
means that for each k, 

la~:~:l > L la;~:l· {21.11} 
j-:f:k 

Show that if Gaussian elimination with partial pivoting is applied to A, no 
row interchanges take place. 

21.7. In Lecture 20 the "two strokes of luck" were explained by the use of the 
vectors e" and l~:. Give an explanation based on these vectors for the "third 
stroke of luck" in the present lecture. 



Lecture 22. Stability of Gaussian 
Elimination 

Gaussian elimination with partial pivoting is explosively unstable for certain 
matrices, yet stable in practice. This apparent paradox has a statistical ex­
planation. 

Stability and the Size of L and U 

The stability analysis of most algorithms of numerical linear algebra, including 
virtually all of those based on unitary operations, is straightforward. The 
stability analysis of Gaussian elimination with partial pivoting, however, is 
complicated, and has been a point of difficulty in numerical analysis since the 
1950s. This is one of the reasons why we saved Gaussian elimination until the 
second half of this book. 

In (20.9) we gave an example of a 2 x 2 matrix for which Gaussian elim­
ination without pivoting was unstable. In that example, the factor L had 
an entry of size 1020• An attempt to solve a system of equations based on 
L introduced rounding errors of relative order emachine, hence absolute order 
Emachine x 1020• Not surprisingly, this destroyed the accuracy of the result. 

It turns out that this example is, in a sense, entirely general. Instability in 
Gaussian elimination-with or without pivoting-can arise only if one or both 
of the factors L and U is large relative to the size of A. Thus the purpose 
of pivoting, from the point of view of stability, is to ensure that L and U are 
not too large. As long as all the intermediate quantities that arise during the 
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elimination are of manageable size, the rounding errors they emit are very 
small, and the algorithm is backward stable. 

The following theorem makes this idea precise. It is stated for Gaussian 
elimination without pivoting, but it applies to elimination with pivoting too if 
A is taken to represent the original matrix with appropriately permuted rows 
and/or columns. 

Theorem 22.1. Let the factorization A= LU of a nonsingular matrix A E 
cmxm be computed by Gaussian elimination without pivoting (Algorithm 20.1} 
on a computer satisfying the axioms (13.5) and (13.7). If A has an LU fac­
torization, then for all sufficiently small emachine' the factorization completes 
successfully in floating point arithmetic (no zero pivots are encountered}, and 
the computed matrices L and fj satisfy 

li6All 
IILIIIIUII = O(emachine) (22.1) 

for some 6A E cmxn. 

As usual in numerical linear algebra, we make no claims about L-L or fj- U, 
only about L(J- LU. 

At first glance this estimate may look like half a dozen others in this book, 
such as (16.3) or (17.3). What makes it different is that the quantity in the 
denominator is IILIIIIUII, not IIAII. If IILIIIIUII = O(IIAII), then (22.1) asserts 
that Gaussian elimination is backward stable. If IILIIIIUII =I O(IIAII), however, 
we must expect backward instability. 

For Gaussian elimination without pivoting, both L and U can be unbound­
edly large. That algorithm is unstable by any standard, and we shall not 
discuss it further. Instead, from now on, we shall confine our attention to 
Gaussian elimination with partial pivoting. 

Growth Factors 

Consider Gaussian elimination with partial pivoting. Because each pivot selec­
tion involves maximization over a column, this algorithm produces a matrix 
L with entries of absolute value ~ 1 everywhere below the diagonal. This 
implies IlLII = 0(1) in any norm. Therefore, for Gaussian elimination with 
partial pivoting, (22.1) reduces to the condition II6AII/IIUII = O(emachine)· We 
conclude that the algorithm is backward stable provided IIUII = O(IIAII). 

There is a standard reformulation of this conclusion that is perhaps more 
vivid. Gaussian elimination reduces a full matrix A to an upper-triangular 
matrix U. We have just seen that the key question for stability is whether 
amplification of the entries takes place during this reduction. In particular, 
let the growth factor for A be defined as the ratio 

m~·IUi·l 
p = m~: lai:r (22.2) 
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If pis of order 1, not much growth has taken place, and the elimination process 
is stable. If p is bigger than this, we must expect instability. Specifically, since 
IlLII = 0(1), and since {22.2) implies IIUII = O(piiAII), the following result is 
a corollary of Theorem 22.1. 

Theorem 22.2. Let the factorization P A = LU of a matrix A E cmxm be 
computed by Gaussian elimination with partial pivoting {Algorithm 21.1) on a 
computer satisfying the axioms (13.5) and {13.7). Then the computed matrices 
P, L, and [J satisfy 

IleA II 
II All = O(p €machine) (22.3) 

for some oA E cmxn, where p is the growth factor for A. If lli;l < 1 for 
each i > j, implying that there are no ties in the selection of pivots in exact 
arithmetic, then P = P for all sufficiently small €machine· 

Is Gaussian elimination backward stable? According to Theorem 22.2 and 
our definition (14.5) of backward stability, the answer is yes if p = 0(1) 
uniformly for all matrices of a given dimension m, and otherwise no. 

And now, the complications begin. 

Worst-Case Instability 

For certain matrices A, despite the beneficial effects of pivoting, p turns out 
to be huge. For example, suppose A is the matrix 

1 1 
-1 1 1 

A - -1 -1 1 1 (22.4) 
-1 -1 -1 1 1 
-1 -1 -1 -1 1 

At the first step, no pivoting takes place, but entries 2, 3, ... , m in the :final 
column are doubled from 1 to 2. Another doubling occurs at each subsequent 
elimination step. At the end we have 

1 

1 

U- 1 

1 
2 

4 
1 8 

16 

{22.5) 



166 PART IV. SYSTEMS OF EQUATIONS 

The final P A = LU factorization looks like this: 

1 1 1 1 1 
-1 1 1 -1 1 1 2 
-1 -1 1 1 -1 -1 1 1 4 

-1 -1 -1 1 1 -1 -1 -1 1 1 8 
-1 -1 -1 -1 1 -1 -1 -1 -1 1 16 

For this 5 x 5 matrix, the growth factor is p = 16. For an m x m matrix of the 
same form, it is p = 2m-l. (This is as large asp can get; see Exercise 22.1.) 

A growth factor of order 2m corresponds to a loss of on the order of m bits 
of precision, which is catastrophic for a practical computation. Since a typical 
computer represents floating point numbers with just sixty-four bits, whereas 
matrix problems of dimensions in the hundreds or thousands are solved all the 
time, a loss of m bits of precision is intolerable for real computations. 

This brings us to an awkward point. Here, in the discussion of Gaussian 
elimination with pivoting-for the only time in this book-the definitions of 
stability presented in Lecture 14 fail us. According to the definitions, all that 
matters in determining stability or backward stability is the existence of a cer­
tain bound applicable uniformly to all matrices for each fixed dimension m. 
Uniformity with respect tom is not required. Here, for each m, we have a uni­
form bound involving the constant 2m-l. Thus, according to our definitions, 
Gaussian elimination is backward stable. 

Theorem 22.3. According to the definitions of Lecture 14, Gaussian elimi­
nation with partial pivoting is backward stable. 

This conclusion is absurd, however, in view of the vastness of 2m-l for practical 
values ofm. 

For the remainder of this lecture, we ask the reader to put aside our formal 
definitions of stability and accept a more informal (and more standard) use 
of words. Gaussian elimination for certain matrices is explosively unstable, 
as can be confirmed by numerical experiments with MATLAB, LINPACK, 
LAPACK, or other software packages ofimpeccable reputation (Exercise 22.2). 

Stability in Practice 

If Gaussian elimination is unstable, why is it so famous and so popular? This 
brings us to a point that is not just an artifact of definitions but a fundamen­
tal fact about the behavior of this algorithm. Despite examples like (22.4), 
Gaussian elimination with partial pivoting is utterly stable in proctice. Large 
factors U like (22.5) never seem to appear in real applications. In fifty years of 
computing, no matrix problems that excite an explosive instability are known 
to have arisen under natuml circumstances. 
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This is a curious situation indeed. How can an algorithm that fails for 
certain matrices be entirely trustworthy in practice? The answer seems to be 
that although some matrices cause instability, these represent such an extraor­
dinarily small proportion of the set of all matrices that they ''never" arise in 
practice simply for statistical reasons. 

One can learn more about this phenomenon by considering random ma­
trices. Of course, the matrices that arise in applications are not random in 
any ordinary sense. They have all kinds of special properties, and if one tried 
to describe t~em as random samples from some distribution, it would have 
to be a curious distribution indeed. It would certainly be unreasonable to 
expect that any particular distribution of random matrices should match the 
behavior of the matrices arising in practice in a close quantitative way. 

However, the phenomenon to be explained is not a matter of precise quan­
tities. Matrices with large growth factors are vanishingly rare in applications. 
If we can show that they are vanishingly rare among random matrices in some 
well-defined class, the mechanisms involved must surely be the same. The 
argument does not depend on one measure of "vanishingly" agreeing with the 
other to any particular factor such as 2 or 10 or 100. 

Figures 22.1 and 22.2 present experiments with random matrices as defined 
in Exercise 12.3: each entry is an independent sample from the real normal 
distribution of mean 0 and standard deviation m-112. In Figure 22.1, a col­
lection of random matrices of various dimensions have been factored and the 
growth factors presented as a scatter plot. Only two of the matrices gave a 
growth factor as large as m 112• In Figure 22.2, the results of factoring one 
million matrices each of dimensions m = 8, 16, and 32 are shown. Here, 
the growth factors have been collected in bins of width 0.2 and the resulting 
data plotted as a probability density distribution. The probability density 
of growth factors appears to decrease exponentially with size. Among these 
three million matrices, though the maximum growth factor in principle might 
have been 2,147,483,648, the maximum actually encountered was 11.99. 

Similar results are obtained with random matrices defined by other prob­
ability distributions, such as uniformly distributed entries in [-1, 1] (Exer­
cise 22.3). If you pick a billion matrices at random, you will almost certainly 
not find one for which Gaussian elimination is unstable. 

Explanation 

We shall not attempt to give a full explanation of why the matrices for which 
Gaussian elimination is unstable are so rare. This would not be possible, as 
the matter is not yet fully understood. But we shall present an outline of an 
explanation. 

If PA = LU, then U = L-1PA. It follows that if Gaussian elimination 
is unstable when applied to the matrix A, implying that p is large, then L - 1 

must be large too. Now, as it happens, random triangular matrices tend 
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Figure 22.1. Growth factors for Gaussian elimination with partial pivoting 
applied to 496 random matrices {independent, normally distributed entries) of 
various dimensions. The typical size of p is of order m 112, much less than the 
maximal possible value 2m-l . 
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Figure 22.2. Probability density distributions for growth factors of random 
matrices of dimensions m = 8, 16, 32, based on sample sizes of one million 
for each dimension. The density appears to decrease exponentially with p. The 
chatter near the end of each curve is an artifact of the finite sample sizes. 
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to have huge inverses, exponentially large as a function of the dimension m 
(Exercise 12.3( d)). In particular, this is true for random triangular matrices 
of the form delivered by Gaussian elimination with partial pivoting, with 1 on 
the diagonal and entries ~ 1 in absolute value below. 

When Gaussian elimination is applied to random matrices A, however, 
the resulting factors L are anything but random. Correlations appear among 
the signs of the entries of L that render these matrices extraordinarily well­
conditioned. A typical entry of L - 1, far from being exponentially large, is 
usually less than 1 in absolute value. Figure 22.3 presents evidence of this 
phenomenon based on a single (but typical) matrix of dimension m = 128. 

We thus arrive at the question: why do the matrices L delivered by Gaus­
sian elimination almost never have large inverses? 

The answer lies in the consideration of column spaces. Since U is upper­
triangular and PA = LU, the column spaces of PA and L are the same. By 
this we mean that the first column of P A spans the same space as the first 
column of L, the first two columns of P A span the same space as the first 
two columns of L, and so on. H A is random, its column spaces are randomly 
oriented, and it follows that the same must be true of the column spaces of 
p-l L. However, this condition is incompatible with L - 1 being large. It can be 
shown that if L - 1 is large, then the column spaces of L, or of any permutation 
p-1 L, must be skewed in a fashion that is very far from random. 

Figure 22.4 gives evidence of this. The figure shows "where the energy is" 
in the successive column spaces of the same two matrices as in Figure 22.3. 
The device for doing this is a Q portrait, defined by the MATLAB commands 

[Q ,R] = qr(A), spy( abs(Q) > 1/sqrt(m) ). (22.6) 

These commands first compute a QR factorization of the matrix A, then plot 
a dot at each position of Q corresponding to an entry larger than the standard 
deviation, m-112. The figure illustrates that for a random A, even after row 
interchanges to the form P A, the column spaces are oriented nearly randomly, 
whereas for a matrix A that gives a large growth factor, the orientations are 
very far from random. It is likely that by quantifying this argument, it can 
be proved that growth factors larger than order m112 are exponentially rare 
among random matrices in the sense that for any a > 1/2 and M > 0, 
the probability of the event p > ma is smaller than m-M for all sufficiently 
large m. As of this writing, however, such a theorem has not yet been proved. 

Let us summarize the stability of Gaussian elimination with partial pivot­
ing. This algorithm is highly unstable for certain matrices A. For instability 
to occur, however, the column spaces of A must be skewed in a very special 
fashion, one that is exponentially rare in at least one class of random matri­
ces. Decades of computational experience suggest that matrices whose column 
spaces are skewed in this fashion arise very rarely in applications. 
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random L 
111~I(L-1 )ijl = 2.27 X 104 

1,] 

Figure 22.3. Let A be a random 128 x 128 matrix with factorization PA = LU. 
On the left, L - 1 is shown: the dots represent entries with magnitude ;::: 1. On 
the right, a similar picture for L -1, where L is the same as L except that the 
signs of its subdiagonal entries have been randomized. Gaussian elimination 
tends to produce matrices L that are extraordinarily well-conditioned. 

random A random L 

Figure 22.4. Q portraits (22.6) of the same two matrices. On the left, the 
random matrix A after permutation to the form P A, or equivalently, the factor 
L. On the right, the matrix L with randomized signs. The column spaces of 
L are skewed in a manner exponentially unlikely to arise in typical classes of 
random matrices. 
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Exercises 

22.1. Show that for Gaussian elimination with partial pivoting applied to 
any matrix A E cmxm, the growth factor (22.2) satisfies p ~ 2m-I. 

22.2. Experiment with solving 60 x 60 systems of equations Ax = b by 
Gaussian elimination with partial pivoting, with A having the form (22.4). 
Do you observe that the results are useless because of the growth factor of 
order 260 ? At your first attempt you may not observe this, because the 
integer entries of A may prevent any rounding errors from occurring. If so, 
find a way to modify your problem slightly so that the growth factor is the 
same or nearly so and catastrophic rounding errors really do take place. 

22.3. Reproduce the figures of this lecture, approximately if not in full detail, 
but based on random matrices with entries uniformly distributed in [-1, 1] 
rather than normally distributed. Do you see any significant differences? 

22.4. (a) Suppose PA = LU (LU factorization with partial pivoting) and 
A= QR (QR factorization). Describe a relationship between the last row of 
L-1 and the last column of Q. 
(b) Show that if A is random in the sense of having independent, normally 
distributed entries, then its column spaces are randomly oriented, so that in 
particular, the last column of Q is a random unit vector. 

(c) Combine the results of (a) and (b) to make a statement about the final 
row of L-1 in Gaussian elimination applied to a random matrix A. 



Lecture 23. Cholesky Factorization 

Hermitian positive definite matrices can be decomposed into triangular factors 
twice as quickly as general matrices. The standard algorithm for this, Cholesky 
factorization, is a variant of Gaussian elimination that operates on both the 
left and the right of the matrix at once, preserving and exploiting symmetry. 

Hermitian Positive Definite Matrices 

A real matrix A E Rmxm is symmetric if it has the same entries below the 
diagonal as above: aii = aii for all i,j, hence A= AT. Such a matrix satisfies 
xT Ay = yT Ax for all vectors x, y E Rm. 

For a complex matrix A E cmxm, the analogous property is that A is her­
mitian. A hermitian matrix has entries below the diagonal that are complex 
conjugates of those above the diagonal: aii = a1i, hence A = A*. (These 
definitions appeared already in Lecture 2.) Note that this means that the 
diagonal entries of a hermitian matrix must be real. 

A hermitian matrix A satisfies x*Ay = y*Ax for all x, y E em. This means 
in particular that for any X E em, x*Ax is real. If in addition x* Ax > 0 for 
all x ¥- 0, then A is said to be hermitian positive definite (or sometimes just 
positive definite). Many matrices that arise in physical systems are hermitian 
positive definite because of fundamental physical laws. 

If A is an m x m hermitian positive definite matrix and X is an m x n 
matrix of full rank with m ~ n, then the matrix X* AX is also hermitian 
positive definite. It is hermitian because (X*AX)* = X*A*X = X*AX, and 
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it is positive definite because, for any vector x =j:. 0, we have Xx =j:. 0 and 
thus x*(X*AX)x = (Xx)* A(Xx) > 0. By choosing X to be an m x n matrix 
with a 1 in each column and zeros elsewhere, we can write any n x n principal 
submatrix of A in the form X* AX. Therefore, any principal submatrix of A 
must be positive definite. In particular, every diagonal entry of A is a positive 
real number. 

The eigenvalues of a hermitian positive definite matrix are also positive 
real numbers. If Ax= AX for x =j:. 0, we have x*Ax = Ax*x > 0 and therefore 
A> 0. Conversely, it can be shown that if a hermitian matrix has all positive 
eigenvalues, then it is positive definite. 

Eigenvectors that correspond to distinct eigenvalues of a hermitian matrix 
are orthogonal. (As discussed in the next lecture, hermitian matrices are 
normal.) Suppose Ax1 = A1x1 and Ax2 = A2x2 with A1 =j:. A2 • Then 

A2xix2 = xiAx2 = x~Ax1 = A1x~x1 = A1xix2 , 

so (A1 - A2)xix2 = 0. Since A1 =j:. A2, we have xix2 = 0. 

Symmetric Gaussian Elimination 

We tum now to the problem of decomposing a hermitian positive definite 
matrix into triangular factors. To begin, consider what happens if a single 
step of Gaussian elimination is applied to a hermitian matrix A with a 1 in 
the upper-left position: 

A=[~~] [~ ~] [~ K~:w* ]· 

As described in Lecture 20, zeros have been introduced into the first column 
of the matrix by an elementary lower-triangular operation on the left that 
subtracts multiples of the first row from subsequent rows. 

Gaussian elimination would now continue the reduction to triangular form 
by introducing zeros in the second column. However, in order to maintain 
symmetry, Cholesky factorization first introduces zeros in the first row to 
match the zeros just introduced in the first column. We can do this by a right 
upper-triangular operation that subtracts multiples of the first column from 
the subsequent ones: 

[ 1 w* ] [ 1 0 ] [ 1 w* ] 
0 K- ww* - 0 K - ww* 0 I · 

Note that this upper-triangular operation is exactly the adjoint of the lower­
triangular operation that we used to introduce zeros in the first column. 

Combining the operations above, we find that the matrix A has been fac­
tored into three terms: 

A= [ 1 w* ] [ 1 0 ] [ 1 0 ] [ 1 w* ] 
w K w I 0 K -ww* 0 I . 

(23.1) 
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The idea of Cholesky factorization is to continue this process, zeroing one 
column and one row of A symmetrically until it is reduced to the identity. 

Cholesky Factorization 

In order for the symmetric triangular reduction to work in general, we need a 
factorization that works for any au > 0, not just au = 1. The generalization 
of (23.1) is accomplished by adjusting some of the elements of R1 by a factor 
of .JCill· Let a= .JCill and observe: 

A = [ a~1 ~] 

= [ a 0 ] [ 1 0 ] [ a w* I a ] = RiA 1 R1 . 

wla I 0 K -ww*la11 0 I 

This is the basic step that is applied repeatedly in Cholesky factorization. 
If the upper-left entry of the submatrix K- ww* I au is positive, the same 
formula can be used to factor it; we then have A1 = R2A2R2 and thus A = 
RiR2A2R2R1• The process is continued down to the bottom-right comer, 
giving us eventually a factorization 

A = Ri R; · · · R:n Rm · · · R2R1 . (23.2) 

R* R 

This equation has the form 

A=R*R, r;; > 0, (23.3) 

where R is upper-triangular. A reduction of this kind of a hermitian positive 
definite matrix is known as a Cholesky factorization. 

The description above left one item dangling. How do we know that the 
upper-left entry of the submatrix K -ww* la11 is positive? The answer is that 
it must be positive because K - ww* I au is positive definite, since it is the 
(m-1) x (m-1) lower-right principal submatrix of the positive definite matrix 
R1* AR11• By induction, the same argument shows that all the submatrices 
A; that appear in the course of the factorization are positive definite, and thus 
the process cannot break down. We can formalize this conclusion as follows. 

Theorem 23.1. Every hermitian positive definite matrix A E cmxm has a 
unique Cholesky factorization (23.3). 

Proof. Existence is what we just discussed; a factorization exists since the 
algorithm cannot break down. In fact, the algorithm also establishes unique­
ness. At each step (23.2), the value a = vfai1 is determined by the form of 
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the R* R factorization, and once a is determined, the first row of Ri is deter­
mined too. Since the analogous quantities are determined at each step of the 
reduction, the entire factorization is unique. D 

The Algorithm 

When Cholesky factorization is implemented, only half of the matrix being 
operated on needs to be represented explicitly. This simplification allows half 
of the arithmetic to be avoided. A formal statement of the algorithm (only 
one of many possibilities) is given below. The input matrix A represents the 
superdiagonal half of the m x m hermitian positive definite matrix to be fac­
tored. (In practical software, a compressed storage scheme may be used to 
avoid wasting half the entries of a square array.) The output matrix R rep­
resents the upper-triangular factor for which A = R* R. Each outer iteration 
corresponds to a single elementary factorization: the upper-triangular part 
of the submatrix Rk:m,A::m represents the superdiagonal part of the hermitian 
matrix being factored at step k. 

Algorithm 23.1. Cholesky Factorization 

R=A 
fork=1tom 

for j = k + 1 to m 
R;.;:m = R;.;:m- R~o:.;:mR~o:;/R,.,. 

Rk,k:m = Rk,k:m/ .fii;:,. 

Operation Count 

The arithmetic done in Cholesky factorization is dominated by the inner loop. 
A single execution of the line 

R;.;:m = R;.;:m - Rk,;:mRk;/ Ru 

requires one division, m - j + 1 multiplications, and m - j + 1 subtractions, 
for a total of "' 2( m - j) fiops. This calculation is repeated once for each j 
from k + 1 to m, and that loop is repeated for each k from 1 to m. The sum 
is straightforward to evaluate: 

m m m k 

E E 2(m-j) "' 2EEi "' 
lo:=lj=k+l lo:=lj=l 

Thus, Cholesky factorization involves only half as many operations as Gaus­
sian elimination, which would require "' ~m3 fiops to factor the same matrix. 
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As usual, the operation count can also be determined graphically. For 
each k, two floating point operations are carried out (one multiplication and 
one subtraction) at each position of a triangular layer. The entire algorithm 
corresponds to stacking m layers: 

m 

As m - oo, the solid converges to a tetrahedron with volume ~m3 • Since 
each unit cube corresponds to two floating point operations, we obtain again 

1 
Work for Cholesky factorization: "' 3m3 flops. (23.4) 

Stability 

All of the subtleties of the stability analysis of Gaussian elimination vanish 
for Cholesky factorization. This algorithm is always stable. Intuitively, the 
reason is that the factors R can never grow large. In the 2-norm., for example, 
we have IIRII = IIR*II = IIAII112 (proof: SVD), and in other p-norms with 
1 ~ p ~ oo, IIRII cannot differ from IIAII112 by more than a factor of .;m. 
Thus, numbers much larger than the entries of A can never arise. 

Note that the stability of Cholesky factorization is achieved without the 
need for any pivoting. Intuitively, one may observe that this is related to the 
fact that most of the weight of a hermitian positive definite matrix is on the 
diagonal. For example, it is not hard to show that the largest entry must 
appear on the diagonal, and this property carries over to the positive definite 
submatrices constructed in the inductive process (23.2). 

An analysis of the stability of the Cholesky process leads to the following 
backward stability result. 

Theorem 23.2. Let A E cmxm be hermitian positive definite, and let a Chol­
esky factorization of A be computed by Algorithm 23.1 on a computer satisfying 
(13.5) and (13.7). For all sufficiently small €machine' this process is guaranteed 
to run to completion (i.e., no zero or negative comer entries r,, will arise}, 
generating a computed factor R that satisfies 

(23.5) 

for some 6A E cmxm. 
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Like so many algorithms of numerical linear algebra, this one would look 
much worse if we tried to carry out a forward error analysis rather than a 
backward one. If A is ill-conditioned, R will not generally be close to R; 
the best we can say is IIR - RII/IIRII = O(~t(A)c:machine)· (In other words, 
Cholesky factorization is in general an ill-conditioned problem.) It is only 
the product R*R that satisfies the much better error bound (23.5). Thus the 
errors introduced in R by rounding are large but "diabolically correlated," 
just as we saw in Lecture 16 for QR factorization. 

Solution of Ax = b 

If A is hermitian positive definite, the standard way to solve a system of 
equations Ax = b is by Cholesky factorization. Algorithm 23.1 reduces the 
system to R* Rx = b, and we then solve two triangular systems in succession: 
first R*y = b for the unknown y, then Rx = y for the unknown x. Each 
triangular solution requires just "' m2 flops, so the total work is again "' ~m3 

flops. 
By reasoning analogous to that of Lecture 16, it can be shown that this 

process is backward stable. 

Theorem 23.3. The solution of hermitian positive definite systems Ax = b 
via Cholesky factorization (Algorithm 23.1) is backward stable, generating a 
computed solution x that satisfies 

(A+ .6.A)x = b, (23.6) 

for some .6.A E cmxm. 

Exercises 

23.1. Let A be a nonsingular square matrix and let A= QR and A*A = U*U 
be QR and Cholesky factorizations, respectively, with the usual normalizations 
rii' uii > 0. Is it true or false that R = U? 

23.2. Using the proof of Theorem 16.2 as a guide, derive Theorem 23.3 from 
Theorems 23.2 and 17.1. 

23.3. Reverse Software Engineering of "\ ". The following MATLAB session 
records a sequence of tests of the elapsed times for various computations on a 
workstation manufactured in 1991. For each part, try to explain: (i) Why was 
this experiment carried out? (ii) Why did the result came out as it did? Your 
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answers should refer to formulas from the text for flop counts. The MATLAB 

queries help chol and help slash may help in your detective work. 

(a) m = 200; Z = randn(m,m); 
A= Z'*Z; b = randn(m,1); 
tic; x = A\b; toe; 

elapsed_time = 1.0368 

(b) tic; x = A\b; toe; 
elapsed_time = 1.0303 

(c) A2 = A; A2(m,1) = A2(m,1)/2; 
tic; x = A2\b; toe; 

elapsed_time = 2.0361 

(d) I= eye(m,m); emin = min(eig(A)); 
A3 = A - .9•emin•I; 
tic; x = A3\b; toe; 

elapsed_time = 1.0362 

(e) A4 = A - 1.1•emin•I; 
tic; x = A4\b; toe; 

elapsed_time = 2.9624 

(f) A5 = triu(A); 
tic; x = A5\b; toe; 

elapsed_time = 0.1261 

(g) A6 = A5; A6(m,1) = A5(1,m); 
tic; x = A6\b; toe; 

elapsed_time = 2.0012 



Part V 

Eigenvalues 





Lecture 24. Eigenvalue Problems 

Eigenvalue problems are particularly interesting in scientific computing, be­
cause the best algorithms for finding eigenvalues are powerful, yet particularly 
far from obvious. Here, we review the mathematics of eigenvalues and eigen­
vectors. Algorithms are discussed in later lectures. 

Eigenvalues and Eigenvectors 

Let A E cmxm be a square matrix. A nonzero vector x E em is an eigenvector 
of A, and A E Cis its corresponding eigenvalue, if 

Ax= AX. (24.1) 

The idea here is that the action of a matrix A on a subspace S of C~ may 
sometimes mimic scalar multiplication. When this happens, the special sub­
spaceS is called an eigenspace, and any nonzero xES is an eigenvector. 

The set of all the eigenvalues of a matrix A is the spectrum of A, a subset 
of C denoted by A( A). 

Eigenvalue problems have a very different character from the problems 
involving square or rectangular linear systems of equations discussed in the 
previous lectures. For a system of equations, the domain of A could be one 
space and the range could be a different one. In Example 1.1, for example, A 
mapped n-vectors of polynomial coefficients to m-vectors of sampled polyno­
mial values. To ask about the eigenvalues of such an A would be meaningless. 
Eigenvalue problems make sense only when the range and the domain spaces 
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are the same. This reflects the fact that in applications, eigenvalues are gen­
erally used where a matrix is to be compounded iteratively, either explicitly 
as a power Ak or implicitly in a functional form such as etA. 

Broadly speaking, eigenvalues and eigenvectors are useful for two reasons, 
one algorithmic, the other physical. Algorithmically, eigenvalue analysis can 
simplify solutions of certain problems by reducing a coupled system to a col­
lection of scalar problems. Physically, eigenvalue analysis can give insight into 
the behavior of evolving systems governed by linear equations. The most far 
miliar examples in this latter class are the study of resonance (e.g., of musical 
instruments when struck or plucked or bowed) and of stability (e.g., of :O.uid 
:O.ows subjected to small perturbations). In such cases eigenvalues tend to be 
particularly useful for analyzing behavior for large times t. See Exercise 24.3. 

Eigenvalue Decomposition 

An eigenvalue decomposition of a square matrix A, already mentioned in (5.1), 
is a factorization 

(24.2) 

(As we discuss below, such a factorization does not always exist.) Here X is 
nonsingular and A is diagonal. 

This definition can be rewritten 

AX=XA, (24.3) 

that is, 

A 

This makes it clear that if X; is the jth column of X and).; is the jth diagonal 
entry of A, then Ax; = ).;x;. Thus the jth column of X is an eigenvector of 
A and the jth entry of A is the corresponding eigenvalue. 

The eigenvalue decomposition expresses a change of basis to "eigenvector 
coordinates." H Ax = b and A = xAX-1, we have 

(24.4) 

Thus, to compute Ax, we can expand x in the basis of columns of X, apply 
A, and interpret the result as a vector of coefficients of a linear combination 
of the columns of X. 
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Geometric Multiplicity 

As stated above, the set of eigenvectors corresponding to a single eigenvalue, 
together with the zero vector, forms a subspace of em known as an eigenspace. 
If .X is an eigenvalue of A, let us denote the corresponding eigenspace by E>.. An 
eigenspace E>. is an example of an invariant subspace of A; that is, AE>. ~ E>.. 

The dimension of E>. can be interpreted as the maximum number of linearly 
independent eigenvectors that can be found, all with the same eigenvalue .X. 
This number is known as the geometric multiplicity of .X. The geometric 
multiplicity can also be described as the dimension of the nullspace of A- .XI, 
since that nullspace is again E>.. 

Characteristic Polynomial 

The characteristic polynomial of A E cmxm, denoted by PA or simply p, is the 
degree m polynomial defined by 

PA(z) = det(zl- A). (24.5) 

Thanks to the placement of the minus sign, p is monic: the coefficient of its 
degree m term is 1. 

Theorem 24.1 • .X is an eigenvalue of A if and only ifpA(.X) = 0. 

Proof. This follows from the definition of an eigenvalue: 

.X is an eigenvalue {::::::::} there is a nonzero vector x such that .Xx - Ax = 0 

{::::::::} .X/ - A is singular 

{::::::::} det(.XI- A) = 0. D 

Theorem 24.1 has an important consequence. Even if a matrix is real, 
some of its eigenvalues may be complex. Physically, this is related to the 
phenomenon that real dynamical systems can have motions that oscillate as 
well as grow or decay. Algorithmically, it means that even if the input to a 
matrix eigenvalue problem is real, the output may have to be complex. 

Algebraic Multiplicity 

By the fundamental theorem of algebra, we can write p A in the form 

(24.6} 

for some numbers .X; E C. By Theorem 24.1, each .X; is an eigenvalue of 
A, and all eigenvalues of A appear somewhere in this list. In general, an 
eigenvalue might appear more than once. We define the algebraic multiplicity 
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of an eigenvalue ~ of A to be its multiplicity as a root of p A. An eigenvalue is 
simple if its algebraic multiplicity is 1. 

The characteristic polynomial gives us an easy way to count the number 
of eigenvalues of a matrix. 

Theorem 24.2. If A E cmxm, then A has m eigenvalues, counted with alge­
braic multiplicity. In particular, if the roots of PA are simple, then A has m 
distinct eigenvalues. 

Note that in particular, every matrix has at least one eigenvalue. 
The algebraic multiplicity of an eigenvalue is always at least as great as 

its geometric multiplicity. To prove this, we need to know something about 
similarity transformations. 

Similarity Transformations 

If X E cmxm is nonsingular, then the map A~----+ x-1AX is called a similarity 
transformation of A. We say that two matrices A and B are similar if there 
is a similarity transformation relating one to the other, i.e., if there exists a 
nonsingular X E cmxm such that B = x-1AX. As described above in the 
special case of the diagonalization (24.2), any similarity transformation is a 
change of basis operation. 

Many properties are shared by similar matrices A and x-1AX. 

Theorem 24.3. If X is nonsingular, then A andX-1AX have the same char­
acteristic polynomial, eigenvalues, and algebraic and geometric multiplicities. 

Proof. The proof that the characteristic polynomials match is a straightfor­
ward computation: 

Px-lAX(z) = det(zl- x-1AX) = det(X-1(zl- A)X) 

= det(X-1) det(zi- A)det(X) = det(zl- A) = PA(z). 

From the agreement of the characteristic polynomials, the agreement of the 
eigenvalues and algebraic multiplicities follows. Finally, to prove that the 
geometric multiplicities agree, we can verify that if E>.. is an eigenspace for A, 
then x-1E>.. is an eigenspace for x-1AX, and conversely. D 

We can now relate geometric multiplicity to algebraic multiplicity. 

Theorem 24.4. The algebraic multiplicity of an eigenvalue ~ is at least as 
great as its geometric multiplicity. 
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Proof. Let n be the geometric multiplicity of .X for the matrix A. Form an 
m x n matrix V whose n columns constitute an orthonormal basis of the 
eigenspace { x : Ax = .Xx}. Then, extending V to a square unitary matrix V, 
we obtain v• A V in the form 

B = V*AV = [ .x: ~ ] , (24.7) 

where I is then x n identity, Cis n x (m-n), and Dis (m-n) x (m-n). By 
the definition of the determinant, det(zi- B)= det(zi- .XI) det(zi- D)= 
(z- .X)" det(zi- D). Therefore the algebraic multiplicity of .X as an eigenvalue 
of B is at least n. Since similarity transformations preserve multiplicities, the 
same is true for A. 0 

Defective Eigenvalues and Matrices 

Although a generic matrix has algebraic and geometric multiplicities that are 
equal (namely, alll), this is by no means true of every matrix. 

Example 24.1. Consider the matrices 

Both A and B have characteristic polynomial (z- 2)3, so there is a single 
eigenvalue .X = 2 of algebraic multiplicity 3. In the case of A, we can choose 
three independent eigenvectors, for example e1, e2, and e3, so the geometric 
multiplicity is also 3. For B, 011, the other hand, we can find only a single 
independent eigenvector (a scalar multiple of e1), so the geometric multiplicity 
of the eigenvalue is only 1. o 

An eigenvalue whose algebraic multiplicity exceeds its geometric multi­
plicity is a defective eigenvalue. A matrix that has one or more defective 
eigenvalues is a defective matrix. 

Any diagonal matrix is nondefective. For such a matrix, both the algebraic 
and the geometric multiplicities of an eigenvalue .X are equal to the number of 
its occurrences along the diagonal. 

Diagonalizability 

The class of nondefective matrices is precisely the class of matrices that have 
an eigenvalue decomposition (24.2). 

Theorem 24.5. An m x m matrix A is nondefective if and only if it has an 
eigenvalue decomposition A = XAX-1 • 
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Proof. ( <===) Given an eigenvalue decomposition A = X AX-I, we know by 
Theorem 24.3 that A is similar to A, with the same eigenvalues and the same 
multiplicities. Since A is a diagonal matrix, it is nondefective, and thus the 
same holds for A. 

( ===}) A nondefective matrix must have m linearly independent eigenvectors, 
because eigenvectors with different eigenvalues must be linearly independent, 
and each eigenvalue can contribute as many linearly independent eigenvectors 
as its multiplicity. If these m independent eigenvectors are formed into the 
columns of a matrix X, then X is nonsingular and we have A= xAX-1• 0 

In view of this result, another term for nondefective is diagonalizable. 
Does a diagonalizable matrix A in some sense "behave like" its diagonal 

equivalent A? The answer depends on what aspect of behavior one measures 
and on the condition number of X, the matrix of eigenvectors. If X is highly 
ill-conditioned, then a great deal of information may be discarded in passing 
from A to A. See "A Note of Caution: Nonnormality" in Lecture 34. 

Determinant and Trace 

The trace of A E cmxm is the sum ofits diagonal elements: tr(A) = 'E.i!=1 a;;· 
Both the trace and the determinant are related simply to the eigenvalues. 

Theorem 24.6. The determinant det(A) and trace tr(A) are equal to the 
product and the sum of the eigenvalues of A, respectively, counted with alge­
braic multiplicity: 

m 

det(A) = II>..;, 
j=1 

m 

tr(A) = E>..;. 
j=1 

Proof From (24.5) and (24.6), we compute 

m 

det(A) = ( -l)mdet( -A) = (-l)mPA(O) = II>..;. 
i=l 

(24.8) 

This establishes the first formula. As for the second, from (24.5), it follows 
that the coefficient of the zm-1 term of p A is the negative of the sum of the 
diagonal elements of A, or -tr(A). On the other hand, from (24.6), this 
coefficient is also equal to - 'Ei'!=1 >..;. Thus tr(A) = 'E.i!=1 >..;. o 

Unitary Diagonalization 

It sometimes happens that not only does an m x m matrix A have m linearly 
independent eigenvectors, but these can be chosen to be orthogonal. In such 
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a case, A is unitarily diagonalizable, that is, there exists a unitary matrix Q 
such that 

A= QAQ*. (24.9) 

This factorization is both an eigenvalue decomposition and a singular value 
decomposition, aside from the matter of the signs (possibly complex) of the 
entries of A. 

We have already seen a class of matrices that are unitarily diagonaliz­
able: the hermitian matrices. The following result follows from Theorem 24.9, 
below. 

Theorem 24.7. A hermitian matrix is unitarily diagonalizable, and its eigen­
values are real. 

The hermitian matrices are not the only ones that are unitarily diagonal­
izable. Other examples include skew-hermitian matrices, unitary matrices, 
circulant matrices, and any of these plus a multiple of the identity. In general, 
the class of matrices that are unitarily diagonalizable have an elegant charac­
terization. By definition, we say that a matrix A is normal if A*A = AA*. 
The following result is well known. 

Theorem 24.8. A matrix is unitarily diagonalizable if and only if it is nor­
mal. 

Schur Factorization 

One final matrix factorization is actually the one that is most useful in numer­
ical analysis, because all matrices, including defective ones, can be factored in 
this way. A Schur factorization of a matrix A is a factorization 

A=QTQ*, (24.10) 

where Q is unitary and Tis upper-triangular. Note that since A and Tare 
similar, the eigenvalues of A necessarily appear on the diagonal ofT. 

Theorem 24.9. Every square matrix A has a Schur factorization. 

Proof. We proceed by induction on the dimension m of A. The case m = 1 is 
trivial, so suppose m ~ 2. Let x be any eigenvector of A, with corresponding 
eigenvalue ~. Take x to be normalized and let it be the first column of a unitary 
matrix U. Then, just as in (24.7), it is easily checked that the product U*AU 
has the form 

U*AU = [ ~ ~]. 
By the inductive hypothesis, there exists a Schur factorization VTV* of C. 
Now write 
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This is a unitary matrix, and we have 

This is the Schur factorization we seek. D 

Eigenvalue-Revealing Factorizations 

In the preceding pages we have described three examples of eigenvalue-reveal­
ing factorizations, factorizations of a matrix that reduce it to a form in which 
the eigenvalues are explicitly displayed. We can summarize these as follows. 

A diagonalization A = X Ax-1 exists if and only if A is nondefective. 

A unitary diagonalization A = Q AQ* exists if and only if A is normal. 
A unitary triangularization (Schur factorization) A= QTQ* always exists. 

To compute eigenvalues, we shall construct one of these factorizations. In 
general, this will be the Schur factorization, since this applies without restric­
tion to all matrices. Moreover, since unitary transformations are involved, 
the algorithms that result tend to be numerically stable. If A is normal, then 
the Schur form comes out diagonal, and in particular, if A is hermitian, then 
we can take advantage of this symmetry throughout the computation and re­
duce A to diagonal form with half as much work or less than is required for 
general A. 

Exercises 

24.1. For each of the following statements, prove that it is true or give 
an example to show it is false. Throughout, A E cmxm unless otherwise 
indicated, and "ew" stands for eigenvalue. (This comes from the German 
"Eigenwert." The corresponding abbreviation for eigenvector is "ev," from 
"Eigenvektor.") 
(a) If~ is anew of A and p. E C, then ~- p. is anew of A- p.I. 

(b) If A is real and ~ is an ew of A, then so is - ~. 

(c) If A is real and ~is anew of A, then so is X. 
(d) If~ is anew of A and A is nonsingular, then ~-1 is anew of A-1. 

(e) If all the ew's of A are zero, then A = 0. 

(f) If A is hermitian and~ is anew of A, then 1~1 is a singular value of A. 

(g) If A is diagonalizable and all its ew's are equal, then A is diagonal. 
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24.2. Here is Gerschgorin's theorem, which holds for any m x m matrix A, 
symmetric or nonsymmetric. Every eigenvalue of A lies in at least one of 
them circular disks in the complex plane with centers a,, and radii Ei=Fi Ia,; I· 
Moreover, if n of these disks form a connected domain that is disjoint from 
the other m- n disks, then there are precisely n eigenvalues of A within this 
domain. 

(a) Prove the :first part of Gerschgorin's theorem. (Hint: Let A be any eigen­
value of A, and x a corresponding eigenvector with largest entry 1.) 

(b) Prove the second part. (Hint: Deform A to a diagonal matrix and use the 
fact that the eigenvalues of a matrix are continuous functions of its entries.) 

