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FINITE ORDERED SETS
Concepts, Results and Uses

Ordered sets are ubiquitous in mathematics and have significant applications in computer
science, statistics, biology, and the social sciences. As the first book to deal exclusively
with finite ordered sets, this book will be welcomed by graduate students and researchers
in all of these areas.

Beginning with definitions of key concepts and fundamental results (Dilworth’s and
Sperner’s theorem, interval and semiorders, Galois connection, duality with distributive
lattices, coding and dimension theory), the authors then present applications of these
structures in fields such as preference modeling and aggregation, operational research
and management, cluster and concept analysis, and data mining. Exercises are included at
the end of each chapter with helpful hints provided for some of the most difficult examples.
The authors also point to further topics of ongoing research.
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ematics or mathematical science and for which a detailed development of the abstract
theory is less important than a thorough and concrete exploration of the implications and
applications.

Books in the Encyclopedia of Mathematics and Its Applications cover their subjects
comprehensively. Less important results may be summarized as exercises at the ends of
chapters. For technicalities, readers can be referred to the reference list, which is expected
to be comprehensive. As a result, volumes are encyclopedic references or manageable
guides to major subjects.
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Preface

The notions of order, classification, and ranking exist in numerous human activities
and situations: administrative or social hierarchies, organization charts, scheduling
of sports tournaments, precedence, succession or preference orders, agendas, school,
audiovisual or webpage rankings, alphabetical and lexicographic orders, etc. It would
be endless to enumerate all the situations where orders appear.

It is thus not surprising, considering the development of the use of mathematics
in the modeling of multiple phenomena, to find a great number of fields where
order mathematics occur. Nevertheless, the latter are relatively recent. Of course,
in mathematics, the notion of the order of magnitude has been known for a long time
and in the sixteenth century the symbols “<” and “>” appeared for the first time to
express “less than” and “greater than.”1 Yet, the abstract notion of an order defined as
a particular type of transitive relation was developed only between 1880 and 1914 by
mathematicians and/or logicians such as Peirce, Peano, Schröder, Cantor, Dedekind,
Russell, Huntington, Scheffer, and Hausdorff, in the context of the formalization of
the “algebra of logic” (that is, Boolean algebra) and also of the creation of set theory
(with the study of “order types”). Lattices, which are particular orders since they can be
defined algebraically, were also considered as early as the later part of the nineteenth
century by Schröder and Dedekind, and then fell into oblivion before arising again
during the 1930s thanks to Birkhoff, Öre, and several other eminent mathematicians.
For a long time, lattices were the main studied orders. Lattice theory – as well as
universal algebra, which is its natural extension – is still extremely active. Besides,
the most fundamental result of the theory of finite orders, namely Dilworth’sTheorem,
was proved only in 1950 in relation to a problem on lattices. However, since the 1970s,
the situation has evolved significantly. Researches on order structures have increased
widely to answer internal motivations of “pure mathematics” as well as problems
raised by the use of these structures in “applied mathematics” (in fields such as
operations research, microeconomics, data analysis, data mining, biology, robotics,

1 In Artis Analyticae Praxis ad Aequationes Algebraicas Resolvendas, by the mathematician Thomas
Harriot.
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theoretical computer science, algorithmics, etc).2 Today, no less than a treatise of
at least 1000 pages would be necessary to present a mere synthesis of the existing
results.

This is of course not the purpose of this book, which is limited to some aspects and
to the following three main goals:

• to define the concepts and to expound the fundamental results on finite ordered
sets;

• to present their uses in various fields;
• to point out a number of results and current works.

The choice to remain within the scope of finite ordered sets is in part justified
by our concern to publish a reasonably sized book. It also places the book in the
field of discrete mathematics, the importance of which nowadays is clear. In this
(still very wide) scope, we have given greater importance to the notions and results
which seemed essential to us because of their uses in a great number of modelings:
linear extensions of an order, isotony, closure operators and closure systems, residual
maps and Galois connections, chains and antichains with the Dilworth and Sperner
theorems, the duality between ordered sets and distributive lattices, order codings
and dimensions, interval orders and semiorders, Arrowian results on orders, etc. And
actually, in every chapter of this book, the reader will find examples of uses of order
structures in various fields. The last and longest chapter develops some of these uses
in (often interdisciplinary) contexts such as preference modeling, data analysis, and
scheduling.

At last, in order to cover up the fact that we present only the most fundamen-
tal results, each chapter is enriched with a “Further topics and references” section.
There, we point out numerous themes that could not be developed in the body of the
chapter, and we sometimes give some historical elements, often useful for a better
understanding of the subjects.

There is a more general motivation for writing this book. We have mentioned the
important development of lattice theory, which has been so much written about –
several tens of volumes. On the contrary, books on general ordered sets are very rare
and, most often, deal with particular aspects (see Appendix D). A consequence of this
situation is that some results are too often unused or rediscovered, which goes against
the good use of mathematics.

We continue this preface with a description of the contents of the chapters and
appendices.

The principal aim of Chapter 1 is to define and illustrate the fundamental notions
used to describe, study, and work on ordered sets, these notions being used and/or
developed in the following chapters. Consequently, this chapter presents few results

2 Another expression of this development was the creation in 1985 of the journal Order by Ivan Rival.
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and gives no proof. It nevertheless contains examples of uses of ordered sets in fields
going from mathematics to operations research, biology, computer science or social
sciences.

If orders are binary relations satisfying strong properties, it is however a fact that
there exist few results concerning the class of all orders. Actually, like in some other
mathematical theories, one is often concerned with classes of orders verifying some
particular properties. Chapter 2 describes the most important classes of ordered sets:
ranked ordered sets, semimodular and bipartite ordered sets, ordered sets defined by
forbidden configurations, semilattices and lattices, linearly ordered sets.

Chapter 3 is devoted to the important question of morphisms between ordered sets;
that is, maps between two ordered sets, which preserve or reverse their order. Among
these morphisms, one finds codings, closure and dual closure operators, residuated,
residual or Galois maps. The latter are the components of Galois connections, the
fundamental tool which allows us to set the duality between two ordered sets and,
in particular, to define a Galois lattice – the use of which goes from the search for
“Guttman scales” (in questionnaires analysis) to the generation of “concepts” (in data
analysis or artificial intelligence). This is also the chapter in which we develop the
important notions of irreducible elements of an ordered set and of arrow relations
between these elements.

Dilworth’s Theorem (1950) sets the equality in any ordered set between the max-
imum number of its pairwise incomparable elements and the minimum number of
chains in a chain partition of the ordered set. This is a central result since, on the one
hand, it holds for any ordered set and allows us to solve a problem met in various situ-
ations (for instance, in operations research, computer science or plane geometry) and,
on the other hand, it is related – and in fact, often equivalent – to many other famous
results in combinatorics, namely, for example, the König–Hall, Menger, and Ford
and Fulkerson theorems. Chapter 4 is devoted to Dilworth’s Theorem, and also to the
generalizations of another famous result due to Sperner, which gives the maximum
number of incomparable subsets (for the inclusion relation) of a given set. Sperner
orders, studied in this chapter, are the ranked orders for which the maximum number
of incomparable elements of the order can be obtained from the consideration of its
rank-sets.

The representation theorem of distributive lattices owing to Birkhoff provides a
set representation of a distributive lattice by means of its irreducible elements. This
leads to a fundamental duality between distributive lattices and ordered sets, which
implies that every result on a distributive lattice can be translated into a result on an
ordered set, and conversely. This duality is studied in Chapter 5, where we prove that
it is the consequence of a Galois connection between binary relations and families of
subsets. We also present another duality between orders and some particular sets of
linear orders.

Szpilrajn’s 1930 result states that every order can be extended into a linear order
(called a linear extension of the order) and allows us to prove that every order is
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the intersection of all its linear extensions. The dimension of an order is then the
minimum number of linear extensions of which it is the intersection. The dimension
parameter has been studied intensively for theoretical reasons, but also because it
was used in a number of modelings. For instance, it was used as an explanatory
model of a preference relation in microeconomics: the partial preference order of
an economic agent on a set of commodity bundles is interpreted as resulting from
the consideration of several criteria modelized by linear orders. Moreover, trying to
determine the dimension of an order is also equivalent to searching for the minimum
number of linear orders in the direct product of which it can be coded (that is, in
which one can find an isomorphic image of the order). More generally, one can be
interested in coding an order in a direct product of chains the length of which is given.
If these chains have length 1, the latter operation is equivalent to coding the order
by some subsets of a set (in other words, by sequences of 0 and 1), and we then talk
about a Boolean coding and the Boolean dimension, notions that were introduced and
most studied in computer science. Chapter 6 sets out the fundamental results on these
codings and dimensions.

All these chapters are illustrated with examples of uses of ordered sets in various
contexts. Our last chapter develops some of these uses. The first two sections of
Chapter 7 focus on the notion of a preference, which concerns, among others, cog-
nitive science, microeconomics, operations research, artificial intelligence, and also
databases (in which it helps to define effective request languages). We first deal with
the modeling of a preference relation, for instance that of an economic agent, when
we release the strong hypothesis that the indifference relation should be transitive; the
suitable models are then interval orders and semiorders. We next consider the problem
of the aggregation of several preference relations into a global preference relation,
which should be an order, and we establish a number of “Arrowian” theorems that
give prominence to the difficulty of getting a satisfactory result. We carry on with the
presentation of ordered models used in mathematical taxonomy: hierarchies, valued
hierarchies, median semilattices, partition lattices. The next section focuses on the
use of Galois lattices in relational data analysis. We show how, from such a lattice or
from its associated closure operator, we can deduce an implicational system allowing
us to answer questions like: do subjects having such-and-such characteristics have –
or not have – such-and-such other characteristics? As for the fifth section, it presents
scheduling problems and some ordinal tools used to deal with them.

Each one of the seven chapters, after its “Further topics and references” section,
contains as a last section a list of exercises, which illustrates the notions presented in
the chapter and the solutions that have to be sought by anyone who really wants to
become familiar with ordered set mathematics. For the majority of these exercises,
the solutions will easily be found from the results inside the chapter. For the others,
hints and references are provided.

The practical use of the notions and results presented in this book requires being
able to answer questions asked on an ordered set modeling some situations, which
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will in general be done by resorting to a program implementing a resolving algorithm.
Appendix A gives some basic notions on the theory of algorithmic complexity, and
numerous complexity results for order algorithmics. Appendices B and C are con-
cerned with small orders and the counting of orders. Appendix D provides various
documentary indications, while the list of references will allow the reader to get to
the results mentioned in the “Further topics and references” section of the chapters.
As expected, we also provide an index and a list of symbols.

In each chapter, the definitions, theorems, propositions, corollaries, lemmas,
examples, and remarks are numbered n.p where n is the chapter number and p the
appearance number in the chapter. For instance, Definition 4.14 is the fourteenth
numbered item in Chapter 4.

In each chapter, all figures (respectively, tables) are labeled Figure n.p (respectively,
Table n.p), where n is the chapter number and p the appearance number in the chapter.
For instance, Figure 3.6 is the sixth figure in Chapter 3 and Table 7.3 is the third table
in Chapter 7.





1

Concepts and examples

This first chapter covers all basic notions of the theory of finite ordered sets and gives
an idea of the various domains in which they are encountered. Beware! It would be
fastidious and unproductive to approach this book with a linear reading of this chapter.
The reader is invited to use it as a reference text in which he will find the definitions and
illustrations of the notions used in the next chapters. In particular, we do not provide in
this chapter the proofs of the few stated results (the reader will find these proofs in other
chapters and/or in exercises). In Section 1.1 we give the concepts and the vocabulary
allowing us to define, represent, and describe an ordered set. We also introduce several
graphs (comparability, incomparability, covering, neighborhood graphs) associated
with an ordered set. Section 1.2 presents some examples of ordered sets that appear
in various disciplinary fields from mathematics themselves to social sciences and
ranging from biology to computer science. We define the notions of an ordered subset,
a chain, an antichain, and of an extension of an ordered set in Section 1.3 and the
notions of a join and a meet, of irreducible elements, and of downsets or upsets in
Section 1.4. Finally, Section 1.5 describes the basic construction rules (linear sum,
disjoint union, substitution, direct product, etc.) that form new ordered sets from
given ones.

1.1 Ordered sets

In the very beginning there was the order... or the strict order! This section therefore
begins with the definition of these two order notions, with their associated termi-
nology. Then we present different graphs (comparability, incomparability, covering,
neighborhood graphs) associated with an ordered set. Section 1.1.1 is devoted to a
very useful representation of an ordered set called its diagram. Finally, we end the
section by the standard mathematical notion of an isomorphism between ordered
structures together with the also very significant notion of a dual isomorphism (or
duality).



2 Concepts and examples

1.1.1 Orders and strict orders

What is an order in mathematics? This question, raised in 1903 by the logician and
philosopher Bertrand Russell, has essentially received two answers (generally) named
order and strict order (see Section 1.6 for the history of these notions). On the other
hand, the notations and terms used to refer to the same ordinal notions have been –
and remain – very diverse. In this book we do not refrain from using several different
symbols or terms to denote or to name the same notions since, from experience,
we know that using a unique notation system may cause more disadvantages than
advantages. However in this section and in order to compensate for these possible
disadvantages, we specify (in a very thorough and thus somewhat tedious way) the
two fundamental notions of order with the various notation systems that we will use.

A binary relation on a set X is a subset R of the set X 2 of the ordered pairs of
X . The notation (x,y) ∈ R (or xRy) means that the ordered pair (x,y) belongs to the
relation R. We write (x,y) �∈ R – or xRcy – if not.

Definition 1.1 A binary relation O on a set X is an order if it satisfies the following
three properties:

1. Reflexivity: for each x ∈ X ,xOx.
2. Antisymmetry: for all x,y ∈ X , xOy and yOx imply x = y.
3. Transitivity: for all x,y,z ∈ X , xOy and yOz imply xOz.

The order O is linear (or total1) if, for all x,y ∈ X , xOcy implies yOx.
An ordered set (or a partially ordered set or a poset) is an ordered pair P = (X ,O)

where X is a set and O an order on X (sometimes to avoid ambiguity, we will find it
useful to denote OP the order of the ordered set P). If O is a linear order, P = (X ,O)

is then called a linearly ordered set (or a totally ordered set or a chain). The symbols
n or Cn denote a chain of size n.

Example 1.2 Let X = {a,b,c,d,e} and P = (X ,O) be the ordered set where O is the
following order on X :

O = {(a,b),(a,e),(c,b),(c,d),(c,e),(d,e),(a,a),(b,b),(c,c),(d,d),(e,e)}

An ordered set P can be represented by a network, the points of which correspond
to the elements of X and the arcs (or directed edges) to the ordered pairs of O, the
loops representing the ordered pairs of the form (x,x) (cf. Figure 1.1). We can also
represent it by tables (see Table 1.1). The cells of these tables correspond to all ordered
pairs of X and a 1 or a × in a cell (respectively, a 0 or an empty cell) means that the
corresponding ordered pair belongs (respectively, does not belong) to O. Yet we will

1 A binary relation R on X is said to be total (respectively, weakly total) if, for all x,y ∈ X , xRcy implies
yRx (respectively, x �= y and xRcy imply yRx).
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Table 1.1 Two kinds of table representing the ordered set P in Example 1.2

a b c d e
a × × ×
b ×
c × × × ×
d × ×
e ×

a b c d e
a 1 1 0 0 1
b 0 1 0 0 0
c 0 1 1 1 1
d 0 0 0 1 1
e 0 0 0 0 1

c

b

a

d

e

Figure 1.1 An ordered set P represented by a network.

see in Section 1.1.3 a much more economical way to represent an ordered set: the
(Hasse) diagram.

We now give the definition of a strict order.

Definition 1.3 Let O be a binary relation on a set X .

• O is a strict order if it is irreflexive (for each x ∈X , xOcx) and transitive. A strictly
ordered set is an ordered pair P = (X ,O), where X is a set and O a strict order on X .

• A strict order O is strictly linear if, for all x,y ∈ X , x �= y and xOcy imply yOx.
We then say that P = (X ,O) is a strictly linearly ordered set. If |X | = n, P or the
corresponding strictly linear order may be denoted by ns.

Note A strict order O on X is an asymmetric relation, i.e., such that yOcx for all
x,y ∈ X satisfying xOy (prove it).

Since there exists an obvious one-to-one correspondence between the set of orders
and the set of strict orders defined on a set X (what is it?), there are two equivalent
ways to formalize the notion of an order (see the further topics in Section 1.6). So,
to each particular class of orders corresponds a particular class of strict orders (for
example, strictly linear orders correspond to linear orders). In order to simplify the
terminology, it will sometimes be preferable to use the same terms to name the orders
of these two corresponding classes. Thus, in Section 7.1 of Chapter 7, where we will
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consider several models of strict preferences represented by strict orders, the qualifier
“strict” will be systematically omitted.

So far we have used the notation O for an order but, in most cases, this notation is
favorably replaced by the symbol “≤” which is read “less than or equal to.” We thus
use the traditional symbol of the order between numbers for an arbitrary order. An
ordered set is then denoted by P = (X ,≤P) or, more simply, by P = (X ,≤).

Likewise, a strict order will often be denoted by the symbol “<,” which is read “less
than” (or “smaller than”), and we will write P = (X ,<P) or, more simply, P = (X ,<)

for a strictly ordered set.
Let P = (X ,≤) (or (X ,O)) be an ordered set.

• The size of P is the size of X and we may denote it by |P|, |X | or simply n according
to the context.

• The expression “x belongs to P” means x ∈ X and we also write x ∈ P.
• The expression “(x,y) belongs to P” means x ≤ y (or (x,y) ∈ O) and we also write

x ≤P y, xOPy or simply xOy depending on the notations used for P.
• The number of the ordered pairs belonging to O is denoted by |O|, m(P)or simply m.

Let x,y be two elements of an ordered set P = (X ,≤).

• If x ≤ y, we say that x is less than or equal to y, or that y is greater than or equal to
x. We also say that x is a lower bound of y and that y is an upper bound of x. The set
{t ∈ P : t ≤ x} of lower bounds of x is denoted by (x] or Px. The set {t ∈ P : x ≤ t}
of upper bounds of x is denoted by [x) or xP.

• If x ≤ y does not hold, we say that x is not less than or equal to y and we write
x �≤ y. This relation is also denoted by ≤c (since it is the complementary relation
of the relation ≤).

• If x ≤ y and x �= y, we say that x is less than y, or that y is greater than x, and we
write x < y. We also say that x is a strict lower bound of y and that y is a strict upper
bound of x. The relation < is the strict order relation associated with the relation
≤. The set of strict lower bounds (respectively, strict upper bounds) of x is denoted
by (x[ (respectively, ]x)).

• If x ≤ y or y ≤ x, we say that x and y are comparable. If not, i.e., if x �≤ y and y �≤ x,
we say that x and y are incomparable and we write x||y (or xIncOy if the order is
denoted by O).

In Example 1.2, a and b are comparable whereas a and c are incomparable.
One will observe that y �≤ x is equivalent to (x < y or x||y). It results from the

above definitions that a chain is an ordered set in which any two elements are always
comparable. Conversely, we define the notion of an antichain.

Definition 1.4 An antichain is an ordered set such that any two distinct elements are
always incomparable. We write An for an antichain of size n.
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a e

d

c

b

Comp(P )

e

db

Inc(P )

c

a

Figure 1.2 The comparability and incomparability graphs of the ordered set in
Example 1.2.

1.1.2 Graphs associated with an ordered set

Several graphs are naturally associated with an ordered set,2 such as, in particular,
the comparability, incomparability, covering, or neighborhood graph. Each of these
graphs corresponds to some particular aspects of the ordered set and may be important
for its study. We define and illustrate these graphs below.

Definition 1.5 Let P = (X ,O) be an ordered set. The comparability graph of P is the
undirected graph Comp(P) = (X ,CompP), the vertices of which are the elements of
P and where the edges are the pairs {x,y} of comparable elements in P. The relation
CompP , also written CompO, is called the comparability relation of P.

The incomparability graph Inc(P) = (X , IncP) of P is defined similarly, with its
edges equal to the pairs {x,y} of incomparable elements in P. The relation IncP , also
written IncO, is called the incomparability relation of P.

Figure 1.2 shows the comparability and incomparability graphs of the ordered set
in Example 1.2.

The graphs Comp(P) and Inc(P) are obviously complementary to each other in
the sense that the pair {x,y} is an edge of one of them if and only if it is not an
edge of the other one. Then, to study one of them is equivalent to studying the
other.

We now define the covering relation associated with an ordered set. This relation
is generally not an order but is, on the other hand, the most economical way (with
respect to the number of ordered pairs) to describe an order. It will be used constantly
throughout the book.

2 An undirected graph is an ordered pair G = (X ,E) where X is a set and E a set of pairs of distinct
elements of X , called the edges of G; a directed graph is an ordered pair G = (X ,A) where X is a set
and A a set of ordered pairs of X , called the arcs of G.
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Figure 1.3 The neighborhood graph of the ordered set P in Example 1.2.

Definition 1.6 The covering relation of an ordered set P = (X ,≤), denoted by ≺P or
simply ≺, is defined by x ≺ y if x < y and x ≤ z < y imply x = z. We then say that x is
covered by y or that y covers x. We write xP+ = {t ∈P : x≺ t} and P−x={t ∈P : t ≺ x}.

The directed graph Cov(P)= (X ,≺) associated with the covering relation is called
the covering graph of P.

In other words, x is covered by y in P if x < y and if there does not exist in P any
element z greater than x and less than y.

The ordered set P in Example 1.2 has five covering ordered pairs: a ≺ b,a ≺ e,
c ≺ b,c ≺ d, and d ≺ e.

The covering relation of a chain defined on a set of size n is written x1 ≺ x2 ≺ ...≺ xn,
which we more simply denote by x1x2 . . .xn. This particularly economical notation
of linear orders will often be used. Conversely, any sequence of n distinct elements
(or, equivalently, any permutation on these elements) can be seen as defining a linear
order on these elements, namely the apparition order in the series. This implies that
the number of linear orders on a set of size n is equal to n!.

With the covering relation of P is also associated an undirected graph called the
neighborhood graph of P, denoted by Neigh(P)= (X ,NP), where the pair {x,y} ∈NP

if (x≺ y or y≺ x). For the ordered set in Example 1.2, this graph is given by Figure 1.3.
A number of notions on ordered sets may be defined by means of the neighborhood

graph. It is the case for the notion of the connectivity:

Definition 1.7 An ordered set P is connected if its neighborhood graph is con-
nected, i.e., if, for any pair of distinct vertices {x,y} of P, there exists a sequence
x = x0,x1, ...,xi,xi+1, ...,xp = y of vertices such that xiNxi+1, for any i = 0, ...,p− 1.

A non-connected ordered set is partitioned into maximal connected ordered sub-
sets (see Definition 1.26), called its connected components. Since a problem on a
non-connected ordered set most often comes back to a problem on its connected
components, it is generally enough to consider connected ordered sets.
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Figure 1.4 Two diagrams of the ordered set in Example 1.2.

1.1.3 Diagram of an ordered set

At the beginning of the chapter we saw that one can consider an ordered set as
a network, which is a “geometrical” representation of the latter (see Figure 1.1).
However, as soon as one considers a “big” ordered set, the network risks becoming
quite inextricable. It is possible to do better thanks to the notion of a diagram of an
ordered set, which provides a much more economical representation of an ordered
set. First, we observe that to know the covering ordered pairs of P = (X ,≤) allows
us to find all ordered pairs of the order ≤. Indeed, we have x < y if and only if there
exists a sequence x0,x1, ...,xp of elements of X such that x = x0 ≺ x1 ≺ ... ≺ xp = y.
Thus we can represent an ordered set thanks to its covering ordered pairs, which is
done by using the (Hasse) diagram.

Definition 1.8 The diagram (or Hasse diagram) of an ordered set P = (X ,≤) is a
representation of its covering graph in which the elements x of P are represented by
points p(x) of the plane, with the following two rules:

• If x < y (the horizontal line going through) p(x) is below (the horizontal line going
through) p(y).

• p(x) and p(y) are linked by a line segment if and only if x ≺ y.

Clearly, there exist an infinity of possible diagrams for a given ordered set. Yet,
just like we did in the above definition, we will generally talk about “the” diagram
of an ordered set P, instead of specifying “one of the diagrams” of P. The choice of
the position of the points allows us to obtain some diagrams that are easier to read
than others. Figure 1.4 shows two possible diagrams for the ordered set in Example
1.2, and Figure 1.5 shows diagrams of the chain C4, of the antichain A4, and of the
“cube” B3 (the letter “B” stands for “Boolean,” see Example 1.12 further on).

Later on, all figures representing an ordered set will show a diagram of the latter.
Let us observe that, since the diagram of an ordered set does not represent the reflexive
ordered pairs, it may as well represent the associated strict ordered set.
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C4

A4

B3

Figure 1.5 The diagrams of the chain C4, of the antichain A4, and of the cube B3.

1.1.4 Isomorphism and duality

In mathematics, the notion of an isomorphism between two structures is fundamental.
It allows us to prove that two sets of objects of different nature may satisfy the same
properties. When considering order structures, we have to consider also the other very
significant notion of a dual isomorphism (or of a duality). Recall that a map f from
X to Y is called a bijection – or a one-to-one correspondence – if it is injective – or
one-to-one, i.e., x �= y implies f (x) �= f (y), and surjective – or onto, i.e., f (X )= Y .

Definition 1.9 Two ordered sets P = (X ,≤P) and Q = (Y ,≤Q) are said to be
isomorphic (or of the same type) if there exists a bijection f from X to Y such that:

x ≤P y ⇐⇒ f (x)≤Q f (y)

The bijection f is called an order isomorphism between P and Q and we write P ≡Q.
When P = Q, we say that f is an automorphism of P.

In other terms, two ordered sets are isomorphic if they are identical up to the
denomination of their elements. Thus we obtain an ordered set isomorphic to that in
Figure 1.4 (Example 1.2) by replacing a,b,c,d,e with 1, 2, 3, 4, 5.

The isomorphism relation between ordered sets is an equivalence relation the
classes of which, in accordance with Definition 1.9, are called the types of ordered
sets. Then two isomorphic ordered sets are said to be “of the same type.” In order
to illustrate the difference between order and order type, we can note that there exist
130 023 distinct orders defined on a set of size 6 whereas there are only 318 different
order types on such a set3 (for easy countings, see Exercise 1.1). Appendix B provides
the diagrams of the 58 connected order types of size at most equal to 5.

3 In general, counting all orders (respectively, all order types) on a set of size n is very difficult and, at the
present time, the answer is known only for n ≤ 18 (respectively, n ≤ 16). These numbers increase very
quickly (see Appendix C).
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Figure 1.6 Two dual ordered sets P and Q.
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Figure 1.7 An ordered set P and its dual ordered set Pd .

Definition 1.10 Two ordered sets P = (X ,≤P) and Q = (Y ,≤Q) are said to be dually
isomorphic (or simply dual) if there exists a bijection f from X to Y such that, for all
x,y ∈ X :

x ≤P y ⇐⇒ f (x)≥Q f (y)

The bijection f is called an (order) dual isomorphism (or a dual isomorphism) between
P and Q and we write P ≡d Q.

See Figure 1.6 for an example of dual ordered sets.

A particularly interesting case of a dual isomorphism is obtained by considering
the ordered set Pd = (X ,≤d), dual of an ordered set P = (X ,≤) and defined by:

x ≤d y ⇐⇒ y ≤ x

The reader will check that ≤d is an order and that P and Pd are dually isomorphic.
The order ≤d is called the dual (sometimes the reverse) of the order ≤ and we also
denote it by ≥. A diagram of Pd is obtained by turning a diagram of P “upside down”
(Figure 1.7).

We note that, in the case of a linearly ordered set L which is written L = x1x2...xn,
the linearly ordered set Ld is written Ld = xn...x2x1.
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From the existence of the dual order for any order follows the so-called duality
principle for ordered sets, which states as follows:
If a property using symbols ≤ and ≥ holds in any ordered set, so does the dual
property obtained by permuting these symbols.

For instance, in any ordered set, any element is less than or equal to at least one
maximal element (see page 23). Dually, in any ordered set, any element is greater
than or equal to at least one minimal element (see the same page).

More generally, the dual class Ed of a class E of ordered sets is formed from all
ordered sets Pd with P ∈ E . If a property holds in any ordered set of E , the dual
property holds in any ordered set of Ed .

A class E of ordered sets is said to be ipsodual (or autodual) if any ordered set of
E has its dual in E , i.e., if E = Ed (the class of linearly ordered sets on the one hand,
and that of all ordered sets on the other hand, are two examples of ipsodual classes).
For such a class, the duality principle then states as follows:

If a property holds in any ordered set of an ipsodual class of ordered sets, so does the
dual property.

1.2 Examples of uses

Classifying, comparing, and hierarchizing activities are consubstantial to cognitive
activity, so it is not surprising that mathematical models of order are present in a great
number of fields, ranging from mathematics to biology, computer science or social
sciences. In this section we present a sample of examples where orders – or order
notions – appear in the latter fields. Chapter 7 will develop several of these uses.
Of course, one could find many other examples: e.g. the uses of orders in quantum
theory (see, for instance, Marlow, 1978) and in environmental sciences and chemistry
(Brüggemann and Carlson, 2006).

1.2.1 Mathematics

Example 1.11 The notation≤ used for an arbitrary order is the classic notation of the
order defined on a set of numbers, for instance on the set N of non-negative integers.

Another order defined on N∗ =N\ {0} playing a significant role in number theory
is the divisibility order on positive integers, denoted by | and defined by: a|b if a
divides b (the reader can check that this relation is indeed an order). Any set of
positive integers is an ordered set for this divisibility order (see Exercise 1.10 in
Section 1.7).

Example 1.12 We denote by P(E) the set of all subsets of a set E. In this book,
the notation 2E will often stand for the set (P(E),⊆) of all subsets of E ordered by
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set inclusion.4 If |E| = n, the latter ordered set may also be denoted by Bn (“B” for
Boolean, see Figure 1.5 and Definition 2.19 of Chapter 2) or 2n (see footnote 4). It is
linearly ordered only for n = 1.

When E is equal to the set X 2 of all ordered pairs of a set X , we obtain the
ordered set (P(X 2),⊆), also denoted by 2X 2

, of all binary relations defined on X . For
R,S ∈ P(X 2) with R ⊆ S, it is also said that the relation R implies the relation S – or
that S is compatible with R.

When E is equal to the set P(X ) of all subsets of X , we obtain the ordered set
(P(P(X )),⊆), also denoted by (P2(X ),⊆) or 2P(X ). Its elements, which are the
subsets of P(X ), will be called families of subsets of X (so in this book a family is a
set). A fundamental correspondence between the two ordered sets 2X 2

and 2P(X ) will
be studied in Chapter 5.

Example 1.13 We denote OE (or On) the set of all orders defined on a set E of size
n. For two such orders ≤ and ≤′, we say that ≤ implies ≤′ if, for all x,y ∈ E, x ≤ y
implies x ≤′ y. This relation – which is nothing but the inclusion relation on orders –
is an order. The notation OE will also be used for the set of all orders on E ordered
by inclusion (it will be considered in Chapter 5).

1.2.2 Biology

Example 1.14 Apartition P= {C1,C2, ...,Cp} of a set E is a set of non-empty subsets
of E, called its classes, pairwise disjoint and the union of which is equal to E. The
relation defined on the set PE of partitions of E by P ≤ P′ if any class of P is
included in a class of P′ is an order (which is moreover linear for |E| < 3) and we
say that “P is finer than P′.” This order is called the refinement order on partitions.
The search for a partitioning of a set into classes appears in numerous fields, like
classification or discrimination problems. For instance, the recognition of several
microbial strains related to an infectious disease (the contamination processes of
which we are interested in) leads to the study of the joining of the infectious agent
found on each patient to one of the latter strains, hence a partitioning of the set of
these observations. A new distinction between the strains identified until then will
correspond to a finer partition of the data.

Example 1.15 A family H of subsets of a set E is a tree of subsets if E ∈H, ∅ �∈H,
and if A,B ∈ H implies A ∩ B ∈ {∅,A,B}. A tree H of subsets is a hierarchy on E
if, moreover, {e} ∈ H for any e ∈ E. If H is a family of subsets of E ordered by
set inclusion, then H is a tree of subsets, called a tree-ordered set (see Definition
2.12) if and only if E ∈ H and, for any A ∈ H, the set of elements of H which

4 This notation is very classic: it results from the well-known fact – consequence of a more general result
proposed in Exercise 3.5 – that the ordered set (P(E),⊆) is isomorphic to the ordered set of isotone
maps (see Definition 3.1) from E to 2, which is denoted by 2E (see Definition 3.4 and its comments).
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include A is a chain. H is a hierarchy if and only if E ∈ H and if, for any A ∈ H
of size at least 2, the set of the subsets covered by A (in the inclusion order) forms
a partition of A. Hierarchies are the basic model for classification trees considered
in phylogeny (and, more generally, in data analysis). For instance, if E is a set of
present species, an element A of H which is a subset of E with at least two elements
corresponds to a set of species of E that have a common ancestor and then represents
this hypothetical ancestor. The hierarchy H thus represents a set of – present or
hypothetical – species, endowed with a filiation order (dual of inclusion). The set of
all ancestors of a given species is linearly ordered by filiation. Hierarchies as well as
other ordinal classification models will be studied in Section 7.3 of Chapter 7.

Example 1.16 It is possible to recognize the presence of homologous genes on the
DNA corresponding to two close enough species. However, these common genes
often appear in a different order. A commonly accepted hypothesis is that the elemen-
tary transformation leading from a DNA to another one is the reversal of an interval
of this order. To evaluate the “distance” between the two DNAs, one then searches for
the minimum number of elementary transformations, and hence of interval reversals,
that is necessary to go from a linear order to another one over the same ground set X of
genes. This distance is called the reversal distance; let us notice that, in the following
Example 1.17, these interval reversals are the commutations if we consider only the
two-element intervals. Obviously, the biological situation is much more complex. A
sign (+ or −) is assigned to any element of X according to the DNA strand on which
it is located (let us recall that DNA is structured as a double helix) and the reversal
of an interval goes with the sign change of its elements. In return, the linear algorith-
mic complexity of the latter “signed” problem makes it quite treatable, whereas the
“non-signed” problem is NP-hard (see Appendix A).

1.2.3 Computer science

Example 1.17 We denote by �n the set of the n! permutations of {1, ..., i, ...,n}. We
say that we make an inversion (or an increasing commutation) on the permutation
s= s1...si...sn of�n if we exchange two consecutive elements si and si+1 of s satisfying
si < si+1 (with i < n). We write s < s′ if the permutation s′ can be obtained from s
by a sequence of inversions. We then obtain an order (linear for n < 3) on �n,
called permutoedre order or (weak) Bruhat order, defined by means of the notion
of an inversion. This notion is naturally used for measuring the degree of order or
disorder of a sequence of elements forming an information to sort. Numerous sorting
algorithms are thus intrinsically related to the number of inversions present in this
information, often representable as a permutation of elements (see Knuth, 1973 for
the study of such methods). The notation (�n,<), or �n if there is no ambiguity, will
stand for the set of all permutations on {1, ..., i, ...,n} endowed with the permutoedre
order defined above. We have already noticed in Section 1.1.1 that there exists a
bijection between permutations and linear orders defined on a set. This bijection
involves an order on the set of linear orders isomorphic to the permutoedre order.
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Some properties of this order are given in Chapter 5 (Sections 5.5 and 5.6) and at the
very end of Section 6.5.

Example 1.18 In object-oriented programming languages with multiple inheritance,
one has a type hierarchy which is an ordered set. We denote by T the set of types
and by ≤ the inclusion between types. In order to efficiently implement this type
hierarchy, one uses a “coding” of the ordered set (T ,≤) in the ordered set of all
subsets of a set S. A type is represented by a subset of S and is included in another one
if and only if the subset of S that codes the first type is included in the set of S that
codes the second one; in other words, the images of the types form an ordered subset
of 2S (set of all subsets of S ordered by set inclusion) isomorphic to (T ,≤). Such a
coding is called Boolean since (T ,≤) is coded in the Boolean lattice 2S (see Example
1.12). On the other hand, one searches to obtain an “optimal” Boolean coding, in the
sense that the size of the set S must be minimum. This minimum size is called the
2-dimension of (T ,≤). More generally, the 2-dimension of an ordered set (P,≤) is
defined as the minimum size of a set S such that it is possible to code P in 2S . This
notion will be studied in Chapter 6.

Example 1.19 Some multiprogramming operating systems maintain up to date a
dynamical graph called the resources allocation graph, which describes the use of
all resources of the system (CPU(s), memories, peripheral devices, semaphores, etc.)
by threads and processes and detects the possible arrival of blocking situations. In
these systems, threads and processes are competing with one another for all the non-
shareable resources (that is, which cannot be used at the same time by more than
one thread/process) and the system is generally not supposed to pre-empt a resource
used by a thread/process. A set of threads/processes is deadlocked if each one of them
currently uses some resources and is blocked, waiting for another resource, which
itself is used by another thread/process of this set, and if this blocking situation cannot
improve even if some threads/processes release some resources. The simplest example
is illustrated by the case of two processes P0 and P1 such that Pi has and uses resource
Ri and is blocked, waiting for process R1−i in order to go on running, for i = 0,1.

The allocation graph G of the system can be used to detect such a situation. Its
vertices are of two types: a vertex of G is either a process P or a class of resources R
of the system (that is, a set of resources “equivalent” for the processes, for instance
the class of printers, that of hard disks, etc.). The arcs of G are of two types: a request
arc P −→ R appears in G as soon as an instance of resource class R is needed for the
execution of P. This arc is transformed into an allocation arc R −→ P as soon as this
request is satisfied by the system. The allocation arc disappears when R is released
by P after being used.

Regularly, a system program makes sure that G is cycle-free, which amounts to
checking that its reflexo-transitive closure (see Example 1.20) is an order (see Theo-
rem 2.23). If it is not the case, all processes involved in the cycle are deadlocked and
the system then starts to run the associated correction program.
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1.2.4 Social sciences

Example 1.20 A preordered set is an ordered pair (X ,R) where X is a set and R a
preorder, i.e., a transitive and reflexive relation defined on X . When the preorder is
also total, (X ,R) is called a totally preordered set. The reader will prove that, if R is a
preorder on X , the relation O defined on X by (x,y) ∈ O if [(x,y) ∈ R and (y,x) �∈ R]
is a strict order, and that the relation I on X defined by (x,y) ∈ I if [(x,y) ∈ R and
(y,x) ∈ R] is an equivalence relation. By definition, the classes of the preorder R are
the classes of the associated equivalence relation I . For two classes C and C ′ of R,
we write C ≤R C ′ if there exists x ∈ C and y ∈ C ′ such that (x,y) ∈ O. The reader
will prove that ≤R is an order relation on the set of classes (by first showing that one
has C ≤R C ′ if and only if, for any x ∈ C and any y ∈ C ′, (x,y) ∈ O). The order ≤R is
called the quotient order of the preorder R. When the preorder is total, the quotient
order is a linear order on its classes.

The construction of a quotient order from a preorder is quite frequent. In particular,
if U is an arbitrary binary relation, one associates a preorder R by writing xRy if x = y
or if there exists a path from x to y in U , that is a sequence x0,x1, ...,xp of distinct
elements of X such that x = x0, y = xp, and x0Ux1, x1Ux2,..., xp−1Uxp. Then (X ,R) is
the reflexo-transitive closure of the directed graph G = (X ,U ). An ordered pair (x,y)
is an arc of this closure if x = y or if there exists a path from x to y in G. The classes
of the preorder R are called the strongly connected classes of the graph G. These
classes are then ordered by the associated quotient order. This construction is used,
for instance, in the study of a social network modeled by a graph. It allows us to divide
the set of the individuals of the network into a set of equivalence classes provided
with an ordinal structure. If, for instance, the graph (X ,U ) represents a “domination”
relation between individuals, an equivalence class is then greater than another one if
any individual of this class dominates – directly (by the relation U ) or indirectly (by
the relation R) – any individual of the other class (and the converse never holds).

Example 1.21 In the previous example, one could see that a strict order is associated
with any preorder. The strict order O associated with a total preorder R (i.e., its asym-
metric part) is called a (strict) weak order. This class of orders appears in numerous
situations. Indeed, any numerical function f defined on X induces a weak order O
on X defined by xOy if f (x) < f (y). Thus, in microeconomics, the preference of an
economical agent over a set of bundles of goods is generally described by means of a
numerical utility function u: the bundle y is preferred to the bundle x if u(x) < u(y).
The preference of the agent is then a weak order, and its indifference relation (which
is nothing but the incomparability relation of the weak order) is an equivalence rela-
tion. This modeling implies that the indifference relation of the agent is transitive,
which in fact does not necessarily hold. We will see in Section 7.1 of Chapter 7 some
ordinal modelings of preference which do not imply that the indifference relation be
transitive (see also Example 1.22 below) and, in this context, we will go back to weak
orders.
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Example 1.22 We consider a set of finite intervals on R. We write [i1, i2] < [j1, j2]
if i2 < j1. The reader can check that one obtains a strict order relation on the set
of the considered intervals. All the orders that can be obtained that way are called
interval orders and have appeared in extremely varied contexts (statistical estimation,
psychophysics, utility theory, multi-criteria decision analysis, seriation, scheduling,
temporal logic, combinatorics, etc.). Their origin dates back to Wiener’s 1914 paper,
where he introduces (with a different name) interval orders in order to answer a
question from Russell on the possibility of defining the notion of an instant in time
from the notion of an event in time. They were rediscovered in the 1950s concerning
problems of modeling preferences, mentioned in the previous example. We will find
them again in another form in Chapter 2 (see Definition 2.12) and they will be studied
in the first section of Chapter 7 in the context of preference modeling.

1.2.5 Operations research

Example 1.23 Let us consider a group having at its disposal a budget for some
investment taken in a set X = {1, ..., i, ...,n} of possible investments. Each investment
i has a cost ci and a potential utility pi. The group searches for a set A of investments
whose cost (�ci, i ∈ A) does not exceed the total capacity of investment and which
maximizes the utility (�pi, i ∈ A). This optimization problem is nothing else but the
famous “knapsack problem,” a very difficult problem (it is NP-hard, see Appendix
A). If, moreover, some investments may be made only if some others have been made
(for instance, foundings for company settling following the creation of an industrial
area), there exists a precedence order < over the n investments. Then the set A must
satisfy the following: i∈A, j ∈X , and j < i imply j ∈A. Such a set A is what we will call
a downset of the ordered set (X ,<) (see Definition 1.42). The optimization problem
then becomes the ordered knapsack problem, in general as difficult as that without
order constraint. However, for some ordered set classes such as 2-dimension orders
(see Section 6.3) or bipartite orders (Definition 2.6), one may find good procedures
of approximation – or even of determination – of the solution.5 This problem is also
linked to scheduling problems such as those mentioned in Example 1.25 below and
in Section 7.5.

Example 1.24 The budget project of a territorial community, e.g., a county, is gener-
ally prepared by a commitee composed of representatives of the different districts. For
a list of the n possible projects to budget for, each representative has his/her priority
order for their carrying out. The priority order proposed at last then has to realize a
consensus between the latter different orders. One may (more or less rightly) assume
that each representative is able to give a linear priority order over the projects. In
order to obtain the consensus order, a possible procedure could consist in searching

5 See Kolliopoulos and Steiner (2002).
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for a linear order L (called median order) that maximizes the sum of the “agreements”
between L and the different orders of the representatives; the ordered pair (y,x) is
an agreement between L and the order of a representative if project x is prefered to
project y in these two orders. This optimization problem, easy to set and which, in a
different context, was thought easy to solve, is actually very difficult (in fact NP-
hard, see Appendix A) in the general case where the orders of the representatives
may be arbitrary. It may, however, be brought back to the application of the majority
rule of aggregation and then become easy, if the orders to be aggregated respect a
given structure, which may be the case in the considered example. We will go back
to these problems of consensus orders and to the majority and the median procedures
in Sections 7.2 and 7.3.6

Example 1.25 Consider a set of jobs that can be performed on several identical
machines working in parallel, that is, such that each of them takes the same time
to do the same job. On the other hand, there is a precedence order between jobs,
coming from the fact that some jobs may be done only after the end of some others. A
scheduling of these jobs consists of allocating them to the different machines taking
into account the precedence constraints. One searches for an optimal scheduling, i.e.,
a scheduling which minimizes the total duration of the execution of these jobs. We
will see in Section 7.5 how the ordinal modeling of this problem allows us to find an
efficient algorithm for solving some of its instances.

1.3 Ordered subsets and extensions

Three types of problem frequently arise when an ordered set modelizes a given
situation.

First, one can search for a subset of this set satisfying some given properties.
Consider, for instance, an ordered set that represents a set of projects of setting-up
companies, ordered according to a number of criteria. This defines an order, generally
not linear, on these projects. One is led to search for a set of pairwise incomparable
projects, and hence an antichain, which separates the “positive” projects (that is,
considered as acceptable by a credit institution) and the “negative” ones (considered
as not acceptable).

On the contrary, in other situations, one will search for a set of maximum size of
pairwise comparable elements (and hence a chain) of an ordered set.

6 The problem of searching for median orders is a particular case known in the literature as the “linear
ordering problem.” The latter is equivalent to the classic combinatorics optimization problem consisting
of searching for a cycle-free subgraph with maximum weight in a weighted directed graph. These
problems have appeared in different forms and in different fields, for instance in economics with the
problem of triangulation of the input–output tables. Reinelt’s 1985 book is a basic reference on these
problems.
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Figure 1.8 Q1 is a covering ordered subset of P and Q2 is a non-covering one.

In many jobs scheduling problems one can also search for a linear order on the jobs,
compatible with the temporal constraints initially given on the latter: such-and-such
job must be ended before such-and-such other job may be started (for instance, a file
which must be compiled before another one). We will tackle some aspects of these
problems in Section 7.5.

In this section, we make explicit the notions allowing us to modelize such problems.

1.3.1 Ordered subsets

Definition 1.26 Let P = (X ,≤) be an ordered set and Y a subset of X . The restriction
of the order ≤ to the subset Y is an order, denoted by ≤Y and called a suborder of ≤.
We then say that Q = (Y ,≤Y ) is an ordered subset of P, denoted by Q � P.

If, moreover, x ≺ y in Q implies x ≺ y in P, we say that Q is a covering ordered
subset of P.

See Figure 1.8 for an example of covering and non-covering ordered sets.

The ordered subset restricted to the subset X \x (respectively, X \A) of X is denoted
by P \ x (respectively, P \A).

In Section 1.3.2, we define two important types of ordered subset of an ordered
set, namely its chains and its antichains. Other examples equally important are its
intervals and its convex subsets.

Let x and y be two elements of the ordered set P = (X ,≤) with x ≤ y. We write:

[x,y] = {z ∈ X : x ≤ z ≤ y}

This set – or the corresponding ordered subset of P – is called the interval between x
and y. A subset Y of P is said to be convex if it contains the interval [x,y] as soon as
it contains x and y with x ≤ y.
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1.3.2 Chains, antichains, and associated parameters

Definition 1.27 Let Q be an ordered subset of an ordered set P. If Q is linearly
ordered, we say that Q is a chain of P. We write x0 < x1 < ... < xp for a chain of P or,
simply, x0x1...xp. The element x0 is the origin of the chain, xp its extremity, and its
length is the number of its elements minus one (hence p for the chain x0 < x1 < ... < xp,
and 0 for the chain x0). The chain x0x1...xp will be called a chain of size p+ 1 or a
(p+ 1)-element chain.

A chain Q = x0x1...xp of P is said to be:

• covering if it satisfies x0 ≺ x1 ≺ ... ≺ xp (where ≺ is the covering relation of P)
with p ≥ 1;

• maximal if it is not included in any other chain of P;
• extended if it contains a minimal element and a maximal element of P (see

Definition 1.38).

Remark 1.28 Observe that in this terminology, the term “chain” may stand either
for a linearly ordered set (the chain n in Definition 1.1) or as above, a linearly ordered
subset of an ordered set. The context allows us to distinguish between these two uses,
which besides are non-contradictory (since a set is a subset of itself). The same remark
applies to the term “antichain” (Definitions 1.4 and 1.29).

A maximal chain is covering but the converse is in general not true. However, if Q
is an extended chain of an ordered set P, Q is maximal if and only if it is covering.

The ordered set in Figure 1.4 (Example 1.2) has four maximal chains, ab, ae, cb,
cde (the first three have length 1 and the last one has length 2) and eight non-maximal
chains, two of which are covering (the reader can check that). The chains 0acf 1,
0bf 1, and 01 are three extended chains of the ordered set L given in Figure 1.10, and
only the first one is maximal.

These different notions of chains apply to any ordered subset of P. Thus, in the
case of an interval [x,y] of P, a chain from x to y is maximal (for the ordered subset
[x,y]) if and only if it is covering.

Definition 1.29 Let Q be a subset of an ordered set P. If the elements of Q are
pairwise incomparable, we say that Q is an antichain of P.

An antichain of P is maximal if it is not contained in any other antichain of P. The
ordered set in Figure 1.4 (Example 1.2) contains four maximal antichains and five
other antichains (of size 1).

Notice that the only ordered subsets of P that are both a chain and an antichain of
P are the singletons of P. On the other hand, all antichains of P are clearly convex
(what about its chains?).
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With the notions of a chain and an antichain of an ordered set P are associated four
fundamental parameters:

Definition 1.30 Let P be an ordered set. The maximum size of an antichain of P is
called the width of P and is denoted by α(P). The range κ(P) of P is the maximum
size of a chain of P. Also, we denote γ (P) the minimum number of antichains in a
partition of P into antichains and θ(P) the minimum number of chains in a partition
of P into chains.

Note In the definitions of θ(P) and γ (P), the expression “partition of P into chains”
(respectively, into antichains) stands for a partition of the set of elements of P into
chains (respectively, into antichains).

Instead of the range of P, one also considers its height λ(P) = κ(P) − 1. This
parameter is then the maximum length of a chain of P.

In Figure 1.4 (Example 1.2), {ae,cb,d} forms a partition into three chains and
{ac,d,be} a partition into three antichains of P (let us recall that here, for the sake
of simplicity, the notation ae (for instance) stands for the set {a,e}). The reader can
check that, in this example, the equalities κ(P) = γ (P) = 3 and θ(P) = α(P) = 2
hold.

These equalities are not fortuitous. Actually we will prove that any ordered set P
satisfies the following equalities:

• γ (P)= κ(P),
• θ(P)= α(P).

The first equality is easy to prove. Obtaining the second one is the purpose of the
most famous theorem of the theory of ordered sets, Dilworth’s Theorem (1950). The
latter has numerous applications and will be proved in Chapter 4 (Theorem 4.2). We
can however notice that the inequalities κ(P) ≤ γ (P) and α(P) ≤ θ(P) are obvious
(why?).

Note We immediately observe that the chains (respectively, the antichains) of P
correspond to the cliques (respectively, to the independent sets) of the comparability
graph of P. The parameters κ(P), α(P), θ(P), and γ (P) defined above then coincide
with four fundamental parameters of the comparability graph of P. For instance, γ (P)

is the chromatic number of this graph. Since κ(P), α(P), θ(P), and γ (P) depend only
on Comp(P), one says that they are comparability invariants. Later we will see other
– much less obvious – examples of such invariants (see Section 1.6, “Further topics
and references”).

1.3.3 Extensions

In this section, we consider the possibilities of extension of an order O into an order
O′ (we use the literal notations O and O′ for simplicity).
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Definition 1.31 Let O and O′ be two orders defined on a set X . We say that O′ is an
extension of O if O ⊆ O′(in other words, for all x,y ∈ X , xOy implies xO′y).

An extension O′ of O is said to be linear if O′ is a linear order.

When O′ is an extension (respectively, a linear extension) of O, we will also say
that the ordered set Q = (X ,O′) is an extension (respectively, a linear extension) of
the ordered set P = (X ,O). The ordered pairs of P are ordered pairs of the extension
Q, which we denote by P ⊆ Q (and which must be distinguished from the notation
P � Q used to express the fact that P is an ordered subset of Q).

Observe that if O ⊆ O′ then IncO′ ⊆ IncO.

In the next chapter, we will prove (Theorem 2.29) that any order has at least one
linear extension (using Exercise 1.7 the reader can make sure that this is the case). The
search for arbitrary or for particular linear extensions occurs in multiple situations and
especially in scheduling problems (see Section 7.5 of Chapter 7). We denote L(O)

(respectively, L(P)) the set of all linear extensions of the order O (respectively, of
the ordered set P = (X ,O)). The determination of this set is generally not easy (see
Appendix A).

A linear extension of the ordered set in Figure 1.4 (Example 1.2) is acbde (that is,
a < c < b < d < e). The reader can check that there are seven others.

Definition 1.32 Let L = x1x2...xn be a linear extension of an ordered set P of size n.
The ordered pair (xi,xi+1) is called a jump of L if xi and xi+1 are incomparable in P.
We denote s(P,L) the number of jumps of L and we call the jump number of P the
integer s(P)= min{s(P,L),L a linear extension of P}.

We can also consider the number o(P,L) of covers of L, that is, the number of
ordered pairs (xi,xi+1) of L such that xiPxi+1, and call the number of covers of P
the integer o(P) = max{o(P,L),L a linear extension of P}. It is clear that s(P,L)+
o(P,L) = n − 1 and so s(P)+ o(P) = n − 1. Using the equality α(P) = θ(P) (see
Section 1.3.2), the reader can prove that s(P) ≥ α(P) − 1 always holds (and can
check that this inequality is true for the ordered set in Figure 1.4).

In a problem of scheduling defined on a set of jobs provided with a (partial) anterior-
ity order, it may be interesting to find a linear extension of this order which minimizes
the jump number, when these jumps have a cost. We will go back to these scheduling
problems in Section 7.5 of Chapter 7.

In the next chapter we will prove (Theorem 2.29) that an order O is equal to the
intersection of all its linear extensions. In other terms, for all x,y ∈ X ,xOy if and only
if xLy for any L ∈L(O). This is written:

O =
⋂

{L : L ∈L(O)}

and also induces the following definitions.
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Definition 1.33 Let P = (X ,O) be an ordered set. Any set of linear orders on X the
intersection of which is O is called a realization of O (or of P). We call the dimension
of O (or of P) the minimum number of linear orders the intersection of which is O
(or P). This number is denoted by dimO (or dimP). A realization of P formed with
dimP linear orders is called a basis of P.

The dimension of an ordered set is a parameter that has been widely studied and
Chapter 6 is mainly devoted to its study.

The reader can show that, in Figure 1.4 (Example 1.2), the two linear extensions
acbde and cdaeb form the unique basis of P and so dimP = 2. He can also prove
that the dimension of the ordered set B3 given in Figure 1.5 is 3 (more generally
dimBn = n holds, see Chapter 6).

Any linear extension of an order O is a maximal extension (with respect to the
number of added ordered pairs). In order to present the symmetric notion of a minimal
extension of an order (into an order), we define the notion of a critical ordered pair.

Definition 1.34 Let P = (X ,O) be an ordered set and x,y ∈X . The ordered pair (x,y)
is said to be P-critical (or O-critical or simply critical) if (x,y) �∈ P and P + (x,y) is
still an ordered set.

In other words, an ordered pair (x,y) is P-critical if P+(x,y) is a minimal extension
of P (since we add a unique ordered pair to P). Simple results prove that any ordered
set different from a chain has at least one critical ordered pair; these results use the
additional notions of a forcing relation and of the arrow relations.

Definition 1.35 Let P = (X ,O) be an ordered set. The forcing relation associated
with P is the binary relation FP defined on the ordered pairs of incomparable elements
of P by (x,y)FP(z, t) if zOx and yOt.

In other words, (x,y)FP(z, t) holds if (z, t) belongs to the transitive closure of
P + (x,y).

We immediately observe that the forcing relation associated with an ordered set is
still an order, which implies in particular that it always has maximal elements (see
Definition 1.38 for the notions of maximal and of minimal elements).

Let us recall that P−x (respectively, yP+) denotes the set of elements covered by
x (respectively, covering y) in P, and Px (respectively, xP) that of lower bounds
(respectively, upper bounds) of x.

Definition 1.36 Let x,y be two elements of an ordered set P = (X ,≤). We say that:

• x and y are in the downarrow relation, which is written x ↓ y, if x is minimal among
all elements z of P such that z �≤ y. Equivalently, x ↓ y holds if and only if (x �≤ y
and P−x ⊆ Py).
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Figure 1.9 Example 1.37.

• x and y are in the uparrow relation, which is written x ↑ y, if y is maximal among
all elements z of P such that x �≤ z. Equivalently, x ↑ y holds if and only if (x �≤ y
and xP ⊇ yP+).

• x and y are in the double-arrow relation, which is written x � y, if x ↓ y and x ↑ y.

Example 1.37 In the ordered set given in Figure 1.9, {a,d,e,g,h, i,k} is the set of the
elements which are not lower bounds of f . Since a and g are the minimal elements
of this set, we find a ↓ f and g ↓ f . The set of elements that are not upper bounds a is
{b,c, f ,g} and f and g are maximal in this set, hence a ↑ f and a ↑ g. As a result we
obtain a � f . The arrow relations of this ordered set are given in Table 3.3 presented
in Chapter 3 (page 96).

The above-mentioned fact that there always exists a P-critical ordered pair for P
different from a chain results from the following fact, that the reader will verify: an
ordered pair (x,y) is P-critical if and only if (x,y) ∈ MaxFP, and if and only if x � y.
These two equivalences belong to a larger set of equivalent conditions, that are the
subject of Exercise 1.2. As for the arrow relations, they prove to be a particularly
useful tool that we will meet very often throughout Chapter 3.

1.4 Particular elements and subsets

Let P be an ordered set that modelizes, for instance, the hierarchical structure observed
in a given animal society, a tribe, a company... Does there exist one or several leaders?
More generally, if two individuals are at the same hierarchical level, does there exist
some common superiors and, if so, is there one unique superior “closest” to them, that
can settle their possible disagreements. The answer to these questions involves the
consideration of some particular elements of the ordered set P. This section defines
a number of such elements, as well as some subsets of an ordered set, such as its
downsets and its upsets, that will be constantly encountered subsequently.
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1.4.1 Meets, joins, and irreducible elements

Definition 1.38 Let P = (X ,≤) be an ordered set.

• The minimum of P if x ≤ y for any y ∈ P.
• The maximum of P if y ≤ x for any y ∈ P.
• A minimal element of P if there does not exist y ∈ P such that y < x.
• A maximal element of P if there does not exist y ∈ P such that x < y.

Rather than “minimum” (respectively, “maximum”), we also say the smallest –
or the least – element (respectively, the greatest element) of P. These elements are
necessarily unique when they exist and are often respectively denoted by 0P and 1P

(or, simply, 0 and 1) and we then say that P is bounded.
The set of minimal (respectively, maximal) elements of P is denoted by MinP

(respectively, MaxP).
These definitions extend to any ordered subset Q of P. For instance, x ∈ Q is a

minimal element of Q if there does not exist y ∈ Q with y < x. If Q has a minimum
(respectively, a maximum), it can be denoted by 0Q (respectively, 1Q).

The ordered set in Figure 1.4 (Example 1.2) has two minimal elements, a and c, and
two maximal elements, b and e. The ordered subset defined by {a,c,e} has a greatest
element, e, but has no minimum. The ordered set B3 in Figure 1.5 has a minimum
and a maximum.

If Y is a subset of P = (X ,≤), a lower bound (respectively, an upper bound) of Y is
an element m of P satisfying m ≤ x (respectively, m ≥ x) for any x ∈ Y . The subset Y
is said to be lower bounded (respectively, upper bounded) if it has at least one lower
bound (respectively, one upper bound).

Given a subset Y of P, we denote LowerY the set of lower bounds of Y and UpperY
that of its upper bounds.

The following notions allow us to define important classes of ordered sets.

Definition 1.39 Let Y be a subset of an ordered set P. We say that r ∈ P is the meet –
or the greatest lower bound – of Y if Y is lower bounded and if the set of its lower
bounds has r as its maximum. We denote it by

∧
Y . Similarly, Y has a join – or a

least upper bound – t if Y is upper bounded and if the set of its upper bounds has t as
its minimum. We denote it by

∨
Y .

Thus, for instance, r =∧
Y if the following two conditions hold:

• r ≤ z for any z ∈ Y ,
• if x satisfies x ≤ z for any z ∈ Y , then x ≤ r.

If Y ={x,y}, its meet (respectively, its join) is denoted by x∧y (respectively, x∨y).
The meet and the join of an arbitrary subset Y of an ordered set P do not necessarily

exist (for instance, when the set of lower bounds of Y has several maximal elements,
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Y has no meet). When any subset Y of P has a meet (respectively, a join), P is called
a meet-semilattice (respectively, a join-semilattice). A lattice is an ordered set that is
a meet- and a join-semilattice.

We can prove that
∨∅ exists in an ordered set P if and only if P has a minimum 0.

Then we have
∨∅ = 0. Similarly,

∧∅ exists in P if and only if P has a maximum 1
and then we have

∧∅= 1 (see the proof of these results in Example 3.2 in Chapter 3).

Example 1.40 Any linearly ordered set is a lattice. Moreover, for any set E, the
ordered set 2E of the subsets of E is a lattice the meet of which is equal to the set
intersection and the join of which is equal to the set union. Such a lattice belongs to
the class of Boolean lattices (see Chapter 2, Definition 2.19).

The class of (semi)lattices is presented in Section 2.3 of Chapter 2. The very
important particular case of distributive lattices is presented in the same section and
is then developed in Chapter 5 in the context of Birkhoff’s fundamental theorem
that establishes a one-to-one correspondence between ordered sets and distributive
lattices.

All previous definitions obviously extend to the case where Y is a multiset, i.e.,
when an element may have several occurences in Y .

From these definitions it follows that, if Y has a minimum 0Y (respectively, a
maximum 1Y ), one has

∧
Y = 0Y (respectively,

∨
Y = 1Y ). In particular, for Y =

{x,y}:
x ≤ y ⇐⇒ x∧ y = x ⇐⇒ x∨ y = y

and so

x = y ⇐⇒ x∧ y = x∨ y = x

A subset Y of P is said to be meet-closed – or meet-stable – (respectively, join-
closed – or join-stable) – if, for any subset B of Y with a meet (respectively, a join),
the latter belongs to Y .

In the ordered set P in Figure 1.10, e∧ f = c and d ∧ f = 0 =∧{d,c, f } hold. Yet
e∧ d does not exist (why?), neither d ∨ e nor a∨ b. Besides, b∨ c = e = ∨{a,b,c}.
The subsets {d,e} and {0,c,d,e, f } are meet-closed but the subset {d, f } is not.

Definition 1.41 Let P = (X ,≤) be an ordered set.

1. An element x ∈P is join-irreducible if it is not the join of any subset not containing
it. Equivalently, x is join-irreducible if the subset (x[ has at least two minimal upper
bounds.

2. An element x∈P is meet-irreducible if it is not the meet of any subset not containing
it. Equivalently, x is meet-irreducible if the subset ]x) has at least two maximal
lower bounds.

3. An element x ∈ P is said to be irreducible if it is join- or meet-irreducible; it is
called doubly irreducible if it is join- and meet-irreducible.
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Figure 1.10 P is not lattice ordered; L is a lattice.

Any non-join-irreducible element of P is then the join of a subset of P not containing
it. Let us remark that if P has a minimum, the latter is not join-irreducible since we
can prove that it is the join of the empty set (see the proof given in Example 3.2, on
page 69). Similarly, if P has a maximum, the latter is not meet-irreducible as the meet
of the empty set ∅.

For the ordered set P in Figure 1.10, all elements – except for 0 and e – are
join-irreducible, whereas 0 and c are the only non-meet-irreducible elements. For
the lattice L in the same figure, the join-irreducible elements are a,b,c,e; the meet-
irreducibles are c,e, f ,g; and the doubly irreducibles are c and e. The example of the
element d of P (still in Figure 1.10) shows that a join-irreducible may cover several
elements. Yet, an element x which covers a unique element – then denoted by x− – is
necessarily join-irreducible (why?). Similarly, if x is covered by a unique element –
then denoted by x+ – it is necessarily meet-irreducible.

Irreducible elements may also be characterized by the arrow relations (see
Definition 1.36 and Propositions 3.8 and 3.17 in Chapter 3).

We will respectively denote JP or J (P), MP or M (P), IRP or IR(P), and DIRP

or DIR(P) the set of join-irreducible, meet-irreducible, irreducible, and doubly
irreducible elements of an ordered set P.

Writing Jx for the set of join-irreducibles less than or equal to x and Mx for the set
of meet-irreducibles greater than or equal to x, we will show that any element x of P
satisfies x =∨

Jx =∧
Mx (see Proposition 3.11 in Chapter 3).

We say that a subset Y of P is a join-generating set (of P) if any element of P
is the join of a subset of Y . Since it is clear that such a subset must contain all the
join-irreducibles of P, we find that a subset of P is join-generating if and only if it
contains all the join-irreducibles of P. Dually a subset Y of P is a meet-generating set
(of P) if any element of P is the meet of elements of Y or, equivalently, if it contains
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all the meet-irreducibles of P. These notions will be widely studied in Section 3.2,
Chapter 3.

1.4.2 Downsets and upsets (ideals and filters)

The subsets of an ordered set that we are now going to consider play a fundamental
role, especially specified in Chapter 5.

Definition 1.42 Let P = (X ,≤) be an ordered set. A subset D of P is a downset – or
an ideal – if, for all t ∈ P and y ∈D, t ≤ y implies t ∈D. A subset U of P is an upset –
or a filter – if, for all t ∈ P and y ∈ U , y ≤ t implies t ∈ U .

We write D(P) (respectively, U(P)) for the set of downsets (respectively, upsets)
of P (the reader can search for the subsets of an ordered set P which are downsets
as well as upsets). A downset (respectively, an upset) of P different from ∅ and P is
called a proper downset (respectively, upset).

The downset (x] formed from all the lower bounds of x will be called a principal
downset, or a principal ideal. Dually the upset [x) formed from all the upper bounds
of x will be called a principal upset, or a principal filter.

All downsets and upsets are obviously convex. On the other hand, the convex
subsets of an ordered set P are the intersections of a downset and of an upset of P
(why?).

The following properties are easy to prove (the reader can check them), but
nevertheless particularly important:

• the union and the intersection of downsets (respectively, upsets) are downsets
(respectively, upsets);

• any downset (respectively, upset) is the union of principal downsets (respectively,
principal upsets);

• the complementary subset of a downset (respectively, an upset) of an ordered set
P is an upset (respectively, a downset).

The reader may use these properties to show that the ordered set in Figure 1.4
(Example 1.2) has 10 downsets (for instance, {a,c,d} is such a subset) and as many
upsets (but he should not be tempted to believe that the determination of these subsets
will always be that easy for an arbitrary ordered set).

NoteAs already said, the terminology of the theory of ordered sets is far from fixed.
Thus, instead of downset or ideal (respectively, upset or filter), one also finds order
ideal, initial segment, hereditary subset (respectively, order filter, final segment,
cohereditary subset), etc.

In the case where the ordered set is (P(E),⊆), its downsets are also called hereditary
families, abstract simplicial complexes, or independence systems.



1.5 Constructing ordered sets from given ones 27

1.5 Constructing ordered sets from given ones

If P = (X ,O) and Q = (X ,O′) are two ordered sets on the same ground set X , we will
denote by P ∩Q the set X endowed with the relation O ∩O′. The reader can check
that O∩O′ is an order relation and so that P∩Q is an ordered set. It is generally not
the case for the union of P and Q as soon as |X | ≥ 2.

In this section, we are going to consider more general cases of ordered sets, con-
structed from some others that do not necessarily have the same ground set. These
operations may be used to solve the converse decomposition problem: how to bring
a complex ordered set back to a number of components, each of which is a simpler
ordered set (this allows us to solve some problems on the given ordered set, see
Section 1.6).

All operations defined below are illustrated in Figure 1.11 at the end of the section.

1.5.1 Substitution, disjoint union, linear sum, lexicographic product

We first consider the fundamental operation called the substitution, which has the
lexicographic sum, the disjoint union, the linear sum, and the lexicographic product
as particular cases. Let Q = (Y ,≤Q) be an ordered set and let us consider h ≥ 1
ordered sets Pi = (Xi,≤i) (with i = 1, ...,h ≤ |Y |) such that the sets Y , X1, ...,Xh are
pairwise disjoint (and non-empty). Given h distinct elements y1, ...,yh of Y , we write:

P = QP1...Ph
y1...yh

to denote the ordered set obtained by “substituting” the ordered set Pi for each
element yi of Y . More precisely, if P = (X ,≤P) then:

X = (Y \ {y1, ...,yh})∪ (
⋃

1≤i≤h

Xi)

and

a ≤P b ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a,b ∈ Y \ {y1, ...,yh} and a ≤Q b, or

∃i : a ∈ Xi, b ∈ Y \ {y1, ...,yh} and yi <Q b, or

∃ i : a ∈ Y \ {y1, ...,yh}, b ∈ Xi and a <Q yi, or

∃ i : a,b ∈ Xi and a ≤i b, or

∃ i �= j : a ∈ Xi, b ∈ Xj and yi <Q yj

We let the reader make sure that ≤P is actually an order on X .
This substitution operation is also sometimes called X -join, series–parallel com-

position, etc. The diagram of P is obtained as follows: for i = 1, ...,h, we substitute
the diagram of Pi for the point that represents yi. If yj is covered by yi in Q, the (points
representing the) maximal elements of Xj are linked to the (points representing the)
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minimal elements of Xi in P. Likewise, if y ∈ Y \ {y1, ...,yh} is covered by yi in Q, y
is linked to the minimal elements of Xi in P. We proceed dually if yi is covered by y.

