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Preface

Solving optimization problems subject to constraints given in terms of partial dif-
ferential equations (PDEs) with additional constraints on the controls and/or states
is one of the most challenging problems in the context of industrial, medical and
economical applications, where the transition from model-based numerical simu-
lations to model-based design and optimal control is crucial. For the treatment of
such optimization problems the interaction of optimization techniques and numer-
ical simulation plays a central role. After proper discretization, the number of op-
timization variables varies between 103 and 1010. It is only very recently that the
enormous advances in computing power have made it possible to attack problems
of this size. However, in order to accomplish this task it is crucial to utilize and fur-
ther explore the specific mathematical structure of optimization problems with PDE
constraints, and to develop new mathematical approaches concerning mathematical
analysis, structure exploiting algorithms, and discretization, with a special focus on
prototype applications.

The present book provides a modern introduction to the rapidly developing math-
ematical field of optimization with PDE constraints. The first chapter introduces
to the analytical background and optimality theory for optimization problems with
PDEs. Optimization problems with PDE-constraints are posed in infinite dimen-
sional spaces. Therefore, functional analytic techniques, function space theory, as
well as existence- and uniqueness results for the underlying PDE are essential to
study the existence of optimal solutions and to derive optimality conditions. These
results form the foundation of efficient optimization methods in function space, their
adequate numerical realization, mesh independence results and error estimators. The
chapter starts with an introduction to the necessary background in functional analy-
sis, Sobolev spaces and the theory of weak solutions for elliptic and parabolic PDEs.
These ingredients are then applied to study PDE-constrained optimization problems.
Existence results for optimal controls, derivative computations by the sensitivity and
adjoint approaches and optimality conditions for problems with control-, state- and
general constraints are considered. All concepts are illustrated by elliptic and par-
abolic optimal control problems. Finally, the optimal control of instationary incom-
pressible Navier-Stokes flow is considered.

The second chapter presents a selection of important algorithms for optimiza-
tion problems with partial differential equations. The development and analysis of
these methods is carried out in a Banach space setting. This chapter starts with
introducing a general framework for achieving global convergence. Then, several
variants of generalized Newton methods are derived and analyzed. In particular,
necessary and sufficient conditions for fast local convergence are derived. Based
on this, the concept of semismooth Newton methods for operator equations is in-
troduced. It is shown how complementarity conditions, variational inequalities, and
optimality systems can be reformulated as semismooth operator equations. Applica-
tions to constrained optimal control problems are discussed, in particular for elliptic
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partial differential equations and for flow control problems governed by the incom-
pressible instationary Navier-Stokes equations. As a further important concept, the
formulation of optimality systems as generalized equations is addressed and the
Josephy-Newton method for generalized equations is analyzed. This provides an
elegant basis for the motivation and analysis of sequential quadratic programming
(SQP) algorithms. The second chapter concludes with a short outline of recent al-
gorithmic advances for state constrained problems and a brief discussion of several
further aspects.

The third chapter gives an introduction to discrete concepts for optimization
problems with PDE constraints. As models for the state elliptic and parabolic PDEs
are considered which are well understood from the analytical point of view. This al-
lows to focus on structural aspects in discretization. The approaches First discretize,
then optimize and First optimize, then discretize are compared and discussed, and
a variational discrete concept is introduced which avoids explicit discretization of
the controls. Special focus is taken on the treatment of constraints. This includes
general constraints on the control, and also pointwise bounds on the state, and on
the gradient of the state. The chapter presents the error analysis for the variational
discrete concept and accomplishes the analytical findings with numerical examples
which confirm the analytical results.

Finally, the fourth chapter is devoted to the study of two industrial applications,
in which optimization with partial differential equations plays a crucial role. It pro-
vides a survey of the different mathematical settings which can be handled with the
general optimal control calculus presented in the previous chapters. The chapter fo-
cuses on large scale optimal control problems involving two well-known types of
partial differential equations, namely elliptic and parabolic ones. Since real world
applications lead generally to mathematically quite involved problems, in particular
nonlinear systems of equations are studied. The examples are chosen in such a way
that they are up-to-date and modern mathematical tools are used for their specific
solution. The industrial fields covered are modern semiconductor design and glass
production. Each section starts with a modeling part to introduce the underlying
physics and mathematical models, which are then followed by the analytical and
numerical study of the related optimal control problems.

Acknowledgements

This Book is based on lecture notes of the autumn school Modellierung und Opti-
mierung mit Partiellen Differentialgleichungen which was held in September 2005
at the Universität Hamburg. It was supported by the Collaborative Research Center
609, located at the Technische Universität Dresden, and by the Priority Programme
1253, both sponsored by the Deutsche Forschungsgemeinschaft, as well as by the
Schwerpunkt Optimierung und Approximation at the Department Mathematik of
the Universität Hamburg. All support is gratefully acknowledged.

Finally we would like to thank a number of colleagues whose collaboration and
support influenced the material presented in this book. These include Günter Bär-
wolff, Martin Burger, Klaus Deckelnick, John Dennis, Michael Ferris, Andreas



Preface vii

Günther, Matthias Heinkenschloss, Michael Herty, Michael Hintermüller, Axel
Klar, Karl Kunisch, Günter Leugering, Ulrich Matthes, Christian Meyer, Danny
Ralph, Ekkehard Sachs, Anton Schiela, Alexander Schulze, Mohammed Seaid, Nor-
bert Siedow, Guido Thömmes, Philippe Toint, Fredi Tröltzsch, Andreas Unterreiter,
Luís Vicente, and Morten Vierling.



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Analytical Background and Optimality Theory . . . . . . . . . . . . 1
Stefan Ulbrich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction and Examples . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Examples for Optimization Problems with PDEs . . . . . . 4
1.1.3 Optimization of a Stationary Heating Process . . . . . . . . 5
1.1.4 Optimization of an Unsteady Heating Processes . . . . . . 7
1.1.5 Optimal Design . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Linear Functional Analysis and Sobolev Spaces . . . . . . . . . . 9
1.2.1 Banach and Hilbert Spaces . . . . . . . . . . . . . . . . . 10
1.2.2 Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.3 Weak Convergence . . . . . . . . . . . . . . . . . . . . . 24

1.3 Weak Solutions of Elliptic and Parabolic PDEs . . . . . . . . . . . 26
1.3.1 Weak Solutions of Elliptic PDEs . . . . . . . . . . . . . . 26
1.3.2 Weak Solutions of Parabolic PDEs . . . . . . . . . . . . . 36

1.4 Gâteaux- and Fréchet Differentiability . . . . . . . . . . . . . . . 50
1.4.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . 50
1.4.2 Implicit Function Theorem . . . . . . . . . . . . . . . . . 52

1.5 Existence of Optimal Controls . . . . . . . . . . . . . . . . . . . . 52
1.5.1 Existence Result for a General Linear-Quadratic

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.5.2 Existence Results for Nonlinear Problems . . . . . . . . . 54
1.5.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . 56

1.6 Reduced Problem, Sensitivities and Adjoints . . . . . . . . . . . . 57
1.6.1 Sensitivity Approach . . . . . . . . . . . . . . . . . . . . . 58
1.6.2 Adjoint Approach . . . . . . . . . . . . . . . . . . . . . . 59
1.6.3 Application to a Linear-Quadratic Optimal Control

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
1.6.4 A Lagrangian-Based View of the Adjoint Approach . . . . 63

ix



x Contents

1.6.5 Second Derivatives . . . . . . . . . . . . . . . . . . . . . 64
1.7 Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . . . 65

1.7.1 Optimality Conditions for Simply Constrained Problems . . 65
1.7.2 Optimality Conditions for Control-Constrained

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
1.7.3 Optimality Conditions for Problems with General

Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 80
1.8 Optimal Control of Instationary Incompressible Navier-Stokes

Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
1.8.1 Functional Analytic Setting . . . . . . . . . . . . . . . . . 89
1.8.2 Analysis of the Flow Control Problem . . . . . . . . . . . 91
1.8.3 Reduced Optimal Control Problem . . . . . . . . . . . . . 94

2 Optimization Methods in Banach Spaces . . . . . . . . . . . . . . . . 97
Michael Ulbrich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
2.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
2.2 Globally Convergent Methods in Banach Spaces . . . . . . . . . . 99

2.2.1 Unconstrained Optimization . . . . . . . . . . . . . . . . . 99
2.2.2 Optimization on Closed Convex Sets . . . . . . . . . . . . 104
2.2.3 General Optimization Problems . . . . . . . . . . . . . . . 109

2.3 Newton-Based Methods—A Preview . . . . . . . . . . . . . . . . 109
2.3.1 Unconstrained Problems—Newton’s Method . . . . . . . . 109
2.3.2 Simple Constraints . . . . . . . . . . . . . . . . . . . . . . 110
2.3.3 General Inequality Constraints . . . . . . . . . . . . . . . 113

2.4 Generalized Newton Methods . . . . . . . . . . . . . . . . . . . . 115
2.4.1 Motivation: Application to Optimal Control . . . . . . . . 115
2.4.2 A General Superlinear Convergence Result . . . . . . . . . 116
2.4.3 The Classical Newton’s Method . . . . . . . . . . . . . . . 119
2.4.4 Generalized Differential and Semismoothness . . . . . . . 120
2.4.5 Semismooth Newton Methods . . . . . . . . . . . . . . . . 123

2.5 Semismooth Newton Methods in Function Spaces . . . . . . . . . 125
2.5.1 Pointwise Bound Constraints in L2 . . . . . . . . . . . . . 125
2.5.2 Semismoothness of Superposition Operators . . . . . . . . 126
2.5.3 Pointwise Bound Constraints in L2 Revisited . . . . . . . . 129
2.5.4 Application to Optimal Control . . . . . . . . . . . . . . . 130
2.5.5 General Optimization Problems with Inequality

Constraints in L2 . . . . . . . . . . . . . . . . . . . . . . 132
2.5.6 Application to Elliptic Optimal Control Problems . . . . . 133
2.5.7 Optimal Control of the Incompressible Navier-Stokes

Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 137
2.6 Sequential Quadratic Programming . . . . . . . . . . . . . . . . . 140

2.6.1 Lagrange-Newton Methods for Equality Constrained
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

2.6.2 The Josephy-Newton Method . . . . . . . . . . . . . . . . 144
2.6.3 SQP Methods for Inequality Constrained Problems . . . . . 148



Contents xi

2.7 State-Constrained Problems . . . . . . . . . . . . . . . . . . . . . 151
2.7.1 SQP Methods . . . . . . . . . . . . . . . . . . . . . . . . 152
2.7.2 Semismooth Newton Methods . . . . . . . . . . . . . . . . 152

2.8 Further Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
2.8.1 Mesh Independence . . . . . . . . . . . . . . . . . . . . . 155
2.8.2 Application of Fast Solvers . . . . . . . . . . . . . . . . . 156
2.8.3 Other Methods . . . . . . . . . . . . . . . . . . . . . . . . 156

3 Discrete Concepts in PDE Constrained Optimization . . . . . . . . . 157
Michael Hinze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
3.2 Control Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 158

3.2.1 Stationary Model Problem . . . . . . . . . . . . . . . . . . 158
3.2.2 First Discretize, Then Optimize . . . . . . . . . . . . . . . 160
3.2.3 First Optimize, Then Discretize . . . . . . . . . . . . . . . 161
3.2.4 Discussion and Implications . . . . . . . . . . . . . . . . . 163
3.2.5 The Variational Discretization Concept . . . . . . . . . . . 164
3.2.6 Error Estimates . . . . . . . . . . . . . . . . . . . . . . . 167
3.2.7 Boundary Control . . . . . . . . . . . . . . . . . . . . . . 177
3.2.8 Some Literature Related to Control Constraints . . . . . . . 196

3.3 Constraints on the State . . . . . . . . . . . . . . . . . . . . . . . 197
3.3.1 Pointwise Bounds on the State . . . . . . . . . . . . . . . 198
3.3.2 Pointwise Bounds on the Gradient of the State . . . . . . . 219

3.4 Time Dependent Problem . . . . . . . . . . . . . . . . . . . . . . 227
3.4.1 Mathematical Model, State Equation . . . . . . . . . . . . 227
3.4.2 Optimization Problem . . . . . . . . . . . . . . . . . . . . 229
3.4.3 Discretization . . . . . . . . . . . . . . . . . . . . . . . . 229
3.4.4 Further Literature on Control of Time-Dependent

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
René Pinnau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
4.1 Optimal Semiconductor Design . . . . . . . . . . . . . . . . . . . 233

4.1.1 Semiconductor Device Physics . . . . . . . . . . . . . . . 234
4.1.2 The Optimization Problem . . . . . . . . . . . . . . . . . 240
4.1.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . 246

4.2 Optimal Control of Glass Cooling . . . . . . . . . . . . . . . . . . 250
4.2.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
4.2.2 Optimal Boundary Control . . . . . . . . . . . . . . . . . 254
4.2.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . 260

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265



Chapter 1
Analytical Background and Optimality Theory

Stefan Ulbrich

Abstract This chapter provides an introduction to the analytical background and
optimality theory for optimization problems with partial differential equations
(PDEs). Optimization problems with PDE-constraints are posed in infinite dimen-
sional spaces. Therefore, functional analytic techniques, function space theory, as
well as existence- and uniqueness results for the underlying PDE are essential to
study the existence of optimal solutions and to derive optimality conditions. These
results form the foundation of efficient optimization methods in function space, their
adequate numerical realization, mesh independence results and error estimators.
The chapter provides first an introduction to the necessary background in functional
analysis, Sobolev spaces and the theory of weak solutions for elliptic and parabolic
PDEs. These ingredients are then applied to study PDE-constrained optimization
problems. Existence results for optimal controls, derivative computations by the sen-
sitivity and adjoint approaches and optimality conditions for problems with control-,
state- and general constraints are considered. All concepts are illustrated by elliptic
and parabolic optimal control problems. Finally, the optimal control of instationary
incompressible Navier-Stokes flow is considered.

1.1 Introduction and Examples

1.1.1 Introduction

The modelling and numerical simulation of complex systems plays an important
role in physics, engineering, mechanics, chemistry, medicine, finance, and in other
disciplines. Very often, mathematical models of complex systems result in partial
differential equations (PDEs). For example heat flow, diffusion, wave propagation,
fluid flow, elastic deformation, option prices and many other phenomena can be
modelled by using PDEs.

In most applications, the ultimate goal is not only the mathematical modelling
and numerical simulation of the complex system, but rather the optimization or op-
timal control of the considered process. Typical examples are the optimal control of
a thermal treatment in cancer therapy and the optimal shape design of an aircraft.

S. Ulbrich (�)
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2 S. Ulbrich

The resulting optimization problems are very complex and a thorough mathematical
analysis is necessary to design efficient solution methods.

There exist many different types of partial differential equations. We will focus
on linear and semilinear elliptic and parabolic PDEs. For these PDEs the existence
and regularity of solutions is well understood and we will be able to develop a fairly
complete theory.

Abstractly speaking, we will consider problems of the following form

min
w∈W

J(w) subject to e(w) = 0, c(w) ∈K, w ∈ C, (1.1)

where J : W → R is the objective function, e : W → Z and c : W → R are opera-
tors, W,Z,R are real Banach spaces, K ⊂ R is a closed convex cone, and C ⊂ W is
a closed convex set.

In most cases, the spaces W , Z and R are (generalized) function spaces and the
operator equation e(w) = 0 represents a PDE or a system of coupled PDEs. The
constraint

c(w) ∈K

is considered as an abstract inequality constraint. Sometimes (e.g., in the case of
bound constraints), it will be convenient to write these constraints in the form w ∈ C,
where C ⊂ W is a closed convex set and to drop the inequality constraints:

min
w∈W

J(w) s.t. e(w) = 0, w ∈ C. (1.2)

Here “s.t.” abbreviates “subject to”.
To get the connection to finite dimensional optimization, consider the case

W = R
n, Z = R

l , R = R
m, K = (−∞,0]m, C = R

n.

Then the problem (1.1) becomes a nonlinear optimization problem

min
w∈W

J(w) s.t. e(w) = 0, c(w) ≤ 0. (1.3)

Very often, we will have additional structure: The optimization variable w admits a
natural splitting into two parts, a state y ∈ Y and a control (or design) u ∈ U , where
Y and U are Banach spaces. Then W = Y × U , w = (y,u), and the problem reads

min
y∈Y,u∈U

J (y,u) s.t. e(y,u) = 0, c(y,u) ∈K. (1.4)

Here, y ∈ Y describes the state (e.g., the velocity field of a fluid) of the considered
system, which is described by the equation e(y,u) = 0 (in our context usually a
PDE). The control (or design, depending on the application) u ∈ U is a parameter
that shall be adapted in an optimal way.

The splitting of the optimization variable w = (y,u) into a state and a control is
typical in the optimization with PDE-constraints. Problems with this structure are
called optimal control problems. In most cases we will consider, the state equation
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e(y,u) = 0 admits, for every u ∈ U , a unique corresponding solution y(u), because
the state equation is a well posed PDE for y in which u appears as a parameter.
Several examples will follow below.

We use the finite-dimensional problem (1.3) to give a teaser about important
questions we will be concerned with.

1. Existence of solutions

Denote by J ∗ the optimal objective function value. First, we show, using the prop-
erties of the problem at hand, that J ∗ is achievable and finite. Then, we consider
a minimizing sequence (wk), i.e., e(wk) = 0, c(wk) ≤ 0, J (wk) → J ∗. Next, we
prove that (wk) is bounded (which has to be verified for the problem at hand). Now
we do something that only works in finite dimensions: We conclude that, due to
boundedness, (wk) contains a convergent subsequence (wk)K → w̄. Assuming the
continuity of J , e and c we see that

J (w̄) = lim
K�k→∞J (wk) = J ∗, e(w̄) = lim

K�k→∞ e(wk) = 0,

c(w̄) = lim
K�k→∞ c(wk) ≤ 0.

Therefore, w̄ solves the problem.
We note that for doing the same in Banach space, we need a replacement for the

compactness argument, which will lead us to weak convergence and weak compact-
ness. Furthermore, we need the continuity of the function J and of the operators e

and c with respect to the norm topology and/or the weak topology.

2. Uniqueness

Uniqueness usually relies on strict convexity of the problem, i.e., J strictly con-
vex, e linear and ci convex. This approach can be easily transfered to the infinite-
dimensional case.

3. Optimality conditions

Assuming continuous differentiability of the functions J , c, and e, and that the con-
straints satisfy a regularity condition on the constraints, called constraint qualifica-
tion (CQ) at the solution, the following first-order optimality conditions hold true at
a solution w̄:

Karush-Kuhn-Tucker conditions:

There exist Lagrange multipliers p̄ ∈ R
l and λ̄ ∈ R

m such that (w̄, p̄, λ̄) solves
the following KKT-system:

∇J (w̄) + c′(w̄)T λ̄ + e′(w̄)T p̄ = 0,

e(w̄) = 0,

c(w̄) ≤ 0, λ̄ ≥ 0, c(w̄)T λ̄ = 0.
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Here, the column vector ∇J (w) = J ′(w)T ∈ R
n is the gradient of J (corresponding

to the euclidean inner product) and c′(w) ∈ R
m×n, e′(w) ∈ R

l×n are the Jacobian
matrices of c and e.

All really efficient optimization algorithms for (1.3) build upon these KKT-
conditions. Therefore, it will be very important to derive first order optimality condi-
tions for the infinite-dimensional problem (1.1). Since the KKT-conditions involve
derivatives, we have to extend the notion of differentiability to operators between
Banach spaces. This will lead us to the concept of Fréchet-differentiability. For con-
crete problems, the appropriate choice of the underlying function spaces is not al-
ways obvious, but it is crucial for being able to prove the Fréchet-differentiability of
the function J and the operators c, e and for verifying constraint qualifications.

4. Optimization algorithms

As already said, modern optimization algorithms are based on solving the KKT
system. For instance, for problems without inequality constraints, the KKT system
reduces to the following (n + l) × (n + l) system of equations:

G(w,p) :=
(∇J (w) + e′(w)T p

e(w)

)
= 0. (1.5)

One of the most powerful algorithms for equality constrained optimization, the
Lagrange-Newton method, consists in applying Newton’s method to the equation
(1.5):

Lagrange-Newton method:

For k = 0,1,2, . . . :

1. STOP if G(wk,pk) = 0.

2. Compute sk = (sk
w

sk
p

)
by solving

G′(wk,pk)sk = −G(wk,pk)

and set wk+1 := wk + sk
w , pk+1 := pk + sk

p .

Since G involves first derivatives, the matrix G′(w,p) involves second deriva-
tives. For the development of Lagrange-Newton methods for the problem class (1.1)
we thus need second derivatives of J and e.

There are many more aspects that will be covered, but for the time being we have
given sufficient motivation for the material to follow.

1.1.2 Examples for Optimization Problems with PDEs

We give several simple, but illustrative examples for optimization problems with
PDEs.



1 Analytical Background and Optimality Theory 5

1.1.3 Optimization of a Stationary Heating Process

Consider a solid body occupying the domain Ω ⊂ R
3. Let y(x), x ∈ Ω denote the

temperature of the body at the point x.
We want to heat or cool the body in such a way that the temperature distribution

y coincides as good as possible with a desired temperature distribution yd : Ω → R.

1.1.3.1 Boundary Control

If we apply a temperature distribution u : ∂Ω → R to the boundary of Ω then the
temperature distribution y in the body is given by the Laplace equation

−�y(x) = 0, x ∈ Ω (1.6)

together with the boundary condition of Robin type

κ
∂y

∂ν
(x) = β(x)(u(x) − y(x)), x ∈ ∂Ω,

where κ > 0 is the heat conduction coefficient of the material of the body and β :
∂Ω → (0,∞) is a positive function modelling the heat transfer coefficient to the
exterior.

Here, �y is the Laplace operator defined by

�y(x) =
n∑

i=1

yxixi
(x)

with the abbreviation

yxixi
(x) = ∂2y

∂x2
i

(x)

and ∂y
∂ν

(x) is the derivative in the direction of the outer unit normal ν(x) of ∂Ω at x,
i.e.,

∂y

∂ν
(x) = ∇y(x) · ν(x), x ∈ ∂Ω.

As we will see, the Laplace equation (1.6) is an elliptic partial differential equation
of second order.

In practice, the control u is restricted by additional constraints, for example by
upper and lower bounds

a(x) ≤ u(x) ≤ b(x), x ∈ ∂Ω.

To minimize the distance of the actual and desired temperature y and yd , we con-
sider the following optimization problem.

min J (y,u) := 1

2

∫
Ω

(y(x) − yd(x))2 dx + α

2

∫
∂Ω

u(x)2 dS(x)
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subject to −�y = 0 on Ω,
(State equation)

∂y

∂ν
= β

κ
(u − y) on ∂Ω,

a ≤ u ≤ b on ∂Ω (Control constraints) .

The first term in the objective functional J (y,u) measures the distance of y

and yd , the second term is a regularization term with parameter α ≥ 0 (typically
α ∈ [10−5,10−3]), which leads to improved smoothness properties of the optimal
control for α > 0.

If we set

e(y,u) :=
( −�y

∂y
∂ν

− β
κ

(u − y)

)
, c(y,u) :=

(
a − u

u − b

)
,

where Y and U are appropriately chosen Banach spaces of functions

y : Ω → R, u : ∂Ω → R,

Z = Z1 × Z2 with appropriately chosen Banach spaces Z1, Z2 of functions

z1 : Ω → R, z2 : ∂Ω → R,

R = U × U , and

K = {(v1, v2) ∈ R : vi(x) ≤ 0, x ∈ ∂Ω, i = 1,2} ,

then the above optimal control problem is of the form (1.1).
One of the crucial points will be to choose the above function spaces in such a

way that J , e, and c are continuous and sufficiently often differentiable, to ensure
existence of solutions, the availability of optimality conditions, etc.

In many practical situations elliptic PDEs do not possess classical solutions. The
theory of weak solutions of elliptic PDEs and an appropriate function space setting
will be introduced in Sect. 1.3.1. Optimality conditions for control constraints will
be given in Sect. 1.7.2.3 and for state constraints in Sect. 1.7.3.5.

1.1.3.2 Boundary Control with Radiation Boundary

If we take heat radiation at the boundary of the body into account, we obtain a
nonlinear Stefan-Boltzmann boundary condition. This leads to the semilinear state
equation (i.e., the highest order term is still linear)

−�y = 0 on Ω,

∂y

∂ν
= β

κ
(u4 − y4) on ∂Ω.
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This is a problem of the form (1.1) with

e(y,u) :=
( −�y

∂y
∂ν

− β
κ
(u4 − y4)

)

and the rest as before.

1.1.3.3 Distributed Control

Instead of heating at the boundary it is in some applications also possible to apply
a distributed heat source as control. This can for example be achieved by using
electro-magnetic induction.

If the boundary temperature is zero then we obtain, similar as above, the problem

min J (y,u) := 1

2

∫
Ω

(y(x) − yd(x))2 dx + α

2

∫
Ω

u(x)2 dx

subject to −�y = γ u on Ω,

y = 0 on ∂Ω,

a ≤ u ≤ b on Ω.

Here, the coefficient γ : Ω → [0,∞) weights the control. The choice γ = 1Ωc for
some control region Ωc ⊂ Ω restricts the action of the control to the control re-
gion Ωc.

If we assume a surrounding temperature ya then the state equation changes to

−�y = γ u on ∂Ω,

∂y

∂ν
= β

κ
(ya − y) on ∂Ω.

1.1.3.4 Problems with State Constraints

In addition to control constraint also state constraints

l ≤ y ≤ r

with functions l < r are of practical interest. They are much harder to handle than
control constraints.

1.1.4 Optimization of an Unsteady Heating Processes

In most applications, heating processes are time-dependent. Then the temperature
y : [0, T ] × Ω → R depends on space and time. We set

ΩT := (0, T ) × Ω, ΣT := (0, T ) × ∂Ω.



8 S. Ulbrich

1.1.4.1 Boundary Control

Let yd be a desired temperature distribution at the end time T and y0 be the initial
temperature of the body. To find a control u : ΣT → R that minimizes the distance
of the actual temperature y(T , ·) at the end time and the desired temperature yd , we
consider similar as above the following optimization problem.

min J (y,u) := 1

2

∫
Ω

(y(T , x) − yd(x))2 dx + α

2

∫ T

0

∫
∂Ω

u(t, x)2 dS(x)dt

subject to yt − �y = 0 on ΩT ,

∂y

∂ν
= β

κ
(u − y) on ΣT ,

y(0, x) = y0(x) on Ω

a ≤ u ≤ b on ΣT .

Here, yt denotes the partial derivative with respect to time and �y is the Laplace
operator in space. The PDE

yt − �y = 0

is called heat equation and is the prototype of a parabolic partial differential equa-
tion.

Similarly, unsteady boundary control with radiation and unsteady distributed
control can be derived from the steady counterparts.

The theory of weak solutions for parabolic PDEs and an appropriate functional
analytic setting will be introduced in 1.3.2. Optimality conditions for control con-
straints will be given in Sect. 1.7.2 and for state constraints in Sect. 1.7.3.5.

Optimal control problems with linear state equation and quadratic objective func-
tion are called linear-quadratic. If the PDE is nonlinear in lower order terms then
the PDE is called semilinear.

1.1.5 Optimal Design

A very important discipline is optimal design. Here, the objective is to optimize
the shape of some object. A typical example is the optimal design of a wing or a
whole airplane with respect to certain objective, e.g., minimal drag, maximum lift
or a combination of both.

Depending on the quality of the mathematical model employed, the flow around
a wing is described by the Euler equations or (better) by the compressible Navier-
Stokes equations. Both are systems of PDEs. A change of the wing shape would
then result in a change of the spatial flow domain Ω and thus, the design parameter
is the domain Ω itself or a description of it (e.g. a surface describing the shape of
the wing). Optimization problems of this type are very challenging.
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Therefore, we look here at a much simpler example:
Consider a very thin elastic membrane spanned over the domain Ω ⊂ R

2. Its
thickness u(x) > 0, x ∈ Ω , varies (but is very small). At the boundary of Ω , the
membrane is clamped at the level x3 = 0.

Given a vertical force distribution f : Ω → R acting from below, the membrane
takes the equilibrium position described by the graph of the function y : Ω → R (we
assume that the thickness is negligibly compared to the displacement). For small dis-
placement, the mathematical model for this membrane then is given by the following
elliptic PDE:

−div(u∇y) = f on Ω,

y = 0 on ∂Ω.

Here, divv =∑
i (vi)xi

denotes the divergence of v : Ω → R
2.

The design goal consists in finding an optimal thickness u subject to the thickness
constraints

a(x) ≤ u(x) ≤ b(x) x ∈ Ω

and the volume constraint ∫
Ω

u(x)dx ≤ V

such that the compliance

J (y) =
∫

Ω

f (x)y(x) dx

of the membrane is as small as possible. The smaller the compliance, the stiffer
the membrane with respect to the load f . We obtain the following optimal design
problem

min J (y) :=
∫

Ω

f (x)y(x) dx

subject to −div(u∇y) = f on Ω,

y = 0 on ∂Ω,

a ≤ u ≤ b on Ω,∫
Ω

u(x)dx ≤ V.

1.2 Linear Functional Analysis and Sobolev Spaces

We have already mentioned that PDEs do in practical relevant situations, e.g. for dis-
continuous right hand sides, not necessarily have classical solutions. A satisfactory
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solution theory can be developed by using Sobolev spaces and functional analysis.
This will also provide a suitable framework to derive optimality conditions.

We recall first several basics on Banach and Hilbert spaces. Details can be found
in any book on linear functional analysis, e.g., [4, 83, 115, 146, 149].

1.2.1 Banach and Hilbert Spaces

1.2.1.1 Basic Definitions

Definition 1.1 (Norm, Banach space) Let X be a real vector space.

(i) A mapping ‖ · ‖ : X 
→ [0,∞) is a norm on X, if
(1) ‖u‖ = 0 ⇐⇒ u = 0,
(2) ‖λu‖ = |λ|‖u‖ ∀u ∈ X, λ ∈ R,
(3) ‖u + v‖ ≤ ‖u‖ + ‖v‖ ∀u,v ∈ X.

(ii) A normed real vector space X is called (real) Banach space if it is com-
plete, i.e., if any Cauchy sequence (un) has a limit u ∈ X, more precisely, if
limm,n→∞ ‖um − un‖ = 0 then there is u ∈ X with limn→∞ ‖un − u‖ = 0.

Example 1.1

1. For Ω ⊂ R
n consider the function space

C(Ω) = {u : Ω → R : u continuous} .

If Ω is bounded then C(Ω̄) is a Banach space with the sup-norm

‖u‖C(Ω̄) = sup
x∈Ω̄

|u(x)|.

2. Let Ω ⊂ R
n be open. For a multiindex α = (α1, . . . , αn) ∈ N

n
0 we define its order

by |α| :=∑n
i=1 αi and associate the |α|-th order partial derivative at x

Dαu(x) := ∂ |α|u
∂x

α1
1 · · · ∂x

αn
n

(x).

We define

Ck(Ω) = {
u ∈ C(Ω) : Dαu ∈ C(Ω) for |α| ≤ k

}
.

For Ω ⊂ R
n open and bounded let

Ck(Ω̄) = {
u ∈ Ck(Ω) : Dαu has a continuous extension to Ω̄ for |α| ≤ k

}
.

Then the spaces Ck(Ω̄) are Banach spaces with the norm

‖u‖Ck(Ω̄) :=
∑
|α|≤k

‖Dαu‖C(Ω̄).



1 Analytical Background and Optimality Theory 11

Definition 1.2 (Inner product, Hilbert space) Let H be a real vector space.

(i) A mapping (·, ·) : H × H 
→ R is an inner product on H , if
(1) (u, v) = (v,u) ∀u,v ∈ H ,
(2) For every v ∈ H the mapping u ∈ H 
→ (u, v) is linear,
(3) (u,u) ≥ 0 ∀u ∈ H and (u,u) = 0 ⇐⇒ u = 0.

(ii) A vector space H with inner product (·, ·) and associated norm

‖u‖ :=√
(u,u)

is called Pre-Hilbert space.
(iii) A Pre-Hilbert space (H, (·, ·)) is called Hilbert space if it is complete under its

norm ‖u‖ := √
(u,u).

Example 1.2 Let ∅ �= Ω ⊂ R
n be open and bounded. Then (C(Ω̄), (·, ·)L2) is a

Pre-Hilbert space with the L2-inner product

(u, v)L2 =
∫

Ω

u(x) v(x) dx.

Note that (C(Ω̄), (·, ·)L2) is not complete (why?).

Theorem 1.1 Let H be a Pre-Hilbert space. Then the Cauchy-Schwarz inequality
holds

|(u, v)| ≤ ‖u‖‖v‖ ∀u,v ∈ H.

Many spaces arising in applications have the important property that they contain a
countable dense subset.

Definition 1.3 A Banach space X is called separable if it contains a countable
dense subset. I.e., there exists Y = {xi ∈ X : i ∈ N} ⊂ X such that

∀x ∈ X, ∀ε > 0 : ∃y ∈ Y : ‖x − y‖X < ε.

Example 1.3 For bounded Ω the space C(Ω̄) is separable (the polynomials with
rational coefficients are dense by Weierstraß’s approximation theorem).

1.2.1.2 Linear Operators and Dual Space

Obviously, linear partial differential operators define linear mappings between func-
tion spaces. We recall the following definition.

Definition 1.4 (Linear operator) Let X,Y be normed real vector spaces with norms
‖ · ‖X , ‖ · ‖Y .
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(i) A mapping A : X → Y is called linear operator if it satisfies

A(λu + μv) = λAu + μAv ∀u,v ∈ X, λ,μ ∈ R.

The range of A is defined by

R(A) := {y ∈ Y : ∃x ∈ X : y = Ax}

and the null space of A by

N(A) := {x ∈ X : Ax = 0} .

(ii) By L(X,Y ) we denote the space of all linear operators A : X → Y that are
bounded in the sense that

‖A‖X,Y := sup
‖u‖X=1

‖Au‖Y < ∞.

L(X,Y ) is a normed space with the operator norm ‖ · ‖X,Y .

Theorem 1.2 If Y is a Banach space then L(X,Y ) is a Banach space.

The following theorem tells us, as a corollary, that if Y is a Banach space, any
operator A ∈ L(X,Y ) is determined uniquely by its action on a dense subspace.

Theorem 1.3 Let X be a normed space, Y be a Banach space and let U ⊂ X be
a dense subspace (carrying the same norm as X). Then for all A ∈ L(U,Y ), there
exists a unique extension Ã ∈ L(X,Y ) with Ã|U = A. For this extension, there holds
‖Ã‖X,Y = ‖A‖U,Y .

Definition 1.5 (Linear functionals, dual space)

(i) Let X be a Banach space. A bounded linear operator u∗ : X → R, i.e., u∗ ∈
L(X,R) is called a bounded linear functional on X.

(ii) The space X∗ := L(X,R) of linear functionals on X is called dual space of X

and is (by Theorem 1.2) a Banach space with the operator norm

‖u∗‖ := sup
‖u‖X=1

|u∗(u)|.

(iii) We use the notation

〈u∗, u〉X∗,X := u∗(u).

〈·, ·〉X∗,X is called the dual pairing of X∗ and X.

Of essential importance is the following
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Theorem 1.4 (Riesz representation theorem) The dual space H ∗ of a Hilbert space
H is isometric to H itself. More precisely, for every v ∈ H the linear functional u∗
defined by

〈u∗, u〉H ∗,H := (v,u)H ∀u ∈ H

is in H ∗ with norm ‖u∗‖H ∗ = ‖v‖H . Vice versa, for any u∗ ∈ H ∗ there exists a
unique v ∈ H such that

〈u∗, u〉H ∗,H = (v,u)H ∀u ∈ H

and ‖u∗‖H ∗ = ‖v‖H .
In particular, a Hilbert space is reflexive (we will introduce this later in Defini-

tion 1.17).

Definition 1.6 Let X,Y be Banach spaces. Then for an operator A ∈ L(X,Y ) the
dual operator A∗ ∈ L(Y ∗,X∗) is defined by

〈A∗u,v〉X∗,X = 〈u,Av〉Y ∗,Y ∀u ∈ Y ∗, v ∈ X.

It is easy to check that ‖A∗‖Y ∗,X∗ = ‖A‖X,Y .

1.2.2 Sobolev Spaces

To develop a satisfactory theory for PDEs, it is necessary to replace the classical
function spaces Ck(Ω̄) by Sobolev spaces Wk,p(Ω). Roughly speaking, the space
Wk,p(Ω) consists of all functions u ∈ Lp(Ω) that possess (weak) partial derivatives
Dαu ∈ Lp(Ω) for |α| ≤ k.

We recall

1.2.2.1 Lebesgue Spaces

Our aim is to characterize the function space Lp(Ω) that is complete under the
Lp-norm, where

‖u‖Lp(Ω) =
(∫

Ω

|u(x)|p dx

)1/p

, p ∈ [1,∞),

‖u‖L∞(Ω) = ess sup
x∈Ω

|u(x)|
(
= sup

x∈Ω

|u(x)| for u ∈ C(Ω̄)
)
.

1.2.2.2 Lebesgue Measurable Functions and Lebesgue Integral

Definition 1.7 A collection S ⊂ P(Rn) of subsets of R
n is called σ -algebra on R

n

if
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(i) ∅,R
n ∈ S ,

(ii) A ∈ S implies R
n \ A ∈ S ,

(iii) If (Ak)k∈N ⊂ S then
⋃∞

k=1 Ak ∈ S .

A measure μ : S → [0,∞] is a mapping with the following properties:

(i) μ(∅) = 0.
(ii) If (Ak)k∈N ⊂ S is a sequence of pairwise disjoint sets then

μ

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

μ(Ak) (σ -additivity).

Of essential importance is the σ -algebra of Lebesgue measurable sets with corre-
sponding Lebesgue measure.

Theorem 1.5 There exists the σ -algebra Bn of Lebesgue measurable sets on R
n

and the Lebesgue measure μ : Bn → [0,∞] with the properties:

(i) Bn contains all open sets (and thus all closed sets).
(ii) μ is a measure on Bn.

(iii) If B is any ball in R
n then μ(B) = |B|, where |B| denotes the volume of B .

(iv) If A ⊂ B with B ∈ Bn and μ(B) = 0 then A ∈ Bn and μ(A) = 0 (i.e.,
(Rn,Bn,μ) is a complete measure space).

The sets A ∈ Bn are called Lebesgue measurable.

Notation If some property holds for all x ∈ R\N with N ⊂ Bn, μ(N) = 0, then we
say that it holds almost everywhere (a.e.).

Definition 1.8 We say that f : R
n → [−∞,∞] is Lebesgue measurable if

{
x ∈ R

n : f (x) > α
} ∈ Bn ∀α ∈ R.

If A ∈ Bn and f : A → [−∞,∞] then we call f Lebesgue measurable on A if f 1A

is Lebesgue measurable. Here, we use the convention f 1A = f on A and f 1A = 0
otherwise.

Remark 1.1 For open Ω ⊂ R
n any function f ∈ C(Ω) is measurable, since {f > α}

is relatively open in Ω (and thus open).

We now extend the classical integral to Lebesgue measurable functions.

Definition 1.9 The set of nonnegative elementary functions is defined by

E+(Rn) :=
{

f =
m∑

k=1

αk1Ak
: (Ak)1≤k≤m ⊂ Bn pairwise disjoint, αk ≥ 0, m ∈ N

}
.
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The Lebesgue integral of f =∑m
k=1 αk1Ak

∈ E+(Rn) is defined by

∫
Rn

f (x) dμ(x) :=
m∑

k=1

αkμ(Ak).

An extension to general Lebesgue measurable functions is obtained by the following
fact.

Lemma 1.1 For any sequence (fk) of Lebesgue measurable functions also

sup
k

fk, inf
k

fk, lim sup
k→∞

fk, lim inf
k→∞ fk

are Lebesgue measurable.
For any Lebesgue measurable function f ≥ 0 there exists a monotone increasing

sequence (fk)k∈N ⊂ E+(Rn) with f = supk fk .

This motivates the following definition of the Lebesgue integral.

Definition 1.10 (Lebesgue integral)

(i) For a nonnegative Lebesgue measurable function f : R
n → [0,∞] we define

the Lebesgue integral of f by
∫

Rn

f (x) dμ(x) := sup
k

∫
Rn

fk(x) dμ(x),

where (fk)k∈N ⊂ E+(Rn) is a monotone increasing sequence with f =
supk fk .

(ii) For a Lebesgue measurable function f : R
n → [−∞,∞] we define the

Lebesgue integral by
∫

Rn

f (x) dμ(x) :=
∫

Rn

f +(x) dμ(x) −
∫

Rn

f −(x) dμ(x)

with f + = max(f,0), f − = max(−f,0) if one of the terms on the right hand
side is finite. In this case f is called integrable.

(iii) If A ∈ Bn and f : A → [−∞,∞] is a function such that f 1A is integrable then
we define ∫

A

f (x)dμ(x) :=
∫

Rn

f (x)1A(x)dμ(x).

Notation In the sequel we will write dx instead of dμ(x).

1.2.2.3 Definition of Lebesgue Spaces

Clearly, we can extend the Lp-norm to Lebesgue measurable functions.
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Definition 1.11 Let Ω ∈ Bn. We define for p ∈ [1,∞) the seminorm

‖u‖Lp(Ω) :=
(∫

Ω

|u(x)|pdx

)1/p

and

‖u‖L∞(Ω) := ess sup
x∈Ω

|u(x)| := inf {α ≥ 0 : μ({|u| > α}) = 0} .

Now, for 1 ≤ p ≤ ∞ we define the spaces

Lp(Ω) := {
u : Ω → R Lebesgue measurable : ‖u‖Lp(Ω) < ∞}

.

These are not normed space since there exist measurable functions u : Ω → R,
u �= 0, with ‖u‖Lp = 0.

We use the equivalence relation

u∼v in Lp(Ω) :⇐⇒ ‖u − v‖Lp(Ω) = 0
by Lemma 1.2⇐⇒ u = v a.e.

to define Lp(Ω) = Lp(Ω)/∼ as the space of equivalence classes of a.e. identical
functions, equipped with the norm ‖ · ‖Lp .

Finally we define

Lp

loc(Ω) := {
u : Ω → R Lebesgue measurable : u ∈ Lp(K) for all K ⊂ Ω compact

}

and set L
p

loc(Ω) := Lp

loc(Ω)/∼.
In the following we will consider elements of Lp and L

p

loc as functions that are
known up to a set of measure zero.

Remark 1.2 It is easy to see that Lp(Ω) ⊂ L1
loc(Ω) for all p ∈ [1,∞].

We collect several important facts of Lebesgue spaces.

Lemma 1.2 For all u,v ∈ Lp(Ω), p ∈ [1,∞], we have

‖u − v‖Lp = 0 ⇐⇒ u = v a.e.

Proof The assertion is obvious for p = ∞. For p ∈ [1,∞) let w = u − v.
“=⇒:” We have for all k ∈ N

0 = ‖w‖Lp ≥ 1

k
μ({|w| ≥ 1/k})1/p.

Hence μ({w ≥ 1/k}) = 0 and consequently

μ(w �= 0) = μ

( ∞⋃
k=1

{|w| ≥ 1/k}
)

≤
∞∑

k=1

μ({|w| ≥ 1/k}) = 0.
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“⇐=:” If w = 0 a.e. then |w|p = 0 on R
n \ N for some N with μ(N) = 0.

Hence, |w|p = supk wk with (wk) ⊂ E+(Rn), where wk = 0 on R
n \ N . Hence∫

Rn wk dx = 0 and consequently
∫

Rn |w|pdx = 0.

Theorem 1.6 (Fischer-Riesz) The spaces Lp(Ω), p ∈ [1,∞], are Banach spaces.
The space L2(Ω) is a Hilbert space with inner product

(u, v)L2 :=
∫

Ω

uv dx.

Lemma 1.3 (Hölder inequality) Let Ω ∈ Bn. Then for all p ∈ [1,∞] we have with
the dual exponent q ∈ [1,∞] satisfying 1

p
+ 1

q
= 1 for all u ∈ Lp(Ω) and v ∈

Lq(Ω) the Hölder inequality

uv ∈ L1(Ω) and ‖uv‖L1 ≤ ‖u‖Lp‖v‖Lq .

Now we can characterize the dual space of Lp-spaces.

Theorem 1.7 Let Ω ∈ Bn, p ∈ [1,∞) and q ∈ (1,∞] the dual exponent satisfying
1
p

+ 1
q

= 1. Then the dual space (Lp(Ω))∗ can be identified with Lq(Ω) by means
of the isometric isomorphism

v ∈ Lq(Ω) 
→ u∗ ∈ (Lp(Ω))∗, where 〈u∗, u〉(Lp)∗,Lp :=
∫

Ω

u(x)v(x) dx.

Remark 1.3 Note however that L1 is only a subspace of (L∞)∗.

1.2.2.4 Density Results and Convergence Theorems

A fundamental result is the following:

Theorem 1.8 (Dominated convergence theorem) Let Ω ∈ Bn. Assume that fk :
Ω → R are measurable with

fk → f a.e. and |fk| ≤ g a.e.

with a function g ∈ L1(Ω). Then fk, f ∈ L1(Ω) and
∫

Ω

fk dx →
∫

Ω

f dx, fk → f in L1(Ω).

Next we state the important fact that the set of “nice” functions

C∞
c (Ω) := {

u ∈ C∞(Ω̄) : supp(u) ⊂ Ω compact
}

is actually dense in Lp(Ω) for all p ∈ [1,∞).
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Lemma 1.4 Let Ω ⊂ R
n be open. Then C∞

c (Ω) is dense in Lp(Ω) for all p ∈
[1,∞).

A quite immediate consequence is the following useful result.

Lemma 1.5 Let Ω ⊂ R
n be open and f ∈ L1

loc(Ω) with

∫
Ω

f (x)ϕ(x) dx = 0 ∀ϕ ∈ C∞
c (Ω).

Then f = 0 a.e.

1.2.2.5 Weak Derivatives

The definition of weak derivatives is motivated by the fact that for any function
u ∈ Ck(Ω̄) and any multiindex α ∈ N

n
0, |α| ≤ k, the identity holds (integrate |α|-

times by parts)

∫
Ω

Dαuϕ dx = (−1)|α|
∫

Ω

uDαϕ dx, ∀ϕ ∈ C∞
c (Ω). (1.7)

This motivates the definition

Definition 1.12 Let Ω ⊂ R
n be open and let u ∈ L1

loc(Ω). If there exists a function
w ∈ L1

loc(Ω) such that

∫
Ω

wϕ dx = (−1)|α|
∫

Ω

uDαϕ dx, ∀ϕ ∈ C∞
c (Ω) (1.8)

then Dαu := w is called the α-th weak partial derivative of u.

Remark 1.4

1. By Lemma 1.5, (1.8) determines the weak derivative Dαu ∈ L1
loc(Ω) uniquely.

2. For u ∈ Ck(Ω̄) and α ∈ N
n
0, |α| ≤ k, the classical derivative w = Dαu satisfies

(1.7) and thus (1.8). Hence, the weak derivative is consistent with the classical
derivative.

1.2.2.6 Regular Domains and Integration by Parts

Let Ω ⊂ R
n be open. For k ∈ N0 and β ∈ (0,1] let

Ck,β(Ω̄) = {
u ∈ Ck(Ω̄) : Dαu β-Hölder continuous for |α| = k

}
.
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Here, f : Ω̄ → R is β-Hölder continuous if there exists a constant C > 0 such that

|f (x) − f (y)| ≤ C‖x − y‖β

2 ∀x, y ∈ Ω̄,

where ‖ · ‖2 denotes the euclidean norm on R
n. Of course, 1-Hölder continuity is

Lipschitz continuity.
We set Ck,0(Ω̄) := Ck(Ω̄). If Ω is bounded then Ck,β(Ω̄) is a Banach space

with the norm

‖u‖Ck,β (Ω̄) := ‖u‖Ck(Ω̄) +
∑
|α|=k

sup
x,y∈Ω̄,x �=y

|Dαu(x) − Dαu(y)|
‖x − y‖β

2

.

Definition 1.13 (Ck,β -boundary, unit normal field) Let Ω ⊂ R
n be open and

bounded.

(a) We say that Ω has a Ck,β -boundary, k ∈ N0 ∪{∞}, 0 ≤ β ≤ 1, if for any x ∈ ∂Ω

there exists r > 0, l ∈ {1, . . . , n}, σ ∈ {−1,+1}, and a function γ ∈ Ck,β(Rn−1)

such that

Ω ∩ B(x; r) = {y ∈ B(x; r) : σyl < γ (y1, . . . yl−1, yl+1, . . . , yn)} ,

where B(x; r) denotes the open ball around x with radius r . Instead of C0,1-
boundary we say also Lipschitz-boundary.

(b) If ∂Ω is C0,1 then we can define a.e. the unit outer normal field ν : ∂Ω → R
n,

where ν(x), ‖ν(x)‖2 = 1, is the outward pointing unit normal of ∂Ω at x.
(c) Let ∂Ω be C0,1. We call the directional derivative

∂u

∂ν
(x) := ν(x) · ∇u(x), x ∈ ∂Ω,

the normal derivative of u.

We recall the Gauß-Green theorem (integration by parts formula).

Theorem 1.9 Let Ω ⊂ R
n be open and bounded with C0,1-boundary. Then for all

u,v ∈ C1(Ω̄)

∫
Ω

uxi
(x)v(x) dx = −

∫
Ω

u(x)vxi
(x) dx +

∫
∂Ω

u(x)v(x)νi(x) dS(x).

1.2.2.7 Sobolev Spaces

We will now introduce subspaces Wk,p(Ω) of functions u ∈ Lp(Ω), for which the
weak derivatives Dαu, |α| ≤ k, are in Lp(Ω).
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Definition 1.14 Let Ω ⊂ R
n be open. For k ∈ N0, p ∈ [1,∞], we define the

Sobolev space Wk,p(Ω) by

Wk,p(Ω) = {
u ∈ Lp(Ω) : u has weak derivatives Dαu ∈ Lp(Ω) for all |α| ≤ k

}
(1.9)

equipped with the norm

‖u‖Wk,p(Ω) :=
(∑

|α|≤k

‖Dαu‖p
Lp

)1/p

, p ∈ [1,∞),

‖u‖Wk,∞(Ω) :=
∑
|α|≤k

‖Dαu‖L∞(Ω).

Notations

1. In the case p = 2 one writes Hk(Ω) := Wk,2(Ω). We note that W 0,p(Ω) =
Lp(Ω) for p ∈ [1,∞].

2. For weak partial derivatives we use also the notation uxi
, uxixj

, uxixj xk
, . . . .

3. For u ∈ H 1(Ω) we set

∇u(x) =
⎛
⎜⎝

ux1(x)
...

uxn(x)

⎞
⎟⎠ .

One can show that the following density results hold.

Theorem 1.10 Let Ω ⊂ R
n be open. Then the following holds.

(i) The set C∞(Ω) ∩ Wk,p(Ω), k ∈ N0, 1 ≤ p < ∞, is dense in Wk,p(Ω). Hence,
Wk,p(Ω) is the completion of {u ∈ C∞(Ω) : ‖u‖Wk,p < ∞} with respect to the
norm ‖ · ‖Wk,p .

(ii) If Ω is a bounded domain with C0,1-boundary then C∞(Ω̄) is dense in
Wk,p(Ω), k ∈ N0, 1 ≤ p < ∞.

Remark 1.5 Simple examples show that weak differentiability does not necessarily
ensure continuity. We have for example with Ω := B(0;1) and u(x) := ‖x‖−β that

u ∈ W 1,p(Ω) ⇐⇒ β <
n − p

p
.

Theorem 1.11 Let Ω ⊂ R
n be open, k ∈ N0, and p ∈ [1,∞]. Then Wk,p(Ω) is a

Banach space.
Moreover, the space Hk(Ω) = Wk,2(Ω) is a Hilbert space with inner product

(u, v)Hk(Ω) =
∑
|α|≤k

(Dαu,Dαv)L2(Ω).



1 Analytical Background and Optimality Theory 21

To incorporate homogeneous boundary conditions already in the function space we
define the following subspace.

Definition 1.15 Let Ω ⊂ R
n be open. For k ∈ N0, p ∈ [1,∞], we denote by

W
k,p

0 (Ω)

the closure of C∞
c (Ω) in Wk,p(Ω) (i.e., for any u ∈ W

k,p

0 (Ω) there exists a se-
quence (ϕi) ⊂ C∞

c (Ω) with limi→∞ ‖u − ϕi‖Wk,p(Ω) = 0). The space is equipped
with the same norm as Wk,p(Ω) and is a Banach space. The space Hk

0 (Ω) =
W

k,2
0 (Ω) is a Hilbert space.

Remark 1.6 W
k,p

0 (Ω) contains exactly all u ∈ W 1,p(Ω) such that Dαu = 0 for
|α| ≤ k − 1 on ∂Ω with an appropriate interpretation of the traces Dαu|∂Ω .

We consider next the appropriate assignment of boundary values (so called
boundary traces) for functions u ∈ Wk,p(Ω) if Ω has Lipschitz-boundary.

If u ∈ Wk,p(Ω) ∩ C(Ω̄) then the boundary values can be defined in the classical
sense by using the continuous extension. However, since ∂Ω is a set of measure
zero and functions u ∈ Wk,p(Ω) are only determinded up to a set of measure zero,
the definition of boundary values requires care. We resolve the problem by defining
a trace operator.

Theorem 1.12 Assume that Ω ⊂ R
n is open and bounded with Lipschitz-boundary.

Then for all p ∈ [1,∞] there exists a unique bounded linear operator

T : W 1,p(Ω) → Lp(∂Ω)

such that

T u = u|∂Ω ∀u ∈ W 1,p(Ω) ∩ C(Ω̄).

Here, ‖T ‖W 1,p(Ω),Lp(∂Ω) depends only on Ω and p. T u is called the trace of u

on ∂Ω .

1.2.2.8 Poincaré’s Inequality

We have seen that the trace of functions in Hk
0 (Ω), k ≥ 0, vanishes. For the treat-

ment of boundary value problems it will be useful that the semi-norm

|u|Hk(Ω) :=
(∑

|α|=k

‖Dαu‖2
L2

)1/2

(1.10)

defines an equivalent norm on the Hilbert space Hk
0 (Ω). It is obvious that

|u|Hk(Ω) ≤ ‖u‖Hk(Ω).
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We will now see that also

‖u‖Hk(Ω) ≤ C |u|Hk(Ω) ∀u ∈ Hk
0 (Ω). (1.11)

Theorem 1.13 (Poincaré’s inequality) Let Ω ⊂ R
n be open and bounded. Then

there exists a constant C > 0 with

|u|Hk(Ω) ≤ ‖u‖Hk(Ω) ≤ C |u|Hk(Ω) ∀u ∈ Hk
0 (Ω). (1.11)

1.2.2.9 Sobolev Imbedding Theorem

Sobolev spaces are embedded in classical spaces:

Theorem 1.14 Let Ω ⊂ R
n be open, bounded with Lipschitz-boundary. Let m ∈ N,

1 ≤ p < ∞.

(i) For all k ∈ N0, 0 < β < 1 with

m − n

p
≥ k + β

one has the continuous embedding

Wm,p(Ω) ↪→ Ck,β(Ω̄).

More precisely, there exists a constant C > 0 such that for all u ∈ Wm,p(Ω)

possibly after modification on a set of measure zero u ∈ Ck,β(Ω̄) and

‖u‖Ck,β (Ω̄) ≤ C‖u‖Wm,p(Ω).

(ii) For all k ∈ N0, 0 ≤ β ≤ 1 with

m − n

p
> k + β

one has the compact embedding

Wm,p(Ω) ↪→↪→ Ck,β(Ω̄),

i.e., closed balls in Wm,p(Ω) are relatively compact in Ck,β(Ω̄).
(iii) For q ≥ 1 and l ∈ N0 with m − n/p ≥ l − n/q one has the continuous embed-

ding

Wm,p(Ω) ↪→ Wl,q(Ω).

The embedding is compact if m > l and m − n/p > l − n/q .
For l = 0 we have W 0,q (Ω) = Lq(Ω).

For arbitrary open bounded Ω ⊂ R
n (i), (ii), (iii) hold for W

m,p

0 (Ω) instead of
Wm,p(Ω).
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Proof See for example [1, 4, 47].

Example 1.4 For n ≤ 3 we have the continuous embedding H 1(Ω) ↪→ L6(Ω) and
the compact embedding H 2(Ω) ↪→↪→ C(Ω̄).

1.2.2.10 The Dual Space H−1 of H 1
0

The dual space of the Hilbert space H 1
0 (Ω) is denoted by H−1(Ω). This space can

be characterized as follows:

Theorem 1.15 For the space H−1(Ω), Ω ⊂ R
n open, the following holds:

H−1(Ω) =
{

v ∈ H 1
0 (Ω) 
→ (f 0, v)L2 +

n∑
j=1

(f j , vxj
)L2 : f j ∈ L2(Ω)

}
.

Furthermore,

‖f ‖H−1 = min

{(
n∑

j=0

‖f j‖2
L2

)1/2

: 〈f, v〉H−1,H 1
0

= (f 0, v)L2

+
n∑

j=1

(f j , vxj
)L2 , f j ∈ L2(Ω)

}
.

Proof “⊂”: Let f ∈ H−1(Ω). By the Riesz representation theorem, there exists a
unique u ∈ H 1

0 (Ω) with

(u, v)H 1 = 〈f, v〉H−1,H 1
0

∀v ∈ H 1
0 (Ω).

Set f 0 = u, f j = uxj
, j ≥ 1.

Then

(f 0, v)L2 +
n∑

j=1

(f j , vxj
)L2 = (u, v)L2 +

n∑
j=1

(uxj
, vxj

)L2

= (u, v)H 1 = 〈f, v〉H−1,H 1
0

∀v ∈ H 1
0 (Ω).

“⊃”: For g0, . . . , gn ∈ L2(Ω), consider

g : v ∈ H 1
0 (Ω) 
→ (g0, v)L2 +

n∑
j=1

(gj , vxj
)L2 .
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Obviously, g is linear. Furthermore, for all v ∈ H 1
0 (Ω), there holds

∣∣∣∣∣(g0, v)L2 +
n∑

j=1

(gj , vxj
)L2

∣∣∣∣∣

≤ ‖g0‖L2‖v‖L2 +
n∑

j=1

‖gj‖L2‖vxj
‖
L2

≤
(

n∑
j=0

‖gj‖2
L2

)1/2(
‖v‖2

L2 +
n∑

j=1

‖vxj
‖
L2

)1/2

=
(

n∑
j=0

‖gj‖2
L2

)1/2

‖v‖H 1 .

This shows g ∈ H−1(Ω) and

‖g‖H−1 ≤
(

n∑
j=0

‖gj‖2
L2

)1/2

. (1.12)

To show the formula for ‖g‖H−1 let g0, . . . , gn ∈ L2(Ω) be an arbitrary repre-
sentation of g. Moreover let u be the Riesz representation of g and choose

(ḡ0, . . . , ḡn) := (u,ux1 , . . . , uxn)

as above. Then by the Riesz representation theorem

‖g‖2
H−1 = ‖u‖2

H 1 = ‖u‖2
L2 +

n∑
j=1

‖uxj
‖2
L2 =

n∑
j=0

‖ḡj‖2
L2 ≤

n∑
j=0

‖gj‖2
L2 ,

where the last inequality follows from (1.12). This shows that ḡ0, . . . , ḡn is the
representation with minimum norm and yields ‖g‖H−1 .

1.2.3 Weak Convergence

In infinite dimensional spaces bounded, closed sets are no longer compact. In order
to obtain compactness results, one has to use the concept of weak convergence.

Definition 1.16 Let X be a Banach space. We say that a sequence (xk) ⊂ X con-
verges weakly to x ∈ X, written

xk −⇀ x,

if

〈x∗, xk〉X∗,X → 〈x∗, x〉X∗,X as k → ∞ ∀x∗ ∈ X∗.
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It is easy to check that strong convergence xk → x implies weak convergence
xk −⇀ x. Moreover, one can show:

Theorem 1.16

(i) Let X be a normed space and let (xk) ⊂ X be weakly convergent to x ∈ X. Then
(xk) is bounded.

(ii) Let C ⊂ X be a closed convex subset of the normed space X. Then C is weakly
sequentially closed.

Definition 1.17 A Banach space X is called reflexive if the mapping x ∈ X 
→
〈·, x〉X∗,X ∈ (X∗)∗ is surjective, i.e., if for any x∗∗ ∈ (X∗)∗ there exists x ∈ X with

〈x∗∗, x∗〉(X∗)∗,X∗ = 〈x∗, x〉X∗,X ∀x∗ ∈ X∗.

Remark 1.7 Note that for any x ∈ X the mapping x∗∗ := 〈·, x〉X∗,X is in (X∗)∗ with
‖x∗∗‖(X∗)∗ ≤ ‖x‖X , since

|〈x∗, x〉X∗,X| ≤ ‖x∗‖X∗‖x‖X.

One can show that actually ‖x∗∗‖(X∗)∗ = ‖x‖X .

Remark 1.8 Lp is for 1 < p < ∞ reflexive, since we have the isometric isomor-
phisms (Lp)∗ = Lq , 1/p + 1/q = 1, and thus ((Lp)∗)∗ = (Lq)∗ = Lp . Moreover,
any Hilbert space is reflexive by the Riesz representation theorem.

The following result is important.

Theorem 1.17 (Weak sequential compactness) Let X be a reflexive Banach space.
Then the following holds

(i) Every bounded sequence (xk) ⊂ X contains a weakly convergent subsequence,
i.e., there are (xki

) ⊂ (xk) and x ∈ X with xki
−⇀ x.

(ii) Every bounded, closed and convex subset C ⊂ X is weakly sequentially com-
pact, i.e., every sequence (xk) ⊂ C contains a weakly convergent subsequence
(xki

) ⊂ (xk) with xki
−⇀ x, where x ∈ C.

For a proof see for example [4, 149].

Theorem 1.18 (Lower semicontinuity) Let X be a Banach space. Then any contin-
uous, convex functional F : X → R is weakly lower semicontinuous, i.e.

xk −⇀ x =⇒ lim inf
k→∞ F(xk) ≥ F(x).

Finally, it is valuable to have mappings that map weakly convergent sequences to
strongly convergent ones.
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Definition 1.18 (Compact operator) A linear operator A : X → Y between normed
spaces is called compact if it maps bounded sets to relatively compact sets, i.e.,

M ⊂ X bounded =⇒ AM ⊂ Y compact.

Remark 1.9 Since compact sets are bounded (why?), compact operators are auto-
matically bounded and thus continuous.

For a compact embedding X ↪→↪→ Y the imbedding operator IX,Y : x ∈ X 
→
x ∈ Y is compact.

The connection to weak/strong convergence is as follows.

Lemma 1.6 Let A : X → Y be a compact operator between normed spaces. Then,
for all (xk) ⊂ X, xk −⇀ x, there holds

Axk → Ax in Y .

Proof From xk −⇀ x and A ∈ L(X,Y ) we see that Axk −⇀ Ax. Since (xk) is
bounded (Theorem 1.16), there exists a bounded set M ⊂ X with x ∈ M and
(xk) ⊂ M . Now assume Axk �→ Ax. Then there exist ε > 0 and a subsequence
(Axk)K with ‖Axk − Ax‖Y ≥ ε for all k ∈ K . Since AM is compact, the sequence
(Axk)K possesses a convergent subsequence (Axk)K ′ → y. The continuity of the
norm implies

‖y − Ax‖Y ≥ ε.

But since (Axk)K ′ −⇀ Ax and (Axk)K ′ → y we must have y = Ax, which is a
contradiction.

1.3 Weak Solutions of Elliptic and Parabolic PDEs

1.3.1 Weak Solutions of Elliptic PDEs

In this section we sketch the theory of weak solutions for elliptic second order partial
differential equations. For more details we refer, e.g., to [4, 47, 90, 115, 133, 146].

1.3.1.1 Weak solutions of the Poisson equation

Dirichlet Boundary Conditions

We start with the elliptic boundary value problem

−�y = f on Ω , (1.13)
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y = 0 on ∂Ω (Dirichlet condition), (1.14)

where Ω ⊂ R
n is an open, bounded set and f ∈ L2(Ω). This admits discontinuous

right hand sides f , e.g. source terms f that act only on a subset of Ω . Since a
classical solution y ∈ C2(Ω)∩C1(Ω̄) exists at best for continuous right hand sides,
we need a generalized solution concept. It is based on a variational formulation of
(1.13)–(1.14).

To this end let us assume that y ∈ C2(Ω) ∩ C1(Ω̄) is a classical solution
of (1.13)–(1.14). Then we have y ∈ H 1

0 (Ω) by Remark 1.6. Multiplying by v ∈
C∞

c (Ω) and integrating over Ω yields

−
∫

Ω

�yv dx =
∫

Ω

f v dx ∀v ∈ C∞
c (Ω). (1.15)

It is easy to see that (1.13) and (1.15) are equivalent for classical solutions. Now
integration by parts gives

−
∫

Ω

yxixi
v dx =

∫
Ω

yxi
vxi

dx −
∫

∂Ω

yxi
vνi dS(x) =

∫
Ω

yxi
vxi

dx. (1.16)

Note that the boundary integral vanishes, since v|∂Ω = 0. Thus, (1.15) is equivalent
to ∫

Ω

∇y · ∇v dx =
∫

Ω

f v dx ∀v ∈ C∞
c (Ω). (1.17)

We note that this variational equation makes already perfect sense in a larger space:

Lemma 1.7 The mapping

(y, v) ∈ H 1
0 (Ω)2 
→ a(y, v) :=

∫
Ω

∇y · ∇v dx ∈ R

is bilinear and bounded:

|a(y, v)| ≤ ‖y‖H 1‖v‖H 1 . (1.18)

For f ∈ L2(Ω), the mapping

v ∈ H 1
0 (Ω) 
→

∫
Ω

f v dx ∈ R

is linear and bounded:∣∣∣∣
∫

Ω

f v dx

∣∣∣∣= (f, v)L2 ≤ ‖f ‖L2‖v‖L2 ≤ ‖f ‖L2‖v‖H 1
0
. (1.19)

Proof Clearly, a(y, v) is bilinear. The boundedness follows from

|a(y, v)| ≤
∫

Ω

|∇y(x)T ∇v(x)|dx ≤
∫

Ω

‖∇y(x)‖2‖∇v(x)‖2 dx
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≤ ‖‖∇y‖2‖L2‖‖∇v‖2‖L2 = |y|H 1 |v|H 1 ≤ ‖y‖H 1‖v‖H 1,

where we have applied the Cauchy-Schwarz inequality.
The second assertion is trivial.

By density and continuity, we can extend (1.17) to y ∈ H 1
0 (Ω) and v ∈ H 1

0 (Ω).
We arrive at the variational formulation

∫
Ω

∇y · ∇v dx =
∫

Ω

f v dx ∀v ∈ H 1
0 (Ω). (1.20)

We summarize: (1.13) and (1.20) are equivalent for a classical solution y ∈ C2(Ω)∩
C1(Ω̄). But the variational formulation (1.20) makes already perfectly sense for
y ∈ H 1

0 (Ω) and f ∈ L2(Ω). This motivates the following definition.

Definition 1.19 A function y ∈ H 1
0 (Ω) is called weak solution of the boundary

value problem (1.13)–(1.14) if it satisfies the variational formulation or weak for-
mulation ∫

Ω

∇y · ∇v dx =
∫

Ω

f v dx ∀v ∈ H 1
0 (Ω). (1.20)

In order to allow a uniform treatment of more general equations than (1.13)–(1.14),
we introduce the following abstract notation. Let

V = H 1
0 (Ω),

a(y, v) =
∫

Ω

∇y · ∇v dx, y, v ∈ V, (1.21)

F(v) = (f, v)L2(Ω), v ∈ V. (1.22)

Then a : V × V → R is a bilinear form, F ∈ V ∗ is a linear functional on V and
(1.20) can be written as

Find y ∈ V : a(y, v) = F(v) ∀v ∈ V. (1.23)

Remark 1.10 Since a(y, ·) ∈ V ∗ for all y ∈ V and y ∈ V 
→ a(y, ·) ∈ V ∗ is contin-
uous and linear, there exists a bounded linear operator A : V → V ∗ with

a(y, v) = 〈Ay,v〉V ∗,V ∀y, v ∈ V. (1.24)

Then (1.23) can be written in the form

Find y ∈ V : Ay = F. (1.25)

We have the following important existence and uniqueness result for solutions of
(1.23).
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Lemma 1.8 (Lax-Milgram lemma) Let V be a real Hilbert space with inner prod-
uct (·, ·)V and let a : V × V → R be a bilinear form that satisfies with constants
α0, β0 > 0

|a(y, v)| ≤ α0‖y‖V ‖v‖V ∀y, v ∈ V (boundedness), (1.26)

a(y, y) ≥ β0‖y‖2
V ∀y ∈ V (V -coercivity). (1.27)

Then for any bounded linear functional F ∈ V ∗ the variational equation (1.23) has
a unique solution y ∈ V . Moreover, u satisfies

‖y‖V ≤ 1

β0
‖F‖V ∗ . (1.28)

In particular the operator A defined in (1.24) satisfies

A ∈ L(V ,V ∗), A−1 ∈ L(V ∗,V ), ‖A−1‖V ∗,V ≤ 1

β0
.

Proof See for example [47, 115].

Remark 1.11 If a(·, ·) is symmetric, i.e., if a(y, v) = a(v, y) for all y, v ∈ V , then
the Lax-Milgram lemma is an immediate consequence of the Riesz representation
theorem. In fact, in this case (u, v) := a(u, v) defines a new inner product on V

and the existence of a unique solution of (1.23) follows directly from the Riesz
representation theorem.

Application of the Lax-Milgram lemma to (1.20) yields

Theorem 1.19 (Existence and uniqueness for the Dirichlet problem) Let Ω ⊂ R
n

be open and bounded. Then the bilinear form a in (1.21) is bounded and V -coercive
for V = H 1

0 (Ω) and the associated operator A ∈ L(V ,V ∗) in (1.24) has a bounded
inverse. In particular, (1.13)–(1.14) has for all f ∈ L2(Ω) a unique weak solution
y ∈ H 1

0 (Ω) given by (1.20) and satisfies

‖y‖H 1(Ω) ≤ CD‖f ‖L2(Ω),

where CD depends on Ω but not on f .

