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Foreword 

Goal and limits 

This book is the first to deal exclusively with particle swarm optimization. In his 
Swarm Intelligence [KEN 01], originally entitled Particle Swarm Optimization 
(PSO), my friend Jim Kennedy has devoted three chapters out of eleven to this 
subject, above all as an illustration of the more general concept of collective 
intelligence without dwelling on the details of practical implementation. 

For this book, my goal was simpler: to give you the concepts and tools necessary 
and sufficient for the resolution of problems of optimization, including the codes of 
various programs. 

After having assimilated the contents of the first and more important part, you 
should be able to apply PSO to practically any problem of minimization of an 
assessable function in a continuous, discrete or mixed search space. You will also be 
able to deal with multi-objective problems, either as such, or as methods of taking 
into account complex constraints of a mono-objective problem. 

PSO is in constant and fast evolution, but the corpus of techniques presented 
here is already sufficiently reliable and particularly effective, even though, as we 
shall see, many and interesting ways of research are yet to be explored, particularly 
regarding adaptive PSO. An important international collaboration, XPS (eXtended 
Particle Swarms), led by the University of Essex in Great Britain, began at the end 
of 2004. It should lead to major breakthroughs both theoretical and practical. As the 
promoters of the project put it: 

“[The goal is] to include strategies inspired by a broad range of collective 
behavior, in biology and particle physics, to deal with many problems in engineering 
and to establish solid theoretical and mathematical bases [. . .]”. 
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In spite of its brief history, PSO has already entered into science fiction: Michael 
Crichton, in his novel Prey [CRI 03], has explicitly referred to it, in particular using 
the concept of constriction . . . albeit in a form that is very different from the original 
one! 

Organization of the book 

The book is structured in two parts. The first describes PSO in detail, from a very 
simple primitive parametric version to an adaptive version that does not require the 
user to supply parameters. The discussion thread is a benchmark set of six test 
functions which enable us to compare the influence of the parameters and search 
strategies. The final chapter of this part focuses on some more realistic problems. 

The second part is entitled “Outlines”, indicating that the items discussed are not 
dealt with in detail, as this would go beyond the scope of this book. It is primarily 
about parallelism, the canonical PSO (a basis, among others, of the combinatorial 
PSO) and the dynamics of the swarms. The final chapter very briefly presents some 
techniques and alternatives such as the stop-reset, the multi-swarm and the dynamic 
PSO (optimization of a function changing during the very process of search). The 
interested reader will be able to refer to the documents cited. 

Many chapters end with a more mathematical part. This part specifies or justifies 
some of the assertions made in the body of the text but is by no means necessary for 
the comprehension of those ideas. It can thus be comfortably skipped if you do not 
have the taste or the time for it. 

Various versions  of PSO are studied, some in a very thorough manner, others 
very briefly. The diagram below shows the links between them and the levels of 
detail of the presentations. In particular, the significant field of specific 
implementations of PSOs is only skimmed through. It would be, in itself, worth a 
later work, particularly as the methods implemented are very often hybrid, i.e. use 
several methods of optimization jointly, in particular for difficult combinational 
problems. 
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Figure 1. Various versions of PSO considered. Those with a gray background and a thick 

continuous outline are really detailed. The outline is dotted if there is presentation without 

implementation. The versions indicated in the white zone are only mentioned 

On the source codes 

The programs used were developed under Linux and deliberately written in pure 
ANSI C to be easily compilable under any operating system. There is consequently 
neither graphic interface, nor specific memory management.  

For certain small programs, the source codes are given explicitly. The others are 
available on the Internet, starting from the following link: http://www.hermes-
science.com/clerc/oep.zip. More generally, the portal of PSO is Particle Swarm 
Central: http://www.particleswarm.info/. 

 Minimal
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On technical terms 

Normally the essence of each chapter (including some rather delicate reasoning) 
may be read without any deep mathematical knowledge. Nevertheless some 
specialized terms are used here and there, particularly for the sake of conciseness, 
but these are easily comprehensible. For example, “hypersphere in a space with D 

dimensions” will often be replaced by “D-sphere”, and “hyperparallelepiped  in a 
space with D dimensions” will be replaced by “D-rectangle”. 

To contact the author 

If you wish to send comments, point out errors or make suggestions, you can 
contact Mr Maurice Clerc: 

– by email, at maurice.clerc@writeme.com; 

– via the author’s website, http://www.mauriceclerc.net; 

– via the editor. 
 

 



Introduction 

On some types of optimization 

Iterative optimization is as old as life itself. Even very primitive beings act 
according to a simple impulse that can be summarized in a few words: “To improve 
their situation”. Hence, many strategies are conceivable, but those we see every day 
in action in nature, and prove their effectiveness by the persistence of the species 
that practice them, already offer a broad range of solutions. It is therefore not 
surprising that, explicitly or implicitly, several mathematical models of optimization 
take as a starting point biological behaviors and make an abundant use of metaphors 
and terms originating from genetics, ethology, and even from ethnology or 
psychology. 

Among these models, one can distinguish those corresponding to individual 
behavior  and those using collective behavior. In the first case, the  most obvious 
strategy is to seek to benefit permanently from any obvious immediate 
improvement. If the objective is to reach a summit, at every crossroads one will 
systematically take the route that seems to go up more; for example, by testing them 
all over a small length. Obviously, by doing this, one may well end up on a 
secondary summit, which could be only a very poor  local optimum. 

To compensate for the limitations of this primitive gradient strategy, it would be 
necessary to make a real conceptual leap and allow the situation to more or less 
deteriorate for a long time, in the hope that it would improve eventually. Since this 
behavior could be suicidal, it is advisable to be protected by a safeguard, i.e., in 
practice, to remember the best position already found, in order to be able return to it 
if necessary. At the same time, the individual can afford to explore on the basis of a 
wider variety of rules, even straightforwardly randomly, or, more intelligently, 
according to a chance “guided” by gradually acquired knowledge. 
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In the second case, i.e. collective optimization, this maintenance of the asset can 
be done quite naturally, since it is enough that the individual who has the best 
position does not move, leaving others to explore the environment. But now, two 
new parameters come into play: the size of the group and its structure. 

The structure relates to the way in which information is transmitted between 
individuals. To what is each individual related? Are these links constant or variable? 
Are the exchanges bidirectional or not? Is there a hierarchy? Sub-groups? The basic 
problem is that of the use of knowledge. One rightly feels that the more the search 
space is sampled by successively evaluated positions, the better one should be able 
to predict the areas that are interesting to explore, by making certain assumptions 
about the regularity of the search space. However, these forecasts have a price. Is it 
worthwhile? 

Not always. The most obvious academic case is that of a function to be 
optimized completely at random: the best strategy is the most stupid  and very 
cheap, since it simply consists in generating equally random positions. Generally, 
the more progressive sampling of the studied function presents a higher degree of 
randomness, the more the strategy of research must itself call for randomness. 

The size of the group  can be fixed at the beginning or be variable during the 
research. In the second case, it is necessary to define mechanisms of selection or 
generation, or, more often, both. Moreover, even in the first case, such mechanisms 
can be used, the constant size being preserved by a dynamic equilibrium, any 
selection being compensated by a generation. 

On PSO 

Particle swarm optimization (PSO), in its historical version, is a collective,  
anarchic (in the original sense of the term), iterative method, with the emphasis on 
cooperation; it is partially random and without selection. The goal of the early 
chapters will be to detail these characteristics and formalize them to obtain an 
exploitable model that is particularly effective for strongly nonlinear problems.  

We will see initially why and how this model can treat continuous and 
heterogeneous (i.e. in which some of the variables are continuous and others 
discrete, possibly coding combinational aspects) optimizations in a uniform way. 
Then we will study some alternatives. The goal here is not to make an exhaustive 
survey, but to work on a selection of those which either have already proved to be of 
interest, or seem most promising. In other words, their choice is necessarily 
subjective. We will look in particular at the versions known as adaptive, whose 
“ultimate” form, called TRIBES, does not require any parameter other than those 
defining the problem. 
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The few problems with accompanying notes should then allow  
you to become familiar with PSO, to better determine its domain of competence  and 
hopefully to use it yourself later with profit, perhaps even to make improvements 
upon it. 
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Chapter 1 

What is a Difficult Problem?  

1.1. An intrinsic definition 

As regards optimization, certain problems are regarded as more difficult than 
others. This is the case, inter alia, for combinatorial problems. But what does that 
mean? Why should a combinatorial problem necessarily be more difficult than a 
problem in continuous variables and, if this is the case, to what extent is it so? 
Moreover, the concept of difficulty is very often more or less implicitly related to 
the degree of sophistication of the algorithms in a particular research field: if one 
cannot solve a particular problem, or it takes a considerable time to do so, therefore 
it is difficult. 

Later, we will compare various algorithms on various problems, and we will 
therefore need a rigorous definition. To that end, let us consider  the algorithm for 
purely random research. It is often used as a reference, because even a slightly 
intelligent algorithm must be able to do better (even if it is very easy to make worse, 
for example an algorithm being always blocked in a local minimum). Since the 
measurement of related difficulty is very seldom clarified (see however [BAR 05]), 
we will do it here quickly. 

The selected definition is as follows: the difficulty of an optimization problem in 
a given search space is the probability of not finding a solution by choosing a 
position at random according to a uniform distribution. It is thus the probability  of 
failure at the first attempt. 

Consider the following examples. Take the function f defined in [0 1] by f(x) = 
x. The problem is “to find the minimum of this function nearest within s”. It is easy 
to calculate (assuming that ε is less than 1) that the difficulty of this problem, 
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following the definition above, is given by the quantity (1 – ε). As we can see in 
Figure 1.1, it is simply the ratio of two measurements: the total number of 
acceptable solutions and the total number of possible positions (in fact, the 
definition of a probability). From this point of view, the minimization of x2 is twice 
as easy as that of x. 

 
 

 

Figure 1.1. Assessing the difficulty. The intrinsic difficulty of a problem of the minimization of 

a function (in this case, the search for an item x for which f(x) is less than 0.2) has nothing to 

do with the apparent complication of the formula of the function. On the search space [0 1], it 

is the function x2
 

that is by far the easiest, whereas there is little to choose between the two 

others, function x being very slightly more difficult 

It should be noted that this assessment of difficulty can depend on the presence  
of local minima. For example, Figure 1.2 represents part of the graph of a variant of 
the so-called “Alpine” function, ( ) sin( ) 0.1f x x x x= + . For 0.5ε =  the field of the 

acceptable solutions is not connected. Of course, a part contains the position of the 
global minimum (0), but another part surrounds that of a local minimum whose 
value is less than ε. In other words, if the function presents local minima, and 
particularly if their values are close to that of the global minimum, one is quite able 
to obtain a satisfactory mathematical solution, but whose position is nevertheless 
very far from the hoped for solution. 

By reducing the tolerance level  (the acceptable error), one can certainly end up 
selecting only solutions actually located around the global minimum, but this 
procedure obviously increases the practical difficulty of the problem. Conversely, 
therefore, one tries to reduce the search space. But this requires some knowledge of 
the position of the solution sought and, moreover, it sometimes makes it necessary 
to define a search space that is more complicated than a simple Cartesian product of 
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intervals; for example, a polyhedron, which may even be non-convex. However, we 
will see that this second item can be discussed in PSO by an option that allows an 
imperative constraint of the type ( ) 0g position <  to be taken into account. 

 

Figure 1.2. A non-connected set of solutions. If the tolerance level is too high (here 0.5), 

some solutions can be found around a local minimum. Two different methods of avoiding this 

problem when searching for a global minimum are to reduce the tolerance level (which 

increases the practical difficulty of research) or to reduce the search space (which decreases 

the difficulty). But this second method requires that we have at least a vague idea of the 

position of the sought minimum 

1.2. Estimation and practical measurement 

When high precision is required, the probability of failure is very high and to 
take it directly as a measure of difficulty is not very practical. Thus we will use 
instead a logarithmic measurement given by the following formula: 

difficulty = −ln(1 − failure probability) = −ln(success probability) 

In this way one obtains more easily comparable numbers. Table 1.1 presents the 
results for four small problems. In each case, it is a question of reaching a minimal 
value. For the first three, the functions are continuous and one must accept a certain 
margin of error because that is what makes it possible to calculate the probability of 
success. The last problem is a classic “traveling salesman problem” with 27 cities, 
for which only one solution is supposed to exist. Here, the precision required is 
absolute: one wants to obtain this solution exactly.  
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Problem Search space 
Value to be 

reached 

Admissible 

error 

Logarithmic 

difficulty 

10

1
d

d

x
=
∑  [ ]10

0 1  0 0.01 61.2 

10
2

1
d

d

x
=
∑  [ ]10

0 1  0 0.01 29 

( )
10

1
sind d

d

x x
=
∑  [ ]10

0 1  0 0.01 Estimate 63 

Traveling salesman { }27
1, 2,...,10 C 0 61.26 

Table 1.1. Difficulty of four problems compared. When the probabilities of success are very 

low, it is easier to compare their logarithms. The ways of calculating the difficulty are given 

at the end of the chapter. For the third function, it is only a rather pessimistic statistical 

estimate (in reality, one should be able to find a value less than the difficulty of the first 

function). For the traveling salesman problem  (search for a Hamiltonian cycle of minimal 

length), it was supposed that there was only one solution, of value C; it must be reached 

exactly, without any margin of error 

We see, for example, that the first and last problems are of the same level of 
intrinsic difficulty. It is therefore not absurd to imagine that the same algorithm, 
particularly if it uses randomness advisedly, can solve one as well as the other. 
Moreover, and we will return to this, the distinction between discrete/combinatorial 
problems and continuous problems is rather arbitrary for at least two reasons: 

 – a continuous problem becomes necessarily discrete, since it is treated on a 
numerical computer, hence with limited precision; 

 – a discrete problem  can be replaced by an equivalent continuous problem under 
constraints, by interpolating the function defining it on the search space. 

1.3. For “amatheurs”: some estimates of difficulty 

The probability of success can be estimated in various ways, according to the 
form of the function: 

 – direct calculation by integration in the simple cases; 

 – calculation on a finite expansion, either of the function itself if it is derivable 
around the optimum several times (Taylor’s formula), or of a Padé approximation 
(ratio of two polynomials); 

 – statistical estimate. 

For Table 1.1, the probabilities of success were calculated as indicated below. 
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1.3.1. Function 
1

D

d
d

x
=
∑  

Let us call p the probability of success and ε the required precision. One has 
successively: 

( ) ( )1

1 10 !

D
D D

d d
d d

p p x p x u du
D

ε εε ε
−

= =
= < = < − =∑ ∑∫  

the last equality being obtained easily by recurrence. But this is valid only if all the 
components are picked at random from the interval [ ]0  1 . If the real interval 

is [ ]0  R , this result must be multiplied by (1/ R)
D

. Finally, we obtain: 

( ) ( ) ( ) ( ) ( ) ( )
1

ln ! ln ln ln ln ln
D

d

difficulty D D D R d D D Rε ε
=

= − + = − +∑  

1.3.2. Function 2

1

D

d
d

x
=
∑  

Here, calculation is even simpler … provided its formulae are known! 

Effectively we want the probability of 2

1

D

d
d

x ε
=

<∑ for 0 1dx≤ ≤ . It is therefore 

enough to work out the ratio of the volume of the hypersphere of dimension D and 

radius ε and of the volume of the hypercube of edge 2. It is given by the 
traditional formula: 

'

'

1
  si 2 '

'! 2

2 1
  si 2 ' 1

! 2

D
D

D

D
D

D

D

D D
D

D D
D

π ε

π ε

⎧
=⎪⎪

⎨
⎪ = +⎪⎩

 

As before, if the hypercube is of edge 2 R, it is necessary to multiply by (1/ R)
D

. 

1.3.3. Function ( )
1

sin
D

d d
d

x x
=
∑  

Here direct analytical determination is tricky. It would certainly be possible to 
use an expansion of a finite series, but let’s take a lazier method of estimation, 
which nevertheless requires the use of a computer. 

 We take a very small search space [0 r]
D

, such that there are nevertheless points 
in which the function has a greater value than the tolerance level, ε. For D = 10, one 
can take r = 0.005. 
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 We can at random draw a great number of items (10
8 
in the example), each time 

we evaluate the function, in order to see whether we obtain a value less than ε or not. 
We deduce an estimate from the success rate, τ. In the example, one obtains 
τ = 0.999732. Note that it is necessary to use a good pseudo-random number 
generator. For example, the function rand in the programming language C is not 
always appropriate (see Chapter 5). 

  
 One then calculates that on the search space [0 r]D, the success rate would be 

only '
D

r

R
τ τ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
. The measurement of corresponding difficulty is thus: 

( ) ( ) ( )ln ln lndifficulty D r D Rτ= − − +  

Note that this estimate is a little pessimistic as soon as R π≥ , since there are 
then several global minima (every point where ( )sin 0dx = , for all dx ). The number 
of these points is ( )( )1

D

n Ent R π= + , but the further one moves from the origin of 
the coordinates, the more the corresponding minimum is “pointed” and the less, 
therefore, its existence reduces the difficulty of the problem. The fact is, moreover, 
that PSO never finds them before the origin of the coordinates itself (as long as, of 
course, this is in the search space). 

1.3.4. Traveling salesman on D cities 

One can always fix the town of departure. There then remain ( )1 !D −  possible 

combinations for the others. It is assumed that there is only one solution. The 
probability of success while choosing randomly is thus ( )1 1 !D −  and so one obtains 

the formula: 

( )
1

1
ln

D

d

difficulty d
−

=
= ∑

 

1.4. Summary 

A problem is regarded as easy if the probability of finding a solution by chance 
is large. Thus the intrinsic theoretical difficulty can be quantified by the inverse of 
the logarithm of the probability of success. Some examples are given, showing that 
extremely different, continuous, discrete or combinatorial a priori problems have, in 
fact, the same level of difficulty. 



 

Chapter 2 

On a Table Corner 

2.1. Apiarian metaphor 

The bee dances. While humming, she describes a kind of slightly tilted oblate 
eight. Undulating quickly, she crosses once, twice, ten times, the same closed curve, 
followed by her sisters who pass very close to her, scenting her and listening to her. 
And her dance is a message, which says to them: “15° relative to the sun; 300 
meters; lavender; much”. 

 About 1927, Karl von Frisch discovered that bees brought back to the hive not 
only nectar and pollen, but also information [FRI 84]. He patiently decoded their 
language and the attentive observer can now understand them to some extent. It is 
even possible today, thanks to tiny robots, “to speak to them”. Thus, we know rather 
well now why and how, once a good site is located by a worker, it is quickly and 
effectively exploited by others. The transmitted direction and distance incorporate 
inaccuracies; interpretation is prone to small errors; and, finally, the flight itself 
towards the site indicated undergoes slight deviations. The net result is that the many 
workers who answer the call of their colleague will finally distribute themselves at 
random around the initial site. Thus, if there is a better site nearby, it will very 
probably also be located. 

 But that does not explain how an interesting site that is far from those already 
known can also be found. As Karl von Frisch noted, this kind of discovery must be 
the work of an “original”, but he did not propose a model explaining the search 
strategy of such dissidents. Is this happening at random? Or systematically 
according to a preset plan? Moreover, one bee must sometimes combine information 
from several different sources: its own knowledge of the ground and information 
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from one or more nectar-gathering bees. The way it does this remains a mystery, but 
to learn something from the behavior of our bees, we will nevertheless have to 
model it; therefore, in fact, to invent an entirely new method. 

2.2. An aside on the spreading of a rumor 

It is rather natural, and traditional, to model a network of information between 
individuals by a graph, sometimes called an influence graph. Each node of the graph 
represents an individual, and an arc, an information link, between two individuals A 
and B means “A informs B”. These links are not necessarily constant. In particular, 
in our swarm, they change at every moment (with each time increment, if time is 
discrete, which we will accept from now on). Complex studies, highlighting 
phenomena of avalanche and the influence of phenomena of training have been 
made [DER 03], but we will be satisfied here with a simplistic model. 

 With each time increment, each particle randomly chooses a certain given 
number of other particles to inform. One can then calculate (see section 2.6) various 
elements, for example the minimal value of this number, varying according to the 
size of the swarm, to be almost sure that any information was received at least once 
by everyone after a certain time. 

 The interesting point is that the number informed by a given particle can remain 
very small. For example, if we want quasi-certainty (probability of 0.9999) that any 
individual can be informed by any other after 10 time increments, it is enough that 
each one informs two at each increment, and this is valid for a broad range of swarm 
sizes, from 10 to 300, approximately. 

2.3. Abstract formulation 

In PSO, an “interesting site” corresponds to at least a local optimum of a certain 
function defined in a search space. This function can be given by a mathematical 
formula or, failing this, by an algorithm, or even by the outcome of a process, real or 
simulated. The main thing is that one can calculate its value at each point. 

 For a first simple version, we do not seek all the interesting sites, but only the 
most interesting, i.e. the global optimum of our function. With this intention, PSO 
takes as a starting point the cooperative behavior described in our metaphor: each 
particle is able to communicate to some others the position and quality of the best 
site it knows, a quality that one can interpret as its “value”. Let us call this set of 
particles connected to a given one by the descending information links the group of 
information receivers. Conversely, at every moment, a given particle can belong 
simultaneously to several informant groups and thus has a certain number of 
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informants, who inform it about various more or less good sites. It is up to it to take 
advantage of this information in order to define its next displacement. This operation 
of synthesis of information for an action has not yet been elucidated in biological 
reality, but has been the subject here of a very simple formalization (linear). This 
formalization does not claim to model the real behavior of bees or any other living 
organism. It simply proves to be effective for the resolution of many mathematical 
problems of optimization. 

 If one wants to continue to develop the metaphor, particle = bee, it would 
actually be necessary to speak of these bees as mutant or, at least, equipped with 
mobile phones! However, since a real bee must return to the hive to deposit the 
pollen or nectar it has collected, the fact that transmission of information is done 
only here is not a handicap. By contrast, in PSO there would be no advantage in 
each particle returning systematically to the same initial point before carrying out a 
new trip. Consequently, the communications are made remotely. This assumption 
made, we can now outline an algorithm of optimization taking as a starting point 
what we have just seen. 

 First of all, it is necessary to define a swarm in the search space. Of what size?  
The simplest thing to do, for the moment, is to give it a fixed size. We will see later 
that it is possible to be more astute and vary it automatically according to the results 
obtained. Whereas real swarms of bees typically number 20,000 individuals, we will 
be satisfied with sizes of about 20 to 40. While anticipating a little, it turns out that 
in PSO these sizes are very often sufficient. Of course, in a genuine hive, the vast 
majority of bees do not bring new information at all, being satisfied with exploiting, 
in the material sense of the term (nectar, pollen, etc.) a site already found. In PSO, it 
is certainly useful to exploit a known site, but only from the viewpoint of the theory 
of optimization, i.e. by checking the neighborhoods to find out if there is a better 
one. A multitude of purely nectar-gathering workers is not necessary. 

 In accordance with our metaphor, initially all the particles of the swarm should 
be at the same place. But, after the first time increment, they will be dispersed 
randomly, because, in the absence of any information, this is still the best method. 
Therefore, to simplify, let us say that this random distribution is the initial position 
of the swarm. Let us note that this also relates to the rates of travel of the particles, 
which we will also initialize randomly, over a reasonable range of values, as a 
function of the size of the search space. 

 It is also necessary for us to define, for each particle, which are its informants. 
Always by analogy with what (apparently) occurs in a hive, we can randomly define 
for each particle its group of information receivers, which, automatically, also 
determines the informants of each particle, since, formally, we establish a graph of 
relation between the particles. 
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 How many information receivers, and how many informants? On the one hand, 
if all the particles are informed by each one, all information acquired is disseminated 
immediately, which may seem favorable. But, on the other hand, it is highly risky to 
have behavior that is too uniform: with the same information, all the particles will 
act in the same way. For difficult research, this is not effective. Conversely, if each 
particle has too few informants, we will be able to obtain more diversified 
behaviors, but then there is the risk that the information is badly transmitted. 
However, it is important that if a particle finds a good site, all the others can become 
aware of it more or less directly, in order to take advantage of it. 

 We thus have two criteria: diversity, which increases as the number of 
informants per particle decreases, and propagation, which becomes faster and more 
complete as this number increases. A priori, the relation “being informant of” is not 
symmetrical, but, as we shall see, it is the case in almost all current versions of PSO. 
To simplify, we will thus say that the information links are symmetrical: any 
informant is also informed. 

 Under these conditions, as we saw, if the choice is made randomly with each 
time increment, taking two or three information receivers for each particle seems a 
good compromise. Another method, which will be clarified in the chapter on 
topologies of the graphs of information (Chapter 7), is not to choose informants 
randomly once and for all, but according to a rule taking into account our two 
criteria, for example according to a circular diagram. A third method, about which 
we will also speak, is the possibility of making a permanent and judicious automatic 
selection of informants. The whole set of informants of a given particle will be 
called its I-group.  

 The nature of the transmitted information is obviously significant, but the more 
information there is, the more time-consuming and difficult it will be for a particle 
to deal with it. Therefore, rather than complicating matters we will say that each 
informant is able to transmit only two pieces of data that, in brief, we will call the 
overall best performance: the position of the best site it knows and the quality of this 
site. Translated into the language of optimization of a mathematical function, that 
means: a point in the search space and the value at this point of the function to be 
optimized. 

 Most difficult to model is the way in which an informed particle calculates its 
next displacement. First, let us note that it is in general already moving: it thus has a 
certain velocity. Then, since it is a possible informant in respect of other particles, it 
knows its own best performance. Lastly, therefore, it knows all the best 
performances of its informants. Let us simplify matters by keeping only the best. 
There thus remain three elements to be combined: proper velocity, proper best 
performance, and the best of the better performances of informants. 
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 Let us imagine three extreme cases. In the first case, the particle is adventurous 
and intends to follow only its own way. Then it will allot a null confidence to 
received information and even to its own explorations: it will be satisfied with 
following more or less the already followed direction, i.e. the next displacement will 
be made with approximately the same velocity (intensity and direction) as the 
preceding one. In the second case, it is very conservative: it will grant great 
confidence to its best performance and will tend to return to it unceasingly. In the 
third case, it does not accord any confidence to itself, but instead moves according to 
the guidance of its best informant. 

 

Figure 2.1. Three fundamental elements for the calculation of the next displacement of a 

particle: according to its own velocity, towards its best performance and the best 

performance of its best informant. The way in which these three vectors are combined linearly 

via confidence coefficients is the basis of all the versions of the “classic” PSO. The three gray 

arrows represent such a combination, which will give the next position of the particle 

We thus have three fundamental displacements, shown in Figure 2.1 according to 
its current velocity; towards its own best performance; and towards that of its best 
informant. It is significant to note that “towards” in fact means “towards a point 
located not far from”, a concept that will be clarified by defining random proximities  

(to be exact, random distributions). In the same way, “according to its velocity” 
means “towards the point that would be reached by continuing with the same 
velocity vector”. The simplest way to calculate the true displacement starting from 
these three basic vectors is to make a linear weighting of it, thanks to confidence 

coefficients. All the skill of the first versions of PSO consists of the judicious 
definition of these coefficients. 

towards the best
performance of its
best informant

particle 

proper velocity

towards the accessible
point by following

 towards its best
 performance

its proper velocity
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2.4. What is really transmitted 

After having detailed why and how a simple model of propagation of rumor can 
ensure the fast propagation of information, we are going to explain now that in PSO, 
this information is not always transmitted and that, when it is, it can be quite 
distorted . . . and that this is a good thing! 

 Everything depends on the fact that a particle transmits only its best 
performance. Let’s take the case of a particle A which announces to a particle B: 
“My best performance is . . .” In general, particle B has other informants. In the first 
case, A is not the best of them. Then, as we saw, B does not take it into account at 
all and thus, obviously, its own best performance, i.e. the information which it will 
itself transmit, does not reflect in any way the information coming from A. 

 In the second case, A is the best of B’s informants. Then, B modifies  
its position according to this information and we have two possibilities again. Either, 
by doing this, B does not improve its best performance and thus, again, what it will 
transmit does not contain anything coming from A. Or, on the contrary, the new 
position of B is better than its previous best performance and replaces it. In this 
single case, when B informs another particle, we can say that that information 
contains something resulting from A, but in a degraded form, since it is simply the 
result of a calculation having jointly used it with other elements. 

 Why is this process finally more effective, at least with regard to our objective 
of finding the global optimum, than a complete and perfect diffusion of information 
collected? It is undoubtedly because it models Karl von Frisch’s intuition 
concerning the role of “original” individuals, in the sense of those who “wander 
away from the standard”, in such a way that all the particles are more or less, 
precisely, original. Thus it makes for much diversity. If you have a little experience 
of other methods of iterative optimization, for example genetic algorithms, you can 
already infer from them what the experiment confirmed: PSO is particularly 
interesting for difficult problems. That does not mean, of course, that it cannot solve 
easy problems, but for the latter, there are often specific methods that are more 
effective. For example, PSO is not at all the best tool for the resolution of linear 
systems.  

2.5. Cooperation versus competition 

Since we have invoked the genetic algorithms, this may be the occasion to note a 
significant characteristic of PSO, at least in its classic versions: it does not practice 
any selection. The idea is that today’s less successful particles are perhaps the 
tomorrow’s successful ones. The particles with poor performance are preserved, 
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with the hope that it is precisely among them that the “originals” are to be found, the 
dissenters that will make it possible to discover the best site in the search space. 
Moreover, the experiments have entirely justified this hope. 

Naturally, researchers in optimization have found it very tempting to try to 
amalgamate qualities of PSO with those of other methods. And this is why versions 
with selection have seen the light of day. Contrary to what one might believe, this 
has shown that their principal quality is not to be more effective, but primarily to 
open the way for an autonomous PSO, without parameters defined by the user, and 
particularly not the size of the swarm. An example of this will be given later (see 
Chapter 11). 

2.6. For “amatheurs”: a simple calculation of propagation of rumor 

Following the guidance of our apiarian metaphor, let us suppose that with each 
time increment a certain number K of information links are established randomly by 
each particle. Also let us suppose, for the sake of simplicity, that this number is 
constant. Also, by assumption, any individual receiving information at time T will 
retransmit it at time T + 1. What is the maximum number of increments T after 
which an individual C will almost certainly have received the information from A? 
Or, conversely, what must be the value of K such that any individual has almost 
certainly received information coming from A after T increments? 

Let us answer the second question, which is the more interesting here. At the 
first increment, individual A disseminates its information. That amounts to choosing 
K individuals among N, including perhaps itself, i.e. to make K draws randomly, 
with replacement. The probability for a given individual C not to be selected is 
1 1 N− , and the probability that it is still not selected after K draws is thus ( )1 1

K
N− . 

 
With the second increment, the diffusion is made on K

2 individuals chosen 
randomly, and so on. Generalizing, the probability for an individual still not to be 
reached after the tth increment is ( )1 1

tK
N− . Consequently, the probability pr(t) of it 

being reached at least once is given by the complement of this formula: 

1
( ) 1 1

tK

pr t
N

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 [2.1] 

This probability increases very quickly with t. Conversely, therefore, K does not 
need to be large for propagation to occur quickly. From the above formula one 
derives that, if one wants a near certainty with small ε (i.e. a probability equal to 1–ε): 
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( )

1

ln

1
ln 1

t

K

N

ε
⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟⎛ ⎞−⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 [2.2] 

Figure 2.2 shows the evolution of pr(t) for K = 2 and some sizes of swarm. 
 

 

Figure 2.2. Propagation of a rumor. Here, with each time increment, each particle informs 

another two at random. Even for a swarm of size N = 300, it is almost certain that any 

particle receives information from another at least once after at most 10 time increments 

2.7. Summary 

The basic model of PSO is defined in an informal way, following quite freely the 
example of information exchanges between bees. Each particle combines in a linear 
fashion three elements to decide on its next movement: its current velocity, the best 
position it has found up to now and the best position found by its informants. 

Informants are selected at random with each time increment. At this stage, their 
number is a parameter of the algorithm, just like the size of the swarm. Even if the 
swarm is large compared to the number of informants per particle, one can show that 
propagation of information occurs very quickly. 
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Chapter 3 

First Formulations 

3.1. Minimal version 

3.1.1. Swarm size 

Let us recall that for the moment the size of the swarm is fixed once for all. 
Intuitively, we feel of course that, the more particles, the faster the search will be in 
terms of the number of iterations. But, this iteration count is not really a relevant 
criterion. Rather, what counts is the number of times that the function to be 
minimized must be evaluated, because in the majority of real problems, this 
evaluation requires a considerable time. And, obviously, for an iteration, the number 
of evaluations is equal to the number of particles. Therefore, if we want to reduce 
the total number of evaluations needed to find a solution, we are tempted to decrease 
the size of the swarm. But too small a swarm is likely to take longer to find a 
solution or even not to find it at all. 

 In short, a compromise must be reached. Empirically, the experimenters 
proposed sizes of about 20 to 30 particles, which, indeed, proved entirely sufficient 
to solve almost all classic test problems. Note how small this value is, compared 
with those usually used, for example in the genetic algorithms (GA), a fact which 
does not facilitate comparisons. Those who are for GA say “Since I use 100 genes in 
my algorithms, I will take 100 particles for a comparison with PSO”. At once, 
obviously, they find that PSO, although finding a solution at least as often as the 
genetic algorithms, is not very effective in terms of number of evaluations, since this 
number of particles is rather too large and there is no selection. Conversely, if those 
who are for PSO use GA with only 20 genes, they will observe that the algorithm 
finds the solution less often, which is quite normal as well. In fact, and we will 
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return to this later, like any algorithm, PSO has its “field of competence”, its 
“ecological niche”, where it turns out to be the best choice [EBE 98, GUD 03, JEN 
96, SET 03].  

 In the examples below we will systematically use a swarm of 20 particles, 
eventually showing that even this small number is sometimes larger than necessary. 
But we will also see later, in the chapter on performance maps, that a slightly greater 
number is more comfortable, in the sense that for a wide range of test problems it 
increases the average probability of success. Anyway, we must now make a move 
through the search space, first by defining their initial positions and velocities, then 
by specifying the equations of motion. 

3.1.2. Information links 

The information links are redefined randomly with each iteration: each particle 
informs K others chosen randomly. We note that it means that the group of 
informants corresponding to a particle has an average size slightly less than K, 
owing to the fact that the same information receiver can be selected several times. In 
the same way, it means that the average size of the groups of informants is also 
slightly less than K, though that is a little less obvious. The exact formula and the 
manner of finding it are given at the end of the chapter, for the benefit of 
mathematical amateurs. 

 It is enough for us here simply to note that the smaller the swarm, the lower the 
average number of informants of a given particle in respect of K. For example, for a 
swarm of 20 particles, with K = 3 one finds that the average size of the group of 
informants is 2.85, whereas it is 2.71 for a swarm of 10 particles. 

 This is relevant when one decreases the size of the swarm in the hope of 
reducing the total number of evaluations needed to achieve the goal. With fewer 
particles, the swarm is certainly a little less ready to explore the search space, but 
there is a kind of automatic partial offsetting by the correlative reduction of the 
average size of the groups of informants. As we have seen and will examine further, 
this reduction actually encourages exploration by increasing diversity. 

3.1.3. Initialization 

Note that, for the moment, we are interested only in continuous problems with 
real variables. A search space is defined, for example, classically, like one 
(hyper)cube of the form [xmin, xmax]D. We will see, in Chapter 12, how it is possible to 
define much more general search spaces (with discrete variables and more complex 
forms) without changing the guiding principles of the method. 
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Initialization simply consists of initially randomly placing the particles according 
to a uniform distribution in this search space. This is a stage that one finds in 
virtually all the algorithms of stochastic iterative optimization.  

 But here, moreover, the particles have velocities. By definition, a velocity is a 
vector or, more precisely, an operator, which, applied to a position, will give another 
position. It is in fact a displacement, called velocity because the time increment of 
the iterations is always implicitly regarded as equal to 1. 

 In practice, it is not desirable that too many particles tend to leave the search 
space as early as the first increment, or for that matter later. We will see below what 
occurs in this case, but, for the moment, let us be satisfied with deriving at random 
the values of the components of each velocity, according to a uniform distribution 
in: 

( ) ( )min max max min2, 2x x x x− −⎡ ⎤⎣ ⎦  

3.1.4. Equations of motion 

The dimension of the search space is D. Therefore, the current position of a 
particle in this space at the moment t is given by a vector x(t), with D components. 
Its current velocity is v(t). The best position found up to now by this particle is given 
by a vector p(t). Lastly, the best position found by informants of the particle is 
indicated by a vector g(t). In general, we will write simply x, v, p, and g. The dth 

component of one of these vectors is indicated by the index d, for example xd. With 
these notations, the equations of motion of a particle are, for each dimension d: 

( ) ( )1 2 3d d d d d d

d d d

v c v c p x c g x

x x v

⎧ ← + − + −⎪
⎨

← +⎪⎩
 [3.1] 

The confidence coefficients are defined in the following way: 

 – c1 is constant (confidence in its own movement); 

 – c2 and c3 (respectively confidence in its best performance and that of its best 
informant) are randomly selected with each step of time according to a uniform 
distribution in a given interval [0, cmax]. 

This is why equation [3.1] can be rewritten in a more explicit way, by 
highlighting the random elements: 

( )( ) ( )( )1 max max0,1 0,1d d d d d d

d d d

v c v c alea p x c alea g x

x x v

⎧ ← + − + −⎪
⎨

← +⎪⎩
 [3.2] 
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To use this model, the two parameters c1 and cmax must be defined. The latter can 
be regarded as the maximum confidence granted by the particle to any performance 
transmitted by another. For each problem, “the right” values can be found only by 
experiment, with the help, however, of two empirical rules, made available after 
many tests. 

 The first rule stipulates that c1 must have an absolute value less than 1. It is 
understood intuitively if one considers what occurs in the course of several 
successive time increments, in the specific case where the particle is and remains 
itself its best informant. We then have pd = xd = gd and, with each increment, 
velocity is simply multiplied by c1. If its absolute value is greater than 1, velocity 
increases unceasingly and convergence is impossible. Note that, in theory, nothing 
prevents this coefficient being negative, the behavior obtained being strongly 
oscillatory, but this is never the case in traditional PSO. So, we will assume it to be 
positive. 

 In practice, this coefficient should be neither too small, which induces a 
premature convergence, nor too large, which, on the contrary, can slow down 
convergence excessively. The authors of the first work on PSO recommended that it 
be equalized to 0.7 or 0.8. 

 The second rule states simply that the parameter cmax should not be too large, a 
value of about 1.5 to 1.7 being regarded as effective in the majority of cases. When 
it was originally stated, this rule did not have a justification, even an intuitive one. It 
was purely experimental. 

 In fact, the recommended values are very close to those deduced later from 
mathematical analyses showing that for a good convergence the values from c1 and 
cmax should not be independently selected [CLE 02, TRE 03, VAN 02]. For example, 
the pairs of values (0.7 1.47) and (0.8 1.62) are indeed correct. The first 
experimenters, James Kennedy and Russel Eberhart, with the possible addition of 
Yuhui Shi [SHI 9a], did good work! The existence of this relation between these two 
parameters will help us later establish performance maps in only two variables: a 
parameter ϕ and the size of the swarm. 

3.1.5. Interval confinement 

During the first experiments of PSO, the test functions used were defined for all 
values. For example, the function: 

( ) 2

1

D

d
d

f x x
=

= ∑  
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(historically called Sphere, but which is in fact a paraboloid) in any point of real 
space R

D

 can be calculated. During the evolution of the swarm, it may have 
happened that a particle left the search space as initially defined, but that was of no 
importance, since the value of its position could in fact still be calculated without 
“crashing” the data-processing program. Nevertheless, obviously, that is not always 
the case. For example, in the majority of programming languages and with the 
majority of compilers, the evaluation of a function such as: 

( )
1

D

d
d

f x x
=

= ∑  

returns an error message as soon as one of the coordinates xd is negative. 