When h= |Y |, this operation is often called lexicographic sum and P = (X ,≤P) is
then defined by:

X =
⋃

1≤i≤h

Xi

and

a ≤P b ⇐⇒
{
∃ i : a,b ∈ Xi and a ≤i b, or

∃ i �= j : a ∈ Xi, b ∈ Xj and yi <Q yj

A first particular case of the lexicographic sum is obtained by assuming that Q is
the antichain Ah of size h. We then say that the ordered set P is the disjoint union (or
the parallel sum, or the parallel composition, or the horizontal sum) of the h ordered
sets Pi, which we denote:

P =
∑

1≤i≤h

Pi

(or simply P =∑
h Pi).

If we set P = (X ,≤P), we have:

X =
⋃

1≤i≤h

Xi

and

a ≤P b ⇐⇒ ∃i such that a,b ∈ Xi and a ≤i b

The diagram of P is simply obtained by “juxtaposing” those of the Pi’s.
We notice that, if the Pi’s are connected, they form the connected components of P

and that, conversely, any ordered set is the disjoint union of its connected components.
The disjoint union of two ordered sets P1 and P2 is denoted by P1 +P2. The notation∑

h R stands for the disjoint union of h ordered sets all isomorphic to the ordered
set R.

Now, assume that Q is equal to the chain Ch = y1 < ... < yh of size h. We then say
that P is the linear sum (or the ordinal sum, or the series composition, or the vertical
sum) of the Pi’s, which we write:

P =
⊕

1≤i≤h

Pi

That is, with P = (X ,≤P):

X =
⋃

1≤i≤h

Xi
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and

a ≤P b ⇐⇒
{

a ∈ Xi,b ∈ Xj and a ≤i b if i = j

a ∈ Xi,b ∈ Xj and yi <Q yj otherwise

As for the diagram of P, the linear sum comes back to drawing the diagrams of the
Pi’s above one another in the order of Q, and linking, for any i < h, each maximal
element of Pi to each minimal element of Pi+1.

The linear sum of P1 and P2 is denoted by P1 ⊕ P2, whereas the notation ⊕hR
stands for the linear sum of h ordered sets all isomorphic to the ordered set R.

Remark 1.43 When P1 has a maximum u1 and P2 has a minimum 02, we also use a
variant of the linear sum, obtained from P1 ⊕P2 by identifying the elements u1 and
02. It is called the glued linear sum – or sometimes the vertical sum – and is denoted
by P1 ⊕′ P2.

We now define the particular substitution operation that constructs the lexico-
graphic product of several ordered sets. We start with the case of two ordered sets
Q = (Y ,≤Q) and R= (Z ,≤R). The lexicographic product of Q by R is the ordered set
P = (X ,≤P), which we denote:

P = Q⊗R

and that we define by:
X = Y ×Z

and
(y,z)≤P (y′,z′) ⇐⇒ [y <Q y′ or (y = y′ and z ≤R z′)]

This is actually a substitution operation: indeed, if Y = {y1, ...,yn}, to construct Q⊗
R comes back, up to isomorphism, to making the substitution QR,...,R

y1,...,yn where we
substitute a copy of R for each element yi of Y .

Let us now define this product in the more general case of an arbitrary number of
ordered sets. The lexicographic product of h ≥ 1 ordered sets P1 = (X1,≤1), ...,Ph =
(Xh,≤h) is the ordered set P = (X ,≤P), which we denote:

P =⊗1≤i≤hPi

and that we define by:
X =�1≤i≤hXi

and

(x1, ...,xi, ...,xh)≤P (x′1, ...,x′i, ...,x′h)
if and only if

(x1, ...,xi, ...,xh)= (x′1, ...,x′i, ...,x′h) or there exists k ∈ {1, ...,h} such that, for any
i < k , (xi = x′i and xk < x′k )
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Obviously, since P = (⊗1≤i≤h−1Pi)⊗ Ph, this product may be recursively defined
from the substitution operation.

1.5.2 Direct product

We now define another product which, contrary to the previous one, is not derived
from the substitution operation. For h ≥ 1 ordered sets P1 = (X1,≤P1), ...,Ph =
(Xh,≤Ph), we call the direct product of the Pi’s – and we write

P =�1≤i≤hPi

the ordered set P = (X ,≤P) defined by:

X =�1≤i≤hXi

and

(x1, ...,xi, ...,xh)≤P (x′1, ...,x′i, ...,x′h) ⇐⇒ ∀i = 1, ...,h, xi ≤Pi x′i.

Here again, the reader can make sure that ≤P is actually an order on X . The direct
product of P1 and P2 is denoted P1 ×P2. One has (x1,x2) ≺P (x′1,x′2) if and only if
x1 = x′1 and x2 ≺ x′2 or x1 ≺ x′1 and x2 = x′2. The diagram of P1×P2 is then obtained by
replacing each element x1 of P1 with {x1}×P2 and linking the ordered pairs (x1,x2)

to the ordered pairs (x′1,x2) with x1 ≺ x′1. The reader can generalize this construction
to the case of an arbitrary number of ordered sets. The direct product of n times the
ordered set P is denoted by Pn.

The notion of a direct product order is useful in multiple situations. Let us consider,
for instance, the case of some “objects” of arbitrary nature described by a set of
descriptors. As soon as each of these descriptors induces an order on the objects, for
instance, as soon as it attributes them some numerical values (for example, the marks
obtained by some students at several examinations), the latter are naturally ordered
by the direct product of these different orders. Thus, in a study for classifying 65
insecticides according to their degree of dangerousness for the human race or nature
(Carlsen, 1984), the latter have first been partially ordered by the direct product order
of several descriptors (such as their lifetime or their toxicity). In order to obtain a
ranking (i.e., a total preorder) of the insecticides, the author has then considered
the linear extensions of this direct product order and used an (approximate) formula
giving the mean of the ranks (Definition 2.1) obtained in these linear extensions for
each insecticide.

Remark 1.44 1. Another important operation, called “exponentiation,” associates
with two ordered sets P and Q the ordered set QP and will be considered in Section
3.1 of Chapter 3 (Definition 3.4).
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2. The operations dealt with in this section have been defined as operations on
ordered sets endowed with a reflexive order. It is clear that one could also define
them in terms of ordered sets endowed with a strict order, and we will sometimes use
them in this case. On the other hand, if no ambiguity is possible, we will sometimes
talk about the direct product of two orders instead of the direct product of two ordered
sets (for instance).
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Figure 1.11 Examples of operations on four ordered sets Q, P, P′, and P′′.
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1.6 Further topics and references

To the question “what is an order?” raised by Russell in 1903, we have given two
answers. The first one is that of the Bourbakist vulgate (anticipated by Peirce in
1880) and says that an order is a transitive, antisymmetric, and reflexive relation.
The second one says that an order is a transitive and irreflexive relation (and hence
asymmetric) then generally called a strict order. The latter conception first appeared
in the form of a strictly linear order with Russell and Huntington, who introduced
it, as early as the beginning of the twentieth century and with the name of “series”
or “simple order,” from the works of several authors (such as Cantor, de Morgan,
Peano, etc.). It was then extended to the general case by Hausdorff (1914), often
considered as the first author to define an abstract notion of an ordered set, that he
called “teilweise geordnete Menge.”7 In fact, although the reflexivity property of an
order may be convenient (for instance, to consider orders and equivalences as two
particular cases of preorders), it is often useless. On the other hand, and contrary to
what one may think, the two notions of an order and of a strict order are not quite
equivalent. Certainly, it is sufficient to add (respectively, to remove) reflexivity to
a strict order (respectively, from an order) so as to make it an order (respectively, a
strict order). Yet, the case of strict interval orders, studied in Section 7.1 of Chapter 7,
shows that some simple characterizations of these orders are no longer valid in the
case of (non-strict) interval orders.

Historically, the study of ordered sets began with that of lattices, first in the late
nineteenth century then from the 1930s (see Section 2.5 of Chapter 2). It was only
at the beginning of the 1960s that the theory of – especially finite – ordered sets
began to develop significantly, under various impulses: links with combinatorics and
discrete mathematics, relations with algorithmics and theoretical computer science,
various applications for example in operations research and in social sciences (see for
instance Barbut and Monjardet, 1970). One may find evidence of this developement
in the reports of the numerous conferences that have been devoted to ordered sets
since the 1980s: Ordered Sets (Rival, 1982), Orders: Descriptions and Roles (Pouzet
and Richard, 1984), Graphs and Orders (Rival, 1985a), Combinatorics and Ordered
Sets (Rival, 1986), Algorithms and Orders (Rival, 1989a), Combinatorics of Ordered
Sets (Aigner and Wille, 1991), as well as, since 1984, in the dedicated journal Order.

As for the links with discrete mathematics, we will first observe that some properties
or some tools of study of ordered sets may remain relevant on some more general
structures. Thus, some properties of comparability graphs result from the fact that
these graphs are “perfect” (see Section 4.5), and the substitution operation of Section
1.5 may be defined for many other discrete structures. We will also note that some
properties of ordered sets may facilitate the study of some graphs. This is, for instance,
the case for the “interval graphs,” which are the incomparability graphs of interval

7 A story of the origin of the notions of order and, more generally, of the notions of set theory, may be
found in a paper of Cegielski (1987).
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Figure 1.12 The smallest triangle-free graph which is not a neighborhood graph.

orders (see Chapter 7, Sections 7.1 and 7.6). Finally, we will remark that many sets
of combinatorial structures of a given type (for instance, the partitions of a set or of
a positive integer) are naturally provided with an order that may play an important
role in their study – this viewpoint is excellently presented in Aigner’s 1979 book
Combinatorial Theory.

In Sections 1.1.2 and 1.1.3 we have defined several graphs associated with an
ordered set. A natural question is to provide characterizations of such graphs.

Exercise 1.6 supplies one with a characterization of the covering directed graph
of an order. Yet there is no characterization of neighborhood graphs of ordered sets,
that is, of the undirected graphs which may be directed in order to become covering
graphs of some ordered set. The obvious necessary condition of being triangle-free
is far from enough, as testified by the example in Figure 1.12, which is the smallest
triangle-free graph that is not a neighborhood graph. This characterization problem
remains open (see Rival, 1985b).

This is not the case for the comparability graphs, that is, the (undirected and loop-
free) graphs G for which there exists an ordered set P with G = Comp(P). In other
words, the edges of a comparability graph may be directed so that the set of obtained
arcs is the set of ordered pairs of a (strict) order relation. Such an orientation of the
edges is called a transitive orientation of the graph. For instance, complete graphs and
bipartite graphs are comparability graphs (why?), as well as any graph with less than
5 vertices. Comparability graphs have been characterized by Ghouila-Houri (1962)
and Gilmore and Hoffman (1964); a sequence x0, ...,xi, ...,xp = x0 of vertices of an
undirected graph G, where any two consecutive vertices xi and xi+1 form an edge of
G, is a pseudo-cycle of length p of G, which is said to be odd if p is odd; a triangular
chord of this pseudo-cycle is an edge of the form xixi+2 (the addition of indices is
made modulo p). The previously mentioned authors have shown that an undirected
graph G is a comparability graph if and only if any odd pseudo-cycle of G has a
triangular chord. Figure 1.13 shows two examples of graphs that do not satisfy this
condition (in the second one, the triangular chord-free pseudo-cycle is abcdcefeba,
of length 9).

Another characterization of comparability graphs, by means of forbidden sub-
graphs, has been provided by Gallaï (1967). The links between these characterizations
or others, as well as the recognition problems on these graphs, are dealt with in
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Figure 1.13 Two graphs that are not comparability graphs.

Golumbic’s work (1980) – see also Golumbic et al., (1983) and the reports of Kelly
(1985) and of Möhring (1984).

Given a comparability graph, one may wonder how to characterize the ordered
sets corresponding to its transitive orientations. The answer is supplied by means of
the substitution operation defined in Section 1.5. Actually, the following result holds
(Dreesen et al., 1985; Kelly, 1986), as a consequence of Gallaï’s results (1967) on
the decomposition by substitution of comparability graphs: two ordered sets P and
Q have the same comparability graph if and only if Q may be obtained by a finite
sequence of transformations of P, each of which consists in replacing a homogeneous
ordered subset H of P with its dual Hd . Such an ordered subset is that defined by a
P-homogeneous subset, that is, by a subset H of elements of P that have the same
“behavior” relative to any exterior element [formally, for all x,y ∈ H and any z �∈ H ,
z is less than (respectively, greater than, incomparable to) x if and only if z is less than
(respectively, greater than, incomparable to) y]. Substituting Hd for H consists in
reversing in P all the order relations between the elements of H and preserving all the
other order relations of P. A consequence of this result is that the comparability graph
of P has only two transitive orientations (that correspond with P and with its dual Pd )
if and only if P has only itself and some antichains as homogeneous ordered subsets.

The previous result of characterization of the ordered sets that have the same
comparability graph could be stated differently. Let us call ordered set parameter any
map π defined on the class of all types of ordered sets, and property any parameter the
values of which belong to the set {true, false}. Generalizing a little bit the definition
given on page 19, we say that such a parameter is a comparability invariant if its
value depends only on the (type of) comparability graph Comp(P) of the ordered
set P. In other words, if Comp(P) is isomorphic to Comp(Q), π(P) = π(Q) holds.
The previous result then becomes: an ordered set parameter π is a comparability
invariant if and only if, for any ordered pair (P,R) of ordered sets and any element
x of P, π(PR

x ) = π(PRd

x ) holds (where PR
x is the ordered set obtained by substituting

the ordered set R for the element x of P).
Using this result, one easily proves that the dimension and the number of linear

extensions of an ordered set are comparability invariants (these results are respectively
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due to Arditti (1978) and Trotter et al. (1976), Golumbic (1980), Habib (1984) and
Stanley (1986b)), just as the properties of being a series–parallel, a covering N -free
or an interval ordered set (see Definition 2.12, Chapter 2), as well as the fixed point
property defined in Exercise 3.3 (Dreesen et al., 1985; Kelly, 1986).

In Sections 1.3.2 and 1.3.3 we have defined the fundamental parameters associated
with an ordered set. Of course many other parameters have been considered. We
mention one of them, which is widely studied (see, for instance, Tanenbaum et al.
(2001), or Keller et al. (2010)), namely the linear discrepancy. It expresses how
far an ordered set P is from being a linear order: P has linear discrepancy k if
k =min{dL(P),L∈L(P)}with, for a linear extension L∈L(P), dL(P)=max|rL(a)−
rL(b)|, for all incomparable elements a,b of P.

To each of the operations on ordered sets defined in Section 1.5 corresponds a notion
of decomposability. We describe the most important one, related to the substitution and
often called modular decomposition.An ordered set P is said to be decomposable (with
respect to the substitution, or modularly) if there are h+ 1 ordered sets Q,P1, ...,Ph,
with |Q| > 1 and |Pi| > 1 for at least one i, and some elements y1, ...,yh of Q, such
that: P =QP1...Ph

y1...yh (in that case, Q is called a quotient of P). Otherwise, P is said to be
indecomposable or prime (for instance, A2 is prime but C2 is not).

One proves that, if P is decomposable, one (and only one) of the following cases
holds:

• Q is an antichain, that is, P is the disjoint union of the Pi’s;
• Q is a chain, which amounts to saying that P is the linear sum of the Pi’s;
• Q is a prime ordered set (uniquely determined): P is said to be of prime type and

Q is called the prime ordered set associated with P.

Repeating the decomposition operation on all the obtained Pi’s that are decompos-
able, while taking the quotients Q of maximum size if they are chains or antichains,
one finally obtains a canonical decomposition tree. The root of this tree corresponds
to P and its leaves correspond to the elements of P. The maximum number of vertices
covered by a vertex of this tree is called the decomposition diameter of P. For some
classes of ordered sets, namely that of the ordered sets the decomposition diame-
ter of which is bounded, the use of this canonical decomposition tree allows us to
efficiently solve many algorithmic problems (see on these points Möhring’s brilliant
surveys (1984, 1989), as well as Appendix A, Section A.2.3).

The substitution operation, defined here for ordered sets, may be defined for many
discrete structures and then leads to a decomposition theory of these structures, that
has in particular important algorithmic applications. A more general decomposition
theory of discrete structures was introduced by Cunningham and Edmonds (the “split
decomposition”) in 1980 and applied to ordered sets by Wagner (1990).

The possibilities of simplification for the operations on ordered sets have been the
purpose of many works. Thus, the following results have been proved:
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• P ×Q ≡ P ×R implies Q ≡ R;
• P is not an antichain and PQ ≡ PR imply Q ≡ R;
• P and Q are connected such that PP ≡ QQ or PQ ≡ QP imply P ≡ Q;
• PR ≡ QR implies P ≡ Q.

(See the survey papers of Jónsson (1982), Jónsson and McKenzie (1982), Davey and
Duffus (1982), Duffus (1984), as well as McKenzie’s 2000 paper).

Let us notice that, if the operations studied in Section 1.5 always lead to an order, the
set union of orders may lead to an arbitrary relation. Fishburn and Spencer (1971) have
studied the minimum number of (strict) orders whose union is a given (irreflexive)
relation, as well as the maximum value of this number for the relations defined on a
set of size n.

As already said in the Preface, this book concentrates on the fundamental concepts
and results on finite ordered sets and on some important uses. So, unfortunately, we
have been obliged to leave out significant topics. To end this section, we give some
information on three of them: sorting, random orders, and enumeration problems.

(1) Sorting: a classic sorting problem consists of determining an unknown linear
order L over a set X of n elements by asking a series of questions of the form “is the
element x less than the element y in the order L?” This problem has generated a great
deal of research and many sorting algorithms have been provided, the typically best
ones allowing us to determine L in O(nlogn) time complexity (see Appendix A and,
for instance, Volume 3: Sorting and Searching in Knuth (1973)).

Sometimes, some information about L is already known in the form of an ordered set
P on X . Then, the set of possible linear orders is the set L(P) of the linear extensions
of P and – without any other information – it is reasonable to consider that they are
all equally likely. Therefore, L(P) becomes a (finite) probability space endowed with
the uniform probability pr(L)= 1/|L(P)|. In such a space, an event is a set of linear
extensions of P and we can consider the event {L∈L(P) : (x,y)∈L}denoted by [x < y]
and whose probability is pr [x < y] = |{L∈L(P) : (x,y)∈ L}|/|L(P)|. This quantity is
fundamental in deciding the expected complexity of sorting algorithms. Assume now
that x,y,z are three incomparable elements in P. Are the two events [x < y] and [x < z]
independent or correlated?8 The answer is given by the Fishburn–Shepp inequality
(Shepp,1982; Fishburn, 1984), also known as the XYZ inequality:

pr([x < y].pr([x < z]) < pr([x < y] and [x < z])
So these two events are positively correlated, which can also be written, for instance,
as pr([x < y]|[x < z]) > pr([x < y] and [x < z]) and means that, if [x < z] occurs then

8 In a probability space, two (non-empty) events A and B are independent if pr(A).pr(B) = pr(A and
B) or, equivalently, if the conditional probabilities pr(A|B)(= pr(A and B)/pr(B)) and pr(B|A) = pr(A
and B)/pr(A)) are (respectively) equal to pr(A) and pr(B). The two events are positively correlated if
pr(A).pr(B) < pr(A and B) or, equivalently, if pr(A|B) and pr(B|A) are (respectively) strictly greater
than pr(A) and pr(B).
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[x < y]) is more likely to occur. Shepp and Fishburn’s proofs used a result known as the
Ahlswede–Daykin four functions inequality about functions defined on a distributive
lattice. Later, Brightwell and Trotter (2002) provided a combinatorial proof.

Always in connection with this problem of sorting in the presence of partial infor-
mation and with the same uniform probability space on L(P), there is a long-standing
Kislitsyn’s 1/3–2/3 conjecture (1968): if P is a non-linearly ordered set then P has
two incomparable elements x and y (forming a so-called balancing pair) such that
1/3 ≤ pr([x < y])≤ 2/3.

Equivalently, if this conjecture is true, it means that at each step of a sorting
algorithm, it is possible to add an ordered pair that reduces the number of possible
linear extensions by a factor of at worst 2/3. This has been proved true only for some
classes of ordered sets (for instance semiorders). For arbitrary ordered sets, Kahn and
Saks (1984) have proved the existence of two incomparable elements x and y such
that 3/11 ≤ pr([x < y]) ≤ 8/11, and then one had to wait more than 10 years before
Brightwell et al. (1996) (slightly) improved this result by proving the existence of two
incomparable elements x and y such that 1/2−√

5/10≤ pr([x < y])≤ 1/2+√
5/10.

On these topics of the correlation inequalities and the 1/3–2/3 conjecture, one will
find some general reports in Graham (1982), Rival (1984), Saks (1985), Winkler
(1986), Brightwell and Graham (1999), and Fishburn and Shepp (2001).

Notice finally that the sorting problem has been generalized to the case where one
must discover an unknown partial order (see, for instance, Daskalakis et al., 2009).

(2) Random Orders: there are several ways to define such orders on a set X of size
n and, following the terminology in Brightwell’s survey (1993a), we consider three
of them.

• Model 1: random partial orders. The probability space is the set of all n-element
orders endowed with the uniform probability distribution.

• Model 2: random k-dimensional orders. Introduced by Winkler (1985), they are
obtained by taking the intersection of k linear orders chosen independently and
uniformly at random.

• Model 3: random graph orders (also known as transitive percolation processes)
and introduced by Albert and Frieze (1989). Here one takes a random graph on
({1,2, ...,n},<) and one puts i below j if there is a path i = i1...ik = j in the graph
with i1 < ... < ik .

According to the considered model, one studies the structure or relevant parameters
of these random orders (connectedness, height, width, dimension, number of extremal
elements, number of incomparable pairs, number of linear extensions, etc.). For
instance, in the case of Model 1, Kleitman and Rothschild (1975) proved that almost
every n-element order has height 3.9 Also, in the case of Model 2, Winkler (1985)

9 This means that the probability that an n-element order has height 3 tends to 1 when n →∞.
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proved that the width of almost every random k-dimensional order lies between
e−1n(k−1)/k and n(k−1)/k log(n). And, in the case of Model 3, Bollobás and Brightwell
(1997) showed that, if the random order has many elements comparable with all others,
it decomposes as a linear sum of smaller orders.

Since we do not know any report more recent than Brightwell’s 1993 survey quoted
above, we mention some more recent papers. On Model 1, Brightwell et al. (1996);
on Model 2, Bollobás and Brightwell (1995); on Model 3, Bollobás and Brightwell
(1997) and Brightwell and Georgiou (2010).

(3) Enumeration: an important branch of combinatorial theory – now called enu-
merative combinatorics – is devoted to counting the number of finite structures of a
given type. Exercise 1.1 proposes counting the order types defined on a set of size n
at most equal to 4. Yet, for an increasing value of n, these numberings become harder
and harder. One will find in Appendix C some tables giving the numbers of orders
and order types that have been known so far, as well as asymptotic bounds for the
number of orders of size n given by the Kleitman–Rothschild Theorem. The latter
problem is a particular case of the problem of computing the number |L(P)| of linear
extensions of an ordered set P (here the antichain An), which is in general difficult
(see Rival (1984) and Brightwell and Winkler (1991)). It may however be solved
for some particular ordered sets (see Atkinson, 1989). In some cases the problem is
equivalent to other classic problems of combinatorial counting. Thus, when P is a
downset of (N2,≤), the number of its linear extensions is the number of associated
standard Young tableaux; on this subject one may consult Chapter 3 in Aigner’s book
(1979) or Stanley’s book (1986a), two basic references for anything that concerns the
use of ordered sets (particularly, the theory of Möbius functions) in counting prob-
lems. Problems and results about the enumeration of particular classes of orders are
presented in Quackenbush (1982) and El Zahar (1989).

1.7 Exercises

Exercise 1.1 [Counting small orders] Count and represent by diagrams all order types
of size 1, 2, 3, and 4. Hint: see Appendix B.

Prove that any two linearly ordered sets of size n are isomorphic.
Show that there exist 5 (respectively, 16) non-isomorphic types of ordered sets of

size 3 (respectively, 4).

Exercise 1.2 [P-critical ordered pairs] Let x,y be two incomparable elements of an
ordered set P and F the forcing order associated with P (see Definition 1.35). Prove
that the following conditions are equivalent:

• (x,y) is P-critical;
• (x,y) ∈ MaxF ;
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• (y,x) ∈ MinF ;
• (x[ ⊂ (y[ and ]y)⊂ ]x) (that is, x � y);
• P−x ⊂ (y[ and yP+ ⊂ ]x).

Denoting by Crit(P) the set of all P-critical ordered pairs of P, deduce the following
inclusions: (MaxP ×MinP)∩ IncP ⊆ Crit(P)⊆ (M (P)× J (P))∩ IncP .

Show that, in the set On of all orders on n elements, ordered by set inclusion (see
Example 1.13), P is covered by Q if and only if |Q| = |P|+ 1.

Finally, show that, unless P is linearly ordered, there exist at least two ordered sets
covering it.

Note The latter point amounts to showing that, in that case, P has at least two
P-critical ordered pairs.

Exercise 1.3 [Orders on words] Let (V ,≤) be a linearly ordered set.Aword (of length
p ≥ 1) on V is a sequence a1a2...ap of p elements of V . We denote V ∗ the set of all
words on V and we define a relation ≤1 on V ∗ by writing a1a2...ap ≤1 b1b2...bq if
there exists i with 0 ≤ i ≤ p such that a1 = b1, ...,ai = bi and such that (i = p ≤ q or
(i < p and ai+1 < bi+1)). Prove that ≤1 is a linear order – called lexicographic order
– on the set of words (this is the usual order of dictionaries).

We define a second relation ≤2 on words by writing a1a2...ap ≤2 b1b2...bq if p < q
or if (p = q and a1a2...ap ≤1 b1b2...bq). Show that ≤2 is a linear order (this is the
order of crossword dictionaries). We define a third relation ≤3 on words by writing
a1a2...ap ≤3 b1b2...bq if p ≤ q and if, for j = q − p + 1, the equality a1a2...ap =
bjbj+1...bj+p−1 holds. Prove that ≤3 is an order, called right factor order on V ∗. How
would one define a left factor order on V ∗? Same question for a factor order.

We write V = {a < b} and V ∗
3 = {words of V ∗ of length at most 3}. Draw some

diagrams of V ∗
3 , provided with each of the previous orders.

Exercise 1.4 [Lectic order] Let S = {1, ..., i, ...,n}. For all A,B ⊆ S, we write A < B if
there exists i ∈ B \A such that A∩{1, ..., i− 1} = B∩{1, ..., i− 1}.

Prove that < is an order relation on 2S .
Prove that this order is linear.
Note This order is used for the enumeration of the closed sets of a Galois lattice in

Ganter’s algorithm (see Appendix A on page 270 and Ganter (1984)).

Exercise 1.5 [Orders on integer partitions, Aigner (1979)] An (integer) partition of
the positive integer n is a decreasing sequence of n positive integers n1 ≥ n2 ≥ ... ≥
nn ≥ 0, called the partition parts and the sum of which is equal to n. Show that
the following three relations define three orders on the set of partitions of n. Let
μ= (m1 ≥ m2 ≥ ... ≥ mn) and ν = (n1 ≥ n2 ≥ ... ≥ nn) be two partitions of n.

• μ is lexicographically less than or equal to ν if μ= ν or if, for i = 1,2, ...,k (k < n),
mi = ni, and mk+1 < nk+1.
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• μ is finer than ν if there exists a (set) partition on the partition parts of μ such that
the sums of the numbers in the classes of this partition are the partition parts of ν.

• μ is dominated by ν if, for i = 1,2, ...,n, m1 +m2 + ...mi ≤ n1 + n2 + ...+ ni holds
(this relation, called dominance order, is important in combinatorics and in many
other fields, such as inequalities theory).

Draw some diagrams of these orders for the set of partitions of the numbers 5, 6,
and 7.

Exercise 1.6 [Covering graph] In an irreflexive directed graph G, the path x0x1...xp

(with p ≥ 2) is a cycle if it satisfies x0 = xp; it is a quasi-cycle if it is a path such that
x0xp is an arc of G (so it is sufficient to reverse this arc to obtain a cycle). Show that
a directed graph G is the covering graph of an order if and only if G contains neither
a cycle nor a quasi-cycle.

Exercise 1.7 [Reflexo-transitive closure] Show that the reflexo-transitive closure of
a directed graph G = (X ,U ) (see the definition given in Example 1.20) is the smallest
preordered set (X ,R) “including” G (that is, such that xUy implies xRy).

Prove that, if G is cycle-free, its reflexo-transitive closure is an ordered set. Show
that the covering graph of an ordered set P is the smallest directed graph the reflexo-
transitive closure of which is equal to P.

Let x,y be two incomparable elements of an ordered set P. Prove that the reflexo-
transitive closure of the graph of P+ (x,y) is an ordered set that is an extension of P.
Then deduce that there exists a linear extension of P which contains the ordered pair
(x,y) and that the intersection of all linear extensions of P is P (see Theorem 2.29).

Exercise 1.8 [Downsets and upsets] Draw diagrams of the set, ordered by set inclu-
sion, of all downsets of the ordered set in Figure 1.4, of the three ordered sets in
Figure 1.5, and of P in Figure 1.7 (the numbers of these downsets are respectively
10, 5, 16, 20, and 15).

Same question replacing “downset” with “upset.” What do you notice?
Show that there exists a bijection between downsets and upsets of an ordered set.

Define a bijection between downsets and antichains of an ordered set. Deduce an
order relation between antichains of an ordered set.

Exercise 1.9 [Constructing a linear extension of an order] Show that any ordered set
has (at least) one minimal element. Define a linear order x1x2...xn on the ordered set
(X ,≤) of size n by taking as x1 a minimal element of X1 = X and, for any xi (with
1 < i ≤ n), one minimal element of Xi = Xi−1 \ {xi−1}. Show that this linear order
is a linear extension of the order ≤ and that any linear extension of (X ,≤) may be
obtained likewise.

Exercise 1.10 [Divisibility order on positive integers] Show that the divisibility
relation defined on the set of positive integers is an order relation.
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Draw some diagrams of the following sets of positive integers, ordered by the
divisibility order (i ≤ j if i divides j):

• {positive integers from 1 to 10},
• {positive integers dividing 16},
• {positive integers dividing 30},
• {positive integers dividing 36}.

Among those ordered sets, are there direct products of chains? Generalize this
observation.

Exercise 1.11 [Preorders of sections] Let R be a binary relation on a set X and x
an element of X . We write xR = {z ∈ X : xRz} and Rx = {z ∈ X : zRx}, these two
sets being respectively called right section and left section of basis x. We define three
preorders on X , respectively called right trace preorder, left trace preorder, and trace
preorder, by writing xTry if xR ⊇ yR, xTly if Rx ⊆ Ry, and T = Tr ∩Tl .

A binary relation R on X is a tournament if it is total and antisymmetric (Definition
2.25). Prove that, for a tournament R, the two preorders Tr and Tl are two identical
orders contained in R. Show that x is a maximal element of the ordered set (X ,T )

if and only if, for any y ∈ X , there exists z ∈ X such that (x,z) ∈ R and (z,y) ∈ R
(z is then called a center of the tournament). What do these results become if R is a
transitive tournament?
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Particular classes of ordered sets

This book contains results such as Dilworth’s or Hiraguchi’s Theorems (Chapters 4
and 6 respectively) that hold for any ordered set. However, this type of general result
is rather rare. The notion of an order, although very restrictive compared to the notion
of a relation, actually remains very general, a fact revealed by the huge number of
different orders that can be obtained on a set with a small size (more than two million
types of order on a set with 10 elements! See Appendix C). Yet in practice, the orders
that naturally appear in many contexts most often belong to some particular classes of
orders. These classes may be defined in many ways. They are obtained, for instance,
by setting the value of a parameter (for instance, orders of dimension 2, studied in
Section 6.3), by forbidding the presence of some given configurations (for instance,
interval orders mentioned in Example 1.22 and in Section 2.2), by constructing the
class by iteration of some given operations on a family of initial orders (for instance,
series–parallel orders, defined in Section 2.2). In this chapter, we present some of the
most frequent classes of orders, that will be regularly encountered all throughout the
book. Although we define them in a unique way here, we will see in the exercises
and later in the text that these classes often have several alternative definitions. This
explains the fact that they have sometimes appeared independently in various contexts
and reinforces their interest.

The first section develops the case of ranked ordered sets and, in particular, of those
that are semimodular or bipartite. In Section 2.2, we present a number of ordered sets
defined by forbidden configurations, that is, such that their order – or an associated
graph – does not contain a given determined substructure. Section 2.3 consists of
an introduction to lattices and semilattices. We give the basic definitions but also a
number of results and their dual expressions; the latter result from the ipsodual nature
of the class of lattices. Within this class, the subclass of distributive lattices proves
to be particularly important. The next section presents the relations existing between
linearly ordered sets and “tournament” relations (the name of which comes from the
fact that they model the results of some sports tournaments, such as the Six Nations
Rugby Tournament).
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2.1 Ranked, semimodular, and bipartite ordered sets

Definition 2.1 A ranked ordered set is an ordered set P = (X ,≤) for which there
exists a rank function (or, more simply, a rank), i.e., a function r from X to the
ordered set (N,≤) of non-negative integers, which preserves the covering relation:

x ≺ y =⇒ r(y)= r(x)+ 1

In other words, if y covers x, its rank is equal to the rank of x plus 1. A rank is
sometimes also called a graduation and a ranked ordered set a graded ordered set.

Any ranked ordered set has an infinity of ranks, since adding any fixed positive
integer to a rank defines another rank. The rank of P is said to be normalized if r(x)= 0
for at least one minimal element of P,1 i.e., if the smallest possible value of the rank
is reached. It may be proved that, if P is connected, the normalized rank is unique.
In particular, if P is ranked and has a minimum 0P , P has a unique normalized rank,
which thus satisfies r(0P) = 0. In the case of a ranked ordered set P with a unique
normalized rank, denoted by r, we write:

r(P)= maxx∈Pr(x)

r(P) is then called the rank of P.
Note The expression “rank of P” can sometimes refer to the parameter r(P) and

sometimes to the rank function defined on P, the context allowing us to determine its
meaning.

Figure 2.1 shows the normalized ranks of three ranked ordered sets. The reader can
check that the ordered set in Figure 1.4 (see page 7), on the contrary, is not ranked.

Henceforth and unless explicitly mentioned in the text, the word “rank” will stand
for “normalized rank.”

Note that, if P is ranked, its rank is not always equal to its height – that is, the
maximum length of its chains (the reader can try to find an example).

A linearly ordered set (X ,L) is ranked and its normalized rank is given by rL(x)=
|{y ∈X : y �= x and yLx}|. Then it is easy to check that xLy if and only if rL(x)≤ rL(y).

The ordered sets 2E , On, �n, and PE (Examples 1.12, 1.13, 1.17, and 1.14 in
Chapter 1) are ranked and their normalized ranks are, respectively, the size of a
subset of E, the number of ordered pairs (x,y) of an order with x �= y, the number
of increasing commutations needed to go from the bottom permutation (the smallest
one with respect to the weak Bruhat order on permutations) to a permutation s, the
size of the set E minus the number of classes in a partition of E. Distributive lattices
presented in Section 2.3 are also ranked (and an expression of their rank is given in
Proposition 5.14 in Chapter 5).

1 Observe that such a minimal element cannot be arbitrarily chosen, see for instance Figure 2.1(b).
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Figure 2.1 Three ranked ordered sets with the indication of their normalized rank.

If P is ranked and k is a non-negative integer, we write Rk = {x ∈ P : r(x) = k}.
The non-empty Rk ’s are called the rank-sets (of rank k) of P and their sizes nk = |Rk |
are called the Whitney numbers of P. Observe that they form an antichain partition
of P (why?). For any ranked ordered set P, we write:

ν(P)= max0≤k≤r(P)|Rk |

Thus ν(P) is the maximum number of elements of a rank-set of P and, since these
rank-sets are antichains (and recalling that α(P) is the width of P, see Definition
1.30), we obtain:

ν(P)≤ α(P)

Remark 2.2 A ranked ordered set P is called a Sperner ordered set if it satisfies the
equality ν(P) = α(P). This term will be justified in Chapter 4, where Section 4.3 is
devoted to the study of these ordered sets.

For any element x of an ordered set P, we define the height of x, denoted by h(x),
as the maximum length of a chain of P the greatest element of which is x. The height
function h thus defined from P to N satisfies:

x ≺ y =⇒ h(y)≥ h(x)+ 1

(why?), but h is in general not a rank, even though P is ranked (see Figure 2.1(b)).
Note that the integer h(P) = maxx∈Ph(x) is equal to what we have called the height
of P in Chapter 1 (see page 19).

The following definition and result will allow us to obtain a class of ordered sets
in which the height function is a rank.
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Definition 2.3 An ordered set P satisfies (the) Jordan–Dedekind (property) if, for
all x,y ∈ P such that x < y, all maximal chains from x to y have the same length
(depending only on x and y).

Theorem 2.4 Let P be an ordered set. Each of the conditions below implies the
following one:

1. The height h defined on P is a rank.
2. P is ranked.
3. P satisfies Jordan–Dedekind.

If, moreover, P has a minimum, these three conditions are equivalent.

Proof The implication of (2) by (1) is immediate. Let us prove that (2) implies (3).
Let x and y be two comparable elements of a ranked ordered set P (with x < y) and
let x = x0 ≺ x1 ≺ ... ≺ xp = y be a maximal chain from x to y. The length p of this
chain is equal to r(y)− r(x) and thus does not depend on the considered chain (since
it only depends on the ranks of x and y). It follows that all maximal chains from x
to y have this same length. This fact holds for any pair of comparable elements and,
consequently, we get the Jordan–Dedekind property.

Now assume that P has a minimum 0P . We prove that, under this condition, (3)
implies (1). Let x and y be two elements of P with x ≺ y. According to Jordan–
Dedekind, all maximal chains from 0P to x have the same length, which is equal to
the height h(x) of x. Aparticular maximal chain from 0P to y is formed with a maximal
chain from 0P to x followed by the covering relation x ≺ y. Now, this maximal chain
from 0P to y has length h(x)+1 which, still with respect to Jordan–Dedekind, implies
h(y)= h(x)+ 1 as required. �

Remark 2.5 1. The reverse implications of this theorem are in general not satisfied, as
illustrated by the ordered sets P and P′ in Figure 2.2.As a matter of fact, the ordered set
P (which is the same as in Figure 1.4) “trivially” satisfies Jordan–Dedekind (between
any two comparable elements, there exists only one maximal chain) but is not ranked.
As for P′, it is ranked but its height function is not a rank.

2. Theorem 2.4 has a dual version which uses the notion of the depth p(x) of
x defined as the maximum length of a chain with minimum x. Then, the dual of
Theorem 2.4 is obtained by replacing the height with the function f from P to N

defined by f (x)= |P|− p(x) and where we replace “minimum” with “maximum.”
3. Finally, the reader can prove that the height h of a ranked ordered set P is a rank

of P if and only if all minimal elements of P have the same rank (which is then equal
to 0).

Within the class of ranked ordered sets, one finds particular subclasses among which
the most important ones are the classes of bipartite ordered sets and of semimodular
ordered sets, which we now define. Whereas bipartite ordered sets are trivially ranked,
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Figure 2.2 Counterexamples to the converse conditions of Theorem 2.4.
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Figure 2.3 (a) K4,3, (b) CR4, and (c) a fence.

the fact that semimodular ordered sets are also ranked (Theorem 2.10) follows from
two non-trivial lemmas.

Definition 2.6 An ordered set P is bipartite if the range κ(P) of P is equal to 2, that
is, if the height of P is 1.

Aconnected bipartite ordered set is clearly ranked, the set A of its minimal elements
and the set B of its maximal elements forming its two rank-sets, respectively, of rank 0
and of rank 1. Such an ordered set will generally be denoted by (A+B,≤). Figure 2.3
shows three examples of bipartite ordered sets. The first one is the complete bipartite
ordered set K4,3 – more generally, we denote Kp,q the complete bipartite ordered set
Ap ⊕Aq in which each one of the p minimal elements is less than each one of the q
maximal elements. The second example is the crown CR4 – more generally, we call
crown CRp the ordered set formed with p minimal elements a1, ...,ap and p maximal
elements b1, ...,bp, satisfying ai ≺ bi−1,bi for any 1 < i ≤ p and a1 ≺ bp,b1. The last
example is a particular case of a fence, the class of which is an important class of
bipartite ordered sets (see, for instance, the beginning of Section 3.6 in Chapter 3).

Definition 2.7 An ordered set P = (X ,≤) is upper semimodular (USM ) if, for all
x,y,z ∈ P with z ≺ x and z ≺ y, there exists t ∈ P such that x ≺ t and y ≺ t. Similarly
P is lower semimodular (LSM ) if the dual of P is upper semimodular, that is, if, for
all x,y,z ∈ P with x ≺ z and y ≺ z, there exists t ∈ P such that t ≺ x and t ≺ y. At last
P is modular if it is upper and lower semimodular.
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The ordered set in Figure 2.1(c) is lower but not upper semimodular.
In order to establish Theorem 2.10 on upper semimodular ordered sets, we begin

with the proof of the following two lemmas.

Lemma 2.8 Let P be an upper semimodular ordered set. If P is connected, then it
has a maximum 1P.

Proof Let P be upper semimodular and connected. Assume that P has two dis-
tinct maximal elements x and y. Since P is connected, there exists a sequence
x = x0, ...,xi,xi+1, ...,xk = y of elements of P such that, for any i < k , we have either
xi ≺ xi+1 or xi+1 ≺ xi. Besides, since x and y are maximal in P (hence incomparable),
there exists at least one integer 0 < i < k for which xi ≺ xi+1 (if not, one would have
y < x). If i0 is the smallest integer satisfying this condition, we have xi0 ≺ xi0−1 and
xi0 ≺ xi0+1 which imply (since P is upper semimodular) the existence of some z1 of
P covering xi0−1 and xi0+1. The equality xi0−1 = x is impossible since x is maximal
in P, so there exists an element z2 in P covering xi0−2 and z1 (still according to the
upper semimodularity of P). Again, we must have xi0−2 �= x. Iterating this argument,
we conclude that there exists z in P covering x, which contradicts the maximality of
x in P. Finally, P has a maximum 1P , as required. �

Lemma 2.9 Let P be an upper semimodular ordered set. If P is connected, then it is
ranked.

Proof To prove that P is ranked, we are going to prove that it satisfies Jordan–
Dedekind. Indeed, Lemma 2.8 then implies that P has a maximum and the dual
version of Theorem 2.4 (see item (2) in Remark 2.5) will imply that P is ranked. We
first prove by induction that Jordan–Dedekind is true on any interval [x,1P] of P. To
do so consider, for any m > 0, the following property P(m):

For any x �= 1P of P, if there exists a maximal chain of length m from x to 1P, then
all maximal chains from x to 1P have length m.

P(1) clearly holds (since if there exists a maximal chain C of length 1 from an
element x to 1P , then x is covered by 1P and C is the unique chain joining x to 1P).
Now assume P(m) holds for m > 1 and let x ∈ P be such that there exists a maximal
chain C = x ≺ x1 ≺ ·· · ≺ xm ≺ 1p of length m+ 1 from x to 1P . Three cases may
occur: (a) if C is the unique maximal chain from x to 1P , P(m+ 1) holds for x. (b)
If all maximal chains from x to 1P contain x1, they are formed with the covering
pair x ≺ x1 followed by a maximal chain from x1 to 1P , of length m by applying
P(m). All maximal chains from x to 1P are thus of length m+ 1. (c) If there exists at
least one other maximal chain from x to 1P that does not contain x1, let us denote by
C ′ = x ≺ x

′
1 ≺ ·· · ≺ x

′
q ≺ 1P this chain, the length of which is q+ 1 and let us prove

that q=m. Since P is upper semimodular and since x ≺ x1,x
′
1, there exists y ∈ P such

that x1,x
′
1 ≺ y. Denote by Cy a maximal chain from y to 1P . The part of C from x1
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Figure 2.4 An upper semimodular ordered set with two connected components.

to 1P is a maximal chain from x1 to 1P of length m so, according to the induction
hypothesis, all maximal chains from x1 and 1P have this length. Thus the maximal
chain formed by the covering pair x1 ≺ y followed by Cy has length m, which implies
that the length of Cy is m−1. Therefore, the maximal chain from x

′
1 to 1P formed by

the covering pair x
′
1 ≺ y followed by Cy has length m and, here again by the induction

hypothesis, the part of C ′ from x
′
1 to 1P has length m. Finally the length of C ′ is m+1

and P(m+ 1) holds.
We can now conclude that the Jordan–Dedekind property holds on P. Indeed, let

x and y be two elements of P with x < y. All maximal chains from x to 1P have the
same length – equal to the depth of x (see page 45). It is the same for maximal chains
from y to 1P – the length of which is equal to the depth of y. The length of all maximal
chains from x to y is thus equal to the difference of these two depths, which depends
only on x and y. �

The following theorem is obtained as a direct corollary of Lemma 2.9 and by
observing that an ordered set is ranked (respectively, upper semimodular) if and only
if all its connected components are. See Figure 2.4 for an example.

Theorem 2.10 Any upper semimodular ordered set P is ranked.

Remark 2.11 1. Lemmas 2.8 and 2.9 and Theorem 2.10 have dual expres-
sions obtained by replacing “upper semimodular” by “lower semimodular” and
“maximum” by “minimum.”

2. We will see in Chapter 5 that distributive lattices are upper (and lower) semi-
modular and, thus, that they are also ranked. Moreover, since they have a minimum,
their height is a rank.

2.2 Ordered sets with forbidden configurations

There exist other important classes of ordered sets defined by the fact that their order
(or one of their associated graphs) does not contain a suborder (or a subgraph) of a
given type.

Figure 2.5 gives the seven types of ordered sets of size 2 or 3 (C2, A2, C3, A3,
A2 ⊕A1, A1 ⊕A2, and C1 +C2) together with three particular types of ordered sets of
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C2 A2 C3 A3

C1 + C2

C1 + C3

C2 + C2 N4

A2 ⊕ A1 A1 ⊕ A2

Figure 2.5 10 particular types of ordered sets with two, three or four elements.

size 4 (C1 +C3, C2 +C2, and N4). We will say that an ordered set does not contain
one of these types if it contains no ordered subset of this type.

One easily observes that an ordered set P contains no C2 (respectively, A2) if and
only if it is an antichain (respectively, a chain). Similarly, P contains no C3 if and
only if it is an antichain or is bipartite.

The classes of ordered sets that we now consider are defined by forbidden
configurations of one of the last seven types.

Definition 2.12 Let P be an ordered set.

1. P is a 2-chain if it contains no A3 and is not a chain.
2. P is a tree-ordered set if it is connected and either does not contain any A1 ⊕A2

or does not contain any A2 ⊕A1.
3. P is a weakly ordered set if it contains no C1 +C2.
4. P is an interval ordered set if it contains no C2 +C2.
5. P is a semiordered set if it contains neither C1 +C3 nor C2 +C2.
6. P is N-free if it contains no N4.
7. P is covering N-free if it contains no N4 as a covering ordered subset.

Figure 1.4 of Chapter 1, the ordered set P′ in Figure 2.2, and Figures 2.3(a), 1.4,
2.1(b), 2.3(a), and 2.1(b) provide examples of a 2-chain, a tree-ordered set, a weakly
ordered set, an interval ordered set, a semiordered set, an N -free, and a covering
N -free ordered set, respectively.

The names of these ordered sets are justified by some of the properties that will
be studied in the exercises and in some following chapters. These ordered sets are
endowed with reflexive orders to which correspond strict orders (that is, irreflexive
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ones). For instance, a (strict) interval order is a strict order which does not contain any
2s + 2s (see Definition 1.3). The strict order called “strict weak order” (respectively,
strict interval order) associated with a weakly ordered set (respectively, an interval
ordered set) was first introduced in Example 1.21 (respectively, Example 1.22) in
another form. Section 7.1 in Chapter 7 will develop some uses of (strict) interval
orders, of (strict) weak orders, and of (strict) semiorders for the modeling of preference
relations.

Let us also specify the following points, some of which are clear (the other ones
will be proved later or proposed as exercises):

1. A 2-chain is an ordered set of width 2.
2. A tree-ordered set has a minimum or a maximum. Let us also observe that a tree-

ordered set with a maximum (respectively, a minimum) is upper (respectively,
lower) semimodular and series–parallel (why?).

3. An ordered set is a weakly ordered set if and only if it is a linear sum of antichains.
4. The class SP of series–parallel ordered sets is defined as follows:

• the 1-element ordered set belongs to SP;
• if P1 and P2 belong to SP , so do P1 +P2 and P1 ⊕P2.

The class SP is therefore obtained by use of the two particular substitution opera-
tions of cardinal and linear sums. Then one can show that an ordered set is N -free
if and only if it is series–parallel.

5. The following classes of ordered sets satisfy the next inclusion relations (and the
reader will find examples to prove that these inclusions are strict): {chains} ⊂
{weakly ordered sets} ⊂ {semiordered sets} ⊂ {interval ordered sets} and, besides,
{chains} ⊂ {weakly ordered sets} ⊂ {series–parallel ordered sets} ⊂ {covering N -
free ordered sets}.

2.3 Semilattices and lattices

These ordered sets have already been mentioned in the previous chapter, after the
definitions of the notions of a meet and of a join (Definition 1.39).

Definition 2.13 An ordered set P is a meet-semilattice if any pair {x,y} of its elements
has a meet x ∧ y. It is a join-semilattice if any pair {x,y} of its elements has a join
x∨ y. It is a lattice if any pair of its elements has a meet and a join, so if it is a meet-
and a join-semilattice.

Proposition 2.14 Let L be a meet-semilattice (X ,≤,∧) (respectively, a join-
semilattice (X ,≤,∨)). Any subset of L has a meet (respectively, a join).

Proof Let A be a 3-element subset of a meet-semilattice (X ,≤,∧). It is easy to
check that

∧
A exists and is equal, for any element L of A, to (

∧
(A \ t))∧ t. By
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Figure 2.6 A lattice.
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Figure 2.7 A meet-semilattice.

iterating this process, we deduce that any (non-empty) subset A of X has a meet – in
particular X has a least element (equal to

∧
X ).

The proof is similar in the case of a join-semilattice. �

A lattice could be denoted by L = (X ,≤,∧,∨) but we will often use the simpler
notation L. The expression “semilattice” will stand for either a meet-semilattice or a
join-semilattice depending on the context.

The ordered sets of Figures 2.1 and 2.3 are not semilattices (only the case of 2.1(a)
is not immediate). Each connected component of the ordered set in Figure 2.4 is a
join-semilattice and the ordered set in Figure 2.6 is a lattice (observe that the latter is
not ranked).

Definition 2.15 Let L = (X ,≤,∧) be a meet-semilattice. A subset A of X is a sub-
meet-semilattice of L if it is meet closed, that is, if x,y ∈ A implies x∧ y ∈ A.

Consider the meet-semilattice L in Figure 2.7. Its restriction to {x,z, t} is a sub-
meet-semilattice of L. We moreover note that its restriction to {0,z, t}, which is not a
sub-meet-semilattice of L, is nevertheless a meet-semilattice (with z∧ t = 0 whereas
z∧ t = x in L). Therefore the two notions of “sub-meet-semilattice of L” and “ordered
subset of L which is a meet-semilattice for the order of L” do not coincide.

Likewise, we define the notion of a sub-join-semilattice of a join-semilattice L as
any subset of L closed for the join operation of L, thus as any join closed subset of
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L. A sublattice of a lattice L is a subset of L which is closed for the join and the meet
operations of L.

It was already seen in Example 1.40 that the ordered set 2E = (P(E),⊆) of all
subsets of a set E ordered by set inclusion is a lattice. In fact it is clear that, if A and
B are two subsets of E, we have:

A∧B = A∩B A∨B = A∪B

It is not always so simple to prove that an ordered set is a lattice. In particular,
the reader can compare the cases of the order on permutations (Example 1.17), of
the refinement order between partitions (Example 1.14 and Section 7.3), and of the
dominance and refinement orders between integer partitions (Exercise 1.5) that all
define lattices. However, a general result on semilattices allows us to characterize
those among them that are lattices. Thus, we obtain the important result of Theorem
2.17, the proof of which arises directly from the following proposition:

Proposition 2.16 Let A be a subset of a meet-semilattice. A has a join if and only if
it is upper bounded.

Proof Since the join (when it exists) of a subset A of a meet-semilattice is a
particular upper bound of A, the necessary condition is immediate (this fact more
generally holds in any ordered set P).

Conversely, let A be an upper bounded subset of a meet-semilattice L, B the set
of the upper bounds of A, and x = ∧

B the meet of B (which exists by Proposition
2.14). Observe that every element a of A is a lower bound of B, which implies a ≤ x.
So x ∈ B and, since moreover x = ∧

B, then x is the minimum of B and so x = ∨
A,

which completes the proof. �

Theorem 2.17 A meet-semilattice with a maximum is a lattice.

Proof Let L be a meet-semilattice with maximum 1L. Any subset of L is upper
bounded by 1L and, by Proposition 2.16, any subset of L has a join. L is therefore a
join-semilattice and thus a lattice. �

Remark 2.18 Proposition 2.16 and Theorem 2.17 have dual versions:

• A subset of a join-semilattice has a meet if and only if it is lower bounded. This
meet is the join of its lower bounds.

• Any join-semilattice with a minimum is a lattice.

As illustrated in this remark, the class of join-semilattices is the dual of the class
of meet-semilattices. As a matter of fact, if P = (X ,≤,∧) is a meet-semilattice, then
Pd = (X ,≥,∨d) is a join-semilattice with∨d =∧. As a result we can apply the duality
principle between these two classes (Section 1.1.4): if a condition using the symbols
≤, ≥, and ∧ holds in any meet-semilattice, the condition obtained by replacing ≤
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with ≥, ≥ with ≤, and ∧ with ∨ holds in any join-semilattice. In other words, it is
sufficient to study the properties of one of these classes of ordered sets and to deduce
the properties of the other class by duality. This duality principle applies to lattices –
that form an ipsodual class – where it is expressed as follows:

If a condition holds in any lattice, the condition obtained by exchanging the symbols
≤ and ≥ on the one hand, and ∧ and ∨ on the other hand, also holds in any lattice.

For instance, in any lattice L, x ≤ y implies x ∧ z ≤ y ∧ z for any z ∈ L (why?). By
duality it follows that x ≥ y implies x∨ z ≥ y∨ z for any z ∈ L.

If A = {x,y,z}, we can write:∧
{x,y,z} = (x∧ y)∧ z = x∧ (y∧ z)

Thus, the operation which, with any two elements of a meet-semilattice, associates
their meet is associative. It is also commutative (x ∧ y = y ∧ x) and idempotent
(x∧x = x). It is easy to see that, conversely, every set X equipped with an associative,
commutative, and idempotent operation ⊥, can be equipped with a meet-semilattice
order ≤, with x ∧ y = x⊥y (Exercise 2.6). Thus meet-semilattices can be defined
as particular algebraic structures, which allows their study by means of algebraic
methods. By duality, all these results apply to join-semilattices and, then, to lattices.
Thus a lattice has a minimum and a maximum and can be algebraically defined using
two operations (Exercise 2.7).

Let x1, x2,..., xp and y1, y2,..., yq be p + q elements of a lattice L and such that,
for all 1 ≤ i ≤ p and 1 ≤ j ≤ q, xi ≤ yj holds. Then we have

∨
1≤i≤p xi ≤ ∧

1≤i≤q yj

(why?). It follows that any three elements x,y,z of a lattice always satisfy the following
inequalities:

1. x∨ (y∧ z)≤ (x∨ y)∧ (x∨ z),
2. (x∧ y)∨ (x∧ z)≤ x∧ (y∨ z),
3. (x∧ y)∨ (y∧ z)∨ (z∧ x)≤ (x∨ y)∧ (y∨ z)∧ (z∨ x).

The following result, the proof of which will be given in Section 5.1 of Chapter 5,
is particularly significant:

In a lattice the inequality (1) is always an equality if and only if the inequality (2)
is always an equality and if and only if the inequality (3) is always an equality.

Definition 2.19 Let L be a lattice and 0L and 1L its minimum and maximum
respectively.

• L is distributive if any triple (x,y,z) of L satisfies x∨ (y∧ z)= (x∨ y)∧ (x∨ z).
• L is complemented if any x ∈ L has at least a complement, that is, an element x′ ∈ L

satisfying x∧ x′ = 0L and x∨ x′ = 1L.
• L is Boolean if it is distributive and complemented.
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According to what has been said, a lattice is distributive if one of the inequalities
(1), (2) or (3) (hence, also the three of them) is always an equality. The name of these
lattices obviously comes from the fact that each of their two operations is distributive
with respect to the other one:

x∨ (y∧ z)= (x∨ y)∧ (x∨ z) x∧ (y∨ z)= (x∧ y)∨ (x∧ z) (D)

In the case of a distributive lattice, the identity (x∧y)∨ (y∧ z)∨ (z∧x)= (x∨y)∧
(y ∨ z)∧ (z ∨ x) shows that the element obtained by taking the join of the pairwise
meets of three elements is equal to the one obtained by taking the meet of their pairwise
joins. This particular element is called the median of the three elements x,y,z, a name
that will be justified in Section 7.3 of Chapter 7, where we will more generally study
the medians of any number of elements of a “median semilattice.”

The study of ordered sets cannot be separated from that of distributive lattices on
account of the existence of a one-to-one correspondence between these two classes of
structures. This correspondence will be presented in Chapter 5 with a lot of properties
of distributive lattices. We give here some rather obvious ones.

It is easy to check that a chain k is a distributive lattice. On the other hand, the
reader will easily show the following property:

Proposition 2.20 The direct product of distributive lattices is a distributive lattice.

Any direct product of chains is therefore a distributive lattice. In particular, this is
the case for the direct product kn of n chains, each of which is isomorphic to the chain
k . In Chapter 4, Section 4.4, we will study some properties of the direct product kn

and, in Chapter 6, we will encode any given ordered set within such a product (the
lattice L in Figure 1.10 represents the diagram of 32). If k = 2, we get 2n and thus
we reobtain the notation of the ordered set 2E = (P(E),⊆) of all subsets of a set E
of size n (since this ordered set is isomorphic to the direct product of n chains of size
2). Besides, 2E is obviously complemented (by the map which associates the subset
E \A of E to any A ⊆ E), which makes it a Boolean lattice (see also Exercise 5.11 in
Chapter 5).

The fact that 2n is distributive is expressed by the well-known distributivity of both
set union and set intersection operations:

A∪ (B∩C)= (A∪B)∩ (A∪C) A∩ (B∪C)= (A∩B)∪ (A∩C)

The distributivity identities (D) still hold in any sublattice of a distributive lattice,
so that the following result is immediate:

Proposition 2.21 Any sublattice of a distributive lattice is a distributive lattice.

In particular, any sublattice of 2E – that is, any family F of subsets of E such that,
if A and B belong to F , so do A∩B and A∪B – forms a distributive lattice. Such a
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family F of subsets of E is called a distributive family of subsets (of E). If, moreover,
∅ and E belong to F , F is called a topology. It was observed in Section 1.4.2 that the
intersection or the union of downsets of an ordered set P is still a downset. From this
it results that the family D(P) of all downsets of P is a topology (and it is the same for
the family U(P) of all upsets of P). In Chapter 5, Birkhoff’s Representation Theorem
(Theorem 5.9) will state that any distributive lattice is isomorphic to a topology.

We define other classes of semilattices (or of lattices) by imposing additional con-
ditions that were previously already considered for ordered sets. In some cases the
obtained definitions can be simplified: for example, since a meet-semilattice has a
minimum, it is ranked if and only if x ≺ y implies h(y) = h(x)+ 1, or if and only if,
for all x and y with x < y, all maximal chains from x to y have the same length.

The expression of semimodularity is also simplified in the lattice case: a meet-
semilattice is lower semimodular if and only if, for all x,y such that x ∨ y exists,
x ≺ x∨ y and y ≺ x∨ y imply x∧ y ≺ x and x∧ y ≺ y. Likewise a lattice is modular
(that is, lower and upper semimodular) if and only if (x ≺ x ∨ y and y ≺ x ∨ y) is
equivalent to (x∧ y ≺ x and x∧ y ≺ y ).

Several characterizations of semimodular or of modular semilattices and lattices are
given in Exercises 2.9 and 2.10. In particular, a modular lattice L can be defined by the
fact that, for any triple (x,y,z) of elements of L, x ≤ z implies x∨ (y∧ z)= (x∨y)∧ z.
From this it follows directly that any distributive lattice is modular.Another character-
ization of modular lattices (given in Exercise 2.9) is obtained by excluding the lattice
N5 represented in Figure 2.8. If we add the condition of “exclusion” of the lattice M3

represented in the same figure, we obtain a classic characterization of distributive lat-
tices (but more difficult to prove, see for instance Barbut and Monjardet (1970)). We
can give a typical form to these characterizations by forbidden substructures, noticing
(and the reader can check that fact) that M3 is the smallest modular non-distributive
lattice (with respect to the number of elements) and that, likewise, N5 is the small-
est non-modular lattice. As for the lattice in Figure 2.8(c), it is the smallest lower
semimodular non-modular lattice. Observe that it contains a sublattice isomorphic to
N5, so a non-lower semimodular one, which proves that this property is not always
preserved in a sublattice.

(c)(b)(a) M3 N5

Figure 2.8 Three particular lattices.
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2.4 Linearly ordered sets and tournaments

In this section, we focus on linearly ordered sets and we study their relations with the
so-called tournament binary relations.

We recall that, for a relation R defined on a set X , an element x ∈X is maximal with
respect to R if there does not exist any y ∈ X distinct from x and such that xRy. We
also recall that a path from x1 to xp in R is a sequence (x1, ...,xp) of distinct elements
(except possibly for x1 and xp) of X such that x1Rx2, ...,xp−1Rxp, and that a cycle of
R is a path (x1, ...,xp) of R with x1 = xp. A path (respectively, a cycle) of R is called
hamiltonian if any element of X appears exactly once in this path (respectively, except
for its origin and its extremity which are equal). The lemma below is easily obtained
by using antisymmetry and transitivity.

Lemma 2.22 If O is an order on a set X , O is cycle-free.

The following theorem is important and is moreover used in the proof of
Theorem 2.27, which characterizes linear orders among tournaments.

Theorem 2.23 Let R be a binary relation on a set X . The following properties are
equivalent:

1. R is cycle-free.
2. The reflexo-transitive closure of R is an order.
3. R is included in a linear order.
4. For any subset Y of X , the set of maximal elements of the restriction R|Y of R to

Y is non-empty.

Proof (1) =⇒ (2): we prove that, if the reflexo-transitive closure π(R) of R is not
an order, then R has a cycle. If π(R) is not an order, it is not antisymmetric. So there
exists an ordered pair (x,y) of distinct elements of X satisfying both x(π(R))y and
y(π(R))x. Then we have:

(a) either xRy and yRx,
(b) or xRy and y(π(R) \R)x,
(c) or yRx and x(π(R) \R)y,
(d) or, at last, x(π(R) \R)y and y(π(R) \R)x.

In Case (a), the sequence (x,y,x) is a cycle of R. In Case (b), y(π(R) \R)x implies
the existence of a path (y, t1, ..., tp,x) in R which, with the ordered pair (x,y), forms a
cycle in R. Case (c) is symmetric to Case (b). Finally, Case (d) implies the existence of
two paths (x, t1, ..., tp,y) and (y, t′1, ..., t′q,x) of R, the concatenation of which contains
a cycle in R.

(2) =⇒ (3): denote by O = π(R) the reflexo-transitive closure of R, which is
assumed to be an order. If O is a linear order, the implication is immediate. If not,
there exist two elements x and y that are incomparable in O. Let O

′ = π(O+ (x,y))
be the reflexo-transitive closure of O+ (x,y). We are going to show that O+ (x,y) is
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cycle-free which, according to what has been said, allows us to prove that O
′
is an

order including O. The result will then be obtained by iteration. If there exists a cycle
C in O+ (x,y), C necessarily contains the ordered pair (x,y) and so, it also contains
a path from y to x in O. By transitivity of O, yOx follows, a contradiction with the
incomparability of x and y in O.

(3) =⇒ (1): since the property of being cycle-free is preserved in any subrelation
of R, this implication is immediate according to Lemma 2.22.

(1) =⇒ (4): according to the argument used in the previous implication, it suffices
to prove that, if R is cycle-free, the set of its maximal elements is not empty. Let
x1 ∈ X . If x1 is not maximal in R, there exists x2 ∈ X , distinct from x1 and such
that x1Rx2. Iterating this argument, we find either an element of X , maximal in R,
or a previously encountered one, which involves the existence of a cycle (since X is
finite), a contradiction with the hypothesis.

(4)=⇒ (1): if R has a cycle (x1, ...,xk ,x1), the restriction of R to the subset {x1, ...,xk}
has no maximal element. �

Remark 2.24 This theorem has many applications. For instance, in computer sci-
ence, a topological sorting on a set X endowed with a cycle-free binary relation R
is a (bijective) numbering f of the elements of X such that xRy implies f (x) < f (y).
In other words, a topological sorting defines a linear order which includes R. In
microeconomics, the theory of “rationalizable” choice functions uses the equiva-
lence between conditions (1) and (4) of Theorem 2.23 (see on this subject Section 2.5
on page 64).

Definition 2.25 A binary relation T on a set X is a tournament if it is total (that is, if,
for all x,y ∈ X , xTcy implies yTx) and antisymmetric. We define the rank (function)
rT on any tournament T on X by rT (x)= |{y ∈ X : y �= x and yTx}|.

The word “tournament” used for such a relation comes from the fact that it can
model the results of a sports tournament, in which every team meets every other team
exactly once and where there does not exist any draw (as is often the case in the
Six Nations Rugby Tournament). In such a situation, if yTx means that Team y was
beaten by Team x, one notices that the rank rT (x) of x turns out to be the number of
teams that were beaten by x (and, in the directed graph G = (X ,T ) associated with
the tournament, rT (x) is thus equal to the indegree d−

G (x) of x).
If a tournament T is transitive, it is a linear order and, in Theorem 2.27, we will

provide necessary and sufficient conditions for this to happen. The following lemma
will be useful for the proof of this theorem.

Lemma 2.26 The number of 3-cycles (that is, of 3-element cycles) of a tournament
T defined on a set X of size n is equal to:

n(n− 1)(2n− 1)

12
− 1

2

∑
(rT (x))2
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Proof Let us denote c3(T ) the number of 3-cycles of T , that is, the number of triples
(x,y,z) satisfying xTy, yTz, and zTx. With c3(T ) denoting the number of transitive
triples of T (that is, the number of triples (x,y,z) of distinct elements such that yTz,
yTx, and zTx), we have:

c3(T )+ c3(T )=
(

n

3

)
= n(n− 1)(n− 2)

6

Now, for a given element x, the number of transitive triples with yTx and zTx is
equal to:

(rT (x))(rT (x)− 1)

2
(why?)

so we have:

c3(T )=
∑
x∈X

[(rT (x))(rT (x)− 1)]
2

= 1

2

∑
x∈X

(rT (x))2 − 1

2

∑
x∈X

rT (x)

We have besides:
∑

x∈X rT (x)= n(n−1)
2 (why?).

Therefore:

c3(T )= 1

2

∑
x∈X

(rT (x))2 − n(n− 1)

4

Finally:

c3(T )= n(n− 1)(n− 2)

6
+ n(n− 1)

4
− 1

2

∑
x∈X

(rT (x))2

= n(n− 1)(2n− 1)

12
− 1

2

∑
x∈X

(rT (x))2

�

Figure 2.9 shows a non-transitive tournament on four elements, on which the reader
can check the equality given in Lemma 2.26. We will find again this tournament
in Figure 7.3 (Section 7.2, Chapter 7), where it is obtained by application of the
Condorcet majority rule.

a

b

c

d

Figure 2.9 A non-transitive tournament on four elements.
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Theorem 2.27 Let T be a tournament on a set X of size n. The following properties
are equivalent:

1. T is a linear order on X .
2. T is 3-cycle-free.
3. T is cycle-free.
4. T has a unique hamiltonian path.
5. The ranks of the n elements of X are the integers from 0 to n− 1.

Proof (1) =⇒ (2): immediate according to Lemma 2.22.
(2) =⇒ (1): obvious since xTy and yTz involve zT cx and so xTz.
(2) =⇒ (3): suppose that T has a cycle but no 3-cycle. By definition, T is antisym-

metric, so the length of this cycle is at least 4. Let C = (x1,x2, ...,xp,x1) be a cycle
of T with minimum length (so p ≥ 4). Since T is a linear order then – for instance
for x1 and x3 – either x3Tx1, or x1Tx3. If x3Tx1, (x1,x2,x3,x1) is a 3-cycle of T ; a
contradiction. Otherwise, C ′ = (x1,x3,x4, ...,xp,x1) is a cycle of T with length p− 1;
a contradiction with the minimality of the length p.