(c) Give estimates based on Gerschgorin's theorem for the eigenvalues of 

(8 1 0) 
A= 1 4 t: , 

0 f 1 

(d) Find a way to establish the tighter bound l.\3 - 11 ~ E2 on the smallest 
eigenvalue of A. (Hint: Consider diagonal similarity transformations.) 

24.3. Let A be a 10 x 10 random matrix with entries from the standard normal 
distribution, minus twice the identity. Write a program to plot lletAII2 against 
t for 0 ~ t ~ 20 on a log scale, comparing the result to the straight line eta( A), 

where a(A) = max; Re(.\;) is the spectral abscissa of A. Run the program 
for ten random matrices A and comment on the results. What property of a 
matrix leads to a lletAII2 curve that remains oscillatory as t--+ oo? 

24.4. For an arbitrary A E cmxm and norm 11·11, prove using Theorem 24.9: 

(a) limn ..... oo IIA"II = 0 {:::::::} p(A) < 1, where p is the spectral radius (Exer­
cise 3.2). 

(b) limt->oo lletAII = 0 {:::::::} a(A) < 0, where a is the spectral abscissa. 



Lecture 25. Overview of Eigenvalue 
Algorithms 

This and the next five lectures describe some of the classical "direct" algo­
rithms for computing eigenvalues and eigenvectors, as well as a few modern 
variants. Most of these algorithms proceed in two phases: first, a preliminary 
reduction from full to structured form; then, an iterative process for the final 
convergence. This lecture outlines the two-phase approach and explains why 
it is advantageous. 

Shortcomings of Obvious Algorithms 

Although eigenvalues and eigenvectors have simple definitions and elegant 
characterizations, the best ways to compute them are not obvious. 

Perhaps the first method one might think of would be to compute the co­
efficients of the characteristic polynomial and use a rootfinder to extract its 
roots. Unfortunately, as mentioned in Lecture 15, this strategy is a bad one, 
because polynomial rootfinding is an ill-conditioned problem in general, even 
when the underlying eigenvalue problem is well-conditioned. (In fact, polyno­
mial rootfinding is by no means a mainstream topic in scientific computing­
precisely because it is so rarely the best way to solve applied problems.) 

Another idea would be to take advantage of the fact that the sequence 

x Ax A2x A3x 
ifXIT' IIAxll' IIA2xll' IIA3xll' ... 

190 
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converges, under certain assumptions, to an eigenvector corresponding to the 
largest eigenvalue of A in absolute value. This method for finding an eigen­
vector is called power iteration. Unfortunately, although power iteration is 
famous, it is by no means an effective tool for general use. Except for special 
matrices, it is very slow. 

Instead of ideas like these, the best general purpose eigenvalue algorithms 
are based on a different principle: the computation of an eigenvalue-revealing 
factorization of A, where the eigenvalues appear as entries of one of the fac­
tors. We saw three eigenvalue-revealing factorizations in the last lecture: di­
agonalization, unitary diagonalization, and unitary triangularization (Schur 
factorization). In practice, eigenvalues are usually computed by constructing 
one of these factorizations. Conceptually, what must be done to achieve this is 
to apply a sequence of transformations to A to introduce zeros in the necessary 
places, just as in the algorithms we have considered in the preceding lectures 
of this book. Thus we see that finding eigenvalues ends up rather similar in 
flavor to solving systems of equations or least squares problems. The algo­
rithms of numerical linear algebra are mainly built upon one technique used 
over and over again: putting zeros into matrices. 

A Fundamental Difficulty 

Though the :ftavors are related, however, a new spice appears in the dish when 
it comes to computing eigenvalues. What is new is that it would appear that 
algebraic considerations must preclude the success of any algorithm of this 
kind. 

To see the difficulty, note that just as eigenvalue problems can be reduced 
to polynomial rootfinding problems, conversely, any polynomial rootfinding 
problem can be stated as an eigenvalue problem. Suppose we have the monic 
polynomial 

(25.1) 

By expanding in minors, it is not hard to verify that p( z) is equal to ( -1 )m 
times the determinant of the m x m matrix 

-z -ao 
1 -z -al 

1 -z -a2 
(25.2) 

1 

-z -am-2 

1 (-z- am-1) 
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This means that the roots of p are equal to the eigenvalues of the matrix 

(We can also get to (25.3) directly, without passing through (25.2), by noting 
that if z is a root of p, then it follows from (25.1) that (1, z, z2, ... , zm-l) is 
a left eigenvector of A with eigenvalue z.) A is called a companion matrix 
corresponding to p. 

Now the difficulty is apparent. It is well known that no formula exists for 
expressing the roots of an arbitrary polynomial, given its coefficients. This 
impossibility result is one of the crowning achievements of a body of mathe­
matical work carried out by Abel, Galois, and others in the nineteenth century. 
Abel proved in 1824 that no analogue of the quadratic formula can exist for 
polynomials of degree 5 or more. 

Theorem 25.1. For any m ~ 5, there is a polynomial p(z) of degree m with 
rational coefficients that has a real root p(r) = 0 with the property that r 
cannot be written using any expression involving rational numbers, addition, 
subtraction, multiplication, division, and kth roots. 

This theorem implies that even if we could work in exact arithmetic, there 
could be no computer program that would produce the exact roots of an 
arbitrary polynomial in a finite number of steps. It follows that the same 
conclusion applies to the more general problem of computing eigenvalues of 
matrices. 

This does not mean that we cannot write a good eigenvalue solver. It 
does mean, however, that such a solver cannot be based on the same kind of 
techniques that we have used so far for solving linear systems. Methods like 
Householder reflections and Gaussian elimination would solve linear systems 
of equations exactly in a finite number of steps if they could be implemented 
in exact arithmetic. By contrast, 

Any eigenvalue solver must be iterative. 

The goal of an eigenvalue solver is to produce sequences of numbers that con­
verge rapidly towards eigenvalues. In this respect eigenvalue computations are 
more representative of scientific computing than solutions of linear systems of 
equations; see the Appendix. 

The need to iterate may seem discouraging at first, but the algorithms 
available in this field converge extraordinarily quickly. In most cases it is 
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possible to compute sequences of numbers that double or triple the numbers 
of digits of accuracy at every step. Thus, although computing eigenvalues is 
an "unsolvable" problem in principle, in practice it differs from the solution 
of linear systems by only a small constant factor, typically closer to 1 than 
10. Theoretically speaking, the dependence of the operation count on Emachine 
involves terms as weak as log(llog(emachine)l); see Exercise 25.2. 

Schur Factorization and Diagonalization 

Most of the general purpose eigenvalue algorithms in use today proceed by 
computing the Schur factorization. We compute a Schur factorization A = 
Q TQ* by transforming A by a sequence of elementary unitary similarity trans­
formations X 1--+ QjXQ;, so that the product 

Qj · · · Q2Qi A Ql Q2 · · · Q; (25.4) 

Q* Q 

converges to an upper-triangular matrix T as j--+ oo. 
If A is real but not symmetric, then in general it may have complex eigen­

values in conjugate pairs, in which case its Schur form will be complex. Thus 
an algorithm that computes the Schur factorization will have to be capable 
of generating complex outputs from real inputs. This can certainly be done; 
after all, zerofinders for polynomials with real coefficients have the same prop­
erty. Alternatively, it is possible to carry out the entire computation in real 
arithmetic if one computes what is known as a real Schur factorization. Here, 
T is permitted to have 2 x 2 blocks along the diagonal, one for each complex 
conjugate pair of eigenvalues. This option is important in practice, and is 
included in all the software libraries, but we shall not give details here. 

On the other hand, suppose A is hermitian. Then Qj · · · Q2QiAQ1 Q2 · · · Q i 
is also hermitian, and thus the limit of the converging sequence is both trian­
gular and hermitian, hence diagonal. This implies that the same algorithms 
that compute a unitary triangularization of a general matrix also compute a 
unitary diagonalization of a hermitian matrix. In practice, this is essentially 
how the hermitian case is typically handled, although various modifications 
are introduced to take special advantage of the hermitian structure at each 
step. 

Two Phases of Eigenvalue Computations 

Whether or not A is hermitian, the sequence (25.4) is usually split into two 
phases. In the first phase, a direct method is applied to produce an upper­
Hessenberg matrix H, that is, a matrix with zeros below the first subdiagonal. 
In the second phase, an iteration is applied to generate a formally infinite 
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sequence of Hessenberg matrices that converge to a triangular form. Schemat­
ically, the process looks like this: 

X X X X X X X X X X X X X X X 

X X X X X Phase 1 X X X X X Phase 2 X X X X 

X X X X X --+ X X X X --+ X X X 

X X X X X XXX X X 

X X X X X X X X 

A :f: A* H T 

The first phase, a direct reduction, requires O(m3) flops. The second, it­
erative phase never terminates in principle, and if left to run forever would 
require an infinite number of flops. However, in practice, convergence to ma­
chine precision is achieved in O(m) iterations. Each iteration requires O(m2) 

flops, and thus the total work requirement is O(m3) flops. These figures ex­
plain the importance of Phase 1. Without that preliminary step, each iteration 
of Phase 2 would involve a full matrix, requiring O(m3) work, and this would 
bring the total to O(m4)-or higher, since convergence might also sometimes 
require more than O(m) iterations. 

If A is hermitian, the two-phase approach becomes even faster. The in­
termediate matrix is now a hermitian Hessenberg matrix, that is, tridiagonal. 
The final result is a hermitian triangular matrix, that is, diagonal, as men­
tioned above. Schematically: 

X X X X X X X X 

XX XXX Phase 1 X X X Phase 2 X 

X X X X X --+ X X X --+ X 

X X X X X X X X X 

X X X X X XX X 

A=A* T D 

In this hermitian case we shall see that if only eigenvalues are required (not 
eigenvectors), then each step of Phase 2 can be carried out with only O(m) 
flops, bringing the total work estimate for Phase 2 to O(m2) flops. Thus, for 
hermitian eigenvalue problems, we are in the paradoxical situation that the 
"infinite" part of the algorithm is in practice not merely as fast as the "finite" 
part, but an order of magnitude faster. 

Exercises 

25.1. (a) Let A E cmxm be tridiagonal and hermitian, with all its sub- and 
superdiagonal entries nonzero. Prove that the eigenvalues of A are distinct. 
(Hint: Show that for any .X E C, A - .XI has rank at least m - 1.) 
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(b) On the other hand, let A be upper-Hessenberg, with all its subdiagonal 
entries nonzero. Give an example that shows that the eigenvalues of A are 
not necessarily distinct. 

25.2. Let e1 , e2 , e3 , ..• be a sequence of nonnegative numbers representing 
errors in some iterative process that converge to zero, and suppose there 
are a constant C and an exponent a such that for all sufficiently large k, 
el:+1 ~ C(e11)0 • Various algorithms for "Phase 2" of an eigenvalue calculation 
exhibit cubic convergence (a = 3), quadratic convergence (a = 2), or linear 
convergence (a = 1 with G < 1 ), which is also, perhaps confusingly, known as 
geometric convergence. 
(a) Suppose we want an answer of accuracy 0( €machine)· Assuming the amount 
of work for each step is 0(1), show that the total work requirement in the case 
of linear convergence is O(log( €machine)). How does the constant G enter into 
your work estimate? 

(b) Show that in the case of superlinear convergence, i.e., a > 1, the work 
requirement becomes O(Iog(llog(t:machine)l)). (Hint: The problem may be sim­
plified by defining a new error measure j 11 = G1/(a-l)e11.) How does the expo­
nent a enter into your work estimate? 

25.3. Suppose we have a 3 x 3 matrix and wish to introduce zeros by left­
and/or right-multiplications by unitary matrices Q; such as Householder re­
flectors or Givens rotations. Consider the following three matrix structures: 

[
X X 0 l (a) 0 X X , 

0 0 X 
[

X X 0 l (b) X 0 X , 

0 X X 
[

X X 0 l (c) 0 0 x . 
0 0 X 

For each one, decide which of the following situations holds, and justify your 
claim. 

(i) Can be obtained by a sequence of left-multiplications by matrices Q;; 

(ii) Not (i), but can be obtained by a sequence ofleft- and right-multiplications 
by matrices Q i; 
(iii) Cannot be obtained by any sequence of left- and right-multiplications by 
matrices Q i. 



Lecture 26. Reduction to Hessenberg or 
Tridiagonal Form 

We now describe the first of the two computational phases outlined in the 
previous lecture: reduction of a full matrix to Hessenberg form by a sequence 
of unitary similarity transformations. H the original matrix is hermitian, the 
result is tridiagonal. 

A Bad Idea 

To compute the Schur factorization A = Q TQ*, we would like to apply unitary 
similarity transformations to A in such a way as to introduce zeros below the 
diagonal. A natural first idea might be to attempt direct triangularization by 
using Householder reflectors to introduce these zeros, one after another. 

The first Householder reflector Qi, multiplied on the left of A, would in­
troduce zeros below the diagonal in the first column of A. In the process it 
will change all of the rows of A. In this and the following diagrams, as usual, 
entries that are changed at each step are written in boldface: 

X X X X X xxxxx 
X X X X X 

Qi· oxxxx 
X X X X X oxxxx - oxxxx X X X X X 

X X X X X oxxxx 
A QiA 

196 
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Unfortunately, to complete the similarity transformation, we must also multi­
ply by Q1 on the right of A: 

X X X X X XXX XX 

xxxx 
·Ql 

XX XXX 

X X X X XX XXX -X X X X xxxxx 
X X X X XX XXX 

Q~A QiAQl 

This has the effect of replacing each column of the matrix by a linear combi­
nation of all the columns. The result is that the zeros that were previously 
introduced are destroyed; we are no better off than when we started. 

Of course, with hindsight we know that this idea had to fail, because of the 
"fundamental difficulty" described in the previous lecture. No finite process 
can reveal the eigenvalues of A exactly. 

Curiously, this too-simple strategy, which appears futile as we have dis­
cussed it, does have the effect, typically, of reducing the size of the entries 
below the diagonal, even if it does not make them zero. We shall return to 
this "bad idea" when we discuss the QR algorithm. 

A Good Idea 

The right strategy for introducing zeros in Phase 1 is to be less ambitious and 
operate on fewer entries of the matrix. We shall only conquer territory we are 
sure we can defend. 

At the first step, we select a Householder re:O.ector Qi that leaves the 
first row unchanged. When it is multiplied on the left of A, it forms linear 
combinations of only rows 2, ... , m to introduce zeros into rows 3, ... , m of 
the first column. Then, when Q1 is multiplied on the right of QiA, it leaves 
the first column unchanged. It forms linear combinations of columns 2, ... , m 
and does not alter the zeros that have been introduced: 

X X X X X X X X X X XXX XX 

X X X X X 
Qi· 

XX XXX 
·Ql 

xxxxx 
X X X X X oxxxx xxxx - -X X X X X oxxxx xxxx 
XX XXX oxxxx xxxx 

A QiA QiAQl 

This idea is repeated to introduce zeros into subsequent columns. For example, 
the second Householder re:O.ector, Q2, leaves the first and second rows and 
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columns unchanged: 

X X X X X 

X X X X X 

X X X X 

X X X X 

X X X X 

QiAQl 

X X X X X 

X X X X X 

xxxx 
oxxx 
oxxx 

Q;QiAQl 

XX XXX 

·Q2 
XX XXX 

xxxx 
----+ XXX 

XXX 
Q2QiAQ1Q2 

After repeating this process m - 2 times, we have a product in Hessenberg 
form, as desired: 

X X X X X 

xxxxx 
xxxx 

XXX 

X X 

Q~-2 · · · Q2Q; A Q1Q2 · · · Qm-2 = H. 

Q* Q 

The algorithm is formulated below; compare Algorithm 10.1. 

Algorithm 26.1. Householder Reduction to Hessenberg Form 

for k = 1 to m - 2 

X = Air+ l:m,Ar 

v11 = sign(x1)llxlbe1 + x 

V~r = V~r/llv~rll2 
AAr+l:m,Ar:m = Alr+l:m,Ar:m- 2v~r(vZAAr+l:m,k:m) 

Al:m,Ar+l:m = Al:m,Ar+l:m- 2(Al:m,Ar+l:mvlr)vi; 

Just as in Algorithm 10.1, here the matrix Q = Ilk~2 Q11 is never formed 
explicitly. The reflection vectors v11 are saved instead, and can be used to 
multiply by Q or reconstruct Q later if necessary. For details, see Lecture 10. 

Operation Count 

The number of operations required by Algorithm 26.1 can be counted with 
the same geometric reasoning we have used before. The rule of thumb is that 
unitary operations require four :Hops for each element operated upon. 

The work is dominated by the two updates of submatrices of A. The first 
loop applies a Householder reflector on the left of the matrix. The kth such 
reflector operates on the last m - k rows. Since at the time the reflector is 
applied, these rows have zeros in the first k - 1 columns, arithmetic has to be 



LECTURE 26. REDUCTION TO HESSENBERG OR TRIDIAGONAL FORM 199 

performed only on the last m- k + 1 entries of each row. The picture is as 
follows: 

m-1 · 

As m --+ oo, the volume converges to }m3. At four flops per element, the 
amount of work in this loop is "' ~m3 flops. 

The second inner loop applies a Householder reflector on the right of the 
matrix. At the kth step, the reflector operates by forming linear combinations 
of the last m - k columns. This loop involves more work than the first one 
because there are no zeros that can be ignored. Arithmetic must be performed 
on all of the m entries of each of the columns operated upon, a total of m( m-k) 
entries for a single value of k. The picture looks like this: 

m-1 · 

The volume converges as m --+ oo to ~m3 , so, at four flops per element, this 
second loop requires"' 2m3 flops. 

All together, the total amount of work for unitary reduction of an m x m 
matrix to Hessenberg form is: 

10 
Work for Hessenberg reduction: "' 3 m3 flops. (26.1) 

The Hermitian Case: Reduction to Tridiagonal Form 

If A is hermitian, the algorithm just described will reduce A to tridiagonal 
form (at least, in the absence ofrounding errors). This is easy to see: since A 
is hermitian, Q* AQ is also hermitian, and any hermitian Hessenberg matrix 
is tridiagonal. 

Since zeros are now introduced in rows as well as columns, additional 
arithmetic can be avoided by ignoring these additional zeros. With this opti­
mization, applying a Householder reflector on the right is as cheap as applying 



200 PART V. EIGENVALUES 

the reflector on the left, and the total cost of applying the right reflectors is 
reduced from 2m3 to ~m3 flops. We have two pyramids to add up instead of 
a pyramid and a prism, and the total amount of arithmetic is reduced to ~m3 

flops. 
This saving, however, is based only on sparsity, not symmetry. In fact, at 

every stage of the computation, the matrix being operated upon is hermitian. 
This gives another factor of two that can be taken advantage of, bringing the 
total work estimate to 

4 
Work for tridiagonal reduction: "' 3m3 flops. {26.2) 

We shall not give the details of the implementation. 

Stability 

Like the Householder algorithm for QR factorization, the algorithm just de­
scribed is backward stable. Recall from Theorem 16.1 that, for any A E cmxn, 

the Householder algorithm for QR factorization computes reflection vectors 
equivalent to an implicit, exactly unitary factor Q {16.2), as well as an ex­
plicit upper-triangular factor R, such that 

The same kind of error estimate can be established for Algorithm 26.1. Let 
ii be the actual Hessenberg matrix computed in floating point arithmetic, 
and let Q, as before, be the exactly unitary matrix {16.2) corresponding to 
the reflection vectors v~c computed in floating point arithmetic. The following 
result can be proved. 

Theorem 26.1. Let the Hessenberg reduction A= QHQ* of a matrix A E 
cmxm be computed by Algorithm 26.1 on a computer satisfying the axioms 
{13.5) and {13.7), and let the computed factors Q and ii be defined as indicated 
above. Then we have 

QHQ* =A+ oA, {26.3) 

for some oA E cmxm. 

Exercises 

26.1. Theorem 26.1 and its successors in later lectures show that we can 
compute eigenvalues {X~c} of A numerically that are the exact eigenvalues of a 
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matrix A+6A with II6AII/IIAII = O(Emachine). Does this mean they are close to 
the exact eigenvalues { .Xk} of A? This is a question of eigenvalue perturbation 
theory. 

One can approach such problems geometrically as follows. Given A E cmxm 
with spectrum A(A) ~ C and f > 0, define the 2-norm E-pseudospectrum 
of A, Ae(A), to be the set of numbers z E C satisfying any of the following 
conditions: 

(i) z is an eigenvalue of A+ oA for some oA with llc5AII 2 ~ f; 

(ii) There exists a vector u E em with II(A- zl)ull2 ~ f and llulb = 1; 

(iii) um(zl- A) ~ f; 
(iv) ll(zl- A)-1 11 2 ~ c 1. 

The matrix (zl- A)-1 in (iv) is known as the resolvent of A at z; if z is 
an eigenvalue of A, we use the convention ll(zl - A)-1 lb = oo. In (iii), um 
denotes the smallest singular value. 
Prove that conditions (i)-(iv) are equivalent. 

26.2. Let A be the 32 x 32 matrix with -1 on the main diagonal, 1 on the 
first and second superdiagonals, and 0 elsewhere. 

(a) Using an SVD algorithm built into MATLAB or another software system, 
together with contour plotting software, generate a plot of the boundaries of 
the 2-norm €-pseudospectra of A for f = 10-1,10-2, ••• , 10-8• 

{b) Produce a semilogy plot of lletAib against t for 0 ~ t ~ 50. What is the 
initial growth rate of the curve before the eventual decay sets in? Can you 
relate this to your plot of pseudospectra? (Compare Exercise 24.3.) 

26.3. One of the best known results of eigenvalue perturbation theory is the 
Bauer-Fike theorem. Suppose A E cmxm is diagonalizable with A = V AV-1 , 

and let oA E cmxm be arbitrary. Then every eigenvalue of A+ oA lies in at 
least one of the m circular disks in the complex plane of radius ~t(V)II6AII 2 
centered at the eigenvalues of A, where ~t is the 2-norm condition number. 
(Compare Exercise 24.2.) 

(a) Prove the Bauer-Fike theorem by using the equivalence of conditions (i) 
and (iv) of Exercise 26.1. 

(b) Suppose A is normal. Show that for each eigenvalue X; of A + oA, there 
is an eigenvalue .X; of A such that 

(26.4) 



Lecture 27. Rayleigh Quotient, Inverse 
Iteration 

In this lecture we present some classical eigenvalue algorithms. Individually, 
these tools are useful in certain circumstances-especially inverse iteration, 
which is the standard method for determining an eigenvector when the cor­
responding eigenvalue is known. Combined, they are the ingredients of the 
celebrated QR algorithm, described in the next two lectures. 

Restriction to Real Symmetric Matrices 

Throughout numerical linear algebra, most algorithmic ideas are applicable 
either to general matrices or, with certain simplifications, to hermitian matri­
ces. For the topics discussed in this and the next three lectures, this continues 
to be at least partly true, but some of the differences between the general and 
the hermitian cases are rather sizable. Therefore, in these four lectures, we 
simplify matters by considering only matrices that are real and symmetric. 
We also assume throughout that II · II = II · lb· 

Thus, for these four lectures: A = AT E m.mxm, x E m.m, x* = xT, 
llxll = v'Xf'X. In particular, this means that A has real eigenvalues and a 
complete set of orthogonal eigenvectors. We use the following notation: 

real eigenvalues: .X1 , ... , .Xm, 

orthonormal eigenvectors: q1, ... , qm. 

202 
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The eigenvectors are presumed normalized by llq;ll = 1, and the ordering of 
the eigenvalues will be specified as necessary. 

Most of the ideas to be described in the next few lectures pertain to Phase 2 
of the two phases described in Lecture 25. This means that by the time we 
come to applying these ideas, A will be not just real and symmetric, but 
tridiagonal. This tridiagonal structure is occasionally of mathematical impor­
tance, for example in choosing shifts for the QR algorithm, and it is always of 
algorithmic importance, reducing many steps from 0( m3) to 0( m) flops, as 
discussed at the end of the lecture. 

Rayleigh Quotient 

The Rayleigh quotient of a vector x ERmis the scalar 

xTAx 
r(x) = xTx. (27.1) 

Notice that if x is an eigenvector, then r(x) = .X is the corresponding eigen­
value. One way to motivate this formula is to ask: given x, what scalar a 
"acts most like an eigenvalue" for X in the sense of minimizing I lAx- axlb? 
This is an m x !least squares problem of the form xa ~Ax (xis the matrix, 
a is the unknown vector, Ax is the right-hand side). By writing the normal 
equations (11.9) for this system, we obtain the answer: a= r(x). Thus r(x) 
is a natural eigenvalue estimate to consider if x is close to, but not necessarily 
equal to, an eigenvector. 

To make these ideas quantitative, it is fruitful to view x E Rm as a variable, 
so that r is a function Rm -+ R. We are interested in the local behavior of 
r(x) when xis near an eigenvector. One way to approach this question is to 
calculate the partial derivatives of r(x) with respect to the coordinates X;: 

8r(x) = /z;(xTAx) (xTAx)/z;(xTx) 

8x; xTx (xTx) 2 

= 2(Ax); _ (xTAx)2x; = ~(Ax_ r(x)x) .. 
xTx (xTx)2 xTx ' 

If we collect these partial derivatives into an m-vector, we find we have calcu­
lated the_ gradient of r(x), denoted by Vr(x). We have shown: 

2 
Vr(x) = -x(Ax- r(x)x). (27.2) 

XX 

From this formula we see that at an eigenvector x of A, the gradient of r( x) is 
the zero vector. Conversely, if Vr{x) = 0 with x =F 0, then xis an eigenvector 
and r(x) is the corresponding eigenvalue. 

Geometrically speaking, the eigenvectors of A are the stationary points of 
the function r(x), and the eigenvalues of A are the values of r(x) at these 



204 PART V. EIGENVALUES 

Figure 27.1. The Rayleigh quotient r(x) is a continuous function on the unit 
sphere llxll = 1 in m.m, and the stationary points of r(x) are the normalized 
eigenvectors of A. In this example with m = 3, there are three orthogonal 
stationary points (as well as their antipodes). 

stationary points. Actually, since r(x) is independent of the scale of x, these 
stationary points lie along lines through the origin in m.m. If we normalize by 
restricting attention to the unit sphere llxll = 1, they become isolated points 
(assuming that the eigenvalues of A are simple), as suggested in Figure 27.1. 

Let v be one of the eigenvectors of A. From the fact that Vr(q1 ) = 0, 
together with the smoothness of the function r( x) (everywhere except at the 
origin x = 0), we derive an important consequence: 

(27.3) 

Thus the Rayleigh quotient is a quadratically accurate estimate of an eigen­
value. Herein lies its power. 

A more explicit way to derive (27.3) is to expand x as a linear combi­
nation of the eigenvectors q11 ••• , qm of A. If x = Ej!:1 aiqi, then r(x) = 
Ej!:1 a~ A.;/ Ej:1 a~. Thus r(x) is a weighted mean of the eigenvalues of A, 
with the weights equal to the squares of the coordinates of x in the eigenvec­
tor basis. Because of this squaring of the coordinates, it is not hard to see 
that if la;fa1 1 ~ € for all j =J J, then r(x)- r(q1 ) = O(t2). 

Power Iteration 

Now we switch tacks. Suppose v<0> is a vector with llv<0> II = 1. The follow­
ing process, power iteration, was cited as a not especially good idea at the 
beginning of Lecture 25. It may be expected to produce a sequence v<'> that 
converges to an eigenvector corresponding to the largest eigenvalue of A. 
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Algorithm 27.1. Power Iteration 

v<0> = some vector with llv(o) II = 1 
fork= 1,2, ... 

w = Av<Ar-I) 

v<•> = wfllwll 
.x<•> = (v<•>)T Av<•> 

apply A 
normalize 
Rayleigh quotient 
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In this and the algorithms to follow, we give no attention to termination 
conditions, describing the loop only by the suggestive expression "for k = 
1, 2, .... " Of course, in practice, termination conditions are very important, 
and this is one of the points where top-quality software such as can be found 
in LAPACK or MATLAB is likely to be superior to a program an individual 
might write. 

We can analyze power iteration easily. Write v<0> as a linear combination 
of the orthonormal eigenvectors qi: 

v<o> = alql + ~q2 + · · · + amqm. 

Since v<•> is a multiple of A11v<0>, we have for some constants ck 

v<•> - c11A11v<0> 
C~r(al.X~ql + a2.\~q2 + · · · + am.X~qm) 

- C~:At ( alql + ~(.X2/.X1)11q2 + · · · + am(Am/Al)kqm) · (27.4) 

From here we obtain the following conclusion. 

Theorem 27.1. Suppose I-X11 > I-X21 ~ · · · ~ I-Xml ~ 0 and qf v<0> =J 0. Then 
the iterates of Algorithm 27.1 satisfy 

uv<•l- (±q,)ll = o (I~D. (27.5) 

ask--+ oo. The± sign. means that at each step k, one or the other choice of 
sign is to be taken, and then the indicated bound holds. 

Proof. The first equation follows from (27.4), since a1 = qf v<0> =J 0 by as­
sumption. The second follows from this and (27.3). If .\1 > 0, then the ± 
signs are all+ or all -,whereas if .\1 < 0, they alternate. D 

The ±signs in (27.5) and in similar equations below are not very appealing. 
There is an elegant way to avoid these complications, which is to speak of 
convergence of subpaces, not vectors-to say that (v<•>) converges to (q1}, for 
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example. However, we shall not do this, in order to avoid getting into the 
details of how convergence of subspaces can be made precise. 

On its own, power iteration is of limited use, for several reasons. First, it 
can find only the eigenvector corresponding to the largest eigenvalue. Second, 
the convergence is linear, reducing the error only by a constant factor~ IA2/ A11 

at each iteration. Finally, the quality of this factor depends on having a 
largest eigenvalue that is significantly larger than the others. If the largest 
two eigenvalues are close in magnitude, the convergence will be very slow. 

Fortunately, there is a way to amplify the differences between eigenvalues. 

Inverse Iteration 

For any J.t E 1R that is not an eigenvalue of A, the eigenvectors of (A- J.£1)-1 

are the same as the eigenvectors of A, and the corresponding eigenvalues are 
{( Aj - J.t )-1}, where { Ai} are the eigenvalues of A. This suggests an idea. 
Suppose J.t is close to an eigenvalue A1 of A. Then (A1 - J.tt1 may be much 
larger than (\ - J.£)-1 for all j =F J. Thus, if we apply power iteration to 
(A- J.£/)-1, the process will converge rapidly to q1 . This idea is called inverse 
itemtion. 

Algorithm 27.2. Inverse Iteration 

v<0> = some vector with llv<0> II = 1 
fork= 1,2, ... 

Solve (A- J.tl)w = v<Ar-I) for w 

v<•> = wfllwll 
A <•> = ( v<•> )T Av<•> 

apply (A - J.£/)-1 

normalize 
Rayleigh quotient 

What if J.t is an eigenvalue of A, so that A - J.£1 is singular? What if it 
is nearly an eigenvalue, so that A - J.£1 is so ill-conditioned that an accurate 
solution of (A- J.t/)w = v<Ar-I) cannot be expected? These apparent pitfalls 
of inverse iteration cause no trouble at all; see Exercise 27.5. 

Like power iteration, inverse iteration exhibits only linear convergence. 
Unlike power iteration, however, we can choose the eigenvector that will be 
found by supplying an estimate J.£ of the corresponding eigenvalue. Further­
more, the rate of linear convergence can be controlled, for it depends on the 
quality of J.t. If J.t is much closer to one eigenvalue of A than to the others, then 
the largest eigenvalue of (A- J.£/)-1 will be much larger than the rest. Using 
the same reasoning as with power iteration, we obtain the following theorem. 

Theorem 27.2. Suppose A1 is the closest eigenvalue to J.t and AK is the sec­
ond closest, that is, IJ.£-A1 1 < IJ.£-AKI ~ IJ.£-Ajl for eachj =F J. Furthermore, 
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suppose qjv<0> #- 0. Then the iterates of Algorithm 27.2 satisfy 

as k -+ oo, where the ± sign has the same meaning as in Theorem 27 .1. 

Inverse iteration is one of the most valuable tools of numerical linear al­
gebra, for it is the standard method of calculating one or more eigenvectors 
of a matrix if the eigenvalues are already known. In this case Algorithm 27.2 
is applied as written, except that the calculation of the Rayleigh quotient is 
dispensed with. 

Rayleigh Quotient Iteration 

So far in this lecture, we have presented one method for obtaining an eigenvalue 
estimate from an eigenvector estimate (the Rayleigh quotient), and another 
method for obtaining an eigenvector estimate from an eigenvalue estimate 
(inverse iteration). The possibility of combining these ideas is irresistible: 

Rayleigh quotient 

(The figure is oversimplified; to get from an approximate A 1 to an approximate 
q1 by a step of inverse iteration, one also needs a preliminary approximation to 
q1 .) The idea is to use continually improving eigenvalue estimates to increase 
the rate of convergence of inverse iteration at every step. This algorithm is 
called Rayleigh quotient iteration. 

Algorithm 27 .3_. Rayleigh Quotient Iteration 

v<0> = some vector with llv(o) II = 1 

A (O) = ( v<0> )T Av<0> = corresponding Rayleigh quotient 
fork= 1,2, ... 

Solve (A- A("'-1>J)w = v<"'-1> for w apply (A- A(A:-1)1)-1 

v<"'> = wfllwll normalize 
A(A:) = ( v<"'>)T Av<"'> Rayleigh quotient 
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The convergence of this algorithm is spectacular: each iteration triples the 
number of digits of accuracy. 

Theorem 27.3. Rayleigh quotient iteration converges to an eigenvalue/eigen­
vector pair for all except a set of measure zero of starting vectors v<0>. When 
it converges, the convergence is ultimately cubic in the sense that if A.1 is an 
eigenvalue of A and v<0> is sufficiently close to the eigenvector q1 , then 

{27.6) 

and 
{27.7) 

as k -+ oo. The ± signs are not necessarily the same on the two sides of 
(27.6). 

Proof. We shall not prove the assertion about convergence for almost all 
starting vectors. Here, however, is a proof that if convergence occurs, it is 
ultimately cubic. For simplicity, we assume that the eigenvalue A.1 is simple. 
By (27.3), if llv<">- q1 11 ~ f for sufficiently small t:, then the Rayleigh quotient 
yields an eigenvalue estimate A_(l:) with IA.(I:)- A.11 = O(t:2). By the argument 
used to prove Theorem 27.2, if we now take one step of inverse iteration to 
obtain a new v<"+l) from v<"> and A_(l:) then 

' 

Moreover, the constants implicit in the 0 symbols are uniform throughout 
sufficiently small neighborhoods of A. 1 and q1 . Thus we have convergence in 
the following pattern: 

llv<">- (±qJ)II IA.(I:) - AJI 

f -+ O(t:2) 
! ,/ 

0(~) -+ O(t:6) 

! ,/ 
O{t:g) -+ 0(€18) 

The estimates (27.6)-(27.7) follow from the uniformity just mentioned. D 

Example 27.1. Cubic convergence is so fast that we must give a numerical 
example. Consider the symmetric matrix 

[ 
2 1 1 l A= 1 3 1 , 
1 1 4 
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and let v<0> = (1, 1, 1)T j-/3 be the initial eigenvector estimate. When Rayleigh 
quotient iteration is applied to A, the following values _x(A:) are computed by 
the first three iterations: 

_x(O) = 5, _x(l) = 5.2131 ... 1 _x(2) = 5.214319743184 .... 

The actual value of the eigenvalue corresponding to the eigenvector closest 
to v<0> is .X= 5.214319743377. After only three iterations, Rayleigh quotient 
iteration has produced a result accurate to ten digits. Three more iterations 
would increase this figure to about 270 digits, if our machine precision were 
high enough. D 

Operation Counts 

We close this lecture with a note on the amount of work required to execute 
each step of the three iterations we have described. 

First, suppose A E Rmxm is a full matrix. Then each step of power 
iteration involves a matrix-vector multiplication, requiring O(m2) flops. Each 
step of inverse iteration involves the solution of a linear system, which might 
seem to require 0( m3) flops, but this figure reduces to 0( m2) if the matrix is 
processed in advance by LU or QR factorization or another method. In the 
case of Rayleigh quotient iteration, the matrix to be inverted changes at each 
step, and beating O(m3) flops per step is not so straightforward. 

These figures improve greatly if A is tridiagonal. Now, all three iterations 
require just 0( m) flops per step. For the analogous iterations involving non­
symmetric matrices, incidentally, we must deal with Hessenberg instead of 
tridiagonal structure, and this figure increases to O(m2). 

Exercises 

27.1. Let A E cmxm be given, not necessarily hermitian. Show that a number 
z E C is a Rayleigh quotient of A if and only if it is a diagonal entry of Q* AQ 
for some unitary matrix Q. Thus Rayleigh quotients are just diagonal entries 
of matrices, once you transform orthogonally to the right coordinate system. 

27 .2. Again let A E cmxm be arbitrary. The set of all Rayleigh quotients of 
A, corresponding to all nonzero vectors x E em, is known as the field of values 
or numerical range of A, a subset of the complex plane denoted by W(A). 

(a) Show that W(A) contains the convex hull of the eigenvalues of A. 

(b) Show that if A is normal, then W(A) is equal to the convex hull of the 
eigenvalues of A. 

27.3. Show that for a nonhermitian matrix A E cmxm, the Rayleigh quo­
tient r(x) gives an eigenvalue estimate whose accuracy is generally linear, 
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not quadratic. Explain what convergence rate this suggests for the Rayleigh 
quotient iteration applied to nonhermitian matrices. 

27.4. Every real symmetric square matrix can be orthogonally diagonalized, 
and the developments of this lecture are invariant under orthogonal changes 
of coordinates. Thus it would have been sufficient to carry out each derivation 
of this lecture under the assumption that A is a diagonal matrix with entries 
ordered by decreasing absolute value. Making this assumption, describe the 
form taken by {27.4), (27.5), and Algorithm 27.3. 

27.5. As mentioned in the text, inverse iteration depends on the solution of 
a system of equations that may be exceedingly ill-conditioned, with condition 
number on the order of e;;;.!.aine· We know that it is impossible in general 
to solve ill-conditioned systems accurately. Is this not a fatal flaw in the 
algorithm? 

Show as follows that the answer is no-that ill-conditioning is not a problem 
in inverse iteration. Suppose A is a real symmetric matrix with one eigenvalue 
much smaller than the others in absolute value (without loss of generality, we 
are taking J.L = 0). Suppose v is a vector with components in the directions 
of all the eigenvalues q1, ... , qm of A, and suppose Aw = v is solved backward 
stably, yielding a computed vector w. Making use of the calculation on p. 95, 
show that although w may be far from w, wfllwll will not be far from w/llwll. 

27.6. What happens to Figure 27.1 iftwo of the eigenvalues of A are equal? 



Lecture 28. QR Algorithm without Shifts 

The QR algorithm, dating to the early 1960s, is one of the jewels of numerical 
analysis. Here we show that in its simplest form, this algorithm can be viewed 
as a stable procedure for computing QR factorizations of the matrix powers 
A, A2 , A3, •••• 

The QR Algorithm 

The most basic version of the QR algorithm seems impossibly simple. 

Algorithm 28.1. "Pure" QR Algorithm 

A<0> =A 
fork= 1,2, ... 

Q(k) R(k) = A(k-1) QR factorization of A(k-1) 
A(k) = R(k)Q(k) Recombine factors in reverse order 

All we do is take a QR factorization, multiply the computed factors Q and R 
together in the reverse order RQ, and repeat. Yet under suitable assumptions, 
this simple algorithm converges to a Schur form for the matrix A-upper­
triangular if A is arbitrary, diagonal if A is hermitian. Here, to keep the 
discussion simple, we shall continue to assume as in the last lecture that A is 
real and symmetric, with real eigenvalues >..; and orthonormal eigenvectors q;. 
Thus our interest is in the convergence of the matrices A(k) to diagonal form. 

211 
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For convergence to diagonal form to be useful for finding eigenvalues, of 
course, the operations involved must be similarity transformations. This is 
easily verified: the QR algorithm first triangularizes A(k) by forming R("') = 
( Q("') )T A (k-1), and the multiplication on the right by Q("') then gives A (k) = 
(Q<"'>)T A("'-1>Q<"'>. In fact, we have seen this similarity transformation before: 
it is the "bad idea" mentioned in Lecture 26. Although this transformation 
is a bad idea when trying to reduce A to triangular form in a single step, it 
turns out to be quite powerful as the basis of an iteration. 

Like the Rayleigh quotient iteration, the QR algorithm for real symmet­
ric matrices converges cubically. To achieve this performance, however, the 
algorithm as presented above must be modified by the introduction of shifts 
at each step. The use of shifts is one of three modifications of Algorithm 28.1 
that are required to bring it closer to a practical algorithm: 

1. Before starting the iteration, A is reduced to tridiagonal form, as dis­
cussed in Lecture 26. 

2. Instead of A("'), a shifted matrix A(k) - p,<"'> I is factored at each step, 
where p,<"'> is some eigenvalue estimate. 

3. Whenever possible, and in particular whenever an eigenvalue is found, 
the problem is "de:ftated" by breaking A<"'> into submatrices. 

A QR algorithm incorporating these modifications has the following outline. 

Algorithm 28.2. "Practical" QR Algorithm 

A (O) is a tridiagonalization of A 

fork= 1, 2, ... 

Pick a shift p.<•> e.g., choose p.f/c) = ~;1> 

Q<"'> R(k) = A<"'-1> - p,<"') I QR factorization of A<"'-1> - p.<"'> I 
A<"'>= R("')Q(k) + p.<"'>I Recombine factors in reverse order 

If any off-diagonal element A~~+l is sufficiently close to zero, 

set A;J+l = A;+lJ = 0 to obtain 

[ A1 0 ] = A<•> 
0 A2 

and now apply the QR algorithm to A1 and A2• 

This algorithm, the QR algorithm with well-chosen shifts, has been the stan­
dard method for computing all the eigenvalues of a matrix since the early 
1960s. Only in the 1990s has a competitor emerged, the divide-and-conquer 
algorithm described in Lecture 30. 

Tridiagonalization was discussed in Lecture 26, shifts are discussed in the 
next lecture, and de:ftation is not discussed further in this book. For now, let 
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us confine our attention to the "pure" QR algorithm and explain how it finds 
eigenvalues. 

U nnormalized Simultaneous Iteration 

Our approach will be to relate the QR algorithm to another method called 
simultaneous itemtion, whose behavior is more obvious. 