Proof We verify the hypotheses of Lemma 1.8. Clearly, a(y,u) in (1.21) is bilinear.
The boundedness (1.26) follows from (1.18). Using Poincaré’s inequality (1.11) we
obtain

a(y, y) =
∫

Ω

∇y · ∇y dx = |y|2
H 1

0 (Ω)
≥ 1

C2
‖y‖2

H 1
0 (Ω)

= 1

C2
‖y‖2

V

which shows the V -coercivity (1.27).
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Finally, the definition of F in (1.22) yields

‖F‖V ∗ = sup
‖v‖V =1

F(v) = sup
‖v‖V =1

(f, v)L2(Ω) ≤ sup
‖v‖V =1

‖f ‖L2(Ω)‖v‖L2(Ω) ≤ ‖f ‖L2(Ω).

Thus, the assertion holds with CD = C2 by the Lax-Milgram lemma.

A refined analysis shows that the weak solution y is bounded and (after a modi-
fication on a set of measure zero) continuous if Ω has Lipschitz-boundary.

Theorem 1.20 (Boundedness and continuity for the Dirichlet problem) Let in ad-
dition to the assumptions of the previous theorem Ω ⊂ R

n be open and bounded
with Lipschitz-boundary and let r > n/2, n ≥ 2. Then for any f ∈ Lr(Ω) there ex-
ists a unique weak solution y ∈ H 1

0 (Ω) ∩ C(Ω̄) of (1.13)–(1.14) and there exists a
constant C∞ > 0 with

‖y‖H 1(Ω) + ‖y‖C(Ω̄) ≤ C∞‖f ‖Lr(Ω),

where C∞ depends on Ω but not on f .

Proof See [86, Thm. B.4].

Boundary Conditions of Robin Type

We have seen that for example in heating applications the boundary condition is
sometimes of Robin type. We consider now problems of the form

−�y + c0y = f on Ω , (1.29)

∂y

∂ν
+ αy = g on ∂Ω (Robin condition), (1.30)

where f ∈ L2(Ω) and g ∈ L2(∂Ω) are given and c0 ∈ L∞(Ω), α ∈ L∞(∂Ω) are
nonnegative coefficients.

Weak solutions can be defined similarly as above. If y is a classical solution of
(1.29)–(1.30) then for any test function v ∈ C1(Ω̄) integration by parts, see (1.16),
yields as above

∫
Ω

(−�y + c0y)v dx =
∫

Ω

∇y · ∇v dx + (c0y, v)L2(Ω) −
∫

∂Ω

∂y

∂ν
v dS(x)

=
∫

Ω

f v dx ∀v ∈ C1(Ω̄).

Inserting the boundary condition ∂y
∂ν

= −αy + g we arrive at
∫

Ω

∇y · ∇v dx + (c0y, v)L2(Ω) + (αy, v)L2(∂Ω)
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= (f, v)L2(Ω) + (g, v)L2(∂Ω) ∀v ∈ H 1(Ω). (1.31)

The extension to v ∈ H 1(Ω) is possible, since for y ∈ H 1(Ω) both sides are con-
tinuous with respect to v ∈ H 1(Ω) and since C1(Ω̄) is dense in H 1(Ω).

Definition 1.20 A function y ∈ H 1(Ω) is called weak solution of the boundary
value problem (1.29)–(1.30) if it satisfies the variational formulation or weak for-
mulation (1.31).

To apply the general theory, we set

V = H 1(Ω),

a(y, v) =
∫

Ω

∇y · ∇v dx + (c0y, v)L2(Ω) + (αy, v)L2(∂Ω), y, v ∈ V, (1.32)

F(v) = (f, v)L2(Ω) + (g, v)L2(∂Ω), v ∈ V.

The Lax-Milgram lemma yields similarly as above

Theorem 1.21 (Existence and uniqueness for Robin boundary conditions) Let
Ω ⊂ R

n be open and bounded with Lipschitz-boundary and let c0 ∈ L∞(Ω),
α ∈ L∞(∂Ω) be nonnegative with ‖c0‖L2(Ω) + ‖α‖L2(∂Ω) > 0. Then the bilinear
form a in (1.32) is bounded and V -coercive for V = H 1(Ω) and the associated op-
erator A ∈ L(V ,V ∗) in (1.24) has a bounded inverse. In particular, (1.29)–(1.30)
has for all f ∈ L2(Ω) and g ∈ L2(∂Ω) a unique weak solution y ∈ H 1(Ω) given
by (1.31) and satisfies

‖y‖H 1(Ω) ≤ CR(‖f ‖L2(Ω) + ‖g‖L2(∂Ω)),

where CR depends on Ω,α, c0 but not on f,g.

Proof The proof is an application of the Lax-Milgram lemma. The boundedness of
a(y, v) and of F(v) follows by the trace theorem. The V -coercivity is a consequence
of a generalized Poincaré inequality.

A refined analysis yields the following result [108], [133].

Theorem 1.22 (Boundedness and continuity for Robin boundary conditions) Let
the assumptions of the previous theorem hold and let r > n/2, s > n − 1, n ≥ 2.
Then for any f ∈ Lr(Ω) and g ∈ Ls(∂Ω) there exists a unique weak solution y ∈
H 1(Ω) ∩ C(Ω̄) of (1.29)–(1.30). There exists a constant C∞ > 0 with

‖y‖H 1(Ω) + ‖y‖C(Ω̄) ≤ C∞(‖f ‖Lr(Ω) + ‖g‖Ls(∂Ω)),

where C∞ depends on Ω,α, c0 but not on f,g.
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1.3.1.2 Weak Solutions of Uniformly Elliptic Equations

The results can be extended to general second order elliptic PDEs of the form

Ly = f on Ω (1.33)

with

Ly := −
n∑

i,j=1

(aij yxi
)xj

+ c0y, aij , c0 ∈ L∞, c0 ≥ 0, aij = aji (1.34)

and L is assumed to be uniformly elliptic in the sense that there is a constant θ > 0
such that

n∑
i,j=1

aij (x)ξiξj ≥ θ‖ξ‖2 for almost all x ∈ Ω and all ξ ∈ R
n. (1.35)

For example in the case of Dirichlet boundary conditions

y|∂Ω = 0 (1.36)

the weak formulation of (1.33) is given by

Find y ∈ V := H 1
0 (Ω): a(y, v) = (f, v)L2(Ω) ∀v ∈ V (1.37)

with the bilinear form

a(y, v) =
∫

Ω

(
n∑

i,j=1

aij yxi
vxj

+ c0yv

)
dx. (1.38)

Theorem 1.23 (Existence, uniqueness and continuity for the general Dirichlet prob-
lem) Let L be a uniformly elliptic second order operator according to (1.34), (1.35).
Then the statements of Theorem 1.19 and Theorem 1.20 hold also for the weak so-
lution of (1.33), (1.36) defined by (1.37), (1.38). The constants CD and C∞ depend
only on aij , c0,Ω .

Proof It is easy to check that the Lax-Milgram lemma is applicable. The uniform
boundedness and continuity of weak solutions is shown in [86, Thm. B.4].

In the case of the Robin boundary condition the normal derivative has to be re-
placed by the conormal derivative

∂y

∂νA

(x) := ∇y(x) · A(x)ν(x), A(x) = (aij (x)). (1.39)
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The weak formulation for Robin boundary conditions

∂y

∂νA

+ αy = g on ∂Ω (1.40)

is consequently

Find y ∈ V := H 1(Ω): a(y, v) = (f, v)L2(Ω) + (g, v)L2(∂Ω) ∀v ∈ V (1.41)

with the bilinear form

a(y, v) =
∫

Ω

(
n∑

i,j=1

aij yxi
vxj

+ c0yv

)
dx + (αy, v)L2(∂Ω). (1.42)

Theorem 1.24 (Existence, uniqueness and continuity for Robin boundary condi-
tions) Let L be a uniformly elliptic second order operator according to (1.34),
(1.35). Then the statements of Theorem 1.21 and Theorem 1.22 hold also for the
weak solution of (1.33), (1.40) defined by (1.41), (1.42). The constants CR and C∞
depend only on aij , c0, α,Ω .

Proof Again the Lax-Milgram lemma is applicable. The uniform boundedness and
continuity of weak solutions is shown in [108, 133].

1.3.1.3 An Existence and Uniqueness Result for Semilinear Elliptic Equations

We finally state an existence and uniqueness result for a uniformly elliptic semilin-
ear equation

Ly + d(x, y) = f on Ω

∂y

∂νA

+ αy + b(x, y) = g on ∂Ω
(1.43)

where the operator L is given by

Ly := −
n∑

i,j=1

(aij yxi
)xj

+ c0y, aij , c0 ∈ L∞, c0 ≥ 0, aij = aji (1.34)

and L is assumed to be uniformly elliptic in the sense that there is a constant θ > 0
such that

n∑
i,j=1

aij (x)ξiξj ≥ θ‖ξ‖2 for almost all x ∈ Ω and all ξ ∈ R
n. (1.35)
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Moreover, we assume that 0 ≤ α ∈ L∞(∂Ω) and that the functions d : Ω × R → R,
and b : ∂Ω × R → R satisfy

d(x, ·) is continuous and monotone increasing for a.a. x ∈ Ω,

b(x, ·) is continuous and monotone increasing for a.a. x ∈ ∂Ω,

d(·, y) ∈ L∞(Ω), b(·, y) ∈ L∞(∂Ω) for all y ∈ R.

(1.44)

Analogous to (1.41), a weak solution of (1.43) is given by

Find y ∈ V := H 1(Ω):

a(y, v) + (d(·, y), v)L2(Ω) + (b(·, y), v)L2(∂Ω)

= (f, v)L2(Ω) + (g, v)L2(∂Ω) ∀v ∈ V (1.45)

with the bilinear form (1.42).
Under the assumptions in (1.44) the theory of maximal monotone operators and

a technique of Stampacchia can be applied to extend Theorem 1.22 to the semilin-
ear elliptic equation (1.43), see for example [133]. The proof of continuity can be
obtained by the techniques in [108].

Theorem 1.25 Let Ω ⊂ R
n be open and bounded with Lipschitz-boundary, let

c0 ∈ L∞(Ω), α ∈ L∞(∂Ω) be nonnegative with ‖c0‖L2(Ω) + ‖α‖L2(∂Ω) > 0 and
let (1.35), (1.44) be satisfied. Moreover, let r > n/2, s > n − 1, n ≥ 2. Then
(1.43), (1.34) has for any f ∈ Lr(Ω) and g ∈ Ls(∂Ω) a unique weak solution
y ∈ H 1(Ω) ∩ C(Ω̄). There exists a constant C∞ > 0 with

‖y‖H 1(Ω) + ‖y‖C(Ω̄) ≤ C∞(‖f − d(·,0)‖Lr(Ω) + ‖g − b(·,0)‖Ls(∂Ω)),

where C∞ depends on Ω,α, c0 but not on f,g, b, d .

Remark 1.12 An analogous result holds also in the case of homogeneous Dirichlet
boundary conditions. In fact, it is easy to check that the proof in [133] applies also
in this case. The continuity of the solution follows from [86, Thm. B.4].

1.3.1.4 Regularity Results

We have already seen that for sufficiently regular data weak solutions are in C(Ω̄).
Under certain conditions one can also show that weak solutions y of (1.33) live
actually in a higher Sobolev space if f ∈ L2 and aij ∈ C1.

Interior Regularity

For coefficients aij ∈ C1(Ω) or aij ∈ C0,1(Ω̄) the weak solution of (1.33) satisfies
actually u ∈ H 2(Ω ′) for all Ω ′ ⊂⊂ Ω .
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Theorem 1.26 Let L in (1.34) be uniformly elliptic with aij ∈ C1(Ω) or aij ∈
C0,1(Ω̄), c0 ∈ L∞(Ω). Let f ∈ L2(Ω) and let y ∈ H 1(Ω) be a weak solution of
Ly = f , that is,

a(y, v) = (f, v)L2(Ω) ∀v ∈ H 1
0 (Ω)

with a in (1.38) or (1.42) (which coincide for v ∈ H 1
0 (Ω)). Then y ∈ H 2(Ω ′) for all

Ω ′ ⊂⊂ Ω and there is C > 0 with

‖y‖H 2(Ω ′) ≤ C(‖y‖H 1(Ω) + ‖f ‖L2(Ω)), (1.46)

where C depends on Ω ′ but not on f and y.

Proof See for example [47] or [115].

Remark 1.13 Note that the interior regularity result applies to the Dirichlet problem
(1.37) as well as to the problem (1.41) with Robin boundary conditions.

The weak solution of the Dirichlet problem (1.37) satisfies in addition

‖y‖H 1(Ω) ≤ C‖f ‖L2(Ω).

Inserting in (1.46) gives

‖y‖H 2(Ω ′) ≤ C‖f ‖L2(Ω).

Similarly, the weak solution of (1.41) for Robin boundary condition satisfies

‖y‖H 2(Ω ′) ≤ C(‖f ‖L2(Ω) + ‖g‖L2(∂Ω)).

If the coefficients are more regular we can iterate this argument to obtain higher
interior regularity.

Theorem 1.27 (Higher interior regularity) Let in addition to the assumptions of
Theorem 1.26 aij ∈ Cm+1(Ω), c0 ∈ Cm(Ω) and f ∈ Hm(Ω) hold with some m ∈
N0. Then for all Ω ′ ⊂⊂ Ω the weak solution of Ly = f according to (1.37) or
(1.41) satisfies y ∈ Hm+2(Ω ′) and there is C > 0 with

‖y‖Hm+2(Ω ′) ≤ C(‖y‖H 1(Ω) + ‖f ‖Hm(Ω)). (1.47)

Boundary Regularity

If ∂Ω is sufficiently smooth then in the case of the Dirichlet problem (1.37) the addi-
tional regularity of weak solutions holds up to the boundary. We have the following
result.
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Theorem 1.28 Let Ω ⊂ R
n be open, bounded with C2-boundary. Let L in (1.34)

be uniformly elliptic with aij ∈ C0,1(Ω̄), c0 ∈ L∞(Ω). Then for any f ∈ L2(Ω) the
weak solution y ∈ H 1

0 (Ω) of the Dirichlet problem (1.37) satisfies y ∈ H 2(Ω) and

‖y‖H 2(Ω) ≤ C(‖y‖H 1(Ω) + ‖f ‖L2(Ω)), (1.48)

where C does not depend on f .

Proof See for example [47] or [115].

Iterating the argument yields

Theorem 1.29 (Higher boundary regularity) Let in addition to the assumptions of
Theorem 1.28 ∂Ω be Cm+2, aij , c0 ∈ Cm+1(Ω̄) and f ∈ Hm(Ω) hold with some
m ∈ N0. Then the weak solution y ∈ H 1

0 (Ω) of the Dirichlet problem (1.37) satisfies
y ∈ Hm+2(Ω) and

‖y‖Hm+2(Ω) ≤ C(‖y‖H 1(Ω) + ‖f ‖Hm(Ω)), (1.49)

where C does not depend on f .

1.3.2 Weak Solutions of Parabolic PDEs

In this section we describe the basic theory of weak solutions for parabolic sec-
ond order partial differential equations. For details we refer, e.g., to [47, 90, 115,
133, 146]. Throughout this section let Ω ⊂ R

n be open and bounded and define the
cylinder ΩT := (0, T ) × Ω for some T > 0. We study the initial-boundary value
problem

yt + Ly = f on ΩT ,

y = 0 on [0, T ] × ∂Ω,

y(0, ·) = y0 on Ω,

(1.50)

where f : ΩT → R, y0 : Ω → R are given and y : Ω̄T → R is the unknown. L

denotes for each time t a second order partial differential operator

Ly := −
n∑

i,j=1

(aij (t, x)yxi
)xj

+
n∑

i=1

bi(t, x)yxi
+ c0(t, x)y (1.51)

in divergence form.
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1.3.2.1 Uniformly Parabolic Equations

In analogy to definition (1.35) of uniformly elliptic operators we define a uniformly
parabolic operator as follows.

Definition 1.21 The partial differential operator ∂
∂t

+ L with L given in (1.51) is
called uniformly parabolic if there is a constant θ > 0 such that

n∑
i,j=1

aij (t, x)ξiξj ≥ θ‖ξ‖2 for almost all (t, x) ∈ ΩT and all ξ ∈ R
n. (1.52)

It will be convenient to consider a solution y of (1.50) as a Banach space valued
function

t ∈ [0, T ] 
→ y(t) ∈ H 1
0 (Ω).

1.3.2.2 Bochner Spaces

Let X be a separable Banach space. We consider mappings

t ∈ [0, T ] 
→ y(t) ∈ X.

We extend the notion of measurability, integrability, and weak differentiability.

Definition 1.22

(i) A function s : [0, T ] → X is called simple if it has the form

s(t) =
m∑

i=1

1Ei
(t)yi,

with Lebesgue measurable sets Ei ⊂ [0, T ] and yi ∈ X.
(ii) A function f : t ∈ [0, T ] 
→ f (t) ∈ X is called strongly measurable if there

exist simple functions sk : [0, T ] → X such that

sk(t) → f (t) for almost all t ∈ [0, T ].

Definition 1.23 (Bochner integral)

(i) For a simple function s(t) =∑m
i=1 1Ei

(t)yi we define the integral

∫ T

0
s(t) dt :=

m∑
i=1

yiμ(Ei).
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(ii) We say that f : [0, T ] → X is Bochner-integrable if there exists a sequence
(sk) of simple functions such that sk(t) → f (t) a.e. and

∫ T

0
‖sk(t) − f (t)‖X dt → 0 as k → ∞.

(iii) If f is Bochner-integrable we define

∫ T

0
f (t) dt := lim

k→∞

∫ T

0
sk(t) dt.

Theorem 1.30 A strongly measurable function f : [0, T ] → X is Bochner-
integrable if and only if t 
→ ‖f (t)‖X is Lebesgue integrable. In this case

∥∥∥∥
∫ T

0
f (t) dt

∥∥∥∥
X

≤
∫ T

0
‖f (t)‖X dt

and for all u∗ ∈ X∗ the function t 
→ 〈u∗, f (t)〉X∗,X is integrable with

〈
u∗,

∫ T

0
f (t) dt

〉
X∗,X

=
∫ T

0
〈u∗, f (t)〉X∗,X dt.

Proof See for example Yosida [149].

This motivates the following definition of Banach space valued Lebesgue spaces.

Definition 1.24 Let X be a separable Banach space. We define for 1 ≤ p < ∞ the
space

Lp(0, T ;X) :=
{

y : [0, T ] → X strongly measurable :

‖y‖Lp(0,T ;X) :=
(∫ T

0
‖y(t)‖p

X dt

)1/p

< ∞
}

.

Moreover, we let

L∞(0, T ;X) :=
{
y : [0, T ] → X strongly measurable :

‖y‖L∞(0,T ;X) := ess sup
t∈[0,T ]

‖y(t)‖X < ∞
}
.

The space Ck([0, T ];X), k ∈ N0, is defined as the space of k-times continuously
differentiable functions on [0, T ] (defined in the usual way).
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Definition 1.25 (Weak time derivative) Let y ∈ L1(0, T ;X). We say that v ∈
L1(0, T ;X) is the weak derivative of y, written yt = v, if

∫ T

0
ϕ′(t)y(t) dt = −

∫ T

0
ϕ(t)v(t) dt ∀ϕ ∈ C∞

c ((0, T )).

Lemma 1.9 For any y ∈ Lp(0, T ;X), 1 ≤ p < ∞, there is a sequence (sk) of sim-
ple functions with sk → y a.e. and sk → y in Lp(0, T ;X). Moreover functions of
the form

m∑
i=1

ϕi(t)yi, ϕi ∈ C∞
c ((0, T )), yi ∈ X

are dense in Lp(0, T ;X) for 1 ≤ p < ∞. In particular, C∞
c ((0, T );X) as well as

Ck([0, T ];X) are dense in Lp(0, T ;X) for 1 ≤ p < ∞, k ∈ N0.

Theorem 1.31 Let X be a separable Banach space. Then for 1 ≤ p ≤ ∞ the spaces
Lp(0, T ;X) are Banach spaces.

For 1 ≤ p < ∞ the dual space of Lp(0, T ;X) can isometrically be identified
with Lq(0, T ;X∗), 1

p
+ 1

q
= 1, by means of the pairing

〈v, y〉Lq(0,T ;X∗),Lp(0,T ;X) =
∫ T

0
〈v(t), y(t)〉X∗,X dt.

If H is a separable Hilbert space then L2(0, T ;H) is a Hilbert space with inner
product

(y, v)L2(0,T ;H) :=
∫ T

0
(y(t), v(t))H dt.

Proof The proof is similar as for X = R.

We consider now the following setting.

Definition 1.26 (Gelfand triple) Let H,V be separable Hilbert spaces with the con-
tinuous and dense imbedding V ↪→ H . We identify H with its dual H ∗. Then we
have the continuous and dense imbeddings

V ↪→ H = H ∗ ↪→ V ∗,

which is called Gelfand triple. Note that the imbedding H ↪→ V ∗ is given by

y ∈ H 
→ (y, ·)H ∈ H ∗ ⊂ V ∗.

Moreover, we introduce the space

W(0, T ;H,V ) := {
y : y ∈ L2(0, T ;V ), yt ∈ L2(0, T ;V ∗)

}
(1.53)
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equipped with the norm

‖y‖W(0,T ;H,V ) =
√

‖y‖2
L2(0,T ;V )

+ ‖yt‖2
L2(0,T ;V ∗).

Remark 1.14 Given the Gelfand triple V ↪→ H = H ∗ ↪→ V ∗ we have for y ∈
L2(0, T ;V ) also y ∈ L2(0, T ;V ∗) and thus y ∈ L1(0, T ;V ∗). Therefore, it makes
sense to require that y has a weak derivative yt ∈ L1(0, T ;V ∗) and to impose the
additional condition yt ∈ L2(0, T ;V ∗).

Theorem 1.32 Let V ↪→ H ↪→ V ∗ be a Gelfand triple. Then W(0, T ;H,V ) is a
Hilbert space and we have the continuous imbedding

W(0, T ;H,V ) ↪→ C([0, T ];H).

Moreover, for all y, v ∈ W(0, T ;H,V ) the integration by parts formula holds

(y(t), v(t))H − (y(s), v(s))H =
∫ t

s

(〈yt (τ ), v(τ )〉V ∗,V + 〈vt (τ ), y(τ )〉V ∗,V ) dτ.

(1.54)

Proof See for example [47] or Chap. IV in Gajewski, Gröger, Zacharias [52].

1.3.2.3 Weak Solutions of Uniformly Parabolic Equations

Weak Solutions

We consider the initial-boundary value problem (1.50) for operators L in divergence
form (1.51). We will assume that the coefficients satisfy

aij , bi, c0 ∈ L∞(ΩT ), (1.55)

and that the source term and initial data satisfy

f ∈ L2(0, T ;H−1(Ω)), y0 ∈ L2(Ω), (1.56)

where H−1(Ω) = H 1
0 (Ω)∗. We set

H := L2(Ω), V := H 1
0 (Ω)

and define the Gelfand triple V ↪→ H ↪→ V ∗, i.e.,

H 1
0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω).

To derive a weak formulation of (1.50) consider a function

y ∈ W(0, T ;L2(Ω),H 1
0 (Ω)) = W(0, T ;H,V )
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where we recall that

W(0, T ;H,V ) = {
y : y ∈ L2(0, T ;V ), yt ∈ L2(0, T ;V ∗)

}
.

For almost all t ∈ [0, T ] we have

aij (t, ·), bi(t, ·), c0(t, ·) ∈ L∞(Ω), f (t, ·) ∈ H−1(Ω)

and the operator L(t) is a second order operator in divergence form. Now (1.50)
yields the boundary value problem

L(t)y(t) = f (t) − yt (t), y(t)|∂Ω = 0.

Since f (t) − yt (t) ∈ H−1(Ω) = (H 1
0 (Ω))∗, the elliptic case motivates to require

that for almost all t ∈ [0, T ] the variational equality

a(y(t), v; t) = 〈f (t), v〉H−1,H 1
0

− 〈yt (t), v〉H−1,H 1
0

∀v ∈ H 1
0 (Ω)

holds with the associated bilinear form

a(y, v; t) :=
∫

Ω

(
n∑

i,j=1

aij (t)yxi
vxj

+
n∑

i=1

bi(t)yxi
v + c0(t)yv

)
dx,

y, v ∈ H 1
0 (Ω). (1.57)

We arrive at the following definition.

Definition 1.27 (Weak solution of parabolic PDE) Let Ω ⊂ R
n be open and

bounded. Let the coefficients satisfy (1.55). Consider with

H := L2(Ω), V := H 1
0 (Ω)

the Gelfand triple V ↪→ H ↪→ V ∗, i.e.,

H 1
0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω).

Then for f ∈ L2(0, T ;H−1(Ω)), y0 ∈ L2(Ω) a function

y ∈ W(0, T ;L2,H 1
0 )

is a weak solution of the initial-boundary value problem (1.50) if y satisfies the
variational equation

〈yt (t), v〉H−1,H 1
0

+ a(y(t), v; t) = 〈f (t), v〉H−1,H 1
0

∀v ∈ H 1
0 (Ω) and a.a. t ∈ [0, T ] (1.58)

and the initial condition

y(0) = y0, (1.59)

where the bilinear form a(·, ·; t) is given in (1.57).
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Remark 1.15 Since W(0, T ;L2,H 1
0 ) ↪→ C([0, T ];L2(Ω)) by Theorem 1.32, the

initial condition (1.59) makes sense.

For PDE-constrained optimization the following equivalent weak formulation is
more convenient.

Definition 1.28 (Weak solution of parabolic PDE, equivalent formulation) With
the same assumptions and notations as in Definition 1.27 the following definition is
equivalent. For f ∈ L2(0, T ;H−1(Ω)), y0 ∈ L2(Ω) a function

y ∈ W(0, T ;L2,H 1
0 )

is a weak solution of the initial-boundary value problem (1.50) if y satisfies the
variational equation

∫ T

0
〈yt (t), v(t)〉H−1,H 1

0
dt +

∫ T

0
a(y(t), v(t); t) dt

=
∫ T

0
〈f (t), v(t)〉H−1,H 1

0
dt ∀v ∈ L2(0, T ;H 1

0 ) (1.60)

with a(·, ·; t) in (1.57) and the initial condition

y(0) = y0. (1.59)

Theorem 1.33 Definitions 1.27 and 1.28 are equivalent.

Proof Let y ∈ W(0, T ;H,V ) be a weak solution according to Definiton 1.27. (1.58)
implies

〈yt (t), v(t)〉V ∗,V + a(y(t), v(t); t) = 〈f (t), v(t)〉V ∗,V

∀v ∈ L2(0, T ;V ) and a.a. t ∈ (0, T ). (1.61)

In fact, since y ∈ W(0, T ;H,V ) and f ∈ L2(0, T ;V ∗), it is to check that both sides
in (1.61) are in L1(0, T ). For a simple function v(t) =∑m

i=1 1Ei
(t)vi , vi ∈ V , (1.61)

is obvious, since then

〈yt (t), v(t)〉V ∗,V + a(y(t), v(t); t) − 〈f (t), v(t)〉V ∗,V

=
m∑

i=1

1Ei
(t)(〈yt (t), vi〉V ∗,V + a(y(t), vi; t) − 〈f (t), vi〉V ∗,V ) = 0 for a.a. t .

For general v ∈ L2(0, T ;V ) choose a sequence vk of simple functions with vk(t) →
v(t) almost everywhere. Then we know that (1.61) holds for all vk outside a set of
measure zero (the countable union of the exceptional sets for vk). Since vk(t) →
v(t) in V almost everywhere, we conclude that by continuity (1.61) holds also for
the limit v. Integrating (1.61) with respect to t shows that (1.60) holds.
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Let now y ∈ W(0, T ;H,V ) be a weak solution according to Definition 1.28.
Then (1.58) must hold. In fact, otherwise we find w ∈ V and a set E of nonzero
measure such that for v = w the difference of the left and right hand side of (1.58)
is positive on E. But then (1.60) would not hold for v(t) = 1E(t)w. Hence, (1.60)
implies (1.58).

Remark 1.16 By (1.61) the weak formulation (1.58) (or equivalently (1.60)) means
that yt + Ly = f holds in L2(0, T ;V ∗).

1.3.2.4 Existence and Uniqueness of Weak Solutions

Let

V ↪→ H ↪→ V ∗

be a Gelfand triple.

Remark 1.17 We recall that the imbedding H ↪→ V ∗ is given by 〈v,w〉V ∗,V =
(v,w)H for all v ∈ H , w ∈ V .

In generalization of the weak formulation (1.58), (1.59) we consider the problem
to find for f ∈ L2(0, T ;V ∗), y0 ∈ H a solution

y ∈ W(0, T ;H,V )

of the

Abstract Parabolic Evolution Problem

Find y ∈ W(0, T ;H,V ) such that

〈yt (t), v〉V ∗,V + a(y(t), v; t) = 〈f (t), v〉V ∗,V ∀v ∈ V and a.a. t ∈ [0, T ] (1.62)

with the initial condition

y(0) = y0. (1.63)

We will work under the following assumptions:

Assumption 1.34

(i) V ↪→ H ↪→ V ∗ is a Gelfand triple, H,V separable Hilbert spaces.
(ii) a(·, ·, t) : V × V → R is for almost all t ∈ (0, T ) a bilinear form and there are

α,β > 0 and γ ≥ 0 with

|a(v,w; t)| ≤ α‖v‖V ‖w‖V ∀v,w ∈ V and a.a. t ∈ (0, T ), (1.64)
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a(v, v; t) + γ ‖v‖2
H ≥ β‖v‖2

V ∀v ∈ V and a.a. t ∈ (0, T ). (1.65)

The mappings t 
→ a(v,w; t) ∈ R are measurable for all v,w ∈ V .
(iii) y0 ∈ H , f ∈ L2(0, T ;V ∗).

Example 1.5 Assumption 1.34 is obviously satisfied for the uniformly parabolic
initial boundary value problem (1.50) with H = L2(Ω), V = H 1

0 (Ω) and

aij , bi, c0 ∈ L∞(ΩT ), f ∈ L2(0, T ;H−1(Ω)).

In fact, it is easy to check that the associated bilinear form a(·, ·; t) in (1.57) satisfies
(1.64) and (1.65).

It is easy to show that under Assumption 1.34 for any y, v ∈ L2(0, T ;V ) the
function t 
→ a(y(t), v(t); t) is in L1(0, T ).

As above (1.62) implies

〈yt (t), v(t)〉V ∗,V + a(y(t), v(t); t) = 〈f (t), v(t)〉V ∗,V

∀v ∈ L2(0, T ;V ) and a.a. t ∈ [0, T ). (1.61)

and (1.62), (1.63) is equivalent to

Abstract Parabolic Evolution Problem, Equivalent Form

Find y ∈ W(0, T ;H,V ) such that
∫ T

0
〈yt (t), v(t)〉V ∗,V dt +

∫ T

0
a(y(t), v(t); t) dt =

∫ T

0
〈f (t), v(t)〉V ∗,V dt

∀v ∈ L2(0, T ;V ) (1.66)

with the initial condition

y(0) = y0. (1.63)

Energy Estimate and Uniqueness Result

Theorem 1.35 Let Assumption 1.34 hold. Then the abstract parabolic evolution
problem has at most one solution y ∈ W(0, T ;H,V ) and it satisfies the energy
estimate

‖y(t)‖2
H +‖y‖2

L2(0,t;V )
+‖yt‖2

L2(0,t;V ∗) ≤ C(‖y0‖2
H +‖f ‖2

L2(0,t;V ∗)) ∀t ∈ (0, T ],
(1.67)

where C > 0 depends only on β and γ in Assumption 1.34.

Proof The proof is obtained by using v = y in (1.61), using Theorem 1.32 and
applying the Gronwall lemma. See for example [47].
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Existence Result by Galerkin Approximation

One of the milestones in the modern theory of PDEs is the observation that the
energy estimate (1.67) can be used as a foundation of an existence proof. To carry
out the program, we note that since V is separable there exists a countable set

{vk : k ∈ N} ⊂ V

of linearly independent elements vk of V , such that the linear span of {vk : k ∈ N} is
dense in V (take first a countable dense subset and drop elements that lie in the span
of previous elements). Moreover, let

Vk := span{v1, . . . , vk}.
Then Vk ⊂ V are Hilbert spaces and ∪Vk is dense in V . Since V is dense in H , we
find

y0,k =
k∑

i=1

αikvi ∈ Vk with y0,k → y0 in H.

Now fix k ∈ N. We look for a function

yk(t) :=
k∑

i=1

ϕik(t)vi, ϕik ∈ H 1(0, T ), (1.68)

satisfying the finite dimensional Galerkin approximation of (1.62), (1.63)

〈(yk)t (t), v〉V ∗,V + a(yk(t), v; t) = 〈f (t), v〉V ∗,V

∀v ∈ Vk and a.a. t ∈ [0, T ], (1.69)

y(0) = y0,k. (1.70)

It is easy to check that functions yk of the type (1.68) are in W(0, T ;H,V ) with
weak derivative

(yk)t (t) =
k∑

i=1

ϕ′
ik(t)vi ∈ L2(0, T ;V ),

where ϕ′
i ∈ L2(0, T ) are the weak derivatives of ϕi ∈ H 1(0, T ). Since it is suffi-

cient to test with the basis {v1, . . . , vk} in (1.69), we conclude that (1.69), (1.70) is
equivalent to the system of ODEs for ϕ1k, . . . , ϕkk

k∑
i=1

(vi, vj )H ϕ′
ik(t) +

k∑
i=1

a(vi, vj ; t)ϕik(t) = 〈f (t), vj 〉V ∗,V ,

1 ≤ j ≤ k, a.a. t ∈ [0, T ], (1.71)

ϕik(0) = αik, 1 ≤ i ≤ k. (1.72)
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Here we have used that V ↪→ H ↪→ V ∗ yields 〈vi, vj 〉V ∗,V = (vi, vj )H .
We have the following result.

Theorem 1.36 Let Assumption 1.34 hold. Then the Galerkin approximations (1.69),
(1.70) have unique solutions yk ∈ W(0, T ;H,V ) of the form (1.68) and yk satisfies
the energy estimate

‖yk(t)‖2
H + ‖yk‖2

L2(0,t;V )
+ ‖(yk)t‖2

L2(0,t;V ∗) ≤ C(‖y0,k‖2
H + ‖f ‖2

L2(0,t;V ∗))

∀t ∈ (0, T ], (1.73)

where C > 0 depends only on β,γ in Assumption 1.34.

Proof We know that (1.69), (1.70) is equivalent to (1.71), (1.72). With
A = ((vi, vj )H )i,j , M(t) := (a(vi, vj ; t))i,j ∈ L∞(0, T ;R

k,k), F(t) :=
(〈f (t), vj 〉V ∗,V )j ∈ L2(0, T ) we can write (1.71), (1.72) as

AT (ϕ′
ik(t))i + M(t)T (ϕik(t))i = F(t), (ϕik(0))i = (αik)i .

Since vi are linearly independent, the matrix A is invertible and by standard theory
for ODEs with measurable coefficients there exists a unique solution (ϕik)i with
ϕik ∈ H 1(0, T ), see for example [144].

Now Theorem 1.35 applied to (1.69), (1.70) yields the asserted energy estimate
(1.73).

Theorem 1.37 Let Assumption 1.34 hold. Then the abstract parabolic evolution
problem (1.62), (1.63) has a unique solution y ∈ W(0, T ;H,V ).

By Example 1.5 this yields immediately

Corollary 1.1 Let Ω ⊂ R
n be open and bounded and let ∂

∂t
+ L with L in

(1.51) be uniformly parabolic, where aij , bi, c0 ∈ L∞(ΩT ). Then for any f ∈
L2(0, T ;H−1(Ω)) and y0 ∈ L2(Ω) the initial boundary value problem (1.50) has a
unique weak solution y ∈ W(0, T ;L2,H 1

0 ) and satisfies the energy estimate (1.67)
with H = L2(Ω), V = H 1

0 (Ω), V ∗ = H−1(Ω).

Proof of Theorem 1.37 Since ‖y0,k‖H → ‖y0‖H , the energy estimate (1.73) yields
a constant C > 0 such that

‖yk‖L2(0,T ;V ) < C, ‖(yk)t‖L2(0,T ;V ∗) < C.

Now L2(0, T ;V ), L2(0, T ;V ∗) are Hilbert spaces and thus reflexive. Hence, we
find by Theorem 1.17 a subsequence (yki

) with

yki
−⇀ y in L2(0, T ;V ), (yki

)t −⇀ w in L2(0, T ;V ∗).
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It is not difficult to show that this implies w = yt . Now (1.69) implies

∫ T

0

(〈(yk)t (t), v〉V ∗,V + a(yk(t), v; t) − 〈f (t), v〉V ∗,V
)
ϕ(t) dt = 0

∀v ∈ Vk, ϕ ∈ C∞
c ((0, T ))

and the first two terms are bounded linear functionals w.r.t. (yk)t and yk , respec-
tively. Limit transition gives

∫ T

0

(〈yt (t), v〉V ∗,V + a(y(t), v; t) − 〈f (t), v〉V ∗,V
)
ϕ(t) dt = 0

∀v ∈
⋃
k

Vk, ϕ ∈ C∞
c ((0, T )).

This shows (1.62) by Lemma 1.5, where we use that
⋃

k Vk is dense in V .
Finally, also the initial condition (1.63) holds. In fact, let ϕ ∈ C∞([0, T ]) with

ϕ(0) = 1, ϕ(T ) = 0. Then t 
→ w(t) = ϕ(t)v ∈ W(0, T ;H,V ) for all v ∈ V and
w(0) = v, w(T ) = 0 yields by Theorem 1.32

∫ T

0

(−〈ϕ′(t)v, y(t)〉V ∗,V + a(y(t), ϕ(t)v; t) − 〈f (t), ϕ(t)v〉V ∗,V
)
dt = (y(0), v)H

∀v ∈ V.

Similarly, we have by (1.69) and Theorem 1.32

∫ T

0

(−〈ϕ′(t)v, yki
(t)〉V ∗,V + a(yki

(t), ϕ(t)v; t) − 〈f (t), ϕ(t)v〉V ∗,V
)
dt

= (y0,k, v)H ∀v ∈ Vki

and the left hand side tends to the left hand side of the previous equation by the weak
convergence of yki

. This gives (y(0), v)H = limk→∞ (y0,k, v)H = (y0, v)H for all
v ∈⋃

k Vk and hence y(0) = limk→∞ y0,k = y0, since
⋃

k Vk is dense in V .

Operator Formulation

By using the equivalence of (1.58) and (1.61) we can summarize (see Remark 1.16)
that for coefficients satisfying (1.55) the weak formulation (1.58), (1.59) (or equiv-
alently (1.60), (1.59)) defines a bounded linear operator

A : y ∈ W(0, T ;L2(Ω),H 1
0 (Ω)) 
→

(
yt + Ly

y(0, ·)
)

∈ L2(0, T ; (H 1
0 (Ω))∗) × L2(Ω)
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in the sense that for all (f, y0) ∈ L2(0, T ; (H 1
0 (Ω))∗) × L2(Ω)

(
yt + Ly

y(0, ·)
)

=
(

f

y0

)
⇐⇒ (1.58), (1.59) hold ⇐⇒ (1.60), (1.59) hold.

Moreover, A has a bounded inverse by Corollary 1.1.

1.3.2.5 Regularity Results

We assume now in addition that the following assumption holds.

Assumption 1.38 In addition to Assumption 1.34 we assume that

a(v,w; ·) ∈ C1([0, T ]), at (v,w; t) ≤ α1‖v‖V ‖w‖V ∀v,w ∈ V,

y0 ∈ {
w ∈ V : a(w, ·;0) ∈ H ∗} ,

f ∈ W(0, T ;H,V ).

Theorem 1.39 Let Assumption 1.38 hold. Then the solution of (1.62) satisfies in
addition yt ∈ W(0, T ;H,V ) and satisfies the equation

〈ytt (t),w〉V ∗,V + a(yt (t),w; t) = 〈ft (t),w〉V ∗,V − at (y(t),w; t),
〈yt (0),w〉V ∗,V = (f (0),w)H − a(y0,w;0) ∀w ∈ V.

(1.74)

Proof See for example [47].

From the temporal regularity we can deduce spatial regularity, if L is for ex-
ample a uniformly elliptic operator. In fact, we have yt , f ∈ W(0, T ;H,V ) ↪→
C([0, T ];H) and thus

‖yt (t)‖H + ‖f (t)‖H ≤ C for a.a. t ∈ [0, T ],
where H = L2(Ω), V = H 1

0 (Ω). This yields

a(y(t),w; t) = −〈yt (t),w〉(H 1
0 )∗,H 1

0
+ (f (t),w)L2 = (−yt (t) + f (t),w)L2

∀w ∈ H 1
0 (Ω).

Now our regularity results for uniformly elliptic operators imply under the assump-
tions of Theorem 1.26 or 1.28

‖y(t)‖H 2(Ω ′) ≤ C(‖yt‖L∞(0,T ;L2) + ‖f ‖L∞(0,T ;L2) + ‖y‖L∞(0,T ;H 1)),

either for Ω ′ ⊂⊂ Ω or for Ω ′ = Ω if Ω has C2-boundary.
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1.3.2.6 An Existence and Uniqueness Result for Semilinear Parabolic
Equations

We finally state an existence and uniqueness result for a uniformly parabolic semi-
linear equation

yt + Ly + d(t, x, y) = f on ΩT

∂y

∂νA

+ b(t, x, y) = g on [0, T ] × ∂Ω

y(0, ·) = y0,

(1.75)

where the operator L is given by

Ly := −
n∑

i,j=1

(aij yxi
)xj

, aij ∈ L∞(Ω), aij = aji (1.34)

and L is assumed to be uniformly elliptic in the sense that there is a constant θ > 0
such that

n∑
i,j=1

aij (x)ξiξj ≥ θ‖ξ‖2 for almost all x ∈ Ω and all ξ ∈ R
n. (1.35)

Moreover, we assume that the functions d : ΩT × R → R, and b : [0, T ] × ∂Ω ×
R → R satisfy

d(t, x, ·) is continuous and monotone increasing for a.a. (t, x) ∈ ΩT ,

d(t, x, ·) is locally Lipschitz continuous uniformly for a.a. (t, x) ∈ ΩT ,

b(t, x, ·) is continuous and monotone increasing for a.a. (t, x) ∈ [0, T ] × ∂Ω,

b(t, x, ·) is locally Lipschitz continuous uniformly for a.a. (t, x) ∈ [0, T ] × ∂Ω,

d(·, y) ∈ L∞(ΩT ), b(·, y) ∈ L∞([0, T ] × ∂Ω) for all y ∈ R.

(1.76)

Under these assumptions one can show the following theorem.

Theorem 1.40 Let Ω ⊂ R
n be open and bounded with C1,1-boundary, let aij =

aji ∈ L∞(Ω) and let (1.35), (1.76) be satisfied. Moreover, let r > n/2 + 1, s >

n + 1. Then (1.75), (1.34) has for any f ∈ Lr(ΩT ), g ∈ Ls([0, T ] × ∂Ω) and y0 ∈
C(Ω̄) a unique weak solution y ∈ W(0, T ;L2(Ω),H 1(Ω)) ∩ C(Ω̄T ). There exists
a constant C∞ > 0 with

‖y‖W(0,T ;L2,H 1) + ‖y‖C(Ω̄T ) ≤ C∞(‖f − d(·,0)‖Lr(ΩT )

+ ‖g − b(·,0)‖Ls([0,T ]×∂Ω) + ‖y0‖C(Ω̄)),

where C∞ does not depend on f,g, b, d, y0.

Proof See [23, 114].
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1.4 Gâteaux- and Fréchet Differentiability

1.4.1 Basic Definitions

We extend the notion of differentiability to operators between Banach spaces.

Definition 1.29 Let F : U ⊂ X → Y be an operator with Banach spaces X,Y and
U �= ∅ open.

(a) F is called directionally differentiable at x ∈ U if the limit

dF(x,h) = lim
t→0+

F(x + th) − F(x)

t
∈ Y

exists for all h ∈ X. In this case, dF(x,h) is called directional derivative of F

in the direction h.
(b) F is called Gâteaux differentiable (G-differentiable) at x ∈ U if F is direc-

tionally differentiable at x and the directional derivative F ′(x) : X � h 
→
dF(x,h) ∈ Y is bounded and linear, i.e., F ′(x) ∈ L(X,Y ).

(c) F is called Fréchet differentiable (F-differentiable) at x ∈ U if F is Gâteaux
differentiable at x and if the following approximation condition holds:

‖F(x + h) − F(x) − F ′(x)h‖Y = o(‖h‖X) for ‖h‖X → 0.

(d) If F is directionally-/G-/F-differentiable at every x ∈ V , V ⊂ U open, then F

is called directionally-/G-/F-differentiable on V .

Higher derivatives can be defined as follows:
If F is G-differentiable in a neighborhood V of x, and F ′ : V → L(X,Y ) is

itself G-differentiable at x, then F is called twice G-differentiable at x. We write
F ′′(x) ∈ L(X,L(X,Y )) for the second G-derivative of F at x. It should be clear
now how the kth derivative is defined.

In the same way, we define F-differentiability of order k.
It is easy to see that F-differentiability of F at x implies continuity of F at x. We

say that F is k-times continuously F-differentiable if F is k-times F-differentiable
and F (k) is continuous.

We collect a couple of facts:

(a) The chain rule holds for F-differentiable operators:

H(x) = G(F(x)), F,G F-differentiable at x and F(x), respectively

=⇒ H F-differentiable at x with H ′(x) = G′(F (x))F ′(x).

Moreover, if F is G-differentiable at x and G is F-differentiable at F(x), then
H is G-differentiable and the chain rule holds. As a consequence, also the sum
rule holds for F- and G-differentials.
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(b) If F is G-differentiable on a neighborhood of x and F ′ is continuous at x then
F is F-differentiable at x.

(c) If F : X × Y → Z is F-differentiable at (x, y) then F(·, y) and F(x, ·) are F-
differentiable at x and y, respectively. These derivatives are called partial deriv-
atives and denoted by Fx(x, y) and Fy(x, y), respectively. There holds (since F

is F-differentiable)

F ′(x, y)(hx,hy) = Fx(x, y)hx + Fy(x, y)hy.

(d) If F is G-differentiable in a neighborhood V of x, then for all h ∈ X with
{x + th : t ∈ [0,1]} ⊂ V , the following holds:

‖F(x + h) − F(x)‖Y ≤ sup
0<t<1

‖F ′(x + th)h‖Y

If t ∈ [0,1] 
→ F ′(x + th)h ∈ Y is continuous, then

F(x + h) − F(x) =
∫ 1

0
F ′(x + th)hdx,

where the Y -valued integral is defined as a Riemann integral.

We only prove the last assertion: As a corollary of the Hahn-Banach theorem, we
obtain that for all y ∈ Y there exists a y∗ ∈ Y ∗ with ‖y∗‖Y ∗ = 1 and

‖y‖Y = 〈y∗, y〉Y ∗,Y .

Hence,

‖F(x + h) − F(x)‖Y = max
‖y∗‖Y∗=1

dy∗(1)

with dy∗(t) = 〈y∗,F (x + th) − F(x)〉Y ∗,Y .

By the chain rule for G-derivatives, we obtain that d is G-differentiable in a neigh-
borhood of [0,1] with

d ′
y∗(t) = 〈y∗,F ′(x + th)h〉Y ∗,Y .

G-differentiability of d : (−ε,1 + ε) → R means that d is differentiable in the clas-
sical sense. The mean value theorem yields

〈y∗,F (x + h) − F(x)〉Y ∗,Y = dy∗(1) = dy∗(1) − dy∗(0) = d ′
y∗(τ ) ≤ sup

0<t<1
d ′
y∗(t)

for appropriate τ ∈ (0,1). Therefore,

‖F(x + h) − F(x)‖Y = max
‖y∗‖Y∗=1

dy∗(1) ≤ sup
‖y∗‖Y∗=1

sup
0<t<1

〈y∗,F ′(x + th)h〉Y ∗,Y

= sup
0<t<1

sup
‖y∗‖Y∗=1

〈y∗,F ′(x + th)h〉Y ∗,Y

= sup
0<t<1

‖F ′(x + th)h‖Y .
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1.4.2 Implicit Function Theorem

For optimization problems with PDE-constraints e(y,u) = 0 a quite common situ-
ation is that e : Y × U → Z is continuously F-differentiable and ey(y,u) ∈ L(Y,Z)

has a bounded inverse. Then the following well known implicit function theorem
shows that e(y,u) = 0 defines locally a continuously F-differentiable control-to-
state map u 
→ y(u).

Theorem 1.41 (Implicit Function Theorem) Let X,Y,Z be Banach spaces and let
F : G → Z be a continuously F-differentiable map from an open set G ⊂ X × Y

to Z. Let (x̄, ȳ) ∈ G be such that F(x̄, ȳ) = 0 and that Fy(x̄, ȳ) ∈ L(Y,Z) has a
bounded inverse.

Then there exists an open neighborhood UX(x̄) × UY (ȳ) ⊂ G of (x̄, ȳ) and a
unique continuous function w : UX(x̄) → Y such that

(i) w(x̄) = ȳ,
(ii) For all x ∈ UX(x̄) there exists exactly one y ∈ UY (ȳ) with F(x, y) = 0, namely

y = w(x).

Moreover, the mapping w : UX(x̄) → Y is continuously F-differentiable with deriv-
ative

w′(x) = Fy(x,w(x))−1Fx(x,w(x)).

If F : G → Z is m-times continuously F-differentiable then also w : UX(x̄) → Y is
m-times continuously F-differentiable.

Proof See for example [151, Thm. 4.B]

1.5 Existence of Optimal Controls

In the introduction we have discussed several examples of optimal control problems.
We will now consider the question whether there exists an optimal solution. In this
context the concept of weak convergence will be important.

1.5.1 Existence Result for a General Linear-Quadratic Problem

All linear-quadratic optimization problems in the introduction can be converted to a
linear-quadratic optimization problem of the form

min
(y,u)∈Y×U

J (y,u) := 1

2
‖Qy − qd‖2

H + α

2
‖u‖2

U

subject to Ay + Bu = g, u ∈ Uad, y ∈ Yad

(1.77)
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where H,U are Hilbert spaces, Y,Z are Banach spaces and qd ∈ H , g ∈ Z, A ∈
L(Y,Z), B ∈ L(U,Z), Q ∈ L(Y,H) and the following assumption holds.

Assumption 1.42

1. α ≥ 0, Uad ⊂ U is convex, closed and in the case α = 0 bounded.
2. Yad ⊂ Y is convex and closed, such that (1.77) has a feasible point.
3. A ∈ L(Y,Z) has a bounded inverse.

Definition 1.30 A state-control pair (ȳ, ū) ∈ Yad × Uad is called optimal for (1.77),
if Aȳ + Bū = g and

J (ȳ, ū) ≤ J (y,u) ∀(y,u) ∈ Yad × Uad, Ay + Bu = g.

We prove first the following existence result for (1.77).

Theorem 1.43 Let Assumption 1.42 hold. Then problem (1.77) has an optimal so-
lution (ȳ, ū). If α > 0 then the solution is unique.

Proof We present first a proof that assumes the reflexivity of Y , since this proof can
easily be extended to nonlinear problems. The modification for general Y will be
mentioned at the end.

Denote the feasible set by

Fad := {(y,u) ∈ Y × U : (y,u) ∈ Yad × Uad,Ay + Bu = g} .

Since J ≥ 0 and Fad is nonempty, the infimum

J ∗ := inf
(y,u)∈Fad

J (y,u)

exists and hence we find a minimizing sequence (yk, uk) ⊂ Fad with

lim
k→∞J (yk, uk) = J ∗.

The sequence (uk) is bounded, since by assumption either Uad is bounded or α > 0.
In the latter case the boundedness follows from

J (yk, uk) ≥ α

2
‖uk‖2

U .

Since A ∈ L(Y,Z), B ∈ L(U,Z), and A−1 ∈ L(Z,Y ), this implies that also the
state sequence (yk) given by yk = A−1(g −Buk) is bounded. Since Y ×U is reflex-
ive, Theorem 1.17 yields a weakly convergent subsequence (yki

, uki
) ⊂ (yk, uk) and

some (ȳ, ū) ∈ Y ×U with (yki
, uki

) −⇀ (ȳ, ū) as i → ∞. To show that (ȳ, ū) ∈ Fad
we note that

(yk, uk) ⊂ Fad ∩ (B̄Y (r) × B̄U (r)) =: M
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for r > 0 large enough, where B̄Y (r), B̄U (r) denote the closed balls of radius r in
Y,U . By assumption Yad × Uad is closed, convex and thus also Fad is closed and
convex. Thus, the set M is bounded, closed and convex and consequently by Theo-
rem 1.17 weakly sequentially compact. Therefore, there exists a weakly convergent
subsequence (yki

, uki
) ⊂ (yk, uk) and some (ȳ, ū) ∈ Fad with Fad � (yki

, uki
) −⇀

(ȳ, ū) as i → ∞.
Finally, (y,u) ∈ Y × U → J (y,u) is obviously continuous and convex. We con-

clude by Theorem 1.18 that

J ∗ = lim
i→∞J (yki

, uki
) ≥ J (ȳ, ū) ≥ J ∗,

where the last inequality follows from (ȳ, ū) ∈ Fad. Therefore, (ȳ, ū) is the optimal
solution of (1.77). If α > 0 then u 
→ f (A−1(g − Bu),u) is strictly convex, which
contradicts the existence of more than one minimizer.

If Y is not reflexive, we can still select a weakly convergent subsequence (uki
) ⊂

(uk) since U is reflexive. But since yki
= A−1(g − Buki

) and A−1B ∈ L(U,Y ),
also the subsequence (yki

) converges weakly in Y and we obtain as above Fad �
(yki

, uki
) −⇀ (ȳ, ū) as i → ∞.

Remark 1.18 Equivalently, one can study the reduced problem.
In fact, Ay + Bu = g implies y = A−1(g − Bu) and thus the problem (1.77) is

equivalent to

min
u∈U

Ĵ (u) s.t. u ∈ Ûad

with

Ĵ (u) = J (A−1(g − Bu),u), Ûad = {
u ∈ U : u ∈ Uad, A−1(g − Bu) ∈ Yad

}
.

It is easy to see that Ĵ is continuous and convex and Ûad is closed and convex. An
argumentation as before shows that a minimizing sequence is bounded and thus
contains a weakly convergent subsequence convergent to some ū ∈ Ûad. Lower
semicontinuity implies the optimality of ū. Setting ȳ = A−1(g − Bū), we obtain
a solution (ȳ, ū) of (1.77).

1.5.2 Existence Results for Nonlinear Problems

The existence result can be extended to nonlinear problems

min
(y,u)∈Y×U

J (y,u) subject to e(y,u) = 0, u ∈ Uad, y ∈ Yad, (1.78)

where J : Y × U → R, e : Y × U → Z are continuous with a Banach space Z and
reflexive Banach spaces U,Y .

Similarly as above, existence can be shown under the following assumptions.
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Assumption 1.44

1. Uad ⊂ U is convex, bounded and closed.
2. Yad ⊂ Y is convex and closed, such that (1.78) has a feasible point.
3. The state equation e(y,u) = 0 has a bounded solution operator u ∈ Uad 
→

y(u) ∈ Y .
4. (y,u) ∈ Y × U 
→ e(y,u) ∈ Z is continuous under weak convergence.
5. J is sequentially weakly lower semicontinuous.

Theorem 1.45 Let Assumption 1.44 hold. Then problem (1.78) has an optimal so-
lution (ȳ, ū).

Proof We can argue similarly as in the proof of Theorem 1.43. Denote the feasible
set of (1.78) by Fad. Assumption 1.44, 1., 3. ensure the existence of a bounded min-
imizing sequence (yk, uk) ⊂ Fad. Since U,Y are reflexive, we can extract a weakly
convergent subsequence (yki

, uki
) −⇀ (ȳ, ū). By Assumption 1.44, 1., 2., 4. the

feasible set Fad of (1.78) is sequentially weakly closed and thus (ȳ, ū) ∈ Fad. Now
Assumption 1.44, 5. can be used to show that (ȳ, ū) solves (1.78).

To verify Assumption 1.44, 4. one uses often compact embeddings Y ↪→↪→ Ỹ to
convert weak convergence in Y to strong convergence in Ỹ .

Example 1.6 To show 1.44, 4. for the semilinear state equation

y ∈ Y := H 1(Ω) 
→ e(y,u) := −�y + y3 − u ∈ Y ∗ =: Z,

one can proceed as follows. Let Ω ⊂ R
n open and bounded with Lipschitz bound-

ary. Then the embedding Y := H 1(Ω) ↪→↪→ L5(Ω) is compact for n = 2,3, see
Theorem 1.14. Therefore, yk −⇀ y weakly in Y implies yk → y strongly in L5(Ω)

and thus y3
k → y3 strongly in L5/3(Ω) = L5/2(Ω)∗ ↪→ Y ∗ (see below), and thus

strongly in Y ∗.
To prove y3

k → y3 in L5/3(Ω), we first observe that y3
k , y3 ∈ L5/3(Ω) obviously

holds, since yk, y ∈ Y ↪→ L5(Ω). Next, we prove

|b3 − a3| ≤ 3(|a|2 + |b|2)|b − a|.
In fact, for appropriate t ∈ [0,1] the mean value theorem yields

|b3 − a3| = 3|(a + t (b − a))2(b − a)| ≤ 3 max(a2, b2)|b − a| ≤ 3(a2 + b2)|b − a|.
Therefore,

‖y3
k − y3‖

L5/3 ≤ 3‖(y2
k + y2)|yk − y|‖L5/3

≤ 3‖y2
k |yk − y|‖L5/3 + 3‖y2|yk − y|‖L5/3 .

Now the Hölder inequality with p = 3/2 and q = 3 yields

‖v2w‖L5/3 = ‖|v|10/3|w|5/3‖3/5
L1 ≤ ‖|v|10/3‖3/5

L3/2‖|w|5/3‖3/5
L3 = ‖v‖2

L5‖w‖L5 .
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This shows

‖y3
k − y3‖

L5/3 ≤ 3‖y2
k |yk − y|‖L5/3 + 3‖y2|yk − y|‖L5/3

≤ 3(‖yk‖2
L5 + ‖y‖2

L5)‖yk − y‖L5 → 6‖y‖2
L5 · 0 = 0.

1.5.3 Applications

1.5.3.1 Distributed Control of Elliptic Equations

We apply the result first to the distributed optimal control of a steady temperature
distribution with boundary temperature zero.

min J (y,u) := 1

2
‖y − yd‖2

L2(Ω)
+ α

2
‖u‖2

L2(Ω)

subject to −�y = γ u on Ω,

y = 0 on ∂Ω,

a ≤ u ≤ b on Ω,

(1.79)

where

γ ∈ L∞(Ω) \ {0}, γ ≥ 0, a, b ∈ L2(Ω), a ≤ b.

The form of J and the assumptions on a, b suggest the choice U = L2(Ω) and

Uad = {u ∈ U : a ≤ u ≤ b} , Yad = Y.

Then Uad ⊂ U is bounded, closed and convex.
We know from Theorem 1.19 that the weak formulation of the boundary value

problem

−�y = γ u on Ω,

y = 0 on ∂Ω,

can be written in the form

Find y ∈ Y := H 1
0 (Ω): a(y, v) = (γ u, v)L2(Ω) ∀v ∈ Y

with a(y, v) = ∫
Ω

∇y · ∇vdx, or short

Ay + Bu = 0,

where A ∈ L(Y,Y ∗) is the operator representing a, see (1.24), and B ∈ L(U,Y ∗)
is defined through Bu = −(γ u, ·)L2(Ω). By Theorem 1.19, A ∈ L(Y,Y ∗) has a
bounded inverse. Therefore, Assumption 1.42 is satisfied with the choice Z = Y ∗.
Finally, setting g = 0 and Q = IY,U with the trivial, continuous embedding IY,U :
y ∈ Y → y ∈ U , (1.79) is equivalent to (1.77).
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1.5.3.2 Boundary Control of Semilinear Elliptic Equations

Now consider the following optimal control problem for a semilinear elliptic equa-
tion.

min J (y,u) := 1

2
‖y − yd‖2

L2(Ω)
+ α

2
‖u‖2

L2(∂Ω)

subject to −�y + y3 = 0 on Ω,

∂y

∂ν
+ y = u on ∂Ω,

a ≤ u ≤ b on ∂Ω,

(1.80)

where Ω ⊂ R
n, n = 2 or n = 3, is open and bounded with Lipschitz-boundary and

a, b ∈ Ln(∂Ω), a ≤ b.

Let U = Ln(∂Ω), Y = H 1(Ω) and

Uad = {u ∈ U : a ≤ u ≤ b} , Yad = Y.

We verify Assumption 1.44. Uad ⊂ U is bounded, closed and convex. If we consider
weak solutions according to (1.45) then the PDE-constraint is an operator

e : (y,u) ∈ Y ×U 
→ e(y,u) := a(y, ·)+ (y3, ·)L2(Ω) + (y −u, ·)L2(∂Ω) ∈ Y ∗ =: Z,

where a(y, v) = ∫
Ω

∇y · ∇v dx (note that H 1(Ω) ↪→ L6(Ω) for n ≤ 3 and thus
y3 ∈ L2(Ω)). We know by Theorem 1.25 that there exists a unique bounded solu-
tion operator u ∈ Uad 
→ y(u) ∈ Y . Moreover, (y,u) ∈ Y × U 
→ e(y,u) ∈ Z is
continuous under weak convergence, since the nonlinear term y ∈ Y 
→ y3 ∈ Z

is by Example 1.6 sequentially weakly continuous. Finally, the objective function
J : Y × U → R is continuous, convex and thus sequentially lower semicontinuous.
Thus, Assumption 1.44 is verified and therefore (1.80) has an optimal solution by
Theorem 1.45.

1.6 Reduced Problem, Sensitivities and Adjoints

We consider again optimal control problems of the form

min
y∈Y,u∈U

J (y,u) subject to e(y,u) = 0, (y,u) ∈ Wad, (1.81)

where J : Y × U → R is the objective function, e : Y × U → Z is an operator
between Banach spaces, and Wad ⊂ W := Y × U is a nonempty closed set.

We assume that J and e are continuously F-differentiable and that the state equa-
tion

e(y,u) = 0



58 S. Ulbrich

possesses for each u ∈ U a unique corresponding solution y(u) ∈ Y . Thus, we have
a solution operator u ∈ U 
→ y(u) ∈ Y . Furthermore, we assume that ey(y(u),u) ∈
L(Y,Z) is continuously invertible. Then the implicit function theorem (Theo-
rem 1.41) ensures that y(u) is continuously differentiable. An equation for the deriv-
ative y′(u) is obtained by differentiating the equation e(y(u),u) = 0 with respect
to u:

ey(y(u),u)y′(u) + eu(y(u),u) = 0. (1.82)

Inserting y(u) in (1.81), we obtain the reduced problem

min
u∈U

Ĵ (u) := J (y(u),u) subject to u ∈ Ûad := {u ∈ U : (y(u),u) ∈ Wad} .

(1.83)
It will be important to investigate the possibilities of computing the derivative of the
reduced objective function Ĵ .

Essentially, there are two methods to do this:

• The sensitivity approach,
• The adjoint approach.

1.6.1 Sensitivity Approach

Sensitivities are directional derivatives. For u ∈ U and a direction s ∈ U , the chain
rule yields for the sensitivity of Ĵ :

dĴ (u, s) = 〈Ĵ ′(u), s〉U∗,U = 〈Jy(y(u),u), y′(u)s〉Y ∗,Y + 〈Ju(y(u),u), s〉U∗,U .

In this expression, the sensitivity dy(u, s) = y′(u)s appears. Differentiating
e(y(u),u) = 0 in the direction s yields

ey(y(u),u)y′(u)s + eu(y(u),u)s = 0.

Hence, the sensitivity δsy = dy(u, s) is given as the solution of the linearized state
equation

ey(y(u),u)δsy = −eu(y(u),u)s.

Therefore, to compute the directional derivative dĴ (u, s) = 〈Ĵ (u), s〉U∗,U via the
sensitivity approach, the following steps are required:

1. Compute the sensitivity δsy = dy(u, s) by solving

ey(y(u),u)δsy = −eu(y(u),u)s. (1.84)

2. Compute dĴ (u, s) = 〈Ĵ ′(u), s〉U∗,U via

dĴ (u, s) = 〈Jy(y(u),u), δsy〉Y ∗,Y + 〈Ju(y(u),u), s〉U∗,U .
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This procedure is expensive if the whole derivative Ĵ ′(u) is required, since this
means that for a basis B of U , all the directional derivatives

dĴ (u, v), v ∈ B,

have to be computed. Each of them requires the solution of one linearized state
equation (1.84) with s = v.

This is an effort that grows linearly in the dimension of U .
Actually, computing all sensitivities of δvy = y′(u)v, v ∈ B , is equivalent to

computing the whole operator y′(u). As we will see now, much less effort is needed
to compute the derivative of Ĵ .

1.6.2 Adjoint Approach

We now derive a more efficient way of representing the derivative of Ĵ . From

〈Ĵ ′(u), s〉U∗,U = 〈Jy(y(u),u), y′(u)s〉Y ∗,Y + 〈Ju(y(u),u), s〉U∗,U

= 〈y′(u)∗Jy(y(u),u), s〉U∗,U + 〈Ju(y(u),u), s〉U∗,U

we see that

Ĵ ′(u) = y′(u)∗Jy(y(u),u) + Ju(y(u),u).

Therefore, not the operator y′(u) ∈ L(U,Y ), but only the vector y′(u)∗Jy(y(u),u) ∈
U∗ is really required. Since by (1.82)

y′(u)∗Jy(y(u),u) = −eu(y(u),u)∗ey(y(u),u)−∗Jy(y(u),u),

it follows that

y′(u)∗Jy(y(u),u) = eu(y(u),u)∗p(u),

where the adjoint state p = p(u) ∈ Z∗ solves the

Adjoint Equation:

ey(y(u),u)∗p = −Jy(y(u),u). (1.85)

We thus have

Ĵ ′(u) = eu(y(u),u)∗p(u) + Ju(y(u),u).

The derivative Ĵ ′(u) can thus be computed via the adjoint approach as follows:

1. Compute the adjoint state by solving the adjoint equation

ey(y(u),u)∗p = −Jy(y(u),u).

2. Compute Ĵ ′(u) via

Ĵ ′(u) = eu(y(u),u)∗p + Ju(y(u),u).



60 S. Ulbrich

1.6.3 Application to a Linear-Quadratic Optimal Control Problem

We consider the linear-quadratic optimal control problem

min
(y,u)∈Y×U

J (y,u) := 1

2
‖Qy − qd‖2

H + α

2
‖u‖2

U

subject to Ay + Bu = g, u ∈ Uad, y ∈ Yad

(1.86)

where H,U are Hilbert spaces, Y,Z are Banach spaces and qd ∈ H , g ∈ Z, A ∈
L(Y,Z), B ∈ L(U,Z), Q ∈ L(Y,H) and let Assumption 1.42 hold. We obtain the
form (1.81) by setting

e(y,u) := Ay + Bu − g, Wad = Yad × Uad.

By assumption, there exists a continuous affine linear solution operator

U � u 
→ y(u) = A−1(g − Bu) ∈ Y.

For the derivatives we have

〈Jy(y,u), sy〉Y ∗,Y = (Qy − qd,Qsy)H ,= 〈Q∗(Qy − qd), sy〉Y ∗,Y ,

〈Ju(y,u), su〉U∗,U = α(u, su)U ,

ey(y,u)sy = Asy,

eu(y,u)su = Bsu.

Therefore,

Jy(y,u) = (Qy − qd,Q·)H ,

Ju(y,u) = α(u, ·)U ,

ey(y,u) = A,

eu(y,u) = B.

If we choose the Riesz representations U∗ = U , H ∗ = H , then

Jy(y,u) = (Qy − qd,Q·)H = 〈Qy − qd,Q·〉H ∗,H = 〈Q∗(Qy − qd), ·〉Y ∗,Y

= Q∗(Qy − qd),

Ju(y,u) = α(u, ·)U = αu.

The reduced objective function is

Ĵ (u) = J (y(u),u) = 1

2
‖Q(A−1(g − Bu)) − qd‖2

H + α

2
‖u‖2

U .
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For evaluation of Ĵ , we first solve the state equation

Ay + Bu = g

to obtain y = y(u) and then we evaluate J (y,u). In the following, let y = y(u).

Sensitivity Approach:

For s ∈ U , we obtain dĴ (u, s) = 〈Ĵ ′(u), s〉U∗,U by first solving the linearized
state equation

Aδsy = −Bs

for δsy and then setting

dĴ (u, s) = (Qy − qd,Qδsy)H + α(u, s)U .

Adjoint Approach:

We obtain Ĵ ′(u) by first solving the adjoint equation

A∗p = −(Qy − qd,Q·)H (= −Q∗(Qy − qd) if H ∗ = H)

for the adjoint state p = p(u) ∈ Z∗ and then setting

Ĵ ′(u) = B∗p + α(u, ·)U (= B∗p + αu if U∗ = U).

Next, let us consider the concrete example of the elliptic control problem

min J (y,u) := 1

2

∫
Ω

(y(x) − yd(x))2dx + α

2

∫
Ω

u(x)2dx

subject to −�y = γ u on Ω,

∂y

∂ν
= β

κ
(ya − y) on ∂Ω,

a ≤ u ≤ b on Ω.

The appropriate spaces are

U = L2(Ω), Y = H 1(Ω)

and we assume

a, b ∈ U, yd ∈ L2(Ω), α > 0,

ya ∈ L2(∂Ω), γ ∈ L∞(Ω) \ {0}, γ ≥ 0.

The coefficient γ weights the control and ya can be interpreted as the surrounding
temperature in the case of the heat equation. β > 0 and κ > 0 are coefficients.

The weak formulation of the state equation is

y ∈ Y, a(y, v) = (γ u, v)L2(Ω) + ((β/κ)ya, v)L2(∂Ω) ∀v ∈ Y = H 1(Ω)
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with

a(y, v) =
∫

Ω

∇yT ∇vdx + ((β/κ)y, v)L2(∂Ω).

Now let Z = Y ∗, H = L2(Ω) and

• A ∈ L(Y,Y ∗) the operator induced by a, i.e., Ay = a(y, ·),
• B ∈ L(U,Y ∗), Bu = −(γ u, ·)L2(Ω),
• g ∈ Y ∗, g = ((β/κ)ya, ·)L2(∂Ω),
• Uad = {u ∈ U : a ≤ u ≤ b on Ω}, Yad = Y ,
• Q ∈ L(Y,H), Qy = y.

Then, we arrive at a linear quadratic problem of the form (1.86).
We compute the adjoints. Note that all spaces are Hilbert spaces and thus re-

flexive. In particular, we identify the dual of U = L2 with U by working with
〈·, ·〉U∗,U = (·, ·)L2(Ω). We do the same with H = L2. We thus have

A∗ ∈ L(Z∗, Y ∗) = L(Y ∗∗, Y ∗) = L(Y,Y ∗),

B∗ ∈ L(Z∗,U∗) = L(Y ∗∗,U) = L(Y,U),

Q∗ ∈ L(H ∗, Y ∗) = L(H,Y ∗).