More generally, a number of functions have a space of definition that is not 
infinite. Consequently, it was necessary to add very quickly a mechanism to prevent 
a particle leaving the search space. The simplest is the interval confinement. Let us 
always assume, for the sake of simplicity, that the search space is [xmin, xmax]

D

. Then 
this mechanism stipulates that, if a coordinate xd calculated according to equations 

of motion [3.2] leaves the interval [xmin, xmax], one allots to it the nearest value of the 
border point. In practice, therefore, it amounts to replacing the second line of [3.2] 
by: 

( )( )min max, ,d d dx MIN MAX x v x x← +  [3.3] 

However, this simple form, while giving correct results, has a disadvantage. 
Indeed, we are in a scenario where the proper velocity of the particle tends to make 
it leave the search space. Confinement [3.3] certainly brings back the particle to the 
border of the search space, but does not change its velocity. This is calculated again 
and thus in general is modified next time, but it is not uncommon for it to remain 
oriented more or less in the same direction. Thus the particle will tend to cross the 
border again, be brought back to that point by confinement, and so on. In practice, it 
will be as though it “were stuck” to this border. 

That is why one must supplement the mechanism of confinement with a velocity 
modification. One can replace the component that poses a problem by its opposite, 
possibly balanced by a coefficient less than 1, or one can simply cancel it. If 
cancellation is chosen, the complete mechanism is then described by the following 
operations: 

[ ]min max min min

max max

0

,
d

d d d

d d

v

x x x x x x x

x x x x

←⎧
⎪∉ ⇒ < ⇒ ←⎨
⎪ > ⇒ ←⎩

 [3.4] 
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The adaptation is immediate in case the intervals defining the search space are 
different for each dimension. But what is to be retained above all is the very 
principle of confinement, which stipulates that “if a particle tends to leave the search 
space, then bring it back to the nearest point in this space and consequently modify 
its velocity”. We will see in particular that this principle can be used to define 
confinements necessary to problems in non-null granularity (positions with integer 
values, for example) or to problems (typically combinatorial) whose solutions must 
have all coordinates different. 

3.1.6. Proximity distributions 

What is the consequence of introducing random coefficients into  
equations of motion? For a better understanding, let us consider all  
the possible displacements obtained while varying independently c2 and c3 between 0 
and cmax. Let us call p%  the vector whose dth 

component is: 

( )( )max0, d dalea c p x−  

and g%  the one whose d
th
 component is: 

( )( )max0, d dalea c g x−  

It is easy to see that if one places the origin of p%  (respectively g% ) in x, its end 
then traverses a D-parallelepiped whose two opposite tops are x and cmaxp 
(respectively cmaxg). This D-parallelepiped is called the proximity of p (respectively 
g). It is an example of formalization of what we described in the preceding chapter 
by using the expression “towards . . .”. 

The distribution of the possible points in the proximities of p and g is uniform. 
On the other hand, the distribution of the new possible positions for the particle, 
even if its field is also a hyperparallelepid, is not itself uniform.  
Indeed, for a given dimension d, the random variable whose occurrence is the dth

 

component of the new
 
velocity is the sum of two random variables having each one 

a density of constant probability on an interval. To clarify these ideas, let us suppose 
that one has d dp g< and 0dv = . Then the probability density of the sum of these 

two variables has a trapezoidal form. It increases linearly on [ ]max0, dc p , from 0 

to d dp g , preserves this last value in the interval [cmaxpd, cmaxgd] then decreases 

linearly to 0 on the interval [cmaxgd, cmax (pd + gd)]. The resulting distribution thus 
makes it a “truncated pyramid”, whose center is at the point 

( ) ( )( )2,2 22max11max gpcgpc ++ . It is uniform on a rectangle and decreases 
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linearly beyond the edges of this rectangle. Figure 3.1 shows a sample of 1,000 
points in the proximity of p, 1,000 points in that of g and 1,000 next possible 
positions which result from this by linear combination. 

 

 

Figure 3.1. Example of proximities in two dimensions. The proximity of p (the best position 

found up to now by particle x) is a rectangle of which one of the tops is x and the other 

 cmax(p – x) and the distribution of possibilities is uniform there. Similarly for g  

 (the best position found by informants of x). By linear combination, one obtains 

 the next possible positions of the particle. Their envelope is also a rectangle, 

 but the distribution is not uniform there (less dense on the edges). To clarify  

the Figure, the velocity of the particle was assumed to be null and for each  

distribution only a sample of 1,000 points was represented 

Let us emphasize this concept of the distribution of the next possible positions 
or, briefly, the distribution of the possibles. This is the basis of all the algorithms of 
iterative optimization calling for randomness (stochastic). With each time increment, 
certain positions are known and starting from this information, it is a question of 
choosing the next position(s) for it (or them). Whatever the method used to work out 
the answer, the result is always of the same type: a set of candidate positions, each 
one being assigned a probability of being selected. 

This is why it is so important, for any method of this type, to examine carefully 
the distributions obtained with each increment and to ask whether they can be made 
more effective. For PSO, we will see that this step easily induces interesting 
improvements. A contrario, let us quickly mention two rather common errors that 
impoverish the distributions of the possibles. 

Towards p

Towards g

New possible

positions

p 

x

g
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3.2. Two common errors 

The equations of motion [3.2] are sometimes written in vectorial form: 

( )( ) ( )( )1 max max0, 0,v c v alea c p x alea c g x

x x v

⎧ ← + − + −⎪
⎨

← +⎪⎩
 [3.5] 

In this case, in accordance with the definition of the multiplication of a vector by 
a coefficient, it means that all the components, for example vector p – x, are multiplied 
by the same random number. This is an error in the sense that it corresponds to an 
algorithm different from that of PSO, but we can also regard this form as an 
alternative. It should, however, be noted that the best parameter settings for c1 and 
cmax bypass the use of a constriction coefficient (see Chapter 6) and that this 
alternative is then much less effective than the classic form. 

The proximity of p (respectively g) is a simple segment here and the distribution 
of possibles for the next displacement is a D-parallelepiped located “between” p and 
g (these two points are on its surface), which restricts exploration, in particular 
because an entire set of points located close to p (respectively g) has no chance of 
being selected. 

 The other error, or alternative, consists of carrying out a factorization in the first 
equation of motion: 

( )( )1 max0, 2d d d d dv c v alea c p g x← + + −  [3.6] 

or: 

( )1 max0, 2
2

d d

d d d

p g
v c v alea c x

+⎛ ⎞← + −⎜ ⎟
⎝ ⎠

 [3.7] 

In this form, we see that the next position will then be taken randomly according 
to a uniform distribution in a hyperparallelepid whose edge for dimension d is length 

max d dc p g+ and whose center is found by adding to vector x the vector 

( )1 max 2c v c p g+ + . Actually, one could simply describe this as an alternative rather 

than an error, because this distribution is almost as rich as the original. 
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3.3. Principal drawbacks of this formulation 

The repeated experiments using the version of PSO defined by equations [3.2] 
and [3.4] (the version that, for brevity, we will name OEP 0) highlight certain 
insufficiencies or anomalies that can also be seen as ideas for improvements in 
subsequent versions. 

3.3.1. Distribution bias 

We saw that, with each time increment and for each particle, the distribution of 
possibles is non-uniform and of (hyper-)rectangular envelope. In itself, it would not 
be a defect if it corresponded at least to an empirical rule, aiming, for example, to 
favor a certain area of the search space. For example, one might think of searching 
“preferentially” around one of the two best-known positions of the particle (p and g) 
or “around” a point located between p and g, but closer to g than p, etc. 

However, this is not the case. There is no reason why the median point of the 
distribution obtained should be at the center of a “promising” area. Actually, the 
very particular form of this distribution is an artifact resulting only from the simple 
choice of coding of random elements. Since the majority of data-processing 
languages have only the function alea (0,1), one immediately has alea (0, cmax) = cmax 

alea (0,1). However, coding a distribution of different envelope (spherical, for 
example) is appreciably more difficult, at least if the computing time is not to 
increase exponentially with the number of dimensions. We will see examples of this 
later. 

 Moreover, it should be noted that this distribution depends on the coordinate 
system (see Figures 3.2 and 3.3). If by bad luck the point p is on a coordinate axis, 
the D-rectangle of its proximity loses a dimension. For a problem with two 
dimensions, for example, it is reduced to a segment. A simple rotation of the 
coordinate system completely modifies the whole ensemble of next possible 
positions and thus strongly influences the behavior of the particles. Convergence is 
as likely to be accelerated as slowed down, but, again, in an unforeseeable way. 

 This phenomenon is often concealed, because the majority of traditional test 
functions are symmetrical around the origin of the coordinates. 
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Figure 3.2. Distribution of the next possible positions. The upper diagram shows each of the 

two elementary distributions and the lower their combination (sample of 1,000 points) 
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Figure 3.3. Depending on the coordinate system chosen, the distribution of the next possible 

positions can be very variable. Here, a rotation of the coordinate axes was carried out, one of 

the axes practically aligning itself on the vector g − x 

The second bias led to alternatives privileging distributions with a center of 
symmetry (spheres, Gaussian, etc.) or whose form depends only on the respective 
positions x, p, and g (Gaussian “distorted”). To mitigate the first bias at the same 
time, these distributions are placed in a way that is a priori wiser. For example, by 
centering them on the segment p − g and a little closer to g than p, one can hope to 
take advantage of a possible favorable “gradient effect” from p towards g. 
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3.3.2. Explosion and maximum velocity 

If one does not want to subject oneself to a parameter c1 less than 1, to support 
exploration, then it is necessary to face the phenomenon of the “explosion” of the 
swarm. Indeed, roughly speaking, as we saw, with each time increment velocity is 
multiplied by c1. If this coefficient is greater than 1, then it will tend to increase 
more and more. That is why certain authors introduce an additional parameter, in the 
form of a maximum velocity: any velocity tending to exceed it is brought back to it. 
This maximum velocity vmax is a real number, which can be different for each 
dimension. An empirical rule requires that, for a given dimension, one takes it to be 
equal to half the range of possible values for the search space. Any larger value 
would ensure that the particles are made to leave the search space too often. 

For example, if for a dimension d the search space is the interval [0.5], one will 
take a maximum velocity of 2.5 for this dimension. It means that if the first 
calculation of equation [3.2] gives a velocity vd greater than 2.5, one will take it 
instead to equal 2.5. If the values are discrete, for example{ }0,1,...,5 , the greatest 

extent covered by the possible values remains from 0 to 10, but the maximum 
velocity could be selected as being 2 or 3. 

Unfortunately, whoever says “additional parameter” says also “choice of this 
parameter”, which still complicates the task of the user a little, since, in OEP 0, all 
the parameters are up to him. 

3.4. Manual parameter setting 

Table 3.1 recapitulates the various parameters of the model which have to be 
defined and the few empirical rules which could be worked out to guide the choice. 
These rules are very approximate and, for a given problem, we are faced with the 
strong possibility of searching at length before finding a “good” set of parameters. 
The good news, nevertheless, is that PSO is very robust, in the sense that broad 
variations in the parameters do not prevent convergence, even if, of course, it can be 
more or less rapid. 

In this respect, in the majority of the problems, the informant group size is the 
parameter to which the behavior of the swarm is the least sensitive. One can take it 
systematically equal to 3 without much risk. Even if this is not the best value for 
your precise problem, the performances, in general, are not seriously degraded as a 
result. Nevertheless, if you are sure that the function to be minimized does not 
present local minima, you will probably find it beneficial to increase this value, to 
even consider that each particle informs all the others and thus to take it equal to N. 
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Parameter  Title and nature  Empirical rule of choice and comment  

c1  
Self-confidence; real 

number 
In ]0,1[. Suggestion: 0.7  

cmax  
Confidence in others; 

real number 
About 1.5. Suggestion: 1.43  

N  Swarm size; integer  From 20 to 40. Suggestion: 20  

K  
Group size of informed; 

integer  
From 3 to 5. To N for the simple problems 

without local minima. Suggestion: 3  

vmax  
Maximum velocity; real 

number  

Essential only if c1 is greater than 1. Value about 
half of xmax − xmin. Possibly different  

for each dimension.  

Table 3.1. Parameters of OEP 0. The fifth, maximum velocity, is useful only if one wants to 

force a greater exploration of the search space by balancing velocity by a                        

“self-confidence” greater than 1 

The number of evaluations of the function to be minimized is equal, with each 
time increment, to the number of particles. Consequently, the degradation of the 
performances according to this criterion is at most proportional to the size of the 
swarm. Actually it is often much less, since the increase in the number of particles 
also increases the probability of finding a solution more quickly. That is why the 
recommended values 20 to 40 are very generally satisfactory. 

For the two parameters of confidence, precise values are suggested. As indicated 
previously, they form a pair initially found in experiments but subsequently 
confirmed mathematically. Other values are naturally possible and it is even 
possible, by choosing them judiciously, more or less to induce a given behavior of 
the particles, in particular oscillating or not around a solution [TRE 03, VAN 02].  

3.5. For “amatheurs”: average number of informants 

One supposes that each particle of a swarm of total size N randomly chooses, 
with putting back, K particles to be informed. The probability that a particle is not 

selected is ( )1 1
K

p N= − and the probability that it is selected is 1q p= − . 

Let s be the number of informants of a given particle. The probability that s is 
null is the probability that it is chosen by nobody, i.e. neither by particle 1, nor by 
particle 2 . . . nor by particle N. This probability is thus Np . 

 In the same way, for s to equal 1, it must be chosen by one particle (N 
possibilities) and not chosen by all the others. Its probability is thus 1NNp q− . More 
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generally, for an unspecified value of s between 0 and N, the probability 
is s N s s

NC p q− , where s

NC is the number of combinations of s elements among N. 

  
 Thus, finally, by taking the sum of the possible values weighted according to 

their probability, the average value of the number of informants is: 

( ) ( ) ( )( )
0 0

1 1 1 1 1
sN N K N s Ks N s s s

N N
s s

sC p q sC N N
−−

= =
= − − −∑ ∑  

From a graph theory point of view, it is the average number of ancestors by node 
when, in a graph of size N, the arcs are built by randomly taking K downward for 
each node. Figure 3.4 shows, for K = 3, the evolution of this value according to N. 

 

 

 

 

Figure 3.4. Average number of informants by particle when each particle informs K  

others at random, according to the size of the swarm.  

Here K = 3. This number is all the less than K as the swarm is small 

3.6. Summary 

From the basic principles presented in the preceding chapter, we propose a first 
simple formulation, called OEP 0, which specifies the rules of displacement of the 
particles. The information links between particles are randomly selected with each 
iteration. The equations of motion combine linearly, thanks to confidence 
coefficients, vectors of position randomly drawn according to non-uniform 
distributions whose supports are (hyper-)rectangles in the search space. 

 The various parameters (size of the swarm, coefficients, number of informed 
particles chosen at random, etc.) depend entirely upon the user for the moment and 
some semi-empirical rules are given to guide these choices. 

 Certain insufficiencies of this first version are noted here. Highlighting them 
will guide the improvements brought about later on. 
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Chapter 4 

Benchmark Set 

4.1. What is the purpose of test functions?  

To test, of course! But to test what? We have seen so far only the principles of a 
primitive version of PSO, which leaves most of the work to randomness, not only 
for displacements but also for the establishment of information links. In the next 
chapter we will see the exact way in which these random choices are simulated on 
computers; then, finally, in the following chapter, we will examine the results 
obtained with this primitive version. 

Because we will later study more effective alternatives, we must use the same set 
of problems throughout, in order to give a better comparison of the results, hence the 
benchmark set defined here, which includes several traditional scenarios, from a 
simple function with a single minimum to one having a considerable number of 
local minima of very similar values. Note that, for the moment, we deal only with 
continuous or semi-continuous functions. When we examine the variants of PSO 
appropriate for dealing with discrete (and, more generally, heterogeneous) problems, 
it will obviously be necessary to enrich this benchmark set with adequate examples. 

If you have experience of another method of optimization, you should apply it to 
this benchmark set, in order to form your own opinion. The reader interested in a 
rigorous approach to the comparison of iterative stochastic methods will be able to 
consult [DRE 03], in particular Chapter 8. 
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Name  

Difficulty  
Formula  Search space Objective  

Tripod 

33  

( ) ( )( )
( ) ( )( )

( )( )

2 1

1 2 1

2 2

1

50 1 2

50 1 2

p x p x

x p x p x

x p x

+

+ + −

+ + −

 

with: 
( ) 1 si u 0

0 si 0

p u

u

⎧ = ≥⎪
⎨

= <⎪⎩
 

[–100,100] 
2 
 0 ± 10 

–5 
 

Alpine 10D 

121  
( )

1
sin 0,1

D

d d d
d

x x x
=

+∑  [–10,10] 
10 

 0 ± 10 
–5 

 

Parabola 30D 

273  

2

1

D

d
d

x
=
∑  [–20,20] 

30 
 0 ± 10 

–5 
 

Griewank 30D 

335  

( )2

1

1

100

4000

100
cos 1

D

d
d

D
d

d

x

x

d

=

=

−∑

−⎛ ⎞− +∏ ⎜ ⎟
⎝ ⎠

 
[–300,300] 

30 
 0 ± 10 

–5 
 

Rosenbrock 30D 

370  
( ) ( )1 22 2

1
1

1 100
D

d d d
d

x x x
−

+
=

− + −∑  [–10,10] 
30 

 0 ± 10 
–5 

 

Ackley 30D 

470  

( )2

1 1

cos 2

0,2

20

20

D D

d d

d d

x x

D De e

e

π
= =−
∑ ∑

− −
+ +

 [–30,30] 
30 

 0 ± 10 
–5 

 

Table 4.1. Summary of the benchmark set. The theoretical levels of difficulty were calculated 

or considered as indicated previously. This sample of traditional test functions was selected to 

cover a broad range of difficulties. None of these functions is discrete (this case will be 

studied later), but one of them (Tripod) presents brutal discontinuities 

4.2. Six reference functions 

Table 4.1 specifies the formulae for six functions that are more or less difficult to 
deal with. In each case, the known minimal value is zero and one wishes to reach it 
with a margin of 10

–5
.  

4.3. Representations and comments 

For each function, one or more three-dimensional graphical representation is 
given below, with, for each figure, a comment explaining the type of difficulty that 
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an algorithm for finding the minimum value can encounter. However, as you have 
undoubtedly noticed, almost all the problems of the benchmark set are actually in 10 
or 30 dimensions. So, one should not lose sight of the fact that restriction to the 
three-dimensional case, which is moreover almost always represented in two 
dimensions (on screen or printed), gives only a very vague idea of the real problem. 

 

Figure 4.1. Tripod. Minimum 0 is at point (0 – 50). Theoretically easy, this problem misleads 

many algorithms, which are easily trapped in one or other of the two local minima. Note that 

the function is not continuous, which, however, does not obstruct PSO in any way. This 

problem was first proposed in [GAC 02] 

 

Figure 4.2. Alpine. Many local and global minima (of zero value). Surface is not completely 

symmetrical compared to the origin. Nevertheless, this problem remains rather easy and may 

be viewed as a kind of pons asinorum for optimization algorithms in continuous variables 
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Figure 4.3. Parabola. Only one minimum. Because of its stochastic character, PSO might not 

be as effective as a specific deterministic algorithm (e.g. gradient descent), but the various 

alternatives could be more or less adapted to solve this problem. This function, which, in two 

dimensions, is a paraboloid, is sometimes called “Sphere” in the literature, undoubtedly 

because of its equation 

 

Figure 4.4. Griewank. Already more difficult. The global minimum 0 is at (100 100) and is 

almost indistinguishable from many closely packed local minima that surround it. On the one 

hand, that tends to increase the difficulty of the problem, but, on the other hand, because the 

local minima are very close together, it is rather easy to escape from them, at least for 

stochastic algorithms 
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Figure 4.5. Rosenbrock. Represented here on [–10 10]
2

.
 

There is a barely noticeable global 

minimum at (1,1). For the majority of optimization algorithms it is difficult to find, and PSO 

in its initial version is no exception. The graph lies mostly beyond the limits of the diagram 

(maximum value of about 1.2 × 10
6

) 

 

 

Figure 4.6. Rosenbrock again, but on [0 1] × [0 2], in order to highlight the minimum. 

In two dimensions, the problem is easy, but the difficulty increases very quickly 

 with the number of dimensions of the search space 



56     Particle Swarm Optimization 

 

Figure 4.7. Ackley. Apparently a little like Alpine, but actually more difficult,  

even with the same dimensionality. The “basin of attraction” of the global minimum is 

narrower, which decreases the effectiveness of random displacements 

4.4. For “amatheurs”: estimates of levels of difficulty 

4.4.1. Theoretical difficulty 

Let us recall that it is calculated by the formula ( )ln σ− , where σ is the 

probability of success by randomly choosing a position in the search space. 

4.4.1.1. Tripod 

Direct calculation is very simple here. Let ε be the required precision. It is 
assumed to be less than 1, in order to deal only with the global minimum. The 
acceptable portion of surface is thus a reversed pyramid with height ε and whose 
base is a square of diagonal 2ε . The surface of this square is thus 22ε . Since the 

search space is [ ]2
100  100− , the level of difficulty is given by: 

( ) ( ) ( )
2

2

2
ln 2 ln 200 2ln ln 2

200
difficulty

ε ε⎛ ⎞
= − = − −⎜ ⎟

⎝ ⎠
 

For 510ε −= , one thus finds a difficulty of approximately 33. 



Benchmark Set      57 

4.4.1.2. Alpine 10D 

The estimate of difficulty was made only statistically, by supposing initially that 
the only solution is the origin of the coordinates. Then one finds a level of difficulty 
of about 132. But any point whose coordinates are either 0 or ( )asin 0,1−  is also a 
solution. On [ ]10

10,10−  there are 103 such points and, therefore, the real level of 
difficulty is closer to ( )132 10ln 3−  or 121. 

4.4.1.3. Rosenbrock 

Here also, the estimate was made only statistically and thus remains rather 
rough. It is interesting to note that the evolution of the difficulty according to the 
dimensionality of the problem, indicated in Table 4.2, is almost linear. However, we 
must not forget that the measure is logarithmic. The true difficulty thus increases 
exponentially. 

Out of curiosity, one can also make an analytical estimate by using Taylor’s 
formula. Around the position ( )1 1,...,1=

r
 corresponding to a minimum of 0, the first 

and second partial derivatives are null (which explains why the function is so “flat”). 
Stopping with the second order, it is found that the function is approached by the 
formula ( ) ( )( )21 1 1 101f h h D+ = + −

r
. If we want this value to be less thanε , that 

gives us the edge of the cube of dimension D in which the solution points are 
( )( )2 1 1 101h Dε= + − . 

 
Dimension  Difficulty  

2  20  

5  60  

10  120  

20  245  

30  370  

Table 4.2. Rosenbrock Function. Theoretical difficulty 

according to the number of dimensions 

Thus, in our example, with 510ε −=  and 30D = , and the search space 
[ ]30

10  10−  of volume 3020 , the theoretical difficulty is given by: 

30
52 10 2930

ln 362
20

difficulty

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= − ≅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

By construction, this value is less than the actual value. It is thus seen that the 
statistical estimate of 370 found previously is completely acceptable. 
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4.4.2. Difficulty according to the search effort 

Obviously the theoretical difficulty decreases if one is allowed to draw several 
positions at random. Let T be the number of such choices. Since the probability of 
success for a single draw is σ, the probability of failure is ( )1 σ− and the probability 

of still not having found a satisfactory position after T draws is ( )1
Tσ− . By 

contrast, the probability of having found a solution with a maximum of T draws is its 
complement with 1. Finally, in passing to the logarithm, one obtains the theoretical 
difficulty as a function of the search effort T 

( ) ( )( ) ( )ln 1 1 ln
T

difficulty T Tσ σ= − − − ≅ −  

When the probability of success with only one choice is very low, which is 
normally the case for the interesting problems, the last expression gives a good 
approximation. 

4.5. Summary 

To clarify these ideas and to compare later on the influences of the various 
parameters and strategies, a benchmark set of six traditional test functions is defined. 
The functions are continuous or semi-continuous, but the theoretical difficulty of 
finding their minimum in the search space varies several orders of magnitude from 
one function to another. 



 

Chapter 5 

Mistrusting Chance 

5.1. Analysis of an anomaly 

Originally, this book was not intended to include a chapter devoted specifically 
to randomness. All the versions published of PSO used language C’s rand function 
or the equivalent in other languages and that did not seem to pose any problem. 
However, one day, during the treatment of the example of the Ackley function with 
an already old version, an obvious anomaly appeared. 

The principle of the test was very simple. One gave oneself a maximum number 
of evaluations of the function, for example 40,000, one launched the program 100 
times and counted the number of executions that, under the constraint of these 
40,000 evaluations at most, had still not found a solution. One thus deduced from it 
an estimate of the rate of failure of the algorithm on this problem. 

 A limit of 40,000 evaluations gave a failure rate of 53% (the version of PSO 
used was very rudimentary). On increasing the limit to 60,000 evaluations, the rate 
of failure went up to 63%! After analysis of the possible causes of this anomaly, it 
turned out that it was due to the poor quality of the pseudo-random number 
generator normally used in ANSI C. Let us take a look at a very simple example 
which is even more obvious. 

 On the interval [–1 1], T numbers are generated randomly, hoping to find one of 
absolute value less than 510ε −= . Obviously the probability of failure pr(T) 
decreases as T increases, according to the formula: 

( ) ( )1
T

pr T ε= −  [5.1] 
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For example, for 610T = , one finds a probability of failure of 0.000045. 
However, when one carries out the experiment with a little program in C consisting 
of some lines using the function rand (see program 5.1), the rate of failure is in fact 
100% whatever the permitted search effort, i.e. the value of T. Indeed, it turns out 
that the pseudo-random number generator is unable to produce an absolute value 
less than 0.0000305 in the interval [–1 1], as is explained further. 

Let us note that the opposite situation is also possible. If one makes the same test 
on the interval [0, 1], the probability of theoretical failure is again given by equation 
[5.1]. However, this time the program in C gives appreciably lower rates of failure. 
Figure 5.1 shows how large the variations can be, relative to true randomness. It is 
clear that we cannot trust a pseudo-chance of such poor quality, at least to carry out 
the programs of stochastic optimization we are studying here. 

 

 
 

Figure 5.1. Poor quality of classical pseudo-randomness. Even on a very simple example (in 

this case the random search for a number of absolute value less than 10
–5 

in a given interval), 

the rand function in ANSI C can give, with certain compilers and on certain machines, rates 

of failure very different from the theoretical rates 

Thus when we use the term “to take randomly” it is necessary to distinguish 
between the mathematical description which recommends, for example, a law of 
probability to constant density, and the practical realization in data processing, 
which delivers only one pseudo-chance, sometimes too regular to be honest. Let us 
see more precisely why, and how it is possible to remedy it. 
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5.2. Computing randomness 

When one asks a computer to provide a random number according to a uniform 
distribution in an interval [a b], the generated number is in fact often initially an 
integer N between 0 and M, which is then reduced to the interval by a linear 
transformation. In C, the number M is the internal constant RAND_MAX. 
Normally, it is equal to 32,767 (2

15 
– 1) and the first two generated numbers are 41 

and 18,467. You can check this using program 5.2 at the end of the chapter. 

Even by neglecting the statistical fluctuations inherent in the initial generation 
process (these are always present), it means that you will in any case obtain only 
numbers of the form ( )( )a n M b a+ − . The distribution obtained is thus far from 
being uniform, since it concentrates on M + 1 values in [a b]. None of the points 
between these values can be reached. This is why, for example, it is impossible to 
find in this way, a number between –1/32767 and 1/32767 on the interval [–1 1], i.e. 
of absolute value less than 0.0000305ε = . Conversely, on the interval [0 1], it is 
enough to draw N = 0 and the probability of failure is thus (1 1/ )TM− , lower than 
the theoretical probability as soon as ε is less than 1 M . 

 The larger your search space is, the more this situation introduces a significant 
bias. For example, to generate an initial position “randomly” between 0 and xmax, 
one is often satisfied with initially generating a value on [0 1], then multiplying it by 
xmax. If this last is not negligible relative to M, this means that large intervals of 
value are in fact inaccessible, at least at the beginning of the process and that, on the 
contrary, the numbers which delimit them are unduly favored. 

 Lastly, one might think that for the same standardized language, all the 
compilers define a given function in the same way, but that is not always the case 
(one might add, in passing, that the originators of compilers do not always respect 
the standard). 

 In the same way, one can also ask to what extent the numerical inaccuracy 
inherent in the computing can modify, from one machine to another, the behavior of 
a PSO algorithm. We will therefore ask ourselves the question of the reproducibility 
of the results taking into consideration these two potential sources of error: the 
quality of the pseudo-randomness and maximum numerical precision. 

5.3. Reproducibility 

“With the stochastic algorithm A, whose code is given below, the rate of failure 
for the problem P is x%.” You have all seen statements of this kind. You may even 
have gone to the extent of programming the famous algorithm A, and then carrying 
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it out in accordance with the given instructions. But you have probably not found the 
published failure rate, but another, possibly rather different rate. However, the very 
basis of the experimental scientific method is precisely that published experiments 
can be reproduced and the same results found within well-defined margins of error. 
With regard to PSO, and for that matter the majority of iterative stochastic 
algorithms, the experiments are executions of computer programs, and the 
differences noticed have two sources: the numerical precision of the pair 
machine/compiler and the mode of generation of the pseudo-random numbers. For 
better reproducibility of the results, it is desirable to be, as far as possible, free from 
them and we will see how that is possible. 

5.4. On numerical precision 

A calculator necessarily carries out numerical rounding-off. A simple test allows 
you to get some idea of the possible level of precision of your machine. The small 
program 5.3 will enable you to know from which value of n the number 10–N

 

is 
treated as equal to zero. 

On a 32-bit computer, one finds in general that 10–323
 
is regarded as zero. That is 

why the results given in this book correspond to calculations made internally with 
this level of precision. It is very much better than what is necessary for all practical 
problems. So this factor is not generally to blame for the non-reproducibility of the 
experiments. However, we have already seen that the quality of the generated 
pseudo-randomness is very significant. So let us examine another mode of generation, 
which gives more usable results than those provided by the majority of the algorithms of 
the standard compilers. 

5.5. The rare KISS 

We wish to proceed in such a way that by carrying out a given algorithm on a 
given problem, we obtain the same result, whatever the language of coding, 
whatever the compiler, and (almost) whatever the machine used. We have seen that 
the intrinsic numerical precision of the computer is not really a problem, being 
largely sufficient today even on current machines. 

 But, on the other hand, we must give up the idea that the generation of the 
pseudo-random numbers is only a standardized black box. A detailed study of the 
possible abolition of chance would be beyond the scope of this work, but one stage 
is in any case useful: inclusion in the algorithm itself of the deterministic generation 
of pseudo-random numbers, in order to be less dependent on data-processing 
languages and compilers. 
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 In any case, in practice, that can amount precisely to detailing one of the 
methods that fulfills functions such as rand in C, random in PASCAL, or ran in 
OCCAM, but, as we saw in the case of C, the result is likely to be unusable for our 
purposes. Thus we shall explore another method, called KISS, which has interesting 
characteristics. 

5.5.1. Brief description 

This algorithm, easily downloadable from various Internet sites, is based on a 
different principle. It seeks to generate the most realistic possible randomness, while 
remaining reproducible. It is based on three fast generators, already individually 
rather good, and it composes them in an astute way. It is cyclic, but the period 
exceeds 2123. Even if each generation of a number took only an attosecond (10–18 s), 
to find the same number twice you would have to be very patient! Figure 5.2 tries to 
visualize the generated randomness. 

 

Figure 5.2. Pseudo-randomness of KISS. On the left-hand diagram, each point represents one 

of the the first 1,000 values. Its abscissa is the number formed by the first three decimals of 

the value and its ordinate is the number formed by the fourth to sixth decimals. The right-

hand diagram, a traditional histogram of the first 10,000 values, confirms and specifies  

this distribution. The pseudo-randomness is very realistic here, 

 which is confirmed by statistical tests 

Even visual inspection suggests that this pseudo-randomness is of good quality. 
This is confirmed by checking various criteria (Kolmogoroff, χ2, Weil, etc. [MAU 
75]). KISS passes all the traditional tests easily but, more concretely, we shall see its 
results for our little example of random search. 
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5.5.2. Test of KISS 

As before, we seek “randomly” in the interval [–1 1] a number of absolute value 
less than 10–5. The pseudo-randomness is now generated with KISS, and this for 
various values of the maximum number of allowed tests. In each case the rate of 
failure is calculated after 10,000 executions of the program. This already gives us a 
good estimate of the rate of real failure very near to the theoretical rate of failure 
(see Table 5.1). 

Maximum number of 

tests  

Probability of 

theoretical failure 

KISS 

Probability of failure 

estimated on 10,000 

executions  

1,000  99%  98.79%  

10,000  90.48%  90.73%  

100,000  36.79%  36.29%  

1,000,000  0.0045%  0%  

 Distance  0.006  

Table 5.1. Test of KISS. On the small problem of random search for a number of absolute 

value less than 10
–5 

in the interval [–1 1], it cannot be distinguished significantly from true 

randomness, as the calculation of the difference between the estimated probability and the 

theoretical probability for some values of the number of tests shows 

5.6. On the comparison of results 

One sometimes comes across assertions of the kind “I launched algorithm A and 
algorithm B 100 times each on the same problem. The failure rate of B is 4% less 
than that of A. This algorithm is thus a little better.” Is such an assertion justified? 
Actually, not really, and we will now examine why (for a more detailed 
mathematical explanation, see section 5.7). 

The result of an execution, under the constraint of a maximum number of 
evaluations, is binary – success or failure – with a probability of failure characteristic of 
the algorithm. But the rate of failure calculated after 20, 100, and 1,000 executions is 
only one estimate, accurate to within δ. Naturally, this δ is becomes smaller as the 
number of executions is increased, but it should be evaluated. 

Table 5.2 gives us, for confidence thresholds of 95% and 99%, the interval of 
probable values for the rate of failure, once this was estimated after T executions.  
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After a number of 
executions equal to  

If the rate of estimated failure isτ̂ , 
 there is 95% chance that the real 

rate is in the interval  

 Same thing, with 99%  
 chance  

20  τ̂ ± 11.0%  τ̂ ± 14.4%  

100  τ̂ ± 4.9%  τ̂ ± 6.4%  

1,000  τ̂ ± 1.5%  τ̂ ± 2.0%  

10,000  τ̂ ± 0.5%  τ̂ ± 0.6%  

Table 5.2. Confidence to be granted to a stochastic search algorithm 

Thus, for example (and this will help us to establish at least approximate 
performance maps), with 100 executions, we have a 95% chance of knowing the rate 
with a margin of less than 5%. In many cases, it is largely sufficient to compare 
algorithms or the influence of a modification of parameters for a given algorithm, 
but precisely on condition that the variation of the rates of failure is greater than 5%. 

Hereafter, unless otherwise stated, KISS will be used to generate pseudo-random 
numbers. Naturally, in your own applications, it can be replaced by any other good 
quality generator. In fact, even certain C compilers, such as that under Linux used 
for this book, provide an almost acceptable rand function, with a RAND_MAX 
equal to 231 – 1 instead of 215 – 1. Note, in passing, that if the theories postulating the 
quantization of space-time are justified, no real problem requires, on a given 
dimension, a precision better than 10–34 or 10–35, the order of magnitude of Planck’s 
constant [SMO 04].  

5.7. For “amatheurs”: confidence in the estimate of a rate of failure 

The rates of failure that one can calculate by carrying out the search algorithm 
several times are only estimates made after T executions with, for each execution, a 
given maximum number of tests. As one might expect, the estimate becomes 
increasingly precise as it is calculated on a growing number of executions (see 
Figure 5.3). But the question is what confidence one can grant to an estimate. 

Let X be the random variable whose occurrence is returned by each execution: 1 
if there is failure, with a probability τ; 0 if not, with a probability 1 – τ. This rate 
characteristic of failure of the algorithm for the problem under discussion is not 
known. After T executions, we have an estimate of it without skewτ̂ , which is given 
by the following formula, where t is the rank of the execution: 

1

1
ˆ

T

t
t

X
T

τ
=

= ∑  [5.2] 
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Figure 5.3. Evolution of the rates of failure with pseudo-randomness KISS. For each 

execution, the maximum number of tests is 100,000. The estimated rate of failure converges 

towards the theoretical value 

With a good quality pseudo-randomness, the tX  are random independent 
Bernoulli variables and τ̂  a binomial random variable of average τ . Therefore, its 
characteristic function ϕ is defined by ( ) (1 ) iuu eϕ τ τ= − + . The values at 0 of its 
successive derivatives give us the moments, in this particular case all equal to τ . 

( ) ( )

( ) ( )
2

2
2

ˆ 0

ˆ 0

d
E

du

d
E

du

ϕτ τ

ϕτ τ

= =

= =
 

The variance 2σ  is given by the classic decomposition formula: 

( ) ( )22 2 2ˆ ˆE Eσ τ τ τ τ= − = − . It is worth adding that, in practice, as soon as T > 30, the 
theorem of the central limit enables us to define a random variable TY  which almost 
follows a reduced centered normal law: 

ˆ
TY T

τ τ
σ
−=  

With these elements, one can then estimate T to have a given confidence interval, 
or the converse. Let us suppose, for example, that one wants an estimate of the rate 
of failure to within a confidence interval of ±δ (let us say 1%), with a degree of 
confidence c (e.g. 95%). One can write successively: 

( )ˆ 

 T

probability c

T
probability Y c

τ τ δ

δ
σ

− < =

⎛ ⎞
< =⎜ ⎟⎜ ⎟

⎝ ⎠
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One can deduce from this that 
2

T u
σ
δ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, where u is given either by calculation 

or by consultation of a table like that below, giving the probability for TY being between 

–u and u. 
 

Degree of confidence  90%  95%  99%  

u 1.645  1.96  2.576  

Table 5.3. A tabulation of the distribution reduced centered normal law 

To say that c = 0.95 amounts to saying that TY  is between –1.96 and 1.96. Hence 
the estimate of T for 1 % is 0.01δ = . 

2

21.96 38416
0,01

T
σ σ⎛ ⎞= =⎜ ⎟

⎝ ⎠
 

In our example, for 100,000 evaluations, the theoretical rate of failure is 36.79% 
and variance 0.23. One deduces from this that T must be worth at least 8,934. 

However, in fact, one does not know the variance 2σ  but only its estimate, 
2 2ˆ ˆ ˆσ τ τ= − . This does not pose a problem, because we find an acceptable value very 

quickly (8,537 as of the sixth execution in our small example, by using KISS). In 
practice, therefore, one carries out ten executions. Thereafter, after each execution of 
rank t, one calculates the estimate 2σ̂ . One stops as soon as t is greater than 2σ̂ . Or, 
more simply, one is pessimistic and careful by always taking the maximum variance 
to be 0.25 (which corresponds to a failure rate of 50%). One finds then that T = 
9,604. 