(3) =⇒ (1): if the tournament T was not a linear order, it would necessarily have
a non-transitive triple (x,y,z), so such that xTy, yTz, and xT cz. Since T is total then
zTx and T would have a cycle.

(3) =⇒ (4): by induction on n. Condition (3) holds for n = 1,2. Assume now that
the condition holds for any tournament of size n − 1. Now let n ≥ 3 and consider
a tournament T with n elements and which is moreover cycle-free. According to
Theorem 2.23, T has at least one maximal element. Moreover, it can have only one
such element since T is a linear order (by (3) =⇒ (1)). If we denote this element
xn, we have yTxn for every y ∈ T . Now, T \ xn is a cycle-free tournament of size
n − 1 so, by the induction hypothesis, it has a unique hamiltonian path, which we
denote (x1, ...,xn−1). The sequence (x1,x2, ...,xn) is thus a hamiltonian path of T . Its
uniqueness comes from the fact that any hamiltonian path of T necessarily ends with
xn and that, if there were more than one hamiltonian path in T , there would be as
many in T \ xn.

(4) =⇒ (5): by induction on n. The implication holds for n= 1,2. Assume that the
condition is satisfied for any tournament of size n−1 and now consider a tournament
T with n≥ 3 elements and with a unique hamiltonian path (x1,x2, ...,xn). It is enough
to prove that xjTxn holds for any j ≤ n and then to apply the induction hypothesis on
T \ xn. Indeed, in this case, the ranks of the elements x1, ...,xn−1 are the integers from
0 to n− 2 and, since xjTxn holds for any j ≤ n, the rank of xn in T is n− 1. Now
x1Txn (if not, (x1,x2, ...,xn,x1) would be a hamiltonian cycle of T , which would then
possess more than one hamiltonian path). Likewise, x2Txn (if not, (x1,xn,x2, ...,xn−1)

would be a second hamiltonian path of T ). This argument applied iteratively allows
us to deduce that T satisfies xjTxn for any j ≤ n.
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(5) =⇒ (2): if the ranks for T of the n elements of X are the integers from 0 to
n− 1, then Lemma 2.26 implies

c3(T )= n(n− 1)(2n− 1)

12
− 1

2

n−1∑
i=0

i2 = 0

�

Remark 2.28 In Section 1.1.2 of Chapter 1 we introduced the notation x1x2...xn to
represent a linear order on a set of size n in which, for any i < n, xi is covered by
xi+1. This is equivalent to writing the hamiltonian path of the linear order. On the
other hand, this is also equivalent to writing the elements of X in the increasing order
of their ranks, by taking as the index of an element its normalized rank plus one unit
(the normalized rank of x1 is 0), which is in general more natural and practical.

We end this section with a significant theorem concerning linear extensions (see
Definition 1.31), since its first part (already stated in Chapter 1) leads to the concept
of the dimension of an ordered set (see Definition 1.33 and Chapter 6). We prove this
theorem, using some parts of the proof of Theorem 2.23.

Theorem 2.29 1. Every order has a linear extension and is the intersection of all its
linear extensions.

2. If a total preorder includes an order, it also includes a linear extension of this
order.

Proof (1) The first assertion of this item is obtained thanks to the implication of
(3) by (2) in Theorem 2.23. The proof of the latter implies moreover that whenever x
and y are incomparable in an order O, there exists a linear extension of O containing
the ordered pair (x,y) and a linear extension containing the ordered pair (y,x). We
immediately infer that O is the intersection of all its linear extensions.

(2) Let R be a total preorder including an order O and let x,y be two elements
incomparable in O. Since R is total, we have either xRy or yRx. If, for instance, xRy,
we then consider the reflexo-transitive closure π(O+ (x,y)) of O+ (x,y), which is an
order (still according to the proof of the implication of (3) by (2) in Theorem 2.23). It
is thus enough to show that this order is still in R, then to iterate the argument. Now,
(z, t) belongs to π(O+ (x,y)) \ (O+ (x,y)) if and only if we have zOx and yOt. But
then we also have zRx, xRy, and yRt and, by transitivity of R, zRt as required. �

2.5 Further topics and references

The classes of ordered sets presented in this chapter have often appeared in different
contexts and with different names, a consequence of their many equivalent definitions.
This is, for instance, the case for series–parallel orders (see page 50) and for the



2.5 Further topics and references 61

subclass of these orders formed by threshold orders. A threshold order is defined by
the following property: there exists n=|P| real numbers p1,p2, ...,pn and a real number
s such that A is a maximal antichain of P if and only if �i∈Api ≤ s. Threshold orders are
particular interval orders and their comparability graphs are the so-called “threshold
graphs,” which were studied intensively in graph theory (see Mahadev and Peled,
1995). Series–parallel orders and in particular threshold orders were moreover used
in the study of electric circuits, in scheduling problems, or for modeling in parallelism
(see, for instance, Lawler (1978), Faigle et al. (1986) or Möhring (1989)). Likewise,
weak orders, semiorders or interval orders have appeared in various contexts and in
different forms. Their use in the modeling of preference relations will be described
in Section 7.1 of Chapter 7, but the reader can find in Section 7.6.1 other situations
in which these orders are encountered. Another interesting case is that of covering
N -free orders. Several equivalent definitions are given in Exercise 2.3, among which
the one “every maximal chain meets every maximal antichain” had led to their initial
name “chain–antichain-complete” given by Grillet (1969). Yet, they are also obtained
by a construction generalizing that of series–parallel orders, hence the name “quasi-
series–parallel orders” (Habib and Möhring, 1987). These orders are useful in task
analysis techniques by means of PERT networks (see, for instance, Sysło (1984)
or Radermacher (1986)), as well as in problems of planar representations of graphs
(de Fraysseix and de Mendez, 1997).

Beyond the classes of ordered sets presented in this chapter, many others exist that
are interesting and we are going to evoke some of them before going back to lattices.

For instance, concern over getting an expressive geometrical representation of the
diagram of an order has in particular led to defining the classes of planar and of
dismantable ordered sets (as well as other classes; refer to Rival (1989b)). A diagram
of an ordered set is planar if its lines cross only at the points of the plane that represent
the elements of the set. An ordered set is called planar if it has a planar diagram. This
is the case for Example 1.2 in Chapter 1, two diagrams of which are represented in
Figure 1.4, one planar and the other not. The ordered set P in Figure 2.10 is planar
(why?), but is no longer planar when adding a greatest element.

The complete bipartite ordered set K3,3 is not planar but becomes so if one removes
any ordered pair (find a planar diagram for this ordered set). The first observation
made (by Birkhoff (1940)) on these ordered sets is that a planar ordered set with a
minimum and a maximum is necessarily a lattice. Of course, not every lattice is planar
and those that are have been characterized as free of some particular sublattices (Kelly
and Rival, 1975). There is a similar characterization for planar modular lattices (Kelly,
1980) and many characterizations for planar distributive lattices (Monjardet, 1976).
Planar lattices form a subclass of dismantable lattices. The latter can be defined by
the fact that one can go from such a lattice to the 1-element lattice by deleting step by
step a doubly irreducible element from the lattice previously obtained. One can also
characterize them as CRn-free (where CRn is the crown of size n) for n≥ 2 (Kelly and
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P

P

Figure 2.10 P is planar, contrary to P′.

Rival, 1974). A dismantable ordered set is defined just like a dismantable lattice by
replacing the doubly irreducible elements with the elements covered by, or covering,
a unique element. The CRn-free ordered sets are dismantable but the converse is not
true (Duffus and Rival, 1976).

We have already mentioned in Example 1.12 that any family of subsets of a set,
ordered by set inclusion, is an ordered set that can be arbitrary. Indeed, the one-to-one
correspondence associating with any element of an ordered set its principal downset
shows that any ordered set is representable by (that is, isomorphic to) the family of
these downsets. Different motivations, and in particular the expansion of algorithmic
geometry, have motivated the study of the ordered sets representable by different
families of geometric sets: real intervals or, more generally, n-dimensional boxes,
(regular) convex polygons of the plane, discs or angles of the plane, spheres of Rn,
etc.All orders are representable by convex polygons and those which are representable
by n-dimensional intervals are orders of dimension 2n (see Definition 1.33). As for
the other families, they lead to new classes of orders such as “circular,” angular" or
“spherical” orders. The reader will find a panorama of these “geometric” orders in
Urrutia (1989) and in Fishburn and Trotter (1999a). Still in the field of algorithmic
geometry, one has also become interested in “directional” orders generated by an
“obstruction” relation between plane objects (see the presentation by Rival (1989)
and, for instance, Bouchitté et al. (1993)). Finally, with the recent development of
ordered set algorithmics, attention has turned to those for which one knows “efficient”
algorithms (seeAppendixA) of recognition and/or of construction of some parameters,
which is the case for all the ordered sets defined by forbidden configurations in
Section 2.2. This concern has led us to consider, among others, the following order
classes: orders of dimension 2 (see Section 6.3), orders with bounded width (that
is, such that α(P) ≤ k , for some k), Dilworth orders (that is, for which the number
s(P) of jumps is equal to α(P)− 1), covering W -free orders (that is, the covering
relation of which does not include the order on 5 elements, the diagram of which can
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be represented by the letter W), alternating-cycle-free orders (an example of such a
cycle is given by CR4 in Figure 2.3), greedy orders (see Section 6.5). All these classes
of ordered sets are presented in detail in Möhring (1989) and Bouchitté and Habib
(1989). Let us also notice that there exist enumeration results for some of them (see
in particular El Zahar (1989)).

The third section of this chapter was devoted to semilattices and lattices.As a matter
of fact, the study of ordered sets has for a long time been almost reduced to that of
lattices, that is, of those ordered sets that have the advantage of being also “strong"
algebraic structures. The notion of a lattice defined by Schröder and Dedekind in the
late nineteenth century, then almost forgotten, re-emerged in the 1930s thanks to many
mathematicians, most particularly Birkhoff, Öre, and Klein. In fact, it was noticed that
lattices were present in many – new or old – mathematical fields (topology, general
algebra, measure theory, geometry, combinatorics, etc.) as well as in mathematical
logics or in theoretical physics (quantum and wave mechanics). Since then there have
been considerable developments in lattice theory, which still continue – all the more
so since it got extended within the “universal algebra” theory. The basic references
on lattice theory are the books by Birkhoff (1940) and Grätzer (1998), whereas those
by Szasz (1971) and by Davey and Priestley (2001) are excellent introductions. Even
though the present book is not devoted to lattices, let us notice that they appear many
times. Indeed, there exist many relations between ordered sets and lattices. First
of all there is the duality between ordered sets and distributive lattices that will be
studied in Chapter 5. Then any ordered set may be embedded into an associated lattice,
called its “MacNeille” completion (see Section 3.5.3). Conversely, any lattice may be
represented by the bipartite ordered set of its irreducible elements (see the table of a
lattice in Section 3.5.2). This duality and these relations make possible the translation
of ordered set properties into lattice properties, and conversely. On the other hand, a
natural idea consists in defining some classes of ordered sets by generalizing some
lattice theoretic notions. A standard means to do so is to say that an ordered set has
property (P) if its MacNeille completion has property (P). In this way one defines, for
example, the significant class of distributive (also called dissective) ordered sets (see
Exercises 3.18 and 5.15 in Chapters 3 and 5 respectively and, for instance, Niederle
(1995) or Reading (2002)).

This chapter ends with the characterization of linear orders among tournaments
and provides the formula that gives the number of 3-cycles of a tournament (Lemma
2.26). This formula was obtained by Kendall and Babington Smith (1940), about the
pairwise comparison method used in psycho-sociology. A subject is asked to express
his preferences between different options (for instance, for a child, between the jobs
he would like to practice) by choosing, for each possible pair of different options, the
one he prefers. If the choice is “forced” (neither ex-aequo nor empty choice), the result
of all pairwise comparisons is a tournament on the set of all options. One observes
that, in a not insignificant number of cases, the obtained tournament T is not a linear
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order; that is, it includes some 3-cycles. In order to evaluate the intransitivity degree
of T , Kendall and Babington Smith then proposed the following intransitivity index:
the ratio c3(T )/Maxc3, where c3(T ) is the number of 3-cycles of the tournament T
and Maxc3 the maximum number of 3-cycles on all the tournaments with the same
size as T . Since simple formulas giving the value of this maximum are known, this
index is easily computable. Nevertheless, it can achieve a relatively high value for a
tournament in which it suffices to reverse one arc to obtain a linear order. Hence the
proposition made by Slater (1961) of another intransitivity index: the ratio (minimum
number of arcs to reverse in the tournament T to make it transitive)/(maximum number
of this minimum on all the tournaments having the same size as T . Yet, these numbers
are sometimes difficult to compute, just as the linear orders called “Slater orders”
obtained by reversing a minimum number of arcs in the tournament (see on this
subject Bermond (1972), Charon et al. (1992), and Charon and Hudry (2010)).

In microeconomics, the choice made by a consumer on a set X of commodity
bundles is described by his choice function. The latter associates with any subset Y
of X the choice c(Y ) with ∅ ⊂ c(Y ) ⊆ Y . In the classic theory of choice functions,
the choice of the consumer is called rationalizable if the consumer has a preference
relation R on X that “explains” his choice in the sense that, for any subset Y of X , the
choice c(Y ) is the set of maximal elements of the relation R restricted to Y . Theorem
2.23 thus proves that the preference relation R of the consumer must be cycle-free.
The choice functions rationalizable by a (cycle-free) relation or by various types of
order relations may be axiomatically characterized (see for instance Aleskerov et al.
(2007), where the case of a possible empty choice is also considered).

2.6 Exercises

Exercise 2.1 Prove that, if an ordered set P has at most 4 elements, it is ranked. Show
that there exist two types of non-ranked ordered sets of size 5. Observe moreover that
they are semiordered sets.

Exercise 2.2 [Rank, sums, and products] Prove that, if the ordered sets P and Q are
ranked, so are their disjoint union P+Q and their direct product P×Q. What about
their lexicographic product P ⊗ Q and their linear sum P ⊕ Q (see the definitions
given in Section 1.5 of Chapter 1)?

Exercise 2.3 [Covering N -free ordered sets] Show that a covering N -free ordered
set can be defined by each one of the following equivalent conditions:

1. P does not include any ordered subset {a,b,c,d}with a < b, c≺ b, c < d and a ‖ d.
2. Every maximal chain of P meets every maximal antichain of P.
3. P−x∩P−y �= ∅ implies P−x = P−y (where P−x = {z ∈ X : z ≺ x}).
4. xP+ ∩ yP+ �= ∅ implies xP+ = yP+ (where xP+ = {z ∈ X : x ≺ z}).
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Exercise 2.4 [Ranked covering N -free ordered sets; Leclerc and Monjardet (1995)]
Show that an ordered set P is covering N -free and ranked if and only if any ordered
subset of P defined by two consecutive rank-sets is a disjoint union of complete
bipartite ordered sets.

Prove that the class of ranked, connected, and covering N -free ordered sets
includes both classes of weakly ordered sets and of tree-ordered sets. Characterize
the ranked covering N -free lattices. When are they distributive? Provide examples of
non-modular covering N -free lattices.

Exercise 2.5 [Tree-ordered sets] Let P be an ordered set with a minimum, denoted
by 0. Prove that the following conditions are equivalent:

1. P is a tree-ordered set (see Definition 2.12).
2. Every element distinct from 0 is join-irreducible.
3. For every x of P, the interval [0,x] is a chain.
4. For any upper bounded subset {x,y} of P, x and y are comparable.
5. For all comparable elements x,y of P, there exists a unique chain between these

two elements.

Prove that such an ordered set is a meet-semilattice.
Show that a meet-semilattice P is a tree-ordered set if and only if, for all elements

x,y,z of P, |{x∧ y,y∧ z,z∧ x}|< 3.
Prove that the left factor and the right factor orders on words, defined in Exercise

1.3, are tree meet-semilattices.

Exercise 2.6 [Semilattice algebra] Let X be a set on which is defined an associative,
commutative, and idempotent operation ⊥. Prove that, if we set x ≤ y ⇐⇒ x⊥y = x
(respectively, x≤ y ⇐⇒ x⊥y = y) then (X ,≤) is a meet-semilattice with x∧y = x⊥y
(respectively, a join-semilattice with x∨ y = x⊥y).

Exercise 2.7 [Lattice algebra] Prove that in a lattice L, x∨ (x∧ y) = x = x∧ (x∨ y)
always holds (absorption laws).

Show that, if a set X is endowed with two associative, commutative, and idempotent
operations ⊥ and " which are moreover such that, for all x,y, x⊥(x"y) = x =
x"(x⊥y), then it can be endowed with a lattice order by writing x⊥y = x ∧ y and
x"y = x∨ y.

Exercise 2.8 [Lower directed ordered sets] An ordered set P is lower directed if, for
all x,y ∈ P, the set of all common lower bounds of x and y is not empty. Show that
this condition is equivalent to the existence of a minimum in P.

Prove that P is a meet-semilattice if and only if it is lower directed and has no
ordered subset of the type A2 ⊕A2 (that is, isomorphic to the crown CR2).
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Exercise 2.9 [Semimodular semilattices; Birkhoff (1940)] Let L be a ranked meet-
semilattice such that, for all x,y,z with z ≥ x,y, r(x)+ r(y) ≤ r(x∧ y)+ r(z). Prove
that L is lower semimodular.

Conversely, show that, if L is lower semimodular (and thus ranked, see Theorem
2.10), its rank satisfies the above inequality, which is equivalent to saying that the
height of the interval [x∧ y,y] is less than or equal to that of the interval [y,z]. Hint:
consider the image of a maximal chain y ≺ t1 ≺ ... ≺ z by the map ti → ti ∧ x.

Write the dual result characterizing upper semimodular join-semilattices.
Prove that a lattice is lower (respectively, upper) semimodular if and only if it

is ranked, with the rank satisfying, for all x,y, r(x) + r(y) ≤ r(x ∧ y) + r(x ∨ y)
(respectively, r(x)+ r(y)≥ r(x∧ y)+ r(x∨ y)).

Deduce that a lattice is lower (respectively, upper) semimodular if and only if, for
all x,y such that x ≺ x ∨ y, x ∧ y ≺ x (respectively, for all x,y such that x ∧ y ≺ x,
x ≺ x∨ y) holds.

Exercise 2.10 [Modular lattices; Birkhoff (1940)] Show that, if x,y,z are three ele-
ments of a lattice with x ≤ z, then x∨ (y∧ z)≤ (x∨ y)∧ z. Prove that, for any lattice
L, the following are equivalent:

1. L is modular.
2. L is ranked and, for all x,y ∈ L, r(x)+ r(y)= r(x∧ y)+ r(x∨ y).
3. For all x,y,z of L such that x ≤ y, x∨ (y∧ z)= (x∨ y)∧ z holds.
4. For all x,y ∈ L, the maps L #−→ x ∨ t and s #−→ s ∧ y define two inverse

isomorphisms between [x∧ y,y] and [x,x∨ y].
5. L has no sublattice of the type N5.

Indication: prove (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (1) and use the results in Exercise
2.9.

Show that a distributive lattice is modular.
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Morphisms of ordered sets

Let P be an ordered set modeling, for instance, a scheduling problem (see Section
7.5 in Chapter 7). The determination of some characteristics of this ordered set, for
example its linear extensions, requires the implementation of an algorithm where P is
represented by means of an appropriate data structure. In particular, the elements of
P may be suitably represented by sequences of symbols 0 and 1 of fixed length r. A
condition for this to hold is that, if c(x) and c(y) are the r-sequences representing two
elements x and y of P, then c(x) < c(y) if and only if x < y, where the former is the
order of the direct product 2r . In particular, the map c from P to this direct product must
be order-preserving. This is an example among many others where order-preserving
or reversing maps between two ordered sets are needed. This chapter is devoted to
the study of such maps, called morphisms.1 We define several fundamental types of
morphisms, such as codings (or embeddings, or mergings), closure and dual closure
operators, residuated, residual, and Galois maps. We are concerned with relations
between these various types of maps, canonical examples, and natural developments.

Several types of morphisms between ordered sets are defined in Section 3.1, namely
isotone (or strictly isotone) maps, antitone maps, and codings, which make a copy of
their domain appear in their range set. Such maps will frequently appear throughout
this book. For instance, Chapter 6 is devoted to codings from ordered sets to direct
products of chains, leading to the important notions of order dimension.

A canonical coding from any ordered set P to a Boolean lattice is provided by the
join-irreducible representation of the elements of P presented in Section 3.2. It is par-
ticularly efficient in many situations where P is a set of objects to study and where the
join-irreducible elements are “elementary” such objects. Then, we get an efficient tool
for reducing any element of P to a set of elementary objects. In the same section, vari-
ous properties and characterizations concerning irreducible elements are obtained, the
use of the so-called arrow relations allowing us to obtain particularly simple proofs.

Section 3.3 is devoted to closure (and dual closure) operators. Many mathematical
theories and models involve specific closures, namely logic, inductive, topological,

1 For some authors, the term morphism must be restricted to isotone maps.
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algebraic, convex, Kleene, transitive closures, etc. Here, the study of closures in
an arbitrary ordered set situates them in their most general framework, emphasizing
the properties common to all the above-mentioned special cases. Nevertheless, the
particular case of closures in the lattice of subsets of a set is the most frequently
encountered one. Such closures are associated with Moore families (also called closure
systems), which are their lattices of closed sets. We will go back to these topics in
Section 7.4, in relation to implication relations and the association rules that have an
important role in fields such as artificial intelligence or databases.

Residuated maps may be defined in several ways, for instance by strengthening a
characteristic property of isotone maps. The existence of a residuated (or residual)
map between two ordered sets P and Q implies the existence of an ordered subset
“common” to P and Q (in fact, of two isomorphic ordered subsets). This common
structure is obtained as the image of a closure on P as well as of a dual closure on
Q. In many contexts, especially in knowledge representation or data analysis, an
order duality gives these maps the equivalent (and fundamental) form of a Galois
connection. Various aspects of residuated, residual, and Galois maps are presented in
Section 3.4. A direct and somewhat unexpected use of residual maps in classification
will be considered in Section 7.3.

The Galois connections associated with binary relations and the related Galois (or
concept) lattices are particularly popular. This comes from the fact that these lattices
appear in the extremely diverse fields where objects are described by binary attributes.
They turned out to be particularly rich of applications. Section 3.5, which is divided
into three subsections, is devoted to this essential type of correspondence. There, we
make use of notions coming from each of the previous sections. Section 3.5.1 presents
the Galois lattice of a binary relation. It is shown in Section 3.5.2 that every lattice
L is obtained, up to isomorphism, as the Galois lattice of a relation between its join-
and its meet-irreducibles, called the lattice table of L; this table may be completed
with the arrow relations into an arrowed table. Finally, Section 3.5.3 describes the
procedure of the completion of an ordered set into a lattice, which is precisely a
canonical coding from any ordered set into a lattice.

3.1 Isotone and antitone maps: exponentiation

We first consider several types of map between ordered sets, preserving (more or less)
their order structure.

Definition 3.1 Let P = (X ,≤P) and Q = (Y ,≤Q) be two ordered sets and f a map
from P to Q. The map f is called:

1. isotone (or increasing) if it satisfies: for all x,x′ ∈ P, x ≤P x′ =⇒ f (x)≤Q f (x′);
2. strictly isotone if it satisfies: for all x,x′ ∈ P, x <P x′ =⇒ f (x) <Q f (x′);
3. a coding (or an embedding) from P to Q if it satisfies: for all x,x′ ∈P, x ≤P x′ ⇐⇒

f (x)≤Q f (x′).
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Property (3) above implies Property (2) which, in turn, implies Property (1). On the
other hand, if f is isotone and injective then it is strictly isotone (see also Exercise 3.1).
If f is a bijective coding from P to Q, we find again the notion of an order isomorphism
defined in Chapter 1 (Definition 1.9). In fact, a coding f is an isomorphism between
P and the ordered subset of Q induced by the image f (P).

The case of a “Boolean” coding – that is, a coding from P to the lattice of subsets of
a set – has been illustrated with a type hierarchy in Example 1.18. More generally, the
codings from an ordered set to a direct product of chains will be studied in Chapter 6.

Considering the previous conditions for maps from P to the dual Qd of Q, we
obtain dual definitions. For instance, a map f from P to Q is antitone (or decreasing)
if it is isotone from P to Qd : that is, such that x ≤P x′ implies f (x) ≥Q f (x′). A map
f from P to Q is called monotone if it is isotone or antitone. The dual isomorphisms
introduced in Chapter 1 (Definition 1.10) are particular antitone maps.

In the sequel, we generally omit the subscripts refering to a particular ordered set
and simply write, for instance, ≤ instead of ≤P .

Example 3.2 Let P = (X ,≤) be an ordered set. For any subset Y of X , we denote
UpperY the set of upper bounds of Y in P (as in Section 1.4.1). Clearly, the set
UpperX of upper bounds of X reduces to the greatest element of P when it exists and
is empty otherwise. On the other hand, observe that Upper∅ = X since, otherwise,
there would exist x ∈ P and y ∈ ∅ with y �≤ x (of course, such a y cannot exist!).
Then, with this remark, Y ⊆ Y ′ implies UpperY ′ ⊆ UpperY , for all Y ,Y ′ ⊆ X , and
so Upper is an antitone map on 2X . A second antitone map Lower on 2X maps any
subset Y of X to the set LowerY of lower bounds of Y in P, with similar properties.
It follows from these considerations that the join

∨∅ exists in P if and only if P has
a minimum 0P , which is then equal to

∨∅. Similarly,
∧∅ exists in P if and only if P

has a maximum 1P , which then satisfies
∧∅= 1P . In Section 3.5.3, the maps Upper

and Lower will be used to define the lattice completion of an ordered set P.

The reader can check that the types of map whose definitions follow are isotone.
Yet, an isotone map between two lattices is not always a lattice – or even a semilattice –
morphism (find an example).

Definition 3.3 Let P and Q be two ordered sets and f a map from P to Q.

1. If P and Q are meet-semilattices, then f is a meet-morphism if it is meet-preserving,
i.e., if, for all x,x′ ∈ P, f (x∧ x′)= f (x)∧ f (x′).

If, moreover, f is injective, it is a meet-coding from P to Q.
2. If P and Q are join-semilattices, then f is a join-morphism if it is join-preserving,

i.e., if, for all x,x′ ∈ P, f (x∨ x′)= f (x)∨ f (x′).
If, moreover, f is injective, it is a join-coding from P to Q.

3. If P and Q are lattices, then f is a lattice morphism if it is both a meet- and a
join-morphism.

If, moreover, f is injective, it is a lattice coding from P to Q and, if f is bijective,
it is a lattice isomorphism.
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Recall that the pointwise order on the set of maps from an ordered set P to an
ordered set Q is given by:

f ≤ g ⇐⇒ ∀x ∈ P, f (x)≤ g(x)

Definition 3.4 Let P and Q be two ordered sets. The operation which associates with
the pair (P,Q) the set of all isotone maps from P to Q, endowed with the pointwise
order ≤ on maps, is called exponentiation. The latter ordered set is denoted QP and
its order is called the exponentiation order.

Therefore, in this book, we restrict the notation QP to the set of all isotone maps
from an ordered set P to an ordered set Q. Here, we do not follow the common use
where this notation stands for the set of all maps from P to Q. Observe that, when P
is an antichain (i.e., x ≤ x′ if and only if x = x′), all maps from P to Q are isotone and
QP is equal to the set of all maps from P to Q.

Exercise 3.4 consists of showing that, if Q is a meet-semilattice (respectively, a
join-semilattice, a lattice), so is QP .

3.2 Join- and meet-generating sets

The search for “good” codings from ordered sets to some particular ordered sets is
a classic problem and a number of related results will be found in this book. Now,
in order to illustrate this type of problem with an important example, let us consider
some canonical codings from an ordered set P to a Boolean lattice 2E (see Example
1.18 in Chapter 1), where E is a finite set to be determined. To do so, we first define the
join-generating sets of P and, dually, its meet-generating sets. In the case of a lattice,
the more general notion of a generating set will appear in Chapter 5 (Definition 5.17).

Definition 3.5 A subset G of an ordered set P is said to be join-generating if every
element of P is the join of a subset of G, and it is meet-generating if every element
of P is the meet of a subset of G.

In the sequel, we mainly consider the case of join-generating sets. We first show that
a coding of the ordered set P preserving all the existing meets is associated with such
a subset (Proposition 3.6). The main result of this section is that any ordered set P has
a unique minimal join-generating set which is the set of its join-irreducible elements
(Proposition 3.11 and Corollary 3.12). It is proved by using preliminary results on
join-irreducibles and the downarrow relation ↓ (Proposition 3.8 and Lemma 3.10),
completed with particular results in the case of a meet-semilattice (Proposition 3.15).
The section ends with the statements of dual results about meet-generating sets and
meet-irreducible elements.
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If G is a join-generating set of P, so is every subset G′ of P including G. Every
ordered set P has at least one join-generating set which is P itself, since the equality
x = ∨

(x] always holds for every x ∈ P. Given a subset G of P, let us denote Gx the
set of lower bounds of x in G.

Proposition 3.6 Let G be a join-generating set of an ordered set P. For all x,y ∈ P,
the following properties hold:

1. x =∨
Gx.

2. x ≤ y if and only if Gx ⊆ Gy.
3. If x and y have a meet x∧ y, then Gx∧y = Gx ∩Gy.

Proof (1) Since G is a join-generating set, there exists A ⊆ Gx such that x =∨
A.

Every upper bound y of Gx is also an upper bound of A. Then, the fact that x is the
join of A – that is, its least upper bound – implies x ≤ y, and x is also the least upper
bound of Gx, that is to say x =∨

Gx.
(2) Gx ⊆Gy implies UpperGy ⊆UpperGx, which in turn implies y ∈UpperGx and,

finally, x ≤ y. The converse implication is immediate.
(3) is also immediate with, for any g ∈ G, the following equivalences: g ∈ Gx∧y if

and only if g ≤ x∧ y, if and only if (g ≤ x and g ≤ y), if and only if g ∈ Gx ∩Gy. �

Remark 3.7 When the join x ∨ y of x and y exists, the inclusion Gx ∪Gy ⊆ Gx∨y

holds but, in general, not the equality. Consider the lattice M3 whose diagram is given
in Figure 3.1, and its join-generating set G = M3. Then Gz∨t = G, with Gz = {0,z}
and Gt = {0, t}.

Given a join-generating set G of an ordered set P, Property (2) in Proposition
3.6 shows that the map x #−→ Gx is a coding from P to 2G . Moreover, according
to Property (3) in the same proposition, this coding preserves all the meets existing
in P. Especially, in a meet-semilattice, it is a meet-coding from P to 2G . In order
to obtain “economical” such codings, we search for minimal generating sets. First

z

1

0

t u

Figure 3.1 The lattice M3.
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observe that any join-generating set of P must include the set JP of join-irreducibles
of P (Chapter 1, Definition 1.41) since a join-irreducible cannot be obtained as the
join of other elements. We are going to show that, in fact, JP is itself a join-generating
set (Proposition 3.11), so the unique minimal one. We first give two characterizations
of join-irreducibles in an ordered set. One of them is based on the very important
arrow relations defined in Chapter 1, Definition 1.36 (recall that P−x denotes the set
of elements covered by x in P):

Proposition 3.8 Let P be an ordered set and j ∈ P. The following three conditions
are equivalent:

1. j is a join-irreducible element of P.
2. j is not the join of P−j.
3. There exists an element y of P such that j ↓ y.

Proof (1) =⇒ (2): immediate.
(2) =⇒ (3): if j is a minimal element of P, then P−j = ∅. If j was the unique

minimal element, that is, the minimum of P, the equality j = ∨∅ = ∨
(P−j) would

hold (see Example 3.2), a contradiction with (2). So there is another minimal element
y in P with, clearly, j ↓ y (i.e., with j minimal among all elements z of P such that
z �≤ y). If j covers a unique element y, then it satisfies (2) with P−j = {y} and j ↓ y.
Finally, if j covers at least two elements and satisfies (2), it is not the unique minimal
upper bound of P−j. So, there exists such an upper bound y of P−j which is not
comparable with j and the property j ↓ y still holds.

(3) =⇒ (1): if j is minimal then it is not minimum since it is not less than or equal
to y. Then, the empty set has no join and {j} is the only subset A of P satisfying
j = ∨

A that is, j is join-irreducible. Otherwise, if j = ∨
A for a non-empty subset A

with j /∈ A, all elements of A are less than j and – since j ↓ y – smaller than y. Then
j ≤ y, a contradiction. �

Remark 3.9 The above proof provides a classification of the join-irreducible
elements of an ordered set P into three types. For j ∈ JP , one has:

1. either |P−j| = 0, where j is minimal in P but is not its minimum;
2. or |P−j| = 1, where j covers a unique element, denoted by j−;
3. or |P−j| ≥ 2, where P−j has no join.

The join-irreducibles of the first two types are easy to find in the diagram of
P, whereas recognizing those of the third type is less immediate. It requires, for
instance, the search for the minimal upper bounds of P−j. In the ordered set given in
Figure 3.2, a, b, and c are join-irreducibles as minimal elements, g because it covers
a unique element, d, e, and f because, for j ∈ {d,e, f }, the set of upper bounds of P−j
has two minimal elements (for instance, d and k are the minimal upper bounds of
P−d = {a,b}). The elements h, i, and k are not join-irreducible.
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Figure 3.2 An ordered set with 7 join-irreducible elements.

Proposition 3.11 is an essential result, implying that the set JP of join-irreducibles
of any ordered set P forms a join-generating set of P. Lemma 3.10 leads to a very
simple proof of this fact.

Lemma 3.10 Let P be an ordered set. For all x,y ∈ P such that x �≤ y, there exists
j ∈ JP such that j ≤ x and j ↓ y.

Proof Assume x �≤ y and consider the set A = {z ∈ P : z ≤ x and z �≤ y}. First,
A �= ∅ since x ∈ A. Now, we prove that a minimal element j of A is also minimal in
{z ∈ P : z �≤ y}. Indeed, assume that j is minimal in A and that there exists t < j with
t �≤ y. So, since t < x, then t ∈ A with t < j; a contradiction. Thus j ↓ y holds and, by
Proposition 3.8, j ∈ JP . �

Proposition 3.11 For any element x of an ordered set P, the equality x =∨
Jx holds,

where Jx = {j ∈ JP : j ≤ x}.

Proof If x is join-irreducible, it is the maximum of Jx and the property is satisfied.
Otherwise, it is clear that x is an upper bound of Jx. Assume that there exists another
upper bound y of Jx, with x �≤ y. According to the previous lemma, there exists j ∈ JP

such that j ≤ x and j ↓ y. So, j ∈ Jx and j �≤ y, and y cannot be an upper bound of Jx.
Finally, x is the join of Jx, as required. �

The two items in the following corollary are respectively derived from Propositions
3.11 and 3.6.

Corollary 3.12 Let P be an ordered set.

1. A subset G of P is join-generating if and only if it includes the set JP of join-
irreducibles of P.

2. If P is a lattice, then the map x #−→ Jx from P to the lattice of subsets of JP is a
meet-coding.



74 Morphisms of ordered sets

Definition 3.13 When an ordered set P has a minimum 0P , any element covering this
minimum is called an atom. An ordered set P with a minimum is said to be atomistic
if all its join-irreducibles are atoms.

Indeed, an atom a is always a join-irreducible element (with P−a = {0P}, see
Remark 3.9) and, according to the previous proposition and corollary, an ordered set
is atomistic if and only if every element is a join of atoms.

Example 3.14 Let F ⊆ 2E be a family of subsets of a set E such that {e} ∈F , for any
e ∈ E. From the equality F =⋃{{e} : e ∈ F} satisfied by any F ∈F , we observe that
the 1-element subsets of E are the join-irreducibles of the ordered set (F ,⊆), which
is atomistic if it contains the empty set. Thus, in the particular case where E is the
set of ordered pairs of a set I , and F the set Os

I of strict orders on I , it follows that
the ordered set (Os

I ,⊆) is atomistic and that its atoms are the strict orders on I with a
unique ordered pair of distinct elements.

Similarly, for the family F ′ = {F ∪K : F ∈F} where K is a fixed subset of E, the
join-irreducibles are the elements of the form {e}∪K , with e∈E\K . In the case where
F ′ is the set OI of orders on I (the subset K being the diagonal D = {(i, i), i ∈ I}),
the join-irreducibles are the orders on I containing a unique ordered pair of distinct
elements. All of them are atoms in the ordered set (OI ,⊆), which is atomistic.

In a meet-semilattice L, where then every upper bounded subset has a join (Chap-
ter 2, Proposition 2.16), there is a very simple characterization of the join-irreducibles
in terms of the covering relation since, in this case, all join-irreducibles belong to the
second type described in Remark 3.9. A simple characterization of the downarrow
relation j ↓ x also follows.

Proposition 3.15 An element j of a meet-semilattice L is join-irreducible if and only
if it covers a unique element of L, denoted by j−. Moreover, for any x ∈ L, j ↓ x holds
if and only if j∧ x = j− holds.

Proof Let j be a join-irreducible of a meet-semilattice L. The latter has a minimum
which, as already observed, is not join-irreducible and so |L−j| = |{x ∈ L : x ≺ j}| ≥ 1.
Assume |L−j| ≥ 2. Since L−j has j as an upper bound, it has a join y (Proposition 2.16),
with y ≤ j. Then, for any x ∈ L−j, the inequalities x ≤ y ≤ j hold. Since x ≺ j (i.e.,
x is covered by j), then either x = y or y = j, but the first equality cannot hold since
there exists in L−j an element distinct from x and necessarily less than y. The second
equality j= y=∨

L−j is in contradiction with the assumption that j is join-irreducible.
Finally, |L−j| = 1 holds. The converse implication is Item (2) in Remark 3.9.

Let x ∈ L satisfying j ↓ x. By definition, j− ≤ x and, clearly, any common lower
bound of j and x is less than or equal to j−, and so j∧x = j−. Conversely, if j∧x = j−
then j �≤ x holds, whereas every lower bound of j− is a lower bound of x. Finally,
j ↓ x as required. �
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Applying the duality principle (see page 10) to meet-generating sets (Definition
3.5) and to meet-irreducible elements (Definition 1.41), we obtain the following
properties and notions, dual of those presented from Proposition 3.6 to Proposition
3.15 (and where Hx denotes the set of the elements of H greater than or equal to x).

Proposition 3.16 If H is a meet-generating set of an ordered set P, then the following
properties hold for all x,y ∈ P:

1. x =∧
Hx.

2. x ≤ y if and only if Hy ⊆ Hx.
3. If x and y have a join x∨ y, then Hx∨y = Hx ∩Hy.

Let MP be the set of meet-irreducible elements of P and Mx the set of the elements
of MP greater than or equal to x (recall that xP+ is the set of the elements covering
x in P).

Proposition 3.17 Let P be an ordered set and m ∈ P. The following three conditions
are equivalent:

1. m is a meet-irreducible element of P.
2. m is not the meet of mP+.
3. There exists an element x of P satisfying x ↑ m.

Lemma 3.18 Let P be an ordered set. For all x,y ∈ P such that x �≤ y, there exists
m ∈ MP such that y ≤ m and x ↑ m.

Proposition 3.19 For any element x of an ordered set P, the equality x = ∧
Mx

holds.

Then, a subset H of P is meet-generating if and only if it includes the set MP of
meet-irreducibles of P (we leave to the reader the less straightforward dualization of
Item (2) in Corollary 3.12). Finally, Remark 3.9 dualizes as follows: an element m of
P is meet-irreducible if it is either maximal but not maximum, or covered by a unique
element, then denoted by m+, or if it satisfies |mP+| ≥ 2 and is not the only minimal
upper bound of mP+.

Definition 3.20 When an ordered set P has a maximum, any element covered by
this maximum is called a coatom. An ordered set P with a maximum is said to be
coatomistic if all its meet-irreducibles are coatoms.

Thus, if P is coatomistic, each of its elements is a meet of coatoms.

Proposition 3.21 An element m of a join-semilattice L is meet-irreducible if and only
if it is covered by a unique element of L, denoted by m+. Moreover, for any x ∈ L, one
has x ↑ m if and only if x∨m = m+.
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3.3 Closure and dual closure operators

As mentioned in the introduction to this chapter, closure and dual closure operators
defined on an ordered set are found everywhere in (pure or applied) mathematics.
These two notions are dual and, here, we mainly study closures. We leave to the
reader the dualizations of some of the obtained results. These results concern the
equivalence between closure operators and closure nets, and the characterization of
the latter (Propositions 3.26 and 3.27). This characterization is particularized to the
case of lattices (Proposition 3.28), then to the case of lattices of subsets of a set, where
it leads to the important notion of Moore families (Definition 3.29).

Let P, Q, and V be three ordered sets. The composition of two maps f : P #−→ Q
and g : Q #−→V is denoted by gf . Thus, for any x ∈P, gf (x)= g(f (x)); if P =Q =V ,
f 2 denotes ff , f 3 denotes f 2f , etc.

Definition 3.22 Let P be an ordered set and ϕ a map on P (that is, a map from P to
P). The map ϕ is said to be:

• Idempotent if ϕ2 = ϕ, that is, if ϕ(ϕ(x))= ϕ(x), for any x ∈ P.
• Extensive if idP ≤ ϕ (where idP is the identity map on P), that is, if x ≤ ϕ(x), for

any x ∈ P.
• Reductive if ϕ ≤ idP , that is, if x ≥ ϕ(x) for any x ∈ P.
• A retract if it is isotone and idempotent.
• A closure (or a closure operator) if it is an extensive retract.
• A dual closure (or a dual closure operator) if it is a reductive retract.

In the literature, a closure is also sometimes called a hull operator and a dual closure
is sometimes called an anticlosure, an interior or a kernel operator.

A fixed point of a map ϕ on P is an element x such that ϕ(x) = x. When ϕ is
idempotent, the set of fixed points of ϕ is equal to the image ϕ(P) of P by ϕ.

Definition 3.23 Let ϕ be a map on P.

• If ϕ is a closure, its fixed points are called the closed elements of ϕ (such an element
is also said to be closed by ϕ).

• If ϕ is a dual closure, its fixed points are called the open elements of ϕ (such an
element is also said to be open by ϕ).

Example 3.24 It may be checked that the map ϕ defined on the ordered set P whose
diagram is given in Figure 3.3 is a closure: ϕ(a)= ϕ(c)= c, ϕ(b)= b, ϕ(d)= ϕ(f )=
f , and ϕ(e)= ϕ(1)= 1.

In the sequel, we obtain some properties of closures (and the dual properties for
dual closures). Let us denote �ϕ (or simply �) the set of closed elements of a closure
ϕ defined on P = (X ,≤).
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Figure 3.3 A closure on an ordered set P.

Definition 3.25 Let P = (X ,≤) be an ordered set. A closure net – or a Moore subset
– of P is a subset � of P such that, for any x ∈ P, the set {h ∈ � : x ≤ h} of upper
bounds of x in � has a minimum, denoted by ϕ�(x).

So, when we have a closure net a map �, we also have a map ϕ�.
Let us denote B the set of all closure nets of P = (X ,≤) and C the set of all closure

operators on P. The set B is endowed with the inclusion order (B is then an ordered
subset of 2P(X )) and – since closures are isotone maps – the set C is endowed with
the restriction of the exponentiation order on PP (Definition 3.4). According to the
next proposition, there exists a dual isomorphism between these two ordered sets. In
other terms, the notions of a closure operator and a closure net are equivalent.

Proposition 3.26 The mapsϕ #−→�ϕ and� #−→ϕ� are dual isomorphisms between
the ordered set C of closure operators on P and the ordered set B of closure nets of P.

Proof Let ϕ be a closure on P. For all x ∈ P, h ∈ �ϕ , x ≤ h implies x ≤ ϕ(x) ≤
ϕ(h) = h, so ϕ(x) is the minimum of the subset {h ∈ �ϕ : x ≤ h} of P, and �ϕ is a
closure net of P. Conversely, if � is a closure net of P, the map ϕ� defined above
is a closure: it is extensive and idempotent by definition, and also isotone since, for
all x ≤ y, the minimum ϕ�(y) of {h ∈ � : y ≤ h} belongs to the set {h ∈ � : x ≤ h}.
Finally, given a closure net � of P, it is easy to check that the set of closed elements
of the closure ϕ� is again �, and that the closure associated with the closure net �ϕ

is again ϕ.
Let ϕ and ϕ′ be two closures on P. We show that ϕ ≤ ϕ′ implies �ϕ′ ⊆ �ϕ . Let

h′ ∈ �ϕ′ be a closed element of ϕ′. By assumption, ϕ(h′) ≤ ϕ′(h′) = h′ and also
h′ ≤ ϕ(h′) since the closure ϕ is extensive. So, h′ = ϕ(h′) and every closed element
h′ of ϕ′ is a closed element of ϕ. The inclusion �ϕ′ ⊆�ϕ follows.

Let � and �′ be two closure nets of P. We show that � ⊆ �′ implies ϕ�′ ≤ ϕ�.
For any x ∈ P, � ⊆ �′ implies {h ∈ � : x ≤ h} ⊆ {h′ ∈ �′ : x ≤ h′} and so ϕ�′(x) =
min{h′ ∈�′ : x ≤ h′} ≤ ϕ�(x)= min{h ∈� : x ≤ h}. The inequality ϕ�′ ≤ ϕ� for the
exponentiation order follows. �

It is also easy to check that, for any x ∈ P, ϕ(x) is the maximum of the set {x′ ∈ P :
ϕ(x′)= ϕ(x)}. Recall (see Section 1.4.1) that a subset Q of P is said to be meet-closed



78 Morphisms of ordered sets

if, as soon as two elements h and h′ of Q have a meet h∧ h′, the latter belongs to Q.
The following properties hold for any closure net �.

Proposition 3.27 If � is a closure net of an ordered set P then � is a meet-closed
subset of P containing every maximal element of P.

Proof Let h and h′ be two elements of a closure net � of P. If h∧ h′ exists in P
then, by isotony of the closure ϕ associated with �, we have ϕ(h∧ h′) ≤ ϕ(h) = h;
similarly ϕ(h∧ h′) ≤ h′, and so ϕ(h∧ h′) ≤ h∧ h′ which, by extensivity of ϕ, leads
to ϕ(h∧ h′) = h∧ h′, i.e., h∧ h′ ∈ �. The second part is obvious: h ≤ ϕ(h) with h
maximal in P, implies h = ϕ(h). �

The reader can investigate the validity of the converse result of this proposition.
The notion of a dual closure net of P = (X ,≤), equivalent to that of a dual closure

on P, is dually defined. A dual closure net of P is a subset  of P such that, for any
x ∈P, the set of lower bounds of x in  has a maximum; then it is a join-closed subset
of P containing every minimal element of P.

Proposition 3.27 implies that a closure net � of a lattice L is a sub-meet-semilattice
of L and contains the greatest element 1L of L. Conversely, if � is a subset of L
satisfying these conditions then, for any x ∈ L, the set {h ∈ � : x ≤ h} is non-empty,
lower bounded by x and has a minimum. According to Theorem 2.17 in Chapter 2,
we then obtain:

Proposition 3.28 Asubset�of a lattice L is a closure net if and only if it is meet-closed
and contains the maximum of L. Then � is a lattice, sub-meet-semilattice of L.

The meet operation of the lattice � is simply the restriction to � of the meet
operation of L. Yet, the join (in L) h∨ h′ of two closed elements h and h′ does not in
general belong to �. With the notation � for the join operation of the lattice �, the
equalities h�h′ =∧{x ∈� : h∨ h′ ≤ x} = ϕ�(h∨ h′) hold.

The result of Proposition 3.28 obviously dualizes to dual closures. The dual closure
nets on a lattice L are characterized as join-closed subsets of L containing the least
element of L and are lattices sub-join-lattices of L.

When L is the lattice 2E of subsets of a set E, the previous characterization of closure
nets corresponds with the definition of an important class of families of subsets, called
Moore families.

Definition 3.29 A Moore family (or a closure system) on a set E is a subset F of 2E

satisfying the following two conditions:

• E ∈F .
• F ,F ′ ∈F implies F ∩F ′ ∈F .

When ϕ is a closure on 2E , its closed elements are called the closed sets of ϕ.
Now the following results hold.
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Proposition 3.30 Let E be a set.

1. Let ϕ be a closure on 2E. Then the set of its closed sets is a Moore family Fϕ .
2. Let F be a Moore family on E. The map ϕF defined by A #−→ ϕF (A) = ⋂{F ∈

F : A ⊆ F} is a closure on 2E. Ordered by inclusion, F is a lattice with, for all
A,B ⊆ E, A∧B = A∩B and A∨B = ϕF (A∪B).

3. The set F, ordered by inclusion, of Moore families on E and the set C, ordered
by exponentiation, of closures on 2E are two dual lattices by the maps F #−→ ϕF
and ϕF #−→F .

This proposition results from the previous definitions and propositions, except for
the fact that F and C are two dual lattices, which is easy to see. The former lattice
will be considered in Section 7.4 (starting from Theorem 7.68).

The results given in Proposition 3.30 can obviously be dualized to the case of dual
closures on 2E . The notion of a Moore family is then replaced with that of a union-
stable family of subsets containing the empty set, that can be called a dual closure
system.

In the sequel, when a map φ is a closure on 2E , we will frequently say that φ is a
closure on E.

Example 3.31 Let L be a lattice and G a join-generating set of L. Consider the
family of subsets G = {Gx,x ∈ L} (with Gx = G ∩ (x]). According to Property (3) in
Proposition 3.6, the family G is intersection-stable; moreover G1L = G, where 1L is
the maximum of L. So, the family G is a Moore family on G and the lattices (G,⊆)

and L are obviously isomorphic. We have then shown that every lattice L is obtained,
up to isomorphism, as a lattice of closed sets, which forms a representation of L by
a family of subsets. The closure ϕ associated with G is given, for any H ⊆ G, by
ϕ(H )= {g ∈ G : g ≤∨

H }.
Especially, for such a representation of a lattice L by a family of subsets, one had

better use the smallest join-generating set of L, i.e., the set JL of its join-irreducibles.
The family of closed sets obtained in this way and the corresponding closure will
appear in Theorem 3.52.

Example 3.32 Let E be a finite set and D an arbitrary family of subsets of E. Afamily
F = {⋂B : B⊆D}, denoted m(D), may be derived from D. The family F is a Moore
family since it contains E (obtained with B =∅) and is obviously intersection-stable.
Since D is a meet-generating set of the lattice F , it contains all its meet-irreducibles.
Then, observe that restricting D to the set of these meet-irreducibles does not change
the obtained Moore family F .

We will often find this construction of the Moore family m(D) again. In Section
3.5 we define two families of closed sets associated with a binary relation and, in
Proposition 3.46, show that they are obtained in this way. In Section 7.4 we consider
the closure associated with the family m(D). Another interesting example is obtained
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when D is a hyperplane arrangement, i.e., a finite family of hyperplanes in a lin-
ear, affine or projective space. The subspaces belonging to m(D), i.e., obtained by
intersection of hyperplanes in D, are called the flats of the arrangement. Ordered by
dual inclusion they form – when the intersection of all the hyperplanes is empty – a
geometric lattice (see Exercise 7.16).

Example 3.33 Given an ordered set P = (X ,≤) and a subset Y of P, we write
(Y ] = {x ∈ P : there exists y ∈ Y such that x ≤ y} and [Y ) = {x ∈ P : there exists
y ∈ Y such that y ≤ x} (these notations are extensions of the notations (x] and [x)
used for principal downsets and upsets). It may be verified that the maps Y #−→ (Y ]
and Y #−→ [Y ) are closures on 2X , the closed sets of which are, respectively, the
downsets and the upsets of P. These maps will respectively be called the down and
the up closure of P (these closures are obtained in a different way in Exercise 3.13).

3.4 Residuated, residual, and Galois maps

Three types of map between two ordered sets are studied in this section. Each of them
may serve to define the other two (see Definition 3.35 and Theorem 3.36 with its
comments). These maps are as important as closures or dual closures, which moreover
may be derived from the former (Theorem 3.37). Especially, they are consubstantially
related to the – fundamental – notion of a Galois connection (Definition 3.40). After
the study of their properties in arbitrary ordered sets, we consider the case of lattices
(Proposition 3.42 and Corollary 3.43). In the next section a particularization of the
latter case will lead to the notion of the Galois lattice of a relation.

Let P and Q be two ordered sets and f a map from P to Q. For any subset Y of Q,
the inverse image of Y by f is the subset f −1(Y ) = {x ∈ P : f (x) ∈ Y }. Isotone maps
may be characterized in terms of inverse images; the very simple proof of the next
result is left to the reader.

Proposition 3.34 Let f be a map from an ordered set P to an ordered set Q. Then f
is isotone if and only if one of the following equivalent conditions holds:

1. The inverse image f −1(A) of any downset A of Q is a downset of P.
2. The inverse image f −1((y]) of any principal downset (y] of Q is a downset of P.
3. The inverse image f −1(A) of any upset A of Q is an upset of P.
4. The inverse image f −1([y)) of any principal upset [y) of Q is an upset of P.

It is then natural to consider Condition (1) below, more restrictive than Condition
(2) in the above Proposition 3.34. With two different dualizations, we define three
particularly interesting classes of maps.
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Definition 3.35 A map f from an ordered set P to an ordered set Q is said to be:

1. Residuated if, for any y ∈ Q, the inverse image f −1((y]) of the principal downset
(y] of Q is a principal downset of P.

2. Residual if, for any y ∈Q, the inverse image f −1([y)) of the principal upset [y) of
Q is a principal upset of P.

3. A Galois map if it is a residuated map from P to the dual Qd of Q.

A more intuitive way to state Condition (1) in the latter definition is the following:
the map f is residuated if, for any y in Q, the inequation f (x) ≤ y has a greatest
solution.

The following results provide two characterizations of residuated and of residual
maps, showing in particular that these two types of map always make a pair.

Theorem 3.36 Let f be a map from an ordered set P to an ordered set Q. The
following three conditions are equivalent:

1. The map f is residuated.
2. There exists a map g from Q to P such that, for all x ∈ P and y ∈ Q, x ≤ g(y) if

and only if f (x)≤ y.
3. The map f is isotone and there exists an isotone map g from Q to P such that the

map ϕ = gf is extensive and the map ψ = fg is reductive.

Proof (1) =⇒ (2): define g by g(y)= max f −1((y]) for any y ∈ Q, to obtain (2).
(2) =⇒ (1): if (2) is satisfied then, for any y ∈ Q, the equality f −1((y]) = (g(y)]

holds, that is, (1).
(1)=⇒ (3): if f satisfies (1) then, according to Condition (2) in Proposition 3.34, it is

isotone. Moreover, since f also satisfies (2) then, for g, the equality g−1([x))= [f (x))
holds for any x∈P and, according to the last condition in Proposition 3.34, g is isotone.
The last part of (3) is obtained by taking successively y = f (x) and x = g(y) in the
double implication of (2).

(3) =⇒ (1): assume that f satisfies (3) and let y ∈ Q and x ∈ f −1((y]), i.e., such
that f (x) ≤ y. Since gf is extensive and g isotone, the inequalities x ≤ gf (x) ≤ g(y)
hold and so f −1((y]) ⊆ (g(y)]. For any x′ ∈ P such that x′ ≤ g(y), the inequalities
f (x′)≤ fg(y)≤ y hold and so (g(y)] ⊆ f −1((y]), which completes the proof. �

The map g from Q to P associated with the residuated map f is in fact a residual map
and is characterized by the equivalent Conditions (2′) and (3′), dual of Conditions
(2) and (3) in Theorem 3.36:

1′. The map g is residual.
2′. There exists a map f from P to Q such that, for all x ∈ P and y ∈ Q, x ≤ g(y) if

and only if f (x)≤ y.
3′. The map g is isotone and there exists an isotone map f from P to Q such that the

map ϕ = gf is extensive and the map ψ = fg is reductive.
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Figure 3.4 f is a residuated map from P to Q and g is a residual map from Q to P.

Dually, the map f associated with the residual map g is a residuated map (see
Figure 3.4). Now, Condition (3) in Theorem 3.36 allows us to show that the composi-
tion of a residuated map by its associated residual is a closure, while the composition
of this residual by the residuated is a dual closure.

Theorem 3.37 Let P and Q be two ordered sets, f a residuated map from P to Q and
g the associated residual map. The following properties hold:

1. fgf = f and gfg = g.
2. The composition map ϕ = gf is a closure on P and the composition map ψ = fg

is a dual closure on Q.
3. The ordered subset �= ϕ(P) of closed elements of ϕ in P is equal to g(Q) and the

ordered subset  =ψ(Q) of open elements of ψ in Q is equal to f (P). The ordered
subsets � and  are isomorphic, by the restrictions to the latter of f and g.

Proof (1) If f is a residuated map and g is its associated residual map, then the
following inequalities hold: gf (g(y)) ≥ g(y) since gf is extensive, fg(y) ≤ y since
fg is reductive, and g(fg(y)) ≤ g(y) since g is isotone. So gfg = g and, similarly,
fgf = f .

(2) The map ϕ = gf is extensive, isotone as the composition of two isotone maps,
and idempotent since, according to Item (1) above, ϕ2 = gfgf = gf = ϕ; hence it is
a closure on P. Similarly, ψ = fg is isotone, reductive, and idempotent, hence a dual
closure on Q.

(3) According to Item (1), for any x ∈ P, ψ(f (x)) = f (x) and so f (P) ⊆ . Since
any open element h′ of  satisfies h′ =ψ(h′)= fg(h′), the inclusion  ⊆ f (P) holds,
and so  = f (P). Similarly, g(Q) = �. The equalities h = gf (h) and h′ = fg(h′) for
all h∈�,h′ ∈, together with the equalities  = f (P) and g(Q)=�, imply that the
restrictions of f to � and of g to  are inverse bijections. �
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Table 3.1 Table of the maps f and g

x ∈ P 1 2 3 4 5 6 7 8 9
f (x) a e a d a j k a k

y ∈ Q a b c d e h i j k
g(y) 1 2 6 4 2 7 7 6 7

e

id

a

j

b

h
k

c

Q
P

5

6

4

3

1

2

8

9

Figure 3.5 The closure ϕ = gf on P and the dual closure ψ = fg on Q.

Example 3.38 Figure 3.5 shows two ordered sets P and Q together with a pair (f ,g)

of maps, where f is a residuated map from P to Q and g is the corresponding residual
map from Q to P (these maps are given in Table 3.1). The figure also shows the
closure ϕ = gf on P, the dual closure ψ = fg on Q, and the isomorphism between
the images ϕ(P) and ψ(Q). The closure ϕ(x) of an element x of P is represented by
arrowing the covering arc if ϕ(x) covers x, or with an arrow from x to ϕ(x) otherwise.
The representation of the dual closure ψ on Q is similar. The dotted arrows give
the isomorphism between ϕ(P) and ψ(Q). The closed elements of P, like the open
elements of Q, are represented by loops and black points.

From Definition 3.35, a map f from P to Q is a Galois map if the inverse image
by f of any principal upset of Q is a principal downset of P. Theorem 3.36 may then
be rewritten as follows.

Theorem 3.39 Let P and Q be two ordered sets and f a map from P to Q. Then f is a
Galois map if and only if it satisfies one of the following equivalent three conditions:

1. For any y ∈ Q, the inverse image f −1([y)) of the principal upset [y) of Q is a
principal downset of P.

2. There exists a map g from Q to P such that, for all x ∈ P and y ∈ Q, x ≤ g(y) if
and only if y ≤ f (x).
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x

f(x)

g(y)

y

P Q

f−1

Figure 3.6 f is a Galois map from P to Q.

3. The map f is antitone and there exists an antitone map g from Q to P such that
both maps ϕ = gf and ψ = fg are extensive.

The equivalence in Condition (2) underlines the fact that f and g play symmetric
roles. Indeed, the map g in Theorem 3.39 is also a Galois map and is called the
Galois map associated with f (similarly f is the Galois map associated with g). See
Figure 3.6.

Definition 3.40 A Galois connection between two ordered sets P and Q is a pair
(f ,g), where f is an antitone map from P to Q, g is an antitone map from Q to P, and
where both composition maps gf and fg are extensive.

From Item (3) in Theorem 3.39, a Galois connection is characterized by the fact
that f is a Galois map from P to Q; g is then the Galois map from Q to P associated
with f (it is also the residual map from Qd to P associated with the residuated map f
from P to Qd ). Theorem 3.37 (and Proposition 3.28 in the lattice case) allows us to
state:

Theorem 3.41 Let (f ,g) be a Galois connection between two ordered sets P and Q.
The following properties hold:

1. fgf = f and g = gfg.
2. The composition maps ϕ = gf and ψ = fg are two closures, respectively on P and

on Q, satisfying ϕ(P)= g(Q) and ψ(Q)= f (P).
3. The closure nets ϕ(P) and ψ(Q) are dual isomorphic, by the restrictions to these

ordered sets of f and g. If, moreover, P and Q are two lattices, then ϕ(P) and
ψ(Q) are two dual lattices.

It follows from what precedes that the notions of a residuated, a residual, a Galois
map, and a Galois connection between two ordered sets are equivalent. They are very
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frequently encountered and it may be more convenient to use one or another of these
notions according to the properties that will be particularly useful in a given situation.
For instance, it is easy to see that the composition of two residuated (respectively,
residual) maps is still residuated (respectively, residual) – see Exercise 3.7 – a property
which is no longer valid for Galois maps. On the other hand, the two maps in a Galois
connection play a symmetric role, which may be an interesting feature. It will appear
in the following section that these connections are fundamental for the construction
of classes of objects defined by their common properties.

One may wonder whether there always exists some map of one of the above types
between any two given ordered sets P and Q. The answer is negative: if, for instance,
Q has a greatest element 1Q then (1Q] = Q. It follows that f −1(Q)= P, for any map
f from P to Q. Then, if P has no maximum, Condition (1) in Definition 3.35 cannot
be satisfied and there is no residuated map from P to Q. Yet, the situation is not the
same when both P and Q are lattices.

Proposition 3.42 Let L and L′ be two lattices and f a map from L to L′. Then, f is
residuated if and only if it is a join-morphism satisfying f (0L)= 0L′ .

Proof Assume that f is a residuated map. Since the minimum 0L of L belongs
to the principal ideal f −1((0L′ ]) = f −1(0L′), we have f (0L) = 0L′ . Let x,x′ ∈ L and
y = f (x)∨ f (x′); from the isotony of f , f (x) ≤ f (x∨ x′) and f (x′) ≤ f (x∨ x′). Thus
y ≤ f (x∨ x′). Now, let us show f (x∨ x′)≤ y. From the isotony of the residual map g
associated with f and the extensivity of gf , f (x) ≤ y implies x ≤ gf (x) ≤ g(y). The
same holds for x′ and x∨ x′ ≤ g(y). Thus, by isotony of f and since fg is reductive,
f (x∨ x′)≤ fg(y)≤ y. The equality f (x∨ x′)= f (x)∨ f (x′) follows.

For the converse, assume that the map f is a join-morphism satisfying f (0L) =
0L′ . It is then isotone since x ≤ x′ implies f (x ∨ x′) = f (x′) = f (x)∨ f (x′), and so
f (x) ≤ f (x′). For y ∈ L′, the set {x ∈ L : f (x) ≤ y} is never empty since f (0L) = 0L′ .
Write g(y) = ∨{x ∈ L : f (x) ≤ y} = ∨

f −1((y]). By definition, f −1((y]) ⊆ (g(y)].
Since f is a join-morphism, we also have fg(y)=∨{f (x) : x ∈ L, f (x)≤ y} ≤ y. Thus,
g(y)∈ f −1((y]) and, by isotony of f , (g(y)] ⊆ f −1((y)]. Finally, (g(y)] = f −1((y)] for
any y ∈ L′, and f satisfies Item (1) in Definition 3.35, a characterization of residuated
maps. �

Corollary 3.43 Let L and L′ be two lattices and f a map from L to L′. Then f is:

• residual if and only if it is a meet-morphism satisfying f (1L)= 1L′ ;
• a Galois map if and only if [f (0L)= 1L′ and, for all x,x′ ∈L, f (x∨x′)= f (x)∧f (x′)].

It follows from Theorem 3.41 that a Galois connection (f ,g) between two lattices
L and L′ defines two dual lattices of closed elements f (L)= fg(L′)⊆ L′ and g(L′)=
gf (L)⊆ L. Denoting � and �′ the join operations of these lattices of closed sets, and
∧ and ∧′ the meet operations of L and L′, the following holds for all closed elements
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h,k of L:
f (h∧ k)= f (h)�′f (k) and f (h�k)= f (h)∧′ f (k)

Example 3.44 Let E and E′ be two sets and R ⊆ E × E′ a relation (and Rc the
complementary relation of R). Define a map f0 : 2E #−→ 2E′

by f0(A)= {b ∈ E′ : aRb
for at least one element a of A}, for any subset A of E. Then, f0(∅)= ∅ and it is clear
that f0(A∪A′)= f0(A)∪ f0(A′), for all A,A′ ⊆ E. Thus, from Proposition 3.42, f0 is a
residuated map from 2E to 2E′

. The residual map g0 associated with f0 is defined by
g0(B)= {a ∈ E : aR⊆ B}, for any subset B of E′ (with aR= {b ∈ E′ : aRb}). For a use
of such maps to define “upper” or “lower” concepts, see Section 3.6 (Further topics
and references).

Remark 3.45 The constant map that sends each element of the lattice L to the least
element 0L′ of the lattice L′ is obviously residuated. On the other hand, from the
representation of any element of L as a join of join-irreducibles, a residuated map is
determined by its restriction to the set JL of join-irreducibles of L. Actually, if L′ is
distributive the reader can check that any isotone map from JL to L′ is the restriction
to JL of a residuated map from L to L′. Thus, the ordered set (subset of L′L) of the
residuated maps from L to L′ is isomorphic to the ordered set L′JL which, according
to Exercise 3.4, is a lattice (see also Exercises 3.11 and 3.12).

3.5 The Galois connection associated with a binary relation

We have seen in the previous section that one of the main features of a Galois connec-
tion is to reveal two dual substructures in two different ordered sets. When, moreover,
the latter are lattices, many further properties are obtained. In this section, the par-
ticular case where these lattices are the lattices of subsets of two sets is considered.
This case leads, on the one hand, to many applications and, on the other hand, to
general results on lattice representation. It also allows us to establish the existence of
a canonical coding of any ordered set in a lattice by the completion procedure.

3.5.1 Galois lattice

A binary relation between two sets E and E′ is a subset R of the set E×E′ of ordered
pairs {(x,y) : x ∈ E,y ∈ E′}. In Example 3.44, a residuated map together with its
associated residual – so a Galois connection – is associated with such a relation. Yet,
the standard Galois connection (fR,gR) associated with R is defined in a different way.
First, for all e ∈ E and e′ ∈ E′, write eR = {e′ ∈ E′ : eRe′} and Re′ = {e ∈ E : eRe′}
and, for all A ⊆ E,B ⊆ E′:

fR(A)= {b ∈ E′ : aRb for any a ∈ A} =⋂{eR : e ∈ A}
gR(B)= {a ∈ E : aRb for any b ∈ B} =⋂{Re′ : e′ ∈ B}
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In other words, the image of A by fR (respectively, of B by gR) is the set of all the
elements of E′ in relation to all the elements of A (respectively, all the elements of E
in relation to all the elements of B).

It is easy to check that both maps fR and gR are antitone and that the inclusions A⊆
gRfR(A) and B ⊆ fRgR(B) always hold. Hence the pair (fR,gR) satisfies the conditions
in Definition 3.40 and so is a Galois connection between the lattices 2E and 2E′

.
Let ϕR = gRfR and ψR = fRgR be the closures, respectively on 2E and 2E′

, associated
with this connection. Then we have:

ϕR(A)= {e ∈ E : for any e′ ∈ E′, [A ⊆ Re′ implies eRe′]} =⋂{Re′ : A ⊆ Re′}
ψR(B)= {e′ ∈ E′ : for any e ∈ E, [eR ⊇ B implies eRe′]} =⋂{eR : eR ⊇ B}

Below, and in general, we simply write f , g, ϕ, and ψ instead of fR, gR, ϕR, and ψR.

Proposition 3.46 Let R⊆ E×E′ be a relation between two sets E and E′, F a subset
of E and H a subset of E′. With the above notations, the following four conditions
are equivalent:

1. F is closed by ϕ and H = f (F).
2. H is closed by ψ and F = g(H ).
3. H = f (F) and F = g(H ).
4. F ×H ⊆ R, where both F and H are maximal with this property.

Moreover, if we write D = {Re′ : e′ ∈ E′}, D′ = {eR : e ∈ E}, F = ϕ(2E), and G =
ψ(2E′

), then F =m(D)=⋂
B∈2E′ {Re′ : e′ ∈B} and G =m(D′)=⋂

A∈2E {eR : e ∈A}.
Proof The equivalence of Items (1), (2), and (3) follows from the properties of

Galois connections. If F and H satisfy (3) then, by definition, aRb holds for any
ordered pair (a,b) ∈ F ×H . Moreover, taking for instance b′ ∈ E′ \H , there exists at
least one element a of F such that aRcb′ (otherwise b′ ∈ f (F)) and Item (4) follows.