For A∗ we obtain

〈A∗v,w〉Y ∗,Y = 〈v,Aw〉Z∗,Z = 〈Aw,v〉Y ∗,Y

= a(w,v) = a(v,w) = 〈Av,w〉Y ∗,Y ∀v,w ∈ Y.

Here, we have used that obviously a is a symmetric bilinear form. Therefore,
A∗ = A.

For B∗ we have

(B∗v,w)U = 〈B∗v,w〉U∗,U = 〈v,Bw〉Z∗,Z = 〈v,Bw〉Y,Y ∗ = (v,−γw)L2

= −(γ v,w)U ∀v ∈ Y, w ∈ U.

Hence B∗v = −γ v. Finally, for Q∗ we obtain

〈Q∗v,w〉Y ∗,Y = 〈v,Qw〉H ∗,H = (v,w)L2(Ω).

Therefore, Q∗v = (v, ·)L2(Ω).
This means that

Jy(y,u) = (Q∗(Qy − yd), ·)L2(Ω) = (y − yd, ·)L2(Ω).

Taking all together, the adjoint equation thus reads

Ap = −(y − yd, ·)L2(Ω),
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which is the weak form of

−�p = −(y − yd) on Ω,

∂p

∂ν
+ β

κ
p = 0 on ∂Ω,

The adjoint gradient representation then is

Ĵ ′(u) = B∗p(u) + Ju(y(u),u) = −γp + αu.

1.6.4 A Lagrangian-Based View of the Adjoint Approach

The adjoint gradient representation can also be derived in a different way. Consider
(1.81) and define the Lagrange function L : Y × U × Z∗ → R,

L(y,u,p) = J (y,u) + 〈p, e(y,u)〉Z∗,Z.

Inserting y = y(u) gives, for arbitrary p ∈ Z∗,

Ĵ (u) = J (y(u),u) = J (y(u),u) + 〈p, e(y(u),u)〉Z∗,Z = L(y(u),u,p).

Differentiating this, we obtain

〈Ĵ ′(u), s〉U∗,U = 〈Ly(y(u),u,p), y′(u)s〉Y ∗,Y + 〈Lu(y(u),u,p), s〉U∗,U . (1.87)

Now we choose a special p = p(u), namely such that

Ly(y(u),u,p) = 0. (1.88)

This is nothing else but the adjoint equation. In fact,

〈Ly(y,u,p), d〉Y ∗,Y = 〈Jy(y,u), d〉Y ∗,Y + 〈p, ey(y,u)d〉Z∗,Z

= 〈Jy(y,u) + ey(y,u)∗p,d〉Y ∗,Y .

Therefore,

Ly(y(u),u,p) = Jy(y(u),u) + ey(y(u),u)∗p.

Now, choosing p = p(u) according to (1.88), we obtain from (1.87) that

Ĵ ′(u) = Lu(y(u),u,p(u)) = Ju(y(u),u) + eu(y(u),u)∗p(u). (1.89)

This is exactly the adjoint gradient representation.
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1.6.5 Second Derivatives

We can use the Lagrange function based approach to derive the second derivative
of Ĵ .

To this end, assume that J and e are twice continuously differentiable. As already
noted, for all p ∈ Z∗ we have the identity

Ĵ (u) = J (y(u),u) = L(y(u),u,p).

Differentiating this in the direction s1 ∈ U yields (see above)

〈Ĵ ′(u), s1〉U∗,U = 〈Ly(y(u),u,p), y′(u)s1〉Y ∗,Y + 〈Lu(y(u),u,p), s1〉U∗,U .

Differentiating this once again in the direction s2 ∈ U gives

〈Ĵ ′′(u)s2, s1〉U∗,U = 〈Ly(y(u),u,p), y′′(u)(s1, s2)〉Y ∗,Y

+ 〈Lyy(y(u),u,p)y′(u)s2, y
′(u)s1〉Y ∗,Y

+ 〈Lyu(y(u),u,p)s2, y
′(u)s1〉Y ∗,Y

+ 〈Luy(y(u),u,p)y′(u)s2, s1〉U∗,U

+ 〈Luu(y(u),u,p)s2, s1〉U∗,U .

Now we choose p = p(u), i.e., Ly(y(u),u,p(u)) = 0. Then the term containing
y′′(u) drops out and we arrive at

〈Ĵ ′′(u)s2, s1〉U∗,U = 〈Lyy(y(u),u,p(u))y′(u)s2, y
′(u)s1〉Y ∗,Y

+ 〈Lyu(y(u),u,p(u))s2, y
′(u)s1〉Y ∗,Y

+ 〈Luy(y(u),u,p(u))y′(u)s2, s1〉U∗,U

+ 〈Luu(y(u),u,p(u))s2, s1〉U∗,U .

This shows

Ĵ ′′(u) = y′(u)∗Lyy(y(u),u,p(u))y′(u) + y′(u)∗Lyu(y(u),u,p(u))

+ Luy(y(u),u,p(u))y′(u) + Luu(y(u),u,p(u))

= T (u)∗Lww(y(u),u,p(u))T (u) (1.90)

with

T (u) =
(

y′(u)

IU

)
∈ L(U,Y × U), Lww =

(
Lyy Lyu

Luy Luu

)
.

Here IU ∈ L(U,U) is the identity.
Note that y′(u) = −ey(y(u),u)−1eu(y(u),u) and thus

T (u) =
(

y′(u)

IU

)
=
(−ey(y(u),u)−1eu(y(u),u)

IU

)
. (1.91)
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Usually, the Hessian representation (1.90) is not used to compute the whole operator
Ĵ ′′(u). Rather, it is used to compute operator-vector-products Ĵ ′′(u)s as follows:

1. Compute the sensitivity

δsy = y′(u)s = −ey(y(u),u)−1eu(y(u),u)s.

This requires one linearized state equation solve.
2. Compute

(
h1

h2

)
=
(

Lyy(y(u),u,p(u))δsy + Lyu(y(u),u,p(u))s

Luy(y(u),u,p(u))δsy + Luu(y(u),u,p(u))s

)
.

3. Compute

h3 = y′(u)∗h1 = −eu(y(u),u)∗ey(y(u),u)−∗h1.

This requires an adjoint equation solve.
4. Set Ĵ ′′(u)s = h2 + h3.

This procedure can be used to apply iterative solvers to the Newton equation

Ĵ ′′(uk)sk = −Ĵ ′(uk).

Example For the linear-quadratic optimal control problem (1.86) with U∗ = U and
H ∗ = H we have

L(y,u,p) = J (y,u) + 〈p,Ay + Bu〉Z∗,Z,

Ly(y,u,p) = Q∗(Qy − qd) + A∗p,

Lu(y,u,p) = αu + B∗p,

Lyy(y,u,p) = Q∗Q,

Lyu(y,u,p) = 0,

Lyu(u, y,p) = 0,

Luu(y,u,p) = αIU .

From this, all the steps in the above algorithm can be derived easily.

1.7 Optimality Conditions

1.7.1 Optimality Conditions for Simply Constrained Problems

We consider the problem

min
w∈W

J(w) s.t. w ∈ C, (1.92)
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where W is a Banach space, J : W → R is Gâteaux-differentiable and C ⊂ W is
nonempty, closed, and convex.

Theorem 1.46 Let W be a Banach space and C ⊂ W be nonempty and convex.
Furthermore, let J : V → R be defined on an open neighborhood of C. Let w̄ be
a local solution of (1.92) at which J is Gâteaux-differentiable. Then the following
optimality condition holds:

w̄ ∈ C, 〈J ′(w̄),w − w̄〉W ∗,W ≥ 0 ∀w ∈ C. (1.93)

If J is convex on C, the condition (1.93) is necessary and sufficient for global opti-
mality.

If, in addition, J is strictly convex on C, then there exists at most one solution of
(1.92), or, equivalently, of (1.93).

If W is reflexive, C is closed and convex, and J is convex and continuous with

lim
w∈C,‖w‖W →∞

J (w) = ∞,

then there exists a (global = local) solution of (1.92).

Remark 1.19 A condition of the form (1.93) is called variational inequality.

Proof Let w ∈ C be arbitrary. By the convexity of C we have w(t) = w̄ + t (w −
w̄) ∈ C for all t ∈ [0,1]. Now the optimality of w̄ yields

J (w̄ + t (w − w̄)) − J (w̄) ≥ 0 ∀t ∈ [0,1]
and thus

〈J ′(w̄),w − w̄〉W ∗,W = lim
t→0+

J (w̄ + t (w − w̄)) − J (w̄)

t
≥ 0.

Since w ∈ C was arbitrary, the proof of (1.93) is complete.
Now let J be convex. Then

J (w) − J (w̄) ≥ 〈J ′(w̄),w − w̄〉W ∗,W ∀w ∈ C. (1.94)

In fact, for all t ∈ (0,1],
J (w̄ + t (w − w̄)) ≤ (1 − t)J (w̄) + tJ (w).

Hence,

J (w) − J (w̄) ≥ J (w̄ + t (w − w̄)) − J (w̄)

t

t→0+−→ 〈J ′(w̄),w − w̄〉W ∗,W .

Now from (1.93) and (1.94) it follows that

J (w) − J (w̄) ≥ 〈J ′(w̄),w − w̄〉W ∗,W ≥ 0 ∀w ∈ C.

Thus, w̄ is optimal.
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If J is strictly convex and w̄1, w̄2 are two global solutions, the point (w̄1 +
w̄2)/2 ∈ C would be a better solution, unless w̄1 = w̄2.

Finally, let the assumptions of the last assertion hold and let (wk) ∈ C be a min-
imizing sequence. Then (wk) is bounded (otherwise J (wk) → ∞) and thus (wk)

contains a weakly convergent subsequence (wk)K −⇀ w̄. Since C is convex and
closed, it is weakly closed and thus w̄ ∈ C. From the continuity and convexity of J

we conclude that J is weakly sequentially lower semicontinuous and thus

J (w̄) ≤ lim
K�k→∞J (wk) = inf

w∈C
J (w).

Thus, w̄ solves the minimization problem.

In the case of a closed convex set C in a Hilbert space W , we can rewrite the
variational inequality in the form

w̄ − P(w̄ − γ∇J (w)) = 0

where γ > 0 is a fixed parameter and ∇J (w) ∈ W is the Riesz representation of
J ′(w) ∈ W ∗.

To prove this, we need some knowledge about the projection onto closed convex
sets.

Lemma 1.10 Let C ⊂ W be a nonempty closed convex subset of the Hilbert space
W and denote by P : W → C the projection onto C, i.e.,

P(w) ∈ C, ‖P(w) − w‖W = min
v∈C

‖v − w‖W ∀w ∈ W.

Then:

(a) P is well-defined.
(b) For all w,z ∈ W there holds:

z = P(w) ⇐⇒
z ∈ C, (w − z, v − z)W ≤ 0 ∀v ∈ C.

(c) P is nonexpansive, i.e.,

‖P(v) − P(w)‖W ≤ ‖v − w‖W ∀v,w ∈ W.

(d) P is monotone, i.e.,

(P (v) − P(w), v − w)W ≥ 0 ∀v,w ∈ W.

Furthermore, equality holds if and only if P(v) = P(w).
(e) For all w ∈ C and d ∈ W , the function

φ(t) := 1

t
‖P(w + td) − w‖W, t > 0,

is nonincreasing.
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Proof (a) The function W � w 
→ ‖w‖2
W is strictly convex: For all w1,w2 ∈ W ,

w1 �= w2, and all t ∈ (0,1);

‖w1 + t (w2 − w1)‖2
W = ‖w1‖2

W + 2t (w1,w2 − w1)W + t2‖w2 − w1‖2
W =: p(t).

The function on the right is a strictly convex parabola. Hence,

‖w1 + t (w2 − w1)‖2
W = p(t) < (1 − t)p(0) + tp(1) = (1 − t)‖w1‖2

2 + t‖w2‖2
2.

Therefore, for all w ∈ W , the function

J (v) = 1

2
‖v − w‖2

W

is strictly convex. Furthermore, it tends to ∞ as ‖v‖W → ∞. Hence, by Theo-
rem 1.46, the problem

min
v∈C

J (v)

possesses a unique solution v̄, and thus P(w) = v̄ is uniquely defined.
(b) The function J defined above is obviously F-differentiable with

〈J ′(v), s〉W ∗,W = (v − w, s)W ∀s ∈ W.

Since P(w) = v̄ minimizes J on C, we have by Theorem 1.46 that z = P(w) if and
only if z ∈ C and

z ∈ C, 〈J ′(z), v − z〉W ∗,W = (z − w,v − z)W ≥ 0 ∀v ∈ C.

(c) We use (b)

(v − P(v),P (w) − P(v))W ≤ 0,

(w − P(w),P (v) − P(w))W ≤ 0.

Adding these two inequalities gives

(w − v + P(v) − P(w),P (v) − P(w))

= (w − v,P (v) − P(w))W + ‖P(v) − P(w)‖2
W ≤ 0.

Hence, by the Cauchy-Schwarz inequality

‖P(v) − P(w)‖2
W ≤ (v − w,P (v) − P(w))W ≤ ‖v − w‖W‖P(v) − P(w)‖W .

(1.95)
(d) The assertion follows immediately from the first inequality in (1.95).
(e) Let t > s > 0. If ‖P(w + td) − w‖W ≤ ‖P(w + sd) − w‖W then obviously

φ(s) > φ(t).
Now let ‖P(w + td) − w‖W > ‖P(w + sd) − w‖W .
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Using the Cauchy-Schwarz inequality, for any u,v ∈ W we have

‖v‖W(u,u − v)W − ‖u‖W(v,u − v)W

= ‖v‖W‖u‖2
W − ‖v‖W(u, v)W − ‖u‖W(v,u)W + ‖u‖W‖v‖2

W

≥ ‖v‖W‖u‖2
W − ‖v‖W‖u‖W‖v‖W − ‖u‖W‖v‖W‖u‖W + ‖u‖W‖v‖2

W = 0.

Now, set u := P(w + td)−w, v := P(w + sd)−w, and wτ = w + τd . Then by (b)

(u,u − v)W − (td,P (wt ) − P(ws))W = (P (wt ) − w − td,P (wt ) − P(ws))W

= (P (wt ) − wt,P (wt ) − P(ws))W ≤ 0,

(v,u − v)W − (sd,P (wt ) − P(ws))W = (P (ws) − w − sd,P (wt ) − P(ws))W

= (P (ws) − ws,P (wt ) − P(ws))W ≥ 0.

Thus,

0 ≤ ‖v‖W(u,u − v)W − ‖u‖W(v,u − v)W

≤ ‖v‖W(td,P (wt ) − P(ws))W − ‖u‖W(sd,P (wt ) − P(ws))W

= (t‖v‖W − s‖u‖W)(d,P (wt ) − P(ws))W .

Now, due to the monotonicity of P ,

(d,P (wt ) − P(ws))W = 1

t − s
(wt − ws,P (wt ) − P(ws))W > 0,

since P(wt ) �= P(ws). Therefore,

0 ≤ t‖v‖W − s‖u‖W = ts(φ(s) − φ(t)).

Lemma 1.11 Let W be a Hilbert space, C ⊂ W be nonempty, closed, and convex.
Furthermore, let P denote the projection onto C. Then, for all y ∈ W and all γ > 0,
the following conditions are equivalent:

w ∈ C, (y, v − w)W ≥ 0 ∀v ∈ C. (1.96)

w − P(w − γy) = 0. (1.97)

Proof Let (1.96) hold. Then with wγ = w − γy we have

(wγ − w,v − w)W = −γ (y, v − w)W ≤ 0 ∀v ∈ C.

By Lemma 1.10(b), this implies w = P(wγ ) as asserted in (1.97).
Conversely, let (1.97) hold. Then with the same notation as above we obtain

w = P(wγ ) ∈ C. Furthermore, Lemma 1.10(b) yields

(y, v − w)W = − 1

γ
(wγ − w,v − w) ≥ 0 ∀v ∈ C.
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We obtain the following corollary of Theorem 1.46.

Corollary 1.2 Let W be a Hilbert space and C ⊂ W be nonempty, closed, and
convex. Furthermore, let J : V → R be defined on an open neighborhood of C.
Let w̄ be a local solution of (1.92) at which J is Gâteaux-differentiable. Then the
following optimality condition holds:

w̄ = P(w̄ − γ∇J (w̄)). (1.98)

Here, γ > 0 is arbitrary but fixed and ∇J (w) ∈ W denotes the Riesz-representation
of J ′(w) ∈ W ∗.

Moreover, in the Hilbert space setting (1.98) is equivalent to (1.93) if C is non-
empty, closed, convex and therefore in this case Theorem 1.46 holds with (1.98)
instead of (1.93).

1.7.2 Optimality Conditions for Control-Constrained Problems

We consider a general possibly nonlinear problem of the form

min
(y,u)∈Y×U

J (y,u) subject to e(y,u) = 0, u ∈ Uad. (1.99)

We make the

Assumption 1.47

1. Uad ⊂ U is nonempty, convex and closed.
2. J : Y × U → R and e : Y × U → Z are continuously Fréchet differentiable and

U , Y , Z are Banach spaces.
3. For all u ∈ V in a neighborhood V ⊂ U of Uad, the state equation e(y,u) = 0

has a unique solution y = y(u) ∈ Y .
4. ey(y(u),u) ∈ L(Y,Z) has a bounded inverse for all u ∈ V ⊃ Uad.

Under these assumptions the mapping u ∈ V 
→ y(u) ∈ Y is continuously F-
differentiable by the implicit function theorem.

Obviously, the general linear-quadratic optimization problem

min
(y,u)∈Y×U

J (y,u) := 1

2
‖Qy − qd‖2

H + α

2
‖u‖2

U

subject to Ay + Bu = g, u ∈ Uad,

(1.100)

is a special case of (1.99), where H,U are Hilbert spaces, Y,Z are Banach spaces
and qd ∈ H , g ∈ Z, A ∈ L(Y,Z), B ∈ L(U,Z), Q ∈ L(Y,H). Moreover, Assump-
tion 1.42 ensures Assumption 1.47, since ey(y,u) = A.
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1.7.2.1 A General First Order Optimality Condition

Now consider problem (1.99) and let Assumption 1.47 hold. Then we can formulate
the reduced problem

min
u∈U

Ĵ (u) s.t. u ∈ Uad (1.101)

with the reduced objective functional

Ĵ (u) := J (y(u),u),

where V � u 
→ y(u) ∈ Y is the solution operator of the state equation. We have the
following general result.

Theorem 1.48 Let Assumption 1.47 hold. If ū is a local solution of the reduced
problem (1.101) then ū satisfies the variational inequality

ū ∈ Uad and 〈Ĵ ′(ū), u − ū〉U∗,U ≥ 0 ∀u ∈ Uad. (1.102)

Proof We can directly apply Theorem 1.46.

Depending on the structure of Uad the variational inequality (1.102) can be ex-
pressed in a more convenient form. We show this for the case of box constraints.

Lemma 1.12 Let U = L2(Ω), a, b ∈ L2(Ω), a ≤ b, and Uad be given by

Uad = {
u ∈ L2(Ω) : a ≤ u ≤ b

}
.

We work with U∗ = U write ∇Ĵ (u) for the derivative to emphasize that this is the
Riesz representation. Then the following conditions are equivalent:

(i) ū ∈ Uad,

(∇Ĵ (ū), u − ū)U ≥ 0 ∀u ∈ Uad.

(ii) ū ∈ Uad,

∇Ĵ (ū)(x)

⎧⎪⎨
⎪⎩

= 0, if a(x) < ū(x) < b(x),

≥ 0, if a(x) = ū(x) < b(x),

≤ 0, if a(x) < ū(x) = b(x),

for a.a. x ∈ Ω.

(iii) There are λ̄a, λ̄b ∈ U∗ = L2(Ω) with

∇Ĵ (ū) + λ̄b − λ̄a = 0,

ū ≥ a, λ̄a ≥ 0, λ̄a(ū − a) = 0,

ū ≤ b, λ̄b ≥ 0, λ̄b(b − ū) = 0.
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(iv) For any γ > 0: ū = PUad(ū − γ∇Ĵ (ū)), with PUad(u) = min(max(a,u), b).

Proof (ii) =⇒ (i): If ∇Ĵ (ū) satisfies (ii) then it is obvious that ∇Ĵ (ū)(u − ū) ≥ 0
a.e. for all u ∈ Uad and thus

(∇Ĵ (ū), u − ū)U =
∫

Ω

∇Ĵ (ū)(u − ū)dx ≥ 0 ∀u ∈ Uad.

(i) =⇒ (ii): Clearly, (ii) is the same as

∇Ĵ (ū)(x)

{
≥ 0 a.e. on Ia = {x : a(x) ≤ ū(x) < b(x)},
≤ 0 a.e. on Ib = {x : a(x) < ū(x) ≤ b(x)}.

Assume this is not true. Then, without loss of generality, there exists a set M ⊂ Ia of
positive measure with ∇Ĵ (ū)(x) < 0 on M . Now choose u = ū + 1M(b − ū). Then
u ∈ Uad, u − ū > 0 on M and u − ū = 0 elsewhere. Hence, we get the contradiction

(∇Ĵ (ū), u − ū)U =
∫

M

∇Ĵ (ū)︸ ︷︷ ︸
<0

(b − ū)︸ ︷︷ ︸
>0

dx < 0.

(ii) =⇒ (iii): Let λ̄a = max(∇Ĵ (ū),0), λ̄b = max(−∇Ĵ (ū),0). Then a ≤ ū ≤ b and
λ̄a, λ̄b ≥ 0 hold trivially. Furthermore,

ū(x) > a(x) =⇒ ∇Ĵ (ū)(x) ≤ 0 =⇒ λ̄a(x) = 0,

ū(x) < b(x) =⇒ ∇Ĵ (ū)(x) ≥ 0 =⇒ λ̄b(x) = 0.

(iii) =⇒ (ii):

a(x) < ū(x) < b(x) =⇒ λ̄a = λ̄b = 0 =⇒ ∇Ĵ (ū) = 0,

a(x) = ū(x) < b(x) =⇒ λ̄b = 0 =⇒ ∇Ĵ (ū) = λ̄a ≥ 0,

a(x) < ū(x) = b(x) =⇒ λ̄a = 0 =⇒ ∇Ĵ (ū) = −λ̄b ≤ 0.

(ii) ⇐⇒ (iv): This is easily verified.
Alternatively, we can use Lemma 1.11 to prove the equivalence of (i) and (iv).

1.7.2.2 Necessary First Order Optimality Conditions

Next, we use the adjoint representation of the derivative

Ĵ ′(u) = eu(y(u),u)∗p(u) + Ju(y(u),u), (1.103)

where the adjoint state p(u) ∈ Z∗ solves the adjoint equation

ey(y(u),u)∗p = −Jy(y(u),u). (1.104)
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For compact notation, we recall the definition of the Lagrange function associated
with (1.99)

L : Y × U × Z∗ → R, L(y,u,p) = J (y,u) + 〈p, e(y,u)〉Z∗,Z.

The representation (1.103) of Ĵ ′(ū) yields the following corollary of Theorem 1.48.

Corollary 1.3 Let (ȳ, ū) an optimal solution of the problem (1.99) and let Assump-
tion 1.47 hold. Then there exists an adjoint state (or Lagrange multiplier) p̄ ∈ Z∗
such that the following optimality conditions hold

e(ȳ, ū) = 0, (1.105)

ey(ȳ, ū)∗p̄ = −Jy(ȳ, ū), (1.106)

ū ∈ Uad, 〈Ju(ȳ, ū) + eu(ȳ, ū)∗p̄, u − ū〉U∗,U ≥ 0 ∀u ∈ Uad. (1.107)

Using the Lagrange function we can write (1.105)–(1.107) in the compact form

Lp(ȳ, ū, p̄) = e(ȳ, ū) = 0, (1.105)

Ly(ȳ, ū, p̄) = 0, (1.106)

ū ∈ Uad, 〈Lu(ȳ, ū, p̄), u − ū〉U∗,U ≥ 0 ∀u ∈ Uad. (1.107)

Proof We have only to combine (1.102), (1.104), and (1.103).

To avoid dual operators, one can also use the equivalent variational form

〈e(ȳ, ū),p〉Z,Z∗ = 0 ∀p ∈ Z∗, (1.108)

〈Ly(ȳ, ū, p̄), v〉Y ∗,Y = 0 ∀v ∈ Y (1.109)

ū ∈ Uad, 〈Lu(ȳ, ū, p̄), u − ū〉U∗,U ≥ 0 ∀u ∈ Uad. (1.110)

1.7.2.3 Applications

General Linear-Quadratic Problem

We apply the result to the linear-quadratic problem

min
(y,u)∈Y×U

J (y,u) := 1

2
‖Qy − qd‖2

H + α

2
‖u‖2

U

subject to Ay + Bu = g, u ∈ Uad

(1.111)

under Assumption 1.42. Then

e(y,u) = Ay + Bu − g, ey(y,u) = A, eu(y,u) = B
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and Corollary 1.3 is applicable. We only have to compute Ly and Lu for the La-
grange function

L(y,u,p) = J (y,u) + 〈p,Ay + Bu − g〉Z∗,Z

= 1

2
(Qy − qd,Qy − qd)H + α

2
(u,u)U + 〈p,Ay + Bu − g〉Z∗,Z.

We have with the identification H ∗ = H and U∗ = U

〈Ly(ȳ, ū, p̄), v〉Y ∗,Y = (Qȳ − qd,Qv)H + 〈p̄,Av〉Z∗,Z

= 〈Q∗(Qȳ − qd) + A∗p̄, v〉Y ∗,Y ∀ v ∈ Y
(1.112)

and

(Lu(ȳ, ū, p̄),w)U = α(ū,w)U + 〈p̄,Bw〉Z∗,Z

= (αū + B∗p̄,w)U ∀w ∈ U.
(1.113)

Thus (1.105)–(1.107) take the form

Aȳ + Bū = g, (1.114)

A∗p̄ = −Q∗(Qȳ − qd), (1.115)

ū ∈ Uad, (αū + B∗p̄, u − ū)U ≥ 0 ∀u ∈ Uad. (1.116)

Distributed Control of Elliptic Equations

We consider next the distributed optimal control of a steady temperature distribution
with boundary temperature zero

min J (y,u) := 1

2
‖y − yd‖2

L2(Ω)
+ α

2
‖u‖2

L2(Ω)

subject to −�y = γ u on Ω,

y = 0 on ∂Ω,

a ≤ u ≤ b on Ω,

(1.117)

where

γ ∈ L∞(Ω) \ {0}, γ ≥ 0, a, b ∈ L2(Ω), a ≤ b.

We have already observed in Sect. 1.5.3.1 that (1.117) has the form (1.111) and
satisfies Assumption 1.42 with

U = H = L2(Ω), Y = H 1
0 (Ω), Z = Y ∗, g = 0, Q = IY,H ,
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Uad = {u ∈ U : a ≤ u ≤ b} and

A ∈ L(Y,Y ∗), 〈Ay,v〉Y ∗,Y = a(y, v) =
∫

Ω

∇y · ∇v dx,

B ∈ L(U,Y ∗), 〈Bu,v〉Y ∗,Y = −(γ u, v)L2(Ω).

Hence, the optimality system is given by (1.114)–(1.116). Moreover, we have
A∗ = A. In fact, as a Hilbert space, Y is reflexive and Z∗ = Y ∗∗ can be identified
with Y through

〈p,y∗〉Y ∗∗,Y ∗ = 〈y∗,p〉Y ∗,Y ∀y∗ ∈ Y ∗, p ∈ Y = Y ∗∗.

This yields

〈A∗v,w〉Y ∗,Y = 〈v,Aw〉Z∗,Z = 〈Aw,v〉Y ∗,Y

= a(w,v) = a(v,w) = 〈Av,w〉Y ∗,Y ∀v,w ∈ Y.

and thus A∗ = A.
Instead of interpreting (1.114)–(1.116) for this problem we demonstrate that it

is very convenient to work with the form (1.108)–(1.110) of the optimality system.
We have

〈p,Ay〉Z∗,Z = 〈Ay,p〉Y ∗,Y = a(y,p) = a(p,y).

Let (ȳ, ū) ∈ Y × U be an optimal solution. Then by Corollary 1.3 and (1.112),
(1.113) the optimality system in the form (1.108)–(1.110) reads

a(ȳ, v) − (γ ū, v)L2(Ω) = 0 ∀v ∈ Y, (1.118)

(ȳ − yd, v)L2Ω + a(p̄, v) = 0 ∀v ∈ Y, (1.119)

a ≤ ū ≤ b, (αū − γ p̄, u − ū)L2(Ω) ≥ 0, ∀u ∈ U, a ≤ u ≤ b. (1.120)

(1.118)–(1.120) is just an equivalent variational formulation of (1.114)–(1.116) by
Corollary 1.3.

Now the adjoint equation (1.119) is just the weak formulation of

−�p̄ = −(ȳ − yd), p̄|∂Ω = 0.

Applying Lemma 1.12 we can summarize

Theorem 1.49 If (ȳ, ū) is an optimal solution of (1.117) then there exist p̄ ∈
H 1

0 (Ω), λ̄a, λ̄b ∈ L2(Ω) such that the following optimality conditions hold in the
weak sense.

−�ȳ = γ ū, ȳ|∂Ω = 0,

−�p̄ = −(ȳ − yd), p̄|∂Ω = 0,

αū − γ p̄ + λ̄b − λ̄a = 0,
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ū ≥ a, λ̄a ≥ 0, λ̄a(ū − a) = 0,

ū ≤ b, λ̄b ≥ 0, λ̄b(b − ū) = 0.

Distributed Control of Semilinear Elliptic Equations

We consider next the distributed optimal control of a semilinear elliptic PDE:

min J (y,u) := 1

2
‖y − yd‖2

L2(Ω)
+ α

2
‖u‖2

L2(Ω)

subject to −�y + y3 = γ u on Ω,

y = 0 on ∂Ω,

a ≤ u ≤ b on Ω,

(1.121)

where

γ ∈ L∞(Ω) \ {0}, γ ≥ 0, a, b ∈ L∞(Ω), a ≤ b.

Let n ≤ 3. By the theory of monotone operators one can show, see Theorem 1.25
and Remark 1.12, that there exists a unique bounded solution operator of the state
equation

u ∈ U := L2(Ω) → y ∈ Y := H 1
0 (Ω).

Let A : H 1
0 (Ω) → H 1

0 (Ω)∗ be the operator associated with the bilinear form
a(y, v) = ∫

Ω
∇y · ∇v dx for the Laplace operator −�y and let

N : y → y3.

Then the weak formulation of the state equation can be written in the form

e(y,u) := Ay + N(y) − γ u = 0.

By the Sobolev embedding Theorem 1.14 one has for n ≤ 3 the continuous embed-
ding

H 1
0 (Ω) ↪→ L6(Ω).

Moreover, the mapping N : y ∈ L6(Ω) → y3 ∈ L2(Ω) is continuously Fréchet dif-
ferentiable with

N ′(y)v = 3y2v.

To show this, it is convenient to prove first the following extension of Hölder’s
inequality:

Lemma 1.13 Let ω ⊂ R
n be measurable. Then, for all pi,p ∈ [1,∞] with 1/p1 +

· · · + 1/pk = 1/p and all ui ∈ Lpi (Ω), there holds u1 · · ·uk ∈ Lp(Ω) and

‖u1 · · ·uk‖Lp ≤ ‖u1‖Lp1 · · · ‖uk‖Lpk .
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Proof We use induction. For k = 1 the assertion is trivial and for k = 2 we obtain
it from Hölder’s inequality: From 1/p1 + 1/p2 = 1/p we see that 1/q1 + 1/q2 = 1
holds for qi = pi/p and thus

‖u1u2‖Lp = ‖|u1|p|u2|p‖1/p

L1 ≤ ‖|u1|p‖1/p

Lq1 ‖|u2|p‖1/p

Lq2

= ‖|u1|pq1‖1/p1
L1 ‖|u2|pq2‖1/p2

L1 = ‖u1‖Lp1 ‖u2‖Lp2 .

As a consequence, u1u2 ∈ Lp(Ω) and the assertion is shown for k = 2.
For 1, . . . , k − 1 → k, let q ∈ [1,∞] be such that

1

q
+ 1

pk

= 1

p
.

Then we have 1/p1 + · · · + 1/pk−1 = 1/q and thus (using the assertion for k − 1),
we obtain u1 · · ·uk−1 ∈ Lq(Ω) and

‖u1 · · ·uk−1‖Lq ≤ ‖u1‖Lp1 · · · ‖uk−1‖Lpk−1 .

Therefore, using the assertion for k = 2,

‖u1 · · ·uk‖Lp ≤ ‖u1 · · ·uk−1‖Lq ‖uk‖Lpk ≤ ‖u1‖Lp1 · · · ‖uk‖Lpk .

We now return to the proof of the F-differentiability of N : We just have to apply
the Lemma with p1 = p2 = p3 = 6 and p = 2:

‖(y + h)3 − y3 − 3y2h‖L2 = ‖3yh2 + h3‖L2 ≤ 3‖y‖L6‖h‖2
L6 + ‖h‖3

L6

= O(‖h‖2
L6) = o(‖h‖L6).

This shows the F-differentiability of N with derivative N ′. Furthermore, to prove
the continuity of N ′, we estimate

‖(N ′(y + h) − N ′(y))v‖L2 = 3‖((y + h)2 − y2)v‖L2 = 3‖(2y + h)hv‖L2

= 3‖2y + h‖L6‖h‖L6‖v‖L6 .

Hence,

‖N ′(y + h) − N ′(y)‖L6,L2 ≤ 3‖2y + h‖L6‖h‖L6

‖h‖
L6→0−→ 0.

Therefore, e : Y × U → Y ∗ =: Z is continuously Fréchet differentiable with

ey(y,u)v = Av + 3y2v, eu(y,u)w = −γw.

Finally, ey(y,u) ∈ L(Y,Z) has a bounded inverse, since for any y ∈ Y the equation

Av + 3y2v = f
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has a bounded solution operator f ∈ Z → v ∈ Y by the Lax-Milgram lemma. In
fact, A + 3y2I ∈ L(Y,Z) and corresponds to the bounded and coercive bilinear
form (v,w) ∈ Y × Y 
→ a(v,w) + (3y2v,w)L2(Ω).

Hence, Assumption 1.47 is satisfied. The optimality conditions are now similar
to the linear-quadratic problem (1.117): Let (ȳ, ū) ∈ Y × U be an optimal solution.
Then by Corollary 1.3 the optimality system in the form (1.108)–(1.110) reads

a(ȳ, v) + (ȳ3, v)L2(Ω) − (γ ū, v)L2(Ω) = 0 ∀v ∈ Y, (1.122)

(ȳ − yd, v)L2Ω + a(p̄, v) + (p̄,3ȳ2v)L2(Ω) = 0 ∀v ∈ Y, (1.123)

a ≤ ū ≤ b, (αū − γ p̄, u − ū)L2(Ω) ≥ 0, ∀u ∈ U, a ≤ u ≤ b. (1.124)

Now the adjoint equation (1.123) is just the weak formulation of

−�p̄ + 3ȳ2p̄ = −(ȳ − yd), p̄|∂Ω = 0.

Applying Lemma 1.12 we can summarize

Theorem 1.50 If (ȳ, ū) is an optimal solution of (1.121) then there exist p̄ ∈
H 1

0 (Ω), λ̄a, λ̄b ∈ L2(Ω) such that the following optimality system holds in the weak
sense.

−�ȳ + ȳ3 = γ ū, ȳ|∂Ω = 0,

−�p̄ + 3ȳ2p̄ = −(ȳ − yd), p̄|∂Ω = 0,

αū − γ p̄ + λ̄b − λ̄a = 0,

ū ≥ a, λ̄a ≥ 0, λ̄a(ū − a) = 0,

ū ≤ b, λ̄b ≥ 0, λ̄b(b − ū) = 0.

Boundary Control of Parabolic Equations

We consider finally the optimal boundary control of an unsteady heating process.

min J (y,u) := 1

2
‖y(T ) − yd‖2

L2(Ω)
+ α

2
‖u‖2

L2((0,T )×∂Ω)

subject to yt − �y = 0 on ΩT ,

∂y

∂ν
= u on (0, T ) × ∂Ω,

y(0, ·) = y0 on Ω, a ≤ u ≤ b on (0, T ) × ∂Ω,

(1.125)

where a, b ∈ L2((0, T ) × Ω), a < b, y0, yd ∈ L2(Ω). With V = H 1(Ω), H =
L2(Ω) and

a(y(t), v) :=
∫

Ω

∇y(t) · ∇v dx,
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〈f (t), v〉V ∗,V := (u(t), v)L2(∂Ω), y ∈ W(0, T ;H,V ), v ∈ V

the weak formulation of the state equation is given by (1.62), (1.63) (or equivalently
(1.66), (1.63)). Let

U = L2((0, T ) × ∂Ω), Y = W(0, T ;L2(Ω),H 1(Ω)),

Z = L2(0, T ;H 1(Ω)∗) × L2(Ω).

Then it is easy to check that Assumption 1.34 holds. The weak formulation defines
a bounded affine linear operator

e : (y,u) ∈ Y × U 
→
(

Ay + Bu

y(0) − y0

)
∈ Z.

By Theorem 1.35 and (1.37) the equation e(y,u) = 0 has a unique bounded affine
linear solution operator u ∈ U 
→ y(u) ∈ Y and ey(y,u) ∈ L(Y,Z), ey(y,u)v =(

Av
v(0)

)
, has a bounded inverse. Moreover, by using the imbedding Y ↪→ C([0, T ];

L2(Ω)), the objective function J : Y × U → R is obviously continuously F-
differentiable.

Hence, Assumption 1.47 is satisfied. Let (ȳ, ū) ∈ Y × U be local solution of
(1.125), which is a global solution, since the problem is convex. Then Corollary
1.3 yields necessary optimality conditions (1.108)–(1.110), where the Lagrangian is
given by

L(y,u,p, q) = J (y,u) +
∫ T

0

(
c(y(t),p(t)) − (u(t),p(t))L2(∂Ω)

)
dt

+ (y(0) − y0, q)L2(Ω),

c(y(t),p(t)) := 〈yt (t),p(t)〉V ∗,V + a(y(t),p(t))

with (p, q) ∈ L2(0, T ;V ) × L2(Ω). Hence, the optimality system in the form
(1.108)–(1.110) reads

∫ T

0

(
c(ȳ(t), v(t)) − (ū(t), v(t))L2(∂Ω)

)
dt = 0 ∀v ∈ L2(0, T ;V ),

∫ T

0
c(v(t), p̄(t)) dt + (ȳ(T ) − yd, v(T ))L2(Ω) + (v(0), q̄)L2(Ω) = 0 ∀v ∈ Y,

a ≤ ū ≤ b, (αū − p̄, u − ū)L2((0,T )×∂Ω) ≥ 0 ∀u ∈ U, a ≤ u ≤ b.

Since ey(ȳ, ū) ∈ L(Y,Z) has a bounded inverse, there exists a unique adjoint state
(p̄, q̄) ∈ Z∗ = L2(0, T ;V ) × L2(Ω).

To identify the adjoint equation, assume that p̄ ∈ W(0, T ) (which will be jus-
tified later). Then integration by parts in the term 〈vt (t), p̄(t)〉V ∗,V according to
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Theorem 1.32 shows that the adjoint equation is equivalent to

∫ T

0

(−〈v(t), p̄t (t)〉V,V ∗ + a(v(t), p̄(t))
)
dt + (ȳ(T ) − yd + p̄(T ), v(T ))L2(Ω)

+ (v(0), q̄ − p̄(0))L2(Ω) = 0 ∀v ∈ Y.

Using the fact that C∞
c ((0, T );V ) ⊂ Y is dense in L2(0, T ;V ), we conclude that

for p̄ ∈ Y the adjoint equation is equivalent to

∫ T

0

(−〈v(t), p̄t (t)〉V,V ∗ + a(v(t), p̄(t))
)

dt = 0 ∀v ∈ L2(0, T ;V ),

p̄(T ) = −(ȳ(T ) − yd), q̄ = p̄(0).

But this variational equation is the weak formulation of

−p̄t − �p̄ = 0, p̄(T ) = −(ȳ(T ) − yd),
∂p̄

∂ν
|(0,T )×∂Ω = 0

and has by Theorem 1.35 and (1.37) in fact a unique solution p̄ ∈ Y , which is to-
gether with q̄ = p̄(0) the unique adjoint state. By applying Lemma 1.12 we can
summarize

Theorem 1.51 If (ȳ, ū) is an optimal solution of (1.125) then there exist p̄ ∈ Y ,
λ̄a, λ̄b ∈ L2((0, T ) × ∂Ω) such that the following optimality system holds in the
weak sense.

ȳt − �ȳ = 0,
∂ȳ

∂ν
|(0,T )×∂Ω = ū, ȳ(0) = y0,

−p̄t − �p̄ = 0,
∂p̄

∂ν
|(0,T )×∂Ω = 0, p̄(T ) = −(ȳ(T ) − yd),

αū − p̄ + λ̄b − λ̄a = 0,

ū ≥ a, λ̄a ≥ 0, λ̄a(ū − a) = 0,

ū ≤ b, λ̄b ≥ 0, λ̄b(b − ū) = 0.

1.7.3 Optimality Conditions for Problems with General Constraints

We sketch now the theory of optimality conditions for general problems of the form

min
w∈W

J(w) subject to G(w) ∈KG, w ∈ C. (1.126)

Here, J : W → R, G : W → V are continuously Fréchet differentiable with Banach
spaces W,V , C ⊂ V is non-empty, closed and convex, and KG ⊂ V is a closed
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convex cone. Here, KG is a cone if

∀λ > 0: v ∈KG =⇒ λv ∈ KG.

We denote the feasible set by

Fad := {w ∈ W : G(w) ∈KG, w ∈ C} .

Remark 1.20 It is no restriction not to include equality constraints. In fact

e(w) = 0, c(w) ∈K

is equivalent to

G(w) :=
(

e(w)

c(w)

)
∈ {0} ×K =:KG.

1.7.3.1 A Basic First Order Optimality Condition

Let w̄ be a local solution of (1.126). To develop an extension of Theorem 1.48, we
define the cone of feasible directions as follows.

Definition 1.31 Let Fad ⊂ W be nonempty. The tangent cone of Fad at w ∈ Fad is
defined by

T (Fad;w) =
{
s ∈ W : ∃ηk > 0, wk ∈ Fad : lim

k→∞wk = w, lim
k→∞ηk(wk − w) = s

}
.

Then we have the following optimality condition.

Theorem 1.52 Let J : W → R be continuously Fréchet differentiable. Then for any
local solution w̄ of (1.126) the following optimality condition holds.

w̄ ∈ Fad and 〈J ′(w̄), s〉W ∗,W ≥ 0 ∀s ∈ T (Fad; w̄). (1.127)

Proof w̄ ∈ Fad is obvious. Let s ∈ T (Fad; w̄) be arbitrary. Then there exist (wk) ⊂
Fad and ηk > 0 with wk → w̄ and ηk(wk − w̄) → s. This yields for all sufficiently
large k

0 ≤ ηk(J (wk) − J (w̄)) = 〈J ′(w̄), ηk(wk − w̄)〉W ∗,W + ηko(‖wk − w̄‖W)

→ 〈J ′(w̄), s〉W ∗,W

since ηko(‖wk − w̄‖W) → 0, which follows from ηk(wk − w̄) → s and wk → w̄.
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1.7.3.2 Constraint Qualification and Robinson’s Regularity Condition

We want to replace the tangent cone by a cone with a less complicated represen-
tation. Linearization of the constraints (assuming G is continuously differentiable)
leads us to the linearization cone at a point w̄ ∈ Fad defined by

L(Fad,G,KG,C; w̄) = {
ηd : η > 0, d ∈ W, G(w̄) + G′(w̄)d ∈KG, w̄ + d ∈ C

}
.

Assume now that a local solution w̄ of (1.126) satisfies the

Constraint Qualification:

L(Fad,G,KG,C; w̄) ⊂ T (Fad; w̄) (1.128)

Then the following result is obvious.

Theorem 1.53 Let J : W → R, G : W → V be continuously Fréchet differentiable
with Banach-spaces W , V . Further let C ⊂ W be non-empty, closed and convex,
and let KG ⊂ V be a closed convex cone. Then at every local solution w̄ of (1.126)
satisfying (1.128) the following optimality condition holds.

w̄ ∈ Fad and 〈J ′(w̄), s〉W ∗,W ≥ 0 ∀s ∈ L(Fad,G,KG,C; w̄). (1.129)

Remark 1.21 If G is affine linear, then (1.128) is satisfied. In fact, let s ∈
L(Fad,G,KG,C; w̄). Then s = ηd with η > 0 and d ∈ W ,

G(w̄ + d) = G(w̄) + G′(w̄)d ∈ KG, w̄ + d ∈ C.

Since G(w̄) ∈ KG and w̄ ∈ C, the convexity of KG and C yields wk := w̄ +
1
k
d ∈ Fad. Choosing ηk = kη shows that s ∈ T (Fad; w̄).

In general, (1.128) can be ensured if w̄ satisfies the

Regularity Condition of Robinson:

0 ∈ int
(
G(w̄) + G′(w̄) (C − w̄) −KG

)
. (1.130)

We have the following important and deep result by Robinson [116].

Theorem 1.54 Robinson’s regularity condition (1.130) implies the constraint qual-
ification (1.128).

Proof See [116, Thm. 1, Cor. 2].

In the convex case, i.e.,

G((1 − t)w1 + tw2) − (1 − t)G(w1) − tG(w2) ∈ KG ∀t ∈ [0,1], w1,w2 ∈ W

(1.131)
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Robinson’s regularity condition is implied by the following Slater’s condition.

Slater’s condition:

There exists w̃ ∈ W such that

G(w̃) ∈ intKG, w̃ ∈ C. (1.132)

Theorem 1.55 Let as above C ⊂ W be closed and convex and KG ⊂ V be a closed
convex cone. If G : W → V is convex, i.e., if (1.131) holds, then Slater’s condi-
tion (1.132) implies Robinson’s regularity condition (1.130) for all W � w̄ ∈ C with
G(w̄) ∈KG.

Proof By (1.132) we have for sufficiently small ε > 0 that

G(w̃) + BV (ε) ⊂ KG. (1.133)

We show that Robinson’s regularity condition holds for all w̄ ∈ W with G(w̄) ∈ KG,
w̄ ∈ C.

Let w(t) = w̄ + t (w̃ − w̄), t ∈ [0,1]. Then by (1.131) we have for all t ∈ (0,1]
1

t
(G(w(t)) − (1 − t)G(w̄) − tG(w̃)) = G(w(t)) − G(w̄)

t
+ G(w̄) − G(w̃)

∈ 1

t
KG = KG.

Since KG is closed, t ↘ 0 yields

G′(w̄)(w̃ − w̄) + G(w̄) − G(w̃) ∈KG.

Hence, there exists d ∈KG with

G(w̄) + G′(w̄)(w̃ − w̄) −KG = G(w̃) + d −KG ⊃ G(w̃) −KG,

where the last inclusion follows form d + KG ⊂ KG (note that d + w = 2((d +
w)/2) ∈ KG for all d,w ∈ KG, since KG is a closed convex cone). We conclude
with (1.133) that

G(w̄) + G′(w̄)(C − w̄) −KG ⊃ G(w̄) + G′(w̄)(w̃ − w̄)

−KG ⊃ G(w̃) −KG ⊃ BV (ε).

This shows that (1.130) holds.

1.7.3.3 Karush-Kuhn-Tucker Conditions

Using Robinson’s regularity condition, we can write the optimality condition
(1.129) in a more explicit form.
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Theorem 1.56 (Zowe and Kurcyusz [150]) Let J : W → R, G : W → V be con-
tinuously Fréchet differentiable with Banach-spaces W , V . Further let C ⊂ W be
non-empty, closed and convex, and let KG ⊂ V be a closed convex cone. Then for
any local solution w̄ of (1.126) at which Robinson’s regularity condition (1.130) is
satisfied, the following optimality condition holds:

There exists a Lagrange multiplier q̄ ∈ V ∗ with

G(w̄) ∈KG, (1.134)

q̄ ∈K◦
G := {

q ∈ V ∗ : 〈q, v〉V ∗,V ≤ 0 ∀v ∈ KG

}
, (1.135)

〈q̄,G(w̄)〉V ∗,V = 0, (1.136)

w̄ ∈ C, 〈J ′(w̄) + G′(w̄)∗q̄,w − w̄〉W ∗,W ≥ 0 ∀w ∈ C. (1.137)

Using the Lagrangian function

L(w,q) := J (w) + 〈q,G(w)〉V ∗,V

we can write (1.137) in the compact form

w̄ ∈ C, 〈Lw(w̄, q̄),w − w̄〉W ∗,W ≥ 0 ∀w ∈ C. (1.137)

Proof Under Robinson’s regularity condition (1.130), a separation argument can be
used to derive (1.135)–(1.137), see [150].

A similar result can be shown if KG is a closed convex set instead of a closed
convex cone, see [15], but then (1.135), (1.136) have a more complicated structure.

1.7.3.4 Application to PDE-Constrained Optimization

In PDE-constrained optimization, we have usually a state equation and constraints
on control and/or state. Therefore, we consider as a special case the problem

min
(y,u)∈Y×U

J (y,u) subject to e(y,u) = 0, c(y) ∈ K, u ∈ Uad, (1.138)

where e : Y ×U → Z and c : Y → R are continuously Fréchet differentiable, K ⊂ R

is a closed convex cone and Uad ⊂ U is a closed convex set. We set

G :
(

y

u

)
∈ W := Y × U 
→

(
e(y,u)

c(y)

)
∈ Z × R,

KG = {0} ×K, C = Y × Uad.

Then (1.138) has the form (1.126) and Robinson’s regularity condition at a feasible
point w̄ = (ȳ, ū) reads

0 ∈ int

((
0

c(ȳ)

)
+
(

ey(w̄) eu(w̄)

c′(ȳ) 0

)(
Y

Uad − ū

)
−
(

0

K

))
. (1.139)
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We rewrite now (1.134)–(1.137) for our problem. The multiplier has the form q =
(p,λ) ∈ Z∗ × R∗ and the Lagrangian function is given by

L(y,u,p,λ) = J (y,u) + 〈p, e(y,u)〉Z∗,Z + 〈λ, c(y)〉R∗,R

= L(y,u,p) + 〈λ, c(y)〉R∗,R

with the Lagrangian

L(y,u,p) = J (y,u) + 〈p, e(y,u)〉Z∗,Z

for the equality constraints.
Since KG = {0} ×K, we have

K◦
G = Z∗ ×K◦

and thus (1.134)–(1.137) read

e(ȳ, ū) = 0, c(ȳ) ∈K,

λ̄ ∈ K◦, 〈λ̄, c(ȳ)〉R∗,R = 0,

〈Ly(ȳ, ū, p̄) + c′(ȳ)∗λ̄, y − ȳ〉Y ∗,Y ≥ 0 ∀y ∈ Y,

ū ∈ Uad, 〈Lu(ȳ, ū, p̄), u − ū〉U∗,U ≥ 0 ∀u ∈ Uad.

This yields finally

e(ȳ, ū) = 0, c(ȳ) ∈K, (1.140)

λ̄ ∈ K◦, 〈λ̄, c(ȳ)〉R∗,R = 0, (1.141)

Ly(ȳ, ū, p̄) + c′(ȳ)∗λ̄ = 0, (1.142)

ū ∈ Uad, 〈Lu(ȳ, ū, p̄), u − ū〉U∗,U ≥ 0 ∀u ∈ Uad. (1.143)

Remark 1.22 Without the state constraint c(y) ∈K (which can formally be removed
by omitting everything involving c or by making the constraint trivial, e.g., c(y) = y,
R = Y , K = Y ), we recover exactly the optimality conditions (1.105)–(1.107) of
Corollary 1.3.

We show next that the following Slater-type condition implies Robinson’s regu-
larity condition (1.139).

Lemma 1.14 Let w̄ ∈ Fad. If ey(w̄) ∈ L(Y,Z) is surjective and if there exist ũ ∈ Uad
and ỹ ∈ Y with

ey(w̄)(ỹ − ȳ) + eu(w̄)(ũ − ū) = 0,

c(ȳ) + c′(ȳ)(ỹ − ȳ) ∈ int(K)

then Robinson’s regularity condition (1.139) is satisfied.
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Proof Let

ṽ := c(ȳ) + c′(ȳ)(ỹ − ȳ).

Then there exists ε > 0 with

ṽ + BR(2ε) ⊂ K.

Here BR(ε) is the open ε-ball in R. Furthermore, there exists δ > 0 with

c′(ȳ)BY (δ) ⊂ BR(ε).

Using that ũ ∈ Uad and ỹ − ȳ + BY (δ) ⊂ Y we have

(
0

c(ȳ)

)
+
(

ey(w̄) eu(w̄)

c′(ȳ) 0

)(
Y

Uad − ū

)
−
(

0

K

)

⊃
(

0

c(ȳ)

)
+
(

ey(w̄) eu(w̄)

c′(ȳ) 0

)(
ỹ − ȳ + BY (δ)

ũ − ū

)
−
(

0

ṽ + BR(2ε)

)

=
(

ey(w̄)

c′(ȳ)

)
BY (δ) +

(
0

BR(2ε)

)
⊃
(

ey(w̄)BY (δ)

BR(ε)

)
.

In the last step we have used c′(ȳ)BY (δ) ⊂ BR(ε) and that, for all v ∈ BR(ε), there
holds v + BR(2ε) ⊃ BR(ε). By the open mapping theorem ey(w̄)BY (δ) is open in
Z and contains 0. Therefore, the set on the right hand side is an open neighborhood
of 0 in Z × R.

1.7.3.5 Applications

Elliptic Problem with State Constraints

We consider the problem

min J (y,u) := 1

2
‖y − yd‖2

L2(Ω)
+ α

2
‖u‖2

L2(Ω)

subject to −�y + y = γ u on Ω,

∂y

∂ν
= 0 on ∂Ω,

y ≥ 0 on Ω.

(1.144)

Let n ≤ 3 and Ω ⊂ R
n be open and bounded with Lipschitz boundary. We know

from Theorem 1.22 that for u ∈ U := L2(Ω) there exists a unique weak solution
y ∈ H 1(Ω) ∩ C(Ω̄) of the state equation. We can write the problem in the form

minJ (y,u) subject to Ay + Bu = 0, y ≥ 0.
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where Bu = −γ u, and A is induced by the bilinear form a(y, v) = ∫
Ω

∇y ·∇v dx +
(y, v)L2(Ω).

With appropriate spaces Y ⊂ H 1(Ω), Z ⊂ H 1(Ω)∗ and R ⊃ Y we set

e :
(

y

u

)
∈ Y × U 
→ Ay + Bu ∈ Z,

c(y) = y, K = {v ∈ R : v ≥ 0} , Uad = U

and arrive at a problem of the form (1.138). For the naive choice R = Y = H 1(Ω),
Z = Y ∗, the cone K has no interior point. But since Bu = −γ u ∈ L2(Ω), we know
that all solutions y of the state equation live in the space

Y = {
y ∈ H 1(Ω) ∩ C(Ω̄) : Ay ∈ L2(Ω)

}

and Y is a Banach space with the graph norm ‖y‖H 1(Ω) + ‖y‖C(Ω̄) + ‖Ay‖L2(Ω).

In fact, for a Cauchy sequence (yk) ⊂ Y there exists y ∈ H 1(Ω) ∩ C(Ω̄) and z ∈
L2(Ω) with yk → y in H 1(Ω) ∩ C(Ω̄) and Ayk → z in L2(Ω). Moreover, Ayk →
Ay in H 1(Ω)∗ and therefore Ay = z.

By definition of Y the operator A : Y 
→ L2(Ω) =: Z is bounded and by Theo-
rem 1.22 also surjective. Finally, we choose R = C(Ω̄), then R ⊃ Y and K ⊂ R has
an interior point. Summarizing, we work with the spaces

U = L2(Ω), Y = {
y ∈ H 1(Ω) ∩ C(Ω̄) : Ay ∈ L2(Ω)

}
,

Z = L2(Ω), R = C(Ω̄).

Now assume that there exists ỹ ∈ Y , ỹ > 0 and ũ ∈ U with (note that ey =
A,eu = B)

A(ỹ − ȳ) + B(ũ − ū) = 0.

For example in the case γ ≡ 1 the choice ỹ = ȳ + 1, ũ = ū + 1 works. Then by
Lemma 1.14 Robinson’s regularity assumption is satisfied. Therefore, at a solution
(ȳ, ū) the necessary conditions (1.140)–(1.143) are satisfied: Using that

L(y,u,p) = 1

2
‖y − yd‖2

L2(Ω)
+ α

2
‖u‖2

L2(Ω)
+ (p,Ay + Bu)L2(Ω)

we obtain

Aȳ + Bū = 0, ȳ ≥ 0,

λ̄ ∈ K◦, 〈λ̄, ȳ〉C(Ω̄)∗,C(Ω̄) = 0,

(ȳ − yd, v)L2(Ω) + (p̄,Av)L2(Ω) + 〈λ̄, v〉C(Ω̄)∗,C(Ω̄) = 0 ∀v ∈ Y,

(αū − γ p̄, u − ū)L2(Ω) ≥ 0 ∀u ∈ U.
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One can show, see for example [35, 110], that the set K◦ ⊂ C(Ω̄)∗ of nonpositive
functionals on C(Ω̄) can be identified with nonpositive regular Borel measures, i.e.

λ ∈K◦ ⇐⇒

〈λ,v〉C(Ω̄)∗,C(Ω̄) = −
∫

Ω

v(x)dμΩ(x) −
∫

∂Ω

v(x) dμ∂Ω(x)

with nonneg. measures μΩ,μ∂Ω.

Therefore, the optimality system is formally a weak formulation of the following
system.

−�ȳ + ȳ = γ ū on Ω,
∂y

∂ν
= 0 on ∂Ω,

ȳ ≥ 0, μ̄Ω, μ̄∂Ω nonnegative regular Borel measures,∫
Ω

ȳ(x) dμΩ(x) +
∫

∂Ω

ȳ(x) dμ∂Ω(x) = 0,

−�p̄ + p̄ = −(ȳ − yd) + μ̄Ω on Ω,
∂p

∂ν
= μ̄∂Ω on ∂Ω,

αū − γ p̄ = 0.

1.8 Optimal Control of Instationary Incompressible
Navier-Stokes Flow

We conclude the chapter by providing the basic analytical foundations for optimiza-
tion problems governed by the instationary, incompressible Navier-Stokes equa-
tions. These equations describe the flow of incompressible viscous fluid flow and
are thus of central importance in science and engineering. The flow in the bounded
domain with Lipschitz boundary Ω ⊂ R

d , d = 2 or 3, is characterized by the veloc-
ity field y : [0, T ]×Ω → R

d and by the pressure p : [0, T ]×Ω → R. The viscosity
of the fluid is characterized by a parameter ν > 0, the kinetic viscosity. We denote
by x ∈ Ω the spatial location, by I = [0, T ] the time horizon, and by t ∈ I the time.

Let f : [0, T ] × Ω → R
d be the force per unit mass acting on the fluid and

denote by y0 : Ω → R
d the initial velocity of the fluid at t = 0. Then the Navier

Stokes equations can be written as follows:

yt − ν�y + (y · ∇)y + ∇p = f on ΩT := (0, T ) × Ω , (1.145)

∇ · y = 0 on ΩT , (1.146)

y(0, ·) = y0 on Ω , (1.147)

suitable boundary conditions in I × ∂Ω . (1.148)
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We have used the following standard notations for differential operators:

� =
d∑

j=1

∂2

∂x2
j

, (y · ∇) =
d∑

j=1

yj

∂

∂xj

,

which are applied componentwise to the vector field y. Furthermore,

∇ · y = divy =
d∑

j=1

∂yj

∂xj

is the divergence of y and yt is a short notation for ∂y
∂t

.
The boundary conditions have to be chosen appropriately. Suitable is the pre-

scription of the velocity field on the boundary, i.e.,

y = yb on I × ∂Ω ,

where yb : I × ∂Ω → R
d is given.

1.8.1 Functional Analytic Setting

Since only for space dimension d = 2 a complete existence and uniqueness the-
ory for the Navier-Stokes equations is available, we will consider the case d = 2
throughout, i.e., Ω ⊂ R

2. We assume throughout that Ω is bounded with Lipschitz
boundary.

For simplicity, we consider in the following homogeneous Dirichlet conditions
for the velocities, i.e.,

y = 0 on I × ∂Ω .

It is advantageous to work in the space of divergence-free vector fields. To this end
we introduce the following Hilbert spaces

V := clH 1
0 (Ω)2

{
y ∈ C∞

c (Ω)2 : ∇ · y = 0
}
,

H := clL2(Ω)2

{
y ∈ C∞

c (Ω)2 : ∇ · y = 0
}
,

(·, ·)V := (·, ·)H 1
0 (Ω)2, (·, ·)H := (·, ·)L2(Ω)2 .

Here, clX denotes the closure in the space X. We choose the dual pairings such that
we obtain the Gelfand triple

V ↪→ H = H ∗ ↪→ V ∗

with continuous and dense imbeddings.
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As introduced previously in the context of linear parabolic PDEs, we define the
space

W(I) := W(I ;H,V ) = {
y ∈ L2(I ;V ) : yt ∈ L2(I ;V ∗)

}
.

Note that L2(I ;V ∗) is the dual space of L2(I ;V ), see Theorem 1.31.
Let the right hand side f in (1.145) satisfy f ∈ L2(I ;V ∗). Then testing the

equation (1.145) with v ∈ V as in the parabolic case yields

〈yt , v〉V ∗,V + ν(∇y,∇v)L2(Ω)2×2 + 〈(y · ∇)y, v〉V ∗,V = 〈f, v〉V ∗,V ∀v ∈ V.

(1.149)
Here, the pressure term has disappeared since the weak form of 〈∇p,v〉V ∗,V is
−(p,∇ · v)L2(Ω), where integration by parts and v|∂Ω = 0 has been used, and from
v ∈ V we see that

(p,∇ · v)L2(Ω) = (p,0)L2(Ω) = 0.

We call y ∈ W(I) a weak solution of the Navier-Stokes equations corresponding to
the initial condition y0 ∈ H if

y(0, ·) = y0 in H and (1.149) holds a.e. on (0, T ).

Since the continuous embedding W(I) ↪→ C(I ;H) can be shown to hold, see The-
orem 1.32, the initial condition y(0, ·) = y0 in H makes sense. In fact, y ∈ W(I) ↪→
C(I ;H) can be interpreted as C(I ;H)-function and evaluated at t = 0.

With data ν > 0, y0 ∈ H , and f ∈ L2(I ;V ∗), we can – analogous to the par-
abolic case – view the Navier-Stokes equations as a nonlinear operator equation:
The velocity field y ∈ W(I) satisfies

yt + (y · ∇)y − ν�y − f = 0 in L2(I ;V ∗),

y − y0 = 0 in H .

To justify the appropriateness of the image space L2(I ;V ∗), we consider all terms
in the differential equation. Due to y ∈ W(I) we have yt ∈ L2(I ;V ∗). Furthermore,

〈−�w,v〉 = (∇w,∇v)L2(Ω)2×2 ≤ ‖w‖V ‖v‖V ∀v,w ∈ V.

Thus

〈−�y,v〉L2(I ;V ∗),L2(I ;V ) =
∫ T

0
(∇y,∇v)L2(Ω)2 dt

≤
∫ T

0
‖y‖V ‖v‖V dt ≤ const

∥∥‖y‖V

∥∥
L2(I )

∥∥‖v‖V

∥∥
L2(I )

= const‖y‖L2(I ;V )‖v‖L2(I ;V ) ≤ const‖y‖W(I)‖v‖L2(I ;V ).

Hence, −�y ∈ L2(I ;V ∗).
The most delicate term is (y · ∇)y, but the following can be shown (here d = 2

is needed)
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Lemma 1.15

‖(y · ∇)y‖L2(I ;V ∗) ≤ 21/2‖y‖L∞(I ;H)‖y‖L2(I ;V ) ∀y ∈ L2(I ;V ) ∩ L∞(I ;H).

In particular, y ∈ W(I) 
→ (y · ∇)y ∈ L2(I ;V ∗) is a bounded bilinear operator.

For a proof see [130, Lemma III.3.4]. The boundedness of the operator follows from
the estimate and the fact that W(I) is continuously embedded in both, L2(I ;V ) and
L∞(I ;H).

Summarizing, we can argue exactly as in the parabolic case, see (1.58), (1.61)
and Remark 1.16, that it is appropriate to consider the differential equation as an
operator equation with range space L2(I ;V ∗) defined by (1.149), i.e.,

yt + (y · ∇)y − ν�y = f in L2(I ;V ∗) :⇐⇒ (1.149) holds a.e. on (0, T ).
(1.150)

We now introduce a control on the right hand side, i.e., we replace the volume
force term f by Bu, where B ∈ L(U,L2(I ;V ∗)) and U is a Hilbert space of con-
trols. As an objective function we choose for example the tracking type functional

J (y,u) = 1

2
‖y − yd‖2

L2(I×Ω)2 + γ

2
‖u − ud‖2

U

with target state yd ∈ L2(I × Ω)2 and reference control ud ∈ U .
Let Uad ⊂ U be nonempty, convex and closed. We obtain the following optimal

control problem

min
u∈U,y∈W(I)

J (y,u) s.t. e(y,u) = 0, u ∈ Uad, (1.151)

where the state equation e(y,u) = 0 is the weak Navier-Stokes equation, i.e.,

e : W(I) × U → L2(I ;V ∗) × H,

e(y,u) =
(

yt + (y · ∇)y − ν�y − Bu

y(0, ·) − y0

)
is defined by (1.150).

(1.152)

1.8.2 Analysis of the Flow Control Problem

The following existence and uniqueness result concerning the Navier-Stokes equa-
tions can be shown:

Theorem 1.57 For all y0 ∈ H and u ∈ U the Navier-Stokes equation e(y,u) = 0
with e : W(I)×U → L2(I ;V ∗)×H defined in (1.150), (1.152) possesses a unique
solution y(u) ∈ W(I) and it satisfies

‖y(u)‖C(I ;H) + ‖y(u)‖W(I) ≤ const(‖y0‖H + ‖u‖U + ‖y0‖2
H + ‖u‖2

U).
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Proof See for example [130, Ch. III].

Next, we consider derivatives of the state equation. We start by considering a
general bounded bilinear operator.

Lemma 1.16 Let

A : X × X → Y

be a bilinear operator between Banach spaces that is bounded, i.e.,

‖A(x1, x2)‖Y ≤ const‖x1‖X‖x2‖X.

Then H : X → Y , H(x) = A(x,x) is Fréchet differentiable with derivative

H ′(x) : d ∈ X 
→ A(d,x) + A(x,d).

The operator H ′ : X 
→ L(X,Y ) is bounded and linear. Hence, H is infinitely dif-
ferentiable with constant second derivative H ′′(x)(d1, d2) = A(d1, d2) + A(d2, d1)

and H(k)(x) = 0, k ≥ 3.

Proof With H ′(x) as stated, we obtain, using bilinearity

H(x + d) − H(x) − H ′(x)d = A(x + d, x + d) − A(x,x) − A(d,x) − A(x,d)

= A(d,d).

The remainder term A(d,d) satisfies

‖A(d,d)‖Y ≤ const‖d‖2
X.

By definition of F-differentiability, H is thus F-differentiable with derivative as
stated. The continuous linearity of H ′ is obvious and differentiation gives the stated
formula for H ′′ as well as H(k) = 0, k ≥ 3.

We now can derive the following result.

Lemma 1.17 The operator e : W(I) × U → L2(I ;V ∗) × H is infinitely Fréchet
differentiable with its derivatives given by

e′(y,u)(v,w) =
(

vt + (y · ∇)v + (v · ∇)y − ν�v − Bw

v(0, ·)
)

∀y, v ∈ W(I), u,w ∈ U,

e′′(y,u)((v1,w1), (v2,w2)) =
(

(v2 · ∇)v1 + (v1 · ∇)v2
0

)

∀y, v1/2 ∈ W(I), u,w1/2 ∈ U,

e(k)(y,u) = 0 ∀y ∈ W(I), u ∈ U, k ≥ 3.
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Proof Since e(y,u) is a sum of bounded linear and bilinear operators, the opera-
tor e : W(I) × U → L2(I ;V ∗) × H is infinitely Fréchet differentiable by Lemma
1.16. The derivatives are obtained by the rules of differentiating linear and bilinear
operators.

The linearized equation

ey(y,u)v =
(

g

v0

)
(1.153)

can be shown to have a unique solution v(g, v0) ∈ W(I) for any g ∈ L2(I ;V ∗),
v0 ∈ H . Therefore, ey(y,u) ∈ L(W(I),L2(I ;V ∗) × H) is boundedly invertible.
See for example [70].

Written in expanded form, (1.153) reads

vt + (v · ∇)y + (y · ∇)v + ν�v = g,

v(0, ·) = v0.

Now set Y := W(I), Z := L2(I ;V ∗) × H . Then ey(y,u) ∈ L(Y,Z) has a bounded
inverse and thus we have verified Assumption 1.47 for the optimal control problem
(1.151). Thus, at any local solution (ȳ, ū) the optimality condition of Corollary 1.3
holds, which yields in our case

e(ȳ, ū) = 0,

Jy(ȳ, ū) + ey(ȳ, ū)∗
(

p̄1

p̄2

)
= 0,

ū ∈ Uad, 〈Ju(ȳ, ū) + eu(ȳ, ū)∗
(

p̄1

p̄2

)
, u − ū〉U ≥ 0 ∀u ∈ Uad.

(1.154)

Here (p̄1, p̄2) ∈ L2(I ;V ) × H is the adjoint state.
We now take a closer look at the adjoint operator ey(y,u)∗ and its inverse.
Since ey(y,u) is boundedly invertible, the same holds true for ey(y,u)∗. There-

fore, the adjoint equation is uniquely solvable with respect to the adjoint state
(p1,p2).

Now let g ∈ W(I)∗ and consider the adjoint equation

ey(y,u)∗
(

p1

p2

)
= g. (1.155)

Writing (1.155) in variational form, we obtain

〈(e1)y(y,u)v,p1〉L2(I ;V ∗),L2(I ;V ) + ((e2)y(y,u)v,p2)H = 〈g, v〉W(I)∗,W(I)

∀v ∈ W(I).