 
Conversely, one can ask how much confidence to grant to the rate of failure 

estimated after, say, 100 executions, always with a threshold of 95%. Let δ be the 
variation with the true value of the rate of failure which it is then necessary to 
accept. One has immediately: 

max 0.25
1.96 1.96 0.049 4.9 %

10T

σδ = = = =  

One can thus learn that the practical formula to use is: 

2

0.25
u

T
δ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 [5.3] 

where u is given by Table 5.3. 
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5.8. C programs 

PROGRAM 5.1. – Random search using the function rand 
//In the interval [a b], one seeks a number of absolute value lower than 
eps double A, B, T, T, X; 
int  n_echec, n_exec, n_exec_max; 
= 1;b –= 1 has; //Interval of research 
eps = 0.00001; //desired Precision 
n_exec_max = 1000; //a Number of executions 
T = 10000; //a maximum Number of evaluations for each execution 
n_echec = 0; 
for (n_exec = 0;n_exec < n_exec_max;n_exec++) 
 
for (T = 0;t < T;t++) 
 
X = has + (b-a)*(double)rand()/RAND_MAX; 
if (fabs(x) < eps) goto exec; 
 
n_echec = n_echec + 1; 
exec: ; 
 
printf(“Failure rate%f”, n_ failure /(double)n_exec_max); 

PROGRAM 5.2. – Checking of the function rand 
//Base of the equal distribution and first values 
printf(“RAND_MAX%i”, RAND_MAX); 
srand(1); 
for (N = 0;n < 2;n++) printf(“%i”, rand()); 

PROGRAM 5.3. – Evaluation of the precision of execution of a computer 

//Below a certain value (1/10) 
p

, a number is treated as zero 
init = 0.1; precision = 0; value = init; 
while (value > 0) value = value*init; precision = precision + 1; 
printf(“Null value for 10 power –%.0f”, precision); 

PROGRAM 5.4. – Deterministic Pseudo-Randomness KISS: 
/ * It passes the majority of the tests of checking of randomness, while 
remaining reproducible 
The three components of KISS are: 

X N = (ax N –1 + 1)mod2
32 

Y N = y N –1 (I + L
13

) (I + R
17

) (I + L
5

) 

Z N = 2z N –1 + Z N –2 + retenuemod2
32 

y is a shift register on vectors of 32 bits, of period 2
32 

–1. 
Z is a simple sequence of multiplications with reserves, of which the 

period is 2
63 

+ 2
32 

–1. 

The total period of KISS is thus 2
32 

(2
32 

–1)(2
63 

+ 2
32 

–1). It is higher than 

2
127 

*/ 
# define ulong unsigned long 
# define RAND_MAX_KISS ((unsigned long) 4294967295) 
ulong  rand_kiss(); 
void  seed_rand_kiss(ulong seed); 
 
static ulong kiss_x = 1; 
static ulong kiss_y = 2; 
static ulong kiss_z = 4; 
static ulong kiss_w = 8; 
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static ulong kiss_carry = 0; 
static ulong kiss_k; 
static ulong kiss_m; 
... 
void main() 
 
... 
seed_rand_kiss(1); //Initialization of seed. The value can be changed 
... 
 
void seed_rand_kiss(ulong seed) 
 
kiss_x = seed | 1; 
kiss_y = seed | 2; 
kiss_z = seed | 4; 
kiss_w = seed | 8; 
kiss_carry = 0; 
 
 
ulong rand_kiss() 
// R = (double)rand_kiss()/RAND_MAX_KISS; //a number gives on [0 1] 
kiss_x = kiss_x * 69069 + 1; 
kiss_y ^ = kiss_y < < 13; 
kiss_y ^ = kiss_y > > 17; 
kiss_y ^ = kiss_y < < 5; 
kiss_k = (kiss_z > > 2) + (kiss_w > > 3) + (kiss_carry > > 2); 
kiss_m = kiss_w + kiss_w + kiss_z + kiss_carry; 
kiss_z = kiss_w; 
kiss_w = kiss_m; 
kiss_carry = kiss_k > > 30; 
return kiss_x + kiss_y + kiss_w; 

5.9. Summary 

The standard pseudo-randomness generator provided with certain compilers is 
not good quality. Thus, on a very simple random search problem, it can be shown 
that the rand function in ANSI C can give a rate of failure of 100%, whereas the 
theoretical rate is almost zero. We therefore propose using a random number 
generator, KISS, available in the public domain, which, while also giving 
reproducible sequences (important for comparison of algorithms), simulates true 
randomness much better. 

One recalls some rules concerning the estimate of the rate of failure of a 
stochastic algorithm on a problem, in particular the relation between the number of 
executions and the confidence which one can grant to the estimated rate. This will 
make it possible to give a precise meaning to assertions like “this algorithm (or this 
set of parameters) is better than this other for such and such a problem”. 
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Chapter 6 

First Results 

6.1. A simple program 

We now have to hand all the elements needed to write a program for OEP 0. 

In its source code in C (see program 6.1) all the parameters are “hard coded”, 
but, naturally, they could be picked interactively or be read from a file. The 
subroutine ma_fonction contains the six functions of our benchmark set. You can 
easily add the one corresponding to your problem, but if this problem is difficult, it 
will undoubtedly be more judicious to use one of the more elaborate and more 
effective versions that we will look at later. Here it is simply a question of 
establishing reference results, precisely to be able to quantify the improvements 
made by the following versions. 

The values retained for the parameters are as follows: 

 – size of the swarm N = 20; 

 – number of informed particles chosen randomly by each particle K = 3; 

 – confidence coefficients 1 0.689343c =  and max 1.42694c = . These rather 

mysterious values were selected to facilitate the comparison with later versions that 
use one coefficient. Some complementary explanations are given in section 6.3. 
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6.2. Overall results 

To compare two algorithms on the treatment of a given problem, we will need a 
criterion of effectiveness or, more precisely, inefficiency.  It is defined as follows: 

 – initially one compares the rates of failure; 

 – if they are equivalent but less than 100%, one compares the numbers of 
evaluations; 

 – if they are also equivalent, the found values are compared. 

The two concepts of equivalence used are to be defined by the user in statistical 
terms, as was discussed in Chapter 5. They could be, for example, the probabilities 
of equality greater than 95%. Nevertheless, in any case, if the best values obtained 
are both less than the acceptable error, it should be regarded as equivalent. 

In fact, this composite and hierarchical criterion is especially interesting for the 
development of algorithms on benchmark sets for which the desired objectives are 
known. With a given search effort  (in practice here the number of evaluations) one 
wants initially the highest possible probability of finding a solution; then, when the 
rate of failure is less than 100%, that it be found as soon as possible. It is only if the 
rate of failure is 100% that one is satisfied with the best value found. 

For real problems, it is generally the reverse. The maximum search effort is often 
given, but one does not know the value of the minimum to be reached. Then one sets 
as one’s objective a value that is definitely lower and, therefore, one is always in the 
last scenario: the comparisons of algorithms could be made only on the best values 
that they are able to find. 

When the rate of failure is less than 100%, it is also possible to calculate the total 
number of evaluations to be carried out (while launching the program several times) 
to succeed at least once with a given probability, and to take this number as a 
criterion. Indeed, if the rate of failure is p, then p

T 

is the probability of having never 
succeeded even after t executions. It decreases quickly with t. 

For example, for a rate of failure of 50%, four or five executions are enough to 
have a 95% chance to find a solution. Besides, it is the basis of the Stop/Restart 
strategy that we will look at in the second part of this work. 

Table 6.1 presents some results on our benchmark set of six functions, for 
various values of the search effort, in terms of a maximum number of evaluations. In 
order to have a rough but more practical single numerical indicator to handle, the 
average of six rates of failures is also indicated. Thus, in a very artificial way, we 
can retain “OEP 0 → 45.7%”.  
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Name  

 The number of evaluations 

per execution (average on 

100 executions)  

 

Result 

 

Tripod  40,000  39%  

Alpine 10D  15,000  28%  

Parabola 30D  15,000  27%  

Rosenbrock 30D  40,000  
100% 

average 39.026  

Griewank 30D  40,000  55%  

Ackley 30D  40,000  25%  

Average rates of failure  45.7%  

Table 6.1. Some results with OEP 0. As envisaged, the minima of the Rosenbrock, Griewank 

and Tripod functions are difficult to find. The size of the swarm is 20 and the number 

informed particles chosen at random by a given particle is 3. The rates of failures are an 

estimate after 100 executions. In the event of a failure rate equal to 100%, one gives the 

average value of the 100 found results 

Obviously, these results are modified if one changes the values of the 
parameters, particularly the size of the swarm and the confidence coefficients. In the 
ideal case, it would be necessary to test all the possible combinations. In practice, 
one is satisfied with plausible fields of values in order to establish performance 
maps. 

6.3. Robustness and performance maps 

As we have already indicated, it is possible to show that a good convergence can 
be ensured by making the two coefficients ( 1c for confidence in the current tendency 

and maxc for confidence in informants) dependent. This is demonstrated in [CLE 02],  

but let us just remember that the relation between them can be written using an 
intermediate parameter ϕ: 

1 2

max 1

1

1 2
c

c c

ϕ ϕ ϕ
ϕ

⎧ =⎪ − + −⎨
⎪ =⎩
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Naturally, other pairs of values are possible, but by using these relations we can 
make a study of simplified robustness, by varying only the size of swarm N and the 
parameter ϕ.   Note that for ϕ the above formula imposes values greater than 2, the 
coefficient 1c  having to be a real number. Incidentally, the values of the coefficients 
used in OEP 0 to draw up Table 6.1 correspond to ϕ = 2.07. 

Our study of robustness will be simultaneously very simple and very tiresome. It 
is simply a question of considering a great number of pairs of value (N,ϕ) and 
examining how the algorithm behaves on our test functions for each pair. Of course, 
it is necessary to limit the space of the possible values. For the swarm, we will take 
from 5 to 40 particles. For the coefficient ϕ, we saw that it must be greater than 2. In 
addition, the experiment shows that maxc  must be greater than 1. These two remarks 

lead us to vary ϕ in the interval [2.01 2.4]; for example, with an increment of 0.1. 
For each function the result is a surface of performance, (N,ϕ, h) where h can be, for 
example, an estimate of the rate of failure, obtained after 100 tests. 

 
In practice, the representation used is a performance map whose colors or levels of 

gray code the different ranges of value of h. The Figure s below are such maps for our 
test functions, except for the Rosenbrock function, which has a rate of failure too close 
to 100% for all the examined pairs of values. In such a case, the best value obtained 
after a given number of tests (here 100) remains an interesting criterion and one can 
still use it to establish a performance map, after normalization (see Figure 6.5). 

The examination of these maps teaches us that the fields of “good” values can be 
very broad (Parabola, Alpine, Rosenbrock), rather narrow (Ackley), or even sparse 
(Tripod, Griewank). It also teaches us that a swarm size of 20 particles is sometimes 
“high-risk”, insofar as, for certain functions, we obtain good results only for one 
small interval of values of ϕ. The question which then arises is concerned with 
knowing whether bigger swarm sizes, inducing greater robustness, are not on the 
other hand exacting a penalty in terms of a number of evaluations (and thus of time 
calculation). 
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Figure 6.1. Performance map for the Tripod function. The good pairs of parameters  

are sparse. It is difficult to locate a more favorable zone for rather large size swarms 

 and rather small ϕ  coefficients 
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Figure 6.2. Performance map for the function Alpine 10D. All pairs of values (size of  

the swarm, coefficient ϕ) that give null or very low rates of failure are acceptable. They 

correspond to the broad white portion of the Figure. This zone cannot be infinite and 

 “is closed again” beyond a certain size of swarm (approximately 90 particles) 
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Figure 6.3. Performance map for the function Parabola 30D. Here, the zone of null rate of 

failure would not go beyond approximately 70 particles. While the morphology of the function 

is very different from that of Alpine (only one minimum instead of many local minima), 

 the structure of the performance map is very similar 
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Figure 6.4. Parabola 30D. Average number of evaluations. While restricting oneself to the 

field where the rate of failure is almost zero, one can carry out some cuts with ϕ constant. In 

fact, the smallest swarms necessarily converge most quickly. The performance surface makes 

a “basin” and the optimum is around 25 particles. Thus, with 9 particles and ϕ = 2.08, the 

average number of evaluations is approximately 9,800. But with another pair of values (e.g. 

20 particles and ϕ = 2.17) one finds a smaller average number of evaluations, about 8,600 
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Figure 6.5. Performance chart for the Griewank function. It is seen immediately that the 

problem is more difficult to solve. Nevertheless, one notices that even with this primitive 

version of PSO, it is possible to go below a 25% failure rate, provided that good parameters 

are found (here, one needs a rather large size of swarm, about 35 to 40 particles) 
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Figure 6.6. Performance chart for the Rosenbrock function. With the search effort agreed 

(with more than 40,000 evaluations), there is never “success”, i.e. of value less than 10
–5

.
 

That is why the map is established according to the best value reached, after 

 transformation to remain in the interval [0, 1] 
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Figure 6.7. Performance chart for the Ackley function. The interesting zone is very narrow, 

even if the general form is the same as for the preceding functions.  

Here still, it is less risky to use rather large swarms 
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Figure 6.8. Average performances on the benchmark set. One notices that a coefficient ϕ 
 of about 2.17 and a swarm size greater than 30 give the best results 
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The answer is not obvious, because, on the one hand, a small swarm carries out few 
evaluations to each iteration but, on the other hand, it often needs more iterations to 
find a solution. Detailed analysis of the results of the executions which were used to 
establish the performance maps shows that there is generally no simple relation 
between the average number of evaluations and the size of the swarm, but that one 
can sometimes find such a relation when one restricts oneself to a single value of ϕ. 

On Figure 6.9 we can see the example of the Ackley function for the pairs of 
values (swarm size, coefficient ϕ) which lead to a zero rate of failure. Note that the 
average numbers of evaluations have a rather large dispersion. However, with ϕ 
constant, the average number of evaluations increases quasi-linearly with the size of 
the swarm, which remains all the lower when ϕ is large. Therefore, in such a case, 
the reduction in the size of the swarm, within certain limits, for example from 40 to 
30, increases the effectiveness of the algorithm, since the number of evaluations 
decreases for an unchanged or almost unchanged failure rate. 

 
 

Figure 6.9. Ackley function with zero rate of failure. The performance map of this function 

indicates that one can obtain such a rate of failure for certain sizes of swarm between 25 and 

40 and certain values of ϕ between 2.05 and 2.1. The average numbers of evaluations are 

rather dispersed between 20,000 and 40,000. With ϕ constant, they are in increasing quasi-

linear relationship to the size of the swarm 

 

 

However, this is not the case for all the problems. With the Tripod function, for 
example, such a relation is not obtained at all, as examination of the performance 
map suggests. This is one of the reasons it was introduced into the benchmark set. 
We will see that it is also atypical regarding the influence of parallel calculation for 
the evolution of the swarm. 
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6.4. Theoretical difficulty and noted difficulty 

A synthetic way of using the performance maps is quite simply to take the 
average of the rates of failure on all the pairs of parameters ( ),N ϕ  that are taken 

into account. Using this approach, if the values of the parameters that are taken into 
account are sufficiently representative of all the possible values, one obtains a 
number that should be larger for problems whose theoretical difficulty is high.  

Function 

Search effort  

Average Rate of 

failure  

Measured difficulty  

–ln(success rate)  

Theoretical 

difficulty 

according to 

search effort  

Tripod 

40,000  
42%  0.22  22  

Alpine 10D 

15,000  
43%  0.33  111  

Parabola 30D 

15,000  
64%  1.02  264  

Griewank 30D 

40,000  
84%  1.61  

325 
 

Rosenbrock 30D 

40,000  
100%   360  

Ackley 30D 

40,000  
89%  2.21  460  

Table 6.10. Comparison between theoretical difficulty and average rate of failure (with OEP 

0). The classification obtained is of course the same in both cases, with the notable exception 

of the Rosenbrock function. But note that the algorithm is much better than pure chance (it is 

the least that can be done, but it was advisable to check it). Moreover, the progression of 

difficulty noticed is much less than that of the theoretical difficulty: in general PSO is more 

effective for more difficult problems 

6.5. Source code of OEP 0 

# define D_max 100  //Maximum of the search space (dimensions) 
# define N_max 100  //Maximum swarm size 
# define two_pi 6.283185307 
# define E 2.718281828 
# define ulong unsigned long  //For generation of pseudo-random 
numbers 
# define RAND_MAX_KISS ((unsigned long) 4294967295) 
 
//Structures 
struct  position int size;double x[D_max]; double F; ; 
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struct  vector int size;double v[D_max]; ; 
 
//Subroutines 
double  alea(double has, double b); 
int  alea_ whole(int has, int b); 
double  ma_ function(struct position X, int function); 
ulong  rand_kiss(); 
void  seed_rand_kiss(ulong seed); 
 
//Aggregate variable 
int  nb_eval; //a total Number of evaluations 
 
//main Program 
void main() 
{ 
double  c1, cmax;  //Confidence coefficients 
int  D;  //Dimension of the search space 
int  D;  //current Dimension 
double  eps;  //desired Precision 
double  eps_moyen;  //average Precision on several executions 
int  eval_max;  //Parapet. Max of evaluations of the function numbers 
double  eval_moyen;  //an average Number of evaluations 
double  fmin;  //Objective to reach 
int  function;  //Code of the function to be minimized 
int  G;  //Row of best informant 
int  K; 
int  K;  //maximum Size of the groups of informed 
int  LIENS[N_max][N_max]; //Links of information 
int  m; 
struct  better position;  //Memorizing of the very best position 
struct  P[D_max position];// Positions 
struct  P_m[D_max position]; //Better found positions 
double  min_f;  //Objective to reach 
_ int  N;  //Size of the swarm 
int  N;  //Row of the current particle 
int  n_echec;  //a Number of failures 
int  n_exec, n_exec_max; //Numbers of executions 
struct  V[D_max vector];// Velocities 
double  xmin, xmax;  //Interval for the search space 
 
seed_rand_kiss(1); //Initialization of the generator of random numbers 
//Parameters of adjustment 
c1 = 0.689343; cmax = 1.42694;  //Correspondent with phi = 2.07 in the 
versions 
//later 
N = 20; K = 3;  //Size of the swarm, numbers informants/particle 
 
//Problem to be treated (to be changed according to the problem, of 
course) 
function = 10;  //Code of the function. Cf ma_fonction() 
xmin = –100; xmax = 100; D = 2; //Search space 
eps = 0.00001;  //desired Precision 
fmin = 0;  //Objective to reach 
n_exec_max = 100;  //a Number of executions 
eval_max = 40000;  //a maximum Number of evaluations 
 
//Initialization of the informative variables 
n_exec = 0; eval_moyen = 0; eps_moyen = 0; n_echec = 0; 
 
init: //Initializations of the positions and velocities 
n_exec = n_exec + 1; 
for (N = 0;n < N;n++) 
 
P[n].taille = D; for (D = 0;d < D;d++)P[n].x[d] = alea(xmin, xmax);   
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V[n].taille = D; 
for (D = 0;d < D;d++) V[n].v[d] = alea((xmin-xmax)/2, (xmax-xmin)/2);   
 
 
//initial Evaluations 
nb_eval = 0; 
 
for (N = 0;n < N;n++) 
  
 P[n].f = fabs(ma_fonction(P[n], fonction)-fmin); //Evaluation of the 
position 
P_m[n] = P[n]; //Better position = initial position 
 
 
//Memorizing the best result reaches up to now 
better = P_m[0]; 
for (N = 0;n < N;n++) if (P_m[n].f < meilleure.f) better = P_m[n]; 
 
loop: 
//Defines partially randomly which informs which 
for (N = 0;n < N;n = n++)// Initialization 
 
for (m = 0;m < N;m = m++) LIENS[m][n] = 0; 
LIENS[n][n] = 1; //Each particle gets information itself 
 
 
for (m = 0;m < N;m = m++)// Other links. With more K particles informed per m 
 
for (K = 0;k < K;k++)n = alea_entier(0, N-1);LIENS[m][n] = 1; 
 
 
//Displacement of the swarm 
for (N = 0;n < N;n++)// For each particle... 
 
// research of best informant 
 
for (G = 0;g < N;g++) if (LIENS[g][n] = = 0) continuous; goto continuation; 
continuation:  min_f = P_m[g].f; 
for (m = G + 1;m < N;m++) 
 
if (links [m][n] = = 0) continuous; 
if (P_m[m].f < min_f) G = m;min_f = P_m[m].f; 
 
/ calculation the new velocity 
for (D = 0;d < D;d++) 
 
 
V[n].v[d] = c1*V[n].v[d] + alea(0, cmax)*(P_m[n].x[d]-P[n].x[d]); 
V[n].v[d] = V[n].v[d] + alea(0, cmax)*(P_m[g].x[d]-P[n].x[d]); 
 
// displacement 
for (D = 0;d < D;d++) P[n].x[d] = P[n].x[d] + V[n].v[d]; 
 
/ interval confinement 
for (D = 0;d < D;d++) 
 
if (P[n].x[d] < xmin) P[n].x[d] = xmin;V[n].v[d] = 0; 
if (P[n].x[d] > xmax) P[n].x[d] = xmax;V[n].v[d] = 0; 
 
 
// evaluation of the new position 
P[n].f = fabs(ma_fonction(P[n], fonction)-fmin); 
 
// updated of the best position 
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if (P[n].f < P_m[n].f) P_m[n] = P[n]; 
  
// memorizing of the best result reached up to now 
if (P_m[n].f < meilleure.f) better = P_m[n]; 
 
 
 
//Test of end 
if (meilleure.f > eps && nb_eval < eval_max) goto loop; 
if (meilleure.f > eps) n_echec = n_echec + 1; 
 
//Posting of the best found result 
printf(“%i. Eval =%i. Value%f. Position:): “, n_exec, nb_eval, meilleure.f); 
for (D = 0;d < D;d++) printf(“%f”, meilleure.x[d]); 
 
//Calculation and posting of various information 
eval_moyen = eval_moyen + nb_eval; 
eps_moyen = eps_moyen + meilleure.f; 
if (n_exec < n_exec_max) goto init; 
 
eval_moyen = eval_moyen/(double)n_exec; 
eps_moyen = eps_moyen/(double)n_exec; 
printf(“average Eval =%f”, eval_moyen); 
printf(“average Eps =%f”, eps_moyen); 
printf(“Failure rate =%f”, n_echec/(double)n_exec); 
} 
 
//======================================================================== 
double  alea(double has, double b) 
{ 
 //Gives a random number between a and b 
//according to a pseudo-uniform distribution 
double r; 
r = (double)rand_kiss()/RAND_MAX_KISS; 
return a + r*(b-a); 
} 
//======================================================================== 
int  alea_entier(int a, int b) 
{ 
// Gives an integer at random between a and b 
int  ir; 
double  r; 
r = alea(0,1); ir = (int)(a + r*(b + 1-a)); if (ir > b) ir = b; 
return ir; 
} 
//======================================================================== 
double ma_ function(struct position x, int function) 
{ 
// Evaluates the value of the function to be minimized at position x 
//ADD your own function 
int D,d; 
double f, p, som1, som2, xd; 
double  x1, x2; 
 
nb_eval = nb_eval + 1; 
D = x.taille; 
 
switch (function) 
{ 
case 1: //Sphere 
f = 0; for(d = 0;d < D;d++) f = f + x.x[d]*x.x[d]; 
break; 
 
case 2: //Square oot. To use a xmin > = 0 



84     Particle Swarm Optimization 

f = 0; for(d = 0;d < D;d++) f = f + sqrt(fabs(x.x[d])); 
break; 
case 3: //Alpine. Min 0 in (0,0... 0) 
//alternative 1 
// f = 0;for(d = 0;d < D;d++) f = f + 
sqrt(fabs(x.x[d]*sin(x.x[d]))); 
//alternative 2 
f = 0;for(d = 0;d < D;d++) f = f + fabs(x.x[d]*(sin(x.x[d]) + 0.1)); 
break; 
 
case 4: //Rosenbrock, Banana function. Min 0 in (1... 1) 
f = 0; 
for (D = 0;d < D-1;d++) 
 
xd = 1-x.x[d]; f = f + xd*xd; xd = x.x[d]*x.x[d]-x.x[d + 1]; 
f = f + 100*xd*xd; 
 
break; 
 
case 5: //Ackley 
som1 = 0;som2 = 0; 
for (D = 0;d < D;d++) 
 
xd = x.x[d]; som1 = som1 + xd*xd; som2 = som2 + cos(two_pi*xd); 
 
f = (-20*exp(-0.2*sqrt(som1/(double)D))-exp(som2/(double)D) + 20 + E); 
break; 
 
case 6: //Griewank 
f = 0; 
p = 1; 
for (D = 0;d < D;d++) 
 
xd = x.x[d]-100; 
f = f + xd*xd; 
p = p*cos(xd/sqrt(d + 1)); 
 
f = f/4000 –p + 1; 
break; 
 
case 10: //Tripod function (Louis Gacogne) 
 
//on [- 100, 100], min 0 at (0, -50) 
x1 = x.x[0]; 
x2 = x.x[1]; 
 
if(x2 < 0) f = fabs(x1) + fabs(x2 + 50);   
else 
 
if(x1 < 0) f = 1 + fabs(x1 + 50) + fabs(x2-50); 
else f = 2 + fabs(x1-50) + fabs(x2-50); 
 
break; 
 
return f; 
} 
 
//= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = KISS 
... (generator already seen) 
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6.6. Summary 

While varying the parameters of algorithm OEP 0 systematically, it is possible to 
establish performance maps for the functions of the benchmark set. They show that 
for almost all the functions there are many values of the parameters for which 
convergence is excellent (rate of failure zero or almost zero). 

This does not mean to say that the parameter setting is always easy to find, but 
that, at least, the algorithm is potentially effective. 
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Chapter 7 

Swarm: Memory and Graphs of Influence 

7.1. Circular neighborhood of the historical PSO 

The first articles presenting PSO (Particle Swarm Optimization) under its 
original name were published in 1995 [EBE 95, KEN 95]. This primitive version is 
practically no longer used. Nevertheless, it opened the way for the study of graphs of 
influence with fixed topology, because the information links between particles were 
defined once for all, generally according to a “circular” diagram. 

N particles of the swarm are laid out virtually on a circle, then numbered 
sequentially from 1 by traversing this circle. Each particle has a set of informants of 
fixed size K, historically called its neighborhood. The neighborhood of size K of a 
particle is obtained from the virtual circle by recruiting alternately on the right and 
on the left of its position, until a total of K − 1 neighbors is obtained. Moreover, the 
particle itself is also included. 

 
On Figure 7.1 we can see the result for a swarm of seven particles for two sizes 

of neighborhood (3 and 4). The program used (OEP 5) is available via Particle 

Swarm Central [PSC]. Note that for the definition of the neighborhoods, no concept 
of distance between particles in the search space is taken into account: it is about a 
social neighborhood rather than a geographical neighborhood, which, on the 
contrary, would use a metric and for which the neighborhood of size K of a particle 
would be formed of the K particles closest (including itself). This alternative would 
be more expensive in calculation time and, moreover, does not seem to have a 
significantly higher effectiveness by itself. On the other hand, it is a condition 
necessary to the use of the technique of multicentroid reorganization of memories, 
which we will discuss later. 
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The moment K is greater than 3, the relation may not be symmetrical for certain 
particles. On the right-hand side of Figure 7.1, we see clearly that, for example, 
particle 1 informs particle 6 without the reverse being true. That is why the term 
“neighborhood”, which evokes ideas of symmetry, is in the end not very apt. As we 
have seen, it is replaced here by the term “(group of) informants”. 

 

Figure 7.1. Regular graphs of influence of a swarm of seven particles. For each arc, the 

particle origin influences (informs) the end particle. On the graph on the left, each particle 

has 3 informants, including itself. For particle 1, they are 1, 2 and 7. On the right-hand side, 

there are 4 informants (1, 2, 7 and 3) 

7.2. Memory-swarm 

From this idea, it is tempting to imagine other configurations. What happens, for 
example, if the virtual arrangement of the particles is a square grid mapped onto a 
torus or if the graph of the relations is hierarchical or of the type “small world” like 
an Internet network, for example? The study of these questions leads us to 
differentiate properly the two functions provided by the particles: exploration of the 
search space and memorizing of the best position found during this search. 

From the outset, we have postulated that each particle was ready to fulfill these 
two functions. That led us to quite convoluted formulations, like “the best of the best 
positions found until now by informants”. Moreover, the data memorized by the 
particle itself are processed separately from that brought by the others, whereas 
nothing in their nature distinguishes them. Also, that demands that we memorize as 
many positions as there are particles, neither more, nor less. Lastly, it could be 
desirable to connect directly the positions memorized in order to deduce from them 
some interesting new displacements. However, one can certainly study various 
topologies, (see, for example, [CLE 99, KEN 99]), but without all the desirable 
flexibility. 
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That is why it is interesting to change the point of view slightly and consider that 
the functions of exploration and memorizing are carried by distinct particles. That 
will also enable us to define more easily various kinds of groups of informants. 

Thus we will have as before, an explorer-swarm composed of turbulent particles, 
moving with each time increment, but we will also have a memory-swarm. Its 
particles, which we will call simply memories and which we can imagine heavy, 
slow and wise, move only occasionally and definitely, towards the best positions 
announced by the explorer particles.  Thus, the association of a memory and 
explorer corresponds to a particle according to the historical terminology. 

 

Figure 7.2. Graph of influence with memory-swarm (N = 7, M = 7, K = 3). It is formally 

similar to that of the left of Figure 7.1, but the explorer-swarm (particles in pale gray) and 

the memory-swarm (particles in dark gray) have been differentiated. This more complicated 

representation offers more freedom of configuration, for example by modifying the number of 

memories or by making them communicate directly with each other 

Figure 7.2 shows an example of information links according to this second point 
of view, which is strictly equivalent to the historical circular diagram with 3 
informants per particle. Previously, each particle informed some others, including 
itself. Moreover, it memorized its best performance. Now, the explorers do not 
memorize anything but instead inform the memories, which, in return, guide them in 
their exploration. The advantage of this new representation is that it allows new 
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structures of information. For example, the memory-swarm and the explorer-swarm 
need not be the same size. Likewise, one can make the memories communicate 
directly between themselves, reworking memorized information and drawing from 
the results consequences in terms of new displacements with probable improvement. 

7.3. Fixed topologies 

Let us consider initially the case where the graph of information, as in the 
historical PSO, is defined once and for all before the process of iteration. We will 
not recapitulate here the results obtained with a particular topology, but will merely 
retain the following three principal empirical rules: 

 – rule 1: a fixed topology must be regular (the same number of links for each 
particle), because one does not know a priori which particles will be the best; 

 – rule 2: for each regular topology and each problem, there is an optimum 
number of links (number of informants), but if one does not have any information on 
the difficulty of the problem, it is better to define fewer possible links, while keeping 
the connexity of the graph of influence; 

 – rule 3: one can sometimes increase the effectiveness of the algorithm by 
making the particles of the memory-swarm communicate directly among 
themselves. 

For the first two points, note that these conclusions are valid only if the topology 
is fixed once and for all. We will see that in adaptive PSO the situation is quite 
different. Also, note that the application of rules 1 and 2 in fixed topology leads 
automatically to the circular diagram. It is, in effect, the connected regular graph for 
which the nodes can have fewest possible arcs (two per node, plus an arc on itself). 

Table 7.1 illustrates how much the performances can differ according to whether 
fixed topology is regular or randomly selected before the beginning of the process. 
For one of the test functions (Alpine), random topology gives a better result, but it is 
precisely a stroke of luck. Regular topology is more robust and the total average 
performance is better. 
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Figure 7.3. Regular versus irregular in fixed topology (N = 20, M = 20, K = 3). Graphs of 

information. The two graphs are more similar than they appear. In both cases, each explorer 

particle informs only one memory and each memory is informed by just one explorer. The 

number of arcs per particle is exactly 3 in the regular diagram on the left, it is 2 to 4  

(with an average of 3) in the right-hand diagram. This small difference is enough 

 to modify the results obtained appreciably 

Function 

(search effort)  

Circular topology  

(N = 20, M = 20, K = 3) 

Rate of failure  

Fixed random topology 

(N = 20, M = 20, K = 3) 

Rate of failure  

Tripod (40,000)  7%  25%  

Alpine 10D (15,000)  17%  5%  

Parabola 30D (15,000)  0%  0%  

Griewank 30D (40,000)  42%  57%  

Rosenbrock 30D 
(40,000)  

100% 
38.3  

100% 
average result 37.5  

Ackley 30D (40,000)  40%  94%  

Average of the rates of 
failure  

34%  47%  

Table 7.1. Regular versus irregular in fixed topology (N = 20, M = 20, K = 3). Results on the 

benchmark set, with OEP 5. Circular topology is on the whole more effective, even if, 

obviously, it can happen by chance that an irregular topology is more appropriate for a given 

problem (see Alpine). To facilitate the comparisons, the same parameters 

 are used as for Table 6.1 carried out with OEP 0 
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7.4. Random variable topologies 

After fixed topologies, let us explore those that vary during iterations. More 
precisely, we will consider here only those that are modified randomly, hardly 
taking account, if at all, of the information collected during the process, i.e. certainly 
in a rather stupid way, but very economic in terms of computing times. The case of 
more intelligent modifications will be studied in the chapters on adaptation. 

Again, one can imagine thousands of ways of doing this, but not all are effective. 
In all cases, however, it is a question of how a memory recruits an explorer to 
inform and vice versa. To illustrate the principle, let us compare two methods: that 
which was already presented for version OEP 0 and another which gives sometimes 
better results. 

7.4.1. Direct recruitment 

 The principle of this direct random recruitment, but distinguishing between 
memories and explorer, can be summarized briefly as follows: 

 – a number K less than or equal to the size of the swarm is defined at the 
beginning; 

 – with each time increment, each memory draws randomly K explorer particles 
and establishes an information link towards them; 

 – in the same way, with each increment, each explorer establishes a link 
towards at least one memory. 

Moreover, in practice, if the number of memories is different from the number of 
explorer, one “cheats” a little, in order to guarantee that each explorer has a link 
towards a memory and vice versa. Note that this is only an empirical rule, which 
seems more effective than pure chance. 

7.4.2. Recruitment by common channel of communication 

The metaphor underlying this method is that of synchronization by sharing a 
channel of communication with the same frequency. According to your preferences, 
you can imagine, for example, populations of neurons which join to carry out a 
certain task or many newsgroups in real time on the Internet (chatting groups or 
chats). 

 
It is supposed that there are F possible frequencies. With each time increment: 

 – each explorer chooses a frequency randomly; 
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 – each memory chooses a frequency randomly; 

 – only the explorers and memories that have chosen the same frequency can 
communicate. 

As above, the situation is arranged so that every explorer can transmit its 
information to at least one memory and vice versa. 

 
At every moment, the corresponding graph of information is non-connected, but 

as it changes constantly, there is nevertheless a kind of temporal connectivity. In 
practice, with swarms of about 30 particles of each type and 10 frequencies, at the 
end of 20 time increments it is almost certain that any information could have been 
disseminated everywhere (see probability calculus at the end of the chapter). 

7.5. Influence of the number of informants 

7.5.1. In fixed topology 

Let K be the number of informants per particle and let us treat our benchmark set 
by varying it. The results obtained with a circular fixed topology are summarized in 
Figure 7.4. In order to highlight better what occurs, the maximum number of 
evaluations was changed to 100,000 and swarm size to 40. The Rosenbrock function 
does not appear there, because even then the rate of failure remains 100%. 

 
Then one highlights three types of variation of the effectiveness when K 

increases: 

 – average improvement, then stagnation, with possibly light deterioration for the 
greatest values (see Alpine and Parabola); 

 – practically no change (see Griewank); 

 – improvement at the beginning, then strong deterioration (see Tripod and 
Ackley). 

A partial qualitative explanation is possible. First of all, there is a discontinuity 
of the topology of the graph of influence between the values K = 2 and K = 3. For 
the first, the graph is a one-way circle; for the second, it is bidirectional. For N 

particles, it means that the average time of transfer of information decreases abruptly 
from 2N  to ( )1 4N + : it is practically divided by 2. That it frequently results in 
greater effectiveness is therefore not surprising. 
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Figure 7.4. Influence of the number of informants K. Results with a fixed circular topology 

(N = M = 40). It is noticed that on the whole it would be wiser to choose a rather small value, 

even if it is not completely optimal for certain problems (like here Alpine and Parabola) 

 

 

Indeed, the larger the value of K, the denser the graph of influence and, 
therefore, the more rapidly information on a promising position will be transmitted 
to all the particles. Those will then tend to gather more quickly (in addition, one can 
show that the velocity of decrease of the diameter of the swarm increases with K). 
However, if this phenomenon takes place too quickly (i.e. if K is too large), the 
swarm quite simply does not have time to seek elsewhere, because, according to the 
equations of motion, the velocity of each particle is on average decreasing, and this 
all the more quickly as the particles are closer. 

If there are no local minima, the promising position has every chance to be closer 
and closer to the global minimum and the fact that many particles explore in the 
neighborhood is beneficial (see Parabola). If there are local minima close in value 
but distant in search space, the reverse is true: the swarm is extremely likely to be 
trapped (see Tripod, Griewank, Ackley). Lastly, in an intermediate situation, there 
are certainly local minima, but if those that are far away from the global minimum 
are also much worse (to be more precise, if the ratio of the variation of values at the 
distance is sufficiently large) the swarm manages to be unaware of them (Alpine). 

 
Similar results are obtained in random fixed topology. The significant point is 

the lesson that can be learnt from such analyses: it is definitely more advisable to 
choose a small value for the number of informants. That is why the choice K = 3 is a 
good compromise. Nevertheless, if one can afford, in terms of search effort, to test 
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also a contrario the extreme value K = N is interesting, since for certain problems it 
is the optimal value. In particular, if one knows in advance that there are no local 
minima, it is probably the best choice. 

7.5.2. In random variable topology 

We can make the same kind of study when the graph of influence is randomly 
modified with each iteration. As we can see in Figure 7.5, the results are very 
similar. The only notable difference is that there is no discontinuity between the 
values K = 2 and K = 3. That can be understood, since it is now only a matter of one 
maximum value. Actually, for K = 2 the graph contains nodes with one or two arcs 
and, for K = 3, nodes with one, two or three arcs. It is normal that the difference is 
less marked. 

Finally, the conclusion remains the same: in the absence of other information, a 
small value is the best choice; but, for certain types of problems, one can improve a 
little by taking, quite to the contrary, the greatest possible value. 

 

Figure 7.5. Influence of the number of informants K. Results with a variable random 

topology. In this case also, the choice of a low value is the wisest. It will be noted, 

 however, that there is no discontinuity between values 2 and 3 

7.6. Influence of the number of memories 

Since we dissociated explorers and memories, we can vary their number 
independently. It is then interesting to wonder whether it is better to have more 
explorers than memories or the reverse. Here, intuition is rather misleading. For 
example, for a problem without local minima, like Parabola, one might believe that 
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it is more effective to have just a few memories, perhaps only one, informed by 
many explorers, as in the graphs at the top of Figure 7.6. 

 

 

Figure 7.6. Graphs of influence with MN ≠ . For more clarity, the numbers of particles 

selected were relatively small. On the graphs on the top, there are fewer memories than 

explorers (N = 10, M = 1 and N = 7, M = 2). On the bottom, it is the reverse (N = 7, M = 10) 

It is not at all like this, as Figure 7.7 shows. However, it is true for the Alpine 
function: the star graph with only one memory is most effective. This indicates that 
there is no obvious link between the form of the function and the optimum number 
of memories to treat it. What is obvious is that in general it is preferable to make this 
a rather large number, and even a little greater than that of the explorers. There is 
certainly the risk that in certain cases the performances are degraded, but not much. 
Incidentally, this shows that the implicit “choice” imposed by the traditional PSO, to 
have as many memories as explorers, is a good compromise. Finally, as before, only 
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extreme values are interesting: a priori large values and, in certain exceptional 
cases, very small ones. 

 

Figure 7.7. Influence of the number of memories (N = 40, K = 3, T = 100,000). The graph of 

information is here in variable random topology with each iteration. Contrary to intuition, 

even for a problem with just one global minimum and without local minima, like Parabola, it 

is more effective to have many memories, and even a number greater than that of explorers. 

One will note the exceptional case of Alpine, for which only one memory 

 (star graph) is the best configuration 

 

7.7. Reorganizations of the memory-swarm 

As announced earlier, it is sometimes possible to make better use of the 
information collected during the process, by making the memories communicate 
directly between themselves and reorganizing their contents. To illustrate this point, 
we will test two types of reorganization: according to a mixing of the memories and 
a centralized diagram (calculation of a “queen”). In both cases, there is no, or very 
little, reduction in the diversity of memorized information (whereas we will have 
some systematically in the adaptive techniques), but the fields of application are 
different. 