The idea of simultaneous iteration is to apply the power iteration to several 
vectors at once. (An equivalent term is block power itemtion.) Suppose we 
start with a set of n linearly independent vectors v~o), ... , v~0>. It seems plau­
sible that just as A11v~0> converges as k --+ oo (under suitable assumptions) 
to the eigenvector corresponding to the largest eigenvalue of A in absolute 
value, the space (A11v~0), ••• , A11v~0>} should converge (again under suitable as­
sumptions) to the space (q1, ... , q,.} spanned by the eigenvectors q1, ... , q,. of 
A corresponding to the n largest eigenvalues in absolute value. 

In matrix notation, we might proceed like this. Define v<o> to be the m x n 
initial matrix 

y(O) = [ v[O) • • • V~O) l , (28.1) 

and define v<•> to be the result after k applications of A: 

y('l = A'v(•l = [ •l'l . . . .~•l ]· (28.2) 

Since our interest is in the column space of v<•>, let us extract a well-behaved 
basis for this space by computing a reduced QR factorization of v<•>: 

(28.3) 

Here Q(A:) and flCA:) have dimensions m x nand n x n, respectively. It seems 
plausible that as k --+ oo, under suitable assumptions, the successive columns 
of Q(k) should converge to the eigenvectors ±q1, ±q2, ••• , ±q,.. 

This expectation can be ~ustified by an analysis analogous to that of the 
last lecture. H we expand v~ and v~•> in the eigenvectors of A, we have 

(0) 
V; = aljql + ... + amjqm, 

(AI) - ,Ar ,Ar 
V; - 1\1 aljql + ... + 1\mamjqm. 

As in the last section, simple convergence results will hold provided that two 
conditions are satisfied. The first assumption we make is that the leading n+ 1 
eigenvalues are distinct in absolute value: 

(28.4) 
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Our second assumption is that the collectio~ of expansion coefficients ai; is 
in an appropriate sense nonsingular. Define Q to be them x n matrix whose 
columns are the eigenvectors q1, q2, ••• , q,.. (Thus Q, a matrix of eigenvectors, 
is entirely different from Q("'), a factor in a reduced QR factorization.) We 
assume the following: 

All the leading principal minors of QTy(o) are nonsingular. (28.5) 

By the leading principal minors of {JTy(o), we mean its upper-left square 
submatrices of dimensions 1 x 1, 2 x 2, ... , n x n. (The condition (28.5) 
happens to be equivalent to the condition that {JTy(o) has an L U factorization; 
see Exercise 20.1.) 

Theorem 28.1. Suppose that the itemtion (28.1)-(28.3) is carried out and 
that assumptions (28.4) and (28.5) are satisfied. Then ask--+ oo, the columns 
of the matrices Q(A:) converge linearly to the eigenvectors of A: 

(28.6) 

for each j with 1 ~ j ~ n, where C < 1 is the constant ma.x1<~o:< .. IA~o:HI/I.\,.I. 
As in the theorems of the last lecture, the± sign means that at each step k, 
one or the other choice of sign is to be taken, and then the indicated bound 
holds. 

Proof. Extend Q to a full m x m orthogonal matrix Q of eigenvectors of A, and 
let A be the corresponding diagonal matrix of eigenvalues; thus A = Q AQT. 
Just as Q is the leading m x n section of Q, define A (still diagonal) to be the 
leading n x n section of A. Then we have 

ask--+ oo. If (28.5) holds, then in particular, QTy(o) is nonsingular, so we can 
multiply the term O(l.\,.+11"') on the right by (QTV(0))-1QTy(o) to transform 
this equation to 

Since QTy(o) is nonsingular, the column space of this matrix is the same as 
the column space of 

QA"' + O(l.\,.+11"'). 
From the form of QA"' and the assumption (28.4), it is clear that this column 
space converges linearly to that of Q. This convergence can be quantified, for 
example, by defining angles between subspaces; we omit the details. 

Now in fact, we have assumed that not only is {JTy(o) nonsingular, but so 
are all of its leading principal minors. It follows that the argument above also 
applies to leading subsets of the columns of y(A:) and Q: the first columns, the 
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:first and second columns, the first and second and third columns, and so on. 
In each case we conclude that the space spanned by the indicated columns of 
v<"> converges linearly to the space spanned by the corresponding columns of 
Q. From this convergence of all the successive column spaces, together with 
the definition of the QR factorization (28.3), (28.6) follows. D 

Simultaneous Iteration 

Ask -+ oo, the vectors v~">, ... , vi"> in the algorithm (28.1)-(28.3) all converge 
to multiples of the same dominant eigenvector q1 of A. Thus, although the 
space they span, (v~l:), ... , v}">), converges to something useful, these vectors 
constitute a highly ill-conditioned basis of that space. If we actually carried 
out simultaneous iteration in floating point arithmetic as just described, the 
desired information would quickly be lost to rounding errors. 

The remedy is simple: one must orthonormalize at each step rather than 
once and for all. Thus we shall not construct v<"> as defined above, but a 
different sequence of matrices z<"> with the same column spaces. 

Algorithm 28.3. Simultaneous Iteration 

Pick Q(0) E Rmxn with orthonormal columns. 

fork= 1,2, ... 

Z = AQ<"-1> 
Q(l:) fl(l:) = z reduced QR factorization of Z 

From the form of this algorithm, it is clear that the column spaces of 
Q<"> and z<"> are the same, both being equal to the column space of A"Q<0>. 
Thus, mathematically speaking, this new formulation of simultaneous iteration 
converges under the same conditions as the old one. 

Theorem 28.2. Algorithm 28.3 generates the same matrices Q<"> as the iter­
ation (28.1)-(28.3) considered in Theorem 28.1 (assuming that the initial ma­
trices Q<0> are the same}, and under the same assumptions (28.4) and (28.5), 
it converges as described in that theorem. 

Simultaneous Iteration ¢=> QR Algorithm 

Now we can explain the QR algorithm. It is equivalent to simultaneous it­
eration applied to a full set of n = m initial vectors, namely, the identity, 
Q<0> = I. Since the matrices ¢<"> are now s9uare, we A are dealing with full 
QR factorizations and can drop the hats on Q(") and R(l:). In fact, we shall 
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replace A<"'> by R("') but Q("') by Q(l:) in order to distinguish the Q matrices of 
simultaneous iteration from those of the QR algorithm. 

Here are the three formulas that define simultaneous iteration with Q(o) = 
I, followed by a fourth formula that we shall take as a definition of an m x m 
matrix A("'): 

Simultaneous Iteration: 

Q(O) - I, (28.7) 

z AQ(l:-1), (28.8) 

z Q<"'> R<"'>' (28.9) 

A<"'> = ( Q("'))T AQ(l:). {28.10) 

And here are the three formulas that define the pure QR algorithm, followed 
by a fourth formula that we shall take as a definition of an m x m matrix Q<"'>: 

Unshifted QR Algorithm: 

A(O) 

A(l:-1) 

A<"'> 
Q(l:) 

A, 

Q<"'> R<"'>, 
R<"'>Q<"'>, 

= Q(1)Q(2) ••• Q(l:). 

{28.11) 

{28.12) 

{28.13) 

{28.14) 

Additionally, for both algorithms, let us define one further m x m matrix R<"'>, 

{28.15) 

We can now exhibit the equivalence of these two algorithms. 

Theorem 28.3. The processes ~28.7)~28.10) and {28.11)-(28.14) generate 
identical sequences of matrices R l:), Q("' , and A(k), namely, those defined by 
the QR factorization of the kth power of A, 

{28.16) 

together with the projection 

(28.17) 

Proof We proceed by induction in k. The base case k = 0 is trivial. For 
both simultaneous iteration and the QR algorithm, equations ( 28. 7)-( 28.15) 
imply A0 = Q(o) = R'0> = I and A(0) = A, from which (28.16) and (28.17) are 
immediate. 
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Consider now the case k ~ 1 for simultaneous iteration. Formula (28.17) 
is valid by virtue of the definition (28.10) (they are identical), so we need only 
verify (28.16), which can be done as follows: 

A" = AQ(A:-1) R(A:-1) = qc•> Rflc) R(A:-1) = Q(") R("). 

The first equality follows from the inductive hypothesis on (28.16), the second 
from (28.8) and (28.9), and the third from (28.15). 

On the other hand, consider the case k ~ 1 for the QR algorithm. We can 
verify (28.16) by the sequence 

A" = AQ(A:-1) R(A:-1) = Q(A:-1) A(A:-1) R(A:-1) = QC"> R(k). 

The :first equality follows from the inductive hypothesis on (28.16), the second 
from the inductive hypothesis on (28.17), and the third from (28.12), together 
with (28.14) and (28.15). Finally, we can verify (28.17) by the sequence 

A(k) = ( Q("))T A(k-1)Q(1c) = ( Q(k))T AQ(k). 

The :first equality follows from (28.12) and (28.13), and the second from the 
inductive hypothesis on (28.17). 0 

Convergence of the QR Algorithm 

All the pieces are in place. We can now say a great deal about the convergence 
of the unshifted QR algorithm. 

First, at the level of qualitative understanding: (28.16) and (28.17) are the 
key. The :first of these explains why the QR algorithm can be expected to :find 
eigenvectors: it constructs orthonormal bases for successive powers A". The 
second explains why the algorithm finds eigenvalues. From (28.17) it follows 
that the diagonal elements of A(k) are Rayleigh quotients of A corresponding 
to the columns of Q(k) (see Exercise 27.1). As those columns converge to 
eigenvectors, the Rayleigh quotients converge (twice as fast, by (27.3)) to the 
corresponding eigenvalues. Meanwhile, (28.17) implies that the off-diagonal 
elements of A(k) correspond to generalized Rayleigh quotients involving ap­
proximations of distinct eigenvectors of A on the left and the right. Since 
these approximations must become orthogonal as they converge to distinct 
eigenvectors, the off-diagonal elements of A(k) must converge to zero. 

We cannot emphasize too strongly how fundamental equations (28.16) and 
(28.17) are to an understanding of the unshifted QR algorithm. They are 
memorable; and from them, everything of importance follows. 

As for a more quantitative understanding, we have the following conse­
quence of Theorem 28.2. 
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Theorem 28.4. Let the pure QR algorithm {Algorithm 28.1} be applied to a 
real symmetric matrix A whose eigenvalues satisfy l.\11 > l.\21 > · · · > l.\ml 
and whose corresponding eigenvector matrix Q has all nonsingular leading 
principal minors. Then as k -+ oo, A(k) converges linearly with constant 
max~: l.\~:+11/l.\~rl to diag(.\1 , ... , Am), and Q(k) {with the signs of its columns 
adjusted as necessary) converges at the same rate to Q. 

Exercises 

28.1. What happens if you apply the unshifted QR algorithm to an or­
thogonal matrix? Figure out the answer, and then explain how it relates to 
Theorem 28.4. 

28.2. The preliminary reduction to tridiagonal form would be of little use if 
the steps of the QR algorithm did not preserve this structure. Fortunately, 
they do. 

(a) In the QR factorization A= QR of a tridiagonal matrix A, which entries 
of Rare in general nonzero? Which entries of Q? (In practice we do not form 
Q explicitly.) 

(b) Show that the tridiagonal structure is recovered when the product RQ is 
formed. 

(c) Explain how Givens rotations or 2 x 2 Householder reflections can be used 
in the computation of the QR factorization of a tridiagonal matrix, reducing 
the operation count far below what would be required for a full matrix. 

28.3. A real symmetric matrix A has an eigenvalue 1 of multiplicity 8, while all 
the rest of the eigenvalues are ~ 0.1 in absolute value. Describe an algorithm 
for finding an orthonormal basis of the 8-dimensional eigenspace corresponding 
to the dominant eigenvalue. 

28.4. Consider one step of Algorithm 28.1 applied to a tridiagonal symmetric 
matrix A E m.mxm. 
(a) If only eigenvalues are desired, then only A<•> is needed at step k, not 
Q<•>. Determine how many :O.ops are required to get from A(k-1) to A<•> using 
standard methods described in this book. 
(b) If all the eigenvectors are desired, then the matrix Q<•> = Q(1)Q(2) .•• Q<•> 
will need to be accumulated too. Determine how many :O.ops are now required 
to get from step k- 1 to step k. 



Lecture 29. QR Algorithm with Shifts 

What makes the QR iteration fly is the introduction of shifts A --+ A - J.f.l at 
each step. Here we explain how this idea leads to cubic convergence, thanks 
to an implicit connection with the Rayleigh quotient iteration. 

Connection with Inverse Iteration 

We continue to assume that A E m.mxm is real and symmetric, with real 
eigenvalues {.X;} and orthonormal eigenvectors {q;}· 

As we have seen, the "pure" QR algorithm (Algorithm 28.1) is equivalent 
to simultaneous iteration applied to the identity mat!U, and in particular, 
the first column of the result evolves according to the power iteration applied 
to e1. There is a dual to this observation. Algorithm 28.1 is also equivalent to 
simultaneous inverse iteration applied to a "flipped" identity matrix P, and in 
particular, the mth column of the result evolves according to inverse iteration 
applied to em. 

We can establish this claim as follows. Let Q<">, as in the last lecture, be 
the orthogonal factor at the kth step of the QR algorithm. In the last lecture, 
we showed that the accumulated product (28.14) of these matrices, 

219 
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is the same orthogonal matrix that appears at step k (28.9) of simultaneous 
iteration. Another way to put this was to say that Q(le) is the orthogonal 
factor in a QR factorization (28.16), -

Ale = Q(le) R(le). 

Now consider what happens if we invert this formula. We calculate 

A-le = (R(Ie)t1Q(Ie)T = Q(le)(R'Ie)tT; (29.1) 

for the second equality we have used the fact that A-1 is symmetric. Let P 
denote the m x m permutation matrix that reverses row or column order: 

Since P 2 = I, (29.1) can be rewritten as 

A-lep = [Q(Ie)P][P(R(Ie)tTP]. (29.2) 

The first factor in this product, Q(le) P, is orthogonal. The second, P(R(Ie))-T P, 
is upper-triangular (start with the lower-triangular matrix ( R(le))-T, :O.ip it top­
to-bottom, then :O.ip it again left-to-right). Thus (29.2) canbe interpreted as 
a QR factorization of A-le P. In other words, we are effectively carrying out 
simultaneous iteration on A-1 applied to the initial matrix P, which is to 
say, simultaneous inverse iteration on A. In particular, the first column of 
Q(le) P-the last column of Q(le)_is the result of applying k steps of inverse 
iteration to the vector em. 

Connection with Shifted Inverse Iteration 

Thus the QR algorithm is both simultaneous iteration and simultaneous in­
verse iteration: the symmetry is perfect. But, as we saw in Lecture 27, there 
is a huge difference between power iteration and inverse iteration: the latter 
can be accelerated arbitrarily through the use of shifts. The better we can 
estimate an eigenvalue p. ::::::: )..1 , the more we shall accomplish by a step of 
inverse iteration with the shifted matrix A- p.I. Algorithm 28.2 showed how 
shifts are introduced into a step of the QR algorithm. Doing this corresponds 
exactly to shifts in the corresponding simultaneous iteration and inverse iter­
ation processes, and their beneficial effect is therefore exactly the same. 

Let p.(le) denote the eigenvalue estimate chosen at the kth step of the QR 
algorithm. From Algorithm 28.2, the relationship between steps k - 1 and k 
of the shifted QR algorithm is 

A(le-1) _ p.(le) I = Q(le) R(le), 

A(le) _ R(le)Q(Ie) + p.(le) I. 
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This implies 

(29.3) 

and by induction, 
A(A:) = ( Q(A:))T AQ(A:), 

which is unchanged from (28.17). However, (28.16) no longer holds. Instead, 
we have the factorization 

(A- J.t(A:) I)(A- J.£("-1) I)··· (A- J.£(1) I) = Q(") R("), (29.4) 

a shifted variation on simultaneous iteration (we omit the proof). In words, 
Q(") = II~=1 Q(i) is an orthogonalization of II}=~:(A- J.t(i) I). The first column 
of Q(A:) is the result of applying shifted power iteration to e1 using the shifts 
J.tCi">; and the last column is the result of applying k steps of shifted inverse 
iteration to em with the same shifts. If the shifts are good eigenvalue estimates, 
this last column of Q(") converges quickly to an eigenvector. 

Connection with Rayleigh Quotient Iteration 

We have discovered a powerful tool hidden in the shifted QR algorithm: shifted 
inverse iteration. To complete the idea, we now need a way of choosing shifts 
to achieve fast convergence in the last column of Q(A:). 

The Rayleigh quotient is a good place to start. To estimate the eigenvalue 
corresponding to the eigenvector approximated by the last column of Q", it is 
natural to apply the Rayleigh quotient to this last column. This gives us 

(29.5) 

If this number is chosen as the shift at every step, the eigenvalue and eigen­
vector estimates J.t(A:) and q!!> are identical to those that are computed by the 
Rayleigh quotient iteration starting with em. Therefore, the QR algorithm has 
cubic convergence in the sense that q!!> converges cubically to an eigenvector. 

Notice that, in the QR algorithm, the Rayleigh quotient r(q!:>) appears as 
them, m entry of A(">-so it comes for free! We mentioned this at the end of 
the last lecture, but here is an explicit derivation for emphasis. Starting with 
(29.3), we have 

Therefore, (29.5) is the same as simply setting J.t(A:) = A~~- This is known as 
the Rayleigh quotient shift. 
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Wilkinson Shift 

Although the Rayleigh quotient shift gives cubic convergence in the generic 
case, convergence is not guaranteed for all initial conditions. We can see this 
with a simple example. Consider the matrix 

A=[~~]· (29.7) 

The unshifted QR algorithm does not converge at all: 

A = Q(l) R(l) = [ ~ ~ ] [ ~ ~ ] , 

A(l) = R(l)Q(l) = [ ~ ~ ] [ ~ ~ ] = A. 

The Rayleigh quotient shift p. = Amm' however, has no effect either, since 
Amm = 0. Thus it is clear that in the worst case, the QR algorithm with the 
Rayleigh quotient shift may fail. 

The problem arises because of the symmetry of the eigenvalues. One eigen­
value is + 1, and the other is -1, so when we attempt to improve the eigenvalue 
estimate 0, the tendency to favor each eigenvalue is equal, and the estimate 
is not improved. What is needed is an eigenvalue estimate that can break the 
symmetry. One such choice is defined as follows. Let B denote the lower­
rightmost 2 x 2 submatrix of A<11>: 

The Wilkinson shift is defined as that eigenvalue of B that is closer to am, 

where in the case of a tie, one of the two eigenvalues of B is chosen arbitrarily. 
A numerically stable formula for the Wilkinson shift is 

(29.8) 

where o = (am-l- am)/2. If o = 0, sign(o) can be arbitrarily set equal to 1 

or -1. 
Like the Rayleigh quotient shift, the Wilkinson shift achieves cubic con­

vergence in the generic case. Moreover, it can be shown that it achieves at 
least quadratic convergence in the worst case. In particular, the QR algorithm 
with the Wilkinson shift always converges (in exact arithmetic). 

In the example (29.7), the Wilkinson shift is either +1 or -1. Thus the 
symmetry is broken, and convergence takes place in one step. 
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Stability and Accuracy 

This completes our discussion of the mechanics of the QR algorithm, though 
many practical details have been omitted, such as conditions for deflation and 
"implicit" strategies for shifting. It remains to say a word about stability and 
accuracy. 

As one might expect from its use of orthogonal matrices, the QR algorithm 
is backward stable. As in previous lectures, the simplest way to formulate this 
result is to let A denote the diagonalization of A as computed in floating point 
arithmetic, and Q the exactly orthogonal matrix associated with the product 
of all the numerically computed Householder reflections (or Givens rotations) 
utilized along the way. Here is what can be proved. 

Theorem 29.1. Let a real, symmetric, tridiagonal matrix A E Rmxm be di­
agonalized by the QR algorithm {Algorithm 28.2} on a computer satisfying 
(13.5) and (13.7), and let A and Q be defined as indicated above. Then we 
have 

QAQ* = A+oA, (29.9) 

for some oA E cmxm. 

Like most of the algorithms in this book, then, the QR algorithm produces 
an exact solution of a slightly perturbed problem. Combining Theorems 26.1 
and 29.1, we see that tridiagonal reduction followed by the QR algorithm is a 
backward stable algorithm for computing eigenvalues of matrices. To see what 
this implies about accuracy of the computed eigenvalues, we may combine this 
conclusion with the result (26.4) concerning perturbation of eigenvalues of real 
symmetric matrices (a special case of normal matrices). The conclusion is that 
the computed eigenvalues X; satisfy 

(29.10) 

This is not a bad result at all for an algorithm that requires just rv tm3 flops, 
two-thirds the cost of computing the product of a pair of m x m matrices! 

Exercise 

29.1. This five-part problem asks you to put together a MATLAB program 
that finds all the eigenvalues of a real symmetric matrix, using only elementary 
building blocks. It is not necessary to achieve optimal constant factors by 
exploiting symmetry or zero structure optimally. It is possible to solve the 
whole problem by a program about fifty lines long. 
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(a) Write a function T = tridiag(A) that reduces a real symmetric m x m 
matrix to tridiagonal form by orthogonal similarity transformations. Your 
program should use only elementary MATLAB operations-not the built-in 
function hess, for example. Your output matrix T should be symmetric and 
tridiagonal up to rounding errors. If you like, add a line that forces T at the 
end to be exactly symmetric and tridiagonal. For an example, apply your 
program to A = hilb(4). 

(b) Write a function Tnev = qralg(T) that runs the unshifted QR algorithm 
on a real tridiagonal matrix T. For the QR factorization at each step, use 
programs [W, R] = house (A) and Q = form.Q (W) of Exercise 10.2 if available, 
or MATLAB's command qr, or, for greater efficiency, a new code based on 
Givens rotations or 2 x 2 Householder reflections rather than m x m operations. 
Again, you may wish to enforce symmetry and tridiagonality at each step. 
Your program should stop and return the current tridiagonal matrix T as 
Tnev when them, m-1 element satisfies ltm,m-11 < 10-12 (hardly an industrial 
strength convergence criterion!). Again, apply your program to A = hilb(4). 

(c) Write a driver program which (i) calls tridiag, (ii) calls qralg to get one 
eigenvalue, (iii) calls qralg with a smaller matrix to get another eigenvalue, 
and so on until all of the eigenvalues of A are determined. Set things up so that 
the values of ltm m-11 at every QR iteration are stored in a vector and so that at 
the end, your p;ogram generates a semilogy plot of these values as a function 
of the number of QR factorizations. (Here m will step from length(!) to 
length(A)-1 and so on down to 3 and finally 2 as the deflation proceeds, 
and the plot will be correspondingly sawtoothed.) Run your program for A = 
hilb(4). The output should be a set of eigenvalues and a "sawtooth plot." 

(d) Modify qralg so that it uses the Wilkinson shift at each step. Tum in the 
new sawtooth plot for the same example. 

(e) Rerun your program for the matrix A = diag(15:-1:1) + ones(15,15) 
and generate two sawtooth plots corresponding to shift and no shift. Discuss 
the rates of convergence observed here and for the earlier matrix. Is the 
convergence linear, superlinear, quadratic, cubic ... ? Is it meaningful to speak 
of a certain "number of QR iterations per eigenvalue?" 



Lecture 30. Other Eigenvalue Algorithms 

There is more to the computation of eigenvalues than the QR algorithm. In 
this lecture we brie:O.y mention three famous alternatives for real symmetric 
eigenvalue problems: the Jacobi algorithm, for full matrices, and the bisection 
and divide-and-conquer algorithms, for tridiagonal matrices. 

Jacobi 

One of the oldest ideas for computing eigenvalues of matrices is the Jacobi al­
gorithm, introduced by Jacobi in 1845. This method has attracted attention 
throughout the computer era, especially since the advent of parallel comput­
ing, though it has never quite managed to displace the competition. 

The idea is as follows. For matrices of dimension 5 or larger, we know that 
eigenvalues can only be obtained by iteration (Lecture 25). However, smaller 
matrices than this can be handled in one step. Why not diagonalize a small 
submatrix of A, then another, and so on, hoping eventually to converge to a 
diagonalization of the full matrix? 

The idea has been tried with 4 x 4 submatrices, but the standard ap­
proach is based on 2 x 2 submatrices. A 2 x 2 real symmetric matrix can be 
diagonalized in the form 

(30.1) 

225 
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where J is orthogonal. Now there are several ways to choose J. One could 
take it to be a 2 x 2 Householder reflection of the form 

F = [ -c s] 
s c , (30.2) 

where s = sin9 and c = cos9 for some 9. Note that detF = -1, the hallmark 
of a reflection. Alternatively, one can use not a reflection but a rotation, 

J=[ cs], 
-s c 

(30.3) 

with detJ = 1. This is the standard approach for the Jacobi algorithm. It 
can be shown that the diagonalization (30.1) is accomplished if 9 satisfies 

2d 
tan(29) = -b -, 

-a 
(30.4) 

and the matrix J based on this choice is called a Jacobi rotation. (It has the 
same form as a Givens rotation (Exercise 10.4); the only difference is that 9 
is chosen to make JT AJ diagonal rather than JT A triangular.) 

Now let A E 1Rmxm be symmetric. The Jacobi algorithm consists of the 
iterative application of transformations (30.1) based on matrices defined by 
(30.3) and (30.4). The matrix J is now enlarged to an m x m matrix that is 
the identity in all but four entries, where it has the form (30.3). Applying P 
on the left modifies two rows of A, and applying J on the right modifies two 
columns. At each step a symmetric pair of zeros is introduced into the matrix, 
but previous zeros are destroyed. Just as with the QR algorithm, however, 
the usual effect is that the magnitudes of these nonzeros shrink steadily. 

Which off-diagonal entries aii should be zeroed at each step? The ap­
proach naturally fitted to hand computation is to pick the largest off-diagonal 
entry at each step. Analysis of convergence then becomes a triviality, for one 
can show that the sum of the squares of the off-diagonal entries decreases 
by at least the factor 1 - 2/(m2 - m) at each step (Exercise 30.3). After 
0( m2) steps, each requiring 0( m) operations, the sum of squares must drop 
by a constant factor, and convergence to accuracy €machine is assured after 
0( m3 log( emachine)) operations. In fact, it is known that the convergence is 
better than this, ultimately quadratic rather than linear, so the actual opera­
tion count is 0( m3 log(pog( €machine )I)) (Exercise 25.2). 

On a computer, the off-diagonal entries are generally eliminated in a cyclic 
manner that avoids the O(m2) search for the largest. For example, if the 
m(m - 1)/2 superdiagonal entries are eliminated in the simplest row-wise 
order, beginning with a12, a13, ••• , then rapid asymptotic convergence is again 
guaranteed. After one sweep of 2 x 2 operations involving all of the m( m -1) /2 
pairs of off-diagonal entries, the accuracy has generally improved by better 
than a constant factor, and again, the convergence is ultimately quadratic. 
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The Jacobi method is attractive because it deals only with pairs of rows 
and columns at a time, making it easily parallelizable (Exercise 30.4). The 
matrix is not tridiagonalized in advance; the Jacobi rotations would destroy 
that structure. Convergence for matrices of dimension m ~ 1000 is typically 
achieved in fewer than ten sweeps, and the final componentwise accuracy is 
generally even better than can be achieved by the QR algorithm. Unfortu­
nately, even on parallel machines, the Jacobi algorithm is not usually as fast as 
tridiagonalization followed by the QR or divide-and-conquer algorithm (dis­
cussed below), though it usually comes within a factor of 10 (Exercise 30.2). 

Bisection 

Our next eigenvalue algorithm, the method of bisection, is of great practical 
importance. After a symmetric matrix has been tridiagonalized, this is the 
standard next step if one does not want all of the eigenvalues but just a subset 
of them. For example, bisection can find the largest 10% of the eigenvalues, 
or the smallest thirty eigenvalues, or all the eigenvalues in the interval [1, 2). 
Once the desired eigenvalues are found, the corresponding eigenvectors can be 
obtained by one step of inverse iteration (Algorithm 27.2). 

The starting point is elementary. Since the eigenvalues of a real symmetric 
matrix are real, we can find them by searching the real line for roots of the 
polynomial p(x) = det(A- xi). This sounds like a bad idea, for did we not 
mention in Lectures 15 and 25 that polynomial rootfinding is a highly unstable 
procedure for finding eigenvalues? The difference is that those remarks per­
tained to the idea of finding roots from the polynomial coefficients. Now, the 
idea is to find the roots by evaluating p(x) at various points x, without ever 
looking at its coefficients, and applying the usual bisection process for nonlin­
ear functions. This could be done, for example, by Gaussian elimination with 
pivoting (Exercise 21.1), and the resulting algorithm would be highly stable. 

This much sounds useful enough, but not very exciting. What gives the 
bisection method its power and its appeal are some additional properties of 
eigenvalues and determinants that are not immediately obvious. 

Given a symmetric matrix A E m.mxm, let A<1>, ... , A(m) denote its prin­
cipal (i.e., upper-left) square submatrices of dimensions 1, ... , m. It can be 
shown that the eigenvalues of these matrices interlace. Before defining this 
property, let us first sharpen it by assuming that A is tridiagonal and irre­
ducible in the sense that all of its off-diagonal entries are nonzero: 

al bl 

bl a2 b2 

A= b2 as b; =I 0. (30.5) 
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A(l) 

A(2) 

A(3) 
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Figure 30.1. fllustration of the strict eigenvalue interlace property (30.6) for 
the principal submatrices {A<i>} of an irreducible tridiagonal real symmetric 
matrix A. The eigenvalues of A(k) interlace those of A(k+l). The bisection 
algorithm takes advantage of this property. 

(If there are zeros on the off-diagonal, then the eigenvalue problem can be 
deflated, as in Algorithm 28.2.) By Exercise 25.1, the eigenvalues of A(k) are 
distinct; let them be denoted by A.~k) < A.~k) < · · · < A.~k). The crucial prop­
erty that makes bisection powerful is that these eigenvalues strictly interlace, 
satisfying the inequalities 

(30.6) 

for k = 1, 2, ... , m- 1 and j = 1, 2, ... , k- 1. This behavior is sketched in 
Figure 30 .1. 

It is the interlacing property that makes it possible to count the exact 
number of eigenvalues of a matrix in a specified interval. For example, consider 
the 4 x 4 tridiagonal matrix 

A=[~~~~]· 
1 -1 

From the numbers 

det(A<1>) = 1, det(A<2>) = -1, det(A<3>) = -3, det(A<4>) = 4, 

we know that A<1> has no negative eigenvalues, A<2> has one negative eigen­
value, A<3> has one negative eigenvalue, and A<4> has two negative eigenvalues. 
In general, for any symmetric tridiagonal A E 1Rmxm, the number of negative 
eigenvalues is equal to the number of sign changes in the sequence 

1, det(A<1>), det(A<2>), ... , det(A(ml), (30.7) 

which is known as a Sturm sequence. (This prescription works even if zero 
determinants are encountered along the way, if we define a "sign change" to 
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mean a transition from + or 0 to - or from - or 0 to + but not from + or 
- to 0.) By shifting A by a multiple of the identity, we can determine the 
number of eigenvalues in any interval [a, b): it is the number of eigenvalues in 
( -oo, b) minus the number in ( -oo, a). 

One more observation completes the description of the bisection algorithm: 
for a tridiagonal matrix, the determinants of the matrices {A <•>} are related by 
a three-term recurrence relation. Expanding det(A<">) by minors with respect 
to its entries b~:_ 1 and a~: in row k gives, from (30.5), 

(30.8) 

Introducing the shift by xi and writing p<•>(x) = det(A<•>- xi), we get 

(30.9) 

If we define p<-1>(x) = 0 and p<0>(x) = 1, then this recurrence is valid for all 
k = 1,2, ... ,m. 

By applying (30.9) for a succession of values of x and counting sign changes 
along the way, the bisection algorithm locates eigenvalues in arbitrarily small 
intervals. The cost is 0( m) :O.ops for each evaluation of the sequence, hence 
0( m log( €machine)) :O.ops in total to find an eigenvalue to relative accuracy 
€machine· If a small number of eigenvalues are needed, this is a distinct im­
provement over the O(m2 ) operation count for the QR algorithm. On a mul­
tiprocessor computer, multiple eigenvalues can be found independently on 
separate processors. 

Divide-and-Conquer 

The divide-and-conquer algorithm, based on a recursive subdivision of a sym­
metric tridiagonal eigenvalue problem into problems of smaller dimension, 
represents the most important advance in matrix eigenvalue algorithms since 
the 1960s. First introduced by Cuppen in 1981, this method is more than 
twice as fast as the QR algorithm if eigenvectors as well as eigenvalues are 
required. 

We shall give just the essential idea, omitting all details. But the reader 
is warned that in this area, the details are particularly important, for the 
algorithm is not fully stable unless they are gotten right-a matter that was 
not well understood for a decade after Cuppen's original paper. 

LetT E Rmxm with m ~ 2 be symmetric, tridiagonal, and irreducible in 
the sense of having only nonzeros on the off-diagonal. (Otherwise, the problem 
can be de:O.ated.) Then for any n in the range 1 ~ n < m, T can be split into 
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submatrices as follows: 

T 
(3 (3 + 1-------ll------l 
(3 (3 

(30.10) 

Here T1 is the upper-left n x n principal submatrix ofT, T2 is the lower-right 
( m- n) X ( m- n) principal submatrix, and (3 = tn+l,n = t,.,n+1 =/; 0. The only 
difference between T1 and T1 is that the lower-right entry t"" has been replaced 
by t",. - (3, and the only difference between T2 and T2 is that the upper-left 
entry tn+l,n+l has been replaced by tn+l,n+l- (3. These modifications of two 
entries are introduced to make the rightmost matrix of (30.10) have rank one. 

Here is how (30.10) might be expressed in words. A tridiagonal matrix can 
be written as the sum of a 2 x 2 block-diagonal matrix with tridiagonal blocks 
and a rank-one correction. 

The divide-and-conquer algorithm proceeds as follows. Split the matrix 
T as in (30.10) with n ~ m/2. Suppose the eigenvalues of T1 and T2 are 
known. Since the correction matrix is of rank one, a nonlinear but rapid 
calculation can be used to get from the eigenvalues of T1 and T2 to those of T 
itself. Now recurse on this idea, finding the eigenvalues ofT1 and T2 by further 
subdivisions with rank-one corrections, and so on. In this manner an m x m 
eigenvalue problem is reduced to a set of 1 x 1 eigenvalue problems together 
with a collection of rank-one corrections. (In practice, for maximal efficiency, 
it is customary to switch to the QR algorithm when the submatrices are of 
sufficiently small dimension rather than to carry the recursion all the way.) 

In this process there is one key mathematical point. If the eigenvalues of 
T1 and T2 are known, how can those ofT be found? To answer this, suppose 
that diagonalizations 

have been computed. Then from (30.10) it follows that we have 

(30.11) 

with zT = (qf, qf), where qf is the last row of Q1 and~ is the first row of 
Q2• Since this equation is a similarity transformation, we have reduced the 
mathematical problem to the problem of finding the eigenvalues of a diagonal 
matrix plus a rank-one correction. 
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Figure 30.2. Plot of the function f().) of (30.12) for a problem of dimension 4. 
The poles off(>..) are the eigenvalues {d;} of D, and the roots off(>..) (solid 
dots) are the eigenvalues of D + wwT. The rapid determination of these roots 
is the basis of each recursive step of the divide-and-conquer algorithm. 

To show how this is done, we simplify notation as follows. Suppose we wish 
to find the eigenvalues of D + wwT, where D E Rmxm is a diagonal matrix 
with distinct diagonal entries {d;} and wE Rm is a vector. (The choice of a 
plus sign corresponds to {J > 0 above; for {J < 0 we would consider D - wwT.) 
We can assume w; =/; 0 for all j, for otherwise, the problem is reducible. Then 
the eigenvalues of D + wwT are the roots of the rational function 

m w~ 

f(>..) = 1 + ~ d. ~ ).. , 
J=l ' 

(30.12) 

as illustrated in Figure 30.2. This assertion can be justified by noting that if 
(D + wwT)q = >..q for some q =/; 0, then (D- >..I)q + w(wTq) = 0, implying 
q + (D- >..I)-1w(wTq) = 0, that is, wTq + wT(D- >..I)-1w(wTq) = 0. This 
amounts to the equation f(>..)(wTq) = 0, in which wTq must be nonzero, for 
otherwise q would be an eigenvector of D, hence nonzero in only one position, 
implying wTq =/; 0 after all. We conclude that if q is an eigenvector of D+wwT 
with eigenvalue>.., then f(>..) must be 0, and the converse follows because the 
form off(>..) guarantees that it has exactly m zeros. The equation f(>..) = 0 
is known as the secular equation. 

At each recursive step of the divide-and-conq_uer algorithm, the roots of 
(30.12) are found by a rapid iterative process related to Newton's method. 
Only 0(1) iterations are required for each root (or O(log(llog(emachine)l)) it­
erations if €machine is viewed as a variable), making the operation count O(m) 
:O.ops per root for an m x m matrix, or O(m2) :O.ops all together. If we imagine 
a recursion in which a matrix of dimension m is split exactly in half at each 
step, the total operation count for finding eigenvalues of a tridiagonal matrix 
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by the divide-and-conquer algorithm becomes 

(30.13) 

a series which converges to O(m2 ) (not O(m2 logm)) thanks to the squares in 
the denominators. Thus the operation count would appear to be of the same 
order O(m2 ) as for the QR algorithm. 

So far, it is not clear why the divide-and-conquer algorithm is advanta­
geous. Since the reduction of a full matrix to tridiagonal form ("Phase 1" 
in the terminology of Lecture 25) requires 4m3 /3 flops (26.2), it would seem 
that any improvement in the O(m2) operation count for diagonalization of 
that tridiagonal matrix ("Phase 2") is hardly important. However, the eco­
nomics change if one is computing eigenvectors as well as eigenvalues. Now, 
Phase 1 requires 8m3/3 flops but Phase 2 also requires O(m3) flops-for the 
QR algorithm, ~ 6m3. The divide-and-conquer algorithm reduces this fig­
ure, ultimately because its nonlinear iterations involve just the scalar function 
(30.12), not the orthogonal matrices Q;, whereas the QR algorithm must ma­
nipulate matrices Q; at every iterative step. 

An operation count reveals the following. The 0( m3) part of the divide­
and-conquer computation is the multiplication by Q; and Qf in (30.11). The 
total operation count, summed over all steps of the recursion, is 4m3 /3 flops, 
a great improvement over ~ 6m3 flops. Adding in the 8m3 /3 flops for Phase 1 
gives an improvement from~ 9m3 to 4m3• 

Actually, the divide-and-conquer algorithm usually does even better than 
this, for a reason that is not elementary. For most matrices A, many of the 
vectors z and matrices Q; that arise in (30.11) turn out to be numerically 
sparse in the sense that many of their entries have relative magnitudes less 
than machine precision. This sparsity allows a process of numerical deflation, 
whereby successive tridiagonal eigenvalue problems are reduced to uncoupled 
problems of smaller dimensions. In typical cases this reduces the Phase 2 
operation count to an order less than m3 flops, reducing the operation count 
for Phases 1 and 2 combined to 8m3 /3. For eigenvalues alone, (30.13) becomes 
an overestimate and the Phase 2 operation count is reduced to an order lower 
than m2 flops. The root of this fascinating phenomenon of deflation, which 
we shall not discuss further, is the fact that most of the eigenvectors of most 
tridiagonal matrices are "exponentially localized" (Exercise 30. 7)-a fact that 
has been related by physicists to the phenomenon that glass is transparent. 

We have spoken as if there is a single divide-and-conquer algorithm, but in 
fact, there are many variants. More complicated rank-one updates are often 
used for stability reasons, and rank-two updates are also sometimes used. 
Various methods are employed for finding the roots of /("A), and for large 
m, the fastest way to carry out the multiplications by Q; is via multi pole 
expansions rather than the obvious algorithm. A high-quality implementation 
of a divide-and-conquer algorithm can be found in the LAPACK library. 
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Exercises 

30.1. Derive the formula (30.4), and give a precise geometric interpretation 
of the transformation (30.1) based on this choice of 0. 

30.2. How many :O.ops are required for one step (30.1) ofthe Jacobi algorithm? 
How many :O.ops for m(m- 1)/2 such steps, i.e., one sweep? How does the 
operation count for one sweep compare with the total operation count for 
tridiagonalizing a real symmetric matrix and finding its eigenvalues by the 
QR algorithm? 

30.3. Show that if the largest off-diagonal entry is annihilated at each step of 
the Jacobi algorithm, then the sum of the squares of the off-diagonal entries 
decreases by at least the factor 1- 2/(m2 - m) at each step. 

30.4. Suppose m is even and your computer has m/2 processors. Explain 
how m/2 transformations (30.1) can be carried out in parallel if they involve 
the disjoint row /column pairs (1, 2), (3, 4), (5, 6), ... , (m- 1, m). 

30.5. Write a program to find the eigenvalues of an m x m real symmetric 
matrix by the Jacobi algorithm with the standard row-wise ordering, plotting 
the sum of the squares of the off-diagonal entries on a log scale as a function of 
the number of sweeps. Apply your program to random matrices of dimensions 
20, 40, and 80. 

30.6. How many eigenvalues does 

have in the interval [1, 2]? Work out the answer on paper by bisection, making 
use of the recurrence (30.9). 

30.7. Construct a random real symmetric tridiagonal matrix T of dimension 
100 and compute its eigenvalue decomposition, T = QDQT. Plot a few of 
the eigenvectors on a log scale (the absolute values of a few columns of Q) 
and observe the phenomenon of localization. What proportion of the 10,000 
entries of Q are greater than 10-10 in magnitude? What is the answer if 
instead of a random matrix, Tis the discrete Laplacian with entries 1, -2,1? 



Lecture 31. Computing the SVD 

The computation of the SVD of an arbitrary matrix can be reduced to the 
computation of the eigenvalue decomposition of a hermitian square matrix, 
but the most obvious way of doing this is not stable. Instead, the standard 
methods for computing the SVD are based implicitly on another kind of reduc­
tion to hermitian form. For speed, the matrix is first unitarily bidiagonalized. 

SVD of A and Eigenvalues of A *A 

As stated in Theorem 5.4, the SVD of the mxn matrix A (m ~ n), A= U~V*, 
is related to the eigenvalue decomposition of the matrix A*A, 

A*A = v~·~v·. 