Expanding the operator e, this becomes

〈vt ,p1〉L2(I ;V ∗),L2(I ;V ) + 〈(v · ∇)y,p1〉L2(I ;V ∗),L2(I ;V )
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+ 〈(y · ∇)v,p1〉L2(I ;V ∗),L2(I ;V ) + ν(∇v,∇p1)L2(I ;L2(Ω)2×2) + (v(0, ·),p2)H

= 〈g, v〉W(I)∗,W(I) ∀v ∈ W(I). (1.156)

The following can be shown.

Lemma 1.18 The adjoint equation possesses for each g ∈ W(I)∗ a unique solution
(p1,p2) ∈ L2(I ;V ) × H . The following estimate holds:

‖p1‖L2(I ;V ) + ‖p2‖H ≤ c(‖y‖W(I))‖g‖W ∗(I ).

Here c(·) is locally Lipschitz continuous. If g has additional regularity in the sense
that g ∈ Ls(I ;V ∗) ∩ W(I)∗ with s ∈ [1,4/3] then p1 ∈ L2(I ;V ) satisfies p1 ∈
C(I ;V ∗), (p1)t ∈ Ls(I ;V ∗) ∩ W ∗(I ). Furthermore, the following estimates hold

‖(p1)t‖W ∗(I ) ≤ c(‖y‖W(I))‖g‖W ∗(I ),

‖(p1)t‖Ls(I ;V ∗) ≤ c(‖y‖W(I))‖g‖W ∗(I ) + ‖g‖Ls(I ;V ∗).

Here c(·) is locally Lipschitz continuous.
The adjoint equation (1.155) can be interpreted as the weak formulation of the

PDE

−(p1)t − (y · ∇)p1 + (∇y)T p1 − ν�p1 = g in Ω × I ,p1|t=T = 0 in Ω

(1.157)
and p2 = p1(0, ·). Here, ∇y denotes the Jacobian matrix of y w.r.t. x.

For a proof see [70, 72, 134, 137]. The PDE (1.157) is obtained from (1.156) by in-
tegrating the terms 〈vt ,p〉L2(I ;V ∗),L2(I ;V ) and 〈(y · ∇)v,p〉L2(I ;V ∗),L2(I ;V ) by parts
and using ∇ · y = 0. However, the justification of the validity of integration by parts
is a bit tricky since the involved function spaces are quite weak.

1.8.3 Reduced Optimal Control Problem

Due to the unique solvability of the Navier-Stokes equations, there exists a uniquely
defined control-to-state operator u ∈ U 
→ y(u) ∈ W(I). Since the state equation
operator e is infinitely differentiable and ey(y,u) is boundedly invertible, the im-
plicit function theorem (Theorem 1.41) yields that the control-to-state operator is
infinitely F-differentiable. Since a continuously differentiable operator is Lipschitz
continuous on bounded sets, we obtain

Lemma 1.19 The Navier-Stokes equations e(y,u) = 0 with e : W(I) × U →
L2(I ;V ∗) × H defined in (1.150), (1.152) defines a unique control-to-state opera-
tor u ∈ U 
→ y(u) ∈ W(I). The operator y(u) is infinitely F-differentiable and, as a
consequence, F-derivatives of all orders are Lipschitz continuous on bounded sets.
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This amounts to considering the reduced objective function Ĵ (u) = J (y(u),u),
which is as smooth as J is. Also, by unique solvability of the adjoint equation, there
exists a unique control-to-adjoint state operator u 
→ (p1,p2)(u), where (p1,p2)(u)

is the adjoint state corresponding to u and y(u). Due to infinite differentiability of
e the smoothness of the control-to-adjoint state operator only depends on the differ-
entiability properties of J . Using Lemma 1.18 and the adjoint presentation of Ĵ (u)′
according to (1.89), we have the following result

Theorem 1.58 Let the objective function J be k ≥ 1 times continuously F-
differentiable. Then the reduced objective function Ĵ (u) = J (y(u),u) is k times
continuously F-differentiable. The adjoint gradient representation is given by

Ĵ (u)′ = Ju(y(u),u) − B∗p1(u).

If k ≥ 2 and if Jy(y(u),u) ∈ W ∗(I ) has the property that u ∈ U 
→ Jy(y(u),u) ∈
Ls(I ;V ∗), s ∈ [1,4/3] is Lipschitz continuous on bounded sets and if B∗ ∈
L(L2(I ;V ),U) induces an operator B∗ ∈ L(Ws(I ), Ũ ), Ũ ↪→ U with

Ws(I) := {
y ∈ L2(I ;V ) : yt ∈ Ls(I ;V ∗)

}
,

then the mapping

u ∈ U 
→ B∗p1(u) ∈ Ũ

is Lipschitz continuous on bounded sets.

Remark 1.23 The second part of the theorem is important for semismooth Newton
methods and other second order methods that require a smoothing operator in the
gradient representation.

For example, consider the case U = L2(I × Ω)2, B = IU,L2(I ;V ∗), and

J (y,u) = 1

2
‖y − yd‖2

L2(I×Ω)2 + α

2
‖u − ud‖2

U

with ud, yd ∈ L2(I × Ω)2. Then u ∈ U 
→ Jy(y(u),u) = y(u) − yd ∈ L2(I ×
Ω)2 ↪→ L4/3(I ;V ∗) is Lipschitz continuous on bounded sets. Moreover, the imbed-
ding Ws(I) ↪→ Lq(I × Ω)2 =: Ũ , 2 ≤ q < 7/2 is continuous [137]. Therefore, the
mapping

u ∈ U 
→ B∗p1(u) = p1(u) ∈ Lq(I × Ω)2

is for all 2 ≤ q < 7/2 Lipschitz continuous on bounded sets and thus the reduced
gradient

∇Ĵ (u) = α(u − ud) − p1(u)

contains a more regular part u ∈ U 
→ −p1(u) ∈ Lq(I ×Ω)2. This smoothing prop-
erty will be important for the fast convergence of semismooth Newton methods.



Chapter 2
Optimization Methods in Banach Spaces

Michael Ulbrich

Abstract In this chapter we present a selection of important algorithms for opti-
mization problems with partial differential equations. The development and analysis
of these methods is carried out in a Banach space setting. We begin by introduc-
ing a general framework for achieving global convergence. Then, several variants
of generalized Newton methods are derived and analyzed. In particular, necessary
and sufficient conditions for fast local convergence are derived. Based on this, the
concept of semismooth Newton methods for operator equations is introduced. It
is shown how complementarity conditions, variational inequalities, and optimal-
ity systems can be reformulated as semismooth operator equations. Applications to
constrained optimal control problems are discussed, in particular for elliptic partial
differential equations and for flow control problems governed by the incompressible
instationary Navier-Stokes equations. As a further important concept, the formula-
tion of optimality systems as generalized equations is addressed. We introduce and
analyze the Josephy-Newton method for generalized equations. This provides an
elegant basis for the motivation and analysis of sequential quadratic programming
(SQP) algorithms. The chapter concludes with a short outline of recent algorithmic
advances for state constrained problems and a brief discussion of several further
aspects.

2.1 Synopsis

The aim of this chapter is to give an introduction to selected optimization algo-
rithms that are well-suited for PDE-constrained optimization. For the development
and analysis of such algorithms, a functional analytic setting is the framework of
choice. Therefore, we will develop optimization methods in this abstract setting and
then return to concrete problems later.

Optimization methods are iterative algorithms for finding (global or local) solu-
tions of minimization problems. Usually, we are already satisfied if the method can
be proved to converge to stationary points. These are points that satisfy the first-
order necessary optimality conditions. Besides global convergence, which will not
be the main focus of this chapter, fast local convergence is desired. All fast converg-
ing optimization methods use the idea of Newton’s method in some sense. There-
fore, our main focus will be on Newton-type methods for optimization problems in
Banach spaces.
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Optimization methods for minimizing an objective function f : W → R on a
feasible set Wad ⊂ W , where W is a Banach space, generate a sequence (wk) ⊂ W

of iterates. Essentially, as already indicated, there are two desirable properties an
optimization algorithm should have:

1. Global convergence:
There are different flavors to formulate global convergence. Some of them

use the notion of a stationarity measure. This is a function Σ : W → R+ with
Σ(w) = 0 if w is stationary and Σ(w) > 0, otherwise. In the unconstrained
case, i.e., Wad = W , a common choice is Σ(w) := ‖f ′(w)‖W ∗ . The following is
a selection of global convergence assertions:
(a) Every accumulation point of (wk) is a stationary point.
(b) For some continuous stationarity measure Σ(w) there holds

lim
k→∞Σ(wk) = 0.

(c) There exists an accumulation point of (wk) that is stationary.
(d) For the continuous stationarity measure Σ(w) there holds

lim inf
k→∞ Σ(wk) = 0.

Note that (b) implies (a) and (c) implies (d).
2. Fast local convergence:

These are local results in a neighborhood of a stationary point w̄:
There exists δ > 0 such that, for all w0 ∈ W with ‖w0 − w̄‖W < δ, we have
wk → w̄ and

‖wk+1 − w̄‖W = o(‖wk − w̄‖W) (q-superlinear convergence),

or even, for α > 0,

‖wk+1 − w̄‖W = O(‖wk − w̄‖1+α

W )

(q-superlinear convergence with order 1 + α).

The case 1 + α = 2 is called q-quadratic convergence.

We begin with a discussion of globalization concepts. Then, in the rest of this chap-
ter, we present locally fast convergent methods that all can be viewed as Newton-
type methods.

Notation If W is a Banach space, we denote by W ∗ its dual space. The Fréchet-
derivative (F-derivative) of an operator G : X → Y between Banach spaces is
denoted by G′ : X → L(X,Y ), where L(X,Y ) are the bounded linear operators
A : X → Y . In particular, the derivative of a real-valued function f : W → R is de-
noted by f ′ : W → W ∗. In case of a Hilbert space W , the gradient ∇f : W → W is
the Riesz representation of f ′, i.e.,

(∇f (w), v)W = 〈f ′(w), v〉W ∗,W ∀v ∈ W.
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Here 〈f ′(w), v〉W ∗,W denotes the dual pairing between the dual space W ∗ =
L(W,R) and W and (·, ·)W is the inner product. Note that in Hilbert space we can
do the identification W ∗ = W via 〈·, ·〉W ∗,W = (·, ·)W , but this is not always done.

2.2 Globally Convergent Methods in Banach Spaces

2.2.1 Unconstrained Optimization

For understanding how global convergence can be achieved, it is important to look
at unconstrained optimization first:

min
w∈W

f (w)

with W a real Banach space and f : W → R continuously F-differentiable.
The first-order optimality conditions for a local minimum w̄ ∈ W are well-

known:
w̄ ∈ W satisfies

f ′(w̄) = 0.

We develop a general class of methods that is globally convergent: Descent methods.
The idea of descent methods is to find, at the current (kth) iterate wk ∈ W , a

direction sk ∈ W such that φk(t)
def= f (wk + tsk) is decreasing at t = 0:

φ′
k(0) = 〈f ′(wk), sk〉W ∗,W < 0.

Of course, this descent can be very small. However, from the (sharp) estimate

φ′
k(0) = 〈f ′(wk), sk〉W ∗,W ≥ −‖f ′(wk)‖W ∗‖sk‖W

it is natural to derive the following quality requirement (“angle” condition)

〈f ′(wk), sk〉W ∗,W ≤ −η‖f ′(wk)‖W ∗‖sk‖W (2.1)

for the descent direction. Here η ∈ (0,1) is fixed.
A second ingredient of a descent method is a step size rule to obtain a step size

σk > 0 such that

φk(σk) < φk(0).

Then, the new iterate is computed as wk+1 := wk + σks
k . Overall, we obtain:

Algorithm 2.1 (General descent method)

0. Choose an initial point w0 ∈ W .

For k = 0,1,2, . . . :
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1. If f ′(wk) = 0, STOP.
2. Choose a descent direction sk ∈ W : 〈f ′(wk), sk〉W ∗,W < 0.
3. Choose a step size σk > 0 such that f (wk + σks

k) < f (wk).
4. Set wk+1 := wk + σks

k .

In this generality, it is not possible to prove global convergence. We need addi-
tional requirements on the quality of the descent direction and the step sizes:

1. Admissibility of the search directions:

〈f ′(wk), sk〉W ∗,W
‖sk‖W

k→∞−→ 0 =⇒ ‖f ′(wk)‖W ∗
k→∞−→ 0.

2. Admissibility of the step sizes:

f (wk + σks
k) < f (wk) ∀k and

f (wk + σks
k) − f (wk)

k→∞−→ 0 =⇒ 〈f ′(wk), sk〉W ∗,W
‖sk‖W

k→∞−→ 0.

These conditions become more intuitive by realizing that the expression
〈f ′(wk),sk〉W∗,W

‖sk‖W
is the slope of f at wk in the direction sk :

d

dt
f

(
wk + t

sk

‖sk‖W

)∣∣∣∣
t=0

= 〈f ′(wk), sk〉W ∗,W
‖sk‖W

.

Therefore, admissible step sizes mean that if the f -decreases become smaller and
smaller then the slopes along the sk have to become smaller and smaller. And ad-
missible search directions mean that if the slopes along the sk become smaller and
smaller then the steepest possible slopes have to become smaller and smaller.

With these two conditions at hand, we can prove global convergence.

Theorem 2.2 Let f be continuously F-differentiable and (wk), (sk), (σk) be gener-
ated by Algorithm 2.1. Assume that (σk) and (sk) are admissible and that (f (wk))

is bounded below. Then

lim
k→∞f ′(wk) = 0. (2.2)

In particular, every accumulation point of (wk) is a stationary point.

Proof Let f ∗ = infk≥0 f (wk) > −∞. Then, using f (wk + σks
k) − f (wk) < 0, we

see that f (wk) → f ∗ and

f (w0) − f ∗ =
∞∑

k=0

(f (wk) − f (wk+1)) =
∞∑

k=0

|f (wk + σks
k) − f (wk)|.
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This shows f (wk + σks
k) − f (wk) → 0. By the admissibility of (σk), this implies

〈f ′(wk), sk〉W ∗,W
‖sk‖W

k→∞−→ 0.

Now the admissibility of (sk) yields

‖f ′(wk)‖W ∗
k→∞−→ 0.

Next, consider the situation where w̄ is an accumulation point of (wk). Then there
exists a subsequence (wk)K → w̄ and due to monotonicity of f (wk) we conclude
f (wk) ≥ f (w̄) for all k. Hence, we can apply the first part of the theorem and obtain
(2.2). Now, by continuity,

f ′(w̄) = lim
k→∞f ′(wk) = 0.

There are two questions open:

(a) How can we check in practice if a search direction is admissible or not?
(b) How can we compute admissible step sizes?

An answer to question (a) is provided by the following Lemma:

Lemma 2.1 If the search directions (sk) satisfy the angle condition (2.1) then they
are admissible.

Proof The angle condition yields

‖f ′(wk)‖W ∗ ≤ −1

η

〈f ′(wk), sk〉W ∗,W
‖sk‖W

.

A very important step size rule is the

2.2.1.1 Armijo Rule

Given a descent direction sk of f at wk , choose the maximum σk ∈ {1,1/2,1/4, . . .}
for which

f (wk + σks
k) − f (wk) ≤ γ σk〈f ′(wk), sk〉W ∗,W .

Here γ ∈ (0,1) is a constant. The next result shows that Armijo step sizes exist.

Lemma 2.2 Let f ′ be uniformly continuous on N
ρ
0 = {w + s : f (w) ≤ f (w0),

‖s‖W ≤ ρ} for some ρ > 0. Then, for every ε > 0, there exists δ > 0 such that for
all wk ∈ W with f (wk) ≤ f (w0) and all sk ∈ W that satisfy

〈f ′(wk), sk〉W ∗,W
‖sk‖W

≤ −ε,
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there holds

f (wk + σsk) − f (wk) ≤ γ σ 〈f ′(wk), sk〉W ∗,W ∀σ ∈ [0, δ/‖sk‖W ].

Proof We have, with appropriate τσ ∈ [0, σ ],
f (wk + σsk) − f (wk) = σ 〈f ′(wk + τσ sk), sk〉W ∗,W

≤ σ 〈f ′(wk), sk〉W ∗,W + σ‖f ′(wk + τσ sk)

− f ′(wk)‖W ∗‖sk‖W

= γ σ 〈f ′(wk), sk〉W ∗,W + ρk(σ ),

where

ρk(σ ) := (1 − γ )σ 〈f ′(wk), sk〉W ∗,W + σ‖f ′(wk + τσ sk) − f ′(wk)‖W ∗‖sk‖W .

Now we use the uniform continuity of f ′ to choose δ ∈ (0, ρ) so small that

‖f ′(wk + τσ sk) − f ′(wk)‖W ∗ < (1 − γ )ε ∀σ ∈ [0, δ/‖sk‖W ].
This is possible since

‖τσ sk‖W ≤ σ‖sk‖W ≤ δ.

Then

ρk(σ ) = (1 − γ )σ 〈f ′(wk), sk〉W ∗,W + σ‖f ′(wk + τσ sk) − f ′(wk)‖W ∗‖sk‖W

≤ −(1 − γ )εσ‖sk‖W + (1 − γ )εσ‖sk‖W = 0.

Next, we prove the admissibility of Armijo step sizes under mild conditions.

Lemma 2.3 Let f ′ be uniformly continuous on N
ρ
0 = {w + s : f (w) ≤ f (w0),

‖s‖W ≤ ρ} for some ρ > 0. We consider Algorithm 2.1, where (σk) is generated by
the Armijo rule and the descent directions sk are chosen such that they are not too
short in the following sense:

‖sk‖W ≥ φ

(
−〈f ′(wk), sk〉W ∗,W

‖sk‖W

)
,

where φ : [0,∞) → [0,∞) is monotonically increasing and satisfies φ(t) > 0 for
all t > 0. Then the step sizes (σk) are admissible.

Proof Assume that there exist an infinite set K and ε > 0 such that

〈f ′(wk), sk〉W ∗,W
‖sk‖W

≤ −ε ∀k ∈ K.
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Then

‖sk‖W ≥ φ

(
−〈f ′(wk), sk〉W ∗,W

‖sk‖W

)
≥ φ(ε) =: η > 0 ∀k ∈ K.

By Lemma 2.2, for k ∈ K we have either σk = 1 or σk ≥ δ/(2‖sk‖). Hence,

σk‖sk‖W ≥ min{δ/2, η} ∀k ∈ K.

This shows

f (wk + σks
k) − f (wk) ≤ γ σk〈f ′(wk), sk〉W ∗,W = γ σk‖sk‖W

〈f ′(wk), sk〉W ∗,W
‖sk‖W

≤ −γ min{δ/2, η}ε ∀k ∈ K.

Therefore

f (wk + σks
k) − f (wk) �→ 0.

In the Banach space setting, the computation of descent directions is not
straightforward. Note that the negative derivative of f is not suitable, since W ∗ �
f ′(wk) /∈ W .

In the Hilbert space setting, however, we can choose W ∗ = W and 〈·, ·〉W ∗,W =
(·, ·)W by the Riesz representation theorem. Then we have f ′(wk) = ∇f (wk) ∈ W

and −∇f (wk) is the direction of steepest descent, as we will show below.
Certainly the most well-known descent method is the steepest descent method.

In Banach space, the steepest descent directions of f at w are defined by s = tdsd ,
t > 0, where dsd solves

min‖d‖W =1
〈f ′(w), d〉W ∗,W .

Now consider the case where W = W ∗ is a Hilbert space. Then

dsd = − ∇f (w)

‖∇f (w)‖W

.

In fact, by the Cauchy-Schwarz inequality,

min‖d‖W =1
〈f ′(w), d〉W ∗,W = min‖d‖W =1

(∇f (w), d)W ≥ −‖∇f (w)‖W

=
(

∇f (w),− ∇f (w)

‖∇f (w)‖W

)
W

.

Therefore, −∇f (w) is a steepest descent direction. This is the reason why the steep-
est descent method is also called gradient method.

It should be mentioned that the steepest descent method is usually very ineffi-
cient. Therefore, the design of efficient globally convergent methods works as fol-
lows: A locally fast convergent method (e.g., Newton’s method) is used to generate
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trial steps. If the generated step satisfies a (generalized) angle test ensuring admissi-
bility of the step, the step is selected. Otherwise, another search direction is chosen,
e.g., the steepest descent direction.

2.2.2 Optimization on Closed Convex Sets

We now develop descent methods for simply constrained problems of the form

minf (w) s.t. w ∈ S (2.3)

with W a Hilbert space, f : W → R continuously F-differentiable, and S ⊂ W

closed and convex.

Example 2.1 A scenario frequently found in practice is

W = L2(Ω), S =
{
u ∈ L2(Ω) : a(x) ≤ u(x) ≤ b(x) a.e. on Ω

}

with L∞-functions a, b. It is then very easy to compute the projection PS onto S,
which will be needed in the following:

PS(w)(x) = P[a(x),b(x)](w(x)) = max(a(x),min(w(x), b(x))).

The presence of the constraint set S requires to take care that we stay feasible with
respect to S, or—if we think of an infeasible method—that we converge to feasibil-
ity. In the following, we consider a feasible algorithm, i.e., wk ∈ S for all k.

If wk is feasible and we try to apply the unconstrained descent method, we have
the difficulty that already very small step sizes σ > 0 can result in points wk + σsk

that are infeasible. The backtracking idea of considering only those σ ≥ 0 for which
wk + σsk is feasible is not viable, since very small step sizes or even σk = 0 might
be the result.

Therefore, instead of performing a line search along the ray {wk + σsk : σ ≥ 0},
we perform a line search along the projected path

{
PS(wk + σsk) : σ ≥ 0

}
,

where PS is the projection onto S. Of course, we have to ensure that along this path
we achieve sufficient descent as long as wk is not a stationary point. Unfortunately,
not any descent direction is suitable here.

Example 2.2 Consider

S =
{
w ∈ R

2 : w1 ≥ 0, w1 + w2 ≥ 3
}

, f (w) = 5w2
1 + w2

2.
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Then, at wk = (1,2)T , we have ∇f (wk) = (10,4)T . Since f is convex quadratic
with minimum w̄ = 0, the Newton step is

dk = −wk = −(1,2)T .

This is a descent direction, since

∇f (wk)T dk = −18.

But, for σ ≥ 0, there holds

PS(wk −σdk) = PS((1 −σ)(1,2)T ) = (1 −σ)

(
1

2

)
+σ

(
3/2

3/2

)
=

(
1

2

)
+ σ

2

(
1

−1

)
.

From

∇f (wk)T
(

1

−1

)
= 6

we see that we are getting ascent, not descent, along the projected path, although dk

is a descent direction.

The example shows that care must be taken in choosing appropriate search di-
rections for projected methods. Since the projected descent properties of a search
direction are more complicated to judge than in the unconstrained case, it is out of
the scope of this chapter to give a general presentation of this topic. In the finite di-
mensional setting, we refer to [84] for a detailed discussion. Here, we only consider
the projected gradient method.

Algorithm 2.3 (Projected gradient method)

0. Choose w0 ∈ S.

For k = 0,1,2,3, . . . :

1. Set sk = −∇f (wk).
2. Choose σk by a projected step size rule such that f (PS(wk + σks

k)) < f (wk).
3. Set wk+1 := PS(wk + σks

k).

For abbreviation, let

wk
σ = wk − σ∇f (wk).

We will prove global convergence of this method. To do this, we need the facts about
the projection operator PS collected in Lemma 1.10.

The following result shows that along the projected steepest descent path we
achieve a certain amount of descent:

Lemma 2.4 Let W be a Hilbert space and let f : W → R be continuously F-
differentiable on a neighborhood of the closed convex set S. Let wk ∈ S and assume



106 M. Ulbrich

that ∇f is α-order Hölder-continuous with modulus L > 0 on

{
(1 − t)wk + tPS(wk

σ ) : 0 ≤ t ≤ 1
}

,

for some α ∈ (0,1]. Then there holds

f (PS(wk
σ )) − f (wk) ≤ − 1

σ
‖PS(wk

σ ) − wk‖2
W + L‖PS(wk

σ ) − wk‖1+α

W .

Proof

f (PS(wk
σ )) − f (wk) = (∇f (vk

σ ),PS(wk
σ ) − wk)W

= (∇f (wk),PS(wk
σ ) − wk)W

+ (∇f (vk
σ ) − ∇f (wk),PS(wk

σ ) − wk)W

with appropriate vk
σ ∈ {(1 − t)wk + tPS(wk

σ ) : 0 ≤ t ≤ 1}.
Now, since wk

σ − wk = σsk = −σ∇f (wk) and wk = PS(wk), we obtain

−σ(∇f (wk),PS(wk
σ ) − wk)W = (wk

σ − wk,PS(wk
σ ) − wk)W

= (wk
σ − PS(wk),PS(wk

σ ) − PS(wk))W

= (PS(wk
σ ) − PS(wk),PS(wk

σ ) − PS(wk))W

+ (wk
σ − PS(wk

σ ),PS(wk
σ ) − PS(wk))W︸ ︷︷ ︸

≥0

≥ (PS(wk
σ ) − PS(wk),PS(wk

σ ) − PS(wk))W

= ‖PS(wk
σ ) − wk‖2

W .

Next, we use

‖vk
σ − wk‖W ≤ ‖PS(wk

σ ) − wk‖W .

Hence,

(∇f (vk
σ ) − ∇f (wk),PS(wk

σ ) − wk)W ≤ ‖∇f (vk
σ ) − ∇f (wk)‖W‖PS(wk

σ ) − wk‖W

≤ L‖vk
σ − wk‖α

W‖PS(wk
σ ) − wk‖W

≤ L‖PS(wk
σ ) − wk‖1+α

W .

We now consider the following
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2.2.2.1 Projected Armijo Rule

Choose the maximum σk ∈ {1,1/2,1/4, . . .} for which

f (PS(wk + σks
k)) − f (wk) ≤ − γ

σk

‖PS(wk + σks
k) − wk‖2

W .

Here γ ∈ (0,1) is a constant.
In the unconstrained case, we recover the classical Armijo rule:

f (PS(wk + σks
k)) − f (wk) = f (wk + σks

k) − f (wk),

− γ

σk

‖PS(wk + σks
k) − wk‖2

W = − γ

σk

‖σks
k‖2

W = −γ σk‖sk‖2
W

= γ σk(∇f (wk), sk)W .

As a stationarity measure Σ(w) = ‖p(w)‖W we use the norm of the projected gra-
dient

p(w)
def= w − PS(w − ∇f (w)).

In fact, the first-order optimality conditions for (2.3) are

w ∈ S, (∇f (w), v − w)W ≥ 0 ∀v ∈ S.

By Lemma 1.10, this is equivalent to

w − PS(w − ∇f (w)) = 0.

As a next result we show that projected Armijo step sizes exist.

Lemma 2.5 Let W be a Hilbert space and let f : W → R be continuously F-
differentiable on a neighborhood of the closed convex set S. Then, for all wk ∈ S

with p(wk) �= 0, the projected Armijo rule terminates successfully.

Proof We proceed as in the proof of Lemma 2.4 and obtain (we have not assumed
Hölder continuity of ∇f here)

f (PS(wk
σ )) − f (wk) ≤ −1

σ
‖PS(wk

σ ) − wk‖2
W + o(‖PS(wk

σ ) − wk‖W).

It remains to show that, for all small σ > 0,

γ − 1

σ
‖PS(wk

σ ) − wk‖2
W + o(‖PS(wk

σ ) − wk‖W) ≤ 0.

But this follows easily from (Lemma 1.10(e)):

γ − 1

σ
‖PS(wk

σ ) − wk‖2
W ≤ (γ − 1)‖p(wk)‖W︸ ︷︷ ︸

<0

‖PS(wk
σ ) − wk‖W .
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Theorem 2.4 Let W be a Hilbert space, f : W → R be continuously F-differentia-
ble, and S ⊂ W be nonempty, closed, and convex. Consider Algorithm 2.1 and as-
sume that f (wk) is bounded below. Furthermore, let ∇f be α-order Hölder contin-
uous on

N
ρ
0 =

{
w + s : f (w) ≤ f (w0), ‖s‖W ≤ ρ

}

for some α > 0 and some ρ > 0. Then

lim
k→∞‖p(wk)‖W = 0.

Proof Set pk = p(wk) and assume pk �→ 0. Then there exist ε > 0 and an infinite
set K with ‖pk‖W ≥ ε for all k ∈ K .

By construction we have that f (wk) is monotonically decreasing and by assump-
tion the sequence is bounded below. For all k ∈ K , we obtain

f (wk) − f (wk+1) ≥ γ

σk

‖PS(wk + σks
k) − wk‖2

W ≥ γ σk‖pk‖2
W ≥ γ σkε

2,

where we have used the Armijo condition and Lemma 1.10(e). This shows (σk)K →
0 and (‖PS(wk + σks

k) − wk‖W)K → 0.
For large k ∈ K we have σk ≤ 1/2 and therefore, the Armijo condition did not

hold for the step size σ = 2σk . Hence,

− γ

2σk

‖PS(wk + 2σks
k) − wk‖2

W

≤ f (PS(wk + 2σks
k)) − f (wk)

≤ − 1

2σk

‖PS(wk + 2σks
k) − wk‖2

W + L‖PS(wk + 2σks
k) − wk‖1+α

W .

Here, we have applied Lemma 2.4 and the fact that by Lemma 1.10(e)

‖PS(wk + 2σks
k) − wk‖W ≤ 2‖PS(wk + σks

k) − wk‖W
K�k→∞−→ 0.

Hence,

1 − γ

2σk

‖PS(wk + 2σks
k) − wk‖2

W ≤ L‖PS(wk + 2σks
k) − wk‖1+α

W .

From this we derive

(1 − γ )‖pk‖W‖PS(wk + 2σks
k) − wk‖W ≤ L‖PS(wk + 2σks

k) − wk‖1+α

W .

Hence,

(1−γ )ε ≤ L‖PS(wk + 2σks
k) − wk‖α

W ≤ L2α‖PS(wk + σks
k) − wk‖α

W

K�k→∞−→ 0.

This is a contradiction.
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A careful choice of search directions will allow to extend the convergence the-
ory to more general classes of projected descent algorithms. For instance, in finite
dimensions, q-superlinearly convergent projected Newton methods and their glob-
alization are investigated in [14, 84]. In an L2 setting, the superlinear convergence
of projected Newton methods was investigated by Kelley and Sachs in [85].

2.2.3 General Optimization Problems

For more general optimization problems than we discussed so far, one usually glob-
alizes by choosing step sizes based on an Armijo-type rule that is applied to a suit-
able merit function. For instance, if we consider problems of the form

min
w

f (w) s.t. e(w) = 0, c(w) ∈ K,

with functions f : W → R, e : W → Z, and c : W → R, where W , Z, and R are
Banach spaces and K ⊂ R is a closed convex cone, a possible choice for a merit
function is

mρ(w) = f (w) + ρ‖e(w)‖Z + ρ dist(c(w),K)

with penalty parameter ρ > 0. In the case of equality constraints, a global conver-
gence result for reduced SQP methods based on this merit function is presented in
[82]. Other merit functions can be constructed by taking the norm of the residual of
the KKT system, the latter being reformulated as a nonsmooth operator equation,
see Sect. 2.5. This residual-based type of globalization, however, does not take into
account second-order information.

2.3 Newton-Based Methods—A Preview

To give an impression of modern Newton-based approaches for optimization prob-
lems, we first consider all these methods in the finite dimensional setting: W = R

n.

2.3.1 Unconstrained Problems—Newton’s Method

Consider

min
w∈Rn

f (w) (2.4)

with f : R
n → R twice continuously differentiable.

From analysis we know that the first-order optimality conditions are:

∇f (w) = 0. (2.5)
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Newton’s method for (2.4) is obtained by applying Newton’s method to (2.5).
This, again, is done by linearizing G = ∇f about the current iterate wk and

equating this linearization to zero:

G(wk) + G′(wk)sk = 0, wk+1 = wk + sk.

It is well-known—and will be proved later in a much more general context—that
Newton’s method converges q-superlinearly if G is C1 and G′(w̄) is invertible.

2.3.2 Simple Constraints

Let f : R
n → R be C2 and let S ⊂ R

n be a nonempty closed convex set.
We consider the problem

min
w∈Rn

f (w) s.t. w ∈ S.

The optimality conditions, written in a form that directly generalizes to a Banach
space setting, are: w = w̄ solves

w ∈ S, ∇f (w)T (v − w) ≥ 0 ∀v ∈ S. (2.6)

This is a Variational Inequality, which we abbreviate VI(∇f,S).
Note that the necessity of VI(∇f,S) can be derived very easily: For all v ∈ S,

the line segment {w̄ + t (v − w̄) : 0 ≤ t ≤ 1} connecting w̄ and v is contained in S

(convexity) and therefore, the function

φ(t) := f (w̄ + t (v − w̄))

is nondecreasing at t = 0:

0 ≤ φ′(0) = ∇f (w̄)T (v − w̄).

Similarly, in the Banach space setting, we will have that w = w̄ solves

w ∈ S, 〈f ′(w), v − w〉W ∗,W ≥ 0 ∀v ∈ S

with S ⊂ W closed, convex and f ′ : W → W ∗.
Note that if S = R

n, then (2.6) is equivalent to (2.5).

2.3.2.1 Nonsmooth Reformulation Approach and Generalized Newton
Methods

In the development of projected descent methods we already used the important fact
that the VI (2.6) is equivalent to

w − PS(w − θ∇f (w)) = 0, (2.7)
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where θ > 0 is fixed.

Example 2.3 If S is a box, i.e.,

S = [a1, b1] × · · · × [an, bn],
then PS(w) can be computed very easily as follows:

PS(w)i = max(ai,min(wi, bi)).

It is instructive (and not difficult) to check the equivalence of (2.6) and (2.7) by
hand.

The function

Φ(w) := w − PS(w − θ∇f (w))

is locally Lipschitz continuous (PS is non-expansive and ∇f is C1), but cannot be
expected to be differentiable. Therefore, at a first sight, Newton’s method is not
applicable.

However, a second look shows that Φ has nice properties if S is sufficiently nice.
To be more concrete, let

S = [a1, b1] × · · · × [an, bn]
be a box in the following. Then Φ is piecewise continuously differentiable, i.e., it
consists of finitely many C1-pieces Φj : R

n → R
n, j = 1, . . . ,m. More precisely,

every component Φi of Φ consists of three pieces:

wi − ai, wi − bi, wi − (wi − θ∇f (w)i) = θ∇f (w)i,

hence Φ consists of (at most) 3n pieces Φj .
Denote by

A(w) =
{
j : Φj(w) = Φ(w)

}

the active indices at w and by

I (w) =
{
j : Φj(w) �= Φ(w)

}

the set of inactive indices at w.
By continuity, I (w) ⊃ I (w̄) in a neighborhood U of w̄. Now consider the fol-

lowing

Algorithm 2.5 (Generalized Newton’s method for piecewise C1 equations)

0. Chose w0 (sufficiently close to w̄).

For k = 0,1,2, . . . :
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1. Choose Mk ∈ {(Φj )′(wk) : j ∈ A(wk)} and solve

Mks
k = −Φ(wk).

2. Set wk+1 = wk + sk .

For wk close to w̄, we have A(wk) ⊂ A(w̄) and thus sk is the Newton step for
the C1 equation

Φjk (w) = 0,

where jk ∈ A(wk) ⊂ A(w̄) is the active index with Mk = (Φjk )′(wk).
Therefore, if all the finitely many Newton processes for

Φj(w) = 0, j ∈ A(w̄)

converge locally fast, our generalized Newton’s method converges locally fast, too.
In particular, this is the case if f is C2 and all (Φj )′(w̄), j ∈ A(w̄), are invertible.

2.3.2.2 SQP Methods

A further appealing idea is to obtain an iterative method by linearizing ∇f in
VI(∇f,S) about the current iterate wk ∈ S:

w ∈ S, (∇f (wk) + ∇2f (wk)(w − wk))T (v − w) ≥ 0 ∀v ∈ S.

The solution wk+1 of this VI is then the new iterate. The resulting method, of course,
can just as well be formulated for general variational inequalities VI(F,S) with C1-
function F : R

n → R
n. We obtain the following method:

Algorithm 2.6 (Josephy-Newton method for VI(F,S))

0. Choose w0 ∈ S (sufficiently close to the solution w̄ of VI(F,S)).

For k = 0,1,2 . . . :

1. STOP if wk solves VI(F,S) (holds if wk = wk−1).
2. Compute the solution wk+1 of

VI(F (wk) + F ′(wk)(· − wk),S) :
w ∈ S, (F (wk) + F ′(wk)(w − wk))T (v − w) ≥ 0 ∀v ∈ S

that is closest to wk .

In the case F = ∇f , it is easily seen that VI(∇f (wk) + ∇2f (wk)(· − wk),S) is
the first-order necessary optimality condition of the problem

min
w∈Rn

∇f (wk)T (w − wk) + 1

2
(w − wk)T ∇2f (wk)(w − wk) s.t. w ∈ S.
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The objective function is quadratic, and in the case of box constraints, we have a
box-constrained quadratic program.

This is why this approach is called sequential quadratic programming.

Algorithm 2.7 (Sequential Quadratic Programming for simple constraints)

0. Chose w0 ∈ R
n (sufficiently close to w̄).

For k = 0,1,2, . . . :

1. Compute the first-order optimal point sk of the QP

min
s∈Rn

∇f (wk)T s + 1

2
sT ∇2f (wk)s s.t. wk + s ∈ S

that is closest to 0.
2. Set wk+1 = wk + sk .

The local convergence analysis of the Josephy-Newton method is intimately con-
nected with the locally unique and Lipschitz-stable solvability of the parameter-
ized VI

VI(F (w̄) + F ′(w̄)(· − w̄) − p,S) :
w ∈ S, (F (w̄) + F ′(w̄)(w − w̄) − p)T (v − w) ≥ 0 ∀v ∈ S.

In fact, if there exist open neighborhoods Up ⊂ R
n of 0, Uw ⊂ R

n of w̄, and a
Lipschitz continuous function Up � p �→ w(p) ∈ Uw such that w(p) is the unique
solution of VI(F(w̄)+F ′(w̄)(·− w̄)−p,S) in Uw , then VI(F,S) is called strongly
regular at w̄.

As we will see, strong regularity implies local q-superlinear convergence of the
above SQP method if f is C2.

In the case S = R
n we have

VI(F,R
n): F(w) = 0.

Hence, the Josephy-Newton method for VI(F,R
n) is Newton’s method for

F(w) = 0. Furthermore, from

VI(F (w̄) + F ′(w̄)(· − w̄) + p,R
n): F(w̄) + F ′(w̄)(w − w̄) + p = 0

we see that in this case strong regularity is the same as the invertibility of F ′(w̄).

2.3.3 General Inequality Constraints

We now consider general nonlinear optimization in R
n:

min
w∈Rn

f (w) s.t. e(w) = 0, c(w) ≤ 0, (2.8)
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where f : R
n → R, e : R

n → R
p , and c : R

n → R
m are C2 and ≤ is meant

component-wise.
Denote by

L(w,λ,μ) = f (w) + λT c(w) + μT e(w)

the Lagrange function of problem (2.8).
Under a constraint qualification (CQ), the first-order optimality conditions (KKT

conditions) hold at (w̄, λ̄, μ̄):

∇wL(w̄, λ̄, μ̄) = ∇f (w̄) + c′(w̄)T λ̄ + e′(w̄)T μ̄ = 0,

λ̄ ≥ 0, ∇λL(w̄, λ̄, μ̄)T (z − λ̄) = c(w̄)T (z − λ̄) ≤ 0 ∀z ≥ 0,

∇μL(w̄, λ̄, μ̄) = e(w̄) = 0.

(2.9)

Remark 2.1

(a) An easy way to remember these conditions is the following: (w̄, λ̄, μ̄) is a first-
order saddle point of L on R

n × (Rm+ × R
p).

(b) The second equation can be equivalently written in the following way:

λ̄ ≥ 0, c(w̄) ≤ 0, c(w̄)T λ̄ = 0.

The KKT system consists of two equations and the variational inequality
VI(−c(w̄),R

m+). This is a VI w.r.t. λ that is parameterized by w̄. Also, since equa-
tions are special cases of variational inequalities, we have that (2.9) is in fact the
same as VI(−∇L,R

n × R
m+ × R

p).
We now can use the same techniques as for simple constraints.

2.3.3.1 Nonsmooth Reformulation Approach and Generalized Newton
Methods

Using the projection, we rewrite the VI in (2.9) as a nonsmooth equation:

Φ(w,λ) := λ − PR
m+(λ + θc(w)) = 0,

where θ > 0 is fixed. The reformulated KKT system

G(w,λ,μ) :=
⎛
⎝∇f (w) + c′(w)T λ + e′(w)T μ

Φ(w,λ)

e(w)

⎞
⎠ = 0

is a system of n + m + p equations in n + m + p unknowns.
The function on the left is C1, except for the second row which is piecewise

C1. Therefore, the generalized Newton’s method for piecewise smooth equations
(Algorithm 2.5) can be applied. It is q-superlinearly convergent if (Gj )′(w̄, λ̄, μ̄) is
invertible for all active indices j ∈ A(w̄, λ̄, μ̄).
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2.3.3.2 SQP Methods

As already observed, the KKT system is identical to VI(−∇L,R
n × R

m+ × R
p).

The SQP method for (2.8) can now be derived as in the simply constrained case
by linearizing −∇L about the current iterate xk := (wk,λk,μk): The resulting sub-
problem is VI(−∇L(xk) − ∇L(xk)(· − xk),R

n × R
m+ × R

p), or, in detail:

∇wL(xk) + ∇wxL(xk)(x − xk) = 0

λ ≥ 0, (c(wk) + c′(wk)(w − wk))T (z − λ) ≤ 0 ∀z ≥ 0,

e(wk) + e′(wk)(w − wk) = 0.

(2.10)

As in the simply constrained case, it is straightforward to verify that (2.10) is equiv-
alent to the KKT conditions of the following quadratic program:

min
w

∇f (wk)T (w − wk) + 1

2
(w − wk)T ∇wwL(xk)(w − wk)

s.t. e(wk) + e′(wk)(w − wk) = 0, c(wk) + c′(wk)(w − wk) ≤ 0.

2.4 Generalized Newton Methods

We have seen in the previous section that we can reformulate KKT systems of finite
dimensional optimization problems as nonsmooth equations. This also holds true for
PDE-constrained optimization with inequality constraints, as we will sketch below.
In finite dimensions, we observed that a projection-based reformulation results in
a piecewise C1-function to which a Newton-type method can be applied. In order
to develop similar approaches in a function space framework, it is important to find
minimum requirements on the operator G : X → Y that allow us to develop and
analyze a Newton-type method for the (possibly nonsmooth) operator equation

G(x) = 0. (2.11)

2.4.1 Motivation: Application to Optimal Control

We will show now that the optimality conditions of constrained optimal control
problems can be converted to nonsmooth operator equations.

Consider the following elliptic optimal control problem:

min
y∈H 1

0 (Ω),u∈L2(Ω)

J (y,u)
def= 1

2
‖y − yd‖2

L2(Ω)
+ α

2
‖u‖2

L2(Ω)

s.t. Ay = u, βl ≤ u ≤ βr .
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Here, y ∈ H 1
0 (Ω) is the state, which is defined on the open bounded domain

Ω ⊂ R
n, and u ∈ L2(Ω) is the control. Furthermore, A : H 1

0 (Ω) → H−1(Ω) =
H 1

0 (Ω)∗ is a (for simplicity) linear elliptic partial differential operator, e.g.,
A = −�.

The control is subject to pointwise bounds βl < βr . The objective is to drive the
state as close to yd ∈ L2(Ω) as possible. The second part of the objective function
penalizes excessive control costs; the parameter α > 0 is typically small.

We eliminate the state y via the state equation, i.e., y = y(u) = A−1u, and obtain
the reduced problem

min
u∈L2(Ω)

Ĵ (u)
def= J (y(u),u)

def= 1

2
‖A−1u − yd‖2

L2(Ω) + α

2
‖u‖2

L2(Ω)

s.t. βl ≤ u ≤ βr .

The feasible set is

S =
{
u ∈ L2(Ω) : βl ≤ u ≤ βr

}

and the optimality conditions are given by

VI(∇Ĵ , S) : u ∈ S, (∇Ĵ (u), v − u)L2(Ω) ≥ 0 ∀v ∈ S.

Using the projection PS(u) = P[βl,βr ](u(·)) onto S, this can be rewritten as

Φ(u)
def= u − P[βl,βr ](u − θ∇Ĵ (u)) = 0,

where θ > 0 is fixed. This is a nonsmooth operator equation in the space L2(Ω).
Hence, we were able to convert the optimality system into a nonsmooth operator
equation.

2.4.2 A General Superlinear Convergence Result

Consider the operator equation (2.11) with G : X → Y , X, Y Banach spaces.
A general Newton-type method for (2.11) has the form

Algorithm 2.8 (Generalized Newton’s method)

0. Choose x0 ∈ X (sufficiently close to the solution x̄).

For k = 0,1,2, . . . :

1. Choose an invertible operator Mk ∈ L(X,Y ).
2. Obtain sk by solving

Mks = −G(xk), (2.12)

and set xk+1 = xk + sk .
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We now investigate the generated sequence (xk) in a neighborhood of a solution
x̄ ∈ X, i.e., G(x̄) = 0.

For the distance dk := xk − x̄ to the solution we have

Mkd
k+1 = Mk(x

k+1 − x̄) = Mk(x
k + sk − x̄) = Mkd

k − G(xk)

= G(x̄) + Mkd
k − G(xk).

Hence, we obtain:
1. (xk) converges q-linearly to x̄ with rate γ ∈ (0,1) iff

‖M−1
k (G(x̄ + dk) − G(x̄) − Mkd

k)‖
X

≤ γ ‖dk‖X ∀k with ‖dk‖X suff. small.
(2.13)

2. (xk) converges q-superlinearly to x̄ iff

‖M−1
k (G(x̄ + dk) − G(x̄) − Mkd

k)‖
X

= o(‖dk‖X) for ‖dk‖X → 0. (2.14)

3. (xk) converges with q-order 1 + α > 1 to x̄ iff

‖M−1
k (G(x̄ + dk) − G(x̄) − Mkd

k)‖
X

= O(‖dk‖1+α

X ) for ‖dk‖X → 0. (2.15)

In 1., the estimate is meant uniformly in k, i.e., there exists δγ > 0 such that

‖M−1
k (G(x̄ + dk) − G(x̄) − Mkd

k)‖
X

≤ γ ‖dk‖X ∀k with ‖dk‖X < δγ .

In 2., o(‖dk‖X) is meant uniformly in k, i.e., for all η ∈ (0,1), there exists δη > 0
such that

‖M−1
k (G(x̄ + dk) − G(x̄) − Mkd

k)‖
X

≤ η‖dk‖X ∀k with ‖dk‖X < δη.

The condition in 3. and those stated below are meant similarly.
It is convenient, and often done, to split the smallness assumption on

‖M−1
k (G(x̄ + dk) − G(x̄) − Mkd

k)‖
X

in two parts:
1. Regularity condition:

‖M−1
k ‖

Y→X
≤ C ∀k ≥ 0. (2.16)

2. Approximation condition:

‖G(x̄ + dk) − G(x̄) − Mkd
k‖Y = o(‖dk‖X) for ‖dk‖X → 0 (2.17)

or

‖G(x̄ + dk) − G(x̄) − Mkd
k‖Y = O(‖dk‖1+α

X ) for ‖dk‖X → 0. (2.18)

We obtain



118 M. Ulbrich

Theorem 2.9 Consider the operator equation (2.11) with G : X → Y , where X

and Y are Banach spaces. Let (xk) be generated by the generalized Newton method
(Algorithm 2.8). Then:

1. If x0 is sufficiently close to x̄ and (2.13) holds then xk → x̄ q-linearly with rate γ .
2. If x0 is sufficiently close to x̄ and (2.14) (or (2.16) and (2.17)) holds then xk → x̄

q-superlinearly.
3. If x0 is sufficiently close to x̄ and (2.15) holds (or (2.16) and (2.18)) then xk → x̄

q-superlinearly with order 1 + α.

Proof 1. Let δ > 0 be so small that (2.13) holds for all xk with ‖dk‖X < δ. Then,
for x0 satisfying ‖x0 − x̄‖X < δ, we have

‖x1 − x̄‖X = ‖d1‖X = ‖M−1
0 (G(x̄ + d0) − G(x̄) − M0d

0)‖
X

≤ γ ‖d0‖X

= γ ‖x0 − x̄‖X < δ.

Inductively, let ‖xk − x̄‖X < δ. Then

‖xk+1 − x̄‖X = ‖dk+1‖X = ‖M−1
k (G(x̄ + dk) − G(x̄) − Mkd

k)‖
X

≤ γ ‖dk‖X = γ ‖xk − x̄‖X < δ.

Hence, we have

‖xk+1 − x̄‖X ≤ γ ‖xk − x̄‖X ∀k ≥ 0.

2. Fix γ ∈ (0,1) and let δ > 0 be so small that (2.13) holds for all xk with
‖dk‖X < δ. Then, for x0 satisfying ‖x0 − x̄‖X < δ, we can apply 1. to conclude
xk → x̄ with rate γ .

Now, (2.14) immediately yields

‖xk+1 − x̄‖X = ‖dk+1‖X = ‖M−1
k (G(x̄ + dk) − G(x̄) − Mkd

k)‖
X

= o(‖dk‖X)

= o(‖xk − x̄‖X) (k → ∞).

3. As in 2, but now

‖xk+1 − x̄‖X = ‖dk+1‖X = ‖M−1
k (G(x̄ + dk) − G(x̄) − Mkd

k)‖
X

= O(‖dk‖1+α

X )

= O(‖xk − x̄‖1+α

X ) (k → ∞).

We emphasize that an inexact solution of the Newton system (2.12) can be in-
terpreted as a solution of the same system, but with Mk replaced by a perturbed
operator M̃k . Since the condition (2.14) (or the conditions (2.16) and (2.17)) remain
valid if Mk is replaced by a perturbed operator M̃k and the perturbation is suffi-
ciently small, we see that the fast convergence of the generalized Newton’s method
is not affected if the system is solved inexactly and the accuracy of the solution
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is controlled suitably. The Dennis-Moré condition [36] characterizes perturbations
that are possible without destroying q-superlinear convergence.

We will now specialize on particular instances of generalized Newton methods.
The first one, of course, is Newton’s method itself.

2.4.3 The Classical Newton’s Method

In the classical Newton’s method, we assume that G is continuously F-differentiable
and choose Mk = G′(xk).

The regularity condition then reads

‖G′(xk)−1‖Y→X ≤ C ∀k ≥ 0.

By Banach’s Lemma (asserting continuity of M �→ M−1), this holds true if G′ is
continuous at x̄ and

G′(x̄) ∈ L(X,Y ) is continuously invertible.

This condition is the textbook regularity requirement in the analysis of Newton’s
method.

Fréchet differentiability at x̄ means

‖G(x̄ + dk) − G(x̄) − G′(x̄)dk‖Y = o(‖dk‖X).

Now, due to the continuity of G′,

‖G(x̄ + dk) − G(x̄) − Mkd
k‖Y

= ‖G(x̄ + dk) − G(x̄) − G′(x̄ + dk)dk‖Y

≤ ‖G(x̄ + dk) − G(x̄) − G′(x̄)dk‖Y + ‖(G′(x̄) − G′(x̄ + dk))dk‖Y

≤ o(‖dk‖X) + ‖G′(x̄) − G′(x̄ + dk)‖X→Y ‖dk‖X

= o(‖dk‖X) for ‖dk‖X → 0.

Therefore, we have proved the superlinear approximation condition.
If G′ is α-order Hölder continuous near x̄, we even obtain the approximation

condition of order 1 + α. In fact, let L > 0 be the modulus of Hölder continuity.
Then

‖G(x̄ + dk) − G(x̄) − Mkd
k‖Y

= ‖G(x̄ + dk) − G(x̄) − G′(x̄ + dk)dk‖Y

=
∥∥∥∥∥
∫ 1

0
(G′(x̄ + tdk) − G′(x̄ + dk))dk dt

∥∥∥∥∥
Y
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≤
∫ 1

0
‖G′(x̄ + tdk) − G′(x̄ + dk)‖X→Y dt ‖dk‖X

≤ L

∫ 1

0
(1 − t)α‖dk‖α

X dt ‖dk‖X = L

1 + α
‖dk‖1+α

X = O(‖dk‖1+α

X ).

Summarizing, we have proved the following

Corollary 2.1 Let G : X → Y be a continuously F-differentiable operator between
Banach spaces and assume that G′(x̄) is continuously invertible at the solution x̄.
Then Newton’s method (i.e., Algorithm 2.8 with Mk = G′(xk) for all k) converges
locally q-superlinearly. If, in addition, G′ is α-order Hölder continuous near x̄, the
order of convergence is 1 + α.

Remark 2.2 The choice of Mk in the classical Newton’s method, Mk = G′(xk), is
point-based, since it depends on the point xk .

2.4.4 Generalized Differential and Semismoothness

If G is nonsmooth, the question arises if a suitable substitute for G′ can be found. We
follow [134, 136] here; a related approach can be found in [87] and [69]. Thinking
at subgradients of convex functions, which are set-valued, we consider set-valued
generalized differentials ∂G : X ⇒ L(X,Y ). Then we will choose Mk point-based,
i.e.,

Mk ∈ ∂G(xk).

If we want every such choice Mk to satisfy the superlinear approximation condition,
then we have to require

sup
M∈∂G(x̄+d)

‖G(x̄ + d) − G(x̄) − Md‖Y = o(‖d‖X) for ‖d‖X → 0.

This approximation property is called semismoothness [134, 136]:

Definition 2.1 (Semismoothness) Let G : X → Y be a continuous operator between
Banach spaces. Furthermore, let be given the set-valued mapping ∂G : X ⇒ Y with
nonempty images (which we will call generalized differential in the sequel). Then

(a) G is called ∂G-semismooth at x ∈ X if

sup
M∈∂G(x+d)

‖G(x + d) − G(x) − Md‖Y = o(‖d‖X) for ‖d‖X → 0.

(b) G is called ∂G-semismooth of order α > 0 at x ∈ X if

sup
M∈∂G(x+d)

‖G(x + d) − G(x) − Md‖Y = O(‖d‖1+α
X ) for ‖d‖X → 0.
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Lemma 2.6 If G : X → Y is continuously F-differentiable near x, then G is {G′}-
semismooth at x. Furthermore, if G′ is α-order Hölder continuous near x, then
G is {G′}-semismooth at x of order α. Here, {G′} denotes the setvalued operator
{G′} : X ⇒ L(X,Y ), {G′}(x) = {G′(x)}.

Proof

‖G(x + d) − G(x) − G′(x + d)d‖Y

≤ ‖G(x + d) − G(x) − G′(x)d‖Y + ‖G′(x)d − G′(x + d)d‖Y

≤ o(‖d‖X) + ‖G′(x) − G′(x + d)‖X→Y ‖d‖X = o(‖d‖X).

Here, we have used the definition of F-differentiability and the continuity of G′.
In the case of α-order Hölder continuity we have to work a little bit more:

‖G(x + d) − G(x) − G′(x + d)d‖Y

=
∥∥∥∥∥
∫ 1

0
(G′(x + td) − G′(x + d))d dt

∥∥∥∥∥
Y

≤
∫ 1

0
‖G′(x + td) − G′(x + d)‖X→Y dt ‖d‖X ≤

∫ 1

0
L(1 − t)α‖d‖α

X dt ‖d‖X

= L

1 + α
‖d‖1+α

X = O(‖d‖1+α
X ).

Example 2.4 For locally Lipschitz-continuous functions G : R
n → R

m, the standard
choice for ∂G is Clarke’s generalized Jacobian:

∂clG(x) = conv
{
M : xk → x, G′(xk) → M, G differentiable at xk

}
. (2.19)

This definition is justified since G′ exists almost everywhere on R
n by Rademacher’s

theorem (which is a deep result).

Remark 2.3 The classical definition of semismoothness for functions G : R
n → R

m

[105, 113] is equivalent to ∂clG-semismoothness, where ∂clG is Clarke’s general-
ized Jacobian defined in (2.19), in connection with directional differentiability of G.

Next, we give a concrete example of a semismooth function:

Example 2.5 Consider ψ : R → R, ψ(x) = P[a,b](x), a < b, then Clarke’s general-
ized derivative is

∂clψ(x) =

⎧⎪⎨
⎪⎩

{0} x < a or x > b,

{1} a < x < b,

conv{0,1} = [0,1] x = a or x = b.
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The ∂clψ -semismoothness of ψ can be shown easily:
For all x /∈ {a, b} we have that ψ is continuously differentiable in a neighborhood

of x with ∂clψ ≡ {ψ ′}. Hence, by Lemma 2.6, ψ is ∂clψ -semismooth at x.
For x = a, we estimate explicitly: For small d > 0, we have ∂clψ(x) =

{ψ ′(a + d)} = {1} and thus

sup
M∈∂clψ(x+d)

|ψ(x + d) − ψ(x) − Md| = a + d − a − 1 · d = 0.

For small d < 0, we have ∂clψ(x) = {ψ ′(a + d)} = {0} and thus

sup
M∈∂clψ(x+d)

|ψ(x + d) − ψ(x) − Md| = a − a − 0 · d = 0.

Hence, the semismoothness of ψ at x = a is proved.
For x = b we can do exactly the same.

The class of semismooth operators is closed with respect to a wide class of oper-
ations, see [134]:

Theorem 2.10 Let X, Y , Z, Xi , Yi be Banach spaces.

(a) If the operators Gi : X → Yi are ∂Gi -semismooth at x then (G1,G2) is
(∂G1, ∂G2)-semismooth at x.

(b) If Gi : X → Y , i = 1,2, are ∂Gi -semismooth at x then G1 + G2 is (∂G1 +
∂G2)-semismooth at x.

(c) Let G1 : Y → Z and G2 : X → Y be ∂Gi -semismooth at G2(x) and x, respec-
tively. Assume that ∂G1 is bounded near y = G2(x) and that G2 is Lipschitz
continuous near x. Then G = G1 ◦ G2 is ∂G-semismooth with

∂G(x) = {M1M2 : M1 ∈ ∂G1(G2(x)), M2 ∈ ∂G2(x)} .

Proof Parts (a) and (b) are straightforward to prove.
Part (c):
Let y = G2(x) and consider d ∈ X. Let h(d) = G2(x + d) − y. Then, for ‖d‖X

sufficiently small,

‖h(d)‖Y = ‖G2(x + d) − G2(x)‖Y ≤ L2‖d‖X.

Hence, for M1 ∈ ∂G1(G2(x + d)) and M2 ∈ ∂G2(x + d), we obtain

‖G1(G2(x + d)) − G1(G2(x)) − M1M2d‖Z

= ‖G1(y + h(d)) − G1(y) − M1h(d) + M1(G2(x + d) − G2(x) − M2d)‖Z

≤ ‖G1(y + h(d)) − G1(y) − M1h(d)‖Z

+ ‖M1‖Y→Z‖G2(x + d) − G2(x) − M2d‖Y .
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By assumption, there exists C with ‖M1‖Y→Z ≤ C if ‖d‖X is sufficiently small.
Taking the supremum with respect to M1, M2 and using the semismoothness of G1
and G2 gives

sup
M∈∂G(x+d)

‖G(x + d) − G(x) − Md‖Z

≤ sup
M1∈∂G1(y+h(d))

‖G1(y + h(d)) − G1(y) − M1h(d)‖Z

+ C sup
M2∈∂G2(x+d)

‖G2(x + d) − G2(x) − M2d‖Y

= o(‖h(d)‖Y ) + o(‖d‖X) = o(‖d‖X).

2.4.5 Semismooth Newton Methods

The semismoothness concept ensures the approximation property required for gen-
eralized Newton methods. In addition, we need a regularity condition, which can be
formulated as follows:

There exist constants C > 0 and δ > 0 such that

‖M−1‖Y→X ≤ C ∀M ∈ ∂G(x) ∀x ∈ X, ‖x − x̄‖X < δ. (2.20)

Under these two assumptions, the following generalized Newton method for semi-
smooth operator equations is q-superlinearly convergent:

Algorithm 2.11 (Semismooth Newton’s method)

0. Choose x0 ∈ X (sufficiently close to the solution x̄).

For k = 0,1,2, . . . :

1. Choose Mk ∈ ∂G(xk).
2. Obtain sk by solving

Mks
k = −G(xk),

and set xk+1 = xk + sk .

The local convergence result is a simple corollary of Theorem 2.9:

Theorem 2.12 Let G : X → Y be continuous and ∂G-semismooth at a solution
x̄ of (2.11). Furthermore, assume that the regularity condition (2.20) holds. Then
there exists δ > 0 such that for all x0 ∈ X, ‖x0 − x̄‖X < δ, the semismooth Newton
method (Algorithm 2.11) converges q-superlinearly to x̄.

If G is ∂G-semismooth of order α > 0 at x̄, then the convergence is of order
1 + α.

Proof The regularity condition (2.20) implies (2.16) as long as xk is close enough
to x̄. Furthermore, the semismoothness of G at x̄ ensures the q-superlinear approx-
imation condition (2.17).
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In the case of α-order semismoothness, the approximation condition (2.18) with
order 1 + α holds.

Therefore, Theorem 2.9 yields the assertions.

2.4.5.1 Semismooth Newton Method for Finite Dimensional KKT Systems

At the beginning of this chapter we have seen that we can rewrite the KKT condi-
tions of the NLP

minf (w) s.t. e(w) = 0, c(w) ≤ 0

in the following form:

G(x)
def=

⎛
⎝ ∇wL(w,λ,μ)

λ − P
R

p
+(λ + c(w))

e(w)

⎞
⎠ = 0,

where we have set x = (w,λ,μ). With the developed results, we now can show that
the function G on the left is semismooth. In fact, ∇wL is {∇wxL}-semismooth and
e is {e′}-semismooth.

Furthermore, as shown above, ψ(t) = PR+(t) is ∂clψ -semismooth with

∂clψ(t) = {0} (t < 0), ∂clψ(t) = {1} (t > 0), ∂clψ(0) = [0,1].
Hence, by the sum and chain rules from Theorem 2.10

φi(w,λi)
def= λi − PR+(λi + ci(w)),

is semismooth with respect to

∂φi(w,λi) :=
{
(−gic

′
i (w),1 − gi) : gi ∈ ∂clψ(λi + ci(w))

}
.

Therefore, the operator Φ(w,λ) = λ − P
R

p
+(λ + c(w)) is semismooth with respect

to

∂Φ(w,λ) :=
{
(−Dgc

′
i (w), I − Dg) : Dg = diag(gi), gi ∈ ∂clψ(λi + ci(w))

}
.

This shows that G is semismooth with respect to

∂G(x)
def=

⎧⎨
⎩

⎛
⎝ ∇wwL(x) c′(w)T e′(w)T

−Dgc
′(w) I − Dg 0

e′(w) 0 0

⎞
⎠ ;

Dg = diag(gi), gi ∈ ∂clψ(λi + ci(w))

⎫⎬
⎭ .
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Under the regularity condition

‖M−1‖ ≤ C ∀M ∈ ∂G(x) ∀x, ‖x − x̄‖ < δ,

where x̄ = (w̄, λ̄, μ̄) is a KKT triple, Theorem 2.12 is applicable and yields the
q-superlinear convergence of the semismooth Newton method.

Remark 2.4 The compact-valuedness and the upper semicontinuity of Clarke’s gen-
eralized differential [34] even allows to reduce the regularity condition to

‖M−1‖ ≤ C ∀M ∈ ∂G(x̄).

Remark 2.5 We also can view G as a piecewise smooth equation and apply Algo-
rithm 2.5. In fact, it can be shown that Clarke’s generalized Jacobian is the convex
hull of the Jacobians of all essentially active pieces [123, 134]. We are not going
into details here.

2.4.5.2 Discussion

So far, we have looked at semismooth Newton methods from an abstract point of
view. The main point, however, is to prove semismoothness for concrete instances
of nonsmooth operators. In particular, we aim at reformulating KKT systems arising
in PDE-constrained optimization in the same way as we did this in finite dimensions
in the above section. We will investigate this in detail in Sect. 2.5.

It should be mentioned that the class of semismooth Newton method includes as
a special case the primal dual active set strategy, see [13, 69].

2.5 Semismooth Newton Methods in Function Spaces

In the finite dimensional setting we have shown that variational inequalities and
complementarity conditions can be reformulated as nonsmooth equations. We also
described how generalized Newton methods can be developed that solve these non-
smooth equations.

In Sect. 2.4.5 we introduced the concept of semismoothness for nonsmooth op-
erators and developed superlinearly convergent generalized Newton methods for
semismooth operator equations. We now will show that, similar to the finite dimen-
sional case, it is possible to reformulate variational inequalities and complementarity
conditions in function space.

2.5.1 Pointwise Bound Constraints in L2

Let Ω ⊂ R
n be measurable with measure 0 < |Ω| < ∞. If boundary spaces are con-

sidered, Ω can also be a measurable surface, e.g., the boundary of an open Lipschitz
domain, on which Lp-spaces can be defined.
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We consider the problem

min
u∈L2(Ω)

f (u) a ≤ u ≤ b a.e. on Ω

with f : L2(Ω) → R twice continuously F-differentiable. We can admit unilateral
constraints (a ≤ u or u ≤ b) just as well. To avoid distinguishing cases, we will focus
on the bilateral case a, b ∈ L∞(Ω), b − a ≥ ν > 0 on Ω . We also could consider
problems in Lp(Ω), p �= 2. However, for the sake of compact presentation, we focus
on the case p = 2, which is the most important situation.

It is convenient to transform the bounds to constant bounds, e.g., via

u �→ u − a

b − a
.

Hence, we will consider the problem

min
u∈L2(Ω)

f (u), βl ≤ u ≤ βr a.e. on Ω (2.21)

with constants βl < βr . Let U = L2(Ω) and S = {u ∈ L2(Ω) : βl ≤ u ≤ βr}. We
choose the standard dual pairing 〈·, ·〉U∗,U = (·, ·)L2(Ω) and then have U∗ = U =
L2(Ω). The optimality conditions are

u ∈ S, (∇f (u), v − u)L2(Ω) ≥ 0 ∀v ∈ S.

We now use the projection PS onto S, which is given by

PS(v)(x) = P[βl,βr ](v(x)), x ∈ Ω.

Then the optimality conditions can be written as

Φ(u) := u − PS(u − θ∇f (u)) = 0, (2.22)

where θ > 0 is arbitrary, but fixed. Note that, since PS coincides with the pointwise
projection onto [βl, βr ], we have

Φ(u)(x) = u(x) − P[βl,βr ](u(x) − θ∇f (u)(x)).

Our aim now is to define a generalized differential ∂Φ for Φ in such a way that Φ

is semismooth.
By the chain rule and sum rule that we developed, this reduces to the question

how a suitable differential for the superposition P[βl ,βr ](v(·)) can be defined.

2.5.2 Semismoothness of Superposition Operators

More generally than the superposition operator in the previous subsection, we look
at the superposition operator

Ψ : Lp(Ω)m → Lq(Ω), Ψ (w)(x) = ψ(w1(x), . . . ,wm(x))

with 1 ≤ q ≤ p ≤ ∞.
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Here, ψ : R
m → R is assumed to be Lipschitz continuous. Since we aim at semi-

smoothness of Ψ , it is more than natural to assume semismoothness of ψ . As dif-
ferential we choose Clarke’s generalized differential ∂clψ . Now it is reasonable to
define ∂Ψ in such a way that, for all M ∈ ∂Ψ (w + d), the remainder

|(Ψ (u + d) − Ψ − Md)(x)| = |ψ(w(x) + d(x)) − ψ(w(x)) − (Md)(x)|
becomes pointwise small if |d(x)| is small. By semismoothness of ψ , this, again,
holds true if (Md)(x) ∈ ∂clψ(w(x) + d(x))d(x) is satisfied.

Hence, we define:

Definition 2.2 Let ψ : R
m → R be Lipschitz continuous and (∂clψ -) semismooth.

For 1 ≤ q ≤ p ≤ ∞, consider

Ψ : Lp(Ω)m → Lq(Ω), Ψ (w)(x) = ψ(w1(x), . . . ,wm(x)).

We define the differential

∂Ψ : Lp(Ω)m ⇒ L(Lp(Ω)m,Lq(Ω)),

∂Ψ (w) =
{
M : Mv = gT v, g ∈ L∞(Ω)m, g(x) ∈ ∂clψ(w(x)) for a.a. x ∈ Ω

}
.

The operator Φ in (2.22) is naturally defined as a mapping from L2(Ω) to
L2(Ω). Therefore, since ∇f maps to L2(Ω), we would like the superposition
v �→ P[βl,βr ](v(·)) to be semismooth from L2(Ω) to L2(Ω). But this is not true,
as the following Lemma shows in great generality.

Lemma 2.7 Let ψ : R → R be any Lipschitz continuous function that is not affine
linear. Furthermore, let Ω ⊂ R

n be nonempty, open and bounded. Then, for all
q ∈ [1,∞), the operator

Ψ : Lq(Ω) � u �→ ψ(u(·)) ∈ Lq(Ω)

is not ∂Ψ -semismooth.

Proof Fix b ∈ R and choose gb ∈ ∂ψ(b) Since ψ is not affine linear, there exists
a ∈ R with

ψ(a) �= ψ(b) + gb(a − b).

Hence,

ρ := |ψ(b) − ψ(a) − gb(b − a)| > 0.

Let x0 ∈ Ω and Uε = (x0 − hε, x0 + hε)
n, hε = ε1/n/2. Define

u(x) = a, x ∈ Ω, dε(x) =
{

b − a x ∈ Uε,

0 x /∈ Uε.
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Then

‖dε‖Lq =
(∫

Ω

|dε(x)|q dx

)1/q

=
(∫

Uε

|b − a|qdx

)1/q

= ε1/q |b − a|.

Choose some ga ∈ ∂ψ(a) and define

gε(x) =
{

gb x ∈ Uε,

ga x /∈ Uε.

Then M : Lq(Ω) � v �→ gε · v ∈ Lq(Ω) is an element of ∂Ψ (u + dε). Now, for all
x ∈ Ω ,

|ψ(u(x) + dε(x)) − ψ(u(x)) − gε(x)dε(x)|

=
{

|ψ(b) − ψ(a) − gb(b − a)| = ρ > 0, x ∈ Uε,

|ψ(a) − ψ(a) − ga(a − a)| = 0, x /∈ Uε.

Therefore,

‖Ψ (u + dε) − Ψ (u) − Mdε‖Lq

=
(∫

Ω

|ψ(u(x) + dε(x)) − ψ(u(x)) − gε(x)dε(x)|q dx

)1/q

=
(∫

Uε

ρq dx

)1/q

= ε1/qρ = ρ

|b − a| ‖dε‖Lq .

Note that the trouble is not caused by the nonsmoothness of ψ , but by the non-
linearity of ψ .

