
Rigid Flexibility

APPLIED LOGIC SERIES

Managing Editor

Dov M. Gabbay, Department of Computer Science, King’s College, London,
U.K.

Co-Editor

Jon Barwise†

Editorial Assistant

Jane Spurr, Department of Computer Science, King’s College, London, U.K.

SCOPE OF THE SERIES
Logic is applied in an increasingly wide variety of disciplines, from the traditional subjects
of philosophy and mathematics to the more recent disciplines of cognitive science, computer
science, artificial intelligence, and linguistics, leading to new vigor in this ancient subject.
Kluwer, through its Applied Logic Series, seeks to provide a home for outstanding books and
research monographs in applied logic, and in doing so demonstrates the underlying unity and
applicability of logic.

The titles published in this series are listed at the end of this volume.

VOLUME 34

by

Rigid Flexibility
The Logic of Intelligence

Pei Wang
Temple University, Philadelphia, USA

A C.I.P. Catalogue record for this book is available from the Library of Congress.

Published by Springer,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

Printed on acid-free paper

All Rights Reserved

No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording
or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands

© 2006 Springer

www.springer.com

ISBN-10 1-4020-5044-5 (HB)
ISBN-13 978-1-4020-5044-2 (HB)
ISBN-10 1-4020-5045-3 (e-book)
ISBN-13 978-1-4020-5045-3 (e-book)

Contents

Preface xi

Acknowledgment xv

I Theoretical Foundation 1

1 The Goal of Artificial Intelligence 3
1.1 To define intelligence . 3
1.2 Various schools in AI research 11
1.3 AI as a whole . 20

2 A New Approach Toward AI 29
2.1 To define AI . 29
2.2 Intelligent reasoning systems 37
2.3 Major design issues of NARS 42

II Non-Axiomatic Reasoning System 47

3 The Core Logic 49
3.1 NAL-0: binary inheritance 49
3.2 The language of NAL-1 57
3.3 The inference rules of NAL-1 69

4 First-Order Inference 91
4.1 Compound terms . 91
4.2 NAL-2: sets and variants of inheritance 92

v

vi Contents

4.3 NAL-3: intersections and differences 100
4.4 NAL-4: products, images,

and ordinary relations 109

5 Higher-Order Inference 115
5.1 NAL-5: statements as terms 115
5.2 NAL-6: statements with variables 127
5.3 NAL-7: temporal statements 134
5.4 NAL-8: procedural statements 138

6 Inference Control 149
6.1 Task management . 150
6.2 Memory structure . 158
6.3 Inference processes . 162
6.4 Budget assessment . 165

III Comparison and Discussion 171

7 Semantics 173
7.1 Experience vs. model . 174
7.2 Extension and intension 183
7.3 Meaning of term . 189
7.4 Truth of statement . 195

8 Uncertainty 201
8.1 The non-numerical approaches 201
8.2 The fuzzy approach . 206
8.3 The Bayesian approach 219
8.4 Other probabilistic approaches 236
8.5 Unified representation of uncertainty 241

9 Inference Rules 245
9.1 Deduction . 245
9.2 Induction . 253
9.3 Abduction . 263
9.4 Implication . 265

Contents vii

10 NAL as a Logic 271
10.1 NAL as a term logic . 271
10.2 NAL vs. predicate logic 278
10.3 Logic and AI . 285

11 Categorization and Learning 297
11.1 Concept and categorization 297
11.2 Learning in NARS . 310

12 Control and Computation 319
12.1 NARS and theoretical computer science 319
12.2 Various assumptions about resources 331
12.3 Dynamic natures of NARS 338

IV Conclusions 345

13 Current Results 347
13.1 Theoretical foundation 347
13.2 Formal model . 351
13.3 Computer implementation 354

14 NARS in the Future 357
14.1 Next steps of the project 357
14.2 What NARS is not . 364
14.3 General implications . 367

Bibliography 371

Index 399

List of Tables

3.1 The Grammar of Narsese-0 52
3.2 The Inference Rule of NAL-0 55
3.3 The Matching Rule of NAL-0 56
3.4 The Relations Among Forms of Truth-Value 65
3.5 The Grammar of Narsese-1 67
3.6 The Revision Rule . 70
3.7 The Choice Rule . 77
3.8 The Syllogistic Rules of NAL-1 82
3.9 The Conversion Rules of NAL-1 84
3.10 The Backward Syllogistic Rules of NAL-1 88

4.1 The Syllogistic Rules of NAL-2 94
4.2 The New Grammar Rules of Narsese-2 99
4.3 The Equivalence Rules of NAL-2 99
4.4 The New Grammar Rules of Narsese-3 107
4.5 The Composition Rules of NAL-3 108
4.6 The New Grammar Rules of Narsese-4 112
4.7 The Equivalence Rules of NAL-4 113

5.1 The New Grammar Rules of Narsese-5 116
5.2 The Isomorphism Between First-Order

and Higher-Order . 117
5.3 The Conditional Syllogistic Rules (1) 120
5.4 The Composition Rules of NAL-5 120
5.5 The Conditional Syllogistic Rules (2) 121
5.6 The Conditional Syllogistic Rules (3) 122
5.7 The Negation Rule . 123
5.8 The Contraposition Rules of NAL-5 124

ix

x List of Tables

5.9 Negation and Evidence 124
5.10 The Equivalence Rules of NAL-5 126
5.11 Sample Independent-Variable Elimination Rules 129
5.12 Sample Independent-Variable Introduction Rules 130
5.13 Sample Dependent-Variable Introduction Rule 130
5.14 Sample Dependent-Variable Elimination Rule 131
5.15 Sample Multi-Variable Introduction Rules 131
5.16 Sample Temporal Inference Rule 137
5.17 The Complete Grammar of Narsese 147

Preface

This book presents a research project aimed at the building of a “think-
ing machine,” that is, a general-purpose artificial intelligence.

Artificial intelligence has a scientific and an engineering aspect. The
former focuses on the explanation of “intelligence” displayed by the
human mind, while the latter focuses on building a computer system
that has such a nature. It is the most recently developed branch of a
profound intellectual tradition, and is related to many problems studied
in cognitive sciences, including philosophy, psychology, logic, linguistics,
mathematics, neuroscience, and related disciplines. Ultimately, the goal
is to understand notions like “intelligence,” “cognition,” “mind,” and
“thinking” well enough to reproduce them in computer systems.

Though the research field of artificial intelligence has existed for
about half a century, we are still far from the goal of building a thinking
machine. To a large degree, this is due to the complexity of the problem
— since the mind is perhaps the most complicated phenomenon in
the universe — as well as limitations of existing computer technology.
However, there is also a possibility that the mainstream research in the
field has been heading in the wrong direction.

The research reported in this book proposes a change in direction of
the research of artificial intelligence, a “paradigm shift” per se. Instead
of duplicating human behaviors or solving practical problems, this book
proposes that the right thing to do in the research is to build systems
that follow the same underlying principle as the human mind, that is,
to adapt to the environment and to work with insufficient knowledge
and resources.

In light of this opinion, the limitations of traditional theories are an-
alyzed. Such theories include first-order predicate logic, model-theoretic

xi

xii Preface

semantics, probability theory, computability theory, and computational
complexity theory. Each of these theories makes some explicit or im-
plicit assumptions on the sufficiency of knowledge and/or resources, and
will not work when these assumptions are not satisfied. The new theory
introduced in this book is designed for a situation where no traditional
theory can be applied, with the belief that this is what “intelligence”
is about.

This research shows that it is possible to build a formal model,
which is then be implemented in a computer, by standing firm on the
assumption of insufficient knowledge and resources. Furthermore, the
model uses a relatively simple mechanism to uniformly reproduce many
cognitive faculties, including reasoning, learning, perceiving, remember-
ing, categorizing, planning, predicting, problem solving, and decision
making.

This book consists of four parts:

Part I introduces the philosophical and methodological foundation of
the Non-Axiomatic Reasoning System, NARS for short, project.
The major schools of thought in the field are analyzed, and a
new working definition of “intelligence” is proposed, according to
which it is the capability of a system to adapt to its environment
and to work with insufficient knowledge and resources. The choice
of the reasoning system framework for this project is justified.
Finally, the major components of NARS are briefly and informally
introduced.

Part II describes a formal model based on the above theory. This part
contains the most technical results in NARS. First, a logic sys-
tem, NAL, is defined in several phases. The logic uses a categorical
language, an experience-grounded semantics, and extended syllo-
gistic inference rules. Then, the memory structure and control
mechanism of the system are introduced, which let the system
operate adequately while the computational resources, time and
space, are in short supply.

Part III compares the above model with related approaches on sev-
eral topics, and discusses the corresponding properties of NARS.

Preface xiii

The topics include knowledge representation, semantics and inter-
pretation, various types of inference, learning and categorization,
and the control of inference processes. It is shown that an out-
standing feature of NARS is that it provides a unified solution to
many problems in artificial intelligence and cognitive sciences.

Part IV summarizes the conclusions reached in this research so far,
and outlines the plan for the next stage of the project.

This organization is not perfect. Usually, a new technical idea should be
introduced together with the problem it aims, as well as with compar-
isons to other related ideas. In this book, however, each idea introduced
in Part II is not fully discussed until Part III, after the whole system
is described. This is because that each idea in NARS is typically mo-
tivated by more than one consideration, and the solution of a problem
is typically provided by the cooperation of multiple components of the
system. Consequently, to fully understand part of the system without
mentioning the other parts is very hard, if not impossible. Given this
nature, one possible reading strategy is to read Part II quickly in the
first pass, just to get a big picture of the system, then to come back to
the technical details during or after reading the remaining part of the
book.

This research is highly interdisciplinary. Its theoretical foundation
is rooted in philosophical and psychological studies; the formal model
is mainly about logic and artificial intelligence; the implementation is
carried out with the tools provided by computer science.

This book is aimed at general readers interested in mind, thinking,
and the computer. The readers are expected to be moderately familiar
with artificial intelligence, formal logic, computer science, and cognitive
sciences.

NARS is an on-going project. For up-to-date information about
its progress, please visit the project website,1 which contains on-line
demonstrations, working examples, related publications, as well as ad-
ditional materials and links.

1Currently at http://www.cogsci.indiana.edu/farg/peiwang/NARS/.

Acknowledgment

I became interested in artificial intelligence (AI) in the early 1980s,
when I was an undergraduate student in Peking University. At that
time AI was a new topic in China, so few faculty was working on it,
and no course was offered on the subject. As a result, I simply read
what I could find on AI and related topics. This fact partially explains
why I did not follow any established approach, but tried to put together
a theory by myself from the beginning of my research. The atmosphere
in Peking University in those years was extraordinary — just out of
the “cultural revolution”, the young generation was enthusiastically,
seriously, and bravely challenging traditional theories and values in all
domains, and attempting to build their own. The influence of the so-
called “Spirit of Peking University” was decisive to me; without it, I
would not have had the confidence to work on my ideas for more than
twenty years without major signs of acceptance from the AI community.
Therefore, to a large extent, this research is a product of the atmosphere
of “Peking University in the 1980s” — I don’t think I would pursue the
same path at a different place or at a different time.

As I had very limited access to established researchers and reference
materials, many of my ideas were inspired by discussions with friends.
Among them I want to thank Chen Gang, Cai Shan, Sun Yongping,
and in particular, Bai Shuo.2

After developing some preliminary ideas in my thesis for my bache-
lor’s degree, I decided to pursue them further when I became a graduate
student in the same university. Professor Xu Zhuoqun (also known as
Hsu Cho-Chun) found my ideas promising, and agreed to be my adviser.

2All Chinese names in this acknowledgment are written in the traditional Chinese
order, with the family name followed by the given name.

xv

xvi Acknowledgment

Without his support, it would have been difficult for me to finish my
earliest research as a Master Thesis. It was also from his Operating
System course that I got my idea of resource management. Another
member of my advisory committee, Professor Sun Huaimin of Beihang
University (BUAA), was the one who triggered my interest in symbolic
logic. I also obtained help from the other committee members and fac-
ulty of several universities, including Li Wei, Lin Jianxiang, Ma Xiwen,
Shi Chunyi, Shi Zhongzhi, and Wang Yutian.

After I got my master’s degree in July 1986, I was offered the po-
sition of Lecturer by the department. I accepted it, because Peking
University was so much like a home for me. During the summer vaca-
tion that year, a fellow student, Yan Yong, persuaded me to join the
translation project of Douglas Hofstadter’s Gödel, Escher, Bach: an
Eternal Golden Braid. The translation process turned out to be very
exciting, and I found many of my own ideas were presented in the book
in a beautiful way. As a consequence, I wrote to Professor Hofstadter
and then we exchanged some research papers, at which point both of
us noticed a surprising degree of overlap in our research projects. Con-
sequently, he arranged for me to join his research group at Indiana
University, and I was also accepted by the Ph.D program in computer
science and cognitive science at IU.

I left Peking University (after about twelve years), and arrived in
the USA in May 1991. This time I was lucky again to have an open-
minded adviser. Though Professor Hofstadter did not share all my opin-
ions about intelligence, he still provided me the support I needed to
continue my research. His opinions have always been stimulating to
my thought. Thanks to his help, the four and half years I spent on
the peaceful Bloomington campus were very productive and pleasant.
The other members of the Center for Research on Concepts and Cog-
nition were very helpful. They include David Moser, Robert French,
Terry Jones, David Chalmers, Gary McGraw, Jim Marshall, and John
Rehling. Helga Keller gave me enormous help in administrative affairs.
Jeff Logan played a major role in the improvement of my English. Carol
Hofstadter’s kindness to my family is unforgettable for us. I also want
to thank the other members of my advisory committee — David Leake,
Gregory Rawlins, and James Townsend — for their valuable comments
and suggestions.

Acknowledgment xvii

After getting my Ph.D. at the end of 1995, I could not get a research
position anywhere, so I went into industry. From early 1996 to Spring
1998, I worked in three companies, doing applied AI work, mostly in
expert systems, and continued the work in NARS in my own time. In
April 1998 I was attracted to a start-up company, Intelligenesis (re-
named to Webmind later), by a recruiting advertisement that looked
for people with “a passion for making computers think.” After talking
with the co-founder (also the Chairman and CTO), Ben Goertzel, we
found enough overlap in our ideas for me to join the company. One
major task I finished for the company was to design a customized ver-
sion of NARS as the inference engine of a general-purpose AI system,
Webmind, which integrated several techniques. Though I and Ben had
been arguing many issues all the time, the cooperation was stimulating
and pleasant overall. I was also benefited from discussions with Jeff
Pressing, Karin Verspoor, and other colleagues in the company.

In April 2001, the company finally ran out of money in a tough
economical season. In Summer 2001, with the help of Fan Wenfei, I got
a teaching position at the Computer and Information Sciences Depart-
ment of Temple University, where I have stayed until now. At Temple,
I have been getting help from Robert Aiken, Frank Friedman, John
Nosek, and other faculty members.

In the recent years, my research has benefited from the discussions
with the following friends: Deng Lang, Hu Xiangen, Lin Fangzhen, Lin
Yunqing, Lin Zuoquan, Ju Shier, Wang Hongbin, Yang Yingrui, Zhou
Beihai, as well as with many people in various mailing lists and news
groups.

I knew I needed to write such a book many years ago, simply be-
cause NARS addresses too many issues in such an interwoven manner,
that it is very difficult to clearly explain any of them without touch-
ing the others. My Master Thesis [Wang, 1986] and Ph.D. Disserta-
tion [Wang, 1995a] can be seen as immature versions of this book. The
current manuscript also includes many materials in my other writings
(journal articles, conference papers, book chapters, and technical re-
ports), which are included in the Bibliography of this book. Thanks to
the following publishers for their kind permission for me to use my pre-
vious publications in this book: Elsevier [Wang, 1994b, Wang, 1996a,
Wang, 2004a, Wang, 2005], IEEE [Wang, 1996b], Shaker Publishing

xviii Acknowledgment

[Wang, 2001b], Springer Science and Business Media [Wang, 1993a,
Wang, 1994a, Wang, 2000c, Wang, 2004c, Wang, 2006b], and World
Scientific Publishing [Wang, 1995b, Wang, 2004b, Wang, 2004d].

The first version of this book was finished in the Summer of 2003.
Since then, it had been rejected by several publishers until it finally
got into the hands of Dov Gabbay of the Applied Logic Series, and got
favorable evaluations from two anonymous reviewers. Without them, I
do not know how much longer it would take for this manuscript to be
published. During this process, Jane Spurr of the Applied Logic Series
and Lucy Fleet of Springer provide abundant help.

Thanks to Kevin Copple, Paul Fidika, Jordan Fultz, Edward Heflin,
J. W. Johnston, Klaus Witzel, and Brad Wyble for making many com-
ments and English corrections on earlier versions of this manuscript.

Finally, I would like to thank the help from my family members,
especially, from my dear wife, Sun Hongyuan, with her understanding,
support, and love.

Part I

Theoretical Foundation

Chapter 1

The Goal of Artificial
Intelligence

Generally speaking, Artificial Intelligence (AI) is the creation of intelli-
gence, as displayed by the human mind, in an artificial entity, especially,
a computer system.

This chapter surveys the current state of the field of AI, albeit
through my personal perspective.

1.1 To define intelligence

1.1.1 The field of AI

A key characteristic that distinguishes the human being from other cur-
rently known entities (animals, machines, and so on) is “intelligence”
(similar terms include “mind,” “cognition,” and “thinking”). Whether
this capability can be understood and reproduced in machines is a ques-
tion that has been considered for a long time by philosophers, mathe-
maticians, scientists, engineers, as well as by writers and movie makers.
However, it is the modern digital computer that makes it possible to
seriously test various answers to this question.

The electronic computer first appeared in the 1940s. Though ini-
tially the computer was used for numerical calculations, a mental ac-
tivity which previously could only be accomplished by a human mind,

3

4 Chapter 1

soon people realized that they could carry out many other mental ac-
tivities by manipulating various types of symbols or codes. Naturally,
people began to wonder whether all mental activities could be carried
out by computers, and if not, where does the border lie?

Roughly speaking, all attempts to answer the above questions be-
long to the study of “Artificial Intelligence”(AI), that is, to the attempts
to produce “intelligence” in artifacts, especially, computer systems.

Toward this general goal, two motivations of AI research and devel-
opment coexist:

• As a science, AI attempts to establish a theory of intelligence to
explain human intellectual activities and abilities.

• As a technology, AI attempts to implement a theory of intelligence
in computer systems to reproduce these activities and abilities
and use them to solve practical problems.

In AI, the science aspect (“What is intelligence?”) and the tech-
nology aspect (“How to reproduce intelligence?”) are closely related to
each other. Although different researchers may focus on different as-
pects of the research, a complete AI project typically consists of works
on the following three levels of description:1

1. a theory of intelligence, as writings in natural languages such as
English or Chinese,

2. a formal model of intelligence based on the above theory, as for-
mulas and expressions in formal languages like the ones used in
logic or mathematics,

3. a computer system implementing the above model, as programs in
programming languages such as Lisp or Java. Optionally, some AI
projects include works on computer hardware and special devices.

1Similar level distinctions are made by other authors [Marr, 1982, Newell, 1990],
and a summary can be found in [Anderson, 1990, page 4]. The above level distinction
differs from the others in that here it is mostly determined by the language in
which the research results are presented, and is, therefore, mostly independent of
the content of the AI approach under discussion.

The Goal of Artificial Intelligence 5

Roughly speaking, the mapping between descriptions of a higher
level and those of a lower level is one-to-many, in the sense that one
theory may be represented in more than one model (though each model
only represents one theory), and that one model may be implemented
in more than one way (though each implementation only realizes one
model).

Because of the nature of the field, AI is closely related to other dis-
ciplines. At the top level, AI borrows concepts and theories from the
disciplines that study the various aspects of the human brain and mind,
including neuroscience, psychology, linguistics, and philosophy. At the
middle level, AI uses tools and models developed in mathematics, logic,
and computer science. At the bottom level, AI depends on components
and systems provided by computer technology, like programming lan-
guage, software, and hardware.

1.1.2 The need for definition

Though the previous subsection provided a brief description of the field
of AI, it does not answer a key question: What is the definition of
artificial intelligence?

It is generally acknowledged that the forming of AI as a research
field was signified by the Dartmouth Meeting in 1956. After half a cen-
tury, there is a substantial AI community with thousands of researchers
all over the world, producing many books, journals, conferences, and
organizations. However, the current state of AI research activities are
not bounded together by a common theoretical foundation or by a set
of methods, but by a group of loosely related problems.

In the acronym “AI,” the “A” part is relatively easier to define
— by “artificial,” we mean “artifacts,” especially electric computing
machinery. However, the “I” part is much harder, because the debate
on the essence of intelligence has been going on since the existence of
the related fields like psychology and philosophy, etc, not to mention
AI, and there is still no sign of consensus.

Consider what the “founding fathers” of AI had in mind about the
field:

“AI is concerned with methods of achieving goals in sit-
uations in which the information available has a certain

6 Chapter 1

complex character. The methods that have to be used are
related to the problem presented by the situation and are
similar whether the problem solver is human, a Martian, or
a computer program.” [McCarthy, 1988]

Intelligence usually means “the ability to solve hard prob-
lems”. [Minsky, 1985]

“By ‘general intelligent action’ we wish to indicate the same
scope of intelligence as we see in human action: that in
any real situation behavior appropriate to the ends of the
system and adaptive to the demands of the environment
can occur, within some limits of speed and complexity.”
[Newell and Simon, 1976]

The above statements clearly have something in common, but there are
still differences among them. The same is also true for the definitions
of intelligence in AI books and articles. In fact, almost everyone in the
field has a personal opinion about how the word “intelligence” should
be used. These opinions in turn influence the choice of research goals
and methods, as well as serve as standards for judging other researchers’
results.

Maybe it is too early to define intelligence. It is obvious that, after
decades of study, we still do not know very much about it. There
are more questions than answers. Any definition based on the current
knowledge is doomed to be revised by future works. We all know that
a well-founded definition is usually the result, rather than the starting
point, of scientific research.

However, there are still reasons for us to be concerned about the
definition of intelligence at the current time.

Inside the AI research community, the lack of a common definition
of the key concept of the field is the root of many controversies and
misunderstandings. Many debates can be reduced to the fact that dif-
ferent sides use the term “intelligence” to mean very different things,
and therefore they propose very different conclusions for questions like
“What is the best way to achieve AI,” “How to judge whether a system
is intelligent,” and so on.

The Goal of Artificial Intelligence 7

Outside the AI community, AI researchers need to justify their field
as a scientific discipline. Without a relatively clear definition of intelli-
gence, it is hard to say why AI is different from, for instance, computer
science or psychology. Is there really something novel and special, or
just a fancy label on old stuff?

More importantly, each researcher in the field needs to justify his/her
research approach in accordance with such a definition. For a concept as
complex as “intelligence,” no direct study is possible, especially when
an accurate and rigid tool, namely the computer, is used as the research
medium. We have to specify the problem clearly and only then be in a
position to try to solve it. In this sense, anyone who wants to work on
AI is facing a two-phase problem: firstly, choosing a working definition
of intelligence, and then, producing it on a computer.

A working definition is a definition that is concrete enough to allow
a researcher to directly work with it. By accepting a working definition
of intelligence, a researcher does not necessarily believe that it fully
captures the concept “intelligence,” but the researcher takes it as a
goal to be sought after for the current research effort. Such a definition
is not for an AI journal editor who needs a definition to decide what
papers are within the field or a speaker of the AI community who needs
a definition to explain to the public what is going on within the field
— in those cases, what is needed is a “descriptive definition” obtained
by summarizing the individual working definitions.

Therefore, the lack of a consensus on what intelligence is does not
prevent each researcher from picking up (consciously or not) a working
definition of intelligence. Actually, unless a researcher keeps a working
definition, he/she cannot claim to be working on AI. It is a researcher’s
working definition of intelligence that relates the current research, no
matter how domain-specific, to the larger AI enterprise.

By accepting a working definition of intelligence, a researcher makes
important commitments on the acceptable assumptions and desired
results, which bind all the concrete work that follows. Limitations in
the definition can hardly be compensated by the research, and improper
definitions will make the research more difficult than necessary, or lead
the study away from the original goal.

To better understand the relationship between a working definition
of intelligence and AI research, consider an analogy. Imagine a group

8 Chapter 1

of people that want to climb a mountain. They do not have a map,
and the peak is often covered by clouds. At the foot of the mountain,
there are several paths leading in different directions. When you join
the group, some of the paths have been explored for a while, but no
one has reached the top.

If you want to get to the peak as soon as possible, what should you
do? It is a bad idea to sit at the foot of the mountain until you are
absolutely sure which path is the shortest, because you know it only
after all paths have been thoroughly explored. You have to try some
path by yourself. On the other hand, taking an arbitrary path is also a
bad idea. Although it is possible that you make the right choice from the
beginning, it is more advisable to use your knowledge about mountains
and to study other people’s reports about their explorations, so as to
avoid a bad choice in advance.

There are three kinds of “wrong paths”: (1) those which lead
nowhere, (2) those which lead to interesting places (even to unexpected
treasures) but not to the peak, and (3) those which eventually lead to
the peak but are much longer than some other paths. If the only goal
is to reach the peak as soon as possible, a climber should use all avail-
able knowledge to choose the most promising path to explore. Although
switching to another path is always possible, it is time consuming.

AI researchers face a similar situation in choosing a working defi-
nition for intelligence. There are already many such definitions, which
are different but related to each other (so hopefully we are climbing
the same mountain). As a scientific community, it is important that
competing approaches are developed at the same time, but it does not
mean that all of them are equally justified, or will be equally fruitful.

1.1.3 Criteria of a good definition

Before studying concrete working definitions of intelligence, we need to
establish the general criteria for what makes one definition better than
another.

The same problem of general criteria is encountered in other areas.
For example Carnap tried to clarify the concept of “probability.” The
task “consists in transforming a given more or less inexact concept into
an exact one or, rather, in replacing the first by the second,” where

The Goal of Artificial Intelligence 9

the first may belong to everyday language or to a previous stage in the
scientific language, and the second must be given with explicit rules for
its use [Carnap, 1950].

According to Carnap, the second concept, or the working definition
as it is called here, must fulfill the following requirements [Carnap, 1950]:

1. It is similar to the concept to be defined, as the latter’s vagueness
permits.

2. It is defined in an exact form.

3. It is fruitful in the study.

4. It is simple, as the other requirements permit.

Since these criteria seem suitable for our purpose, let us see what
they mean concretely to the working definition of intelligence (here I
change the names and order of the first two requirements):

Sharpness. The definition should draw a relatively sharp line between
the systems with intelligence and the ones without it. Given the
working definition, whether or how much a system is intelligent
should be clearly decidable. For this reason, intelligence cannot be
defined in terms of other ill-defined concepts, such as mind, think-
ing, cognition, intentionality, rationality, wisdom, consciousness,
etc., though these concepts do have close relationships with intel-
ligence. As well, the definition needs to answer the complement
question: “What is not intelligent?” — The reason is simply if
everything is intelligent, then the concept becomes empty.2

Faithfulness. The line drawn by the definition should not be an ar-
bitrary one. Though “intelligence” has no precise meaning in
everyday language, it does have some common usage with which
the working definition should agree. For instance, normal human
beings are intelligent, but most animals and machines (includ-
ing ordinary computer systems) are either not intelligent at all
or much less intelligent than human beings. For this reason, AI

2For this reason, to define intelligence using the recently fashionable term “agent”
is also not a good idea, because the term is too vague and too outstretched.

10 Chapter 1

should not be defined to have the same meaning as “computer
science.”

Fruitfulness. The line should not only be descriptive, but also be con-
structive. Given the nature of AI as both a science and a technol-
ogy, the “what is it?” and the “how to do it?” parts are closely
related. The working definition should provide concrete guidelines
for the research based on it. For instance, what assumptions can
be accepted, what phenomena can be ignored, what properties
are desired, and so on. Most importantly, the working definition
of intelligence should contribute to solving fundamental problems
in AI. For this reason, we want to avoid various “sterile” defini-
tions, which sound correct, but tell us little about how to build
an intelligent system.

Simplicity. Although intelligence is surely a complex mechanism, the
working definition should be as simple as possible. From a theo-
retical point of view, a simple definition can be explored in detail;
from a practical point of view, a simple definition is easy to use.

For our current purpose, there is no “right” or “wrong” working de-
finition for intelligence, but there are “better” and “not-so-good” ones,
judged according to the above criteria. Though there is no evidence
showing that in general the requirements cannot be satisfied at the
same time, the four requirements may conflict with each other when
comparing proposed definitions. For example, one definition is more
fruitful, while another is simpler. In such a situation, some weighing
and trade-off become necessary.

Especially, the requirement of “faithfulness” should not be under-
stood as to mean that the working definition of intelligence should be
determined according to an authoritative dictionary, or a poll among
all the people. A working definition might even be counter-intuitive,
if there is evidence showing that such a definition is faithful to the
“deep meaning” of a concept. This is why we cannot argue that Ein-
stein’s concepts of “time” and “space” should be renamed because they
conflict with our everyday usage of these terms. As Feyerabend said,
“without a constant misuse of language there cannot be any discovery,
any progress.” [Feyerabend, 1993].

The Goal of Artificial Intelligence 11

1.2 Various schools in AI research

With the above criteria in mind, we can evaluate the current AI ap-
proaches by analyzing their working definitions of intelligence. Since it
is impractical to study each of the existing working definitions of intel-
ligence one by one (there are simply too many of them), I will group
them into several schools of thought and consider each school in turn.
As usual, a concrete definition may belong to more than one school.

Stated previously, AI is the attempt of building computer systems
that are “similar to the human mind.” But in what sense are they “sim-
ilar”? To different schools, the desired similarity may involve structure,
behavior, capability, function, or principle of the systems. In the follow-
ing, I discuss typical opinions in each of the five schools, to see where
such a working definition of intelligence will lead research to.

1.2.1 To simulate the human brain

In the middle of all puzzles and problems about intelligence, there is
one obvious and undoubtable fact, that is, the most typical example of
intelligence we know today is produced by the human brain. Therefore,
it is very natural to attempt to achieve AI by building a computer
system that is as similar to a human brain as possible.

There are many researchers working on various kinds of “brain mod-
els” and “neurocomputational systems,” though not all of them asso-
ciate themselves with AI. However, there are people who believe that
the best way to achieve AI is by looking into the brain, and some of
them even argue that “the ultimate goals of AI and neuroscience are
quite similar” [Reeke and Edelman, 1988]. Recent attempts in this di-
rection include [Hawkins and Blakeslee, 2004, Hecht-Nielsen, 2005].

Though there is motive to identify AI with a brain model, few AI re-
searchers take such an approach in a very strict sense. Even the “neural
network” movement is “not focused on neural modeling (i.e., the mod-
eling of neurons), but rather . . . focused on neurally inspired modeling
of cognitive processes” [Rumelhart and McClelland, 1986].

Why? One obvious reason is the daunting complexity of this ap-
proach. Current technology is still not powerful enough to simulate a
huge neural network, not to mention the fact that there are still many
mysteries about the brain.

12 Chapter 1

Moreover, even if we were able to build a brain model at the neuron
level to any desired accuracy, it could not be called a success for AI,
though it would be a success for neuroscience. From the very beginning,
and for a good reason, AI has been more closely related to the notion
of a “model of mind”, that is, a high-level description of brain activity
in which biological concepts do not appear [Searle, 1980].

A high-level description is preferred, not because a low-level descrip-
tion is impossible, but because it is usually simpler and more general.
When building a model, it is not always a good idea to copy the object
or process to be modeled as accurately as possible, because a major
purpose of modeling is often to identify the “essence” of the object or
process, and to filter out unnecessary details. By ignoring irrelevant as-
pects, we gain insights that are hard to discern in the object or process
itself. For this reason, an accurate duplication is not a model, and a
model including unnecessary details is not a good model.

Intelligence (and the related notions like “thinking” and “cogni-
tion”) is a complicated phenomena mainly observed only in the human
brain at the current time. However, the very idea of “artificial intelli-
gence” assumes that the same phenomena can be reproduced in some-
thing that is different from the human brain. This attempt to “get a
mind without a brain”, i.e., to describe mind in a medium-independent
way, is what makes AI important and attractive. Even if we finally build
an “artificial brain” which is like the human brain in all details, it still
does not tell us much about intelligence and thinking in general. If
one day we can build a system which is very different from the human
brain in details, but we nevertheless recognize it as intelligent, then
it will tell us much more about intelligence than a duplicated brain
does.

If we agree that “brain” and “mind” are different notions, then a
good model of the brain is not a good model of the mind, though the
former is useful for its own sake, and may be helpful for the building of
the latter.

1.2.2 To duplicate human behavior

For the people who believe that intelligence can be defined indepen-
dently of the structure of the human brain, a natural alternative is to

The Goal of Artificial Intelligence 13

define it in terms of human intellectual behavior. After all, if a sys-
tem behaves like a human mind, it should deserve the title of “intelli-
gence” for both theoretical and practical reasons. From this standpoint,
whether the system’s internal structure is similar to the human brain
is mostly irrelevant.

This view is perhaps best captured by Turing in his famous “Im-
itation Game,” later known as the “Turing Test” [Turing, 1950]. Ac-
cording to this idea, if a computer is indistinguishable from a human
in a conversation (where the physical properties of the system are not
directly observable), the system has intelligence.

After half a century, “passing the Turing Test” is still regarded
by many people as the ultimate goal of AI [Saygin et al., 2000]. There
are some research projects targeting it, sometimes under the name of
“cognitive modeling.” In recent years, there are also many “chatbots”
developed to simulate human behavior in conversation.

On the other hand, this approach to AI has been criticized from
various directions:

Is it sufficient? Searle argues that even if a computer system can pass
the Turing Test, it still cannot think, because it lacks the causal
capacity of the brain to produce intentionality, which is a biologi-
cal phenomenon [Searle, 1980]. However, he does not demonstrate
convincingly why thinking, intentionality, and intelligence cannot
have high-level (higher than the biological level) descriptions.

Is it possible? Due to the nature of the Turing Test and the resource
limitations of present computer systems, it is unlikely for the
system to have stored in its memory all possible questions and
proper answers in advance, and then give a convincing imitation
of a human being by searching its memory upon demand. The
only realistic way to imitate human behavior in a conversation
is to produce the answers in real time. To do this, it needs not
only cognitive faculties, but also much prior “human experience”
[French, 1990]. It must, therefore, have a “body” that feels hu-
man, and all human motivations, including biological ones. Sim-
ply put, it must be an “artificial person,” rather than a computer
system with artificial intelligence. Furthermore, to build such a

14 Chapter 1

system is not merely a technical problem, since acquiring human
experience means that humans treat and interact with it as a
human being.

Is it necessary? By using behavior as evidence, the Turing Test is a
criterion solely for human intelligence, not for intelligence in gen-
eral [French, 1990]. As a working definition of intelligence, such
an approach can lead to good psychological models, which are
valuable for many reasons, but it suffers from “human chauvin-
ism” [Hofstadter, 1979]. We would have to say, according to this
definition, that “extraterrestrial intelligence” cannot exist, sim-
ply because that human experience can only be obtained on the
Earth. This strikes me as a very unnatural and unfruitful way to
use concepts. Actually, Turing did not claim that passing the im-
itation test is a necessary condition for being intelligent. He just
thought that if a machine could pass the test satisfactorily, we
would not be troubled by the question [Turing, 1950]. However,
this part of his idea is often ignored, and consequently his test is
taken by many people as a sufficient and necessary condition of
intelligence.

In summary, though “reproducing human (verbal) behavior” may
still be a sufficient condition for being intelligent (as suggested by Tur-
ing), such a goal is difficult, if not impossible, to achieve presently. More
importantly, it is not a necessary condition for “intelligence”, if we want
it to be a more general notion than “human intelligence.”

1.2.3 To solve hard problems

For people whose main interest in AI is its practical application, whether
a system is structured like a brain or behaves like a human does not
matter at all, but what counts is what practical problems it can solve
— after all, that is how the intelligence of a human being is measured.
Therefore, according to this opinion, intelligence means the capability
of solving hard problems.

This intuitive idea explains why early AI projects concentrated on
typical and challenging intellectual activities, such as theorem prov-
ing and game playing, and why achievements on these problems are

The Goal of Artificial Intelligence 15

still seen as milestones of AI progress. For example, many people,
both within the AI community and among the general public, regard
the victory of IBM’s supercomputer Deep Blue over the World Chess
Champion Kasparov as a triumph of AI.

For similar reasons, many AI researchers devote their effort to build-
ing “expert systems” in various domains, and view this as the way to
general AI. The relation between these systems and the notion of intel-
ligence seems to be obvious — experts are more intelligent in their do-
mains than the average person. If computer systems can solve the same
problems, they should deserve the title of intelligence, and whether the
solutions are produced in a “human manner” has little importance.
The way Deep Blue plays chess is very different from the way a hu-
man player plays chess. But as far as it wins the game, why should we
care? Similarly, the intelligence of an expert system is displayed by its
capability to solve problems for which it was designed.

Compared to the previously discussed goals, e.g., to model the hu-
man brain or to pass the Turing Test, this kind of goals is much easier
to achieve, though still far from trivial. As today, we already have some
success stories in game playing, theorem proving, and expert systems
in various domains.

Though this approach toward AI sounds natural and practical, it
has its own trouble.

If intelligence is defined as “the capability to solve hard problems,”
then the next obvious question is “Hard for whom?” If we say “hard
for human beings,” then most existing computer systems are already
intelligent — no human manages a database as well as a database
management system, or substitutes a word in a file as fast as an editing
program. If we say “hard for computers,” then AI becomes “whatever
hasn’t been done yet,” which has been dubbed “Tesler’s Theorem”
[Hofstadter, 1979] and the “gee whiz view” [Schank, 1991].

The view that AI is a “perpetually expanding frontier” makes it
attractive and exciting, which it deserves, but tells us little about how
it differs from other research areas in computer science — is it fair to say
that the problems there are easy? If AI researchers cannot identify other
commonalities of the problems they attack besides mere hardness, they
will not be likely to make any progress in understanding and replicating
intelligence.

16 Chapter 1

This application-oriented movement has drawn in many researchers,
produced many practically useful systems, attracted significant funding,
and thus made important contributions to the development of the AI
enterprise. However, though often profitable, these systems do not pro-
vide much insight into how the mind works. No wonder people ask, after
learning how such a system works, “Where’s the AI?” [Schank, 1991] —
these systems look just like ordinary computer applications. Actually,
many “AI systems” are indeed developed in the same way as ordinary
software.

Nowadays AI researchers often complain that the field does not
get the credit it deserves, since many AI research results have been
used by other fields without the AI label. This seems to confirm that
many people in AI are actually doing ordinary computer science and
application, and therefore the results are just like the results obtained
outside AI, so they do not need a fancy label. If someone insists that
these works should be called AI simply because they solve problems that
were previously solvable only by the human mind, then by the same
token numerical calculating programs should be called AI, as well.

Beside the issues of label and credit, the real problem of this ap-
proach is that it fails to explain why ordinary computer systems are not
intelligent. Many people enter AI to look for a fundamentally different
way to build computer systems. To them, traditional computer systems
are stupid, not because they cannot do anything (in fact, they can do
many amazing things), but because they solve problems in a rigid man-
ner. Therefore, whether a system is intelligent not only depends upon
what it can do, but also upon how it does it. If an expert system is as
brittle as a conventional computing system [Holland, 1986], it hardly
deserves to be called “intelligent.”

An interesting example is the victory of IBM’s supercomputer Deep
Blue alluded to earlier. While many people applaud this as a great
achievement for AI [Newborn, 2002], the research team that developed
the system never made such a claim [Campbell et al., 2002]. Instead,
they made it clear that “although Deep Blue’s speed and search capa-
bilities enable it to play grandmaster-level chess, it is still lacking in
general intelligence.” [Campbell, 1997].

Human beings usually use their intelligence to play games, but it
does not mean that a computer system must do the same. In theory,

The Goal of Artificial Intelligence 17

it is possible to find (or invent) a game that is simple enough for a
supercomputer to perform an exhaustive search to find the best move,
but still too complicated for a human mind to play in like manner.
Such a game can still be seen as a testing of human intelligence, be-
cause intelligent players will play better after a while (given that there
are recognizable patterns in the game). However, a simple brute-force
search algorithm, e.g., minimax, will be the world champion, simply
because it will always find the optimum solution. In this case, should
the algorithm fit the criteria of “intelligence”?

1.2.4 To carry out cognitive functions

As an attempt to generalize the various concrete behavior and capa-
bility into domain-independent form, the current AI field is often seen
as studying a set of cognitive functions, including searching, recogniz-
ing, categorizing, reasoning, planning, decision making, problem solv-
ing, learning, and so on. Furthermore, for the interaction between the
system and its environment (including other systems), sensorimotor and
natural language processing can also be seen as cognitive functions.

Each cognitive function is typically specified as a computation
process that starts with given input data, and after some process-
ing generates the desired output data (plus certain side-effects inside
and/or outside the system). The goal of the research is to find the most
efficient algorithm to carry out a given function. Finally, the algorithm
is implemented into a computer system, which can then handle the
problem for us [Marr, 1982].

This approach has produced, and will continue to produce,
information-processing tools in the form of software packages and even
specialized hardware, each of which can carry out a function that is
similar to certain mental skills of human beings, and therefore can be
used in various domains for practical purposes. However, this kind of
success does not justify the claim that it is the right way to study
AI. To define intelligence as a “toolbox” of cognitive functions has the
following weaknesses:

• When specified in isolation, a formalized function is often quite
different from its “natural form” in the human mind. For example,

18 Chapter 1

to study analogy without perception leads to distorted cognitive
models [Chalmers et al., 1992].

• Having any particular cognitive function is not enough to make
a system intelligent. For example, problem-solving by exhaustive
search is usually not considered intelligence, and many unintelli-
gent animals have excellent perceptual capability.

• Even if we can produce all the desired functions, it does not mean
that we can easily integrate them into one system, because dif-
ferent functions may be developed under different assumptions,
which prevent the tools from being integrated. According to the
past experience in building integrated systems, “Component de-
velopment is crucial; connecting the components is more crucial”
[Roland and Shiman, 2002].

The basic problem with the “toolbox” approach is: without a “big
picture” in mind, the study of a cognitive function in an isolated, ab-
stracted, and often distorted form simply does not contribute much to
our understanding of intelligence.

A common counterargument runs something like this: “Intelligence
is very complex, so we have to start from a single function to make the
study tractable.” For many systems with weak internal connections,
this is often a good choice, but for a system like the mind the situation
may be just the opposite. When the so-called “functions” are actually
phenomena produced by a complex-but-unified mechanism, reproduc-
ing all of them together (by duplicating the mechanism) is simpler than
reproducing only one of them. For example, we can grow a tree, but
we cannot generate a leaf alone, although a leaf is much simpler than
a tree. Intelligence may be such a phenomenon.

As Piaget said: “Intelligence in action is, in effect, irreducible to
everything that is not itself and, moreover, it appears as a total sys-
tem of which one cannot conceive one part without bringing in all of
it.”[Piaget, 1963] This opinion does not deny that intelligence includes
many distinguishable functions carried out by distinct mechanisms, but
it stresses the close relations among the functions and processes, which
produce intelligence as a whole. If intelligence is a toolbox, where is the
hand that use the tools?

The Goal of Artificial Intelligence 19

1.2.5 To develop new principles

In the cognitive sciences, especially, AI, psychology, and philosophy,
there are some researchers who believe that intelligence (or cognition)
are governed by a small set of general and simple principles. According
to this opinion, all behaviors, capabilities, and functions of the human
mind can be explained as produced by the application of these principles
in concrete situations [Chater and Oaksford, 1999].

Typically, these principles are represented as some kind of “ratio-
nality,” formed by the evolution process as the best adaptation strategy
in a certain sense. Here are some examples:

Bounded rationality [Simon, 1983]: “Within the behavioral
model of bounded rationality, one doesn’t have to make
choices that are infinitely deep in time, that encompass the
whole range of human values, and in which each problem is
interconnected with all the other problems in the world.”

Type II rationality [Good, 1983]: “Type II rationality is de-
fined as the recommendation to maximize expected utility
allowing for the cost of theorizing. It involves the recog-
nition that judgments can be revised, leading at best to
consistency of mature judgments.”

Minimal rationality [Cherniak, 1986]: “We are in the fini-
tary predicament of having fixed limits on our cognitive re-
sources, in particular, on memory capacity and computing
time.”

General principle of rationality [Anderson, 1990]: “The cog-
nitive system operates at all times to optimize the adapta-
tion of the behavior of the organization.”

Limited rationality [Russell and Wefald, 1991a]: “Intelli-
gence was intimately linked to the ability to succeed as far
as possible given one’s limited computational and informa-
tional resources.”

According to these ideas, an AI theory should establish a few prin-
ciples to derive all the functions and behaviors, then a formal model of

20 Chapter 1

intelligence should be formulated according to such a normative theory
(such as logic, probability theory, and so on), which always “does the
right thing,” according to the underlying principles.

If such an approach works, we will eventually have a well-justified
theory of AI, in which all functionalities are based on a consistent foun-
dation.

Like the previous approaches, this approach has its problems.
Though it is not a new idea that the human mind, like many other
objects of scientific research, can eventually be explained by a small set
of principles, none of the “principles” proposed so far has successfully
achieved this goal yet. Although “haven’t found such principles” does
not prove “no such principles can exist,” it often leaves people feeling
that way. In AI, to date, there have been too many promises of success
only to be followed by failure for people to believe in any new “silver
bullet” that can solve the AI problem with one shot. Consequently,
they would rather believe that given the complexity of the domain, AI
must be treated as a collection of concrete problems that have to be
handled one by one.

A much more serious challenge to this kind of approach is the
existence of many well-documented psychological phenomena, show-
ing that people often violate the proposed normative theories, such as
predicate logic [Wason and Johnson-Laird, 1972] and probability the-
ory [Tversky and Kahneman, 1974]. Any rationality-base theory must
try to explain these phenomena [Anderson, 1990].

1.3 AI as a whole

1.3.1 Relations among the goals

From the previous discussion, we can see that instead of currently
having one common research goal, the field of AI has a set of differ-
ent, but related, goals pursued through different schools of thought.
As Nilsson said: “AI shows all the signs of being in what the late
Thomas Kuhn called a pre-paradigmatic, pre-normal-science stage.”
[Hearst and Hirsh, 2000].

The Goal of Artificial Intelligence 21

Each of these goals reflects a particular aspect of our current usage
of the word “intelligence,” defines the term in a relatively sharp and
simple way, and has been producing interesting results. In this sense, all
of them guide legitimate scientific research, and contribute to our un-
derstanding of intelligence, as well as to the progress of each other. Since
they have different goals, they can and should co-exist for a long time.

However, at a more general level, these schools do compete — as the
best way to build a “thinking machine.” There is no contradiction here.
When these schools are evaluated as research goals in their own right,
each of them is valuable in a particular way. But if they are evaluated
as paths to the common goal of AI, as introduced at the beginning of
the chapter, they are not equally good. Of course, which one is better
is a controversial issue.

From the above presentation, one point I want to make is that there
is no “natural” or “self-evident” definition of intelligence, and nobody in
the field can escape from the responsibility of choosing a school to work
within. Many people claim that they are not interested in philosophical
debates, and they simply choose the natural or obvious problem to work
on, but in reality they have made the choice unconsciously, guided by
their intuition or non-academic factors, such as personal background,
adviser expertise, practical need, grant source, publication possibility,
current fashion, and so on. After the initial choices (which are typically
made early in their career), they gradually get accustomed to them,
and spend most of their time in solving the problems specified by the
school, without considering more fundamental questions like whether
they are the right problems to work on.

Some people may think that the different schools are aimed at dif-
ferent “parts” of intelligence, like in the parable of “The Blind Men
and the Elephant,” and the best way is to “integrate” them. However,
here the situation is different. These schools are generally incompatible
(though they have small overlaps here or there), and therefore can-
not be fully integrated into a consistent theory on intelligence, or be
satisfied together by a computer system.

There are many systems that use techniques developed in different
schools of thought, but these “integrated” or “hybrid” systems are often
justified by what they can do, rather than by a consistent theory on
intelligence. This is the case because different schools usually make

22 Chapter 1

different design decisions. For example, the most efficient way to solve
a problem in a computer is often very different from the way used in
the human mind. Which one is more “intelligent”? Well, it depends on
that you mean by “intelligence.”

It is fine to set up a “major” goal, and, at the same time, to achieve
other “minor” goals as much as possible. Even in this case, school con-
flicts exist, necessitating compromise and trade-offs to make progress.

The multi-school nature of the current AI field causes much confu-
sion, because people often use the requirement of one school to judge
the results produced by another school, which usually does not provide
a fair conclusion. Also, the answers to many general questions on AI
depend on which school is referred to. Examples of these questions in-
clude “When can we get an intelligent system?” “Can an AI be more
intelligent than a human being?” “Can an intelligent system be creative
or original or conscious?” “Can an intelligent system run out of human
control?” and so on — their answers are different in different schools.

1.3.2 Different opinions on unified AI

Should AI be addressed as one problem, or a collection of loosely re-
lated problems that can be handled one by one separately? Again, the
answer to this question depends on the interpretation of the concept of
“intelligence,” and there are very different opinions.

The majority of the current AI community believes in a “divide-
and-conquer” approach toward AI. Many researchers claim that their
research will contribute to the whole AI enterprise by focusing on a
particular aspect of intelligence. Usually, there is an implicit assumption
under this kind of claims, that is, when all these particular solutions
are finally put together, we will have an AI, a “thinking machine.”

However, as mentioned previously, such an assumption is hard to
justify. It may be true that a complicated problem should be cut into
pieces of smaller problems and solved one by one, but if everyone cuts
the problem in his/her own way, and only works on a small piece of the
problem obtained in this manner, we have no reason to believe that the
solutions can later be put together to form a solution to the original
problem [Brooks, 1991].

The Goal of Artificial Intelligence 23

This is well illustrated by considering the present state of research
in the field of AI. Browsing a journal with AI in its title or attending
a conference with AI in its name, it is all too common to find articles
or presentations that have very little to do with each other. In fact,
nowadays few people even mention the relation between their current
research and the big picture of AI.

Many people seem comfortable with this situation. They think that
the idea of a “thinking machine” or something like that belongs to
science fiction only, and that few people are pursuing the goal only
means that the field has become mature. They do not care whether
their systems are really “intelligent,” which is just a label that can be
attached or removed according to context for convenience purposes.

Of course, there are still attempts to unify the AI field. Newell is
one of the few people who actually tried to build a unified AI theory. In
[Newell, 1990], he argued for the need of unified theories, and discussed
what such a theory should include. Though his theory is well known,
and his project, Soar, is still alive, this kind of work does not attract
many followers these days.

For the people who feel uncomfortable about the fragmented sta-
tus of the field, one response is to find a unified way to describe the
problems and solutions. The most recent attempt in this category is to
uniformly describe the field within the framework of intelligent agent
[Nilsson, 1998, Russell and Norvig, 2002]. Though this effort improves
the coherence of AI textbooks, it is far from enough in unifying the
techniques covered under the umbrella of “agent.”

People who still associate themselves to the original AI goal find the
current situation disappointing. As Minsky said [Stork, 1997b]:

The bottom line is that we really haven’t progressed too
far toward a truly intelligent machine. We have collections
of dumb specialists in small domains; the true majesty of
general intelligence still awaits our attack.

We have got to get back to the deepest questions of AI and
general intelligence and quit wasting time on little projects
that don’t contribute to the main goal.

24 Chapter 1

Wolfram made a similar comment [Stork, 1997a]:

Nobody’s trying more fundamental stuff. Everyone assumes
it’s just too difficult. Well, I don’t think there’s really any
evidence of that. It’s just that nobody has tried to do it.
And it would be considered much too looney to get funded
or anything like that.

Though there is no evidence showing the impossibility of unified AI,
the past experience does make the AI community turn away from such
a goal. In this atmosphere, only two types of people continue to pursue
the “thinking machine” dream: the well-established researchers, and the
people at the margin or even the outside of the AI community. Though
these two groups of people have opposite status in many attributes,
they have one thing in common, that is, they don’t care too much
about what the others say, and they can keep their research going even
if the majority of the AI community dislikes it.

1.3.3 AGI projects

The “Thinking Machine Dream” mentioned above goes with many
names, such as “Unified AI,” “Strong AI,” “Real AI,” “Hard AI,” “AGI
(Artificial General Intelligence),” “Human-Level Intelligence,” and so
on. I’ll use the term AGI in this book, though this choice does not re-
ally make any difference, since few of these terms are accurately defined.
The common thesis behind these terms is the belief that intelligence is a
unified mechanism that should be described and developed as a whole,
independent of any application domain. Even if the development must
be carried out step by step, an overall plan should be drawn first to
guide the process.

For such a project, one crucial issue is to have a theoretical foun-
dation with sufficient width to support all kinds of functions and ca-
pabilities. Though there has been a very small number of people doing
this kind of research, they still belong to different schools of thought,
as described previously.

In the following I will discuss some representative AGI projects,
though it is not an attempt of reviewing all such projects exhaustively.

The Goal of Artificial Intelligence 25

To many people, the capability to solve various types of problems
is at the core of intelligence. The first attempt to build a general-
purpose system for this task is the General Problem Solver (GPS)
[Newell and Simon, 1976]. By analyzing “protocols” observed in the
problem-solving processes of human beings, Newell and Simon repre-
sented them as state-space search, and used “means-ends analysis” to
lead the search process. According to this approach, problem solving
is treated as finding a sequence of actions that transforms the initial
state into a final state, step by step. When there are multiple alterna-
tives at a state, the difference between the next state and a final state
is used as a heuristic to estimate the distance from the former to the
latter. Although few people still believe that all problem solving can
and should be handled in this way, the search is still referred by some
as “the most fundamental method of all” [Newell, 1990].

Another ambitious attempt to make a breakthrough in AI is the
Fifth Generation Computer Systems (FGCS) project of Japan, initi-
ated in the early 1980’s. The belief behind the project, roughly speak-
ing, was that the bottleneck of AI was in the von Neumann computer
architecture, which was initially designed for sequential calculation. On
the contrary, the key in AI should be parallel inference. To build a
machine that is “as smart as a person,” we should turn from “sequen-
tial calculation on data” to “parallel inference on knowledge,” and to
build a proper computer system to support the latter is the key of
AI [Feigenbaum and McCorduck, 1983]. This approach caused quite a
splash in the AI community and consequently received a lot of attention
from governments and companies all around the world. Today, however,
there haven’t been any remarkable advances as a result of FGCS, not to
mention any breakthrough in AI research, although parallel inference
engines have been built as scheduled. On the contrary, now this project
is rarely mentioned, as if it never existed.

No matter what the reasons are, none of the historical AGI projects
has delivered the results initially promised. This partly explains why
there are few such projects being actively worked on.

For these on-going projects, in the following I directly cite their
project websites, with a brief description.

In the mainstream AI, there are three well-known projects that can
be categorized as AGI.

26 Chapter 1

Cog (http://www.ai.mit.edu/projects/humanoid-robotics-group/cog/)
This project is based on the belief that intelligence should come
out of a robot that directly interacts with the physical world.

CYC (http://www.cyc.com)
This project was initially the American response to FGCS. In-
stead of focusing on the inference engine, this project puts most
of its efforts in the building of a huge knowledge base that holds
“common sense.”

Soar (http://sitemaker.umich.edu/soar)
This system can be seen as a follow up of GPS. It attempts to
provide a unified model of cognition in the framework of state-
space search, which is implemented as a production system.

The next group of projects have smaller scopes in their goals, though
they also are in the direction of AGI, to various degrees.

ACT-R (http://act-r.psy.cmu.edu/)
This is not an AI project, but a psychological model of human
cognition. Nevertheless, it is still closely related to AGI. The basic
architecture is also a production system (like Soar).

OSCAR (http://www.u.arizona.edu/~pollock/)
This is an architecture for rational agents based upon a philosoph-
ical theory of rational cognition. The core technique is defeasible
inference.

SNePS (http://www.cse.buffalo.edu/sneps/)
This is an attempt to unify knowledge representation, reasoning,
and natural-language processing, using a semantic network. The
research has begun to integrate sensorimotor capability into the
system.

Finally, there is a group of projects that are ambitious and take
more radical paths, though they have not got much attention from the
mainstream AI community.

AIXI (http://www.idsia.ch/~marcus/ai/index.htm)
A mathematical theory of universal induction, based on proba-
bility theory and computation theory.

The Goal of Artificial Intelligence 27

a2i2 (http://adaptiveai.com/project/index.htm)
A connectionist AGI system, which is embodied, and learns from
its interaction with the environment.

CAM-Brain (http://www.cs.usu.edu/\%7Edegaris/cam/index.html)
An artificial brain consisting of roughly a million modules of cel-
lular automata based neural circuits, which grow and evolve.

Novamente (http://www.agiri.org/engine.htm)
An integrated AGI system with multiple techniques, include prob-
abilistic reasoning, genetic programming, and so on.

These projects, as well as some other AGI approaches, are described in
[Goertzel and Pennachin, 2006].

In summary, past research on unified artificial intelligence has not
produced encouraging results; currently there is only a small number
of people involved in AGI work; wherein the on-going AGI projects are
based on very different opinions.

Chapter 2

A New Approach Toward AI

In this book, a new approach toward AI will be presented. This chapter
first informally introduces the basic ideas.

2.1 To define AI

As described in the previous chapter, different schools of AI research
are based on different working definitions of “intelligence.” Therefore,
I start by clarifying my definition, which encapsulates the goal of the
research.

2.1.1 Information System

The working definition of intelligence, no matter what it is, should
distinguish one type of system from another type of system. More con-
cretely, here I want to distinguish one type of information system from
another type.

The concept “information,” like “intelligence,” is also a concept used
differently by different people. In this book, this concept is used to set
the “platform” or “background” for the discussion on intelligence, so
I only state my working definition for it, that is, what I mean by it,
without a detailed discussion about why it is better than alternative
definitions.

29

30 Chapter 2

An information system, or information-processing system, is a sys-
tem whose internal activities and interactions with its environment can
be described abstractly — that is, without specifying the concrete entity
and process (hardware) that carries out the activities and interactions.

Usually, such a system has certain tasks (also called goals) to carry
out, given by the environment or generated by the system itself. To do
this, the system takes various actions (also called operations), guided
by its knowledge (also called beliefs) about how the actions and the
tasks are related. Any internal activity costs the system some resources,
especially, processing time and memory space.

The environment of such a system may be the physical world (if the
system has sensorimotor capability), or other information-processing
systems (human or computer). In either case, the interactions are spec-
ified by the experiences (or stimuli) and the behaviors (or responses) of
the system, which can be described as streams of input and output in-
formation, respectively. For the system, recognizable patterns of input
and producible patterns of output constitute its interface language.

According to this definition, all human beings and computer sys-
tems, as well as many animals and automatic control systems, can be
described as information systems.

To call a system an “information system” means to describe the
system at an abstract level, and many low-level details will be omitted
from the description. A computer server is an information system to a
remote user, who does not care about its size, color, and weight. How-
ever, to a worker who is moving the server from one room to another, it
is no longer suitable to treat it as an information system. If you throw
a ball to a friend as a prearranged signal for something, your action is
information transformation, and where the ball goes does not matter.
However, it would be silly to call the ball-throwing “information trans-
formation” in a baseball game — it is not wrong, but contributes little
to our understanding of the game.

Even if a entity or process cannot be treated as an information
system, it often can be “modeled” or “simulated” in an information
system. It means that the system can be described at an abstract level,
and another system can be built that has the same high-level descrip-
tion, which contains essential features of the system to be modeled,
though these two systems are completely different at a lower level. For

A New Approach Toward AI 31

example, a hurricane can be modeled in a computer, so that its move-
ment can be predicted. However, “being a kind of movement of air” is a
defining property of hurricane, which is not in the computer simulation.
In this sense, a model is not the entity or process to be modeled, and
they are only similar at a high level of description.

However, if the entity or process being modeled is such a system that
all of its major properties are shown at the “information-processing”
level, then we no longer call the above procedure “modeling” or “simu-
lating,” but call it “reproducing,” “replicating,” or “implementing.” For
example, arithmetic calculation are manipulations of symbolic entities
and relations. Whether it is done by stones, abacus, or pen and paper
usually has little importance to the result. When such a process is car-
ried out by a computer, we do not say that the arithmetic calculation
is “simulated” in the computer — unlike a hurricane, the calculation
in a computer is genuine.

Sensitive readers would have realized why I start the discussion
about AI with information system. Actually, to ask “To what extent can
intelligence be produced by a computer?” is the same as to ask “To what
extent can intelligence be described as information processing?” and the
latter question will be answered by this book, using the information-
processing terminology introduced above.

2.1.2 A working definition of intelligence

Following the preparation of the previous subsection, I propose here a
working definition of intelligence:

Intelligence is the capability of an information system to
adapt to its environment while operating with insufficient
knowledge and resources.

Here the meanings of “information system,” “environment,” “knowl-
edge,” and “resources” have been clarified previously. However, the
two major components of the definition: “adaptation” and “insufficient
knowledge and resources” remain to be explained.

In terms of behavior change, we can distinguish three types of
systems:

32 Chapter 2

Instinctive system: The behaviors of the system remains the same,
and do not change over time.

Erratic system: The behaviors of the system change, but not as a
function of its experience.

Adaptive system: The behaviors of the system change according to
its experience. It attempts to improve its performance in carrying
out the tasks, under the assumption that its future experience will
be similar to its past experience.

On the other hand, we can roughly distinguish three kinds of envi-
ronment, in terms of its interaction with a system in it:

Constant environment: The environment is deterministic, and the
results of system behaviors never change. In this kind of environ-
ment, the best way to carry out a task is by an instinctive system
specially built for the task. An adaptive system may be able to
learn the behavior, but it is less efficient.

Random environment: The environment is completely unpredictable.
In this situation, all systems are equally bad in the long run.

Stable environment: The environment may change, though not ran-
domly, and the results of system behaviors are usually predictable,
but with exceptions from time to time. Adaptive systems work
better in this kind of environment, so long as its adaptation-rate is
not too slow compared to the speed of change in the environment.

In this sense, an adaptive system is not necessarily better than a
non-adaptive system. Actually, if a problem can be handled without
adaptation (i.e., can be solved “mechanically”), it is better to do it
that way. Adaptation is needed only when there is no predetermined
solution available.

Just being “adaptive” is not enough for being “intelligent.” A com-
plex system can be called “adaptive” only because a few parameters
in it can be tuned by itself according to its experience. Intelligence re-
quires more than that, and this is why I have another component in
the working definition of intelligence.

A New Approach Toward AI 33

Insufficient knowledge and resources means that the system works
under the following restrictions:

Finite: The information-processing capability of the system’s hard-
ware is fixed.

Real-time: All tasks have time constraints attached to them.

Open: No constraint is put on the content of the experience that the
system may have, as long as they are representable in the interface
language.

Not all information-processing systems take the insufficiency of knowl-
edge and resources into full consideration. Non-adaptive systems, for
instance, simply ignore new knowledge in their interactions with their
environment. As for artificial adaptive systems, most of them are not
finite, real-time, and open, in the following senses:

1. Though all concrete systems are finite, many theoretical models
(for example, Turing Machine) neglect the fact that the require-
ments for processor time and/or memory space may go beyond
the supply capability of the system [Hopcroft and Ullman, 1979].

2. Most current AI systems do not consider time constraint at run
time. Most real-time systems can handle time constraint only if
they are essentially deadlines [Strosnider and Paul, 1994].

3. In most systems, various explicit or implicit constraints are
imposed on what a system can experience. For example, only
questions that can be answered by retrieval and deduction from
current knowledge are acceptable, new knowledge cannot conflict
with previous knowledge, and so on.

Many computer systems are designed under the assumption that their
knowledge and resources, though limited or bounded, are nevertheless
sufficient to fulfill the tasks that they will be called upon to handle.
When facing a situation where this assumption fails, such a system
simply panics, and asks for external intervention, usually from a human
manager of the system.

34 Chapter 2

For a system to work under the Assumption of Insufficient Knowl-
edge and Resources, hereforth known as AIKR, it should have mecha-
nisms to handle the following situations:

A processor is required when all processors are occupied;

A piece of memory is required when all memory is already
full;

A task comes up when the system is busy with something
else;

A task comes up with a time constraint, so exhaustive process-
ing is not affordable;

New knowledge conflicts with previous knowledge;

A question is presented for which no sure answer can be
deduced from available knowledge;

etc.

For traditional computing systems, these situations usually either
require human intervention, or simply cause the system to reject the
task or knowledge involved. However, for a system designed under
AIKR, these are normal situations, and should be managed smoothly
by the system itself.

The two main components in the working definition, adaptation and
insufficient knowledge and resources, are related to each other. An adap-
tive system must have some insufficiency in its knowledge and resources,
for otherwise it would never need to change at all. On the other hand,
without adaptation, a system may have insufficient knowledge and re-
sources, but make no attempt to improve its capability. Such a system
acts, for all intents and purposes, as if its knowledge and resources were
sufficient.

According to the above definition, intelligence is indeed a “highly
developed form of mental adaptation” [Piaget, 1960]. This assertion is
consistent with the usages of the two words in natural language: we
are willing to call many animals, computer systems, and automatic
control systems “adaptive,” but not “intelligent,” because the latter
has a higher standard than the former.

A New Approach Toward AI 35

When defining intelligence, many authors ignore the complementary
question: what is unintelligent? If everything is intelligent, then this
concept is empty. If every computer system is intelligent, it is better
to stay within the theory of computation. Even if we agree that intel-
ligence, like almost all properties, is a matter of degree, we still need
criteria to indicate what makes a system more intelligent than another.
An unintelligent system is not necessarily incapable or gives only wrong
results. Actually, most ordinary computer systems and many animals
can do something that human beings cannot. However, these abilities
do not earn the title “intelligent” for them. What is missing in these
capable-but-unintelligent systems?

According to the working definition of intelligence introduced pre-
viously, an unintelligent system is one that does not adapt to its envi-
ronment. Especially, in artificial systems, an unintelligent system is one
that is designed under the assumption that it only works on problems
for which the system has sufficient knowledge and resources.

An intelligent system is not always “better” than an unintelligent
system for practical purposes. Actually, it is the contrary: when a prob-
lem can be solved by both of them, the unintelligent system is usually
better, because it guarantees a correct solution. As Hofstadter said,
for tasks like adding two numbers, a “reliable but mindless” system is
better than an “intelligent but fallible” system [Hofstadter, 1979].

2.1.3 Comparison with other definitions

According to the classification of AI schools in the previous chapter,
the above working definition of intelligence belongs to the attempts
that treat intelligence as being defined by some underlying principles.

Furthermore, it is an attempt to attack the whole AI problem, rather
than part of it. Therefore we can also classify it as an “AGI,” using
the term introduced in the previous chapter. Personally, however, I
would rather stay with the term “AI,” because to me, “intelligence”
is a domain-independent capability, so it is redundant to say “general
intelligence.” However, since many other people do not use the term
in this way, I do not mind to use AGI or similar terms to stress the
“general purpose” nature of the related systems.

36 Chapter 2

How is my working definition of intelligence different from the others
discussed in the previous chapter?

• In the following chapters, I will show that a system developed
on such a foundation has many cognitive functions, but they are
better thought of as emergent phenomena than as well-defined
tools used by the system.

• By learning from its experience, the system potentially can ac-
quire the capability to solve hard problems — actually, “hard”
problems are exactly those for which the system has insufficient
knowledge and resources. However, this capability is not built
into the system, and thus, without proper training, no capability
is guaranteed, and acquired capability can even be lost.

• Because the human mind also follows the above principles, such
a system can be expected to behave similarly to human beings,
but the similarity would exist at a more abstract level than that
of concrete behavior. Due to the fundamental difference between
human experience and the experience of an AI system, the sys-
tem will not accurately reproduce masses of psychological data or
guarantee to pass a Turing Test.

• Although the internal structure of the system has some properties
in common with a description of the human mind at a certain
level, it is not an attempt to simulate a biological neural network
or the brain as a whole.

To be sure, what has been proposed in my definition is not entirely
new to the AI community. Few would deny that adaptation, or learn-
ing, is important for intelligence (though many people are still working
on “AI” projects that have no learning capability — to them, learn-
ing is something that can be added into the picture at a later time).
Moreover, “insufficient knowledge and resources” is the focus of many
subfields of AI, such as heuristic search, reasoning under uncertainty,
real-time planning, and machine learning. Besides the various types of
“rationality” listed in the previous chapter, similar attitudes toward
intelligence can be found in the following quotations:

A New Approach Toward AI 37

Medin and Ross: Much of intelligent behavior can be under-
stood in terms of strategies for coping with too little infor-
mation and too many possibilities. [Medin and Ross, 1992]

Michalski: By “intelligence,” we mean a set of capabilities
that let a system with limited resources (energy, time, and
memory) operate under limited input information (incomp-
lete, uncertain, inconsistent, or incorrect). [Hearst and Hirsh,
2000]

Given all that has already been said, what is new in my approach?
As far as the working definition is concerned, this approach is new in
the following aspects:

1. An explicit and unambiguous definition of intelligence as “adap-
tation under insufficient knowledge and resources.”

2. A further clarification of the phrase “with insufficient knowledge
and resources” as meaning finite, real-time, and open.

3. The design of all formal and computational aspects of an AGI
project keeping the two previous definitions foremost in mind.

Though many AI systems are designed according to some kind of
“bounded rationality”, and assume some restrictions in knowledge and
resources, few of them can be said to be based on AIKR. We will
see detailed analysis on this topic in Part III, where my approach is
compared with other approaches.

2.2 Intelligent reasoning systems

As stated in the previous chapter, a typical AI project consists of an
informal theory, a formal model, and a computer implementation. The
previous working definition belongs to the theory level. Now let us see
how to use it to choose a proper formal language to build a model.

2.2.1 Different traditions in formalization

Formalization means, in the current context, the process of describing
the status and activities of a system in a formal (artificial, symbolized)
language.

38 Chapter 2

In the current AI research, there are different traditions of formal-
ization. The major ones are the following:

Dynamic system: In this tradition, the state of a system at a given
time is specified by the values of a fixed set of attributes. Intu-
itively, it corresponds to a point in a multi-dimensional space,
where each dimension corresponds to an attribute, and the coor-
dinate of the point on that dimension corresponds to the system’s
value on the attribute. In this representation, the change of state
(caused either by the system itself or by an outside factor) is a
trajectory line in the space, indicating how one state follows an-
other. The regularity of the system is represented by equations
that describe the possible trajectory lines. AI inherits this type
of formalization from dynamics, system theory, and cybernetics,
and uses it in pattern recognition systems, connectionist models,
and so on.

Reasoning system: In this tradition, the state of a system at a given
time is specified by a set of sentences in a formal language. Each
sentence represents a belief of the system, or a piece of knowledge
about the environment. The change of state can either be caused
by the system’s inference activity (i.e., using a fixed set of rules to
derive new sentences from existing ones), or by its communication
activity (i.e., the input and output of the sentences). The regu-
larity of the system is represented by the set of inference rules. AI
inherits this type of formalization from mathematical logic, and
uses it in various types of “knowledge-based systems.”

Computing system: In this tradition, the state of a system at a given
time is specified by a data structure, in which individual data
items are organized together. The change of state is caused by
the execution of a program, which modifies the data structure,
and produces certain side effects. The regularity of the system
is specified by algorithms, which are abstract representation of
the programs. AI inherits this type of formalization from com-
puter science, and uses it in searching, learning, and many other
techniques.

A New Approach Toward AI 39

All the three traditions are very powerful, and in principle they can
emulate one another, in the sense that a virtual machine specified in
one tradition can be implemented by another virtual machine specified
in a different tradition. In this sense, they have equivalent expressive
and processing capacity. It is also possible to build a hybrid system, in
which multiple formalization traditions are integrated.

However, for a given problem, one tradition may be more natural,
convenient, and efficient than the others. Therefore they are not always
equivalent under practical considerations for a given problem.

I choose to formalize my working definition of intelligence in the
framework of a reasoning system, mainly based on the following con-
siderations:

• It is a general-purpose system. Working in such a framework keeps
us from being bothered by domain-specific properties, and also
prevents us from cheating by using domain-specific tricks.

• It uses a rich formal language, especially compared to the “lan-
guage” used in multi-dimensional space, where a huge number
of dimensions are needed to represent a moderately complicated
situation.

• Since the activities of a reasoning system consists of inference
steps, it allows a natural combination of the rigidness (i.e., justi-
fiability) of each individual step and the flexibility (i.e., context-
dependency) of the inference processes, especially compared to
the algorithm-governed processes, where the linkage from one step
to the next is fixed, and the process usually cannot stop in the
middle.

• Compared with cognitive activities like low-level perception and
motor control, reasoning is at a more abstract level, and is one
of the cognitive skills that collectively make human beings so
qualitatively different from other animals.

• As will be displayed by this book, the notion of “reasoning” can
be extended to cover many cognitive functions, including learning,
searching, categorizing, planning, decision making, and so on.

40 Chapter 2

• Most research on reasoning systems is carried out within a school
based on assumptions directly opposed to AIKR. By “fighting in
the backyard of the rival,” we can see more clearly what kinds of
effects the new ideas have.

In summary, I believe that an intelligent reasoning system provides a
suitable framework for the study of intelligence, though being a reason-
ing system is neither necessary nor sufficient for being intelligent. Here
I will not justify the above claims, but leave that task to the end of the
book, after the whole formal model is described and discussed.

2.2.2 Reasoning systems and logics

An automatic (computerized) reasoning system is an information-
processing system that consists of the following major (conceptual)
components:

1. a language, defined by a formal grammar, for the (external) com-
munication between the system and its environment, and for the
(internal) knowledge representation within the system;1

2. a semantics of the language that provides the principles to de-
termine the meanings of the words and the truth values of the
sentences in the language;

3. a set of inference rules that is defined formally, and can be used
to match questions with knowledge, to infer conclusions from
premises, to derive sub-tasks from tasks, and so on;

4. a memory that systematically stores tasks, beliefs, and so on, as
well as provides a work place for inferences;

5. a control mechanism that is responsible for resource management,
including to choose premises and inference rules in each inference
step, and to allocate memory space.

1It is possible to have the two functions be accomplished by two different lan-
guages, with a translation mechanism in between.

A New Approach Toward AI 41

The first three components are usually referred to as a logic, or the
logical part of the reasoning system, and the last two as the control part
of the system.

Before showing how an intelligent reasoning system is designed, let
us first see its opposite — that is, a reasoning system designed under the
assumption that its knowledge and resources are sufficient to answer
the questions asked by its environment (so no adaptation is needed).
By definition, such a system has the following properties:

1. No new knowledge is necessary. All the system needs to know
to answer the questions is already there at the very beginning,
expressed by a set of axioms.

2. The axioms are true, and will remain true, in the sense that they
correspond to the actual situation of the environment.

3. The system answers questions by applying a set of formal rules
to the axioms. The rules are sound and complete (with respect to
the valid questions), therefore they guarantee correct answers for
all questions.

4. The memory of the system is so big that all axioms and interme-
diate results can always be stored within it, and so effective that
any content can be retrieved faithfully whenever needed.

5. There is an algorithm that can carry out any required inference
in finite time, and it runs so fast that it can satisfy all time re-
quirements attached to the questions.

This is the type of system dreamed of by Leibniz, Boole, Hilbert,
and many others. It is usually referred to as a “decidable axiomatic
system.” The attempt to build such systems has dominated the study
of logic for a century, and has strongly influenced the research of AI.
Many researchers believe that such a system can serve as a model of
human thinking.

However, if intelligence is defined as “to adapt under insufficient
knowledge and resources,” what we want is the contrary, in some sense,
to an axiomatic system, though it is still formalized or symbolized in a
technical sense. That is why Non-Axiomatic Reasoning System, NARS

42 Chapter 2

for short, is chosen as the name for the intelligent reasoning system to
be introduced in this book.

2.3 Major design issues of NARS

Before going into detailed formal descriptions of NARS in the chapters
of Part II, this section provides an informal introduction to the major
design issues of the system. For each topic, the problem is summarized
first, then the solution provided in NARS is briefly described. Full dis-
cussions and comparisons with other approaches will be given in Part
III of the book, because the NARS solutions to many problems are
provided by multiple components of the system.

2.3.1 Validity and rationality

A central issue of NARS is: when a system has to work with insufficient
knowledge and resources, what is the criteria of validity or rational-
ity? This problem is obviously related to Hume’s problem of induction
[Hume, 1748] — if the future is different from the past, how can we
predict the former by the latter?

This issue needs to be addressed, because the aim of NARS is to
provide a normative model for intelligence in general, not a descriptive
model of human intelligence. It means that what the system does should
be “the right thing to do,” that is, can be justified against certain simple
and intuitively attractive principles of validity or rationality.

In traditional logic, a “valid” or “sound” inference rule is one that
never derives a false conclusion (that is, it will be contradicted by
the future experience of the system) from true premises [Copi, 1982].
However, such a standard cannot be applied to a system that has to
work under AIKR, since by definition, such a system has no way to
guarantee the infallibility of its conclusions. On the other hand, it does
not mean that every conclusion is equally valid.

As discussed previously, since intelligence is a special kind of adap-
tation, and in an adaptive system the behavior is determined by the
assumption that the future experience will be similar to the past ex-
perience, in NARS a “valid conclusion” is one that is most consistent

A New Approach Toward AI 43

with the evidence in the past experience, and a “valid inference rule” is
one whose conclusions are supported by the evidence provided by the
premises used to derive them.

Furthermore, restricted by insufficient resources, NARS cannot ex-
haustively check every possible conclusion to find the best conclusion
for every given task. Instead, it has to settle down with the best it can
find with available resources.

In this sense, NARS can also be called an “adaptive reasoning sys-
tem,” whose central principle of rationality is “to predict the (unknown)
future according to the (experienced) past, and to satisfy the (poten-
tially infinite) resource request with the (actually finite) resources sup-
ply.”

The following components are designed according to this principle.

2.3.2 Semantics

As was stated earlier, semantics studies how the items in a language
are related to the environment in which the language is used.

Model-theoretic semantics is the dominant theory in the semantics
of formal languages. For a language L, a model M consists of the rel-
evant part of some domain described in another language ML, and an
interpretation I that maps the items in L onto the objects in the domain
(labeled by words in ML). ML is referred to as a “meta-language,”
which can be either a natural language, like English, or another formal
language.

Given the above components, the meaning of a term in L is defined
as its image in M under I, and whether a sentence in L is true is
determined by whether it is mapped by I onto a “state of affairs” that
holds in M. For a reasoning system, valid inference rules are those that
always derive true conclusions from true premises.

With insufficient knowledge and resources, what relates the lan-
guage L, used by a system R, to the environment is not a model, but
the system’s experience. For a reasoning system like NARS, the experi-
ence of the system is a stream of sentences in L, provided by a human
user or another computer.

In such a situation, the basic semantic notions of “meaning” and
“truth” still make sense. The system may treat terms and sentences

44 Chapter 2

in L, not solely according to their syntax (shape), but in addition taking
into account their relations to the environment, according to the sys-
tem’s experience. Therefore, What we need is an experience-grounded
semantics.

Under AIKR, NARS should not (and cannot) use “true” and “false”
as the only truth values of sentences. To handle conflicts in experience
properly, we need to determine what counts as positive evidence in
support of a sentence, and what counts as negative evidence against it,
and in addition we need some way to measure the amount of evidence
in terms of some fixed unit. In this way, a truth value will simply be a
numerical summary of available evidence.

Similarly, the meaning of a term (or word) is defined by the role
it plays in the experience of the system, that is, by its relations with
other terms, according to the experience of the system.

As was mentioned above, “experience” in NARS is represented in
L, too. Therefore, in L the truth value of a sentence, or the meaning
of a word, is defined by a set of sentences, also in L, with their own
truth values and meanings — which seems to have led us into a circular
definition or an infinite regress.

The way out of this seeming circularity in NARS is “bootstrapping.”
In the following, I will first define a very simple subset of the language,
with its semantics. Then, I will use it to define the semantics of the
whole language.

As a result, the truth value of statements in NARS uniformly rep-
resents several types of uncertainty, such as randomness, fuzziness, and
ignorance. The semantics specifies how to understand sentences in the
language, and provides justifications for the inference rules.

2.3.3 Grammar and inference rules

When presenting NARS, I take a path that is opposite to the usually
accepted one. Instead of first defining a language formally, then attach-
ing a semantics to it, I analyze the desired semantics first (guided by
my working definition of intelligence), then analyze the language that
can support such a semantics. The advantage of such an approach is
argued in [Ellis, 1993].

From the previous discussion, we can see that what NARS needs
is a language in which the meaning of a term is represented by its

A New Approach Toward AI 45

relation with other terms, and the truth value of a sentence is de-
termined by available evidence. For these purposes, the concept of
(positive or negative) evidence should be naturally introduced into
the language. Unfortunately, the most popular formal language used
in First-Order Predicate Logic does not satisfy the requirement, as
revealed by the “Confirmation Paradox” [Hempel, 1943].2 A traditional
rival to predicate logic is known as term logic. Such logics, exemplified
by Aristotle’s Syllogistic, have the following features: [Bocheński, 1970,
Englebretsen, 1981]

1. A typical sentence is categorical, which consists of a subject term
and a predicate term, related by a copula intuitively interpreted
as “to be.”

2. A typical inference rule is syllogistic, which takes two sentences
that share a common term as premises, and from them derives a
conclusion formed by the other two terms.

Traditional term logic has been criticized for its poor expressive
power. In NARS, this problem is solved by introducing various types
of compound terms into the language, to represent sets, intersections,
differences, products, images, statements, and so on.

The inference rules in this extended term logic carry out inheritance-
based inference. Basically, each of them indicates how to use one item
as another one, according to the experience of the system. Different
rules correspond to different combinations of premises, and use different
truth-value functions to calculate the truth values of the conclusions
from those of the premises, justified according to the semantics of the
system.

The inference rules in NARS uniformly carry out choice, revision,
deduction, abduction, induction, exemplification, comparison, analogy,
compound term composition and decomposition, and so on.

2.3.4 Inference control

Under AIKR, NARS cannot guarantee to process every task perfectly
— with insufficient knowledge, the best way to carry out a task is

2This issue will be discussed in detail in Section 9.2.2.

46 Chapter 2

unknown; with insufficient resources, the system cannot exhaustively
try all possibilities.

Since NARS still needs to do its best in this situation, its solution
is to let the items and activities in the system compete for the limited
resources. Again, the validity of the resource allocation policy is justified
according to the past experience of the system (rather than its future
experience), and the aim is to satisfy the goals of the system as much
as possible.

In the system, different data items (task, belief, or concept) have
different priority values attached, according to which the system’s re-
sources are distributed. These values are determined according to the
past experience of the system, and are adjusted according to the change
of situation.

A special data structure is developed to implement a probabilistic
priority queue with a limited storage. Using it, each access to an item
takes roughly a constant time, and the accessibility of an item depends
on its priority value. When no space is left, items with low priority will
be removed.

The memory of the system contains a collection of concepts, each
of which is identified by a term. Within the concept, all the tasks and
beliefs (i.e., pieces of knowledge) that have the term as subject or pred-
icate are collected together.

The running of NARS consists of individual inference steps. In each
step, a concept is selected probabilistically (according to its priority),
then within the concept a task and a belief are selected (also proba-
bilistically), and the applicable inference rules take the task and the
belief as premises to derive new tasks and beliefs, which are added into
the memory.

The system runs continuously, and interacts with its environment all
the time, without stopping at the beginning and ending of each task.
The processing of a task is interwoven with the processing of other
existing tasks, so as to give the system a dynamic and context-sensitive
character.

Part II

Non-Axiomatic Reasoning
System

Chapter 3

The Core Logic

The logic implemented in NARS is called Non-Axiomatic Logic, here-
forth NAL. The formal language used in NARS is called Narsese.

In the following, both Narsese and NAL will be defined layer by
layer, each of which adds new grammar rules and inference rules into
the system. Overall, there will be eight layers, and the language used
in NAL-n is Narsese-n (n = 1, ..., 8).

In this chapter, the simplest non-axiomatic logic, NAL-1, is defined.
Narsese-1 is a simple language, in which each statement consists of two
atomic terms, linked by an inheritance relation. NAL-1 has inference
rules defined on this language.

To provide a proper semantics for this logic, an idealized version of
the logic, NAL-0, is introduced first. This logic is not non-axiomatic,
but will be used as part of the meta-language of NAL. Set theory and
first-order predicate logic are also used as parts of the meta-language
of NAL.

3.1 NAL-0: binary inheritance

NAL-0 is a simple binary deductive logic1. It is not actually “non-
axiomatic,” but we need it to define the semantics of NAL.

1It was formerly called Inheritance Logic in [Wang, 1994b, Wang, 1995a].

49

50 Chapter 3

3.1.1 Language: term and inheritance

NAL-0, like all members of the NAL family, is a “term logic.” This
type of logic is different from predicate logics, because of its usage of
categorical sentences and syllogistic inference rules [Bocheński, 1970,
Copi, 1982, Englebretsen, 1996]. Therefore, it is also called “categorical
logic” or “syllogistic logic.”2

First, let us define the smallest unit of Narsese, “term.”

Definition 1 A term, in the simplest form, is a string of letters in an
alphabet. In such a form, it is also called an atomic term.

The default alphabet in this book is the alphabet of English plus dig-
its 0 to 9, and most terms we use as examples are common English
words, such as “bird”, “animal”, and “water” (we also allow hyphen-
ated terms). It is easy for NAL to use words in another natural language
(such as Chinese) as terms, because the following design does not de-
pend on the choice of the alphabet or characters.

