

Particle Swarm Optimization

This page intentionally left blank

Particle Swarm

Optimization

Maurice Clerc

First published in France in 2005 by Hermes Science/Lavoisier under the title
“L’Optimisation par essaims particulaires”
First published in Great Britain and the United States in 2006 by ISTE Ltd

Apart from any fair dealing for the purposes of research or private study, or criticism or
review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may
only be reproduced, stored or transmitted, in any form or by any means, with the prior
permission in writing of the publishers, or in the case of reprographic reproduction in
accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction
outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd ISTE USA
6 Fitzroy Square 4308 Patrice Road
London W1T 5DX Newport Beach, CA 92663
UK USA

www.iste.co.uk

© LAVOISIER, 2005
© ISTE Ltd, 2006

The rights of Maurice Clerc to be identified as the authors of this work has been asserted by
them in accordance with the Copyright, Designs and Patents Act 1988.

__
Library of Congress Cataloging-in-Publication Data

Clerc, Maurice.
 [Optimisation par essaims particulaires. English]
 Particle swarm optimization / Maurice Clerc.
 p. cm.
 Includes bibliographical references and index.
 ISBN-13: 978-1-905209-04-0
 ISBN-10: 1-905209-04-5
 1. Mathematical optimization. 2. Particles (Nuclear physics) 3. Swarm intelligence. I.
Title.
 QC20.7.M27C5513 2006
 539.7'2--dc22

 2005037211

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 10: 1-905209-04-5
ISBN 13: 978-1-905209-04-0

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire.

Table of Contents

Foreword. 13

Introduction . 17

Part Ι. Particle Swarm Optimization . 21

Chapter 1. What is a Difficult Problem? . 23

1.1. An intrinsic definition. 23
1.2. Estimation and practical measurement . 25
1.3. For “amatheurs”: some estimates of difficulty 26

1.3.1. Function
1

D

d
d

x
=
∑ . 27

1.3.2. Function
2

1

D

d
d

x
=
∑ . 27

1.3.3. Function ()
1

sin
D

d d
d

x x
=
∑ . 27

1.3.4. Traveling salesman on D cities . 28
1.4. Summary . 28

Chapter 2. On a Table Corner . 29

2.1. Apiarian metaphor. 29
2.2. An aside on the spreading of a rumor . 30
2.3. Abstract formulation. 30
2.4. What is really transmitted . 34
2.5. Cooperation versus competition. 35
2.6. For “amatheurs”: a simple calculation of propagation of rumor 35
2.7. Summary . 36

6 Particle Swarm Optimization

Chapter 3. First Formulations . 37

3.1. Minimal version . 37
3.1.1. Swarm size . 37
3.1.2. Information links . 38
3.1.3. Initialization . 38
3.1.4. Equations of motion . 39
3.1.5. Interval confinement . 40
3.1.6. Proximity distributions . 42

3.2. Two common errors. 44
3.3. Principal drawbacks of this formulation . 45

3.3.1. Distribution bias. 45
3.3.2. Explosion and maximum velocity . 48

3.4. Manual parameter setting. 48
3.5. For “amatheurs”: average number of informants 49
3.6. Summary . 50

Chapter 4. Benchmark Set. 51

4.1. What is the purpose of test functions? . 51
4.2. Six reference functions . 52
4.3. Representations and comments . 52
4.4. For “amatheurs”: estimates of levels of difficulty 56

4.4.1. Theoretical difficulty . 56
4.4.1.1. Tripod . 56
4.4.1.2. Alpine 10D . 57
4.4.1.3. Rosenbrock . 57

4.4.2. Difficulty according to the search effort 58
4.5. Summary . 58

Chapter 5. Mistrusting Chance . 59

5.1. Analysis of an anomaly. 59
5.2. Computing randomness. 61
5.3. Reproducibility. 61
5.4. On numerical precision . 62
5.5. The rare KISS . 62

5.5.1. Brief description. 63
5.5.2. Test of KISS . 64

5.6. On the comparison of results . 64
5.7. For “amatheurs”: confidence in the estimate of a rate of failure 65
5.8. C programs . 68
5.9. Summary . 69

Table of Contents 7

Chapter 6. First Results . 71

6.1. A simple program . 71
6.2. Overall results . 72
6.3. Robustness and performance maps . 73
6.5. Theoretical difficulty and noted difficulty 80
6.6. Source code of OEP 0. 80
6.7. Summary . 85

Chapter 7. Swarm: Memory and Graphs of Influence 87

7.1. Circular neighborhood of the historical PSO 87
7.2. Memory-swarm . 88
7.3. Fixed topologies . 90
7.4. Random variable topologies . 92

7.4.1. Direct recruitment. 92
7.4.2. Recruitment by common channel of communication 92

7.5. Influence of the number of informants . 93
7.5.1. In fixed topology . 93
7.5.2. In random variable topology . 95

7.6. Influence of the number of memories . 95
7.7. Reorganizations of the memory-swarm . 97

7.7.1. Mixing of the memories . 97
7.7.2. Queen and other centroids . 98
7.7.3. Comparative results. 98

7.8. For “amatheurs”: temporal connectivity in random recruitment 99
7.9. Summary . 101

Chapter 8. Distributions of Proximity . 103

8.1. The random possibilities . 103
8.2. Review of rectangular distribution . 104
8.3. Alternative distributions of possibilities . 105

8.3.1. Ellipsoidal positive sectors . 105
8.3.2. Independent Gaussians . 106
8.3.3. Local by independent Gaussians . 107
8.3.4. The class of one-dimensional distributions 107
8.3.5. Pivots . 108
8.3.6. Adjusted ellipsoids . 112

8.4. Some comparisons of results. 113
8.5. For “amatheurs” . 116

8.5.1. Squaring of a hypersphere . 116
8.5.2. From sphere to ellipsoid . 117
8.5.3. Random volume for an adjusted ellipsoid. 117
8.5.4. Uniform distribution in a D-sphere. 118

8.6. C program of isotropic distribution . 118
8.7. Summary . 119

8 Particle Swarm Optimization

Chapter 9. Optimal Parameter Settings . 121

9.1. Defense of manual parameter setting. 121
9.2. Better parameter settings for the benchmark set 122

9.2.1. Search space . 122
9.2.2. To optimize the optimizer . 123
9.2.3. Analysis of results . 125

9.2.3.1. Rate of failure . 125
9.2.3.2. Distribution . 125
9.2.3.3. Topology and the number of informants 125
9.2.3.4. Informants K . 125
9.2.3.5. Coefficient 伊伊ϕ . 126
9.2.3.6. Informants N and memories M. 126

9.3. Towards adaptation . 127
9.4. For “amatheurs”: number of graphs of information 127
9.5. Summary . 128

Chapter 10. Adaptations . 129

10.1. Demanding criteria. 129
10.1.1. Criterion 1 . 129
10.1.2. Criterion 2 . 129

10.2. Rough sketches . 130
10.2.1. Weighting with temporal decrease 130
10.2.2. Selection and replacement . 131
10.2.3. Parametric adaptations . 132
10.2.4. Nonparametric adaptations. 133

10.3. For “amatheurs” . 135
10.3.1. Formulas of temporal decrease . 135
10.3.2. Parametric adaptations . 136

10.3.2.1. Case 1 (0im ≥) . 137

10.3.2.2. Case 2 (0im <) . 137

10.4. Summary . 138

Chapter 11. TRIBES or Cooperatin of Tribes 139

11.1. Towards an ultimate program . 139
11.2. Description of TRIBES . 141

11.2.1. Tribes . 141
11.2.2. The tribal relationships . 141
11.2.3. Quality of a particle . 141
11.2.4. Quality of a tribe. 142
11.2.5. Evolution of the tribes . 142

11.2.5.1. Removal of a particle. 142
11.2.5.2. Generation of a particle . 144

11.2.6. Strategies of displacement . 145

Table of Contents 9

11.2.7. Best informant . 146
11.2.7.1. Direct comparison, general case 147
11.2.7.2. Comparison by pseudo-gradients, metric spaces 147

11.3. Results on the benchmark set . 147
11.4. Summary . 149

Chapter 12. On the Constraints . 151

12.1. Some preliminary reflections. 151
12.2. Representation of the constraints . 152
12.3. Imperative constraints and indicative constraints 153
12.4. Interval confinement. 154
12.5. Discrete variable . 154

12.5.1. Direct method . 155
12.5.1.1. List not ordered (and not orderable) 155
12.5.1.2. Ordered list . 155

12.5.2. Indirect method . 155
12.6. Granularity confinement . 156
12.7. “all different” confinement . 156
12.8. Confinement by dichotomy. 157
12.9. Multicriterion treatment. 158
12.10. Treatment by penalties. 161
12.11. C source code. Dichotomic search in a list 162
12.12. For “amatheurs” . 162
12.13. Summary. 165

Chapter 13. Problems and Application . 167

13.1. Ecological niche . 167
13.2. Typology and choice of problems . 168
13.3. Canonical representation of a problem of optimization 169
13.4. Knapsack . 169
13.5. Magic squares . 170
13.6. Quadratic assignment . 171
13.7. Traveling salesman . 172
13.8. Hybrid JM . 173
13.9. Training of a neural network . 174

13.9.1. Exclusive OR. 175
13.9.2. Diabetes among Pima Indians . 176
13.9.3. Servomechanism. 176
13.9.4. Comparisons . 176

13.10. Pressure vessel . 177
13.10.1. Continuous relaxed form . 179
13.10.2. Complete discrete form . 180

13.11. Compression spring . 182
13.12. Moving Peaks . 185

10 Particle Swarm Optimization

13.13. For “amatheurs”: the magic of squares 188
13.14. Summary. 188

chapter 14. Conclusion . 189

14.1. End of the beginning. 189
14.2. Mono, poly, meta. 189
14.3. The beginning of the end? . 190

Part ΙΙ. Outlines . 193

Chapter 15. On Parallelism . 195

15.1. The short-sighted swarm . 195
15.2. A parallel model . 195
15.3. A counter-intuitive result . 196
15.4. Qualitative explanation . 197
15.5. For “amatheurs”: probability of questioning an improved memory . . . 198
15.6. Summary . 199

Chapter 16. Combinatorial Problems . 201

16.1. Difficulty of chaos . 201
16.2. Like a crystal . 202
16.3. Confinement method . 203
16.4. Canonical PSO . 204
16.5. Summary . 210

Chapter 17. Dynamics of a Swarm. 211

17.1. Motivations and tools . 211
17.2. An example with the magnifying glass . 212

17.2.1. One particle. 212
17.2.2. Two particles . 214

17.3. Energies . 217
17.3.1. Definitions . 217
17.3.2. Evolutions . 218

17.4. For experienced “amatheurs”: convergence and constriction 220
17.4.1. Criterion of convergence . 220
17.4.2. Coefficients of constriction . 221
17.4.3. Positive discriminant . 222

17.5. Summary . 224

Table of Contents 11

Chapter 18. Techniques and Alternatives . 225

18.1. Reprise . 225
18.2. Stop-restart/reset . 226

18.2.1. A criterion of abandonment . 226
18.2.2. Guided re-initialization . 227

18.3. Multi-swarm . 227
18.4. Dynamic optimization. 228
18.5. For “amatheurs” . 229

18.5.1. Maximum flight and criterion of abandonment. 229
18.5.2. Dilation . 230

18.6. Summary . 230

Further Information . 231

Bibliography . 233

Index . 239

This page intentionally left blank

Foreword

Goal and limits

This book is the first to deal exclusively with particle swarm optimization. In his
Swarm Intelligence [KEN 01], originally entitled Particle Swarm Optimization
(PSO), my friend Jim Kennedy has devoted three chapters out of eleven to this
subject, above all as an illustration of the more general concept of collective
intelligence without dwelling on the details of practical implementation.

For this book, my goal was simpler: to give you the concepts and tools necessary
and sufficient for the resolution of problems of optimization, including the codes of
various programs.

After having assimilated the contents of the first and more important part, you
should be able to apply PSO to practically any problem of minimization of an
assessable function in a continuous, discrete or mixed search space. You will also be
able to deal with multi-objective problems, either as such, or as methods of taking
into account complex constraints of a mono-objective problem.

PSO is in constant and fast evolution, but the corpus of techniques presented
here is already sufficiently reliable and particularly effective, even though, as we
shall see, many and interesting ways of research are yet to be explored, particularly
regarding adaptive PSO. An important international collaboration, XPS (eXtended
Particle Swarms), led by the University of Essex in Great Britain, began at the end
of 2004. It should lead to major breakthroughs both theoretical and practical. As the
promoters of the project put it:

“[The goal is] to include strategies inspired by a broad range of collective
behavior, in biology and particle physics, to deal with many problems in engineering
and to establish solid theoretical and mathematical bases [. . .]”.

14 Particle Swarm Optimization

In spite of its brief history, PSO has already entered into science fiction: Michael
Crichton, in his novel Prey [CRI 03], has explicitly referred to it, in particular using
the concept of constriction . . . albeit in a form that is very different from the original
one!

Organization of the book

The book is structured in two parts. The first describes PSO in detail, from a very
simple primitive parametric version to an adaptive version that does not require the
user to supply parameters. The discussion thread is a benchmark set of six test
functions which enable us to compare the influence of the parameters and search
strategies. The final chapter of this part focuses on some more realistic problems.

The second part is entitled “Outlines”, indicating that the items discussed are not
dealt with in detail, as this would go beyond the scope of this book. It is primarily
about parallelism, the canonical PSO (a basis, among others, of the combinatorial
PSO) and the dynamics of the swarms. The final chapter very briefly presents some
techniques and alternatives such as the stop-reset, the multi-swarm and the dynamic
PSO (optimization of a function changing during the very process of search). The
interested reader will be able to refer to the documents cited.

Many chapters end with a more mathematical part. This part specifies or justifies
some of the assertions made in the body of the text but is by no means necessary for
the comprehension of those ideas. It can thus be comfortably skipped if you do not
have the taste or the time for it.

Various versions of PSO are studied, some in a very thorough manner, others
very briefly. The diagram below shows the links between them and the levels of
detail of the presentations. In particular, the significant field of specific
implementations of PSOs is only skimmed through. It would be, in itself, worth a
later work, particularly as the methods implemented are very often hybrid, i.e. use
several methods of optimization jointly, in particular for difficult combinational
problems.

Foreword 15

Figure 1. Various versions of PSO considered. Those with a gray background and a thick

continuous outline are really detailed. The outline is dotted if there is presentation without

implementation. The versions indicated in the white zone are only mentioned

On the source codes

The programs used were developed under Linux and deliberately written in pure
ANSI C to be easily compilable under any operating system. There is consequently
neither graphic interface, nor specific memory management.

For certain small programs, the source codes are given explicitly. The others are
available on the Internet, starting from the following link: http://www.hermes-
science.com/clerc/oep.zip. More generally, the portal of PSO is Particle Swarm
Central: http://www.particleswarm.info/.

 Minimal

Classic

Traveling salesman

TRIBES

Multi- swarm

Canonical

 Parametric Adaptive

 SpecificsDynamic

16 Particle Swarm Optimization

On technical terms

Normally the essence of each chapter (including some rather delicate reasoning)
may be read without any deep mathematical knowledge. Nevertheless some
specialized terms are used here and there, particularly for the sake of conciseness,
but these are easily comprehensible. For example, “hypersphere in a space with D

dimensions” will often be replaced by “D-sphere”, and “hyperparallelepiped in a
space with D dimensions” will be replaced by “D-rectangle”.

To contact the author

If you wish to send comments, point out errors or make suggestions, you can
contact Mr Maurice Clerc:

– by email, at maurice.clerc@writeme.com;

– via the author’s website, http://www.mauriceclerc.net;

– via the editor.

Introduction

On some types of optimization

Iterative optimization is as old as life itself. Even very primitive beings act
according to a simple impulse that can be summarized in a few words: “To improve
their situation”. Hence, many strategies are conceivable, but those we see every day
in action in nature, and prove their effectiveness by the persistence of the species
that practice them, already offer a broad range of solutions. It is therefore not
surprising that, explicitly or implicitly, several mathematical models of optimization
take as a starting point biological behaviors and make an abundant use of metaphors
and terms originating from genetics, ethology, and even from ethnology or
psychology.

Among these models, one can distinguish those corresponding to individual
behavior and those using collective behavior. In the first case, the most obvious
strategy is to seek to benefit permanently from any obvious immediate
improvement. If the objective is to reach a summit, at every crossroads one will
systematically take the route that seems to go up more; for example, by testing them
all over a small length. Obviously, by doing this, one may well end up on a
secondary summit, which could be only a very poor local optimum.

To compensate for the limitations of this primitive gradient strategy, it would be
necessary to make a real conceptual leap and allow the situation to more or less
deteriorate for a long time, in the hope that it would improve eventually. Since this
behavior could be suicidal, it is advisable to be protected by a safeguard, i.e., in
practice, to remember the best position already found, in order to be able return to it
if necessary. At the same time, the individual can afford to explore on the basis of a
wider variety of rules, even straightforwardly randomly, or, more intelligently,
according to a chance “guided” by gradually acquired knowledge.

18 Particle Swarm Optimization

In the second case, i.e. collective optimization, this maintenance of the asset can
be done quite naturally, since it is enough that the individual who has the best
position does not move, leaving others to explore the environment. But now, two
new parameters come into play: the size of the group and its structure.

The structure relates to the way in which information is transmitted between
individuals. To what is each individual related? Are these links constant or variable?
Are the exchanges bidirectional or not? Is there a hierarchy? Sub-groups? The basic
problem is that of the use of knowledge. One rightly feels that the more the search
space is sampled by successively evaluated positions, the better one should be able
to predict the areas that are interesting to explore, by making certain assumptions
about the regularity of the search space. However, these forecasts have a price. Is it
worthwhile?

Not always. The most obvious academic case is that of a function to be
optimized completely at random: the best strategy is the most stupid and very
cheap, since it simply consists in generating equally random positions. Generally,
the more progressive sampling of the studied function presents a higher degree of
randomness, the more the strategy of research must itself call for randomness.

The size of the group can be fixed at the beginning or be variable during the
research. In the second case, it is necessary to define mechanisms of selection or
generation, or, more often, both. Moreover, even in the first case, such mechanisms
can be used, the constant size being preserved by a dynamic equilibrium, any
selection being compensated by a generation.

On PSO

Particle swarm optimization (PSO), in its historical version, is a collective,
anarchic (in the original sense of the term), iterative method, with the emphasis on
cooperation; it is partially random and without selection. The goal of the early
chapters will be to detail these characteristics and formalize them to obtain an
exploitable model that is particularly effective for strongly nonlinear problems.

We will see initially why and how this model can treat continuous and
heterogeneous (i.e. in which some of the variables are continuous and others
discrete, possibly coding combinational aspects) optimizations in a uniform way.
Then we will study some alternatives. The goal here is not to make an exhaustive
survey, but to work on a selection of those which either have already proved to be of
interest, or seem most promising. In other words, their choice is necessarily
subjective. We will look in particular at the versions known as adaptive, whose
“ultimate” form, called TRIBES, does not require any parameter other than those
defining the problem.

Introduction 19

The few problems with accompanying notes should then allow
you to become familiar with PSO, to better determine its domain of competence and
hopefully to use it yourself later with profit, perhaps even to make improvements
upon it.

This page intentionally left blank

PART Ι

Particle Swarm Optimization

This page intentionally left blank

Chapter 1

What is a Difficult Problem?

1.1. An intrinsic definition

As regards optimization, certain problems are regarded as more difficult than
others. This is the case, inter alia, for combinatorial problems. But what does that
mean? Why should a combinatorial problem necessarily be more difficult than a
problem in continuous variables and, if this is the case, to what extent is it so?
Moreover, the concept of difficulty is very often more or less implicitly related to
the degree of sophistication of the algorithms in a particular research field: if one
cannot solve a particular problem, or it takes a considerable time to do so, therefore
it is difficult.

Later, we will compare various algorithms on various problems, and we will
therefore need a rigorous definition. To that end, let us consider the algorithm for
purely random research. It is often used as a reference, because even a slightly
intelligent algorithm must be able to do better (even if it is very easy to make worse,
for example an algorithm being always blocked in a local minimum). Since the
measurement of related difficulty is very seldom clarified (see however [BAR 05]),
we will do it here quickly.

The selected definition is as follows: the difficulty of an optimization problem in
a given search space is the probability of not finding a solution by choosing a
position at random according to a uniform distribution. It is thus the probability of
failure at the first attempt.

Consider the following examples. Take the function f defined in [0 1] by f(x) =
x. The problem is “to find the minimum of this function nearest within s”. It is easy
to calculate (assuming that ε is less than 1) that the difficulty of this problem,

24 Particle Swarm Optimization

following the definition above, is given by the quantity (1 – ε). As we can see in
Figure 1.1, it is simply the ratio of two measurements: the total number of
acceptable solutions and the total number of possible positions (in fact, the
definition of a probability). From this point of view, the minimization of x2 is twice
as easy as that of x.

Figure 1.1. Assessing the difficulty. The intrinsic difficulty of a problem of the minimization of

a function (in this case, the search for an item x for which f(x) is less than 0.2) has nothing to

do with the apparent complication of the formula of the function. On the search space [0 1], it

is the function x2

that is by far the easiest, whereas there is little to choose between the two

others, function x being very slightly more difficult

It should be noted that this assessment of difficulty can depend on the presence
of local minima. For example, Figure 1.2 represents part of the graph of a variant of
the so-called “Alpine” function, () sin() 0.1f x x x x= + . For 0.5ε = the field of the

acceptable solutions is not connected. Of course, a part contains the position of the
global minimum (0), but another part surrounds that of a local minimum whose
value is less than ε. In other words, if the function presents local minima, and
particularly if their values are close to that of the global minimum, one is quite able
to obtain a satisfactory mathematical solution, but whose position is nevertheless
very far from the hoped for solution.

By reducing the tolerance level (the acceptable error), one can certainly end up
selecting only solutions actually located around the global minimum, but this
procedure obviously increases the practical difficulty of the problem. Conversely,
therefore, one tries to reduce the search space. But this requires some knowledge of
the position of the solution sought and, moreover, it sometimes makes it necessary
to define a search space that is more complicated than a simple Cartesian product of

0
0.2
0.4
0.6
0.8

1
1.2

0 0.2 0.4 0.6 0.8 1 1.2

x

()xx sin

x
2

x

What is a Difficult Problem? 25

intervals; for example, a polyhedron, which may even be non-convex. However, we
will see that this second item can be discussed in PSO by an option that allows an
imperative constraint of the type () 0g position < to be taken into account.

Figure 1.2. A non-connected set of solutions. If the tolerance level is too high (here 0.5),

some solutions can be found around a local minimum. Two different methods of avoiding this

problem when searching for a global minimum are to reduce the tolerance level (which

increases the practical difficulty of research) or to reduce the search space (which decreases

the difficulty). But this second method requires that we have at least a vague idea of the

position of the sought minimum

1.2. Estimation and practical measurement

When high precision is required, the probability of failure is very high and to
take it directly as a measure of difficulty is not very practical. Thus we will use
instead a logarithmic measurement given by the following formula:

difficulty = −ln(1 − failure probability) = −ln(success probability)

In this way one obtains more easily comparable numbers. Table 1.1 presents the
results for four small problems. In each case, it is a question of reaching a minimal
value. For the first three, the functions are continuous and one must accept a certain
margin of error because that is what makes it possible to calculate the probability of
success. The last problem is a classic “traveling salesman problem” with 27 cities,
for which only one solution is supposed to exist. Here, the precision required is
absolute: one wants to obtain this solution exactly.

0
0.5

1
1.5

2
2.5

3
3.5

4

0 1 2 3 4 5

x

26 Particle Swarm Optimization

Problem Search space
Value to be

reached

Admissible

error

Logarithmic

difficulty

10

1
d

d

x
=
∑ []10

0 1 0 0.01 61.2

10
2

1
d

d

x
=
∑ []10

0 1 0 0.01 29

()
10

1
sind d

d

x x
=
∑ []10

0 1 0 0.01 Estimate 63

Traveling salesman { }27
1, 2,...,10 C 0 61.26

Table 1.1. Difficulty of four problems compared. When the probabilities of success are very

low, it is easier to compare their logarithms. The ways of calculating the difficulty are given

at the end of the chapter. For the third function, it is only a rather pessimistic statistical

estimate (in reality, one should be able to find a value less than the difficulty of the first

function). For the traveling salesman problem (search for a Hamiltonian cycle of minimal

length), it was supposed that there was only one solution, of value C; it must be reached

exactly, without any margin of error

We see, for example, that the first and last problems are of the same level of
intrinsic difficulty. It is therefore not absurd to imagine that the same algorithm,
particularly if it uses randomness advisedly, can solve one as well as the other.
Moreover, and we will return to this, the distinction between discrete/combinatorial
problems and continuous problems is rather arbitrary for at least two reasons:

 – a continuous problem becomes necessarily discrete, since it is treated on a
numerical computer, hence with limited precision;

 – a discrete problem can be replaced by an equivalent continuous problem under
constraints, by interpolating the function defining it on the search space.

1.3. For “amatheurs”: some estimates of difficulty

The probability of success can be estimated in various ways, according to the
form of the function:

 – direct calculation by integration in the simple cases;

 – calculation on a finite expansion, either of the function itself if it is derivable
around the optimum several times (Taylor’s formula), or of a Padé approximation
(ratio of two polynomials);

 – statistical estimate.

For Table 1.1, the probabilities of success were calculated as indicated below.

What is a Difficult Problem? 27

1.3.1. Function
1

D

d
d

x
=
∑

Let us call p the probability of success and ε the required precision. One has
successively:

() ()1

1 10 !

D
D D

d d
d d

p p x p x u du
D

ε εε ε
−

= =
= < = < − =∑ ∑∫

the last equality being obtained easily by recurrence. But this is valid only if all the
components are picked at random from the interval []0 1 . If the real interval

is []0 R , this result must be multiplied by (1/ R)
D

. Finally, we obtain:

() () () () () ()
1

ln ! ln ln ln ln ln
D

d

difficulty D D D R d D D Rε ε
=

= − + = − +∑

1.3.2. Function 2

1

D

d
d

x
=
∑

Here, calculation is even simpler … provided its formulae are known!

Effectively we want the probability of 2

1

D

d
d

x ε
=

<∑ for 0 1dx≤ ≤ . It is therefore

enough to work out the ratio of the volume of the hypersphere of dimension D and

radius ε and of the volume of the hypercube of edge 2. It is given by the
traditional formula:

'

'

1
 si 2 '

'! 2

2 1
 si 2 ' 1

! 2

D
D

D

D
D

D

D

D D
D

D D
D

π ε

π ε

⎧
=⎪⎪

⎨
⎪ = +⎪⎩

As before, if the hypercube is of edge 2 R, it is necessary to multiply by (1/ R)
D

.

1.3.3. Function ()
1

sin
D

d d
d

x x
=
∑

Here direct analytical determination is tricky. It would certainly be possible to
use an expansion of a finite series, but let’s take a lazier method of estimation,
which nevertheless requires the use of a computer.

 We take a very small search space [0 r]
D

, such that there are nevertheless points
in which the function has a greater value than the tolerance level, ε. For D = 10, one
can take r = 0.005.

28 Particle Swarm Optimization

 We can at random draw a great number of items (10
8
in the example), each time

we evaluate the function, in order to see whether we obtain a value less than ε or not.
We deduce an estimate from the success rate, τ. In the example, one obtains
τ = 0.999732. Note that it is necessary to use a good pseudo-random number
generator. For example, the function rand in the programming language C is not
always appropriate (see Chapter 5).

 One then calculates that on the search space [0 r]D, the success rate would be

only '
D

r

R
τ τ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
. The measurement of corresponding difficulty is thus:

() () ()ln ln lndifficulty D r D Rτ= − − +

Note that this estimate is a little pessimistic as soon as R π≥ , since there are
then several global minima (every point where ()sin 0dx = , for all dx). The number
of these points is ()()1

D

n Ent R π= + , but the further one moves from the origin of
the coordinates, the more the corresponding minimum is “pointed” and the less,
therefore, its existence reduces the difficulty of the problem. The fact is, moreover,
that PSO never finds them before the origin of the coordinates itself (as long as, of
course, this is in the search space).

1.3.4. Traveling salesman on D cities

One can always fix the town of departure. There then remain ()1 !D − possible

combinations for the others. It is assumed that there is only one solution. The
probability of success while choosing randomly is thus ()1 1 !D − and so one obtains

the formula:

()
1

1
ln

D

d

difficulty d
−

=
= ∑

1.4. Summary

A problem is regarded as easy if the probability of finding a solution by chance
is large. Thus the intrinsic theoretical difficulty can be quantified by the inverse of
the logarithm of the probability of success. Some examples are given, showing that
extremely different, continuous, discrete or combinatorial a priori problems have, in
fact, the same level of difficulty.

Chapter 2

On a Table Corner

2.1. Apiarian metaphor

The bee dances. While humming, she describes a kind of slightly tilted oblate
eight. Undulating quickly, she crosses once, twice, ten times, the same closed curve,
followed by her sisters who pass very close to her, scenting her and listening to her.
And her dance is a message, which says to them: “15° relative to the sun; 300
meters; lavender; much”.

 About 1927, Karl von Frisch discovered that bees brought back to the hive not
only nectar and pollen, but also information [FRI 84]. He patiently decoded their
language and the attentive observer can now understand them to some extent. It is
even possible today, thanks to tiny robots, “to speak to them”. Thus, we know rather
well now why and how, once a good site is located by a worker, it is quickly and
effectively exploited by others. The transmitted direction and distance incorporate
inaccuracies; interpretation is prone to small errors; and, finally, the flight itself
towards the site indicated undergoes slight deviations. The net result is that the many
workers who answer the call of their colleague will finally distribute themselves at
random around the initial site. Thus, if there is a better site nearby, it will very
probably also be located.

 But that does not explain how an interesting site that is far from those already
known can also be found. As Karl von Frisch noted, this kind of discovery must be
the work of an “original”, but he did not propose a model explaining the search
strategy of such dissidents. Is this happening at random? Or systematically
according to a preset plan? Moreover, one bee must sometimes combine information
from several different sources: its own knowledge of the ground and information

30 Particle Swarm Optimization

from one or more nectar-gathering bees. The way it does this remains a mystery, but
to learn something from the behavior of our bees, we will nevertheless have to
model it; therefore, in fact, to invent an entirely new method.

2.2. An aside on the spreading of a rumor

It is rather natural, and traditional, to model a network of information between
individuals by a graph, sometimes called an influence graph. Each node of the graph
represents an individual, and an arc, an information link, between two individuals A
and B means “A informs B”. These links are not necessarily constant. In particular,
in our swarm, they change at every moment (with each time increment, if time is
discrete, which we will accept from now on). Complex studies, highlighting
phenomena of avalanche and the influence of phenomena of training have been
made [DER 03], but we will be satisfied here with a simplistic model.

 With each time increment, each particle randomly chooses a certain given
number of other particles to inform. One can then calculate (see section 2.6) various
elements, for example the minimal value of this number, varying according to the
size of the swarm, to be almost sure that any information was received at least once
by everyone after a certain time.

 The interesting point is that the number informed by a given particle can remain
very small. For example, if we want quasi-certainty (probability of 0.9999) that any
individual can be informed by any other after 10 time increments, it is enough that
each one informs two at each increment, and this is valid for a broad range of swarm
sizes, from 10 to 300, approximately.

2.3. Abstract formulation

In PSO, an “interesting site” corresponds to at least a local optimum of a certain
function defined in a search space. This function can be given by a mathematical
formula or, failing this, by an algorithm, or even by the outcome of a process, real or
simulated. The main thing is that one can calculate its value at each point.

 For a first simple version, we do not seek all the interesting sites, but only the
most interesting, i.e. the global optimum of our function. With this intention, PSO
takes as a starting point the cooperative behavior described in our metaphor: each
particle is able to communicate to some others the position and quality of the best
site it knows, a quality that one can interpret as its “value”. Let us call this set of
particles connected to a given one by the descending information links the group of
information receivers. Conversely, at every moment, a given particle can belong
simultaneously to several informant groups and thus has a certain number of

On a Table Corner 31

informants, who inform it about various more or less good sites. It is up to it to take
advantage of this information in order to define its next displacement. This operation
of synthesis of information for an action has not yet been elucidated in biological
reality, but has been the subject here of a very simple formalization (linear). This
formalization does not claim to model the real behavior of bees or any other living
organism. It simply proves to be effective for the resolution of many mathematical
problems of optimization.

 If one wants to continue to develop the metaphor, particle = bee, it would
actually be necessary to speak of these bees as mutant or, at least, equipped with
mobile phones! However, since a real bee must return to the hive to deposit the
pollen or nectar it has collected, the fact that transmission of information is done
only here is not a handicap. By contrast, in PSO there would be no advantage in
each particle returning systematically to the same initial point before carrying out a
new trip. Consequently, the communications are made remotely. This assumption
made, we can now outline an algorithm of optimization taking as a starting point
what we have just seen.

 First of all, it is necessary to define a swarm in the search space. Of what size?
The simplest thing to do, for the moment, is to give it a fixed size. We will see later
that it is possible to be more astute and vary it automatically according to the results
obtained. Whereas real swarms of bees typically number 20,000 individuals, we will
be satisfied with sizes of about 20 to 40. While anticipating a little, it turns out that
in PSO these sizes are very often sufficient. Of course, in a genuine hive, the vast
majority of bees do not bring new information at all, being satisfied with exploiting,
in the material sense of the term (nectar, pollen, etc.) a site already found. In PSO, it
is certainly useful to exploit a known site, but only from the viewpoint of the theory
of optimization, i.e. by checking the neighborhoods to find out if there is a better
one. A multitude of purely nectar-gathering workers is not necessary.

 In accordance with our metaphor, initially all the particles of the swarm should
be at the same place. But, after the first time increment, they will be dispersed
randomly, because, in the absence of any information, this is still the best method.
Therefore, to simplify, let us say that this random distribution is the initial position
of the swarm. Let us note that this also relates to the rates of travel of the particles,
which we will also initialize randomly, over a reasonable range of values, as a
function of the size of the search space.

 It is also necessary for us to define, for each particle, which are its informants.
Always by analogy with what (apparently) occurs in a hive, we can randomly define
for each particle its group of information receivers, which, automatically, also
determines the informants of each particle, since, formally, we establish a graph of
relation between the particles.

32 Particle Swarm Optimization

 How many information receivers, and how many informants? On the one hand,
if all the particles are informed by each one, all information acquired is disseminated
immediately, which may seem favorable. But, on the other hand, it is highly risky to
have behavior that is too uniform: with the same information, all the particles will
act in the same way. For difficult research, this is not effective. Conversely, if each
particle has too few informants, we will be able to obtain more diversified
behaviors, but then there is the risk that the information is badly transmitted.
However, it is important that if a particle finds a good site, all the others can become
aware of it more or less directly, in order to take advantage of it.

 We thus have two criteria: diversity, which increases as the number of
informants per particle decreases, and propagation, which becomes faster and more
complete as this number increases. A priori, the relation “being informant of” is not
symmetrical, but, as we shall see, it is the case in almost all current versions of PSO.
To simplify, we will thus say that the information links are symmetrical: any
informant is also informed.

 Under these conditions, as we saw, if the choice is made randomly with each
time increment, taking two or three information receivers for each particle seems a
good compromise. Another method, which will be clarified in the chapter on
topologies of the graphs of information (Chapter 7), is not to choose informants
randomly once and for all, but according to a rule taking into account our two
criteria, for example according to a circular diagram. A third method, about which
we will also speak, is the possibility of making a permanent and judicious automatic
selection of informants. The whole set of informants of a given particle will be
called its I-group.

 The nature of the transmitted information is obviously significant, but the more
information there is, the more time-consuming and difficult it will be for a particle
to deal with it. Therefore, rather than complicating matters we will say that each
informant is able to transmit only two pieces of data that, in brief, we will call the
overall best performance: the position of the best site it knows and the quality of this
site. Translated into the language of optimization of a mathematical function, that
means: a point in the search space and the value at this point of the function to be
optimized.

 Most difficult to model is the way in which an informed particle calculates its
next displacement. First, let us note that it is in general already moving: it thus has a
certain velocity. Then, since it is a possible informant in respect of other particles, it
knows its own best performance. Lastly, therefore, it knows all the best
performances of its informants. Let us simplify matters by keeping only the best.
There thus remain three elements to be combined: proper velocity, proper best
performance, and the best of the better performances of informants.

On a Table Corner 33

 Let us imagine three extreme cases. In the first case, the particle is adventurous
and intends to follow only its own way. Then it will allot a null confidence to
received information and even to its own explorations: it will be satisfied with
following more or less the already followed direction, i.e. the next displacement will
be made with approximately the same velocity (intensity and direction) as the
preceding one. In the second case, it is very conservative: it will grant great
confidence to its best performance and will tend to return to it unceasingly. In the
third case, it does not accord any confidence to itself, but instead moves according to
the guidance of its best informant.

Figure 2.1. Three fundamental elements for the calculation of the next displacement of a

particle: according to its own velocity, towards its best performance and the best

performance of its best informant. The way in which these three vectors are combined linearly

via confidence coefficients is the basis of all the versions of the “classic” PSO. The three gray

arrows represent such a combination, which will give the next position of the particle

We thus have three fundamental displacements, shown in Figure 2.1 according to
its current velocity; towards its own best performance; and towards that of its best
informant. It is significant to note that “towards” in fact means “towards a point
located not far from”, a concept that will be clarified by defining random proximities

(to be exact, random distributions). In the same way, “according to its velocity”
means “towards the point that would be reached by continuing with the same
velocity vector”. The simplest way to calculate the true displacement starting from
these three basic vectors is to make a linear weighting of it, thanks to confidence

coefficients. All the skill of the first versions of PSO consists of the judicious
definition of these coefficients.

towards the best
performance of its
best informant

particle

proper velocity

towards the accessible
point by following

 towards its best
 performance

its proper velocity

34 Particle Swarm Optimization

2.4. What is really transmitted

After having detailed why and how a simple model of propagation of rumor can
ensure the fast propagation of information, we are going to explain now that in PSO,
this information is not always transmitted and that, when it is, it can be quite
distorted . . . and that this is a good thing!

 Everything depends on the fact that a particle transmits only its best
performance. Let’s take the case of a particle A which announces to a particle B:
“My best performance is . . .” In general, particle B has other informants. In the first
case, A is not the best of them. Then, as we saw, B does not take it into account at
all and thus, obviously, its own best performance, i.e. the information which it will
itself transmit, does not reflect in any way the information coming from A.

 In the second case, A is the best of B’s informants. Then, B modifies
its position according to this information and we have two possibilities again. Either,
by doing this, B does not improve its best performance and thus, again, what it will
transmit does not contain anything coming from A. Or, on the contrary, the new
position of B is better than its previous best performance and replaces it. In this
single case, when B informs another particle, we can say that that information
contains something resulting from A, but in a degraded form, since it is simply the
result of a calculation having jointly used it with other elements.

 Why is this process finally more effective, at least with regard to our objective
of finding the global optimum, than a complete and perfect diffusion of information
collected? It is undoubtedly because it models Karl von Frisch’s intuition
concerning the role of “original” individuals, in the sense of those who “wander
away from the standard”, in such a way that all the particles are more or less,
precisely, original. Thus it makes for much diversity. If you have a little experience
of other methods of iterative optimization, for example genetic algorithms, you can
already infer from them what the experiment confirmed: PSO is particularly
interesting for difficult problems. That does not mean, of course, that it cannot solve
easy problems, but for the latter, there are often specific methods that are more
effective. For example, PSO is not at all the best tool for the resolution of linear
systems.

2.5. Cooperation versus competition

Since we have invoked the genetic algorithms, this may be the occasion to note a
significant characteristic of PSO, at least in its classic versions: it does not practice
any selection. The idea is that today’s less successful particles are perhaps the
tomorrow’s successful ones. The particles with poor performance are preserved,

On a Table Corner 35

with the hope that it is precisely among them that the “originals” are to be found, the
dissenters that will make it possible to discover the best site in the search space.
Moreover, the experiments have entirely justified this hope.

Naturally, researchers in optimization have found it very tempting to try to
amalgamate qualities of PSO with those of other methods. And this is why versions
with selection have seen the light of day. Contrary to what one might believe, this
has shown that their principal quality is not to be more effective, but primarily to
open the way for an autonomous PSO, without parameters defined by the user, and
particularly not the size of the swarm. An example of this will be given later (see
Chapter 11).

2.6. For “amatheurs”: a simple calculation of propagation of rumor

Following the guidance of our apiarian metaphor, let us suppose that with each
time increment a certain number K of information links are established randomly by
each particle. Also let us suppose, for the sake of simplicity, that this number is
constant. Also, by assumption, any individual receiving information at time T will
retransmit it at time T + 1. What is the maximum number of increments T after
which an individual C will almost certainly have received the information from A?
Or, conversely, what must be the value of K such that any individual has almost
certainly received information coming from A after T increments?

Let us answer the second question, which is the more interesting here. At the
first increment, individual A disseminates its information. That amounts to choosing
K individuals among N, including perhaps itself, i.e. to make K draws randomly,
with replacement. The probability for a given individual C not to be selected is
1 1 N− , and the probability that it is still not selected after K draws is thus ()1 1

K
N− .

With the second increment, the diffusion is made on K

2 individuals chosen
randomly, and so on. Generalizing, the probability for an individual still not to be
reached after the tth increment is ()1 1

tK
N− . Consequently, the probability pr(t) of it

being reached at least once is given by the complement of this formula:

1
() 1 1

tK

pr t
N

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 [2.1]

This probability increases very quickly with t. Conversely, therefore, K does not
need to be large for propagation to occur quickly. From the above formula one
derives that, if one wants a near certainty with small ε (i.e. a probability equal to 1–ε):

36 Particle Swarm Optimization

()

1

ln

1
ln 1

t

K

N

ε
⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟⎛ ⎞−⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 [2.2]

Figure 2.2 shows the evolution of pr(t) for K = 2 and some sizes of swarm.

Figure 2.2. Propagation of a rumor. Here, with each time increment, each particle informs

another two at random. Even for a swarm of size N = 300, it is almost certain that any

particle receives information from another at least once after at most 10 time increments

2.7. Summary

The basic model of PSO is defined in an informal way, following quite freely the
example of information exchanges between bees. Each particle combines in a linear
fashion three elements to decide on its next movement: its current velocity, the best
position it has found up to now and the best position found by its informants.

Informants are selected at random with each time increment. At this stage, their
number is a parameter of the algorithm, just like the size of the swarm. Even if the
swarm is large compared to the number of informants per particle, one can show that
propagation of information occurs very quickly.

0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

Time

P
ro

b
a

b
il

it
y
 N=20

N=100

N=300

Chapter 3

First Formulations

3.1. Minimal version

3.1.1. Swarm size

Let us recall that for the moment the size of the swarm is fixed once for all.
Intuitively, we feel of course that, the more particles, the faster the search will be in
terms of the number of iterations. But, this iteration count is not really a relevant
criterion. Rather, what counts is the number of times that the function to be
minimized must be evaluated, because in the majority of real problems, this
evaluation requires a considerable time. And, obviously, for an iteration, the number
of evaluations is equal to the number of particles. Therefore, if we want to reduce
the total number of evaluations needed to find a solution, we are tempted to decrease
the size of the swarm. But too small a swarm is likely to take longer to find a
solution or even not to find it at all.

 In short, a compromise must be reached. Empirically, the experimenters
proposed sizes of about 20 to 30 particles, which, indeed, proved entirely sufficient
to solve almost all classic test problems. Note how small this value is, compared
with those usually used, for example in the genetic algorithms (GA), a fact which
does not facilitate comparisons. Those who are for GA say “Since I use 100 genes in
my algorithms, I will take 100 particles for a comparison with PSO”. At once,
obviously, they find that PSO, although finding a solution at least as often as the
genetic algorithms, is not very effective in terms of number of evaluations, since this
number of particles is rather too large and there is no selection. Conversely, if those
who are for PSO use GA with only 20 genes, they will observe that the algorithm
finds the solution less often, which is quite normal as well. In fact, and we will

38 Particle Swarm Optimization

return to this later, like any algorithm, PSO has its “field of competence”, its
“ecological niche”, where it turns out to be the best choice [EBE 98, GUD 03, JEN
96, SET 03].

 In the examples below we will systematically use a swarm of 20 particles,
eventually showing that even this small number is sometimes larger than necessary.
But we will also see later, in the chapter on performance maps, that a slightly greater
number is more comfortable, in the sense that for a wide range of test problems it
increases the average probability of success. Anyway, we must now make a move
through the search space, first by defining their initial positions and velocities, then
by specifying the equations of motion.