Fortunately, Ulbrich [134, 136] proved a result that helps us. See also [69]. To
formulate the result in its full generality, we extend our definition of generalized dif-
ferentials to superposition operators of the form ψ(G(·)), where G is a continuously
F-differentiable operator.

Definition 2.3 Let ψ : R
m → R be Lipschitz continuous and (∂clψ -) semismooth.

Furthermore, let 1 ≤ q ≤ p ≤ ∞ be given, consider

ΨG : Y → Lq(Ω), ΨG(y)(x) = ψ(G(y)(x)),

where G : Y → Lp(Ω)m is continuously F-differentiable and Y is a Banach space.
We define the differential

∂ΨG : Y ⇒ L(Y,Lq(Ω)),

∂ΨG(y) = {
M : Mv = gT (G′(y)v), g ∈ L∞(Ω)m,

g(x) ∈ ∂clψ(G(y)(x)) for a.a. x ∈ Ω
}
.

(2.23)
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Note that this is just the differential that we would obtain by the construction in
part (c) of Theorem 2.10.

Now we can state the following semismoothness result.

Theorem 2.13 Let Ω ⊂ R
n be measurable with 0 < |Ω| < ∞. Furthermore, let

ψ : R
m → R be Lipschitz continuous and semismooth. Let Y be a Banach space,

1 ≤ q < p ≤ ∞, and assume that the operator G : Y → Lq(Ω)m is continuously
F-differentiable and that G maps Y locally Lipschitz continuously to Lp(Ω). Then,
the operator

ΨG : Y → Lq(Ω), ΨG(y)(x) = ψ(G(y)(x)),

is ∂ΨG-semismooth, where ∂ΨG is defined in (2.23).
Addition: Under additional assumptions, the operator ΨG is ∂ΨG-semismooth of

order α > 0 with α appropriate.

A proof can be found in [134, 136].

2.5.3 Pointwise Bound Constraints in L2 Revisited

We return to the operator Φ defined in (2.22). To be able to prove the semismooth-
ness of Φ : L2(Ω) → L2(Ω) defined in (2.22), we thus need some kind of smooth-
ing property of the mapping

u �→ u − θ∇f (u).

Therefore, we assume that ∇f has the following structure:

There exist α > 0 and p > 2 such that

∇f (u) = αu + H(u),

H : L2(Ω) → L2(Ω) continuously F-differentiable,

H : L2(Ω) → Lp(Ω) locally Lipschitz continuous.

(2.24)

This structure is met by many optimal control problems, as illustrated in Sect. 2.5.4.
If we now choose θ = 1/α, then we have

Φ(u) = u − P[βl,βr ](u − (1/α)(αu + B(u))) = u − P[βl,βr ](−(1/α)B(u)).

Therefore, we have achieved that the operator inside the projection satisfies the re-
quirements of Theorem 2.13. We obtain:

Theorem 2.14 Consider the problem (2.21) with βl < βr and let the continu-
ously F-differentiable function f : L2(Ω) → R satisfy condition (2.24). Then, for
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θ = 1/α, the operator Φ in the reformulated optimality conditions (2.22) is ∂Φ-
semismooth with

∂Φ : L2(Ω) ⇒ L(L2(Ω),L2(Ω)),

∂Φ(u) = {
M ; M = I + g

α
· H ′(u), g ∈ L∞(Ω),

g(x) ∈ ∂clP[βl,βr ](−(1/α)H(u)(x)) for a.a. x ∈ Ω
}
.

Here,

∂clP[βl,βr ](t) =

⎧⎪⎨
⎪⎩

{0} t < βl or t > βr,

{1} βl < t < βr,

[0,1] t = βl or t = βr .

Proof Setting q = 2, ψ = P[βl,βr ] and G = −(1/α)H , we can apply Theorem 2.13
and obtain that the operator ΨG : L2(Ω) → L2(Ω) is ∂ΨG-semismooth. Therefore,
Φ = I −ΨG is (I − ∂ΨG)-semismooth by Theorem 2.10. Since ∂Φ = I − ∂ΨG, the
proof is complete.

For the applicability of the semismooth Newton method (Algorithm 2.11) we
need, in addition, the following regularity condition:

‖M−1‖L2(Ω)→L2(Ω) ≤ C ∀M ∈ ∂Φ(u) ∀u ∈ L2(Ω), ‖u − ū‖L2(Ω) < δ.

Sufficient conditions for this regularity assumption in the flavor of second order
sufficient optimality conditions can be found in [134, 135].

2.5.4 Application to Optimal Control

Consider the following elliptic optimal control problem:

min
y∈H 1

0 (Ω),u∈L2(Ω)

J (y,u)
def= 1

2
‖y − yd‖2

L2(Ω)
+ α

2
‖u‖2

L2(Ω)

s.t. Ay = r + Bu, βl ≤ u ≤ βr . (2.25)

Here, y ∈ H 1
0 (Ω) is the state, which is defined on the open bounded domain Ω ⊂

R
n, and u ∈ L2(Ωc) is the control, which is defined on the open bounded domain

Ωc ⊂ R
m. Furthermore, A : H 1

0 (Ω) → H−1(Ω) = H 1
0 (Ω)∗ is a (for simplicity)

linear elliptic partial differential operator, e.g., A = −�, and r ∈ H−1(Ω) is given.
The control operator B : Lp′

(Ωc) → H−1(Ω) is continuous and linear, with
p′ ∈ [1,2) (the reason why we do not choose p′ = 2 here will become clear later;
note however, that L2(Ωc) is continuously embedded in Lp′

(Ωc)). For instance,
distributed control on the whole domain Ω would correspond to the choice Ωc = Ω
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and B : u ∈ Lp′
(Ω) �→ u ∈ H−1(Ω), where p′ is chosen in such a way that H 1

0 (Ω)

is continuously embedded in the dual space Lp(Ω), p = p′/(p′ − 1), of Lp′
(Ω).

The control is subject to pointwise bounds βl < βr . The objective is to drive the
state as close to yd ∈ L2(Ω) as possible. The second part penalizes excessive control
costs; the parameter α > 0 is typically small.

We eliminate the state y via the state equation, i.e., y = y(u) = A−1(r + Bu),
and obtain the reduced problem

min
u∈L2(Ω)

Ĵ (u)
def= J (y(u),u)

def= 1

2
‖y(u) − yd‖2

L2(Ω)
+ α

2
‖u‖2

L2(Ω)

s.t. βl ≤ u ≤ βr .

This problem is of the form (2.21).
For the gradient we obtain

(∇Ĵ (u), d)L2(Ω) = (y(u) − yd, y′(u)d)L2(Ω) + α(u, d)L2(Ωc)

= (y′(u)∗(y(u) − yd) + αu,d)L2(Ωc)
.

Therefore,

∇Ĵ (u) = y′(u)∗(y(u) − yd) + αu = B∗(A−1)∗(A−1(r + Bu) − yd) + αu

= αu + B∗(A−1)∗(A−1(r + Bu) − yd)
def= αu + H(u).

Since B ∈ L(Lp′
(Ωc),H

−1(Ω)), we have B∗ ∈ L(H 1
0 (Ω),Lp(Ωc)) with p =

p′/(p′ − 1) > 2. Hence, the affine linear operator

H(u) = B∗(A−1)∗(A−1(r + Bu) − yd)

is a continuous affine linear mapping L2(Ωc) → Lp(Ω).
Therefore, we can apply Theorem 2.13 to rewrite the optimality conditions as a

semismooth operator equation

Φ(u)
def= u − P[βl,βr ](−(1/α)H(u)) = 0.

The Newton system reads
(

I + 1

α
gk · H ′(uk)

)
sk = −Φ(uk), (2.26)

where g · H ′(u) stands for v �→ g · (H ′(u)v) and gk ∈ L∞(Ωc) is chosen such that

gk(x)

⎧⎪⎨
⎪⎩

= 0 −(1/α)H(uk)(x) /∈ [βl, βr ],
= 1 −(1/α)H(uk)(x) ∈ (βl, βr),

∈ [0,1] −(1/α)H(uk)(x) ∈ {βl, βr}.
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The linear operator on the left has the form

Mk
def= I + 1

α
gk · H ′(uk) = I + 1

α
gk · B∗(A−1)∗A−1B.

For solving (2.26), it can be advantageous to note that sk solves (2.26) if and only if
sk = dk

u and (dk
y , dk

u, dk
μ)T solves

⎛
⎜⎜⎝

I 0 A∗

0 I − 1
α
gk · B∗

A −B 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

dk
y

dk
u

dk
μ

⎞
⎟⎟⎠ =

⎛
⎜⎝

0

−Φ(uk)

0

⎞
⎟⎠ . (2.27)

As we will see later in Sect. 2.8.2, this is system is amenable to multigrid methods.

2.5.5 General Optimization Problems with Inequality Constraints
in L2

We now consider problems of the form

min
w∈W

f (w) s.t. e(w) = 0, cj (w) ≤ 0 a.e. on Ωj , j = 1, . . . ,m.

Here W and Z are Banach spaces, f : W → R, e : W → Z, and cj : W → L2(Ωj )

are twice continuously F-differentiable. The sets Ωj ⊂ R
nj are assumed to be mea-

surable and bounded.
This, in particular, includes control-constrained optimal control problems with

L2-control u and state y ∈ Y :

min
y∈Y,u∈L2(Ω)

J (y,u) s.t. e(y,u) = 0, ai ≤ ui ≤ bi, i = 1, . . . , l,

with y ∈ Y denoting the state, u ∈ L2(Ω1) × · · · × L2(Ωl) denoting the controls,
and ai, bi ∈ L∞(Ωi).

In this case, we have

w = (y,u), m = 2l, c2i−1(y,u) = ai − ui,

c2i (y, u) = ui − bi, i = 1, . . . , l.

To simplify the presentation, consider the case m = 1, i.e.,

min
w∈W

f (w) s.t. e(w) = 0, c(w) ≤ 0 a.e. on Ω. (2.28)
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The Lagrange function is given by

L : W × L2(Ω) × Z∗ → R,

L(w,λ,μ) = f (w) + (λ, c(w))L2(Ω) + 〈μ,e(w)〉Z∗.Z.

Assuming that a CQ holds at the solution w̄ ∈ W , the KKT conditions hold:
There exist λ̄ ∈ L2(Ω) and μ̄ ∈ Z∗ such that (w̄, λ̄, μ̄) satisfies

Lw(w̄, λ̄, μ̄) = 0, (2.29)

e(w̄) = 0, (2.30)

c(w̄) ≤ 0, λ̄ ≥ 0, (λ̄, c(w̄))L2(Ω) = 0. (2.31)

The last line can equivalently be written as VI(−c(w̄),K) with K = {u ∈ L2(Ω) :
u ≥ 0} and this VI can again be rewritten using the projection onto K:

λ̄ − PK(λ̄ + θc(w̄)) = 0

with fixed θ > 0. Since PK(u) = P[0,∞)(u(·)), we again have to deal with a super-
position operator.

To make the whole KKT system a semismooth equation, we need to get a
smoothing operator inside of the projection.

We need additional structure to achieve this. Since it is not very enlightening to
define this structure in full generality without giving a motivation, we look at an
example first.

2.5.6 Application to Elliptic Optimal Control Problems

2.5.6.1 Distributed Control

Very similar as in Sect. 2.5.4, we consider the following control-constrained elliptic
optimal control problem

min
y∈H 1

0 (Ω),u∈L2(Ω)

J (y,u)
def= 1

2
‖y − yd‖2

L2(Ω) + α

2
‖u‖2

L2(Ω)

s.t. Ay = r + Bu, u ≤ b.

(2.32)

Here Ω ⊂ R
n is an open bounded domain and A : H 1

0 (Ω) → H−1(Ω) is a second
order linear elliptic operator, e.g., A = −�. Furthermore, b ∈ L∞(Ω) is an upper
bound on the control, r ∈ H−1(Ω) is a source term, and B ∈ L(Lp′

(Ωc),H
−1(Ω)),

p′ ∈ [1,2) is the control operator. For a more detailed explanation of the problem
setting, see Sect. 2.5.4.
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We convert this control problem into the form (2.28) by setting

w = (y,u), W = Y × U, Y = H 1
0 (Ω), U = L2(Ω),

Z = H−1(Ω), e(y,u) = Ay − Bu − r, c(y,u) = u − b.

Note that e and c are continuous affine linear operators. Hence,

ey(y,u) = A, eu(y,u) = −B, cy(y,u) = 0, cu(y,u) = I.

The Lagrange function is

L(y,u,λ,μ) = J (y,u) + (λ, c(y,u)L2(Ω)) + 〈μ,e(y,u)〉H 1
0 (Ω),H−1(Ω).

We write down the optimality conditions:

Ly(y,u,λ,μ) = Jy(y,u) + cy(y,u)∗λ + ey(y,u)∗μ = y − yd + A∗μ = 0,

Lu(y,u,λ,μ) = Ju(y,u) + cu(y,u)∗λ + eu(y,u)∗μ = αu + λ − B∗μ = 0,

λ ≥ 0, c(y,u) = u − b ≤ 0, (λ, c(y,u))L2(Ω) = (λ,u − b)L2(Ω) = 0,

e(y,u) = Ay − Bu − r = 0.

The second equation yields λ = B∗μ − αu and inserting this, we arrive at

A∗μ = −(y − yd), (adjoint equation)

B∗μ − αu ≥ 0, u ≤ b, (B∗μ − αu,u − b)L2(Ω) = 0,

Ay = r + Bu. (state equation)

We can reformulate the complementarity condition by using the projection P[0,∞)

as follows:

b − u − P[0,∞)(b − u − θ(B∗μ − αu)) = 0.

If we choose θ = 1/α, this simplifies to

Φ(u,μ) := u − b + P[0,∞)(b − (1/α)B∗μ) = 0.

Since B∗ ∈ L(H 1
0 (Ω),Lp(Ω)) with p = p′/(p′ − 1) > 2, we see that

(u,μ) ∈ L2(Ω) × H 1
0 (Ω) �→ b − (1/α)B∗μ ∈ Lp(Ω)

is continuous and affine linear, and thus Φ is ∂Φ-semismooth w.r.t.

∂Φ : L2(Ω) × H 1
0 (Ω) ⇒ L(L2(Ω) × H 1

0 (Ω),L2(Ω)),

∂Φ(u,μ) = {
M; M = (I,−(g/α) · B∗), g ∈ L∞(Ω),

g(x) ∈ ∂clP[0,∞)(b(x) − (1/α)(B∗μ)(x)) for a.a. x ∈ Ω
}
.
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Here,

∂clP[0,∞)(t) =

⎧⎪⎨
⎪⎩

{0} t < 0,

{1} t > 0,

[0,1] t = 0.

(2.33)

The semismooth Newton system looks as follows

⎛
⎝I 0 A∗

0 I −(gk/α) · B∗
A −B 0

⎞
⎠

⎛
⎝sy

su
sμ

⎞
⎠ = −

⎛
⎝ yk − yd + A∗μk

uk − b + P[0,∞)(b − (1/α)B∗μk)

Ayk − Buk − r

⎞
⎠ .

(2.34)
It is important to note that this equation has exactly the same linear operator on the
left as the extended system in (2.27). In particular, the regularity condition for the
Newton system (2.34) is closely connected to the regularity condition for (2.26).

2.5.6.2 Neumann Boundary Control

We now consider a similar problem as before, but with Neumann boundary control:

min
y∈H 1(Ω),u∈L2(∂Ω)

J (y,u)
def= 1

2
‖y − yd‖2

L2(Ω) + α

2
‖u‖2

L2(∂Ω)

s.t. −�y + cy = r in Ω ,

∂y

∂ν
= u in ∂Ω ,

u ≤ b in ∂Ω .

(2.35)

Here Ω ⊂ R
n is an open bounded Lipschitz domain and c ∈ L∞(Ω), c > 0. Further-

more, b ∈ L∞(∂Ω) is an upper bound on the control and r ∈ H 1(Ω)∗ is a source
term.

The weak formulation of the state equation including boundary condition is
∫

Ω

(∇y · ∇v + cyv)dx =
∫

Ω

rv dx +
∫

∂Ω

uv dS(x) ∀v ∈ H 1(Ω),

which in operator form can be written as

Ay = r + Bu,

where

B ∈ L(L2(∂Ω),H 1(Ω)∗), 〈Bu,v〉H 1(Ω)∗,H 1(Ω) =
∫

∂Ω

uv dS(x),

A ∈ L(H 1(Ω),H 1(Ω)∗),
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〈Ay,v〉H 1(Ω)∗,H 1(Ω) =
∫

Ω

(∇y · ∇v + cyv)dx ∀v ∈ H 1(Ω).

The adjoint B∗ ∈ L(H 1(Ω),L2(∂Ω)) of B is given by B∗v = v|∂Ω . In fact,

(B∗v,w)L2(∂Ω) = 〈Bw,v〉H 1(Ω)∗,H 1(Ω) =
∫

∂Ω

wv dS(x) = (v,w)L2(∂Ω).

This control problem assumes the form (2.28) by setting

w = (y,u), W = Y × U, Y = H 1(Ω), U = L2(∂Ω),

Z = H 1(Ω)∗, e(y,u) = Ay − Bu − r, c(y,u) = u − b.

The operators e and c are continuous and affine linear with derivatives

ey(y,u) = A, eu(y,u) = −B, cy(y,u) = 0, cu(y,u) = I.

The Lagrange function reads

L(y,u,λ,μ) = J (y,u) + (λ, c(y,u))L2(∂Ω) + 〈μ,e(y,u)〉H 1(Ω),H 1(Ω)∗ .

We write down the optimality conditions:

Ly(y,u,λ,μ) = Jy(y,u) + cy(y,u)∗λ + ey(y,u)∗μ = y − yd + A∗μ = 0,

Lu(y,u,λ,μ) = Ju(y,u) + cu(y,u)∗λ + eu(y,u)∗μ = αu + λ − B∗μ = 0,

λ ≥ 0, c(y,u) = u − b ≤ 0, (λ, c(y,u))L2(∂Ω) = (λ,u − b)L2(∂Ω) = 0,

e(y,u) = Ay − Bu − r = 0.

The second equation yields λ = B∗μ − αu and using this to eliminate λ, we arrive
at

A∗μ = −(y − yd), (adjoint equation)

B∗μ − αu ≥ 0, u ≤ b, (B∗μ − αu,u − b)L2(∂Ω) = 0,

Ay = r + Bu. (state equation)

(2.36)

Inserting Av = A∗v = −�v + cv, B∗v = v|∂Ω , and the definition of B , we can
express this system as a coupled system of elliptic partial differential equations:

−�μ + cμ = −(y − yd) in Ω ,

∂μ

∂ν
= 0 in ∂Ω ,

μ|∂Ω − αu ≥ 0, u ≤ b, (μ|∂Ω − αu)(u − b) = 0 in ∂Ω ,
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−�y + cy = r in Ω ,

∂y

∂ν
= u in ∂Ω .

Here, we have written the complementarity condition pointwise. Note that in the
adjoint equation we have homogeneous Neumann boundary conditions since a Neu-
mann boundary condition ∂y

∂ν
= h would result in the term Bh on the right hand side

of the differential equation. Since no such term is present in the adjoint equation,
we must have h = 0.

We return to the more compact notation of (2.36) and reformulate the comple-
mentarity condition by using the projection P[0,∞) as follows:

b − u − P[0,∞)(b − u − θ(B∗μ − αu)) = 0 in L(∂Ω).

If we choose θ = 1/α, this simplifies to

Φ(u,μ) := u − b + P[0,∞)(b − (1/α)B∗μ) = 0 in L(∂Ω).

From B∗v = v|∂Ω we see that B∗ is a bounded linear operator from H 1(Ω) not only
to L2(∂Ω), but even to H 1/2(∂Ω). By the Sobolev embedding theorem, we can find
p > 2 with H 1/2(∂Ω) ↪→ Lp(∂Ω). We then have B∗ ∈ L(H 1(Ω),Lp(∂Ω)) with
p > 2. Hence,

(u,μ) ∈ L2(∂Ω) × H 1(Ω) �→ b − (1/α)B∗μ ∈ Lp(∂Ω)

is continuous and affine linear, and thus Φ is ∂Φ-semismooth w.r.t.

∂Φ : L2(∂Ω) × H 1(Ω) ⇒ L(L2(∂Ω) × H 1(Ω),L2(∂Ω)),

∂Φ(u,μ) = {
M; M = (I,−(g/α) · B∗), g ∈ L∞(∂Ω),

g(x) ∈ ∂clP[0,∞)(b(x) − (1/α)(B∗μ)(x)) for a.a. x ∈ ∂Ω
}
.

Here, ∂clP[0,∞)(t) is as in (2.33). The semismooth Newton system then is

⎛
⎝I 0 A∗

0 I −(gk/α) · B∗
A −B 0

⎞
⎠

⎛
⎝sy

su
sμ

⎞
⎠ = −

⎛
⎝ yk − yd + A∗μk

uk − b + P[0,∞)(b − (1/α)B∗μk)

Ayk − Buk − r

⎞
⎠ .

(2.37)

2.5.7 Optimal Control of the Incompressible Navier-Stokes
Equations

We now discuss how an optimal control problem governed by the 2d incompress-
ible instationary Navier-Stokes equations can be solved by a semismooth Newton
method. We use exactly the notation of Sect. 1.8. In particular, Ω ⊂ R

2 is the open
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bounded flow domain and I = [0, T ] is the time horizon. By V we denote the clo-
sure of {y ∈ C∞

0 (Ω)2 : ∇ ·y = 0} in H 1
0 (Ω)2 and by H its closure in L2(Ω)2. Given

the resulting Gelfand triple V ↪→ H ↪→ V ∗ we can write the state equation of the
flow control problem as follows: The velocity field y ∈ W(I) satisfies

yt − ν�y + (y · ∇)y = Bu in L2(I ;V ∗),

y|t=0 = y0 in H .
(2.38)

Here, B ∈ L(U,L2(I ;V ∗)) is the control operator and U is a Hilbert space of con-
trols. To be more concrete, we will consider time-dependent control on the right
hand side on a subdomain Ωc of the flow domain Ω . We achieve this by choosing
B ∈ L(L2(I × Ωc)

2,L2(I ;V ∗)),

〈Bu,w〉L2(I ;V ∗),L2(I ;V ) = (u,w)L2(I×Ωc)2 .

This is well defined, since L2(I ;L2(Ω)) = L2(I × Ω).
We consider an objective function of the form

J (y,u) = 1

2

∫ T

0
‖Ny − qd‖2

L2(Ωd)2 dt + α

2
‖u‖2

L2(I×Ωc)2 .

Here, N ∈ L(V ,L2(Ωd)2) is an operator that maps the velocity field to the cor-
responding observation on the set Ωd ⊂ Ω . For instance, N = I or N = curl are
possible choices. On the control we will pose a pointwise constraint

u ∈ C on I × Ωc,

where C ⊂ R
2 is a closed convex set such that the projection PC onto C is semi-

smooth.
We thus consider the problem

min
y,u

J (y,u) s.t. (y,u) satisfy (2.38) and u ∈ C on I × Ωc.

The analysis of this problem was discussed in Sect. 1.8. In particular, for any
u ∈ U the state equation possesses a unique solution y(u) ∈ W(I) and the oper-
ator u �→ y(u) is infinitely F-differentiable. Since the objective function J (y,u)

is continuous and quadratic, it is infinitely F-differentiable. Therefore, the reduced
objective function Ĵ (u) = J (y(u),u) is infinitely F-differentiable. The gradient of
Ĵ (u) can be represented using the adjoint state in the form

∇Ĵ (u) = αu − B∗p1,

where p1 = p1(u) ∈ L2(I ;V ) is the adjoint state corresponding to (y,u) =
(y(u),u) given by the weak solution of the adjoint equation

−(p1)t − (y · ∇)p1 + (∇y)T p1 − ν�p1 = −N∗(Ny − qd) in I × Ω,

p1|t=T = 0 in Ω .
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Due to the structure of B we see that

〈Bu,w〉L2(I ;V ∗),L2(I ;V ) = (u,w)L2(I×Ωc)2 = (u,B∗w)L2(I×Ωc)2 .

Therefore, B∗w = w|I×Ωc .
Since N ∈ L(V ,L2(Ωd)2) , we have N∗ ∈ L(L2(Ωd)2,V ∗) and thus the right

hand side −N∗(Ny(u) − qd) maps u ∈ U = L2(I × Ωc)
2 = L2(I,L2(Ωc)

2) infi-
nitely F-differentiable to L2(I ;V ∗). From the imbedding L2(I ;V ∗) ↪→ W(I)∗ ∩
L4/3(I ;V ∗) and Theorem 1.58 we conclude that the operator

u ∈ U �→ p1(u) ∈ W 4/3(I )

is well-defined and Lipschitz continuous on bounded sets.
Furthermore, it can be shown, see [134, 137], that

W 4/3(I ) ↪→ Lq(I × Ω)2, ∀1 ≤ q <
7

2
.

Thus fixing q ∈ (2,7/2) we obtain that

u ∈ U �→ p1(u) ∈ Lq(I × Ω)

is well-defined and Lipschitz continuous on bounded sets.
We collect what we have found so far

• Ĵ : U → R is infinitely F-differentiable.
• The reduced gradient has the following structure:

∇Ĵ (u) = αu + H(u)

with

H(u) = −B∗p1(u) = −p1(u)|I×Ωc,

where p1(u) ∈ L2(I ;V ) is the adjoint state.
• The operator u ∈ U �→ p1(u) ∈ L2(I ;V ) is infinitely F-differentiable. Further-

more, the operator

u ∈ U �→ p1(u) ∈ W 4/3(I ) ↪→ Lq(I × Ω)

is Lipschitz continuous on bounded sets for q ∈ (2,7/2). From this, it follows
that H : U → U is infinitely F-differentiable and that the operator

u ∈ U �→ H(u) ∈ Lq(I × Ωc)

is Lipschitz continuous on bounded sets.

We can write the first order optimality conditions in the form

u − PC(u − θ∇Ĵ (u)) = 0
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with θ > 0 fixed. Choosing θ = 1/α and inserting the adjoint representation of
∇Ĵ (u), we obtain

u − PC(−(1/α)H(u)) = 0. (2.39)

We made the assumption that PC is semismooth. Due to the properties of the op-
erator H it now follows from Theorem 2.13 that the operator in equation (2.39) is
semismooth from U to U . Hence, a semismooth Newton’s method can be applied
to this optimal control problem. For further details, we refer to [134, 137].

2.6 Sequential Quadratic Programming

2.6.1 Lagrange-Newton Methods for Equality Constrained
Problems

We consider

min
w∈W

f (w) s.t. e(w) = 0 (2.40)

with f : W → R and e : W → Z twice continuously F-differentiable.
If w̄ is a local solution and a CQ holds (e.g., e′(w̄) is surjective), then the KKT

conditions hold:
There exists a Lagrange multiplier μ̄ ∈ Z∗ such that (w̄, μ̄) satisfies

Lw(w̄, μ̄) = f ′(w̄) + e′(w̄)∗μ̄ = 0,

Lμ(w̄, μ̄) = e(w̄) = 0.

Setting

x = (w,μ), G(w,μ) =
(

Lw(w,μ)

e(w)

)
,

the KKT conditions form a nonlinear equation

G(x) = 0.

To this equation we can apply Newton’s method:

G′(xk)sk = −G(xk).

Written in detail,
(

Lww(wk,μk) e′(wk)∗
e′(wk) 0

)(
sk
w

sk
μ

)
= −

(
Lw(wk,μk)

e(wk)

)
. (2.41)

The resulting method is called Lagrange-Newton method. We need a regularity con-
dition: (

Lww(w̄, μ̄) e′(w̄)∗
e′(w̄) 0

)
is boundedly invertible. (2.42)
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Theorem 2.15 Let f and e be twice continuously F-differentiable. Let (w̄, μ̄) be a
KKT pair of (2.40) at which the regularity condition (2.42) holds. Then there exists
δ > 0 such that, for all (w0,μ0) ∈ W ×Z∗ with ‖(w0,μ0) − (w̄, μ̄)‖W×Z∗ < δ, the
Lagrange-Newton iteration converges q-superlinearly to (w̄, μ̄).

If the second derivatives of f and e are locally Lipschitz continuous, then the
rate of convergence is q-quadratic.

Proof We just have to apply the convergence theory of Newton’s method.
If the second derivatives of f and e are locally Lipschitz continuous, then G′ is

locally Lipschitz continuous, and thus we have q-quadratic convergence.

So far, it is not clear what the connection is between the Lagrange-Newton
method and sequential quadratic programming.

However, the connection is very close. Consider the following quadratic pro-
gram:

SQP subproblem:

min
d∈W

〈f ′(wk), d〉W ∗,W + 1

2
〈Lww(wk,μk)d, d〉W ∗,W

s.t. e(wk) + e′(wk)d = 0.

(2.43)

The constraint is linear with derivative e′(wk). As we will show below, e′(wk) is
surjective for wk close to w̄ if e′(w̄) is surjective.

Therefore, at a solution dk of (2.43), the KKT conditions hold:
There exists μk

qp ∈ Z∗ such that (dk,μk
qp) solves

f ′(wk) + Lww(wk,μk)dk + e′(wk)∗μk
qp = 0

e(wk) + e′(wk)dk = 0.
(2.44)

It is now easily seen that (dk,μk
qp) solves (2.44) if and only if (sk

w, sk
μ) = (dk,μk

qp −
μk) solves (2.41).

Hence, locally, the Lagrange-Newton method is equivalent to the following
method:

Algorithm 2.16 (SQP method for equality constrained problems)

0. Choose (w0,μ0) (sufficiently close to (w̄, μ̄)).

For k = 0,1,2, . . . :

1. If (wk,μk) is a KKT pair of (2.40), STOP.
2. Compute the KKT pair (dk,μk+1) of

min
d∈W

〈f ′(wk), d〉W ∗,W + 1

2
〈Lww(wk,μk)d, d〉W ∗,W

s.t. e(wk) + e′(wk)d = 0,
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that is closest to (0,μk).
3. Set wk+1 = wk + dk .

For solving the SQP subproblems in step 2, it is important to know if for wk close
to w̄, the operator e′(wk) is indeed surjective and if there exists a unique solution to
the QP.

Lemma 2.8 Let W be a Hilbert space and Z be a Banach space. Furthermore, let
e : W → Z be continuously F-differentiable and let e′(w̄) be surjective. Then e′(w)

is surjective for all w close to w̄.

Proof We set B = e′(w̄), and B(w) = e′(w), and do the splitting W = W0⊥W1

with W0 = Kern(B). We then see that B|W1 ∈ L(W1,Z) is bijective and thus con-
tinuously invertible (open mapping theorem). Now, by continuity, for w → w̄ we
have B(w) → B in L(W,Z) and thus also B(w)|W1 → B|W1 in L(W1,Z). There-
fore, by the Lemma of Banach, B(w)|W1 is continuously invertible for w close to w̄

and thus B(w) is onto.

Next, we show a second-order sufficient condition for the QP.

Lemma 2.9 Let W be a Hilbert space and Z be a Banach space. Furthermore,
let f : W → R and e : W → Z be twice continuously F-differentiable. Let e(w̄) =
0 and assume that e′(w̄) is surjective. In addition, let the following second-order
sufficient condition hold at (w̄, μ̄):

〈d,Lww(w̄, μ̄)d〉W,W ∗ ≥ α‖d‖2
W ∀d ∈ W with e′(w̄)d = 0,

where α > 0 is a constant. Then, there exists δ > 0 such that for all (w,μ) ∈ W ×Z∗
with ‖(w,μ) − (w̄, μ̄)‖W×Z∗ < δ the following holds:

〈d,Lww(w,μ)d〉W,W ∗ ≥ α

2
‖d‖2

W ∀d ∈ W with e′(w)d = 0.

Proof Set B = e′(w̄), B(w) = e′(w), W0 = Kern(B) and split W = W0⊥W1. Re-
member that B|W1 ∈ L(W1,Z) is continuously invertible.

For any d ∈ Kern(B(w)) there exist unique d0 ∈ W0 and d1 ∈ W1 with d =
d0 + d1. Our first aim is to show that d1 is small. In fact,

‖Bd1‖Z = ‖Bd‖Z = ‖(B − B(w))d‖Z ≤ ‖B − B(w)‖W→Z‖d‖W .

Hence,

‖d1‖W = ‖(B|W1)
−1Bd1‖W ≤ ‖(B|W1)

−1‖Z→W1‖B − B(w)‖W→Z‖d‖W

def= ξ(w)‖d‖W .
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Therefore, setting x = (w,μ),

〈Lww(x)d, d〉W ∗,W

= 〈Lww(x̄)d, d〉W ∗,W + 〈(Lww(x) − Lww(x̄))d, d〉W ∗,W

= 〈Lww(x̄)d0, d0〉W ∗,W + 〈Lww(x̄)(d + d0), d1〉W ∗,W

+ 〈(Lww(x) − Lww(x̄))d, d〉W ∗,W

≥ α‖d0‖2
W − ‖Lww(x̄)‖W→W ∗(‖d‖W + ‖d0‖W)‖d1‖W

− ‖Lww(x) − Lww(x̄)‖W→W ∗‖d‖2
W

≥ (α(1 − ξ2(w)) − 2‖Lww(x̄)‖W→W ∗ξ(w)

− ‖Lww(x) − Lww(x̄)‖W→W ∗)‖d‖2
W

=: α(x)‖d‖2
W .

By continuity, α(x) → α for x → x̄.

A sufficient condition for the regularity condition (2.42) is the following:

Lemma 2.10 Let W be a Hilbert space, let e′(w̄) be surjective (this is a CQ), and
assume that the following second order sufficient condition holds:

〈d,Lww(w̄, μ̄)d〉W,W ∗ ≥ α‖d‖2
W ∀d ∈ W with e′(w̄)d = 0,

where α > 0 is a constant. Then the regularity condition (2.42) holds.

Proof For brevity, set A = Lww(w̄, μ̄) and B = e′(w̄). We consider the unique solv-
ability of (

A B∗
B 0

)(
w

μ

)
=

(
r1

r2

)
.

Denote by W0 the null space of B and by W1 its orthogonal complement. Then
W = W0⊥W1 and W0, W1 are Hilbert spaces.

Since B is surjective, the equation Bw = r2 is solvable and the set of all solutions
is w1(r2) + W0, where w1(r2) ∈ W1 is uniquely determined.

We have

〈d,Ad〉W,W ∗ ≥ α‖d‖2
W ∀d ∈ W0.

Hence, by the Lax-Milgram Lemma 1.8, there exists a unique solution w0(r1, r2) ∈
W0 to the problem

w0 ∈ W0, 〈Aw0, d〉W ∗,W = 〈r1 − Aw1(r2), d〉W ∗,W ∀d ∈ W0.

Since B is surjective, we have for all z∗ ∈ Kern(B∗):

〈z∗,Z〉Z∗,Z = 〈z∗,BW 〉Z∗,Z = 〈B∗z∗,W 〉W ∗,W = 〈{0},W 〉W ∗,W = {0}.
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Hence, Kern(B∗) = {0} and thus B∗ is injective. Also, since BW = Z is closed, the
closed range theorem yields

B∗Z∗ = Kern(B)⊥ = W⊥
0 .

Here, for S ⊂ X

S⊥ = {
x′ ∈ X∗ : 〈x′, s〉X∗,X = 0 ∀s ∈ S

}
.

By construction, r1 − Aw0(r1, r2) − Aw1(r2) ∈ W⊥
0 . Hence, there exists a unique

μ(r1, r2) ∈ Z∗ such that

B∗μ(r1, r2) = r1 − Aw0(r1, r2) − Aw1(r2).

Therefore, we have found the unique solution
(

w

μ

)
=

(
w0(r1, r2) + w1(r2)

μ(r1, r2)

)
.

2.6.2 The Josephy-Newton Method

In the previous section, we were able to derive the SQP method for equality-
constrained problems by applying Newton’s method to the KKT system.

For inequality constrained problems this is not directly possible since the KKT
system consists of operator equations and a variational inequality. As we will see,
such a combination can be most elegantly written as a

2.6.2.1 Generalized Equation

GE(G,N ): 0 ∈ G(x) + N(x).

Here, G : X → Y is assumed to be continuously F-differentiable and N : X ⇒ Y is
a set-valued mapping with closed graph.

For instance, the variational inequality VI(F,S), with F : W → W ∗ and S ⊂ W

closed and convex, can be written as

0 ∈ F(w) + NS(w),

where NS is the normal cone mapping of S:

Definition 2.4 Let S ⊂ W be a nonempty closed convex subset of the Banach
space W . The normal cone NS(w) of S at w ∈ W is defined by

NS(w) =
{{

y ∈ W ∗ : 〈y, z − w〉W ∗,W ≤ 0 ∀z ∈ S
}
, w ∈ S,

∅, w /∈ S.



2 Optimization Methods in Banach Spaces 145

This defines a set-valued mapping NS : W ⇒ W ∗.

The Josephy-Newton method for generalized equations looks as follows:

Algorithm 2.17 (Josephy-Newton method for GE(G,N ))

0. Choose x0 ∈ X (sufficiently close to the solution x̄ of GE(G,N )).

For k = 0,1,2 . . . :

1. STOP if xk solves GE(G,N ) (holds if xk = xk−1).
2. Compute the solution xk+1 of

GE(G(xk) + G′(xk)(· − xk),N) :
0 ∈ G(xk) + G′(xk)(x − xk) + N(x)

that is closest to xk .

In the classical Newton’s method, which corresponds to N(x) = {0} for all x, an
essential ingredient is the regularity condition that G′(x̄) is continuously invertible.

This means that the linearized equation

p = G(x̄) + G′(x̄)(x − x̄)

possesses the unique solution x(p) = x̄ + G′(x̄)−1p, which of course depends lin-
early and thus Lipschitz continuously on p ∈ Y .

The appropriate generalization of this regularity condition is the following:

Definition 2.5 (Strong regularity) The generalized equation GE(G,N ) is called
strongly regular at a solution x̄ if there exist δ > 0, ε > 0 and L > 0 such that,
for all p ∈ Y , ‖p‖Y < δ, there exists a unique x = x(p) ∈ X with ‖x(p) − x̄‖X < ε

such that

p ∈ G(x̄) + G′(x̄)(x − x̄) + N(x)

and x(p) is Lipschitz continuous:

‖x(p1) − x(p2)‖X ≤ L‖p1 − p2‖Y ∀p1,p2 ∈ Y, ‖pi‖X < δ, i = 1,2.

It is a milestone result of Robinson [117] that then the following holds:

Theorem 2.18 Let X, Y , and Z be Banach spaces. Furthermore, let z̄ ∈ Z be fixed
and assume that x̄ is a solution of

GE(G(z̄, ·),N): 0 ∈ G(z̄, x) + N(x)

at which the GE is strongly regular with Lipschitz modulus L. Assume that G is
F-differentiable with respect to x near (z̄, x̄) and that G and Gx are continuous at
(z̄, x̄).
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Then, for every ε > 0, there exist neighborhoods Zε(z̄) of z̄, Xε(x̄) of x̄, and a
mapping x : Zε(z̄) → Xε(x̄) such that, for all z ∈ Zε(z̄), x(z) is the (locally) unique
solution of the generalized equation

0 ∈ G(z, x) + N(x), x ∈ Xε(x̄).

In addition,

‖x(z1) − x(z2)‖X ≤ (L + ε)‖G(z1, x(z2)) − G(z2, x(z2))‖Y ∀z1, z2 ∈ Zε(z̄).

From this, it is not difficult to derive fast local convergence of the Josephy-
Newton method:

Theorem 2.19 Let X, Y be Banach spaces, G : X → Y continuously F-differentia-
ble, and let N : X ⇒ Y be set-valued with closed graph. If x̄ is a strongly regular
solution of GE(G,N ), then the Josephy-Newton method (Algorithm 2.17) is locally
q-superlinearly convergent in a neighborhood of x̄. If, in addition, G′ is α-Hölder
continuous near x̄, then the order of convergence is 1 + α.

Proof For compact notation, we set Bδ(x) = {y ∈ X : ‖y − x‖X < δ}.
Let L be the Lipschitz modulus of strong regularity. We set Z = X, z̄ = x̄ and

consider

Ḡ(z, x)
def= G(z) + G′(z)(x − z).

Since Ḡ(z̄, ·) is affine linear, we have

Ḡ(z̄, x̄)+Ḡx(z̄, x̄)(x− x̄) = Ḡ(z̄, x) = G(z̄)+G′(z̄)(x− z̄) = G(x̄)+G′(x̄)(x− x̄).

Therefore, GE(Ḡ(z̄, ·),N) is strongly regular at x̄ with Lipschitz constant L. Theo-
rem 2.18 is applicable and thus, for ε > 0, there exist neighborhoods Zε(x̄) of z̄ = x̄

and Xε(x̄) of x̄ such that, for all z ∈ Zε(x̄),

0 ∈ Ḡ(z, x) + N(x) = G(z) + G′(z)(x − z) + N(x), x ∈ Xε(x̄)

has a unique solution x(z) that satisfies

∀z1, z2 ∈ Zε(z̄) = Zε(x̄) :
‖x(z1) − x(z2)‖X ≤ (L + ε)‖Ḡ(z1, x(z2)) − Ḡ(z2, x(z2))‖Y

= (L + ε)‖G(z1) − G(z2) + G′(z1)(x(z2) − z1) − G′(z2)(x(z2) − z2)‖Y .

If we choose z1 = z ∈ Zε(x̄) and z2 = x̄, we obtain x(z2) = x̄ and thus for all
z ∈ Zε(x̄):

‖x(z) − x̄‖X ≤ (L + ε)‖G(z) − G(x̄) + G′(z)(x̄ − z) − G′(x̄)(x̄ − x̄)‖Y

= (L + ε)‖G(z) − G(x̄) − G′(z)(z − x̄)‖Y
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≤ (L + ε)‖G(z) − G(x̄) − G′(x̄)(z − x̄)‖Y

+ (L + ε)‖(G′(x̄) − G′(z))(z − x̄)‖Y

≤ (L + ε)‖G(z) − G(x̄) − G′(x̄)(z − x̄)‖Y

+ (L + ε)‖G′(x̄) − G′(z)‖X→Y ‖z − x̄‖X

= o(‖z − x̄‖X) (z → x̄). (2.45)

In the last estimate, we have used the F-differentiability of G and the continuity
of G′.

Now choose δ > 0 such that Bδ(x̄) ⊂ Xε(x̄) and B5δ/2(x̄) ⊂ Zε(x̄). By possibly
reducing δ, we achieve, using (2.45),

‖x(z) − x̄‖X ≤ 1

2
‖z − x̄‖X ∀z ∈ Bδ(x̄).

In particular, this implies

x(z) ∈ Bδ/2(x̄) ⊂ Bδ(x̄) ∀ z ∈ Bδ(x̄).

Now observe that, for xk ∈ Bδ(x̄), the unique solution of GE(G(xk) + G′(xk)(· −
xk),N ) in Xε(x̄) is given by x(xk) ∈ Bδ/2(x̄).

From

‖x(xk) − xk‖ ≤ ‖x(xk) − x̄‖X + ‖x̄ − xk‖X <
δ

2
+ δ = 3

2
δ

and B5δ/2(x̄) ⊂ Xε(x̄) we conclude that x(xk) is the solution of GE(G(xk) +
G′(xk)(· − xk),N ) that is closest to xk . Hence, for xk ∈ Bδ(x̄), we have

xk+1 = x(xk) ∈ Bδ/2(x̄) ⊂ Bδ(x̄), ‖xk+1 − x̄‖X ≤ 1

2
‖xk − x̄‖X.

Thus, if we choose x0 ∈ Bδ(x̄), we obtain by induction xk → x̄.
Furthermore, from (2.45) it follows that

‖xk+1 − x̄‖X = ‖x(xk) − x̄‖X = o(‖xk − x̄‖X) (k → ∞).

This proves the q-superlinear convergence.
If G′ is α-order Hölder continuous near x̄ with modulus Lα > 0, then we can

improve the estimate (2.45):

‖x(z) − x̄‖X ≤ (L + ε)‖G(z) − G(x̄) − G′(z)(z − x̄)‖Y

= (L + ε)

∥∥∥∥∥
∫ 1

0
(G′(x̄ + t (z − x̄)) − G′(z))(z − x̄) dt

∥∥∥∥∥
Y

≤ (L + ε)

∫ 1

0
‖G′(x̄ + t (z − x̄)) − G′(z)‖X→Y dt‖z − x̄‖X
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≤ (L + ε)

∫ 1

0
Lα(1 − t)α‖z − x̄‖α

X dt ‖z − x̄‖X

= L + ε

1 + α
Lα‖z − x̄‖1+α

X

= O(‖z − x̄‖1+α
X ) (z → x̄).

Hence,

‖xk+1 − x̄‖X = ‖x(xk) − x̄‖X = O(‖xk − x̄‖1+α

X ) (k → ∞).

2.6.3 SQP Methods for Inequality Constrained Problems

We consider the problem

min
w∈W

f (w) s.t. e(w) = 0, c(w) ∈K, (2.46)

with f : W → R, e : W → Z, and c : W → R twice continuously F-differentiable.
Furthermore, W , Z, R are Banach spaces, R is reflexive (i.e., R∗∗ = R), and K ⊂ R

is a nonempty closed convex cone.
For this problem, we define the Lagrange function

L(w,λ,μ) = f (w) + 〈λ, c(w)〉R∗,R + 〈μ,e(w)〉Z∗,Z.

We will need the notion of the polar cone.

Definition 2.6 Let X be a Banach space and let K ⊂ X be a nonempty closed con-
vex cone. Then the polar cone of K is defined by

K◦ = {
y ∈ X∗ : 〈y, x〉X∗,X ≤ 0 ∀x ∈ K

}
.

Obviously, K◦ is a closed convex cone.

Recall also the definition of the normal cone mapping (Def. 2.4).
Under a constraint qualification, see Sect. 1.7.3.2, the following KKT conditions

hold:
There exist Lagrange multipliers λ̄ ∈ K◦ and μ̄ ∈ Z∗ such that (w̄, λ̄, μ̄) satisfies

Lw(w̄, λ̄, μ̄) = 0,

c(w̄) ∈K, λ̄ ∈K◦, 〈λ̄, c(w̄)〉R∗,R = 0,

e(w̄) = 0.
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The second condition can be shown to be equivalent to VI(−c(w̄),K◦). This is a
VI w.r.t. λ with a constant operator parameterized by w̄.

Now comes the trick, see, e.g., [5]:
By means of the normal cone NK◦ , it is easily seen that VI(−c(w),K◦) is equiv-

alent to the generalized equation

0 ∈ −c(w) + NK◦(λ).

Therefore, we can write the KKT system as a generalized equation:

0 ∈
⎛
⎝Lw(w,λ,μ)

−c(w)

e(w)

⎞
⎠ +

⎛
⎝ {0}

NK◦(λ)

{0}

⎞
⎠ . (2.47)

Setting

N(w,λ,μ) =
⎛
⎝ {0}

NK◦(λ)

{0}

⎞
⎠ ,

and noting Lλ(w,λ,μ) = c(w), Lμ(w,λ,μ) = e(w), we can write (2.47) very
compactly as GE(−L′,N ).

The closed graph of the normal cone mapping is proved in the next lemma.

Lemma 2.11 Let X be a Banach spaces and S ⊂ X be nonempty, closed, and con-
vex. Then the normal cone mapping NS has closed graph.

Proof Let graph(NS) � (xk, yk) → (x̄, ȳ). Then yk ∈ NS(xk) and thus xk ∈ S, since
otherwise NS(xk) would be empty. Since S is closed, x̄ ∈ S follows. Now, for all
z ∈ S, by continuity

〈ȳ, z − x̄〉X∗,X = lim
k→∞〈yk, z − xk〉X∗,X︸ ︷︷ ︸

≤0

≤ 0,

hence ȳ ∈ NS(x̄). Therefore, (x̄, ȳ) ∈ graph(NS).

If we now apply the Josephy-Newton method to (2.47), we obtain the following
subproblem (we set xk = (wk,λk,μk)):

0 ∈
⎛
⎝Lw(xk)

−c(wk)

e(wk)

⎞
⎠ +

⎛
⎝Lww(xk) c′(wk)∗ e′(wk)∗

−c′(wk) 0 0
e′(wk) 0 0

⎞
⎠

⎛
⎝w − wk

λ − λk

μ − μk

⎞
⎠ +

⎛
⎝ {0}

NK◦(λ)

{0}

⎞
⎠ .

(2.48)
It is not difficult to see that (2.48) are exactly the KKT conditions of the following
quadratic optimization problem:
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2.6.3.1 SQP Subproblem

min
w∈W

〈f ′(wk),w − wk〉W ∗,W + 1

2
〈Lww(xk)(w − wk),w − wk〉W ∗,W

s.t. e(wk) + e′(wk)(w − wk) = 0, c(wk) + c′(wk)(w − wk) ∈ K.

In fact, the Lagrange function of the QP is

Lqp(x) = 〈f ′(wk),w − wk〉W ∗,W + 1

2
〈Lww(xk)(w − wk),w − wk〉W ∗,W

+ 〈λ, c(wk) + c′(wk)(w − wk)〉W ∗,W

+ 〈μ,e(wk) + e′(wk)(w − wk)〉Z∗,Z.

Since

Lqp
w (x) = f ′(wk) + Lww(xk)(w − wk) + c′(wk)∗λ + e′(wk)∗μ

= Lw(xk) + Lww(xk)(w − wk) + c′(wk)∗(λ − λk) + e′(wk)∗(μ − μk),

we see that writing down the KKT conditions for the QP in the form (2.47) gives
exactly the generalized equation (2.48).

We obtain:

Algorithm 2.20 (SQP method for inequality constrained problems)

0. Choose (w0, λ0,μ0) (sufficiently close to (w̄, λ̄, μ̄)).

For k = 0,1,2, . . . :

1. If (wk,λk,μk) is a KKT triple of (2.46), STOP.
2. Compute the KKT triple (dk, λk+1,μk+1) of

min
d∈W

〈f ′(wk), d〉W ∗,W + 1

2
〈Lww(wk,λk,μk)d, d〉W ∗,W

s.t. e(wk) + e′(wk)d = 0, c(wk) + c′(wk)d ∈ K,

that is closest to (0, λk,μk).
3. Set wk+1 = wk + dk .

Since this method is the Josephy-Newton algorithm applied to (2.47), we can de-
rive local convergence results immediately if Robinson’s strong regularity condition
is satisfied. This condition has to be verified from case to case and is connected to
second order sufficient optimality conditions. As an example where strong regular-
ity is verified for an optimal control problem, we refer to [56].
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2.6.3.2 Application to Optimal Control

For illustration, we consider the nonlinear elliptic optimal control problem

min
y∈H 1

0 (Ω),u∈L2(Ω)

J (y,u)
def= 1

2
‖y − yd‖2

L2(Ω)
+ α

2
‖u‖2

L2(Ω)

s.t. Ay + y3 + y = u, u ≤ b. (2.49)

Here, y ∈ H 1
0 (Ω) is the state, which is defined on the open bounded domain Ω ⊂

R
n, n ≤ 3, and u ∈ L2(Ω) is the control. Furthermore, A : H 1

0 (Ω) → H−1(Ω) =
H 1

0 (Ω)∗ is a linear elliptic partial differential operator, e.g., A = −�. Finally b ∈
L∞(Ω) is an upper bound on the control. We convert this control problem into the
form (2.46) by setting

Y = H 1
0 (Ω), U = L2(Ω), Z = H−1(Ω),

e(y,u) = Ay + y3 + y − u, c(y,u) = u − b,

K =
{
u ∈ L2(Ω) : u ≤ 0 a.e. on Ω

}
.

One can show (note n ≤ 3) that the operator e is twice continuously F-differentiable
with

ey(y,u) = A + 3y2 · I + I, eyy(y,u)(h1, h2) = 6yh1h2

(the other derivatives are obvious due to linearity). Therefore, given xk =
(yk, uk, λk,μk), the SQP subproblem reads

min
dy,du

(yk − yd, dy)L2(Ω) + α(uk, du)L2(Ω) + 1

2
‖dy‖2

L2(Ω)

+ 1

2
〈μk,6ykd2

y 〉H 1
0 (Ω),H−1(Ω) + α

2
‖du‖2

L2(Ω)

s.t. Ayk + (yk)3 + yk − uk + Ady + 3(yk)2dy + dy − du = 0,

uk + du ≤ b.

2.7 State-Constrained Problems

So far, we focused on optimization problems with control constraints. Only very
recently, advances in the analysis of Newton based algorithms for state constrained
problems have been made and much is to be done yet. We cannot go into a detailed
discussion of this topic here. Rather, we just briefly sketch a couple of promising
approaches that are suitable for state constrained optimization problems.
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2.7.1 SQP Methods

In the case of SQP methods, state constraints do not pose direct conceptual difficul-
ties, at least not at a first glance. In fact, sequential quadratic programming is ap-
plicable to very general problem settings. The constraints are linearized to generate
the QP subproblems, i.e., state constraints arise as linearized state constraints in the
subproblems and the difficulties of dealing with state constraints is thus transported
to the subproblems. However, the efficient solution of the QP subproblems is not
the only challenge. In fact, it is important to emphasize that second order optimality
theory is challenging in the case of state constraints. Second order sufficient opti-
mality conditions are closely linked to strong regularity of the generalized equation
corresponding to the KKT conditions. Therefore, proving fast local convergence of
SQP methods for problems with state constraints is challenging. Recent progress in
second order optimality theory, e.g., [31, 57] may help paving the ground for future
progress in this field.

2.7.2 Semismooth Newton Methods

The application of semismooth reformulation techniques for state constraints poses
principal difficulties. In fact, consider for illustration the following model problem:

min
y,u

J (y,u) := 1

2
‖y − yd‖2

L2(Ω)
+ α

2
‖u‖2

L2(Ω)

s.t. −�y = u on Ω,

y = 0 on ∂Ω,

y ≤ b on Ω.

(2.50)

Here, n ≤ 3 and Ω ⊂ R
n is open and bounded with C2 boundary. Furthermore, b ∈

H 2(Ω), b > 0, α > 0, and yd ∈ L2(Ω). From regularity results, see Theorem 1.28,
we know that for u ∈ U := L2(Ω) there exists a unique weak solution y ∈ Y :=
H 1

0 (Ω) ∩ H 2(Ω) ↪→ C(Ω̄) of the state equation. The existence and uniqueness of
a solution (ȳ, ū) ∈ Y × U is easy to show by standard arguments.

Similar to the analysis of problem (1.144) it can be shown, see, e.g., [12], that
the following optimality conditions hold at the solution: There exists a regular Borel
measure μ̄ ∈M(Ω) and an adjoint state p̄ ∈ L2(Ω) such that

−�ȳ = ū on Ω, (2.51)

ȳ = 0 on ∂Ω, (2.52)

(p̄,−�v)L2(Ω) + 〈μ̄, v〉M(Ω),C(Ω̄) = (yd − ȳ, v)L2(Ω) ∀v ∈ Y, (2.53)

ȳ ≤ b, 〈μ̄, v − ȳ〉M(Ω),C(Ω̄) ≤ 0 ∀v ∈ C(Ω̄), v ≤ b, (2.54)
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αū − p̄ = 0 in Ω . (2.55)

The difficulty now is that the complementarity condition (2.54) between the function
ȳ and the measure μ̄ cannot be written in a pointwise fashion. Hence, nonsmooth
pointwise reformulations as needed for semismooth Newton methods are not possi-
ble.

To avoid this difficulty, several approaches were presented recently.

2.7.2.1 Moreau-Yosida Regularization

One possibility is to treat the state constraint by a Moreau-Yosida regularization. The
state constraint is converted to a penalty term, resulting in the following Moreau-
Yosida regularized problem:

min
1

2
‖y − yd‖2

L2(Ω)
+ α

2
‖u‖2

L2(Ω)
+ 1

2γ
‖max(0, μ̂ + γ (y − b))‖2

L2(Ω)

s.t. −�y = u on Ω,

y = 0 on ∂Ω.

(2.56)

Here γ > 0 is a penalty parameter and μ̂ ≥ 0, μ̂ ∈ L2(Ω) is a shift parameter. For
this problem without inequality constraints, the optimality conditions are

−�ȳγ = ūγ on Ω, (2.57)

ȳγ = 0 on ∂Ω, (2.58)

−�p̄γ = yd − ȳγ − max(0, μ̂ + γ (ȳγ − b)) on Ω (2.59)

p̄γ = 0 on ∂Ω, (2.60)

αūγ − p̄γ = 0 on Ω. (2.61)

To make this system more similar to the optimality conditions (2.51)–(2.55), we
introduce

μ̄γ = max(0, μ̂ + γ (ȳγ − b)).

We then can write the KKT conditions (2.57)–(2.61) in the form

−�ȳγ = ūγ on Ω, (2.62)

ȳγ = 0 on ∂Ω, (2.63)

−�p̄γ + μ̄γ = yd − ȳγ on Ω, (2.64)

p̄γ = 0 on ∂Ω, (2.65)

μ̄γ = max(0, μ̂ + γ (ȳγ − b)) on Ω, (2.66)

αūγ − p̄γ = 0 on Ω. (2.67)
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For further discussion, we rewrite (2.66) as follows

0 = μ̄γ − max(0, μ̂ + γ (ȳγ − b))

= μ̄γ − max

(
0, μ̄γ + γ

(
ȳγ − b + 1

γ
(μ̂ − μ̄γ )

))
. (2.68)

If, just for an informal motivation, we suppose for a moment that (μ̂ − μ̄γ )/γ be-
comes small for large γ , then we can interpret (2.68) as an approximation of

μ̄γ = max(0, μ̄γ + γ (ȳγ − b)). (2.69)

From earlier considerations we know that (2.69) is equivalent to

μ̄γ ≥ 0, ȳγ − b ≤ 0, μ̄γ (ȳγ − b) = 0,

which can be interpreted as a strong formulation of (2.54). This demonstrates the
role of (2.66) as an approximation of (2.54).

We collect some results concerning the regularized solution tuple (ȳγ , ūγ ,

p̄γ , μ̄γ ), which we call primal dual path. The details can be found in [66, 67]:
For any γ0 > 0, the primal dual path γ ∈ [γ0,∞) �→ (ȳγ , ūγ , p̄γ , μ̄γ ) can be

shown to be bounded in Y × U × L2(Ω) × Y ∗ and Lipschitz continuous. In
addition, γ ∈ (0,∞) → μ̄γ ∈ L2(Ω) is locally Lipschitz continuous. Moreover
(ȳγ , ūγ , p̄γ , μ̄γ ) converges weakly to (ȳ, ū, p̄, μ̄) as γ → ∞ and the convergence
(ȳγ , ūγ ) → (ȳ, ū) is even strong in Y × U .

The idea is now to apply a semismooth Newton method to (2.62)–(2.67) for solv-
ing (2.56) approximately and to drive γ to infinity in an outer iteration. The analysis
of this approach was carried out in, e.g., [66, 67]. The adaption of the parameter γ

can be controlled by models of the optimal value function along the path.

2.7.2.2 Lavrentiev Regularization

A second approach to state constrained problems is Lavrentiev regularization [103,
104]. We again consider the problem (2.50). The idea is to replace the constraint

y ≤ b

by

y + εu ≤ b

with a parameter ε > 0. If we then introduce the new artificial control w = y +
εu, we have u = (w − y)/ε and thus can express u in terms of w. The Lavrentiev
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regularized problem, transformed to w, then is given by

min J (y,w) := 1

2
‖y − yd‖2

L2(Ω)
+ α

2ε2
‖w − y‖2

L2(Ω)

s.t. −ε�y + y = w on Ω,

y = 0 on ∂Ω,

w ≤ b on Ω.

(2.70)

Except for the modified L2-regularization, this problem has the form of a control-
constrained elliptic optimal control problem. It is not difficult to see that it is
uniquely solvable and can be handled by semismooth Newton techniques.

Under suitable assumptions, it can be shown, see [104], that the regularized so-
lution (ȳε, ūε) converges strongly to the solution (ȳ, ū) of (2.50) as ε → 0+.

2.8 Further Aspects

2.8.1 Mesh Independence

For numerical computations, we have to discretize the problem (Finite elements,
finite differences, . . . ) and to apply the developed optimization methods to the dis-
cretized, finite dimensional problem. One such situation would be, for instance, to
apply an SQP method to the discretization (Ph) of the infinite dimensional prob-
lem (P). If this is properly done, we can interpret the discrete SQP method as an
inexact (i.e. perturbed) version of the SQP method applied to (P).

Abstractly speaking, we have an infinite dimensional problem (P) and an algo-
rithm A for its solution. Furthermore, we have a family of finite dimensional ap-
proximations (Ph) of (P), and discrete versions Ah of algorithm A. Here h > 0 de-
notes the accuracy of discretization (with increasing accuracy as h → 0). Starting
from x0 and the corresponding discrete point x0

h , respectively, the algorithms A and
Ah will generate sequences (xk) and (xk

h), respectively. Mesh independence means
that the convergence behavior of (xk) and (xk

h) become more and more alike as
the discretization becomes more and more accurate, i.e., as h → 0. This means, for
instance, that q-superlinear convergence of Alg. A on a δ-neighborhood of the solu-
tion implies the same rate of convergence for Alg. Ah on a δ-neighborhood of the
corresponding discrete solution as soon as h is sufficiently small.

Mesh independence results for Newton’s method were established in, e.g.,
[3, 44]. The mesh independence of SQP methods and Josephy-Newton methods was
shown, e.g., in [6, 45]. Furthermore, the mesh independence of semismooth Newton
methods was established in [68].
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2.8.2 Application of Fast Solvers

An important ingredient in PDE constrained optimization is the combination of op-
timization methods with efficient solvers (sparse linear solvers, multigrid, precon-
ditioned Krylov subspace methods, etc.). It is by far out of the scope of this chapter
to give details. Instead, we focus on just two simple examples.

For both semismooth reformulations of the elliptic control problems (2.25) and
(2.32), we showed that the semismooth Newton system is equivalent to

⎛
⎜⎝

I 0 A∗

0 I − 1

α
gk · B∗

A −B 0

⎞
⎟⎠

⎛
⎝sk

y

sk
u

sk
μ

⎞
⎠ =

⎛
⎝rk

1
rk

2
rk

3

⎞
⎠ (2.71)

with appropriate right hand side. Here A ∈ L(H 1
0 (Ω),H−1(Ω)) is an elliptic oper-

ator, B ∈ L(Lp′
(Ωc),H

−1(Ω)) with p′ ∈ [1,2), and gk ∈ L∞(Ωc) with gk ∈ [0,1]
almost everywhere. We can do block elimination to obtain

⎛
⎜⎜⎜⎝

I A∗ 0

A − 1

α
B(gk · B∗) 0

0 −gk

α
· B∗ I

⎞
⎟⎟⎟⎠

⎛
⎝sk

y

sk
μ

sk
u

⎞
⎠ =

⎛
⎝ rk

1
Brk

2 + rk
3

rk
2

⎞
⎠ .

The first two rows form a 2 × 2 elliptic system for which very efficient fast solvers
(e.g., multigrid [62]) exist.

Similar techniques can successfully be used, e.g., for elastic contact prob-
lems [139].

2.8.3 Other Methods

Our treatment of Newton-type methods is not at all complete. There exist, for in-
stance, interior point methods that are very well suited for optimization problems in
function spaces, see, e.g., [121, 122, 138, 140, 145].



Chapter 3
Discrete Concepts in PDE Constrained
Optimization

Michael Hinze

Abstract In the present chapter we give an introduction to discrete concepts for
optimization problems with PDE constraints. As models for the state we consider
elliptic and parabolic PDEs which are well understood from the analytical point of
view. This allows to focus on structural aspects in discretization. We discuss and
compare the approaches First discretize, then optimize and First optimize, then dis-
cretize, and introduce a variational discrete concept which avoids explicit discretiza-
tion of the controls. We investigate problems with general constraints on the control,
and also consider pointwise bounds on the state, and on the gradient of the state. We
present error analysis for the variational discrete concept and accomplish our ana-
lytical findings with numerical examples which confirm our analytical results.

3.1 Introduction

This chapter presents an introduction to discrete concepts in PDE constrained opti-
mization including control and state constraints. So far, concepts without constraints
are fairly well understood, and theory and praxis for control constraints are strongly
emerging. Currently there is a strong focus on the development of reliable numer-
ical approaches for state constraints. This field in many respects requires further
intensive research.

To approach an optimal control problem of the form (1.138) numerically one may
either discretize this problem by substituting all appearing function spaces by finite
dimensional spaces, and all appearing operators by suitable approximate counter-
parts which allow their numerical evaluation on a computer, say. Denoting by h the
discretization parameter, one ends up with the problem

min
(yh,uh)∈Yh×Uh

Jh(yh,uh)

subject to eh(yh,uh)= 0 and ch(yh) ∈Kh, uh ∈Uh
ad, (3.1)
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where Jh : Yh×Uh→R, eh : Yh×Uh→ Z, and ch : Yh→R with Kh ⊂Rh. For the
finite dimensional subspaces one may require Yh ⊂ Y,Uh ⊂U , say, and Kh ⊆ Rh a
closed and convex cone, Uh

ad ⊆ Uh closed and convex. This approach in general is
referred to as first discretize, then optimize and is discussed in Sect. 3.2.2. On the
other hand one may switch to the associated Karush-Kuhn-Tucker system (1.140)–
(1.143) and substitute all appearing function spaces and operators accordingly. This
leads to solving

eh(yh,uh)= 0, ch(yh) ∈Kh, (3.2)

λh ∈Kh
◦, 〈λh, ch(yh)〉R∗,R = 0, (3.3)

Lhy (yh,uh,ph)+ c′h(yh)
∗λh = 0, (3.4)

ūh ∈Uh
ad, 〈Lhu(yh,uh,ph),u− uh〉U∗,U ≥ 0 ∀u ∈Uh

ad (3.5)

for ȳh, ūh, p̄h, λ̄h. This approach in general is referred to as first optimize, then
discretize and is discussed in Sect. 3.2.3. As is shown in Sect. 3.2.5 the special
structure of optimization problems of the form (1.138) allows for discrete concepts
which avoid the (explicit) discretization of the control variables.

Instead of applying discrete concepts to problem (1.138) or (1.140)–(1.143) di-
rectly we may first apply an SQP approach on the continuous level and then apply
first discretize, then optimize to the related linear quadratic constrained subproblems
(compare step 2. of the Josephy-Newton method (2.17)), or first optimize, then dis-
cretize to the SQP systems (2.48) appearing in each iteration of the Josephy-Newton
method on the infinite dimensional level. This is one of our motivations to illustrate
all discrete concepts at hand of linear model PDEs which are well understood w.r.t.
analysis and discretization concepts. This allows us to focus the presentation on
structural aspects inherent in optimal control problems with PDE constraints.

3.2 Control Constraints

3.2.1 Stationary Model Problem

We consider the Mother Problem with control constraints;

(P)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min(y,u)∈Y×U J (y,u) := 1
2‖y − z‖2

L2(Ω)
+ α

2 ‖u‖2
U

s.t.
−�y = Bu in Ω,

y = 0 on ∂Ω,

and
u ∈Uad ⊆U.

(3.6)

Here, α > 0 denotes a constant, Ω ⊂ R
n denotes an open, bounded and suffi-

ciently smooth (or convex polyhedral) domain, Y :=H 1
0 (Ω), the operator B :U→
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H−1(Ω)≡ Y ∗ denotes the (linear, continuous) control operator, and Uad is assumed
to be a closed and convex subset of the Hilbert space U . This problem corresponds
to (1.77) with the setting H = L2(Ω), Q : Y → H denoting the injection, qd = z,
g = 0, Z = Y ∗, Yad = Y , B =−B , and A=−�, compare also problem (1.117).

Let us provide some further examples of control operators and control spaces.

Example 3.1

1. U := L2(Ω), B : L2(Ω)→H−1(Ω) Injection, Uad := {v ∈ L2(Ω);a ≤ v(x)≤
b a.e. in Ω}, a, b ∈ L∞(Ω).

2. U :=R
m, B :Rm→H−1(Ω), Bu :=∑m

j=1 ujFj , Fj ∈H−1(Ω) given , Uad :=
{v ∈R

m;aj ≤ vj ≤ bj }, a < b.

Due to Theorem 1.43 problem P admits a unique solution (y,u) ∈ Y × Uad. Fur-
thermore, using Remark 1.18 (P) equivalently can be rewritten as the optimization
problem

min
u∈Uad

Ĵ (u) (3.7)

for the reduced functional

Ĵ (u) := J (y(u),u)≡ J (SBu,u) (3.8)

over the set Uad, where S : Y ∗ → Y denotes the solution operator associated with
−�. The first order necessary (and here also sufficient) optimality conditions here
take the form

〈Ĵ ′(u), v − u〉U∗,U ≥ 0 for all v ∈Uad (3.9)

where Ĵ ′(u)= αu+B∗S∗(SBu− z)≡ αu+B∗p ∈U∗, with p := S∗(SBu− z) ∈
Y ∗∗ denoting the adjoint variable. Since Y is reflexive here the function p in the
present setting satisfies the adjoint equations

−�p = y − z in Ω,

p = 0 on ∂Ω.
(3.10)

Remark 3.1 What has been stated so far and what follows also applies to more
general elliptic PDEs defined through elliptic operators of the form

Ay := −
n∑

i,j=1

∂xj

(
aij yxi

)+
n∑

i=1

biyxi
+ cy,

combined with Dirichlet, Neumann, or Robin-type boundary conditions. Such op-
erators are considered in by Deckelnick and Hinze in [39] together with state con-
straints.

To discretize (P) we concentrate on finite element approaches and make the fol-
lowing assumptions.
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Assumption 3.1 Ω ⊂ R
n denotes a bounded domain (sufficiently smooth, or con-

vex and polygonal, if only this is required), Ω̄ =⋃nt
j=1 T̄j with admissible quasi-

uniform sequences of partitions {Tj }nt
j=1 of Ω , i.e. with hnt := maxj diamTj and

σnt := minj {sup diamK;K ⊆ Tj } there holds c ≤ hnt

σnt
≤ C uniformly in nt with

positive constants 0 < c ≤ C <∞ independent of nt . We abbreviate τh := {Tj }nt
j=1

and set h= hnt .

In order to tackle (P) numerically we in the following discuss two different ap-
proaches. The first is called First discretize, then optimize, the second First optimize,
then discretize. It will turn out that both approaches under certain circumstances
lead to the same numerical results. However, from a structural point of view they
are different.

