Circles and Spheres • Congruent Triangles and Transformations
Exploring Geometry: Points, Lines, and Angles in a Plane
Parallel Lines and Transversals • and more

Geometry

By Michael Buckley

Development and Production: Frishco Ltd. and Pearl Production

ISBN-13: 978-1-61651-423-5
ISBN-10: 1-61651-423-X
eBook: 978-1-60291-800-9
Copyright ©2006, 2011 by Saddleback Educational Publishing. All rights reserved. No part of this book may be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording, scanning, or by any information storage and retrieval system, without the written permission of the publisher, with the exception below.

Pages labeled with the statement ©Saddleback Educational Publishing are intended for reproduction. Saddleback Educational Publishing grants to individual purchasers of this book the right to make sufficient copies of reproducible pages for use by all students of a single teacher. This permission is limited to a single teacher, and does not apply to entire schools or school systems.

Printed in the United States of America

Table of Contents

Points, Segments, Rays, Lines, and Planes 1
Measuring Segments 2
Using Formulas 3
Types of Angles. 4
Complementary and Supplementary Angles 5
Pairs of Angles 6
Parallel Lines: Types of Angles 7
Parallel Lines: Angle Relationships 8
Proving Lines Are Parallel 9
Classifying Triangles. 10
Interior and Exterior Angles in Triangles 11
Corresponding Parts of Triangles 12
Triangle Congruence: Side-Side-Side Congruence 13
Triangle Congruence: Side-Angle-Side Congruence. 14
Triangle Congruence: Angle-Side-Angle Congruence 15
Triangle Congruence: Angle-Angle-Side Congruence 16
Choosing the Correct Congruence Postulate 17
Isosceles Triangle Theorem 18
Triangle Mid-segment 19
Hypotenuse-Leg Theorem 20
Triangle Inequalities: Inequalities for Sides and Angles 21
Triangle Inequality Theorem. 22
The Pythagorean Theorem 23
Converse of the Pythagorean Theorem 24
Special Right Triangles: $45^{\circ}-45^{\circ}-90^{\circ}$ Right Triangles 25
Special Right Triangles: $30^{\circ}-60^{\circ}-90^{\circ}$ Right Triangles 26
Trigonometric Ratios 27
Inverse of Trigonometric Ratios 28
Angles of Elevation and Depression 29
Types of Polygons 30
Sum of Polygon Angle Measures 31
Types of Quadrilaterals 32
Properties of Parallelograms 33
Properties of Trapezoids 34
Diagonals in Parallelograms 35
Exterior Angles of a Polygon 36
Proportions 37
Solving Proportions 38
Similar Polygons 39
Triangle Similarity: Angle-Angle Similarity. 40
Triangle Similarity: Side-Side-Side Similarity 41
Triangle Similarity: Side-Angle-Side Similarity 42
Finding Lengths in Similar Triangles 43
Proportions in Triangles: Side-Splitter Theorem 44
Triangle-Angle Bisector Theorem 45
Circles and Circumference 46
Exploring π 47
Arc Length. 48
Inscribed Angles 49
Angle Measures in Circles 50
Finding Segment Lengths 51
Equation of a Circle 52
Perimeter 53
Perimeter and Similar Figures. 54
Area of a Triangle 55
Area of a Parallelogram 56
Area of Similar Figures 57
Area of a Trapezoid 58
Area of a Rhombus or Kite 59
Area of a Circle 60
Area of a Sector of a Circle 61
Area of Regular Polygons 62
Area of an Irregular Shape 63
Comparing Area and Perimeter 64
Using Trigonometry to Find the Area of a Triangle 65
Geometric Probability 66
Types of Solids 67
Solids and Euler's Formula 68
Surface Area: Prisms. 69
Surface Area: Cylinders 70
Surface Area: Pyramids 71
Surface Area: Cones 72
Surface Area of Similar Solids 73
Volume: Prisms 74
Volume: Cylinders 75
Volume: Pyramids 76
Volume: Cones 77
Volume of an Irregular Shape 78
Volume of Similar Solids 79
Surface Area: Spheres 80
Volume: Spheres 81
Surface Area and Volume Formulas 82
Plotting Points on a Coordinate Plane 83
Graphing a Linear Equation 84
Distance Formula 85
Midpoint Formula 86
Slope of a Line 87
Slope Intercept Form 88
Parallel Lines 89
Perpendicular Lines 90
Point-Slope Form I 91
Point-Slope Form II 92
Adding Vectors 93
Translations 94
Symmetry 95
Dilations 96
If-Then Statements 97
Inductive Reasoning. 98
Deductive Reasoning: Law of Detachment 99
Deductive Reasoning: Law of Syllogism 100
Answer Key 101-108
\qquad
\qquad

C Points, Segments, Rays, Lines, and Planes

In geometry, figures are created using points, lines, line segments, rays, and planes. Each item has a unique and specific definition, each a certain way to express it using symbols, and each a certain way the symbols are translated into words.
The figure to the right contains points, segments, lines and planes. Use the figure to complete the chart below.

Each figure also has a specific definition. Identify each type of figure. Complete each definition using the chart and figures above.

Rules for Naming Basic Figures

Point: A point has \qquad size; it is shown by a \qquad and named by a capital
\qquad
Line: A line extends \qquad on both sides with \qquad thickness or width; a line is shown with an arrow at \qquad ends.

Segment: A part of a line with two points called \qquad ; a segment shows the two points with \qquad arrow at either end.

Ray: A ray is a part of a line that extends indefinitely in \qquad direction; a ray has one \qquad
Plane: A plane is a \qquad surface that extends indefinitely in all directions and has
\qquad thickness.

Practice

Use the figure to the right to complete each statement.

1. The plane shown in the figure is plane \qquad
2. The symbol for line $C D$ is \qquad .
3. A ray in the figure can be written using the symbol
\qquad —.

4. $\overline{P N}$ is a symbol for \qquad $P N$.

Name \qquad
\qquad

Measuring Segments

Unlike a line, a segment has a beginning point and an ending point, known as endpoints.
You can measure the distance between the endpoints to find the measure of the segment.
Complete each statement using the figure below.

1. The measure of $\overline{A B}=$ \qquad
2. The measure of \qquad $=25$.
3. The measure of $\overline{B C}$ is $\overline{A C}-$ \qquad or 25 - \qquad $=$ \qquad ـ.
4. So, $\overline{A B}+\overline{B C}=$ \qquad

Complete the rule for segment addition.

If ___ is between A and C, then $\overline{A B}+\overline{B C}=\overline{A C}$.
If $\overline{A B}+\overline{B C}=\overline{A C}$, then \qquad is between A and C.

Practice

1. Find $X Y$ if Y is between X and Z, if $Y Z=10$ and $X Z=45$.

Write an equation using what you know
$X Y+$ \qquad $=X Z$ about segment addition.

Plug what you know into the equation.

$$
\begin{aligned}
& X Y+_=X Z \\
& X Y+_=45
\end{aligned}
$$

Solve for the unknown segment length.

$$
\begin{aligned}
& X Y+ \\
& X Y=
\end{aligned}
$$ - \qquad $=45-$ \qquad

Given that L is between K and M, find the missing measure.
2. $K L=10, L M=17, K M=$ \qquad
3. $K L=$ \qquad , $L M=32, K M=47$.
4. $K L=21, L M=$ \qquad $K M=68$
5. $K L=2 \mathrm{x}+1, L M=4 \mathrm{x}, K M=$ \qquad

\qquad

CUsing Formulas

In geometry you will use many formulas. There are formulas for finding the area, the volume or perimeter of a figure. A formula is a statement of a relationship between two or more quantities.

Rules for Using Formulas

1. Identify the formula to use. Determine what each variable stands for.
2. Match what you know and don't know from the problem to the variables in the formula.
3. Plug the numbers you know into the formula.
4. If necessary, use order of operations in reverse to undo operations and solve for the unknown variables.

Example

The formula for the area of a triangle is $A=\frac{1}{2} b h$. A triangle has an area of $36 \mathbf{c m}^{2}$ and a height of $\mathbf{1 2} \mathbf{~ c m}$. What is the length of the base?
Step 1 Identify the formula to use. Determine Use the formula given, $A=\frac{1}{2} b h$. what each variable stands for. $\quad A=$ area, $b=$ base length, $h=$ height
Step 2 Match what you know and don't know You know the area and the height. You need to from the problem to the variables in the find the base length. formula.
$A=36 \mathrm{~cm}^{2}, b=?, h=12 \mathrm{~cm}$
Step 3 Plug the numbers you know into the formula.

Step 4 Solve.
$36=\frac{1}{2}(b)(12)$
$6=b$

Practice

1. The formula for a trapezoid is $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$. What is the area of a trapezoid with base lengths of 6 and 8 and a height of 10 ?
Identify the formula to use. Determine The formula given is $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$ what each variable stands for.

Match what you know and don't know from the problem to the variables in the formula.

$$
A=\longrightarrow, b_{1}=\text { one base length }
$$

$b_{2}=$ \qquad
\qquad
$A=\longrightarrow, b_{1}=\longrightarrow, b_{2}=\longrightarrow=\square$
Plug the numbers you know into the formula.

Solve.

$$
\begin{aligned}
A & =\frac{1}{2} \quad(\ldots+ \\
& =\quad \text { square units }
\end{aligned}
$$

\qquad
2. The formula for the volume of a sphere is $V=\frac{4}{3} \pi r^{3}$. A sphere has a volume of 904 cubic units. What is the radius of the sphere? \qquad
3. The area of a parallelogram is 120 in. ${ }^{2}$. The base measurement is 6 inches.

What is the length of the height? Use the formula $A=b h$. \qquad
\qquad

CTypes of Angles

An angle is made of two rays that have a common endpoint. Each ray forms a side of the angle. The common endpoint forms the vertex of the angle.
Angles are measured in degrees. An angle's measure is written as $\mathrm{m} \angle B=60^{\circ}$ or $\mathrm{m} \angle A B C=60^{\circ}$

Angles are classified by their measures. Four types of angles are vertex side: $\overline{B C}$ shown below.

Complete the chart below.

Angle Type	Example	Measure
Acute	$\angle A B C$	-
Right		90°
	$\angle K L M$	120°
Straight		180°

Complete the statements for the rules for classifying angles.

Rules for Classifying Angles

1. An acute angle is an angle whose measure is less than \qquad .
2. A \qquad is an angle whose measure is equal to 90°.
3. An obtuse angle is an angle whose measure is \qquad 90°.
4. A \qquad is an angle whose measure is equal to 180°.

Practice

Refer to the figure to answer the following items.

1. $\angle A F G$ has a measure of $90^{\circ} ; \angle A F G$ is a
\qquad
2. $\angle A E D$ appears to have a measure greater than 90°; $\angle A E D$ is an \qquad angle.

3. \qquad measures 180° and is a straight angle.
4. $\angle D E B$ measures \qquad $90^{\circ} ; \angle D E B$ is an acute angle.
\qquad
\qquad

Complementary and Supplementary Angles

Like other measures, you can add angle measures. The result is an angle whose measure is the sum of the measures of the individual angles.

$45^{\circ}+$

20°

$$
=
$$

$$
=
$$

The figures below are two set of angles. Complete the chart below.

Type	Angle Pair	Measure of One Angle	Measure of the Other Angle	Sum of the Measure
Complementary	$\angle A B C$ and $\angle D E F$	-	$=$	-
Supplementary	$\angle K L M$ and $\angle X Y Z$	-	-	-

Complete the statement for the rules for complementary and supplementary angles.

Rules for Complementary and Supplementary Angles

1. Two angles are \qquad angles if the sum of their measures equals 90°.
2. Two angles are supplementary angles if the sum of their measures equals \qquad

Practice

Use the figure to the right to answer the items below.

1. $\angle A F B$ is complementary to \qquad .
2. $\mathrm{m} \angle C F E+\mathrm{m} \angle E F G=$ \qquad
3. $\angle B F C=35^{\circ} ; \angle B F C$ and $\angle C F E$ are supplementary. What is the measure of $\angle C F E$? \qquad
4. $\angle B F C$ and \qquad are complementary angles.

\qquad

Pairs of Angles

As you know when two lines intersect four angles are created, as you can see in the figure on the right. Certain relationships exist among the angles formed by intersecting lines.

Complete the chart below.

Type	Measure of One Angle	Measure of the Other Angle
Vertical Angles	$\mathrm{m} \angle 1=$	$\mathrm{m} \angle 3=$
	$\mathrm{m} \angle 2=$	$\mathrm{m} \angle 4=$
Linear Pair	$\mathrm{m} \angle 1=$	$\mathrm{m} \angle 2=$
	$\mathrm{m} \angle 3=$	$\mathrm{m} \angle 4=$

Complete the statements below.

1. $\angle 1$ and $\angle 3$ are \qquad and \qquad are also vertical angles.
2. $\angle 1$ and $\angle 2$ form a \qquad , and \qquad also form a linear pair.
3. The sum of the measures of $\angle 1$ and $\angle 2$ is \qquad ; the sum of the measures of
\qquad and \qquad is 180°.
4. Another term for a linear pair is \qquad angles.

Complete the statements for rules for angle pairs.

Rules for angle pairs

1. When two lines intersect, \qquad angles are created opposite one another.
2. Vertical angles have \qquad measure; they are \qquad -.
3. The sum of the measures of the angles in a linear pair is \qquad .

Practice

Use the figure to the right to complete the following statements.

1. $\angle A G B$ and \qquad are vertical angles.
2. $\angle A G B$ and $\angle B G D$ are \qquad —.
3. The measure of $\angle F G E$ is 45°. The measure of $\angle E G C$ is \qquad _.
4. $\angle E G D$ is supplementary to \angle \qquad -.
5. An angle congruent to $\angle D G C$ is \qquad

\qquad

C Parallel Lines: Types of Angles

In the figure to the right, lines l and m are parallel lines. Line t intersects lines l and m, line t is known as a transversal.

A transversal is a line that intersects two or more lines at different points.

As you can see, when a transversal intersects two lines, eight angles
 are formed. These angles are given special names.

Complete the rules below by using the diagram above.

Rules for Angles Formed by Parallel Lines Intersected by a Transversal

1. Exterior angles are angles on the outside of the lines; angles 1,2 , \qquad , and \qquad are exterior angles.
2. Interior angles are angles on the inside of the lines; angles 3,4 , \qquad and \qquad are interior angles.
3. Consecutive interior angles are angles that are inside the lines on the same side of the transversal; angles 3 and 5 and angles \qquad and \qquad are consecutive interior angles.
4. Alternate interior angles are angles that are inside the lines but on the opposite sides of the transversal; angles 3 and 6 and angles \qquad and \qquad are alternate interior angles.
5. Alternate exterior angles are angles that are outside the lines on opposite sides of the transversal; angles 1 and 8 and angles \qquad and \qquad are alternate exterior angles.
6. Corresponding angles occupy the same position on each line; angles 1 and 5 and angles 3 and 7 are corresponding angles, as are angles 2 and \qquad and angles \qquad and 8.

Practice

Classify each pair of angles using the figure to the right.

1. $\angle 7$ and $\angle 12$ \qquad
2. $\angle 1$ and $\angle 13$ \qquad
3. $\angle 11$ and $\angle 14$ \qquad
4. $\angle 4$ and $\angle 5$ \qquad

Identify the missing angle in each pair.

5. Corresponding angles: $\angle 3$ and \angle \qquad or \qquad
6. Consecutive interior angles: $\angle 6$ and \angle \qquad or \angle \qquad
7. Interior angles: $\angle 10$ and $\angle \ldots \quad$ or \angle \qquad
\qquad
\qquad

Parallel Lines: Angle Relationships

In the figure to the right lines l and m are parallel lines. Line t intersects line l and m, line t is known as a transversal.
A transversal is a line that intersects two or more lines at different points.
As you can see, when a transversal intersects two lines, 8 angles are
 formed. These angles have special relationships.

Explore the angle relationships that exist when a transversal intersects two parallel lines.

Type	Measure of Angle	Measure of Other Angle
Corresponding angle	$\mathrm{m} \angle 1=65^{\circ}$	-
Alternate interior angles		$\mathrm{m} \angle 3=65^{\circ}$
	$\mathrm{m} \angle 1=65^{\circ}$	$\mathrm{m} \angle 2=115^{\circ}$
Alternate exterior angles	$\mathrm{m} \angle 5=65^{\circ}$	-

Use the chart to complete the statements below.

Rules for the relationships among angles formed when a transversal intersects parallel lines

1. Corresponding angles are \qquad .
2. Alternate interior angles are \qquad -.
3. \qquad angles are supplementary.
4. Alternate exterior angles are \qquad -

Practice

Use the figure to the right.

1. $\mathrm{m} \angle 4=$ \qquad
2. $\mathrm{m} \angle 5=$ \qquad
3. $\mathrm{m} \angle 3=$ \qquad
4. $\mathrm{m} \angle 2=$ \qquad
5. $\mathrm{m} \angle 6=$ \qquad
\qquad

CProving Lines Are Parallel

In the figure to the right, lines l and m are parallel lines. When a transversal intersects two lines, 8 angles are formed. These angles have special relationships. You can use these relationships to prove lines are parallel.
Use the figure above to help complete the following statements.

Rules for Proving Lines are Parallel

1. If two lines are intersected by a transversal and \qquad angles, such as $\angle 1$ and $\angle 5$, are \qquad then the lines are parallel.
2. If two lines are intersected by a transversal and \qquad angles, such as $\angle 1$ and $\angle 4$, are \qquad , then the lines are parallel.
3. If two lines are intersected by a transversal and \qquad angles, such as $\angle 2$ and $\angle 5$, are \qquad then the lines are parallel.
4. If two lines are intersected by a transversal and \qquad angles, such as $\angle 1$ and $\angle 3$, are \qquad , then the lines are parallel.

Example

State the rule that says why the lines are parallel, $\boldsymbol{m} \angle \mathbf{5} \cong \angle \mathbf{1 0}$
Step 1 State the relationship between $\angle 5$ and $\angle 10$.
The angles are alternate interior angles.
Step 2 State how the measures of each angle are related. The angles are congruent.
Step 3 State why the lines l and m are parallel.
If two lines are intersected by a transversal and
 alternate interior angles are congruent, then the lines are parallel.

Practice

State the rule that says why the lines are parallel. Use the figure above.

1. $\mathrm{m} \angle 5+\mathrm{m} \angle 9=180^{\circ}$

State the relationship between $\angle 5$ and $\angle 9$: The angles are \qquad angles.

State how the measure of each angle is related: The angles are \qquad .
State why lines l and m are parallel: If two lines are intersected by a transversal and
\qquad angles are \qquad the lines are parallel.
2. $\mathrm{m} \angle 4 \cong \mathrm{~m} \angle 5$ \qquad
3. $\mathrm{m} \angle 5 \cong \mathrm{~m} \angle 7$ \qquad
4. $\mathrm{m} \angle 8 \cong \mathrm{~m} \angle 11$ \qquad
5. $\mathrm{m} \angle 10+\mathrm{m} \angle 11=180^{\circ}$ \qquad
\qquad
\qquad

Classifying Triangles

A triangle is a three-sided polygon. A polygon is a closed figure made up of segments, called sides, that intersect at the end points, called vertices.

Triangles are classified by their angles and their sides.
Classifying by angle:

Acute

Obtuse

Classifying by side length:

Scalene

Isosceles

Equilateral

Use the figures above to complete the rules for classifying triangles.

Rules for classifying triangles by angle

1. An acute triangle has \qquad acute angles.
2. An equiangular triangle has three \qquad angles.
3. An obtuse triangle has one \qquad angle.
4. A right triangle has one \qquad angle.
Rules for classifying triangles by side length
5. A scalene triangle has \qquad congruent sides.
6. An isosceles triangle has at least \qquad congruent sides.
7. An equilateral triangle has \qquad congruent sides.

Practice

Use the figure to the right.

1. Name an equilateral triangle. \qquad
2. Name a scalene triangle. \qquad
3. Name an obtuse triangle. \qquad
4. Name an acute triangle. \qquad
5. Name an isosceles triangle. \qquad

\qquad
\qquad

CInterior and Exterior Angles in Triangles

A triangle is a three-sided polygon. A triangle is made of segments, called sides, that intersect only at their endpoints, called vertices.
Sides: $\overline{A B}, \overline{B C}, \overline{C A}$
Vertices: A, B, C
Interior Angles: $\angle B A C, \angle A B C, \angle B C A$
Exterior Angle: $\angle B C D$

Complete each statement below.

1. The measure of $\angle B A C$ is \qquad the measure of $\angle A B C$ is \qquad and the measure of $\angle B C A$ is \qquad If you add the measures of the interior angles, the sum is \qquad —.
2. $\angle B C D$ is an exterior angle. The measure of $\angle B C D$ is \qquad $\angle B A C$ and $\angle A B C$ are both known as remote interior angles. The measure of $\angle B A C$ is \qquad and the measure of $\angle A B C$ is \qquad If you add the measures of these remote interior angles, the sum is \qquad .
3. The measure of $\angle B C A$ is \qquad The measure of $\angle B C D$ is \qquad If you add the measure of $\angle B C A$ and $\angle B C D$, the sum is \qquad ; the angles are \qquad
Use the figure above to complete the rules for angle relationships in triangles.

Rules for Angle Relationships in Triangles

1. The sum of the measures of the interior angles of a triangle is \qquad .
$\mathrm{m} \angle 1+\mathrm{m} \angle 2+\mathrm{m} \angle 3=$ \qquad
2. The measure of an \qquad angle of a triangle is
\qquad to the sum of the measures of the two remote interior angles.

Practice

Find the measures of the angles in the figure to the right.

1. $\mathrm{m} \angle A B D=$ \qquad
2. $\mathrm{m} \angle B A D=$ \qquad
3. $\mathrm{m} \angle C D B=$ \qquad
4. $\mathrm{m} \angle C B D=$ \qquad

\qquad
\qquad

Corresponding Parts of Triangles

Triangles that are the same size and the same shape are congruent triangles.
As you know each triangle has six parts-three sides and three angles.
Use the figures to the right to identify corresponding parts. Use the symbol " \leftrightarrow " to mean "corresponds to".
$\angle C A B \leftrightarrow \angle Z X Y$
$\overline{A C} \longleftrightarrow \overline{X Z}$
$\angle A B C \leftarrow$ \qquad $\overline{A B} \longleftrightarrow$ \qquad
$\leftrightarrow \angle Y Z X \quad \leftrightarrow \overline{Y Z}$

Complete the chart below.

Angle	Corresponding Angle	Relationship
$\angle C A B=70^{\circ}$	$\angle Z X Y=70^{\circ}$	$\angle C A B \cong \angle Z X Y$
$\angle A B C=57^{\circ}$		$\angle A B C \cong$
	$\angle Y Z X=53^{\circ}$	-

Side	Corresponding Side	Relationship
$\overline{A C}$	$\overline{X Z}$	$\overline{A C} \cong \overline{X Z}$
$\overline{A B}$		$\overline{A B} \cong$
$\overline{B C}$	$\overline{Y Z}$	-

Complete the statement below for the rules for corresponding parts of congruent triangles.

| Rules for Corresponding Parts of Corresponding Triangles |
| :--- | :--- |
| Two triangles are congruent if and only if their__ parts |
| are |

Practice

Complete each statement. $\triangle D E F \cong \triangle R S T$

1. $\overline{D E}=$ \qquad
2. $\angle E D F \cong$ \qquad
3. $\mathrm{m} \angle R S T=$ \qquad
4. $\overline{S T} \cong$ \qquad
5. $\mathrm{m} \angle S R T=$ \qquad

6. $\overline{D F}=$ \qquad
\qquad
\qquad

CTriangle Congruence: Side-Side-Side Congruence

If two triangles have three pairs of congruent corresponding angles and three pairs of congruent corresponding sides, then the triangles are congruent. However, you do not need to know that all the sides and angles are congruent in order to conclude that the triangles are congruent. You only need to know certain corresponding parts are congruent. The two triangles to the right are congruent.

Complete the chart by identifying the corresponding sides and their measures.

Side	Measure	Corresponding Side	Measure	Relationship Between Sides
$\overline{A B}$	3	$\overline{X Y}$	3	$\overline{A B} \cong \overline{X Y}$
$\overline{B C}$	5	$-\overline{X Z}$	-	$\overline{B C} \cong$
	-	$-\overline{X Z}$		

Complete the rule for triangle congruence.

Rule for Side-Side-Side (SSS) Postulate

If three sides of one triangle are \qquad to \qquad
sides of another triangle then the two triangles are congruent.

Practice

For each figure, determine if there is enough information to prove the two triangles congruent.

1. The corresponding side to side $A B$: \qquad
Are the sides congruent? \qquad
The corresponding side to side $A D$: \qquad
Are the sides congruent? \qquad

What do you notice about side $A C$? \qquad
Does $\overline{A C}$ in $\triangle A B C$ correspond to $\overline{A C}$ in $\triangle A C D$? \qquad
Can you use SSS postulate? \qquad
2.

3.

\qquad

Triangle Congruence: Side-Angle-Side Congruence

You do not need to know that all the sides and angles are congruent in order to conclude that triangles are congruent. You only need to know certain corresponding parts are congruent.

The two triangles to the right are congruent. Use them to answer the following.

1. Which sides in triangle $A B C$ form $\angle B ? \overline{A B}$ and \qquad
2. Which angle is formed from (included) $\overline{A B}$ and $\overline{A C}$?
3. Which two angles are made using side AB ? \qquad

The two triangles above are congruent. Complete the chart by identifying the corresponding sides and angles and their measures.

Side	Measure	Corresponding Side	Measure	Relationship Between Sides
$\overline{A B}$	3		3	$\overline{A B} \cong \overline{X Y}$
Angle	Measure	Corresponding Angle	Measure	Relationship Between Angles
-	110°	$\angle Y$	110°	$\cong \angle Y$
Side	Measure	Corresponding Side	Measure	Relationship Between Sides
-	5	-	-	$\overline{B C} \cong$

Complete the rule for triangle congruence.

Rule for Side-Angle-Side (SAS) Postulate.

If the two sides and the included angle of one triangle are \qquad to two
\qquad and the \qquad angles, then the triangles are congruent.

Practice

Name the included angle between each pair of sides.

1. $\overline{A D}$ and $\overline{A B}$ \qquad
2. $\overline{B D}$ and $\overline{B C}$ \qquad
3. $\overline{B C}$ and $\overline{D C}$ \qquad
4.

\qquad
\qquad

CTriangle Congruence: Angle-Side-Angle Congruence

You do not need to know that all the sides and angles are congruent in order to conclude that triangles are congruent. You only need to know certain corresponding parts are congruent.
The two triangles to the right are congruent. Use them to answer the following questions.

1. Which side is included by $\angle A$ and $\angle C$? \qquad
2. Which side is included by $\angle B$ and $\angle C$? \qquad
3. Which side is included by $\angle A$ and $\angle B$? \qquad

The two triangles above are congruent. Complete the chart by identifying corresponding sides and angles and their measures.
\(\left.$$
\begin{array}{|c|c|c|c|c|}\hline \text { Angle } & \text { Measure } & \begin{array}{c}\text { Corresponding } \\
\text { Angle }\end{array} & \text { Measure } & \begin{array}{c}\text { Relationship } \\
\text { Between Angles }\end{array}
$$

\hline \angle B \& 110^{\circ} \& \angle Y \& 110^{\circ} \& \angle B \cong \angle Y\end{array}\right]\)| Measure |
| :---: |
| Side |
| $\overline{A B}$ |

Complete the rule for triangle congruence.

Rule for Angle-Side-Angle (ASA) Postulate.

If the two angles and the included side of one triangle are \qquad to two \qquad and the \qquad side of another triangle, then
the two triangles are congruent.

Practice

State the missing congruence that must be given to use the ASA Postulate to prove

 the triangles are congruent.1. Which pair of corresponding angles are given?

Which set of corresponding sides are given? \qquad
Which angles are adjacent to $\overline{A C}$?

If $\triangle A B C$ and $\triangle X Y Z$ are congruent by ASA, which is the other angle in $\triangle A B C$? \qquad
2.