7.7.1. Mixing of the memories 

What is interesting in the random modification of the links between particles is 
that it accelerates the diffusion of information. Indeed, a memory in possession of a 
promising position has a better chance of passing the good word directly to the 
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explorers. The reverse is also true but, in fact, the situation is not symmetrical if this 
mixing of the memories is not too frequent. Indeed, if an explorer is informed by a 
memory that is worse than its own position, it will take account of it on only one 
time increment. 

Nevertheless, it is done without control, i.e. chance (or bad luck!) perhaps plays 
too significant a role. Hence the idea, on the contrary, of carrying out a mixing of 
more or less the same type, but according to precise rules. The simplest way – but 
one can of course imagine many others – consists of two stages: 

 – search of the best memory and the worst, 

 – exchange of these two memories. 

Obviously, on the contrary, the links should not be randomly modified, under 
penalty of losing the benefit of the operation. 

7.7.2. Queen and other centroids 

Here the idea is that when the memory-swarm really starts to converge, its 
“center of gravity” has a good chance of being better than any single particle. In the 
original version ([CLE 99]), this center of gravity is called queen and calculated as a 
new temporary particle and assuming that the particles each have a mass inversely 
proportional to their performance (i.e. larger as the position is better). 

In fact, since then, it has been shown that to adopt equal masses is on the whole 
equally effective, while being less arbitrary (no additional function to define). The 
method is particularly interesting when coupled with the Stop/Restart technique, 
which we will examine later, or, which amounts to the same while being more 
difficult to program, by defining not one but several centroids, which, to be 
effective, also requires the size of the swarm to be increased ([KEN 00]). 

7.7.3. Comparative results 

Table 7.2 shows the average results for 100 tests. Let us recall that with this 
number of tests, the percentages are estimated only with a margin of approximately 
5%, but that will be enough for us to highlight the differences in behavior. 

The first column restates the values obtained initially with OEP 0, to facilitate 
comparison. It is noted that simple mixing (exchange of worst and best memory) 
improves all the results and, for some, in a very significant way (Parabola, Ackley). 
The use of a queen degrades some slightly (Tripod, Ackley), but improves others in 
an even more marked way (Alpine, Parabola). 
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It is therefore tempting to couple the two methods in order to see whether the 
improvements override deteriorations. Unfortunately, this is not always the case. 
More precisely, it is often true for relatively easy problems (like the first three of our 
examples), while the performances for more difficult problems become frankly bad 
(for example, 83% failure rate for Ackley).  

 

Name  
Variable random 

graph (OEP 0)  
with mixing  with queen  

Tripod  39%  39%  43%  

Alpine 10D  28%  24%  8%  

Parabola 30D  27%  0%  0%  

Griewank 30D  55%  49%  49%  

Rosenbrock 30D  
100% 

average 39.026  
100% 

average 35.07  
100% 

average 27.76  

Ackley 30D  25%  6%  34%  

Average of the 

rates of failure  
44.5%  37.7%  39%  

Table 7.2. Influence of the direct reorganization of memories. This type of method does not 

reduce diversity and can, in certain cases, be very effective. The results are averages of 100 

executions, with N = M = 20 particles, K = 3 and  ϕ = 2.07 

For the parameters number of informants and number of memories, it has been 
possible to develop rules for empirical and robust choices. However, it is not the 
same for the techniques of reorganization of memories. After many tests, which 
obviously go well beyond those presented here, only rather vague recommendations 
can be proposed for the moment: use mixing, it will most probably improve the 
performances, and, if possible, try a queen/centroid(s) method, since very significant 
gains can sometimes be obtained by using it. 

7.8. For “amatheurs”: temporal connectivity in random recruitment 

We have seen that the random assignment of channels of communication 
generates, with each iteration, subgraphs of information links that are disconnected. 
However, as precisely this structure is modified with each time increment, 
information can nevertheless be transmitted everywhere with a non-null probability: 
over a certain period, all happens as if the graph were connected. 

 
Let m be a memory carrying information and n an unspecified explorer. What is 

the probability that n can receive information coming from m after at the most t time 
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increments? Let N be the number of explorers, M the number of memories and F the 
number of channels (implied, the number of different frequencies). At moment 0, 
memory m drew channel c at random. The probability that n also drew c is simply 

1p F= . It is the probability that there is a link between m and n and, therefore, that 
n can be informed in just one time increment. 

So that n cannot be informed at the first increment, but only at the second, the 
following events need to happen: 

 – at time 0, n did not draw the channel c (probability1 p− ); 

 – either m draws 1c with time 1, and n also (probability p ). 

Or then: 

 – n draws 1c  at time 1 (probability p ); 

 – and at least 1 explorer drew c (probability ( )1 1
N

p− − ) at time 0 receiving 
information thus from m; 

 – and at least 1 memory drew c at time 0 (being then informed by at least one of 
the previous explorers ) and c1 at time 1 (thus informing n). Note that the transfer of 
explorer information towards memory is not counted as a “time” (it is included in 
the iteration of displacement). The probability of this ensemble of two events is easy 
to calculate by considering its opposite (either no c with the first draw, or at least c 

with the first draw and any c1 with the second). One  thus finds 

( ) ( )2
1 2 1 1

M M
p p− − + − . 

Thus, for the second time increment, the probability is (by posing 1q p= − ): 

( )( )( )2
2 1 1 1 2N M Mp qp q q q= + − −  

Thus, the probability that information can be transmitted either at the first 
increment or at the second is: 

( )2 21 1p q p≤ = − −  

Beyond this, the exact formula becomes complicated, but if p is not too small (let 
us say greater than 15%), it can be approached by 1 t

t
p q≤ = − , which gives us the 

evolution of the Figure below, which shows us that the quasi-complete temporal 
connexity is then ensured after 20 iterations. Note that the growth is moderate, 
which is an asset for difficult problems, because too rapid transmission of 
information harms the exploration of the search space. 
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Figure 7.8. Temporal connexity in recruitment by common channels. At every moment the 

graph of information is not connected, but since the links vary in the course of time, all 

happens more or less as if it were: the probability that information carried by a given  

particle can be known by any other increases in the course of time 

7.9. Summary 

In traditional PSO, the particles have a double role: to explore and memorize. It 
is interesting to separate these functionalities and distinguish between purely 
explorer particles and purely memory particles, the latter moving only definitely. 

The information links between these two groups of particles form a graph which 
can be regular or random, fixed at the beginning of process or modified during its 
course. The results obtained with these various topologies suggest rules of choice for 
the number of links per particle and the number of memories. 

 
Moreover, it is then possible to make the memories communicate between 

themselves directly, in order to reorganize themselves or to synthesize information, 
operations which can sometimes appreciably accelerate convergence. 
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Chapter 8 

Distributions of Proximity1 

8.1. The random possibilities 

As we saw, in particular, in the chapter “First formulations”, the process of iterative 
stochastic optimization primarily rests on the definition, with each stage, of the next 
possible positions in the search space of dimension D, together with their 
probabilities of being selected. In PSO, this can be summarized, for a given particle, 
by the vectorial equation giving the next vector displacement (called velocity for 
historical reasons): 

( ) ( ) ( ) ( )( ) ( ) ( )( )11 'v t c v t p t x t g t x t+ = + − + −A A  

where ] and ]'  are matrices D × D with random diagonal, the other elements 
being null (the general case is beyond the scope of this book). For the traditional 
PSO studied until now, each one of these matrices can be written: 

( )
( )

( )

max

max

max

0, ... 0

... 0, ...

0 ... 0,

alea c

alea c

alea c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

the function ( )max0,alea c  returning a random value between 0 and maxc according to 
a uniform distribution. As we have noticed, this results in the distribution of 

                              
1. This somewhat technical chapter may only be skimmed through on first reading. To understand 
the chapters that follow, it is enough to know of the existence of the various distributions 
described here.  
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possibles associated with A being a uniform D-rectangle whose diagonal is the 
vector ( ) ( )p t x t− . Similarly for that associated with the matrix 'A , with the 
diagonal ( ) ( )g t x t− . After a short review of the characteristics of this kind of 
distribution, we will see that it is sometimes more judicious to use others, based on 
isotropy, such as spheres or more or less deformed Gaussians. In fact, we will see 
that actually a good strategy consists of using several of them in alternation during 
the search process. In passing, to simplify their later referencing, we will allot a 
number to them. 

8.2. Review of rectangular distribution 

Let us point out the equations of the traditional PSO, just to keep in mind that 
each random element corresponds to a uniform distribution of possible positions in a 
D-rectangle. 

Distribution 1 

( )( ) ( )( )1 max max0, 0,d d d d d d

d d d

v c v alea c p x alea c g x

x x v

⎧ ← + − + −⎪
⎨

← +⎪⎩
 

We have already noted that the combination by summation of the two uniform 
D-rectangles is no longer uniform, but that, nevertheless, its support remains itself a 
D-rectangle. The experiment shows that it is not very satisfactory, owing to the fact 
that certain positions can then be selected in the “corners”, without justification or 
necessity. 

In addition, as already remarked, the distribution depends on the coordinate 
system and not only on the relative positions of the three points concerned x(t), p(t), 
and g(t). We had noted that this was no longer very satisfactory from a theoretical 
point of view, but it is now advisable to make the matter more nuanced. A 
significant element is the evolution of the total volume of the distribution during the 
process. At a given moment and for a given particle, the distribution of related 
possibles can lose one or more dimensions if, by bad luck, one or more coordinates 
are null or almost null and this, by definition, depends on the coordinate system. But 
that changes according to moments and particles, and one often notes a phenomenon 
of compensation: if, for example, ( )p t  is on one of the coordinate axes and thus the 
dimensionality of the associated distribution is reduced by one, the volume of the 
distribution associated with ( )g t  is often larger, and vice versa. Hence, the 
combination of both is more robust than each one separately. Thus, even if there is 
an undeniable bias, on average its influence on the effectiveness of the algorithm is 
seldom notable. It is just necessary to keep its existence in mind, because if the 
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algorithm seems to converge badly a simple rotation of the axis of coordinate can 
sometimes improve things. 

 
On the other hand, the “rectangular” form of the final distribution has a clear 

influence. Indeed, it results from time to time in placing near the top of a D-
rectangle particles that are pure artifacts having nothing to do with the structure of 
the problem. When that does not happen too often, there is no need to worry and it 
can even be beneficial (because, as we have seen, to have some dissenting particles 
is desirable). However, when the dimension of the problem is large, that becomes 
much more frequent (for simple geometrical reasons) and the outcome is less 
favorable. Hence, the interest in using distributions that are a little less “jagged”. 

8.3. Alternative distributions of possibilities 

To mitigate the defects of the rectangular distribution, a simple method is to start 
from an isotropic distribution, for example spherical or Gaussian. A small program 
delivering a position according to such a distribution is given in an appendix 
(section 8.6). It is, in any case, an excellent exercise in statistics! From there, one 
can imagine many alternatives. We will examine some of them. 

8.3.1. Ellipsoidal positive sectors 

This is a method very close to the original PSO. The uniform random choices are 
replaced by choices resulting from a spherical distribution or, more precisely, 
resulting from a distribution whose support is a positive spherical sector. 

Distribution 2 

( ) ( )
( ) ( )

1 max

max

_ 0,

_ 0,

d d d dd

d dd

d d d

v c v c alea sphère p x

c alea sphère g x

x x v

ρ

ρ

⎧ ← + −
⎪
⎪ + −⎨
⎪

← +⎪
⎩  

The function ( )_ 0,alea sphère ρ  returns a point chosen randomly according to a 
uniform distribution in the D-sphere centered on the origin of the coordinates and 
whose radius is ρ . In Figure 8.1, this radius was calculated so that the volume of the 
sphere is equal to 1, in order to remain closer to the traditional equations. The final 
distribution then is concentrated (which is not always an advantage). It will also be 
noted that it remains dependent on the coordinate system. Nevertheless, it gives 
better results in general than the rectangular distribution. 
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Figure 8.1. Distribution of possibilities starting from deformed positive spherical sectors. If 

one seeks to be closer to the traditional equations, as here, the resulting distribution is 

concentrated. The results are in general better than with the rectangular 

 distribution of the traditional PSO 

8.3.2. Independent Gaussians 

This is rather similar to the preceding method. For each dimension, instead of 
calling upon a uniform distribution on an interval, a normal distribution is used. The 
equations of motion thus become those below. 

Distribution 3 

( )( )
( )( )

1 _ ,

_ ,

d d d d

d d

d d d

v c v alea normal p x

alea normal g x

x x v

µ σ
µ σ

← + −⎧
⎪

+ −⎨
⎪ ← +⎩
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This alternative introduces a priori two additional parameters, the average µ and 
the standard deviation σ of the distribution. If one wants to remain rather close to the 
traditional version (rectangular distributions), it is enough to take maxcµ =  and 

max 4cσ = , which ensures that more than 95% of the distribution is in the interval 
[ ]max0,c . This method is effective enough for more or less combinatorial discrete 
problems, but not so effective for continuous problems such as those of our 
benchmark set. 

8.3.3. Local by independent Gaussians  

One might call this an alternative of the preceding alternative. The idea is to seek 
only locally “around” the best-known position of the particle, that is to say g. Thus, 
for each dimension d, a coordinate more or less close to dg  is drawn randomly 
according to a Gaussian law, which gives the following equation of displacement if 
the distribution is centered on g: 

( )_ 0,d d d dx g alea normal g x← + −  

The Gaussian law can be replaced by a uniform law on ,d d d dg x g x⎡− − − ⎤⎣ ⎦  
but, in any case, the effectiveness of this type of distribution varies considerably 
according to the problem. For example, on our benchmark set, the failure rate is 
100% for Griewank and 0% for Ackley. On the other hand, we will use it jointly 
with others in adaptive PSO TRIBES later on. For this particular use, experiment 
shows that a distribution centered no longer on g but a little beyond it compared to x 

is very slightly more robust. We will refer to this as 3', and, more precisely, to the 
following equation of displacement: 

Distribution 3' 

( )_ ,
d d d d d d

x g alea normal g x g x← + − −  

8.3.4. The class of one-dimensional distributions 

We have just seen two alternatives that have in common the independent use of 
random distributions for each dimension. On the same principle, many others have 
been imagined (see, for example, [MIR 02B, SHI 98B, XIE 02]). There is no 
question of presenting an anthology of them here; we merely note that the 
corresponding equations of motion have the following general form: 
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( ) ( )( )
( )( )

1 1 1 2 2 2

3 3 3

, ,

,

d d d d

d d

d d d

v alea c v alea c p x

alea c g x

x x v

τ τ
τ

← + −⎧
⎪

+ −⎨
⎪ ← +⎩

 

where each function ialea  depends on two parameters and returns a real number 

according to a probability distribution to specify. We have seen examples of 
deformed positive spherical sectors and of Gaussians. Log-normal laws of the type 

( )( )log 0,1 i

i
c N

τ
 sometimes also give good results. 

 
Nevertheless, used as such, these alternatives are on the whole neither better nor 

worse than those here detailed. As usual, all depends on the problem being tackled. 
However, some of them do appear rather effective when the parameters themselves 
are modified in a relevant way during the process. We will therefore speak about it 
again in the chapter devoted to adaptive PSO. 

In the meantime, it is nevertheless possible to give some qualitative advice, 
which can guide your choice if you plan to carry out your own alternative for a 
precise type of problem. These indications are primarily empirical and relative to the 
values of the averages and standard deviations of the distributions ialea . 

 
For 1alea , i.e. consideration of the particle’s own velocity: 

 – average less than 1 (risk of divergence if not, unless adding a constraint 
maximum velocity); 

 – low standard deviation. You will have noted that, in traditional PSO, it is null. 

For 2alea and 3alea , i.e. consideration of two good known performances of the 
particle: 

 – average of about 0.7. In traditional PSO, it is approximately from 0.5 to 1; 

 – deviation type greater with increasing difficulty of problem. In traditional 
PSO, it is approximately 0.6 to 1.15 ( 2.average 3 , owing to the fact that the 
distribution is uniform). 

8.3.5. Pivots 

The original pivot method [SER 97], retranscribed in the vocabulary of PSO, 
would consist of having with each iteration only an even number of particles, pairing 
them and, in each pair, taking as pivot the better of the two. The pivot does not move 
and the new position of the other particle is randomly selected according to an 
isotropic (e.g. Gaussian) distribution centered on the pivot. 
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Here, one proceeds a little differently. For each particle one considers two more 
points of the search space, but they are its best performance p and the best 
performance of its informants, g. One defines then two hyperspheres, Hp and HG, 
centered on these points and of the same radius equal to their distance. Then, in each 
sphere, one randomly chooses a point according to a uniform distribution. One 
assigns to this point a weight in decreasing proportion to the value of the function to 
be minimized, evaluated in the center of the sphere. Finally the new position is 
calculated as the barycenter of these the last two points (see Figure 8.2). 

 
It is interesting to note that this method no longer explicitly calls for the speed of 

movement. The equation of motion can be written, in condensed vectorial form: 

Distribution 4 

( ) ( )2 3p g
x c alea H c alea H← +  

To help understand and calculate variables of state like the kinetic energy, it is 
always possible to posit that the “velocity” is the difference between the position at 
moment t + 1 and that at moment t: 

( ) ( ) ( )1v t x t x t= + −  

First, the assignment of a weight has a rather awkward a priori arbitrary aspect. 
But, in fact, the method is extremely robust with respect to the choice of weighting 
function, provided that this observes some very general conditions: strict decrease 
and finite value for a zero value of the function to be minimized (presumed to be 
positive, a case to which one can, in practice, always return). For example, one can 

take as weighting coefficients 
( )

( ) ( )
f p

f p f g+
and 

( )
( ) ( )

f g

f p f g+
. 

Second, it seems that the current position of the particle is not taken into account 
in calculating the future position, contrary to the formula of the traditional PSO. 
This may seem curious, but, in fact, it is only an impression. If this position is bad, 
there is rarely any interest in using it. In a manner of speaking, one can thus say that 
it is taken into account precisely by being unaware of it! In addition, if it is good, 
then it actually coincides with its best performance p and so it rightly intervenes in 
the calculation. 



110     Particle Swarm Optimization 

 

 

Figure 8.2. Distribution of the possibilities by the method of pivots. The basic uniform 

distributions are here two hyperspheres which one combines linearly. The distribution of the 

new possible positions is still in a hypersphere, but it is no longer uniform, as one can see on 

the sampling of 2,000 points in the second Figure. One will note the greater extension 

compared to preceding methods, certainly penalizing for easy problems, but interesting for 

functions whose sought minimum has a narrow basin of attraction 

Pivots with noise 

This second strategy starts exactly like the preceding one. Simply, once the new 
position determined, it is still modified according to Gaussian random noise effects, 
of null average and with the standard deviation becoming smaller as the best 
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performance of the particle approaches that of its informants. For example, if f is the 
function to be minimized, one will be able to take as standard deviation: 

( ) ( )
( ) ( )

f p f g

f p f g
σ

−
=

+
 

Here still, the exact formula is not very significant. It is enough that the result is 
at the most equal to 1 and strictly decreasing with the difference of the 
performances, ( ) ( )f p f g− . 

In practice, there are two sub-variants. Either, for each component of the position 
that has been just calculated, i.e. for each dimension d, one randomly draws a value 

db  according to the noise distribution, and the component is multiplied by ( )1 db+ . 

( ) ( ), 0, , 1d d d dd b N x b xσ∀ = ← +  

Alternatively, the noise is applied only according to the direction of vector x, i.e. the 
same random value b is used for all the components. In what follows, we will use 
this second sub-variant, the first often giving, by experiment, too much dispersion. 
Hence the equations defining this distribution: 

Distribution 5 

( ) ( )
( )

( )

2 3

0,

, 1

p g

d d

x c alea H c alea H

b N

d x b x

σ

← +

=⎧⎪
⎨
∀ ← +⎪⎩

 

Gaussian pivots 

Another manner of obtaining a distribution the support of which is no longer 
limited to a hypersphere is to use from the outset non-uniform distributions with 
infinite support, such as Gaussians. Each hypersphere is then replaced by a Gaussian 
“equivalent”, having the same center and a selected standard deviation so that, for 
example, 98% of the distribution is in the initial hypersphere (normalized standard 
deviation = 2). Let us call Gp and Gg the resulting isotropic Gaussian distributions, 
respectively centered on the positions p and g. The condensed formalization of this 
distribution is then simply: 

Distribution 6 

( ) ( )2 3p g
x c alea G c alea G← +  
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Such a method, rather like the preceding one, is very effective in solving certain 
difficult problems (in both cases, one thus obtains a null rate of failure for the 
Ackley function). On the benchmark set, the result is more mitigated: with pivots 
with noise the average rate of failure is 37%, and it is 44% with Gaussian pivots. 
However, as we will see below, a good strategy is to combine these two methods. 

One can vary ad infinitum the type of centrally symmetric distribution used, but, 
as yet, there are no rules (even empirical ones) allowing us to choose a priori the 
distribution adequate to the only problem that it appears necessary to solve. Let us 
note in addition that central symmetry is not necessarily a good idea in itself, 
because in general it does not reflect the structure of the function the minimum of 
which is sought. An interesting compromise to try to mitigate this problem is the use 
of judiciously centered and oriented ellipsoids. 

8.3.6. Adjusted ellipsoids 

In this method, one replaces each of the two D-rectangles of the traditional 
method (distribution 1) by an ellipsoid not depending on the coordinate system. Let 
us give the algorithm building these ellipsoids: 

– definition of the center: ( )max 2q x c p x= + − ; 

– construction of the sphere of center q and q xρ = − ; 

– calculation of volume V of the cube of diagonal 2ρ ; 

– deformation of the sphere, perpendicular to the vector p x− , in order to obtain 

an ellipsoid of volume V' less than V. The ratio 'V V can be a parameter or, better, 

V' is randomly selected in the interval [ ]0,V . It is this last method that was adopted 

in the examples treated below. Then we obtain a support of distribution denoted pE ; 

– in the same way, obtain the support of distribution for g, 
gE . 

The condensed equations defining the distribution are then: 

Distribution 7 

( ) ( )1 2 3p gv c v c alea E c alea E

x x v

⎧ ← + +⎪
⎨

← +⎪⎩
 

Figure 8.3 shows the result obtained in dimension 2, with 'V V= . This method 
has the theoretical advantage of giving a distribution that no longer depends on the 
coordinate system. Like that of pivots, it can easily be adapted for isotropic 
distributions others than the sphere (e.g. Gaussian). Volume is then calculated by 
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setting a threshold of probability, such as 95%. However, in practice, it does not 
seem to give better results, while requiring more computing time. Nevertheless, this 
is a provisional judgment, based only on restricted benchmark sets. At the time of 
writing, no real published application has used this method. 

 

 

 

Figure 8.3. Distribution of possibilities by combination of oriented ellipsoids. The result is 

independent of the coordinate system but, in practice, the method does not seem to be more 

effective than those already seen, while being greedier in computing times 

8.4. Some comparisons of results 

To make it possible to continue the comparison with OEP 0, only the 
distributions are modified. The other parameters remain unchanged (N = M = 20,  
K = 3, random graph of information 2.07ϕ = ). 

Table 8.1 shows the very contrasting results that one obtains with the first two 
alternatives: the method of ellipsoidal positive sectors and that of pivots. Hence, the 

-4 

-3 

-2 

-1 

0 

1 

2 

0 2 4 6 8

Best perf. proximity

Best local perf. proximity 
Present position

Best perf.

Best local perf.

-4 
-3 
-2 
-1 
0 
1 
2 

0 2 4 6 8

Possibilities 

Present position 

Best perf.

Best local perf.



114     Particle Swarm Optimization 

idea of combining them in an astute way, the method of pivots being called to the 
rescue during an iteration, only if the other did not improve during the preceding 
iteration. On the benchmark set, the improvement in performance is significant, and 
we will reconsider this idea of judicious modification of strategy in the chapter on 
the adaptive PSO. 

 
 

Name  
Ellipsoidal positive 

sectors  
Pivots  

Sectors  

if improvement, 

pivots if not  

Tripod  53%  41%  34%  

Alpine 10D  0%  81%  52%  

Parabola 30D  0%  58%  0%  

Griewank 30D  59%  14%  21%  

Rosenbrock 30D  100% (30.9)  100% (52)  100% (38)  

Ackley 30D  60%  0%  2%  

Average of the 

rates of failure  
42%  49%  34%  

Table 8.1. Results with two distributions of possibilities (ellipsoidal positive sectors and 

pivots) and their combination. The method of pivots presents a profile of effectiveness 

according to problems which supplements rather well that of the method of ellipsoidal 

positive sectors. Their judicious combination gives an intermediate performance for each 

function and the total improvement is appreciable 

We can also examine the results for two of the other distributions presented, 
independent Gaussians and oriented ellipsoids (see Table 8.2). The profiles of 
effectiveness are then, on the contrary, rather similar (except for the Alpine 
function). Thus the intermediate profile obtained by combination of the two 
distributions cannot be better on the whole than the initial profiles. The table 
presents only one of the two possible combinations (Gaussian if improvement, 
ellipsoids if not), but the other is even less interesting.  
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Name  
Independent 

Gaussians  
Oriented ellipsoids 

Gaussians  

if improvement, 

ellipsoids if not  

Tripod  41%  33%  36%  

Alpine 10D  1%  81%  15%  

Parabola 30D  0%  0%  0%  

Griewank 30D  55%  71%  48%  

Rosenbrock 30D  100% (32.3)  100% (24.7)  100% (27)  

Ackley 30D  76%  100%  92%  

Average of the 

rates of failure  
45%  64%  49%  

Table 8.2. Results with two distributions of possibilities (independent Gaussians and oriented 

ellipsoids) and their combination. Here the profiles of effectiveness are too similar. As the 

combination of the two types of distribution still gives intermediate performances between two 

which are close enough for all the functions except one, the final result  

is also intermediary and, therefore, uninteresting 

Among all the methods we have looked at, the best combination is that of 
alternating pivots with noise and Gaussian pivots, as we can see in Table 8.3. This 
confirms, if it were necessary, that a statement of the equations of motion clarifying 
velocity is not in itself necessary. Velocity is only an intuitive intermediate variable, 
but it can perfectly well be replaced by another more abstract concept: the random 
choice of the next position according to a probability distribution judiciously 
modified after each iteration. 

At the risk of repetition (but the point is so significant that it is worth 
emphasizing), all the stochastic algorithms can in the last analysis be described in 
terms of such random choices, whatever the underlying metaphors and the level of 
sophistication of the rules of operation. 

It is also clear that each distribution is better adapted to some types of problems 
than others. More generally, if we consider all the control parameters at the user’s 
disposal, we can ask, for each problem, which are the best possible performances if 
the number of attempts to find the good parameters is not limited.  
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Name   Pivots with noise  Gaussian pivots  

 Pivots with noise  

if improvement, 

Gaussian pivots  

if not  

Tripod  20%  51%  40%  

Alpine 10D  0%  85%  2%  

Parabola 30D  0%  8%  0%  

Griewank 30D  100%  18%  25%  

Rosenbrock 30D  100% (25.6)  100% (41)  100% (25.5)  

Ackley 30D  0%  0%  0%  

Average of the 

rates of failure  
37%  44%  29%  

Table 8.3. Results with two distributions of possibilities (disturbed pivots and Gaussian 

pivots). The good performance of the method of pivots with noise by itself can already be 

seen, but it is further improved by combination with the method of Gaussian pivots, primarily 

because degradation is very low for Alpine and improvement very clear for Griewank 

The object of the next chapter is to drive the parametric PSO into a corner, while 
trying to understand in passing why one set of parameters is more suitable for a 
given problem than another. 

8.5. For “amatheurs” 

8.5.1. Squaring of a hypersphere 

We have already seen, in Chapter 1, the formulas giving the volume of a sphere 
in D dimensions, according to whether D is even or odd. Let us consider, for 
example, the first case. If the radius is ρ, volume ( ),SV D ρ  is given by: 

( ) ( )
2

,
2 !

D
D

SV D
D

πρ ρ=  

The volume of a cube of edge a in D dimensions is ( ), D

CV D a a= . By 

equalizing these two volumes, one finds the relation: 

( ) 12 ! DD
aρ

π
=  
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If D odd, one would find in the same way, 
1 1 2!

2

D DD
a

πρ
π

= . 

The coefficient ( )D aν ρ=  is used to calculate the radius for the “spherical” 

proximities. Table 8.4 gives the values corresponding to dimensions of the 
benchmark set. 

D  ( )Dν  

2  0.56  

10  0.91  

30  1.43  

Table 8.4. Squaring of a D-sphere. For a D-sphere of radius ρ and a D-cube of edge a to 

have the same volume, the ratio ρ/ A must have the value v(D) 

8.5.2. From sphere to ellipsoid 

Any point m of the sphere of center ( )maxq c p x= −  (resp. ( )maxq c g x= − ) and 

radius q xρ = −  can be written ( )m x q x vλ= + − + , where v is the vector normal 

to q x− . By carrying out the scalar product by q x− , one deduces from it 

immediately ( ) ( ) 2
.m x q x q xλ = − − −  and, therefore, vector v. To build an 

ellipsoid of which one of the axes is 2ρ  and volume V' is given, it is enough to 

consider the set of points, ( )'m x q x vλ ω= + − + , with: 

( )

1

1'

,

D

S

V

V D
ω

ρ

−⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

 

8.5.3. Random volume for an adjusted ellipsoid 

In the traditional method with rectangular distributions, the D-rectangle of 
diagonal q x−  has a variable volume vV  according to the coordinate system 

chosen, which goes from 0 to ( )D

V q x D= − . The law of probability followed 

by vV  is not uniform. 

The rectangular distribution is replaced by a distribution according to an 
ellipsoid of principal diameter q x−  and volume V'. The idea is to choose V' 
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randomly according to the same law as vV . In practice, it is carried out by an 

algorithm according to the following stages: 

 – choice of a point m randomly (uniformly) on the sphere of center O (origin of 
the coordinates) and of diameter q x−  (see below for uniform distribution in a D-

sphere); 

 – calculation of volume. 
1

'
D

d
d

V m
=

= ∏ . 

8.5.4. Uniform distribution in a D-sphere 

The first idea that comes to mind when writing a program that returns a position 
resulting from a uniform distribution in a D-sphere is to start from a program that 
does it for the envelope D-cube, by making it buckle until the point obtained is 
indeed in the sphere. 

But this method is acceptable only for lower values of D, because the ratio of 
volume of the sphere to that of the cube tends quickly towards zero as D increases. 
The probability of randomly picking a point in the cube that it is also in the sphere 
thus becomes very low: the program will take a very long time to complete. 

So a direct method is preferable. The simplest rests on a well-known fact from 
astronomy: a vector that points randomly towards a position on the night sky 
according to a uniform distribution has components that follow the same normal 
law. This gives us a method for points that are on the surface of the sphere, i.e. in 
fact, for the choice of a uniform random direction. It is then enough also to define 

the radius randomly, according to the law ( )10,1
D

alea , to guarantee the uniformity 

in the volume of the sphere. 
If one wishes, on the contrary, a non-uniform (but still isotropic) distribution, it 

is enough to change the law of distribution of the radius. For example, for a normal 
distribution (and, in this case, naturally, there is no longer a “sphere” inside which 

the points would be), the law to be taken is ( )1_ 0,
D

rand normal σ  

The C program of section 8.6 carries out these various operations, as well as 
other non-uniform distributions restricted to the sphere. 

8.6. C program of isotropic distribution  

struct vector alea_sphere(int D, double radius, double unif) 
 
/ * randomly Provides a point in a D-sphere 
or according to an isotropic normal distribution 
Maurice Clerc 2003-07-11 
 
Center 0 
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unif = 1 = > uniform distribution 
unif > 0 but # 1 = > distribution nonuniform 
unif < 0 = > Gaussian, with standard deviation = abs(unif) 
*/ 
 
int  j; 
double  1; 
double  pw; 

double  r; 
double  sigma; 
struct  vector x; 
 
x.taille = D; 
pw = 1/(double)D; 
 
// Stage 1. Random direction 
//It is a theorem... 
1= 0; 
for (j = 0;j < D;j++) 
x.v[j] = alea_normal(0,1); 1= 1+ x.v[j]*x.v[j]; 
1= sqrt(1); 
/ Stage 2. Random radius 
if (unif > 0) 
r = alea(0,1); r = pow(r, pw*unif); 
else 
sigma = –unif; r = fabs(alea_normal(0, sigma)); r = pow(r, pw); 
 
for (j = 0;j < D;j++) x.v[j] = rayon*r*x.v[j]/1; 
 
return x; 
 

8.7. Summary 

The equations of motion of a particle contain random terms. By considering all 
the values they can take and their probabilities, one defines the distribution of the 
next possible positions. Two great families of alternatives are considered: those 
using independent distributions for each dimension, as in traditional PSO, and those 
not related on the coordinate system but only to the relative positions of the 
particles, like the method of pivots. 

The judicious use of one or other alternative according to whether there was or 
not improvement during an iteration can improve the performances appreciably. 
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Chapter 9 

Optimal Parameter Settings 

9.1. Defense of manual parameter setting 

One often contrasts adaptive optimization (which, ideally, only requires the user 
to define the problem) with parametric optimization (which, in addition, requires the 
method of resolution to be specified, if only by giving certain numerical 
coefficients). However, the border between these two types of methods is vague. 
Thus, for example, the alternation of several distributions of proximities used in the 
preceding chapter can be seen as a kind of adaptation, if it is not made randomly. 

 
In addition, when a problem is repetitive, with only some numerical variations 

that change neither its difficulty nor its nature, it will be worthwhile to seek a set of 
effective parameters, even if it means carrying out many tests. Conversely, when the 
problem is to be solved only a small number of times or when it really would be 
prohibitive to seek to refine parameters, an adaptive method should be considered. 

 
In short, the two steps are complementary and this is why it is interesting to see 

up to what point the parametric PSO can be effective, case by case. Moreover, that 
will give us a basis of comparison or, more precisely, a “guiding utopia”: the goal, 
generally inaccessible, for an adaptive PSO will be to be as effective on any given 
problem as a parametric PSO ideally configured for that problem. 
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9.2. Better parameter settings for the benchmark set 

9.2.1. Search space 

All the parameters we have seen can be gathered in four sets: 

 – the graph of information, which gives the size of explorer-swarm N, the size 
of memory-swarm M, and the links between the various particles, 

 – possible distributions of proximity, 

 – strategies of evolution of the graph of information, 

 – strategies of choice of the distributions. 

Here we temporarily deny ourselves every real adaptation during the process, i.e. 
a parameter will be either constant or modified absolutely randomly without taking 
into account the information collected. In particular, we thus give up the strategies 
already seen consisting of making a particular choice of topology and proximity 
according to whether there were improvements or not. 

 
Even so, the possibilities are too numerous. For example, for the topology of the 

graph of information, the number of configurations is equal to 

( ) ( ) ( )12 1 2 1 2
N M M MM N −− − . If 20M N= = , it is about 35510 . Obviously testing all 

of them is out of the question! In fact – and this will be justified a posteriori by the 
good results obtained – we will restrict ourselves to the topologies defined by only 
two parameters: the number of informants per particle K and the manner of choosing 
these informants. More drastic still, we will consider only two types of choice of 
informant: circular fixed topology or random choice with each iteration. 

 
Again to simplify, the three coefficients of the general equation of motion, 1c , 

2c , and 3c , will be defined only via the coefficient ϕ , which we saw in Chapter 6 
for the establishment of the performance maps. Moreover, precisely, these maps will 
enable us to limit the range of plausible values, besides that for the size N of the 
explorer-swarm. 

 
Finally, the choice of distributions will be limited to those we have already 

examined. The list (with abbreviations) is as follows: 

1 (rect.): = rectangles, 
2 (ell. pos. sect): = ellipsoidal positive sectors, 
3 (ind. gauss.): = independent Gaussians, 
4 (piv.): = pivots, 
5 (piv. n.):= pivots with noise, 
6 (piv. G.): = Gaussian pivots, 
7 (ell. adj.): = adjusted ellipsoids. 
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We will not even test the various combinations randomly: once again, they are too 
numerous. Each test will be carried out with only one type of distribution. 

 
Table 9.1 then recapitulates the acceptable parameters and their values, defining 

a search space. It will be a question of finding, for each problem of the benchmark 
set, the position in this space that provides the best result, i.e. the set of parameters 
that gives the lowest rate of failure or, failing this, if the rate of failure is 100%, the 
low value of the function.  

 
Parameter  Range  

N, size of the explorer-swarm   integer, 5 to 100  

M, size of the memory-swarm  integer, 5 to 100  

K, number of informants per particle  integer, 2 with N  

ϕ   real number, in ] ]2  2,5  

topology  circular or random  

Distribution  7 possible cases  

Table 9.1. Space parameters. Here acceptable values are severely limited, constraints  

justified a posteriori by the quality of the results obtained 

9.2.2. To optimize the optimizer 

We are now facing a second-level problem of optimization. Let us consider a 
function f to be minimized by our algorithm of parametric PSO. In our examples, the 
stop criterion is a given number T of evaluations of f. The stages are as follows: 

(a) choose a set of parameters; 
(b) carry out the algorithm for T evaluations; 
(c) examine the result, to decide if it can be improved. In so, return to (a). 

It is indeed a process aiming at “optimizing the optimizer”, at least for the 
function f. The problem can be formulated as follows: 

 – search space = space of the parameters; 

 – function to be minimized = function that, at any point of the search space, 
returns the performance obtained after the attempt at minimization of f. 

In theory, it is thus enough to use an algorithm that can call itself, but there are 
two pitfalls. First, this algorithm should already be parameterized. A parameter 
setting with average empirical values will do. But, in addition and especially, the 
evaluation of each point of the search space requires T evaluations of the function f. 
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In our examples, T is worth at most 40,000. The search space for the parameters 
is of dimension 6. By experiment, we can infer that we probably have to evaluate a 
few thousand points of this space to find the best solution. Let us say, modestly, 
2,000. Moreover, the algorithm being stochastic, it should be launched typically 100 
times to estimate its performances statistically. Finally, obtaining the (probable) best 
set of parameters will have required 40,000 ×2,000 ×100 = 8 billion evaluations of 
the function f.  

 
 

Name  N  M  ϕ K Topology 

Distribution 

of the possible 

positions  

Rate of 

failure 

(average 

Number of 

eval.)  

Tripod  
53 

80  

12 

19  

2.3 

2.3  

3 

3 

random 

random  

2 (ell. pos. 
sect) 

7 (ell. gold.)  

0% (2,603) 

0% (4,111)  

Alpine 10D *  6  8   4 random  5 (piv. n.)  0% (194)  

Parabola 30D  6  4   10 random  5 (piv. n.)  0% (88)  

Griewank 30D  96  96  2.12 3 random  

2 (ell. pos. 
sect) 

 

2%  

Rosenbrock 30D  58  29  2.3  3 random  3 (ind. gauss.) 

100% 

min. 0.034 
avg. 19.93  

Ackley 30D *  20  20   3 random  5 (piv. n.)  0% (2,394)  

Table 9.2. Best parameters (without adaptation). The rates of failure are estimated after 100 

evaluations. If they are null, the average number of evaluations has a significance and is also 

indicated. Since the rate of failure for Rosenbrock is 100%, the average and best failure rates 

are given instead. For distribution 5 (pivots with noise) the parameter ϕ is not used.  

The asterisk indicates a parameter setting discovered or imposed empirically 

 and not by an automatic process 

It is possible, but nevertheless a little long and, above all, not always necessary 
in this case, thanks to the performance maps established previously. In practice, the 
results indicated in Table 8.1 were found manually for the functions indicated by an 
asterisk. Even for the others, automatic optimization was limited, then refined by 
manual local research. In all cases, we tried to favor the solutions with N M= , in 
order to approach the traditional PSO, which does not distinguish explorer-swarm 
and memory-swarm. 
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9.2.3. Analysis of results 

Such a table is more informative than appears at first sight, in particular from the 
perspective of designing a future robust adaptive algorithm. We shall comment on it 
column by column, starting with the last. 