Later in this book, we will see that a term is the name of a concept
in NARS. The above definition only gives the simplest form of terms,
and more complicated forms will be introduced later.

Definition 2 The inheritance relation, “→”, is a relation from one
term to another term, and defined by being reflexive and transitive. An
inheritance statement consists of two terms related by the inheritance
relation. In the inheritance statement “S → P”, S is the subject term
and P is the predicate term.

In a statement, the two terms can be the same.
According to this definition, for any term X, “X → X” is always

true (reflexivity). Also, if “X → Y ” and “Y → Z” are true, so is
“X → Z” (transitivity). On the other hand, if there is a relation de-
fined among terms, which is both reflexive and transitive, and has no
additional property, then it is the same as the inheritance relation de-
fined in NAL.

2A detailed comparison between predicate logics and term logics will be given in
Chapter 10.

The Core Logic 51

The inheritance relation is neither symmetric nor anti-symmetric.
That is, for different X and Y , given “X → Y ”, whether “Y → X” is
also true cannot be determined.

NAL is a “term logic,” partially because its sentences are “categori-
cal,” with a “subject-copula-predicate” format. The inheritance relation
is a kind of “copula,” and intuitively, it indicates that S is a special-
ization of P , and P is a generalization of S. It roughly corresponds to
“S is a kind of P” in English. For example, “apple → fruit” says that
“Apple is a kind of fruit.”

The inheritance relation defined above is closely related to many
well-known relations, such as “belongs to” (in Aristotle’s syllogisms),
“subset” (in set theory), “IS-A” (in semantic networks) [Brachman,
1983], “inheritance assertion” (in inheritance systems [Touretzky,
1986]), and “inheritance” in object-oriented programming (such as
“extends” in Java).

What makes the inheritance relation in NAL different from the other
relations are:

1. It is a relation between two terms (not between sets, classes, or
concepts).

2. The relation is defined completely (no more, no less) by the two
properties, reflexivity and transitivity.

Now we use the above notions to define the corresponding version
of Narsese.

Definition 3 Narsese-0 is a formal language whose sentences are in-
heritance statements.

Therefore, the grammar of Narsese-0 is given in Table 3.1.

3.1.2 Semantics: truth and meaning

Now let us establish a semantics for Narsese-0, by defining the notions
of “truth” and “meaning” in the language.

For a reasoning system implementing the logic NAL-0, the language
Narsese-0 is used for both internal knowledge representation and exter-
nal communication. The initial knowledge of the system, obtained from
the environment, is defined as its “experience.”

52 Chapter 3

<sentence> ::= <statement>
<statement> ::= <term><copula><term>

<copula> ::= →
<term> ::= <word>
<word> : a string in a given alphabet

Table 3.1: The Grammar of Narsese-0

Definition 4 The system’s experience, K, is a non-empty and finite
set of sentences in Narsese-0. In each statement in K, the subject term
and the predicate term are different.

For example, we can have K = {apple → fruit, fruit → plant}. As
a set, K has no duplicated elements, and there is no order among its
elements.

Definition 5 Given experience K, the system’s beliefs, K∗, is the tran-
sitive closure of K, excluding statements whose subject and predicate are
the same term.

Therefore, K∗ is also a non-empty and finite set of sentences in Narsese-
0, which includes K, as well as the sentences derived from K accord-
ing to the transitivity of the inheritance relation. For the above K,
K∗ = {apple → fruit, fruit → plant, apple → plant}. K∗ can be
generated from K in finite steps using an ordinary closure-generating
algorithm.

In NARS, the words “belief” and “knowledge” are usually treated
as exchangeable with each other.3 Therefore, K∗ can also be called
the knowledge base of the system (as in some previous publications on
NARS).

Now we can define the “truth value” of a statement and the “mean-
ing” of a term, with respect to a given K.

Definition 6 The truth value of a statement in NAL-0 is either true
or false. Given experience K, the truth value of a statement is true if
it is in K∗, or has the form of T → T , otherwise it is false.

3A justification of this decision will be given in Section 7.4.1.

The Core Logic 53

Therefore we have two types of truth in NAL-0: empirical and literal
(or call them synthetic and analytic, respectively). The former is “true
according to experience,” and the latter is “true by definition.” Given
the above definitions, truth in these two categories have no overlap.

In the following, we will call true statements “positive knowledge,”
and false statements “negative knowledge.” All analytic truths are pos-
itive knowledge (and all of them fall into the pattern “T → T”).
Synthetic knowledge may be positive or negative. In NAL-0, nega-
tive knowledge are implicitly represented: they are not sentences in
Narsese-0, but propositions in its meta-language. The amount of posi-
tive knowledge, (i.e., number of beliefs in K∗) increases monotonically
with the increase of the experience K, but that is not the case for nega-
tive knowledge, which is implicitly defined by the former as “statements
that not known to be true.”

Therefore, here “true” is “derivable from experience,” or “have the
relation”; while “false” is “haven’t found the relation,” but not “have
an anti-relation.” NAL-0 accepts the “closed world” assumption, where
“lack known relation” is treated as “no relation.” It is necessary here,
because if truth value is a summary of experience, then “having an
unknown truth value” makes no sense.

For a term T that does not appear in K, all statements having T
in them are false, except “T → T .” For example, given the above expe-
rience K, “orange → fruit” is false. Though “¬(orange → fruit)” is
not a valid sentence of Narsese-0, it is a valid proposition in the meta-
language of NAL-0 (by taking statements of NAL-0 as propositions in
propositional logic).

To clarify how a particular term T is related to other terms accord-
ing to the experience of the system, the extension and intension of T
are defined as the sets of its known specializations and generalizations,
respectively:

Definition 7 Given experience K, let the set of all terms appearing
in K to be the vocabulary of the system, VK. Then, the extension of a
term T is the set of terms TE = {x |x ∈ VK ∧ x → T}. The intension
of T is the set of terms T I = {x |x ∈ VK ∧ T → x}.
Obviously, both TE and T I are determined with respect to K, so they
can also be written as TE

K and T I
K . In the following, the simpler notions

are used, with the experience K implicitly assumed.

54 Chapter 3

Since “extension” and “intension” are defined in a symmetric way
in NAL, for any result about one of them, there is a dual result about
the other. Each belief of the system reveals part of the intension for
the subject term and part of the extension for the predicate term. For
example, “apple → fruit” indicates that “apple” is in the extension of
“fruit,” and “fruit” is in the intension of “apple.”

Theorem 1 For any term T ∈ VK, T ∈ (TE ∩ T I). If T is not in VK,
TE = T I = {}, though “T → T” is still true.

Since all the theorems in this book are easy to prove, I will leave
the detailed proofs to the interested reader, and only explain their im-
plications.

The above theorem states that any given term in VK has a non-
empty extension and a non-empty intension — both of them contain
at least the term itself.

Definition 8 Given experience K, the meaning of a term T consists
of its extension and intension.

Therefore, the meaning of a term is its relation with other terms, ac-
cording to the experience of the system. A term T is “meaningless”
to the system, if TE = T I = {} (that is, it has never got into the
experience of the system), otherwise it is “meaningful.” The larger the
extension and intension of a term are, the “richer” its meaning is.

Theorem 2 If both S and P are in VK, then (S → P) ≡ (SE ⊆ PE) ≡
(P I ⊆ SI).

Here “≡” is the “if and only if” in propositional logic. This theorem
says that “S → P” is true if and only if the extension of S is fully
contained in the extension of P , and also if and only if the intension
of P is fully contained in the intension of S. In other words, the state-
ment “There is an inheritance relation from S to P” is equivalent to
both “P inherits the extension of S” and “S inherits the intension
of P .” This is the reason that “→” is called an “inheritance” rela-
tion. Here I change the intuitive meaning of the word “inheritance” to

The Core Logic 55

indicate the situation where the two terms get different things from
each other.

If “S → P” is false, it means that the inheritance is incomplete —
either (SE −PE) or (P I −SI) is not empty. However, it does not mean
that S and P share no extension or intension.

Theorem 3 (SE = PE) ≡ (SI = P I).

That is, the extensions of S and P precisely coincide if and only if their
intensions precisely coincide. This means that in NAL-0 the extension
and intension of a term are mutually determined. Consequently, one of
the two uniquely determines the meaning of a term.

NAL-0 is a logic that from given experience determines the truth
values of statements and meaning of terms, and this is what I call
“experience-grounded semantics.” I will come back to this topic again
and again in this book.

3.1.3 Inference: rules and properties

As we can see from the above definitions, NAL-0 only has one inference
rule, justified by the transitivity of the inheritance relation. As given
in Table 3.2, this rule takes two statements as premises, and derive one
statement as conclusion. This rule can be used to exhaust all beliefs
according to a given experience.

J2 \ J1 M → P P → M

S → M S → P
M → S P → S

Table 3.2: The Inference Rule of NAL-0

There is also a “matching rule” in the system, which derives no new
belief, but matches questions to answers.

Definition 9 For different terms S and P , a question that can be an-
swered with NAL-0 has one of the following three forms: (1) S → P?,

56 Chapter 3

(2) S → ?, and (3) ? → P . An empirical truth S → P is an answer
to any of the three. If no such an answer can be found in K∗, “NO” is
answered.

The first form asks for an evaluation of a given statement, while
the other two ask for a selection of a term with a given relation with
another term.

If there are more than one answers to (2) and (3), any of them
is equally good. Literal truth “T → T” is a trivial answer to such a
question, so it is not allowed.

The matching rule is shown in Table 3.3.

J \Q S → P? S → ? ? → P

S → P S → P S → P S → P

Table 3.3: The Matching Rule of NAL-0

In NAL-0 the user cannot ask the system “What is not T?,” because
any term not appearing in K may become a (trivial) answer for this
question.4

NAL-0 is consistent (since negative knowledge is implicitly repre-
sented), sound (since all derived statements are true), complete (since
all truths are either literal, or in K∗), and decidable (since K∗ can be
generated in finite steps from a given K, and it can also be searched
in finite time). Because in NAL-0 the time-space cost of inference is
ignored, we do not need to worry about how the sentences are stored,
and how the premises are chosen in each inference step.

NAL-0 is a term logic, with categorical statements, experience-
grounded semantics, and syllogistic inference rules. However, it is not
really a “non-axiomatic” logic, because it ignores the assumption of
insufficient knowledge and resources. Though NAL-0 looks simple (and
even trivial) by itself, its importance in defining the NAL family will
be shown by the following sections.

4In NAL, there is a way to ask “What instances of S are not instances of P?,”
and it will be introduced in the next chapter.

The Core Logic 57

3.2 The language of NAL-1

As mentioned in the previous chapter, a central issue in NARS is to
treat “truth” as a matter of degree. For that purpose, we first define
the concept of “evidence,” then define “truth value” as a function of
available evidence.

What is defined in Narsese-0 can be called “complete inheritance”
(of extension/intension), and it can be naturally extended to the situ-
ation of “incomplete inheritance,” and the concept of evidence will be
introduced in the process.

3.2.1 Evidence and its measurement

As shown by a previous theorem, an inheritance statement is equivalent
to a statement about the inclusion of extension (or intension) between
two terms. Furthermore, such an inclusion can be seen as a summary of
a set of inheritance statements. Based on this observation, “evidence”
of an inheritance statement is defined as the following.

Definition 10 For an inheritance statement “S → P ,” its evidence
are terms in SE and P I . Among them, terms in (SE∩PE) and (P I∩SI)
are positive evidence, and terms in (SE−PE) and (P I−SI) are negative
evidence.

Here the related extensions and intensions are sets of terms, and “∩”
and “−” are the “intersection” and “difference” of sets, respectively, as
defined in set theory.

Concretely, for a statement “S → P” and a term M , if both “M →
S” and “M → P” are true, it is positive evidence for the statement;
if “M → S” is true but “M → P” is false, it is negative evidence.
Symmetrically, if both “P → M” and “S → M” are true, it is positive
evidence for the statement; if “P → M” is true but “S → M” is false,
it is negative evidence.

Evidence is defined in this way, because as far as a term in positive
evidence is concerned, the inheritance statement is correct; as far as
a term in negative evidence is concerned, the inheritance statement is
incorrect.

58 Chapter 3

According to this definition, what counts as a piece of evidence is
a term, not a statement. However, whether a given term M is positive
or negative evidence for the statement “S → P” is determined by two
statements, one between M and S, and another between M and P .

Now we can rephrase the definition of truth value in NAL-0 in terms
of “evidence”: “S → P” is true in NAL-0 if and only if according to the
experience of the system, there is no negative evidence for the statement
(that is, all available evidence is positive).

When a system has to answer questions with insufficient knowledge
and resources, to only indicate whether there is (positive or negative)
evidence is usually too rough as a summary of experience. When a
statement has both positive and negative evidence, the system often
needs to balance them, and takes into account the influence of future
evidence. To do this, it is not enough to qualitatively indicate the exis-
tence of a certain type of evidence — we need to quantitatively measure
evidence. For an adaptive system, though past experience is never suf-
ficient to accurately predict future situations, the amount of evidence
does matter for the system’s decision, and the beliefs based on more
evidence should be preferred.

Since according to the previous definition, terms in the extension or
intension of a given term are equally weighted, the amount of evidence
can be simply measured by the size of the corresponding set.

Definition 11 For “S → P ,” the amount of positive, negative, and
total evidence is, respectively,

w+ = |SE ∩ PE| + |P I ∩ SI |
w− = |SE − PE| + |P I − SI |
w = w+ + w−

= |SE| + |P I |

For example, an observed black raven is a piece of positive evidence
for “Raven is a kind of black-thing” (w = w+ = 1), and an observed
non-black raven is a piece of negative evidence for it (w = w− = 1).
Here we assume the observations have no uncertainty.

Amount of evidence captures the idea that an inheritance state-
ment can be seen as a summary of some other inheritance statements.

The Core Logic 59

An important feature of the above definition of evidence is that the
“extensional factor” and the “intensional factor” are merged. From the
amounts of evidence of a statement alone, there is no way to tell how
much of it comes from extensional comparison or intensional compari-
son of the two terms. I will explain why this is desired later.

3.2.2 Truth value: frequency and confidence

Because all the operations in the system are based on available evi-
dence, w+ and w− contain all the information about the uncertainty of
the statement, as far as the current discussion is concerned. However,
when represented in this way, the information is inconvenient for cer-
tain purposes, especially when we talk about beliefs where uncertainty
is not obtained by directly counting evidence.

When comparing competing beliefs and deriving new conclusions,
we usually prefer relative measurements to absolute measurements, be-
cause the evidence of a premise usually cannot be directly used as
evidence for the conclusion. Also, it is often more convenient for the
measurements to take values from a finite interval, while the amount of
evidence has no upper bound. This point will become more clear later.

In principle, all intervals of real number can be mapped into the
interval [0, 1], and this interval corresponds to notions like “ratio,”
“proportion,” or “percentage,” which are naturally used to represent
“approximation” and “discount” in our daily life. Also, [0, 1] is a nat-
ural extension of the binary truth values, traditionally represented as
{0, 1}. For these reasons, I use it for the uncertainty measurements in
NARS.

A natural relative measurement for uncertainty is the frequency, or
proportion, of positive evidence among all available evidence. In NAL,
the “frequency” of a statement is defined as

f = w+/w

If the system has observed 100 ravens, and 90 of them are black, but
the other 10 are not, the system sets f = 0.9 for “Raven is a kind of
black thing.” When w = 0 (and therefore w+ = 0), f is defined to
be 0.5.

60 Chapter 3

Although f is a natural and useful measurement, it is not enough for
our current purpose. Intuitively, we have the feeling that the uncertainty
evaluation f = 0.9 is uncertain itself. For a simple example, let us
consider the following two situations: (1) the system only knows 10
ravens, and 9 of them are black, and (2) the system knows 10000 ravens,
and 9000 of them are black. Though in both situations we have f = 0.9,
the first case is obviously “more uncertain” than the second. Because
here the uncertainty is about the statement “The frequency for ravens
to be black is 0.9,” we are facing a higher-order uncertainty, which is
the uncertainty of an evaluation about uncertainty.

As mentioned previously, in NARS the uncertainty in a statement
appears as the result of insufficient knowledge. Specially, the first-order
uncertainty, measured by frequency, is caused by known negative evi-
dence, and the higher-order uncertainty is caused by potential negative
evidence. For the second measurement, we are looking for a function of
w, call it c for confidence, that satisfies the following conditions:

1. Confidence c is a continuous and monotonically increasing func-
tion of w. (More evidence, higher confidence.)

2. When w = 0, c = 0. (Without any evidence, confidence is mini-
mum.)

3. When w goes to infinity, c converges to 1. (With infinite evidence,
confidence is maximum.)

There are infinite functions satisfying the above requirements, there-
fore we need more intuition to pick up a specific one.

Many functions with value range [0, 1] can be naturally interpreted
as a proportion of a certain amount in a total amount. Following this
path, when comparing available evidence to potential evidence, we
might want to define c as the ratio of “the amount of evidence the
system has obtained” to “the amount of evidence the system will ob-
tain.” Obviously, the first item is w, but for a system that is always open
to new evidence, the second item is infinity, therefore the ratio is al-
ways 0. When compared with an infinite “future,” the difference among
the various finite “past” cannot be perceived. Therefore, it makes little
sense to talk about an infinite future.

The Core Logic 61

However, it makes perfect sense to talk about the near future. What
the system needs to know, from the value of w, is how sensitive a fre-
quency will be to new evidence; then the system can use this informa-
tion to make a choice among competing beliefs. If we limit our attention
to a future of fixed horizon, we can represent the information in w in a
ratio form.

Let us introduce a positive number k, whose value can be metaphor-
ically thought of as the distance to the (temporal) horizon, in the sense
that k is the number of times we will still test the given inheritance
statement. With this new notion of “horizon,” measured by k, we can
define a new measurement — confidence, in terms of the amount of
total evidence w.

Now we get the relation between c and w in NAL:

c = w/(w + k)

where k is a positive parameter indicating the evidence to be collected
in the “near future.” Obviously, this function satisfies the three require-
ments listed previously.

In this way, the frequency and confidence of a statement are inde-
pendent of each other, in the sense that, from the value of one, the
other’s value cannot be determined, or even estimated or bounded (ex-
cept the trivial case where c = 0 implies f = 0.5).

For a specific system, k should remain fixed to make the system’s
behaviors consistent, but different systems can have different values
for k. In this book, the default value of k is 1 (and we will discuss the
choice of k later). Under such a definition, confidence indicates the ratio
of the current amount of evidence to the amount of evidence the system
will have after it gets new evidence with a unit amount. The more the
system already knows about a statement, the less the new evidence
will contribute (relatively), therefore the more confident, or the less
ignorant, the system is, on the given statement. When w = 1, c = 0.5,
and the new evidence will double the amount of available evidence;
When w = 999, c = 0.999, and the new evidence will have little effect
on the system’s belief.

Together, f and c form the truth value of a statement in NAL, and
they are defined by the amount of evidence.

62 Chapter 3

Definition 12 The truth value of a statement consists of a pair of
real numbers in [0, 1]. One of the two is called frequency, computed as
f = w+/w (or 0.5 if w = 0); the other is called confidence, computed
as c = w/(w + k), where k is a positive number.

From a given truth value, the amount of positive, negative, and
total evidence can be uniquely determined. Therefore, the “truth value”
representation of uncertainty is functionally equivalent to the “amount
of evidence” representation.5

3.2.3 Frequency interval

Interestingly, there is a third way to represent the uncertainty of a
statement in NAL: as an interval of the frequency of success.

Given the above definition of frequency, after the coming of evidence
of the amount k, the new f value will be in the interval

[w+/(w + k), (w+ + k)/(w + k)]

This is because the current frequency is w+/w, so in the “best” case,
when all evidence in the near future is positive, the new frequency will
be (w+ +k)/(w +k); in the “worst” case, when all evidence in the near
future is negative, the new frequency will be w+/(w + k).

Let us define this interval formally.

Definition 13 The lower frequency of a statement, l, is w+/(w + k);
the upper frequency of a statement, u, is (w+ + k)/(w + k). The fre-
quency interval of the statement is [l, u].

This measurement has certain intuitive aspects in common with
other interval-based approaches [Bonissone, 1987, Kyburg, 1988]. For
example, the ignorance about where the frequency will be (in the near
future) can be represented by the width of the interval, i = u−l. In NAL,
i happens to be 1 − c, so ignorance and confidence are complementary
to each other.

It is important to remember that in NAL the interval [l, u] indicates
the range in which the frequency will lie in the near future, rather than

5The relations between this representation and other representations of uncer-
tainty, such as probability and fuzziness, will be discussed in detail in Chapter 8.

The Core Logic 63

in the remote future beyond that. According to the definition of truth
value, with the coming of new evidence for a given statement, its con-
fidence value monotonically increases, and eventually converges to 1,
but its frequency may increase or decrease, and does not necessarily
converge at all. For this reason, the frequency interval cannot be inter-
preted as indicating where the frequency will eventually be.

The interval representation of uncertainty provides a mapping be-
tween the “accurate representation” and the “inaccurate representa-
tion” of uncertainty, because “inaccuracy” corresponds to willingness
to change a value within a certain range.

Within the system, it is necessary to keep an accurate represen-
tation of the uncertainty for statements, but it is often unnecessary
for communication purposes. To simplify communication, uncertainty
is often represented by a verbal label. In this situation, the truth value
corresponds to the relative ranking of the label in the label set.

If in a language there are only N words that can be used to specify
the uncertainty of a statement, and all numerical values are equally
possible, the most informative way to communicate is to evenly divide
the [0, 1] interval into N section: [0, 1/N], [1/N, 2/N], ..., [(N-1)/N, 1],
and use a label for each section.

For example, if the system has to use a language where “false,” “am-
bivalent” and “true” are the only valid words to specify truth value, and
it is allowed to say “I don’t know,” then the most reasonable approach
for input is to map the three words into [0, 1/3], [1/3, 2/3], and [2/3, 1],
respectively, and ignore all “I don’t know.” For output, all conclusions
whose confidence is lower than 1/3 become “I don’t know,” and for the
others, one of the three words is used, according to the section in which
the frequency of the conclusion falls.

A special situation of this is to use a single number, with its accu-
racy, to carry out both frequency and confidence information. In such a
situation, “The frequency of statement S is 0.9” is different from “The
frequency of statement S is 0.900” — though both give the same fre-
quency, they give different confidence value. In the former case, the
interval is [0.85, 0.95], so the confidence is 1 − (0.95 − 0.85) = 0.9. In
the latter case, the interval is [0.8995, 0.9005], so the confidence is
1 − (0.9005 − 0.8995) = 0.999.

64 Chapter 3

With the interval representation of uncertainty, NARS gains some
flexibility in its communication. Though within the system, every belief
is attached with numerical uncertainty measurement, in communica-
tions it is not necessary when accuracy is not required.

3.2.4 Relations among representations
of uncertainty

Now we have three functionally equivalent ways to represent the uncer-
tainty of a statement:

1. as a pair of amounts of evidence {w+, w}, where 0 ≤ w+ ≤ w
(they do not have to be integers);

2. as a truth-value <f, c>, where both f and c are real numbers in
[0, 1], independent of each other;

3. as a frequency interval [l, u], where 0 ≤ l ≤ u ≤ 1.

To avoid confusion, three types of brackets (“{},” “<>,” and “[]”) are
used in this book for the three forms of uncertainty, respectively. Again,
each of them is calculated with respect to certain part of the system’s
experience, which is implicitly assumed.

Formulas for inter-conversion among the three truth-value forms are
displayed in Table 3.4.

This table can be easily extended to include w− (the amount of
negative evidence) and i (degree of ignorance). In fact, any valid (not
inconsistent or redundant) assignments to any two of the eight measure-
ments (for example, setting w+ = 3.5 and i = 0.1, or setting f = 0.4
and l = 0.3) will uniquely determine the values of all the others. There-
fore, the three forms of uncertainty measurement can even be used in
a mixed manner.

Having several closely related forms and interpretations for uncer-
tainty has the following advantages:

1. It gives us a better understanding of what uncertainty of state-
ment really means in NARS, since we can explain it in different
ways. The mappings also give us interesting relations among the
various uncertainty measurements.

The Core Logic 65

to \ from {w+, w} <f, c> [l, u]

{w+, w} w+ = k fc
1−c

w+ = k l
u−l

w = k c
1−c

w = k 1−(u−l)
u−l

< f, c > f = w+

w
f = l

1−(u−l)

c = w
w+k

c = 1 − (u − l)

[l, u] l = w+

w+k
l = fc

u = w++k
w+k

u = 1 − c(1 − f)

Table 3.4: The Relations Among Forms of Truth-Value

2. It provides a user-friendly interface. If the environment of the
system consists of human users, the uncertainty of a statement
can be expressed in different ways, such as, “I’ve tested it w times,
and in w+ of them it was true,” or “Its past success frequency
was f , and the confidence was c,” or “I’m sure that its success
frequency will remain in the interval [l, u] in the near future.” We
can maintain a single form as the internal representation (in the
current implementation, it is the truth-value form), and, using the
mappings in the above table, translate it into/from the others in
the interface of the system when necessary.

3. It makes the designing of inference rules easier. For each rule,
there should be a function that calculates the truth value of the
conclusion from the truth values of the premises, with different
rules of course equipped with different functions. As we will see
in the following, for some rules it is easier to choose a function
if we directly deal with truth values, while for other rules we
may prefer to convert truth values into amounts of evidence, or
frequency intervals.

4. It facilitates the comparison between measurements in NARS
and the uncertainty measurements of various other approaches,
because different forms capture different intuitions about
uncertainty.6

6These comparisons will be left to Chapter 8.

66 Chapter 3

Given experience K (as a finite set of binary inheritance state-
ments), for an inheritance relation “S → P” derived from it, w is
always finite. Also, since the system has no need to keep statements for
which there is no evidence, w should be larger than 0. For uncertainty
represented in the other two forms, these translate into 0 < c < 1 and
l < u, u − l < 1, respectively.

Beyond the above normal values of uncertainty, there are two limit
cases useful for the interpretation of uncertainty and the design of in-
ference rules:

Null evidence: This is represented by w = 0, or c = 0, or u − l = 1,
and of course means that the system knows nothing at all about
the statement.

Full evidence: This is represented by w = ∞, or c = 1, or l = u.
It means that the system already knows everything about the
statement — no future modification of the uncertainty value is
possible.

Though the above values never appear in actual beliefs of the system,
they play important role in system design.

3.2.5 Narsese-1 and experience

Now let me summarize the grammar of Narsese-1 in Table 3.5. We
can see that it is similar to that of Narsese-0, except that a binary
“statement” plus its truth value becomes a multi-valued “judgment.”

In the interface of the system, the other two types of uncertainty
representation can also be used in place of the truth value of a judgment,
though within the system they will be translated to (from) truth value.
Also, truth values corresponding to “null evidence” and “full evidence”
are not allowed to appear in the interface (or within the system), though
they are used in the meta-language, as limit points, when the inference
rules are determined.

Now we can treat Narsese-0 (defined in Table 3.1) as a subset of
Narsese-1. In Narsese-1, “S → P < 1, 1 >” indicates that the inheri-
tance is complete (and negative evidence can be practically ignored),
so it is identical to “S → P” in Narsese-0.

The Core Logic 67

<sentence> ::= <judgment> | <question>
<judgment> ::= <statement><truth-value>
<question> ::= <statement>?

| ? <copula><term> | <term><copula>?
<statement> ::= <term><copula><term>

<copula> ::= →
<term> ::= <word>

<truth-value> : a pair of real number in[0, 1] × [0, 1]
<word> : a string in a given alphabet

Table 3.5: The Grammar of Narsese-1

In this way, the semantics of Narsese-1 is defined by a subset of the
language, Narsese-0. Given the experience of the system K in Narsese-
0, the binary inheritance language, the truth value of a judgment in
Narsese-1, with subject and predicate in VK , can be determined by
comparing the meaning of the two terms. All these judgments form the
beliefs of the system, K∗.

Similarly, we extend the concept of “meaning.” For a system whose
beliefs are represented in Narsese-1, the meaning of a term still consists
of the term’s extensional and intensional relations with other terms, as
in NAL-0. The only difference is that the definition of extension and
intension is modified as follows:

Definition 14 A judgment “S → P < f, c >” states that S is in the
extension of P and that P is in the intension of S, with the truth value
of the judgment specifying their degrees of membership.

Consequently, extensions and intensions in NAL-1 are no longer ordi-
nary sets with well-defined boundaries (as in NAL-0). They are similar
to fuzzy sets [Zadeh, 1965], because terms belong to them to different
degrees. What makes them different from fuzzy sets is how the “mem-
bership” is measured (in NAL, two numbers are used) and interpreted
(in NAL, it is experience-grounded).7

7This issue will be discussed in detail in Section 8.2.

68 Chapter 3

Given any set of statements of Narsese-0 as the experience of a NAL-
1 system, the truth values of judgments and the meanings of terms
can be determined. In this way, Narsese-0 is used as a meta-language
of Narsese-1. At the same time, the former is a subset of the latter.
Therefore, the experience-grounded semantics for Narsese is established
in a “bootstrapping” manner.

However, since NAL-1 is used with insufficient knowledge and re-
sources, its actual experience is a stream of sentences in Narsese-1, not
a set of statements in Narsese-0 (as the idealized experience used in the
above semantics).

There are several important differences between the “idealized ex-
perience” and the “actual experience” of the system.

• A judgment in the idealized experience has truth value <1, 1>,
while a judgment in the actual experience has truth value <f, c>,
where c is less than 1.

• The idealized experience is a set of sentences, which is available
altogether to the system at the beginning, while the actual experi-
ence is a stream of sentences, coming to the system one at a time.

• For a given statement, in the idealized experience each piece of ev-
idence is equally weighted, while in the actual experience, pieces
of evidence make different contributions to its truth value, de-
pending on several factors (to be described later).

• When defining the truth value of a judgment, the whole idealized
experience is considered, while when calculating the truth value
of a judgment, an inference rule only takes part of the actual
experience into account.

• The idealized experience is used at design time to define truth
value (of statements) and meaning (of terms), as well as to justify
the inference rules, while the actual experience is used at run time
by the inference rules to derive new statements (or terms) with
their truth value (or meaning), or to modify the existing ones.

For example, if the system has a belief “S → P < 0.75, 0.80 >,”
then from the relationship between the truth value and the amount of
evidence (and assuming k = 1), we get w = 4, w+ = 3. Therefore, the

The Core Logic 69

system believes the statement “S → P” to such an extent, as if it had
tested the statement 4 times in idealized situations (by checking com-
mon elements of the extensions or the intensions of the two terms), in
which the relation had been confirmed 3 times, and disproved 1 time.
This does not imply, of course, that the system actually got the truth
value by carrying out such tests — such absolute certainty can never
be obtained in real life. Indeed, the system may have checked the rela-
tion more than four times in less-than-ideal situations (i.e., with results
represented by judgments whose confidence values are less than 1), or
the conclusion may have been derived from other beliefs, or even di-
rectly provided by the environment. But no matter how the truth value
< 0.75, 0.80> is generated in practice (there are infinitely many ways
it could arise), it can always be understood in a unique way, as stated
above.

For any approach to extend a binary logic to a multi-valued logic,
there is always the question for the meaning of the numerical truth
value that need to be answered to make everything else meaningful,
while “numerical statements are meaningful insofar as they can be
translated, using the mapping conventions, into statements about the
original qualitative structure” [Krantz, 1991]. In other words, “ideal ex-
perience” is being used in NAL as an “ideal meter-stick” to measure
degrees of certainty. Like all measurements, though its unit is defined
in an idealized situation, it is not used only in idealized situations —
when we say that a cord is “3 meters long,” we do not mean that we
have compared it with three end-to-end meter-sticks.

Clearly, the actual experience of NARS is much more complex than
the ideal experience as defined in the semantics, but it does not pre-
vent us from saying that the truth value of a judgment summarizes its
evidential support, and that the meaning of a term is derived from its
experienced relations with other terms.

3.3 The inference rules of NAL-1

Now we can define inference rules for NAL-1, whose premises and con-
clusions are judgments of Narsese-1, and whose validity is justified ac-
cording to the experience-grounded semantics.

70 Chapter 3

3.3.1 Revision rule

In NAL, revision indicates the inference step in which evidence from
different sources is combined. For example, assuming the system’s pre-
vious uncertainty for “Ravens are black” is <9/10, 10/11> (we know
that it corresponds to “10 ravens observed, and 9 of them are black”
when k = 1), now a new judgment comes, which is “Ravens are black
< 3/4, 4/5 >” (so it corresponds to “4 ravens are observed, and 3 of
them are black”). If the system can determine that no evidence is re-
peatedly counted in the two sources, then the uncertainty of the revised
judgment should be < 6/7, 14/15 > (corresponding to “14 ravens ob-
served, and 12 of them are black”).

Formally, the revision rule is defined in Table 3.6, where S can be
any statement. The two premises may be conflicting to each other (when
the two frequency values are very different), though this is not neces-
sarily the case. Conflicting or not, the information in the two should be
summarized into the conclusion.

J2 \ J1 S <f1, c1 >

S <f2, c2 > S < Frev >

Table 3.6: The Revision Rule

Since in this case the evidence of either premise is also evidence for
the conclusion, and there is no overlapping evidence between the two
premises, we have

w+ = w+
1 + w+

2 , w = w1 + w2

Then, according to the relationship between truth value and amount of
evidence, we get the truth-value function for the revision rule:

Frev : f = f1c1(1−c2)+f2c2(1−c1)
c1(1−c2)+c2(1−c1)

, c = c1(1−c2)+c2(1−c1)
c1(1−c2)+c2(1−c1)+(1−c1)(1−c2)

This function has the following properties:

• The order of the premises does not matter.

The Core Logic 71

• As a weighted average of f1 and f2, f is usually a “compromise” of
them, and is closer to the one that is supported by more evidence.

• The value of c is never smaller than either c1 or c2, that is, the
conclusion is supported by no less evidence than either premise.

• If c1 = 0 and c2 > 0, then f = f2 and c = c2, that is, a judgment
supported by null evidence cannot revise another judgment.

• If c1 = 1 and c2 < 1, then f = f1 and c = c1, that is, a judg-
ment supported by full evidence cannot be modified by empirical
evidence.

Because actual confidence values are always in (0, 1), the last two cases
do not actually appear at run time, but serve as limit situations. Also
because of this reason, it does not matter for the above function has
undefined value when c1 = c2 = 0 and c1 = c2 = 1.

This definition is compatible with our intuition about evidence and
revision — revision is nothing but to reevaluate the uncertainty of a
statement by taking new evidence into account. Revision is not up-
dating, where old evidence is thrown away.8 A high w means that the
system already has much evidence for the statement, therefore its con-
fidence is high and its ignorance is low, and consequently the judgment
is relatively insensitive to new evidence. All these properties are in-
dependent to the decisions on how w is divided into w+ and w−, as
well as to how they are actually measured (so these decisions may
change from situation to situation without invalidating the revision
rule).

What happens in revision is similar to what Keynes said: “As the
relevant evidence at our disposal increases, the magnitude of the prob-
ability of the argument may either decrease or increase, according as
the new knowledge strengthens the unfavorable or the favorable ev-
idence; but something seems to have increased in either case — we
have a more substantial basis upon which to rest our conclusion.”
[Keynes, 1921].

It needs to be clarified that here “revision” refers to the opera-
tion by which the system summarize two (maybe conflicting) beliefs.

8This issue will be discussed with more details in Section 8.3.1.

72 Chapter 3

In this operation the conclusion always has a higher confidence. How-
ever, generally speaking, in NARS it is possible for the system to lose
its confidence in a belief. This can be caused by the “forgetting” or
“explaining away” of previously available evidence. This issue will be
discussed later, after other relevant components of NARS are intro-
duced.

Now the remaining issue in revision is how to recognize and handle
the “overlapping evidence” situation. For that, we need to record, for
each judgment, the fragments of experience its truth value is based on.

Definition 15 If J is an input judgment that appears in the system’s
experience, with a unique serial number N , it is based on the fragment
of experience {N}. If J is derived from premises J1, · · · , Jn, which are
based on the fragments of experience K1, · · · , Kn, respectively, then J
is based on fragment K1 ∪ · · · ∪ Kn.

The serial numbers will be generated by the program that imple-
ments NAL. If the same judgment appears twice in the system’s expe-
rience, each occurrence will have its own serial number, and the two
occurrences will later be treated as different pieces of evidence. On the
contrary, if one occurrence produces multiple copies in the system, they
will all have the same serial number, and be treated as the same piece
of evidence.

The system is designed in this way, because for an adaptive system,
what really matters is to predict whether a given statement will be
true next time. For someone who lives on a small island with a black
swan, “Swan is black” should have a higher frequency than “Swan is
white” — though the person has the knowledge that most swans in the
world are white, “black swan” appears more often in his/her personal
experience. Of course, we do not want to count the same observation
more than once, but different observations of the same swan should be
treated as multiple pieces of evidence. Therefore, accurately speaking,
in NARS the truth value attached to “Swan is black” is not about how
many swans (in the world) are black, but about how often a black swan
(in the system’s experience) is encountered.

If judgments J1 and J2 are based on fragments of experience K1

and K2, respectively, and K1 and K2, as sets of serial numbers, have

The Core Logic 73

no common elements, then the evidence supporting the two judgments
do not overlap with each other (that is, no piece of evidence is used to
calculate the truth values of both premises). If the two judgments are
about the same statement, then they can be used by the revision rule
as premises to derive a (summarized) conclusion.

With insufficient resources, NARS cannot maintain a complete record
of the supporting experience for each judgment, because it may ask for
time and space that the system cannot afford. Therefore the “overlapping-
evidence recognition problem” cannot be completely solved by a system
with insufficient resources.

Obviously, this limitation holds also for human beings: we could not
possibly remember all evidence that supports each judgment we make.
Nevertheless, NARS needs to be able to handle this problem somehow,
which is not limited to revision only; otherwise, as Pearl points out, “a
cycle would be created where any slight evidence in favor of A would
be amplified via B and fed back to A, quickly turning into a stronger
confirmation (of A and B), with no apparent factual justification.”
[Pearl, 1988].

The NARS strategy for dealing with this problem is to record only
a constant-sized fragment of the experience supporting each judgment,
and to use such fragments to determine approximately whether two
judgments are based on overlapping evidence. As mentioned above,
each input judgment is automatically assigned a unique serial number
when accepted by the system. In each inference step, the conclusion is
assigned a list of serial numbers constructed by interleaving its parents’
(the premises’) serial-number lists, and then truncating that list at a
certain length.

For example, suppose the maximum length for serial-number lists is
4. In this case, if two judgments have a parent or grandparent judgment
in common, their serial-number lists will overlap. Now the revision rule
is applied only if the two premises’ serial-number lists have no common
elements, meaning that they are related, if at all, more than two “gen-
erations” ago. This mechanism is only an approximation to the perfect
solution to the problem, of course.

Though not perfect, it is a reasonable solution when resources are
insufficient, and “reasonable solutions” are exactly what we expect from
a non-axiomatic system. It is also similar to the strategy of the human

74 Chapter 3

mind, since we usually have impressions about where our judgments
come from, but such impressions are far from complete and accurate.
Also, there is no guarantee that we never repeatedly using the same
evidence to adjust our degree of belief.

3.3.2 Choice rule

What should NARS do when two conflicting judgments S < f1, c1 >
and S <f2, c2 > are based on overlapping evidence?

Ideally, we would like to record the precise contribution of each input
judgment, and then to subtract the amount of the overlapping evidence
from the truth value of the conclusion, so that nothing is counted more
than once. Unfortunately, this is impossible, because the experience
recorded for each judgment is incomplete, as has just been explained.
Furthermore, to find out the contribution of a given input judgment
to the overall conclusion is very difficult, and simply impossible given
incomplete records.

Nevertheless, NARS needs to be able to handle this situation. For
example, the two conflicting judgments may be candidate answers to
an evaluative question. If it is impossible to combine them, then NARS
needs to make a choice between the two. In the current situation, the
choice rule is very simple: the judgment having a higher confidence
(no matter what its frequency is) is taken as the better answer, the idea
being that if an adaptive system must make a choice between conflicting
judgments, the one based on more experience has higher priority.

To make a choice between two competing answers for a selective
question is more complicated. Let us say that the system is asked the
selective question “S → ?,” meaning that it should come up with a
term T that is a “typical element” in the intension of S (not S itself,
of course). Ideally, the best answer would be provided by a judgment
“S → T <1, 1>.” But of course this is impossible, because confidence
can never reach 1 in NARS. Therefore, we have to settle for the best
answer the system can find under the constraints of available knowledge
and resources.

Suppose the competing answers are “S → T1 <f1, c1 >” and “S →
T2 < f2, c2 >.” Which one would be better? Let us consider some
special cases first:

The Core Logic 75

1. When c1 = c2, the two answers are supported by the same amount
of evidence. For example, both come from statistical data of 100
samples. Obviously, the answer with the higher frequency is pre-
ferred, since that statement has more positive evidence than the
other.

2. When f1 = f2 = 1, all available evidence is positive. Now the
answer with the higher confidence is preferred, since it is more
strongly confirmed by experience.

3. When f1 = f2 = 0, all available evidence is negative. Now the an-
swer with the lower confidence is preferred, since it is less strongly
refuted by the experience. Of course such an answer is still a bad
one because of its negative nature, but it may be the best (the
least negative) answer the system can find for the question.

From these special cases, we can see that to set up a general rule
to make a choice among competing judgments, we need somehow to
combine the two numbers in a truth value into a single measurement.
The current situation is different from the previous one. “S → T1

<f1, c1 >” and “S → T2 <f2, c2 >” do not conflict with each other —
they have different contents — but they compete for being the “best
supported intensional relation of S.”

In NARS, an expectation measurement, e, is defined on every judg-
ment for this purpose. Different from truth value (which is used to
record past experience), expectation is used to predict future experi-
ence. “e = 1” means that the system is absolutely sure that the state-
ment will always be confirmed by future experience; “e = 0” means it
will always be refuted; and “e = 0.5” means the system considers it
equally likely to encounter a piece of positive or a negative evidence.

To calculate e from <f, c>, we can see that under the assumption
that the system makes extrapolations from its (past) experience, it
would be natural to use f as e’s “first-order approximation.” However,
such a maximum-likelihood estimate is not good enough when c is small
[Good, 1965]. For example, if a hypothesis has been tested only once,
it would not make sense to set one’s expectation to 1 (if the test was a
success) or to 0 (if the test was a failure).

76 Chapter 3

Intuitively, e should be more “conservative” (i.e., closer to 0.5, the
“no-preference point”) than f , to reflect the fact that the future may
be different from the past. Here is where the confidence c affects e
— the more evidence the system has accumulated, the more confident
the system is (indicated by a larger c) that its predicted frequency e
should be close to its experienced frequency f . Therefore, it is natural
to define

Fexp : e = c(f − 0.5) + 0.5.

In particular, when c = 1 (full evidence), e = f ; when c = 0 (null
evidence), e = 0.5. Alternatively, this equation can be rewritten as
c = (e − 0.5)/(f − 0.5) (when f
= 0.5), showing that c indicates the
ratio of e’s and f ’s distances to 0.5.

To express the definition of e in the other two forms of uncertainty
leads to interesting results.

When the uncertainty is represented as a frequency interval, from
the inter-conversion formulas in Table 3.4, we get

e = (l + u)/2

Thus e is precisely the expectation of the future frequency — that is,
the midpoint of the interval in which the frequency will lie, in the near
future.

When the uncertainty is represented as amounts of evidence, from
the mappings in Table 3.4 we get

e = (w+ + k/2)/(w + k)

which is a continuum (i.e., a family) of functions with k as a parameter.
This formula turns out to be closely related to what has been called
the “beta-form based continuum” (with positive and negative evidence
weighted equally) [Good, 1965], and the “λ-continuum” (with the “log-
ical factor,” or prior probability, being 1/2) [Carnap, 1952]. Though in-
terpreted differently, the three continuum share the same formula and
make identical predictions. All three continua have Laplace’s law of suc-
cession as a special case (when k = 2), where the probability of success
on the next trial is estimated by the formula (w+ + 1)/(w + 2).

The Core Logic 77

Now we can see how the choice of the parameter k can influence the
behavior of a system. Let us compare a system A1 with k = 1 and a
system A2 with k = 10. The problem is to make a choice between two
competing answers “S → P1 {w+

1 , w1}” and “S → P2 {w+
2 , w2}” (where

the truth values are represented as weights of evidence). It is easy to
see that when w1 = w2 or w+

1 /w1 = w+
2 /w2, the two systems make the

same choice. It is only when a system needs to make a choice between a
higher f and a higher c that the value of k will matter. For example, let
us suppose that w+

1 = w1 = 2, w+
2 = 5, and w2 = 6. In this situation,

in A1, e1 = (2 + 0.5)/(2 + 1) ≈ 0.83, e2 = (5 + 0.5)/(6 + 1) ≈ 0.79, and
thus A1 will choose the first answer (since all of its evidence is positive);
in A2, e1 = (2 + 5)/(2 + 10) ≈ 0.58, e2 = (5 + 5)/(6 + 10) ≈ 0.63, and
thus A2 will choose the second answer (since it is more fully tested, and
its frequency is not much lower than that of the other alternative).

Therefore, k is one of the “personality parameters” of the system,
in the sense that it indicates a certain systematic preference or bias, for
which there is no “optimal value” in general. The larger k is, the more
“conservative” the system is, in the sense that the system always makes
smaller adjustments when e is reevaluated according to new evidence,
than a system having a smaller value of k. This parameter was called
the “flattening constant” by Good ([Good, 1965], where he also tried
to estimate its value according to certain factors that are beyond our
current consideration), and was interpreted by him as a way to choose a
prior probability distribution. The same parameter was interpreted by
Carnap as the “relative weight” of the “logical factor” [Carnap, 1952].

In summary, the choice rule is formally defined in Table 3.7, where
S1 <f1, c1 > and S2 <f2, c2 > are two competing answers to a ques-
tion, and S < Fcho > is the chosen one. When S1 and S2 are the same
statement, the one with a higher confidence value is chosen, otherwise
the one with a higher expectation value is chosen.

J2 \ J1 S1 <f1, c1 >

S2 <f2, c2 > S < Fcho >

Table 3.7: The Choice Rule

78 Chapter 3

3.3.3 Truth-value functions in general

A typical inference rule in NAL has the following format:

{premise1 <f1, c1 >, premise2 <f2, c2 >} � conclusion <f, c>

and a truth-value function calculates < f, c > from < f1, c1 > and
< f2, c2 >. Alternatively, it can be put into a table (as we have seen
previous) where each row and column corresponds to a premise.

The previously defined revision rule is the only inference rule in
NAL whose premises and conclusion contain the same statement. Con-
sequently, the evidence of the premises can be directly treated as ev-
idence of the conclusion, and the conclusion, based on accumulated
evidence, has a higher confidence value than the premises.

In the other inference rules, the premises and the conclusion are
judgments about different statements, so each of them has its own ev-
idence space, and the evidence of a premise cannot be directly used
as evidence of the conclusion. Even if a premise and a conclusion have
overlapping evidence spaces, evidence in the premise will be counted
less in the conclusion. This is the case because according to the seman-
tics of NAL, “amount of evidence” actually measures evidence that
directly supports the statement. When indirect evidence is recognized,
it is turned into direct evidence with a reduced amount (and the detail
differs from rule to rule). Consequently, in every inference rules in NAL,
except revision, the conclusion always has a lower confidence value than
the premises.

I have introduced several uncertainty measurements, and most of
them take values from the [0, 1] interval. Even the amount of evidence,
which is not defined with this range in general, corresponds to this
interval when it is limited to a piece of evidence within a unit amount.
Since they cannot be easily interpreted as “probability” as defined in
probability theory and statistics, we cannot directly apply an existing
theory to guide their calculation in the truth-value functions attached
to various inference rules.9

The approach used in NARS is to see the values in [0, 1] as extended
Boolean values, 0 and 1, and to handle their calculation by extending
the Boolean operators, namely “not,” “and,” and “or.”

9Arguments for this conclusion will be provided in Chapter 8.

The Core Logic 79

The extended “and ” and “or ” are often called Triangular norm
(T-norm) and Triangular conorm (T-conorm), respectively. They are
functions defined on real numbers in [0, 1], being commutative and
associative, and monotonic in each variable. T-norm has boundary
conditions satisfying the truth tables of the Boolean operator “and,”
and T-conorm those of “or.” [Bonissone and Decker, 1986, Dubois and
Prade, 1982, Schweizer and Sklar, 1983].

In this book, these two functions are directly written as and(x1, x2)
and or(x1, x2). Because each is commutative and associative, they can
be extended to take an arbitrary number of arguments:

and(x1, . . . , xn) = and(and(x1, . . . , xn−1), xn),

or(x1, . . . , xn) = or(or(x1, . . . , xn−1), xn).

The usage of T-norm and T-conorm in NARS is different from that
in other approaches [Bonissone and Decker, 1986, Dubois and Prade,
1982], where they are only used to determine the degree of certainty
of the conjunction and disjunction of two propositions, respectively.
In NARS, the T-norm function y = and(x1, . . . , xn) is used when a
quantity y is conjunctively determined by two or more other quantities
x1, . . . , xn — that is, y = 1 if and only if x1 = · · · = xn = 1, and y = 0
if and only if x1 = 0 or . . . or xn = 0; similarly, the T-conorm function
y = or(x1, . . . , xn) is used when a quantity y is disjunctively determined
by two or more other quantities x1, . . . , xn — that is, y = 1 if and only
if x1 = 1 or . . . or xn = 1, and y = 0 if and only if x0 = · · · = xn = 0.
These functions are not directly about the conjunction or disjunction
of Narsese statements.10

Intuitively, a variable y is conjunctively determined by variables x1,
. . ., xn when all the x’s are its necessary factors, or numerically, if y is
never bigger than any of them. Similarly, y is disjunctively determined
by x1, . . . , xn when all the x’s are its sufficient factors, or numerically, it
is never smaller than any of them. In this way, T-norm and T-conorm
are applied in situations where a quantity is determined by several
factors, where we wish the boundary condition to be satisfied, and
where no one factor is more important than any of the others.

10In Chapter 5, we will see that they are still used for the conjunctions and
disjunctions of statements. They are just not merely used in that situation.

80 Chapter 3

There are an infinite number of ways of numerically satisfying the
prescribed conditions on T-norm and T-conorm. For our purpose, it
is desired for them to be continuous and strictly increasing, so that
any upward (downward) change in any argument will cause an upward
(downward) change in the function value. In [Schweizer and Sklar, 1983]
it is proved that all functions satisfying the above conditions are iso-
morphic to (i.e., can be represented as a monotonic transform of) the
“probabilistic” operators:

and(x, y) = xy; or(x, y) = x + y − xy.

It is also shown in [Bonissone and Decker, 1986] that only a small fi-
nite subset of the infinite set of possible T-norms and T-conorms will
produce significantly different results, if we limit our concern to the
“finest level of distinction among different quantifications of uncer-
tainty.” Among those representative operators in the small subset, the
above pair is the only continuous and strict T-norm and T-conorm.
These results show that the above T-norm and T-conorm have not
been chosen arbitrarily for NARS; although in principle there are other
pairs satisfying our requirements, they are usually more complex, and
are not significantly different from the above pair.

The above choice is also justifiable in another way. We call quanti-
ties mutually independent of each other, when given the values of any
of them, the remaining ones cannot be determined, or even bounded
approximately. This type of mutual independence among arguments
is assumed by the probabilistic operators, but not by other repre-
sentative operators, such as the “min/max” pair used in fuzzy logic
[Bonissone and Decker, 1986].

Obviously, to use the probabilistic operators when the mutual in-
dependence does not hold (e.g., x = y or x = not(y)) leads to counter-
intuitive results. In the following, the T-norm and T-conorm are only
used when the “mutual independence” condition is satisfied. As far as
the two premises are not based on overlapping evidence, f1, c1, f2, and
c2 satisfy this requirement, because given the values of any three of
them, the value of the last one cannot be determined, or even bounded.

It should be mentioned that though the T-norm and T-conorm used
in NARS share intuition and mathematical forms with probabilistic for-
mula, they should not been understood as and(x, y) = P (x and y) and

The Core Logic 81

or(x, y) = P (x or y), simply because x and y are usually not random
variables with probability distribution function P .

As usual, the “not” operator on the extended Boolean variable is
defined as

not(x) = 1 − x

In NAL, the truth-value function for most of the inference rules
(with the previously defined revision and choice as exceptions) are built
by the following steps:

1. To treat all the uncertainty values involved as Boolean variables
whose value are either 0 or 1. According to the definition of these
uncertainty measurements and the semantics of Narsese, the un-
certainty values of the conclusion is determined for each combi-
nation of those of the premises.

2. To represent the uncertainty values of the conclusion as Boolean
expressions of the the uncertainty values of the premises that
satisfy the above boundary conditions. Usually there are infinitely
many functions that satisfy the restriction, and the ones accepted
are those that are simple and have natural interpretations.

3. To replace the and, or, and not operator in the Boolean function
by the T-norm (and(x, y) = x∗ y), T-conorm (or(x, y) = 1− (1−
x)(1− y)), and Negation (not(x) = 1−x) functions, respectively,
so as to get a general function on [0, 1].

4. To rewrite the uncertainty functions as truth-value functions (if
they are not already in that form), according to the relationship
between truth value and the other uncertainty measurements.

These are the conceptual steps of the design procedure. When truth-
value functions are introduced in the following descriptions, the first two
steps are often merged, and the last step is often taken implicitly. Since
the result of the above Step 2 may be not unique, the above approach
of building truth-value functions is not a mathematical proof of the
function obtained, and with the progress of the research, the functions
have been modified in different versions of NARS in the past, and it may
still happen in the future, if negative evidence for the design of these

82 Chapter 3

functions is found. As everything else in this theory, these functions are
just “the best we can get according to available evidence.”

3.3.4 Syllogistic rules

In term logics, when two judgments share exactly one common term,
they can be used as premises in an inference rule that derives an in-
heritance relation between the other two (unshared) terms. Altogether,
there are four possible combinations of premises and conclusions, corre-
sponding to the four figures of Aristotle’s Syllogisms [Aristotle, 1989],
three of which are also discussed by Peirce [Peirce, 1931]. They are
listed in Table 3.8.

J2 \ J1 M → P <f1, c1 > P → M <f1, c1 >

S → M <f2, c2 > S → P < Fded > S → P < Fabd >
M → S <f2, c2 > S → P < Find > S → P < Fexe >

Table 3.8: The Syllogistic Rules of NAL-1

The four rules in the table are explained in the following:

1. {M → P <f1, c1 >, S → M <f2, c2 >} � S → P <f, c>
This rule corresponds to Aristotle’s first figure and Peirce’s de-
duction.

2. {P → M <f1, c1 >, S → M <f2, c2 >} � S → P <f, c>
This rule corresponds to Aristotle’s second figure and Peirce’s
abduction (and he also called it hypothesis).

3. {M → P <f1, c1 >, M → S <f2, c2 >} � S → P <f, c>
This rule corresponds to Aristotle’s third figure and Peirce’s in-
duction.

4. {P → M <f1, c1 >, M → S <f2, c2 >} � S → P <f, c>
This rule corresponds to the fourth figure of Aristotle’s Syllogistic
[Bocheński, 1970].

The Core Logic 83

In NAL, the first three rules are named using Peirce’s words. The fourth
rule is called exemplification. The truth-value functions in the table are
named by three letters after the corresponding rule. They are built
according to the general procedure introduced previously.

Obviously, each pair of premises also derives a judgment “P → S,”
whose truth value can be determined by one of the four functions.

The deduction rule in NAL-1 extends the “rule of transitivity” in
NAL-0. For the frequency of the conclusion, f , it is 1 if and only if both
premises have frequency 1. As for the confidence of the conclusion,
c, it reaches 1 only when both premises have truth values < 1, 1 >.
Therefore, the Boolean function we get for deduction is

f = and(f1, f2), c = and(f1, c1, f2, c2)

which leads to truth-value function

Fded : f = f1f2, c = f1c1f2c2

The deduction rule is symmetric to the premises, that is, their order
does not matter.

In NARS, abduction is the inference that, from a shared element
M of the intensions of S and P , determines the truth value of “S →
P ,” and induction is the inference that, from a shared element M of
the extensions of S and P , determines the truth value of “S → P .”
Therefore, derived from the duality of extension and intension, we have
a duality of abduction and induction in NAL.

In both cases, the premises provide a piece of positive evidence with
a unit amount if and only if both of them have truth-value < 1, 1 >,
which can be represented as Boolean function

w+ = and(f1, c1, f2, c2)

For the total amount of evidence, in abduction we get

w = and(f1, c1, c2)

and in induction we get

w = and(c1, f2, c2)

84 Chapter 3

Please note that in the above representation we are mixing two forms
of uncertainty measurement: in the premises, the truth values are used,
while in the conclusion, the amounts of (positive/total) evidence are
used. Also, in these two rules, the two premises play different roles, and
their order matters.

After rewriting the result as truth-value functions, for abduction,
it is

Fabd : f = f2, c = f1c1c2/(f1c1c2 + k)

and for induction, it is

Find : f = f1, c = c1f2c2/(c1f2c2 + k)

In the process of designing truth-value function for induction (and
abduction), a crucial point is to see that when the premises are {M → P,
M → S}, it is the term M (as a whole) that is taken as evidence, and
the amount of evidence it can provide is less than 1. A mistake easy
to make here is to think of M as a set of evidences for “S → P ,” and
think of the number of instances in M as the amount of evidence of
the conclusion. That interpretation is inconsistent with the semantics
of Narsese.

In term logics, “conversion” is an inference from a single premise to
a conclusion by interchanging the subject and predicate terms of the
premise [Bocheński, 1970]. Now we can see conversion, defined in Table
3.9, as a special case of abduction by taking “P → S < f0, c0 >” and
“S → S <1, 1>” (a tautology) as premises, and “S → P <f, c>” as
conclusion.

Using Fabd, we obtain the truth-value functions for the conversion
rule

Fcnv : f = 1, c = f0c0/(f0c0 + k)

{S → P <f0, c0 >} � P → S < Fcnv >

Table 3.9: The Conversion Rules of NAL-1

The Core Logic 85

We could also derive this same result by seeing conversion as a special
case of induction with “P → P < 1, 1 >” and “P → S < f0, c0 >” as
premises.

Similarly we can get the truth-value functions for exemplification.
This rule takes the same premises as the deduction rule, but in its con-
clusion the most general term in the premises, P , becomes the subject,
while the most specific term in the premises, S, becomes the predi-
cate. As in the case of the conversion rule, no negative evidence for the
conclusion can be collected in this way, and

w = w+ = and(f1, c1, f2, c2)

Therefore the truth-value function is

Fexe : f = 1, c = f1c1f2c2/(f1c1f2c2 + k)

As mentioned above, from “M → P < f1, c1 >” and “M → S
<f2, c2 >,” NARS can directly get “S → P <f1, c1f2c2/(c1f2c2 + k)>”
by induction. Now there is also an indirect way to derive “S → P” from
the same premises: via conversion, the second premise yields “S → M
<1, c2f2/(c2f2 +k)>”; then, deductively combining this judgment with
the first premise, NARS arrives at the conclusion “S → P
<f1, f1c1f2c2/(c2f2 + k)>.” Compared with the direct result, this in-
direct conclusion has the same frequency value, but a lower confidence
value. Similarly, abduction can be replaced by conversion-then-
deduction, and exemplification by conversion-then-deduction or deduc-
tion-then-conversion, but all of them give lower confidence values,
compared to the ones produced by the above rules.

These results show that each application of a syllogistic rule in
NARS will cause some information loss (while preserving other infor-
mation, of course), and therefore direct conclusions will always be more
confident. On the other hand, the fact that exactly the same frequency
value is arrived at by following different inference pathways shows that
the truth-value functions defined above have not been coined individ-
ually in ad hoc ways, but are closely related to each other, since all
of them are based on the same semantic interpretation of the truth
value.

86 Chapter 3

In general, from the same set of premises, different sequences of in-
ference steps may assign different truth values to the same statement.
According to the experience-grounded semantics, the truth value as-
signed to a statement reflects the evidence collected in a certain way,
as specified by the rule used in this step of inference. Therefore, it is
normal if different paths lead to different judgments. As far as each step
is justified according to the semantics, all the judgments are valid, and
the system usually just chooses the most confident one.

By comparing the inference rules of NAL-1, we can get the following
conclusions:

• Both frequency and confidence contribute to inference, but in
different ways.

• Revision is the only rule where the confidence of the conclusion
may be higher than those of the premises.

• The confidence of a syllogistic conclusion is never higher than
the confidence of either premise, that is, confidence “declines” in
syllogistic inference.

• In general, confidence declines much slower in deduction than in
induction and abduction.11 In deduction, if both premises have a
confidence value of 1, the conclusion may also have a confidence
value of 1. In induction and abduction, however, the confidence
of the conclusion has an upper bound 1/(1 + k), far less than 1.
So, by saying that “Induction and abduction are more uncertain
when compared with deduction,” what is referred to is not the
“first-order uncertainty,” f (inductive and abductive conclusions
can have a frequency of 1 when all available evidence is positive),
but the “higher-order uncertainty,” c.

Here we can see another function of the personality parameter k:
to indicate the relative confidence of abductive/inductive conclusions.

11This conclusion does not apply to situations where the confidence values of
the premises are all very low. However, the conclusions produced in those situation
usually have little impact on the system.

The Core Logic 87

Intuitively speaking, all intelligent systems (human and computer) need
to maintain a balance between the strictness of deduction and the tenta-
tiveness of induction and abduction. Comparatively speaking, a system
with a small k relies more on abduction and induction, while a system
with a large k relies more on deduction. There is no single “optimal
value” for such a parameter, at least for our current discussions.

3.3.5 Backward inference

The inference rules introduced before (except the choice rule) are for
forward inference, since each of them takes a pair of judgments as
premises (except the conversion rule, which takes a single premise),
and derive a new judgment as conclusion. Backward inference, on the
other hand, happens when a judgment and a question are taken as
premises. We already discussed a special case of backward inference,
that is, the choice rule. This rule is used to decide whether a question
can be directly answered by a judgment, as well as to select an answer
among candidates.

Formally, the backward inference rules for questions are determined
by the following principle: A question Q and a judgment J will give
rise to a new question Q′ if and only if an answer for Q can be derived
from an answer for Q′ and J , by applying a forward inference rule.

For example, the system is asked to decide the truth value for
“goose → swimmer,” that is, whether a goose swims. The system
does not have a direct answer for it, but it has a belief “goose → bird
< 1, 0.9 >.” From the question and the belief, a backward inference
rule produces a derived question “bird → swimmer,” because from an
answer to this question and the belief, the system can derive an answer
to the original question by deduction.

Defined in this way, it is easy to get backward inference rules from
forward inference rules. For example, for a given forward-inference rule
table, first we take the conclusions in the table as questions (Q), one
premise (J2) as a judgment (J), and the other premise (J1, without
truth value) as the derived question. After renaming the terms and
rearranging the order, we get a backward-inference rule table, in which
some terms in the questions can be a “?,” indicating a query for terms
satisfying given condition.

88 Chapter 3

J \ Q M → P P → M

S → M S → P S → P
M → S S → P S → P

Table 3.10: The Backward Syllogistic Rules of NAL-1

For the forward syllogistic rules in Table 3.8, the corresponding
backward-inference rules are in Table 3.10.

This table turns out to be identical to Table 3.8, if the truth-value
functions and the question/judgment difference are ignored. This ele-
gant symmetry reveals an implicit property of the syllogistic rules of
NARS — that is, for any three judgments J1, J2, and J3, if J3 can be
derived from J1 and J2 by a syllogistic rule, then from J3 and J1 J ′

2

can be derived, which has the same statement as J2 (their truth values
may be different). Intuitively, the three inheritance relations constitute
a triangle from any two sides of which the third side can be derived.
Such a property does not give rise to infinite loops in the system, be-
cause if J3 is really derived from J1 and J2, it must share serial numbers
with each of the two, which prevents the system from taking J3 and J1

(or J2) as premises in further inferences.
In NAL-1, if a question cannot be directly answered by the choice

rule, backward inference is used to recursively “reduce” the question
into derived questions, until all of them have direct answers. Then these
answers, together with the judgments contributed in the previous back-
ward inference, will derive an answer to the original question by forward
inference.

3.3.6 NAL-1 summary

Now we have completed the description of a Non-Axiomatic Logic,
NAL-1, with its formal language, semantics, and inference rules. Let
me use an example to show what this logic can do.

To make the description simple, for the initial knowledge we give
frequency value 1 to positive judgments, frequency value 0 to negative

The Core Logic 89

judgments, and confidence value 0.9 to every judgment. At the begin-
ning, the following judgments are given to the system as experience:

(1) swan → bird <1, 0.9>
(2) swan → swimmer <1, 0.9>
(3) seagull → bird <1, 0.9>
(4) seagull → swimmer <1, 0.9>
(5) robin → bird <1, 0.9>
(6) robin → swimmer <0, 0.9>
(7) goose → bird <1, 0.9>
(8) dolphin → swimmer <1, 0.9>

With (1) and (2) as premises, the induction rule derives

(9) bird → swimmer <1, 0.45>

Similarly, from (3) and (4), by induction the system gets

(10) bird → swimmer <1, 0.45>

Since (9) and (10) are derived from distinct bodies of evidence, they
can be used as premises of the revision rule to get

(11) bird → swimmer <1, 0.62>

Given the symmetry of the premises, following the same path the sys-
tem can get another conclusion

(12) swimmer → bird <1, 0.62>

However, this symmetry does not apply to negative judgments. From
(5) and (6), by induction the system gets

(13) bird → swimmer <0, 0.45>

but its symmetric conclusion gets a confidence value 0. Again, applying
the revision rule to (11) and (13), the result is

(14) bird → swimmer <0.67, 0.71>

90 Chapter 3

Therefore, the inductive conclusions are just like statistical conclusions,
except that they are revised incrementally, under the influence of their
confidence values.

What makes NAL different from a purely statistical inference system
is that in it different types of inference are unified, and therefore the
conclusions are not statistical in the traditional sense anymore. From
(7) and (14), by deduction the system get

(14) goose → swimmer <0.67, 0.43>

but the conclusion does not mean that “Sixty-seven percent of geese
can swim.” Similarly, from (8) and (14), by abduction the system gets

(12) dolphin → bird <1, 0.3>

but the conclusion is not based on any observed dolphin which is also a
bird. Instead, the evidential support in the conclusion comes from the
experienced common property of the two terms.

Chapter 4

First-Order Inference

In this chapter, three new layers of the logic, NAL-2, NAL-3, and NAL-
4, will be defined, which introduce terms with internal structures and
variants of the inheritance relation into NAL. Consequently, the ex-
pressive and inferential power of the logic will be increased, step by
step. At the end of the chapter, we will get a complete First-Order
Non-Axiomatic Logic.

4.1 Compound terms

In NAL-1, each term is “atomic,” and named by a word, which is simply
a unique identifier without internal structure. Obviously, Narsese-1 can
only express simple statements.

To represent more complicated experience, “compound terms” are
needed.

Definition 16 A compound term (op c1 · · · cn) is a term formed
by one or more terms c1, · · · , cn, called its component(s), with a term
operator, op. The order of the components usually matters.

Sometimes we prefer the “infix” format of a compound term, that
is, to write (op c1 · · · cn) as (c1 op · · · op cn). When introducing
term operators with two or more components in the following, usually
they are only defined with two components, and the general case (for
both the above prefix representation and the infix representation) is
translated into the two-component case by the following definition.

91

92 Chapter 4

Definition 17 If c1 · · · cn (n > 2) are terms and op is a term operator
defined as taking two arguments, both compound terms (op c1 · · · cn)
and (c1 op · · · op cn) are defined recursively as (op (op c1 · · · cn−1) cn).

In NAL, the term operators are predefined as part of the grammar
of Narsese, with determined (experience-independent) meaning. The
meaning of a compound term has two parts, a literal part and an em-
pirical part, where the former is determined by its definition and other
literal truths about the term, while the latter comes from the system’s
experience when the compound term is used as a whole. In NAL, though
empirical statements are all uncertain (i.e., with frequency in [0, 1] and
confidence in (0, 1)), literal truths remain binary, so their truth values
are omitted in the following description.

To indicate the syntactic complexity of a compound term, a notion
of “level” is recursively defined as the following.

Definition 18 Each term in NAL is on a certain level according to its
syntactical complexity. If a term is atomic, then it is on level 1. If a
term is a compound, then it is one level higher than the highest level of
its components.

Defined in this way, “level” is a syntactic concept, and it has nothing
to do with semantics. Terms of different levels can have inheritance
relations between each other.

All compound terms can be used by the inference rules defined in
NAL-1. When doing so, their internal structures are ignored. In the
following, three extensions of NAL-1 are defined, layer by layer, each of
which processes some special types of compound term.

4.2 NAL-2: sets and variants

of inheritance

NAL-1 is extended into NAL-2 by introducing new copulas to enrich
the system’s expressing capacity, so as to move Narsese closer to natural
languages.

The copula in a term logic intuitively corresponds to the “to be” in
English. However, even such a rough mapping cannot be simply estab-
lished, because as a copula, “to be” has multiple usages, for example:

First-Order Inference 93

type: “Birds are animals.”

element: “Tweety is a bird.”

attribute: “Ravens are black.”

identification: “The morning star is Venus.”

The inheritance relation defined in NAL-1 can be used for the first case,
but not for the others directly, though it is closely related to them. To
introduce these new relations into NAL, the grammar, semantics, and
inference rules all need to be extended.

4.2.1 Similarity

A symmetric inheritance relation similarity is written as “↔.”

Definition 19 The similarity statement “S ↔ P” is defined by two
inheritance statements as S ↔ P ≡ (S → P) ∧ (P → S).

Therefore, the similarity relation is reflexive, symmetric, and transitive.
It follows that an inheritance relation between two terms is implied

by a similarity relation between them.

Theorem 4 (S ↔ P) ⊃ (S → P)

Here “⊃” is the implication operator defined in propositional logic.
The expressions in the theorem are not statements in Narsese, but in
its meta-language.

Two terms related by the similarity relation are in both the exten-
sion and the intension of each other. Here the extension and intension
of a term are defined as before, that is, by the “→” relation, not the
new “↔” relation.

Theorem 5 (S ↔ P) ≡ (S ∈ (PE ∩ P I)) ≡ (P ∈ (SE ∩ SI))

Theorem 6 (S ↔ P) ≡ (SE = PE) ≡ (SI = P I)

94 Chapter 4

That is, “S ↔ P” means “S and P have the same meaning.” Or, we
can say that the two terms are identical.

Two compounds terms are identical if they have the same term
operator, and their corresponding components are identical pair by pair.
Especially, if each of them has exactly one component, then the above
“if” becomes “if and only if.”

Definition 20 The meaning of two compound terms are related in the
following way:

((c1 ↔ d1) ∧ · · · ∧ (cn ↔ dn)) ⊃ ((op c1 · · · cn) ↔ (op d1 · · · dn))

(c ↔ d) ≡ ((op c) ↔ (op d))

To extend the relation to the situations of “incomplete similarity,”
the evidence of a similarity relation is defined like the evidence of an
inheritance relation. For similarity statement “S ↔ P ,” its positive
evidence is in (SE ∩ PE) and (P I ∩ SI), and its negative evidence is in
(SE −PE), (PE −SE), (P I −SI), and (SI −P I). In this way, in general
“similarity” is a matter of degree, measured by a truth value (defined
in NAL-1, as a function of the amount of evidence). In the following, I
reserve the word “identical” for the special situation where a similarity
statement has truth value <1, 1>.

Corresponding to the syllogistic rules in NAL-1, in NAL-2 there
are three combinations of inheritance and similarity, corresponding to
comparison, analogy, and another form of deduction, respectively, as
indicated by the names of truth-value functions in Table 4.1. To make
the table (as well as the following inference tables) simpler, the truth
values of the premises are omitted.

J2 \ J1 M → P P → M M ↔ P

S → M S ↔ P < Fcom > S → P < F ′
ana >

M → S S ↔ P < Fcom > P → S < F ′
ana >

S ↔ M S → P < Fana > P → S < Fana > S ↔ P < Fdd2 >

Table 4.1: The Syllogistic Rules of NAL-2

First-Order Inference 95

In the inference table, F ′
x indicate the truth-value function obtained

by exchanging < f1, c1 > and < f2, c2 > in function Fx, where x is
the indicator of the inference rule (such as ana for analogy, abd for
abduction, and ind for induction). Such a function is needed for every
inference rule whose truth-value function is not symmetric with respect
to the two premises.

In NARS, comparison refers to the inference rule by which a simi-
larity judgment is obtained by comparing the inheritance relations of
two terms to a third term. It is easy to see that the situation here is like
the cases of abduction and induction, except that now the conclusion
is symmetric. Using the same procedure as in NAL-1, we first build
Boolean functions among the variables as the following:

w = and(or(f1, f2), c1, c2), w+ = and(f1, c1, f2, c2)

which lead to the truth-value function

Fcom : f =
f1f2

f1 + f2 − f1f2

, c =
c1c2(f1 + f2 − f1f2)

c1c2(f1 + f2 − f1f2) + k

When f1 = f2 = 0, we define f to be 0 for the sake of continuity.
From an inheritance judgment J1 and a similarity judgment J2, NAL

does a certain type of analogy by replacing a term in J1 by a similar term
provided by J2. The situation here is quite similar to that of deduction
as defined in NAL-1. The difference is, when the similarity judgment
goes to extreme to become an identity judgment, the conclusion should
have the truth-value of the inheritance judgment. Therefore, the confi-
dence should depend more on f2 and c2, and not on f1 anymore. Under
this consideration NAL uses the following truth-value function:

Fana : f = f1f2, c = c1f
2
2 c2

2

If the two premises are both similarity relations, the inference here
is based on the transitivity of the similarity relation. It can be treated
as deduction going in both directions. However, in this case, if one sim-
ilarity judgment goes to extreme to become an identity judgment, the
conclusion should have the truth-value of the other similarity judgment.
Therefore, the following truth-value function is used:

Fdd2 : f = f1f2, c = c1c2(f1 + f2 − f1f2)

96 Chapter 4

The above two truth-value functions are introduced as variants of
the deduction function, rather than obtained by directly analyzing the
truth-value relationship between the premises and the conclusion.

4.2.2 Sets, instance and property

With the inheritance relation defined in NAL-0, terms can form an in-
heritance hierarchy, with respect to their level of generality/specificity.

• If “T1 → T2” is true, and “T2 → T1” is false, then T1 is more
specific than T2, and T2 is more general than T1.

• If both “T1 → T2” and “T2 → T1” are true (that is, “T1 ↔
T2” is true), then T1 and T2 are on the same level of general-
ity/specificity.

• If both “T1 → T2” and “T2 → T1” are false, then T1 and T2 cannot
be compared with respect to generality/specificity.

For various purposes, we often need to define the boundary of such
a hierarchy, by treating certain terms as at the most specific or the
most general level. In NAL-2, two kinds of such compound terms, “ex-
tensional set” and “intensional set,” are introduced.

Definition 21 If T is a term, the extensional set with T as the only
component, {T}, is also a term, and its meaning is defined by

(∀x)((x → {T}) ≡ (x ↔ {T})).

That is, a compound term with such a form is like a set defined by a
sole element. The compound therefore has a special property: all terms
in the extension of {T} must be identical to it, and no term can be
more specific than it (though it is possible for some terms to be more
specific than T).

Theorem 7 For any term T, {T}E ⊆ {T}I .

On the other hand, {T}I is not necessarily included in {T}E.
To name a term like this means to treat its extension as including

an individual. In a natural language, T often corresponds to a proper

First-Order Inference 97

name, and {T} corresponds to a category with a single instance indi-
cated by that proper name. For example, “Tweety is a bird” can be
represented as “{Tweety} → bird” (but not “Tweety → bird,” which
means “Tweety is a kind of bird”).

An instance relation, “◦→,” is another way to represent the same
information.

Definition 22 The instance statement “S ◦→ P” is defined by the
inheritance statement “{S} → P .”

So “Tweety is a bird” can also be represented as “Tweety ◦→ bird.”
The intuitive meaning of “◦→” is similar to the membership relation

(“∈”) in set theory, but in NAL this relation is no longer primary or
necessary (since it is defined by other notions).1

Theorem 8 ((S ◦→ M) ∧ (M → P)) ⊃ (S ◦→ P).

However, “S → M” and “M ◦→ P” does not imply “S ◦→ P .”

Theorem 9 (S ◦→ {P}) ≡ (S ↔ P).

“T ◦→ {T}” follows as a special case. On the other hand, the statement
“T ◦→ T” is not a literal truth, though may be an empirical one.

According to the duality between extension and intension, we can
define another special compound term and the corresponding copula.

Definition 23 If T is a term, the intensional set with T as the only
component, [T], is also a term, and its meaning is defined by

(∀x)(([T] → x) ≡ ([T] ↔ x)).

That is, a compound term with such a form is like a set defined by a sole
attribute. The compound therefore has a special property: all terms in
the intension of [T] must be identical to it, and no term can be more
general than it (though it is possible for some terms to be more general
than T).

Theorem 10 For any term T, [T]I ⊆ [T]E.

On the other hand, [T]E is not necessarily included in [T]I .

1This issue will be discussed in detail in subsection 10.1.3.

98 Chapter 4

To name a term like this means to treat its intension as having an
attribute. In a natural language, T often corresponds to an adjective,
and [T] corresponds to a category with that adjective as the defin-
ing property. For example, “Ravens are black” can be represented as
“raven → [black]” (but not “raven → black”).

A property relation, “→◦,” is another way to represent the same
information.

Definition 24 The property statement “S →◦ P” is defined by the
inheritance statement “S → [P].”

So “Ravens are black” can also be represented as “raven →◦ black.”
This relation can be used when we characterize terms by a set of

primary properties. It can also be directly used in inference.

Theorem 11 (S → M) ∧ (M →◦ P) ⊃ (S →◦ P).

However, “S →◦ M” and “M → P” does not imply “S →◦ P .”

Theorem 12 ([S] →◦ P) ≡ (S ↔ P).

“[T] →◦ T” follows as a special case. On the other hand, the statement
“T →◦ T” is not a literal truth, though may be an empirical one.

An instance-property relation, “ ◦→◦ ,” is defined by combining
“ ◦→” and “→◦ .”

Definition 25 The instance-property statement “S ◦→◦ P” is defined
by the inheritance statement “{S} → [P].”

Intuitively, it states that an instance S has a property P . This relation
is not really necessary, and it is just a way to simplify a statement.

So “Tweety is yellow” can also be represented as “Tweety ◦→◦
yellow” (but not “Tweety →◦ yellow,” “Tweety ◦→ yellow,” or
“Tweety → yellow”).

Theorem 13 (S ◦→◦ P) ≡ ({S} →◦ P) ≡ (S ◦→ [P])

First-Order Inference 99

<copula> ::= ↔ | ◦→ | →◦ | ◦→◦
<term> ::= {<term>} | [<term>]

Table 4.2: The New Grammar Rules of Narsese-2

S ↔ P {S} ↔ {P}
S ↔ P [S] ↔ [P]

S → {P} S ↔ {P}
[S] → P [S] ↔ P
S ◦→ P {S} → P
S →◦ P S → [P]
S ◦→◦ P {S} → [P]

Table 4.3: The Equivalence Rules of NAL-2

4.2.3 NAL-2 summary

In summary, while all the grammar rules of Narsese-1 are still valid in
NAL-2, there are additional grammar rules of Narsese-2, as listed in
Table 4.2.

Beside the syllogistic rules in Table 4.1, the previous definitions give
the equivalence rules of NAL-2 in Table 4.3, where the two statements
in the same row can replace each other. That is, a judgment with one
statement can derive another judgment with the other statement, with
the same truth value.

Since each new copula is defined in terms of the inheritance relation
“→,” its semantics and relevant inference rules can be derived from
those in NAL-1.

Please note that the extension and intension of a term are still
defined by the inheritance relation, not by the new relations derived
from it. Therefore,

• “S ◦→ P” says that the extension of P include {S} (not S) as an
element;

100 Chapter 4

• “S →◦ P” says that the intension of S include [P] (not P) as an
element.

To simplify the implementation of the system, relations “ ◦→,”
“→◦ ,” and “ ◦→◦ ” are only used in the input/output interface,
and within the system they are translated into “→.” Therefore we do
not really need to introduce inference rules for them. The same thing
cannot be done to “↔.” Though the “↔” relation is defined in terms of
the “→” relation, the system usually cannot translate a “↔” judgment
into an equivalent “→” judgment. Therefore, NAL-2 uses five copula in
its interface language, but only keep two of them (“→” and “↔”) in its
internal representation, without losing any expressive and inferential
power.

As an example of inference in NAL-2, we start with the following
judgments:

(1) Tweety ◦→ bird <1, 0.9>
(2) Tweety ◦→◦ yellow <1, 0.9>
(3) Tweety ↔ Birdie <1, 0.9>

Using the equivalence rules, they derive the following judgments,
respectively:

(4) {Tweety} → bird <1, 0.9>
(5) {Tweety} → [yellow] <1, 0.9>
(6) {Tweety} ↔ {Birdie} <1, 0.9>

From (4) and (5), by induction the system derives

(7) bird → [yellow] <1, 0.45>

From (4) and (6), by analogy the system derives

(8) {Birdie} → bird <1, 0.73>

which can be displayed as

(9) Birdie ◦→ bird <1, 0.73>

4.3 NAL-3: intersections and differences

In NAL-3, compound terms are composed by combining the extension
or intension of existing terms in certain way.

First-Order Inference 101

4.3.1 Intersections

Definition 26 Given terms T1 and T2, their extensional intersection,
(T1 ∩ T2), is a compound term defined by

(∀x)((x → (T1 ∩ T2)) ≡ ((x → T1) ∧ (x → T2))).

From right to left, the equivalence expression defines the extension of
the compound, i.e., “(x → T1)∧(x → T2)” implies “x → (T1∩T2)”; from
left to right, it defines the intension of the compound, i.e., “(T1∩T2) →
(T1 ∩ T2)” implies “(T1 ∩ T2) → T1” and “(T1 ∩ T2) → T2.”

As an example, “Ravens are black birds” can be represented as
“raven → ([black] ∩ bird),” where the predicate term is an extensional
intersection of the term [black] and the term bird.

Theorem 14

(T1 ∩ T2)
E = TE

1 ∩ TE
2 , (T1 ∩ T2)

I = T I
1 ∪ T I

2

In the above expressions, the “∩” sign is used in two different senses.
On the right-side of the first expression, it indicates the ordinary inter-
section of sets, but on the left-side of the two expressions, it is the new
intersection operator of terms. Though these two senses are intuitively
similar, they are not the same, because the term operator is related to
both the extension and the intension of a term.

As the common extension of the two terms, the compound term
(T1∩T2) inherits properties of both T1 and T2. That is why its intension
is the union of the intensions of its two components.

The above definition and theorem specify the literal meaning of
the compound terms, which is formed when a compound is built from
its components. Later, the meaning of the compound may become
more or less different, as the result of new experience and inference
activity.2

The intensional intersection of terms is defined symmetrically.

Definition 27 Given terms T1 and T2, their intensional intersection,
(T1 ∪ T2), is a compound term defined by

(∀x)(((T1 ∪ T2) → x) ≡ ((T1 → x) ∧ (T2 → x))).

2This issue is discussed in detail in subsection 11.1.5.

102 Chapter 4

From right to left, the equivalence expression defines the intension of
the compound, i.e., “(T1 → x)∧(T2 → x)” implies “(T1∪T2) → x”; from
left to right, it defines the extension of the compound, i.e., “(T1∪T2) →
(T1 ∪ T2)” implies “T1 → (T1 ∪ T2)” and “T2 → (T1 ∪ T2).”

Intuitively, the intensional intersection of two terms is defined by
the common properties of the terms.

Theorem 15

(T1 ∪ T2)
I = T I

1 ∩ T I
2 , (T1 ∪ T2)

E = TE
1 ∪ TE

2

Now we can see that the duality of extension and intension in NAL
corresponds to the duality of intersection and union in set theory —
intensional intersection corresponds to extensional union, and exten-
sional intersection corresponds to intensional union.3

From the definitions, it is obvious that both intersections are sym-
metric to their components:

Theorem 16

(T1 ∩ T2) ↔ (T2 ∩ T1)
(T1 ∪ T2) ↔ (T2 ∪ T1)

The relation between the compounds to their components is cap-
tured by the following theorem:

Theorem 17

(T1 ∩ T2) → T1

T1 → (T1 ∪ T2)

Both operators can be extended to take more than two arguments.
Since “∩” and “∪” are both associative and symmetric, the order of
their components does not matter. A special situation for these two
operators is when the components are the same.

3Some people may think that it is more natural to call (T1 ∪ T2) “extensional
union” than “intensional intersection,” because the symbol used for the term opera-
tor is the union operator in set theory. I do it the other way to stress its relation with
the extensional intersection, as well as with the “difference” terms to be introduced
in the following.

First-Order Inference 103

Theorem 18

(T ∪ T) ↔ T
(T ∩ T) ↔ T

The following implications are derived from the definition of the
compound terms.