3. \qquad

\qquad

CTriangle Congruence: Angle-Angle-Side Congruence

You do not need to know that all the sides and angles are congruent in order to conclude that the triangles are congruent. You only need to know certain corresponding parts are congruent. These two triangles are congruent.

Complete the chart by identifying the corresponding sides and their measures.

Angle	Measure	Corresponding Angle	Angle Measure	Relationship Between Angles
$\angle A$	30°	$\angle X$	30°	$\angle A \cong \angle X$
$\angle B$	110°	-	-	$\angle B \cong$
Side	Measure	Corresponding Side	Measure	Relationship Between Sides
	-	$\overline{X Z}$	4	$-\cong \overline{X Z}$

Complete the rule for triangle congruence.

Rule for Angle-Angle-Side (AAS) Postulate

If two angles and a non-included side of one triangle are \qquad
to two angles and the \qquad non-included side of another triangle, then the triangles are congruent.

Practice

State the missing congruence that must be given to use the AAS postulate to

 prove the triangles are congruent.1. Which pair of corresponding angles are given?

Which set of corresponding sides are given?

Which angles are not adjacent to the given sides? \qquad
How are these angles related? \qquad
How do the measures of these angles compare? \qquad
State the congruent sides and angles.
2.

3.

\qquad
\qquad

Choosing the Correct Congruence Postulate

There are four postulates that show the ways in which triangle congruence is proved. By carefully looking at the two triangles and identifying corresponding parts, you can identify the postulate to use.

Example	What Is Given	Postulate to Use
	Three pairs of corresponding congruent sides.	Side-Side-Side Postulate
	\qquad pair of corresponding included angles and \qquad pairs of corresponding sides.	Side-Angle-Side Postulate
	\qquad pairs of \qquad corresponding angles and \qquad pair of \qquad corresponding included sides.	Angle-Side-Angle Postulate
	\qquad pairs of \qquad corresponding angles and \qquad pair of \qquad non-included sides.	-

Triangle Congruence Hints

1. A common side can be used as one pair of corresponding sides in using SSS, ASA, or SAS postulates.

Side $\overline{D B}$ is a side common to $\triangle A B D$ and $\triangle B C D$, for corresponding sides you can say $\overline{D B} \cong \overline{D B}$.
2. Remember, vertical angles are congruent. A figure with vertical angles will often not show the vertical angles are congruent.
 Angles $A C B$ and $D C E$ are vertical angles; you can say $\angle A C B \cong \angle D C E$.

Practice

Decide if it is possible to prove the triangles are congruent.
Some pairs of triangles may not include enough or the proper information.

1. What are the relationships between corresponding parts? \qquad
Which postulate uses these corresponding parts? \qquad
2. \qquad

\qquad

C Isosceles Triangle Theorem

As you know, an isosceles triangle has two congruent sides. The parts of an isosceles triangle have special names.

Use the definitions below to label the isosceles triangle.

Legs: \quad The two congruent sides of an isosceles triangle.
Base: \quad The third side of an isosceles triangle.
Base angles: The two angles next to the base.
Vertex: Angle opposite the base.
Use the figure to the right to complete the chart.

Angle or Side	Measure
$\angle B$	-
$\angle C$	
$\overline{A B}$	
$\overline{A C}$	

Use the chart above to complete the following theorems about isosceles triangles.

Isosceles Triangle Theorems

1. Base Angle Theorem

If two sides of a triangle are \qquad then the angles opposite them
(base angles) are \qquad
2. Converse of the Base Angle Theorem

If two angles of a triangle are \qquad , then the sides opposite the angles are \qquad _.

Practice

1. Find the measure of $\angle B$.

Is the triangle an isosceles triangle?
Yes $A B=$ \qquad
Explain.
What is the measure of $\angle A$?
$\angle C \cong \angle A, \angle C=55^{\circ}, \angle A=$ \qquad
What is the sum of the measures of a \qquad triangle?

Use the two known measures and the sum
$\angle A+\angle B+\angle C=$ \qquad of the measures of angles in a triangle to find the unknown measure.
\qquad $+\angle B+55^{\circ}=180^{\circ}$

$$
\angle B=
$$

2. Find the measure of $\angle A$ and $\angle B$.

3. Find the value of x.

Geometry
\qquad
\qquad

CTriangle Mid-segment

In the figure to the right, $\overline{D E}$ is a mid-segment. A mid-segment of a triangle connects the midpoints of two sides of a triangle. As you will see, the mid-segment and sides of a triangle have special relationships. One relationship is that between the slope of the mid-segment, $\overline{D E}$, and the slope of the side opposite the mid-segment, $\overline{C B}$.
Find the slope of each segment. Slope $=\frac{\boldsymbol{y}_{2}-y_{1}}{\boldsymbol{x}_{2}-y_{1}}$

$\overline{C B}: C(1,1) ; B(6,3)$
$\overline{D E}: D(1,3) ; E(3.5,4)$

$$
\begin{aligned}
\text { Slope } & =\frac{y_{2}-y_{1}}{x_{2}-y_{1}} & & \text { Slope }=\frac{y_{2}-y_{1}}{x_{2}-y_{1}} \\
& =\frac{3-1}{6-1}=\quad & & \text { Slope }=\frac{4-3}{3.5-1}=
\end{aligned}
$$

\qquad

1. The slope of $\overline{C B}$ is \qquad ; the slope of $\overline{D E}$ is \qquad The slopes are \qquad therefore, the segments are \qquad _.

Another special relationship between segments is the length of each segment.
Use the Distance Formula to find the length, d, of each segment. Remember, $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
\begin{array}{rlrl}
\overline{C B}: C(1,1) ; B(6,3) & \overline{D E}: D(1,3) ; E(3.5,4) \\
\overline{C B} & =\sqrt{(6-1)^{2}+(3-1)^{2}} & \overline{\overline{D E}}=\sqrt{(3.5-1)^{2}+(4-3)^{2}} \\
\overline{C B} & = & \overline{D E} & = \\
& =\square & & =\sqrt{7.25}=
\end{array}
$$

2. The length of $\overline{C B}=$ \qquad . Divide the length of $\overline{C B}$ by 2 , the result is \qquad So,
$\frac{1}{2}$ of $\overline{C B}$ equals the length of \qquad —.
Complete the rule below for mid-segment of a triangle by circling the correct term in each pair.

Mid-Segment Theorem

The segment connecting the midpoints of two sides of a triangle is to the third side; the mid-segment is \qquad as long as the third side.

Use the figure to the right to complete each statement. $\overline{D E}, \overline{D F}$, and $\overline{E F}$ are triangle mid-segments.
3. $\overline{D F} \mid ।$ \qquad
4. \qquad $11 \overline{C B}$
5. $\overline{D E}=$ \qquad
6. $\overline{A B}=$ \qquad
7. $\overline{E F}=$ \qquad

\qquad

CHypotenuse-Leg Theorem

As you know, you can prove two triangles are congruent using one of many postulates. Depending on what you know about the sides and angles of the two triangles, you can use postulates such as SSS, ASA, AAS, or SAS.

The triangles to the right are right triangles, but are they also congruent? There is a special theorem associated with
 right triangles that will allow you to prove right triangles are congruent.

Use the figures above to complete the chart and find the relationship sides of the right triangle. To find the length of each hypotenuse use the Pythagorean theorem.

$\triangle A B C$		$\triangle R S T$		
Side	Measure	Corresponding Side	Measure	Relationship Between Sides
$\overline{A B}$	4	$\overline{R S}$	4	$\overline{A B} \cong \overline{R S}$
$\overline{B C}$	3	-	-	$\overline{B C} \cong$
$(A C)^{2}=4^{2}+3^{2}$	-	$(\overline{R T})^{2}=4^{2}+3^{2}$	-	$\overline{A C}$

When you know that three sides of one triangle are congruent to three sides of another triangle, you can use the \qquad postulate. So, $\triangle A B C$ \qquad $\triangle R S T$.

To find if two right triangles are congruent, all you need to know is the length of one leg and the hypotenuse in each triangle.

Use the results from the chart above to complete the rule for proving that right triangles are congruent.

Hypotenuse-Leg Theorem (H-L Theorem)
If the hypotenuse and leg of one right triangle are__ond_onder right triangle, then
the triangles are congruent.

Practice

Decide whether enough information is given to use the Hypotenuse-Leg Theorem.

1. Segment $\overline{A B}$ is congruent to segment \qquad _.
2. Remember, a common side forms a congruent pair.

Is there another pair of congruent segments? \qquad
3. Can you say $\overline{A D} \cong \overline{C D}$ \qquad

4. Are there any congruent angles? \qquad
5. Can you prove $\triangle A B D \cong \triangle C B D$? \qquad
\qquad
\qquad

CTriangle Inequalities: Inequalities for Sides and Angles

According to the Isosceles Triangle Theorem, if two sides of a triangle are congruent, then the angles opposite those sides are also congruent. But what happens when you have a triangle in which two sides are not congruent?

Use the figure to the right to complete the chart.
 Then use the figure and the chart to complete the statements that follow.

Side	Measure	Angle	Measure
$\overline{A B}$	-	$\angle A B C$	-
$\overline{B C}$	-	$\angle B A C$	-
$\overline{A C}$	-	$\angle A C B$	-

1. Which is longer, $\overline{A B}$ or $\overline{B C}$? \qquad
2. Which angle is opposite $\overline{A B}$? \qquad
3. Which angle is opposite $\overline{B C}$? \qquad
4. Of the angles found in $\# 2$ and $\# 3$, which has the greater measure? \qquad
5. Is the angle with the greater measure opposite the side with the greater measure? \qquad

Use the answers to the items above and the chart to complete the rule for Inequalities for Sides and Angles of Triangles.

Inequalities for Sides and Angles of a Triangle

If one side of a triangle is longer than another side, then the angle \qquad the longer side has a \qquad measure than the angle opposite the shorter side.

Practice

Use the figure to the right. Fill in each blank with $<$ or $>$.

1. In $\triangle A B D, \overline{B D}-\overline{B A}$.

The angle and measure of the angle opposite $\overline{B A}$ is \qquad
The angle and measure of the angle opposite $\overline{B D}$ in $\triangle A B D$ is \qquad
Which side is opposite the angle with the greatest measure? \qquad
2. In $\triangle B C D$, \qquad is the longest side.
3. In $\triangle R S T, \angle R S T$ \qquad $\angle S R T$.
4. In $\triangle R T U, \angle R U T _\angle R T U$

\qquad

Triangle Inequality Theorem

Look at the figures to the right. As you can see, both have three sides. But only the bottom figure is a triangle. The top figure is not a closed figure and is, therefore, not a triangle.

Complete the chart below. Add combinations of two sides of

 each triangle and compare the sum to the third side.| Figure BADC | Inequality Test | Is the Inequality True? |
| :---: | :---: | :---: |
| | $\begin{aligned} & 19+43>16 \\ & 16+43>-\quad>43 \\ & +\quad+\quad \end{aligned}$ | Yes |
| Figure RST | Inequality Test | Is the Inequality True? |
| | $\begin{aligned} & 22+18>36 \\ & 18+36>-\quad>18 \\ & +\quad+\quad \end{aligned}$ | Yes |

36

Review the results in the chart and answer the questions below.

1. For Figure $B A D C$, were all the inequality statements true? \qquad
2. For Figure RST, were all the inequality statements true? \qquad

Complete the Rule for Triangle Inequality.

Rule for Triangle Inequality

The sum of any two sides of a triangle is \qquad
than the length of the third side.

Practice

For each set of sides, determine if a triangle is formed.

1. $20,43,55$

Is the following inequality true? $20+43>55$ \qquad
Is the following inequality true? $43+55>20$ \qquad
Is the following inequality true? $55+20>43$ \qquad
Were the answers to the previous three questions "yes"? \qquad Will the combination form a triangle? \qquad
2. $20,33,556$ \qquad
3. $15,26,31$ \qquad
4. $10,13,18$ \qquad
\qquad

The Pythagorean Theorem

A right triangle is a triangle with one 90° angle (also known as a right angle). In a right triangle, the sides next to the right angle are the legs. The side opposite the right angle is the hypotenuse.

In a right triangle, there is a relationship between the legs and the hypotenuse. This relationship (the Pythagorean Theorem) says that $a^{2}+b^{2}=c^{2}$

Rules for Using the Pythagorean Theorem

1. Identify the legs and the hypotenuse.
2. Plug the numbers into the Pythagorean theorem. Square the numbers.
3. If the unknown side is a leg, solve the equation for the unknown leg.
4. If the unknown side is the hypotenuse, add the squares of the two legs and then find the square root.

Example

Find the unknown length in a right triangle if $\boldsymbol{a}=\mathbf{5}$ and $\mathbf{c}=\mathbf{1 3}$.

Step 1 Identify the legs and the hypotenuse. $\quad a=5$ is a leg; c is the hypotenuse
Step 2 Plug the numbers into the Pythagorean $5^{2}+b^{2}=13^{2}$
Theorem. Square the numbers.
Step 3 If the unknown side is a leg, solve the $25-25+b^{2}=169-25$ equation for the unknown leg.
$b^{2}=144$
$\sqrt{b^{2}}=\sqrt{144}=12$

Practice

Find the unknown length in each right triangle.

1. $b=15, a=8$

Identify the legs and the hypotenuse.

Plug the numbers into the Pythagorean Theorem. Square the numbers.
$a=8$ is a side.
$b=15$ is \qquad
$8^{2}+ـ^{2}=$ \qquad
$64+\ldots=$ \qquad
If the unknown side is the hypotenuse,
$64+$ \qquad $=$ \qquad add the squares of the two legs and then find the square root.
$\underline{\square}=$ \qquad
\qquad $=$ \qquad
2. $b=8 ; c=10$ \qquad
4. $a=20 ; b=15$ \qquad
3. $a=3 ; b=4$ \qquad 5. $a=200 ; c=250$ \qquad
\qquad

Converse of the Pythagorean Theorem

You have learned that there is a special relationship between the legs of a right triangle and the triangle's hypotenuse.
The Pythagorean Theorem states that:

$$
a^{2}+b^{2}=c^{2}
$$

But what if you know the measure of three sides of a triangle that appears to be a right triangle? Suppose you are given the triangle to the right.

Can you show it is a right triangle by knowing just the length of the sides?

Use the figure to complete the chart. Assume the triangle is a right triangle.

Decide which side is the hypotenuse. The hypotenuse is the \qquad side.

Leg	Leg	Hypotenuse		
$\overline{A B}$	$\overline{B C}$	$\overline{A C}$	$A B^{2}+B C^{2}$	$A C^{2}$
6	8	10	$6^{2}+8^{2}=$	$(10)^{2}=$

The relationship between $(\overline{A B}+\overline{B C})^{2}$ and $\overline{A C}^{2}$ is $(A B+B C)^{2}$ \qquad $A C^{2}$

Does this satisfy the Pythagorean Theorem? \qquad Is $\triangle A B C$ a right triangle? \qquad

Use the data in the chart and answer the questions about how to complete the Converse to the Pythagorean Theorem.

Converse to the Pythagorean Theorem

If the sum of the \qquad of the measure of two sides of a triangle equals the square of the measure of the \qquad side, then the triangle is a right triangle.

Practice

Use the Converse of the Pythagorean Theorem to decide if each triangle is a right triangle.

1. $10,7,13$

Which side is the longest side, c ?
Which sides are the shorter sides, a and b ? \qquad and \qquad
Plug the values into the Pythagorean \qquad ${ }^{2}+_^{2}=13^{2}$ Theorem $a^{2}+b^{2}=c^{2}$
\qquad $+$ \qquad $=$ \qquad
\qquad = ? \qquad
Is the equation true?
2. $20,21,29$
4. $3,11,12$
3. $7,24,25$ \qquad 5. $\sqrt{13}, 6,7$ \qquad
\qquad

CSpecial Right Triangles: $\mathbf{4 5}^{\circ} \mathbf{- 4 5 ^ { \circ }} \mathbf{- 9 0 ^ { \circ }}$ Right Triangles

You have learned that there is a special relationship between the legs of a right triangle and the triangle's hypotenuse.
The Pythagorean Theorem states that:

$$
a^{2}+b^{2}=c^{2}
$$

Right triangles whose measures are $45^{\circ}-45^{\circ}-90^{\circ}$ or $30^{\circ}-60^{\circ}-90^{\circ}$ are called special right triangles.

Use the figure to the right to complete the chart.

$45^{\circ}-\mathbf{4 5}{ }^{\circ}-\mathbf{9 0}^{\circ}$				
Leg	Leg	Hypotenuse		
$\overline{A B}$	$\overline{B C}$	$\overline{A C}$	$A B^{2}+B C^{2}=A C^{2}$	
4	4	x	$4^{2}+4^{2}=\square=x^{2}$	

Solve for \boldsymbol{x}.

$=x^{2}$
$=\sqrt{x^{2}}$
$\sqrt{\square} 2=\sqrt{x^{2}}$
$\sqrt{2}=x$

One of the legs in the triangle is \qquad Its measure is \qquad The hypotenuse is \qquad -.
Its measure is \qquad

$45^{\circ}-45^{\circ}-90^{\circ}$ Triangle Theorem

The relationship between a leg and the hypotenuse in a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle is that the \qquad is $\sqrt{2}$ times the length of the \qquad

Practice

Find the value of \boldsymbol{x}.

1. The length of a leg in a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle is 6 . Find the value of x, the length of the hypotenuse.
What is the relationship between a leg and the hypotenuse?
Substitute the value for the hypotenuse and the leg.
Simplify
\qquad $=\sqrt{2}$
\qquad $=\sqrt{2}$ \qquad
\qquad

$$
=
$$

\qquad $\sqrt{2}$
2. In a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, the length of the hypotenuse is 10 . Find x, the length of a leg.
\qquad

CSpecial Right Triangles: $30^{\circ}-60^{\circ}-90^{\circ}$ Right Triangles

You have learned that there is a special relationship between the legs of a right triangle and the triangle's hypotenuse.
The Pythagorean Theorem states that: $a^{2}+b^{2}=c^{2}$
Right triangles whose measures are $45^{\circ}-45^{\circ}-90^{\circ}$ or $30^{\circ}-60^{\circ}-90^{\circ}$ are called special right triangles.
Use the figure to the right to complete the chart.

$\mathbf{3 0} 0^{\circ}-\mathbf{6 0}{ }^{\circ}-\mathbf{9 0}^{\circ}$				
Leg	Leg	Hypotenuse		
$\overline{R S}$	$\overline{S T}$	$\overline{R T}$	$R S^{2}+S T^{2}=R T^{2}$	
10	x	20	$10^{2}+x^{2}=$	

Solve for \boldsymbol{x}.

$$
\begin{aligned}
& \square+x^{2}= \\
& x^{2}=\square \\
& \sqrt{x^{2}=} \\
& x=\square \sqrt{3} \\
& x=\square
\end{aligned}
$$

Which leg is the shorter leg? \qquad What is its measure? \qquad
Which leg is the longer leg? \qquad What is its measure? \qquad

$30^{\circ}-60^{\circ}-90^{\circ}$ Triangle Theorem

The relationship between the longer leg and the shorter leg of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle is that the \qquad leg is $\sqrt{3}$ times as long as the \qquad leg.

Practice

Find the value of \boldsymbol{x}.

1. The length of a shorter leg in a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle is 6 . Find the value of x, the length of the longer leg.
What is the relationship between a \qquad shorter leg and the longer leg?
Substitute the value for the longer leg \qquad $=\sqrt{3}$ and the shorter leg.

Simplify \qquad $=$ \qquad $\sqrt{3}$
2. In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the length of the shorter leg is 12 . Find x, the length of the hypotenuse. Hint: find the length of the longer leg, then use the Pythagorean Theorem to find the hypotenuse. \qquad
\qquad

Trigonometric Ratios

As you know, the sides of a right triangle exhibit a special relationship known as the Pythagorean Theorem. The sides of a right triangle exhibit other special properties. The ratios of different sides of right triangles are called trigonometric ratios.

There are 3 basic trigonometric ratios-sine, cosine, and tangent. These ratios are based on the length of two of the sides in a right triangle.
sine of $A=\frac{\text { length of the leg opposite } A}{\text { length of the hypotenuse }}=\sin A=\frac{\text { opposite }}{\text { hypotenuse }}$
cosine of $A=\frac{\text { length of the leg adjacent } A}{\text { length of the hypotenuse }}=\cos A=\frac{\text { adjacent }}{\text { hypotenuse }}$
tangent of $A=\frac{\text { length of the leg opposite } A}{\text { length of the leg adjacent } A}=\tan A=\frac{\text { opposite }}{\text { adjacent }}$
Example
Find $\sin A, \cos A$, and $\tan A$.

Step 1 Find the $\sin A \quad$ sine of $A=\frac{\text { length of the leg opposite } A}{\text { length of the hypotenuse }}=\sin A=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{3}{5}$
Step 2 Find the $\cos A \quad$ cosine of $A=\frac{\text { length of the leg adjacent } A}{\text { length of the hypotenuse }}=$ cosine $A=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{4}{5}$
Step 3 Find the $\tan A \quad$ tangent of $A=\frac{\text { length of the leg opposite } A}{\text { length of the leg adjacent } A}=\tan A=\frac{\text { opposite }}{\text { adjacent }}=\frac{3}{4}$

Practice

1.

Find the $\sin A$
sine of $A=$ \qquad
Find the $\cos A$
cosine of $A=$ \qquad
Find the $\tan A$
tangent of $A=$ \qquad
2. Use the triangle above to find the $\sin B, \cos B, \tan B$. \qquad
3. Use the triangle to the right to find the $\sin X, \cos X, \tan X$.
4. Use the triangle to the right to find the $\sin Y, \cos Y$, and $\tan Y$.

\qquad

Inverse of Trigonometric Ratios

If you know the measure of two sides of a right triangle, you can find the measures of the angle of the right triangle.

Rules for finding the Measure of an Angle in a Right Triangle

1. Identify the relationship between the unknown angle and the sides that are given.
2. Determine the trigonometric ratio to use.
3. Plug the side measure into the formula. Convert the ratio to a decimal.
4. Using a calculator, find the measure of the angle.

Example

Find the measure of $\angle A$

Step 1 Identify the relationship between the unknown angle and the sides that are given.

Step 2 Determine the trigonometric ratio to use.

Side $\overline{A B}$ is the side adjacent to $\angle A$.
Side $\overline{B C}$ is the side opposite to $\angle A$.

Use the tangent ratio:
$\tan A=\frac{\text { length of the leg opposite } A}{\text { length of the leg adjacent } A}$
Step 3 Plug the side measure into the formula. $\tan A=\frac{4}{3}=1.33$ Convert the ratio to a decimal.

Step 4 Using a calculator, find the measure of $\tan A=1.33$ the angle.
$A=53^{\circ}$

Practice

Find the measure of the unknown angle.

1. Find the measure of $\angle T$

Identify the relationship between the unknown angle and the sides that are given.

Determine the trigonometric ratio to use.

Side $\overline{R S}$ is \qquad to $\angle T$.

Side $\overline{R T}$ is the \qquad
Use the \qquad ratio.
_-T $T=\frac{\text { length of the leg opposite } T}{\text { length of the hypotenuse }}$
Plug the side measure into the formula. Convert the ratio to a decimal.

Using a calculator, find the measure of

+ $T=$
\qquad the angle.
$T=$ \qquad

2. Find the measure of $\angle C$. \qquad

3. Find the measure of $\angle T$.

\qquad

CAngles of Elevation and Depression

Suppose you are standing on the ground looking up at the top of a building. The angle of your line of sight is called the angle of elevation.
Now suppose there is a person looking down from the
 top of the building. The angle of the line of sight of the person at the top of the building is the angle of depression.

You can use what you know about trigonometric ratios to find the angle of depression or elevation. You can also use what you know to find the height of an object.

Rules for working with the Angles of Elevation and Depression

1. Identify givens and unknowns.
2. Determine the trigonometric ratio to use. Plug the values into the formula.
3. Solve for the unknown.

Example

Find the angle of elevation in the diagram to the right.

Step 1 Identify givens and unknowns.

height: 250 ft (opposite side); distance: 3,000 ft (adjacent side)
Unknown: angle of elevation.
Step 2 Determine the trigonometric ratio to use. Plug the values into the formula.

Step 3 Solve for the unknown.

Practice

1. Find the distance: Height is 100 ft and the angle of depression is 9°. Identify givens and unknowns.

Determine the trigonometric ratio to use. Plug the values into the formula.

Solve for the unknown.
height: \qquad (opposite side);
angle of depression: \qquad
Unknown: distance \qquad
You know the opposite side; you want to find
the \qquad side ; use the
tangent ratio.
$\tan \theta=\frac{\text { length of the leg opposite } A}{\text { length of the leg adjacent } A}$

$$
=\tan \longrightarrow=\bar{x}
$$

$x=$ $=-=$ \qquad
2. Distance is 200 ft . and angle of elevation is 15°. Find the height. \qquad
3. Distance is 40 ft and height is 625 ft . Find the angle of elevation.
\qquad

CTypes of Polygons

The term polygon is a term that means "many-sided". Look at the figures below. Those to the left are polygons, while the figures to the right are not polygons.

Polygons

Not Polygons

Use the figures above to identify characteristics of a polygon. Circle the term in each pair that makes the statement true.

1. The figures on the left are polygons because their sides are made of \qquad -.
One of the figures above (Figure E) has a side made of an \qquad
2. In the figures on the left, each segment intersects with \qquad other segments.
One of the figures on the right (Figure D) has some of its sides intersecting with
\qquad segment.
3. In the figures on the left, each segment intersects with \qquad other segments.
One of the figures on the right (Figure F) has some of its sides intersecting with
\qquad segments.

Complete the statements below defining polygons.

A polygon is a closed figure made of a certain number of \qquad lying in the same plane. In a polygon, each side intersects exactly \qquad other sides. Polygons are classified by the number

Sides	Name	Sides	Name
3	triangle	7	heptagon
4	quadrilateral	8	octagon
5	pentagon	9	nonagon
6	hexagon	10	decagon

Practice

Decide whether each figure is a polygon.

1.

Is the figure a closed figure? \qquad
Is the figure made only of segments? \qquad
Is the figure a polygon? \qquad
2.

3.

\qquad
4. Name the figure C above. \qquad 5. Name the figure in \# 3 . \qquad
\qquad

C Sum of Polygon Angle Measures

Each type of convex polygon has a unique value for the sum of the measures of its interior angles. For example, the sum of the measures of the angles of a triangle is 180°. If you divide a polygon into non-overlapping triangles, you can use what you know about triangles to find the sum of the measures of the interior angles of the polygon.
Complete the chart below.

Polygon	Number of Sides	Number of Triangles	Sum of Angle Measures
Triangle	3	1	$1\left(180^{\circ}\right)=180^{\circ}$
Quadrilateral		-	-
Pentagon	-	-	-
Hexagon	-	-	-

Complete the statements below. Use the data in the chart above.

1. A quadrilateral has \qquad sides. The number of triangles formed when diagonals are formed is \qquad _.
2. Look at the other figures. The number of triangles formed is always the number of sides (n) minus \qquad -.
3. To find the sum of the angles, you take the number of sides (n) minus \qquad and multiply by \qquad —.

Use the data in the table and the statements above to complete the rule below.

Polygon Interior Angle Theorem

The sum of the measures of the interior angles of a convex polygon, where n is the number of sides, is \qquad

Practice

1. Find the sum of the interior angle measures of a 12 -gon.

How many sides does the polygon have?
What is the formula to use? Plug the numbers into the formula.

Solve.
2. Find the measure of a 15 -gon. \qquad
3. Find the measure of a 20 -gon. \qquad
4. A regular polygon has angles measuring 120°. How many sides does it have? \qquad

Name \qquad Date \qquad

Types of Quadrilaterals

A quadrilateral is a closed plane figure with four sides. The figure to the right is a quadrilateral.

Explore the nature of quadrilaterals. Examine each quadrilateral and complete the chart summarizing the properties of each quadrilateral.