9.2.3.1. Rate of failure 

Even for problems considered difficult, it is possible to obtain excellent results. 
Of course, possible does not mean easy or economic. As we have seen, the search of 
the optimal parameters can be very expensive. But that shows that the guiding 
principles of PSO are good. Then it is for us to use them as best as we can, thanks to 
sufficiently astute alternatives, for example by combining several types of 
topologies and distributions during the process, as we have already started to do. 

9.2.3.2. Distribution 

The most effective distributions are distributed equitably between two classes: 
one-dimensional independent ones that depend on each dimension (Gaussian and 
ellipsoidal positive sectors) and multidimensional (pivots with noise). 

To obtain a robust algorithm, it is thus a parameter on which we will 
undoubtedly have to rely, by alternating two distributions, one of each class. 

9.2.3.3. Topology and the number of informants 

By reading the table in the negative, we note that the fixed topology (circular) 
does not appear: it is always bettered by the random one varying with each iteration. 
Complementary tests with other fixed topologies, not detailed here, confirm this 
conclusion. We find a very general principle: in the absence of information, it is 
better to choose at random. 

Of course, it is likely that for an adaptive algorithm that takes into account the 
information collected during the process the random choice is no longer the best. 
However, the lesson to draw from it is that to preserve a fixed topology is certainly 
not a good idea. 

9.2.3.4. Informants K 

We note without surprise that it is better that each particle has few informants as 
soon as the problem comprises several local minima. As we have already seen, that 
makes it possible to avoid premature convergences. 

On the contrary, as the example of the Parabola function shows, an entirely 
connected swarm of particles is more effective if there are no local minima. 
Nevertheless, the choice K = 3 remains completely acceptable. Consequently, it is 
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most relevant if there is no information a priori on the form of the landscape 
generated by the function to minimize. 

 
Let us recall that when the topology of the information links is randomly 

selected, K is in fact a mean value for the number of informants. A memory drawing 
at random K explorers to inform may happen to choose the same one several times 
(see Chapter 7) and a given particle may be informed by more than K others. 

9.2.3.5. Coefficient  ϕ 

We know that this parameter is used to calculate the confidence coefficients of 
the “traditional” alternatives, in which the components of the next movement are 
calculated independently for each dimension. However, for the distributions with 
pivot, it is useless, which is a point in their favor. 

The pure and simple later suppression of this parameter is thus quite tempting. 
However, as we have just seen, not using it sometimes results in not finding the best 
solution. Always from the perspective of a future nonparametric algorithm, it will be 
advisable to examine carefully whether this occasional loss of performance is 
significant or not. 

9.2.3.6. Informants N and memories M 

As we have said, the case N = M was deliberately privileged. It is thus probable 
that other values lead to the same result. Moreover, for example, for the Tripod 
function, it does not seem possible to obtain a zero rate of failure in any other way 
than by having approximately three to four times more explorers than memories. If 
the behavior of the particles is examined accurately, that seems related to the fact 
that there are three minima, of which only one is global. This empirical remark 
seems to be confirmed by the case of the Rosenbrock function. But it is useful only 
if there is a priori knowledge of the number of minima of the studied function. 

As a result, it seems tempting, for a function with only one minimum, like 
Parabola, to try to work with only one memory. That does not work: at least three of 
them are required so that mechanism PSO can function correctly. The difference is 
extremely clear. The result is not reported in the table, but with only one memory, 
the rate of failure is always 100%, whereas one can easily go down to 2% with three. 

 
Another remark relates to the existence of a relation between the choice of the 

type of distribution and the number of particles. When the best performance is 
obtained thanks to a distribution with pivot, fewer particles are required than if it is 
thanks to a distribution with independent dimensions. By caricaturing a little, we are 
in the presence of two steps which can each be as effective as the other, but are 
based on rather different principles: crude force, which moves many particles 
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without being concerned with possible relations between their coordinates; and 
reasoned strategy, which tries on the contrary to benefit from it. 

 
The results we have seen up to now really do not make it possible to give 

preference to one or the other method, but the very idea of a permanent adaptation 
tilts the balance in favor of the second, because it implies using all the information 
one has as best as one can. 

9.3. Towards adaptation 

On our benchmark set, we have now established results that are most probably 
the best possible ones if we force the algorithm of PSO to work in a relatively stupid 
way, i.e. by refusing any training in the course of its research. 

Will a more intelligent alternative be able to do better? Perhaps, but it is not 
exactly our objective. What interests us is the fact that we have been able to define a 
standard by the yardstick of which other algorithms could be evaluated, in particular 
adaptive algorithms, in a sense that will soon be specified. And also, at the same 
time, we have been able in passing to note some ideas that ought to help us design 
such algorithms. 

 
It is time to return to and develop the small amount of adaptation we introduced 

into the two preceding chapters. But that will be done according to a step which, at 
first sight, sets aside all methods not satisfying certain demanding criteria. 

9.4. For “amatheurs”: number of graphs of information 

We have an explorer-swarm of N particles and a memory-swarm of M particles. 
The possible links are of three types: 

 – of an explorer towards a memory, 

 – of a memory towards an explorer, 

 – of a memory towards a memory. 

The number of possible links of N particles towards M different is NM . Each 
link, to establish a graph of information, can be selected or not. That gives us  
 2NM possible cases. In the same way, by considering the links of M particles,  
we still have 2NM possible cases. Finally, the number of links of M particles  

towards themselves is ( )1M M − , which still gives ( )12M M − possible cases. The total 

number of configurations is thus the product of these three numbers, that is to say 
( ) 21 22 2 2 2M MNM NM NM M M− + −= . 
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In practice, however, we have imposed constraints (see Chapter 7): 

 – each explorer has a link towards at least 1 memory, 

 – each memory has a link towards at least 1 explorer. 

Under these conditions, the first two numbers are reduced to ( )2 1
N

M − and 

( )2 1
M

N − . Indeed, for each particle, it is necessary to eliminate the case “no link 
towards the others”. 

 
The total number of configurations is reduced to: 

( ) ( ) ( )12 1 2 1 2
N M M MM N −− −  

But the reduction is very small and the result remains enormous. For the average 
case 20N M= = , one finds a number about 35510 . 

9.5. Summary 

One considers here only one algorithm of PSO without adaptation, i.e. which 
does not modify its behavior according to information collected during the search 
process. Very many tests then make it possible to find the parameters that give the 
best result for each function of the benchmark set. 

The excellent quality of these results shows that the guiding principles of PSO 
are effective. However, it is not realistic to think that the user will always have the 
possibility of lengthily seeking an adequate parameter setting for his problem. This 
is why the optimal parameter settings here discovered are analysed in order to infer 
their indices as for the rules of behavior which should follow a robust and practical 
adaptive algorithm. 



 

Chapter 10 

Adaptations 

10.1. Demanding criteria 

The terms “adaptation”, with “adaptive algorithm”, cover so many different 
realities that it is advisable to specify in what very restrictive meaning they are taken 
here. 

10.1.1. Criterion 1 

First, and this has been expressed previously in one form or another, an adaptive 
algorithm must treat at least part of the information it obtains by exploring the 
search space and consequently modify its behavior. An immediate corollary is that 
such an algorithm is necessarily iterative. 

10.1.2. Criterion 2 

In addition, we are only interested here in algorithms that make life easier for the 
user, i.e., in practice, those that decrease the number of parameters whose values one 
has to choose. 

This criterion is much more demanding than the previous one, because, if it is 
easy to invent rules of adaptation comprising the additional parameters dependent on 
the user, it is much less easy to relieve one of the empirical choice of a parameter 
thanks to an automatic process he does not have to bother about. 
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10.2. Rough sketches 

Attempts to give a little more flexibility to the mechanisms of PSO began just 
after its official birth [EBE 96]. A rapid glance at the principal ones is not only of 
historical interest. In fact, it is only on the basis of inspiration from these attempts 
that it is possible today to present a version that respects our two criteria, as we will 
see in the following chapter. 

None of these alternatives is completely satisfactory because, at best, they 
remove only some of the parameters and, at worst, they add some. However, a 
meticulous examination of them makes it possible to note that the underlying ideas 
can sometimes be retranscribed in nonparametric forms and thus be usable for the 
step chosen here. 

10.2.1. Weighting with temporal decrease 

Once more, let us point out the basic equations of the historical PSO: 

( )( ) ( )( )1 max max0,1 0,1d d d d d d

d d d

v c v c alea p x c alea g x

x x v

⎧ ← + − + −⎪
⎨

← +⎪⎩
 

The coefficient 1c , which can be interpreted as the confidence that the particle 
grants to its own movement, has up to now been regarded as constant. It is thus 
rather natural to try to vary it. Let us note immediately that a simple random choice 
would not answer either of the two criteria seen above. On the one hand, this method 
would not take into account the information collected and, on the other hand, 
defining the probability distribution for random draw would require defining at least 
one new parameter. 

A method that has been much used is one that consists of making this coefficient 
decrease over the course of time, each iteration representing a time increment [EBE 
96, ISM 99, SHI 98B, VAN 99]. Typically, the law of decrease gives a value 
tending asymptotically towards zero. The idea is that when the iteration count 
increases, then the algorithm is probably converging (at least one hopes so) and, 
therefore, it is better to make the particles progress more and more slowly in order 
not to miss the optimum. 

 
In certain applications this intuition appears exact, but compared to our 

requirements, we see immediately where the shoe pinches: the definition of the law 
of decrease requires at least one parameter (often two, in fact). Moreover, to tell the 
truth, even criterion 1 is not frankly respected. An evolution of parameters 
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depending only on the iteration count can be seen only as an extremely indirect and 
dubious manner of processing the data obtained during these same iterations. 

 
Indeed, this method rests on a self-fulfilling prediction: convergence will improve 

with the iteration count. That is inevitably true since making the coefficient 1c  
decrease amounts on the whole to making all the velocities decrease. There will 
therefore be a convergence towards a quasi-stationary state. However, nothing 
guarantees that one of the positions obtained will be the minimum sought. And, in 
fact, it is necessary for each problem to seek empirically a definition of the function 
of decrease that will make it possible to find a solution without taking too much time 
but also without premature convergence. 

10.2.2. Selection and replacement 

PSO is much more recent than the genetic algorithms and it was thus natural to 
seek to take advantage of at least some of the principles of the latter, since they 
proved reliable in a number of applications. The principles of mutation and 
crossover have their analogues in PSO (velocity and combination of information). 
But it is not the case for selection, i.e. the elimination of individuals considered 
insufficiently effective. It is even completely contrary to the “philosophy” of PSO, 
which we saw at the very beginning and which rests on cooperation and not, 
precisely, on competition. Nevertheless, dogmatism is not a proper philosophy in 
research, and if a PSO with selection appears interesting one should not hesitate to 
use it. 

Historically, the first attempt goes back to 1998 [ANG 98].  Obviously, this step 
respects our first criterion, since an action is undertaken which takes into account the 
situation obtained after each iteration. In fact, the selection consisted in eliminating 
50% of individuals that had obtained no such good results and replacing them by 
individuals generated by traditional crossover between those remaining, or by 
mutations. Let us note, therefore, that this method always requires the size (constant) 
of the swarm to be defined as a preliminary. 

 
The second criterion is almost satisfied, or at least it would have been if the 

percentage of individuals to be eliminated could have been ignored by the user. 
Unfortunately, the tests showed that the performances could be better overall than 
those of the traditional PSO only if the value of this percentage were adjusted for 
each problem. Ultimately it was thus an additional parameter. 

 
However, that made it possible to show that selection could indeed sometimes 

improve PSO. Therefore the method below again takes this principle, as well as 
others, but with a significant difference: the comparisons of performance are done 
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only locally (in a sense which we will specify immediately), which makes it possible 
to adjust them much more finely and, especially, the size of the swarm is no longer 
constant. 

10.2.3. Parametric adaptations 

A more sophisticated method of selection was then implemented, with good 
results [ZHA 03a]. To explain it, let us return to the primitive terminology, in which 
each particle has a memory and some neighbors, the memory containing the best 
performance carried out. The equations of motion are those using the coefficient of 
constriction χ [CLE 02], i.e. the confidence coefficients are calculated according to 
only one parameter ϕ : 

1 2

max 1

1

1 2
c

c c

χ
ϕ ϕ ϕ

ϕ

⎧ = =⎪ − + −⎨
⎪ =⎩

 

The comparisons of performance are made only locally, i.e., for each particle 
tested, one considers only its neighborhood (which means all of its neighbors). The 
idea is that if at least one of the particles of the neighborhood (which, as we recall, 
includes the particle itself) “sufficiently” improved its performance, then one can 
remove the worst particle of the aforesaid neighborhood. Now, however, even if the 
best particle did not sufficiently improve its performance, one generates a new 
particle (completely at random, in fact). 

Thus, the size of the swarm being variable, one can deal with all the problems 
while always starting with the same small number of particles (at least 2, so that the 
adaptations can get underway). 

 
The threshold of improvement ∆ defining “sufficiently” is itself modified with 

each removal or generation of particles, according to both its preceding value and 
the current size of the swarm. Its first value is calculated simply after the 
initialization of the swarm, by the formula min max1 f f∆ = − , where minf  and maxf  
are respectively the smallest and the greatest values of the function to be minimized 
found by the swarm. 

 
The size of the neighborhood is also modified by a similar step, formalizing the 

intuitive rule that if a particle improves its performances, it does not need to 
continue to get informed by many neighbors and conversely. 
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Lastly, the parameter ϕ is itself adjusted after each iteration. When there was 
improvement, it is increased, which thus decreases the confidence coefficients and 
restricted volume explorable by the particle during the next displacement, and 
conversely. 

 
The disadvantage, again, is that whenever we say formulas we necessarily mean 

parameters. Let us make the assessment. The traditional PSO, the starting point of 
this method, requires four parameters: 

 – size of the swarm; 

 – the number of neighbors per particle; 

 – two confidence coefficients. 

Now, we have: 

 – a formula for the variable size of the swarm (a parameter); 

 – a formula for the variable size of the neighborhood (a parameter); 

 – a formula for the variation of the coefficient ϕ (two parameters). 

Thus, there is no improvement in the total number of parameters depending on 
the user. However, as we will see, it is possible to take up these ideas by replacing 
the formulas with rules without qualitative rather than quantitative parameters. 

10.2.4. Nonparametric adaptations 

We saw, in the preceding chapters, two methods that are already adaptive, since 
they rest on the criterion “there was improvement after the iteration”. Let us briefly 
point them out: 

 – rule 1: if there has been no improvement, modify the topology of the 
information links at random; 

 – rule 2: if there has been improvement, use the type of distributions of 
proximity X, if not use Y. 

Let us note that they strictly respect our two criteria. That is obvious for the first. 
For the second, it is enough to note that the decision whether or not there has been 
improvement does not require the use of an additional parameter. It is enough to 
compare the best result obtained after the iteration with that known before this 
iteration. 

 
To be completely honest, the number of parameters will not really fall and the 

term “nonparametric” will be justified only if distributions X and Y are not to be 
defined by the user. We should therefore find a pair (X, Y) sufficiently robust to 
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give good results whatever the function to minimize. Once again, let us list the 
distributions we have studied: 

– “with independent dimensions” (one-dimensional) class:  

 1 (rect.): = rectangles; 

 2 (ell. pos. sect.): = ellipsoidal positive sectors ; 

 3 (ind. gauss): = independent Gaussians; 

 3' (loc. ind. gauss.): = local by independent Gaussians. 

– “multidimensional” class:  

 4 (piv.): = pivots; 

 5 (piv. n.): = pivots with noise; 

 6 (piv. G.): = Gaussian pivots; 

 7 (ell. adj.): = adjusted ellipsoidal. 

We already know that good candidates are such that X belongs to the class of 
one-dimensional distributions and Y, on the contrary, to that of multidimensional 
distributions. However, the distributions of the first class still require the data of a 
parameter. Nevertheless, the ideal would thus be to find a pair whose two elements 
are second class. 

 
We have thus a priori 3 44 3 155+ =  combinations to study. Let us note that 

intuition is a bad adviser here. A plausible a priori rule might be that Y, to activate 
when there no was improvement, has a support of volume greater than that of X, to 
extend exploration. For example, the pair (4,5) satisfies this condition, but not its 
reverse (5,4). But, in fact, with the pair (5,4), one obtains an average rate of failure 
of 39%, against only 28% with the pair (4,5). The latter is therefore better. 

 
The reason is that the ratchet effect plays a role and it seems that the empirical 

rule is rather this one: a good particle, which in any case remembers its best 
performance, can afford to rove more than another that is not so good, which must, 
on the contrary, move more prudently. 

 
To facilitate the comparisons, the values of the other parameters are those 

already used in the preceding chapters: 20N M= = , 3K = , 2.07ϕ = . The 
topology of the information links is still randomly selected, but, in agreement with 
rule 1, it is not necessarily modified any more with each iteration, but only if there is 
no improvement. The best three combinations of distributions for rule 2 are then 
indicated in Table 10.1.  
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Name  
 Rule 1 

Rule 2 (5,4)  

Rule 1 

Rule 2 (3,5)  

Rule 1 

Rule 2 (2,5)  

Tripod  45%  31%  29%  

Alpine 10D  5%  0%  0%  

Parabola 30D  0%  0%  0%  

Griewank 30D  20%  96%  100%  

Rosenbrock 30D  
100% 
25.68  

100% 
24.31  

100% 
25.29  

Ackley 30D  0%  0%  0%  

Average of the rates 

of failure  
28.3%  37.8%  38.2%  

Table 10.1. Adaptations according to rules 1 and 2. Three best combinations                         

of distributions for rule 2 and the benchmark set. The values indicated are the 

 percentages  of failure noted over 100 tests. For Rosenbrock the average of the 

 best values obtained  during each test has been added 

We note that distribution 5 (disturbed pivots) is present each time, but it is 
difficult to draw any other information from this table. In addition, we saw in 
Chapter 9 that in certain cases the performances can be appreciably improved by 
making the number of memories different from that of explorers. However, at 
present, the adaptive alternatives are founded on the traditional PSO with only one 
type of particle. Obviously, they did not seek simultaneously to modulate a memory-
swarm and an explorer-swarm. 

This is however equally true for the rather complete case that we will look at in 
the following chapter, which presents thus the possibility for obvious improvement. 

10.3. For “amatheurs” 

10.3.1. Formulas of temporal decrease 

The formulas used by various authors are not always clarified in their articles, 
where they often indicate simply something like “the coefficient is decreasing from 
1 to 0.4 over 10,000 iterations”. However, reading the source codes of the programs 
used makes it possible to find them. They are primarily of three types: linear, 
nonlinear with threshold, and asymptotic. 

By noting t the current moment (the iteration), T a given time, one has the 
following possible expressions: 
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 – Linear: 

( ) ( )
( )

min

min

1 1
t

t T w t w
T

t T w t w

⎧ < ⇒ = − −⎪
⎨
⎪ ≥ ⇒ =⎩

 

 – Nonlinear with threshold (example of quadratic formula): 

( ) ( )
( )

2min
min2

min

1 w
t T w t T t w

T

t T w t w

−⎧ < ⇒ = − +⎪
⎨
⎪ ≥ ⇒ =⎩

 

 – Asymptotic (exponential example): 

( ) ( )min min1 tw t w e wλ−= − +  

In this last case, one can generally easily choose 0 as minimal value, by adjusting 
differently the parameter λ . The formula then becomes simply: 

( ) tw t e λ−=  

10.3.2. Parametric adaptations 

The presentation below comes primarily from [ZHA 03a]. The improvement of 
performance of a particle iP  is given by: 

( ) ( )( ) ( )( )
( )( )

0

0

i i

i

i

f P t f P t
P

f P t
δ

−
=  

where 0t  is the moment of birth of the particle, t the current moment and ( )( )i
f P t  

the value of the function to be minimized at the point of the search space where the 
particle is located at the moment t. 

The initial threshold of improvement is given by min max1 f f∆ = − , where the 

values minf  and maxf  are respectively the smallest and greatest value of the function 

to be minimized found after initialization of the swarm randomly in the search 
space. It is then modified by the following formulas, where N is the current size of 
the swarm: 



Adaptations    137 

 – ( )2 Ne−∆ = ∆ −  when a particle has been just eliminated; 

 – ( )/ 2 Ne−∆ = ∆ −  when a particle has been just generated. 

In addition, the parameter iϕ  associated with the particle iP  in the equation of 
motion is also modified, in two different ways according to whether the particle 
improved its position or not: 

( )

max

max min

min

( )

0 ( )

( ) ( )
0

( ) (1 ) 1

:

i i

i i i

i i

i

i i

i i

m P

m m

m
m λ

δ
δϕ ϕ ϕ
λ ϕ ϕ ϕ ϕ

δϕ ϕ ϕ

ϕ ϕ δϕ

−

⎧
⎪
⎪ = − ∆
⎪

≥ ⇒ = −⎨
⎪ = − −⎧⎪⎪ < ⇒ ⎨⎪ = − − −⎪⎩⎩

= +

 

The intermediate variable im  evaluates how much the improvement is greater or 
less than the current threshold. Two cases are possible: 

10.3.2.1. Case 1 ( 0im ≥ ) 

The particle really improved its position or, at least, did not deteriorate it. Thus, 
it is not necessary for it to continue to explore a broad field. It is then possible to 
increase iϕ , i.e. to decrease slightly the constriction coefficient χ, and, therefore, 
strive to decrease the velocity. This is why the formula gives δϕ  positive and this 
all the more so as the improvement is large. 

10.3.2.2. Case 2 ( 0im < ) 

It is the opposite. The particle did not improve its position and, therefore, its 
velocity must be increased a little, to explore a larger field. Then δϕ  is negative. 

Lastly, the size of the neighborhood is increased or decreased according to the 
formulas below, granted that the neighborhood is of the circular type: 
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If the particle improved its position, it is not necessary for it to continue to 
question as many neighbors as before. Conversely, if it did not improve its position, 
it is undoubtedly a good idea to seek more information. Let us note that since the 
size of the neighborhood is an integer, the modifications must accumulate in the 
variable 

ihδ until it exceeds 1 or –1 before having a significant incidence. 

10.4. Summary 

The ultimate objective is to build an iterative algorithm of optimization that 
modifies its behavior according to its progressive discovery of the problem to be 
solved, without initial parameter setting by the user. 

 
A rapid glance at some attempts in this direction, defining adaptive alternatives 

of PSO, makes it possible to detect interesting ideas that will enable us to progress 
largely towards this goal. In particular, the concepts of variable size of swarm, 
variable size of neighborhoods, and alternate use of several distributions of 
proximity will later be applied to a nonparametric qualitative formalization. 
 



 

Chapter 11 

TRIBES or                                       
Cooperation of Tribes 

11.1. Towards an ultimate program 

In the beginning was the one. Such could be the starting point of a process of 
completely autonomous PSO, insofar as it must be capable of finding a solution by 
having only one particle initially, but it is up to it to add or remove some advisedly. 
Up to now, even for the adaptive versions examined, you must not only describe the 
problem to solve, but also to indicate the manner of doing it, with instructions of the 
type “Begin with 20 particles”, “Use a circular neighborhood” or “Weigh the 
velocity by a coefficient decreasing in the course of time according to the following 
law . . .”. 

As we saw on several occasions, the description of the problem consists of 
delimiting the search space (in the simple cases by specifying for each dimension 
the interval of the acceptable values); indicating how to evaluate at each point of this 
space the function to be minimized; and, finally, specifying the maximum error 
permitted. Also, but by way of precaution, it is advisable to provide a safeguard, 
either a maximum number of evaluations, or a maximum computing time. This 
obviously remains necessary: the program will guess neither your problem, nor your 
requirement of precision! But that should also be sufficient. In other words, the 
method must incorporate rules defining how, at every moment, the structure of the 
swarm must be modified and also how a given particle must behave, all according to 
the information gradually collected during the process itself. 
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Naturally, these rules are still indirect ways of giving operating instructions to 
the program. The essential difference is due to the fact that you can be completely 
unaware of them if they are sufficiently robust and general to satisfy all your 
practical needs. It would be easy to hard code a rule like “Always use 20 particles”, 
but the experiment shows that with certain types of problems, the results are 
extremely bad, even if they are very good with others: such a rule is not robust. 

 
Now, precisely, what we want – speaking from the point of view of an engineer 

– are results which, while not always excellent, are, at least, never disastrous; the 
more so as a strategy of Stop/Restart can in any case improve their quality. What 
one gains in ease of use should logically be sometimes lost in effectiveness. It is 
indeed quite usual, for a given problem, that a program having to find its own 
parameters all alone, and this during just one execution, sometimes has poorer 
results than another whose parameters were lengthily polished using many tests. 
Thus, if one wants to make honest comparisons, for example in a number of 
evaluations of the function to be minimized before finding a solution, it would 
precisely be necessary to include these tests themselves. 

 
The best method to prove that such a program is possible is to present one of 

them. We will thus describe the TRIBES program and show that it responds rather 
well to our definition of an easily usable black box that delivers satisfactory 
performances, even if, of course, improvements are possible, in particular 
concerning the problems with non-null granularity and, probably, by using two 
swarms instead of only one, for the memories and for the explorers. 

 
Indeed, here, the swarm practically corresponds to the original definition of PSO: 

it is single and each particle has its own memory. The description given below 
comprises structural strategies of adaptation, controlling the modifications of the 
size of this swarm and the information links between the particles, and strategies of 
displacement, indicating how a given particle must change position. 

 
We will assume initially that the search space is provided with a distance. This 

assumption makes it possible to define a strategy of effective displacement, founded 
on hyperspherical probability distributions. We will see then how, while preserving 
the strategies of adaptation, it is possible to define other strategies of displacement, 
using for example one-dimensional Gaussian probability distributions, to deal with 
more general problems, in particular partially combinatorial. By “combinatorial”, we 
understand here simple combinatorial. As already stated, other problems, of the 
“traveling salesman” type, can also be treated effectively thanks to PSO, but only 
thanks to hybrid strategies, which are not studied in this book. 
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11.2. Description of TRIBES 

11.2.1. Tribes 

Let us recall that an informant of particle A is a particle B whose best memorized 
position can be “read” by A. This definition clearly implies that A is an informant 
for itself. 

If each particle of the swarm is seen as the vertex of a graph, one can represent 
the information link by an arc of B towards A. The opposite arc, of A towards B, can 
exist, and does exist in the majority of versions of PSO, including this one, but it is 
not obligatory. In addition, as we saw in the presentation of neighborhoods and 
except for a particular topology, all the particles do not point towards A. We can 
thus define subsets (symmetrical cliques in the graph theoretical sense) such that, in 
each one of them, any particle points to (informs) all the others. We will call them 
here tribes, the metaphor being that of groups of individuals of variable size moving 
in an unknown environment, in search of a “good” site. This structuring will so to 
speak mechanically induce a process similar to niching in the genetic algorithms and 
with the same aim: simultaneously to explore several promising areas, generally 
around local minima. 

11.2.2. The tribal relationships 

Even if each tribe manages to find a local minimum, a group decision is 
necessary to determine which is the global minimum: the tribes must communicate 
between them. Consequently the network of information  between tribes must be 
connected. In practice, it means that there is an information path from any particle A 
towards any particle B, like “A informs A1, which informs A2, . . . which informs 
B”. 

Let us summarize the overall structure: within each tribe, a dense network; and, 
between tribes, a network simply ensuring connexity. We are typically in a graph of 
relations of the type “small world”, which, as we have seen, has every chance of 
being an effective compromise between diffusion and exploitation of information 
[WAT 03]. But this structure must be generated and modified automatically, by 
means of creation, evolution, and removal of tribes. 

11.2.3. Quality of a particle 

We know that each particle has a current position and a “better performance”, 
which is memorized. It is thus initially on this level of detail that one can say if there 
is progress or not. A particle will be known as good if it has just improved its best 
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performance, neutral if not. Let us note that this definition is qualitative, one does 
not measure the improvement, one is satisfied with examining whether it is strictly 
positive (real improvement) or null (no improvement). By definition, the best 
performance of a particle cannot worsen, this is why one does not in the absolute 
define a “bad” particle. However, within a tribe, one can determine the particle 
whose performance is not so good. It will be called the worst (relative to its tribe). In 
the same way, one can determine the best particle. 

Moreover, compared to the traditional PSO, the memory of the particle is 
improved slightly, so that it remembers its last two variations of performance, thus 
outlining a history of its displacements. From this, one can define a third status: a 
particle will be known as excellent if these two variations are improvements. This 
will be useful for us to choose the adapted strategy of displacement. 

11.2.4. Quality of a tribe 

However, what interests us here is the total performance of a tribe. We will thus 
define two statuses, good and bad, and will postulate a very simple fuzzy rule: “The 
larger the number of good particles in the tribe, the better the tribe itself and 
conversely”.  

In practice, the status of a tribe is evaluated in the following way. One considers 
its size T (its number of particles) and its number of good particles B (at most equal 
to T). A number p is generated at random between 0 and T, according to a uniform 
distribution. If B is less than or equal to p, the tribe is known as bad; if not, it is 
known as good. Rules of evolution will be associated with these statuses, tending to 
support the creation of new tribes and, therefore, the exploration of the search space. 

11.2.5. Evolution of the tribes 

11.2.5.1. Removal of a particle 

The goal is to find the optimum, if possible with less expense, i.e. by carrying 
out the least possible number of evaluations of the function. Consequently, as soon 
as the opportunity arises to remove a particle practically without risk, it should be 
taken. Let us note that it is better to preserve a particle wrongly (in the worst case, 
one will slightly increase the number of evaluations beyond what is strictly 
necessary) than to eliminate one from them wrongly (with the risk of missing the 
solution completely). This is why only a good tribe will be able to eliminate one of 
its particles and only the worst of them. In the case of a monoparticle tribe, 
elimination will be made only if one of informants has a better performance. Indeed, 
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one at least wants to be sure to store information of better quality than that which is 
going to be eliminated. 

 
 

 

Figure 11.1. Removal of a particle from a multiparticle tribe. The particle P is the worst of its 

tribe and the tribe was declared “good”. In this case P is removed and the redistribution of 

its external links (here only one symmetrical link) is done on M,, the best particle of the tribe. 

The information links that each particle has with itself were not represented,  

because they do not play any role here 

Figure 11.2. Removal of a monoparticle tribe. The tribe was declared “good” and thus the 

single particle P, which is necessarily the worst of the tribe, even if it is at the same time 

“good”, should be removed. But it will be removed only if its best external informant MP is 

better than it. The assumption is indeed that the information carried by P 

 is then less valuable than that carried by MP 

In addition, the elimination of a particle implies a redistribution of its 
information links, up and down. In the general case, this carrying forward takes 
place on the best particle of the tribe (see Figure 11.1). In the case of a monoparticle 
tribe, since the removal of the particle leads to the removal of the whole tribe, they 
are placed on the best informant of the particle to be removed (see Figure 11.2). 
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11.2.5.2. Generation of a particle 

Conversely, a bad tribe is obviously in need of information. It will therefore 
generate at least 1 new particle, while keeping contact with it. In fact, in the version 
used here, two particles are generated, one which could be anywhere in the search 
space and the other in a much more restricted field. Let us call them a free particle 
and a confined particle. 

More precisely, all the bad tribes will each generate a pair of such particles and 
these new particles will form a new tribe. The term “to keep contact” means here the 
establishment of a symmetrical link between the generated particle and the 
generating tribe, represented, for example, by its best element. 

11.2.5.2.1. Free particle 

It is generated randomly, according to a uniform distribution, itself chosen 
randomly among three: 

 – in the whole of the search space (supposed here to be a D-parallelepiped), 

 – on a side of the search space, 

 – on a vertex of the search space. 

The idea is not so much to count on the chance to find directly a promising area, 
but to be sure that the future course of the new particle has more probability of 
crossing such a zone. 

11.2.5.2.2. Confined particle 

Let us call x the best particle of the generating tribe and x̂ its best memorized 
position. Let g be the best informant of x and ĝ  the best position that this informant 

has memorized. Then the new particle will be generated randomly uniformly in the 
D-sphere of center ĝ and radius ˆ ˆg x− . 

Here, the idea is almost the opposite. It is, on the contrary, a question of 
intensifying research in an area that seems already interesting. 

11.2.5.2.3. Frequency of the adaptations 

It is not necessary, or desirable, to carry out these structural adaptations to each 
iteration, because there is a requirement to allow time for information to be 
propagated between the particles. Again there are several plausible rules possible. In 
theory, after each adaptation, one should calculate the diameter of the graph of the 
relations. For that, it would be necessary to consider all the pairs of particles in 
which each belongs to different tribes and to find the shortest path of information 
connecting them, in terms of a number of arcs. The longest of these shorter ways 
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would give us an estimate of the iteration count necessary to be sure that information 
possessed by a particle can be transmitted, more or less directly and to be more or 
less deformed, to all the others. Nevertheless, this calculation is a little long and one 
can be satisfied to use the total number of links with information. If, after a 
structural adaptation, this number is L, then the next one will take place in L/2 
iterations. 

11.2.5.2.4. Evolution of the swarm 

What kind of operation is induced by these rules? At the beginning, there is only 
one particle, representing a single tribe. After the first iteration, if its situation does 
not improve, which is extremely probable (and even certain, with the strategies of 
displacement examined below, because the particle does not move at all with the 
first time increment), another particle will be generated, forming a second tribe. 

At the next iteration, if neither of the two particles improves its situation, the two 
tribes will simultaneously generate two particles each: a new tribe of four particles 
will be created and so on (noting that the more the number of links increases, the 
more significant the iteration number between two adaptations). Thus, as long as 
things go wrong, increasingly large tribes are generated, increasing the exploratory 
capacity of the swarm, but more and more rarely. Between two adaptations, the 
swarm has more and more chances of finding a solution. 

 
However, conversely, as soon as an outline of a solution is found, each tribe will 

gradually eliminate its worst particles, possibly until it disappears completely. In an 
ideal situation, when convergence is confirmed, all the tribes, except possibly the 
last created, are reduced to one particle. Overall, the swarm tends to grow, more and 
more slowly, in an asymptotic way (see examples below). It is not really made to 
decrease, except temporarily in certain simple cases, when the tribes are for the most 
part good. 

11.2.6. Strategies of displacement 

Intuitively, it seems judicious for a particle to adopt a strategy of displacement 
depending on its recent past. In accordance with the empirical rule stated in the 
preceding chapter, we will arrange this in such a way that the better a particle 
behaves, the more it can afford an exploration of greater scope, with however a 
special strategy for the very best particles, which we can compare to a kind of local 
search. 

Indeed, according to the problems, it is more interesting to use proximities 
calculated independently for each dimension (like the D-rectangles) or, on the 
contrary, globally in the space (like the D-spheres). For the greatest possible ease of 
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use, it is thus necessary to enable the algorithm to call upon a certain class of 
methods if necessary, according to what it tells us about the problem in the course of 
research. Choosing the other strategies remains to be seen. 

 
There are three possibilities of variation of performance of a particle: deterioration, 

maintaining the status quo, or improvement, which we will symbolize by the signs –, 
=, and +. Since the history of a particle includes two versions of its performance, 
TRIBES thus distinguishes nine cases, which are located by the status of the 
particle. For example, an improvement followed by maintaining the status quo will 
be denoted (+ =). However, we will be satisfied here with three, to take advantage of 
the pairs of distributions that we have identified as being interesting, and adding the 
local strategy that we have just described above. That will be sufficient to explain 
the principle of operation of the algorithm. Table 11.1 then indicates the strategies 
used according to statuses, brought together in three classes.  

 
Gathered statuses  Strategy of displacement  

(––) (= –) (+ –) (– =) (= =)  4 (pivot)  

(+ =) (– +)  5 (disturbed pivot)  

(= +) (+ +)  3' (local by independent Gaussians)  

Table 11.1. Regroupings of statuses and corresponding strategies of displacement for a 

simplified use of TRIBES. The status of a particle is purely qualitative. It simply notes, for 

each of the two preceding movements, if the position of the particle improved,  

deteriorated or maintained the status quo 

Let us note, in addition, that the confinement of the particle in the search space is 
carried out in the same manner as in traditional PSO, except that there is no velocity 
to modify. If a component of the position tends to go beyond the acceptable values, 
it is simply brought back to that which is closest. This point will be shown in detail 
in Chapter 12, because it does not relate only to the overflows of interval. 

11.2.7. Best informant 

The TRIBES program can function on search spaces without a metric. In this 
case, obviously, the distributions of possibles must be chosen from those with 
independent dimensions, such as D-rectangles or ellipsoidal positive sectors. But, 
especially, two positions can then be compared only as in traditional PSO, i.e. only 
according to respective values of the function f to be minimized in these two points. 
So the best informant of a particle x is simply the one having memorized the best 
position. 
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Nevertheless, when the space has a metric, it would be a shame not to benefit 
from it, not only by the use of distributions like those of the pivots, but also by the 
calculation of pseudo-gradients, which is often more effective for comparing two 
positions. This is why the user of TRIBES can choose between two options, 
depending on whether the search space is metrical or non-metrical. 

 
Let x be the particle of which one seeks the best informant. Let us note ŷ  the 

best position memorized by informant y, ẑ that memorized by informant z, and 

xz yf the fact that z is better informant than y for x. The formulae of computation 
corresponding to the most general case and to one that is a little particular about 
metric spaces are indicated below. 

11.2.7.1. Direct comparison, general case  

( ) ( )ˆˆ
xz y f z f y⇔ <f  

It will be noted that here the formula does not use particle x at all: informant z is 
better than y in the absolute, i.e. seen from any other particle. 

11.2.7.2. Comparison by pseudo-gradients, metric spaces  

( ) ( ) ( ) ( )ˆ ˆ ˆˆ

ˆ ˆ ˆˆx

f x f z f x f y
z y

x z x y

− −
⇔ >

− −
f  

The goal of this technique is to give preference to close informants. That makes 
it possible for the particle not to give up a local search too quickly under the pretext 
that “the grass seems greener elsewhere”. The regroupings in subswarms are thus 
supported, as in the technique of the niching of the genetic algorithms. This was 
presented in [VEE 03]  in a slightly different form, under the name of Fitness-

Distance-Ratio based Particle Swarm Optimization (FDR-PSO). 

NOTE – The generation of a confined particle also calls upon the concept of best 
informant. But in this particular case it is always the more constraining direct 
comparison that is used. 

11.3. Results of the benchmark set 

We now have to hand all the elements to code the program and make it function. 
In addition, a source is available on the Internet in C language (see the Chapter 
entitled “Further Information”). The results presented in Table 11.2 were obtained 
with TRIBES 6.2. Let us try to analyze them. 
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First, it is clear that the use of the pseudo-gradients, when it is possible, as it is 
here, is advantageous. It very slightly degrades the performance in one case 
(Griewank), while improving it considerably in another (Tripod). 

 
Then, the application of the empirical rule of choice of the strategies that we 

were able to clarify in the preceding chapter is now less necessary. To use the simple 
pivot for bad particles and the disturbed pivot for good ones or vice versa amounts 
almost to the same thing. The difference remains in favor of the first technique, but 
in a less marked way. 

 
The reason is that the conditions have changed. In particular, the information 

links are no longer established randomly. As a result, the choice of the best strategy 
of next displacement for each status of the particle concerned would probably have 
to be re-studied. Nevertheless complementary tests not detailed here already make it 
possible to affirm one thing: to use just one strategy is less effective than to combine 
several of them. For example, on our benchmark set, always choosing the strategy of 
the simple pivot (4) gives an average rate of failure of 28% and, above all, always 
choosing that of the disturbed pivot (5) gives a rate of 50%, with 100% failure for 
Tripod and Griewank. 

 
Finally, what can we say about the intrinsic quality of these results? They are 

excellent, in fact better than those reported for algorithms already considered as very 
good (genetics, differential evolution, SOMA [ZEL 04], etc). That will be confirmed 
on more realistic examples, in Chapter 13.  