Theorem 19

T1 → M ∧ ¬((T1 ∪ T2) → M) ⊃ ¬(T2 → M)
¬(T1 → M) ∧ (T1 ∩ T2) → M ⊃ T2 → M

M → T1 ∧ ¬(M → (T1 ∩ T2)) ⊃ ¬(M → T2)
¬(M → T1) ∧ M → (T1 ∪ T2) ⊃ M → T2

These implications will be turned into inference rules in the next chap-
ter, which can be used to “decompose” a compound term to get con-
clusions about its components.

The two intersection operators keep inheritance and similarity rela-
tions between terms:

Theorem 20

S → P ⊃ (S ∪ M) → (P ∪ M)
S → P ⊃ (S ∩ M) → (P ∩ M)
S ↔ P ⊃ (S ∪ M) ↔ (P ∪ M)
S ↔ P ⊃ (S ∩ M) ↔ (P ∩ M)

In these propositions, M can be any term in VK . The same is assumed
for the implications introduced later.

If a term is taken as a set, then all the above theorems can be
proved in set theory. However, in NAL even if sets can be defined (as
in NAL-2), not all terms are sets, and the above theorems should not
be understood as equivalent to their counterparts in set theory, but as
(partially) isomorphic to them.

4.3.2 Differences

The above two compound terms are defined by restricting the extension
or intension of a term with an additional positive statement. In the
following we do the same thing, but with a negative statement.

104 Chapter 4

Definition 28 If T1 and T2 are different terms, their extensional dif-
ference, (T1 − T2), is a compound term defined by

(∀x)((x → (T1 − T2)) ≡ ((x → T1) ∧ ¬(x → T2))).

From right to left, the equivalence expression defines the extension of
the compound, i.e., “(x → T1) ∧ ¬(x → T2)” implies “x → (T1 − T2)”;
from left to right, it defines the intension of the compound, i.e., “(T1 −
T2) → (T1 − T2)” implies “(T1 − T2) → T1” and “¬((T1 ∩ T2) → T2).”

Given this definition, “Penguins are birds that cannot fly” can be
represented as “penguin → (bird−[flying]),” where the predicate term
is a extensional difference of the term bird and the term [flying].

Obviously, (T2−T1) can also be defined, but it will be different from
(T1 − T2).

Theorem 21

(T1 − T2)
E = TE

1 − TE
2 , (T1 − T2)

I = T I
1

Intuitively, (T1−T2) is (T1∩ (non-T2)), where (non-T2) is a term whose
extension includes all terms in VK that are not in the extension of
T2. However, the intension of this term is empty, because such a de-
finition specifies no common (affirmatively specified) property for the
terms in its extension. Since no additional property can be assigned
to the compound, the intension of (T1 − T2) is the same as that of
T1. For the same reason, in Narsese there is no term defined as the
negation of another term, though we can talk about (non-T) in the
meta-language.4

Symmetrically, intensional differences can be defined.

Definition 29 If T1 and T2 are different terms, their intensional dif-
ference, (T1 � T2), is a compound term defined by

(∀x)(((T1 � T2) → x) ≡ ((T1 → x) ∧ ¬(T2 → x))).

From right to left, the equivalence expression defines the intension of the
compound, i.e., “(T1 → x)∧¬(T2 → x)” implies “(T1 �T2) → x”; from
left to right, it defines the extension of the compound, i.e., “(T1�T2) →
(T1 � T2)” implies “T1 → (T1 � T2)” and “¬(T2 → (T1 � T2)).”

4Though in Narsese there is no negated term, there are negated statements,
which will be defined in the next chapter.

First-Order Inference 105

Theorem 22

(T1 � T2)
I = T I

1 − T I
2 , (T1 � T2)

E = TE
1

Intuitively, intensional difference is used to relax the requirement of a
category by removing some positive properties. As a result, the original
instances remains.

The relation between the difference compounds to their first com-
ponent is captured by the following theorem:

Theorem 23

(T1 − T2) → T1

T1 → (T1 � T2)

The relation between the difference compounds to their second com-
ponent is captured by the following theorem:

Theorem 24

M → (T1 − T2) ⊃ ¬(M → T2)
(T1 � T2) → M ⊃ ¬(T2 → M)

Please notice the difference between the above two theorems: while in
the former the result can be used to address both the extension and
the intension of the compound, in the latter it is only about one of the
two aspects.

Unlike the intersection operators, the difference operators cannot
take more than two arguments, though we can still use both prefix
and infix formats to represent them, so as to be consistent with other
compound terms. Also, neither (T − T) nor (T � T) is a valid term.

According to the literal meaning of the compound terms, there are
the following implications involving extensional/intensional differences:

Theorem 25

T1 → M ∧ ¬((T1 � T2) → M) ⊃ T2 → M
¬(T1 → M) ∧ ¬((T2 � T1) → M) ⊃ ¬(T2 → M)

M → T1 ∧ ¬(M → (T1 − T2)) ⊃ M → T2

¬(M → T1) ∧ ¬(M → (T2 − T1)) ⊃ ¬(M → T2)

106 Chapter 4

The two difference operators keep inheritance and similarity rela-
tions between terms, though may reverse the direction of the relation:

Theorem 26

S → P ⊃ (S − M) → (P − M)
S → P ⊃ (M − P) → (M − S)
S → P ⊃ (S � M) → (P � M)
S → P ⊃ (M � P) → (M � S)
S ↔ P ⊃ (S − M) ↔ (P − M)
S ↔ P ⊃ (M − P) ↔ (M − S)
S ↔ P ⊃ (S � M) ↔ (P � M)
S ↔ P ⊃ (M � P) ↔ (M � S)

4.3.3 Compound sets

To apply the set-theoretic operators defined above to the sets defined
in NAL-2, we get the following definitions:

Definition 30 If t1, · · · , tn (n ≥ 2) are different terms, a compound
extensional set {t1, · · · , tn} is defined as (∪ {t1} · · · {tn}); a com-
pound intensional set [t1, · · · , tn] is defined as (∩ [t1] · · · [tn]).

In this way, extensional sets and intensional sets can both have multiple
components. Intuitively, the former defines a term by enumerating its
instances, and the latter by enumerating its properties. Again, the order
of the components does not matter.

Now we can see that a set is a kind of compound term, whose
internal structure fully specifies its extension (for an extensional set)
or intension (for an intensional set), in the sense of identical terms. For
example, for “{x} → {t1, t2, t3}” to be true, x must be identical to t1,
t2, or t3.

These compound sets satisfy the following identity relations (where
t1, t2, t3 are different terms).

First-Order Inference 107

Theorem 27

({t1, t2} ∪ {t2, t3}) ↔ {t1, t2, t3}
({t1, t2} ∩ {t2, t3}) ↔ {t2}
({t1, t2} − {t2, t3}) ↔ {t1}

([t1, t2] ∩ [t2, t3]) ↔ [t1, t2, t3]
([t1, t2] ∪ [t2, t3]) ↔ [t2]
([t1, t2] � [t2, t3]) ↔ [t1]

These relations can be extended to sets with more (or less) than two
components. These results are similar to the ones in set theory, though
in NAL not all terms can be treated as sets.

4.3.4 NAL-3 summary

The additional grammar rules of Narsese-3 are listed in Table 4.4.

<term> ::= {<term>+} | [<term>+]
| (∩ <term><term>+) | (∪ <term><term>+)
| (− <term><term>) | (� <term><term>)

Table 4.4: The New Grammar Rules of Narsese-3

The previous grammar rule for extensional set and intensional set
becomes a special case of the new rule. For sets with multiple compo-
nents, “,” can be used to separate them. For an intersection or difference
term, an “infix” format can also be used, as mentioned in the previous
section.

Related to the new compound terms, the most important inference
rules introduced in NAL-3 are those that combine two inheritance state-
ments into a new one with a compound term as subject or predicate.
These rules are listed in Table 4.5, which are applied only when T1 and
T2 are different, and do not have each other as component.

108 Chapter 4

J2 \ J1 M → T1 T1 → M

T2 → M (T1 ∪ T2) → M <Fint >
(T1 ∩ T2) → M <Funi >
(T1 � T2) → M <Fdif >

M → T2 M → (T1 ∩ T2) <Fint >
M → (T1 ∪ T2) <Funi >
M → (T1 − T2) <Fdif >

Table 4.5: The Composition Rules of NAL-3

The truth-value functions in Table 4.5 are defined as the following:

Fint : f = and(f1, f2)
c = or(and(not(f1), c1), and(not(f2), c2)) + and(f1, f2, c1, c2)

Funi : f = or(f1, f2)
c = or(and(f1, c1), and(f2, c2)) + and(not(f1), not(f2), c1, c2)

Fdif : f = and(f1, not(f2))
c = or(and(not(f1), c1), and(f2, c2)) + and(f1, not(f2), c1, c2)

To understand the above functions, let us look at the extensional
cases, where the two premises have a common subject.

The frequency functions directly come from the definitions of the
compounds: “M → (T1 ∩ T2)” if “M → T1” and “M → T2”; “M →
(T1 ∪ T2)” if “M → T1” or “M → T2”; “M → (T1 − T2)” if “M → T1”
but not “M → T2”.

The confidence functions are determined by listing the various cases
where the conclusion gets full evidence (in idealized situations). For ex-
ample, for “M → (T1∩T2),” it happens when one premise is absolutely
false, or when both premises have full evidence. The other confidence
functions can be obtained similarly.

The intensional cases are completely symmetric to the extensional
ones, so the same set of truth functions is used, though for the (exten-
sional and intensional) intersections, the functions are switched.

First-Order Inference 109

As an example, given the following judgments,

(1) {Tweety} → bird <1, 0.9>
(2) {Tweety} → [yellow] <1, 0.9>
(3) {Tweety} → canary <1, 0.9>

from (1) and (2) the system composes a compound term “([yellow] ∩
bird)” (“yellow bird”), with “{Tweety}” in its extension:

(4) {Tweety} → ([yellow] ∩ bird) <1, 0.81>

Then, from (3) and (4) by induction the following judgment is derived:

(5) canary → ([yellow] ∩ bird) <1, 0.41>

In the last step, the compound terms involved are treated just like
atomic terms.

4.4 NAL-4: products, images,

and ordinary relations

One common criticism to Aristotle’s Syllogism, or to term logic in gen-
eral, is that it cannot represent and process a relation that is not a
copula [Bocheński, 1970]. In NAL-4, these relations are handled with
the help of certain types of compound terms, using an idea borrowed
from set theory.

4.4.1 Ordinary relations and products

In NAL-4, “ordinary relations” indicates the relations among terms
that are not the inheritance relation or its variants (such as similar-
ity, instance, property, and instance-property). These relations may be
not reflexive, not transitive, not merely reflexive and transitive, or not
defined on all terms. The copulas are defined in the meta-language
of NAL, with fixed (built-in) meaning to the system. In contrary, the
ordinary relations are described in Narsese, with experience-grounded
meaning.

110 Chapter 4

Definition 31 For two terms T1 and T2, their product (T1 × T2) is a
compound term defined by

((S1 × S2) → (P1 × P2)) ≡ ((S1 → P1) ∧ (S2 → P2)).

This definition can be extended as before to allow more than two
components in a product. Also, the “prefix” format can be used for
products.

Unlike the term operators introduced in NAL-3, the product oper-
ator allows the components to be the same. That is, (T × T) is a valid
compound term. (T1 × T2) and (T2 × T1) are usually different, and so
are (T1 × (T2 × T3)) and ((T1 × T2) × T3).

Theorem 28

(S → P) ≡ ((M × S) → (M × P)) ≡ ((S × M) → (P × M))

(S ↔ P) ≡ ((M × S) ↔ (M × P)) ≡ ((S × M) ↔ (P × M))

Theorem 29

((S1 × S2) ↔ (P1 × P2)) ≡ ((S1 ↔ P1) ∧ (S2 ↔ P2))

That is, two products are identical if and only if and only if their
corresponding components are identical.

Theorem 30

{(x × y) |x ∈ TE
1 , y ∈ TE

2 } ⊆ (T1 × T2)
E

{(x × y) |x ∈ T I
1 , y ∈ T I

2 } ⊆ (T1 × T2)
I

The “⊆” cannot be replaced by “=” in the above theorem, because
(T1×T2)

E and (T1×T2)
I may contain other terms that are not products.

Definition 32 A relation is a term R such that there is a product P
satisfying “P → R” or “R → P”.

Therefore in NAL a relation is not a set, because it is not only defined
extensionally. A product is a relation (because “(T1×T2) → (T1×T2)”),
but a relation is not necessarily a product. In NAL, a relation can be
an atomic term.

First-Order Inference 111

For example, “Acid and base neutralize each other” can be rep-
resented as “(acid × base) → neutralization,” and “Neutralization
happens between acid and base” can be represented as “neutralization →
(acid × base).”

4.4.2 Images

Given one component, the “image” operator identifies the other one in
the extension or intension of a given relation with two components.

Definition 33 For a relation R and a product (× T1 T2), the exten-
sional image operator, “⊥,” and intensional image operator, “�,” of
the relation on the product are defined as the following, respectively:

((× T1 T2) → R) ≡ (T1 → (⊥ R � T2))) ≡ (T2 → (⊥ R T1 �)))

(R → (× T1 T2)) ≡ ((� R � T2)) → T1) ≡ ((� R T1 �)) → T2)

where “�” is a special symbol indicating the location of T1 or T2 in the
product, and it can appear in any place, except the first (which is the
relation), in the component list. When it appears at the second place,
the image can also be written in infix format as (R⊥T2) or (R�T2)
(in other cases, only the prefix format is used).

For example, “Acid corrodes metal” can be equivalently represented
as “(× acid metal) → corrosion,” “acid → (⊥ corrosion � metal),”
and “metal → (⊥ corrosion acid �).”

The above definition can be extended to include products with more
than two components, where the image can only be written in the prefix
format.

In general, (R⊥T2) and (R�T2) are different, but there are situa-
tions where they are the same.

Theorem 31

T1 ↔ ((T1 × T2)⊥T2)

T1 ↔ ((T1 × T2)�T2)

112 Chapter 4

Intuitively, the above theorem shows that starting from a term, a “prod-
uct” followed by an “image” will go back to the same term. However,
if the order of the two operators is switched, the result is different:

Theorem 32

((R⊥T) × T) → R

R → ((R�T) × T)

The “→” in the above theorem cannot be replaced by the “↔.”
An image operator can be applied to both sides of an inheritance re-

lation, though in the result, the subject and predicate may be switched:

Theorem 33

S → P ⊃ (S ⊥ M) → (P ⊥ M)
S → P ⊃ (S � M) → (P � M)
S → P ⊃ (M ⊥ P) → (M ⊥ S)
S → P ⊃ (M � P) → (M � S)

4.4.3 NAL-4 summary

In summary, NAL-4 introduces the new grammar rules in Table 4.6.

<term> ::= (× <term><term>+)
| (⊥ <term><term>∗ � <term>∗)
| (� <term><term>∗ � <term>∗)

Table 4.6: The New Grammar Rules of Narsese-4

There is no new inference rule directly defined in NAL-4, except the
equivalence rules in Table 4.7, given by the previous definitions.
The table does not include all variants of a rule obtained by chang-
ing the component list of the compound.

The following example shows the capability of NAL-4. Let’s start
with three judgments:

(1) vinegar → acid <1, 0.9>
(2) baking-soda → base <1, 0.9>
(3) (× vinegar baking-soda) → neutralization <1, 0.9>

First-Order Inference 113

S → P (S × M) → (P × M)
S ↔ P (S × M) ↔ (P × M)

(× T1 T2) → R T1 → (⊥ R � T2)
R → (× T1 T2) (� R � T2) → T1)

Table 4.7: The Equivalence Rules of NAL-4

Then the following judgment can be derived as an equivalent form of
(3):

(4) vinegar → (⊥ neutralization � baking-soda) <1, 0.9>

From (1) and (4), by induction the system gets

(5) acid → (⊥ neutralization � baking-soda) <1, 0.45>

which can be equivalently transformed into

(6) baking-soda → (⊥ neutralization acid �) <1, 0.45>

From (2) and (6), by induction again:

(7) base → (⊥ neutralization acid �) <1, 0.29>

which can be rewritten as

(8) (× acid base) → neutralization <1, 0.29>

This example shows that though the inference rules of NAL are de-
fined on the inheritance relation and its variants, other relations (like
“neutralization”) can also be represented and processed properly.

Chapter 5

Higher-Order Inference

The NAL built so far is “first-order,” in the sense that statements are
relations among terms, but a statement cannot be treated as a term. In
“higher-order inference,” a statement can be treated as a term, therefore
there are statements on statements, as well as inference on this kind of
higher-order statements. In NAL, though it is possible to further divide
higher-order statements into second-order, third-order, and so on, such
a distinction is not practically useful. Therefore, they will be covered
together under the same notion of “higher-order statements.” In this
chapter, NAL will be extended, step by step, to include various types
of higher-order statements, as well as the inference on them.

5.1 NAL-5: statements as terms

In NAL-5, new grammar and inference rules are introduced, so that the
system can treat a statement as a term.

5.1.1 Higher-order statements

First, the new grammar rules of Narsese-5 are listed in Table 5.1. In
NAL-5 a statement can be used as a term (so it can be involved in var-
ious inheritance and ordinary relations). Some ordinary relations, such
as “believe,” “say,” “know,” and so on, take a statement as an argu-
ment. For example, “John knows that whale is a kind of mammal” is

115

116 Chapter 5

<term> ::= (<statement>)
<statement> ::= <term>

| (¬ <statement>)
| (∧ <statement><statement>+)
| (∨ <statement><statement>+)

<copula> ::= ⇒ | ⇔

Table 5.1: The New Grammar Rules of Narsese-5

represented in Narsese as “({John}×{whale → mammal}) → know,”
where the subject term is a product containing a statement.

On the other hand, a term can also be used as a statement (that
corresponds to the name of a statement, such as “Newton’s first law”).
However, it does not mean that there is no difference between term and
statement. In NAL, a statement has both meaning and truth value, but
a non-statement term only has meaning (without truth value).

Compound statements can be formed using statement operators
negation (“¬”), conjunction (“∧”), and disjunction (“∨”), whose mean-
ings are intuitively similar to those in propositional logic.1 As usual,
conjunction and disjunction can be used both in the prefix format and
the infix format.

Finally, two new copulas, implication (“⇒”) and equivalence (“⇔”),
are defined between statements. Intuitively, they correspond to “if” and
“if-and-only-if,” respectively. They are “higher-order relations” because
they are only defined between two statements.

Please note that in general “⇒” and “⇔” are different from “⊃”
and “≡,” though their intuitive meanings are similar. The former two
belong to the object language (Narsese), while the latter two belong
to the meta-language of Narsese (propositional calculus). The two new
copulas in NAL have different status from the three statement operators

1In this book, though the same symbols are used for the statement operators
in Narsese and the logical connectives in the meta-language of NAL (as defined in
propositional calculus), they should be distinguishable by context.

Higher-Order Inference 117

mentioned above, whereas in propositional calculus the five correspond-
ing notions have the same status as truth-value operators.2

5.1.2 Implication and inheritance

First, the implication relation is defined by valid inference in NAL.

Definition 34 If S1 and S2 are statements, “S1 ⇒ S2” is true (i.e.,
has truth value < 1, 1>) if and only if from “S1 < 1, 1>” alone NAL
can derive “S2 <1, 1>.”

The derivation in the above definition can consists of any (finite) num-
ber (0, 1, 2, ..., n) of inference steps.

Theorem 34 The implication relation, “⇒,” is a reflexive and tran-
sitive relation from one statement to another statement.

Since the above theorem of implication is parallel to the definition of
inheritance (in NAL-0), higher-order inference in NAL can be defined
as partially isomorphic to first-order inference. The correspondences are
listed in Table 5.2.

first-order inference higher-order inference
inheritance implication
similarity equivalence
subject antecedent
predicate consequent
extension sufficient condition
intension necessary condition
extensional intersection conjunction
intensional intersection disjunction

Table 5.2: The Isomorphism Between First-Order and Higher-Order

The definitions of the new notions in Table 5.2 are in the following.

Definition 35 An implication statement consists of two statements
related by the implication relation. In implication statement “A ⇒ C,”
A is the antecedent, and C is the consequent.

2This difference will be discussed in detail in subsection 9.4.1.

118 Chapter 5

Definition 36 Given experience K, the sufficient conditions of a state-
ment T is the set of statements T S = {x |x ∈ VK ∧ x ⇒ T}; the neces-
sary conditions of T is the set of statements TN = {x |x ∈ VK ∧ T ⇒
x}.

Definition 37 For an implication statement “A ⇒ C,” its evidence
are statements in AS and CN . Among them, statements in (AS ∩ CS)
and (CN ∩ AN) are positive evidence, while statements in (AS − CS)
and (CN − AN) are negative evidence.

Definition 38 The equivalence relation is a symmetric implication re-
lation. That is, “A ⇔ B” is defined to mean “(A ⇒ B) ∧ (B ⇒ A).”

The amounts of evidence and the truth value for a higher-order
statement are defined in the same way from evidence as for first-order
statements.

Now the meaning of a statement includes not only its extension and
intension, but also its sufficient and necessary conditions.

Please note that the truth value of an implication (or equivalent)
statement do not depend on all its inheritance (or similarity) relations
with other terms. Two statements can be fully equivalent (i.e., “P ⇔
Q” has a frequency = 1), but still have different meanings (i.e., “P ↔
Q” has a frequency < 1). On the other hand, if two statements have
the same meaning, they should also have the same truth value.

Definition 39 When S1 and S2 are different statements, their con-
junction, (S1 ∧ S2), is a compound statement defined by

(∀x)((x ⇒ (S1 ∧ S2)) ≡ ((x ⇒ S1) ∧ (x ⇒ S2))).

Their disjunction, (S1 ∨ S2), is a compound statement defined by

(∀x)(((S1 ∨ S2) ⇒ x) ≡ ((S1 ⇒ x) ∧ (S2 ⇒ x))).

The above two statement operators are symmetric, and can be extended
to take more than two arguments.

Because of this isomorphism, there is an isomorphic inference rule
in NAL-5 for the following rules defined previously:

Higher-Order Inference 119

• The NAL-1 rules for choice, revision, deduction, abduction, in-
duction, exemplification, and conversion.

• The NAL-2 rules for revision, comparison, analogy, conversion,
and deduction.

• The NAL-3 rules for the processing of intersections.

The term operators for (extensional/intensional) set, product, and
(extensional/intensional) image are not involved in the isomorphism be-
tween first-order and higher-order terms. They treat higher-order terms
just like first-order terms, and there is no special rule added.

To treat conditional statements (implications) and categorical state-
ments (inheritances) in a similar way is not a new idea. The following
opinion can be traced back to Leibniz: “Conditionals are categorical
by virtue of the fact that the relationship between an antecedent and
a consequent is exactly that the relationship between a subject and
a predicate, namely, containment” [Englebretsen, 1981]. In predicate
calculus, categorical statements are translated into conditional state-
ments. What makes NAL different is that it does not treat the two
as the same, but as isomorphic to each other. Consequently, the cor-
responding inference rules have different forms and meanings, though
using the same truth-value function.

5.1.3 Implication as conditional statement

Besides the above isomorphism, higher-order inference and first-order
inference in NAL can be directly related to each other, by extending the
identity between an implication statement (S1 ⇒ S2) and an inference
process (from S1 to S2) to actual judgments.

By definition, in NAL a judgment “S < f, c >” indicates that
“The degree of belief the system has on statement S, according to
available evidence, is measured by truth value < f, c >.” Now if we
assume that the available evidence currently used on the evaluation of
S can be written as a compound statement E, then the same meaning
can be represented by “E ⇒ S < f, c >,” that is, “The degree of
belief the system has on statement ‘If E is true, then S is true’ is
measured by truth value < f, c >.” In this way, a statement S is

120 Chapter 5

equivalently transformed into an implication statement “E ⇒ S” (“If
the available evidence is true, then S is true”). This transformation is
justified according to the semantics of NAL.

This transformation is a conceptual one, not an actual one in the
sense that there is a statement used by NAL corresponding to the above
E. This conceptual transformation is used to justify inference rules. We
can add this implicit conditions into the premises, so as to change the
premise combinations into the ones for which we already have inference
rules. Finally, we remove the implicit condition from the conclusion.
Table 5.3 contains several rules obtained in this way.

premises add condition conclusion drop condition
M ⇒ P, M M ⇒ P, E ⇒ M E ⇒ P P <Fded >
P ⇒ M, M P ⇒ M, E ⇒ M E ⇒ P P <Fabd >
M ⇔ P, M M ⇔ P, E ⇒ M E ⇒ P P <F ′

ana >

Table 5.3: The Conditional Syllogistic Rules (1)

Similarly, when the two premises can be seen as derived from the
same evidence, it can be used as the common virtual condition of the
two, and some conclusions can be derived accordingly, as in Table 5.4.

premises add condition conclusion drop condition
P, M E ⇒ P, E ⇒ M M ⇒ P M ⇒ P <Find >
P, M E ⇒ P, E ⇒ M M ⇔ P M ⇔ P <Fcom >
P, M E ⇒ P, E ⇒ M E ⇒ (P ∧ M) P ∧ M <Fint >
P, M E ⇒ P, E ⇒ M E ⇒ (P ∨ M) P ∨ M <Funi >

Table 5.4: The Composition Rules of NAL-5

The truth-value functions in Table 5.3 and Table 5.4. are those
defined in NAL-1 to NAL-3. For practical purpose, we can ignore the
two columns in the middle, and treat the rules as directly go from the
first column (premises) to the last column (conclusions).

Higher-Order Inference 121

Now we have three groups of syllogistic rules (deduction, abduction,
and induction), one defined on the inheritance relation (in NAL-1),
one on the implication relation (in the previous subsection), and one
on a mixture of the two (above). In the three groups, each type of
inference (deduction, abduction, or induction) has a different form, but
uses the same truth-value function. The last group is similar to how the
three types of inference are defined in extended propositional calculus
[Flach and Kakas, 2000], except that in NAL the statements have truth
values attached to indicate their evidential support.

Also according to the semantical interpretation of implication, we
have

(M ⇒ ((∧ A1 · · ·Am) ⇒ C)) ≡ ((∧ MA1 · · ·Am) ⇒ C)

that is, a conditional statement of a conditional statement is equivalent
to a conditional statement with a conjuncted condition. This is similar
to what is called “exportation” in propositional logic [Copi, 1982]. This
equivalence give us the rules in Table 5.5.

{(∧ MA1 · · ·Am) ⇒ C, M} � (∧ A1 · · ·Am) ⇒ C <Fded >
{(∧ MA1 · · ·Am) ⇒ C, (∧ A1 · · ·Am) ⇒ C} � M <Fabd >
{(∧ A1 · · ·Am) ⇒ C, M} � (∧ MA1 · · ·Am) ⇒ C <Find >

Table 5.5: The Conditional Syllogistic Rules (2)

The truth values of the premises are omitted in the rules. As before,
the induction rule is applied only when the two premises are based on
the same evidence.

These rules can be seen as generalizations of the previous table
where m = 0.3 Table 5.6 gives further extension of these rules.

In each group of the syllogistic rules, abduction and induction can
be obtained from deduction by switching a (different) premise and the
conclusion, so they are “reversed deduction” in a sense.

With the help of the isomorphism and the implicit condition tech-
nique, we also get the following implications in NAL-5 among state-
ments.

3So C is (∧ A1 · · ·Am) ⇒ C, and M ⇒ C is (∧ MA1 · · ·Am) ⇒ C.

122 Chapter 5

{(∧ MA1 · · ·Am) ⇒ C, A0 ⇒ M} � (∧ A0A1 · · ·Am) ⇒ C <Fded >
{(∧ MA1 · · ·Am) ⇒ C, (∧ A0A1 · · ·Am) ⇒ C} � A0 ⇒ M <Fabd >
{(∧ A0A1 · · ·Am) ⇒ C, A0 ⇒ M} � (∧ MA1 · · ·Am) ⇒ C <Find >

Table 5.6: The Conditional Syllogistic Rules (3)

Theorem 35

(S1 ∧ S2) ⊃ S1

S1 ⊃ (S1 ∨ S2)

Now we can also turn the (meta-level) implications in NAL theorems
into inference rules. Since a meta-level implication theorem “A ⊃ C”
corresponds to inference from statement A to statement C, it can be
treated as an implication statement in Narsese “A ⇒ C < 1, 1 >,”
which can be used with “A < f, c >” to get “C < f, fc >,” using the
deduction rule. Similarly, each meta-level implication theorem “A ⊃ C”
can also be used with “C < f, c >” to get “A < f, c/(c + k) >” as
a special kind of abduction. Isomorphically, theorems in the form of
inheritance statements can also be used in this way.

The above inference has some restrictions. For example, “S1 ⇒
(S1 ∨S2) <1, 1>” is a theorem, and it is fine to use it and a judgment
of S1 to derives a judgment of (S1 ∨ S2) by deduction, where S2 can
be any term. However, this result should not be used with the theorem
again to derive a judgment of S2 by abduction, otherwise for any two
arbitrary statements, from the truth value of one, the truth value of
the other can be derived (though with a low confidence).

The equivalence statements in theorems and definitions are easier
to be converted into inference rules: “S1 ≡ S2” corresponds to rules
{S1} � S2 and {S2} � S1, where the truth value of the conclusion is
the same as the premise. The same result can be obtained by treating
the inference as a special case of analogy with “S1 ⇔ S2 < 1, 1 >.”
Isomorphically, theorems in the form of similarity statements can also
be used in this way.

Higher-Order Inference 123

5.1.4 Negation

Since the negation operator in NAL-5 takes one argument, it is not
directly isomorphic to the (extensional/intensional) difference operators
defined in NAL-3. Instead, it is defined as the following:

Definition 40 If S is a statement, its negation, (¬S), is a compound
statement defined by switching the positive and negative evidence of S.

The definition also gives us the negation rule, defined in Table 5.7.

{S <f0, c0 >} � (¬S) <Fneg >

Table 5.7: The Negation Rule

The negation rule use the following truth-value function:

Fneg : f = 1 − f0, c = c0

We still have the following theorems as in propositional logic:

Theorem 36 (¬(¬S)) ≡ S

Theorem 37 (S1 ⇔ S2) ≡ ((¬S1) ⇔ (¬S2))

However, the Law of Contrapositive in propositional logic [Copi, 1982]
(i.e., the equivalence between “S1 ⇒ S2” and “(¬S2) ⇒ (¬S1)”) is no
longer true in NAL.

When the truth values of S1 and S2 are determined according to
certain evidence E, the induction rule can be used to calculate the
truth value of “S1 ⇒ S2.” As a result, when both S1 and S2 are true,
it is positive evidence for “S1 ⇒ S2”; when S1 is true but S2 is false, it
is negative evidence (when S1 is false, it is not evidence).

Similarly, when both S1 and S2 are false, it is positive evidence for
“(¬S2) ⇒ (¬S1)” (because both ¬S1 and ¬S2 are true); when S2 is
false but S1 is true, it is negative evidence (when S2 is true, it is not
evidence).

124 Chapter 5

By comparing the above two cases, we can see that “S1 ⇒ S2” and
“(¬S2) ⇒ (¬S1)” have the same negative evidence (S1 true, S2 false),
but completely different positive evidence (“both true” for the former,
and “both false” for the latter). Therefore, to derive one statement from
the other, in NAL we use the contraposition rule defined in Table 5.8.

{S1 ⇒ S2 <f0, c0 >} � (¬S2) ⇒ (¬S1) <Fcnt >

Table 5.8: The Contraposition Rules of NAL-5

Since only negative evidence is passed from the premise to the con-
clusion, and the premise at most is counted as evidence with unit
amount, we have w = (1−f0)c0, and therefore the truth-value function
is:

Fcnt : f = 0, c = (1 − f0)c0/[(1 − f0)c0 + k]

To summarize, related to the traditional study of “conversion,” “ob-
version,” and “contraposition” [Copi, 1982], in NAL the corresponding
relations with evidence are in Table 5.9.

S1 ⇒ S2 S2 ⇒ S1

{S1 ∧ S2; S1 ∧ (¬S2)} {S1 ∧ S2; (¬S1) ∧ S2}
(¬S1) ⇒ (¬S2) (¬S2) ⇒ (¬S1)

{(¬S1) ∧ (¬S2); (¬S1) ∧ S2} {(¬S1) ∧ (¬S2); S1 ∧ (¬S2)}

Table 5.9: Negation and Evidence

In Table 5.9, there are four statements, each with its positive evi-
dence and negative evidence listed under it. There are three relations
among them:

conversion. The two statements in the same row become each other
by exchanging the subject and the predicate. They have the same
positive evidence, but different negative evidence.

Higher-Order Inference 125

obversion. The two statements in the same column become each other
by negating the subject and the predicate. They have different
positive and negative evidence.

contraposition. The two statements in the same diagonal line become
each other by exchanging and negating the subject and the predi-
cate. They have the same negative evidence, but different positive
evidence.

Given the above relations, in NAL there are rules for conversion
and contraposition, but not for obversion, since no evidence can be
passed from the premise to the conclusion. For the former two, only
one type of evidence is passed (positive in conversion and negative in
contraposition), so the frequency value of the conclusion is a constant
(1 in conversion and 0 in contraposition). In these two rules, at most a
single unit of evidence can be provided, so the conclusion has a lower
confidence value than the premise — this is the case, because in NAL,
the evidence of a premise is never directly taken as evidence (of the
same quality and quantity) of the conclusion, except in the revision
rule, where the premises and the conclusion are all about the same
statement.

By definition, the evidence of (¬(S1 ⇒ S2)) is obtained by switching
the positive and negative evidence of (S1 ⇒ S2), so it is {S1∧(¬S2); S1∧
S2}. Since it is nothing but the evidence of (S1 ⇒ (¬S2)), the two
statements are equivalent. This relation is not true if “⇒” is interpreted
as the material implication in propositional logic. It is also important to
notice that in NAL, unlike in propositional calculus, “A ⇒ C” is usually
different from “(¬A)∨C” in truth value.4 Similarly, for the equivalence
relation, there are two other equivalence rule. These equivalence rules
are listed in Table 5.10.

Other negation-related inference rules include the ones obtained
from the following implications (which are also true in propositional
logic):

4This issue is discussed in detail in subsection 9.4.1.

126 Chapter 5

¬(S1 ⇒ S2) S1 ⇒ (¬S2)
¬(S1 ⇔ S2) S1 ⇔ (¬S2)
¬(S1 ⇔ S2) (¬S1) ⇔ S2

Table 5.10: The Equivalence Rules of NAL-5

Theorem 38

(¬A) ⊃ (¬(A ∧ B))

(¬(A ∨ B)) ⊃ (¬A)

(A ∧ (¬(A ∧ B))) ⊃ (¬B)

((¬A) ∧ (A ∨ B)) ⊃ B

So far, we have seen three types of (statement level) negation.
For a statement “S → P” in NAL-0, its negation is implicitly rep-
resented, which is not a statement in Narsese-0, though we can talk
about “¬(S → P)” in its meta-language, where “¬” is used as in propo-
sitional logic. In NAL-5, a statement S is multi-valued (with truth value
<f, c>), and so is ¬S (with truth value <1 − f, c>), where “¬” is a
statement operator defined in Narsese-5, whose meaning is not exactly
the same as the one in predicate logic.

Finally, as described previously, “S → P” in NAL-0 becomes “S →
P < 1, 1 >” in NAL-1 (as well as in all of its extensions, including
NAL-5). However, when it is not true, its truth value < f, c > can be
anything except < 1, 1 >, and it is not necessarily the case specified
by the negation of the statement, which has truth value <0, 1>. This
issue is very important when encoding knowledge in Narsese. Usually,
by “S is not P ,” we mean that “There is negative evidence for S → P”
(i.e., “S → P < 0, c >,” where c < 1), but not that “All evidence for
S → P is negative” (i.e., “S → P <0, 1>”).

Higher-Order Inference 127

5.2 NAL-6: statements with variables

5.2.1 Variable terms

The terms we introduced so far are constant terms, in the sense that
at any given time, each of them is unique in the system, and has a
determined meaning; a variable term, on the other hand, may appears
in more than one statements in the system, each of them with its own
meaning.

In NARS, the meaning of a constant term is determined by its ex-
perienced relations with the other term in the whole system, while the
meaning of a variable term is locally determined by its relations with
other terms within the same statement. That means, if there are two
variable terms with the same name but not in the same statement,
they are not necessarily related to each other in meaning. On the con-
trary, occurrences of a constant term in different statements are always
bounded together.5

There are two types of variable terms in NAL: independent vari-
ables (similar to the universal variables in first-order predicate logic)
and dependent variables (similar to the existential variables and Skolem
functions in first-order predicate logic). The latter is a function of the
former. A dependent variable has a (maybe empty) independent vari-
able list in it to indicate its dependence. In Narsese, a variable term (of
either the above two types) is named by a word (or a number) preceded
by ‘#’.

Given AIKR, no statement in Narsese is made about all terms.
Whenever a statement is made about a group of terms, it is usually
possible to put them into the extension or intension of a given term,
then to make a statement about it. A dependent variable indicates a
single term under the given condition; an independent variable indicates
any term under the given condition.

5Since in NARS the meaning of a constant term may change over time, the
distinction between constant terms and variable terms is not whether the meaning
of a term changes or not. In the next chapter, we will see that a constant term in
Narsese is the name of a specific concept in NARS, while a variable term indicates
an unspecified concept.

128 Chapter 5

In Narsese, variable terms can only appear in special positions. An
independent variable always appears in both sides of an implication or
equivalence relation, as extension or intension of two terms. A depen-
dent variable always appear in two components of a conjunction, also
as extension or intension of two terms. Therefore, the following are the
simplest statements with variable terms.

(#x → S) ⇒ (#x → P) (#x() → S) ∧ (#x() → P)
(S → #x) ⇒ (P → #x) (S → #x()) ∧ (P → #x())

In this way, the scope of a variable is the statement in which it ap-
pears. The name of a variable is arbitrary, as far as it is unique in the
statement. In statements with multiple variables, each of them uses a
different name, therefore its scope does not need to be explicitly speci-
fied — it is the smallest statement that contains all occurrences of the
variable.

As in predicate logic, the scope of a variable can be embedded in
that of another one. For example, in Narsese the following situations
can be represented:

• ((#x → key) ∧ (#y → lock)) ⇒ ((#x × #y) → open)
[“Every key can open every lock.”]

• (#x() → key) ∧ ((#y → lock) ⇒ ((#x() × #y) → open))
[“There is a key that can open every lock.”]

• (#x → key) ⇒ ((#y(#x) → lock) ∧ ((#x × #y(#x)) → open))
[“Every key can open a lock.”]

• (#x() → key) ∧ (#y() → lock) ∧ ((#x() × #y()) → open)
[“There is a key that can open a lock.”]

Since an inheritance relation is identical to two subclass relations
of the extension and intension of the two terms, independent variables
becomes implicit in first-order NAL. Using the variable terms intro-
duced above, we can see that “S → P” is equivalent to “((#x → S) ⇒
(#x → P)) ∧ ((P → #y) ⇒ (S → #y)).” It roughly means “For any
term x in the extension of term S, it is also in the extension of term P ;
for any term y in the intension of term P , it is also in the intension of
term S.”

Higher-Order Inference 129

Variable terms become necessary when the extension or intension
of a term needs to be specified separately, as well as when complicated
relations among terms need to be described. For example, “(#x →
S) ⇒ (#x → P)” and “(P → #y) ⇒ (S → #y)” have different evi-
dence, and can be separately maintained to represent pure extensional
or intensional relations between terms.

The independent variables in NAL are different from the universal
variables in first-order predicate logic in that the former are restricted
by their relations with other terms in the statement. For example, in
“(#x → S) ⇒ (#x → P),” the independent variable ‘#x’ only repre-
sents terms in the extensions of S, but not the ones that are not there.
On the contrary, in a predicate logic proposition “(∀x)(S(x) ⊃ P (x)),”
the universal variable x can represent every individual in the domain.
Roughly speaking, the former says “Every instance of S is also an in-
stance of P ,” while the latter says “For everything in the domain, if it
is an instance of S, then it is also an instance of P .” The meaning of
the two sentences are not exactly the same, though related.6

5.2.2 Inference with variable terms

Since an independent variable represents a unspecified term (under a
certain condition), it can be replaced by a specific term (satisfying the
condition) without changing the truth value of a judgment. Technically
speaking, an independent variable can be substituted by another (vari-
able or constant) term that has the same relation by unification (as
defined in predicate logic), and then a conclusion can be derived. Some
variable elimination rules are listed in Table 5.11.

{(#x → S) ⇒ (#x → P), M → S} � M → P <Fded >
{(#x → S) ⇒ (#x → P), M → P} � M → S <Fabd >
{(#x → S) ⇔ (#x → P), M → S} � M → P <F ′

ana >

Table 5.11: Sample Independent-Variable Elimination Rules

6I will say much more about the difference between NAL and first-order predicate
logic in Chapter 9 and 10.

130 Chapter 5

Such a rule can be seen as a substitution (with #x replaced by M)
followed by an inference defined in Table 5.3. The same technique can
be applied to the other higher-order inference rules to use premises with
variables.

The reverse of variable elimination rules introduces independent
variables into conclusions, as listed in Table 5.12. These rules are justi-
fied in the same way as the rules in NAL-1 and NAL-2, except that here
the “extensional inheritance” and “intensional inheritance” between S
and P are separated, due to the using of a variable term.

{M → P, M → S} � (#x → S) ⇒ (#x → P) <Find >
{M → P, M → S} � (#x → S) ⇔ (#x → P) <Fcom >

Table 5.12: Sample Independent-Variable Introduction Rules

The rule in Table 5.13 introduce dependent variables into conjunc-
tions. Here the conclusion states the existence of an anonymous term
that is in the extension of both S and P .

{M → P, M → S} � (#x() → P) ∧ (#x() → S) <Fexi >

Table 5.13: Sample Dependent-Variable Introduction Rule

This inference can only produce positive conclusion, and the conclu-
sion reaches maximum confidence when both premises are absolutely
true. Therefore, the truth-value function is the following:

Fexi : f = 1, c = and(f1, c1, f2, c2)

The reverse of the rule in Table 5.13 can be seen as a special type
of unification to match a dependent variable with a constant, as given
in Table 5.14. The truth-value function of the abduction rule is used
here, because the conclusion gets evidence only when the first premise
is positive, in which case term M is compared to the anonymous term

Higher-Order Inference 131

#x(). Under the condition of M → S, if (#x() → P) ∧ (#x() → S),
then M → P looks more likely, otherwise less likely.

{M → S, (#x() → P) ∧ (#x() → S)} � M → P <Fabd >

Table 5.14: Sample Dependent-Variable Elimination Rule

The rules in Table 5.13 and Table 5.14 are only about the extension
of S and P . Similarly, there are rules that only process the intension of
the terms involved. As required before, in NAL a dependent variable is
only introduced into a conjunction, and an independent variable into
both sides of an implication or equivalence.

Variables can be introduced into statements where other variables
exist. When an independent variable is introduced, the existing depen-
dent variables become its function, until it is unified with a constant.
The rules for multiple variables in Table 5.15 can be extended to han-
dle more than two variables. Please note that here the four conclusions
correspond to the four sentences in the previous “lock-key” example. It
shows that NAL has rules to produce all meaningful combinations of
variable terms.

The revision rule is also extended to unify variable terms. For exam-
ple, statements (#x → S) ⇒ (#x → P) and (#y → S) ⇒ (#y → P)
can be merged together.

{(#x → P) ⇒ (M → (⊥ R #x �)), M → S}
� ((#y → S) ∧ (#x → P)) ⇒ (#y → (⊥ R #x �)) <Find >
{(#x → P) ⇒ (M → (⊥ R #x �)), M → S}

� (#y() → S) ∧ ((#x → P) ⇒ (#y() → (⊥ R #x �))) <Fexi >
{(#x() → P) ∧ (M → (⊥ R #x() �)), M → S}

� ((#y → S) ⇒ ((#x(#y) → P) ∧ (#y → (⊥ R #x(#y) �))) <Find >
{(#x() → P) ∧ (M → (⊥ R #x() �)), M → S}

� (#y() → S) ∧ (#x() → P) ∧ (#y() → (⊥ R #x() �)) <Fexi >

Table 5.15: Sample Multi-Variable Introduction Rules

132 Chapter 5

5.2.3 Hypothetical inference

As described above, a variable term is a special term which can be used
as a symbol of other terms. By “symbol,” it is meant that the meaning
of a variable term is not fully grounded on the experience of the system,
until it is “bounded” to a (non-variable) term. The same symbol can be
used to stand for different terms in different statements. It is similar to
pronouns in natural languages, such as “it,” “that,” or “everything.”

Variable terms give NARS the capability of using the same term to
indicate different concepts, or with different “interpretation.” This is
needed in hypothetical inference.

For example, conditional statement

((({#x} × {#y(#x, #z)}) → parent) ∧ (({#y(#x, #z)}
×{#z}) → brother)) ⇒ (({#x} × {#z}) → uncle)

can be seen as a “rule” by which the system derives “({Mary} ×
{Tom}) → uncle” (“Tom is the uncle of Mary”) from “({Mary} ×
{Joe}) → parent” (“Joe is the parent of Mary”) and “({Joe} ×
{Tom}) → brother” (“Tom is the brother of Joe”). However, accu-
rately speaking, the inference rule used is the deduction rule, with the
above “rule” (the conditional statement) as a premise.

In this way, what is usually called a “rule” in rule-based systems is
formalized in NARS in two different levels. Conceptually, a rule indi-
cates that a certain statement can be derived from certain other state-
ment(s). In NARS, a small set of such rules are actually formalized as
procedural inference rules, which are part of the logic. The other “rules”
are formalized as implication and equivalence statements, which, when
used with the above deduction rule, will effectively work as an inference
rule. The former group includes rules defined on the built-in logical re-
lations (inheritance, similarity, implication, and equivalence), while the
latter group includes “rules” on the other acquired “ordinary” relations
(such as parent, brother, and neutralization).

Consequently, NAL can be used as a meta-logic of an arbitrary logic,
by representing the rules of that logic as NARS implication/equivalence
statements. For example, we can “emulate” first-order predicate logic
(FOPL) in NARS in this way. When implemented in a computer sys-
tem, such an emulation will surely be more complicated and less effi-

Higher-Order Inference 133

cient than a direct implementation of FOPL, but at the same time, it
does have the benefit of allowing the system to reason “at the outside”
of FOPL. For example, non-deductive inference (induction, abduction,
analogy, ...) is invalid within FOPL, though it clearly plays an impor-
tant role when a human mind uses a logic like FOPL. We often first
reason outside the system to get a hypothesis, then inside the system
to prove or disprove it.

The above description can be extended from FOPL to other formal
or mathematical theory. NARS can embed them as subsystems, and
do inference inside and outside, so that the system’s empirical experi-
ence becomes relevant even when an abstract mathematical theory is
thought about.

Another issue related to this is the idea of “local axiomization.” As
repeatedly mentioned before, the key assumption of NARS is that the
system works with insufficient knowledge and resources, so that every
judgment is only certain to a degree, and for empirical knowledge, con-
fidence never reaches its maximum value 1, that is, it is always revis-
able. On the other hand, there are analytic statements, whose truth
values are independent to the experience of the system, and is a mat-
ter of definition. A mathematical (or other formal) theory consists of
a set of analytic statements as axioms, and a set of rules (which can
be represented as NARS implications). Consequently, though NARS
is non-axiomatic with respect to its empirical knowledge, it can con-
tain axiomatic subsystems. When the system works “within” such a
subsystem, no uncertainty is allowed.

How do these two parts interact with each other? It is similar to how
the human mind uses mathematics and formal logics to solve practical
problems. It contains several steps:

1. For a given task T , the relevant empirical knowledge is collected
into a knowledge base K.

2. A formal theory F is selected to solve T given K.

3. An interpretation I is build, which maps T and K into T ′ and
K ′, which are questions and statements in F .

4. A solution S′ is found in F for T ′, according to K ′.

134 Chapter 5

5. A solution S is obtained for T from S ′, under the interpretation
I.

In this process, usually only Step 4 is within an axiomatic system. As
a result, to apply a mathematical theory to a practical problem does
not give the conclusion the status of a mathematical theorem, and the
process is highly biased by the experience of the system. The interpre-
tation I in the above serves the same purpose as variable substitution,
by which abstract terms in the formal theory are mapped into concrete
terms in the domain. In this sense, all abstract terms are variable terms
discussed in this section.

5.3 NAL-7: temporal statements

So far, the truth values of statements in NAL are determined by tak-
ing all past experience as relevant. However, sometimes we are only
interested in the truth value of a statement at a given time. For these
situations, NAL-7 introduces time into statements.

5.3.1 Time and events

In NAL, an “event” is defined as a statement whose truth value holds in
a certain period of time. As a result, its truth value is time dependent,
and the system can describe its temporal relation with other events.

Accurately speaking, almost all empirical statements are time de-
pendent, and few statements are about relations holding forever. How-
ever, for practical purposes, it is not always necessary to take the time
attribute of a statement into consideration. Therefore, whether a state-
ment should be treated as an event may change from context to context,
and events are just statements whose time attributes are specified. On
the contrary, the time interval of a “non-event” statement is unspeci-
fied, except that it includes the current moment.

In NAL, time is represented indirectly, through events and their
temporal relations. Intuitively, an event happens in a time interval, and
temporal inference rules can be defined on these intervals [Allen, 1984].
However, in NAL each event is represented by a term, whose corre-
sponding time interval is not necessarily specified. In this way, NAL

Higher-Order Inference 135

assumes less information. When the duration of an event is irrelevant,
it can also be treated as a point in the stream of time.

In NAL, the temporal order between two events E1 and E2 can be
one of the following three cases:

• E1 happens before E2 happens,

• E1 happens after E2 happens,

• E1 happens when E2 happens.

This design is consistent with the observation that among human lan-
guages, there are three universal temporal primitives: “before,” “after,”
and “when” [Wierzbicka, 1996]. Obviously, the first two cases corre-
spond to the opposite directions of the same temporal relation. There-
fore, the primitive temporal relations in NAL are:

“before”: which is irreflexive, antisymmetric, and transitive;

“when”: which is reflexive, symmetric, and transitive.

They correspond to the before and equal relation discussed in [Allen,
1984], respectively.

If the temporal relation between two events is more complicated
than these three cases, it is always possible to divide an event into
subevents, then describe their temporal relations in detail. For example,
we can treat “when E1 starts” and “when E1 ends” as separate events.
This representation covers all kinds of temporal relations between two
events, including the ones discussed in the previous studies of temporal
inference: meets, overlap, during, starts, and finishes [Allen, 1984]. In
NAL, these temporal relations (and others) are represented not as logic
constants, but as “ordinary relations” (discussed in NAL-4). Similarly,
we can introduce a term “duration.” If the system knows that “(t1 ×
t2) → duration”, as well as that “(t1 × t2)” and event E happen at the
same time, it understands that E begins at time t1, and ends at time
t2. Unlike in interval-based temporal logics, in NAL terms like t1 and
t2 are events themselves (though their durations are usually omitted),
not accurate measurement of absolute time.

If an absolute time is used to represent the temporal property of an
event, then that time can be treated as a special event, and these two
events are described as happening at the same time.

136 Chapter 5

5.3.2 Temporal operators and relations

Instead of directly using the above two temporal relations between
events by themselves, in NAL they are used in combination with certain
other logic constants.

First, “E1 happens before E2 happens” and “E1 happens when E2

happens” both assumes “E1 and E2 happen (at some time),” which
is “E1 ∧ E2” plus temporal information. Therefore, we can treat the
two temporal relations as variants of the statement operator “con-
junction” (“∧”) — “sequential conjunction” (“,”) and “parallel con-
junction” (“;”). Consequently, “(E1, E2)” means “E1 happens before
E2 happens,” and “(E1; E2)” means “E1 happens when E2 happens.”
Obviously, “(E2; E1)” is the same as “(E1; E2),” but “(E1, E2)” and
“(E2, E1)” are usually different. As before, these operators can take
more than two arguments. These two operators allow Narsese to rep-
resent complicated events by dividing them into sub-events recursively,
then specifying temporal relations among them.

Compared to the two “temporal conjunctions,” the original conjunc-
tion “E1∧E2” can be seen as with a default temporal information that
both E1 and E2 hold at the same time, that is, “(E1; E2),” therefore
the operator “;” is redundant. The other two statement operators, “∨”
and “¬,” have no temporal variant.

On the other hand, there are the temporal variants of implication
and equivalence. For an implication statement “S ⇒ T” between events
S and T , three different temporal relations can be distinguished:

1. If S happens before T happens, the statement is called “predictive
implication,” and is rewritten as “S /⇒ T ,” where S is called a
sufficient precondition of T , and T a necessary postcondition of S.

2. If S happens after T happens, the statement is called “retrospec-
tive implication,” and is rewritten as “S \⇒ T ,” where S is called
a sufficient postcondition of T , and T a necessary precondition of
S.

3. If S happens when T happens, the statement is called “concurrent
implication,” and is rewritten as “S |⇒ T ,” where S is called a
sufficient co-condition of T , and T a necessary co-condition of S.

Higher-Order Inference 137

Similarly, three “temporal equivalence” (predictive, retrospective,
and concurrent) relations are defined. “S /⇔ T” (or equivalently, “T \⇔
S”) means that S is an equivalent precondition of T , and T an equivalent
postcondition of S. “S |⇔ T” means that S and T are equivalent co-
conditions of each other. To simplify the language, “T \⇔ S” is always
represented as “S /⇔ T ,” so the copula “ \⇔” is not actually included in
the grammar of Narsese. Furthermore, since by default “⇒” and “⇔”
assumes the pair of events connected by them happen at the same time
(i.e., the current time), the relations “|⇒” and “|⇔” are redundant, and
need not be actually implemented.

Adjectives like “past,” “current,” and “future” indicate temporal
relations between events and “now,” taken as a special event. When
“now” is omitted in a statement, the temporal relations become tempo-
ral operators called “tense.” The “current” tense is the implicit default,
while the “past” and “future” tenses must be explicitly specified. For
a statement S, “S happened” and “S will happen” are represented in
Narsese as “\⇒ S” and “/⇒ S,” respectively.

5.3.3 Temporal inference

The inference rules introduced in NAL-7 are variants of the rules defined
in NAL-5 and NAL-6. The only additional function of these rules is to
keep the available temporal information.

As an example, the following is a deduction rule introduced in
NAL-5,

{(∧ MA1 · · ·Am) ⇒ C, A0 ⇒ M} � (∧ A0A1 · · ·Am) ⇒ C <Fded >

Now it has a variant in NAL-7, as listed in Table 5.16.
Since the logical factor and the temporal factor are independent of

each other in the rules, these variants can be obtained by considering
the two factors separately, then combining them in the conclusion.

{(M, A1, · · · , Am) /⇒ C, A0 /⇒ M} � (A0, A1, · · · , Am) /⇒ C <Fded >

Table 5.16: Sample Temporal Inference Rule

138 Chapter 5

Before temporal information is introduced, in NARS whenever there
are two judgments containing the same statement, it will be taken to
mean different evidence about the same relation, and revision will be
attempted. With temporal information, however, there is another pos-
sible interpretation, that is, as update, that is, as caused by a change in
the environment. In this operation, the new judgment does not merge
with the old one, but “pushes it into the past,” by adding a “past
tense” on it, so as to turn it into a different statement. Update usually
causes chain reactions, that is, other updates in derived conclusions, as
revision does.

In general, inference rules on tense can be derived from ordinary
temporal inference rules, by first adding the term “now” into the pre-
mises (so as to turn the tense operators into temporal relations), and
finally removing the “now” from the conclusions (so as to turn the
temporal relations back into tenses). This procedure is similar to the
usage of “virtual condition” (which turns an arbitrary statement into
an implication) in NAL-5.

Clearly, inference on temporal implication relations can be used to
predict the future and to explain the past. However, they are not the
same as what we call “causal relation.” We can think of the latter as a
special case of the former, with additional requirements attached to the
concept of “cause,” which are highly context-dependent. That is why in
NARS the above temporal implication/equivalence relations are defined
as part of the logic, and with fixed meaning, while “cause” is left to be
an empirically built relation, which will be learned and changed by the
system according to experience and context. Even though, the basic
capability of what we usually call “causal inference” is already in the
system.7

5.4 NAL-8: procedural statements

In NAL-8 procedural interpretation is applied to events to represent
operations of the system itself. Consequently, declarative knowledge
and procedural knowledge are unified in NAL.

7This issue will be discussed in detail in subsection 9.4.2.

Higher-Order Inference 139

5.4.1 Operations and procedural inference

In NARS, operation is a special kind of event, which can be carried out
by the system itself. Therefore it is system dependent: the operations
of a system will be observed as events by other systems.

While relations and events are declarative knowledge, operations are
procedural knowledge, in the sense that the meaning of an operation is
not only revealed by what it says, but also by what it does.

Statement “(× {A} {B} {C}) → R” intuitively corresponds to
“There is a relation R among (individuals) A, B, and C.” If R is an
event, it becomes “An event R happens among A, B, and C.” If R is
an operation, it becomes “To carry out R among A, B, and C.” To be
consistent with the other part of NAL, for the last case in the following
we can also use the format “(R,A,B,C),” so that it is just a compound
term defined in NAL, with an operator followed by an argument list.

An operation usually distinguishes input and output among its argu-
ments. When an operation is described abstractly, its input arguments
are typically independent variables, and its output are dependent vari-
ables. For instance, operation “(plus, #x, #y, #z(#x, #y))” represents
“x plus y is z,” where x and y are independent variables (input), and
z is a dependent variable (output, as a function of x and y).

The knowledge about operations are usually represented as (tem-
poral or not) implication/equivalence statements, which indicates the
conditions, causes, and effects of each operation.

For the above example, if statement “(× {A} {B} {C}) → sum”
represents “The sum of A and B is C,” then the following statements
describe the necessary postconditions (i.e., effects) of the operations
plus and minus:

(plus, #x, #y, #z(#x, #y)) /⇒ ((× {#x} {#y} {#z(#x, #y)})
→ sum)

(minus, #x, #y, #z(#x, #y)) /⇒ ((× {#y} {#z(#x, #y)} {#x})
→ sum)

Here we see that the same logical relation (such as “sum”) may cor-
respond to multiple operations (such as “plus” and “minus”) with
different input/output partition among its arguments.

140 Chapter 5

The (sufficient or necessary) preconditions of operations can be simi-
larly specified. For example, to carry out (divide, #x, #y, #z(#x, #y)),
#y cannot be zero, and this necessary precondition can be represented
as

(divide, #x, #y, #z(#x, #y)) \⇒ ¬(#y ↔ 0)

More examples of operational knowledge are in the following list:

• “(({#x} × {#y}) → r1) /⇒ (op1, #x, #y)” indicates that a
sufficient precondition for the operation “op1” to be performed
in two arguments is that there is a relation “r1” between the two.

• “(op1, #x, #y) \⇒ (({#x} × {#y}) → r2)” indicates that a
necessary precondition for the operation “op1” to be performed
in two arguments is that there is a relation “r2” between the two.

• “(op1, #x, #y) /⇒ (({#x} × {#y}) → r3)” indicates that a nec-
essary postcondition of the operation “op1” is that there will be
a relation “r3” between its two arguments.

• “((({#x} × {#y}) → r4), (op2, #y, #z)) /⇒ (({#x} × {#z}) →
r5)” indicates that after event “({#x} × {#y}) → r4” happens,
executing “(op2, #y, #z)” will cause the event “({#x}×{#z}) →
r5” to happen.

• “((op3, #x, #y), (op4, #x, #y), (op4, #x, #y)) ⇔ (op6, #x, #y)”
indicates that executing “op6” on two arguments is equivalent to
the sequential execution of “op3,” “op4,” and “op5” on them.

What is expressed in these examples is quite similar to what is
achieved by logic programming, except that in NARS the logic is fun-
damentally different from first-order predicate logic, and each statement
has a truth value attached to indicate its uncertainty.

Under AIKR, in NARS the preconditions (restrictions) and postcon-
ditions (consequences) of an operation are never exhaustively specified.
Instead, the system’s beliefs on operations only reflect its (limited)
experience on them. It is quite possible that certain conditions or
consequences, though they exist, never become known to the system.
Designed in this way, NARS takes a unusual position toward the

Higher-Order Inference 141

well-known Frame Problem [McCarthy and Hayes, 1969], by accepting
it as an inevitable consequence of AIKR.8

NARS will be implemented with certain primitive operations (both
internally-oriented and externally-oriented) exposed to the inference
engine, and they can be used as components to build compound op-
erations. Both primitive and compound operations can be called from
the inference engine. The system has beliefs, either built-in initially or
acquired through experience, about these operations.

Not all operations in such a system are involved in reasoning in
this way. NARS has a mixture of deliberative and automatic processes.
The former consists of the system operations visible to the inference
engine, but the latter is invisible. To make an operation exposed to the
inference engine in this way usually makes its execution more flexible,
but at the same time decreases the efficiency, and introduces various
kinds of risks caused by the uncertainty in inference.

If an operation is accessible to the inference engine, it will be named
by a Narsese term, and so will its (input and output) arguments (some
of them may be variable terms). The system’s beliefs about the op-
eration will be represented by (temporal) implication and equivalence
statements, as shown previously. Furthermore, inference on these state-
ments will incrementally reveal its preconditions and postconditions, as
well as its relation with other operations.

Since operations are just events under a procedural interpretation,
the inference rules of NAL-8 are the same as NAL-7. The compound
operations formed in the inference process correspond to “skills” (pro-
cedures) learned by the system. For example, initially the system may
only have beliefs about operations “op1,” “op2,” and “op3” in isola-
tion. By inference, the system will form beliefs on what may happen
if the three are executed in a sequence — that may achieve a more

8Of course, it does not mean to do nothing at all about it. For a given operation,
in NARS there are usually many judgments about its conditions and consequences.
In the long run, however, only some of them will be kept, while most of the others
will be forgot. For example, if a judgment omits an important condition, it will
lead to many failures, and become useless; if a judgment mentions too many condi-
tions, which are usually true, it will become unnecessarily complicated, and lost in
resource competition to the simpler-but-equally-effective ones. The situation about
consequence is similar. This issue will become more clear in Chapter 6, 11, and 12.

142 Chapter 5

complicated consequence. Of course, due to the insufficiency of knowl-
edge and resources, these derived beliefs may conflict with new evidence
and get revised. Even so, after a while, the system will learn various
skills, which are compound operations for which the system has beliefs.
This process is similar to the “chunking” process in Soar [Newell, 1990],
though in NARS it follows a very different logic.

5.4.2 Goals and desire values

In NAL-1, two types of sentences are defined: judgment and question,
where the former is a statement with a truth value, and the latter is a
statement whose truth value should be determined by the system. In
NAL-8, the third type of sentence, goal, is introduced.

In Narsese, a goal has a format similar to a question, that is, it is a
statement without a truth value attached, and may contain variables to
be instantiated. However, their semantics are different. While a question
asks the system to evaluate the truth value of the statement (and maybe
find constant terms for the variables) by inference only, a goal asks the
system to carry out some operations to make the statement true — of
course, given the inevitable uncertainty in the consequence, it actually
means “to make it as close to truth as possible.”

NARS usually has multiple goals, and they may conflict with one
another, in the sense that the achieving of a goal makes another one
harder to be achieved. Therefore, the system must from time to time
make decisions about whether to pursue various goals or whether to
take various operations.

Since the conflicting goals may not be directly related to each other,
we cannot expect the system to have explicit knowledge about how to
handle every possible conflict. Instead, a common solution in the study
of decision making is to define a “degree of desire,” or desire value, on
goals, so that every pair of goals is comparable.

Under AIKR, in NARS we cannot take the desire value of a goal
as a known constant, as in most decision-making theories. Instead, it
is something that the system needs to find out by inference. Since the
desire value of a goal G is determined according to the system’s expe-
rience, the truth value of statement is used to represent this degree of
desire. To do that, a virtual statement D is introduced for the “desired

Higher-Order Inference 143

state.” Like the virtual statement E used for “all evidence” in NAL-5
or the virtual event “now” for tense definition in NAL-7, D does not
appear within the system, but is used in the meta-theory to design
related rules.

With the help of D, the desire value of a goal G is defined as the
truth value of statement “G ⇒ D,” that is, the degree that the desired
state is implied by the achieving of this goal.

In this way, the desire-value functions can be derived from the truth-
value functions. For example, if goal G has desire value d, and the
system believes that G can be achieved by operation A (with truth value
t), then the system has premises “G ⇒ D <d>” and “A ⇒ G <t>.”
From them, by deduction the system gets “A ⇒ D < Fded >,” which
means that A becomes a derived goal, with a desire value obtained by
using the deduction truth function with d and t as arguments. After
dropping the virtual statement D, in the system we get a rule that
derives a potential goal A (with a desire value) from a goal G (with a
desire value) and a belief “A ⇒ G” (with a truth value).9

Now we can attach a desire value to every statement in the system,
because it may become a goal in the future, if it is not already a goal.
This value shows the system’s “attitude” about the situation in which
the statement is true.10

5.4.3 Goal-related inference

When there is no operation that can directly achieve a given goal, the
system will do inference to indirectly achieve it. In NAL-1, we have seen
how backward inference is used to derive questions. For all the rules
introduced in NAL-2 to NAL-7, the same isomorphism holds between
forward and backward inference, so all the rules defined in them can
also be used to derive questions. A similar situation happens to goals.

9This treatment is directly related to the previous philosophical discussion on
“desire as belief” [Lewis, 1988]. However, in NARS, a desire is not reduced into a
belief. In the system, a belief on statement S and a desire for S to be true are clearly
distinguished from, though also closely related to, each other.

10This desire value will eventually be attached to every term, to represent the
system’s “feeling” about it. If the term is not a statement, its desire value will be
determined by the beliefs in which it appears.

144 Chapter 5

When a goal G and a judgment J are taken as premises in an
inference step, the judgment may provide a direct solution to the goal,
if its truth value indicates that the goal has already been somehow
realized (so nothing needs to be done). Otherwise, a derived goal G′

can be produced, if and only if G can be derived from J and G′.
The backward inference on goals is related to planning. For a given

goal, the inference engine can find a group of operations, organized
by the “,” and “;” operators defined in NAL-7, that achieve the goal
(i.e., to make it true as the consequence of the execution of the oper-
ations). By executing the plan, and adjusting it when necessary, the
internal or external environment is changed to turn the goal into re-
ality. When repeatedly appearing groups of operations are memorized,
repeated planning is avoided, and the system learns a new skill.

The planning process in NARS is different from what is usually
called “planning” in AI, where the process starts with a goal and a set
of primitive operations. In NARS planning incrementally builds compli-
cated plans (i.e., procedural statements), and accumulates knowledge
about them. It is just in rare cases that the system starts from the
primitive operations, and goes all the way to achieve a complicated
plan.

If an operation A will contribute to the achieving of goal G1 but
makes goal G2 less likely to be achieved, the system will contains judg-
ments “A ⇒ G1 < f1, c1 >” and “A ⇒ G2 < f2, c2 >,” where f1 is
near 1, and f2 is near 0. When both G1 and G2 are desired (to different
degrees), the system will get two “A ⇒ D,” that is, the goal A gets
two desire values, obtained from different sources. Clearly, they should
be merged using the revision rule.

Since the above process may be repeated when other goals are taken
into consideration, after a while the desire value of a goal is usually
influenced by many other goals. The final decision of executing an op-
eration is made when the expectation of the desire value of the goal is
above a certain threshold, m (m > 0.5), which is a system parameter
(like the k defined in NAL-1). That is, the system only pursues goals
whose overall expected desire value is sufficiently high.

As we have seen, the decision making procedure in NARS is spec-
ified differently from the conventional decision-making research (such
as [Savage, 1954, Jeffrey, 1965]), in the following aspects:

Higher-Order Inference 145

• A goal is not a state, but a statement — under AIKR, in NARS
no statement (within a system) can completely describe a state
(of the environment).

• The desire value of a statement may change over time when new
information is taken into consideration.

• The likelihood of an operation to achieve a goal is not specified
as a probability, but as a truth value defined in NARS. In a truth
value, there are two independent factors: the frequency value is
similar to probability, and the confidence value is similar to the
“third dimension” in decision making (beside desirability and like-
lihood) suggested by Ellsberg, that is, “a quality depending on
the amount, type, reliability and ‘unanimity’ of information, and
giving rise to one’s degree of ‘confidence’ in an estimate of relative
likelihoods” [Ellsberg, 1961].

• The decision is on whether to pursue a goal, but not on which
goal is the best in a complete set of mutually-exclusive goals (or,
as a special case, operations) — under AIKR, such a set cannot
be obtained.

There are still similarities between this approach and traditional de-
cision theory. Both approaches let decisions be based on quantitative
comparison between alternatives, and in the measurement both the de-
gree of desire of a goal and the likelihood that the goal will be achieved
by an operation are involved.

Of course, the above discussion only provides the fundamentals of
decision making, and there are advanced issues to be addressed in the
future, such as the timing of operation execution and observation of
the result of operation.

An important point about NAL-8 is that since some of its state-
ments are actually system operations, the results of the inference process
are no longer fully expressible in Narsese. That is, in the previous lay-
ers of NAL, no matter what inference rules are used, both input and
output of the process are Narsese sentences, that is, the system does
nothing else but generate new sentences from given sentences. After
NAL-8 is implemented, this is no longer the case. Operations may have

146 Chapter 5

“side effects” that go beyond Narsese. As a simple example, if an op-
eration converts its sole argument from a Narsese term into an ASCII
string, then prints it out in the default printer, then it is something
that the inference engine can control, but some of its effects happen in
the physical world (e.g., as ink marks on a piece of paper). Similarly,
some operations may be triggered by physical signals, and as a result,
convert the signals into Narsese judgments. In this way, beside other
things, NAL-8 provides an interface between NARS (as an inference
engine) and various sensorimotor mechanisms.

5.4.4 NAL summary

Since NAL-8 is the last extension of the NAL system, now is the time
to summarize NAL, as defined from NAL-1 to NAL-8.

The complete grammar rules of Narsese are listed in Table 5.17.
There are some additional notes about the Narsese grammar:

• Confidence values 0 and 1 are used in the meta-language of Nars-
ese only, and cannot appear in actual sentences in the system.

• Many term operators can also be used in the “infix” form, that
is, between components.

The semantics of Narsese has been introduced for Narsese-1. The
later extensions of Narsese do not change the principle by which truth
value and meaning are defined for the language, but allow other types
of copula (beside inheritance) to be involved when determining the
truth values of statements, as well as when determining the meanings
of terms. Furthermore, the meanings of terms are also determined by
the compositional relations between compounds and components.

The inference rules of NAL has been introduced in the inference
tables in the previous chapters. However, these tables are by no means
complete, for the following reasons:

• Many compound-related rules have variants, by changing the num-
ber and location of the involved components. Only certain repre-
sentative cases of these rules are listed in the tables.

Higher-Order Inference 147

<sentence> ::= <judgment> | <question> | <goal>
<judgment> ::= <statement><truth-value>

<goal> ::= <statement><desire-value>
<question> ::= <statement>?

| ? <copula><term> | <term><copula>?
<statement> ::= <term> | (<term><copula><term>)

| (¬ <statement>)
| (∧ <statement><statement>+)
| (∨ <statement><statement>+)
| (, <statement><statement>+)
| (<word> <term>+)
| (<tense> <statement>)

<term> ::= <word> |(<statement>)| <variable>
| {<term>+} | [<term>+]
| (∩ <term><term>+) | (∪ <term><term>+)
| (− <term><term>) | (� <term><term>)
| (× <term><term>+)
| (⊥ <term><term>∗ � <term>∗)
| (� <term><term>∗ � <term>∗)

<variable> ::= # <word> | <variable> (<variable>∗)
<copula> ::= → | ↔ | ◦→ | →◦ | ◦→◦

| ⇒ | ⇔ | /⇒ | \⇒ | /⇔
<tense> ::= /⇒ | \⇒

<truth-value> : a pair of real number in [0, 1] × (0, 1)
<desire-value> : the same as <truth-value>

<word> : a string in a given alphabet

Table 5.17: The Complete Grammar of Narsese

• As explained in NAL-5, the meta-level implication relations be-
tween statements can be used as inference rules, which are not
listed in the inference tables.

• The inference rules of NAL-7 and NAL-8 have not been finalized.

Even so, these tables are quite comprehensive in representing the infer-
ence rules of NAL.

148 Chapter 5

As mentioned previously, a “logic” consists of a language, a seman-
tics, and a set of inference rules. Now we have seen these parts of NAL,
though we haven’t fully discussed the nature of this logic, or how to
implement it in a computer system. That is what the following chapters
will do.

Chapter 6

Inference Control

The previous three chapters specify a Non-Axiomatic Logic, consisting
of a formal language (Narsese), an (experience-grounded) semantics,
and a set of (extended syllogistic) inference rules. Given them, we now
know what a sentence in Narsese looks like, what it means to the system,
and how to derive new sentences from existing ones in a single step.

However, this is not the whole NARS. Beside the above logical part,
there is a control part, which consists of the following major compo-
nents:

Memory structure: How does the system store its judgments, ques-
tions, and goals?

Control strategy: How does the system decide what rule to use and
on what sentences at a given time?

Carnap called some of these components “methodological,” and distin-
guished them from the “logical” components of a system [Carnap, 1950].
A similar distinction is made by Kowalski in the formula “algorithm =
logic + control” [Kowalski, 1979]. Generally speaking, the logical part
of a reasoning system provides the possibility for a conclusion to be
obtained, and the control part selectively realize some of these possi-
bilities. With insufficient knowledge and resources, not all possibilities
will be realized.

Since in this book I will not talk about the implementation details of
NARS, the description on control mechanism will be given at a general

149

150 Chapter 6

level. In the following, only the basic principles of inference control will
be covered.

6.1 Task management

6.1.1 Task and belief

In a system where NAL, NAL-1 to NAL-7, are implemented, the inter-
action between the system and its environment only happens in Nars-
ese, that is, all input and output information is carried out by Nars-
ese sentences. The implementation of NAL-8 will break this limitation
(through operations), but the communication in Narsese still plays a
central role.

If we focus on Narsese, the input to the system is a stream of Narsese
sentences. Since NARS is an open system working in real time, any legal
sentence in Narsese can enter the system at any time. Since the time
between sentences matters (we will see why and how later), an accurate
description of the life-long experience of the system, in Narsese, looks
like the following:

S1, N1, S2, N2, · · · , Sm, Nm

where Si is a sentence in Narsese, and Ni is a number that measures
the length of the time interval between the arriving of Si and that of
Si+1. The unit of this measurement will be introduced later.

As described before, the input sentences have three types: judg-
ments, questions, and goals, and each of them define a task for the
system to process.

Judgment. An input judgment is a piece of new knowledge to be
absorbed. To process such a task not only means to add it to the
knowledge base (memory) of the system, but also means to use it
and the existing knowledge to derive new knowledge, by forward
inference.

Question. An input question is a user query to be answered. To pro-
cess such a task means to find a judgment that answers the

Inference Control 151

question as well as possible (as defined by the choice rule). Back-
ward inference may be used to get answers through derived ques-
tions.

Goal. An input goal is a user command to be followed, or a statement
to be realized. To process such a task means to check if the state-
ment is already true, and if not, to execute some operation to
make the statement true. Backward inference may also be used
to generate derived goals.

Such a bidirectional (both forward and backward) flow of activity
is critical to NARS. If it worked only backwards, the system could not
answer questions or achieve goals (because truth-value functions are at-
tached only to forward inference rules). On the other hand, the system
does not possess enough resources to work forwards only (thus exhaus-
tively generating all conclusions, then matching them to questions and
goals), so it must use questions and goals to guide its inference process.
Backward inference is just the reverse of forward inference, and it works
by “waking up” the related judgments in order to answer questions or
to achieve goals.

A Narsese judgment that is already part of the system’s knowledge
base is called a belief of the system. The relation between forward
and backward rules means that in NARS each inference step always
takes a task and a belief as premises, and generates one or more new
tasks as conclusions, where a task can be a judgment, a question, or
a goal, but a belief can only be a judgment. Furthermore, the rule(s)
that can be applied is determined by the combination of the task and
belief (such as the position of the shared term, the relation types of the
two, whether there is variable involved, and so on). Consequently, the
“control strategy” is reduced to the selection of task and belief in each
inference step.

On the output port, the system’s behaviors, that is, its responses
to the environment, is also a stream of the form

S1, N1, S2, N2, · · · , Sm, Nm

where the sentences include answers for questions, conclusions to be
shared, questions to be answered, and goals to be achieved by the other

152 Chapter 6

system (i.e., commands). In this way, the format of input and output
are exactly the same in NARS. It also means the two sides on the
communication channel can be two NARS systems, each of which has
its own memory, though using the same logic.

According to the above description, we see that in NARS to process
a task means to repeatedly let it interact with the beliefs of the system.
Due to insufficient resources, the system cannot use all beliefs for each
task; due to insufficient knowledge, the system cannot optimally select
the beliefs that lead to the best solution for each task.

As mentioned in Chapter 2, NARS is said to work “with insufficient
time resources,” or “under time pressure,” because

1. new (input and derived) tasks appear from time to time;

2. each task has a time requirement attached;

3. the system’s task-processing ability has an upper bound.

For this reason, part of NARS looks like an operating system, be-
cause it is responsible for managing the system’s (time and space) re-
sources. The control mechanism needs to decide the amount of resource
to be spent on each task, as well as which beliefs to use within the given
budget. The memory structure should be designed in such a way that
makes the resource management easy and efficient.

Clearly, not all control strategies are equally good (or equally bad)
in this situation. As in the case of logic, where we need a new standard
for the validity of inference rules, here we need a new standard for the
validity of control mechanisms. If the system’s resource is always in
short supply, the best thing it can do is to use it to satisfy the goals as
much as possible.

Intuitively speaking, if every task ti in the system has a measure-
ment on the extent to with the goal has been achieved, called “the
degree of satisfaction,” si, and each goal has a relative utility value, ui,
attached, then the optimum control mechanism should maximize the
total degree of satisfaction S =

∑
uisi.

Now the problem becomes to decide how to estimate the effect of
each decision on this S. As an adaptive system with insufficient knowl-
edge and resources, NARS can neither accurately predict the future,

Inference Control 153

nor can it try all possibilities before a decision. Instead, it has to use
its experience as the only guidance for this kind of decision.

6.1.2 Priority and durability

NARS’ aim is not to process every task to a predetermined quality, but
for the whole system to work as efficiently as possible when resources are
in short supply; for this reason, NARS distributes its resources among
many tasks. Consequently, the time resource given to a task is not
determined by an absolute amount, but by a relative “share,” which
depends both on the request from the external environment and on the
internal situation of the system.

In general, there are two ways to distribute time among tasks: se-
quential and parallel. “Sequential” means to process the tasks one by
one, and “parallel” means to have more than one task being processed
at the same time. NARS processes its tasks in parallel, because it is a
more flexible way to distribute resources. It should be stressed that for
this purpose we do not need parallel processing at the hardware level
(i.e., multiple processors) — such an implementation is possible, but is
not necessary for the model.

What should a system do if it is occupied by one task when another
one shows up? Since for NARS new tasks do not come from a predeter-
mined set, usually the system cannot tell at the beginning what kind
of solution can be found, or how much resources it will cost. In such a
situation, it is usually undesired either to let the new task wait for an
unlimited period, or to let the new task interrupt the processing of the
current task for a unlimited period.

NARS distributes its resources among the tasks in a time-sharing
manner, meaning that the processor time is cut into fixed-size slices,
and in each slice a single task is processed. Because NARS is a reasoning
system, its processing of a task divides naturally into inference steps,
one per time-slice.

In each inference step, a task is chosen probabilistically, and the
probability for a task to be chosen is proportional to its “priority.” As
a result, priority determines the (expected) processing speed of a task.
The priority value of a task is a real number in [0, 1]. At any given
instant, if the priority of task t1 is u1 and the priority of task t2 is u2,

154 Chapter 6

then the amounts of time resources the two tasks will receive in the near
future keep the ratio u1 : u2. Priority is therefore a relative rather than
an absolute quantity. Knowing that u1 = 0.4 tells us nothing about
when task t1 will be finished or how much time the system will spend
on it. If t1 is the only task in the system, it will get all of the processing
time. If there is another task t2 with u2 = 0.8, the system will spend
twice as much time on t2 as on t1.

If the priority values of all tasks remain constant, then a task that
arises later will get less time than a task that arises earlier, even if the
two have the same priority value. A natural solution to this problem
is to introduce an “aging” factor for the priority of tasks, so that all
priority values gradually decay. In NARS, a real number in (0, 1), called
durability, is attached to each priority value. If at a given moment a
task has priority value u and durability factor d, then after a certain
amount of time has passed, the priority of the task will be du. Therefore,
durability is a relative measurement, too. If at a certain moment d1 =
0.4, d2 = 0.8, and u1 = u2 = 1, we know that at this moment the
two tasks will get the same amount of time resources, but when u1 has
decreased to 0.4, u2 will only have decreased to 0.8, so the latter will
then be receiving twice as much processing time as the former.

If the durability value of a task remain constant, the corresponding
priority will become a function of time, u = dct

0 u0, where u0 and d0 are
the initial values of priority and durability at instant 0, respectively,
and c is a constant. Taking the integration of the function, we get the
relative time-budget of a task (at instant 0):

T =
∫ ∞

0
udt = − u0

ln d0

As a relative measurement, the constant is omitted in the result.
By assigning different priority and durability values to tasks, the

user can put various types of time pressure on the system. For exam-
ple, we can inform the system that some tasks need to be processed
immediately but that they have little long-term importance (by giving
them high priority and low durability), and that some other tasks are
not urgent, but should be processed for a longer time (by giving them
low priority and high durability).

Inference Control 155

Aging is not the only factor that changes the priority distributions
among the tasks. The amount of time spent on a task is determined not
only by requirements of the environment (user), but also by the current
result(s) the system is getting for the task. For example, if the system
has found a good answer to a question, the question should become less
urgent, and its durability factor should also be decreased (so it will get
less time).

For these reasons, each time a task is processed (i.e., during each
inference step), the system re-evaluates the task’s priority and durabil-
ity values, to reflect the current situation. As a result, NARS maintains
a dynamic distribution of priority in its task pool.

6.1.3 Anytime processing

If a task is a question asked by the user, when to report an answer? In a
traditional computing system, an answer gets reported only at a “final
state,” where the system has completed its processing of the question.
However, when time is treated as a limited resource and no answer is
final, it is better to let the system provide some sort of answer as soon
as possible.

NARS keeps a record of the best answer it has found for each ques-
tion, and whenever a new candidate is found, it is compared with the
current best. If the new one is better, it is reported to the user, and the
record is updated. After that, the question remains active, but with a
lower priority, so the system will continue to spend time on it to find
better answers. Therefore, it is possible for the system to report more
than one answer for a question — it can “change its mind” when more
beliefs are taken into consideration.

When should the system stop processing a task? Ideally, as in con-
ventional computer systems, this should happen when the task has been
“finished.” For a new judgment, this would mean that the system had
generated all its implications. For a question (or goal), it would mean
that the system had found the best possible solution, given its beliefs.
In both cases, the system would need to access all relevant beliefs. How-
ever, under the assumption of insufficient resources, such exhaustive use
of beliefs is not possible for NARS. When time is in short supply, some
beliefs have to be ignored, even if they may be relevant.

156 Chapter 6

The most common method for dealing with insufficient resources
is to retreat to a stance of accepting satisficing solutions instead of
complete solutions [Simon, 1996]. For example, we can limit the maxi-
mum number of steps of forward inference for new knowledge, or set a
threshold for the confidence or expectation of the answers. These types
of methods are widely used in heuristic-search systems, but they are
too inflexible for the purpose of NARS. Because the supply and de-
mand of resources are constantly changing in NARS, such thresholds
are sometimes too high (therefore the system still cannot satisfy them)
and sometimes too low (therefore the system makes no attempt to get
better results even though resources are still available).

The solution used in NARS is: when a task is removed from the
task pool, it is not because the processing of the task has met some
predetermined goal, but because the task has lost too much ground in
the competition for resources. Thus, when the task pool is exceeded (it
has a constant capacity), tasks at the low end of the priority spectrum
are removed. It is possible for a question to be removed from the task
pool before even a single answer is found for it.

Resource allocation in NARS is context-dependent. Even if we give
the system the same task, with the same priority and durability val-
ues, it may be processed differently: when the system is busy (that is,
there are many other tasks with higher priority values), the task will
be processed briefly, and only “shallow” implications or answers will be
found; when the system is relatively idle (that is, there are few other
tasks), the task will be processed more thoroughly, and “deep” results
can be obtained.

Generally speaking, in NARS a task can be processed for any num-
ber of steps, as in “anytime algorithms” [Boddy and Dean, 1994]. The
actual number of steps to be carried out for a task is determined both
by its initial priority and durability values, and by the resources com-
peting in the system at that time.

6.1.4 Task derivation

NARS constantly generates derived tasks with its inference rules. Each
such task is assigned priority and durability values by the system (ac-
cording to the type of the inference and the priority and durability of

Inference Control 157

its parents), and then put into the task pool. After that, it is treated
just like a task provided by the user. Even if a “parent” task has been
removed (by losing out in the competition for resources), “children”
tasks derived from it may still be processed, provided that they have
sufficiently high priority values.

For example, when answering a question Q, NARS may generate
two subquestions, Q1 and Q2, as alternative ways to answer Q. Later,
it finds an answer to Q1, which leads to an answer to Q. At this point,
the priority values of Q and Q1 are decreased more rapidly than that
of Q2, and it is possible for Q2 to be processed even after Q has been
removed from the system’s task pool.