3.2.2 First Discretize, Then Optimize

The First discretize, then optimize approach works as follows. All quantities in prob-
lem (P) in (3.6) are discretized a-priori, which results in a finite dimensional opti-
mization problem. To discretize we replace the spaces Y and U by finite dimensional
spaces Yh and Ud , the set Uad by some discrete counterpart Ud

ad, and the functionals,
integrals and dualities by appropriate discrete surrogates. Having in mind Assump-
tion 3.1 we set for k ∈N

Wh := {v ∈ C0(Ω̄);v|Tj
∈ Pk(Tj ) for all 1≤ j ≤ nt} =: 〈φ1, . . . , φng〉, and

Yh := {v ∈Wh,v|∂Ω
= 0} =: 〈φ1, . . . , φn〉 ⊆ Y,

with some 0 < n < ng. The resulting Ansatz for yh then is of the form yh(x) =∑n
i=1 yiφi . Further, with u1, . . . , um ∈ U , we set Ud := 〈u1, . . . , um〉 and Ud

ad :=
Uad ∩Ud . It is convenient to assume that Ud

ad may be represented in the form

Ud
ad =

⎧
⎨

⎩
u ∈U ;u=

m∑

j=1

sju
j , s ∈ S

⎫
⎬

⎭

with S ⊂ R
m denoting a closed, convex set. Finally let zh := Ihz =∑ng

i=1 ziφi ,
where Ih : L2(Ω)→Wh denotes a continuous interpolation operator. Now we re-
place problem (P) by

(P(h,d))

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min(yh,ud )∈Yh×Ud
J(h,d)(y,u) := 1

2‖yh − zh‖2
L2(Ω)

+ α
2 ‖ud‖2

U

s.t.
a(yh, vh)= 〈Bud, vh〉Y ∗,Y for all vh ∈ Yh,

and
ud ∈Ud

ad.

(3.11)
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Here, we have set a(y, v) := ∫

Ω
∇y∇vdx. Introducing the finite element stiff-

ness matrix A := (aij )
n
i,j=1, aij := a(φi,φj ), the finite element Mass matrix

M := (mij )
ng

i,j=1, mij :=
∫

Ω
φiφjdx, the matrix E := (eij )i=1,...,n;j=1,...,m, eij =

〈Buj ,φi〉Y ∗,Y , and the control mass matrix F := (fij )
m
i,j=1, fij := (ui, uj )U , al-

lows us to rewrite (P(h,d)) in the form

(P(n,m))

{
min(y,s)∈Rn×Rm Q(y, s) := 1

2 (y − z)tM(y − z)+ α
2 stF s

s.t. Ay =Es and s ∈ S.
(3.12)

This is now a finite dimensional optimization problem with quadratic objective, lin-
ear equality constraints, and admissibility characterized by the closed, convex set
S ⊂ R

m, compare (1.2). Since the matrix A is symmetric positive definite (spd),
and thus regular problem (P(n,m)) is equivalent to minimizing the reduced func-
tional Q̂(s) :=Q(A−1Es, s) over the set S . It is clear that (P(n,m)) admits a unique
solution (y, s) ∈R

n×S which is characterized by the finite dimensional variational
inequality

(Q̂′(s), t − s)Rm ≥ 0 for all t ∈ S, (3.13)

with Q̂′(s) = αFs + EtA−tM(A−1Es − z) ≡ αFs + Etp, where p :=
A−tM(A−1Es − z) denotes the discrete adjoint vector to whom we associate the
discrete adjoint variable ph :=∑n

i=1 piφi . Comparing this with the expression for
Ĵ ′(u) in (3.8), we note that the operator E here takes the role the control operator
B there, and the inverse of the stiffness matrix A here that of the solution operator
S there.

Problem (P(n,m)) now can be solved numerically with the help of appropriate
solution algorithms, which should exploit the structure of the problem. We refer to
Chap. 2 for a discussion of this issue.

We fix the following

Note 3.1 In the First discretize, then optimize approach the discretization of the
adjoint variable p is determined by the Ansatz for the discrete state yh, more specif-
ically, by the discrete test space used in the variational formulation.

In the First optimize, then discretize approach discussed next, this is different.

3.2.3 First Optimize, Then Discretize

The starting point for the present approach is the system of first order necessary
optimality conditions for problem (P) stated next, compare (1.114)–(1.116);
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(OS)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−�y = Bu in Ω,

y = 0 on ∂Ω,

−�p = y − z in Ω,

p = 0 on ∂Ω,

〈αu+B∗p,v− u〉U∗,U ≥ 0 for all v ∈Uad.

(3.14)

Now we discretize everything related to the state y, the control u, and to func-
tionals, integrals, and dualities as in Sect. 3.2.2. Further, we have the freedom to
also select a discretization of the adjoint variable p. Here we choose continuous
finite elements of order l on τ , which leads to the Ansatz ph(x) =∑q

i=1 piχi(x),
where 〈χ1, . . . , χq〉 ⊂ Y denotes the Ansatz space for the adjoint variable. Form-
ing the adjoint stiffness matrix Ã := (ãij )

q

i,j=1, ãij := a(χi,χj ), the matrix Ẽ :=
(ẽij )i=1,...,q;j=1,...,m, ẽij = 〈Buj ,χi〉Y ∗,Y , and T := (tij )i=1,...,n;j=1,...,q , tij :=∫

Ω
φiχjdx, the discrete analogon to (OS) reads

(OS)(n,q,m)

⎧
⎨

⎩

Ay =Es,

Ãp = T (y − z),

(αFs + Ẽtp, t − s)Rm ≥ 0 for all t ∈ S.

(3.15)

Since the matrices A and Ã are spd, this system is equivalent to the variational
inequality

(αFs + Ẽt Ã−1T (A−1Es − z), t − s)Rm ≥ 0 for all t ∈ S. (3.16)

Before we relate the approaches of Sects. 3.2.2 and 3.2.3 let us give some examples,
compare also Example 3.1.

Example 3.2

1. U := L2(Ω), B : L2(Ω)→H−1(Ω) Injection, Uad := {v ∈ L2(Ω); a ≤ v(x)≤
b a.e. in Ω}, a, b ∈ L∞(Ω). Further let k = l = 1 (linear finite elements for y and
p), Ud := 〈u1, . . . , unt 〉, where uk|Ti

= δki (k, i = 1, . . . , nt) are piecewise con-

stant functions (i.e. m= nt), S :=∏nt
i=1[ai, bi], where ai := a(barycenter(Ti)),

bi := b(barycenter(Ti)).
2. As in 1., but Ud := 〈u1, . . . , ung〉, where uk|Di

= δki (k, i = 1, . . . , ng) are piece-

wise constant functions (i.e. m = ng), with Di denoting the patch associated
to the vertex Pi (i = 1, . . . , ng) of the barycentric dual triangulation of τ ,
S :=∏ng

i=1[ai, bi], where ai := a(Pi), bi := b(Pi).
3. As in 1., but Ud := 〈φ1, . . . , φng〉 (i.e. m = ng), S := ∏ng

i=1[ai, bi], where
ai := a(Pi), bi := b(Pi), with Pi (i = 1, . . . , ng) denoting the vertices of the
triangulation τ .

4. (Compare Example 3.1): As in 1., but U := R
m, B : Rm → H−1(Ω), Bu :=∑m

j=1 ujFj , Fj ∈H−1(Ω) given, Uad := {v ∈R
m;aj ≤ vj ≤ bj }, a < b, Ud :=

〈e1, . . . , em〉 with ei ∈ R
m (i = 1, . . . ,m) denoting the i-th unit vector, S :=

∏ng

i=1[ai, bi] ≡Uad.
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3.2.4 Discussion and Implications

Now let us compare the approaches of the two previous sections. It is clear that
choosing the same Ansatz spaces for the state y and the adjoint variable p in the
First optimize, then discretize approach leads to an optimality condition which is
identical to that of the First discretize, then optimize approach in (3.13), since then
T ≡M . However, choosing a different approach for p in general leads to (3.16)
with a rectangular, non-quadratic matrix T , with the consequence that the matrix
αF + Ẽt Ã−1T A−1E not longer represents a symmetric matrix. This is different
for the matrix Q̂′′(s)= αF +EtA−1MA−1E of the First discretize, then optimize
approach. Moreover, the expression αFs + Ẽt Ã−1T (A−1Es − z) in general does
not represent a gradient, which is different for Q̂′(s)= αFs+EtA−tM(A−1Es−z)

since this in fact is the gradient of the reduced finite dimensional functional Q̂(s).
In many situations of control constrained optimization with PDEs the adjoint

variable p admits more regularity than the state y. For example, if z is a smooth
function, the domain Ω has smooth boundary and B denotes the injection as in
Example 3.1 1., the adjoint variable p admits two more weak derivatives than the
state y, whose regularity in the control constrained case is restricted through the
regularity of the control u, which in the in the case of e.g. box constraints with
constant bounds is not better than W 1,r for some r ≤∞, no matter how smooth the
boundary of Ω is. So it could be meaningful to use Ansatz functions with higher
polynomial degree for p than for y. On the other hand, in the presence of additional
state constraints the regularity of the adjoint p is lower than that of the state y, so
that it also may be meaningful to consider different Ansatz spaces for the state and
the adjoint state.

Up to now there is no general recipe which approach has to be preferred, and it
should depend on the application and computational resources which approach to
take for tackling the numerical solution of the optimization problem. However, the
numerical approach taken should to some extent reflect and preserve the structure
which is inherent in the infinite dimensional optimization problem (P). This can be
best explained in the case without control constraints, i.e. Uad ≡ U . Then the first
order necessary optimality conditions for (P) read

Ĵ ′(u)= αu+B∗S∗(SBu− z)≡ αu+B∗p = 0 in U∗.

Now let us for the moment consider Example 3.1 1., for which this equation be-
comes

Ĵ ′(u)= αu+ p = 0 in L2(Ω),

since here U∗ =U holds. To conserve this identity on also on the discrete level one
should relate to each other the discrete Ansatz for the control u and for the adjoint
variable p. This argument remains valid also in the presence of control constraints,
since then the variational inequality (3.9) can be replaced by the nonsmooth operator
equation

u= PUad

(

− 1

α
p

)

in L2(Ω), (3.17)
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where PUad denotes the orthogonal projection in U (here = L2(Ω)) onto the ad-
missible set of controls, compare Lemma 1.10. In any case, optimal control and
corresponding adjoint state are related to each other, and this should be reflected by
a numerical approach taken for the solution of problem (P).

Note 3.2 Controls should be discretized conservative, i.e. according to the relation
between the adjoint state and the control given by the first order optimality condi-
tion. This rule should be obeyed in both, the First discretize, then optimize, and in
the First optimize, then discretize approach.

3.2.5 The Variational Discretization Concept

We observe that replacing the function p in (3.17) by its Finite Element approxima-
tion ph, it is possible to compute u if the action of the orthogonal projection PUad

can be exactly evaluated on a computer. To anticipate discussion this is possible in
many practical situations. This motivates to look for a discrete approach to problem
(3.7) which leads to (3.17) with p replaced by ph as optimality condition, and thus
avoids explicit discretization of the control u. The following approach is developed
by Hinze in [71]. Let us define the discrete reduced functional

Ĵh(u) := J (ShBu,u), u ∈U,

and let us consider the following infinite dimensional optimization problem

min
u∈Uad

Ĵh(u). (3.18)

Similar as (3.7) this problem admits a unique solution uh ∈Uad which is character-
ized by the variational inequality

〈Ĵ ′h(uh), v− uh〉U∗,U ≥ 0 for all v ∈Uad. (3.19)

Using the inverse R : U∗ → U of the Riesz isomorphism between U and U∗ this
inequality is equivalent to the non-smooth operator equation (see e.g. (1.97))

Gh(u)= u− PUad(u− σRĴ ′h(u))≡ u− PUad(u− σ(αu+RB∗ph))= 0 in U,

(3.20)
where we note that RĴh ≡∇Ĵh. This equation holds for all σ > 0, and we have

J ′h(u)= αu+B∗S∗h(ShBu− z)≡ αu+B∗ph(u).

We observe that in the setting of (3.17) Gh(u)= 0 is exactly (3.17) with p replaced
by ph if we choose σ = 1

α
.
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So far this is a discrete concept. But is it also possible to compute the solution uh

on a computer? Let us fix σ = 1
α

and consider the following fix point iteration for
the numerical solution of

0=Gh(u)= u− PUad

(

− 1

α
RB∗ph)

)

in U ;

Algorithm 3.2

• u ∈U given
• Do until convergence u+ = PUad(− 1

α
RB∗ph(u)), u= u+,

where ph(u) = S∗h(ShBu − z). In this algorithm the variable u (the control) is
not discretized. Only state and adjoint are discretized. Two questions immediately
arise.

(1) Is Algorithm 3.2 numerically implementable?
(2) Does Algorithm 3.2 converge?

Let us first discuss question (2). Since this algorithm is fix-point iteration, a suffi-
cient condition for convergence is given by the relation α > ‖B∗S∗hShB‖L(U,U∗),
since then the mapping u �→ PUad(− 1

α
RB∗ph(u)) defines a contraction. This fol-

lows from the facts that R is an isometric isomorphism, and PUad :U→Uad denotes
the orthogonal projection, and thus is Lipschitz continuous with Lipschitz constant
L = 1, see Lemma 1.10(c). Therefore, convergence for Algorithm 3.2 can only be
guaranteed if α is large enough. However, (3.20) in many practically relevant sit-
uations may also be solved by a semi-smooth Newton algorithm, or a primal-dual
active set strategy, see Sect. 2.5.4, and fast local convergence in many practically rel-
evant situations is easy to argue since then the functional B∗ph(u) ∈ U∗ for given
u ∈U often is smoother than the input control. Furthermore, in these situations, for
σ := 1

α
the semi-smooth Newton method, and the primal-dual active set strategy are

both numerically implementable in the variational discrete case, see Algorithm 3.9
in Sect. 3.2.7.

Question (1) admits the answer Yes, whenever for given u it is possible to numer-
ically evaluate the expression

PUad

(

− 1

α
RB∗ph(u)

)

in the i-th iteration of Algorithm 3.2 with an numerical overhead which is indepen-
dent of the iteration counter of the algorithm. To illustrate this fact let us turn back
to Example 3.1 1., i.e. U = L2(Ω) and B denoting the injection, with a ≡ const1,
b≡ const2. In this case it is easy to verify that

PUad (v) (x)= P[a,b] (v(x))=max {a,min {v(x), b}} ,
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Fig. 3.1 Piecewise linear,
continuous interpolation of
the continuous control
u= P{u≤

√
2−1
4α
}(− 1

α
p) and

variational-discrete control
uh = P{u≤

√
2−1
4α
}(− 1

α
ph)

together with their active sets
determined by − 1

α
p and

− 1
α
ph, respectively, for

h= 1/3 and α = 0.1 in the
case n= 1. Zoom of the same
(bottom). The decoupling of
discrete active set and finite
element grid clearly is shown.
Results are taken from
[71, Sect. 4.2]

see Lemma 1.12, so that in every iteration of Algorithm 3.2 we have to form the
control

u+(x)= P[a,b]
(

− 1

α
ph(x)

)

, (3.21)

which for the one-dimensional setting is illustrated in Fig. 3.1.
To construct the function u+ it is sufficient to characterize the intersection of

the bounds a, b (understood as constant functions) and the function − 1
α
ph on every

simplex T of the triangulation τ = τh. For piecewise linear finite element approxi-
mations of p we have the following theorem.

Theorem 3.3 Let u+ denote the function of (3.21), with ph denoting a piece-
wise linear, continuous finite element function, and constant bounds a < b. Then
there exists a partition κh = {K1, . . .Kl(h)} of Ω such that u+ restricted to Kj

(j = 1, . . . , l(h)) is a polynomial either of degree zero or one. For l(h) there holds

l(h)≤ Cnt(h),
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with a positive constant C ≤ 3 and nt (h) denoting the number of simplexes in τh. In
particular, the vertices of the discrete active set associated to u+ need not coincide
with finite element nodes.

Proof Abbreviate ξa
h := − 1

α
p∗h − a, ξb

h := b − 1
α
p∗h and investigate the zero level

sets 0a
h and 0b

h of ξa
h and ξb

h , respectively. If 0a
h or 0b

h = Ti the assertion follows
easily.

Case n= 1: 0a
h ∩ Ti is either empty or a point Sa

i ∈ Ti . Every point Sa
i subdivides

Ti into two sub-intervals. Analogously 0b
h ∩ Ti is either empty or a point Sb

i ∈ Ti .
Further Sa

i �= Sb
i since a < b. The maximum number of sub-intervals of Ti induced

by 0a
h and 0b

h therefore is equal to three. Therefore, l(h)≤ 3nt (h), i.e. C = 3.
Case n= 2: 0a

h ∩ Ti is either empty or a vertex of τh or a line La
i ⊂ Ti , analogously

0b
h ∩ Ti is either empty or a vertex of τh or a line Lb

i ⊂ Ti . Since a < b the lines
La

i and Lb
i do not intersect. Therefore, similar considerations as in the case n= 1

yield C = 3.
Case n ∈N: 0a

h∩Ti is either empty or a part of a k-dimensional hyperplane (k < n)

La
i ⊂ Ti , analogously 0b

h∩Ti is either empty or a part of k-dimensional hyperplane
(k < n) Lb

i ⊂ Ti . Since a < b the surfaces La
i and Lb

i do not intersect. Therefore,
similar considerations as in the case n= 2 yield C = 3. This completes the proof.

It is now clear that the proof of the previous theorem easily extends to functions
ph which are piecewise polynomials of degree k ∈ N, and bounds a, b which are
piecewise polynomials of degree l ∈N and m ∈N, respectively, since the difference
of a, b and ph in this case also represents a piecewise polynomial function whose
projection on every element can be easily characterized.

We now have that Algorithm 3.2 is numerically implementable in situations like
those given in Example 3.1, but only converges for a certain parameter range of α.
A locally (super-linear) convergent algorithm for the numerical solution of (3.20)
is the semi-smooth Newton method of Sect. 2.5.4, since the function G is semi-
smooth in the sense of Sect. 2.1, compare also the work of Hintermüller, Ito, and
Kunisch [69], and that of Ulbrich [136, Example 5.6]. We present some details in
Sect. 3.2.7.1.

3.2.6 Error Estimates

Next let us investigate the error ‖u− uh‖U between the solutions u of (3.9) and uh

of (3.18).

Theorem 3.4 Let u denote the unique solution of (3.7), and uh the unique solution
of (3.18). Then there holds
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α‖u− uh‖2
U +

1

2
‖y(u)− yh‖2 ≤ 〈B∗(p(u)− p̃h(u)), uh − u〉U∗,U

+ 1

2
‖y(u)− yh(u)‖2, (3.22)

where p̃h(u) := S∗h(SBu− z), yh(u) := ShBu, and y(u) := SBu.

Proof Since (3.18) is an optimization problem defined on Uad, the unique solution
u of (3.7) is an admissible test function in (3.19). Let us emphasize, that this is
different for approaches, where the control space is discretized explicitly. In this
case we may only expect that uh is an admissible test function for the continuous
problem (if ever). So let us test (3.9) with uh, and (3.19) with u, and then add the
resulting variational inequalities. This leads to

〈
α(u− uh)+B∗S∗(SBu− z)−B∗S∗h(ShBuh − z), uh − u

〉

U∗,U ≥ 0.

This inequality is equivalent to

α‖u− uh‖2
U ≤

〈
B∗(p(u)− p̃h(u))+B∗(p̃h(u)− ph(uh)), uh − u

〉

U∗,U .

Let us investigate the second addend on the right hand side of this inequality. By
definition of the adjoint variables there holds

〈
B∗(p̃h(u)− ph(u),uh − u

〉

U∗,U

= 〈p̃h(u)− ph(u),B(uh − u)〉Y,Y ∗

= a(yh − yh(u), p̃h(u)− ph(u))=
∫

Ω

(yh(uh)− yh(u))(y(u)− yh(u))dx

=−‖yh − y‖2 +
∫

Ω

(y − yh)(y − yh(u))dx ≤−1

2
‖yh − y‖2 + 1

2
‖y − yh(u)‖2

so that the claim of the theorem follows.

What can we learn from Theorem 3.22? It tells us that an error estimate for
‖u− uh‖U is at hand, if

• An error estimate for ‖RB∗(p(u)− p̃h(u)‖U is available, and
• An error estimate for ‖y(u)− yh(u)‖L2(Ω) is available.

Note 3.3 The error ‖u − uh‖U between the solution u of problem (3.7) and uh

of (3.18) is completely determined by the approximation properties of the discrete
solution operators Sh and S∗h .

Let us revisit Example 3.1. Then U = L2(Ω) and B denotes the injection. Then
y = SBu ∈H 2(Ω)∩H 1

0 (Ω) (if for example Ω ∈ C1,1 or Ω convex). Since
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〈B∗(p(u)− p̃h(u)), u− uh〉U∗,U =
∫

Ω

(p(u)− p̃h(u))(u− uh)dx

≤ ‖p(u)− p̃h(u)‖L2(Ω)‖u− uh‖L2(Ω)

≤ ch2‖y(u)‖L2(Ω)‖u− uh‖L2(Ω),

and

‖y − yh(u)‖ ≤ Ch2‖u‖U ,

we together with the estimate

‖y − yh‖2
Y ≤ Ca(y − yh, y − yh(u))+ a(y − yh, yh(u)− yh)

= Ca(y − yh, y − yh(u))+ 〈yh(u)− yh,B(u− uh)〉Y,Y ∗

≤ ε‖y − yh‖2
Y +Cε{‖y − yh(u)‖2

Y + ‖u− uh‖2
U }

for the Y -norm immediately obtain.

Theorem 3.5 Let u and uh denote the solutions of problem (3.7) and (3.18), re-
spectively in the setting of Example 3.1 1. Then there holds

‖u− uh‖L2(Ω) + h‖y − yh‖Y ≤ ch2 {‖y(u)‖L2(Ω) + ‖u‖L2(Ω)

}
.

And this theorem is also valid for the setting of Example 3.1 2. if we require Fj ∈
L2(Ω) (j = 1, . . . ,m). This is an easy consequence of the fact that for a functional
z ∈H−1(Ω) there holds B∗z ∈R

m with (B∗z)i = 〈Fi, z〉Y ∗,Y for i = 1, . . . ,m.

Theorem 3.6 Let u and uh denote the solutions of problem (3.7) and (3.18), re-
spectively in the setting of Example 3.1 2. Then there holds

‖u− uh‖Rm + h‖y − yh‖Y ≤ ch2 {‖y(u)‖L2(Ω) + ‖u‖Rm

}
,

where the positive constant now depends on the functions Fj (j = 1, . . . ,m).

Proof It suffices to estimate

(B∗(p(u)− p̃h(u)), u− uh)Rm

=
m∑

j=1

{∫

Ω

Fj (p(u)− p̃h(u))dx(u− uh)j

}

≤ ‖p(u)− p̃h(u)‖L2(Ω)

⎛

⎝
m∑

j=1

∫

Ω

|Fj |2dx

⎞

⎠

1
2

‖u− uh‖Rm

≤ ch2‖y(u)‖L2(Ω)‖u− uh‖Rm.

The reminder terms can be estimated as above.
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3.2.6.1 Uniform Estimates

Using Theorem 3.5 in the case of U = L2(Ω) with Uad from Example 3.1 1., in
combination with discrete Sobolev embeddings, it is also possible to provide error
estimates in the L∞ norm, see Hinze [71] for details. A proof of the following
discrete Sobolev embeddings is given by Xu and Zhang in [148], see also the book
of Thomée [132] for the case n= 2.

Proposition 3.1 Let τh denote a quasi-uniform, regular triangulation of Ω ⊂ R
n

(n = 1,2,3). Then for every piecewise linear, continuous finite element function
vh ∈H 1

0 (Ω) there holds

‖vh‖∞ ≤ C

⎧
⎪⎨

⎪⎩

1

| logh| 12
h− 1

2

⎫
⎪⎬

⎪⎭
|vh|1 for

⎧
⎨

⎩

n= 1
n= 2
n= 3

⎫
⎬

⎭
, (3.23)

where C > 0 is a generic constant and | · |1 denotes the H 1 semi-norm.

Theorem 3.7 Let z ∈ L2(Ω) and let u,uh denote the solutions of problems (3.7)
and (3.18), respectively. Then there holds

‖u− uh‖∞ ≤ C

⎧
⎪⎨

⎪⎩
‖(S∗ − S∗h)z‖∞ + ‖(S∗ − S∗h)Su‖∞

+

⎧
⎪⎨

⎪⎩

h2

h2| logh| 12
h

3
2

⎫
⎪⎬

⎪⎭
‖u‖0 for

⎧
⎨

⎩

n= 1
n= 2
n= 3

⎫
⎬

⎭

⎫
⎪⎬

⎪⎭
. (3.24)

Proof Let p := S∗(Su∗ − z) and ph := S∗h(Shu
∗
h− z) denote the adjoints associated

to u,uh. Now write p − ph = S∗Su− S∗hShuh +(S∗h − S∗)z. Since Uad is defined
through box constraints one gets

‖u− uh‖∞ ≤ 1

α
‖p− ph‖∞

≤ 1

α

{‖(S∗ − S∗h)Su‖∞ + ‖(S∗ − S∗h)z‖∞
+ ‖S∗hSu− S∗hShu‖∞ + ‖S∗hShu− S∗hShuh‖∞

}
.

To estimate the third and fourth addend utilize Proposition 3.1. For the third addend
one gets in the case n= 2

‖S∗hSu− S∗hShu‖∞ ≤ C| logh| 12 |S∗hSu− S∗hShu|1
≤ C| logh| 12 ‖Su− Shu‖0 ≤ C| logh| 12 h2‖u‖0.
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Similarly for the fourth addend

‖S∗hShu− S∗hShuh‖∞ ≤ C| logh| 12 |S∗hShu− S∗hShuh|1
≤ C| logh| 12 ‖u− uh‖0 ≤ C| logh| 12 h2{‖z‖0 + ‖u‖0},

where Theorem 3.5 is used. The exposition for the cases n = 1,3 is similar. This
completes the proof.

Remark 3.2 To finalize the L∞ error estimate for u − uh it remains to provide
estimates for e1 := ‖(S∗ − S∗h)Su‖∞ and e2 := ‖(S∗ − S∗h)z‖∞. However, the ap-
proximation order for these terms is restricted by 2. In this sense estimate (3.24) is
optimal. For example there holds

• ei =O(h2− n
2 ), i = 1,2, n= 1,2,3,

• ei =O(h), i = 1,2, n= 2,3, if a discrete maximum principle is satisfied for the
finite element spaces, and with the results of Schatz in [119],

• ei ≤ Ch
2− n

q | logh|{‖Su‖W 2,q ,‖S∗z‖W 2,q }, i = 1,2, n = 1,2,3, if Su,S∗z ∈
W 2,∞(Ω),

see [33]. L∞-error estimates for piecewise linear, continuous approximations of
the control for two-dimensional elliptic problems are given Meyer and Rösch in
[101], piecewise constant control approximations are considered by Arada, Casas
and Tröltzsch in [8], and by Casas, Mateos and Tröltzsch in [30].

3.2.6.2 Numerical Examples for Distributed Control

Now let us present numerical results for variational discretization including a nu-
merical comparisons to other commonly used discrete approaches. Let us begin with
the following distributed control problem.

Example 3.3 (Distributed control, generic case) We consider problem (3.6) with
Ω denoting the unit circle, Uad := {v ∈ L2(Ω);−0.2 ≤ u≤ 0.2} ⊂ L2(Ω) and B :
L2(Ω)→ Y ∗(≡ H−1(Ω)) the injection. Furthermore we set z(x) := (1− |x|2)x1
and α = 0.1. The numerical discretization of state and adjoint state is performed
with linear, continuous finite elements.

Here we consider the scenario that the exact solution of the problem is not known
in advance (although it is easy to construct example problems where exact state,
adjoint state and control are known, see the book of Tröltzsch [133]). Instead we
use the numerical solutions computed on a grid with h= 1

256 as reference solutions.
To present numerical results it is convenient to introduce the Experimental Order of
Convergence, brief EOC, which for some positive error functional E is defined by

EOC := logE(h1)− logE(h2)

logh1 − logh2
. (3.25)
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Fig. 3.2 Numerical results of
distributed control: Optimal
state (top), optimal control
(middle) and corresponding
adjoint state (bottom). The
black and green lines,
respectively depict the
boarders of the active set

We note that EOC = β holds, if E(h)∼ hβ . Figure 3.2 presents the numerical re-
sults for h= 1

8 . Figure 3.3 presents a numerical comparison for active sets obtained
by variational discretization, and obtained by a conventional approach which uses
piecewise linear, continuous finite elements also for the a-priori discretization of
controls. We observe a significant better resolution of active sets by the approach
presented in the previous subsections. In Tables 3.1–3.3 the experimental order of
convergence for different error functionals is presented for the state, adjoint state,
and control. We use the abbreviations EyL2 for the error in the L2-norm, Eysup for
the error in the L∞-norm, Eysem for the error in the H 1-seminorm, and EyH1

for

the error in the H 1-norm. Table 3.4 presents the results for the controls of the con-
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Fig. 3.3 Numerical
comparison of active sets
obtained by variational
discretization, and those
obtained by a conventional
approach with piecewise
linear, continuous controls:
h= 1

8 and α = 0.1 (top),

h= 1
4 and α = 0.01 (bottom).

The red line depicts the
boarder of the active set in the
conventional approach, the
cyan line the exact boarder,
the black and green lines,
respectively the boarders of
the active set in variational
discretization

Table 3.1 Errors (columns left) and EOC (columns right) of state for different error functionals.
As reference solution yh for h= 1

256 is taken

h EyL2 Eysup Eysem EyH1
EOCyL2 EOCysup EOCysem EOCyH1

1/1 1.47e−2 1.63e−2 5.66e−2 5.85e−2 – – – –

1/2 5.61e−3 6.02e−3 2.86e−2 2.92e−2 1.39 1.44 0.98 1.00

1/4 1.47e−3 1.93e−3 1.38e−2 1.39e−2 1.93 1.64 1.06 1.08

1/8 3.83e−4 5.02e−4 6.89e−3 6.90e−3 1.94 1.95 1.00 1.01

1/16 9.65e−5 1.26e−4 3.44e−3 3.45e−3 1.99 2.00 1.00 1.00

1/32 2.40e−5 3.14e−5 1.71e−3 1.71e−3 2.01 2.00 1.01 1.01

1/64 5.73e−6 7.78e−6 8.37e−4 8.37e−4 2.06 2.01 1.03 1.03

1/128 1.16e−6 1.85e−6 3.74e−4 3.74e−4 2.30 2.07 1.16 1.16

ventional approach which should be compared to the numbers of Table 3.3. Ta-
ble 3.5 presents the order of convergence of the active sets for variational discretiza-
tion, and for the conventional approach. As error functional we use in this case the
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Table 3.2 Errors (columns left) and EOC (columns right) of adjoint state for different error func-
tionals. As reference solution ph for h= 1

256 is taken

h EpL2 Epsup Epsem EpH1
EOCpL2 EOCpsup EOCpsem EOCpH1

1/1 2.33e−2 2.62e−2 8.96e−2 9.26e−2 – – – –

1/2 6.14e−3 7.75e−3 4.36e−2 4.40e−2 1.92 1.76 1.04 1.07

1/4 1.59e−3 2.50e−3 2.17e−2 2.18e−2 1.95 1.64 1.00 1.02

1/8 4.08e−4 6.52e−4 1.09e−2 1.09e−2 1.97 1.94 0.99 0.99

1/16 1.03e−4 1.64e−4 5.48e−3 5.48e−3 1.99 1.99 1.00 1.00

1/32 2.54e−5 4.14e−5 2.73e−3 2.73e−3 2.01 1.99 1.01 1.01

1/64 6.11e−6 1.04e−5 1.33e−3 1.33e−3 2.06 1.99 1.03 1.03

1/128 1.27e−6 2.61e−6 5.96e−4 5.96e−4 2.27 1.99 1.16 1.16

Table 3.3 Errors (columns left) and EOC (columns right) of control for different error functionals.
As reference solution uh for h= 1

256 is taken

h EuL2 Eusup Eusem EuH1
EOCuL2 EOCusup EOCusem EOCuH1

1/1 2.18e−1 2.00e−1 8.66e−1 8.93e−1 – – – –

1/2 5.54e−2 7.75e−2 4.78e−1 4.81e−1 1.97 1.37 0.86 0.89

1/4 1.16e−2 2.30e−2 2.21e−1 2.22e−1 2.25 1.75 1.11 1.12

1/8 3.02e−3 5.79e−3 1.15e−1 1.15e−1 1.94 1.99 0.94 0.95

1/16 7.66e−4 1.47e−3 6.09e−2 6.09e−2 1.98 1.98 0.92 0.92

1/32 1.93e−4 3.67e−4 2.97e−2 2.97e−2 1.99 2.00 1.03 1.03

1/64 4.82e−5 9.38e−5 1.41e−2 1.41e−2 2.00 1.97 1.07 1.07

1/128 1.17e−5 2.37e−5 6.40e−3 6.40e−3 2.04 1.98 1.14 1.14

Table 3.4 Conventional approach: Errors (columns left) and EOC (columns right) of control for
different error functionals. As reference solution uh for h= 1

256 is taken

h EuL2 Eusup Eusem EuH1
EOCuL2 EOCusup EOCusem EOCuH1

1/1 2.18e−1 2.00e−1 8.66e−1 8.93e−1 – – – –

1/2 6.97e−2 9.57e−2 5.10e−1 5.15e−1 1.64 1.06 0.76 0.79

1/4 1.46e−2 3.44e−2 2.39e−1 2.40e−1 2.26 1.48 1.09 1.10

1/8 4.66e−3 1.65e−2 1.53e−1 1.54e−1 1.65 1.06 0.64 0.64

1/16 1.57e−3 8.47e−3 9.94e−2 9.94e−2 1.57 0.96 0.63 0.63

1/32 5.51e−4 4.33e−3 6.70e−2 6.70e−2 1.51 0.97 0.57 0.57

1/64 1.58e−4 2.09e−3 4.05e−2 4.05e−2 1.80 1.05 0.73 0.73

1/128 4.91e−5 1.07e−3 2.50e−2 2.50e−2 1.68 0.96 0.69 0.69

area

Ea := |(A \Ah)∪ (Ah \A)|
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Table 3.5 Errors (columns
left) and EOC (columns right)
of active sets. As reference
set that corresponding to the
control uh for h= 1

256 is
taken. The order of
convergence seems to tend to
1.5 in the classical approach.
The order of convergence of
variational discretization is
clearly 2, and its errors are
two orders of magnitude
smaller than those produced
by the conventional approach

h Conventional Approach Variational Discretization

Ea EOCa Ea EOCa

1/1 5.05e−1 – 5.11e−1 –

1/2 5.05e−1 0.00 3.38e−1 0.60

1/4 5.05e−1 0.00 1.25e−1 1.43

1/8 2.60e−1 0.96 2.92e−2 2.10

1/16 1.16e−1 1.16 7.30e−3 2.00

1/32 4.98e−2 1.22 1.81e−3 2.01

1/64 1.88e−2 1.41 4.08e−4 2.15

1/128 6.98e−3 1.43 8.51e−5 2.26

of the symmetric difference of discrete and continuous active sets. EOC with the
corresponding subscripts denotes the associated experimental order of convergence.

As a result we obtain, that variational discretization provides a much better ap-
proximation of the controls and active sets than the conventional approach. In par-
ticular the errors in the L2- and L∞-norm are much smaller than the corresponding
ones in the conventional approach. Let us also note that the results in the con-
ventional approach would become even more worse if we would use piecewise
constants as Ansatz for the controls. For theoretical and numerical results of con-
ventional approaches let us refer to the work of Arada, Casas and Tröltzsch [8].

Let us note that similar numerical results can be obtained by an approach of
Meyer and Rösch presented in [100]. The authors in a preliminary step compute a
piecewise constant optimal control ū and with its help compute in a post-processing
step a projected control uP through

uP = PUad

(

− 1

α
B∗ph(ū)

)

which satisfies

‖u− uP ‖ =O(h2)

in the setting of Example 3.1 1. However, the numerical analysis of their approach
requires some sort of strict complementarity of the continuous solution u, which is
not necessary to impose for obtaining the result of Theorem 3.5 for variational
discretization. In particular Meyer and Rösch have to require that the (d − 1)-
dimensional Hausdorff measure of the discrete active set induced by the optimal
control only intersects with a certain number of simplexes of the triangulation. This
requirement for example can be satisfied, if the gradient of the adjoint in the solution
does not vanish on the boarder of the active set and L∞-estimates are available for
the finite element approximation of the adjoint in the solution.

The next example considers control of an elliptic equation on an L-shape do-
main. In this situation the solution does not admit integrable second derivatives,
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Fig. 3.4 Optimal state with
variational discretization
(top), and classical
discretization

so that the approximation properties of finite element approximations are limited.
To obtain appropriate finite element approximations graded meshes should be used.
This technique combined with post processing of Meyer and Rösch [100] is inves-
tigated by Apel, Rösch and Winkler in [7], where also a numerical investigation
can be found. For appropriately graded meshes they prove in [7, Theorem 1] the
estimate

‖ū− ūh‖ =O(h2).

Let us note that this estimate for variational discretization is an immediate conse-
quence of [7, Lemma 4] combined with (3.22), where an assumption like [7, (21)]
on strict complementarity of in the continuous solution is not necessary.

Example 3.4 (L-shape) We consider the minimization problem (3.6) with Ω =
(−1,1)2\([−1,0]×[0,1]) denoting an L-shape domain, Uad := {v ∈ L2(Ω);−0.2≤
u≤ 0.2} ⊂ L2(Ω) and B : L2(Ω)→ Y ∗(≡H−1(Ω)) the injection. Further we set
z(x) := (1− |x|2) and α = 0.1. Figures 3.4–3.5 show the numerical solutions of the
variational approach and the classical approach with piecewise linear, continuous
control approximations, both obtained with Algorithm 3.2. For the presentation of
the active sets a coarse grid is used.
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Fig. 3.5 Numerical
comparison of active sets
obtained with variational
discretization (top), and those
obtained by a conventional
approach with piecewise
linear, continuous controls
(bottom): h= 1

2 and α = 0.1.
The red line depicts the
boarder of the active set in the
conventional approach, the
green line the boarder of the
active set of variational
discretization

3.2.7 Boundary Control

Concerning their structure most of the considerations of the previous subsections re-
main valid also for inhomogeneous Neumann and Dirichlet boundary control prob-
lems. Let us consider the model problems

(NC)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min(y,u)∈Y×U J (y,u) := 1
2‖y − z‖2

L2(Ω)
+ α

2 ‖u‖2
U

s.t.
−�y = 0 in Ω,

∂ηy = Bu− γy on ∂Ω,

and
u ∈Uad ⊆U,

(3.26)

and

(DC)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min(y,u)∈Y×U J (y,u) := 1
2‖y − z‖2

L2(Ω)
+ α

2 ‖u‖2
U

s.t.
−�y = 0 in Ω,

y = Bu on ∂Ω,

and
u ∈Uad ⊆U,

(3.27)
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where in both cases B : U → L2(Γ ) with Γ := ∂Ω . Let us note that the Dirichlet
problem for y in (DC) for Bu ∈ L2(Γ ) is understood in the very weak sense, see
(3.43) for the associated bilinear form.

3.2.7.1 Neumann and Robin-Type Boundary Control

We first consider problem (NC) which equivalently can be rewritten in the form

min
u∈Uad

Ĵ (u) (3.28)

for the reduced functional Ĵ (u) := J (y(u),u)≡ J (SBu,u) over the set Uad, where
S : Y ∗ → Y for Y := H 1(Ω) denotes the weak solution operator of the Neumann
boundary value problem for −�, i.e. y = Sf iff

a(y, v) :=
∫

Ω

∇y∇vdx +
∫

Γ

γyvdΓ = 〈f, v〉Y ∗,Y for all v ∈ Y,

and the action of Bu ∈ L2(Γ ) as an element EBu ∈ Y ∗ is defined by

〈EBu,v〉Y ∗,Y :=
∫

Γ

BuvdΓ for all v ∈ Y. (3.29)

Problem (3.28) admits a unique solution u which satisfies the first order necessary
(and here also sufficient) optimality conditions

〈Ĵ ′(u), v − u〉U∗,U ≥ 0 for all v ∈Uad, (3.30)

where Ĵ ′(u)= αu+B∗E∗S∗(SEBu−z)≡ αu+B∗E∗p, with p := S∗(SEBu−z)

denoting the adjoint variable. Here E∗ : Y → L2(Γ ) denotes the trace operator.
From here onwards let us not longer distinguish between B and EB . The function
p in our setting satisfies the following Poisson problem with Neumann (Robin-type)
boundary conditions;

−�p = y − z in Ω,

∂ηp+ γp = 0 on ∂Ω.

We now define the variational-discrete analogon to problem (3.28) as in the previous
subsection;

min
u∈Uad

Ĵh(u), (3.31)

where for u ∈U we set Ĵh(u) := J (ShBu,u) with Sh denoting the discrete analogon
of S. According to (3.28) this problem admits a unique solution uh ∈ Uad which is
characterized by the variational inequality

〈Ĵ ′h(uh), v − uh〉U∗,U ≥ 0 for all v ∈Uad, (3.32)
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where similar as above

J ′h(u)= αu+B∗S∗h(ShBu− z)≡ αu+B∗ph(u)

for u ∈U . We notice that the whole exposition can be done by copy and paste from
Sect. 3.2.5, and the structure of the optimization problem as well as its discretiza-
tion do not depend on where control is applied. It is completely characterized by
the operators S,Sh, and B (as well as by E). For Neumann boundary control the
analogon to Theorem 3.4 reads

Theorem 3.8 Let u denote the unique solution of (3.28), and uh the unique solution
of (3.31). Then there holds

α‖u− uh‖2
U +

1

2
‖y − yh‖2 ≤ 〈

B∗(p(u)− p̃h(u)), uh − u
〉

U∗,U +
1

2
‖y − yh(u)‖2,

(3.33)
where p̃h(u) := S∗h(SBu− z) and yh(u) := ShBu.

The proof of this theorem is analogous to that of Theorem 3.4. Now let us formu-
late some direct consequences of this theorem. The following corollary immediately
follows from (3.33).

Corollary 3.1 Let u denote the solution of (3.28) with associated state y = y(u),
and adjoint state p = p(u), and let uh denote the solution to (3.31) with associated
discrete state yh = yh(uh). Then

α‖u− uh‖2
U + ‖y − yh‖2 ≤ Cα‖p− ph‖2

L2(Γ )
+ ‖y − yh‖2, (3.34)

where yh,ph denote the unique solutions to a(yh, vh) = 〈Bu,vh〉U∗,U , and
a(vh,p

h)= ∫

Ω
(y − z)vh for all vh ∈Wh.

We observe that finite element estimates in L2 for the Galerkin approximations
yh,ph to y and p, respectively imply an estimate for ‖u − uh‖U . Next we prove
L∞ error estimates for optimal Neumann boundary controls in the case U = L2(Γ )

(i.e. B = Id) and Uad = {v ∈ L2(Γ ), a ≤ v ≤ b} with a < b denoting constants.

Corollary 3.2 Let u denote the solution of (3.51) with associated state y, and uh

the solution to (3.59) with associated discrete state yh. Then

‖u− uh‖L∞(Γ ) ≤ C
{
‖p− ph‖L∞(Γ ) + γ (h)‖y − yh‖

}
, (3.35)

where γ (h)= | logh| for d = 2, and γ (h)= h−1/2 for d = 3.

Proof Using

u= PUad

(

− 1

α
p

)

, and uh = PUad

(

− 1

α
ph

)

,
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we obtain

‖u− uh‖L∞(Γ ) =
∥
∥
∥
∥PUad

(

− 1

α
p

)

− PUad

(

− 1

α
ph

)∥
∥
∥
∥

L∞(Γ )

≤ 1

α
‖p− ph‖L∞(Γ )

≤ 1

α
‖p− ph‖L∞(Ω) + 1

α
‖ph − ph‖L∞(Ω)

≤ 1

α
‖p− ph‖L∞(Ω) + γ (h)‖ph − ph‖H 1(Ω),

where γ (h) = | logh| for d = 2, and γ (h) = h−1/2 for d = 3, see the paper of Xu
and Zhang [148]. We proceed with estimating ‖ph − ph‖H 1(Ω) according to

‖ph − ph‖2
H 1(Ω)

≤ Ca(ph − ph,p
h − ph)≤ C‖ph − ph‖‖y − yh‖.

This completes the proof.

From the estimates (3.34) and (3.35) we again deduce that the approximation
quality of the control is steered by the approximation quality of finite element solu-
tions yh to the state y, and by the finite element approximation ph of the adjoint p.

Let us give some examples.

Example 3.5 (Specific settings for finite element error estimates in Neumann con-
trol)

1. Let us consider the situation in the paper [27, Sect. 5,6] of Casas and Ma-
teos, where Ω is a two-dimensional convex polygonal domain, i.e. d = 2,
B = Id , U = L2(Γ ) and Uad = {v ∈ U,a ≤ u ≤ b}. Further let z ∈ L2(Ω).
Then y,p ∈ H 2(Ω), so that by [27, Theorem 4.1] we have ‖y − yh‖ ≤ Ch2

and ‖p− ph‖L2(Γ ) ≤ h3/2. Thus, (3.34) directly yields

‖u− uh‖L2(Γ ) ≤ Ch3/2.

2. Let us consider a smooth, bounded two- or three-dimensional domain Ω and
let the approximation properties A1–A4 in the work [119] of Schatz be satis-
fied. Bootstrapping yields at least y ∈H 2(Ω) and p ∈H 4(Ω) ↪→W 2,∞(Ω) for
d < 4. Thus we deduce from [119, Theorem 2.2]

‖p− ph‖∞ ≤ Ch
2− d

q | logh|‖p‖W 2,q for all d ≤ q ≤∞,

compare also [39, Lemma 3.4], and again ‖y− yh‖ ≤ Ch2. Thus, (3.35) directly
delivers

‖u− uh‖L∞(Γ ) ≤ C
{
h

2− d
q | logh| + γ (h)h2

}
for all d ≤ q ≤∞.

We should note that when using finite element approximations defined over parti-
tions formed of simplexes one has to consider also an error induced by boundary
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approximations. However, locally, for small enough gridsizes the smooth bound-
ary may be parameterized as graph over the faces of the corresponding simplex.
For smooth boundaries the difference of the areas of the face and the correspond-
ing graph is bounded by the square of the gridsize, so that error estimates of the
same quality as in this example also hold for the accordingly transformed con-
tinuous solution, see [43]. Furthermore, appropriate quadrature could be used to
evaluate the quantities living on boundary simplexes or boundary faces.

Now let us briefly describe the application of the semi-smooth Newton algorithm
of Sect. 2.5.4 to the numerical solution of problem (3.31) in the case B =E with E

denoting the extension defined in (3.29), and Uad = {v ∈ L2Γ ), a ≤ v ≤ b}. Starting
point is the non-smooth operator equation

G(u) := u− PUad

(

− 1

α
B∗ph(u)

)

= 0 in U. (3.36)

Let us recall here that for given u ∈U with associated discrete state yh(u) the func-
tion ph(u) solves a(vh,ph(u))= ∫

Ω
(yh(u)− z)vh for all vh ∈Wh. It follows from

(3.32) and the fact that PUad denotes the orthogonal projection onto Uad that this
equation admits the unique solution uh ∈ Uad of problem (3.31). Moreover, it fol-
lows with Theorem 2.14 that G in the present setting is semi-smooth in the sense
that

sup
M∈∂G(u+s)

‖G(u+ s)−G(u)−Ms‖U = o(‖s‖U) as ‖s‖U → 0,

where

∂G(u) :=
{

I +D(u)

(
1

α
B∗p′h(u)

)}

with D(u)(x)=

⎧
⎪⎨

⎪⎩

0, if − 1
α
B∗ph(u)(x) /∈ [a, b],

∈ [0,1], if − 1
α
B∗ph(u)(x) ∈ {a, b},

1, if − 1
α
B∗ph(u)(x) ∈ (a, b),

denotes the generalized differential. Here we also refer to the papers [69] of Hinter-
müller, Ito, and Kunisch, and [136] of Michael Ulbrich. With g ≡ g(u) denoting the
indicator function of the inactive set I(u) := {x ∈ Γ ;− 1

α
B∗ph(u)(x) ∈ (a, b)} we

set

G′(u) := I + 1

α
gB∗p′h(u) ∈ ∂G(u).

It follows from the considerations below related to (3.40) that G′(u) is bounded in-
vertible, since p′h(u)= S∗hShB with Sh denoting the finite element solution operator.
Thus, B∗p′h(u)= B∗S∗hShB is positive semi-definite on U .

We are now in the position to formulate the semi-smooth Newton algorithm of
Sect. 2.5.
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Algorithm 3.9 Choose u ∈U

While G(u) �= 0 solve

G′(u)unew =G′(u)u−G(u) (3.37)

for unew and set u= unew.

We emphasize that this algorithm works in the infinite-dimensional space U so that
it is not obvious that this algorithm is numerically implementable. For a related
discussion we refer to [71].

Using

β := (I − g)bounds≡

⎧
⎪⎪⎨

⎪⎪⎩

a, if − 1
α
B∗ph(u) < a,

b, if − 1
α
B∗ph(u) > b,

0, else,

a short calculation shows, that the Newton equation (3.37) can be rewritten in the
form

unew = bounds on A(u) := Γ \ I(u), and (3.38)

(αgI + gB∗S∗hShBg)unew = −gB∗(S∗hy0 − S∗hShBβ). (3.39)

Here, bounds stands either for a or for b. We solve the equation (compare (2.26))

(αgI + gB∗S∗hShBg)unew =−gB∗(S∗hy0 − S∗hShBβ)

with a conjugate gradient method. This is feasible since for given u ∈ U the op-
erator E∗I (αI + B∗S∗hShB)EI is positive definite on L2(I(u)), where the function
EI f ∈ L2(Γ ) denotes the extension-by-zero to Γ of functions f ∈ L2(I(u)), and
E∗I denotes its adjoint whose action for s ∈ L2(Γ ) is given by E∗I s = (gs)|I(u)

. Thus,
formally solving (3.39), (3.38) corresponds to solving

E∗I (αI +B∗S∗hShB)EI u
new
I =−E∗I B∗(S∗hy0 − S∗hShBβ) (3.40)

and then setting unew = unew
I on I(u), and unew = bounds on A(u), compare also

[69, (4.7)] in the paper of Hintermüller, Ito and Kunisch.
It is now clear from these considerations that the Newton iterates may develop

kinks or even jumps along the border of the active set, see the numerical results of
the next section. However, it follows from the definition of the active set A(u) that
its border consists of polygons, since we use continuous, piecewise linear ansatz
functions for the state. We note that this border in general consists of piecewise
polynomials of the same degree as that of the finite element ansatz functions, if
higher order finite elements are used. Therefore, Algorithm 3.9 is numerically im-
plementable, since in every of its iterations only a finite number of degrees of free-
dom has to be managed, which in the present case of linear finite elements can
not exceed 3nv + 2ne, where nv denotes the number of finite element nodes, and



3 Discrete Concepts in PDE Constrained Optimization 183

ne the number of finite element edges, compare also with the arguments in the
proof of Theorem 3.3, and see [71] for details. Moreover, the main ingredient of
the cg algorithm applied to solve the Newton equation (3.40) consists in evaluating
E∗I (αI +B∗S∗hShB)EI f for functions f ∈ L2(I(u)). From the definitions of B and
Sh it is then clear which actions have to be taken for this evaluation.

It is also clear, that only local convergence of the semi-smooth Newton algorithm
can be expected, where the convergence radius at the solution depends on the penal-
ization parameter α. For the numerical examples presented in the next section and
the considered values of α it is sufficient to use a cascade approach where linear
interpolations of numerical solutions on coarse grids are used as starting values on
the next finer grid. Further details on the semi-smooth Newton methods applied to
variationally discretized optimal control problems can be found in the paper [80] of
Hinze and Vierling, where, among other things, also time-dependent problems are
considered and globalization strategies are proposed.

3.2.7.2 Numerical Examples for Robin-Type Boundary Control

Now we consider numerical examples for Robin-type boundary control and in par-
ticular compare the results obtained with variational discretization to that obtained
by Casas, Mateos and Tröltzsch in [30] with the conventional approach. In order
to compare our numerical results to exact solutions we consider an optimal control
problem which slightly differs from that formulated in (3.26). The following exam-
ple is taken from the paper [30] of Casas, Mateos and Tröltzsch. The computational
domain is the unit square Ω := (0,1)2 ⊂R

2. The optimization problem reads

minJ (y,u) = 1

2

∫

Ω

(y(x)− yΩ)2dx + α

2

∫

Γ

u(x)2dσ(x)+
∫

Γ

eu(x)u(x)dσ (x)

+
∫

Γ

ey(x)y(x)dσ (x)

s.t. (y,u) ∈H 1(Ω)×L2(Γ ), u ∈Uad = {u ∈ L2(Γ ) : 0≤ u(x)≤ 1 a.e. on Γ }, and
(y,u) satisfying the linear state equation

−�y(x)+ c(x)y(x) = e1(x) in Ω

∂νy(x)+ y(x) = e2(x)+ u(x) on Γ,

where α = 1, c(x1, x2) = 1 + x2
1 − x2

2 , ey(x1, x2) = 1, yΩ(x1, x2) = x2
1 + x1x2,

e1(x1, x2)=−2+ (1+ x2
1 − x2

2)(1+ 2x2
1 + x1x2 − x2

2),

eu(x1, x2)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−1− x3
1 on Γ1

−1−min(8(x2 − 0.5)2 + 0.5,

1− 15x2(x2 − 0.25)(x2 − 0.75)(x2 − 1)) on Γ2

−1− x2
1 on Γ3

−1− x2(1− x2) on Γ4,
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and

e2(x1, x2)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1− x1 + 2x2
1 − x3

1 on Γ1

7+ 2x2 − x2
2 −min(8(x2 − 0.5)2 + 0.5,1) on Γ2

−2+ 2x1 + x2
1 on Γ3

1− x2 − x2
2 on Γ4.

Here Γ1, . . . ,Γ4 denote the boundary parts of the unit square numbered counter-
clockwise beginning at bottom. The adjoint equation for this example is given by

−�p+ c(x)p = y(x)− yΩ(x) in Ω

∂νp+ p = ey(x) on Γ,

and the optimal control is given by

u= ProjUad

(

− 1

α
(p+ eu)

)

on Γ. (3.41)

To compute the variational control uh ∈Uad we in the present example iterate (3.41),
i.e. we apply the fix-point iteration of Algorithm 3.2. The corresponding numerical
results can be found in Tables 3.6–3.7 and Figs. 3.6–3.7. The reported EOC in Ta-
ble 3.7 confirms the findings in Example 3.5. Moreover, should it be noted, that
the error in the controls of the variational discrete approach on the initial grid are
smaller than those produced by the conventional approach on refinement level 4, see
Table 3.6.

Now let us consider an example for a semilinear state equation. It is taken from
the paper [27, Sect. 7.1] of Casas and Mateos. For details of the numerical results
we refer to the paper [73] of Hinze and Matthes. The optimization problem reads

min Ĵ (u) = 1

2

∫

Ω

(yu(x)− yΩ)2dx + α

2

∫

Γ

u(x)2dx

+
∫

Γ

eu(x)u(x)dx +
∫

Γ

ey(x)yu(x)dx

subject to u ∈Uad = {u ∈ L2;0≤ u(x)≤ 1 a.e. x ∈ Γ }, where yu satisfies the semi-
linear equation

−�yu(x)+ c(x)yu(x) = e1(x) in Ω

∂νyu(x)+ yu(x) = e2(x)+ u(x)− y(x)2 on Γ.
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Table 3.6 Errors in variational discretization (top part) and in the approach of [30] (bottom part).
We observe that the error in the controls in variational discretization on the initial grid already is
smaller than the error produced by the approach of [30] on a grid with mesh size h= 2−7

h δyL2 δyL∞ δpL2 δpL∞ δuL2 δuL∞

2−0 0.21922165 0.16660113 0.00981870 0.01171528 0.01293312 0.00975880

2−1 0.05490636 0.05592789 0.00283817 0.00375928 0.00412034 0.00375928

2−2 0.01379774 0.01802888 0.00077525 0.00108642 0.00111801 0.00099280

2−3 0.00345809 0.00554111 0.00019969 0.00028092 0.00028729 0.00025594

2−4 0.00086531 0.00165357 0.00005038 0.00007065 0.00007250 0.00006447

2−5 0.00021639 0.00048246 0.00001263 0.00001769 0.00001819 0.00001615

2−6 0.00005410 0.00013819 0.00000316 0.00000443 0.00000455 0.00000404

2−7 0.00001353 0.00003899 0.00000079 0.00000111 0.00000114 0.00000101

2−8 0.00000338 0.00001086 0.00000020 0.00000028 0.00000028 0.00000025

2−4 0.00056188 0.04330776 0.11460900

2−5 0.00014240 0.02170775 0.05990258

2−6 0.00003500 0.01086060 0.03060061

2−7 0.00000897 0.00543114 0.01546116

Table 3.7 EOC for the variational discrete approach in the case of Robin-type boundary control.
For a comparison to the approach taken by Casas, Mateos and Tröltzsch in [30] see also Fig. 3.7

h yL2 yL∞ pL2 pL∞ uL2 uL∞

2−1 1.997345 1.574758 1.790572 1.639862 1.650235 1.376247

2−2 1.992541 1.633258 1.872222 1.790877 1.881837 1.920876

2−3 1.996386 1.702064 1.956905 1.951362 1.960359 1.955685

2−4 1.998688 1.744588 1.986941 1.991434 1.986431 1.989070

2−5 1.999575 1.777112 1.996193 1.997494 1.995161 1.997047

2−6 1.999873 1.803728 1.998912 1.999222 1.998106 1.999024

2−7 1.999964 1.825616 1.999700 1.999725 1.999174 1.999834

2−8 1.999991 1.843640 1.999932 1.999950 1.999609 1.999918

Here, Ω = (0,1)2, α = 1, c(x)= x2
2 + x1x2, ey(x)=−3− 2x2

1 − 2x1x2, yΩ(x)=
1+ (x1 + x2)

2, e1(x)=−2+ (1+ x2
1 + x1x2)(x

2
2 + x1x2),

eu(x)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1− x3
1 on Γ1

1−min

{
8(x2 − 0.5)2 + 0.58
1− 16x2(x2 − y∗1 )(x2 − y∗2 )(x2 − 1)

}

on Γ2

1− x2
1 on Γ3

1+ x2(1− x2) on Γ4,
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Fig. 3.6 Exact control (top)
and error of exact and
numerically computed control
on the initial grid containing 4
triangles, i.e. h= 1

2 (bottom)

with y∗1 = 1
2 −

√
21

20 and y∗2 = 1
2 +

√
21

20 . Furthermore,

e2(x)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2− x1 + 3x2
1 − x3

1 + x4
1 on Γ1

8+ 6x2 + x2
2 −min{8(x2 − 0.5)2 + 0.58,1} on Γ2

2+ 4x1 + 3x2
1 + 2x3

1 + x4
1 on Γ3

2− x2 on Γ4.

The adjoint equation is given by

−�φ(x)+ c(x)φ(x) = yu(x)− yΩ(x) in Ω

∂νφ(x)+ φ(x) = ey(x)− 2y(x)φ(x) on Γ.

Again a short calculation shows that

ū(x)=

⎧
⎪⎪⎨

⎪⎪⎩

x3
1 on Γ1

min{8(x2 − 0.5)2 + 0.58,1} on Γ2

x2
1 on Γ3

0 on Γ4
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Fig. 3.7 Numerical
comparison of EOC of
controls for
E(h) := ‖u− uh‖L2(Γ ):
Approach of Casas, Mateos
and Tröltzsch in [30]
(dashed) and the variational
approach (solid). The latter
yields quadratic convergence,
whereas the approach of [30]
only shows linear
convergence

denotes the optimal control with corresponding optimal state ȳ(x)= 1+ x2
1 + x1x2

and adjoint φ̄(x)=−1.
For the numerical solution of the present example again a semi-smooth Newton

method is applied. Since we are dealing with nonlinear state equations the determi-
nation of unew in (3.39) has to be replaced by

(αgI + gB∗p′h(u)g)unew =−gB∗(ph(u)− p′h(u)(u− β)), and

unew = bounds on Ω \ I(u).

The numerical results are very similar to that of the previous example. This is
due to the fact that the nonlinearity in the state equation is monotone.

The errors and EOCs for the present example are shown in Table 3.8 for the
Casas-Mateos-Ansatz and the variational discretization, respectively. The EOC of
the numerical experiments of Casas and Mateos is calculated from tables of Casas
and Mateos in [27]. The EOC of the numerical experiments of Casas and Mateos
is 1.5 and about 1.0 for the L2 and L∞ norm, respectively. The EOC is 2 for vari-
ational discretization. We note that also for this example already the errors on the
coarsest mesh for h = 1 are smaller in our approach than those for h = 2−4 in the
conventional Casas-Mateos-ansatz.

The Newton iteration is terminated if with G of (3.36) ‖G(ui)‖/‖G(u0)‖ ≤ 10−5

and ‖ui − ui−1‖/max(‖ui‖,‖ui−1‖)≤ 10−5 holds. The inner cg iteration is termi-

nated if ‖r‖ ≤ 10−4

i
min{1,‖G(ui)‖/,‖G(ui)‖/‖G(u0)‖} holds with r denoting the

current residuum of the Newton system.
In Fig. 3.8 the optimal control together with the error for h= 0.5 and the finite

element grid is shown.
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Table 3.8 Errors in u for the semilinear example

h Casas Mateos This Paper Casas Mateos This Paper

Eu
L2 EuL∞ Eu

L2 EuL∞ EOCu
L2 EOCuL∞ EOCu

L2 EOCuL∞

2−0 – – 1.13e−2 1.83e−2 – – – –

2−1 – – 4.72e−3 6.43e−3 – – 1.26 1.51

2−2 – – 1.33e−3 2.19e−3 – – 1.82 1.55

2−3 – – 3.45e−4 6.69e−4 – – 1.95 1.71

2−4 8.5e−3 4.1e−2 8.75e−5 1.89e−4 – – 1.98 1.82

2−5 3.0e−3 1.5e−2 2.20e−5 5.11e−5 1.5 1.5 1.99 1.89

2−6 1.1e−3 1.1e−2 5.50e−6 1.33e−5 1.4 0.4 2.00 1.94

2−7 3.8e−4 3.8e−3 1.38e−6 3.42e−6 1.5 1.5 2.00 1.96

2−8 1.4e−4 2.7e−3 3.44e−7 8.66e−7 1.4 0.5 2.00 1.98

2−9 – – 8.61e−8 2.18e−7 – – 2.00 1.99

2−10 – – 2.15e−8 5.47e−8 – – 2.00 1.99

Fig. 3.8 Optimal control u

top, error in u bottom, both
for h= 0.5. Bold dots depict
the finite element grid on the
boundary
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3.2.7.3 Dirichlet Boundary Control

Now we switch to problem (DC). The numerical analysis of this problem is carried
out by Casas and Raymond in [28]. There it is shown that problem (DC) equiva-
lently can be rewritten in the form

min
u∈Uad

Ĵ (u) (3.42)

for the reduced functional Ĵ (u) := J (y(u),u)≡ J (SBu,u) over the set Uad, where
S : Y ∗ → L2(Ω) for Y :=H 2(Ω)∩H 1

0 (Ω) denotes the very-weak solution operator
of the Dirichlet boundary value problem for −�, i.e. for f ∈ Y ∗ and u ∈ U there
holds y = S(f +EBu) iff

a(y, v) :=
∫

Ω

y(−�v)dx = 〈f, v〉Y ∗,Y −
∫

Γ

Bu∂ηvdΓ for all v ∈ Y. (3.43)

Here, the action of Bu ∈ L2(Γ ) as an element EBu ∈ Y ∗ is defined by

〈EBu,v〉Y ∗,Y :=
∫

Γ

Bu∂ηvdΓ for all v ∈ Y.

The first order necessary (and here also sufficient) optimality conditions here again
take the form

〈Ĵ ′(u), v − u〉U∗,U ≥ 0 for all v ∈Uad, (3.44)

where Ĵ ′(u)= αu−B∗E∗S∗(SEBu−z)≡ αu−B∗E∗p, with p := S∗(SEBu−z)

denoting the adjoint variable. Here E∗ : Y → L2(Γ ) denotes the trace operator of
first order, i.e. for v ∈ Y there holds E∗v = (∂ηv)|Γ . From here onwards let us not
longer distinguish between B and EB , so that Ĵ ′(u)= αu−B∗∂ηp. The function p

in our setting satisfies the following Poisson problem with homogeneous Dirichlet
boundary conditions;

−�p = y − z in Ω,

p = 0 on ∂Ω.

To define an appropriate discrete approach for (3.42) in the present situation is a
little bit more involved due to the following fact.

Note 3.4 We intend to approximate the solution y of the Dirichlet boundary value
problem in (3.42) and the adjoint variable p by piecewise polynomials yh and ph of
order k greater or equal to one, say. Then it is clear that it might not be meaningful
to prescribe boundary values for yh represented by (restrictions of) piecewise poly-
nomials of order k− 1. However, the discrete analogon of the variational inequality
(3.44) exactly proposes this, since ∂ηph is a piecewise polynomial of order k − 1
on Γ .
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We now introduce the common discrete concept for the approximation of very
weak solutions to elliptic Dirichlet boundary value problems, compare the paper
[11] of Berggren. For this purpose we use the L2 projection Πh onto boundary
functions which are piecewise polynomials of degree k ≥ 1 and are continuous on
the boundary grid induced by triangulation of Ω on the boundary Γ . For v ∈ L2(Γ )

we define Πhv to be the continuous, piecewise polynomial of degree k defined by
the relation

∫

Γ

ΠhvwhdΓ =
∫

Γ

vwhdΓ for all wh ∈ trace(Wh),

where Wh is defined in Sect. 3.2.2. The numerical approximation ShBu := yh ∈Wh

of the very weak solution y of the state equation with boundary values Bu is defined
by the relation

∫

Ω

∇yh∇vhdx = 0 for all vh ∈ Yh, and yh =Πh(Bu) on Γ,

and the numerical approximation ph of the adjoint variable p as the usual finite
element approximation ph := S∗h(ShE(Bu)− z), i.e.

∫

Ω

∇ph∇vhdx =
∫

Ω

(yh − z)vhdx for all vh ∈ Yh.

The variational discrete analogon of the optimization problem (3.42) reads

min
u∈Uad

Ĵh(u), (3.45)

where for u ∈ U we set Ĵh(u) := J (ShBu,u) with Sh denoting the discrete analo-
gon to S. It admits a unique solution uh ∈ Uad. To derive the first order optimality
conditions we use the Lagrange approach of Sect. 1.6.4. The Lagrangian of problem
(3.45) is defined as

L(yh,u,ph, κh) = 1

2
‖yh − z‖2 + α

2
‖u‖2

U −
∫

Ω

∇yh∇phdx

−
∫

Γ

yhκhdΓ +
∫

Γ

BuκhdΓ,

so that a short calculation yields for u ∈Uad

Ĵ ′h(u)= αu+B∗κh(u),

where κh(u) in the latter equation is a continuous, piecewise polynomial function of
degree k on the boundary grid defined through the relation
∫

Γ

κh(u)whdΓ := −
∫

Ω

∇ph∇whdx +
∫

Ω

(yh(u)− z)whdx for all wh ∈Wh.
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Here we have used the fact that the derivative of the reduced cost functional Ĵ is
given by the derivative of the Lagrangian w.r.t. the control u, i.e. Ĵ ′ = Lu, see (1.89).
The discrete numerical flux ∂ηph(u) of the discrete adjoint ph(u) is a continuous,
piecewise polynomial function of degree k on the boundary grid, and then is given
by

∂ηph(u)=−κh(u).

With this we obtain the following representation of the derivative of the reduced
cost functional

Ĵ ′h(u)= αu−B∗∂ηph(u), (3.46)

which also is given by Casas and Raymond in [28].
The unique solution uh ∈Uad of problem (3.45) satisfies the variational inequal-

ity

〈J ′h(uh), v− uh〉U∗,U ≥ 0 for all v ∈Uad, (3.47)

which also represents a sufficient condition for uh to solve problem (3.45). For
Dirichlet boundary control the analogon to Theorem 3.4 reads

Theorem 3.10 Let u,uh denote the unique solutions to (3.42), and (3.47), respec-
tively, and y, yh the corresponding optimal states. Then there holds

α‖u− uh‖2
U +

1

2
‖y − yh‖2 ≤ − 〈

B∗(∂ηp(u)− ∂ηph(u)), uh − u
〉

U∗,U

+ 1

2
‖y(u)− yh(u)‖2, (3.48)

where ∂ηph(u) denotes the discrete flux associated to y(u) = SBu, and yh(u) :=
ShBu.

Proof We test (3.44) with uh, (3.47) with the solution u of problem (3.42), and add
the variational inequalities (3.44) and (3.47). This leads to

α‖u− uh‖U ≤ −〈B∗(∂ηp(u)− ∂ηph(u)), uh − u〉U∗,U
− 〈B∗(∂ηph(u)− ∂ηph),uh − u〉U∗,U .

From the definition of B , Πh and of Sh it follows that

− 〈
B∗(∂ηph(u)− ∂ηph),uh − u

〉

U∗,U

=
∫

Γ

(yh(u)− yh)(∂ηph(u)− ∂ηph)dΓ

=
∫

Ω

∇(yh(u)− yh)∇(p− ph)dx

︸ ︷︷ ︸
=0

−
∫

Ω

(yh(u)− yh)(y − yh)dx
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≤−1

2
‖y − yh‖2 + 1

2
‖yh(u)− y‖2,

which together with the first estimate gives the desired result.

To provide estimates for the error in the controls it suffices to estimate the norms

‖∂ηp− ∂ηph(u)‖L2(Γ ), and ‖y − yh(u)‖.
Now let us assume B = Id and Uad is defined by box constraints a ≤ u≤ b, so that
we deal with the setting presented by Casas and Raymond in [28]. The domain Ω

considered in their work is two-dimensional and polygonal, so that p ∈W 2,q (Ω)

for some q ≥ 2. This in turn implies ∂ηp ∈ W 1−1/q,q(Γ ). From estimates of the
projection error for Πh we expect that

‖∂ηp− ∂ηph(u)‖L2(Γ ) ∼ h1−1/q,

and, since u= P[a,b]∂ηp ∈W 1−1/q,q(Γ ),

‖y − yh(u)‖ ∼ h,

so that ‖u − uh‖L2(Γ ) ∼ h1−1/q should be expected. In fact this is what Casas
and Raymond prove for Dirichlet boundary control with box constraints on two-
dimensional convex polygonal domains in [28]. Their main result there reads

‖u− uh‖L2(Γ ) ≤ Ch1−1/q, (3.49)

where uh denotes the optimal discrete boundary control which they sought in the
space of piecewise linear, continuous finite elements on Γ . Here q ≥ 2 depends
on the smallest angle of the boundary polygon. May, Rannacher and Vexler study
Dirichlet boundary control without control constraints in [94]. They also consider
two dimensional convex polygonal domains and among other things provide optimal
error estimates in weaker norms. In particular they address

‖u− uh‖H−1(Γ ) + ‖y − yh‖H−1/2(Ω) ∼ h2−2/q .