 

Function  
Strategies (4, 5, 3') 

without pseudo-gradients 

Strategies (4, 5, 3') with 

pseudo-gradients  

Tripod  57%  2%  

Alpine 10D  0%, 1,310  0%, 1,139  

Parabola 30D  0%, 651  0%, 533  

Griewank 30D  46%  49%  

Rosenbrock 30D  100% (26.04)  100% (26.5)  

Ackley 30D  0% 7,045  0%, 3,382  

Average of the rates 

of failure  
34%  25%  

Table 11.2. Results of the benchmark set with TRIBES. Since the search spaces all have 

metrics, the choice of best informant of a particle can be realized by the method of pseudo-

gradients (column 3). The gain in effectiveness is very clear for the Tripod function  

and even for Ackley, largely compensating for the slight degradation of performance  

on some other functions (Griewank and Rosenbrock) 



TRIBES or Cooperation of Tribes    149 

11.4. Summary 

It is possible to design algorithms of PSO in the form of a “black box”, the user 
having only to define the search space, the function to be minimized, the desired 
precision and, as a precaution, a maximum number of evaluations. 

The TRIBES program, whose sources are available on the Internet, is an 
example of the realization of such an algorithm. It functions by cooperation of tribes 
of particles. In each tribe, the information links form a strongly connected graph. 
Between tribes, the links are looser, but the graph as a whole always remains 
connected. The strategies of structural modification implemented automatically are 
related to the addition or suppression of particles and their information links. The 
strategies of displacement of a particle are founded on several hyperspheric or 
Gaussian probability distributions, whether disturbed or not, the choice taking account 
of the recent history of this particle. 

 
From the simple fact that it makes it possible to avoid the tiresome search for 

“good” parameters, in particular the size of the swarm, TRIBES already appears 
better than the traditional PSO, the more so as the results obtained are often as good, 
or even better. 
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Chapter 12 

On the Constraints 

12.1. Some preliminary reflections 

In order to be able to tackle a broad range of problems, we must now examine 
how, in PSO, those whose description calls for what are usually called constraints on 
the variables are treated. We will pass very quickly over well-known techniques, 
such as weighted integration of constraints and the function to be minimized in a 
new function, to explore in a little more detail those that are less well known and 
especially those that were originally developed for PSO and can in turn be used by 
other optimization algorithms. But first, it will be useful to specify a little what this 
term “constraints” covers. 

In fact, a problem of optimization is always “under constraints”, because the 
search space must necessarily be limited. And, in the final analysis, a constraint is 
always a confinement. The  most traditional ones, as we have already seen, are 
confinements of interval (the coordinates of the position must remain within a 
certain interval of values). But many others are useful, such as “the components of 
the solution must be integers” or “the components of the solution must be all 
different”, in particular for combinatorial problems. Like all those more traditional 
constraints, they require that certain relations between the coordinates of a position 
be respected, the best-known case being that of linear relations. Incidentally, 
moreover, and as already pointed out in Chapter 1, PSO is not an adequate tool in 
purely linear optimization, because there are much more effective specific methods. 

 
To define constraints is always to specify more or less explicitly the set of 

acceptable values or, more generally, because it is not necessarily numbers that are 
treated, the set of acceptable a priori positions among which one will seek the best. 
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Thus, there is no difference in nature between, on the one hand, a function to 
minimize and, on the other hand, constraints to be respected. 

 
That is particularly obvious when the minimal value to reach is known, say zero, 

because then the description of the problem starts with something like “to find a 
position x such ( ) 0f x = ”, which can equally well be read as “to respect the 
constraint ( ) 0f x = ”. More generally, when a lower limit m of the minimum is 
known (and, in practice, this is always the case), one can still replace the 
formulation “to minimize f” with “respecting the constraint ( )f x m= ”, even if it is 
known perfectly well that it is not possible. The important thing is that while trying 
to follow this directive, the algorithm finally gives us the desired solution. 

 
The possibility of regarding any problem of optimization as being entirely and 

exclusively a set of constraints to be respected is not merely of academic interest. It 
indeed justifies the simple and comfortable method described later, which consists 
of carrying out a multicriterion search systematically. 

12.2. Representation of the constraints 

A constraint is classically represented by an equation or an inequation relating to 
a numerical function of position x. Thus, the general writing of a constraint will take 
one of the two following forms: 

(1) ( ) 0g x =  

(2) ( ) 0g x <  

And what of the constraints of the type ( ) 0g x ≤ ? In fact, they are attached to 

case 1, noticing that one has equivalence ( ) ( ) ( )0 0g x g x g x≤ ⇔ + = . Obviously 

we are speaking here about theoretical representations, because, in practice, others 
can be simpler to understand or handle in a data-processing program. Hence two 
constraints: 

1 1

1 1

1 1 0

2 2 0

x x

x x

⎧ − + − ≤⎪
⎨

− + − ≤⎪⎩
 

relating to the first coordinate of x, correspond to the interval confinement. 

[ ]1 1,2x ∈ . 

Let us note besides that a constraint of type 2 can often be easily made slightly 
more flexible by permitting zero value. Indeed, except for some mathematically 
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monstrous functions, there are two possible cases. If the function g is continuous, 

any negative value as near to zero as one wants is acceptable. To accept the zero 
value formally does not in itself change anything in the result that will be obtained 
by a data-processing program. If the function is discrete, there is a negative 
maximum acceptable value maxg  and it is then enough to rewrite the constraint in 

the form ( ) max 0g x g− ≤ . 

 
Let us note in passing that this means all the constraints can then be reduced to 

type 1. For certain methods of taking into account the constraints, this can be useful. 

12.3. Imperative constraints and indicative constraints 

However, for real problems, it is interesting to distinguish between imperative 

constraints (sometimes known as “hard”) and indicative (or “soft”) constraints. As 
their names indicate, the former must be absolutely respected, whereas the latter 
need be only partially respected. Still it is necessary to specify what the latter term 
means. 

For that, let us define a non-negative numerical quantity, a measurement of 

dissatisfaction s(x), which is lower as the constraint is closer to being satisfied for 
position x. Here, for example, are two simple formulas, corresponding to the two types 
of constraints (to avoid any confusion, we will write them by replacing the sign =  
by ≅ and the sign < by <% ): 

 ( )s g x= , for indicative constraints of the type ( ) 0g x ≅  

 
( ) ( )' '

'
2

g x g x
s λ

+
= + , for indicative constraints of the type ( )' 0g x <%  

The parameter λ, positive, is to be defined by the user. It indicates which “penalty” 
one intends to apply to a position for which the function g' would be just null instead 
of being negative. As already stated, it is rare that one cannot replace a constraint of 
strict negativity, especially if it is indicative, by a constraint of the “negative or null” 
type. In this case, the parameter λ is quite simply null. 

 
More generally, the formulae above can be weighted according to whether the user 

gives more or less importance to the respect of a particular constraint. 
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12.4. Interval confinement 

It is mentioned here as a reminder, because in fact we have been using it since 
the beginning and it is explained in detail in Chapter 3. Let us recall just the 
principle, since the same idea will be used for other confinements. 

 
When the value of a coordinate of a particle lies outside the interval of 

acceptable values, it means, by definition, that the aforementioned particle leaves the 
search space. The objective is thus to bring it back inside this space. 

 
The general method consists of trying to find the point in this space that is 

closest to the point theoretically reached by the particle and moving it there, also 
modifying velocity if the equations of motion are used (it is not the case, inter alia, 
with the method of pivots). As we have seen, that gives, for example, for each 
dimension d, the following formalization: 

[ ]min max min min

max max

0

,
d

d d d

d d

v

x x x x x x x

x x x x

←⎧
⎪∉ ⇒ < ⇒ ←⎨
⎪ > ⇒ ←⎩

 

This means that if the search space is only defined by an ensemble of intervals of 
values, it is enough to replace the faulty coordinates by the extremity nearest to the 
interval of their acceptable values and to cancel the corresponding component of 
velocity. Since the particle must move in a D-rectangle, it is certain that this 
technique gives the nearest acceptable position. 

If there are other constraints, and the search space is of more complicated form, 
one generally continues to apply this technique because of its simplicity. The new 
position is then certainly acceptable in comparison with the interval constraint, but 
one cannot more absolutely guarantee that it is so for the other constraints nor, a 

fortiori, that it is closest to the faulty position. One relies then on the iterative aspect 
of the algorithm to reach, gradually, a position that respects all the constraints 
simultaneously. 

12.5. Discrete variable 

The acceptable values form a finite list. Being given a value of variable (a 
coordinate of a position in the search space), we wish to replace it by the list value to 
which it is closest. In the direct method, this replacement is rough and immediate, in 
the indirect method it is progressive and is made in the very course of iterative 
search process. 
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12.5.1. Direct method 

There are two main cases: the list can be ordered or it cannot be (no order 
relation). We will neglect here the intermediate cases where a partial order can be 
defined but not a total order. 

12.5.1.1. List not ordered (and not orderable) 

This case corresponds to qualitative variables, for example, of the colors. To 
determine whether a value is faulty or not, i.e. whether or not it is on the list, there is 
no method more effective than the exhaustive course. 

Moreover, it is not possible to determine the nearest acceptable value because 
this has no meaning, as a small apagogy shows immediately. Indeed, if it had one, 
the reason is that there would be a concept of distance that would make it possible to 
order the list. However, to be exact, we have assumed that the list cannot be ordered. 
That is why the faulty value can only be replaced by an acceptable value, chosen at 
random and not, moreover, inevitably according to a uniform distribution. 

12.5.1.2. Ordered list 

Here several more effective algorithms can be used. The simplest consists of 
traversing the list by ascending values and stopping as soon as the found value 
exceeds or equals the one that is tested. Then at the same time the closest value is 
easily obtained: it is the one that is found or the one that is found after. 

This algorithm is sufficient for short lists. Nevertheless, it should not be 
forgotten that it is meant to be repeated a great number of times. It may thus be 
necessary to call upon the theoretically most effective algorithm, by dichotomy, 
although it is a little more difficult to program. The source code in C is given for this 
at the end of the chapter. 

12.5.2. Indirect method 

Let { }1,..., ,...
j J

a a a  be the list of possible values for the variable (the coordinate) 
considered, dx . One writes the constraint “must belong to the list” in the following 
form: 

( )
1

0
J

d j
j

g x x a
=

= − =∏  

The simplest thing to do is to treat this constraint by the multicriterion method, 
as we shall see later. The result is not absolutely guaranteed in the sense that the 
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algorithm is satisfied with minimizing ( )g x  jointly with the function objective and 
other possible constraints, but the advantage is that the process of convergence is no 
longer disturbed by the abrupt jumps of values (and therefore of position) imposed 
by the direct method. 

12.6. Granularity confinement 

This type of confinement relates to the particular case of a discrete variable from 
which the acceptable values result from a minimal value by addition of an increment 
δ, repeated a finite number of times. A common case is that of an integral variable in 
an interval, but there are others too, for example in industrial production. 

As before, the faulty value is brought back to the nearest acceptable value, but 
that can be programmed by the use of a simple formula rather than by the survey of 
a list: 

min
min

1

2
d

d

x x
x x Eδ

δ
−⎛ ⎞← + +⎜ ⎟

⎝ ⎠
 

where ( )E u  represents the integer part of the number u. 

12.7. “All different” confinement 

Let us consider a position ( )1,... ,..d Dx x x x= . The objective here is to find the 
nearest position from which all the components dx  are different. Naturally that has 
interest only if they are discrete, for if they are continuous, it is enough to modify 
them in an infinitesimal way. 

A typical example is that of a combinatorial problem from which the various 
possibilities are coded by integer values. For example, a circuit of N cities for the 
traveling salesman problem is classically coded by a list of integers between 1 and 
N. Certain specific versions of PSO [CLE 04]  have equations of motion that directly 
carry out permutations of the integers of 1 to N or work in a constructive way by 
avoiding passing twice by the same city [SEC 01a]. In this case, confinement “all 
different” does not have much to recommend it. 

 
However, other versions need it because the movements can lead to unacceptable 

positions [ONW 04a]. The criterion of distance to find the nearest acceptable position 
is then the minimum number of coordinates to be modified. For example, if the 
found position is (20, 1, 30, 5, 8, 1, 10, 20, 9, 10), at least three modifications are 
needed. An acceptable position at this “distance” 3 is then (20, 1, 30, 5, 8, 2, 10, 19, 
9, 11). There are others, but the algorithm used in the work referred to provides only 
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one of them (source code included in that of TRIBES). One could plan to modify it 
to give one of them at random among those possible. 

12.8. Confinement by dichotomy 

We saw specific algorithms of confinement for three scenarios: when the 
constraint is of the “interval of value” type, of the “non-null granularity” type or 
more generally discrete, and, finally, of the type “coordinates all different”. The 
principle of these algorithms is always the same: to bring the particle back into the 
search space and if possible to the point in the space nearest to the faulty position. 

Generally, it is certainly better to use a specific algorithm of confinement, but the 
types of constraints being infinite in number, we must also have at least a “default” 
confinement technique that functions in nearly all scenarios. Now let us study a 
simple version of such an algorithm, founded on the principle of successive 
dichotomies and which requires only a few assumptions on the nature of the search 
space. 

 
To launch this algorithm, which is iterative, it is necessary to have at least an 

acceptable position. Very generally, it is approximately the preceding position of the 
particle. Let us call it admx . Let x be the current position, and let us note 0 1, ,... ...kx x x  
the successive positions that we will build and test. Calculation is done according to 
following processes: 

1) 0x x= ; 

2) as long as kx  is not admissible, make 1 2
k adm

k

x x
x +

+
= then 1k k= + . 

It is possible to define constraints represented by such strange functions that this 
process never manages to find an acceptable position (e.g. the famous continuous 
curve of Peano, entirely filling a square). But for real problems, it is quite suitable. 

However, it presents two disadvantages. On the one hand, it can increase the 
computing time appreciably if the test of respect of the constraints is a little long. On 
the other hand, it generally does not give the acceptable position nearest to the initial 
position or even necessarily a position close to the border of the search space 
defined by the constraints (see Figure 12.1). 

 
Nevertheless, it is possible to reiterate the process itself. If kx  is the found 

acceptable position, it is enough to lay down: 

0 1k

adm k

x x

x x

−=⎧
⎨ =⎩

 

and to start again loop 2. 
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For discrete problems, we will certainly end up finding a position close to the 
border of the search space, and that will result in the fact that two successive 
positions will be identical. For continuous problems, unfortunately, it will be 
necessary to give a stop criterion, for example a threshold of distance (absolute or 
relative) between the two last positions, below which it is not necessary to go. 

 

Figure 12.1. Confinement by dichotomy. The position x0 is not acceptable, position xadm 
(generally the preceding position of the particle) is. The constraints define the border of the 

search space. By taking, in an iterative way, the median point between an acceptable position 

and one that is not, one can find an acceptable position x2 nearer to this border 

Nevertheless, in all the cases, there is still no guarantee that the acceptable 
position selected will be that nearest to the initial faulty position. Let us note that 
this can sometimes be an advantage, in particular if the choice of the best neighbor 
uses a pseudo-gradient. If the particle left the search space in a certain direction, it is 
probably because this was promising. To take the opposite direction to return to the 
search space is not necessarily a bad idea. 

12.9. Multicriterion treatment 

Let us consider a problem of optimization of a function f formalized as follows: 

 – to minimize f , function of the vectorial variable x, 

 – under the constraints: 

( )

( )

( )

1 0

...

0

...

0

i

I

g x

g x

g x

≤⎧
⎪
⎪
⎪ ≤⎨
⎪
⎪
⎪ ≤⎩

 

Frontiers defined by
constraints

x adm 

x0

x1

x2
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In practice, the constraints are classified in two groups: those that are rather 
easily directly manageable during iterations by mechanisms like those seen above 
(typically interval constraints) and others. It is then these other constraints, say, to 
simplify the notations, those of row 1 to m, which will be the object, with f, of a 
multicriterion optimization. Let us lay down: 

0h f=  1 1 1h g g= +  . . ., m m mh g g= +  

The multicriterion method consists of considering that all these constraints are 
indicative and solving a problem of simultaneous minimization: 

to minimize ( )0 1, ,..., mF h h h=  

For this statement to have a meaning, we must define how to compare two 
vectorial quantities such as ( )F x  and ( )F y , in order to be able to decide whether 
or not position x is better than position y. This comparison rests on the traditional 
concept of dominance [PAR 1896]. Let us quickly remind ourselves about this in 
context. 

The vectorial quantity ( ) ( ) ( ) ( )( )0 1, ,..., mF x h x h x h x=  is said to dominate 

( ) ( ) ( ) ( )( )0 1, ,...,
m

F y h y h y h y=  if, for any index i, the value ( )ih x is less than or 

equal to the value ( )ih y and if the inequality is strict for at least an index j. 

 
In this case, we will say that position x is better than position y. With this 

definition, two positions can be non-comparable. It is enough for this that the 
inequality is true for certain indices i and not for others. 

 
Thus, a multicriterion algorithm of optimization will in general provide several 

noncomparable solutions according to the relation of dominance, whose set is called 
the Pareto front or trade-off surface.  

 
To stick to PSO, we will be able to use specific alternatives [COE 02, HU 02b, 

PARS 02]  or simply a program like TRIBES, by launching it several times with the 
option of comparison by dominance. 

 
Once a certain list of solutions is obtained, from our perspective of treatment of 

constraints, two additional stages are necessary. First, it is necessary to select the 
solutions whose components other than the first are null (but for the precision 
desired), because it is those for which the constraints are respected. And, then, 
among those, it is necessary to seek the one whose first component is minimal, since 
it corresponds to the value of f. 
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EXAMPLE – The function to be minimized is defined by: 

( ) ( ) ( )2 2

1 21 1f x x x= − + −  

interval constraints 
[ ]
[ ]

1

2

0, 2

0,2

x

x

⎧ ∈⎪
⎨

∈⎪⎩
 

another constraint ( ) 2 2
1 2 1 0g x x x= + − ≤  

Figure 12.2 represents the function f and its intersection with the cylinder. 

( ) 0g x = . The analytical resolution is easy and the solution is the point 

1 1
,

2 2
x

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, which gives a minimal value. ( ) 0.17157f x ≅ . 

x1

x2

f

 

Figure 12.2. Problem under constraint other than that of interval.  

The minimum to be found is the lowest point of the curve in thick line 

The interval constraints will be taken into account directly by the mechanism 
described above. The last constraint is written ( ) ( ) ( )1 0h x g x g x= + = . We then have 
to carry out a multicriterion optimization on ( ) ( )1,F x f h= . By launching the 
TRIBES program three times (with 1,000 evaluations for each execution), we obtain 
Table 12.1.  
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x  F(x)  

(0.731 0.683)  (0.1732 0.0000)  

(0.085 0.524)  (0.7785 0.8099)  

(0.708 0.706)  (0.1716 0.0000)  

Table 12.1. Taking into account a constraint by multicriterion optimization. Three  

non-dominated solutions. The second solution does not respect the constraint 

 (second element of F(x) not null). Among those that remain, the last is the best  

(lower value for the first component of F(x), i.e. f(x)) 

Thus, the selection phase eliminates the second solution, which does not respect 
the constraint (second element of F (X) not null). Then, the phase of comparison on 
the first element gives us the third solution as being the best. 

12.10. Treatment by penalties 

The multicriterion method is to be set against the traditional one, consisting of 
carrying out a combination of the constraints to build only one new function to be 
minimized. There again all the directly untreated constraints in the algorithm (and 
supposed standard ( ) 0g x ≤ ) are regarded as indicative constraints and gradually 
taken into account, but it is for the user to define weighting parameters. In the spirit 
of the step that led us to define an adaptive algorithm without parameters, the 
preceding method is preferable, but nevertheless let us recall the principle of one of 
the many methods by penalties, because we will apply it later on for comparison 
[STO 99]. One thus keeps only the interval constraints and possibly those bearing on 
the discrete character of certain variables. The others are integrated in a new 
function to minimize, defined in the following way: 

( ) ( )
( ) ( ) ( )
( ) ( )( ) ( )

1

0 1

0 1  with 1

with 1i

i i

i i i i i

m b

i i
i

g x c x

g x c x s g x s

F x f x a c x b
=

⎧
≤ ⇒ =⎪

⎪ > ⇒ = + ≥⎨
⎪
⎪ = + ≥∏
⎩

 

The user must define 2m + 1 parameters, which is far from being a trivial task if 
one wants to make sure that the global minimum of F is reached at the same point of 
the search space as that of f. 
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12.11. C source code. Dichotomic search in a list 

/ * Dichotomic search in an ordered list (ascending order) 
Input:  any x value 
Output:  the rank in the list of the nearest value 
 
Note: the program is deliberately not optimized 
to be easier to understand 
*/ 

 
# include < math.h > 
# include < stdio.h > 
# include < stdlib.h > 
 
static double list[10] = 1, 3, 7, 20, 21, 22, 25, 28,31,32; 
int  N = 10; 
 
void main() 
 
int  i, i_min, i_max, rang; 
double x; 
 
x = 7.3; //Value to test 
 
i_min = 0; i_max = N-1; 
test: 
if (i_max = = i_min + 1) goto compares; 
if (x = = list[i_min]) rang = i_min;goto FIN; 
if (x = = list[i_max]) rang = i_max;goto FIN; 
i = (int)(0.5*(double)(i_min + i_max)); 
if (x < list[i]) i_max = i; goto test; 
if (x > list[i]) i_min = i; goto test; 
rang = I; goto FIN; 
compare: 
if (x-list[i_min] < list[i_max]-x) rang = i_min; else rang = i_max; 
FIN: 
printf(“rank%i, value%f”, rang + 1, list[rang]); 

12.12. For “amatheurs” 

Any volume is a cube, or how to cope with constraints by homeomorphism 

Let us consider a problem of continuous or semi-continuous optimization having 
only interval constraints: 

to minimize ( )f x , with { },min ,max, , 1,...,d d dx x x d D⎡ ⎤∈ ∀ ∈⎣ ⎦  

It can be reformulated “to minimize ( )yφ , with [ ]0,1
D

y∈ ” by the simple 

bijective continuous transformation (homeomorphism) ,min

,max ,min

d d

d

d d

x x
y

x x

−
=

−
 , and 

by defining φ  by ( ) ( )y f xφ = . 

Thus, the search space, which was initially a D-parallelepiped, is now a D-cube. 
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This can be generalized. There is a strange theorem stipulating that the “number” 
of points in [ ]0,1  is the same as in any other finite interval (of course that is not true 
for discrete values). More generally, it is possible to put in continuous bijection the 
unit D-cube with any bounded subset H  of D

R , provided that the topology of H  
is that of a cube (no “holes”). However, in practice, any search space defined by 
constraints either is of this type or can be seen like a finite union of sets of this type. 

 
It is thus theoretically possible to replace it by one or several D-cubes and for 

each one to define φ  as above. The problem of optimization to be solved thus no 
longer has anything but interval constraints. The only tricky point is that 
“theoretically” can sometimes mean “impossible in practice”! However, even if 
properly mathematical work upstream is difficult, it can be worthwhile. 

 
Let us treat two small examples by this method. 
 
The first is that which we saw in the multicriterion section of treatment of the 

constraints. 

EXAMPLE 1 – Quarter of disc = square: 

to minimize ( ) ( ) ( )2 2

1 21 1f x x x= − + −  

under the constraints 
[ ]
[ ]

1

2

0, 2

0,2

x

x

⎧ ∈⎪
⎨

∈⎪⎩
 and ( ) 2 2

1 2 1 0g x x x= + − ≤  

The search space H defined by these constraints is the quarter of a positive disc 
of radius 1 and center ( )0,0 . Let us call ( )2C  the unitary 2-cube, i.e. the square of 
side 1. A possible homeomorphism (there is an infinite number of them) is given by: 

( ) ( ) ( )1 2 1 2

2 2
1 1 2

2
2

1

, , 2

2
atan

x x H y y C

y x x

x
y

x

µ

π

⎧
⎪ ∈ ⎯⎯→ ∈⎪
⎪ = +⎨
⎪

⎛ ⎞⎪ = ⎜ ⎟⎪ ⎝ ⎠⎩

 

The function φ  is then defined by: 

( ) ( ) ( )1 2 1 2 1 2 1 2, 2 , , cos , sin
2 2

y y C y y f y y y y
π πφ ⎛ ⎞⎛ ⎞ ⎛ ⎞∀ ∈ = ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠
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and the equivalent problem becomes: 

to minimize ( )1 2,y yφ , under the constraints 
[ ]
[ ]

1

2

0,1

0,1

y

y

⎧ ∈⎪
⎨

∈⎪⎩
 

Once the position of the minimum ( )* *
1 2,y y  is found in ( )2C , the corresponding 

position in the original reference frame is calculated by applying the transformation: 

1µ − , that is to say * * * *
1 2 1 2cos , sin

2 2
y y y y

π π⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 

If we use same TRIBES program as above, we now find the nearest solution 
within 410−  in five times fewer evaluations (approximately 200). 

EXAMPLE 2 – Triangle = square: 

to minimize ( )1 2,f x x , under the constraints 
1

2

1 2

0

0

1

x

x

x x

≥⎧
⎪ ≥⎨
⎪ + ≤⎩

 

The search space H is then the triangle ( ) ( ) ( ){ }0,0 , 1,0 , 0,1 . A possible 
homeomorphism is: 

( ) ( ) ( )1 2 1 2

1 1 2

2
2

1 2

, , 2x x H y y C

y x x

x
y

x x

µ
⎧
⎪ ∈ ⎯⎯→ ∈
⎪⎪ = +⎨
⎪
⎪ =

+⎪⎩

 

The function φ  is defined by: 

( ) ( ) ( ) ( )( )1 2 1 2 1 2 1 2, 2 , , 1 ,y y C y y f y y y yφ∀ ∈ = −  

Again, the equivalent problem becomes: 

to minimize ( )1 2,y yφ , under the constraints 
[ ]
[ ]

1

2

0,1

0,1

y

y

⎧ ∈⎪
⎨

∈⎪⎩
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NOTE – As you have probably seen, one can transform example 1 into example 2 by 
the changes of variable 2

1 1z x=  and 2
2 2z x= . It is not rare that one can, thus, in real 

problems, be brought back, in the first stage, to linear constraints. The search space 
then becomes a polyhedron, always decomposable in D-triangles (true triangle for D 
= 2, tetrahedron for D = 3, etc.). For each of them the bijective mapping with the 
unit cube is rather easy. The problem of optimization boils down to several 
subproblems having only interval constraints. 

12.13. Summary 

A problem of optimization always amounts to finding a position that satisfies a 
certain number of constraints. In an iterative algorithm like PSO, some of these 
constraints can be taken into account entirely with each displacement of a particle, 
or simply respected in an increasingly strict progressive way during iterations. 

The first technique is preferred for interval constraints or the “all the different 
coordinates” type, whereas, for example, the treatment of discrete variables is 
related to the choice one or the other technique, each one having its advantages and 
its disadvantages. 

 
Three progressive techniques are of very general use: by dichotomy, by 

penalties, and multicriterion optimization. The latter is the simplest to implement 
and remains well in the spirit of a method of optimization without parameters to be 
defined by the user. 

 
A considerable gain in effectiveness can be obtained when a preliminary 

mathematical transformation puts the search space in bijective mapping with one or 
several D-cubes. 
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Chapter 13 

Problems and Applications 

13.1. Ecological niche 

At this stage, and perhaps for quite some time, the parabola functions, Ackley, 
Griewank and others may have started to seem quite tedious. It is high time we 
considered some examples that are a little more interesting. It is a question 
nevertheless here of just illustrating the field of competence, the “ecological niche”, 
of PSO and of evaluating its level of effectiveness. 

We have already spoken about it a little, but let us specify here the types of 
optimization problems that the current versions of PSO can tackle effectively: 

 – continuous, discrete, or mixed search space. For certain combinatorial 
problems, it is nevertheless preferable to use a specific or hybrid version; 

 – function with several local minima. Naturally, PSO can treat functions with 
only one minimum, as we have seen and re-examined with the inevitable Parabola 
function, but sometimes a little less well than other algorithms, such as gradient 
descent. Let us note, nevertheless, that PSO becomes interesting again if the 
function, even if unimodal, is not continuous (and, a fortiori, not differentiable). 

 
For these two characteristics, it is advisable to add the fact that convergence 

being often fast, dynamic optimization in quasi real time is also a favorite field in 
PSO; for example, for the uninterrupted training of neural networks. It was one of 
the first real applications, and remains a very active field of research, with 
sometimes considerable savings of time compared to other methods 
(backpropagation, genetic algorithms) [CON 02, GUD 03, ISM 99, SET 03, TAN 02, 
VAN 01, ZHA 01]. 
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As we have seen, this velocity of convergence can also be used profitably for 
multiobjective problems, even without calling upon specific versions of PSO, such 
as those developed by some researchers [COE 02, HU 02B, PARS 02].  

13.2. Typology and choice of problems 

The problems of optimization can roughly speaking be grouped in four classes, 
according to what the function f to minimize represents and the way in which it is 
calculated. To simplify, let us consider only one function, but the typology remains 
valid for multicriterion optimization. 

Type 1 

f represents exactly the problem to be solved. It is calculable in an analytical or 
algorithmic way. It is typical of the test functions that are used as a benchmark. The 
description of the problem is generally simple and concise (formula or relatively 
short source code). 

Type 2 

f models a real process in an analytical way. It is hoped that the optimization of f 
will enable that of the process, but there is now an uncertainty, as a model never 
completely represents reality. Working out the problem can take rather a long time. 
Approximations are made; there are often complex constraints on the acceptable 
solutions. 

Type 2' 

Like 2, but f is no longer analytical. Its calculation is carried out by a simulation 
of a real process. In principle, it is the same thing as the preceding case, but the 
computing time of a position is greater. Comprehension of the problem can only be 
achieved by using simulation, the description of which can be rather long. 

Type 3 

f is estimated by really launching a physical process. The time necessary for an 
evaluation can then be extremely long, likely to take hours. The description of the 
problem can also be very long and needs a good comprehension of the process 
concerned. 

PSO has already treated successfully all these types of problems, but since the 
goal of this book is to present the method itself rather than its applications, we will 
examine below only examples of types 1 and 2. 
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13.3. Canonical representation of a problem of optimization 

In a problem of optimization, it is necessary to know what one optimizes. It is 
not necessarily obvious. Or, more precisely, it is not always simple to formalize a 
problem, even when one can express it in current language. We will not enter into 
debates that try to define what is meant by expressions like “optimizing the 
timetables in a college” or “optimizing a position of work in a factory”, because so 
many non-quantifiable factors come into play. 

Thus let us suppose from the start that the function f to optimize is known or, 
more precisely, calculable and, moreover, numerical. But calculable where? For 
which positions? The simple fact of putting these questions highlights that it is 
necessary first to detail the imperative constraints, because they delimit the search 
space; then to give the function to be optimized, which must be defined everywhere 
in this search space; and finally, possibly, the indicative constraints. Finally, our 
general representation of a problem of optimization will comprise three sets: 

 – the list of the imperative constraints, defining the search space, 

 – the function to be minimized on this space, (in the broad sense, as we have 
seen, it can be non-explicit and appraisable only via one simulation or even a real 
process), 

 – the list of the indicative constraints, with their measurements of 
dissatisfaction. 

Once a problem is well-posed, we will obviously be interested in its resolution 
by PSO. But here we are interested only in the native PSO, i.e. the methods such as 
those we have already seen, parametric or not, and which have the following 
characteristics in common: they work on real numbers (possibly with granularity, 
therefore being able to be in fact integers) and they assume that, at least for each 
dimension, the concept of distance between two coordinates has a meaning. We will 
turn to the canonical PSO, thanks to which specific versions can be worked out, only 
in the second part of this work. 

 
Let us now begin to look at problems that have been specially selected so that the 

native PSO cannot solve them in a satisfactory way. 

13.4. Knapsack 

We seek 10 different integers between 1 and 100 whose sum makes 100. The 
search space is a priori R

10 but we add the constraints of granularity equal to 1 and 
all different coordinates. Thus, after each movement, each particle is readjusted on 
an acceptable position ( )1 10,...,x x . The value of this position is simply given by the 
function: 
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( )
10

1
100 d

d

f x x
=

= − ∑  

If we run a program like TRIBES 20 times on this problem, there must be 
between 43 and 277 evaluations to find 20 solutions, including 18 different ones. 
For this combinatorial problem the tool could seem acceptable, but that is only 
because of the relatively significant density of the solutions in the set of all possible 
combinations. It thus has good chances of finding some by chance. Again, we are in 
a situation where the numerical values of the coordinates have a meaning and are not 
a simple arbitrary coding. 

Some examples of results: 

 ( )3,1,12,21, 2,8,6,30,13, 4  in 80 evaluations 

 ( )2,5,55,3,7,1, 4,6,8,9  in 144 evaluations 

13.5. Magic squares 

We seek here magic squares n n× , filled with different integers all between 1 and 
100, with the rule that the sums in rows must be equal and that the sums in columns 
must be equal. To calculate the function to be minimized, it is thus enough to 
consider on the one hand all the differences in sums for each pair of lines and on the 
other hand all those for each pair of columns. By adding the squares of these 
differences, we build a function for which it is necessary to find a value zero. It is 
not necessary to specify that the sum of the lines must be equal to that of the 
columns, because that is necessarily true. 

As before the values of the coordinates have a meaning as well as the numerical 
operations made on them. But the density of solutions is much lower. For 3 × 3 
squares the problem is of dimension 9 and that functions perfectly. But as soon as 
we reach 5 × 5 squares, the performances are degraded seriously. With 50,000 
evaluations per execution, we again find no more than 12 solutions after 20 
executions. 

 
Some examples of solutions are given below: 

 

89 46 22

62 55 40

6 56 95

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 in 823 evaluations 
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15 85 81 47 46

50 72 42 30 80

44 87 79 24 40

83 8 33 95 55

82 22 39 78 53

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 in 2,455 evaluations 

The next two types of problem, in which the integers used are in fact only 
arbitrary codes, are even more beyond the possibilities of the native PSO. 

13.6. Quadratic assignment 

This kind of problem is more interesting in practice, because of its rather general 
application. Let us point out a possible formulation. One considers a graph with D 

nodes and whose arcs are valued (here the values are often called flows). The nodes 
are to be positioned on D sites for which one knows the pair distances. For a given 
disposition, for each pair of nodes, the flow to be made to pass must thus be at the 
distance separating these nodes. The quantity considered is then the product of the 
flow by this distance and the function to minimize the sum of these D

2 
quantities. 

See for example [DRE 03] for a more complete presentation of this problem and 
some methods of resolution. 

It is common to represent the sites by numbers 1 to D and also the nodes of the 
graph by numbers 1 to D. A position in the search space is then given as a 
permutation of the integers of 1 to D, with the convention that the dth 

number 
represents that of the site of the node coded by the integer d. 

 
Contrary to the preceding examples, all these numbers are purely conventional. 

However, the native PSO (non-specific) will handle them like numbers, since the 
equations of motion imply additions, subtractions, and multiplications by scalars. To 
distinguish clearly the difference between the two ranges and to multiply it by a 
coefficient means almost nothing with regard to the problem to be solved or, at least, 
not really what is implicitly envisaged in PSO. It is therefore not surprising that the 
results are now disastrous; for the traditional problem named SCR12, no solution is 
found even after 106 

evaluations (to reassure you immediately, fewer than 1,500 will 
be needed by adding a local search). 

 
Lastly, to conclude this small list of problems located outside the field of 

competence of the native PSO, let us quote the prototype of combinatorial problems, 
the famous traveling salesman. We do expect results to be quite as bad, since it is 
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formally equivalent to the previous problem, and from this point of view it would 
not even be necessary to try to treat it, but it will be useful for us as an example in 
the second part to show how a specific PSO can be developed. 

13.7. Traveling salesman 

Everybody is aware of this problem, consisting of finding the shortest Hamiltonian 
circuit (not twice the same node) in a graph whose arcs are valuated by lengths. 
There also it is common to indicate the nodes of the graph by integers, but it is still 
only an arbitrary coding and the algebraic operations of the equations of motion of 
the native PSO do not have great significance. 

However, the matter should be nuanced. It was already true in the preceding 
example, but easier to explain here. Let us consider two positions coded  
by two permutations of the integers of 1 to D, that is to say ( )1,..., ,...,d Dx x x x=  
and ( )1,... ,...,d Dy y y y= , and ask ourselves what can be meant by, for example, 
hyperspheric proximity of x of radius x yρ = − , by using the Euclidean norm 
systematically. 

 
On the one hand, we do see that there is no question of speaking about distance, 

if only because the same position can be coded in D different ways (by cyclic 
permutations). However, on the other hand, despite everything, the positions z that 
observe the condition x z ρ− ≤  are, in a certain way, very “close” to x even if 
their set can hardly be defined like a sphere. Indeed, let us call 'ρ  the greatest 
integer less than or equal to ρ . Then z cannot have any more 'ρ  coordinates that are 
different from those of x of the same rank. Similar reasoning holds for other types of 
proximity distributions. 

 
This explains why, even if it is a little like the preceding case, a rather simple 

problem such as the one with 17 nodes, referred to as BR17, cannot be solved with a 
search effort of 106 evaluations, but this could be reduced to less than 5,000 by the 
simple addition of local search. More generally, the exploratory capacity of PSO 
remains interesting for combinatorial problems, but it cannot be used for more than 
the approximate detection of promising fields in the search space. It is then necessary 
to pass it on to another algorithm for accurate localization of a solution. 

 
On the other hand, if we place ourselves now in the heart of the field of 

competence of the traditional PSO, i.e. roughly the continuous and mixed 
continuous-discrete (non-combinatorial) problems, it is remarkably effective. We 
have already seen it applied to traditional test functions; let us show it now in some 
slightly more interesting examples. 
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13.8. Hybrid JM 

This small three-dimensional problem of type 1 was proposed by Bernard 
Jeannet and Frederic Messina [JEA 03]. The imperative constraints defining the 
search space for dimension 3 are: 
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and the function to be minimized is given in analytical form: 

( ) ( ) ( )2
1 2, 3 1 1 2 2 1 2 3, 20 2f x x x a x x a x x x= +  

The variable x1 is in fact only an index used to return values starting from two 
lists a1 = (0.5 0.3 0.8 0.1 0.9 0.12) and a2 = (–0.5 0.6 0.1 1.5 –1 0.8). A minimum of 
–112.5 is obtained for x1 = 4, x2 = –7.5, and x3 = 10. 

The method suggested by the authors (from arithmetic of intervals and inclusion 
functions) gives the solution after 3,271 evaluations. This method being 
deterministic, the result is absolutely certain, which is obviously never the case with 
PSO. For an honest comparison, we must therefore impose a very high success rate, 
for example, 99.99%. As Figure 13.1 shows clearly, a program such as TRIBES is 
definitely more effective. Even if an accuracy of 10

–6 
is required on the result, fewer 

than 1,500 evaluations are required on average to reach this success rate. 
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Figure 13.1. Hybrid problem 3D. One dimension is continuous, the other two are discrete. 

The desired precision is either 10
–3 

or 10
–6

.
 

For each maximum number of evaluations per 

execution run, one estimates the rate of failure by carrying out 500 executions with TRIBES 

without re-initialization of the pseudo-random number generator 
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13.9. Training of a neural network 

Historically, the first applications of PSO consisted of accelerating the evaluation 
of the transfer functions in neural networks. This phase is often called training, when 
the network self-modifies according to data provided gradually, to entries and to the 
expected results. It is called training because the evaluations are imposed by a third 
party, in fact, precisely, by PSO. 

In these applications, PSO has very largely surpassed the traditional method of 
the time, backpropagation. But improved alternatives already existed. More recent 
comparative work has in fact shown that if PSO remains the best general algorithm 
(better, for example, than the evolutionary algorithms [CHI 98]), several specific 
methods are generally more effective (Rprop, in particular [RIE 94]), but not always 
and sometimes only a little. 