Conversely, if (4) is satisfied then H = {b ∈ E′ : aRb for any a ∈ F} = f (F) and,
similarly, F = g(H ).

The fact that, for example, the set F of closed sets of the closure ϕ is the set of
intersections of the family of the sets (Re′) results from the equality ϕ(2E) = g(2E′

)

shown in Theorem 3.41 (Item (2)) for an arbitrary Galois connection (f ,g). �
A concept of the relation R is an ordered pair (F ,H ) ∈ 2E × 2E′

, where F and H
satisfy the equivalent conditions in Proposition 3.46. The associated relation F×H ⊆
R is called a prime submatrix or a maximal rectangle, among other denominations.
We denote by Gal(E,E′,R) the set of concepts (F ,H ) of R. From the properties of
Galois connections, if (F ,H ) and (F ′,H ′) are two concepts, then F ⊆ F ′ if and only
H ′ ⊆ H . The set Gal(E,E′,R) is then ordered by the relation:

(F ,H )≤ (F ′,H ′) ⇐⇒ F ⊆ F ′

⇐⇒ H ′ ⊆ H
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Definition 3.47 The ordered set (Gal(E,E′,R),≤) is called the Galois lattice (or the
concept lattice) of R.

The ordered set Gal(E,E′,R) is indeed a lattice since, by definition, it is isomorphic
to F = ϕ(2E) and dual of G =ψ(2E′

). It follows that its join and meet operations are
given by:

(F ,H )∧ (F ′,H ′)= (F ∩F ′,ψ(H ∪H ′))

and

(F ,H )∨ (F ′,H ′)= (ϕ(F ∪F ′),H ∩H ′)

Example 3.48 (Guénoche, 1993) Table 3.2 gives a binary relation R from E =
{1,2,3,4,5,6,7,8} to E′ = {A,B,C,D,E,F ,G} and Figure 3.7 shows its Galois lattice,
which has 15 elements. The meanings of the elements of E and E′ are:

1 ostrich
2 canary
3 duck
4 shark
5 salmon
6 frog
7 crocodile
8 barracuda

A lays eggs
B has feathers
C has scales
D has a naked skin
E has teeth
F flies
G swims
H breathes in air

Table 3.2 Table of the relation R

A B C D E F G H
1 × × ×
2 × × × ×
3 × × × × ×
4 × × × ×
5 × × ×
6 × × × ×
7 × × × × ×
8 × × × ×

Proposition 3.46 and the previous example state and illustrate what a Galois con-
nection of this type brings out when a set E of objects is described by a set E′ of
binary “presence/absence” attributes. For such an attribute, presence and absence do
not play equivalent roles since the possession of attribute e′ by object e is always
significant but not necessarily its absence. A closed set F then forms the “class” of
all the objects sharing all attributes that belong to the closed set G = f (F); that is, the
description in extent of the concept C = (F ,G). The latter classes form the Moore
family F . On the other hand, the closed set G is the set of all the attributes shared by
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(3, ABFGH) (7, ADEGH) (8, ACEG)

(58, ACG)

(478, AEG)(467, ADG)

(47, ADEG)(67, ADGH)(23, ABFH)

(123, ABH) (367, AGH)

(12345678, A)

(345678, AG)(12367, AH)

(∅, ABCDEFGH)

Figure 3.7 The Galois lattice of the relation R.

all elements of F ; that is, the description in intent of the concept C. The latter descrip-
tions form the dual Moore family G. Finally, the Galois lattice of R is the ordered
set of all concepts generated by the relation R. Further developments on this subject
will be considered in Section 3.6 of this chapter and in Section 7.4 of Chapter 7. We
may already observe that the terminology used for the elements of the Galois lattice
points out the relation between some laws of thought and “Galois classification” (see
Section 7.4 in Chapter 7).

3.5.2 Table of an ordered set

In this section, we define the table of an ordered set and show that, in the case of
a lattice, the table allows us to reconstruct the lattice (Theorem 3.52). We then give
some properties of the table of a lattice (Proposition 3.54), which will be extended at
the end of Section 3.5.3 to the table of an arbitrary ordered set.

Let P be an ordered set, JP and MP the sets of its join- and of its meet-irreducibles,
and ↓ and ↑ its downarrow and uparrow relations (Chapter 1, Definition 1.36). Let
↓|JP×MP and↑|JP×MP be the respective restrictions of these arrow relations to JP×MP .
For the sake of simplicity, we use in general the same notation for the arrow relations
of P and for their restrictions to JP ×MP – Exercise 3.15 justifies this use.

Definition 3.49 The table of an ordered set P is the relation RP ⊆ JP ×MP defined
by jRPm if j ≤m. The arrowed table of P is the triple RP = (RP ,↓,↑) of relations on
JP ×MP .

Remark 3.50 Several representations of a relation by “tables” were used in Chapter
1, for instance Table 1.1 in Section 1.1.1. Clearly, in the present expression “table of
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an ordered set,” the term “table” has a different meaning since it refers to a particular
relation defined between two subsets of the ordered set. Of course, the relation itself
and the arrow relations may be represented by a table in the usual sense. Indeed,
this is done further (on page 96) with Table 3.3, which represents the above-defined
arrowed table of the ordered set in Figure 3.2 (and thus three relations).

From now on, we study the particular case of a lattice L. A decomposition of the
Galois connection (f ,g) associated with the table RL as in the previous section leads
to a proof of Theorem 3.52, which is the finite case of what is sometimes called “the
fundamental theorem of concept theory.” Then, we partly characterize those binary
relations which are tables of lattices (this characterization is completed in Exercise
3.16) and, finally, we obtain some properties of the arrowed table of L.

Let L be a lattice and JL, ML, and RL be respectively the set of its join-irreducibles,
the set of its meet-irreducibles, and its table. Since RL is a binary relation between
two sets, we may consider the Galois connection (f ,g) associated with RL (as at the
beginning of Section 3.5.1). Then:

f (A)= {b ∈ ML : a ≤ b for any a ∈ A}
g(B)= {a ∈ JL : a ≤ b for any b ∈ B}

Recall that Jx and Mx respectively denote the set of join-irreducibles of L less
than or equal to x and the set of meet-irreducibles of L greater than or equal to x
(Section 3.2).

We define the maps f1 : P(JL) #−→ L, g1 : L #−→ P(JL), f2 : L #−→ P(ML), and
g2 : P(ML) #−→ L as follows: for all x ∈ L,A ⊆ JL,B ⊆ ML,

f1(A)=
∨

A, g1(x)= Jx, f2(x)= Mx, g2(B)=
∧

B

Endowing – as usual – P(JL) with the inclusion order and – just for the following
proposition and proof – P(ML) with the dual inclusion order ⊇, we obtain:

Proposition 3.51 Let L be a lattice. With the above notations and definitions, the
following properties hold:

1. f1g1 = g2f2 = idL.
2. f = f2f1 and g = g1g2.
3. f1 and f2 are residuated and g1 and g2 are their respective associated residual

maps.

Proof The equalities in (1) are obtained as direct consequences of Propositions 3.11
and 3.19. Property (2) comes from the following equalities: for all A ⊆ JL, B ⊆ ML,

f (A)= {b ∈ ML : a ≤ b, for any a ∈ A} = {b ∈ ML :
∨

A ≤ b} = f2f1(A)
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g

g1

f2

g2

f1

f

L

P (ML)P (JL)

Figure 3.8 The decomposition of a Galois connection (f ,g).

and

g(B)= {a ∈ JL : a ≤ b, for any b ∈ B} = {a ∈ JL : a ≤
∧

B} = g1g2(B)

In order to prove (3), we show, for any x ∈ L, the following two equivalences:
A ⊆ g1(x) if and only if x ≥ f1(A), and x ≤ g2(B) if and only if f2(x) ⊇ B; that
is, A ⊆ Jx if and only if

∨
A ≤ x, and x ≤ ∧

B if and only if B ⊆ M x. The first
equivalence is true since A ⊆ Jx implies

∨
A ≤ ∨

Jx = x and
∨

A ≤ x implies j ≤ x
for any j in A. The proof of the second equivalence is similar. Thus, each of the maps
f1 and f2 satisfies Condition (2) in Theorem 3.36 characterizing residuated maps,
while g1 and g2 happen to be their associated residual maps. Figure 3.8 illustrates this
proposition. �

We are now able to prove the next theorem (Barbut, 1965).

Theorem 3.52 Every lattice L is isomorphic to the Galois lattice of its table RL (by
the map x #−→ (Jx,Mx)).

Proof According to Item (3) in the previous proposition and Theorem 3.37 applied
to the residuated map f1 and its associated residual map g1, g1f1 is a closure ϕ1

and the lattice of closed sets ϕ1((P(JL),⊆)) is isomorphic to f1g1(L) = idL(L) = L.
We denote by ϕ the closure operator obtained as the composition gf of the two
maps of the Galois connection (f ,g). According to Items (1) and (2) in the previous
proposition, ϕ = gf = g1g2f2f1 = g1f1 = ϕ1, so the Galois lattice Gal(JL,ML,RL),
which is isomorphic to the lattice of closed sets ϕ((P(JL),⊆)), is also isomorphic to
the lattice L. �

A direct consequence of this result is expressed in the following corollary.

Corollary 3.53 Any lattice is isomorphic to the lattice of closed sets of a closure
operator.

In other words, any lattice has a set representation by a Moore family.
According to Theorem 3.52, the table of a lattice provides a condensed represen-

tation. A natural question is then to characterize those binary relations which are
tables of lattices. To do so, we now consider two sets E and E′, an arbitrary rela-
tion R ⊆ E ×E′ and its Galois lattice Gal(E,E′,R). We define a reduction procedure
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which, up to isomorphism, does not change the Galois lattice of R and leads to its
table. The consequence of this procedure is that a reduced relation is the table of a
lattice. Conversely, the purpose of Exercise 3.16 is to show that the table of a lattice
is reduced. So, a relation is the table of a lattice if and only if it is reduced.

We use the notations given in Section 3.5.1 for the Galois connection (f ,g) asso-
ciated with R. The Moore family F = ϕ(2E) is obtained as in Example 3.32 by
intersections of elements of the family D = {Re′ : e′ ∈ E′} of subsets of E, i.e., is
equal to m(D). Thus, every meet-irreducible of F is necessarily equal to Re′ for some
e′ ∈ E′ (by duality, the closure ψ(e′) of the latter is a join-irreducible of G =ψ(2E′

)).
In Example 3.32, it was observed that the family F remains unaltered when restricting
D to the set of meet-irreducibles of F . This comes down to selecting a subset E′

1 of
E′ and considering the restriction R1 of the relation R to E ×E′

1. In other terms, an
element e′0 of E′ is removed from E′ in each of the following cases:

• Re′0 = E (since E is not a meet-irreducible of F).
• There exists a subset B of E′ \ e′0 such that Re′0 =

⋂{Re′ : e′ ∈ B} (since then Re′0
is not a meet-irreducible of F).

• Re′0 = Re′1, for some e′1 already kept in E′
1 (since, then, Re′0 is redundant in F).

This first reduction does not affect the Moore family F whereas, in the Galois con-
nection (f ′,g′) associated with the relation R1, the Moore family G =ψ(2E′

) on E′ is
replaced with a Moore family G1 on E′

1 which, ordered by set inclusion, is a lattice,
dual of the lattice F , and so isomorphic to the lattice G.

A second reduction similarly selects a subset E2 of E, leading to a binary relation
R2 ⊆ E2 ×E′

1 which is then said to be reduced (the term reduced table is also used).
In the Galois connection (f ′′,g′′) associated with R2, the Moore family F on E is
replaced with a Moore family F2 on E2, ordered by inclusion as a lattice dual of G1 and
isomorphic to F , the Moore family G1 remaining the same. An important fact is that,
for any e ∈ E2, the subset eR2 = f ′′(e) of E′

1 is a meet-irreducible of G1 (and g′′f ′′(e)
is a join-irreducible of F2). Similarly, for any e′ ∈ E′

1, the subset R2e′ = g′′(e′) of E2

is a meet-irreducible of F2 (and f ′′g′′(e′) a join-irreducible of G1). In other terms,
the relation R2 is the table of its Galois lattice. Exercise 3.16 proposes to show that,
conversely, the table of any lattice cannot be reduced by the previous procedure.

As a consequence, all the relations which have the same reduced relation also have,
up to isomorphism, the same Galois lattice. In fact, up to isomorphisms and labelings,
reduced relations and lattices are in one-to-one correspondence.

The arrowed table of a lattice brings even more information, since its properties
allow us to recognize whether a lattice belongs to some important class of lattices.
This is, for instance, the case for distributive lattices (as will be pointed out by
Characterization (5) of these lattices in Theorem 5.1, Chapter 5). The following result
gives two properties which are always satisfied by the arrowed table of a lattice. We
will see in Section 3.5.3 that they remain valid in any ordered set.
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Proposition 3.54 Let L be a lattice. The following properties hold:

1. For any j ∈ JL, there exists m ∈ ML such that j � m.
2. For any m ∈ ML, there exists j ∈ JL such that j � m.

Proof (1) We first show that, for any join-irreducible j, there exists a meet-
irreducible m satisfying j ↓m. According to Proposition 3.8, there exists an element x
with j ↓ x. If x is not meet-irreducible then, according to Proposition 3.19, x =∧

M x.
Then, j is not a lower bound of Mx since this would imply j ≤ x. So there exists
a meet-irreducible m ∈ Mx such that j �≤ m. Moreover, for the unique element j−
covered by j (Proposition 3.15), the inequality j− ≤ x ≤ m holds, and the property
j ↓ m follows.

Let m be a meet-irreducible, maximal with the property that j ↓ m. The unique
element m+ covering m satisfies j ≤ m+ (otherwise, there would exist as above a
meet-irreducible m′ greater than m and satisfying j↓m′). Thus, j↑m and finally j�m.

Property (2) is obtained dually. �

3.5.3 Completion of an ordered set

In Sections 3.5.1 and 3.5.2 we studied the Galois lattice of an arbitrary relation R
between two sets E and E′. In particular, we may consider the case where E = E′,
i.e., where R is a relation on E. The aim of this section is to study the Galois lattice
Gal(X ,X ,≤) of an ordered set P = (X ,≤). Let us go back to Example 3.2 where
two antitone maps Upper and Lower were defined on 2X . It is easy to see that the
composition maps LowerUpper and UpperLower are extensive: for instance, for
A ⊆ A′ ⊆ X , x ∈ A implies x ≤ y for any y ∈ UpperA, hence x ∈ Lower(UpperA)

and A ⊆ Lower(UpperA). In fact, the pair (Upper,Lower) is nothing else but the
Galois connection associated with the relation ≤ on X and which corresponds with
the Galois lattice of P.

Definition 3.55 For any ordered set P = (X ,≤), the Galois lattice Gal(X ,X ,≤),
denoted by Gal(P) in the sequel, is called the completion (or MacNeille completion,
or Dedekind–MacNeille completion) of P.

The reasons for the term “completion” will appear in Proposition 3.56. We now
establish some properties of the completion of P = (X ,≤) and, to do so, it may be
convenient to work on the isomorphic and/or the dual isomorphic lattice of closed
sets (see Section 3.5.1). The corresponding two closures are the composition maps
μ= LowerUpper and μ′ = UpperLower with, for any A ⊆ X :

μ(A)=⋂{(x],x ∈ UpperA} and μ′(A)=⋂{[x),x ∈ LowerA}
and, in particular, for any x ∈ P:

μ({x})= Lower{x} = (x] and μ′({x})= Upper{x} = [x)
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Since a subset of X is closed by μ if and only if it is equal to X or to an intersection
of some principal downsets of P, it is a downset of P. It follows that the lattice
F =μ(2X ) of closed sets of μ is included in the distributive lattice D(P) of downsets
of P (this lattice is studied in Section 5.2); up to isomorphism, the same holds for the
completion of P. Similarly, the lattice G = μ′(2X ) of the subsets closed by μ′ (dual
of the lattice F and of the completion of P) is included in the distributive lattice of
upsets of P.

The closure μ is defined on 2X . The next proposition states that its restriction to
X satisfies strong properties. For the sake of simplicity, we write μ({x}) = μ(x) for
any x ∈ P.

Proposition 3.56 Let P = (X ,≤) be an ordered set and μ= LowerUpper the closure
defined on 2X by μ(A) = ⋂{(x],x ∈ UpperA}. The restriction of μ to P is a coding
from P to the lattice F = μ(2X ) satisfying the following properties:

1. If x and y have a meet x∧ y in P, then μ(x∧ y)= μ(x)∩μ(y).
2. If x and y have a join x∨ y in P, then μ(x∨ y) is the join of μ(x) and μ(y) in the

lattice F .

Proof If x≤ y then z ≤ x implies z ≤ y, and so (x]=μ(x)⊆ (y]=μ(y). Conversely,
(x] = μ(x) ⊆ (y] = μ(y) implies x ∈ (y] that is, x ≤ y. Then, the map μ is a coding
from P to F .

(1) If x and y have a meet x∧ y, then:

z ∈ μ(x∧ y)= (x∧ y] ⇐⇒ z ≤ x∧ y

⇐⇒ z ≤ x and z ≤ y

⇐⇒ z ∈ (x] ∩ (y]
⇐⇒ z ∈ μ(x)∩μ(y)

and Property (1) holds.
(2) Similarly, if x and y have a join x∨ y, and since μ′ = UpperLower, then:

z ∈ μ′(x∨ y)= [x∨ y) ⇐⇒ z ≥ x∨ y

⇐⇒ z ≥ x and z ≥ y

⇐⇒ z ∈ [x)∩ [y)
⇐⇒ z ∈ μ′(x)∩μ′(y)

The lattice F of closed sets of μ and the lattice G of closed sets of μ′ are dual
isomorphic by the restrictions of Upper and Lower, while [x ∨ y), [x) and [y) are
closed by μ′, and [x∨ y) is the intersection of [x) and [y). Thus, in the lattice F (dual
of G by the restriction of Lower), μ(x ∨ y) = Lower[x ∨ y) = (x ∨ y] is the join of
Lower[x)= (x] and Lower[y)= (y], which is Property (2). �
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Then, the coding μ from P to the lattice F (and so, up to isomorphism, to the
completion of P) “preserves” all the joins and meets of P. In fact, it may be shown
that the completion of P is the smallest lattice with these properties (see Section 3.6).
Moreover, the coding μ also “preserves” the arrow relations as well as the irreducible
elements of P, as will be established in the final results of this section.

Proposition 3.57 Let x and y be two elements of an ordered set P = (X ,≤) and
F = μ(2X ), where μ = LowerUpper is the closure on 2X defined in Proposition
3.56. Then:

1. x ↓P y if and only if μ(x) ↓F μ(y).
2. x ↑P y if and only if μ(x) ↑F μ(y).

Proof (1)Assume x ↓P y, then x �≤ y and so μ(x) �⊆μ(y). Moreover, by assumption,
x is the only element of μ(x)= (x] not less than or equal to y in P. Then a closed set
of μ – that is, an ideal of P – strictly included in μ(x) cannot contain x and is included
in (y] =μ(y), which implies μ(x) ↓F μ(y).

Conversely, assume μ(x) ↓F μ(y). Then, in the lattice F , μ(x) is minimal among
the closed sets not included in μ(y). Since the map μ is a coding, x is not less than or
equal to y in P, and z < x implies z < y. The relation x ↓P y follows.

(2) The equivalence between x ↓P y in P and μ′(x) ↓G μ′(y) in the lattice G of
closed sets of μ′ = UpperLower may be obtained similarly and leads – by duality of
the lattices F and G – to the equivalence for the uparrow relation. �

Proposition 3.58 Let P = (X ,≤) be an ordered set and F = μ(2X ). An element
F of F is a join-irreducible (respectively, a meet-irreducible) of F if and only if
F = (j] (respectively, F = (m]) is the image by μ of a join-irreducible j (respectively,
a meet-irreducible m) of P.

Proof From the formula giving μ′(A) at the beginning of this section, the set of
principal upsets of P is a meet-generating set of the lattice G. According to the dual
version of Corollary 3.12, all meet-irreducibles of G belong to this set. Since the
restriction of the map Lower to G is a dual isomorphism between G and F , it follows
that any join-irreducible F of F is equal to F = (x] = Lower[x) for some x in P.
Moreover, Property (2) in Proposition 3.56 implies that, if (x] is a join-irreducible of
F , then x is a join-irreducible of P.

Conversely, if j is a join-irreducible of P then it follows from Proposition 3.8 that
there exists an element x of P satisfying j ↓P x. Thus, by Proposition 3.57, we have
μ(j) ↓F μ(x) which, again by Proposition 3.8, implies that μ(j) is a join-irreducible
of F .

The result on meet-irreducibles is obtained in a similar way. �
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In Section 3.5.2, the considered tables were essentially those of a lattice. Yet,
Definition 3.49 dealt with arbitrary ordered sets. Any element x of an ordered set P
may be identified with its image μ(x) in the lattice F (isomorphic to the completion
of P). Then, Propositions 3.56 to 3.58 allow us to state the first part of the next
corollary, which uses this identification. The isomorphism result of the second part
then follows from Theorem 3.52.

Corollary 3.59 Let P = (X ,≤) be an ordered set and Gal(P) its completion. The
following holds:

1. P and Gal(P)have the same ordered sets of join-irreducibles and the same arrowed
table.

2. Gal(P) is isomorphic to the Galois lattice of RP = (JP ,MP ,≤).

It is then immediate that Proposition 3.54 extends to the (arrowed) table of any
ordered set; that is, for any j ∈ JP (respectively, any m ∈ MP), there exists m ∈ MP

(respectively, j ∈ JP) such that j � m.
Let J and M be two given sets and R ⊆ J × M a reduced relation (see Section

3.5.2). The lattice L = Gal(J ,M ,R) is, up to isomorphism, the unique lattice having
R as its table. On the other hand, we have just observed that all the ordered sets the
completion of which is isomorphic to L have this table and, moreover, have the same
arrowed table as L. Exercise 3.15 proposes to determine all these ordered sets and,
in particular, to show that the smallest one is the ordered subset IR(L) of irreducible
elements of L.

Example 3.60 The join-irreducible (respectively, meet-irreducible) elements of the
ordered set in Figure 3.2 are a, b, c, d, e, f , and g (respectively, d, e, f , g, h, i, and
k). Table 3.3 and Figure 3.9 show, respectively, the arrowed table and the completion
of this ordered set.

Table 3.3 The arrowed table of the ordered set in Figure 3.2

d e f g h i k
a × × � � × × ×
b × � × � × × ×
c � × × × × × ×
d × × × �
e × ↑ × � ×
f × ↑ � × ×
g ↓ ↓ × � � ×
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∅

abcdfi = μ(i)
abcdeh = μ(h)

abcd abce abcf

abd = μ(d) abc cg = μ(g)

ab ac bc

a = μ(a) c = μ(c)

bcf = μ(f)ace = μ(e)

b = μ(b)

abcdefghik

abcefgk = μ(k)

Figure 3.9 The completion of the ordered set in Figure 3.2.

3.6 Further topics and references

The notion of an isotone map between two ordered sets is essential, but the following
result shows that it is too general to induce a convenient classification of ordered sets.
Duffus and Rival (1981) have shown that any connected ordered set P of size n ≥ 3
is the image by an isotone map of a fence (see page 46) of size at most 2n−3. In this
paper, they develop a theory of the classification of ordered sets based on the notion
of a retract.

The representations of any element of an ordered set as a join of join-irreducibles
and as a meet of meet-irreducibles given in Section 3.2 are fundamental examples
of codings from arbitrary ordered sets to Boolean lattices. Nevertheless, they do not
guarantee that the latter are of minimal size, and we will go back to this question in
Chapter 6.

The notions of closure operators and closure systems appeared at the beginning of
the twentieth century with the birth of general topology as an axiomatic theory. In this
context, Kuratowski was apparently the first to take the notion of a closure operator
(on a set) as the primitive notion. In his famous 1922 paper, he observed that the
operation of the “Analysis Situs” associating with a subset A of a Euclidean space the
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closed set A formed of A and the accumulation points of A is extensive, idempotent,
and satisfies ∅ = ∅ and A∪B = A ∪ B (so it is also isotone and defines what is
now called a topological closure). In this set context, Sierpinski (1927) obtained the
equivalence between the notions of an (arbitrary) closure operator and an (arbitrary)
Moore family by showing that both of them are equivalent to a derivation operator
satisfying some properties. But, in fact, the name “Moore family” appeared later and
is due to Birkhoff (1937a), who mentioned the equivalence between closure operators
on a set and families containing this set and intersection-stable as already pointed out
in two of Moore’s papers (1909, 1910). In fact, closure operators appear almost
everywhere in mathematics, logics, and computer science. For instance, as early as
the 1930s, Tarski (1930) used them to define logical deductive systems.

The significance of Moore families also comes from the fact – see Corollary 3.53 –
that they are the set representations of lattices (which remains true for complete
lattices). Then, particular classes of Moore families correspond to particular classes
of lattices. For instance, the so-called convex geometries correspond to lower locally
distributive lattices (see the end of Section 5.6).

The generalization of closure systems and closure operators to arbitrary lattices or
ordered sets promptly followed Birkhoff’s 1940 book (see, for instance, Monteiro
and Ribeiro (1942)).

We will go back to Moore families in Section 7.4 (Chapter 7), where we study the
lattice of all such families and its duality with the lattice of implicational systems.
The latter is isomorphic to the lattice of closure operators, a lattice thoroughly studied
as early as 1943 by Öre.

Let us simply add that the number of Moore families on a set of size n is only
known up to n= 7 (A102896 in the On-Line Encyclopedia of Integer Sequences, and
Colomb et al. (2010)).

The Galois connection associated with a binary relation (studied in Section 3.5)
was exhibited as early as 1940, the year of the first edition of Birkhoff’s treatise, with
the name of polarity. The term and the abstract notion of a Galois connection are due
to Öre (1944), who made a deep study of the latter. He especially pointed out that such
a connection between subgroups and subfields appears in Galois theory of equations.
The close notion of a residuated (or a residual) map seems to explicitly appear for
the first time in the works of Dubreil and Croisot (1954), followed by Croisot’s 1956
paper. The maps that we prefer to call Galois maps are frequently known in the
literature as “polarized maps” (Shmuely, 1974). Some authors (see Denecke et al.,
2004) call a covariant (respectively, a contravariant) Galois connection any pair
(f ,g) where f is a residuated (respectively, Galois) map and g the associated residual
(respectively, Galois) map. Others – or the same – also use the term adjunction, f being
called the left (or inferior) adjunction and g the right (or superior) adjunction. This
terminology comes from category theory, where one finds a notion of an adjunction
which generalizes the previous situation. The book Residuation Theory by Blyth
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and Janowitz (1972) and the treatise edited by Denecke et al. (2004) emphasize the
ubiquity of these notions in mathematics, with an extensively developed history in the
latter book (see the chapter “Adjunctions and Galois connections: origins, history and
developments” by Erné). Observing the number of times they have been rediscovered,
one may only regret that they are not included in the basic training of mathematicians.

The fundamental objects called Galois lattices or concept lattices were introduced
in Section 3.5. We have kept the last term, popularized by Wille since 1982, to name
a concept (F ,G), whereas the subrelation F ×G was previously called in French a
“rectangle maximal” (see for instance, Kaufmann and Pichat (1977) and Barbut and
Monjardet (1970)). The term “concept” refers to some philosophical considerations
developed, for instance, in Arnauld and Nicole’s Logique de Port-Royal (1662) –
see, for example, Duquenne (1987). In the latter, F and G are respectively called
the “range” (“étendue”) and the “comprehension” (“compréhension”) of the “idea”
(“idée”) F ×G; that is, in modern language, the extent and intent of the concept.

The use of the Galois lattice of a relation in data analysis goes back to a text of
Barbut (1965) published in a book on questionnaire analysis. Indeed, the answers of
a set of subjects to dichotomic questions (answers are “yes” or “no”) define a binary
relation between subjects and questions. The (rare) case where the Galois lattice of
this relation is a chain corresponds to the case where the answers to the questionnaire
form a Guttman scale revealing two dual linear hierarchical structures on subjects
and questions: there exists a total preorder on questions such that, if a subject answers
“yes” to some question, he also answers “yes” to all the dominated questions in this
preorder. In this case, encoding the “yes” answers by 1 and the “no” by 0, the relation
may be represented by a “step-type” table as in Table 7.1 (yet here, lines and columns
are labeled according to two different sets). In the general case, each of the maximal
chains of the Galois lattice associated with the relation forms a Guttman subscale
allowing us to obtain the table of a “partial scale” and a total preorder on a subset
of subjects in correspondence with a total preorder on a subset of questions. This is
illustrated in Figure 3.10 and Table 3.4, with the Galois lattice given in Figure 3.7.

Table 3.4 The table of the Guttman subscale obtained from the
maximal chain in Figure 3.10(b)

A G D E H B C F
1 ×
2 ×
3 × ×
5 × ×
8 × ×
6 × × ×
4 × × × ×
7 × × × × ×



100 Morphisms of ordered sets

(467, ADG)
(467, ADG)

(7, ADEGH)
(7, ADEGH)

(47, ADEG)

(345678, AG)

(345678, AG)

(47, ADEG)

(3, ABFGH) (8, ACEG)

(58, ACG)

(478, AEG)

(67, ADGH)(23, ABFH)

(123, ABH) (367, AGH)

(12367, AH)

(12345678, A)

(∅, ABCDEFGH)

(a) (b)

(∅, ABCDEFGH)

(12345678, A)

Figure 3.10 (a) The Galois lattice given in Figure 3.7; (b) a maximal chain of the lattice
giving the Guttman subscale in Table 3.4.

In the same 1965 text, Barbut, developing a Schützenberger observation (on page
14 in his 1956 paper), shows that every lattice is a Galois lattice (Theorem 3.52) and
gives an algorithm for constructing such a lattice (see also Barbut and Monjardet,
1970). This result, which has been rediscovered several times in various forms, leads
to a nice synthesis of the set representation results of a lattice due to Campbell (1943)
and Birkhoff and Frink (1948). Other developments on the use of Galois lattices in
questionnaire analysis may be found in the works of Flament, Degenne, and Vergès
(see, for instance, Flament et al. (1979)). This use in data analysis has known a
considerable growth since the 1980s, thanks to the works of the Darmstadt team
(see, for instance, Ganter and Wille’s book (1999)) and those of Duquenne (1987,
1993). The determination of all concepts (i.e., the elements of the Galois lattice) is an
important problem of exponential complexity in the size of the considered relation (see
Appendix A.2.2, where several algorithms proposed in the literature are mentioned).

In Example 3.44, with a binary relation between two sets E and E′ was associated a
pair (f ,g), where f is a residual map and g the associated residual map, in other terms
a “covariant” Galois connection. In Exercises 4.15 and 5.8 of their 1972 book, Blyth
and Janowitz propose studying the properties of such connections when E = E′. In
the general case, such a connection – sometimes called an axiality – induces a lattice,
the elements of which – i.e., the pairs (A,B) with A = g(B)⊆ E and B = f (A)⊆ E′ –
were called upper concepts. Applying the same connection to the relation Rd defined
between E′ and E leads to the lattice of lower concepts. These two connections
induce a closure and a dual closure on E (as well as a dual closure and a closure on
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E′). Considering the equivalence relation on E defined by xR = yR, this closure and
dual closure are nothing else but the upper and the lower approximation operators
associated with this equivalence and used in the “rough set analysis” (see, for instance,
Düntch and Gediga (2003) or Wolski (2004)).

Another interesting example of a covariant Galois connection may be found in
mathematical morphology, i.e., in an approach to image processing based on geomet-
ric transformations of images structured as a lattice (see, for instance, Serra, 1988 or
Ronse, 2011). In the case of binary images, the latter are subsets of a set E of points
ordered by inclusion. Two operators on P(E) are associated with a given subset B
of E; they associate with B the Minkowski difference and the Minkowski sum of
any subset X of E, respectively. The former operator is a residual map called dilata-
tion, while the latter is the corresponding residuated map called erosion. These maps,
together with their composition closure and dual closure, are the basic morphological
operations in this image processing.

It is also worthwhile pointing out, although they essentially concern infinite but
complete lattices (i.e., lattices any non-empty subset of which has a join and a meet),
the use of covariant Galois connections to describe the correctness of implemen-
tations. Here, there are an ordered set P of “abstract” values, an ordered set Q of
“concrete” values, an implementation (or concretization) map from P to Q, and a
verification (or abstraction) map from Q to P. The existence of interrelating prop-
erties between these two maps, guaranteeing correctness of the implementation, is
insured if they form a Galois connection (see, for instance, Melton et al. (1987)).

Section 3.5 ends with an exposition of the MacNeille completion, also called
normal completion or Dedekind–MacNeille completion, of an ordered set P. This
completion easily generalizes to the case where P is no longer finite. The origin of
the latter denomination is triple: first, this procedure associates a complete lattice
with any ordered set (finite or not); then, the construction of the complete chain of
real numbers from the chain of rationals by means of “Dedekind cuts” is an example
of this completion; finally, this procedure has been defined for any ordered set P by
MacNeille (1937). The characterization of the completion of P as the smallest lattice
L for which there exists a coding from P to L preserving all the joins and meets of P
is due to Banaschewski (1956) and Schmidt (1956).

3.7 Exercises

Exercise 3.1 Consider the lattice M3 in Figure 3.1 and the ordered set P in Figure
3.3. Find two maps f and f ′ from M3 to P satisfying the following conditions:

• f is strictly isotone and is not injective.
• f ′ is isotone and injective but is not a coding.
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Exercise 3.2 Show that a map f from a lattice L to a lattice L′ is an order isomorphism
if and only if it is a lattice isomorphism.

State the corresponding result for a dual isomorphism.

Exercise 3.3 [FPP] Let P be an ordered set. One says that P has the fixed point
property (FPP) if, for any isotone map f on P, there exists a fixed point; that is, some
x ∈ P such that f (x)= x. Show that any lattice L satisfies FPP. Hint: consider the join
of the elements x such that x ≤ f (x).

Note The unsolved problem to characterize the ordered sets which satisfy FPP have
induced many researches (see, for instance, Schröder (2002)).

Exercise 3.4 [Semilattice of maps] Consider an ordered set P, a meet-semilattice
Q, and the set A of all maps from P to Q, endowed with the usual pointwise order:
for f ,g ∈ A, f ≤ g if f (x) ≤ g(x) for any x ∈ P. Given f ,g ∈ A, consider the map
f ∧ g ∈ A defined by (f ∧ g)(x) = f (x)∧ g(x) for any x ∈ P. Show that f ∧ g is the
meet of f and g in A.

Now consider the ordered subset QP of A formed by all isotone maps from P to
Q. Show that QP is meet-closed (f ,g ∈ QP implies f ∧ g ∈ QP) and that QP is a
sub-meet-semilattice of A.

Give similar results in the case where Q is a join-semilattice, then a lattice.

Exercise 3.5 [Isotone maps, total preorders, and chains; Stanley (1986a)] Show that,
if a map f from an ordered set P to an ordered set Q is isotone, then the classes C(x)
of the canonical partition of P associated with f are ordered by writing C(x)≤ C(y)
if and only if f (x)≤Q f (y).

Show that the ordered set of these classes, denoted P/f , is isomorphic to the ordered
subset f (P) of Q.

Find a one-to-one correspondence between:

1. the set of the isotone maps from P to k (with 1 ≤ k ≤ n = n(P));
2. the set of the total preorders with at most k classes including the order ≤P;
3. the set of the extended chains of length at most k of upsets of P.

Conclude that the ordered set 2P of isotone maps from P to 2 is isomorphic
(respectively, dual isomorphic) to the ordered set of upsets (respectively, downsets)
of P.

Find a one-to-one correspondence between:

1. the set of the surjective isotone maps from P to k (with 1 ≤ k ≤ n = n(P));
2. the set of the total preorders with k classes including the order ≤P;
3. the set of the extended chains of length k of upsets of P.

Conclude that the number of surjective isotone maps from P to n is equal to the
number of linear extensions of P.
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Exercise 3.6 [Morgado relation] Show that a map f on an ordered set P is a closure
if and only if it satisfies, for any x ∈ P, f −1((x])= f −1((f (x)]).

This is equivalent to the Morgado relation: for all x,y ∈ P, y ≤ f (x) if and only if
f (y)≤ f (x).

Write and prove the dual result characterizing dual closures.

Exercise 3.7 [ Composition of residuated maps] Let P, Q, and R be three ordered sets
and f : P #−→Q and g : Q #−→R two residuated maps together with their correspond-
ing residual maps f r and gr . Show that gf is residuated, with f rgr as its associated
residual map.

Exercise 3.8 [Surjective or injective residuated map; Croisot (1956)] Let f be a
residuated map from an ordered set P to an ordered set Q and g the associated residual.
Show that the following properties are equivalent and imply that g is a coding from
Q to P:

1. fg = idQ.
2. f is surjective.
3. g is injective.
4. For any ordered set R and all maps h and k from Q to R, hf = kf implies h = k .

Show that the following properties are equivalent and imply that f is a coding from
P to Q:

1′. gf = idP .
2′. f is injective.
3′. g is surjective.
4′. For any ordered set R and all maps h and k from R to P, fh = fk implies h = k .

Conclude that the bijective residuated maps from P to Q are isomorphisms between
P and Q.

Exercise 3.9 [Residuation and closure; Croisot (1956)] Let f be a residuated map
on an ordered set P and g its residual map. Show that the following properties are
equivalent:

1. f is a dual closure.
2. g is a closure.
3. f = fg.
4. g = gf .

Exercise 3.10 Show that an ordered set P is a meet-semilattice if and only if, for any
x in P, the canonical injective map m from (x] to P defined by m(y)= y is a residuated
map.
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Exercise 3.11 [Lattice of residual maps] Let L and L′ be two lattices and f1 and f2
two isotone maps from L to L′. According to the result in Exercise 3.4, the meet
of f1 and f2 for the exponentiation order L′L is the isotone map f1 ∧ f2 defined by
(f1 ∧ f2)(x)= f1(x)∧ f2(x) for any x ∈ L, while the join of f1 and f2 is dually defined.
Assume that f1 and f2 are residual, g1 and g2 denoting the associated residuated maps.
Using Characterization (2′) of residual maps on page 81, show that f1 ∧ f2 is still
residual and that g1 ∨ g2 is the associated residuated map.

Show that the constant map fmax which sends any x ∈ L to the maximum of L′ is
residual. Hint: use Definition 3.35 of residual maps.

Deduce that the set of all residual maps from L to L′ is a closure net of L′L and is
endowed with a lattice order. What about the set of residuated maps?

Exercise 3.12 [Biclosed relations; Domenach and Leclerc (2001)] Let E,E′ be two
finite sets, F and ϕ (respectively F ′ and ϕ′) a Moore family on E (respectively, on
E′) and its associated closure. A relation R ⊆ E ×E′ is said to be biclosed if, for all
e ∈ E and e′ ∈ E′, eR = {e′ ∈ E′ : eRe′} ∈F ′ and Re′ = {e ∈ E : eRe′} ∈F .

(1) Show that the set RFF ′ of all biclosed relations between E and E′ is a Moore
family on 2E×E′

.
(2) Consider the map t : 2E×E′ #−→ F ′F which sends the relation R to the map

tR defined by: for any F ∈ F , tR(F) = ϕ′(fR(F)) = ϕ′(
⋂

e∈F eR). Show that, if R is
biclosed, then tR is a Galois map from the lattice F to the lattice F ′.

(3) Consider the map u : F ′F #−→ 2E×E′
which sends a map f to the relation uf

defined by: uf = {(e,e′)∈E×E′ : e′ ∈ f (ϕ(e))}. Show that, if f is a Galois map, then
uf is biclosed. Does the pair (t,u) form a residuated/residual one?

(4) Denote by F ⊗ F ′ the set of Galois maps from F to F ′ endowed with the
pointwise order. Show that the ordered set RFF ′ ordered by inclusion and F ⊗F ′
are isomorphic by the restrictions of t and u to these ordered sets.

Note As a consequence of these results, biclosed relations form a set-coding of the
Galois maps between two finite lattices. On the other hand, they also happen to be
a particular case of relational Galois connections, as considered by Ganter (2007).
The latter form a generalization of Galois connections between ordered sets, where
orders are replaced with relations of a more general type.

Exercise 3.13 Let P = (X ,≤) be an ordered set. Show that a subset A of X is an
element of the lattice Gal(X ,X , �>) if and only if A is a maximal antichain of P.

Show that a subset A×B of X 2 is a concept of the lattice Gal(X ,X , �≥) if and only
if A is a downset and B an upset of P.

Deduce that the sets D(P) and U(P), ordered by inclusion, are two dual lattices (a
sophisticated proof for an obvious result!). What about the lattice Gal(X ,X , �≤)?

Exercise 3.14 [Maximal antichains of a bipartite ordered set; Morvan and Nourine
(1996)] Let R ⊆ X × Y be a relation between two sets X and Y and let Rc be the
complementary relation of R in X × Y . Show that a subset A × B of X × Y is a
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concept of the lattice Gal(X ,Y ,R) if and only if A+B is a maximal antichain of the
bipartite ordered set (X +Y ,Rc).

Show that the order on maximal antichains induced by this correspondence is the
same as the inclusion order on the associated upsets.

Using Exercise 3.13, prove that the lattice of downsets of an ordered set P, the
lattice of maximal antichains of P, and the completion of P are isomorphic to a lattice
of maximal antichains of an appropriate bipartite ordered set.

Let L be a lattice. From the above results and Theorem 3.52, show that L is
isomorphic to the lattice of maximal antichains of a bipartite ordered set.

Exercise 3.15 [Arrow relations of an ordered subset] Show that the arrow relations
are preserved in an ordered subset; that is, for instance, given an ordered set P and
an ordered subset Q of P, x ↓ y in P and x,y ∈ Q imply x ↓ y in Q.

Recall that, for any ordered set P, IR(P) = JP ∪MP denotes the set of irreducible
elements of P. Consider an ordered subset Q of P including IR(P). Derive from the
previous results that any join-irreducible of P is still a join-irreducible of Q.

Show that an element x ∈ Q \ JP cannot be a join-irreducible of Q and, then, that
JQ = JP . Show that, similarly, MQ = MP .

Conclude that Q has the same arrowed table as P.

Exercise 3.16 [Properties of a lattice table] Let JL and ML be the sets of join-
irreducibles and of meet-irreducibles of a lattice L, and Jm = {j ∈ JL : j ≤ m}. Show
that none of the following three situations can occur:

1. There exists m ∈ ML such that Jm = JL.
2. There exist m,m′ ∈ ML such that m �= m′ and Jm = Jm′ .
3. There exist m ∈ ML and M ′ ⊂ ML with m �∈ M ′ and Jm =⋂{Jm′ : m′ ∈ M ′}.

Show the dual results by exchanging join-irreducibles and meet-irreducibles.

Exercise 3.17 [Strict completions of an ordered set] Let P = (X ,≤) be an ordered set
and F =μ(2X ), isomorphic to the completion of P (see Section 3.5.3). A lattice K of
some downsets of P is called a strict completion of P if the join-irreducibles of K are
all the principal downsets of P. For which ordered sets P is F a strict completion of
P? If F is not a strict completion of P, which downsets have to be added to F in order
to get a strict completion of P? The set of strict completions of P has a maximum:
what is it? Find an ordered set which has a unique strict completion (which is or is
not equal to the completion of P).

Note The set of strict completions of P, ordered by inclusion, is itself a lattice,
studied by Bordalo and Monjardet (2002, 2003).

Exercise 3.18 [Dissectors] If an ordered set P may be obtained as the disjoint union
of a principal upset [x) and of a principal downset (y], we say that x (respectively, y)
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is an upper dissector (respectively, a lower dissector) of P. The set of upper dissectors
of P is denoted by Dis(P).

Use the examples of ordered sets given in this chapter to show that an ordered
set may have no dissectors. Find ordered sets the dissectors of which are all its
join-irreducibles.

Characterize (upper) dissectors by an arrow property (see Definition 1.36) and
show that they are join-irreducible. Find all ordered sets of size less than or equal to
4 such that Dis(P)= J (P) (there are 12 such ordered sets).

Let Gal(P) be the MacNeille completion of P. Show that the two ordered sets
Dis(P) and Dis(Gal(P)) are isomorphic.



4

Chains and antichains

The problems of sorting, searching, and scheduling encountered, for instance, in
computer science and operations research frequently involve the determination of
the width of some ordered set; that is, the maximum size of its antichains. Two
illustrations of this general observation are given (Example 4.28 and Exercise 4.2).
Thus, this chapter is devoted to the study of the width and to some related topics. First,
Dilworth’s Theorem states that, in any ordered set P, the minimum number of chains
in a chain partition of P is equal to its width. This is one of the most famous results
in the field of combinatorics, and the subject of the first two following sections.
The theorem is stated and proved in Section 4.1, together with its close relatives.
Section 4.2 is devoted to its consequences in the special case of bipartite ordered
sets and points out its equivalence to König–Egerváry’s Theorem on matchings and
transversals in such a structure. In Section 4.5 the importance of this equivalence
is emphasized. Especially it leads to an algorithmic determination of the width, by
means of results on flows in graph theory. It is moreover recalled that Dilworth’s
Theorem is also equivalent to three fundamental results of combinatorics, namely
the König–Hall, Menger, and Ford and Fulkerson theorems. These results are quite
essential and have many practical applications, for instance on binary matrices or
allocation problems for the first one (Exercise 4.6) and on transportation networks
for the other two.

The above-mentioned flow algorithms provide a computation of the width of any
ordered set. Nevertheless, in the case of a ranked ordered set P, the width may be
equal to the maximum size of a rank-set of P. An ordered set satisfying this property
is called a Sperner ordered set. In such an ordered set, there exists an alternative – and
generally more direct – way to determine the width. The previous designation comes
from the fact that this property was established by Sperner in 1928 for the Boolean
lattice 2E of subsets of a set E. The generalizations of Sperner’s Theorem, which are
considered in Section 4.3, form another major topic in the combinatorics of ordered
sets. In particular, products of chains are an important example of Sperner ordered
sets, that frequently appear in the modeling of problems pertaining to domains such
as multicriterion decision or data analysis. Section 4.4 is devoted to the determination
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of the sizes of the rank-sets of products of chains and, so, to the determination of their
width.

4.1 Dilworth’s decomposition Theorem

In Section 1.3.2 of Chapter 1, we defined four fundamental parameters associated
with any ordered set P:

• κ(P), the maximum size of a chain of P, is its height.
• α(P), the maximum size of an antichain of P, is its width.
• θ(P) is the minimum number of chains in a chain partition of P.
• γ (P) is the minimum number of antichains in an antichain partition of P.

If Q is an ordered subset of P, then the inequality α(Q) ≤ α(P) holds, since an
antichain A of Q of size α(Q) is still an antichain of P but not necessarily of maximum
size. Likewise, the inequality κ(Q)≤ κ(P) is obtained when considering chains.

The inequalities κ(P) ≤ γ (P) and α(P) ≤ θ(P) in any ordered set P are straight-
forward, since two elements of P cannot belong simultaneously to a chain and an
antichain. The purpose of this section is to show that these inequalities are in fact
equalities (Theorems 4.1 and 4.2) and to deduce some consequences. We easily obtain
the first equality.

Theorem 4.1 For any ordered set P, the equality κ(P)= γ (P) holds.

Proof We construct a partition of P into h antichains A1,A2, ...,Ah as follows: A1

is the set of all minimal elements of P and, for k > 1, Ak is the set of all minimal
elements of the ordered subset Pk = P \ (

⋃
1≤j<k Aj). Each Ak is an antichain of Pk ,

so an antichain of P and, for any k > 1, every element xk of Ak covers at least one
element xk−1 of Ak−1 (otherwise there would exist some xk ∈ Ak−1). So we are able
to construct a covering chain C = x1 ≺ x2 ≺ ...≺ xh of P of size h. Then, we obtain on
the one hand γ (P)≤ h, since P is partitioned into h antichains and on the other hand
h≤ κ(P), since the size of the chain C is h. The inequality γ (P)≤ κ(P) follows and,
since the converse inequality has already been observed, the equality γ (P) = κ(P)

holds. �

This proof is constructive in the sense that a partition of P into γ (P) antichains
is actually obtained, together with a chain of P of maximum size κ(P). This chain
corresponds to a sequence x1,x2, ...,xκ(P) with, for k = 1, ...,κ(P), xk ∈ Ak and, for
k = 2, ...,κ(P), xk−1 ≺ xk .

The situation is different for the equality α(P) = θ(P), which is the subject of
Dilworth’s Theorem, and which is obtained below in a non-constructive way. In the
sequel, a chain C of P is said to meet an antichain A of P if their intersection is not
empty.
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Theorem 4.2 (Dilworth, 1950) For any ordered set P, the equality α(P) = θ(P)

holds.

Proof We proceed by induction on the size n = n(P) of P. For n = 1, the equality
θ(P) = α(P) = 1 is immediate. Assume that the result is true for any ordered set P′
of size n′ < n and consider a maximal chain C of P. Two cases may then occur.

Case 1: if C meets every antichain of P of size α(P), then α(P \C) = α(P)− 1
and, by the induction hypothesis, P \C may be partitioned into θ(P)−1 = α(P)−1
chains. So, adding the chain C, we obtain that P is partitioned into α(P) chains.

Case 2: there exists a maximum size antichain A = {a1,a2, ...,aα(P)} of P which
does not meet C. The antichain A determines two ordered subsets of P, namely its
down closure (A] = {x ∈ P: there exists a ∈ A such that x ≤ a} and its up closure
[A) = {x ∈ P: there exists a ∈ A such that a ≤ x} (Chapter 3, Example 3.33). Both of
them are still of width α(P) since they include the antichain A.

Let x be an element of P \ A. If x is incomparable to every element of A, then
A+{x} is still an antichain, a contradiction with the maximum size of A in P. If x is
simultaneously greater than some element a and less than another element a′ of A,
then a ≤ x ≤ a′, which is impossible since A is an antichain. Thus (A] ∪ [A) = P and
(A] ∩ [A)= A.

Observe that the greatest element of C does not belong to (A] since it would then be
less than some element of A and the chain C would not be maximal. So (A] ⊂ P and
the induction hypothesis applies to the ordered subset (A], allowing us to partition it
into α(P) chains C11,C12, ...,C1α(P), such that, for i = 1,2, ...,α(P), the element ai of
A belongs to the chain C1i. Moreover, ai is the greatest element of C1i, since otherwise
there would exist a maximal element a of (A] – so an element of A – with ai < a, and
A would not be an antichain. Similarly, there exists a partition of the ordered subset
[A) into α(P) chains C21,C22, ...,C2α(P) such that, for i = 1,2, ...,α(P), ai is the least
element of C2i.

Finally, for i = 1, ...,α(P), Ci = C1i ⊕′
C2i (Chapter 1, Remark 1.43) is a chain of

P, and the Ci’s form a partition of P into α(P) chains, as required. �

Example 4.3 It is easy to check that the width α(P) of the ordered set P – a diagram
of which is given in Figure 4.1(a) – is equal to 2. So, according to Theorem 4.2, P
may be partitioned into two chains; Figure 4.1(b) shows such a partition. To obtain
a partition into a minimum number of chains is frequently not straightforward: for
instance, beginning with the chain abcd suggested by the alphabetic order on the
labels of the elements of P makes it necessary to keep the other two chains e and f
(Figure 4.1(c)).

Remark 4.4 Both Theorems 4.1 and 4.2 above are of “min–max” type: they state
that the minimum of a considered set of values (for instance, the number of chains in
chain partitions of P) is equal to the maximum of another set of values (for instance,
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Figure 4.1 (b) and (c) Two partitions of the ordered set in (a) into, respectively, 2 and 3
chains.
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Figure 4.2 An ordered set P with α(P)= θ(P)= 5.

the sizes of the antichains of P). Then finding instances of the first and the second
sets which achieve equality proves that this minimum and this maximum are actually
reached. For example, to obtain in an ordered set P – a partition of P into p chains
together with an antichain of size p implies α(P) = θ(P) = p. So, observing that the
ordered set P – the diagram of which is given in Figure 4.2 – has a partition into five
chains (bolded edges) and one antichain {c,d, f ,h, i} of size 5 implies the equalities
θ(P)= α(P)= 5.
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As will be shown in the next proposition, several statements on ordered sets are –
almost directly – equivalent to Dilworth’s Theorem. A set R= {C1, ...,Ch} of chains
of an ordered set P is called a covering of P if every element x of P belongs to at least
one chain of R.

Proposition 4.5 Each of the following four statements is equivalent to Dilworth’s
Theorem:

1. For any ordered set P, every chain of a partition of P into θ(P) chains meets every
antichain of P of size α(P).

2. For any ordered set P, there exists a chain of P which meets every antichain of P
of size α(P).

3. For any ordered set P, there exists an antichain A of P and a chain partition P of
P such that A meets every chain of P.

4. For any ordered set P, there exists a covering of P with α(P) maximal
chains.

Proof We first give a circular proof of the equivalence of Items (1) and (2) with
Dilworth’s Theorem, then with Item (3), and finally the equivalence of Item (4) with
Dilworth’s Theorem.

Dilworth’s Theorem =⇒ (1): if (1) is not satisfied by an ordered set P, there exists
an antichain A of P of size α(P), a partition P of P into θ(P) chains, and a chain C of
P such that C does not meet A. Then, the partition P is formed of α(P) chains each
of which contains an element of A and of the chain C; this implies α(P) < θ(P), a
contradiction.

(1) =⇒ (2): choose a chain of a partition of P into θ(P) chains.
(2) =⇒ Dilworth’s Theorem: if (2) is true, then Case 1 in the proof of Dilworth’s

Theorem always occurs and may be used to prove the latter by induction.
(1) =⇒ (3): choose a partition of P into θ(P) chains and an antichain of P of size

α(P).
(3) =⇒ Dilworth’s Theorem: let A and P be respectively an antichain and a chain

partition of P such that A meets every chain of P. Then |P| ≤ |A| which, together with
the inequalities |A| ≤ α(P) ≤ θ(P) ≤ |P|, implies α(P) = θ(P); that is, Dilworth’s
Theorem.

Dilworth’s Theorem =⇒ (4): if P is a partition of P into k chains, then extend
each of these chains into a maximal chain in order to obtain a covering of P with k
maximal chains. Take k = α(P) to see that Dilworth’s Theorem implies (4).

(4) =⇒ Dilworth’s Theorem: if (4) holds, then there exists a covering R of P with
α(P) maximal chains. Let C1, ...,Cα(P) be an arbitrary numbering of the elements of
R. Write C ′

k = Ck \ (
⋃

1≤j<k Cj) for k = 2, ...,α(P). The set {C1,C ′
2, ...,C ′

α(P)} forms
a partition of P into α(P) chains (none of the C ′

k ’s is empty since it would imply the
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existence of a partition of P into less than α(P) chains). So (4) implies Dilworth’s
Theorem and the equivalence follows. �

4.2 Matchings and transversals in a bipartite ordered set

A bipartite ordered set was defined in the first section of Chapter 2 as an ordered
set P of height κ(P) = 2. Such an ordered set is denoted P = (Y + Z ,≤), with Y
(respectively, Z) the set of its minimal (respectively, maximal) elements. In this
section, only bipartite ordered sets without isolated elements are considered; that is,
every element is either minimal or maximal but not both. Then, the notations y ≤ z
with y ∈Y and z ∈Z , y≺ z or y < z will be equivalent. For any subset X ′ of X =Y +Z ,
we write X ′

Y = X ′ ∩Y and X ′
Z = X ′ ∩Z . Write p = |Y | and q = |Z| (with n = p+ q).

The inequality p ≤ q is assumed in this section, without loss of generality since P
may always be replaced with its dual.

There are several equivalent ways to consider bipartite ordered sets:

• the binary relation R between Y and Z defined by R = {(y,z) ∈ Y ×Z : y < z};
• the bipartite graph (Y ,Z ,R), with R as above;
• the 0/1 matrix corresponding to the mapμ from Y ×Z to {0,1}defined byμ(y,z)= 1

if y < z and μ(y,z)= 0 otherwise;
• the family F = {yP : y ∈ Y } of subsets of Z , or the “dual” family Fd = {Pz : z ∈ Z}

of subsets of Y .

The first two are just different terminologies, whereas the last two are different but
equivalent structures.

Thus the combinatorial results obtained below with an ordinal approach also apply
to each of these types of structure (and are frequently presented in these terms in the
literature). Let us first introduce some definitions:

Definition 4.6 Let P = (Y +Z ,≤) be a bipartite ordered set with X = Y +Z , p= |Y |
and q = |Z|.
• A matching of P is a set of pairwise disjoint chains of P of length 1. Let σ(P) be

the maximum number of chains in a matching of P. A matching of P with p chains
is called a matching from Y into Z .

• A transversal of the chains of length 1 of P is a subset T of X = Y +Z such that,
for all y,z ∈ X with y < z, either y ∈ T or z ∈ T . The minimum size of such a
transversal (which will simply be called a transversal of P in the sequel) is denoted
τ(P).

• Let Y ′ be a subset of Y and ]Y ′) the set of all the elements z ∈ Z such that y < z
for at least one element y of Y ′. The deficiency δ(Y ′) of Y ′ is equal to |Y ′|− |]Y ′)|
if |]Y ′)| ≤ |Y ′| and to 0 otherwise. The deficiency of P is defined by δ(P) =
max{δ(Y ′) : Y ′ ⊆ Y }.
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a b c d e

f g h i k

Figure 4.3 A maximum size matching and a minimum size transversal in a bipartite
ordered set P.

Example 4.7 The bipartite ordered set P in Figure 4.3 satisfies aP = {f }, bP = cP =
{f ,g}, dP ={g,h}, and eP ={f ,h, i,k}, with p= q= 5, σ(P)= τ(P)= 4, and δ(P)= 1
(check these values). The bolded lines correspond to a matching of maximum size of
P and the white circles to a transversal of P of minimum size.

Proposition 4.8 below shows that the three parameters σ(P), τ(P), and δ(P) asso-
ciated with a bipartite ordered set P are related to the parameters α(P) and θ(P) of
P (see page 108). Then, in Theorem 4.9, an expression of two classic combinatorial
results will be derived from Dilworth’s Theorem. The same Proposition 4.8 will also
allow us to obtain Theorem 4.10, the famous König–Hall result on the existence of
a matching from Y into Z in a bipartite graph (or ordered set), also stated in its most
classic form in Corollary 4.11.

Notice that, in a bipartite ordered set P = (Y + Z ,≤), the antichains Y and Z are
transversals of P, and that a transversal of P must contain at least one element of each
chain of a matching of P. The sequence of inequalities σ(P)≤ τ(P)≤ p ≤ q ≤ α(P)

is then straightforward. Here are some other relations between these parameters.

Proposition 4.8 For any bipartite ordered set P of size n = p + q, the following
equalities hold:

1. τ(P)+α(P)= n,
2. α(P)= q+ δ(P),
3. τ(P)= p− δ(P),
4. θ(P)+σ(P)= n.

Proof The equality in (1) comes from the fact that the transversals of P = (Y +Z ,≤)

are exactly the complements in Y +Z of the antichains of P.
For the proof of (2), first consider an antichain A of P of maximum size α(P).

Observe that the maximality of A implies |]AY )| = |Z \ AZ |. So δ(P) ≥ δ(AY ) =
|AY | − |]AY )| = |AY | − (|Z| − |AZ |) = α(P) − q. Also α(P) ≥ q + δ(P) since, for
any Y ′ ⊆ Y with δ(Y ′) = δ(P), the subset Y ′ ∪ (Z\]Y ′)) is an antichain of P of size
|Y ′| + |Z| − (|Y ′| − δ(Y ′)) = q + δ(Y ′) = q + δ(P). We thus have (2), which we
subtract term by term from (1) to obtain (3).
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A partition of P into c′ + (n−2c′)= n− c′ chains is associated with any matching
of P with c′ chains, completed with 1-element chains. Thus, starting from a matching
of P with σ(P) chains, the inequality θ(P) ≤ n− σ(P) holds. Conversely, a parti-
tion of P into k chains is formed of c′ chains of a matching together with n − 2c′
1-element chains; so c′ = n− k . Starting from a partition into θ(P) chains, we find
σ(P)≥ n− θ(P) and finally the equality in (4). �

The proof of the above proposition does not use the equality α(P) = θ(P) of
Dilworth’sTheorem. From the equalities in (1) and (4) above, taking the latter theorem
into account leads to the first expression of the parameter σ(P) given in Theorem
4.9 below. This expression, called the König–Egerváry Theorem, is again a “min–
max” type result. The second expression of σ(P) in this theorem comes from the
previous one, together with Item (1) in Proposition 4.8 and the equalities α(P) =
maxA∈A(P){|AY | + |AZ |} = maxY ′⊆Y {|Y ′| + |Z\]Y ′)|}, where A(P) is the set of all
antichains of P. This expression of σ(P) is known as the König–Öre Theorem.

Theorem 4.9 (König–Öre and König–Egerváry) In any bipartite ordered set P =
(Y +Z ,≤), the equalities σ(P)= τ(P)= minY ′⊆Y {|Y \Y ′| + |]Y ′)|} hold.

Conversely, the equality σ(P)= τ(P) may be obtained in other ways, then used to
derive Dilworth’s Theorem. Indeed, searching for a partition of some ordered set P
(not necessarily bipartite) into θ(P) chains is equivalent to the search for a matching
into σ(P′) chains in a bipartite ordered set P′ associated with P. Similarly, to search
for an antichain of P of size α(P) is equivalent to searching for a transversal of
P′ of size τ(P′). In Section 4.5 (Further topics and references), we mention how
these considerations lead to the practical determination of these parameters (see also
Exercise 4.5).

The next theorem characterizes the particular situation where the parameter α(P)

reaches its smallest possible value q, which means that the set Z is an antichain of
P of maximum size. The equivalence of Conditions (1) and (3) is nothing but the
König–Hall Theorem – one of the most famous theorems in combinatorics – on the
existence of a matching from Y into Z . The classic forms of this result are given
in Corollary 4.11 and Exercise 4.6, while Figure 4.4(a) shows an example of such
a matching. Each element y of Y belongs to one of the chains of such a matching,
the other element of the chain (belonging to Z) being denoted ι(y). This defines an
injective map ι from Y to Z which is extensive since y < ι(y), for any y ∈ Y . Clearly,
the existence of such a matching is equivalent to the equality σ(P)= p.

Theorem 4.10 For any bipartite ordered set P, the following three conditions are
equivalent:

1. σ(P)= τ(P)= p,
2. α(P)= θ(P)= q,
3. δ(P)= 0.



4.2 Matchings and transversals in a bipartite ordered set 115

(a)

(b)

Figure 4.4 (a) A Sperner bipartite ordered set and (b) a non-Sperner distributive lattice.

Proof If Condition (1) is satisfied then, according to Items (1) and (4) in Proposition
4.8, the equalities α(P)= n−p = q and θ(P)= n−p = q hold, hence Condition (2).
Likewise, the implications of (3) by (2) and (1) by (3) come from Items (2) and (3)
in Proposition 4.8. �

Since σ(P)= p means that there exists a matching from Y into Z , we obtain:

Corollary 4.11 (König, 1931) Let P = (Y +Z ,≤) be a bipartite ordered set. There
exists a matching from Y into Z if and only if the deficiency δ(P) of P is null; that is,
if |Y ′| ≤ |]Y ′)| for any Y ′ ⊆Y.

Example 4.12 In the bipartite ordered set P in Figure 4.3, there exists no matching
from Y into Z since δ(P)= 1 (observe that the “strict” up closure ]{a,b,c,d}) is equal
to {f ,g,h}).

Obviously, the complete bipartite ordered set KY ,Z has a matching from Y into Z .
This observation extends as follows: a bipartite ordered set P = (Y +Z ,≤) is said to
be regular when each element of Y is covered by the same number k of elements of
Z , while each element of Z covers the same number k ′ of elements of Y . The equality
kp = k ′q is obtained by counting in two different ways the ordered pairs (y,z) such
that y < z. Thus, k ≥ k ′ (since p≤ q). For Y ′ ⊆ Y , we also have k|Y ′| ≤ k ′|]Y ′)| since
the ordered pairs with the lower element in Y ′ form a subset of those with the greater
element in ]Y ′); so k|Y ′| ≤ k|]Y ′)| and, according to Corollary 4.11, we conclude:

Corollary 4.13 If P = (Y + Z ,≤) is a regular bipartite ordered set, then it has a
matching from Y into Z and the equality α(P)= |Z| = q holds.
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4.3 The Sperner property

In this section all considered ordered sets are ranked, with the normalized rank
function r. In such an ordered set P of rank r(P), for k = 0, ...,r(P), the rank-set
Rk = {x ∈ P : r(x)= k} of rank k and the Whitney numbers nk = |Rk | of P have been
defined in Section 2.1. Denote by ν(P) = max0≤k≤r(P)nk the maximum Whitney
number. Rank-sets are particular antichains, so ν(P)≤ α(P) holds.

Definition 4.14 A ranked ordered set P is called a Sperner ordered set – or is simply
said to be Sperner – if it satisfies the Sperner property; that is, every rank-set of
maximum size is a maximum size antichain (i.e., the equality ν(P)= α(P) holds).

We will recall in Section 4.5 that the search for a maximum size antichain of P is a
problem treatable in any ordered set since it is equivalent to the search for a maximum
flow in a graph associated with P. Nevertheless, the solution of this problem is much
more immediate in a Sperner ordered set as soon as the determination of the rank of
any element is easy.

The equality ν(P)= α(P) in Boolean lattices, now called Sperner’s Theorem, was
established in 1928 by Sperner. In this section several ways of recovering this result
are presented, each of them leading to a class of Sperner ordered sets. First, two
conditions equivalent to the Sperner property are given in Theorem 4.17, then several
conditions on a ranked ordered set which, alone or combined, imply the Sperner
property. We finally give three proofs of Sperner’s Theorem (Theorem 4.20).

Remark 4.15 Sperner bipartite ordered sets are those having a matching from Y =R0

into Z = R1 or from R1 into R0 (the inequality |Y | ≤ |Z| is no longer assumed), i.e.,
those satisfying the conditions in Theorem 4.10.

Example 4.16 The ordered set P in Figure 4.1(a) is Sperner since it satisfies ν(P)=
α(P)= 2; the one in Figure 4.2, with ν(P)= 3 and α(P)= 5, is not Sperner.According
to the above remark, Figure 4.4(a) shows a Sperner bipartite ordered set since it has a
matching from Y into Z . Figure 4.4(b), where the white elements form a maximum size
antichain, shows the diagram of a non-Sperner distributive lattice L (see Chapter 2,
Definition 2.19) (check that α(L)≥ ν(L)).

We start with two characterizations of Sperner ordered sets, given in Theorem
4.17 below. Both reveal that the Sperner property is linked to the existence of some
relations between the chains and the rank-sets of an ordered set. Condition (N ) is a
direct consequence of Dilworth’s Theorem together with Remark 4.4.

Consider a covering R of an ordered set P with h maximal chains C1, ...,Ch, not
necessarily all distinct. For any element x of P, set ρR(x) = |{j ∈ {i, ...,h} : x ∈ Cj}|
and ρ = minx∈PρR(x). A rank-set R is said to be R-regular if any element x of R
belongs to the same number ρR(x) = h

|R| of these chains. It is minimum-R-regular
if, moreover, for any x of R, the equality ρR(x)= ρ holds.



4.3 The Sperner property 117

Theorem 4.17 Let P be a ranked ordered set. The following three conditions are
equivalent:

(S) P is Sperner.
(N) There exists a partition of P into ν(P) chains.

(MR) There exists a covering R of P with maximal chains and a rank-set R of P such
that R is minimum-R-regular.

Proof Condition (S) means that ν(P) is equal to the width α(P) of P which, accord-
ing to Dilworth’s Theorem, is the minimum number of chains in a chain partition of
P. So (S) implies (N ).

To show that (N ) implies (MR), consider a partition of P into ν(P) chains and
complete each of these chains into a maximal one if it is not already so. Obviously
the obtained set of chains constitutes a covering R of P with maximal chains, while
every rank-set R of size ν(P) is minimum-R-regular, with ρR(x)= 1 for any x ∈ R.

Finally, if (MR) is true and if R is a minimum-R-regular rank-set for a covering
R of P with h maximal chains, then, for any antichain A of P, the inequalities
h ≥�x∈AρR(x)≥ ρ|A| hold. Thus |A| ≤ h

ρ
= |R| and P is Sperner. �

As a particular case, a condition implying (MR) and thus implying that P is Sperner,
is obtained by taking as R the set C of all maximal chains of P:

(MCR) There exists a minimum-C-regular rank-set of P.

Let P be a ranked ordered set and Pk = (Rk +Rk+1,≤) the bipartite ordered sets,
restrictions of P to two consecutive rank-sets (with 0 ≤ k ≤ r(P)− 1). Consider the
following conditions, that we first state then explain and comment on:

(REG) For any k = 0, ...,r(P)− 1, the bipartite ordered set Pk is regular.
(SBR) For any k = 0, ...,r(P)− 1, the bipartite ordered set Pk is Sperner.
(UNI) The ordered set P is unimodal.
(RSU) The Whitney numbers of P satisfy n0 = nr(P) ≤ n1 = nr(P)−1 ≤ ... ≤ nk =

nr(P)−k ≤ ..., for k ≤ r(P)+1
2 .