3.1.2. Information links

The information links are redefined randomly with each iteration: each particle
informs K others chosen randomly. We note that it means that the group of
informants corresponding to a particle has an average size slightly less than K,
owing to the fact that the same information receiver can be selected several times. In
the same way, it means that the average size of the groups of informants is also
slightly less than K, though that is a little less obvious. The exact formula and the
manner of finding it are given at the end of the chapter, for the benefit of
mathematical amateurs.

 It is enough for us here simply to note that the smaller the swarm, the lower the
average number of informants of a given particle in respect of K. For example, for a
swarm of 20 particles, with K = 3 one finds that the average size of the group of
informants is 2.85, whereas it is 2.71 for a swarm of 10 particles.

 This is relevant when one decreases the size of the swarm in the hope of
reducing the total number of evaluations needed to achieve the goal. With fewer
particles, the swarm is certainly a little less ready to explore the search space, but
there is a kind of automatic partial offsetting by the correlative reduction of the
average size of the groups of informants. As we have seen and will examine further,
this reduction actually encourages exploration by increasing diversity.

3.1.3. Initialization

Note that, for the moment, we are interested only in continuous problems with
real variables. A search space is defined, for example, classically, like one
(hyper)cube of the form [xmin, xmax]D. We will see, in Chapter 12, how it is possible to
define much more general search spaces (with discrete variables and more complex
forms) without changing the guiding principles of the method.

First Formulations 39

Initialization simply consists of initially randomly placing the particles according
to a uniform distribution in this search space. This is a stage that one finds in
virtually all the algorithms of stochastic iterative optimization.

 But here, moreover, the particles have velocities. By definition, a velocity is a
vector or, more precisely, an operator, which, applied to a position, will give another
position. It is in fact a displacement, called velocity because the time increment of
the iterations is always implicitly regarded as equal to 1.

 In practice, it is not desirable that too many particles tend to leave the search
space as early as the first increment, or for that matter later. We will see below what
occurs in this case, but, for the moment, let us be satisfied with deriving at random
the values of the components of each velocity, according to a uniform distribution
in:

() ()min max max min2, 2x x x x− −⎡ ⎤⎣ ⎦

3.1.4. Equations of motion

The dimension of the search space is D. Therefore, the current position of a
particle in this space at the moment t is given by a vector x(t), with D components.
Its current velocity is v(t). The best position found up to now by this particle is given
by a vector p(t). Lastly, the best position found by informants of the particle is
indicated by a vector g(t). In general, we will write simply x, v, p, and g. The dth

component of one of these vectors is indicated by the index d, for example xd. With
these notations, the equations of motion of a particle are, for each dimension d:

() ()1 2 3d d d d d d

d d d

v c v c p x c g x

x x v

⎧ ← + − + −⎪
⎨

← +⎪⎩
 [3.1]

The confidence coefficients are defined in the following way:

 – c1 is constant (confidence in its own movement);

 – c2 and c3 (respectively confidence in its best performance and that of its best
informant) are randomly selected with each step of time according to a uniform
distribution in a given interval [0, cmax].

This is why equation [3.1] can be rewritten in a more explicit way, by
highlighting the random elements:

()() ()()1 max max0,1 0,1d d d d d d

d d d

v c v c alea p x c alea g x

x x v

⎧ ← + − + −⎪
⎨

← +⎪⎩
 [3.2]

40 Particle Swarm Optimization

To use this model, the two parameters c1 and cmax must be defined. The latter can
be regarded as the maximum confidence granted by the particle to any performance
transmitted by another. For each problem, “the right” values can be found only by
experiment, with the help, however, of two empirical rules, made available after
many tests.

 The first rule stipulates that c1 must have an absolute value less than 1. It is
understood intuitively if one considers what occurs in the course of several
successive time increments, in the specific case where the particle is and remains
itself its best informant. We then have pd = xd = gd and, with each increment,
velocity is simply multiplied by c1. If its absolute value is greater than 1, velocity
increases unceasingly and convergence is impossible. Note that, in theory, nothing
prevents this coefficient being negative, the behavior obtained being strongly
oscillatory, but this is never the case in traditional PSO. So, we will assume it to be
positive.

 In practice, this coefficient should be neither too small, which induces a
premature convergence, nor too large, which, on the contrary, can slow down
convergence excessively. The authors of the first work on PSO recommended that it
be equalized to 0.7 or 0.8.

 The second rule states simply that the parameter cmax should not be too large, a
value of about 1.5 to 1.7 being regarded as effective in the majority of cases. When
it was originally stated, this rule did not have a justification, even an intuitive one. It
was purely experimental.

 In fact, the recommended values are very close to those deduced later from
mathematical analyses showing that for a good convergence the values from c1 and
cmax should not be independently selected [CLE 02, TRE 03, VAN 02]. For example,
the pairs of values (0.7 1.47) and (0.8 1.62) are indeed correct. The first
experimenters, James Kennedy and Russel Eberhart, with the possible addition of
Yuhui Shi [SHI 9a], did good work! The existence of this relation between these two
parameters will help us later establish performance maps in only two variables: a
parameter ϕ and the size of the swarm.

3.1.5. Interval confinement

During the first experiments of PSO, the test functions used were defined for all
values. For example, the function:

() 2

1

D

d
d

f x x
=

= ∑

First Formulations 41

(historically called Sphere, but which is in fact a paraboloid) in any point of real
space R

D

 can be calculated. During the evolution of the swarm, it may have
happened that a particle left the search space as initially defined, but that was of no
importance, since the value of its position could in fact still be calculated without
“crashing” the data-processing program. Nevertheless, obviously, that is not always
the case. For example, in the majority of programming languages and with the
majority of compilers, the evaluation of a function such as:

()
1

D

d
d

f x x
=

= ∑

returns an error message as soon as one of the coordinates xd is negative.

More generally, a number of functions have a space of definition that is not
infinite. Consequently, it was necessary to add very quickly a mechanism to prevent
a particle leaving the search space. The simplest is the interval confinement. Let us
always assume, for the sake of simplicity, that the search space is [xmin, xmax]

D

. Then
this mechanism stipulates that, if a coordinate xd calculated according to equations

of motion [3.2] leaves the interval [xmin, xmax], one allots to it the nearest value of the
border point. In practice, therefore, it amounts to replacing the second line of [3.2]
by:

()()min max, ,d d dx MIN MAX x v x x← + [3.3]

However, this simple form, while giving correct results, has a disadvantage.
Indeed, we are in a scenario where the proper velocity of the particle tends to make
it leave the search space. Confinement [3.3] certainly brings back the particle to the
border of the search space, but does not change its velocity. This is calculated again
and thus in general is modified next time, but it is not uncommon for it to remain
oriented more or less in the same direction. Thus the particle will tend to cross the
border again, be brought back to that point by confinement, and so on. In practice, it
will be as though it “were stuck” to this border.

That is why one must supplement the mechanism of confinement with a velocity
modification. One can replace the component that poses a problem by its opposite,
possibly balanced by a coefficient less than 1, or one can simply cancel it. If
cancellation is chosen, the complete mechanism is then described by the following
operations:

[]min max min min

max max

0

,
d

d d d

d d

v

x x x x x x x

x x x x

←⎧
⎪∉ ⇒ < ⇒ ←⎨
⎪ > ⇒ ←⎩

 [3.4]

42 Particle Swarm Optimization

The adaptation is immediate in case the intervals defining the search space are
different for each dimension. But what is to be retained above all is the very
principle of confinement, which stipulates that “if a particle tends to leave the search
space, then bring it back to the nearest point in this space and consequently modify
its velocity”. We will see in particular that this principle can be used to define
confinements necessary to problems in non-null granularity (positions with integer
values, for example) or to problems (typically combinatorial) whose solutions must
have all coordinates different.

3.1.6. Proximity distributions

What is the consequence of introducing random coefficients into
equations of motion? For a better understanding, let us consider all
the possible displacements obtained while varying independently c2 and c3 between 0
and cmax. Let us call p% the vector whose dth

component is:

()()max0, d dalea c p x−

and g% the one whose d
th
 component is:

()()max0, d dalea c g x−

It is easy to see that if one places the origin of p% (respectively g%) in x, its end
then traverses a D-parallelepiped whose two opposite tops are x and cmaxp
(respectively cmaxg). This D-parallelepiped is called the proximity of p (respectively
g). It is an example of formalization of what we described in the preceding chapter
by using the expression “towards . . .”.

The distribution of the possible points in the proximities of p and g is uniform.
On the other hand, the distribution of the new possible positions for the particle,
even if its field is also a hyperparallelepid, is not itself uniform.
Indeed, for a given dimension d, the random variable whose occurrence is the dth

component of the new

velocity is the sum of two random variables having each one

a density of constant probability on an interval. To clarify these ideas, let us suppose
that one has d dp g< and 0dv = . Then the probability density of the sum of these

two variables has a trapezoidal form. It increases linearly on []max0, dc p , from 0

to d dp g , preserves this last value in the interval [cmaxpd, cmaxgd] then decreases

linearly to 0 on the interval [cmaxgd, cmax (pd + gd)]. The resulting distribution thus
makes it a “truncated pyramid”, whose center is at the point

() ()()2,2 22max11max gpcgpc ++ . It is uniform on a rectangle and decreases

First Formulations 43

linearly beyond the edges of this rectangle. Figure 3.1 shows a sample of 1,000
points in the proximity of p, 1,000 points in that of g and 1,000 next possible
positions which result from this by linear combination.

Figure 3.1. Example of proximities in two dimensions. The proximity of p (the best position

found up to now by particle x) is a rectangle of which one of the tops is x and the other

 cmax(p – x) and the distribution of possibilities is uniform there. Similarly for g

 (the best position found by informants of x). By linear combination, one obtains

 the next possible positions of the particle. Their envelope is also a rectangle,

 but the distribution is not uniform there (less dense on the edges). To clarify

the Figure, the velocity of the particle was assumed to be null and for each

distribution only a sample of 1,000 points was represented

Let us emphasize this concept of the distribution of the next possible positions
or, briefly, the distribution of the possibles. This is the basis of all the algorithms of
iterative optimization calling for randomness (stochastic). With each time increment,
certain positions are known and starting from this information, it is a question of
choosing the next position(s) for it (or them). Whatever the method used to work out
the answer, the result is always of the same type: a set of candidate positions, each
one being assigned a probability of being selected.

This is why it is so important, for any method of this type, to examine carefully
the distributions obtained with each increment and to ask whether they can be made
more effective. For PSO, we will see that this step easily induces interesting
improvements. A contrario, let us quickly mention two rather common errors that
impoverish the distributions of the possibles.

Towards p

Towards g

New possible

positions

p

x

g

44 Particle Swarm Optimization

3.2. Two common errors

The equations of motion [3.2] are sometimes written in vectorial form:

()() ()()1 max max0, 0,v c v alea c p x alea c g x

x x v

⎧ ← + − + −⎪
⎨

← +⎪⎩
 [3.5]

In this case, in accordance with the definition of the multiplication of a vector by
a coefficient, it means that all the components, for example vector p – x, are multiplied
by the same random number. This is an error in the sense that it corresponds to an
algorithm different from that of PSO, but we can also regard this form as an
alternative. It should, however, be noted that the best parameter settings for c1 and
cmax bypass the use of a constriction coefficient (see Chapter 6) and that this
alternative is then much less effective than the classic form.

The proximity of p (respectively g) is a simple segment here and the distribution
of possibles for the next displacement is a D-parallelepiped located “between” p and
g (these two points are on its surface), which restricts exploration, in particular
because an entire set of points located close to p (respectively g) has no chance of
being selected.

 The other error, or alternative, consists of carrying out a factorization in the first
equation of motion:

()()1 max0, 2d d d d dv c v alea c p g x← + + − [3.6]

or:

()1 max0, 2
2

d d

d d d

p g
v c v alea c x

+⎛ ⎞← + −⎜ ⎟
⎝ ⎠

 [3.7]

In this form, we see that the next position will then be taken randomly according
to a uniform distribution in a hyperparallelepid whose edge for dimension d is length

max d dc p g+ and whose center is found by adding to vector x the vector

()1 max 2c v c p g+ + . Actually, one could simply describe this as an alternative rather

than an error, because this distribution is almost as rich as the original.

First Formulations 45

3.3. Principal drawbacks of this formulation

The repeated experiments using the version of PSO defined by equations [3.2]
and [3.4] (the version that, for brevity, we will name OEP 0) highlight certain
insufficiencies or anomalies that can also be seen as ideas for improvements in
subsequent versions.

3.3.1. Distribution bias

We saw that, with each time increment and for each particle, the distribution of
possibles is non-uniform and of (hyper-)rectangular envelope. In itself, it would not
be a defect if it corresponded at least to an empirical rule, aiming, for example, to
favor a certain area of the search space. For example, one might think of searching
“preferentially” around one of the two best-known positions of the particle (p and g)
or “around” a point located between p and g, but closer to g than p, etc.

However, this is not the case. There is no reason why the median point of the
distribution obtained should be at the center of a “promising” area. Actually, the
very particular form of this distribution is an artifact resulting only from the simple
choice of coding of random elements. Since the majority of data-processing
languages have only the function alea (0,1), one immediately has alea (0, cmax) = cmax

alea (0,1). However, coding a distribution of different envelope (spherical, for
example) is appreciably more difficult, at least if the computing time is not to
increase exponentially with the number of dimensions. We will see examples of this
later.

 Moreover, it should be noted that this distribution depends on the coordinate
system (see Figures 3.2 and 3.3). If by bad luck the point p is on a coordinate axis,
the D-rectangle of its proximity loses a dimension. For a problem with two
dimensions, for example, it is reduced to a segment. A simple rotation of the
coordinate system completely modifies the whole ensemble of next possible
positions and thus strongly influences the behavior of the particles. Convergence is
as likely to be accelerated as slowed down, but, again, in an unforeseeable way.

 This phenomenon is often concealed, because the majority of traditional test
functions are symmetrical around the origin of the coordinates.

46 Particle Swarm Optimization

Figure 3.2. Distribution of the next possible positions. The upper diagram shows each of the

two elementary distributions and the lower their combination (sample of 1,000 points)

-4
-3
-2
-1
0
1
2
3
4

0 2 4 6 8

Best perf. proximity
Best local perf. proximity
Present position

Best performance

Best local performance

-4
-3
-2
-1
0
1
2
3
4

0 2 4 6 8

Possibilities

Present position

Best performance

Best local perf.

First Formulations 47

-4
-3
-2
-1
0

1
2
3
4

0 2 4 6 8

Best perf. proximity

Best local perf. proximity

Present position

Best performance

Best local perf.

-4
-3
-2
-1
0
1
2
3
4

0 2 4 6 8

Possibilities

Present position

Best performance

Best local perf.

Figure 3.3. Depending on the coordinate system chosen, the distribution of the next possible

positions can be very variable. Here, a rotation of the coordinate axes was carried out, one of

the axes practically aligning itself on the vector g − x

The second bias led to alternatives privileging distributions with a center of
symmetry (spheres, Gaussian, etc.) or whose form depends only on the respective
positions x, p, and g (Gaussian “distorted”). To mitigate the first bias at the same
time, these distributions are placed in a way that is a priori wiser. For example, by
centering them on the segment p − g and a little closer to g than p, one can hope to
take advantage of a possible favorable “gradient effect” from p towards g.

48 Particle Swarm Optimization

3.3.2. Explosion and maximum velocity

If one does not want to subject oneself to a parameter c1 less than 1, to support
exploration, then it is necessary to face the phenomenon of the “explosion” of the
swarm. Indeed, roughly speaking, as we saw, with each time increment velocity is
multiplied by c1. If this coefficient is greater than 1, then it will tend to increase
more and more. That is why certain authors introduce an additional parameter, in the
form of a maximum velocity: any velocity tending to exceed it is brought back to it.
This maximum velocity vmax is a real number, which can be different for each
dimension. An empirical rule requires that, for a given dimension, one takes it to be
equal to half the range of possible values for the search space. Any larger value
would ensure that the particles are made to leave the search space too often.

For example, if for a dimension d the search space is the interval [0.5], one will
take a maximum velocity of 2.5 for this dimension. It means that if the first
calculation of equation [3.2] gives a velocity vd greater than 2.5, one will take it
instead to equal 2.5. If the values are discrete, for example{ }0,1,...,5 , the greatest

extent covered by the possible values remains from 0 to 10, but the maximum
velocity could be selected as being 2 or 3.

Unfortunately, whoever says “additional parameter” says also “choice of this
parameter”, which still complicates the task of the user a little, since, in OEP 0, all
the parameters are up to him.

3.4. Manual parameter setting

Table 3.1 recapitulates the various parameters of the model which have to be
defined and the few empirical rules which could be worked out to guide the choice.
These rules are very approximate and, for a given problem, we are faced with the
strong possibility of searching at length before finding a “good” set of parameters.
The good news, nevertheless, is that PSO is very robust, in the sense that broad
variations in the parameters do not prevent convergence, even if, of course, it can be
more or less rapid.

In this respect, in the majority of the problems, the informant group size is the
parameter to which the behavior of the swarm is the least sensitive. One can take it
systematically equal to 3 without much risk. Even if this is not the best value for
your precise problem, the performances, in general, are not seriously degraded as a
result. Nevertheless, if you are sure that the function to be minimized does not
present local minima, you will probably find it beneficial to increase this value, to
even consider that each particle informs all the others and thus to take it equal to N.

First Formulations 49

Parameter Title and nature Empirical rule of choice and comment

c1
Self-confidence; real

number
In]0,1[. Suggestion: 0.7

cmax
Confidence in others;

real number
About 1.5. Suggestion: 1.43

N Swarm size; integer From 20 to 40. Suggestion: 20

K
Group size of informed;

integer
From 3 to 5. To N for the simple problems

without local minima. Suggestion: 3

vmax
Maximum velocity; real

number

Essential only if c1 is greater than 1. Value about
half of xmax − xmin. Possibly different

for each dimension.

Table 3.1. Parameters of OEP 0. The fifth, maximum velocity, is useful only if one wants to

force a greater exploration of the search space by balancing velocity by a

“self-confidence” greater than 1

The number of evaluations of the function to be minimized is equal, with each
time increment, to the number of particles. Consequently, the degradation of the
performances according to this criterion is at most proportional to the size of the
swarm. Actually it is often much less, since the increase in the number of particles
also increases the probability of finding a solution more quickly. That is why the
recommended values 20 to 40 are very generally satisfactory.

For the two parameters of confidence, precise values are suggested. As indicated
previously, they form a pair initially found in experiments but subsequently
confirmed mathematically. Other values are naturally possible and it is even
possible, by choosing them judiciously, more or less to induce a given behavior of
the particles, in particular oscillating or not around a solution [TRE 03, VAN 02].

3.5. For “amatheurs”: average number of informants

One supposes that each particle of a swarm of total size N randomly chooses,
with putting back, K particles to be informed. The probability that a particle is not

selected is ()1 1
K

p N= − and the probability that it is selected is 1q p= − .

Let s be the number of informants of a given particle. The probability that s is
null is the probability that it is chosen by nobody, i.e. neither by particle 1, nor by
particle 2 . . . nor by particle N. This probability is thus Np .

 In the same way, for s to equal 1, it must be chosen by one particle (N
possibilities) and not chosen by all the others. Its probability is thus 1NNp q− . More

50 Particle Swarm Optimization

generally, for an unspecified value of s between 0 and N, the probability
is s N s s

NC p q− , where s

NC is the number of combinations of s elements among N.

 Thus, finally, by taking the sum of the possible values weighted according to

their probability, the average value of the number of informants is:

() () ()()
0 0

1 1 1 1 1
sN N K N s Ks N s s s

N N
s s

sC p q sC N N
−−

= =
= − − −∑ ∑

From a graph theory point of view, it is the average number of ancestors by node
when, in a graph of size N, the arcs are built by randomly taking K downward for
each node. Figure 3.4 shows, for K = 3, the evolution of this value according to N.

Figure 3.4. Average number of informants by particle when each particle informs K

others at random, according to the size of the swarm.

Here K = 3. This number is all the less than K as the swarm is small

3.6. Summary

From the basic principles presented in the preceding chapter, we propose a first
simple formulation, called OEP 0, which specifies the rules of displacement of the
particles. The information links between particles are randomly selected with each
iteration. The equations of motion combine linearly, thanks to confidence
coefficients, vectors of position randomly drawn according to non-uniform
distributions whose supports are (hyper-)rectangles in the search space.

 The various parameters (size of the swarm, coefficients, number of informed
particles chosen at random, etc.) depend entirely upon the user for the moment and
some semi-empirical rules are given to guide these choices.

 Certain insufficiencies of this first version are noted here. Highlighting them
will guide the improvements brought about later on.

2.65
2.7

2.75
2.8

2.85
2.9

2.95
3

0 20 40 60 80 100 120

Size of the swarm

A
v
e
ra

g
e
 n

b
 o

f
in

fo
rm

a
n

ts

K=3

Chapter 4

Benchmark Set

4.1. What is the purpose of test functions?

To test, of course! But to test what? We have seen so far only the principles of a
primitive version of PSO, which leaves most of the work to randomness, not only
for displacements but also for the establishment of information links. In the next
chapter we will see the exact way in which these random choices are simulated on
computers; then, finally, in the following chapter, we will examine the results
obtained with this primitive version.

Because we will later study more effective alternatives, we must use the same set
of problems throughout, in order to give a better comparison of the results, hence the
benchmark set defined here, which includes several traditional scenarios, from a
simple function with a single minimum to one having a considerable number of
local minima of very similar values. Note that, for the moment, we deal only with
continuous or semi-continuous functions. When we examine the variants of PSO
appropriate for dealing with discrete (and, more generally, heterogeneous) problems,
it will obviously be necessary to enrich this benchmark set with adequate examples.

If you have experience of another method of optimization, you should apply it to
this benchmark set, in order to form your own opinion. The reader interested in a
rigorous approach to the comparison of iterative stochastic methods will be able to
consult [DRE 03], in particular Chapter 8.

52 Particle Swarm Optimization

Name

Difficulty
Formula Search space Objective

Tripod

33

() ()()
() ()()

()()

2 1

1 2 1

2 2

1

50 1 2

50 1 2

p x p x

x p x p x

x p x

+

+ + −

+ + −

with:
() 1 si u 0

0 si 0

p u

u

⎧ = ≥⎪
⎨

= <⎪⎩

[–100,100]
2
 0 ± 10

–5

Alpine 10D

121
()

1
sin 0,1

D

d d d
d

x x x
=

+∑ [–10,10]
10

 0 ± 10
–5

Parabola 30D

273

2

1

D

d
d

x
=
∑ [–20,20]

30
 0 ± 10

–5

Griewank 30D

335

()2

1

1

100

4000

100
cos 1

D

d
d

D
d

d

x

x

d

=

=

−∑

−⎛ ⎞− +∏ ⎜ ⎟
⎝ ⎠

[–300,300]

30
 0 ± 10

–5

Rosenbrock 30D

370
() ()1 22 2

1
1

1 100
D

d d d
d

x x x
−

+
=

− + −∑ [–10,10]
30

 0 ± 10
–5

Ackley 30D

470

()2

1 1

cos 2

0,2

20

20

D D

d d

d d

x x

D De e

e

π
= =−
∑ ∑

− −
+ +

 [–30,30]
30

 0 ± 10
–5

Table 4.1. Summary of the benchmark set. The theoretical levels of difficulty were calculated

or considered as indicated previously. This sample of traditional test functions was selected to

cover a broad range of difficulties. None of these functions is discrete (this case will be

studied later), but one of them (Tripod) presents brutal discontinuities

4.2. Six reference functions

Table 4.1 specifies the formulae for six functions that are more or less difficult to
deal with. In each case, the known minimal value is zero and one wishes to reach it
with a margin of 10

–5
.

4.3. Representations and comments

For each function, one or more three-dimensional graphical representation is
given below, with, for each figure, a comment explaining the type of difficulty that

Benchmark Set 53

an algorithm for finding the minimum value can encounter. However, as you have
undoubtedly noticed, almost all the problems of the benchmark set are actually in 10
or 30 dimensions. So, one should not lose sight of the fact that restriction to the
three-dimensional case, which is moreover almost always represented in two
dimensions (on screen or printed), gives only a very vague idea of the real problem.

Figure 4.1. Tripod. Minimum 0 is at point (0 – 50). Theoretically easy, this problem misleads

many algorithms, which are easily trapped in one or other of the two local minima. Note that

the function is not continuous, which, however, does not obstruct PSO in any way. This

problem was first proposed in [GAC 02]

Figure 4.2. Alpine. Many local and global minima (of zero value). Surface is not completely

symmetrical compared to the origin. Nevertheless, this problem remains rather easy and may

be viewed as a kind of pons asinorum for optimization algorithms in continuous variables

54 Particle Swarm Optimization

Figure 4.3. Parabola. Only one minimum. Because of its stochastic character, PSO might not

be as effective as a specific deterministic algorithm (e.g. gradient descent), but the various

alternatives could be more or less adapted to solve this problem. This function, which, in two

dimensions, is a paraboloid, is sometimes called “Sphere” in the literature, undoubtedly

because of its equation

Figure 4.4. Griewank. Already more difficult. The global minimum 0 is at (100 100) and is

almost indistinguishable from many closely packed local minima that surround it. On the one

hand, that tends to increase the difficulty of the problem, but, on the other hand, because the

local minima are very close together, it is rather easy to escape from them, at least for

stochastic algorithms

Benchmark Set 55

Figure 4.5. Rosenbrock. Represented here on [–10 10]
2

.

There is a barely noticeable global

minimum at (1,1). For the majority of optimization algorithms it is difficult to find, and PSO

in its initial version is no exception. The graph lies mostly beyond the limits of the diagram

(maximum value of about 1.2 × 10
6

)

Figure 4.6. Rosenbrock again, but on [0 1] × [0 2], in order to highlight the minimum.

In two dimensions, the problem is easy, but the difficulty increases very quickly

 with the number of dimensions of the search space

56 Particle Swarm Optimization

Figure 4.7. Ackley. Apparently a little like Alpine, but actually more difficult,

even with the same dimensionality. The “basin of attraction” of the global minimum is

narrower, which decreases the effectiveness of random displacements

4.4. For “amatheurs”: estimates of levels of difficulty

4.4.1. Theoretical difficulty

Let us recall that it is calculated by the formula ()ln σ− , where σ is the

probability of success by randomly choosing a position in the search space.

4.4.1.1. Tripod

Direct calculation is very simple here. Let ε be the required precision. It is
assumed to be less than 1, in order to deal only with the global minimum. The
acceptable portion of surface is thus a reversed pyramid with height ε and whose
base is a square of diagonal 2ε . The surface of this square is thus 22ε . Since the

search space is []2
100 100− , the level of difficulty is given by:

() () ()
2

2

2
ln 2 ln 200 2ln ln 2

200
difficulty

ε ε⎛ ⎞
= − = − −⎜ ⎟

⎝ ⎠

For 510ε −= , one thus finds a difficulty of approximately 33.

Benchmark Set 57

4.4.1.2. Alpine 10D

The estimate of difficulty was made only statistically, by supposing initially that
the only solution is the origin of the coordinates. Then one finds a level of difficulty
of about 132. But any point whose coordinates are either 0 or ()asin 0,1− is also a
solution. On []10

10,10− there are 103 such points and, therefore, the real level of
difficulty is closer to ()132 10ln 3− or 121.

4.4.1.3. Rosenbrock

Here also, the estimate was made only statistically and thus remains rather
rough. It is interesting to note that the evolution of the difficulty according to the
dimensionality of the problem, indicated in Table 4.2, is almost linear. However, we
must not forget that the measure is logarithmic. The true difficulty thus increases
exponentially.

Out of curiosity, one can also make an analytical estimate by using Taylor’s
formula. Around the position ()1 1,...,1=

r
 corresponding to a minimum of 0, the first

and second partial derivatives are null (which explains why the function is so “flat”).
Stopping with the second order, it is found that the function is approached by the
formula () ()()21 1 1 101f h h D+ = + −

r
. If we want this value to be less thanε , that

gives us the edge of the cube of dimension D in which the solution points are
()()2 1 1 101h Dε= + − .

Dimension Difficulty

2 20

5 60

10 120

20 245

30 370

Table 4.2. Rosenbrock Function. Theoretical difficulty

according to the number of dimensions

Thus, in our example, with 510ε −= and 30D = , and the search space
[]30

10 10− of volume 3020 , the theoretical difficulty is given by:

30
52 10 2930

ln 362
20

difficulty

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= − ≅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

By construction, this value is less than the actual value. It is thus seen that the
statistical estimate of 370 found previously is completely acceptable.

58 Particle Swarm Optimization

4.4.2. Difficulty according to the search effort

Obviously the theoretical difficulty decreases if one is allowed to draw several
positions at random. Let T be the number of such choices. Since the probability of
success for a single draw is σ, the probability of failure is ()1 σ− and the probability

of still not having found a satisfactory position after T draws is ()1
Tσ− . By

contrast, the probability of having found a solution with a maximum of T draws is its
complement with 1. Finally, in passing to the logarithm, one obtains the theoretical
difficulty as a function of the search effort T

() ()() ()ln 1 1 ln
T

difficulty T Tσ σ= − − − ≅ −

When the probability of success with only one choice is very low, which is
normally the case for the interesting problems, the last expression gives a good
approximation.

4.5. Summary

To clarify these ideas and to compare later on the influences of the various
parameters and strategies, a benchmark set of six traditional test functions is defined.
The functions are continuous or semi-continuous, but the theoretical difficulty of
finding their minimum in the search space varies several orders of magnitude from
one function to another.

Chapter 5

Mistrusting Chance

5.1. Analysis of an anomaly

Originally, this book was not intended to include a chapter devoted specifically
to randomness. All the versions published of PSO used language C’s rand function
or the equivalent in other languages and that did not seem to pose any problem.
However, one day, during the treatment of the example of the Ackley function with
an already old version, an obvious anomaly appeared.

The principle of the test was very simple. One gave oneself a maximum number
of evaluations of the function, for example 40,000, one launched the program 100
times and counted the number of executions that, under the constraint of these
40,000 evaluations at most, had still not found a solution. One thus deduced from it
an estimate of the rate of failure of the algorithm on this problem.

 A limit of 40,000 evaluations gave a failure rate of 53% (the version of PSO
used was very rudimentary). On increasing the limit to 60,000 evaluations, the rate
of failure went up to 63%! After analysis of the possible causes of this anomaly, it
turned out that it was due to the poor quality of the pseudo-random number
generator normally used in ANSI C. Let us take a look at a very simple example
which is even more obvious.

 On the interval [–1 1], T numbers are generated randomly, hoping to find one of
absolute value less than 510ε −= . Obviously the probability of failure pr(T)
decreases as T increases, according to the formula:

() ()1
T

pr T ε= − [5.1]

60 Particle Swarm Optimization

For example, for 610T = , one finds a probability of failure of 0.000045.
However, when one carries out the experiment with a little program in C consisting
of some lines using the function rand (see program 5.1), the rate of failure is in fact
100% whatever the permitted search effort, i.e. the value of T. Indeed, it turns out
that the pseudo-random number generator is unable to produce an absolute value
less than 0.0000305 in the interval [–1 1], as is explained further.

Let us note that the opposite situation is also possible. If one makes the same test
on the interval [0, 1], the probability of theoretical failure is again given by equation
[5.1]. However, this time the program in C gives appreciably lower rates of failure.
Figure 5.1 shows how large the variations can be, relative to true randomness. It is
clear that we cannot trust a pseudo-chance of such poor quality, at least to carry out
the programs of stochastic optimization we are studying here.

Figure 5.1. Poor quality of classical pseudo-randomness. Even on a very simple example (in

this case the random search for a number of absolute value less than 10
–5

in a given interval),

the rand function in ANSI C can give, with certain compilers and on certain machines, rates

of failure very different from the theoretical rates

Thus when we use the term “to take randomly” it is necessary to distinguish
between the mathematical description which recommends, for example, a law of
probability to constant density, and the practical realization in data processing,
which delivers only one pseudo-chance, sometimes too regular to be honest. Let us
see more precisely why, and how it is possible to remedy it.

0%

20%

40%

60%

80%

100%

1 2 3 4

Maximum number of tests

F
a
il

u
re

 r
a

te

Theoritical

rand() on [-1 1]
rand() on [0 1]

10 3 10
4

10
5

10
6

Mistrusting Chance 61

5.2. Computing randomness

When one asks a computer to provide a random number according to a uniform
distribution in an interval [a b], the generated number is in fact often initially an
integer N between 0 and M, which is then reduced to the interval by a linear
transformation. In C, the number M is the internal constant RAND_MAX.
Normally, it is equal to 32,767 (2

15
– 1) and the first two generated numbers are 41

and 18,467. You can check this using program 5.2 at the end of the chapter.

Even by neglecting the statistical fluctuations inherent in the initial generation
process (these are always present), it means that you will in any case obtain only
numbers of the form ()()a n M b a+ − . The distribution obtained is thus far from
being uniform, since it concentrates on M + 1 values in [a b]. None of the points
between these values can be reached. This is why, for example, it is impossible to
find in this way, a number between –1/32767 and 1/32767 on the interval [–1 1], i.e.
of absolute value less than 0.0000305ε = . Conversely, on the interval [0 1], it is
enough to draw N = 0 and the probability of failure is thus (1 1/)TM− , lower than
the theoretical probability as soon as ε is less than 1 M .

 The larger your search space is, the more this situation introduces a significant
bias. For example, to generate an initial position “randomly” between 0 and xmax,
one is often satisfied with initially generating a value on [0 1], then multiplying it by
xmax. If this last is not negligible relative to M, this means that large intervals of
value are in fact inaccessible, at least at the beginning of the process and that, on the
contrary, the numbers which delimit them are unduly favored.

 Lastly, one might think that for the same standardized language, all the
compilers define a given function in the same way, but that is not always the case
(one might add, in passing, that the originators of compilers do not always respect
the standard).

 In the same way, one can also ask to what extent the numerical inaccuracy
inherent in the computing can modify, from one machine to another, the behavior of
a PSO algorithm. We will therefore ask ourselves the question of the reproducibility
of the results taking into consideration these two potential sources of error: the
quality of the pseudo-randomness and maximum numerical precision.

5.3. Reproducibility

“With the stochastic algorithm A, whose code is given below, the rate of failure
for the problem P is x%.” You have all seen statements of this kind. You may even
have gone to the extent of programming the famous algorithm A, and then carrying

62 Particle Swarm Optimization

it out in accordance with the given instructions. But you have probably not found the
published failure rate, but another, possibly rather different rate. However, the very
basis of the experimental scientific method is precisely that published experiments
can be reproduced and the same results found within well-defined margins of error.
With regard to PSO, and for that matter the majority of iterative stochastic
algorithms, the experiments are executions of computer programs, and the
differences noticed have two sources: the numerical precision of the pair
machine/compiler and the mode of generation of the pseudo-random numbers. For
better reproducibility of the results, it is desirable to be, as far as possible, free from
them and we will see how that is possible.

5.4. On numerical precision

A calculator necessarily carries out numerical rounding-off. A simple test allows
you to get some idea of the possible level of precision of your machine. The small
program 5.3 will enable you to know from which value of n the number 10–N

is
treated as equal to zero.

On a 32-bit computer, one finds in general that 10–323

is regarded as zero. That is

why the results given in this book correspond to calculations made internally with
this level of precision. It is very much better than what is necessary for all practical
problems. So this factor is not generally to blame for the non-reproducibility of the
experiments. However, we have already seen that the quality of the generated
pseudo-randomness is very significant. So let us examine another mode of generation,
which gives more usable results than those provided by the majority of the algorithms of
the standard compilers.

5.5. The rare KISS

We wish to proceed in such a way that by carrying out a given algorithm on a
given problem, we obtain the same result, whatever the language of coding,
whatever the compiler, and (almost) whatever the machine used. We have seen that
the intrinsic numerical precision of the computer is not really a problem, being
largely sufficient today even on current machines.

 But, on the other hand, we must give up the idea that the generation of the
pseudo-random numbers is only a standardized black box. A detailed study of the
possible abolition of chance would be beyond the scope of this work, but one stage
is in any case useful: inclusion in the algorithm itself of the deterministic generation
of pseudo-random numbers, in order to be less dependent on data-processing
languages and compilers.

Mistrusting Chance 63

 In any case, in practice, that can amount precisely to detailing one of the
methods that fulfills functions such as rand in C, random in PASCAL, or ran in
OCCAM, but, as we saw in the case of C, the result is likely to be unusable for our
purposes. Thus we shall explore another method, called KISS, which has interesting
characteristics.

5.5.1. Brief description

This algorithm, easily downloadable from various Internet sites, is based on a
different principle. It seeks to generate the most realistic possible randomness, while
remaining reproducible. It is based on three fast generators, already individually
rather good, and it composes them in an astute way. It is cyclic, but the period
exceeds 2123. Even if each generation of a number took only an attosecond (10–18 s),
to find the same number twice you would have to be very patient! Figure 5.2 tries to
visualize the generated randomness.

Figure 5.2. Pseudo-randomness of KISS. On the left-hand diagram, each point represents one

of the the first 1,000 values. Its abscissa is the number formed by the first three decimals of

the value and its ordinate is the number formed by the fourth to sixth decimals. The right-

hand diagram, a traditional histogram of the first 10,000 values, confirms and specifies

this distribution. The pseudo-randomness is very realistic here,

 which is confirmed by statistical tests

Even visual inspection suggests that this pseudo-randomness is of good quality.
This is confirmed by checking various criteria (Kolmogoroff, χ2, Weil, etc. [MAU
75]). KISS passes all the traditional tests easily but, more concretely, we shall see its
results for our little example of random search.

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000
Decimals 1-2-3

D
e

c
im

a
ls

 4
-5

-6

0
20
40
60
80

100
120
140

0.00 0.20 0.40 0.60 0.80 1.00

Classes

F
re

q
u
e
n

c
y

64 Particle Swarm Optimization

5.5.2. Test of KISS

As before, we seek “randomly” in the interval [–1 1] a number of absolute value
less than 10–5. The pseudo-randomness is now generated with KISS, and this for
various values of the maximum number of allowed tests. In each case the rate of
failure is calculated after 10,000 executions of the program. This already gives us a
good estimate of the rate of real failure very near to the theoretical rate of failure
(see Table 5.1).

Maximum number of

tests

Probability of

theoretical failure

KISS

Probability of failure

estimated on 10,000

executions

1,000 99% 98.79%

10,000 90.48% 90.73%

100,000 36.79% 36.29%

1,000,000 0.0045% 0%

 Distance 0.006

Table 5.1. Test of KISS. On the small problem of random search for a number of absolute

value less than 10
–5

in the interval [–1 1], it cannot be distinguished significantly from true

randomness, as the calculation of the difference between the estimated probability and the

theoretical probability for some values of the number of tests shows

5.6. On the comparison of results

One sometimes comes across assertions of the kind “I launched algorithm A and
algorithm B 100 times each on the same problem. The failure rate of B is 4% less
than that of A. This algorithm is thus a little better.” Is such an assertion justified?
Actually, not really, and we will now examine why (for a more detailed
mathematical explanation, see section 5.7).

The result of an execution, under the constraint of a maximum number of
evaluations, is binary – success or failure – with a probability of failure characteristic of
the algorithm. But the rate of failure calculated after 20, 100, and 1,000 executions is
only one estimate, accurate to within δ. Naturally, this δ is becomes smaller as the
number of executions is increased, but it should be evaluated.

Table 5.2 gives us, for confidence thresholds of 95% and 99%, the interval of
probable values for the rate of failure, once this was estimated after T executions.

Mistrusting Chance 65

After a number of
executions equal to

If the rate of estimated failure isτ̂ ,
 there is 95% chance that the real

rate is in the interval

 Same thing, with 99%
 chance

20 τ̂ ± 11.0% τ̂ ± 14.4%

100 τ̂ ± 4.9% τ̂ ± 6.4%

1,000 τ̂ ± 1.5% τ̂ ± 2.0%

10,000 τ̂ ± 0.5% τ̂ ± 0.6%

Table 5.2. Confidence to be granted to a stochastic search algorithm

Thus, for example (and this will help us to establish at least approximate
performance maps), with 100 executions, we have a 95% chance of knowing the rate
with a margin of less than 5%. In many cases, it is largely sufficient to compare
algorithms or the influence of a modification of parameters for a given algorithm,
but precisely on condition that the variation of the rates of failure is greater than 5%.

Hereafter, unless otherwise stated, KISS will be used to generate pseudo-random
numbers. Naturally, in your own applications, it can be replaced by any other good
quality generator. In fact, even certain C compilers, such as that under Linux used
for this book, provide an almost acceptable rand function, with a RAND_MAX
equal to 231 – 1 instead of 215 – 1. Note, in passing, that if the theories postulating the
quantization of space-time are justified, no real problem requires, on a given
dimension, a precision better than 10–34 or 10–35, the order of magnitude of Planck’s
constant [SMO 04].

5.7. For “amatheurs”: confidence in the estimate of a rate of failure

The rates of failure that one can calculate by carrying out the search algorithm
several times are only estimates made after T executions with, for each execution, a
given maximum number of tests. As one might expect, the estimate becomes
increasingly precise as it is calculated on a growing number of executions (see
Figure 5.3). But the question is what confidence one can grant to an estimate.

Let X be the random variable whose occurrence is returned by each execution: 1
if there is failure, with a probability τ; 0 if not, with a probability 1 – τ. This rate
characteristic of failure of the algorithm for the problem under discussion is not
known. After T executions, we have an estimate of it without skewτ̂ , which is given
by the following formula, where t is the rank of the execution:

1

1
ˆ

T

t
t

X
T

τ
=

= ∑ [5.2]

66 Particle Swarm Optimization

30%

32%

34%

36%

38%

40%

0 2000 4000 6000 8000 10000

Number of runs

F
a
il
u

re
 r

a
te

Theoretical

KISS

Figure 5.3. Evolution of the rates of failure with pseudo-randomness KISS. For each

execution, the maximum number of tests is 100,000. The estimated rate of failure converges

towards the theoretical value

With a good quality pseudo-randomness, the tX are random independent
Bernoulli variables and τ̂ a binomial random variable of average τ . Therefore, its
characteristic function ϕ is defined by () (1) iuu eϕ τ τ= − + . The values at 0 of its
successive derivatives give us the moments, in this particular case all equal to τ .

() ()

() ()
2

2
2

ˆ 0

ˆ 0

d
E

du

d
E

du

ϕτ τ

ϕτ τ

= =

= =

The variance 2σ is given by the classic decomposition formula:

() ()22 2 2ˆ ˆE Eσ τ τ τ τ= − = − . It is worth adding that, in practice, as soon as T > 30, the
theorem of the central limit enables us to define a random variable TY which almost
follows a reduced centered normal law:

ˆ
TY T

τ τ
σ
−=

With these elements, one can then estimate T to have a given confidence interval,
or the converse. Let us suppose, for example, that one wants an estimate of the rate
of failure to within a confidence interval of ±δ (let us say 1%), with a degree of
confidence c (e.g. 95%). One can write successively:

()ˆ

 T

probability c

T
probability Y c

τ τ δ

δ
σ

− < =

⎛ ⎞
< =⎜ ⎟⎜ ⎟

⎝ ⎠

Mistrusting Chance 67

One can deduce from this that
2

T u
σ
δ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, where u is given either by calculation

or by consultation of a table like that below, giving the probability for TY being between

–u and u.

Degree of confidence 90% 95% 99%

u 1.645 1.96 2.576

Table 5.3. A tabulation of the distribution reduced centered normal law

To say that c = 0.95 amounts to saying that TY is between –1.96 and 1.96. Hence
the estimate of T for 1 % is 0.01δ = .

2

21.96 38416
0,01

T
σ σ⎛ ⎞= =⎜ ⎟

⎝ ⎠

In our example, for 100,000 evaluations, the theoretical rate of failure is 36.79%
and variance 0.23. One deduces from this that T must be worth at least 8,934.

However, in fact, one does not know the variance 2σ but only its estimate,
2 2ˆ ˆ ˆσ τ τ= − . This does not pose a problem, because we find an acceptable value very

quickly (8,537 as of the sixth execution in our small example, by using KISS). In
practice, therefore, one carries out ten executions. Thereafter, after each execution of
rank t, one calculates the estimate 2σ̂ . One stops as soon as t is greater than 2σ̂ . Or,
more simply, one is pessimistic and careful by always taking the maximum variance
to be 0.25 (which corresponds to a failure rate of 50%). One finds then that T =
9,604.