Thus, mathematically speaking, we might calculate the SVD of A as follows: 

1. Form A*A; 

2. Compute the eigenvalue decomposition A*A = VAV*; 

3. Let ~ be the m x n nonnegative diagonal square root of A; 

4. Solve the system U~ = AV for unitary U (e.g., via QR factorization). 

This algorithm is frequently used, often by people who have rediscovered the 
SVD for themselves. The matrix A*A is known as the covariance matrix of A, 
and it has familiar interpretations in statistics and other fields. The algorithm 
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is unstable, however, because it reduces the SVD problem to an eigenvalue 
problem that may be much more sensitive to perturbations. 

The difficulty can be explained as follows. We have seen that when a 
hermitian matrix A*A is perturbed by 6B, the absolute changes in each eigen­
value are bounded by the 2-norm of the perturbation. By Exercise 26.3(b ), 
l.\~c(A*A + 6B)- A~c(A*A)I ~ II6Bib· As is implied by equation (31.2) below, a 
similar bound holds for the singular values of A itself, lu~c(A+6A)- u~c(A)I ~ 
II6AII2 • Thus a backward stable algorithm for computing singular values would 
obtain u~c satisfying 

(31.1) 

which would imply 
lu~c- u~cl = 0(€machineiiAII). 

Now observe what happens if we proceed by computing A~c(A*A). If 
A~c(A*A) is computed stably, we must expect errors of the order 

Square-rooting to get uk, we find 

lu~c- u~cl = O(IX~c- A~ci/A) = 0(€machineiiAII 2 /u~c)· 
This is worse than the previous result by a factor O(IIAII/u~c)· This is no 
problem for the dominant singular values of A, with uk:::::: IIAII, but it is a big 
problem for any singular values with uk ~ IIAII. For the smallest singular 
value u", we must expect a loss of accuracy of order K( A )-a "squaring of the 
condition number," just as in the use of the normal equations for certain least 
squares problems (Lecture 19). 

A Different Reduction to an Eigenvalue Problem 

There is an alternative, stable way to reduce the SVD to an eigenvalue prob­
lem. Assume that A is square, with m = n; this is no essential restriction, 
since we shall see that rectangular singular value problems can be reduced to 
square ones. Consider the 2m x 2m hermitian matrix 

(31.2) 

mentioned earlier in Exercise 5.4. Since A = UI:V* implies AV = UI: and 
A*U =VI:*= VI:, we have the block 2 x 2 equation 

[ 0 A*] [ V V] 
A 0 U -U 

(31.3) 
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which amounts to an eigenvalue decomposition of H. Thus we see that the 
singular values of A are the absolute values of the eigenvalues of H, and the 
singular vectors of A can be extracted from the eigenvectors of H. 

Thus one could obtain the SVD of a square matrix A by forming the matrix 
Hand computing its eigenvalue decomposition. In contrast to the use of AA* 
or A *A, this approach is stable. The standard algorithms for the SVD are 
based on this idea, though in a disguised manner in which no matrices of 
dimension as large as m + n are formed explicitly. And the key step to make 
the process fast is an initial unitary reduction to bidiagonal form. 

Two Phases 

We have seen that hermitian eigenvalue problems are usually solved by- a two­
phase computation: first reduce the matrix to tridiagonal form, then diago­
nalize the tridiagonal matrix. Since the work of Golub, Kahan, and others in 
the 1960s, an analogous two-phase approach has been standard for the SVD. 
The matrix is brought into bidiagonal form, and then the bidiagonal matrix 
is diagonalized: 

X X X X XX X 

X X X X 
Phase 1 

X X 
Phase 2 

X 

X X X X XX X 
---+ ---+ 

X X X X X X 

X X X X 

xxxx 
A B ~ 

Phase 1 involves a finite number of operations, 0( mn2) flops. Phase 2 in prin­
ciple requires an infinite number of operations, but the standard algorithms 
converge superlinearly, and thus only O(nlog(llog(E'machu.e)l)) iterations are 
needed for convergence to order «:machine (Exercise 25.2). In practice, we think 
of EmachiDe as a constant and say that convergence is achieved in O(n) iterations. 
Because the matrix operated on is bidiagonal, each of these iterations requires 
only O(n) flops. Phase 2 therefore requires O(n2) flops all together (assuming 
singular values but not vectors are required). Thus, although Phase 1 is fi­
nite and Phase 2 is in principle infinite, in practice the latter is much the less 
expensive, just as we found for the symmetric eigenvalue problem. 

Golub-Kahan Bidiagonalization 

In Phase 1 of the SVD computation, we bring A into bidiagonal form by 
applying distinct unitary operations on the left and right. Note how this differs 
from the computation of eigenvalues, where the same unitary operations must 
be applied on both sides so that each step is a similarity transformation. In 
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that case, it was only possible to introduce zeros below the first subdiagonal. 
Here, we are able to completely triangularize and also introduce zeros above 
the first superdiagonal. 

The simplest method for accomplishing this, Golub-Kahan bidiagonaliza­
tion, proceeds as follows. Householder reflectors are applied alternately on 
the left and the right. Each left reflection introduces a column of zeros below 
the diagonal. The right reflection that follows introduces a row of zeros to the 
right of the first superdiagonal, leaving intact the zeros just introduced in the 
column. For example, for a 6 x 4 matrix, the first two pairs of reflections look 
like this: 

xxxx 
X X X X 

X X X X u;. 
X X X X --+ 

X X X X 

X X X X 

A 

U2· 
--+ 

xxxx 
oxxx 
oxxx 
oxxx 
oxxx 
oxxx 

u;A 

X X 

XXX 
oxx 
oxx 
oxx 
oxx 

u;u;AV1 

·Vi 

·V2 
--+ 

X X 0 0 
XXX 
XXX 
XXX 
XXX 
XXX 

UiAVi 

X X 

xxo 
XX 
XX 
XX 
XX 

u;u;AV1V2 

The left-multiplication by Ui modifies rows 1 to m, introducing zeros in col­
umn 1 below the diagonal. The right-multiplication by Vi modifies columns 
2 to n, introducing zeros in row 1 without destroying the zeros in column 1. 
The process continues with operations on rows 2 to m, then columns 3 to n, 
and so on. 

At the end of this process, n reflectors have been applied on the left and 
n - 2 on the right. The pattern of floating point operations resembles two 
Householder QR factorizations interleaved with each other, one operating on 
the m x n matrix A, the other on the n x m matrix A •. The total operation 
count is therefore twice that of a QR factorization (10.9), i.e., 

4 
Work for Golub-Kahan bidiagonalization: "'4mn2 - 3n3 Hops. (31.4) 

Faster Methods for Phase 1 

For m :::P n, this operation count is unnecessarily large. A single QR factor­
ization would introduce zeros everywhere below the diagonal, and for m :::P n, 



238 PART V. EIGENVALUES 

these are the great majority of the zeros that are needed. Yet the opera­
tion count for the Golub-Kahan method is twice as high. This observation 
suggests an alternative method for bidiagonalization with m ~ n, first pro­
posed by Lawson and Hanson and later developed by Chan. The idea, LHC 
bidiagonalization, is illustrated as follows: 

Lawson-Hanson-Chan bidiagonalization 

A Q*A U*Q*AV 

We begin by computing the QR factorization A= QR. Then we compute 
the Golub-Kahan bidiagonalization B = U*RV of R. The QR factorization 
requires 2mn2 - in3 :O.ops (10.9), and the Golub-Kahan procedure, which now 
only has to operate on the upper n x n submatrix, requires ~n3 :O.ops. The 
total operation count is 

Work for LHC bidiagonalization: "' 2mn2 + 2n3 :O.ops. (31.5) 

This is cheaper than Golub-Kahan bidiagonalization for m > ~n (Exer­
cise 31.1). Curiously, the LHC procedure creates zeros and then destroys 
them again (in the lower triangle of the upper n x n square of A), but there 
is a net gain. 

The LHC procedure is advantageous only when m > in, but the idea 
can be generalized so as to realize a saving for any m > n. The trick is to 
apply the QR factorization not at the beginning of the computation, but at 
a suitable point in the middle. This is advantageous because in the Golub­
Kahan process, a matrix with m > n becomes skinnier as the bidiagonalization 
proceeds. If the initial aspect ratio is, say, mjn = 3/2, it will steadily grow to 
5/3 and 2 and beyond. After step k, the aspect ratio of the remaining matrix 
is (m- k)j(n- k), and when this figure gets sufficiently large, it makes sense 
to perform a QR factorization to reduce the problem to a square matrix. 

Three-step bidiagonalization 

A 
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flops 
1i3 

2+------------------.--------r------ mjn 
1 5/3 2 

Figure 31.1. Operation counts for three bidiagonalization algorithms applied to 
m x n matrices, from (31.4), (31.5), and (31.6). Three-step bidiagonalization 
provides a pleasingly smooth interpolant between the other two methods, though 
the improvement is hardly large. 

When should the QR factorization be performed? H we aim solely to 
minimize the operation count, the answer is simple: when the aspect ratio 
reaches (m- k)j(n- k) = 2 (Exercise 31.2). This choice leads to the formula 

Work for three-step bidiagonalization: "'4mn2 - ~n3 - ~(m- n)3 flops, 

(31.6) 
a modest improvement over the other two methods for n < m < 2n. 

The operation counts for the three methods are plotted as a function of 
mfn in Figure 31.1. It must be admitted that the improvement achieved by 
the three-step method is small enough that in practice, other matters besides 
the count may determine which method is best on a real machine (seep. 59). 

Phase 2 

In Phase 2 of the computation of the SVD, the SVD of the bidiagonal matrix 
B is determined. From the 1960s to the 1990s, the standard algorithm for 
this was a variant of the QR algorithm. More recently, divide-and-conquer 
algorithms have also become competitive, and in the future, they are likely to 
become the standard. We shall not give details. 
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Exercises 

31.1. (a) Show that, as claimed in the text and illustrated in Figure 31.1, the 
crossover aspect ratio at which LHC bidiagonalization begins to beat Golub­
Kahan bidiagonalization is mfn = 5/3. 
(b) By what fraction is three-step bidiagonalization faster than the other two 
methods for mfn = 5/3? 

31.2. Show that in three-step bidiagonalization, the optimal point at which 
to perform the QR factorization is when the matrix reaches an aspect ratio 
of2. 

31.3. Show that if the entries on both principal diagonals of a bidiagonal 
matrix are all nonzero, then the singular values of the matrix are distinct. 
(See Exercise 25.1.) 

31.4. Let A be the m x m upper-triangular matrix with 0.1 on the main 
diagonal and 1 everywhere above the diagonal. Write a program to compute 
the smallest singular value of A in two ways: by calling a standard SVD 
software, and by forming A*A and computing the square root of its smallest 
eigenvalue. Run your program for 1 ~ m ~ 30 and plot the results as two 
curves on a log scale. Do the results conform to our general discussion of these 
algorithms? 

31.5. Let A be an m x n matrix whose entries are independent samples from 
N(O, 1), the normal distribution of mean 0, variance 1 (compare Exercise 12.3). 
Let B be a bidiagonal matrix 

B= 

Xm-(n-2) Y1 
xm-(n-1) 

where each x or y is the positive square root of an independent sample from 
the x2 distribution with degree equal to the attached subscript. (The x2 

distribution of degree k is equal to the distribution of the sum of squares of k 
independent variables from N(O, 1).) 
(a) Show that the distributions of the singular values of A and Bare the same. 
(b) Verify this result by an experiment. Specifically, take m = 100 and n =50, 
construct random matrices A and B as indicated, and plot the singular values 
of A against those of B. 



Part VI 

Iterative Methods 





Lecture 32. Overview of Iterative Methods 

With this lecture the flavor of the book changes. We move from direct meth­
ods, a classical topic that is rather thoroughly understood, to the relatively 
untamed territory of iterative methods. These are the methods that seem 
likely to dominate the large-scale computations of the future. 

Why Iterate? 

The importance of iterative algorithms in linear algebra stems from a simple 
fact: noniterative or "direct" algorithms require O(m3) work. This is too 
much! It is too much both in the absolute sense that m3 is huge when m is 
large, and in the relative sense that since the input to most matrix problems 
involves only O(m2) numbers, it seems unreasonable that O(m3) work must 
be expended in solving them. 

The following table gives a thumbnail history of matrix computations over 
the years: 

1950: m = 20 
1965: m = 200 
1980: m = 2000 
1995: m = 20000 

(Wilkinson) 
(Forsythe and Moler) 
(UNPACK) 
(LAPACK) 

These numbers represent a rough approximation to what dimensions might 
have been considered "very large" for a dense, direct matrix computation at 
the indicated dates. In the "Forsythe and Moler era" of the mid-1960s (named 
here after an influential textbook published in 1967), for example, a matrix of 
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dimension in the hundreds was large, stretching the limits of what could be 
calculated on available machines in a reasonable amount of time. 

Evidently, in the course of forty-five years, the dimensions of tractable 
matrix problems have increased by a factor of 103• This progress is impressive, 
but it pales beside the progress achieved by computer hardware in the same 
period-a speedup by a factor of 109, from flops to gigaflops. In the fact that 
109 is the cube of 103, we see played out in history the O(m3) bottleneck of 
direct matrix algorithms. 

To put it another way, if matrix problems could be solved in 0( m2 ) instead 
of O(m3) operations, some of the matrices being treated today might be 10 to 
100 times larger. This is the aim, achieved for some matrices but not others, 
of matrix iterative methods. 

Structure, Sparsity, and Black Boxes 

Of course, it is not at all obvious that the O(m3) bottleneck can be beaten, 
and indeed, for "random" matrix problems, very likely it cannot. However, 
the large matrix problems that arise in practice are far from random, and 
there is a simple reason for this. Small matrices, say with dimension 3 or 30, 
may arise directly with more or less arbitrary entries in scientific problems-as 
representations of the relations between three forces in a structure, perhaps, 
or between thirty species in a chemical reaction. Large matrices, by contrast, 
usually arise indirectly in the discretization of differential or integral equations. 
One might say that if m is very large, it is probably an approximation to oo. 
It follows that most large matrices of computational interest are simpler than 
their vast numbers of individual entries might suggest. They have some kind 
of structure, and as the years have gone by, ways have been found to exploit 
this structure in more and more contexts. 

The most obvious structure that a large matrix may have is sparsity, i.e., 
preponderance of zero entries. (The opposite of sparse is dense.) For example, 
a finite difference discretization of a partial differential equation may lead to 
a matrix of dimension m = 105 with only v = 10 nonzero entries per row. 
This kind of structure is readily exploited by the iterative methods we shall 
discuss, for these algorithms use a matrix in the form of a black box: 

fBLAcKl x---+ ~---+Ax. 

The iterative algorithm requires nothing more than the ability to determine 
Ax for any x, which in a computer program will be effected by a procedure 
whose internal workings need be of no concern to the designer of the iterative 
algorithm. (Some iterative algorithms also require the computation of A*x.) 
For the example of a sparse matrix A, it is easy to design a procedure to 
compute Ax in only O(vm) rather than O(m2) operations. This is in marked 
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contrast to the algorithms of direct linear algebra, such as Gaussian or House­
holder triangularization, which explicitly manipulate matrix entries so as to 
introduce zeros, but in the process generally destroy sparsity. 

Historically, sparsity has been the kind of structure exploited most often in 
iterative matrix computations. (Sparsity is also exploited by fast direct meth­
ods such as nested dissection or minimal degree reordering, not discussed in 
this book.) More recently, it has become apparent that other kinds of matrix 
structure may also be exploitable, even though the matrices involved are dense. 
For example, the solution ofintegral equations by numerical methods typically 
leads to dense matrix problems; in engineering these are called boundary ele­
ment or panel methods. The coefficients of such matrices often have a great 
deal of regularity in them, and the quest for ways to take advantage of this 
regularity, for example by multipole methods or wavelet expansions, is an ac­
tive area of research today. The black boxes involved in implementing such 
methods may have thousands of lines of code in them and be based on ideas 
that only specialists understand. 

Projection into Krylov Subspaces 

The iterative methods that occupy the remainder of this book are based on the 
idea of projecting an m-dimensional problem into a lower-dimensional Krylov 
subspace. Given a matrix A and a vector b, the associated Krylov sequence is 
the set of vectors b, Ab, A2b, A3b, ... , which can be computed by the black box 
in the form b, Ab, A(Ab), A(A(Ab)), .... The corresponding Krylov subspaces 
are the spaces spanned by successively larger groups of these vectors. 

Specifically, the algorithms that we shall discuss can be arranged in the 
following table: 

Ax=b Ax=.\x 

A=A* CG Lanczos 

GMRES 
CGN Arnoldi 

BCG et al. 

(This :field is full of acronyms! CG, for example, stands for conjugate gradients, 
and, by the way, requires that A be positive definite as well as hermitian.) In 
each of these methods, the result of projection into the Krylov subspaces is 
that the original matrix problem is reduced to a sequence of matrix problems 
of dimensions n = 1, 2, 3, . . . . When A is hermitian, the reduced matrices 
are tridiagonal, whereas in the nonhermitian case they have Hessenberg form. 
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Thus the Arnoldi iteration, for example, approximates eigenvalues of a large 
matrix by computing eigenvalues of certain Hessenberg matrices of successively 
larger dimensions. 

Number of Steps, Work per Step, and Preconditioning 

Gaussian elimination, QR factorization, and most other algorithms of dense 
linear algebra fit the following pattern: there are O(m) steps, each requir­
ing O(m2) work, for a total work estimate of O(m3). (Of course these figures, 
especially the second, may change on a parallel computer.) For iterative meth­
ods, the same figures still apply, but now they represent a typical worst-case 
behavior. When these methods succeed, they may do so by reducing one or 
both of these factors. 

We shall see that the number of steps required for convergence to a sat­
isfactory precision typically depends on spectral properties of the matrix A, 
if the word "spectral" is interpreted broadly. For example, the conjugate 
gradient iteration is guaranteed to solve a hermitian positive definite system 
Ax = b quickly if the eigenvalues of A are clustered well away from the origin. 
Similarly, the Lanczos iteration is guaranteed to compute certain eigenvalues 
of a real hermitian matrix quickly if those eigenvalues are well separated from 
the rest of the spectrum (and if the initial vector that starts the iteration is 
suitably generic). The analysis of the convergence rates of these methods is 
a fascinating study that depends on the mathematical field of approximation 
theory. Specifically, the convergence of Krylov subspace iterative algorithms is 
closely related to problems of approximation of functions f(z) by polynomials 
p(z) on subsets of the real axis or the complex plane. 

The work per step in a matrix iteration depends mainly on the structure 
of the matrix and on what advantage is taken of this structure in the x H Ax 
black box. 

The ideal iterative method in linear algebra reduces the number of steps 
from m to 0(1) and the work per step from O(m2) to O(m), reducing the total 
work from O(m3) to O(m). Such extraordinary speedups do occur in practical 
problems, but a more typical improvement is perhaps from O(m3) to O(m2). 

In a practical large-scale engineering computation of the mid-1990s, where 
iterative algorithms are successful, perhaps a typical result is that they beat 
direct algorithms by a factor on the order of 10. As machines get faster and m 
gets larger in the future, this factor will increase and iterative algorithms will 
become more important, illustrating the fundamental law of computer science: 
the faster the computer, the greater the importance of speed of algorithms. 

Exact vs. Approximate Solutions 

Matrix iterative methods are approximate in the sense that in principle they 
do not deliver exact answers, even in the absence of rounding errors, at least 
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when carried to the number of iterative steps that is of practical interest. This 
property tends to make newcomers to these ideas uneasy; they may feel that 
iteration is an "engineering solution" of little elegance and doubtful reliability. 
This uneasiness tends to diminish as one gets to know these methods better. 
After all, even direct methods are inexact when carried out on a computer: 
one hopes for answers accurate to machine precision, no better. Since iterative 
methods too may be used to achieve the full accuracy of machine precision, 
the fact that they are in principle approximate need have little significance. 
As for elegance, the ideas that arise here are some of the most beautiful in 
numerical linear algebra. 

These points are illustrated in Figure 32.1. 

0(1) +----di_re_c_t ___ ....., 

Norm of 
residual 
(log scale) 

work----+ 

Figure 32.1. Schematic illustration of convergence of direct and iterative meth­
ods. Under favorable circumstances, the iterative method converges geometri­
cally until the residual is on the order of €machine· The direct method makes 
no progress at all until O(m3) operations are completed, at which point the 
residual is again on the order of €machine. 

Direct Methods That Beat 0( m3) 

Finally, we must mention that there exist direct algorithms-finite, in principle 
exact-that solve Ax= band related problems in less than O(m3) operations. 
The first algorithm of this kind was discovered in 1969 by Volker Strassen, 
who reduced Gauss's exponent of 3 to log2(7) ~ 2.81, and subsequent im­
provements have reduced the best known exponent to its current value of 
~ 2.376 due to Coppersmith and Winograd. The history of these best known 
exponents is recorded in Figure 32.2. 

So far, these fast algorithms have had negligible impact on practical com­
putation, for two reasons. One is that in general, little is known about their 
stability properties. More fundamental is the fact that although the expo­
nents in the fast algorithms are striking, the crossover values of m at which 
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3.0 ........ ------- ........•.. 

exponent 
........ : .. 
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Figure 32.2. Best known exponents for direct solution of Ax = b (or equiv­
alently, for computation of A-1, AB, or det A} form x m matrices, as a 
function of time. Until 1968, the best known algorithms were of complexity 
O(m3). The currently best known algorithm solves Ax= bin O(m2·376) flops, 
but the constants are so large that this algorithm is impractical. 

they begin to beat standard methods are exceedingly high. Strassen's m2·81 

algorithm may be made to beat Gaussian elimination for values of m as low as 
100, but because 2.81 is so close to 3, the victory never becomes dramatic for 
practical values of m. The existing methods with exponents much lower than 
this involve such large constant factors that they are slower than Gaussian 
elimination for the values of m attainable on current computers. 

But what will happen in the future? The truth is that nobody knows. It 
is possible that tomorrow somebody will discover a "fast matrix inverse" that 
solves Ax= bin m2 logm floating point operations; or you, the reader, may 
do so this evening. Such a development would trigger the greatest upheaval 
in the history of numerical computation. 

Exercises 

32.1. An elliptic partial differential equation in three dimensions is discretized 
by a boundary element method. The result is a large dense linear system of 
equations in which each equation corresponds to a triangular surface element 
on a large sphere. To improve the accuracy, one must make the triangles 
smaller and thereby increase the number of equations, but the error shrinks 
only linearly in proportion to h, the diameter of the largest triangle. 

A value of h is chosen, the system is solved by Gaussian elimination, and a 
solution accurate to two digits is obtained in one minute of computer time. 
It is decided that three digits of accuracy are needed. Assuming storage is 
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not a constraint, approximately how much time will be required for the new 
computation on the same computer? 

32.2. Consider the block matrix product 

where, for simplicity, all the matrices A, B, ... , Y, Z are assumed to be square 
and of the same dimension. 

(a) Given A, B, ... , G, H, how many (i) matrix additions and (ii) matrix mul­
tiplications does it take to compute W, X, Y, Z by the obvious algorithm? 

(b) Strassen showed that W, X, Y, Z can also be computed by the formulas 

P1 = (A+D)(E+H), 

P2 =(C+D)E, 
P3 = A(F- H), 
P4 = D(G- E), 

W = P1 + P4 - P5 + P7, 
X= P3 +P5, 

P5 = (A+B)H, 

P6 = ( C - A)(E +F), 
P1 = (B - D)( G +H), 

Y=P2+P4, 

Z = P1 + Pa - P2 + Ps. 

How many (i) matrix additions or subtractions and (ii) matrix multiplications 
are involved now? 
(c) Show that by applying Strassen's formulas recursively, one can obtain an 
algorithm for multiplying matrices of dimension m = 211 with an operation 
count O(m1og2(7>) as m--+ oo. 

(d) Write a recursive program that implements this idea, and give numerical 
evidence that your program works. 



Lecture 33. The Arnoldi Iteration 

Despite the many names and acronyms that have proliferated in the :field of 
Krylov subspace matrix iterations, these algorithms are built upon a common 
foundation of a few fundamental ideas. One can take various approaches to 
describing this foundation. Ours will be to consider the Arnoldi process, a 
Gram-Schmidt-style iteration for transforming a matrix to Hessenberg form. 

The Arnoldi/Gram-Schmidt Analogy 

Suppose, to pass the time while marooned on a desert island, you challenged 
yourself to devise an algorithm to reduce a nonhermitian matrix to Hessenberg 
form by orthogonal similarity transformations, proceeding column by column 
from a prescribed :first column q1. To your surprise, you would probably 
:find you could solve this problem in an hour and still have time to gather 
coconuts for dinner. The method you would come up with goes by the name 
of the Arnoldi iteration. If A is hermitian, the Hessenberg matrix becomes 
tridiagonal, an n-term recurrence relation becomes a three-term recurrence 
relation, and the name changes to the Lanczos iteration, to be discussed in 
Lecture 36. 

Here is an analogy. For computing the QR factorization A = Q R of a 
matrix A, we have discussed two methods in this book: Householder reflec­
tions, which triangularize A by a succession of orthogonal operations, and 
Gram-Schmidt orthogonalization, which orthogonalizes A by a succession of 
triangular operations. Though Householder reflections lead to a more nearly 
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orthogonal matrix Q in the presence of rounding errors, the Gram-Schmidt 
process has the advantage that it can be stopped part-way, leaving one with 
a reduced QR factorization of the first n columns of A. The problem of com­
puting a Hessenberg reduction A= QHQ* of a matrix A is exactly analogous. 
There are two standard methods: Householder re:O.ections (applied now on two 
sides of A rather than one) and the Arnoldi iteration. Thus Arnoldi is the 
analogue of Gram-Schmidt for similarity transformations to Hessenberg form 
rather than QR factorization. Like Gram-Schmidt, it has the advantage that 
it can be stopped part-way, leaving one with a partial reduction to Hessen­
berg form that is exploited in various manners to form iterative algorithms 
for eigenvalues or systems of equations. 

Thus, this lecture is to Lecture 26 as Lecture 8 is to Lecture 10. 
We can summarize the four algorithms just mentioned in a table: 

A=QR A= QHQ* 

orthogonal structuring Householder Householder 

structured orthogonalization Gram-Schmidt Arnoldi 

For the remainder of this book, m and n < m are positive integers, A is 
a real or complex m x m matrix, and II · II = II · 11 2 • In addition, one further 
character will now appear in the drama, an m-vector that we shall denote by b. 
The Arnoldi process needs this vector in order to get started. For applications 
to eigenvalue problems, we typically assume that b is random. For applications 
to systems of equations, as considered in later lectures, it will be the right-hand 
side, or more generally, the initial residual (see Exercise 35.5). 

Mechanics of the Arnoldi Iteration 

A complete reduction of A to Hessenberg form by an orthogonal similarity 
transformation might be written A = QHQ*, or AQ = QH. However, in 
dealing with iterative methods we take the view that m is huge or infinite, so 
that computing the full reduction is out of the question. Instead we consider 
the first n columns of AQ = QH. Let Qn be them x n matrix whose columns 
are the first n columns of Q: 

(33.1) 
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Here and in the lectures ahead, it would be consistent with our usage else­
where in the book to put hats on the symbols Q", since these matrices are 
rectangular, but to keep the formulas uncluttered we do not do this. 

Let ii" be the (n+l) x n upper-left section of H, which is also a Hessenberg 
matrix: 

hu 

h21 h22 

iif& = (33.2) 

Then we have 
(33.3) 

that is, 

A 

The nth column of this equation can be written as follows: 

(33.4) 

In words, qn+l satisfies an (n+ I)-term recurrence relation involving itself and 
the previous Krylov vectors. 

The Arnoldi iteration is simply the modified Gram-Schmidt iteration that 
implements (33.4). The following algorithm should be compared with Algo­
rithm 8.1. 

Algorithm 33.1. Arnoldi Iteration 

b = arbitrary, q1 = b/llbll 
for n = 1, 2, 3, ... 

v = Aq" 
for j = 1 ton 

h;n = qjv 

V = V- h;nqj 

hn+l,n = llvll [see Exercise 33.2 concerning hn+l,n = 0] 

qn+l = vfhn+l,n 
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The reader can see at a glance how simple the Arnoldi process is. In a 
high-level language such as MATLAB, it can be implemented in less than a 
dozen lines. The matrix A appears only in the product Aq", which can be 
computed by a black box procedure as described in the last lecture. 

QR Factorization of a Krylov Matrix 

The power of the Arnoldi process lies in the various interpretations that can 
be made of it, and in the algorithms these suggest. For a first interpretation, 
consider the recurrence (33.4). It is evident from this formula that the vectors 
{ Q;} form bases of the successive K rylov subspaces generated by A and b , 
defined as follows: 

(33.5) 

Moreover, since the vectors Q; are orthonormal, these are orthonormal bases. 
Thus the Arnoldi process can be described as the systematic construction of 
orthonormal bases for successive Krylov subspaces. 

To express this observation in matrix form, let us define K" to be the m x n 
K rylov matrix 

K = b Ab · · · A"-1b . 
" 

(33.6) 

Then K" must have a reduced QR factorization 

(33.7) 

where Q" is the same matrix as above. In the Arnoldi process, neither K" 
nor R" is formed explicitly. Doing so would make for an unstable algorithm, 
since these are exceedingly ill-conditioned matrices in general, as the columns 
of K" all tend to approximate the same dominant eigenvector of A. However, 
(33.6) and (33.7) give an intuitive explanation of why the Arnoldi process 
leads to effective methods for determining certain eigenvalues. Clearly K" 
might be expected to contain good information about the eigenvalues of A 
with largest modulus, and the QR factorization might be expected to reveal 
this information by peeling off one approximate eigenvector after another, 
starting with the dominant one. 

The explanation just given may remind the reader of a similar discussion 
that appeared earlier in this book. The relationship between (33.6)-(33. 7) 
and the Arnoldi algorithm is analogous to that between simultaneous iteration 
and the QR algorithm for computing eigenvalues of matrices. One is easy to 
understand but unstable, the other is subtler but stabler. The difference is 
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that, whereas the Arnoldi iteration is based upon the QR factorization (33. 7) 
of the matrix whose columns are b, Ab, ... , A"-1b, simultaneous iteration and 
the QR algorithm are based upon the QR factorization (28.16) of the matrix 
whose columns are A"e1, ••• ,A"em. We can summarize this parallel in another 
table: 

quasi-direct iterative 

straightforward but unstable simultaneous iteration (33.6)-(33. 7) 

subtle but stable QR algorithm Arnoldi 

Projection onto Krylov Subspaces 

Another way to view the Arnoldi process is as a computation of projections 
onto successive Krylov subspaces. To see this, note that the product Q!Qn+l 
is the n x (n + 1) identity, i.e., the n x (n + 1) matrix with 1 on the main 
diagonal and 0 elsewhere. Therefore Q!Qn+lfln is the nxn Hessenberg matrix 
obtained by removing the last row of fin: 

hu hln 

hal ha2 
Hn = {33.8} 

From {33.3) we accordingly have 

(33.9) 

This matrix can be interpreted as the representation in the basis {q1, ... , q"} 
of the orthogonal projection of A onto K,". Is it clear what this interpretation 
means? Here is a precise statement. Consider the linear operator K," -+ K," 
defined as follows: given v E K,"' apply A to it, then orthogonally project 
Av back into the space K,". Since the orthogonal projector of em onto K," 
is QnQ!, this operator can be written QnQ!A with respect to the standard 
basis of em. With respect to the basis of columns of Q", it can therefore be 
written Q!A Qn. 

The kind of projection just described comes up throughout applied an" 
numerical mathematics. In another context it is known as the Rayleigh-Ritz 
procedure; not coincidentally, in the diagonal elements of H" one recognizes 
the Rayleigh quotients of A with respect to the vectors Q;· This projection 
process is also one of the ideas underlying finite element methods for solution 
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of partial differential equations, as well as their younger relatives known as 
spectral methods. 

Since H"' is a projection of A, one might imagine that its eigenvalues would 
be related to those of A in a useful fashion. These n numbers, 

{Oi} ={eigenvalues of H"'}, (33.10) 

are called the Arnoldi eigenvalue estimates (at step n) or Ritz values (with 
respect to IC"') of A. In the next lecture we shall see that some of these numbers 
may be extraordinarily accurate approximations to some of the eigenvalues of 
A, even for n ¢: m. 

We summarize the developments of this lecture in a theorem, to be com­
pared with Theorem 28.3. 

Theorem 33.1. The matrices Q"' genemted by the Arnoldi itemtion are re­
duced QR factors of the Krylov matrix (33.6): 

The Hessenberg matrices H"' are the corresponding projections 

and the successive itemtes are related by the formula 

AQ"' = Qn+lfJn. 

Exercises 

(33.11) 

(33.12) 

(33.13) 

33.1. Let A E cmxm and b E em be arbitrary. Show that any x E K"' is 
equal to p( A) b for some polynomial p of degree ~ n - 1. 

33.2. Suppose Algorithm 33.1 is executed for a particular A and b until at 
some step n, an entry hn+I,n = 0 is encountered. 

(a) Show how (33.13) can be simplified in this case. What does this imply 
about the structure of a full m x m Hessenberg reduction A = Q H Q* of A ? 

(b) Show that IC"' is an invariant subspace of A, i.e., AIC"' ~ IC"'. 
(c) Show that if the Krylov subspaces of A generated by b are defined by 
JC, = {b, Ab, . .. , A"-1b} as in (33.5), then IC"' = /Cn+l = /Cn+2 = · · · . 
(d) Show that each eigenvalue of H"' is an eigenvalue of A. 
(e) Show that if A is nonsingular, then the solution x to the system of equa­
tions Ax = b lies in IC"'. 
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The appearance of an entry hn+l,n = 0 is called a breakdown of the Arnoldi 
iteration, but it is a breakdown of a benign sort. For applications in computing 
eigenvalues (Lecture 34) or solving systems of equations (Lecture 35), because 
of (d) and (e), a breakdown usually means that convergence has occurred and 
the iteration can be terminated. Alternatively, a new orthonormal vector qn+l 

could be selected at random and the iteration then continued. 

33.3. (a) Suppose Algorithm 33.1 is executed for a particular A and b and 
runs to completion ( n = m ), with no breakdown of the kind described in the 
last exercise. Show that this implies that the minimal polynomial of A is of 
degree m. 

(b) Conversely, suppose that the minimal polynomial of A is of degree m. 
Show that this does not imply that for a particular choice of b, Algorithm 33.1 
will necessarily run to completion. 

(c) Explain why the result of (a) does not contradict Exercise 25.1(b). 



Lecture 34. How Arnoldi Locates 
Eigenvalues 

The Arnoldi iteration is two things: the basis of many of the iterative al­
gorithms of numerical linear algebra and, more specifically, a technique for 
finding eigenvalues of nonhermitian matrices. Here we consider this second, 
specific role, and in the process, we describe a connection with polynomial 
approximation theory that is of broad importance. 

Computing Eigenvalues by the Arnoldi Iteration 

The use of the Arnoldi iteration for computing eigenvalues proceeds as follows. 
The iteration is carried out as described in the last lectur:e (Algorithm 33.1). 
At each step n, or at occasional steps, the eigenvalues of the Hessenberg matrix 
H,. are computed by standard methods such as the QR algorithm. (In prac­
tice this means a call to software such as provided by EISPACK, LAPACK, or 
MATLAB.) These are the "Arnoldi estimates" or "Ritz values" (33.10). Some 
of these numbers are typically observed to converge rapidly, often geometri­
cally (i.e., linearly; see Exercise 25.2), and when they do, one may assume 
with reasonable confidence that the converged values are eigenvalues of A. 

Since n ~ m for a feasible computation, one cannot of course expect to 
compute all of the eigenvalues of A by this process. Which eigenvalues, then, 
does the Arnoldi iteration find? Typically, it finds extreme eigenvalues, that 
is, eigenvalues near the edge of the spectrum of A. Fortunately, these are 
precisely the eigenvalues of main interest in most applications. 

257 
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For example, in problems of hydrodynamic stability, the aim is to deter­
mine whether small perturbations to a smooth fluid flow may grow unstably, in 
which case the :How is likely to break down into another form that is more com­
plicated, perhaps turbulent. This determination of stability is conventionally 
achieved by linearizing the problem to obtain a Jacobian operator governing 
evolution of small perturbations, then calculating the rightmost eigenvalue of 
this operator in the complex plane, that is, the eigenvalue with maximal real 
part. If this eigenvalue is in the right half-plane, the flow is unstable, whereas 
if it is in the left half-plane, it is stable. 

Many variations on the Arnoldi method have been devised, such as accel­
eration devices for problems in which some parts of the complex plane are 
of greater importance than others. Here we confine our attention to the un­
adorned Arnoldi method, attempting to give an idea of why it converges, why 
it tends to find extreme eigenvalues of A, and how quickly it finds them. 

A Note of Caution: N onnormality 

First, however, we call the reader's attention to a cautionary fact. The phys­
ical significance of the eigenvalues of nonhermitian matrices is sometimes not 
as great as supposed. If a matrix is far from normal-that is, if its eigenvectors 
are far from orthogonal, which implies that its eigenvalues are ill-conditioned­
then the eigenvalues may have little to do with how a physical system governed 
by the matrix actually behaves (see Exercises 24.3 and 26.2). In the problem 
of fluid flow through a circular pipe, for example, the Jacobian of the lin­
earized equations has all its eigenvalues in the left half-plane, suggesting that 
the :How ought to be stable. In actuality, however, high-speed flows through 
pipes are invariably turbulent. The resolution of this paradox is rooted in 
the fact that although the linearized problem has all decaying eigenmodes, it 
may nevertheless amplify certain nonmodal :How perturbations by many or­
ders of magnitude. Such phenomena cannot occur with normal matrices or 
operators-e.g., symmetric, hermitian, or self-adjoint. 

If the answer is highly sensitive to perturbations, you have probably asked 
the wrong question. We urge anyone faced with nonhermitian eigenvalue com­
putations involving highly sensitive eigenvalues to bear this principle in mind. 
If you are a numerical analyst, and the problem was given to you by a colleague 
in science or engineering, do not accept without scrutiny your colleague's as­
surances that it is truly the eigenvalues that matter physically, even though 
their condition numbers with respect to perturbations of the matrix entries 
are 104 • Perhaps situations exist where highly sensitive eigenvalues of nonnor­
mal operators are of genuine physical significance, but they are outnumbered 
by situations where eigenvalues are mistakenly investigated when a deeper 
analysis is properly called for. 
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Arnoldi and Polynomial Approximation 

Let x be a vector in the Krylov subspace IC" (33.5). Such an x can be written 
as a linear combination of powers of A times b: 

This expression has a compact description: it is a polynomial in A times b. 
That is, if q is the polynomial q(z) = c0 + c1z + · · · + c"_1z"-1, then we have 

X= q(A)b, (34.2) 

as pointed out already in Exercise 33.1. Because every vector of the form 
(34.1) can be expressed in the form (34.2), Krylov subspace iterations can 
always be analyzed in terms of matrix polynomials. 

One analysis of the Arnoldi iteration takes the following form. Define 

P" = {monic polynomials of degree n}. 

(The word "monic" means that the coefficient of the term of degree n is 1.) 
Now consider the following approximation problem. 

Arnoldi/Lanczos Approximation Problem. Find p" E P" such 
that 

II p"(A)b II= minimum. (34.3) 

As always in this part of the book, II ·II = 11·112• The reason we have used 
superscripts on P" is that in the next lecture, we shall consider the space of 
degree-n polynomials normalized by Co = 1 rather than c" = 1, and for this 
space we shall use a subscript. 

The Arnoldi iteration has the remarkable property that it solves (34.3) 
exactly. 

Theorem 34.1. As long as the Arnoldi iteration does not break down (i.e., 
K" is of full rank n), (34.3) has a unique solution p", namely, the character­
istic polynomial of H". 

Proof. First we note that if p E P", then the vector p(A)b can be written 
p(A)b = A"b- Q"y for some y E C", where Q" is defined by (33.1). In other 
words, (34.3) is equivalent to a linear least squares problem: find the point in 
IC" closest to A"b, or in matrix terms, find y such that 

IIA"b- QnYII = minimum. 

The solution is characterized by the orthogonality condition p"(A)b j_ IC", 
illustrated in Figure 34.1, or equivalently, Q:p"(A)b = 0. Now consider the 
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Figure 34.1. The least squares polynomial approximation problem underlying 
the Arnoldi iteration. 

factorization A = Q H Q* mentioned at the beginning of the last lecture. At 
step n of the Arnoldi process, we have computed the first n columns of Q and 
H; thus we know that a factorization of this kind exists with 

for some m x ( m-n) matrix U with orthonormal columns that are also orthog­
onal to the columns of Q" and some matrices X1, X2, and X3 of dimensions 
n x (m- n), (m- n) x n, and (m- n) x (m- n), respectively, with all but 
the upper-right entry of X2 equal to 0. The orthogonality condition becomes 
Q:Qp .. (H)Q*b = 0, which amounts to the condition that the first n entries 
of the first column of p"(H) are zero. Because of the structure of H, these 
are also the first n entries of the first column of p"(Hn)· By the Cayley­
Hamilton theorem, these are zero if p" is the characteristic polynomial of H". 
Conversely, suppose there were another polynomial p" with p"(A)b j_ JC ... 
Taking the difference would give a nonzero polynomial q of degree n - 1 with 
q(A)b = 0, violating the assumption that K" is offull rank. D 

Theorem 34.1 gives us a new interpretation of the Ritz values generated 
by the Arnoldi iteration. They are the roots of the optimal polynomial (34.3). 

lnvariance Properties 

Theorem 34.1 provides an easy way to remember some of the basic properties 
of the Arnoldi iteration. For example, since the family P .. of monic polynomi­
als is invariant with respect to translations z H z +a, the Arnoldi iteration is 
also translation-invariant. Unlike iterative algorithms for solving Ax = b, to 
be discussed later, such as GMRES, it does not "know where the origin is." 
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Here is a summary of this and other invariance properties. Each part of 
this theorem is a corollary of Theorem 34.1; we do not give proofs. 

Theorem 34.2. Let the Arnoldi iteration be applied to a matrix A E cmxm 

as described above. 
Translation-invariance. If A is changed to A+ ui for some u E C, and b 

is left unchanged, the Ritz values { ();} at each step change to { 0.; + u}. 
Scale-invariance. If A is changed to uA for some u E C, and b is left 

unchanged, the Ritz values { () i} change to { u() i}. 
Invariance under unitary similarity transformations. If A is changed to 

U AU* for some unitary matrix U, and b is changed to Ub, the Ritz values 
{ 0;} do not change. 

In all three cases the Ritz vectors, namely the vectors QnY; corresponding 
to the eigenvectors Y; of Hn, do not change under the indicated transformation. 