Type	Sides	Angles
	Opposite sides are \qquad Opposite sides are	All angles are __.
	Opposite sides are \qquad All sides are	All angles are
	Opposite sides are \qquad Opposite sides are	Opposite angles are \qquad
	Opposite sides are \qquad All sides are \qquad	Opposite angles are \qquad
Trapezoid	Only one pair of opposite sides are \qquad	N/A
	Two pairs of adjacent sides are \qquad No pairs of sides are \qquad	One pair of opposite angles are \qquad

\qquad

C Properties of Parallelograms

The symbol for the parallelogram to the right is $\square A B C D$. In $\square A B C D, \overline{A D} \| \overline{B C}$ and $\overline{A B} \| \overline{D C}$.

Use the figure to the right to complete the chart.

Opposite Sides						
Side	Measure	Opposite Side	Measure			
-	-	$\overline{B C}$	12			
$\overline{A B}$	18	-	-			
Opposite Angles						
Angle	Measure	Opposite Angle	Measure			
$\angle A$	60°	-				
		$\angle B$	120°			

Consecutive Angles

Angle	Measure	Consecutive Angle	Measure	Sum of Measures
$\angle A$	60°	-	-	-
$\angle B$	120°	-	-	-

Use the chart to complete the following statements about the properties of parallelograms.

Properties of Parallelograms

1. Opposite sides of a parallelogram are \qquad . Opposite angles
of a parallelogram are \qquad .
2. The sum of consecutive angles in a parallelogram is 180°. Consecutive angles in a parallelogram are \qquad .

Practice

1. For the parallelogram to the right, find the value of $\angle A, \angle D, \overline{A D}$, and $\overline{C D}$.

$\angle A$ is an angle that is opposite a consecutive angle with \qquad whose measure is \qquad
Consecutive angles are \qquad Therefore, $\mathrm{m} \angle A=$ \qquad
$\angle D$ is an angle that is opposite \qquad -.

Opposite angles are \qquad Therefore, $\mathrm{m} \angle D=$ \qquad
$\overline{A D}$ is opposite \qquad Opposite sides are \qquad so $\overline{A D}=$ \qquad
$\overline{C D}$ is opposite \qquad Opposite sides are \qquad , so $\overline{C D}=$ \qquad
\qquad

Properties of Trapezoids

A trapezoid is a quadrilateral with exactly one pair of parallel sides. The parallel sides are called bases. The non-parallel sides are called legs. In a trapezoid there are two pairs of base angles, one pair for each base. The trapezoid to the right is an isosceles trapezoid, so the legs are congruent, and the angles in each
 pair of base angles are congruent.

Use the figure above to complete each statement. Then complete the chart.

1. One pair of base angles is $\angle A$ and \qquad —.
2. The other pair of base angles is $\angle D$ and \qquad

Base Angle	Measure	Base Angle Pair	Measure
$\angle A$	120°	-	-
$\angle D$	60°	-	-

Use the data in the table to complete the following rule.

Base Angles of an Isosceles Trapezoid

Both pairs of base angles in an isosceles trapezoid are \qquad
In the figure to the below right, $\overline{E F}$ is a median of a trapezoid; the median is a segment that joins the midpoints of the two legs.

Use the figure to the right to complete each statement.
3. $\overline{A B}=12, \overline{C D}=40 ; \overline{A B}+\overline{C D}=$ \qquad
4. The measure of $\overline{E F}$ is \qquad
5. One-half of $\overline{A B}+\overline{C D}=$ \qquad $\div 2=$ \qquad

Practice

Use the figure to the right to answer the following questions. $\boldsymbol{E F G H}$ is an isosceles trapezoid. $\overline{M N}$ is a median.

1. $\overline{H G}=22$ and $\overline{E F}=6$. Find $\overline{M N}$.

The sum of $\overline{H G}$ and $\overline{E F}$ is $\overline{H G}+\overline{E F} ; 22+6=$ \qquad
The median is ___ the length of the sum of the two bases.

$\overline{M N}=\frac{1}{2}(\overline{H G}+\overline{E F})=\frac{1}{2}(\square)=\square$
2. $\angle E=105^{\circ} ; \angle H=$
3. $\overline{E F}=28$ and $\overline{M N}=30$. Find $\overline{H G}$ \qquad
4. $\overline{E M}=18$. Find $\overline{N G}$ \qquad
5. $\angle H=70^{\circ} ; \angle G=$ \qquad
\qquad
\qquad

CDiagonals in Parallelograms

A parallelogram is a quadrilateral with both pairs of opposite sides parallel. In the parallelogram to the right, $A B$ is parallel to $D C$, and $A D$ is parallel to $B C$. A diagonal of a polygon is a segment that joins non-connective vertices. In the parallelogram to the right, $D B$ is a diagonal.

Use the figure to the above right to complete the table below. Then complete the statements that follow.

Diagonal	Measure	Segment	Measure	Segment	Measure
$\overline{A C}$	28	$\overline{A E}$		$\overline{C E}$	-
$\overline{D B}$		-	$\overline{D E}$	-	$\overline{B E}$

1. Diagonal $\overline{A C}$ is divided into two segments, $\overline{A E}$ and $\overline{C E}$. The measure of $\overline{A E}$ is
\qquad the measure of $\overline{A C}$. Similarly, the measure of $\overline{D E}$ is \qquad the measure of diagonal $\overline{D B}$.
2. Another way to look at this relationship is that $\overline{A E}$ \qquad to $\overline{C E}$ and $\overline{D E}$ \qquad $\overline{B E}$.
3. You could also say that since one diagonal, such as $\overline{A C}$, intersects $\overline{D B}$ so that two congruent segments are formed, $\overline{D E}$ and $\overline{E B}$, the $\overline{A C}$ \qquad $\overline{D B}$.

Use the data in the table to complete the rule for diagonals in a parallelogram.

Rule for Diagonals in a Parallelogram

If a quadrilateral is a parallelogram, then its diagonals \qquad each other.

Practice

Find the unknown length or lengths.

1. Find $\overline{U Z}$ and $\overline{V Z}$. You are given that UVWX is a parallelogram and that $\overline{W U}=28$

Finding $\overline{U Z}$:
What is the relationship of $\overline{U Z}$ to $\overline{W U}$?
What can you conclude about $\overline{U Z}$?
Finding $\overline{V Z}$:
What is the relationship between $\overline{X Z}$ and $\overline{V Z}$?

What can you conclude about $\overline{V Z}$?
2. $\overline{B E}$ \qquad
4. $\overline{A E}$ \qquad
3. $\overline{D B}$ \qquad 5. $\overline{A C}$ \qquad
$\overline{U Z}$ is a \qquad of $\overline{W U}$.
$\overline{U Z}$ is \qquad the measure of $\overline{W U}$.
$\overline{U Z}=$ \qquad
$\overline{X V}$ is \qquad by $\overline{W U}$.
$\overline{X Z}$ \qquad $\overline{V Z}$

Since $\overline{X Z}=12$, then $\overline{V Z}=$ \qquad

\qquad

C Exterior Angles of a Polygon

As you know, there is a relationship between the interior angles of a convex polygon. You know that the sum of the measures of the interior angle is $(n-2)=180$, where n is the number of sides. There is a relationship between the exterior angles of a convex polygon. Remember, an exterior angle is an angle that forms a linear pair with the adjacent interior angle of a polygon.

Use the figures to the right to complete the chart.

Triangle					
$\angle 1$	$\angle 2$	$\angle 3$	$\angle 4$	Sum of Angles	
	-	-	N / A	-	
Quadrilateral					
	-	-	-	-	

Use the data in the table above to complete the rule for exterior angles of a polygon.

Exterior Angle Sum Theorem

If a polygon is convex, then the sum of the measures of the exterior angles, one at each vertex, is \qquad

Practice

1. Find the measure of each interior and exterior angle in a regular pentagon.

How many sides are in a pentagon?
What is the sum of the measures of the interior angles of a pentagon?

What is the measure of each interior angle?

What is the sum of the measures of the exterior angles of a polygon?

What is the measure of each exterior \qquad \div \qquad $=$ \qquad angle?
2. Find the measure of each interior and exterior angle in a regular octagon.
3. Each exterior angle of a regular polygon measures 40°. How many sides does this polygon have? \qquad
4. Each exterior angle of a regular polygon measures 60°. How many sides does this polygon have? \qquad
\qquad

C Proportions

A proportion is an equation that states that two ratios are equal. The following are examples of proportions.

$$
\frac{5 \text { miles }}{10 \text { minutes }}=\frac{15 \text { miles }}{30 \text { minutes }} \quad \frac{2 \text { cups }}{5 \text { gallons }}=\frac{4 \text { cups }}{10 \text { gallons }}
$$

If you were to express each ratio in simplest terms, you would see they are the same. Furthermore, in a proportion, the units are the same across the top and are the same across the bottom.

Rules for Identifying Proportions

1. Place the ratios next to each other. Be sure if the numbers have units that the units are the same across the top and are the same across the bottom.
2. Write each ratio in simplest form.
3. If they are the same in simplest form, the two ratios form a proportion.

Example

Does the pair of ratios $\frac{8}{10}$ and $\frac{32}{40}$ form a proportion?
Step 1 Place the ratios next to each other. $\quad \frac{8}{10} \quad \frac{32}{40}$
Step 2 Write each ratio in simplest form. $\quad \frac{8}{10}=\frac{4}{5} \quad \frac{32}{40}=\frac{4}{5}$

Step 3 If they are the same in simplest form, the two ratios form a proportion.

They are each in simplest form.
$\frac{8}{10}=\frac{32}{40}$

Practice

Do the ratios in each pair form a proportion?

1. $\frac{10}{20}: \frac{40}{50}$

Place the ratios next to each other.
Write each ratio in simplest form.
If they are the same in simplest form, the two ratios form a proportion.
2. $\frac{1}{2}: \frac{25}{30}$ \qquad
3. $\frac{3}{12}: \frac{9}{36}$ \qquad
$\frac{10}{20} \quad \frac{40}{50}$
$\frac{10}{20}=\quad \frac{40}{50}=$ \qquad
In simplest form, the ratios \qquad equal.

They \qquad form a proportion.
4. $\frac{6}{15}: \frac{12}{45}$ \qquad
6. $\frac{42}{5}: \frac{126}{15}$ \qquad
7. $\frac{12}{8}: \frac{16}{24}$ \qquad
8. $\frac{72}{27}: \frac{16}{6}$ \qquad
5. $\frac{3}{8}: \frac{4}{16}$ \qquad 9. $\frac{28}{25}: \frac{112}{100}$

Name \qquad
\qquad

Solving Proportions

In some instances you will need to find a missing number in order to create a proportion. You can use the cross products of the two ratios to find the missing number.

Rules for Solving Proportions

1. Multiply the top of the first ratio by the bottom of the second ratio.
2. Multiply the top of the second ratio by the bottom of the first ratio.
3. Divide each side by the number in front of the missing number.

Example

Find the value that completes each proportion: $\frac{14}{35}=\frac{\mathbf{4 2}}{\boldsymbol{x}}$.
Step 1 Multiply the top of the first ratio by $\frac{14}{35}=\frac{42}{x}$ the bottom of the second ratio.
$14 \times x=14 x$
Step 2 Multiply the top of the second ratio $42 \times 35=1470$ by the bottom of the first ratio.
Set the results equal to each other. $\quad 14 x=1470$
Step 3 Divide each side by the coefficient $14 x \div 14=1470 \div 14$ of the variable, x. $x=105$

Practice

Find the value that completes each proportion.

1. $\frac{14}{4}=\frac{x}{28}$

Multiply the top of the first ratio by $\quad \frac{14}{4}=\frac{x}{28}$ the bottom of the second ratio.

Multiply the top of the second ratio by the bottom of the first ratio.
Set the results equal to each other. \qquad $=$ \qquad
Divide each side by the coefficient of the variable, x.
2. $\frac{x}{20}=\frac{11}{55}$ \qquad
\qquad $\div 4=$ \qquad $\div 4$
$x=$ \qquad
6. $\frac{8}{6}=\frac{20}{x}$ \qquad
3. $\frac{3}{x}=\frac{9}{18}$ \qquad 7. $\frac{80}{x}=\frac{10}{4}$ \qquad
4. $\frac{2}{8}=\frac{x}{52}$ \qquad 8. $\frac{25}{4}=\frac{50}{x}$ \qquad
5. $\frac{3}{10}=\frac{12}{x}$ \qquad
9. $\frac{x}{65}=\frac{4}{10}$
\qquad

C Similar Polygons

You know that when two polygons are congruent, the measures of their corresponding sides are congruent and the measures of their corresponding angles are congruent. In other words, the figures have the same size and shape. Figures can have the same shape, but are not the same size. When figures have the same shape but are different sizes, they are similar figures.

Use the two triangles to the above right to explore the nature of similar figures.

Corresponding Angles					
Angle	Measure	Corresponding Angle	Measure	Relationship Between Angles	
$\angle A$	20°	$\angle X$	-	$\angle A _\angle X$	
		$\angle Y$	115°	$-\angle Y$	
$\angle C$	45°			$\angle C _-\angle C$	

Corresponding Sides					
Side	Measure	Corresponding Side	Measure	Ratio of Angle to Corresponding Angle	
$\overline{A B}$	15	$\overline{X Y}$	7.5	$\frac{15}{7.5}=2$	
$\overline{A C}$	20		-	-	
	-	$\overline{Y Z}$	5	-	

Use the data in the table to complete the rule for similar polygons.

Similar Polygons

1. Corresponding angles are \qquad
2. Corresponding sides are in \qquad

Practice

Tell whether each pair of figures is similar.

1. Are corresponding angles congruent?

$\angle A \cong \angle W, \angle B _\angle X, \angle C _\angle Y, \angle D _\angle Z$
Are the sides proportional? $\frac{\overline{A B}}{W X}=\square,-\square=\square$;
\qquad $=$ \qquad The figures \qquad similar.
2. \qquad

\qquad

CTriangle Similarity: Angle-Angle Similarity

Just like triangle congruence, there are various methods for proving that two triangles are similar. The two triangles to the right are similar.

Explore the nature of triangle similarity by completing the statements and chart below.

1. $\angle A$ corresponds to \qquad ; \qquad corresponds to $\angle E ; \angle C$ corresponds to \qquad
2. The measure of $\angle C$ is unknown. Since the sum of the measures of the angles of a triangle is 180°, the measure of $\angle C$ is \qquad _.
3. The measure of $\angle D$ is unknown. Since the sum of the measures of the angles of a triangle is 180°, the measure of $\angle D$ is \qquad

Angle	Measure	Corresponding Angle	Measure	Relationship
$\angle A$	77°	$\angle D$	77°	$\angle A \cong \angle D$
$\angle B$	48°			$\angle B-$
	-	$\angle F$	55°	$-\angle F$

4. Based on the data above, all the angles of $\triangle A B C$ are \qquad to all the corresponding angles of $\triangle D E F$.

You may have noticed that if you know the measure of two angles of a triangle, you know the measure of the third. To prove triangles similar, you need to know congruence of two pairs of angles. Use the data in the table and the completed statements to write the rule for triangle similarity.

Angle-Angle Similarity

If two angles of one triangle are \qquad to two angles of another triangle, then the two triangles are similar.

Practice

1. Determine whether the triangles in the figure are similar.

The two triangles are $\triangle A B C$ and \qquad .

The two triangles share \qquad Since the two triangles share an angle, \qquad \cong \qquad The measure of $\angle D$ is \qquad ; the measure of $\angle B$ is \qquad —.

Are there two pairs of angles that are congruent? \qquad
Are the triangles similar? \qquad
2. Are the following triangles similar?

\qquad

\qquad
\qquad
\qquad

Triangle Similarity: Side-Side-Side Similarity

When you explored the nature of congruent triangles, you found different methods for proving that two triangles are congruent. Just like triangle congruence, there are various methods for proving that two triangles are similar.

The two triangles to the right are similar. Explore triangle similarity by completing the statements and chart below.

Side	Measure	Corresponding Side	Measure	Ratio of Sides
$\overline{A B}$	14	$\overline{D E}$	7	$\frac{14}{7}=-$
$\overline{B C}$	13	-	-	-
	$-\overline{D F}$	7.5	-	

1. $\frac{\overline{A B}}{D E}=$ and $\frac{\overline{B C}}{E F}=\ldots$. Does $\frac{\overline{A B}}{D E}=\frac{\overline{B C}^{-}}{E F}$?
2. $\frac{A B}{D E}=$ Is the ratio of the sides in $\triangle A B C$ proportional to the corresponding sides in $\triangle D E F$? \qquad
3. Complete the proportion: $\frac{\overline{A B}}{D E}$. \qquad $=\frac{\overline{A C}}{\overline{D F}}$
4. The ratio of the sides is the scale factor. The scale factor for $\triangle A B C: \triangle D E F$ is \qquad —.

Use the data in the chart to complete the rule for triangle similarity.

Side-Side-Side Similarity

If the lengths of the corresponding sides of two triangles are \qquad then the triangles are similar.

Practice

Determine whether the triangles are similar.

1.

$\frac{\overline{A B}}{D E}$ corresponds to ; the ratio of the sides is \qquad $=10 /$ \qquad $=$ \qquad
$\frac{B C}{E F}$ corresponds to \qquad ; the ratio of sides is \qquad $=15 /$ \qquad $=$ \qquad $\frac{A C}{D F}$ corresponds to \qquad ; the ratio of sides is \qquad $=20 /$ \qquad $=$ \qquad
What is the ratio of corresponding sides in each case? \qquad : \qquad
Are the corresponding sides proportional? \qquad Are the triangles similar? \qquad
2. \qquad

\qquad

Triangle Similarity: Side-Angle-Side Similarity

When you explored the nature of congruent triangles, you found different methods for proving that two triangles are congruent. Just like triangle congruence, there are various methods for proving that two triangles are similar. The two triangles to the right are similar.

Explore the nature of triangle similarity by completing the statements and chart below.

1. $\overline{A B}$ and $\overline{A C}$ are on either side of $\angle A . \overline{X Y}$ and $\overline{X Z}$ are on either side of $\angle X . \angle A$ and $\angle X$ are \qquad angles.

Angle or Side	Measure	Corresponding Angle or Side	Measure	Relationship
$\overline{A B}$	14	$\overline{X Y}$	7	$\frac{14}{7}=2$
$\angle A$	53°	-		$\angle A-$
$\overline{A C}$	15	-		

2. Based on the data above, $\angle A$ is \qquad to $\angle X$.
3. $\frac{\overline{A B}}{X Y}=$ \qquad and $\frac{\overline{A C}}{\overline{X Z}}=$ \qquad Does $\frac{\overline{A B}}{X Y}=\frac{\overline{A C}^{-}}{X Z}$?
Are the corresponding sides of the triangles proportional? \qquad

Use the data in the chart to complete the rule for triangle similarity.

Side-Angle-Side Similarity

If an angle of one triangle is \qquad to an angle of another triangle, and the sides \qquad these angles are in proportion, then the triangles are similar.

Practice

Determine if each pair of triangles is similar.

1. $\overline{A C}$ corresponds to \qquad $\overline{B C}$ corresponds to \qquad —.
The ratio of $\overline{A C}$ to \qquad is \qquad .
The ratio of $\overline{B C}$ to \qquad is \qquad

Do the ratios form a proportion? \qquad
Name the angle between $\overline{A C}$ and $\overline{B C}$? \qquad Is this angle congruent to another angle? If so, name it.
Is SAS Similarity satisfied? \qquad
2. \qquad

Geometry
\qquad
\qquad

Finding Lengths in Similar Triangles

You can apply what you know about similar triangles and proportions to find the unknown length of a side in one of the triangles.

Rules for Finding Lengths in Similar Triangles

1. Create a ratio using a pair of known corresponding sides.
2. Create a ratio for the side and its measure that corresponds to the unknown side.
3. Set up a proportion using the two ratios. Use Cross Products Property.
4. Solve for the unknown.

Example

Find the length of $\overline{C E} . \triangle A B C$ is similar to $\triangle E D C$.

Step 1 Create a proportion using a pair of known corresponding sides.

Step 2 Create a ratio for the side and its measure that corresponds to the unknown side.
Step 3 Set up a proportion using the two ratios. Use Cross Products Property.

Step 4 Solve for the unknown.

Practice

1. Find the missing length. Assume each pair of triangles are similar.

Create a proportion using a pair of known corresponding sides.

Create a ratio for the side and its measure that corresponds to the unknown side.

Set up a proportion using the two ratios. Use Cross Products Property.

Solve for the unknown.
2.

$\overline{C B}$ and $\overline{C D}$ are corresponding sides.
$\frac{C B}{C D}=\frac{4}{12}$
$\overline{A C}$ corresponds to the unknown side, $\overline{C E}$.
$\frac{A C}{C E}=\frac{6}{C E}$
$\frac{4}{12}=\frac{6}{C E}$
$\overline{C E}=18$

$\overline{A C}$ and $\overline{R T}$ are corresponding sides.
\qquad
\qquad
$\overline{A B}$ corresponds to the unknown side, $\overline{R S}$.
\qquad $=$ \qquad
\qquad $=$ \qquad
$\overline{R S}=$ \qquad
3.

\qquad

CProportions in Triangles: Side-Splitter Theorem

Segments can be used within a triangle to make a smaller triangle. If the segment within the triangle is parallel to one of the sides, then a special relationship exists with the remaining two sides.

Use the figure to the right to explore the relationship between the sides. $\overline{D E}$ is parallel to $\overline{B C}$.

	Segment	Measure	Segment	Measure	Ratio
Side $\overline{A B}$	$\overline{A D}$	6	$\overline{D B}$	3	$\frac{\overline{A D}}{\overline{D B}}=-=-$
Side $\overline{A C}$	$\overline{A E}$	10	-	-	$\frac{\overline{A E}}{\overline{E C}}=\square=-$

1. The ratio of the two segments formed from $\overline{A C}$ is \qquad : 1.
2. The ratio of the two segments formed from $\overline{A B}$ is \qquad $: 1$.
3. Does the ratio of each set of sides form a proportion? \qquad

Use the data in the table and the completed statements above to complete

 the Side-Splitter Theorem.
Side-Splitter Theorem

If a line is parallel to one side of a triangle and intersects the other two sides, then it divides those sides \qquad -.

Practice

1. Solve for $\overline{U T} . \overline{U V}$ is parallel to $\overline{T S}$.
$\overline{R S}$ is divided into two segments; $\overline{R V}$ and $\overline{V S}$. Create a ratio of the segments.

$$
\frac{\overline{R V}}{V S}=
$$

$\overline{R T}$ is divided into two segments; $\overline{R U}$

$$
\frac{\overline{\mathrm{RU}}}{\overline{U T}}=
$$ and $\overline{U T}$. Create a ratio of segments.

Create a proportion using the two

$$
\frac{2}{6}=
$$

ratios. Solve for the unknown.

$$
\overline{U T}=
$$

\qquad
2. Find $\overline{C Y}$. \qquad

3. Solve for x. \qquad

\qquad
\qquad

CTriangle-Angle Bisector Theorem

Segments can be used within a triangle to make smaller triangles. If a segment within a triangle bisects one of the angles, what type of relationship exists between the two segments that are formed and the other two sides?

Use the figure to the above right to explore the relationship between the two smaller segments. Complete each statement by filling in each blank.

1. $\overline{D C}$ \qquad $\angle A C B$. The side opposite $\angle A C B$ is $\overline{A B}$.
2. $A B$ is divided into two smaller segments- $A D$ and \qquad .
3. The ratio of $\frac{\overline{B D}}{A B}$ is \qquad -.
4. The ratio of $\frac{\overline{B C}}{A C}$ is \qquad ——.
5. The ratio from \#3 _ the ratio from \#4.

Therefore, the ratios form a \qquad
Use the answers to the items above to complete the Triangle-Angle Bisector Theorem.

Triangle-Angle Bisector Theorem

If a segment \qquad an angle of a triangle, then it divides the opposite side into two segments that are \qquad to the other two sides of the triangle.

Practice

Solve for the unknown length.

1. Find the length of $\overline{D C}$.

Identify the angle that is bisected.
Identify the side opposite the bisected angle. Name the segments into which the side is divided.
Create a proportion of the two smaller segments to the two other sides.

$$
\begin{aligned}
& =\frac{\overline{A B}}{\overline{A C}} \\
& =\frac{12}{20}
\end{aligned}
$$

Use Cross Product property and solve for the unknown side.
$(\square \quad)(20)=12$ \qquad
$\overline{D C}=$ \qquad
2. Find the measure of $\overline{W Z}$.

3. Find the measure of $\overline{S T}$. \qquad

\qquad

CCircles and Circumference

A circle is a set of points in a plane that are the same distance from a given point called the center of the circle. A circle has certain parts. These parts are shown in the figure to the right.

Examine each figure and then complete each definition below.

1. $\overline{C D}$ is the radius. The radius of a circle is a segment whose endpoints are the \qquad of the circle and a point \qquad the circle.

2. C is the center of the circle. $\overline{A B}$ is the diameter. The diameter of a circle is a segment that passes through the \qquad of the circle with endpoints \qquad the circle.
3. $\overline{E F}$ is a chord. A chord is a segment that has \qquad endpoints \qquad the circle. The \qquad of a circle is also a chord.
4. $\overline{A B}=20$ and $\overline{C D}=10$. The radius is \qquad the diameter, or the diameter is
\qquad times the radius.

The distance around a circle is its circumference. The circumference of a circle is found using the measure of the radius or diameter.

Rules for Finding the Circumference

1. Identify the radius or diameter of a circle. The radius is r and the diameter is d.
2. If the radius is given, use the formula $C=2 \pi r$; if the diameter is given, use $C=\pi d$.

Example

Find the circumference of the circle to the right. Use $\pi=3.14$
Step 1 Identify the radius or diameter of a circle. The radius is r; the diameter is d.

Step 2 If the radius is given, use the formula $C=2 \pi r$; if the diameter is given, use $C=\pi d$.

Practice

1. Find the circumference of the circle. Identify the radius or diameter of a circle. The radius is r; the diameter is d.

If the radius is given, use the formula $C=2 \pi r$; if the diameter is given, use $C=\pi d$.
2. Find the circumference of a circle with a radius of 12 .
3. Find the radius and diameter of a circle with a circumference of 47.1.
4. Find the radius and diameter of a circle with a circumference of 62.8 . \qquad
\qquad

(Exploring π

A circle is the set of all points in a plane that are an equal distance from a given point, the center of the circle. A diameter is a segment that passes through the center of the circle with endpoints on the circle. A radius is a segment whose endpoints are the center of the circle and a point on the circle. The circumference is the distance around a circle.

The chart below shows the diameter and circumference of several circles. Complete the chart by finding the ratio of the circumference to the diameter. Express the ratio as a fraction and a decimal.

Circle	Circumference	Diameter	$\frac{\text { Circumference }}{\text { Diameter }}$ 1 $\operatorname{37.68}$
2	31.4	12	-
3	25.12	10	-
4	56.52	18	-
5	47.1	15	-

Use the data in the table above to complete each statement below.

1. Is the ratio of the circumference to the diameter of each circle the same or different?
2. What is the value for the ratio of the circumference to the diameter?
3. Write an equation that shows the relationship of circumference, diameter and the resulting ratio.
4. Use the relationship between the circumference and the diameter to complete the chart.

Circle	Circumference	Diameter
1		34
2	37.68	-
3	53.38	-
4		20

The ratio of the circumference of a circle to its diameter is the same for every circle. The symbol π represents this ratio.
\qquad

CArc Length

An arc is a part of a circle. In the circle to the right, the part of the circle from R to S to T is an arc. You write the symbol for the arc as $\overparen{R S T}$. The measure of an arc is in degrees. Arc length is a fraction of the circle's circumference.
The measure of $R S T$ is equal to $\mathrm{m} \angle R C T$ with C the center of the circle.