(SYM) The ordered set P is symmetric chain.

These conditions, or some combinations of them, will allow us to determine several
classes of Sperner ordered sets. Conditions (REG) of regularity and (SBR) – for
Sperner by rank-sets – concern the bipartite ordered sets Pk .

A finite integer sequence m0,m1, ...,mq is unimodal if it is the concatenation of
an increasing sequence m0 ≤ ... ≤ mp and a decreasing sequence mp+1 ≥ ... ≥ mq.
A ranked ordered set is unimodal if the sequence of its Whitney numbers nk , k =
0,1, ...,r(P), is unimodal (it is obvious or well-known that chains and Boolean lattices
are unimodal); this condition is denoted by (UNI). A particular case of Condition
(UNI) is Condition (RSU ) of rank symmetry–unimodality. The latter implies ν(P)=
n r(P)

2
if r(P) is even and ν(P)= n (r(P)−1)

2
= n (r(P)+1)

2
if r(P) is odd.
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A chain C of P is said to be symmetric if it is covering and if r(maxC)+r(minC)=
r(P), where maxC and minC are respectively the greatest and the least elements of
C. A ranked ordered set is symmetric chain if it has a symmetric chain partition, i.e.,
a chain partition of P in which every chain is symmetric.

Proposition 4.18 Let P be a ranked ordered set.

1. If P is regular, then it satisfies (SBR).
2. If P satisfies (RSU ), then it satisfies (UNI).
3. If P satisfies (SYM ), then it satisfies (RSU ).
4. If P satisfies (SYM ), then it satisfies (UNI) and (SBR).
5. If P satisfies (UNI) and (SBR), then it is Sperner.

Proof (1) This implication is a direct consequence of Corollary 4.13.
(2) and (3) come from the definitions of the properties (RSU ), (UNI), and (SYM ).
(4) Assume that P has a symmetric chain partition P. It follows from (2) and (3)

that P satisfies (UNI). Now we prove that P also satisfies (SBR). For any rank-set Rk

of P, nk is the number of chains of P which have an element in Rk . Assume k ≤ r(P)
2 .

By the symmetry of these chains, if one of them has an element in the rank-set Rk−1,
it also meets the rank-set Rr(P)−(k−1) and, since it is covering, it has an element in the
rank-set Rk . Thus there exists a matching from Rk−1 into Rk and so Pk−1 is Sperner
and satisfies nk−1 ≤ nk (see Remark 4.15). A similar situation occurs for k ≥ r(P)

2 ,
with nk ≥ nk+1, which implies (SBR).

(5) We show that, if P satisfies (UNI) and (SBR), then it may be partitioned
into ν(P) chains. Let Rm be a rank-set of size ν(P). If m �= 0, then, by (UNI),
nm−1 ≤ nm and, by (SBR) and Remark 4.15, there exists a matching from Rm−1

into Rm, corresponding to an injective and extensive map ιm−1 from Rm−1 into Rm.
Similarly, injective and extensive maps ιk : Rk → Rk+1 are obtained for any k such
that 0 ≤ k < m. The sequences x, ι−1

m−1(x), ι
−1
m−2(ι

−1
m−1(x)), ..., for each x in the rank-

set Rm, form a partition of the downset (Rm] into ν(P) chains, each of them with a
distinct element of Rm as its maximum. The upset [Rm) being partitioned likewise,
the pairwise concatenations of the obtained chains provide a partition of P into ν(P)

chains. �
The lattice in Figure 4.4(b) satisfies (UNI) but not (SBR) and is not Sperner.

Likewise, the reader will search for a non-Sperner ordered set satisfying (SBR) and
not (UNI). Thus, Conditions (UNI) and (SBR) are independent and, separately, none
of them implies (S).

Definition 4.19 A family F of subsets of a set E is called a Sperner family (or a
clutter) on E if it is an antichain of the lattice 2E ; that is, none of the subsets in F is
strictly included in another one.

The Sperner Theorem proved below states that the maximum size of such a family
is equal to the maximum size of a rank-set of the Boolean lattice 2E (Chapter 1,
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Example 1.40). This result accounts for the denomination “Sperner ordered set” in
Definition 4.14. Exercise 4.9 is based on a nice application of this result to a question
pertaining to numerical analysis.

Theorem 4.20 (Sperner, 1928) Let E be a set of size n. The Boolean lattice 2E is a
Sperner ordered set, with α(2E)= ν(2E)= ( n

$ n
2 %

)
.

Proof It is well-known that ν(2E) = ( n
$ n

2 %
)
. The previous results provide us with

three ways of showing that 2E is Sperner.
1. It may be proved that 2E satisfies Condition (SYM ) by the direct construction

of a symmetric chain partition (Exercise 4.10). Then Proposition 4.18 applies.
2. It is well-known that 2E satisfies Condition (RSU ) and, so, (UNI). Since each

of its bipartite ordered sets Pk = (Rk +Rk+1,≤) is regular, the ordered set 2E satisfies
(REG) and, so, (SBR). Then Item (5) in Proposition 4.18 applies.

3. The ordered set 2E satisfies Condition (MCR) since all its rank-sets are
C-regular (compute the number of maximal chains including a subset of E of size
k). So it satisfies Condition (MR) in Theorem 4.17. �

4.4 Direct products of chains

An important class of ordered sets, which is an immediate generalization of Boolean
lattices, is that of direct products of chains; that is, products c1 × ...× ci × ...× cm of
linearly ordered sets where, for any i = 1, ...,m, ci is an integer greater than or equal
to 2 and ci is the chain {0 < 1 < ... < ci−1} of size ci.

In this section, the term product of chains (or chain product) always stands for
direct product of chains and a number of properties of such products are stated. To
do this we first consider the more general case of an ordered set P′ = P × c, which
is the direct product of a ranked ordered set P with the chain c = {0 < ... < c− 1} of
size c. We observe that P′ inherits several properties of P (Propositions 4.21 to 4.24)
and the results of this type are applied to chain products (Corollary 4.25).

An element of P′ is denoted by x′ = (x, j), with x ∈ P and j ∈ c. Let r be the rank
function of P. The ordered set P′ is ranked too, with the rank function r′ given by
r′(x′) = r′((x, j)) = r(x)+ j for any x′ ∈ P′. If r(P) is the rank of P, then the rank
(parameter) of P′ is r(P′)= r(P)+c−1 (as in Chapter 2, Section 2.1, we distinguish
the rank parameter, denoted by r(P′), of the ordered set P′ from the rank function
r′ defined on P′). As above, the size of the rank-set Rk is denoted by nk , while the
size of the rank-set R′

k of P′ is denoted by n′k . This sequence of numbers is extended
by writing nk = 0 (respectively, n′k = 0) for any integer k �∈ [0,r(P)] (respectively,
k �∈ [0,r(P′)]). It is then easy to obtain the equalities (1) and (2) in Proposition 4.21
(draw a figure).
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Figure 4.5 A symmetric chain partition of the direct product 4× 5.

Proposition 4.21 Let P be a ranked ordered set, c a chain of size c, and P′ = P× c.
For any integer k ≥ 0, the numbers nk and n′k satisfy the following equalities:

1. n′k =�k−c+1≤i≤kni.
2. n′k+1 = n′k + nk+1 − nk−c+1.

Conditions (UNI) of unimodality of P, (RSU ) of rank symmetry–unimodality of
P, and (SYM ) meaning that P is symmetric chain have been defined in the previous
section. In the sequel, we also consider the following condition: a ranked ordered set
P is called strongly unimodal if it is unimodal and, moreover, if nk+1 = nk implies
either nk = 0 or nk = ν(P). In other words two consecutive rank-sets of such an
ordered set do not have the same size unless this size is maximum. An example of
such an ordered set is given in Figure 4.5.

The implication of Conditions (UNI) and (RSU ) by (SYM ) was shown in the
previous section. A generalization of the construction appearing in Figure 4.5 for
4×5 allows us to observe that any product of two chains satisfies Condition (SYM ).
The proof of the next result is proposed in Exercise 4.12.

Proposition 4.22 Let P be a symmetric chain ordered set, c a chain, and P′ = P×c.
Then the direct product P′ = P × c is still symmetric chain.

As mentioned above, we now infer other properties of the Whitney numbers of
P′ = P × c from those of the Whitney numbers of P.

Proposition 4.23 Let P be a unimodal ranked ordered set, c a chain, and P′ =P×c.
Then the following three properties hold:

1. P′ is unimodal.
2. If P satisfies Condition (RSU ), so does P′.
3. If P satisfies (RSU ) and is strongly unimodal, so does P′.
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Proof (1) We first show that, if P is unimodal, so is P′. From Item (2) in Proposition
4.21, the first part of the sequence of the n′i is increasing: n′0 = n0; n′1 − n′0 = n1 > 0.
Now, as soon as n′k+1 < n′k for an index value k , the sequence must decrease. Let k
be an index value such that n′k+1 −n′k < 0 and so, by Item (2) again, nk+1 < nk−c+1.
In that case, since P is unimodal, nk+1 is necessarily in the non-increasing part of the
sequence of the ni and thus nk+2 ≤ nk+1.

If nk−c+1 is still in the non-decreasing part of the sequence of the ni, then
nk−c+1 ≤ nk−c+2 and, so, n′k+2−n′k+1 = nk+2−nk−c+2 ≤ nk+1−nk−c+1 < 0. Other-
wise, the inequalities nk−c+1 ≥ nk−c+2 ≥ nk+2 hold and imply n′k+2−n′k+1 ≤ 0. Since
the latter inequalities remain true for the subsequent differences of Whitney numbers,
the sequence of the n′i cannot increase again. So, the ordered set P′ is unimodal.

(2) If P satisfies (RSU ), then the equalities n′k = �0≤i≤c−1nk−i =
�0≤i≤c−1nr(P)−k+i = �0≤i≤c−1nr(P)+(c−1)−k+(i−c+1) = �0≤i≤c−1nr(P)−k+i =
n′r(P′)−k hold. Together with the unimodality of P′ obtained above, this implies
Condition (RSU ) for P′.

(3) Now assume that P satisfies (RSU ) and is strongly unimodal. We show that
P′ is still strongly unimodal; that is, n′k+1 = n′k implies either n′k = 0 or n′k = ν(P′).
From the recurrence formula (2) in Proposition 4.21, the equality n′k+1 = n′k implies
nk+1 = nk−c+1. We examine the three cases where the latter equality may occur:

• If nk+1 = 0, then ni = 0 for any i less than k and, so, by Item (1) in Proposition
4.21, n′k+1 = n′k = 0.

• If nk+1 = nk−c+1 = ν(P), then, since P is unimodal, ni = ν(P) for any i between
k−c+1 and k+1. So, by Item (1) in Proposition 4.21, n′k+1 = n′k = cν(P)= ν(P′).

• If nk+1 = nk−c+1 is different from 0 or ν(P), then by strong unimodality, the
equality k −c+1= r(P)−k −1 holds. Then r(P′)= r(P)+c−1= 2k +1 is odd
and we find k = r(P′)−1

2 and k + 1 = r(P′)+1
2 which, with the symmetry property,

implies n′k+1 = n′k = ν(P′).

�
Let q (respectively, q′) be the number of the rank-sets of P (respectively, of P′) of

maximum size ν(P) (respectively, ν(P′)). The next proposition allows us to derive q′
from q and c in some cases.

Proposition 4.24 Let P be a ranked ordered set, c a chain of size c, and P′ = P× c.
The following properties hold:

1. If P is unimodal with c ≤ q, then P′ has exactly q− c+ 1 rank-sets of maximum
size ν(P′). In this case, the equality ν(P′)= cν(P) holds.

2. If P satisfies Condition (RSU ) and is strongly unimodal, and if c > q, then P′
has exactly one (if r(P′) is even) or two (if r(P′) is odd) rank-sets of maximum
size ν(P′).



122 Chains and antichains

Proof (1) Let j be the smallest integer such that nj = ν(P). Since P is unimodal,
the greatest integer i such that ni = ν(P) is j + q− 1. Now, with c ≤ q, we observe
that Item (1) in Proposition 4.21 gives n′k = �k−c+1≤i≤kni = cν(P) if and only if
j+ c−1 ≤ k ≤ j+q−1. From Item (1) in Proposition 4.21 again, it is clear that this
value cν(P) is the greatest possible one for the size of a rank-set of P′.

(2) First note that, by Proposition 4.23, if P satisfies (RSU ), so does P′. So, if
there are several rank-sets of size ν(P′) in P′, their ranks are “centered” on the value
r(P′)

2 = r(P)+c−1
2 . Assume r(P′) is even and write j = r(P′)

2 = r(P)+c−1
2 . We have

n′j = ν(P′) and n′j+1 − n′j = nj+1 − nj−c+1 (Item (2) in Proposition 4.21). Since there
are q < c rank-sets of size ν(P) in P, the value ν(P) cannot be simultaneously that
of nj+1 and nj−c+1. So, n′j+1 − n′j = nj+1 − nj−c+1 �= 0 and, since n′j = ν(P′), then

n′j+1 < n′j . By Condition (RSU ), n′j+1 = n′j−1 < n′j , and so j = r(P′)
2 is the unique rank

value for which n′j = ν(P′).
The case where r(P′) is odd is similar, starting from j = r(P′)+1

2 . �

Clearly, any chain satisfies Condition (SYM ) and is strongly unimodal. The fol-
lowing properties of a product of m chains are immediately derived from the above
results (more particularly, from Proposition 4.18 and Propositions 4.21 to 4.23) by
induction on m.

Corollary 4.25 Let P = c1 × ...× cm be a product of m chains. The ordered set P is
ranked with rank r(P)= (�1≤i≤mci)−m. It satisfies Condition (SYM ) and is strongly
unimodal. P is Sperner and its width α(P) = ν(P) is the size of the rank-set R r(P)

2
if

r(P) is even, or the size of the rank-sets R r(P)−1
2

and R r(P)+1
2

if r(P) is odd.

Proposition 4.21 provides recurrence formulas for the computation of Whitney
numbers and, especially, the width of a chain product P. Likewise, the properties
listed in the above corollary allow us to use Proposition 4.24 to determine the number
of rank-sets of maximum size in a chain product c1 × ...× cm from this number in
c1 × ...× cm−1.

Example 4.26 Achain product P = c1× ...×cm is a Post lattice if c1 = c2 = ...= cm =
c. For c = 2, P is a Boolean lattice and the recurrence formula (1) in Proposition 4.21
becomes n′k = nk + nk−1, the formula of binomial numbers. For any c, the Whitney
numbers of the ordered set cm generalize these numbers. For instance, when c = 6,
the size nk of the rank-set Rk corresponds to the number of different ways to obtain
the score k + m in a throw of m (non-loaded) dice. Then nk

6m is the probability of
obtaining this score in a “fair” throwing. Table 4.1 gives the corresponding numbers
nk for 1 ≤ m ≤ 4.

In Table 4.1, the transition from the lines m= 1 to m= 2 – i.e., from the chain 6 to
62 – illustrates Item (1) in Proposition 4.24 (with P = 6 and so c = q= 6). For m≥ 2,
the other transitions illustrate Item (2).
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Table 4.1 Whitney numbers of the Post lattices P = 6m for m ≤ 4

m \ k 0 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1
2 1 2 3 4 5 6 5 4 3 2 1
3 1 3 6 10 15 21 25 27 27 25 21
4 1 4 10 20 35 56 80 104 125 140 146

m \ k 11 12 13 14 15 16 17 18 19 20
1
2
3 15 10 6 3 1
4 140 125 104 80 56 35 20 10 4 1

In general, the rank of a Post lattice P = cm is equal to m(c− 1). Applying Propo-
sition 4.24 allows us to see that, for m > 1, the ordered set P has one rank-set of size
ν(P) if this product is even, and two otherwise.

Example 4.27 Consider an integer p= pa1
1 pa2

2 ...pam
m , where p1,p2, ...,pm are the prime

factors of p. The set P of all divisors of p, endowed with the divisibility order, is
isomorphic to the chain product (a1 + 1)×(a2 + 1)× ...×(am + 1). Thus the previous
results apply to this ordered set.

Example 4.28 In the field of knowledge extraction (and, more precisely, of the
extraction of the decision rules of an expert), Pichon et al. (1994) assume that objects
are described by m attributes, each corresponding to an ordinal scale (a chain) ci of
size ci (with i = 1, ...,m). So, the universe of all possible descriptions corresponds
to the chain product P = c1 × ... × cm of rank r(P) = (�1≤i≤mci)− m. An expert
selects or rejects objects in such a way that, if object e is selected, so are all objects
e′ greater than e in P whereas, if e is rejected, so are all objects e′ less than e in P.
In other terms, the set of all selected objects is an upset F of P, while the rejected
ones correspond to the complementary downset. The determination of the antichain
A of all minimal elements of F will reveal the decision rules of the expert (who, in
some cases, would hardly be able to make these rules explicit by himself). It is then
possible, for instance, to set specifications for the realization of an expert system.

It may be important to organize the questions addressed to the expert in order to
reduce the number of these questions. To do so, one may first consider a partition of
P into α(P) chains, each of size at most r(P)+ 1. Then one finds the limit element
of the chain by a dichotomic research, with at most $log2c% questions. The upper
bound α(P)$log2r(P)+ 1% for the number of objects submitted to the expert is then
obtained (in fact, this bound is valid in every ranked ordered set). The authors of the
paper quoted above also seek to improve the bound by procedures more specific to
chain products and a choice of questions which evolves depending on the steps of the
research.
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4.5 Further topics and references

While studying the dimension of distributive lattices, a question dealt with in Chapter
6, Dilworth was led to state his theorem in 1950. The simple proof of this result given
in Section 4.1 is due to Tverberg (1967). The Dilworth and Sperner Theorems were
the starting points of a particularly broad literature, including a number of brilliant
results and also several outstanding syntheses providing all the needed references:
the survey, emphasizing proof methods, written by Greene and Kleitman (1978), the
very complete historical presentation by West (1982), and Engel’s book (1997), dense
and technical.

Here we have essentially presented some basic results pertaining to ordered set
theory. However, the bipartite ordered sets of Section 4.2 are clearly equivalent to
bipartite graphs and, as mentioned, to other combinatorial structures. As a matter of
fact, Dilworth’s Theorem is at the very center of combinatorial theory, as is testified by
its relation with integer linear programming. This relation is implicit in its equivalence
with the Ford and Fulkerson “max flow–min cut” Theorem (1962) and is explicit as
a corollary of a duality theorem by Dantzig and Hoffman (1956). Moreover, the
equivalence between Dilworth’s Theorem and several other fundamental results of
combinatorics has been proved in the literature. For instance, it was shown in Section
4.2 how Dilworth’s Theorem implies the König–Hall Theorem. The latter implies
Menger’s Theorem in graph theory which, in turn, implies that of Ford and Fulkerson.
The latter result leads to a proof of the König–Egerváry Theorem on bipartite graphs,
which finally implies Dilworth’s Theorem. Below we go back to the last two of these
implications between theorems. For the other (and for variants of Menger’s Theorem),
the reader may refer to Chapter 8 in Aigner (1979) and to Chapter 13 in Welsh (1976)
for the implication of Menger’s Theorem by that of König–Hall.

Exercise 4.5 proposes a proof of the implication of Dilworth’s Theorem by the
König–Egerváry Theorem (the converse was established in Section 4.2). To do so, a
bipartite ordered set P′ = (X +X ′,≤′

) is associated with any ordered set P = (X ,≤) as
follows: X ′ = {x′1, ...,x′n} is a copy of X ={x1, ...,xn}, with xi <

′
x′j if and only if xi < xj .

On the other hand, the proof of the implication of the König–Egerváry Theorem by
that of Ford and Fulkerson involves an efficient algorithm for determining the width
of an ordered set P (and, as a consequence, this determination is a polynomial problem
– see Appendix A). In fact, the search for a partition of any ordered set P into θ(P)

chains is equivalent to the search for a maximum flow in the directed graph GP defined
below, while the search for an antichain of P of size α(P) is equivalent to the search
for a minimum cut of GP . We now make explicit the equivalence between Dilworth’s
Theorem and the Ford and Fulkerson max flow–min cut Theorem. Let us first recall
the latter.

For each vertex v of a directed graph G = (V ,U ), denote by Uv (respectively,
vU ) the set of arcs of extremity (respectively, of origin) v. For two distinct vertices
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y and z, a flow from y to z is a map f : U #−→ N such that, for any v ∈ X \ {y,z},
�u∈Uvf (u)=�u∈vU f (u), while, if u ∈Uy (respectively, u ∈ zU ), then f (u)= 0. The
value of the flow f is equal to f (y,z)=�u∈yU f (u)=�u∈Uzf (u). To be admissible, a
flow f must also satisfy, for each arc u, the inequality f (u)≤ χ(u), where the integer
χ(u) is the “capacity” of the arc u. To maximize f (y,z) subject to these constraints may
then be seen as a problem of maximum conveyance through a transportation network
(represented by the graph G). A cut (separating y and z) is a partition of V into two
classes Y and Z such that y ∈ Y and z ∈ Z . Consider the set D(Y ,Z) of the arcs (y′,z′)
of G such that y′ ∈ Y and z′ ∈ Z , and the capacity of the cut χ(Y ,Z)=�u∈D(Y ,Z)χ(u).
The Ford and Fulkerson Theorem states the equality:

max{f (y,z), f an admissible flow} = min{χ(Y ,Z),(Y ,Z) a cut separating y and z}

This theorem is associated with efficient algorithms for the determination of such
flow and cut. It applies to the graph GP′ = (V ,U ) derived from the above ordered set
P′ by adding a source y and a sink z. We write V = X ∪X ′ ∪ {y,z} and U = {(y,x) :
x ∈ X } ∪ {(x,x′) : x ∈ X ,x′ ∈ X ′,x < x′} ∪ {(x′,z) : x′ ∈ X ′}. This graph is endowed
with the capacities χ(y,x) = χ(x′,z) = 1, for all x ∈ X ,x′ ∈ X ′, and χ(x,x′) = n+ 1
for all other arcs (x,x′) (with n = |X |).

A matching C from X into X ′ with σ(P′) chains then corresponds to a maximum
flow from y to z, with f (y,z)= σ(P′), while a cut (Y ,Z) of GP , with y ∈ Y and z ∈ Z ,
has a minimum capacity χ(Y ,Z) if and only if it satisfies the following properties:
Y ∩X = Z ∩X ′ = ∅ and (Y ∩X ′)∪ (Z ∩X ) is a transversal of P′ of minimum size.
So, the determination of a maximum flow of GP implies that of a matching of P′
with σ(P′) chains and of a partition of P into θ(P) chains, while the determination
of a minimum cut of GP implies that of a transversal of P′ of size τ(P′) and of an
antichain of P of size α(P).

Problems of cuts have been generalized. And, for example, Dilworth’s Theorem is
crucial in the proof of the following result: the multicut problem parameterized by a
solution size k is fixed-parameter-tractable (FPT) (see Bousquet et al., 2010).

Another property of ordered sets is that their comparability graphs (and their com-
plementary incomparability graphs, see Definition 1.5 in Chapter 1) form one of
the main classes of perfect graphs, the definition of which is recalled below. In an
undirected graph G = (V ,U ), the independence number α(G) is the maximum size
of an independent subset (that is, without adjacent elements) of V , the chromatic
number γ (G) is the minimum number of independent subsets in a partition of V
into independent subsets, the number κ(G) is the maximum size of a clique (i.e., a
subset of pairwise adjacent elements) of V , and the number θ(G) is the minimum
number of cliques in a clique partition of V . The graph G is said to be perfect if the
equality α = θ is satisfied by G and by any induced subgraph of G. Equivalently, G
is perfect if κ = γ holds in G and in any induced subgraph of G (see the surveys by
Toft (1995) and Chudnovski et al. (2003) on the proofs of Berge’s 1961 conjectures
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on these graphs). When G is the comparability graph Comp(P) of an ordered set P, it
is immediate to see that the cliques of Comp(P) correspond exactly to the chains of
P and that, in fact, these graph parameters coincide with the order parameters studied
throughout this chapter. Then, Dilworth’s Theorem and/or Theorem 4.1 imply that
any comparability – or incomparability – graph is perfect. The particular ordered sets
whose comparability graphs are also incomparability graphs are the 2-dimensional
ordered sets and they will be characterized in Chapter 6, Section 6.4.

Many generalizations of Dilworth’s Theorem have also been obtained. A particu-
larly remarkable one concerns the k-antichains of maximum size, in relation to the
existence of particular chain partitions (Greene and Kleitman, 1976). Exercise 4.4
presents two equivalent definitions of these k-antichains.

There are other relations between chains and antichains. For instance, Howard
and Trotter (2010) proved that there exist relations between the number of pairwise
disjoint maximal chains (respectively, antichains) of an ordered set and the size of all
its maximal antichains (respectively, the lengths of all its maximal chains).

In another direction, Shum and Trotter Jr. (1996) have studied the problem of
partitioning an ordered set into a minimal number of chains of length bounded by a
fixed integer and shown that the corresponding decision problem is NP-complete.
A generalization of this problem where the elements of the ordered set are weighted
is considered in Moonen and Spieksma (2008).

Sperner’s Theorem may be seen as the starting point of the “extremal set theory,”
the purpose of which is to find, given a set E, the maximum (or minimum) number of
elements of a family F of subsets of E that satisfies some properties. For instance, if
the property is the incomparability for the inclusion order, the problem is to determine
the width of the ordered set (F ,⊆). The interested reader may refer to Anderson’s
book (1987).

The problem of recognizing whether an order is or is not Sperner is central in the
study of ranked ordered sets. It induces a specific classification of these ordered sets:
for instance, neither distributive lattices (Figure 4.4(b) provides a counter-example)
nor modular lattices nor geometric lattices (Dilworth and Greene, 1971) are Sperner
in general. The case of the (geometric) partition lattice has been a famous problem
for a long time until Canfield (1978) proved that this lattice is not Sperner as soon as
its size is large enough.

On the other hand, according to Proposition 4.18, the existence of a symmetric
chain partition implies the Sperner property. It also has many other consequences
which make the search for such partitions particularly interesting (see Griggs (1988)
and Exercise 4.10).

Since chain products generalize Boolean lattices, the Whitney numbers of the
former generalize binomial numbers. Indeed, we have observed in Example 4.26
that the recurrence formulas of Proposition 4.21 generalize Pascal’s triangle. Yet, the
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“factorial” formula for binomial numbers hardly extends (see Exercise 4.13 for the
case m = 3). However, besides recurrence formulas, probabilities provide efficient
tools for an approximative evaluation of the number of elements whose rank lies
between two given values in a “large” chain product. With the notations in Example
4.27, write V = 1

12�1≤i≤mai(ai + 2) and s =√
V . We may consider the rank r(x) of

an element x, chosen at random in P with uniform probability, as a random variable of
mean r(P)

2 and variance V . If the sequence a1,a2, ...,am, ... is such that limm→∞ am
s = 0,

the distribution of r(x) tends toward the normal one. In particular, this leads to the
asymptotic formula

α(P)≈ 1√
2π

n(P)

s

(see, for instance, Leclerc (1990)). This is the case for the chain product 2×3× ...×m,
which was shown by Le Conte de Poly-Barbut (1990a) to have the same Whitney
numbers as the weak Bruhat order on �m defined in Chapter 1, Example 1.17.

4.6 Exercises

Exercise 4.1 Show that a ranked lattice the rank-sets of which have size at most
2 may be partitioned into two chains (the example in Figure 4.4(b) shows that the
situation is different when the size of the rank-sets is at most 3).

Exercise 4.2 [Fleet optimization] A company has scheduled n flights departing from
an airport. To each flight i corresponds a departure time ti and the duration di of
the absence of the plane until its return. Two flights i and j are incompatible if
[ti, ti + di] ∩ [tj , tj + dj] �= ∅. Show that the minimum number of required planes to
realize the schedule is equal to the maximum number of pairwise incompatible flights.

Exercise 4.3 [The lattice of maximum size antichains; Dilworth (1960)] Let A and
A′ be two antichains of size α(P) of an ordered set P. Write Y = A∪A′ and let B and
B′ be respectively the sets of the minimal and the maximal elements in the ordered
subset (Y ,≤).

(1) Show that Y = B∪B′ and deduce that B and B′ are also antichains of P, of size
α(P).

(2) Show that, for the order defined on antichains of P by A1 ≤ A2 if (A1] ⊆ (A2],
B (respectively, B′) is the meet (respectively, the join) of A and A′ (this order is
considered in Chapter 5, on page 137).

Exercise 4.4 [k-Antichains] Let P = (X ,≤) be an ordered set. A subset Y of X is
called a k-antichain of P if Y is the union of at most k antichains of P. Show that Y
is a k-antichain if and only if κ(P′)≤ k , where P′ is the ordered subset (Y ,≤) of P.
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Exercise 4.5 [From König–Egerváry to Dilworth; Fulkerson (1956)] Let P = (X ,≤)

be an ordered set of size n. Consider the associated bipartite ordered set P′ = (X +
X ′,≤′

), where X ′ = {x′1, ...,x′n} is a copy of X = {x1, ...,xn} and xi <
′
x′j if and only if

xi < xj .
(1) Show that a partition P of P into n− c′ chains corresponds to a matching of P′

into c′ chains and conversely. Indication: start from an empty matching C of P′ and
from the partition P of P into n 1-element chains. Then add ordered pairs (xi,x′j) with

xi <
′
x′j to C and reduce at the same time the number of chains in P by putting xi and

xj in the same chain.
(2) Show that an antichain A of size n− t′ of P corresponds to a transversal T of

size t′ of P′ and conversely. Indication: xi is an element of A if and only if neither xi

nor x′i are elements of T .
(3) Conclude that the equality σ(P′)= τ(P′) implies the equality θ(P)= α(P).

Exercise 4.6 [Systems of distinct representatives] Let F = (Fi)i∈I be a family of
subsets of a set E.Asystem of distinct representatives (SDR) of F is a set R={ri, i∈ I}
of (distinct) elements of E such that, for any i ∈ I , ri ∈ Fi. Show that Corollary 4.11
is equivalent to the following statement: a necessary and sufficient condition for the
existence of a SDR of a family F of subsets of E is that, for any J ⊆ I , the inequality
|⋃i∈J Fi| ≥ |J | holds. Hint: use the equivalence between structures pointed out at the
beginning of Section 4.2.

Note This well-known result was obtained in this form by Hall (1935). It applies,
among others, to assignment problems. If, for instance, E is the set of pilots and I the
set of planes of a flight company, Fi being the set of pilots qualified for plane i, then
the obtained condition concerns the possibility of simultaneous flights for all planes.

Exercise 4.7 Consider the Boolean lattice 2E of subsets of a set E and two rank-sets
Rk and Rk ′ of this lattice, with k < k ′ < n

2 + 1. Let P = (Rk +Rk ′ ,≤) be the bipartite
ordered subset of 2E induced by these rank-sets. Does there exist a matching from Rk

into Rk ′? Determine the parameters σ(P), τ(P), γ (P), α(P), and δ(P).

Exercise 4.8 Characterize the ranked ordered sets in which any antichain is included
in a rank-set. Clue: they were considered in Chapter 2.

Exercise 4.9 [The Littlewood–Offord problem] Let r1, ...,rn be a collection of real
numbers, all greater than or equal to 1 and I = [t, t + 1[ a real interval. Consider the
set E of the numbers of form r =�1≤i≤nεiri, where the εi’s are equal to 0 or 1.

Show that the number of elements of E belonging to the interval I is at most equal
to

( n
' n

2 (
)
. Indication: consider the n-tuple of the εi’s as an element of the Boolean

lattice 2n and show that the set of the r’s belonging to the interval I corresponds to
an antichain of 2n.

Note Chapter 11 in Anderson (1987) is devoted to the many extensions of this
result.
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Exercise 4.10 [Symmetric chain partition] Give a symmetric chain partition of the
Boolean lattice 2E of subsets of a set E. Indication: choose an element e of E and
derive two chains of lengths �+ 1 and �− 1 of 2E from each chain of length � of a
symmetric chain partition of 2E−e.

Extend the result in Exercise 4.7 to all k , k ′, and generalize it to any pair of rank-sets
of an ordered set satisfying Condition (SYM ).

Exercise 4.11 [Symmetric chain partition of the permutoedre] Find a symmetric
chain partition of the permutoedre order on the set �4 of the commutations of a set of
size 4 (Chapter 1, Example 1.17; the diagram of this ordered set is given in Chapter
5, Figure 5.7).

Note The existence of a symmetric chain partition of the permutoedre order on �n

for any integer n remains an open problem (see Leclerc (1994c) on this topic, where
this existence is shown for n = 5).

Exercise 4.12 Let {C1, ...,Ck} be a partition of a ranked ordered set P into k symmetric
chains and let C be a chain. Show that any element x of the direct product P × C
belongs to a unique ordered subset Ci ×C, for i ∈ {1, ...,k}.

Deduce that, if P is a symmetric chain ordered set and C is a chain, then P ×C is
still symmetric chain.

Exercise 4.13 [The width of the product of two or three chains; Leclerc (1990a)]
Consider three chains c1, c2, and c3, with c1 ≥ c2 ≥ c3 ≥ 2.

(1) Show that α(c1 × c2)= c2.
(2) Show that α(c1 × c2 × c3)= c2c3 − K

4 , with:

• K = 0 if c1 > c2 + c3 − 2;
• K = (c2 + c3 − c1 − 1)(c2 + c3 − c1 + 1) if c1 ≤ c2 + c3 − 2 and if c2 + c3 − c1 is

odd;
• K = (c2 + c3 − c1)

2 if c1 ≤ c2 + c3 − 2 and if c2 + c3 − c1 is even.
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Ordered sets and distributive lattices

The particular ordered sets called lattices have been defined in Chapter 1. In Chapter
2, we introduced some particular classes of lattices such as distributive, modular, or
semimodular lattices. The class of distributive lattices is the most significant for sev-
eral reasons. First, the distributivity properties between the two operations make the
algebraic handling of such lattices easier. Then, many natural orders in pure or applied
mathematics are distributive lattices, to begin with chains and lattices of subsets of a
set. The latter are isomorphic to direct products of 2-element chains; more generally,
any product of chains is a distributive lattice. Then, when in a multicriteria deci-
sion problem the possible options are assessed according to several linearly ordered
criteria, these options are elements of the distributive lattice, which is the product
of these orders. Finally and above all, there exists a fundamental correspondence
between ordered sets and distributive lattices allowing any property or question on
ordered sets to be translated into a property or question on distributive lattices (and
conversely). For instance, in scheduling problems where one must search for a linear
extension of an ordered set, considering the corresponding problem on an associated
distributive lattice turns out to be profitable (see Section 7.5).

In Section 5.1 we give several characterizations of distributive lattices (Theorem
5.1) and examples of such lattices. In the following section, Theorem 5.6 describes
the properties of a distributive lattice associated with an ordered set, namely the
lattice of its downsets (ordered by inclusion). Section 5.3 shows that, conversely, any
distributive lattice can be represented by sets, a fundamental Birkhoff’s result, known
as the FundamentalTheorem on Finite Distributive Lattices (FTFDL). More precisely,
any distributive lattice is isomorphic to the lattice of downsets of an ordered set,
namely theordered set of its join-irreducible elements (Theorem5.9).Acanonical one-
to-one correspondence is then obtained between the class of ordered sets and the class
of distributive lattices. This one-to-one correspondence can be interpreted as resulting
from a one-to-one correspondence between preorders and topologies, the latter being
itself a consequence of a Galois connection between binary relations and families
of subsets (defined on the same set). In Section 5.4 (Theorem 5.24), we present
this Galois connection, which implies several dualities. First, the duality between
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preorders and topologies (Corollary 5.25), then that between total preorders and linear
topologies (Proposition 5.28), and finally that between orders and quasi-separated
topologies or, equivalently, between orders and distributive lattices (Corollary 5.30).

Beforehand, in Section 5.3, we use Birkhoff’s representation Theorem to prove
several significant properties of distributive lattices such as the isomorphism between
their ordered sets of join-irreducible and of meet-irreducible elements. We also study
the problem of determining the minimum size of a generating set (for both join and
meet operations) of a distributive lattice. Indeed, the result will be useful in Chapter
6 for the determination of the Boolean dimension of an ordered set. The main result
states that to find thisminimumnumber amounts to finding aminimumsize transversal
of a family of intervals of the lattice (Theorem 5.21 and Corollary 5.22).

5.1 Distributive lattices

In Section 2.3 (Definition 2.19) a distributive lattice was defined as a lattice satisfying
one of the two equivalent distributivity properties of one of its operations with regard
to the other (Properties (1) and (2) below). In this section, we prove the equivalence
of these two properties and their equivalence with four others.

We recall the following notations for a lattice L : JL (respectively, ML) is the set of
its join-irreducible (respectively, meet-irreducible) elements; Jx (respectively, Mx)
is the set of the join-irreducible elements less than (respectively, meet-irreducible
elements greater than) or equal to an element x of L; for j ∈ JL and m ∈ ML, j ↑ m
means that j∨m = m+ (Chapter 3, Proposition 3.21).

Theorem 5.1 A lattice L is distributive if and only if it satisfies any of the following
properties:

1. For all x,y,z ∈ L, x∧ (y∨ z)= (x∧ y)∨ (x∧ z).
2. For all x,y,z ∈ L, x∨ (y∧ z)= (x∨ y)∧ (x∨ z).
3. For all x,y,z ∈ L, (x∧ y)∨ (y∧ z)∨ (z∧ x)= (x∨ y)∧ (y∨ z)∧ (z∨ x).
4. For all j ∈ JL and X ⊆ L, j ≤∨

X implies j ≤ x for at least one element x of X .
5. For every j ∈ JL, there exists a unique m ∈ ML such that j ↑ m.
6. For all x,y ∈ L, Jx∨y = Jx ∪ Jy.

Proof We show that Properties (1) to (6) are equivalent.
(1) =⇒ (2): assume (1) is true and let x,y,z ∈ L. Then (x ∨ y)∧ (x ∨ z) = [(x ∨

y)∧ x] ∨ [(x∨ y)∧ z] (by (1)) = x∨ [z∧ (x∨ y)] (by absorption and commutativity)
= x∨[(z∧x)∨(z∧y)] (by (1))= [x∨(z∧x)]∨(z∧y) (by associativity)= x∨(y∧z)
(by absorption and commutativity). The implication (2) =⇒ (1) is shown dually.

(2)=⇒ (3): (x∧ y)∨ (y∧ z)∨ (z∧ x)= ([(x∧ y)∨ (y∧ z)]∨ z)∧ ([(x∧ y)∨ (y∧
z)] ∨ x) (by (2)) = [(x ∧ y)∨ z] ∧ [(x ∨ (y ∧ z)] (by absorption and commutativity)
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= [(x ∨ z)∧ (y ∨ z)] ∧ [(x ∨ y)∧ (x ∨ z)] (by (2)) = (x ∨ y)∧ (y ∨ z)∧ (z ∨ x) (by
associativity and idempotence).

(3)=⇒ (1): if (3) holds, it is easy to see that L satisfies the following property (M )

of modularity: ∀x,y,z ∈ L, x ≤ z =⇒ (x∨ y)∧ z = x∨ (y∧ z) (see Exercise 2.10).
Now by (3) x ∧ [(x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x)] = x ∧ [(x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x)].

Reorganizing the first member of this equality and simplifying the second, we obtain:
([(x ∧ y)∨ (z ∧ x)] ∨ (y ∧ z))∧ x = x ∧ (y ∨ z). The inequality (x ∧ y)∨ (z ∧ x) ≤
x allows us to use (M ) to write the first member of the equality as: ([(x ∧ y)∨
(z ∧ x)] ∨ ((y ∧ z)∧ x) = [(x ∧ y)∨ (z ∧ x)] ∨ (y ∧ z ∧ x) = (x ∧ y)∨ (x ∧ z). Hence
finally, x∧ (y∨ z)= (x∧ y)∨ (x∧ z), as required.

(1)=⇒ (4): if j∈ JL and j≤∨
X , then j= j∧(

∨
X )=∨

x∈X (j∧x) by distributivity
and, j being join-irreducible, j = j∧ x holds for at least one element x of X .

(4)=⇒ (5): assume that there exist j ∈ JL and two distinct elements m1 and m2 ∈ML

with j ↑ m1 and j ↑ m2. Thus m1 and m2 are incomparable and so (for example)
j ≤ m+

1 ≤ m1 ∨ m2 (see Proposition 3.21). Then (4) implies j ≤ m1 or j ≤ m2; a
contradiction.

(5)=⇒ (6): in any lattice L, Jx ∪ Jy ⊆ Jx∨y (since j ≤ x or j ≤ y implies j ≤ x∨ y).
Assume that there exists j ∈ JL with j ≤ x ∨ y, j �≤ x and j �≤ y. Thus x and y are
incomparable and there exist m1 and m2 ∈ML with x ≤m1, y ≤m2, j ↑m1 and j ↑m2

(see Definition 1.36 of the uparrow relation). But then (5) implies m1 = m2, hence
j ≤ x∨ y ≤ m1; a contradiction.

(6) =⇒ (1): in Chapter 3 (Corollary 3.12) we have shown that, for any lattice
L, the map x #−→ Jx is a meet-coding (Definition 3.3) from L to the lattice 2JL . (6)
implies that this map is an injective lattice morphism and thus that L is isomorphic to
a sublattice of the Boolean lattice 2JL . Since we have observed in Section 2.3 that 2JL

is distributive and that a sublattice of a distributive lattice is distributive, the result
follows. �

Properties (1) and (2) of the above theorem are dual whereas Property (3) is
ipsodual. Since they characterize distributive lattices, it follows that the dual of a
distributive lattice is distributive, so that we may state:

Corollary 5.2 The class of distributive lattices is ipsodual.

Properties (1) and (2) have been used in Chapter 1 as definitions of a distributive
lattice. Property (3) states that the join of the pairwise meets of three elements x,y,z
of a distributive lattice is equal to the meet of their pairwise joins; this element is
called the median of x,y, and z. More generally, the median m of a tuple (x1,x2, ...,xk)

of elements of a lattice L, with k odd, is defined by m = ∨
I⊆{1,...,k},2|I |>k(

∧
i∈I xi).

In a distributive lattice, one may show that the median of a tuple (x1,x2, ...,xk) is also
equal to

∧
I⊆{1,...,k},2|I |>k(

∨
i∈I xi). In Section 7.3 of Chapter 7 we will see that the

operation associating with a tuple its median is a lattice formalization of the majority
rule and that this operation may also be defined in a “metric” way, the median also
being an element whose distance from the tuple is minimum.
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An element x of a lattice L is called join-prime (respectively, meet-prime) if, for any
X ⊆ L, x ≤ ∨

X implies x ≤ y for at least one element y ∈ X (respectively, x ≥ ∧
X

implies x ≥ y for at least one element y ∈ X ). The reader will easily check that a join-
prime element is join-irreducible (and that a meet-prime element is meet-irreducible).
Then Characterization (4) may be written: a lattice is distributive if and only if all its
join-irreducible elements are join-prime.

It is suggestive to give Characterization (5) another form. Let us call cleavage of a
lattice a bipartition of its elements into a principal filter and a principal ideal. Figure
5.4(a) shows an example of such a cleavage: the distributive lattice L is divided into
the principal filter of the elements greater than or equal to the join-irreducible a and
the principal ideal of the elements less than or equal to the meet-irreducible i. Observe
that a lattice may have no cleavage (search for examples). On the contrary, Property
(5) in Theorem 5.1 means that, in a distributive lattice L, given a join-irreducible j and
the unique meet-irreducible m such that j ↑ m, [j)+ (m] forms a cleavage. Since this
property characterizes distributive lattices, we may write: a lattice L is distributive if
and only if, for every join-irreducible j of L, the set of the elements greater than or
equal to j and the complementary set of the elements not greater than or equal to j
form a cleavage of L.

Let us also observe that, if [j)+ (m] is a cleavage of L then j � m holds (indeed,
m+ �≤m implies m+ ≥ j and thus j∨m=m+; and likewise, j �≤ j− implies j∧m= j−).

Remark 5.3 Since the class of distributive lattices is ipsodual (Corollary 5.2) we
may use the duality principle (see page 10): therefore, with any result on the join-
irreducible elements of a distributive lattice corresponds a dual result on its meet-
irreducible elements. Particularly, we may state other characteristic properties of
distributive lattices obtained by taking the duals of the characteristic Properties (4)
to (6):

7. Every meet-irreducible of L is meet-prime.
8. For any m ∈ ML, there exists a unique j ∈ JL such that j ↓ m.
9. For all x,y ∈ L, Mx ∪My = Mx∧y.

There exist many other characterizations of distributive lattices different from those
given in Theorem 5.1 and in the above remark. Some will be found in Section 5.6
(Further topics and references) of this chapter. Here, we simply mention two classic
characterizations, respectively by sublattices exclusion and by “simplification” rule
(the reader may check that the second is easily obtained from the first):

10. A lattice is distributive if and only if it does not include sublattices of type M3 or
N5 (see Figure 5.1).

11. A lattice L is distributive if and only if, for all x,y,z in L, x ∧ y = x ∧ z and
x∨ y = x∨ z imply y = z.

Example 5.4 Let us recall several examples of distributive lattices already given
in Chapter 2. First, we can mention linearly ordered sets, with the operations max
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M3 N5

Figure 5.1 The lattices M3 and N5.

as the join and min as the meet. Then, direct products of linearly ordered sets are
distributive lattices since, more generally, the direct product of distributive lattices is
a distributive lattice (Proposition 2.20). The Boolean lattice Bn is a particular case of
such a product, since it is isomorphic to the direct product 2n of n linearly ordered
sets 2= {0 < 1}. In Proposition 2.21, we have shown that a sublattice of a distributive
lattice is a distributive lattice, which allows us to provide many other examples. In
particular, we have called distributive family of sets a set H of subsets of a set X which
is a sublattice of 2X (i.e., such that A,B ∈ H implies A∪B ∈ H and A∩B ∈ H) and
we have pointed out the particular case of topologies. The latter playing a significant
role in the fourth section of this chapter, we give again their definition.

Definition 5.5 A topology on a set X is a family T of subsets of X satisfying the
following conditions:

1. A,B ∈ T implies A∪B ∈ T and A∩B ∈ T .
2. ∅ ∈ T and X ∈ T .

In other words, a topology on X is a distributive family of subsets of X containing
the empty set and the set X . We observe that topologies are exactly those families of
sets that are both a closure system and a dual closure system.An example of a topology
on X is the set of downsets (respectively, upsets) of an ordered set P = (X ,≤). Indeed,
in Section 1.4.2 we mentioned that the set of downsets (respectively, upsets) of an
ordered set P = (X ,≤) is stable for the union and the intersection operations and
that it contains the empty set and X . Some particular classes of topologies will be
considered in Definition 5.27.

5.2 The distributive lattice associated with an ordered set

In the previous section we gave as an example of a distributive lattice the lattice
of downsets of an ordered set. The following theorem develops this example; in
particular we specify the covering relation and the irreducible elements of this lattice.
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Let us recall (see Definition 1.26) that a sublattice L′ of a lattice L is said to be covering
if its covering relation ≺′

is the restriction to L′ of the covering relation ≺ of L, i.e.,
if, for all x,y ∈ L′, x ≺′

y if and only if x ≺ y.

Theorem 5.6 Let P = (X ,≤) be an ordered set of size n.

1. The set D(P) of downsets of P is a distributive lattice of height n, covering sub-
lattice of 2X ; for D,D′ ∈ D(P), D′ ≺ D holds if and only if D′ = D \ x, with x a
maximal element of D.

2. The join-irreducible (respectively, meet-irreducible) elements of D(P) are the n
principal ideals (x] (respectively, the complementary sets X \ [x) of the n princi-
pal filters [x)), for x ∈ P. In particular, X (respectively, ∅) is a join-irreducible
(respectively, a meet-irreducible) of D(P) if and only if P has a greatest element
(respectively, a least element).

3. The map (x] #−→m(x)= X \ [x) is an isomorphism between the ordered set of the
join-irreducibles and the ordered set of the meet-irreducibles of D(P).

4. In D(P), a join-irreducible (x] is less than or equal to a meet-irreducible X \ [y)
if and only if x is less than or incomparable to y in P.

Proof (1) We have already observed in the previous section that D(P) is a topology,
sublattice of 2X and thus a distributive lattice. If x is a maximal element (for the order
of P) of a downset D of P, it is immediate to check that D \ x is still a downset,
necessarily covered by D in D(P). Conversely, let D,D′ ∈D(P) with D′ ≺ D. There
exists at least one element y ∈D\D′ and one element x, maximal in D, such that y≤ x;
x ∈ D′ is impossible, since then D′ would not be a downset. Thus, D′ ⊆ D \ x ≺ D,
whence y = x and D′ =D \ x. Therefore, we have shown that the covering relation of
2X is preserved in D(P), which implies in particular that the maximal chains of these
two lattices have the same length and thus that the height of D(P) is n.

(2) Since a principal ideal (x] has a unique maximal element (for the order of P),
it covers only the downset (x[ in D(P), which shows that (x] is a join-irreducible of
D(P). It is clear that for any downset D, D=⋃

x∈D(x] holds. Thus the set of principal
ideals is a join-generating set of D(P) and is the set of all its join-irreducibles. In
particular, X is a join-irreducible of D(P) if and only if there exists x ∈ P such that
X = (x] and thus if and only if P has a greatest element. Write m(x) = {y ∈ X : x �≤
y} = X \ [x) the complementary downset of the principal filter [x), and assume that
m(x) = D1 ∩D2, with D1 and D2 two incomparable downsets; m(x) ⊂ D1 implies
that there exists z ∈ D1 such that x ≤ z and thus x ∈ D1; similarly, m(x)⊂ D2 implies
x ∈D2. Therefore x ∈m(x) holds, which is impossible; thus m(x) is a meet-irreducible
of D(P). Check moreover that D=⋂{m(x) : x �∈D} holds for any downset D; indeed,
x �∈ D implies D ⊆ m(x) (why?) and thus D ⊆ ⋂{m(x) : x �∈ D}; on the other hand,
y ∈m(x) for every x �∈D implies y �≥ x for every x �∈D, so y ∈D. Thus the sets m(x) are
the meet-irreducibles ofD(P). In particular, ∅ is a meet-irreducible ofD(P) if and only
if there exists x ∈ P such that ∅= X \ [x), that is, if and only if P has a least element.
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(3) It is immediate to check that the map (x] #−→m(x)= X \ [x) from the set JD(P)

to the set MD(P) is a one-to-one correspondence. On the other hand, (x] ⊆ (y] if and
only if x ≤ y, if and only if [x) ⊇ [y), and if and only if m(x) ⊆ m(y). Therefore this
map is an isomorphism as required.

(4) This amounts to showing that (x] ⊆ X \ [y) if and only if x �≥ y, which is
clear. �

The ordered set P is obviously isomorphic to the ordered (by inclusion) set of its
principal ideals (x] which itself, according to the above theorem, is isomorphic to the
ordered set of the downsets of the form m(x). Thus:

Corollary 5.7 Every ordered set P is isomorphic to the ordered set of the join-
irreducible (respectively, meet-irreducible) elements of a distributive lattice.

Below we study the behavior of the lattice of downsets of an ordered set with regard
to the operations of disjoint union and of linear sum of ordered sets. Let us recall that,
if P1 has a greatest element u1 and P2 has a least element o2, the glued linear sum
P1 ⊕′ P2 denotes the ordered set obtained from the linear sum P1 ⊕P2 by identifying
the elements u1 and o2 (see Remark 1.43 in Chapter 1).

Proposition 5.8 Let P1 = (X1,≤1) and P2 = (X2,≤2) be two ordered sets with X1 ∩
X2 = ∅.

1. D(P1 +P2) is isomorphic to D(P1)×D(P2).
2. D(P1 ⊕P2) is isomorphic to D(P1)⊕′ D(P2).

Proof (1) Consider the map associating with any downset D of P1+P2 the ordered
pair (D1,D2) where D1 = D∩X1 and D2 = D∩X2. It is clear that D1 (respectively,
D2) is a downset of P1 (respectively, of P2), and thus that the latter map goes from
D(P1 +P2) to D(P1)×D(P2). This map is obviously injective and is also surjective
since, if (D1,D2) is such that D1 (respectively, D2) is a downset of P1 (respectively,
of P2), D = D1 +D2 is a downset of P1 +P2 (indeed, if x ∈ D, then, for example,
x ∈ D1, and y ≤ x in P1 +P2 implies y ∈ D1 and thus y ∈ D). Finally D = D1 +D2 ⊆
D′ = D′

1 +D′
2 if and only if D1 ⊆ D′

1 and D2 ⊆ D′
2, which shows that this map is an

isomorphism, as required.
(2) Let D be a downset of P1 ⊕P2. It is either such that D =D1 with D1 a downset

of P1, or such that D = X1 +D2 with D2 a non-empty downset of P2. Then consider
the map f associating with D the downset D1 in the first case and the downset D2

in the second. This map is a one-to-one correspondence between, D(P1 ⊕ P2) and
D(P1) ⊕′ D(P2) since, in D(P1) ⊕′ D(P2), the greatest element X1 of D(P1) is
identified with ∅, the least element of D(P2). Examining the four possible cases we
easily check that D⊆D′ in D(P1⊕P2) if and only if f (D)⊆ f (D′) in D(P1)⊕′D(P2)

(for example, if D = D1 and D′ = X1 +D2, it is obvious that D ⊆ D′ if and only if
f (D)=D1 ⊆ f (D′)=D2). Therefore we have shown that f is an isomorphism between
D(P1 ⊕P2) and D(P1)⊕′ D(P2), as required. �
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Several other distributive lattices are naturally associated with an ordered set
P = (X ,≤). First, instead of considering the lattice D(P) of downsets of P, we
may consider the lattice U(P) of its upsets. It is immediate to check that the comple-
mentation map D #−→ X \D is a dual isomorphism between D(P) and U(P), which
are thus two dual lattices. It is also immediate to check that the two maps of down
closure (Y #−→ (Y ]) and of up closure (Y #−→ [Y )) defined on 2X (see Example 3.33)
induce two one-to-one correspondences between, on the one hand, the set A(P) of
antichains of P and, on the other hand, D(P) or U(P). The set A(P) may thus be
endowed with two dual structures of distributive lattice, respectively isomorphic to
D(P) and to U(P). For example, let us write for two antichains A,B of P:

A ≤A B ⇐⇒ (A] ⊆ (B]

(i.e., for any x of A, there exists y in B such that x ≤ y).
So the ordered set (A(P),≤A) is a distributive lattice isomorphic to D(P), where

A ∨ B = Max(A ∪ B) and A ∧ B = Max((A] ∩ (B]) hold. One may also show that
the set of maximum size antichains of P is a sublattice of the lattice (A(P),≤A)

(Exercise 4.3).
Figure 5.2 shows an ordered set P and the lattice of its downsets. The maximal

elements of a downset D are underlined; these elements form the antichain corre-
sponding to D in the one-to-one correspondence between D(P) and A(P). When we
take into account only these underlined elements, the second ordered set in Figure
5.2 then represents A(P) endowed with the distributive lattice structure isomorphic
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Figure 5.2 An ordered set P and the lattice D(P) of its downsets.
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to D(P). We obtain the dual lattice U(P) of upsets of P by taking the complementary
sets of the downsets. It is immediate that this lattice is also the lattice of the downsets
of the dual of P, i.e., that U(P)=D(Pd) holds.

5.3 Representations of a distributive lattice

We now state the fundamental Birkhoff Theorem on the representation of distributive
lattices. Let us recall that for any element x of a lattice L, Jx = {j ∈ JL : j ≤ x}.
Theorem 5.9 (Birkhoff, 1933) Let L be a distributive lattice. The map x #−→ d(x)=
Jx is an isomorphism between L and the lattice D(JL) of downsets of the ordered set
JL of the join-irreducible elements of L. The converse isomorphism between D(JL)

and L is the map D #−→∨
D.

Proof Consider the map d defined in the theorem. It is clear that Jx is a downset of
JL and we know (Proposition 3.11) that x =∨

Jx. This equality immediately implies
that d is injective and that x ≤ y if and only if Jx ⊆ Jy.

For a downset D of JL, write x=∨
D. Thus D⊆ Jx holds. Let j be a join-irreducible

of L such that j ∈ Jx. Since j ≤ x = ∨
D, Characterization (4) of distributive lattices

(Theorem 5.1) implies that j is less than or equal to an element of the downset D.
Therefore j ∈ D, D = Jx, and d is surjective, whence an isomorphism. Finally the
above two equalities x =∨

Jx and D = d(
∨

D) prove the last assertion. �
The following corollary is an immediate consequence of Theorem 5.9 and of the

characterization of the join-irreducibles and the meet-irreducibles of the lattice D(JL)

given in Theorem 5.6, Item (2).

Corollary 5.10 Let L be a distributive lattice. The map j #−→ (j] is an isomorphism
between JL and JD(JL) and the map JL \[j) #−→∨

(JL \[j)) is an isomorphism between
MD(JL) and ML.

Remark 5.11 We have seen in Corollary 3.12 that the map which, with any element
x of L, associates the set Jx of join-irreducibles less than or equal to x is a meet-
morphism. The previous theorem shows that, if L is a distributive lattice, it is also a
join-morphism, i.e., that for all x,y ∈ L, Jx∨y = Jx∪Jx. This equality also immediately
results from Characterization (4) of distributive lattices in Theorem 5.1, since j ≤ x∨y
implies j ≤ x or j ≤ y. We have already observed that the lattice D(P) of downsets
of an ordered set P is dual of the lattice U(P) of its upsets (by the complementation
map). Then, we deduce from Theorem 5.9 that a distributive lattice L is dual of the
lattice U(JL) of the upsets of the ordered set of its join-irreducible elements (this
dual isomorphism is given by x #−→ JL \ Jx = {j ∈ JL : j �≤ x}). Figure 5.3 shows an
example of the representation of a distributive lattice L by D(JL) and of its dual Ld

by U(JL).
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Figure 5.3 (a) A lattice L, (b) the lattice D(JL), and (c) the lattice U(JL).

Proposition 5.12 The ordered set JL of join-irreducible elements of a distributive
lattice L is isomorphic to the ordered set ML of its meet-irreducible elements. If we
denote this isomorphism ι, then, for any j ∈ JL:

1. ι(j)=∨{k ∈ JL : j �≤ k} =∨{x ∈ L : j �≤ x}.
2. L = [j)+ (ι(j)] with j � ι(j) (i.e., j∨ ι(j)= ι(j)+ and j∧ ι(j)= j−).

Proof (1) From Corollary 5.10 we have the two isomorphisms j #−→ (j] between
JL and JD(JL) and JL \[j) #−→∨

(JL \[j)) between MD(JL) and ML. On the other hand,
we have shown in Theorem 5.6 (Item (3)) that JD(JL) is isomorphic to MD(JL), by the
map (j] #−→ m(j)= JL \ [j). Therefore JL is isomorphic to ML by the isomorphism ι,
composition of the previous three isomorphisms: so ι(j)=∨{k ∈ JL : j �≤ k}.

Given j ∈ JL, write z = ∨{x ∈ L : j �≤ x} ≥ ι(j). Let x be such that j �≤ x and write
x = j1 ∨ ...∨ ji ∨ ...∨ jp (where the ji’s are join-irreducibles). For any i, j �≤ ji holds,
whence ji ≤ ι(j) and thus x = j1 ∨ ...∨ ji ∨ ...∨ jp ≤ ι(j). Thus z ≤ ι(j) whence z = ι(j)
and (1) is proved.

In order to show (2), consider j ∈ J (L) and an element x∈L\[j), i.e., such that j �≤ x.
By the same argument as above, x ≤ ι(j) holds, whence L \ [j) ⊆ (ι(j)]. Conversely
from Characterization (4) in Theorem 5.1, j �≤ ι(j). Therefore, x ≤ ι(j) implies j �≤ x,
i.e., (ι(j)] ⊆ L\ [j), whence finally L= [j)+ (ι(j)]. We have obtained a cleavage of L
which, as already observed, implies j � ι(j). �

Thus, the isomorphism between JL and ML given in this proposition associates with
a join-irreducible j of a distributive lattice L the greatest meet-irreducible not greater
than or equal to j and dually, it associates with a meet-irreducible m of L the least
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Figure 5.4 (a) L = [a)+ (i] and (b) the isomorphism between JL and ML.

join-irreducible not less than or equal to m. This is made explicit in Figure 5.4(b) for
the distributive lattice L represented in Figure 5.4(a).

Remark 5.13 The isomorphism between JL and ML has, among other things, the
following consequence: a distributive lattice L is isomorphic to the lattice D(ML) of
downsets of ML and dually isomorphic to the lattice U(ML) of upsets of ML.

More precisely, this isomorphism between L and D(ML) is given by x #−→ (ML \
Mx)= {m∈ML : x �≤m} and the dual isomorphism by x #−→Mx = {m∈ML : x ≤m}.
Figure 5.5 shows the distributive lattice L already given in Figure 5.3(a) and its
representation by the lattice D(ML), as well as the representation of its dual Ld by
U(ML).

Using Theorem 5.9 on the representation of distributive lattices, the results on
the lattice of downsets of an ordered set in Section 5.2, and the duality principle
for distributive lattices, it is easy to show the other properties of distributive lattices
stated in the following proposition (the proofs are left to the reader).

Proposition 5.14 Let L be a distributive lattice.

1. L is ranked; the rank of an element x is the number of join-irreducibles of L less
than or equal to x and is also the number of meet-irreducibles of L not greater
than or equal to x: r(x)= |Jx| = |ML \Mx|. In particular, r(L)= |JL| = |ML|.
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Figure 5.5 (a) A lattice L, (b) the lattice D(ML), and (c) the lattice U(ML).

2. For all x,y ∈ L, x ≺ y if and only if Jx = Jy \ j for a maximal element j of Jy, or if
and only if Mx = My +m for a minimal element m of Mx.

3. The number |L−x| of elements covered by x in L is equal to the number of maximal
elements of Jx.

4. The number |xL+| of elements covering x in L is equal to the number of minimal
elements of Mx.

5. max{|L−x|,x ∈ L} = max{|xL+|,x ∈ L} = α(JL)= α(ML).
6. For any integer k, |{x ∈ L : |L−x| = k}| = |{x ∈ L : |xL+| = k}| = |{antichains of

size k of JL}| = |{antichains of size k of ML}|.

We give another very useful property of distributive lattices. In an arbitrary lattice
an element may have several minimal representations as the join of join-irreducible
elements (and as the meet of meet-irreducible elements). For example, in the lattice
M3 represented in Figure 5.1, the greatest element has three minimal representations
by join-irreducible elements. This is not possible in a distributive lattice, as is specified
in the following proposition.

Proposition 5.15 Every element of a distributive lattice has a unique minimal repre-
sentation as the join of join-irreducible elements and as the meet of meet-irreducible
elements.

Proof Let x be an element of a distributive lattice having two minimal represen-
tations as the join of join-irreducibles: x = j1 ∨ ...∨ jk ∨ ...∨ jp = j′1 ∨ ...∨ j′i ∨ ...∨ j′q.
According to Characterization (4) in Theorem 5.1, there exist i and k such that
j1 ≤ j′i ≤ jk . Since {j1, ..., jp} is an antichain, j1 = jk = j′i holds. Iterating this result
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gives the equality of the two representations. We dually obtain the uniqueness of the
minimal representation by meet-irreducible elements. �

Remark 5.16 Several of the properties given in Proposition 5.14 and the property
given in Proposition 5.15 characterize distributive lattices. For instance, a lattice L is
distributive if and only if L is ranked and satisfies r(L)= |JL| = |ML|, or if and only if
any element of L has a unique minimal representation as the join of join-irreducible
elements and a unique representation as the meet of meet-irreducible elements.

The remainder of this section is devoted to the study of the generating sets of a
distributive lattice, a study useful for the computation of the Boolean dimension of
an ordered set in Chapter 6 (see Corollary 6.4).

We first consider the family of all sublattices of a lattice L. Since it is closed under
intersection and contains L, it is a Moore family (Definition 3.29). Then, we may
associate with this family a closure operator φ on 2L; it associates with every subset
A of L the least sublattice φ(A) of L including A (φ(A) is the intersection of all the
sublattices of L including A). We now set the following definitions:

Definition 5.17 A subset G of a lattice L is said to be a generating set (of L) if
φ(G) = L, i.e., if the least sublattice of L including G is L. We denote g(L) the
minimum size of a generating set of a lattice L.

Let us recall that the meet (respectively, the join) of the empty set is the greatest
(respectively, the least) element of lattice L (see Example 3.2 in Chapter 3). Then, any
generating set G of L includes a generating set obtained from the former by deleting
any of these two elements contained in G. On the other hand, any generating set of L
necessarily contains its doubly irreducible elements. Thus, we obtain g(L)≥ |{doubly
irreducible elements of L}|. We observe that this lower bound of g(L) is obtained
for any distributive lattice L generated by its doubly irreducible elements and, in
particular, by a chain (g(n)= n− 2).

We need the following notions and notations:

Definition 5.18 A subset G of a set E is called a transversal of a family of subsets
A1, ...,Ak , ...,Ap of E if, for every k ≤ p, Ak ∩G �= ∅.

Definition 5.19 Let L be a lattice.

• We denote MJ (L) the set of join-irreducibles of L which are meet-irreducible in
the ordered set JL.

• We denote JM (L) the set of meet-irreducibles of L which are join-irreducible in
the ordered set ML.

The reader can show that an element of JL is the meet of other elements in the
ordered set JL if and only if it is the meet of these elements in the lattice L (only
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one of these implications is not obvious). Thus j ∈ MJ (L) if and only if (j ∈ JL and
j <

∧{j′ ∈ JL : j < j′}), where
∧

is the meet in the lattice L.
For example, for the lattice L in Figure 5.4(a), JL and ML are represented in Figure

5.4(b), and MJ (L)= {a,g, i,c} and JM (L)= {i,e,g} hold.

Using the distributivity of L, the following lemma can be proved by induction on
the number of occurrences of elements of G in the expression of x. It will be used to
prove Theorem 5.21.

Lemma 5.20 If G is a generating set of a distributive lattice L, every element x of L
may be written as x =∨

H∈H(
∧

H ), where H is a family of subsets of G.

Theorem 5.21 A subset G of a distributive lattice L is a generating set of L if and
only if G is a transversal of the family of intervals {[j,m], j ∈ MJ (L), m ∈ JM (L)}.

Proof We first consider a generating set G of L and an interval [j,m] of L with
j ∈ JL and m∈ML. Since j is join-irreducible and generated by G, Lemma 5.20 implies
that j is a meet of elements of G. Then j = ∧

1≤k≤p gk ≤ m holds. Since m is meet-
irreducible, there exists k such that j ≤ gk ≤ m (Characterization (7) in Remark 5.3).
Thus, G is a transversal of the family of intervals {[j,m], j ∈ JL, m ∈ ML} and, in
particular, of the family of intervals {[j,m], j ∈ MJ (L), m ∈ JM (L)}.

Conversely, let G be a transversal of the latter family and let j ∈ MJ (L). Consider
a representation of j as a meet of meet-irreducibles of L. Replacing every meet-
irreducible not in JM (L) by a join of meet-irreducibles belonging to JM (L) and using
distributivity, we write j as a join of meets of subsets of JM (L). Since j is join-
irreducible, j = ∧

1≤k≤p{mk , mk ∈ JM (L)} holds. Every interval [j,mk ] containing
an element gk of G, j = ∧

1≤k≤p gk holds. Therefore, G generates MJ (L), so all
join-irreducibles of L and finally, L itself. �

Since a transversal of a family of sets is minimal if (and only if) it is a
minimal transversal of the minimal sets of this family, we obtain the following
corollary.

Corollary 5.22 Let L be a distributive lattice. The minimum size g(L) of a generating
set of L is equal to min{|G|,G transversal of the family of intervals [j,m] such that
j ∈ MJ (L),m ∈ JM (L) and [j,m] minimal for set inclusion}.

Example 5.23 We illustrate these results by computing the minimal generating sets
of the lattice L = D(P) in Figure 5.2, and so g(L). We first determine MJ (L) =
{a,c,abd,bcf ,abce} and JM (L) = {ac,abd,bcf ,abcde,abcef }. Next we must deter-
mine all the minimal intervals [j,m], with j ∈ MJ (L) and m ∈ JM (L). There are six
such intervals: [abd,abd], [bcf ,bcf ], [a,ac], [c,ac], [abce,abcde], and [abce,abcef ].
The first two are given by the two doubly irreducible elements of L and therefore
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must be contained in any transversal of the family of minimal intervals. Then L has
four minimal generating sets:

{ac,abd,bcf ,abce},{a,c,abd,bcf ,abce}
{ac,abd,bcf ,abcef ,abcde},{a,c,abd,bcf ,abcef ,abcde}

and g(L)= 4.

In this example, we have easily computed g(L). Yet in fact, Corollary 5.22 shows
that the computation of g(L) amounts to solving a very difficult (classic) problem:
the search for a minimum transversal of a family of sets, a problem which itself is
equivalent to several other problems (see, for instance, Berge (1970), Gondran and
Minoux (2009) or Mazbic-Kulma and Sep (2007)). Nevertheless, g(L) may easily be
computed in some particular cases (see Remark 6.34 in Chapter 6).