By Theorem 24.9, every matrix A is unitarily similar to an upper-triangular 
matrix. Thus the property of invariance under unitary similarity transforma­
tions implies that for understanding convergence properties of the Arnoldi 
iteration, it is enough in principle to consider upper-triangular matrices. It 
is not, however, enough to consider diagonal matrices. In the nonhermitian 
(nonnormal) case, there is more to a matrix than its eigenvalues. 

How Arnoldi Locates Eigenvalues 

We can now begin to address the problem raised in the title of this lecture. 
Theorem 34.1 asserts that at bottom, the "goal" of the Arnoldi iteration is 
to solve a polynomial approximation problem, or equivalently, a least squares 
problem involving a Krylov subspace. If the Arnoldi iteration tends to find 
eigenvalues, it must be as a by-product of achieving this goal. 

What does polynomial approximation have to do with the eigenvalues of 
A? A little thought shows that there is a connection between these two along 
the following lines. If one's aim is to find a polynomial pn with the property 
that pn(A) is small, an effective means to that end may be to pick pn to have 
zeros close to the eigenvalues of A. 

Consider an extreme case. Suppose that A is diagonalizable and has only 
n < m distinct eigenvalues, hence a minimal polynomial of degree n. Then 
from Theorem 34.1 it is clear that after n steps, all of these eigenvalues will 
be found exactly, at least if the vector b contains components in directions 
associated with every eigenvalue. Thus after n steps, the Arnoldi iteration 
has computed the minimal polynomial of A exactly. 

In practical applications, much the same phenomenon takes place. Now, 
however, the agreement of Ritz values with eigenvalues is approximate instead 
of exact, and instead of a minimal polynomial, the result is a "pseudo-minimal 
polynomial," i.e., a polynomial pn such that I!Pn(A)II is small. 
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Arnoldi Lemniscates 

This convergence process can be illustrated graphically by plotting lemniscates 
in the complex plane. A lemniscate is a curve or collection of curves 

{z E C: lp(z)l = G}, (34.4) 

where p is a polynomial and G is a real constant. H pis the Arnoldi polynomial 
pn for an Arnoldi iteration with matrix A at step n, and G takes the value 

G = IIPf&(A)bll 
llbll ' 

(34.5) 

then the curves defined by (34.4) may be called Arnoldi lemniscates. As 
the iteration number n increases, components of these lemniscates typically 
appear which surround the extreme eigenvalues of A and then shrink rapidly 
to a point, namely the eigenvalue itself. 

To illustrate these ideas, let A be a square matrix of dimension m = 100 
whose entries are independent random numbers from the real normal distri­
bution of mean 0 and standard deviation m-112 (Exercise 12.3). Since A is 
real, its eigenvalues consist of real numbers and complex conjugate pairs. Our 
choice of the standard deviation is such that the eigenvalues are approximately 
uniformly distributed in the unit disk lzl ~ 1. But now we create an outlier 
eigenvalue by changing the corner entry a11 to 1.5. See Figure 34.2. 

We apply the Arnoldi iteration to this matrix, beginning with a random 
vector q1. At step n, the matrix Hn has been constructed and its characteristic 
polynomial reflects the iteration's current knowledge about the spectrum of 
A. Figure 34.3 plots Arnoldi lemniscates at steps n = 5, 6, 7, 8. At n = 1 
(not shown), the lemniscate is an exact circle, little affected by the outlying 
eigenvalue. By n = 5, the circle has begun to bulge in the direction of .X. At 
n = 6, the bulge pinches off and a new component of the lemniscate appears. 
This component then proceeds to shrink with each subsequent iteration. 

Geometric Convergence 

Under certain circumstances, the convergence of some of the Arnoldi eigen­
value estimates to eigenvalues of A is geometric. These matters are incom­
pletely understood at present, and we shall not cite theoretical results here. 
Instead, we shall just take a look at the convergence in the numerical example 
above, and give a partial explanation. 

From a figure like Figure 34.3, one cannot assess the rate of convergence 
beyond one or two digits of accuracy. Figure 34.4 fills this gap by plotting 
I.X(n) -.XI as a function of n for the same example as before, where _x(n) is the 
Arnoldi eigenvalue estimate closest to .X at step n. The first thing we notice 
is that the convergence is clearly geometric. After fifty iterations, we have 
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• 

Figure 34.2. Eigenvalues of a 100 x 100 matrix A, random except in the 1,1 
position. The circle is the unit circle in C. The eigenvalues are approximately 
uniformly distributed in the unit disk except for the outlier .X~ 1.4852 . 

• 

Figure 34.3. Arnoldi lemniscates (34.4)-(34.5) at steps n = 5, 6, 7, 8 for the 
same matrix A. The small dots are the eigenvalues of A, and the large dots 
are the eigenvalues of Hn, i.e., the Ritz values. One component of the Arnoldi 
lemniscate first "swallows" the outlier eigenvalue, and in subsequent iterations 
it then shrinks to a point at a geometric rate. 
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0~----------------=~~--------------~~· n 

Figure 34.4. Convergence of the rightmost Arnoldi eigenvalue estimate. 

achieved twelve digits of precision, and this figure would not have been much 
different if A had had dimension 1000 instead of 100. 

We can be more quantitative. For the first few dozen iterations, at least, 
the convergence in Figure 34.3 approximates the rate 

(34.6) 

An explanation of this behavior is as follows. To minimize (34.3), pn must 
take a roughly minimal value at each of the eigenvalues of A. Consider for 
example the candidate polynomialp(z) = zn-1(z-X), where X is some number 
close to A. At each of the eigenvalues of A in the unit disk, lp(z)l is of order 1 
or smaller. At z = A, however, it has magnitude 

IP(A)I ~ (~) n IX - AI 

(this would be an equality if A were exactly equal to 3/2). When n is large, 
(3/2)n is huge. For this number also to be of order 1, IX- AI must be small 
enough to balance it, that is, of order (2/3)n, as in (34.6). 

Another feature is apparent in Figure 34.4. After the initial few dozen 
steps, the convergence begins to accelerate, a phenomenon common in Krylov 
subspace iterations. What is happening here is that the iteration is beginning 
to resolve some of the other outer eigenvalues of A, near the unit circle. If the 
dimension of A had been m = 300, then the cloud of eigenvalues would have 
filled the unit disk sufficiently densely that no such acceleration would have 
been visible in the fifty iterative steps shown in Figure 34.4. 
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Exercises 

34.1. Given A E cmxm, bE em, and p E pn, suppose we want to compute 
p(A)b. A natural place to start is with Horner's rule, which can be written 

p(z) = Co+ z(c1 + z(c2 + · · · + z(cm_1 + z) · · ·)). (34.7) 

(a) Write a for loop based on (34.7) (on paper, not on a computer) that 
computes p(A) and then applies the result to b. Determine the number of 
flops required by this algorithm, to leading order. 

(b) Write another for loop for computing p(A)b, a far better one, in which b 
is introduced into the process at the beginning. Again determine the number 
of flops required to leading order. 

(c) In introductory numerical analysis texts, Horner's rule is recommended 
for evaluation of polynomials because it is faster than the obvious method of 
computing powers zlr:, multiplying by coefficients clr:, and adding. Show that 
for computing p(A) or p(A)b, by contrast, Horner's rule is not significantly 
faster than the obvious method. 

34.2. We have seen that the Arnoldi polynomial pn minimizes IIPn(A)bll. An­
other polynomial that might give cleaner information about eigenvalues would 
be the ideal Arnoldi polynomial, also known as the Chebyshev polynomial of A, 
defined as the unique p* E pn that minimizes IIPn(A)II. (This polynomial is 
not used in practice, because there is no fast way to compute it.) 

(a) Prove that p* exists. 

(b) Prove that provided p*(A) =f. 0, p* is unique. (Hint: Suppose p1 and p2 are 
distinct ideal Arnoldi polynomials for given A and n, set p = (p1 + p2)/2, and 
consider the singular vectors of p( A) corresponding to the maximal singular 
value. This is a hard problem.) 

34.3. Let A be the N x N bidiagonal matrix with alr:,lr:+l = a1r:,1r: = k-1/ 2, N = 
64. (In the limit N--+ oo, A becomes a non-self-adjoint compact operator.) 

(a) Produce a plot showing the spectrum A( A) and the boundaries of the f.­

pseudospectra AE(A) (Exercises 26.1 and 26.2) for f.= w-1 , w-2, w-3, w-4 • 

(b) Starting from a random initial vector, run the Arnoldi iteration and com­
pute Ritz values at steps n = 1, 2, ... , 30. Produce plots to indicate the rates 
of convergence to eigenvalues of A, and comment on your results. 

(c) The Arnoldi iteration can also be used to approximate pseudospectra of A 
by those of Hn or fin. (In the latter case, the boundary of AE(fin) is defined 
by the condition umin (zl - fin) = e, or equivalently ll(zl - fin)+ II = cl, 
where I is a rectangular version of the identity.) Experiment with this idea 
by plotting the e-pseudospectra of fin for n = 5, 10, 15, 20. How closely do 
they match the corresponding pseudospectra of A? 



Lecture 35. GMRES 

In the last lecture we showed how the Arnoldi process can be used to find 
eigenvalues. Here we show that it can also be used to solve systems of equa­
tions Ax = b. The standard algorithm of this kind is known as GMRES, 
which stands for "generalized minimal residuals." 

Residual Minimization in 1Cn 

As in the last two lectures, let A E cmxm be a square matrix and b E em 
a vector, and let IC"' denote the Krylov subspace {b, Ab, .. . , A"'-1b) of (33.5). 
Now, however, we assume that A is nonsingular, for our goal is to solve a 
system of equations Ax = b. It will be convenient to have a notation for the 
exact solution of this problem: x. = A-1b. 

The idea of GMRES is a one-liner. At step n, we shall approximate x. by 
the vector Xn E IC"' that minimizes the norm of the residual r"' = b- Ax"'. 
In other words, we shall determine x"' by solving a least squares problem, 
illustrated in Figure 35.1. 

The obvious way to solve this least squares problem would be as follows. 

266 
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Figure 35.1. The least squares polynomial approximation problem underlying 
GMRES: minimize the residual norm llrnll· Compare Figure 34.1. 

Let K" be the m x n Krylov matrix (33.6), so that we have 

(35.1) 

The column space of this matrix is AK:". Thus our problem is to find a vector 
c E C" such that 

IIAK"c- bll =minimum, (35.2) 

where II · II = II · lb, as always in this part of the book. This could be done by 
means of a QR factorization of AK", in analogy to (33.7). Once cis found, 
we would set Xn = K"c. 

The procedure just described is numerically unstable, however, and it con­
structs a factor R that is not needed. Here is what is actually done instead. We 
use the Arnoldi iteration (Algorithm 33.1) to construct a sequence of Krylov 
matrices Q" whose columns q1, q2 , ••• span the successive Krylov subspaces 
K:". Thus we write x" = Q"y instead of x" = K"c. Instead of (35.2), our 
least squares problem is to find a vector y E C" such that 

IIAQ"y- bll =minimum. (35.3) 

Superficially, the problem (35.3) has dimensions m x n. In actuality, how­
ever, because of the special structure of Krylov subspaces, it is essentially 
of dimensions (n + 1) x n. We can reveal this as follows. Applying (33.3) 
transforms the equation to 

(35.4) 



268 PART VI. ITERATIVE METHODS 

Now both vectors inside the norm are in the column space of Q,.+l· Therefore, 
multiplying on the left by Q;+l does not change that norm. Thus a further 
equivalent problem is 

(35.5) 

Finally, we note that by construction of the Krylov matrices {Q,.}, Q:+lb is 
equal to llblle1, where e1 = (1, 0, 0, ... )* as usual. Thus we reach at last the 
final form of the GMRES least squares problem: 

(35.6) 

At step n of GMRES we solve this problem for y, then set x,. = Q,.y. 

Mechanics of GMRES 

This completes our derivation of the GMRES algorithm. A high-level descrip­
tion is as follows. 

Algorithm 35.1. GMRES 

ql = b/llbll 
for n = 1, 2, 3, ... 

( step n of Arnoldi iteration, Algorithm 33.1 ) 

Find y to minimize IIH,.y -llblle1 11 ( = llr,.ll) 
x,. = Q,.y. 

At each step, GMRES minimizes the norm of the residual r,. = b - Ax,. over 
all vectors x,. E JC,.. The quantity llr .. ll is computed in the course of finding 
y; one need not calculate it explicitly from x,.. 

The inner, "Find y" step of Algorithm 35.1 is an (n + 1) x n matrix 
least squares problem with Hessenberg structure. It can be solved via QR 
factorization in the usual manner described in Lecture 11, at a cost of 0( n2) 

:O.ops, thanks to the Hessenberg structure. In addition, it is possible to save 
further work by a more specialized approach. Rather than construct QR 
factorizations of the successive matrices H1, H2 , ... independently, one can 
use an updating process to get the QR factorization of ii,. from that of .ii,._1. 

All that is required is a single Givens rotation (Exercise 10.4) and O(n) work. 
See Exercise 35.4. 

GMRES and Polynomial Approximation 

In the last lecture, we showed that the calculation of eigenvalues by the Arnoldi 
iteration is related to the approximation problem (34.3): find p,. E P .. to min­
imize llp,.(A)bll, where P,. denotes the set of monic polynomials of degree n. 
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The GMRES iteration also solves an approximation problem, the only differ­
ence being that the space of polynomials is now 

P .. ={polynomials p of degree :5 n with p(O) = 1}. (35.7) 

Expressed in terms of polynomial coefficients, our normalization is now Co = 1 
rather than c .. = 1. Notationally, we have changed from a superscript to 
a subscript as a reminder of the change from normalization at z = oo to 
normalization at z = 0. 

Here is how GMRES can be reduced to polynomial approximation in P,.. 
The iterate x .. can be written 

x .. = q,.(A)b, (35.8) 

where q is a polynomial of degree n - 1; its coefficients are the entries of 
the vector c of (35.2). The corresponding residual r,. = b- Ax .. is r,. = 
(I- Aq,.(A))b, where P .. is the polynomial defined by p,.(z) = 1 - zq(z). In 
other words, we have 

r .. = Pn(A)b (35.9) 

for some polynomial Pn E P". The GMRES process chooses the coefficients of 
Pn to minimize the norm of this residual. Thus we have shown that GMRES 
solves the following approximation problem successively for n = 1, 2, 3 .... 

GMRES Approximation Problem. Find Pn E P" such that 

IIP .. (A)bll =minimum. (35.10) 

Like the Arnoldi iteration, GMRES satisfies certain invariance properties. 
The following theorem is easily proved from (35.10). 

Theorem 35.1. Let the GMRES iteration be applied to a matrix A E cmxm 

as described above. 
Scale-invariance. If A is changed to uA for some u E C, and b is changed 

to ub, the residuals { r"} change to { ur"}. 
Invariance under unitary similarity transformations. If A is changed to 

UAU* for some unitary matrix U, and b is changed to Ub, the residuals {r"} 
change to {U*r,.}. 

GMRES is not invariant under translation, since the normalization p(O) = 
1 involves the translation-dependent point 0. On the contrary, its behav­
ior depends strongly on the position of the origin-loosely speaking, on the 
condition number of A. 
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Convergence of GMRES 

How quickly does GMRES converge? How many steps n must be taken before 
II r" II/ II bll is reduced to a satisfactory level such as 1 o-3 or 10-16 ? As a practical 
matter, this often becomes the question of designing a good preconditioner 
(Lecture 40). Mathematically, the problem is to investigate what properties 
of A determine the size of llrnll· 

We begin with two observations. The first is that GMRES converges mono­
tonically: 

(35.11) 

The reason is that llr" II is as small as possible for the subspace K:"; by enlarging 
K:" to the space K:"+l' we can only decrease the residual norm, or at worst 
leave it unchanged. (Note that P" ~ Pn+l' whereas P" g pn+I.) The second 
is that after at most m steps the process must converge, at least in the absence 
of rounding errors: 

(35.12) 

For generic data A and b, this will happen because K:m = em, and in special 
cases, if b happens to lie in K:" for some n < m, convergence will occur earlier. 
Equation (35.12) is useful as a reminder of the mathematics of GMRES, but 
it has little practical content, since a GMRES iteration must converge to 
satisfactory precision in n <: m steps if it is to be useful. 

To obtain more useful information about convergence, we must tum to the 
polynomial approximation problem (35.10). We know that llrnll = IIPn(A)bll::::; 
IIPn(A)IIIIbll is minimal. Except for problems where the right-hand side b has 
special structure related to that of A, the critical factor that determines the 
size of this quantity is usually IIPn(A) II· That is, what determines the conver­
gence rate of GMRES is generally the inequality 

(35.13) 

This brings us to the mathematically elegant question: given a matrix A and 
a number n, how small can IIPn(A)II be? This question is the basis of almost 
all analyses of convergence of Krylov subspace iterations for solving systems 
of equations. 

Polynomials Small on the Spectrum 

Given A and n, how small can IIPn(A) II be? The standard way of obtaining 
estimates is to look for polynomials p(z) that are as small as possible on the 
spectrum A( A), while still satisfying p(O) = 1. If pis a polynomial and Sis 
a set in the complex plane, let us define the scalar IIPIIs by 

IIPIIs =sup lp(z)l. 
zeS 

(35.14) 



LECTURE 35. GMRES 271 

Suppose A is diagonalizable, satisfying A = VAV- 1 for some nonsingular 
matrix V and diagonal matrix A. Then we have 

llp(A)II ~ IIVIIIIP(A)IIIIV-1 11 = ~(V)IIPIIA(A)• (35.15) 

Combining this result with (35.13) gives the following basic theorem on con­
vergence of GMRES. 

Theorem 35.2. At step n of the GMRES iteration, the residual r .. satisfies 

lllrlb"llll ~ inf IIP .. (A)II ~ ~(V) inf IIPniiA(A)' 
hE~ hE~ 

(35.16) 

where A( A) is the set of eigenvalues of A, V is a nonsingular matrix of eigen­
vectors {assuming A is diagonalizable}, and IIPniiA(A) is defined by (35.14). 

This theorem can be summarized in words as follows. If A is not too far 
from normal in the sense that ~(V) is not too large, and if properly normalized 
degree n polynomials can be found whose size on the spectrum A( A) decreases 
quickly with n, then GMRES converges quickly. 

Example 35.1. Here is a numerical example. Let A be a 200 x 200 matrix 
whose entries are independent samples from the real normal distribution of 
mean 2 and standard deviation 0.5j.J20Q. In MATLAB, 

m = 200; A= 2*eye(m) + 0.5*randn(m)/sqrt(m). (35.17) 

Figure 35.2 shows the eigenvalues of A, a set of points roughly uniformly dis­
tributed in the disk of radius 1/2 centered at z = 2 (Exercise 12.3). Figure 35.3 
shows the convergence curve for the GMRES iteration applied to the problem 
Ax = b, where b = (1, 1, ... , 1)*. The convergence in this case is extraordi­
narily steady at a rate approximately 4 -n. The reason for this is not hard to 
spot. Since the spectrum of A approximately fills the disk indicated, lip( A) II 
is approximately minimized by the choice p(z) = (1- z/2)". Since I- A/2 
is a random matrix scaled so that its spectrum approximately fills the disk of 
radius 1/4 about 0, we have llp(A)II = 11(1- A/2)"11 ~ 4-n. This matrix A 
is well-conditioned, with condition number ~(A) ~ 2.03. The deviation from 
normality is modest, with ~(V) ~ 141. 

Figure 35.3 illustrates the convergence of matrix iterations under favorable 
circumstances-when the matrix A is well behaved (which often means a good 
preconditioner has been applied). We see that six-digit accuracy is achieved 
after ten iterations, at a cost of approximately 10 x 2m2 = 8.0 x 105 :O.ops, 
since the work is dominated by the matrix-vector multiplication at each step. 
Solving the same system by Gaussian elimination would require ~m3 ~ 5.3 x 
106 :O.ops. This improvement by a factor close to 7 was achieved even though A 
has no sparsity to take advantage of and even though the dimension m = 200 is 
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Figure 35.2. Eigenvalues of the 200 x 200 matrix A of (35.17). The dashed 
curve is the circle of radius 1/2 with center z = 2 in C. The eigenvalues are 
approximately uniformly distributed within this disk. 

101 r------r------r------r------~-----T------, 

n 
12 

Figure 35.3. GMRES convergence curve for the same matrix A. This rapid, 
steady convergence is illustrative of Krylov subspace iterations under ideal cir­
cumstances, when A is a well-behaved (or well-preconditioned} matrix. 
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Figure 35.4. Eigenvalues of a 200 x 200 matrix, like that of(35.17) except with 
a modified diagonal. Now. the eigenvalues surround the origin on one side. 

101 r-----~-----.------~-----.------------~ 

• • • • • • • • • • • 

10-11 

10-a 

10-4 

10-11 

n 10-~~~----~----~------~----~------~----~ 
0 2 4 6 8 10 12 

Figure 35.5. GMRES convergence curve for the matrix of Figure 35.4. The 
convergence has slowed down greatly. When an iterative method stagnates like 
this, it is time to look for a better preconditioner. 
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not high. For the same example with m = 2000, GMRES would beat Gaussian 
elimination by a factor more like 70. For a 2000 x 2000 matrix with similar 
spectral properties but 90% or 99% sparsity, the factor would improve to on 
the order of 700 or 7000, respectively, and the storage required by GMRES 
would also diminish dramatically. D 

Example 35.2. If the eigenvalues of a matrix "surround the origin," on the 
other hand, such rapid convergence cannot be expected. Figures 35.4-35.5 
present an example. The matrix is now A' = A+ D, where A is the matrix of 
(35.17) and D is the diagonal matrix with complex entries 

k'Tr 
(JL = --, 0 < k < m- 1. ,. m-1 - -d, = (-2 + 2sinO,) + icosO,, 

As is evident in Figure 35.4, the eigenvalues now lie in a semicircular cloud 
that bends around the origin. The convergence rate is much worse than before, 
making the iterative computation no better than Gaussian elimination for this 
problem. The condition numbers are now ~t(A) ~ 4.32 and ~t(V) ~ 54.0, so the 
deterioration in convergence cannot be explained by conditioning alone; it is 
the locations ofthe eigenvalues, not their magnitudes (or those of the singular 
values) that are causing the trouble. If the arc extended much further around 
the spectrum, the convergence would worsen further. D 

Exercises 

35.1. Show that if S ~ C contains infinitely many points, then (35.14) 
defines a norm on the vector space of all polynomials with complex coefficients. 
Explain what goes wrong if S has only finitely many points. 

35.2. (a) Let S ~ C be a set whose convex hull contains 0 in its interior. 
That is, S is contained in no half-plane disjoint from the origin. Show that 
there is nopE P1 (i.e., no polynomial p of degree 1 with p(O) = 1) such that 
IIPIIs < 1. 
(b) Let A be a matrix, not n~cessarily normal, whose spectrum A(A) has the 
property (a). Show that there is nopE P1 such that llp(A)II < .1. 

(c) Though the convergence in Figure 35.5 is slow, it is clear that llr1 11 < llroll· 
Explain why this does not contradict the result of (b). Describe what kind of 
polynomial p1 E P1 GMRES has probably found to achieve llr1 11 < llroll· 

35.3. The recurrence xn+l = x" + ar n = x" + a(b- Ax"), where a is a scalar 
constant, is known as a Richardson iteration. 

(a) What polynomial p(A) at step n does this correspond to? 
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(b) What choice of a would you recommend for the matrix A of Figure 35.2, 
and what would you expect to be the corresponding convergence rate? 

(c) Same questions for the matrix of Figure 35.4. 

35.4. (a) Describe an O(n2 ) algorithm based on QR factorization by Givens 
rotations (Exercise 10.4) for solving the least squares problem of Algorithm 
35.1. 

(b) Show how the operation count can be improved to O(n), as mentioned on 
p. 268, if the problem for step n - 1 has already been solved. 

35.5. Our statement of the GMRES algorithm (Algorithm 35.1) begins with 
the initial guess x0 = 0, r0 = b. (The same applies to CG and BCG, Algo­
rithms 38.1 and 39.1.) Show that if one wishes to start with an arbitrary initial 
guess x0 , this can be accomplished by an easy modification of the right-hand 
side b. 

35.6. For larger values of n, the cost of GMRES in operations and storage 
may be prohibitive. In such circumstances a method called k-step restarted 
GMRES or GMRES{k) is often employed, in which, after k steps, the GMRES 
iteration is started anew with the current vector x,. as an initial guess. 

(a) Compare the asymptotic operation counts and storage requirements of 
GMRES and GMRES(k), for fixed k and increasing n. 
(b) Describe an example in which GMRES(k) can be expected to converge in 
nearly as few iterations as GMRES (hence much faster in operation count). 
(c) Describe another example in which GMRES(k) can be expected to fail to 
converge, whereas GMRES succeeds. 



Lecture 36. The Lanczos Iteration 

In the last three lectures we considered Krylov subspace iterations for non­
hermitian matrix problems. We shall return to nonhermitian problems in 
Lecture 39, for there is more to this subject than Arnoldi and GMRES. But 
first, in this and the following two lectures, we specialize to the hermitian case, 
where a major simplification takes place. 

Three-Term Recurrence 

The Lanczos iteration is the Arnoldi iteration specialized to the case where A 
is hermitian. For simplicity of notation, we shall go a step further and assume, 
here and in the next two lectures, that A is real and symmetric. 

Let us consider what happens to the Arnoldi process in this special case. 
Of course, all of the equations of Lectures 33 and 34 still apply, and in each 
formula we can replace * by T. The first thing we notice is that it follows from 
(33.12) that the Ritz matrix Hn is symmetric. Therefore its eigenvalues, the 
Ritz values or Lanczos estimates (33.10), are also real. This seems natural 
enough, since the eigenvalues of A are real. 

The second thing we notice is more dramatic. Since Hn is both symmetric 
and Hessenberg, it is tridiagonal. This means that in the inner loop of the 
Arnoldi iteration (Algorithm 33.1), the limits 1 ton can be replaced by n -1 
ton. Thus instead of the (n+1)-term recurrence (33.4) at step n, the Lanczos 
iteration involves just a three-term recurrence. The result is that each step 
of the Lanczos iteration is much cheaper than the corresponding step of the 

276 
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Arnoldi iteration. In Lecture 38 we shall see that analogously, for solving 
Ax = b, each step of the conjugate gradient iteration is much cheaper than 
the corresponding step of GMRES. 

The fact that Hn is tridiagonal is so important that it is worth reviewing 
how it arises from the symmetry of A. The key equation is (33.12), which we 
can write entry-wise for real matrices A, Hn, and Qn as 

(36.1) 

This implies that hii = 0 for i > j + 1, since Aqi E (q11 q2, ••• , qi+l) and the 
Krylov vectors are orthogonal. Taking the transpose gives 

(36.2) 

If A = AT, then hi; = 0 for j > i + 1 by the same reasoning as before. 
This simple argument leading to a three-term recurrence relation applies to 
arbitrary self-adjoint operators, not just to matrices. 

The Lanczos Iteration 

Since a symmetric tridiagonal matrix contains only two distinct vectors, it is 
customary to replace the generic notation aii by new variables. Let us write 
an = hnn and f3n = hn+l,n = hn,n+l· Then Hn becomes 

a1 P1 

P1 a2 P2 
Tn = {32 aa 

In this notation Algorithm 33.1 takes the following form. 

Algorithm 36.1. Lanczos Iteration 

{30 = 0, q0 = 0, b = arbitrary, q1 = bfllbll 
for n = 1,2,3, ... 

v = Aqn [or Aqn - Pn-l qn_1 for greater stability] 
a =qTv 

f& f& 

v = v- Pn-1qn-1- anqn 

f3n = llvll 
qn+l = V / f3n 

(36.3) 
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Each step consists of a matrix-vector multiplication, an inner product, and a 
couple of vector operations. If A has enough sparsity or other structure that 
matrix-vector products can be computed cheaply, then such an iteration can 
be applied without too much difficulty to problems of dimensions in the tens 
or hundreds of thousands. 

The following theorem summarizes some of the properties of the Lanczos 
iteration (when carried out in exact arithmetic, of course, as with all such 
theorems in this book). Nothing here is new; these are restatements in the 
new notation of the results of Theorems 33.1 and 34.1 for the Arnoldi iteration. 

Theorem 36.1. The matrices Q"' of vectors q"' generated by the Lanczos it­
eration are reduced QR factors of the Krylov matrix {33.6), 

The tridiagonal matrices T"' are the corresponding projections 

and the successive iterates are related by the formula 

AQ"' = Q"'+lT,., 

which we can write in the form of a three-term recurrence at step n, 

{36.4) 

{36.5) 

(36.6) 

(36.7) 

As long as the Lanczos iteration does not break down (i.e., K,. is of full 
rank n), the characteristic polynomial of T"' is the unique polynomial p" E 
P" that solves the Amoldi/Lanczos approximation problem (34.3), i.e., that 
achieves 

IIP"(A)b II= minimum. (36.8) 

Lanczos and Electric Charge Distributions 

In practice, the Lanczos iteration is used to compute eigenvalues of large 
symmetric matrices just as the Arnoldi iteration is used for nonsymmetric 
matrices (Lecture 34). At each step n, or at occasional steps, the eigenvalues 
of the growing tridiagonal matrix T,. are determined by standard methods. 
These are the Ritz values or "Lanczos estimates" (33.10) for the given matrix A 
and starting vector q1. Often some of these numbers are observed to converge 
geometrically to certain limits, which can then be expected to be eigenvalues 
of A. 

As with the Arnoldi iteration, it is the outlying eigenvalues of A that are 
most often obtained first. This assertion can be made more precise by the 
following rule of thumb: 
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If the eigenvalues of A are more evenly spaced than Chebyshev 
points, then the Lanczos iteration will tend to find outliers. 

Here is what this statement means. Suppose the m eigenvalues { >.;} of A 
are spread reasonably densely around an interval on the real axis. Since the 
Lanczos iteration is scale- and translation-invariant (Theorem 34.2), we can 
assume without loss of generality that this interval is [ -1, 1]. The m Chebyshev 
points in [-1, 1] are defined by the formula 

() (). -- (j - ~)7r 1 < . < {36.9) x,. = cos 1-, _ J _ m. 
' m ' 

The exact definition is not important; what matters is that these points clus­
ter quadratically near the endpoints, with the spacing between points O(m-1) 

in the interior and O(m-2) near ±1. The rule of thumb asserts that if the 
eigenvalues{>.;} of A are more evenly distributed than this-less clustered at 
the endpoints-then the Ritz values computed by a Lanczos iteration will tend 
to converge to the outlying eigenvalues first. In particular, an approximately 
uniform eigenvalue distribution will produce rapid convergence towards out­
liers. Conversely, if the eigenvalues of A are more than quadratically clustered 
at the endpoints-a situation not so common in practice-then we can expect 
convergence to some of the "inliers." 

These observations can be given a physical interpretation. Consider m 
point charges free to move about the interval [-1, 1]. Assume that the repul­
sive force between charges located at X; and x1c is proportional to lx; - x1cl-1 . 

(For electric charges in 3D the force would be lx;- x1cl-2, but this becomes 
lx; - xTcl-1 in 2D, where we can view each point as the intersection of an 
infinite line in 3D with the plane.) Let these charges distribute themselves 
in a minimal-energy equilibrium in [-1, 1]. Then this minimal-energy distri­
bution and the Chebyshev distribution are approximately the same, and in 
the limit m --+ oo, they both converge to a limiting continuous charge density 
distribution proportional to (1- x2)-112• 

Think of the eigenvalues of A as point charges. If they are distributed ap­
proximately in a minimal-energy configuration in an interval, then the Lanczos 
iteration will be useless; there will be little convergence before step n = m. 
If the distribution is very different from this, however, then there is likely to 
be rapid convergence to some eigenvalues, namely, the eigenvalues in regions 
where there is "too little charge" in the sense that if the points were free 
to move, more would tend to cluster here. The rule of thumb can now be 
restated: 

The Lanczos iteration tends to converge to eigenvalues in 
regions of "too little charge" for an equilibrium distribution. 

The explanation of this observation depends on the connection (36.8) of the 
Lanczos iteration with polynomial approximation. Some of the details are 
worked out in Exercise 36.2. 
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Figure 36.1. Plot of the Lanczos polynomial at step 9 of the Lanczos iteration 
for the matrix (36.10). The roots are the Ritz values or "Lanczos eigenvalue 
estimates." The polynomial is small throughout [0, 2) U {2.5} U {3.0}. To 
achieve this, it must place one root near 2.5 and another very near 3.0. 

Example 

The convergence of the Lanczos iteration is best illustrated by a numerical 
example. Let A be the 203 x 203 matrix 

A = diag(O, .01, .02, ... , 1.99, 2, 2.5, 3.0). (36.10) 

The spectrum of A consists of a dense collection of eigenvalues throughout 
[0, 2) together with two outliers, 2.5 and 3.0. We carry out a Lanczos iteration 
beginning with a random starting vector q1. 

Figure 36.1 shows the Ritz values and the associated Lanczos polynomial 
at step n = 9. Seven of the Ritz values lie in [0, 2), and the polynomial is 
uniformly small on that interval; the beginnings of a tendency for the Ritz 
values to cluster near the endpoints can be detected. The other two Ritz 
values lie near the eigenvalues at 2.5 and 3.0. The leading three Ritz values 
are 

1.93, 2.48, 2.999962. 

Evidently we have little accuracy in the lower eigenvalues but five-digit accu­
racy in the leading one. A plot like this gives an idea of why outliers tend to 
be estimated accurately. The graph of p(x) is so steep for x ~ 3 that if p(3) 
is to be small, there must be a root of p very close to 3. This steepness of the 
graph is related to the presence of "too little charge" near this point. If the 
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Figure 36.2. Ritz values for the first 20 steps of the Lanczos iteration applied to 
the same matrix. The convergence to the eigenvalues 2.5 and 3.0 is geometric. 
Little useful convergence to individual eigenvalues occurs in the (0, 2] part of 
the spectrum. Instead, the Ritz values in [0, 2] approximate Chebyshev points 
in that interval, marked by dots on the right-hand boundary. 

charges were free to move about [0, 3] to minimize energy, more points would 
cluster near x = 3, and p(x) would not be so steep there. 

At step 20 the leading three Ritz values are 

1.9906, 2.499999999987, 3.00000000000000. 

Now we have about fifteen digits of accuracy in the leading eigenvalue and 
twelve digits in the second. A plot of p( x) would be correspondingly steep 
near the points 2.5 and 3.0. Note that convergence to the third eigenvalue is 
also beginning to occur, a reflection of the fact that the eigenvalues in [0, 2] 
are distributed evenly rather than in a Chebyshev distribution. 

An "aerial view" of the convergence process appears in Figure 36.2, which 
shows the Ritz values for all steps from n = 1 to n = 20. Each vertical slice of 
this plot corresponds to the Ritz values at one iteration; the lines connecting 
the dots help the eye follow what is going on but have no precise meaning. The 
plot shows pronounced convergence to the leading eigenvalue after about n = 5 
and to the next one around n = 10. In the interval [0, 2] containing the other 
eigenvalues, they show a density of Ritz values approximately proportional to 
(1- x2)-112, with very clear bunching at endpoints. 
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Figure 36.3. Continuation to 120 steps of the Lanczos iteration. The numbers 
indicate multiplicities of the Ritz values. Note the appearance of four "ghost" 
copies of the eigenvalue 3.0 and two "ghost" copies of the eigenvalue 2.5. 

Rounding Errors and "Ghost" Eigenvalues 

Rounding errors have a complex effect on the Lanczos iteration and, indeed, 
on all iterations of numerical linear algebra based on three-term recurrence 
relations. The source of the difficulty is easily identified. In an iteration based 
on an n-term recurrence relation, such as Arnoldi or GMRES, the vectors 
q1 , q2 , q3 , . . • are forced to be orthogonal by explicit Gram-Schmidt opera­
tions. Three-term recurrences like Lanczos and conjugate gradients, however, 
depend upon orthogonality of the vectors { Q;} to arise "automatically" from 
a mathematical identity. In practice, such identities are not accurately pre­
served in the presence of rounding errors, and after a number of iterations, 
orthogonality is lost. 

The loss of orthogonality in practical Lanczos iterations sounds wholly bad, 
but the situation is more subtle than that. As it happens, loss of orthogonality 
is connected closely with the convergence of Ritz values to eigenvalues of A. 
A great deal is known about this subject, though not as much as one might 
like; we shall not give details. 

Because of complexities like these, no straightforward theorem is known 
to the effect that the Lanczos or conjugate gradient iterations is stable in the 
sense defined in this book. Nonetheless, these iterations are extraordinarily 
useful in practice. Figure 36.3 gives an idea of the way in which instability 
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is often manifested in practice without preventing the iteration from being 
useful. The :figure is a repetition of Figure 36.2, but for 120 instead of 20 
steps of the iteration. Everything looks as expected until around step 30, 
when a second copy of the eigenvalue 3.0 appears among the Ritz values. A 
third copy appears around step 60, a fourth copy around step 90, and so on. 
Meanwhile, additional copies of the eigenvalue 2.5 also appear around step 40 
and 80 and (just beginning to be visible) 120. These extra Ritz values are 
known as "ghost" eigenvalues, and they have nothing to do with the actual 
multiplicities of the corresponding eigenvalues of A. 

A rigorous analysis of the phenomenon of ghost eigenvalues is complicated. 
Intuitive explanations, however, are not hard to devise. One idea is that in the 
presence of rounding errors, one should think of each eigenvalue of A not as a 
point but as a small interval of size roughly 0( EmachineiiAII); ghost eigenvalues 
arise from the need for p( z) to be small not just at the exact eigenvalues but 
throughout these small intervals. Another, rather different explanation is that 
convergence of a Ritz value to an eigenvalue of A annihilates the corresponding 
eigenvector component in the vector being operated upon; but in the presence 
of rounding errors, random noise must be expected to excite that component 
slightly again. After sufficiently many iterations, this previously annihilated 
component will have been amplified enough that another Ritz value is needed 
to annihilate it again-and then again, and again. 

Both ofthese explanations capture some of the truth about the behavior of 
the Lanczos iteration in floating point arithmetic. The second one has perhaps 
more quantitative accuracy. 

Exercises 

36.1. In Lecture 27 it was pointed out that the eigenvalues of a symmetric 
matrix A E Rmxm are the stationary values of the Rayleigh quotient r(x) = 
(xTAx)f(xTx) for x E Rm. Show that the Ritz values at step n ofthe Lanczos 
iteration are the stationary values of r( x) if x is restricted to K,"'. 

36.2. Consider a polynomial p E P"', i.e., p(z) = Ilk=1(z- z~c) for some 
z~c E C. 

(a) Write log lp(z)l as a sum of n terms corresponding to the points z~c. 

(b) Explain why the term involving zk can be interpreted as the potential 
corresponding to a negative unit point charge located at z~c, if charges repel 
in inverse proportion to their separation. Thus log lp(z)l can be viewed as the 
potential at z induced by n point charges. 

(c) Replacing each charge -1 by -1/n and taking the limit n-+ oo, we get 
a continuous charge density distribution J.L(() with integral -1, which we can 
expect to be related to the limiting density of zeros of polynomials p E P"' as 
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n --+ oo. Write an integral representing the potential cp(z) corresponding to 
J.£((), and explain its connection to lp(z)l. 
(d) LetS be a closed, bounded subset ofC with no isolated points. Suppose we 
seek a distribution JL(z) with support inS that minimizes maxzes cp(z). Give 
an argument (not rigorous) for why such a JL(z) should satisfy cp(z) =constant 
throughout S. Explain why this means that the "charges" are in equilibrium, 
experiencing no net forces. In other words, S is like a 2D electrical conductor 
on which a quantity -1 of charge has distributed itself freely. Except for an 
additive constant, cp(z) is the Green's function for S. 
(e) As a step toward explaining the rule of thumb of p. 279, suppose that A is 
a real symmetric matrix with spectrum densely distributed in [a, b]U{c}U [d, e) 
for a < b < c < d < e. Thus (b, d) is a region of "too little charge" for the 
set S = [a, e). Explain why rapid convergence of a Ritz value to c can be 
expected, and estimate the rate of convergence in terms of the equilibrium 
potential cp(z) associated with the set S' = [a, b) U [c, d]. 

36.3. Let A be the 1000 x 1000 symmetric matrix whose entries are all zero 
except for aii = Vi on the diagonal, aii = 1 on the sub- and superdiagonals, 
and aii = 1 on the 100th sub- and superdiagonals, i.e., for li - il = 100. 
Determine the smallest eigenvalue of A to six digits of accuracy by the Lanczos 
iteration. 

36.4. As a special case of the Arnoldi lemniscates of Lecture 34, "Lanczos 
lemniscates" can be employed to illustrate the convergence of the Lanczos 
iteration. Find a way to modify your program of Exercise 36.3 to plot the 
Lanczos lemniscates at each step. Your method need not be elegant, efficient, 
or numerically robust. Produce plots of Lanczos lemniscates at steps n = 
1, 2, ... , 12 for the example of Figure 36.2 and for an example of your own 
choosing. 



Lecture 37. From Lanczos to Gauss 
Quadrature 

If discrete vectors become continuous functions on [ -1, 1], and the matrix A 
is taken to be the operator of pointwise multiplication by x, then the Lanczos 
iteration becomes the standard procedure for constructing orthogonal poly­
nomials via a three-term recurrence relation. From here it is a short step to 
Gauss quadrature formulas, whose nodes and weights can be computed by 
solving a symmetric tridiagonal matrix eigenvalue problem. 

Orthogonal Polynomials 

In Lecture 7 we considered a continuous analogue of QR factorization. We now 
consider a continuous analogue of the Lanczos iteration, restricting attention, 
as in the last lecture, to real vectors (now functions) and real symmetric 
matrices (now linear operators). 

The first thing we do is replace Rm by £ 2 [-1, 1], a vector space of real­
valued functions on [-1, 1]. The inner product oftwofunctionsu, v E £ 2[-1, 1] 
is defined by 

(u, v) = j~1 u(x) v(x) dx, (37.1) 

and the norm of a function u E £ 2[-1, 1] is llull = (u, u)112• 

In Lecture 7 we took A to be a "[-1, 1] x n matrix" whose columns were 
powers of x. Here, for the Lanczos iteration, A should be square instead of 
rectangular. We shall take it to be the "[-1, 1] x [-1, 1] matrix" corresponding 
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to pointwise multiplication by x. That is, A is the linear operator defined by 
the equation 

(Au)(x) = xu(x) (37.2) 

for each u E £ 2[-1, 1]. This operator is analogous to a diagonal matrix, with 
the continuum of values x E [-1, 1] along the "diagonal." (One can make 
the diagonal matrix idea precise by describing A as an integral operator with 
kernel k(x, y) = xt5(x- y), where t5 is the Dirac delta function.) In particular, 
A is symmetric, and because of the symmetry, the Arnoldi process specializes 
to the Lanczos process. 