Rules for Finding Arc Length

1. Find the measure of the arc (in degrees).
2. Find the radius of the circle. If the diameter is given, divide the diameter by 2 .
3. Plug the measure of the arc and the radius into the formula for arc length: Arc length $=\frac{\text { measure of arc }}{360^{\circ}}(2 \pi r)$

Example

Find the length of arc $\overparen{X Y Z}$. Use $\pi=3.14$

Step 1 Find the measure of the arc (in degrees). The measure of the arc is 90°.
The diameter is given; the diameter is 10 .

Step 2 Find the radius of the circle. If the diameter is given, divide the diameter

To find the radius, divide the diameter by 2 ; $r=5$. by 2 .
Step 3 Plug the measure of the arc and the \quad Arc length $=\frac{90^{\circ}}{360^{\circ}}(2(3.14))(5)=7.85$ radius into the formula for arc length:
Arc length $=\frac{\text { measure of arc }}{360^{\circ}}(2 \pi r)$

Practice

Find the length of arc $\overparen{A B C}$.
1.

Find the measure of arc $\overparen{A B C}$ (in degrees). The measure of the arc is \qquad —.

Find the radius of the circle. If the diameter is given, divide the diameter by 2 .

Plug the measure of the arc and the radius into the formula for arc length: Arc length $=\frac{\text { measure of arc }}{360^{\circ}}(2 \pi r)$
2. \qquad

The radius is \qquad _.

Arc length $=\frac{170^{\circ}}{360^{\circ}}(2(3.14))(\square)=44.5$
\qquad
3.

Geometry
\qquad

C Inscribed Angles

An inscribed angle is an angle with its vertex on a circle and with its sides that are a chord of the circle. The arc that lies in the interior of an inscribed angle and has endpoints on the angle is called the intercepted arc of the angle.
Explore the relationship between an inscribed angle and its Intercepted intercepted arc. Use the three circles below to complete the table below.

Cirlce	Inscribed Angle	Intercepted Arc
Circle 1	-	-
Circle 2	-	-
Circle 3	-	-

1. The measure of the \qquad is \qquad than the measure of the inscribed angle.
2. The relationship between the intercepted arc and its inscribed angle is that the intercepted arc is \qquad times the measure of the inscribed angle.
3. Another way to look at the relationship is that the measure of the inscribed angle is
\qquad the measure of its intercepted arc.

Complete the relationship rule for an inscribed angle and its intercepted arc.

Rule for Inscribed Angles

If an angle is inscribed in a circle, then its measure is \qquad the measure of its intercepted arc: $\mathrm{m} \angle A B C=\frac{1}{2} \mathrm{~m} \overparen{A C}$

Practice

Find the measure of the arc or the angle in the following circles.

1.

What is given?

What is its measure?
Plug the measure into the relationship between an inscribed angle and its intercepted arc.

Solve.
2. \qquad

The measure of the is given.
Its measure is \qquad
$\mathrm{m} \angle A C B=\frac{1}{2} \mathrm{~m} \overparen{A B}$
$=\frac{1}{2} \mathrm{~m} \overparen{A B}$
$=-m \overparen{A B}$
3. \qquad

\qquad

CAngle Measures in Circles

A secant is a line that intersects a circle at two points. A tangent is a line in the plane of the circle that intersects the circle at one point. Angles formed by secants and tangents intercept arcs on the circle. The three ways this can happen are shown to the right.

Circle	Larger Arc	Smaller Arc	Angle	Larger Arc- Smaller Arc
A	-	-	-	-
B	-	-	-	-
C	-	-	-	-

1. In Circle A, the difference in arc measure is \qquad The measure of the angle formed by the two secants is \qquad . The measure of the
 angle is \qquad the difference in arc measure.
2. Compare the same measures in Circle B. The measure of the angle formed by the secant and tangent is \qquad the difference in arc measure.
3. Compare the same measures in Circle C. The measure of the angle formed by the two tangents is \qquad the difference in arc measure.

Complete the rule for the angle formed by two lines that intersect outside a circle.
Rule for Angles Formed by Secants and Tangents Intersecting Outside a Circle
The measure of an angle formed by two lines that intersect outside a circle is \qquad the difference of the measures of the intercepted arcs: $\mathrm{m} \angle 1=\frac{1}{2}(x-y)$

Practice

Find the missing measure.

1.

What is the missing measure?
What is given?
Plug the numbers into the formula.

The measure of the \qquad .

The measure of the two \qquad

$$
\begin{aligned}
\mathrm{m} \angle 1 & =\frac{1}{2}(x-y)= \\
& =50^{\circ}
\end{aligned}
$$

\qquad
2. \qquad

3. \qquad
\qquad

C Finding Segment Lengths

A secant is a line that intersects a circle at two points. A tangent is a line that intersects a circle at one point. Angles formed by secants and tangents intercept arcs on the circle. Tangents and secants can intersect outside a circle. The figures to the right show two such situations. There is a proportional relationship that exists between the segments of each line.

Secant-Secant

Secant-Tangent

Rules for Finding Segment Lengths

1. Find the lengths of the two segments of the secant going through the circle.
2. If the second line is a tangent, then find the length of the tangent. If the second line is another secant, then find the length of the two segments.
3. For secant/secant use: $(b+a) b=(d+c) d$; for tangent/secant use: $(y+z) y=x^{2}$
4. Solve for the unknown length.

Example

Find the missing length.

Step 1 Find the lengths of the two segments For Line 1, make $a=8$ and $b=6$. of the secant going through the circle.
Step 2 The second line is another secant. For Line 2, make $c=x$ and $d=7$.
Step 3 For secant/secant use:

$$
(6+8) 6=(7+x) 7
$$

$$
(b+a) b=(d+c) d
$$

Step 4 Solve for the unknown length.
$84=49+7 x$
$5=x$

Practice

1. Find the missing length.

Find the lengths of the two segments of the secant going through the circle.

Find the length of the tangent.
For tangent/secant use: $(y+z) y=x^{2}$
Solve for the unknown length.
Make $z=$ \qquad and $y=$ \qquad ـ.

Tangent length $=$ \qquad
\qquad
\qquad $=x^{2}$
\qquad
3. \qquad

\qquad

Equation of a Circle

A circle is the set of all points in a plane that are an equal distance from a given point, the center of the circle. A diameter is a segment that passes through the center of the circle with endpoints on the circle. A radius is a segment whose endpoints are the center of the circle and a point on the circle.

You can write an equation of a circle in a coordinate plane. To do so,
 you need to know the coordinates of the center and the radius of the circle.

Rules for Finding the Equation of a Circle

1. Identify the coordinates of the center. The x-coordinate is h and the y-coordinate is k.
2. Determine the radius of the circle. Remember, the diameter is twice the radius. So, if you are given the diameter, divide the diameter by 2 .
3. Plug the values into the equation for a circle: $(x-h)^{2}+(y-k)^{2}=r^{2}$

Example

Write an equation of the circle with a center at $(2,1)$ and a radius of 5.
Step 1 Identify the coordinates of the center. The center is at $(2,1)$.
The x-coordinate is h and the $\quad h=2, k=1$ y-coordinate is k.
Step 2 Determine the radius of the circle. The radius is 5 .

Step 3 Plug the values into the equation for $(x-2)^{2}+(y-1)^{2}=5^{2}$
a circle: $(x-h)^{2}+(y-k)^{2}=r^{2}$
$(x-2)^{2}+(y-1)^{2}=25$

Practice

Write an equation of the circle for each circle with the given center and radius or diameter.

1. Center $(0,0)$; radius 4.

Identify the coordinates of the center.
The x-coordinate is h and the
y-coordinate is k.
Determine the radius of the circle.
$h=$ \qquad $k=$ \qquad
The radius is \qquad

Plug the values into the equation for a circle: $(x-h)^{2}+(y-k)^{2}=r^{2}$

$$
\begin{gathered}
(x-\ldots)^{2}+(y-\ldots)^{2}= \\
+\quad=
\end{gathered}
$$

\qquad ${ }^{2}$
2. Center: $(5,3)$; diameter: 12 \qquad
3. Center: $(0,2)$; radius: 7 \qquad
4. Center: $(4,-1)$; diameter: 3 \qquad
5. Center: $(-2,-2)$; diameter: 18 \qquad
\qquad
\qquad

Perimeter

The perimeter of a figure is the distance around the outside of that figure. To find the perimeter of a figure, add the lengths of all of its sides. Perimeter is measured in linear units. In the case of a circle, the distance around the figure is known as the circumference.

Rules for Finding the Perimeter of a Figure

1. Find the length of each side.
2. Add the length of all of the sides to find the perimeter.

Example

Find the perimeter of the figure.

Step 1 Find the length of each side.

Step 2 Count the number of sides. Add the length of all the sides to find the perimeter.

Practice

Find the perimeter of each figure.

1. Find the length of each side.

Count the number of sides. Add the length of all the sides to find the perimeter.

You need to find the length of some missing sides, x, y, and z.

$$
x=4, y=5, z=3+7+3=13
$$

There are 8 sides. The measures of all the sides are added.
$P=5+3+4+7+4+3+5+13=44$ units

There is one length that is not known, x.
The length of x is \qquad .

There are \qquad sides to the figure.
$P=$ \qquad $+\ldots+$ \qquad $+$ \qquad $+$ \qquad
$+$ \qquad $+$ \qquad $+$ \qquad $+$ \qquad $+$ \qquad
$P=$ \qquad units
3.

\qquad

C Perimeter and Similar Figures

Is there a relationship between the perimeters of two similar figures? As you know, in similar figures, the lengths of corresponding sides are in proportion. The perimeter of a geometric figure is the distance around the figure. To find the perimeter, you find the length of each side and add the lengths.

Use the figures to the above right to explore the perimeters of similar figures.

	Side	Side	Side	Side	Perimeter
ABCD	$\overline{A B}$	$\overline{B C}=$	$\overline{C D}=$	$\overline{D A}=$	28
WXYZ	$\overline{W X}=$	$\overline{X Y}=$	$\overline{Y Z}=$	$\overline{Z W}=$	14

1. The ratio of sides $\overline{A B}: \overline{W X}$ is \qquad or \qquad .
2. The ratio of sides $\overline{B C}: \overline{X Y}$ is \qquad or \qquad
3. The ratio of the perimeters of $A B C D: W X Y Z$ is \qquad or \qquad
4. The ratio of the perimeters is \qquad to the ratio of the sides.

Use the data in the table and the completed statements to write the rule about perimeters of similar figures.

Perimeters of Similar Figures

If two figures are similar with the lengths of corresponding sides in the ratio $a: b$, then the ratio of their perimeters is \qquad —.

Practice

The following polygons are similar. Find the ratio of their sides and perimeters.

1. The side corresponding to $\overline{A B}$ is \qquad The ratio of their measures is \qquad or \qquad .

The perimeter of $\triangle A B C$ is \qquad The perimeter of $\triangle X Y Z$ is \qquad The ratio of the perimeter
of $\triangle A B C: \triangle X Y Z$ is \qquad or \qquad

2.

\qquad
\qquad

CArea of a Triangle

The area of a two-dimensional figure is the number of square units enclosed by the figure. A square unit is the space enclosed by a 1 unit by 1 unit square.

To find the area of a triangle you multiply half the base of the triangle by its height. In a triangle, any side is a base. The height is an altitude, from the base. Remember, an altitude is a perpendicular segment from the base to the angle opposite the base.

Rules for Finding the Area of a Triangle

1. Identify the base. Any side of the triangle can be the base.
2. Identify the height. The height can be inside, or outside the triangle.
3. The area is calculated by using the following formula: $A=\frac{1}{2} b h$.

Example

Find the area of the triangle to the right.

Step 1 Identify the base. Any side of the triangle can be the base.

Step 2 Identify the height. The height can be inside, or outside the triangle.

The base is $\overline{B C} ; \overline{B C}=10$

In a right triangle, the height can be the other leg, so, $\overline{A B}$ is the height; $\overline{A B}=8$
Step 3 The area is calculated by using the following formula: $A=\frac{1}{2} b h$.

$$
\begin{aligned}
A & =\frac{1}{2} b h \\
& =\frac{1}{2}(10)(8)=40 \text { square units. }
\end{aligned}
$$

Practice

Find the area of each triangle.

1.

Identify the base. Any side of the triangle can be the base.

Identify the height. The height can be inside, or outside the triangle.

The area is calculated by using the following formula: $A=\frac{1}{2} b h$.

The base is $\overline{Y Z} ; \overline{Y Z}=$ \qquad

The height is shown by segment $\overline{X T}$ and is
\qquad the triangle;
$\overline{X T}=$ \qquad
$A=\frac{1}{2} b h$
$=\frac{1}{2} \square=$ \qquad square units
3.

\qquad

C Area of a Parallelogram

To find the area of a parallelogram, you simply multiply the base and the height. In a parallelogram that is a rectangle or square, any side can be the base. The height is a side adjacent to the base. In other parallelograms, such as a rhombus, the base can be any side, and the height is an altitude drawn from the base.

Rules for Finding the Area of a Parallelogram

1. Identify the base. Any side can be the base.
2. Identify the height. In a rectangle or square, the side adjacent to the base is the height. In other parallelograms, the height is an altitude from the base.
3. Multiply the length times the height: $A=b h$.

Example

Find the area of the figure to the right.

Step 1 Identify the base. Any side can be the base.

Step 2 Identify the height. In a rectangle or square, the side adjacent to the base is

Make the base $\overline{D C} ; \overline{D C}=9$ the height. In other parallelograms, the height is an altitude from the base.
Step 3 Multiply the length times the height: $A=b h=9 \times 5=45$ square units. $A=b h$.

Practice

Find the area of each parallelogram.

1.

Identify the base. Any side can be the base.

Identify the height. In a rectangle or square, the side adjacent to the base is the height. In other parallelograms, the height is an altitude from the base.

Multiply the length times the height: $A=b h$.

Make the base side $\overline{Y Z}$; the length of the base is \qquad .

The parallelogram is not a rectangle or a square. The height is $\overline{W T}$; the length of the height is \qquad
$A=b h$

$$
=\ldots \ldots \text { ___ square units }
$$

3. \qquad

\qquad

C Area of Similar Figures

As you know, in similar figures corresponding sides are in proportion. You may also know that the ratio of the perimeters is equal to the ratio of corresponding sides, and so in proportion to the sides. What about the ratio of the areas? Is there a relationship between the areas of two similar figures?

Use the figures to the right to explore the areas of similar figures.

	Length	Width	Area (I $\times \boldsymbol{w}$)
ABCD	-	-	-
$W X Y Z$	-	-	-

1. The ratio of sides $\overline{B C}$ to $\overline{X Y}$ is \qquad or \qquad
2. The ratio of sides $\overline{D C}$ to $\overline{Z Y}$ is \qquad or \qquad
3. The ratio of the areas of $A B C D$ to $W X Y Z$ is \qquad or \qquad
4. Compare the ratio of the sides to the ratio of the areas. The ratio of the area is the ratio of the sides \qquad .

Use the data in the table and the completed statements above to write the rule about the area of similar figures.

Areas of Similar Figures

If two figures are similar with the lengths of corresponding sides in the ratio of $a: b$, then the ratio of their areas is \qquad _.

Practice

1. The side corresponding to $\overline{A B}$ is \qquad ; the ratio of their measure is \qquad or \qquad
Find the ratio of the areas by squaring the ratio of the sides. The ratio of the areas is \qquad $=$ \qquad

2.

Ratio of sides: \qquad ;
ratio of areas \qquad
3.

Ratio of sides \qquad ;
ratio of areas \qquad
\qquad

Area of a Trapezoid

A trapezoid is a quadrilateral with exactly one pair of parallel sides.
To find the area of a trapezoid, you need to know the following:

- The length of one of the bases, b_{1}.
- The length of the other base, b_{2}.
- The height of the trapezoid; the height is an altitude drawn from one base to the other.

Rules for Finding the Area of a Trapezoid

1. Identify each base. The bases of a trapezoid are the sides that are parallel to each other.
2. Identify the height.
3. Use the formula $A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$

Example

Find the area of the trapezoid to the right.

Step 1 Identify each base. The bases of a trapezoid are the sides that are parallel to each other.

Step 2 Identify the height.
Step 3 Use the formula $A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$

Let $\overline{A B}$ be b_{1} and $\overline{D C}$ be b_{2}.
$\overline{A B}=4 ; \overline{D C}=8$
$\overline{A E}$ is the height; $\overline{A E}=5$

$$
\begin{aligned}
A & =\frac{1}{2}\left(b_{1}+b_{2}\right) h=\frac{1}{2}(4+8)(5) \\
& =30 \text { square units }
\end{aligned}
$$

Practice

Find the area of each trapezoid.
1.

Identify each base. The bases of a trapezoid are the sides that are parallel to each other.

Identify the height.
Use the formula $A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$

Let $\overline{R S}$ be $b_{1}, \overline{R S}=9$
Let \qquad be b_{2}; \qquad $=$
\qquad is the height ; \qquad $=$ \qquad

$$
A=\frac{1}{2}\left(b_{1}+b_{2}\right) h=\frac{1}{2}(9+\square)
$$

\qquad
$=\ldots$ square units
3.

\qquad
\qquad

Area of a Rhombus or Kite

A rhombus is a quadrilateral with four congruent sides. A kite is a quadrilateral with two pairs of consecutive congruent sides (but the opposite sides are not congruent).

To find the area of a rhombus or kite, you must draw two diagonals. Remember, a diagonal is a segment that joins two non-consecutive vertices. In a rhombus or a kite, the diagonals are perpendicular.

Rules for Finding the Area of a Rhombus or Kite

1. Identify two diagonals. A diagonal is a segment that joins two non-consecutive vertices. Label one diagonal d_{1} and the other d_{2}.
2. Use the formula $A=\frac{1}{2} d_{1} d_{2}$ to find the area.

Example

Find the area of the kite.

Step 1 Identify two diagonals. A diagonal is a The diagonals are $\overline{A C}$ and $\overline{B D}$. segment that joins two non-consecutive vertices. Label one diagonal d_{1} and the other d_{2}.
Step 2 Use the formula $A=\frac{1}{2} d_{1} d_{2}$ to find the area.

Practice

Find the area.

1.

Identify two diagonals. A diagonal is a segment that joins two non-consecutive vertices. Label one diagonal d_{1} and the other d_{2}.

Use the formula $A=\frac{1}{2} d_{1} d_{2}$ to find the area.

Let $\overline{A C}$ be $d_{1} ; \overline{A C}=20$
Let $\overline{B D}$ be $d_{2} ; \overline{B D}=10$
$A=\frac{1}{2} d_{1} d_{2}=\frac{1}{2}(20)(10)$
$=100$ square units.

The diagonals are $\overline{W Y}$ and \qquad -.
Let $\overline{W Y}$ be $d_{1} ; \overline{W Y}=30$.
Let \qquad be d_{2}; \qquad $=$ \qquad $A=\frac{1}{2} d_{1} d_{2}=\frac{1}{2}(30)(\square)$
$=$ \qquad square units
3.

\qquad

Area of a Circle

To find the area of a circle, you need to know the radius or diameter of the circle. Remember, the radius of a circle is a segment from the center of the circle to the edge of the circle. The diameter is a segment that passes through the center of the circle and whose endpoints are on the circle. The diameter is twice the radius or, the radius is half the diameter.

Rules for Finding the Area of a Circle

1. Identify the radius of the circle. If you are given the diameter, divide the diameter by 2 .
2. Use the formula for the area of a circle: $A=\pi r^{2}$. Plug the radius into the formula.
3. Square the radius. Use 3.14 for π. Solve.

Example

Find the area of the circle.

Step 1 Identify the radius of the circle. If The radius is 5 . you are given the diameter, divide the diameter by 2 .

Step 2 Use the formula for the area of a circle: $A=\pi r^{2}$
$A=r^{2}$. Plug the radius into the formula. $A=\pi(5)^{2}$
Step 3 Square the radius. Use 3.14 for π. Solve. $A=3.14(5)^{2}=78.5$ square units.

Practice

Find the area of the circle.
1.

Identify the radius of the circle. If you are given the diameter, divide the diameter by 2 .

Use the formula for the area of a circle:
$A=\pi r^{2}$. Plug the radius into the formula.
Square the radius. Use 3.14 for π. Solve.

In the problem, the diameter is given. The radius is \qquad the diameter, or
\qquad
$A=\pi r^{2}$
$A=$ \qquad
$A=($ \qquad)(\qquad $)^{2}=$
\qquad square units.
2. Find the area of the circle. \qquad

3. What is the radius of a circle with an area of 28.26 square units? \qquad
4. What is the difference in area between a circle with a radius of 4 and a circle with a radius of 8 ? \qquad
\qquad
\qquad

CArea of a Sector of a Circle

A sector of a circle is a region in a circle bounded by an arc of the circle and two radii from the center of the arc's endpoint.

A sector is named using one arc endpoint, the center of the circle and the other endpoint. The arc in the figure to the right is $\overparen{A B}$. The area of a sector $A O B$ of a circle is a sectional part of the area of the circle.

Rules for Finding the Area of a Sector of a Circle

1. Determine the measure of the arc. The measure of the arc is in degrees.
2. Determine the radius of the circle.
3. Use the formula: Area of Sector $=\frac{\text { measure of the arc }}{360} \times \pi r^{2}$. Use 3.14 for π.

Example

Find the area of sector $A O B$.

Step 1 Determine the measure of the arc. The measure of the arc is in degrees.

Step 2 Determine the radius of the circle.
Step 3 Use the formula:
Area of Sector $=\frac{\text { measure of the arc }}{360} \times \pi r^{2}$ Use 3.14 for π.

Practice

Find the area of the sector.

1.

Determine the measure of the arc.
The measure of the arc is in degrees.
Determine the radius of the circle.
Use the formula:
Area of Sector $=\frac{\text { measure of the arc }}{360} \times \pi r^{2}$
Use 3.14 for π.

The measure of arc \qquad is \qquad .

$$
\begin{aligned}
\text { Area } & =\frac{\text { measure of the arc }}{360} \times \pi r^{2}=\frac{105}{360} \times \pi 15^{2} \\
& =206.06 \text { square units }
\end{aligned}
$$

The measure of arc $A B$ is 105°.

The measure of the radius is 15 .
\qquad

C Area of Regular Polygons

To find the area of a regular polygon, you first find the center of the polygon. Then draw a segment from the center to the mid-point of any side; this segment is known as the apothem. Then, find the perimeter of the polygon.

Rules for Finding the Area of a Regular Polygon

1. Find the measure of the apothem.
2. Find the perimeter of the polygon.
3. Use the formula $A=\frac{1}{2} a P$ ($a=$ the apothem; $P=$ the perimeter).

Example

Find the area of the hexagon to the right.

Step 1 Find the measure of the apothem.

Step $3 A=\frac{1}{2} a P$
($a=$ the apothem; $P=$ the perimeter)

Practice

Find the area of each figure.

1.

2.

Find the measure of the apothem.

$$
\begin{aligned}
& A=\frac{1}{2} a P \\
& (a=\text { the apothem; } P=\text { the perimeter })
\end{aligned}
$$

\qquad
You can use the Pythagorean Theorem to find the apothem: $a^{2}+b^{2}=c^{2}$
$a^{2}+$ \qquad $=$ \qquad
$a=$ \qquad
Find the perimeter of the polygon.
The perimeter is the sum of the lengths of the sides of a figure. The figure has \qquad sides.
$P=$ \qquad $=$ \qquad
$A=\frac{1}{2} a P=\frac{1}{2}$
$=$ \qquad square units.
3. \qquad
\qquad

CArea of an Irregular Shape

Not all figures are simple geometric shapes. The figure below right is made of a rectangle, triangle and a half circle. The area of the figure is the sum of the areas of the three figures.

Rules for Finding the Area of an Irregular Figure

1. Divide the figure into two or more simple geometric figures.
2. Identify the area formula to use for each figure.
3. Plug the appropriate dimensions into each formula. Solve.
4. Add the individual areas to find the total area.

Example

 Find the area.

Step 1 Divide the figure into two or more simple geometric figures.
Step 2 Identify the area formula to use for each figure.

Step 3 Plug the appropriate dimensions into each formula. Solve.

Step 4 Add the individual areas to find the total area.

The figure is made of a half circle and a rectangle.
Use the formula for area of a circle and then divide the answer by 2 .
Circle: $A=\pi r^{2}$; Rectangle: $A=l w$
Circle: $r=3 \div 2=1.5$
$\mathrm{A}=(3.14)(1.5)^{2}=7.065$ square units
$A_{\text {half circle }}=3.5325$ square units
Rectangle: $A=l w=(5)(3)=15$ square units
$A_{\text {total }}=A_{\text {half circle }}+A_{\text {rectangle }}=3.5325+15$
$=18.5325$ sq. units

Practice

Find the area.
1.

Divide the figure into two or more simple geometric figures.

Identify the area formula to use for each figure.
Plug the appropriate dimensions into each formula. Solve.

Add the individual areas to find the total area.
2.

The figure is divided into two triangles and one \qquad
Triangle: $A=$ \qquad ; Rectangle: $A=$ \qquad
$A_{\text {triangle }}=_=\ldots$ square units
$A_{\text {rectangle }}=_=\quad$ square units
$A_{\text {total }}=$ \qquad $+$ \qquad $+$ \qquad square units
3. \qquad

\qquad

Comparing Area and Perimeter

The perimeter of a polygon is the sum of the length of all of its sides. The area of a polygon is the number of square units it encloses. For many polygons, you can use formulas to find perimeter or area.
Suppose you have 36 ft . of fencing. You want to make a rectangular play yard with the largest possible area.

Perimeter

Use the table below to explore the dimensions of each rectangle and its area.

Rectangle	Length	Width	Perimeter $2(I+w)$	$\begin{aligned} & \text { Area } \\ & I \times w \end{aligned}$
$\begin{array}{\|ll\|} \hline 6 \\ & 12 \\ \hline \end{array}$	-	-	36	-
$\begin{array}{\|l\|} \hline 7 \\ \\ \hline \end{array}$	-	-	36	-
$\begin{array}{\|ll\|} \hline 8 & \\ & 10 \\ \hline \end{array}$	-	-	36	-
9 9	-	$\underline{\square}$	36	-

Use the data in the table to complete the following items.

1. The dimensions of the rectangle that result in the least area are \qquad .
2. The dimensions of the rectangle that result in the greatest area are \qquad —.
3. The length and width of the rectangle with the greatest area are \qquad .
4. A four-sided polygon in which the lengths and the sides are equal is a \qquad
5. For every four-sided polygon, a \qquad occupies the greatest area.
6. For rectangles with the same perimeter, as the rectangle approaches a \qquad the area \qquad

Practice

1. You want to make a play area with an area of 144 square units. Which dimensions will result in the minimum perimeter?
2. You have 160 feet of fencing. You are making a rectangular dog pen. Which dimensions will give you the maximum area? What is that area? \qquad
\qquad
\qquad

CUsing Trigonometry to Find the Area of a Triangle

Suppose you want to find the area of a triangle but you only know the measures of one angle and two sides, as shown in the figure to the right. You can use the formula $A=\frac{1}{2} b c(\sin X)$ to find the area of the triangle.

Rules for Using Trigonometry to Find the Area of a Triangle

1. Identify the known measure of an angle and the two sides that include the angle.
2. Plug the numbers into the formula $A=\frac{1}{2} b c(\sin X)$, where b and c are sides, and X is the included angle.
3. Use the sin key on your calculator to find the sine of the angle. Then solve.

Example

Find the area of the triangle to the right.

Step 1 Identify the known measure of an angle and the two sides that include the angle.

Step 2 Plug the numbers into the formula

$$
A=\frac{1}{2} b c(\sin X)
$$

$A=\frac{1}{2} b c(\sin X)$, where b and c are sides,

$$
b=20 ; c=30 ; X=65^{\circ}
$$

and X is the angle included by sides b and c.
Step 3 Find the sine of the angle. Then solve. $\quad A=\frac{1}{2}(20)(30)(0.91)=272$ square units

Practice

Find the area of each triangle.

1.

Identify the known measure of an

$$
b=
$$

\qquad ; $c=$ \qquad ; $X=$ \qquad angle and the two sides that include the angle.
Plug the numbers into the formula $A=\frac{1}{2} b c(\sin X)$, where b and c are sides, and X is the angle included by sides b and c.