Conversely, one can ask how much confidence to grant to the rate of failure

estimated after, say, 100 executions, always with a threshold of 95%. Let δ be the
variation with the true value of the rate of failure which it is then necessary to
accept. One has immediately:

max 0.25
1.96 1.96 0.049 4.9 %

10T

σδ = = = =

One can thus learn that the practical formula to use is:

2

0.25
u

T
δ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 [5.3]

where u is given by Table 5.3.

68 Particle Swarm Optimization

5.8. C programs

PROGRAM 5.1. – Random search using the function rand
//In the interval [a b], one seeks a number of absolute value lower than
eps double A, B, T, T, X;
int n_echec, n_exec, n_exec_max;
= 1;b –= 1 has; //Interval of research
eps = 0.00001; //desired Precision
n_exec_max = 1000; //a Number of executions
T = 10000; //a maximum Number of evaluations for each execution
n_echec = 0;
for (n_exec = 0;n_exec < n_exec_max;n_exec++)

for (T = 0;t < T;t++)

X = has + (b-a)*(double)rand()/RAND_MAX;
if (fabs(x) < eps) goto exec;

n_echec = n_echec + 1;
exec: ;

printf(“Failure rate%f”, n_ failure /(double)n_exec_max);

PROGRAM 5.2. – Checking of the function rand
//Base of the equal distribution and first values
printf(“RAND_MAX%i”, RAND_MAX);
srand(1);
for (N = 0;n < 2;n++) printf(“%i”, rand());

PROGRAM 5.3. – Evaluation of the precision of execution of a computer

//Below a certain value (1/10)
p

, a number is treated as zero
init = 0.1; precision = 0; value = init;
while (value > 0) value = value*init; precision = precision + 1;
printf(“Null value for 10 power –%.0f”, precision);

PROGRAM 5.4. – Deterministic Pseudo-Randomness KISS:
/ * It passes the majority of the tests of checking of randomness, while
remaining reproducible
The three components of KISS are:

X N = (ax N –1 + 1)mod2
32

Y N = y N –1 (I + L
13

) (I + R
17

) (I + L
5

)

Z N = 2z N –1 + Z N –2 + retenuemod2
32

y is a shift register on vectors of 32 bits, of period 2
32

–1.
Z is a simple sequence of multiplications with reserves, of which the

period is 2
63

+ 2
32

–1.

The total period of KISS is thus 2
32

(2
32

–1)(2
63

+ 2
32

–1). It is higher than

2
127

*/
define ulong unsigned long
define RAND_MAX_KISS ((unsigned long) 4294967295)
ulong rand_kiss();
void seed_rand_kiss(ulong seed);

static ulong kiss_x = 1;
static ulong kiss_y = 2;
static ulong kiss_z = 4;
static ulong kiss_w = 8;

Mistrusting Chance 69

static ulong kiss_carry = 0;
static ulong kiss_k;
static ulong kiss_m;
...
void main()

...
seed_rand_kiss(1); //Initialization of seed. The value can be changed
...

void seed_rand_kiss(ulong seed)

kiss_x = seed | 1;
kiss_y = seed | 2;
kiss_z = seed | 4;
kiss_w = seed | 8;
kiss_carry = 0;

ulong rand_kiss()
// R = (double)rand_kiss()/RAND_MAX_KISS; //a number gives on [0 1]
kiss_x = kiss_x * 69069 + 1;
kiss_y ^ = kiss_y < < 13;
kiss_y ^ = kiss_y > > 17;
kiss_y ^ = kiss_y < < 5;
kiss_k = (kiss_z > > 2) + (kiss_w > > 3) + (kiss_carry > > 2);
kiss_m = kiss_w + kiss_w + kiss_z + kiss_carry;
kiss_z = kiss_w;
kiss_w = kiss_m;
kiss_carry = kiss_k > > 30;
return kiss_x + kiss_y + kiss_w;

5.9. Summary

The standard pseudo-randomness generator provided with certain compilers is
not good quality. Thus, on a very simple random search problem, it can be shown
that the rand function in ANSI C can give a rate of failure of 100%, whereas the
theoretical rate is almost zero. We therefore propose using a random number
generator, KISS, available in the public domain, which, while also giving
reproducible sequences (important for comparison of algorithms), simulates true
randomness much better.

One recalls some rules concerning the estimate of the rate of failure of a
stochastic algorithm on a problem, in particular the relation between the number of
executions and the confidence which one can grant to the estimated rate. This will
make it possible to give a precise meaning to assertions like “this algorithm (or this
set of parameters) is better than this other for such and such a problem”.

This page intentionally left blank

Chapter 6

First Results

6.1. A simple program

We now have to hand all the elements needed to write a program for OEP 0.

In its source code in C (see program 6.1) all the parameters are “hard coded”,
but, naturally, they could be picked interactively or be read from a file. The
subroutine ma_fonction contains the six functions of our benchmark set. You can
easily add the one corresponding to your problem, but if this problem is difficult, it
will undoubtedly be more judicious to use one of the more elaborate and more
effective versions that we will look at later. Here it is simply a question of
establishing reference results, precisely to be able to quantify the improvements
made by the following versions.

The values retained for the parameters are as follows:

 – size of the swarm N = 20;

 – number of informed particles chosen randomly by each particle K = 3;

 – confidence coefficients 1 0.689343c = and max 1.42694c = . These rather

mysterious values were selected to facilitate the comparison with later versions that
use one coefficient. Some complementary explanations are given in section 6.3.

72 Particle Swarm Optimization

6.2. Overall results

To compare two algorithms on the treatment of a given problem, we will need a
criterion of effectiveness or, more precisely, inefficiency. It is defined as follows:

 – initially one compares the rates of failure;

 – if they are equivalent but less than 100%, one compares the numbers of
evaluations;

 – if they are also equivalent, the found values are compared.

The two concepts of equivalence used are to be defined by the user in statistical
terms, as was discussed in Chapter 5. They could be, for example, the probabilities
of equality greater than 95%. Nevertheless, in any case, if the best values obtained
are both less than the acceptable error, it should be regarded as equivalent.

In fact, this composite and hierarchical criterion is especially interesting for the
development of algorithms on benchmark sets for which the desired objectives are
known. With a given search effort (in practice here the number of evaluations) one
wants initially the highest possible probability of finding a solution; then, when the
rate of failure is less than 100%, that it be found as soon as possible. It is only if the
rate of failure is 100% that one is satisfied with the best value found.

For real problems, it is generally the reverse. The maximum search effort is often
given, but one does not know the value of the minimum to be reached. Then one sets
as one’s objective a value that is definitely lower and, therefore, one is always in the
last scenario: the comparisons of algorithms could be made only on the best values
that they are able to find.

When the rate of failure is less than 100%, it is also possible to calculate the total
number of evaluations to be carried out (while launching the program several times)
to succeed at least once with a given probability, and to take this number as a
criterion. Indeed, if the rate of failure is p, then p

T

is the probability of having never
succeeded even after t executions. It decreases quickly with t.

For example, for a rate of failure of 50%, four or five executions are enough to
have a 95% chance to find a solution. Besides, it is the basis of the Stop/Restart
strategy that we will look at in the second part of this work.

Table 6.1 presents some results on our benchmark set of six functions, for
various values of the search effort, in terms of a maximum number of evaluations. In
order to have a rough but more practical single numerical indicator to handle, the
average of six rates of failures is also indicated. Thus, in a very artificial way, we
can retain “OEP 0 → 45.7%”.

First Results 73

Name

 The number of evaluations

per execution (average on

100 executions)

Result

Tripod 40,000 39%

Alpine 10D 15,000 28%

Parabola 30D 15,000 27%

Rosenbrock 30D 40,000
100%

average 39.026

Griewank 30D 40,000 55%

Ackley 30D 40,000 25%

Average rates of failure 45.7%

Table 6.1. Some results with OEP 0. As envisaged, the minima of the Rosenbrock, Griewank

and Tripod functions are difficult to find. The size of the swarm is 20 and the number

informed particles chosen at random by a given particle is 3. The rates of failures are an

estimate after 100 executions. In the event of a failure rate equal to 100%, one gives the

average value of the 100 found results

Obviously, these results are modified if one changes the values of the
parameters, particularly the size of the swarm and the confidence coefficients. In the
ideal case, it would be necessary to test all the possible combinations. In practice,
one is satisfied with plausible fields of values in order to establish performance
maps.

6.3. Robustness and performance maps

As we have already indicated, it is possible to show that a good convergence can
be ensured by making the two coefficients (1c for confidence in the current tendency

and maxc for confidence in informants) dependent. This is demonstrated in [CLE 02],

but let us just remember that the relation between them can be written using an
intermediate parameter ϕ:

1 2

max 1

1

1 2
c

c c

ϕ ϕ ϕ
ϕ

⎧ =⎪ − + −⎨
⎪ =⎩

74 Particle Swarm Optimization

Naturally, other pairs of values are possible, but by using these relations we can
make a study of simplified robustness, by varying only the size of swarm N and the
parameter ϕ. Note that for ϕ the above formula imposes values greater than 2, the
coefficient 1c having to be a real number. Incidentally, the values of the coefficients
used in OEP 0 to draw up Table 6.1 correspond to ϕ = 2.07.

Our study of robustness will be simultaneously very simple and very tiresome. It
is simply a question of considering a great number of pairs of value (N,ϕ) and
examining how the algorithm behaves on our test functions for each pair. Of course,
it is necessary to limit the space of the possible values. For the swarm, we will take
from 5 to 40 particles. For the coefficient ϕ, we saw that it must be greater than 2. In
addition, the experiment shows that maxc must be greater than 1. These two remarks

lead us to vary ϕ in the interval [2.01 2.4]; for example, with an increment of 0.1.
For each function the result is a surface of performance, (N,ϕ, h) where h can be, for
example, an estimate of the rate of failure, obtained after 100 tests.

In practice, the representation used is a performance map whose colors or levels of

gray code the different ranges of value of h. The Figure s below are such maps for our
test functions, except for the Rosenbrock function, which has a rate of failure too close
to 100% for all the examined pairs of values. In such a case, the best value obtained
after a given number of tests (here 100) remains an interesting criterion and one can
still use it to establish a performance map, after normalization (see Figure 6.5).

The examination of these maps teaches us that the fields of “good” values can be
very broad (Parabola, Alpine, Rosenbrock), rather narrow (Ackley), or even sparse
(Tripod, Griewank). It also teaches us that a swarm size of 20 particles is sometimes
“high-risk”, insofar as, for certain functions, we obtain good results only for one
small interval of values of ϕ. The question which then arises is concerned with
knowing whether bigger swarm sizes, inducing greater robustness, are not on the
other hand exacting a penalty in terms of a number of evaluations (and thus of time
calculation).

First Results 75

2
.0

1

2
.0

5

2
.0

9

2
.1

3

2
.1

7

2
.2

1

2
.2

5

2
.2

9

2
.3

3

2
.3

7

5

10

15

20

25

30

35

40

Swarm size

0.9-1

0.8-0.9

0.7-0.8

0.6-0.7

0.5-0.6

0.4-0.5

0.3-0.4

0.2-0.3

0.1-0.2

0-0.1

ϕ

Failure rate

Figure 6.1. Performance map for the Tripod function. The good pairs of parameters

are sparse. It is difficult to locate a more favorable zone for rather large size swarms

 and rather small ϕ coefficients

2
.0

1

2
.0

5

2
.0

9

2
.1

3

2
.1

7

2
.2

1

2
.2

5

2
.2

9

2
.3

3

2
.3

7

5

10

15

20

25

30

35

40

Swarm size

0.9-1

0.8-0.9

0.7-0.8

0.6-0.7

0.5-0.6

0.4-0.5

0.3-0.4

0.2-0.3

0.1-0.2

0-0.1

ϕ

Failure rate

Figure 6.2. Performance map for the function Alpine 10D. All pairs of values (size of

the swarm, coefficient ϕ) that give null or very low rates of failure are acceptable. They

correspond to the broad white portion of the Figure. This zone cannot be infinite and

 “is closed again” beyond a certain size of swarm (approximately 90 particles)

76 Particle Swarm Optimization

2
.0

1

2
.0

5

2
.0

9

2
.1

3

2
.1

7

2
.2

1

2
.2

5

2
.2

9

2
.3

3

2
.3

7

5

10

15

20

25

30

35

40

Swarm size

0.9-1

0.8-0.9

0.7-0.8

0.6-0.7

0.5-0.6

0.4-0.5

0.3-0.4

0.2-0.3

0.1-0.2

0-0.1

ϕ

Failure rate

Figure 6.3. Performance map for the function Parabola 30D. Here, the zone of null rate of

failure would not go beyond approximately 70 particles. While the morphology of the function

is very different from that of Alpine (only one minimum instead of many local minima),

 the structure of the performance map is very similar

0

2000
4000

6000
8000

10000
12000

14000
16000

0 20 40 60 80 100

Swarm size

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

e
v
a
lu

a
ti

o
n

s

2.08
2.17
2.25

ϕ

Figure 6.4. Parabola 30D. Average number of evaluations. While restricting oneself to the

field where the rate of failure is almost zero, one can carry out some cuts with ϕ constant. In

fact, the smallest swarms necessarily converge most quickly. The performance surface makes

a “basin” and the optimum is around 25 particles. Thus, with 9 particles and ϕ = 2.08, the

average number of evaluations is approximately 9,800. But with another pair of values (e.g.

20 particles and ϕ = 2.17) one finds a smaller average number of evaluations, about 8,600

First Results 77

2
.0

1

2
.0

5

2
.0

9

2
.1

3

2
.1

7

2
.2

1

2
.2

5

2
.2

9

2
.3

3

2
.3

7

5

10

15

20

25

30

35

40

Swarm size

0.9-1

0.8-0.9

0.7-0.8

0.6-0.7

0.5-0.6

0.4-0.5

0.3-0.4

0.2-0.3

0.1-0.2

0-0.1

ϕ

Failure rate

Figure 6.5. Performance chart for the Griewank function. It is seen immediately that the

problem is more difficult to solve. Nevertheless, one notices that even with this primitive

version of PSO, it is possible to go below a 25% failure rate, provided that good parameters

are found (here, one needs a rather large size of swarm, about 35 to 40 particles)

2
.0

1

2
.0

5

2
.0

9

2
.1

3

2
.1

7

2
.2

1

2
.2

5

2
.2

9

2
.3

3

2
.3

7

5

10

15

20

25

30

35

40

Swarm size

0.9-1

0.8-0.9

0.7-0.8

0.6-0.7

0.5-0.6

0.4-0.5

0.3-0.4

0.2-0.3

0.1-0.2

0-0.1

ϕ

Best value

(normalized)

Figure 6.6. Performance chart for the Rosenbrock function. With the search effort agreed

(with more than 40,000 evaluations), there is never “success”, i.e. of value less than 10
–5

.

That is why the map is established according to the best value reached, after

 transformation to remain in the interval [0, 1]

78 Particle Swarm Optimization

2
.0

1

2
.0

5

2
.0

9

2
.1

3

2
.1

7

2
.2

1

2
.2

5

2
.2

9

2
.3

3

2
.3

7

5

10

15

20

25

30

35

40

Swarm size

0.9-1

0.8-0.9

0.7-0.8

0.6-0.7

0.5-0.6

0.4-0.5

0.3-0.4

0.2-0.3

0.1-0.2

0-0.1

ϕ

Failure rate

Figure 6.7. Performance chart for the Ackley function. The interesting zone is very narrow,

even if the general form is the same as for the preceding functions.

Here still, it is less risky to use rather large swarms

2
.0

1

2
.0

5

2
.0

9

2
.1

3

2
.1

7

2
.2

1

2
.2

5

2
.2

9

2
.3

3

2
.3

7

5

10

15

20

25

30

35

40

Swarm size

0.90-1.00

0.80-0.90

0.70-0.80

0.60-0.70

0.50-0.60

0.40-0.50

0.30-0.40

0.20-0.30

0.10-0.20

0.00-0.10

ϕ

Non-performance

Figure 6.8. Average performances on the benchmark set. One notices that a coefficient ϕ
 of about 2.17 and a swarm size greater than 30 give the best results

First Results 79

The answer is not obvious, because, on the one hand, a small swarm carries out few
evaluations to each iteration but, on the other hand, it often needs more iterations to
find a solution. Detailed analysis of the results of the executions which were used to
establish the performance maps shows that there is generally no simple relation
between the average number of evaluations and the size of the swarm, but that one
can sometimes find such a relation when one restricts oneself to a single value of ϕ.

On Figure 6.9 we can see the example of the Ackley function for the pairs of
values (swarm size, coefficient ϕ) which lead to a zero rate of failure. Note that the
average numbers of evaluations have a rather large dispersion. However, with ϕ
constant, the average number of evaluations increases quasi-linearly with the size of
the swarm, which remains all the lower when ϕ is large. Therefore, in such a case,
the reduction in the size of the swarm, within certain limits, for example from 40 to
30, increases the effectiveness of the algorithm, since the number of evaluations
decreases for an unchanged or almost unchanged failure rate.

Figure 6.9. Ackley function with zero rate of failure. The performance map of this function

indicates that one can obtain such a rate of failure for certain sizes of swarm between 25 and

40 and certain values of ϕ between 2.05 and 2.1. The average numbers of evaluations are

rather dispersed between 20,000 and 40,000. With ϕ constant, they are in increasing quasi-

linear relationship to the size of the swarm

However, this is not the case for all the problems. With the Tripod function, for
example, such a relation is not obtained at all, as examination of the performance
map suggests. This is one of the reasons it was introduced into the benchmark set.
We will see that it is also atypical regarding the influence of parallel calculation for
the evolution of the swarm.

0

5000
10000

15000

20000

25000
30000

35000

40000

24 26 28 30 32 34 36 38 40

Swarm size

E
v
a
lu

a
ti

o
n

s
 2.05

2.06

2.07

2.08

2.09

2.10

ϕ

80 Particle Swarm Optimization

6.4. Theoretical difficulty and noted difficulty

A synthetic way of using the performance maps is quite simply to take the
average of the rates of failure on all the pairs of parameters (),N ϕ that are taken

into account. Using this approach, if the values of the parameters that are taken into
account are sufficiently representative of all the possible values, one obtains a
number that should be larger for problems whose theoretical difficulty is high.

Function

Search effort

Average Rate of

failure

Measured difficulty

–ln(success rate)

Theoretical

difficulty

according to

search effort

Tripod

40,000
42% 0.22 22

Alpine 10D

15,000
43% 0.33 111

Parabola 30D

15,000
64% 1.02 264

Griewank 30D

40,000
84% 1.61

325

Rosenbrock 30D

40,000
100% 360

Ackley 30D

40,000
89% 2.21 460

Table 6.10. Comparison between theoretical difficulty and average rate of failure (with OEP

0). The classification obtained is of course the same in both cases, with the notable exception

of the Rosenbrock function. But note that the algorithm is much better than pure chance (it is

the least that can be done, but it was advisable to check it). Moreover, the progression of

difficulty noticed is much less than that of the theoretical difficulty: in general PSO is more

effective for more difficult problems

6.5. Source code of OEP 0

define D_max 100 //Maximum of the search space (dimensions)
define N_max 100 //Maximum swarm size
define two_pi 6.283185307
define E 2.718281828
define ulong unsigned long //For generation of pseudo-random
numbers
define RAND_MAX_KISS ((unsigned long) 4294967295)

//Structures
struct position int size;double x[D_max]; double F; ;

First Results 81

struct vector int size;double v[D_max]; ;

//Subroutines
double alea(double has, double b);
int alea_ whole(int has, int b);
double ma_ function(struct position X, int function);
ulong rand_kiss();
void seed_rand_kiss(ulong seed);

//Aggregate variable
int nb_eval; //a total Number of evaluations

//main Program
void main()
{
double c1, cmax; //Confidence coefficients
int D; //Dimension of the search space
int D; //current Dimension
double eps; //desired Precision
double eps_moyen; //average Precision on several executions
int eval_max; //Parapet. Max of evaluations of the function numbers
double eval_moyen; //an average Number of evaluations
double fmin; //Objective to reach
int function; //Code of the function to be minimized
int G; //Row of best informant
int K;
int K; //maximum Size of the groups of informed
int LIENS[N_max][N_max]; //Links of information
int m;
struct better position; //Memorizing of the very best position
struct P[D_max position];// Positions
struct P_m[D_max position]; //Better found positions
double min_f; //Objective to reach
_ int N; //Size of the swarm
int N; //Row of the current particle
int n_echec; //a Number of failures
int n_exec, n_exec_max; //Numbers of executions
struct V[D_max vector];// Velocities
double xmin, xmax; //Interval for the search space

seed_rand_kiss(1); //Initialization of the generator of random numbers
//Parameters of adjustment
c1 = 0.689343; cmax = 1.42694; //Correspondent with phi = 2.07 in the
versions
//later
N = 20; K = 3; //Size of the swarm, numbers informants/particle

//Problem to be treated (to be changed according to the problem, of
course)
function = 10; //Code of the function. Cf ma_fonction()
xmin = –100; xmax = 100; D = 2; //Search space
eps = 0.00001; //desired Precision
fmin = 0; //Objective to reach
n_exec_max = 100; //a Number of executions
eval_max = 40000; //a maximum Number of evaluations

//Initialization of the informative variables
n_exec = 0; eval_moyen = 0; eps_moyen = 0; n_echec = 0;

init: //Initializations of the positions and velocities
n_exec = n_exec + 1;
for (N = 0;n < N;n++)

P[n].taille = D; for (D = 0;d < D;d++)P[n].x[d] = alea(xmin, xmax);

82 Particle Swarm Optimization

V[n].taille = D;
for (D = 0;d < D;d++) V[n].v[d] = alea((xmin-xmax)/2, (xmax-xmin)/2);

//initial Evaluations
nb_eval = 0;

for (N = 0;n < N;n++)

 P[n].f = fabs(ma_fonction(P[n], fonction)-fmin); //Evaluation of the
position
P_m[n] = P[n]; //Better position = initial position

//Memorizing the best result reaches up to now
better = P_m[0];
for (N = 0;n < N;n++) if (P_m[n].f < meilleure.f) better = P_m[n];

loop:
//Defines partially randomly which informs which
for (N = 0;n < N;n = n++)// Initialization

for (m = 0;m < N;m = m++) LIENS[m][n] = 0;
LIENS[n][n] = 1; //Each particle gets information itself

for (m = 0;m < N;m = m++)// Other links. With more K particles informed per m

for (K = 0;k < K;k++)n = alea_entier(0, N-1);LIENS[m][n] = 1;

//Displacement of the swarm
for (N = 0;n < N;n++)// For each particle...

// research of best informant

for (G = 0;g < N;g++) if (LIENS[g][n] = = 0) continuous; goto continuation;
continuation: min_f = P_m[g].f;
for (m = G + 1;m < N;m++)

if (links [m][n] = = 0) continuous;
if (P_m[m].f < min_f) G = m;min_f = P_m[m].f;

/ calculation the new velocity
for (D = 0;d < D;d++)

V[n].v[d] = c1*V[n].v[d] + alea(0, cmax)*(P_m[n].x[d]-P[n].x[d]);
V[n].v[d] = V[n].v[d] + alea(0, cmax)*(P_m[g].x[d]-P[n].x[d]);

// displacement
for (D = 0;d < D;d++) P[n].x[d] = P[n].x[d] + V[n].v[d];

/ interval confinement
for (D = 0;d < D;d++)

if (P[n].x[d] < xmin) P[n].x[d] = xmin;V[n].v[d] = 0;
if (P[n].x[d] > xmax) P[n].x[d] = xmax;V[n].v[d] = 0;

// evaluation of the new position
P[n].f = fabs(ma_fonction(P[n], fonction)-fmin);

// updated of the best position

First Results 83

if (P[n].f < P_m[n].f) P_m[n] = P[n];

// memorizing of the best result reached up to now
if (P_m[n].f < meilleure.f) better = P_m[n];

//Test of end
if (meilleure.f > eps && nb_eval < eval_max) goto loop;
if (meilleure.f > eps) n_echec = n_echec + 1;

//Posting of the best found result
printf(“%i. Eval =%i. Value%f. Position:): “, n_exec, nb_eval, meilleure.f);
for (D = 0;d < D;d++) printf(“%f”, meilleure.x[d]);

//Calculation and posting of various information
eval_moyen = eval_moyen + nb_eval;
eps_moyen = eps_moyen + meilleure.f;
if (n_exec < n_exec_max) goto init;

eval_moyen = eval_moyen/(double)n_exec;
eps_moyen = eps_moyen/(double)n_exec;
printf(“average Eval =%f”, eval_moyen);
printf(“average Eps =%f”, eps_moyen);
printf(“Failure rate =%f”, n_echec/(double)n_exec);
}

//==
double alea(double has, double b)
{
 //Gives a random number between a and b
//according to a pseudo-uniform distribution
double r;
r = (double)rand_kiss()/RAND_MAX_KISS;
return a + r*(b-a);
}
//==
int alea_entier(int a, int b)
{
// Gives an integer at random between a and b
int ir;
double r;
r = alea(0,1); ir = (int)(a + r*(b + 1-a)); if (ir > b) ir = b;
return ir;
}
//==
double ma_ function(struct position x, int function)
{
// Evaluates the value of the function to be minimized at position x
//ADD your own function
int D,d;
double f, p, som1, som2, xd;
double x1, x2;

nb_eval = nb_eval + 1;
D = x.taille;

switch (function)
{
case 1: //Sphere
f = 0; for(d = 0;d < D;d++) f = f + x.x[d]*x.x[d];
break;

case 2: //Square oot. To use a xmin > = 0

84 Particle Swarm Optimization

f = 0; for(d = 0;d < D;d++) f = f + sqrt(fabs(x.x[d]));
break;
case 3: //Alpine. Min 0 in (0,0... 0)
//alternative 1
// f = 0;for(d = 0;d < D;d++) f = f +
sqrt(fabs(x.x[d]*sin(x.x[d])));
//alternative 2
f = 0;for(d = 0;d < D;d++) f = f + fabs(x.x[d]*(sin(x.x[d]) + 0.1));
break;

case 4: //Rosenbrock, Banana function. Min 0 in (1... 1)
f = 0;
for (D = 0;d < D-1;d++)

xd = 1-x.x[d]; f = f + xd*xd; xd = x.x[d]*x.x[d]-x.x[d + 1];
f = f + 100*xd*xd;

break;

case 5: //Ackley
som1 = 0;som2 = 0;
for (D = 0;d < D;d++)

xd = x.x[d]; som1 = som1 + xd*xd; som2 = som2 + cos(two_pi*xd);

f = (-20*exp(-0.2*sqrt(som1/(double)D))-exp(som2/(double)D) + 20 + E);
break;

case 6: //Griewank
f = 0;
p = 1;
for (D = 0;d < D;d++)

xd = x.x[d]-100;
f = f + xd*xd;
p = p*cos(xd/sqrt(d + 1));

f = f/4000 –p + 1;
break;

case 10: //Tripod function (Louis Gacogne)

//on [- 100, 100], min 0 at (0, -50)
x1 = x.x[0];
x2 = x.x[1];

if(x2 < 0) f = fabs(x1) + fabs(x2 + 50);
else

if(x1 < 0) f = 1 + fabs(x1 + 50) + fabs(x2-50);
else f = 2 + fabs(x1-50) + fabs(x2-50);

break;

return f;
}

//=
= KISS
... (generator already seen)

First Results 85

6.6. Summary

While varying the parameters of algorithm OEP 0 systematically, it is possible to
establish performance maps for the functions of the benchmark set. They show that
for almost all the functions there are many values of the parameters for which
convergence is excellent (rate of failure zero or almost zero).

This does not mean to say that the parameter setting is always easy to find, but
that, at least, the algorithm is potentially effective.

This page intentionally left blank

Chapter 7

Swarm: Memory and Graphs of Influence

7.1. Circular neighborhood of the historical PSO

The first articles presenting PSO (Particle Swarm Optimization) under its
original name were published in 1995 [EBE 95, KEN 95]. This primitive version is
practically no longer used. Nevertheless, it opened the way for the study of graphs of
influence with fixed topology, because the information links between particles were
defined once for all, generally according to a “circular” diagram.

N particles of the swarm are laid out virtually on a circle, then numbered
sequentially from 1 by traversing this circle. Each particle has a set of informants of
fixed size K, historically called its neighborhood. The neighborhood of size K of a
particle is obtained from the virtual circle by recruiting alternately on the right and
on the left of its position, until a total of K − 1 neighbors is obtained. Moreover, the
particle itself is also included.

On Figure 7.1 we can see the result for a swarm of seven particles for two sizes

of neighborhood (3 and 4). The program used (OEP 5) is available via Particle

Swarm Central [PSC]. Note that for the definition of the neighborhoods, no concept
of distance between particles in the search space is taken into account: it is about a
social neighborhood rather than a geographical neighborhood, which, on the
contrary, would use a metric and for which the neighborhood of size K of a particle
would be formed of the K particles closest (including itself). This alternative would
be more expensive in calculation time and, moreover, does not seem to have a
significantly higher effectiveness by itself. On the other hand, it is a condition
necessary to the use of the technique of multicentroid reorganization of memories,
which we will discuss later.

88 Particle Swarm Optimization

The moment K is greater than 3, the relation may not be symmetrical for certain
particles. On the right-hand side of Figure 7.1, we see clearly that, for example,
particle 1 informs particle 6 without the reverse being true. That is why the term
“neighborhood”, which evokes ideas of symmetry, is in the end not very apt. As we
have seen, it is replaced here by the term “(group of) informants”.

Figure 7.1. Regular graphs of influence of a swarm of seven particles. For each arc, the

particle origin influences (informs) the end particle. On the graph on the left, each particle

has 3 informants, including itself. For particle 1, they are 1, 2 and 7. On the right-hand side,

there are 4 informants (1, 2, 7 and 3)

7.2. Memory-swarm

From this idea, it is tempting to imagine other configurations. What happens, for
example, if the virtual arrangement of the particles is a square grid mapped onto a
torus or if the graph of the relations is hierarchical or of the type “small world” like
an Internet network, for example? The study of these questions leads us to
differentiate properly the two functions provided by the particles: exploration of the
search space and memorizing of the best position found during this search.

From the outset, we have postulated that each particle was ready to fulfill these
two functions. That led us to quite convoluted formulations, like “the best of the best
positions found until now by informants”. Moreover, the data memorized by the
particle itself are processed separately from that brought by the others, whereas
nothing in their nature distinguishes them. Also, that demands that we memorize as
many positions as there are particles, neither more, nor less. Lastly, it could be
desirable to connect directly the positions memorized in order to deduce from them
some interesting new displacements. However, one can certainly study various
topologies, (see, for example, [CLE 99, KEN 99]), but without all the desirable
flexibility.

Swarm: Memory and Graphs of Influence 89

That is why it is interesting to change the point of view slightly and consider that
the functions of exploration and memorizing are carried by distinct particles. That
will also enable us to define more easily various kinds of groups of informants.

Thus we will have as before, an explorer-swarm composed of turbulent particles,
moving with each time increment, but we will also have a memory-swarm. Its
particles, which we will call simply memories and which we can imagine heavy,
slow and wise, move only occasionally and definitely, towards the best positions
announced by the explorer particles. Thus, the association of a memory and
explorer corresponds to a particle according to the historical terminology.

Figure 7.2. Graph of influence with memory-swarm (N = 7, M = 7, K = 3). It is formally

similar to that of the left of Figure 7.1, but the explorer-swarm (particles in pale gray) and

the memory-swarm (particles in dark gray) have been differentiated. This more complicated

representation offers more freedom of configuration, for example by modifying the number of

memories or by making them communicate directly with each other

Figure 7.2 shows an example of information links according to this second point
of view, which is strictly equivalent to the historical circular diagram with 3
informants per particle. Previously, each particle informed some others, including
itself. Moreover, it memorized its best performance. Now, the explorers do not
memorize anything but instead inform the memories, which, in return, guide them in
their exploration. The advantage of this new representation is that it allows new

90 Particle Swarm Optimization

structures of information. For example, the memory-swarm and the explorer-swarm
need not be the same size. Likewise, one can make the memories communicate
directly between themselves, reworking memorized information and drawing from
the results consequences in terms of new displacements with probable improvement.

7.3. Fixed topologies

Let us consider initially the case where the graph of information, as in the
historical PSO, is defined once and for all before the process of iteration. We will
not recapitulate here the results obtained with a particular topology, but will merely
retain the following three principal empirical rules:

 – rule 1: a fixed topology must be regular (the same number of links for each
particle), because one does not know a priori which particles will be the best;

 – rule 2: for each regular topology and each problem, there is an optimum
number of links (number of informants), but if one does not have any information on
the difficulty of the problem, it is better to define fewer possible links, while keeping
the connexity of the graph of influence;

 – rule 3: one can sometimes increase the effectiveness of the algorithm by
making the particles of the memory-swarm communicate directly among
themselves.

For the first two points, note that these conclusions are valid only if the topology
is fixed once and for all. We will see that in adaptive PSO the situation is quite
different. Also, note that the application of rules 1 and 2 in fixed topology leads
automatically to the circular diagram. It is, in effect, the connected regular graph for
which the nodes can have fewest possible arcs (two per node, plus an arc on itself).

Table 7.1 illustrates how much the performances can differ according to whether
fixed topology is regular or randomly selected before the beginning of the process.
For one of the test functions (Alpine), random topology gives a better result, but it is
precisely a stroke of luck. Regular topology is more robust and the total average
performance is better.

Swarm: Memory and Graphs of Influence 91

Figure 7.3. Regular versus irregular in fixed topology (N = 20, M = 20, K = 3). Graphs of

information. The two graphs are more similar than they appear. In both cases, each explorer

particle informs only one memory and each memory is informed by just one explorer. The

number of arcs per particle is exactly 3 in the regular diagram on the left, it is 2 to 4

(with an average of 3) in the right-hand diagram. This small difference is enough

 to modify the results obtained appreciably

Function

(search effort)

Circular topology

(N = 20, M = 20, K = 3)

Rate of failure

Fixed random topology

(N = 20, M = 20, K = 3)

Rate of failure

Tripod (40,000) 7% 25%

Alpine 10D (15,000) 17% 5%

Parabola 30D (15,000) 0% 0%

Griewank 30D (40,000) 42% 57%

Rosenbrock 30D
(40,000)

100%
38.3

100%
average result 37.5

Ackley 30D (40,000) 40% 94%

Average of the rates of
failure

34% 47%

Table 7.1. Regular versus irregular in fixed topology (N = 20, M = 20, K = 3). Results on the

benchmark set, with OEP 5. Circular topology is on the whole more effective, even if,

obviously, it can happen by chance that an irregular topology is more appropriate for a given

problem (see Alpine). To facilitate the comparisons, the same parameters

 are used as for Table 6.1 carried out with OEP 0

92 Particle Swarm Optimization

7.4. Random variable topologies

After fixed topologies, let us explore those that vary during iterations. More
precisely, we will consider here only those that are modified randomly, hardly
taking account, if at all, of the information collected during the process, i.e. certainly
in a rather stupid way, but very economic in terms of computing times. The case of
more intelligent modifications will be studied in the chapters on adaptation.

Again, one can imagine thousands of ways of doing this, but not all are effective.
In all cases, however, it is a question of how a memory recruits an explorer to
inform and vice versa. To illustrate the principle, let us compare two methods: that
which was already presented for version OEP 0 and another which gives sometimes
better results.

7.4.1. Direct recruitment

 The principle of this direct random recruitment, but distinguishing between
memories and explorer, can be summarized briefly as follows:

 – a number K less than or equal to the size of the swarm is defined at the
beginning;

 – with each time increment, each memory draws randomly K explorer particles
and establishes an information link towards them;

 – in the same way, with each increment, each explorer establishes a link
towards at least one memory.

Moreover, in practice, if the number of memories is different from the number of
explorer, one “cheats” a little, in order to guarantee that each explorer has a link
towards a memory and vice versa. Note that this is only an empirical rule, which
seems more effective than pure chance.

7.4.2. Recruitment by common channel of communication

The metaphor underlying this method is that of synchronization by sharing a
channel of communication with the same frequency. According to your preferences,
you can imagine, for example, populations of neurons which join to carry out a
certain task or many newsgroups in real time on the Internet (chatting groups or
chats).

It is supposed that there are F possible frequencies. With each time increment:

 – each explorer chooses a frequency randomly;

Swarm: Memory and Graphs of Influence 93

 – each memory chooses a frequency randomly;

 – only the explorers and memories that have chosen the same frequency can
communicate.

As above, the situation is arranged so that every explorer can transmit its
information to at least one memory and vice versa.

At every moment, the corresponding graph of information is non-connected, but

as it changes constantly, there is nevertheless a kind of temporal connectivity. In
practice, with swarms of about 30 particles of each type and 10 frequencies, at the
end of 20 time increments it is almost certain that any information could have been
disseminated everywhere (see probability calculus at the end of the chapter).

7.5. Influence of the number of informants

7.5.1. In fixed topology

Let K be the number of informants per particle and let us treat our benchmark set
by varying it. The results obtained with a circular fixed topology are summarized in
Figure 7.4. In order to highlight better what occurs, the maximum number of
evaluations was changed to 100,000 and swarm size to 40. The Rosenbrock function
does not appear there, because even then the rate of failure remains 100%.

Then one highlights three types of variation of the effectiveness when K

increases:

 – average improvement, then stagnation, with possibly light deterioration for the
greatest values (see Alpine and Parabola);

 – practically no change (see Griewank);

 – improvement at the beginning, then strong deterioration (see Tripod and
Ackley).

A partial qualitative explanation is possible. First of all, there is a discontinuity
of the topology of the graph of influence between the values K = 2 and K = 3. For
the first, the graph is a one-way circle; for the second, it is bidirectional. For N

particles, it means that the average time of transfer of information decreases abruptly
from 2N to ()1 4N + : it is practically divided by 2. That it frequently results in
greater effectiveness is therefore not surprising.

94 Particle Swarm Optimization

Figure 7.4. Influence of the number of informants K. Results with a fixed circular topology

(N = M = 40). It is noticed that on the whole it would be wiser to choose a rather small value,

even if it is not completely optimal for certain problems (like here Alpine and Parabola)

Indeed, the larger the value of K, the denser the graph of influence and,
therefore, the more rapidly information on a promising position will be transmitted
to all the particles. Those will then tend to gather more quickly (in addition, one can
show that the velocity of decrease of the diameter of the swarm increases with K).
However, if this phenomenon takes place too quickly (i.e. if K is too large), the
swarm quite simply does not have time to seek elsewhere, because, according to the
equations of motion, the velocity of each particle is on average decreasing, and this
all the more quickly as the particles are closer.

If there are no local minima, the promising position has every chance to be closer
and closer to the global minimum and the fact that many particles explore in the
neighborhood is beneficial (see Parabola). If there are local minima close in value
but distant in search space, the reverse is true: the swarm is extremely likely to be
trapped (see Tripod, Griewank, Ackley). Lastly, in an intermediate situation, there
are certainly local minima, but if those that are far away from the global minimum
are also much worse (to be more precise, if the ratio of the variation of values at the
distance is sufficiently large) the swarm manages to be unaware of them (Alpine).

Similar results are obtained in random fixed topology. The significant point is

the lesson that can be learnt from such analyses: it is definitely more advisable to
choose a small value for the number of informants. That is why the choice K = 3 is a
good compromise. Nevertheless, if one can afford, in terms of search effort, to test

0
10000
20000
30000
40000
50000
60000
70000
80000

 90000

 100000

0 4 8 12 16 20 24 28 32 36 40

Number of informants K

N
u

m
b

e
r

o
f

e
v
a
lu

a
ti

o
n

s

Tripod

Alpine 10D
Parabola 30D
Griewank 30D
Ackley 30D

Swarm: Memory and Graphs of Influence 95

also a contrario the extreme value K = N is interesting, since for certain problems it
is the optimal value. In particular, if one knows in advance that there are no local
minima, it is probably the best choice.

7.5.2. In random variable topology

We can make the same kind of study when the graph of influence is randomly
modified with each iteration. As we can see in Figure 7.5, the results are very
similar. The only notable difference is that there is no discontinuity between the
values K = 2 and K = 3. That can be understood, since it is now only a matter of one
maximum value. Actually, for K = 2 the graph contains nodes with one or two arcs
and, for K = 3, nodes with one, two or three arcs. It is normal that the difference is
less marked.

Finally, the conclusion remains the same: in the absence of other information, a
small value is the best choice; but, for certain types of problems, one can improve a
little by taking, quite to the contrary, the greatest possible value.

Figure 7.5. Influence of the number of informants K. Results with a variable random

topology. In this case also, the choice of a low value is the wisest. It will be noted,

 however, that there is no discontinuity between values 2 and 3

7.6. Influence of the number of memories

Since we dissociated explorers and memories, we can vary their number
independently. It is then interesting to wonder whether it is better to have more
explorers than memories or the reverse. Here, intuition is rather misleading. For
example, for a problem without local minima, like Parabola, one might believe that

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

0 4 8 12 16 20 24 28 32 36 40

Number of informants K

N
u

m
b

e
r

o
f

e
v
a
lu

a
ti

o
n

s

Tripod

Alpine 10D

Parabola 30D
Griewank 30D
Ackley 30D

96 Particle Swarm Optimization

it is more effective to have just a few memories, perhaps only one, informed by
many explorers, as in the graphs at the top of Figure 7.6.

Figure 7.6. Graphs of influence with MN ≠ . For more clarity, the numbers of particles

selected were relatively small. On the graphs on the top, there are fewer memories than

explorers (N = 10, M = 1 and N = 7, M = 2). On the bottom, it is the reverse (N = 7, M = 10)

It is not at all like this, as Figure 7.7 shows. However, it is true for the Alpine
function: the star graph with only one memory is most effective. This indicates that
there is no obvious link between the form of the function and the optimum number
of memories to treat it. What is obvious is that in general it is preferable to make this
a rather large number, and even a little greater than that of the explorers. There is
certainly the risk that in certain cases the performances are degraded, but not much.
Incidentally, this shows that the implicit “choice” imposed by the traditional PSO, to
have as many memories as explorers, is a good compromise. Finally, as before, only

Swarm: Memory and Graphs of Influence 97

extreme values are interesting: a priori large values and, in certain exceptional
cases, very small ones.

Figure 7.7. Influence of the number of memories (N = 40, K = 3, T = 100,000). The graph of

information is here in variable random topology with each iteration. Contrary to intuition,

even for a problem with just one global minimum and without local minima, like Parabola, it

is more effective to have many memories, and even a number greater than that of explorers.

One will note the exceptional case of Alpine, for which only one memory

 (star graph) is the best configuration

7.7. Reorganizations of the memory-swarm

As announced earlier, it is sometimes possible to make better use of the
information collected during the process, by making the memories communicate
directly between themselves and reorganizing their contents. To illustrate this point,
we will test two types of reorganization: according to a mixing of the memories and
a centralized diagram (calculation of a “queen”). In both cases, there is no, or very
little, reduction in the diversity of memorized information (whereas we will have
some systematically in the adaptive techniques), but the fields of application are
different.

7.7.1. Mixing of the memories

What is interesting in the random modification of the links between particles is
that it accelerates the diffusion of information. Indeed, a memory in possession of a
promising position has a better chance of passing the good word directly to the

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

0 4 8 12 16 20 24 28 32 36 40 44 48

Number of memories M

N
u

m
b

e
r

o
f

e
v
a
lu

a
ti

o
n

s

 Tripod

 Alpine 10D
 Parabola 30D
Griewank 30D

 Ackley 30D

98 Particle Swarm Optimization

explorers. The reverse is also true but, in fact, the situation is not symmetrical if this
mixing of the memories is not too frequent. Indeed, if an explorer is informed by a
memory that is worse than its own position, it will take account of it on only one
time increment.

Nevertheless, it is done without control, i.e. chance (or bad luck!) perhaps plays
too significant a role. Hence the idea, on the contrary, of carrying out a mixing of
more or less the same type, but according to precise rules. The simplest way – but
one can of course imagine many others – consists of two stages:

 – search of the best memory and the worst,

 – exchange of these two memories.

Obviously, on the contrary, the links should not be randomly modified, under
penalty of losing the benefit of the operation.

7.7.2. Queen and other centroids

Here the idea is that when the memory-swarm really starts to converge, its
“center of gravity” has a good chance of being better than any single particle. In the
original version ([CLE 99]), this center of gravity is called queen and calculated as a
new temporary particle and assuming that the particles each have a mass inversely
proportional to their performance (i.e. larger as the position is better).