There is one more item to be pinned down. Let us agree that the initial 
function b( x) will be a nonzero constant. The corresponding normalized initial 
function q1 ( x) will accordingly be q1 ( x) = 1/ ..;2. 

The Lanczos iteration (Algorithm 36.1) now takes the following form. 

Algorithm 37.1. Construction of Orthogonal Polynomials 

{30 = 0, q0(x) = 0, q1(x) = 1/.../2 
for n = 1, 2, 3, ... 

v(x) = xq"(x) 

a"= (q", v) 
v(x) = v(x)- f3n_1q"_1(x)- a"q"(x) 

f3n = llvll 
qn+l(x) = v(x)ff3n 

Note that the polynomials q1, q2, q3 , ••• are of degrees 0, 1, 2, ... , and thus the 
polynomial of degree n in this sequence is qn+l· 

Algorithm 37.1 can be found in many books that have nothing ostensibly 
to do with linear algebra. It is precisely the usual three-term recurrence for 
constructing the sequence of Legendre polynomials, orthogonal on the interval 
[-1, 1). Our statement of the algorithm is unusual, however, in notation and 
in normalization. The nth Legendre polynomial is usually written P"(x), of 
degree n, and normalized by P"(1) = 1. Thus our qn+l(x) is a scalar multiple 
of the usual P"(x). Nevertheless we shall call it a Legendre polynomial. 

The Legendre polynomials were considered already in (7.11) and Fig­
ure 7.1, where they were derived by Gram-Schmidt factorization of the "[-1, 1] 
x n matrix" of monomials mentioned above. That matrix had the form of the 
Krylov matrix (33.6) generated by our present initial vector band operator A, 
and that is why the Gram-Schmidt process in Lecture 7 had the same effect 
as the Lanczos process here. 

We labeled Algorithm 37.1 "Construction of orthogonal polynomials" rath­
er than "Construction of Legendre polynomials" because it is, in fact, more 
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general. If (37.1) is modified by the inclusion of a nonconstant positive weight 
function w(x) in the integrand, then one obtains other families of orthogonal 
polynomials such as Chebyshev polynomials and Jacobi polynomials. All of 
the developments of this lecture apply to these more general families, but we 
shall not give details. 

Jacobi Matrices 

All the formulas of the foregoing lectures on Arnoldi and Lanczos iterations 
remain valid for the polynomial orthogonalization process we have just de­
scribed. Of course, they have to be interpreted properly, with 1, 2, ... , m 
replaced by [-1, 1] and the usual vector inner product replaced by (37.1). For 
example, we now have" [-1, 1] x n matrices" 

K = 1 x · · · x•-l 
t& ' 

{37.3) 

and they are related to one another exactly as in {36.4). (As just mentioned, 
K. is the matrix that was called A in Lecture 7.) 

The tridiagonal matrices {T.} described in the previous lecture are par­
ticularly important. There are still n x n discrete matrices, related to Q. and 
A by (36.5) and (36.6). Their entries are given by the analogue of {36.1), 

tii = (qi(x), xq;(x)). (37.4) 

In the context of orthogonal polynomials, the matrices {T.} are known as 
Jacobi matrices. The three-term recurrence {36. 7) takes the form 

xq.(x) = Pn-lqn-l(x) + a.q.(x) + P.q.+l(x). {37.5) 

The statement of Algorithm 37.1 is perhaps misleading as written. It 
would appear that nontrivial computations are involved at each step of this 
algorithm: the evaluation of the inner product (q., v) and norm llvll that de­
fine a. and P •. If (37.1) contained an arbitrary weight function w(x), these 
computations would indeed be nontrivial. However, for the particular choice 
w(x) = 1 associated with Legendre polynomials, and also for various choices 
associated with other classical families of polynomials, the entries {a.} and 
{P.} are known analytically. In the notation of (36.3), we have 

a. = 0, P. = ~(1 - (2nt2t 112 (37.6) 

for Legendre polynomials. With the use of these formulas Algorithm 37.1 
becomes a trivial mechanical procedure, a three-term recurrence relation and 
nothing more. 
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The Characteristic Polynomial 

What becomes of the Arnoldi/Lanczos approximation problem {36.8) in this 
context of orthogonal polynomials? The answer comes upon noting that for 
our special choices of b and A, we have p( A) b = p( x) / y'2. It follows that 
(36.8) can be written in the following way. 

Orthogonal Polynomials Approximation Problem. Find pn E pn 
such that 

II pn(x) II= minimum. {37.7) 

According to Theorem 36.1, the solution is the characteristic polynomial of 
the matrix Tn. 

From here it is a short step to a remarkable conclusion. Note that any 
p E pn can be written in the form p(x) = Cqn+l(x) + Qny, where C is a 
constant-the inverse of the leading coefficient of qn+l(x). Note also that 
since the functions {qn(x)} are orthogonal, we have IIPII = (C2 + IIYII2 ) 112• It 
follows that the minimum in (37. 7) is achieved by setting y = 0. In other 
words, pn(x) is the same as qn+l(x) up to that constant C. We express this 
conclusion as a theorem, the final assertion of which is proved in Exercise 37.2. 

Theorem 37.1. Let {qn(x)} be the sequence of orthogonal polynomials gen­
erated by Algorithm 37.1, let {Tn} be the associated sequence of tridiagonal 
Jacobi matrices, and let pn be the characteristic polynomial ofTn. Then for 
n = 0, 1,2, ... , 

(37.8) 

where Cn is a constant. In particular, the zeros of qn+l(x) are the eigenvalues 
of Tn. These n zeros are distinct and lie in the open interval (-1, 1). 

This theorem is of great computational importance. To determine the 
zeros of the Legendre polynomials, all one has to do is compute the eigenvalues 
of the associated Jacobi matrices, whose entries are given in closed form by 
(37.6). As we have seen in previous lectures, the eigenvalue problem for an 
n x n symmetric tridiagonal matrix is well-conditioned and can be solved very 
quickly, requiring only O(n2 ) flops. By contrast, computing the zeros of the 
Legendre polynomials directly, starting from the coefficients ofthe polynomials 
rather than the Jacobi matrices, is inefficient and numerically unstable. 

Quadrature Formulas 

There is a reason why the zeros of the Legendre polynomials are of computa­
tional interest: they are the nodes of the Gauss-Legendre quadrature formulas. 
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Let us briefly review the idea of numerical quadrature. Suppose f(x) is a 
function defined on [-1, 1] and we want to compute the integral 

I(f) = [ 1
1 f(x) dx. (37.9) 

(If an interval of integration other than [ -1, 1] is of interest, this can be han­
dled by a linear change of variables.) It is natural to consider approximating 
I(f) by a finite sum 

ft 

In (f) = E W;f(x;) (37.10) 
i=l 

defined by a set of n nodes or abscissas x; E [-1, 1] and corresponding weights 
w;, chosen independently of f. This is ann-point quadrature formula, a notion 
studied by numerical analysts going back to Newton. Various forms of such 
formulas, often coupled with adaptive error estimation, interval subdivision, 
and order control, are the basis of most numerical integration carried out on 
computers today. 

Any set of nodes is a candidate for a quadrature formula. The follow­
ing result is a consequence of the nonsingularity of Vandermonde matrices 
(Exercise 37.3). 

Theorem 37.2. Let the nodes {x;} be an arbitrary set of n distinct points 
in [ -1, 1]. Then there is a unique choice of weights { w i} with the property 
that the quadrature formula (37.10) has order of accuracy at least n -1 in the 
sense that it is exact if f(x) is any polynomial of degree~ n- 1. 

If the nodes {x;} are taken equally spaced from -1 to 1, the quadrature 
formula provided by this theorem is known as a Newton-Cotes formula, the 
n-point generalization of the familiar trapezoid and Simpson rules. Newton­
Cotes formulas have the order of accuracy guaranteed by this theorem but no 
higher. These formulas are simple and useful, especially for lower values of n. 
For larger n, their weights w; have oscillating signs and huge amplitudes, of 
order 2", causing numerical instability. 

Gauss Quadrature 

The idea of Gauss quadrature is to pick not just the weights {w;} but also 
the nodes {x;} optimally, so as to raise the order of accuracy of (37.10) as 
high as possible. As it happens, there is a unique choice of nodes and weights 
that achieves this, and the resulting formula has order 2n - 1. This is a 
dramatic improvement over order n- 1, a doubling of the number of digits 
of accuracy typically attainable for smooth functions and a fixed number of 
function evaluations. Moreover, the weights W; are all positive, making these 
formulas stable even for high n. 
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What is the magic set of nodes x1, ... , x .. that doubles the order of accuracy 
of ann-point quadrature formula? It is nothing more than the set of zeros of 
the Legendre polynomial q,.+l(x). The Gauss or Gauss-Legendre quadrature 
formula is defined as the quadrature formula (37.10) provided by Theorem 37.2 
whose nodes x1, ... , x,. are the zeros of q,.+1(x). 

Theorem 37.3. Then-point Gauss-Legendre quadrature formula has order 
of accuracy exactly 2n - 1, and no quadrature formula (37.10) has order of 
accuracy higher than this. 

Proof. Given any set of distinct points {x;}, let f(x) be the polynomial 
Ilj=1(x- x;)2 of degree 2n. Then I(!) > 0, but I,.(!)= 0 since f(x;) = 0 for 
each node x;. Thus the quadrature formula is not exact for polynomials of 
degree 2n. 

On the other hand, suppose f(x) is any polynomial of degree :$ 2n- 1, 
and take {x;} to be the Gauss quadrature nodes, the zeros of {q,.+l(x)}. The 
function f(x) can be factored in the form 

f(x) = g(x)q,.+l(x) + r(x), 

where g(x) is a polynomial of degree:$ n -1 and r(x), the remainder term, is 
also a polynomial of degree:$ n-1. (In fact, r(x) is the degree n-1 polynomial 
interpolant to f in the points {x;}.) Now since q,.+l(x) is orthogonal to all 
polynomials of lower degree, we have I(gq,.+l) = 0. At the same time, since 
g(x;)q,.+1(x;) = 0 for each node x;, we have I,.(gq,.+l) = 0. Since I and I,. are 
linear operators, these identities imply I(!) = I(r) and I,.(/) = I,.(r). But 
since r(x) is of degree :$ n- 1, we have J(r) = I,.(r) by Theorem 37.2, and 
combining these results gives I(!) = 1,.(!), as claimed. D 

Gauss Quadrature via Jacobi Matrices 

In six pages we have gone from the Lanczos iteration to Legendre polynomials 
and from Legendre polynomials to Gauss quadrature. We have even provided 
a fast and stable algorithm for determining the nodes of Gauss quadrature 
formulas: just set up the Jacobi matrices {T,.} and compute their eigenvalues. 

One final observation will finish the story. Not only the nodes but also the 
weights of Gauss quadrature formulas can be obtained from the eigenvalue 
problem forT,.. The jth Gauss weight turns out to be simply w; = 2(v;)~, 
that is, twice the square of the first component of the jth eigenvector of 
T,.. We state this result without proof. An analogous result holds for Gauss 
quadrature formulas defined by inner products (37.1) with general weight func­
tions w(x). 
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Theorem 37.4. Let Ta be then x n Jacobi matrix (36.3) defined by Algo­
rithm 37.1 or (36.5), with entries {311 ••• ,Pa-l given by (37.6). Let Ta = 
VDVT be an orthogonal diagonalization ofTa with V = [v11· ··Iva] and D = 
diag(~11 ••• , ~a)· Then the nodes and weights of the Gauss-Legendre quadra­
ture formula are given by 

j = 1, ... ,n. (37.11) 

Example 

As an illustration of the power of Gauss quadrature for integrating smooth 
functions, suppose we wish to evaluate the integral 

I( ez) = 11 ez dx = 2.35040239. 
-1 

Taking n = 4, we find that the Jacobi matrix for four-point Gauss-Legendre 
quadrature is 

I 0 0.577350269 

0.577350269 0 0.516397779 
T -

4 - 0.516397779 0 0.507092553 

0.507092553 0 

The eigenvalues of this matrix give the nodes 

x1 = -x4 = 0.861136312, x2 = -x3 = 0.339981044, 

and the first components of the eigenvectors give the corresponding weights 

w1 = w4 = 0.347854845, 

Evaluating the sum (37.10) gives 

w2 = w3 = 0.652145155. 

Ia(ez) = 2.35040209, 

which agrees with the exact result to about seven digits. The four-point 
Newton-Cotes formula, by contrast, gives Ia(ez) ~ 2.3556, accurate to only 
about three digits. 

Exercises 

37.1. The standard recurrence relation for Legendre polynomials is 

2n-1 n -1 
Pa(x) = xPa-l(x)- --Pa-2(x) 

n n 
(37.12) 
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with initial values P0(x) = 1, P1(x) = x. 
(a) Confirm that (37.12) gives the polynomials P2(x) and P3(x) of (7.11). 

(b) Since {Pn(x)} and {qn+l(x)} are normalized differently, (37.12) is not the 
same as the recurrence (37.5) with coefficients (37.6). Write down the two 
tridiagonal matrices corresponding to these formulas, and derive the relation­
ship between them. 

(c) Use the result of (b) to determine a formula for qn+1(1), or equivalently, 
for IIPnll· 

37.2. Show based on the definition of orthogonality that qn+l(x) has n distinct 
zeros, all contained in the open interval ( -1, 1). (The fact that they are 
distinct also follows from Exercise 25.1, but here, use a direct argument.) 

37.3. The problem of interpolating n data values {Y;} in n distinct data 
points {x;} by a polynomial of degree 5 n- 1 was expressed in (11.4) as a 
square Vandermonde linear system of equations. 

(a) Prove that this Vandermonde matrix is nonsingular by arguing that if the 
interpolation problem has a solution, it must be unique. 

(b) Write down the analogous system of equations implicit in Theorem 37.2. 
Using the result of (a), prove this theorem. 

37.4. (a) Write a six-line MATLAB program that computes the nodes and 
weights for then-point Gauss-Legendre quadrature formula and applies these 
numbers to compute the approximate integral of the function f. 
(b) Taking f(x) = ez and n = 4, confirm the example in the text. Then plot 
II( ez)- In( ez)l on a log scale for n = 1, 2, ... , 40 and comment on the results. 

(c) Produce a similar plot for f(x) = elzl, and comment. 

37.5. The program of Exercise 37.4 computes the zeros of Legendre poly­
nomials, also known as Legendre points in [ -1, 1]. The zeros of Chebyshev 
polynomials, Chebyshev points, are given by the explicit formula {36.9). Per­
form a sequence of calculations to generate numbers and plots illustrating as 
elegantly as you can that in the limit n --+ oo, both Legendre and Chebyshev 
points approach the limiting density distribution JL(x) = 1r-1(1 - x2)-112 (in 
the notation of Exercise 36.2). Produce further plots and numbers to explore 
the question: how close are Legendre points to Chebyshev points for various 
values of n? 



Lecture 38. Conjugate Gradients 

The conjugate gradient iteration is the "original" Krylov subspace iteration, 
the most famous of these methods and one of the mainstays of scientific com­
puting. Discovered by Hestenes and Stiefel in 1952, it solves symmetric posi­
tive definite systems of equations amazingly quickly if the eigenvalues are well 
distributed. 

Minimizing the 2-N orm of the Residual 

AB in the last two lectures, let A E m.mxm be real and symmetric, and suppose 
we wish to solve a nonsingular system of equations Ax = b, with exact solution 
x. = A -lb. Let ICn denote the nth Krylov subspace (33.5) generated by b, 

ICn = {b, Ab, ... , An-1b). (38.1) 

One approach based on this Krylov subspace would be to solve the system 
by GMRES. As described in Lecture 35, this would mean that at step n, x. is 
approximated by the vector xn E ICn that minimizes llr n 11 2 , where r n = b-Axn. 
Actually, the usual GMRES algorithm does more work than is necessary for 
minimizing llr n 11 2• Since A is symmetric, faster algorithms are available based 
on three-term instead of ( n + 1 )-term recurrences at step n. One of these goes 
by the names of conjugate residuals or MINRES (''minimal residuals"). 

These methods, at least when constructed to apply to both definite and 
indefinite matrices, involve certain complications. Rather than describe them, 
we turn directly to the simpler and more important positive definite case. 

293 
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Minimizing the A-Norm of the Error 

Assume that A is not only real and symmetric but also positive definite. As 
discussed in Lecture 23, this means that the eigenvalues of A are all posi­
tive, or equivalently, that xT Ax > 0 for every nonzero x E Rm. Under this 
assumption, the function II · IIA defined by 

(38.2) 

is a norm on Rm, as can be verified from the definition (3.1). It is called the 
A-norm. (This is the same as the norm llxllw of (3.3), if W is a Cholesky 
factor of A or any other matrix satisfying wTW = A.) 

The vector whose A-norm will concern us is en = x. - xn, the error at 
step n. The conjugate gradient iteration can be described as follows. It is a 
system of recurrence formulas that generates the unique sequence of iterates 
{xn E K:n} with the property that at step n, lleniiA is minimized. 

We shall present the formulas for the CG iteration, without motivation at 
first, and derive some orthogonality properties (Theorem 38.1). From these, 
the claim about minimality of lleniiA follows as a corollary (Theorem 38.2), 
and the motivation appears belatedly as we interpret CG as a nonlinear opti­
mization algorithm. 

The Conjugate Gradient Iteration 

Here is the iteration that Hestenes and Stiefel made famous. 

Algorithm 38.1. Conjugate Gradient (CG) Iteration 

x0 = 0, r0 = b, Po = r0 

for n = 1,2,3, ... 

an= (r!-1rn-1)/(P!'-1APn-1) 
Xn = xn-1 + anPn-1 
rn = rn-1- anAPn-1 
f3n = (r!rn)/(r!-1rn-1) 

Pn = r n + PnPn-1 

step length 

approximate solution 

residual 

improvement this step 

search direction 

Before analyzing the mathematical properties of these formulas, let us ex­
amine them operationally. First we note that the CG iteration is extraordinar­
ily simple-programmable in a few lines of MATLAB. Since it deals only with 
m-vectors, not with individual entries of vectors or matrices, it is simpler, for 
example, than Gaussian elimination with pivoting. The only complication­
which we shall not address-is the choice of a convergence criterion. 
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At each step, the CG iteration involves several vector manipulations and 
one matrix-vector product, the computation of Ap"_1 (which appears twice in 
the listing but need be computed only once). If A is dense and unstructured, 
this matrix-vector product dominates the operation count, which becomes 
"' 2m2 :O.ops for each step. If A is sparse or has other exploitable structure, 
Ap"_1 may be computable in as few as 0( m) operations, in which case the 
operation count may be as low as 0( m) :O.ops per step. 

From the five lines that define the algorithm, the following properties can 
be deduced. Like all the theorems in this book that do not explicitly mention 
rounding errors, this one assumes that the computation is performed in exact 
arithmetic. If there are rounding errors, these properties fail, and it becomes 
a subtle matter to explain the still very impressive performance of CG. 

Theorem 38.1. Let the CG iteration {Algorithm 38.1} be applied to a sym­
metric positive definite matrix problem Ax = b. As long as the iteration has 
not yet converged (i.e., r"_1 =f. 0}, the algorithm proceeds without divisions by 
zero, and we have the following identities of subspaces: 

IC" = (x1, X2, · · ·, x") = (Po, Pv · · · 'Pn-1) 

= (ro,r1, ... ,r"_1) = (b,Ab, ... ,A"-1b). (38.3) 

Moreover, the residuals are orthogonal, 

(j < n), (38.4) 

and the search directions are "A-conjugate," 

(j < n). (38.5) 

Proof. The proof is by induction on n; we sketch it informally. From the initial 
guess x0 = 0 and the formula X"= Xn-1 +anpn_1, it follows by induction that 
x" belongs to (p0,p1, ... ,p"_1). From Pn = r" + PnPn-1 it follows that this 
is the same as (r0 , r 1, ... , r"_1). From r" = r"_1- a"Ap"_1, finally, it follows 
that this is the same as (b, Ab, ... , A"-1b). This establishes (38.3). 

To prove (38.4)1 we apply the formula r" = r n-1-anAPn-l and the identity 
(Ap"_1)T = p;'_1A to compute 

If j < n- 1, both terms on the right are zero by induction. If j = n- 1, the 
difference on the right is zero provided a" = (r;'_1r"_1)/(p;'_1Arn-d· Now 
this is the same as the line a" = (r;'_1r"_1)/(P!'-1Ap"_1) of Algorithm 38.11 
except that P!'-1Ap"_1 has been replaced by P!'-1Arn-l· Since Pn-1 and r"_1 

differ by Pn-tPn-21 the effect of this replacement is to change the denominator 
by f3n_1p!'_1APn-21 which is zero by the induction hypothesis. 
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To prove (38.5), we apply the formula Pn = r" + !3nPn-1 to compute 

p;_Api = r;_Ap; + {3,.p;__1AP;· 

If j < n -1, both terms on the right are again zero by induction (since (38.4) 
has now been established for case n ). If j = n -1, the sum on the right is zero 
provided {3,. = -(r!Ap"_1)/(P!-1Ap"_1), which we can write equivalently in 
the form {3" = ( -a"r;Ap"_1)/(a,.p;_1Ap"_1). This is the same as the line 
{3,. = (r!r,.)/(r;_1r"_1) of Algorithm 38.1, except that r!rn has been replaced 
by r!(-a"Ap"_1) and r!_1r,._1 has been replaced by p;'_1(a,.Ap"_1). By the 
induction hypothesis and lines 3 and 5 of Algorithm 38.1, these replacements 
can again readily be shown to have zero effect. D 

Optimality of CG 

In deriving the orthogonality properties (38.4) and (38.5), we have finished the 
real work. It is now a straightforward matter to confirm that CG minimizes 
!leliA at each step. 

Theorem 38.2. Let the CG iteration be applied to a symmetric positive def­
inite matrix problem Ax= b. If the iteration has not already converged {i.e., 
r"_1 # 0}, then x" is the unique point in IC" that minimizes lleniiA· The 
convergence is monotonic, 

(38.6) 

and e" = 0 is achieved for some n :S m. 

Proof. From Theorem 38.1 we know that x" belongs to K.". To show that 
it is the unique point inK.,. that minimizes !leliA, consider an arbitrary point 
x = x,.- AxE K.,., with errore= x.- x = e" +Ax. We calculate 

II ell~ = (en+ Ax)T A(e" +Ax) 

= e~Ae,. + (Ax)T A(Ax) + 2e~A(Ax). 

The final term in this equation is 2r!(Ax), an inner product of r,. with a 
vector in /C", and by Theorem 38.1, any such inner product is zero. This is 
the crucial orthogonality property that makes the CG iteration so powerful. 
It implies that we have 

Only the second of these terms depends on Ax, and since A is positive definite, 
that term is ;::: 0, attaining the value 0 if and only if Ax = 0, i.e., x" = x. 
Thus !leliA is minimal if and only if x,. = x, as claimed. 
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The remaining statements of the theorem now follow readily. The mono­
tonicity property (38.6) is a consequence of the inclusion K,n ~ K,n+b and 
since K,n is a subset of Rm of dimension n as long as convergence has not yet 
been achieved, convergence must be achieved in at most m steps. D 

The guarantee that the CG iteration converges in at most m steps is void 
in floating point arithmetic. For arbitrary matrices A on a real computer, no 
decisive reduction in lleniiA will necessarily be observed at all when n = m. 
In practice, however, CG is used not for arbitrary matrices but for matrices 
whose spectra, perhaps thanks to preconditioning, are well-enough behaved 
that convergence to a desired accuracy is achieved for n ~ m (Lecture 32). 
The theoretical exact convergence at n = m has no relevance to this use of 
the CG iteration in scientific computing. 

CG as an Optimization Algorithm 

We have just shown that the CG iteration has a certain optimality property: 
it minimizes lleniiA at step n over all vectors x E K,". In fact, as foreshadowed 
already by the use of such terms as "step length" and "search direction," this 
iteration can be interpreted as an algorithm of a standard form for minimizing 
a nonlinear function of x E Rm. At the heart of the iteration is the formula 

Xn = xn-1 + anPn-1• 

This is a familiar equation in optimization, in which a current approximation 
x"_1 is updated to a new approximation x" by moving a distance a" (the step 
length) in the direction Pn-1 (the search direction). By a succession of such 
steps, the CG iteration attempts to find a minimum of a nonlinear function. 

Which function? According to Theorem 38.2, the answer would appear to 
be !leliA, or equivalently, llell~· However, although llell~ is indeed a function 
of x, it is not one we can evaluate without knowing x •. It would not be very 
"standard" to interpret CG as an optimization process applied to a function 
that cannot be evaluated! 

On the other hand, given A and b and x E Rm, the quantity 

(38.7) 

can certainly be evaluated. A short computation now reveals 

- x;Axn- 2x;b + x'!'b = 2cp(xn) +constant. 
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Thus IP(x) is the same as llell~ except for a factor of 2 and the (unknown) 
constant x;'b. Like llell~, it must achieve its minimum (namely, -x:b/2) 
uniquely at x = x •. 

The CG iteration can be interpreted as an iterative process for mini­
mizing the quadratic function IP(x) of x E Rm. At each step, an iterate 
xn = xn_1 + anPn-1 is computed that minimizes 1p(x) over all x in the one­
dimensional space xn_1 + (pn_1). (It is readily confirmed that the formula 
an= (r;'_1rn_1)/(p;'_1Apn_1) ensures that an is optimal in this sense among 
all step lengths a.) What makes the CG iteration remarkable is the choice 
of the search direction Pn-1, which has the special property that minimizing 
fP(x) over xn + (pn_1) actually minimizes it over all of ICn. 

There is a close analogy between the CG iteration for solving Ax = b 
and the Lanczos iteration for finding eigenvalues. The eigenvalues of A, as 
discussed in Lecture 27, are the stationary values for x E Rm of the Rayleigh 
quotient, r(x) = (xTAx)f(xTx). As pointed out in Exercise 36.1, the eigenvalue 
estimates (Ritz values) associated with step n of the Lanczos iteration are the 
stationary values of the same function r( x) if x is restricted to the Krylov 
subspace ICn. This is a perfect parallel of what we have shown in the last 
two pages, that the solution x. of Ax = b is the minimal point in Rm of the 
scalar function IP( x ), and the CG iterate Xn is the minimal point of the same 
function IP( x) if x is restricted to ICn. 

CG and Polynomial Approximation 

A theme of the last four lectures has been the connection between Krylov 
subspace iterations and polynomials of matrices. The Arnoldi and Lanczos 
iterations solve the Arnoldi/Lanczos approximation problem (34.3), and the 
GMRES iteration solves the GMRES approximation problem (35.10). For 
CG, the appropriate approximation problem involves the A-norm of the error. 

CG Approximation Problem. Find Pn E Pn such that 

IIPn(A)eoiiA =minimum. (38.8) 

Here e0 denotes the initial error, e0 = x.- x0 = x., and Pn is again defined 
as in (35.7), the set of polynomials p of degree ~ n with p(O) = 1. From 
Theorem 38.2 we may derive the following convergence theorem. 

Theorem 38.3. If the GG itemtion has not already converged before step n 
(i.e., rn_1 '=/; 0}, then (38.8) has a unique solution Pn E Pn, and the itemte xn 
has error en= Pn(A)e0 for this same polynomial Pn· Consequently we have 

lleniiA = inf IIP(A)eoiiA ~ inf max lp(.X)I, 
lleoiiA pEP,. II eoliA pEP,. ~EA(A) 

(38.9) 

where A(A) denotes the spectrum of A. 
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Proof. From Theorem 38.1 it follows that en = p(A)e0 for some p E Pn. 
The equality in (38.9) is a consequence of this and Theorem 38.2. As for the 
inequality in (38.9), if e0 = I:j!:1 a;v; is an expansion of e0 in orthonormal 
eigenvectors of A, then we have p(A)e0 = I:j!:1 a;p(A;)v; and thus 

m 

!leo II~ = La~ A;, 
j=l 

m 

IIP(A)e0 11~ = L a~A;(P(A;))2 • 
j=l 

These identities imply llp(A)e0 ll~/lleoll~ ~ max>.eA(A) IP(A)i2, which implies 
the inequality in question. D 

Rate of Convergence 

Theorem 38.3 establishes that the rate of convergence of the CG iteration 
is determined by the location of the spectrum of A. A good spectrum is 
one on which polynomials Pn E Pn can be very small, with size decreasing 
rapidly with n. Roughly speaking, this may happen for either or both of two 
reasons: the eigenvalues may be grouped in small clusters, or they may lie well 
separated in a relative sense from the origin. The two best-known corollaries 
of Theorem 38.3 address these two ideas in their extreme forms. 

First, we suppose that the eigenvalues are perfectly clustered but assume 
nothing about the locations of these clusters. 

Theorem 38.4. If A has only n distinct eigenvalues, then the CG iteration 
converges in at most n steps. 

Proof. This is a corollary of (38.9), since a polynomialp(x) = 117=1(1-x/A;) E 
Pn exists that is zero at any specified set of n points {A;}· D 

At the other extreme, suppose we know nothing about any clustering of 
the eigenvalues but only that their distances from the origin vary by at most 
a factor K ~ 1. In other words, suppose we know only the 2-norm condition 
number K = Amax/ Amin, where Amax and Amin are the extreme eigenvalues of A. 

Theorem 38.5. Let the CG iteration be applied to a symmetric positive def­
inite matrix problem Ax= b, where A has 2-norm condition number K. Then 
the A-norms of the errors satisfy 

2 /[(~+1)n + (~+1)-n] ~ 2 (~-1)n 
~-1 ~-1 ~+1 

(38.10) 
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Proof. By Theorem 38.3, it is enough to :find a polynomial p E P .. whose 
maximum value for A E [.\min, Amax1 is the middle expression of (38.10). The 
polynomial we choose is the scaled and shifted Chebyshev polynomial p(x) = 
T .. (1- 2x/(.Xmax- .Xmin))/T .. (7), where T .. is the usual Chebyshev polynomial 
of degree nand 1 takes the special value 1 = (.\max+ Amin)/(.Xmax- Amin) = 
(~ + 1)/(~- 1). For x E [.\min, Amax1, the argument ofT .. in the numerator 
of p(x) lies in [-1, 1], which means the magnitude of that numerator is :::; 1. 
Therefore, to prove the theorem, it will suffice to show 

r .. ( 1) = r .. (~) = ~ [ ( v"K + 1) .. + ( v'K + 1) -"]. 
~-1 2 ~-1 .y'K-1 

(38.11) 

We can do this by making the change of variables x = i(z + z-1), T .. (x) = 
!(z" + z-"), standard in the study of Chebyshev polynomials. If(~+ 1)/(~-
1) = ~(z + z-1), that is, lz2 - (~ + 1)/(~- 1)z + l = 0, then we have a 
quadratic equation with solution 

z = (~ + 1) + . '(~ + 1) 2 - 1 = ~ + 1 + v' ( ~ + 1 )2 - (~ - 1 )2 
~-1 v ~-1 ~-1 

~ + 1 + ~ ( yK + 1)2 ~ + 1 
- -

~-1 (\t"'K+1)(.y'K-1) y"K-1· 

Thus T .. (1) = !(z"+z-") for this value of z, which is (38.11), as claimed. 0 

Theorem 38.5 is the most famous result about convergence of the CG 
iteration. Since 

~-1 2 
"'1--

~ + 1 -.fo, 
as ~ --+ oo, it implies that if~ is large but not too large, convergence to a 
specified tolerance can be expected in 0( .y'K) iterations. One must remember 
that this is only an upper bound. Convergence may be faster for special right­
hand sides (not so common) or if the spectrum is clustered (more common). 

Example 

For an example of the convergence of CG, consider a 500 x 500 sparse matrix A 
constructed as follows. First we put 1 at each diagonal position and a random 
number from the uniform distribution on [ -1, 1] at each off-diagonal position 
(maintaining the symmetry A= AT). Then we replace each off-diagonal entry 
with lai;l > T by zero, where Tis a parameter. ForT close to zero, the result is 
a well-conditioned positive definite matrix whose density of nonzero entries is 
approximately T. As T increases, both the condition number and the sparsity 
deteriorate. 
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Figure 38.1. CG convergence curves for the 500 x 500 sparse matrices A 
described in the text. For r = 0.01, the system is solved about 700 times faster 
by CG than by Cholesky factorization. For r = 0.2, the matrix is not positive 
definite and there is no convergence. 

Figure 38.1 shows convergence c1,1rves corresponding to 20 steps of the CG 
iteration for matrices of this kind with r = 0.01, 0.05, 0.1, 0.2. (The right-hand 
side b was taken to be a random vector.) For r = 0.01, A has 3092 nonzero 
entries and condition number K ~ 1.06. Convergence to machine precision 
takes place in 9 steps, about 6 x 104 :O.ops. For r = 0.05, there are 13,062 
nonzeros with K ~ 1.83, and convergence takes 19 steps, about 5 x 105 :O.ops. 
For T = 0.1 we have 25,526 nonzeros and K ~ 10.3, with only 5 digits of 
convergence after 20 steps and 106 :O.ops. For r = 0.2, with 50,834 nonzeros, 
there is no convergence at all. The lowest eigenvalue is now negative, so A is 
no longer positive definite and the use of the CG iteration is inappropriate. 
(In fact, the CG iteration often succeeds with indefinite matrices, but in this 
case the matrix is not only indefinite but ill-conditioned.) 

Note how closely the r = 0.01 curve of Figure 38.1 matches the schematic 
ideal depicted in Figure 32.1! For this example, the operation count of 6 x 104 

:O.ops beats Cholesky factorization (23.4) by a factor of about 700. Unfortu­
nately, not every matrix arising in practice has such a well-behaved spectrum, 
even after the best efforts to find a good preconditioner. 
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Exercises 

38.1. Based on the condition numbers K reported in the text, determine 
the rate of convergence predicted by Theorem 38.5 for the matrices A of 
Figure 38.1 with r = 0.01, 0.05, 0.1. Draw lines on a copy of Figure 38.1 
indicating how closely these predictions match the actual convergence rates. 

38.2. Suppose A is a real symmetric 805 x 805 matrix with eigenvalues 
1.00, 1.01, 1.02, ... , 8.98, 8.99, 9.00 and also 10, 12, 16, 24. How many steps 
of the conjugate gradient iteration must you take to be sure of reducing the 
initial error II eoliA by a factor of 106 ? 

38.3. The conjugate gradient is applied to a symmetric positive definite 
matrix A with the result lleoiiA = 1, lle10 IIA = 2 x 2-10• Based solely on this 
data, 
(a) What bound can you give on K(A)? 
(b) What bound can you give on lle2oiiA? 

38.4. Suppose A is a dense symmetric positive definite 1000 x 1000 matrix 
with K(A) = 100. Estimate roughly how many flops are required to solve 
Ax = b to ten-digit accuracy by (a) Cholesky factorization, (b) Richardson 
iteration with the optimal parameter a (Exercise 35.3), and (c) CG. 

38.5. We have described CG as an iterative minimization of the function 
r,o(x) of (38.7). Another way to minimize the same function-far slower, in 
general-is by the method of steepest descent. 

(a) Derive the formula Vr,o(x) = -r for the gradient of r,o(x). Thus the steepest 
descent iteration corresponds to the choice Pn = r n instead of Pn = r n +PnPn-1 

in Algorithm 38.1. 

(b) Determine the formula for the optimal step length an of the steepest 
descent iteration. 
(c) Write down the full steepest descent iteration. There are three operations 
inside the main loop. 

38.6. Let A be the 100 x 100 tridiagonal symmetric matrix with 1, 2, ... , 100 
on the diagonal and 1 on the sub- and superdiagonals, and set b = ( 1, 1, ... , 1 )T. 
Write a program that takes 100 steps of the CG and also the steepest descent 
iteration to approximately solve Ax = b. Produce a plot with four curves 
on it: the computed residual norms llr nll2 for CG, the actual residual norms 
lib - Axnlb for CG, the residual norms llr nll2 for steepest descent, and the 
estimate 2 ( y'K.- 1 )n / ( y'K. + 1 )n of Theorem 38.5. Comment on your results. 



Lecture 39. Biorthogonalization Methods 

Not all Krylov subspace iterations for nonsymmetric systems involve recur­
rences of growing length and growing cost. Methods based on three-term 
recurrences have also been devised, and they are the most powerful nonsym­
metric iterations available today. The price to be paid, at least for some of the 
iterations in this category, is that one must work with two Krylov subspaces 
rather than one, generated by multiplications by A* as well as A. 

Where We Stand 

On p. 245 we presented a table of Krylov subspace matrix iterations: 

Ax=b Ax=.\x 

A=A* CG Lanczos 

GMRES 
CGN Arnoldi 

BCG et al. 

Our discussions of three of these boxes are now complete, and as for the 
fourth, lower-left position, we have already discussed GMRES. In this lecture 
we turn to the final two lines of the table. We spend just a moment on CGN, 
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a simple and easily analyzed algorithm, and then move to our main subject, 
the biorthogonalization methods represented by the entry "BCG et al." 

CGN = CG Applied to the Normal Equations 

Let A E cmxm be nonsingular but not necessarily hermitian, so that Ax = b, 
for any b E em, is a nonsingular square system of equations. One of the 
simplest methods for solving such a system is to apply the CG iteration to 
the normal equations (11.9), 

A*Ax = A*b. (39.1) 

(The matrix A*A is not formed explicitly, which would require m3 :O.ops. In­
stead, each matrix-vector product A*Av is evaluated in two steps as A*(Av).) 
Since A is nonsingular, A*A is hermitian positive definite, or symmetric pos­
itive definite if A is real. Thus the theorems of the last lecture apply, and 
rapid convergence can be expected if the eigenvalues of A *A are favorably dis­
tributed. This method goes by the name ofCGN (also CGNR), which roughly 
stands for "CG applied to the normal equations." 

Since we have already analyzed the behavior of CG, nothing new is needed 
to understand the behavior of CGN. H the initial guess is x0 = 0, as in 
Algorithm 38.1, then from Theorem 38.1 we see that the later iterates belong 
to a Krylov subspace generated by A*A: 

Xn E {A*b, (A*A)A*b, ... 1 (A*A)n-l A*b}. (39.2) 

From Theorem 38.2 we know that the A*A-norm of the error is minimized 
over this space at each step, and since llenii~·A = e:A*Ae" = IIAenll~ = llrnll2, 
this is another way of saying that the 2-norm of the residual r" = b - Ax" is 
minimized: 

(39.3) 

Thus CGN, like GMRES, is a minimal residual method, but since the Krylov 
subspaces (33.5) and (39.2) are different, these two methods are by no means 
equivalent. 

According to Theorem 38.3, the convergence of CGN is controlled by the 
eigenvalues of A *A. These numbers are equal to the squares of the singular 
values of A. Thus the convergence of CGN is determined by the singular 
values of A, and in principle has nothing to do with the eigenvalues of A. 
The fact that squares are involved is unfortunate, however. If A has condition 
number,, then A*A has condition number K.2, and the analogue of (38.10) for 
CGN becomes 

llr nll2 < 2 ("'- 1)". 
llrolb - K+ 1 

{39.4) 

For large ,, this is far worse than (38.10); it implies that O(K.) iterations are 
required for convergence to a fixed accuracy, not 0( .fK, ). 
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This "squaring of the condition number" has given the CGN iteration a 
poor reputation, which, on balance, may be deserved. Nevertheless, for some 
problems CGN vastly outperforms alternative methods, since their conver­
gence depends on eigenvalues rather than singular values. All one needs is 
a matrix whose singular values are well behaved but whose eigenvalues are 
not, such as a well-conditioned matrix whose spectrum surrounds the origin 
in the complex plane. An extreme example is provided by the m x m circulant 
matrix of the form 

0 1 
0 1 

A= 0 1 {39.5) 
0 1 

1 0 

The singular values of this matrix are all equal to 1, but the eigenvalues are 
the mth roots of unity. GMRES requires m steps for convergence for a general 
right-hand side b, while CGN converges in one step. (See Exercise 39.1.) 

Another virtue of the CGN iteration is that since it is based on the nor­
mal equations, it applies without modification to least squares problems ( cf. 
Algorithm 11.1), where A is no longer square. Alternatively, some iterative 
methods for least squares problems are based on the block system {19.4) of 
Exercise 19 .1. 

Tridiagonal Biorthogonalization 

The Lanczos iteration, as we saw in Lecture 36, is a process of tridiagonal 
orthogonalization. If carried a full m steps (in exact arithmetic), it would 
produce a unitary reduction {36.5) of a hermitian matrix to tridiagonal form: 
A=QTQ*. 

If A is not hermitian, such a reduction is not possible in general: we must 
give up either the unitary transformations or the final tridiagonal form. The 
Arnoldi iteration, a process of Hessenberg orthogonalization, does the latter. 
If carried a full m steps, it would produce a unitary reduction {33.12) of an 
arbitrary square matrix to Hessenberg form: A= QHQ*. 

Biorthogonalization methods are based on the opposite choice. If we insist 
on a tridiagonal result but give up the use of unitary transformations, we 
have a process of tridiagonal biorthogonalization: A = VTV-1, where V is 
nonsingular but generally not unitary (Figure 39.1). Taking the adjoint gives 
the equivalent equation A*= v-*T*(v-•)-1• (Recall from p. 12 that v-• = 
(V*)-1 = (V-1)*.) The term "biorthogonal" refers to the fact that although 
the columns of V are not orthogonal to each other, they are orthogonal to the 
columns of v-•, as follows trivially from the identity (V-*)*V = v-1v =I. 

To begin to make this idea into an iterative algorithm, we must see what 
is involved for n < m. Let V be a nonsingular matrix such that A = VTV-1 
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BCG 
CGS 
QMR 
Bi-CGSTAB 

Figure 39.1. Classification of Krylov subspace itemtions. If the matrix is 
hermitian (top row}, then it can be orthogonalized by a three-term recurrence 
relation-a tridiagonal matrix. If it is not hermitian, one must give up either 
the tridiagonal structure or the orthogonality. 

with T tridiagonal, and define w = v-·. Let V; and W; denote the jth 
columns of V and W, respectively. These vectors are biorthogonal in the 
sense that 

w!v. =fl .. 
I J IJ7 (39.6) 

where oii is the Kronecker delta function (p. 14). For each n with 1 ~ n ~ m, 
following (33.1), define them x n matrices 

{39.7) 

In matrix form, the biorthogonality condition can be written 

where I" is the identity of dimension n. 
We can now write down the key formulas that are the basis of biorthogo­

nalization methods. For the Lanczos iteration, we had (36.5) and {36.6), 

For the Arnoldi iteration, we had (33.12) and {33.13), 
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These are the corresponding formulas for biorthogonalization methods: 

AVn = vn+1Tn, 

A*Wn = Wn+l§n, 

Tn = s; = w:Avn. 