Find the sine of the angle. Then solve.

$$
\begin{aligned}
A & =\frac{1}{2}(\square)(\square)(\square) \\
& =24.6 \text { square units }
\end{aligned}
$$

2. \qquad \longrightarrow
3.

\qquad

C Geometric Probability

Geometric probability applies the laws of probability by comparing the values of one measure or measurement to a total measure.

Rules for Finding Geometric Probability

1. Find the measure of the favorable outcome.
2. Find the measure of all the outcomes.
3. Use the formula for probability;

Probability of an Event $=\frac{\text { Number of Favorable Outcomes }}{\text { Total Number of Outcomes }}$

Example

A circle is surrounded by a square as shown to the right. What is the probability that a randomly selected spot will not be inside the circle?

Step 1 Find the measure of the favorable outcome.

Subtract the area of the circle from the area of the square.

$$
\begin{aligned}
& A_{\text {square }}=l \times w=10 \times 10=100 \\
& A_{\text {circle }}=\pi r^{2}=(3.14)(5)^{2}=78.5 \\
& A=100-78.5=21.5 \text { square units }
\end{aligned}
$$

Step 2 Find the measure of all the outcomes.

Step 3 Use the formula for probability; $P=\frac{\text { Number of Favorable Outcomes }}{\text { Total Number of Outcomes }}$

Practice

Find the probability of a randomly-selected spot being within the shaded region.

Find the measure of the favorable outcome.

Find the measure of all the outcomes.

Use the formula for probability; $P=\frac{\text { Number of Favorable Outcomes }}{\text { Total Number of Outcomes }}$

Total area is the area of the square, 100 square units.

$$
\begin{aligned}
P & =\frac{\text { Number of Favorable Outcomes }}{\text { Total Number of Outcomes }} \\
& =\frac{21.5}{100} \times 100=21.5 \%
\end{aligned}
$$

\qquad the area of the smaller circle from the area of the larger circle.

$$
\begin{aligned}
A & =\square-\square \\
& =\square-\square \\
& =\square
\end{aligned}
$$

The total area is the area of the
\qquad circle.
$P=\longrightarrow \times 100=\square \%$
\qquad
2. \qquad

\qquad

CTypes of Solids

A solid is a three dimensional figure. The parts of a solid do not lie in the same plane. Solids have length, width and height. There are four types of solids. Each is shown below.
Solids have a number of parts. Label each of the parts of a solid.

Solids are classified by the number of bases and the nature of their surfaces. Take a closer look at each solid. Complete the chart below.

Figure	Base(s)	Lateral Face(s)
Prism	parallel, congruent	-
Pyramid	_ polygon	-
Cylinder	parallel, congruent	-
Cone	circlectangle	

Prisms are named for the shape of the base. Therefore, if a prism has a pentagon on the base, it is called a pentagonal prism.

Practice

Name each prism

1.

What is the shape of the base?
How many bases are there?
What is the shape of the lateral face?
What is its name?
2. \qquad

4. \qquad

The base is in the shape of a \qquad -.
\qquad
\qquad
\qquad
3. \qquad

5. \qquad \square
\qquad

Solids and Euler's Formula

There are several parts to a solid, or polyhedron:

Face: each surface or polygon.
Edge: the segment formed by the intersection of two faces.

Vertex: a point where 3 or more edges intersect, the plural is vertices.

The rectangular prism to the right has \qquad faces, \qquad edges and \qquad vertices. The relationship between the faces, edges and vertices is known as Euler's Formula.

Rules for Using Euler's Formula

1. Identify what you are given:
faces: count the number of polygons
edges: count the number of segments vertices: count the points where 3 or more segments meet
2. Plug the numbers into Euler's Formula: $V+F=E+2$

Example

How many vertices are in a pyramid with a square base?
Step 1 Identify what you are given:
faces: count the number of polygons
edges: count the number of segments
Step 2 Plug the numbers into Euler's
Formula: $V+F=E+2$
1 rectangle and 4 triangles
There are 5 faces.
There are 8 edges.

$V+5=8+2$
$V=5$; there are 5 vertices

Practice

1. Find the number of edges in a triangular prism.

Identify what you are given:
faces: count the number of polygons
vertices: count the points where 3 or more segments meet
Plug the numbers into Euler's
Formula: $V+F=E+2$
2. Find the number of vertices in a solid with 18 edges and 8 faces.
\qquad triangles and \qquad rectangles

There are \qquad faces.

There are \qquad vertices.
\qquad $+$ \qquad $=E+2$
\qquad $=E$
3. Find the number of edges in a solid with 6 faces and 6 vertices. \qquad
\qquad

Curface Area: Prisms

A prism is a three-dimensional figure with two congruent, parallel faces, known as bases. The height of a prism is a perpendicular segment that joins the bases. Other faces are known as lateral faces. The surface area of a prism is the sum of the area of the lateral faces and the area of the two bases.

Rules for Finding the Surface Area of a Prism

1. Identify the shape of the base. Use that shape's area formula to find the area of one base. Multiply this result by 2 . The final result is the area of the two bases.
2. Find the area of each lateral face. Add the areas of the lateral faces to find the lateral surface area.
3. Add the result from Rule 1 and Rule 2. The result is the surface area of the prism.

Example

Find the surface area of the rectangular prism to the right.

Step 1 Use the shape's area formula to find the area of one base. Multiply this result by 2 .

Step 2 Find the area of each lateral face. Add
The bases are rectangular: $A=l w$
$A=4 \times 3=12 ; 12 \times 2=24$
their areas to find the lateral surface area.

Step 3 Add the result from Rule 1 and Rule 2

Practice

Find the surface area.

1. Use the shape's area formula to find the area
 of one base. Multiply this result by 2 .

Find the area of each lateral face. Add their areas to find the lateral surface area.

to get the surface area of the prism.

Add the result from Rule 1 and Rule 2 to get the surface area of the prism.

There are two 5×3 and two 5×4 rectangular lateral faces. Use the $A=l w$ formula.
$A=2(5 \times 3)+2(5 \times 4)=70$
Surface area $=$ area of bases and area of lateral faces. Surface area $=24+70=94$ square units.

The bases of the prism are right triangles.
Use the formula $A=\frac{1}{2} b h$.
$A=\frac{1}{2} b h=\frac{1}{2}\left(_\ldots\right)=_$square units
\qquad $\times 2=$ \qquad square units.

The lateral faces are rectangles.
Find the area of each face using $A=l w$.
$A=8 \times 15+$ \qquad $=$ \qquad square units

Surface area $=$ \qquad $+$ \qquad $=$ \qquad square units
2.

3.

\qquad

Surface Area: Cylinders

A cylinder is a three-dimensional figure with two congruent parallel bases. The bases of a cylinder are in the shape of a circle. To find the surface area of a cylinder you need to show an altitude. In a cylinder, this altitude is a perpendicular segment that joins the planes of the two bases. The height of the cylinder is the length of the altitude. To find the surface area of a cylinder, you need to know the radius of the base and the height.

Rules for Finding the Surface Area of a Cylinder

1. Find the radius (r) of the base. Find the height (h).
2. Plug the radius and height into the formula for the surface area of a cylinder: Surface area $=2 \pi r h+2 \pi r^{2}$

In the formula for the surface area of a cylinder, $2 \pi r h$ is the lateral surface area of the cylinder, and $2 \pi r^{2}$ is the area of the two bases.

Example

Find the surface area of the cylinder. Use $\pi=3.14$

Step 1 Find the radius (r) of the base. Find the height (h).

Step 2 Plug the radius and height into the formula for the surface area of a cylinder:
Surface area $=2 \pi r h \times 2 \pi r^{2}$

Practice

Find the surface area. Use $\pi=3.14$
1.

Find the radius (r) of the base and the height (h).

Plug the radius and height into the formula for the surface area of a cylinder:

Surface area $=2 \pi r h \times 2 \pi r^{2}$
2. \qquad
 radius $(r)=4$; height $(h)=8$.

Surface area $=2(3.14)(4)(8)+2(3.14)(4)^{2}$
Surface area $=200.96+100.48=301.44$ sq. units

radius $(r)=$ \qquad ; height (h) = \qquad

Surface area $=2(3.14)($ \qquad $)(ـ \quad)+$ $2(3.14)(\square)^{2}$

Surface area $=$ \qquad $+$ \qquad $=$ \qquad sq. units
3. \qquad

\qquad
\qquad

C Surface Area: Pyramids

When you are asked to find the surface area of a pyramid, you may be given the following information:

- area of the base
- slant height: the length of an altitude along the lateral face
- altitude: a perpendicular segment from the base to the vertex

Rules for Finding the Surface Area of a Pyramid

1. Use the area formula for the shape of the base to find the area of the base.
2. Find the slant height (l) of one of the lateral faces. Find the perimeter (p) of the base.
3. Surface area $=\frac{1}{2} p l+$ area of base

Example

Find the surface area of the rectangular pyramid.

Step 1 Use the area formula for the shape of the base to find the area of the base.

Step 2 Find the slant height (l) of one of the lateral faces. Find the perimeter (p) of the base.

Step 3 Surface area $=\frac{1}{2} p l+$ area of base

Practice

Find the surface area of each figure.

1.

Use the area formula for the shape of the base to find the area of the base.

Find the slant height (l) of one of the lateral faces. Find the perimeter (p) of the base.

Surface area $=\frac{1}{2} p l+$ area of base
2.

The base is a rectangle, use the formula for area of a rectangle, $A=l w$ $A=(11)(11)=121$ square units

The slant height $=12.3$
The perimeter of the base is $11+11+11+11$ $=44$

Surface area $=\frac{1}{2}(44)(12.3)+121$
Surface area $=270.6+121=391.6$ square units

The base is a \qquad ; use the
formula $A=$ \qquad .
$A=$ \qquad $=($ \qquad $)(\ldots)=$ \qquad square units

The slant height $(l)=$ \qquad
$p=10+10+$ \qquad $+$ \qquad $=$ \qquad
Surface area $=\frac{1}{2}$ \qquad $+$ \qquad
$=$ \qquad sq. units
3. \qquad

\qquad
\qquad

Surface Area: Cones

A cone is a three-dimensional figure with a circular base and a vertex. The height (h) of a cone is the distance between the base and the vertex. The slant height (l) is the distance from the vertex to a point on the edge of the base. To find the surface area of a cone, you will need to know the radius (r) of the base and the slant height (l) of the cone.

Rules for Finding the Surface Area of a Cone

1. Identify the radius (r) of the base.
2. Identify the slant height (l) of the cone.
3. Use the formula for the surface area of a cone: Surface Area $=\pi r l+\pi r^{2}$

Example

Find the radius of the cone to the right. Use $\pi=3.14$

Step 1 Identify the radius (r) of the base. The radius (r) of the base is 10 .

Step 2 Identify the slant height (l) of the cone. The slant height (l) is 20.

Step 3 Use the formula for the surface area of Surface Area $=(3.14)(10)(20)+(3.14)(10)^{2}$ a cone: Surface Area $=\pi r l+\pi r^{2}$

$$
=628+314=942 \text { square units }
$$

Practice

1. Find the surface area of the cone.

Identify the radius (r) of the base.
Identify the slant height (l) of the cone.
Use the formula for the surface area of a cone: Surface Area $=\pi r l+\pi r^{2}$

The radius (r) is \qquad
The slant height (l) is \qquad .
Surface area $=(3.14)\left(\square_{\square}\right)\left(\square_{\square}\right)+$ (3.14) \qquad)
$=$ \qquad $+$ \qquad
$=$ \qquad sq. units
2. \qquad

3. \qquad

\qquad

C Surface Area of Similar Solids

As you know, in similar two-dimensional figures the lengths of corresponding sides are in proportion. Are there relationships between similar solids? What about the ratio of the surface areas?

Use the solids to the right to explore the surface area relationships between similar solids. Complete the chart and the statements that follow.

	Length	Width	Height	Surface Area
Rectanglular Prism A	4	-	6	-
Rectangular Prism B	2	3	-	-

1. Select one of the dimensions from Rectangular Prism A and its corresponding dimension from rectangular Prism B. The ratio of the dimensions is \qquad : \qquad
2. The ratio of the surface areas of Rectangular Prism A to Rectangular Prism B is
\qquad : \qquad or \qquad : \qquad
3. Compare the ratio of corresponding dimensions to the ratio of the surface areas. The ratio of surface areas is the ratio of corresponding dimensions \qquad

Use the data in the table and the statements to write the rule about the surface areas of similar solids.

Surface Area and Volume of Similar Solids

If the ratio of corresponding dimensions of two similar solids is $a: b$, then the ratio of their surface areas is a^{2} : \qquad _.

Practice

1. Find the surface area of the smaller rectangular prism.

12

The surface area of the larger solid is $468 \mathrm{~cm}^{2}$.
Find the ratio of the lengths. The ratio of the lengths of the larger prism to the smaller prism is 12 : \qquad or 3 : \qquad _.

Set up a proportion of the ratio of the known parts of the figures to the known $\frac{\mathrm{SA}_{\text {Large }}}{\mathrm{SA}_{\text {Small }}}=\frac{a^{2}}{b^{2}} ;=\frac{}{\mathrm{SA}_{\text {Small }}}=$ \qquad surface area of one cylinder.

Solve using cross products.
$\mathrm{SA}_{\text {Small }}$ $=468 \mathrm{~cm}^{2} ; \mathrm{SA}_{\text {Small }}=$ \qquad cm^{2}
2. Find the surface area of the smaller rectangular prism. The surface area of the larger solid is $216 \mathrm{~cm}^{2}$.

\qquad

Volume: Prisms

Volume is the space that a figure occupies. Volume is measured in cubic units, such as in. ${ }^{3}$ (cubic inches) or m^{3} (cubic meters). To find the volume of a prism, you will need to know the lengths, width and height of a prism.

Rules for Finding the Volume of a Prism

1. Identify the shape of the base. Use the area formula for that shape to find the area of the base.
2. Identify the height of the prism.
3. Use the formula $V=B h$ to find the volume of the prism. B is the area of the base from Rule 1 and h is the height from Rule 2.

Example

Find the volume of the prism.

Step 1 Identify the shape of the base. Use the area formula for that shape to find the area of the base.

Step 2 Identify the height of the prism.
Step 3 Use the formula $V=B h . B$ is the area of the base from Rule 1 and h is the height from Rule 2.

Practice

Find the volume of each prism.

1.

Identify the shape of the base. Use the area formula for that shape to find the area of the base.

Identify the height of the prism.
Use the formula $V=B h . B$ is the area of the base from Rule 1 and h is the height from Rule 2.

The base is a rectangle, $A=l w$.
The length is 4 and the width is 3 .
$A=3 \times 4=12$
The height is 5.
$V=B h=(12)(5)=60$ cubic units

The base is a right triangle. Use the formula for area of a triangle, $A=\frac{1}{2} b h$.
A $=\frac{1}{2}$ \qquad \times \qquad $=$ \qquad square units

The height of the prism is \qquad .

$$
\begin{aligned}
V=B h & =\left(_\right)\left(_\right) \\
& =_ \text {cubic units }
\end{aligned}
$$

2.

3.

\qquad
\qquad

C Volume: Cylinders

A cylinder is a three-dimensional figure with two congruent parallel bases. The bases of a cylinder are in the shape of a circle. To find the surface area of a cylinder, you need to show an altitude. In a cylinder, this altitude is a perpendicular segment that joins the planes of the two bases. The height of the cylinder is the length of the altitude. Volume is the space that a figure occupies. Volume is measured in cubic units, such as in ${ }^{3}$ (cubic inches) or m^{3} (cubic meters). To find the volume of a cylinder, you will need to know the radius of the base and the height of the cylinder.

Rules for Finding the Volume of a Cylinder

1. Find the radius (r) of the base.
2. Find the height (h) of the cylinder.
3. Plug the radius and height into the formula for the volume of a cylinder: $V=\pi r^{2} h$.

Example

Find the volume of the cylinder. Use $\pi=3.14$.

Step 1 Find the radius (r) of the base.

Step 2 Find the height (h) of the cylinder.

Step 3 Plug the radius and height into the formula for the volume of a cylinder: $V=\pi r^{2} h$.

Practice

1. Find the volume. Use $\pi=3.14$.

Find the radius (r) of the base.

Find the height (h) of the cylinder.

Plug the radius and height into the formula for the volume of a cylinder: $V=\pi r^{2} h$.

The radius (r) of the base is 4 .

The height (h) of the cylinder is 8 .
$V=(3.14)(4)^{2}(8)=401.92$ cubic units

The radius (r) is \qquad

The height (h) is \qquad
$V=(3.14)(\square)^{2}(\square)$
$=$ \qquad cubic units
3.

\qquad
\qquad

C Volume: Pyramids

When you are asked to find the volume of a pyramid, you may be given the following information:

- area of the base
- slant height: the length of an altitude along the lateral face
- altitude: a perpendicular segment from
 the base to the vertex

Rules for Finding the Volume of a Pyramid

1. Use the area formula for the shape base to find the area of the base.
2. Identify the height (or altitude) of the pyramid.
3. Use the formula $V=\frac{1}{3} B h$ to find the volume of the pyramid. B is the area of the base from Rule 1 and h is the height from Rule 2.

Example

Find the volume of the pyramid.

Step 1 Use the area formula for the shape base to find the area of the base.

Step 2 Identify the height of the pyramid.
Step 3 Use the formula $V=\frac{1}{3} B h$.

The base is a rectangle; $A=l w$
$A=l w=(11)(11)=121$ square units
The height is (11).
$V=\frac{1}{3}(121)(11)=443.7$ cubic units

Practice

Find the volume of the pyramid.
1.

Use the area formula for the shape base to find the area of the base.

Identify the height of the pyramid.
Use the formula $V=\frac{1}{3} B h$.
2. \qquad

The base is a \qquad ;
use $A=$ \qquad
$A=$ \qquad $=($ \qquad
\qquad
$=$ \qquad square units
Height $=$ \qquad
$V=\frac{1}{3}\left(_\right)\left(_\right)=\quad$ cubic units
3.

\qquad
\qquad

Volume: Cones

The height (h) of a cone is the distance between the base and the vertex. The slant height (l) is the distance from the vertex to a point on the edge of the base. Volume is the space that a figure occupies. Volume is measured in cubic units such as in. ${ }^{3}$ (cubic inches) or m^{3} (cubic meters). To find the volume of a cone, you will need to know the radius of the base and the height of the cylinder.

Rules for Finding the Volume of a Cone

1. Find the radius (r) of the base.
2. Find the height (h) of the cone.
3. Plug the radius and height into the formula for the volume of a cone: $V=\frac{1}{3} \pi r^{2} h$.

Example

Find the volume of the cone. Use $\pi=3.14$

Step 1 Find the radius (r) of the base.
Step 2 Find the height (h) of the cone.
Step 3 Plug the radius and height into the formula for the volume of a cone: $V=\frac{1}{3} \pi r^{2} h$

Practice

1. Find the volume of the cone. Use $\pi=3.14$

Find the radius (r) of the base.
Find the height (h) of the cone.
Plug the radius and height into the formula for the volume of a cone:

$$
V=\frac{1}{3} \pi r^{2} h
$$

2. \qquad

The radius (r) is 10 .
The height (h) is 17.3.
$V=\frac{1}{3}(3.14)(10)^{2}(17.3)=1810$ cubic units

The radius (r) of the base is \qquad
The height (h) is \qquad
$V=\frac{1}{3}(3.14)(\square)^{2}(\square)$
$=$ cubic units
3. \qquad

\qquad
\qquad

Colume of an Irregular Shape

An irregular, or complex figure is made of two or more basic solids. The total volume of an irregular solid is the sum of the volume of the basic solids.

Rules for Finding the Volume of an Irregular Solid

1. Divide the figure into two or more basic solids.
2. Use the volume formula to use for each figure.
3. Plug the appropriate dimensions into each formula.
4. Add the individual volumes to find the total volume.

Example

Find the volume.

Step 1 Divide the figure into two or more basic solids.

Step 2 Identify the volume formula to use for each figure.

Step 3 Plug the appropriate dimensions into each formula.

Step 4 Add the individual volumes to find the total volume.

Practice

1. Find the volume.

Divide the figure into two or more basic solids.

Identify the volume formula to use for each figure.

Plug the appropriate dimensions into each formula.

Add the individual volumes to find the total volume.

The figure is a combination of a pyramid and a prism.
Pyramid: $V=\frac{1}{3} B h$; Prism: $V=B h$

$$
\begin{aligned}
& V_{\text {pyramid }}=\frac{1}{3} B h=\frac{1}{3}(7 \times 7)(7)=114 \text { units }^{3} \\
& \begin{aligned}
V_{\text {prism }} & =B h=(7 \times 7)(7)=343 \text { units }^{3} \\
V_{\text {total }} & =V_{\text {prism }}+V_{\text {pyramid }}=343+114 \\
& =457 \text { units }^{3}
\end{aligned}
\end{aligned}
$$

The figure is made of a \qquad and a cylinder.
\qquad : $V=$ \qquad
Cylinder: $V=$ \qquad

$$
\begin{align*}
& V_{\text {cone }}= \\
& V_{\text {cylinder }}= \\
& V_{\text {total }}=V+V_{\text {cylinder }} \\
& V_{\text {total }}= \\
& \quad=
\end{align*}
$$

\qquad

C Volume of Similar Solids

As you know, in similar two-dimensional figures, the length of corresponding sides are in proportion. Are there relationships between similar solids? What about the ratio between the volumes of similar figures?
Use the solids to the right to explore the surface area and volume relationships between similar solids. Complete the chart and the statements that follow.

Rectangular
Prism A

Rectangular Prism B

	Length	Width	Height	Volume
Rectangular Prism A	-	-	-	-
Rectangular Prism B	-	-	-	-

1. Select one of the dimensions from Rectangular Prism A and its corresponding dimension from rectangular Prism B. The ratio of the dimensions is \qquad : \qquad
2. The ratio of the volume of Rectangular Prism A to Rectangular Prism B is
\qquad : \qquad or \qquad : \qquad -.
3. Compare the ratio of corresponding dimensions to the ratio of the volumes. The ratio of the volumes is the ratio of the corresponding dimensions \qquad .

Use the data in the table and the completed statements to write the rule

 about the volumes of similar solids.
Volume of Similar Solids

If the ratio of corresponding dimensions of two similar solids is $a: b$, then the ratio of their volumes is \qquad $: b^{3}$.

Practice

1. Find the missing volume in each set of similar solids. Find the volume of the larger solid. The volume of the smaller cylinder is $1130 \mathrm{~cm}^{3}$.

Find the ratio of the heights.

Set up a proportion of the ratio of the known parts of the figures to the known volume of one cylinder.

Solve using cross products.
$-V_{\text {Large }}=30510 \mathrm{~cm}^{3}$;
$V_{\text {Large }}=$

\qquad

Surface Area: Spheres

A sphere is a three-dimensional figure. It is the set of all points in space that are the same distance from a point known as the center. Like a circle, a sphere has a radius-a segment with one endpoint at the center and the other endpoint on the sphere. Additionally, a sphere has a diameter-a segment passing through the center with endpoints on the sphere.
To find the surface area of a sphere, you need to know the radius (r) of the sphere. In a sphere, just like with a circle, the diameter is twice the radius,
 or, the radius is half the diameter of the sphere.

Rules for Finding the Surface Area of a Sphere

1. Find the radius of the sphere. If you know the diameter, the radius is the diameter divided by $2 .(r=d \div 2)$
2. Use the formula for surface area of a sphere: Surface area $=4 \pi r^{2}$. Use $\pi=3.14$.

Example

Find the surface area of the sphere.

Step 1 Find the radius of the sphere. If you know the diameter, the radius is the diameter divided by 2 . $(r=d \div 2)$

Step 2 Use the formula for surface area of a sphere: Surface area $=4 \pi r^{2}$. Use $\pi=3.14$.

Practice

1. Find the surface area of each sphere.

Use $\pi=3.14$.

Find the radius of the sphere. If you know The the diameter, the radius is the diameter divided by 2. $(r=d \div 2)$

Use the formula for surface area of a sphere: Surface area $=4 \pi r^{2}$.
Use $\pi=3.14$.
2. \qquad

\qquad is given, its

The diameter is given; $d=9$
The radius is the diameter divided by 2 . The radius (r) is 4.5.

Surface area $=(4)(3.14)(4.5)^{2}$

$$
=254.34 \text { square units }
$$

measure is \qquad
The radius (r) is \qquad .

Surface area $=4(3.14)($ \qquad $)^{2}=$
\qquad square units
3. \qquad

\qquad

C Volume: Spheres

A sphere is a three-dimensional figure. It is the set of all points in space that are the same distance from a point known as the center. Like a circle, a sphere has a radius-a segment with one endpoint at the center and the other endpoint on the sphere. Additionally, a sphere has a diameter-a segment passing through the center with endpoints on the sphere.

To find the volume of a sphere, you need to know the radius of the sphere. In a sphere, just like in a circle, the diameter is twice the radius. Or, the
 radius is half the diameter of the sphere.

Rules for Finding the Volume of a Sphere

1. Find the radius of the sphere. If you know the diameter, the radius is the diameter divided by 2. $(r=d \div 2)$
2. Use the formula for volume of a sphere: $V=\frac{4}{3} \pi r^{3}$. Use $\pi=3.14$.

Example

Find the volume of the sphere. Use $\pi=3.14$.

Step 1 Find the radius of the sphere. If you know the diameter, the radius is the diameter divided by 2. $(r=d \div 2)$

The diameter is given; $d=9$
The radius is the diameter divided by 2 . The radius is 4.5

Step 2 Use the formula for volume of a sphere: $V=\frac{4}{3}(3.14)(4.5)^{3}=381.51$ cubic units $V=\frac{4}{3} \pi r^{3}$. Use $\pi=3.14$. The radius is r.

Practice

1. Find the surface area of each sphere. Use $\pi=3.14$.

Find the radius of the sphere. If you know the diameter, the radius is the diameter divided by 2. $(r=d \div 2)$

Use the formula for volume of a sphere: $V=\frac{4}{3} \pi r^{3}$. Use $\pi=3.14$.

The \qquad is given.

Its measure is \qquad .

The radius, r, is \qquad .
$V=\frac{4}{3}(3.14)($ \qquad $)^{3}$

$$
=
$$

\qquad cubic units
3. \qquad
\qquad

Surface Area and Volume Formulas

The surface area of a solid is the sum of the areas of all the faces and bases of a solid. Surface area is measured in square units such as in. ${ }^{2}$ (square inches) or m^{2} (square meters). Volume is the space that a figure occupies. Volume is measured in cubic units, such as in. ${ }^{3}$ (cubic inches) or m^{3} (cubic meters).

The chart below will help you remember the types of solids, their properties, and their surface area and volume formulas.

Type	Description	Surface Area	Volume
Prism	\qquad parallel, congruent \qquad form the bases. Lateral faces are	2(area of one \qquad) + (Sum of areas of \qquad	
Pyramid	Has only \qquad base in the shape of a polygon. Lateral faces are \qquad		
Cylinder	\qquad parallel, congruent \qquad form the bases. Lateral face is rectangle.		
	Has only \qquad base in the shape of a circle. Lateral face is \qquad surface.		
	It is the set of all points in space that are the \qquad distance from a point known as the \qquad		

\qquad
\qquad

C Plotting Points on a Coordinate Plane

A point on a coordinate plane is defined by its x - and y-coordinates. The location of a point is given by an ordered pair.
Ordered Pair
(x, y)
$(x$-coordinate, y-coordinate $)$

Sign of Coordinate	\boldsymbol{x}	\boldsymbol{y}
+	right	up
-	left	down

Rules for Plotting Points on a Coordinate Plane

1. Move right or left from the y-axis the number of units of the x-coordinate.
2. Move up or down from the x-axis the number of units of the y-coordinate.

Example

Graph the following point: (-3, 4).

Step 1 Move right or left from the y-axis the number of units of the x-coordinate.

Step 2 Move up or down from the x-axis the number of units of the y-coordinate.