5.4 Dualities: preorders–topologies, orders–distributive lattices

In this section, we consider several dualities coming from a fundamental duality
between preorders and topologies defined on the same set X . This duality is obtained
from a Galois connection (Definition 3.40) between binary relations on X and families
of subsets of X .

Let us begin by specifying the ordinal structures brought into play. We consider the
set P(X 2) of all binary relations defined on X and the set P[P(X )], denoted by P2(X ),
of all families of subsets of X . These two sets are ordered by inclusion: R ⊆ R′, i.e.,
xRy implies xR′y (we then say that R is included in R′ or that R′ is compatible with
R), and F ⊆F ′, i.e., A ∈F implies A ∈F ′.

Endowed with these orders, P(X 2) and P2(X ) are two Boolean lattices, respectively
denoted by 2X 2

and 2P(X ), and where the join and the meet operations are respectively
the union and intersection operations.

We now define a map t from 2X 2
to 2P(X ) and a map p from 2P(X ) to 2X 2

and we
are going to show that they form a Galois connection between these two lattices. We
need some definitions.

First, let R be a binary relation on X . We say that a subset D of X is an R-downset,
or simply a downset if, for every x ∈ X and every y ∈ D, xRy implies x ∈ D.

Observe that this notion generalizes the notion of a downset of an ordered set.
The empty set and the set X are downsets of any binary relation on X ; a downset is
called proper if it is different from X and from the empty set. We denote by D(R) the
set of downsets of R and by D∗(R) the set of proper downsets of R. Notice that the
union and the intersection of two downsets being downsets, D(R) is a topology on X
(Definition 5.5).

Now let F be a family of subsets of X . We write F(x)= {A∈F : x ∈ A} and define
a binary relation R(F) on X by writing xR(F)y if F(y) ⊆ F(x), i.e., if for every
A ∈F ,y ∈ A implies x ∈ A (which may also be written x ∈⋂

F(y)).
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It is obvious that R(F) is a preorder on X (Example 1.20) and that two elements x
and y of X are in the same class of this preorder if and only if F(x)=F(y).

We have thus associated with every binary relation R on X the family D(R) of its
downsets, and with every family F of subsets of X the binary relation R(F), and
therefore defined the following two maps t and p:

t : 2X 2 −→ 2P(X ) p : 2P(X ) −→ 2X 2

R #−→ t(R)=D(R) F #−→ p(F)= R(F)

We now may state the fundamental result:

Theorem 5.24 The ordered pair of maps (t,p) is a Galois connection between the lat-
tices 2X 2

and 2P(X ). The relation pt(R), denoted π(R), is the least preorder including
R. The family tp(F), denoted τ(F), is the least topology including F .

Proof In order to show that (t,p) is a Galois connection, it is enough to show
(Definition 3.40) that p and t are antitone and that their compositions pt and tp are
extensive, that is: (1) R ⊆ R′ =⇒ t(R) ⊇ t(R′), (2) F ⊆ F ′ =⇒ p(F) ⊇ p(F ′), (3)
R ⊆ pt(R), and (4) F ⊆ tp(F). Let us show Properties (1) and (3) on t and pt. Let
R be included in R′ and D a downset of R′. Since yRx implies yR′x, x ∈ D and yRx
imply y ∈ D which proves that D is a downset of R, and thus that t(R′)(= D(R′)) ⊆
t(R)(=D(R)).

Let x,y be in X with xRy; since any downset of R containing y contains x, [t(R)](y)=
{D ∈ D(R) : y ∈ D} ⊆ [t(R)](x) holds, i.e., x[pt(R)]y. Thus, R ⊆ pt(R). We would
similarly prove Properties (2) and (4) on p and tp; thus (t,p) is a Galois connection
between the lattices 2X 2

and 2P(X ) as required. It follows from the properties of such
a connection between two lattices (Theorem 3.41) that the maps π = pt and τ = tp are
two closure operators and that their images π [2X 2 ] = p[2P(X )] and τ [2P(X )] = t[2X 2 ]
are two dual lattices. On the other hand, we have already observed that π(R) is a
preorder and that τ(F) is a topology.

Now, we must show that π(R) (respectively, τ(F)) is the least preorder including
R (respectively, the least topology including F).

Let R be a relation defined on X . We must show that for any preorder Q including
R, the preorder π(R) is included in Q, i.e., that y[π(R)]x implies yQx. Since R ⊆ Q,
Property (1) of a Galois connection gives t(Q) = D(Q) ⊆ D(R) = t(R). For any
x ∈ X , the subset Qx = {z ∈ X : zQx} is a Q-downset (since Q is transitive) and
so is also an R-downset which contains x (since Q is reflexive). On the other hand,
y[π(R)]x = y[p(D(R)]x means that any R-downset containing x also contains y. Since
Qx is an R-downset containing x, it contains y and we have shown that y[π(R)]x
implies yQx, as required.

Now let F be a family of subsets of X . We must show that, for any topology
T including F , τ(F) is included in T , i.e., that T ∈ τ(F) implies T ∈ T . Let
T ∈ τ(F); since τ is a closure operator, it is isotone, so T ∈ τ(T ) = tp(T ) holds
and T is thus a downset of p(T ). Write D(x) the principal ideal of p(T ) generated by



146 Ordered sets and distributive lattices

x : D(x)={y∈X : y[p(T )]x}= {y∈X : T (x)⊆T (y)} (where T (x)={A∈T : x∈A}).
Now T (x) ⊆ T (y) is equivalent to y ∈ ⋂

T (x). Thus D(x) = ⋂
T (x) and D(x) ∈ T

since T is∩-stable. On the other hand, T =⋃{D(x),x ∈T } obviously holds. Since the
D(x)’s belong to T which is∪-stable, their union T also belongs to T , as required. �

Corollary 5.25 The set QX of preorders and the set TX of topologies on X are two
dual lattices. Let R1 and R2 be two preorders on X and T1 and T2 the associated
topologies. Their meets and joins are given by the following formulas:

R1 ∧R2 = R1 ∩R2 R1 ∨R2 = π(R1 ∪R2)= p(T1 ∩T2)

and
T1 ∧T2 = T1 ∩T2 T1 ∨T2 = τ(T1 ∪T2)= t(R1 ∩R2)

Proof This result immediately derives from the characterization of the closure
operators π and τ given in Theorem 5.24. Indeed, if R is a preorder (respectively,
F a topology), π(R) = R (respectively, τ(F) = F) holds and then π(2X 2

) = QX

(respectively, τ(2P(X )) = TX ) holds. Since QX and TX are Moore families, their
meet operation is the set intersection and their join operation is obtained by applying
the general formulas on the two dual lattices associated with a Galois connection
(formulas found just before Example 3.44). �

Theorem 5.24 characterizes the closure operatorsπ and τ associated with the Galois
connection (t,p). In particular, π is nothing else but the reflexo-transitive closure of
a binary relation already defined in Example 1.20. If T is a topology and if the family
F satisfies τ(F)= T , we say that F generates T or that F is a generating set of T .
We use the same terms for the closure operator π .

Remark 5.26 We may also define the dual notion of that of a downset of a binary
relation, namely the notion of an upset of a relation R defined on X : a subset U of X
is an upset if x ∈ X ,y ∈ U and yRx imply x ∈ U . We denote by U(R) the set of upsets
of R and by U∗(R) the set of its proper upsets (i.e., different from X and ∅). Since the
union and the intersection of two upsets are upsets, U(R) is a topology on X . Observe
that U(R)= {X \D,D ∈D(R)}.

We are now going to consider some particular classes of preorders and specify the
dual classes of associated topologies; we need the following definitions.

Definition 5.27 Let T be a topology on X .

1. T is complemented if, for every A ⊆ X , A ∈ T if and only if X \A ∈ T .
2. T is quasi-separated (or is called a T0-topology) if, for any pair of elements of X ,

there exists A ∈ T containing one and only one of these two elements.
3. T is linear if, for all A,B ∈ T , A ⊆ B or B ⊆ A holds.
4. T is saturated linear if T is linear with size |X |+ 1.
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The set denoted by T 0
X of quasi-separated topologies (or T0-topologies) defined on

X will be shown to be the dual of the set OX of orders on X (Proposition 5.29 and
Corollary 5.30).

Linear (respectively, saturated linear) topologies are nothing else but extended
chains – since they contain ∅ and X – (respectively, maximal chains) of the lattice
2X of subsets of X . In particular, saturated linear topologies are the linear topologies
containing the maximum number of possible subsets for such a topology.

We may now state the following result, the easy proof of which is left to the reader.

Proposition 5.28 In the duality between the set of preorders and the set of topologies
defined on X , the set of equivalences (respectively, of orders, of total preorders,
of linear orders) corresponds to the set of complemented (respectively, of quasi-
separated, of linear, of saturated linear) topologies.

Figure 5.6 exemplifies the correspondence between equivalences (respectively,
orders, total preorders) and complemented (respectively, quasi-separated, linear)
topologies.

ac b def

acdefab

(a)

(b)

c bdef

bac def

X
X

a b

ac ab

abc abd

abcd abdf

abcdf

∅

abcde

∅

X

a

f

b

e

c d bef < a < cd

abef

bef

∅

Figure 5.6 (a) An equivalence (defined by its classes), an order, and a total preorder on
X = {a,b,c,d,e, f }, and (b) their associated topologies.
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The duality between equivalence relations and complemented topologies is well-
known in the form of the classic correspondence between equivalences and parti-
tions: the unions of classes of the equivalence associated with a partition form a
complemented topology, i.e., a Boolean lattice the atoms of which are these classes.

Let us somewhat specify the duality between total preorders and extended chains,
which will be used in the following chapter for the proof of the fundamental coding
theorem (Theorem 6.29). If R is a total preorder, the set of its classes is linearly
ordered (Example 1.20). If this total preorder has k classes then, numbering them
with respect to this order, we may write it as:

X1 < .... < Xi < .... < Xk (1)

We can check that the topology τ(R) associated with the total preorder R is the
extended chain:

∅ ⊂ F1.... ⊂ Fi ⊂ .... ⊂ Fk = X

with, for every i = 1, ...,k , Fi =⋃
1≤h≤i Xh.

Conversely, if C = ∅ ⊂ F1 ⊂ .... ⊂ Fi ⊂ .... ⊂ Fk = X is an extended chain of 2X

including k non-empty subsets, the corresponding total preorder π(C) is obtained in
the form (1) by writing F0 = ∅ and, for every i = 1, ...,k , Xi = Fi \Fi−1.

Thus, the total preorders with k classes correspond to the linear topologies of size
k + 1, i.e., to the extended chains of length k of 2X . Two cases are particularly
interesting:

• If k = 2, the total preorders of the form X1 < X2 correspond to the topologies of the
form {∅,X1,X } (observe that the former are the coatoms of the lattice of preorders
and that the latter are the atoms of the lattice of topologies).

• If k = |X | = n, we obtain the linear orders x1 ≺ ...≺ xi ≺ xi+1...≺ xn corresponding
to the saturated linear topologies, i.e., the maximal chains of the lattice 2X :

∅ ⊂ {x1}... ⊂ {x1,x2, ...xi} ⊂ {x1,x2, ...,xi,xi+1}... ⊂ {x1,x2, ...,xn} = X

We may then specify one of the results of Proposition 5.28.

Proposition 5.29 In the duality between the set of total preorders and the set of linear
topologies defined on X , the total preorders with k classes correspond to the extended
chains of length k of 2X . In particular, the total preorders with two classes correspond
to the topologies containing a unique element different from ∅ and X , and the linear
orders correspond to the maximal chains of 2X .

In Proposition 5.28, the one-to-one correspondences between the different sets are
obviously dualities for the (inclusion) orders on these sets. In particular, since the set
of orders defined on X is a meet-semilattice (for the intersection operation), the set
T 0

X of quasi-separated topologies is a join-semilattice and we obtain:
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Corollary 5.30 (Birkhoff, 1937b) The meet-semilattice OX of orders defined on a
set X is dual of the join-semilattice T 0

X of quasi-separated topologies defined on X .

In this duality, to an order O corresponds the quasi-separated topology t(O) =
D(O) formed of the downsets of O. To the meet O1 ∩O2 of two orders O1 and O2

corresponds the join D(O1) ∨ D(O2) = D(O1 ∩ O2) of the two associated quasi-
separated topologies, etc. The reader can specify the other order dualities resulting
from Proposition 5.28.

In Corollary 5.30, all orders are defined on the same set X of size (say) n. On the
other hand, the quasi-separated topologies defined on X correspond to the distributive
lattices of height n (according to Theorem 5.9 and Proposition 5.14). Thus, we obtain
a duality between the ordered sets of size n and the distributive lattices of height n.
Since this result holds for any n, we may say that there is a duality between the class
of ordered sets and the class of distributive lattices. However, the latter duality is of
a more general type than that induced by a Galois connection. It could be suitably
defined in category theory as a duality between the category of ordered sets and the
category of distributive lattices. This would involve defining these categories with
their “morphisms,” which is beyond the scope of this book (one may refer to Davey
and Priestley’s book (2001) for a more categorial approach to this duality).

The consequences of the duality between the class of ordered sets and the class
of distributive lattices is that any result, construction or question on one of these
classes may be translated into a result, construction or question on the other class
(and conversely). Depending on the case, it may be easier to realize a construction
or to solve a question on one of them or on the other. For example, we may translate
the first item of Proposition 5.8 by saying that the direct product of two distributive
lattices may be obtained from the disjoint union of their ordered sets of join-irreducible
elements. Before ending this section with a second example, let us point out that we
will see other examples in the following chapter, where problems on the dimension
of ordered sets are translated into problems on the generating sets of a distributive
lattice (Corollaries 6.4 and 6.11 in Chapter 6).

From Theorem 5.24 and from the above correspondence between extended chains
and total preorders, we also deduce the following result:

Proposition 5.31 Let P = (X ,O) be an ordered set of size n and D(P) the lattice of
downsets of P. The total preorders with k classes including the order O are in a one-
to-one correspondence with the extended chains of length k of D(P). In particular, the
linear extensions of P are in a one-to-one correspondence with the maximal chains
of D(P).

Proof Let C be an extended chain of length k included in D(P) = t(O). From the
properties of the Galois connection (t,p) (Theorem 5.24), C ⊆ t(O) is equivalent to
pt(O)= π(O)=O ⊇ p(C), where p(C) is a total preorder with k classes (Proposition
5.28). Conversely, by a similar reasoning, if R is a total preorder with k classes
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including O, its image t(R) is an extended chain of length k included in D(P). If
k = |X |, we obtain the case of the linear extensions of P. �

Remark 5.32 Proposition 5.31 may be transferred to distributive lattices by means
of the representation theorem of these lattices. In particular, the following holds: the
linear extensions of the ordered set JL of the join-irreducible elements of a distributive
lattice L are in a one-to-one correspondence with the maximal chains of this lattice.
If j1 ≺ j2 ≺ ... ≺ jn is a linear extension of JL, then

0T ≺ j1 ≺ j1 ∨ j2 ≺ j1 ∨ j2 ∨ j3 ≺ ... ≺
∨

JL = 1L

is a maximal chain of L.
In Exercise 5.14, Proposition 5.31 and the above statement are generalized.

Remark 5.33 Exercise 7.4 shows the existence of a one-to-one correspondence
between total preorders and strict weak orders (recall that the asymmetric part of
a total preorder is a strict weak order, see Example 1.21). Therefore, we may replace
in Propositions 5.29 and 5.31 “total preorder” with “strict weak order.” For instance,
the strict weak orders which are extensions of a strict order O and have range k are
in a one-to-one correspondence with the extended chains of length k of the lattice of
downsets of O.

5.5 Duality between orders and spindles of linear orders

We are now going to establish another significant duality between the set OX of orders
defined on X and the set SX of “spindles” (or “convex” subsets or “geodesically
convex” subsets) of the set LX of linear orders on X (Proposition 5.42). Let us begin
with the definition of these notions and the proof of their equivalence.

We recall that L(O) denotes the set of linear extensions of the order O and that
O =⋂{L : L ∈L(O)} (see Theorem 2.29 in Chapter 2).

Definition 5.34 A set E = {L1,L2, ...,Lr} of linear orders on a set X is a spindle (of
linear orders) on X if there exists an order O on X such that E =L(O).

The reader can show that this definition is equivalent to writing that, for any linear
order L on X , L ⊇ L1 ∩L2...∩Lr implies L ∈ E .

Example 5.35 On the set X = {1,2,3,4} consider the set

E = {1342,1432,3142,3412,4132,4312}
of linear orders (here written as permutations of X ). The reader can check that E is
the spindle L(O) with

O = {(1,2),(3,2),(4,2),(1,1),(2,2),(3,3),(4,4)}
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However, if we delete from E any of its orders, it is no longer a spindle.

Definition 5.36 A set E = {L1, ...,Li, ...,Lr} of linear orders on a set X is a convex
subset of the set LX of all linear orders on X if, for all i, j (1 ≤ i, j ≤ r) and for every
linear order L on X , Li ∩Lj ⊆ L ⊆ Li ∪Lj implies L ∈ E .

Let us associate with two linear orders L and L′ on X an interval, denoted [L,L′],
defined as the set of linear orders on X included in [L∩ L′,L∪ L′]. For instance, on
X = {1,2,3,4}, [1342,3412] = {1342,3142,3412}. A set E of linear orders is then
a convex subset of LX if, as soon as it contains the linear orders Li and Lj , it also
includes the interval [Li,Lj]. This is nothing else but the classic definition of a convex
subset, once defined a notion of an interval. The reader can check that the set E given
in Example 5.35 is a convex subset of LX . He will also easily show that, in the above
definition, the condition Li ∩ Lj ⊆ L ⊆ Li ∪ Lj may be replaced with any of the two
conditions L ⊆ Li ∪Lj or Li ∩Lj ⊆ L.

We are now going to define the notion of a geodesically convex subset of LX . With
this aim, we endow LX with an (undirected) graph structure which comes down to
defining a symmetric relation between linear orders. Let L be a linear order on X
written as a permutation of X . We say that one carries out a commutation on L if
one exchanges two consecutive elements in the permutation representing L; one then
obtains another linear order L′ on X . For instance, if L = 24135 the four possible
commutations on L generate the four linear orders 42135, 21435, 24315, and 24153.
We observe that, if L′ is obtained from L by the commutation of two consecutive
elements x and y, a unique ordered pair (namely (x,y)) of L is changed and so we
may equivalently write L∩L

′d = {(x,y)}.

Definition 5.37 The permutograph on a set X is the graph, denoted by �X , whose
set of vertices is the set LX of linear orders on X and whose edges are defined by the
following adjacency relation, noted Adj, between two linear orders: for L,L′ ∈ LX ,
LAdjL′ if |L∩L

′d | = 1.

Then, to say that L and L′ are adjacent in �X comes down to saying that L′ is
obtained from L (or L from L′) by a commutation.

The permutograph on X = {1,2,3,4} is represented in Figure 5.7. Observe that this
graph is the neighborhood graph of the permutoedre order presented in Example 1.17.

In a (undirected) graph the geodesic distance between two vertices is the length
of a shortest path between them. Since it clearly satisfies the axioms of a distance,1

this graph endowed with it is a metric space. A shortest path between two vertices is
called a geodesic between these vertices.

1 A distance (also called a metric) on a set E is a function d from E2 to the set R
+ of non-negative

real numbers satisfying the following properties for all e,e′,e′′ ∈ E: d(e,e′) = 0 if and only if e = e′,
d(e,e′)= d(e′,e), and d(e,e′′)≤ d(e,e′)+ d(e′,e′′).
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For the permutograph �X , the geodesic distance between two linear orders L and
L′ is (by definition) the minimum number of commutations to carry out in order to
go from one to the other. We denote it by δ(L,L′).

For instance, the reader can check in Figure 5.7 that δ(1432,3412)= 3 in �{1,2,3,4}.
The computation of the geodesic distance between two vertices of a graph with

many vertices may be difficult; however, the following Proposition 5.38 shows that
it is easy for �X despite its |X |! vertices.

Let L and L′ be two linear orders on X ; we write

d(L,L′)= |L∩L
′d | = |L \L′|

In other words, d(L,L′) is the number of ordered pairs (x,y) with xLy and yL′x. If
these linear orders represent preferences, such an ordered pair is interpreted as a
disagreement on the preferences between x and y. Then we will say that d(L,L′) is
the number of disagreements between these two orders.

Since |L \ L′| = |L′ \ L|, d(L,L′) = (|L \ L′| + |L′ \ L|)/2 also holds, which shows
that d is nothing else but half the classic symmetric difference distance between L
and L′ (recall that the symmetric difference distance between two subsets A and B of
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Figure 5.7 The permutograph on {1,2,3,4} and the geodesic interval [3142,4132]g .
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a set is the size of their symmetric difference (|A \B| + |B \A|), see Exercise 5.12).
For instance, d(1432,3412)= |{(1,4),(1,3),(4,3)}| = 3.

The equality δ(1432,3412) = d(1432,3412) obtained in this example is not
fortuitous, since we have the following result:

Proposition 5.38 The geodesic distance δ(L,L′) between two linear orders L and
L′, vertices of the permutograph �X , is equal to the number d(L,L′) of their
disagreements.

Proof First observe that the inequality d(L,L′)≤ δ(L,L′) holds. Indeed, any com-
mutation carried out on L deleting at most one disagreement between L and L′, we
must make at least d(L,L′) commutations to go from L to L′. Now we show the
converse inequality d(L,L′) ≥ δ(L,L′) by induction on d(L,L′). If d(L,L′) = 1, we
easily check that δ(L,L′) = 1. Assume the property satisfied for d(L,L′) = k > 1
and consider two linear orders L and L′ satisfying d(L,L′) = k + 1. Carrying out a
commutation on two consecutive elements x and y of L such that (x,y) ∈ L\L′ (such
elements exist since, if not, L = L′), we obtain a linear order L′′ (different from L′)
and d(L,L′) = 1+ k = d(L,L′′)+ d(L′′,L′) holds. By the induction hypothesis, this
implies d(L,L′)≥ δ(L,L′′)+ δ(L′′,L′) and, by the triangular inequality applied to the
distance δ, d(L,L′)≥ δ(L,L′) as required. �

Like in every (undirected) graph, we may now define the notion of a geodesic
interval of the permutograph.

Definition 5.39 We call a geodesic interval between two linear orders L and L′
defined on X – and we denote [L,L′]g – the set of the linear orders which belong to
the geodesics linking L and L′ in the permutograph �X .

A subset E of LX is geodesically convex if it is a geodesically convex subset of the
permutograph �X , i.e, if for all L,L′ ∈ E , [L,L′]g ⊆ E .

For instance, in Figure 5.7, the geodesic interval

[3142,4132]g = {1342,1432,3142,3412,4132,4312}
is visualized.

We have defined three particular subsets of the set LX of linear orders on X , namely
the spindles of linear orders, the convex subsets, and the geodesically convex subsets.
We are now going to show that these three notions are the same by proving Theorem
5.41. We begin with a lemma which is an immediate application of a classic result
on the symmetric difference distance to the distance d (half the symmetric difference
distance between linear orders). The proof is left to the reader, see Exercise 5.12.

Lemma 5.40 Let L,L′, and M be three linear orders on X . Then:

L∩L′ ⊆ M ⊆ L∪L′ ⇐⇒ d(L,M )+ d(M ,L′)= d(L,L′)
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Theorem 5.41 Let E be a set of linear orders on X . The following properties are
equivalent:

1. E is convex.
2. E is geodesically convex.
3. E is a spindle.

Proof (1)⇐⇒ (2): sinceE is convex (respectively, geodesically convex) if and only
if it includes [L,L′] (respectively, [L,L′]g) for all L,L′ ∈ E , we obtain this equivalence
by showing that these two intervals are equal. Now since d = δ, d(L,M )+d(M ,L′)=
d(L,L′) is equivalent to δ(L,M )+δ(M ,L′)= δ(L,L′). In the permutograph (like in any
graph) the latter equality is equivalent to the fact that M is on a geodesic linking L and
L′. Then the geodesic interval [L,L′]g is equal to the interval [L,L′] – defined above as
the set of linear orders included in [L∩L′,L∪L′] – which itself, according to Lemma
5.40, is equal to the set of the linear orders M such that d(L,M )+d(M ,L′)= d(L,L′).

(3) =⇒ (1): every spindle E is a convex subset since, if Li,Lj ∈ E , M ⊇ Li ∩ Lj

implies M ⊇⋂{L : L ∈ E} (see the sentence following Definition 5.34).
(1) =⇒ (3): we show that a convex subset E is the spindle L(O) where O =⋂{L :

L ∈ E}. By definition of O, E ⊆L(O) holds. Assume E ⊂L(O), and so the existence
of L ⊃ O with L �∈ E . Let L′ ∈ E ⊂ L(O) and let L′ = L0,L1, ...,Lp = L be a geodesic
from L′ to L in the permutograph. The spindle L(O) being convex (according to
the previous implication (3) =⇒ (1)), and so geodesically convex, this geodesic is
included in L(O). Consider the least i such that Li ∈ E and Li+1 ∈L(O)\E . We have
δ(Li,Li+1) = 1, i.e., there exist x and y in X such that Li ∩ Ld

i+1 = (x,y). Since Li+1

does not belong to the convex subset E , then for every M of E , M ∩Li �⊆ Li+1 holds.
Therefore M ∩Li ∩Ld

i+1 is non-empty and is equal to (x,y) and then, for every M of
E , (x,y) belongs to M and thus to O, a contradiction with (x,y) �∈ Li+1. �

Since the notions of a spindle, a convex subset, and a geodesically convex subset
are the same, we will indifferently use each of them in the sequel. We will denote
by SX the set of all spindles of LX . This set is ordered by set inclusion. In fact, the
following proposition shows that SX is a join-semilattice for this order:

Proposition 5.42 The set OX of orders and the set SX of spindles of linear orders
defined on X are two dual semilattices.

Proof We define two maps between the semilattice OX and the lattice 2LX of
subsets of LX as follows: to an order O corresponds the set of linear orders containing
it, i.e., the spindle L(O); to a set of linear orders corresponds the order obtained as
their intersection. It is easy to check that these two maps define a Galois connection
between OX and 2LX and thus two closure operators on these ordered sets. Since every
order is the intersection of the linear orders including it, the set of closed sets of OX is
the set OX itself. As for the closed sets of 2LX , they are the images of orders, thus the
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spindles of linear orders. By the properties of Galois connections (Chapter 3, Theorem
3.41) it follows that SX is a join-semilattice dual of the meet-semilattice OX . �

In this duality, the meet (i.e., the intersection) of two orders in OX corresponds to
the join in SX , that is, to the “convex closure” of the union of two spindles (i.e., the
least spindle including this union). Combining Corollary 5.30 and Proposition 5.42,
we obtain the following result:

Theorem 5.43 The meet-semilattice OX of orders defined on X is dual of the join-
semilattice T 0

X of quasi-separated topologies and of the join-semilattice SX of the
spindles of linear orders on X ; therefore these two join-semilattices are isomorphic.

We let the reader check that the isomorphism stated in this theorem associates
with a quasi-separated topology (so, with a distributive lattice of height |X |) the set
of linear orders on X corresponding with the maximal chains of this lattice (more
precisely they are the images of these chains by the map p of the Galois connection
in Theorem 5.24).

5.6 Further topics and references

Some results on distributive lattices appear in the prehistory of lattice theory; indeed
as early as 1897, Dedekind proved basic properties of these lattices and in 1900,
he raised the problem of computing the size of the free distributive lattice on n
generators, a problem solved up to now only for n less than 9 (see Exercise 5.7).
Then one must wait for Birkhoff (1933, 1937) to obtain fundamental results like the
representation theorem (Theorem 5.9), the isomorphism between the ordered sets
of join-irreducibles and of meet-irreducibles (Proposition 5.12) or the uniqueness
property of representations by irreducibles (Proposition 5.15). The precisions brought
to the structure of distributive lattices (for example in Proposition 5.14) are due, often
independently, to different authors like Schützenberger (1949), Avann (1958, 1961a),
Bonnet and Pouzet (1969), Stanley (1972), Monjardet (1974), etc. As already said in
Remark 5.16, several of these properties allow us to characterize distributive lattices.
In addition to the properties mentioned in this remark, we may add the property that
“the size of every maximal chain of L is |JL|+1= |ML|+1” (from Proposition 5.14)
or the property that “the number of maximal chains of L is equal to the number of linear
extensions of the ordered set of its join-irreducible elements” (from Remark 5.32),
two characterizations due to Rival (1976). Let us also mention that the one-to-one
correspondence between the maximal chains of a distributive lattice L and the linear
extensions of JL is extended into a one-to-one correspondence between the covering
sublattices of L and the order extensions of JL (Baldy et al., 1999). One can find
in the literature many other characterizations of distributive lattices, in particular by
means of either “projectivity” relations (Avann, 1958, 1961b), or join-prime elements
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(Ky Fan, 1972), or also of inequality properties between probability functions or
measures defined on the lattice (see Daykin (1977) and Winkler (1986)).

We have described Characterization (5) of distributive lattices given in Theorem
5.1 by means of the notion of a cleavage (a term due to Schützenberger (1949)), i.e.,
of a bipartition of a distributive lattice into a principal filter [j) and a principal ideal
(m] (with j �≤ m). Item (1) in Exercise 5.10 shows that such a cleavage induces the
existence of two isomorphic intervals of L. Item (2) in the same exercise shows that it
is then possible to split L into two distributive lattices which are two disjoint intervals
and that, iterating this operation from a linear extension of ML, one may thus obtain a
partition C1,C2, ...,Cn+1 of L into intervals of L (with Cn+1 = {1T }). Moreover, every
element x of Ci is covered by a unique element y of Ci+1 ∪ ...∪Cn+1 and the set of
such ordered pairs (x,y) is a covering tree of L. This tree defined (with the name of
“ideal tree”) by Habib and Nourine (1996) is used to obtain efficient algorithms on
distributive lattices (see A.2.2 in Appendix A).

Finally, Item (3) in Exercise 5.10 describes the converse operation of the previous
decomposition. It allows us to go from a distributive lattice L to a distributive lattice
Lx obtained by doubling a principal ideal (x] of L. This gives a procedure generating
all distributive lattices from the chain 1 (Blair, 1984). Yet, this procedure is in fact a
particular case of a procedure allowing us to generate iteratively from the chain 1 the
class of the so-called bounded lattices,2 a class containing the distributive lattices.
The doubling method is the same but it applies to an arbitrary interval of the lattice
instead of an interval defined by a principal ideal (see, for instance, Bertet and Caspard
(2002)).

The characterization of the generating sets of a distributive lattice given in Theorem
5.21 appears in Bouchet’s thesis (1971); we will go back to this thesis in the last section
of the next chapter. A distributive lattice L may have a unique minimal generating set,
which is then necessarily the set of its doubly irreducible elements; in this case the
computation of the minimum size g(L) of a generating set of L comes down to the
simpler computation of the number of its doubly irreducible elements. The distributive
lattices satisfying this condition are characterized by the following property: the
Dedekind–MacNeille completion of the ordered set of their join-irreducible elements
is a distributive lattice (Monjardet and Wille, 1988–89). For instance, this is the case
of the lattice D(L) of downsets of a distributive lattice L (why?).

The Galois connection between binary relations and families of subsets presented
in Section 5.4 is independently due to Chacron (1966) and Lorrain (1969) (see also
Chapter 6 in Barbut and Monjardet (1970)). It generalizes the duality between orders
and quasi-separated topologies obtained by Birkhoff as early as 1933. Feldman-
Högaasen (1969) was the first to show the existence of another duality between orders
and geodesically convex subsets of the permutograph, a duality resulting from the fact
that these subsets are nothing else but the spindles of linear orders. Some applications

2 Here, the meaning of the term “bounded” is different from the one given just after Definition 1.38.
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of these results are in Monjardet (1970). The term “spindle” is the translation of
the French term “fuseau” introduced by Frey concerning the problem of obtaining a
chronology of Jesus’ life from the Synoptic Gospels; more generally it is the problem
of reconstructing a linear order from several of its suborders (see Frey and Barbut
(1970)). There also exist several generalizations of this Galois connection between
binary relations and families of subsets, in particular that providing a duality between
closure operators and complete implication systems (see page 233 in Chapter 7 and,
for instance, Caspard and Monjardet (2003)).

As already mentioned, the permutograph is the neighborhood graph of the weak
Bruhat order defined on the set of linear orders (or of permutations). This ordered set
(defined in Example 1.17) is in fact a lattice, called the permutoedre lattice (Guilbaud
and Rosenstiehl, 1963) and studied by several authors (Barbut and Monjardet, 1970;
Le Conte de Poly-Barbut, 1990a,b; Duquenne and Cherfouh, 1994; Markowsky,
1994). Since this lattice is bounded (Caspard, 2000), it may be obtained by the
doubling method described above. More generally, the latter property remains true
for the lattices defined by finite Coxeter groups endowed with the weak Bruhat order
(Caspard et al., 2004).

In the correspondence between ordered sets and distributive lattices, the ordered
sets of width at most 2 correspond to planar distributive lattices (see Section 2.5 in
Chapter 2). These lattices have many characterizations and one may show that they
satisfy the Sperner property of Definition 4.14 (Monjardet, 1976a).

In addition to the fundamental Birkhoff Theorem on the representation of a
distributive lattice by some subsets of an ordered set, there exist many results of
representation of an arbitrary “abstract” distributive lattice by a “concrete” distribu-
tive lattice. Thus, any distributive lattice is isomorphic to the lattice of congruences
of a finite lattice (see Grätzer and Schmidt (1962)), which may be taken planar and
“small” (Grätzer and Lakser, 1989), to the lattice of cutsets or of strict cutsets (sub-
sets which meet every maximal chain, only once for the strict ones) of an ordered
set (Escalante, 1972; Higgs, 1986), to the lattice of normal subgroups of a solvable
finite group (Silcock, 1977; Pálfy, 1987), to the lattice of ideals of an infinite regular
ring (Kim and Roush, 1980) and non-necessarily finite (Pálfy, 1987), to the lattice
of congruences of an infinite complemented and modular lattice (Schmidt, 1984), to
the lattice of maximum size antichains of an ordered set (Koh, 1983), to the lattice of
submodules of a finite module (Pálfy, 1987).

Last, every distributive lattice is also isomorphic to a lattice of “stable marriages.”
Let us specify what the problem of “stable marriages” is, a representative of many
allocation problems of individuals to positions on which they have preferences (like,
for instance, the allocation of interns in hospitals, or the allocation of roommates in
a university college). One considers two disjoint sets H and F of the same size n
such that, with every h ∈ H (respectively, f ∈ F) is associated a linear order ≥h on
F (respectively, ≥f on H ). A one-to-one correspondence β from H to F is called
an unstable marriage (or a matching) if there exist h ∈ H and f ∈ F such that f >h
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β(h) and h >f β−1(f ) hold (indeed in this case, to guarantee the couple’s peace,
the matching associating h and f is preferable to the matching β). A one-to-one
correspondence which is not an unstable marriage is called a stable marriage. Gale
and Shapley (1962) have shown that there always exists at least one stable marriage.
One defines a relation on the set of stable marriages by writing β ≥ β ′ if, for every
h∈H , β(h)≥h β ′(h). Knuth (1976) has proved that this relation is an order endowing
this set with a distributive lattice structure (in a similar way one may define an order
≥f which makes the set of stable marriages a lattice dual of the previous one). In
1984 Blair showed that any finite distributive lattice is isomorphic to a lattice of
stable marriages. In order to prove this result, he considered the distributive lattice L
of stable marriages between two sets of size n, and showed that, for every x ∈ L, the
lattice Lx (defined in Exercise 5.10) is isomorphic to the lattice of stable marriages
between two sets of size 2n. He then deduced the result (another proof and other
results may be found in Gusfield and Irving’s book (1989) devoted to this subject).

Several other interesting classes of “concrete” distributive lattices linked to com-
binatorial problems have been studied by Stanley (see especially Stanley, 1975,
1986a).

An especially interesting generalization of the class of distributive lattices is the
class of (lower or upper) locally distributive lattices. Initially, (upper) locally distribu-
tive lattices were defined by Dilworth (1940) as the lattices satisfying the uniqueness
property of minimal representation by (meet-)irreducible elements (stated in Propo-
sition 5.15 for distributive lattices). These lattices have been characterized by himself
and other authors (especially Avann, 1961a, 1968) in many ways. The one using
the arrow relations is particularly elegant: a lattice L is upper locally distributive
if and only if, for every j ∈ JL, there exists a unique m ∈ ML such that j ↓ m.
Such lattices appear in many contexts (see Monjardet, 1990a) and, in particular,
in the theory of “convex geometries” (Edelman and Jamison, 1985). Indeed con-
vex geometries, whose properties generalize that of convex sets of Rn, are the Moore
families which are set representations of lower locally distributive lattices (see Exam-
ples 3.31 and 3.32). Moreover, there is a duality between convex geometries and
“path-independent” choice functions (see Section 2.5 in Chapter 2 and Monjardet
and Raderanirina (2001)).

The semilattice OX considered in Proposition 5.42 becomes a lower locally dis-
tributive lattice by adding a maximum (see Edelman and Jamison (1985) and Leclerc
(2003)). Brualdi et al. (1994) study combinatorial properties of this lattice.

5.7 Exercises

Exercise 5.1 Show that in a lattice L, ([x ∧ y = x ∧ z and x ∨ y = x ∨ z] =⇒ y = z)
if and only if L is distributive. Hint: use Characterization (10) of distributive lattices
given in Remark 5.3.
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Exercise 5.2 Prove Propositions 2.20 and 2.21 in Chapter 2: the direct product of
distributive lattices and every sublattice of a distributive lattice are distributive.

Show that the image of a distributive lattice by a lattice morphism (Chapter 3,
Definition 3.3) is distributive. Show that, if L is a distributive lattice and P an ordered
set, the set LP of isotone maps from P to L is a distributive lattice.

Exercise 5.3 [Inclusion-Exclusion Principle] Let L be a distributive lattice and r the
rank function of this lattice. Show the following property (a):

for all x,y ∈ L,
r(x∨ y)= r(x)+ r(y)− r(x∧ y)

(use Proposition 5.14 and Theorem 5.1).
Deduce by induction on n that L satisfies the following property (b):
for all x1, ...,xi, ...,xn ∈ L with n ≥ 2,

r(
∨

1≤i≤n

xi)=�1≤i≤nr(xi)+ ...+ (−1)k+1�A∈Pk (
∧
i∈A

xi)+ ...+ (−1)n+1r(
∧

1≤i≤n

xi)

where Pk is the set of all subsets of size k of {1, ..., i, ...,n}.
Write what the formula in (b) becomes when L is the lattice 2X of subsets of a set

X (this formula is then well-known as the Inclusion–Exclusion Principle).
Show that a ranked lattice satisfying Property (b) for n ≤ 3 is distributive. Hint:

show that x∧ (y∨ z) and (x∧y)∨ (x∧ z) are two comparable elements with the same
rank.

Note The ranked lattices satisfying Property (a) are called modular; they are also
characterized by Property (M ) of modularity used in the proof of the implication (3)
=⇒ (1) in Theorem 5.1. A distributive lattice is thus modular, but the lattice in Figure
5.1(a) shows that the converse is false.

Exercise 5.4 Construct the distributive lattice D(P) of downsets of the ordered set
P when P is:

1. the antichain An of size n;
2. the chain Cn of size n.

Draw the lattice D(P) where P is one of the ordered sets in Appendix B and verify
the assertions of Theorem 5.6.

Exercise 5.5 Characterize the distributive lattices isomorphic to the lattice of
downsets of P when P is:

1. a weak order;
2. a disjoint union of chains.

Exercise 5.6 Show that a distributive lattice L is isomorphic to the ordered set of the
antitone maps from the ordered set JL of its join-irreducibles to 2= {0 < 1} and dually
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isomorphic to the ordered set 2JL of the isotone maps from JL to 2 (use Birkhoff’s
Theorem 5.9).

Exercise 5.7 [Free distributive lattice] An isotone Boolean map on a set X is an
isotone map f from 2X to {0 < 1}, a cohereditary family on X is a family F of subsets
of X satisfying [A ∈F ,B ⊇ A imply B ∈F], and a Sperner family on X is a family F
of subsets of X satisfying [A,B ∈F and A ⊆ B imply A = B] (thus F is an antichain
of the lattice 2X ). Show that the sets of:

1. all isotone Boolean maps,
2. all cohereditary families,
3. all Sperner families,

defined on the same set X may be endowed with structures of isomorphic distributive
lattices.

Draw the diagram of one of these lattices for |X | = 2.
Note If we delete from one of these distributive lattices its least and its greatest

elements, we obtain a distributive lattice isomorphic to the “free distributive lattice”
on |X | generators; this distributive lattice, denoted FDL(n), is generated by a set X
of n generators and is such that, for any distributive lattice L generated by A ⊆ X ,
there exists a lattice morphism from FDL(n) onto L the generators of which are
fixed points (see Birkhoff (1967) or Barbut and Monjardet (1970)). Therefore the
number f (n)= |FDL(n)|+2 is the number of antichains (including the empty chain,
to be distinguished from the antichain {∅}) of the Boolean lattice 2X . “Dedekind’s
problem” consists of computing this number (that Dedekind has computed for n≤ 4).
It is known that f (1) = 3, f (2) = 6, f (3) = 20, f (4) = 168, f (5) = 7581, f (6) = 7
828 354, f (7) = 2 414 682 040 998, f (8) = 56 130 437 228 687 557 907 788, and
there exists an asymptotic estimation of f (n) (see Quackenbush (1986), Wiedemann
(1991), and http://en.wikipedia.org/wiki/Dedekind_number).

The deletion of the element cg from the lattice represented in Figure 3.9 gives a
lattice isomorphic to FDL(3).

Exercise 5.8 Show that the minimum size of a generating set of the lattice L drawn
in Figure 5.3(a) is g(L) = 3 (for instance by using Corollary 5.22).

Exercise 5.9 Let L and L′ be two lattices with least elements 0 and 0′ and greatest
elements 1 and 1′. We denote ω (respectively, ν) the number of least (respectively,
greatest) elements of these two lattices which are meet-irreducible (respectively, join-
irreducible). Show the inequality g(L×L′)≤ g(L)+ g(L′)+min(ω,ν).

Exercise 5.10 [Doubling in a distributive lattice; Habib and Nourine (1996)] Let
L be a distributive lattice and JL (respectively, ML) the set of its join-irreducible
(respectively, meet-irreducible) elements; we use the notations in Proposition 5.12.
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1. Describe the isomorphism ι−1 between ML and JL. If m ∈ ML and j = ι−1(m),
show that the intervals [j−,m] and [j,m+] are isomorphic (consider the map x #−→
x∨ j). Show that the interval [j−,m+] is isomorphic to the direct product 2×[j−,m].

2. If m is a minimal meet-irreducible of L, show that (m] is isomorphic to [j,m+]
(where j = ι−1(m)) and that L \ (m] is a distributive lattice whose set of meet-
irreducibles is ML \ {m}. Deduce that, with any linear extension m1 < m2 < ... < mn

of ML, with n = |ML|, it is possible to associate a partition C1,C2, ...,Cn+1 of L into
n+ 1 sublattices of L, with Cn+1 = {1L}.

3. Let x be an element of L; consider the set Ix = (x]×{1} (every element of which
is thus written z′ = z1 with z ∈ (x]). Consider the set L+Ix and define a relation ≤′
on it as follows:

z′ ≤′
t′ ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z′, t′ ∈ L and z′ ≤ t′
or
z′ ∈ L, t′ = t1 ∈ Ix and z′ ≤ t
or
z′ = z1 ∈ Ix, t′ ∈ L and z ≤ t′
or
z′ = z1, t′ = t1 ∈ Ix and z ≤ t

Show that Lx = (L+Ix,≤′) is an ordered set which moreover is a distributive lattice.
Determine its join-irreducible and meet-irreducible elements.

Note The construction in the above Item (3) may be done by replacing the principal
ideal (x] with an arbitrary interval of an arbitrary lattice L. Starting from the chain
1, one thus obtains all bounded lattices, a class of lattices containing the distributive
lattices (see, for instance, Bertet and Caspard (2002)).

Exercise 5.11 [Minimum size of a generating set of a Boolean lattice] Consider the
Boolean lattice 2E where E ={1,2, ...,n}. LetF be a family of subsets of E of size t. We
say that F is separating if, for all different elements i and j of E, there exist A,B ∈F
such that i ∈ A\B and j ∈ B \A. For every i ∈ E, we write F(i)= {A ∈F : i ∈ A} and
F∗ = {F(i), i ∈ E}. Show that the following properties are equivalent:

1. F is separating.
2. For every i ∈ E,

⋂
F(i)= {i}.

3. F∗ is a Sperner family of size n.
4. F is a generating set of the lattice 2E .

Conclude that g(2X ) = t(n), where t(n) = min{t ∈ N : n ≤ ( t
t
2

)}. Hint: observe that

F∗ is a Sperner family on F and use Sperner’s Theorem (Chapter 4, Theorem 4.20).

Exercise 5.12 [Symmetric difference distance ] The symmetric difference distance of
two subsets A and B of a set E is |A�B|= |(A\B)∪(B\A)|. We write δ(A,B)=|A�B|.
Show that:
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(a) δ(A,B)= |A|+ |B|− 2|A∩B| = 2|A∪B|− |A|− |B|.
(b) δ(A,B)+ δ(B,C) = δ(A,C)+ 2|(A ∩ C) \ B| + 2|B \ (A ∪ C)| = δ(B,A ∪ C)+

δ(B,A∩C).

Deduce that δ is a distance on the set of subsets of E and that δ(A,B)+ δ(B,C) =
δ(A,C) holds if and only if A∩C ⊆ B ⊆ A∪C holds.

Exercise 5.13 [About complementation; Barbut and Monjardet (1970)] In a lattice L
where 0 and 1 are the least and the greatest elements, a complement of an element x is
any element x′ such that x∧x′ = 0 and x∨x′ = 1.Alattice L is said to be complemented
if every element x has at least one complement (Chapter 2, Definition 2.19).

1. Show that, if L is distributive, every element has at most one complement.
2. A complemented distributive lattice is called Boolean. A lattice every interval of

which is a complemented lattice is called relatively complemented. Show that a
Boolean lattice L is relatively complemented. Hint: the complement of x in the
interval [a,b] is obtained from the complement of x in L.

3. Show that a relatively complemented lattice is atomistic and coatomistic (Chapter
3, Definitions 3.13 and 3.20).

4. Show that a Boolean lattice is isomorphic to the lattice of subsets of the set of its
atoms.

Exercise 5.14 [Generalizing Proposition 5.31] Let P = (X ,O) be an ordered set
of size n. Show that the preorders with k classes (respectively, the orders) includ-
ing the order O are in a one-to-one correspondence with the topologies of height k
(respectively, of height n) included in D(P). Transfer this result to distributive lattices.

Exercise 5.15 [Distributive ordered sets] An ordered set P is called distributive (or
dissective) if all its join-irreducibles are dissective (see Exercise 3.18). Show that the
following three properties are equivalent:

1. P is distributive.
2. The MacNeille completion Gal(P) of P is a distributive lattice.
3. The MacNeille completion Gal(P) of P is isomorphic to D(J (P)).

Hint: Use Corollary 3.59 (J (P) is isomorphic to J (Gal(P))), the fact that Dis(P) is
isomorphic to Dis(Gal(P)) – whose proof is one of the purposes of Exercise 3.18 –
and Property (4) in Theorem 5.1 (every join-irreducible of a distributive lattice is
join-prime).

Note This result can be found in Reading (2002). In Monjardet and Wille (1988–
89) it is also shown that P is distributive if and only if the distributive lattice D(P)

is generated by its doubly irreducible elements. The set of such distributive lattices
generated by their doubly irreducible – the latter ordered set being isomorphic to P –
is a Boolean interval studied in Berman and Bordalo (1998).
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Order codings and dimensions

We have several times considered codings (Definition 3.1) from an ordered set to
another one. Indeed when an ordered set has a complex structure, it is natural to try to
represent it in a simpler ordinal structure. In this chapter, we choose direct products
of chains as the simple ordered structures (see Section 1.5.2). A coding of the ordered
set P will then be a map sending P to an ordered subset, isomorphic to P, of such
a product. This notion is particularized when adding conditions on the sizes of the
chains. Thus, when all chains have size k (with k a fixed integer), as always assumed
in the sequel, we will speak of a k-coding. The minimum number of chains required
for the existence of a k-coding of P will be called the k-dimension of P.

In the first section, we study the 2-codings of an ordered set P, and the associated
2-dimension – also called Boolean dimension. Indeed, a 2-coding of P, i.e., a coding
from P to a direct product of p chains of size 2, is equivalent to a coding from P to the
Boolean lattice of subsets of a set of size p (such a coding may also be called Boolean).
The Boolean dimension of an ordered set P is thus the minimum size of a set a family
of subsets of which, ordered by set inclusion, reproduces exactly (i.e., is isomorphic
to) P. A result stated in Chapter 3 (Proposition 3.6) shows that an ordered set always
has a Boolean coding (in the lattice of subsets of any of its join-generating sets). As
for the problem of computing the Boolean dimension, it was already encountered in
Chapter 1 (Example 1.18) in the particular case where one searches for an optimal
coding of a type hierarchy in the lattice 2S of subsets of a set S. More generally, this
problem has been raised in algorithmics where one seeks the best Boolean coding of
an ordered set.

Another important particular case of a k-coding of an ordered set P occurs when k
is equal to the size of P or, equivalently, when P is coded in a direct product Nq (with
q an arbitrary integer). The minimum integer q such that there exists such a coding is
then called the dimension of P and Sections 6.2 and 6.3 are devoted to its study. In
Section 6.2, we first give some general results, especially on the dimension behavior
with regard to the operations on ordered sets considered in Chapter 1 (Section 1.5).
Next, we prove Hiraguchi’s Theorem, which states that the dimension of P is upper
bounded by |P|

2 (for |P| ≥ 4); the proof uses two other upper bounds including the
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width of P. In Section 6.3, we study 2-dimensional ordered sets – that is, ordered sets
of dimension 2 – and we give several characterizations.

Instead of speaking of the dimension of an ordered set P = (X ,≤), we will also
speak of the dimension of the order ≤. On the other hand, it will sometimes be
convenient to replace the notation ≤ with the literal notation O. Indeed, we will
encounter other definitions of the notion of the dimension of an order using total
preorders, the intersection of which is this order. Thus, the Boolean dimension of
P = (X ,O) is also the minimum number of total preorders with two classes, the
intersection of which is the order O, whereas its dimension is also the minimum
number of linear orders, the intersection of which is O. These equivalent definitions
are the consequence of a general result on the k-dimension presented in Section 6.4,
which itself comes from the fundamental duality between preorders and topologies
expounded in Chapter 5.

The fact that the dimension of an order O is the minimum number of linear orders
whose intersection is O accounts for the use of this notion in many modelings, for
instance in social sciences. For example, if O represents the preference order of a
consumer, the dimension of O represents the minimum number of (linearly) ordered
criteria accounting for his preference: the consumer prefers a bundle of goods to
another one if and only if he prefers the former with respect to all criteria. We will go
back to such uses of the notion of the dimension in Section 6.5.

We will use some general notations for a map from an ordered set to a direct product
of chains of the same size. We denote by k1× ...ki × ...kr the direct product of r chains
k1, ...,ki, ...,kr , all of size k . Denoting by≤i the order of the chain ki and by≤ the order
of k1 × ...ki × ...kr , the latter is thus given by (x1, ...,xi, ...,xr)≤ (x′1, ...,x′i, ...,x′r) if and
only if xi ≤i x′i for i = 1, ...,r. Amap c from an ordered set P to k1× ...ki× ...kr is given
by the r “ith coordinate” maps c1, ...,ci, ...,cr from P to, respectively, k1, ...,ki, ...,kr

and we write c(x)= (c1(x), ...,ci(x), ...,cr(x)) and c = (c1, ...,ci, ...,cr).

6.1 Boolean codings and Boolean dimension of an ordered set

Here we study the codings from an ordered set to the direct product of chains
k1 × ...ki × ...kr , where all chains ki are isomorphic to the chain 2 = {0 < 1}.
Definition 6.1 1. A 2-coding, also called Boolean coding, of an ordered set P =

(X ,≤) is a map c = (c1, ...,ci, ...,cr) from P to a direct product of r 2-element
chains such that:

x ≤ y ⇐⇒ ci(x)≤i ci(y) for i = 1, ...,r

2. A Boolean coding c = (c1, ...,ci, ...,cr) of P is strict if, for i = 1, ...,r, ci(P)= 2.
3. The Boolean dimension (or 2-dimension) of P, denoted by dim2P, is the minimum

number of 2-element chains such that there is a Boolean coding from P to their
direct product.
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The above term “Boolean” is easy to explain. Indeed, the direct product 2r of r
2-element chains being isomorphic to the ordered set of subsets of a set E of size r,
we may also say that a Boolean (respectively, strict Boolean) coding of P is a map c
from P to the Boolean lattice 2E of subsets of a set E such that:

x ≤ y ⇐⇒ c(x)⊆ c(y)

(respectively, such that: x ≤ y ⇐⇒ [c(x)⊆ c(y) and, for any i,ci(P) �= ∅,E]).
Likewise, the Boolean dimension of P is the minimum size of a set E such that

there is a Boolean coding from P to 2E .
The fact that every ordered set P = (X ,≤) has a coding in a Boolean lattice 2E has

already been proved in Chapter 3 since taking any join-generating set of P as the set
E is enough (Proposition 3.6). In particular, with E = X , we obtain the coding of P
by its principal downsets (x] (x ≤ y if and only if (x] ⊆ (y]). On the other hand, since
the minimal join-generating set of P is the set J (P) of its join-irreducible elements,
the following result holds:

Proposition 6.2 Let P be an ordered set. Then dim2P ≤ |J (P)|.

Figure 6.1(b) represents a Boolean coding in 24 of the ordered set P of size 6 given
in (a). Then, in this example, dim2P ≤ 4 < |J (P)| = 5, which shows that the Boolean
dimension of an ordered set may be less than the number of its join-irreducibles (we
shall see later that the Boolean dimension of this ordered set is 4).

Let us observe that a Boolean coding from P to 2E may be represented as a
“0/1 array”; its lines correspond to the elements x of P and its columns to the elements
e of E; the entry t(x,e) is 1 if e ∈ c(x) and 0 if not; so c(x)= {e ∈ E : t(x,e)= 1}. For
the example in Figure 6.1(a) and (b), this array is represented in (c).

Conversely, any 0/1 array with lines indexed by a set X and columns by a set E and
without identical lines may be considered as representing a Boolean coding of the set
of the line labels, ordered by x ≤ y if and only if t(x,e) ≤ t(y,e) for all columns e of
the array.

A strict Boolean coding of P is easily recognized on the associated array, since the
coding is strict if and only if this array does not contain columns with only 0’s or only
1’s (which is the case for the coding in Figure 6.1). Non-strict Boolean codings have
little interest since they are obtained from strict codings by adding columns of 0’s or
of 1’s to the corresponding arrays. In particular, it is clear that the Boolean codings
in 2dim2P are strict. Thus below, we limit ourselves to the case of strict codings when
stating the fundamental theorem for Boolean codings.

In this theorem it will be more convenient to denote O the order relation of the
ordered set P, thus written P = (X ,O). Recall that D(P) denotes the set of downsets
of P and that a downset is proper if it is different from P and the empty set.
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Figure 6.1 (b) A Boolean coding of the ordered set P and (c) the representation of this
coding by a 0/1 array.

Theorem 6.3 Let P = (X ,O) be an ordered set and E a set of size r. There are
one-to-one correspondences between the following three sets:

1. The set of strict Boolean codings from P to 2E.
2. The set of families (R1, ...,Rr) of r total preorders with two classes defined on X

and the intersection of which is O.
3. The set of families (D1, ...,Dr) of r proper downsets of P generating (by union and

intersection) all downsets of P.

This theorem is obtained by applying to the case where k = 2 the fundamental
Theorem 6.29 on the codings from P to the chain product kr . Therefore, we will give
its proof after the proof of Theorem 6.29 (more precisely, just after Proposition 6.33)
in the fourth section.

Corollary 6.4 The Boolean dimension of an ordered set P is the minimum size of a
generating set of D(P) – i.e., the minimum number of proper downsets of P generating
by union and intersection all downsets of P:

dim2P = g(D(P))

This corollary is an immediate consequence of Item (3) in Theorem 6.3, since
seeking the Boolean dimension of P comes down to seeking a generating set of D(P)
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of minimum size. Do not forget when using this result that to generate all downsets
of P = (X ,O) comes down to generating all its proper downsets (since the empty set
and X are always trivially generated).

A consequence of the above corollary is that computing the Boolean dimension of
an ordered set comes down to computing the minimum size of a generating set of a
distributive lattice, a problem studied in Chapter 5. In Example 5.23, we computed
the minimal generating sets of the lattice D(P) (see Figure 5.2) for an ordered set P
isomorphic to the ordered set in Figure 6.1(a). Since we obtained g(D(P)) = 4, the
Boolean dimension of P is 4.

Another immediate application of Corollary 6.4 is the computation of the Boolean
dimension of a chain k . Indeed, the lattice of downsets of such a chain is isomorphic
to the chain k + 1, whose elements, except for the least and the greatest ones, are
doubly irreducible. Hence dim2k = k − 1 and, here, the bound given in Proposition
6.2 is reached.

The transition from a strict Boolean coding of P to a family of (proper) downsets
of P generating D(P), or the converse transition, is very easily obtained from the
0/1 array defined after Proposition 6.2 (see Figure 6.1(c)). Let t be such an array
associated with a coding from P to 2E ; then the corresponding generating family of
D(P) is {De,e ∈ E} with De = {x ∈ P : t(x,e)= 0}.

Thus, in the example of the ordered set P in Figure 6.1, the obtained generating
family of D(P) is {236,13,124,1235}, which may be checked on the lattice D(P) in
Figure 5.2.

Conversely, let r downsets of P form a generating family of D(P); we define a 0/1
array with |P| lines and r columns by associating with each downset De the column e
where t(x,e)= 0 if x ∈De and t(x,e)= 1 if not. Then, the lines of this array induce the
corresponding Boolean coding (we let the reader check that these assertions follow
from Theorem 6.3).

We now give some general results on the Boolean dimension, beginning with its
behavior with regard to some operations on ordered sets (see Section 1.5 in Chapter 1).

Proposition 6.5 Let P, Q, and Pi, i = 1, ...,h be ordered sets. Then:

1. Q � P implies dim2Q ≤ dim2P.
2. dim2Pd = dim2P.
3. dim2(�1≤i≤hPi)≤min{ω,ν}+�1≤i≤hdim2Pi, where ω= |{i :Pi has a minimum}|

and ν = |{i : Pi has a maximum}|.
4. dim2(

⊕
1≤i≤h Pi)= t+�1≤i≤hdim2Pi, where t = |{i:Pi has a maximum and Pi+1

has a minimum}|.
5. dim2(�1≤i≤hPi) ≤ �1≤i≤hdim2Pi, with the equality if all Pi’s have a minimum

and a maximum.

Proof (1) Immediate since, if Q is an ordered subset of P, we obtain a Boolean
coding of Q by restricting the Boolean coding of P to this subset.
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(2) Immediate since, if c is a coding from P to 2E , we obtain a coding c′ from Pd

to 2E by writing c′(x)= E \ c(x).
We show (3), (4), and (5) for two ordered sets P1 = (X1,≤1) and P2 = (X2,≤2)

and let the reader generalize the proofs to more than two ordered sets.
(3) The Boolean dimension of P1 +P2 is the minimum size of a generating set of

the lattice D(P1+P2), which is isomorphic to the lattice D(P1)×D(P2) (Proposition
5.8). From the result in Exercise 5.9, the minimum size of a generating set of this
product lattice is bounded by the sum of the minimum size of a generating set of
D(P1) and D(P2) (i.e., dim2P1+dim2P2) and of the minimum of the numbers ω and
ν, where ω (respectively, ν) is the number of Pi (i= 1,2) such that, in D(Pi), the empty
set ∅ (respectively, the set Xi) is a meet-irreducible (respectively, a join-irreducible).
Item (2) in Theorem 5.6 then gives the result.

(4) The Boolean dimension of P1⊕P2 is the minimum size of a generating set of the
lattice D(P1 ⊕P2), which is isomorphic to the lattice D(P1)⊕′ D(P2) (Proposition
5.8). On the other hand, according to Item (2) in Theorem 5.6, the element obtained by
identifying the maximum of D(P1) and the minimum of D(P2) is doubly irreducible
(and thus must belong to any generating set of D(P1) ⊕′ D(P2)) only if P1 has a
maximum and P2 a minimum. Now it is easy to see that, if L1 and L2 are two lattices,
g(L1 ⊕′ L2)= g(L1)+ g(L2)+ t, with t = 1 if u1 ∈ J (L1) and 02 ∈ M (L2), and t = 0
if not. The required equality follows.

(5) Let c1 (respectively, c2) be a coding from P1 (respectively, P2) to 2E1 (respec-
tively, 2E2 ) with |E1| = dim2P1 (respectively, |E2| = dim2P2). We immediately check
that the map c from P1 ×P2 to 2E1+E2 defined by c(x1,x2)= c1(x1)+c2(x2) – where
here + denotes the disjoint union – is a coding, whence the inequality in (5).

Assume that Pi (i = 1,2) has a minimum 0i and a maximum ui. We must show
dim2(P1 × P2) = dim2P1 + dim2P2; that is, considering the inequality in (5),
dim2(P1×P2)≥ dim2P1+dim2P2. Let c= (c1, ...,ci, ...,cr) be a coding from P1×P2

to 2E , with E = {1, ..., i, ...,r} and r = dim2(P1 ×P2). Write A = {i ∈ E : ci(01,u2) =
0 < ci(u1,02)= 1} and B= {i ∈E : ci(01,u2)= 1 > ci(u1,02)= 0}. Since (01,u2) and
(u1,02) are incomparable, A and B are not empty. We are going to show that the restric-
tions of the ci’s, for i ∈ A, to P1 ×{02} induce a Boolean coding of this ordered set.
To do so, it is enough to show that, if two elements x and y are incomparable in P1, so
are the images of (x,02) and (y,02) by these restrictions. Since (y,02) < (u1,02) and
(01,u2) < (x,u2) in the product order, for any i ∈ B, ci(y,02) = 0 < ci(x,u2) = 1
holds; since (y,02) and (x,u2) are incomparable, there exists i ∈ A such that
ci(y,02) = 1 > ci(x,u2) = ci(x,02) = 0. We similarly show that there exists k ∈ A
with ck(y,02)= 0< ck(x,02)= 1, which proves the announced incomparability result.
The restrictions of the ci’s, for i ∈ A, to P1 ×{02} inducing a Boolean coding of this
ordered set and thus of P1, we deduce |A| ≥ dim2P1. We similarly show that |B| ≥
dim2P2, whence dim2(P1 ×P2) ≥ |A|+ |B| ≥ dim2P1 + dim2P2 and the announced
equality. �
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Since the Boolean dimension of a chain k is k −1 (for k ≥ 2), Item (5) in the above
proposition gives the Boolean dimension of a product of chains of arbitrary lengths.

Corollary 6.6 If k1, ...,ki, ...,kh are h chains all of size greater than 1, then dim2

(k1 × ...ki × ...kh)= (�1≤i≤hki)− h.

Computing the Boolean dimension of an ordered set is generally a difficult problem
(see Appendix A). It is thus interesting to know easily computable bounds on this
dimension, like the ones below. Recall that λ(P) and α(P) respectively denote the
height and the width of the ordered set P (both are defined on page 19).

Proposition 6.7 For any ordered set P,

max{log2|P|,λ(P), t(α(P))} ≤ dim2P ≤ |P|

where t(n) is the least integer t such that n ≤ ( t
$ t

2 %
)
.

Proof Let P be coded in 2d with d = dim2P; then 2d ≥ |P|, λ(2d) = d ≥ λ(P),
and α(2d)= ( d

$ d
2 %

)
(Theorem 4.20) ≥ α(P), hence the lower bound. The upper bound

is immediate using the fact that the map associating with any element x its principal
downset (x] is a coding from P to 2|P|. �

We observe that all the bounds given in this proposition are sharp. For example,
Proposition 6.35 shows that the lower bound λ(P) is reached by distributive lattices
(since the height of such a lattice is equal to the number of its join-irreducibles). The
ordered sets P satisfying dim2P = |P| have been characterized (see Section 6.5). The
reader can search for examples for the other bounds.

6.2 Dimension of an ordered set

We now study the codings from an ordered set P = (X ,≤) of size n to the direct
product of chains ni, all isomorphic to the chain n= {0 < 1 < ... < n−1}. Recall that,
if c is such a coding, x ≤ y holds if and only if c(x)≤ c(y) holds in the product order
(Definition 3.1).

Definition 6.8 Let P = (X ,≤) be an ordered set of size n.An n-coding of P is a coding
c from P to a direct product of chains all of size n. When there are r chains (i.e., if this
product is n1 × ...ni × ...nr , with ni = n for any i ≤ r), we write c = (c1, ...,ci, ...,cr)

and then:
x ≤ y ⇐⇒ ci(x)≤i ci(y), for i = 1, ...,r

An n-coding c = (c1, ...,ci, ...,cr) from P to nr is strict if, for each i ≤ r, ci(P)= ni.
The dimension of P, denoted dimP, is the minimum number of chains of size n

such that there exists an n-coding from P to their direct product.
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In Chapter 1 (Definition 1.33), we gave another definition of the dimension of an
ordered set, recalled below:

Definition 6.9 A set of linear extensions of an ordered set P is a realization of P
(we also say that these linear extensions realize P) if P is the intersection of these
extensions. Arealization of P is minimal if the intersection of any of its (strict) subsets
strictly includes P. A basis of P is a (minimal) realization of P of minimum size (i.e.,
containing the least possible number of linear extensions of P). The dimension of P
is the minimum size of a basis of P, i.e., the minimum number of linear extensions
of P whose intersection is P.

The next results prove that the above two definitions of the dimension are equivalent
between them and with some others. For these results, it will be convenient to use the
literal notation P = (X ,O) of the ordered set P.

Theorem 6.10 Let P = (X ,O) be an ordered set of size n and let r be a fixed integer.
There are one-to-one correspondences between the following three sets:

1. The set of strict n-codings from P to nr.
2. The set of families (L1, ...,Li, ...,Lr) of linear extensions of O such that O =⋂

1≤i≤r Li (i.e., realizing O).
3. The set of families (C1, ...,Ci, ...,Cr) where, for i = 1, ...,r, Ci is a chain of length

n− 2 of proper downsets of P, and such that
⋃

1≤i≤r Ci is a generating set of the
lattice D(P) of downsets of P.

This theorem is the application to the case where k = n of the fundamental Theorem
6.29 on the codings from P to the chain product kr (for an integer k ≥ 2). Therefore,
we will give its proof after the proof of Theorem 6.29 (more precisely, just after
Proposition 6.33) in the fourth section.

Corollary 6.11 The dimension of an ordered set P = (X ,O) of size n is given by any
of the following expressions:

1. The least integer r such that there is a strict n-coding from P to nr.
2. The least integer r such that there is an n-coding from P to Nr .
3. The minimum number of linear extensions of O, the intersection of which is O.
4. The minimum number of chains, the elements of which generate D(P).
5. The minimum width of a generating set of D(P).
6. The convex dimension of the set L(O) of linear extensions of O.

Proof (1) To prove that, in the definition of the dimension of P, we may only
consider strict codings, it is enough to show that the existence of a coding from P
to nr implies that of a strict coding from P to nr . Let c = (c1, ...,ci, ...,cr) be an n-
coding from P = (X ,O) to nr . For each i ∈ E = {1, ...,r}, we define a total preorder
Ri on X by xRiy if and only if ci(x) ≤ ci(y). Since c is a coding, we obtain a family
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(R1, ...,Ri, ...,Rr) of r total preorders, the intersection of which is O. The total preorder
Ri including the order O includes (at least) one linear extension Li of O (Theorem
2.29). Since, for any i ∈ E, O ⊆ Li ⊆ Ri, then O =⋂

1≤i≤r Li holds. So, the existence
of a strict n-coding from P to nr results from Theorem 6.10.

(2) We show this expression by proving that it is equivalent to the expression in
(3). The same argument as in (1) proves that, if P = (X ,O) is coded in Nr , O is the
intersection of r linear orders. Conversely, if O = ⋂r

i=1 Li is the intersection of r
linear orders, we obtain a coding from P to nr (and thus in Nr) by writing for any x
in P, c(x)= (r1(x), ...,ri(x), ...,rr(x)), where ri(x) is the (normalized) rank of x in the
linear order Li. These two assertions prove the result.