 
Let us examine that on some traditional examples. In those that follow, the 

networks have three layers (Input with E nodes, Hidden with C nodes, and Output 
with S nodes). All the Entry arcs towards Hidden exist, just as all the arcs of Hidden 
towards Exit. The total number of arcs is thus A EC CS= + . Let us index by i the 
nodes of the Entry layer, by j those of the Hidden layer, and by k those of the Exit 
layer. If E given ie  are presented in entry, then each node j carries out a weighted 
combination of these entries and generates an activation equal to: 
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In the same way, each node k produces an exit equal to: 
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The exact formulas are in the source code of TRIBES, thanks to the kindness of 
Rui Mendes [MEN 02]. The significant point is that on the whole there are 
D A E C= + +  variables to find: weights ,i jw  and ,j kw , as well as the shifts 

jα  and 

kβ . Thus, the dimension of the search space is D. From now on, all these variables 
are supposed to be the components of a real D-vector X. 

To educate the network, one has P sets of values of entry, with, for each play p, 

the desired values of exit ( )* * *
1, , ,,..., ,...,p k p S pg g g . The function to be minimized is 
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calculated classically on the ensemble of the benchmark sets, as the average 
quadratic distance between all the found outputs and those desired: 

( ) ( )2*
, ,

1 1

1 P S

k p k p
p k

f x g g
PS = =

= −∑ ∑  

The examples are treated with TRIBES, with the help of a small modification 
allowing a more relevant comparison with the results published for other methods: 
the initialization of a position is always done in [–1 1]

D and the interval constraints 
are not activated. For the same reason, the averages are calculated only on over 30 
executions of the program. It turns out that the variance of the results is rather small, 
about 0.04. In practice, that means that the found average values have more than 
99% chance of being right to within less than 0.02 (confidence interval of width 
0.04). 

13.9.1. Exclusive OR 

These are the rudiments of neural networks. Two nodes in input, two in hidden 
layer and one at output. The inputs are binary and there are four possible cases. The 
aim of the game is to find at exit the truth table of the logical exclusive OR. 

The dimension of the search space is 9. PSO (TRIBES) finds a solution with 
f(x) < 0.00005 on average after 2,040 evaluations. On this simple problem, it seems 
that it is the best result published. 

13.9.2. Diabetes among Pima Indians 

The neural network must be calibrated to give a diagnosis of diabetes according 
to seven numeric variables (such as the number of childbirths). The benchmark set 
comprises 200 cases. The decision is theoretically binary and the network thus has 
seven entries and an exit. The transition course comprises seven nodes. The dimension 
of the problem is thus 64. 

Let us note that the exit is nevertheless given in the form of a real number 
between 0 and 1. We can see this number as indicating the confidence to be granted 
to the diagnosis. For example, a value of 0.5 corresponds to a null confidence. 

 
In this example, the average value of the error f(x) after 40,000 evaluations is 

0.26. We will see that the specific algorithms do better. 
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13.9.3. Servomechanism 

The detail of this problem can be found in [QUI 93]. In short, it is a question of 
optimizing a neural network having to predict the reaction time of a 
servomechanism dependent on four parameters: two electronic gains and two 
mechanical configurations. The network thus has four entries and an exit. The 
intermediate layer comprises four nodes and the dimension of the problem is thus 
28. 

The benchmark set comprises 167 cases. With treatment by TRIBES, the average 
value of the error f(x) after 40,000 evaluations is 0.60. There still, the specific 
algorithms do better, as we will now see in a small summary table. 

13.9.4. Comparisons 

Except for the last line, the results of Table 13.1 come from [MEN 02]. The first 
four methods are parametric. The selected parameters are standard values, known to 
give good results. For the parametric PSO, the authors chose a version with classical 
constriction, without distinction between explorers and memories. The only 
originality is the topology of the network of information, called Pyramid.  It can be 
seen as a stacking of tetrahedrons whose summits are the particles and the edges the 
information links. The particles thus do not have all the same number of links 
(between three and six). 

The specific method Rprop is unquestionably the overall best, pursued closely by 
the parametric PSO. The non-parametric adaptive PSO, represented by TRIBES, 
attains a very honorable third position, preceding the genetic algorithm. Curiously 
enough, backpropagation, long considered as the panacea, is largely outdistanced, 
primarily because of its very bad score on the simplest problem (exclusive OR). 

  exclusive OR Pima Indians Servomechanism  Average 

Backpropag.  0.48  0.18  0.57  0.41  

Genetic Algo.  0.17  0.26  0.54  0.32  

Rprop  0.06  0.18  0.45  0.23  

Param. PSO  0.00  0.27  0.48  0.25  

TRIBES  0.00  0.26  0.60  0.29  

Table 13.1. Training of a neural network. Comparisons of five methods applied to three 

problems. The specific algorithm Rprop is as a whole appreciably better, but PSO, 

parametric or adaptive, is well-placed 
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13.10. Pressure vessel 

This realistic problem of type 2 has been dealt with by many methods, hence its 
interest. The goal is to design a container of compressed air consisting of a 
cylindrical body and two segments of a sphere. It must withstand an internal 
pressure maxP  and offer a volume V. To achieve this, one uses sheets, the thicknesses 
of which are necessarily multiples of a certain value δ. 

The variables concerned are as follows: 

 – 1x , the thickness of sheet of the cylindrical part, 

 – 2x , the thickness of sheet of the segments of a sphere, 

 – 3x , the internal radius of the cylinder and segments of a sphere, 

 – 4x , the length of the cylindrical part. 

The pressure maxP  is 3,000 and volume V is 750. The numerical values are 
purposely given without units, because it obviously does not influence the research 
solution. In the original definition of the problem, the pressure was in psi (pounds 
per square inch) and volume in ft

3 
(cubic feet). The increment δ thickness of sheet is 

0.0625. The constraints defining the search space are explained in [SAN 90]. It is 
enough for us to list them: 
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Let us note immediately that constraints 4 and 5 indicate simply the discrete 
character of the variables 1x and 2x  according to the increment δ and that the 
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following ones are interval constraints put in condensed form. The size to be 
minimized is the cost price of manufacture, which incorporates that of materials, 
their working, and their assembly (welding). It is modeled by the formula: 

( ) 2 2 2
1 3 4 2 3 1 4 1 30.6224 1.7781 3.1611 19.84f x x x x x x x x x x= + + +  

The analytical solution is: 
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which gives the value of 7,197.72893 for the function. 

This problem was dealt with by 10 methods (differential evolution, Lagrange 
multipliers, genetic algorithms, MARS [LIT 98], SOMA [ZEL 04], etc.). The very 
best result published in mid-2004 was that of SOMA, that is to say a minimal value 
reached of 7,197.729 after 100 tests of 51,918 evaluations each. This “round” 
number does not arise from the preliminary fine adjustment of seven parameters (a 
choice of strategy and six numerical parameters). The number of attempts to find 
this adjustment is not indicated by the author. 

 
Moreover, to take into account constraints 1 to 3, the problem was initially 

transformed according to the method of the penalties, which we have seen to give a 
new function F  to be minimized, which is equal to f  in an item X only when all 
the following constraints are satisfied: 
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Again, it is not specified how the weighting coefficients were established, but it 
is easy to imagine that it required several tests. 

We will thus solve this problem with TRIBES under the same conditions – a 
number of executions (100) and a maximum number of evaluations per execution 
(51,818) – and will compare them with those of SOMA. In fact, this problem is 
often dealt with in two forms: exactly as described below; and, as a continuous 
problem (one relaxes the constraint of discretization δ of the thicknesses of the 
sheets). 

13.10.1. Continuous relaxed form 

The analytical solution is different only because the lower limits for 1x  and 2x  
are now acceptable values: 
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which gives the minimal value of 7,019.03109 for the function. Table 13.2 
summarizes the results obtained by comparing them with those of SOMA. For the 
precise definition of the many parameters of this method, you can refer to the work 
of Ivan Zelinka referred to above. 

First, note that PSO, or at least the adaptive algorithm TRIBES, is slightly more 
effective without having parameters to define. Second, and perhaps most interesting, 
with an adaptive version of PSO it is not even necessary to seek a system of 
penalties to take into account the constraints: the multicriterion method gives an 
excellent result, only slightly less good than the previous one. From the point of 
view of an engineer, it is an unquestionable advantage.  
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Method ⇒  SOMA, penalties  
TRIBES, 

penalties  

TRIBES, 

multicriterion  

Max. no. of 

evalutions  

per execution  

51,818  51,818  51,818  

No. of executions  100  100  100  

Parameters ⇒  

Result ⇓  

AlltoOne 

PathLength = 3 

Step = 0.11 

PopSize = 20 

PRT = 0.1 

Migration = 100 

MinDiv = negative  

  

1x  1.10015  1.1  1.1  

2x  0.600001  0.6  0.6  

3x  57.0024  56.99482  56.99447  

4x  50.9591  51.00125  51.00138  

( )F x  or ( )f x  7,019.032  7,019.031  7,019.033  

Table 13.2. Pressure vessel, continuous relaxed problem. Best results of 100 executions of 

51,818 evaluations each, for comparison with SOMA method. The adaptive PSO, 

implemented here by TRIBES algorithm, is slightly more effective while not requiring a 

parameter setting. Directly taking into account the constraints by the multicriterion 

 method gives a result very close to the optimum 

13.10.2. Complete discrete form 

If we return to the complete problem, i.e. with discrete values for the variables 

1x  and 2x , we arrive at similar conclusions, as Table 13.3 indicates, although for 
SOMA it is necessary to modify a parameter (PRT, which is a level of perturbation). 
Here also TRIBES is equally effective, the more so as it finds the true optimum 
instead of the local optimum detected by SOMA. This global optimum can also be 
obtained by SOMA, but at the price of a different strategy (called AllToAll) and of 
more than 200,000 evaluations per execution. Indeed, the variation of value of the 
function between the two solutions is detectable only beyond the fourth decimal.  
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Method ⇒  SOMA, penalties  
TRIBES, 

penalties  

TRIBES, 

multicriterion  

Max. no. of 

evaluations per 

execution  

51,818  51,818  51,818  

No. of executions  100  100  100  

Parameters ⇒  

Result ⇓  

AlltoOne 

PathLength = 3 

Step = 0.11 

PopSize = 20 

PRT = 0.5 

Migration = 100 

MinDiv = negative 

  

1x  1.125  1.125  1.125  

2x  0.625  0.625  0.625  

3x  55.8592  58.2901  58.2901  

4x  57.7315  43.6926  43.6927  

( )F x  or ( )f x  7,197.729  7,197.729  7,197.729  

Table 13.3. Pressure vessel, complete discrete problem. SOMA requires a modification  

of parameter PRT, whereas TRIBES remains just as effective and even finds the  

really optimal solution, whether it be with the method of penalties or,  

in a much more practical way, with the multicriterion method 

Out of curiosity, we can look at what a non-adaptive PSO program, such as we 
detailed in the first chapters, gives. This time, we should define parameters. Let us 
take the standard values already used many times: 20N =  (size of the explorer-
swarm), 20M =  (size of the swarm report), 3K =  (number of information links by 
memory), 2.07ϕ =  (for the calculation of the confidence coefficients), and 
definition of the information links at random before each iteration. We point out, 
nevertheless, that these values are the fruit of many tests on various problems. Then 
we easily obtain a result of the same quality in only 15,000 evaluations. Obviously 
as a consequence, we can ask whether this number of evaluations would also be 
sufficient for TRIBES. As Table 13.4 shows, it is not completely the case, although 
the solutions obtained are nevertheless of very good quality. It is the price to pay for not 
having parameters to define.  
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Method ⇒  
Parametric PSO, 

penalties  

TRIBES, 

penalties  

TRIBES, 

multicriterion  

Maximum no. of 

evaluations per 

execution  

15,000  15,000  15,000  

No. of executions  100  100  100  

Parameters ⇒  

 

 

Result ⇓  

20N =  

20M =  

3K =  

2.07ϕ =  

links redefined 
randomly with each 

iteration 

  

1x  1.125  1.125  1.125  

2x  0.625  0.625  0.625  

3x  58.2901  58.2891  58.2867  

4x  43.6926  43.6987  43.7115  

( )F x  or ( )f x  7,197.729  7,197.806  7,197.938  

Table 13.4. Pressure vessel, with parametric PSO. Fewer than 15,000 evaluations are needed 

to obtain the best-known solution, provided, of course, a good set of parameters has been 

defined. With an adaptive version and the same constraint on the number of evaluations, 

 the result is slightly less good 

13.11. Compression spring 

This problem is in the same vein as the previous one and was dealt with by the 
same methods. The goal is to produce a cylindrical compression spring having 
certain mechanical characteristics by using the least possible metal. The variables 
concerned are as follows: 1x , the number of coils; 2x , the external diameter of the 
spring; 3x , the diameter of the wire forming the spring. 

The constraints defining the search space are also explained in [SAN 90]. They 
are a little more complicated and are expressed using intermediate variables: 
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The constraints themselves are indicated below. Those of intervals and discrete 
values are directly presented in a condensed form: 
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The volume of metal to be minimized is given by: 

( ) ( )
2

2
2 3 1 2

4
f x x x x

π= +  

In mid-2004, this problem was dealt with using 22 methods, including simulated 
annealing, cellular automats, and several alternatives of genetic and evolutionary 
algorithms. The complete list is in [LAM 04], which details the one that gives the best 
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result: differential evolution. The constraints are taken into account there by the use 
of penalties. Various formulations seem to give equivalent results and we will use 
the following one: 
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Here again, it is not specified how, or after how many tests, the various 
coefficients could be given. Let us note that differential evolution definitely uses 
fewer parameters than SOMA: a constant size of population NP, a probability of 
crossing CR, and a constant coefficient F, which plays something of the same role as 
the random confidence coefficients of the traditional PSO. For this problem, the 
optimal values retained by Jouni Lampinen and Rainer Storn are 50NP = , and 

0.9F = , and number of evaluations = 12,500. 

Table 13.5 indicates the best result among 100 executions for differential 
evolution and TRIBES. The latter used the same function ( )F x , incorporating the 
constraints as for differential evolution, and the multicriterion method, which makes 
it possible to take the constraints as they appear, without having to define weighting 
coefficients. As we can see, the results are still very good there, the more so as, in 
fact, if we stick to the method by penalties, the optimum is obtained to within 10

–6 
in 

fewer than 8,000 evaluations. For the multicriterion method, one needs rather more 
evaluations (13,000), because with 12,500 we just find a local optimum, extremely 
close in value. 
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Method ⇒  

Differential 

evolution, 

penalties  

TRIBES, 

penalties  

TRIBES, 

multicriterion  

Max. no. of 

evalutions  

per execution  

12,500  12,500  
12,500 
13,000  

No. of executions  100  100  100  

Parameters ⇒  

Result ⇓  

50NP =  
0.9CR =  

0.9F =  
  

1x  9  9  
5 
9  

2x  1.2230410  1.22304097  
1.658318 
1.228618  

3x  0.283  0.283  
0.307 
0.283  

or ( )f x  2.65856  2.658559  
2.699494 
2.670683  

Table 13.5. Compression spring. The adaptive PSO is at least as effective as the best earlier 

known method, differential evolution. The number of evaluations (12,500) was retained for 

comparison but actually the optimum is reached to within 10
–6 

in fewer than 8,000 if one uses 

the same aggregation of constraints by penalties as in the resolution by differential evolution. 

However, one needs a few more evaluations (13,000) to find the solution 

 by the multicriterion method 

13.12. Moving Peaks 

In this academic example, it is a question of testing the capacity of an 
optimization algorithm not only to find an optimum, but also not to lose too much 
sight of it if the function to be optimized changes in the course of the process. The 
benchmark set of “Moving Peaks”, with its mathematical explanation and the source 
code in C, is on the site http://www.aifb.uni-karlsruhe.de/~jbr/MovPeaks/. In two 
dimensions, with ten peaks, one obtains, at a given moment, something like what is 
represented in Figure 13.1. 

A certain number of parameters make it possible to create various problems. Let 
us take the following values, which correspond to a scenario treated by several 
authors, in particular the originator of the benchmark set, Jürgen Branke [BRA 03]:  

 – search space [0 100]
5
;
 

 – 50 peaks of conical form; 

 – displacement in a random direction all 5,000 evaluations, on a distance from 1; 
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 – height of each initially random peak between 30 and 70 (for the positive parts) 
then varying with more than 7; 

 – width of each initially random peak between 1 and 12 (for the positive parts) 
then varying with more than 1; 

 – 50 executions of 500,000 evaluations, to calculate average values. 

This problem is rather difficult, because even if the peaks move slowly, their 
height can vary rather a large amount. The maximum can thus be moved abruptly. 

It is now necessary to define a measurement of the performance, the maximum 
value of the peaks being assumed to be known after initialization and each 
displacement. A first mode of calculation consists in setting the distance between the 
current value and the maximum so that it is known immediately before each change. 
This has the advantage of being coherent with the usual calculation of performance 
for the static problems: if the peaks do not move at all, one finds the same result, i.e. 
the best value obtained during the execution. Let us call this value error of follow-

up. However, the author of the benchmark set proceeds differently. He defines a 
meter in which, with each evaluation, he accumulates the best-known performance 
and, at the end of the execution, he divides this total by the number of evaluations. 
The number obtained is obviously greater than the preceding. Let us call it 
continuous error of follow-up. 

 
With the genetic algorithm used by J. Branke, the continuous error of follow-up 

average on 50 executions of 500,000 evaluations is 4.6, as is indicated on its site. 
We will see in the second part of this work that there is a PSO more or less specific 
to this kind of dynamic optimization. For example, the multi-swarm parametric 
algorithm designed by Tim Blackwell functions very well, but with the proviso of 
taking the number of swarms equal to the number of peaks. On the same problem, 
the continuous error of follow-up average is only 2.6 [BLA 04]. This is due to the 
velocity of convergence of PSO in itself. 

 
To the extent, moreover, that even with a non-specific PSO like TRIBES, one 

already obtains good results (average error of follow-up 3.31, average error of 
continuous follow-up 4.18). It is enough, after each change, to re-initialize the swarm, 
keeping the best particle if the new value of the function for the position it occupies 
proves to be still largest. Figure 13.2 shows us a typical execution, for which the 
variation to the maximum was calculated after each evaluation. It decreases initially 
very quickly, then much more slowly, but succeeds in remaining always rather close 
to the true maximum, even just after a change. 
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Figure 13.2. Snapshots of ten mobile peaks on a search space for two dimensions. In this 

particular case, the maximum is on a border, a situation that the majority of stochastic 

optimization algorithms do not unduly appreciate 

 
 

Figure 13.3. Follow-up of the variation to the maximum for a problem of dimension 5 with 50 

mobile peaks. The peaks move all the 5,000 evaluations (moments represented by  

vertical bars). Here only the first 50,000 evaluations are shown 
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13.13. For “amatheurs”: the magic of squares 

A square n n×  is represented by a position in a space with 2n  dimensions, 

( )21,..., ,...,
d n

x x x x= . One can represent it as the list of the elements of the square 

read line by line. For the sums of the rows, the function to be minimized is then: 

( ) ( ) ( )( )( )21

1 1 1
1 1 1

n n n

n i d n j d
i j i d

f x x x
−

− + − +
= = + =

= −∑ ∑ ∑  

If it equals zero (which is what we are looking for), it indicates that for each pair 
of rows, the sums of the elements of each are equal. 

In the same way, for those in the columns: 

( ) ( ) ( )( )( )21

2 1 1
1 1 1

n n n

i n d j n d
i j i d

f x x x
−

+ − + −
= = + =

= −∑ ∑ ∑  

The total quantity to minimize is then ( ) ( )1 2f x f x+ . Let us suppose now that 
one found a solution, namely, L the common sum of the lines and C that of the 
columns. The total sum of the elements of the square is then worth nL, but also nC. 
Hence L C= . That is why there is absolutely no need to add this constraint 
explicitly in the function to be minimized. 

13.14. Summary 

Several examples make it possible to better determine the field of competence of 
PSO, in particular for an adaptive version such as TRIBES. The difficult 
combinatorial problems do not really form part of it (except special versions not 
studied here). However, the method is very effective for nonlinear problems with 
continuous or discrete variables. 

Taking into account the constraints by the multicriterion technique makes it 
possible to consider them just as they are, without having to carry out an integration 
weighted within a new minimizing function. Moreover, with an adaptive version, no 
parameter setting is necessary. 



 

Chapter 14 

Conclusion 

14.1. End of the beginning 

The few examples of the preceding chapter bring to a close this first part, which 
has hopefully fulfilled its purpose: to place at your disposal all the elements to 
effectively treat a great number of optimization problems. A great number but 
obviously not all and it is very possible that none of the PSO described so far 
corresponds to your expectation. 

 
Nevertheless, what we have just seen is far from covering all the aspects of this 

method and is likely to give you only a restricted idea of its possibilities. Before 
deciding that it is not the tool that is appropriate to you, you should thus glance 
through the second part, which will give you inter alia an outline of various 
extensions of the field of competence of PSO, such as dynamic optimization or 
combinatorial optimization. Besides, even this list is not exhaustive and regular 
research on the Internet of the latest innovations on the matter may be profitable. 

Furthermore, on the basis of the principles and techniques studied here, you can 
develop your own alternative. Let us take advantage of this remark to say some 
words on an interesting tendency, which could be described as syncretism.  

14.2. Mono, poly, meta 

Initially let us note that PSO is clearly heuristics, “a method of resolution of 
problems, not founded on a formal model and which necessarily does not lead to a 
solution”. Nevertheless, the term is too general and the need for establishing 
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distinctions was felt. Therefore, its use is reserved more and more for the specific 
algorithms of only one type of problem. For example, the Lin-Kernighan method for 
the resolution of the traveling salesman problem is called LKH (Lin-Kernighan 

Heuristic). It is very effective, but it can do only that. It is, so to speak, 
monoheuristic. 

Conversely, stochastic methods, such as differential evolution [LAM 04], SOMA 
[ZEL 04], ant colonies [DOR 04], Tabou search [GLO 97], etc., appear usable for 
many types of problems, even if their fields of competence do not overlap exactly. 
They are general purpose heuristics, or polyheuristic. They are also called 
metaheuristic [DRE 03], though this term can lead to confusion (see below). PSO 
forms part of it. For a given problem, if there is no specific algorithm, one of these 
methods is probably a good choice. 

 
In addition, second-level methods have appeared, i.e. algorithms whose function 

is to control the choice and the execution of definite algorithms. Sometimes they are 
referred to as hybrid methods, but, etymologically, it is they that should be called 
metaheuristic, even metapolyheuristic! In the same way, indeed, as a metarule is a 
rule of handling of rules, a metalanguage a language of description of language, etc., 
we deal here with heuristics handling (the poly) heuristics. 

 
As regards PSO and continuous optimization, one of the most promising hybrids 

is perhaps DEPSO [ZHA 03b], combining PSO and differential evolution. The latter 
is indeed definitely more effective than PSO on certain problems (often of low 
dimensionality) but also definitely less effective on others. Hence, obviously, the idea 
of associating them judiciously . . . by avoiding accumulating their respective defects! 

14.3. The beginning of the end? 

Thus is born the syncretic tendency that we have evoked, even if, for the 
moment, studied synergies relate only to pairs of methods: genetic algorithm and 
Tabou search [ZDA 02], genetic algorithm and ant colony [WHI 98], genetic 
algorithm and simulated annealing [KRA 04], simulated annealing and gradient 
[OVE 03], etc. 

This is at the same time good and bad news. Good, in the sense that the question of 
knowing if one method is better than another, already rarely relevant because it is too 
general and will have little to recommend it in face of an approach that amalgamates 
them. Bad, if you like, because it will become increasingly difficult to progress in the 
field of optimization without studying several possible methods, their 
complementarities, and their interactions in depth. 
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But, really, it is rather a stimulating research program. We do feel that all these 
general purpose heuristics already have many similarities and are probably only 
partial transcriptions, according to various points of view, of a more general 
algorithm. This last is perhaps inaccessible to us, but trying to approach it is already 
an aim in itself. 
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Chapter 15 

On Parallelism 

15.1. The short-sighted swarm 

First beautiful days. At the end of April, or perhaps the beginning of May. The 
densely populated hive swarms. This multitude of honey bees, drunk and stuffed 
with food, hums and circles before gathering around the old queen who has just 
alighted on a branch. Only the scouts explore the neighborhoods, in search of a new 
home. They return, set out again, compare, until a decision is made. Then, just like 
that, the whole swarm flies away towards the chosen haven, as if each bee followed 
a single scout. 

But this is not the case. Each one sees only its closest neighbors. Each one, 
except the very first one, is at the same time guide and guided. When the head bee 
changes direction, information is propagated from the front to the rear, from one to 
many, but not instantaneously, and the swarm is spread out by following a curve, 
before closing up. The transmission of information is done locally in parallel and 
globally in sequence. By the biological metaphor which underlies it, the original 
PSO functions in the same way, but is it the most effective? 

15.2. A parallel model 

Let us remind ourselves of the sequential operating mode we have always used 
so far. The particles are numbered from 1 to N. Particle 1 questions its informing 
memories, moves according to received information, and possibly updates the 
memory which is associated with it, if it finds a better position than that memorized 
(we suppose here that the number of memories is at most equal to that of 
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informants). Then particle 2 does the same, with the difference that one of its 
informants is perhaps precisely the memory that has been just modified. It can 
sometimes take advantage of this new information. In the same way for the 
following particles, with an increasing probability that a modified memory is used to 
guide a displacement. 

The parallel mode, on the contrary, is nothing like that at all. All the particles use 
the same state of the memory-swarm and the possible order (simulated in parallel) in 
which their displacements are calculated is of no importance. This method can seem 
more elegant, but let us immediately look at a comparison of the results on our 
benchmark set. 

15.3. A counter-intuitive result 

To make this comparison, let us proceed as described in the chapter on optimum 
parameter setting, but by making the program function in simulated parallel mode. A 
first interesting point is that the optimal parameter settings obtained are the same 
ones. There is nothing very surprising about that. But the second point is more 
unexpected. 

Table 15.1 shows us that, in fact, the parallel mode is a little less effective than 
the sequential mode. The difference is not very large, but statistical calculation 
shows that it is significant (let us recall that there are 100 executions for each 
problem). 

 
Of course, and particularly for problems in which each evaluation is very long 

(simulation of a process or even execution of a real process), the time saving thanks 
to parallelism can nevertheless be considerable. But we must be aware that it is 
likely to be paid by a larger number of evaluations. 

Thus, if 
seqT  is the total number of evaluations necessary in sequential mode and 

parallT  that in parallel mode, and if the criterion is the duration of the search for a 

solution, the mode is more interesting as long as one has parall seqT NT< , where N is 

the number of explorers. 
 
As N is about a few 10s and the ratio 

parall seqT T  never seems to exceed 10, in 

practice it is apparently always the case.  
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 Sequential PSO  Parallel PSO  

Tripod  0% (2,603)  0% (4,322)  

Alpine 10D  0% (194)  0% (194)  

Parabola 30D  0% (88)  0% (374)  

Griewank 30  2%  8%  

Rosenbrock 30D  
100% 

min. 0.034 avg. 19.93  
100% 

min. 0.763 avg. 25.79  

Ackley 30D  0% (2,394)  0% (2,424)  

Table 15.1. Sequential PSO vs parallel PSO. The results of the sequential PSO are taken 

from Chapter 9. For the parallel PSO, the optimal parameters were also sought, finally 

finding the same ones. The performances are slightly lower, in terms of the number of 

evaluations, rates of failure or found values 

15.4. Qualitative explanation 

Let us consider a swarm of N explorers and M memories. Each explorer is 
informed by K memories chosen randomly with each iteration and possibly updates 
only one memory, if there is improvement. To simplify the reasoning, these sizes are 
supposed to be constant. Let us examine more closely what occurs during an 
iteration, i.e. of a time increment, in parallel mode on the one hand and sequential 
mode on the other hand. 

Let us call “information” for explorer a pair ( )( ),x f x  formed from a position 
and the value of this position. Under parallel operation, each explorer profits from K 

pieces of information whose quality is fixed at the end of the preceding iteration. 
This is taken into account to calculate its displacement, after which it possibly 
modifies its associated memory. 

 
Under sequential operation, the first explorer benefits in the same way from K 

information whose quality is fixed at the end of the preceding iteration. It uses this 
information to move and will improve a memory 1m  with a certain non-null 
probability 1p . The second explorer questions K reports among M. The probability 
that 1m  is amongst them is 2q , non-null. Thus, this explorer has a probability equal 
to 1 2p q  to benefit from information of better quality than in the parallel case. The 
same holds good for the following explorers, with an increasing probability of 
questioning a memory that was improved by at least one of the previous explorers. 

 
It is thus comprehensible that the sequential mode is slightly more effective than 

the parallel mode, in terms of number of evaluations to reach the solution. The 
variation of effectiveness becomes smaller as M is large and K is small. However, 
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we saw that it is in general desirable, for difficult problems, to adopt a low value for 
K. In particular, for all the test functions the optimum parameter setting is obtained 
with K = 3 or K = 4, except for the function Parabola (K = 10). For the latter, we 
notice that, even if the rate of failure is null with the two methods, the relative 
difference of the number of evaluations is indeed the highest of all. 

15.5. For “amatheurs”: probability of questioning an improved memory 

The first explorer improved a memory 1m  with a probability 1p . The second 

explorer questions K memories chosen randomly among M, with putting back. The 
probability that the first drawn is not 1m  is ( )1 /M M− , the same for the second . . . 

Kth. The probability that 1m  is not drawn at all is ( )( )1
K

M M−  and the probability 

that it is drawn is its complement with 1, that is to say: 

2

1
1

K
M

q
M

−⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 

Finally, the probability that the second explorer questions a memory improved 
by the first is the conjunction of the two independent events: “to choose 1m ” and 
“was improved”. It is therefore equal to the product 1 2p q . 

For the following particles, the calculation becomes complicated if M is less than 
N. Thus let us suppose simply that there are as many explorers as memories and that, 
more precisely, each explorer informs a different memory im  with the probability 

ip  (as is the case in traditional PSO). Then, in a way similar to what we have just 
seen, at the time of calculating the displacement of explorer j the probability of the 
event “of choosing at least one im  with 1i j≤ − and im  was improved” is greater 
than or equal to: 

( ) ( )1 1

1
min 1 min

K

i j i i j i

M j
p p q

M
≤ − ≤ −

⎛ ⎞− +⎛ ⎞− =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

It is hardly possible to estimate ( )1min i j ip≤ −  in advance, but the evolution of the 

probability q can easily be represented. As we see in Figure 15.1, it increases 
logically with the row j of the explorer. But it also increases with K, whereas the real 
effectiveness tends rather to decrease when K increases, except in certain simple 
problems. The reason is that the increase in K must in fact often also induce a 
reduction in the probabilities ip . However, it justifies the fact that the variation of 
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efficiency between sequential mode and parallel mode becomes smaller as K is itself 
small. There is enough matter here for an entire study. 

 

Figure 15.1. Sequential mode. Probability of explorer questioning a memory possibly 

modified by a previous explorer during the current iteration. There are here 20 explorers  

who can update 20 memories. Each explorer questions randomly  

K memories drawn with putting back 

15.6. Summary 

With each iteration, displacements of the particles can be calculated either in 
parallel or in sequence. The parallel mode is a priori desirable when the evaluation 
of a position is long and difficult, because the evaluations of the positions of each 
particle can be carried out simultaneously. But, in general, it rather requires more 
evaluations to reach the solution than the sequential mode. 

In practice, however, the variation remains always sufficiently small so that the 
parallel mode is to be preferred if the essential criterion is the total duration 
necessary for obtaining a solution. 
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Chapter 16 

Combinatorial Problems 

16.1. Difficulty of chaos 

Combinatorial problems are regarded as difficult, at least as soon as their size 
becomes somewhat substantial. But where does this difficulty come from and why is 
it considered to be larger than that of continuous problems of the same size? To 
answer this question, let us consider the archetypal traveling salesman problem. To 
simplify the reasoning, let us suppose that there is only one solution. With a graph 
with N nodes numbered 1 to N, to find the solution thus amounts to finding a precise 
permutation of an integer N among N! possibles. The probability of reaching that 
point by chance, which we defined as being a measurement of the difficulty, is thus 
1 !N . 

Now, let us consider a continuous problem whose search space is [ ]1,
N

N  and in 

which we wish to minimize a numerical function f “accurate to within ε”. Let us 
suppose, which is almost always the case, that the function is Lipschitzian, i.e. with 
limited variations. More precisely, there is a value L such that if two points 1x  and 

2x  are separated by less than 'ε , then the variation of the function between these 

two points is less than ε' L: 

( ) ( )1 2 1 2' 'x x f x f x Lε ε− < ⇒ − <  

Thus, to seek a solution “accurate to within ε” it is enough for us to examine 
“cells” of diameter about ε/L. Their total number is approximately: 
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1
N

N

Lε
⎛ ⎞−
⎜ ⎟
⎝ ⎠

 

To compare this number with the number of permutations above, we must give 
values to ε, 'ε , and L. Since, in fact, we are interested only in the integer positions, 
let us posit 1'=ε . In addition, in practice, one can always consider that the lengths 
of the arcs are integers. Then the search for the shortest circuit can be done “to near 
1

–
” where 1

–
 represents any positive value less than 1. Thus let us posit 1=ε . 

Let us now take as example a circular graph of which all the arcs are 1 long. 
According to a traditional method, the non-existent arcs are replaced by arcs of 
sufficiently great length that they cannot belong to a solution, for example, N + 1. 
The difference in value L between two positions is thus at least equal to N + 1. Thus 
the number of “cells” is about ( )( )( )N

NN 11 −+ , a value much larger than !N  It 
follows from this that, from a theoretical point of view, the problem seen in its 
continuous form is much more difficult than in its combinatorial form. 

 
The reason is that, when a combinatorial problem is difficult to solve by an 

iterative optimization algorithm, it is not because it is combinatorial but actually 
because the function of evaluation is very chaotic. In a more or less explicit way 
such an algorithm always supposes that the closer two positions are, the closer their 
evaluations are too. For a problem like the traveling salesman, that is easily false: a 
simple transposition of two cities in the circuit, i.e. the shortest possible 
displacement in the search space, can change the evaluation (the length of the cycle) 
from its minimum to its maximum. 

16.2. Like a crystal 

What is a combinatorial problem in any case? There is certainly a consensus on 
the fact that the search space must be finite (and thus discrete), but beyond this it is 
not obvious what would constitute a unanimous definition. A rather general 
description would be as follows. 

We have a finite number of “sites” and a finite number of “objects”, each site 
being able to contain at most one object. A position in the search space is then an 
assignment of copies of objects on sites and we suppose that for any pair of 
positions it is possible to say either that one is better than the other or that they are 
equivalent. Let us note that to impose all the different objects, such as the cities in 
the case of the traveling salesman, would be too restrictive and that is why it is more 
judicious to speak about a copy of the object than of the object itself. For example, 
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the problem of coloring a graph is classically regarded as combinatorial, but several 
nodes can have the same color, insofar as no arc connects them. 

 
But, as a result there is no difference in nature between a combinatorial problem 

and a finite discrete problem. Indeed, to solve a finite discrete problem of dimension 
D amounts to considering that we have D sites to which we assign values chosen in 
a finite set. This set can be viewed in the same way as that of the objects of the 
description of a combinatorial problem. 

Better still, in practice, any bounded continuous problem is dealt with like a 
finite discrete problem. Indeed, in almost all cases calculations are made on a 
numerical (as opposed to analogue) computer and, therefore, with a limited and 
known precision. If, for example, the smallest representable number is 10

–300
, then by 

multiplying all the facts of the case by 10
300

, we obtain an equivalent problem 
handling only integers. The only difference, but it is significant, is the desired level 
of precision. If for the continuous problem it is 10

–5
, there is an enormous number of 

acceptable solutions in the equivalent discrete problem, about 10
295

.
 
Or, conversely, 

if the problem is presented initially as discrete, very often having only one 
acceptable solution, that amounts to dealing with continuous problem with a very 
high requirement of precision, about 10

–300 
in our example. 

The search space, which is necessarily discrete with a numerical computer, can 
be seen as similar to a crystal. To consider the problem as continuous consists in 
examining this crystal at least with a magnifying glass. To consider it as 
combinatorial is to work with an electron microscope. 

16.3. Confinement method 

We can thus treat a combinatorial problem exactly like a continuous problem, 
using two confinements that we have seen in the chapter on constraints: discrete 
variable and possibly “all different”. In practice, after each theoretically continuous 
displacement, the particle is readjusted on the nearest integer position then, if the 
problem requires it, on the nearest having all its coordinates different. 

For problems of very small size, we saw that this method is sufficient. It has the 
advantage of making it possible to use almost any version of PSO, since the 
requirement of two confinements either is already included or can easily be added. It 
is possible to improve the results appreciably by adding a local search algorithm 
implemented for each particle after each displacement. To stick to traveling 
salesman, a simple greedy algorithm already makes the number of evaluations 
necessary decrease several orders of magnitude. 
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For example, on the example with 17 nodes BR17 of library TSPLIB 
(http://www.ing.unlp.edu.ar/cetad/mos/TSPBIB_home.html), a strategy of the type 
“to test all the transpositions of two nodes and to start again as long as there is 
improvement” makes it possible to find a solution in fewer than 5,000 evaluations, 
which is already definitely more acceptable than failing after a million evaluations in 
“native” PSO! But for problems of more consequence, it is better to call upon a 
version of PSO taking directly into account the combinatorial aspects in the 
equations of displacement. The principal idea is then, for each type of combinatorial 
problem, to manage to define a true distance in the search space, because we know 
that a noticeable improvement can result from it regarding two significant aspects of 
the algorithm: the definition of a proximity distribution and the search for the best 
informant of a particle. 

 
Moreover, this does not exempt us from conceiving hybrid strategies with 

complementary local search. In mid-2004 the development of such methods was still 
embryonic with regard to PSO, but several projects were in hand. The common base 
is the description of the algorithm in a way that is as independent as possible of the 
nature of the objects involved: numbers (real or discrete), quantitative or qualitative 
sizes, structure of the search space, nature of optimization. This fundamental 
representation can be made in a very condensed way, as we will see now. 

16.4. Canonical PSO 

To be able to implement PSO, the conditions below are necessary and sufficient: 

 – a search space, set of positions { }xH = . Each position is defined by a list of 

D components; 

 – an application f defined on H and in values in a set C { }cCH
f =⎯⎯→⎯ . 

Each element of C itself is defined by 'D  components; 

 – a relation of order on C or, more generally, semi-order, so that for each pair of 
elements { }', cc  it is always possible to say that c is “better” than 'c or that 'c  is 

better than c or, finally, that c and 'c  are equivalent. Note that this definition 
includes both the traditional optimization for which c and 'c  are numbers and the 
multicriterion optimization where c and 'c  are compared according to a relation of 
dominance. 

The definition of a distance on H is not obligatory, but makes it possible to use 
more effective techniques, such as the pseudo-gradient in the search for the best 
particle information source about another and the search to give a direction to the 
multidimensional proximity distributions, such as the D-spheres. 
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In general, H is real space D
R  and f a numerical function (C is the set of the real 

numbers provided with its usual relation of order). But H can be a finite set of 
statuses and f a discrete function. By referring to the equations of motion of the 
traditional PSO, the important thing is to be able to define the following objects and 
mathematical operations: 

 – position of a particle 

 – velocity of a particle 

 – subtraction ( ) velocitypositionposition ⎯→⎯-,  

 – external multiplication ( ) velocityvelocityrealnumber ⎯→⎯.,_  

 – addition ( ) velocityvelocityvelocity ⎯→⎯⊕,  

 – displacement ( ) positionvelocityposition ⎯→⎯+,  

As an application of this canonical representation, let us look at how these 
objects and operators can be defined for the treatment of a combinatorial problem: 
the indefatigable traveling salesman. The goal is obviously not to try to equal the 
effectiveness of very specific algorithms such LKH [HEL 98], but simply to illustrate 
the following assertion: “if you do not have a specific algorithm for your problem, 
try PSO, it will do”. Besides, versions of discrete and combinatorial PSO have 
already been defined and used successfully [KEN 97, MOH 01, ONW 04B, SAL 01, 
SCH 02, SEC 01A, YOS 01].  