If the purpose of a system were solely to answer questions coming
from the user, the above strategy would seem pointless, because Q2

is merely a means to solve Q, hence should go away if Q goes away.
However, the purpose of NARS is to adapt to its environment, which
means that Q2, as a derived question, has value for its own sake, even
in a situation where the question that engendered it has utterly van-
ished. The system will benefit from the processing of Q2 when similar
questions appear thereafter.

As a result, after running for a while, there will be tasks in the
system that are only remotely related to the tasks provided by the user.
Furthermore, since new tasks are derived from existing tasks according
to the current beliefs, it is quite possible for the beliefs involved to
be rejected by new evidence obtained latter. In this case, the derived
task may have little relevance to its “parent” task, or, even worse, may
conflict with its parent.

For example, the system at a certain time has a belief “P ⇒ Q,”
with a certain truth value. As a result, a goal Q with this belief will
produce a derived goal P . However, it turns out later that the realizing
of P makes the realizing of Q more difficult or even impossible.

Under AIKR, the historical relation and the factual relation among
tasks are not necessarily consistent. If one task is derived from another
in one or more than one step, it does not necessarily mean the satisfac-
tion of the former will indeed satisfy the latter, even to a degree.

Though this “task alienation” often has negative effect to the sys-
tem’s performance, it is also an important source of creativity, original-
ity, and autonomy. No matter whether the effect is good or bad, such a

158 Chapter 6

phenomenon is inevitable for a system with insufficient knowledge and
resources.

What was described in this section is the “controlled concurrency”
mechanism of NARS. Its main features, summarized, are these: the
environment provides the system tasks from time to time, giving each
task a priority value and a durability factor. In each inference step,
the system picks a task according to the current priority distribution,
generates new tasks as results of the interaction between that task and
a relevant belief, then adjusts the priority of the task according to its
durability value and the result of the inference. An answer is reported
to the environment as long as it is the best the system has so far found
for an input question. Tasks with low priority are removed as a result
of competition for resources.

This control mechanism is different from that of ordinary time-
sharing, because here the tasks work on a common knowledge base,
the processing of a task does not follow a determined procedure, and it
is not guaranteed that all tasks will be processed all the way to their
final conclusions. Consequently, the interaction among tasks in NARS
is much stronger and more competitive than that among the processes
in a conventional time-sharing system.

6.2 Memory structure

Now let us see how the memory of NARS is organized to support con-
trolled concurrency.

6.2.1 Probabilistic priority queue

In each inference step, the system chooses a task, according to the prior-
ity distribution, then interacts it with a belief, to get results. However,
how is the belief chosen?

Here the problem is very similar to the problem discussed previ-
ously. With insufficient resources, the system cannot consult all relevant
beliefs for a task. On the other hand, beliefs cannot be used indiscrim-
inately — some beliefs are more useful than the others.

Inference Control 159

To solve this problem, the above idea of “controlled concurrency”
is generalized. Let us say that a system has some items to process in
a certain way. Because new items may arrive at any time, and because
the time requirements of the items would exceed the system’s capacity,
it is impossible for the system to do the processing exhaustively. It has
to distribute its time resources among the items, and to truncate the
processing of an item before reaching its “final destination.” Further-
more, items are not treated equally, though the system does not have
all the information at the beginning to make an optimal plan in ad-
vance. Instead, the system has to evaluate the relative priority of each
item as a function of several factors, and adjusts its evaluation when
the situation changes. In addition, the system’s storage capacity, which
is a constant, is also in short supply. When an overflow happens, items
with high priority values should be kept.

Because this phenomenon pervades the discussion of systems with
insufficient resources, it will be useful to design a special data structure
for it. In NARS, there is such a data structure called “bag.”

A bag is a kind of probabilistic priority queue with a constant ca-
pacity, and it can contain some items. Each item has a priority value,
which is a positive real number.

There are two major operations defined on a bag:

put in. The operation takes an item as an input argument, and puts
it into the bag. If the bag is already full, the item with the lowest
priority is first removed from it, and then the new item takes its
place in the bag.

take out. The operation has no input argument, and returns one item
when the bag is not empty. The probability for a given item to
be chosen is approximately proportional to its priority.

There are other common operations defined on bag, such as finding an
item in it by key.

It is possible to implement these operations in such a way that
each of them takes a small constant time to finish, independent of the
number of items currently in the bag. The implementation detail will
not be discussed here.

160 Chapter 6

6.2.2 Concepts

As mentioned previously, NARS implements a “term logic.” This kind
of logic is characterized by the use of categorical sentences and syllogis-
tic inference rules. A property of term logic is that almost all inference
rules use two premises sharing a term. This convenient property of term
logic naturally localizes the choice range of beliefs.

For example, if the statement of a task (which may be a judgment,
a question, or a goal) is “raven → bird,” we know that the beliefs
that can directly interact with it must have “raven” or “bird” in it as
subject or predicate.1

In NARS, all tasks and beliefs that share a common term are col-
lected into a concept, which is named by the shared term. As a result,
any valid inference step necessarily happens within a single concept.
Therefore, a concept becomes a unit for resource allocation, which is
larger than a task or a belief. The system distributes its resources firstly
among the concepts, and then secondly, within each concept, among the
tasks and beliefs.

The result is a two-level memory structure. On both levels, the
notion of “bag” applies. We can describe the memory of NARS as a
bag of concepts, with, within each concept, a bag of tasks and a bag of
beliefs.2

For instance, if the statement of a new task is “raven → bird,”
then the task will be put into the task bag of the concept “Craven”
and that of the concept “Cbird.” If the task is a judgment, it will add
a corresponding belief into the belief bag of the two concepts, too. If
there is no such concept (i.e., the term is novel to the system), it will
be created as a result of the acceptance of the task.

Now we can see the distinction (in NARS) between task and belief
more clearly. Within the system, every judgment is a belief. Every ques-
tion and goal is a task. New judgments also serve as tasks for a short
time. If a belief provides an answer for a question, it will be “activated,”
that is, its corresponding task will be generated.

1There are exceptions, but they can be handled with some special treatments.
2By introducing concepts as a unit of inference and resources management,

NARS can also be described as a model of categorization. This topic will be dis-
cussed in detail in Chapter 11.

Inference Control 161

Because of this distinction, the system has, at any given moment:

• a small number of tasks, which are active, remembered for a short
time, and highly relevant to the current situation;

• a much larger number of beliefs, which are passive, remembered
for a long time, and mostly irrelevant to the current situation.

6.2.3 Dynamics in memory

The memory of NARS changes its content and structure dynamically
when the system is running.

As the result of inference steps, new tasks, beliefs, and concepts may
be put into the corresponding bags, old items may be removed when
the bags are full, and structure parameters (priority and durability
values of the related items) may be adjusted according to the immediate
feedback.

For a given item (task, belief, or concept), its priority will be in-
creased by the “activating” process, and decreased by the “forgetting”
process.

Two types of “forgetting” happen in NARS. The first type, “rela-
tive forgetting,” is caused by the insufficiency of time resource — the
priority values of items decay over time, and items with low priority
are seldom accessed by the system, though they are there all the time.
The second type, “absolute forgetting,” is caused by the insufficiency
of space resource — items with the lowest priority are removed from
overloaded bags.

It follows from the assumption of insufficient resources that in NARS
the results of task processing are usually only derived from part of the
system’s beliefs, and which part of the beliefs is used depends on the
context at the run time, since the items (concept, task, and belief)
processed in each step depends on the priority distributions among
the items in the memory. Consequently, NARS is no longer “logically
omniscient” [Fagin and Halpern, 1988] — it cannot recall every belief
in its memory, not to mention being aware of all their implications.

162 Chapter 6

6.3 Inference processes

In a reasoning system, an “inference process” consists of a sequence of
inference steps.

6.3.1 Life cycle and execution cycle

In conventional computing systems, the processing of a (user provided)
problem has a well-defined starting point and ending point. For a prob-
lem to be accepted, it must correspond to an algorithm already imple-
mented for this type of problem. The problem is accepted when the
algorithm is waiting to be executed. After an execution, the working
space is cleared, the relevant states are reset, and the system waits for
the next problem.

NARS does not work in this way. When a NARS system starts
to run for the first time, its memory may either be empty, or comes
with certain “innate” beliefs. Roughly speaking (i.e., with some imple-
mentation details omitted), the system runs by repeating the following
“execution cycle”:

1. To check the input buffer. If there are new (input or derived)
tasks, add them into the corresponding concepts (after some sim-
ple preprocessing).

2. To take out a concept from the concept bag.

3. To take out a task from the task bag of the concept.

4. To take out a belief from the belief bag of the concept.

5. To apply inference rules on the task and belief. Which rule is
applicable is determined by the syntax of the task and the belief.

6. To adjust the priority and durability values of the involved task,
belief, and concept, according to the quality of the results.

7. To return the involved task, belief, and concept are returned to
the corresponding bags.

Inference Control 163

8. To put the results generated in this step into the input buffer
as new tasks. If a result happens to be a best-so-far answer of a
question asked by the user, it is reported to the user.

It should be noticed that each execution cycle may produce new
tasks (as well as related beliefs and concepts), without removing any old
items. In every inference step, the promises used are but back into the
memory afterwards. This is true even for revision, where a conclusion is
drawn by pooling together the evidence provided by the premises, but
after it, the premises are still valid (with respect to their own evidence),
and will be kept in the memory, though may be with lower priority
values.

Clearly, each execution cycle carries out a single step of inference.
It is possible to implement the above cycle in such a way that it takes
roughly constant time, no matter how large are the involved bags. Such
a step is like an “atomic operation” of the problem-solving processes
in NARS. The user can interrupt the process between execution cycles,
then resume the running at a later time.

Unlike a conventional computing system, in NARS the processing
of tasks are interwoven, even when the tasks are not directly related
to each other in contents. Also, the starting and ending point of a task
processing are not clearly defined, because the system never waits for
new tasks in a special state, and it never reports a final answer, then
stops working on a task right after it. What it does to a task is strongly
influenced by the existence of other tasks.

If the user stops the program and resets the memory, the system
will start another life cycle, with no memory about its “previous life.”
Unless its experience accurately repeats itself, the system may develop
different beliefs, and process tasks differently, even though its innate
capability (inference rules and control mechanism) remain unchanged.

The system is “task-driven” in the sense that every execution cycle
is an attempt to process some task. If we concentrate on the processing
of a single task in NARS, we can see that the process consists of a
sequence of execution cycles, each of them is like an instruction in a
programming language, in the sense that it carries out some simple
work. However, the whole process does not act like a typical program,
where the order of instructions are accurately determined in advance,

164 Chapter 6

and the process can be accurately repeated as far as the same task is
given to the system. In NARS, for a given task, the execution cycles
form a sequence only at the run time, and the order is unpredictable
unless from the complete history of the system, including its experience
that is not directly related to the given task.

6.3.2 Operation execution

One omitted process in the previous description of the running of NARS
is the execution of operations that match current goals.

In NAL-8, after introducing the procedural interpretation of Narsese
statements, operations and goals are defined. If an operation O happens
to achieve a goal G, the system would like to execute it when G is
selected as a task in an executing cycle.

In the first glance, the situation here looks like logic programming.
When a Prolog program runs, whenever a goal is nothing but a “built-
in predicate” (like an operation in NARS), it is executed, and the goal
is achieved. Under AIKR, however, the situation becomes much more
complicated. Because of insufficient knowledge, there is always uncer-
tainty in the conditions and effects of an operation, therefore “The
system currently believes that O can achieve G” does not guarantee
the achieving of G by executing O. Furthermore, since at the same
time there are usually many goals to be achieved, the executing of O
may make other goals harder to be achieved, even if it indeed realizes
G.

As a first approximation, in NARS the execution of operations will
be handled by the following mechanism.

Whenever the executing of an operation is proposed by the process-
ing of a goal, usually the action will not be taken immediately. Instead,
the operation is put into the task base of the corresponding concept,
with its desire value (as defined in Section 5.4.2). While the system con-
tinues to run, other goals also “cast their votes” on the execution of the
operation, by either increasing or deceasing its desire value, depending
on whether its execution contributes to their satisfaction.

The contribution of a goal to the desire value of an operation is
determined by several factors, including

Inference Control 165

importance of the goal. Of course, if the goal is important to the
system, the operation has a higher desire value.

certainty of the belief. If the belief that links the goal and the op-
eration is strong (that is, has a high expectation value), it will
contribute more to the desire value.

At a given time, the system only executes one operation (though it
can be a compound operation with internal structure), and the selection
is based on both the desire value and the priority value of the operations
(as goals). When the system is implemented in a programming language
like Java, the execution of operations may be carried out by another
thread, so this process will go in parallel with the reasoning process
that runs the execution cycles, and be monitored and controlled by the
latter.

There is an important difference between the executing of operations
and the processing of tasks, in that the former is a binary decision, while
the latter is a matter of degree. Since the processing of a task typically
consists of many steps, the system can carry out many such processes
in parallel, at different speeds. On the contrary, whether to execute an
operation is usually a matter of “yes/no,” so these processes must be
carried out sequentially, one at a time.3

6.4 Budget assessment

What has not been discussed is the subtlest part of the control mecha-
nism: how to assess the priority and durability values of concepts, tasks,
and beliefs, both initially and after each inference step. To this end, we
need to design a set of numerical functions.

6.4.1 Relevant factors

In each execution cycle, only the directly involved concepts, tasks, and
beliefs will have their priority and durability values adjusted. Thus, no

3Of course, the situation will be different if NARS is implemented in such a way
that parallel processing can also happen at the hardware level. For example, some
operations may need to operate multiple devices at the same time.

166 Chapter 6

matter how big the memory is, this set of adjustments takes roughly
constant time. This is exactly what one would wish for. On the other
hand, these adjustments have global effects. Since priority and durabil-
ity are relative values, the increase of the priority of any particular task
means that all competing tasks will have less chance. Though such ef-
fects are small at each step, they accumulate in the long run, and result
in a dynamic allocation of resources.

Since all the quantities involved are real numbers in [0, 1], these
functions have been designed in a manner reminiscent of the design
of the truth-value functions. First, the boundary condition constrain-
ing the desired function is determined, and then a function satisfy-
ing this condition is formed with the help of T-norm, T-conorm, and
other general-purpose operators (such as difference, average, and so
on). Functions obtained in this way are by no means optimal. They
only reflect my current analysis of the situation, and my ideas are still
being revised from time to time. In the following, therefore, they will
only be discussed qualitatively.

Generally speaking, the priority of an item reflects the amount of
resources the system plans to spend on it in the near future. Generally,
it is determined by the following considerations:

1. The origin of the item, according to its source of generation. This
factor is available initially, and remains constant.

2. The quality of the item, according to its attribute values. This
factor is available initially, and may or may not remain constant.

3. The usefulness of the item, according to its contribution in the
past. This factor is acquired gradually, and indicate an individu-
alized evaluation.

4. The relevance of the item, according to its relation to the current
situation. This factor is re-evaluated from time to time.

The first three factors mainly determine the long-term aspect in prior-
ity, while the last one determines the short-term aspect. The current
priority value is a function of these two aspects.

For different kinds of item, the above factors are determined in
different ways.

Inference Control 167

6.4.2 Assessing tasks

The priority and durability values of an input task are assigned by the
environment (a user or another computer system), and reflect the time
constraint placed by the environment on the task. Of course, the system
can provide default values.

The priority and durability values of a derived task are determined
by several factors: generally, it inherits them from its parents. If both
the task and belief that derive the new task have high priority (or
durability) values, the new task will get a high priority (or durability)
value. However, the values will also be affected by the “quality” of the
inference result.

• In revision, a new task gets a high priority value if the two
premises have significantly different expectations (a belief con-
flict).

• In forward inference, a new task gets high priority and durability
values if it is a confident conclusion.

• In backward inference, if the answer to the derived task can (with
its parent belief) generate a good answer to the parent task, it
gets high priority and durability values. For instance, if the related
forward rule is deduction, it is better than the case of induction,
for this purpose.

• If the given task is a question and the given belief provides an
answer for it, the priority and durability values of the new task
(which is a copy of the belief) depends on how good the answer
is.

After the inference, the priority value of the parent task is decreased
(to indicate the cost of the inference). In addition to the decrease due to
the durability factor described earlier, there may be further decrease,
depending on the quality of the result. If an answer to a question is
found and is quite good, then the priority of the question is decreased
more than if the answer is poor.

168 Chapter 6

6.4.3 Assessing beliefs

Initially, a belief is generated by copying a (judgment) task. It is given
the highest priority value (that is, 1), and its durability value is deter-
mined by the priority and durability values of that task. In this way,
a new belief gets some initial attention from the system, but usually
decays rapidly unless it corresponds to a task with high priority and
durability.

After a belief is used, its priority and durability values are adjusted.
In contrast to the case of tasks, the priority value of a belief can be in-
creased. In each adjustment, there are two competing forces pulling the
priority value in opposite directions. One force is the universal aging
force, which decreases the priority value by multiplying the durability
value (a number less than 1). On the other hand, the belief gets re-
warded each time (by increasing its priority value) depending on how
good the result is in this step. Therefore, in the long run, useful beliefs
(which has provided good answers and implications in the past) get
high priority values, which makes it more accessible in the future.

The durability value of any given belief is increased each time. As
a result, the longer a belief stays in the memory, the more slowly its
priority value will decrease.

6.4.4 Assessing concepts

The priority value of a concept increases when a task is put into it, with
the size of the increase depending on the priority value of the task. At
the same time, the concept’s durability value is also adjusted. If the
concept already has high priority before the task is inserted into it, it
will be given a high durability value, which ensures that the current
high priority will be kept longer. On the other hand, if the concept’s
priority took a big, upwards jump, then the durability value will be set
low, so the concept will lose its priority soon.

The priority value of a concept decreases whenever any task is re-
moved from it. In addition to the decrease due to the durability factor,
the size of the decrease also depends on the priority of the task that
was just removed. Specifically, if the task had a high priority value, the
decrease will be larger.

Inference Control 169

Another factor that influences the resources allocated to a concept
is its “quality.” Roughly speaking, the system will give more resources
to a concept whose extension and intension are balanced, and have
relatively sharp boundary (i.e., between elements and non-elements),
because such a concept tends to produce better results.4

4We will return to this topic in Section 11.1.6.

Part III

Comparison and Discussion

Chapter 7

Semantics

Generally speaking, semantics is the study of the relation between a lan-
guage and the environment in which the language is used. The language
can be either artificial or natural. The former usually has well-defined
grammar rules followed by the users of the language (so they are often
also called “formal languages” or “symbolic languages”), while the lat-
ter is usually formed in history, described by some loose grammar rules
summarized from its common usage, which may change from time to
time, from place to place, and often with exceptions.

A reasoning system normally uses a language for communicating
with other systems, as well as for knowledge representation within the
system. For each of the two functions, the semantic theory of the lan-
guage plays an important role:

• Outside the system, semantics specifies how the language should
be understood (such as how to be translated into other languages)
in communication, so that other (human or computer) systems
know how to “talk” with the system. For this purpose, the se-
mantic theory specifies how the meaning of a word or a sentence
in the language is determined, by relating it to the outside of the
language.

• Within the system, semantics provides justification for the infer-
ence rules, that is, to explain why these rules and not others are
proper to be used to carry out inference on the language. For
this purpose, the semantic theory specifies how the truth values

173

174 Chapter 7

of declarative sentences of the language are determined, so that
the rules can be validated as preserving truth in the inference
process.

In this chapter, the Experience-Grounded Semantics (EGS) of NARS
(first introduced in Chapter 3) is compared with other schools of se-
mantics, and several important issues are discussed.

7.1 Experience vs. model

7.1.1 Model-theoretic semantics

The “native language” of NARS is Narsese. It is a formal language, in
the sense that its grammar is formally defined (see Table 5.17 for the
complete Narsese grammar). Since the dominant semantics for formal
languages is Model-Theoretic Semantics (MTS), the first issue to be
discussed is why Narsese does not use MTS, but uses a new semantic
theory, EGS.

The basic of MTS can be roughly described as the following. For a
formal language L, a model M consists of descriptions about objects
and their factual relations in a domain. The descriptions are written in
a meta-language Lm, which can either be a natural language, like Eng-
lish, or another formal language. An interpretation I maps the words
in L onto the objects and relations in M.

According to this theory, the meaning of a word in L is defined as its
image in M under I, and whether a statement in L is true is determined
by whether it is mapped by I onto a fact in M.

The study of formal languages was started as part of the study
about the foundation of mathematics by Frege, Russell, Hilbert, and
others. A major motivation of using formal languages was to avoid the
ambiguity in natural language, so that objective and accurate artificial
languages were created. MTS was founded by Tarski’s work. Although
Tarski’s primary target was formal language, he also hoped that the
ideas could be applied to reform natural language [Tarski, 1944].

To directly use this kind of semantics in a reasoning system (such as
NARS) means to understand the meaning of a word in Narsese accord-
ing to the object or relation it refers to (under a given interpretation),

Semantics 175

and to choose inference rules that are truth-preserving under all possible
interpretations. According to this viewpoint, “semantics is a discipline
which deals with certain relations between expressions of a language
and the objects ‘referred to’ by those expressions.” [Tarski, 1944].

According to MTS, for any formal language L, the necessary and
sufficient condition for its terms to have meaning and for its statements
to have truth value is the existence of a model. In different models, the
meaning of a term and the truth values of a statement may change;
however, these changes are not caused by using the language. A rea-
soning system R that processes sentences in L does not depend on the
semantics of L when the system runs. That means, on the one hand,
that R needs no access to the meanings of terms and truth values of
statements — it can distinguish terms only by their forms, and derive
statements from other statements only according to its (syntactically
defined) inference rules, but it puts little constraint on how the language
can be interpreted [Putnam, 1981]. On the other hand, what beliefs R
has and what operations R performs have no influence on the meanings
and truth values of the terms and sentences involved.

Such a treatment is desired in mathematics. As Russell put it, “If
our hypothesis is about anything, and not about some one or more
particular things, then our deductions constitute mathematics. Thus
mathematics may be defined as the subject in which we never know
what we are talking about, nor whether what we are saying is true.”
[Russell, 1901] In mathematical logic, abstract patterns of inference are
studied, and the patterns can be applied to different domains by con-
structing different models. Here we do enjoy the freedom provided by
the separation of “syntactic processing” and “semantic interpretation.”
The study of semantics has contributed significantly to the development
of meta-mathematics. As Tarski said, “As regards the applicability of
semantics to mathematical science and their methodology, i.e., to meta-
mathematics, we are in a much more favorable position than in the case
of empirical sciences.” [Tarski, 1944].

As all normative theories, MTS is based on certain assumptions,
and it should be applied to a problem only when the assumptions are
satisfied. In asserting the existence of a model M, the theory presumes
that there is, at least in principle, a consistent, complete, accurate,
and static description of (the relevant part of) the environment in a

176 Chapter 7

language Lm, and that such a description, a “state of affairs” is at
least partially known, so that the truth value of some statements in L
can be determined accordingly. These statements then can be used as
premises for the following inference activities. It is also required that
all valid inference rules must be truth-preserving, which implies that
only true conclusions are desired. After the truth value of a statement is
determined, it will not be influenced by the system’s inference activity.

Such conditions hold only when a system has sufficient knowledge
and resources with respect to the problems to be solved. “Sufficient
knowledge” means that the desired results can be obtained by deduction
from initially available knowledge alone, so no additional knowledge will
be necessary; “sufficient resources” means that the system can afford
the time–space expense of the inference, so no approximation will be
necessary. These are exactly the assumptions we usually accept when
working within a mathematical theory. Therefore, it is no surprise that
model-theoretic semantics works fine there.

Of course, what we just described is merely the basic form of MTS.
Many variations and extensions of MTS have been proposed for various
purposes, such as possible worlds, multi-valued propositions, situational
calculus, and so on [Barwise and Perry, 1983, Carnap, 1950, Halpern,
1990, Kyburg, 1992, Zadeh, 1986b]. However, these approaches still
share the same fundamental framework: for a reasoning system R
working in an environment E with a language L (for knowledge repre-
sentation and communication), the semantics of L is provided by de-
scriptions of E in another language Lm and a mapping between items
in L and Lm.

No matter how the details are specified, this kind of semantics treats
the semantics of L as independent of the two processes in which R is
involved (and where the language L plays a central role): first, the
communication between R and E, and second, the internal reasoning
activity of R. According to MTS, these processes are purely syntactic,
in the sense that only the form of the words and the structure of the
sentences are needed. Since the above two processes can be referred to
as the “external experience” and “internal experience” of the system,
we say that MTS is “experience-independent,” and it does not even
need to assume the existence of a reasoning system R that actually
uses the language.

Semantics 177

7.1.2 Why NARS does not use MTS

Though MTS can be applied to Narsese, it provides little help for the
design and use of NARS. If we give Narsese a model, it tells us what
the words mean to us, but says nothing about what they mean to the
system, which does not necessarily have access to our model. Similarly,
the model tells the truth value of statements to us, but not to the
system.

By “to the system,” I mean that to solve the semantic problems in
NARS (that is, to understand the language and to justify the rules),
we need to explain why the system treats each term and statement
as different from other terms and statements, and such an explanation
should be based on the relation between the language and the environ-
ment, not only on the syntactic natures defined within the language.
Since the relation between NARS (the system in which the language
is used) and its environment (which is the “world” to the system) is
indicated by the experience of the system, the semantic features of a
term or a statement has to be determined according to its role in the
experience of the system, because in NARS there is no other way to
talk about the outside world.

If we still define truth as “agreement with reality,” in the sense that
truth values cannot be threatened by the acquisition of new knowledge
or the operation of the system, then no statement can ever be assigned
a truth value by the system under AIKR, because by the very definition
of open system, all beliefs can be challenged by future evidence.1

Moreover, since non-deductive inferences (which are absolutely nec-
essary when knowledge is insufficient) are not truth-preserving in the
model-theoretic sense, they are hardly justifiable in the usual MTS
way. MTS also prohibits the system from using the same term to mean
different things in different moments (which is often inevitable when
resources are in short supply, to be discussed later), because meaning
is defined as independent of the system’s activity.

However, it is not true that in such a situation semantic notions
like “truth” and “meaning” are meaningless. If that were the case,

1One proposed solution of this problem is to treat “truth value” and “degree of
belief” as different to each other. This issue will be discussed in detail in Section
7.4.2.

178 Chapter 7

then we could not talk about truth and meaning in any realm except
mathematics, because our mind faces exactly the same situation.

For an intelligent system likes NARS (or for adaptive systems in
general), the concept of “truth” still makes sense, because the system
believes certain statements, but not other statements, in the sense that
the system chooses its actions according to the expectation that the
former, not the latter, will be confirmed by future experience; the con-
cept of “meaning” still makes sense, because the system uses the terms
in Narsese in different ways, not because they have different shapes,
but because they correspond to different experiences.

For these reasons, in NARS we need an experience-grounded seman-
tics, in which truth and meaning are defined according to the experience
of the system. Such a theory is fundamentally different from MTS, but
it still qualifies to be a “semantics,” in a broad (and original) sense of
the notion.

The idea that truth and meaning can be defined in terms of ex-
perience is not a new one. For example, it is obviously related to the
theory of pragmatism of Peirce, James, and Dewey. In recent years,
related philosophical ideas and discussions can be found in the work of
Putnam and many others [Dummett, 1978, Field, 2001, Fodor, 1987,
Lynch, 1998, Putnam, 1981, Segal, 2000, Wright, 1992]. In linguistics
and psychology, similar opinions can be found in [Barsalou, 1999, Ellis,
1993, Kitchener, 1994, Lakoff, 1988, Palmer, 1981].

In AI research, the situation is different. Unlike in philosophy, lin-
guistics, and psychology, where MTS (with the related theories, such as
realism, the correspondence theory of truth, and the reference theory
of meaning) is seen as one of several candidate approaches in semantics
(by both sides of the debates), in AI not only is MTS accepted explicitly
by the “logical AI” school [McCarthy, 1988, Nilsson, 1991], and implic-
itly by the “symbolic AI” school in general [Newell, 1990], but also it is
taken to be the only possible semantics, both by its proponents and its
critics. As McDermott put it, according to the logicist opinion, “The
notation we use must be understandable to those using it and reading
it; so it must have a semantics; so it must have a Tarskian semantics, be-
cause there is no other candidate.” [McDermott, 1987] When people do
not like this semantics, they usually abandon it together with the idea
of formal language and inference rules, and turn to neural networks,

Semantics 179

robots, dynamic systems, and so on, with the hope that they can gen-
erate meaning and truth from perception and action [Birnbaum, 1991,
Brooks, 1991, Harnad, 1990, Smolensky, 1988, van Gelder, 1997].

Therefore, though the philosophical foundation of MTS is under
debate, and its suitability for a natural language is doubtable [Haack,
1978], few people have doubt about its suitability for a formal language.
We have not seen a formal semantics that is not model-theoretic, and
such concept may even sound self-contradictory to some people.

7.1.3 EGS vs. MTS

The EGS theory used in NARS has been formally defined in Chapter 3.
Briefly speaking, an EGS first defines the form of experience a system
can have, then defines truth value and meaning as functions of given
experience.

Though both are descriptions of an environment (or “world”),
“model” and “experience” are different in the following aspects:

• A model is static, whereas experience stretches out over time.

• A model is a complete description of (the relevant part of) an
environment, whereas experience is only a partial description of
it, in the sense that novel terms may appear that were not known
previously.

• A model must be consistent, whereas judgments in experience
may conflict with one another.

• A model of a language L is described in another language Lm,
whereas experience is represented in L itself.

• The existence of a model M of L is independent of the existence
of a system R using L. Even when both M and R exist, they are
not necessarily related to each other in any way. On the contrary,
experience must happen in a system.

These two types of descriptions serve different purposes. A reason-
ing system assuming sufficient knowledge and resources makes no at-
tempt to answer questions beyond the scope of available knowledge

180 Chapter 7

and resources — when such a question is provided, the system simply
replies “I don’t know,” “Invalid question,” or gives no reply at all. For
such a system, it is fine to describe its environment as a model. On the
contrary, a system designed under AIKR always attempts to answer a
question with available knowledge and resources, which means that the
system may revise its beliefs from time to time. For such a system, it
is better to describe its environment by its experience.

Generally speaking, the human mind works with insufficient knowl-
edge and resources [Medin and Ross, 1992]. However, for certain rel-
atively mature and stable beliefs, it is more efficient to treat them
assuming the sufficiency of knowledge and resources. This is exactly
the role played by mathematics. In such a theory, we do not talk about
concrete objects and properties. Instead, we talk about abstract ones,
which are fully specified by postulates and conventions. After we figure
out the implications of these postulates and conventions, we can apply
such a theory into many situations, because as far as the postulates and
conventions can be “instantiated” by substituting the abstract concepts
with the concrete ones, all the ready-made implications follow. This is
the picture provided by MTS.

On the other hand, if the beliefs embedded in a reasoning system
are not mathematical, but empirical, then what we have is a system
where the concepts are no longer abstract and can be interpreted freely
— no matter how an external observer interprets them, for the system
their meaning and truth come from experience, and an EGS should be
used.

Some researchers suggest that the reasoning system itself (human
or computer), rather than the world it deals with, should be used as
the “domain” of the language the system uses. Thus, one could posit
that the meaning of a particular term is a particular “concept” that
the system has, and the truth value of a statement is the system’s
“degree of belief” in that statement. This idea sounds reasonable, but it
does not answer the original question: how are “concepts” and “degrees
of belief” dependent upon the outside world? Without an answer to
that question, such a solution “simply pushes the problem of external
significance from expressions to ideas” [Barwise and Perry, 1983], that
is, it turns the problem of word meaning into the problem of concept
meaning.

Semantics 181

The meaning of a concept is not simpler than the meaning of a
word at all. It often changes from time to time and from place to place,
and such changes cannot always be attributed to the changes in the
world. People in different cultures and with different languages usu-
ally have different opinions on what “objects” are there even if they
are in the same environment [Whorf, 1956]. People often use concepts
metaphorically [Lakoff, 1987] or with great “fluidity” [Hofstadter and
FARG, 19995]. These issues are hard to handle in MTS.

What if we take a concept as a Platonic entity that never changes,
and treat the changes in the meaning of a word as mappings to different
concepts? Now the problem becomes to explain why a certain new
concept, rather than many others, becomes the new meaning of a word.
We still need a way to link the change of meanings of words, concepts,
ideas, or whatever we call them, to the experience of the system.

In NARS, since a term is the name of a concept, and a statement
is the name of a conceptual relation, the meaning/truth defined for the
language and the meaning/truth defined for the concepts system are
defined similarly.

Though overall NARS uses EGS, there are still places where MTS
is used. One example is the symbols in the inference rule. As mentioned
in Chapter 3, the induction rule of NARS is

{M → P <f1, c1 > , M → S <f2, c2 >} � S → P <f, c>

Written in this way, the symbols S, M , and P have no experience-
related meaning until they are instantiated by constant terms “bird,”
“raven,” and “[black],” respectively, and then the meanings of the sym-
bols are determined by the meanings of the constant terms.

Similarly, when mathematical knowledge is provided to NARS, it is
used with MTS. This kind of knowledge always needs an interpretation
step when being applied to a practical situation. Roughly speaking,
MTS is usually used to base one language in another language, while
EGS is usually used to base a language in the experience of a system
using the language.

According to the above discussion, we see that MTS and EGS are
designed under different assumptions, and therefore should be used for
different purposes. In this sense, EGS is not proposed as a competitor

182 Chapter 7

of MTS. However, since now MTS is used everywhere, including in
situations where EGS (or its variations) should be used, EGS indeed
competes with MTS as candidates of application, especially in AI and
cognitive sciences (but not in meta-mathematics).

It is very often implicitly assumed that the semantics of a formal
language has to be model-theoretic. Such an inductive conclusion seems
warranted by our experience — almost all formal languages have tradi-
tionally been assigned their semantics in this way. As a result, people
who do not like the semantics usually abandon the language at the
same time.

However, a language can be “formal” in two different senses. In a
syntactic sense, “formal” means merely that the language is artificial,
and is defined by a formal and symbolic grammar; in a semantic sense,
“formal” means that the language is used in conjunction with an MTS.
Narsese is “formal” in the syntactic sense only. From a technical point of
view, it would be easy to give the language a model-theoretic semantics,
but with such a semantics, the language would no longer be suitable
for our current purposes.

Logicians, in distinguishing themselves from other scholars (such as
psychologists), tend to stress the normative nature of logical theory. As
a result, in their study of semantics, the goal is often that of looking for
the real, objective meanings of terms or truth values of sentences. Even
if such an opinion has some degree of justifiability when one’s purpose
is to study the logic of mathematics, that justifiability goes away when
one turns to the study of the “logic” of empirical science and common
sense. For the purposes of AI, what we need is another kind of normative
model, in which meanings and truth values are founded on the system’s
experience.

Since NARS is a normative theory of intelligent reasoning, not a
descriptive theory of it, the semantics proposed here is about how truth
and meaning should be used in a system, not how they are actually
used in the human mind. I do not present NARS as a psychological or
linguistic model of truth and meaning. However, since the human mind
is basically an adaptive system evolved in an environment where its
knowledge and resources are generally insufficient with respect to the
problems to be solved, I do believe that in general this model is closer
to a descriptive model than MTS is. Though it is not the major goal

Semantics 183

of the current research on EGS, it will be interesting to explore the
implications of this theory in philosophy, linguistics, and psychology.

7.2 Extension and intension

Traditionally, extension and intension refer to two different aspects of
the meaning of a term: roughly speaking, its instances and its properties.

In previous theories, a term’s extension is usually defined as a
set of objects in a “physical world” that are denoted by the given
term; a term’s intension is usually defined as a concept, or a set of
attributes, in a “Platonic world” which denotes or describes the given
term [Bocheński, 1970, Copi, 1982]. In spite of minor differences among
the exact ways the two words are used by different authors, they always
indicate relations between a term in a language and something outside
the language.

By contrast, in NAL (as defined in Chapter 3) a term’s extension
and intension are sets of term linked to the given term by an inheritance
relation (in the opposite directions). Here extension and intension are
defined within the language, and become symmetric to each other. Yet
even so, the definition retains the intuitive feature that “extension”
refers to instances, and “intension” refers to properties.

Such a departure from tradition has important reasons and impli-
cations. One of them is already addressed previously in the “experience
vs. model” discussion, that is, NAL does not assume a “physical world”
or a “Platonic world” that is described in another language, and every-
thing that is semantically relevant must be based on the experience of
the system, described by the same language. In the following, we focus
on the symmetry, or duality, of extension and intension in NAL, which
lead to a unified treatment of the two.

7.2.1 The need for a unification

One feature that distinguishes NAL from other logical systems is its
unified representation and processing of extension and intension.

184 Chapter 7

In semantics, this unification happens in two places. For each term,
its meaning consists of its extension and intension. For each judgment,
its truth value is usually determined by both extensional and intensional
factors.

It needs to be stressed that in the terminology of set theory, what
is being counted in NAL as a piece of evidence in extension is not an
“element,” but a “subset,” because of the use of inheritance relation.
For example, if the system’s experience is {A ◦→ B, B → C, C → D},
then the extension of D is {{A}, B, C}, not just {A}. Similarly, what
is being counted in intension is a “superset,” not a “property.”

In other theories, following the tradition of set theory, a concept is
often treated as a set, with its instances as elements. Consequently, the
logic developed on these concepts is a kind of extensional logic. If in-
tension is as important as extension, how can the traditional logic have
been used for such a long time without being challenged on this issue?

This is the case because traditional formal logic has been developed
and mainly used in mathematics, where given the extension of a concept
(i.e., what instances it has), its intension (i.e., what properties it has) is
uniquely determined; and given its intension, its extension is uniquely
determined, too. We have seen this in the discussion of NAL-0 in Sec-
tion 3.1. In such a situation, to process both extension and intension
becomes unnecessary, and even confusing. When concepts are explic-
itly defined and processed according to their extension, their intension
is implicitly defined and processed.

This is no longer the case for a system like NARS, which is built
under AIKR. In this situation, not only that extension and intension
do not fully determine each other, even known extension (intension)
cannot determine future extension (intension).

For example, in set theory, S ⊆ P means that the members of S are
also members of P . This extensional statement implies the following:

• if M is an element of S, it is also an element of P ;

• if M is a property shared by the elements of P , it is also shared
by the elements of S.

On the contrary, in NAL if all known instances of S are also in-
stances of P , the system is not necessarily certain to the same extent

Semantics 185

(i.e., indicated by the same truth value) about the implications listed
above. What it means is that in this situation, we cannot only process
extension of concepts, and expect intension to follow automatically.

For practical purposes, we may prefer to treat concepts as purely
defined by extension (or intension), so that we can use various mathe-
matical tools on them. By doing that, however, we are assuming certain
beliefs to be “axioms” that won’t be challenged, and doing inference
accordingly. In that situation, it is fine to concentrate on extension
alone. For example, we can define a “subset” relation among concepts
(that are treated as sets), and do inference on the relation accordingly.
The pure extensional logic used in this case is not part of NAL, but a
system that can be called by NAL as a tool to solve specific problems.
NAL is not designed as a logic that includes all other useful logics, but
one that allows the others to be used by it. To a system using NARS
as its “intelligent core,” it works like an operating system, which use
various logics and algorithms as application programs to solve various
concrete problems.

However, no matter what logic is used, the conclusions obtained
are only as good as the assumptions, and the price of ignoring inten-
sional information will be paid anyway. If certain concepts should not
be treated as pure extensional, but the system chooses to do that any-
way, the conclusions will be less confident than the ones obtained by
considering both extensional and intensional beliefs, because the former
is based on less evidence.

It is possible to develop extensional or intensional term logics sep-
arately, as shown in [Wang, 1994b]. As stated previously, “S → P”
means, when it is understood extensionally, that P inherits S’s in-
stances; but when it is understood intensionally, the same relation
means that S inherits P ’s properties. Therefore, if “S → M” is com-
pletely false and “M → P” is completely true, what can be derived
from them is different in the two logics. In the extensional logic, the
premises are understood as “S and M have no common instances, and
all instances of M are also instances of P .” From these two relations, we
cannot decide whether S and P have common instances. On the other
hand, in the intensional logic, the premises are understood as “S and
M have no common properties, and all properties of P are also proper-
ties of M ,” which implies that “S and P have no common properties.”

186 Chapter 7

Symmetrically, if “S → M” is completely true and “M → P” is com-
pletely false, the extensional implication is “S and P have no common
instances,” and there is no intensional implication.

Though the extensional logic and the intensional logic, defined in
this way, are different, formally they are isomorphic to each other, much
as union and intersection are isomorphic to each other in set theory.
This isomorphism is described in [Wang, 1994b], and it comes directly
from the “dual” definitions of extension and intension in NARS.

The dual definitions of extension and intension make it possible
for NARS to treat them uniformly, as, for instance, in the defini-
tion of “amount of evidence.” We need systems to deal with them
together, because the coordination of the extensions and intensions of
concepts is an important principle in the development of human cogni-
tion [Inhelder and Piaget, 1969], and when evidence is used to judge a
conceptual relation, whether the evidence is extensional or intensional
is often irrelevant or unimportant. We often determine the extension
(instances) of a concept according to its intension (properties), or the
other way around, and seldom judge a relation between concepts by
considering the extensional or intensional factor only, especially when
the system has insufficient knowledge and resources.2

Therefore, though a pure extensional (or intensional) logic is easier
to define, it is less interesting from the viewpoint of AI, so NARS is
not designed in that way. On the other hand, if really necessary, it
is possible for NARS to express pure extensional or pure intensional
relations using more complicated methods (such as with variable terms
defined in NAL-6), and to support an extensional (or intensional) logic
as a subsystem.

7.2.2 Unification in meaning

As discussed above, the meaning of a term has two aspects, its ex-
tension and intension, related to the “reference” and “sense” of Frege,
respectively [Copi, 1982].

A common practice in AI and cognitive science is to take a term as
the name (or label, symbol, and so on) of an object, or a set of objects,
in the world. This intuition is the foundation of the MTS.

2We will come back to this issue in Chapter 11 when discussing categorization.

Semantics 187

The problem of this approach is the assumption that there is an ob-
jective way to describe the world as objects with relations among them,
and that terms have one-to-one mapping to objects or sets of object.
This assumption, though sounds natural, conflicts with the assumption
that the system may have all possible kinds of future experience.

As usual, this idea is not completely wrong. The meaning of a term
does partially depend on its relation to its instances (extension). The
difference is that in NARS the extension of a term consists of other
terms, not objects. By following the extensional relations, the system
will eventually reach terms that cannot be further specified, though
actually they still exist within the system, for instance, as the “mental
image” that formed by perception. For example, we can say that “Mars”
is in the extension of “planet,” but here “Mars” is something in our
mind, not something that exists independent of our mind.

According to EGS, the meaning of a term is determined by its (ex-
perienced) relations with other terms. These relations can either be
extensional or intensional. If “S → P” is a new belief, then it con-
tributes to the meaning of both S (by indicating part of its intension)
and P (by indicating part of its extension). In a sense, S and P are
partially defining each other, and no one is “more primitive” than the
other semantically.

As special cases, there are terms whose meaning is mostly deter-
mined by its extension, as well as terms whose meaning is mostly de-
termined by its intension. Only in these situations, a pure extensional
or pure intensional theory of categorization may work approximately.
Since NARS determines the meaning of a term according to available
relations, it can handle these special situations, as well as the general
situation where both extensional and intensional factors should be con-
sidered.

One consequence of using a unified approach is that that system
tends to keep the extension and intension of a concept in coherence. In
an extensional logic, since properties are derived from given instances,
the system makes no attempts to use them to evaluate membership.
It is possible to define a concept by a set of instances, where one in-
stance is very different from the others (in terms of its properties),
and yet is a perfect instance. In NARS, however, the result is differ-
ent. The membership (i.e., the frequency) of the special instance will

188 Chapter 7

be decreased, because of its difference with the other instances. In this
way, there is a “feedback loop” between extension and intension.

7.2.3 Unification in truth value

According to the definitions introduced in Chapter 3, in the truth value
of a judgment, the extensional factor and the intensional factor are
merged together.

This is a controversial issue in NARS. Intuitively, even if both exten-
sional and intensional factors need to be considered, it is more informa-
tive to represent them separately, and to process them in parallel. For
example, for “S → P ,” why do not we measure the evidence collected
from the extension and intention of S and P with different numbers?
As shown in [Wang, 1994b], it can be done in binary logic, and the
same idea could had been applied to NAL.

NARS does not follow that path because, once again, AIKR. Here
this assumption means “to make judgment according to whatever knowl-
edge is available,” no matter where it comes from.

Let’s take medical diagnosis as an example. Suppose a doctor wants
to determine whether a patient P is suffering from disease D, that is, to
evaluate statement “{P} → D.” For this task, at least two types of in-
formation can be taken into account: (1) whether P has D’s symptoms
S (that is, to derive the conclusion from “D → S” and “{P} → S”
by abduction), and (2) whether D is a common illness among refer-
ence class C to which P belongs (that is, to derive the conclusion from
“C → D” and “{P} → C” by deduction). With respect to the term
D, the inference is intensional in (1), and extensional in (2). To get
a summarized conclusion means to merge the two conclusions by the
revision rule, and the result is neither pure extensional nor pure inten-
sional for D. Such a merging also means that different types of evidence
(extensional and intensional) can be balanced against each other, or be
accumulated together.

After the truth value of “P is suffering from D” is evaluated, it can
be combined with the truth value of “T is a proper treatment to D”
(which is usually a statistic statement, too, therefore extensional) to
get the truth value for “T should be applied to P .” In such a situation
(which is the usual case, rather than an exception), even if extensional
and intensional evidence can be distinguished in the premises, they are

Semantics 189

mixed in the intermediate and final conclusions. If the system insists in
separating extensional and intensional truth values, the above inference
cannot be carried out.

Here we get to this conclusion once again, though along a different
path: technically, it is possible to build a pure extensional or intensional
logic, but when they are used with insufficient knowledge and resources,
there are many situations where they cannot use the available knowl-
edge like NAL does. Compared to NAL, they are not “wrong,” but
“weak.”

If extensional and intensional evidence are collected in different
ways, is it valid to merge them into a single truth value? It is valid, be-
cause though they are from different sources, the evidence contributes
in the same way to the truth value. In the design of truth-value func-
tions, no assumption is made on whether the evidence of the premises
are extensional or intensional, so the system is consistent on this issue.

Sometimes we do hope to distinguish extensional and intensional
factors in truth value for the purpose of explanation, such as in answer-
ing the question “Why do you believe that S is a special kind of P?.” In
this case, “Because S has the properties of P” and “Because P has the
instances of S” are obviously different. However, we do not keep this
information in the truth value of the belief “S → P ,” because the truth
value is used to summarize evidence, not to keep detailed information
about evidence.

With insufficient knowledge and resources, the system makes no
attempt to keep all the information about how a conclusion is obtained
in the truth value of a statement. If we really need to separate the
extensional factor and the intensional factor of “S → P ,” it can be
done by instead talking about “(#x → S) ⇒ (#x → P)” and “(P →
#x) ⇒ (S → #x),” as mentioned previously.

7.3 Meaning of term

7.3.1 Meaning in NARS

The definition of meaning in EGS has the following implications:

1. The meaning of a term is its experienced relations with other
terms.

190 Chapter 7

2. The meaning of a term consists of its extension and intension.

3. Each time a term is used in an inference process, only part of its
meaning is involved.

4. Meaning changes with time and context.

5. Meaning is subjective, but not arbitrary.

As said previously, a human observer can still interpret the terms
appearing in NARS freely by identifying them with words in a nat-
ural language or human concepts, but that is their meaning to the
interpreter, and has little to do with the system itself. For example, if
the term “bird” never appears in the system’s experience, it is mean-
ingless to the system (though meaningful to English speakers). When
“bird → animal < 1, 0.8 >” appears in the system’s input stream,
the term “bird” begins to have meaning to the system, revealed by its
inheritance relation with “animal.” As the system knows more about
“bird,” its meaning becomes richer and more complicated. The term
“bird” may never mean the same to NARS as to a human (because we
cannot expect a computer system to have human experience), but we
cannot say that “bird” is meaningless to the system for this (human
chauvinistic) reason. This is just like that a child often uses a word in a
different way, compared to its common usage. We can say that the us-
age is “different,” or even “wrong,” but we cannot say that the word is
“meaningless” to the child. As long as a term has experienced relations
with other terms, it becomes meaningful to the system, no matter how
poor its meaning is.

An adaptive system should never processes a term only according
to its shape without considering its position in the system’s experience.
The shape of a term may be more or less arbitrary, but its experienced
relations with other terms are not.

This conclusion to an extent agrees with Wittgenstein’s claim that
the meaning of a word is its use in the language [Wittgenstein, 1999].
For NARS, the meaning of a term, such as “game,” is not determined
by a definition or a set of “things” in the world, but by how the term
is related to the other terms according to the system’s experience. As
a result, there may be no common property shared by all instances of

Semantics 191

“game.” Instead, there is only a “family resemblance” among them, in-
dicated by the overlapping properties here or there (without a definitive
property for all of them).3

7.3.2 Symbol grounding

By saying the above, I do not mean that in the human mind a word
in a natural language gets its meaning only by its relation with other
words in the language, because human experience is not limited to a
language channel, but closely related to sensation, perception, and ac-
tion [Barsalou, 1999, Harnad, 1990]. However, the general principle is
still applicable here, that is, a word gets its meaning by its experienced
relations with the system’s other experiential components, which may
be words, perceptive images, motor sequences, and so on. In a system
like this, the meaning of a word is much more complex than in a system
whose experience is limited to a language channel, but it does not rule
out the latter case as a possible way for words (terms, symbols) to be
meaningful. For example, a software agent can get all of its experience
in this manner, and we cannot deny that it is genuine experience.

For a symbolic system built according to an EGS, the symbols
in the system are already grounded — in the system’s experience, of
course. The crucial point here is that for a symbol to be meaningful (or
grounded), it must be related somehow to the environment. However,
such a relation is not necessarily via a sensorimotor mechanism. The
experience of a system can be symbolic, as in the case of NARS. This
type of experience is much simpler and “coarse-grained” than sensori-
motor experience, but it is real experience, so it can ground the symbols
which appear in it, just as words in natural language are grounded in
human experience. In the future, when NARS can accept visual input,
an image will be related to the concept of “Mona Lisa,” so it does not
merely mean “a painting by Leonardo da Vinci.” This additional link
changes the meaning of the concept, but it does not change the seman-
tic principle of the system: the meaning of the concept is not completely
determined by the “object in the world referred to by it,” but by its
experienced relations with other things in the system’s experience.

3In this way, the semantics of NARS also implies a new theory of categorization,
which will be discussed in Section 11.1.

192 Chapter 7

The definition of meaning in EGS is similar to that of conceptual
role semantics and semantic network [Harman, 1982, Kitchener, 1994,
Quillian, 1968], where the meaning of a concept (or word) is defined by
the role it plays in a conceptual system (or a natural language). The
difference between EGS and these theories are:

• In NARS, the relations among terms are not definitional or con-
ventional, but are experienced through the interaction between
a system and its environment. Therefore, they are dynamic and
subjective in nature.

• In NARS, the relations between a term and others are concretely
specified by its extension and intension, consisting of inheritance
judgments, whose meaning and properties are formally specified.

• In NARS, whenever a term is used, only part of its meaning is
involved. In other words, the “current meaning” of a term is not
exactly its “general meaning” in the long run.

Similar ideas are called “dictionary-go-round” by Harnad — he
hopes that meaning of symbols can “be grounded in something other
than just more meaningless symbols” [Harnad, 1990]. Here we should
notice a subtle difference: in EGS, the meaning of a term is not reduced
into (or grounded on) the meaning of other terms (that will indeed lead
to circular definition in a finite language), but defined by its relations
with other terms. These relations are formed during the interaction be-
tween a system and its environment, and are not arbitrary at all.

Another relevant factor is that in NARS, the copulas, term oper-
ators, and other syntactic markers are logical constants in Narsese.
Their meaning is innate to the system, because they are directly recog-
nized and processed by the inference rules and control mechanism in
predetermined ways. Even when all the terms in an input statement
are novel, the inheritance relation is known. Therefore, NARS is not
“getting meaning out of the meaningless.”

For these reasons, though NARS has a language defined by a for-
mal grammar and used by a set of formally defined inference rules,
it is not a “symbol system” discussed by Harnad, where symbols get
their meanings “as standing for objects, as describing states of affairs”
[Harnad, 1990].

Semantics 193

7.3.3 Chinese room

This leads us to Searle’s “Chinese room” argument [Searle, 1980], by
which he claimed that a system using syntactic rules cannot have
meaning.

Searle’s argument is based on the assumption that a symbol can get
meaning only from a model, by an interpretation. If one accepts the idea
of an EGS, this is an untenable argument. As said above, as soon as a
term has experienced relations with other terms, it becomes meaningful
to the system, no matter how impoverished or diluted its meaning is.
An adaptive system like NARS never processes a term solely on the
basis of its shape, without considering its relations with other terms in
the system’s experience.

The feeling of meaninglessness in Searle’s “Chinese room” comes
from his deliberate cutting-off of his experience in Chinese from his
sensorimotor experience and his experience represented in his native
language. If we put an intelligent computer system into the same sit-
uation, there are two possible cases. If the computer system already
had profound sensorimotor experience and/or a “native language,” it
might also consider the Chinese characters to be meaningless, because
it could not relate them to its previous experience.

However, if the system entered the room with no previous experi-
ence, Chinese would become its “native language” — that is, the system
would build up meanings for the characters on the basis of how they are
related to one another, and would not attempt to ground them on some
“more fundamental” stuff, nor would it complain about “meaningless
squiggles and squoggles” when it failed in doing so. If the system also
had sensorimotor capacities and communicated with other similar com-
puter systems in Chinese, we might find that the meanings of Chinese
words, to these systems, were as rich and as complex as they are to
human Chinese speakers, though it is possible that they might occa-
sionally have different opinions about the “correct” meaning of a given
word.

Please note that my response to Searle’s problem is not “the robot
reply” he rejected in his paper [Searle, 1980]. I agree with him that
even if a sensorimotor mechanism is introduced into the system, it does
not directly bring meanings to symbols. According to EGS, a term is

194 Chapter 7

meaningful if it has experienced relations with other components of
the system. Here, what matters is whether a symbol has (recognizable)
relations in the system’s experience, not whether the experience comes
from a sensorimotor mechanism.

7.3.4 Subjectivity

As mentioned in Chapter 6, due to insufficient resources, the system
cannot consult all known beliefs associated with a term each time the
term is used. Instead, in NARS a priority distribution is maintained
among the beliefs, which determines the chance for a certain belief to
be taken into consideration at the current time. The distribution is
adjusted by the system according to the feedback of each inference step
(to make the more useful beliefs more accessible), as well as according to
the current context (to make the more relevant beliefs more accessible).

Consequently, the meaning of a term becomes context-dependent —
it does not only depend on what the system knows about the term, but
also depends on the system’s current tasks and how the relevant beliefs
are ranked in terms of their priority. When the system gets new beliefs,
or turns to another task, the meaning of the involved terms may change
(more or less). Again, these changes are anything but arbitrary, and the
meaning of some terms may remain relatively stable during a certain
period. Without such a restriction, a “relational” theory of meaning
cannot be practically used, because in a sufficiently complicated system,
a concept may (in principle) be related to other concepts in infinite
number of relations, and to take all of them into account is impossible.

Since the meaning of a term is determined by the system’s expe-
rience, it is fundamentally subjective. However, as soon as the term
is used in the communication with another system, the two systems
begin to have common experience, and they begin to know how the
term is used by the other. In the long run, the meaning of such terms
gradually become “objective” in the sense that it reflects the common
usage of the term within the language community, and less biased by
the idiosyncratic usage of a single system.

Therefore, we can still understand what NARS means by a certain
term and agree with a belief of the system, because of the partial over-
lap of its conceptual system with ours. However, we cannot expect its

Semantics 195

conceptual system to be identical to that of a human being, due to the
fundamental difference between its experience and our experience.

Accurately speaking, no two people have identical conceptual sys-
tems (so misunderstanding and disagreements happen all the time), but
we can still communicate, and understand each other to various extents
on various topics, because we co-exist in the same world and the same
human society, therefore have shared (physical and social) experience.

7.4 Truth of statement

7.4.1 Truth in NARS

As defined in Chapter 3, in NARS “truth” corresponds to statements
with truth value < 1, 1 >, and non-analytic truth can only be ap-
proached, but not reached, by actual beliefs in the system. In general,
in NARS truth is a matter of degree, represented by a <f, c> pair.

The definition of truth value in the semantics of NARS has the
following implications:

1. Truth is a matter of degree, and, in the case of first-order state-
ments, is determined by the extent to which the subject term and
the predicate term of the statement can be substituted by each
other in certain ways.

2. A truth value consists of a pair of real numbers, one for the relative
amount of positive evidence (with respect to negative evidence),
and the other for the relative amount of all available evidence
(with respect to future evidence).

3. A truth value is assigned to a statement according to the past ex-
perience of the system. It does not indicate whether the statement
will be consistent with future experience, though an adaptive sys-
tem behaves according to it.

4. For a statement, in the same time the system may has it in several
beliefs, with different truth values, derived from different parts
of the system’s experience. Which one will be used at a given
time depends on many factors, including the priority distribution

196 Chapter 7

among the beliefs. As a result, the truth value of a statement
seems to change from context to context.

5. Since truth comes from the experience of the system, it is sub-
jective (i.e., different systems usually have different opinions on
what is truth), but not arbitrary (i.e., such an opinion can be
explained according to the experience of the system).

It is well known that when the evidential support of a scientific
hypothesis is evaluated, we not only pay attention to the amount of
(positive and negative) evidence, but also to its diversity, that is, we
hope the evidence to be different in other aspects, while remain to be
evidence for the hypothesis under evaluation. In NARS, the diversity
of evidence is not directly measured in the amount of evidence (and
therefore, in truth value), but works indirectly. When a hypothesis is
supported by uniform evidence, the same evidence usually also support
some other competing hypotheses, and therefore will eventually make
the hypothesis unlikely to be chosen. On the contrary, diverse evidence
means that the other factors show less regularity than the one captured
in the hypothesis, therefore the competing hypothesis get less support,
and the hypothesis under consideration is more likely to be chosen (even
though its truth value may remain the same as the case of uniform
evidence).

7.4.2 Truth value and degree of belief

EGS is similar to the “coherence” theories of truth [Haack, 1978], in
that the truth value of a belief is partially determined by the truth
values of other beliefs in the system, and the system will try its best
to resolve inconsistency among its beliefs. However, in NARS some of
the beliefs come from the experience of the system, so they are not
necessarily consistent initially, and the system usually cannot achieve
complete consistency among its beliefs, no matter it has tried. On the
other hand, the system will not accept a set of consistent beliefs if it is
not related to its experience.

On the contrary, MTS provides a “correspondence” theory of truth
[Haack, 1978], where the truth value of a statement is determined by

Semantics 197

whether it corresponds to the state of affairs, as described in a meta-
language. According to MTS, “truth value” and “degree of belief” are
fundamentally different — a system can strongly believe a false state-
ment. This is from the viewpoint of an observer who knows the “objec-
tive truth” and can compare it with a system’s belief. However, for the
system itself, if it has insufficient knowledge and resource, the sole way
to judge the truth of a statement is to consult experience. Here “expe-
rience” is used in the broad sense, not limited to personal perceptual
experience only. In this situation, “truth value” and “degree of belief”
are conceptually the same.

In everyday language, for a statement S, to say “S is true” is differ-
ent from to say “I believe S,” though their difference is not necessarily
fundamental. To me, the former is like “S is not only believed by me,
but also by everyone else (or that will be the case);” the latter is like
“S sounds true to me, though may be not to the others.” When we use
the word “truth,” we do imply certain objectivity, but it is more about
“according to relatively complete and unbiased evidence” than about
“as the world really is.”

We can still say that in NARS “true” means “corresponds to real-
ity,” except that here reality is only revealed by the system’s experience.
When later we find a previous belief to be “false,” it does not mean
that we have had a chance to directly check the belief with reality (by-
passing our experience), but that it conflicts with our updated belief
based on more experience.

With such a semantics, we can still say “I strongly believe S, though
it may be false,” which means “I can imagine it to be rejected in the
future.” All of these differences cannot be used to argue that truth
value cannot be the same as degree of belief.

Similarly, in NARS there is no fundamental difference among “hy-
pothesis,” “fact,” “knowledge,” “belief,” and “guess.” Instead, the dif-
ference is a matter of degree, and depends on usage convention of the
words.

If we talk about such a system from an observer’s point of view,
then the situation is different. For example, if we have control over
the experience of NARS, we may construct a situation in which the
system strongly believes in a false statement. However, here “false” is
from our point of view, and judged according to our knowledge about

198 Chapter 7

the system’s future experience, which is not available to the system
yet. Still, the general principle, that is, truth value is a function of
experience, remains the same.

EGS challenges the traditional distinction between ontology and
epistemology, that is, between what is out there and what a system be-
liefs to be out there. By accepting such a semantics, I do not reject the
principle of naturalism — that is, the natural world exists independent
of us, and it is the origin of all our knowledge [Kitchener, 1994]. What
I stress here is that all descriptions of such an objective world in a sys-
tem with insufficient knowledge and resources are intrinsically revisable.
The interaction between the system and its environment is a process of
assimilation and accommodation [Piaget, 1960], which usually does not
maintain a one-to-one mapping between the terms/statements within
the system and the objects/facts beyond the system. Actually, we can-
not even talk about “objects” without assuming the cognitive capacity
of some kind of system, which is what cuts reality into pieces. Since
where to cut and how to cut depend on the nature and the expe-
rience of a system, there is no objective way to describe the world.
What we call “ontology” is just a description of the world accepted
by a community of observers, not a description of the world
“as it is.”

7.4.3 Validity of inference

A major motivation for the creation of EGS was to provide a justifi-
cation for non-deductive inferences. As revealed by Hume’s “induction
problem,” there is no sure way to get infallible predications about the
future [Hume, 1748]. From limited past experience, we cannot get ac-
curate descriptions of state of affairs, neither can we know how far our
current belief is from such an objective description.

Based on this, Popper made the well-known conclusion that an in-
ductive logic is impossible [Popper, 1959]. However, from the previous
discussion, we can see that what is really pointed out by Hume and
Popper is the impossibility of an inductive logic with a MTS. That
is, inductive inference is invalid as far as validity is defined as “truth-
preserving in all models.”

Semantics 199

If the conclusions derived in NARS are fallible, in what sense are
they “better” than arbitrary guesses? This leads us to the concept of
“rationality.”

When infallible predictions cannot be obtained (due to insufficient
knowledge and resources), beliefs based on past experience are better
than arbitrary guesses, if the environment is relatively stable (as dis-
cussed in Section 2.1.2). To say a belief is only a summary of past
experience (thus no future confirmation is guaranteed) does not make
it equal to an arbitrary conclusion — it is what “adaptation” means.

Adaptation is the process in which a system changes its behaviors
as if the future is similar to the past. It is a rational process, even
though individual conclusions it produces are often wrong, and we know
that the future cannot be identical to the past. For this reason, valid
inference rules (deduction, induction, abduction, and so on) are the ones
whose conclusions correctly (according to the semantics) summarize
the evidence in the premises. They are “truth preserving” in this sense,
not in the model-theoretic sense that they always generate conclusions
which are immune from future revision.

7.4.4 Two types of truth

One important character of EGS is its dynamic and subjective nature.
The truth value of a judgment may change from time to time in NARS,
due to the arrival of new evidence. The system’s inference activity also
changes the truth values of judgments by combining evidence from dif-
ferent sections of the experience. Since truth values are based on the
system’s experience, they are intrinsically subjective. To be more pre-
cise, the system’s beliefs are not objective descriptions of the world,
but summaries of its own experience, so it is from the system’s point
of view. Even two systems in precisely the same environment may have
different beliefs, obtained from their different individual experiences.

To say that truth values are dynamic and subjective does not mean
that they are arbitrary. Different systems in the same environment can
achieve a certain degree of “objectivity” by communicating to one an-
other and thus sharing experience. However, here “objective” means
“common” or “unbiased,” not “observer independent.” The common

200 Chapter 7

beliefs are still bounded by the experiences of the systems involved,
though no longer by that of a single system.

The model-theoretic “truth” still has its place in NARS, though it
plays a secondary role here. Whenever mathematical (or other conven-
tional) statements are under consideration, their truth values are fixed,
and are independent of the system’s experience and the system’s degrees
of belief on them. We still do not know the truth value of Goldbach’s
Conjecture, though it has been confirmed in all the previous testing
cases. Such a usage of the word “true” does not conflict with the fact
that in the system this statement does have a truth value, calculated
according to the system’s experience.

From a philosophical point of view, this definition of truth is similar
to Putnam’s “rational acceptability” [Putnam, 1981]. In AI, a similar
approach is discussed in Kowalski’s paper “Logic without Model The-
ory,” in which he defines “truth” as a relationship between sentences of
the knowledge base and observational sentences [Kowalski, 1995]. How-
ever, the technical details of these approaches are quite different from
NARS. For instance, Kowalski still uses predicate logic.

Chapter 8

Uncertainty

To reason with insufficient knowledge and resources, NARS needs to
deal with various types of uncertainty. As described previously, a ma-
jor component of the design is a mechanism for the representation
and processing of uncertainty. In this chapter, I compare the NARS
approach to the other approaches of uncertainty representation and
processing, and discuss its special features.

8.1 The non-numerical approaches

The existing approaches for uncertainty management can be divided
into two types: numerical and non-numerical. The former attaches one
or several numbers to each statement to represent the degree of uncer-
tainty, while the latter represents uncertainty qualitatively (not quan-
titatively) [Bhatnagar and Kanal, 1986, Bonissone and Decker, 1986].

As we have seen, NARS uses numerical values to represent the un-
certainty of a statement. Though it seems to be a natural idea, there
have been strong objections proposed in AI research against using num-
bers to express “degree of uncertainty.” One major argument is the
observation that in daily communications in natural languages, peo-
ple rarely use numbers to express uncertainty. A numerical approach
may have difficulty in interpreting what the number measures, as well
as in actually collecting this kind of data [McCarthy and Hayes, 1969,
Sullivan and Cohen, 1985, Wallsten et al., 1993]. Based on such an

201

202 Chapter 8

opinion, many people prefer a non-numerical approach to represent
uncertainty in a reasoning system. In the following, NARS is compared
with two non-numerical approaches.

8.1.1 Endorsement theory

Endorsement Theory uses verbal labels to represent “reasons to believe
or disbelieve uncertain propositions” [Sullivan and Cohen, 1985].

Obviously, this representation is more natural because it is closer
to how uncertainty is represented in our daily communication. Further-
more, verbal labels not only can make quantitative differences, but also
can make qualitative differences, to indicate why to believe, as well as
how much to believe, therefore more information is preserved, compared
with numerical approaches.

This approach works for certain purposes, but cannot be used in
a general-purpose reasoning system like NARS. In such a system, this
approach encounters a dilemma. If the endorsements are interpreted as
different degrees along the same semantic dimension, what we get is a
“coarse numerical scale,” which has finite different values to take. Be-
side its naturalness (because verbal labels are used), such an approach
has few advantage over numerical approaches [Wallsten et al., 1993].
On the other hand, if the endorsements are interpreted as along dif-
ferent semantic dimensions (as in [Sullivan and Cohen, 1985]), there
must be labels that cannot be compared or combined. In the situations
where our main purpose is to record uncertainty, such an approach may
be appropriate, but it is inapplicable for a reasoning system, where
the system must set up a common representation for uncertainty from
different sources, so that to carry out the operations on them.

8.1.2 Non-monotonic logics

There are several formal systems within the category of non-monotonic
logics. Though built differently, they share some opinions about human
common-sense reasoning: with incomplete knowledge, some convention
or default rules can (and should) be used to get tentative conclusions,
which can be rejected by later acquired facts [Reiter, 1987].

Uncertainty 203

Though no numerical or verbal value is attached to statements, in a
reasoning system using a non-monotonic logic, statements are (explic-
itly or implicitly) divided into three groups:

1. facts, such as “Tweety is a bird.”

2. defaults, such as “Birds fly.”

3. tentative conclusions, such as “Tweety flies.”

When a tentative conclusion conflicts with a fact, the former is rejected.
Though non-monotonic logics can be used for various purposes, they

cannot be used in a system like NARS, for several reasons.

• When two tentative conclusions conflict with each other, the sys-
tem has to rely on domain-specific preference ranking to make
the selection. For a system working with insufficient knowledge,
it cannot be assumed that this kind of information is always avail-
able. This is the well-known “multiple extensions” problem.

• No matter what happens, in non-monotonic logic no fact or de-
fault will be revised or modified, and this is inconsistent with the
assumption of insufficient knowledge. For example, given enough
counter examples, we will expect “Birds fly” to become “Birds
do not fly,” but it will never happen in a common non-monotonic
logic.

• In practical applications, there is not always an effective way to
distinguish facts and defaults from tentative conclusions.

Reiter wrote that “Nonmonotonic reasoning is intimately connected
to the notion of prototypes in psychology and natural kinds in philoso-
phy” [Reiter, 1987]. However, for an open system, the notion of proto-
types and natural kinds have to be defined and maintained according
to quantitative information. Concretely, in human cognition, prototype
or default are based on the “central tendency” [Rosch, 1973], but with
constantly coming evidence, whether a tendency is “central” is usually
a matter of degree. Another property of an open system is that every
piece of knowledge is revisable, with different sensitivity or stability,

204 Chapter 8

which is also a matter of degree. It is possible to indicate these degrees
by verbal labels, but such an approach will be less general and less
efficient than a numerical one.

To treat default rules as convention is possible and even desired in
many situations. In communication between systems (human or com-
puter), these conventions are often intentionally followed, and if we
already have lots of evidence, or if we only study a reasoning sys-
tem for a short period, the influence of new evidence can be ignored.
In these situations, a binary logic is preferred for its simplicity and
clarity. However, such assumptions about environment are not always
valid.

Another thing we need to keep in mind is: when treated as conven-
tions, these rules become a priori to the system, and are fundamentally
different from when they are treated as generalized experience. As con-
ventions, their generation, acceptance, comparison, modification, and
rejection are no longer determined, or even influenced, by the expe-
rience of the system. Though it is correct to say that “normality” or
“typicality” should not be interpreted in a pure frequentist way as “in
most cases,” we still have reason to argue that for many purposes, it is
better to see them as closely related to empirical evidences, and have
different degrees [Kahneman and Miller, 1986, Rosch, 1973]. Therefore,
it makes sense, and is often necessary, to measure the relations between
a default and available evidence, which cannot be done in the frame-
work of binary logic.

NARS has some similarity to non-monotonic logics: it can make
guesses when the knowledge is insufficient, and the guesses are based on
the “typical” or “normal” situations, according to the system’s knowl-
edge. When such guesses conflict with new evidence, they can be modi-
fied, or even rejected. As a numerical approach, NARS have more types
of operations on uncertainty than non-monotonic logics, for example,
NARS can generate hypotheses from evidences by induction and ab-
duction, and all of its domain knowledge is revisable. For these reasons,
NARS is not a non-monotonic logic, though the size of its “believed
statements” (i.e., those with expectation values above a certain thresh-
old) does change non-monotonically in time.

Uncertainty 205

8.1.3 The necessity of a numerical measurement

Therefore, for a general-purpose system like NARS that is open to
all possible new evidences, a numerical measurement of uncertainty is
necessary for the internal representation of the system, not because it
is accurate, but it is uniform and simple, especially because the system
needs to have rules for induction, abduction, comparison, and so on. In
these types of inference, uncertainty emerges even if all the premises
are certain, and the amount of evidence is a dominant factor for the
processing of the uncertainty. For this reason, even if verbal labels of
uncertainty are used in the interface language for the sake of simplicity
and naturalness, it is still desired to represent uncertainty numerically
within the system.

However, the advocators of non-numerical approaches are correct
in their claim that a numerical measure is insufficient for uncertainty
management in the system, since some operations are sensitive to the
source of uncertainty. To solve such problems, in NARS some other
methods are used as supplements, rather than replacements, of the nu-
merical approach. For example, a serial number mechanism is used in
NARS (described in Section 3.3) to detect correlated evidence. Also,
higher-level statements can be used to explicitly describe properties
and relations of a particular statement (see Section 5.1).

Though a numerical approach is used in NARS for the internal rep-
resentation of uncertainty, the system does not insist in using numbers
in the input and output sentences. Rather, in the implemented system,
it is allowed for the truth values to be omitted (and filled with de-
fault values). In the future, when a natural language interface is added
to NARS, the system will use verbal expressions of uncertainty when
high accuracy is unavailable or undesired. Such an idea has been briefly
explained when discussing the “frequency interval” (Section 3.2).

Another important issue raised by the advocators of non-numerical
approaches is that the existing numerical approaches often suffer from
a lack of proper interpretation of the measurement of uncertainty they
used. If the meaning of a “degree of uncertainty” is unclear, there will
be little guidance in how the data can be collected or how it should be
processed. Consequently, it will be hard to justify the validity of the

206 Chapter 8

approach. To solve this problem, in the semantics of Narsese (Section
3.2), I first define the concept of evidence (in terms of idealized ex-
perience), then introduce three equivalent forms (amount of evidence,
frequency and confidence, and frequency interval) of the uncertainty of
a statement. In this way, it is easier for a user to understand what the
values mean, as well as for the designer to choose a proper truth-value
function for each inference rule.

In summary, for NARS a numerical measurement is necessary for
internal uncertainty representation, though it is not sufficient for all un-
certainty related operations, not necessary for external communication,
and not “natural” or “self-evident” in the sense that no interpretation
is required.

8.2 The fuzzy approach

In this section, NAL is compared with Zadeh’s fuzzy logic.

8.2.1 Grade of membership

The idea of “fuzzy set” was proposed by Zadeh to capture the phenom-
enon that whether an entity is a member of a category is often a matter
of degree [Zadeh, 1965]. Though a lot of works have been done in this
field, the theory is still suffering from an innate shortage: the grade of
membership, or “fuzziness,” has not been properly interpreted by the
theory.

Here are Zadeh’s opinions:

1. Fuzziness comes from the description of complex systems. He pro-
posed the “Principle of Incompatibility,” which states that as
the complexity of a system increases, our ability to make pre-
cise and yet significant statements about its behavior diminishes
[Zadeh, 1973].

2. A membership function usually maps a continuous numerical vari-
able to a discrete linguistic variable, so that the information can
be summarized approximately. For example, “John is young” is
an approximative way to say “John is 28.” Since the underlying
numerical variable changes continuously, there is no well-justified

Uncertainty 207

way to cut the boundary between the values of the linguistic vari-
able. But, by introducing a membership function, we can describe
the compatibility between a linguistic label and a numerical value
[Zadeh, 1975].

3. Such a compatibility has no frequency interpretation, so it cannot
be processed according to probability theory. Thus, stating that
“The membership of John’s age to young is 0.7,” we do not mean
that John’s age is a random number, which takes the value of
young 70% of the time, but that 0.7 is the degree to which young
and 28 are compatible [Zadeh, 1978].

4. Membership functions of primary terms are subjective and
context-dependent, so there is no general method to determine
them. Their specification is a matter of definition, rather than
objective experimentation or analysis. The task of fuzzy logic is
to provide rules to compute the meaning of composite terms, once
the meaning of the primary terms is specified in a given context
[Zadeh, 1972, Zadeh, 1979].

As a result, various methods, chosen according to the designers’
preference and experience, are used to get membership functions when
fuzzy logic is applied to practical domains [Dubois and Prade, 1980,
Turksen, 1991]. Some people are satisfied with this outcome, and even
argue that it can increase the flexibility of fuzzy logic. However, it is
easy to see that there are many negative consequences.

Without a clear interpretation, it is hard for a person to assign such
a value or to understand a value, or for a computer system to generate
the memberships automatically or to get them from sensory devices.
By “hard,” I mean that although some values can be easily assigned,
they look quite arbitrary and unjustified. In such a case, when are the
system’s results, which are determined by these initial assignments,
better than random choices?

It is well-known that memberships are context dependent, and may
be influenced by new knowledge [Barsalou, 1987]. For example, “If
‘Mary is young’ is uttered in a kindergarten or in a retirement home
situation, the effect on the expected age of Mary will be very different”
[Cheeseman, 1986]. However, without a clear interpretation, there is

208 Chapter 8

no reasonable way to modify the memberships by new knowledge, so as
to make them context-sensitive. On the other hand, it is unimaginable
for the designer to provide a system with a membership function for
every concept (for instance, young) in every possible context (kinder-
garten, elementary school, . . . , retirement home, even basketball team
or cabinet) that the system may meet.

The max and min operators (for set union and intersection, re-
spectively), which are the most distinguished components of fuzzy
theory, are not strongly supported by experimental evidence or theo-
retical consideration. They sometimes lead to counter-intuitive results
[Oden, 1977b, Osherson and Smith, 1981, Smith and Osherson, 1984].
Though there are some works which show that the operations can be
deduced from certain axioms [Bellman and Giertz, 1973, Gaines, 1978],
it is still unclear if human cognition really follows these axioms or
why we should follow them. Zadeh admitted that in some contexts
the union/intersection operators should be sum/product rather than
max/min [Zadeh, 1975], but he did not indicate how to determine which
pair should be used when facing a new context. If what is measured by a
membership function is unclear, how can we argue that some operations
on it are better than others?

In summary then, fuzzy logic is not proposed as a pure formal sys-
tem that only has some interesting mathematical properties, but as a
formal model of fuzziness management that happens in human cog-
nition, and as a tool of fuzziness management for practical purposes.
Why should we accept such a claim? The popular arguments are: (1)
there is fuzziness in human cognition, (2) no frequency interpretation
of the fuzziness has been found, so probability theory cannot be ap-
plied, and (3) some practical problems have been solved successfully
by fuzzy logic [McNeill and Freiberger, 1993, Zadeh, 1986a]. Without
a clear analysis of fuzziness, these arguments are not enough for fuzzy
logic to be accepted as a general cognitive model [Smets, 1991].

As described previously, in NARS the membership relationship is
represented by inheritance (and its variants), and an inheritance state-
ment is true to a degree (represented by the frequency–confidence pair).
In the following, I will argue that this solution is better than fuzzy logic.

Some people may argue that in this way, we will lose one of the
advantages of fuzzy logic, that is, the freedom for the system designer

Uncertainty 209

to determine the membership functions and operators. I disagree. On
one hand, the lack of an interpretation is a disadvantage for a theory,
since it provides less guidance for its users. On the other hand, with
a detailed interpretation, a system (like NARS) can still be flexible.
What the interpretation does is not to provide for each fuzzy set an
“objective” membership function, but to indicate how a membership
function can be established and modified by the system according to
available evidence. In this sense, the interpretation takes certain kinds
of “freedom” from a human designer, and gives them to the system
itself.

8.2.2 Fuzziness from similarity

First, let us distinguish between two types of fuzziness: that which
happens mainly with nouns and verbs, and that which happens mainly
with adjectives and adverbs. In the following, these two classes are
called “Type 1” and “Type 2” Fuzziness, respectively.

Fuzziness of Type 1 happens in concepts such as “animal,” “furni-
ture,” “to play,” “to cause,” and so on. Psychologists have shown that
people judge some instances to be better examples of a concept than
some others, and can intuitively assign a numerical “degree” to a mem-
bership relation [Oden, 1977a, Rosch, 1973, Rosch and Mervis, 1975].

Several theories have been proposed by psychologists to explain the
phenomenon. One explanation, prototype theory, suggests that from
given members of a category, people abstract out the central tendency
or prototype that becomes the summary mental representation for the
category. Then, membership of a novel instance is measured by how
similar it is to the prototype [Rosch, 1973, Rosch and Mervis, 1975].
Another explanation, exemplar theory, assumes that membership of a
novel instance is evaluated by directly comparing it with given members
of the category [Medin and Schaffer, 1978, Nosofsky, 1991].

Generally speaking, the basic cause of Type 1 Fuzziness is that the
concept is not defined by sufficient/necessary conditions, but is exem-
plified by many objects/actions/events which share common properties.

These results are often quoted as evidence in favor of fuzzy logic
(for example, [McNeill and Freiberger, 1993]). Speaking precisely, how-
ever, they only support the existence of fuzziness, rather than Zadeh’s

210 Chapter 8

explanation and suggested operations on it. To psychologists, fuzziness,
or grade of membership, is not a primary attribute of a concept that
cannot be further analyzed. Rather, it is usually treated as a result de-
termined by some other (more primary) factors, following certain rules
[Dubois and Prade, 1980, Medin and Schaffer, 1978, Rosch, 1973].

More concretely, there is a consensus that grade of membership is
strongly influenced by the degree of similarity between an instance to
be judged and a prototype or an exemplar of the concept, so in the
simplest cases, the membership measurement is reduced to a similarity
measurement [Nosofsky, 1991, Tversky, 1977].

In psychological literatures, two kinds of similarities are distin-
guished: those that are asymmetric and those that are symmetric
[Tversky, 1977]. They roughly correspond to the “inheritance relation”
and “similarity relation” in NARS, respectively. As defined in NAL-1
and NAL-2, in both cases the frequency of a statement is measured as
the proposition of positive evidence among all evidence, so is a spe-
cial case of the ratio model of similarity [Tversky, 1977]. As a result,
this kind of grade of membership is a special case of the truth value in
NARS.

8.2.3 Fuzziness from relativity

Now we turn to “Type 2 Fuzziness.” What makes it different from the
previous type is this: though a concept of the Type 1 can be treated
as a fuzzy set with a relatively stable membership function, the same
is not true for a concept of the Type 2 — the fuzziness caused by an
adjective or adverb usually depends on the described noun or verb.

For example, if we treat “big” as a fuzzy set, just like “flea” and
“animal,” then “big flea” can be represented as “(big∩flea).” According
to this interpretation, from “S is a big flea” and “Fleas are animals,”
“S is a big animal” would be derived, which is counter-intuitive. In
other words, many adjectives are not “predicative” [Kamp, 1975].

This problem is usually explained by saying “the membership func-
tion of big (as well as tall, young, far, etc.) is context dependent.” Of
course it is, but why and how?

This phenomenon is not new at all to linguistics. As early as 1944,
Sapir proposed the idea that although wide, young, and big linguisti-

Uncertainty 211

cally precede wider, younger, and bigger, respectively, the comparative
forms precede the simple forms logically. The simple forms are implic-
itly graded antonyms. They can only be understood in terms of the
comparative forms, with respect to some norm set by the object being
described [Sapir, 1944]. This opinion has been accepted by many other
linguistics [Cruse, 1986, Palmer, 1981]. An interpretation of fuzziness
follows naturally from this clarification about the meaning of “fuzzy
adjectives and adverbs” (such as big, young, and soon).

Let us analyze and compare the following sentences:

1. “S is big.”

2. “S is bigger than T .”

3. “S is a big flea.”

4. “S is a big animal.”

According to the above semantic theory, if there is no default or
assumption about the context, “S is big” provides no information about
its size.

“S is bigger than T” does provide information about the size of
S, but in a relative way. The “bigger than” relation may become un-
certain, due to incomplete information or imprecise measurement, but
usually there is no fuzziness, since “bigger than” is a well-defined binary
relation, at least in principle.

In “S is a big flea” (or “S is a big animal”), what is the norm to
which S is compared? Somebody may suggest that it is a “normal,”
“typical,” or “average-sized” flea (or animal). However, if this is the
case, then these sentences can be reduced to “S is bigger than T ,” and
no fuzziness is present.

In my opinion, fuzziness, or graded membership, appears when the
norm in the above sentences are the class of other fleas and other ani-
mals. When a well-defined binary relation between two objects is used
between an object and a class of objects, uncertainty emerges because
the relation is no longer well-defined, and the result is only “true to a
certain extent,” due to the internal diversity of the norm, the class.

Generally speaking, the Fuzziness of Type 2 appears in sentences
with the pattern “S is a RC,” where C is a class, S is a member of C,

212 Chapter 8

and R is an adjective (or adverb). The comparative form of R is “R-er
than,” indicated by Rt, is a binary relation on C, and is asymmetrical,
transitive, and non-fuzzy. In such a case, “RC” is a fuzzy concept (such
as “big flea,” “young men,” and so on), and its membership is a matter
of degree, since when a member is compared with a class, the relation
usually holds with some members of the class, but fails with others. The
extent to which the relation holds in general depends on the member’s
relative ranking in the class, with respect to the relation.

Under this interpretation, in Narsese “S is a RC” is can be repre-
sented by statement “({S} × C) → Rt.” If we focus on the extensions
of the terms, the frequency of this statement can be taken as the degree
of membership for S to be in RC, which is

fRC(S) =
|({S} × C) ∩ Rt|

|C − {S}|

In the case of “big flea,” the degree of membership is the ratio

the number of fleas that are smaller than S

the number of fleas minus 1

The “minus 1” is there, because it is not necessary to compare S to
itself.

Now fRC(S) = 1 means that S is the biggest flea; fRC(S) = 0 means
that S is the smallest flea. Actually, this function identifies fRC(S) with
the percentage of fleas that are smaller than S in class C.

If the probability distribution function for the size of fleas is given
as P (x), we can get a direct relation between the size of a flea y, m(y),
and its grade of membership to big flea, fRC(y):

fRC(y) =
∫ m(y)

0
P (x)dx

This equation can be generalized to all fuzzy concepts of the Type 2
by considering m(y) : C → (−∞,∞) as a measurement correspond-
ing to the relation “R-er than,” and P (x) : (−∞,∞) → [0, 1] as the
probability distribution of objects in C with respect to m(y).