(3) Immediate from Item (2) in Theorem 6.10.
(4) Since any chain of D(P) formed of proper downsets of P may be extended into

a chain of length n− 2, this immediately results from Item (3) in Theorem 6.10.
(5) Immediate from Item (4) and from Dilworth’s Theorem (this expression also

results from the formula given for the k-dimension in Proposition 6.33).
(6) We first have to define what the convex dimension is. In Chapter 5, we have

seen that spindles of (linear) orders – i.e., the sets L(O) formed by all linear extensions
of an order O defined on X – are the convex subsets of the set LX of all linear orders
on X (Theorem 5.41 and Definition 5.36). Since the intersection of convex subsets
is convex and since LX is convex, the convex subsets form a Moore family with an
associated closure operator � (Definition 3.29) called the convex closure: the convex
closure �(A) of A ⊆ LX is the least convex subset including A and is equal to
L(OA), where OA = ⋂{L ∈ A} is the order intersection of the linear orders in A.
We then call a basis of a convex subset L(O) any subset B of L(O), minimal with
the property that �(B)=L(O). The convex dimension of L(O) is the minimum size
of a basis. Yet, since �(B) = L(O) is equivalent to O = ⋂{L ∈ B}, a basis B of
L(O) with regard to the convex closure is nothing else but a basis of O (as defined in
Definition 6.9). Then, as required, the convex dimension of L(O) is the dimension
of P = (X ,O). �

Corollary 6.11 allows us, for instance, to compute the dimension of the ordered
set represented in Figure 6.1(a). Indeed, the expression in (5) of the dimension given
in this corollary shows that it is obtained from the minimal generating sets of D(P).
Now, in the previous chapter (Example 5.23 on page 143) we determined the minimal
generating sets of the lattice D(P) for an ordered set P isomorphic to the one in
Figure 6.1(a). There are four such subsets, among which three have width 3 and one
has width 2. Thus dimP = 2. This example also shows that the minimum width of a
generating set of D(P) is not necessarily the width of a generating set of minimum
size: indeed, here it is the generating set of maximum size which has minimum width.

The fact that the order dimension has several expressions (those in Corollary 6.11
or others, such as those given in Exercise 6.7) does not generally make its computation
easier (indeed this computation is a “difficult” problem, see Appendix A). Then one
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Figure 6.2 (a) The ordered set S4 and (b) an ordered set P such that dimP = |P|
2 = 3.

searches for bounds for the dimension, which is the subject of the end of this section.
A proof technique to obtain an upper bound, i.e., to get dimP ≤ r for an integer r, is
to provide a realization E = {L1, ...,Li, ...,Lr} of P containing r linear orders. From
the definitions, this comes down to showing, on the one hand, that the Li’s are linear
extensions of P (which will often be obvious) and, on the other hand, that for any
pair x,y of incomparable elements of P, there is a pair Li,Lj ∈ E with xLiy and yLjx.
Observe that in such a case, if moreover one shows dimP ≥ r, then dimP = r. We
use this technique in the following example, which shows that there are ordered sets
of arbitrarily high dimension.

Example 6.12 We denote by Sn (n ≥ 2) the ordered set defined on X =
{a1, ...,an,b1, ...,bn} as follows: the ordered pairs of Sn are all the ordered pairs (ai,bj)

with i �= j (S4 is represented in Figure 6.2(a)). We are going to show that dimSn = n.
We first show that dimSn ≤ n by giving a realization of Sn with n linear exten-

sions. The reader can check that it is the case taking, for i = 1, ..., i, ...,n, Li =
aibi+1ai+1bi+2ai+2...ai−2bi−1ai−1bi (with an+1 = a1 and bn+1 = b1).

Let us now show that dimSn ≥ n. Indeed, let (bi,ai) and (bj ,aj) be two ordered
pairs with i different from j. Since they are formed of incomparable elements of Sn

and aiLibi and ajLjbj hold, a realization of Sn must contain two linear extensions Lk

and Lh of Sn such that biLkai and bjLhaj . Yet, Lk = Lh = L is impossible, since it
would imply ajLbiLaiLbjLaj . Thus, a realization of Sn must have at least as many
linear orders as ordered pairs (bi,ai) and then dimSn ≥ n. Finally dimSn = n holds,
as announced.

We now study the behavior of the dimension with regard to some usual operations
on ordered sets (see Section 1.5 in Chapter 1). In the following proposition, we
consider some operations on h ordered sets Pi (in the formulas (4) to (7) below, the
index i varies from 1 to h).
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Proposition 6.13 Let P, Q, and Pi with i = 1, ...,h (h ≥ 2) be ordered sets. Then:

1. Q � P implies dimQ ≤ dimP.
2. dimPd = dimP.
3. dimP − 1 ≤ dim(P \ x)≤ dimP, for any x ∈ P.
4. dim(�1≤i≤hPi)= max{2,max1≤i≤h{dimPi}}.
5. dim(

⊕
1≤i≤h Pi)= max1≤i≤h{dimPi}.

6. dim(QP1,...,Ph
y1,...,yh )= max{dimQ,max1≤i≤h{dimPi}}.

7. max1≤i≤h{dimPi} ≤ dim(�1≤i≤hPi) ≤ �1≤i≤hdimPi, with dim(�1≤i≤hPi) =
�1≤i≤hdimPi if the Pi’s all have a maximum and a minimum and are of size
at least 2.

Proof (1) Immediate since, if Q is an ordered subset of P, the restriction to Q of a
coding of P is a coding of Q.

(2) Immediate since, if {L1, ...,Lr} is a realization of P, it is clear that {Ld
1 , ...,Ld

r } is
a realization of Pd .

(3) From (1), removing an element x from P decreases or does not change its
dimension. We must show that, if it decreases, it becomes dimP−1, i.e., that dimP ≤
dim(P \ x)+ 1. To do so, we show that, if {L1, ...,Lr} is a basis of P \ x, there is a
realization of P of size r + 1. With that aim, we build from the linear extension L1

of P \ x two linear extensions M1 and M2 of P. In their definitions given below, the
index 1 denotes the restriction of the order L1 to the indexed subset (and I(x) is the
set of elements of P incomparable with x):

M1 = [(x[∪I(x)]1 ⊕{x}⊕]x)1 M2 = (x[1⊕{x}⊕ [I(x)∪]x)]1
It is easy to check that M1 and M2 are two linear extensions of P and that, if y

is an element incomparable with x, yM1x and xM2y hold. Let us show that, if y and
z are two incomparable elements of P different from x, the ordered pair (y,z) – for
instance – cannot belong to all the linear extensions M1,M2,L2, ...,Lr . We only have
to consider the case where yLiz holds for every i ≥ 2 and so where zL1y holds. In this
case, from the definition of M1 (respectively, of M2), if yM1z (respectively, yM2z)
then y ∈ (x[∪I(x) and z ∈ [x) (respectively, y ∈ (x] and z ∈ I(x)∪ [x)); thus (yM1z
and yM2z) is impossible since, then, we would obtain y <P x <P z, a contradiction
with the assumption. We deduce that {M1,M2,L′

2, ...,L′
r}, where the L′

i are the linear
extensions of P obtained from the Li by inserting the element x between (x[i and ]x)i,
is a realization of P.

(4) and (5) are particular cases of (6) where, in the first case, Q is an antichain and
a chain in the second (see Section 1.5.1).

(6) We consider the case where h = 2 (the reader can generalize). Let {L1, ...,Lp1}
be a basis of P1, {M1, ...,Mp2} a basis of P2, and {N1, ...,Nq} a basis of Q with,
for example, p1 ≥ p2 ≥ q. A – somewhat tedious – checking shows that the
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p1 linear orders

(N1)
L1M1
y1y2

,(N2)
L2M2
y1y2

, ...,(Nq)
LqMq
y1y2 ,(Nq)

Lq+1Mq+1
y1y2 , ...,(Nq)

Lp2 Mp2
y1y2 ,

(Nq)
Lp2+1Mp2+1
y1y2 , ...,(Nq)

Lp1 Mp1
y1y2

form a realization of QP1P2
y1y2

. Since QP1P2
y1y2

includes P1 as an ordered subset, its dimen-
sion is (according to (1)) greater than or equal to the dimension p1 of P1 and thus the
previous realization of QP1P2

y1y2
is in fact a basis.

(7) Like above, we consider the case where h = 2. Clearly, if we may embed
P1 in Np1 and P2 in Np2 , we may embed P1 ×P2 in Np1 ×Np2 = Np1+p2 . Whence
dim(P1 ×P2)≤ dimP1 + dimP2.

Since Pi (i = 1,2) is isomorphic to an ordered subset of P1×P2, the first inequality
comes from (1).

Assume that Pi (i = 1,2) has a minimum 0i and a maximum ui. We must show
dim(P1 × P2) = dimP1 + dimP2, i.e., considering the above inequality, dim(P1 ×
P2) ≥ dimP1 + dimP2. Since (01,u2) and (u1,02) are incomparable in P1 ×P2, we
may find a basis {L1, ...,Lp+q} of P1 ×P2, with (01,u2)Li(u1,02), for 1 ≤ i ≤ p, and
(u1,02)Li(01,u2) for p + 1 ≤ i ≤ p + q. Let x and y be incomparable in P1; since
(y,02) < (u1,02) and (01,u2) < (x,u2) in the product order then (y,02)Li(x,u2) holds
for every i > p and thus there exists i ≤ p with (x,u2)Li(y,02). Then, (x,02)Li(y,02)

holds. A similar argument shows that there exists k ≤ p with (y,02)Lk(x,02). This
implies that, for 1 ≤ i ≤ p, the restrictions of Li to P1 × {02} form a realization of
P1×{02} and so induce a realization of P1. Thus, p≥ dimP1 holds. We similarly show
that q ≥ dimP2 whence dim(P1 × P2) ≥ dimP1 + dimP2 and, finally, the required
equality. �

Proposition 6.13 allows us to compute some dimensions. Thus, since the dimension
of a chain is 1, Item (7) in this proposition gives the dimension of a product of chains
of arbitrary (non-zero) lengths.

Corollary 6.14 Let k1, ...,ki, ...,kh be h chains all of size greater than or equal to 1.
Then dim(k1 × ...ki × ...kh)= h.

As another example of an application of Proposition 6.13, we may observe that its
Item (6) allows us to show that the N -free ordered sets (see Section 2.2, Chapter 2),
and that are different from a chain, are 2-dimensional. Indeed, these ordered sets
are the series–parallel ordered sets obtained by substitution from ordered sets whose
dimension is less than or equal to 2 and where at least one is 2-dimensional.

The remainder of the section is devoted to obtaining bounds on the dimension of an
arbitrary ordered set. We are especially going to show the fundamental Hiraguchi’s
result (Theorem 6.21) stating that the dimension of an ordered set P is at most |P|

2 .
Our proof method allows us to obtain two other bounds using the width of the ordered
set (Proposition 6.15 and Corollary 6.20).
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Proposition 6.15 The dimension of an ordered set P is less than or equal to its width:
dimP ≤ α(P).

To obtain this result, it is enough to show that dimP ≤ θ(P) since, according
to Dilworth’s Theorem (Theorem 4.2), θ(P) = α(P). To do so, we first prove the
following lemma, then the proposition.

Lemma 6.16 Let C be a chain of an ordered set P. There exists a linear extension L
of P such that:

∀x ∈ P \C,∀y ∈ C with x||Py, xLy holds

In other words, in such a linear extension every element x not belonging to the
chain is less than any element of the chain incomparable with x. Such an extension
is called a lower linear extension of P (a dual definition associates with a chain an
upper linear extension).

Proofs We first prove the lemma. Let C be a chain of the ordered set P = (X ,O).
Write AC = {(x,c) : x ∈ X \C,c ∈ C and x||Pc} and show that the relation O ∪ AC

defined on X is cycle-free. It is clear that O and AC (which is a bipartite ordered set)
are cycle-free. Assume that O∪AC contains a cycle (a1...ai...aka1) which we choose
of minimal length. If (ai,ai+1) ∈ O, (ai+1,ai+2) �∈ O (by minimality of the cycle). If
(ai,ai+1) ∈ AC , (ai+1,ai+2) �∈ AC (by definition of AC ). Then (a1a2...aka1) may be
written without loss of generality (c1x1...cixi...crxrc1) with, for each i ≤ r, ci ∈ C,
xi ∈ X \C, (ci,xi) ∈ O, and (xi,ci+1) ∈ AC . Let then ch be the greatest element in
the subchain {c1, ...,ci, ...,cr} of C. So (ch,xh) ∈ O and (ch+1,ch) ∈ O hold, whence
(ch+1,xh)∈O, a contradiction with xh incomparable with ch+1. Since O∪AC is cycle-
free, we may extend this relation into a linear order which is a linear extension of P
(Chapter 2, Theorem 2.23) and which, by definition, satisfies the required condition.

Let us now prove Proposition 6.15. To do so, we consider a partition
{C1, ...,Ci, ...,Cα(P)} of P = (X ,O) into α(P) chains. Lemma 6.16 allows us to asso-
ciate with each of these chains Ci a lower linear extension Li. Thus, O ⊆ ⋂{Li, i =
1, ...,α(P)} holds. Assume that there exists (x,y) ∈ ⋂{Li, i = 1, ...,α(P)} \O. Then
x||Py holds and x and y belong to two different chains Ci and Ck . From the definition
of a lower linear extension, we obtain xLiy and yLkx, a contradiction. So the Li’s form
a realization of P by α(P) linear extensions. �

To obtain the bounds in Proposition 6.19 and Corollary 6.20, we need two other
lemmas using the following notations: if x and y are two distinct elements of the
ordered set P = (X ,≤), we write x ∼ y if (x[= (y[ and ]x) =]y). It is then clear that
x and y are incomparable. On the other hand, we write x <∼ y if x < y and if, for
every z different from x and y, z < x holds if and only if z < y holds and z > x holds
if and only if z > y holds (which implies x ≺ y with x a meet-irreducible and y a
join-irreducible).
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Lemma 6.17 Let x,y be two distinct elements of an ordered set P. Then:

1. x ∼ y implies dim(P \ x) = dimP, unless P \ x is a chain (and in this case,
dim(P \ x)= dimP − 1).

2. x <∼ y implies dim(P \ x)= dim(P \ y)= dimP.

Proof These two results come from Item (6) in Proposition 6.13. For (1) we
substitute the antichain {x,y} for y in P \ x. For (2), we substitute the chain {x < y}
for y in P \ x (or for x in P \ y). �

We observe that, in order to compute the dimension of an ordered set, Item (1)
(respectively, Item (2)) in the lemma allows us to come back to the case where two
elements x and y of the ordered set never satisfy x ∼ y (respectively, x <∼ y).

Lemma 6.18 If an ordered set P has an antichain A such that |P \ A| = 2, then
dimP ≤ 2.

Proof If P is an antichain then dimP = 2.
Otherwise, let A be an antichain of P such that P \A = {x,y} and first assume x||y.

Without loss of generality we may assume that there exists a ∈ A with a < x. Then
for every a′ ∈ A, a′ < x or a′||x.

If there exists b ∈ A with b < y, then a′ < y or a′||y, for every a′ ∈ A. So, we may
obtain a partition of A into four sets: A1 = {a∈ A : a < x and a||y}, A2 = {a∈ A : a < y
and a||x}, A3 = {a∈ A : a < x and a < y}, A4 = {a∈ A : a||x and a||y}. If two elements
z and t belong to the same Ai then – with the notation introduced before Lemma 6.17 –
z ∼ t holds; thus, using this lemma, we may bring this back to the case where |Ai| ≤ 1
(with |A1 ∪A2 ∪A3| ≥ 1). Then, P is isomorphic to an ordered subset of the ordered
set in Figure 6.3(a).

If there exists b ∈ A with y < b or if there exists a ∈ A with x < a, we similarly
show that P is isomorphic to an ordered subset of the ordered set in Figure 6.3(b) or
to an ordered subset of the two dual ordered sets of those in the previous figures.

If x and y are comparable with, for example, y < x, we similarly show that P is
isomorphic to an ordered subset of the ordered set in Figures 6.3(c), (d) or (e).

Since it is easy to show that the ordered sets in Figure 6.3 are 2-dimensional (the
reader can search for a basis of two linear orders for each of them), we obtain that
dimP ≤ 2 always holds (and dimP = 2 if |A| ≥ 2). �
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Figure 6.3 Illustration of Lemma 6.18.
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Proposition 6.19 If A is an antichain of an ordered set P satisfying |P \A| ≥ 2, then
dimP ≤ |P \A| holds.

Proof This proposition is proved by induction on the integer k = |P \A|. Lemma
6.18 shows that it is true for k = 2. Assume that it is true for an integer k ≥ 2
and let A be an antichain of an ordered set P satisfying |P \ A| = k + 1. Then, for
x ∈ P \A, |P \ (x+A)| = k ≥ 2 holds and thus dim(P \ x)≤ k; but since the removal
of an element from an ordered set decreases its dimension by at most 1 (Item (3) in
Proposition 6.13), dimP ≤ k + 1 holds. �

Let us now consider an antichain A of size α(P) of P. Using Proposition 6.19 if
|P \A| ≥ 2 or trivially if not, we obtain the following result:

Corollary 6.20 The dimension of an ordered set P satisfies the inequality dimP ≤
max{2, |P|−α(P)}.

Let P be an ordered set such that |P| − α(P) ≥ 2. Since dimP ≤ α(P) (Proposi-
tion 6.15) and dimP ≤ max{2, |P| −α(P)} (Corollary 6.20), we deduce dimP ≤ |P|

2 .
Moreover, if |P|−α(P)≤ 1, it is easy to check that the same inequality holds, unless
|P| = 1 or P is an ordered set of size 2 or 3 and different from a chain. Then we have
proved Hiraguchi’s result:

Theorem 6.21 (Hiraguchi, 1951) If P is an ordered set of size |P| ≥ 4, then
dimP ≤ |P|

2 .

Remark 6.22 In Example 6.12, we considered the ordered set Sn of size 2n ≥ 4 and
showed that its dimension is n. On the other hand, it is clear that α(Sn) = n. Thus,
dimSn = α(Sn) = |Sn| − α(Sn) = |Sn|

2 , which shows that the above three bounds for
the dimension are sharp.

6.3 2-dimensional ordered sets

The ordered sets of dimension 2 are called 2-dimensional ordered sets and are espe-
cially interesting since they allow a simple interpretation of an order as the intersection
of two linear orders. For example, consider an ordered set modeling the preference of
an individual; if it is 2-dimensional, we may presume that this preference is obtained
from two linearly ordered criteria, the individual preferring x to y if and only if
he/she prefers the former to the latter on the two criteria. In fact, situations where
such ordered sets appear are rather frequent. Moreover, problems on 2-dimensional
ordered sets may algorithmically become easier (it is the case for their recognition or
the computation of the number of their downsets, see Appendix A). We obtain some
first characterizations of 2-dimensional ordered sets by rewriting Corollary 6.11 in
this particular case:
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Figure 6.4 A coding from the ordered set P to N
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Proposition 6.23 Let P be an ordered set different from a chain. Then the following
are equivalent:

1. P is 2-dimensional (that is, dimP = 2).
2. There exists a coding from P to N2.
3. P is the intersection of two linearly ordered sets.
4. The lattice D(P) of downsets of P is generated (by union and intersection) by the

downsets belonging to two chains.
5. The minimum width of a generating set of D(P) is 2.
6. The convex subset L(P) = {linear extensions of P} of the permutoedre graph is

the convex closure of two linear orders.

Thus, in order to show that an ordered set P (different from a chain) is
2-dimensional, it is enough for instance to produce an ordered subset of N2 iso-
morphic to P, which is done in Figure 6.4. Observe that the coding c from P to N2

shown in Figure 6.4 induces a strict coding from P to 42.
In order to give other characterizations of 2-dimensional ordered sets, we introduce

some definitions.

Definition 6.24 Two ordered sets P = (X ,≤P) and Q = (X ,≤Q) are said to be con-
jugate if, for any pair {x,y} of elements of X , x and y are comparable in one and only
one of these two ordered sets: (x <P y or x >P y) if and only if x||Qy. In this case, we
also say that Q (respectively, P) is a conjugate of P (respectively, of Q).

A linear extension L of an ordered set P is called non-separating if two comparable
elements of P are never “separated” in L by an element incomparable to them both:
x <P y and x <L z <L y imply x <P z or z <P y.

Now we may state the further characterizations of 2-dimensional ordered sets.
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Theorem 6.25 Let P be an ordered set. Then the following are equivalent:

1. P is 2-dimensional.
2. P may be coded in the ordered – by inclusion – set of intervals of a linearly ordered

set.
3. The incomparability graph of P is a comparability graph.
4. P has a conjugate.
5. P has a non-separating linear extension.

Proof (1)=⇒ (2): let L and M be two linear extensions of P = (X ,≤P) realizing P.
Write X = {x1, ...,xi, ...,xn} and let X ′ = {x′1, ...,x′i, ...,x′n} be a set such that X ∩X ′ = ∅.
Let M ′ = (X ′,≤M ′) be the linearly ordered set obtained by writing x′j ≤M ′ x′i if and
only if xi ≤M xj . Writing f (xi) = [x′i,xi], we define a map f from P to the intervals
of the linearly ordered set N = M ′ ⊕ L (the linear sum of M ′ and L). Then we have
xi ≤P xj if and only if [xi ≤L xj and xi ≤M xj], if and only if [xi ≤L xj and x′j ≤M ′ x′i],
if and only if [x′j ≤N x′i ≤N xi ≤N xj], if and only if f (xi)⊆ f (xj). Since f is injective,
it is the required coding.

(2) =⇒ (3): let Ix be the interval image of x in the isomorphism between P and a
set of intervals of a linearly ordered set L, and denote by ix the origin of this interval.
If x and y are two incomparable elements of P, then ix and iy are different. We write
x < y if ix <L iy. Clearly, we then obtain a transitive orientation of the edges of the
incomparability graph of P, which is thus a comparability graph.

(3) =⇒ (4): since there exists an ordered set Q whose comparability graph is equal
to the incomparability graph of P, Q is a conjugate of P.

(4) =⇒ (5): let Q be a conjugate ordered set of P = (X ,≤P). We write x ≤L y if
and only if [x ≤P y or x ≤Q y] holds; from the definition of a conjugate, ≤L is a total
and antisymmetric relation. We show that it is transitive, hence a linear order. Let
x <P y, y <Q z and assume z <L x whence, for example, z <P x. This implies z <P y,
a contradiction with y <Q z (since Q is conjugate of P). Therefore L = (X ,≤L) is
a linear extension of P; it remains to show that it is non-separating. If x <P y and
x <L z <L y also hold, then x <P z or x <Q z, and z <P y or z <Q y hold. Since x <Q z
and z <Q y would imply x <Q y, which is impossible, x <P z or z <P y hold and L is
non-separating.

(5) =⇒ (1): let L be a non-separating linear extension of P = (X ,≤P). We write
Q = (X ,<Q) with x <Q y if (x <L y and x||Py); we first show that <Q is a strict
order by proving – since it is asymmetric – that it is transitive. Let x <Q y and
y <Q z; then x <L y <L z, x||Py and y||Pz hold. If x <P z, since L is non-separating,
x <P y or y <P z would hold, which is impossible. Since z <P x is also impossible,
x||Pz holds. Thus, x <Q z and we have shown that <Q is a strict order. Then write
M = (X ,≤M ) with x ≤M y if (x ≤P y or y <Q x); the relation ≤M is antisymmetric
and total and we are going to show that it is also transitive. Indeed, consider x <M y
and y <M z with, for example, x <P y and z <Q y (so y||Pz). If z <M x, either z <P x
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or x <Q z hold and, using the transitivity of P and Q, we have a contradiction in both
cases. Thus ≤M is a linear order, M is a linear extension of P, and clearly L and M
realize P. �

In particular, the proof of this theorem makes it appear that, if P is a 2-dimensional
ordered set and Q is its conjugate, then {P∪Q,P∪Qd} (respectively, {P∪Q,Pd ∪Q})
is a basis of P (respectively, of Q).

Here is an example where we show that an ordered set is 2-dimensional by using
the above characterization (5). Recall that a tree-ordered set is a meet-semilattice
where x∧y is the greatest element of the intersection of the two chains from 0 to x on
the one hand and to y on the other hand (see Exercise 2.5). Let P be the tree-ordered
set in Figure 6.5(a). We consider the linear extension L of P defined by the following
listing of elements: 0 1 3 5 6 7 8 9 4 2. We say that it is defined by a “left” traversing
path of the diagram of P: from the element 0, we choose as a successor of x in the list
the element y the most “on the left” (with regard to the diagram) among the elements
not yet listed and covering the greatest element which satisfies the following two
conditions:

• it is already listed,
• it is covered in P by at least one element not yet listed.

We are going to show that L is a non-separating linear extension of P. To do so let
i <L j <L k with i <P k; we must show that i <P j holds. Since i <L j, either i <P j or
i||Pj hold. In the latter case, i∧ j is less than i. If j was on a chain on “the left” of i∧ j,
j <L i would hold, which is impossible; and if j was on a chain on “the right” of i∧ j,
k <L j would hold, which is also impossible. Therefore, L is non-separating and P
is 2-dimensional. We obtain another (non-separating) linear extension of P forming

6 8 9 2

41

9

87

6 5 0

3

75

3 4

1

0

(a) P (b)

2

Figure 6.5 (a) A tree-ordered set P and (b) its conjugate.
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with L a realization of P when we list the elements according to a “right” traversing
path (in the example, we obtain 0 2 1 4 3 7 9 8 5 6).

Observe that the 2-dimensionality of (arbitrary) tree-ordered sets may be obtained
more simply. Indeed, these ordered sets are N -free and so we may apply a result
given in Exercise 6.4. The aim of the above proof was only to provide examples of
non-separating linear extensions.

6.4 k-dimension of an ordered set

In this section, we define the notions of a k-coding and the k-dimension of an ordered
set (for an integer k ≥ 2) and we prove the fundamental results on these notions. As
particular cases, we obtain the proofs of results on the Boolean dimension and the
dimension of an ordered set given in the previous sections.

Definition 6.26 Ak-coding of an ordered set P = (X ,≤) is a map c= (c1, ...,ci, ...,cr)

from P to a direct product of r k-element chains such that:

x ≤ y ⇐⇒ ci(x)≤i ci(y) for i = 1, ...,r

A k-coding c = (c1, ...,ci, ...,cr) of P is strict if, for i = 1, ...,r, ci(P)= k .
The k-dimension of P is the integer denoted by dimkP and defined by:

dimkP = min{r ∈ N : there exists a coding from P to kr}

The k-dimension trivially satisfies the following:

P � Q =⇒ dimkP ≤ dimkQ dimkP = dimkPd

The following lemma is useful for the proof of Proposition 6.28 giving the relations
between the different k-dimensions (with k ≥ 2 an arbitrary integer).

Lemma 6.27 Let P be an ordered set of size n. For any integer k ≥ 2, dimnP ≤ dimkP
holds.

Proof To show this result it is enough to prove that a coding c from P = (X ,O) to
kr induces a coding from P to nr (with n = |P|). For i ∈ E = {1, ...,r}, we denote ci

the ith coordinate map associated with a k-coding c: c(x)= (c1(x), ...,ci(x), ...,cr(x)).
For each i ∈ E, we define a total preorder Ri on X by xRiy if and only if ci(x)≤ ci(y).
Since c is a coding, we then obtain a family (R1, ...,Ri, ...,Rr) of r total preorders,
the intersection of which is O. Since the total preorder Ri includes the order O, it
also includes a linear extension Li of O (see Theorem 2.29). Since, for any i ∈ E,
O ⊆ Li ⊆ Ri holds, so does O = ⋂

i∈E Li. Then for any i ∈ E, we define a map c′i
from P to the chain {0 < 1 < ... < n − 1} of size n by writing c′i(x) = rLi (x) (the
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rank of x in the linear order Li, see Theorem 2.27). Finally, since xLiy if and only if
rLi (x)≤ rLi (y), c′ = (c′1, ...,c′i, ...,c′r) is a coding from P to nr . �

Proposition 6.28 For any ordered set P of size n and for 2≤ k ≤ n, dimP = dimnP ≤
... ≤ dimkP ≤ ... ≤ dim2P and, for k ≥ n, dimkP = dimP.

Proof By definition, dimnP = dimP. If k ≥ k ′, a coding from P to k ′r induces a
coding from P to kr and so dimkP ≤ dimk ′P. In particular, k ≥ n implies dimkP ≤
dimnP. But in this case, Lemma 6.27 gives the converse inequality. �

Before stating the fundamental results on k-codings, recall that a downset of an
ordered set P = (X ,≤) is proper if it is different from ∅ and from X .

Theorem 6.29 Let P = (X ,O) be an ordered set. There are one-to-one correspon-
dences between the following three sets:

1. The set of strict codings from P to the direct product kr of r chains k.
2. The set of families (R1, ...,Ri, ...,Rr) of r total preorders with k classes defined on

X and the intersection of which is O.
3. The set of families (C1, ...,Ci, ...,Cr) where, for i = 1, ...,r, Ci is a chain of length

k − 2 of proper downsets of P, and such that
⋃

i≤r Ci is a generating set of the
lattice D(P) of downsets of P.

Proof Let c be a strict coding from P = (X ,O) to kr and c1, ...,ci, ...,cr the r
associated coordinate maps : c(x) = (c1(x), ...,ci(x), ...,cr(x)). For any i ≤ r, we
define a total preorder Ri on X by xRiy if ci(x) ≤ ci(y). Thus, we obtain a family
(R1, ...,Ri, ...,Rr) of r total preorders with k classes and – since c is a coding – the
intersection of which is O.

We denote Ti = t(Ri) the extended chain of length k of downsets of P associated
with the total preorder Ri in the Galois connection (t,p) defined in Chapter 5 (Theorem
5.24 and Proposition 5.29). By definition of the map t, t(O)=D(O) (=D(P)) holds.
On the other hand, t(O)= t(

⋂
i≤r Ri)= τ(

⋃
i≤r Ti) (see the properties of this Galois

connection stated in Corollary 5.25). Therefore, D(P) = τ(
⋃

i≤r Ti), which means
that

⋃
i≤r Ti is a generating set of D(P). Writing Ci = Ti \ {X ,∅}, we thus obtain a

family of r chains of proper downsets of P, all of length k − 2 and which generate
all proper downsets of P and thus all downsets of P (since the downsets ∅ and X are
always trivially generated). In other words,

⋃
i≤r Ci is a generating set of D(P).

Now, consider a family (C1, ...,Ci, ...,Cr) of r chains of proper downsets of P,
all of length k − 2 and such that

⋃
i≤r Ci is a generating set of D(P). Adding to

every Ci the empty set and X , we obtain r extended chains T1, ...,Ti, ...,Tr (all of
length k) and which generate all downsets of P. For every i ≤ r, denote Ri the total
preorder with k classes p(Ti) associated with the extended chain Ti (Proposition 5.29).
Since t(O) = D(O) = τ(

⋃
i≤r Ti) = t(

⋂
i≤r Ri) (Corollary 5.25) and since the map

t is injective on the set of preorders, we obtain that O is intersection of the r total
preorders Ri.
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Let us finally assume that the order O of P is the intersection of r total preorders
Ri = (X (i)

1 < ...X (i)
h < ...X (i)

k ), each with k classes. We define, for i = 1, ...,r, the map

ci from X to k = {1 < ...h < ...k} by ci(x) = h if x ∈ X (i)
h . This map is surjective and

satisfies xRiy if and only if ci(x)≤ ci(y). Thus, c = (c1, ...,ci, ...,cr) is a strict coding
from P to kr .

The previous constructions allow us to define maps between any two of the
three sets considered in the theorem. To end the proof it remains to check that all
pairwise compositions of these maps are equal to the identity map, which is left to the
reader. �

Above we have considered strict codings from an ordered set P to kr . If we consider
arbitrary codings, we obtain – with almost identical proofs – the following result.

Theorem 6.30 Let P = (X ,O) be an ordered set. There are one-to-one correspon-
dences between the following three sets:

1. The set of codings from P to the direct product kr of r chains k.
2. The set of families (R1, ...,Ri, ...,Rr) of r total preorders with at most k classes

defined on X and the intersection of which is O.
3. The set of families (C1, ...,Ci, ...,Cr) where, for i = 1, ...,r, Ci is a chain of length at

most k − 2 of proper downsets of P, and such that
⋃

i≤r Ci is a generating set of
the lattice D(P) of downsets of P.

The latter theorem immediately gives the following:

Corollary 6.31 The k-dimension of an ordered set P = (X ,O) is the minimum number
of total preorders with at most k classes, the intersection of which is O, as well as the
minimum number of chains of proper downsets of P, the lengths of which are at most
k − 2 and which generate (by union and intersection) all downsets of P.

We now introduce a definition to obtain a concise expression of the k-dimension.

Definition 6.32 A k-chain covering of an ordered set P = (X ,O) is a covering of X
by chains of length at most k . We write:

θk(P)= minimum number of chains in a k-chain covering of P

We observe that θ0(P) = |P| and that, for k ≥ λ(P) (where λ(P) is the height of
P), θk(P)= θ(P)= α(P) (the latter equality is Dilworth’s Theorem 4.2).

A subset G of D(P) is a proper generating set of D(P) if it contains neither ∅ nor
X . Then we may write the second expression of the k-dimension in Corollary 6.31 as
follows:

Proposition 6.33 For any ordered set P,

dimkP = min{θk−2((G,⊆)), G a proper generating set of D(P)}
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We may now give the proofs of Theorem 6.3 on the Boolean dimension and of
Theorem 6.10 on the dimension, together with an alternative proof of Item (5) in
Corollary 6.11.

Proofs For k = 2, the k-dimension of an ordered set P = (X ,O) is its Boolean
dimension. Then, Items (1) and (2) in Theorem 6.29 become Items (1) and (2) in
Theorem 6.3. It is the same for Item (3), since a chain of length 0 of proper downsets
of P is nothing but a proper downset of P.

Observe that Corollary 6.4 – a consequence of Theorem 6.3 – is also a direct
consequence of Proposition 6.33 since, for k = 2, we obtain dim2P = min{θ0

((G,⊆))} = min{|G|} (for G a proper generating set of D(P)}.
Similarly, for k = n (= |P|), Items (1), (2) and (3) in Theorem 6.29 become the

same items in Theorem 6.10 (since a total preorder with n= |X | classes including the
order O is a linear extension of this order).

Proposition 6.33 becomes dimnP = min{θn−2((G,⊆)) : G a proper generating set
of D(P)}. Since (G,⊆) is an ordered subset of the lattice D(P) of height n (The-
orem 5.6) and contains neither ∅ nor X , its height is at most n − 2. Thus, θn−2

((G,⊆))= θ((G,⊆))= α((G,⊆)). We then obtain that the dimension of P is equal to
the minimum width of an (arbitrary) generating set of D(P), that is to say Item (5) in
Corollary 6.11. �

Remark 6.34 The computation of the k-dimension of an ordered set P requires the
computation of the minimal generating sets of the lattice D(P) of its downsets. When
D(P) has a unique minimal generating set, this computation is much simpler. For
example, it has been shown (Monjardet and Wille, 1988–89) that, if L is a distributive
lattice, the set DIR(D(L)) of its doubly irreducible elements generates D(L) and thus
is its unique minimal generating set (see also Exercise 5.15). On the other hand, it is
not difficult to show that, in this case, DIR(D(L)) ordered by inclusion is isomorphic
to the ordered set JL of join-irreducibles of L. Then we obtain:

Proposition 6.35 For any distributive lattice L, dimkL= θk−2(JL). In particular, the
Boolean dimension (respectively, the dimension) of a distributive lattice is equal to
the size (respectively, the width) of the ordered set of its join-irreducibles.

Moreover, Exercise 6.12 shows that any distributive lattice may be embedded in a
direct product of chains by a coding satisfying good properties.

6.5 Further topics and references

The notion of the dimension of an ordered set first appears in Dushnik and Miller’s
paper (1941) as the minimum number of linear extensions realizing this ordered set.
Indeed, these authors observe that the proof of Szpilrajn’s Theorem (1930) (showing
that any order has a linear extension) immediately enables us to show that any order
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is the intersection of its linear extensions (see Theorem 2.29). They also give the
dimension of Sn (Example 6.12) and the characterizations of 2-dimensional ordered
sets stated in Theorem 6.25. In the latter, the fine formulation of Characterization (3)
comes from Baker et al. (1972). It is equivalent to say that a graph G is the compa-
rability graph of a 2-dimensional ordered set if and only if G and its complementary
graph are both comparability graphs; such graphs have also been called permuta-
tion graphs. Using the known characterizations of comparability graphs, one obtains
“efficient” recognition algorithms of these permutation graphs or of 2-dimensional
ordered sets (see Appendix A). Another characterization of 2-dimensional ordered
sets in Theorem 6.25 states that they are isomorphic to the inclusion order on a family
of intervals of a linear order. More generally, it has been shown in Leclerc (1976) that
orders of dimension at most r are characterized as isomorphic to the inclusion order
on some subtrees of a tree with r leaves.1

The equivalence between Dushnik and Miller’s definition of the dimension and
the one (found for example in Öre’s book (1962)) using the notion of a coding is in
Hiraguchi (1955). The notion of a Boolean coding of an ordered set P is already –
implicitly – in Dushnik and Miller’s paper, since they use the isomorphism between
P and the set ordered by inclusion of its principal downsets. As for the notion of the
k-dimension, it may be dated from Novák (1963); indeed, his ’“α-pseudodimension”
is the k-dimension when the (possibly infinite) chain α is the chain k (Novák shows
that the k-dimension of kr is r, and he gives the Boolean dimensions of Cn and An).
But these notions of codings in a direct product of chains of size k and of k-dimension
are independently taken again and considerably developed in Bouchet’s thesis (1971).
Bouchet’s motivations were algorithmic (the Boolean coding of an ordered set enables
computer processing). Especially, Bouchet obtains the fundamental results stated in
Theorems 6.29, 6.30 and in Corollary 6.31 on the equivalence of several definitions
of the k-dimension. In fact, his results (unfortunately not published except in Bouchet
(1984)) are more general, since they concern codings of an ordered set in a direct
product of chains of different sizes. Such “optimal” codings are also studied in Habib
et al. (1995).

In his 1950 paper, Dilworth proves his famous decomposition theorem (Chapter
4, Theorem 4.2). Yet in fact, his motivation is then to prove a result equivalent to the
following (see Proposition 6.35): the dimension of a distributive lattice is the width
of the ordered set of its join-irreducibles. This proposition on the k-dimension of a
distributive lattice, a significant generalization of Dilworth’s result, is due to Trotter
(1975a), as well as the expression of the k-dimension by means of chain coverings of
the ordered set given in Proposition 6.33. It is easy to see that, for any ordered set P and
any k > 2, dimkP ≤ θk−2(P), but it is much more difficult to prove that dim3P ≤$|P|2 %
if |P| ≥ 5 and dim4P ≤ '|P|2 ( if |P| ≥ 6 (Trotter, 1976a). For the case where k = 2,

1 Recall that a tree is a connected and cycle-free undirected graph and that a leaf is a vertex adjacent to a
unique other vertex.
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Trotter (1975b) characterizes the ordered sets P, the Boolean dimension of which is the
upper bound |P|. The other results on the Boolean dimension in Section 6.1 are due to
Bouchet (Theorem 6.3) and Trotter (Proposition 6.5). Concerning algorithmics, Stahl
(see West, 1985) shows that computing the k-dimension is NP-hard (see Appendix
A). We may mention that the number of Boolean codings from an ordered set P
to 2p (with p an arbitrary integer) has been studied by Hillman (1955) who gives
formulas for |P| ≤ 4 and for P = k and by Markowsky (1980). The fact that any
0/1 array induces two Boolean codings of ordered sets may be useful in ordinal data
analysis, since such an array thus induces two orders, one on its lines and the other
on its columns. This is used from a more theoretical point of view in Monjardet and
Netchine-Grynberg (1988) concerning works in child developmental psychology.

After Dushnik and Miller’s founder paper (1941), the first significant works on
the dimension were carried out by Hiraguchi (1951, 1955) and Baker (1961). In
particular, Hiraguchi proves several of the results in Proposition 6.13 (dimension of
P \ x, of the lexicographic sum, and of the product of arbitrary ordered sets), defines
the notion of a d-irreducible ordered set (see below and Exercise 6.5), and obtains
the upper bounds α(P) and |P|

2 for the dimension of P. For the latter fundamental
result, we have given Trotter’s proof (1975c) (based on a Bogart idea). The ordered
sets P, the dimension of which is equal to the bound |P|

2 , are characterized (Bogart
and Trotter, 1973; Kimble, 1973). But it is not the case for those, the dimension of
which is equal to the bounds α(P) or |P| − α(P). Baker proves the formula on the
dimension of the product of bounded ordered sets (Item (7) in Proposition 6.13) and
the result stating that the dimension of an ordered set is equal to the dimension of its
completion (see Chapter 3, Section 3.5.3). Exercise 6.8 provides a proof of the latter.
Baker also shows that a lattice is planar (see Section 2.5, Further topics and references
in Chapter 2) if and only if its dimension is less than or equal to 2. This result will
enable the reader to give another proof of the 2-dimensionality of a tree-ordered set
(different from a chain). Let us observe the following consequence of Baker’s results:
the dimension of an ordered set P is less than or equal to 2 if and only if its completion
Gal(P) is a planar lattice.

In fact, it is mostly from the 1970s that works on dimension develop considerably,
especially with Trotter and Kelly. Their papers (Kelly and Trotter, 1982; Trotter,
1983, 1994) and Trotter’s book (1992) review the many obtained results, so we will
just mention the most significant and/or latest ones.

The most remarkable result concerns the notion of an ordered set called
d-irreducible. An ordered set P is d-irreducible if dimP = d ≥ 2 and if the dimension
of every ordered subset of P (different from P) is less than d or – equivalently to the
latter condition (why?) – if, for every x of P, dim(P \ x) = d − 1. An ordered set of
dimension d always includes a d-irreducible ordered subset. Exercise 6.5 enables us
to deduce that the dimension of an ordered set is at most d (with d greater than or
equal to 2) if and only if it includes no (d + 1)-irreducible ordered subset. In par-
ticular, any ordered set P different from a chain is 2-dimensional if and only if it
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does not include any 3-irreducible ordered subset. These 3-irreducible ordered sets
have (independently) been determined by Trotter and Moore (1976) on the one hand,
and by Kelly (1977) on the other. They consist (up to isomorphism) of nine infinite
families of ordered sets and of eighteen particular ordered sets of size n= 6 (2) or n=
7 (16). Trotter and Moore’s proof is based on Characterization (3) of 2-dimensional
ordered sets given in Theorem 6.25 (i.e., by the fact that their incomparability graph
is a comparability graph). Therefore, an ordered set is 3-irreducible if and only if its
incomparability graph is one of the forbidden subgraphs characterizing comparability
graphs (these subgraphs were determined by Gallaï (1967)). Kelly’s proof exploits
Baker’s result (mentioned above) that the dimension of an ordered set P is less than
or equal to 2 if and only if its completion Gal(P) is a planar lattice, combined with
the characterization of planar lattices by forbidden sublattices in Kelly and Rival
(1975). For arbitrary d-irreducible ordered sets, Trotter and Ross (1983) show that
any d-irreducible ordered set (d ≥ 3) is an ordered subset of a (d + 1)-irreducible
ordered set.

Exercise 6.7 gives another characterization of the dimension of an ordered set
based on its critical ordered pairs. This characterization induces another charac-
terization where the dimension of an ordered set P is the chromatic number of a
hypergraph2 H (P) associated with P. To define H (P), we first define the notion
of an IP-cycle: an IP-cycle (or alternating cycle) of P = (X ,≤) is a sequence
(x1,y1), ...,(xi,yi), ...,(xp,yp) (p ≥ 2) of P-critical ordered pairs satisfying the con-
ditions y1 ≤ x2, ...,yi ≤ xi+1, ...,yp ≤ x1; an IP-cycle is said to be strong if yi �≤ xj for
every j �= i + 1 (modulo p). Then the hypergraph H (P) associated with an ordered
set P is defined as follows: its vertices are the P-critical ordered pairs and its edges
are the strong IP-cycles contained in the set Crit(P) of the P-critical ordered pairs.
Now, Trotter and Moore (1977) have shown that, if K is a subset of incomparability
ordered pairs of P, there exists a linear extension of P including K if and only if K
has no strong IP-cycle. Using this result and those in Exercise 6.7, one then easily
obtains dimP = χ(H (P)) (for P different from a chain). For instance, let us consider
the ordered set Sn (Example 6.12): Crit(Sn) is the set of the n ordered pairs (bj ,aj)

and a strong IP-cycle is formed of any two such ordered pairs. Thus, the hypergraph
H (Sn) is isomorphic to the complete graph on n vertices, the chromatic number of
which is n, another proof that dimSn = n. For dimension 2, a result from Cogis’ thesis
on the Ferrers dimension (1980, see further on) shows that the hypergraph H (P) may
be replaced with the graph G(H (P)) whose edges are those of H (P) containing two
vertices: an ordered set P is 2-dimensional if and only if the chromatic number of
the graph G(H (P)) is 2. Yet, this reduction to the chromatic number of a graph is no
longer true in dimension greater than 2, as shown by an example in Trotter (1983).

2 A hypergraph is a pair H = (X ,E), where X is a set and E a family of subsets of X . The elements of
E are called the (hyper)edges of H . Let H = (X ,E) be a hypergraph. A subset of X is a stable (or an
independent) of H if it contains no edge of E of size greater than 1. The chromatic number χ(H ) of H
is the minimum number of stables partitioning X .
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Several results concern the dimension of particular classes of orders. For instance,
Baker’s result stating the 2-dimensionality of a planar lattice (different from a chain)
was first completed by Trotter and Moore (1977), who proved that a planar ordered
set with a maximum or a minimum may be 3-dimensional, then by Kelly (1981),
who provided planar ordered sets of arbitrary dimension. The dimension of interval
orders is bounded by their range, whereas the dimension of semiorders is less than or
equal to 3 (Rabinovitch, 1978a,b). Brightwell and Trotter (1993) showed that the set
ordered by inclusion of vertices, edges, and faces of any planar map (with loops and
multiple edges) has dimension at most 4. This result generalizes Schnyder’s result
(1989) showing that an (undirected) graph G is planar if and only if the dimension
of an ordered set PG associated with G is less than or equal to 3 (the elements of PG

are the vertices and the edges of G and they are ordered by x < u if the vertex x is an
extremity of the edge u).

To compute the dimension of an ordered set is a “difficult” problem, unless its
dimension is at most 2 (seeAppendixA). Then, from the 1980s on, two main research
directions have been followed. On the one hand, some classes of orders have been
obtained, where the computation of the dimension becomes “easy” (seeAppendixA).
On the other hand, other – more easily computable – notions of dimension have
been defined. We describe the most significant one, called the greedy dimension.
Informally, one obtains a greedy linear extension of an ordered set P by applying the
rule “always go as high as possible.” So, the algorithm is the following: choose any
minimal element x in P and then always choose y in P which covers x and such that
all elements covered by y have already been chosen; if no such y exists, take any
element which is minimal in the not chosen elements.

One proves that P is the intersection of all its greedy linear extensions, which
enables us to define the greedy dimension of P as the minimum number of greedy
linear extensions realizing P (Bouchitté et al., 1985). In the same research direction
one may, for instance, define the notions of super greedy linear extension and of
super greedy dimension of an ordered set (see Trotter’s book (1992) for results on
such dimensions).

We end this section with the notion of the Ferrers dimension of an arbitrary relation,
a notion inducing another approach of order dimension. This notion dates back to
Bouchet (1971), who intended to define the notions of codings and dimensions for
an arbitrary binary relation R (possibly defined between two different sets A and
B). To do so, Bouchet considered Ferrers relations (Definition 7.8 given in Chapter
7 for A = B may be applied to the general case) that he called step-type relations
(“relations en escalier”). It is easy to check that any relation R is the intersection of the
Ferrers relations including R. Then, Bouchet studied the minimum number of Ferrers
relations, the intersection of which is R, a number now called the Ferrers dimension (or
sometimes the bidimension) of R. Since Bouchet showed that the Ferrers dimension
of an order is equal to its (order) dimension, he obtained a generalization of the latter.
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The Ferrers dimension has been studied particularly by Cogis (1982a,b), Doignon
et al. (1984), and Koppen (1987, 1989). Their studies situated in the context of
generalizations of Guttman scale, such as Coombs and Kao conjunctive–disjunctive
models. Indeed, the Ferrers dimension may be used to provide models explaining
the answers of a subject to a yes/no questionnaire: these answers may, for instance,
be assumed to result from the state of his knowledge on several linearly ordered
dimensions, and thus as the intersection of Guttman scales. Concerning “theoretical”
results, Bouchet has shown that the Ferrers dimension of a relation is equal to the
dimension of the Galois lattice associated with this relation (see Section 3.5.1). When
this relation is an order (and so when its Ferrers dimension is its dimension), one
obtains the result in Exercise 6.8, namely dimP = dimGal(P). Bouchet has also
shown that if an ordered set P may be coded in a (complete) lattice, so may Gal(P);
then one obtains the more general result dimkP = dimkGal(P). So, the dimension of
an ordered set P is equal to the Ferrers dimension of the relation (J (P),M (P),≤). The
Ferrers dimension has been used by Reuter (1989) to obtain results on the difficult
problem of determining the dimension of a product of ordered sets, and by Flath
(1993) to obtain the dimension of lattices of “multipermutations” and, in particular,
to show that the dimension of the permutoedre lattice �n (Example 1.17, Chapter 1)
is n−1. Finally, as we will see in Section 7.1, irreflexive Ferrers relations are nothing
but strict interval orders. Restricting oneself to these particular Ferrers relations, one
obtains another notion of dimension called the interval dimension and studied by
Trotter and others (see West, 1985).

6.6 Exercises

Exercise 6.1 Compute the Boolean dimension of the antichain An (see Sperner’s
Theorem 4.20).

Exercise 6.2 Compute the Boolean dimensions of the ordered sets of size n ≤ 4.
Show that, for n = 2 (respectively, 3, 4), there exists one (respectively, two, four)
ordered sets of Boolean dimension n.

Exercise 6.3 What is the Boolean dimension of the 2-chain n− 1+ 1? Find again
this result by considering the lattice of downsets of this 2-chain (use Proposition 5.8
and Corollary 6.4). Show that this lattice has 2n−2 generating sets of minimum size.

Exercise 6.4 [Dimension of an N -free ordered set] Let the Pi’s be the ordered subsets
formed from the connected components of an ordered set P = (X ,O). Why does
dimP = max{2,max{dimPi}} hold?

Show that the dimension of an N -free ordered set (Definition 2.12) is at most 2
(read again Section 2.2 and Proposition 6.13).
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Exercise 6.5 [d-irreducible ordered sets] An ordered set P is said to be d-irreducible
if dimP = d ≥ 2 and if the dimension of every ordered subset of P (different from P) is
less than d or – equivalently for the latter condition – if for every x of P, dim(P \x)=
d−1. Show that the dimension of an ordered set is less than or equal to d (with d ≥ 2)
if and only if it has no (d +1)-irreducible ordered subset. What are the 2-irreducible
ordered sets?

Show that, for d ≥ 2, every d-irreducible ordered set is indecomposable for the
substitution operation (find the relevant item in Proposition 6.13). Show that the
ordered set S3 (in Example 6.12) is 3-irreducible.

Exercise 6.6 Let P be a bipartite ordered set with neither minimum nor maximum.
Why does dimP ≤ min{|MinP|, |MaxP|} hold?

Exercise 6.7 [Dimension and P-critical ordered pairs] Show that a set
{L1, ...,Li, ...,Lk} of linear extensions of an ordered set P = (X ,O) realizes P (i.e.,
O =⋂

1≤i≤k Li) if and only if any P-critical ordered pair (Definition 1.34) belongs to
one of these extensions.

Denoting Crit(P,L) the set L∩Crit(P) of P-critical ordered pairs contained in the
linear extension L of P, deduce that the dimension of P is the minimum number of
its linear extensions Li such that Crit(P)=⋃

1≤i≤k Crit(P,Li).
Draw the diagram of the forcing order (Definition 1.35) for the ordered set S3

(Example 6.12). Deduce Crit(S3) and the dimension of S3.

Exercise 6.8 [Dimension of the lattice Gal(P)] Recall that IR(P) = J (P)∪ M (P)

is the set of irreducible elements of an ordered set P. Show that the forcing order
(Definition 1.35) on the incomparability ordered pairs of IR(P) is the restriction to
these ordered pairs of the forcing order on the incomparability ordered pairs of P (use
Exercise 3.15).

Deduce that Crit(P)=Crit(IR(P)). Let Gal(P) be the completion of P. Show that
Crit(Gal(P))= Crit(P).

Deduce from these results and from the expression of the dimension of P that
dimP = dimIR(P)= dimGal(P).

Note More generally, it has been shown that dimkP = dimkGal(P) (see Bouchet
(1971) and Ritzert (1977)). It has also been shown that the interval dimensions of P
and of Gal(P) are the same (Habib et al., 1993a).

Exercise 6.9 [Dimensions of a 0/1 array] Let t be an array with n lines and p columns
such that the entries t(i, j) are 0 or 1. Order the set of its lines (respectively, of its
columns) by writing i ≤ i′ if t(i, j) ≤ t(i′, j) for every column j (respectively, j ≤ j′ if
t(i, j) ≤ t(i, j′) for every line i). Draw the obtained ordered sets for the 0/1 array, the
six lines of which are 110111, 101111, 011111, 001111, 010110, and 100100.

Show that the dimensions of these two ordered sets are respectively 3 and 2.
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Generalize this example to obtain a 0/1 array with 2n lines and 2n columns whose
order on the lines (respectively, on the columns) has dimension n (respectively, 2).

Note This example is due to Trotter (personal communication).

Exercise 6.10 [Dimension 2: a graphical test] Let x be an element of an ordered set P.
Associate with x the point p(x) of the plane and the portion Q(x) of the plane formed
from the set of points above and on the right of p(x). Show that P is 2-dimensional if
and only if the following are equivalent:

• x < y,
• y may be placed in Q(x).

Exercise 6.11 [Dimension of 2n] Show that the dimension of the ordered set 2n is n
(one of the numerous possible proofs consists of showing that 2n includes an ordered
subset isomorphic to Sn – see Example 6.12). Deduce that dimkkn = n.

Note Using a result in Section 6.2 provides an immediate proof.

Exercise 6.12 [A coding of a distributive lattice] Let L be a distributive lattice and
(C1, ...,Ci, ...,Cp) be a chain covering (see Definition 6.32) of the ordered set JL of its
join-irrreducibles satisfying, for all i �= j, Ci∩Cj = {0L} (the minimum of L). Define a
map c from L to the direct product �1≤i≤pCi by writing, for all x ∈ L and i = 1,2, ...,p,
c(x)= (x1, ...,xi, ...,xp) where xi =max{(x]∩Ci}. Show that the map c is a strict join-
and meet-coding in this direct product and that it preserves the covering relation of L.

Note This result may easily be generalized to obtain the inequality dimkL ≤
θk−2(JL) (in fact, an equality stated in Proposition 6.35).

Exercise 6.13 Show that the maximum size of a chain of the ordered set kr is
r(k − 1)+ 1. Deduce that dimkn = $ n−1

k−1%, for any n ≥ 2.

Exercise 6.14 Show that, if |P| = 4, dim3P = 2, except for P = A4 or P = A2 +C2

(in both cases, dim3P = 3).

Exercise 6.15 [Permutation graph] Let π be a permutation of X = {1,2, ...,n}. The
inversion graph associated with π is the graph G = (X ,U ), where (i, j) ∈ U if i and
j are reversed in π (i.e., if π−1(i) > π−1(j)). A graph G = (X ,U ) is a permutation
graph if there exists a permutation of X whose inversion graph is G. Show that G is
a permutation graph if and only if G is the comparability graph of a 2-dimensional
order.

Note Permutation graphs have been studied extensively (see, for example, Spinrad
(1985)).
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Some uses

7.1 Models of preferences

In Chapter 1 (Example 1.21), we mentioned that the classic utility function of
economists that represents the preferences of a consumer on a set of commodity
bundles (bundle x is preferred to bundle y if u(y) < u(x)) defines a particular (strict)
order, called a weak order. In this modeling of preferences by a utility function, two
bundles with the same utility are indifferent for the consumer. Then his indifference
relation is transitive. Yet, it was observed long ago that this assumption is not neces-
sarily satisfied. This observation has led us to define other preference ordinal models
allowing a numerical representation of the preference along with a non-transitive
indifference relation, namely interval orders and semiorders. The orders of these
two classes have been studied extensively. In this section, we concentrate on their
basic properties and their numerical representations obtained in the frameworks of
psychophysics and preference modeling. First, let us observe or specify several points.

The order relations studied in this section are in particular used in the many areas
where one needs to modelize preferences, i.e., not only in microeconomics but more
generally in the normative or descriptive decision theories (preferences of a decision-
maker over alternatives, preferences of a player on lotteries) or in voting theory
(preferences of a voter over candidates).

In these models, one can modelize either the so-called strict preference (interpreted
as “object x is better than object y”) or the so-called weak preference (interpreted as
“object x is at least as good as object y”). In this section, we choose the former
alternative where preference is modelized by a strict order relation, and it will be
more convenient to adopt, for a strict order, the literal notation O rather than the
notation “<.” Then, yOx is interpreted as “y is less good than x” (or “x is better than
y”). The strict preference O being given, we can define the weak preference R by
(x,y) ∈ R if and only if (y,x) �∈ O. This weak preference relation is then total and
its symmetric part (xRy and yRx) – which modelizes indifference – is equal to the
incomparability relation ((x,y) �∈ O and (y,x) �∈ O) of the strict order O. So in this
section, we consider that the incomparability relation of the strict order O modelizes
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the indifference relation. We shall go back to the equivalence – in fact the duality –
between these two classes of models at the end of this section.

We shall successively consider the preference models defined by the following
classes of orders: strict weak orders, strict interval orders, and strict semiorders. Yet
in this section, we shall simplify the statements concerning these orders by system-
atically omitting the term “strict.” Thus, for example, the term “weak order” which
in Chapter 2 is defined as a reflexive order will stand here for the corresponding
irreflexive order. For each above-mentioned class of orders, we shall first give sev-
eral characterizations of the orders of the class, then their numerical representation
properties. These characterizations use notions that hold for any binary relation, like
for instance the notion of a tableau of a binary relation. We shall not always imme-
diately give the proofs of the stated results. Indeed, it will be simpler to define a
special class of relations called Ferrers relations, or biorders. These relations are
generally not orders but all the above-mentioned orders are particular biorders. So,
we will apply to these particular biorders the general (and easy to prove) results on
the characterizations and the numerical representation of arbitrary biorders. There
is nevertheless an exception to this strategy in the case of the (not so easy to prove)
result on the constant threshold numerical representation of semiorders (Scott–Suppes
Theorem 7.16). We will use a direct but specific type of proof to show it.

In Chapter 2 (Definition 2.12) we have defined (reflexive) weak orders, interval
orders, and semiorders by forbidden suborders properties. Once again, we make use
of these definitions at Items (1) in Propositions 7.4, 7.5, and 7.7 (now by forbidding
strict suborders). The latter provide several characterizations of these orders, based
on notions on arbitrary binary relations defined below.

Definition 7.1 Let R and R′ be two binary relations defined on a set X . Their com-
position, denoted RR′, is the relation defined by xRR′y if there exists t ∈ X such that
xRt and tR′y.

Definition 7.2 A tableau of a binary relation R on a set X is a triple (R,L1,L2) where
L1 and L2 are two linear orders on X .

A tableau (R,L1,L2) is step-type if L1RL2 ⊆ R, i.e., if for all x,y,z, t in X , xL1y,
yRz, and zL2t imply xRt.

A tableau where L1 = L2 = L is denoted (R,L). A step-type tableau (R,L) is
upperdiagonal if R ⊆ L.

Note that, in Definition 7.2, the orders L1 and L2 are reflexive. It follows that the
condition L1RL2 ⊆ R also implies L1R∪RL2 ⊆ R (why?).

The incidence matrix of a relation R on a set X of size n is the 0/1 matrix M with n
lines and n columns, where mx,y = 1 if (x,y)∈R and mx,y = 0 if not. When a relation R
has a step-type tableau we can give a step-type representation of its incidence matrix.
It is enough to rank the lines and the columns of this matrix according to the orders
L1 and L2. Figure 7.2(a) is an example of an order having a step-type tableau with the
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same order L= cabedh on lines and columns (Table 7.2). Since, moreover, all the 1’s
of the corresponding 0/1 incidence matrix are above the main diagonal, this tableau
is upperdiagonal. The order in Figure 7.1(a) also has a step-type tableau represented
in Table 7.1. In spite of appearances, it is not an upperdiagonal tableau: indeed, the
order bacde on its lines is different from the order abcde on its columns.

Let R be a binary relation on a set X . Generalizing the notations used for order
relations, we denote Rc the complementary relation of R (xRcy if (x,y) �∈ R) and Rd

the dual relation of R (xRdy if yRx). The relation (Rc)d (= (Rd)c) is denoted Rcd and
is equal to {(x,y) : (y,x) �∈ R}; it is called the codual relation of R.

In this section, we work with strict orders that can be characterized by forbidden
suborders, all of which are disjoint unions of strict linear orders. Then we take again
the notation given in Definition 1.3 for these orders. So ks denotes the strict linear
order defined on a set of size k and, for example, the notation 2s + 2s represents the
strict bipartite order formed by two ordered pairs (x,y) and (z, t) of distinct elements
(its diagram is the same as that of the corresponding reflexive order C2 +C2 shown
in Figure 2.5).

We begin with Proposition 7.4 characterizing weak orders by means of several
equivalent conditions. The second condition uses the negative transitivity property
defined in Definition 7.3. The fifth condition shows that weak ordered sets are nothing
else but linear sums (see Section 1.5.1) of antichains (an antichain being here irreflex-
ive, i.e., without any ordered pair, see Item (2) in Remark 1.44). The sixth condition
shows that weak orders can be “represented” by a numerical function, the notion of
a representation being precisely defined in the latter condition. Let us develop this
point: a (strict) order is naturally associated with any numerical function defined on
a set X , namely the order induced by the strictly increasing values of the function;
this order is a weak order and, conversely, any weak order is induced by a numerical
function (in fact, by an infinity of such functions). This rather obvious representation
property of weak orders will be very useful for obtaining other types of numerical
representation.

Definition 7.3 A binary relation R defined on a set X is negatively transitive if, for
all x,y,z in X , xRcy and yRcz imply xRcz.

In other words, R is negatively transitive if Rc is transitive.
When O is a binary relation, we write I = Oc ∩Ocd . So, when O is a strict order,

I is the incomparability relation IncO of this order. In this section, we shall use the
notation I instead of IncO.

Proposition 7.4 Let O be a binary relation defined on a set X and let I = Oc ∩Ocd.
The following conditions are equivalent:

1. O is a weak order, i.e., a strict order including no 1s + 2s.
2. O is asymmetric and negatively transitive.
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3. O is a strict order and O = OI = IO.
4. O is a strict order and I is an equivalence relation.
5. (X ,O) is a linear sum of antichains.
6. There exists a real-valued function u : X #−→ R such that

xOy ⇐⇒ u(x) < u(y)

Proof (1) =⇒ (2): by definition, O is asymmetric. If O is not negatively transitive,
there exist x,y, and z with xOcy, yOcz, and xOz. Yet, yOx is impossible (because it
would imply yOz, a contradiction). Similarly, zOcy holds. Then the restriction of O
to {x,y,z} is isomorphic to 1s + 2s, which is impossible.

(2)=⇒ (3): since O is asymmetric, it is irreflexive. Then, I is reflexive and O⊆OI .
If OI �⊆O, there exist x,y, and z such that xOy, yIz, and xOcz. But xOcz, zOcy, and O
negatively transitive imply xOcy, a contradiction. So O = OI and we likewise show
O = IO.

(3) =⇒ (4): as above I is reflexive. Since (Oc ∩Ocd)d =Ocd ∩Oc, I is symmetric.
Let x,y,z with xIy and yIz. If xIcz then either xOz or zOx. In the first case, since
IO = O, then yIx and xOz imply yOz, a contradiction. The second case implies a
similar contradiction. Then I is transitive and so an equivalence.

(4) =⇒ (5): let X /I be the quotient set of X by the equivalence I . Its elements,
the incomparability classes of O, are the maximal antichains of (X ,O). We define
a relation < on this quotient set by writing, for any pair {A,A′} of such antichains,
A < A′ if there exist x∈A and y∈A′ with xOy. The reader can check that this relation is
equivalently defined by the condition “for every x ∈ A and every y ∈ A′, xOy holds,”
and that < is a strict order on X /I . Moreover, this order is a (strict) linear order.
Indeed, if for two different (maximal) antichains A and A′ of X /I , there were x ∈ A
and y ∈A′ with xOcy and yOcx, then xIy would hold; a contradiction. Then, this linear
order < can be written A1 ≺ ... ≺ Ap. It is then clear that, in the ordered set (X ,O), x
is covered by y if and only if there exists i < p such that x ∈ Ai and y ∈ Ai+1, which
means that (X ,O) is the linear sum of the antichains Ai.

(5) =⇒ (6): let (X ,O)=⊕p
i=1 Ai be a linear sum of p antichains Ai. Define a map

r from X to N by writing r(x)= i if x ∈ Ai. Since xOy means (x ∈ Ai and y ∈ Aj , with
i < j), then xOy if and only if r(x) < r(y), as required (observe that (X ,O) is ranked
with r as a rank function).

(6)=⇒ (1): let u be a map from X to R and O the relation defined by xOy if and only
if u(x) < u(y). It is immediate to check that O is irreflexive and transitive, i.e., a strict
order. On the other hand, xIy if and only if u(x)= u(y). Then it is impossible to have
three elements x,y,z with xOy, xIz, and yIz (since, in this case, u(x) = u(z) = u(y)
and u(x) < u(y) would hold). �

In microeconomics, one generally defines the preference of a consumer over a set
X of commodity bundles by means of a utility function defined on X . This implies
that this (strict) preference is a weak order and so that the indifference relation of a
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Figure 7.1 (b, c) The two weak orders OI and IO associated with the interval order O

Table 7.1 A step-type tableau of the interval order O in Figure 7.1(a)

a b d c e
b 0 0 1 1 1
a 0 0 0 1 1
c 0 0 0 0 1
d 0 0 0 0 0
e 0 0 0 0 0

consumer is transitive: in fact, x is indifferent to y if and only if u(x) = u(y). The
notions of an interval order and of a semiorder allow us to obtain a modeling of
preferences that no longer assumes a transitive indifference but preserves a property
of numerical representation that will be specified in Theorems 7.14 and 7.16. We
begin with several ordinal or combinatorial characterizations of interval orders and
semiorders.

Proposition 7.5 Let O be a binary relation defined on a set X and I =Oc ∩Ocd. The
following conditions are equivalent:

1. O is an interval order, i.e., a strict order including no 2s + 2s.
2. O is irreflexive and, for all elements x,y,z, t of X , [xOy and zOt] implies [xOt or

zOy].
3. O is a strict order and OI is a weak order.
4. O is irreflexive and has a step-type tableau (O,L1,L2).

As said above, we shall prove this proposition after the proof of the more general
Proposition 7.9 (and, precisely, after Lemma 7.12).

Note In Condition (3) above, one could replace “OI is a weak order” with “IO is
a weak order.”
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Table 7.2 An upperdiagonal step-type tableau of the semiorder O in Figure
7.2(a).

c a b e d h
c 0 0 0 1 1 1
a 0 0 0 0 1 1
b 0 0 0 0 1 1
e 0 0 0 0 0 1
d 0 0 0 0 0 1
h 0 0 0 0 0 0

h
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h
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(a) O (b) OI (c) IO (d) OI ∪ IO

Figure 7.2 (b–d) The weak orders OI , IO, and OI ∪OI associated with the semiorder O
in (a).

Example 7.6 We illustrate the above characterizations of interval orders with the
(strict) order O given in Figure 7.1(a). It is an interval order since it includes no
2s+2s. The two associated weak orders OI and IO (Condition (3) in Proposition 7.5)
are represented in Figures 7.1(b) and 7.1(c). A step-type tableau of O (Condition (4)
in Proposition 7.5) is given in Table 7.1.

Proposition 7.7 Let O be a binary relation defined on a set X and I =Oc ∩Ocd. The
following conditions are equivalent:

1. O is a semiorder, i.e., a strict order including neither 2s + 2s nor 1s + 3s.
2. O is irreflexive and, for all elements x,y,z, t of X , [xOy and zOt] implies [xOt or

zOy], and [xOy and yOz] implies [xOt or tOz].
3. O is a strict order and OI ∪ IO is a weak order.
4. O has an upperdiagonal step-type tableau (O,L).

As said above, we shall prove this proposition after the proof of the more general
Proposition 7.9 (and, precisely, after Lemma 7.12).

We illustrate the above characterizations of a semiorder on the example of the
semiorder O given by its diagram in Figure 7.2(a). It is easy to check that this order
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includes neither 2s+2s nor 1s+3s. The associated weak orders OI , IO, and OI∪IO are
represented in Figures 7.2(b), (c), and (d), respectively. An upperdiagonal step-type
tableau of O is given in Table 7.2.

In order to provide easy proofs of Propositions 7.5 and 7.7, we now define the
class of Ferrers relations (also called biorders) and we give several characterizations
of such relations.

Definition 7.8 A binary relation R defined on a set X is a Ferrers relation (or a
biorder) if, for all x,y,z, t ∈ X , xRy and zRt imply xRt or zRy.