PSO for traveling salesman 

Positions 

Let { }GG ANG ,=  be the valuated graph in which we seek a Hamiltonian circuit 

of minimal length. NG is the set of the nodes and GA  the set of the arcs. The nodes 

are numbered from 1 to N and will be denoted in or, if there is no possibility of 

confusion, we will just represent them by their numbers { }Nii ,...,1, ∈ . Each arc is in 

fact identified with the triplet ( ) +∈∈∈ RjiGGji lNjNilji ,, ,,,,, , which can be 

read as follows: “the arc of origin i, end j, and length jil , ”. Since we seek circuits, 

we can consider, to simplify the notations, sequences of 1+N nodes, all different, 
except that the last is equal to the first (and which can easily be always equal to 1). 
Let us call N-cycle such a sequence and define it as being a position. Thus the 
search space is the finite set of the N-cycles. 

Function to be minimized 

Let us consider a position such as: 
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( ) 11121 ,,,,,, ++ =∈= NGiNN nnAnnnnnx K  

It is acceptable only if all the arcs ( )1, +ii nn  exist. To standardize the operations, 
it is traditional to replace the non-existent arcs by virtual arcs of which the length 

supl  is sufficiently large that no minimum cycle can contain one of them. For 
example, if minl and maxl are respectively the smallest and the biggest length of the 
existing arcs, we can define supl  as follows: 

( )
( )
( )( )

max ,

min ,

sup max max min1

i j

i j

l MAX w

l MIN w

l l N l l

⎧ =
⎪
⎪ =⎨
⎪

> + − −⎪⎩

 

Thus, in this manner, each arc, real or virtual, has a length. The function to be 
minimized is defined on the set of the N-cycles and, for each one, is worth simply its 
length: 

( ) ∑
=

+
=

N

i

nn ii
lxf

1
, 1

 

Velocity 

The term “velocity” results from the history of PSO, but it is simply a question 
of defining an operator which, applied to a position, gives another position. It is thus 
a permutation of N – 1 elements, which can always be broken up into a list of 
transpositions; in other words, v  the length of this list. Thus, a velocity is 
represented by a list of pairs of nodes to exchange: 

( )( ) vkNjNijiv GkGkkk ,...,1,,,, =∈∈=  

or, in digest form ( )( )kk jiv ,= , which can be read “to exchange nodes ( )11, ji , then 
nodes ( )22 , ji , etc.” 

Two different lists, and 2v , applied to the same position, are perfectly well able 

to give the same result (the same new position). Two such velocities will be known 
as equivalent and we will note that 21 vv ≅ . For example, we have 

( ) ( )( ) ( ) ( )( )3,1,5,25,2,3,1 ≅ . In this example, two velocities are not only equivalent but 

also opposite (see below). The use of such velocities is connected with displacement 
on a sphere: you can reach the same point while following two opposite directions. 
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Lastly, to admit all the necessary operations, null velocity, denoted ∅ , should be 
defined: it will be simply the empty list. 

 
Let us point out a traditional theorem of algebra that will be useful for us later in 

the definition of metric. Not only can any permutation be carried out by a succession 
of transpositions, but there is a necessary and sufficient minimum number of such 
transpositions. With the vocabulary used here, in other words, if one considers all 
the equivalent velocities at a given velocity v, then there is at least one of minimal 
size. Let us call such a velocity a representative of v. 

Opposed to a velocity 

It is defined by: 

( )( )11 , +−+−=¬
kvkv

jiv  

This formula simply means “to carry out the same transpositions as for v, but in 
reverse order”. We immediately have vv =¬¬  (and also ∅≅¬⊕ vv , according to 
the definition of the addition of two velocities, which we will see a little later). 

Displacement (position plus velocity) 

Let x be a position and v a velocity. The new position vxx +='  is obtained by 
applying the first transposition of v to x, then the second with the result obtained, 
etc. 

EXAMPLE – 

( )
( ) ( )( )⎩

⎨
⎧

=
=

3,2,2,1

1,5,4,3,2,1

v

x
 

By applying v to x, we successively obtain (with each stage, if necessary, the 
components of the N-cycle are shifted in order always to have node 1 in first): 

( ) ( )
( )1,3,5,4,2,1

1,2,5,4,3,12,5,4,3,1,2 =
 

Subtraction (position minus position) 

For two positions 1x  and 2x , the difference 12 xx −  is defined as the velocity v 

obtained by a given method, such as by applying v to 1x  one finds 2x . The condition 
“obtained by a given method” (in practice an algorithm) is necessary because, as we 
have seen, two velocities can be different but equivalent, even if they have the same 
size (the same number of transpositions). In particular, the method must be coherent, 
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in the sense that the subtraction of two identical positions must give null velocity 
and the difference in two positions in a direction must give the opposite of the 
difference in the other direction: 

( )2112

1221

xxxx

xxvxx

−¬=−
∅=−=⇒=

 

Addition (velocity plus velocity) 

Let us consider two velocities 1v  and 2v . To calculate their sum 21 vv ⊕ , we 
build the list of transpositions that initially contains those of 1v  then those of 2v . In 
practice, to avoid ill-considered lengthening of such lists, it is also necessary to 
operate a contraction in order to obtain an equivalent velocity of smaller size. 

Let us note that we do have the triangular inequality 2121 vvvv +≤⊕  but no 
commutativity. In general 21 vv ⊕  is different from 12 vv ⊕ . 

Multiplication (coefficient by velocity) 

Let v be a velocity to be multiplied by a real coefficient c. We must consider 
several cases, according to the value of c. There is a small theoretical (but non-
practical) difficulty: to multiply two equivalent velocities by the same coefficient 
will give two still equivalent velocities only if this coefficient is an integer. 

Case c = 0 

Let us posit simply ∅=cv . 

Case 0 < c ≤ 1 

We are satisfied with “to truncate” v. Let cvm =  be the integer part of vc . The 
new velocity is defined by taking only the m first transpositions of v: 

( )( ) cvkjivc kk ,...,1,,. == . 

Case c > 1 

We can then write c as a sum of an integer k and a real 'c  less than 1. It is then 
enough to proceed in three steps: to add v to itself k times, to multiply v by 'c , and 
finally to add two velocities obtained. This can be summarized by the following 
formulae: 
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[ [*

 times

', , ' 0  1

. ... '.
k

c k c k c

c v v v v c v

= + ∈ ∈
= ⊕ ⊕ ⊕ ⊕

N

uuuuuuuuuuuuuuuuur
 

Once again, it is desirable to replace the result by an equivalent velocity of 
smaller size. In any case, this can be done progressively with the addition of v to 
itself k times. 

Case c < 0 

It is enough to write ( ) vcvc ¬−=.  and we are reduced to the combination of 
two operations seen above, the opposite of a velocity and multiplication by a 
positive coefficient. 

Distance between two positions 

We saw that it can be interesting to use a pseudo-gradient to define the best 
informant of a particle but that for that the search space must be provided with 
metrics. It is the case here, since it is enough to define the distance between two 
positions as the size of a representative of a velocity making it pass from one to the 
other. As we have seen, this size is unique. 

If 1x  and 2x  are two positions, the distance between them is defined by: 

1221 ),( xxxxd −=  

and it is easy to check the axioms of metrics. If 3x  is a third unspecified position, 
we have: 

133212

2112

2112

0

xxxxxx

xxxx

xxxx

−+−≤−

=⇔=−

−=−

 

Implementation 

Once all these definitions are established (and programmed!), we can use the 
system of equations of motion of an unspecified version of PSO. For example, the 
traditional PSO will be rewritten as follows: 

( ) ( )
⎩
⎨
⎧

+←

−⊕−⊕←

ddd

dgdddd

vxx

xpcxpcvcv .. 32.1
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Each operation concerned has a meaning very different from the usual one, but 
the spirit of the process is exactly the same. As it was stated earlier, various 
complementary techniques can of course be used jointly (local search, stop/restart, 
local leveling, etc). For more details, see for example [CLE 04, ONW 04a, SEC 
01b]. However, this field is evolving so rapidly that any article published will very 
soon be only of historical interest. It is thus preferable to carry out search on the 
Internet or, at least, to consult Particle Swarm Central [PSC].  

16.5. Summary 

By reducing to the bare minimum the conditions necessary for a PSO, one 
defines a very general canonical algorithm using only some algebraic operators. 
Hence, it is possible to build a specific PSO (for example, for combinatorial 
problems) by specifying the operation of these operators for the type of problem 
considered. An example is given for the traveling salesman problem. In this case, the 
principal difficulty is to give a meaning to the operation of multiplication of a list of 
transpositions by a numerical coefficient. 



 

Chapter 17 

Dynamics of a Swarm 

17.1. Motivations and tools 

At the time of writing (in 2005), there was still no satisfactory theoretical 
analysis of PSO. The reason is that the problem is not simple, because of the 
interactions between particles. It has been well-known since Poincaré that the 
evolution of such systems can lead to a literally indescribable chaos. It would, 
however, be quite interesting to have, as guides of improvement of the method, 
elements that are more reliable than simple overall experimentation. How can we go 
about this? 

We have here mobile particles that influence each other, admittedly in general in 
a space of much higher dimension than those of the spaces defined in physics, but 
the tools and methods of statistical dynamics are perhaps usable, subject to two 
comments: 

 – the field implemented is more complicated than, for example, a single 
gravitational field, since each particle is influenced only by some others, informants, 
and not by all. If one wants to push the analogy further, it would thus be necessary 
to consider the simultaneous influence of several fields of various natures; 

 – the size of the swarm is generally low. The variance of statistical sizes defined 
on such a small population is extremely likely to be very large. 

Nevertheless, studies based on such modeling are underway, but so far they have 
not produced results that are usable in practice. 

 
A less ambitious step consists of considering a swarm reduced to only one 

particle. That can seem paradoxical, since the interactions play a crucial role, but in 
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fact, as we saw in the chapter on the memory-swarm, talking about only one particle 
is a result of the historical terminology. Actually, there are always at least two 
particles: the explorer and the memory. Mathematical analyses are then possible and 
have indeed provided, as already mentioned, precise recommendations which are 
theoretically validated for the choice of the confidence coefficients, in particular via 

the coefficients of constriction [CLE 02, TRE 03, VAN 02].  
 
We will not review them again here, the more so as they are rather unpleasing 

(“amatheurs” will be able to relish them at the end of this chapter). Instead we will 
study in detail a very simple example and the lesson we can already draw. 

17.2. An example with the magnifying glass 

Let us consider the function Parabola 1D, defined on [ ]20  20−  by the equation 

( ) 2xxf = . We wish a particle to find the minimum (zero, obviously), with a 

precision equal to at least 001,0=ε . In other words, a particle must at least reach a 

position located in the interval [ ]εε   − . The theoretical difficulty of this problem 

is 6.45. To simplify the analysis still more, we will use only version OEP 0. 

The question that interests us is the influence of the interactions on the 
effectiveness of the algorithm. That is why we will consider and compare the results 
obtained with a swarm reduced to only one particle (in fact, as has already been said, 
an explorer and a memory) and a swarm of two particles (making 2 + 2). 

17.2.1. One particle 

With only one particle, the equations of motion can be written in a simplified 
form: 

( )
⎩
⎨
⎧

+←
−+←

vxx

xpcvcv 21  

There are two primary cases: either the initial velocity is such that the first two 
positions frame that of the minimum, or on the contrary these two positions are on 
the same side. In the first case, the particle oscillates around the optimal position; in 
the second, it tends there directly, at the latest at the very second time increment (see 
Figure 17.1). Let 2x  be the position reached with the second time increment. 

The significant point when the first positions are on the same side is that the 
memorized position p is then always equal to the current position x. There is 
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certainly constant improvement, but each displacement is strictly equal to the 
preceding one multiplied by 1c . There can therefore be convergence towards the 

optimum only if the infinite sum of successive displacements 2
2

1
1 vc

t

t

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
∞

=

−  is at 

least equal to 2x . However, in our example we have: 

1

2

2

0.7

3.2

20

c

v

x

=⎧
⎪ =⎨
⎪ = −⎩

 

Under these conditions the total distance traveled by the particle even at the end 
of an infinite time cannot exceed approximately 10.7. It is insufficient to reach the 
optimum. However, if the particle oscillates around this optimum, things occur 
completely differently, because the last best position known is no longer necessarily 
the current position. Velocity will still tend towards zero but no longer in a regular 
way, which prevents a premature convergence. 
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Figure 17.1. Parabola problem, a memory and an explorer. The behavior of the system is 

very different according to the position and initial velocity of the explorer. On the left, 

 the first two positions do not frame that of the minimum. The fast velocity decrease prevents 

the explorer reaching it. On the right, the first two positions frame that of the minimum.  

Here the core use leads the explorer to oscillate around the optimal position and,  

moreover, the velocity decreases less quickly, which allows convergence 
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These two types of behavior are highlighted better still by the representation in 
the phase space in Figure 17.2. The traditional fundamental structure which appears 
almost systematically in the case of convergence towards the solution is that of a 
spiral as in the right-hand part of the Figure. As we will see, whether there is one 
particle or more (in the sense: explorer + memory) does not make any difference. 
For the algorithm to proceed successfully it is necessary, except in very particular 
cases, that successive positions are reached on either side of the optimal position: 
there must be oscillations. Mathematically, that is translated in our example by the 
fact that the scalar product of vectors v and vp −  must be negative. In this form, it 
is a necessary condition, which can be generalized whatever the dimension of the 
search space and the number of particles. 

 

Figure 17.2. Parabola problem, a memory and an explorer, phase space. The two cases of 

Figure 17.1 are taken again here, but seen in the plan (position, velocity). The converging 

oscillatory behavior is represented by a spiral 

17.2.2. Two particles 

Let us recall that the term “particle” is taken here with its historical meaning, i.e. 
it embraces the double concept of explorer and memory. We thus now have two 
explorers and two memories. To remain formally identical to the original PSO, the 
information links are those represented in Figure 17.3. Each memory informs the 
two explorers but each explorer informs only one memory. Initializations are 
deliberately defined identical to the position and velocity of the single particle of the 
preceding example, and in both the same cases with the first two positions on the 
same side of the origin or on both sides. 
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The right-hand side of Figure 17.4 represents the course of particle 2 in this 
second case. It is absolutely identical to that partly on the right of Figure 17.1, 
because at any moment memory 2 is in better position than memory 1. Thus the 
existence of particle 1 does not bring anything to particle 2. However, as the 
comparison between the left-hand sides of the two Figure s shows, particle 1 takes 
advantage of the existence of particle 2. The information provided to it via memory 
2 makes it possible for it also to enter an oscillatory process that would ensure it 
convergence if the iterations were prolonged beyond the success of particle 2. 

 
Starting from a more unspecified initial configuration, we obtain the paths 

illustrated by Figure 17.5. Each particle takes advantage of the information provided 
by the other to manage to oscillate around the optimal position. Thus, on the one 
hand, the number of evaluations is doubled with each time increment, since there are 
two particles; but, on the other hand, in a simple case like this one, the probability of 
reaching the solution (with the precision required) is itself roughly doubled. As a 
result, roughly speaking, the effectiveness is the same: about 30 evaluations are 
needed to reach the solution. 

 
But then, what is the point in using several particles? It is that the case of two 

particles is precisely the limit beyond which the increase in the size of the swarm 
will become interesting. The power of PSO lies in the fact that the probability of 
reaching the solution by time increment t increases more or less as ( )1−NN , where 
N is the size of the swarm, whereas the number of evaluations carried out on the 
whole until the increment t is only proportional to N (reasoning with N constant 
during optimization). This is still only an empirical conclusion (which, moreover, is 
no longer valid for greater values of N), but it provides a beginning of an 
explanation for the increase in effectiveness with N. Studies in progress, in particular 
using statistical mechanics, are trying to validate this observation more firmly. 

 

Figure 17.3. Graph of information 2 + 2. Each explorer receives the information from the 

two memories, but informs only one, to conform to the diagram of the traditional PSO, where 

explorer and memory are merged in a single particle. That is enough for any improvement 

found by the explorer to be known to the other one 
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Figure 17.4. Two explorers and two memories. The starting points are the same as in the 

preceding example. But now the particles work together. However, here, memory 2 is always 

better than memory 1: the course of explorer 2 is exactly the same as seen previously in the 

event of convergence (Figure on right-hand side). On the other hand, explorer 1 will benefit 

from the information provided by memory 2: it will end up converging if the iterations are 

continued (Figure on the left) 
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Figure 17.5. Parabola. Two explorers and two memories. We are here in the more general 

case where each explorer is from time to time influenced by the memory of the other, when it 

becomes better than its own. Convergence, when it takes place, is not necessarily faster 

 (here 30 iterations instead of 28), but it is more probable 
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Figure 17.6. Parabola. Two explorers and two memories. Representation of the paths in 

phase space. The particles help each other to enter and remain in the oscillatory process 

 that allows convergence towards the solution 

17.3. Energies 

17.3.1. Definitions 

We have taken advantage of the preceding examples to underline the interest of 
the representations by trajectories in phase spaces. Another traditional method in 
dynamics is to consider the evolution of global variables, such as potential energy, 
kinetic energy, or entropy. We will be satisfied here with the first two, and 
particularly with kinetic energy, but, first, we must give precise definitions of them. 
We will accept that the search space is provided with a distance and that the function 
f to minimize is numerical. 

For the kinetic energy of a particle, whether it is an explorer or a memory, this is 
very simple: it is enough to consider two successive positions tx  and 1+tx  and 

calculate the size 2
2

1+−= tt xxe . It is deliberate that velocity has not been 

called upon explicitly, because, as we saw for example with the method of pivots, 
this quantity is not used in all versions of PSO. Naturally, the total kinetic energy of 
a swarm is the sum of those of the particles that are its components. 

 
For the potential energy, it is necessary to take into account the required 

precision ε for the desired solution. In addition, we can take advantage of the fact 
that this type of energy can be known apart from an additive constant, which avoids 
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us having to use the value of f in its minimum, in general unknown. Then the 
potential energy u of a position x can be defined by the formula ( ) εxfu = . It can 
be interpreted as the number of “steps” of height ε that the particle must descend to 
reach the minimum if its value were zero. Again, the total potential energy of a 
swarm is the sum of those of its components. 

17.3.2. Evolutions 

We already know that, approximately, velocities tend to be cancelled during the 
iterative process and the swarm ends up converging somewhere, even if it is not the 
desired solution. We can thus expect that the kinetic energy tends on average 
towards zero and potential energy towards a constant. But what is particularly 
instructive to observe using these sizes is the difference in behavior between a 
version of traditional PSO (N particles given at the beginning once and for all) and 
an adaptive version for which the size of the swarm is modified as suppressions and 
generations dictate. 

Let us take for example the Alpine function. An execution with good parameters 
easily gives evolutions of energies such those of Figure 17.7. The fact that the 
kinetic energy tends towards zero tell us that, overall, the swarm ceases moving; 
therefore, that each particle converges towards a fixed position. The fact that, at the 
same time, the potential energy also tends towards zero means that, for all the 
particles, this position is indeed that of the sought minimum. Here, the number of 
explorers is 20, the same as the number of memories. The light fluctuations of 
energies, and in particular of the kinetic energy, are due only to an element of 
chance in the equations of motion. 

 
With an adaptive PSO like TRIBES, each particle is at the same time explorer 

and memory, but their number is modified during the process, by suppressions and 
generations. Figure 17.8 then indicates the clear evolution of the size of the swarm 
as well as that of the kinetic energy. When this tends towards zero and the objective 
therefore is not achieved (which is not represented on the Figure, for the sake of 
clarity), there are appreciably more generations than suppressions, which creates a 
peak of energy, which we can interpret as a re-augmentation of the exploratory 
capacity of the swarm. 

 
As we saw in the chapter on optimal parameters, it is certainly possible, in this 

example, to find a solution more quickly than with TRIBES, but it is also possible to 
be much less effective if the parameters are not properly selected. An adaptive 
version, because it re-starts exploration judiciously, is much more sound. 
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Figure 17.7. Alpine, treated by parametric PSO. The size of the swarm is constant (20) here. 

The small variations of energy are only fluctuations due to the partially random 

 character of the equations of motion 

 

Figure 17.8. Alpine, treated by adaptive PSO (TRIBES). During the process, particles are 

removed and others added. The net assessment is a constant increase in the swarm  

(this is not always the case) but, particularly, of the significant peaks of energy  

relaunching the exploration when that becomes necessary 
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17.4. For experienced “amatheurs”: convergence and constriction 

The complete analytical study has been made only for the moment in the case of 
a single particle and with constant confidence coefficients (non-random). Some of 
its elements are given below. For more details, see [CLE 02, TRE 03, VAN 02].  

17.4.1. Criterion of convergence 

In the case of only one particle, the equations of motion can be written: 

( ) ( )
⎩
⎨
⎧

+=
−+−+=

++

+

11

3211

ttt

tttttt

vxx

xgcxpcvcv
 

where the indices t and t + 1 correspond to two successive time increments. Positing: 

⎪
⎩

⎪
⎨

⎧

+
+

=

+=

32

32

32

cc

gcpc
p

ccc

tt  

we obtain the canonical system: 

( )
⎩
⎨
⎧

+=
−+=

++

+

11

11

ttt

ttt

vxx

xpcvcv
 

The idea is to look at what occurs as long as p is constant. We can then posit 
xpy −=  and, written in matrix form, the system becomes: 
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We now have a traditional dynamic system, whose behavior is entirely 
dependent on the eigenvalues of the matrix C. In particular, a condition of 
convergence is that these eigenvalues are two combined complex numbers of 
modulus less than 1 or two real numbers of absolute values less than 1. They are 
solutions of the equation: 

( ) 01
1 11

2

1

1 =+−−+=
−−−

−
ccc

cc

cc
λλ

λ
λ
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whose discriminant is ( ) 1
2

1 41 ccc −−−=∆ . 

Let us recall that here convergence means simply that the particle tends towards 
a stable position (velocity tends towards zero). Nothing guarantees that this position 
is the sought optimum. It is only the interactions between particles that considerably 
increase the chances that this may be the case. 

17.4.2. Coefficients of constriction 

In traditional PSO, it can happen that the swarm “explodes” (divergence) and 
this is why certain authors add a constraint of maximum velocity, which makes an 
additional parameter. It was proven [CLE 02] that that was not necessary, with the 
proviso one or more coefficients of constriction are used, calculated starting from 
the confidence coefficients. To determine them, there are essentially two steps: 

 – to see to it that the eigenvalues of C are true complex numbers (negative 
discriminant); 

 – or to weight the confidence coefficients judiciously when the eigenvalues are 
real (positive or null discriminant). 

There exists an infinite number of possibilities. Let us simply examine one of 
each type, which replace relatively simple formulas. The general idea is to pass by 
an intermediate parameter ϕ, according to which one expresses c and 1c , so as to 
respect the criterion of convergence. 

Negative discriminant 

A simple form corresponds to the following relations: 

( )
⎩
⎨
⎧

=
=
χϕ

ϕχ
c

c1  

The matrix of the system is then: 

⎥
⎦

⎤
⎢
⎣

⎡
−−

=
χϕχ

χϕχ
1

C  

We will seek the coefficient of constriction χ  as a function of ϕ and as near to 1 
as possible, while guaranteeing that the discriminant of the equation whose  
solutions are the eigenvalues of the system remains negative. The condition 
“negative discriminating “ is written here: 
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( ) ( ) 01121 22 <++−− ϕϕχ  

It is satisfied only if χ  is between the two roots: 

( )2min
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++
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It is easy to see that minχ  is always less than 1 (for ϕ  positive). For 4≤ϕ  the 
second root maxχ  is greater than or equal to 1. We can thus take a coefficient of 
constriction equal to 1, i.e. in fact, not of constriction at all. On the other hand, 
for 4>ϕ , the coefficient nearest to 1 that we can take is maxχ  itself. Constriction is 
thus summarized by the following formulas: 
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The common value of the modulus of the complex eigenvalues is then simply 

1c , which is at the most equal to 1: the criterion of convergence is satisfied. The 

curious reader will be able to find similar formulas (and even simpler ones) starting, 
for example, from the relations: 
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Finally, the equations of motion are written: 
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17.4.3. Positive discriminant 

A canonical system even simpler than that we have seen can be written: 
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By positing xpy −= , the system becomes: 
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Its matrix is: 

⎥
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⎤
⎢
⎣

⎡
−−

=
ϕ

ϕ
11

1
C  

A possible method of constriction consists in multiplying the whole of the matrix 
by a coefficient 'χ . The eigenvalues are then solutions of the equation: 
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We then find: 
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These values are real only if one has 4≥ϕ . So that their absolute values are at 
most equal to 1, it is necessary and sufficient that this is true for the the largest one, 
which gives us directly: 

ϕϕϕ
χ

42

2
'

2 −+−
=  

According to the way in which it was found, this coefficient is applicable to the 
equations of motion: 

( )
( )( )⎩

⎨
⎧

−−++=
−+=

++

+
'1

''

11

1

χ
ϕχχ

tttt

ttt

xpvxx

xpvv
 

whose physical interpretation is far from being obvious, owing to the fact that a 
corrective term is applied to displacement due only to velocity. However, it is easy 
to check that one always has χχ ≤'  (see Figure 17.9). Thus, systematic use of 'χ  
whatever the scenario (positive or negative discriminant) is mathematically 
acceptable. In the case of a negative discriminant, constriction is certainly a little too 
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strong, but, in practice, the coefficient ϕ is taken to be very slightly greater than 4, 
which reduces the risk. 
 

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6

phi

k
h

i

With negative

discriminant

With positive

discriminant

ϕ

χ

 

Figure 17.9. Coefficients of constriction. The two methods indicated in the text lead to 

different formulas. However, the second can be used whether the discriminant of the system is 

positive or negative since the value obtained is in any case less than the greatest acceptable 

value calculated by the first. Nevertheless, it is better then to take the values of ϕ only slightly 

greater than 4, to avoid too strong a constriction and a premature convergence 

17.5. Summary 

The dynamics of a swarm can be considered on the level of each particle, a 
privileged tool being the phase space. Convergence then results in spiral trajectories. 
It can also be studied globally, via variables such as the kinetic energy and potential 
energy. The examination of the evolution of the kinetic energy shows the difference 
in behavior between the traditional PSO and an adaptive version in which the size of 
the swarm varies according to the progress of the search: the peaks of energy 
announce the revival of exploration when convergence seems to become too slow. 

In this chapter, the rather long mathematical part summarizes the calculation of 
certain coefficients of constriction, the use of which is of great practical importance. 

 



 

Chapter 18 

Techniques and Alternatives 

18.1. Reprise 

The major disadvantage of an almost entirely adaptive algorithm is that if the 
result is not satisfactory, it is difficult to cure it, since there are no parameters that 
the user can exploit. That is why it is interesting to develop techniques for piloting 
the search process. They certainly require that the user gets involved again, a little 
like parametric PSO, but on a more global level. It will no longer be a question of 
carefully defining a particular numerical value but rather of making strategic choices 
or, at least, choices of methods. 

For example, the user can decide that there must be partial or total re-
initialization of the search a certain number of times or that the generation of a new 
particle will have to be done according to a variable probability distribution or that it 
is necessary to make several swarms confined by repelling powers work 
simultaneously. In addition, the latter example shows that the border between what 
one could call complementary techniques and alternatives is not quite clear. The list 
is already rather long: non-specific particles with collisions [KRI 02], use of fuzzy 
values [SHI 01], definition of various forms of neighborhood [SUG 99, VEE 03], 
hybridization of PSO with other methods [KO 04, LOV 01, MIR 02a], local 
modification of the function to be minimized [PARS 01a], optimization of a variable 
function [CAR 01], “quantum” PSO [SIL 03], use of a negative entropy [XIE 02], 
etc. 

 
The goal of this book is not to review them systematically, especially as some 

are of limited interest. We will just consider some of them, which are at both of 
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proven effectiveness at least for certain types of problems and relatively easy to 
implement by some modifications of a traditional PSO program. 

18.2. Stop-restart/reset 

In principle, this technique is very simple and very traditional: if there is “no 
more hope” of finding a solution, then the process is re-initialized more or less at 
random. We see immediately that there are two distinct problems. On the one hand, 
it is necessary to define a criterion for giving up the process in progress advisedly 
(and especially not too early); and, on the other hand, it is necessary to choose a 
method of re-initialization. Such a pair “NoHope/Rehope” is, for example, defined 
for the parametric PSO in [CLE 99]. Let us examine it quickly, knowing that, of 
course, others are possible (see, for example, in the more general field of stochastic 
optimization [LIT 98, NIE 86]).  

18.2.1. A criterion of abandonment 

A very general criterion often used is Shannon’s entropy [DAV 92], which 
evaluates up to what point the found positions are different. But it is especially 
interesting for discrete problems and, in the specific case of PSO, it is possible to be 
more precise. The first idea is to estimate regularly the volume that the swarm is still 
likely to explore, by taking into account the dispersion of the swarm and the 
velocities of the particles. Let us note that such a calculation is especially interesting 
in non-adaptive PSO or, at least, if there are no particles generated during the search 
process. Indeed, such generations can be viewed as partial re-initialization occurring 
from time to time. As a result, the need for a total re-initialization is definitely rarer. 

We noted in the outline on the dynamics of the swarms that the kinetic energy is 
then roughly speaking decreasing. Indeed the equations of motion imply that, on 
average, the norm of the velocity vector of a particle is multiplied by a coefficient 
less than 1 with each time increment. So even in an infinite time, the particle could 
travel only a finite distance, called maximum flight. Thus, even by taking the 
extreme case where all the particles would move away from the same point in a 
straight line, the total explorable space is still finite. In practice, it is estimated by 
taking as central point the center of gravity of the swarm. The criterion considered is 
the ratio of volumes of still explorable space and the total search space. Intuitively, it 
is advisable to stop wasting time when this ratio becomes too small. Again, it is 
necessary to define what that means. 

 
The second idea is then to use the sampling of the search space provided by the 

current swarm to calculate pseudo-gradients that give us information on the local 
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form of the function to be minimized and to consider that this form remains valid in 
still explorable space. Of course, this requires that the search space be provided with 
a metric and this is all the more necessary as the swarm is concentrated, i.e. that the 
process is already quite advanced. Subject to these reservations, a minimum 
threshold that must not be exceeded for the ratio discussed above can in general be 
estimated according to the acceptable error given initially by the user. When the 
ratio falls below this threshold, the process is stopped, the best found solution is in 
general preserved and a re-initialization is carried out. The simplest approach is to 
do this completely randomly, exactly like the very first initialization, but it is also 
possible to take advantage of the pseudo-gradients already calculated to move all the 
particles en bloc. 

18.2.2. Guided re-initialization  

The initial swarm taken into account is that of the best positions found by the 
particles. The very best of them is taken as the central point. The principle is then to 
dilate the swarm relative to this central point. For each particle (except the best), the 
pseudo-gradient relative to this central point is calculated and then the particle is 
moved: the smaller the pseudo-gradient, the farther from this center. The 
disadvantage, nevertheless, is that a parameter of the initial dilatation should be 
defined slightly greater than 1 (typically 1.1). After each re-initialization, this 
coefficient must be increased, for example by multiplying the current value by the 
initial value. Indeed, if it is necessary to re-initialize, the reason is that the solution 
has not been found and it is thus necessary to dilate the swarm a little more to 
increase the explorable portion of space. 

18.3. Multi-swarm 

It can sometimes be interesting to use several swarms, in particular in 
multiobjective optimization  [PARS 02]  or simply when we do not seek the very 
best solution at all costs but just a set of acceptable solutions. As we have seen, these 
types of problems can be treated by carrying out the chosen algorithm several times 
without re-initializing the pseudo-random number generator, but the goal of multi-
swarm techniques is to obtain a better distribution of the solutions obtained. 

The general idea is to differentiate the particles by a characteristic (“color” or 
“charge”) and then to define at least a law of repulsion, for example in inverse 
proportion to the square of the distance between two particles [BLA 02]. Others are 
of course possible. Thus the one defined in [GAZ 03]  induced an attraction at great 
distances and a repulsion at short distances, which guarantees convergence towards 
a stable position but goes against what we wish (regrouping of each swarm on an 
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interesting position). In addition we will speak here rather about color, because for 
more than two swarms the literal formulation of the laws of attraction and repulsion 
can be very simple; for example, particles of the same color attract each other and 
those of different colors repel each other. Besides, one finds this idea in [BER 03]  
for an optimization algorithm based on the metaphor of ant colonies. 

 
To add just one law of repulsion is easy to formalize and program, since a sum of 

additional terms in the calculation of the displacement of each particle will be 
enough. More precisely, for a particle of given position x, the repulsive contribution 
of every other particle of position y could be: 

 – null if the two particles are of the same color; 

 – equal to ( )
2 3

x y
x y

x yx y x y

λ λ− = −
−− −

, where the coefficient λ  is 

positive, if the two particles are different colors. 

The experiment shows that the law of attraction inherent in PSO is, moreover, 
sufficient, provided, obviously, that each particle uses only informants of its own 
color. Each swarm of a given color tries to converge for its own sake, while being 
constrained by the others. A disadvantage is that it is necessary to recompute the 
distances between particles with each iteration, but the principal difficulty of 
implementation is the estimate of the additional parameter λ . Important theoretical 
work remains to be done here either to guide the user in the choice of the value of 
this parameter or, better, to calculate it automatically in an adaptive way, perhaps 
using a measurement of discrepancy between swarms and measurements of 
concentration of each swarm. Another possible track would be to take as a starting 
point the biological phenomenon of speciation and to make the colors diverge from 
the particles, especially as the exchanges of information between them are rare. 

18.4. Dynamic optimization 

The rapidity of the convergence of PSO turns it into a privileged tool for 
dynamic problems, in the sense of a function to be minimized that changes in the 
course of the search process [CAR 00, EBE 01, HU 02a, PARS 01b]. As we have 
seen in the applications, the crudest method simply consists of not being concerned 
at all by the evolution of the function by hoping that it remains appreciably slower 
than convergence. But it is possible to do better, either by detecting the changes, or 
by being informed of these changes. 

To know if the function was modified, a memory-particle must recompute its 
value for at least one of its memorized positions (besides, in the simplest case, there 
is only one of them). If the found value is different from that previously calculated, 
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it is advisable to re-actualize the memories. Some refinements can be brought to this 
scheme. For example, detection can be done starting from a more or less large 
number of memory-particles, the two extremes being only one particle (the very 
best) and all the particles, the first case being obviously the most economical but 
also the least reliable, in the sense that the detected modification can be only very 
local and not really requiring a recalculation of all the positions. And also, it is 
possible to take into account only “significant” variations, i.e. in practice greater 
than the acceptable threshold of error. 

 
For certain applications, it can be the system optimizing itself that announces its 

change of state to the optimizer. Or the optimizer may be informed in advance 
which changes take place at given times, for example in a regular way. 

 
However, the difficulty is not so much in detecting if a change took place or 

being informed about it, but rather in knowing which strategy to adopt if it is indeed 
the case. The most radical approach is to recompute the values of the function for all 
the memorized positions, but it is also possible to do this only for the positions 
closest to those used for detection. Here again, we are only at an almost completely 
empirical stage. Even if the results published seem convincing, it would be advisable 
to make the tool more easily usable, perhaps starting from sampling theory. 

18.5. For “amatheurs” 

18.5.1. Maximum flight and criterion of abandonment 

To clarify our ideas, let us examine a very simple canonical system of equations 
of motion, considering only one particle: 

( )1

1 1

t t

t t t

v p x

x x v
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⎨
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It is the recursive representation (iterative). By noting that: 
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we immediately deduce from it the direct analytical representation in the case p 

constant: 

( ) ( )01 t
tv p xϕ ϕ= − −  

With this simple model, convergence is ensured for ] [0, 2ϕ ∈ . The maximum 

flight tV  is calculated by: 
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The radius of the explorable space, centered on the current position, is at most 
equal to tV . Let gravx  be the center of gravity of the swarm. Let us calculate the 
pseudo-gradient: 

( ) ( )grav
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f x f xf

x x x

∆
∆

−
=

−
 

If ε  is the acceptable maximum error, our criterion will then be simply: 

t
f

V
x

∆ε
∆

<  

18.5.2. Dilation 

We define an initial dilation coefficient 0ζ , a little greater than 1. Let reinitn be 
the number of re-initializations already carried out. At the beginning, the current 
dilation coefficient ζ  is equal to 0ζ . With each re-initialization, the following 
operations are carried out: 

 – displacement of the particle by grav grav
x

x x x x
f

ζ ⎛ ⎞∆← + − +⎜ ⎟∆⎝ ⎠
; 

 – recalculation of the current dilation coefficient 0ζ ζζ= . 

The smaller the gradient, the more the particle is moved. The more re-
initialization, the more the dilation coefficient increases. 

18.6. Summary 

Among the many complementary techniques and alternatives of PSO, three are 
presented briefly: stop-restart, multi-swarm, and dynamic optimization. The last, 
consisting of tracking the optimum of a function that changes permanently, is 
undoubtedly the one that has the greatest practical importance. Detailed study of 
these alternatives is beyond the scope of this book, but the interested reader will be 
able to consult with profit the references given. 

 



 

Further Information 

To get information, discuss 

A good deal of information concerning PSO can be obtained via the portal 
dedicated to it on the Internet: Particle Swarm Central 

(http://www.particleswarm.info). In particular, you will find links there to various 
bibliographies, downloadable documents, and programs. The majority of the 
researchers in the field are also referred to there. Many have personal sites that 
deserve to be visited. They will enrich your documentation and your knowledge of 
the subject. 

There are PSO researchers everywhere: in the United States, of course, the 
country of origin of the first version, but also in China, Portugal, Brazil, France, etc., 
even in Fiji! The lingua franca used is often “international” English, but certain 
researchers also publish in their mother tongue. That is why, when undertaking 
bibliographical research, it is important not to limit it to English. 

 
As an indication, here are some principal translations of “optimization by 

particle swarm” in several languages. 
 
English (United States of America)  Particle Swarm Optimization  

English  Particle Swarm Optimisation  

French  Optimisation par essaim particulaire 

Portuguese  Optimización de enjambre de partículas  

German  Particle Swarm Optimierung  

Chinese  ₂啀寒永湿ゝ® 
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PSO in the world. Each dark gray disk indicates the usual place of work of at least one 

researcher in this field. The American, European, and Chinese schools are particularly 

active, but many other areas of the world are also represented. The language of 

communication is often “international” English. Nevertheless, it is worthwhile to make 

bibliographical researches relating to other languages. 

The majority of researchers in the field will be pleased to answer your questions 
... provided you take the trouble to write to them in a language they understand! In 
addition, there is a specific mailing list to which you can subscribe, on the site 
Computelligence World. The direct link is http://www.computelligence.org/cgi-
bin/index.cgi?cat = 80. It is also on the home page of Particle Swarm Central. 

Test, contribute 

All the programs mentioned in Particle Swarm Central are in the public domain. 
If you just wish to use PSO without asking too many questions, you can directly try 
an adaptive program like TRIBES, but it is much more instructive to start with 
programs whose code is easier to understand. Remember that there is a very simple 
one in this book (in Chapter 6). 

Those who are users of MatLab® or, better, the free compatible software SciLab 
(http://scilabsoft.inria.fr/) will be able to use Jagatpreet Singh’s PSO TOOLBOX  
and even contribute to it. More generally, if one day you think you have done 
something interesting with PSO, send an email to pso@writeme.com, in French or 
English. The elements you will provide could possibly be put on line, for the benefit 
of all. 
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