In fact, since then, it has been shown that to adopt equal masses is on the whole
equally effective, while being less arbitrary (no additional function to define). The
method is particularly interesting when coupled with the Stop/Restart technique,
which we will examine later, or, which amounts to the same while being more
difficult to program, by defining not one but several centroids, which, to be
effective, also requires the size of the swarm to be increased ([KEN 00]).

7.7.3. Comparative results

Table 7.2 shows the average results for 100 tests. Let us recall that with this
number of tests, the percentages are estimated only with a margin of approximately
5%, but that will be enough for us to highlight the differences in behavior.

The first column restates the values obtained initially with OEP 0, to facilitate
comparison. It is noted that simple mixing (exchange of worst and best memory)
improves all the results and, for some, in a very significant way (Parabola, Ackley).
The use of a queen degrades some slightly (Tripod, Ackley), but improves others in
an even more marked way (Alpine, Parabola).

Swarm: Memory and Graphs of Influence 99

It is therefore tempting to couple the two methods in order to see whether the
improvements override deteriorations. Unfortunately, this is not always the case.
More precisely, it is often true for relatively easy problems (like the first three of our
examples), while the performances for more difficult problems become frankly bad
(for example, 83% failure rate for Ackley).

Name
Variable random

graph (OEP 0)
with mixing with queen

Tripod 39% 39% 43%

Alpine 10D 28% 24% 8%

Parabola 30D 27% 0% 0%

Griewank 30D 55% 49% 49%

Rosenbrock 30D
100%

average 39.026
100%

average 35.07
100%

average 27.76

Ackley 30D 25% 6% 34%

Average of the

rates of failure
44.5% 37.7% 39%

Table 7.2. Influence of the direct reorganization of memories. This type of method does not

reduce diversity and can, in certain cases, be very effective. The results are averages of 100

executions, with N = M = 20 particles, K = 3 and ϕ = 2.07

For the parameters number of informants and number of memories, it has been
possible to develop rules for empirical and robust choices. However, it is not the
same for the techniques of reorganization of memories. After many tests, which
obviously go well beyond those presented here, only rather vague recommendations
can be proposed for the moment: use mixing, it will most probably improve the
performances, and, if possible, try a queen/centroid(s) method, since very significant
gains can sometimes be obtained by using it.

7.8. For “amatheurs”: temporal connectivity in random recruitment

We have seen that the random assignment of channels of communication
generates, with each iteration, subgraphs of information links that are disconnected.
However, as precisely this structure is modified with each time increment,
information can nevertheless be transmitted everywhere with a non-null probability:
over a certain period, all happens as if the graph were connected.

Let m be a memory carrying information and n an unspecified explorer. What is

the probability that n can receive information coming from m after at the most t time

100 Particle Swarm Optimization

increments? Let N be the number of explorers, M the number of memories and F the
number of channels (implied, the number of different frequencies). At moment 0,
memory m drew channel c at random. The probability that n also drew c is simply

1p F= . It is the probability that there is a link between m and n and, therefore, that
n can be informed in just one time increment.

So that n cannot be informed at the first increment, but only at the second, the
following events need to happen:

 – at time 0, n did not draw the channel c (probability1 p−);

 – either m draws 1c with time 1, and n also (probability p).

Or then:

 – n draws 1c at time 1 (probability p);

 – and at least 1 explorer drew c (probability ()1 1
N

p− −) at time 0 receiving
information thus from m;

 – and at least 1 memory drew c at time 0 (being then informed by at least one of
the previous explorers) and c1 at time 1 (thus informing n). Note that the transfer of
explorer information towards memory is not counted as a “time” (it is included in
the iteration of displacement). The probability of this ensemble of two events is easy
to calculate by considering its opposite (either no c with the first draw, or at least c

with the first draw and any c1 with the second). One thus finds

() ()2
1 2 1 1

M M
p p− − + − .

Thus, for the second time increment, the probability is (by posing 1q p= −):

()()()2
2 1 1 1 2N M Mp qp q q q= + − −

Thus, the probability that information can be transmitted either at the first
increment or at the second is:

()2 21 1p q p≤ = − −

Beyond this, the exact formula becomes complicated, but if p is not too small (let
us say greater than 15%), it can be approached by 1 t

t
p q≤ = − , which gives us the

evolution of the Figure below, which shows us that the quasi-complete temporal
connexity is then ensured after 20 iterations. Note that the growth is moderate,
which is an asset for difficult problems, because too rapid transmission of
information harms the exploration of the search space.

Swarm: Memory and Graphs of Influence 101

Figure 7.8. Temporal connexity in recruitment by common channels. At every moment the

graph of information is not connected, but since the links vary in the course of time, all

happens more or less as if it were: the probability that information carried by a given

particle can be known by any other increases in the course of time

7.9. Summary

In traditional PSO, the particles have a double role: to explore and memorize. It
is interesting to separate these functionalities and distinguish between purely
explorer particles and purely memory particles, the latter moving only definitely.

The information links between these two groups of particles form a graph which
can be regular or random, fixed at the beginning of process or modified during its
course. The results obtained with these various topologies suggest rules of choice for
the number of links per particle and the number of memories.

Moreover, it is then possible to make the memories communicate between

themselves directly, in order to reorganize themselves or to synthesize information,
operations which can sometimes appreciably accelerate convergence.

0
0,2

0,4
0,6

0,8
1

0 5 10 15 20

Iteration

P
ro

b
a
b

il
it

y

This page intentionally left blank

Chapter 8

Distributions of Proximity1

8.1. The random possibilities

As we saw, in particular, in the chapter “First formulations”, the process of iterative
stochastic optimization primarily rests on the definition, with each stage, of the next
possible positions in the search space of dimension D, together with their
probabilities of being selected. In PSO, this can be summarized, for a given particle,
by the vectorial equation giving the next vector displacement (called velocity for
historical reasons):

() () () ()() () ()()11 'v t c v t p t x t g t x t+ = + − + −A A

where] and]' are matrices D × D with random diagonal, the other elements
being null (the general case is beyond the scope of this book). For the traditional
PSO studied until now, each one of these matrices can be written:

()
()

()

max

max

max

0, ... 0

... 0, ...

0 ... 0,

alea c

alea c

alea c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

the function ()max0,alea c returning a random value between 0 and maxc according to
a uniform distribution. As we have noticed, this results in the distribution of

1. This somewhat technical chapter may only be skimmed through on first reading. To understand
the chapters that follow, it is enough to know of the existence of the various distributions
described here.

104 Particle Swarm Optimization

possibles associated with A being a uniform D-rectangle whose diagonal is the
vector () ()p t x t− . Similarly for that associated with the matrix 'A , with the
diagonal () ()g t x t− . After a short review of the characteristics of this kind of
distribution, we will see that it is sometimes more judicious to use others, based on
isotropy, such as spheres or more or less deformed Gaussians. In fact, we will see
that actually a good strategy consists of using several of them in alternation during
the search process. In passing, to simplify their later referencing, we will allot a
number to them.

8.2. Review of rectangular distribution

Let us point out the equations of the traditional PSO, just to keep in mind that
each random element corresponds to a uniform distribution of possible positions in a
D-rectangle.

Distribution 1

()() ()()1 max max0, 0,d d d d d d

d d d

v c v alea c p x alea c g x

x x v

⎧ ← + − + −⎪
⎨

← +⎪⎩

We have already noted that the combination by summation of the two uniform
D-rectangles is no longer uniform, but that, nevertheless, its support remains itself a
D-rectangle. The experiment shows that it is not very satisfactory, owing to the fact
that certain positions can then be selected in the “corners”, without justification or
necessity.

In addition, as already remarked, the distribution depends on the coordinate
system and not only on the relative positions of the three points concerned x(t), p(t),
and g(t). We had noted that this was no longer very satisfactory from a theoretical
point of view, but it is now advisable to make the matter more nuanced. A
significant element is the evolution of the total volume of the distribution during the
process. At a given moment and for a given particle, the distribution of related
possibles can lose one or more dimensions if, by bad luck, one or more coordinates
are null or almost null and this, by definition, depends on the coordinate system. But
that changes according to moments and particles, and one often notes a phenomenon
of compensation: if, for example, ()p t is on one of the coordinate axes and thus the
dimensionality of the associated distribution is reduced by one, the volume of the
distribution associated with ()g t is often larger, and vice versa. Hence, the
combination of both is more robust than each one separately. Thus, even if there is
an undeniable bias, on average its influence on the effectiveness of the algorithm is
seldom notable. It is just necessary to keep its existence in mind, because if the

Distributions of Proximity 105

algorithm seems to converge badly a simple rotation of the axis of coordinate can
sometimes improve things.

On the other hand, the “rectangular” form of the final distribution has a clear

influence. Indeed, it results from time to time in placing near the top of a D-
rectangle particles that are pure artifacts having nothing to do with the structure of
the problem. When that does not happen too often, there is no need to worry and it
can even be beneficial (because, as we have seen, to have some dissenting particles
is desirable). However, when the dimension of the problem is large, that becomes
much more frequent (for simple geometrical reasons) and the outcome is less
favorable. Hence, the interest in using distributions that are a little less “jagged”.

8.3. Alternative distributions of possibilities

To mitigate the defects of the rectangular distribution, a simple method is to start
from an isotropic distribution, for example spherical or Gaussian. A small program
delivering a position according to such a distribution is given in an appendix
(section 8.6). It is, in any case, an excellent exercise in statistics! From there, one
can imagine many alternatives. We will examine some of them.

8.3.1. Ellipsoidal positive sectors

This is a method very close to the original PSO. The uniform random choices are
replaced by choices resulting from a spherical distribution or, more precisely,
resulting from a distribution whose support is a positive spherical sector.

Distribution 2

() ()
() ()

1 max

max

_ 0,

_ 0,

d d d dd

d dd

d d d

v c v c alea sphère p x

c alea sphère g x

x x v

ρ

ρ

⎧ ← + −
⎪
⎪ + −⎨
⎪

← +⎪
⎩

The function ()_ 0,alea sphère ρ returns a point chosen randomly according to a
uniform distribution in the D-sphere centered on the origin of the coordinates and
whose radius is ρ . In Figure 8.1, this radius was calculated so that the volume of the
sphere is equal to 1, in order to remain closer to the traditional equations. The final
distribution then is concentrated (which is not always an advantage). It will also be
noted that it remains dependent on the coordinate system. Nevertheless, it gives
better results in general than the rectangular distribution.

106 Particle Swarm Optimization

Figure 8.1. Distribution of possibilities starting from deformed positive spherical sectors. If

one seeks to be closer to the traditional equations, as here, the resulting distribution is

concentrated. The results are in general better than with the rectangular

 distribution of the traditional PSO

8.3.2. Independent Gaussians

This is rather similar to the preceding method. For each dimension, instead of
calling upon a uniform distribution on an interval, a normal distribution is used. The
equations of motion thus become those below.

Distribution 3

()()
()()

1 _ ,

_ ,

d d d d

d d

d d d

v c v alea normal p x

alea normal g x

x x v

µ σ
µ σ

← + −⎧
⎪

+ −⎨
⎪ ← +⎩

-4

-3

-2

-1

0

1

2

0 2 4 6 8

Best perf. proximity

Best local perf. proximity
Present position

Best perf.

Best local perf.

-4

-3

-2

-1

0

1

2

0 2 4 6 8

Possibilities

Present position
Best perf.

Best local perf.

Distributions of Proximity 107

This alternative introduces a priori two additional parameters, the average µ and
the standard deviation σ of the distribution. If one wants to remain rather close to the
traditional version (rectangular distributions), it is enough to take maxcµ = and

max 4cσ = , which ensures that more than 95% of the distribution is in the interval
[]max0,c . This method is effective enough for more or less combinatorial discrete
problems, but not so effective for continuous problems such as those of our
benchmark set.

8.3.3. Local by independent Gaussians

One might call this an alternative of the preceding alternative. The idea is to seek
only locally “around” the best-known position of the particle, that is to say g. Thus,
for each dimension d, a coordinate more or less close to dg is drawn randomly
according to a Gaussian law, which gives the following equation of displacement if
the distribution is centered on g:

()_ 0,d d d dx g alea normal g x← + −

The Gaussian law can be replaced by a uniform law on ,d d d dg x g x⎡− − − ⎤⎣ ⎦
but, in any case, the effectiveness of this type of distribution varies considerably
according to the problem. For example, on our benchmark set, the failure rate is
100% for Griewank and 0% for Ackley. On the other hand, we will use it jointly
with others in adaptive PSO TRIBES later on. For this particular use, experiment
shows that a distribution centered no longer on g but a little beyond it compared to x

is very slightly more robust. We will refer to this as 3', and, more precisely, to the
following equation of displacement:

Distribution 3'

()_ ,
d d d d d d

x g alea normal g x g x← + − −

8.3.4. The class of one-dimensional distributions

We have just seen two alternatives that have in common the independent use of
random distributions for each dimension. On the same principle, many others have
been imagined (see, for example, [MIR 02B, SHI 98B, XIE 02]). There is no
question of presenting an anthology of them here; we merely note that the
corresponding equations of motion have the following general form:

108 Particle Swarm Optimization

() ()()
()()

1 1 1 2 2 2

3 3 3

, ,

,

d d d d

d d

d d d

v alea c v alea c p x

alea c g x

x x v

τ τ
τ

← + −⎧
⎪

+ −⎨
⎪ ← +⎩

where each function ialea depends on two parameters and returns a real number

according to a probability distribution to specify. We have seen examples of
deformed positive spherical sectors and of Gaussians. Log-normal laws of the type

()()log 0,1 i

i
c N

τ
 sometimes also give good results.

Nevertheless, used as such, these alternatives are on the whole neither better nor

worse than those here detailed. As usual, all depends on the problem being tackled.
However, some of them do appear rather effective when the parameters themselves
are modified in a relevant way during the process. We will therefore speak about it
again in the chapter devoted to adaptive PSO.

In the meantime, it is nevertheless possible to give some qualitative advice,
which can guide your choice if you plan to carry out your own alternative for a
precise type of problem. These indications are primarily empirical and relative to the
values of the averages and standard deviations of the distributions ialea .

For 1alea , i.e. consideration of the particle’s own velocity:

 – average less than 1 (risk of divergence if not, unless adding a constraint
maximum velocity);

 – low standard deviation. You will have noted that, in traditional PSO, it is null.

For 2alea and 3alea , i.e. consideration of two good known performances of the
particle:

 – average of about 0.7. In traditional PSO, it is approximately from 0.5 to 1;

 – deviation type greater with increasing difficulty of problem. In traditional
PSO, it is approximately 0.6 to 1.15 (2.average 3 , owing to the fact that the
distribution is uniform).

8.3.5. Pivots

The original pivot method [SER 97], retranscribed in the vocabulary of PSO,
would consist of having with each iteration only an even number of particles, pairing
them and, in each pair, taking as pivot the better of the two. The pivot does not move
and the new position of the other particle is randomly selected according to an
isotropic (e.g. Gaussian) distribution centered on the pivot.

Distributions of Proximity 109

Here, one proceeds a little differently. For each particle one considers two more
points of the search space, but they are its best performance p and the best
performance of its informants, g. One defines then two hyperspheres, Hp and HG,
centered on these points and of the same radius equal to their distance. Then, in each
sphere, one randomly chooses a point according to a uniform distribution. One
assigns to this point a weight in decreasing proportion to the value of the function to
be minimized, evaluated in the center of the sphere. Finally the new position is
calculated as the barycenter of these the last two points (see Figure 8.2).

It is interesting to note that this method no longer explicitly calls for the speed of

movement. The equation of motion can be written, in condensed vectorial form:

Distribution 4

() ()2 3p g
x c alea H c alea H← +

To help understand and calculate variables of state like the kinetic energy, it is
always possible to posit that the “velocity” is the difference between the position at
moment t + 1 and that at moment t:

() () ()1v t x t x t= + −

First, the assignment of a weight has a rather awkward a priori arbitrary aspect.
But, in fact, the method is extremely robust with respect to the choice of weighting
function, provided that this observes some very general conditions: strict decrease
and finite value for a zero value of the function to be minimized (presumed to be
positive, a case to which one can, in practice, always return). For example, one can

take as weighting coefficients
()

() ()
f p

f p f g+
and

()
() ()

f g

f p f g+
.

Second, it seems that the current position of the particle is not taken into account
in calculating the future position, contrary to the formula of the traditional PSO.
This may seem curious, but, in fact, it is only an impression. If this position is bad,
there is rarely any interest in using it. In a manner of speaking, one can thus say that
it is taken into account precisely by being unaware of it! In addition, if it is good,
then it actually coincides with its best performance p and so it rightly intervenes in
the calculation.

110 Particle Swarm Optimization

Figure 8.2. Distribution of the possibilities by the method of pivots. The basic uniform

distributions are here two hyperspheres which one combines linearly. The distribution of the

new possible positions is still in a hypersphere, but it is no longer uniform, as one can see on

the sampling of 2,000 points in the second Figure. One will note the greater extension

compared to preceding methods, certainly penalizing for easy problems, but interesting for

functions whose sought minimum has a narrow basin of attraction

Pivots with noise

This second strategy starts exactly like the preceding one. Simply, once the new
position determined, it is still modified according to Gaussian random noise effects,
of null average and with the standard deviation becoming smaller as the best

-6

-4

-2

0

2

4

-2 0 2 4 6 8

Best perf. proximity

Best local perf. proximity

Present position

Best perf..

Best local perf.

-5
-4
-3
-2
-1
0
1
2
3

-2 0 2 4 6 8
Possibilities

Present position

Best perf.

Best local perf.

Distributions of Proximity 111

performance of the particle approaches that of its informants. For example, if f is the
function to be minimized, one will be able to take as standard deviation:

() ()
() ()

f p f g

f p f g
σ

−
=

+

Here still, the exact formula is not very significant. It is enough that the result is
at the most equal to 1 and strictly decreasing with the difference of the
performances, () ()f p f g− .

In practice, there are two sub-variants. Either, for each component of the position
that has been just calculated, i.e. for each dimension d, one randomly draws a value

db according to the noise distribution, and the component is multiplied by ()1 db+ .

() (), 0, , 1d d d dd b N x b xσ∀ = ← +

Alternatively, the noise is applied only according to the direction of vector x, i.e. the
same random value b is used for all the components. In what follows, we will use
this second sub-variant, the first often giving, by experiment, too much dispersion.
Hence the equations defining this distribution:

Distribution 5

() ()
()

()

2 3

0,

, 1

p g

d d

x c alea H c alea H

b N

d x b x

σ

← +

=⎧⎪
⎨
∀ ← +⎪⎩

Gaussian pivots

Another manner of obtaining a distribution the support of which is no longer
limited to a hypersphere is to use from the outset non-uniform distributions with
infinite support, such as Gaussians. Each hypersphere is then replaced by a Gaussian
“equivalent”, having the same center and a selected standard deviation so that, for
example, 98% of the distribution is in the initial hypersphere (normalized standard
deviation = 2). Let us call Gp and Gg the resulting isotropic Gaussian distributions,
respectively centered on the positions p and g. The condensed formalization of this
distribution is then simply:

Distribution 6

() ()2 3p g
x c alea G c alea G← +

112 Particle Swarm Optimization

Such a method, rather like the preceding one, is very effective in solving certain
difficult problems (in both cases, one thus obtains a null rate of failure for the
Ackley function). On the benchmark set, the result is more mitigated: with pivots
with noise the average rate of failure is 37%, and it is 44% with Gaussian pivots.
However, as we will see below, a good strategy is to combine these two methods.

One can vary ad infinitum the type of centrally symmetric distribution used, but,
as yet, there are no rules (even empirical ones) allowing us to choose a priori the
distribution adequate to the only problem that it appears necessary to solve. Let us
note in addition that central symmetry is not necessarily a good idea in itself,
because in general it does not reflect the structure of the function the minimum of
which is sought. An interesting compromise to try to mitigate this problem is the use
of judiciously centered and oriented ellipsoids.

8.3.6. Adjusted ellipsoids

In this method, one replaces each of the two D-rectangles of the traditional
method (distribution 1) by an ellipsoid not depending on the coordinate system. Let
us give the algorithm building these ellipsoids:

– definition of the center: ()max 2q x c p x= + − ;

– construction of the sphere of center q and q xρ = − ;

– calculation of volume V of the cube of diagonal 2ρ ;

– deformation of the sphere, perpendicular to the vector p x− , in order to obtain

an ellipsoid of volume V' less than V. The ratio 'V V can be a parameter or, better,

V' is randomly selected in the interval []0,V . It is this last method that was adopted

in the examples treated below. Then we obtain a support of distribution denoted pE ;

– in the same way, obtain the support of distribution for g,
gE .

The condensed equations defining the distribution are then:

Distribution 7

() ()1 2 3p gv c v c alea E c alea E

x x v

⎧ ← + +⎪
⎨

← +⎪⎩

Figure 8.3 shows the result obtained in dimension 2, with 'V V= . This method
has the theoretical advantage of giving a distribution that no longer depends on the
coordinate system. Like that of pivots, it can easily be adapted for isotropic
distributions others than the sphere (e.g. Gaussian). Volume is then calculated by

Distributions of Proximity 113

setting a threshold of probability, such as 95%. However, in practice, it does not
seem to give better results, while requiring more computing time. Nevertheless, this
is a provisional judgment, based only on restricted benchmark sets. At the time of
writing, no real published application has used this method.

Figure 8.3. Distribution of possibilities by combination of oriented ellipsoids. The result is

independent of the coordinate system but, in practice, the method does not seem to be more

effective than those already seen, while being greedier in computing times

8.4. Some comparisons of results

To make it possible to continue the comparison with OEP 0, only the
distributions are modified. The other parameters remain unchanged (N = M = 20,
K = 3, random graph of information 2.07ϕ =).

Table 8.1 shows the very contrasting results that one obtains with the first two
alternatives: the method of ellipsoidal positive sectors and that of pivots. Hence, the

-4

-3

-2

-1

0

1

2

0 2 4 6 8

Best perf. proximity

Best local perf. proximity
Present position

Best perf.

Best local perf.

-4
-3
-2
-1
0
1
2

0 2 4 6 8

Possibilities

Present position

Best perf.

Best local perf.

114 Particle Swarm Optimization

idea of combining them in an astute way, the method of pivots being called to the
rescue during an iteration, only if the other did not improve during the preceding
iteration. On the benchmark set, the improvement in performance is significant, and
we will reconsider this idea of judicious modification of strategy in the chapter on
the adaptive PSO.

Name
Ellipsoidal positive

sectors
Pivots

Sectors

if improvement,

pivots if not

Tripod 53% 41% 34%

Alpine 10D 0% 81% 52%

Parabola 30D 0% 58% 0%

Griewank 30D 59% 14% 21%

Rosenbrock 30D 100% (30.9) 100% (52) 100% (38)

Ackley 30D 60% 0% 2%

Average of the

rates of failure
42% 49% 34%

Table 8.1. Results with two distributions of possibilities (ellipsoidal positive sectors and

pivots) and their combination. The method of pivots presents a profile of effectiveness

according to problems which supplements rather well that of the method of ellipsoidal

positive sectors. Their judicious combination gives an intermediate performance for each

function and the total improvement is appreciable

We can also examine the results for two of the other distributions presented,
independent Gaussians and oriented ellipsoids (see Table 8.2). The profiles of
effectiveness are then, on the contrary, rather similar (except for the Alpine
function). Thus the intermediate profile obtained by combination of the two
distributions cannot be better on the whole than the initial profiles. The table
presents only one of the two possible combinations (Gaussian if improvement,
ellipsoids if not), but the other is even less interesting.

Distributions of Proximity 115

Name
Independent

Gaussians
Oriented ellipsoids

Gaussians

if improvement,

ellipsoids if not

Tripod 41% 33% 36%

Alpine 10D 1% 81% 15%

Parabola 30D 0% 0% 0%

Griewank 30D 55% 71% 48%

Rosenbrock 30D 100% (32.3) 100% (24.7) 100% (27)

Ackley 30D 76% 100% 92%

Average of the

rates of failure
45% 64% 49%

Table 8.2. Results with two distributions of possibilities (independent Gaussians and oriented

ellipsoids) and their combination. Here the profiles of effectiveness are too similar. As the

combination of the two types of distribution still gives intermediate performances between two

which are close enough for all the functions except one, the final result

is also intermediary and, therefore, uninteresting

Among all the methods we have looked at, the best combination is that of
alternating pivots with noise and Gaussian pivots, as we can see in Table 8.3. This
confirms, if it were necessary, that a statement of the equations of motion clarifying
velocity is not in itself necessary. Velocity is only an intuitive intermediate variable,
but it can perfectly well be replaced by another more abstract concept: the random
choice of the next position according to a probability distribution judiciously
modified after each iteration.

At the risk of repetition (but the point is so significant that it is worth
emphasizing), all the stochastic algorithms can in the last analysis be described in
terms of such random choices, whatever the underlying metaphors and the level of
sophistication of the rules of operation.

It is also clear that each distribution is better adapted to some types of problems
than others. More generally, if we consider all the control parameters at the user’s
disposal, we can ask, for each problem, which are the best possible performances if
the number of attempts to find the good parameters is not limited.

116 Particle Swarm Optimization

Name Pivots with noise Gaussian pivots

 Pivots with noise

if improvement,

Gaussian pivots

if not

Tripod 20% 51% 40%

Alpine 10D 0% 85% 2%

Parabola 30D 0% 8% 0%

Griewank 30D 100% 18% 25%

Rosenbrock 30D 100% (25.6) 100% (41) 100% (25.5)

Ackley 30D 0% 0% 0%

Average of the

rates of failure
37% 44% 29%

Table 8.3. Results with two distributions of possibilities (disturbed pivots and Gaussian

pivots). The good performance of the method of pivots with noise by itself can already be

seen, but it is further improved by combination with the method of Gaussian pivots, primarily

because degradation is very low for Alpine and improvement very clear for Griewank

The object of the next chapter is to drive the parametric PSO into a corner, while
trying to understand in passing why one set of parameters is more suitable for a
given problem than another.

8.5. For “amatheurs”

8.5.1. Squaring of a hypersphere

We have already seen, in Chapter 1, the formulas giving the volume of a sphere
in D dimensions, according to whether D is even or odd. Let us consider, for
example, the first case. If the radius is ρ, volume (),SV D ρ is given by:

() ()
2

,
2 !

D
D

SV D
D

πρ ρ=

The volume of a cube of edge a in D dimensions is (), D

CV D a a= . By

equalizing these two volumes, one finds the relation:

() 12 ! DD
aρ

π
=

Distributions of Proximity 117

If D odd, one would find in the same way,
1 1 2!

2

D DD
a

πρ
π

= .

The coefficient ()D aν ρ= is used to calculate the radius for the “spherical”

proximities. Table 8.4 gives the values corresponding to dimensions of the
benchmark set.

D ()Dν

2 0.56

10 0.91

30 1.43

Table 8.4. Squaring of a D-sphere. For a D-sphere of radius ρ and a D-cube of edge a to

have the same volume, the ratio ρ/ A must have the value v(D)

8.5.2. From sphere to ellipsoid

Any point m of the sphere of center ()maxq c p x= − (resp. ()maxq c g x= −) and

radius q xρ = − can be written ()m x q x vλ= + − + , where v is the vector normal

to q x− . By carrying out the scalar product by q x− , one deduces from it

immediately () () 2
.m x q x q xλ = − − − and, therefore, vector v. To build an

ellipsoid of which one of the axes is 2ρ and volume V' is given, it is enough to

consider the set of points, ()'m x q x vλ ω= + − + , with:

()

1

1'

,

D

S

V

V D
ω

ρ

−⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

8.5.3. Random volume for an adjusted ellipsoid

In the traditional method with rectangular distributions, the D-rectangle of
diagonal q x− has a variable volume vV according to the coordinate system

chosen, which goes from 0 to ()D

V q x D= − . The law of probability followed

by vV is not uniform.

The rectangular distribution is replaced by a distribution according to an
ellipsoid of principal diameter q x− and volume V'. The idea is to choose V'

118 Particle Swarm Optimization

randomly according to the same law as vV . In practice, it is carried out by an

algorithm according to the following stages:

 – choice of a point m randomly (uniformly) on the sphere of center O (origin of
the coordinates) and of diameter q x− (see below for uniform distribution in a D-

sphere);

 – calculation of volume.
1

'
D

d
d

V m
=

= ∏ .

8.5.4. Uniform distribution in a D-sphere

The first idea that comes to mind when writing a program that returns a position
resulting from a uniform distribution in a D-sphere is to start from a program that
does it for the envelope D-cube, by making it buckle until the point obtained is
indeed in the sphere.

But this method is acceptable only for lower values of D, because the ratio of
volume of the sphere to that of the cube tends quickly towards zero as D increases.
The probability of randomly picking a point in the cube that it is also in the sphere
thus becomes very low: the program will take a very long time to complete.

So a direct method is preferable. The simplest rests on a well-known fact from
astronomy: a vector that points randomly towards a position on the night sky
according to a uniform distribution has components that follow the same normal
law. This gives us a method for points that are on the surface of the sphere, i.e. in
fact, for the choice of a uniform random direction. It is then enough also to define

the radius randomly, according to the law ()10,1
D

alea , to guarantee the uniformity

in the volume of the sphere.
If one wishes, on the contrary, a non-uniform (but still isotropic) distribution, it

is enough to change the law of distribution of the radius. For example, for a normal
distribution (and, in this case, naturally, there is no longer a “sphere” inside which

the points would be), the law to be taken is ()1_ 0,
D

rand normal σ

The C program of section 8.6 carries out these various operations, as well as
other non-uniform distributions restricted to the sphere.

8.6. C program of isotropic distribution

struct vector alea_sphere(int D, double radius, double unif)

/ * randomly Provides a point in a D-sphere
or according to an isotropic normal distribution
Maurice Clerc 2003-07-11

Center 0

Distributions of Proximity 119

unif = 1 = > uniform distribution
unif > 0 but # 1 = > distribution nonuniform
unif < 0 = > Gaussian, with standard deviation = abs(unif)
*/

int j;
double 1;
double pw;

double r;
double sigma;
struct vector x;

x.taille = D;
pw = 1/(double)D;

// Stage 1. Random direction
//It is a theorem...
1= 0;
for (j = 0;j < D;j++)
x.v[j] = alea_normal(0,1); 1= 1+ x.v[j]*x.v[j];
1= sqrt(1);
/ Stage 2. Random radius
if (unif > 0)
r = alea(0,1); r = pow(r, pw*unif);
else
sigma = –unif; r = fabs(alea_normal(0, sigma)); r = pow(r, pw);

for (j = 0;j < D;j++) x.v[j] = rayon*r*x.v[j]/1;

return x;

8.7. Summary

The equations of motion of a particle contain random terms. By considering all
the values they can take and their probabilities, one defines the distribution of the
next possible positions. Two great families of alternatives are considered: those
using independent distributions for each dimension, as in traditional PSO, and those
not related on the coordinate system but only to the relative positions of the
particles, like the method of pivots.

The judicious use of one or other alternative according to whether there was or
not improvement during an iteration can improve the performances appreciably.

This page intentionally left blank

Chapter 9

Optimal Parameter Settings

9.1. Defense of manual parameter setting

One often contrasts adaptive optimization (which, ideally, only requires the user
to define the problem) with parametric optimization (which, in addition, requires the
method of resolution to be specified, if only by giving certain numerical
coefficients). However, the border between these two types of methods is vague.
Thus, for example, the alternation of several distributions of proximities used in the
preceding chapter can be seen as a kind of adaptation, if it is not made randomly.

In addition, when a problem is repetitive, with only some numerical variations

that change neither its difficulty nor its nature, it will be worthwhile to seek a set of
effective parameters, even if it means carrying out many tests. Conversely, when the
problem is to be solved only a small number of times or when it really would be
prohibitive to seek to refine parameters, an adaptive method should be considered.

In short, the two steps are complementary and this is why it is interesting to see

up to what point the parametric PSO can be effective, case by case. Moreover, that
will give us a basis of comparison or, more precisely, a “guiding utopia”: the goal,
generally inaccessible, for an adaptive PSO will be to be as effective on any given
problem as a parametric PSO ideally configured for that problem.

122 Particle Swarm Optimization

9.2. Better parameter settings for the benchmark set

9.2.1. Search space

All the parameters we have seen can be gathered in four sets:

 – the graph of information, which gives the size of explorer-swarm N, the size
of memory-swarm M, and the links between the various particles,

 – possible distributions of proximity,

 – strategies of evolution of the graph of information,

 – strategies of choice of the distributions.

Here we temporarily deny ourselves every real adaptation during the process, i.e.
a parameter will be either constant or modified absolutely randomly without taking
into account the information collected. In particular, we thus give up the strategies
already seen consisting of making a particular choice of topology and proximity
according to whether there were improvements or not.

Even so, the possibilities are too numerous. For example, for the topology of the

graph of information, the number of configurations is equal to

() () ()12 1 2 1 2
N M M MM N −− − . If 20M N= = , it is about 35510 . Obviously testing all

of them is out of the question! In fact – and this will be justified a posteriori by the
good results obtained – we will restrict ourselves to the topologies defined by only
two parameters: the number of informants per particle K and the manner of choosing
these informants. More drastic still, we will consider only two types of choice of
informant: circular fixed topology or random choice with each iteration.

Again to simplify, the three coefficients of the general equation of motion, 1c ,

2c , and 3c , will be defined only via the coefficient ϕ , which we saw in Chapter 6
for the establishment of the performance maps. Moreover, precisely, these maps will
enable us to limit the range of plausible values, besides that for the size N of the
explorer-swarm.

Finally, the choice of distributions will be limited to those we have already

examined. The list (with abbreviations) is as follows:

1 (rect.): = rectangles,
2 (ell. pos. sect): = ellipsoidal positive sectors,
3 (ind. gauss.): = independent Gaussians,
4 (piv.): = pivots,
5 (piv. n.):= pivots with noise,
6 (piv. G.): = Gaussian pivots,
7 (ell. adj.): = adjusted ellipsoids.

Optimal Parameter Settings 123

We will not even test the various combinations randomly: once again, they are too
numerous. Each test will be carried out with only one type of distribution.

Table 9.1 then recapitulates the acceptable parameters and their values, defining

a search space. It will be a question of finding, for each problem of the benchmark
set, the position in this space that provides the best result, i.e. the set of parameters
that gives the lowest rate of failure or, failing this, if the rate of failure is 100%, the
low value of the function.

Parameter Range

N, size of the explorer-swarm integer, 5 to 100

M, size of the memory-swarm integer, 5 to 100

K, number of informants per particle integer, 2 with N

ϕ real number, in]]2 2,5

topology circular or random

Distribution 7 possible cases

Table 9.1. Space parameters. Here acceptable values are severely limited, constraints

justified a posteriori by the quality of the results obtained

9.2.2. To optimize the optimizer

We are now facing a second-level problem of optimization. Let us consider a
function f to be minimized by our algorithm of parametric PSO. In our examples, the
stop criterion is a given number T of evaluations of f. The stages are as follows:

(a) choose a set of parameters;
(b) carry out the algorithm for T evaluations;
(c) examine the result, to decide if it can be improved. In so, return to (a).

It is indeed a process aiming at “optimizing the optimizer”, at least for the
function f. The problem can be formulated as follows:

 – search space = space of the parameters;

 – function to be minimized = function that, at any point of the search space,
returns the performance obtained after the attempt at minimization of f.

In theory, it is thus enough to use an algorithm that can call itself, but there are
two pitfalls. First, this algorithm should already be parameterized. A parameter
setting with average empirical values will do. But, in addition and especially, the
evaluation of each point of the search space requires T evaluations of the function f.

124 Particle Swarm Optimization

In our examples, T is worth at most 40,000. The search space for the parameters
is of dimension 6. By experiment, we can infer that we probably have to evaluate a
few thousand points of this space to find the best solution. Let us say, modestly,
2,000. Moreover, the algorithm being stochastic, it should be launched typically 100
times to estimate its performances statistically. Finally, obtaining the (probable) best
set of parameters will have required 40,000 ×2,000 ×100 = 8 billion evaluations of
the function f.

Name N M ϕ K Topology

Distribution

of the possible

positions

Rate of

failure

(average

Number of

eval.)

Tripod
53

80

12

19

2.3

2.3

3

3

random

random

2 (ell. pos.
sect)

7 (ell. gold.)

0% (2,603)

0% (4,111)

Alpine 10D * 6 8 4 random 5 (piv. n.) 0% (194)

Parabola 30D 6 4 10 random 5 (piv. n.) 0% (88)

Griewank 30D 96 96 2.12 3 random

2 (ell. pos.
sect)

2%

Rosenbrock 30D 58 29 2.3 3 random 3 (ind. gauss.)

100%

min. 0.034
avg. 19.93

Ackley 30D * 20 20 3 random 5 (piv. n.) 0% (2,394)

Table 9.2. Best parameters (without adaptation). The rates of failure are estimated after 100

evaluations. If they are null, the average number of evaluations has a significance and is also

indicated. Since the rate of failure for Rosenbrock is 100%, the average and best failure rates

are given instead. For distribution 5 (pivots with noise) the parameter ϕ is not used.

The asterisk indicates a parameter setting discovered or imposed empirically

 and not by an automatic process

It is possible, but nevertheless a little long and, above all, not always necessary
in this case, thanks to the performance maps established previously. In practice, the
results indicated in Table 8.1 were found manually for the functions indicated by an
asterisk. Even for the others, automatic optimization was limited, then refined by
manual local research. In all cases, we tried to favor the solutions with N M= , in
order to approach the traditional PSO, which does not distinguish explorer-swarm
and memory-swarm.

Optimal Parameter Settings 125

9.2.3. Analysis of results

Such a table is more informative than appears at first sight, in particular from the
perspective of designing a future robust adaptive algorithm. We shall comment on it
column by column, starting with the last.

9.2.3.1. Rate of failure

Even for problems considered difficult, it is possible to obtain excellent results.
Of course, possible does not mean easy or economic. As we have seen, the search of
the optimal parameters can be very expensive. But that shows that the guiding
principles of PSO are good. Then it is for us to use them as best as we can, thanks to
sufficiently astute alternatives, for example by combining several types of
topologies and distributions during the process, as we have already started to do.

9.2.3.2. Distribution

The most effective distributions are distributed equitably between two classes:
one-dimensional independent ones that depend on each dimension (Gaussian and
ellipsoidal positive sectors) and multidimensional (pivots with noise).

To obtain a robust algorithm, it is thus a parameter on which we will
undoubtedly have to rely, by alternating two distributions, one of each class.

9.2.3.3. Topology and the number of informants

By reading the table in the negative, we note that the fixed topology (circular)
does not appear: it is always bettered by the random one varying with each iteration.
Complementary tests with other fixed topologies, not detailed here, confirm this
conclusion. We find a very general principle: in the absence of information, it is
better to choose at random.

Of course, it is likely that for an adaptive algorithm that takes into account the
information collected during the process the random choice is no longer the best.
However, the lesson to draw from it is that to preserve a fixed topology is certainly
not a good idea.

9.2.3.4. Informants K

We note without surprise that it is better that each particle has few informants as
soon as the problem comprises several local minima. As we have already seen, that
makes it possible to avoid premature convergences.

On the contrary, as the example of the Parabola function shows, an entirely
connected swarm of particles is more effective if there are no local minima.
Nevertheless, the choice K = 3 remains completely acceptable. Consequently, it is

126 Particle Swarm Optimization

most relevant if there is no information a priori on the form of the landscape
generated by the function to minimize.

Let us recall that when the topology of the information links is randomly

selected, K is in fact a mean value for the number of informants. A memory drawing
at random K explorers to inform may happen to choose the same one several times
(see Chapter 7) and a given particle may be informed by more than K others.

9.2.3.5. Coefficient ϕ

We know that this parameter is used to calculate the confidence coefficients of
the “traditional” alternatives, in which the components of the next movement are
calculated independently for each dimension. However, for the distributions with
pivot, it is useless, which is a point in their favor.

The pure and simple later suppression of this parameter is thus quite tempting.
However, as we have just seen, not using it sometimes results in not finding the best
solution. Always from the perspective of a future nonparametric algorithm, it will be
advisable to examine carefully whether this occasional loss of performance is
significant or not.

9.2.3.6. Informants N and memories M

As we have said, the case N = M was deliberately privileged. It is thus probable
that other values lead to the same result. Moreover, for example, for the Tripod
function, it does not seem possible to obtain a zero rate of failure in any other way
than by having approximately three to four times more explorers than memories. If
the behavior of the particles is examined accurately, that seems related to the fact
that there are three minima, of which only one is global. This empirical remark
seems to be confirmed by the case of the Rosenbrock function. But it is useful only
if there is a priori knowledge of the number of minima of the studied function.

As a result, it seems tempting, for a function with only one minimum, like
Parabola, to try to work with only one memory. That does not work: at least three of
them are required so that mechanism PSO can function correctly. The difference is
extremely clear. The result is not reported in the table, but with only one memory,
the rate of failure is always 100%, whereas one can easily go down to 2% with three.

Another remark relates to the existence of a relation between the choice of the

type of distribution and the number of particles. When the best performance is
obtained thanks to a distribution with pivot, fewer particles are required than if it is
thanks to a distribution with independent dimensions. By caricaturing a little, we are
in the presence of two steps which can each be as effective as the other, but are
based on rather different principles: crude force, which moves many particles

Optimal Parameter Settings 127

without being concerned with possible relations between their coordinates; and
reasoned strategy, which tries on the contrary to benefit from it.

The results we have seen up to now really do not make it possible to give

preference to one or the other method, but the very idea of a permanent adaptation
tilts the balance in favor of the second, because it implies using all the information
one has as best as one can.

9.3. Towards adaptation

On our benchmark set, we have now established results that are most probably
the best possible ones if we force the algorithm of PSO to work in a relatively stupid
way, i.e. by refusing any training in the course of its research.

Will a more intelligent alternative be able to do better? Perhaps, but it is not
exactly our objective. What interests us is the fact that we have been able to define a
standard by the yardstick of which other algorithms could be evaluated, in particular
adaptive algorithms, in a sense that will soon be specified. And also, at the same
time, we have been able in passing to note some ideas that ought to help us design
such algorithms.

It is time to return to and develop the small amount of adaptation we introduced

into the two preceding chapters. But that will be done according to a step which, at
first sight, sets aside all methods not satisfying certain demanding criteria.

9.4. For “amatheurs”: number of graphs of information

We have an explorer-swarm of N particles and a memory-swarm of M particles.
The possible links are of three types:

 – of an explorer towards a memory,

 – of a memory towards an explorer,

 – of a memory towards a memory.

The number of possible links of N particles towards M different is NM . Each
link, to establish a graph of information, can be selected or not. That gives us
 2NM possible cases. In the same way, by considering the links of M particles,
we still have 2NM possible cases. Finally, the number of links of M particles

towards themselves is ()1M M − , which still gives ()12M M − possible cases. The total

number of configurations is thus the product of these three numbers, that is to say
() 21 22 2 2 2M MNM NM NM M M− + −= .

128 Particle Swarm Optimization

In practice, however, we have imposed constraints (see Chapter 7):

 – each explorer has a link towards at least 1 memory,

 – each memory has a link towards at least 1 explorer.

Under these conditions, the first two numbers are reduced to ()2 1
N

M − and

()2 1
M

N − . Indeed, for each particle, it is necessary to eliminate the case “no link
towards the others”.

The total number of configurations is reduced to:

() () ()12 1 2 1 2
N M M MM N −− −

But the reduction is very small and the result remains enormous. For the average
case 20N M= = , one finds a number about 35510 .

9.5. Summary

One considers here only one algorithm of PSO without adaptation, i.e. which
does not modify its behavior according to information collected during the search
process. Very many tests then make it possible to find the parameters that give the
best result for each function of the benchmark set.

The excellent quality of these results shows that the guiding principles of PSO
are effective. However, it is not realistic to think that the user will always have the
possibility of lengthily seeking an adequate parameter setting for his problem. This
is why the optimal parameter settings here discovered are analysed in order to infer
their indices as for the rules of behavior which should follow a robust and practical
adaptive algorithm.

Chapter 10

Adaptations

10.1. Demanding criteria

The terms “adaptation”, with “adaptive algorithm”, cover so many different
realities that it is advisable to specify in what very restrictive meaning they are taken
here.

10.1.1. Criterion 1

First, and this has been expressed previously in one form or another, an adaptive
algorithm must treat at least part of the information it obtains by exploring the
search space and consequently modify its behavior. An immediate corollary is that
such an algorithm is necessarily iterative.