(39.8) 

(39.9) 

(39.10) 

Here vn and wn have dimensions m X n, Tn+l and §n+l are (nonhermitian) 
tridiagonal matrices with dimensions ( n + 11 x n, and Tn = s; is the '!! x n 
matrix obtained by deleting the last row of Tn+l or the last column of s;+l. 

In analogy to the developments of p. 252, (39.8) can be displayed as 

A 

which corresponds to the three-term recurrence relation 

Similarly, (39.9) takes the form 

A* 

corresponding to 

t:t1 731 
"Y1 a2 732 

"Y2 lis 

{39.11) 

73n-1 
"Yn-1 an 

"fn 

{39.12) 

(We have not seen these bars for complex conjugation before, because in the 
last three lectures, we assumed that A was real.) 

As usual with Krylov subspace iterations, these equations suggest an algo­
rithm. Begin with vectors v1 and w1 that are arbitrary except for satisfying 
viw1 = 1, and set {30 ='Yo = 0 and v0 = w0 = 0. Now, for each n = 1, 2, ... , 
set an = w;Avn, as follows from (39.6) and {39.11) or (39.12). The vec­
tors vn+l and wn+l are then determined by {39.11) and {39.12) up to scalar 
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factors. These factors may be chosen arbitrarily, subject to the normaliza­
tion w!+lvn+l = 1, whereupon !3n+l and 'Yn+l are determined by (39.11) and 
(39.12). 

The vectors generated by the procedure just described lie in the Krylov 
subspaces 

v" E (v11 Av1 , ••• , A"-1v1), w" E (w1 , A*w11 ••• , (A*)"-1w1). (39.13) 

For a generic matrix, in exact arithmetic, the procedure will run to completion 
after m steps, but for certain special matrices there may also be a breakdown 
of the process before this point. If v. = 0 or w" = 0 at some step, an invariant 
subspace of A or A* has been found: the tridiagonal matrix Tis reducible (cf. 
Exercise 33.2). Alternatively, it may also happen that v" f. 0 and w" f. 0 but 
w!vn = 0. The possibility of this more serious kind of breakdown is present 
in most biorthogonalization methods. As in other areas of numerical analysis, 
the fact that exact breakdown is possible for certain problems implies that 
near-breakdown may occur for many other problems, with potentially adverse 
consequences in floating point arithmetic. Some methods for coping with these 
phenomena are mentioned at the end of this lecture. 

BCG = Biconjugate Gradients 

One way to use the biorthogonalization process just described is to compute 
eigenvalues: as n - oo, some eigenvalues ofT" may converge rapidly to some 
eigenvalues of A. Another application, which we shall now briefly discuss, is 
the solution of nonsingular systems of equations Ax = b. The classic algorithm 
of this type is known as biconjugate gradients or BCG. 

The principle of BCG is as follows. We take v1 = b, so that the first 
Krylov subspace in (39.13) becomes X:,"= (b, Ab, ... , A•-1b). Recall that the 
principle of GMRES is to pick x. E X:," so that the orthogonality condition 

GMRES: (39.14) 

is satisfied, where r" = b - Ax" is the residual corresponding to x" (Fig­
ure 35.1). This choice has the effect of minimizing llrnll, the 2-norm of the 
residual. The principle of the BCG algorithm is to pick x" in the same sub­
space, x" EX:,"' but to enforce the orthogonality condition 

BCG: (39.15) 

Here w1 E em is an arbitrary vector satisfying wiv1 = 1; in applications one 
sometimes takes w1 = vtfllv1 11 2 . Unlike (39.14), this choice does not minimize 
llrnll2, and it is not optimal from the point of view of minimizing the number 
of iterations. Its advantage is that it can be implemented with three-term 
recurrences rather than the (n + 1)-term recurrences of GMRES. 
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Without giving details of the derivation, we now record the BCG algorithm 
in its standard form. What follows should be compared with Algorithm 38.1, 
the CG algorithm. The two are the same except that the sequence of search 
directions {p,.} of CG has become two sequences {p,.} and {q,.}, and the 
sequence of residuals {r,.} ofCG has become two sequences {r,.} and {s,.}. 

Algorithm 39.1. Biconjugate Gradient (BCG) Iteration 

x0 = 0, p0 = r0 = b, q0 = s0 = arbitrary 

for n = 1,2,3, ... 

an= (s:_1ra-1)/(q:_1APn-1) 

x,. = x,._1 + a,.Pn-1 

r" = r n-1 - anAPn-1 

s,. = sn-1 - a,.A*qn-1 

/3,. = (s:r,.)/(s:_1rn_1) 

P,. = r,. + fJ,.Pa-1 

q,. = s,. + f3nqa-1 

As in Theorem 38.1, it is readily shown that s:r; = 0 and q:AP; = 0 for j < n. 

Example 

In Figure 38.1 we illustrated the convergence of the CG iteration for a 500 x 500 
sparse symmetric positive definite matrix dependent on a parameter r. To 
illustrate the convergence of BCG, consider the same matrix with one change: 
the signs of all the entries are randomized. This makes the matrix no longer 
hermitian, and it changes the dominant entries on the diagonal to 1 and -1 
at random, rather than all1, so that the eigenvalues are clustered around 1 
and -1 instead of just 1. 

Figure 39.2 shows the convergence of GMRES and BCG for such a matrix 
with r = 0.01. Considering first the GMRES curve, we note that the con­
vergence is half as fast as in Figure 38.1, with essentially no progress at each 
odd-numbered step, but steady progress at each even step. This odd-even 
effect is a result of the approximate ±1 symmetry of the matrix: a polynomial 
p(z) of degree 2k + 1 with p(O) = 1 can be no smaller at 1 and -1 than a 
corresponding polynomial of degree 2k. Turning now to the BCG curve, we 
see that the convergence is comparable in an overall sense, but it is no longer 
monotonic, showing spikes of magnitude as great as about 102 at each odd­
numbered step. The accuracy attained at the end has also suffered by more 
than a digit. All of these features are typical of BCG computations. 
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Figure 39.2. Comparison of GMRES and BCG for the 500 x 500 matrix labeled 
r = 0.01 in Figure 38.1, but with the signs of the entries randomized. 

The horizontal axis in Figure 39.2 is the step number n, which is not the 
same as the computational cost. At each step, GMRES requires one matrix­
vector multiplication involving A, whereas BCG requires multiplications in­
volving both A and A*. For problems where matrix-vector multiplications 
dominate the work and enough storage is available, GMRES may consequently 
be twice as fast as BCG or faster. Here, however, the matrix is sparse enough 
that the work associated with handling long recurrences is significant, and in 
fact, the BCG calculation of Figure 39.2 was faster than the GMRES calcu­
lation by better than a factor of 2. 

QMR and Other Variants 

BCG has one great advantage over GMRES: it involves three-term recurrences, 
enabling the work per step and the storage requirements to remain under 
control even when many steps are needed. On the other hand, it has two 
disadvantages. One is that in comparison to the monotonic and often rapid 
convergence of GMRES as a function of step number, its convergence is slower 
and often erratic, sometimes far more erratic than in Figure 39.2. Irregular 
convergence is unattractive, and it may have the consequence of reducing the 
ultimately attainable accuracy because of rounding errors (Exercise 39.4). In 
the extreme, it becomes the phenomenon of breakdown of the iteration, where 
an inner product becomes zero and no further progress is possible, even though 
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the system of equations may be well-conditioned. 
The other problem with BCG is that it requires multiplication by A • as well 

as A. Depending on how these products are implemented both mathematically 
and in terms of computer architecture, this may be anything from a minor 
additional burden to effectively impossible. 

In response to these two problems, beginning in the 1980s, more than a 
dozen variants of BCG have been proposed. Here are some of the best known 
of these; references are given in the Notes. 

Look-ahead Lanczos (Parlett, Taylor, and Liu, 1985) 
CGS =conjugate gradients squared (Sonneveld, 1989) 
QMR =quasi-minimal residuals (Freund and Nachtigal, 1991) 
Bi-CGSTAB =stabilized BCG (van der Vorst, 1992) 
TFQMR =transpose-free QMR (Freund, 1993) 

We shall say a few words about these methods but give no details. 
The look-ahead Lanczos algorithm is based on the fact that when a break­

down is about to take place, it can be avoided by taking two or more steps of 
the iteration at once rather than a single step. The original idea of Parlett et 
al. has been developed extensively by later authors and is incorporated, for ex­
ample, in the version of the QMR algorithm recommended by its authors. The 
phenomenon of breakdown can be shown to be equivalent to the phenomenon 
of square blocks of identical entries in the table of Pade approximants to a 
function, and the look-ahead idea amounts to a method of stepping across 
such blocks in one step. In practice, of course, one does not just test for exact 
breakdowns; a notion of near-breakdown defined by appropriate tolerances is 
involved. 

The CGS algorithm is based on the discovery that if two steps of the 
BCG are combined into one in a different manner, so that the algorithm 
is "squared," then multiplication by A* can be avoided. The result is a 
"transpose-free" method that sometimes converges up to twice as quickly as 
BCG1 though the convergence is also twice as erratic. 

The QMR algorithm is based on the observation that although three-term 
recurrences cannot be used to minimize II r" II, they can be used to minimize a 
different, data-dependent norm that in practice is usually not so far from llr" II· 
This may have a pronounced effect on the smoothness of convergence, signifi­
cantly reducing the impact of rounding errors. The Bi-CGSTAB algorithm is 
another method that also significantly smooths the convergence rate of BCG, 
and TFQMR is a variant of QMR that combines its smooth convergence with 
the avoidance of the need for A •. 

Most recently, efforts have been directed at combining these three virtues of 
smoothed convergence curves, look-ahead to avoid breakdowns, and transpose­
free operation. So far, all three have not yet been combined fully satisfactorily 
in a single algorithm, but this research area is young. 



312 PART VI. ITERATIVE METHODS 

Exercises 

39.1. Consider a problem Ax= b for the matrix (39.5) of dimension m. 
(a) Show that the singular values are all 1 and that this implies that CGN 
converges in one step. 
(b) Show that the eigenvalues are the mth roots of unity and that this implies 
that GMRES requires m steps to converge for general b. 

(c) This matrix A has so much structure that one does not need to consider 
eigenvalues or singular values to understand its convergence behavior. In 
particular, explain by an elementary argument why GMRES takes m steps to 
converge for the right-hand side b = (1, 0, 0, ... , O)T. 

39.2. As a converse to Exercise 39.1, devise an example of a matrix of arbi­
trary dimension m with almost the opposite property: GMRES converges in 
two steps, but CGN requires m steps. 

39.3. (a) If A is hermitian and s0 is chosen appropriately, Algorithm 39.1 
reduces to Algorithm 38.1. Confirm this statement and determine the appro­
priate s0• 

(b) Suppose A is a complex matrix that is symmetric but not hermitian. Show 
that with a different choice of s0 , Algorithm 39.1 again reduces to an iteration 
involving just one three-term recurrence. 

39.4. Figure 39.2 illustrated that if the convergence curve for a biorthogo­
nalization method has spikes in it, this may affect the attainable accuracy in 
floating point arithmetic. Without trying to be rigorous, explain why this is 
so, and comment on the analogy with growth factors in Gaussian elimination 
(Lecture 22). 

39.5. Which of CG, GMRES, CGN, or BCG would you expect to be most 
effective for the following m x m problems Ax = b, and why? 
(a) A dense nonhermitian matrix with m = 10\ all but three of whose eigen­
values are approximately equal to -1. 

(b) The same, but with all but three of the eigenvalues scattered about the 
region -10 ~Real(.\)~ 10, -1 ~ Imag(.X) ~ 1. 

(c) A sparse nonhermitian matrix with m = 106 but only 107 nonzero entries, 
with eigenvalues as in (a). 
(d) A sparse hermitian matrix with m = 105 whose eigenvalues are scattered 
through the interval [1, 100). 

(e) The same, except for outlying eigenvalues at 0.01 and 10,000. 

(f) The same, but with additional outliers at -1, -10, and -100. 

(g) A sparse, normal matrix with m = 105 whose eigenvalues are complex 
numbers scattered about the annulus 1 ~ I-XI ~ 2. 



Lecture 40. Preconditioning 

The convergence of a matrix iteration depends on the properties of the matrix­
the eigenvalues, the singular values, or sometimes other information. One of 
the developments that made it possible for these methods to take off in the 
1970s and 1980s was the discovery that in many cases, the problem of in­
terest can be transformed so that the properties of the matrix are improved 
drastically. This process of "preconditioning" is essential to most successful 
applications of iterative methods. 

Preconditioners for Ax = b 

In the abstract, the idea of preconditioning a system of equations is elementary. 
Suppose we wish to solve an m x m nonsingular system 

Ax=b. 

For any nonsingular m x m matrix M, the system 

M-1Ax = M- 1b 

(40.1) 

(40.2) 

has the same solution. If we solve (40.2) iteratively, however, the convergence 
will depend on the properties of M-1A instead of those of A. If this pre­
conditioner M is well chosen, (40.2) may be solved much more rapidly than 
(40.1). 

For this idea to be useful, of course, it must be possible to compute the 
operation represented by the product M-1A efficiently. As usual in numerical 
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linear algebra, this will not mean an explicit construction of the inverse M-1, 

but the solution of systems of equations of the form 

My=c. (40.3) 

Two extreme cases come quickly to mind. If M =A, then (40.3) is the same 
as (40.1), so applying the preconditioner is as hard as solving the original 
problem, and nothing has been gained. If M = I, then (40.2) is the same 
as (40.1), so applying the preconditioner is a triviality, but it accomplishes 
nothing. Between these extremes lie the useful preconditioners, structured 
enough so that (40.3) can be solved quickly, but close enough to A in some 
sense that an iteration for (40.2) converges more quickly than an iteration for 
(40.1). 

What does it mean for M to be "close enough to A?" Answering this 
question is the matter that has occupied our attention throughout this part of 
the book. If the eigenvalues of M-1A are close to 1 and IIM-1A- Ilia is small, 
then any of the iterations we have discussed can be expected to converge 
quickly (Exercise 40.1). However, preconditioners that do not satisfy such 
a strong condition may also perform well. For example, the eigenvalues of 
M-1A could be clustered about a number other than 1, and there might be 
some outlier eigenvalues far from the others. For another example, if CGN is 
the iteration, it is enough for the singular values of M-1A to be clustered, not 
the eigenvalues. Detailed answers to questions of convergence rates depend, 
as always, on problems of polynomial approximation in the complex plane; all 
that changes for the analysis of preconditioners as opposed to basic iterations 
is that now it is the properties of M-1A rather than A that are of interest. 

For most problems involving iterations other than CGN, fortunately, a 
simple rule of thumb is adequate. A preconditioner M is good if M-1A is not 
too far from normal and its eigenvalues are clustered. 

Left, Right, and Hermitian Preconditioners 

What we have described may be more precisely termed a left preconditioner. 
Another idea is to transform Ax = b into AM-1y = b, with x = M-1y, in 
which case Miscalled a right preconditioner. Both left and right precondi­
tioners are used in practice, and sometimes both are used at once. To keep 
the discussion simple, we shall confine our attention to the former. 

If A is hermitian positive definite, then it is usual to preserve this property 
in preconditioning. Suppose M is also hermitian positive definite, with M = 
CC* for some C. Then (40.1) is equivalent to 

(40.4) 

The matrix in brackets is hermitian positive definite, so this equation can 
be solved by CG or related iterations. At the same time we observe that 
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since c-1 Ac-* is similar to c-•c-1 A = M-1A, it is enough to examine the 
eigenvalues of the nonhermitian matrix M-1A to investigate convergence. 

Example 

Figure 40.1 presents an example of a preconditioned CG iteration for a sym­
metric positive definite matrix. The matrix A is adapted from Exercise 36.3: 
it is the 1000 x 1000 symmetric matrix whose entries are all zero except for 
aii = 0.5 + .;i on the diagonal, aii = 1 on the sub- and superdiagonals, and 
aii = 1 on the 100th sub- and superdiagonals, i.e., for li-il = 100. The right­
hand side is b = (1, 1, ... , 1)T. As the figure shows, a straight CG iteration 
for this matrix converges slowly, achieving about five-digit residual reduction 
after forty iterations. Since the matrix is very sparse, this is an improvement 
over a direct method, but one would like to do better. 

As it happens, we can do much better with a simple diagonal precondi­
tioner. Take M = diag(A), the diagonal matrix with entries mii = 0.5 + .;i. 
To preserve symmetry, set C = v'M and consider a new iteration precondi­
tioned as in (40.4). The figure shows that thirty steps of the iteration now 
give convergence to fifteen digits. 

1rl 
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10_,.o'----s~--1-'-0--1.._s __ 20....__ _ ___._25 __ _._30 __ ....~.35 __ __,40 n 

Figure 40.1. CG and preconditioned CG convergence curves for the 1000 x 1000 
sparse matrix A described in the text (the matrix of Exercise 36.3 plus 0.51 ). 
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Survey of Preconditioners for Ax = b 

The preconditioners used in practice are sometimes as simple as this one, 
but they are often far more complicated. Rather than consider one or two 
examples in detail, we shall take the opposite course and survey at a high 
level the wide range of preconditioning ideas that have been found useful over 
the years. Details can be found in the references listed in the Notes. 

Diagonal scaling or Jacobi. Perhaps the most important preconditioner is 
the one just mentioned in the example: M = diag(A), provided that this 
matrix is nonsingular. For certain problems, this transformation alone is 
enough to make a slow iteration into a fast one. More generally, one may take 
M = diag(c) for a suitably chosen vector c E em. It is a hard mathematical 
problem to determine a vector c such that ii:(M-1A) is exactly minimized, but 
fortunately, nothing like the exact minimum is needed in practice, and in any 
case, as the rule of thumb above shows, there is more to preconditioning than 
minimizing the condition number. 

Incomplete Cholesky or L U factorization. Another star preconditioner is 
the one that made the idea of preconditioning famous in the 1970s. Suppose 
A is sparse, having just a few nonzeros per row. The difficulty with methods 
such as Gaussian elimination or Cholesky factorization is that these processes 
destroy zeros, so that if A = R* R, for example, then the factor R will usually 
not be very sparse. However, suppose a matrix il is computed by Cholesky­
like formulas but allowed to have nonzeros only in positions where A has 
nonzeros, and we define M = il• fl. This incomplete Cholesky preconditioner 
may be highly effective for some problems; the acronym ICCG for incomplete 
Cholesky conjugate gradients is used. Similar ILU or incomplete LU precon­
ditioners are useful in nonsymmetric cases. Numerous variants of the idea of 
incomplete factorization have been proposed and developed extensively. 

These two examples of preconditioners are defined without reference to the 
origin of the underlying problem Ax = b. The best general advice one can 
give for designing preconditioners, however, is to examine that problem and 
take advantage of its structure. If it were simpler in a certain way, one asks, 
could it be solved quickly? If so, that simpler version of the problem may 
be an effective preconditioner. Most of our remaining examples are in this 
category. 

Coarse-grid approximation. A discretization of a partial differential or 
integral equation on a fine grid may lead to a huge system of equations. The 
analogous discretization on a coarser grid, however, may lead to a small system 
that is easy to solve. If a method can be found to transfer solutions on 
the coarse grid to the fine grid and back again, e.g. by interpolation, then a 
powerful preconditioner may be obtained of the following schematic form: 

M = (transfer to fine grid) o Acoarse o (transfer to coarse grid). (40.5) 

Typically a preconditioner of this kind does a good job of handling the low-
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frequency components of the original problem, leaving the high frequencies to 
be treated by the Krylov subspace iteration. When this technique is iterated, 
resulting in a sequence of coarser and coarser grids, we obtain the idea of 
multigrid iteration. 

Local approximation. A coarse-grid approximation takes into account some 
of the larger-scale structure of a problem while ignoring some of the finer struc­
ture. A kind of a converse to this idea is relevant to problems Ax = b where A 
represents coupling between elements both near and far from one another. The 
elements may be physical objects such as particles, or they may be numerical 
objects such as the panels introduced in a boundary element discretization. 
In any case, it may be worth considering the operator M analogous to A but 
with the longer-range interactions omitted-a short-range approximation to 
A. In the simplest cases of this kind, M may consist simply of a few of the 
diagonals of A near the main diagonal, making this a generalization of the 
idea of a diagonal preconditioner. 

Block preconditioners and domain decomposition. Throughout numerical 
linear algebra, most algorithms expressed in terms of the scalar entries of a 
matrix have analogues involving block matrices. An example is that a diagonal 
or Jacobi preconditioner may be generalized to block-diagonal or block-Jacobi 
form. This is another kind of local approximation, in that local effects within 
certain components are considered while connections to other components are 
ignored. In the past decade ideas of this kind have been widely generalized 
in the field of domain decomposition, in which solvers for certain subdomains 
of a problem are composed in :O.exible ways to form preconditioners for the 
global problem. These methods combine mathematical power with natural 
parallelizability. 

Low-order discretization. Often a differential or integral equation is dis­
cretized by a higher-order method such as a fourth-order finite difference 
formula or a spectral method, bringing a gain in accuracy but making the 
discretization stencils bigger and the matrix less sparse. A lower-order ap­
proximation of the same problem, with its sparser matrix, may be an effective 
preconditioner. Thus, for example, one commonly encounters finite difference 
and finite element preconditioners for spectral discretizations. 

Constant-coefficient or symmetric approximation. Special techniques, like 
fast Poisson solvers, are available for certain partial differential equations with 
constant coefficients. For a problem with variable coefficients, a constant­
coefficient approximation implemented by a fast solver may make a good pre­
conditioner. Analogously, if a differential equation is not self-adjoint but is 
close in some sense to a self-adjoint equation that can be solved more easily, 
then the latter may sometimes serve as a preconditioner. 

Splitting of a multi-term operator. Many applications involve combinations 
of physical effects, such as the diffusion and convection that combine to make 
up the Navier-Stokes equations of :O.uid mechanics. The linear algebra result 
may be a matrix problem Ax = b with A = A1 + A2 (or with more than two 
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terms, of course), often embedded in a nonlinear iteration. If A1 or A2 is easily 
invertible, it may serve as a good preconditioner. 

Dimensional splitting or ADJ. Another kind of splitting takes advantage 
of the fact that an operator such as the Laplacian in two or three dimensions 
is composed of analogous operators in each of the dimensions separately. This 
idea may form the basis of a preconditioner, and in one form goes by the name 
of AD! or alternating direction implicit methods. 

One step of a classical iterative method. In this book we have not discussed 
the "classical iterations" such as Jacobi, Gauss-Seidel, SOR, or SSOR, but 
one or more steps of these iterations-particularly Jacobi and SSOR-often 
serve excellently as preconditioners. This is also one of the key ideas behind 
multigrid methods. 

Periodic or convolution approximation. Throughout the mathematical sci­
ences, boundary conditions are a source of analytical and computational dif­
ficulty. If only there were no boundary conditions, so that the problem were 
posed on a periodic domain! This idea can sometimes be the basis of a good 
preconditioner. In the simplest linear algebra context, it becomes the idea of 
preconditioning a problem involving a Toeplitz matrix A (i.e., aiJ = ai-;) by 
a related circulant matrix M (mi.; = m(i-j)(modm)), which can be inverted in 
0( m log m) operations by a fast Fourier transform. This is a particularly well 
studied example in which M-1A may be far from the identity in norm but 
have highly clustered eigenvalues. 

Unstable direct method. Certain numerical methods, such as Gaussian 
elimination without pivoting, deliver inaccurate answers because of instability. 
If the unstable method is fast, however, why not use it as a preconditioner? 
This is the "fly by wire" approach to numerical computation: solve the problem 
carelessly but quickly, and embed that solution in a robust control system. It 
is a powerful idea. 

Polynomial preconditioners. Finally, we mention a technique that is dif­
ferent from the others in that it is essentially A-1 rather than A itself that is 
approximated by the preconditioner. A polynomial preconditioner is a matrix 
polynomial M-1 = p(A) with the property that p(A)A has better properties 
for iteration than A itself. For example, p(A) might be obtained from the first 
few terms of the Neumann series A-1 = I+ (I- A)+ (I- A)2 + · · ·, or from 
some other expression, often motivated by approximation theory in the com­
plex plane. Implementation is easy, based on the same "black box" used for 
the Krylov subspace iteration itself, and the coefficients of the preconditioner 
may sometimes be determined adaptively. 

Preconditioners for Eigenvalue Problems 

Though the idea has been developed more recently and is not yet as famous, 
preconditioners can be effective for eigenvalue problems as well as systems 
of equations. Some of the best-known techniques in this area are polynomial 
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acceleration, analogous to the polynomial preconditioning just described for 
systems of equations, shift-and-invert Arnoldi or the related rational Krylov 
iteration, which employ rational functions of A instead of polynomials, and 
the Davidson and Jacobi-Davidson methods, based on a kind of diagonal 
preconditioner. For example, shift-and-invert and rational Krylov methods 
are based on the fact that if r( z) is a rational function and {A;} are the 
eigenvalues of A, then the eigenvalues of r(A) are {r(.X;)}. If r(A) can be 
computed with reasonable speed and its eigenvalues are better distributed for 
iteration than those of A, this may be a route to fast calculation of eigenvalues. 

A Closing Note 

In ending this book with the subject of preconditioners, we find ourselves at 
the philosophical center of the scientific computing of the future. The tradi­
tional view of computer scientists is that a computational problem is finite: 
after a short or long calculation, one obtains the solution exactly. Over the 
years, however, this view has come to be appropriate to fewer and fewer prob­
lems. The best methods for large-scale computational problems are usually 
approximate ones, methods that obtain a satisfactorily accurate solution in a 
short time rather than an exact one in a much longer or infinite time. Nu­
merical analysis is indeed a branch of analysis, primarily, not algebra-even 
when the problems to be solved are from linear algebra. Further speculations 
on this phenomenon are presented in the Appendix. 

Nothing will be more central to computational science in the next century 
than the art of transforming a problem that appears intractable into another 
whose solution can be approximated rapidly. For Krylov subspace matrix iter­
ations, this is preconditioning. For the great range of computational problems, 
both continuous and discrete, we can only guess where this idea will take us. 

Exercises 

40.1. Suppose A= M -N, where M is nonsingular. Suppose III -M-1 Nll2 ~ 
1/2, and Misused as a preconditioner as in (40.2). 
(a) Show that if GMRES is applied to this preconditioned problem, then the 
residual norm is guaranteed to be six orders of magnitude smaller, or better, 
after twenty steps. 
(b) How many steps of CGN are needed for the same guarantee? 

40.2. Show that if a matrix A and a preconditioner M are hermitian positive 
definite, then the same CG convergence rate is obtained whether M is .used as 
a left preconditioner or a right preconditioner. Explain why this result does 
not hold for nonhermitian matrices and iterations such as GMRES, CGN, or 
BCG. 





Appendix. The Definition of Numerical 
Analysis 

by Lloyd N. Trefethen* 

What is numerical analysis? I believe that this is more than a philosophical 
question. A certain wrong answer has taken hold among both outsiders to 
the field and insiders, distorting the image of a subject at the heart of the 
mathematical sciences. 

Here is the wrong answer: 

Numerical analysis is the study of rounding errors. (Dl) 

The reader will agree that it would be hard to devise a more uninviting descrip­
tion of a field. Rounding errors are inevitable, yes, but they are complicated 
and tedious and -not fundamental. If (Dl) is a common perception, it is 
hardly surprising that numerical analysis is widely regarded as an unglam­
orous subject. In fact, mathematicians, physicists, and computer scientists 
have all tended to hold numerical analysis in low esteem for many years-a 
most unusual consensus. 

*This essay is reprinted from the November 1992 issue of SIAM News. It was reprinted 
previously in the March/ April 1993 issue of the Bulletin of the Institute of Mathematics 
and Iu Applications. 
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322 THE DEFINITION OF NUMERICAL ANALYSIS 

Of course nobody believes or asserts (D 1) quite as baldly as written. But 
consider the following opening chapter headings from some standard numerical 
analysis texts: 

Isaacson & Keller (1966): 1. Norms, arithmetic, and well-posed compu­
tations. 

Hamming (1971): 1. Roundoff and function evaluation. 

Dahlquist & Bjorck (1974): 1. Some general principles of numerical cal­
culation. 

2. How to obtain and estimate accuracy .... 

Stoer & Bulirsch (1980): 1. Error analysis. 

Conte & de Boor (1980): 1. Number systems and errors. 

Atkinson (1987): 1. Error: its sources, propagation, and anal­
ysis. 

Kahaner, Moler & Nash (1989): 1. Introduction. 
2. Computer arithmetic and computational 

errors. 

"Error" ... "roundoff'' ... "computer arithmetic" -these are the words that 
keep reappearing. What impression does an inquisitive college student get 
upon opening such books? Or consider the definitions of numerical analysis 
in some dictionaries: 

Webster's New Collegiate Dictionary (1973): "The study of quantita­
tive approximations to the solutions of mathematical problems includ­
ing consideration of the errors and bounds to the errors involved." 

Chambers 20th Century Dictionary (1983): "The study of methods of 
approximation and their accuracy, etc." 

The American Heritage Dictionary (1992): "The study of approximate 
solutions to mathematical problems, taking into account the extent of 
possible errors." 

"Approximations" ... "accuracy" ... "errors" again. It seems to me that these 
definitions would serve most effectively to deter the curious from investigating 
further. 

The singular value decomposition (SVD) affords another example of the 
perception of numerical analysis as the science of rounding errors. Although 
the roots of the SVD go back more than 100 years, it is mainly since the 1960s, 
through the work of Gene Golub and other numerical analysts, that it has 
achieved its present degree of prominence. The SVD is as fundamental an idea 
as the eigenvalue decomposition; it is the natural language for discussing all 
kinds of questions of norms and extrema involving nonsymmetric matrices or 
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operators. Yet today, thirty years later, most mathematical scientists and even 
many applied mathematicians do not have a working knowledge of the SVO. 
Most of them have heard of it, but the impression seems to be widespread 
that the SVO is just a tool for combating rounding errors. A glance at a few 
numerical analysis textbooks suggests why. In one case after another, the SVO 
is buried deep in the book, typically in an advanced section on rank-deficient 
least squares problems, and recommended mainly for its stability properties. 

I am convinced that consciously or unconsciously, many people think that 
{01) is at least half true. In actuality, it is a very small part of the truth. 
And although there are historical explanations for the influence of (0 1) in the 
past, it is a less appropriate definition today and is destined to become still 
less appropriate in the future. 

I propose the following alternative definition with which to enter the new 
century: 

Numerical analysis is the study of algorithms 
for the problems of continuous mathematics. 

(02) 

Boundaries between fields are always fuzzy; no definition can be perfect. But 
it seems to me that {02) is as sharp a characterization as you could come up 
with for most disciplines. 

The pivotal word is algorithms. Where was this word in those chapter 
headings and dictionary definitions? Hidden between the lines, at best, and 
yet surely this is the center of numerical analysis: devising and analyzing 
algorithms to solve a certain class of problems. 

These are the problems of continuous mathematics. "Continuous" means 
that real or complex variables are involved; its opposite is "discrete." A dozen 
qualifications aside, numerical analysts are broadly concerned with continuous 
problems, while algorithms for discrete problems are the concern of other 
computer scientists. 

Let us consider the implications of {02). First of all it is clear that since 
real and complex numbers cannot be represented exactly on computers, (02) 
implies that part of the business of numerical analysis must be to approximate 
them. This is where the rounding errors come in. Now for a certain set of 
problems, namely the ones that are solved by algorithms that take a finite 
number of steps, that is all there is to it. The premier example is Gaussian 
elimination for solving a linear system of equations Ax = b. To understand 
Gaussian elimination, you have to understand computer science issues such as 
operation counts and machine architectures, and you have to understand the 
propagation of rounding errors-stability. That's all you have to understand, 
and if somebody claims that {02) is just a more polite restatement of (01), 
you can't prove him or her wrong with the example of Gaussian elimination. 

But most problems of continuous mathematics cannot be solved by finite 
algorithms! Unlike Ax = b, and unlike the discrete problems of computer 
science, most of the problems of numerical analysis could not be solved exactly 



324 THE DEFINITION OF NUMERICAL ANALYSIS 

even if we could work in exact arithmetic. Numerical analysts know this, 
and mention it along with a few words about Abel and Galois when they 
teach algorithms for computing matrix eigenvalues. Too often they forget 
to mention that the same conclusion extends to virtually any problem with 
a nonlinear term or a derivative in it-zerofinding, quadrature, differential 
equations, integral equations, optimization, you name it. 

Even if rounding errors vanished, numerical analysis would remain. Ap­
proximating mere numbers, the task of floating point arithmetic, is indeed a 
rather small topic and maybe even a tedious one. The deeper business of nu­
merical analysis is approximating unknowns, not knowns. Rapid convergence 
of approximations is the aim, and the pride of our field. is that, for many 
problems, we have invented algorithms that converge exceedingly fast. 

These points are sometimes overlooked by enthusiasts of symbolic com­
puting, especially recent converts, who are apt to think that the existence of 
Maple or Mathematica renders Matlab and Fortran obsolete. It is true that 
rounding errors can be made to vanish in the sense that in principle, any finite 
sequence of algebraic operations can be represented exactly on a computer by 
means of appropriate symbolic operations. Unless the problem being solved 
is a finite one, however, this only defers the inevitable approximations to the 
end of the calculation, by which point the quantities one is working with may 
have become extraordinarily cumbersome. Floating point arithmetic is a name 
for numerical analysts' habit of doing their pruning at every step along the 
way of a calculation rather than in a single act at the end. Whichever way 
one proceeds, in floating point or symbolically, the main problem of finding a 
rapidly convergent algorithm is the same. 

In summary, it is a corollary of (D2) that numerical analysis is concerned 
with rounding errors and also with the deeper kinds of errors associated with 
convergence of approximations, which go by various names (truncation, dis­
cretization, iteration). Of course one could choose to make (D2) more explicit 
by adding words to describe these approximations and errors. But once words 
begin to be added it is hard to know where to stop, for (D2) also fails to men­
tion some other important matters: that these algorithms are implemented on 
computers, whose architecture may be an important part of the problem; that 
reliability and efficiency are paramount goals; that some numerical analysts 
write programs and others prove theorems; and most important, that all of 
this work is applied, applied daily and successfully to thousands of applica­
tions on millions of computers around the world. "The problems of continuous 
mathematics" are the problems that science and engineering are built upon; 
without numerical methods, science and engineering as practiced today would 
come quickly to a halt. They are also the problems that preoccupied most 
mathematicians from the time of Newton to the twentieth century. As much 
as any pure mathematicians, numerical analysts are the heirs to the great 
tradition of Euler, Lagrange, Gauss and the rest. If Euler were alive today, 
he wouldn't be proving existence theorems. 



THE DEFINITION OF NUMERICAL ANALYSIS 325 

* * * 
Ten years ago, I would have stopped at this point. But the evolution of 

computing in the past decade has given the difference between (Dl) and (D2) 
a new topicality. 

Let us return to Ax= b. Much of numerical computation depends on linear 
algebra, and this highly developed subject has been the core of numerical 
analysis since the beginning. Numerical linear algebra served as the subject 
with respect to which the now standard concepts of stability, conditioning, and 
backward error analysis were defined and sharpened, and the central figure in 
these developments, from the 1950s to his death in 1986, was Jim Wilkinson. 

I have mentioned that Ax = b has the unusual feature that it can be solved 
in a finite sequence of operations. In fact, Ax= b is more unusual than that, 
for the standard algorithm for solving it, Gaussian elimination, turns out to 
have extraordinarily complicated stability properties. Von Neumann wrote 
180 pages of mathematics on this topic; Turing wrote one of his major papers; 
Wilkinson developed a theory that grew into two books and a career. Yet 
the fact remains that for certain n x n matrices, Gaussian elimination with 
partial pivoting amplifies rounding errors by a factor of order 2", making it a 
useless algorithm in the worst case. It seems that Gaussian elimination works 
in practice because the set of matrices with such behavior is vanishingly small, 
but to this day, nobody has a convincing explanation of why this should be 
so.t 

In manifold ways, then, Gaussian elimination is atypical. Few numerical 
algorithms have such subtle stability properties, and certainly no other was 
scrutinized in such depth by von Neumann, Turing, and Wilkinson. The 
effect? Gaussian elimination, which should have been a sideshow, lingered in 
the spotlight while our field was young and grew into the canonical algorithm 
of numerical analysis. Gaussian elimination set the agenda, Wilkinson set the 
tone, and the distressing result has been (D1). 

Of course there is more than this to the history of how (D1) acquired 
currency. In the early years of computers, it was inevitable that arithmetic 
issues would receive concerted attention. Fixed point computation required 
careful thought and novel hardware; floating point computation arrived as a 
second revolution a few years later. Until these matters were well understood 
it was natural that arithmetic issues should be a central topic of numerical 
analysis, and, besides this, another force wa.s at work. There is a general 
principle of computing that seems to have no name: the faster the computer, 
the more important the speed of algorithms. In the early years, with the early 
computers, the dangers of instability were nearly as great as they are today, 
and far less familiar. The gaps between fast and slow algorithms, however, 
were narrower. 

t This was written before the results of Lecture 22 were developed. 
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A development has occurred in recent years that reflects how far we have 
come from that time. Instances have been accumulating in which, even though 
a finite algorithm exists for a problem, an infinite algorithm may be better. 
The distinction that seems absolute from a logical point of view turns out 
to have little importance in practice-and in fact, Abel and Galois notwith­
standing, large-scale matrix eigenvalue problems are about as easy to solve in 
practice as linear systems of equations. For Ax = b, iterative methods are be­
coming more and more often the methods of choice as computers grow faster, 
matrices grow larger and less sparse (because of the advance from 2D to 3D 
simulations), and the O(N3) operation counts of the usual direct (= finite) 
algorithms become ever more painful. The name of the new game is itera­
tion with preconditioning. Increasingly often it is not optimal to try to solve 
a problem exactly in one pass; instead, solve it approximately, then iterate. 
Multigrid methods, perhaps the most important development in numerical 
computation in the past twenty years, are based on a recursive application of 
this idea. 

Even direct ~gorithms have been affected by the new manner of com­
puting. Thanks to the work of Skeel and others, it has been noticed that 
the expense of making a direct method stable-say, of pivoting in Gaussian 
elimination-may in certain contexts be cost-ineffective. Instead, skip that 
step-solve the problem directly but unstably, then do one or two steps of 
iterative refinement. "Exact" Gaussian eliinination becomes just another pre­
conditioner! 

Other problems besides Ax = b have undergone analogous changes, and 
the famous example is linear programming. Linear programming problems 
are mathematically finite, and for decades, people solved them by a finite 
algorithm: the simplex method. Then Karmarkar announced in 1984 that 
iterative, infinite algorithms are sometimes better. The result has been con­
troversy, intellectual excitement, and a perceptible shift of the entire field of 
linear programming away from the rather anomalous position it has tradition­
ally occupied towards the mainstream of numerical computation. 

I believe that the existence of finite algorithms for certain problems, to­
gether with other historical forces, has distracted us for decades from a bal­
anced view of numerical analysis. Rounding errors and instability are impor­
tant, and numerical analysts will always be the experts in these subjects and 
at pains to ensure that the unwary are not tripped up by them. But our cen­
tral mission is to compute quantities that are typically uncomputable, from 
an analytical point of view, and to do it with lightning speed. For guidance to 
the future we should study not Gaussian elimination and its beguiling stability 
properties, but the diabolically fast conjugate gradient iteration-or Green­
gard and Rokhlin's O(N) multipole algorithm for particle simulations-or the 
exponential convergence of spectral methods for solving certain PDEs---or the 
convergence in 0(1) iteration achieved by multigrid methods for many kinds 
of problems-or even Borwein and Borwein's magical AGM iteration for de-
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termining 1,000,000 digits of 1r in the blink of an eye. That is the heart of 
numerical analysis. 

Notes. Many people, too numerous to name, provided comments on drafts 
of this essay. Their suggestions led me to many publications that I would 
otherwise not have found. 

I do not claim that any of the ideas expressed here are entirely new. In fact, 
30 years ago, in his Elements of Numerical Analysis, Peter Henrici defined nu­
merical analysis as "the theory of constructive methods in mathematical anal­
ysis." Others have expressed similar views; Joseph Traub (Communications 
of the ACM, 1972), for example, defined numerical analysis as "the analysis 
of continuous algorithms." For that matter, both the Random House and the 
Oxford English dictionaries offer better definitions than the three quoted here. 

And should the field be called ''numerical analysis," "scientific computing," 
or something else entirely? ("mathematical engineering?"). That is another 
essay. 





Notes 

There are a number of textbooks and monographs on numerical linear algebra, 
and a particularly notable group have been appearing in the second half of 
the 1990s. Rather than give a full survey, we highlight three current books 
that every reader who wishes to go further with this subject should be aware 
of: 

• Golub and Van Loan, Matrix Computations, 3rd ed. [GoVa96], 
• Higham, Accuracy and Stability of Numerical Algorithms [Hig96], 
• Demmel, Applied Numerical Linear Algebra [Dem97]. 

The book by Golub and Van Loan, in its earlier editions, has long been the 
bible of this field--encyclopedic in its coverage and its references to the liter­
ature. The book by Higham is another encyclopedic treatment, exceedingly 
careful about details, with an emphasis on stability but full of algorithmic 
information and insights of all kinds. The book by Demmel has almost the 
same title as the present volume but is entirely different in style, being more 
focused on latest developments and considerations of computer architecture, 
less on mathematical foundations. 

Other texts on numerical linear algebra include [Cia89], [Dat95], [GMW91], 
[Hag88], [Ste73], and [Wat91]. 

Excellent texts are also available on various more specialized subjects, 
including least squares, eigenvalue problems, and iterative methods. These 
are listed in the appropriate paragraphs below. For direct sparse matrix 
methods, not covered in this book, two standard texts are [GeLi81] and 
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[DER86]. For software, also not covered here, some of the landmark con­
tributions are LAPACK [And95] and its predecessors EISPACK [Smi76] and 
LINPACK [DBMS79], the Basic Linear Algebra Subprograms (BLAS) devel­
oped for simplifying coding of linear algebra operations and maximizing effi­
ciency on particular machines [DDDH90], the MATLAB repository managed 
by The Math Works, Inc. (http: I /www .mathworks. com), and the Netlib au­
tomatic software distribution system (http: I /www .netlib. org), which has 
processed about 13 million requests as of this writing. 