Let us finally note that Vexler in [142] for Uad = {u ∈R
n;a ≤ u≤ b} and

Bu :=
n∑

i=1

uifi

with fi ∈ H 5/2(Γ ) provides finite element analysis for problem (3.42) with
bounded, two-dimensional polygonal domains. Among other things he in [142, The-
orem 3.4] shows that

|u− uh| ≤ Ch2. (3.50)

In Sect. 3.2.7.4 we present a numerical example for two-dimensional polygonal
domains which shows that the result obtained by Casas and Raymond in fact is
optimal for their setting.



3 Discrete Concepts in PDE Constrained Optimization 193

3.2.7.4 Numerical Example for Dirichlet Boundary Control

Here we consider problem (3.27) with U = L2(Γ ), α = 1 and Uad = {u ∈ U ;0 ≤
u ≤ 0.9}, i.e. B ≡ Id . Again we choose Ω = (0,1)2. The desired state is given
by z=−sign(x − 0.5− 0.1

π
). State and adjoint state are discretized with piecewise

linear, continuous Ansatz functions as described in Sect. 3.2.7.3. The variational
inequality (3.47) motivates as solution algorithm the iteration

u+h = PUad

(
1

α
∂ηph(uh)

)

.

We investigate two different approaches; approach 1 in this algorithm uses
∂ηph(uh), which represents a piecewise constant (on the boundary grid) L2 func-
tion. Let us emphasize that we not yet have available theory for this approach (which
in fact seems to be the natural one if we would replace the continuous quantities in
(3.44) by their discrete counterparts). The second approach in this algorithm uses the
piecewise linear, continuous discrete flux ∂ηph(uh) defined by (3.46). For h= 2−6

the value of the cost functional in the optimal solution for the second approach is
J = 0.47473792124624. The numerical results are summarized in Table 3.9 and are
better than those predicted by the theoretical investigations of Berggren in [11] for
the state equation, and are in accordance with the predictions of Casas and Raymond
in [28] for the control problem.

Let us present a numerical example that shows that the estimate (3.49) in fact is
optimal for two-dimensional polygonal domains. In particular we consider problem
(3.42) without constraints on the control in the form

min
u∈L2(Γ )

J (u)= 1

2
‖y − y0‖ + α

2
‖u‖L2(Γ ), s.t. −�y = f in Ω,y = u on Γ

with

Ω̄ = conv

{(

cos
2π(i − 1)

12
, sin

2π(i − 1)

12

)

: i = 1 . . . ,12

}

, α = 1, and

y0(x1, x2)= 4(x1 − 0.4)2 − 4(x2 − 0.6)2, f = 0.

The triangulation of the domain is depicted in Fig. 3.9. The maximum inner angle of
the polygon is given by ωmax = 5

6π , so that the critical exponent in estimate (3.49)
is given by

p∗ = ωmax

(
ωmax − π

2

)−1 = 5

2
.

The experimental order of convergence reported in Table 3.10 confirms the estimate
(3.49) of Casas and Raymond. EOC for two different finite element approaches to
problem (3.42) are presented. (I1) presents the results for the approach of Casas and
Raymond, whereas (I2) presents the results for variational discrretization combined
with a mixed finite element approximation of the state equation based on the lowest
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Table 3.9 EOC for Dirichlet boundary control: Approach 1 (top part), for which theory is not yet
available, Approach 2 (bottom part), for which the theory of Sect. 3.2.7.3 applies. In both cases we
observe linear convergence of the states and controls. The adjoint state also converges linear for
approach 1, but seems to converge quadratically in approach 2

h yL2 yL∞ pL2 pL∞ uL2 uL∞

1–2 −44.315839 −45.874172 2.252319 1.449921 −Inf −Inf

2–3 −2.658752 −2.692762 0.890090 0.631871 −2.710238 −2.947286

3–4 0.513148 0.230017 1.605929 1.322948 0.559113 0.709528

4–5 0.864432 0.633565 1.641025 1.616581 0.867286 0.687088

5–6 0.955413 0.898523 1.474113 1.599350 0.937568 0.794933

6–7 0.969762 0.711332 1.239616 1.497993 0.936822 0.878459

7–8 0.992879 0.987835 1.106146 1.342300 0.986749 0.960009

8–9 0.990927 0.858741 1.035620 1.177092 0.982189 0.976724

1–2 −0.015094 −0.950093 2.273887 1.599015 −0.464738 −0.950093

2–3 1.479164 1.040787 0.909048 0.498459 1.194508 1.040787

3–4 1.484622 0.855688 1.720355 1.540523 0.979140 0.855688

4–5 1.647971 0.701102 1.873278 1.835947 1.360098 0.701102

5–6 1.545075 0.764482 1.910160 1.895133 1.253975 0.764482

6–7 1.424251 0.798198 1.955067 1.875618 1.227700 0.798198

7–8 1.163258 0.825129 1.915486 1.819988 1.173902 0.825129

8–9 1.020300 0.845442 1.742227 1.722124 1.099603 0.845442

Table 3.10 EOC for Dirichlet boundary control on a polygonal domain, no constraints on the
control

i np h (I1) (I2)

‖u− uh‖L2(Γ ) EOC ‖u− uh‖L2(Γ ) EOC

1 21 0.61966 0.372593 – 0.488032 –

2 69 0.30983 0.330050 0.175 0.325708 0.583

3 249 0.15491 0.214437 0.622 0.222048 0.553

4 945 0.07746 0.144640 0.568 0.145601 0.609

5 3681 0.03873 0.095540 0.598 0.089347 0.705

6 14529 0.01936 0.057251 0.739 0.047105 0.924

7 57729 0.00968 – – – –

order Raviart Thomas element. As exact solution the finite element approximation
obtained with refinement level 7 is taken. In Fig. 3.10 the optimal control together
with the optimal state for approach (I1) is shown. One clearly observes a loss of
regularity in the corners of the polygon.
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Fig. 3.9 Triangulations of
the polygonal domain for 2
different refinement levels

Note 3.5 We note that in some numerical examples presented in the previous sub-
sections, (variants) of the fix-point iteration of Algorithm 3.2 are used. Convergence
of this algorithm can only be guaranteed for parameter values α > 0 large enough.
For small parameters α > 0 primal-dual active set strategies as proposed by Hinter-
müller, Ito and Kunisch in [69], or semi-smooth Newton methods from the paper
[136] of M. Ulbrich could be applied to the numerical solution of the discrete prob-
lems, see Sect. 2.5 and compare the discussion associated to (3.20). Finally we note
that our solution algorithms perform independent of the finite element mesh, i.e. is
mesh-independent, compare the discussion in Sect. 2.8.1, and in the work of Hinter-
müller and Ulbrich [68]. This may easily be explained by the fact that the iteration of
Algorithm 3.2 is defined on the infinite dimensional space U of controls, rather than
on a finite dimensional subspace of U . Thus, the finite element discretization from
the viewpoint of the control problem has more of the flavor of a parametrization
than of a discretization.
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Fig. 3.10 Top: State (left) and adjoint state, bottom: optimal control for control on polygonal
domain

3.2.8 Some Literature Related to Control Constraints

There are many contributions to finite element analysis for elliptic control problems
with constraints on the controls. For an introduction to the basic techniques we refer
to the book [133] of Tröltzsch. Falk [48], and Geveci [54] present finite element
analysis for piecewise constant approximations of the controls. For semilinear state
equations Arada, Casas, and Tröltzsch in [8] present a finite element analysis for
piecewise constant discrete controls. Among other things they prove that the se-
quence (uh)h of discrete controls contains a subsequence converging to a solution u

of the continuous optimal control problem. Assuming certain second order sufficient
conditions for u they are also able to prove optimal error estimates of the form

‖u− uh‖ =O(h) and ‖u− uh‖∞ =O(hλ),

with λ= 1 for triangulations of non-negative type, and λ= 1/2 in the general case.
In [29] these results are extended in that Casas and Tröltzsch prove that every non-
singular local solution u (i.e. a solution satisfying a second order sufficient con-
dition) locally can be approximated by a sequence (uh)h of discrete controls, also
satisfying these error estimates. There are only few results considering uniform esti-
mates. For piecewise linear controls in the presence of control constraints are Meyer
and Rösch in [101] for two-dimensional bounded domains with C1,1-boundary
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prove the estimate

‖u− uh‖∞ =O(h),

which seems to be optimal in regard of Table 3.4, and is one order less than the
approximation order obtained with variational discretization, compare Remark 3.2.

Casas, Mateos and Tröltzsch in [30] present numerical analysis for Neumann
boundary control of semilinear elliptic equations and prove the estimate

‖u− uh‖L2(Γ ) =O(h)

for piecewise constant control approximations. In [27] Casas and Mateos extend
these investigations to piecewise linear, continuous control approximations, and also
to variational discrete controls. Requiring some second order sufficient conditions
at the continuous solution u they are able to prove the estimates

‖u− uh‖L2(Γ ) = o(h), and ‖u− uh‖L∞(Γ ) = o(h
1
2 ),

for a general class of control problems, where uh denotes the piecewise linear, con-
tinuous approximation to u. For variational discrete controls uv

h they show the better
estimate

‖u− uv
h‖L2(Γ ) =O(h

3
2−ε) (ε > 0).

Furthermore, they improve their results for objectives which are quadratic w.r.t. the
control and obtain

‖u− uh‖L2(Γ ) =O(h
3
2 ), and ‖u− uh‖L∞(Γ ) =O(h).

These results are in accordance with those presented in Table 3.8.
Let us finally recall the contribution [28] of Casas and Raymond to numerical

analysis of Dirichlet boundary control, who prove the optimal estimate (3.49), and
the contribution of Vexler [142], who for a control in R

n proves the estimate (3.50).
Let us also briefly mention some contributions to a posteriori adaptive concepts in

PDE constrained optimization. Residual based estimators for problems with control
constraints are investigated by Liu and Yan in e.g. [91], by Hintermüller and Hoppe
in [65], and by Gaevskaya, Hoppe, and S. Repin in [51]. For an excellent overview
of the dual weighted residual method applied to optimal control problems we refer
to the work [9] of Becker and Rannacher. An application of this method in the
presence of control constraints is provided by Vexler and Wollner in [143], where
also a recent survey of the literature in the field is given.

3.3 Constraints on the State

Next we also consider constraints on the state. The numerical analysis in this situ-
ation becomes more involved since the multipliers associated to constraints on the
state in general appear to be Borel measures or derivatives of Borel measures.
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3.3.1 Pointwise Bounds on the State

As model problem with pointwise bounds on the state we take the Neumann problem

(S)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min(y,u)∈Y×Uad J (y,u) := 1
2

∫

Ω
|y − y0|2 + α

2 ‖u− u0‖2
U

s.t.
Ay = Bu in Ω,

∂ηy = 0 on Γ,

}

:⇐⇒ y = G(Bu)

and
y ∈ Yad := {y ∈ L∞(Ω), y(x)≤ b(x) a.e. in Ω}.

(3.51)

Here, Ay := −�y + y, and Ω ⊂ R
d (d = 2,3) denotes an open, bounded suffi-

ciently smooth (or polyhedral) domain. Furthermore, we again suppose that α > 0
and that y0 ∈ H 1(Ω), u0 ∈ U and b ∈ W 2,∞(Ω) are given. (U, (·, ·)U ) denotes
a Hilbert space and B : U → L2(Ω) ⊂ H 1(Ω)∗ a linear, continuous operator. By
R : U∗ → U we again denote the inverse of the Riesz isomorphism. In the special
case U ≡ L2(Ω) without control constraints, i.e. Uad ≡ L2(Ω) the finite element
analysis of problem (3.51) is carried out by Deckelnick and Hinze in [39]. Here we
extend the analysis to the case of control and pointwise state constraints, where we
use techniques which are applicable to a wider class of control problems. The ex-
position is closely related to the work [40] of Deckelnick and Hinze, where more
general elliptic state equations are considered, and contains the results of [39] as a
special case.

Problem (3.51) admits the form of problem (1.138), and more specifically that
of problem (1.144). To ensure Robinson’s regularity condition for our optimization
problem it is due to Lemma 1.14 sufficient to impose the so called Slater condition
or interior point condition.

Assumption 3.11

∃ũ ∈Uad G(Bũ) < b in Ω̄.

Since the state constraints form a convex set and the set of admissible controls
is closed and convex it is not difficult to establish the existence of a unique solution
u ∈ Uad to this problem, compare the analysis of problem (1.144). In order to char-
acterize this solution we introduce the space M(Ω̄) of Radon measures which is
defined as the dual space of C0(Ω̄) and endowed with the norm

‖μ‖M(Ω̄) = sup
f∈C0(Ω̄),|f |≤1

∫

Ω̄

f dμ.

For the problem under consideration we now have the following theorem, which
specifies the KKT system (1.140)–(1.143) for the present setting, compare also the
considerations related to (1.144).
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Theorem 3.12 Let u ∈ Uad denote the unique solution to (3.51). Then there exist
μ ∈M(Ω̄) and p ∈ L2(Ω) such that with y = G(Bu) there holds
∫

Ω

pAv =
∫

Ω

(y − y0)v+
∫

Ω̄

vdμ ∀v ∈H 2(Ω) with ∂ηv = 0 on ∂Ω,(3.52)

(RB∗p+ α(u− u0), v − u0)U ≥ 0 ∀v ∈Uad, (3.53)

μ≥ 0, y(x)≤ b(x) in Ω and
∫

Ω̄

(b− y)dμ= 0. (3.54)

The proof of this theorem in the presented form is given by Casas in [22, Theo-
rem 5.2], compare also [21, Theorem 2].

We now develop and analyze a finite element approximation of problem (3.51).
We start by approximating the cost functional J by a sequence of functionals Jh

where h is a mesh parameter related to a sequence of triangulations. The definition
of Jh involves only the approximation of the state equation by linear finite elements
and enforces constraints on the state in the nodes of the triangulation, whereas the
controls are still sought in Uad. We shall prove that the minima of Jh converge in
L2 to the minimum of J as h→ 0 and that the states convergence strongly in H 1

with corresponding error bounds. We thereby extend the variational discretization
approach developed in Sect. 3.2.5 to problems with control and state constraints. We
prove the following error bounds

‖u− uh‖U , ‖y − yh‖H 1 =
{

O(h
1
2 ), if d = 2,

O(h
1
4 ), if d = 3,

where uh and yh are the discrete control and state respectively. If in addition Bu ∈
W 1,s(Ω) we obtain

‖u− uh‖U , ‖y − yh‖H 1 ≤ Ch
3
2− d

2s

√| logh|,
and if Bu ∈ L∞(Ω) also

‖u− uh‖U , ‖y − yh‖H 1 ≤ Ch| logh|,
where the latter estimate is valid for d = 2,3.

Roughly speaking, the idea is to test (3.53) with uh and (3.62), the discrete coun-
terpart of (3.53), with the continuous solution u. This is feasible since controls are
not discretized explicitly. An important tool in the analysis is the use of L∞-error
estimates for finite element approximations of the Neumann problem developed by
Schatz in [119]. The need for uniform estimates is due to the presence of the mea-
sure μ in (3.52).

3.3.1.1 Finite Element Discretization

For the convenience of the reader we recall the finite element setting. To begin with
let Th be a triangulation of Ω with maximum mesh size h := maxT ∈Th

diam(T )
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and vertices x1, . . . , xm. We suppose that Ω̄ is the union of the elements of Th so
that element edges lying on the boundary are curved. In addition, we assume that
the triangulation is quasi-uniform in the sense that there exists a constant κ > 0
(independent of h) such that each T ∈ Th is contained in a ball of radius κ−1h and
contains a ball of radius κh. Let us define the space of linear finite elements,

Xh := {vh ∈ C0(Ω̄) | vh is a linear polynomial on each T ∈ Th}
with the appropriate modification for boundary elements. In what follows it is conve-
nient to introduce a discrete approximation of the operator G. For a given function
v ∈ L2(Ω) we denote by zh = Gh(v) ∈ Xh the solution of the discrete Neumann
problem

a(zh, vh)=
∫

Ω

vvh for all vh ∈Xh.

It is well-known that for all v ∈ L2(Ω)

‖G(v)− Gh(v)‖ ≤ Ch2‖v‖, (3.55)

‖G(v)− Gh(v)‖L∞ ≤ Ch2− d
2 ‖v‖. (3.56)

The estimate (3.56) can be improved provided one strengthens the assumption on v.

Lemma 3.1

(a) Suppose that v ∈W 1,s(Ω) for some 1 < s < d
d−1 . Then

‖G(v)− Gh(v)‖L∞ ≤ Ch3− d
s | logh|‖v‖W 1,s .

(b) Suppose that v ∈ L∞(Ω). Then

‖G(v)− Gh(v)‖L∞ ≤ Ch2| logh|2‖v‖L∞ .

Proof (a) Let z = G(v), zh = Gh(v). Elliptic regularity theory implies that z ∈
W 3,s(Ω) from which we infer that z ∈W 2,q (Ω) with q = ds

d−s
using a well–known

embedding theorem. Furthermore, we have

‖z‖W 2,q ≤ c‖z‖W 3,s ≤ c‖v‖W 1,s . (3.57)

Using Theorem 2.2 and the following Remark in [119] we have

‖z− zh‖L∞ ≤ c| logh| inf
χ∈Xh

‖z− χ‖L∞ , (3.58)

which, combined with a well-known interpolation estimate, yields

‖z− zh‖L∞ ≤ ch
2− d

q | logh|‖z‖W 2,q ≤ ch3− d
s | logh|‖v‖W 1,s

in view (3.57) and the relation between s and q .
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(b) Elliptic regularity theory in the present case implies that z ∈W 2,q (Ω) for all
1≤ q <∞ with

‖z‖W 2,q ≤ Cq‖v‖Lq

where the constant C is independent of q . For the dependence on q in this estimate
we refer to the work of Agmon, Douglis and Nirenberg [2], see also [53] and [55,
Chap. 9]. Proceeding as in (a) we have

‖z− zh‖L∞ ≤ Ch
2− d

q | logh|‖z‖W 2,q ≤ Cqh
2− d

q | logh|‖v‖Lq

≤ Cqh
2− d

q | logh|‖v‖L∞,

so that choosing q = | logh| gives the result.

Problem (3.51) is now approximated by the variational discretization concept
of [71]. This delivers the following sequence of control problems depending on the
mesh parameter h:

min
u∈Uad

Jh(u) := 1

2

∫

Ω

|yh − y0|2 + α

2
‖u− u0,h‖2

U

subject to yh = Gh(Bu) and yh(xj )≤ b(xj ) for j = 1, . . . ,m.

(3.59)

Here, u0,h denotes an approximation to u0 which is assumed to satisfy

‖u0 − u0,h‖U ≤ Ch. (3.60)

Problem (3.59) represents a convex infinite-dimensional optimization problem of
similar structure as problem (3.51), but with only finitely many equality and in-
equality constraints for the state, which form a convex admissible set. So we are
again in the setting of (1.138) with Y replaced by the finite element space Xh (com-
pare also the analysis of Casas presented in [24])

Lemma 3.2 Problem (3.59) has a unique solution uh ∈ Uad. There exist
μ1, . . . ,μm ∈ R and ph ∈Xh such that with yh = Gh(Buh) and μh =∑m

j=1 μjδxj

we have

a(vh,ph)=
∫

Ω

(yh − y0)vh +
∫

Ω̄

vhdμh ∀vh ∈Xh, (3.61)

(
RB∗ph + α(uh − u0,h), v − uh

)

U
≥ 0 ∀v ∈Uad, (3.62)

μj ≥ 0, yh(xj )≤ b(xj ), j = 1, . . . ,m and
∫

Ω̄

(
Ihb− yh

)
dμh = 0. (3.63)

Here, δx denotes the Dirac measure concentrated at x and Ih is the usual La-
grange interpolation operator.
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Remark 3.3 Problem (3.59) is still an infinite-dimensional optimization problem,
but with finitely many state constraints. This is reflected by the well known fact that
the variational inequalities (3.53) and (3.62) can be rewritten in the form

u= PUad

(

− 1

α
RB∗p+ u0

)

and uh = PUad

(

− 1

α
RB∗ph + u0,h

)

, (3.64)

respectively, where PUad : U → Uad denotes the orthogonal projection onto Uad,
and R :U∗ →U the inverse of the Riesz isomorphism. Due to the presence of PUad

in variational discretization the function uh will in general not belong to Xh even
in the case U = L2(Ω),B = Id . This is different for the purely state constrained
problem, for which PUad ≡ Id , so that in this specific setting uh =− 1

α
ph + u0,h ∈

Xh by (3.64). In that case the space U = L2(Ω) in (3.59) may be replaced by Xh to
obtain the same discrete solution uh, which results in a finite-dimensional discrete
optimization problem instead. However, we emphasize, that the infinite-dimensional
formulation of (3.59) is very useful for our numerical analysis in the Sect. 3.3.1.2.

As a first result for (3.59) we prove that the sequence of optimal controls, states
and the measures μh are uniformly bounded.

Lemma 3.3 Let uh ∈Uad be the optimal solution of (3.59) with corresponding state
yh ∈ Xh and adjoint variables ph ∈ Xh and μh ∈M(Ω̄). Then there exists h̄ > 0
so that

‖yh‖,‖uh‖U ,‖μh‖M(Ω̄) ≤ C for all 0 < h≤ h̄.

Proof Let ũ denote an element satisfying Assumption 3.11. Since G(Bũ) is contin-
uous, Assumption 3.11 implies that there exists δ > 0 such that

G(Bũ)≤ b− δ in Ω̄. (3.65)

It follows from (3.56) that there is h0 > 0 with

Gh(Bũ)≤ b in Ω̄ for all 0 < h≤ h0

so that Jh(uh)≤ Jh(ũ)≤ C uniformly in h giving

‖uh‖U ,‖yh‖ ≤ C for all h≤ h0. (3.66)

Next, let u denote the unique solution to problem (3.51). We infer from (3.65) and
(3.56) that v := 1

2u+ 1
2 ũ satisfies

Gh(Bv) ≤ 1

2
G(Bu)+ 1

2
G(Bũ)+Ch2− d

2 (‖Bu‖ + ‖Bũ‖)

≤ b− δ

2
+Ch2− d

2 (‖u‖U + ‖ũ‖U)≤ b− δ

4
in Ω̄ (3.67)
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provided that h≤ h̄, h̄≤ h0. Since v ∈Uad, (3.62), (3.61), (3.66) and (3.67) imply

0 ≤ (
RB∗ph + α(uh − u0,h), v − uh

)

U

=
∫

Ω

B(v − uh)ph + α(uh − u0,h, v− uh)U

= a(Gh(Bv)− yh,ph)+ α(uh − u0,h, v− uh)U

=
∫

Ω

(Gh(Bv)− yh)(yh − y0)+
∫

Ω̄

(Gh(Bv)− yh)dμh + α(uh − u0,h, v− uh)U

≤ C +
m∑

j=1

μj

(

b(xj )− δ

4
− yh(xj )

)

= C − δ

4

m∑

j=1

μj ,

where the last equality is a consequence of (3.63). It follows that

‖μh‖M(Ω̄) ≤ C

and the lemma is proved.

3.3.1.2 Error Analysis

An important ingredient in our analysis is an error bound for a solution of a Neu-
mann problem with a measure valued right hand side. Let A be defined as above and
consider

A∗q = μ̃|Ω in Ω, ∂ηq = μ̃|∂Ω on ∂Ω. (3.68)

Theorem 3.13 Let μ̃ ∈M(Ω̄). Then there exists a unique weak solution q ∈ L2(Ω)

of (3.68), i.e.

∫

Ω

qAv =
∫

Ω̄

vdμ̃ ∀v ∈H 2(Ω) with
d∑

i,j=1

aij vxi
νj = 0 on ∂Ω.

Furthermore, q belongs to W 1,s(Ω) for all s ∈ (1, d
d−1 ). For the finite element ap-

proximation qh ∈Xh of q defined by

a(vh, qh)=
∫

Ω̄

vhdμ̃ for all vh ∈Xh,

the following error estimate holds;

‖q − qh‖ ≤ Ch2− d
2 ‖μ̃‖M(Ω̄). (3.69)
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Proof A corresponding result is proved by Casas in [20] for the case of an operator
A subject to Dirichlet conditions, but the arguments can be adapted to the present
situation. We omit the details.

Clearly, A in our setting is self adjoint, so that A ≡ A∗. However we note, that
all considerations in this Sections also apply to more general elliptic operators con-
taining e.g. transport terms, see [40] for details. We are now prepared to prove the
main theorem for the optimal controls in the present section.

Theorem 3.14 Let u and uh be the solutions of (3.51) and (3.59) respectively. Then

‖u− uh‖U + ‖y − yh‖H 1 ≤ Ch1− d
4 .

If in addition Bu ∈W 1,s(Ω) for some s ∈ (1, d
d−1 ) then

‖u− uh‖U + ‖y − yh‖H 1 ≤ Ch
3
2− d

2s

√| logh|.

Proof We test (3.53) with uh, (3.62) with u and add the resulting inequalities. This
gives

(
RB∗(p− ph)− α(u0 − u0,h)+ α(u− uh),uh − u

)

U
≥ 0,

which in turn yields

α‖u− uh‖2
U ≤

∫

Ω

B(uh − u)(p− ph)− α
(
u0 − u0,h, uh − u

)

U
. (3.70)

Let yh := Gh(Bu) ∈Xh and denote by ph ∈Xh the unique solution of

a(wh,p
h)=

∫

Ω

(y − y0)wh +
∫

Ω̄

whdμ for all wh ∈Xh.

Applying Theorem 3.13 with μ̃= (y − y0)+μ we infer

‖p− ph‖ ≤ Ch2− d
2
(‖y − y0‖ + ‖μ‖M(Ω̄)

)
. (3.71)

Recalling that yh = Gh(Buh), y
h = Gh(Bu) and observing (3.61) as well as the de-

finition of ph we can rewrite the first term on the right-hand-side of (3.70)

∫

Ω

B(uh − u)(p− ph) =
∫

Ω

B(uh − u)(p− ph)+
∫

Ω

B(uh − u)(ph − ph)

=
∫

Ω

B(uh − u)(p− ph)+ a(yh − yh,ph − ph)

=
∫

Ω

B(uh − u)(p− ph)+
∫

Ω

(y − yh)(yh − yh)
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+
∫

Ω̄

(yh − yh)dμ−
∫

Ω̄

(yh − yh)dμh

=
∫

Ω

B(uh − u)(p− ph)− ‖y − yh‖2

+
∫

Ω

(y − yh)(y − yh)+
∫

Ω̄

(yh − yh)dμ

+
∫

Ω̄

(yh − yh)dμh. (3.72)

After inserting (3.72) into (3.70) and using Young’s inequality we obtain in view of
(3.71), (3.55) and (3.60)

α

2
‖u− uh‖2

U +
1

2
‖y − yh‖2

≤ C
(‖p− ph‖2 + ‖y − yh‖2 + ‖u0 − u0,h‖2

U

)+
∫

Ω̄

(yh − yh)dμ

+
∫

Ω̄

(yh − yh)dμh

≤ Ch4−d +
∫

Ω̄

(yh − yh)dμ+
∫

Ω̄

(yh − yh)dμh. (3.73)

It remains to estimate the integrals involving the measures μ and μh. Since

yh − yh ≤ (Ihb− b)+ (b− y)+ (y − yh) in Ω̄

we deduce with the help of (3.54)
∫

Ω̄

(yh − yh)dμ≤ ‖μ‖M(Ω̄)

(
‖Ihb− b‖L∞ + ‖y − yh‖L∞

)
.

Similarly, (3.63) implies
∫

Ω̄

(yh − yh)dμh ≤ ‖μh‖M(Ω̄)

(
‖b− Ihb‖L∞ + ‖y − yh‖L∞

)
.

Inserting the above estimates into (3.73) and using Lemma 3.3 as well as an inter-
polation estimate we infer

‖u− uh‖2
U + ‖y − yh‖2 ≤ Ch4−d +C‖y − yh‖L∞ . (3.74)

The estimates on ‖u− uh‖U now follow from (3.56) and Lemma 3.1 respectively.
Finally, in order to bound ‖y − yh‖H 1 we note that

a(y − yh, vh)=
∫

Ω

B(u− uh)vh
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for all vh ∈ Xh, from which one derives the desired estimates using standard finite
element techniques and the bounds on ‖u− uh‖U .

For controls u,uh ∈ L∞ uniformly we also have for d = 2,3

Corollary 3.3 Let u and uh be the solutions of (3.51) and (3.59) respectively. Let
us assume that u,uh ∈ L∞(Ω) with ‖uh‖∞ ≤ C uniformly in h. Then, for h small
enough

‖u− uh‖U + ‖y − yh‖H 1 ≤ Ch| logh|
with some positive constant C independent of h.

Proof In order to avoid the dependence on the dimension we should avoid finite
element approximations of the adjoint variable p, which due to its low regularity
only allows error estimates in the L2 norm. We therefore provide a proof technique
which completely avoids the use of finite element approximations of the adjoint
variable. To begin with we start with the basic estimate (3.70)

α‖u− uh‖2
U ≤

∫

Ω

B(uh − u)(p− ph)− α(u0 − u0,h, uh − u)U

and write
∫

Ω

B(uh − u)(p− ph)

=
∫

Ω

pA(ỹ − y)− a(yh − yh,ph)

=
∫

Ω

(y − y0)(ỹ − y)+
∫

Ω̄

ỹ − ydμ−
∫

Ω

(yh − y0)(yh − yh)

+
∫

Ω̄

yh − yhdμh,

where ỹ := G(Buh). Proceeding similar as in the proof of the previous theorem we
obtain

∫

Ω

(y − y0)(ỹ − y)+
∫

Ω̄

ỹ − ydμ−
∫

Ω

(yh − y0)(yh − yh)+
∫

Ω̄

yh − yhdμh

≤ C{‖μ‖M(Ω̄) + ‖μh‖M(Ω̄)}{‖b− Ihb‖L∞ + ‖y − yh‖L∞ + ‖ỹ − yh‖L∞}
− ‖y − yh‖2 +C{‖y − yh‖ + ‖ỹ − yh‖}.

Using Lemma 3.3 together with Lemma 3.1 then yields

α‖u− uh‖2
U + ‖y − yh‖2 ≤ C{h2 + h2| logh|2},

so that the claim follows as in the proof of the previous theorem.
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Remark 3.4 Let us note that the approximation order of the controls and states in
the presence of control and state constraints is the same as in the purely state con-
strained case, if Bu ∈W 1,s(Ω). This assumption holds for the important example
U = L2(Ω), B = Id and u0h

= Phu0, with u0 ∈ H 1(Ω) and Ph : L2(Ω)→ Xh

denoting the L2-projection, and subsets of the form

Uad = {v ∈ L2(Ω), al ≤ v ≤ au a.e. in Ω},
with bounds al, au ∈ W 1,s(Ω), since u0 ∈ H 1(Ω), and p ∈ W 1,s(Ω). Moreover,
u,uh ∈ L∞(Ω) with ‖uh‖∞ ≤ C uniformly in h holds if for example al, au ∈
L∞(Ω).

Remark 3.5 We mention here a second approach that differs from the one dis-
cussed above in the way in which the inequality constraints are realized. Denote
by D1, . . . ,Dm the cells of the dual mesh. Each cell Di is associated with a vertex
xi of Th and we have

Ω̄ =
m⋃

i=1

Di, int(Di)∩ int(Dj )= ∅, i �= j.

In (3.59), we now impose the constraints

−
∫

Dj

(yh − Ihb)≤ 0 for j = 1, . . . ,m (3.75)

on the discrete solution yh = Gh(Bu). Here, we have abbreviated −
∫

Dj
f =

1
|Dj |

∫

Dj
f . The measure μh that appears in Lemma 3.2 now has the form μh =

∑m
j=1 μj−

∫

Dj
·dx, and the pointwise constraints in (3.63) are replaced by those of

(3.75). The error analysis for the resulting numerical method can be carried out
in the same way as shown above with the exception of Theorem 3.14, where the
bounds on ỹ − b and ỹh − Ihb require a different argument. In this case, additional
terms of the form

∥
∥
∥
∥f −−

∫

Dj

f

∥
∥
∥
∥

L∞(Dj )

have to be estimated. Since these will in general only be of order O(h), this analysis
would only give ‖u− uh‖,‖y − yh‖H 1 = O(

√
h). The numerical test example in

Sect. 3.3.1.4 suggests that at least ‖u− uh‖ =O(h), but we are presently unable to
prove such an estimate.

3.3.1.3 Piecewise Constant Controls

In the presence of state constraints a result similar to that of Corollary 3.3 can also
be shown for piecewise constant control approximations with box constraints on
the control. Let now B denote the identity and let Uad = {v ∈ L2(Ω);al ≤ v ≤ au
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a.e. in Ω}, where al < au are given constants. We present the corresponding result
which is taken from the paper [41] of Deckelnick and Hinze. For this purpose we
define the space of piecewise constant functions

Yh := {vh ∈ L2(Ω) | vh is constant on each T ∈ Th}.
and denote by Qh : L2(Ω)→ Yh the orthogonal projection onto Yh so that

(Qhv)(x) := −
∫

T

v, x ∈ T ,T ∈ Th,

where −
∫

T
v denotes the average of v over T . In order to approximate (3.51) we

introduce a discrete counterpart of Uad,

Uh
ad := {vh ∈ Yh | al ≤ vh ≤ au in Ω}.

Note that Uh
ad ⊂ Uad and that Qhv ∈ Uh

ad for v ∈ Uad. Since Qhv→ v in L2(Ω) as
h→ 0 we infer from the continuous embedding H 2(Ω) ↪→ C0(Ω̄) and Lemma 3.1
that

Gh(Qhv)→ G(v) in L∞(Ω) for all v ∈Uad. (3.76)

Problem (3.51) is now approximated by the following sequence of control problems
depending on the mesh parameter h:

min
u∈Uh

ad

Jh(u) := 1

2

∫

Ω

|yh − y0|2 + α

2

∫

Ω

|u|2

subject to yh = Gh(u) and yh(xj )≤ b(xj ) for j = 1, . . . ,m.

(3.77)

Problem (3.77), as problem (3.59), represents a convex finite-dimensional optimiza-
tion problem of similar structure as problem (3.51), but with only finitely many
equality and inequality constraints for state and control, which form a convex ad-
missible set. The following optimality conditions can be argued as those given in
(3.2) for problem (3.59).

Lemma 3.4 Problem (3.77) has a unique solution uh ∈ Uh
ad. There exist μ1, . . . ,

μm ∈R and ph ∈Xh such that with yh = Gh(uh) and μh =∑m
j=1 μjδxj

we have

a(vh,ph)=
∫

Ω

(yh − y0)vh +
∫

Ω̄

vhdμh ∀vh ∈Xh, (3.78)

∫

Ω

(ph + αuh)(vh − uh)≥ 0 ∀vh ∈Uh
ad, (3.79)

μj ≥ 0, yh(xj )≤ b(xj ), j = 1, . . . ,m and
∫

Ω̄

(
Ihb− yh

)
dμh = 0. (3.80)

Here, δx denotes the Dirac measure concentrated at x and Ih is the usual La-
grange interpolation operator.
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For (3.77) we now prove bounds on the discrete states and the discrete multipli-
ers. Similar to Lemma 3.3 we have

Lemma 3.5 Let uh ∈Uh
ad be the optimal solution of (3.77) with corresponding state

yh ∈ Xh and adjoint variables ph ∈ Xh and μh ∈M(Ω̄). Then there exists h̄ > 0
such that

‖yh‖,‖μh‖M(Ω̄) ≤ C, ‖ph‖H 1 ≤ Cγ (d,h) for all 0 < h≤ h̄,

where γ (2, h)=√| logh| and γ (3, h)= h− 1
2 .

Proof Since G(ũ) ∈ C0(Ω̄), Assumption 3.11 implies that there exists δ > 0 such
that

G(ũ)≤ b− δ in Ω̄. (3.81)

It follows from (3.76) that there is h̄ > 0 with

Gh(Qhũ)≤ b− δ

2
in Ω̄ for all 0 < h≤ h̄. (3.82)

Since Qhũ ∈Uh
ad, (3.80), (3.79) and (3.82) imply

0 ≤
∫

Ω

(ph + αuh)(Qhũ− uh)=
∫

Ω

ph(Qhũ− uh)+ α

∫

Ω

uh(Qhũ− uh)

= a(Gh(Qhũ)− yh,ph)+ α

∫

Ω

uh(Qhũ− uh)

=
∫

Ω

(Gh(Qhũ)− yh)(yh − y0)+
∫

Ω̄

(Gh(Qhũ)− yh)dμh + α

∫

Ω

uh(Qhũ− uh)

≤ C − 1

2
‖yh‖2 +

m∑

j=1

μj

(

b(xj )− δ

2
− yh(xj )

)

= C − 1

2
‖yh‖2 − δ

2

m∑

j=1

μj

where the last equality is a consequence of (3.80). It follows that ‖yh‖,‖μh‖M(Ω̄) ≤
C. In order to bound ‖ph‖H 1 we insert vh = ph into (3.79) and deduce with the
help of the coercivity of A, a well-known inverse estimate and the bounds we have
already obtained that

c1‖ph‖2
H 1 ≤ a(ph,ph)=

∫

Ω

(yh − y0)ph +
∫

Ω̄

phdμh

≤ ‖yh − y0‖‖ph‖ + ‖ph‖L∞‖μh‖M(Ω̄) ≤ C‖ph‖ +Cγ (d,h)‖ph‖H 1 .

Hence ‖ph‖H 1 ≤ Cγ (d,h) and the lemma is proved.

We are now prepared to prove the analogue to Theorem 3.14 for piecewise con-
stant control approximations.
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Theorem 3.15 Let u and uh be the solutions of (3.51) and (3.77) respectively. Then
we have for 0 < h≤ h̄

‖u− uh‖ + ‖y − yh‖H 1 ≤
{

Ch| logh|, if d = 2
C
√

h, if d = 3.

Proof We test (3.53) with uh, (3.80) with Qhu and add the resulting inequalities.
Keeping in mind that u−Qhu⊥ Yh we obtain

∫

Ω

(
p− ph + α(u− uh)

)
(uh − u)

≥
∫

Ω

(
ph + αuh

)
(u−Qhu)=

∫

Ω

(ph −Qhph)(u−Qhu).

As a consequence,

α‖u−uh‖2 ≤
∫

Ω

(uh−u)(p−ph)−
∫

Ω

(ph−Qhph)(u−Qhu)≡ I + II. (3.83)

Let yh := Gh(u) ∈Xh and denote by ph ∈Xh the unique solution of

a(wh,p
h)=

∫

Ω

(y − y0)wh +
∫

Ω̄

whdμ for all wh ∈Xh.

Applying Theorem 3.13 with μ̃= (y − y0)+μ we infer

‖p− ph‖ ≤ Ch2− d
2
(‖y − y0‖ + ‖μ‖M(Ω̄)

)
. (3.84)

Recalling that yh = Gh(uh), y
h = Gh(u) and observing (3.79) as well as the defini-

tion of ph we can rewrite the first term in (3.83)

I =
∫

Ω

(uh − u)(p− ph)+
∫

Ω

(uh − u)(ph − ph)

=
∫

Ω

(uh − u)(p− ph)+ a(yh − yh,ph − ph)

=
∫

Ω

(uh − u)(p− ph)+
∫

Ω

(y − yh)(yh − yh)+
∫

Ω̄

(yh − yh)dμ

−
∫

Ω̄

(yh − yh)dμh

=
∫

Ω

(uh − u)(p− ph)− ‖y − yh‖2 +
∫

Ω

(y − yh)(y − yh)

+
∫

Ω̄

(yh − yh)dμ+
∫

Ω̄

(yh − yh)dμh. (3.85)
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Applying Young’s inequality we deduce

|I | ≤ α

4
‖u− uh‖2 − 1

2
‖y − yh‖2 +C

(‖p− ph‖2 + ‖y − yh‖2)

+
∫

Ω̄

(yh − yh)dμ+
∫

Ω̄

(yh − yh)dμh. (3.86)

Let us estimate the integrals involving the measures μ and μh. Since yh − yh ≤
(Ihb− b)+ (b− y)+ (y− yh) in Ω̄ we deduce with the help of (3.54), Lemma 3.1
and an interpolation estimate

∫

Ω̄

(yh − yh)dμ≤ ‖μ‖M(Ω̄)

(‖Ihb− b‖L∞ + ‖y − yh‖L∞
)≤ Ch2| logh|2.

On the other hand yh − yh ≤ (yh − y) + (b − Ihb) + (Ihb − yh), so that (3.80),
Lemma 3.1 and Lemma 3.5 yield
∫

Ω̄

(yh − yh)dμh ≤ ‖μh‖M(Ω̄)

(‖b− Ihb‖L∞ + ‖y − yh‖L∞
)≤ Ch2| logh|2.

Inserting these estimates into (3.86) and recalling (3.55) as well as (3.69) we obtain

|I | ≤ α

4
‖u− uh‖2 − 1

2
‖y − yh‖2 +Ch4−d +Ch2| logh|2. (3.87)

Let us next examine the second term in (3.83). Since uh =Qhuh and Qh is stable
in L2(Ω) we have

|II| ≤ 2‖u− uh‖‖ph −Qhph‖ ≤ α

4
‖u− uh‖2 +Ch2‖ph‖2

H 1

≤ α

4
‖u− uh‖2 +Ch2γ (d,h)2

using an interpolation estimate for Qh and Lemma 3.5. Combining this estimate
with (3.87) and (3.83) we finally obtain

‖u− uh‖2 + ‖y − yh‖2 ≤ Ch4−d +Ch2| logh|2 +Ch2γ (d,h)2

which implies the estimate on ‖u−uh‖. In order to bound ‖y− yh‖H 1 we note that

a(y − yh, vh)=
∫

Ω

(u− uh)vh

for all vh ∈ Xh, from which one derives the desired estimate using standard finite
element techniques and the bound on ‖u− uh‖.
Remark 3.6 An inspection of the proof of Theorem 3.15 shows that we also could
avoid to use error estimates for the auxiliary function ph if we would use a tech-
nique for the term I similar to that used in the proof of Corollary 3.3. However,
our approach to estimate II is based on inverse estimates which finally lead to the
dimension dependent error estimate presented in Theorem 3.15.
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3.3.1.4 Numerical Examples for Pointwise Constraints on the State

Example 3.6 The following test problem is taken—in a slightly modified form—
from the paper [104, Example 6.2] of Meyer, Prüfert and Tröltzsch. Let Ω := B1(0),
α > 0,

y0(x) := 4+ 1

π
− 1

4π
|x|2 + 1

2π
log |x|, u0(x) := 4+ 1

4απ
|x|2 − 1

2απ
log |x|

and b(x) := |x|2 + 4. We consider the cost functional

J (u) := 1

2

∫

Ω

|y − y0|2 + α

2

∫

Ω

|u− u0|2,

where y = G(u). By checking the optimality conditions of first order one verifies
that u≡ 4 is the unique solution of (3.51) with corresponding state y ≡ 4 and adjoint
states

p(x)= 1

4π
|x|2 − 1

2π
log |x| and μ= δ0.

The finite element counterparts of y,u,p and μ are denoted by yh,uh,ph and μh.
To investigate the experimental order of convergence (see (3.25) for its defin-

ition) for our model problem we choose a sequence of uniform partitions of Ω

containing five refinement levels, starting with eight triangles forming a uniform
octagon as initial triangulation of the unit disc. The corresponding grid sizes are
hi = 2−i for i = 1, . . . ,5. As error functionals we take E(h)= ‖(u, y)− (uh, yh)‖
and E(h)= ‖(u, y)− (uh, yh)‖H 1 and note, that the error p−ph is related to u−uh

via (3.62). We solve problems (3.59) using the QUADPROG routine of the MAT-
LAB OPTIMIZATION TOOLBOX. The required finite element matrices for the
discrete state and adjoint systems are generated with the help of the MATLAB PDE
TOOLBOX. Furthermore, for discontinuous functions f we use the quadrature rule

∫

Ω

f (x)dx ≈
∑

T ∈Th

f
(
xs(T )

) |T |,

where xs(T ) denotes the barycenter of T . In all computations we set α = 1.
In Table 3.11, we present EOCs for problem (3.59) (case S = D) and the ap-

proach sketched in Remark 3.5 (case S =M). As one can see, the error ‖u−uh‖ be-
haves in the case S =D as predicted by Theorem 3.14, whereas the errors ‖y− yh‖
and ‖y − yh‖H 1 show a better convergence behaviour. On the finest level we have
‖u−uh‖ = 0.003117033, ‖y−yh‖ = 0.000123186 and |y−yh|H 1 = 0.000083757.
Furthermore, all coefficients of μh are equal to zero, except the one in front of
δ0 whose value is 0.99946494. The errors ‖u − uh‖, ‖y − yh‖ and ‖y − yh‖H 1

in the case S = M show a better EOC than in the case S = D. This can be ex-
plained by the fact that the exact solutions y and u are contained in the finite ele-
ment space, and that the relaxed form of the state constraints introduce a smear-
ing effect on the numerical solutions at the origin. On the finest level we have
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Table 3.11 Experimental order of convergence

Level (S =D) (S =M) (S =D) (S =M) (S =D) (S =M)

‖u− uh‖ ‖u− uh‖ ‖y − yh‖ ‖y − yh‖ ‖y − yh‖H 1 ‖y − yh‖H 1

1 0.788985 0.654037 0.536461 0.690302 0.860516 0.688531

2 0.759556 1.972784 1.147861 2.017836 1.272400 2.015602

3 0.919917 1.962191 1.389378 2.004383 1.457095 2.004286

4 0.966078 1.856687 1.518381 1.989727 1.564204 1.990566

5 0.986686 1.588722 1.598421 1.979082 1.632772 1.979945

Fig. 3.11 Numerically
computed state yh (top) and
control uh (bottom) for
h= 2−5 in the case S =D

‖u−uh‖ = 0.001020918, ‖y−yh‖ = 0.000652006 and |y−yh|H 1 = 0.000037656.
Furthermore, the coefficient of μh corresponding to the patch containing the origin
has the value 1.0640946.

Figures 3.11 and 3.12 present the numerical solutions yh and uh for h= 2−5 in
the case S =D and S =M , respectively. We note that using equal scales on all axes
would give completely flat graphs in all four figures.
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Fig. 3.12 Numerically
computed state yh (top) and
control uh (bottom) for
h= 2−5 in the case S =M

Example 3.7 The second test problem is taken from the work [102], Example 2 of
Meyer, Rösch, and Tröltzsch. It reads

min
u∈L2(Ω)

J (u)= 1

2

∫

Ω

|y − y0|2 + 1

2

∫

Ω

|u− u0|2

subject to y = G(u) and y(x)≥ b(x) in Ω.

Here, Ω denotes the unit square,

b(x)=
{

2x1 + 1, x1 < 1
2 ,

2, x1 ≥ 1
2 ,

y0(x)=

⎧
⎪⎨

⎪⎩

x2
1 − 1

2 , x1 < 1
2 ,

1
4 , x1 = 1

2 ,

3
4 , x1 > 1

2 ,

and

u0(x)=
{

5
2 − x2

1 , x1 < 1
2 ,

9
4 , x1 ≥ 1

2 .
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Fig. 3.13 Numerically
computed state yh (top) and
control uh (bottom) for

h=
√

2
36 in the case S =D

The exact solution is given by y ≡ 2 and u≡ 2 in Ω . The corresponding Lagrange
multiplier p ∈H 1(Ω) is given by

p(x)=
{

1
2 − x2

1 , x1 < 1
2 ,

1
4 , x1 ≥ 1

2 .

The multiplier μ has the form
∫

Ω̄

f dμ=
∫

{x1= 1
2 }

f ds +
∫

{x1>
1
2 }

f dx, f ∈ C0(Ω̄). (3.88)

In our numerical computations we use uniform grids generated with the POIMESH
function of the MATLAB PDE TOOLBOX. Integrals containing y0, u0 are numer-
ically evaluated by substituting y0, u0 by their piecewise linear, continuous finite
element interpolations Ihy0, Ihu0. The grid size of a grid containing l horizontal

and l vertical lines is given by hl =
√

2
l+1 . Figure 3.13 presents the numerical results

for a grid with h=
√

2
36 in the case (S =D). The corresponding values of μh on the

same grid are presented in Fig. 3.14. They reflect the fact that the measure consists
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Fig. 3.14 Numerically
computed multiplier μh for

h=
√

2
36 in the case S =D

Table 3.12 Experimental order of convergence, x1 = 1
2 grid line

Level (S =D) (S =M) (S =D) (S =M) (S =D) (S =M)

‖u− uh‖ ‖u− uh‖ ‖y − yh‖ ‖y − yh‖ ‖y − yh‖H 1 ‖y − yh‖H 1

1 1.669586 0.448124 1.417368 0.544284 1.594104 0.384950

2 1.922925 1.184104 1.990906 1.473143 1.992097 1.239771

3 2.000250 1.456908 2.101633 1.871948 2.080739 1.745422

4 2.029556 1.530303 2.125168 2.427634 2.108241 2.348036

5 2.041913 1.260744 2.124773 2.743918 2.116684 2.563363

6 2.047106 1.142668 2.117184 1.430239 2.117739 1.318617

7 2.048926 1.177724 2.107828 1.503463 2.115633 1.409563

8 2.049055 1.194893 2.098597 1.578342 2.112152 1.497715

9 2.048312 1.194802 2.090123 1.622459 2.108124 1.549495

of a lower dimensional part which is concentrated on the line {x ∈Ω | x1 = 1
2 } and

a regular part with a density χ|{x1>
1
2 }. We again note that using equal scales on all

axes would give completely flat graphs for yh as well as for uh.
We compute EOCs for the two different sequences of grid-sizes so = {h1, h3, . . . ,

h19} and se = {h0, h2, . . . , h18}. We note that the grids corresponding to so contain
the line x1 = 1

2 . Table 3.12 presents EOCs for so, and Table 3.13 presents EOCs
for se . For the sequence so we observe super-convergence in the case (S =D), al-
though the discontinuous function y0 for the quadrature is replaced by its piecewise
linear, continuous finite element interpolant Ihy0. Let us note that further numerical
experiments show that the use of the quadrature rule (3.6) for integrals containing
the function y0 decreases the EOC for ‖u− uh‖ to 3

2 , whereas EOCs remain close
to 2 for the other two errors ‖y − yh‖ and ‖y − yh‖H 1 . For this sequence also the
case (S =M) behaves twice as good as expected by our arguments in Remark 3.5.
For the sequence se the error ‖u− uh‖ in the case (S =D) approximately behaves
as predicted by our theory, in the case (S =M) it behaves as for the sequence so.
The errors ‖y − yh‖ and ‖y − yh‖H 1 behave that well, since the exact solutions y

and u are contained in the finite element space. For h19 we have in the case (S =D)
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Table 3.13 Experimental order of convergence, x1 = 1
2 not a grid line

Level (S =D) (S =M) (S =D) (S =M) (S =D) (S =M)

‖u− uh‖ ‖u− uh‖ ‖y − yh‖ ‖y − yh‖ ‖y − yh‖H 1 ‖y − yh‖H 1

1 0.812598 0.460528 1.160789 2.154570 0.885731 1.473561

2 1.361946 0.406917 2.042731 0.597846 1.918942 0.405390

3 1.228268 1.031763 1.832573 1.392796 1.700124 1.088595

4 1.245030 1.262257 1.678233 1.621110 1.570580 1.392408

5 1.252221 1.416990 1.646124 1.844165 1.554434 1.686808

6 1.256861 1.505759 1.696309 2.128776 1.620231 2.021210

7 1.264456 1.489061 1.627539 2.507863 1.559065 2.415552

8 1.260157 1.316627 1.640964 2.989867 1.580113 2.818148

9 1.265599 1.169109 1.686579 1.601263 1.635084 1.460153

Table 3.14 Approximation
of the multiplier in the case
(S =D), x1 = 1

2 grid line

Level
∑

xi∈{x1=1/2}μi

∑
xi∈{x1>1/2}μi

1 1.13331662624081 0.36552954225441

2 1.06315278164899 0.43644163287114

3 1.03989323182608 0.45990635060758

4 1.02893022155910 0.47095098878247

5 1.02265064139378 0.47727091447291

6 1.01855129775903 0.48139306499280

7 1.01569011772403 0.48426838085822

8 1.01359012331610 0.48637773715316

9 1.01198410389649 0.48799027450619

‖u−uh‖ = 0.000103428, ‖y−yh‖ = 0.000003233 and |y−yh|H 1 = 0.000015155,
and in the case (S =M) ‖u− uh‖ = 0.011177577, ‖y − yh‖ = 0.000504815 and
|y − yh|H 1 = 0.001547907. We observe that the errors in the case S =M are two
magnitudes larger than in the case (S =D). This can be explained by the fact that
an Ansatz for the multiplier μ with a linear combination of Dirac measures is better
suited to approximate measures concentrated on singular sets than a piecewise con-
stant Ansatz as in the case (S =M). Finally, Table 3.14 presents

∑
xi∈{x1=1/2}μi

and
∑

xi∈{x1>1/2}μi for so in the case (S = D). As one can see
∑

xi∈{x1=1/2}μi

tends to 1, the length of {x1 = 1/2}, and
∑

xi∈{x1>1/2}μi tends to 1/2, the area of
{x1 > 1/2}. These numerical findings indicate that μh =∑m

i=1 μiδxi
well approxi-

mates μ, since
∫

Ω̄
dμh =∑m

i=1 μi , and that μh also well resolves the structure of
μ, see (3.88). For all numerical computations of this example we have μi = 0 for
xi ∈ {x1 < 1/2}.
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3.3.1.5 Some Literature for (Control and) State Constraints

To the authors knowledge only few attempts have been made to develop a finite
element analysis for elliptic control problems in the presence of control and state
constraints. In [24] Casas proves convergence of finite element approximations to
optimal control problems for semi-linear elliptic equations with finitely many state
constraints. Casas and Mateos extend these results in [26] to a less regular setting
for the states and prove convergence of finite element approximations to semi-linear
distributed and boundary control problems. In [99] Meyer considers a fully discrete
strategy to approximate an elliptic control problem with pointwise state and control
constraints. He obtains the approximation order

‖ū− ūh‖ + ‖ȳ − ȳh‖H 1 =O(h2−d/2−ε) (ε > 0),

where d denotes the spatial dimension. His results confirm those obtained by the
Deckelnick and Hinze in [39] for the purely state constrained case, and are in accor-
dance with Theorem 3.14. Meyer also considers variational discretization and in the
presence of L∞ bounds on the controls shows

‖ū− ūh‖ + ‖ȳ − ȳh‖H 1 =O(h1−ε | logh|) (ε > 0),

which is a result of a similar quality as that given in Corollary 3.3.
Let us comment also on further approaches that tackle optimization problems for

PDEs with control and state constraints. A Lavrentiev-type regularization of prob-
lem (3.51) is investigated by Meyer, Rösch and Tröltzsch in [102]. In this approach
the state constraint y ≤ b in (3.51) is replaced by the mixed constraint εu+ y ≤ b,
with ε > 0 denoting a regularization parameter, see problem (2.70). It turns out that
the associated Lagrange multiplier με belongs to L2(Ω). Numerical analysis for this
approach with emphasis on the coupling of gridsize and regularization parameter ε

is presented by Hinze and Meyer in [74]. The resulting optimization problems are
solved either by interior-point methods or primal-dual active set strategies, compare
the work [104] Meyer, Prüfert and Tröltzsch.

Hintermüller and Kunisch in [66, 67] consider the Moreau-Yosida relaxation
approach to problem classes containing (3.51). In this approach the state con-
straint is relaxed in that it is dropped and a L2 regularization term of the form
1

2γ

∫

Ω
|max(0, γ G(Bu))|2 is added to the cost functional instead, where γ denotes

the relaxation parameter, see problem (2.56). Numerical analysis for this approach
with emphasis on the coupling of gridsize and relaxation parameter γ is presented
by Hintermüller and Hinze in [65].

Schiela in [121] chooses a different way to relax state constraints in consider-
ing barrier functionals of the form −μ

∫

Ω
log (−G(Bu))dx which penalize the state

constraints. In [79] he together with Hinze presents numerical analysis for this ap-
proach with emphasis on the coupling of gridsize and barrier parameter μ.

Adaptive approaches to state constrained optimal control problems are only very
recently reported. Hoppe and Kieweg present an residual based approach in e.g.
[81]. Günther and Hinze in [58] apply the dual weighted residual method to elliptic
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optimal control problems with state constraints. A related approach is presented by
Bendix and Vexler in [10]. Wollner in [147] presents an adaptive approach using
interior point methods with applications to elliptic problems with state constraints,
and he also considers problems with constraints on the gradient of the state.

3.3.2 Pointwise Bounds on the Gradient of the State

We now consider constraints on the gradient of the state. These kind of constraints
play an important role in practical applications where cooling of melts forms a crit-
ical process. In order to accelerate such production processes it is highly desirable
to speed up the cooling processes while avoiding damage of the products caused by
large material stresses. Cooling processes as those considered in Sect. 4.2 frequently
are described by systems of partial differential equations involving the temperature
as a system variable, so that large (Von Mises) stresses in the optimization process
can be avoided by imposing pointwise bounds on the gradient of the temperature.
Pointwise bounds on the gradient in optimization in general deliver adjoint variables
admitting low regularity only. This fact then necessitates the development of tailored
discrete concepts which take into account the low regularity of adjoint variables
and multipliers involved in the optimality conditions of the underlying optimization
problem.

We again consider open bounded domains Ω ⊂ R
d (d = 2,3) with a smooth

boundary ∂Ω together with the differential operator A := −�+ Id . It then follows
that for a given f ∈ Lr(Ω) (1 < r <∞) the elliptic boundary value problem

Ay = f in Ω

y = 0 on ∂Ω
(3.89)

has a unique solution y ∈W 2,r (Ω)∩W
1,r
0 (Ω) which we denote by y = G(f ). Fur-

thermore,

‖y‖W 2,r ≤ C‖f ‖Lr ,

where ‖ · ‖Lr and ‖ · ‖Wk,r denote the usual Lebesgue and Sobolev norms. Let r > d ,
α > 0 and y0 ∈ L2(Ω) be given. We now consider the control problem

min
u∈Lr(Ω)

J (u)= 1

2

∫

Ω

|y − y0|2 + α

r

∫

Ω

|u|r .

subject to y = G(u) and ∇y ∈K.

(3.90)

Here,

K= {z ∈ C0(Ω̄)d | |z(x)| ≤ δ, x ∈ Ω̄}, (3.91)

so that we are in the setting of problem (1.138) with U = Uad = Lr(Ω). Since
r > d we have y ∈W 2,r (Ω) and hence ∇y ∈ C0(Ω̄)d by a well-known embedding
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result. To ensure Robinsons regularity condition (1.139) it is sufficient to impose the
following Slater condition:

∃û ∈K |∇ŷ(x)|< δ, x ∈ Ω̄ where ŷ solves (3.89) with f = û. (3.92)

Since û is feasible for (3.90) we deduce from the work [25, Theorem 3] of Casas
and Fernandéz, that the above control problem has a unique solution u ∈ Lr(Ω).

For the KKT system of problem (3.90) we obtain with the help of (1.140)–(1.143)
(compare also [25, Corollary 1])

Theorem 3.16 An element u ∈ Lr(Ω) is a solution of (3.90) if and only if there
exist μ ∈M(Ω̄)d and p ∈ Lt(Ω) (t < d

d−1 ) such that

∫

Ω

pAz−
∫

Ω

(y − y0)z−
∫

Ω̄

∇z · dμ = 0 ∀z ∈W 2,t ′(Ω)∩W
1,t ′
0 (Ω) (3.93)

p+ α|u|r−2u = 0 in Ω (3.94)
∫

Ω̄

(z−∇y) · dμ ≤ 0 ∀z ∈K. (3.95)

Here, y is the solution of (3.89) and 1
t
+ 1

t ′ = 1. Further we recall that M(Ω̄)

denotes the space of regular Borel measures.

Remark 3.7 Lemma 1 in the paper [25] of Casas and Fernandéz shows that the
vector valued measure μ appearing in Theorem 3.16 can be written in the form

μ= 1

δ
∇yμ,

where μ ∈M(Ω̄) is a nonnegative measure that is concentrated on the set {x ∈ Ω̄ |
|∇y(x)| = δ}.
Remark 3.8 Let us present an example which shows that an optimal control u, and
thus the associated adjoint variable p, in general does not admit weak derivatives.
To begin with we consider (3.90) with the choices Ω = B2(0)⊂R

2, α = 1,

K=
{

z ∈ C0(Ω̄)2 | |z(x)| ≤ 1

2
, x ∈ Ω̄

}

as well as

y0(x) :=
{

1
4 + 1

2 log 2− 1
4 |x|2, 0≤ |x| ≤ 1,

1
2 log 2− 1

2 log |x|, 1 < |x| ≤ 2.

In order to construct a test example we allow an additional right hand side f in the
state equation and replace (3.89) by

−�y = f + u in Ω

y = 0 on ∂Ω,
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where

f (x) :=
{

2, 0≤ |x| ≤ 1,

0, 1 < |x| ≤ 2.

The optimization problem then has the unique solution

u(x)=
{−1, 0≤ |x| ≤ 1

0, 1 < |x| ≤ 2

with corresponding state y ≡ y0. We note that we obtain equality in (3.94), i.e. p =
−u. Furthermore, the action of the measure μ applied to a vectorfield φ ∈ C0(Ω̄)2

is given by
∫

Ω̄

φ · dμ=−
∫

∂B1(0)

x · φdS.

Having in mind to consider finite element approximations of problem (3.90) discrete
concepts for the control u should be considered which reflect the low regularity of
the control.

3.3.2.1 Finite Element Discretization

We sketch an approach which uses classical piecewise linear, continuous approxi-
mations of the states in the setting of Sect. 3.3.1.1. In [42] Deckelnick, Günther and
Hinze present a finite element approximation to problem (3.90) which uses mixed
finite element approximations for the states.

Let us recall the definition of the space of linear finite elements,

Xh := {vh ∈ C0(Ω̄) | vh is a linear polynomial on each T ∈ Th}

with the appropriate modification for boundary elements, and let Xh0 := Xh ∩
H 1

0 (Ω). Here Th again denotes a quasi-uniform triangulation of Ω with maximum
mesh size h :=maxT ∈Th

diam(T ). We suppose that Ω̄ is the union of the elements
of Th so that element edges lying on the boundary are curved. Furthermore let us
recall the definition of the discrete approximation of the operator G. For a given
function v ∈ L2(Ω) we denote by zh = Gh(v) ∈Xh0 the solution of

a(zh, vh)=
∫

Ω

vvh for all vh ∈Xh0.

It is well-known that for all v ∈ Lr(Ω)

‖G(v)− Gh(v)‖W 1,∞ ≤ C inf
zh∈Sh0

‖G(v)− zh‖W 1,∞

≤ Ch1− d
r ‖G(v)‖W 2,r ≤ Ch1− d

r ‖v‖Lr . (3.96)
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For each T ∈ Th let zT ∈R
d denote constant vectors. We define

Kh := {zh :Xh→R
d | zh|T = zT on T and |zh|T | ≤ δ, T ∈ Th}.

We approximate (3.90) by the following control problem depending on the mesh
parameter h:

min
u∈Lr(Ω)

Jh(u) := 1

2

∫

Ω

|yh − y0|2 + α

r

∫

Ω

|u|r

subject to yh = Gh(u) and ∇yh ∈Kh.

(3.97)

We first note that ŷh := Gh(û) satisfies a Slater condition similar to (3.92), since for
xT ∈ T ∈ Th by (3.96)

|∇ŷh(xT )| ≤ |∇(ŷh(xT )− ŷ(xT ))| + |∇ŷ(xT )| ≤ ‖∇(ŷh − ŷ)‖L∞ +max
x∈Ω̄
|∇ŷ(x)|

≤ Ch1− d
r + (1− 2ε)δ ≤ (1− ε)δ for all T ∈ Th,

for some ε > 0 and 0 < h ≤ h0, so that (∇ŷh)T ∈Th
∈Kh satisfies the Slater condi-

tion

|∇ŷh(x)|< δ for all x ∈ Ω̄. (3.98)

Therefore, as for problem (3.90) the setting of (1.138) with K replace by Kh applies
to problem (3.97) and we have

Lemma 3.6 Problem (3.59) has a unique solution uh ∈ Lr(Ω). There exist μT ∈
R

d, T ∈ Th and ph ∈Xh0 such that with yh = Gh(uh) we have

a(vh,ph)=
∫

Ω

(yh − y0)vh +
∑

T ∈Th

|T |∇vh|T ·μT ∀vh ∈Xh0, (3.99)

ph + α|uh|r−2uh = 0 in Ω, (3.100)
∑

T ∈Th

|T |(zT −∇yh|T
) ·μT ≤ 0 ∀zh ∈Kh. (3.101)

In problem (3.97) we again apply variational discretization from [71]. From
(3.100) we infer for the discrete optimal control

uh =−α−
1

r−1 |ph| 2−r
r−1 ph. (3.102)

Further, according to Remark 3.7 we have the following representation of the dis-
crete multipliers.

Lemma 3.7 Let uh denote the unique solution of (3.97) with corresponding state
yh = Gh(uh) and multiplier (μT )T ∈Th

. Then there holds

μT = |μT |1
δ
∇yh|T for all T ∈ Th. (3.103)
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Proof Fix T ∈ Th. The assertion is clear if μT = 0. Suppose that μT �= 0 and define
zh : Ω̄→R

d by

z
h|T̃ :=

{∇yh|T , T̃ �= T ,

δ
μT|μT | , T̃ = T .

Clearly, zh ∈Kh so that (3.101) implies

μT ·
(

δ
μT

|μT |
− ∇yh|T

)

≤ 0,

and therefore, since (∇yh|T )T ∈Th
∈Kh,

δ|μT | ≤ μT · ∇yh|T ≤ δ|μT |.
Hence we obtain μT|μT | =

1
δ
∇yh|T and the lemma is proved.

As a consequence of Lemma 3.7 we immediately infer that

|μT | = μT · 1

δ
∇yh|T for all T ∈ Th. (3.104)

We now use (3.104) in order to derive an important a priori estimate.

Lemma 3.8 Let uh ∈ Lr(Ω) be the optimal solution of (3.97) with corresponding
state yh ∈Xh0 and adjoint variables ph ∈Xh0, μT , T ∈ Th. Then there exists h0 > 0
such that

‖yh‖,‖uh‖Lr ,‖ph‖
L

r
r−1

,
∑

T ∈Th

|T ||μT | ≤ C for all 0 < h≤ h0.

Proof Combining (3.104) with (3.98) we deduce

μT · (∇yh|T −∇ŷh|T )≥ δ|μT | − (1− ε)δ|μT | = εδ|μT |.
Choosing wh = yh− ŷh in (3.99) and using the definition of Gh together with (3.100)
we hence obtain

εδ
∑

T ∈Th

|T ||μT | ≤
∑

T ∈Th

|T |μT · (∇yh|T −∇ŷh|T )

= a(yh − ŷh,ph)−
∫

Ω

(yh − ŷ0)(yh − ŷh)

=
∫

Ω

(uh − û)ph −
∫

Ω

(yh − ŷ0)(yh − ŷh)

≤ −α

2

∫

Ω

|uh|r − 1

2

∫

Ω

|yh|2 +C(1+ ‖y0‖2 + ‖û‖rLr ).

This implies the bounds on yh,uh and μT . The bound on ph follows from (3.100).
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Remark 3.9 For the measure μh ∈M(Ω̄)d defined by
∫

Ω̄

f · dμh :=
∑

T ∈Th

∫

T

f dx ·μT for all f ∈ C0(Ω̄)d ,

it follows immediately that

‖μh‖M(Ω̄)d ≤ C.

Now we are in the position to prove the following error estimates.

Theorem 3.17 Let u and uh be the solutions of (3.90) and (3.97) respectively. Then
there exists h1 ≤ h0 such that

‖y − yh‖ ≤ Ch
1
2 (1− d

r
), and ‖u− uh‖Lr ≤ Ch

1
r
(1− d

r
)

for all 0 < h≤ h1.

Proof Let us introduce yh := G(uh) ∈ W 2,r (Ω) ∩W
1,r
0 (Ω), and ỹh := Gh(u). In

view of Lemma 3.8 and (3.96) we have

‖yh − yh‖W 1,∞ ≤ Ch1− d
r ‖uh‖Lr ≤ Ch1− d

r . (3.105)

Let us now turn to the actual error estimate. To begin, we recall that for r ≥ 2 there
exists θr > 0 such that

(|a|r−2a − |b|r−2b)(a − b)≥ θr |a − b|r ∀a, b ∈R.

Hence, using (3.94) and (3.100),

αθr

∫

Ω

|u− uh|r ≤ α

∫

Ω

(|u|r−2u− |uh|r−2uh

)
(u− uh)

=
∫

Ω

(−p+ ph)(u− uh)=: (1)+ (2).