10.1.2. Criterion 2

In addition, we are only interested here in algorithms that make life easier for the
user, i.e., in practice, those that decrease the number of parameters whose values one
has to choose.

This criterion is much more demanding than the previous one, because, if it is
easy to invent rules of adaptation comprising the additional parameters dependent on
the user, it is much less easy to relieve one of the empirical choice of a parameter
thanks to an automatic process he does not have to bother about.

130 Particle Swarm Optimization

10.2. Rough sketches

Attempts to give a little more flexibility to the mechanisms of PSO began just
after its official birth [EBE 96]. A rapid glance at the principal ones is not only of
historical interest. In fact, it is only on the basis of inspiration from these attempts
that it is possible today to present a version that respects our two criteria, as we will
see in the following chapter.

None of these alternatives is completely satisfactory because, at best, they
remove only some of the parameters and, at worst, they add some. However, a
meticulous examination of them makes it possible to note that the underlying ideas
can sometimes be retranscribed in nonparametric forms and thus be usable for the
step chosen here.

10.2.1. Weighting with temporal decrease

Once more, let us point out the basic equations of the historical PSO:

()() ()()1 max max0,1 0,1d d d d d d

d d d

v c v c alea p x c alea g x

x x v

⎧ ← + − + −⎪
⎨

← +⎪⎩

The coefficient 1c , which can be interpreted as the confidence that the particle
grants to its own movement, has up to now been regarded as constant. It is thus
rather natural to try to vary it. Let us note immediately that a simple random choice
would not answer either of the two criteria seen above. On the one hand, this method
would not take into account the information collected and, on the other hand,
defining the probability distribution for random draw would require defining at least
one new parameter.

A method that has been much used is one that consists of making this coefficient
decrease over the course of time, each iteration representing a time increment [EBE
96, ISM 99, SHI 98B, VAN 99]. Typically, the law of decrease gives a value
tending asymptotically towards zero. The idea is that when the iteration count
increases, then the algorithm is probably converging (at least one hopes so) and,
therefore, it is better to make the particles progress more and more slowly in order
not to miss the optimum.

In certain applications this intuition appears exact, but compared to our

requirements, we see immediately where the shoe pinches: the definition of the law
of decrease requires at least one parameter (often two, in fact). Moreover, to tell the
truth, even criterion 1 is not frankly respected. An evolution of parameters

Adaptations 131

depending only on the iteration count can be seen only as an extremely indirect and
dubious manner of processing the data obtained during these same iterations.

Indeed, this method rests on a self-fulfilling prediction: convergence will improve

with the iteration count. That is inevitably true since making the coefficient 1c
decrease amounts on the whole to making all the velocities decrease. There will
therefore be a convergence towards a quasi-stationary state. However, nothing
guarantees that one of the positions obtained will be the minimum sought. And, in
fact, it is necessary for each problem to seek empirically a definition of the function
of decrease that will make it possible to find a solution without taking too much time
but also without premature convergence.

10.2.2. Selection and replacement

PSO is much more recent than the genetic algorithms and it was thus natural to
seek to take advantage of at least some of the principles of the latter, since they
proved reliable in a number of applications. The principles of mutation and
crossover have their analogues in PSO (velocity and combination of information).
But it is not the case for selection, i.e. the elimination of individuals considered
insufficiently effective. It is even completely contrary to the “philosophy” of PSO,
which we saw at the very beginning and which rests on cooperation and not,
precisely, on competition. Nevertheless, dogmatism is not a proper philosophy in
research, and if a PSO with selection appears interesting one should not hesitate to
use it.

Historically, the first attempt goes back to 1998 [ANG 98]. Obviously, this step
respects our first criterion, since an action is undertaken which takes into account the
situation obtained after each iteration. In fact, the selection consisted in eliminating
50% of individuals that had obtained no such good results and replacing them by
individuals generated by traditional crossover between those remaining, or by
mutations. Let us note, therefore, that this method always requires the size (constant)
of the swarm to be defined as a preliminary.

The second criterion is almost satisfied, or at least it would have been if the

percentage of individuals to be eliminated could have been ignored by the user.
Unfortunately, the tests showed that the performances could be better overall than
those of the traditional PSO only if the value of this percentage were adjusted for
each problem. Ultimately it was thus an additional parameter.

However, that made it possible to show that selection could indeed sometimes

improve PSO. Therefore the method below again takes this principle, as well as
others, but with a significant difference: the comparisons of performance are done

132 Particle Swarm Optimization

only locally (in a sense which we will specify immediately), which makes it possible
to adjust them much more finely and, especially, the size of the swarm is no longer
constant.

10.2.3. Parametric adaptations

A more sophisticated method of selection was then implemented, with good
results [ZHA 03a]. To explain it, let us return to the primitive terminology, in which
each particle has a memory and some neighbors, the memory containing the best
performance carried out. The equations of motion are those using the coefficient of
constriction χ [CLE 02], i.e. the confidence coefficients are calculated according to
only one parameter ϕ :

1 2

max 1

1

1 2
c

c c

χ
ϕ ϕ ϕ

ϕ

⎧ = =⎪ − + −⎨
⎪ =⎩

The comparisons of performance are made only locally, i.e., for each particle
tested, one considers only its neighborhood (which means all of its neighbors). The
idea is that if at least one of the particles of the neighborhood (which, as we recall,
includes the particle itself) “sufficiently” improved its performance, then one can
remove the worst particle of the aforesaid neighborhood. Now, however, even if the
best particle did not sufficiently improve its performance, one generates a new
particle (completely at random, in fact).

Thus, the size of the swarm being variable, one can deal with all the problems
while always starting with the same small number of particles (at least 2, so that the
adaptations can get underway).

The threshold of improvement ∆ defining “sufficiently” is itself modified with

each removal or generation of particles, according to both its preceding value and
the current size of the swarm. Its first value is calculated simply after the
initialization of the swarm, by the formula min max1 f f∆ = − , where minf and maxf
are respectively the smallest and the greatest values of the function to be minimized
found by the swarm.

The size of the neighborhood is also modified by a similar step, formalizing the

intuitive rule that if a particle improves its performances, it does not need to
continue to get informed by many neighbors and conversely.

Adaptations 133

Lastly, the parameter ϕ is itself adjusted after each iteration. When there was
improvement, it is increased, which thus decreases the confidence coefficients and
restricted volume explorable by the particle during the next displacement, and
conversely.

The disadvantage, again, is that whenever we say formulas we necessarily mean

parameters. Let us make the assessment. The traditional PSO, the starting point of
this method, requires four parameters:

 – size of the swarm;

 – the number of neighbors per particle;

 – two confidence coefficients.

Now, we have:

 – a formula for the variable size of the swarm (a parameter);

 – a formula for the variable size of the neighborhood (a parameter);

 – a formula for the variation of the coefficient ϕ (two parameters).

Thus, there is no improvement in the total number of parameters depending on
the user. However, as we will see, it is possible to take up these ideas by replacing
the formulas with rules without qualitative rather than quantitative parameters.

10.2.4. Nonparametric adaptations

We saw, in the preceding chapters, two methods that are already adaptive, since
they rest on the criterion “there was improvement after the iteration”. Let us briefly
point them out:

 – rule 1: if there has been no improvement, modify the topology of the
information links at random;

 – rule 2: if there has been improvement, use the type of distributions of
proximity X, if not use Y.

Let us note that they strictly respect our two criteria. That is obvious for the first.
For the second, it is enough to note that the decision whether or not there has been
improvement does not require the use of an additional parameter. It is enough to
compare the best result obtained after the iteration with that known before this
iteration.

To be completely honest, the number of parameters will not really fall and the

term “nonparametric” will be justified only if distributions X and Y are not to be
defined by the user. We should therefore find a pair (X, Y) sufficiently robust to

134 Particle Swarm Optimization

give good results whatever the function to minimize. Once again, let us list the
distributions we have studied:

– “with independent dimensions” (one-dimensional) class:

 1 (rect.): = rectangles;

 2 (ell. pos. sect.): = ellipsoidal positive sectors ;

 3 (ind. gauss): = independent Gaussians;

 3' (loc. ind. gauss.): = local by independent Gaussians.

– “multidimensional” class:

 4 (piv.): = pivots;

 5 (piv. n.): = pivots with noise;

 6 (piv. G.): = Gaussian pivots;

 7 (ell. adj.): = adjusted ellipsoidal.

We already know that good candidates are such that X belongs to the class of
one-dimensional distributions and Y, on the contrary, to that of multidimensional
distributions. However, the distributions of the first class still require the data of a
parameter. Nevertheless, the ideal would thus be to find a pair whose two elements
are second class.

We have thus a priori 3 44 3 155+ = combinations to study. Let us note that

intuition is a bad adviser here. A plausible a priori rule might be that Y, to activate
when there no was improvement, has a support of volume greater than that of X, to
extend exploration. For example, the pair (4,5) satisfies this condition, but not its
reverse (5,4). But, in fact, with the pair (5,4), one obtains an average rate of failure
of 39%, against only 28% with the pair (4,5). The latter is therefore better.

The reason is that the ratchet effect plays a role and it seems that the empirical

rule is rather this one: a good particle, which in any case remembers its best
performance, can afford to rove more than another that is not so good, which must,
on the contrary, move more prudently.

To facilitate the comparisons, the values of the other parameters are those

already used in the preceding chapters: 20N M= = , 3K = , 2.07ϕ = . The
topology of the information links is still randomly selected, but, in agreement with
rule 1, it is not necessarily modified any more with each iteration, but only if there is
no improvement. The best three combinations of distributions for rule 2 are then
indicated in Table 10.1.

Adaptations 135

Name
 Rule 1

Rule 2 (5,4)

Rule 1

Rule 2 (3,5)

Rule 1

Rule 2 (2,5)

Tripod 45% 31% 29%

Alpine 10D 5% 0% 0%

Parabola 30D 0% 0% 0%

Griewank 30D 20% 96% 100%

Rosenbrock 30D
100%
25.68

100%
24.31

100%
25.29

Ackley 30D 0% 0% 0%

Average of the rates

of failure
28.3% 37.8% 38.2%

Table 10.1. Adaptations according to rules 1 and 2. Three best combinations

of distributions for rule 2 and the benchmark set. The values indicated are the

 percentages of failure noted over 100 tests. For Rosenbrock the average of the

 best values obtained during each test has been added

We note that distribution 5 (disturbed pivots) is present each time, but it is
difficult to draw any other information from this table. In addition, we saw in
Chapter 9 that in certain cases the performances can be appreciably improved by
making the number of memories different from that of explorers. However, at
present, the adaptive alternatives are founded on the traditional PSO with only one
type of particle. Obviously, they did not seek simultaneously to modulate a memory-
swarm and an explorer-swarm.

This is however equally true for the rather complete case that we will look at in
the following chapter, which presents thus the possibility for obvious improvement.

10.3. For “amatheurs”

10.3.1. Formulas of temporal decrease

The formulas used by various authors are not always clarified in their articles,
where they often indicate simply something like “the coefficient is decreasing from
1 to 0.4 over 10,000 iterations”. However, reading the source codes of the programs
used makes it possible to find them. They are primarily of three types: linear,
nonlinear with threshold, and asymptotic.

By noting t the current moment (the iteration), T a given time, one has the
following possible expressions:

136 Particle Swarm Optimization

 – Linear:

() ()
()

min

min

1 1
t

t T w t w
T

t T w t w

⎧ < ⇒ = − −⎪
⎨
⎪ ≥ ⇒ =⎩

 – Nonlinear with threshold (example of quadratic formula):

() ()
()

2min
min2

min

1 w
t T w t T t w

T

t T w t w

−⎧ < ⇒ = − +⎪
⎨
⎪ ≥ ⇒ =⎩

 – Asymptotic (exponential example):

() ()min min1 tw t w e wλ−= − +

In this last case, one can generally easily choose 0 as minimal value, by adjusting
differently the parameter λ . The formula then becomes simply:

() tw t e λ−=

10.3.2. Parametric adaptations

The presentation below comes primarily from [ZHA 03a]. The improvement of
performance of a particle iP is given by:

() ()() ()()
()()

0

0

i i

i

i

f P t f P t
P

f P t
δ

−
=

where 0t is the moment of birth of the particle, t the current moment and ()()i
f P t

the value of the function to be minimized at the point of the search space where the
particle is located at the moment t.

The initial threshold of improvement is given by min max1 f f∆ = − , where the

values minf and maxf are respectively the smallest and greatest value of the function

to be minimized found after initialization of the swarm randomly in the search
space. It is then modified by the following formulas, where N is the current size of
the swarm:

Adaptations 137

 – ()2 Ne−∆ = ∆ − when a particle has been just eliminated;

 – ()/ 2 Ne−∆ = ∆ − when a particle has been just generated.

In addition, the parameter iϕ associated with the particle iP in the equation of
motion is also modified, in two different ways according to whether the particle
improved its position or not:

()

max

max min

min

()

0 ()

() ()
0

() (1) 1

:

i i

i i i

i i

i

i i

i i

m P

m m

m
m λ

δ
δϕ ϕ ϕ
λ ϕ ϕ ϕ ϕ

δϕ ϕ ϕ

ϕ ϕ δϕ

−

⎧
⎪
⎪ = − ∆
⎪

≥ ⇒ = −⎨
⎪ = − −⎧⎪⎪ < ⇒ ⎨⎪ = − − −⎪⎩⎩

= +

The intermediate variable im evaluates how much the improvement is greater or
less than the current threshold. Two cases are possible:

10.3.2.1. Case 1 (0im ≥)

The particle really improved its position or, at least, did not deteriorate it. Thus,
it is not necessary for it to continue to explore a broad field. It is then possible to
increase iϕ , i.e. to decrease slightly the constriction coefficient χ, and, therefore,
strive to decrease the velocity. This is why the formula gives δϕ positive and this
all the more so as the improvement is large.

10.3.2.2. Case 2 (0im <)

It is the opposite. The particle did not improve its position and, therefore, its
velocity must be increased a little, to explore a larger field. Then δϕ is negative.

Lastly, the size of the neighborhood is increased or decreased according to the
formulas below, granted that the neighborhood is of the circular type:

()

()

1
:

1

:
1

i

i

i

i i

h
P hi hi

N

N h
P hi h

N

δ
δ δ δ

δ
δ δ δ

⎧ −
≥ ∆⇒ = −⎪⎪ −

⎨
−⎪ < ∆⇒ = +⎪ −⎩

: 1
1

: 0
i i

i

i

h h
h

h
δ

δ
= +⎧⎪≥ ⇒ ⎨ =⎪⎩

and
: 1

1
: 0

i i

i

h h
h

hi
δ

δ
= −⎧⎪≤ − ⇒ ⎨ =⎪⎩

138 Particle Swarm Optimization

If the particle improved its position, it is not necessary for it to continue to
question as many neighbors as before. Conversely, if it did not improve its position,
it is undoubtedly a good idea to seek more information. Let us note that since the
size of the neighborhood is an integer, the modifications must accumulate in the
variable

ihδ until it exceeds 1 or –1 before having a significant incidence.

10.4. Summary

The ultimate objective is to build an iterative algorithm of optimization that
modifies its behavior according to its progressive discovery of the problem to be
solved, without initial parameter setting by the user.

A rapid glance at some attempts in this direction, defining adaptive alternatives

of PSO, makes it possible to detect interesting ideas that will enable us to progress
largely towards this goal. In particular, the concepts of variable size of swarm,
variable size of neighborhoods, and alternate use of several distributions of
proximity will later be applied to a nonparametric qualitative formalization.

Chapter 11

TRIBES or
Cooperation of Tribes

11.1. Towards an ultimate program

In the beginning was the one. Such could be the starting point of a process of
completely autonomous PSO, insofar as it must be capable of finding a solution by
having only one particle initially, but it is up to it to add or remove some advisedly.
Up to now, even for the adaptive versions examined, you must not only describe the
problem to solve, but also to indicate the manner of doing it, with instructions of the
type “Begin with 20 particles”, “Use a circular neighborhood” or “Weigh the
velocity by a coefficient decreasing in the course of time according to the following
law . . .”.

As we saw on several occasions, the description of the problem consists of
delimiting the search space (in the simple cases by specifying for each dimension
the interval of the acceptable values); indicating how to evaluate at each point of this
space the function to be minimized; and, finally, specifying the maximum error
permitted. Also, but by way of precaution, it is advisable to provide a safeguard,
either a maximum number of evaluations, or a maximum computing time. This
obviously remains necessary: the program will guess neither your problem, nor your
requirement of precision! But that should also be sufficient. In other words, the
method must incorporate rules defining how, at every moment, the structure of the
swarm must be modified and also how a given particle must behave, all according to
the information gradually collected during the process itself.

140 Particle Swarm Optimization

Naturally, these rules are still indirect ways of giving operating instructions to
the program. The essential difference is due to the fact that you can be completely
unaware of them if they are sufficiently robust and general to satisfy all your
practical needs. It would be easy to hard code a rule like “Always use 20 particles”,
but the experiment shows that with certain types of problems, the results are
extremely bad, even if they are very good with others: such a rule is not robust.

Now, precisely, what we want – speaking from the point of view of an engineer

– are results which, while not always excellent, are, at least, never disastrous; the
more so as a strategy of Stop/Restart can in any case improve their quality. What
one gains in ease of use should logically be sometimes lost in effectiveness. It is
indeed quite usual, for a given problem, that a program having to find its own
parameters all alone, and this during just one execution, sometimes has poorer
results than another whose parameters were lengthily polished using many tests.
Thus, if one wants to make honest comparisons, for example in a number of
evaluations of the function to be minimized before finding a solution, it would
precisely be necessary to include these tests themselves.

The best method to prove that such a program is possible is to present one of

them. We will thus describe the TRIBES program and show that it responds rather
well to our definition of an easily usable black box that delivers satisfactory
performances, even if, of course, improvements are possible, in particular
concerning the problems with non-null granularity and, probably, by using two
swarms instead of only one, for the memories and for the explorers.

Indeed, here, the swarm practically corresponds to the original definition of PSO:

it is single and each particle has its own memory. The description given below
comprises structural strategies of adaptation, controlling the modifications of the
size of this swarm and the information links between the particles, and strategies of
displacement, indicating how a given particle must change position.

We will assume initially that the search space is provided with a distance. This

assumption makes it possible to define a strategy of effective displacement, founded
on hyperspherical probability distributions. We will see then how, while preserving
the strategies of adaptation, it is possible to define other strategies of displacement,
using for example one-dimensional Gaussian probability distributions, to deal with
more general problems, in particular partially combinatorial. By “combinatorial”, we
understand here simple combinatorial. As already stated, other problems, of the
“traveling salesman” type, can also be treated effectively thanks to PSO, but only
thanks to hybrid strategies, which are not studied in this book.

TRIBES or Cooperation of Tribes 141

11.2. Description of TRIBES

11.2.1. Tribes

Let us recall that an informant of particle A is a particle B whose best memorized
position can be “read” by A. This definition clearly implies that A is an informant
for itself.

If each particle of the swarm is seen as the vertex of a graph, one can represent
the information link by an arc of B towards A. The opposite arc, of A towards B, can
exist, and does exist in the majority of versions of PSO, including this one, but it is
not obligatory. In addition, as we saw in the presentation of neighborhoods and
except for a particular topology, all the particles do not point towards A. We can
thus define subsets (symmetrical cliques in the graph theoretical sense) such that, in
each one of them, any particle points to (informs) all the others. We will call them
here tribes, the metaphor being that of groups of individuals of variable size moving
in an unknown environment, in search of a “good” site. This structuring will so to
speak mechanically induce a process similar to niching in the genetic algorithms and
with the same aim: simultaneously to explore several promising areas, generally
around local minima.

11.2.2. The tribal relationships

Even if each tribe manages to find a local minimum, a group decision is
necessary to determine which is the global minimum: the tribes must communicate
between them. Consequently the network of information between tribes must be
connected. In practice, it means that there is an information path from any particle A
towards any particle B, like “A informs A1, which informs A2, . . . which informs
B”.

Let us summarize the overall structure: within each tribe, a dense network; and,
between tribes, a network simply ensuring connexity. We are typically in a graph of
relations of the type “small world”, which, as we have seen, has every chance of
being an effective compromise between diffusion and exploitation of information
[WAT 03]. But this structure must be generated and modified automatically, by
means of creation, evolution, and removal of tribes.

11.2.3. Quality of a particle

We know that each particle has a current position and a “better performance”,
which is memorized. It is thus initially on this level of detail that one can say if there
is progress or not. A particle will be known as good if it has just improved its best

142 Particle Swarm Optimization

performance, neutral if not. Let us note that this definition is qualitative, one does
not measure the improvement, one is satisfied with examining whether it is strictly
positive (real improvement) or null (no improvement). By definition, the best
performance of a particle cannot worsen, this is why one does not in the absolute
define a “bad” particle. However, within a tribe, one can determine the particle
whose performance is not so good. It will be called the worst (relative to its tribe). In
the same way, one can determine the best particle.

Moreover, compared to the traditional PSO, the memory of the particle is
improved slightly, so that it remembers its last two variations of performance, thus
outlining a history of its displacements. From this, one can define a third status: a
particle will be known as excellent if these two variations are improvements. This
will be useful for us to choose the adapted strategy of displacement.

11.2.4. Quality of a tribe

However, what interests us here is the total performance of a tribe. We will thus
define two statuses, good and bad, and will postulate a very simple fuzzy rule: “The
larger the number of good particles in the tribe, the better the tribe itself and
conversely”.

In practice, the status of a tribe is evaluated in the following way. One considers
its size T (its number of particles) and its number of good particles B (at most equal
to T). A number p is generated at random between 0 and T, according to a uniform
distribution. If B is less than or equal to p, the tribe is known as bad; if not, it is
known as good. Rules of evolution will be associated with these statuses, tending to
support the creation of new tribes and, therefore, the exploration of the search space.

11.2.5. Evolution of the tribes

11.2.5.1. Removal of a particle

The goal is to find the optimum, if possible with less expense, i.e. by carrying
out the least possible number of evaluations of the function. Consequently, as soon
as the opportunity arises to remove a particle practically without risk, it should be
taken. Let us note that it is better to preserve a particle wrongly (in the worst case,
one will slightly increase the number of evaluations beyond what is strictly
necessary) than to eliminate one from them wrongly (with the risk of missing the
solution completely). This is why only a good tribe will be able to eliminate one of
its particles and only the worst of them. In the case of a monoparticle tribe,
elimination will be made only if one of informants has a better performance. Indeed,

TRIBES or Cooperation of Tribes 143

one at least wants to be sure to store information of better quality than that which is
going to be eliminated.

Figure 11.1. Removal of a particle from a multiparticle tribe. The particle P is the worst of its

tribe and the tribe was declared “good”. In this case P is removed and the redistribution of

its external links (here only one symmetrical link) is done on M,, the best particle of the tribe.

The information links that each particle has with itself were not represented,

because they do not play any role here

Figure 11.2. Removal of a monoparticle tribe. The tribe was declared “good” and thus the

single particle P, which is necessarily the worst of the tribe, even if it is at the same time

“good”, should be removed. But it will be removed only if its best external informant MP is

better than it. The assumption is indeed that the information carried by P

 is then less valuable than that carried by MP

In addition, the elimination of a particle implies a redistribution of its
information links, up and down. In the general case, this carrying forward takes
place on the best particle of the tribe (see Figure 11.1). In the case of a monoparticle
tribe, since the removal of the particle leads to the removal of the whole tribe, they
are placed on the best informant of the particle to be removed (see Figure 11.2).

144 Particle Swarm Optimization

11.2.5.2. Generation of a particle

Conversely, a bad tribe is obviously in need of information. It will therefore
generate at least 1 new particle, while keeping contact with it. In fact, in the version
used here, two particles are generated, one which could be anywhere in the search
space and the other in a much more restricted field. Let us call them a free particle
and a confined particle.

More precisely, all the bad tribes will each generate a pair of such particles and
these new particles will form a new tribe. The term “to keep contact” means here the
establishment of a symmetrical link between the generated particle and the
generating tribe, represented, for example, by its best element.

11.2.5.2.1. Free particle

It is generated randomly, according to a uniform distribution, itself chosen
randomly among three:

 – in the whole of the search space (supposed here to be a D-parallelepiped),

 – on a side of the search space,

 – on a vertex of the search space.

The idea is not so much to count on the chance to find directly a promising area,
but to be sure that the future course of the new particle has more probability of
crossing such a zone.

11.2.5.2.2. Confined particle

Let us call x the best particle of the generating tribe and x̂ its best memorized
position. Let g be the best informant of x and ĝ the best position that this informant

has memorized. Then the new particle will be generated randomly uniformly in the
D-sphere of center ĝ and radius ˆ ˆg x− .

Here, the idea is almost the opposite. It is, on the contrary, a question of
intensifying research in an area that seems already interesting.

11.2.5.2.3. Frequency of the adaptations

It is not necessary, or desirable, to carry out these structural adaptations to each
iteration, because there is a requirement to allow time for information to be
propagated between the particles. Again there are several plausible rules possible. In
theory, after each adaptation, one should calculate the diameter of the graph of the
relations. For that, it would be necessary to consider all the pairs of particles in
which each belongs to different tribes and to find the shortest path of information
connecting them, in terms of a number of arcs. The longest of these shorter ways

TRIBES or Cooperation of Tribes 145

would give us an estimate of the iteration count necessary to be sure that information
possessed by a particle can be transmitted, more or less directly and to be more or
less deformed, to all the others. Nevertheless, this calculation is a little long and one
can be satisfied to use the total number of links with information. If, after a
structural adaptation, this number is L, then the next one will take place in L/2
iterations.

11.2.5.2.4. Evolution of the swarm

What kind of operation is induced by these rules? At the beginning, there is only
one particle, representing a single tribe. After the first iteration, if its situation does
not improve, which is extremely probable (and even certain, with the strategies of
displacement examined below, because the particle does not move at all with the
first time increment), another particle will be generated, forming a second tribe.

At the next iteration, if neither of the two particles improves its situation, the two
tribes will simultaneously generate two particles each: a new tribe of four particles
will be created and so on (noting that the more the number of links increases, the
more significant the iteration number between two adaptations). Thus, as long as
things go wrong, increasingly large tribes are generated, increasing the exploratory
capacity of the swarm, but more and more rarely. Between two adaptations, the
swarm has more and more chances of finding a solution.

However, conversely, as soon as an outline of a solution is found, each tribe will

gradually eliminate its worst particles, possibly until it disappears completely. In an
ideal situation, when convergence is confirmed, all the tribes, except possibly the
last created, are reduced to one particle. Overall, the swarm tends to grow, more and
more slowly, in an asymptotic way (see examples below). It is not really made to
decrease, except temporarily in certain simple cases, when the tribes are for the most
part good.

11.2.6. Strategies of displacement

Intuitively, it seems judicious for a particle to adopt a strategy of displacement
depending on its recent past. In accordance with the empirical rule stated in the
preceding chapter, we will arrange this in such a way that the better a particle
behaves, the more it can afford an exploration of greater scope, with however a
special strategy for the very best particles, which we can compare to a kind of local
search.

Indeed, according to the problems, it is more interesting to use proximities
calculated independently for each dimension (like the D-rectangles) or, on the
contrary, globally in the space (like the D-spheres). For the greatest possible ease of

146 Particle Swarm Optimization

use, it is thus necessary to enable the algorithm to call upon a certain class of
methods if necessary, according to what it tells us about the problem in the course of
research. Choosing the other strategies remains to be seen.

There are three possibilities of variation of performance of a particle: deterioration,

maintaining the status quo, or improvement, which we will symbolize by the signs –,
=, and +. Since the history of a particle includes two versions of its performance,
TRIBES thus distinguishes nine cases, which are located by the status of the
particle. For example, an improvement followed by maintaining the status quo will
be denoted (+ =). However, we will be satisfied here with three, to take advantage of
the pairs of distributions that we have identified as being interesting, and adding the
local strategy that we have just described above. That will be sufficient to explain
the principle of operation of the algorithm. Table 11.1 then indicates the strategies
used according to statuses, brought together in three classes.

Gathered statuses Strategy of displacement

(––) (= –) (+ –) (– =) (= =) 4 (pivot)

(+ =) (– +) 5 (disturbed pivot)

(= +) (+ +) 3' (local by independent Gaussians)

Table 11.1. Regroupings of statuses and corresponding strategies of displacement for a

simplified use of TRIBES. The status of a particle is purely qualitative. It simply notes, for

each of the two preceding movements, if the position of the particle improved,

deteriorated or maintained the status quo

Let us note, in addition, that the confinement of the particle in the search space is
carried out in the same manner as in traditional PSO, except that there is no velocity
to modify. If a component of the position tends to go beyond the acceptable values,
it is simply brought back to that which is closest. This point will be shown in detail
in Chapter 12, because it does not relate only to the overflows of interval.

11.2.7. Best informant

The TRIBES program can function on search spaces without a metric. In this
case, obviously, the distributions of possibles must be chosen from those with
independent dimensions, such as D-rectangles or ellipsoidal positive sectors. But,
especially, two positions can then be compared only as in traditional PSO, i.e. only
according to respective values of the function f to be minimized in these two points.
So the best informant of a particle x is simply the one having memorized the best
position.

TRIBES or Cooperation of Tribes 147

Nevertheless, when the space has a metric, it would be a shame not to benefit
from it, not only by the use of distributions like those of the pivots, but also by the
calculation of pseudo-gradients, which is often more effective for comparing two
positions. This is why the user of TRIBES can choose between two options,
depending on whether the search space is metrical or non-metrical.

Let x be the particle of which one seeks the best informant. Let us note ŷ the

best position memorized by informant y, ẑ that memorized by informant z, and

xz yf the fact that z is better informant than y for x. The formulae of computation
corresponding to the most general case and to one that is a little particular about
metric spaces are indicated below.

11.2.7.1. Direct comparison, general case

() ()ˆˆ
xz y f z f y⇔ <f

It will be noted that here the formula does not use particle x at all: informant z is
better than y in the absolute, i.e. seen from any other particle.

11.2.7.2. Comparison by pseudo-gradients, metric spaces

() () () ()ˆ ˆ ˆˆ

ˆ ˆ ˆˆx

f x f z f x f y
z y

x z x y

− −
⇔ >

− −
f

The goal of this technique is to give preference to close informants. That makes
it possible for the particle not to give up a local search too quickly under the pretext
that “the grass seems greener elsewhere”. The regroupings in subswarms are thus
supported, as in the technique of the niching of the genetic algorithms. This was
presented in [VEE 03] in a slightly different form, under the name of Fitness-

Distance-Ratio based Particle Swarm Optimization (FDR-PSO).

NOTE – The generation of a confined particle also calls upon the concept of best
informant. But in this particular case it is always the more constraining direct
comparison that is used.

11.3. Results of the benchmark set

We now have to hand all the elements to code the program and make it function.
In addition, a source is available on the Internet in C language (see the Chapter
entitled “Further Information”). The results presented in Table 11.2 were obtained
with TRIBES 6.2. Let us try to analyze them.

148 Particle Swarm Optimization

First, it is clear that the use of the pseudo-gradients, when it is possible, as it is
here, is advantageous. It very slightly degrades the performance in one case
(Griewank), while improving it considerably in another (Tripod).

Then, the application of the empirical rule of choice of the strategies that we

were able to clarify in the preceding chapter is now less necessary. To use the simple
pivot for bad particles and the disturbed pivot for good ones or vice versa amounts
almost to the same thing. The difference remains in favor of the first technique, but
in a less marked way.

The reason is that the conditions have changed. In particular, the information

links are no longer established randomly. As a result, the choice of the best strategy
of next displacement for each status of the particle concerned would probably have
to be re-studied. Nevertheless complementary tests not detailed here already make it
possible to affirm one thing: to use just one strategy is less effective than to combine
several of them. For example, on our benchmark set, always choosing the strategy of
the simple pivot (4) gives an average rate of failure of 28% and, above all, always
choosing that of the disturbed pivot (5) gives a rate of 50%, with 100% failure for
Tripod and Griewank.

Finally, what can we say about the intrinsic quality of these results? They are

excellent, in fact better than those reported for algorithms already considered as very
good (genetics, differential evolution, SOMA [ZEL 04], etc). That will be confirmed
on more realistic examples, in Chapter 13.

Function
Strategies (4, 5, 3')

without pseudo-gradients

Strategies (4, 5, 3') with

pseudo-gradients

Tripod 57% 2%

Alpine 10D 0%, 1,310 0%, 1,139

Parabola 30D 0%, 651 0%, 533

Griewank 30D 46% 49%

Rosenbrock 30D 100% (26.04) 100% (26.5)

Ackley 30D 0% 7,045 0%, 3,382

Average of the rates

of failure
34% 25%

Table 11.2. Results of the benchmark set with TRIBES. Since the search spaces all have

metrics, the choice of best informant of a particle can be realized by the method of pseudo-

gradients (column 3). The gain in effectiveness is very clear for the Tripod function

and even for Ackley, largely compensating for the slight degradation of performance

on some other functions (Griewank and Rosenbrock)

TRIBES or Cooperation of Tribes 149

11.4. Summary

It is possible to design algorithms of PSO in the form of a “black box”, the user
having only to define the search space, the function to be minimized, the desired
precision and, as a precaution, a maximum number of evaluations.

The TRIBES program, whose sources are available on the Internet, is an
example of the realization of such an algorithm. It functions by cooperation of tribes
of particles. In each tribe, the information links form a strongly connected graph.
Between tribes, the links are looser, but the graph as a whole always remains
connected. The strategies of structural modification implemented automatically are
related to the addition or suppression of particles and their information links. The
strategies of displacement of a particle are founded on several hyperspheric or
Gaussian probability distributions, whether disturbed or not, the choice taking account
of the recent history of this particle.

From the simple fact that it makes it possible to avoid the tiresome search for

“good” parameters, in particular the size of the swarm, TRIBES already appears
better than the traditional PSO, the more so as the results obtained are often as good,
or even better.

This page intentionally left blank

Chapter 12

On the Constraints

12.1. Some preliminary reflections

In order to be able to tackle a broad range of problems, we must now examine
how, in PSO, those whose description calls for what are usually called constraints on
the variables are treated. We will pass very quickly over well-known techniques,
such as weighted integration of constraints and the function to be minimized in a
new function, to explore in a little more detail those that are less well known and
especially those that were originally developed for PSO and can in turn be used by
other optimization algorithms. But first, it will be useful to specify a little what this
term “constraints” covers.

In fact, a problem of optimization is always “under constraints”, because the
search space must necessarily be limited. And, in the final analysis, a constraint is
always a confinement. The most traditional ones, as we have already seen, are
confinements of interval (the coordinates of the position must remain within a
certain interval of values). But many others are useful, such as “the components of
the solution must be integers” or “the components of the solution must be all
different”, in particular for combinatorial problems. Like all those more traditional
constraints, they require that certain relations between the coordinates of a position
be respected, the best-known case being that of linear relations. Incidentally,
moreover, and as already pointed out in Chapter 1, PSO is not an adequate tool in
purely linear optimization, because there are much more effective specific methods.

To define constraints is always to specify more or less explicitly the set of

acceptable values or, more generally, because it is not necessarily numbers that are
treated, the set of acceptable a priori positions among which one will seek the best.

152 Particle Swarm Optimization

Thus, there is no difference in nature between, on the one hand, a function to
minimize and, on the other hand, constraints to be respected.

That is particularly obvious when the minimal value to reach is known, say zero,

because then the description of the problem starts with something like “to find a
position x such () 0f x = ”, which can equally well be read as “to respect the
constraint () 0f x = ”. More generally, when a lower limit m of the minimum is
known (and, in practice, this is always the case), one can still replace the
formulation “to minimize f” with “respecting the constraint ()f x m= ”, even if it is
known perfectly well that it is not possible. The important thing is that while trying
to follow this directive, the algorithm finally gives us the desired solution.

The possibility of regarding any problem of optimization as being entirely and

exclusively a set of constraints to be respected is not merely of academic interest. It
indeed justifies the simple and comfortable method described later, which consists
of carrying out a multicriterion search systematically.

12.2. Representation of the constraints

A constraint is classically represented by an equation or an inequation relating to
a numerical function of position x. Thus, the general writing of a constraint will take
one of the two following forms:

(1) () 0g x =

(2) () 0g x <

And what of the constraints of the type () 0g x ≤ ? In fact, they are attached to

case 1, noticing that one has equivalence () () ()0 0g x g x g x≤ ⇔ + = . Obviously

we are speaking here about theoretical representations, because, in practice, others
can be simpler to understand or handle in a data-processing program. Hence two
constraints:

1 1

1 1

1 1 0

2 2 0

x x

x x

⎧ − + − ≤⎪
⎨

− + − ≤⎪⎩

relating to the first coordinate of x, correspond to the interval confinement.

[]1 1,2x ∈ .

Let us note besides that a constraint of type 2 can often be easily made slightly
more flexible by permitting zero value. Indeed, except for some mathematically

On the Constraints 153

monstrous functions, there are two possible cases. If the function g is continuous,

any negative value as near to zero as one wants is acceptable. To accept the zero
value formally does not in itself change anything in the result that will be obtained
by a data-processing program. If the function is discrete, there is a negative
maximum acceptable value maxg and it is then enough to rewrite the constraint in

the form () max 0g x g− ≤ .

Let us note in passing that this means all the constraints can then be reduced to

type 1. For certain methods of taking into account the constraints, this can be useful.

12.3. Imperative constraints and indicative constraints

However, for real problems, it is interesting to distinguish between imperative

constraints (sometimes known as “hard”) and indicative (or “soft”) constraints. As
their names indicate, the former must be absolutely respected, whereas the latter
need be only partially respected. Still it is necessary to specify what the latter term
means.

For that, let us define a non-negative numerical quantity, a measurement of

dissatisfaction s(x), which is lower as the constraint is closer to being satisfied for
position x. Here, for example, are two simple formulas, corresponding to the two types
of constraints (to avoid any confusion, we will write them by replacing the sign =
by ≅ and the sign < by <%):

 ()s g x= , for indicative constraints of the type () 0g x ≅

() ()' '

'
2

g x g x
s λ

+
= + , for indicative constraints of the type ()' 0g x <%

The parameter λ, positive, is to be defined by the user. It indicates which “penalty”
one intends to apply to a position for which the function g' would be just null instead
of being negative. As already stated, it is rare that one cannot replace a constraint of
strict negativity, especially if it is indicative, by a constraint of the “negative or null”
type. In this case, the parameter λ is quite simply null.

More generally, the formulae above can be weighted according to whether the user

gives more or less importance to the respect of a particular constraint.

154 Particle Swarm Optimization

12.4. Interval confinement

It is mentioned here as a reminder, because in fact we have been using it since
the beginning and it is explained in detail in Chapter 3. Let us recall just the
principle, since the same idea will be used for other confinements.

When the value of a coordinate of a particle lies outside the interval of

acceptable values, it means, by definition, that the aforementioned particle leaves the
search space. The objective is thus to bring it back inside this space.

The general method consists of trying to find the point in this space that is

closest to the point theoretically reached by the particle and moving it there, also
modifying velocity if the equations of motion are used (it is not the case, inter alia,
with the method of pivots). As we have seen, that gives, for example, for each
dimension d, the following formalization:

[]min max min min

max max

0

,
d

d d d

d d

v

x x x x x x x

x x x x

←⎧
⎪∉ ⇒ < ⇒ ←⎨
⎪ > ⇒ ←⎩

This means that if the search space is only defined by an ensemble of intervals of
values, it is enough to replace the faulty coordinates by the extremity nearest to the
interval of their acceptable values and to cancel the corresponding component of
velocity. Since the particle must move in a D-rectangle, it is certain that this
technique gives the nearest acceptable position.

If there are other constraints, and the search space is of more complicated form,
one generally continues to apply this technique because of its simplicity. The new
position is then certainly acceptable in comparison with the interval constraint, but
one cannot more absolutely guarantee that it is so for the other constraints nor, a

fortiori, that it is closest to the faulty position. One relies then on the iterative aspect
of the algorithm to reach, gradually, a position that respects all the constraints
simultaneously.

12.5. Discrete variable

The acceptable values form a finite list. Being given a value of variable (a
coordinate of a position in the search space), we wish to replace it by the list value to
which it is closest. In the direct method, this replacement is rough and immediate, in
the indirect method it is progressive and is made in the very course of iterative
search process.

On the Constraints 155

12.5.1. Direct method

There are two main cases: the list can be ordered or it cannot be (no order
relation). We will neglect here the intermediate cases where a partial order can be
defined but not a total order.

12.5.1.1. List not ordered (and not orderable)

This case corresponds to qualitative variables, for example, of the colors. To
determine whether a value is faulty or not, i.e. whether or not it is on the list, there is
no method more effective than the exhaustive course.

Moreover, it is not possible to determine the nearest acceptable value because
this has no meaning, as a small apagogy shows immediately. Indeed, if it had one,
the reason is that there would be a concept of distance that would make it possible to
order the list. However, to be exact, we have assumed that the list cannot be ordered.
That is why the faulty value can only be replaced by an acceptable value, chosen at
random and not, moreover, inevitably according to a uniform distribution.

12.5.1.2. Ordered list

Here several more effective algorithms can be used. The simplest consists of
traversing the list by ascending values and stopping as soon as the found value
exceeds or equals the one that is tested. Then at the same time the closest value is
easily obtained: it is the one that is found or the one that is found after.

This algorithm is sufficient for short lists. Nevertheless, it should not be
forgotten that it is meant to be repeated a great number of times. It may thus be
necessary to call upon the theoretically most effective algorithm, by dichotomy,
although it is a little more difficult to program. The source code in C is given for this
at the end of the chapter.

12.5.2. Indirect method

Let { }1,..., ,...
j J

a a a be the list of possible values for the variable (the coordinate)
considered, dx . One writes the constraint “must belong to the list” in the following
form:

()
1

0
J

d j
j

g x x a
=

= − =∏

The simplest thing to do is to treat this constraint by the multicriterion method,
as we shall see later. The result is not absolutely guaranteed in the sense that the

156 Particle Swarm Optimization

algorithm is satisfied with minimizing ()g x jointly with the function objective and
other possible constraints, but the advantage is that the process of convergence is no
longer disturbed by the abrupt jumps of values (and therefore of position) imposed
by the direct method.

12.6. Granularity confinement

This type of confinement relates to the particular case of a discrete variable from
which the acceptable values result from a minimal value by addition of an increment
δ, repeated a finite number of times. A common case is that of an integral variable in
an interval, but there are others too, for example in industrial production.

As before, the faulty value is brought back to the nearest acceptable value, but
that can be programmed by the use of a simple formula rather than by the survey of
a list:

min
min

1

2
d

d

x x
x x Eδ

δ
−⎛ ⎞← + +⎜ ⎟

⎝ ⎠

where ()E u represents the integer part of the number u.

12.7. “All different” confinement

Let us consider a position ()1,... ,..d Dx x x x= . The objective here is to find the
nearest position from which all the components dx are different. Naturally that has
interest only if they are discrete, for if they are continuous, it is enough to modify
them in an infinitesimal way.

A typical example is that of a combinatorial problem from which the various
possibilities are coded by integer values. For example, a circuit of N cities for the
traveling salesman problem is classically coded by a list of integers between 1 and
N. Certain specific versions of PSO [CLE 04] have equations of motion that directly
carry out permutations of the integers of 1 to N or work in a constructive way by
avoiding passing twice by the same city [SEC 01a]. In this case, confinement “all
different” does not have much to recommend it.

However, other versions need it because the movements can lead to unacceptable

positions [ONW 04a]. The criterion of distance to find the nearest acceptable position
is then the minimum number of coordinates to be modified. For example, if the
found position is (20, 1, 30, 5, 8, 1, 10, 20, 9, 10), at least three modifications are
needed. An acceptable position at this “distance” 3 is then (20, 1, 30, 5, 8, 2, 10, 19,
9, 11). There are others, but the algorithm used in the work referred to provides only

On the Constraints 157

one of them (source code included in that of TRIBES). One could plan to modify it
to give one of them at random among those possible.

12.8. Confinement by dichotomy

We saw specific algorithms of confinement for three scenarios: when the
constraint is of the “interval of value” type, of the “non-null granularity” type or
more generally discrete, and, finally, of the type “coordinates all different”. The
principle of these algorithms is always the same: to bring the particle back into the
search space and if possible to the point in the space nearest to the faulty position.

Generally, it is certainly better to use a specific algorithm of confinement, but the
types of constraints being infinite in number, we must also have at least a “default”
confinement technique that functions in nearly all scenarios. Now let us study a
simple version of such an algorithm, founded on the principle of successive
dichotomies and which requires only a few assumptions on the nature of the search
space.