Finally, we mention that when it comes to matters of nonnumericallinear 
algebra, our own habit is always to turn first to the two remarkable volumes 
by Horn and Johnson, [HoJo85] and [HoJo91]. 

We turn now to notes on the individual Lectures of this text. 

Lecture 1. Matrix-Vector Multiplication. It is impossible to under­
stand the spirit of twentieth-century numerical linear algebra without learning 
to think in terms of operations on rows and columns of matrices. Virtually 
all the standard algorithms are normally conceived in this way, though modi­
fications appear when it comes to exploiting sparsity. 

In principle, the fastest algorithms for many problems may be recursive 
ones that involve manipulations of submatrices and thus require a different 
way of thinking. For example, Klyuyev and Kokovkin-Shcherbak showed in 
1965 that solving an m x m system of equations solely by row and column 
operations requires O(m3) operations [K1Ko65], but the subsequent work of 
Strassen and others (Lecture 32) improved this to O{m2·81 ) and below by 
recursive fracturing of the matrix into smaller blocks [Str69]. The divide-and­
conquer algorithm for computing eigenvalues (Lecture 30) is another example 
where row and column operations are not enough. It is possible that in the 
next century, the importance of such algorithms will grow to the point that 
new ways of thinking will come to prevail in numerical linear algebra, but we 
are not there yet. 

Determinants were central to linear algebra in the nineteenth century, but 
their importance has diminished. For one perspective on the reasons, see 
[Ax195]. 

In one form or another, the material of this first lecture can be found in 
numerous textbooks, such as [Str88]. If there is another text that takes square 
matrices by default to have dimensions m x m rather than n x n, however, we 
have not found it. 

Lecture 2. Orthogonal Vectors and Matrices. The content of this 
lecture is standard material in linear algebra, which generalizes in the infinite­
dimensional case to standard material in the theory of Hilbert spaces. 

Algorithms based on orthogonal matrices became widespread in the early 
1960s with the work of Householder, Francis, Givens, Wilkinson, Golub, and 
others, as it came to be recognized that such algorithms combine theoretical 
elegance with outstanding properties of numerical stability. The rapid spread 
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of this point of view can be seen in Wilkinson's 1965 monograph [Wil65] and 
in the classic textbooks [Ste73] and [LaHa95] (first published in 1974). 

Lecture 3. Norms. Though the use of norms has long been a feature of 
functional analysis, it has been slower to become standard in linear algebra, 
and even today, these ideas are often not emphasized in nonnumericallinear 
algebra texts and courses. The explanation for this is probably that linear 
algebra is historically rooted in algebra rather than in analysis, and hence 
makes sense in vector spaces more general than JRm and em. Most scientific 
applications, however, lead to real or complex numbers, for which analysis 
is meaningful as well as algebra. In any application with a notion of "size," 
norms are probably useful. One certainly needs them if one wants to talk 
about convergence. 

The importance of norms in numerical linear algebra was emphasized in 
the 1964 book by Householder [Hou64] and in the brief 1967 text on Gaussian 
elimination and related matters by Forsythe and Moler [FoMo67]. 

In infinite dimensions, the use of dual norms as in Exercise 3.6 becomes 
the Hahn-Banach theorem [Kat76]. 

Lectures 4 and 5. The Singular Value Decomposition. The SVD for 
matrices was discovered independently by Beltrami (1873) and Jordan (1874) 
and again by Sylvester (1889), and related work was done by Autonne (1915), 
Tagaki (1925), Williamson (1935), Eckart and Young (1939), and others. The 
infinite-dimensional generalization was developed in the context of integral 
equations by Schmidt (1907) and Weyl (1912); see [Smi70]. For historical 
discussions, see [HoJo91] and [Ste93]. 

Despite these deep roots, the SVD did not become widely known in ap­
plied mathematics until the late 1960s, when Golub and others showed that it 
could be computed effectively and used as the basis for many stable algorithms. 
Even after that time, perhaps because of numerical analysts' preoccupation 
with numerical stability, the mathematical world was slow to recognize the 
fundamental nature of the SVD. Again, the explanation may be the differ­
ence between algebra and analysis, for what makes the SVD so important is 
ultimately its analytic properties, as exemplified by Theorem 5.8. The impor­
tance of eigenvalues, by contrast, has been appreciated from the beginning, 
for eigenvalues are essentially algebraic in nature. 

Closely related to the SVD is the polar decomposition, the representation 
of a matrix as a product of a symmetric positive definite matrix and a unitary 
matrix. 

In the theory of Hilbert spaces, a compact operator is one that can be 
approximated by operators of finite rank, that is, one whose singular values 
decrease to zero. 

Lecture 6. Projectors. Projectors are involved, explicitly or implicitly, 
whenever one expands a vector in a basis, and orthogonal projectors are one 
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and the same as solutions of linear least squares problems. Perhaps it is 
unusual to make a discussion of projectors the starting point of a treatment 
of these matters, but only mildly so. 

For a discussion of some relationships between norms of projectors and an­
gles between complementary subspaces, see [IpMe95). A full treatment of an­
gles between subspaces is generally based on the CS decomposition [GoVa96). 

Lecture 7. QR Factorization. The distinction between full and re­
duced QR factorizations appears wherever these ideas are applied, which 
means throughout numerical linear algebra, but this text is unusual in making 
the distinction explicit. More usually the QR factorization is defined in its full 
form, and columns of Q and rows of R are then stripped away as needed in 
applications. The same applies to the distinction between the full and reduced 
SVD. 

The recognition of the importance of matrix factorizations for linear alge­
bra computations is entirely a product of the computer age, beginning in the 
1950s. 

Concerning spectral methods for the numerical solution of partial differ­
ential equations, see [CHQZ88). 

Lecture 8. Gram-Schmidt Orthogonalization. The idea of Gram 
(1883) and Schmidt (1907) is old and widely familiar, but its interpretation as 
a QR factorization is new to most students. In our view, this interpretation is 
an invaluable way to fix the Gram-Schmidt idea precisely in one's mind. The 
term QR factorization is due to Francis [Fra61). 

The superiority of modified over classical Gram-Schmidt was first estab­
lished by Rice (1966) and Bjorck (1967). Details and references are given in 
[Bj696] and [Hig96). 

Drawing pictures to calculate operation counts is nonstandard in respect­
able textbooks, since the same results are easily derived algebraically. But 
since we use the pictures in classroom teaching, we decided, why not include 
them in the book? 

Lecture 9. MATLAB. As of 1996, about 150 textbooks in various fields 
of mathematics, science, and engineering have been published based on MAT­

LAB, and the number is growing. Virtually all researchers in numerical linear 
algebra worldwide use MATLAB as their preferred programming language and 
environment, and in the Computer Science Department at Cornell, it is the 
principal language of all the numerical analysis courses. Information about 
MATLAB can be obtained from The Math Works, 24 Prime Park Way, Natick, 
MA 01760, USA, tel. 508-647-7000, fax 508-647-7001, info«<mathworks.com, 
http://www.mathworks.com. 

Lecture 10. Householder Triangularization. Householder triangu­
larization was introduced in a classic four-page paper in 1958 [Hou58). (House­
holder reflectors themselves had been previously used as early as 1932, by 
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Turnbull and Aitken.) For thirty years, researchers in numerical linear alge­
bra have gathered triennially for a conference on the state of their art, and 
these conferences are now known as Householder Symposia. 

To make Householder reflections stable, it is not necessary to choose the 
sign as we have described. Alternative methods are described in [Par80] and 
[Hig96]. 

The symmetry between triangular orthogonalization and orthogonal trian­
gularization is not novel mathematically, but as far as we are aware, it has 
not been stated in this epigrammatic form before. 

For a beautiful and surprising connection between the modified Gram­
Schmidt and Householder algorithms, see [BjPa92] or [Bjo96]. 

Lecture 11. Least Squares Problems. Who should get credit for the 
idea of least squares fitting? This question led to one of the great priority 
disputes in the history of mathematics, between Gauss, who invented the 
method in the 1790s, and Legendre, who first published it in 1805 (the same 
year in which Gauss invented the fast Fourier transform, which he also didn't 
publish). The honor was worth fighting over, as few ideas in mathematics 
have as far-reaching implications as least squares, but the fight brought honor 
to nobody; see [Sti86]. 

Troublesome square systems of equations, whose solutions may not seem to 
behave as they ought, arise frequently in discretization processes in scientific 
computing. The inverses of finite sections of an infinite matrix, for example, 
do not always converge as one might like to the sections of the infinite inverse 
matrix [Bot95]. Difficulties of this kind can often be avoided by looking at 
rectangular finite matrices instead and solving a least squares problem. This 
is just what was done in passing from Figure 11.1 to Figure 11.2. 

The classic text by Lawson and Hanson gives a beautiful introduction to 
how numerical linear algebraists think about least squares problems; a lengthy 
appendix in the 1995 edition summarizes developments since the book's origi­
nal publication in 1974 [LaHa95]. Other valuable introductions are presented 
in [Str88] and [GMW91]. A definitive work on numerical methods for least 
squares problems has recently been published by Bjorck [Bjo96], and it is here 
that one should turn for a full presentation of the state of the art. 

Lecture 12. Conditioning and Condition Numbers. The ideaofthe 
condition number of a matrix was introduced in 1948 by Alan Turing [Tur48], 
the same Turing who founded theoretical computer science, who predicted the 
possibility of chemical waves long before they were discovered in the labora­
tory, and who contributed to the "Enigma" code-breaking effort that helped 
end the control of the Atlantic by German submarines in World War II. 

A classic, more general paper on the subject of conditioning is [Ric66]; see 
also [Geu82]. 

The derivation of condition numbers is a special case of perturbation the­
ory, and the definitive reference on perturbation theory for matrices and linear 
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operators is [Kat76]. 
We have presented a simplified picture in that we only discuss normwise 

as opposed to componentwise condition numbers. For the latter increasingly 
important topic, see [Hig96] and [Dem97]. An example of a componentwise 
idea that we have omitted is that of the Skeel condition number, first proposed 
in [Ske79]. 

In many cases, the condition number of a well-posed problem is inversely 
related, at least approximately, to the distance to the nearest ill-posed prob­
lem. This point of view originated in a classic unpublished paper by Kahan 
[Kah72] and was developed in detail by Demmel [Dem87]. 

As mentioned in the text, Example 12.4 comes from Feynman [Fey85], 
who regrettably does not mention that the punch line of his story depends on 
ill-conditioning. 

Concerning the ill-conditioning of roots of polynomials illustrated in Fig­
ure 12.1, two recent papers are [EdMu95] and [ToTr94], where pointers to 
earlier literature by Wilkinson and others can be found. 

The result that Lebesgue constants for equispaced interpolation in n points 
grow asymptotically like 2n / ( e ( n - 1) log n) was proved by Turetskii in 1940, 
but is not widely known. For historical comments, see [TrWe91]. 

Random matrices are of interest to statisticians and physicists as well as 
mathematicians, and the answers to the various parts of Exercise 12.3 can be 
found in [Ede88], [Gir90], [Meh91], and [TrVi97]. 

Lecture 13. Floating Point Arithmetic. Floating point arithmetic 
was first implemented as early as 1947, and from that point on, for many 
years, the details of the implementations by different manufacturers varied in 
ways hard to keep track of. The subject was simplified magnificently by the 
introduction and widespread adoption of the IEEE standard in the 1980s. For 
careful discussions of the issues involved, see [Gol91] and [Hig96]. 

Exercise 13.3 comes from Chapter 1 of [Dem97]. A similar plot for a sixth­
order polynomial appears in Chapter 3 of [Code80]. Bob Lynch tells us that 
this example is due to Dave Dodson. 

The results of Exercise 13.4, for which we thank Toby Driscoll, sometimes 
astonish people. 

Lectures 14 and 15. Stability. The notion of backward stability is 
standard, and that of stability, reasonably so, but to define them formally via a 
precise interpretation of 0( €machine) is unusual. Most numerical analysts prefer 
to leave these ideas informal, so that they can be adapted to the particular 
features of different problems as needed. There are good reasons for this point 
of view, and we do not by any means claim that the course we have followed is 
the only proper one. Indeed, as mentioned in the text, for arbitrary problems 
of scientific computing, conditions involving 0( Emachine) are probably too strict 
as a basis for definitions of stability. 

Much the same formal definitions as ours can be found in [deJ77], a paper 
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that has had less influence than it deserves. 
Backward error analysis is one of the great ideas of numerical analysis, 

which made possible all the error estimates of numerical linear algebra that 
appear in this book. Credit for the development of this idea may be given 
to von Neumann and Goldstine, Turing, Givens, and Wilkinson. In recent 
years backward error analysis has been rediscovered by researchers in chaotic 
dynamical systems and developed under the name of shadowing [HYG88). 

Lecture 16. Stability of Householder Triangularization. The as­
tonishing difference between the low accuracy of the computed matrix factors 
Q and R individually and the high accuracy of their product exemplifies why 
backward error analysis is so powerful. In the 1950s and 1960s Wilkinson 
showed that similar effects occur in virtually every matrix algorithm. The 
first author was lucky enough to hear lectures by Wilkinson on these matters, 
which conveyed the wonder of such effects with unforgettable enthusiasm. 

Theorems 16.1 and 16.2 are due to Wilkinson [Wil65), and proofs can also 
be found in §18.3 of [Hig96). In the remainder of this book we state a number 
of stability theorems without proof. In most cases a proof, or a reference to 
another source containing a proof, can be found in [Hig96]. 

Lecture 17. Stability of Back Substitution. Carrying out a rounding 
error analysis in full detail can be deeply satisfying; some students have found 
this the most exciting lecture of the book. The results are originally due to 
Wilkinson; see [Wil61), [FoMo67), [Hig96). 

Our remark at the end of this lecture indicates why we prefer to state 
results in terms of 0( €machine) rather than give explicit constants. Many nu­
merical analysts feel differently, however, including N.J. Higham [Hig96), and 
we admit that it is reassuring to know that in most cases, explicit constants 
have been worked out and recorded in print. 

Exercise 17.3, involving random matrices with entries ±1, is based on 
[TrVi97) and subsequent developments from that paper. 

Lecture 18. Conditioning of Least Squares Problems. The lit­
erature on this subject is not especially easy to read, partly because of the 
complication of rank-deficiency, which we have ignored. Several of the results 
in this area were first derived by Wedin [Wed73), and a paper by Stewart 
summarizes many of the key issues [Ste77). The 1990 book by Stewart and 
Sun goes further, but is difficult reading [StSu90], and a good place to go 
for recent information is [Bjo96]. The papers [Geu82) and [Gra96) give exact 
condition numbers with respect to the Frobenius norm. For the 2-norm, the 
bottom row of Theorem 18.1 represents upper bounds; as far as we are aware, 
exact results are not known. 

The geometric view of these conditioning questions is not always described 
explicitly, but one place where it is emphasized is [vdS75). 

The differentiation of pseudoinverses is not useful just for stability analysis; 
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it also ha.s algorithmic consequences. An influential paper in this area is 
[GoPe73]. 

Exercise 18.1 comes from [GMW91]. 

Lecture 19. Stability of Least Squares Algorithms. This is standard 
material, discussed in many books, including [Bjo96], [GoVa96], and [Hig96]. 
The subject of QR factorization with column pivoting is a large one belonging 
to the general area of rank-revealing factorizations; see [Bjo96] and [Chlp94]. 

Lecture 20. Gaussian Elimination. There is nothing unusual here 
except our deferral of this topic to the middle of the book. Gauss himself 
worked with positive definite systems around 1809; Jacobi extended the elim­
ination idea to general matrices around 1857. The interpretation a.s a matrix 
factorization wa.s first developed by Dwyer in 1944 [Dwy44]. 

Lecture 21. Pivoting. The terms "partial" and "complete" are due to 
Wilkinson in the 1950s, but pivoting wa.s already being used a.s early a.s 1947 
by von Neumann and Goldstine. 

Numerous variants of the pivoting idea have found application in various 
computations of linear algebra. One example is the technique of threshold 
pivoting, in which one relaxes the pivot condition so that the pivot element 
need not be the largest in its column a.s long a.s it is within a prescribed 
factor of the largest. Though such a strategy may diminish the stability of the 
algorithm, it provides additional freedom that may be used to pick orderings 
that minimize fill-in in the treatment of sparse matrices. See [DER86]. 

Lecture 22. Stability of Gaussian Elimination. In the mid-1940s 
it wa.s predicted by Hotelling and von Neumann and others that Gaussian 
elimination must be unstable because of exponentially compounding rounding 
errors, making the method unsuitable for problems of dimensions greater than 
a few dozen. By the early 1950s, computational experience had revealed that 
the algorithm wa.s stable after all. Explaining this observation wa.s a major 
theoretical challenge, and Wilkinson became famous for his contributions to 
the subject, which reduced the question of stability to the question of the size 
of the growth factor. Wilkinson's analysis wa.s recorded in a landmark paper 
of 1961 [Wi161]. 

Wilkinson and his contemporaries did not address the problem of why, in 
practice, nothing like the worst-case growth factor is ever observed. In The 
Algebraic Eigenvalue Problem he comments, "experience suggests that though 
such a bound is attainable it is quite irrelevant for practical purposes" [Wi165], 
and similar remarks appear in texts from the 1960s to the 1990s. The first 
substantial paper on the behavior of growth factors wa.s [TrSc90], which gave 
empirical evidence and other arguments that the phenomenon of practical 
stability is entirely statistical. The present lecture of this book, making the 
connection between large growth factors and exponentially skewed column 
spaces, represents the first explanation in print of this statistical phenomenon; 
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a fuller analysis is forthcoming. 
Recently Wright [Wri93] and Foster [Fos94] have constructed examples 

of matrices for which Gaussian elimination is unstable which, though they 
apparently did not in fact arise in actual computations, plausibly might have 
done so. 

Lecture 23. Cholesky Factorization. Cholesky factorization can be 
described, and programmed, in many different ways, and this lecture offers 
just one of the possibilities. As a method that takes advantage of a kind of 
structure of the matrix A (positive definiteness), Cholesky factorization is just 
the tip of an iceberg. Methods for all kinds of structured matrices have been 
devised, including symmetric indefinite, banded, arrowhead, Vandermonde, 
Toeplitz, Hankel, and other matrices; see [GoVa96]. 

As technology advances, the ingenious ideas that make progress possible 
tend to vanish into the inner workings of our machines, where only experts may 
be aware of their existence. So it often is with numerical algorithms, never of 
much interest to the public, yet hidden inside most of the appliances we use. 
Exercise 23.2 illustrates this phenomenon in a small way. Traditionally, an 
engineer wanting to solve a system of equations would choose the right method 
based on the properties of the system, but high-level tools like MATLAB's "\" 
prefer to make these decisions by themselves. Still, by careful experimentation 
we can still deduce some of the advances in numerical analysis underlying those 
decisions. 

Lecture 24. Eigenvalue Problems. This is all standard material, 
though the emphasis is different from what one would find in a nonnumerical 
text. For example, we mention the Schur factorization, which is important in 
computations, but not the Jordan canonical form, which usually is not, for 
reasons explained in [GoWi76). 

Gerschgorin's theorem (Exercise 24.1) has many generalizations, some of 
which are reviewed in [BrRy91] and [BrMe94). 

The abbreviations "ew" and "ev" (Exercise 24.1) are not standard, but 
perhaps they should be. We find them indispensable in the classroom. 

Lecture 25. Overview of Eigenvalue Algorithms. Though more 
than thirty years old, Wilkinson's The Algebraic Eigenvalue Problem [Wil65) 
is still a valuable reference for details on all kinds of questions related to the 
computation of eigenvalues. For symmetric matrix problems, the 1980 book 
by Parlett is a standard reference and makes excellent reading [Par80). For 
more recent developments, see [Dem97]. 

Though it is not mentioned in many textbooks, the O(log(llog(c:machine)l)) 
iteration count of Exercise 25.2 applies to super linearly converging algorithms 
all across scientific computing. 

Lecture 26. Reduction to Hessenberg or Tridiagonal Form. The 
reduction of a matrix to Hessenberg form can also be carried out by nonuni-
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tary operations, and the asymptotic operation count is only half that of (26.1). 
In principle, nonunitary reductions are not always stable, but in practice they 
work very well. In the EISPACK software library of the 1970s [Smi76), nonuni­
tary reduction was recommended as the default and unitary reduction was 
offered as an alternative. In the more recent LAPACK library [And95), only 
unitary reductions are provided for. Why is (nonunitary) Gaussian elimi­
nation the standard method for linear systems while unitary operations are 
standard for eigenvalue problems? Though unitary reductions are convenient 
for estimating eigenvalue condition numbers and related purposes, there seems 
to be no entirely compelling answer. The explanation may be that in view 
of the greater complexity of the eigenvalue problem, involving both a direct 
phase and an iterative one, numerical analysts have been less willing to take 
chances with stability. 

For more on pseudospectra, including computed examples, see [Tre91] and 
[Tre97). 

Lecture 27. Rayleigh Quotient, Inverse Iteration. Inverse iteration 
originated with Wielandt in the 1940s; for a history, see [Ips97). For details 
on the phenomenon that an ill-conditioned matrix does not cause instability 
(Exercise 27.5), see [PeWi79), [Par80), or [GoVa96). 

The convergence of the Rayleigh quotient iteration and its nonsymmetric 
generalization was analyzed in a sequence of papers by Ostrowski in the late 
1950s [Ost59). 

One of the best-known algorithms for computing zeros of polynomials is 
that of Jenkins and Traub. As pointed out in the original paper [JeTr70] and 
discussed also in the appendix of [ToTr94), the Jenkins-Traub iteration can be 
interpreted as a scheme for taking advantage of sparsity in a Rayleigh quotient 
iteration applied to a companion matrix, so that the work per step is reduced 
from O(m3) to O(m). 

Lectures 28 and 29. QR Algorithm. The QR algorithm was invented 
independently in 1961 by Francis [Fra61) and Kublanovskaya [Kub61), based 
on the earlier LR algorithm of Rutishauser, and came into worldwide use 
through the software package EISPACK [Smi76]. Our presentation is adapted 
from [Wat82). Extensive discussions are given in [Par80) and [Wat91). 

The computation of eigenvalues of matrices is one of the problems that 
has been most extensively studied by numerical analysts, and the amount 
of understanding incorporated in state-of-the-art software such as LAPACK 
[And95) is very great. Our "practical" Algorithm 28.2 certainly does not 
mention all the subtleties that must be addressed for robust computation. 
For example, when the QR algorithm is implemented in practice, the shifts 
are introduced in a more stable implicit manner by means of "chasing the 
bulge." See [Par80), [GoVa96), or [Dem97), where discussions ofthe properties 
of various shifts can also be found. 
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Lecture 30. Other Eigenvalue Algorithms. Jacobi's major paper on 
his eigenvalue algorithm appeared in 1846 [ J ac46]; he used the method to find 
eigenvalues of a 7 x 7 matrix associated with the seven planets then known 
in the solar system. A classic modern reference is [FoHe60], and more recent 
developments, including the variant based on 4 x 4 blocks and quarternions, 
can be found in [Mac95] and the references therein. Because it avoids the 
tridiagonalization step, the Jacobi algorithm when carefully implemented is 
more accurate than the QR algorithm in a componentwise sense; see [DeVe92]. 

Divide-and-conquer algorithms were introduced by Cuppen in 1981 [Cup81] 
and made famous by Dongarra and Sorensen [DoSo8 7]. The literature since 
then is extensive. Some of the critical developments concerning stability, as 
well as the idea of acceleration via the fast multipole method, were introduced 
by Gu and Eisenstat; see [GuEi95] and [Dem97]. 

Lecture 31. Computing the SVD. The era of numerical computa­
tions of the SVD began in 1965 with the publication of a paper by Golub 
and Kahan [GoKa65], which recommended bidiagonalization by Householder 
reflections for Phase 1. The idea of applying the QR algorithm for Phase 2 
is sometimes credited to the same paper, but in fact, the QR algorithm is 
not mentioned there, nor are the papers of Francis [Fra61] referenced. The 
key ideas developed very quickly in the late 1960s, however, through work by 
Golub, Kahan, Reinsch, and Businger. 

Our discussion of alternative methods for Phase 1 is taken from [Bau94], 
where details concerning singular vectors as well as values can be found. For 
information about Phase II, see [GoVa96] and [Dem97]. 

Lecture 32. Overview of Iterative Methods. The history of the 
emergence of Krylov subspace iterative methods is fascinating. The founda­
tions were laid in the early 1950s, but the machines of that era were too slow 
for these methods to be superior for most problems. Not only were they not 
extensively used, naturally enough, but their ultimate advantages concerning 
asymptotic complexity were not perceived very clearly. Nowadays, it is auto­
matic to take note of the asymptotic complexity of algorithms; in the 1950s, 
it was not. 

On the other hand, certain "classical iterations" such as Gauss-Seidel and 
SOR were used extensively in the 1950s for problems arising from discretiza­
tions of partial differential equations. We have given no attention to these 
methods here, as they are described in many books but are of diminishing 
practical importance today. A classic reference on this subject is (Var62]. 

For sparse direct matrix algorithms, see [GeLi81] and [DER86]. 
What is the dimension m of a "large" matrix, as a function of time? In 

recent years information on the subject has been collected by Edelman, who 
reported in 1994, for example, that he was unaware yet of any solutions of 
dense systems with m > 100,000, though matrices with m = 76,800 had been 
treated [Ede94]. 
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A number of books have recently been written on iterative methods; we 
recommend in particular the monographs by Saad on eigenvalues [Saa92] and 
linear systems [Saa96] and the upcoming text on linear systems by Green­
baum [Gre97]. Other books on the subject include [Axe94], with extensive 
information on preconditioners, [Kel95], which emphasizes generalizations to 
nonlinear problems, and [Bru95], [Fis96], [Hac94], and [Wei96]. 

Since the 1950s it has been recognized that Krylov subspace methods are 
applicable to linear operators, not just matrices. An early reference in this 
vein is [Dan71], and a recent advanced one is [Nev93]. 

The Krylov idea of projection onto low-dimensional subspaces sounds anal­
ogous to one of the central ideas of numerical computation-discretization of 
a continuous problem so that it becomes finite-dimensional. One might ask 
whether this is more than an analogy, and if so, whether it might be possible to 
combine discretization and iteration into one process rather than separately 
replacing oo by m (discretization) and m by n (iteration). The answer is 
certainly yes, at least in some circumstances. However, many of the possibil­
ities of this kind have not yet been explored, and at present, most scientific 
computations still keep discretization and iteration separate. 

Strassen's famous paper appeared in 1969 [Str69], and pointers to the al­
gorithms with still lower exponents represented in Figure 32.2 can be found in 
[Pan84] and [Hig96]. The current best exponent of2.376 is due to Coppersmith 
and Winograd [CoWi90]. 

What we have called ''the fundamental law of computer science" (p. 246) 
does not usually go by this name. This principle is discussed in [AHU74]; we 
do not know where it was first enunciated. 

Lecture 33. The Arnoldi Iteration. Arnoldi's original paper was 
written in 1951, but his intentions were rather far from current ones [Arn51]. 
It took a long while for the various connections between the Arnoldi, Lanczos, 
CG, and other methods to be recognized. 

Lecture 34. How Arnoldi Locates Eigenvalues. The convergence of 
the Lanczos iteration is reasonably well understood; some of the key papers 
are by Kaniel [Kan66], Paige [Pai71], and Saad [Saa80]. The convergence of 
the more general Arnoldi iteration, however, is not fully understood. For some 
of the results that are available, see [Saa92]. 

Our discussion in terms of lemniscates is nonstandard. The connection 
with polynomial approximation, including the notions of ideal Arnoldi and 
GMRES polynomials, is developed in [GrTr94]. An algorithm for computing 
these polynomials based on semidefinite programming is presented in [ToTr98], 
together with examples relating lemniscates to pseudospectra. The idea of 
estimating pseudospectra via the Arnoldi iteration comes from [ToTr96]. 

Concerning the "Note of Caution," see [TTRD93], [Tre91], and [Tre97]. 

Lecture 35. GMRES. The GMRES algorithm was proposed surpris-
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ingly recently, by Saad and Schultz in 1986 [SaSc86), though various related 
algorithms had appeared earlier. 

Lecture 36. The Lanczos Iteration. The Lanczos iteration dates to 
1950 [Lan50). Though closely related to conjugate gradients, it was conceived 
independently. The Lanczos iteration was "rediscovered" in the 1970s, as 
tractable matrix problems grew to the size where it became competitive with 
other methods [Pai71). A two-volume treatment was given in 1985 by Cullum 
and Willoughby [Cu Wi85). 

The connection of Krylov subspace iterations with potential theory ( elec­
tric charges) via polynomial approximation is well established. For a detailed 
analysis of what can and cannot be inferred about convergence from potential 
theory, see [DTT97). 

Lecture 37. From Lanczos to Gauss Quadrature. Since 1969 it 
has been appreciated that the right way to compute Gauss quadrature nodes 
and weights is via tridiagonal matrix eigenvalue problems [GoWe69]. The brief 
presentation here describes the connection in full except for one omitted point: 
the relation of the weights to the first components of the eigenvectors, which 
can be derived from the Christoffel-Darboux formula. For information on this 
and other matters related to orthogonal polynomials, the classic reference is 
the book by Szego [Sze75]. 

On p. 289 it is remarked that nth-order Newton-Cotes formulas have coef­
ficients of order 2" for large n. As Newton-Cotes formulas can be derived by 
interpolation, this is essentially the same factor 2" mentioned in connection 
with Lebesgue constants in the notes on Lecture 12, above. 

Lecture 38. Conjugate Gradients. The conjugate gradient iteration 
originated with Hestenes and Stiefel independently, but communication be­
tween the two men was established early enough (August 1951) for the original 
major paper on the subject, one of the great classics of numerical analysis, to 
be a joint effort [HeSt52). Like the Lanczos iteration, CG was "rediscovered" 
in the 1970s, and soon became a mainstay of scientific computing. For the 
closely intertwined history of the CG and Lanczos iterations, see [GoOL89). 

Much of what is known about the behavior of the CG iteration in floating 
point arithmetic is due to Greenbaum and her coauthors; see [Gre97). 

Lecture 39. Biorthogonalization Methods. The biconjugate gradient 
iteration originated with Lanczos in 1952 [Lan52) and was revived (and chris­
tened) by Fletcher in 1976 [Fle76). The other methods mentioned in the text 
are look-ahead Lanczos [PTL85), CGS [Son89], QMR [FrNa91), Bi-CGSTAB 
[vdV92], and TFQMR [Fre93). For a survey as of 1991, see [FGN92), and 
for a description of the deep connections of these algorithms with orthogonal 
polynomials, continued fractions, Pade approximation, and other topics, see 
[Gut92). 

For comparisons of the matrix properties that determine convergence of 



342 NOTES 

the various types of nonsymmetric matrix iterations, see [NRT92], where Ex­
ercises 39.1 and 39.2 are also addressed. For specific discussions of the re­
lationships between BCG and QMR, see [FrNa91] and [CuGr96), where it is 
pointed out that spikes in the BCG convergence curve correspond in a precise 
way to fiat (slow-progress) portions of the QMR convergence curve. 

Lecture 40. Preconditioning. The word "preconditioning" originated 
with Turing in 1948, and some of the early contributions in the context of ma­
trix iterations were due to Hestenes, Engeli, Wachspress, Evans, and Axelsson. 
The idea became famous in the 1970s with the introduction of incomplete fac­
torization by Meijerink and van der Vorst [Meva77), and another influential 
paper of that decade was [CG076]. For summaries of the current state of the 
art we recommend [Axe94) and [Saa96). Domain decomposition is discussed in 
[SBG96), and the use of an unstable direct method as a preconditioner is con­
sidered in [Ske80). The idea of circulant preconditioners for Toeplitz matrices 
originated with Strang [Str86] and has been widely generalized since then. 

What about speeding up an iteration by changing the preconditioner adap­
tively at each step, just as the Rayleigh quotient shift speeds up inverse iter­
ation from linear to cubic convergence? This idea is a promising one, and has 
recently been getting some attention; see [Saa96). 

Preconditioners for eigenvalue problems have come into their own in the 
1990s, though Davidson's original paper dates to 1975 [Dav75]; a good place 
to begin with these methods is [Saa92]. Polynomial acceleration devices have 
been developed by Chatelin [Cha93], Saad, Scott, Lehoucq and Sorensen 
[LeSo96], and others. Shift-and-invert Arnoldi methods have been developed 
by Saad and Spence, and rational Krylov iterations by Ruhe; for a recent sur­
vey see [MeRo96]. The Jacobi-Davidson algorithm was introduced by Sleijpen 
and van der Vorst [Slvd96). 
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polynomials, 285-292, 341 
polynomials approximation prob-

lem, 288 
projector, 43-47, 56, 81, 83, 129 
triangularization, 69-70, 148 
vectors, 13 

orthogonality, loss of, 66-67, 282-
283,295 

orthonormal 
basis, 36 
vectors, 13 

outer product, 6, 22, 24, 109, see 
also rank-one matrix 

overdetermined system, 77 
overflow, 97 

Pade approximation, 311, 341 
panel methods, 245 
parallel computer, 66,233 
partial differential equations, 53, 244, 

248,316-318,332 
partial pivoting, 156, 160, 336 
Pentium TM microprocessor, 100 
permutation matrix, 34, 157, 220 
1r, calculation of, 327 
pivot element, 155 
pivoting in Gaussian elimination, 155 

162,336 
p-norm, 18 
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polar decomposition, 331 
polynomial, 4, 101, 181, 283 

approximation, 246, 258, 268-269, 
298-299,340-341 

Chebyshev, 292, 300 
interpolation, 78, 96, 292 
Legendre,53,54,64,68,285-292 
monic, 183, 259 
of a matrix, 259, 265, 318 
orthogonal, 285-292 
preconditioner, 318 
quintic, 192 
roots,92,101,110,190,191,227, 

338 
positive definite matrix, see hermi-

tian positive definite matrix 
potential theory, 279, 283-284, 341 
power iteration, 191, 204-206 
powers of a matrix, 33, 120, 182, 

189 
precision, 98 
preconditioning, 274, 297, 313-319, 

326, 342 
principal minors, 154, 214 
problem 

formal definition, 89, 102 
instance, 89 

problem-solving environment, 63 
projector, 41, 331-332 

complementary, 42 
oblique,41 
orthogonal,43-47,56,81,83,129 
rank-one, 14, 46 

pseudoinverse, 81-85, 94, 129, 335 
pseudo-minimal polynomial, 261 
pseudospectra, 201, 265, 338, 340 

computation of, 201, 265, 340 
Pythagorean theorem, 15, 81 

QMR (quasi-minimal residuals), 31D-
311, 341 

Q portrait, 169-170 
QR algorithm, 211-224, 239, 253-

254,338 

359 

QR factorization, x, 36, 48-55, 48-
55,83,253,332 

full, 49 
reduced, 49 
with column pivoting, 49, 143 

quadrature, 285-292 
quasi-minimal residuals, see QMR 

radix, 98 
random matrix, 96, 114, 167-171, 

189, 233, 240, 244, 262, 271, 
334 

orthogonal, 65, 114, 120 
sparse, 300, 309 
triangular, 96, 128, 167 

range, 6, 33 
computation of, 36 
sensitivity to perturbations, 133-

134 
rank, 7, 33, 55 

computation of, 36 
rank-deficient matrix, 84, 143 
rank-one 

matrix, 35, see also outer prod­
uct 

perturbation, 16, 230 
projector, 14, 46 

rank-revealing factorization, 336 
rank-two perturbation, 232 
Rayleigh-Ritz procedure, 254 
Rayleigh quotient, 203, 209, 217, 254 

283 
iteration, 207-209, 221, 338 
shift, 221, 342 

recursion, 16, 230, 249 
re:flection, 15, 29, see also House­

holder re:flector 
of light, 136 

regression, 136 
regularization, 36 
residual, 77, 116 
resolvent, 201 
resonance, 182 
Richardson iteration, 274, 302 
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Ritz 
matrix, 276 
values, 255, 257, 278 

rootfinding, see polynomial roots 
rotation, 15, 29, 31, see also Givens 

rotation 
rounding, 99 

errors, 321-327 
row 

rank, 7 
vector, 21 

Schur 
complement, 154 
factorization, 187, 193, 337 

secular equation, 231 
self-adjoint operator, 258 
shadowing, 335 
shifts in QR algorithm, 212, 219-

224 
similarity transformation, 34, 184 
similar matrices, 184 
simultaneous 

inverse iteration, 219 
iteration, 213-218, 253-254 

singular 
value, 8, 26 
value decomposition, see SVD 
vector, 26 

Skeel 
condition number, 334 
Robert D., 326 

skew-hermitian matrix, 16, 187 
software, 330 
SOR (successive over-relaxation), 318, 

339 
sparse 

direct methods, 339 
matrix, 232,244,300-301 

spectral 
abscissa, 189, 258 
methods, 53,255,317,326,332 
radius, 24, 189 

spectrum, 181, 201 
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splitting, 317-318 
square root, 58, 91, 127 
SSOR (symmetric SOR), 318 
stability, 57, 66, 72, 84, 89, 102-

113, 326 
formal definition, 104 
physical, 182, 258 

stable algorithm, see stability 
stationary point, 203, 283 
steepest descent iteration, 302 
Stiefel, Eduard, 293, 341 
Strassen's algorithm, 247, 249, 330, 

340 
Sturm sequence, 228 
submatrix, 9, 333 
subtraction, 91, 108 
superellipse, 18 
SVD (singular value decomposition), 

25-37,83,113,120,142,201, 
322,331 

computation of, 36, 113, 234-240, 
339 

full, 28 
reduced, 27 

symbolic computation, 101, 324 
symmetric matrix, 11, 172 

TFQMR (transpose-free QMR), 311, 
341 

three-step bidiagonalization, 238-240 
three-term recurrence relation, 229, 

276,282,287,291 
threshold pivoting, 336 
tilde (- ), 103 
Toeplitz matrix, 68, 318, 337, 342 
trace, 23 
translation-invariance, 261, 269 
transpose, 11 
transpose-free iterations, 311 
1Iaub,Joseph, 327 
triangle inequality, 17 
triangular 

matrix, 10, 15, 49, 240 see also 
random matrix, triangular 
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orthogonalization, 51, 70, 148 
triangularization, 148 
system of equations, 54, 82-83, 

117, 121-128 
tridiagonal 

biorthogonalization, 305-306 
matrix, 194, 218 
orthogonalization, 305-306 
reduction, 194, 196-201, 212 

Turing, Alan, 325, 333, 335, 342 
2-norm, 18, 20, 34 

computation of, 36 

underdetermined system, 143 
underflow, 97 
unit 

ball,20 
sphere, 25 
triangular matrix, 62, 148 

unitarily diagonalizable matrix, see 
normal matrix 

unitary 
diagonalization, 187-188 
equivalence, 31 
matrix, 14-16, 119, 163, 187 
triangularization, 188 

unstable algorithm, see stability 

Vandermonde matrix, 4, 53, 64, 78, 
137,289,292,337 

Von Neumann, John, 325,335,336 

wavelets, 245 
weighted norm, 18, 24, 294 
well-conditioned 

matrix, 94 
problem, 89, 91 

Wilkinson, James H., 115, 325, 330, 
335,336 

book by, 331, 337 
polynomial, 92 
shift, 222, 224 

zerofinding, see polynomial roots 
ziggurat, 75 
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"/have used Numerical Linear Algebra in my introductory graduate course and I have found it to 
be almost the perfect text to introduce mathematics graduate students to the subject. /like the 
choice of topics and the format: a sequence of lectures. Each chapter {or lecture} carefully 
builds upon the material presented in previous chapters. providing new concepts in a very clear 
manner. Exercises at the end of each chapter reinforce the concepts. and in some cases 
introduce new ones . .... The emphasis is on the mathematics behind the algorithms. in the under­
standing of why the algorithms work. ... The teXt is sprinkled with examples and explanations. 
which keep the student focused. • 

-Daniel B. Szyld. Department of Mathematics, Temple University 

"A beautifully written textbook offering a distinctive and original treatment. It will be of use to all 
who teach or study the subject. " 

-Nicholas J. Higham, Professor of Applied Mathematics, University of Manchester 

• ... this is an ideal book for a graduate course in numerical linear algebra {either in mathematics 
or in computer science departments}; it presents the topics in such a way that background 
material comes along with the course. . . .I will use it again next time I teach this course!" 

-Suely Oliveira. Texas A&M University 

This is a concise, insightful, and elegant introduction to the field of numerical linear algebra. 
Designed for use as a stand-alone textbook in a one-semester, graduate-level course in the 
topic, it has already been class-tested by MIT and Cornell graduate students from all fields of 
mathematics. engineering, and the physical sciences. The authors' clear. inviting style and 
evident love of the field , along with their eloquent presentation of the most fundamental ideas in 
numerical linear algebra, have made it popular with teachers and students alike. 

Numerical Linear Algebra aims to expand the reader's view of the field and to present the core, 
standard material in a novel way. This makes it a perfect companion volume to the encyclopedic 
treatment of the topic that already exists in Golub and Van Loan's now-classic Matrix Computa­
tions. All of the most important topics in the field. including iterative methods for systems of 
equations and eigenvalue problems and the underlying principles of conditioning and stability, 
are covered. Trefethen and Bau offer a fresh perspective on these and other topics, such as an 
emphasis on connections with polynomial approximation in the complex plane. 

Numerical Linear Algebra is presented in the form of 40 lectures, each of which focuses on one 
or two central ideas. Throughout, the authors emphasize the unity between topics, never allow­
ing the reader to get lost in details and technicalities. The book breaks with tradition by begin­
ning not with Gaussian elimination, but with the QR factorization - a more important and 
fresher idea for students, and the thread that connects most of the algorithms of numerical 
linear algebra, including methods for least squares, eigenvalue, and singular value problems, as 
well as iterative methods for all of these and for systems of equations. 

Uoyd N. Trefethen is a Professor of Computer Science at Cornell University. He has won teach­
ing awards at both MIT and Cornell. In addition to editorial· positions on such journals as SIAM 
Joumal on Numerical Analysis, Joumal of Computational and Applied Mathematics, Numerische 
Mathematik, and SIAM Review, he has been an invited lecturer at two dozen international 
conferences. While at Cornell, David Bau was a student of Trefethen. He is currently a Soft­
ware Developer at Microsoft Corporation, where he works in the Internet Division . 
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