Recalling (3.93) we have

(1) =
∫

Ω

p
(
Ayh −Ay

)

=
∫

Ω

(y − y0)(y
h − y)+

∫

Ω̄

(∇yh −∇y
) · dμ

=
∫

Ω

(y − y0)(y
h − y)+

∫

Ω̄

(
Pδ(∇yh)−∇y

) · dμ

+
∫

Ω̄

(∇yh − Pδ(∇yh)
) · dμ
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where Pδ denotes the orthogonal projection onto B̄δ(0) = {x ∈ R
d | |x| ≤ δ}. Note

that

|Pδ(x)− Pδ(x̃)| ≤ |x − x̃| ∀x, x̃ ∈R
d . (3.106)

Since x �→ Pδ(∇yh(x)) ∈K we infer from (3.95)

(1)≤
∫

Ω

(y − y0)(y
h − y)+max

x∈Ω̄
|∇yh(x)− Pδ(∇yh(x))|‖μ‖M(Ω̄)d . (3.107)

Let x ∈ Ω̄ , say x ∈ T for some T ∈ Th. Since uh is feasible for (3.97) we have that
∇yh|T ∈ B̄δ(0) so that (3.106) together with (3.105) implies

∣
∣∇yh(x)− Pδ(∇yh(x))

∣
∣ ≤ ∣

∣∇yh(x)−∇yh|T
∣
∣+ ∣

∣Pδ(∇yh(x))− Pδ

(∇yh|T
)∣
∣

≤ 2
∣
∣∇yh(x)−∇yh|T

∣
∣≤ Ch1− d

r ‖uh‖Lr . (3.108)

Thus

(1)≤
∫

Ω

(y − y0)(y
h − y)+Ch1− d

r . (3.109)

Similarly,

(2) = a(ỹh − yh,ph)=
∫

Ω

(yh − y0)(ỹh − yh)+
∑

T ∈Th

|T |(∇ỹh|T −∇yh|T
) ·μT

=
∫

Ω

(yh − y0)(ỹh − y)+
∑

T ∈Th

|T |(∇ỹh|T − Pδ(∇ỹh|T )
) ·μT

+
∑

T ∈Th

|T |(Pδ(∇ỹh|T −∇yh|T
) ·μT

≤
∫

Ω

(yh − y0)(ỹh − y)+
∑

T ∈Th

|T |(∇ỹh|T −∇y(xT )
) ·μT

+
∑

T ∈Th

|T |(Pδ(∇y(xT )− Pδ(∇yh|T )
) ·μT ,

where xT ∈ T , so that (∇y(xT ))T ∈Th
∈Kh. We infer from Lemma 3.8 and (3.1)

(2) ≤
∫

Ω

(yh − y0)(ỹh − y)+ 2 max
T ∈Th

|∇ỹh|T −∇y(xT )|
∑

T ∈Th

|T ||μT |

≤
∫

Ω

(yh − y0)(ỹh − y)+Ch1− d
r ‖u‖Lr . (3.110)

Combining (1) and (2) we finally obtain

αθr

∫

Ω

|u− uh|r ≤
∫

Ω

(y − y0)
(
yh − y

)+
∫

Ω

(yh − y0)
(
ỹh − yh

)+Ch1− d
r
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= −
∫

Ω

|y − yh|2 +
∫

Ω

(
(y0 − yh)(y − ỹh)+ (y − y0)(y

h − yh)
)

+Ch1− d
r

≤ −
∫

Ω

|y − yh|2 +C
(‖y − ỹh‖ + ‖yh − yh‖

)+Ch1− d
r

≤ −
∫

Ω

|y − yh|2 +Ch
(‖u‖ + ‖uh‖

)+Ch1− d
r

in view of (3.55), and the result follows.

3.3.2.2 A Numerical Experiment with Pointwise Constraints on the Gradient

We now consider the finite element approximation of problem (3.90) with the data
of Remark 3.8. Instead of variational discretization we also use piecewise linear,
continuous Ansatz functions for the control uh. For the numerical solution we use
the routine fmincon contained in the MATLAB Optimization Toolbox. The state
equation is approximated with piecewise linear, continuous finite elements on quasi-
uniform triangulations Th of B2(0). The gradient constraints are required element-
wise. The resulting discretized optimization problem then reads

min
uh∈Xh

Jh(uh, yh)= 1

2
‖yh − y0‖2

L2(Ωh)
+ α

r
‖uh‖rLr (Ωh)

subject to yh = Gh(uh)

|∇yh|T | ≤ δ = 1
2 ∀T ∈ Th

In Figs. 3.15, 3.16 we present the numerical approximations yh,uh, and μh on a
grid containing m= 1089 gridpoints. Figure 3.15 shows that a piecewise Ansatz for
the control only delivers poor approximations to the piecewise constant continuous
control, and we observe overshooting at the jump discontinuity. Figure 3.16 clearly
shows that the support of μh is concentrated around |x| = 1 where μh = |μh| ac-
cording to relation (3.103).

In Table 3.15 we investigate the experimental order of convergence defined in
(3.25) for the error functionals

Eu(h) := ‖u− uh‖,‖u− uh‖L4, and Ey(h) := ‖y − yh‖.
It turns out that the controls show an approximation behaviour which is slightly
better than that predicted for the variational controls by Theorem 3.17. The L2-
norm of the state seems to converge linearly. This seems to be caused by the special
structure of the example. In general we should not expect an approximation order for
piecewise linear polynomial approximations to the control, since the exact solution
does not admit weak derivatives.

In Table 3.16 we display the values of
∑

T ∈Th
μT . These values are expected to

converge to 2π as h→ 0, since this gives the value of μ applied to the function
which is identically equal to 1 on Ω̄ .
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Fig. 3.15 State (top), and
control (bottom)

3.4 Time Dependent Problem

For the time-dependent case we present the analysis of Discontinuous Galerkin ap-
proximations w.r.t. time for an abstract linear-quadratic model problem. The under-
lying analysis turns out to be very similar to that of the preceding sections for the
stationary model problem.

3.4.1 Mathematical Model, State Equation

Let V,H denote separable Hilbert spaces, so that (V ,H =H ∗,V ∗) forms a Gelfand
triple. We denote by a : V × V → R a bounded, coercive (and symmetric) bilin-
ear form, by U the Hilbert space of controls, and by B : U → L2(V ∗) the linear
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Fig. 3.16 Discrete multiplier

Table 3.15 Errors (top) and
EOC for the numerical
example

NT ‖u− uh‖L4(Ωh) ‖u− uh‖L2(Ωh) ‖y − yh‖L2(Ωh)

32 8.26× 10−1 1.36 2.41× 10−1

128 6.18× 10−1 8.98× 10−1 8.66× 10−2

512 5.01× 10−1 6.33× 10−1 3.33× 10−2

2048 4.15× 10−1 4.36× 10−1 1.36× 10−2

0.45487 0.65285 1.60659

0.31573 0.52485 1.43072

0.27582 0.54677 1.31906

Table 3.16 Behaviour of the
discrete multiplier NT

∑NT
i=1 μi

32 0

128 2.26

512 4.09

2048 5.14

bounded control operator. Here we recall Lp(S) ≡ Lp((0, T );S) where S denotes
a Banach space and T > 0. For y0 ∈H we consider the state equation

∫ T

0 〈yt , v〉V ∗,V + a(y, v)dt = ∫ T

0 〈(Bu)(t), v〉V ∗,V dt ∀v ∈ L2(V ),

(y(0), v)H = (y0, v)H ∀v ∈ V,

}

:⇐⇒

y = T Bu,
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which for every u ∈U admits a unique solution y = y(u) ∈W := {w ∈ L2(V ),wt ∈
L2(V ∗)}, see e.g. [146] and Theorem 1.37.

3.4.2 Optimization Problem

We consider the optimization problem

(TP)

{
min(y,u)∈W×Uad J (y,u) := 1

2‖y − z‖2
L2(H)

+ α
2 ‖u‖2

U

s.t. y = T Bu,
(3.111)

where Uad ⊆U denotes a closed, convex subset. Introducing the reduced cost func-
tional

Ĵ (u) := J (y(u),u),

the necessary (and in the present case also sufficient) optimality conditions take the
form

〈Ĵ ′(u), v − u〉U∗,U ≥ 0 for all v ∈Uad.

Here

Ĵ ′(u)= αu+B∗p(y(u)),

where the adjoint state p solves the adjoint equation

∫ T

0
〈−pt ,w〉V ∗,V + a(w,p)dt =

∫ T

0
(y − z,w)H dt ∀w ∈W,

(p(T ), v)H = 0, v ∈ V.

This variational inequality is equivalent to the semi–smooth operator equation

u= PUad

(

− 1

α
RB∗p(y(u))

)

with PUad denoting the orthogonal projection in U onto Uad, and R : U∗ → U the
inverse of the Riesz isomorphism.

3.4.3 Discretization

Let Vh ⊂ V denote a finite dimensional subspace, and let 0= t0 < t1 < · · ·< tm = T

denote a time grid with grid width δt . We set In := (tn−1, tn] for n= 1, . . . ,m and
seek discrete states in the space

Vh,δt := {φ : [0, T ] ×Ω→R, φ(t, ·)|Ω̄ ∈ Vh,φ(·, x)|In ∈ Pr for n= 1, . . . ,m}.
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i.e. yh,δt is a polynomial of degree r ∈N w.r.t. time. Possible choices of Vh in appli-
cations include polynomial finite element spaces, and also wavelet spaces, say. We
define the discontinuous Galerkin w.r.t. time approximation (dG(r)-approximation)
ỹ = yh,δt (u)≡ Th,δtBu ∈ Vh,δt of the state y as unique solution of

A(ỹ, v) :=
m∑

n=1

∫

In

(ỹt , v)H + a(ỹ, v)dt +
m∑

n=2

([ỹ]n−1, vn−1+)H + (ỹ0+, v0+)H

= (y0, v
0+)H +

∫ T

0
〈(Bu)(t), v〉V ∗,V dt for all v ∈ Vh,δt . (3.112)

Here,

vn+ := lim
t↘tn

v(t, ·), vn− := lim
t↗tn

v(t, ·), and [v]n := vn+ − vn−.

The discrete counterpart of the optimal control problem for the variational approach
of [71] reads

(Ph,δt ) min
u∈Uad

Ĵh,δt (u) := J (yh,δt (u), u)

and it admits a unique solution uh,δt ∈Uad. We further have

Ĵ ′h,δt (v)= αv+B∗ph,δt (yh,δt (v)),

where ph,δt (yh,δt (v)) ∈ Vh,δt denotes the unique solution of

A(v,ph,δt )=
∫ T

0
(yh,δt − z, v)H dt for all v ∈ Vh,δt .

Further, the unique discrete solution uh,δt satisfies

〈uh,δt +B∗ph,δt , v− uh,δt 〉U∗,U ≥ 0 for all v ∈Uad.

As in the continuous case this variational inequality is equivalent to a semi–smooth
operator equation, namely

uh,δt = PUad

(

− 1

α
RB∗ph,δt (yh,δt (uh,δt ))

)

.

For this discrete approach the proof of the following theorem follows the lines of
the proof of Theorem 3.4.

Theorem 3.18 Let u,uh,δt denote the unique solutions of (P ) and (Ph,δt ), respec-
tively. Then

α‖u− uh,δt‖2
U + ‖yh,δt (uh,δt )− yh,δt (u))‖2

L2(H)
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≤ 〈B∗(p(u)− p̃h,δt (u)), uh,δt − u〉U∗,U + ‖y(u)− yh,δt (u)‖2
L2(H)

, (3.113)

where p̃h,δt (u) := T ∗h,δt (T Bu− z), yh,δt (u) := Th,δtBu, and y(u) := T Bu.

As a result of estimate (3.113) we have that error estimates for the variational dis-
cretization are available if error estimates for the dg(r)-approximation to the state
and the adjoint state are available. Using the setting for the heat equation investi-
gated by Meidner and Vexler we recover with the help of [98, Prop. 4.3,4.4] their
result of [98, Corollary 5.9] for variational discretization obtained with dG(0) in
time and piecewise linear and continuous finite elements in space, namely

α‖u− uh,δt‖2
U + ‖yh,δt (uh,δt )− yh,δt (u))‖2

L2(H)
≤ C{δt + h2}.

Remark 3.10 If we choose a more specific setting in problem (3.111), say that
for the heat equation with Neumann boundary conditions and H = L2(Ω), V =
H 1(Ω), and impose additional constraints on the state to be satisfied in the space-
time domain Q := (0, T ) × Ω the results of Theorem 3.12 and Lemma 3.2 hold
accordingly, if we require uniformly continuous states and a Slater condition simi-
lar to that of Assumption 3.11 and replace the operator G by T . Moreover, a result
of the following form can be obtained along the lines of the proof of Corollary 3.3,
where the norms have to be taken w.r.t. the domain Q;

α‖u− uh,δt‖2 + ‖y − yh,δt‖2

≤ C(‖u‖,‖uh,δt‖)
{
‖y − yh,δt (u)‖ + ‖yh,δt (uh,δt )− yh,δt‖

}

+C(‖μ‖M(Q̄),‖μh,δt‖M(Q̄))
{
‖y − yh,δt (u)‖L∞ + ‖yh,δt (uh,δt )− yh,δt‖L∞

}

+ α‖u0 − u0,(h,δt)‖2.

Here yh,δt (uh,δt ) := T Buh,δt , yh,δt (u) := Th,δtBu.
This means that error estimates for the controls are available if we uniform esti-

mates for the discrete states at hand. For the latter let us refer to the work of Ericsson
and Johnson in [46].

3.4.4 Further Literature on Control of Time-Dependent Problems

In the literature only few contributions to numerical analysis for control problems
with time dependent PDEs can be found. For unconstrained linear quadratic control
problems with the time dependent Stokes equation in two- and three-dimensional
domains Deckelnick and Hinze in [37] prove the error bound

‖u− uh,σ ‖L2((0,T )×Ω) =O(σ + h2).
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Here and below σ denotes the discretization parameter in time, and h that in space.
They use a fully implicit variant of Eulers method for the time discretization which
is equivalent to the dG(0) approximation introduced in Sect. 3.4.3. In space the
use Taylor-Hood finite elements. Using [37, (3.1), (3.6)] combined with (3.113) this
estimate directly extends also to the control constrained case.

Boundary control for the heat equation in one spatial dimension is considered by
Malanowski in [93] with piecewise constant, and by Rösch in [118] with piecewise
linear, continuous control approximations. Requiring strict complementarity for the
continuous solution Rösch is able to prove the estimate

‖u− uσ‖ =O(σ
3
2 ).

Malanowski proves the estimate

‖u− uh,σ ‖L2((0,T )×Ω) =O(σ + h).

In a recent work [97, 98] Meidner and Vexler present extensive research for con-
trol problem (3.111) and its discrete approximation based on dG(0) in time and fi-
nite element in space, where they consider the heat equation as mathematical model
on a two- or three-dimensional convex polygonal domain. For variational discretiza-
tion of [71] they prove the estimate

‖u− uh,σ ‖L2((0,T )×Ω) =O(σ + h2),

which under the assumption of strict complementarity of the continuous solution
and further regularity requirements also holds for post-processing [100].

For control problems with nonlinear time dependent equations one only finds
few contributions in the literature. In [59, 60] Gunzburger and Manservisi present a
numerical approach to control of the instationary Navier-Stokes equations (1.145)
using the first discretize then optimize approach discussed in Sect. 3.2.2. The first
optimize then discretize approach of Sect. 3.2.3 applied to the same problem class
is discussed by Hinze in [70]. Deckelnick and Hinze provide numerical analysis
for a general class of control problems with the instationary Navier Stokes sys-
tem (1.145) in [38]. Among other things they prove existence and local uniqueness
of variational discrete controls in neighborhoods of nonsingular continuous solu-
tions, and for semi-discretization in space with Taylor-Hood finite elements provide
the error estimate

∫ T

0
‖u− uh‖2

U dt ≤ Ch4.

Here, u,uh denote the continuous and variational discrete optimal control, respec-
tively. For further references we refer to the papers [97, 98] of Meidner and Vexler.



Chapter 4
Applications

René Pinnau

Abstract The following chapter is devoted to the study of two industrial applica-
tions, in which optimization with partial differential equations plays a crucial role.
It shall provide a survey of the different mathematical settings which can be han-
dled with the general optimal control calculus presented in the previous chapters.
We focus on large scale optimal control problems involving two well-known types
of partial differential equations, namely elliptic and parabolic ones. Since real world
applications lead generally to mathematically quite involved problems, we study in
particular nonlinear systems of equations. The examples are chosen in such a way
that they are up-to-date and modern mathematical tools are used for their specific
solution. The industrial fields we cover are modern semiconductor design and glass
production. We start each section with a modeling part to introduce the underlying
physics and mathematical models, which are then followed by the analytical and
numerical study of the related optimal control problems.

4.1 Optimal Semiconductor Design

Each student learns in the first lecture on numerical mathematics that the enormous
speed-up of numerical simulations during the last 30 years is rooted in two facts,
namely the significant improvement of algorithms and the ongoing miniaturization
in electronics which allows for faster computing times. In the previous chapters we
already learned in which way fast numerical algorithms can be developed. Now we
study the impact of mathematical optimization on advanced semiconductor design.
There are several stages at which optimization and control are used in semicon-
ductor industry, e.g., in circuit design, thermal control of the circuit board or, on a
smaller level, the design of the semiconductor device itself. Even the control of the
whole production process itself is under mathematical investigation. The most pop-
ular semiconductor device is indeed the so-called MOSFET (metal oxide silicium
field effect transistor), which is employed in many applications (see Fig. 4.1) [129].

In the design cycle one changes the geometry of the device (miniaturization!)
and the so-called doping profile, which describes the density of charged background
ions. This doping profile defines the type of the semiconductor device under consid-
eration. In the conventional design cycle simulation tools are employed to compute
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Fig. 4.1 MOSFET device

the so called current-voltage characteristics of the device, from which the electrical
engineer can deduce many performance characteristics of the device. This is done
for a certain set of design parameters, and then these parameters are adjusted empiri-
cally. Thus, the total design time depends crucially on the knowledge and experience
of the engineer.

In standard applications a working point, i.e., a certain voltage-current pair, for
the device is fixed. In particular for MOSFET devices in portable systems it is most
important to have on the one hand a low leakage current (in the off-state), which
maximizes the battery lifetime, and on the other hand one wants to maximize the
drive current (in the on-state) [128]. Now, we want to study how one can apply
the previously introduced techniques to optimize such a device and we pose the
following design question [77]: Is it possible to gain an amplified current at the
working point only by a slight change of the doping profile?

We proceed in several steps. First, we motivate the system of nonlinear equations,
which is describing the electronic behavior of the semiconductor device. There are
many semiconductor models at hand, but we will concentrate in the next section
on the well established drift diffusion model [96]. Then, we state the optimization
problem in mathematical terms, provide some analysis and study its numerical so-
lution.

4.1.1 Semiconductor Device Physics

In this section we give a brief introduction into the physics (here we follow [141])
and numerical simulation of semiconductor devices, which is far from being com-
prehensive. If the reader wants to get deeper into the topic we suggest to study the
excellent books by Sze [129] or Selberherr [124].

Clearly, the most important features of semiconductor devices are due to elec-
tromagnetic effects, i.e., such a device reacts on applied voltages. Here, we only
consider electrostatic effects ignoring electrodynamics and magnetic phenomena.
Further, we ignore quantum effects, which are getting increasingly important due to
the shrinking device size [17, 96].
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In general, a semiconductor is just a specifically modified crystal. The modifi-
cation of the underlying crystal (consisting, e.g., of Silicium atoms) are due to a
preparation of the surface (to build metallic or insulating contacts) and due to the
implantation of impurities (e.g., Aluminum atoms). This has to be done since the
electronic behavior of a homogeneous semiconductor is rather boring. Due to the
replacement of atoms in the crystal, which is the so-called doping process, we get
an inhomogeneous semiconductor exhibiting the desired electronic performance.
There exist several sophisticated technologies to achieve the desired doping. And
since these processes can be controlled on the nanometer scale, it is possible to fab-
ricate nowadays devices with a gate length of less than 45 nanometers. Nevertheless,
there is still a strong need for the (automated) design of the semiconductor device,
i.e., how the doping profile has to be adjusted such that the device shows the desired
behavior.

4.1.1.1 Charge Transport

Normally, one implants atoms into the semiconductor crystal which have more (do-
nator atoms) or less (acceptor atoms) electrons participating at binding interactions.
While Silicium atoms have four binding electrons, Phosphor atoms have five and
Aluminum atoms have three. If a Silicium atom is replaced by a Phosphor atom
we have one additional electron, which is not necessary for the binding and which
can therefor move freely in the crystal. Hence, the Phosphor atom donates one elec-
tron to the conductivity band. But if the Silicium atom is replaced by an Aluminum
atom, then the additional electron which is needed for the binding is taken from the
surrounding atoms and a hole is generated.

In fact, also these holes contribute to the charge transport in the semiconductor
crystal, since the Silicium atom (which is then positively charged) attracts an elec-
tron from one surrounding atom. This process repeats and charge transport takes
place by the missing electrons, i.e., the holes. Experiments suggest that the charge
transport by holes can be considered as charge transport by real particles which have
a positive charge q .

Now, that we know how charge transport takes place in the semiconductor, let
us assume that the semiconductor occupies a bounded domain Ω ⊂ R

3. So far, our
assumptions imply that there is an instantaneous electric field E(x), x ∈ Ω , which
is only determined by the position of the charged particles.

Hence, we could describe the charge transport in the semiconductor just by con-
sidering an ensemble of charged particles interacting via the electric field. If we put
an electron with velocity v0 in the point x0 ∈ Ω , then there will be an interaction of
the electron with the electric field, which can be described by Coulomb’s law and
Newton’s second law:

me

d2x(t)

dt2
= −qE(x(t)),
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where me is the electron mass and q is the elementary charge. Further, we would
have the initial conditions

x(t = 0) = x0 and
dx

dt
(t = 0) = v0.

Clearly, this description is computationally not efficient since there will be billions
of particles even in a very tiny piece of a semiconductor crystal. For this reason
we introduce the electron density n(x) (with unit m−3, i.e., number of particles per
cubic meter). This function can be interpreted as follows: Consider again that the
semiconductor device occupies the domain Ω ⊂ R

3 and assume that this domain
contains a large number of electrons. Now let there be a subdomain ω ⊂ Ω which
is large compared to the size of one electron. Then, the total number of electrons in
this subdomain is given by ∫

ω

n(x)dx.

Since the number of particles in a domain is always nonnegative, we directly have
n ≥ 0. Note that at this stage we cannot exclude the occurrence of vacuum regions.

Further, we introduce the mean electron velocity vn. Assuming again that there
is a subdomain ω ⊂ Ω which is large compared to the size of one electron. Then the
average velocity of electrons in this subdomain is given by

∫
ω

vn(x) dx.

Finally, we introduce the electron current density by

Jn = qnvn.

Remark 4.1 The density of holes p(x), the mean hole velocity vp and the hole
current density Jp are defined in analogy. Note that

Jp = −qpvp.

Next, we motivate the set of partial differential equations connecting those quan-
tities.

4.1.1.2 The Potential Equation

First, we give a mathematically tractable relation between the charge densities and
the electric field. This can be done by introducing the electrostatic potential V which
is defined as a solution of the Poisson equation

−ε�V = q(n − p + NA − ND),
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where ε is the dielectric constant of the semiconductor material and NA, ND are the
densities of acceptor and donator atoms, respectively. Here, we assumed that each
donator atom contributes just one electron as well as each acceptor atom contributes
just one hole. Then, the electric field can be expressed as

E = −∇V.

Note that the potential is not uniquely defined by this equation, since one might
add an arbitrary constant and still gets the same electric field. In particular, if the
equation is posed on a bounded domain the prescription of boundary data will be
essential.

Introducing the doping profile

C(x) := ND(x) − NA(x)

we finally get the equation

−ε�V = q(n − p − C), (4.1)

where the function q(n − p − C) is called the total space charge.

Remark 4.2 For the sake of simplicity and notational convenience we assume in the
following that all physical parameters in our model are constant.

4.1.1.3 The Continuity Equations

The current density J(x) in the semiconductor consists of the sum of the electron
and the hole current density, i.e.,

J = Jn + Jp.

Clearly, only the combined current density can be measured. If we assume that
we have conservation of charged particles and no generation and recombination
processes are present, then it holds for each subdomain ω ⊂ Ω with smooth bound-
ary ∂ω that

I∂ω =
∫

∂ω

J · ν ds = 0.

Hence, Gauß’ theorem implies directly
∫

ω

div Jdx = 0.

This holds for any subdomain ω ⊂ Ω . Thus, the variational lemma yields the differ-
ential form of the continuity equation

div J = 0.
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Remark 4.3 Taking into account J = Jn + Jp we get

div Jn = div Jp = 0.

4.1.1.4 The Current Densities

The above equations are by far not sufficient to describe charge transport in the
semiconductor device. In particular, we need additional relations for the current
densities. In many applications one can successfully assume that the current densi-
ties are entirely determined by the particle densities and by the electrostatic potential
[124, 129]. Here, we only consider two contributions, namely the convective current
density and the diffusive current density.

The convective current density describes the acceleration of charged particles in
an electric field. It is assumed to be proportional to the electric field, i.e.,

Jconv
n = qμnn∇V, Jconv

p = −qμpn∇V,

where μn and μp are the mobilities of electrons and holes, respectively.

Remark 4.4 In general, the mobilities might depend on the electric field or even on
the background doping profile. Here, we assume that they are constants.

The diffusion current density accounts for the compensation of density fluctua-
tions for an ensemble of charged particles. Hence, this causes an additional move-
ment of the particles, the so-called diffusion. We assume that these diffusion current
densities are given by

Jdiff
n = qDn∇n, Jdiff

p = qDp∇p,

where the diffusion coefficients Dn and Dp are assumed to be positive constants.
Finally, we get the current density relations

Jn = Jdiff
n + Jconv

n = qDn∇n + qμnn∇V,

Jp = −
(

Jdiff
p + Jconv

p

)
= −qDp∇p + qμpp∇V.

These can be further simplified assuming the Einstein relations [129]

Dn

μn

= Dp

μp

= kBT

q
=: VT ,

where T is the (constant) temperature of electrons and holes and kB is the Boltz-
mann constant. Here, VT is called the thermal voltage.

Summarizing, we get the well-known drift diffusion model which was first intro-
duced by Van Rosbroeck (cf. [95, 129] and the references therein):

Jn = q(Dn∇n + μnn∇V ), (4.2a)
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Jp = −q(Dp∇p − μpp∇V ), (4.2b)

div Jn = 0, (4.2c)

div Jp = 0, (4.2d)

−ε�V = q(n − p − C). (4.2e)

Hence, the drift diffusion model consists of a coupled system of nonlinear elliptic
partial differential equations. This makes its mathematical analysis quite involved
(see, e.g., [95, 96]).

To get a well posed problem we have to supplement (4.2) with additional bound-
ary data. We assume that the boundary ∂Ω of the domain Ω splits into two disjoint
parts ΓD and ΓN , where ΓD models the Ohmic contacts of the device and ΓN rep-
resents the insulating parts of the boundary. Let ν denote the unit outward normal
vector along the boundary. First, assuming charge neutrality

n − p − C = 0

and thermal equilibrium

np = n2
i

at the Ohmic contacts ΓD and, secondly, zero current flow and vanishing electric
field at the insulating part ΓN yields the following set of boundary data

n = nD, p = pD, V = VD on ΓD, (4.2f)

Jn · ν = Jp · ν = ∇V · ν = 0 on ΓN, (4.2g)

where nD , pD , VD are given on ΓD by

nD =
C +

√
C2 + 4n2

i

2
, pD =

−C +
√

C2 + 4n2
i

2
,

VD = −VT log

(
nD

ni

)
+ Vbi.

Here, Vbi denotes the applied biasing voltage, which is, e.g., applied between the
source and the drain contact of the MOSFET device, and ni is the intrinsic carrier
density of the semiconductor. Note, that the main unknowns in the above model are
the densities n and p as well as the potential V .

4.1.1.5 Scaling

This model is not only challenging from the analytical point view, but also due to
the severe numerical problems one has to encounter [95]. To understand this it is
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most convenient to rewrite the equations in nondimensional form using following
diffusion scaling [96]

n → Cmñ, p → Cmp̃, x → Lx̃,

C → CmC̃, V → VT Ṽ , Jn,p → qUT Cmμn,p

L
J̃n,p,

where L denotes a characteristic device length, Cm the maximal absolute value of
the background doping profile and μn,p a characteristic values for the respective
mobilities. Defining the dimensionless Debye length

λ2 = εVT

qCmL2

the scaled equations read

div Jn = 0, Jn = ∇n + n∇V, (4.3a)

div Jp = 0, Jp = −(∇p − p∇V ), (4.3b)

−λ2�V = n − p − C, (4.3c)

where we omitted the tilde for notational convenience.
The Dirichlet boundary conditions on ΓD transform to

nD = C + √
C2 + 4δ4

2
, pD = −C + √

C2 + 4δ4

2
,

VD = − log
(nD

δ2

)
+ Vbi,

(4.3d)

where δ2 = ni/Cm denotes the scaled intrinsic density.
For typical device parameters [129] we get for the Debye length λ2 = 10−3 and

for the scaled intrinsic density δ2 = 10−4. Hence, the drift diffusion model is singu-
lar perturbed, which has to be taken into consideration in the numerical treatment.

Remark 4.5 There will be large gradients in the potential and thus also in the par-
ticle densities near to rapid changes in the doping profile, the so called junctions.
In general, one employs the Scharfetter–Gummel discretization [95, 120] for the
discretization, which can be interpreted as an exponentially fitted scheme. For a
detailed discussion of numerical methods for semiconductor equations we refer
to [16].

4.1.2 The Optimization Problem

After setting up the underlying model equations we now turn our attention to the
design question. Remember that the main objective in optimal semiconductor design
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is to get an improved current flow at a specific contact of the device, e.g., focusing
on the reduction of the leakage current (in the off-state) in MOSFET devices or
maximizing the drive current (in the on-state) [76, 128]. In both cases a certain
working point is fixed and one tries to achieve this objective by a change of the
doping profile C. Hence, the objective of the optimization, the current flow over a
contact Γ , is given by

I =
∫

Γ

J · ν ds =
∫

Γ

(Jn + Jp) · ν ds, (4.4)

where the current density J for a specific doping profile C is given by the solution
of the drift diffusion model (4.3).

Next, we want to embed this design question into the optimal control context pre-
sented in the previous chapters. We intend to minimize a cost functional of tracking-
type

J (n,p,V,C) := 1

2

∣∣∣∣
∫

Γ

J · ν ds − I ∗
∣∣∣∣
2

+ γ

2

∫
Ω

∣∣∇(C − C̄)
∣∣2

dx, (4.5)

where C̄ is a given reference doping profile, I ∗ is a desired current flow, and the
parameter γ > 0 allows to adjust the deviations from C̄. Clearly, C is acting here as
the control parameter. The introduction of C̄ is necessary to ensure that we change
not the type of the semiconductor device during the optimization.

Remark 4.6 The definition of the cost functional already implies that we need
C ∈ H 1(Ω), which is also related to the upcoming regularity theory for the drift
diffusion model. Often, doping profiles are described as a superposition of Gaussian
functions. This suggest the introduction of a control operator B : U → H 1(Ω) with
B(u) = C. In the following, we assume that U = H 1(Ω) and B is just the identity
operator.

Remark 4.7 This problem can be clearly tackled by an optimization approach, but
only recently efforts were made to solve the design problem using mathematical
sound optimization techniques [17–19, 49, 50, 75–77]. In [89] Lee et al. present
a finite-dimensional least-squares approach for adjusting the parameters of a semi-
conductor to fit a given, ideal current-voltage characteristics. Their work is purely
numerical and has its focus on testing different approaches to solve the discrete
least-squares problem.

Since the current density J is given by a solution of the drift diffusion model this
yields altogether a constrained optimization problem in the spirit of (1.78). We de-
scribe in the following how one can use the adjoint approach (compare Sect. 1.6.2)

to this problem. For this purpose we introduce the state y
def= (n,p,V ) and an ad-

missible set of controls Uad ⊂ H 1(Ω) and rewrite the state system (4.3) shortly as
e(y,u) = 0. Due to the nonlinear structure of the equations we define the state space
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Y
def= yD + Y0, where yD

def= (nD,pD,VD) denotes the boundary data introduced in

(4.3) and Y0
def= (H 1

0,ΓD
(Ω) ∩ L∞(Ω))3, where we define the spaces (for the defini-

tion of the trace operator see Theorem 1.12)

H 1
0,ΓD

(Ω)
def=

{
φ ∈ H 1(Ω) : T (φ) = 0 on ΓD

}
,

as well as Z
def= [H−1(Ω)]3. Then, one can show that e : Y × H 1(Ω) → Z is well-

defined and infinitely often differentiable [76].
Now, the mathematically precise optimization problem reads

min
Y×Uad

J (y,u) such that e(y,u) = 0. (4.6)

We restrict the set of admissible controls to

Uad
def= {u ∈ H 1(Ω) : u = C̄ on ΓD}. (4.7)

This is necessary for the solvability of the state system and for the continuous de-
pendence of the state on the control u, since the boundary data in (4.3) does depend
on C = B(u). In fact, there are various results on the solvability of the state sys-
tem (c.f. [95, 96, 106] and the references therein). For completeness we state the
following existence results, which is proved in [109].

Proposition 4.1 Assume sufficient regularity of the boundary and the data. Then
for each C = B(u) ∈ H 1(Ω) and all boundary data (nD,pD,VD) with

1

K
≤ nD(x),pD(x) ≤ K, x ∈ Ω, and ‖VD‖L∞(Ω) ≤ K

for some K ≥ 1, there exists a solution (Jn,Jp,n,p,V ) ∈ [L2(Ω)]2 × (H 1(Ω) ∩
L∞(Ω))3 of system (4.3) fulfilling

1

L
≤ n(x),p(x) ≤ L, x ∈ Ω, and ‖V ‖L∞(Ω) ≤ L

for some constant L = L(Ω,K,‖C‖Lp(Ω)) ≥ 1, where the embedding H 1(Ω) ↪→
Lp(Ω) holds.

Remark 4.8 The idea of the proof is to write down a fixed point mapping decou-
pling the equations and to use Schauder’s fixed point theorem to get the existence
of a fixed point. The compactness of the mapping is derived by energy estimates
and Stampacchia’s truncation method, which ensures the uniform bounds on the
solution [109].

For the analysis of the optimization problem it is crucial to observe that, in gen-
eral, there exists no unique solution of the state system (4.3). This is physically even
reasonable, since there are devices, like the thyristor, whose performance relies on
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the multiplicity of solutions [96]. Nevertheless, one can ensure uniqueness near to
the thermal equilibrium state, i.e., for small applied biasing voltages Vbi. This has
also impact on the optimization problem. In particular, we cannot consider the re-
duced cost functional in each regime and also the linearized state operator ey is in
general not boundedly invertible. But one can still prove the existence of a mini-
mizer [76].

Theorem 4.1 The constrained minimization problem (4.6) admits at least one so-
lution

(n∗,p∗,V ∗,C∗) ∈ Y × Uad.

Proof The proof follows the ideas presented in Sect. 1.5.2. Since J is bounded

from below, J0
def= inf(y,u)∈Y×Uad J (y,u) is finite. Consider a minimizing sequence

{(yk, uk)}k∈N ⊂ Y ×Uad. From the radial unboundedness of J we infer that {uk}k∈N

is bounded in H 1(Ω). Hence, there exists a weakly convergent subsequence, again
denoted by {uk}k∈N, such that

uk ⇀ u∗, weakly in H 1(Ω).

Since Uad is weakly closed with respect to the H 1(Ω)-norm, we have u∗ ∈ Uad. By
the continuous embedding H 1(Ω) ↪→ Lp(Ω) (p ∈ [1,6)) the sequence {uk}k∈N is
also bounded in Lp(Ω). Now, one can employ Stampaccia’s method [126] to derive
the following estimates [109]

∥∥nk
∥∥

H 1(Ω)
+ ∥∥nk

∥∥
L∞(Ω)

≤ K
(
‖nD‖L∞(ΓD) + ∥∥uk

∥∥
Lp(Ω)

)
, (4.8a)

∥∥pk
∥∥

H 1(Ω)
+ ∥∥pk

∥∥
L∞(Ω)

≤ K
(
‖pD‖L∞(ΓD) + ∥∥uk

∥∥
Lp(Ω)

)
, (4.8b)

∥∥V k
∥∥

H 1(Ω)
+ ∥∥V k

∥∥
L∞(Ω)

≤ K
(
‖VD‖L∞(ΓD) + ∥∥uk

∥∥
Lp(Ω)

)
, (4.8c)

for some constant K = K(Ω) > 0. These are by far sufficient to pass to the
limit in the state equations (4.3), which can be seen as follows. First note that
‖(nD,pD,VD)‖(L∞(ΓD))3 is bounded independently of k due to the definition of
the admissible set (4.7). Every solution (nk,pk,V k) of (4.3) associated to uk satis-
fies the a priori estimates (4.8). Hence, there exists a subsequence, again denoted by
{(nk,pk,V k)}k∈N, such that

(nk,pk,V k) ⇀ (n∗,p∗,V ∗) weakly in (H 1(Ω))3,

which by Rellich’s Theorem [152] implies strong convergence of {(nk,pk,V k)}k∈N

in (L2(Ω))3. Further, the uniform L∞(Ω)-bounds imply

(nk,pk,V k) ⇀ (n∗,p∗,V ∗) weak-* in L∞(Ω).
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Fig. 4.2 Optimized doping profiles for a symmetric n–p–diode (left) and an unsymmetric
n–p–diode (right)

Utilizing these convergences one can pass to the limit in the weak formulation of
(4.3), which satisfies

�n∗ + div(n∗∇V ∗) = 0,

�p∗ − div(p∗∇V ∗) = 0,

−λ2�V ∗ = n∗ − p∗ − u∗

together with the boundary conditions in (4.3). This completes the proof of the ex-
istence of a minimizer.

Since the set given by the constraint is not convex, we can in general not expect
the uniqueness of the minimizer. In fact, one can show analytically that for special
choices of the reference doping C̄ there exist at least two solutions [77]. For other
choices there is at least a numerical evidence of nonuniqueness. This is due to the
fact that the minimizer has the possibility to interchange the roles of the electron
and the hole current densities (see Fig. 4.2). Clearly, this has also some impact on
the construction and convergence of numerical schemes. In particular, the choice of
an appropriate starting point for iterative algorithms is then crucial.

4.1.2.1 The First-Order Optimality System

In this section we discuss the first-order optimality system which is, as we already
know, the basis for all optimization methods seeking at least a stationary point. Since
we have a constrained optimization problem, we write the first-order optimality sys-
tem using the Lagrangian L : Y × U × Z∗ → R associated to problem (4.6) defined
by

L(y,u, ξ)
def= J (y,u) + 〈e(y,u), ξ 〉Z,Z∗ ,
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where ξ
def= (ξn, ξp, ξV ) ∈ Z∗ = [H 1(Ω)]3 denotes the adjoint variable. For the ex-

istence of a Lagrange multiplier associated to an optimal solution (y∗, u∗) of (4.6)
it is sufficient that the operator e′(y∗, u∗) is surjective (compare Sect. 2.6.1).

For the drift diffusion model this does in general not hold, but one can ensure the
bounded invertibility of e′(y∗, u∗) for small current densities [96]. This idea can be
used to prove the unique existence of an adjoint state [76].

Theorem 4.2 There exists a constant j = j (Ω,λ,Vbi) > 0 such that for each state
y ∈ Y with

∥∥∥∥J2
n

n

∥∥∥∥
L∞(Ω)

+
∥∥∥∥∥

J2
p

p

∥∥∥∥∥
L∞(Ω)

≤ j

there exists an adjoint state ξ ∈ Z∗ fulfilling e∗
y(y,u)ξ = −Jy(y,u).

Hence, at least for small current densities there exists a unique Lagrange mul-
tiplier ξ∗ ∈ Z∗ such that together with an optimal solution (y∗, u∗) it fulfills the
first-order optimality system

L′(y∗, u∗, ξ∗) = 0. (4.9)

We can rewrite this equations in a more concise form:

e(y∗, u∗) = 0 in Z,

e∗
y(y

∗, u∗)ξ∗ + Jy(y
∗, u∗) = 0 in Y ∗,

eu(y
∗, u∗)ξ∗ + Ju(y

∗, y∗) = 0 in U∗.

I.e., a critical point of the Lagrangian has to satisfy the state system (4.3), as well as
the adjoint system and the optimality condition. The derivation of this system is an
easy exercise just using the techniques presented in Sect. 1.6.4. Finally, one gets the
coupled linear system

�ξn − ∇V ∇ξn = ξV , (4.10a)

�ξp + ∇V ∇ξp = −ξV , (4.10b)

−λ2�ξV + div
(
n∇ξn

) − div
(
p∇ξp

) = 0, (4.10c)

supplemented with the boundary data

ξJn =
{∫

Γ
Jn · ν ds − I ∗

n , on Γ,

0, on ΓD \ Γ,
(4.10d)

ξJp =
{∫

Γ
Jp · ν ds − I ∗

p, on Γ,

0, on ΓD \ Γ,
(4.10e)
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ξV = 0, on ΓD, (4.10f)

as well as

∇ξn · ν = ∇ξp · ν = ∇ξV · ν = 0 on ΓN. (4.10g)

Further, we have the optimality condition

γ�
(
u − C̄

) = ξV in Ω, (4.11a)

u = C̄ on ΓD, ∇u · ν = ∇C̄ · ν on ΓN. (4.11b)

4.1.3 Numerical Results

Next, we want to discuss the behavior of two numerical methods applied to this
optimization problem.

4.1.3.1 Steepest Descent

The first adequate and easy to implement numerical method for the solution of (4.6)
is the following gradient algorithm, which is a special variant of the general descent
method Algorithm 2.1.

Algorithm 4.3

1. Choose u0 ∈ Uad.
2. For k = 1,2, . . . compute uk = uk−1 − σk∇Ĵ (uk−1).

Here, Ĵ (u)
def= J (y(u),u) denotes the reduced cost functional, which can be in-

troduced near to the thermal equilibrium state. The evaluation of

∇Ĵ (u) = Ju(y,u) + e∗
uξ

requires the solution of the nonlinear state system (4.3) for y as well as a solution of
the linear adjoint system (4.10) for ξ and finally a linear solve of a Poisson problem
to get the correct Riesz representative.

Remark 4.9 We have seen that there exist various choices for the step sizes σk en-
suring the convergence of this algorithm to a critical point, like the Armijo or the
Goldstein rule (compare Sect. 2.2). The overall numerical performance of this algo-
rithm relies on an appropriate choice of the step size rule for σk , since these methods
require in general consecutive evaluations of the cost functional requiring additional
solves of the nonlinear state system [92].
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Fig. 4.3 Optimized doping profiles (left) and Function Evaluations for the Line Search (right)

We apply Algorithm 4.3 for the optimal design of an unsymmetric n–p–diode (for
the reference doping profile see Fig. 4.3). We already learned that the cost functional
employed so far might admit multiple minimizers. For this reason we study here a
slightly different functional of the form

J (n,p,V,u) = 1

2

∣∣∣∣
∫

Γ

Jn · ν ds − I ∗
n

∣∣∣∣
2

+ 1

2

∣∣∣∣
∫

Γ

Jp · ν ds − I ∗
p

∣∣∣∣
2

+ γ

2

∫
Ω

∣∣∇(B(u) − C̄)
∣∣2

dx.

This allows to adjust separately the contact electron and hole current. The computa-
tions were performed on a uniform grid with 1000 points and the scaled parameters
were set to λ2 = 10−3, δ2 = 10−2 and Vbi = 10. For the parameter γ we chose
2 × 10−2. The step-size σk is computed by an exact one dimensional line search

σk = argminσ Ĵ
(
uk−1 − σ∇Ĵ (uk−1)

)
,

which is performed using the matlab optimization toolbox. The iteration terminates
when the relative error ‖∇Ĵ (uk)‖H 1/‖∇Ĵ (u0)‖H 1 is less than 5 × 10−4.

In Fig. 4.3 (left) we present the optimized doping profiles for different choices of
I ∗
n , I ∗

p , i.e., we are seeking an amplification of either the hole current (I ∗
n = J ∗

n , I ∗
p =

1.5 · J ∗
p ) or of the electron current (I ∗

n = 1.5 · J ∗
n , I ∗

p = J ∗
p ) or of both of them

I ∗
n = 1.5 · J ∗

n , I ∗
p = 1.5 · J ∗

p ) by 50%.
To get an impression of the overall performance of the method we also have

to consider the nonlinear solves needed for the exact one dimensional line search.
These are presented in Fig. 4.3 (right). Indeed, this is the most expensive numerical
part.
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4.1.3.2 The Reduced Newton Method

Finally, we want to discuss the performance of the reduced Newton algorithm (com-
pare also Sect. 2.4) which reads

Algorithm 4.4

1. Choose u0 in a neighborhood of u∗.
2. For k = 0,1,2, . . .

a. Solve Ĵ ′′(uk)δuk = −Ĵ ′(uk),
b. Set uk+1 = uk + δuk .

The solution of the system in step (ii.a) is done iteratively by using a conjugate
gradient algorithm embedded inside the Newton algorithm, as the computation of
a discretization of the Hessean would require a significant numerical effort, while
a conjugate gradient based approach leads to the same result with a fraction of the
demands on memory and computation time. The conjugate gradient algorithm only
requires the applications of the Hessean on a sequence of direction vectors δu to be
computed, so that no (direct) solution of the large system in (ii.a) is required.

Algorithm 4.5

1. Choose u0 in a neighborhood of u∗.
2. For k = 0,1,2, . . .

a. Evaluate Ĵ ′(uk) and set δu
j
k = 0

b. For j = 0,1,2, . . . do until convergence
i. Evaluate q

j
k = Ĵ ′′(uk)δu

j
k

ii. Compute an approximation δu
j+1
k for δuk , e.g. by a cg–step

c. Set uk+1 = uk + δuk .

Remark 4.10 Each application of the reduced Hessian Ĵ ′′(uk) during the j -th cg–
step requires two linear solves, in detail

v
j
k = e−1

y (yk, uk)eu(yk, uk)δu
j
k

and

w
j
k = e−∗

y (yk, uk)

{
Jyy(yk, uk)(v

j
k , ·) +

〈
eyy(yk, uk)(v

j
k , ·), ξk

〉
Z,Z∗

}
.

For the precise statement of these subproblems we refer to [78].

Again, we tried to achieve an increase of the electron and hole current by 50%
and studied the influence of the regularization parameter γ . The different resulting
optimal doping profiles can be found in Fig. 4.4 (left). As expected we get larger
deviations from C̄ for decreasing γ , which on the other hand also allows for a better
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Fig. 4.4 Dependence of the optimum on γ (left) and dependence of the observation on γ (right)

reduction of the observation as can be seen in Fig. 4.4 (right). For all three cases we
already get a significant reduction after two steps and the algorithm terminates rather
quickly. Only for the smallest value of γ we need two more iterations to meet the
stopping criterion, which can be explained by a loss of convexity or, equivalently, a
weaker definiteness of the Hessean.

The conjugate gradient algorithm in the inner loop was terminated when the norm
of the gradient became sufficiently small; to be more precise, in the j -th conjugate
gradient step for the computation of the update in Newton step k we stop if the
residual r

j
k satisfies

‖rj
k ‖

‖∇Ĵ (u0)‖ ≤ min

{(
‖∇Ĵ (uk)‖
‖∇Ĵ (u0)‖

)q

,p
‖∇Ĵ (uk)‖
‖∇Ĵ (u0)‖

}
or j ≥ 100. (4.12)

Note, that q determines the order of the outer Newton algorithm, such that p should
be chosen in the open interval (1,2). The value of p is important for the first step
of Newton’s method, as for k = 0 the norm quotients are all 1; for later steps, the
influence of q becomes increasingly dominant.

To get deeper insight into the convergence behavior of the algorithm, we present
in Fig. 4.5 (left) the norm of the residual during the iteration for different values of γ .
Here, we used q = 2 to get the desired quadratic convergence behavior. Again, one
realizes that the convergence deteriorates with decreasing γ . Since the overall nu-
merical effort is spend in the inner loop, we show the number of conjugate gradient
steps in Fig. 4.5 (right). Here, one realizes the drastic influence of the regularization
parameter.

The next numerical test was devoted to the stopping criterion of the inner iteration
and the influence of the exponent q . In Fig. 4.6 (left) the decrease of the residual is
depicted for different values of q = 1, 1.5, or 2. As predicted by the general theory
one gets linear, superlinear and quadratic convergence. Note, that for all three cases
we have a linear convergence behavior at the beginning of the iteration due to the
globalization of the Newton algorithm. Clearly, the parameter q strongly influences
the number of conjugate gradient steps, which can be seen from Fig. 4.6 (right).
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Fig. 4.5 Dependence of the residual on γ (left) and dependence of the CG iteration on γ (right)

Fig. 4.6 Dependence of the residual on q (left) and dependence of the CG iteration on q (right)

While in the linear case (q = 1) we have an almost constant amount of CG steps in
each iteration, we get, as expected, a drastic increase toward the end of the iteration
for the quadratic case (q = 2). Hence, the overall numerical effort in terms of CG
steps is despite of the quadratic convergence much larger compared to the relaxed
stopping criterion, which only yields linear convergence!

4.2 Optimal Control of Glass Cooling

Glass manufacturing is a very old industry, but one has to be aware that nowadays it
is technically rather advanced. There is a strong need for high quality glass products,
like lenses for laser optics or mirrors for space telescopes. Further, one also wants
to influence the production process of other products, like monitors or car windows.
There are many stages in the production process where optimal control techniques
can be used [32]. We focus here on the stage where a hot melt of glass is cooled in
a controlled environment, e.g., a furnace. During cooling large temperature differ-
ences, i.e., large temperature gradients, have to be avoided since they lead to thermal
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Fig. 4.7 This happens after wrong cooling! (Photo by courtesy of N. Siedow)

stress in the material. This may cause cracks or affect the optical quality of the re-
sulting product (see Fig. 4.7). Hence, the process has to be managed in such a way
that temperature gradients are sufficiently small. A related question concerns chem-
ical reactions during the cooling process, which have to be activated and triggered.
Again, one wants to avoid spatial temperature gradients since these reactions have
to take place homogeneously in the glass melt. We embed these two different ques-
tions into the same mathematical optimal control context. The following discussion
of this optimal control problem is done in three steps. First, we introduce the equa-
tions which are used for the simulation of the cooling process. Then, we state and
discuss the optimal control problem and, finally, we present numerical results.

4.2.1 Modeling

The modeling of glass cooling has to take into account that this process involves
very high temperatures up to 1500 K. In this temperature range heat transfer will
be dominated by radiation and not by diffusion anymore. Hence, we have first to
understand how radiation can be modeled [107, 131].

4.2.1.1 Radiation

Thermal radiation can be viewed as electro-magnetic waves or, alternatively, as pho-
tons. It is characterized by its speed of propagation c, wavelength λ and frequency
ν, which are related by c = λ · ν. The most important difference to heat conduc-
tion and convection is that it is a long-range, non-local phenomenon in contrast to
the local, microscopic diffusion effect. Note, that the magnitude of conduction and
convection is linear in the temperature T , whereas radiation depends essentially on
the fourth power of T , which shows that this effect gets increasingly important for
higher temperatures.

In general, engineers are only interested in the energy of the radiative field and
they describe it using the radiative intensity I = I (x, t,ω, ν), which depends on the
position x, the time t , the angular direction ω and on the frequency ν. To derive an
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Fig. 4.8 Radiative effects [131]

equation for the intensity I , we consider a small portion �x of a ray in direction ω

(compare Fig. 4.8).
In this region, one looses energy due to absorption −κI�x, where κ is the ab-

sorption coefficient of the material. Note, that the absorption coefficient might also
depend on the temperature T and the frequency ν as well as on the spatial position
x. Further, one gains energy due to emission +κB�x, where

B(T , ν) = n2
G

2hν3

c2

(
e

hν
kT − 1

)−1

is Planck’s function for black body radiation [107]. Another source for energy loss
is scattering −σI�x, where σ is the scattering constant of the material. Again, this
constant might depend on the temperature T and the frequency ν as well as on the
spatial position x. But one can also gain energy due to back scattering, i.e., one has
to collect the distributions from all incoming directions + σ

4π

∫
S2 I (ω′)dω′�x.

Now, we can write down the balance equation for the radiative intensity

I (x + cω�t,ω, t +�t)− I (x,ω, t) =
(

−κI + κB −σI + σ

4π

∫
S2

I (ω′) dω′
)

�x.

Going to the limit �t → 0, �x = c�t yields

1

c
∂t I + ω · ∇I + (κ + σ)I = σ

4π

∫
S2

I (ω′) dω′ + κB. (4.13)

This equation holds for all times t ∈ R
+, all spatial points x ∈ Ω , all angles ω ∈ S2

(where S2 denotes the unit sphere) and all frequencies ν ∈ R
+! To get an impres-

sion of the computational effort let us assume that we use a discretization with
60 angles × 10 frequency bands × 8000 spatial points × 100 time steps. This yields
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altogether 500 millions discrete variables! Indeed, this leads to a large scale opti-
mization problem. To be honest, we will not even dare to use this equation directly,
but instead we use techniques from asymptotic analysis to derive a numerically
tractable model. Nevertheless, there are recent papers on optimal control problems
for the full stationary radiative transfer equation (4.13), see e.g., [63, 64].

Finally, we pose some physically reasonable assumptions which will signifi-
cantly simplify the upcoming presentation. Note that the speed of propagation c

is large and hence we will drop the time derivative, i.e., we assume that radiation
takes place in a quasi-static manner compared to the diffusion time scale. Further,
we assume that no scattering occurs in the glass, i.e., σ ≡ 0 and that we have a gray
medium, in which the intensity is independent of the frequency ν. In this case we
can average the equations with respect to ν and can use the fact that

∫ ∞

0
B(T , ν) dν = aT 4,

where a is related to the Stefan-Boltzmann constant.

4.2.1.2 SPN -approximations

The are several ways to perform an asymptotic analysis of the radiative transfer
equation (4.13) (c.f. [107] and the references therein). Here, we follow a new ap-
proach first presented in [88]. Using a diffusion scaling one can introduce the optical
thickness of the material as a small parameter

ε = 1

κrefxref
≈ mean free path

reference length
.

Then, the remaining scaled radiative transfer equation reads

εω · ∇I = κ(B − I ).

Now, the idea is to invert the transport operator
(

1 + ε

κ
ω · ∇

)
I = B

formally using the Neumann series.

Remark 4.11 Clearly, this inversion holds only on a formal level due to the un-
boundedness of the derivative operator. After a discretization of the model equation
this approach can be made mathematically sound [64].

Then it holds for the mean radiative intensity ρ := ∫
S2 I dω in the limit ε → 0

the asymptotic expansion

4πB =
[

1 − ε2

3κ2
� − 4ε4

45κ4
�2 − 44ε6

945κ6
�3

]
ρ + O(ε8).
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This yields the SPN -approximations of order O(ε2N) [88]. In the following we only
employ the SP1-approximation.

The radiative intensity depends crucially on the temperature, which enters via
the Planck function. To resolve also the temperature changes, we need to couple our
approximate equation with the heat equation for the temperature which yields the
following system of partial differential equations

∂tT = k�T + 1

3κ
�ρ,

0 = −ε2 1

3κ
�ρ + κρ − 4πκaT 4.

This system has to be supplemented with appropriate initial conditions T (x,0) =
T0(x) and boundary data

h

εk
T + n · ∇T = h

εk
u,

3κ

2ε
ρ + n · ∇ρ = 3κ

2ε
4πau4.

Here, we assume that we have heat loss over the boundary only due to New-
ton’s cooling law, where h is the heat transfer coefficient, and that we have semi-
transparent boundary data for the mean radiative intensity ρ. Further, u denotes the
ambient temperature which will act in the following as the control variable.

This leads altogether to an optimal boundary control problem for a par-
abolic/elliptic system, which can be treated numerically with standard finite element
techniques.

4.2.2 Optimal Boundary Control

We intend to minimize cost functionals of tracking-type having the form

J (T ,u) = 1

2
‖T − Td‖2

L2(0,1;L2(Ω))
+ δ

2
‖u − ud‖2

H 1(0,1;R)
. (4.15)

Here, Td = Td(t, x) is a specified temperature profile, which is typically given by
engineers. In glass manufacturing processes, Td is used to control chemical reac-
tions in the glass, in particular their activation energy and the reaction time. For the
quality of the glass it is essential that these reactions happen spatially homogeneous,
such that we will later on require that Td is constant in space. The control variable u,
which is considered to be space-independent, enters the cost functional as regular-
izing term, where additionally a known cooling curve ud can be prescribed. The
parameter δ allows to adjust the effective heating costs of the cooling process.
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The main subject is now the study of the following boundary control problem

minJ (T ,ρ,u) w.r.t. (T ,ρ,u),

subject to the SP1-system (4.14).
(4.16)

For notational convenience we introduce the following notations and spaces:

Q
def= (0,1) × Ω, Σ

def= (0,1) × ∂Ω,

V
def= L2(0,1;H 1(Ω)), W

def= {
φ ∈ V : φt ∈ V ∗} .

Based on these we set Y
def= W × V and as the space of controls we choose U

def=
H 1(0,1;R). Further, we define Z

def= V × V × L2(Ω) and Y∞
def= Y ∩ [L∞(Q)]2 as

the space of states y
def= (T ,ρ). Finally, we set α = h

εk
and γ = 3κ

2ε
.

We define the state/control pair (y,u) ∈ Y∞ × U and the nonlinear operator e
def=

(e1, e2, e3) : Y∞ × U → Z∗ via

〈e1(y,u),φ〉V ∗,V
def= 〈∂tT ,φ〉V ∗,V + k (∇T ,∇φ)L2(Q) + 1

3κ
(∇ρ,∇φ)L2(Q)

+ kα(T − u,φ)L2(Σ) + 1

3κ
γ (ρ − 4πau4, φ)L2(Σ) (4.17a)

and

〈e2(y,u),φ〉V ∗,V
def= ε2

3κ
(∇ρ,∇φ)L2(Q) + κ(ρ − 4πκaT 4, φ)L2(Q)

+ ε2

3κ
γ (ρ − 4πau4, φ)L2(Σ) (4.17b)

for all φ ∈ V . Further, we define e3(y,u)
def= T (0) − T0.

Remark 4.12 Note, that for d ≤ 2 it is in fact possible to use Y itself as the state
space, but for d = 3 we cannot guarantee that e2 is well defined due to the fourth-
order nonlinearity in T . For the special case d = 1 the spaces Y and Y∞ coincide
due to Sobolev’s embedding theorem (see Sect. 1.14).

Reasonable regularity assumptions on the data ensure the existence of a unique
solution to system (4.14) [111].

Theorem 4.6 Assume that the domain Ω is sufficiently regular and let u ∈ U and
T0 ∈ L∞(Ω) be given. Then, the SP1 system e(y,u) = 0, where e is defined by
(4.17) has a unique solution (T ,ρ) ∈ Y∞ and there exists a constant c > 0 such that
the following energy estimate holds

‖T ‖W + ‖ρ‖V ≤ c
{
‖T0‖4

L∞(Ω) + ‖u‖4
U

}
. (4.18)
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Further, the solution is uniformly bounded, i.e. (T ,ρ) ∈ [L∞(Q)]2 and we have

T ≤ T ≤ T , ρ ≤ ρ ≤ ρ, (4.19)

where T = min(inft∈(0,1) u(t), infx∈Ω T0(x)) and T = max(supt∈(0,1) u(t),

supx∈Ω T0(x)) as well as ρ = 4πa|T |3T and ρ = 4πa|T |3T .

Then the minimization problem (4.16) can be shortly written as

minJ (y,u) over (y,u) ∈ Y∞ × U,

subject to e(y,u) = 0 in Z∗.
(4.20)

In fact, one can show the existence of a minimizer.

Theorem 4.7 There exists a minimizer (y∗, u∗) ∈ Y∞ × U of the constrained mini-
mization problem (4.20).

Proof We have J0
def= infY∞×U J (y,u) > −∞. We can choose a minimizing se-

quence (yk, uk)k∈N ∈ Y∞ × U . Then, the radial unboundedness of J with respect
to u implies that (uk)k∈N is bounded in U . Hence, there exists a weakly convergent
subsequence, again denoted by (uk)k∈N such that

uk ⇀ u∗, weakly in U

for k → ∞. From Sobolev’s embedding theorem (see Sect. 1.14) we deduce that up
to a subsequence we also have uk → u∗ strongly in C0(0,1;R) for k → ∞. Now,
the bounds stated in Theorem 4.6 imply the boundedness of (‖yk‖Y )k∈N. Hence,
there exist subsequences such that

Tk ⇀ T ∗, weakly in V,

∂tTk ⇀ ∂tT
∗, weakly in V ∗,

ρk ⇀ ρ∗, weakly in V,

for k → ∞, i.e., yk = (Tk, ρk) ⇀ (T ∗, ρ∗) = y∗ weakly in W × V . The weak lower
semi-continuity of J implies

J (y∗, u∗) = J0.

Finally, we have to show the constraint e(y∗, u∗) = 0. Aubin’s Lemma [125] implies
the strong convergence of (Tk)k∈N in L2(0,1;L2(Ω)). Further, note the uniform
boundedness of the solution, which yields

(Tk, ρk) ⇀ (T ∗, ρ∗), weak-*-ly in L∞(Q),

for k → ∞. These convergences are by far sufficient to pass to the limit in (4.17),
yielding

e(y∗, u∗) = 0 in Z∗,
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which finally proves the assertion.

4.2.2.1 Derivatives

In the following we provide the derivative information, which is necessary for the
application of the Newton method for the reduced problem. Owing to the fact that
the system (4.14) is uniquely solvable, we may reformulate the minimization prob-
lem (4.20) introducing the reduced cost functional Ĵ as

minimize Ĵ (u)
def= J (y(u),u) over u ∈ U

where y(u) ∈ Y satisfies e(y(u),u) = 0.
(4.21)

The numerical realization of Newton’s method relies on derivative information on J

and e, or Ĵ , respectively. Following the discussion in Sect. 1.6.2, these can derived
as follows: First, the implicit function theorem leads to the following derivative of
y at u in a direction δu:

y′(u)δu = −e−1
y (y(u),u)eu(y(u),u)δu.

Using the chain rule one obtains

〈
Ĵ ′(u), δu

〉
U∗,U

=
〈
Ju(y(u),u) − e∗

u(y(u),u)e−∗
y (y(u),u)Jy(y(u),u), δu

〉
U∗,U

.

Here, e∗
y(y,u)ξ denotes the adjoint of the linearization of e at (y,u) in the direction

ξ . We define the adjoint variable ξ = (ξT , ξρ, ξT 0) ∈ Z by

ξ = −e−∗
y (y(u),u)Jy(y(u),u) ∈ Z.

Assuming enough regularity of the solution one gets the derivative

Ĵ ′(u) = Ju(y(u),u) + e∗
u(y(u),u)ξ. (4.22)

In case of the cost functional (4.15), the adjoint variable can be characterized [111]
as the variational solution of

−∂t ξT = k�ξT + 16πaκT 3ξρ − (T − Td), (4.23a)

− ε2

3κ
�ξρ + κξρ = 1

3κ
�ξT , in Q (4.23b)

with boundary conditions

k(n · ∇ξT + αξT ) = 0, (4.23c)

n · ∇ξT + γ ξT + ε2(n · ∇ξρ + γ ξρ) = 0, on Σ (4.23d)
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and terminal condition

ξT (1) = 0 in Ω. (4.23e)

Introducing the Lagrangian L : Y∞ × U × Z → R associated to (4.20) defined
by

L(y,u, ξ)
def= J (y,u) + 〈e(y,u), ξ 〉Z∗,Z .

we know that there exists a critical point of the Lagrangian. In fact, for an optimal
solution there exists a unique Lagrange multiplier [111].

Theorem 4.8 Let (y∗, u∗) ∈ Y∞ × U denote an optimal solution. Then there exists
a unique Lagrange multiplier ξ∗ ∈ Z∗ such that the triple (y∗, u∗, ξ∗) satisfies

L′(y∗, u∗, ξ∗) = 0.

Let (y∗, u∗) ∈ Y∞ × U denote an optimal solution. Following the discussion in
Sect. 1.6.5, the second derivative of the Lagrangian is given by

L′′(y∗, u∗, ξ∗)

=
⎛
⎝Jyy(y∗, u∗) + 〈eyy(y∗, u∗)(·, ·), ξ∗〉 0 e∗

y(y∗, u∗)
0 Juu(y

∗, u∗) + 〈euu(y∗, u∗)(·, ·), ξ∗〉 e∗
u(y

∗, u∗)
ey(y∗, u∗) eu(y∗, u∗) 0

⎞
⎠ .

Defining the operator

T (x,u)
def=

(−e−1
y (y,u)eu(y,u)

idU

)

we can write the reduced Hessean as

Ĵ ′′(u)
def= T ∗(y,u)Lww(w, ξ)T (y,u), (4.24)

where w
def= (y,u), i.e., Lww is the upper left 2 × 2-block of L′′.

4.2.2.2 Newton’s Method

In this section we describe the second order optimization algorithm, i.e., we apply
Newton’s method for the computation of an optimal control for the reduced cost
functional. The algorithm reads formally

Algorithm 4.9

1. Choose u0 in a neighborhood of u∗.
2. For k = 0,1,2, . . .

a. Solve Ĵ ′′(uk)δuk = −Ĵ ′(uk),
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b. Set uk+1 = uk + δuk .

Remark 4.13 The solution of the system in step (ii.a) is done again iteratively using
a conjugate gradient algorithm embedded inside the Newton algorithm (compare
Algorithm 4.5).

In particular, for the cost functional (4.15) one has to apply successively the
following steps [112]

1. Solve the linearized state system (see system 4.14)

∂tvT = k�vT + 1

3κ
�vρ (4.25a)

− ε2

3κ
�vρ + κvρ = 16πκaT 3

k vT (4.25b)

with boundary conditions

n · ∇vT + αvT = αδu
j
k (4.25c)

n · ∇vρ + γ vρ = γ 16πau3
kδu

j
k (4.25d)

and initial condition

vT (0) = 0 (4.25e)

for v
j
k

def= (vT , vρ) ∈ Y , where yk = (Tk, ρk) is given.
2. Evaluate

Jyy(yk, uk)(v
j
k , ·) +

〈
eyy(yk, uk)(v

j
k , ·), ξk

〉
= vT + 48πκaT 2

k vT ξT ,k.

3. Solve the linearized adjoint system (see system 4.23)

−∂twT = k�wT + 16πκaT 3
k wρ + vT − 48πκaT 2

k vT ξT ,k (4.26a)

− ε2

3κ
�wρ + κwρ = 1

3κ
�wT (4.26b)

with boundary conditions

k(n · ∇wT + αwT ) = 0 (4.26c)

ε2(n · ∇wρ + γwρ) + n · ∇wT + γwT = 0 (4.26d)

and terminal condition

wT (1) = 0 (4.26e)

for w
j
k

def= (wT ,wρ) ∈ Y .
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4. Set

q
j
k (t) = 1

|∂Ω|
∫

∂Ω

kαwT + γ 16πa

3κ
u2(u(wT + ε2wρ) − 3δu

j
k(ξT + ε2ξρ)) ds

+ δ

|∂Ω|
∫

∂Ω

δu
j
k + ∂tt δu

j
k ds.

4.2.3 Numerical Results

The spatial discretization of the PDEs is based on linear finite elements. We use
a non-uniform grid with an increasing point density toward the boundary of the
medium, consisting of 109 points. The temporal discretization uses a uniform grid
consisting of 180 points for the temperature-tracking problem. We employ the im-
plicit backward Euler method to compute the state (T ,ρ). The adjoint systems are
discretized using a modified implicit Euler backward method taking into account
the symmetry of the discrete reduced Hessean [61].

The conjugate gradient algorithm was terminated when the norm of the gradient
became sufficiently small; to be more precise, in the j -th conjugate gradient step for
the computation of the update in Newton step k we stop if the residual r

j
k satisfies

‖rj
k ‖

‖J ′(u0)‖ ≤ min

{(
‖Ĵ ′(uk)‖
‖Ĵ ′(u0)‖

)p

, q
‖Ĵ ′(uk)‖
‖Ĵ ′(u0)‖

}
or j ≥ 100. (4.27)

Note, that p determines the order of the outer Newton algorithm, such that p should
be chosen in the open interval (1,2). The value of q is important for the first step
of Newton’s method, as for k = 0 the norm quotients are all 1; for later steps, the

Fig. 4.9 Unoptimized (dark)
and optimized (light) cooling
profile
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Fig. 4.10 Temperature
differences for the
uncontrolled (top) and
controlled (bottom) state

influence of p becomes increasingly dominant. In our numerical experiments, p =
1.5 and q = 0.1 proved to be a suitable choice.

Remark 4.14 In the Newton algorithm, one might use

Juu(u) = δ(I − ∂tt )

as a preconditioning operator for the Newton system (ii.a).

Now we present numerical results underlining the feasibility of our approach.
For a given (time dependent) temperature profile Td we compute an optimal u such



262 R. Pinnau

Table 4.1 Convergence
statistics for δ = 3.5 × 10−7 k J (uk) ‖Ĵ ′(uk+1)‖2 #cg

1 224.7359 1.605777 × 10+01 26

2 184.5375 1.306437 × 10+01 16

3 142.9351 1.038065 × 10+01 14

4 112.5493 7.985859 × 10+00 13

5 90.52294 5.861017 × 10+00 13

6 74.95062 3.989118 × 10+00 14

7 64.45030 2.357674 × 10+00 14

8 57.97925 9.541926 × 10−01 16

9 54.70802 4.762934 × 10−02 17

10 53.96191 5.101231 × 10−04 17

11 53.96017 2.086531 × 10−06 17

12 53.96017 1.590937 × 10−09 25

Table 4.2 Convergence
statistics for δ = 3.5 × 10−6 k J (uk) ‖Ĵ ′(uk+1)‖2 #cg

1 337.5395 3.912697 × 10+01 29

2 254.1703 2.918320 × 10+01 27

3 193.4364 1.978074 × 10+01 27

4 151.9171 1.094969 × 10+01 28

5 126.9592 2.751367 × 10+00 29

6 116.2621 3.163388 × 10−02 29

7 115.4742 2.184202 × 10−04 31

8 115.4741 4.352735 × 10−07 37

9 115.4741 4.542256 × 10−09 28

that the temperature of the glass follows the desired profile Td as good as possible.
Such profiles are of great importance in glass manufacturing in order to control at
which time, at which place and for how long certain chemical reactions take place,
which is essential for the quality of the glass. Intervals of constant temperature allow
for lengthy reactions in a controlled manner; short peaks of high temperature trigger
reactions that have a high activation energy. In particular, it can be desirable to attain
a spatially constant temperature, which is in contradiction to the boundary layers of
the temperature due the radiative heat loss over the boundary.

The dark line in Fig. 4.9 describes the desired temperature profile Td(t) which
shall be attained homogeneously in space. From the engineering point of view it
is an educated guess to use the same profile for the boundary control. Clearly, this
leads to deviations which can be seen in the left graphic of Fig. 4.10. Our optimal
control approach results now in the light line in Fig. 4.9, which yields in turn the
improved temperature differences on the right in Fig. 4.10. One realizes a significant
improvement although we have still a large peak. But note that we want to resolve
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a very sharp jump in the temperature. Due to diffusive part of the equations it is
almost impossible to resolve such fast change in the cooling.

Finally, let us discuss the influence of the penalizing parameter δ on the conver-
gence of the iterative Newton method. In Tables 4.1 and 4.2 we compare the number
of Newton iterations, the evolution of the cost functional and the residual as well as
number of cg iteration in each Newton step. As expected we get a better perfor-
mance for the “more convex” problem. Note that we used a globalization strategy
based on the trust-region Newton-CG iteration in the Steiaug variant [127] to ensure
the global convergence of the Newton iteration. This can be also seen in Table 4.1
where we reach the region of quadratic convergence after seven iterations.
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