Practice

Graph the following points.

1. $(2,-3)$

Move right or left from the y-axis the number of units of the x-coordinate.

Move up or down from the x-axis the number of units of the y-coordinate.

Move left from the y-axis 3 units.

Move up from the x-axis 4 units.

. $(-5,0)$
3. $(5,3)$
4. $(0,4)$

Give the coordinates for each point.
5. A \qquad
6. B \qquad
7. C \qquad
8. D \qquad

\qquad
\qquad

C Graphing a Linear Equation

When you find the solution of an equation, you are finding two values, one for x and one for y, that make the equation true. Each set of values is known as an ordered pair. You can use the ordered pairs to plot points on a coordinate plane. If the solution (ordered pairs) makes a line, then you have a linear equation.

Rules for Graphing a Linear Equation

1. Create an input/output table.
2. Select several values for x.
3. Substitute the values for x into the equation. Solve for y.
4. Plot each solution on the coordinate plane. Draw a line so it goes through each point.

Example

Graph the following equation: $2 x+3=y$.
Step 1 Create an input/output table.
Step 2 Select several values for x .
Step 3 Substitute each value of x into the equation. Solve the equation for y.

Step 4 Plot each solution on a coordinate plane. Draw a line so it goes through each point.

Practice

Graph the following equations.

1. $y=2 x+6$

Create an input/output table.
Select several values for x.
Substitute each value of x into the equation. Solve the equation for y.

Plot each solution on a coordinate plane.
Draw a line so it goes through each point.

x	$2 x+3=y$	y	(x, y)
-2	$2(-2)+3=y$	-1	$(-2,-1)$
0	$2(0)+3=y$	3	$(0,3)$
1	$2(1)+3=y$	5	$(1,5)$
2	$2(2)+3=y$	7	$(2,7)$

x	$2 x+6=y$	y	(x, y)
2	$2(2)+6=y$		$(2,10)$
0	$2(0)+6=y$		$(0,6)$
	$2(1)+6=y$		$(1,8)$
	$2(-2)+6=y$	-	$(-2,2)$

2. $y=3 x+1$ \qquad
3. $y=3+2 x$ \qquad
4. $y=5 x$ \qquad
5. $2 x+2 y=6$ \qquad
6. $y=\frac{1}{2} x+5$ \qquad

\qquad
\qquad

Distance Formula

The distance between two points in a coordinate plane can be found if the points lie on a horizontal or vertical line. If the two points are not on a horizontal or vertical line, you can use the distance formula.

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Rules for Finding a Distance Between Two Points Using the Distance Formula

1. Identify the coordinates of one point-make these coordinates x_{1} and y_{1}.
2. Identify the coordinates of the other point-make these coordinates x_{2} and y_{2}.
3. Plug the coordinates into the distance formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Example
 Find the distance between $A(4,1)$ and $B(-3,-4)$.

Step 1 Identify the coordinates of one point —make these coordinates x_{1} and y_{1}.

Step 2 Identify the coordinates of the other point-make these coordinates x_{2} and y_{2}.
Step 3 Plug the coordinates into the distance formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Make point A your first point.
The coordinates of A are (4, 1); so, $x_{1}=4$ and $y_{1}=1$.
Make point B your second point.
The coordinates of B are $(-3,-4)$; so, $x_{2}=-3$ and $y_{2}=-4$.
$d=\sqrt{(-3-4)^{2}+(-4-1)^{2}}$
$d=\sqrt{(-7)^{2}+(-5)^{2}}=\sqrt{74}=8.6$

Practice

Find the distance between each pair of points.

1. $M(-2,-1)$ and $N(4,2)$

Identify the coordinates of one point -make these coordinates x_{1} and y_{1}.

Identify the coordinates of the other point-make these coordinates x_{2} and y_{2}.

Plug the coordinates into the distance formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Make point M your first point.
The coordinates of M are ($-2,-1$);
so $x_{1}=\ldots$ and $y_{1}=$ \qquad
Make point N your second point.
The coordinates of N are $(4,2)$;
so $x_{2}=\ldots$ and $y_{2}=$
$d=\sqrt{(-)^{2}+(-)^{2}}$
$d=\sqrt{(\square)^{2}+(\square)^{2}}=$ \qquad $=$
\qquad
3. $D(-7,2)$ and $E(0,-2)$
4. $A(3,-2)$ and $B(5,-9)$
\qquad

Midpoint Formula

As you know, you can find the midpoint of a segment on a number line by finding the mean of the coordinates of the endpoints. Put another way, you add the coordinates and divide by 2 . To find the midpoint of a segment on a coordinate plane, you find the average of the x-coordinates and the average of the y-coordinates.

Rules for Finding the Coordinates of the Midpoint of a Segment

1. Identify the coordinates of one of the points-make these coordinates x_{1} and y_{1}.
2. Identify the coordinates of the other point-make these coordinates x_{2} and y_{2}.
3. Plug the numbers into the midpoint formula: $\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}\right)$

Example

$\overline{A B}$ has endpoints $A(4,1)$ and $B(8,3)$. Find the midpoint.

Step 1 Identify the coordinates of one of the points-make these coordinates x_{1} and y_{1}.

Step 2 Identify the coordinates of the other point-make these coordinates x_{2} and y_{2}.
Step 3 Plug the numbers into the midpoint formula: $\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}\right)$

Make point A your first point.
The coordinates of A are $(4,1)$;
so, $x_{1}=4$ and $y_{1}=1$.
Make point B your second point.
The coordinates of B are $(8,3)$;
so $x_{2}=8$ and $y_{2}=3$.
$\left(\frac{8+4}{2}, \frac{3+1}{2}\right)=\left(\frac{12}{2}, \frac{4}{2}\right)=(6,2)$

Practice

Find the midpoint of each segment with the endpoints given.

1. $M(-2,-4)$ and $N(4,2)$

Identify the coordinates of one of the points-make these coordinates x_{1} and y_{1}.

Identify the coordinates of the other point-make these coordinates x_{2} and y_{2}.

Plug the numbers into the midpoint formula: $\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}\right)$
2. $R(9,8)$ and $S(-3,-6)$ \qquad 4. $A(3,-2)$ and $B(5,-9)$
5. $Y(4,0)$ and $Z(4,-6)$ \qquad
3. $D(-7,2)$ and $E(0,-2)$ \qquad
Make point M your first point.
The coordinates of M are $(-2,-4)$;
so, $x_{1}=$ \qquad and $y_{1}=$ \qquad $-$.

Make N your second point.
The coordinates of N are (4, 2); so,
$x_{2}=$ \qquad and $y_{2}=$ \qquad -.
$\left(\frac{+(-2)}{2}, \frac{+(-4)}{2}=\left(\frac{-}{2}, \frac{-}{2}\right)=\right.$ \qquad .
\qquad
\qquad

Slope of a Line

If you look at the graph of a linear equation, you will see it forms a straight line. You may have noticed that most lines have a "slant" to them. The slope of a line is a measure of the steepness of a line.
The slope of a line is the ratio of the vertical change (the number of units of change along the y-axis) to horizontal change (the number of units of change along the x axis). To find the slope of a line, you pick any two points on the line. Find the difference between the y-coordinates, and then, find the difference between the x-coordinates.

Suppose a line passes through two points, for example $(2,3)$ and $(4,2)$. You make one set of coordinates $\left(x_{1}, y_{1}\right)$, and the other set, $\left(x_{2}, y_{2}\right)$.

$$
\text { slope }=\frac{\text { vertical change }}{\text { horizontal change }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Example

Find the slope of a line that passes through $(5,2)$ and $(3,8)$.
Step 1 Make one set of coordinates $\left(x_{1}, y_{1}\right) \quad\left(x_{1}, y_{1}\right) \quad\left(x_{2}, y_{2}\right)$ and the other set, $\left(x_{2}, y_{2}\right)$. $\quad(5,2) \quad(3,8)$
Step 2 Using the equation for slope, place the slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ numbers into the formula.

$$
=\frac{8-2}{3-5}=\frac{6}{-2}=-3
$$

Step 3 Solve.
The slope is -3 .

Practice

Find the slope of the line passing through each set of points.

1. $(1,2)$ and $(4,5)$

Make one set of coordinates $\left(x_{1}, y_{1}\right)$
and the other set, $\left(x_{2}, y_{2}\right)$
$\left(x_{1}, y_{1}\right) \quad\left(x_{2}, y_{2}\right)$

Using the equation for slope, place the numbers into the formula.
$(1,2)$
slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$=\frac{-2}{-1}=-=$ \qquad
Solve.
The slope is \qquad $-$
2. $(2,3)$ and $(4,6)$
5. $(-1,5)$ and $(4,2)$ \qquad
3. $(-2,2)$ and $(0,4)$ \qquad 6. $(3,1)$ and $(6,3)$ \qquad
4. $(4,3)$ and $(-1,1)$ \qquad 7. $(4,4)$ and $(-1,-2)$ \qquad
\qquad

Slope Intercept Form

Looking at an equation can tell you certain pieces of information about the graph of that equation. An equation written with y isolated on one side of the equal sign and x on the other side of the equation is in slope-intercept form. An equation in slope-intercept form is written as:

The y-intercept is the point on the y-axis through which the line passes.

Example

Find the slope and the \boldsymbol{y}-intercept of the line $\boldsymbol{y}=-2 x+4$.
Step 1 Find the number in front of the

$$
y=\mathrm{m} x+\mathrm{b}
$$

x-term. This is the slope.

$$
y=-2 x+4
$$

$$
\mathrm{m}=\text { slope }=-2
$$

Step 2 Find the term without a variable: the y-coordinate of where the line crosses the y-axis.
$y=m x+b$
$y=-2 x+4$
$\mathrm{b}=y$-intercept $=4$

Practice

Find the slope and y -intercept for each line.

1. $y=\frac{1}{2} x+10$

Find the number in front of the

$$
y=\mathrm{m} x+\mathrm{b}
$$

x-term. This is the slope.
$y=\frac{1}{2} x+10$
$\mathrm{m}=$ slope $=$ \qquad

Be sure to include the negative if necessary.

Find the term without a variable: the y-coordinate of where the line crosses the y-axis.
$y=\mathrm{m} x+\mathrm{b}$
$y=\frac{1}{2} x+10$
$\mathrm{b}=y$-intercept $=$ \qquad
2. $y=x+3$ \qquad 4. $2 y=x+4$
3. $y=-\frac{3}{4} x-6$ \qquad 5. $3 y=-2 x-9$
\qquad
\qquad

Use the graphs below to write equations in slope-intercept form.

6. Line A \qquad
7. Line B \qquad

\qquad
\qquad

Parallel Lines

Parallel lines are lines in the same plane that do not intersect.
The equation of line A is $y=2 x+3$
The equation of line B is $y=2 x-1$
As you can see, both lines have the same slope, but a different y-intercept.
$y=\mathrm{m} x+\mathrm{b}$
$\mathrm{m}=$ slope
2
$\mathrm{b}=y$-intercept
$y=2 x+3$
$y=2 x-1$
2
3
-1

Rules for Parallel Lines

1. Write all equations in slope-intercept form.
2. Identify the slope of each line.
3. If the slopes are equal, the lines are parallel.

Example

Are the graphs of $y=\frac{1}{2} x+4$ and $6 y-3 x=6$ parallel?
Step 1 Write all equations in slope-intercept form.
$y=\frac{1}{2} x+4$ is in slope-intercept form.
$6 y-3 x=6 \rightarrow y=\frac{3}{6} x+1=\frac{1}{2} x+1$
Step 2 Identify the slope of each line.
$y=\frac{1}{2} x+4 ;$ slope $=\frac{1}{2}$
$y=\frac{1}{2} x+1 ;$ slope $=\frac{1}{2}$
Step 3 If the slopes are equal, the lines are parallel.

The slopes are equal, so the lines are parallel.

Practice

For each set of equations, determine if graphs of the equations are parallel.

1. $y=3 x+12$ and $6 y=-3 x-6$

Write all equations in slope-intercept form.

Identify the slope of each line.

If the slopes are equal, the lines are parallel.
$y=3 x+12$ is in slope-intercept form.
$6 y=-3 x-6$ is not in slope-intercept form.
$6 y=-3 x-6 \rightarrow y=$ \qquad
$y=3 x+12 ; \mathrm{m}=$ \qquad
$6 y=-3 x-6 ; \mathrm{m}=$ \qquad
The slopes \qquad equal.

The lines \qquad parallel.
2. $y=-\frac{1}{4} x+5$ and $12 y+3 x=24$ \qquad
3. $8 x+4 y=8$ and $y=-2 x+4$ \qquad
4. $y=2 x+6$ and $-2 x+2 y=12$ \qquad
5. $y=-\frac{1}{4} x+12$ and $8 x+6 y=9$ \qquad
\qquad

C Perpendicular Lines

Perpendicular lines are lines that intersect to form right angles.
The equation of line A is $y=2 x-1$. The equation of line B is $y=-\frac{1}{2} x+4$. As you can see, the slope of one line is the opposite (negative) reciprocal of the other line.

$$
\begin{array}{lcc}
y=\mathrm{m} x+\mathrm{b} & \mathrm{~m}=\text { slope } & \mathrm{b}=y \text {-intercept } \\
y=2 x-1 & 2 & -1 \\
y=-\frac{1}{2} x+4 & -\frac{1}{2} & 4
\end{array}
$$

Rules for Writing the Equation of a Perpendicular Line

1. Identify the slope of the known line.
2. Write the reciprocal of the slope. This is the slope of the perpendicular line.
3. Give the new slope a sign opposite to the slope of the first line.
4. Use the slope-intercept form to create the equation of a line perpendicular to the given line.

Example

Write an equation of the line that has a y-intercept of 2 and is perpendicular to $y=3 x+5$.

Step 1 Identify the slope of the known line.
Step 2 Write the reciprocal of the slope. This is the slope of the perpendicular line.

Step 3 Give the new slope a sign opposite to the slope of the first line.
Step 4 Use the slope-intercept form to create the equation of a line perpendicular to the given line.
$y=3 x+5 ;$ slope $=\mathrm{m}=3$
$\mathrm{m}=3$, the reciprocal is $\frac{1}{3}$.

The slope of the given line is positive; the perpendicular slope is negative: $-\frac{1}{3}$
$y=m x+b=$ \qquad $x+$ \qquad

Practice

Write an equation of the line that has the given \boldsymbol{y}-intercept and is perpendicular to

 the given equation.1. $y=-\frac{1}{2} x+2$; new y-intercept: -3

Step $1 y=-\frac{1}{2} x+2$; slope $=m=-\frac{1}{2}$
Step 3 The slope of the given line is
\qquad ; the perpendicular slope is \qquad :
Step $2 \mathrm{~m}=-\frac{1}{2}$; the reciprocal of $-\frac{1}{2}$ is \qquad Step $4 y=m x+b=$ \qquad $x+$ \qquad
2. $y=\frac{3}{4} x+5$; new y-intercept: 4 \qquad
3. $2 y=4 x+2$; new y-intercept: 3 \qquad
4. $y=-4 x+2$; new y-intercept: -5 \qquad
5. $y=x+7$; new y-intercept: 1 \qquad
\qquad

C Point-Slope Form I

There are instances in which you are given the slope and an ordered pair.
For example, you may know that the slope of a line is -2 and the graph of the equation passes through $(-2,1)$.
You can use the point-slope form of a linear equation to write an equation of the line.

Rules for Using the Point-Slope Form

1. Identify the slope, m.
2. From the ordered pair, identify the x-coordinate and the y-coordinate.
3. Use the point-slope form to write the equation: $y-y_{1}=m\left(x-x_{1}\right)$

Example

Write the equation of the line that has a slope of 3 and passes through the point $(2,5)$.
Step 1 Identify the slope.
Step 2 From the ordered pair, identify the x-coordinate and the y-coordinate.

Step 3 Use the point-slope form to write the equation.

Practice

Write the equation of the line.

1. Slope $=6$; point is $(-3,-1)$

Identify the slope (m).
From the ordered pair, identify the x-coordinate and the y-coordinate.

Use the point-slope form to write the equation.
2. slope $=-\frac{1}{2},(7,1)$
3. slope $=2,(-3,-3)$
4. slope $=\frac{2}{3},(4,-5)$
5. slope $=-3,(-1,3)$ \qquad
\qquad

Point-Slope Form II

When you are given the slope of a line and an ordered pair identifying a point on the graph of the line, you can use the point-slope form. You can also use the point-slope form when given two ordered pairs. To use the two ordered pairs, you will need to first use the ordered pairs to find the slope.

Rules for Using Point-Slope Form Using Two Points

1. Use the formula for slope (slope $=\frac{\text { vertical change }}{\text { horizontal change }}=\frac{y_{2}-y_{1}}{x_{2}-x_{2}}$) to find the slope.
2. Use one set of ordered pairs for the x-coordinate and y-coordinate.
3. Use point-slope form to write the equation.

Example

Write the equation of the line that passes through $(-3,-3)$ and $(1,5)$.
Step 1 Use the formula for slope $\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)$ to \quad Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-(-3)}{1-(-3)}=\frac{8}{4}=2$ find the slope.

Step 2 Use one set of ordered pairs for the x-coordinate and the y-coordinate.

Step 3 Use point-slope form to write the equation.

Use the ordered pair $(1,5)$.
The x-coordinate is 1 ; the y-coordinate is 5 .

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-5=2(x-1)
\end{aligned}
$$

Practice

Use the point-slope form to write an equation.

1. $(-2,-2),(0,-4)$

Use the formula for slope $\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)$ to find the slope.

Use one set of ordered pairs for the x-coordinate and the y-coordinate.

Use point-slope form to write the equation.

Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\square=-=$ \qquad

Use the ordered pair (-2, -2).
The x-coordinate is \qquad ; the y-coordinate is \qquad .
$y-y_{1}=\mathrm{m}\left(x-x_{1}\right)$
2. $(0,1),(2,2)$ \qquad
3. $(-6,4),(3,-5)$ \qquad
4. $(2,6),(0,0)$
5. $(-1,-4),(5,2)$ \qquad
6. $(6,0),(3,-2)$
\qquad

CAdding Vectors

A vector is any quantity with magnitude and direction. The magnitude is the distance from the start point to the end point. The direction is the direction in which the arrow points from the start point to the end point. The diagram shows two vectors, u and v. The resultant vector r, is the sum of the vectors. If the vectors start at the origin, you can find the resultant vector, r, by adding the coordinates of their end points.

Rules for Adding Vectors

1. Find the end coordinates of one of the vectors. This is $\left(x_{1}, y_{1}\right)$.
2. Find the coordinates of the second vector. This is $\left(x_{2}, y_{2}\right)$.
3. Add the x-coordinates and add the y-coordinates: $\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$. The resulting coordinates are the endpoint of the resultant drawn from the origin.

Example

Add vectors $a(5,4)$ and $b(-2,1)$. Write the sum of the two vectors as an ordered pair. Then draw the resultant.
Step 1 Find the end coordinates of one of the vectors. This is $\left(x_{1}, y_{1}\right)$.

The first vector has
coordinates (5, 4);
$x_{1}=5, y_{1}=4$.
Step 2 Find the coordinates of the second vector. This is $\left(x_{2}, y_{2}\right)$.

The second vector
 has coordinates $(-2,1)$;
$x_{2}=-2, y_{2}=1$.
Step 3 Add the x-coordinates and add the y-coordinates: $\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$.
$(5+(-2), 4+1)$
$(3,5)$ is the end point of the resultant vector.

Practice

1. Add vectors $a(-3,-2)$ and $b(-1,3)$. Write the sum of the two vectors as an ordered pair. Then, draw the resultant.
Find the end coordinates of one of the The first vector has coordinates \qquad ; vectors. This is $\left(x_{1}, y_{1}\right)$.

Find the coordinates of the second
$x_{1}=\longrightarrow, y_{1}=$ \qquad vector. This is $\left(x_{2}, y_{2}\right)$.

Add the x-coordinates and add the y-coordinates: $\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$. The second vector has coordinates \qquad ;

$$
x_{2}=\longrightarrow, y_{2}=
$$

\qquad
\qquad
\qquad $+$ \qquad
\qquad is the end point of the resultant vector.
2. Add vectors $a(4,4)$ and $b(-1,2)$. Write the sum of the two vectors as an ordered pair. Then, draw the resultant. \qquad
3. Add vectors $a(-6,5)$ and $b(2,-4)$. Write the sum of the two vectors as an ordered pair.

Then, draw the resultant. \qquad

\qquad

TransIations

A translation is often described as moving a figure from one location to another. In a translation, neither the size nor the shape of the figure changes. All the points of the figure move the same distance and in the same direction. In a translation, the points of the original figure are usually given. Each point in the new figure is followed by a prime (').

Rules for Translation

1. Identify the change in the x-coordinate and the y-coordinate of each point of the figure.
2. Add the change in the x-coordinate to each x-coordinate in the figure. Add the change in the y-coordinate to each y-coordinate in figure.
3. List the new coordinates of each point using prime notation (').

Example

A triangle has the following coordinates, $A(3,3), B(5,-1), C(1,-1)$. The triangle is translated $(x, y) \rightarrow(x+2, y-1)$. What are the coordinates of the translated image?

Step 1 Identify the change in the x - and y-coordinate of each point of the figure. y-coordinate is changed by -1 .
Step 2 Add the change in the x-coordinate to each x-coordinate in the figure. Add the change in the y-coordinate to each y-coordinate in the figure.
Step 3 List the new coordinates of each point $A^{\prime}(5,2) ; B^{\prime}(7,-2) ; C^{\prime}(3,-2)$ using prime notation (').

Practice

Identify the coordinates of each translated image.

1. A triangle has coordinates $A(-2,-1), B(0,2), C(1,0)$.

It is translated $(x, y) \rightarrow(x+3, y+3)$
Identify the change in the x - and y-coordinate of each point of the figure.

Add the change in the x-coordinate to each x-coordinate in the figure. Add the change in the y-coordinate to each y-coordinate in the figure.

List the new coordinates of each point using prime notation (').
2. A parallelogram has coordinates $A(-2,-3), B(-1,-1), C(2,-1), D(1,-3)$. It is translated $(x, y) \rightarrow(x-2, y+1)$.
3. A trapezoid has coordinates $A(0,-1), B(2,-1), C(3,-3), D(-1,-3)$.

It is translated $(x, y) \rightarrow(x+0, y+4)$.
\qquad
\qquad

Symmetry

If you flip a figure over a line and the figure appears unchanged, then the figure has line symmetry. Another way to determine if a figure has line symmetry is to draw a line through the figure, dividing it in half. If the two halves are mirror images, then the figure has line symmetry.

Example

For the figure to the right, find all the lines of symmetry.
Step 1 Examine the figure and try to visualize a line that divides the image in two. Draw
 a dotted line for the line of symmetry.

Step 2 Draw the two halves. If the two halves are mirror images, then the line of symmetry is true.

Step 3 Test other possible lines of symmetry.

Practice

Draw all lines of symmetry.

1.

Examine the figure and try to visualize a line that divides the image in two. Draw a dotted line for the line of symmetry.

Draw the two halves. If the two halves are mirror images, then the line of symmetry is true.

Test other possible lines of symmetry.
2.

3.

\qquad

Dilations

A dilation is a transformation in which the image and the image after the dilation are similar figures. Each dilation has a scale factor, a description of the change in size from the original image and the resulting image. When the scale factor is greater than 1 , the dilation is an enlargement. When the scale factor is less than 1 , the dilation is a reduction.

Rules for Dilations

1. Identify the scale factor for the dilation.
2. Multiply each coordinate by the scale factor.
3. List the new coordinates using prime notation (').

Example

A triangle has coordinates $A(5,2), B(7,-2)$ and $C(3,-2)$. A dilation has a scale factor of $\frac{1}{3}$. What are the coordinates of the new image?
Step 1 Identify the scale factor for the dilation. Each x-coordinate is multiplied by $\frac{1}{3}$; each y-coordinate is multiplied by $\frac{1}{3}$.

Step 2 Multiply each coordinate by the scale factor.

$$
\begin{aligned}
& A(5,2) \rightarrow\left(5 \times \frac{1}{3}, 2 \times \frac{1}{3}\right) \\
& B(7,-2) \rightarrow\left(7 \times \frac{1}{3},-2 \times \frac{1}{3}\right) \\
& C(3,-2) \rightarrow\left(3 \times \frac{1}{3}-2 \times \frac{1}{3}\right)
\end{aligned}
$$

Step 3 List the new coordinates using prime $A^{\prime}\left(\frac{5}{3}, \frac{2}{3}\right), B^{\prime}\left(\frac{7}{3},-\frac{2}{3}\right), C^{\prime}\left(1,-\frac{2}{3}\right)$ notation(').

Practice

Identify the coordinates of the dilated image.

1. A triangle has coordinates $A(1,2), B(3,5), C(4,3)$. A dilation has a scale factor of 2 . Identify the scale factor for the dilation. Each x-coordinate is multiplied by \qquad -; each y-coordinate is multiplied by \qquad
Multiply each coordinate by the scale factor.

$$
\begin{aligned}
& A(1,2) \rightarrow(1 \times \longrightarrow) \\
& B(3,5) \rightarrow(3 \times \longrightarrow) \\
& C(4,3) \rightarrow(4 \times \longrightarrow, 3 \times \longrightarrow)
\end{aligned}
$$

List the new coordinates using prime
A^{\prime} \qquad B^{\prime} \qquad C' \qquad notation (').
2. A parallelogram has coordinates $A(0,-2), B(-3,0), C(0,0), D(-1,-2)$. A dilation has a scale factor of 3 .
3. A trapezoid has coordinates $A(0,3), B(2,3), C(3,1), D(-1,-3)$. A dilation has a scale factor of $\frac{1}{2}$.
\qquad

CIf-Then Statements

You have often heard "if-then" statements, such as, "If it is Friday, then we will have pizza for lunch." An if-then statement is also known as a conditional. A conditional has two parts. The hypothesis and the conclusion. The hypothesis is the "If" part of the condition. The "Then" part is the conclusion. A conditional is true if every time the hypothesis is true, the conclusion is also true. A conditional is false if a counterexample is found that makes the conclusion false.

Rules for If-Then Statements

1. To write a conditional, the hypothesis is written as an "If" statement; it is followed by the conclusion, which is the "Then" statement.
2. To prove a conditional as true:

The hypothesis must be true. The conclusion must also be true. If the conclusion is found to be false, then the conditional is false.

Example

Write the following statement as a conditional and show that the conditional is true or false: May is a month with $\mathbf{3 1}$ days.

Step 1 The hypothesis is written as an
"If" statement; it is followed by the conclusion, the "Then" statement.
Step 2 Prove the conditional as true.

The hypothesis is that a month of the year can have 31 days.

The conclusion is that a month with 31 days is May.
"If a month has 31 days, then it is May."
You know by looking at a calendar that other months, such as March or July, also have 31 days. Therefore, the conditional is false.

Practice

Write the following statements as conditionals.
Show that the conditional is true or false.

1. A number divisible by 2 is an even number.

The hypothesis is written as an
"If" statement; it is followed by the
conclusion, the "Then" statement.

The hypothesis is that some \qquad are divisible by \qquad
The conclusion is that those numbers
divisible by \qquad are \qquad $-$

Prove the conditional as true.
All \qquad numbers \qquad divisible
by 2 . So, the conditional is \qquad
2. Odd integers greater than 10 are not prime.
3. A right triangle has only one 90° angle.

Geometry

\qquad

CInductive Reasoning

Inductive reasoning is reasoning that is based on patterns. When you use inductive reasoning, you observe a few situations and draw a conclusion based on those few instances. When you draw a conclusion, you often do so because you have observed a pattern. A conclusion you reach by using inductive reasoning is called a conjecture.

Rules for Identifying Patterns and Using Inductive Reasoning

1. Observe the differences between the first item in the sequence and the second item. State how the first item changed to become the second.
2. Observe the difference between the second and the third items in the sequence. State how the second item changed to become the third item. Is the way they changed the same as in Step 1?
3. Repeat the process for the next two items. If the pattern continues, then apply the pattern rule to find the next item.