To launch this algorithm, which is iterative, it is necessary to have at least an

acceptable position. Very generally, it is approximately the preceding position of the
particle. Let us call it admx . Let x be the current position, and let us note 0 1, ,... ...kx x x
the successive positions that we will build and test. Calculation is done according to
following processes:

1) 0x x= ;

2) as long as kx is not admissible, make 1 2
k adm

k

x x
x +

+
= then 1k k= + .

It is possible to define constraints represented by such strange functions that this
process never manages to find an acceptable position (e.g. the famous continuous
curve of Peano, entirely filling a square). But for real problems, it is quite suitable.

However, it presents two disadvantages. On the one hand, it can increase the
computing time appreciably if the test of respect of the constraints is a little long. On
the other hand, it generally does not give the acceptable position nearest to the initial
position or even necessarily a position close to the border of the search space
defined by the constraints (see Figure 12.1).

Nevertheless, it is possible to reiterate the process itself. If kx is the found

acceptable position, it is enough to lay down:

0 1k

adm k

x x

x x

−=⎧
⎨ =⎩

and to start again loop 2.

158 Particle Swarm Optimization

For discrete problems, we will certainly end up finding a position close to the
border of the search space, and that will result in the fact that two successive
positions will be identical. For continuous problems, unfortunately, it will be
necessary to give a stop criterion, for example a threshold of distance (absolute or
relative) between the two last positions, below which it is not necessary to go.

Figure 12.1. Confinement by dichotomy. The position x0 is not acceptable, position xadm
(generally the preceding position of the particle) is. The constraints define the border of the

search space. By taking, in an iterative way, the median point between an acceptable position

and one that is not, one can find an acceptable position x2 nearer to this border

Nevertheless, in all the cases, there is still no guarantee that the acceptable
position selected will be that nearest to the initial faulty position. Let us note that
this can sometimes be an advantage, in particular if the choice of the best neighbor
uses a pseudo-gradient. If the particle left the search space in a certain direction, it is
probably because this was promising. To take the opposite direction to return to the
search space is not necessarily a bad idea.

12.9. Multicriterion treatment

Let us consider a problem of optimization of a function f formalized as follows:

 – to minimize f , function of the vectorial variable x,

 – under the constraints:

()

()

()

1 0

...

0

...

0

i

I

g x

g x

g x

≤⎧
⎪
⎪
⎪ ≤⎨
⎪
⎪
⎪ ≤⎩

Frontiers defined by
constraints

x adm

x0

x1

x2

On the Constraints 159

In practice, the constraints are classified in two groups: those that are rather
easily directly manageable during iterations by mechanisms like those seen above
(typically interval constraints) and others. It is then these other constraints, say, to
simplify the notations, those of row 1 to m, which will be the object, with f, of a
multicriterion optimization. Let us lay down:

0h f= 1 1 1h g g= + . . ., m m mh g g= +

The multicriterion method consists of considering that all these constraints are
indicative and solving a problem of simultaneous minimization:

to minimize ()0 1, ,..., mF h h h=

For this statement to have a meaning, we must define how to compare two
vectorial quantities such as ()F x and ()F y , in order to be able to decide whether
or not position x is better than position y. This comparison rests on the traditional
concept of dominance [PAR 1896]. Let us quickly remind ourselves about this in
context.

The vectorial quantity () () () ()()0 1, ,..., mF x h x h x h x= is said to dominate

() () () ()()0 1, ,...,
m

F y h y h y h y= if, for any index i, the value ()ih x is less than or

equal to the value ()ih y and if the inequality is strict for at least an index j.

In this case, we will say that position x is better than position y. With this

definition, two positions can be non-comparable. It is enough for this that the
inequality is true for certain indices i and not for others.

Thus, a multicriterion algorithm of optimization will in general provide several

noncomparable solutions according to the relation of dominance, whose set is called
the Pareto front or trade-off surface.

To stick to PSO, we will be able to use specific alternatives [COE 02, HU 02b,

PARS 02] or simply a program like TRIBES, by launching it several times with the
option of comparison by dominance.

Once a certain list of solutions is obtained, from our perspective of treatment of

constraints, two additional stages are necessary. First, it is necessary to select the
solutions whose components other than the first are null (but for the precision
desired), because it is those for which the constraints are respected. And, then,
among those, it is necessary to seek the one whose first component is minimal, since
it corresponds to the value of f.

160 Particle Swarm Optimization

EXAMPLE – The function to be minimized is defined by:

() () ()2 2

1 21 1f x x x= − + −

interval constraints
[]
[]

1

2

0, 2

0,2

x

x

⎧ ∈⎪
⎨

∈⎪⎩

another constraint () 2 2
1 2 1 0g x x x= + − ≤

Figure 12.2 represents the function f and its intersection with the cylinder.

() 0g x = . The analytical resolution is easy and the solution is the point

1 1
,

2 2
x

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, which gives a minimal value. () 0.17157f x ≅ .

x1

x2

f

Figure 12.2. Problem under constraint other than that of interval.

The minimum to be found is the lowest point of the curve in thick line

The interval constraints will be taken into account directly by the mechanism
described above. The last constraint is written () () ()1 0h x g x g x= + = . We then have
to carry out a multicriterion optimization on () ()1,F x f h= . By launching the
TRIBES program three times (with 1,000 evaluations for each execution), we obtain
Table 12.1.

On the Constraints 161

x F(x)

(0.731 0.683) (0.1732 0.0000)

(0.085 0.524) (0.7785 0.8099)

(0.708 0.706) (0.1716 0.0000)

Table 12.1. Taking into account a constraint by multicriterion optimization. Three

non-dominated solutions. The second solution does not respect the constraint

 (second element of F(x) not null). Among those that remain, the last is the best

(lower value for the first component of F(x), i.e. f(x))

Thus, the selection phase eliminates the second solution, which does not respect
the constraint (second element of F (X) not null). Then, the phase of comparison on
the first element gives us the third solution as being the best.

12.10. Treatment by penalties

The multicriterion method is to be set against the traditional one, consisting of
carrying out a combination of the constraints to build only one new function to be
minimized. There again all the directly untreated constraints in the algorithm (and
supposed standard () 0g x ≤) are regarded as indicative constraints and gradually
taken into account, but it is for the user to define weighting parameters. In the spirit
of the step that led us to define an adaptive algorithm without parameters, the
preceding method is preferable, but nevertheless let us recall the principle of one of
the many methods by penalties, because we will apply it later on for comparison
[STO 99]. One thus keeps only the interval constraints and possibly those bearing on
the discrete character of certain variables. The others are integrated in a new
function to minimize, defined in the following way:

() ()
() () ()
() ()() ()

1

0 1

0 1 with 1

with 1i

i i

i i i i i

m b

i i
i

g x c x

g x c x s g x s

F x f x a c x b
=

⎧
≤ ⇒ =⎪

⎪ > ⇒ = + ≥⎨
⎪
⎪ = + ≥∏
⎩

The user must define 2m + 1 parameters, which is far from being a trivial task if
one wants to make sure that the global minimum of F is reached at the same point of
the search space as that of f.

162 Particle Swarm Optimization

12.11. C source code. Dichotomic search in a list

/ * Dichotomic search in an ordered list (ascending order)
Input: any x value
Output: the rank in the list of the nearest value

Note: the program is deliberately not optimized
to be easier to understand
*/

include < math.h >
include < stdio.h >
include < stdlib.h >

static double list[10] = 1, 3, 7, 20, 21, 22, 25, 28,31,32;
int N = 10;

void main()

int i, i_min, i_max, rang;
double x;

x = 7.3; //Value to test

i_min = 0; i_max = N-1;
test:
if (i_max = = i_min + 1) goto compares;
if (x = = list[i_min]) rang = i_min;goto FIN;
if (x = = list[i_max]) rang = i_max;goto FIN;
i = (int)(0.5*(double)(i_min + i_max));
if (x < list[i]) i_max = i; goto test;
if (x > list[i]) i_min = i; goto test;
rang = I; goto FIN;
compare:
if (x-list[i_min] < list[i_max]-x) rang = i_min; else rang = i_max;
FIN:
printf(“rank%i, value%f”, rang + 1, list[rang]);

12.12. For “amatheurs”

Any volume is a cube, or how to cope with constraints by homeomorphism

Let us consider a problem of continuous or semi-continuous optimization having
only interval constraints:

to minimize ()f x , with { },min ,max, , 1,...,d d dx x x d D⎡ ⎤∈ ∀ ∈⎣ ⎦

It can be reformulated “to minimize ()yφ , with []0,1
D

y∈ ” by the simple

bijective continuous transformation (homeomorphism) ,min

,max ,min

d d

d

d d

x x
y

x x

−
=

−
 , and

by defining φ by () ()y f xφ = .

Thus, the search space, which was initially a D-parallelepiped, is now a D-cube.

On the Constraints 163

This can be generalized. There is a strange theorem stipulating that the “number”
of points in []0,1 is the same as in any other finite interval (of course that is not true
for discrete values). More generally, it is possible to put in continuous bijection the
unit D-cube with any bounded subset H of D

R , provided that the topology of H
is that of a cube (no “holes”). However, in practice, any search space defined by
constraints either is of this type or can be seen like a finite union of sets of this type.

It is thus theoretically possible to replace it by one or several D-cubes and for

each one to define φ as above. The problem of optimization to be solved thus no
longer has anything but interval constraints. The only tricky point is that
“theoretically” can sometimes mean “impossible in practice”! However, even if
properly mathematical work upstream is difficult, it can be worthwhile.

Let us treat two small examples by this method.

The first is that which we saw in the multicriterion section of treatment of the

constraints.

EXAMPLE 1 – Quarter of disc = square:

to minimize () () ()2 2

1 21 1f x x x= − + −

under the constraints
[]
[]

1

2

0, 2

0,2

x

x

⎧ ∈⎪
⎨

∈⎪⎩
 and () 2 2

1 2 1 0g x x x= + − ≤

The search space H defined by these constraints is the quarter of a positive disc
of radius 1 and center ()0,0 . Let us call ()2C the unitary 2-cube, i.e. the square of
side 1. A possible homeomorphism (there is an infinite number of them) is given by:

() () ()1 2 1 2

2 2
1 1 2

2
2

1

, , 2

2
atan

x x H y y C

y x x

x
y

x

µ

π

⎧
⎪ ∈ ⎯⎯→ ∈⎪
⎪ = +⎨
⎪

⎛ ⎞⎪ = ⎜ ⎟⎪ ⎝ ⎠⎩

The function φ is then defined by:

() () ()1 2 1 2 1 2 1 2, 2 , , cos , sin
2 2

y y C y y f y y y y
π πφ ⎛ ⎞⎛ ⎞ ⎛ ⎞∀ ∈ = ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

164 Particle Swarm Optimization

and the equivalent problem becomes:

to minimize ()1 2,y yφ , under the constraints
[]
[]

1

2

0,1

0,1

y

y

⎧ ∈⎪
⎨

∈⎪⎩

Once the position of the minimum ()* *
1 2,y y is found in ()2C , the corresponding

position in the original reference frame is calculated by applying the transformation:

1µ − , that is to say * * * *
1 2 1 2cos , sin

2 2
y y y y

π π⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

If we use same TRIBES program as above, we now find the nearest solution
within 410− in five times fewer evaluations (approximately 200).

EXAMPLE 2 – Triangle = square:

to minimize ()1 2,f x x , under the constraints
1

2

1 2

0

0

1

x

x

x x

≥⎧
⎪ ≥⎨
⎪ + ≤⎩

The search space H is then the triangle () () (){ }0,0 , 1,0 , 0,1 . A possible
homeomorphism is:

() () ()1 2 1 2

1 1 2

2
2

1 2

, , 2x x H y y C

y x x

x
y

x x

µ
⎧
⎪ ∈ ⎯⎯→ ∈
⎪⎪ = +⎨
⎪
⎪ =

+⎪⎩

The function φ is defined by:

() () () ()()1 2 1 2 1 2 1 2, 2 , , 1 ,y y C y y f y y y yφ∀ ∈ = −

Again, the equivalent problem becomes:

to minimize ()1 2,y yφ , under the constraints
[]
[]

1

2

0,1

0,1

y

y

⎧ ∈⎪
⎨

∈⎪⎩

On the Constraints 165

NOTE – As you have probably seen, one can transform example 1 into example 2 by
the changes of variable 2

1 1z x= and 2
2 2z x= . It is not rare that one can, thus, in real

problems, be brought back, in the first stage, to linear constraints. The search space
then becomes a polyhedron, always decomposable in D-triangles (true triangle for D
= 2, tetrahedron for D = 3, etc.). For each of them the bijective mapping with the
unit cube is rather easy. The problem of optimization boils down to several
subproblems having only interval constraints.

12.13. Summary

A problem of optimization always amounts to finding a position that satisfies a
certain number of constraints. In an iterative algorithm like PSO, some of these
constraints can be taken into account entirely with each displacement of a particle,
or simply respected in an increasingly strict progressive way during iterations.

The first technique is preferred for interval constraints or the “all the different
coordinates” type, whereas, for example, the treatment of discrete variables is
related to the choice one or the other technique, each one having its advantages and
its disadvantages.

Three progressive techniques are of very general use: by dichotomy, by

penalties, and multicriterion optimization. The latter is the simplest to implement
and remains well in the spirit of a method of optimization without parameters to be
defined by the user.

A considerable gain in effectiveness can be obtained when a preliminary

mathematical transformation puts the search space in bijective mapping with one or
several D-cubes.

This page intentionally left blank

Chapter 13

Problems and Applications

13.1. Ecological niche

At this stage, and perhaps for quite some time, the parabola functions, Ackley,
Griewank and others may have started to seem quite tedious. It is high time we
considered some examples that are a little more interesting. It is a question
nevertheless here of just illustrating the field of competence, the “ecological niche”,
of PSO and of evaluating its level of effectiveness.

We have already spoken about it a little, but let us specify here the types of
optimization problems that the current versions of PSO can tackle effectively:

 – continuous, discrete, or mixed search space. For certain combinatorial
problems, it is nevertheless preferable to use a specific or hybrid version;

 – function with several local minima. Naturally, PSO can treat functions with
only one minimum, as we have seen and re-examined with the inevitable Parabola
function, but sometimes a little less well than other algorithms, such as gradient
descent. Let us note, nevertheless, that PSO becomes interesting again if the
function, even if unimodal, is not continuous (and, a fortiori, not differentiable).

For these two characteristics, it is advisable to add the fact that convergence

being often fast, dynamic optimization in quasi real time is also a favorite field in
PSO; for example, for the uninterrupted training of neural networks. It was one of
the first real applications, and remains a very active field of research, with
sometimes considerable savings of time compared to other methods
(backpropagation, genetic algorithms) [CON 02, GUD 03, ISM 99, SET 03, TAN 02,
VAN 01, ZHA 01].

168 Particle Swarm Optimization

As we have seen, this velocity of convergence can also be used profitably for
multiobjective problems, even without calling upon specific versions of PSO, such
as those developed by some researchers [COE 02, HU 02B, PARS 02].

13.2. Typology and choice of problems

The problems of optimization can roughly speaking be grouped in four classes,
according to what the function f to minimize represents and the way in which it is
calculated. To simplify, let us consider only one function, but the typology remains
valid for multicriterion optimization.

Type 1

f represents exactly the problem to be solved. It is calculable in an analytical or
algorithmic way. It is typical of the test functions that are used as a benchmark. The
description of the problem is generally simple and concise (formula or relatively
short source code).

Type 2

f models a real process in an analytical way. It is hoped that the optimization of f
will enable that of the process, but there is now an uncertainty, as a model never
completely represents reality. Working out the problem can take rather a long time.
Approximations are made; there are often complex constraints on the acceptable
solutions.

Type 2'

Like 2, but f is no longer analytical. Its calculation is carried out by a simulation
of a real process. In principle, it is the same thing as the preceding case, but the
computing time of a position is greater. Comprehension of the problem can only be
achieved by using simulation, the description of which can be rather long.

Type 3

f is estimated by really launching a physical process. The time necessary for an
evaluation can then be extremely long, likely to take hours. The description of the
problem can also be very long and needs a good comprehension of the process
concerned.

PSO has already treated successfully all these types of problems, but since the
goal of this book is to present the method itself rather than its applications, we will
examine below only examples of types 1 and 2.

Problems and Applications 169

13.3. Canonical representation of a problem of optimization

In a problem of optimization, it is necessary to know what one optimizes. It is
not necessarily obvious. Or, more precisely, it is not always simple to formalize a
problem, even when one can express it in current language. We will not enter into
debates that try to define what is meant by expressions like “optimizing the
timetables in a college” or “optimizing a position of work in a factory”, because so
many non-quantifiable factors come into play.

Thus let us suppose from the start that the function f to optimize is known or,
more precisely, calculable and, moreover, numerical. But calculable where? For
which positions? The simple fact of putting these questions highlights that it is
necessary first to detail the imperative constraints, because they delimit the search
space; then to give the function to be optimized, which must be defined everywhere
in this search space; and finally, possibly, the indicative constraints. Finally, our
general representation of a problem of optimization will comprise three sets:

 – the list of the imperative constraints, defining the search space,

 – the function to be minimized on this space, (in the broad sense, as we have
seen, it can be non-explicit and appraisable only via one simulation or even a real
process),

 – the list of the indicative constraints, with their measurements of
dissatisfaction.

Once a problem is well-posed, we will obviously be interested in its resolution
by PSO. But here we are interested only in the native PSO, i.e. the methods such as
those we have already seen, parametric or not, and which have the following
characteristics in common: they work on real numbers (possibly with granularity,
therefore being able to be in fact integers) and they assume that, at least for each
dimension, the concept of distance between two coordinates has a meaning. We will
turn to the canonical PSO, thanks to which specific versions can be worked out, only
in the second part of this work.

Let us now begin to look at problems that have been specially selected so that the

native PSO cannot solve them in a satisfactory way.

13.4. Knapsack

We seek 10 different integers between 1 and 100 whose sum makes 100. The
search space is a priori R

10 but we add the constraints of granularity equal to 1 and
all different coordinates. Thus, after each movement, each particle is readjusted on
an acceptable position ()1 10,...,x x . The value of this position is simply given by the
function:

170 Particle Swarm Optimization

()
10

1
100 d

d

f x x
=

= − ∑

If we run a program like TRIBES 20 times on this problem, there must be
between 43 and 277 evaluations to find 20 solutions, including 18 different ones.
For this combinatorial problem the tool could seem acceptable, but that is only
because of the relatively significant density of the solutions in the set of all possible
combinations. It thus has good chances of finding some by chance. Again, we are in
a situation where the numerical values of the coordinates have a meaning and are not
a simple arbitrary coding.

Some examples of results:

 ()3,1,12,21, 2,8,6,30,13, 4 in 80 evaluations

 ()2,5,55,3,7,1, 4,6,8,9 in 144 evaluations

13.5. Magic squares

We seek here magic squares n n× , filled with different integers all between 1 and
100, with the rule that the sums in rows must be equal and that the sums in columns
must be equal. To calculate the function to be minimized, it is thus enough to
consider on the one hand all the differences in sums for each pair of lines and on the
other hand all those for each pair of columns. By adding the squares of these
differences, we build a function for which it is necessary to find a value zero. It is
not necessary to specify that the sum of the lines must be equal to that of the
columns, because that is necessarily true.

As before the values of the coordinates have a meaning as well as the numerical
operations made on them. But the density of solutions is much lower. For 3 × 3
squares the problem is of dimension 9 and that functions perfectly. But as soon as
we reach 5 × 5 squares, the performances are degraded seriously. With 50,000
evaluations per execution, we again find no more than 12 solutions after 20
executions.

Some examples of solutions are given below:

89 46 22

62 55 40

6 56 95

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 in 823 evaluations

Problems and Applications 171

15 85 81 47 46

50 72 42 30 80

44 87 79 24 40

83 8 33 95 55

82 22 39 78 53

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 in 2,455 evaluations

The next two types of problem, in which the integers used are in fact only
arbitrary codes, are even more beyond the possibilities of the native PSO.

13.6. Quadratic assignment

This kind of problem is more interesting in practice, because of its rather general
application. Let us point out a possible formulation. One considers a graph with D

nodes and whose arcs are valued (here the values are often called flows). The nodes
are to be positioned on D sites for which one knows the pair distances. For a given
disposition, for each pair of nodes, the flow to be made to pass must thus be at the
distance separating these nodes. The quantity considered is then the product of the
flow by this distance and the function to minimize the sum of these D

2
quantities.

See for example [DRE 03] for a more complete presentation of this problem and
some methods of resolution.

It is common to represent the sites by numbers 1 to D and also the nodes of the
graph by numbers 1 to D. A position in the search space is then given as a
permutation of the integers of 1 to D, with the convention that the dth

number
represents that of the site of the node coded by the integer d.

Contrary to the preceding examples, all these numbers are purely conventional.

However, the native PSO (non-specific) will handle them like numbers, since the
equations of motion imply additions, subtractions, and multiplications by scalars. To
distinguish clearly the difference between the two ranges and to multiply it by a
coefficient means almost nothing with regard to the problem to be solved or, at least,
not really what is implicitly envisaged in PSO. It is therefore not surprising that the
results are now disastrous; for the traditional problem named SCR12, no solution is
found even after 106

evaluations (to reassure you immediately, fewer than 1,500 will
be needed by adding a local search).

Lastly, to conclude this small list of problems located outside the field of

competence of the native PSO, let us quote the prototype of combinatorial problems,
the famous traveling salesman. We do expect results to be quite as bad, since it is

172 Particle Swarm Optimization

formally equivalent to the previous problem, and from this point of view it would
not even be necessary to try to treat it, but it will be useful for us as an example in
the second part to show how a specific PSO can be developed.

13.7. Traveling salesman

Everybody is aware of this problem, consisting of finding the shortest Hamiltonian
circuit (not twice the same node) in a graph whose arcs are valuated by lengths.
There also it is common to indicate the nodes of the graph by integers, but it is still
only an arbitrary coding and the algebraic operations of the equations of motion of
the native PSO do not have great significance.

However, the matter should be nuanced. It was already true in the preceding
example, but easier to explain here. Let us consider two positions coded
by two permutations of the integers of 1 to D, that is to say ()1,..., ,...,d Dx x x x=
and ()1,... ,...,d Dy y y y= , and ask ourselves what can be meant by, for example,
hyperspheric proximity of x of radius x yρ = − , by using the Euclidean norm
systematically.

On the one hand, we do see that there is no question of speaking about distance,

if only because the same position can be coded in D different ways (by cyclic
permutations). However, on the other hand, despite everything, the positions z that
observe the condition x z ρ− ≤ are, in a certain way, very “close” to x even if
their set can hardly be defined like a sphere. Indeed, let us call 'ρ the greatest
integer less than or equal to ρ . Then z cannot have any more 'ρ coordinates that are
different from those of x of the same rank. Similar reasoning holds for other types of
proximity distributions.

This explains why, even if it is a little like the preceding case, a rather simple

problem such as the one with 17 nodes, referred to as BR17, cannot be solved with a
search effort of 106 evaluations, but this could be reduced to less than 5,000 by the
simple addition of local search. More generally, the exploratory capacity of PSO
remains interesting for combinatorial problems, but it cannot be used for more than
the approximate detection of promising fields in the search space. It is then necessary
to pass it on to another algorithm for accurate localization of a solution.

On the other hand, if we place ourselves now in the heart of the field of

competence of the traditional PSO, i.e. roughly the continuous and mixed
continuous-discrete (non-combinatorial) problems, it is remarkably effective. We
have already seen it applied to traditional test functions; let us show it now in some
slightly more interesting examples.

Problems and Applications 173

13.8. Hybrid JM

This small three-dimensional problem of type 1 was proposed by Bernard
Jeannet and Frederic Messina [JEA 03]. The imperative constraints defining the
search space for dimension 3 are:

{ }
[]
[]

1

2

3

1, 2,3, 4,5,6

15,25

3,10

x

x

x

⎧ ∈
⎪

∈ −⎨
⎪ ∈⎩

and the function to be minimized is given in analytical form:

() () ()2
1 2, 3 1 1 2 2 1 2 3, 20 2f x x x a x x a x x x= +

The variable x1 is in fact only an index used to return values starting from two
lists a1 = (0.5 0.3 0.8 0.1 0.9 0.12) and a2 = (–0.5 0.6 0.1 1.5 –1 0.8). A minimum of
–112.5 is obtained for x1 = 4, x2 = –7.5, and x3 = 10.

The method suggested by the authors (from arithmetic of intervals and inclusion
functions) gives the solution after 3,271 evaluations. This method being
deterministic, the result is absolutely certain, which is obviously never the case with
PSO. For an honest comparison, we must therefore impose a very high success rate,
for example, 99.99%. As Figure 13.1 shows clearly, a program such as TRIBES is
definitely more effective. Even if an accuracy of 10

–6
is required on the result, fewer

than 1,500 evaluations are required on average to reach this success rate.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 500 1000 1500

Maximum nb. of evaluations

F
a
il

u
re

 r
a
te

0.000001

0.001

Accuracy

Figure 13.1. Hybrid problem 3D. One dimension is continuous, the other two are discrete.

The desired precision is either 10
–3

or 10
–6

.

For each maximum number of evaluations per

execution run, one estimates the rate of failure by carrying out 500 executions with TRIBES

without re-initialization of the pseudo-random number generator

174 Particle Swarm Optimization

13.9. Training of a neural network

Historically, the first applications of PSO consisted of accelerating the evaluation
of the transfer functions in neural networks. This phase is often called training, when
the network self-modifies according to data provided gradually, to entries and to the
expected results. It is called training because the evaluations are imposed by a third
party, in fact, precisely, by PSO.

In these applications, PSO has very largely surpassed the traditional method of
the time, backpropagation. But improved alternatives already existed. More recent
comparative work has in fact shown that if PSO remains the best general algorithm
(better, for example, than the evolutionary algorithms [CHI 98]), several specific
methods are generally more effective (Rprop, in particular [RIE 94]), but not always
and sometimes only a little.

Let us examine that on some traditional examples. In those that follow, the

networks have three layers (Input with E nodes, Hidden with C nodes, and Output
with S nodes). All the Entry arcs towards Hidden exist, just as all the arcs of Hidden
towards Exit. The total number of arcs is thus A EC CS= + . Let us index by i the
nodes of the Entry layer, by j those of the Hidden layer, and by k those of the Exit
layer. If E given ie are presented in entry, then each node j carries out a weighted
combination of these entries and generates an activation equal to:

,
1

1

1

E

j i i j

i

j
e w

f

e
α

=

− −
=

∑
+

In the same way, each node k produces an exit equal to:

,
1

1

1

C

j j j k

j

k
f w

g

e
β

=

− −
=

∑
+

The exact formulas are in the source code of TRIBES, thanks to the kindness of
Rui Mendes [MEN 02]. The significant point is that on the whole there are
D A E C= + + variables to find: weights ,i jw and ,j kw , as well as the shifts

jα and

kβ . Thus, the dimension of the search space is D. From now on, all these variables
are supposed to be the components of a real D-vector X.

To educate the network, one has P sets of values of entry, with, for each play p,

the desired values of exit ()* * *
1, , ,,..., ,...,p k p S pg g g . The function to be minimized is

Problems and Applications 175

calculated classically on the ensemble of the benchmark sets, as the average
quadratic distance between all the found outputs and those desired:

() ()2*
, ,

1 1

1 P S

k p k p
p k

f x g g
PS = =

= −∑ ∑

The examples are treated with TRIBES, with the help of a small modification
allowing a more relevant comparison with the results published for other methods:
the initialization of a position is always done in [–1 1]

D and the interval constraints
are not activated. For the same reason, the averages are calculated only on over 30
executions of the program. It turns out that the variance of the results is rather small,
about 0.04. In practice, that means that the found average values have more than
99% chance of being right to within less than 0.02 (confidence interval of width
0.04).

13.9.1. Exclusive OR

These are the rudiments of neural networks. Two nodes in input, two in hidden
layer and one at output. The inputs are binary and there are four possible cases. The
aim of the game is to find at exit the truth table of the logical exclusive OR.

The dimension of the search space is 9. PSO (TRIBES) finds a solution with
f(x) < 0.00005 on average after 2,040 evaluations. On this simple problem, it seems
that it is the best result published.

13.9.2. Diabetes among Pima Indians

The neural network must be calibrated to give a diagnosis of diabetes according
to seven numeric variables (such as the number of childbirths). The benchmark set
comprises 200 cases. The decision is theoretically binary and the network thus has
seven entries and an exit. The transition course comprises seven nodes. The dimension
of the problem is thus 64.

Let us note that the exit is nevertheless given in the form of a real number
between 0 and 1. We can see this number as indicating the confidence to be granted
to the diagnosis. For example, a value of 0.5 corresponds to a null confidence.

In this example, the average value of the error f(x) after 40,000 evaluations is

0.26. We will see that the specific algorithms do better.

176 Particle Swarm Optimization

13.9.3. Servomechanism

The detail of this problem can be found in [QUI 93]. In short, it is a question of
optimizing a neural network having to predict the reaction time of a
servomechanism dependent on four parameters: two electronic gains and two
mechanical configurations. The network thus has four entries and an exit. The
intermediate layer comprises four nodes and the dimension of the problem is thus
28.

The benchmark set comprises 167 cases. With treatment by TRIBES, the average
value of the error f(x) after 40,000 evaluations is 0.60. There still, the specific
algorithms do better, as we will now see in a small summary table.

13.9.4. Comparisons

Except for the last line, the results of Table 13.1 come from [MEN 02]. The first
four methods are parametric. The selected parameters are standard values, known to
give good results. For the parametric PSO, the authors chose a version with classical
constriction, without distinction between explorers and memories. The only
originality is the topology of the network of information, called Pyramid. It can be
seen as a stacking of tetrahedrons whose summits are the particles and the edges the
information links. The particles thus do not have all the same number of links
(between three and six).

The specific method Rprop is unquestionably the overall best, pursued closely by
the parametric PSO. The non-parametric adaptive PSO, represented by TRIBES,
attains a very honorable third position, preceding the genetic algorithm. Curiously
enough, backpropagation, long considered as the panacea, is largely outdistanced,
primarily because of its very bad score on the simplest problem (exclusive OR).

 exclusive OR Pima Indians Servomechanism Average

Backpropag. 0.48 0.18 0.57 0.41

Genetic Algo. 0.17 0.26 0.54 0.32

Rprop 0.06 0.18 0.45 0.23

Param. PSO 0.00 0.27 0.48 0.25

TRIBES 0.00 0.26 0.60 0.29

Table 13.1. Training of a neural network. Comparisons of five methods applied to three

problems. The specific algorithm Rprop is as a whole appreciably better, but PSO,

parametric or adaptive, is well-placed

Problems and Applications 177

13.10. Pressure vessel

This realistic problem of type 2 has been dealt with by many methods, hence its
interest. The goal is to design a container of compressed air consisting of a
cylindrical body and two segments of a sphere. It must withstand an internal
pressure maxP and offer a volume V. To achieve this, one uses sheets, the thicknesses
of which are necessarily multiples of a certain value δ.

The variables concerned are as follows:

 – 1x , the thickness of sheet of the cylindrical part,

 – 2x , the thickness of sheet of the segments of a sphere,

 – 3x , the internal radius of the cylinder and segments of a sphere,

 – 4x , the length of the cylindrical part.

The pressure maxP is 3,000 and volume V is 750. The numerical values are
purposely given without units, because it obviously does not influence the research
solution. In the original definition of the problem, the pressure was in psi (pounds
per square inch) and volume in ft

3
(cubic feet). The increment δ thickness of sheet is

0.0625. The constraints defining the search space are explained in [SAN 90]. It is
enough for us to list them:

()
()

()

()

()

[]
[]
]]
]]

1 3 1

2 3 2

2
3 3 4 3

1
4 1

2
5 2

1

2

3

4

0.0193 0

0.00954 0

4
750 1728 0

3

0

0

1.1 12.5

0.6 12.5

0 240

0 240

g x x x

g x x x

g x x x x

x
g x x E

x
g x x E

x

x

x

x

π

δ
δ

δ
δ

= − ≤

= − ≤

⎛ ⎞= × − − ≤⎜ ⎟
⎝ ⎠

⎛ ⎞= − =⎜ ⎟
⎝ ⎠
⎛ ⎞= − =⎜ ⎟
⎝ ⎠

∈

∈

∈

∈

Let us note immediately that constraints 4 and 5 indicate simply the discrete
character of the variables 1x and 2x according to the increment δ and that the

178 Particle Swarm Optimization

following ones are interval constraints put in condensed form. The size to be
minimized is the cost price of manufacture, which incorporates that of materials,
their working, and their assembly (welding). It is modeled by the formula:

() 2 2 2
1 3 4 2 3 1 4 1 30.6224 1.7781 3.1611 19.84f x x x x x x x x x x= + + +

The analytical solution is:

()

1

2

1
3

3
3

4 2
3

1.125

0.625

58.2901554
0.0193

750 1728 4 3
43.6926562

x

x

x
x

x
x

x

π
π

=⎧
⎪ =⎪
⎪⎪ = ≅⎨
⎪
⎪ × −

= ≅⎪
⎪⎩

which gives the value of 7,197.72893 for the function.

This problem was dealt with by 10 methods (differential evolution, Lagrange
multipliers, genetic algorithms, MARS [LIT 98], SOMA [ZEL 04], etc.). The very
best result published in mid-2004 was that of SOMA, that is to say a minimal value
reached of 7,197.729 after 100 tests of 51,918 evaluations each. This “round”
number does not arise from the preliminary fine adjustment of seven parameters (a
choice of strategy and six numerical parameters). The number of attempts to find
this adjustment is not indicated by the author.

Moreover, to take into account constraints 1 to 3, the problem was initially

transformed according to the method of the penalties, which we have seen to give a
new function F to be minimized, which is equal to f in an item X only when all
the following constraints are satisfied:

() ()
() () ()
() () ()

10
1 2 3

3 2

1

10 , 1

0 1

0 1

i i

i i i i

i
i

s s s

g x c x

g x c x s g x

F x f x c x
=

⎧ = = =
⎪

≤ ⇒ =⎪⎪
⎨ > ⇒ = +
⎪
⎪ = ∏⎪⎩

Problems and Applications 179

Again, it is not specified how the weighting coefficients were established, but it
is easy to imagine that it required several tests.

We will thus solve this problem with TRIBES under the same conditions – a
number of executions (100) and a maximum number of evaluations per execution
(51,818) – and will compare them with those of SOMA. In fact, this problem is
often dealt with in two forms: exactly as described below; and, as a continuous
problem (one relaxes the constraint of discretization δ of the thicknesses of the
sheets).

13.10.1. Continuous relaxed form

The analytical solution is different only because the lower limits for 1x and 2x
are now acceptable values:

()

1

2

1
3

3
3

4 2
3

1.1

0.6

56.9948187
0.0193

750 1728 4 3
51.0012517

x

x

x
x

x
x

x

π
π

=⎧
⎪ =⎪
⎪⎪ = ≅⎨
⎪
⎪ × −

= ≅⎪
⎪⎩

which gives the minimal value of 7,019.03109 for the function. Table 13.2
summarizes the results obtained by comparing them with those of SOMA. For the
precise definition of the many parameters of this method, you can refer to the work
of Ivan Zelinka referred to above.

First, note that PSO, or at least the adaptive algorithm TRIBES, is slightly more
effective without having parameters to define. Second, and perhaps most interesting,
with an adaptive version of PSO it is not even necessary to seek a system of
penalties to take into account the constraints: the multicriterion method gives an
excellent result, only slightly less good than the previous one. From the point of
view of an engineer, it is an unquestionable advantage.

180 Particle Swarm Optimization

Method ⇒ SOMA, penalties
TRIBES,

penalties

TRIBES,

multicriterion

Max. no. of

evalutions

per execution

51,818 51,818 51,818

No. of executions 100 100 100

Parameters ⇒

Result ⇓

AlltoOne

PathLength = 3

Step = 0.11

PopSize = 20

PRT = 0.1

Migration = 100

MinDiv = negative

1x 1.10015 1.1 1.1

2x 0.600001 0.6 0.6

3x 57.0024 56.99482 56.99447

4x 50.9591 51.00125 51.00138

()F x or ()f x 7,019.032 7,019.031 7,019.033

Table 13.2. Pressure vessel, continuous relaxed problem. Best results of 100 executions of

51,818 evaluations each, for comparison with SOMA method. The adaptive PSO,

implemented here by TRIBES algorithm, is slightly more effective while not requiring a

parameter setting. Directly taking into account the constraints by the multicriterion

 method gives a result very close to the optimum

13.10.2. Complete discrete form

If we return to the complete problem, i.e. with discrete values for the variables

1x and 2x , we arrive at similar conclusions, as Table 13.3 indicates, although for
SOMA it is necessary to modify a parameter (PRT, which is a level of perturbation).
Here also TRIBES is equally effective, the more so as it finds the true optimum
instead of the local optimum detected by SOMA. This global optimum can also be
obtained by SOMA, but at the price of a different strategy (called AllToAll) and of
more than 200,000 evaluations per execution. Indeed, the variation of value of the
function between the two solutions is detectable only beyond the fourth decimal.

Problems and Applications 181

Method ⇒ SOMA, penalties
TRIBES,

penalties

TRIBES,

multicriterion

Max. no. of

evaluations per

execution

51,818 51,818 51,818

No. of executions 100 100 100

Parameters ⇒

Result ⇓

AlltoOne

PathLength = 3

Step = 0.11

PopSize = 20

PRT = 0.5

Migration = 100

MinDiv = negative

1x 1.125 1.125 1.125

2x 0.625 0.625 0.625

3x 55.8592 58.2901 58.2901

4x 57.7315 43.6926 43.6927

()F x or ()f x 7,197.729 7,197.729 7,197.729

Table 13.3. Pressure vessel, complete discrete problem. SOMA requires a modification

of parameter PRT, whereas TRIBES remains just as effective and even finds the

really optimal solution, whether it be with the method of penalties or,

in a much more practical way, with the multicriterion method

Out of curiosity, we can look at what a non-adaptive PSO program, such as we
detailed in the first chapters, gives. This time, we should define parameters. Let us
take the standard values already used many times: 20N = (size of the explorer-
swarm), 20M = (size of the swarm report), 3K = (number of information links by
memory), 2.07ϕ = (for the calculation of the confidence coefficients), and
definition of the information links at random before each iteration. We point out,
nevertheless, that these values are the fruit of many tests on various problems. Then
we easily obtain a result of the same quality in only 15,000 evaluations. Obviously
as a consequence, we can ask whether this number of evaluations would also be
sufficient for TRIBES. As Table 13.4 shows, it is not completely the case, although
the solutions obtained are nevertheless of very good quality. It is the price to pay for not
having parameters to define.

182 Particle Swarm Optimization

Method ⇒
Parametric PSO,

penalties

TRIBES,

penalties

TRIBES,

multicriterion

Maximum no. of

evaluations per

execution

15,000 15,000 15,000

No. of executions 100 100 100

Parameters ⇒

Result ⇓

20N =

20M =

3K =

2.07ϕ =

links redefined
randomly with each

iteration

1x 1.125 1.125 1.125

2x 0.625 0.625 0.625

3x 58.2901 58.2891 58.2867

4x 43.6926 43.6987 43.7115

()F x or ()f x 7,197.729 7,197.806 7,197.938

Table 13.4. Pressure vessel, with parametric PSO. Fewer than 15,000 evaluations are needed

to obtain the best-known solution, provided, of course, a good set of parameters has been

defined. With an adaptive version and the same constraint on the number of evaluations,

 the result is slightly less good

13.11. Compression spring

This problem is in the same vein as the previous one and was dealt with by the
same methods. The goal is to produce a cylindrical compression spring having
certain mechanical characteristics by using the least possible metal. The variables
concerned are as follows: 1x , the number of coils; 2x , the external diameter of the
spring; 3x , the diameter of the wire forming the spring.

The constraints defining the search space are also explained in [SAN 90]. They
are a little more complicated and are expressed using intermediate variables:

Problems and Applications 183

()

max

3 3

2 3 2

4
6 3

3
1 2

max
1 3

1000

300

1 0.75 0.615

11.5 10
8

1.05 2

p

f

p

p

f

F

F

x x
C

x x x

x
K

x x

F

K

F
l x x

K

σ

=
=

= + +
−

= ×

=

= + +

The constraints themselves are indicated below. Those of intervals and discrete
values are directly presented in a condensed form:

()

()
()

()

()
{ }
[]
{ }

max 2
1 3

3

2

3

4

max
5

1

2

3

8
189000 0

14 0

6 0

0

1.25 0

1 2 ... 70

0.6 3

0.207 0.225 0.244 0.263 0.283 0.307 0.331 0.362 0.394 0.4375 0.5

f

f

p

p

p

p

C F x
g x

x

g x l

g x

F
g x

K

F F
g x

K

x

x

x

π

σ

σ

= − ≤

= − ≤

= − ≤

= − ≤

−
= − ≤

∈

∈

∈

The volume of metal to be minimized is given by:

() ()
2

2
2 3 1 2

4
f x x x x

π= +

In mid-2004, this problem was dealt with using 22 methods, including simulated
annealing, cellular automats, and several alternatives of genetic and evolutionary
algorithms. The complete list is in [LAM 04], which details the one that gives the best

184 Particle Swarm Optimization

result: differential evolution. The constraints are taken into account there by the use
of penalties. Various formulations seem to give equivalent results and we will use
the following one:

() ()
() () ()
() ()

1 2 3

10
4 5

5
3

1

1

10

0 1

0 1

i i

i i i i

i
i

s s s

s s

g x c x

g x c x s g x

F x f x c
=

⎧
= = =⎪

⎪
= =⎪

⎪ ≤ ⇒ =⎨
⎪ > ⇒ = +⎪
⎪

= ∏⎪⎩

Here again, it is not specified how, or after how many tests, the various
coefficients could be given. Let us note that differential evolution definitely uses
fewer parameters than SOMA: a constant size of population NP, a probability of
crossing CR, and a constant coefficient F, which plays something of the same role as
the random confidence coefficients of the traditional PSO. For this problem, the
optimal values retained by Jouni Lampinen and Rainer Storn are 50NP = , and

0.9F = , and number of evaluations = 12,500.

Table 13.5 indicates the best result among 100 executions for differential
evolution and TRIBES. The latter used the same function ()F x , incorporating the
constraints as for differential evolution, and the multicriterion method, which makes
it possible to take the constraints as they appear, without having to define weighting
coefficients. As we can see, the results are still very good there, the more so as, in
fact, if we stick to the method by penalties, the optimum is obtained to within 10

–6
in

fewer than 8,000 evaluations. For the multicriterion method, one needs rather more
evaluations (13,000), because with 12,500 we just find a local optimum, extremely
close in value.

Problems and Applications 185

Method ⇒

Differential

evolution,

penalties

TRIBES,

penalties

TRIBES,

multicriterion

Max. no. of

evalutions

per execution

12,500 12,500
12,500
13,000

No. of executions 100 100 100

Parameters ⇒

Result ⇓

50NP =
0.9CR =

0.9F =

1x 9 9
5
9

2x 1.2230410 1.22304097
1.658318
1.228618

3x 0.283 0.283
0.307
0.283

or ()f x 2.65856 2.658559
2.699494
2.670683

Table 13.5. Compression spring. The adaptive PSO is at least as effective as the best earlier

known method, differential evolution. The number of evaluations (12,500) was retained for

comparison but actually the optimum is reached to within 10
–6

in fewer than 8,000 if one uses

the same aggregation of constraints by penalties as in the resolution by differential evolution.

However, one needs a few more evaluations (13,000) to find the solution

 by the multicriterion method

13.12. Moving Peaks

In this academic example, it is a question of testing the capacity of an
optimization algorithm not only to find an optimum, but also not to lose too much
sight of it if the function to be optimized changes in the course of the process. The
benchmark set of “Moving Peaks”, with its mathematical explanation and the source
code in C, is on the site http://www.aifb.uni-karlsruhe.de/~jbr/MovPeaks/. In two
dimensions, with ten peaks, one obtains, at a given moment, something like what is
represented in Figure 13.1.

A certain number of parameters make it possible to create various problems. Let
us take the following values, which correspond to a scenario treated by several
authors, in particular the originator of the benchmark set, Jürgen Branke [BRA 03]:

 – search space [0 100]
5
;

 – 50 peaks of conical form;

 – displacement in a random direction all 5,000 evaluations, on a distance from 1;

186 Particle Swarm Optimization

 – height of each initially random peak between 30 and 70 (for the positive parts)
then varying with more than 7;

 – width of each initially random peak between 1 and 12 (for the positive parts)
then varying with more than 1;

 – 50 executions of 500,000 evaluations, to calculate average values.