In this way, we get a function that calculates the membership of an
object from a fundamental argument, as Zadeh did. However, there is a

Uncertainty 213

basic difference. According to Zadeh, “The label young may be regarded
as a linguistic value of the variable age, with the understanding that
it plays the same role as the numerical value 25 but is less precise and
hence less informative” [Zadeh, 1975]. But in NARS, “young” is inter-
preted as an approximate way to tell someone’s relative youthfulness,
with respect to a reference class. Only with a corresponding probability
distribution, can the relative measurement be mapped to the absolute
measurement.

If “John is tall” is an approximate way to tell John’s height, then
it follows that this type of sentence is always less informative than
a sentence like “John is 6 feet high.” However, this is not always the
case. For example, the sentence “In basketball, tall players usually have
an advantage” cannot be rewritten by replacing “tall” by an accurate
height, without losing its generality. The sentence makes the same sense
in many contexts (from elementary school to college), where how “high”
being mapped to height is drastically different.

To say “S is a big flea,” what one needs to know is not the size of
S, but how it compares with the other fleas. If S is the only known flea,
we cannot say if it is a “big flea,” even when we know its size exactly.
On the contrary, if we always observe fleas through a magnifying glass
whose magnifying power is unknown, then we may have little idea about
the actual size of S, but “S is a big flea” still makes sense. Actually,
the sentence makes the same sense, no matter how the sizes of fleas are
distributed.

In communication, the context is often omitted in sentences. As a re-
sult, we only say “John is tall” or “S is big.” Such omissions may cause
understanding problems. If the default reference class of the speaker
and that of the listener are different, misunderstandings will happen; if
the listener is not sure of the speaker’s intended reference class, a guess
has to be made, perhaps according to the frequency of various possible
contexts. Even when the reference class is presented explicitly in the
sentence, as in “S is a big flea,” it is still possible for the speaker and
the listener to make different estimations about the size of S, because
from personal experience they may have different objects in mind when
“flea” is mentioned (so here it is also explained that why there is an
interpersonal difference in membership judgment). The above factors
cause ambiguity, which is closely related to fuzziness, but it should not

214 Chapter 8

be confused with fuzziness, because communication is not a precondi-
tion for fuzziness to appear.

As analyzed above, although membership functions in a system are
subjective because they are related to idiographic experience of the
system, fuzziness is not caused by interpersonal difference. “John is
a young man” is a matter of degree, it is not because each person
uses the word “young” differently (though that is true), but because
John is younger than some men, but older than the others. There-
fore, the interpretation of fuzziness proposed here is different from
the opinion that grade of membership can be determined by polls
[Dubois and Prade, 1980, Turksen, 1991]. According to this opinion, to
say “The membership of John’s age to young is 0.7” means that “70%
of people will agree that John is young.” It is assumed that each person
has a determined standard for “young,” and the concept is fuzzy be-
cause we accept different standards. However, to force people to answer
“yes” or “no” to the question “Is John young?” contradicts to the very
idea that “young” is a fuzzy concept, and it is not explained where the
difference among people comes from. As discussed before, this opinion
confuses the uncertainty caused by interpersonal difference (ambiguity)
and the uncertainty caused by diversity in a reference class (fuzziness),
so it fails to capture the essence of fuzziness that makes it different
from other types of uncertainty.

8.2.4 A practical application

The above result has been used in the design of a “recommendation
system,” which returns a “top N list” from a database according to the
preference of a user.

Assume that a user is accessing a flight reservation system, and is
looking for cheap ticket for any flight that, in a given date, leaves city
C1 around 9 AM and arrive city C2 as early as possible.

If the system is based on a relational database, the user typically
has to get rid of the fuzziness in the request, and to force it into a
query where each of the attributes of the returned entries must fall into
an interval. For example, “cheap” becomes “below $200,” “around 9
AM” becomes “between 8:30 and 9:30 AM,” and “as early as possible”
becomes “before noon.”

Uncertainty 215

The problem in this solution is that unless the user is familiar with
the value distribution of the attributes, very often the number of items
returned by the query is either too large or too small. This is the case
because for a binary query, an entry in the database will either satisfy
it or fail to satisfy it, and beside that, no additional information can
be provided.

To solve this problem, we need conditions that different values sat-
isfy to different degrees. Under this consideration, one possible solution
is to apply fuzzy logic into database query, which leads to the idea
of “fuzzy database” [Yang et al., 2001]. In such a solution, the user’s
preferences are specified using “linguistic variables.” Each linguistic
variable corresponds to a fuzzy set, with a membership function to
calculate the score for each attribute value. The total score of a prod-
uct is the minimum of all the individual scores, because in fuzzy logic
the (default) function for conjunction of conditions is “min.” Finally,
a “top-N list” is reported to the user, based on the total scores of the
candidates.

In this way, we can indeed get a recommendation system that no
longer suffers from the above problem found in conventional database.
Since the idea of fuzzy logic has been well known for many years, and
this application is not that difficult, why have not we seen many such
systems?

Among all reasons, a major issue is the design and maintenance
of the membership functions. Fuzzy database is a good solution only
when the membership functions can be designed once, and do not need
further adjustment or revision. Unfortunately, for many problems this
assumption is not true.

According to the previous discussion on the interpretation of fuzzi-
ness, we see that NARS can provide a more general and flexible solution
for this problem. Actually, here we do not need the full power of NARS.
Rather, a special program can be designed, according to the relevant
part of NARS, as the following.

The database DB is a collection of data items, each of which is a
vector di = < di1, di2, · · · , dit >, in which each dij is the value of di on
an attribute Aj. In other words, DB is a matrix, where each row is a
data item, and each column corresponds to an attribute.

216 Chapter 8

A recommendation request r consists of two components, a con-
straint vector c = < c1, c2, · · · , ct > and a preference vector p =
<p1, p2, · · · , pt >. Each cj has the form “relationj vj,” where vj is a
constant value, and relationj is one of the following relations: =,
=, <,
≤, >, ≥. The evaluation of cj against a value dij should return 1
(true) or 0 (false). Each pj has the form ‘≈ vj” (for “as close to vj as
possible”), “�” (for “as small as possible”), or “�” (for “as large as
possible”). The evaluation of pj against a value dij should return a real
number in [0, 1].

Unlike in fuzzy logic, where degree of membership is a subjective
judgment that cannot be further analyzed, in my approach the “score”
of each value for a given preference is the proportion of positive evidence
among all evidence, that is, s = w+/(w+ + w−), where w+ and w−

are the amount of positive and negative evidence, respectively, for the
preference to be satisfied by the value.

How is evidence defined and measured? Let us start from a concrete
example. If the price of a notebook computer is $1250, then to what
extent does it belongs to the concept of “cheap notebook computers”?
According to my previous interpretation, such a question cannot be
answered without a “reference class,” that is, it depends on the answer
of another question: “Compared to what?.” Adjectives like “cheap” get
their meaning from relations like “cheaper than,” though the object of
the comparison is often omitted in the expression. In the recommenda-
tion process, it is assumed that the default objects of comparison are
the other candidates in the database that satisfy the constraint vec-
tor. Therefore, “cheap” is interpreted here as “cheaper than the other
candidates.” Usually there are multiple candidates, and some of them
may be cheaper, while others more expensive, than the product under
consideration. Therefore, whether one candidate is “cheaper than the
other candidates” is usually a matter of degree.

If there are M candidates that satisfy the constraints, then they are
used to score one another for the preferences. To decide the score for a
$1250 computer to be labeled as “cheap,” the other M − 1 candidates
are compared to it one by one in price, where more expensive ones are
counted as positive evidence, and cheaper ones as negative evidence,
for the labeling (candidates with the same price provide no evidence).
The total amount of evidence is the sum of the amount of positive

Uncertainty 217

evidence and the amount of negative evidence. Therefore, among the M
candidates if there are m1 of them are more expensive than $1250, and
m2 of them cheaper than $1250, then the score for a $1250 computer to
be labeled as “cheap” can be simply taken as m1/(m1+m2). Especially,
the cheapest candidate gets a score 1.0, and the most expensive one gets
0.0, for the given preference.

The above approach can be applied to a preference as far as the val-
ues of the corresponding attribute form a total order, even if the values
are not numerical. The following is a general definition of evidence in
the recommendation process:

• When a value dij is evaluated according to a preference pj of the
form “≈ v” (“similar to v”), if another value dkj (of another can-
didate) is farther away from v than dij is, it is positive evidence;
if dkj is closer to v than x is, it is negative evidence.

• When a value dij is evaluated according to a preference pj of the
form “�” (“has a small value”), if another value dkj (of another
candidate) is larger than dij, it is positive evidence; if dkj is smaller
than dij, it is negative evidence.

• When a value dij is evaluated according to a preference pj of the
form “�” (“has a large value”), if another value dkj (of another
candidate) is smaller than dij, it is positive evidence; if dkj is
larger than dij, it is negative evidence.

After separating positive and negative evidence from non-evidence
among the other candidates, their number can be used as the above
m1 and m2, respectively, then from them the score of the given value
can be calculated according to the previous formula.

For a given attribute, if its values are not only comparable, but
also numerical, sometimes the distance between values should be taken
into account when scores are calculated. For example, to evaluate the
score for $1250 to be labeled as “cheap,” the existence of a $750 and
a $1200, as the prices of other candidates, are very different. Though
both are negative evidence, the former is clearly a much “stronger” one
than the latter. For this situation, a more meaningful way to calculate
the amount of evidence is to give each piece of evidence a “weight,”
which is the difference of that value and the given value. For the above

218 Chapter 8

case, the weights of the two pieces of evidence are 1250 − 750 = 500
and 1250 − 1200 = 50, respectively. Now the amount of (positive and
negative) evidence m1 and m2 are weighted sum of pieces of evidence.

For a product di, after its attribute values get their scores as a vector
<si1, si2, · · · , sit > according to a given preference p = <p1, p2, · · · , pt >,
the next step is to combine them into a total score si, which represents
the membership for the product to be an instance of the concept Cp.
Here each preference pi is treated as an independent channel to collect
(positive and negative) evidence for the membership relation. There-
fore, evidence collected in each channel should be pooled together. As a
default rule (assume all the preferences are equally weighted and each
score is obtained from the same number of comparisons), the total score
is simply the average of the individual scores, that is, si = (

∑t
j=1 sij)/t.

Now the top N data items can be selected according to their total
scores, and return them as the recommendation to the user. As op-
tions, the total score of each may be displayed, and they may be sorted
according to their total scores.

As of today, most shopping websites still use conventional database
query to carry out the selection process. As a result, non-expert users
have to spend lots of time in fine tuning their query to get a desired
number of candidates for the final comparison and selection. Compared
to that process, the recommendation procedure introduced above has
the following advantages:

• Both (binary) constraints and (fuzzy) preferences are allowed,
where the former is expressed in absolute terms, while the latter
in relative terms. This is a more natural way to set selection
criteria for most users, especially for users who are not experts
in the field, and what really matters is the relative value, not the
absolute value, of a data item on an attribute.

• Trade-offs and compromises among multiple preferences are al-
lowed and supported. Actually, all difficult selection problems
happen in the cases where different criteria have to be balanced
against each other. Using the concept of evidence (for membership
relation), the above algorithm maps values of different attributes
(with different units) into a common (unit-free) dimension.

Uncertainty 219

• By presenting a top-N list to the user, the selection process is
simplified without losing promising candidates. Still, the user can
consider other factors (that are not in the recommendation re-
quest) in making the final decision.

Compared to the similar solution based on fuzzy logic, this recom-
mendation procedure has the following advantages:

• The degree of membership for an instance to belong to a concept
is no longer a subjective opinion, but a measurement justified
according to a theory on cognition and intelligence.

• The scores are determined by the available data according to a
domain-independent algorithm. Consequently, there is no need to
manually design and maintain the membership functions. Instead,
such functions are automatically learned from the data, and so
are adaptive to the changes in data.

Because of the adaptive nature of the membership function, the sys-
tem treats “cheap computer” and “cheap pencil” with different stan-
dards, simply because the available instances in these two categories
have different price distributions. When a new product with the lowest
price is added into the system, all other products in the same category
automatically become “more expensive,” as the result of comparing to
it. This is closer to how the human mind works in these situations.
Also, this “maintenance-free” solution is easier to be used in practical
situations.

8.3 The Bayesian approach

There is an obvious relation between the truth value defined in NAL
and probability. The frequency of a statement is defined as f = w+/w,
which intuitively looks like a probability value. On one hand, probabil-
ity theory is a solid mathematical theory which is often used to measure
the “degree of belief,” and the Bayesian approach is dominating the re-
search of reasoning under uncertainty; on the other hand, the design
of truth-value function in NARS is not derived from any theory, and
in several places the decisions look arbitrary. If this is the case, why

220 Chapter 8

bother to develop a new calculus rather than use the Bayesian approach
for uncertainty processing in NARS?

8.3.1 An analysis of the Bayesian approach

Bayesianism comes in different shapes. Since this book is about AI,
what I call “the Bayesian approach” is the most influential form of
Bayesianism in AI, applied in reasoning systems. Here I will not at-
tempt to evaluate all kinds of Bayesianism, or all interpretations and
applications of Bayes Theorem.

In recent years, Bayesian networks have achieved great success in
AI. It has been not only applied to various problems, but also taken
by more and more people as a normative theory of reasoning, both for
the human mind, and for AI systems [Cheeseman, 1985, Pearl, 1988,
Spiegelhalter, 1989].

Though the Bayesian approach is indeed a powerful tool for many
theoretical and practical problems, its limitation is often seriously un-
derestimated, due to a conceptual and notational confusion. The prob-
lem was first addressed in [Wang, 1993a], but it has got little attention,
and the confusion continues to spread.

According to [Pearl, 1990], traditional Bayesianism is defined by the
following attributes:

• willingness to accept subjective belief as an expedient substitute
for raw data,

• reliance on complete (i.e., coherent) probabilistic methods of be-
lief,

• adherence to Bayes’ conditionalization as the primary mechanism
for updating belief in light of new information.

When probability theory is applied into a reasoning system, it usu-
ally starts by assuming a proposition space S, which contains all the
propositions that the system can represent and process.1 S is often gen-

1Of course, probability theory, including Bayes Theorem, is not limited to propo-
sitions. Very often, the subjects of discussion are random variables or events. How-
ever, since the current discussion is about the application of probability theory to
a reasoning system, propositions will be taken as the subject matter.

Uncertainty 221

erated from a set of atomic propositions, using logical operators “not”
(¬), “and” (∧), and “or” (∨). A probability distribution P is defined
on S, and for every proposition h ∈ S, its probability evaluation P (h) is
a real number in [0, 1], and satisfies the following axioms of probability
theory [Kolmogorov, 1950]:

• P (h ∨ ¬h) = 1.

• P (h ∨ h′) = P (h) + P (h′), if h′ ∈ S and h ∧ h′ is false.

For any h and e in S, the probability of h under the condition that e
is true is a conditional probability evaluation P (h|e) = P (h ∧ e)/P (e).
From it we get the Bayes Theorem

P (h|e) =
P (e|h)P (h)

P (e)
(8.1)

Though the above mathematical definitions and results are acknowl-
edged by all people using probability theory for reasoning, the Bayesian
approach interprets them differently. According to Bayesianism (as de-
fined above), the probability of a proposition h in a system is the sys-
tem’s degree of belief on h, according to certain background knowledge
k (or call it experience, data, evidence, and so on).

The system starts with a prior probability distribution P0, deter-
mined by background knowledge k0 at time t0. At time t1, when a piece
of new knowledge e is collected, Bayes Theorem is applied to change
P0 into a posterior probability distribution P1, where

P1(h) = P0(h|e) =
P0(e|h)P0(h)

P0(e)
(8.2)

Now P1 is based on k1, which includes both k0 and e. By repeatedly
applying Bayes Theorem, the system learns new knowledge, and adjusts
its beliefs accordingly [Heckerman, 1999, Pearl, 2000]. This process is
called “conditioning.”

According to the above description, we see that under the Bayesian
interpretation, a probabilistic evaluation P (h) is always “conditional,”
in the sense that it is not an objective property of the proposition h,

222 Chapter 8

but a relation between h and background knowledge k. For this reason,
the previous inference rule can be written as

Pk1(h) = Pk0(h|e) =
Pk0(e|h)Pk0(h)

Pk0(e)
(8.3)

where k0 and k1 are the background knowledge the system has at time
t0 and t1, respectively. In the following, I will call them “implicit condi-
tions” of the corresponding probability distribution function, because
they are conditions of the probability functions, and they are usually
implicitly assumed in the formula.

A common practice is to represent the dependency of a probability
to an implicit condition as a conditional probability, that is, to represent
the above rule as

P (h|k1) = P (h|e ∧ k0) =
P (e|h ∧ k0)P (h|k0)

P (e|k0)
(8.4)

This kind of treatment can be found in many publications on the
Bayesian approach [Cheeseman, 1985, Heckerman, 1999, Pearl, 1988,
Pearl, 2000].

Since in conditional probability the condition is explicitly repre-
sented, in the following, I will call them “explicit conditions.” My ar-
gument is that, in general, it is improper to represent an implicit con-
dition as an explicit condition, and that the difference between the two
shows a serious limitation of the Bayesian approach, which is related
to several previous debates on related topics.

Since Bayesian learning is carried out by Equation 8.2, the knowl-
edge the system can learn, by applying Bayes Theorem, must be rep-
resented as explicit condition e. This means:

1. It is a (binary) proposition (otherwise it cannot be in S).

2. It is in S (otherwise its probability P0(e) is undefined).

3. P0(e) > 0 (otherwise it cannot be used as a denominator in Bayes’
Theorem).

These restrictions are not unknown (for example, a similar list is dis-
cussed in [Diaconis and Zabell, 1983, Pearl, 1990]). Since all learning

Uncertainty 223

methods have their restrictions, it is not a surprise that Bayesian con-
ditioning cannot learn everything. However, here the problem is that
the above restrictions are not applied to the implicit conditions of a
probability distribution function:

1. An implicit condition may include statistical conclusions and sub-
jective probabilistic estimates, which are not binary propositions.

2. An implicit condition only needs to be related to S, but not neces-
sarily in S. For example, “Tweety is a bird and cannot fly” can be
part of an implicit condition, even though S includes only “Birds
fly,” and does not include the name “Tweety” at all.

3. Even if a proposition is assigned a prior probability of zero ac-
cording to one knowledge source, it is still possible for the propo-
sition to be assigned a non-zero probability according to another
knowledge source.

Now we can see that only certain types of implicit conditions can be
represented as explicit conditions. It follows that if some knowledge is
not available when the prior probability is determined, it is impossible
to be put into the system through Bayesian conditioning. We cannot
assume that we can always start with a “non-informative” prior prob-
ability distribution, and learn the relevant knowledge when it becomes
available.

In fact, when S is finite, conditioning can only accept a finite amount
of (different) new knowledge after its prior probability distribution is
determined. To see it, we only need to remember that the new knowl-
edge must be in S, and each time a proposition e is provided to the
system as a piece of new knowledge, at least e and ¬e (as well as ¬e∧h,
and so on) cannot be used as new knowledge in the future.

If we insist that all implicit conditions must satisfy the same three
restrictions, the prior probability distribution will degenerate into a
consistent assignment of 0 or 1 to each proposition in S, and, after the
assignment, the system will be unable to accept any new knowledge
at all.

From a practical point of view, the three restrictions are not triv-
ial, since they mean that although the background knowledge can be

224 Chapter 8

probabilistic, all new knowledge must be binary; no novel concept and
proposition can appear in new knowledge; and if a proposition is given
a probability 1 or 0, such a belief cannot be changed in the future, no
matter what happens. We could build such a system, but unfortunately
it would be a far cry from the everyday reasoning process of a human
being.

Therefore, it is wrong to represent an implicit condition as an ex-
plicit condition, and the previous Equation 8.3 and Equation 8.4 are
not equivalent. Though both formulas are correct, they have different
meaning.

Some authors attempt to represent revision as “deriving P (h|e1 ∧
e2) from P (h|e1) and P (h|e2)” [Deutsch-McLeish, 1991]. According to
the previous discussion, we can see that this treatment has the same
problem, because it only considers explicit conditions, while in general
we cannot assume that conflict beliefs come under the same implicit
condition. Furthermore, revision happens when there are conflicting
opinions based on different evidence, and the result should be a com-
promise of the opinions, but P (h|e1 ∧ e2) is not necessarily between
P (h|e1) and P (h|e2). Therefore, this is not a proper way to formalize
revision.

Some people claim that the Bayesian approach is sufficient for rea-
soning with uncertainty, and many people treat Bayes Theorem as
a generally applicable learning rule, because explicit conditions and
implicit conditions of a probability evaluation are seldom clearly distin-
guished in related discussion. Without such a distinction, the illusion
arises that all the knowledge supporting a probability distribution func-
tion can be represented by explicit conditions, and can therefore be
learned by the system using Bayes Theorem. As a result, the capability
of Bayes Theorem is overestimated.

Within the Bayesian tradition, there is a way to handle new evidence
that is not a binary proposition. After a prior probability distribution
P0 is assigned to a proposition space S, some new evidence may show
that “The probability of proposition e (e ∈ S) should be changed to
p” (i.e., P1(e) = p). In this situation, assuming the conditional prob-
abilities that with e or ¬e as explicit condition are unchanged (i.e.,
P1(x|e) = P0(x|e)), we can update the probability evaluation for every
proposition x in S to get a new distribution function by using Jeffrey’s

Uncertainty 225

rule [Jeffrey, 1965]:

P1(x) = P0(x|e) × p + P0(x|¬e) × (1 − p) (8.5)

If we interpret “e happens” as “e’s probability should be changed to
1,” then learning by conditioning, as in Equation 8.2, becomes a special
case of Jeffrey’s rule, with p = 1.

A related method was suggested to process uncertain evidence e,
where a “virtual proposition” v is introduced to represent the new
knowledge as “a (unspecified) proposition v is true, and P0(e|v) = p”
[Jeffrey, 1965, Pearl, 1988]. Then a new conditional probability distrib-
ution can be calculated (after considering the new knowledge) for each
proposition x ∈ S in the following way:

P1(x) = P0(x|v) = P0(x|e∧v)×P0(e|v)+P0(x|¬e∧v)×P0(¬e|v) (8.6)

Under the assumption that

P0(x|e ∧ v) = P0(x|e) and P0(x|¬e ∧ v) = P0(x|¬e)

Equation 8.6 can be reduced into Equation 8.7:

P1(x) = P0(x|v) = P0(x|e) × p + P0(x|¬e) × (1 − p) (8.7)

Therefore we end up with Jeffrey’s rule. The only difference is that here
the prior probability is not updated directly, but is instead conditional-
ized by a virtual condition (the unspecified proposition v). However, no
matter which procedure is followed and how the process is interpreted,
the result is the same [Pearl, 1990].

Jeffrey’s rule (and its equivalent forms) avoids the first restriction of
Bayes Theorem, that is, the new evidence must be a binary proposition.
Also, if conditional probability is directly defined by de Finetti’s coher-
ent conditional probability (that is, not as P (x|y) = P (x∧ y)/P (y)), it
is possible to do conditioning on an event which has prior probability
0 [Coletti et al., 1993]. Furthermore, Pearl defines “Neo-Bayesianism”
by adding structural information (i.e., the topological structure of a
Bayesian network) into tradition Bayesianism. With this kind of in-
formation, conditional probability can be introduced independent of

226 Chapter 8

the absolute probability values, and, therefore, the above limitations of
conditioning is overcome [Pearl, 1990].

Though the above methods are well justified, they only covers a spe-
cial case. In general, by “revision” (or “learning,” “belief change,” and
so on), I mean the process by which a system changes the uncertainty
value (no matter what it is called) of a statement h from P (h) = p1 to
P (h) = p2, according to evidence e. By “updating,” I mean a special
case of the above process where e takes the form of “P (h) should be
p2,” and it is indeed the result of the process, no matter what p1 is.

Though “updating” is a valid operation in uncertain reasoning, it is
only a special case of “revision,” because it does not cover the situation
where the result is a compromise of conflicting beliefs/evidence.

In certain situations, it is proper to interpret belief changes as up-
dating [Dubois and Prade, 1991], but revision is a more general and
important operation. When there are conflicts among beliefs, it is not
always the case that one piece of evidence should be completely sup-
pressed by another piece of evidence, unless the beliefs are about an
event which the system is sure that has changed its status.

Concrete speaking, revision happens when the system’s current be-
lief on h is Pk0(h), the new knowledge is Pk′

0
(h), and the result is Pk1(h),

where k1 summarized the knowledge in k0 and k′
0. We cannot do it in

the Bayesian approach, because Pk′
0
(h) contains information that can-

not be derived from Pk0 , nor can the operation be treated as updating,
where Pk0(e) is simply replaced by Pk′

0
(h). Intuitively, to carry out the

revision operation, we need more information about k0 and k′
0, and this

information is not in the probability distribution functions Pk0 and Pk′
0
.

Therefore, even if Jeffrey’s rule is used to replace Bayes’ rule and
structure information is added into the picture, the system still does
not have a general way to revise its implicit conditions (i.e., background
knowledge behind the probability distribution function). If we want to
apply a Bayesian network to a practical domain, one of the following
requirements must be satisfied:

1. The implicit condition of the initial probability distribution, that
is, the domain knowledge used to determine the distribution ini-
tially, can be assumed to be immune from future modifications; or

Uncertainty 227

2. All modifications of the implicit condition can be treated as up-
dating, in the sense that when new knowledge conflicts with old
knowledge, the latter is completely abandoned.

From AI’s point of view, such domains are exceptions, rather than
general situations. In most cases, we cannot guarantee that all initial
knowledge is unchangeable, or that later acquired knowledge always
completely suppresses earlier acquired knowledge. Usually, revision is a
compromise, as in belief change [Voorbraak, 1999] and multiple source
information fusion [Dubois et al., 2001].

Once again, this conclusion is only about the version of Bayesianism
in AI specified previously. It may not apply to other forms of Bayesian-
ism or other probability-based approaches. Given the possible variations
of probability theory, I cannot say that the above problem cannot be
solved by some kind of probability theory. However, we have not seen
such a solution, that is, a general-purpose reasoning system, which is
designed according to probability theory, and works under AIKR.

Furthermore, I haven’t seen a convincing argument showing that
systems like NARS must be based on probability theory. Existing ar-
guments in this direction, such as Cox’s theorem [Cox, 1946], are all
derived from assumptions that conflict with AIKR. For example, it is
usually assumed that the system’s beliefs are consistent, and that the
system has enough resources to finish the required calculations.

8.3.2 NARS vs. the Bayesian approach

Since the probability distribution function P is defined on S according
to implicit condition k, it provides a summary of available knowledge
about propositions in S, but the function says little about k itself. Con-
sequently, the system has no general way to revise and extend k. That
is, the Bayesian approach has no general way to represent and handle
the uncertainty within the background knowledge and the prior prob-
ability function. This is a serious limitation of the Bayesian approach,
both in theory and in application.

Though the distinction between explicit and implicit condition is
rarely made, the above conclusion, that is, Bayesian approach has

228 Chapter 8

limitations in representing and processing uncertainty, is not new at
all. From different considerations, many people reached the same con-
clusion, that is, to use a probability distribution function alone to rep-
resent uncertainty is not enough, because it fails to show the ignorance,
or uncertainty about the function itself. This kind of uncertainty is not
the “risk” captured by probability [Ellsberg, 1961].

Several alternative approaches have been proposed to solve this
problem. Though these approaches are technically different, they can
all (more or less) be seen as attempts of extending the Bayesian ap-
proach by using more than one value to represent the uncertainty of a
statement, and therefore indicates the ignorance of the system. Some
of these approaches will be discussed in the next subsection. In the
following I first analyze the response from the Bayesian school against
these challenges.

To argue against “more than one number is needed to represent un-
certainty,” Cheeseman claimed that a point value and a density function
will give the same result in decision making [Cheeseman, 1985], which I
agree with to a certain extent. However, I believe that he was wrong by
saying that standard deviation can be used to capture “the change of
expectations” (or revision, as defined previously). If we test a proposi-
tion n times, and the results are the same, then the standard deviation
of the results is 0, that is, independent of n. But our confidence that
“the result will remain the same” will obviously increase with n. Actu-
ally, what the standard deviation measures is the variations among the
samples, but what is needed in revision, intuitively speaking, has more
to do with the amount of the samples.

Pearl said the uncertainty in the assessment of P0(e) is measured by
the (narrowness of the) distribution of P0(e|c) as c ranges over all com-
binations of contingencies, and each combination c is weighted by its
current belief P0(c) [Pearl, 1988]. A similar approach is [Spiegelhalter,
1989], where ignorance is treated as sensitivity.

I agree with them that ignorance is the lack of confidence, and
confidence can be measured by how much a belief assignment can be
modified by possible future evidence (in this sense, it is different from
what is measured by the “confidence interval” in statistics). However,
in their definitions, they still assume that any relevant future evidence
causing a belief change can be represented as an explicit condition, and

Uncertainty 229

can be processed through conditioning. As a result, their measurement
of ignorance (or confidence) cannot capture the ignorance about implicit
conditions.

When a reasoning system has insufficient knowledge and resources
with respect to the task assigned to it, it cannot assume that the initial
background knowledge does not need revising, nor that any revising can
be treated as complete updating of the probability distribution func-
tion. Therefore, the above limitation means that the Bayesian approach
is not a normative theory of reasoning wherever AIKR is accepted, such
as in NARS.

Now let me list the reasons for NARS to be developed outside prob-
ability theory.

• Though a single judgment in NAL by itself can be seen as a prob-
ability distribution, different judgments, in this sense, correspond
to different probability distributions, because each of them has
its own evidence space.

• Because the system has insufficient resources, usually when the
truth value of a statement is determined, the system cannot con-
sider all existing evidence, even though it is already in the mem-
ory. Similarly, when a piece of new evidence comes, the system
cannot afford the resources to re-consider the truth values of all
relevant judgments.

• Because of the above two reasons, in each inference step the
premises and the conclusion correspond to different probability
distributions, and the truth-value functions correspond to “cross-
distribution” calculations, which are not defined in classical prob-
ability theory. In this sense, the uncertainty calculus of NARS is
an extension of probability theory.

Let us see a concrete case. The deduction rule defined in NAL-1 has
the following format:

{M → P <f1, c1 >, S → M <f2, c2 >} � S → P <f, c>

A direct way to apply probability theory would be treating each term
as a set, then turning the rule into one that calculates conditional

230 Chapter 8

probability Pr(P |S) from Pr(P |M) and Pr(M |S) plus additional as-
sumptions about the probabilistic distribution function Pr(). Similarly,
the sample size of the conclusion would be estimated, which gives the
confidence value.

Such an approach cannot be applied in NARS for several reasons:

• For an inheritance relation, evidence is defined both extensionally
and intensionally, so the frequency of “S → P” cannot be treated
as Pr(P |S), since the latter is pure extensional.

• Each statement has its own evidence space, defined by the ex-
tension of its subject and the intension of its predicate, so the
evidence for a premise cannot be directly used as evidence for the
conclusion.

• Since input judgments may come from different sources, they may
contain inconsistency.

• When a new judgment comes, usually the system cannot afford
the time to update all of the previous beliefs accordingly.

Therefore, though each belief in NARS is similar to a probabilistic judg-
ment, different beliefs correspond to different evidence space, and their
truth values are evaluated against different bodies of evidence. As a
result, they correspond to different probability distributions. For ex-
ample, if we treat frequency as probability, the deduction rule should
calculate Pr3(S → P) from Pr1(M → P) and Pr2(S → M). In stan-
dard probability theory, there are few results that can be applied to
this kind of cross-distribution calculation.

NARS is not proposed to replace Bayesian models. If the Bayesian
approach can be applied in a situation (i.e., the computational cost and
the revision of background knowledge can be ignored there), it may still
be better than NARS. It is in situations where the Bayesian approach
cannot or should not be applied that approaches like NARS will take
over.

Uncertainty 231

8.3.3 “Heuristics and bias” revisited

The study of human judgment under uncertainty reveals systematic
discrepancy between actual human behaviors and conclusions of prob-
ability theory [Tversky and Kahneman, 1974], that is, between what
we should do (according to probability theory) and what we do (ac-
cording to psychological experiments). Therefore, probability theory is
not a good descriptive theory for human reasoning under uncertainty,
though it is still referred to as a good normative theory.

As a result, the research activities in this domain often consist of
the following steps [Gigerenzer, 1991, Kahneman and Tversky, 1982]:

1. To identify the problem by carrying out psychological experi-
ments, and comparing the results with the conclusions of proba-
bility theory;

2. To explain the result by looking for the heuristics that are used
by humans and the factors that affect their usage, and to suggest
and verify methods to correct the errors.

Heuristics, as methods to assess subjective probability, “are highly
economical and usually effective, but they lead to systematic and pre-
dictable errors” [Tversky and Kahneman, 1974]. Compared with nor-
mative theories, such as probability theory, heuristics are not optimal,
not formal, not systematic, and not always correct.

According to this opinion, the fact that probability theory can-
not match actual human reasoning is not a problem of the theory.
Though the discrepancy is well known, probability theory, especially
the Bayesian approach, is becoming more popular as a normative model
of reasoning under uncertainty.

However, according to the previous analysis, we see that proba-
bility theory in general, and the Bayesian approach in specific, are
based on certain fundamental assumptions. When these assumptions
are not satisfied, they cannot be applied as normative theory anymore.
NARS is based on a different set of assumptions, and is designed to be
used when probability theory cannot. Though designed as a normative
model, NARS shows some behaviors that are usually explained in term
of “heuristics and biases” [Tversky and Kahneman, 1974].

232 Chapter 8

• Availability
Availability, “the ease with which instances or occurrences can be

brought to mind,” is a common heuristic in intuitive judgment of prob-
ability. It “is affected by factors other than frequency and probability,”
therefore “leads to predictable biases” [Tversky and Kahneman, 1974].

The same phenomenon happens in NARS. Because NARS is built
under AIKR, the following properties are implied:

1. The system has to base its judgments on the available knowledge.
Therefore, the estimation of the frequency of a belief is actually
about the experienced frequency, rather then the objective fre-
quency.

2. Judgments must be made with the available resources. Therefore,
the system often cannot consider all of its beliefs, but only part
of it.

3. Which beliefs are consulted is determined by several factors, such
as relevance, importance, usefulness, and so on. Therefore, it is
not surprising that certain events, like priming and association,
influence the availability distribution [Arkes, 1991].

The above properties mean that if the system attempts to estimate
the frequency of a type of event, the result may be biased by the events
which are readily available to remember and recall, as observed in peo-
ple. Such a result is different from how frequency, or probability, is
defined in probability theory.

Because which belief to use at each step of reasoning is determined
by the current context (by priming) and past experience (by associa-
tion), it is inevitable that some knowledge, necessary for the assessment
of uncertainty of a proposition, may be either unknown to the system
or cannot be recalled at the time. As a result, the system will have
expectation errors — i.e., the conflicts between the system’s expecta-
tions and the system’s future actual experience, but this type of error
is not caused by mis-designing or malfunction of the system. Under
the knowledge and resources constraints, the system has done its best.
As long as it can revise its beliefs according to new evidence, there is
no error in the system’s operations, though there may be errors in the
results of these operations.

Uncertainty 233

• Representativeness
Representativeness, or degree of similarity, is often used as proba-

bility by human beings. “This approach to the judgment of probabil-
ity leads to serious errors, because similarity, or representativeness, is
not influenced by several factors that should affect judgments of prob-
ability” [Tversky and Kahneman, 1974]. The basic difference between
probability and similarity is that “the laws of probability derive from
extensional considerations,” but similarity judgments are based on the
sharing of properties, so they are intensional [Tversky and Kahneman,
1983].

Here we need to distinguish three different meanings of “pro-
bability”:

1. As a pure mathematical concept, probability is neither exten-
sional nor intensional.

2. Probability theory is usually interpreted extensionally when ap-
plied to a practical domain.

3. In everyday language and intuitive thinking, both extensional and
intensional interpretations of probability happen.

Why is only the extensional interpretation referred to as “correct”?
There is a historical reason: the normative theories about extension
are well developed, but the theories about intension are not. Actually
there is no commonly accepted theory about how to define and process
the intension of a concept. However, this does not imply that inten-
sional factors should not be taken into consideration when we make
predictions about uncertain events.

NARS is an attempt to equally treat extension and intension. When
the uncertainty of a judgment is determined, both the extensional factor
(shared instances) and intensional factor (shared properties) are con-
sidered (as discussed in Section 7.2). By doing this, it does not mean
that they are not different, but that their effects are the same in the
judgment. It is valid to build normative theories to process extension
or intension separately, but it is also valid, and maybe more useful, to
have theories that process both of them in a unified manner. In the
latter case, it is valid to use representativeness and probability indis-
criminately for certain purposes.

234 Chapter 8

• Adjustment and anchoring
For any system that accepts new knowledge or makes judgments

by incrementally considering available knowledge, there must be a rule
by which a previous probability judgment is adjusted in light of new
evidence or further consideration [Anderson, 1986].

The anchoring phenomenon, or insufficient adjustment from the ini-
tial point, is observed in human thinking [Tversky and Kahneman,
1974]. By calling the observed adjustments “insufficient,” it is assumed
that the correct adjustment rule is Bayes’ theorem, or its extension,
Jeffrey’s rule.

As discussed previously, in NARS, two different cases are distin-
guished when judgments conflict with each other. If the evidence sup-
porting the two judgments are correlated, the choice rule is applied to
do updating, otherwise the revision rule is applied.

In updating, there are also two possibilities: if the confidence of
the previous estimation is no lower than the confidence of the new
estimation, then nothing is changed, otherwise the former is replaced by
the latter. Though the second possibility is the same with Jeffrey’s rule,
what follows is different: NARS usually cannot afford the resources to
update all related judgments, therefore only some of them are updated
accordingly, by applying the inference rules and the updating rule of
NARS.

In revision, the new frequency is a weighted sum of those of the
premises, as discussed previously.

Therefore, in all situations, the adjustment of frequency in NARS
is no more than what is required by probability theory. If conditional-
ization (Bayes’ theorem and Jeffrey’s rule) is the correct way of adjust-
ment, NARS shows the anchoring bias, too. However, as argued above,
it is not always valid to use updating as revision, or to assume sufficient
resources for global updating.

NARS is not proposed as a descriptive model for actual human
thinking, such as Anderson’s model [Anderson, 1986]. Its behavior is
still different from that of a human being. The approach is not justi-
fied by psychological data, but by logical analysis. Therefore there is no
psychological experiment conducted to verify the theory. However, psy-
chological observations, as those reported in [Tversky and Kahneman,
1974], do have a strong relation to the study of normative models.

Uncertainty 235

NARS is no less normative than probability theory in the sense
that it is developed from some basic principles and assumptions about
what a system (human or computer) should do under AIKR. It is true
that when applied into a practical domain, NARS may produce wrong
expectations, but so does probability theory.

A conclusion of the above discussion is that there is no unique
normative model for judgment under uncertainty — different mod-
els can be established according to different theoretical assumptions.
NARS is “less idealized” than the Bayesian approach, because it as-
sumes stronger knowledge–resource constraints. The behavior of NARS
is closer to that of people, therefore we have reason to believe that its
assumptions are more “realistic” — that is, more similar to the con-
straints under which the human cognitive mechanism was developed.

Using NARS as an example, we see that it is possible to find a
normative interpretation for the “heuristics.” They are not necessarily
“efficient but biased.” Sometimes they indicate the right thing to do,
though they do not always succeed.

As for the “biases” and “fallacies” discussed in the psychological
literature, the situation is complex. NARS cannot explain all of them,
but it does suggest a distinction: some violations of probability theory
happen in the situations where probability theory cannot or should not
be applied, and they may be explained by other normative theories,
therefore they are not necessarily errors. The real errors happen when
probability theory should be applied, but the person fails to do so.

Even for the latter case, an explanation is suggested from the study
of NARS: because the human mind usually works under some assump-
tions about knowledge and resources that are quite different from what
probability theory assumes, it needs some special effort (which does not
always succeed) to suppress the “natural law of thinking,” and to learn,
to remember, and to follow probability theory.

Now I can say that by analyzing the so called “heuristics and bi-
ases,” we not only find limitations in human reasoning, but also find
limitations in probability theory, especially in the Bayesian approach.
Just like no one is born with a digital calculator embedded in their head,
brains dont include Bayesian networks for a good cause – in many of our
native environments the assumptions made by the Bayesian approach
may frequently fail to hold.

236 Chapter 8

8.4 Other probabilistic approaches

“Ignorance cannot be represented in a probability distribution” is an
old argument against the Bayesian approach, and a major motivation
for alternative approaches. There are several approaches proposed as
extensions or variants of probability theory, by taking the uncertainty
in probability values into consideration. As stated previously, in a sense
NARS is also such an approach. In this section NARS is compared with
some of them.

8.4.1 Higher-order probability

Several new measurements are proposed under the assumption that the
first-order uncertainty measurement (call it “probability” or “degree
of belief”) is an approximation of a “real” or “objective” probability.
Under the frequentist interpretation, the probability of a statement is
the limit of frequency, therefore all estimations of it based on finite
evidence are not accurate. Even if we take probability as degree of
belief, it can still be argued that such a degree should converge to the
objective probability if it exists.

If the first-order probability assignment is only an approximation
of an unknown value, the need for a higher-order measurement follows
naturally — we want to know how good the approximation is, in addi-
tion to the approximated value itself.

One natural idea is to apply probability theory once again, which
leads to the ideas like “second-order probability,” “higher-order proba-
bility,” and so on [Fung and Chong, 1986, Gaifman, 1986, Paaß, 1991].
In this way, we can assign probability to a probability assignment, to
represent how good an approximation it is to the real probability.

However, there are problems in how to interpret the second value,
and whether it is really useful [Kyburg, 1989, Pearl, 1988]. For NARS,
under the assumption of insufficient knowledge, it makes little sense to
talk about the “probability” of “the frequency is an accurate estimate of
an objective first-order probability.” Since NARS is always open to new
evidence, it is simply impossible to decide whether the frequency of a
judgment will converge to a point in the infinite future, not to mention
where the point will be. If we say that the second-order probability is

Uncertainty 237

an approximation itself, then a third-order probability follows for the
same reason — we are facing an infinite regression [Savage, 1954].

The confidence c defined in NARS is in [0, 1], can be considered to
be a ratio, and is at a “higher level” than frequency f (which is closely
related to probability), in the sense that it indicates the stability of f .
However, it cannot be interpreted as a second-order probability in the
sense that it is the probability of the judgment “f is the (real or objec-
tive) probability of the statement.” The higher the confidence is, the
harder it will be for the frequency to be changed by new evidence, but
this does not mean that the judgment is “more accurate,” because in an
open system like NARS, the concept of a real or objective probability
does not exist.

Furthermore, if confidence in NARS is interpreted as second-order
probability, then a judgment S <f, 0> would mean “P (P (S) = f) =
0,” that is, “The frequency of S is not f ,” rather than “The frequency
of S is unknown,” which is the intended interpretation. Consequently,
such a measurement would not support the revision operation — we
cannot combine a pair of conflicting judgments, given their first-order
and second-order probabilities.

With confidence defined in the current way in NARS, there is no
“third-order uncertainty” to worry about. While the stability of a fre-
quency value is indicated by the attached confidence value, the stability
of the latter can be derived from itself. Because the current confidence
is c0 = w/(w + k), with the coming of new evidence of amount k,
the new confidence will be c1 = (w + k)/(w + 2k), and the change is
c1 − c0 = (w + k)/(w + 2k)−w/(w + k) = k2/((w + 2k)(w + k)), which
becomes smaller when c becomes larger. Therefore NARS does not need
another measurement, and there is no infinite regression.

8.4.2 Probability interval

Another intuitively appealing idea is to use an interval, rather than
a point, to represent uncertainty, and to interpret the interval as the
lower bound and upper bound of the real probability [Bonissone, 1987,
Grosof, 1986, Kyburg, 1987].

According to these approaches, when the system knows nothing
about a statement, the interval is [0, 1], so the real probability can be

238 Chapter 8

anywhere; when the real probability is known, the interval degenerates
into a point. Therefore, ignorance can be represented by the width of
the interval.

A related idea in statistics is to calculate the confidence interval of a
probabilistic estimation [Bernardo and Smith, 1994], which has a high
probability (such as 95%) of including within it the real probability.
Here, the width of the interval also provides information about the
accuracy of the current estimation.

Although the above methods are directly based on probability the-
ory (and thus have a sound foundation), and they are useful for various
purposes, they cannot be applied in a system like NARS. The “fre-
quency interval” (defined in Subsection 3.2.3) shares these intuitions,
though it does not assume the existence of a “real frequency”, or a limit
of the experienced frequency.

When the probability interval is interpreted as the interval contain-
ing the true probability value, the situation is similar to the case of
higher-order probability. For an open system with insufficient knowl-
edge, it cannot be assumed that a frequency always has a limit. Even
when such a limit really exists, it is impossible for the system to know
how close the current frequency is to it without making assumptions
about the distribution of the limit.

If the probability interval is interpreted as an estimation itself, an
“interval of the bounds” will follow, so the infinite regression appears
again. For the same reason, the “confidence” defined in NARS has
different meaning from the “confidence” as in “confidence interval,”
used in probability theory and statistics, though they do correspond
to the same intuition, that is, some frequency estimations are more
reliable than others, and their difference can be measured.

The closest probability-based approach to NARS is the “Impre-
cise Probability” (IP) theory proposed by Peter Walley [Walley, 1991,
Walley, 1996]. Walley defines lower and upper probabilities of an event
as the minimum and maximum betting rate, respectively, that a ra-
tional person is willing to pay for the gamble on the event. Though
starting from a quite different place, this theory is related to NARS in
an interesting way.

Suppose that an event has a constant (unknown) chance to happen,
that the observations of the event are independent to one another, and

Uncertainty 239

that the chance has a near-ignorance beta distribution as its prior. If
the observed relative frequency of the event is m/n, then, according
to Walley’s theory, the lower and upper probabilities of the event are
m/(n + s0) and (m + s0)/(n + s0), respectively. Here s0 is a parameter
of the beta distribution, and it indicates the convergence speed of the
lower and upper probabilities. This is exactly the result we get for the
lower and upper frequencies previously, though the interpretations of
the interval are different. For NARS, the interval [m/(n + k), (m +
k)/(n+k)] is just where the frequency will be in a constant near future
(measured by k), and after that it can be anywhere in [0, 1].

Though these two approaches (NARS and IP) define uncertainty
measurements differently, they are consistent in the sense that they
make the same decisions in situations where both theories are applica-
ble. What makes them different from the other “probability interval”
approaches mentioned earlier is: in both NARS and IP, the interval
does not bound the limit of the frequency (if such a limit exists).

The major difference between these two approaches comes from the
fact that IP is proposed as an extension of probability theory, and
therefore the inference is mainly within the same probability distrib-
ution. On the other hand, in NARS each piece of knowledge is based
on a separate body of evidence, so that the rules introduced previously
correspond to inference across different probability distributions. The
detailed relationship between these two approaches is an interesting
issue for future research.

8.4.3 Dempster-Shafer theory

Evidence theory, also known as Dempster-Shafer (D-S) theory, was de-
veloped as an attempt to generalize probability theory by introduc-
ing a rule for combining distinct bodies of evidence [Dempster, 1967,
Shafer, 1976].

The most influential version of the theory was presented by Shafer
in his book A Mathematical Theory of Evidence [Shafer, 1976]. In the
book, the following postulates are assumed, which form the foundation
of D-S theory.

1. Chance is the limit of the proportion of “positive” outcomes among
all outcomes [Shafer, 1976, pages 9, 202].

240 Chapter 8

2. Chances, if known, should be used as belief functions [Shafer, 1976,
pages 16, 201].

3. Evidence combination refers to the pooling, or accumulating, of
distinct bodies of evidence [Shafer, 1976, pages 8, 77].

4. Dempster’s rule can be used on belief functions for evidence com-
bination [Shafer, 1976, pages 6, 57].

However, I proved in [Wang, 1994a] that under a natural interpre-
tation of the measurement involved, the above four postulates are in-
consistent. This proof is briefly summarized in the following.

For a given hypothesis H, assume all pieces of evidence have the
same weight w, and the numbers of pieces of positive, negative, and
total evidence are t+, t−, and t, respectively (so t = t+ + t−), then after
repeatedly applying Dempster rule to combine the evidence, the degree
of belief of H, Bel({H}), may converge to a limit Bel∞({H}). However,
if that happens, Bel∞({H}) is usually different from the chance of
the proposition, defined as Pr(H) = limt→∞ t+/t. Instead, it is proved
that

Bel∞({H}) = limw→∞
ewt+−1

ewt++ewt−−1

= limt→∞
ewt+−1

ewt++ewt−−1

=

⎧
⎪⎪⎨

⎪⎪⎩

0 if Pr(H) < 1 − Pr(H)

1 if Pr(H) > 1 − Pr(H)
1

1+e∆ if Pr(H) = 1 − Pr(H)

where ∆ = limt→∞ w(t− − t+).
This means that if the chance of the hypothesis exists, then, by

repeatedly applying Dempster’s rule to combine the coming evidence,
if belief function of the hypothesis converge to a value, then that value
is usually not the chance of the hypothesis, except in a few special
cases.

Therefore, under the above simple interpretation, D-S theory is not
a proper extension of probability theory. Because of these problems,

Uncertainty 241

as well as several other factors (such as the interpretation of the belief
function, the easiness of defining various inference rules on the belief
function, the computational cost of the rules, and so on), NARS does
not use D-S theory.

To compare NARS with D-S theory, we can see that the lower fre-
quency and upper frequency in the former are intuitively similar to the
belief function and plausibility function in the latter, respectively, in
the sense that

w+

w + k
≤ w+

w
≤ w+ + k

w + k

However, in NARS, if the frequency of a statement indeed has a limit,
the lower frequency and upper frequency will converge to it. That is

lim
w→∞

w+

w + k
= lim

w→∞
w+

w
= lim

w→∞
w+ + k

w + k

Therefore, the previous problem in D-S theory does not exist in NARS.

8.5 Unified representation of uncertainty

Compared with the other approaches, the representation and interpre-
tation of uncertainty in NARS have the following characteristics:

• It satisfies the requirement of NARS, that is, the approach can be
applied to an adaptive reasoning system where knowledge and re-
sources are constantly insufficient to deal with the tasks provided
by the environment.

• It unifies measurements of different types of uncertainty, such
as randomness, fuzziness, ignorance, and so on, into a common
framework, and provides them with natural and consistent inter-
pretations.

• It provides a consistent foundation for the uncertainty calculus,
which includes several kinds of operations on uncertainty.

In the following, two topics in this unification are discussed in detail.

242 Chapter 8

8.5.1 Interpretations of probability

As mentioned previously, the uncertainty measurements in NARS (fre-
quency, confidence, as well as their function expectation) are closely
related to the notion of probability.

Probability as a mathematical concept is well defined by the ax-
ioms of probability theory [Kolmogorov, 1950]. However, its “interpre-
tation,” i.e., how the mathematical concept should be applied to prac-
tical problems, has been a controversial topic for a long time. In history,
there have been several influential interpretations. Here I will discussion
the relation between NARS and each of them.

The Empirical Interpretation treats probability P as the limit
of frequency for a given event to occur in a sequence, or for a given hy-
pothesis to be confirmed. This is the traditional interpretation of prob-
ability in statistics, and related theoretical discussions can be found
in [Reichenbach, 1949, von Mises, 1981]. According to this interpreta-
tion, P (H) is an objective property of H, and can only be estimated
empirically, given the observed frequency of H.

In NARS, the frequency value of H is the observed confirmation
frequency (or proportion) in the past, so it is an empirical result,
clearly agreeing with the empirical interpretation. However, in NARS
frequency merely records past experience, and says nothing about the
limit, neither about its value nor about its existence. For a given judg-
ment in NARS, with the coming of new evidence, its confidence con-
verges to its limit 1, but its frequency may converge to any value, or
not converge at all.

The Logical Interpretation treats probability P as a measure-
ment on the relation between a hypothesis H and given evidence E,
that is, it should be written as P (H,E), or something like that. Such
an opinion can be found in [Keynes, 1921, Carnap, 1950]. According to
this interpretation, the probability value for a given pair of H and E is
uniquely determined by a logical analysis of the two — see [Carnap, 1950]
for a detailed treatment.

In NARS, the truth value (frequency and confidence) of a statement
is determined by available evidence, just like the logical interpretation
suggests. However, in NARS the evidence supporting a truth value is
not explicitly listed as part of the judgment. Furthermore, in NARS

8.5. UNIFIED REPRESENTATION OF UNCERTAINTY 243

the “evidence” comes from the system’s experience, while in Carnap’s
system it is not.

The Subjective Interpretation treats probability P as a mea-
surement on the degree of belief in a system on a hypothesis H. In
different systems, P (H) may have different values. The P (H) value in
a given system can be revealed by the bet the system will place on the
hypothesis in a testing. Such a treatment of probability can be found
in [Savage, 1954, Pearl, 1988].

In NARS, truth value is subjective in the sense that it depends on
the experience and parameter of the system. However, it is not arbi-
trary, but fully determined by these factors. When the system must bet
on a statement, it will use its expectation value, which is also subjective
in the above sense.

In summary, the truth value in NARS partially agrees with each of
the major interpretations of probability, but cannot be reduced to any
of them. To avoid possible confusions, I do not use the term “probabil-
ity” in NARS, and mention it only when comparing NARS to other ap-
proaches. Nevertheless, theoretically NARS does include an approach of
uncertainty management that unifies different interpretations of prob-
ability, and its uncertainty calculus partially agrees with probability
theory.

8.5.2 Randomness and fuzziness

In practical problem solving, multiple types of uncertainty (such as ran-
domness, fuzziness, and ignorance) usually coexist and merge with each
other. In human judgments, such mixtures have been observed between
representativeness and probability [Tversky and Kahneman, 1974], as
well as between randomness and fuzziness [Smets, 1991]. However, the
relationship among them is far from clearly explained, partially due to
the lack of a clear interpretation of fuzziness.

Previously in this chapter, I not only propose an interpretation for
fuzziness, but also propose a frequency interpretation for it (which was
claimed as impossible by Zadeh). Therefore, NARS uses a unified rep-
resentation and interpretation for degree of randomness and grade of
membership: both are real numbers in the range [0, 1], and both indi-
cate the ratio of positive evidence among total evidence, that is, w+/w.

244 Chapter 8

However, this does not mean that fuzziness and randomness cannot
be distinguished. For a statement “S → P” in Narsese, randomness
comes from the diversity within the extension of the subject, S, while
fuzziness comes from the diversity within the intension of the predicate,
P . When S has many instances, and some of them are shared by P while
others are not, “S → P” is a matter of degree, and the uncertainty is
randomness; when P has many properties, and some of them are shared
by S while others are not, “S → P” is also a matter of degree, but the
uncertainty is fuzziness.

For example, “Birds fly” is uncertain, mainly because some kinds
of birds (such as ravens) do fly, but some others (such as penguins)
do not. On the other hand, “Penguins are birds” is uncertain, mainly
because penguins have some of the properties of (typical) birds (such
as having wings), but do not have some others (such as flying).

If these two types of uncertainty are different, why bother to treat
them in a uniform way? One reason, as discussed in Section 7.2, is the
need to uniformly process extension and intension, and that implies a
unified processing of the uncertainty in extension and intension.

Another reason is that in many practical problems these different
types of uncertainty are mixed together. Smets stressed the importance
of this issue, and provided some examples, in which randomness and
fuzziness are encountered in the same sentence [Smets, 1991]. In many
situations, what we want to know is not where the various uncertain
factors come from, but how they influence the final decision. Since they
often appear in mixed form, a unified treatment is necessary.

With a frequency interpretation of these two types of uncertainties,
it is not surprising to see that NARS’ truth value functions are defined
more similarly to probability theory than to fuzzy logic. For instance,
the operations used for disjunction and conjunction are sum/product,
not max/min.

Finally, ignorance (and confidence) are brought into the picture
by defining as functions of total evidence. Ignorance is different from
randomness and fuzziness in that it has little to do with the relative
amount of positive and negative evidence, but is mainly about the total
amount of evidence. Even so, in NARS it is unified with the other uncer-
tainty measurements, because they are all defined in terms of available
evidence.

Chapter 9

Inference Rules

In this chapter, several representative topics are discussed to show the
difference between the inference rules of NARS and those in other
theories.

9.1 Deduction

Deduction is the type of inference that has been studied most thor-
oughly. However, there are still problems when the knowledge and re-
sources of the system are insufficient. Here the reference class problem
is discussed as an example.

9.1.1 Deduction with reference classes

How do we predict whether an individual has a certain property, if
direct observation is impossible? A useful method is to look for a “ref-
erence class.” The class should include the individual as an instance,
and we should know something about how often the instances of the
class have the desired property, or whether its typical instances have it.
Then, the prediction can be done by letting the instance “inherit” the
information from the class.

In reasoning under uncertainty, there are (at least) two groups
of approaches that use this type of inference: non-monotonic logics
[Touretzky, 1986], and probabilistic reasoning systems [Pearl, 1988].

245

246 Chapter 9

In non-monotonic logics, if the only relevant knowledge is “S is an
instance of R” and “Normally, R’s instances have the property Q,” a
defeasible conclusion is “S has the property Q.”

In probabilistic reasoning systems, under the subjective interpreta-
tion of probability, if the only relevant knowledge is “S is an instance
of R” and “The probability for R’s instances to have the property Q is
p,” a plausible conclusion would be “The probability for S to have the
property Q is p.”

Now a problem appears: if S belongs to two classes R1 and R2

at the same time, and the two classes lead to different predictions
about whether (or how probable) S has the property Q, what con-
clusion can we reach? In different contexts, the problem is referred to
as “multiple inheritance problem,” “multiple extension problem,” or
“reference class problem.” [Grosof, 1990, Kyburg, 1983, Neufeld, 1989,
Pearl, 1988, Poole, 1985, Reichenbach, 1949, Touretzky, 1986].

Though the above theories treat the problem differently, they have
something in common: None of them suggest a general solution to the
problem, though they agree on a special case: if R2 is a (proper) subset
of R1, R2 is the correct reference class to be used.

Let us see two examples.

1. “Since Clyde is a royal elephant, and royal elephants are not gray,
Clyde is not gray. On the other hand, we could argue that Clyde
is a royal elephant, royal elephants are elephants, and elephants
are gray, so Clyde is gray. Apparently there is a contradiction
here. But intuitively we feel that Clyde is not gray, even though
he is an elephant, because he is a special type of elephant: a royal
elephant.” [Touretzky, 1986].

2. “If you know the survival rate for 40-year old American male to
be 0.990, and also that the survival rate for 40-year old American
male white-collar workers to be 0.995, then, other things being
equal, it is the latter that should constrain your beliefs and en-
ter your utility calculations concerning the particular 40 year old
male white-collar worker John Smith.” [Kyburg, 1983].

Let us call this principle “specificity priority principle.” It looks
quite reasonable, and it is not hard to find many examples to show that

Inference Rules 247

we do apply such a principle in common sense reasoning. However, the
following questions are still open:

1. Why is the principle correct? Can it be justified by more basic
postulates?

2. Beside specificity, what are the “other things” that influence the
priority of a reference class?

3. When neither reference class is more specific than the other, what
should be done?

For the first question, Reichenbach made it a matter of definition by
“regarding the individual case as the limit of classes becoming gradually
narrower and narrower” [Reichenbach, 1949]; Pearl said it is because
“the influence of the remote ancestors is summarized by the direct
parents.” [Pearl, 1988].

For the second question, Reichenbach said we need to have com-
plete statistical knowledge on the reference class, that is, the prob-
ability for R to be Q should be supported by good statistical data
[Reichenbach, 1949]. In non-monotonic logics, this corresponds to suffi-
cient evidence which can determine what properties a normal instance
of the class has.

For the third question, few words are said, except Reichenbach’s
suggestion to “look for a larger number of cases in the narrowest com-
mon class at your disposal.” [Reichenbach, 1949]

9.1.2 A thought experiment

Let us reconstruct Kyburg’s example in the following way: Imaging
that you are working for a life insurance company, and you need to
predict whether John Smith can live to 40. You have John’s personal
information, and for some special reasons (such as you just woke up
from a 200-year-long sleep or you are actually an extraterrestrial spy),
you have no background knowledge about the survival rates at 40 for
various groups of people. Fortunately, you have access to personal files
of some Americans, who are alive or died in recent years, and you decide
to make the prediction by the “reference class method” defined above.

248 Chapter 9

At first, knowing that John is a male, you begin to build the first
reference class R1 by picking up some files randomly. R1 consists of
two subsets: P1 includes the positive evidence for John’s survival, that
is, American males who are more than 40 years old (including those
who are already deceased), and N1 includes the negative evidence, that
is, those who died before 40. You should keep in mind that American
males who are alive and younger than 40 (including John himself) are
neither positive evidence nor negative evidence for the prediction, so
they do not belong to R1.

If you weight everyone equally (and why wouldn’t you?), your pre-
diction should be determined by the relative size of P1 and N1. Let us
say |P1| > |N1|. Therefore you predict that John Smith can live to 40.

After returning the files, you have a new idea: why not consider the
fact that John is, among other things, a white-collar worker? So you
build another reference class R2 similarly. Let us assume, unfortunately,
this time you find that |P2| < |N2|. Here you meet the reference class
problem: to see John as a “male” and a “male white-collar worker” will
lead to different predictions.

If we apply the specificity priority principle here, the result should be
dominated by R2, since “male white-collar worker” is a proper subset of
“male.” However, it is easy to find a situation to show that sometimes
the result is counter-intuitive. If you have looked through 1000 files,
and all of them are males and live to 40, and after that you find 1 male
white-collar worker who died at 35, will you predict that John will die
before 40? It seems very unlikely.

Does this mean that the specificity priority principle is wrong? Of
course not. Sample size is obviously one of the “other things” that in-
fluence the priority of a reference class. One sample is far from enough
to tell us about how a “typical” or “normal” instance looks like, or to
support a statistical assertion on the instances. In such a case, the prin-
ciple is inapplicable, since there is another relevant difference between
the two reference classes, beside their specificities.

If you have to make predictions in such an environment, what will
you do? Let us consider a simple psychological experiment. Assuming
R1 includes positive evidence only (that is, R1 = P1; no male is found
to have died before 40), but R2 includes negative evidence only (that
is, R2 = N2, no male white-collar worker is found to be alive at 40).

Inference Rules 249

Even before really carrying out such an experiment on human subjects,
I am confident to make the following prediction: If |P1| is fixed at a big
number (say 1000), and |N2| is increased one by one, starting from 1,
the predictions made by subjects will be positive before |N2| reaching
a certain point, and negative after reaching that point. That critical
point may vary from person to person, but is always smaller than |P1|.

The “sample size effect” can also be used to answer the following
question: If a more specific reference class is always better, why do not
we simply use the most specific reference class, defined by all available
properties of John Smith? The reason is simple: in most situations such
a class is empty — nobody is similar to John to such an extent. With
more and more properties used to define a reference class, the extension
of the class becomes narrower and narrower. As a result, fewer and fewer
samples can be found to support or discredit our prediction. From this
point of view, specificity is not preferred.

Previously, I talked about the reference classes R1 and R2, as if they
are accurately defined. Obviously this is a simplification. Though we
can ignore the boundary cases for “male,” the fuzziness in “white-collar
worker” cannot be neglected so easily. As argued by fuzzy set theory
[Zadeh, 1965] and prototype theory [Rosch, 1973], whether an instance
belongs to a concept is usually a matter of degree. This membership
function is also related to the current issue: if John can be referred to
as a “white-collar worker,” but not a typical one, the influence of R2

will be reduced.
From the above analysis, we can see that the previous solutions from

non-monotonic logic and probability theory ignored several important
factors when handling deduction with reference classes.

9.1.3 The NARS solution

Now Let us see how NARS treats the reference class problem.
Putting the previous example into Narsese, the premises are:

J1 : {S} → R1 <f1, c1 >
J2 : {S} → R2 <f2, c2 >
J3 : (#x → R1) ⇒ (#x → Q) <f3, c3 >
J4 : (#x → R2) ⇒ (¬(#x → Q)) <f4, c4 >

250 Chapter 9

Since John shares one property with R1 (“male”) and two properties
with R2 (“male” and “white-collar worker”), we have w1 = w+

1 = 1 and
w2 = w+

2 = 2. It follows that (assuming k = 1) f1 = f2 = 1, c1 = 1/2,
and c2 = 2/3. Under the assumption that R1 consists of 1000 positive
samples, we have f3 = 1 and c3 = 1000/1001. Let us say that R2

includes negative samples only, but leaves the number of samples, n,
as a variable, to see how it affects the final evaluation of {S} → Q.
Therefore, we have f4 = 1 and c4 = n/(n + 1).

Applying the deduction rule, from J1, J3 and J2, J4, respectively, we
get

J5 : {S} → Q <1, c1c3 >
J6 : {S} → Q <0, c2c4 >

Since the knowledge that “John is male” is used to evaluate both J1

and J2, and they are used in the derivation of J5 and J6, respectively,
the evidence for J5 and J6 is correlated. Therefore, they cannot be
merged by the revision rule. Instead, the choice rule is applied to pick
the judgment that has a higher confidence as the conclusion. Which
reference class will win the competition?

By solving the inequality c1c3 > c2c4 (that is, (1/2)×(1000/1001) >
(2/3) × (n/(n + 1))), we can see that

1. When 0 < n < 3, R1 is selected. The specificity priority of R2 is
undermined by the fact that the sample size of R2 is too small.

2. When n ≥ 3, R2 is selected. The specificity priority can be es-
tablished even by a pretty small sample size: with |R1| = 1000
and |R2| = 3, the prediction is still determined by R2 due to its
specificity.

If John is not a typical white-collar worker (i.e., f2 < 1), R2’s con-
fidence is smaller than c2c4, so it may need a bigger n for R2 to be
dominant.

Therefore, when NARS is selecting a reference class, several factors
are balanced against one another, including specificity, typicality, sam-
ple size, and so on. It provides a generalization of the specificity priority
principle, by taking more relevant factors into consideration.

NARS’ approach is more general than the specificity priority prin-
ciple in another way. The including of reference classes is only a special

Inference Rules 251

case for two judgments to be based on correlated evidence. It follows
that the specific priority principle is a special case of NARS’ choice
rule.

How about competing reference classes that do not involve corre-
lated evidence? Let us say in the previous examples, R1 is still for
“male,” but R2 is changed for “smoker and white-collar worker.” If the
deduced judgments J5 and J6 are not based on correlated evidence in
some other ways, the two judgments will be combined by the revision
rule of NARS. Other things being equal, R2 has a higher priority, since
it matches better with John’s properties. However, in this case a higher
priority only means a higher weight in determining the frequency of the
conclusion. The judgment from the other reference class is not ignored.
In this situation, the reference class competing is solved not by choosing
one of them, but by combining the two.

Let us see how NARS treats the “Nixon Diamond” discussed in the
study of non-monotonic logics [Touretzky, 1984]. This example assumes
we know that Nixon is a Quaker, and Quakers are pacifists. We also
know that Nixon is a Republican, and Republicans are not pacifists.
From the above knowledge alone, should we predict Nixon to be a
pacifist or not? Putting into the previous framework, in this problem we
have “Nixon” as S, “Quaker” as R1, “Republican” as R2, and “Pacifist”
as Q. By deduction, two conflicting judgments J5 (“Nixon is a pacifist”)
and J6 (“Nixon is not a pacifist”) can be derived as in the previous
example.

Since we can assume the un-correlation of evidence of the judgments
(R1 and R2 have no known relation), J5 and J6 will be combined by the
revision rule, and the result depends on the truth value of the premises.

1. If f1 = f2, c1 = c2, f3 = 1 − f4, and c3 = c4, for the conclu-
sion we will get f = 0.5. That is, when the positive evidence and
the negative evidence exactly balance with each other, the sys-
tem is indifferent between a positive prediction and a negative
prediction.

2. If c1 > c2, and the other conditions as in (1), we will get f >
0.5. That is, when Nixon shares more property with Quaker, the
system will put more weight on the conclusions suggested by the
evidence about Quaker.

252 Chapter 9

3. If f3 > 1 − f4 or c3 > c4, and the other conditions as in (1), we
will get f > 0.5. That is, when we have stronger statistical data
about Quaker, the system will put more weight on the conclusions
suggested by the evidence about Quaker, too.

In any situation, what NARS does is to combine the evidence from
both sources. Even if “Quaker” is given a higher priority, the evidence
provided by “Republican” still has its effect on the result. On the other
hand, this kind of conflict does not always (though sometimes it does)
cause complete indifference or ambiguity, as it does in non-monotonic
logics [Touretzky, 1986].

In summary, compared with non-monotonic logics and probability
theory, the processing of the reference class problem in NARS has the
following characteristics:

1. While still following the specificity priority principle, several fac-
tors, such as sample size and degree of membership, are taken into
account to quantitatively determine the priority of a reference
class, and all the factors are projected into a common dimension,
that is, the amount of evidence.

2. The specificity priority principle has been generalized into a “con-
fidence priority principle,” which will pick a judgment with the
highest confidence among the competing ones, supported by cor-
related evidence. As discussed above, specificity is one way to get
a high confidence, while the inclusion relation between reference
classes causes evidence correlation.

3. When conflicting judgments come from different sources, the revi-
sion rule is applied to combine them by summarizing the evidence.
This operation is not directly available in non-monotonic logics
and probability theory.

Why cannot similar things be done in non-monotonic logics and
probability theory? One of the major reasons is that the confidence (or
equivalently, amount of evidence) measurement cannot be easily intro-
duced there. From the view point of NARS, the confidence of all the
default rules (in non-monotonic logics) and probability assignments (in

Inference Rules 253

probability theory) is 1, that is, they cannot be revised by accommo-
dating its current evaluation to new evidence.

Therefore, the reference class problem provides another piece of ev-
idence for the previous criticism on non-monotonic logic (Section 8.1)
and probabilistic logic (Section 8.3), as general solutions to the reason-
ing under uncertainty problem.

9.2 Induction

Induction is a major topic in this book, because it has been called “the
glory of science and the scandal of philosophy,” as well as because the
basic ideas of NARS to a large extent were formed during my study on
the problem of induction.

9.2.1 The problem of induction

The term “induction” is usually used to denote the inference that de-
rives general knowledge from specific knowledge. There are some people
who call all non-deductive inferences “induction,” but in this way the
category includes too many heterogeneous instances to be studied fruit-
fully.

There are three major academic traditions in the study of induction.
The philosophical/logical study concentrates on the formalization and
justification of induction; the psychological study concentrates on the
description and explanation of induction in the human mind; and the
computational study concentrates on the implementation of induction
in computer systems.

Though Aristotle mentioned induction as the method by which gen-
eral primary premises can be obtained, he did not develop a theory
for this type of inference, as he did for deduction. It was Bacon who
for the first time proposed a systematical inductive method, with the
hope that it could provide a general methodology for empirical science
[Cohen, 1989]. However, such an approach was seriously challenged by
Hume, who argued that the inferences that extend past experience to
future situations cannot have a logical justification [Hume, 1748]. After
Hume, most philosophical and logical work on induction are about the

254 Chapter 9

justification of the process. The mainstream approach is to use proba-
bility theory, with the hope that though inductive conclusions cannot
be absolutely true, they can have certain probabilities [Carnap, 1950].

In recent years, the study of induction has been enriched by AI
researchers. With computer systems as tools and platforms, different
formalizations and algorithms are proposed and tested. In terms of the
formal language used, we can further divide the existing approaches in
this domain into three “families.”

The first family uses propositional logic and probability theory. Let
us say that S is a proposition space and P is a probability distribution
function on it. Induction is defined in this situation as the operation
of determining P (H|E), where H is a hypothesis and E is available
evidence, and both belong to S. The inference — or more precisely,
calculation — is carried out according to probability theory in general,
and Bayes’ theorem in particular. This family is the mainstream of the
philosophical and logical tradition of induction study [Keynes, 1921,
Carnap, 1950, Good, 1983], and it has been inherited by the Bayesian
school in AI [Korb, 1995, Pearl, 1988].

The second family uses first-order predicate logic. Let us say that K
is the background knowledge of the system, and E is available evidence
(both K and E are sets of proposition). Induction is defined in this
situation as the operation of finding a proposition H that implies E
and is also consistent with K. Because the inference from H and K to
E is deduction, induction thus defined, as the inference from E and K
to H, is often referred to as “reverse deduction.” This family is very
influential in machine learning [Michalski, 1993].

The third family uses term logic. Though Aristotle discussed induc-
tion briefly in his work [Aristotle, 1989], it was Peirce who first defined
different types of inference in term logic, roughly in the following man-
ner [Peirce, 1931]:

deduction induction abduction

M → P M → P P → M
S → M M → S S → M
———— ———— ————
S → P S → P S → P

Inference Rules 255

One interesting fact is that though Peirce’s distinction of deduction,
induction, and abduction is widely accepted, his formalization in term
logic is seldom followed. Instead, the above definition is rephrased
within the frame of predicate logic [Michalski, 1993]. We will see the
subtle difference between these two formalizations later.

Obviously, NARS belongs to the term-logic family. Now let us see
how NARS answers the questions about the aspects of induction.

9.2.2 To represent inductive conclusions

As mentioned previously, NARS represents all knowledge, including
inductive conclusions, in Narsese. The simplest sentence has the form
of “S → P ,” with a truth value attached, which is determined according
to the past experience of the system.

To decide truth according to the available evidence or according
to a set of axioms is fundamentally different. In the former situation,
no decision is final in the sense that it cannot be revised by future
evidence. Each piece of evidence contributes, to a certain extent, to the
evaluation of truth value. Therefore, truth value is always a matter of
degree in a system like NARS.

This opinion is against a well-known conclusion proposed by Pop-
per. He claimed that there is an asymmetry between verifiability and
falsifiability — “a positive decision can only temporarily support the
theory, for subsequent negative decisions may always overthrow it”
[Popper, 1959].

The crucial point here is: what is the content of a general statement,
or, in Popper’s words, a theory?

According to my opinion, “Ravens are black” is a general statement,
for which a black raven is a piece of positive (affirmative) evidence,
and a non-black (e.g., white) raven is a piece of negative (rejective)
evidence — the former verify an inheritance relation “raven → [black]”
to a certain extent, while the latter falsify it, also to a certain extent.
When we say that “All ravens are black,” it means that according to
our experience, the inheritance relation between the two terms only
has positive evidence, but no negative evidence. In this case, the truth
value of the statement is still a matter of degree, though the frequency
value happens to be at its maximum, 1.

256 Chapter 9

What Popper referred to as theory are universal statements. Ac-
cordingly, when we say “All ravens are black,” we mean that all ravens
in the whole universe, known or unknown, are black. Such a statement
can only be true or false, and there is no middle ground (if we ignore
the fuzziness of the terms). We know the statement is false as soon as
we find a non-black raven, but we need to exhaust all ravens in the
universe to know it is true.

Such a formalization of inductive conclusions is shared by the Ba-
conian tradition of induction [Cohen, 1989]. According to an approach
proposed by Cohen, induction is a sequence of tests with increasing
complexity, and the (Baconian) probability of a hypothesis indicates
how many tests the hypothesis passed in the process.

If we accept the above definition of scientific theory, all conclusions
of Popper and Cohen follow logically. However, why should we accept
the definition? As a matter of fact, many empirical scientific theories
have counterexamples, and we do not throw them away [Kuhn, 1970].
It is even more obvious when we consider our common-sense knowledge.
A general statement like “Ravens are black” works well as our guide of
life, even when we know that it has counterexamples. Such a statement
can be applied to predict new situations, though its truth value is deter-
mined by past experience. We do hope to establish theories that have
no known counterexamples, but it does not mean that theories with
known counterexamples cannot be used for various practical purposes.
Only in mathematics, where truth values are determined according to
fixed axioms, do universal statements become available.

The above argument also serves as a criticism to the AI induction
projects within the framework of binary logic [Korb, 1995]. To define
induction as “finding a pattern to fit all data” makes it a luxury that
can only be enjoyed in a laboratory. Though such an approach can pro-
duce research results, these results are hardly applicable to practical
situations. Also, this over-idealization makes the process fundamen-
tally different from the generalizations happening in the human mind.
It is not even appropriate to justify this approach as “a preliminary
step toward more complex studies,” because when giving up the idea
that “an inductive conclusion can be falsified once for all,” the situa-
tion will become so different that the previous results are hardly useful
at all.

Inference Rules 257

Because in NARS truth values are determined by available evidence,
we need to first precisely define what is counted as evidence and how
evidence is quantitatively measured.

Though it is natural to say that a black raven is a piece of posi-
tive evidence for “Ravens are black,” and a white raven is its negative
evidence, Hempel points out that such a treatment leads to counter-
intuitive results [Hempel, 1943]. If “Ravens are black” is formulated
as (∀x)(Raven(x) → Black(x)), a green shirt will also be counted as
a piece of positive evidence for the sentence, because it confirms the
“logically equivalent” sentence (∀x)(¬Black(x) → ¬Raven(x)) (“Non-
black things are non-ravens”). Such a result is highly counterintuitive,
and may cause many problems (for example, a green shirt is also a
piece of positive evidence for “Ravens are white,” for exactly the same
reason).

Here I will not discuss the various solutions proposed for this para-
dox. It is enough to say that almost all of those attempts are still within
the framework of predicate logic, whereas in the following we can see
that the problem does not appear in term logics like NARS.

As we already know, in Narsese “Ravens are black” can be repre-
sented as “(#x → raven) ⇒ (#x → [black]).” For this statement,
“black ravens” are positive evidence, “non-black ravens” are negative
evidence, and “non-ravens” are not directly relevant (according to the
definition of evidence for implication statements in Chapter 5). On
the other hand, “Non-black things are non-ravens” can be represented
in Narsese as “(¬(#x → [black])) ⇒ (¬(#x → raven)).” For it, “non-
black non-raven” are positive evidence, “non-black ravens” are negative
evidence, and “black things” are not directly relevant.

Comparing the two statements, we see that, in the terminology of
NARS, they have the same negative evidence, but different positive ev-
idence (as discussed in Section 5.1.4). In a binary logic, the truth value
of a statement only indicates whether there is any negative evidence,
so these two statements have the same truth value, or are “equivalent.”
In a logic where truth value is determined by both positive and nega-
tive evidence, they may have different truth values, and are no longer
equivalent.

Therefore, what Hempel’s paradox reveals is that “equivalent state-
ments” in a binary logic do not necessarily have the same truth value

258 Chapter 9

when the system is extended into a multi-valued logic. This problem
does not appear in NARS, because here the evidence for “Ravens are
black” and “Non-black things are non-ravens” are different (therefore
they usually have different truth values). In NARS, the existence of a
green shirt is not directly relevant to whether ravens are black, just as
our intuition tells us.

9.2.3 To generate inductive conclusions

The induction rule defined in Section 3.3.4 has the following form:

{M → P <f1, c1 >, M → S <f2, c2 >} � S → P <f1,
f2c1c2

f2c1c2 + k
>

This section explains why the rule is defined in this way.
To show how the rule works on a concrete example, let us to back to

the example used in Section 3.3.6, and let P be “swimmer,” and S be
“bird.” To see if the rule makes intuitive sense, let us at first consider
the following special situations.

1. When f1 = c1 = f2 = c2 = 1, M is a piece of (idealized) positive
evidence for the conclusion. According to the previous definitions,
in this case we have w+ = w = 1 for the conclusion — that is,
f = 1, c = 1/(1 + k). For the “Birds are swimmers” example,
here M is a swimmer bird, such as a swan.

2. When f1 = 0, c1 = f2 = c2 = 1, M is a piece of (idealized)
negative evidence for the conclusion. According to the previous
definitions, in this case we have w− = w = 1 for the conclusion
— that is, f = 0, c = 1/(1 + k). For the “Birds are swimmers”
example, here M is a non-swimmer bird, such as a robin.

3. When f2 = 0, M is not an instance of S. In this case, no matter
it is an instance of P or not, it provides no evidence for the
conclusion, therefore w = 0, c = 0, and f is undefined. For
the “Birds are swimmers” example, here M is not a bird (but a
dolphin, for example).

4. When c1 or c2 is 0, one of the premises gets no evidential support,
so the conclusion gets no evidential support either. That means

Inference Rules 259

w = 0, c = 0. For the “Birds are swimmers” example, here either
whether M is a bird or whether M is swimmer is completely
unknown.

From these boundary conditions of the truth value function for in-
duction, if all the variables take boolean values (either 0 or 1), we get
f = f1 and w = and(f2, c2, c1), here and is the Boolean conjunction of
the arguments.

To generalize the Boolean function into real numbers, and is re-
placed by multiplication, and that gives us w = f2c2c1. Using the equa-
tion c = w/(w + k), finally we get the truth-value function used in the
induction rule.

Because in NARS the truth value indicates the relation between a
statement and available evidence, induction is “ampliative” in the sense
that its conclusions are more general than its premises, but it is also
“summative” in the sense that the conclusions claim no more support
than they actually get from the premises. Therefore the traditional
distinction between these two types of induction does not apply here
[Cohen, 1989, Popper, 1959] in its original form.

On the other hand, the distinction between “truth-preserving” and
“ampliative” inferences appears in a different form. In NARS, the confi-
dence of deductive conclusions have a upper bound of 1, and we already
know that the upper bound for induction is 1/(1 + k), which is smaller
than 1. If all premises are absolutely certain, so are their deductive
conclusions, but this does not hold for their inductive conclusions.

It needs to be stressed again that the truth value of the conclusion
indicates the support provided by the evidence, rather than whether
the statement corresponds to a fact in the outside world. An adaptive
system behaves according to its beliefs, not because they guarantee
success (which is impossible, as Hume argued), but because it has to
rely on its experience to survive, even though the experience may be
biased or outdated — this is what “adaptation” means.

In summary, my solution to Hume’s problem is to justify induction
(and all other inference rules) according to an experience-grounded se-
mantics and the notion of adaptation.

260 Chapter 9

9.2.4 To conduct inductive inference

Another feature that distinguishes the induction rule of NARS from
other induction systems is that the rule is able to generate and evaluate
an inductive conclusion at the same time.

Traditionally, the generating and evaluating of inductive conclu-
sions (or hypotheses) are treated as two separated processes. The most
well-known arguments on this issue were provided by Carnap and
Popper, though they hold opposing opinions on induction in general
[Carnap, 1950, Popper, 1959]. The consensus is that from given evi-
dence, there is no effective procedure to generate all the hypotheses
supported by the evidence, therefore the discovery of a hypothesis is a
psychological process, which contains an “irrational element” or “cre-
ative intuition.” On the contrary, the evaluation of a given hypothesis,
according to given evidence, is a logical process, following a well-defined
algorithm.

The above opinion is in fact implicitly based on the specific language
in which the inductive process is formalized. In probability theory, there
is no way to get a unique hypothesis H from given evidence E for the
purpose of induction, because for every proposition X in the proposition
space, P (X|E) can be calculated, at least in principle. In first-order
predicate logic, there are usually many hypotheses H that imply the
given evidence E, and also are consistent with background knowledge
K. In both cases, some heuristics can be used to pick up an inductive
conclusion that has some desired properties (simplicity, for instance),
but these heuristics are not derived from the definition of the induction
rule [Mitchell, 1980, Haussler, 1988].

In term logic, the situation is different. Here premises of an induc-
tive inference must be a pair of judgments that share a common sub-
ject, and the premises uniquely determine an inductive conclusion. (Of
course, there is also a symmetric inductive conclusion if we exchange
the order of the premises.) Therefore, in NARS we do not need an “ir-
rational element” or domain-dependent heuristics, and the discovery of
a hypothesis, in the current sense, also follows logic.

In NARS, induction is unified with other types of inferences, in the
sense that the premises used by the induction rule may be generated by
the deduction (or abduction, and so on) rule, and that the conclusions

Inference Rules 261

of the induction rule may be used as premises by the other rules. In
particular, the revision rule may merge an inductive conclusion with a
deductive (or abductive, and so on) conclusion.

Therefore, though NARS has an induction rule, it is not an “in-
ductive logic,” in the sense that it solves problems by induction only.
An answer reported by NARS to the user is usually the cooperative
result of several rules in a multi-step inference process. Though there
are other “multi-strategy” inference models (which combine different
types of inference), using first-order predicate logic [Michalski, 1993],
attribute-value language [Giraud-Carrier and Martinez, 1995], or hy-
brid (symbolic-connectionist) representation [Sun, 1995], the term logic
model, proposed by Peirce and extended in NARS, puts different types
of inference in the same framework in a more natural, elegant, and
consistent manner.

From the above discussion, we see that conclusions in NARS are
based on different amounts of evidence, and, generally speaking, con-
clusions based on more evidence are preferred, because of their relative
stability. However, since NARS is designed to be an open system, future
evidence is always possible, therefore there is no way for the system to
get “complete evidence” for an inductive conclusion.

A reasonable retreat is to use all evidence known to the system —
the so-called “total evidence” [Carnap, 1950]. Unfortunately, this is also
impossible, because NARS has insufficient resource. The system has to
answer questions under a time pressure, which makes exhaustive search
in knowledge space not affordable.

Moreover, in NARS the time pressure is variable, depending to the
request of the user and the existence of other information-processing
tasks. In this situation, even a predetermined “satisfying threshold”
becomes inapplicable — such a threshold is sometimes too low and
sometimes too high.