Example

Find the pattern. Use the pattern to find the next two items in the sequence.

Step 1 State how the first item changed to become the second.

Step 2 Observe the difference between the second and the third items in the sequence. Is the way they changed the same as in Step 1?
Step 3 Repeat the process for the next two items. If the pattern continues, then apply the pattern rule to find the next item.

Practice

Find the pattern, then use the pattern to find the next two items in the sequence.

1. $100,50,25,12.5$

State how the first item changed to become the second.

State how the second item changed to become the second. Is the way they changed the same as in Step 1?

Repeat the process for the next item. If the pattern continues, then apply the rule to find the next item.

When you go to the next figure, you add a row with 1 more dot than the previous row. When you go to the next figure, you add a row with one more dot than the previous row.

The pattern holds true in moving from figure 3 to figure 4. Therefore, the fifth figure will be

The second item in the sequence is
\qquad of the first number.

Item 2 is 50 and item 3 is 25 . The third item in the sequence is \qquad of the second number.
The pattern holds true for item 4.
Therefore, the next number is \qquad

3. $2,-6,18,-54$, \qquad
\qquad

CDeductive Reasoning: Law of Detachment

Deductive, or logical, reasoning is the process by which a conclusion is made based upon known facts.
For example:

- You are in a room with the members of your school's swim team.
- You know that swimmers get up early for practice.
- Your friend is in the room.
- You can conclude that your friend will get up early.

As you can see, if the given statements (the first three statements) are true, deductive reasoning reaches a true conclusion (the fourth statement).
You can use two laws in deductive reasoning: the law of detachment and the law of syllogism.

Law of Detachment

If a conditional is true and its hypothesis is true, then the conclusion is true. If $p \rightarrow q$ is a true conditional and p is true, then q is true.

Example

If the measure of an angle is less than 90°, then the angle is acute. $\angle A$ has a measure of 60°. What can you conclude about $\angle A$? Use the law of detachment.
Step 1 What is given?
An angle less than 90° is acute.
$\angle A$ has a measure of 60°.

Step 2 What is the relationship between $\angle A$ and the first statement?

Step 3 What can you conclude?

You know the $\mathrm{m} \angle A$ and can use that information to classify $\angle A$.
Since $\angle A$ is 60° and an angle less than 90° is acute, $\angle A$ is acute.

Practice

Use the law of detachment to form a conclusion.

1. If an angle is obtuse, it has a measure greater than $90^{\circ} . \mathrm{m} \angle A$ is 110°.

What is given?
An angle greater than 90° is \qquad $\angle A$ has a measure of \qquad
What is the relationship between $\angle A$ and You know the $\mathrm{m} \angle A$ and can use that the first statement?

What can you conclude?
information to classify \qquad
Since $\angle A$ is \qquad and an angle greater than 90° is \qquad , $\angle A$ is
2. If Jamal works during the summer, he works in the library. Jamal works during the summer. \qquad
\qquad
\qquad

Deductive Reasoning: Law of Syllogism

Deductive, or logical, reasoning is the process by which a conclusion is made based upon known facts.

For example:

- You are in a room with the members of your school's swim team.
- You know that swimmers get up early for practice.
- Your friend is in the room.
- You can conclude that your friend will get up early.

You can use the law of syllogism in deductive reasoning.

Law of Syllogism

You can state a conclusion from two true conditionals when the conclusion of one of the conditionals is the hypothesis of the other.
If $p \rightarrow q$ and $q \rightarrow r$ are true conditionals, and p is true, then $p \rightarrow r$ is true.

Example

If Rachel is cooking, then she is making cookies. If Rachel is making cookies, then she is using raisins. What can you conclude about Rachel if she is cooking? Use the law of detachment.
Step 1 What is the first conditional?
Step 2 What is the second conditional?
Step 3 Does the conclusion of the first conditional form the hypothesis of the second conditional?
Step 4 Use the hypothesis of the first conditional and the conclusion of the second conditional to form a conclusion.

Practice

Use the law of syllogism to form a conclusion.

1. If an angle is obtuse, it has a measure greater than 90°. If an angle is greater than 90°, it cannot be a complementary angle.

First conditional:
Second conditional:
Yes or no?
Conclusion:
2. If Pearl is reading a book, then she is reading a mystery. If she is reading a mystery, then it is a book by Stephen King.

PAGE 1 Points, Segments, Rays, Lines, and Planes

Type of Figure	Symbol	Words	Drawing
Point	Point A	Point A	$\bullet A$
Line	$\overleftrightarrow{A B}$	Line $A B$	$\vec{A} \quad \vec{B}$
Segment	$\overrightarrow{A B}$	Segment $A B$	$\stackrel{\rightharpoonup}{A}$
Ray	$\overrightarrow{A B}$	Ray $A B$	$\stackrel{\rightharpoonup}{A}$
Plane	$\square Z$	Plane Z	\boxed{B}

Rules for Naming Basic Figures
Point: no, dot, letter
Line: indefinitely, no, both
Segment: endpoints, no
Ray: one, endpoint
Plane: flat, no
Practice

1. M
2. $\overrightarrow{R S}, \overrightarrow{D C}$, or $\overrightarrow{C D}$
3. $\overrightarrow{C D}$
4. segment

PAGE 2 Measuring Segments Complete each statement.

1. 8
2. $\overline{A C}$
3. $\overline{A B}, 8,17$
4. $A C$

Complete the rule.

1. B
2. B

Practice

1. $Y Z$;

YZ, 10;
$X Y+10-10=45-10,35$
2. 27
3. 15
4. 47
5. $6 x+1$

PAGE 3 Using Formulas

Practice

1. area, the other base length; height; area, $6,8,10$; $A=\left(\frac{1}{2}\right)(10)(6+8)$; 70 square units
2. $r=6 \quad$ 3. $h=20 \mathrm{in}$.

PAGE 4 Types of Angles

Angle Type	Example	Measure
Acute	$\angle A B C$	45°
Right	$\angle D E F$	90°
Obtuse	$\angle K L M$	120°
Straight	$\angle X Y Z$	180°

Complete the statements.

1. 90°
2. greater than
3. right angle
4. straight angle

Practice

1. right
2. $\angle C E D$ or $\angle A F B$
3. obtuse
4. less than

PAGE 5 Complementary and Supplementary Angles

Type	Angle Pair	Measure of One Angle	Measure of the other Angle	Sum of the Measure
Complementary	$\angle A B C$ $\& \angle D E F$	$30^{\circ}+$	$60^{\circ}=$	90°
Supplementary	$\angle K L M$ $\& \angle X Y Z$	$115^{\circ}+$	$65^{\circ}=$	180°

Complete the statement.

1. complementary
2. 180°

Practice

1. $\angle B F C$
2. 180°
3. 145°
4. $\angle A F B$

PAGE 6 Pairs of Angles

Type	Measure of One Angle	Measure of the Other Angle
Vertical	$\mathrm{m} \angle 1=80^{\circ}$	$\mathrm{m} \angle 3=80^{\circ}$
Angles	$\mathrm{m} \angle 2=100^{\circ}$	$\mathrm{m} \angle 4=100^{\circ}$
Linear Pair	$\mathrm{m} \angle 1=80^{\circ}$	$\mathrm{m} \angle 2=100^{\circ}$
	$\mathrm{m} \angle 3=80^{\circ}$	$\mathrm{m} \angle 4=100^{\circ}$

Complete the statements.

1. vertical angles, $\angle 2, \angle 4$
2. linear pair, $\angle 3, \angle 4$
3. $180^{\circ}, \angle 3, \angle 4$
4. supplementary

Complete the statements for the rules.

1. vertical
2. the same, congruent
3. 180°

Practice

1. $\angle E G D$
2. $E G A$ and
$\angle D G B$
3. a linear pair
4. $\angle A G F$
5. 135°

PAGE 7 Parallel Lines: Types of Angles
Complete the rules.

1. 7,8
2. 5,6
3. 4,6
4. 4,5
5. 2,7
6. 6,4

Practice

1. alternate interior
2. exterior
3. alternate interior
4. alternate exterior
5. 11,1
6. 7, 10
7. 11,6

PAGE 8 Parallel Lines: Angle Relationship

Type	Measure of Angle	Measure of Other Angle
Corresponding Angle	$\mathrm{m} \angle 1=65^{\circ}$	$\mathrm{m} \angle 4=65^{\circ}$
Alternate Interior Angles	$\mathrm{m} \angle 1=65^{\circ}$	$\mathrm{m} \angle 3=65^{\circ}$
Consecutive Interior Angles	$\mathrm{m} \angle 1=65^{\circ}$	$\mathrm{m} \angle 2=115^{\circ}$
Alternate Exterior Angles	$\mathrm{m} \angle 5=65^{\circ}$	$\mathrm{m} \angle 4=65^{\circ}$

Complete the statements.

1. congruent
2. congruent
3. Consecutive interior
4. congruent

Practice

1. 60°
2. 120°
3. 60°
4. 120°
5. 120°

PAGE 9 Proving Lines are

 ParallelComplete the statements.

1. corresponding, congruent
2. alternate interior, congruent
3. alternate exterior, congruent
4. consecutive interior, supplementary
Practice
5. consecutive interior; supplementary;
consecutive interior, supplementary
6. alternate exterior angles
7. corresponding angles
8. alternate interior angles
9. consecutive interior angles

PAGE 10 Classifying Triangles

Complete the rules

Rules for Classifying Triangles by Angle

1. three
2. obtuse
3. congruent
4. right

Rules for Classifying Triangles by Angle

1. no
2. three
3. two
Practice
4. $\triangle B E C$
5. $\triangle B E C$
6. $\triangle A E C$
7. $\triangle A E D$
8. $\triangle A E B$

PAGE 11 Interior and Exterior Angles in Triangles
Complete each statement.

1. $50^{\circ}, 55^{\circ}, 75^{\circ}, 180^{\circ}$
2. $105^{\circ}, 50^{\circ}, 55^{\circ}, 105^{\circ}$
3. $75^{\circ}, 105^{\circ}, 180^{\circ}$, supplementary

Complete the rules.

1. $180^{\circ}, 180^{\circ}$
 2. exterior, equal

Practice

1. 80°
2. 64°
270°
3. 36°

PAGE 12 Corresponding Parts of Triangles

Identify the corresponding parts.

```
\angleCAB\longleftrightarrow\angleZXY 
\angleABC}\leftrightarrow\angleXYZ \overline{AB}\leftrightarrowX
\angleBCA }\angleYYZ\quad\overline{BC}\leftrightarrowY
```

Complete the chart.

Angle	Corresponding Angle	Relationship
$\angle C A B=70^{\circ}$	$\angle Z X Y=70^{\circ}$	$\angle C A B \cong \angle Z X Y$
$\angle A B C=57^{\circ}$	$\angle X Y Z=57^{\circ}$	$\angle A B C \cong \angle X Y Z$
$\angle B C A=53^{\circ}$	$\angle Y Z X=53^{\circ}$	$\angle B C A \cong \angle Y Z X$
Side	Corresponding Side	Relationship
$\overline{A C}$	$\overline{X Z}$	$\overline{A C} \cong \overline{X Z}$
$\overline{A B}$	$\overline{X Y}$	$\overline{A B} \cong \overline{X Y}$
$\overline{B C}$	$\overline{Y Z}$	$\overline{B C} \cong \overline{Y Z}$

Complete the statement. corresponding, congruent

Practice

1. 12
2. $\angle S R T$
3. 48
4. $\overline{E F}$
5. 72
6. $\overline{R T}$

PAGE 13 Triangle Congruence:
Side-Side-Side Congruence
Complete the chart.

Side	Measure	Corresponding Side	Measure	Relationship Between Sides
$\overline{A B}$	3	$\overline{X Y}$	3	$\overline{A B} \cong \overline{X Y}$
$\overline{B C}$	5	$\overline{Y Z}$	5	$\overline{B C} \cong \overline{Y Z}$
$\overline{A C}$	7	$\overline{X Z}$	7	$\overline{A C} \cong \overline{X Z}$

Complete the rule.
congruent, three
Practice

1. $\overline{D C}$;
$\frac{\text { yes; }}{B C}$;
yes;
It is part of $\triangle A B C$ and $\triangle A C D$;
yes;
yes
2. no 3. yes

PAGE 14 Triangle Congruence:
Side-Angle-Side
Congruence
Answer the following.

1. $\overline{B C}$
2. $\angle A$ and $\angle B$
3. $\angle A$

Complete the chart.

Side	Measure	Corresponding Side	Measure	Relationship Between Sides
$\overline{A B}$	3	$\overline{X Y}$	3	$\overline{A B} \cong \overline{X Y}$
Angle	Measure	Corresponding Angle	Measure	Relationship Between Angles
$\angle B$	110°	$\angle Y$	110°	$\angle B \cong \angle Y$
Side	Measure	Corresponding Side	Measure	Relationship Between Sides
$\overline{B C}$	5	$\overline{Y Z}$	5	$\overline{B C} \cong \overline{X Y}$

Complete the rule.
congruent, sides, included
Practice

1. $\angle A$
2. $\angle D B C$
3. $\angle C$
4. $\angle G, \angle K$

PAGE 15 Triangle Congruence: Angle-Side-Angle Congruence
Answer the following questions.

1. $\overline{A C}$
2. $\overline{B C}$
3. $\overline{A B}$

Complete the chart.

Angle	Measure	Corresponding Angle	Measure	Relationship Between Angles
$\angle B$	110°	$\angle Y$	110°	$\angle B \cong \angle Y$
Side	Measure	Corresponding Side	Measure	Relationship Between Sides
$\overline{A B}$	3	$\overline{X Y}$	3	$\overline{A B} \cong \overline{X Y}$
Angle	Measure	Corresponding Angle	Measure	Relationship Between Angles
$\angle A$	30°	$\angle X$	30°	$\angle A \cong \angle X$

Complete the rule.
congruent, angles, included

Practice

1. $\angle A=\angle X$;
$\overline{A C}=\overline{X Z}$;
$\angle A$ and $\angle C$;
$\angle C$
2. $\overline{A C} \cong \overline{A C}$
3. $\overline{C B}$ and $\overline{C Z}$

PAGE 16 Triangle Congruence:
Angle-Angle-Side Congruence
Complete the chart.

Angle	Measure	Corresponding Angle	Angle Measure	Relationship Between Angles
$\angle A$	30°	$\angle X$	30°	$\angle A \cong \angle X$
$\angle B$	110°	$\angle Y$	110°	$\angle B \cong \angle Y$
Side	Measure	Corresponding Side	Measure	Relationship Between Sides
$\overline{A C}$	4	$\overline{X Z}$	4	$\overline{A C} \cong \overline{X Z}$

Complete the rule.
congruent, corresponding
Practice

1. $\angle A=\angle D$;
$\overline{A B}=\overline{D E}$;
$\angle A C B=\angle D C E ;$
vertical;
vertical angles are congruent; $\frac{\angle A}{A B} \cong \angle D, \angle C \cong \angle C$,
2. $\angle E$ or $\angle D$ and $\angle Y$ or $\angle X$
3. $\overline{D B} \cong \overline{D B}, \angle A$ and $\angle C$

PAGE 17 Choosing the Correct Congruence Postulate
Complete the chart.

Example	What Is Given	Postulate to Use

Practice

1. $\angle A \cong \angle X, \angle C \cong \angle Z$,
$\overline{A C} \cong \overline{X Z}$;
Angle-Side-Angle
2. cannot be proved

PAGE 18 Isosceles Triangle

 Theorem

Complete the chart.

Angle or Side	Measure
$\angle B$	50°
$\angle C$	50°
$\overline{A B}$	10 cm
$\overline{A C}$	10 cm

Complete the theorems.

1. congruent, congruent
2. congruent, congruent

Practice

1. $C B$;
55°;

$$
\begin{aligned}
\angle A+\angle B+\angle C & =180^{\circ} \\
55^{\circ}+\angle B+55^{\circ} & =180^{\circ} \\
\angle B & =70^{\circ}
\end{aligned}
$$

2. $\angle A=\angle B ; \mathrm{m} \angle A=\mathrm{m} \angle B=30^{\circ}$
3. $x+10=24 ; x=14$

PAGE 19 Triangle Mid-segment Find the slope of each segment.
$\overline{C B}:$ Slope $=\frac{2}{5} ;$
$\overline{D E}:$ Slope $=\frac{1}{2.5}=\frac{2}{5}$

1. $\frac{2}{5}, \frac{2}{5}$, equal, parallel

Use the Distance Formula to find the length d of each segment.

$$
\begin{aligned}
\overline{C B} & =\sqrt{(5)^{2}+(2)^{2}} \\
& =\sqrt{29}=5.38 \\
\overline{D E} & =\sqrt{(2.5)^{2}+(1)^{2}} \\
& =2.69
\end{aligned}
$$

2. $5.38,2.69, \overline{D E}$

Complete the rule.
parallel, half
Complete each statement.
3. $\overline{A B}$
4. $\overline{D E}$
5. 6
6. 8
7. 5.3

PAGE 20 Hypotenuse-Leg Theorem
Complete the chart.

$\triangle A B C$		\triangle RST		
Side	Meas.	Corresponding Side	Meas.	Relationship Between Sides
$\overline{A B}$	4	$\overline{R S}$	4	$\overline{A B} \cong \overline{R S}$
$\overline{B C}$	3	$\overline{S T}$	3	$\overline{B C} \cong \overline{S T}$
$\begin{aligned} & (\overline{A C})^{2}= \\ & 4^{2}+3^{2} \end{aligned}$	5	$\begin{aligned} & (\overline{R T})^{2}= \\ & 4^{2}+3^{2} \end{aligned}$	5	$\overline{A C} \cong \overline{R T}$

SSS, \cong
Complete the rule.
congruent, hypotenuse, leg
Practice

1. $\overline{C B}$
2. no
3. yes, $\overline{D B} \cong \overline{D B}$
4. no
5. no

PAGE 21 Triangle Inequalities: Inequalities for Sides and Angles
Complete the chart.

Side	Measure	Angle	Measure
$\overline{A B}$	4 cm	$\angle A B C$	110°
$\overline{B C}$	5 cm	$\angle B A C$	40°
$\overline{A C}$	8 cm	$\angle A C B$	30°

Complete the statements.

1. $\overline{B C}$
2. $\angle B A C$
3. $\angle B C A$
4. yes, it is
5. $\angle B A C$ opposite $\overline{B C}$

Complete the rule.
opposite, greater

Practice

1. >;

$$
\begin{aligned}
& \angle B D A=70^{\circ} ; \\
& \angle B A D=80^{\circ} ;
\end{aligned}
$$

2. $\overline{B C}$
3. >
4. $>$

PAGE 22 Triangle Inequality Theorem
Complete the chart.

Figure $\boldsymbol{B A D C}$	Inequality Test	Is the Inequality True?
	$19+43>16$	Yes
	$16+43>19$	Yes
	$16+19>43$	No
Figure $\boldsymbol{R S T}$	Inequality Test	Is the Inequality True?
	$22+18>36$	Yes
	$18+36>22$	Yes
	$36+22>18$	Yes

Answer the questions.

1. No, one statement is not true.
2. Yes

Complete the rule.
greater
Practice

1. yes;
yes;
yes;
yes, yes
2. no
3. yes
4. yes

PAGE 23 The Pythagorean Theorem

Practice

1. a side;

$$
\begin{aligned}
8^{2}+15^{2} & =c^{2}, 64+225=c^{2} \\
64+225 & =c^{2}, \\
289 & =c^{2}, \\
17 & =c
\end{aligned}
$$

2. $a=6$
3. $c=25$
4. $c=5$
5. $b=150$

PAGE 24 Converse of the Pythagorean Theorem Complete the chart.
longest

Leg	Leg	Hypotenuse		
$\overline{A B}$	$\overline{B C}$	$\overline{A C}$	$A B^{2}+B C^{2}$	$A C^{2}$
6	8	10	$6^{2}+8^{2}=100$	$(10)^{2}=100$

$=$
yes, yes
Complete the rule.
squares, longest
Practice

1. 13;

7 and 10;
$7^{2}+10^{2}=13^{2}, 49+100=169 ;$ no, $149 \neq 169$
2. yes
4. no
3. yes
5. yes

PAGE 25 Special Right Triangles: $45^{\circ}-45^{\circ}-90^{\circ}$ Right Triangles

Complete the chart.

$45^{\circ}-\mathbf{4 5} \mathbf{}{ }^{\circ} \mathbf{- 9 0}$				
Leg	Leg	Hypotenuse		
$\overline{A B}$	$\overline{B C}$	$\overline{A C}$	$A B^{2}+B C^{2}=A C^{2}$	
4	4	x	$4^{2}+4^{2}=32=x^{2}$	

Solve for x
$\sqrt{32}=x^{2}$
$\sqrt{32}=\sqrt{x^{2}}$
$\sqrt{(16) 2}=\sqrt{x^{2}}$
$4 \sqrt{2}=x$
$\overline{A B}, 4, \overline{A C}, 4 \sqrt{2}$
Complete the rule.
hypotenuse, leg
Practice

1. hypotenuse $=\sqrt{2}$ leg;

$$
x=\sqrt{2}(6) ;
$$

2. $\begin{aligned} x & =6 \sqrt{2} \\ x & =\frac{10}{\sqrt{2}}=\frac{10 \sqrt{2}}{2}=5 \sqrt{2}\end{aligned}$

PAGE 26 Special Right Triangles: $30^{\circ}-60^{\circ}-90^{\circ}$ Right Triangles
Complete the chart.

$\mathbf{3 0}^{\circ}-60^{\circ}-90^{\circ}$				
Leg	Leg	Hypotenuse		
$\overline{R S}$	$\overline{S T}$	$\overline{R T}$	$\overline{R S}^{2}+\overline{S T}^{2}=\overline{R T}^{2}$	
10	x	20	$10^{2}+x^{2}=20^{2}$	

Solve for x
$100+x^{2}=400$
$x^{2}=300$
$\sqrt{x^{2}}=\sqrt{300}$
$x=\sqrt{100(3)}$
$x=10 \sqrt{3}$
$\overline{R S}, 10$
$\overline{S T}, 10 \sqrt{3}$
Complete the rule.
longer, shorter
Practice

1. longer leg $=\sqrt{3}$ (shorter leg);
$x=\sqrt{3}(6)$;
$x=6 \sqrt{3}$
2. $x=24$

PAGE 27 Trigonometric Ratios Practice

1. $\frac{\text { length of the leg opposite } A}{\text { length of the hypotenuse }}=\frac{12}{13}$;
$\frac{\text { length of the leg adjacent } A}{\text { length of the hypotenuse }}=\frac{5}{13}$;
$\frac{\text { length of the leg opposite } A}{\text { length of the leg adjacent } A}=\frac{12}{5}$
2. $\frac{5}{13}, \frac{12}{13}, \frac{5}{12}$
3. $\frac{3}{5}, \frac{4}{5}, \frac{3}{4}$
4. $\frac{4}{5}, \frac{3}{5}, \frac{4}{3}$

PAGE 28 Inverse of Trigonometric Ratios

Practice

1. opposite, hypotenuse; sine, sin;

$$
\begin{aligned}
\sin T & =\frac{\text { length of the leg opposite } T}{\text { length of the hypotenuse }} \\
& =\frac{8}{10}=0.8 ; \\
\sin T & =0.8, T=53.13^{\circ}
\end{aligned}
$$

2. $\angle C=60^{\circ}$
3. $\angle T=22.89^{\circ}$

PAGE 29 Angles of Elevation and Depression

Practice

1. $100 \mathrm{ft}, 9^{\circ}$, adjacent side; adjacent;
$9^{\circ}, 100$
$x=\frac{100}{\tan 9^{\circ}}=\frac{100}{0.158}=632.91$
2. 53.59 ft
3. 86.34°

PAGE 30 Types of Polygons Identify characteristics of a polygon.

1. segments, arc
2. two, one
3. two, more than two Complete the statement. segments, two

Practice

1. yes;
2. yes
no;
3. quadrilateral
no
4. pentagon
5. yes

PAGE 31 Sum of Polygon Angle Measures
Complete the chart.

Polygon	Number of Sides	Number of Triangles	Sum of Interior Angle Measures
Triangle	3	1	$1\left(180^{\circ}\right)=180^{\circ}$
Quadrilateral	4	2	$2\left(180^{\circ}\right)=360^{\circ}$
Pentagon	5	3	$3\left(180^{\circ}\right)=540^{\circ}$
Hexagon	6	4	$4\left(180^{\circ}\right)=720^{\circ}$

Complete the statements.

1. 4,2
2. $2,180^{\circ}$
3. 2

Complete the rule.
$(n-2) 180^{\circ}$
Practice

1. 12;
2. 2340°
$(n-2) 180^{\circ}$,
3. 3240°
$(12-2) 180^{\circ}$;
4. 6 sides
$(10)(180)=1800^{\circ}$

PAGE 32 Types of Quadrilaterals Complete the chart.

Type	Sides	Angles
Rectangle	parallel, congruent	90°
Square	parallel, congruent.	90°
Parallelogram	parallel, congruent	congruent
Rhombus	parallel, congruent.	congruent
Trapezoid	parallel	
Kite	congruent., parallel	congruent

PAGE 33 Properties of Parallelograms
Complete the chart.

Opposite Sides			
Side	Measure	Opposite Side	Measure
$\overline{A D}$	12	$\overline{B C}$	12
$\overline{A B}$	18	$\overline{D C}$	18
Opposite Angles			
Angle	Measure	Opposite Angle	Measure
$\angle A$	60°	$\angle C$	60°
$\angle D$	120°	$\angle B$	120°

Consecutive Angles				
Angle	Measure	Consecutive Angle	Measure	Sum of Measures
$\angle A$	60°	$\angle D$ or $\angle B$	120°	180°
$\angle B$	120°	$\angle A$ or $\angle C$	60°	180°

Complete the statements.

1. congruent, congruent
2. supplementary

Practice

1. $\angle B, 120^{\circ}$;
supplementary,
$180^{\circ}-120^{\circ}=60^{\circ}$;
$\angle B$;
congruent, 120°;
$\overline{B C}$, congruent, 15 ;
$B A$, congruent, 10

PAGE 34 Properties of Trapezoids

Complete each statement.

1. $\angle B$
2. $\angle C$

Complete the chart.

Base Angle	Measure	Base Angle Pair	Measure
$\angle A$	120°	$\angle B$	120°
$\angle D$	60°	$\angle C$	60°

Complete the rule. congruent
Complete each statement.
3. 52
4. 26
5. 52,26

Practice

1. 28;
one half;
$\frac{1}{2}(28)=14$
2. 75°
3. 32
4. 18
5. 70°

PAGE 35 Diagonals in Parallelograms
Complete the table.

Diagonal	Measure	Seg- ment	Measure	Seg- ment	Measure
$\overline{A C}$	28	$\overline{A E}$	14	$\overline{C E}$	14
$\overline{D B}$	34	$\overline{D E}$	17	$\overline{B E}$	17

Complete the statements.

1. half, half
2. bisects
3. \cong, \cong

Complete the rule.
bisect
Practice

1. segment, half;

14;
bisected, equal;
12
2. 8
4.7
3. 16
5.14

PAGE 36 Exterior Angles of a Polygon
Complete the chart.

Triangle				
$\angle 1$	$\angle 2$	$\angle 3$	$\angle 4$	Sum of Angles
135°	100°	125°	N / A	360°
Quadrilateral				
50°	130°	50°	130°	360°

Complete the rule.
360°
Practice

1. 5 ;
540°;
$540^{\circ} \div 5=108^{\circ}$;
360°;
$360^{\circ} \div 5=72^{\circ}$
2. interior angles $=135^{\circ}$, exterior angles $=45^{\circ}$
3. 9 sides 4. 6 sides

PAGE 37 Proportions

Practice

1. $\frac{1}{2}, \frac{4}{5}$;
are not, do not
2. no
3. yes
4. yes
5. no
6. no
7. yes
8. no
9. yes

PAGE 38 Solving Proportions

Practice

1. 392;
$4 x$;
$4 x=392$;
$4 x \div 4=392 \div 4$,
$x=98$
2. 4
3. 6
4. 13
5. 15
6. 32
7. 8
8. 40
9. 26

PAGE 39 Similar Polygons
Explore the nature of similar figures.