This problem is rather difficult, because even if the peaks move slowly, their
height can vary rather a large amount. The maximum can thus be moved abruptly.

It is now necessary to define a measurement of the performance, the maximum
value of the peaks being assumed to be known after initialization and each
displacement. A first mode of calculation consists in setting the distance between the
current value and the maximum so that it is known immediately before each change.
This has the advantage of being coherent with the usual calculation of performance
for the static problems: if the peaks do not move at all, one finds the same result, i.e.
the best value obtained during the execution. Let us call this value error of follow-

up. However, the author of the benchmark set proceeds differently. He defines a
meter in which, with each evaluation, he accumulates the best-known performance
and, at the end of the execution, he divides this total by the number of evaluations.
The number obtained is obviously greater than the preceding. Let us call it
continuous error of follow-up.

With the genetic algorithm used by J. Branke, the continuous error of follow-up

average on 50 executions of 500,000 evaluations is 4.6, as is indicated on its site.
We will see in the second part of this work that there is a PSO more or less specific
to this kind of dynamic optimization. For example, the multi-swarm parametric
algorithm designed by Tim Blackwell functions very well, but with the proviso of
taking the number of swarms equal to the number of peaks. On the same problem,
the continuous error of follow-up average is only 2.6 [BLA 04]. This is due to the
velocity of convergence of PSO in itself.

To the extent, moreover, that even with a non-specific PSO like TRIBES, one

already obtains good results (average error of follow-up 3.31, average error of
continuous follow-up 4.18). It is enough, after each change, to re-initialize the swarm,
keeping the best particle if the new value of the function for the position it occupies
proves to be still largest. Figure 13.2 shows us a typical execution, for which the
variation to the maximum was calculated after each evaluation. It decreases initially
very quickly, then much more slowly, but succeeds in remaining always rather close
to the true maximum, even just after a change.

Problems and Applications 187

Figure 13.2. Snapshots of ten mobile peaks on a search space for two dimensions. In this

particular case, the maximum is on a border, a situation that the majority of stochastic

optimization algorithms do not unduly appreciate

Figure 13.3. Follow-up of the variation to the maximum for a problem of dimension 5 with 50

mobile peaks. The peaks move all the 5,000 evaluations (moments represented by

vertical bars). Here only the first 50,000 evaluations are shown

0

20

40

60

80

100

120

140

0 10000 20000 30000 40000 50000
Evaluation

M
a
x
im

u
m

 d
e
v
ia

ti
o

n

188 Particle Swarm Optimization

13.13. For “amatheurs”: the magic of squares

A square n n× is represented by a position in a space with 2n dimensions,

()21,..., ,...,
d n

x x x x= . One can represent it as the list of the elements of the square

read line by line. For the sums of the rows, the function to be minimized is then:

() () ()()()21

1 1 1
1 1 1

n n n

n i d n j d
i j i d

f x x x
−

− + − +
= = + =

= −∑ ∑ ∑

If it equals zero (which is what we are looking for), it indicates that for each pair
of rows, the sums of the elements of each are equal.

In the same way, for those in the columns:

() () ()()()21

2 1 1
1 1 1

n n n

i n d j n d
i j i d

f x x x
−

+ − + −
= = + =

= −∑ ∑ ∑

The total quantity to minimize is then () ()1 2f x f x+ . Let us suppose now that
one found a solution, namely, L the common sum of the lines and C that of the
columns. The total sum of the elements of the square is then worth nL, but also nC.
Hence L C= . That is why there is absolutely no need to add this constraint
explicitly in the function to be minimized.

13.14. Summary

Several examples make it possible to better determine the field of competence of
PSO, in particular for an adaptive version such as TRIBES. The difficult
combinatorial problems do not really form part of it (except special versions not
studied here). However, the method is very effective for nonlinear problems with
continuous or discrete variables.

Taking into account the constraints by the multicriterion technique makes it
possible to consider them just as they are, without having to carry out an integration
weighted within a new minimizing function. Moreover, with an adaptive version, no
parameter setting is necessary.

Chapter 14

Conclusion

14.1. End of the beginning

The few examples of the preceding chapter bring to a close this first part, which
has hopefully fulfilled its purpose: to place at your disposal all the elements to
effectively treat a great number of optimization problems. A great number but
obviously not all and it is very possible that none of the PSO described so far
corresponds to your expectation.

Nevertheless, what we have just seen is far from covering all the aspects of this

method and is likely to give you only a restricted idea of its possibilities. Before
deciding that it is not the tool that is appropriate to you, you should thus glance
through the second part, which will give you inter alia an outline of various
extensions of the field of competence of PSO, such as dynamic optimization or
combinatorial optimization. Besides, even this list is not exhaustive and regular
research on the Internet of the latest innovations on the matter may be profitable.

Furthermore, on the basis of the principles and techniques studied here, you can
develop your own alternative. Let us take advantage of this remark to say some
words on an interesting tendency, which could be described as syncretism.

14.2. Mono, poly, meta

Initially let us note that PSO is clearly heuristics, “a method of resolution of
problems, not founded on a formal model and which necessarily does not lead to a
solution”. Nevertheless, the term is too general and the need for establishing

190 Particle Swarm Optimization

distinctions was felt. Therefore, its use is reserved more and more for the specific
algorithms of only one type of problem. For example, the Lin-Kernighan method for
the resolution of the traveling salesman problem is called LKH (Lin-Kernighan

Heuristic). It is very effective, but it can do only that. It is, so to speak,
monoheuristic.

Conversely, stochastic methods, such as differential evolution [LAM 04], SOMA
[ZEL 04], ant colonies [DOR 04], Tabou search [GLO 97], etc., appear usable for
many types of problems, even if their fields of competence do not overlap exactly.
They are general purpose heuristics, or polyheuristic. They are also called
metaheuristic [DRE 03], though this term can lead to confusion (see below). PSO
forms part of it. For a given problem, if there is no specific algorithm, one of these
methods is probably a good choice.

In addition, second-level methods have appeared, i.e. algorithms whose function

is to control the choice and the execution of definite algorithms. Sometimes they are
referred to as hybrid methods, but, etymologically, it is they that should be called
metaheuristic, even metapolyheuristic! In the same way, indeed, as a metarule is a
rule of handling of rules, a metalanguage a language of description of language, etc.,
we deal here with heuristics handling (the poly) heuristics.

As regards PSO and continuous optimization, one of the most promising hybrids

is perhaps DEPSO [ZHA 03b], combining PSO and differential evolution. The latter
is indeed definitely more effective than PSO on certain problems (often of low
dimensionality) but also definitely less effective on others. Hence, obviously, the idea
of associating them judiciously . . . by avoiding accumulating their respective defects!

14.3. The beginning of the end?

Thus is born the syncretic tendency that we have evoked, even if, for the
moment, studied synergies relate only to pairs of methods: genetic algorithm and
Tabou search [ZDA 02], genetic algorithm and ant colony [WHI 98], genetic
algorithm and simulated annealing [KRA 04], simulated annealing and gradient
[OVE 03], etc.

This is at the same time good and bad news. Good, in the sense that the question of
knowing if one method is better than another, already rarely relevant because it is too
general and will have little to recommend it in face of an approach that amalgamates
them. Bad, if you like, because it will become increasingly difficult to progress in the
field of optimization without studying several possible methods, their
complementarities, and their interactions in depth.

Conclusion 191

But, really, it is rather a stimulating research program. We do feel that all these
general purpose heuristics already have many similarities and are probably only
partial transcriptions, according to various points of view, of a more general
algorithm. This last is perhaps inaccessible to us, but trying to approach it is already
an aim in itself.

This page intentionally left blank

 PART ΙΙ

Outlines

This page intentionally left blank

Chapter 15

On Parallelism

15.1. The short-sighted swarm

First beautiful days. At the end of April, or perhaps the beginning of May. The
densely populated hive swarms. This multitude of honey bees, drunk and stuffed
with food, hums and circles before gathering around the old queen who has just
alighted on a branch. Only the scouts explore the neighborhoods, in search of a new
home. They return, set out again, compare, until a decision is made. Then, just like
that, the whole swarm flies away towards the chosen haven, as if each bee followed
a single scout.

But this is not the case. Each one sees only its closest neighbors. Each one,
except the very first one, is at the same time guide and guided. When the head bee
changes direction, information is propagated from the front to the rear, from one to
many, but not instantaneously, and the swarm is spread out by following a curve,
before closing up. The transmission of information is done locally in parallel and
globally in sequence. By the biological metaphor which underlies it, the original
PSO functions in the same way, but is it the most effective?

15.2. A parallel model

Let us remind ourselves of the sequential operating mode we have always used
so far. The particles are numbered from 1 to N. Particle 1 questions its informing
memories, moves according to received information, and possibly updates the
memory which is associated with it, if it finds a better position than that memorized
(we suppose here that the number of memories is at most equal to that of

196 Particle Swarm Optimization

informants). Then particle 2 does the same, with the difference that one of its
informants is perhaps precisely the memory that has been just modified. It can
sometimes take advantage of this new information. In the same way for the
following particles, with an increasing probability that a modified memory is used to
guide a displacement.

The parallel mode, on the contrary, is nothing like that at all. All the particles use
the same state of the memory-swarm and the possible order (simulated in parallel) in
which their displacements are calculated is of no importance. This method can seem
more elegant, but let us immediately look at a comparison of the results on our
benchmark set.

15.3. A counter-intuitive result

To make this comparison, let us proceed as described in the chapter on optimum
parameter setting, but by making the program function in simulated parallel mode. A
first interesting point is that the optimal parameter settings obtained are the same
ones. There is nothing very surprising about that. But the second point is more
unexpected.

Table 15.1 shows us that, in fact, the parallel mode is a little less effective than
the sequential mode. The difference is not very large, but statistical calculation
shows that it is significant (let us recall that there are 100 executions for each
problem).

Of course, and particularly for problems in which each evaluation is very long

(simulation of a process or even execution of a real process), the time saving thanks
to parallelism can nevertheless be considerable. But we must be aware that it is
likely to be paid by a larger number of evaluations.

Thus, if
seqT is the total number of evaluations necessary in sequential mode and

parallT that in parallel mode, and if the criterion is the duration of the search for a

solution, the mode is more interesting as long as one has parall seqT NT< , where N is

the number of explorers.

As N is about a few 10s and the ratio

parall seqT T never seems to exceed 10, in

practice it is apparently always the case.

On Parallelism 197

 Sequential PSO Parallel PSO

Tripod 0% (2,603) 0% (4,322)

Alpine 10D 0% (194) 0% (194)

Parabola 30D 0% (88) 0% (374)

Griewank 30 2% 8%

Rosenbrock 30D
100%

min. 0.034 avg. 19.93
100%

min. 0.763 avg. 25.79

Ackley 30D 0% (2,394) 0% (2,424)

Table 15.1. Sequential PSO vs parallel PSO. The results of the sequential PSO are taken

from Chapter 9. For the parallel PSO, the optimal parameters were also sought, finally

finding the same ones. The performances are slightly lower, in terms of the number of

evaluations, rates of failure or found values

15.4. Qualitative explanation

Let us consider a swarm of N explorers and M memories. Each explorer is
informed by K memories chosen randomly with each iteration and possibly updates
only one memory, if there is improvement. To simplify the reasoning, these sizes are
supposed to be constant. Let us examine more closely what occurs during an
iteration, i.e. of a time increment, in parallel mode on the one hand and sequential
mode on the other hand.

Let us call “information” for explorer a pair ()(),x f x formed from a position
and the value of this position. Under parallel operation, each explorer profits from K

pieces of information whose quality is fixed at the end of the preceding iteration.
This is taken into account to calculate its displacement, after which it possibly
modifies its associated memory.

Under sequential operation, the first explorer benefits in the same way from K

information whose quality is fixed at the end of the preceding iteration. It uses this
information to move and will improve a memory 1m with a certain non-null
probability 1p . The second explorer questions K reports among M. The probability
that 1m is amongst them is 2q , non-null. Thus, this explorer has a probability equal
to 1 2p q to benefit from information of better quality than in the parallel case. The
same holds good for the following explorers, with an increasing probability of
questioning a memory that was improved by at least one of the previous explorers.

It is thus comprehensible that the sequential mode is slightly more effective than

the parallel mode, in terms of number of evaluations to reach the solution. The
variation of effectiveness becomes smaller as M is large and K is small. However,

198 Particle Swarm Optimization

we saw that it is in general desirable, for difficult problems, to adopt a low value for
K. In particular, for all the test functions the optimum parameter setting is obtained
with K = 3 or K = 4, except for the function Parabola (K = 10). For the latter, we
notice that, even if the rate of failure is null with the two methods, the relative
difference of the number of evaluations is indeed the highest of all.

15.5. For “amatheurs”: probability of questioning an improved memory

The first explorer improved a memory 1m with a probability 1p . The second

explorer questions K memories chosen randomly among M, with putting back. The
probability that the first drawn is not 1m is ()1 /M M− , the same for the second . . .

Kth. The probability that 1m is not drawn at all is ()()1
K

M M− and the probability

that it is drawn is its complement with 1, that is to say:

2

1
1

K
M

q
M

−⎛ ⎞= − ⎜ ⎟
⎝ ⎠

Finally, the probability that the second explorer questions a memory improved
by the first is the conjunction of the two independent events: “to choose 1m ” and
“was improved”. It is therefore equal to the product 1 2p q .

For the following particles, the calculation becomes complicated if M is less than
N. Thus let us suppose simply that there are as many explorers as memories and that,
more precisely, each explorer informs a different memory im with the probability

ip (as is the case in traditional PSO). Then, in a way similar to what we have just
seen, at the time of calculating the displacement of explorer j the probability of the
event “of choosing at least one im with 1i j≤ − and im was improved” is greater
than or equal to:

() ()1 1

1
min 1 min

K

i j i i j i

M j
p p q

M
≤ − ≤ −

⎛ ⎞− +⎛ ⎞− =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

It is hardly possible to estimate ()1min i j ip≤ − in advance, but the evolution of the

probability q can easily be represented. As we see in Figure 15.1, it increases
logically with the row j of the explorer. But it also increases with K, whereas the real
effectiveness tends rather to decrease when K increases, except in certain simple
problems. The reason is that the increase in K must in fact often also induce a
reduction in the probabilities ip . However, it justifies the fact that the variation of

On Parallelism 199

efficiency between sequential mode and parallel mode becomes smaller as K is itself
small. There is enough matter here for an entire study.

Figure 15.1. Sequential mode. Probability of explorer questioning a memory possibly

modified by a previous explorer during the current iteration. There are here 20 explorers

who can update 20 memories. Each explorer questions randomly

K memories drawn with putting back

15.6. Summary

With each iteration, displacements of the particles can be calculated either in
parallel or in sequence. The parallel mode is a priori desirable when the evaluation
of a position is long and difficult, because the evaluations of the positions of each
particle can be carried out simultaneously. But, in general, it rather requires more
evaluations to reach the solution than the sequential mode.

In practice, however, the variation remains always sufficiently small so that the
parallel mode is to be preferred if the essential criterion is the total duration
necessary for obtaining a solution.

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

2 4 6 8 10 12 14 16 18 20

Explorer

P
ro

b
a
b

il
it

y

K=3
K=5

This page intentionally left blank

Chapter 16

Combinatorial Problems

16.1. Difficulty of chaos

Combinatorial problems are regarded as difficult, at least as soon as their size
becomes somewhat substantial. But where does this difficulty come from and why is
it considered to be larger than that of continuous problems of the same size? To
answer this question, let us consider the archetypal traveling salesman problem. To
simplify the reasoning, let us suppose that there is only one solution. With a graph
with N nodes numbered 1 to N, to find the solution thus amounts to finding a precise
permutation of an integer N among N! possibles. The probability of reaching that
point by chance, which we defined as being a measurement of the difficulty, is thus
1 !N .

Now, let us consider a continuous problem whose search space is []1,
N

N and in

which we wish to minimize a numerical function f “accurate to within ε”. Let us
suppose, which is almost always the case, that the function is Lipschitzian, i.e. with
limited variations. More precisely, there is a value L such that if two points 1x and

2x are separated by less than 'ε , then the variation of the function between these

two points is less than ε' L:

() ()1 2 1 2' 'x x f x f x Lε ε− < ⇒ − <

Thus, to seek a solution “accurate to within ε” it is enough for us to examine
“cells” of diameter about ε/L. Their total number is approximately:

202 Particle Swarm Optimization

1
N

N

Lε
⎛ ⎞−
⎜ ⎟
⎝ ⎠

To compare this number with the number of permutations above, we must give
values to ε, 'ε , and L. Since, in fact, we are interested only in the integer positions,
let us posit 1'=ε . In addition, in practice, one can always consider that the lengths
of the arcs are integers. Then the search for the shortest circuit can be done “to near
1

–
” where 1

–
 represents any positive value less than 1. Thus let us posit 1=ε .

Let us now take as example a circular graph of which all the arcs are 1 long.
According to a traditional method, the non-existent arcs are replaced by arcs of
sufficiently great length that they cannot belong to a solution, for example, N + 1.
The difference in value L between two positions is thus at least equal to N + 1. Thus
the number of “cells” is about ()()()N

NN 11 −+ , a value much larger than !N It
follows from this that, from a theoretical point of view, the problem seen in its
continuous form is much more difficult than in its combinatorial form.

The reason is that, when a combinatorial problem is difficult to solve by an

iterative optimization algorithm, it is not because it is combinatorial but actually
because the function of evaluation is very chaotic. In a more or less explicit way
such an algorithm always supposes that the closer two positions are, the closer their
evaluations are too. For a problem like the traveling salesman, that is easily false: a
simple transposition of two cities in the circuit, i.e. the shortest possible
displacement in the search space, can change the evaluation (the length of the cycle)
from its minimum to its maximum.

16.2. Like a crystal

What is a combinatorial problem in any case? There is certainly a consensus on
the fact that the search space must be finite (and thus discrete), but beyond this it is
not obvious what would constitute a unanimous definition. A rather general
description would be as follows.

We have a finite number of “sites” and a finite number of “objects”, each site
being able to contain at most one object. A position in the search space is then an
assignment of copies of objects on sites and we suppose that for any pair of
positions it is possible to say either that one is better than the other or that they are
equivalent. Let us note that to impose all the different objects, such as the cities in
the case of the traveling salesman, would be too restrictive and that is why it is more
judicious to speak about a copy of the object than of the object itself. For example,

Combinatorial Problems 203

the problem of coloring a graph is classically regarded as combinatorial, but several
nodes can have the same color, insofar as no arc connects them.

But, as a result there is no difference in nature between a combinatorial problem

and a finite discrete problem. Indeed, to solve a finite discrete problem of dimension
D amounts to considering that we have D sites to which we assign values chosen in
a finite set. This set can be viewed in the same way as that of the objects of the
description of a combinatorial problem.

Better still, in practice, any bounded continuous problem is dealt with like a
finite discrete problem. Indeed, in almost all cases calculations are made on a
numerical (as opposed to analogue) computer and, therefore, with a limited and
known precision. If, for example, the smallest representable number is 10

–300
, then by

multiplying all the facts of the case by 10
300

, we obtain an equivalent problem
handling only integers. The only difference, but it is significant, is the desired level
of precision. If for the continuous problem it is 10

–5
, there is an enormous number of

acceptable solutions in the equivalent discrete problem, about 10
295

.

Or, conversely,

if the problem is presented initially as discrete, very often having only one
acceptable solution, that amounts to dealing with continuous problem with a very
high requirement of precision, about 10

–300
in our example.

The search space, which is necessarily discrete with a numerical computer, can
be seen as similar to a crystal. To consider the problem as continuous consists in
examining this crystal at least with a magnifying glass. To consider it as
combinatorial is to work with an electron microscope.

16.3. Confinement method

We can thus treat a combinatorial problem exactly like a continuous problem,
using two confinements that we have seen in the chapter on constraints: discrete
variable and possibly “all different”. In practice, after each theoretically continuous
displacement, the particle is readjusted on the nearest integer position then, if the
problem requires it, on the nearest having all its coordinates different.

For problems of very small size, we saw that this method is sufficient. It has the
advantage of making it possible to use almost any version of PSO, since the
requirement of two confinements either is already included or can easily be added. It
is possible to improve the results appreciably by adding a local search algorithm
implemented for each particle after each displacement. To stick to traveling
salesman, a simple greedy algorithm already makes the number of evaluations
necessary decrease several orders of magnitude.

204 Particle Swarm Optimization

For example, on the example with 17 nodes BR17 of library TSPLIB
(http://www.ing.unlp.edu.ar/cetad/mos/TSPBIB_home.html), a strategy of the type
“to test all the transpositions of two nodes and to start again as long as there is
improvement” makes it possible to find a solution in fewer than 5,000 evaluations,
which is already definitely more acceptable than failing after a million evaluations in
“native” PSO! But for problems of more consequence, it is better to call upon a
version of PSO taking directly into account the combinatorial aspects in the
equations of displacement. The principal idea is then, for each type of combinatorial
problem, to manage to define a true distance in the search space, because we know
that a noticeable improvement can result from it regarding two significant aspects of
the algorithm: the definition of a proximity distribution and the search for the best
informant of a particle.

Moreover, this does not exempt us from conceiving hybrid strategies with

complementary local search. In mid-2004 the development of such methods was still
embryonic with regard to PSO, but several projects were in hand. The common base
is the description of the algorithm in a way that is as independent as possible of the
nature of the objects involved: numbers (real or discrete), quantitative or qualitative
sizes, structure of the search space, nature of optimization. This fundamental
representation can be made in a very condensed way, as we will see now.

16.4. Canonical PSO

To be able to implement PSO, the conditions below are necessary and sufficient:

 – a search space, set of positions { }xH = . Each position is defined by a list of

D components;

 – an application f defined on H and in values in a set C { }cCH
f =⎯⎯→⎯ .

Each element of C itself is defined by 'D components;

 – a relation of order on C or, more generally, semi-order, so that for each pair of
elements { }', cc it is always possible to say that c is “better” than 'c or that 'c is

better than c or, finally, that c and 'c are equivalent. Note that this definition
includes both the traditional optimization for which c and 'c are numbers and the
multicriterion optimization where c and 'c are compared according to a relation of
dominance.

The definition of a distance on H is not obligatory, but makes it possible to use
more effective techniques, such as the pseudo-gradient in the search for the best
particle information source about another and the search to give a direction to the
multidimensional proximity distributions, such as the D-spheres.

Combinatorial Problems 205

In general, H is real space D
R and f a numerical function (C is the set of the real

numbers provided with its usual relation of order). But H can be a finite set of
statuses and f a discrete function. By referring to the equations of motion of the
traditional PSO, the important thing is to be able to define the following objects and
mathematical operations:

 – position of a particle

 – velocity of a particle

 – subtraction () velocitypositionposition ⎯→⎯-,

 – external multiplication () velocityvelocityrealnumber ⎯→⎯.,_

 – addition () velocityvelocityvelocity ⎯→⎯⊕,

 – displacement () positionvelocityposition ⎯→⎯+,

As an application of this canonical representation, let us look at how these
objects and operators can be defined for the treatment of a combinatorial problem:
the indefatigable traveling salesman. The goal is obviously not to try to equal the
effectiveness of very specific algorithms such LKH [HEL 98], but simply to illustrate
the following assertion: “if you do not have a specific algorithm for your problem,
try PSO, it will do”. Besides, versions of discrete and combinatorial PSO have
already been defined and used successfully [KEN 97, MOH 01, ONW 04B, SAL 01,
SCH 02, SEC 01A, YOS 01].

PSO for traveling salesman

Positions

Let { }GG ANG ,= be the valuated graph in which we seek a Hamiltonian circuit

of minimal length. NG is the set of the nodes and GA the set of the arcs. The nodes

are numbered from 1 to N and will be denoted in or, if there is no possibility of

confusion, we will just represent them by their numbers { }Nii ,...,1, ∈ . Each arc is in

fact identified with the triplet () +∈∈∈ RjiGGji lNjNilji ,, ,,,,, , which can be

read as follows: “the arc of origin i, end j, and length jil , ”. Since we seek circuits,

we can consider, to simplify the notations, sequences of 1+N nodes, all different,
except that the last is equal to the first (and which can easily be always equal to 1).
Let us call N-cycle such a sequence and define it as being a position. Thus the
search space is the finite set of the N-cycles.

Function to be minimized

Let us consider a position such as:

206 Particle Swarm Optimization

() 11121 ,,,,,, ++ =∈= NGiNN nnAnnnnnx K

It is acceptable only if all the arcs ()1, +ii nn exist. To standardize the operations,
it is traditional to replace the non-existent arcs by virtual arcs of which the length

supl is sufficiently large that no minimum cycle can contain one of them. For
example, if minl and maxl are respectively the smallest and the biggest length of the
existing arcs, we can define supl as follows:

()
()
()()

max ,

min ,

sup max max min1

i j

i j

l MAX w

l MIN w

l l N l l

⎧ =
⎪
⎪ =⎨
⎪

> + − −⎪⎩

Thus, in this manner, each arc, real or virtual, has a length. The function to be
minimized is defined on the set of the N-cycles and, for each one, is worth simply its
length:

() ∑
=

+
=

N

i

nn ii
lxf

1
, 1

Velocity

The term “velocity” results from the history of PSO, but it is simply a question
of defining an operator which, applied to a position, gives another position. It is thus
a permutation of N – 1 elements, which can always be broken up into a list of
transpositions; in other words, v the length of this list. Thus, a velocity is
represented by a list of pairs of nodes to exchange:

()() vkNjNijiv GkGkkk ,...,1,,,, =∈∈=

or, in digest form ()()kk jiv ,= , which can be read “to exchange nodes ()11, ji , then
nodes ()22 , ji , etc.”

Two different lists, and 2v , applied to the same position, are perfectly well able

to give the same result (the same new position). Two such velocities will be known
as equivalent and we will note that 21 vv ≅ . For example, we have

() ()() () ()()3,1,5,25,2,3,1 ≅ . In this example, two velocities are not only equivalent but

also opposite (see below). The use of such velocities is connected with displacement
on a sphere: you can reach the same point while following two opposite directions.

Combinatorial Problems 207

Lastly, to admit all the necessary operations, null velocity, denoted ∅ , should be
defined: it will be simply the empty list.

Let us point out a traditional theorem of algebra that will be useful for us later in

the definition of metric. Not only can any permutation be carried out by a succession
of transpositions, but there is a necessary and sufficient minimum number of such
transpositions. With the vocabulary used here, in other words, if one considers all
the equivalent velocities at a given velocity v, then there is at least one of minimal
size. Let us call such a velocity a representative of v.

Opposed to a velocity

It is defined by:

()()11 , +−+−=¬
kvkv

jiv

This formula simply means “to carry out the same transpositions as for v, but in
reverse order”. We immediately have vv =¬¬ (and also ∅≅¬⊕ vv , according to
the definition of the addition of two velocities, which we will see a little later).

Displacement (position plus velocity)

Let x be a position and v a velocity. The new position vxx +=' is obtained by
applying the first transposition of v to x, then the second with the result obtained,
etc.

EXAMPLE –

()
() ()()⎩

⎨
⎧

=
=

3,2,2,1

1,5,4,3,2,1

v

x

By applying v to x, we successively obtain (with each stage, if necessary, the
components of the N-cycle are shifted in order always to have node 1 in first):

() ()
()1,3,5,4,2,1

1,2,5,4,3,12,5,4,3,1,2 =

Subtraction (position minus position)

For two positions 1x and 2x , the difference 12 xx − is defined as the velocity v

obtained by a given method, such as by applying v to 1x one finds 2x . The condition
“obtained by a given method” (in practice an algorithm) is necessary because, as we
have seen, two velocities can be different but equivalent, even if they have the same
size (the same number of transpositions). In particular, the method must be coherent,

208 Particle Swarm Optimization

in the sense that the subtraction of two identical positions must give null velocity
and the difference in two positions in a direction must give the opposite of the
difference in the other direction:

()2112

1221

xxxx

xxvxx

−¬=−
∅=−=⇒=

Addition (velocity plus velocity)

Let us consider two velocities 1v and 2v . To calculate their sum 21 vv ⊕ , we
build the list of transpositions that initially contains those of 1v then those of 2v . In
practice, to avoid ill-considered lengthening of such lists, it is also necessary to
operate a contraction in order to obtain an equivalent velocity of smaller size.

Let us note that we do have the triangular inequality 2121 vvvv +≤⊕ but no
commutativity. In general 21 vv ⊕ is different from 12 vv ⊕ .

Multiplication (coefficient by velocity)

Let v be a velocity to be multiplied by a real coefficient c. We must consider
several cases, according to the value of c. There is a small theoretical (but non-
practical) difficulty: to multiply two equivalent velocities by the same coefficient
will give two still equivalent velocities only if this coefficient is an integer.

Case c = 0

Let us posit simply ∅=cv .

Case 0 < c ≤ 1

We are satisfied with “to truncate” v. Let cvm = be the integer part of vc . The
new velocity is defined by taking only the m first transpositions of v:

()() cvkjivc kk ,...,1,,. == .

Case c > 1

We can then write c as a sum of an integer k and a real 'c less than 1. It is then
enough to proceed in three steps: to add v to itself k times, to multiply v by 'c , and
finally to add two velocities obtained. This can be summarized by the following
formulae:

Combinatorial Problems 209

[[*

 times

', , ' 0 1

. ... '.
k

c k c k c

c v v v v c v

= + ∈ ∈
= ⊕ ⊕ ⊕ ⊕

N

uuuuuuuuuuuuuuuuur

Once again, it is desirable to replace the result by an equivalent velocity of
smaller size. In any case, this can be done progressively with the addition of v to
itself k times.

Case c < 0

It is enough to write () vcvc ¬−=. and we are reduced to the combination of
two operations seen above, the opposite of a velocity and multiplication by a
positive coefficient.

Distance between two positions

We saw that it can be interesting to use a pseudo-gradient to define the best
informant of a particle but that for that the search space must be provided with
metrics. It is the case here, since it is enough to define the distance between two
positions as the size of a representative of a velocity making it pass from one to the
other. As we have seen, this size is unique.

If 1x and 2x are two positions, the distance between them is defined by:

1221),(xxxxd −=

and it is easy to check the axioms of metrics. If 3x is a third unspecified position,
we have:

133212

2112

2112

0

xxxxxx

xxxx

xxxx

−+−≤−

=⇔=−

−=−

Implementation

Once all these definitions are established (and programmed!), we can use the
system of equations of motion of an unspecified version of PSO. For example, the
traditional PSO will be rewritten as follows:

() ()
⎩
⎨
⎧

+←

−⊕−⊕←

ddd

dgdddd

vxx

xpcxpcvcv .. 32.1

210 Particle Swarm Optimization

Each operation concerned has a meaning very different from the usual one, but
the spirit of the process is exactly the same. As it was stated earlier, various
complementary techniques can of course be used jointly (local search, stop/restart,
local leveling, etc). For more details, see for example [CLE 04, ONW 04a, SEC
01b]. However, this field is evolving so rapidly that any article published will very
soon be only of historical interest. It is thus preferable to carry out search on the
Internet or, at least, to consult Particle Swarm Central [PSC].

16.5. Summary

By reducing to the bare minimum the conditions necessary for a PSO, one
defines a very general canonical algorithm using only some algebraic operators.
Hence, it is possible to build a specific PSO (for example, for combinatorial
problems) by specifying the operation of these operators for the type of problem
considered. An example is given for the traveling salesman problem. In this case, the
principal difficulty is to give a meaning to the operation of multiplication of a list of
transpositions by a numerical coefficient.

Chapter 17

Dynamics of a Swarm

17.1. Motivations and tools

At the time of writing (in 2005), there was still no satisfactory theoretical
analysis of PSO. The reason is that the problem is not simple, because of the
interactions between particles. It has been well-known since Poincaré that the
evolution of such systems can lead to a literally indescribable chaos. It would,
however, be quite interesting to have, as guides of improvement of the method,
elements that are more reliable than simple overall experimentation. How can we go
about this?

We have here mobile particles that influence each other, admittedly in general in
a space of much higher dimension than those of the spaces defined in physics, but
the tools and methods of statistical dynamics are perhaps usable, subject to two
comments:

 – the field implemented is more complicated than, for example, a single
gravitational field, since each particle is influenced only by some others, informants,
and not by all. If one wants to push the analogy further, it would thus be necessary
to consider the simultaneous influence of several fields of various natures;

 – the size of the swarm is generally low. The variance of statistical sizes defined
on such a small population is extremely likely to be very large.

Nevertheless, studies based on such modeling are underway, but so far they have
not produced results that are usable in practice.

A less ambitious step consists of considering a swarm reduced to only one

particle. That can seem paradoxical, since the interactions play a crucial role, but in

212 Particle Swarm Optimization

fact, as we saw in the chapter on the memory-swarm, talking about only one particle
is a result of the historical terminology. Actually, there are always at least two
particles: the explorer and the memory. Mathematical analyses are then possible and
have indeed provided, as already mentioned, precise recommendations which are
theoretically validated for the choice of the confidence coefficients, in particular via

the coefficients of constriction [CLE 02, TRE 03, VAN 02].

We will not review them again here, the more so as they are rather unpleasing

(“amatheurs” will be able to relish them at the end of this chapter). Instead we will
study in detail a very simple example and the lesson we can already draw.

17.2. An example with the magnifying glass

Let us consider the function Parabola 1D, defined on []20 20− by the equation

() 2xxf = . We wish a particle to find the minimum (zero, obviously), with a

precision equal to at least 001,0=ε . In other words, a particle must at least reach a

position located in the interval []εε − . The theoretical difficulty of this problem

is 6.45. To simplify the analysis still more, we will use only version OEP 0.

The question that interests us is the influence of the interactions on the
effectiveness of the algorithm. That is why we will consider and compare the results
obtained with a swarm reduced to only one particle (in fact, as has already been said,
an explorer and a memory) and a swarm of two particles (making 2 + 2).

17.2.1. One particle

With only one particle, the equations of motion can be written in a simplified
form:

()
⎩
⎨
⎧

+←
−+←

vxx

xpcvcv 21

There are two primary cases: either the initial velocity is such that the first two
positions frame that of the minimum, or on the contrary these two positions are on
the same side. In the first case, the particle oscillates around the optimal position; in
the second, it tends there directly, at the latest at the very second time increment (see
Figure 17.1). Let 2x be the position reached with the second time increment.

The significant point when the first positions are on the same side is that the
memorized position p is then always equal to the current position x. There is

Dynamics of a Swarm 213

certainly constant improvement, but each displacement is strictly equal to the
preceding one multiplied by 1c . There can therefore be convergence towards the

optimum only if the infinite sum of successive displacements 2
2

1
1 vc

t

t

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
∞

=

− is at

least equal to 2x . However, in our example we have:

1

2

2

0.7

3.2

20

c

v

x

=⎧
⎪ =⎨
⎪ = −⎩

Under these conditions the total distance traveled by the particle even at the end
of an infinite time cannot exceed approximately 10.7. It is insufficient to reach the
optimum. However, if the particle oscillates around this optimum, things occur
completely differently, because the last best position known is no longer necessarily
the current position. Velocity will still tend towards zero but no longer in a regular
way, which prevents a premature convergence.

0

50

100

150

200

250

300

350

400

450

-25 -20 -15 -10 -5 0

0

5

10

15

20

25

30

-6 -4 -2 0 2 4

Figure 17.1. Parabola problem, a memory and an explorer. The behavior of the system is

very different according to the position and initial velocity of the explorer. On the left,

 the first two positions do not frame that of the minimum. The fast velocity decrease prevents

the explorer reaching it. On the right, the first two positions frame that of the minimum.

Here the core use leads the explorer to oscillate around the optimal position and,

moreover, the velocity decreases less quickly, which allows convergence

214 Particle Swarm Optimization

These two types of behavior are highlighted better still by the representation in
the phase space in Figure 17.2. The traditional fundamental structure which appears
almost systematically in the case of convergence towards the solution is that of a
spiral as in the right-hand part of the Figure. As we will see, whether there is one
particle or more (in the sense: explorer + memory) does not make any difference.
For the algorithm to proceed successfully it is necessary, except in very particular
cases, that successive positions are reached on either side of the optimal position:
there must be oscillations. Mathematically, that is translated in our example by the
fact that the scalar product of vectors v and vp − must be negative. In this form, it
is a necessary condition, which can be generalized whatever the dimension of the
search space and the number of particles.

Figure 17.2. Parabola problem, a memory and an explorer, phase space. The two cases of

Figure 17.1 are taken again here, but seen in the plan (position, velocity). The converging

oscillatory behavior is represented by a spiral

17.2.2. Two particles

Let us recall that the term “particle” is taken here with its historical meaning, i.e.
it embraces the double concept of explorer and memory. We thus now have two
explorers and two memories. To remain formally identical to the original PSO, the
information links are those represented in Figure 17.3. Each memory informs the
two explorers but each explorer informs only one memory. Initializations are
deliberately defined identical to the position and velocity of the single particle of the
preceding example, and in both the same cases with the first two positions on the
same side of the origin or on both sides.

-5

-4

-3

-2

-1

0

1

2

3

4

-30 -20 -10 0 10

Position

Velocity
Failure
Success

Dynamics of a Swarm 215

The right-hand side of Figure 17.4 represents the course of particle 2 in this
second case. It is absolutely identical to that partly on the right of Figure 17.1,
because at any moment memory 2 is in better position than memory 1. Thus the
existence of particle 1 does not bring anything to particle 2. However, as the
comparison between the left-hand sides of the two Figure s shows, particle 1 takes
advantage of the existence of particle 2. The information provided to it via memory
2 makes it possible for it also to enter an oscillatory process that would ensure it
convergence if the iterations were prolonged beyond the success of particle 2.

Starting from a more unspecified initial configuration, we obtain the paths

illustrated by Figure 17.5. Each particle takes advantage of the information provided
by the other to manage to oscillate around the optimal position. Thus, on the one
hand, the number of evaluations is doubled with each time increment, since there are
two particles; but, on the other hand, in a simple case like this one, the probability of
reaching the solution (with the precision required) is itself roughly doubled. As a
result, roughly speaking, the effectiveness is the same: about 30 evaluations are
needed to reach the solution.

But then, what is the point in using several particles? It is that the case of two

particles is precisely the limit beyond which the increase in the size of the swarm
will become interesting. The power of PSO lies in the fact that the probability of
reaching the solution by time increment t increases more or less as ()1−NN , where
N is the size of the swarm, whereas the number of evaluations carried out on the
whole until the increment t is only proportional to N (reasoning with N constant
during optimization). This is still only an empirical conclusion (which, moreover, is
no longer valid for greater values of N), but it provides a beginning of an
explanation for the increase in effectiveness with N. Studies in progress, in particular
using statistical mechanics, are trying to validate this observation more firmly.

Figure 17.3. Graph of information 2 + 2. Each explorer receives the information from the

two memories, but informs only one, to conform to the diagram of the traditional PSO, where

explorer and memory are merged in a single particle. That is enough for any improvement

found by the explorer to be known to the other one

216 Particle Swarm Optimization

0

50

100

150

200

250

300

350

400

450

-30 -20 -10 0 10 20

0

5

10

15

20

25

30

-6 -4 -2 0 2 4

Figure 17.4. Two explorers and two memories. The starting points are the same as in the

preceding example. But now the particles work together. However, here, memory 2 is always

better than memory 1: the course of explorer 2 is exactly the same as seen previously in the

event of convergence (Figure on right-hand side). On the other hand, explorer 1 will benefit

from the information provided by memory 2: it will end up converging if the iterations are

continued (Figure on the left)

0

50

100

150

200

250

300

350

-16 -6 4 14

0

20

40

60

80

100

120

-10 -5 0 5

Figure 17.5. Parabola. Two explorers and two memories. We are here in the more general

case where each explorer is from time to time influenced by the memory of the other, when it

becomes better than its own. Convergence, when it takes place, is not necessarily faster

 (here 30 iterations instead of 28), but it is more probable

Dynamics of a Swarm 217

Figure 17.6. Parabola. Two explorers and two memories. Representation of the paths in

phase space. The particles help each other to enter and remain in the oscillatory process

 that allows convergence towards the solution

17.3. Energies

17.3.1. Definitions

We have taken advantage of the preceding examples to underline the interest of
the representations by trajectories in phase spaces. Another traditional method in
dynamics is to consider the evolution of global variables, such as potential energy,
kinetic energy, or entropy. We will be satisfied here with the first two, and
particularly with kinetic energy, but, first, we must give precise definitions of them.
We will accept that the search space is provided with a distance and that the function
f to minimize is numerical.

For the kinetic energy of a particle, whether it is an explorer or a memory, this is
very simple: it is enough to consider two successive positions tx and 1+tx and

calculate the size 2
2

1+−= tt xxe . It is deliberate that velocity has not been

called upon explicitly, because, as we saw for example with the method of pivots,
this quantity is not used in all versions of PSO. Naturally, the total kinetic energy of
a swarm is the sum of those of the particles that are its components.

For the potential energy, it is necessary to take into account the required

precision ε for the desired solution. In addition, we can take advantage of the fact
that this type of energy can be known apart from an additive constant, which avoids

-10

-5

0

5

10

15

20

-30 -20 -10 0 10 20

Position

Velocity
Particle 1
Particle 2

218 Particle Swarm Optimization

us having to use the value of f in its minimum, in general unknown. Then the
potential energy u of a position x can be defined by the formula () εxfu = . It can
be interpreted as the number of “steps” of height ε that the particle must descend to
reach the minimum if its value were zero. Again, the total potential energy of a
swarm is the sum of those of its components.

17.3.2. Evolutions

We already know that, approximately, velocities tend to be cancelled during the
iterative process and the swarm ends up converging somewhere, even if it is not the
desired solution. We can thus expect that the kinetic energy tends on average
towards zero and potential energy towards a constant. But what is particularly
instructive to observe using these sizes is the difference in behavior between a
version of traditional PSO (N particles given at the beginning once and for all) and
an adaptive version for which the size of the swarm is modified as suppressions and
generations dictate.

Let us take for example the Alpine function. An execution with good parameters
easily gives evolutions of energies such those of Figure 17.7. The fact that the
kinetic energy tends towards zero tell us that, overall, the swarm ceases moving;
therefore, that each particle converges towards a fixed position. The fact that, at the
same time, the potential energy also tends towards zero means that, for all the
particles, this position is indeed that of the sought minimum. Here, the number of
explorers is 20, the same as the number of memories. The light fluctuations of
energies, and in particular of the kinetic energy, are due only to an element of
chance in the equations of motion.

With an adaptive PSO like TRIBES, each particle is at the same time explorer

and memory, but their number is modified during the process, by suppressions and
generations. Figure 17.8 then indicates the clear evolution of the size of the swarm
as well as that of the kinetic energy. When this tends towards zero and the objective
therefore is not achieved (which is not represented on the Figure, for the sake of
clarity), there are appreciably more generations than suppressions, which creates a
peak of energy, which we can interpret as a re-augmentation of the exploratory
capacity of the swarm.

As we saw in the chapter on optimal parameters, it is certainly possible, in this

example, to find a solution more quickly than with TRIBES, but it is also possible to
be much less effective if the parameters are not properly selected. An adaptive
version, because it re-starts exploration judiciously, is much more sound.

Dynamics of a Swarm 219

Figure 17.7. Alpine, treated by parametric PSO. The size of the swarm is constant (20) here.

The small variations of energy are only fluctuations due to the partially random

 character of the equations of motion

Figure 17.8. Alpine, treated by adaptive PSO (TRIBES). During the process, particles are

removed and others added. The net assessment is a constant increase in the swarm

(this is not always the case) but, particularly, of the significant peaks of energy

relaunching the exploration when that becomes necessary

0

0,2

0,4

0,6

0,8

1

0 200 400 600

Number of evaluations

N
o

rm
a
li

z
e

d
 e

n
e

rg
y

Kinetic energy
Potential energy

0

0,2

0,4

0,6

0,8

1

0 106 246 400 560

Number of evaluations

N
o

rm
a
li

z
e

d
 e

n
e

rg
y

0

5

10

15

20

25

Nb de particules

Kinetic energy

Number of

explorers

220 Particle Swarm Optimization

17.4. For experienced “amatheurs”: convergence and constriction

The complete analytical study has been made only for the moment in the case of
a single particle and with constant confidence coefficients (non-random). Some of
its elements are given below. For more details, see [CLE 02, TRE 03, VAN 02].