As described in Chapter 6, the control mechanism used in NARS
is similar to an “anytime algorithm” [Dean and Boddy, 1988]. If the
system is asked to evaluate the truth value of a statement, it reports
the best conclusion (i.e., with the highest confidence) as soon as such
a conclusion is found, then continues to look for a better one, until
no resources are available for this task. In this way, from the user’s
point of view, the system may change its mind from time to time,

262 Chapter 9

when new evidence is taken into consideration. The system will never
say that “This is the final conclusion and I will stop working on the
problem.”

The above discussion is directly related to the “acceptance” problem
in inductive logic [Kyburg, 1994]. As put by Cohen, “what level of
support for a proposition, in the light of available evidence, justifies
belief in its truth or acceptance of it as being true?” [Cohen, 1989]. In
NARS, there is no such a thing as “accepted as being true.” Judgments
are true to different extents, and the system always follows the best-
supported conclusion (compared with its rivals), no matter what its
truth value is — the standard is relative and dynamic, not absolute
and static. In this way, an inductive conclusion also benefits from the
refutation of competing conclusions, which is stressed by the Baconian
tradition of induction [Cohen, 1989] — though its truth value may not
change in this process, its relative ranking becomes higher.

According to the definition given be Peirce, the difference among
deduction, abduction, and induction is the position of the shared term
in the two premises. This property of term logic makes it possible for
NARS to combine different types of inference in a “knowledge-driven”
manner. In each inference step, the system does not decide what rule
to use, then look for corresponding knowledge. Instead, it picks up a
task and a belief which share a term, and decides what rule to apply
according to the position of the shared term (as described in Chapter
6). In general, an inference process in NARS consists of many steps.
Each step carries out a certain type of inference, such as deduction,
abduction, induction, and so on. These steps are linked together in run-
time in a context-dependent manner, so the process does not follow a
predetermined algorithm.

Therefore, NARS is not an “inductive machine” which uses an
effective algorithm to generate inductive conclusions from given evi-
dence. Carnap’s argument against the possibility of this kind of ma-
chine [Carnap, 1950] is still valid. However, this argument does not
prevent us from building a computer system that can do induction.
The system does not have a general purpose induction algorithm, but
can solve problems under its knowledge and resource constraints, and
in the problem-solving activities there are inductive steps.

Inference Rules 263

9.3 Abduction

Since in NARS abduction and induction are duals of each other (be-
cause extension and intension are duals of each other), most of the
previous discussions on induction also apply to abduction. In the fol-
lowing, I will not repeat them, but focus on the special issues that
distinguish my approach toward abduction from the other approaches.

9.3.1 Two definitions of abduction

Approaches of defining abduction can be classified into two types: syl-
logistic and inferential. An inferential definition identifies abduction as
a type of inference process that carries out a certain cognitive function,
such as explanation or hypothesis generation, while a syllogistic def-
inition specifies it as a type of inference step with a specific pattern
[Flach and Kakas, 2000].

As defined in NAL-1 and NAL-5, in NAL the distinction among de-
duction, abduction, and induction is formally specified at the inference-
step level, according to the position of the shared term in the premises.
Such a formal definition makes discussions about them clear and
concrete.

To use a formal definition to distinguish various inference types does
not prevent us from attributing them with different cognitive functions.
Given the definition used in NAL, it is valid to say that among the three,
only deduction can produce conclusive results, while the other two only
produce tentative results. Both abduction and induction can be seen as
“reversed deduction,” and the former usually corresponds to explana-
tion, and the latter to generalization. These descriptions are similar to
the ones proposed as inferential definitions of the three types. However,
in NAL these descriptions are secondary, derived from the syllogistic
definition. This approach has the advantage of avoiding ambiguity and
oversimplification in the definition, and at the same time preserve the
intuitive meaning of the terms (i.e., deduction, abduction, and induc-
tion) associated with different types of inference.

Though abduction defined in NAL usually can be interpreted as
“explanation,” to define “abduction” as “explanation” at the inference-
process level is a quite different decision. This is the case because what

264 Chapter 9

we called “explanation” in everyday thinking may include complex cog-
nitive processes where multiple types of inference are involved. There-
fore, to abstract such a process into a consistent and non-trivial pattern
is not an easy thing to do, if it is possible at all.

For the same reason, to define abduction as “inference toward the
best explanation” makes things even harder, because besides the deriva-
tion of explanations, this definition further requires evaluation of ex-
planations and comparison of competing candidates. In this process,
many other factors should be taken into account, such as simplicity,
surprisingness to the system, and relevance to the given context. If we
cover all of these issues under “abduction,” it becomes such a complex
process that few concrete conclusion can be made. Such a definition is
not wrong, but not very useful.

9.3.2 Multi-valued vs. binary

In the framework of binary logic, abduction is usually defined formally
as “reverse deduction” which starts from a given conclusion and back-
ground knowledge to find a premise that is consistent with the back-
ground knowledge, and derives the conclusion deductively.

Such a definition is logically sound, and can lead to fruitful results.
However, it ignores certain factors that are crucial for a system working
with insufficient knowledge and resources.

In empirical science and everyday life, we usually do not throw away
theories that have known counterexamples and inexplicable phenom-
ena. If we do that, there is hardly anything left. Since we usually have
insufficient knowledge in these domains, we have to live with imperfect
knowledge, because they are still far better than random guesses.

When selecting among competing explanations and hypothesis, mea-
surement of (positive and negative) evidence becomes necessary — if
no explanation is perfect, then the one with more positive evidence and
less negative evidence is preferred, which is what is measured by the
frequency defined in NAL. Since evidence may come from time to time,
incremental revision becomes inevitable, which requires the amount of
evidence to be represented in some way, and this is how the confidence
measurement becomes necessary.

Inference Rules 265

These measurements enrich our understanding of the inference rules.
In the truth-value functions, we can see that the fundamental differ-
ence between deductive inference and non-deductive (such as abductive
or inductive) inference is in the confidence (not the frequency) of the
conclusion. In deduction, if both premises are completely true, so is
the conclusion. However, in abduction and induction, the confidence
of the conclusion is much lower in this situation, meaning that the con-
clusion is tentative even when the premises are certain, and can be
revised by new evidence.

To ignore quantity of evidence means it will be hard for the system
to distinguish hypotheses that have a little of negative evidence from
those that have a lot. Even for a hypothesis for which only positive
evidence has been found, the amount of evidence still matters — a
hypothesis confirmed only once is quite different from a hypothesis
conformed a million times. For these reasons, to study abduction in
binary logic is not wrong, but not very useful. Unfortunately, it is still
the most common approach to the topic of “abduction” in the current
AI research.

9.4 Implication

This section addresses two topics in higher-order inference, both about
the implication relation.

9.4.1 Implication and relevance

A look at the grammar of Narsese reveals the origin of the intuition
behind the design: first-order NAL is closely related to set theory,1 and
higher-order NAL is closely related to propositional logic — both con-
tain logical constants for negation (“¬”), conjunction (“∧”), disjunction
(“∨”), implication (“⇒”), and equivalence (“⇔”).

Though the intuitive meanings of the above constants are simi-
lar in these two logic systems, there is a fundamental difference. In
propositional logic, all of the five logic constants are truth-functional
operators that form compound propositions, whose truth values are

1Their relation will be discussed in the next chapter.

266 Chapter 9

fully determined by those of their components. In NAL, on the con-
trary, the five constants belong to two different categories. The first
three are term operators that form compound (higher-order) terms;
the last two are (higher-order) relations (i.e., copulas), which are not
purely truth-functional. Consequently, when P and Q are both Narsese
statements, so do (P ⇒ Q) and ((¬P) ∨ Q), but the latter two are no
longer equivalent to each other in NAL.

In propositional logic, P ⇒ Q is equivalent to (¬P) ∨ Q. Though
this equivalence is useful for various purposes, it suffers from the well-
known “implication paradox,” which says that P ⇒ Q is true when P is
false (Q can be anything) or Q is true (P can be anything). Though log-
ically consistent with propositional logic, this result is highly counter-
intuitive, and it gives people a feeling that some important thing is
missing in the definition of implication in propositional logic — P and
Q should be somehow relevant to each other, which is assumed by the
“if ... then ...” structure in natural languages [Copi, 1982].

A whole branch of logic, relevant logic [Read, 1989], has been de-
veloped specially for this issue. I will not review that type of logic here,
but to mention a key property of it, that is, as far as I know, all the
works in that branch of logic are still within the framework of predicate
logic and propositional logic. On the other hand, in NAL, this problem
does not appear in the first place.

In NAL, implication, in its idealized form, is defined to be a reflex-
ive and transitive binary relation from one statement to another. In its
realistic form, it is multi-valued, with its truth value defined accord-
ing to available evidence. Here evidence is measured by comparing the
sufficient and necessary conditions of the two statements.

As a term logic using syllogistic rules, in NAL the two premises
of an inference step must share a common component, otherwise no
conclusion can be derived. Also, the conclusion shares terms with the
premises, respectively. As a result, the three must be related to one
another in their meanings, according to EGS — two terms are related in
their meanings as soon as they appear in the same belief of the system.

Specially, in the induction rule introduced in NAL-5, (P ⇒ Q) can
be derived from P and Q only if the two premises are based on the same
(implicitly represented) evidence. From an arbitrary pair of statements,
nothing will be derived — to know their truth values is not enough.

Inference Rules 267

Even when (P ⇒ Q) is derived from P and Q, its confidence is low,
because the rule is induction. Only when P and Q have been repeatedly
supported by the same evidence for many times (and the evidence is
different at each time), can (P ⇒ Q) then become more confident (by
merging the individual conclusions with the revision rule).

In NAL, (P ⇒ Q) and ((¬P)∨Q) are no longer equivalent, but still
related to each other. Especially, they have the same negative evidence
(that is, when P is true and Q is false). Here the situation is exactly the
same as the one revealed by the previous analysis on the “confirmation
paradox,” that is, since in binary logic a truth value only indicates the
existence of negative evidence, statements with exactly the same scope
of negative evidence are treated as equivalent. In multi-valued logic
with EGS, however, these statements may have different truth values
if they have different positive evidence. In NAL, two statements are
equivalent if they have the same scope and amount of both positive
evidence and negative evidence.

Now we can see that, in this sense, both “confirmation paradox”
and “implication paradox” are problems of binary predicate logics with
MTS, but not problems of logic in general. To properly capture the
intuitive meaning of concepts like “confirmation,” “implication,” and
so on, we need a multi-valued term logic with an experience-grounded
semantics.

9.4.2 Implication and causation

Causal inference is a very important cognitive function, and it has
attracted researchers from AI [Pearl, 2000], psychology [Cheng, 1997],
and philosophy [Sosa and Tooley, 1993].

What differs NAL from the other approaches in causal inference is:
though NAL also attempts to capture all aspects of causal inference, it
does not treat “causal inference,” as well as the related concepts like
“causal relation” and “causation,” as logical constants, in the sense that
there are inference rules especially responsible for causal inference.

Unlike the Bayesian interpretation of causal inference [Pearl, 2000]
(in which causal relation is formalized by conditional probability), in
NAL causal inference is carried out by formal inference rules on a for-
mal language. Even in this framework, how to define “causal relation”

268 Chapter 9

is still a controversy. Logically speaking, it has been defined as suffi-
cient condition, necessary condition, sufficient-and-necessary condition,
or even something more complicated, by different people [Copi, 1982,
Sosa and Tooley, 1993]. In practical applications, there are debates on
the “cause” of all kinds of events in every newspapers everyday.

In my opinion, this situation indicates that “causation” is a concept
we use to organize our experience, and especially for the prediction of
the future [Anderson, 1990]. Since in different domains predictions are
made in different ways, the meaning of this concept is context depen-
dent. For this reason, we should not expect a physicist, a biologist,
an economist, and a historian to agree on the accurate definition of
“cause.”

Even when this is the situation, it is still possible to provide a com-
mon logical foundation for all the different usage of the concept “causa-
tion” (and the related concepts). In NAL, causal inference, or prediction
in general, is seen as consisting of two basic aspects, a logical one and
a temporal one. The logical factor is represented by the implication re-
lation (and its variant, the equivalence relation), which indicates when
a statement can be derived from another one. The temporal factor is
represented by the temporal orders introduced in NAL-7. According to
the common usage of the term, a “cause” of an event E should be a
precondition of it, though it depends on the context whether it is a
sufficient one, a necessary one, an equivalent one, or even something
more complicated.

In this way, the NAL logical constants provide the “greatest com-
mon factor” of all kinds of causal relations, which are treated in NARS
as “ordinary relations” (as defined in Section 4.4), with meanings
learned from the experience of the system. They can include additional
considerations on causation, such as the distinctions between “causa-
tion” and “covariation,” between “causes” and “enabling conditions,”
and so on [Cheng, 1997, Sosa and Tooley, 1993], though none of these
considerations are included in the logical constants of NAL.

In general, a question with the form of “? ⇒ Q” is a task looking
for an explanation of statement Q, and a question with the form of
“P ⇒ ?” is a task looking for a consequence of statement P . Causal
explanation and causal consequence are just special cases of the above
general higher-order inference tasks. As described before, both tasks,

Inference Rules 269

as well as yes/no question “(P ⇒ Q) ?,” can be answered by a judg-
ment “P ⇒ Q < f, c >.” If there are multiple candidate answers, the
choice rule is used to pick the best one. If the question is not about
the implication relation in general, but about a special causal rela-
tion “cause,” then the questions will be like “? ◦→ (⊥ cause � Q),”
“? ◦→ (⊥ cause P �),” and “((P × Q) ◦→ cause) ?,” respectively, and
the answer will depend on the current meaning of “cause.”

Like the other statements, an implication statement can be de-
rived in more than one way. For example, when a causal judgment
“P ⇒ Q < f, c >” is derived by induction, it may correspond to a
causal hypothesis obtained from observed regularity; when it is derived
by deduction, it may correspond to a causal hypothesis obtained ac-
cording to an underlying mechanism; when it is derived by abduction,
it may correspond to a causal hypothesis obtained through an explana-
tion. If there is more than one way to support a hypothesis, it will get
a higher confidence value after the revision rule merges evidences from
different sources, though none of the sources are absolutely necessary
for the conclusion to be confident. The same is true for temporal impli-
cation/equivalence relations, and the various causal relations obtained
in experience. Therefore, in NARS there is no separate rule set for
“causal inference” — all inference rules may contribute to the selection
and evaluation of various “causes” and “effects.”

As an answer to Hume’s question on the validity of causal induction
[Hume, 1748], in NARS causal inference is a way for the system to or-
ganize its experience, rather than a way to find “natural causal laws.”
The truth value of such a conclusion measures its available evidential
support, not its distance to the “objective truth” — even if the sys-
tem gets such a truth, it cannot confirm the case, given its insufficient
knowledge and resources. Under AIKR, all causal beliefs in the system
may be revised by future evidence, and none of them fully specifies the
causes or consequences of any event. Nevertheless, the causal beliefs
still serve a crucial role in the adaptation process of the system.

Chapter 10

NAL as a Logic

As specified previously, NARS is a reasoning system implementing a
logic NAL. This chapter discusses the relationship between NAL and
other related logics studied in AI and other disciplines.

10.1 NAL as a term logic

In the history of logic, there are the Term Logic tradition (TL in the
following) and the Predicate Logic tradition (PL in the following). The
defining differences between TL and PL are in the format of sentences
and the format of inference rules. NAL belongs to TL, and it can be
seen as an extension of the previous term logics, especially, of Aristotle’s
Syllogism.

10.1.1 Two traditions in formal logic

In TL, an atomic statement is categorical, in the sense that it has the
form of “S c P ,” where S is the subject term of the statement, P
the predicate term, and c is a copula. Intuitively, the statement says
that “S is a kind of P ,” or some variation of it, like “S is a P .” For
example, “Tweety is a bird” can be represented as “Tweety c1 bird,”
where c1 means “to be an instance of,” and “Birds are animals” can be
represented as “bird c2 animal,” where c2 means “to be a kind of.”

271

272 Chapter 10

In PL, an atomic statement (usually called a proposition) is func-
tional, in the sense that it has the form of “P (a1, . . . , an),” where P is
a predicate, and a1, . . . , an (n ≥ 1) are arguments, like in a mathematical
function. Intuitively, it represents that “There is a P relation among en-
tities a1, . . . , an (in that order).” When n = 1, “P (a1)” represents that
a1 has property P . Beside constant entities addressed by name, a vari-
able can be used with a (universal or existential) quantifier to represent
an entity, too. Compound statements are formed from simpler (atomic
or not) statements by truth-value functions, including not (¬), and (∧),
or (∨), implication (⊃), and equivalence (≡). For example, “Tweety is a
bird” can be represented as “Bird(Tweety),” and “Birds are animals”
can be represented as “(∀x)(Bird(x) ⊃ Animal(x)).” Propositional
logic is a subsystem of predicate logic, where the internal structures of
atomic statements are not explicitly represented.

In summary, the difference between the two traditions in sentence
format is whether to stay with a “subject-predicate” pattern, with a
“copula” as logical constant to connect the two terms.

The differences in the format of inference rules between these two
traditions are stem from their differences in sentence format.

In TL, typical inference rules are syllogistic, in the sense that each
rule takes two premises sharing one term, and the conclusion is formed
between the other two terms. For example, from “Tweety c1 bird” and
“bird c2 animal,” such a rule can derive “Tweety c1 animal,” that is,
“Tweety is an animal.”

In PL, typical inference rules are truth-functional, in the sense that
the premise P can derive conclusion C if and only if “P ⊃ C” is true.
The truth value of “P ⊃ C” is determined only by the truth values of
P and C, and has nothing to do with their content. For example, from
“Bird(Tweety)” and “(∀x)(Bird(x) ⊃ Animal(x)),” such a rule can
derive “Animal(Tweety),” again, “Tweety is an animal.”

As shown by the above example, in simple situations the function-
ality of TL and PL are roughly equivalent. However, this is not the case
in general.

Because of the features described above, TL is also called “cate-
gorical logic” or “syllogistic logic.” This tradition was established by

NAL as a Logic 273

Aristotle’s Syllogistic [Aristotle, 1989]1. Since then, the TL tradition
had dominated the history of logic for more than two thousand years,
until the coming of “mathematical logic.”

In the attempt of putting mathematics on a solid logical foundation,
the founders of FOPL (First-Order Predicate Logic) judged categorical
sentences and syllogistic rules as to be unnecessarily restrictive, and
invented the language of PL, which is more similar to the languages
used in mathematics [Frege, 1970, Whitehead and Russell, 1910]. Since
then, FOPL has been taken by many people as “the logic,” or at least a
core that should be included in any logic system. At the same time, TL
is usually regarded as only of historical value and as only covering spe-
cial cases of FOPL. Lukasiewicz analyzed Aristotle’s Syllogistic “from
the standpoint of modern formal logic,” though his goal is to correct
certain misunderstandings on Aristotle’s work, not to use TL to chal-
lenge PL. Actually, he thought that it was a prejudice to say that every
proposition has a subject and a predicate [Lukasiewicz, 1951].

In recent years, the only notable voice that has used TL to challenge
PL came from the work of Sommers and Englebretsen [Englebretsen,
1981, Englebretsen, 1996, Sommers, 1982, Sommers and Englebretsen,
2000]. The major consideration in their work is the closeness of TL to
natural language (given by the subject-predicate structure), and the
simplicity of inference in TL (which may be controversial). They ex-
tended Aristotle’s Syllogism by introducing singular terms, relational
terms, unanalyzed statements, compound statements, and so on. The
result is a logic system, Term-Functor Logic (TFL, also called Algebraic
Term Logic), which is functionally similar to FOPL, while still keeping
the defining syntactic properties of TL, that is, categorical sentences
and syllogistic rules [Sommers and Englebretsen, 2000]. Though their
work is well known, it has not attracted many follow-up or application
works.

1Aristotle’s logic does not exactly fit the above description about TL in gen-
eral, because it did not explicitly use a copula in his representation [Geach, 1968].
Singular term like “Tweety” is not allowed in Aristotle’s logic, and each syllogism
is an implication statement, not an inference rule [Lukasiewicz, 1951]. However,
Aristotle’s logic is still the most typical example of TL.

274 Chapter 10

10.1.2 NAL and other term logics

NAL can be seen as an extension and revision of Aristotle’s logic.
With respect to sentence format and grammar in general, Narsese

has the following new features:

• revising the implicit binary copula in Aristotle’s logic into the
multi-valued inheritance relation,

• evaluating the inheritance relation according to both extensional
evidence and intensional evidence,

• adding variants of inheritance to represent similarity, instance,
and property relations,

• adding compound terms to represent sets, intersections, and dif-
ferences formed from existing terms,

• adding products and images to represent ordinary relations that
cannot be treated as copulas,

• adding higher-order relations and statements to represent state-
ments about statements,

• adding temporal attributes to indicate the temporal relations be-
tween events,

• adding procedurally interpreted statements to represent opera-
tions that can be executed by the system itself,

• adding non-declarative sentences to represent questions and goals.

With respect to inference rules, NAL extends Aristotle’s Syllogism
in the following aspects:

• extending the inference rules to work on multi-valued statements,

• using an experience-grounded semantics to justify the inference
rules,

• adding non-deductive inference rules,

NAL as a Logic 275

• adding rules to compose/decompose various types of compound
terms,

• adding higher-order inference rules,

• using backward inference rules to process non-declarative sen-
tences.

Though Aristotle briefly mentioned induction in his work, it was
Peirce who introduced the deduction/induction/abduction trio in the
framework of term logic, by defining the other two as “reversed de-
duction” in different forms [Peirce, 1931]. NAL keeps the usage of the
three terms. However, the compound terms and truth-value functions
are not from Peirce (though he did try to combine logic with probability
theory).

One traditional criticism to TL is on its expressive power, which is
usually judged as lower than that of PL. Though this conclusion applies
to Aristotle’s logic, which can only represent certain relations between
simple terms, it does not apply to other logics in the TL tradition, such
as TFL [Sommers and Englebretsen, 2000] and NAL. There are some
similarity between NAL and TFL in the way they extend the language
of term logic (such as introducing singular terms, relational terms, un-
analyzed statements, compound statements, and so on). However, TFL
is designed to be functionally equivalent to FOPL, so it is still a binary
deductive logic, while NAL is not.

10.1.3 NAL and set theory

Though in the previous discussion I presented NAL as a term logic,
initially the idea about its language and rules came from set theory,
and I did not recognize its relationship with the work of Aristotle and
Peirce until several years later.

At the beginning of the project, concepts were treated as a sets,
with three basic set-theoretic relations among them: membership (“∈”),
subset (“⊂”), and equal (“=”) [Wang, 1986].

Though such a representation looked very natural and general, I
gradually realized its conflict with AIKR, and moved away from classic

276 Chapter 10

set theory. Later, I redefined the relations — subset becomes inheri-
tance, membership becomes instance (also called “singular inheritance”
previously), and equal becomes similarity (also called “symmetric in-
heritance” previously), though the same symbols had been kept for a
while (see [Wang, 1995a] for example).

Set theory is closely related to term logic (and that is why I discuss
it here). It is possible to map Aristotle’s syllogisms into theorems in
set theory. In NAL, the intuition behind compound terms in NAL-2
(sets), NAL-3 (intersections and differences) and NAL-4 (products and
images) all came from set theory. Also, set theory has been used in the
design of NAL, as part of its meta-language.

On the other hand, there are several major differences between set
theory and NAL (in its current form). Obviously, classic set theory
does not have uncertainty measurement and non-deductive inference
in it.

A fundamental and subtle difference between NAL and set theory is
that in NAL the inheritance relation is considered as more fundamental
than the instance relation, while in set theory the subset relation is
defined by the membership relation. One consequence of this is that in
NAL extension and intension, and therefore evidence, are defined by
inheritance, not by instance.

For a person with set-theoretic intuition, “S → P” will be seen
as a statement between two sets S and P , and interpreted as “S is
a subset of P .” In this way, the frequency of this statement should
be |(S ∩ P)|/|S|, that is, the proportion of instances of S which are
also instances of P . Furthermore, when deriving such a conclusion by
induction from premises {M → P, M → S}, the amount of evidence
of the conclusion should be |(S ∩M)|, that is, the number of instances
of M that are also in S.

Though it looks natural, such an interpretation is not acceptable
in the context of NARS, because it is based on a different semantics.
According to this semantics, a term is a set, with its meaning fully
determined by its instances. On the contrary, in NARS the meaning of
a term is determined by its extension and intension, which are sets of
terms that are directly linked to it by the inheritance relation. There-
fore, in “{tomato → vegetable, tomato → plant},” the evidence is
tomato (as a term), not instances of tomato (as objects in the world).

NAL as a Logic 277

Furthermore, what counted as evidence for “tomato → vegetable” and
“tomato → plant” are different from what is counted as evidence for
“vegetable → plant.”

In the terminology of set theory, the extension of a term in NAL is
not “the set of its elements,” but “the set of its subsets.” Furthermore, a
meaningful term in NARS only needs to have non-empty extension and
intension, and it does not need to be represented as a set of instances.
Consequently, uncountable nouns (mass nouns and abstract nouns) are
represented and processed more naturally in NAL, because they don’t
need to be seen as sets anymore. We will return to this topic in more
detail a little later.

Such a treatment of extension is necessary for the duality between
extension and intension in NAL. This elegant result comes from their
definition, as opposite directions of the inheritance relation. The same
result would not be obtained if instance (or property) were taken as the
primary relation in NAL.

Since a term in NAL cannot been seen as a set, usually the inference
rules of NAL should not be analyzed using Venn diagrams, which is a
set-theoretic representation.

It is possible to represent the set-theoretic relations (membership,
subset, and so on) in NAL — that is, as ordinary relations introduced in
NAL-4. These relations are on a different level from the copulas, which
are“built-in” relations. For example, the transitivity of the inheritance
relation is implemented by the deduction rule (truth value omitted):

{M → P , S → M} � S → P

which can derive judgment “terma → termc” from “termb → termc”
and “terma → termb.” On the other hand, the transitivity of the subset
relation is represented by the following implication statement (truth
value omitted):

((({#y} × {#z}) → subset) ∧ (({#x} × {#y}) → subset))
⇒ (({#x} × {#z}) → subset)

which can be used, together with “({setb} × {setc}) → subset” and
“({seta} × {setb}) → subset,” by the (higher-order) deduction rule to
derive “({seta} × {setc}) → subset.”

278 Chapter 10

Though the above two inferences are intuitively similar, they are
carried out quite differently in NARS.

10.2 NAL vs. predicate logic

The mainstream of modern logic is dominated by PL, especially, by
FOPL. In the following, let us see how NAL differs from PL in general,
and FOPL in particular.

10.2.1 Categorical vs. functional

As mentioned previously, TL uses “categorical” sentences (with the
“subject-predicate” format), and PL uses “functional” sentences (with
the “predicate-arguments” format).2

TL and PL use different formats because they come from different
backgrounds. In the age of Aristotle, logic was an attempt to regulate
and formalize (to a certain extent) inference carried out in everyday life,
usually in a natural language. Since the “subject-predicate” syntax is
shared by many natural languages, TL is closer to a “logic of natural
language.” [Sommers, 1982].

At the age of Frege, the focus of study in logic turned to the foun-
dation of mathematics. Consequently, people preferred a logical lan-
guage that is more similar to the language used in mathematics. Since
P (a1, · · · , an) is just like the format of a mathematical function, it is
more suitable for the job. Also, since “The Greeks defeated the Per-
sians at Plataea” and “The Persians were defeated by the Greeks at
Plataea” have the same conceptual content, their syntactic difference
(such as which term is the subject) can be ignored in logic [Frege, 1970].
To the mathematical logicians, to force all statements into the “subject-
predicate” format seems neither necessary nor possible.

2It is important to see that the notion of “predicate” has different (though re-
lated) senses in TL and PL, and neither is the same as how the notion is used
in linguistics. For example, in the sentence “The morning star is the same as the
evening star,” in TL “predicate” is the term “evening star,” in PL it is the relation
“to be the same as,” and in linguistics it is the phrase “is the same as the evening
star.”

NAL as a Logic 279

The “categorical vs. functional” difference does not only influence
the naturalness and expressibility of the language. It also leads to dif-
ferent ontological commitments, or different categorical systems.

The distinction between predicates and arguments in PL is absolute,
in the sense that nothing can be both a predicate and an argument.
On the contrary, the distinction between subject and predicate in TL
is relative, in the sense that a term can be the subject of one state-
ment and the predicate of another statement. For PL, its domain of
application must be perceived as consisting of a set of individuals, with
properties (defined on individuals) and relations (defined among indi-
viduals). Through an interpretation, the individuals are mapped into
arguments, and the properties/relations into predicates, in the logical
language. On the contrary, for NAL, its domain of application con-
sists of interrelated concepts, and many of them play different roles in
different relations.

To see a domain as consisting of individuals and properties/relations
is usually good enough for mathematics, but such an ontological com-
mitment has problems outside mathematics.

It is well known that in FOPL it is hard (though not impossible)
to reason on uncountable nouns, such as mass nouns (e.g., “water”)
and abstract nouns (e.g., “intelligence”), because such a noun should
not be treated as a set of individuals [Fox, 2000]. How to represent
“water,” so that “Water is a kind of liquid” and “Raindrop is a kind
of water” derive “Raindrop is a kind of liquid”? Neither a predicate
representation nor an argument representation works well in this case.
A naive solution would be to represent uncountable nouns as predi-
cates (just like countable nouns), so that the above inference becomes
to derive “(∀x)(Raindrop(x) ⊃ Liquid(x))” from “(∀x)(Water(x) ⊃
Liquid(x))” and “(∀x)(Raindrop(x) ⊃ Water(x))” in FOPL. However,
in such a solution, it is hard to explain what x stands for semantically,
and in practical usage, such a solution ignores the conceptual difference
between countable and uncountable nouns.

Though the same problem exists in Aristotle’s logic (where a term
roughly corresponds to a set), it is easier to be solved in the TL frame-
work. As described previously, the inheritance/instance relations in
NAL are intuitively similar to the subset/membership relations in set
theory, but in NAL “inheritance” is not defined on “instance” (while

280 Chapter 10

in set theory “subset” in defined on “membership”). Consequently, in
NAL the above relations are simply inheritance relations among terms
“raindrop,” “water,” and “liquid.” Though in NAL a set can be de-
fined, not all terms are eventually reduced to sets, and the domain is
not reduced into individuals with their properties and relations.

Another related topic is in the notion of “higher-order” inference.
In FOPL, variables can only represent individuals, but not predicates.
To represent properties shared by many predicates, a second-order (or
higher-order) logic is needed. Here the concept of a “higher-order”
directly comes from the absolute distinction between predicate and
individual.

In a TL, since the distinction between subject and predicate are rel-
ative, the “properties of properties” (as well as “instances of instances”)
can be represented as other statements, and no “higher-order” struc-
ture is needed here. In NAL, the notion “higher-order” inference still
exist, but as we have seen, it means “inference about statements on
statements,” and can naturally be integrated with first-order inference.

For a logic that has to work with insufficient knowledge and to
support an evolving categorical structure, it is better to avoid the
rigid predicate/argument distinction, and use the more flexible sub-
ject/predicate distinction.

10.2.2 Inheritance as the primitive relation

Since a copula in TL can be defined as a predicate in PL, and a non-
copula relation can be represented in TL as a “relational” term, there
is no difference in expressive power between “categorical” languages
and “functional” languages on this aspect. Instead, the difference is in
whether to represent the copulas as logical constants.

While in PL all relations are treated as equal, in TL, and especially
in NAL, several relations (inheritance, with its variants similarity, in-
stance, property, instance-property, implication, and equivalence), are
treated as logical constants, or “built-in” relations, of the logic. Their
meaning is not experience-grounded, but defined in the meta-language
(as described earlier in the book) and completely reflected in their
processing by the inference rules.

NAL as a Logic 281

The most typical inference rules in TL are syllogistic in the sense
that each takes two premises (in subject-predicate form) that share
a common term, and the conclusion (also in subject-predicate form)
is about the relation between the other two (unshared in premises)
terms. In NAL, such a rule is justified according to the transitivity of
the inheritance relation, and each rule has a truth-value function that
determines the truth value of the conclusion. In this way, the conclusion
and the premises are related both in truth value and in meaning.

In FOPL, the relation among premises and conclusion is purely
truth-functional, and not semantic, in the sense that in an inference
process only truth value matters, and regardless of the contents of the
propositions involved. This property leads to counter-intuitive results,
as shown by the well-known “implication paradox.” As discussed in
Section 9.4.1, this problem does not appear in NAL, because of the
nature of TL.

A closely related problem is consistency. FOPL cannot tolerate any
contradiction in its premise set, because any arbitrary proposition can
be derived from a contradiction, and the system will become practically
useless. Again, various “paraconsistent logics” are proposed, within the
PL tradition [Priest et al., 1989]. Such a problem does not appear in
NAL, simply because the inference rules are not purely truth-functional.
Not only that in NAL there is a revision rule that deals with contra-
dictory evidence, but also that a contradiction is a “local event” that
only influences the terms directly involved in it.

In PL, abduction and induction are often defined as “reversed de-
duction,” in the sense that they are inference processes that produce hy-
potheses consistent with background knowledge and implying the given
conclusion (plus some additional properties) [Flach and Kakas, 2000].
Defined in this way, when the background knowledge and conclusion
to be implied are given, the hypotheses may not be fully determined,
that is, many hypotheses may satisfy the condition. Again, as discussed
in Section 9.2.4, this problem does not appear in NAL, because of the
nature of TL.

All the above properties of NAL come from the fact that inheritance
and its variants are defined as logic constants, and that all inference
rules are defined according to the meaning of these constant relations.
By treating them in the same way as other relations and defining the

282 Chapter 10

inference rules as purely truth-functional, PL does not have the above
properties, and many problems appear.

Some people have seen the specialty in what I call “inheritance”
in NAL. For example, behind description logic and other class-based
representations [Brachman and Schmolze, 1985, Donini et al., 1996], a
major motivation is to introduce the inheritance mechanism into the PL
tradition [Kurtonina and de Rijke, 1999]. Consequently, such a system
has a TL component and a PL component (as shown by the ABox/TBox
distinction). By putting everything in the TL framework, NAL provides
a more compact and consistent alternative.

Semantically, what makes inheritance and its variants different from
the other relations is that they link two terms together, and indi-
cate that one can be used as the other, in certain context. Ulam and
Hofstadter have argued that the “as” relation (as in “concept A can be
used as concept B”) plays a central role in cognition and intelligence
[Rota, 1989, Hofstadter, 1993a, Hofstadter and FARG, 1995]. The re-
sult of NAL provides a piece of concrete evidence for this insight.

10.2.3 Evidence and truth value

Among the factors discussed in this section, the most important one
for NAL to be designed in the framework of TL, rather than PL, is the
definition of evidence.

For a logic that uses insufficient knowledge to answer questions, the
number one issue is Hume’s Problem: from limited past experience,
how to justify the derived conclusions that will be applied to future
situations [Hume, 1748].

As discussed previously, the solution to this problem in NAL is
partly provided by an “experience-grounded” semantics, in which “truth
value” is defined as a function of available evidence, not a “distance”
between a statement and an objective “state of affairs.” Consequently,
a statement is “true” (to a degree) means that it is supported by past
experience (to that degree), not that it will be confirmed in the future
(even to a degree).

To apply this semantics to a formal language, for any given state-
ment S in the language, we need to define its (positive and negative)
evidence, as well as a measurement on the amount of evidence. As

NAL as a Logic 283

discussed in Section 9.2.2, in FOPL such an attempt lead to Hempel’s
“Confirmation Paradox.”

A related problem is Wason’s “Selection Task.” In this psychological
experiment, subjects see four cards showing symbols like E, K, 4, and
7, and know that each card has a letter on one side and a number on
the other. The task is to choose the cards that need to be turned over in
order to determine whether the following rule is true or false: “If a card
has a vowel on one side, then it has an even number on the other side.”
Most subjects choose E alone, or E and 4, while the correct answer is
E and 7, because “Any odd number on the other side of E falsifies the
rule in exactly the same way as would any vowel on the other side of
7.” [Wason and Johnson-Laird, 1972].

In FOPL, the “rule” to be tested is “(∀x)(V owel(x) ⊃ Even(x)).”
By definition, this proposition is false if there is at least one card that
satisfies V owel(x) but not Even(x), otherwise it is true. Therefore, to
determine the truth value of the rule means to check all cards that may
falsify the rule. What the subjects show is a tendency to find cards that
verify the rule. In FOPL, cards verifying the rule make no contribution
to its truth value. If the 4 card indeed has a vowel on the other side,
it does not mean that the rule is true. If the E card and 7 card do not
make the rule false, the rule is true, and the 4 card does not need to be
turned.

Since this problem has been discussed in detail in [Wang, 2001c],
here I only briefly address it. Psychological experiments show that when
asked to determine the truth value of a statement, human subjects
more frequently look for positive evidence than for negative evidence,
though “according to logic,” only negative evidence matters. However,
according to NAL, what the subjects do is not necessarily an error. If
the “logic” under consideration is a binary one like FOPL, then to look
for positive evidence is a mistake, but it is not the case if the “logic” is
multi-valued, such as NAL.

If what is needed in solving the above problems is a logic where truth
value depends on both positive and negative evidence, can it be done in
the PL framework? Though there have been many such attempts, such
as by combining FOPL and probability theory [Nilsson, 1991], it is not
easy for several reasons. Here I only discuss one of them, the scope of
evidence.

284 Chapter 10

In FOPL, a general statement is always represented as a universally
quantified proposition like “(∀x)(Raven(x) ⊃ Black(x)),” where the
variable x can be instantiated by every constant in the domain. Each
instantiation, in principle, makes the proposition either true or false,
and nothing is irrelevant. This is another problem revealed by the con-
firmation paradox: in FOPL not only that positive evidence is ignored,
but also that it is hard to draw a line between positive evidence and
irrelevant things. Though in principle it is possible to use approaches
like many-sorted logic to specify different scopes for each variable, it
will make the logic very complicated.

As show previously, since NAL is a TL using subject-predicate for-
mat for statements, the scope of evidence for a given statement is ex-
plicitly given by the extension of the subject term and the intension
of the predicate term. Consequently, the distinction between evidence
and non-evidence, as well as distinction between positive evidence and
negative evidence, can be easily and naturally defined, which provides
a foundation for the definition and calculation of truth value in EGS.

Now we can see that, because of the difference in semantics, there
is no one-to-one mapping between the sentences in Narsese and the
sentences in FOPL, though intuitively approximate mappings can be
built. For example, “Ravens are birds” can be represented in NAL as

(#x → raven) ⇒ (#x → bird)

and in FOPL as
(∀x)(Raven(x) ⊃ Bird(x))

Though the two formal representations roughly correspond to each
other, they are not defined in the same way. The proposition in FOPL
is binary and is about all individuals in the domain; the statement
in NAL is multi-valued and is only about terms in the extension of
raven. Furthermore, the same English sentence can also be represented
in Narsese as

raven → bird

which is both extensional and intensional. There is nothing like it in
FOPL.

Given this difference (and some similar differences in other struc-
tures), it is impossible to accurately say which of FOPL and NAL has

NAL as a Logic 285

more expressive power, since they are simply different. As mentioned
previously, FOPL is closer to a mathematical language, and NAL to a
natural language, both in syntax and semantics. It is possible to use
FOPL as part of the meta-language of NAL (as I have been doing in
this book) and to use NAL as part of the meta-language of FOPL
(by representing inference rules of FOPL as implication statements in
NAL, as introduced in NAL-6), but it does not mean that the two are
equivalent at the object-language level.

NAL is not generally better than FOPL, but it is better in situations
where the system’s knowledge and resources are insufficient. In domains
where knowledge and resources can be assumed to be sufficient (with
respect to the questions to be answered), FOPL may still be better.
Mathematics is such a domain. When NAL needs to do math, it can
emulate FOPL (or any other logic) by representing inference rules of
that logic as implication relations, and applying them as a special case
of deduction, as discussed above in the case of set theory.

10.3 Logic and AI

As Bibel said, “Among the controversies in AI, none is as persisting as
the one about logic’s role in AI.” [Hearst and Hirsh, 2000] Here let us
see where NAL is in these controversies.

10.3.1 Different attitudes to logic

In the related fields, FOPL is often taken as the normative model of hu-
man inference. Such a belief or assumption can be found in many works
in philosophy [Popper, 1959], psychology [Braine and O’Brien, 1998,
Wason and Johnson-Laird, 1972], and linguistics [Allwood et al., 1977].

Given this situation, as well as the great success of FOPL in com-
puter science [Halpern et al., 2001], it is quite natural to see FOPL
playing a central role in the theoretical foundation of “symbolic/logical
AI” [Hayes, 1977, McCarthy, 1988, Nilsson, 1991]. Since the very be-
ginning of the field, AI researchers have used FOPL and its variants for
all kinds of works.

286 Chapter 10

In AI, typically a logic is used in a “knowledge-based system,”
consisting of an inference engine and a knowledge base. Such a sys-
tem often takes the form of a “production system,” which, after be
loaded with the proper domain knowledge, becomes an “expert sys-
tem.” Examples of this kind of system include AGI related projects
Soar [Newell, 1990] and ACT-R [Anderson and Lebiere, 1998]. In the
design of these systems, the inference engine is usually based on FOPL,
with a procedural interpretation of certain predicates. The variations
among these systems are mostly in the structure of the knowledge base
and the control of the inference process. The stress on the content
of the knowledge base reaches its extreme form in the AGI system
CYC, which is developed under the assumption that the key of in-
telligence is nothing but huge amounts of common-sense knowledge
[Lenat and Feigenbaum, 1991, Lenat, 1995].

It does not mean that everyone is happy with FOPL. On the con-
trary, there are many well-known problems that cannot be easily han-
dled by FOPL, and there are many attempts of building various types
of new logic. Examples of such attempts, both inside and outside AI,
include description logic [Donini et al., 1996], non-monotonic logic
[Ginsberg, 1987], inductive logic [Carnap, 1952], fuzzy logic [Zadeh,
1983], probabilistic logic [Halpern, 1990], relevance logic [Read, 1989],
paraconsistent logic [Priest et al., 1989], and so on. However, these at-
tempts are mostly in the framework of PL, as extensions or revisions of
FOPL, and aimed at a single issue. Only a few researchers paid some
attention to TL (such as [Dubois and Prade, 1988, Zadeh, 1985]), and
even in those works, TL is not proposed as a competitor of PL.

There are people who do not think that the goals of AI can be
reached by extending and/or revising FOPL, for various reasons. Such
opinions can be found in [Birnbaum, 1991, Dreyfus, 1992, Harnad, 1990,
Hofstadter, 1985, McDermott, 1987, Searle, 1980]. Many people believe
that the problems are not merely in FOPL, but in the notion of “logic.”
Consequently, they pursue completely different approaches, where logic
plays little role [Brooks, 1991, Holland, 1986, Smolensky, 1988, van
Gelder, 1997].

As stated earlier in the book, I still think that a reasoning system
with a formal logic provides a proper framework for AI research. How-
ever, I believe that FOPL is the wrong type of logic for AI, and all the

NAL as a Logic 287

previous revisions and extensions of FOPL have not gone far enough.
What we need for AI is a completely different type of logic.

10.3.2 Different types of logic

As we have seen, concepts in NARS are usually fluid, fuzzy, and elu-
sive; judgments are usually equivocal, conflicting, and fallible; and the
system’s behaviors are usually unpredictable and irreproducible. The
system may be absent-minded, may forget important information, and
may change its mind from time to time. How can we still say that NARS
works according to a logic?

In fact, the concept “logic” has two different senses. Construed very
broadly, logic is the set of principles of, and criteria for, valid inference.
However, nowadays the concept is used in AI under a narrower con-
strual, which is restricted to FOPL, its variants, model-theoretic seman-
tics, theorem-proving, and so on [Birnbaum, 1991, McDermott, 1987,
Nilsson, 1991].

Obviously, NAL does not constitute a logic in this narrower sense.
However, it is a logic in the broader sense. Technically, it has a formal
language with a semantics theory, and uses a set of formal rules to
do inference. Theoretically, it is an attempt to formally capture the
principles of valid inference under certain circumstance.

To clarify more sharply the difference between NARS and other
reasoning systems, I distinguish three kinds of reasoning systems,
based upon their assumptions about the sufficiency of knowledge and
resources:

Pure-axiomatic systems. Such systems are designed under the
assumption that both knowledge and resources are sufficient (with re-
spect to the questions that will/can be asked), so adaptation is not
necessary. A typical example is the notion of “formal system” suggested
by Hilbert (and many others), in which all answers are deduced from
a set of axioms by a deterministic algorithm, and which is applied to
some domain using model-theoretic semantics. Such a system is built
on the idea of sufficient knowledge and resources, because all relevant
knowledge is assumed to be fully embedded in the axioms, and because
questions have no time constraints, as long as they are answered in
finite time. If a question requires information beyond the scope of the

288 Chapter 10

axioms, it is not the system’s fault but the questioner’s, so no attempt
is made to allow the system to improve its capacities and to adapt to
its environment.

Semi-axiomatic systems. Such systems are designed under the
assumption that knowledge and resources are insufficient in some, but
not all, aspects. Consequently, adaptation is necessary. Most current AI
approaches fall into this category. For example, non-monotonic logics
draw tentative conclusions (such as “Tweety can fly”) from defaults
(such as “Birds normally can fly”) and facts (such as “Tweety is a
bird”), and revise such conclusions when new facts (such as “Tweety
is a penguin”) arrive. However, in these systems, defaults and facts
are usually unchangeable, and time pressure is not taken into account
[Reiter, 1987]. Many learning systems attempt to improve their behav-
ior, but still work solely with binary logic where everything is black-
and-white, and persist in always seeking optimal solutions of problems
[Michalski, 1993]. Although some heuristic-search systems look for less-
than-optimal solutions when working within time limits, they usually
do not attempt to learn from experience, and do not consider possible
variations of time pressure.

Non-axiomatic systems. In this kind of system, the insufficiency
of knowledge and resources is built in as the ground floor, and the
system works accordingly.

According to the working definition of intelligence proposed in Chap-
ter 2, pure-axiomatic systems are not intelligent at all, non-axiomatic
systems are intelligent, and semi-axiomatic systems are intelligent in
certain respects.

According to the above definition, intelligence is still (as we hope)
a matter of degree. Not all systems in the “non-axiomatic” and “semi-
axiomatic” categories are equally intelligent. Some systems may be
more intelligent than some other systems by having a higher resources
efficiency, using knowledge in more ways, communicating with the en-
vironment in a richer language, adapting more rapidly and thoroughly,
and so on. Though NAL has been based on AIKR from the very be-
ginning at NAL-1, each later layer, from NAL-2 to NAL-8, obviously
makes the system “more intelligent” by adding new grammar rules and
inference rules.

NAL as a Logic 289

“Non-axiomatic” does not mean “everything changes.” In NARS,
nothing is fixed as far as the content of knowledge is concerned, but
as we have seen in the previous chapters, how the changes happen
is fixed, according to the inference rules and control strategy of the
system, which remain constant when the system is running. This fact
does not make NARS “semi-axiomatic,” because the fixed part is not
in the “object language” level, but in the “meta-language” level. In a
sense, we can say that the “meta-level” of NARS is not non-axiomatic,
but pure-axiomatic. For a reasoning system, a fixed inference rule is
not the same as an axiom.

Pure-axiomatic systems are very useful in mathematics, where the
aim of study is to idealize knowledge and questions to such an extent
that the revision of knowledge and the deadlines of questions can be
ignored. In such situations, questions can be answered in a manner so
accurate and reliable that the procedure can be reproduced by an algo-
rithm. We need intelligence only when no such pure-axiomatic method
can be used, due to the insufficiency of knowledge and resources. For
similar reasons, the performance of a non-axiomatic system is not nec-
essarily better than that of a semi-axiomatic system, but it can work
in environments where the latter cannot be used.

Many arguments proposed as against logicist AI [Birnbaum, 1991,
McDermott, 1987, Minsky, 1990], symbolic AI [Dreyfus, 1992], or AI
as a whole [Searle, 1980, Penrose, 1994], are actually arguments against
a more restricted target: pure-axiomatic systems. These arguments are
valid when they reveal many aspects of intelligence that cannot be
produced by a pure-axiomatic system (though these authors do not
use this term), but some of the arguments seriously mislead by taking
the limitations of these systems as restricting all possible AI approaches.

Some critics implicitly assume that because a certain level of a com-
puter system can be captured by FOPL and implemented as a Turing
Machine, these axiomatic theories also apply to the entire range of be-
havior that such a system can exhibit [Dreyfus, 1992, Penrose, 1994].
This is not the case. When a virtual machine M1 is implemented on
a virtual machine M2, the former does not necessarily inherit all the
properties of the latter. For example, it is invalid to conclude that a
computer cannot process decimal numbers (because the hardware uses

290 Chapter 10

binary numbers), cannot process keyboard characters (because under-
neath it all, everything is just bits), or cannot use a functional or a log-
ical programming language (because the commands of such languages
are eventually translated into procedural machine language).

Obviously, with its fluid concepts, revisable knowledge, and fallible
inference rules, NARS violates all the norms of classical logics. How-
ever, as a virtual machine, NARS can be built upon another virtual
machine that is in fact a pure-axiomatic system, as my implementa-
tion demonstrates, but this fact does not in any sense make NARS
“axiomatic.”

Traditionally, AI has been referred to as a branch of computer sci-
ence. According to my previous definitions, AI can be implemented
with tools provided by computer science, but from a theoretical point
of view, AI and computer science make opposite assumptions: computer
science focuses on pure-axiomatic systems, but AI focuses — or should
focus — on non-axiomatic systems.

The fundamental assumptions of theoretical computer science can
be found in mathematical logic (especially FOPL) and theory of com-
putation (especially computability theory and computational complex-
ity theory). These theories take sufficient knowledge and resources for
granted, and therefore adaptation, plausible inference, and tentative
solutions to problems are neither necessary nor possible in the typical
applications of these theories.

Similar assumptions are often made by AI researchers with roughly
the following type of justification: “We know that the human mind
works under conditions of insufficient knowledge and resources, but if
you want to set up a formal model and then implement it as a computer
system, you must somehow idealize the situation.”

It is true that every formal model is an idealization, and so is NARS.
The key question concerns what to omit and what to preserve in the
idealization. In the current implementation of NARS, many factors that
should influence reasoning are ignored, but the insufficiency of knowl-
edge and resources is strictly assumed throughout. Why? Because such
insufficiency is a defining feature of intelligence, so if it were abandoned
in the “idealization,” the resulting study, whatever its worth might be,
would be about something other than intelligence.

NAL as a Logic 291

10.3.3 Logic and thinking

At the time of Aristotle, the subject matter of logic was human thinking
in general. The goal of logic is to find the abstract patterns in valid
inference that apply to all domains of human thinking. It remained
to be the case until the time of Frege, Russell, and Whitehead, whose
major interest was to set up a solid logic foundation for mathematics.
For this reason, they were not satisfied by Aristotle’s term logic, and
developed a new logic in the PL framework, which is focused on valid
inference in mathematics, typically the binary deduction processes that
derives theorems from axioms and postulates.

Frege (and other mathematical logicians) argued strongly against
the so-called “psychologism,” and stressed the difference between logic
and psychology, as the difference between a normative theory of valid
inference and a descriptive theory of actual inference. Though this
“mathematical logic” has achieved great successes in mathematics and
computer science, it moves away from actual human inference and
knowledge represented in natural languages [Englebretsen, 1981].

In AI, when “reasoning” is mentioned, in most of the cases it is
about reasoning in domains other than mathematics. In this field, what
is actually happening is a (reversed) change in the subject matter of
logic, this time from mathematics back to thinking in general. Even so,
most people in AI fail to realize that there are fundamental differences
between “valid inference on mathematical knowledge” and “valid infer-
ence in empirical knowledge,” and continuously use logics built for the
former as models for the latter.

This “moving back” in subject matter will not lead logic to psy-
chologism, because in this discussion we still can distinguish logic from
psychology of reasoning. NAL is proposed as a normative theory about
how valid inference should be, not a descriptive theory about how ac-
tual human inference works. However, it is a normative theory that is
different from the traditional “axiomatic logics,” because it is based
on a different set of assumptions and principles. It is not “better” or
“more powerful” than FOPL, but is fundamentally different from it. It
competes with FOPL and its variants in the sense that for certain prac-
tical problems outside mathematics, its solutions are better justified,
as described previously.

292 Chapter 10

Though NAL is not a descriptive theory of human reasoning, it
is closer to one than FOPL is, because the human mind is evolved to
work with insufficient knowledge and resources [Medin and Ross, 1992].
Therefore, the basic assumptions of NAL are selected to be a descriptive
model of the basic principles of human inference, though at the level of
concrete behaviors, NARS is still different from a human being, due to
many other factors.

The confusion between “mathematical logic” and “empirical logic”
is not an error only made in AI. The current descriptive theories of
human reasoning are strongly influenced by mathematical logic, espe-
cially FOPL. It is well-known that FOPL is a poor descriptive model for
human reasoning, but many psychologists still use it as the normative
model to be compared with.

For example, in Mental Logic theory [Braine and O’Brien, 1998],
some “psychologically realistic” inference rules are proposed, which are
described in a form close to FOPL. In the competing Mental Model
theory [Johnson-Laird, 1983], the focus is semantics, and the normative
theory guiding the research is model theory. According to our previous
discussion, when studying “non-mathematical” reasoning, FOPL is not
even the proper normative theory to use. Consequently, the related
psychological theories need to be re-evaluated accordingly.

A directly related topic is the study on “human heuristics, bias,
errors, and fallacy.” Typically, researchers compare human behavior to
a “normative theory,” and whenever the two are different, the human
behavior is judged as wrong. In Section 8.3.3, I discussed the case where
the “normative theory” in question is probability theory. Here we have
a similar situation, where the “normative theory” is FOPL.

As mentioned earlier (Section 10.2.3), in Wason’s Selection Task,
looking for positive evidence is not necessarily a human error. Actually,
NARS will make the same choice as most subjects, if it faces the same
problem. Here the key is to realize that there are different types of logics.
For one type, truth value only depends on the existence of negative
evidence, but for another type, truth value depends on both positive
and negative evidence.

A similar situation happens in non-deductive inference. If the uncer-
tainty in the conclusions is omitted, many NAL inference rules produce
nothing but various types of “logical fallacy” listed in logic textbooks.

NAL as a Logic 293

For example, from “Swans are birds” and “Swans fly” to derive “Birds
fly” is called “Hasty Generalization” [Copi, 1982], but it is exactly what
the NAL induction rule does. Here the key is once again in truth value.
In a binary logic, the conclusion will be taken as “true,” which is of
course wrong. In a logic like NAL, a conclusion can be “true to a de-
gree,” indicating the amount of available evidence. Such a conclusion
is valid, as far as it is attached with the right truth value.

One problem in psychological research is that many people implic-
itly assume that there is only one normative theory for reasoning, which
is FOPL (and its extensions and variations), with model theory provid-
ing its semantics. After another normative theory is established, a lot
of conclusions will need to be revised.

10.3.4 NARS as a network

By working on a reasoning system, one does not necessarily commit
oneself to the assumptions of traditional logic-based AI theories. De-
signed as a reasoning system, but not a “logicist” one [McCarthy, 1988,
Nilsson, 1991], NARS shares many theoretical assumptions with the
subsymbolic movement [Hofstadter, 1985, Rumelhart and McClelland,
1986, Smolensky, 1988], despite the fact that I chose to formalize and
implement these assumptions in a framework that on the surface looks
closer to the traditional symbolic-AI tradition.

In fact, NARS can be naturally described as an inheritance net-
work. We can see each concept as a node, each belief (and task) as a
(directed) link between two nodes, and the corresponding truth value
as the strength of the link. In this way, the memory of NARS is a
network.

This inheritance network is different from a semantic network and
other symbolic networks, because all links represent the inheritance
relation or its variants, whose meanings and functions are precisely
defined. There may be two or more links between a given pair of nodes,
and their truth values might conflict with each other.

The network has both active links (tasks) and passive links (beliefs).
Priorities are defined among nodes, active links, and passive links. In
each atomic step of processing, an active link interacts with an adjacent
(i.e., with a common node) passive link to generate new links, and

294 Chapter 10

different types of inferences correspond to different combinations of the
two component links, as suggested in [Minsky, 1985].

In such a network, to answer a question means to determine the
strength of a link, given its type and its beginning and ending nodes
(“yes/no” questions), or else to locate that node that has the strongest
link the system can find to a specified node (“what” questions); to
achieve a goal means to obtain a link between given nodes by execut-
ing operations. Since during the processing, not only the topological
structure of the network but also the strengths of its links and its pri-
ority distribution are all constantly changing, what the system does is
much more than search a static network for the desired link or node.

As a network, NARS shares properties with various subsymbolic
approaches [Hofstadter and FARG, 1995, Holland, 1986, Smolensky,
1988], such as parallel processing, nondeterminism, self-organization,
distributed representations, and so on. Let us consider the last property
in more detail here.

At first glance, the internal representations of NARS seem to be
local, since the knowledge “Swans are birds” is stored explicitly in the
link that runs between the node “swan” and the node “bird.” However,
when the system is told “Swans are birds,” the judgment is treated
both as a passive link (to be set up between the given nodes) and as
an active link (to interact with adjacent links); therefore, it will have
effects on other nodes and links. On the other hand, when the system is
asked “Are swans birds?,” it will not only seek the direct link between
nodes “swan” and “bird,” but will also try to get an answer from other
related nodes and links. Therefore, in both cases the operations are not
localized to nodes “swan” and “bird.”

As a result, NARS’ internal representations become distributed in
the following senses: (1) an input task may have non-local effects, (2) an
output result may have non-local sources, and (3) local losses of infor-
mation (such as those caused by forgetting) may be partially recovered
from information kept in other parts of the system.

When watching NARS running, if we focus our attention to the pri-
ority distribution among concepts, we can observe an activation spread-
ing phenomenon, as in a neural network. In a term logic like NAL, if
the concept under processing is CM , and the new task just generated is
between the concepts CS and CP , it must be the case that the former

NAL as a Logic 295

was already linked to the latter two before the current time. Also, pri-
ority of the former will be decreased after the step, while the other two
increased (because of the adding of the new task). It looks as if acti-
vation (measured by priority) flows from the former to the latter two,
though this is only a partial and approximate description about what
is actually happening.

On the other hand, there are some important differences between
NARS (when interpreted as a network) and existing artificial neural
networks. The NARS network has the following features.

• The network structure changes as the system is running — new
nodes and links are created, and old ones are removed.

• The nodes and links have semantics — meaning and truth are
explicitly defined with respect to the system’s experience.

• There is no global updating — in each inference step, the sys-
tem only updates a small number of priority values (similar to
activation of nodes) and truth values (similar to the weight of
links).

• The inference process does not necessarily converge to an attrac-
tor, but can stop after any number of inference steps, when no
resources are left for it.

Since NARS can be naturally described as a network, why is a “log-
ical” description still preferred? Indeed, the terminology of networks,
using concepts such as “node,” “link,” “strength,” “activation,” and so
on, can be used for many different purposes without stirring up any
controversy, whereas philosophical concepts like “meaning,” “truth,”
and “induction” tend to stir up hornet’s nests of argumentation.

So why didn’t I present NARS as a network? By constantly using
the terminology of logic, what I want to show is: to model intelligence
faithfully, what really matters is the set of underlying theoretical pos-
tulates, not the terminology or the technology. Once a new working
definition of intelligence is accepted, a reasoning system can still have
many interesting and unexpected properties, despite having the trap-
pings of a formal language and truth-preserving inference rules. The

296 Chapter 10

basic troubles with traditional logic-based symbolic AI stem from its
fundamental assumptions about sufficiency of knowledge and resources,
and its pursuit of completeness, consistency, and decidability, rather
than from detailed decisions about how AI systems work.

It seems to me preferable to consider NARS as a reasoning system
governed by a logic, due to its preciseness, during the design process
and also in explaining the basis for its design, whereas the “network”
image seems preferable, due to its vividness, for occasions when the
system must be presented in a very short time to other people. Also,
the network terminology may work better in the future when a de-
tailed inference control theory is established to describe the dynamics
of NARS.

Chapter 11

Categorization and Learning

Though NARS is usually presented as a reasoning system, it can also
be seen as a computational model of categorization and learning.

11.1 Concept and categorization

We start by seeing the model of categorization provided by NARS.

11.1.1 Concept in NARS

In NARS a concept CT consists of a name and a body. The former is
a term T , and the latter, roughly speaking, is a collection of Narsese
sentences, including all beliefs and tasks with T as subject or predicate
(see Section 6.2.2).

According to EGS, the meaning of a term is its experienced relations
with other terms. Similarly, the meaning of a concept is its relations
with other concepts, as assembled within its body. Since all these “re-
lations” are the inheritance relation and its variants, we can say that
the meaning of a concept consists of its extensional relations and in-
tensional relations to other concepts.

For example, “raven → bird” states that the term “raven” is in
the extension of term “bird,” and the term “bird” is in the intension
of term “raven.” For the corresponding concepts, we can say that the
concept Craven has an intensional relation to the concept Cbird, and the
concept Cbird has an extensional relation to the concept Craven.

297

298 Chapter 11

Intuitively, the extensional relations of a concept link it to its spe-
cializations, instances, or exemplifiers; the intensional relations of a
concept link it to its generalizations, properties, or attributes. For a
higher-order term (a statement), its meaning also includes statements
that imply it and statements it implies (i.e., its sufficient conditions
and necessary conditions), as defined in Section 5.1.2.

Since in NARS every belief has a truth value attached to show the
evidential support it got from the experience of the system, each of the
above extensional/intensional relations is “true to a degree.” Therefore,
for a given concept, there are “typical” instances/properties (with larger
frequency and confidence values), and “periphery” ones.

Limited by available resources, each time a concept is used (during
the system’s processing a task), only part of its meaning is involved,
selected according to the priority distribution maintained within its
body (as described in Chapter 6). For this reason, we should distinguish
the “general meaning” of a concept and its “current meaning” (with
respect to a given task at a given time). Usually, the latter is a very
small part of the former, and in different times, the same concept may
be used with quite different “current meanings.”

New beliefs and tasks in NARS come from two sources: either input
from the user or another system, or derived from existing beliefs and
tasks. The former is the system’s direct experience, and the latter can
be seen as indirect experience (since it is derived from the former). In
both cases, a belief contributes (more or less) to the intension of the
subject and the extension of the predicate.

The tasks in a concept corresponds to the system’s motivations re-
lated to the concept, and it indicates the direction in which the concept
may evolve. When the system is asked to evaluate the truth value of
a given statement “S → P ,” the task can be carried out in several
ways. For example, the system may happen to recall a belief with the
form “S → P < f, c >” in concept CS or CP , or it may derive such
a conclusion by inference (it may be deduction, induction, abduction,
analogy, or something else). More likely, it will get candidate conclu-
sions from several paths, then use the revision rule or the choice rule
to decide the answer. The same is also true for questions with variables
to be instantiated (the “what” questions).

Categorization and Learning 299

In general, NARS has multiple strategies when a categorical re-
lationship needs to be judged, and the actual result depends on the
current meaning of the involved concepts, consisting of some exten-
sional and intensional relations of them. In the following, this model is
compared with other models of categorization.

11.1.2 Classical theory

The “classical theory” of categorization can be traced back to Aristotle,
and it is roughly identified with the following opinions:

1. Every concept (or category) has a meaning, which remains the
same at different times and places.

2. The meaning of a concept is specified by a “definition,” which
gives the sufficient and necessary condition for an entity to be
an instance of the concept. A definition can be given as a logical
structure of other concepts, or as an exhaustive list of instances
or properties of the concept.

3. Whether an entity is an instance of the concept or not is either
true or false, with nothing in between.

Such a theory works well in mathematics, and people used to believe
that it is also how categorization works in other domains. In everyday
life, we are often asked to follow (or give) definitions of concepts.

However, though “to use concepts according to their definitions” is
an effective way for practical purposes, there are many problems in this
theory. Even if we ignore the practical difficulties (how to avoid circular
definition, how to choose among competing definitions, ...), there are
theoretical issues caused by the above opinions. In psychological and
linguistic research, many counter evidences of such a theory have been
found, which show that the concepts in the human mind do not fit
this picture [Laurence and Margolis, 1999]. Currently few people still
associate themselves with such a theory in psychology and philosophy.

Nevertheless, such a theory is still very popular in AI. In knowl-
edge representation, new concepts are often introduced by definitions;
in machine learning, new concepts are often learned by identifying their

300 Chapter 11

sufficient and necessary conditions. In both fields, the membership re-
lation between a possible instance and a concept is still mostly bi-
nary (true or false). For examples, see [Kurtonina and de Rijke, 1999,
Gärdenfors and Williams, 2001]. Furthermore, the influence of the clas-
sical theory can be seen in notions like “class,” “frame,” and “script,”
which represents an instance of a concept by specifying its values on
a set of predetermined attributes.1

If we focus on AI, and do not care much about what is going on in the
human mind, should we just keep the classical theory of categorization?

NARS gives a negative answer to this question. Here the classical
theory is rejected, not because NARS tries to simulate human behav-
iors, but because this theory conflicts with the fundamental principle
of the project, that is, the system has to adapt to its environment with
insufficient knowledge and resources.

In NARS, since future entities and events may be different from the
ones the system encountered in the past, but the system has no other
guidance beside its experience, it must somehow treat different things
as the same. Since the system cannot afford the time and space to
represent and process its experienced events and entities in all details,
it must classify them into groups and ignore some subtle differences.
Therefore, categorization becomes necessary in NARS. Because this
process is based on experience, there is no way for the system to get
a set of well-defined concepts in advance, and expect them to fit all
possible experiences nicely. Instead, the system has to try different ways
to categorize its experience, which eventually leads to the model of
categorization described above.

Therefore, NARS does not accept the classical theory of categoriza-
tion, mainly because such concepts are not available in an adaptive
system working with insufficient knowledge and resources.

However, this does not means that there is no value in the classi-
cal theory. Actually, NARS favors “well-defined” concepts. If a concept
has a small and stable “core meaning,” which consists of a few rela-
tions with other concepts, implies most other relations of the concept,
and clearly distinguishes instances from non-instances, then usually this

1There are some recent attempts to extend object-oriented languages to handle
uncertainty, such as [Cao et al., 2002].

Categorization and Learning 301

concept is more useful than a concept whose meaning is fuzzy, messy,
and unpredictable.

According to EGS, the meaning of a concept is determined by its
(experienced) relations with other concepts. However, the relations do
not contribute equally. Usually, some relations are more “essential,” in
the sense that many others can be derived from them. If for a given
concept such essential relations can be identified, they can be called
the “definition” of the concept. However, such a definition, even when
it can be obtained, is not perfect in the sense that all other relations
can derived from it. Also, it changes as new experience is obtained.

In summary, the classical theory does not fit with the usual cat-
egorization process in NARS, though it does provide a desired limit
situation for categorization, as well as a good approximation for cer-
tain situations.

11.1.3 Similarity-based models

Unhappy with the binary concept of the classical theory, several theories
are proposed, based on the opinion that whether something belongs to
a concept or not is generally a matter of degree. Furthermore, they
define this “degree” as some kind of similarity.

According to “prototype theory,” a concept is characterized by the
properties possessed by most of its members [Rosch, 1978]. Therefore,
the degree for an entity to belong to a concept is reduced to the degree
of similarity between that entity and the prototype of the concept.

According to “exemplar theory,” a concept is determined by a set
of exemplars [Nosofsky, 1991]. Therefore, the degree for an entity to
belong to a concept is reduced to the degree of similarity between that
entity and the given exemplars of the concept.

Both above theories correspond to (different) special situations in
NARS.

When the truth value of a statement is determined in NARS, both
extensional evidence and intensional evidence are taken into account.
When NARS is asked to decide whether an entity e belongs to a concept
C, the system may compare e with known instances of C, check whether
e has the properties associated with C, or do both — it depends on the
system’s beliefs, and which of them are recalled at the time.

302 Chapter 11

For a given concept CT , if in the experience of the system it is
mainly learned through its intensional relations, then its core meaning
consists of statements “T → P1,” “T → P2,” and so on (truth values
omitted), where P1 and P2 are the properties satisfied by most of the
instances of the concept. When the system needs to evaluate “e → T ,”
the abduction rule is used, which checks the properties one by one
(by deriving “e → T” from “T → Pi” and “e → Pi”), then merges
the conclusions together according to the revision rule. This is roughly
equivalent to comparing e with a prototype that has all the properties.

For a given concept CT , if in the experience of the system it is mainly
learned through its extensional relations, then its core meaning consists
of statements “e1 → T ,” “e2 → T ,” and so on (truth values omitted),
where e1 and e2 are the exemplars of the concept. When the system
needs to evaluate “e → T ,” the analogy rule is used, which compares
e with the known instances (by deriving “e → T” from “ei → T” and
“e ↔ ei”). Since the analogy rule usually produces more confident con-
clusions than the abduction rule, the system may only compare e with
one exemplar, if their similarity is sufficient for a confident conclusion.

In both of the above situations, the inheritance relation (“→”) be-
tween e and T can be replaced by the instance relation (“◦→”), and
the conclusion still holds.

Using the terminology of NARS, we can see that exemplar theory
defines the meaning of a concept as its extension, and prototype the-
ory (as well as “feature list” theory) defines the meaning of a concept
as its intension. Consequently, the comparison of the two is like the
“chicken-and-egg” question — do we get instances first, then generalize
properties from them, or get properties first, then determine instances
according to them? The answer provided by NARS is: both.

Whenever the system gets a piece of new knowledge, since its form is
“S → P” (with a certain truth value), it always adds something new to
the extension of P , and to the intension of S. Therefore, to the system
as a whole, extension and intension are symmetric, and are developed
together — they are just two opposite directions of a link.

On the other hand, in a concrete concept, it is quite possible that its
meaning is mainly determined by its extension, while in another con-
cept, by its intension. It depends on how the concept is learned and used
in the past. Consequently, some concepts fit better with the description

Categorization and Learning 303

of prototype theory, while some others fit better with the description of
exemplar theory. In general, however, both extension and intension con-
tribute to the meaning of a concept, though not necessarily to the same
extent.

The coordination of extension and intension of a concept is a very
important aspect of the NARS categorical dynamics. The system does
not simply decide which of the two is more essential, but rather keeps
a dynamic balance between them. As a result, a change in extension
usually causes changes in intension, and vice versa. Though a perfect
coherence is almost impossible, the system does try to reduce the in-
ternal inconsistency as much as possible.

11.1.4 Relation-based models

To define the meaning of a concept as its relation with other concepts is
not really a new idea. For example, this is also the idea behind seman-
tic networks [Quillian, 1968], concept role semantics [Harman, 1982],
and the “theory theory” of categorization [Murphy and Medin, 1985].
A typical presentation of this opinion is: “In order to characterize
knowledge about and use of a concept, we must include all of the rela-
tions involving that concept and the other concepts that depend on it.”
[Murphy and Medin, 1985] The categorization model of NARS agrees
with these approaches on a general level.

Even so, there are still several major differences between NARS and
these relation-based theories on categorization.

Since NARS uses a term logic, all statements belong to the inheri-
tance relation and its variants, therefore are categorical statements —
“S → P” says that S is a sub-concept of P , and P is a super-concept of
S. As a result, the meaning of a concept in NARS can be simply defined
by the extension and intension of the concept. In this way, NARS pro-
vides a detailed model for how a concept is related to other concepts,
and how these relations change by the inference rules when the system
runs.

Also, NARS stresses the role of experience in determining the mean-
ing of a concept. When I say that in NARS the meaning of a concept is
determined by its relations with other concepts, I do not mean “possible
relations,” “potential relations,” or “factual relations,” but “relations

304 Chapter 11

that have been obtained/derived from the experience of the system.” As
experience stretches in time, meanings of concepts change accordingly.

Furthermore, context selectively forms a short-term “current mean-
ing” from the long-term general meaning of a concept, so that a concept
can be used more or less differently in different situations. In these sit-
uations, the coherence of the concept is not absolute, but a matter of
degree.

Therefore, the categorization model of NARS is not infinite or holis-
tic. Though it is in principle possible to relate a concept to all other
concepts within the system, or to put a concept into infinitely many
relations with another concept [Coulson, 2001, Murphy and Medin,
1985], in practice this will never occur under any realistic set of re-
source constraints.

The “theory theory” of categorization stresses the role played by
causal knowledge in the meaning of concepts [Rehder, 1999]. In NARS,
this may also be the case for some concepts. In Narsese, causal knowl-
edge is a special case of the higher-level relations (implication and
equivalence), with additional information (such as temporal order, pred-
ication power, and so on). For certain concepts, it is quite possible that
their core meaning consists of mainly causal knowledge, or knowledge
in an intuitive theory about the environment. However, this is not nec-
essarily the case for all concepts in NARS.

Though in the current version of NARS each concept corresponds
to a term in Narsese, the categorization model of NARS is not lim-
ited to abstract concepts with linguistic labels. In the future, when
the system is extended to have sensorimotor capacity, some concepts
may mainly correspond to mental images produced by perception, or
operation sequences that can be executed within or outside the sys-
tem. Even with these additional components, the principle for concept
representation remains the same, and the meaning of a concept is still
determined by its relations with other concepts, including the images
and operations. Of course, at that time the system will have difficulty
in explaining (in Narsese) the meaning of such a concept to another sys-
tem, partially because procedural knowledge cannot be fully expressed
declaratively.

During the development of NARS, I spent several years at Indiana
University as a member of FARG (Fluid Analogies Research Group)

Categorization and Learning 305

lead by Douglas Hofstadter. Therefore, NARS bears certain “family re-
semblance” with other FARG projects, such as Copycat and Tabletop
[Mitchell, 1993, French, 1995, Hofstadter and FARG, 1995]. One of the
important themes shared by these projects is their focus on fluid con-
cepts. The concepts in NARS are “fluid,” in the sense that they are
“concepts with flexible boundaries, concepts whose behavior adapts to
unanticipated circumstances, concepts that will bend and stretch —
but not without a limit” [Hofstadter and FARG, 1995]. These systems
solve problems by “analogy” — in a broad sense, it means to use one
concept as another concept, which is close to what “inference” means
in a term logic. Of course, the conclusions obtained in this way are not
always correct, but nevertheless this ability is crucial for cognition and
intelligence.

11.1.5 Compositionality

As described previously, in NARS there are two types of terms: atomic
and compound. The former is an identifier without internal structure,
while the latter is formed by a logical operator from other terms.

NARS has the following types of compound terms:

Sets: Compound terms are introduced by enumerating its instances or
properties.

Intersection and difference: Compound terms are introduced by tak-
ing the intersection (or difference) of the extension (or intension)
of existing terms.

Product and image: Compound terms are introduced according to
their (non-copula) relations with other terms.

Statement: A statement, consists of two terms linked together by a
copula, is taken as a term.

Compound statement: The negations, conjunctions, and disjunc-
tions of existing statements are introduced as compound state-
ments (therefore compound terms).

306 Chapter 11

NARS allows new concepts to be named by compound terms, so
as to get productivity and systematicity from compositionality [Fodor,
1998, Rips, 1995]. However, as discussed previously, the meaning of a
concept usually is not fully determined by such a definition, even if it
exists.

The meaning of a concept corresponding to a compound term is
determined just like the other concepts, that is, by its relations with
other concepts. The only specialty here is that among these relations,
there are special ones that link the compound term to its components,
with the logical operator attached. As a result, its “literal definition,”
as given above, is part of its meaning, though usually not the whole
meaning.

Therefore, the compound terms in NARS are partially composi-
tional. On one hand, the meaning of a compound term does heavily
depend on the meaning of its components in a way determined by the
operator. If there is no other relation available, its meaning can even
be reduced into that of its components. On the other hand, as soon
as there are other relations, the meaning of the compound term is no
longer completely determined by its literal definition, nor is it reducible
to its components, though still more or less related to them.

For example, the compound term ([black] ∩ board) (“blackboard”)
is related to terms “black” and “board” by definition, though its rela-
tion with the concept of “writing surface” cannot be derived from the
above “defining” relations. Instead, it mainly comes from the system’s
experience, in which “blackboard” often appears as a whole.

The same is true for the truth value of a compound statement. the
truth value of (P ∧ Q) can be calculated from the truth values of P
and Q. However, (P ∧ Q) as a whole can be evaluated in other ways,
so that in the long run, when evidence is collected in multiple ways, it
is possible for it to get a truth value that cannot be reduced to that
of its components. This is especially the case when the truth values of
P and Q are not independent of each other (i.e., they are based on
overlapping evidence).

11.1.6 Categorical dynamics

Though some authors have argued for the fluid and instable nature of
concepts [Barsalou, 1987, Hofstadter and FARG, 1995], most current

Categorization and Learning 307

models of categorization do not provide a clear picture of the dynamics.
A major feature that distinguishes the NARS categorization model from
many other models is to treat the meaning of a concept as changing
over time, and to accurately specify how such changes happen.

As described previously, the meaning of a concept is nothing but the
collection of beliefs and tasks associated with it. As a result, when a
new input sentence is inserted into the bodies of the relevant concepts,
it also changes their meaning, though usually not too much. Derived
beliefs and tasks have the same effect.

Of course, meaning change does not always appear as adding new
relations. When a new (input or derived) belief conflicts with an old
belief, the revision rule is applied to merge them. Consequently, though
no new statement is added into the concept body, the truth value of an
existing statement has been changed, which also causes the meaning
of the relevant concepts to be changed. Since NARS has insufficient
resources, each concept has a certain capacity, and when its body is
full, some old beliefs/tasks with low priority will be deleted, which is
another form of meaning change.

Since the above insertions, revisions, and deletions happen all the
time when NARS is running, the related concepts in the system change
their meanings from time to time. In NARS, the distinction between
“concept enrichment” and “concept change” is highly relative — it is
just that some changes are more radical than the others. Some changes
are so little that they can be ignored practically. Large or small, such
changes are not arbitrary or random. On the contrary, they are caused
by the system’s external communication activity and internal inference
activity.

Another aspect of the conceptual dynamics in NARS is the adjust-
ment of priority values of beliefs, tasks, and concepts. As described in
Chapter 6, in each inference step, the involved items (concept, task, and
belief) are selected probabilistically according to their priority values,
and these values are adjusted after each step according to the current
result. Therefore, though the meaning of a concept is defined as the
collection of beliefs and tasks in the body of the concept, it does not
mean that each of them contributes equally. Instead, items with higher
priority are used more frequently, and therefore are included more of-
ten in the “current meaning” of the concept. Especially, some concepts

308 Chapter 11

may form a stable “core meaning” over time, which is almost always
involved whenever these concepts are used. On the contrary, some other
concepts may lack such a stable core, and their meaning tend to change
more radically from situation to situation.

Priority adjustments occur not only within concepts, but also among
concepts. The priority value of a concept is increased when a new task
is inserted into it, which may later derive another task to be inserted
into a related concept. Therefore, in NARS, among concepts there is
also an “activation spreading” process (though the technical details are
different from those found in neural networks). Within a single concept,
this process also increases the priority of the relations those “targets”
(the linked concepts) have high priority. Consequently, among the be-
liefs and tasks within a concept, the ones more relevant to the current
context (defined by the current active concepts) get more chance to be
used.

A concept with unbalanced extension/intension is usually not very
useful — a concept with a big extension and a small intension is like a
collection of objects with few common properties, and a concept with
a big intension and a small extension is like a collection of features which
few objects can satisfy. A concept with “balanced” extension/intension
tends to be close to the “basic level” of categorization [Rosch, 1978],
which, according to typical human experience, include many instances
with many common properties, therefore are usually more useful for
various situations.

If for a concept the “current meaning” triggered in a certain context
happens to be quite different from its “core meaning,” then we may
observe a “metaphorical use” of the concept [Lakoff, 1987]. When such
things happen often enough, the previous “periphery meaning” may
become part of core meaning, and we say that the concept has evolved
in meaning.

Such a conceptual evolution process has special importance to con-
cepts associated with compound terms. Typically, such a concept ini-
tially is used according to its literal definition, that is, its relation with
components, as specified in its name. However, if later the system gets
more direct knowledge about the concept as a whole, and such knowl-
edge cannot be derived from its definition (and may even conflict with
it), we get a concept which cannot be understood literally anymore.

Categorization and Learning 309

For example, when the compound term “([black]∩ board)” (“black-
board”) appears for the first time in the experience of NARS, it will be
understood “literally,” that is, as a “board” that is “black” (under the
assumption that both concepts already exist). Later, when most black-
boards the system encountered are writing surfaces, this relation be-
comes the core meaning of the concept, while the relations with “black”
and “board” become periphery, though still there.

Since the experience of NARS includes its communication with other
systems, its usage of a term is influenced by how the same term is used
by other systems. If several NARS-based systems form a multi-agent
community, the agents tend to develop a consensus on the meaning
of the concepts, though the same concept may never have exactly the
same meaning in each agent. In this sense, we say that a concept has
an “objective” meaning, which is not arbitrary or idiosyncratic. If an
individual in the community departs from this consensus, it runs into
the risk of misunderstanding, though such a departure may also corre-
spond to a creative usage of a concept, which may later spread in the
community as the new meaning of the concept.

11.1.7 Factors in categorization

In summary, the meaning of a concept in NARS at a given time depends
on the following factors:

• the collection of beliefs and tasks in the body of the concept,

• the truth value of each belief,

• the priority distribution among the items in the concept body.

The truth value and priority value of a belief are related, but not
the same thing. Generally speaking, more confident judgments are more
useful than guesses supported by little evidence, and affirmative judg-
ments are more useful than negative judgments, but priority depends
on other factors beside truth value, as mentioned previously. Especially,
the priority distribution is highly context-sensitive, while a truth value
is mostly determined by the long-term experience of the system.

In general, the change of meaning in a concept is caused by two ma-
jor factors: history (past experience) and context (current experience).

310 Chapter 11

The former causes permanent changes in meaning and makes the sys-
tem adaptive, while the latter causes temporary changes in meaning and
makes the system situated. Of course, the distinction between these two
factors is relative, not absolute.

In the long-term, the process corresponds to concept learning and
evolving. Instead of assuming the learning process converges to a “cor-
rect representation” or “true meaning” of the concept, in NARS the
process is a never-ending adaptation, and the result is determined by
the experience of the system.

In the short-term, the system shows context-sensitivity. Under the
assumption of insufficient resources, NARS almost never tries to use
all relevant beliefs to process a task. Instead, only “partial meaning”
will be used, and which part to select is determined by the priority
distribution. Roughly speaking, the selected ones tend to be “useful”
and “relevant,” judged by the system according to past experience and
current context.

As a result, it is quite normal in NARS for a concept to be used
with different meanings, or for the same input to be categorized (“per-
ceived”) differently.

Since in NARS all categorization related processing is carried out
by the inference rules, categorization is reasoning. On the other hand,
since NARS is a term logic, and in each inference step the premises and
conclusions are all categorical statements, reasoning is categorization.
The two notions just focus on different aspects of the same process.

On the contrary, in predicate logics, the inference rules are not based
on categorical relations, but on truth values. Consequently, knowledge-
based systems with such logics usually use separate mechanisms for
categorization (using “terminological knowledge”) and reasoning (using
“factual knowledge”) [Brachman and Schmolze, 1985]. As a result, in
these systems categorization and reasoning are not unified as in NARS.

11.2 Learning in NARS

Generally speaking, “learning” means “changing according to experi-
ence to improve performance.” Obviously, learning plays a central role
in NARS.

Categorization and Learning 311

11.2.1 Multiple types of learning

As described in the previous chapters, there are several types of learning
going on in NARS:

• The inference rules generate new beliefs, which are added to the
knowledge base of the system.

• The revision rule will merge beliefs with the same content but
come from different experience, therefore changing the belief of
the system according to new evidence.

• As new beliefs are generated and old beliefs forgotten, the system
learns the meaning of the terms according to its experience with
them.

• The compound-term composition rules generate new terms from
time to time. At the beginning, their meaning is determined by
the meaning of their components. However, as the system gets
more direct experience on them, they gradually become indepen-
dent, and are treated for their own sake.

• By adjusting the priority distributions among terms, tasks, and
beliefs, as well as by deleting useless ones, the system also learns
what is important and relevant and so should be considered first
when processing time is insufficient to consider everything. This
kind of “structural knowledge” is not declaratively expressed
in Narsese, but embedded in the memory structure of the
system.

In this sense, all activities in NARS can be referred to as learning,
and NARS is nothing but a multi-strategy learning system. Similar to
the case of categorization, in NARS “reasoning” and “learning” are
merely two different ways to describe the same underlying process.

In the current research of AI and cognitive psychology, there is
a strong tendency of treating intelligence and cognition as a “toolbox,”
i.e., a collection of “functions” like reasoning, categorization, learning,
perception, and so on. The justification of such a treatment is that
by studying each function in isolation, the task will become easier,

312 Chapter 11

and in the future we can integrate the results into a hybrid system
consisting of many modules, each of which is responsible for a certain
function. What I suggest here is another possibility: all these functions
may actually be different aspects of the same underlying process, which
can be reproduced and implemented as one piece.

NARS is an attempt to provide a unified (not “hybrid”) normative
theory of intelligence for both humans and computers. As a reasoning
system, it unifies various types of inference. Here we see that it also
unifies learning and reasoning.

11.2.2 NARS and machine learning

Though NARS is a learning system, it is quite different from the main-
stream “machine learning” research, with respect to the concrete prob-
lems they are working on.

A machine learning system is often described as a “learning algo-
rithm,” which takes raw data and background knowledge as input, and
produces some output, usually a representation of a concept that was
learned from the given data.