Corresponding Angles				
Angle	Measure	Corresponding Angle	Measure	Relationship Between Angles
$\angle A$	20°	$\angle X$	20°	$\angle A \cong \angle X$
$\angle B$	115°	$\angle Y$	115°	$\angle B \cong \angle Y$
$\angle C$	45°	$\angle Z$	45°	$\angle C \cong \angle Z$

Corresponding Sides				
Side	Measure	Corresponding Side	Measure	Ratio of Angle to Corresponding Angle
$\overline{A B}$	15	$\overline{X Y}$	7.5	$\frac{15}{7.5}=2$
$\overline{A C}$	20	$\overline{X Z}$	10	$\frac{20}{10}=2$
$\overline{B C}$	10	$\overline{Y Z}$	5	$\frac{10}{5}=2$

Complete the rule.

1. congruent
2. proportion

Practice

1. $\cong, \cong, \cong ;$
$\frac{\overline{A B}}{W X}=\frac{\overline{B C}}{Y X}, \frac{24}{9}=\frac{12}{4.5}$,
$2.67=2.67$, are
2. yes

PAGE 40 Triangle Similarity:
Angle-Angle Similarity
Complete the statements.

1. $\angle D, \angle B, \angle F$
2. 77°
3. 55°
4. congruent

Complete the chart.

Angle	Measure	Corresponding Angle	Measure	Relationship
$\angle A$	77°	$\angle D$	77°	$\angle A \cong \angle D$
$\angle B$	48°	$\angle E$	48°	$\angle B \cong \angle E$
$\angle C$	55°	$\angle F$	55°	$\angle C \cong \angle F$

Complete the rule.
congruent
Practice

1. $\triangle A D E$;
$\angle A, \angle A \cong \angle A$;
$90^{\circ}, 90^{\circ}$;
$\angle A \cong \angle A, \angle D \cong \angle B ;$
yes
2. no; yes

PAGE 41 Triangle Similarity:
Side-Side-Side Similarity
Complete the chart.

Side	Measure	Corresponding side	Measure	Ratio of Sides
$\overline{A B}$	14	$\overline{D E}$	7	$\frac{14}{7}=2$
$\overline{B C}$	13	$\overline{E F}$	6.5	$\frac{13}{6.5}=2$
$\overline{A C}$	15	$\overline{D F}$	7.5	$\frac{15}{7.5}=2$

Complete the statements.

1. 2,2 , yes
2. 2 , yes
3. $\frac{B C}{E F}$
4. $2: 1$

Complete the rule.
proportional
Practice

1. $\overline{D E}, \frac{\overline{A B}}{D E}, 2,5$;
$\overline{E F}, \frac{\overline{B C}}{E F}, 3,5$;
$\overline{D F}, \frac{\overline{A C}}{\overline{D F}}, 4,5$;
5:1;
yes, yes
2. yes (ratio of corresponding sides is $1: 3$)
PAGE 42 Triangle Similarity:
Side-Angle-Side Similarity
Complete the chart.

Angle or Side	Measure	Corresponding Angle or Side	Measure	Relationship
$\overline{A B}$	14	$\overline{X Y}$	7	$\frac{14}{7}=2$
$\angle A$	53°	$\angle X$	53°	$\angle A \cong \angle X$
$\overline{A C}$	15	$\overline{X Z}$	7.5	$\frac{15}{7.5}=2$

Complete the statements.

1. included angles
2. congruent
3. 2,2 , yes, yes

Complete the rule.
congruent, including
Practice

1. $\overline{F C}, \overline{C D}$;
$\overline{F C}, \frac{15}{10}=\frac{3}{2}$;
$\overline{C D}, \frac{12}{8}=\frac{3}{2}$;
yes, $\frac{3}{2}=\frac{3}{2}$;
$\angle A C B$;
yes, $\angle F C D$;
\triangle 's are similar
2. yes (ratio of corresponding sides is $\frac{3}{10}$)
PAGE 43 Finding Lengths in Similar Triangles
Practice
3. $\begin{aligned} \frac{\overline{A C}}{R T} & =\frac{8}{12 ;} ; \\ \frac{\overline{A B}}{R S} & =\frac{6}{R S} ; \\ \frac{8}{12} & =\frac{6}{R S} ;\end{aligned}$
4. $x=9$
5. $x=14$

PAGE 44 Proportions in Triangles: Side-Splitter Theorem
Explore the relationship between sides.

	Segment	Meas.	Segment	Meas.	Ratio
Side $\overline{A B}$	$\overline{A D}$	6	$\overline{D B}$	3	$\frac{6}{3}=2$
Side $\overline{A C}$	$\overline{A E}$	10	$\overline{E C}$	5	$\frac{10}{5}=2$

Complete the statements.

1. $2: 1$
2. 2:1
3. yes

Complete the theorem.
proportionally
Practice

1. $\frac{2}{6}$;
$\frac{4}{U T} ;$
$\frac{4}{U T}, 12$
2. $\overline{C Y}=15$
3. $x=4$

PAGE 45 Triangle Angle Bisector Theorem
Complete the statements.

1. bisects
2. $\frac{10}{12}=\frac{5}{6}$
3. $\overline{B D}$
4. $=$, proportion
5. $\frac{5}{6}$

Complete the theorem.
bisects, proportional Practice

1. $\angle A B C$;

$$
\begin{aligned}
& \frac{\overline{D C}}{\frac{A D}{D C}}, \frac{9}{\overline{D C}} ;
\end{aligned}
$$

$$
(9)(20)=12(\overline{D C})
$$

$$
\overline{\overline{D C}}=15
$$

2. $\overline{W Z}=6$
3. $\overline{S T}=24$

PAGE 46 Circles and
Circumference
Complete the definitions.

1. center, on
2. center, on
3. both, on, diameter
4. half, two

Practice

1. diameter, $d=14$;

$$
\pi d, C=(3.14)(14)
$$

2. $C=75.36$
3. $d=15, r=7.5$
4. $d=20, r=10$

PAGE 47 Exploring π
Complete the chart.

Circle	Circumference	Diameter	$\frac{\text { Circumference }}{\text { Diameter }}$
1	37.68	12	$\frac{37.6}{12}=3.14$
2	31.4	10	$\frac{31.4}{10}=3.14$
3	25.12	8	$\frac{25.12}{8}=3.14$
4	56.52	18	$\frac{56.52}{18}=3.14$
5	47.1	15	$\frac{47.1}{15}=3.14$

Complete the statements.

1. the same
2. 3.14
3. $3.14=\frac{\text { Circumference }}{\text { Diameter }}$
4. Complete the chart.

Circle	Circumference	Diameter
1	106.76	34
2	37.68	12
3	53.38	17
4	62.80	20

PAGE 48 Arc Length
Practice

1. 170°;

15;
15
2. Arc length $=10.47$
3. Arc length $=24.42$

PAGE 49 Inscribed Angles
Complete the table.

Cirlce	Inscribed Angle	Intercepted Arc
Circle 1	50°	100°
Circle 2	60°	120°
Circle 3	120°	240°

Complete the statements.

1. intercepted arc, larger
2. two
3. half

Complete the rule.
half

Practice

1. inscribed angle, $\angle A C B$; 75°;
$75^{\circ}, 150^{\circ}$
2. $\mathrm{m} A B=180^{\circ}=6$
3. $\mathrm{m} \angle A C B=60^{\circ}, \mathrm{m} \angle A D B=60^{\circ}$

PAGE 50 Angle Measures in Circles
Complete the chart.

Circle	Larger Arc	Smaller Arc	Angle	Larger Arc- Smaller Arc
A	100°	30°	40°	80°
B	95°	55°	20°	40°
C	250°	110°	70°	140°

Complete the statements.

1. $80^{\circ}, 40^{\circ}$, half
2. half
3. half

Complete the rule.
half
Practice

1. $\angle 1$; arcs; $\frac{1}{2}\left(160^{\circ}-60^{\circ}\right)$
2. $\mathrm{m} \angle 1=60^{\circ}$
3. $y=30^{\circ}$

PAGE 51 Finding Segment Lengths

Practice

1. $z=6, y=12$;
x
$(12+6)(12)$;
$216=x^{2}, 14.70=x$
2. $x=35$
3. $x=18.33$

PAGE 52 Equation of a Circle Practice

1. 0,0 ;

$$
\begin{aligned}
& 4 \\
& (x-0)^{2}+(y-0)^{2}=4^{2} \\
& x^{2}+y^{2}=16
\end{aligned}
$$

2. $(x-5)^{2}+(y-3)^{2}=36$
3. $x^{2}+(y-2)^{2}=49$
4. $(x-4)^{2}+(y+1)^{2}=2.25$
5. $(x+2)^{2}+(y+2)^{2}=81$

PAGE 53 Perimeter

Practice

1. 2
$10, P=6+3+3+7+4+4$

$$
+2+8+3+4
$$

$P=44$ units
2. 88 units
3. 152 units

PAGE 54 Perimeter and Similar Figures
Explore the perimeters of similar figures.

	Side	Side	Side	Side	Perimeter
$\boldsymbol{A B C D}$	8	6	8	6	28
$\boldsymbol{W} \boldsymbol{X Y Z}$	4	3	4	3	14

Complete the statements.

1. $8: 4$ or $2: 1 \quad$ 3. $28: 14$ or $2: 1$
2. $6: 3$ or $2: 1 \quad$ 4. equal

Complete the rule.
$a: b$
Practice

1. $\overline{X Y}, 24: 8$ or $3: 1$; $84,28,84: 28$ or $3: 1$
2. Ratio of sides is $4: 1$; ratio of perimeters is $4: 1$
3. Ratio of sides is $8: 5$; ratio of perimeters is $8: 5$

PAGE 55 Area of a Triangle
Practice

1. 15; outside, 7; $\frac{1}{2}(15)(7)=52.5$ square units
2. $A=20$ units $^{2} \quad$ 3. $A=12$ units 2

PAGE 56 Area of a Parallelogram Practice

1. 18;

8;
$A=(18)(8)=144$ square units
2. $A=64$ units 2
3. $A=32$ units 2

PAGE 57 Area of Similar Figures Explore the areas of similar figures.

	Length	Width	Area $(1 \times \boldsymbol{w})$
$\boldsymbol{A B C D}$	8	6	48
$\boldsymbol{W X Y Z}$	4	3	12

Complete the statements.

1. $6: 3$ or $2: 1$
2. $48: 12$ or $4: 1$
3. $8: 4$ or $2: 1$
4. squared

Complete the rule.

$$
a^{2}: b^{2}
$$

Practice

1. $\overline{X Y}, 24: 8$ or $3: 1$; $3^{2}: 1^{2}=9: 1$
2. Ratio of sides is $4: 1$; ratio of areas is $16: 1$
3. Ratio of sides is $8: 5$; ratio of areas is $64: 25$

PAGE 58 Area of a Trapezoid Practice

1. Let $\overline{U T}$ be $b_{2} ; \overline{U T}=3$;
$\overline{R V} ; \overline{R V}=4$;

$$
A=\frac{1}{2}(9+3)(4)=24 \text { square }
$$

2. $A=90$ units 2 3. $A=100$ units 2

PAGE 59 Area of a Rhombus or Kite
Practice

1. $\overline{X Z}$, Let $\overline{X Z}$ be $d_{2} ; \overline{X Z}=20$;

$$
A=\frac{1}{2}(30)(20)=300 \text { square }
$$

2. $A=126$ units 2 3. $A=24$ units 2

PAGE 60 Area of a Circle

Practice

1. half, 6;

$$
\begin{aligned}
& A=\pi(6)^{2} ; \\
& A=(3.14)(6)^{2}= \\
& 113.04 \text { square } \\
& \quad \text { units }
\end{aligned}
$$

2. $A=314$ units 2
3. $r=3$
4. difference $=150.72$ units 2

PAGE 61 Area of a Sector of a Circle
Practice

1. $D F, 90^{\circ}$;

13;

$$
\begin{aligned}
\text { Area } & =\frac{90}{360} \times \pi \times 13^{2} \\
& =132.67 \text { units }^{2}
\end{aligned}
$$

2. 87.22 units $^{2} \quad$ 3. 56.52 units 2

PAGE 62 Area of Regular Polygons

Practice

1. $a^{2}+6^{2}=10.2^{2}, 8.25$;

5, $P=(5)(12)=60$;
$\mathrm{A}=\frac{1}{2}(8.25)(60)$
$=247.5$ square units
2. $A=480$ units 2
3. $A=100$ units 2

PAGE 63 Area of an Irregular Shape
Practice

1. rectangle;
$\frac{1}{2} b h, l w ;$
$A_{\text {triangle }}=\frac{1}{2}(4)(5)=10$;
$A_{\text {rectangle }}=8 \times 5=40$;
$10+10+40+=60$ square
units
2. 16 square units
3. 110.2 square units

PAGE 64 Comparing Area and Perimeter
Explore the dimensions of rectangles.

Rectangle	Length	Width	Perimeter $\mathbf{2}(\boldsymbol{I}+\boldsymbol{w})$	Area $\boldsymbol{I} \times \boldsymbol{w}$
6×12	12	6	36	72
7×11	11	7	36	77
8×10	10	8	36	80
9×9	9	9	36	81

Complete the statements.

1. 12×6
2. square
3. 9×9
4. square
5. equal
6. square, increases

Practice

1. 12×12
2. $40 \times 40,1,600$ square units

PAGE 65 Using Trigonometry to Find the Area of a Triangle
Practice

1. $b=6 ; c=10 ; \angle X=55^{\circ}$;
$\frac{1}{2}(6)(10)\left(\sin 55^{\circ}\right)$;
$A=\frac{1}{2}(6)(10)(0.82)=24.6$ units 2
2. 17.21 units 2
3. 21.65 units 2

PAGE 66 Geometric Probability Practice

1. Subtract
$A=\pi r_{\mathrm{L}}{ }^{2}-\pi r_{\mathrm{S}}{ }^{2}$

PAGE 67 Types of Solids Label each of the parts of a solid. Prism: lateral face, base Pyramid: vertex, lateral face, base Cylinder: lateral surface, base Cone: lateral surface, base Complete the chart.

Figure	Base(s)	Lateral Face(s)
Prism	two, polygons	rectangles
Pyramid	one	triangles
Cylinder	two, circles	curved rectangle
Cone	one	curved surface (sector of a circle)

Practice

1. triangle;

2;
rectangle;
triangular prism
2. cylinder
3. rectangular pyramid
4. trapezoidal prism
5. cone

PAGE 68 Solids and Euler's Formula
Label and name the parts of a solid.

The rectangular prism has 6 faces, 12 edges and 18 vertices.
Practice

1. 2 triangles and 3 rectangles,

5 faces,
6 vertices;
$6+5=E+2$
$9=E$
2. 12 vertices
3. 10 edges

PAGE 69 Surface Area: Prisms
Practice

1. $A=\frac{1}{2}(8)(9)=36$ square units $36 \times 2=72$ square units;

$$
A=8 \times 15+12 \times 15+9 \times 15
$$

$$
=435
$$

$72+435=507$ square units
2. $A=990$ units 2
3. $A=178$ units 2

PAGE 70 Surface Area: Cylinders Practice

1. $r=5 ; h=10$;

$$
\begin{aligned}
& 2(3.14)(5)(10)+2(3.14)(5)^{2} \\
& 314+157=471 \text { square units } \\
& \text { 2. } A=565.2 \text { units }^{2} \\
& \text { 3. } A=226.08 \text { units }^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =(3.14)(10)^{2}-(3.14)(6)^{2} \\
& =200.91 \text { square units; } \\
& \text { larger; } \\
& P=\frac{200.91}{314} \times 100=63.98 \% \\
& \text { 2. } 16.67 \% \\
& \text { 3. } 52.9 \%
\end{aligned}
$$

PAGE 71 Surface Area: Pyramids Practice

1. rectangle, $A=l w$

$$
\begin{aligned}
A=l w & =(10)(10) \\
& =100 \text { square units; }
\end{aligned}
$$

$l=15.6$
$p=10+10+10+10=40$;
$\frac{1}{2}(40)(15.6)+100=412$
2. $A=465.6$ units 2
3. $A=294.4$ units 2

PAGE 72 Surface Area: Cones
Practice

1. $r=5$;

$$
\begin{aligned}
& l=12 ; \\
& (3.14)(5)(12)+(3.14)\left(5^{2}\right) \\
& =188.4+78.5 \\
& =266.9 \text { sq. units }
\end{aligned}
$$

2. $A=452.16$ units 2
3. $A=263.76$ units 2

PAGE 73 Surface Area of Similar Solids
Complete the chart.

	Length	Width	Height	Surface Area
Rectanglular Prism A	4	6	6	168
Rectangular Prism B	2	3	3	42

Complete the statements.

1. 2 : 1
2. squared
3. $168: 42$ or $4: 1$

Complete the rule.
b^{2}
Practice

1. 12: 4 or 3:1;

$$
\begin{aligned}
& \frac{468 \mathrm{~cm}^{2}}{S A_{\text {Small }}}=\frac{3^{2}}{1} \\
& S A_{\text {Small }}(9)=468 \mathrm{~cm}^{2} ; \\
& S A_{\text {Small }}=52 \mathrm{~cm}^{2}
\end{aligned}
$$

2. $A=96 \mathrm{~cm}^{2}$

PAGE 74 Volume: Prisms
Practice

1. $\frac{1}{2}(9) \times 8=36$ square units;
$9 ;$
$(36)(9)=324$ cubic units
2. $V=1,750$ units 3
3. $V=140.30$ units 3

PAGE 75 Volume: Cylinders
Practice

1. $r=5$;
$h=10$;
$V=(3.14)(5)^{2}(10)$
$=785$ cubic units
2. $V=1,017.36$ units 3
3. $V=254.34$ units 3

PAGE 76 Volume: Pyramids Practice

1. rectangle, $A=l w$

$$
\begin{aligned}
A=l w=(10)(10)= & 100 \text { square } \\
& \text { units; }
\end{aligned}
$$

12;

$$
V=\frac{1}{3}(100)(12)=\underset{\text { units }}{400 \text { cubic }}
$$

2. $V=288$ units 3
3. $V=256$ units 3

PAGE 77 Volume: Cones Practice

1. 5;

$$
\begin{aligned}
& 11 ; \\
& V=\frac{1}{3}(3.14)(5)^{2}(11)= \\
& \text { units }^{3}
\end{aligned}
$$

2. $V=301.44$ units 3
3. $V=188.4$ units 3

PAGE 78 Volume of an Irregular Shape

Practice

1. cone;

Cone: $V=\frac{1}{3} \pi r^{2} h$;
Cylinder: $V=\pi r^{2} h$;

$$
\begin{aligned}
& V_{\text {Cone }}=\frac{1}{3}(3.14)(3)^{2}(5)=47.1 \\
& V_{\text {Cylinder }}=(3.14)(3)^{2}(11) \\
& =31086 .
\end{aligned}
$$

cone

$$
V_{\text {total }}=47.1+310.86=358.96
$$

PAGE 79 Volume of Similar Solids Complete the chart.

	Length	Width	Height	Volume
Rectanglular Prism A	4	6	6	144
Rectangular Prism B	2	3	3	18

Complete the statements.

1. $2: 1$
2. cubed
3. $144: 18$ or $8: 1$

Complete the rule.
a^{3}
Practice

1. $15: 10$ or $3: 2$;
$\frac{V_{\text {Large }}}{1130^{3}}=\frac{3^{3}}{2^{3}}$;
(8) $V_{\text {Large }}=30510 \mathrm{~cm}^{3}$
$V_{\text {Large }}=3813.75 \mathrm{~cm}^{3}$
2. $V=28.3 \mathrm{~cm}^{3}$

PAGE 80 Surface Area: Spheres Practice

1. diameter, 18 , radius is 9 ; $4(3.14)(9)^{2}=1017.36$ square units
2. 1256 units $^{2} \quad$ 3. 452.16 units 2

PAGE 81 Volume: Spheres Practice

1. diameter, 18 , radius is 9 ; $V=\frac{4}{3}(3.14)(9)^{3}=\begin{aligned} & 3052.08 \\ & \text { units }^{3}\end{aligned}$
2. 4186.67 units 3
3. 904.32 units 3

PAGE 82 Surface Area and Volume: Formulas
Complete the chart

Type	Description	Surface Area	Volume
Prism	two, polygons, parallelograms	base, lateral faces	$V=B h$
Pyramid	one, triangles	$S A=\frac{1}{2} p l+$ area of base	$V=\frac{1}{3} B h$
Cylinder	two, circles, curved	$2 \pi r h+2 \pi r^{2}$	$V=\pi r^{2} h$
Cone	one, curved	$S A=\pi r l+\pi r^{2}$	$V=\frac{1}{3} \pi r^{2} h$
Sphere	same, center	$S A=4 \pi r^{2}$	$V=\frac{4}{3} \pi r^{3}$

PAGE 83 Plotting Points on a Coordinate Plane
Practice

1. right, 2;
down, 3

2. $A(1,9)$
3. $B(0,-2)$
4. $C(-2,-2)$
5. $D(6,0)$

PAGE 84 Graphing a Linear Equation

Practice

1.

x	$2 x+6=y$	y	
2	$2(2)+6=y$	10	$(2,10)$
0	$2(0)+6=y$	6	$(0,6)$
1	$2(1)+6=y$	8	$(1,8)$
-2	$2(-2)+6=y$	2	$(-2,2)$

2. $(-2,-5),(0,1),(1,4),(2,7)$
3. $(-2,-1),(0,3),(1,5),(2,7)$
4. $(-2,-10),(0,0),(1,5),(2,10)$
5. $(-2,5),(0,3),(1,2),(2,1)$
6. $(-2,4),(0,5),(1,5.5) ;(2,6)$

PAGE 85 Distance Formula Practice

1. $x_{1}=-2, y_{1}=-1$;
$x_{2}=4, y_{2}=2$;
$d=\sqrt{(4-(-2))^{2}+(2-(-1))^{2}}$
$d=\sqrt{6^{2}+3^{2}}=\sqrt{45}=6.7$
2. $d=18.4$
3. $d=8.1$
4. $d=7.3$

PAGE 86 Midpoint Formula Practice

$$
\text { 1. } \begin{aligned}
& x_{1}=-2, y_{1}=-4 ; \\
& x_{2}=4, y_{2}=2 ; \\
& \left(\frac{4+(-2)}{2}, \frac{2+(-4)}{2}\right)=\left(\frac{2}{2}, \frac{-2}{2}\right) \\
& =(1,-1)
\end{aligned}
$$

2. $(3,1)$
3. $(-3.5,0)$
4. $(4,-5.5)$
5. $(4,-3)$

PAGE 87 Slope of a Line

Practice

1. $\left(x_{2}, y_{2}\right):(4,5)$;
$\frac{5-2}{4-1}=\frac{3}{3}=1$;
1
2. $\frac{3}{2}$
3. $-\frac{3}{5}$
4. 1
5. $\frac{2}{5}$
6. $\frac{2}{3}$

PAGE 88 Slope Intercept Form Practice

1. $\frac{1}{2}$;

10
2. slope $=1, y$-intercept $=3$
3. slope $=-\frac{3}{4}, y$-intercept $=-6$
4. slope $=\frac{1}{2}, y$-intercept $=2$
5. slope $=-\frac{2}{3}, y$-intercept $=-3$
6. $y=4 x-2$
7. $y=-2 x+5$

PAGE 89 Parallel Lines

Practice

1. $-\frac{1}{2} x-1$;
$3,-\frac{1}{2}$;
are not, are not
2. $m=-\frac{1}{4}$ for both equations; the graphs are parallel.
3. $m=-2$ for both equations; the graphs are parallel.
4. $\mathrm{m}=2$ and 1 ; the graphs are not parallel.
5. $\mathrm{m}=-\frac{1}{4}$ and $-\frac{4}{3}$; the graphs are not parallel.

PAGE 90 Perpendicular Lines

Example
4. $y=-\frac{1}{3} x+2$

Practice

1. -2 ; negative, positive, 2 ; $y=2 x+(-3)$
2. $y=-\frac{4}{3} x+4$
3. $y=-\frac{1}{2} x+3$
4. $y=\frac{1}{4} x-5$
5. $y=-x+1$

PAGE 91 Point Slope Form I

Practice

1. 6;
$(-3,-1),-3,-1$;
$y-(-1)=6(x-(-3))$
or $y+1=6(x+3)$
2. $y-1=-\frac{1}{2}(x-7)$
3. $y-(-3)=2(x-(-3))$ or

$$
y+3=2(x+3)
$$

4. $y-(-5)=\frac{2}{3}(x-4)$ or $y+5=\frac{2}{3}(x-4)$
5. $y-3=-3(x+1)$

PAGE 92 Point Slope Form II Practice

1. $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-4-(-2)}{0-(-2)}=\frac{-2}{2}=-1$;
$-2,-2$;
$y-(-2)=-1(x-(-2))$
or $y+2=-1(x+2)$
2. $y-2=\frac{1}{2}(x-2)$
3. $y-4=-1(x-(-6))$ or
$y-4=-1(x+6)$
4. $y-6=3(x-2)$
5. $y-2=1(x-5)$
6. $y-0=\frac{2}{3}(x-6)$ or $y=\frac{2}{3}(x-6)$

PAGE 93 Adding Vectors

Practice

1. $(-3,-2), x_{1}=-3, y_{1}=-2$; $(-1,3), x_{2}=-1, y_{2}=3$; $(-3+(-1),(-2+3)$ $(-4,1)$
2. resultant: $(3,6)$
3. resultant: $(-4,1)$

PAGE 94 Translations

Practice

1. $+3,+3$;

3, 3
$+3,+3$
$+3,+3$;

$$
A^{\prime}(1,2) ; B^{\prime}(3,5) ; C^{\prime}(4,3)
$$

2. $A^{\prime}(-4,-2) ; B^{\prime}(-3,0) ; C^{\prime}(0,0)$, $D^{\prime}(-1,-2)$
3. $A^{\prime}(0,3) ; B^{\prime}(2,3) ; C^{\prime}(3,1)$, $D^{\prime}(-1,1)$

PAGE 95 Symmetry

Practice

1. Either a horizontal or a vertical line of symmetry can be drawn, as shown.

PAGE 96 Dilations

Practice

1. 2, 2;

2, 2
2, 2
2, 2;
$A^{\prime}(2,4) ; B^{\prime}(6,10) ; C^{\prime}(8,6)$
2. $A^{\prime}(0,-6) ; B^{\prime}(-9,0) ; C^{\prime}(0,0)$, $D^{\prime}(-3,-6)$
3. $A^{\prime}\left(0, \frac{3}{2}\right) ; B^{\prime}\left(1, \frac{3}{2}\right) ; C^{\prime}\left(\frac{3}{2}, \frac{1}{2}\right)$, $D^{\prime}\left(-\frac{1}{2},-\frac{3}{2}\right)$

PAGE 97 If-Then Statements

Practice

1. numbers, 2

2, even
Sample: If a number is divisible by 2 , then it is an even number; even, are, true
2. Sample: If an odd number is greater than 10 , then it is not a prime.
False: Sample: 11 is prime.
3. Sample: If a triangle is a right triangle, then it has only one 90° angle.
True: Sample: If a triangle does not have a 90° angle, it is not a right triangle.

PAGE 98 Inductive Reasoning

Practice

1. half;
half;
6.25
2.

3. $162,-486$

PAGE 99 Deductive Reasoning: Law of Detachment

Practice

1. obtuse, 110°; $\angle A$;
110°, obtuse, obtuse
2. Sample: Jamal is working in the library.
PAGE 100 Deductive Reasoning: Law of Syllogism
Practice
3. If an angle is obtuse, it has a measure greater than 90°; If an angle is greater than 90°, it cannot be a complementary angle;
yes;
If an angle is obtuse, it cannot be a complementary angle.
4. Sample: If Pearl is reading a book, then it is a book by Stephen King.