17.4.1. Criterion of convergence

In the case of only one particle, the equations of motion can be written:

() ()
⎩
⎨
⎧

+=
−+−+=

++

+

11

3211

ttt

tttttt

vxx

xgcxpcvcv

where the indices t and t + 1 correspond to two successive time increments. Positing:

⎪
⎩

⎪
⎨

⎧

+
+

=

+=

32

32

32

cc

gcpc
p

ccc

tt

we obtain the canonical system:

()
⎩
⎨
⎧

+=
−+=

++

+

11

11

ttt

ttt

vxx

xpcvcv

The idea is to look at what occurs as long as p is constant. We can then posit
xpy −= and, written in matrix form, the system becomes:

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−−

=⎥
⎦

⎤
⎢
⎣

⎡

+

+

t

t

t

t

t

t

y

v
C

y

v

cc

cc

y

v

11

1

1

1

We now have a traditional dynamic system, whose behavior is entirely
dependent on the eigenvalues of the matrix C. In particular, a condition of
convergence is that these eigenvalues are two combined complex numbers of
modulus less than 1 or two real numbers of absolute values less than 1. They are
solutions of the equation:

() 01
1 11

2

1

1 =+−−+=
−−−

−
ccc

cc

cc
λλ

λ
λ

Dynamics of a Swarm 221

whose discriminant is () 1
2

1 41 ccc −−−=∆ .

Let us recall that here convergence means simply that the particle tends towards
a stable position (velocity tends towards zero). Nothing guarantees that this position
is the sought optimum. It is only the interactions between particles that considerably
increase the chances that this may be the case.

17.4.2. Coefficients of constriction

In traditional PSO, it can happen that the swarm “explodes” (divergence) and
this is why certain authors add a constraint of maximum velocity, which makes an
additional parameter. It was proven [CLE 02] that that was not necessary, with the
proviso one or more coefficients of constriction are used, calculated starting from
the confidence coefficients. To determine them, there are essentially two steps:

 – to see to it that the eigenvalues of C are true complex numbers (negative
discriminant);

 – or to weight the confidence coefficients judiciously when the eigenvalues are
real (positive or null discriminant).

There exists an infinite number of possibilities. Let us simply examine one of
each type, which replace relatively simple formulas. The general idea is to pass by
an intermediate parameter ϕ, according to which one expresses c and 1c , so as to
respect the criterion of convergence.

Negative discriminant

A simple form corresponds to the following relations:

()
⎩
⎨
⎧

=
=
χϕ

ϕχ
c

c1

The matrix of the system is then:

⎥
⎦

⎤
⎢
⎣

⎡
−−

=
χϕχ

χϕχ
1

C

We will seek the coefficient of constriction χ as a function of ϕ and as near to 1
as possible, while guaranteeing that the discriminant of the equation whose
solutions are the eigenvalues of the system remains negative. The condition
“negative discriminating “ is written here:

222 Particle Swarm Optimization

() () 01121 22 <++−− ϕϕχ

It is satisfied only if χ is between the two roots:

()2min
1

21

ϕ
ϕϕ

χ
−
−+

= and
()2max
1

21

ϕ

ϕϕ
χ

−

++
=

It is easy to see that minχ is always less than 1 (for ϕ positive). For 4≤ϕ the
second root maxχ is greater than or equal to 1. We can thus take a coefficient of
constriction equal to 1, i.e. in fact, not of constriction at all. On the other hand,
for 4>ϕ , the coefficient nearest to 1 that we can take is maxχ itself. Constriction is
thus summarized by the following formulas:

()
()

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

⎪
⎩

⎪
⎨

⎧

>
−

++
≤

==

ϕ

ϕ
ϕ

ϕϕ
ϕ

ϕχ

1

2
1 4 si

1

21

4 si 1

cc

c

The common value of the modulus of the complex eigenvalues is then simply

1c , which is at the most equal to 1: the criterion of convergence is satisfied. The

curious reader will be able to find similar formulas (and even simpler ones) starting,
for example, from the relations:

()
⎩
⎨
⎧

−+=
=

χϕχ
ϕχ

1
1

c

c
 or

()
⎩
⎨
⎧

+−=
=

χϕχ
ϕχ

1
1

c

c

Finally, the equations of motion are written:

()
⎩
⎨
⎧

+=
−+=

++

+

11

1

ttt

ttt

vxx

xpvv χϕχ

17.4.3. Positive discriminant

A canonical system even simpler than that we have seen can be written:

()
⎩
⎨
⎧

+=
−+=

++

+

11

1

ttt

ttt

vxx

xpvv ϕ

Dynamics of a Swarm 223

By positing xpy −= , the system becomes:

()⎩
⎨
⎧

−+−=
+=

++

+

11

1

1 ttt

ttt

yvy

yvv

ϕ
ϕ

Its matrix is:

⎥
⎦

⎤
⎢
⎣

⎡
−−

=
ϕ

ϕ
11

1
C

A possible method of constriction consists in multiplying the whole of the matrix
by a coefficient 'χ . The eigenvalues are then solutions of the equation:

() () 0'2'
1''

'' 22 =+−+=
−−−

−
χλϕχλ

λϕχχ
ϕχλχ

We then find:

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
±−=

2

4

2
1'

2 ϕϕϕχλ

These values are real only if one has 4≥ϕ . So that their absolute values are at
most equal to 1, it is necessary and sufficient that this is true for the the largest one,
which gives us directly:

ϕϕϕ
χ

42

2
'

2 −+−
=

According to the way in which it was found, this coefficient is applicable to the
equations of motion:

()
()()⎩

⎨
⎧

−−++=
−+=

++

+
'1

''

11

1

χ
ϕχχ

tttt

ttt

xpvxx

xpvv

whose physical interpretation is far from being obvious, owing to the fact that a
corrective term is applied to displacement due only to velocity. However, it is easy
to check that one always has χχ ≤' (see Figure 17.9). Thus, systematic use of 'χ
whatever the scenario (positive or negative discriminant) is mathematically
acceptable. In the case of a negative discriminant, constriction is certainly a little too

224 Particle Swarm Optimization

strong, but, in practice, the coefficient ϕ is taken to be very slightly greater than 4,
which reduces the risk.

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6

phi

k
h

i

With negative

discriminant

With positive

discriminant

ϕ

χ

Figure 17.9. Coefficients of constriction. The two methods indicated in the text lead to

different formulas. However, the second can be used whether the discriminant of the system is

positive or negative since the value obtained is in any case less than the greatest acceptable

value calculated by the first. Nevertheless, it is better then to take the values of ϕ only slightly

greater than 4, to avoid too strong a constriction and a premature convergence

17.5. Summary

The dynamics of a swarm can be considered on the level of each particle, a
privileged tool being the phase space. Convergence then results in spiral trajectories.
It can also be studied globally, via variables such as the kinetic energy and potential
energy. The examination of the evolution of the kinetic energy shows the difference
in behavior between the traditional PSO and an adaptive version in which the size of
the swarm varies according to the progress of the search: the peaks of energy
announce the revival of exploration when convergence seems to become too slow.

In this chapter, the rather long mathematical part summarizes the calculation of
certain coefficients of constriction, the use of which is of great practical importance.

Chapter 18

Techniques and Alternatives

18.1. Reprise

The major disadvantage of an almost entirely adaptive algorithm is that if the
result is not satisfactory, it is difficult to cure it, since there are no parameters that
the user can exploit. That is why it is interesting to develop techniques for piloting
the search process. They certainly require that the user gets involved again, a little
like parametric PSO, but on a more global level. It will no longer be a question of
carefully defining a particular numerical value but rather of making strategic choices
or, at least, choices of methods.

For example, the user can decide that there must be partial or total re-
initialization of the search a certain number of times or that the generation of a new
particle will have to be done according to a variable probability distribution or that it
is necessary to make several swarms confined by repelling powers work
simultaneously. In addition, the latter example shows that the border between what
one could call complementary techniques and alternatives is not quite clear. The list
is already rather long: non-specific particles with collisions [KRI 02], use of fuzzy
values [SHI 01], definition of various forms of neighborhood [SUG 99, VEE 03],
hybridization of PSO with other methods [KO 04, LOV 01, MIR 02a], local
modification of the function to be minimized [PARS 01a], optimization of a variable
function [CAR 01], “quantum” PSO [SIL 03], use of a negative entropy [XIE 02],
etc.

The goal of this book is not to review them systematically, especially as some

are of limited interest. We will just consider some of them, which are at both of

226 Particle Swarm Optimization

proven effectiveness at least for certain types of problems and relatively easy to
implement by some modifications of a traditional PSO program.

18.2. Stop-restart/reset

In principle, this technique is very simple and very traditional: if there is “no
more hope” of finding a solution, then the process is re-initialized more or less at
random. We see immediately that there are two distinct problems. On the one hand,
it is necessary to define a criterion for giving up the process in progress advisedly
(and especially not too early); and, on the other hand, it is necessary to choose a
method of re-initialization. Such a pair “NoHope/Rehope” is, for example, defined
for the parametric PSO in [CLE 99]. Let us examine it quickly, knowing that, of
course, others are possible (see, for example, in the more general field of stochastic
optimization [LIT 98, NIE 86]).

18.2.1. A criterion of abandonment

A very general criterion often used is Shannon’s entropy [DAV 92], which
evaluates up to what point the found positions are different. But it is especially
interesting for discrete problems and, in the specific case of PSO, it is possible to be
more precise. The first idea is to estimate regularly the volume that the swarm is still
likely to explore, by taking into account the dispersion of the swarm and the
velocities of the particles. Let us note that such a calculation is especially interesting
in non-adaptive PSO or, at least, if there are no particles generated during the search
process. Indeed, such generations can be viewed as partial re-initialization occurring
from time to time. As a result, the need for a total re-initialization is definitely rarer.

We noted in the outline on the dynamics of the swarms that the kinetic energy is
then roughly speaking decreasing. Indeed the equations of motion imply that, on
average, the norm of the velocity vector of a particle is multiplied by a coefficient
less than 1 with each time increment. So even in an infinite time, the particle could
travel only a finite distance, called maximum flight. Thus, even by taking the
extreme case where all the particles would move away from the same point in a
straight line, the total explorable space is still finite. In practice, it is estimated by
taking as central point the center of gravity of the swarm. The criterion considered is
the ratio of volumes of still explorable space and the total search space. Intuitively, it
is advisable to stop wasting time when this ratio becomes too small. Again, it is
necessary to define what that means.

The second idea is then to use the sampling of the search space provided by the

current swarm to calculate pseudo-gradients that give us information on the local

Techniques and Alternatives 227

form of the function to be minimized and to consider that this form remains valid in
still explorable space. Of course, this requires that the search space be provided with
a metric and this is all the more necessary as the swarm is concentrated, i.e. that the
process is already quite advanced. Subject to these reservations, a minimum
threshold that must not be exceeded for the ratio discussed above can in general be
estimated according to the acceptable error given initially by the user. When the
ratio falls below this threshold, the process is stopped, the best found solution is in
general preserved and a re-initialization is carried out. The simplest approach is to
do this completely randomly, exactly like the very first initialization, but it is also
possible to take advantage of the pseudo-gradients already calculated to move all the
particles en bloc.

18.2.2. Guided re-initialization

The initial swarm taken into account is that of the best positions found by the
particles. The very best of them is taken as the central point. The principle is then to
dilate the swarm relative to this central point. For each particle (except the best), the
pseudo-gradient relative to this central point is calculated and then the particle is
moved: the smaller the pseudo-gradient, the farther from this center. The
disadvantage, nevertheless, is that a parameter of the initial dilatation should be
defined slightly greater than 1 (typically 1.1). After each re-initialization, this
coefficient must be increased, for example by multiplying the current value by the
initial value. Indeed, if it is necessary to re-initialize, the reason is that the solution
has not been found and it is thus necessary to dilate the swarm a little more to
increase the explorable portion of space.

18.3. Multi-swarm

It can sometimes be interesting to use several swarms, in particular in
multiobjective optimization [PARS 02] or simply when we do not seek the very
best solution at all costs but just a set of acceptable solutions. As we have seen, these
types of problems can be treated by carrying out the chosen algorithm several times
without re-initializing the pseudo-random number generator, but the goal of multi-
swarm techniques is to obtain a better distribution of the solutions obtained.

The general idea is to differentiate the particles by a characteristic (“color” or
“charge”) and then to define at least a law of repulsion, for example in inverse
proportion to the square of the distance between two particles [BLA 02]. Others are
of course possible. Thus the one defined in [GAZ 03] induced an attraction at great
distances and a repulsion at short distances, which guarantees convergence towards
a stable position but goes against what we wish (regrouping of each swarm on an

228 Particle Swarm Optimization

interesting position). In addition we will speak here rather about color, because for
more than two swarms the literal formulation of the laws of attraction and repulsion
can be very simple; for example, particles of the same color attract each other and
those of different colors repel each other. Besides, one finds this idea in [BER 03]
for an optimization algorithm based on the metaphor of ant colonies.

To add just one law of repulsion is easy to formalize and program, since a sum of

additional terms in the calculation of the displacement of each particle will be
enough. More precisely, for a particle of given position x, the repulsive contribution
of every other particle of position y could be:

 – null if the two particles are of the same color;

 – equal to ()
2 3

x y
x y

x yx y x y

λ λ− = −
−− −

, where the coefficient λ is

positive, if the two particles are different colors.

The experiment shows that the law of attraction inherent in PSO is, moreover,
sufficient, provided, obviously, that each particle uses only informants of its own
color. Each swarm of a given color tries to converge for its own sake, while being
constrained by the others. A disadvantage is that it is necessary to recompute the
distances between particles with each iteration, but the principal difficulty of
implementation is the estimate of the additional parameter λ . Important theoretical
work remains to be done here either to guide the user in the choice of the value of
this parameter or, better, to calculate it automatically in an adaptive way, perhaps
using a measurement of discrepancy between swarms and measurements of
concentration of each swarm. Another possible track would be to take as a starting
point the biological phenomenon of speciation and to make the colors diverge from
the particles, especially as the exchanges of information between them are rare.

18.4. Dynamic optimization

The rapidity of the convergence of PSO turns it into a privileged tool for
dynamic problems, in the sense of a function to be minimized that changes in the
course of the search process [CAR 00, EBE 01, HU 02a, PARS 01b]. As we have
seen in the applications, the crudest method simply consists of not being concerned
at all by the evolution of the function by hoping that it remains appreciably slower
than convergence. But it is possible to do better, either by detecting the changes, or
by being informed of these changes.

To know if the function was modified, a memory-particle must recompute its
value for at least one of its memorized positions (besides, in the simplest case, there
is only one of them). If the found value is different from that previously calculated,

Techniques and Alternatives 229

it is advisable to re-actualize the memories. Some refinements can be brought to this
scheme. For example, detection can be done starting from a more or less large
number of memory-particles, the two extremes being only one particle (the very
best) and all the particles, the first case being obviously the most economical but
also the least reliable, in the sense that the detected modification can be only very
local and not really requiring a recalculation of all the positions. And also, it is
possible to take into account only “significant” variations, i.e. in practice greater
than the acceptable threshold of error.

For certain applications, it can be the system optimizing itself that announces its

change of state to the optimizer. Or the optimizer may be informed in advance
which changes take place at given times, for example in a regular way.

However, the difficulty is not so much in detecting if a change took place or

being informed about it, but rather in knowing which strategy to adopt if it is indeed
the case. The most radical approach is to recompute the values of the function for all
the memorized positions, but it is also possible to do this only for the positions
closest to those used for detection. Here again, we are only at an almost completely
empirical stage. Even if the results published seem convincing, it would be advisable
to make the tool more easily usable, perhaps starting from sampling theory.

18.5. For “amatheurs”

18.5.1. Maximum flight and criterion of abandonment

To clarify our ideas, let us examine a very simple canonical system of equations
of motion, considering only one particle:

()1

1 1

t t

t t t

v p x

x x v

ϕ+

+ +

= −⎧⎪
⎨

= +⎪⎩

It is the recursive representation (iterative). By noting that:

()()
1

11
t t t

t

p x p x v

p xϕ
−

−

− = − −
= − −

we immediately deduce from it the direct analytical representation in the case p

constant:

() ()01 t
tv p xϕ ϕ= − −

With this simple model, convergence is ensured for] [0, 2ϕ ∈ . The maximum

flight tV is calculated by:

230 Particle Swarm Optimization

()] [
()] [

0

0

1 si 0,1

1 si 1,2

t t

u t

t

t
t

V v

p x

p x v

ϕ ϕ

ϕ ϕ ϕ

∞

=
=

= − − ∈

= − − = ∈

∑

The radius of the explorable space, centered on the current position, is at most
equal to tV . Let gravx be the center of gravity of the swarm. Let us calculate the
pseudo-gradient:

() ()grav

grav

f x f xf

x x x

∆
∆

−
=

−

If ε is the acceptable maximum error, our criterion will then be simply:

t
f

V
x

∆ε
∆

<

18.5.2. Dilation

We define an initial dilation coefficient 0ζ , a little greater than 1. Let reinitn be
the number of re-initializations already carried out. At the beginning, the current
dilation coefficient ζ is equal to 0ζ . With each re-initialization, the following
operations are carried out:

 – displacement of the particle by grav grav
x

x x x x
f

ζ ⎛ ⎞∆← + − +⎜ ⎟∆⎝ ⎠
;

 – recalculation of the current dilation coefficient 0ζ ζζ= .

The smaller the gradient, the more the particle is moved. The more re-
initialization, the more the dilation coefficient increases.

18.6. Summary

Among the many complementary techniques and alternatives of PSO, three are
presented briefly: stop-restart, multi-swarm, and dynamic optimization. The last,
consisting of tracking the optimum of a function that changes permanently, is
undoubtedly the one that has the greatest practical importance. Detailed study of
these alternatives is beyond the scope of this book, but the interested reader will be
able to consult with profit the references given.

Further Information

To get information, discuss

A good deal of information concerning PSO can be obtained via the portal
dedicated to it on the Internet: Particle Swarm Central

(http://www.particleswarm.info). In particular, you will find links there to various
bibliographies, downloadable documents, and programs. The majority of the
researchers in the field are also referred to there. Many have personal sites that
deserve to be visited. They will enrich your documentation and your knowledge of
the subject.

There are PSO researchers everywhere: in the United States, of course, the
country of origin of the first version, but also in China, Portugal, Brazil, France, etc.,
even in Fiji! The lingua franca used is often “international” English, but certain
researchers also publish in their mother tongue. That is why, when undertaking
bibliographical research, it is important not to limit it to English.

As an indication, here are some principal translations of “optimization by

particle swarm” in several languages.

English (United States of America) Particle Swarm Optimization

English Particle Swarm Optimisation

French Optimisation par essaim particulaire

Portuguese Optimización de enjambre de partículas

German Particle Swarm Optimierung

Chinese ₂啀寒永湿ゝ®

232 Particle Swarm Optimization

PSO in the world. Each dark gray disk indicates the usual place of work of at least one

researcher in this field. The American, European, and Chinese schools are particularly

active, but many other areas of the world are also represented. The language of

communication is often “international” English. Nevertheless, it is worthwhile to make

bibliographical researches relating to other languages.

The majority of researchers in the field will be pleased to answer your questions
... provided you take the trouble to write to them in a language they understand! In
addition, there is a specific mailing list to which you can subscribe, on the site
Computelligence World. The direct link is http://www.computelligence.org/cgi-
bin/index.cgi?cat = 80. It is also on the home page of Particle Swarm Central.

Test, contribute

All the programs mentioned in Particle Swarm Central are in the public domain.
If you just wish to use PSO without asking too many questions, you can directly try
an adaptive program like TRIBES, but it is much more instructive to start with
programs whose code is easier to understand. Remember that there is a very simple
one in this book (in Chapter 6).

Those who are users of MatLab® or, better, the free compatible software SciLab
(http://scilabsoft.inria.fr/) will be able to use Jagatpreet Singh’s PSO TOOLBOX
and even contribute to it. More generally, if one day you think you have done
something interesting with PSO, send an email to pso@writeme.com, in French or
English. The elements you will provide could possibly be put on line, for the benefit
of all.

Bibliography

[ANG 98] ANGELINE P.J., “Using Selection to Improve Particle Swarm Optimization”,
IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, May
4-9, p. 84-89, 1998.

[BAR 05] BARITOMPA W.P., HENDRIX E.M.T., “On the investigation of Stochastic
Global Optimization algorithms”, Journal of Global Optimization, 2003. In the press.
Available online at http://www.mat.univie.ac.at/~neum/glopt/mss/BarH01.pdf.

[BER 03] BERTELLE C., DUTOT A., GUINAND F., Olivier D., “Color ant populations
algorithm for dynamic distribution in simulations”, poster presented at European
Simulation Symposium and Exhibition, Delft, the Netherlands, 2003.

[BLA 02] BLACKWELL T.M., BENTLEY P.J., “Dynamic Search with Charged Swarms”,
Genetic and Evolutionary Computation Conference, San Francisco, p. 19-26, 2002.

[BLA 04] BLACKWELL T., BRANKE J., “Multi-Swarm Optimization in Dynamic
Environments”, in G.R. Raidl (dir.), Applications of Evolutionary Computing, LNCS, vol.
3005, Springer, p. 488-599, 2004.

[BRA 03] BRANKE J., SCHMECK H., “Designing evolutionary algorithms for dynamic
optimization problems”, Natural Computing, Advances in Evolutionary Computing:

Theory and Applications, Springer-Verlag, p. 239-262, 2003.

[CAR 00] CARLISLE A., DOZIER G., “Adapting Particle Swarm Optimization to Dynamics
Environments”, International Conference on Artificial Intelligence, Las Vegas, Nevada,
USA, p. 429-434, 2000.

[CAR 01] CARLISLE A., DOZIER G., Alignment changing extrema with particle swarm
optimizer, Auburn University, Cse01-08, 2001.

[CHI 98] CHIN T., MITAL D., “Year Evolutionary Approach in Training Feed-Forward and
Recurrent Neural Networks”, Second International Conference on Knowledge-Based

Intelligent Electronic Systems, Adelaide, Australia, p. 596-602, 1998.

[CLE 99] CLERC M., “The Swarm and the Queen: Towards a Deterministic and Adaptive
Particle Swarm Optimization”, Congress on Evolutionary Computation, Washington
D.C., p. 1951-1955, 1999.

234 Particle Swarm Optimization

[CLE 02] CLERC M., KENNEDY J., “The Particle Swarm-Explosion, Stability, and
Convergence in a Multidimensional Complex Space”, IEEE Transactions on Evolutionary

Computation, vol. 6, p. 58-73, 2002.

[CLE 04] Clerc M., “Discrete Particle Swarm Optimization, illustrated by the Traveling
Salesman Problem”, in New Optimization Techniques in Engineering, Springer,
Heidelberg, p. 219-239, 2004.

[COE 02] COELLO COELLO A.C., LECHUGA M.S., “MOPSO: with Proposal for Multiple
Objective Particle Swarm Optimization”, Congress on Evolutionary Computation (CEC’

2002), Piscataway, New Jersey, p. 1051-1056, 2002.

[CON 02] CONRADIe A.V.E., MIIKKULAINEN R., ALDRICH C., “Adaptive Control
utilising Neural Swarming”, Genetic and Evolutionary Computation Conference

(GECCO), New York, USA, 2002.

[CRI 03] CRICHTON M., Prey, HarperCollins Publishers, 2003 (trad: la Proie, Robert
Laffont, Paris, 2004).

[DAV 92] DAVIDOR Y., BEN-KIKI O., “The interplay among the genetic operators:
Information theory tools used in a holistic way”, Parallel Problem Solving from Nature,
Elsevier Science, Amsterdam, p. 75-84, 1992.

[DER 03] DEROÏAN F., STEYER A., Apprentissage social et diffusion de l’innovation:
Réseaux critiques et intermédiarité, CNRS, Oses-University of Paris, 2003.

[DOR 04] DORIGO M., STÜTZLE T., Ant Colony Optimization, The MIT Press, Cambridge,
Massachusetts, 2004.

[DRE 03] DRÉO J., PÉTROWSKI A., SIARRY P., TAILLARD E., Metaheuristiques for

difficult optimization, Eyrolles, Paris, 2003.

[EBE 95] EBERHART R.C., KENNEDY J., “A New Optimizer Using Particle Swarm
Theory”, 6th International Symposium on Micro Machine and Human Science, Nagoya,
Japan, p. 39-43, 1995.

[EBE 96] EBERHART R.C., SIMPSON P.K., DOBBINS R.W., Computational Intelligence

PC Tools, Academic Press, Boston, 1996.

[EBE 98] EBERHART R.C., SHI Y., “Comparison between genetic algorithms and particle
swarm optimization”, Evolutionary Programming VII, San Diego, 1998.

[EBE 01] EBERHART R.C., SHI Y., “Tracking and optimizing dynamic systems with
particle swarms”, Congress on Evolutionary Computation, Seoul, 2001.

[FRI 84] FRISCH K.V., Life and manners of the bees, Albin Michel, Paris, 1984.

[GAC 02] GACÔGNE L., “Steady state evolutionary algorithm with an operator family”,
EISCI, Kosice, Slovaquie, p. 373-379, 2002.

[GAZ 03] GAZI V., PASSINO K.M., “Stability Analysis of Swarms”, IEEE Trans. on

Automatic Control, vol. 48, no. 4, p. 692-697, April 2003.

[GLO 97] GLOVER F., LAGUNA M., Tabu Search, Kluwer Academic Publishers, New
York, 1997.

Bibliography 235

[GUD 03] GUDISZ V.G., VENAYAGAMOORTHY G.K., “Comparison of particle swarm
optimization and backpropagation as training algorithms for neural networks”, IEEE

Swarm Intelligence Symposium 2003 (SIS 2003), Indianapolis, Indiana, USA, p. 110-117,
2003.

[HEL 98] HELSGAUN K., Year Effective Implementation of the Flax-Kernighan Traveling
Salesman Heuristic, Department of Computer Science, University of Roskilde, Denmark,
1998.

[HU 02a] HU X., EBERHART R.C., “Adaptive particle swarm optimization: detection and
response to dynamic systems”, Congress on Evolutionary Computation, Hawaii, p. 1666-
1670, 2002.

[HU 02b] HU X., EBERHART R.C., “Multiobjective Optimization Using Dynamic
Neighborhood Particle Swarm Optimization”, Congress on Evolutionary Computation

(CEC 2002), Piscataway, New Jersey, p. 1677-1681, 2002.

[ISM 99] ISMAIL A., ENGELBRECHT A.P., “Training Products Units in Feedforward
Neural Networks using Particle Swarm Optimization”, International Conference on

Artificial Intelligence, Durban, South Africa, p. 36-40, 1999.

[JEA 03] JEANNET B., MESSINA F., “Deterministic method of total optimization for the
hybrid problems”, 5eme

congrès de la Société Française de Recherche Opérationnelle et

d’Aide à la Décision (ROADEF 2003), Avignon, France, p. 273-274, 2003.

[JEN 96] JENIGIRI S., Comparative study of efficiency of Genetic Algorithms and Particle
Swarm Optimization technical to solve permutation problems, internal Rapport, Computer
Society of India, University of Mysore, 1996.

[KEN 95] KENNEDY J., EBERHART R.C., “Particle Swarm Optimization”, IEEE

International Conference on Neural Networks, Perth, Australia, p. 1942-1948, 1995.

[KEN 97] KENNEDY J., EBERHART R.C., “A discrete binary version of the particle swarm
algorithm”, Conference on Systems, Man, and Cybernetics, p. 4104-4109, 1997.

[KEN 99] KENNEDY J., “Small Worlds and Mega-Minds: Effects of Neighborhood
Topology on Particle Swarm Performance”, Congress on Evolutionary Computation,
Washington, p. 1931-1938, 1999.

[KEN 00] KENNEDY J., “Stereotyping: Improving Particle Swarm Performance with Cluster
Analysis”, Congress on Evolutionary Computation, p. 1507-1512, 2000.

[KEN 01] KENNEDY J., EBERHART R., SHI Y., Swarm Intelligence, Morgan Kaufmann
Academic Press, San Fransisco, 2001.

[KO 04] KO PC, LIN P.-C., “A Hybrid Swarm Intelligence Based Mechanism for Earning
Forecast”, International Conference on Information Technology for Application (ICITA

2004), 2004.

[KRA 04] KRAHENBUHL R.A., LI Y., Hybrid optimization for a binary inverse problem,
Gravity and Magnetics Research Consortium, Department of Geophysics, Colorado
School of Mines, CGEM (Center for Gravity, Electrical & Magnetic studies),
http://www.geophysics.mines.edu/cgem/pubs.html, 2004.

[KRI 02] KRINK T., Vesterstrøm J., Riget J., “Particle Swarm Optimisation with Spatial
Particle Extension”, Congress on Evolutionary Computation (CEC), 2002.

236 Particle Swarm Optimization

[LAM 04] LAMPINEN J., STORN R., “Differential Evolution”, in New Optimization

Techniques in Engineering, Springer, Heidelberg, p. 124-166, 2004.

[LIT 98] LITINETSKI V.V., ABRAHAMZON B.M., “A multistart adaptive random search
method for total constrained optimization in engineering applications”, Engineering

optimization, vol. 30, p. 125-154, 1998.

[LOV 01] LØVBJERG MR., KIEL RASMUSSEN T., KRINK T., “Hybrid Particle Swarm
Optimiser with Breeding and Subpopulations”, Genetic and Evolutionary Computation

Conference (GECCO), p. 469-476, 2001.

[MAU 75] MAURIN J., Simulation déterministe du hasard, Masson, Paris, 1975.

[MEN 02] MENDES R., CORTEZ P., ROCHA MR., FIRNS J., “Particle Swarms for
Feedforward Networks Training”, International Conference on Neural Networks,
Honolulu (Hawaii), USA, p. 1895-1889, 2002.

[MIR 02a] MIRANDA V., FONSECA N., “EPSO – Best-of-Two-Worlds Meta-Heuristic
Applied to Power System Problems”, WCCI/CEC – World Conference on Computational

Intelligence, Conference on Evolutionary Computation, Honolulu (Hawaii), USA, 2002.

[MIR 02b] MIRANDA V., FONSECA N., “EPSO – Evolutionary self-adapting Particle
Swarm Optimization”, INESC, Oporto, Portugal, 2002.

[MOH 01] MOHAN C.K., AL-KAZEMI B., “Discrete Particle Swarm Optimization”,
Workshop on Particle Swarm Optimization, Indianapolis, Purdue School of Engineering
and Technology, 2001.

[NIE 86] NIEDERREITER H., PEART P., “Localisation of search in quasi-Monte Carlo
methods for global optimization”, SIAM J Sci. Statist. Comput., vol. 7, p. 660-664, 1986.

[ONW 04a] ONWUBOLU G.C., “TRIBES application to the flow shop scheduling problem”,
New Optimization Techniques in Engineering, Springer, Heidelberg, p. 517-536, 2004.

[ONW 04b] ONWUBOLU G.C., SHARMA A., “Particle Swarm Optimization for the
Assignment of Facilities to Locations”, New Optimization Techniques in Engineering

Springer, Heidelberg, p. 517-536, 2004.

[OVE 03] OVE R., POPPLE R., Sequential annealing – gradient Gamma-Knife radiosurgery
optimization, Department of Radiation Oncology, University of Alabama, Birmingham,
AL, Physics in Medicine and Biology, 2003.

[PAR 1896] PARETO V., Cours d’Economie Politique, Rouge, Lausanne, Switzerland, 1896.

[PARS 01a] PARSOPOULOS K.E., PLAGIANAKOS V.P., MAGOULAS G.D.,
VRAHATIS M.N., “Improving Particle Swarm Optimizer by Function ‘Stretching’”,
Advances in Convex Analysis and Global Optimization, p. 445-457, 2001.

[PARS 01b] PARSOPOULOS K.E., VRAHATIS M.N., “Particle Swarm Optimizer in Noisy
and Continuously Changing Environments”, Artificial Intelligence and Soft Computing,
IASTED/ACTA Press, p. 289-294, 2001.

[PARS 02] PARSOPOULOS K.E., VRAHATIS M.N., “Particle Swarm Optimization Method
in Multiobjective Problems”, ACM Symposium on Applied Computing (SAC 2002), p.
603-607, 2002.

Bibliography 237

[PSC] Particle Swarm Central, http://www.particleswarm.info.

[QUI 93] QUINLAN J., “Combining instance-based and model-based learning”, Machine

Learning (Ml' 93), San Mateo, 1993.

[RIE 94] RIEDMILLER M., “Supervised in Multilayer Perceptrons – from Backpropagation
to Adaptive Learning Techniques”, Computer Standards and Interfaces, vol. 16, 1994, p.
265-278.

[SAL 01] SALMAN A., IMTIAZ A., AL-MADANI S., “Discrete particle swarm
optimization for heterogeneous task assignment problem”, World Multiconference on

Systemics, CYbernetics and Informatics (SCI 2001), 2001.

[SAN 90] SANDGREN E., “Non linear integer and discrete programming in mechanical
design optimization”, Transactions of the ASME, Journal of Mechanical Design, vol. 112,
p. 223-229, 1990.

[SCH 02] SCHOOFS L., NAUDTS B., “Swarm intelligence on binary constraint satisfaction
problems”, Conference on Evolutionary Computation (CEC 2002), Pistacaway, New
Jersey, USA, p. 1444-1449, May 2002.

[SEC 01a] SECREST B.R., Traveling Salesman Problem for Surveillance Mission using
Particle Swarm Optimization, Air Force Institute of Technology AFIT/GCE/ENG/01M-
03, 2001.

[SEC 01b] SECREST B.R., Lamont G.B., “Communication in Particle Swarm Optimization
Illustrated by the Traveling Salesman Problem”, Workshop on Particle Swarm

Optimization, Indianapolis, Purdue School of Engineering and Technology, 2001.

[SER 97] SERRA P., STANTON A.F., KAIS S., “Pivot method for global optimization”,
Physical Review, vol. 55, p. 1162-1165, 1997.

[SET 03] SETTLES MR., RODEBAUGH B., “Comparison of genetic algorithm and particle
swarm optimizer when evolving a recurrent neural network”, Genetic and Evolutionary

Computation Conference 2003 (GECCO 2003), Chicago, USA, p. 151-152, 2003.

[SHI 98a] SHI Y., EBERHART R.C., “Parameter Selection in Particle Swarm Optimization”,
Evolutionary Programming VII, 1998.

[SHI 98b] SHI Y., EBERHART R.C., “A Modified Particle Swarm Optimizer”, International

Conference on Evolutionary Computation, Anchorage, Alaska, May 4-9, p. 69-73, 1998.

[SHI 01] SHI Y., EBERHART R.C., “Fuzzy Adaptive Particle Swarm Optimization”,
Congress on Evolutionary Computation, Seoul, 2001.

[SIL 03] SILAGADZE Z.K., Finding Two-Dimensional Peaks, http://arxiv.org/abs/physics/
0402085, 2003.

[SMO 04] SMOLIN L., “Des atomes d’espace et de temps”, Pour la Science, p. 46-55, 2004.

[STO 99] STORN R., “Designing digital filters with differential evolution”, New Ideas in

Optimization, McGraw-Hill, New York, p. 109-125, 1999.

[SUG 99] SUGANTHAN P.N., “Particle Swarm Optimiser with Neighbourhood Operator”,
Congress on Evolutionary Computation, Washington, p. 1958-1962, 1999.

238 Particle Swarm Optimization

[TAN 02] TANDON V., EL-MOUNAIRY H., KISHAWY H., “NC end milling optimization
using evolutionary computation”, International Journal of Machine Tools &

Manufacture, vol. 42, p. 595-605, 2002.

[TRE 03] TRELEA I.C., “The particle swarm optimization algorithm: convergence analysis
and parameter selection”, Information Processing Letters, vol. 85, p. 317-325, 2003.

[VAN 99] VAN DEN BERGH F., “Particle Swarm Weight Initialization in Multi-layer
Perceptron Artificial Neural Networks”, Development and Practice of Artificial

Intelligence Techniques (Durban, South Africa), p. 41-45, 1999.

[VAN 01] VAN DEN BERGH F., ENGELBRECHT A.P., “Training Product Unit Networks
using Cooperative Particle Swarm Optimisers”, IJCNN 2001, Washington, USA, 2001.

[VAN 02] VAN DEN BERGH F., “An Analysis of Particle Swarm Optimizers”, Department

of Computer Science, University of Pretoria, Pretoria, South Africa, 2002.

[VEE 03] VEERAMACHANENI K., PERAM T., MOHAN C., OSADCIW L.A.,
“Optimization Using Particle Swarms with Near Neighbor Interactions”, Genetic and

Evolutionary Computation Conference (GECCO), 2003.

[WAT 03] WATTS D.J., Six Degrees: The Science of a Connected Age, Norton, New York,
2003.

[WHI 98] WHITE T., PAGUREK B., OPPACHER F., “ASGA: improving the ant system by
integration with genetic algorithms”, 3rd

Genetic Programming Conference, p. 610-617,
1998.

[XIE 02] XIE X.-F., ZHANG W.-J., YANG Z.-L., “A dissipative particle swarm
optimization”, IEEE Congress on Evolutionary Computation (CEC 2002), Honolulu,
Hawaii, USA, 2002.

[YOS 01] YOSHIDA H., KAWATA K., FUKUYAMA Y., “A Particle Swarm Optimization
for Reactive Power and Voltage Control considering Voltage Security Assessment”, IEEE

Trans. on Power Systems, vol. 15, p. 1232-1239, 2001.

[ZDA 02] ZDANSKY MR., POZIVIL J., “Combination Genetic/Tabu Search algorithm for
Hybrid Flowshops Optimization”, ALGORITMY 2002, Conference on Scientic

Computing, p. 230-236, 2002.

[ZEL 04] ZELINKA I., “SOMA – Self-Organizing Migrating Algorithm”, New Optimization

Techniques in Engineering, Springer, Heidelberg, p. 168-217, 2004.

[ZHA 01] ZHANG C., SHAO H., “Particle Swarm Optimisation in Feedforward Neural
Network”, Artificial Neural Networks in Medicine and Biology (ANNIMAB), 2001

[ZHA 03a] ZHANG W., LIU Y., CLERC M., “An Adaptive PSO Algorithm for Reactive
Power Optimization”, Advances in Power System Control Operation and Management

(APSCOM), Hong Kong, 2003.

[ZHA 03b] ZHANG W., XIE X.-F., “DEPSO: hybrid particle swarm with differential
evolution operator”, Proceedings IEEE International Conference on Systems, Man and

Cybernetics, p. 3816-3821, 2003.

 Index

A, B

abandonment (criterion of) 226
Ackley 52
adaptation 129

criteria 129
frequency 144
nonparametric 133
parametric 132, 136

adjusted ellipsoid 112
algorithm

greedy 203
of reference 23

“all different” confinement 156
Alpine 10D 57
alternatives 225
apagogy 155
apiarian metaphor 29
backpropagation 174
behavior

collective 17
cooperative 31
individual 17

benchmark set 51
better parameter settings for 122
results 147

C

centroid 98
channel of communication 92
chaos 201
circular

diagram 32
neighborhood 87

coefficient of
confidence 34
constriction 221

collective 17
behavior 17
intelligence 13

combinatorial problems 201
comparison

by pseudo-gradients 147
direct 147

competence, field of 38
competition 35
confinement

“all different” 156
by dichotomy 157
constraint 151
granularity 156
interval 40, 154
method 203

constraint 151
by homeomorphism 162
by penalties 161
confinement 151
imperative 153
indicative 153
multicriterion 158
representation of the 152

constriction 220
convergence 220
cooperation 18, 35, 139

240 Particle Swarm Optimization

D

D-rectangle 16
D-sphere 16
diabetes in Pima Indians 175
dichotomy (confinement by) 157
differential evolution 185
difficulty

estimate of 26, 56
intrinsic 26
measurement 23

discrete variable 154
displacement 31

strategies of 145
distribution

bias 45
isotropic 118
local 107
multidimensional 134
one-dimensional 107
proximity 103
random 34
rectangular 104
source code 107
uniform 39, 118

diversity 32, 34
dynamic optimization 228
dynamics of a swarm 211

E

ecological niche 167
effectiveness, criterion of 71
ellipsoidal positive sectors 105
energy

kinetic 217
potential 217

error
acceptable 24
of follow-up 186

estimate of
difficulty 26,56
rate of failure 65

exclusive OR 175
explorer

particle 89
swarm 89

explosion 48

F

forced homeomorphism 162
function 30

Ackley 52
Alpine 24, 52
Griewank 52
parabola 52
of reference 53
Rosenbrock 52
of test 51
Tripod 52

G

generation of a particle 144
granularity confinement 156
graphs

of influence 87
of information 127

greedy algorithm 224
Griewank 52
group

of information receivers 31
size 18

H, I

heuristics
general purpose 190
meta 190
mono 190

hybrid JM 173
hyperparallelepid 16
hypersphere 16
I-group 32
independent Gaussian 106
information

graph 33
link 30, 33, 38
path 141
propagation 34

informant 31, 32
average number of 49
best 146
influence of the number of 93

information receivers 31
initialization 38

Index 241

interesting site 30
interval confinement 154

J, K, L

KISS 62
link of information 30
list

not ordered 155
ordered 155

local optimum 17

M

mailing list 232
memories

mixing 97
influence of the number 95

magic squares 170
minimal version 37
mixing of the memories 97
metaheuristic 190
method

anarchistic 18
collective 18
hybrid 14
iterative 18

mode
parallel 196
sequential 196

motion
equations of 39

moving peaks 185
multicriterion treatment 158
multi-swarm 14, 227
multiobjective 227

N, O

neighborhood
circular 87
geographical 87
social 87

neural network 174
normal law 66
one-dimensional

distribution 107
class 161

PSO 13, 18
adaptive 13
autonomous 35
canonical 14, 204
traditional 40
history 206
world 232

OEP 0 (source code) 45, 85
optimization

algorithm 40
collective 18
continuous 190
dynamics 186, 228
iterative 17, 31, 43
linear 151
canonical representation 169
stochastic 62, 103

optimal parameter settings 121

P

parabola 54
parallelism 14, 211
parameter setting

handbook 50, 131
optimum 131

particle
bad 142
best 142
confined 144
excellent 142
explorer 89
free 144
generation of a 144
good 141
quality 141
memory 228
neutral 142
status 142
suppression 142
worst 142

Particle Swarm Central 231
performance

best 32
maps 73

Pima Indians 175
pivot 108

242 Particle Swarm Optimization

Gaussian 111
with noise 110

polyheuristic 190
possible randomness 113
probability of failure 25
problem

combinatorial 23
compression spring 182
continuous 26
difficult 23
discrete 26
hybrid JM 173
knapsack 169
linear 34
magic squares 170
nonlinear 18
pressure vessel 177
quadratic assignment 171
traveling salesman 172
typology 168

propagation 34
proximity

random 34
distribution of 42, 103

pseudo-gradient 147
pseudo-random

number 59
number generator 27

PSO TOOLBOX 232
Pyramid topology 176

Q, R

quadratic assignment 171
quality

particle 141
tribe 141

queen 88
rate of failure, estimate of a 65
recruitment

direct 92
by channel of communication 92
random 99

reference (function of) 57
re-initialization 227
reorganizations of memory-swarm 97
replacement of a particle 131

results
analyze of the 125
benchmark set 147
comparative 98
comparisons of 113
first 71

robustness 73
Rosenbrock 54
Rprop 174
rumor, propagation of 30

S

SciLab 232
search

effort 58
space 122

selection 18, 35, 131
servomechanism 176
simple program 71

specific 14
social neighborhood 87
SOMA 179
source codes 15

dichotomy 162
KISS 69
OEP 0 80

status
particle 142
tribe 142

stop-restart/reset 224
strategy 17, 30

displacement 145
stupid 18

structuring 18
suppression

particle 142
tribe 142

swarm
dynamics 211
evolution 145
explorer- 89
memory 87, 97
size 30, 37

syncretism 189

Index 243

T, U

technical terms 17
test functions 51
temporal

connectivity 99
decrease 130
formulas of 135
weighting with 130

tolerance level 24
topology

fixed 90, 93
of problems 168
Pyramid 176
random 90, 95

trade-off surface 159
training of a neural network 174
traveling salesman 15, 172, 205

treatment by penalties 174
tribal relationship 141
TRIBES 18, 139, 140
tribe 141

good 142
bad 142
quality 142
status 142
suppression 142

Tripod 53

V-Z

velocity 34
initialization 32
maximum 48

weighting with temporal decrease 130