An “algorithm” is a computational process that, for the same input,
always follows the same path, takes the same amount of computational
resources, and produces the same output at the end.

NARS does not fit the above description, because in it “learning” is
a life-long process [Thrun and Mitchell, 1995] that takes different forms
and is influenced by many factors. Consequently, even for the same
input, the process at different times may follow different paths, cost
different resources, and get different results.

To build a learning system in this way is very different from building
an algorithm which takes certain input and produces the desired output:

• By working in real time, it allows different response-time require-
ments to be attached to a task. One task may need a quick solu-
tion, while another task may prefer a more carefully considered
solution.

• New knowledge can be added from time to time, as well as by the
request of the system. The system revises its beliefs incrementally,
rather than restart whenever new knowledge arrives.

Categorization and Learning 313

• When it is impossible to consider all relevant knowledge, the sys-
tem can make a rational selection according to experience and
context.

• The selection of inference rules is data-driven, so neither the de-
signer nor the user needs to specify how to process a concrete task
in advance.

• The learning process is integrated with reasoning and categoriza-
tion — actually they are different names of the same process.

• It is more similar to the learning process of human beings — we
seldom learn new ideas by following a predetermined algorithm.

Of course, this does not mean that NARS is always better than the
learning algorithms. Actually, whenever a learning algorithm is avail-
able and affordable, it usually gives a more reliable and efficient solution
than NARS. On the other hand, something like NARS should be used
when such an algorithm is not available (due to insufficient knowledge)
or not affordable (due to insufficient computational resources).

In the current machine learning study, the closest work to NARS is
the Inferential Theory of Learning (ITL) [Michalski, 1993]. Both NARS
and ITL are inferential system that carry out multi-strategy learning,
and they also share many theoretical and technical assumptions about
machine learning, such as to understand learning as “a goal-guided
process of modifying the learner’s knowledge by exploring the learner’s
experience.” [Michalski, 1993].

These two approaches have similar major components, but the tech-
nical decisions on each of them are quite different:

Knowledge representation: ITL uses first-order predicate logic for
knowledge representation, while NARS uses a kind of term logic.

Semantics: In ITL, “truth” is defined according to model, while in
NARS it is according to experience.

Inference rules: The two systems have different rule sets. Though
both include deduction, induction, abduction, and analogy, the
exact definitions are not the same.

314 Chapter 11

Knowledge organization: In NARS, priority distributions are main-
tained among tasks and beliefs, so that tasks are processed at dif-
ferent rates and beliefs have different probabilities of being used.
By adjusting the priority distributions, the system learns control
and context information. There is no such mechanism in ITL.

Control mechanism: ITL characterizes a learning process as a goal-
guided search through a knowledge space. NARS processes its
tasks by interacting them with beliefs at different rates to find
matching answers and to derive new knowledge and tasks. This
process does not follow a predetermined algorithm.

11.2.3 Learning and intelligence

Though few people deny the importance of learning in AI research,
there are many “AI systems” that have little learning capability. Many
people just treat learning as an additional function that can be later
added into the system to improve its performance. To them, “working”
and “learning” are two separate phrases in the life cycle of an AI system.

Even in the machine learning community, it is a common practice
to formalize learning as a normal computation process that maps given
inputs into corresponding outputs, according to a predetermined algo-
rithm, function, or sample set.

As we have seen, NARS treats learning differently, in several aspects:

• According to the working definition of intelligence of NARS, a
system without learning capability is not intelligent at all. In
a sense, “machine learning” is not merely part of AI, but AI itself.

• For a system, learning is not simply a procedure call, but is every-
where in the system’s life-long history.

• Learning takes different forms, and changes various components
and aspects of the system.

In NARS, the learning process shows the two aspects in Piaget’s the-
ory [Piaget, 1963]: assimilation, by which new experience is perceived

Categorization and Learning 315

and interpreted according to the internal status of the system, and ac-
commodation, by which internal status of the system changes according
to the new experience.

NARS is a general-purpose system in the sense that its learning ca-
pability is not designed to suit any specific practical problem. Like a
baby, it has the potential to become experts in many different domains.
However, also like a human being, its experience will cause bias in its
belief structure and skill set, so it won’t become an expert in all the
domains at the same time. In discussions on AI, arguments against
a unified theory are based on the (correct) observation that differ-
ent techniques work better for different problems [Minsky et al., 2004].
However, it is often ignored that at a lower lever these techniques may
be based on a common technique, which is not problem-specific. With-
out such a common foundation, attempts to integrate multiple tech-
niques have been difficult [Roland and Shiman, 2002].

As described previously, on the object-language (Narsese) level,
everything can be learned (i.e., changed according to experience), in-
cluding beliefs, tasks, and concepts, with their attributes (truth value,
priority, meaning, and so on).

This does not mean that everything changes in NARS. Instead, in
the meta-language (the design language of NARS used in this book),
there are many things which remain unchanged in NARS, such as the
grammar of Narsese, the semantic principles of Narsese, the mean-
ing of the logic constances (the built-in relations and operators), the
inference rules (with their truth-value functions), the working cycle,
and the control strategy. These are the “innate” components of the
system.

When an implementation of NARS is “born,” only the above innate
parts are required, and the memory of the system may be empty. After
the system starts to communicate with the environment, it begins to
learn beliefs, tasks, and concepts (with their attributes). Then, the
system’s behaviors will be determined both by its “nature” (the innate
components) and “nurture” (experience), but not by either of the two
alone.

For practical purposes, it is possible to start a NARS with a “pre-
loaded” memory. To do this, we can simply start a NARS with an
empty memory, educate it, then at a later time save its memory into

316 Chapter 11

a file or database, which can be copied into another NARS to be used
as the memory-at-birth. This method will improve education efficiency
of the system. We may even allow direct “memory-editing” to get a
desired memory. All these techniques do not change the principle that
everything on the object-language level is learnable, given proper ex-
perience.

NARS is creative, but not in the sense that all the results of such
behaviors are of benefit to the system, or excellent according to some
outside standards. Nor does it mean that these behaviors come from
nowhere, or from a “free will” of some sort. In contrary, it means that
the behaviors are novel to the system, and cannot be attributed either
to the designer (who determines the system’s initial state and skills)
or to a tutor (who determines part of the system’s experience) alone.
Designers and tutors only make the creative behaviors possible. What
turns the possibility into reality is the system’s experience, and for
a system that lives in a complex environment, its experience is not
completely determined by any other systems (human or computer).
For this reason, these behaviors, with their results, are better to be
attributed to the system itself, than to anyone else [Hofstadter, 1979].

In the discussions on future AI, there is the opinion that a real AI
should be able to achieve “complete self-modifying,” include changing
its own source code. Technically, it is possible to let NARS change
something on the meta-level, however, that approach is not adopted at
the current stage, for the following reasons:

• “Complete self-modifying” is an illusion. If we allow NARS to
modify its meta-level knowledge, we need to give it meta-meta-
level knowledge to specify how the modification happens. As flex-
ible as the human mind is, it cannot modify its own “law of
thought.” As Hofstadter put it, “below every tangled hierarchy
lies an inviolate level” [Hofstadter, 1979].

• Though meta-level self-modifying will give the system more flex-
ibility, it does not necessarily make the system more intelligent.
It is often dangerous, and should be used only when the same ef-
fect cannot be produced in the object-level. To assume “the more
radical the changes can be, the more intelligent the system will

Categorization and Learning 317

be” is unfounded. It is easy to allow a system to modify its own
source code, but hard to do it right.

• In the future, I will explore the possibility of meta-level learning
in NARS, but will not attempt to do so until the object-level
learning is mature. To try everything at the same time is just not
a good engineering practice.

In summary, at the current stage, the learnability of NARS is de-
termined accurately by the level of language: everything on the object-
language level is learnable, while everything on the meta-language level
is not.

Chapter 12

Control and Computation

This chapter discusses the control mechanism of NARS, which is based
on AIKR. Consequently, NARS behaves quite differently from tradi-
tional computing systems.

12.1 NARS and theoretical computer

science

12.1.1 Turing Machine and computation

The word “computation” has two different senses. In a broad sense, it
refers to whatever a computer does; in a narrow sense, it is a concept
defined in theoretical computer science.

A Turing Machine M has a finite number of states, and among
them there is one initial state and at least one final state. At each state
qi, M moves into another state qj, according to the given input data.
A computation is a finite sequence of moves by which M transforms
from its initial state q0 to one of its final states qf , in response to
the input data di. In the final state, M provides the output data do

as the result of the computation. We can equally well say that M is
a function that maps di to do, or that M is an algorithm with di and
do as input and output, respectively [Hopcroft and Ullman, 1979].

It is very important to see that Turing Machine is not defined merely
as a system, but as a process in that system. According to the definition

319

320 Chapter 12

of computation, the process has the following features:

1. There is a unique initial state in which the system can accept
input tasks, and tasks are processed in a one-by-one manner. If a
task arrives when the system is still busy with another task, the
new task has to wait.1

2. The system always yields the same result for a given task, no
matter when the task is processed.

3. The amount of resources spent on a task is a function of the task,
depending on the complexity of the algorithm, but independent
of when the task is processed.

4. There is a predetermined set of final states in which the sys-
tem will stop working on a task and provide a result, no matter
whether there are other tasks waiting to be processed.

Usually, an algorithm is defined on a problem class, which has more
than one concrete problem instances. In each time the algorithm is used,
it is applied on a problem instance. A problem (class) is computable if
there is an algorithm that generates a correct result in finite number
of steps for each instance of the class. In that case, the algorithm (or
the corresponding Turing Machine) is referred to as the solution of the
problem.

The amount of time or space used by an algorithm is called the
(time or space) complexity of the algorithm, and is represented as a
function of the “size” of the problem instance. According to the cate-
gory the function belongs, we call the complexity to be constant, loga-
rithmical, polynomial, exponential, and so on. In particular, a problem
is feasible, or tractable, if it has a polynomial solution or better. The
problems without polynomial algorithms are intractable, because the
cost of a solution will become astronomical figures for large instances
of the problem [Rawlins, 1992].

According to computability theory and computational complexity
theory, using a computer to solve a problem usually follows this proce-
dure:

1Even if interrupt mechanisms are taken into consideration, the picture is fun-
damentally the same.

Control and Computation 321

1. to define the problem by accurately specifying the valid inputs,
and for each of them, specifying the required output;

2. to design an algorithm that correctly generates output for each
valid input;

3. to analyze the complexity of the algorithm, and to select the most
efficient one if there are multiple algorithms for the problem;

4. to code the algorithm in a programming language, and to load
the executable code into a computer system.

If the algorithm is correct and the program is efficient enough, the
problem is considered as solved — for each instance of the problem,
the program will produce a correct solution. The output and its (time-
space) cost are determined only by the algorithm and the input.

Conceptually, a computer system can be seen as a collection of al-
gorithms, and it works by repeating the following cycle:

to wait for the user to input a new problem instance;
to call the corresponding algorithm when an input comes;
to execute the algorithm on the given input;
to report the output;
to reset the working environment.

Though modern computer systems allow multiple problem instances
to be processed in parallel by time-sharing, the above conceptual picture
remains unchanged. When an algorithm is working, whether there are
other algorithms running should make no difference in the result, unless
it has communication with other algorithms (which should be taken as
part of the input). If the same problem instance is asked again later,
the result should be exactly the same.

12.1.2 Algorithm and intelligence

Since AI is usually taken as a branch of computer science [Newell, 1990],
it has also, to a large extent, inherited the theoretical heritage associ-
ated to the concept of computation. Most people in AI conduct their

322 Chapter 12

research according to the previous procedure, by defining problem, de-
signing algorithm, analyzing computational complexity, and so on. A
well known example is Marr’s classification of AI research into the levels
of computation, algorithm, and implementation [Marr, 1982].

For a given problem, this approach has three possible results:

No algorithm is found. If we do not have the knowledge to design
an algorithm to solve a given problem, then of course there is no
solution, at least at current moment. For certain problems, it can
even be proved that they are not computable.

No tractable algorithm is found. If we know an algorithm, but it
is too resource demanding, then it cannot be used except on very
simple instances of the problem. When a solution does not “scale
up” to complicated cases, in AI it is usually not counted as a
solution. For example, in principle many problems (such as play-
ing chess) can be solved by exhaustive search, but we cannot
afford the time it requires — exponential algorithms easily pro-
duce “combinatorial explosion,” so they make no practical sense.
That is why some authors treat tractability as a central issue in
AI [Bylander, 1991, Levesque, 1989].

A tractable algorithm is found. By definition, in this situation the
problem has a known solution that can be practically used. For
computer scientists, this is the end of the story (unless there is
the need to improve the algorithm). However, for the purpose of
AI, some people are unhappy — “Where is the intelligence? This
is just programming!” The concept of “intelligence” is intuitively
related to creativity and flexibility, so to many people, solving a
problem by accurately following a predetermined algorithm can-
not be it.

So AI is in a weird situation — it either fails to solve a problem,
or solves a problem “without intelligence.” Therefore, it seems that AI
never works! This is what Hofstadter calls Tesler’s Theorem — “AI is
whatever hasn’t been done yet.” [Hofstadter, 1979].

Different people have different attitudes toward this situation. Some
people take it as an argument for the impossibility of real AI; some

Control and Computation 323

people blame the von Neumann computer, and believe that AI needs
a fundamentally different hardware which is not a Turing Machine;
some people do not take this as an issue — they proudly see AI as the
expanding frontier of computer science.

For several reasons, this is an issue. We do not need to run psy-
chological experiments to know that the problem-solving processes in
the human mind rarely follow a predetermined algorithm. On the other
hand, one important motivation behind AI research is to introduce
flexibility, autonomy, and creativity into computer systems. If AI still
follows the common practice of computer program development, then
“intelligence” is simply a fancy label on old stuff, and the systems de-
veloped will continue to be “brittle,” in the sense that it cannot handle
any event that is not fully anticipated when the system is designed
[Holland, 1986].

Some people suggest that the problem is caused by the narrow-
ness of the concepts in theoretical computer science [Hofstadter, 1985,
Kugel, 1986, Sloman, 2002]. However, the majority of the AI researchers
continue to apply the theory of computation to AI, and analyze prob-
lems in terms of computability and computational complexity, as ex-
emplified by [Bylander, 1991, Edmonds, 2000, Hutter, 2001, Levesque,
1989, Littman et al., 1998, Valiant, 1984].

12.1.3 NARS at different scales

The relationship between NARS and the notion of “computation” (in
the narrow sense of the word) is subtle, since the system can be analyzed
on different scales of description.

Let us first identify the “problems” NARS attempts to solve. From
the previous description, it is obvious that each “task” in NARS can be
seen as a “problem instance.” If a task is taken as input, what NARS
does to it is not computation, because almost all components in the
previous definition of “computation” are missing here:

• Though NARS does solve problems, it processes each problem
instance (i.e., a task) in a case-by-case manner, without a general
algorithm for the “problem class” as a whole. As a result, it may
give a pretty good solution to a task, but may fail on a similar one.

324 Chapter 12

• In NARS, there is no unique “initial state” in which the system
waits for and accepts new tasks. At any moment when the sys-
tem is running, tasks can be accepted, in many different internal
states.

• Similarly, there is no “final state” for a task. For instance, if a
task’s priority is low (relative to other tasks), it is even possible
for it to be completely ignored. If a tentative answer to a question
is reported, usually neither the system nor its human designer can
predict whether a better answer will be reported later, since that
will depend on events still to take place in the future, such as
whether the system acquires new knowledge related to the task,
or whether more time winds up being spent on it.

• For a given problem, whether a result is a “solution” become
a matter of degree. Under AIKR, NARS cannot give a “perfect
solution” to a problem.

• When processing a task, the inference steps are chained together
into an inference process in run-time. There is no predetermined
algorithm to follow for a given task.

By slightly changing the meaning of the term, one might say that
NARS has an initial state — namely, when its memory is completely
empty (the system can be “born” without any innate domain knowl-
edge). Its state changes as soon as it interacts with its environment
and begins processing tasks. The system never will return to its initial
state, until and unless a user terminates the processing and erases all of
its memory. In such a case, the system can of course be “reborn” with
the same “genetic code” — its sets of inference rules, control mecha-
nisms, personal parameters, and so on. However, unless the experience
of the system perfectly repeats its experience in its “previous life,” the
system’s behaviors will be different.

In summary, the system’s behaviors are determined by its initial
state and its experience, but not by either one of the two alone.

Now we can see that NARS can be observed on (at least) three
scales, in term of what is referred to as its input and output.

Control and Computation 325

• In the scale of each inference step (i.e., the “execution cycle”
defined in Section 6.3.1), the system’s activity is computation,
where the input is the memory before that step, and the output
is the memory after that step. In NARS, there is an explicitly
coded algorithm for this process.

• In the scale of each task-processing activity, where the input is
a task, and the output is the result of the processing of the task,
what the system does cannot be captured by concepts like com-
putation, function, or algorithm, as discussed above.

• In the scale of each whole-life cycle, with its “birth” state (which
can be any state, since the system can be born with a preloaded
memory) as an “initial state,” and a “death” state (which can
be any following state of the birth state) as a “final state,” what
NARS does can be seen as computation, with its “life-long” ex-
perience as the input, and its all behaviors as the output.

In summary, the behavior of NARS can be described on different
“scales” or “levels.” NARS is computing on some, but not all, of them.
This state of affairs has been articulated by Hofstadter in the following
way: “something can be computational at one level, but not at another
level,” [Hofstadter, 1985] and by Kugel as “cognitive processes that,
although they involve more than computing, can still be modeled on
the machines we call ‘computers’.” [Kugel, 1986].

In contrast to this, conventional computer systems, while also de-
scribable at these levels, are computing in all of them. Let us use an
ordinary sorting program as an example: you can take either a single
sorting problem, or a sequence of such problems, as the input, and the
processes in both cases are computation — the program’s response to
a given sorting task is fully determined (by the algorithm and the in-
put data) and does not depend on its experience and context (i.e., the
processing of other sorting tasks). Even if the exactly same problem
is given the system twice, the system will repeat the same procedure,
rather than directly report the remembered solution in the second time.

Among the three levels, the most important one is the one in the
middle, where a “problem” or “task” is the input, and its solution is the
output. It is this level on which the computability and computational

326 Chapter 12

complexity are defined and studied. Since what NARS does on this level
is not computation, the traditional theoretical computer science cannot
be directly used in the system on this level.

12.1.4 Beyond computation

Though still following algorithms at a certain level, NARS is creative
and autonomous in the sense that its behavior is determined not only by
its initial design, but also by its “personal” experience. It can generate
results never anticipated by its designer, and can produce them by its
own choice. A “tutor” can “educate” it by manipulating its experience,
but cannot completely control its behavior due to the complexity of
the system. From a pragmatic point of view, this is neither necessarily
a good thing, nor necessarily a bad thing. It is simply the case that
an adaptive system with insufficient knowledge and resources has to
behave in this way.

Compared to the computing processes studied by theoretical com-
puter science, the inference control mechanism of NARS has the fol-
lowing properties:

• It does not define a “problem” as a set and use the same method to
solve all of its instances. Instead, it treats each “problem instance”
as a problem on its own, and solves it in a case-by-case manner.
For example, when evaluating a proposed inheritance statement,
NARS sometimes checks the extension of a term in the statement,
and sometimes its intension.

• For a problem, it does not draw a sharp line between solutions
and non-solutions, and treat all solutions as equal. Instead, each
solution is good to a degree, and the system compares candidate
solutions to decide which one is the best (that the system has
found so far).

• It does not insist on the “one problem, one solution” format.
Instead, for a problem, the system may generate zero, one, or a
sequence of solutions, each of which is better than a previous one.

• It does not depend on a predetermined algorithm to solve a prob-
lem. Instead, it cuts a problem-solving process into steps. Each

Control and Computation 327

step may still follow an algorithm which takes constant time to
finish, but the who process is linked together at run time.

• It processes tasks (and subtasks) in parallel, but at different
speeds, according to their priority values.

• It does not attempt to use all relevant beliefs to solve a problem.
Instead, in each step it only considers a single belief, selected
according to their priority values.

• In each step, it lets the selected task and belief decide how the
task is processed.

• It does not throw away the intermediate results at the end of a
problem-solving process. Instead, it keeps them for future tasks,
and lets all tasks to interact with the same knowledge base.

• When memory is full, it removes items with the lowest priority.

• It adjusts the priority distributions according to the experience
of the system and the current context, so as to give important
and relevant items more resources.

Built in this way, NARS shows many novel features:

• Knowledge is accepted by the system as sentences in a formal
language. The user can assign the system any question or goal
that can be phrased in the formal language, and the system will
not be paralyzed by tasks beyond its current capability. Neither
the designer nor the user needs to provide the system with task-
oriented algorithms.

• The user can assign initial priority and durability value to a task
to influence (though not to determine) the system’s resource al-
location to that task.

• The system may provide a quick answer to a question, then refine
the answer incrementally. In this sense, NARS can “change its
mind” when new beliefs are taken into consideration.

328 Chapter 12

• The system usually concentrates on the most important and pro-
mising tasks, but it also pays some attention to other “peripheral”
tasks.

• The response to a question depends not only on what the system
has been told, but also on what the system has been asked. For
example, the system may spend a long time finding an answer,
but if the same question (or a similar one) appears again later,
the answer usually comes sooner.

These properties distinguish NARS from other reasoning systems.
It reproduces many properties displayed by human thinking processes,
and it shows the potential of working in situations where no other
approaches can be applied, because of their assumptions.

This approach is not just a picturesque new way to see things, but
has important methodological implications for AI research. When a sys-
tem like NARS is designed, the designer should not try to decide what
answer the system should produce in response to a given question —
that should be decided by the system itself at run time; the designer
simply cannot exhaustively consider all possible situations in advance
(the designer, hopefully, is also an intelligent system, thus limited by
insufficient knowledge and resources). For similar reasons, the designer
cannot decide in advance how much resources to spend on a certain task,
for this is totally context-dependent. Thus, the designer is no longer
working on either domain-specific algorithms or general-purpose algo-
rithms (like GPS), but rather on meta-algorithms or micro-algorithms,
which carry out inferences, manage resources (like a small operating
system), and so on. In this way, the problems solved by the designer
and the problems solved by the system itself are clearly distinguishable
from one another — all problems expressed in Narsese are solved by the
system, while the problems expressed in the meta-language of NARS
are solved by the designer.

Although general-purpose algorithms and meta-algorithms are both
independent of specific domains, there is still a fundamental difference
between the two types of algorithm, with respect to how a domain
problem (i.e., a question asked by the user) is solved. In the former
cases, the problem-solving process is still computation. As described
previously, the system accepts the problem at its initial state, processes

Control and Computation 329

it according to predetermined procedure, then stops at the final state
and reports the solution. We already know that NARS does not work
in this way. The fact that NARS still consists of a set of algorithms
does not mean that the system’s problem-solving (or task-processing)
activities follow any algorithm. Of course, the algorithms in NARS do
facilitate the problem-solving activities, but in a different way.

For example, Section 6.3.1 actually describes the algorithm that con-
trols an execution cycle, which invoke other algorithms, like the put-in
and take-out procedures of various bags. However, none of these algo-
rithms takes user-provided problems (i.e., input tasks) as its input. In
fact, armed with these algorithms, NARS deals with input tasks with-
out (task-oriented) algorithms. We call them meta-algorithms, because
they are not ready-made methods for user problems, but (ready-made)
methods by which the “object-level” methods can be formed dynami-
cally in run time.

These ideas allow us to explain why Tesler’s Theorem (“AI is what-
ever hasn’t been done yet” [Hofstadter, 1979]) applies to many AI
projects: in those projects, the designers usually use their own intel-
ligence to solve domain problems, and then implement the solutions
in computer systems in the form of problem-oriented algorithms. The
computer systems then executes the algorithms on specific instances
of the problems, an activity that can hardly be referred to as “solving
problems intelligently.”

For example, many “expert systems” have no learning ability. Such
systems are designed by “knowledge engineers,” who extract domain
knowledge from experts in a particular field, and then implant this
knowledge into a computer system, so as to reproduce the experts’
problem-solving ability. According to my working definition of intelli-
gence, both the domain experts and the knowledge engineers are in-
telligent — they work with insufficient knowledge and resources, and
they learn from their experience — and yet the expert system itself is
not intelligent, because, ironically, when it faces a problem, it faithfully
follows the predetermined algorithms that were extracted from the ex-
perts’ intelligent behaviors, thanks to the intelligence of the knowledge
engineers.

This new way of describing AI also changes what we usually referred
to as a “solution.” Let us take the “combinatorial explosion” problem

330 Chapter 12

as an example. If, for a particular problem, there is an algorithm that
takes an amount of time that grows exponentially with some parameter
in the problem, usually such an algorithm is useless in actual practice
— the time expense will rapidly increase to astronomical figures, and
the system will simply be paralyzed. The traditional way to deal with
this problem is to look for a faster algorithm, even if that implies sac-
rificing the quality of the solution. Since in NARS problem-oriented
algorithms are not used, the very concept of “computational complex-
ity” disappears, and the situation becomes very different.

In this case, a new interpretation and solution to the “scaling up”
problem becomes available. It is well-known that many AI projects
work fine at experiment stage with small knowledge sets, but fail to
work in real-world situations. This is often caused by the “sufficient re-
source” assumption accepted by the approaches. Such an assumption is
usually made implicitly in the operations carried out by the approach,
such as to exhaust possibilities for a specific purpose. These operations
are affordable on small amount of knowledge, but become inapplicable
when the knowledge base is huge. For the systems based on the assump-
tion of insufficient resources, such as NARS, the situation is different.
These systems do not take advantage of the small size of the knowl-
edge base by exhausting possibilities, and also do not attempt to do so
when the knowledge base is huge. Consequently, the resource manage-
ment mechanisms used by these systems do scaling up. The system’s
performance still becomes not as good when the problem is hard and
the knowledge base is huge, but the degradation happens in a graceful
way, just like what happens to the human mind in similar situations.
Especially, the system will not be trapped by hard problems, because
it knows when to give up and turn to other things, while still let the
problem wait for new possibilities.

Finally, there are some disclaimers: I am not arguing that the tra-
ditional theoretical computer science is wrong, but that it does not
apply to many situations in AI. Similar conclusions can be found in
a recent collection [Scheutz, 2002], though my argument is different in
many aspects. Also, NARS is not the first system that goes beyond the
narrow sense of “computation” — many approaches to be discussed in
the following subsection are in that territory, too, though this issue has
rarely been raised in theoretical discussions in the field.

Control and Computation 331

12.2 Various assumptions about resources

Any problem-solving or information-processing process will cost com-
putational resources, especially processor time and memory space. A
theory about these processes must address the issue of resources. How-
ever, different theories, for different purposes, make different assump-
tions about resources. In this section, the assumptions about resources
behind NARS is compared with the assumptions of other theories.

12.2.1 Computability and complexity

In the study of computability, the attitude to resource can be summa-
rized as: the time spent in the problem-solving activity can be ignored,
given that it is finite. People can wait a period with an arbitrary-but-
finite length for a solution. Also, what counts as a “solution” for a given
problem is resource-independent. In other words, whether a state is fi-
nal, or whether a solution has been found, is defined by some criterion,
in which the resource cost of the solution is not taken into account.

Though the above abstraction is necessary for certain purposes, peo-
ple are often unsatisfied by it. Obviously, for almost all practical pur-
poses, time is valuable, and people hope to solve problems as soon as
possible.

Under the assumption that the system’s hardware (processors and
memory) remains constant, the time spent on a problem depends on
two factors: the problem itself and the system’s method for the problem,
and the latter often takes the form of an algorithm.

When the computational complexity of an algorithm is analyzed,
resource expense is taken into consideration in a quantitative manner.
We are no longer satisfied by the knowledge that the cost will be a finite
number — we want that number to be as small as possible. However,
the solution of a given problem is still defined in a resource-independent
way — a bad result cannot be referred to as a “solution” just because
it is easy to get.

If the task is processed by a traditional algorithm, the processing
stops at predetermined final states. Therefore the time cost is deter-
mined completely by the computational complexity of the algorithm

332 Chapter 12

and the size of the task. It has nothing to do with the user or the con-
text. Though in a time-sharing system, the response time depends on
the load of the system, the processor-time that is really spent on the
task remains roughly the same.

The difference between NARS and theory of computation on the
assumption about resources has been discussed previously.

12.2.2 Time pressure in problems

For many problems, we still do not have polynomial algorithms, and for
many others, even polynomial algorithms are too slow. It is often the
case that a time requirement is an intrinsic component of a problem, and
a result must meet the requirement to be accepted as a solution of the
problem. Consequently, the system works under a time pressure. In such
a situation, the time needed for a perfect solution usually exceeds the
time requirements of the problems — otherwise the time requirement
can be ignored. This can happen even if the algorithm used by the
system only takes constant time. For example, if an algorithm solves
a problem by searching a file thoroughly, which takes two seconds in the
given hardware, then such an algorithm cannot be used when a solution
must be provided within one second.

For a system to work in this situation, the criterion for a result
to be a “solution” of the given problem have to be relaxed. In fact,
for many problems, whether a result can be counted as a solution is
a matter of degree. Instead of saying whether a result is a solution
or not, here people need to compare, or even measure, the qualities
of different solutions. Usually, the quality of a solution depends on its
resource cost, which includes its processor-time expense. To work under
a time pressure means to give up best solutions, and to find a trade-off
between solution quality and time cost [Good, 1983].

To let a system make trade-off between solution quality and time
cost, this is not a new idea. Approximation algorithms and heuris-
tic algorithms are all motivated by this consideration [Rawlins, 1992].
Similarly, we can first decide the time request, usually in the form
of a deadline, then look for an algorithm which can meet the dead-
line, and can also provide a solution as good as possible. This ap-
proach leads to the concept of real-time algorithm [Laffey et al., 1988,

Control and Computation 333

Strosnider and Paul, 1994]. However, in these algorithms, the trade-off
is determined when an algorithm is designed. As a result, the problem-
solving process is still computation, only on a relaxed version of the
problem. It is still the problem-oriented algorithm that decides which
step to take at each instant, and where to stop at the end.

Though these approaches take time pressure into consideration, they
are still inappropriate for NARS, for the following reasons:

1. The system cannot depend on the environment to assign such
deadlines, because the resulting time requirements may exceed
the system’s capability.

2. In general, the system cannot anticipate how much time it ought
to spend on a task when it is accepted (from the environment) or
generated (by the system itself), because that depends on future
events — for example, on whether an answer will be found soon,
and on how many new tasks will show up in the near future.

3. The concept of “deadline” implicitly assumes a step function of
the utility of the answer by requesting an answer at a certain time,
t — that is, an answer provided before t does not get extra credit,
and an answer found after t is completely useless. Such a rigid,
black-and-white attitude is not suitable for many situations.

NARS works in real time, and the bag structure (see Section 6.2.1)
shares ideas with techniques used in real-time systems, such as prun-
ing, ordering, approximation, and scoping [Strosnider and Paul, 1994].
However, NARS does not stop at deadlines, because it often results
in a waste of resources if the system idles afterwards. For an adaptive
system, the tasks that appeared in the past may happen again in the fu-
ture, with some variants. Therefore, even when the user no longer needs
a result after a certain amount of time, the system still has reason to
work on it, if there are resources available.

In many situations, it is better to treat time pressure as a variable
and context-dependent factor, because the time requests of problems,
the desired quality of solutions, and the system’s time supply for a
problem (in a multi-task environment) may change from context to
context. It is inefficient, if not impossible, to equip the system with

334 Chapter 12

a family of algorithms for each possible context. For this situation, we
hope to take the time pressure into consideration in the run time of the
system.

One instance of this approach is to use an interruptible algorithm.
In the simplest case, a “trial and error” procedure can be used to
“solve” a uncomputable problem [Kugel, 1986]. Suppose we want to
check whether a Turing Machine halts, we can use such a procedure.
It reports “NO” at the very beginning, then simulate the given Turing
Machine. When the Turing Machine halts, the trial-and-error proce-
dure reports “YES” and halts. Such a procedure is not an algorithm
(according to the strict definition of the concept) because it may not
stop, but it can be implemented in ordinary computers, and its last re-
port is always a correct one, though the user may not have the time to
get it, or cannot confirm that it is really the last one when it is “NO.”

A more general concept along this path is “anytime algorithm,”
[Dean and Boddy, 1988] which is a program that provides approximate
answers to a problem in such a way that: (1) an answer is available at
any point in the execution of the program; and (2) the quality of the
answer improves with an increase in execution time.

Such an “algorithm” no longer corresponds to a Turing Machine.
Because there is no predetermined final states, the program is stopped
by an external force, rather than by itself. Consequently, the amount
of time spent on a problem is completely determined by the user (or
a monitor program) at run time, and no result is “final” in the sense
that it could not be revised if the program had spent more time on the
problem.

In this way, the time pressure on a problem-solving activity is no
longer a constant. The user can either attach a time request, such as a
deadline, to a problem at the beginning, or let the program run, then
interrupt it at the end. Under different time pressure, the same program
may provide different solutions for the same problem.

In NARS, there are three factors that altogether determine the time
spent on a given task: the time request of the user, the design of the
system, and the current context. As described in Section 6.1.2, the user
can assign a priority value and a durability value to a task, otherwise
default values are used. Because both of the values are given in relative
forms, the actual time allocated to the task is decided by the allocation

Control and Computation 335

mechanism and the current situation of resource competition. In this
way, neither the designer nor the user have complete control, and the
system itself participates in the decision, by taking its past experience
and current context into account.

This approach is more flexible than traditional algorithms, because
the user can influence the resource allocation at run time. It often hap-
pens that the same type of problem may have different time requests,
which is hard to be satisfied by a predetermined standard for final
states.

Such an approach is also more similar to the resource management
mechanism of the human mind. Obviously, the human mind is a real-
time system that responds to different time requests, but it seldom
stops thinking about a problem at a deadline, even if such a deadline
exists, such as in an examination.

12.2.3 Resource allocation

A more complex situation happens when the idea of anytime algorithm
is used at the sub-problem level.

If a task can be divided into many subtasks, and the system does
not have the time to process all of them thoroughly, it is often possible
to carry out each of them by an anytime algorithm, and to manage
the processing time as a resource. According to Good’s “Type II ra-
tionality,” [Good, 1983] in this situation an optimum solution should
be based on decision theory, by taking the cost of deliberation and the
expected performance of the involved algorithms into account.

To do this, the system needs a meta-level algorithm, which explic-
itly allocate processing time to object-level procedures, according to the
expected effect of those allocations on the system’s performance. This
idea is developed in AI under the names of “deliberation scheduling”
[Boddy and Dean, 1994], “metareasoning” [Russell and Wefald, 1991b],
and “flexible computation” [Horvitz, 1989]. These approaches focus on
planning for resource allocation, therefore the quality of the manage-
ment depends upon the quality of the expectations, though run-time
monitoring is also possible [Zilberstein, 1995]. However, if the infor-
mation about object-level procedures mainly comes at run time, the
meta-level planner may have little to do before the procedures actually

336 Chapter 12

run — its expectations will be very different from the reality revealed
later. To be efficient, the resource allocation has to be adjusted dynam-
ically when the system is solving object-level problems, and the ad-
vanced planning become less important (though still necessary). This
is particularly true for adaptive systems.

Though NARS shares certain intuitions with the above approaches,
it is different from them in technical details, by the use of asynchronous
parallelism — it does not give each task a fixed budget at the begin-
ning of its processing, but processes them concurrently, and lets them
compete for resources.

Though the initial idea comes from the concept of time-sharing,
the controlled concurrency of NARS is still very different from ordi-
nary time-sharing. In NARS, the parallel processed tasks (1) consult a
shared knowledge base, (2) access beliefs according to the current pri-
ority distribution in the memory, (3) change the priority distribution
after each step, and (4) can be stopped after any number of steps. As a
result, the mutual influence among the tasks become very strong. The
coexistent tasks not only influence the processing speed of a task (this
is also true for ordinary time-sharing systems), but also strongly in-
fluence its processing depth (i.e., when the processing terminates) and
path (what beliefs are consulted, and in what order).

In spirit, the “controlled concurrency” in NARS is very similar
to Hofstadter’s “parallel terraced scan” [Hofstadter and FARG, 1995]
(though their implementation details are quite different). When explor-
ing an unfamiliar territory to achieve a goal under a time pressure, it
is usually impossible to try every path to its end. Without sufficient
knowledge, it is also impossible to get a satisfactory plan before the ad-
venture. However, if somehow the system can investigate many paths
in parallel, and the intermediate results collected at different levels of
depth can provide clues for the promise of the paths, the system may
be able to get a relatively good result in a short time.

This kind of terraced scan moves by stages: first many possibilities
are explored in parallel, but only superficially. Then the system reallo-
cates its time resources according to the preliminary results, and let the
promising ones to be explored more deeply. Stage by stage, the system
focuses its attention to less and less good paths, which hopefully lead
the system to a final solution.

Control and Computation 337

Putting it differently, we can think of the system as exploring all
the possible paths at the same time, but at different speeds. It goes
faster in the more promising paths, and the speeds are adjusted all
the time according to the immediate feedback on different paths. The
system usually does not treat all paths as equal, because that means
to ignore available information about them; the system usually also
does not devote all its resources to a path that is the most promising
one at a certain time, because in that way the potential information
about other paths cannot be collected. In between these two extreme
decisions, the system distributes its time resource unevenly among its
tasks, and dynamically adjusts its bias according to new results.

A similar idea can be find in evolutionary computing, where mul-
tiple solutions to a problem are explored in parallel, with the more
promising ones having higher chance to be preserved for the future
[Holland, 1992].

12.2.4 NARS vs. production systems

In some aspects NARS is similar to Soar [Laird et al., 1987, Newell,
1990] and ACT-R [Anderson and Lebiere, 1998], both of which are AGI
systems built using the “production system” technique. For instance, an
inference step of NARS roughly corresponds to the firing of a production
rule, and the inference control process of NARS roughly corresponds
to “conflict resolution” in a production system, where a production
rule (or an operator) is selected to be applied, among all candidates
whose firing conditions are satisfied. All three systems try to make the
selections according to experience and context, so as to achieve the
maximum efficiency in problem-solving processes.

However, the design of the control mechanism of NARS are quite
different from the other two systems [Johnson, 1997]. Beside the fact
that NARS is a reasoning system, not a production system, the dif-
ferences are mainly caused by the assumptions made by the systems
about their resources. Though all three systems are designed with re-
source limitation in mind, the concrete restrictions applied to the design
are quite different.

• NARS is designed to be a real-time system, while the other two
are not. NARS allows the user to specify initial priority and

338 Chapter 12

durability to input tasks, and allows the system to stop work-
ing on a task before its logical end. In the other two systems, the
user does not attach time requirement to tasks (goals), and each
of them is processed until a satisfying solution is found.

• As an open system, NARS lets new tasks be accepted when old
tasks are still being processed, and lets multiple tasks share the
same memory (knowledge base) and compete for resources. The
other two systems work on one task at a time (though it may de-
rive multiple subtasks). Consequently, problem-solving in NARS
is more context-sensitive.

• In NARS, since in each step only a single belief is taken into ac-
count, and the system works in real time, usually a solution is
only derived from partial relevant knowledge. In the other two
systems, in each step all relevant production rules are checked
to see if it should be fired — “The system takes actions to at-
tain its goals, using all the knowledge that it has.”[Newell, 1990]
In NARS, though the same is desired (usually the more knowl-
edge that is considered, the better the conclusion is), it is rarely
affordable in practice.

Of course, NARS is also very different from Soar and ACT-R in its
logical part, as described and discussed in the previous chapters.

12.3 Dynamic natures of NARS

Finally, let’s see the implications of the control mechanism of NARS in
the behaviors of the system.

12.3.1 Context-sensitive processes

It is well known that reasoning processes in the human mind are con-
text dependent. For the same task, different results are obtained in
different situations. Now the problem is: how to represent a “context”
or “situation”?

Control and Computation 339

The previous solutions proposed to this problem often treat a con-
text as a static entity that can be identified by a name. Then, to repre-
sent context-sensitive reasoning process, what is needed is to explicitly
include a reference to the context. Such ideas induce “contextual reason-
ing,” [McCarthy, 1993] “situation theory,” [Barwise and Perry, 1983]
and “micro-theory.” [Guha and Lenat, 1990] For example, McCarthy
used holds(p, c) to represent “Proposition p holds in context c.”

On the contrary, in NARS the “context” of a task refers to the
internal circumstance in which a task is processed. It is not named, but
represented implicitly. When I say that a process in NARS is context-
dependent, what I mean is that it may (though not necessarily) have a
different result when carried out by the system at different times.

With the control mechanisms described in Chapter 6, it is easy to
see that the processing triggered by a task given to NARS is context-
sensitive. Even for the same task, with the same priority and durability
values, the result may be different. How a task is treated depends on
what knowledge the system has, how the knowledge is organized, and
how much of the system’s resources the task gets — put simply, it is
determined by the system’s experience, which includes not only events
that take place before the task showed up, but also events that hap-
pened after that moment. The contents, the order, and the timing of
events all matter. Furthermore, a question may result in no answer, one
answer, or more than one answer.

This context-sensitivity is another feature that differs NARS from
other similar ideas, like anytime algorithm [Frisch and Haddawy, 1994]
or parallel terraced scan [Hofstadter and FARG, 1995]. In NARS the
processing of a task becomes unpredictable and un-repeatable (from
the initial design of the system and the task itself), because the con-
text plays a central role. It should be understood that the system is
nondeterministic in above sense, rather than because it takes out items
from bags according to a probabilistic distribution — that is simply a
way to allocate resources unevenly, and can be implemented determin-
istically [Hofstadter, 1993b].

From the user’s point of view, the most distinguished nature of
NARS’ control mechanism is non-determinism. Even if the user pro-
vides the same task to the system, with the same priority and durability
values, the task may be processed differently: when the system is busy

340 Chapter 12

(that is, there are many other tasks with higher priority), the task is
only briefly processed, and some “shallow” implications or answers are
found; when the system is idle (that is, there are few other tasks), the
task is processed more thoroughly, and deep results can be obtained.
Generally speaking, a task can be processed for any number of steps,
as in anytime algorithms. The actual number of steps to be carried
out is determined both by the initial assignment of priority and dura-
bility, and by the resources competition in the system. Furthermore,
the processing procedure and result depend on the other tasks exist-
ing currently and recently. Every task changes the knowledge structure
while being processed, and therefore influences how other tasks will be
processed. For example, if the system just processed a task T1, and then
begins to work on a related task T2, the beliefs that contribute to T1’s
processing will get a higher chance of being used again.

12.3.2 Flexible resource consuming

NARS has the ability to learn from its experience and to adapt to its
environments, even though the system provides no guarantee regarding
the absolute answer quality and response time for a certain task. What
can be said about it is: if the system spends more time on a task, the
quality of the answer, mainly measured by its confidence value, usually
will improve.

However, how much resources will be actually spent on a task and
the quality of the answer are determined only at the end of the process-
ing, not at the beginning of it (as in other “flexible computation” ap-
proaches).

In NARS, the time spent on a given task is determined by the time
request of the user, the design of the system, and the current context.
These factors are combined in the control functions that calculate the
priority values and durability values of the concepts, tasks, and beliefs
in the system.

What makes these functions different from the heuristic functions
used in expert systems is their domain-independent nature. In the de-
sign of these functions, no assumption was made about the content of
the task or the knowledge. However, this does not mean that NARS
uses a general-purpose, context-independent algorithm, which always

Control and Computation 341

uses the same predetermined method to solve problems, and is insensi-
tive to available domain knowledge. Indeed, there is a pervasive influ-
ence of domain knowledge on the control of inference at all times when
the system is running. As mentioned previously, the system’s choice
at each step strongly depends on the available and activated domain
knowledge, which is certainly not predetermined by the designer. On
the other hand, the design of the system, including all the functions
discussed above, is independent of any particular domain.

With all these control-related quantities adjusted dynamically, some
tasks are processed faster, and some beliefs are more accessible, while
others slowly slide into dormancy. And because storage space is limited,
concepts, tasks and beliefs with sufficiently low priorities may wind up
being permanently forgotten. This, though sometimes disadvantageous
from a practical point of view, is the price any system has to pay when
its knowledge and resources are insufficient.

By dynamically allocating resources among tasks at run time, what
the system is optimizing is not the quality of solution for any particular
task, but the overall performance of the system on all existing tasks,
under the restriction of available resources. Since the resource budget
for each task is not predetermined, this control mechanism allows more
flexibility in the resource consuming of a task.

12.3.3 Task and motivation

NARS is goal-directed in the sense that all internal activities are driven
by the tasks (new beliefs, questions, and goals). Since there are many
of them under processing at the same time, the overall behaviors
of NARS are determined by the “resultant of forces” of its internal
tasks.

Initially, the system is driven only by input tasks. The system then
derives subtasks recursively by applying inference rules to the tasks and
available knowledge.

Tasks compete for resources. Given constant total amount of re-
sources, to give one task more attention means to give the others less.

Goals may directly or indirectly conflict with each other. When the
system tries to achieve multiple goals at the same time, operations may
also get conflicting evaluations from different goals.

342 Chapter 12

In NARS, it is not guaranteed that the achievement of the derived
tasks will turn out to be really helpful or even related to the original
tasks, because the beliefs, on which the derivation is based, is revis-
able. On the other hand, it is impossible for the system to always
determine correctly which tasks are more closely related to the orig-
inal tasks. As a result, the system’s behavior will to a certain extent
depend on its own tasks, which are actually more or less independent
of the original tasks, even though historically derived from them. This
is the functional autonomy phenomena [Allport, 1937, Minsky, 1985].
In the extreme form, the derived tasks may become so strong that
they even prevent the input tasks from being fulfilled. In this way, the
derived tasks are alienated.

The alienation and unpredictability sometimes result in the system
to be “out of control,” but at the same time, they lead to creative and
original behaviors, because the system is pursuing goals that are not
directly assigned by its environment or its innateness, with methods
that are not directly deduced from given knowledge.

NARS has a “life-time of its own.” [Elgot-Drapkin et al., 1991] When
the system is experienced enough, there will be lots of tasks for the sys-
tem to process. On the other hand, new input can come at any time. The
system usually works on its “own” tasks, but at the same time, it is al-
ways ready to respond to new tasks provided by the environment. Each
input task usually attracts the system’s attention for a while, and also
causes some long-term effects. The system never reaches a “final state”
and stops there, though it can be reset by a human user to its initial
state. In this way, each task-processing activity is part of the system’s
life-time experience, and is influenced by the other activities. In com-
parison with NARS, traditional computer systems take each problem-
solving activity as a separate life cycle with a predetermined end.

12.3.4 Reasonable results

Like all other approaches that take the limitation of resources into con-
sideration, NARS gives up the requirement for optimum results, and
turns to look for the best results the system can get under the con-
straints of available resources — what Good calls “type II rationality.”
[Good, 1983].

Control and Computation 343

Though there are many approaches attempting to deal with the
problem of “insufficient resources,” their concrete specifications of the
problem are very different. By interpreting “insufficient knowledge and
resources” as being finite and open, and working in real time, the con-
straints assumed by NARS are stronger than the assumptions accepted
by other approaches. For example, as discussed previously, only a few
systems are designed to deal with variable time pressure or unexpected
(both in content and timing) questions.

Many features of NARS directly follow from this assumption. For
example, the results are usually only derived from part of the system’s
knowledge, and which part of the knowledge base is used depends on
the context at run time. Consequently, NARS is no longer “logical om-
niscient” [Fagin and Halpern, 1988] — it cannot recall every piece of
knowledge in its knowledge base, not to mention being aware of all
their implications.

To select the data items (concept, task, and belief) to be processed,
what happens in NARS is similar to the priming and association hap-
pened in the human mind. The system uses what is being processed
as the center of attention, and sends activation to the neighborhood to
gradually bring related concepts, tasks, and beliefs into consideration.

NARS uses a forgetting mechanism to manage its memory. Though
many systems release memory when running, usually it is done when
the data there is no longer useful. The challenge to the forgetting mech-
anism in NARS is to decide what to ignore or delete, even when it may
be useful in the future.

This reminds us of human memory. On one hand, we all suffer from
forgetting information that became needed later; but on the other hand,
it is not hard to image what a headache it would be if every piece of
knowledge was equally accessible — that is, equally inaccessible. Like
it or not, properties such as forgetting are inevitable consequences of
the insufficiency of resources.

This theme appears from time to time in the discussion about
NARS — though many of its properties are usually judged as un-
welcome in AI systems, they become inevitable as soon as we want
a system to work under AIKR. Furthermore, they are often produced
by the same mechanism that generates the desired results, so that we
cannot get the latter without the former.

344 Chapter 12

In this sense, we say that many mistakes made by the system are
reasonable, given its working environment. The only way to inhibit these
mistakes is to limit the problems that the systems are exposed to, like
in most computer systems. However, in this way computer systems lose
the potential to conquer real hard problems, because the problems we
call “hard” in everyday life are precisely the problems for which our
knowledge and resources are insufficient.

In summary, “correct results” (resource-independent) and “reason-
able results” (resource-dependent) are often different, and are produced
by different mechanisms. Though for practical purposes the former is
often preferred, intelligence is needed to provide the latter when the
former cannot be obtained.

Part IV

Conclusions

Chapter 13

Current Results

Though NARS is still an on-going research project, there are already
many interesting results, as described in the previous chapters. In this
chapter, I will summarize them, on each of the three levels (theory,
model, and implementation).

13.1 Theoretical foundation

Compared with the other AI projects, the most important theoretical
features of NARS are the working definition of intelligence and the
framework of a reasoning system.

13.1.1 The working definition of intelligence

As stated previously, NARS is based on the working definition of intel-
ligence as adaptation with insufficient knowledge and resources. After
all the descriptions and discussions, now we can evaluate this definition
according to the requirements set up in Section 1.1.3:

Faithfulness. Obviously, certain natural information-processing sys-
tems (i.e., humans and some animals) are adaptive, and they have
to work with insufficient knowledge and resources. With higher
adaption capability, human beings are much more intelligent than
other animals. By contrast, though traditional computing systems

347

348 Chapter 13

also have limited knowledge and resources, they are usually only
used on a carefully limited class of problems, chosen so that their
knowledge and resources will in fact be sufficient for those prob-
lems. Therefore, the definition draws a line between intelligent
and non-intelligent systems that is faithful to the common usage
of the word “intelligence.”

Sharpness. The definition is sharp, because whether a system is adap-
tive can be determined by testing whether its behaviors depend
on its experience. For a computer system, whether it is designed
under the assumption of insufficient knowledge and resources can
be determined by checking for the three properties: finiteness
(Can the system manage its own memory?), operation in real
time (Can the system work under a range of different time con-
straints?), and openness (Does the system restrict what it can be
told or asked?).

Fruitfulness. As the foregoing chapters have demonstrated, the defini-
tion has yielded fruit by inspiring the major components of NARS,
which are fundamentally different from existing approaches, and
the system has exhibited many desired properties. Indeed, rooted
in this definition of intelligence, NARS addresses many facets of
AI in a consistent manner, and provides consistent solutions to
more AI problems than many other AI theories do, as described
in the previous chapters.

Simplicity. The definition is quite simple, making it easy to discuss
and to apply to research. Its direct outcome, NARS, is also rela-
tively simple in its structure (compared with other AGI systems),
though the system’s behavior can be very complex, due to its in-
teraction with its environment.

Because of these considerations, I believe that the working definition
of intelligence introduced in this project is preferable to many others
accepted by AI researchers. Compared to this approach, the other AI
schools (as introduced and categorized in Chapter 1) miss the essence
of intelligence in various ways, though still guiding scientific research
that is valuable for other purposes.

Current Results 349

• The structure approach contributes to neuroscience by building
brain models, but fails to reveal the regularities of the mind, in-
dependent of the details of the brain.

• The behavior approach contributes to psychology by providing
explanations of human behavior, but fails to distinguish the fac-
tors that are mainly due to intelligence in general from those that
mainly due to the “implementation details” of these factors in the
human brain.

• The capability approach contributes to application domains by
solving practical problems, but fails to distinguish AI from con-
ventional computer application, and as a result, still mainly de-
pends on the intelligence of the designer (rather than that of the
computer system) to solve the problems.

• The function approach contributes to computer science by pro-
ducing new software and hardware for various computing tasks,
but fails to base all these functionalities on a consistent foun-
dation, and as a result, can hardly integrate them into an AGI
system.

Compared to the other similar definitions of intelligence in which
adaptation and knowledge/resource restriction play central roles, NARS
is different in its concrete specification of the restriction (that is, AIKR),
as well as in its insistence on following this definition completely and
thoroughly in the theory, model, and implementation of intelligence.

For example, Simon’s “bounded rationality” allows systems to make
choices without consulting all relevant knowledge, and therefore can be
finished within limited time [Simon, 1983]. However, such a system does
not need to work in real time, or be open to all possible knowledge.

13.1.2 The reasoning system framework

As described in Section 2.2.1, there are three major schools of formaliza-
tion: dynamic system, reasoning system, and computing system. Being
developed within the framework of a reasoning system, NARS has the
following desired properties:

350 Chapter 13

• The major components of the system (language, semantics, in-
ference rules, memory structure, and control strategy) can all be
designed according to the working definition of intelligence.

• The design of the system is domain independent, though the con-
crete behaviors of the system is determined by its domain-specific
experience.

• When properly extended, the concept of “reasoning” can cap-
ture various types of cognitive functionalities (such as learning,
categorization, planning, problem solving, decision making, and
so on), and therefore NARS is indeed a model for general intelli-
gence, rather than merely for “logical reasoning” in the traditional
sense.

• The separation of the logic part and the control part allows the
system to have both rigid steps (each corresponds to an inference
rule) and flexible processes (formed by chaining the steps in a
context-sensitive manner in run).

• The interface language (Narsese) is rich enough to allow compli-
cated input and output.

Compared to the reasoning system framework, the dynamic system
framework lacks a rich representation. In principle, it is possible to rep-
resent the state of a NARS-like system as a point in a multi-dimensional
space, and the activities of the system as trajectories within the space.
However, with such a representation, it would be very difficult to specify
the dimensions and to justify the state changes, because this representa-
tion is so “low level” that the important regularities would be drowned
by the details in the system.

On the other hand, though the computing system framework allows
more complicated representation and processing, the logic part and the
control part of such a system are usually mixed together, and it is not
easy to stop the working process at any point without destroying the
integrity of the knowledge. As a result, it is more difficult (though not
impossible) to implement a NARS-like system, with justifiable steps
and flexible processes.

Current Results 351

Logic-based AI has been widely criticized for its rigidness, and its
failure is a major driving force behind the competing approaches, such
as neural network, evolutionary computing, reactive robotics, and dy-
namic system. The practice of NARS shows, however, many of the
problems can be solved within the framework of a reasoning system
by using the ideas, but not the techniques, of the other approach, and
the result is a system that is more flexible and more powerful than the
competing approaches can produce.

13.2 Formal model

NARS, as a general-purpose reasoning system, has been developed ac-
cording to the above theory about intelligence. Because of its theoretical
assumption, all major components of the system are fundamentally dif-
ferent from those of the conventional reasoning systems, and altogether,
they provide a unified model of intelligence.

Beside the capability of this model, hopefully some reader can also
recognize and appreciate its unique elegance (i.e., conceptual simplicity)
in many aspects (such as the dual between extension and intension, the
related measurements of uncertainty, the unified form of various kinds
of inferences, and the isomorphism between first-order and higher-order
inference).

13.2.1 Experience-grounded semantics

According to the working definition of intelligence, the semantics of
NARS defines the truth values of statements and the meanings of terms
in Narsese as functions of the system’s experience.

The fundamental difference between this semantics and the popular
model-theoretic semantics is that the former can be applied to adap-
tive system with insufficient knowledge and resources, while the latter
cannot.

To avoid circular definition, first a binary language, Narsese-0, is
introduced, and is given an experience-grounded semantics. Then, us-
ing this language to specify the idealized experience of the system, the
semantics of Narsese is specified. Finally, each piece of the actual expe-
rience is treated as equivalent to certain idealized experience. Overall,

352 Chapter 13

the semantics supports the interpretation of the input and output of
the system, as well as the justification of the inference rules.

Concretely, the truth value of a statement consists of a frequency
value and a confidence value, where the former measures the propor-
tion of positive evidence among all available evidence, while the latter
measures the proportion of available evidence among all evidence to
be available in the near future. The meaning of a term consists of its
extension and intension, including all of its experienced relations with
other terms.

This semantics provides a unified representation of various types
of uncertainty in a statement, such as randomness, fuzziness, and ig-
norance, as well as a elegant duality between extension and intension
of a term. It also provides a unified justification for various defeasible
inference, such as induction, abduction, analogy, and so on.

The semantic theory can be applied into situations where the sen-
tences in the language have procedural interpretation. Therefore, it can
also be used after the system is extended into a system with sensori-
motor capability.

13.2.2 Extended term logic

NAL belongs to the term logic tradition, not the currently dominating
predicate logic tradition.

A main reason for this choice is that the notion of “evidence” can
be naturally introduced in term logic, but it is hard to do in predicate
logic. Another reason is the close relationship between term logic and
categorical hierarchy. As a result, Narsese is more similar to a natural
language in both grammar and semantics than other formal languages
are, and reasoning in NARS is the same process as categorization.

The traditional criticism to term logic is focused on its poor ex-
pressive power. In NAL, this problem is solved by the introduction of
compound terms. Step by step, the following compounds are added
into Narsese as terms: sets, intersections and differences, products and
images, as well as statements and compound statements. Finally, by
adding questions, goals, events, and operations, as well as the related
operators and relations, the language is no longer purely declarative
anymore.

Current Results 353

All inference in NARS is about inheritance relations among terms.
NARS’ inference rules are constructed by taking both extensions and
intensions of the involved terms into account, and by considering all
possible types of combinations of premises. As a result, NARS has
a set of inference rules for choice, revision, deduction, induction, ab-
duction, exemplification, comparison, analogy, compound terms com-
position and decomposition, higher-order inference, and backward
inference. These different types of inference are carried out in a uniform
format, are justified by the same semantics, and are used in similar ways
altogether.

Defined in a syllogistic format and justified by an experience-grounded
semantics, all inference rules in NAL guarantee the semantic relevance
among the premises and the conclusions in each inference step.

Though predicate logic may still be better for pure-axiomatic rea-
soning systems working in domains where knowledge and resources can
be assumed to be sufficient, a (properly designed) term logic is better
for an adaptive reasoning system working with insufficient knowledge
and resources.

13.2.3 Dynamic resources allocation

NARS’ memory is organized into a two-level structure: the concept level
and the task/belief level, where the concepts are named by terms, and
the tasks and beliefs are clustered into concepts according to the terms
appearing in them. On each level, items are stored in “bags,” which
are fixed-sized probabilistic priority queues. A concept is a large-scale
unit of resource allocation and inference activity. Concepts cooperate
by sending messages (tasks) to one another.

The system works by repeatedly executing atomic inference steps.
In each step, a concept is selected, and within it a task reacts with a
belief to generate new tasks. Each step takes only a very short time to
finish. New tasks can be accepted at any time, and their processing will
depend on the current state of the system’s beliefs and resources.

To work in real time and with insufficient resources, NARS processes
many tasks in parallel. The processor time is distributed among the
tasks unevenly, and the distribution is dynamically adjusted when the
situation changes. More important and promising tasks are given more

354 Chapter 13

processing time, so that in effect, they are processed faster, and their
implications (in the case of beliefs) or their potential solutions (in
the case of questions and goals) are explored further than the other
tasks.

The system produces the best solution it can get for each task, and
continues to improve them whenever there are still resources available
for the task. Consequently, one question may get zero, one, or more
than one answer, depending on the current situation within the system.
The task-processing processes do not follow predetermined algorithms,
and cannot be analyzed in terms of computability and computational
complexity.

The derived tasks are treated in the same way as the input tasks.
Given insufficient knowledge and resources, the solving of a “child” task
will not necessarily contribute to the solving of its “parent” task. As
a result, the overall behavior of NARS is determined by the “resultant
of forces” of all its existing tasks. In this way, the system becomes not
only autonomous and creative, but also unpredictable (from its initial
design alone).

The memory structure and inference control mechanism provide
a unified explanation of cognitive phenomena including memory, atten-
tion, association, forgetting, motivation, and so on.

13.3 Computer implementation

The formal model of NARS described previously can be fully imple-
mented on a computer system, using currently available hardware and
software technology. The resulting system is not complex technically,
but does produce complex behaviors, as predicted by the theory.

13.3.1 Historical versions of NARS

I started working on NARS in 1983 at Peking University, and some
ideas were mentioned in my Bachelor Thesis on Intelligent Database
(in Chinese), though there was no actual program written.

The first prototype of the system, NARS 1.0, was written in Pro-
log in 1985-86, and the system was described in my Master Thesis

Current Results 355

[Wang, 1986]. That version included many of the rules of first-order
NAL (NAL-1 to NAL-4 in this book), though the language was not as
complete as the Narsese presented in this book, and some truth-value
functions are different from the current form, due to the fact that the
idea of an experience-grounded semantics was in its premature stage at
that time.

The next groups of prototypes, NARS 2.0, 2.1, and 2.2 were written
in Scheme, and were developed partially as a course project at Indiana
University in 1992-93. The inference rules were roughly the ones in
NAL-1 and NAL-2, and the semantics was more clear. However, the
control mechanism was highly simplified. This work was described in
[Wang, 1993b, Wang, 1993c].

NARS 3.0 was developed in C++ in 1994-95, and was described
in my Ph.D. Dissertation [Wang, 1995a]. The inference rules were still
the ones in NAL-1 and NAL-2, but the memory structure and control
mechanism were more complicated, and for the first time, the system
had a graphic user interface for interactive communication.

Shortly after NARS 3.0, a version 3.1 was finished, which contained
some minor revisions. This version was not described in any publication.

Since 1998, a customized version of NARS was developed and in-
tegrated into a commercial software, Webmind, as its inference engine.
Though the company was dissolved in 2001, before the software was
completed, the inference engine had shown its capability in solving rea-
soning problems, as well as in supporting other cognitive functionality
of the software, such as natural language processing.

13.3.2 Recent versions of NARS

Since 1997, NARS development has been mainly in the programming
language Java. NARS 4.0 was finished in 1998, and since then the most
recent version of NARS was put at the website of the project1 as an
applet that provides on-line demonstration.

NARS 4.1, finished in 1999, provided a better demonstration of the
project. It came with a brief User’s Guide, as well as examples showing

1Currently at http://www.cogsci.indiana.edu/farg/peiwang/NARS/.

356 Chapter 13

simple inference processes. It was presented among the Intelligent Sys-
tems Demos of AAAI-2000 [Wang, 2000b]. NARS 4.1 implemented a
complete First-Order Non-Axiomatic Logic, though there are some mi-
nor difference between what was implemented in the program and what
are defined as NAL-1 to NAL-4 in this book. The Applet is in a JAR
file of about 50K. It runs in a browser, and opens several windows for
input/output, process tracing, and real-time control. The user can ei-
ther communicate with the system interactively, or run a pre-edited
script consisting of input tasks, separated by numbers indicating the
timing between adjacent input, in terms of inference steps.

NARS 4.2 was finished in 2004, and has been on-line since then. This
extension included rules of NAL-5 and NAL-6, that is, higher-order in-
ference with variables. Consequently, it can be referred as a complete
Non-Axiomatic Logic on non-temporal knowledge. The expressive and
inferential capability of this version is comparable with Predicate Cal-
culus, though the two are neither equivalent, nor included by each other.

Finished together with NARS 4.2 was a stand-alone NAL inference
engine in Prolog, NAL 1.0. In this program, all NAL rules in NAL-1
to NAL-6 are included (with the associated truth-value functions), and
each call to it carries out a single inference step, that is, to generate
conclusions from given premises. It does not include the NARS control
mechanism, which is needed for multi-step inference processes. In the
future, the Prolog versions of the NAL inference engine will be logically
identical to the inference engine in the Java versions of NARS, but much
simpler in code. It will be used for testing and demonstrating, and also
has the potential of being embedded by other systems for inference
service.

NARS 4.3 is currently under development. It contains the rules of
NAL-7 and NAL-8, that is, temporal and procedural inference. When
finished, everything described previously in the book should have been
implemented.

This book makes no attempt to describe the implementation details
of NARS. Instead, that task is left to the project website, as well as
to future publications. Especially, since working examples of problem-
solving in NARS will inevitably require such details, they will be han-
dled better by the website.

Chapter 14

NARS in the Future

As a research project, NARS has achieved many important results, as
summarized in the previous chapter. However, its story is still far from
complete. In this last chapter, I will briefly discuss the future plan of
the project, as well as its implications.

14.1 Next steps of the project

Once again, the topics to be addressed in the project can be divided
into the three levels: theory, model, and implementation (from high to
low, in terms of abstraction). Usually, results on a higher level guides
the work on a lower level, and results on a lower level expose problems
to be solved on a higher level. Therefore, normally works on a higher
level progress farther than those on a lower level, though none of the
three can be finished alone.

14.1.1 NARS, by itself

As mentioned before, an implemented NARS consists of a logic part and
a control part. The former includes a language and a set of inference
rules, and the latter is mostly about resources allocation.

The development of the logic part of NARS has been following an
incremental approach, and in each new version, only part of the formal
model is added into the system, based on the part already established

357

358 Chapter 14

in the current version. Consequently, each version is more intelligent
than the previous one, according to the working definition of NARS
— with a richer language and more inference rules, the system is more
adaptive, and more efficient in using available knowledge and resources.

After NAL-8 is implemented, the logic part of the system, the “in-
ference engine,” will be mostly finished. After that, it will be the time
for massive testing, with the following tasks:

• To check the expressive power of Narsese. After NAL-8, Narsese
should roughly have the expressive power of a natural language.
For testing purpose, various sample texts in different domains will
be manually encoded into Narsese. This task may lead to revisions
in the grammar of Narsese.

• To check the inferential power of NAL. Similar to the previous
task, sample human inference cases will be analyzed, and com-
pared to what NAL will produce for the same case. NAL does
not have to accurately duplicate human reasoning behavior, but
the differences should be documented and explained. This task
may lead to revisions in the inference rules of NAL.

Compared to the logic part, the design of the control part of the
model is less mature — in the previous chapters, I draw the big picture
without the details. Overall, the design of the control part is deliberately
postponed until the design of the logic part is finished. This is because
there is an one-way dependency between the two parts of the model.
When designing the logic part, the control part can be ignored, except
the general principles (such as that no conclusion can be based on
all beliefs of the system, and that the same evidence should not be
repeatedly used to support a conclusion, and so on). On the contrary,
each time a new set of inference rules are introduced, many details of
the control part have to be changed accordingly. Therefore, it does not
make much sense to fine tune the control part before the logic part
becomes stable.

When the logic is largely in place, it will be the time to pay more
attention to control. Unlike the logic, which is mainly designed by theo-
retical analysis, the control part has to be designed by both theoretical
analysis and empirical experimenting.

NARS in the Future 359

Based on the control principles introduced in the previous chap-
ters, I will attempt to provide a more detailed model for all the re-
sources allocation strategies and functions. It will borrow intuitions
from psychology and economy, as well as from previous research in AI
and cognitive sciences (such as the work on credit assignment
[Holland, 1986], rational analysis [Anderson, 1990], evolutionary eco-
nomics [Baum, 1998], and so on) and computer science (such as re-
sources allocation in operating system).

The above theoretical analysis will inevitably leave certain para-
meters (that depend on the hardware/software host systems) to be
determined by actual experimenting in the implemented system. The
plan for this part is to first select a set of benchmark testing cases, with
certain evaluation criteria. Then, parameters will be manually tuned to
find the settings that lead to the best performance. It is very likely that
for each parameter there is no “optimum value” but a “normal range,”
and different values in the range give systems different “personalities,”
and none of them is always the best in all situations. Unlike the logic
part, in the control part the design will never be “done,” and there
will always be space for refinements. Especially, the system’s capability
on procedure inference may be used within the system itself, so as to
NARS can achieve self-monitoring and self-control to certain extent.

14.1.2 Additional capabilities

Beyond the design of NARS per se, there are the following directions
that future NARS-based research may explore (though I may not pursue
all of them myself):

Education theory. The design of NARS, no matter how complete,
only determine the initial state of the system. Though it is possible to
implant some “innate beliefs” into the system, its behaviors will still
inevitably be determined by its experience. Therefore, NARS as de-
signed is like a baby that has great potential, but little built-in skill.
To really make the system to accomplish any practical task, extensive
“education” (or call it “training”) is needed, which is nothing but ex-
ternal control of the system’s (initial) experience. Unlike the training
of current AI systems (like most connectionist models), NARS cannot
be trained to “converge” to certain determined behaviors. Instead, the

360 Chapter 14

situation will be more like the education of human beings — the tutors
will have influence, but not complete control, of the system’s behav-
iors. Therefore, I expect the education theory for NARS to be similar
(though not identical) to that for human beings.

Sensorimotor subsystem. As mentioned before, NAL-8 provides
a general interface for adding sensorimotor capability into NARS. Un-
der procedural interpretation, certain goals in the system will invoke
operations defined outside NARS. These operations can be procedure
calls to other software, or commands to other hardware. As results,
new input tasks are presented to the system, and there are side effects
within the system or in the environment. The ability to use “tools” is
not required in my working definition of intelligence, but if a system
has this capability, its interface language will ipso facto be greatly ex-
tended, and it will therefore be more intelligent than a system that has
only a language interface. In this way, NARS can be customized into
either an “intelligent operating system” (which can flexibly integrate
all kinds of software tools for various tasks), or a “mind” of a robot with
particular sensorimotor mechanism (which is not necessarily similar to
that of a human being).

Special hardware. I never believed that the past failure of AI was
due to von Neumann computer, and I have been building NARS on the
conventional hardware/software platform. Even so, specially designed
hardware will surely improve the efficiency of the system. Given the
fact that all inference activities happen within individual concepts, and
each inference cycle consists of several fixed steps, it is quite possible
to design a special computer with multiple processors, specialized to
carry out inference in parallel. However, it is important to realize that
even in such a hardware, AIKR will still be true, and the system will
still needs to allocate limited resources among a larger number of items
and activities — the system will never have so many processors that
each task will get one. Therefore, though special hardware will improve
efficiency, it will not change the principles on which the system is based.

Natural-language processing. Though to be able to use a nat-
ural language is not a function of NARS by design, it is often desired
for various purposes. NARS has the potential of using its general-
purpose learning mechanism to learn different languages. According to
my current idea, the major difference between the language processing

NARS in the Future 361

in NARS and the current approaches is that the boundary between
syntax and semantics will be broken, and linguistic concepts will be
handled just like other concepts. However, given the fundamental differ-
ence between human experience and the experience of an implemented
NARS, I do not expect it to use a natural language as a native speaker
of the language.

Multi-system community. It will be interesting to implement
multiple copies of NARS, and let them communicate (in Narsese or
other languages) with each other. Due to differences in system para-
meters, in hardware/software, and in experience, they will develop dif-
ferent beliefs. On the other hand, since communication creates shared
experience, we can also expect some consensus to be developed among
the systems. In such a setting, we can study topics like cooperation,
negotiation, speech action, game playing, self/other distinction, and
so on.

System evolution. The learning capability of NARS lets the sys-
tem change its belief structure according to its experience, and the self-
control capability will allow the system to change its internal processes
to a certain extent. Still, there are some changes that will break a sys-
tem’s integrity. To achieve higher intelligence, we can let a NARS com-
munity evolve, using ideas like genetic algorithm. To me, intelligence
and evolution are two forms of adaptation. The former is experience
driven and within an individual system, and the latter is experience in-
dependent and across generations. The two can be combined to achieve
more complicated adaptation.

Though the details of the above tasks remain to be worked out,
I have reason to believe that it makes more sense to tackle these chal-
lenges from a non-axiomatic point of view (rather than from a pure-
axiomatic or semi-axiomatic point of view), since they are all closely
related to adaptation under insufficient knowledge and resources. There-
fore, I feel that the current NARS model constitutes a necessary step
toward these goals. On the other hand, I do not include them as parts
of NARS, because of the belief that they are additional features, rather
than essential natures, of intelligent systems. Unlike some other AGI
projects, I have always taken a “minimalist” approach when design-
ing NARS, by only equipping the system with what I believe to be
absolutely necessary for an AI system.

362 Chapter 14

14.1.3 Theoretical speculations

Though in this book I have already discussed many issues in AI and
cognitive sciences, there are still some important topics that may be
fully addressed by the progress of NARS in the future (after the previ-
ously mentioned extensions get implemented). Though now is too early
to give any conclusion to these issues, I would like to briefly speculate
on how to handle them in NARS.

After NAL is fully implemented and the control mechanism of NARS
becomes more complicated, the system will display certain phenomena,
which are not designed into it as a separate process or function, but are
produced as emergent epiphenomena produced by the mass low-level
events [Hofstadter, 1979]. Emotion may be such an example, which
corresponds to different internal modes. A certain emotion may be pro-
duced by the evaluation of the general situation of the system according
to the desire values of the related statements, and lead to adjustment
in resources distribution. Of course, emotions in the system will not be
based on biological mechanisms, but it will serve a similar function in
the system as in the human mind. It is reasonable to assume that emo-
tion plays an important role in intelligence, but it is wrong to conclude
that it cannot appear in an AI system.

As mentioned previously, NARS runs continuously, without reset-
ting itself after a task is finished. To prevent the system from being
trapped in dead-ends or ignoring unusual possibilities, it may be a good
idea to periodically put the system into “rest” or even “sleep,” by block-
ing its input channels, and reducing the activation level of the concepts
and tasks. In this way, when it is “woken up,” the system may try very
different approaches for the old problems. Furthermore, we may even
allow the system to “dream,” that is, to carry out some internal ac-
tivity during sleeping. Since the resources competition is much weaker
in this state, the system may follow paths that are judged as too un-
likely to be explored in the “sober” state. Again, though their biological
functions are gone and they often cause undesired results, notions like
“sleep” and “dream” (like “forget”) may be found to serve important
information-processing functions.

A related topic is imagery. After the system gets sensorimotor capa-
bility, the internal representation of sensory patterns (“mental image”)

NARS in the Future 363

will be linked to concepts as parts of their meaning, according to EGS.
These links will be used in both directions. If the system has some kind
of visual device, then, on one hand, a cat in the visual field will pro-
vide the sensory material for the production of a mental image within
the system, which is related to the concept “cat” as the result of per-
ception. On the other hand, the processing of the “cat” concept will
activate the mental image (as part of its meaning). In this way, “reason-
ing by image” may become just a special case of the general “reasoning
by concept” process.

The “task alienation” phenomena in NARS may produce many in-
teresting results. For example, we may find the system carries out cer-
tain activities that are not directly related to any input task, and seem
have little practical utility. The system seems to be doing it “just for
fun,” like when humans play games. Similarly, the system may prefer
certain sensation/perception patterns and processes, while the informa-
tion perceived has little practical utility, like when human beings enjoy
various types of art. If we analyze these processes step by step from the
very beginning, I believe that originally they do serve other purposes.
However, with insufficient knowledge and resources, derived tasks grad-
ually become independent of the original ones. This tendency will be
reinforced by the socialization process in multi-system society, where a
system may learn to pursue a goal without knowing why, except that
it is pursued by the other systems.

After NAL-8 is fully implemented, the system can be given certain
sensorimotor capability, through it the system interacts with its envi-
ronment directly (without using Narsese). Here the “environment” can
be the inside of the system itself, which means the system will have cer-
tain self-monitoring and self-control capability. At this point, we may
begin to touch the notion of consciousness. In principle, internally-
oriented sensorimotor will be just like externally-oriented, except with
very different “sensors” and “operators”. The system will be able to
answer questions like “What are you thinking?” according to what is
actually happening in the system (rather than according to how peo-
ple usually answer this question, like many “chatbots” do). Given lim-
ited knowledge and resources, the self perception of the system cannot
be complete — there are lots of “subconscious” processes going on,
beyond its vision. It will get ideas that seem pop up from nowhere

364 Chapter 14

(“inspirations”), and beliefs that cannot be traced back to their sup-
porting evidence (“intuitions”). The system may also have its mind-
body problem, because its internally-oriented and externally-oriented
sensorimotor mechanisms will correspond to different “vocabulary” and
therefore lead to different categorization. When the system attempts to
describe the cause or effect of an internal process according to an ex-
ternal observation, it will need to cross the gap between the two, which
is not always easy.

Finally, related to the above topics are the moral and ethical issues
of AI research. Since the tasks (or call them motivations, drives) of
NARS are determined both by the initial design (there may be built-in
tasks) and by the system’s experience, it will not necessarily generate
“evil” ones, such as “to dominate the world.” On the other hand, it will
also not necessarily be friendly to human beings. Like other technology,
AI is “morally neutral,” and can either lead to good results or bad
ones. In this sense, it is not more dangerous than other technologies.
Given its flexibility, there is no way to put some foolproof safety device
into NARS to prevent bad results. Our attitude toward AI should be
the same as toward all scientific and technical research goals, that is,
to explore them carefully, and to predict their practical consequences
(though we can never be absolutely certain). Since I currently see much
more reason to continue my research than reason to stop it, I will keep
going on.

14.2 What NARS is not

Even after all the extensions and refinements mentioned above, there
are still things that NARS cannot do, simply because it is not designed
for them.

14.2.1 NARS and the other AI schools

Obviously, NARS will not reach the aims set up by the other AI schools.
NARS is not designed to simulate the human brain. I still believe

that what we call “intelligence” (and the related notions like “think-
ing,” “mind,” “cognition,” and so on) can be abstracted from their

NARS in the Future 365

realization in the human brain. Of course, function and structure are
not completely independent of each other, so if certain aspects of NARS
turn out to be similar to what is observed in the human brain, it is not
a coincidence. For example, it is not hard to recognize the similarity
among the induction rule of NARS, Hebbian Learning, and Pavlovian
Conditioning.

NARS is not designed to be an accurate model of human reason-
ing. The system should follow the same principles as does the human
mind. However, it is not necessary to have the same internal structure
and mechanisms as in the human mind, since computer hardware is
fundamentally different from human wetware. Moreover, since NARS’
experience will always be different from that of a human being, it is
not necessary (though it is still possible to a certain extent) to have the
same external behaviors as the human mind, such as exactly reproduc-
ing some psychological data or passing the Turing Test.

Though NARS does have great potential for various applications
where no existing technique can be used (due to insufficient knowledge
and resources), it is not designed to solve particular domain problems.
When NARS is used to solve practical problems, it cannot guarantee
that its results will be correct or optimal (in the eye of an omniscient
observer); judgments in NARS are always subject to being revised by
the system or refuted by future experience. For any given problem, it
is always possible to design a special-purpose system that works bet-
ter than NARS. It is like the relation between hands and tools: for
any given job, it is always possible to design a tool that works bet-
ter than our bare hands. However, I will not trade my hands for any
tool, because of their generality and flexibility. Of course, a hand/tool
combination is better than either of the two alone. For the same rea-
son, for a given problem, it is better to let NARS use a special “tool”
(i.e., special-purpose software/hardware) if it is available, rather than
directly handle the problem by the system. However, I will not build
these tools into NARS, just like I will not implant a hammer into my
hands.

As discussed in the previous chapters, NARS has many cognitive
functions, but they are usually specified quite differently from those
in the other AI projects. We have discussed such cases as “learning,”
“induction,” “planning,” and so on. In NARS, they are interwoven

366 Chapter 14

processes without clear-cut ending points, rather than algorithms that
generate certain output from certain input. Therefore, accurately speak-
ing, what makes NARS different from many other AI projects is not
the solutions it provides, but the problems it aims at. NARS is not
aimed at any of those traditional AI problems, because I don’t think
those problems are actually related to the essence of intelligence. To
me, in terms of the notion introduced in this book, they are “alienated
subtasks” of AI that are derived from the original AI problem through
biased and distorted beliefs.

Since NARS works with insufficient knowledge and resources, it is
impossible for it to have properties that only a pure-axiomatic sys-
tem can have, such as consistency, completeness, decidability, and so on
(though the system does its best to move toward these aims when it is
running). At the same time, the system is not bounded by the restric-
tions of pure-axiomatic systems, neither. For example, Gödel’s Theo-
rem is not directly applicable to NARS. Some people claim that Gödel’s
Theorem has set the limitation of AI [Lucas, 1961, Penrose, 1994], by
implicitly assuming that an AI system has to be consistent. To me, the
situation is just the opposite (that is, an intelligent system must have
internal contradictions and conflicts), and therefore their conclusions
are wrong.

The above “limitations” of NARS are easy to deal with — we can
just ignore them. This is not to say that the attempt to overcome
them is not a valuable goal for research, but simply that such a goal is
fundamentally different from (though still related to) my current goal
— exploring the essence of intelligence. These limitations of the NARS
project mean that if someone is looking for a computer model with
these properties, then NARS should not be a candidate, having been
designed with other goals in mind.

14.2.2 How to criticize or reject NARS

As a scientific research project, the theory, model, and system of NARS
can all be criticized or rejected, given valid evidence and argument.

Unfortunately, most of the criticisms I received so far are invalid,
because they try to evaluate NARS in a school that it does not belong
to. According to the previous discussion, it should be clear that NARS

NARS in the Future 367

cannot be criticized for “being biologically unrealistic,” “cannot pass
the Turing Test,” “hasn’t solved any practical problem,” “not working
on the problems as formally specified by the AI community,” “often
making mistakes,” “cannot find an optimum solution,” and so on.

For such a system, what are valid ways to criticize it? The following
is a list for a critical reader, that goes along the logical path of this
book:

• You can challenge the four criteria (borrowed from Carnap) on
good working definition.

• You can suggest a better working definition of intelligence, ac-
cording to the above criteria.

• You can argue that a reasoning system is not the best way to
formalize my working definition of intelligence.

• You can propose better selections for the components of the formal
model (its formal language, semantics, inference rules, memory
structure, control strategy, and so on) to implement my working
definition of intelligence.

• You can design a computer system that implements the formal
model in a better way.

• You can identify inconsistency among my descriptions and dis-
cussions about NARS.

Even if a valid criticism of NARS is accepted, it does not mean
that the theory/model/system has been “falsified,” [Popper, 1959] and
should be completely rejected. Instead, it usually leads to a revision of
NARS.

When will I give up this project, and move to a completely different
approach? It will happen only when that approach works better in gen-
eral in explaining human cognition and producing a thinking machine.

Until such a moment, the NARS project will be continued.

14.3 General implications

Finally, I will briefly mention some general implications of this research.

368 Chapter 14

14.3.1 For AI

Wolfram said in an interview that “I’m convinced that after it’s under-
stood, it really won’t be difficult to make artificial intelligence. It’s just
that people have been studying absolutely the wrong things in trying to
get it.”[Stork, 1997a] I quite agree with him on this comment (though
we have very different opinions on what is the “right thing” to do).

From what was described in this book, it can be observed that there
is nothing complicated or fancy in the technical details of NARS. How-
ever, the philosophy and methodology of this research is quite different
from, and sometimes even exactly opposite to, what is accepted by the
mainstream AI. It is mainly on “what to do,” rather than on “how
to do it” that NARS differs from the other AI projects, and this par-
tially explains why it is hard for this research to get accepted by the
AI community.

Though the problem of AI is still not completely solved, I believe
that I have given it a better clarification, and that my work finished
so far has shown the potential of this research direction. Especially, it
is shown to be possible to treat many problems according to the same
theoretical foundation, and in the same formal model. In this way, we
can give AI its identity as a scientific discipline.

As a science, this theory can explain many phenomena in human
thinking. Especially, it will provide a unified picture about how the
mind works and why it does not work in another way.

As a technology, NARS does not really compete with existing com-
puter techniques, but is aiming at a domain where no current computer
system can be used.

14.3.2 For cognitive sciences

Though NARS is mainly a research project in AI, its results nevertheless
have contributions to other disciplines in cognitive sciences.

The most directly related discipline is logic. NAL can be seen as
an attempt to move the subject matter of logic from the foundation of
mathematics back to the regularity in thinking. In this sense, it is just
the reverse of what Frege did when founding mathematical logic.

NARS in the Future 369

In this book, I have addressed several issues in psychology, such as in
the previous study of reasoning, learning, categorization, human errors,
and so on. Designed as a normative model, NARS does not compete
with the descriptive models of aspects of human cognition. Instead,
it reveals some misunderstanding and confusion in psychology when
normative models are related to psychological observations.

At the current stage, the contribution of NARS to linguistics is
mainly in the field of semantics. I believe that EGS can be used to
explain many linguistic phenomena. In the future, the research may
produce more results on syntax, pragmatics, and other fields.

In this book, I have discussed many topics in philosophy, especially,
in philosophy of mind (how the mind works), philosophy of logic (what
logic is about), and philosophy of science (what is a good scientific
theory). Since every philosophical theory is based on certain opinions
about intelligence/mind/thinking, we can expect a revolution in phi-
losophy when the AI problem is finally solved. AI may have a larger
impact in philosophy than the ones caused by Newton, Darwin, and
Einstein.

Part of this project is the attempt to establish a scientific theory of
intelligence. It is my opinion that a “scientific theory” is nothing but
a system of shared beliefs and tasks in a community, and it is formed
and changed according to the same principle of intelligence as those of
an individual system, as discussed in this book. It follows that a good
theory should have the following properties:

objective. A good theory should be consistent with the experience of
the individuals in the community (so it cannot merely be idiosyn-
cratic opinions),

structured. A good theory should summarize the beliefs into a simple
knowledge structure (so it cannot just be a collection of unrelated
judgments),

instructive. A good theory should provide concrete predictions for
the future (so it cannot be vague, ambiguous, vacuous, or tauto-
logical).

The theory about intelligence presented in this book is developed to
meet these criteria.

370 Chapter 14

Eventually, I believe that this research will lead us to a general
theory on intelligence, which covers the fields of human intelligence,
computer intelligence, animal intelligence, group intelligence, extrater-
restrial intelligence, and so on. We will find that they are special cases
of the same underlying principles.

Bibliography

[Allen, 1984] Allen, J. F. (1984). Towards a general theory of action
and time. Artificial Intelligence, 23(2):123–154.

[Allport, 1937] Allport, G. (1937). The functional autonomy of
motives. American Journal of Psychology, 50:141–156.

[Allwood et al., 1977] Allwood, J., Andersson, L.-G., and Dahl, O.,
editors (1977). Logic in linguistics. Cambridge University Press,
Cambridge.

[Anderson, 1990] Anderson, J. (1990). The Adaptive Character of
Thought. Lawrence Erlbaum Associates, Hillsdale, New Jersey.

[Anderson and Lebiere, 1998] Anderson, J. and Lebiere, C. (1998).
The Atomic Components of Thought. Lawrence Erlbaum Associates,
Mahwah, New Jersey.

[Anderson, 1986] Anderson, N. (1986). A cognitive theory of judgment
and decision. In Brehmer, B., Jungermann, H., Lourens, P., and
Sevón, G., editors, New Directions in Research on Decision Making,
pages 63–108. Elsevier Science Publishers, Amsterdam.

[Aristotle, 1989] Aristotle (1989). Prior Analytics. Hackett Publishing
Company, Indianapolis, Indiana. Translated by R. Smith.

[Arkes, 1991] Arkes, H. (1991). Costa and benefits of judgment errors:
implications for debiasing. Psychological Bulletin, 110:486–498.

[Barsalou, 1987] Barsalou, L. (1987). The instability of graded struc-
ture: implications for the nature of concepts. In Neisser, U., editor,

371

372 Bibliography

Concepts and Conceptual Development: Ecological and intellectual
factors in categorization, chapter 5, pages 101–140. Cambridge Uni-
versity Press, Cambridge.

[Barsalou, 1999] Barsalou, L. (1999). Perceptual symbol systems.
Behavioral and Brain Sciences, 22:577–609.

[Barwise and Perry, 1983] Barwise, J. and Perry, J. (1983). Situations
and Attitudes. MIT Press, Cambridge, Massachusetts.

[Baum, 1998] Baum, E. (1998). Manifesto for an evolutionary eco-
nomics of intelligence. In Bishop, C., editor, Neural Networks and
Machine Learning, pages 285–344. Springer-Verlag, New York.

[Bellman and Giertz, 1973] Bellman, R. and Giertz, M. (1973). On the
analytic formalism of the theory of fuzzy sets. Information Sciences,
5:149–157.

[Bernardo and Smith, 1994] Bernardo, J. and Smith, A. (1994).
Bayesian Theory. John Wiley & Sons, Chichester, England.

[Bhatnagar and Kanal, 1986] Bhatnagar, R. and Kanal, L. (1986).
Handling uncertain information. In Kanal, L. and Lemmer, J.,
editors, Uncertainty in Artificial Intelligence, pages 3–26. North-
Holland, Amsterdam.

[Birnbaum, 1991] Birnbaum, L. (1991). Rigor mortis: a response to
Nilsson’s “Logic and artificial intelligence”. Artificial Intelligence,
47:57–77.

[Bocheński, 1970] Bocheński, I. (1970). A History of Formal Logic.
Chelsea Publishing Company, New York. Translated and edited by
I. Thomas.

[Boddy and Dean, 1994] Boddy, M. and Dean, T. (1994). Delibera-
tion scheduling for problem solving in time-constrained environ-
ments. Artificial Intelligence, 67:245–285.

[Bonissone, 1987] Bonissone, P. (1987). Summarizing and propagating
uncertain information with triangular norms. International Journal
of Approximate Reasoning, 1:71–101.

Bibliography 373

[Bonissone and Decker, 1986] Bonissone, P. and Decker, K. (1986).
Selecting uncertain calculi and granularity. In Kanal, L. and
Lemmer, J., editors, Uncertainty in Artificial Intelligence, pages
217–247. North-Holland, Amsterdam.

[Brachman, 1983] Brachman, R. (1983). What is-a is and isn’t: an
analysis of taxonomic links in semantic networks. IEEE Computer,
16:30–36.

[Brachman and Schmolze, 1985] Brachman, R. and Schmolze, J.
(1985). An overview of the KL-ONE knowledge representation
system. Cognitive Science, 9:171–216.

[Braine and O’Brien, 1998] Braine, M. and O’Brien, D., editors (1998).
Mental Logic. Lawrence Erlbaum Associates, Mahwah, New Jersey.

[Brooks, 1991] Brooks, R. (1991). Intelligence without representation.
Artificial Intelligence, 47:139–159.

[Bylander, 1991] Bylander, T. (1991). Tractability and artificial intelli-
gence. Journal of Experimental & Theoretical Artificial Intelligence,
3:171–178.

[Campbell, 1997] Campbell, M. (1997). “An enjoyable game”: How
HAL plays chess. In Stork, D., editor, HAL’s Legacy: 2001’s Com-
puter as Dream and Reality, pages 75–98. MIT Press, Cambridge,
Massachusetts.

[Campbell et al., 2002] Campbell, M., Hoane, A. J. J., and Hsu, F.-H.
(2002). Deep Blue. Artificial Intelligence, 134:57–83.

[Cao et al., 2002] Cao, T. H., Rossiter, J. M., Martin, T. P., and Bald-
win, J. F. (2002). On the implementation of Fril++ for object-
oriented logic programming with uncertainty and fuzziness. In
Bouchon-Meunier, B., Gutierrez-Rios, J., Magdalena, L., and Yager,
R. R., editors, Technologies for Constructing Intelligent Systems 2:
Tools, pages 393–406. Physica-Verlag, Heidelberg.

[Carnap, 1950] Carnap, R. (1950). Logical Foundations of Probability.
The University of Chicago Press, Chicago.

374 Bibliography

[Carnap, 1952] Carnap, R. (1952). The Continuum of Inductive Meth-
ods. The University of Chicago Press, Chicago.

[Chalmers et al., 1992] Chalmers, D., French, R., and Hofstadter, D.
(1992). High-level perception, representation, and analogy: a critique
of artificial intelligence methodology. Journal of Experimental &
Theoretical Artificial Intelligence, 4:185–211.

[Chater and Oaksford, 1999] Chater, N. and Oaksford, M. (1999).
Ten years of the rational analysis of cognition. Trends in Cognitive
Science, 3:57–65.

[Cheeseman, 1985] Cheeseman, P. (1985). In defense of probability. In
Proceedings of the Eighth International Joint Conference on Artificial
Intelligence, pages 1002–1009.

[Cheeseman, 1986] Cheeseman, P. (1986). Probabilistic versus fuzzy
reasoning. In Kanal, L. and Lemmer, J., editors, Uncertainty in Ar-
tificial Intelligence, pages 85–102. North-Holland, Amsterdam.

[Cheng, 1997] Cheng, P. (1997). From covariation to causation: A
causal power theory. Psychological Review, 104(2):367–405.

[Cherniak, 1986] Cherniak, C. (1986). Minimal Rationality. MIT Press,
Cambridge, Massachusetts.

[Cohen, 1989] Cohen, L. (1989). The Philosophy of Induction and Prob-
ability. Clarendon Press, Oxford.

[Coletti et al., 1993] Coletti, G., Gilio, A., and Scozzafava, R. (1993).
Comparative probability for conditional events: a new look through
coherence. Theory and Decision, 35:237–258.

[Copi, 1982] Copi, I. (1982). Introduction to Logic. Macmillan Publish-
ing Co., Inc., New York, 6th edition.

[Coulson, 2001] Coulson, S. (2001). Semantic Leaps: Frame-shifting
and Conceptual Blending in Meaning Construction. Cambridge
University Press, Cambridge.

Bibliography 375

[Cox, 1946] Cox, R. (1946). Probability, frequency, and reasonable
expectation. American Journal of Physics, 14:1–13.

[Cruse, 1986] Cruse, D. (1986). Lexical Semantics. Cambridge Univer-
sity Press, Cambridge.

[Dean and Boddy, 1988] Dean, T. and Boddy, M. (1988). An analysis
of time-dependent planning. In Proceedings of AAAI-88, pages 49–54.

[Dempster, 1967] Dempster, A. (1967). Upper and lower probabilities
induced by a multivalued mapping. Annals of Mathematical Statis-
tics, 38:325–339.

[Deutsch-McLeish, 1991] Deutsch-McLeish, M. (1991). A study of
probabilities and belief functions under conflicting evidence: Com-
parisons and new methods. In Bouchon-Meunier, B., Yager, R. R.,
and Zadeh, L. A., editors, Uncertainty in Knowledge Bases: Proc.
of the 3rd International Conference on Information Processing and
Management of Uncertainty in Knowledge-Based Systems, IPMU’90,
pages 41–49. Springer, Berlin, Heidelberg.

[Diaconis and Zabell, 1983] Diaconis, P. and Zabell, S. (1983). Some
alternatives to Bayes’s rule. In Information Pooling and Group De-
cision Making: Proceedings of the Second University of California,
Irvine, Conference on Political Economy, pages 25–38.

[Donini et al., 1996] Donini, F. M., Lenzerini, M., Nardi, D., and
Schaerf, A. (1996). Reasoning in description logics. In Brewka, G.,
editor, Principles of Knowledge Representation, pages 191–236. CSLI
Publications, Stanford, California.

[Dreyfus, 1992] Dreyfus, H. (1992). What Computers Still Can’t Do.
MIT Press, Cambridge, Massachusetts.

[Dubois et al., 2001] Dubois, D., Grabisch, M., Prade, H., and Smets,
P. (2001). Using the transferable belief model and a qualitative pos-
sibility theory approach on an illustrative example: The assessment
of the value of a candidate. International Journal of Intelligent Sys-
tems, 16:1245–1272.

376 Bibliography

[Dubois and Prade, 1980] Dubois, D. and Prade, H. (1980). Fuzzy Sets
and Systems. Academic Press, New York.

[Dubois and Prade, 1982] Dubois, D. and Prade, H. (1982). A class of
fuzzy measures based on triangular norms. International Journal of
General Systems, 8:43–61.

[Dubois and Prade, 1988] Dubois, D. and Prade, H. (1988). On fuzzy
syllogisms. Computational Intelligence, 4:171–179.

[Dubois and Prade, 1991] Dubois, D. and Prade, H. (1991). Updating
with belief functions, ordinal conditional functions and possibility
measures. In Bonissone, P., Henrion, M., Kanal, L., and Lemmer,
J., editors, Uncertainty in Artificial Intelligence 6, pages 311–329.
North-Holland, Amsterdam.

[Dummett, 1978] Dummett, M. (1978). Truth and Other Enigmas.
Harvard University Press, Cambridge, Massachusetts.

[Edmonds, 2000] Edmonds, B. (2000). The constructability of artificial
intelligence (as defined by the Turing test). Journal of Logic Language
and Information, 9:419–424.

[Elgot-Drapkin et al., 1991] Elgot-Drapkin, J., Miller, M., and Perlis,
D. (1991). Memory, reason, and time: the step-logic approach. In
Cummins, R. and Pollock, J., editors, Philosophy and AI, chapter 4,
pages 79–103. MIT Press, Cambridge, Massachusetts.

[Ellis, 1993] Ellis, J. (1993). Language, Thought, and Logic. Northwest-
ern University Press, Evanston, Illinois.

[Ellsberg, 1961] Ellsberg, D. (1961). Risk, ambiguity, and the savage
axioms. Quarterly Journal of Economics, 75:643–669.

[Englebretsen, 1981] Englebretsen, G. (1981). Three Logicians. Van
Gorcum, Assen, The Netherlands.

[Englebretsen, 1996] Englebretsen, G. (1996). Something to Reckon
with: the Logic of Terms. Ottawa University Press, Ottawa.

Bibliography 377

[Fagin and Halpern, 1988] Fagin, R. and Halpern, J. (1988). Belief,
awareness, and limited reasoning. Artificial Intelligence, 34:39–76.

[Feigenbaum and McCorduck, 1983] Feigenbaum, E. and McCorduck,
P. (1983). The Fifth Generation : Artificial Intelligence and Japan’s
Computer Challenge to the world. Addison-Wesley Publishing Com-
pany, Reading, Massachusetts.

[Feyerabend, 1993] Feyerabend, P. (1993). Against Method. Verso
Books, London, 3rd edition.

[Field, 2001] Field, H. (2001). Truth and the Absence of Fact. Oxford
University Press, New York.

[Flach and Kakas, 2000] Flach, P. and Kakas, A. (2000). Abductive
and inductive reasoning: Background and issues. In Flach, P. and
Kakas, A., editors, Abduction and Induction: Essays on their Relation
and Integration, pages 1–27. Kluwer Academic Publishers, Dordrecht.

[Fodor, 1987] Fodor, J. (1987). Psychosemantics. MIT Press, Cam-
bridge, Massachusetts.

[Fodor, 1998] Fodor, J. (1998). Concepts: where cognitive science went
wrong. Oxford University Press, New York.

[Fox, 2000] Fox, C. (2000). The Ontology of Language: Properties, In-
dividuals and Discourse. CSLI Publications, Stanford, California.

[Frege, 1970] Frege, G. (1970). Begriffsschrift, a formula language,
modeled upon that of arithmetic, for pure thought. In van Heijenoort,
J., editor, Frege and Gödel: Two Fundamental Texts in Mathemati-
cal Logic, pages 1–82. Harvard University Press, Cambridge, Massa-
chusetts.

[French, 1990] French, R. (1990). Subcognition and the limits of the
Turing test. Mind, 99:53–65.

[French, 1995] French, R. (1995). The Subtlety of Sameness: A Theory
and Computer Model of Analogy-Making. MIT Press, Cambridge,
Massachusetts.

378 Bibliography

[Frisch and Haddawy, 1994] Frisch, A. and Haddawy, P. (1994).
Anytime deduction for probabilistic logic. Artificial Intelligence,
69:93–122.

[Fung and Chong, 1986] Fung, R. and Chong, C. (1986). Metaprob-
ability and Dempster-Shafer in evidential reasoning. In Kanal, L.
and Lemmer, J., editors, Uncertainty in Artificial Intelligence, pages
295–302. North-Holland, Amsterdam.

[Gaifman, 1986] Gaifman, H. (1986). A theory of higher order proba-
bilities. In Halpern, J., editor, Theoretical Aspects of Reasoning about
Knowledge, pages 275–292. Morgan Kaufmann, Los Altos, California.

[Gaines, 1978] Gaines, B. (1978). Fuzzy and probability uncertainty
logics. Information and Control, 38:154–169.

[Gärdenfors and Williams, 2001] Gärdenfors, P. and Williams, M.
(2001). Reasoning about categories in conceptual spaces. In Proceed-
ings of the International Joint Conference on Artificial Intelligence,
pages 385–392.

[Geach, 1968] Geach, P. (1968). A history of the corruptions of logic:
an inaugural lecture. Leeds University Press, Cambridge.

[Gigerenzer, 1991] Gigerenzer, G. (1991). How to make cognitive
illusions disappear: beyond “heuristics and biases”. In Stroebe, W.
and Hewstone, M., editors, European Review of Social Psychology,
Volume 2, chapter 4, pages 83–115. John Wiley & Sons Ltd.

[Ginsberg, 1987] Ginsberg, M., editor (1987). Readings in Non-
monotonic Reasoning. Morgan Kaufmann, San Mateo.

[Giraud-Carrier and Martinez, 1995] Giraud-Carrier, C. and Martinez,
T. (1995). An integrated framework for learning and reasoning. Jour-
nal of Artificial Intelligence Research, 3:147–185.

[Goertzel and Pennachin, 2006] Goertzel, B. and Pennachin, C., edi-
tors (2006). Artificial General Intelligence. Springer, New York.

Bibliography 379

[Goertzel et al., 2003] Goertzel, B., Pennachin, C., Senna, A., Maia, T.,
and Lamacie, G. (2003). Novamente: An integrative architecture for
artificial general intelligence. In Working Notes of the IJCAI Work-
shop on Cognitive Modeling of Agents and Multi-Agent Interactions,
Acapulco, Mexico.

[Good, 1965] Good, I. (1965). The Estimation of Probabilities. MIT
Press, Cambridge, Massachusetts.

[Good, 1983] Good, I. (1983). Good Thinking: The Foundations of
Probability and Its Applications. University of Minnesota Press,
Minneapolis.

[Grosof, 1986] Grosof, B. (1986). An inequality paradigm for proba-
bilistic knowledge. In Kanal, L. and Lemmer, J., editors, Uncertainty
in Artificial Intelligence, pages 259–275. North-Holland, Amsterdam.

[Grosof, 1990] Grosof, B. (1990). Defeasible reasoning and uncertainty:
comments. In Henrion, M., Shachter, R., Kanal, L., and Lemmer, J.,
editors, Uncertainty in Artificial Intelligence 5, pages 61–66. North-
Holland, Amsterdam.

[Guha and Lenat, 1990] Guha, R. and Lenat, D. (1990). Cyc: A mid-
term report. AI Magazine, 11(3):32–59.

[Haack, 1978] Haack, S. (1978). Philosophy of Logics. Cambridge Uni-
versity Press, Cambridge.

[Halpern, 1990] Halpern, J. (1990). An analysis of first-order logics of
probability. Artificial Intelligence, 46:311–350.

[Halpern et al., 2001] Halpern, J. Y., Harper, R., Immerman, N., Ko-
laitis, P. G., Vardi, M. Y., and Vianu, V. (2001). On the unusual
effectiveness of logic in computer science. The Bulletin of Symbolic
Logic, 7(2):213–236.

[Harman, 1982] Harman, G. (1982). Conceptual role semantics. Notre
Dame Journal of Formal Logic, 28:252–256.

380 Bibliography

[Harnad, 1990] Harnad, S. (1990). The symbol grounding problem.
Physica D, 42:335–346.

[Haussler, 1988] Haussler, D. (1988). Quantifying inductive bias: AI
learning algorithms and Valiant’s learning framework. Artificial
Intelligence, 36:177–221.

[Hawkins and Blakeslee, 2004] Hawkins, J. and Blakeslee, S. (2004).
On Intelligence. Times Books, New York.

[Hayes, 1977] Hayes, P. (1977). In defense of logic. In Proceedings of
the International Joint Conference on Artificial Intelligence, pages
559–565.

[Hearst and Hirsh, 2000] Hearst, M. and Hirsh, H. (2000). AI’s greatest
trends and controversies. IEEE Intelligent Systems, pages 8–17.

[Hecht-Nielsen, 2005] Hecht-Nielsen, R. (2005). Cogent confabulation.
Neural Networks, 18(2):111–115.

[Heckerman, 1999] Heckerman, D. (1999). Bayesian learning. In Wil-
son, R. and Keil, F., editors, The MIT Encyclopedia of the Cognitive
Sciences, pages 70–72. MIT Press, Cambridge, Massachusetts.

[Hempel, 1943] Hempel, C. (1943). A purely syntactical definition of
confirmation. Journal of Symbolic Logic, 8:122–143.

[Hofstadter, 1979] Hofstadter, D. (1979). Gödel, Escher, Bach: an
Eternal Golden Braid. Basic Books, New York.

[Hofstadter, 1985] Hofstadter, D. (1985). Metamagical Themas: Quest-
ing for the Essence of Mind and Pattern. Basic Books, New York.

[Hofstadter, 1993a] Hofstadter, D. (1993a). From Euler to Ulam:
discovery and dissection of a geometric gem. Technical Report 81,
Center for Research on Concepts and Cognition, Indiana University,
Bloomington, Indiana.

[Hofstadter, 1993b] Hofstadter, D. (1993b). How could a copycat ever
be creative? In Working Notes, 1993 AAAI Spring Symposium
Series, Symposium: AI and Creativity, pages 1–10.

Bibliography 381

[Hofstadter and FARG, 1995] Hofstadter, D. and FARG (1995). Fluid
Concepts and Creative Analogies: Computer Models of the Funda-
mental Mechanisms of Thought. Basic Books, New York.

[Holland, 1986] Holland, J. (1986). Escaping brittleness: the possi-
bilities of general purpose learning algorithms applied to parallel
rule-based systems. In Michalski, R., Carbonell, J., and Mitchell, T.,
editors, Machine Learning: an artificial intelligence approach, vol-
ume II, chapter 20, pages 593–624. Morgan Kaufmann, Los Altos,
California.

[Holland, 1992] Holland, J. (1992). Adaptation in Natural and Artifi-
cial Systems: An Introductory Analysis With Applications to Biology,
Control, and Artificial Intelligence. MIT Press, Cambridge, Massa-
chusetts.

[Hopcroft and Ullman, 1979] Hopcroft, J. and Ullman, J. (1979). Intro-
duction to Automata Theory, Language, and Computation. Addison-
Wesley, Reading, Massachusetts.

[Horvitz, 1989] Horvitz, E. (1989). Reasoning about beliefs and actions
under computational resource constraints. In Kanal, L., Levitt, T.,
and Lemmer, J., editors, Uncertainty in Artificial Intelligence 3,
pages 301–324. North-Holland, Amsterdam.

[Hume, 1748] Hume, D. (1748). An Enquiry Concerning Human
Understanding. London.

[Hutter, 2001] Hutter, M. (2001). Towards a universal theory of arti-
ficial intelligence based on algorithmic probability and sequential
decisions. In Proceedings of the 12th European Conference on
Machine Learning, pages 226–238.

[Inhelder and Piaget, 1969] Inhelder, B. and Piaget, J. (1969). The
Early Growth of Logic in the Child. W. W. Norton & Company, Inc.,
New York. Translated by E. Lunzer and D. Papert.

[Jeffrey, 1965] Jeffrey, R. (1965). The Logic of Decision. McGraw-Hill,
New York.

382 Bibliography

[Johnson, 1997] Johnson, T. (1997). Control in Act-R and Soar. In
Shafto, M. and Langley, P., editors, Proceedings of the Nineteenth
Annual Conference of the Cognitive Science Society, pages 343–348.

[Johnson-Laird, 1983] Johnson-Laird, P. (1983). Mental Models. Har-
vard University Press, Cambridge, Massachusetts.

[Kahneman and Miller, 1986] Kahneman, D. and Miller, D. (1986).
Norm theory: comparing reality to its alternatives. Psychological Re-
view, 93:136–153.

[Kahneman and Tversky, 1982] Kahneman, D. and Tversky, A. (1982).
On the study of statistical intuitions. In Kahneman, D., Slovic, P.,
and Tversky, A., editors, Judgment under Uncertainty: Heuristics
and Biases, chapter 34, pages 493–508. Cambridge University Press,
Cambridge, England.

[Kamp, 1975] Kamp, J. (1975). Two theories about adjectives. In
Keenan, E., editor, Formal Semantics of Natural Language, pages
123–155. Cambridge University Press, Cambridge.

[Keynes, 1921] Keynes, J. (1921). A Treatise on Probability. Macmillan,
London.

[Kitchener, 1994] Kitchener, R. (1994). Semantic naturalism: The
problem of meaning and naturalistic psychology. In Overton, W.
and Palermo, D., editors, The Nature and Ontogenesis of Meaning.
Lawrence Erlbaum Associates, Hillsdale, New Jersey.

[Kolmogorov, 1950] Kolmogorov, A. N. (1950). Foundations of the
Theory of Probability. Chelsea Publishing Company, New York.

[Korb, 1995] Korb, K. (1995). Inductive learning and defeasible infer-
nce. Journal of Experimental & Theoretical Artificial Intelligence,
7:291–324.

[Kowalski, 1979] Kowalski, R. (1979). Logic for Problem Solving. North
Holland, New York.

Bibliography 383

[Kowalski, 1995] Kowalski, R. (1995). Logic without model theory.
In Gabbay, D. M., editor, What is a Logical System?, pages 35–71.
Oxford University Press.

[Krantz, 1991] Krantz, D. (1991). From indices to mappings: The rep-
resentational approach to measurement. In Brown, D. and Smith, J.,
editors, Frontiers of Mathematical Psychology: Essays in Honor of
Clyde Coombs, Recent Research in Psychology, chapter 1. Springer-
Verlag, Berlin, Germany.

[Kugel, 1986] Kugel, P. (1986). Thinking may be more than computing.
Cognition, 22:137–198.

[Kuhn, 1970] Kuhn, T. (1970). The Structure of Scientific Revolutions.
Chicago University Press, 2nd edition.

[Kurtonina and de Rijke, 1999] Kurtonina, N. and de Rijke, M. (1999).
Expressiveness of concept expressions in first-order description logics.
Artificial Intelligence, 107:303–333.

[Kyburg, 1983] Kyburg, H. (1983). The reference class. Philosophy of
Science, 50:374–397.

[Kyburg, 1987] Kyburg, H. (1987). Bayesian and non-Bayesian eviden-
tial updating. Artificial Intelligence, 31:271–293.

[Kyburg, 1988] Kyburg, H. (1988). Higher order probabilities and in-
tervals. International Journal of Approximate Reasoning, 2:195–209.

[Kyburg, 1989] Kyburg, H. (1989). Higher order probabilities. In
Kanal, L., Levitt, T., and Lemmer, J., editors, Uncertainty in Arti-
ficial Intelligence 3, pages 15–22. North-Holland, Amsterdam.

[Kyburg, 1992] Kyburg, H. (1992). Semantics for probabilistic infer-
ence. In Proceedings of the Eighth Conference on Uncertainty in Arti-
ficial Intelligence, pages 142–148.

[Kyburg, 1994] Kyburg, H. (1994). Believing on the basis of the
evidence. Computational Intelligence, 10:3–20.

384 Bibliography

[Laffey et al., 1988] Laffey, T., Cox, P., Schmidt, J., Kao, S., and Read,
J. (1988). Real-time knowledge based system. AI Magazine, 9:27–45.

[Laird et al., 1987] Laird, J., Newell, A., and Rosenbloom, P. (1987).
Soar: An architecture for general intelligence. Artificial Intelligence,
33:1–64.

[Lakoff, 1987] Lakoff, G. (1987). Women, Fire, and Dangerous Things:
What Categories Reveal about the Mind. University of Chicago Press,
Chicago.

[Lakoff, 1988] Lakoff, G. (1988). Cognitive semantics. In Eco, U., San-
tambrogio, M., and P., V., editors, Meaning and Mental Representa-
tion, pages 119–154. Indiana University Press, Bloomington, Indiana.

[Laurence and Margolis, 1999] Laurence, S. and Margolis, E. (1999).
Concepts and cognitive science. In Margolis, E. and Laurence, S.,
editors, Concepts: Core Readings, pages 3–81. MIT Press,
Cambridge, Massachusetts.

[Lenat, 1995] Lenat, D. (1995). Cyc: A large-scale investment in knowl-
edge infrastructure. Communications of the ACM, 38(11):33–38.

[Lenat and Feigenbaum, 1991] Lenat, D. and Feigenbaum, E. (1991).
On the thresholds of knowledge. Artificial Intelligence, 47:185–250.

[Levesque, 1989] Levesque, H. (1989). Logic and the complexity of
reasoning. In Thomason, R., editor, Philosophical Logic and Artificial
Intelligence, pages 73–107. Kluwer Academic Publishers, Boston.

[Lewis, 1988] Lewis, D. (1988). Desire as belief. Mind, 97(387):323–332.

[Littman et al., 1998] Littman, M., Goldsmith, J., and Mundhenk, M.
(1998). The computational complexity of probabilistic planning.
Journal of Artificial Intelligence Research, 9:1–36.

[Lucas, 1961] Lucas, J. R. (1961). Minds, machines and Gödel. Philos-
ophy, XXXVI:112–127.

Bibliography 385

[Lukasiewicz, 1951] Lukasiewicz, J. (1951). Aristotle’s Syllogistic: From
the Standpoint of Modern Formal Logic. Oxford University Press,
London.

[Lynch, 1998] Lynch, M. (1998). Truth in Context. MIT Press, Cam-
bridge, Massachusetts.

[Marr, 1982] Marr, D. (1982). Vision: A Computational Investigation
into the Human Representation and Processing of Visual Informa-
tion. W. H. Freeman & Co., San Francisco.

[McCarthy, 1988] McCarthy, J. (1988). Mathematical logic in artificial
intelligence. Dædalus, 117(1):297–311.

[McCarthy, 1993] McCarthy, J. (1993). Notes on formalizing contexts.
In Proceedings of the thirteenth international joint conference on
artificial intelligence, pages 555–560.

[McCarthy and Hayes, 1969] McCarthy, J. and Hayes, P. (1969). Some
philosophical problems from the standpoint of artificial intelligence.
In Meltzer, B. and Michie, D., editors, Machine Intelligence 4, pages
463–502. Edinburgh University Press, Edinburgh.

[McDermott, 1987] McDermott, D. (1987). A critique of pure reason.
Computational Intelligence, 3:151–160.

[McNeill and Freiberger, 1993] McNeill, D. and Freiberger, P. (1993).
Fuzzy Logic. Simon & Schuster, New York.

[Medin and Ross, 1992] Medin, D. and Ross, B. (1992). Cognitive Psy-
chology. Harcourt Brace Jovanovich, Fort Worth.

[Medin and Schaffer, 1978] Medin, D. and Schaffer, M. (1978). A con-
text theory of classification learning. Psychological Review, 85:
207–328.

[Michalski, 1993] Michalski, R. (1993). Inference theory of learning as
a conceptual basis for multistrategy learning. Machine Learning,
11:111–151.

386 Bibliography

[Minsky, 1985] Minsky, M. (1985). The Society of Mind. Simon and
Schuster, New York.

[Minsky, 1990] Minsky, M. (1990). Logical vs. analogical or symbolic
vs. connectionist or neat vs. scruffy. In Winston, P., editor, Artifi-
cial Intelligence at MIT, Vol. 1: Expanding Frontiers, pages 218–243.
MIT Press, Cambridge, Massachusetts.

[Minsky et al., 2004] Minsky, M., Singh, P., and Sloman, A. (2004).
The St. Thomas common sense symposium: Designing architectures
for human-level intelligence. AI Magazine, 25(2):113–124.

[Mitchell, 1993] Mitchell, M. (1993). Analogy-Making as Perception:
A Computer Model. MIT Press, Cambridge, Massachusetts.

[Mitchell, 1980] Mitchell, T. (1980). The need for biases in learning
generalizations. In Shavlik, J. and Dietterich, T., editors, Readings in
Machine Learning. Morgan Kaufmann, San Mateo, California. 1990.
Originally published as a Rutgers Technical report.

[Murphy and Medin, 1985] Murphy, G. and Medin, D. (1985). The role
of theories in conceptual coherence. Psychological Review, 92(3):
289–316.

[Neufeld, 1989] Neufeld, E. (1989). Defaults and probabilities: exten-
sions and coherence. In Proceedings of the First International Con-
ference on Principles of Knowledge Representation and Reasoning.

[Newborn, 2002] Newborn, M. (2002). Deep Blue: An Artificial Intel-
ligence Milestone. Springer Verlag, New York.

[Newell, 1990] Newell, A. (1990). Unified Theories of Cognition.
Harvard University Press, Cambridge, Massachusetts.

[Newell and Simon, 1976] Newell, A. and Simon, H. (1976). Computer
science as empirical inquiry: symbols and search. Communications of
the ACM, 19(3):113–126.

[Nilsson, 1991] Nilsson, N. (1991). Logic and artificial intelligence.
Artificial Intelligence, 47:31–56.

Bibliography 387

[Nilsson, 1998] Nilsson, N. (1998). Artificial Intelligence: A New Syn-
thesis. Morgan Kaufmann, San Francisco.

[Nosofsky, 1991] Nosofsky, R. (1991). Typicality in logically defined
categories: exemplar-similarity versus rule instantiation. Memory and
Cognition, 17:444–458.

[Oden, 1977a] Oden, G. (1977a). Fuzziness in semantic memory: choos-
ing exemplars of subjective categories. Memory and cognition, 5:198–
204.

[Oden, 1977b] Oden, G. (1977b). Integration of fuzzy logical informa-
tion. Journal of Experimental Psychology: Human Perception and
Performance, 3:565–575.

[Osherson and Smith, 1981] Osherson, D. and Smith, E. (1981). On the
adequacy of prototype theory as a theory of concepts. Cognition,
9:35–58.

[Paaß, 1991] Paaß, G. (1991). Second order probabilities for uncer-
tain and conflicting evidence. In Bonissone, P., Henrion, M., Kanal,
L., and Lemmer, J., editors, Uncertainty in Artificial Intelligence 6,
pages 447–456. North-Holland, Amsterdam.

[Palmer, 1981] Palmer, F. (1981). Semantics. Cambridge University
Press, New York, 2nd edition.

[Pearl, 1988] Pearl, J. (1988). Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann Publishers, San Mateo, California.

[Pearl, 1990] Pearl, J. (1990). Jeffrey’s rule, passage of experience,
and Neo-Bayesianism. In Kyburg, H., R., L., and G., C., editors,
Knowledge Representation and Defeasible Reasoning, pages 245–265.
Kluwer Academic Publishers, Amsterdam.

[Pearl, 2000] Pearl, J. (2000). Causality. Cambridge University Press,
Cambridge, UK.

[Peirce, 1931] Peirce, C. (1931). Collected Papers of Charles Sanders
Peirce, volume 2. Harvard University Press, Cambridge, Massa-
chusetts.

388 Bibliography

[Penrose, 1994] Penrose, R. (1994). Shadows of the Mind. Oxford
University Press.

[Piaget, 1960] Piaget, J. (1960). The Psychology of Intelligence. Little-
field, Adams & Co., Paterson, New Jersey.

[Piaget, 1963] Piaget, J. (1963). The Origins of Intelligence in Chil-
dren. W.W. Norton & Company, Inc., New York. Translated by
M. Cook.

[Poole, 1985] Poole, D. (1985). On the comparison of theories: prefer-
ring the most specific explanation. In Proceedings of the Ninth Inter-
national Joint Conference on Artificial Intelligence, pages 144–147.

[Popper, 1959] Popper, K. (1959). The Logic of Scientific Discovery.
Basic Books, New York.

[Priest et al., 1989] Priest, G., Routley, R., and Norman, J., editors
(1989). Paraconsistent Logic: Essays on the Inconsistent. Philosophia
Verlag, München.

[Putnam, 1981] Putnam, H. (1981). Reason, Truth and History. Cam-
bridge University Press, Cambridge.

[Quillian, 1968] Quillian, M. R. (1968). Semantic memory. In Minsky,
M., editor, Semantic Information Processing, pages 227–270. MIT
Press, Cambridge, Massachusetts.

[Rawlins, 1992] Rawlins, G. (1992). Compared to What? Computer
Science Press, New York.

[Read, 1989] Read, S. (1989). Relevant Logic: a philosophical examina-
tion of inference. Basil Blackwell, New York.

[Reeke and Edelman, 1988] Reeke, G. and Edelman, G. (1988). Real
brains and artificial intelligence. Dædalus, 117(1):143–173.

[Rehder, 1999] Rehder, B. (1999). A causal model theory of catego-
rization. In Proceedings of the 21st Annual Meeting of the Cognitive
Science Society, pages 595–600.

Bibliography 389

[Reichenbach, 1949] Reichenbach, H. (1949). The Theory of Probabil-
ity. University of California Press, Berkeley, California. Translated
by E. Hutten and M. Reichenbach.

[Reiter, 1987] Reiter, R. (1987). Nonmonotonic reasoning. Annual
Review of Computer Science, 2:147–186.

[Rips, 1995] Rips, L. (1995). The current status of research on concept
combination. Mind and Language, 10:72–104.

[Roland and Shiman, 2002] Roland, A. and Shiman, P. (2002). Strate-
gic computing : DARPA and the quest for machine intelligence, 1983-
1993. MIT Press, Cambridge, Massachusetts.

[Rosch, 1973] Rosch, E. (1973). On the internal structure of perceptual
and semantic categories. In Moore, T., editor, Cognitive Development
and the Acquisition of Language, pages 111–144. Academic Press,
New York.

[Rosch, 1978] Rosch, E. (1978). Principles of categorization. In Rosch,
E. and Lloyd, B., editors, Cognition and Categorization, pages 27–48.
Lawrence Erlbaum Associates, Hillsdale, New Jersey.

[Rosch and Mervis, 1975] Rosch, E. and Mervis, C. (1975). Family re-
semblances: studies in the internal structure of categories. Cognitive
Psychology, 7:573–605.

[Rota, 1989] Rota, G.-C. (1989). The barrier of meaning. In memo-
rium: Stanislaw Ulam. Notices of the American Mathematical Soci-
ety, 36(2):141–143.

[Rumelhart and McClelland, 1986] Rumelhart, D. and McClelland, J.
(1986). PDP models and general issues in cognitive science. In
Rumelhart, D. and McClelland, J., editors, Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Vol. 1,
Foundations, pages 110–146. MIT Press, Cambridge, Massachusetts.

[Russell, 1901] Russell, B. (1901). Recent work on the principles of
mathematics. International Monthly, 4:83–101.

390 Bibliography

[Russell and Norvig, 2002] Russell, S. and Norvig, P. (2002). Artificial
Intelligence: A Modern Approach. Prentice Hall, Upper Saddle River,
New Jersey, 2nd edition.

[Russell and Wefald, 1991a] Russell, S. and Wefald, E. (1991a). Do the
Right Thing. MIT Press, Cambridge, Massachusetts.

[Russell and Wefald, 1991b] Russell, S. and Wefald, E. (1991b). Prin-
ciples of metareasoning. Artificial Intelligence, 49:361–395.

[Sapir, 1944] Sapir, E. (1944). Grading: a study in semantics. Philoso-
phy of Science, 11:93–116.

[Savage, 1954] Savage, L. (1954). The Foundations of Statistics. Wiley,
New York.

[Saygin et al., 2000] Saygin, A., Cicekli, I., and Akman, V. (2000).
Turing test: 50 years later. Minds and Machines, 10(4):463–518.

[Schank, 1991] Schank, R. (1991). Where is the AI? AI Magazine,
12(4):38–49.

[Scheutz, 2002] Scheutz, M. (2002). Computationalism — the next gen-
eration. In Scheutz, M., editor, Computationalism: new directions,
pages 1–21. MIT Press, Cambridge, Massachusetts.

[Schweizer and Sklar, 1983] Schweizer, B. and Sklar, A. (1983). Proba-
bilistic Metric Spaces. North-Holland, Amsterdam.

[Searle, 1980] Searle, J. (1980). Minds, brains, and programs. The Be-
havioral and Brain Sciences, 3:417–424.

[Segal, 2000] Segal, G. (2000). A Slim Book about Narrow Con-
tent. MIT Press, Cambridge, Massachusetts.

[Shafer, 1976] Shafer, G. (1976). A Mathematical Theory of Evidence.
Princeton University Press, Princeton, New Jersey.

[Simon, 1983] Simon, H. (1983). Reason in Human Affairs. Stanford
University Press, Stanford, California.

Bibliography 391

[Simon, 1996] Simon, H. A. (1996). The Sciences of the Artificial. MIT
Press, Cambridge, Massachusetts, third edition.

[Sloman, 2002] Sloman, A. (2002). The irrelevance of Turing machine
to artificial intelligence. In Scheutz, M., editor, Computationalism:
new directions, pages 87–127. MIT Press, Cambridge, Massachusetts.

[Smets, 1991] Smets, P. (1991). Varieties of ignorance and the need for
well-founded theories. Information Sciences, 57-58:135–144.

[Smith and Osherson, 1984] Smith, E. and Osherson, D. (1984). Con-
ceptual combination with prototype concepts. Cognitive Science,
8:337–361.

[Smolensky, 1988] Smolensky, P. (1988). On the proper treatment of
connectionism. Behavioral and Brain Sciences, 11:1–74.

[Sommers, 1982] Sommers, F. (1982). The Logic of Natural Language.
Clarendon Press, Oxford.

[Sommers and Englebretsen, 2000] Sommers, F. and Englebretsen, G.
(2000). An invitation to formal reasoning: the logic of terms. Ashgate,
Aldershot.

[Sosa and Tooley, 1993] Sosa, E. and Tooley, M. (1993). Introduction.
In Sosa, E. and Tooley, M., editors, Causation, pages 1–32. Oxford
University Press, Oxford.

[Spiegelhalter, 1989] Spiegelhalter, D. (1989). A unified approach to
imprecision and sensitivity of beliefs in expert systems. In Kanal, L.,
Levitt, T., and Lemmer, J., editors, Uncertainty in Artificial Intelli-
gence 3, pages 199–208. North-Holland, Amsterdam.

[Stork, 1997a] Stork, D. (1997a). Computers, science, and extraterres-
trials: An interview with Stephen Wolfram. In Stork, D., editor,
HAL’s Legacy: 2001’s Computer as Dream and Reality, pages 333–
349. MIT Press, Cambridge, Massachusetts.

[Stork, 1997b] Stork, D. (1997b). Scientist on the set: An interview
with Marvin Minsky. In Stork, D., editor, HAL’s Legacy: 2001’s

392 Bibliography

Computer as Dream and Reality, pages 15–30. MIT Press, Cam-
bridge, Massachusetts.

[Strosnider and Paul, 1994] Strosnider, J. and Paul, C. (1994). A struc-
tured view of real-time problem solving. AI Magazine, 15(2):45–66.

[Sullivan and Cohen, 1985] Sullivan, M. and Cohen, P. (1985). An
endorsement-based plan recognition program. In Proceedings of the
National Conference of Artificial Intelligence, pages 475–479.

[Sun, 1995] Sun, R. (1995). Robust reasoning: integrating rule-based
and similarity-based reasoning. Artificial Intelligence, 75:241–295.

[Tarski, 1944] Tarski, A. (1944). The semantic conception of truth.
Philosophy and Phenomenological Research, 4:341–375.

[Thrun and Mitchell, 1995] Thrun, S. and Mitchell, T. (1995). Learn-
ing one more thing. In The Proceedings of the Fourteenth Interna-
tional Joint Conference on Artificial Intelligence, pages 1217–1223.

[Touretzky, 1984] Touretzky, D. (1984). Implicit ordering of defaults
in inheritance systems. In Proceedings of the National Conference of
Artificial Intelligence, pages 322–325.

[Touretzky, 1986] Touretzky, D. (1986). The Mathematics of Inheri-
tance Systems. Pitman Publishing, London.

[Turing, 1950] Turing, A. (1950). Computing machinery and intelli-
gence. Mind, LIX:433–460.

[Turksen, 1991] Turksen, I. (1991). Measurement of membership func-
tions and their acquisition. Fuzzy Sets and System, 40:5–38.

[Tversky, 1977] Tversky, A. (1977). Features of similarity. Psychological
Review, 84:327–352.

[Tversky and Kahneman, 1974] Tversky, A. and Kahneman, D. (1974).
Judgment under uncertainty: heuristics and biases. Science, 185:
1124–1131.

Bibliography 393

[Tversky and Kahneman, 1983] Tversky, A. and Kahneman, D. (1983).
Extensional versus intuitive reasoning: the conjunction fallacy in
probability judgment. Psychological Review, 90:293–315.

[Valiant, 1984] Valiant, L. (1984). A theory of the learnable. Commu-
nications of the ACM, 27:1134–1142.

[van Gelder, 1997] van Gelder, T. (1997). Dynamics and cognition. In
Haugeland, J., editor, Mind Design II, pages 421–450. MIT Press,
Cambridge, Massachusetts.

[von Mises, 1981] von Mises, R. (1981). Probability, Statistics and
Truth. Dover Publications, New York.

[Voorbraak, 1999] Voorbraak, F. (1999). Probabilistic belief change:
Expansion, conditioning and constraining. In Uncertainty in
Artificial Intelligence: Proceedings of the Fifteenth Conference (UAI-
1999), pages 655–662, San Francisco, CA. Morgan Kaufmann
Publishers.

[Walley, 1991] Walley, P. (1991). Statistical Reasoning with Imprecise
Probabilities. Chapman and Hall, London.

[Walley, 1996] Walley, P. (1996). Inferences from multinomial data:
learning about a bag of marbles. Journal of the Royal Statistical
Society, Series B, 58:3–57.

[Wallsten et al., 1993] Wallsten, T., Budescu, D., and Zwick, R. (1993).
Comparing the calibration and coherence of numerical and verbal
probability judgments. Management Science, 39:176–190.

[Wang, 1986] Wang, P. (1986). A reasoning system that can deal with
uncertainty. Master’s thesis, Peking University, Beijing. In Chinese.

[Wang, 1992] Wang, P. (1992). First ladies and fluid logics. Technical
Report 62, Center for Research on Concepts and Cognition, Indiana
University, Bloomington, Indiana.

[Wang, 1993a] Wang, P. (1993a). Belief revision in probability the-
ory. In Proceedings of the Ninth Conference on Uncertainty in

394 Bibliography

Artificial Intelligence, pages 519–526. Morgan Kaufmann Publishers,
San Mateo, California.

[Wang, 1993b] Wang, P. (1993b). Non-axiomatic logic (version 2.1).
Technical Report 71, Center for Research on Concepts and Cognition,
Indiana University, Bloomington, Indiana.

[Wang, 1993c] Wang, P. (1993c). Non-axiomatic reasoning system (ver-
sion 2.2). Technical Report 75, Center for Research on Concepts and
Cognition, Indiana University, Bloomington, Indiana.

[Wang, 1994a] Wang, P. (1994a). A defect in Dempster-Shafer theory.
In Proceedings of the Tenth Conference on Uncertainty in Artifi-
cial Intelligence, pages 560–566. Morgan Kaufmann Publishers, San
Mateo, California.

[Wang, 1994b] Wang, P. (1994b). From inheritance relation to non-
axiomatic logic. International Journal of Approximate Reasoning,
11(4):281–319.

[Wang, 1994c] Wang, P. (1994c). On the working definition of intelli-
gence. Technical Report 94, Center for Research on Concepts and
Cognition, Indiana University, Bloomington, Indiana.

[Wang, 1995a] Wang, P. (1995a). Non-Axiomatic Reasoning System:
Exploring the Essence of Intelligence. PhD thesis, Indiana University.

[Wang, 1995b] Wang, P. (1995b). Reference classes and multiple in-
heritances. International Journal of Uncertainty, Fuzziness and and
Knowledge-based Systems, 3(1):79–91.

[Wang, 1995c] Wang, P. (1995c). An unified treatment of uncertain-
ties. In Proceedings of the Fourth International Conference for Young
Computer Scientists, pages 462–467, Beijing.

[Wang, 1996a] Wang, P. (1996a). Heuristics and normative models of
judgment under uncertainty. International Journal of Approximate
Reasoning, 14(4):221–235.

Bibliography 395

[Wang, 1996b] Wang, P. (1996b). The interpretation of fuzziness. IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernet-
ics, 26(4):321–326.

[Wang, 1996c] Wang, P. (1996c). Problem-solving under insufficient re-
sources. In Working Notes of the AAAI Fall Symposium on Flexible
Computation, pages 148–155, Cambridge, Massachusetts.

[Wang, 1998a] Wang, P. (1998a). Grounding the meaning of symbols
on the system’s experience. In Working Notes of the AAAI Workshop
on the Grounding of Word Meaning: Data and Models, pages 23–24,
Madison, Wisconsin.

[Wang, 1998b] Wang, P. (1998b). Why recommendation is special? In
Working Notes of the AAAI Workshop on Recommender System,
pages 111–113, Madison, Wisconsin.

[Wang, 1999] Wang, P. (1999). A new approach for induction: From a
non-axiomatic logical point of view. In Ju, S., Liang, Q., and Liang,
B., editors, Philosophy, Logic, and Artificial Intelligence, pages 53–
85. Zhongshan University Press.

[Wang, 2000a] Wang, P. (2000a). The logic of learning. In Working
Notes of the AAAI workshop on New Research Problems for Machine
Learning, pages 37–40, Austin, Texas.

[Wang, 2000b] Wang, P. (2000b). Non-axiomatic reasoning system
(version 4.1). In Proceedings of the Seventeenth National Conference
on Artificial Intelligence, pages 1135–1136, Austin, Texas.

[Wang, 2000c] Wang, P. (2000c). Unified inference in extended syllo-
gism. In Flach, P. and Kakas, A., editors, Abduction and Induction:
Essays on Their Relation and Integration, pages 117–129. Kluwer
Academic Publishers, Dordrecht.

[Wang, 2001a] Wang, P. (2001a). Abduction in non-axiomatic logic. In
Working Notes of the IJCAI workshop on Abductive Reasoning, pages
56–63, Seattle, Washington.

396 Bibliography

[Wang, 2001b] Wang, P. (2001b). Confidence as higher-order uncer-
tainty. In Proceedings of the Second International Symposium on Im-
precise Probabilities and Their Applications, pages 352–361, Ithaca,
New York.

[Wang, 2001c] Wang, P. (2001c). Wason’s cards: what is wrong? In Pro-
ceedings of the Third International Conference on Cognitive Science,
pages 371–375, Beijing.

[Wang, 2002] Wang, P. (2002). The logic of categorization. In Proceed-
ings of the 15th International FLAIRS Conference, pages 181–185,
Pensacola, Florida.

[Wang, 2004a] Wang, P. (2004a). The limitation of Bayesianism. Arti-
ficial Intelligence, 158(1):97–106.

[Wang, 2004b] Wang, P. (2004b). Problem solving with insufficient re-
sources. International Journal of Uncertainty, Fuzziness and and
Knowledge-based Systems, 12(5):673–700.

[Wang, 2004c] Wang, P. (2004c). Reasoning in practical situations.
In Proceedings of Knowledge-Based Intelligent Information and En-
gineering Systems: 8th International Conference, pages 285–292,
Wellington. Published as Lecture Notes in Computer Science, Vol-
ume 3215, Springer-Verlag, Heidelberg.

[Wang, 2004d] Wang, P. (2004d). Recommendation based on personal
preference. In Zhang, Y., Kandel, A., Lin, T., and Yao, Y., edi-
tors, Computational Web Intelligence: Intelligent Technology for Web
Applications, pages 101–115. World Scientific Publishing Company,
Singapore.

[Wang, 2004e] Wang, P. (2004e). Toward a unified artificial intelli-
gence. In Papers from the 2004 AAAI Fall Symposium on Achieving
Human-Level Intelligence through Integrated Research and Systems,
pages 83–90, Washington DC.

[Wang, 2005] Wang, P. (2005). Experience-grounded semantics: a the-
ory for intelligent systems. Cognitive Systems Research, 6(4):282–302.

Bibliography 397

[Wang, 2006a] Wang, P. (2006a). Artificial intelligence: What it is, and
what it should be. In The 2006 AAAI Spring Symposium on Between
a Rock and a Hard Place: Cognitive Science Principles Meet AI-Hard
Problems, Stanford, California.

[Wang, 2006b] Wang, P. (2006b). The logic of intelligence. In Go-
ertzel, B. and Pennachin, C., editors, Artificial General Intelligence.
Springer, New York.

[Wang and Hofstadter, 2006] Wang, P. and Hofstadter, D. (2006). A
logic of categorization. Journal of Experimental & Theoretical Arti-
ficial Intelligence. In press.

[Wason and Johnson-Laird, 1972] Wason, P. and Johnson-Laird, P.
(1972). Psychology of Reasoning: Structure and Content. Harvard
University Press, Cambridge, Massachusetts.

[Whitehead and Russell, 1910] Whitehead, A. and Russell, B. (1910).
Principia mathematica. Cambridge University Press, Cambridge.

[Whorf, 1956] Whorf, B. (1956). Language, Thought, and Reality. MIT
Press, Cambridge, Massachusetts.

[Wierzbicka, 1996] Wierzbicka, A. (1996). Semantics: Primes and Uni-
versals. Oxford University Press, Oxford.

[Wittgenstein, 1999] Wittgenstein, L. (1999). Philosophical Investiga-
tions. Prentice Hall, Upper Saddle River, New Jersey. Translated by
G. Anscombe.

[Wright, 1992] Wright, C. (1992). Truth and Objectivity. Harvard Uni-
versity Press, Cambridge, Massachusetts.

[Yang et al., 2001] Yang, Q., Zhang, W., Liu, C., Wu, J., Yu, C., Naka-
jima, H., and Rishe, N. (2001). Efficient processing of nested fuzzy
SQL queries in a fuzzy database. IEEE Transactions on Knowledge
and Data Engineering, 13:884–901.

[Zadeh, 1965] Zadeh, L. (1965). Fuzzy sets. Information and Control,
8:338–353.

398 Bibliography

[Zadeh, 1972] Zadeh, L. (1972). A fuzzy-set-theoretic interpretation of
linguistic hedges. Journal of Cybernetics, 2:4–34.

[Zadeh, 1973] Zadeh, L. (1973). Outline of a new approach to the analy-
sis of complex systems and decision processes. IEEE Transactions on
Systems, Man, and Cybernetics, 3:28–44.

[Zadeh, 1975] Zadeh, L. (1975). The concept of a linguistic variable
and its application to approximate reasoning. Information Sciences,
pages 8:199–249, 8:301–357, 9:43–80.

[Zadeh, 1978] Zadeh, L. (1978). Fuzzy sets as a basis for a theory of
possibility. Fuzzy Sets and System, 1:3–28.

[Zadeh, 1979] Zadeh, L. (1979). A theory of approximate reasoning. In
Hayes, J., Michie, D., and Mikulich, L., editors, Machine Intelligence,
volume 9, pages 149–194. Halstead Press, New York.

[Zadeh, 1983] Zadeh, L. (1983). The role of fuzzy logic in the man-
agement of uncertainty in expert systems. Fuzzy Sets and System,
11:199–227.

[Zadeh, 1985] Zadeh, L. (1985). Syllogistic reasoning in fuzzy logic and
its application to usuality and reasoning with dispositions. IEEE
Transactions on Systems, Man, and Cybernetics, 15:754–763.

[Zadeh, 1986a] Zadeh, L. (1986a). Is probability theory sufficient for
dealing with uncertainty in AI: a negative view. In Kanal, L. and
Lemmer, J., editors, Uncertainty in Artificial Intelligence, pages
103–116. North-Holland, Amsterdam.

[Zadeh, 1986b] Zadeh, L. (1986b). Test-score semantics as a basis for a
computational approach to the representation of meaning. Literary
and Linguistic Computing, 1:24–35.

[Zilberstein, 1995] Zilberstein, S. (1995). Operational rationality
through compliation of anytime algorithm. AI Magazine, 16(2):
79–80.

Index

() [term operator] compound, 91
− [set theory] difference, 57
− [term operator] extensional

difference, 103
/⇔ [copula] predictive equivalence, 137
/⇒ [copula] predictive implication, 136
= [set theory] equal set, 110
[] [term operator] intensional set, 97
⇔ [copula] equivalence, 116
⇒ [copula] implication, 116
\⇒ [copula] retrospective implication,

136
⊥ [term operator] extensional image,

110
∩ [set theory] intersection, 57
∩ [term operator] extensional

intersection, 101
◦→ [copula] instance, 97
◦→◦ [copula] instance-property, 98
∪ [set theory] union, 72
∪ [term operator] intensional

intersection, 101
� component location, 111
≡ [propositional logic] equivalence, 54
∈ [set theory] membership, 97
↔ [copula] similarity, 93
¬ [statement operator] negation, 116
� [term operator] intensional

difference, 104
→ [copula] inheritance, 50
→◦ [copula] property, 98
⊆ [set theory] subset, 110
⊃ [propositional logic] implication, 93

× [term operator] product, 109
� [term operator] intensional image,

110
∨ [statement operator] disjunction, 116
∧ [statement operator] conjunction,

116
{ } [term operator] extensional set, 96
, [statement operator] sequential

conjunction, 136
; [statement operator] parallel

conjunction, 136
variable term prefix, 127

a2i2, 27
ACT-R, 26, 286, 337
activation spreading, 294
adaptation, 31, 34, 36, 199
adjective, 98
agent, 23
AIXI, 26
algorithm, 17, 38, 41, 52, 319

anytime, 156, 334, 339
approximation, 332
complexity of, 320
different types, 328
heuristic, 332
meta-level, 335
real-time, 332
task-oriented, 327, 329

Allen, J. F., 134, 135
Allport, G. W., 342
Allwood, J., 285
analogy

AI research as mountain
climbing, 8

399

400 Index

analogy (continued)
ideal experience as ideal

meter-stick, 69
intelligence as a tree, 18
intelligence vs. an elephant, 21
NARS as operating system, 185

Anderson, J. R., 4, 19, 20, 268, 286,
337, 359

Anderson, N. H., 234
Aristotle, 45, 51, 82, 83, 109, 253, 254,

271, 273
Arkes, H. R., 232
artificial general intelligence (AGI), 24

AGI project, 24–26
compared to AI, 35

artificial intelligence (AI), 3–5, 7
vs. artificial person, 13
and related disciplines, 5
as science and technology, 4
assumption of, 7
current situation, 23
definition of, 5
moral and ethical issues, 364
practical application, 14
schools of, 11, 21
vs. computer science, 290
vs. computer system, 16

association, 343
assumption of insufficient knowledge

and resources (AIKR), 34, 44,
45, 127, 140, 142, 145, 157,
164, 177, 180, 184, 188, 232,
235, 275, 288, 349

and causal inference, 269
and probability theory, 227
and problem solving, 324
and reasoning system, 40
inevitable consequences, 343

asynchronous parallelism, 336, 354
axiomatic system

decidable, 41

Bacon, F., 253
bag, 46, 159, 160

operations, 159

Barsalou, L. W., 178, 191, 207, 306
Barwise, J., 176, 180, 339
Baum, E. B., 359
Bayes Theorem, 220, 221

used for learning, 222, 224
Bayesian approach, 219–221, 226, 227,

235
assumption of, 231
conditioning, 221
vs. NARS, 229

behavior, 30
creative, 316, 326, 342
in Narsese, 151

belief, 30, 46, 52, 69, 151, 160
and knowledge, 52
priority value of, 167

Bellman, R. E., 208
Bernardo, J. M., 238
Bhatnagar, R., 201
Bibel, W., 285
Birnbaum, L., 179, 286, 287, 289
Blakeslee, S., 11
Bocheński, I. M., 45, 50, 83, 109, 183
Boddy, M., 156, 261, 334, 335
Bonissone, P. P., 62, 79–81, 201, 237
Boole, G., 41
Boolean value, extended, 79

operator, 79
and, 79–81
not, 79, 81
or, 79–81

Brachman, R. J., 282, 310
brain, 5, 11

model of, 11
Braine, M. D. S., 285, 292
Brooks, R. A., 22, 179, 286
Bylander, T., 322, 323

CAM-Brain, 27
Campbell, M. S., 16
Cao, T. H., 300
Carnap, R., 8, 9, 76, 77, 149, 176, 242,

254, 260–262, 286, 367

Index 401

categorization
and sensorimotor, 304
basic level, 308
classical theory, 299, 301
dynamics, 307
exemplar theory, 209, 301
in NARS, 297
prototype theory, 209, 249, 301
theory theory, 303

cause, 138
Chalmers, D. J., 18
chatbot, 13
Chater, N., 19
Cheeseman, P., 207, 220, 222, 228
Cheng, P. W., 267, 268
Cherniak, C., 19
Chinese Room, 193
Chong, C. Y., 236
chunking, 142
Cog, 25
cognitive modeling, 13
Cohen, L. J., 253, 256, 259, 262
Cohen, P. R., 201, 202
combinatorial explosion, 322, 329
common-sense reasoning, 202
computation, 17

and NARS, 323
and Turing Machine, 319
different senses, 319

computer, 3, 13
von Neumann architecture, 25,

323
computer science, 5, 7, 38

and AI, 321
computability, 320, 331
computational complexity, 320,

331
computer system

brittleness of, 16
Fifth Generation, 25, 26

computing system, 38, 349, 350
concept, 46, 160

and term, 46
compositionality, 306

fluid, 305
metaphorical use, 308
priority value of, 168
quality of, 168
vs. set, 184

confidence, 60, 61, 71, 74, 77, 78, 86,
252, 340

vs. confidence interval, 228, 238
vs. higher-order probability, 237
vs. ignorance, 62
vs. standard deviation, 228

conjunction, 79
parallel, 136
sequential, 136

connectionist model, 38
consciousness, 363
consequence, 268
context dependency, 156, 328, 338
control mechanism, 40

non-determinism, 339
control strategy, 149
controlled concurrency, 157, 158

and parallel terraced scan, 336
vs. time sharing, 158, 336

Copi, I. M., 42, 50, 121, 123, 124, 183,
186, 266, 268, 293

copula, 45, 51, 109, 116, 271
and “to be”, 92

Copycat, 305
Coulson, S., 304
Cox, R. T., 227
Cruse, D. A., 211
Cyc, 26, 286

Dartmouth Meeting, 5
de Finetti, B., 225
de Rijke, M., 282, 300
Dean, T., 156, 261, 334, 335
decision making, 144
Decker, K. S., 79–81, 201
Deep Blue, 15, 16
default rule, 202
definition, 6, 53

circular, 44

402 Index

definition (continued)
working definition, 7

criteria, 8
vs. descriptive definition, 7

degree of belief, 219
and probability, 243

Dempster, A. P., 239
Dempster-Shafer (D-S) theory, 239

and probability theory, 240
vs. NARS, 241

description
high-level vs. low-level, 12, 13

desire
and belief, 143
degree of, 142, 145, 164

desired state, 143
Deutsch-McLeish, M., 224
Diaconis, P., 222
disjunction, 79
Donini, F. M., 282, 286
Dreyfus, H. L., 286, 289
duality

abduction and induction, 83, 263
extension and intension, 54, 83,

102, 183
intersection and union, 102

Dubois, D., 79, 207, 210, 214, 226, 227,
286

Dummett, M., 178
durability, 167

and aging, 154
dynamic system, 38, 179, 349, 350

Edelman, G. M., 11
Edmonds, B., 323
Elgot-Drapkin, J., 342
Ellis, J. M., 44, 178
Ellsberg, D., 145, 228
emotion, 362
Endorsement Theory, 202
Englebretsen, G., 45, 50, 119, 273, 291
environment, 30, 65

constant, 32
random, 32
stable, 32, 199

event
as special statement, 134
temporal order, 135

evidence, 57, 94, 118, 255, 282
amount of, 58, 61, 78, 118, 252
and language, 45
and probability, 242
and truth value, 44
different type, 188
diversity, 196
full, 66, 71, 76
null, 66, 71, 76
of premise and conclusion, 78, 125
old vs. new, 71
overlapping, 70, 72, 74
positive vs. negative, 57, 118, 123
total, 261

evolutionary computing, 337
execution cycle, 162

implementation, 163
experience, 30, 33, 44, 53, 68, 191–194

and resource allocation, 46
fragment of, 72, 73
future, 75
human, 13, 14
idealized vs. actual, 68
in Narsese, 150
in Narsese-0, 52, 66, 68
life-time, 342
vs. model, 179

expert system, 15, 329
explanation, 268

and abduction, 263
extension, 53, 93, 100, 187

and intension, 54, 55, 183

Fagin, R., 161, 343
family resemblance, 191
Feigenbaum, E. A., 25, 286
Field, H., 178
First-Order Predicate Logic (FOPL),

45, 49, 254, 273
and AI, 286
extensions or revisions, 286

Index 403

First-Order Predicate Logic (FOPL)
(continued)

implemented in NARS, 132
Flach, P. A., 121, 263, 281
flexibility

and rigidness, 39
Fluid Analogies Research Group

(FARG), 304
Fodor, J. A., 178, 306
forgetting, 72, 341, 343
formal language, 4, 43

different types, 37, 349
Fox, C., 279
Frame Problem, 141
Frege, G., 174, 186, 273, 278
Freiberger, P., 208, 209
French, R. M., 13, 14, 305
frequency interval, 62

vs. probability interval, 238
Frisch, A. M., 339
functional autonomy, 342
Fung, R. M., 236
fuzziness

and probability, 207
and randomness, 244
and relativity, 211
and similarity, 210
interpretation of, 207, 243
types of, 209
vs. ambiguity, 214

fuzzy database, 215
fuzzy logic, 81, 206, 215
fuzzy set, 67, 206, 249

and linguistic variable, 215
grade of membership, 206

context dependency, 207
operator, 208

Gärdenfors, P., 300
Gödel’s Theorem and AI, 366
Gaifman, H., 236
Gaines, B. R., 208
game playing, 14

by brute-force search, 17

Geach, P. T., 273
General Problem Solver (GPS), 25
generalization, 51

hasty, 293
Giertz, M., 208
Gigerenzer, G., 231
Ginsberg, M., 286
Giraud-Carrier, C., 261
Giulianella, C., 225
goal, 30, 46, 142, 145, 151

conflicting, 142, 341
degree of satisfaction, 152
derivation, 144
likelihood, 145
utility, 152

Goertzel, B., 27
Good, I. J., 19, 76, 77, 254, 332, 335,

342
grammar, 173

formal, 40, 174
Grosof, B. N., 237, 246
Guha, R. V., 339

Haack, S., 179, 197
Haddawy, P., 339
Halpern, J. Y., 161, 176, 285, 286, 343
hard problem, 6, 14, 15
hardware, 4, 17, 33
Harman, G., 192, 303
Harnad, S., 179, 191–193, 286
Haussler, D., 260
Hawkins, J., 11
Hayes, P. J., 141, 201, 285
Hearst, M. A., 20, 37, 285
Hecht-Nielsen, R., 11
Heckerman, D., 221, 222
Hempel, C. G., 45, 257
heuristic search, 36, 156
heuristics and biases, 231, 235, 292

anchoring, 234
availability, 232
representativeness, 233

Hilbert, D., 41, 174, 287
Hirsh, H., 20, 37, 285

404 Index

Hofstadter, D. R., 14, 15, 35, 181, 282,
286, 293, 294, 305, 306, 316,
322, 323, 325, 329, 336, 339,
362

Holland, J. H., 16, 286, 294, 337, 359
Hopcroft, J. E., 33, 319
Horvitz, E. J., 335
human chauvinism, 14, 190
Hume’s Problem, 253, 259, 282
Hume, D., 42, 199, 253, 269, 282
Hutter, M., 323
hypothesis, 254, 263, 281

generating vs. evaluating, 260

ignorance, 228
and probability, 236

inference
ampliative vs. summative, 259
causal, 138, 267
control, 150
deductive vs. non-deductive, 86
direct vs. indirect, 85
forward vs. backward, 87, 144, 151
higher order, 115, 280

and first order, 117
hypothetical, 132
knowledge-driven, 262
mathematical vs. empirical, 291
multi-strategy, 261
process, 161
step, 46, 353

vs. process, 263
temporal, 137

inference rule, 40, 45, 146, 245, 353
abduction, 82, 83, 119, 263
analogy, 94, 119
and theorem, 122
and truth-value function, 81
choice, 74, 75, 77, 87, 119
comparison, 94, 119
compound composition, 107
compound decomposition, 103
contraposition, 124, 125
conversion, 84, 119, 125
deduction, 82, 83, 94, 119, 245

design of, 65
equivalence-based, 99, 112
exemplification, 83, 85, 119
for backward inference, 87, 88
format, 78
induction, 83, 119, 253, 258

and adaptation, 259
Hebbian Learning and

Pavlovian Conditioning, 365
justification, 173
negation, 123
of NAL-0, 55
on tense, 138
revision, 70, 86, 119, 131, 138
sound and complete, 41
syllogistic, 45, 50, 56, 86, 94, 121,

272
temporal, 137
truth-functional, 272
update, 138
valid, 199
validity and AIKR, 42
validity in MTS, 43
variable elimination, 129
variable introduction, 130, 131
vs. implication/equivalence

statement, 132
information system, 29, 30

reproducing vs. simulating, 31
Inhelder, B., 186
inspiration, 364
instance

and extension, 183
insufficient knowledge and resources,

33, 34, 36, 68
insufficient resources, 73
intelligence, 3, 4, 7, 12, 21, 36

and adaptation, 34
as a whole, 18, 24
definition of, 6, 7, 21
extraterrestrial, 14
general intelligence, 16
general theory, 370
hybrid model, 21
model of, 4, 37

Index 405

intelligence (continued)
normative model of, 42
scientific theory of, 369
system of, 4
theory of, 4
vs. human intelligence, 14, 42
working definition of, 7, 8, 29, 347

accepted in NARS, 31, 37
by brain structure, 11, 36, 349
by cognitive function, 17, 36,

349
by human behavior, 12, 36, 349
by practical capability, 14, 36,

349
by underlying principle, 19, 35
criteria, 9

intension, 53, 93, 100
and extension, 54, 55, 183

intentionality, 13
interpretation, 174
intuition, 364

Jeffrey’s rule, 225
Jeffrey, R. C., 145, 225
Johnson, T. R., 337
Johnson-Laird, P. N., 20, 283, 285, 292
judgment, 66, 68, 73, 75, 87, 150

input, 72, 74
serial number, 72

Kahneman, D., 20, 204, 231–234, 243
Kakas, A. C., 121, 263, 281
Kamp, J. A. W., 210
Kanal, L., 201
Keynes, J. M., 71, 242, 254
Kitchener, R. F., 178, 192, 198
knowledge, 30

amount of, 53
and belief, 52
declarative and procedural, 139
positive vs. negative, 53

knowledge base, 26
knowledge representation, 40, 299

distributed, 294
knowledge-based system, 38, 286

Kolmogorov, A. N., 221, 242
Korb, K. B., 254, 256
Kowalski, R., 149, 200
Krantz, D. H., 69
Kugel, P., 323, 325, 334
Kuhn, T. S., 20, 256
Kurtonina, N., 282, 300
Kyburg, H. E., 62, 176, 236, 237, 246,

262

Laffey, T. J., 333
Laird, J. E., 337
Lakoff, G., 178, 181, 308
language, 4, 173

and reasoning system, 40
formal, 173–175

syntactic vs. semantic, 182
function of, 173
interface, 30, 33

Laplace’s law of succession, 77
Laurence, S., 299
learning, 36

algorithm vs. process, 312
and intelligence, 36, 314
assimilation and accommodation,

315
in NARS, 311
Inferential Theory of (ITL), 313
object-level vs. meta-level, 317

Lebiere, C., 286, 337
Leibniz, G., 41
Lenat, D. B., 286, 339
Levesque, H. J., 322, 323
Lewis, D., 143
life cycle, 163
linguistics, 5

and NARS, 369
Littman, M. L., 323
local axiomization, 133
logic, 4, 5, 20, 38, 41, 147

and AI, 285, 351
and NARS, 368
as normative theory, 182
binary vs. multi-valued, 69
different senses of, 287

406 Index

logic (continued)
inductive, 199, 261
mathematical, 175, 273
non-monotonic, 202, 245, 253
of common sense, 182
of empirical science, 182
of mathematics, 182
paraconsistent, 281
probabilistic, 245, 253, 283
psychologism, 291
relevant, 266
subject matter of, 291
temporal, 135

logic programming, 140, 164
Lucas, J. R., 366
Lukasiewicz, J., 273
Lynch, M. P., 178

machine learning, 36, 299
vs. NARS, 312

Margolis, E., 299
Marr, D., 4, 17, 322
Martinez, T., 261
McCarthy, J., 6, 141, 178, 201, 285,

293, 339
McClelland, J. L., 11, 293
McCorduck, P., 25
McDermott, D., 178, 286, 287, 289
McNeill, D., 208, 209
meaning, 173–175, 178

and experience, 179
context dependent, 194
general vs. current, 298
in MTS, 43
in NARS, 44
in Narsese-0, 51
in Narsese-1, 67
meaningful vs. meaningless, 54
of a statement, 118
of a term, 54, 55, 127
of a variable term, 127

subjective vs. objective, 195, 309
word and concept, 180, 297

Medin, D. L., 37, 180, 209, 210, 292,
303, 304

memory, 40, 41
allocation, 40
dynamics, 161
preloaded, 316
structure, 149, 353

Mervis, C. B., 209
meta-language, 43, 174

of Narsese-0, 53
Michalski, R. S., 37, 254, 255, 261,

288, 313
Miller, D. T., 204
mind, 3, 5

vs. brain, 12
mind-body problem, 364
Minsky, M., 6, 23, 289, 294, 315, 342
Mitchell, M., 305
Mitchell, T. M., 260, 312
model, 12, 174, 175

vs. experience, 179
motor control, 39
Murphy, G. L., 303, 304

Narsese, 49, 150, 174, 274, 350
and its meta-language, 116
complete grammar, 146
expressive power of, 92, 145, 358
Narsese-0, 51

as a subset of Narsese-1, 67
semantics of, 51

Narsese-1, 49, 66
semantics of, 67

Narsese-2, 99
Narsese-3, 107
Narsese-4, 112
Narsese-5, 115
semantics, 146
vs. FOPL, 284

natural language, 4, 43, 50, 173, 360
naturalism, 198
necessary condition, 118

Index 407

Neufeld, E., 246
neural network, 11, 178
neuroscience, 5, 11, 12
Newborn, M., 16
Newell, A., 4, 6, 23, 25, 142, 178, 286,

321, 337, 338
Nilsson, N. J., 20, 23, 178, 283, 285,

287, 293
Nixon Diamond, 251
Non-Axiomatic Logic (NAL), 49, 56,

146, 271
and Aristotle’s logic, 274
as meta-logic, 132, 185
first order, 91, 115
inferential power of, 91, 358
meta-language of, 49, 109
NAL-0, 49, 56
NAL-1, 49, 88
NAL-2, 91, 92
NAL-3, 91, 100
NAL-4, 91, 109
NAL-5, 115
NAL-6, 127
NAL-7, 134
NAL-8, 139
vs. FOPL, 129, 278
vs. fuzzy logic, 208
vs. non-monotonic logic, 204
vs. propositional logic, 116, 123,

125
Non-Axiomatic Reasoning System

(NARS), 42
and hardware, 360
application of, 215
as a network, 293
axiomatic subsystem, 133
described at different scales, 324
education of, 359
elegance, 351
evolution of, 361
implementation, 354
informal introduction, 42
logic and control, 149, 357
multi-system community, 361

results, 347
sensorimotor, 146, 360
testing, 358
using natural language, 360
vs. other AI schools, 364
website, 355

Norvig, P., 23
Nosofsky, R. M., 209, 210, 301
Novamente, 27

O’Brien, D. P., 285, 292
Oaksford, M., 19
object-oriented programming, 51
Oden, G. C., 208, 209
operation, 30

as special event, 139
execution, 164
input and output arguments, 139

OSCAR, 26
Osherson, D. N., 208

Paaß, G., 236
Palmer, F. R., 178, 211
paradox

confirmation, 45, 257, 267
implication, 266, 267

Paul, C. J., 33, 333
Pearl, J., 73, 220–222, 225, 226, 228,

236, 243, 245–247, 254, 267
Peirce, C. S., 82, 83, 254, 262, 275
Pennachin, C., 27
Penrose, R., 289, 366
perception, 304

low-level, 39
Perry, J., 176, 180, 339
philosophy, 5

and NARS, 369
Piaget, J., 18, 34, 186, 198, 315
planning, 144

in real-time, 36
Poole, D. L., 246
Popper, K. R., 199, 255, 259, 260, 285,

367
Prade, H., 79, 207, 210, 214, 226, 286

408 Index

predicate logic (PL), 50, 271
vs. NAL, 278

Priest, G., 281, 286
priming, 343
priority

and processing speed, 153
distribution, 158, 194

dynamic, 155
relevant factors, 166
value, 46
vs. truth, 309

probabilistic selection, 46
probability

and confidence interval, 238
conditional, 221

explicit, 222, 223, 228
implicit, 222, 223, 226, 229

higher-order, 236
imprecise, 238

and NARS, 239
interpretation of, 242
interval, 237
logical, 242
objective, 236, 242
subjective, 243

probability distribution
posterior, 221
prior, 221, 223

probability theory, 20, 79, 219, 235,
254

axioms of, 221, 242
being normative, 231
vs. heuristics, 231

problem
and solution, 326
class vs. instance, 320, 326
hard, 344
time requirement, 332
tractability, 320

problem solving
by search, 25
by the system vs. by its designer,

328

resource cost, 331
without algorithm, 326, 354

production system, 26, 337
proper name, 97
property

and intension, 183
propositional logic, 254, 265
psychology, 5, 7

and NARS, 368
Putnam, H., 175, 178, 200

question, 87, 150
answer reporting, 155
competing answer, 74, 75, 77
evaluative, 56, 74
in NAL-0, 55
selective, 56, 74

Quillian, M. R., 192, 303

rationality, 19, 36, 42, 199, 342
bounded, 19, 37
general principle of, 19
in NARS, 42, 43
limited, 19
minimal, 19
Type II, 19

Rawlins, G. J. E., 320, 332
Read, S., 266, 286
reasonable mistake, 344
reasoning, 39

and imagery, 362
extendability, 39, 350
goal-directed, 341
psychology of, 291
under uncertainty, 36

reasoning system, 38, 349
and intelligence, 40
components of, 40, 350
logic and control, 41
non-axiomatic, 288
pure-axiomatic, 287
rigidness and flexibility, 350
semi-axiomatic, 288

recommendation system, 214
Reeke, G. N., 11

Index 409

reference class, 245
specificity priority principle, 246

Rehder, B., 304
Reichenbach, H., 242, 246, 247
Reiter, R., 202, 203, 288
relation

“as”, 282
and copula, 109
and set, 110
equivalence, 116, 118

temporal, 137
higher order, 116, 266
implication, 116, 265

as valid inference, 117
temporal, 136

inheritance, 49, 50, 52, 54, 93
complete vs. incomplete, 57
hierarchy of, 96
vs. instance, 276

instance, 97
instance-property, 98
internal vs. interface, 100
ordinary, 109
property, 98
reflexivity, 50, 51, 93, 117
similarity, 93
symmetry, 51, 93
temporal, 134, 135
transitivity, 50, 51, 55, 93, 117

resources, 30
competition, 46, 156
insufficient vs. limited, 33
limitation, 13
management, 40, 152
space, 30
time, 30

revision, 71
in probability theory, 224
vs. updating, 226

Rips, L. J., 306
robot, 179, 360
Roland, A., 18, 315
Rosch, E., 203, 204, 209, 210, 249, 301,

308

Ross, B. H., 37, 180, 292
Rota, G., 282
Rumelhart, D. E., 11, 293
Russell, B., 174, 175, 273
Russell, S., 19, 23, 335

Sapir, E., 211
Savage, L. J., 145, 237, 243
Saygin, A. P., 13
scaling up, 330
Schaffer, M. M., 209, 210
Schank, R. C., 15, 16
Scheutz, M., 330
Schmolze, J. G., 282, 310
Schweizer, B., 79, 80
Searle, J., 12, 13, 193, 194, 286, 289
Segal, G. M. A., 178
semantic network, 51, 303
semantics, 40, 43, 173

and experience, 43
and language, 44
and mathematics, 175
concept role, 303
experience-grounded (EGS), 44,

55, 56, 68, 174, 179, 181, 183,
187, 191–194, 197–199, 266,
351

and empirical reasoning, 180
and inference rules, 86
and similar theories, 192
coexists with MTS, 181
meaning, 190
truth value, 195
vs. MTS, 181

formal, 179
model-theoretic (MTS), 43,

174–177, 179, 181, 182, 187,
197, 351

and induction, 199
and mathematical reasoning,

180
and non-deductive inference,

177
assumption of, 175

410 Index

semantics (continued)
experience independency, 176
in AI, 178
variations and extensions, 176
vs. EGS, 178, 181

of formal language, 182
sentence

categorical, 45, 50, 51, 56
different types, 142, 150

set theory, 49, 51, 57, 103, 109, 184,
265

and NAL, 275, 277
Shafer, G., 239, 240
Shiman, P., 18, 315
Simon, H. A., 6, 19, 25, 155, 349
skill learning, 141, 144
Sklar, A., 79, 80
sleeping and dreaming, 362
Sloman, A., 323
Smets, P., 208, 243, 244
Smith, A. F. M., 238
Smith, E. E., 208
Smolensky, P., 179, 286, 293, 294
SNePS, 26
Soar, 23, 26, 142, 286, 337
software, 5, 17
Sommers, F., 273, 275, 278
Sosa, E., 267, 268
specialization, 51
Spiegelhalter, D. J., 220, 228
statement, 66

antecedent, 117
as term, 115
categorical, 271

and conditional, 119
compound, 116

conjunction, 116, 118
disjunction, 116, 118
negation, 116, 123, 126
operator of, 118

consequent, 117
functional, 272
general, 255
higher order, 115

implication, 117
with implicit condition, 120

inheritance, 50, 58
procedural interpretation, 139
similarity, 94
universal, 256
vs. term, 116

Stork, D. G., 23, 368
Strosnider, J. K., 33, 333
sufficient condition, 118
Sullivan, M., 201, 202
Sun, R., 261
symbol, 193

as variable, 132
grounding, 191
system, 193

system
adaptive, 32, 72, 74

vs. intelligent, 32, 34
vs. non-adaptive, 32

erratic, 32
finite, 33
instinctive, 32
intelligent vs. unintelligent, 35
open, 33
real-time, 33, 335
rule-based, 132

system parameter
and personality, 77
near future, 61, 77, 87

Türksen, I. B., 207, 214
Tabletop, 305
Tarski, A., 174, 175
task, 30, 33, 45, 46, 150

alienation, 157, 342, 363
derivation, 156
parallel processing, 153
priority value of, 166
processing, 152
time budget of, 154
vs. belief, 160

tense, 137
term, 50, 56

Index 411

term (continued)
and concept, 180
and set, 103
as statement, 116
atomic, 49, 50, 91
attribute, 97
compound, 45, 91, 100, 305, 352

and relation, 109
component of, 91
difference, 45, 103, 104
identical, 94
image, 45, 110
infix format, 91
intersection, 45, 101
meaning of, 92
operator of, 91, 266
prefix format, 91
product, 45, 109
set, 45, 96, 106, 107
statement, 45

constant vs. variable, 127
identical, 94
individual, 97
level of, 92
predicate, 45, 50, 52, 271
subject, 45, 50, 52, 271
variable

as symbol, 132
dependent, 127
independent, 127
unification, 129

term logic (TL), 45, 50, 56, 84, 159,
254, 271, 272

and evidence, 284
criticism to, 109
expressive power, 45, 275
extended, 45, 352

Term-Functor Logic (TFL), 273, 275
Tesler’s Theorem, 15, 322, 329
theorem proving, 14
theory

normative, 20
normative vs. descriptive, 182, 291

thinking machine, 21–24, 367

Thrun, S., 312
time pressure, 152

various types, 154
time sharing, 153
Tooley, M., 267, 268
Touretzky, D. S., 245, 246, 251, 252
Triangular norm (T-norm) and

Triangular conorm
(T-conorm), 79–81, 166

truth, 178, 200
coherence theory, 197
correspondence theory, 197
degree of, 57
empirical vs. literal, 53
in Narsese-0, 51
subjective vs. objective, 200
synthetic vs. analytic, 53

truth value, 69, 94, 118, 173, 175
and degree of belief, 180, 197, 198
and evidence, 57
and experience, 179
and meaning, 118
and probability, 219
frequency, 59, 86, 219
in NAL-0, 52
in NAL-1, 68
in NARS, 44
vs. expectation, 75

truth-value function, 45, 95
and Boolean operator, 81
and desire-value function, 143
design procedure, 81, 82, 96
expectation, 76, 77
for abduction, 84
for analogy, 95
for comparison, 95
for contraposition, 124
for conversion, 84
for deduction, 83
for deduction on similarity, 95
for difference, 108
for exemplification, 85
for existence, 130
for induction, 84

412 Index

truth-value function (continued)
for intersection, 108
for negation, 123
for revision, 71
for union, 108
format, 78

Turing Machine, 33, 319, 323
Turing Test, 13, 365
Turing, A. M., 13, 14
Tversky, A., 20, 210, 231–234, 243

Ulam, S., 282
Ullman, J. D., 33, 319
uncertainty

degree of membership
context dependency, 210

expectation, 75
and amount of evidence, 76
and frequency interval, 76

higher-order, 60, 86
ignorance, 62
in representation vs. in

communication, 65
inaccurate representation, 63
measurement, 66

absolute vs. relative, 59
and truth value, 81, 84
by amount of evidence, 59
by frequency interval, 62
by truth value, 62
comparison, 65
independence, 61
interval-based, 62
lower frequency, 62
necessity of, 205
normal values vs. limit cases, 66
upper frequency, 62

non-numerical, 201
record vs. process, 202
unified representation, 44
verbal label, 202, 205

unification
of declarative and procedural

knowledge, 139
of extension and intension, 59, 183
of inference types, 261, 353
of reasoning and categorization,

310
of reasoning and learning, 311
of uncertainty representation, 64,

241
updating, 71

Valiant, L. G., 323
validity, 42

of induction, 199
of inference, 199

van Gelder, T., 179, 286
virtual machine, 39
vocabulary, 53
von Mises, R., 242
Voorbraak, F., 227

Walley, P., 238
Wallsten, T. S., 201, 202
Wason’s Selection Task, 283, 292
Wason, P. C., 20, 283, 285
Wefald, E. H., 19, 335
Whitehead, A. N., 273
Whorf, B. L., 181
Wierzbicka, A., 135
Williams, M., 300
Wittgenstein, L, 191
Wolfram, S., 23, 368
Wright, C., 178

Yang, Q., 215

Zabell, S. L., 222
Zadeh, L. A., 67, 176, 206–209, 212,

213, 243, 249, 286
Zilberstein, S., 335

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