Observe that, if x = z or y = t, the condition of this definition is trivially satisfied,
but that it is not so if some other elements are equal. For example, with x = y and
z = t, it appears that a biorder R cannot include the sub-relation xRx, zRz, xRcz, and
zRcx.

Proposition 7.9 Let R be a binary relation defined on a set X . The following
conditions are equivalent:

1. R is a Ferrers relation.
2. For all pairwise distinct x,y,z, t in X , xRy and zRt imply [xRt or zRy].
3. RRcd is a weak order.
4. R has a step-type tableau (R,L1,L2).

We begin with the proof of the following lemma on an arbitrary binary relation R
defined on X . For x ∈ X , xR = {y ∈ X : xRy} and Rx = {y ∈ X : yRx}.

Lemma 7.10 Let R be a binary relation defined on a set X . Then:

1. For all x,y ∈ X :

• xRRcdy ⇐⇒ xR �⊆ yR.
• xRcdRy ⇐⇒ Ry �⊆ Rx.
• x[(RRcd)cd ]y ⇐⇒ xR ⊇ yR.
• x[(RcdR)cd ]y ⇐⇒ Rx ⊆ Ry.

2. The relations RRcd and RcdR are negatively transitive.
3. The following properties are equivalent:

• RRcd is asymmetric.
• RcdR is asymmetric.
• RRcd is a weak order.
• RcdR is a weak order.

4. If R is a strict order, denoted by O, and I =Oc∩Ocd, then Ocd =O+I , OI =OOcd

and IO = OcdO.
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Proof (1) xRRcdy means that there exists an element t of X such that xRt and yRct,
which is equivalent to xR �⊆ yR. Then x[(RRcd)cd ]y is equivalent to xR ⊇ yR. We
similarly prove the other two equivalences.

(2) According to (1), x[(RRcd)c]y is equivalent to yR ⊇ xR, and x[(RcdR)c]y is
equivalent to Ry ⊆ Rx, so the negative transitivity of RRcd and of RcdR is obvious.

(3) Assume RRcd is asymmetric and RcdR is not. Thus, there exist two distinct
elements x and y with xRcdRy and yRcdRx, which implies that there exist two distinct
elements z and t with zRy, zRcx, tRx, and tRcy. Since tRx and zRcx, then tRRcdz holds,
whereas zRy and tRcy imply zRRcd t, a contradiction with the asymmetry of RRcd . We
similarly show that, if RcdR is asymmetric, so is RRcd . At last since, by (2), RRcd

is also negatively transitive, this relation is a weak order (Proposition 7.4). It is the
same for RcdR.

(4) A binary relation O is asymmetric if O ⊆ Ocd , which implies Ocd = Ocd ∩
(O+Oc) = O+ I . For any binary relation O, OI ⊆ OOcd obviously holds. If O is a
strict order and xOOcdy, then there exists t with xOt, and yOct holds. If tOcy, then
tIy and so xOIy holds. If tOy, the transitivity of O implies xOy and the reflexivity of
I implies yIy, then xOIy holds. So we have proved OI = OOcd . We similarly prove
IO = OcdO. �

Remark 7.11 It results immediately from Item (1) in the previous lemma that
(RRcd)cd and (RcdR)cd are total preorders (the weak orders RRcd and RcdR of which
are the asymmetric parts). These preorders, already considered in Exercise 1.11, are
often called (right and left) trace preorders. Exercise 7.3 allows us to show some
additional results on these two preorders (respectively denoted Tr and Tl) or their
intersection (denoted T ).

We now prove Proposition 7.9.

Proof of Proposition 7.9 (1) =⇒ (2): obvious.
(2) =⇒ (3): from Item (3) in Lemma 7.10, to show that RRcd is a weak order

amounts to showing that this relation is asymmetric. If RRcd is not asymmetric, there
exist x,y ∈ X with xRRcdy and yRRcdx. This implies that there exist t and z with xRt,
yRct, yRz, and xRcz, a contradiction with (2).

(3) =⇒ (4): from Lemma 7.10, RRcd being a weak order, so is RcdR. From Item
(1) in Theorem 2.29 (applied to strict orders), there exist two strictly linear orders
L1,s and L2,s such that RRcd ⊆ L1,s and RcdR ⊆ L2,s. On the other hand, observe
that the codual relation of a strictly linear order Ls is the associated linear order
(Ls)

cd = Ls + {(x,x),x ∈ X }. Denote L1 = (L1,s)
cd and L2 = (L2,s)

cd the two linear
orders associated with L1,s and L2,s. We are going to show that (R,L1,L2) is a step-type
tableau, i.e., that xL1y, yRz, and zL2t imply xRt. Begin with an obvious observation:
if R⊆R′ then Rcd ⊇R′cd . In particular, RRcd ⊆ L1,s implies L1 = (L1,s)

cd ⊆ (RRcd)cd .
So xL1y implies x[(RRcd)cd ]y, that is to say, xR ⊇ yR (Lemma 7.10). We similarly



200 Some uses

show that zL2t implies Rz ⊆ Rt. Since yRz holds, the first implication leads to xRz,
and with the second implication, xRt holds.

(4) =⇒ (1): let (R,L1,L2) be a step-type tableau of R and let x,y,z, t such that xRy
and zRt. Since L1 is a linear order, then xL1z or zL1x hold. By definition of (R,L1,L2),
L1R ⊆ R and, in the first case, xRt holds whereas, in the second case, zRy holds,
whence (1). �

The following lemma characterizing interval orders and semiorders as particular
Ferrers relations will lead immediately to easy proofs for Propositions 7.5 and 7.7.

Lemma 7.12 Let O be a binary relation defined on a set X .

1. O is an interval order if and only if O is an irreflexive Ferrers relation.
2. O is a semiorder if and only if O is an irreflexive Ferrers relation including no

1s + 3s.

Proof (1) If O is an interval order, it is irreflexive. Moreover, since it includes
no 2s + 2s, it satisfies Characterization (2) of a Ferrers relation (Proposition 7.9).
Conversely, if O is an irreflexive Ferrers relation, it is transitive since xOy, yOcy, and
yOt imply xOt (Item (2) in Proposition 7.9). Thus, O is a strict order which includes
no 2s + 2s since O is a Ferrers relation. So it is an interval order.

(2) This results immediately from (1) and from the fact that, by definition, a
semiorder is an interval order including no 1s + 3s. �

We now prove Propositions 7.5 and 7.7.

Proof of Proposition 7.5 Apply Proposition 7.9 when R is an irreflexive Ferrers
relation, i.e., an interval order denoted O, and show that the conditions in this propo-
sition become the four conditions in Proposition 7.5, which proves their equivalence.
It is obvious for Items (2) and (4). For Item (1), this results from the above lemma
stating that irreflexive Ferrers relations are interval orders. For Item (3), if OOcd is
a weak order, O is a Ferrers relation (Proposition 7.9) which, being irreflexive, is a
strict (interval) order, according to what has just been said. From Item (4) in Lemma
7.10, OOcd = OI holds. Conversely, if O is a (strict) order, the same item implies
OI = OOcd . �

Proof of Proposition 7.7 (1) =⇒ (2): a semiorder being an interval order including
no 1s +3s, it satisfies the first implication of (2) (by Proposition 7.5). For the second
one, it is easy to see that if it was not satisfied, the restriction of O to {x,y,z, t} would
be isomorphic to 1s + 3s, which is impossible.

(2) =⇒ (3): by Proposition 7.5, O is an interval order and OI is a weak order; it
is the same for IO (see the comment following Proposition 7.5, on page 196). Since
it is clear that the union of two negatively transitive relations is negatively transitive,
so is OI ∪ IO. To show that this relation is a weak order, it therefore suffices to show
that it is asymmetric. Assume on the contrary that there exist x,y with x(OI ∪ IO)y
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and y(OI ∪ IO)x; OI and IO being asymmetric, one must have, for example, xOIy
and yIOx. This implies that there exist z and t with xOz, zIy, yIt, and tOx. These four
elements are necessarily different (for example, t �= y since, if not, the transitivity of
O implies yOz; a contradiction). But then the restriction of O to {y, t,x,z} must be
isomorphic to 1s + 3s, which is impossible.

(3) =⇒ (4): by Items (4) and (2) in Lemma 7.10, the relations OI and IO are
negatively transitive. But since they are included in the weak order OI ∪ IO, they
are also asymmetric and so weak orders (Proposition 7.4). From the implication of
(4) by (3) shown at Proposition 7.5, O has a step-type tableau (O,L1,L2), where L1

and L2 are two linear orders. Moreover, these orders respectively include OI and IO.
Indeed, it results from the proof of the implication of (4) by (3) in Proposition 7.9 and
from the fact that, O being an order, OOcd = OI and OcdO = IO hold (see Item (4)
in Lemma 7.10). Yet, since the weak orders OI and IO are included in the weak order
OI ∪ IO, we can take L1 = L2 = L as a linear order including OI ∪ IO. The relation I
being reflexive, then O ⊆ OI ∪ IO ⊆ L and so the tableau (O,L) is upperdiagonal.

(4)=⇒ (1): since O has a step-type tableau (O,L), it is an interval order (Proposition
7.5). Let x,y,z, t with xOy, yOz (and so xOz). The tableau (O,L) being upperdiagonal,
then O ⊆ L and so xLy, yLz, and xLz. Since LO ⊆ O and yOz, if tLy holds, so does
tOz. Similarly, yLt implies xOt since OL⊆O and xOy. Therefore the restriction of O
to {x,y,z, t} cannot be isomorphic to 1s +3s, which shows that O is a semiorder. �

We now come to the results on the numerical representation of interval orders and
semiorders. The result on interval orders (Theorem 7.14) will be an immediate conse-
quence of the result on the numerical representation of Ferrers relations (Proposition
7.13) whereas that on semiorders (Theorem 7.16) needs a specific proof. So we begin
with the case of Ferrers relations.

Proposition 7.13 (Numerical representation of Ferrers relations) Let R be a
binary relation defined on a set X . The following conditions are equivalent:

1. R is a Ferrers relation.
2. There exist two functions f and g from X to R such that

xRy ⇐⇒ f (x) < g(y)

3. There exist two functions u and s from X to R such that

xRy ⇐⇒ u(x)+ s(x) < u(y)

Proof (1) =⇒ (2): By Item (3) in Proposition 7.9, RRcd is a weak order. Then, by
Proposition 7.4, there exists a function f : X #−→ R such that xRRcdz if and only if
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f (x) < f (z). We write for every y in X :

g(y)=

⎧⎪⎪⎨
⎪⎪⎩

max{f (z),z ∈ X }+ 1 if yRcd = ∅ (i.e., if there does not exist z

such that yRcdz)

min{f (z) : yRcdz} if not

We first show that xRy implies f (x) < g(y). Let x,y with xRy. If yRcd = ∅, f (x) ≤
max{f (z),z ∈ X }< g(y).
If yRcd �= ∅, let z be such that yRcdz. Since xRy and yRcdz, xRRcdz holds.
So f (x) < f (z) for every z ∈ yRcd , whence f (x) < min{f (z) : yRcdz} = g(y).

For the converse, let x and y be such that f (x)< g(y). If g(y) is equal to max{f (z),z∈
X }+ 1 or min{f (z) : yRcdz}, we obtain y(Rcd)cx, i.e., xRy.

(2) =⇒ (3): write for every t ∈ X , u(t) = g(t) and s(t) = f (t)− u(t). Then xRy if
and only if f (x)= u(x)+ s(x) < u(y).

(3) =⇒ (1): assume there exist x,y,z, t such that xRy, zRcy, zRt and xRct. Then
u(x)+ s(x) < u(y)≤ u(z)+ s(z) < u(t)≤ u(x)+ s(x), which is impossible. �

We can now state and easily prove the result on the numerical representation of
interval orders:

Theorem 7.14 (Numerical representation of interval orders) Let O be a binary
relation defined on a set X and I = Oc ∩ Ocd. The following conditions are
equivalent:

1. O is an interval order, i.e., a strict order including no 2s + 2s.
2. There exist two functions u from X to R and s from X to R+ such that

xOy ⇐⇒ u(x)+ s(x) < u(y)

3. There exists a function F from X to the set of intervals of R such that

xOy ⇐⇒ F(x) < F(y)

(where the order < on the intervals of R is defined by F(x) < F(y) if, for all
a ∈ F(x),b ∈ F(y), a < b).

Proof To prove the equivalence of Conditions (1) and (2), it is sufficient to
apply Proposition 7.13 when R = O is an irreflexive Ferrers relation, i.e., an inter-
val order, and to observe that, O being irreflexive, u(x) + s(x) ≥ u(x) and thus
s(x) ≥ 0. Now, Condition (3) is obviously implied by Condition (2): it suffices to
set F(x) = [u(x),u(x)+ s(x)]. Conversely, we show that, if (3) is satisfied, O is an
interval order, by showing that O satisfies Condition (2) in Proposition 7.13. First,
F(x) �< F(x) implies that O is irreflexive. Let x,y,z, t with xOy, zOt, and xOct; we
must show zOy. The first two relations imply u(x)+s(x) < u(y) and u(z)+s(z) < u(t)
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and the third relation gives u(x) + s(x) ≥ u(t). We deduce u(z) + s(z) < u(y),
i.e., zOy. �

Condition (2) implies that in this interval order model x is indifferent to y if and
only if [u(x) ≤ u(y)+ s(y) and u(y) ≤ u(x)+ s(x)]. Condition (3) implies that x is
indifferent to y if and only if the two intervals F(x) and F(y) have a non-empty
intersection (see the further topics in Section 7.6 for the so-called intersection graphs
defined in a similar manner).

Example 7.15 We illustrate the above characterizations of interval orders with the
(strict) order O given in Figure 7.1(a).

In order to obtain the numerical representation in Condition (2), we use the method
given in the proof of Proposition 7.13 to obtain the numerical representation (2) of a
Ferrers relation. It first allows us to find two functions f and g such that xOy if and
only if f (x) < g(y). For f we can, for example, take a rank function of the order OI
(by Item (4) in Lemma 7.10, OOcd is equal to OI ). Thus, we obtain f (b)= 1, f (a)= 2,
f (c)= 3, and f (d)= f (e)= 4. Then since the set {y ∈ X : xOcdy} = xOcd = x(O+ I)
is never empty, we obtain g(x)= min{f (z) : xOcdz}, which implies g(a)= g(b)= 1,
g(c)= 3, g(d)= 2, and g(e)= 4. Now, taking u= g and s= f −g, we obtain s(a)= 1,
s(b)= s(c)= s(e)= 0, and s(d)= 2. The reader can check that, then, xOy if and only
if u(x)+ s(x) < u(y). In order to obtain the function F in Condition (3), we write
F(x)= [u(x),u(x)+ s(x)], whence F(a)= [1,2], F(b)= [1,1], F(c)= [3,3], F(d)=
[2,4], and F(e) = [4,4]. Observe that some intervals obtained in this representation
of the order O reduce to a number (but it is easy to deduce from this representation
another one without such trivial intervals).

We now give the theorem on the numerical representation of semiorders; that is,
the Scott–Suppes Theorem.

Theorem 7.16 (Scott–Suppes, 1958) Let O be a binary relation defined on a set X
and I = Oc ∩Ocd. The following conditions are equivalent:

1. O is a semiorder.
2. There exist a function u from X to R and a real number s such that

xOy ⇐⇒ u(x)+ s < u(y).

3. There exists a function F from X to the set of unit-length intervals of R such that

xOy ⇐⇒ F(x) < F(y)

(where the order < on the intervals of R is defined by F(x) < F(y) if, for all
a ∈ F(x),b ∈ F(y), a < b).
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Proof
(1) =⇒ (3): The proof is made by induction on the size of X but we begin with

an observation. Since O is a semiorder and thus an interval order, there exists a
function F from X to the set of intervals of R such that xOy if and only if F(x) < F(y)
(Theorem 7.14). We write F(x) = Ix = [lx,rx] and consider the element z such that
lz = max{lt , t ∈ X }. The set A of elements incomparable to z is an antichain. Indeed,
if there existed u,v ∈ A with vOu, one would have lz < rv < lu, a contradiction with
the choice of z.

Write now Y = X \ z, and assume inductively that there exists a function F from
Y to the set of unit-length intervals of R such that xOy if and only if F(x) < F(y),
and such that no intervals share the same endpoint. We are going to show that we
can represent z by a unit-length interval. Since the set A is an antichain, the union
of the intervals representing the elements of A has length less than two. Let w and
w′ ∈ A such that lw = min{ls,s ∈ A} and rw′ = max{rs,s ∈ A}. Then J = [lw′ ,rw] =⋂{Is,s ∈ A}.

First assume that, for any x ∈ X \ z with xOz, J �⊂ Ix holds; that is, rx < rw.
Then we can represent z by the interval F(z) = [lz , lz + 1], with lz in the interval
[max{rx,xOz},rw].

On the contrary, assume that there exists x ∈ X \ z with xOz and J ⊂ Ix. Then the
left endpoint of the required interval F(z) cannot be in J , a contradiction with the fact
that z is incomparable to any element of A. We claim that, in this case, we can shift Ix
leftward so that rx < rw. Indeed, it would be impossible if there existed yOx with y
incomparable to w. Because if we do such a shift then we must also shift Iy leftward
so that ry < lx and then, since Ix and Iw have unit length, we obtain ry < lx < lw,
a contradiction with the fact that y is incomparable to w. Now, we observe that it
is impossible to have yOx with y incomparable to w. Indeed in this case, we would
have yOxOz and z,y, and x incomparable to w and so a restriction of O isomorphic
to 1s + 3s, a contradiction with O semiorder.

Thus, we can shift all such Ix leftward so that the maximum of the corresponding
rx is less than rw −ε, for some ε > 0. Finally, taking F(z) = Iz = [rw − ε

2 ,rw − ε
2 +1],

we get the required unit-length interval representation.
(3) =⇒ (2): Obvious. We take u(x) = lx (with F(x)= [lx,rx]) and s = 1.
(2) =⇒ (1): We already know (Proposition 7.14) that O is an interval order. We

show that it cannot include a restriction isomorphic to 1s + 3s. Let x,y,z, t ∈ X be
such that xOyOz and x is incomparable to t. Then, u(x)+ s < u(y), u(y)+ s < u(z),
and u(x)− s ≤ u(t) ≤ u(x)+ s. Then u(t) ≤ u(y), u(t)+ s < u(y)+ s < u(z) and so
tOz. �

To end this section, we go back to the duality between the modelings of the strict
and the weak preferences of an individual. This duality is a consequence of the next
elementary result:
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Proposition 7.17 The sets of asymmetric binary relations and of total binary relations
defined on a set X and ordered by inclusion are two dual semilattices by the coduality
map R #−→ Rcd .

Proof The intersection (respectively, the union) of two asymmetric (respectively,
total) relations defined on X is obviously asymmetric (respectively, total). The set of
asymmetric (respectively, total) relations defined on X is therefore a meet-semilattice
(respectively, a join-semilattice). Since an asymmetric (respectively, total) relation R
is characterized by R ⊆ Rcd (respectively, R ⊇ Rcd ), (Rcd)cd = R, and R ⊆ R′ if and
only if Rcd ⊇ R′cd , it is easy to deduce that the coduality map is a dual isomorphism
between these two semilattices. �

So, each time a particular class of asymmetric relations is defined, the coduality
map transforms it into a dual class of total relations. The dual class of weak orders is
the class of total preorders (see Exercise 7.4). The dual class of orders is the class of
total relations, the asymmetric part of which is transitive (in the economics literature,
such relations are often called quasi-transitive relations). While the codual relation
of an interval order did not receive any particular name, the codual relation of a
semiorder has been called a total semiorder, but also a semiorder (indeed, in the
literature, the term semiorder is used in the two senses of an asymmetric or of a total
relation).

The duality between these two classes of asymmetric and of total relations allows
us to immediately translate any result obtained on one class to a result on the other
one. Thus, it is the same to modelize the notion of a preference as a strict preference –
i.e., by a strict order – or as a weak preference – i.e., by a quasi-transitive relation. If,
in microeconomics, it is more common to opt for the second choice, the first one has
at least two advantages: on the one hand, it conforms more to the parsimony principle
(the codual relation of an asymmetric relation contains much more ordered pairs);
on the other hand, and above all, it situates the study of the mathematical models of
preference in the field of ordered set theory.

Remark 7.18 If O is an asymmetric relation and if R denotes the codual total relation
of O, then R = Ocd = O + I , with I = Oc ∩ Ocd = R ∩ Rd . Thus, if O is an order
modeling a strict preference, one finds again that the incomparability relation of this
order is the symmetric part of the relation R modeling a weak preference, namely the
relation which, in the classic model, represents the indifference relation.

7.2 Preference aggregation: Arrowian theorems for orders

Since Antiquity, citizens’ votes have been used to choose representatives or leaders,
for instance the Senate members or the consuls of the Roman Republic. In the eigh-
teenth century, the French Academy of Science used to elect its new members by
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means of a simple voting rule, still often used (for instance, for the election of the
members of the British Parliament): the chosen candidate is the one supported by the
greatest number of votes in a ballot where each voter gives his preferred candidate.
The reader can easily construct examples where this type of ballot leads to electing
the candidate who is ranked last by a majority of the electorate. This fact led Borda to
propose the method bearing his name. In Borda’s method each voter gives his prefer-
ence order (assumed to be a linear order) on the candidates; then the latter are ranked
according to the sum of their ranks obtained in these different orders. Soon afterwards
Condorcet observed that a majority of voters could prefer a candidate different from
that elected by Borda’s method (an example will be given later). He then proposed
his own method, the majority rule, as a remedy. In the majority rule one considers all
pairs of candidates and for each pair, the majority ordered pair is kept; the collective
preference is then the union of all these majority ordered pairs. Yet, Condorcet realized
that his method also had a defect: the collective preference obtained in this way may
contain cycles, i.e., may not be an order. This fact has been called “l’effet Condorcet”
or the “voting paradox.” The simplest example of such an effect is obtained with the
following preferences of three voters on three candidates a, b and c: abc, bca, and
cab. Indeed in this case the collective preference obtained by Condorcet’s majority
rule is the cycle where a is preferred to c, c to b, and b to a. Condorcet will seek to
correct this defect, the explanation of which will be provided much later when Arrow,
formalizing the difficulties encountered by economists who try to build a collective
utility from individual utilities, will state his famous impossibility theorem. Arrow’s
Theorem fostered a considerable development of the so-called social choice theory.
Here we shall simply present some initial results of the latter field showing the diffi-
culties of attempting to aggregate satisfactorily individual preferences modelized by
linear orders into a collective preference modelized by an order.

We shall begin by specifying the aggregation rules proposed by Borda and Con-
dorcet and by showing some of their defects. Afterwards we will describe a large
class of rules generalizing Condorcet’s rule and using “generalized majorities” (or
“winning coalitions”). The search for those rules where the collective preference is
a linear order will lead us to a first impossibility result. Next, we shall present the
“axiomatic” approach introduced by Arrow and consisting of the search for aggrega-
tion rules satisfying “good” properties. The previously mentioned impossibility result
will then lead us to severalArrowian theorems showing the difficulties of aggregating
linear orders into an order. In particular, Arrow’s Theorem – proved here in the case
of linear orders – will provide a “dictatorial” result or, in more mathematical terms,
a characterization of the projections defined on some product space.

We first describe the mathematical model used for preference aggregation.
X = {x,y,z, ...} is a finite set of size m. Throughout this section, the elements of X

will be called the “candidates” but, according to the context, they may be commodity
bundles, options, etc.
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N = {1,2, ...,n} is a finite set of size n. Throughout this section, the elements of
N will be called the “voters” but, according to the context, they may be consumers,
decision-makers, etc.

Afterwards, we always assume that there are at least three candidates and three
voters, so m,n≥ 3 (this assumption, necessary for some of the presented results, will
not be repeated).

We also assume that each voter has a preference linear order on the set of candidates.
Contrary to Section 7.1, the orders considered in this section are reflexive.

The consideration of the voters’ preferences then defines a map from N to the set
L=LX of the m! linear orders defined on X . This map is called a preference profile
(or simply a profile) π and is denoted:

π = (L1, ...,Ln)

where Li is the preference linear order of voter i on the candidates and where yLix is
interpreted as “voter i prefers candidate x to candidate y.” The set of all preference
profiles of the N voters is denoted LN .

Let π = (L1, ...,Li, ...,Ln) be a profile. For all x,y ∈ X , we write

Nπ (y,x)= {i ∈ N : yLix}, nπ (y,x)= |{i ∈ N : yLix}|

Nπ (y,x) is then the set of voters preferring candidate x to candidate y and nπ (y,x) is
the number of these voters.

Example 7.19 X = {a,b,c,d} is a set of four candidates and N a set of seven voters.
The preference profile of the voters on the candidates is π = (cadb : 2,bcad : 2,dbca :
3) where, for example, cadb : 2 means that 2 voters have the order c < a < d < b
as their preference on the candidates. Table 7.3 gives the array of the nπ (x,y)’s for
this profile. For example, the value 2 of nπ (a,b) is at the intersection of line a and
column b in this array.

Table 7.3 Array of the nπ (y,x) for the profile π

nπ (y,x) a b c d
a 7 2 0 4
b 5 7 5 2
c 7 2 7 4
d 3 5 3 7

Finally, the rank of the element x in the linear order Li, where the rank is defined
by rLi (x) = |Lix| = |{y ∈ X : yLix}|, will be more simply denoted by ri(x). So the
candidates have ranks from 1 (for the least appreciated) to n (for the most appreciated).
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The preference aggregation problem consists of defining functions that satisfy
“good” properties and that associate with each possible preference profile a relation
on X representing at best the collective preference of the voters of this profile. It would
be a priori desirable that the collective preference be a linear order like the individual
preferences. But the difficulty (or even the impossibility) of obtaining such good
aggregation functions leads us to relax this objective. Thus one may only require that
the collective preference be an order or even be cycle-free since, then, the collective
preference can be extended to a linear order (Theorem 2.23, for the latter). However,
it was seen above that an aggregation rule as “natural” as Condorcet’s majority rule
may generate collective preferences containing cycles. So we give a definition of an
aggregation function allowing us to include these different cases.

Definition 7.20 Let M be a set of binary relations on the set X . An M-preference
aggregation function (M−PAF) is a map F from the set LN of all profiles of linear
orders to M: for each π ∈LN , F(π) ∈M.

Let us begin by specifying the M-preference aggregation functions first proposed
by Borda then by Condorcet.

Let π = (L1, ...,Ln) ∈ LN . For each x ∈ X , we write R(x,π) = ∑n
i=1 ri(x) for the

sum of the ranks of x in the orders of profile π .
We define a binary relation RB(π) on X by yRB(π)x if R(y,π) < R(x,π).
It is obvious that, for each π ∈ LN , RB(π) is a weak order on X (Condition (6) in

Proposition 7.4). The preference aggregation function defined in this way is thus a
W −PAF – where W is the set of (strict) weak orders defined on X – called Borda’s
aggregation function (or Borda’s rule).

To show that this aggregation function may contradict the majority principle,
consider the following example. There are seven voters with the following pref-
erences on three candidates a, b and c: cba (i.e., c < b < a) for three voters, bac
for two others, and acb for the last two, i.e., the associated preference profile is
π = (cba : 3,bac : 2,acb : 2). The reader can check that Borda’s weak order is then
the linear order cba, thus with a as the winner. Yet c is last for Borda’s rule, although
he is preferred to a by four voters against three.

Exercise 7.10 shows some other types of “voting paradoxes” likely to be obtained
with Borda’s rule: for instance, a change of voters’ preferences on a single candidate
may completely reverse the collective preference.

We now define the two forms of Condorcet’s majority rule.

Definition 7.21 Condorcet’s preference aggregation function (respectively, weak
function) maps each profile π ∈ LN to its majority relation RMAJ (π) (respectively,
to its weak majority relation RWMAJ (π)). These two relations are defined as follows:
for all x,y ∈ X ,

yRMAJ (π)x if nπ (y,x) >
n

2
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and

yRWMAJ (π)x if nπ (y,x)≥ n

2

Then, for instance, x is preferred to y in the majority relation if the number of voters
who prefer x to y is strictly greater than n

2 .
For the sequel, it is useful to give another formulation of these definitions by

making explicit the majority notions that they use: a subset S of the set N of voters is
a (strict) majority if |S|> n

2 , and a weak majority if |S| ≥ n
2 . With FMAJ = {majorities

of N } and FWMAJ = {weak majorities of N }, we can then write

yRMAJ (π)x if Nπ (y,x) ∈FMAJ and yRWMAJ (π)x if Nπ (y,x) ∈FWMAJ

The following proposition, the proof of which is the purpose of Exercise 7.11, gives
the codomains M of the two Condorcet’s preference aggregation functions.

Proposition 7.22 1. For each preference profile π ∈LN , RMAJ (π) is a reflexive and
antisymmetric binary relation, and RWMAJ (π) is a total relation.

2. For each reflexive and antisymmetric (respectively, total) binary relation R defined
on X , there exists a set N of voters of even size and a profile π of LN such that
RMAJ (π)= R (respectively, RWMAJ (π)= R).

3. For each set N of odd size and each profile π ∈ LN , RMAJ (π) = RWMAJ (π) is a
tournament relation and, for each tournament R defined on X , there exists a set
N of voters of even size and a profile π ∈LN such that RMAJ (π)= R.

Thus, it appears that the use of Condorcet’s majority rules may generate any reflex-
ive and antisymmetric, or total, binary relation as the collective preference, which
contradicts the wish for a good aggregation rule. This is illustrated in Figure 7.3,
where the preference profile is that in Example 7.19. The majority ordered pairs are
then those supported by at least four voters and, according to Table 7.3, the obtained
majority relation is the non-transitive tournament given in Figure 7.3. This example
will be continued in Exercise 7.10.

In order to try to palliate the problems raised by Condorcet’s majority rule, we
define a much broader class of majority functions, associated with the families called
federations.

Definition 7.23 1. A federation on the set N is a family F of subsets of N such that,
for all T ⊆ N and S ∈F , S ⊆ T implies T ∈F .

2. Let F be a federation on N and π ∈LN . The collective preference relation RF (π)

associated with F and π is defined by yRF (π)x if Nπ (y,x) ∈F .
3. The (generalized) majority function associated with the federation F on N is the

preference aggregation function associating with each profile π of LN the relation
RF (π); it is denoted by FF .
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Figure 7.3 (a) A profile of seven voters on four candidates, the majority tournament (b)
of which is not transitive.

Observe that a federation is nothing but an upset of the ordered set 2N of subsets
of N ordered by inclusion. In the literature a federation has also been called a “family
of generalized majorities” or a “simple game” and the members of the latter are often
called “winning coalitions.” Then, Item 2 above is written: x is preferred to y if the
voters of profile π preferring x to y form a winning coalition.

We give examples of (generalized) majority functions where the federations used
are the so-called filters and ultrafilters. These examples may seem very particular but
we will see that they are those which appear in the Arrowian theorems given further
in the section.

Definition 7.24 A family F of subsets of N is a filter on N if it is a federation which
is∩-stable (i.e., such that S,T ∈F implies S∩T ∈F) and different from the set P(N )

of subsets of N . A filter is an ultrafilter if it is a maximal filter for the inclusion order
on filters.

We observe immediately that a filter may contain neither the empty set nor two
disjoint subsets. Exercise 7.12 allows us to show other well-known results (on a finite
set): each filter has the form FV = {S ⊆ N : V ⊆ S}, where V is a non-empty subset
of N . We say that FV is the filter of basis V (observe that FV is the principal upset
[V ) in 2N ). Ultrafilters on N are nothing but the n filters of basis i, for i ∈ N ; such
a filter, denoted by Fi, is thus the family of all subsets of N containing the voter i.
These notions are illustrated in Figure 7.4.

In the proof of the further Proposition 7.29 which is a preliminary result to Arrow’s
Theorem for linear orders (Theorem 7.32), it will be profitable to use a concise
characterization of ultrafilters requiring the below notion of the Nakamura number.
We keep the following notation: for a family F of subsets of N ,

⋂
F denotes the

intersection
⋂{S ⊆ N : S ∈F} of all subsets belonging to F .
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Figure 7.4 The filter F23 and the ultrafilter F1 on N = {1,2,3}, represented in the lattice 2N .

Definition 7.25 Let F be a family of subsets of N . The Nakamura number of F ,
denoted by ν(F), is the number defined by:

ν(F)=
{

min{|F ′|,F ′ ⊆F and
⋂

F ′ = ∅} if
⋂

F = ∅,

+∞ if not.

When the intersection
⋂

F of the family F is empty, ν(F) is then the minimum size
of a sub-family of F the intersection of which is empty. So for example, if ν(F) > 3,
F does not contain three subsets with an empty intersection. Observe that ν(F) = 1
means that ∅ ∈F .

Using the Nakamura number we obtain the following characterization of ultrafil-
ters, allowing a simple proof of Proposition 7.29.

Lemma 7.26 Let F be a family of subsets of N . The following conditions are
equivalent:

1. F is an ultrafilter.
2. ν(F) > 3 and, for each S ⊆ N, S �∈F implies N \ S ∈F .

Proof If F is an ultrafilter, it is equal to Fi for some i ∈ N . Then ν(F)=+∞ and
the second property is immediate.

For the converse, we first show that F is a filter. Indeed, ν(F) > 3 first implies
that F does not contain the empty set. If there exist S ∈F and T ⊃ S with T �∈F , we
have N \ T ∈ F , whence S ∩ (N \ T ) = ∅, a contradiction with ν(F) > 3. Finally if
S,T ∈F and S ∩T �∈F , then N \ (S ∩T )∈F , whence S ∩T ∩ (N \ (S ∩T ))=∅, and
the same contradiction. The family F is thus a filter. Assume that it is not a maximal
filter, i.e., that there exists a filter G on N such that G ⊃ F . So, there exists S ⊆ N
such that S ∈ G and S �∈ F . But then we have N \ S ∈ F , whence S and N \ S are in
G, which is impossible. �
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We now define the preference aggregation functions associated with a filter or an
ultrafilter.

Definition 7.27 Apreference aggregation function F is an∩-projection (respectively,
a projection) if there exists a filter (respectively, an ultrafilter) F on N such that
F = FF .

When F is an ∩-projection, F =FV is a filter of basis V . We then obtain FF (π)=⋂{Li : i ∈ V } for each π ∈ LN , and the codomain of this PAF is the set O = OX of
all orders on X .

When F is a projection, F =Fi is an ultrafilter of basis i. We then obtain FF (π)=Li

for each π ∈ LN . In other words, F is the ith projection of LN and its codomain is
the set L=LX of all linear orders on X .

Remark 7.28 In social choice theory, an ∩-projection is called an “oligarchic” func-
tion since, then, the collective preference is determined only by the voters belonging
to the “oligarchy” V . The particular case where V ={i} – and where F is a projection –
is called a “dictatorial” function (since, then, the collective preference is that of the
“dictator” i).

The proof of the next results uses preference profiles for which the voters’ prefer-
ences are fixed on some candidates and arbitrary on others. We adopt the following
type of notation for such profiles: π = (xyz : S,yzx : T ,zyx : U ), where (S,T ,U ) is a
partition of N and where the preferences of all voters of S (respectively, of T , of U )
on the three candidates x, y, and z are xyz (respectively, yzx, zyx), the preferences on
the other candidates being arbitrary.

Considering the PAFs FF for which the collective preference is always a linear
order – i.e., the L-PAFs FF – we obtain the following result:

Proposition 7.29 The PAF FF associated with the federation F on N is an L-PAF
if and only if F is an ultrafilter, i.e., if and only if FF is a projection.

Proof Let us show the necessary condition. To prove that F is an ultrafilter it
is sufficient to show that F satisfies the two conditions in Lemma 7.26. We begin
by proving that ν(F) > 3; if not, ν(F) ≤ 3. First assume ν(F) = 3. So there exist
S,T ,U ∈ F such that S ∩ T ∩U = ∅. Then we consider the following profile: π =
(xyz : S ∩ T ,yzx : T \ S,zyx : N \ T ). For this profile Nπ (x,y) ⊇ S, Nπ (y,z) = T ,
and Nπ (z,x) ⊇ U . So (since F is a federation) xRF (π)yRF (π)zRF (π)x holds, a
contradiction with RF (π) linear order. If ν(F) = 2 there exist S,T ∈ F such that
S∩T =∅ and, for the profile π = (xy : N \T ,yx : T ), xRF (π)yRF (π)x holds, another
contradiction. Finally observe that ν(F) �= 1 since ν(F)= 1 means that ∅ ∈F and so
we would obtain that RF (π) is equal to the complete relation X 2 for any profile π .

Then we prove that F satisfies the second condition of Lemma 7.26. If not, there
exists S ⊆ N such that S �∈ F and N \ S �∈ F . Then consider x,y ∈ X and the profile
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π = (xy : S,yx : N \S). Then (x,y) �∈ RF (π) and (y,x) �∈ RF (π), which is impossible
since RF (π) ∈L.

The sufficient condition is obvious. �

Corollary 7.30 There do not exist non-dictatorial generalized majority functions
that are L-PAF.

The above results allow us to give simple proofs of Arrowian theorems. Arrow’s
approach consisted of axiomatically defining the “good” preference aggregation func-
tions, then seeking the functions satisfying these axioms. We follow this approach in
the case where the individual preferences are linear orders (see Section 7.6.2, Further
topics and references, for the case of total preorders considered by Arrow). After-
wards we consider M-PAFs from LN to M, where the set M of possible collective
preference relations will be specified in each case. We require that the aggregation
function satisfies the two properties of Pareto and independence defined below:

Definition 7.31 Let F be an aggregation function from LN to a set M of relations.

• F satisfies Pareto’s property (or simply Pareto) if, for each π ∈LN and all x,y ∈X ,
Nπ (y,x) = N implies yF(π)x. It is also said that F is Paretian or that it satisfies
the unanimity property.

• F satisfies the independence property if, for all π ,π ′ ∈ LN and all x,y ∈ X ,
Nπ (y,x) = Nπ ′(y,x) implies [yF(π)x ⇐⇒ yF(π ′)x]. It is also said that F is
independent.

The first of these properties simply means that, if all voters prefer candidate x to
candidate y, this unanimous preference must be a collective preference, which is the
least one can require. The aggregation rules defined above by a federation as well as
Borda’s rule satisfy this Paretian property. As for the independence property, it means
that the collective preference between x and y depends only on the individual prefer-
ences between these two candidates and not on the preferences on other candidates,
which seems a reasonable demand. We observe that this requirement is clearly satis-
fied by the PAFs defined by a federation. However, it is not satisfied by Borda’s rule,
as shown in Exercise 7.10. Yet, if we add to these two apparently justified requests
the demand that the collective preference be either a linear order or simply an order,
we obtain dictatorial or oligarchic results.

Theorem 7.32 (Arrow for linear orders) Let N be a set of n voters, LN the set
of their preference profiles, and F : LN #→ L an L-preference aggregation function.
Then F is independent and Paretian if and only if F is a projection.

Proof The sufficient condition is obvious.
The proof of the necessary condition is obtained by showing that, if F is independent

and Paretian, there exists a federation F on N such that F = FF . Proposition 7.29
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allows us to conclude, since F is then an ultrafilter. To simplify the notations, we
denote by L the linear order F(π).

To obtain the federation F , we introduce the notion of a decisive set. Let (y,x) be
an ordered pair of different elements of X . A subset S of N is a (y,x)-decisive set (for
the function F) if, for each π ∈ LN such that Nπ (y,x) = S, yLx holds. Observe that,
F being independent, it is enough to have a profile π with Nπ (y,x) = S and yLx in
order that S be (y,x)-decisive. Denoting by F(y,x) the family of (y,x)-decisive sets
(for F), we then have yLx if and only if Nπ (y,x) ∈ F(y,x). Observe that F(y,x) is
never empty since, by Pareto’s property, it contains N .

We say that a subset S of N is a decisive set (for F) if S is (y,x)-decisive for each
ordered pair (y,x) of different elements of X .

We are going to show that, if S is a (y,x)-decisive set for at least one ordered pair
(y,x), it is a decisive set. First show that, if S is (y,x)-decisive, it is (z,x)-decisive for
each z �= x,y, i.e., that F(y,x)⊆F(z,x). Let S ⊂ N with S ∈F(y,x), and z different
from x and y. Consider the profile π = (zyx : S,xzy : N \S). The set S is (y,x)-decisive
and F is Paretian so yLx and zLy hold. By transitivity of the linear order L, zLx holds.
But since Nπ (z,x)= S, we obtain S ∈F(z,x). Likewise, the reader can show that, for
each z �= x,y, F(y,x)⊆F(y,z), and then the identity of all families of (y,x)-decisive
sets for all the ordered pairs (y,x) of different elements of X ; they are thus all equal
to the family F of decisive sets.

So we may write that yLx if and only if Nπ (y,x) ∈ F , which means that F = FF .
To use Proposition 7.29, it only remains to prove that F is a federation. Let S ∈ F ,
N ⊇ T ⊃ S, and π = (zyx : S,yzx : T \S,yxz : N \T ). Since F is Paretian and the set S
is decisive, yLx and zLy hold. Since L is transitive, zLx holds and, since Nπ (z,x)= T ,
T ∈F follows. �

We now broaden the domain of the possible collective preferences by assuming
that it is equal to the set O=OX of all orders on X . The theorem below shows that the
“dictatorship” then becomes an “oligarchy”; that is, an∩-projection (Definition 7.27).

Theorem 7.33 Let N be a set of n voters, ON the set of their preference profiles, and
F : ON #→ O an O-preference aggregation function. F is independent and Paretian
if and only if F is an ∩-projection.

Proof The sufficient condition is obvious.
The proof of the necessary condition is obtained by showing that, in this case, there

exists a filter F on N such that F = FF and thus a subset V of N such that, for every
profile π ,F(π)=⋂{Li : i ∈ V }.

We define the notions of decisive sets as in Theorem 7.32 and we first observe that
the proof given there of the identity of all the families of (y,x)-decisive sets only uses
the transitivity of F(π). So it remains valid here and we may write F = FF . It is the
same for the proof that F is a federation. The empty set cannot belong to F (since,
by Nakamura’s Theorem, ν(F) > |N | ≥ 3). To show that the federation F is a filter,
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it remains to show that it is ∩-stable. Let S,T ∈ F with S �⊆ T and S �⊇ T ; ν(F) > 3
implies S ∩T �= ∅. Let π = (zyx : S ∩T ,yxz : S \T ,xzy : T \S,xyz : N \ (S ∪T )). The
sets S and T being decisive, yOx (with O = F(π)) and zOy hold. The transitivity of
O implies zOx. Since Nπ (z,x)= S ∩T , we obtain S ∩T ∈F as required. �

Remark 7.34 The above two theorems can be stated as impossibility results by
adding non-dictatorship or non-oligarchy to the conditions on the aggregation func-
tion. One may wonder what an independent and Paretian aggregation function
becomes when the admissible domain of collective preferences is a particular class of
orders containing the linear orders (for instance the class of weak orders, of semiorders
or of interval orders). The answer is given for these three classes in Exercise 7.14.

To end this section we go back to the PAFs which are majority functions FF and
introduce a minimal hypothesis in order that a such majority function be considered as
satisfactory, namely that the collective preference relations obtained by this function
be cycle-free.

Nakamura’s Theorem uses the Nakamura number ν(F) (Definition 7.25) to char-
acterize the families for which FF (π) is always cycle-free. Denoting by A the set of
all cycle-free relations defined on X , these aggregation functions are then A-PAFs.

Theorem 7.35 (Nakamura, 1975) Let F be a federation on N , different from 2N ,
and FF the PAF which associates the relation RF (π) with each profile π of LN .
Then FF is an A-PAF if and only if ν(F) > |N |.

In other terms, FF associates a cycle-free relation with each preference profile π

if and only if the Nakamura number of F is strictly greater than the size of N . The not
too difficult proof of this result is the purpose of Exercise 7.13. Observe that the first
part of the proof of Proposition 7.29 is a corollary of Nakamura’s Theorem (since in
this section, we have assumed |N | ≥ 3).

7.3 The roles of orders in cluster analysis

Cluster analysis (or classification) is a branch of data analysis the concern of which
is the determination of classes (or clusters) in a set E of objects to be classified. A
cluster C ⊆E must be understood as a set of objects grouped with respect to common
properties or to some kind of proximity between them. For instance, Example 3.48
illustrates Galois classification, where each concept (F ,G) corresponds to a class
F of elements of E sharing the attributes in G. We will go back to this approach
in Section 7.4, which is especially devoted to relational databases and knowledge
extraction. Nevertheless, the Galois approach is not the most usual one in cluster
analysis. A more frequently considered tool consists of constructing a function d on
E, called a dissimilarity, measuring the degree of dissemblance between the elements
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to be classified. Such functions are more general than metrics as may be observed in
the definition below.

Definition 7.36 A dissimilarity on a set E is a function d from E2 to the set R+ of
non-negative real numbers satisfying the following properties for all e,e′ ∈ E:

• d(e,e′)= 0 if and only if e = e′.
• d(e,e′)= d(e′,e).

As said above, the meaning of a dissimilarity is that the more similar the objects
e and e′ the smaller the value d(e,e′). From a dissimilarity (or sometimes from data
of another kind) a classification system on E – that is, a family C of subsets of E the
elements of which are the wanted clusters – can be derived, w.r.t. the two following
goals:

1. The objects inside a cluster have to be more similar to one another than to those
outside the cluster.

2. The family C belongs to a particular type of classification model which guarantees
simplicity and clarity of the classification process output.

Simultaneously reaching these aims can be done only approximately. The presen-
tation of the numerous available methods (and algorithms) is not the purpose of this
section. The reader can refer to various manuals such as those of Arabie et al. (1996),
Mirkin (1997) or Everitt et al. (2011).

Here, we tackle some ordinal aspects about the description of several types of
usual classification model on the one hand, and the structure of the set M of all the
solutions of a classification problem on the other hand. Indeed the ordinal approach
is an important tool for “derived” problems such as classification comparison and
aggregation. So, we first present several types of model frequently considered in
classification: partitions, equivalences, hierarchies, valued hierarchies, dendrograms,
and ultrametrics, but also Moore families. Observing that the corresponding sets of
models are meet-semilattices, and frequently lattices, we then tackle comparison and
aggregation problems in such structures. A meet-semilattice L is endowed with a
particular metric related to the representation of any element x of L by the set Jx of
the join-irreducibles less than or equal to x (Chapter 3, Proposition 3.11 and Corollary
3.12). The metric aggregation method consists of searching for an element, called a
median, minimizing the sum of its distances to a k-tuple of some given elements of L
(or in searching for all medians when there is more than one). Properties of medians
linked with (the lattice form of) the majority rule defined in the previous section are
obtained and we define the so-called median semilattices, where medians are actually
obtained by this rule. The section ends with a presentation of how these rules apply
to classification models.

Let us begin with the latter models. Recall that a partition P = {C1,C2, ...,Cp} of
E (Chapter 1, Example 1.14) is a family of pairwise disjoint subsets of E (called the
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Figure 7.5 The lattice P{a,b,c,d} of partitions of {a,b,c,d} endowed with the refinement
order.

classes of P), the union of which is E: so each element of E belongs to a unique
class of P. It is well-known that a partition P of E is equivalent to an equivalence
(that is, a reflexive, symmetric, and transitive) relation RP on E. The one-to-one
correspondence between P and RP is given by (e,e′) ∈ RP if and only if e and e′
belong to the same class of the partition P. The set EE of all equivalences on E
contains the total equivalence E2 and is intersection-stable (the reader can check
that). So, it is a Moore family (Definition 3.29) on E2 and a lattice for the inclusion
order. The corresponding closure is nothing but the reflexo-transitive closure which
associates with any symmetric relation on E the minimum equivalence including it.
Let us consider the refinement order on the set PE of partitions of E which has been
defined in Example 1.14. It is easy to see that, for all P,P′ ∈ PE , P is finer than P′
(that is, every class of P is included in a class of P′) if and only if RP ⊆ RP′ . So the set
PE , endowed with the refinement order, is a lattice. Its minimum is the finest partition
P0 (so with |E| classes) and its maximum is the coarsest partition P1 the unique class
of which is E (see Exercises 7.15 and 7.16 for some properties of this lattice). Figure
7.5 shows the diagram of the lattice P{a,b,c,d} endowed with the refinement order.

The other classic models presented here correspond with several types of clas-
sification trees. In hierarchical classification, the program outputs are of the type
represented in Figure 7.6; the information on the set E = {1,2,3,4,5,6,7,8,9,10}
provided by such a tree may be read at several levels, corresponding with several
classification models that we are going to precisely define.

The minimal elements of the tree in Figure 7.6(a) are the “singletons” (1-element
subsets) of E. Each of its horizontal solid lines corresponds with the subset H of E
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Figure 7.6 Classification trees corresponding to a hierarchy.

containing all the elements of E placed “below” this line. Thus, the tree in this figure
represents the family of subsets (classes)

{{1},{1,2},{1,2,5}, {1,2,4,5}, {1,2,3,4,5},{1,2,3,4,5,6,7,8},{2}, {3}, {4}, {5},

{6}, {6,7,8}, {7}, {7,8}, {8}, {9}, {9,10}, {10},E}.
Observe that two classes are either disjoint or ordered by inclusion. Indeed, such a
tree is equivalent to a family H of subsets of E of the type defined as follows:

Definition 7.37 A hierarchy on a set E is a family H of subsets of E satisfying the
following properties:

1. E ∈H, ∅ �∈H, {e} ∈H for any e ∈ E.
2. For all H ,H ′ ∈H, H ∩H ′ ∈ {∅,H ,H ′}.

The set of all hierarchies on E is denoted by H.

Two hierarchies on E can differ only on classes of size between 2 and n− 1; the
other classes (that is, E and the singletons) are said to be trivial. Property (2) above
implies that, for any non-empty subset A of E, the set of the classes of H including
A is linearly ordered by inclusion (the reader can check that). So it has a minimum
class, denoted by HA. The following properties then follow:

• The ordered set (H,⊆) is a join-semilattice with, for all H ′,H“ ∈ H, H ′ ∨H ′′ =
H(H ′∪H“).

• The ordered set (H,⊆) is a tree-ordered set (Chapter 2, Definition 2.12).

So, hierarchies are tree join-semilattices and they form the first and basic model
of classification trees. Exercise 2.5 in Chapter 2 enumerates a number of properties
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which dually (since the exercise concerns tree meet-semilattices) apply to hierarchies.
For instance observing that, for all e,e′ ∈ E, {e}∨ {e′} = H{e,e′} we obtain:

Proposition 7.38 Let H be a hierarchy on E. For all e,e′,e′′ ∈ E, the inequality
|{H{e,e′},H{e,e′′},H{e′,e′′}}|< 3 holds.

Figure 7.6(b) gives the diagram of the hierarchy in Figure 7.6(a). It is enough to give
labels to the singletons since any other vertex corresponds with the set of singletons
below it. Hierarchical classification methods frequently provide, in addition to a
hierarchy H, a height function1 ι which is understood as measuring the class cohesion:
the lower the height of a class, the more coherent the class.

Definition 7.39 A valued hierarchy on a set E is a pair (H, ι) where:

• H is a hierarchy on E.
• ι is a height function, i.e., a strictly isotone map from H to R+ satisfying ι({e})= 0

for any e ∈ E.

Although they are a standard classification model, these trees have many denomina-
tions in the literature (ranked trees, valued trees, dendrograms, numerically stratified
clusterings, etc.). With the scale on its left, Figure 7.6(a) gives in fact a representation
of a valued hierarchy. Cutting the tree with a horizontal line of ordinate λ as shown
with a dotted line in this figure, the classes of the hierarchy lying just below or on this
line form a partition f (λ) of E. In the figure, f (λ)= {{1,2,4,5}, {3}, {6,7,8}, {9,10}}.
Since λ≤ λ′ implies f (λ)≤ f (λ′) – the second inequality using the refinement order
on partitions of E – we have in fact defined an isotone map f from R+ to the lattice PE

of partitions of E. The image by f of R+ in PE is an extended chain; that is, containing
the finest (with n classes) and the coarsest (with one class) partitions. Moreover, for
all e,e′ ∈ E, ι(H{e,e′}) is the minimum of the values λ ∈ R+ such that e and e′ are in
the same class of f (λ). These observations lead to the following definitions:

Definition 7.40 Let E be a set and L a subset of R+ containing the 0 number. An
L-dendrogram on E is an isotone map f from L to the lattice PE of partitions of E
satisfying the following property (DG):

(DG) for all e,e′ ∈ E, the converse image

f −1({P ∈PE : e and e′ are in the same class of P})
has a minimum in L.
Especially, an R+-dendrogram on E is called a dendrogram on E.

There are correspondences between valued hierarchies, dendrograms, and also
ultrametrics, that we define below:

1 Note The height function ι mentioned here must be distinguished from the height of an element defined
on any ordered set on page 44.
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Definition 7.41 An ultrametric on E is a dissimilarity u on E satisfying the following
inequality (U ):

For all e,e′,e′′ ∈ E,u(e,e′)≤ max(u(e,e′′),u(e′,e′′)) (U )

Note that an ultrametric is obviously a distance.

We derive a dissimilarity u on E from a valued hierarchy (H, ι) by setting u(e,e′)=
ι(H{e,e′}) for all e,e′ ∈ E. As a consequence of Proposition 7.38, the dissimilarity u is
an ultrametric on E.

In Exercises 7.18 to 7.20, we consider the finite case by taking the chain k = {0 <

1 < ... < k −1} as L. Then Condition (DG) is satisfied by any isotone map from k to
PE . These exercises consist of proving, on the one hand, that k-dendrograms on E
are exactly residual maps (Definition 3.35) from k to PE and, on the other hand, that
the following three sets are in pairwise one-to-one correspondence:

• the set of valued hierarchies on E where the height values belong to the chain k ,
• the set of k-dendrograms on E,
• the set of ultrametrics on E taking their values in k .

Moreover, the last two of these sets are dual ordered sets of maps for the
exponentiation order (Chapter 3, Definition 3.4).

Though the above-described classification models are the most usual ones, many
others have been proposed in the literature. It is not possible to review all of them
here, but we may however observe that the following conditions may be significant
for a classification system F ⊆P(E):

(C1) E ∈F .
(C2) C,C ′ ∈F implies C ∩C ′ ∈F .
(C3) For any e ∈ E,{e} ∈F .

Condition (C1) assumes the existence of a “universal” class and (C2) means that,
as soon as two classes C and C ′ are obtained, it is natural to also consider the class
C ∩ C ′ of the elements common to C and C ′. Put together, Conditions (C1) and
(C2) imply that F is a Moore family on E (Definition 3.29). Adding Condition
(C3), which corresponds to the possibility of distinguishing elements of E from one
another in F , we also have ∅ ∈F . We observe that neither partitions nor hierarchies
directly constitute such families. Nevertheless in Chapter 3 (Example 3.32) we have
described how a unique Moore family F =m(A)= {⋂B : B ⊆A} can be associated
with any family A of subsets of E. If P = {C1,C2, ...,Cp} is a partition of E, then
m(P)= P∪{E,∅}. If H is a hierarchy on E, then m(H)=H∪ {∅}.

Still in Chapter 3 (Proposition 3.46 and Example 3.48) we have considered the
case of a set E of objects described with a set E′ of binary attributes; that is, the data
consisting of a relation R ⊆ E × E′. We have then shown that the Galois lattice of
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the relation R is isomorphic to a Moore family F on E and dual of a Moore family
G on E′.

Such examples account for the addition of Moore families to the previous model
sets. On the one hand, the former are a natural generalization of the latter. On the
other hand, they are the classification systems obtained in Galois classification.

Finally, the sets M of models that we are going to consider are always ordered
sets. The orders are:

• the refinement order for M=PE , the set of partitions of E,
• the inclusion for M=H, the set of hierarchies on E, or M= F, the set of Moore

families on E,
• the exponentiation order if M is the set of L-dendrograms, or that of ultrametrics

on E.

Moreover, the orders on these model sets are lattices or at least meet-semilattices:
we have encountered the partition lattice and we will point out in this section that the
ordered set (H,⊆) is a meet-semilattice of a particular type. Exercises 7.18 and 7.20
will show how to define lattice orders on the sets of k-dendrograms and of ultrametrics
on E. Finally, the lattice structure of the set F will be made explicit in Section 7.4.
We now use the ordinal structure of M to tackle two types of problem:

• Comparison problem. This is about defining a metric on M which is easy to
compute, even if the size of the set M exponentially increases with the size of
E. For instance, what easily computable distance can be taken to compare two
partitions on E?

• Aggregation problem. This is about transposing to classification the problems and
approaches considered in Section 7.2 in the case of preference aggregation. For
instance, what method can be chosen to find the consensus of several hierarchies
on E?

In the latter case, we consider a profile π = (M1,M2, ...,Mv)∈Mv (we say that π is
a profile of M) and aggregation functions on Mv which associate with such a profile
one or several classifications. This consensus problem appeared in classification in
the 1960s about data analysis and phylogenetic reconstruction (see Section 7.6).

In what follows, we make the link between the previous two problems and mainly
consider them within the abstract framework of metric aggregation in semilattices.
The obtained results will then be applied to the various above-mentioned classification
lattices or semilattices. So we now consider a meet-semilattice (L,≤) endowed with
a metric (or distance) d.

Definition 7.42 Let (L,≤) be a meet-semilattice, d a distance on L, π =
(x1, ...,xi, ...,xv) a profile of L, and x an element of L. The remoteness of x from
π is the sum Rd(π ,x)=�1≤i≤vd(xi,x). An element x of L is called a (metric) median
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of π if its remoteness from π is minimum. The aggregation procedure which asso-
ciates with any profile π ∈ Lv the set Medd(π) of medians of π for the distance d is
called the median procedure.

Remark 7.43 The term median was used in the different meaning of a particular
lattice polynomial after Corollary 5.2 on page 132. Generally, this lattice median
must be distinguished from the metric medians as defined above. In fact, one of the
purposes of this section is the recognition of a wide domain where these two notions
coincide.

For the choice of an appropriate distance on L we use the meet-coding x #−→ Jx

from L to 2JL defined in Chapter 3 (Proposition 3.6 and Corollary 3.12), where JL is
the set of join-irreducible elements of L and Jx = {j ∈ JL : j ≤ x}. Using the results
in Exercise 5.12 about the symmetric difference distance on the subsets of a set, we
define a distance on L which generalizes the latter and corresponds to usual metrics
in various particular cases:

Definition 7.44 Let L be a meet-semilattice. The symmetric difference distance on L
is the function δ from L2 to R+ defined by: for all x,x′ ∈ L,

δ(x,x′)= |Jx�Jx′ |
= |{j ∈ J : [j ∈ Jx and j �∈ Jx′ ] or [j �∈ Jx and j ∈ Jx′ ]}|
= |Jx \ Jx′ | + |Jx′ \ Jx|
= |Jx ∪ Jx′ | − |Jx ∩ Jx′ |.

For instance, in the lattice in Figure 7.7, δ(g, i) = |{a,b,g}|�|{b,c, i}| = |{a,g}|+
|{c, i}| = 4.

By extension of the lattice case, a meet-semilattice L is said to be distributive if
the lattice (x] is distributive for any x ∈ L. We now show that such a semilattice is
ranked and that its distance δ has expressions in terms of ranks or path lengths in the
neighborhood graph Neigh(L) of L (Chapter 1, Section 1.1.2):

Proposition 7.45 Let L be a distributive meet-semilattice, δ the symmetric difference
distance on L, and x,x′ ∈ L. Then the following properties hold:

1. L is ranked with r(x)= |Jx|.
2. δ(x,x′)= r(x)+ r(x′)− 2r(x∧ x′).
3. δ(x,x′) is the minimum path length between x and x′ in the graph Neigh(L).
4. If x∨ x′ exists, then δ(x,x′)= r(x∨ x′)− r(x∧ x′).

Proof It immediately follows from Item (1) in Proposition 5.14 that such a semi-
lattice is ranked and that the rank r(x) of an element x is |Jx|. We then obtain the
formula in Item (2) by observing that |Jx \ Jx′ | = |Jx| − |Jx ∩ Jx′ | and, similarly,
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|Jx′ \ Jx| = |Jx′ | − |Jx ∩ Jx′ |. In a distributive lattice, the map x #−→ Jx is also a join-
coding (Item (6) in Theorem 5.1). The equalities r(x ∨ x′) = |Jx∨x′ | = |Jx ∪ Jx′ | and
r(x ∧ x′) = |Jx∧x′ | = |Jx ∩ Jx′ | then provide (4) when x ∨ x′ exists. If x and x′ are
adjacent in the graph Neigh(L), for instance if x ≺ x′ holds, then the sets Jx and Jx′
differ from exactly one element. So, for arbitrary x and x′ the quantity |Jx�Jx′ | is a
lower bound for the length of a path in Neigh(L) between x and x′. This bound is
sharp since the formula in Item (2) corresponds to the existence of a path with this
length going through x∧ x′, and (3) is satisfied. �

Going back to medians, their computation requires us to determine the remoteness
Rδ(π ,x) of x from π . In Proposition 7.48, we are going to give a simple formula for
this remoteness, which involves some new definitions:

Definition 7.46 Let L be a meet-semilattice, π = (x1, ...,xi, ...,xv)∈ Lv a profile of L,
and write V = {1, ...,v}. With any join-irreducible j ∈ JL, we associate the following
parameters:

• vπ (j)= |{i ∈ V : j ≤ xi}|.
• v′π (j)= |{i ∈ V : j �≤ xi}|.
• wπ (j)= vπ (j)− v′π (j).

The element j is said to be:

• majority if 2vπ (j) > v,
• balanced if 2vπ (j)= v.

So, when j is majority, it belongs to a strict majority of the join-irreducible
representations of the elements of the profile.

When no ambiguity may occur – that is, most of the time – the index π is omitted
in the above notations.

Observe that the equalities v(j) + v′(j) = v and w(j) = 2v(j) − v are immedi-
ate. They imply that j is majority (respectively, balanced) if w(j) > 0 (respectively,
w(j) = 0).

Example 7.47 Consider the (distributive) lattice L in Figure 7.7 and the profile π =
(a,a,e, f ,g, l) of L. We have JL = {a,b,c,g, i}. The values of functions v and w are
given in Table 7.4. The unique majority join-irreducible is a, whereas b and c are
balanced.

When L is an arbitrary meet-semilattice, there is a simple formula for the remoteness
Rδ(π ,x) of an element x of L from a profile π of L.

Proposition 7.48 Let L be a meet-semilattice. For any profile π = (x1, ...,xi, ...,xv)∈
Lv and for any x ∈ L, the following holds:

Rδ(π ,x)=�1≤i≤v|Jxi |−�j∈Jxw(j).
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Table 7.4 Functions v and w on the join-irreducible elements
of the distributive lattice in Figure 7.7

j ∈ JL a b c g i
v(j) 5 3 3 1 1
w(j) 4 0 0 −4 −4

∅

b

e f

g h

u

i

ca

d

k l

L

Figure 7.7 Example 7.47.

Proof From the definition of Rδ(π ,x) we have Rδ(π ,x) = �1≤i≤vδ(xi,x) =
�1≤i≤v|Jxi�Jx|. Let ci be the characteristic function of Jxi�Jx defined by:

for any j ∈ JL,

ci(j)=
{

1 if j ∈ Jxi�Jx,

0 if not.

We then have Rδ(π ,x)=�1≤i≤v�j∈JLci(j)=�j∈JL�1≤i≤vci(j). Partitioning JL into
Jx and its complementary set, we find:

Rδ(π ,x)=�j �∈Jx�1≤i≤vci(j)+�j∈Jx�1≤i≤vci(j)=�j �∈Jxv(j)+�j∈Jx (v− v(j))

In the latter expression, we then add the quantity �j∈Jxv(j) to the first sum and
substract it from the second to obtain the required formula:

Rδ(π ,x)=�j∈JLv(j)+�j∈Jx (v− 2v(j))=�1≤i≤v|Jxi |−�j∈Jxw(j)

�
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In the latter formula, the first sum is a constant which depends only on the given
profile π whereas in the second sum the quantity−w(j) happens to be the contribution
of the join-irreducible j ∈ Jx to the remoteness of x. This contribution is negative if j
is a majority join-irreducible, null if it is balanced, and positive otherwise. In order
to obtain a remoteness as small as possible, the best is to search for an element x
of L whose representation Jx would contain all majority join-irreducibles, possibly
some balanced ones, and no others. In the sequel, the purpose is to present the class
of semilattices where such elements exist for any profile and to give the algebraic
formulas then available for the metric median. In particular, we will see that this class
generalizes the class of distributive lattices.

We first introduce a further notation:

Definition 7.49 Let π ∈ Lv be a profile of L and σ an integer. We write J (π ,σ) =
{j ∈ JL : vπ (j)≥ σ }.

This set will generally be simply denoted by J (σ ). The following result will be
useful later (in Proposition 7.53).

Proposition 7.50 Let L be a meet-semilattice, π = (x1, ...,xi, ...,xv) ∈ Lv a profile of
L, and σ an integer. The set J (σ ) is a downset of the ordered subset (JL,≤) of L.

Proof If j ∈ J (σ ), then there exists a subset W ⊆ V = {1, ...,v} such that |W | ≥ σ

and j ≤ xi for any i ∈W . Then j′ ≤ j implies j′ ≤ xi for any i ∈W and so j′ ∈ J (σ ). �

We observe that:

• For α = v+1
2 , J (α) is the set of majority join-irreducibles.

• For β = v
2 , J (β) \ J (α) is the set (empty for odd v) of balanced ones.

It follows from Proposition 7.48 that any element x of L satisfying J (α)⊆ Jx ⊆ J (β)

minimizes the remoteness Rδ(π ,x), i.e., is a median metric.

We now associate with any profile π = (x1, ...,xi, ...,xv) ∈ Lv and any integer σ

some elements of L which may – or not – exist. In some meet-semilattices, some of
these elements will provide algebraic formulas for metric medians.

Definition 7.51 For a profile π = (x1, ...,xi, ...,xv) ∈ Lv and subject to the existence
of such elements, we write:

x(σ )=
∨

J (σ ) and x′(σ )=
∨

{
∧
i∈W

xi : W ⊆ V , |W | ≥ σ }.

The second formula is a “lattice polynomial.”
We observed in Chapter 2 (Proposition 2.16) that any upper bounded subset L′ of a

meet-semilattice L has a join, which is the meet of the upper bounds of L′. Especially,
for any x ∈ L, the ordered subset {x′ ∈ L : x′ ≤ x} is a lattice.
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Proposition 7.52 Let L be a meet-semilattice, π a profile of L, and σ an integer. If any
of the elements x(σ ) and x′(σ ) exist, so does the other and the equality x(σ )= x′(σ )

holds.

Proof Assume that x′(σ ) exists and consider some j ∈ J (σ ). Then there exists a
subset W of V such that |W | ≥ σ and j ≤ xi for any i ∈ W . So j ≤ ∧

i∈W xi ≤ x′(σ ).
Then x′(σ ) is an upper bound of J (σ ), whence the existence of x(σ )with x(σ )≤ x′(σ ).

On the other hand, since the join-irreducible representation is a meet-coding, we
have J∧

i∈W xi =
⋂

i∈W Jxi = {j ∈ JL : j ≤ xi for any i ∈ W }. For |W | ≥ σ this set
of join-irreducibles is a subset of J (σ ). It follows that the element x(σ ) = ∨

J (σ ),
whose existence is ascertained by the first part of this proof, is an upper bound of∧

i∈W xi = ∨
J∧

i∈W xi . So, x′(σ ) is a join of elements all upper bounded by x(σ ),
which implies x(σ )≥ x′(σ ) and the equality.

Assume that x(σ ) exists. It is then an upper bound of any meet
∧

i∈W xi with
|W | ≥ σ . So, the element x′(σ ) exists and the previous result applies. �

In the sequel, x′(α) will be called the lattice median of π since it generalizes the
notion of a median in a distributive lattice (see page 132).

In the case where π is a profile (L1, ...,Li, ...,Ln) of linear orders, its weak majority
relation RWMAJ (π) was defined in Section 7.2 on page 208. It is immediate to check
that RWMAJ (π)=⋃{(y,x) : nπ (y,x)≥ n

2 }=
⋃{⋂i∈W Li,W ⊆N and |W | ≥ n

2 }, where
the ∪ and ∩ operations are those of the lattice P(X 2) of binary relations on X . Thus
the lattice median x′(α) happens to be a lattice formalization of the majority rule.

From Proposition 7.52, the element x(α), when it exists, has the lattice polynomial
expression x(α) = ∨{∧i∈W xi : W ⊆ V , |W | = v+1

2 } on the one hand and a join-
irreducible representation Jx(α) containing all majority join-irreducibles on the other
hand. Yet in general, the set Jx(α) also contains some join-irreducibles which are
neither majority nor balanced.

Proposition 7.53 Let L be a distributive meet-semilattice and π a profile of L. If x(α)

exists, then Jx(α) = J (α); that is, for any j ∈ JL, j ≤∨
J (α) if and only if v(j)≥ α.

Proof By definition, v(j) ≥ α implies j ∈ J (α) and so j ≤ ∨
J (α) = x(α). We

now show the converse implication. In a distributive lattice and, by extension, in a
distributive meet-semilattice, it follows from Item (4) in Theorem 5.1 that, for any
join-irreducible j ≤ x(α)=∨

J (α), there exists an element j′ of J (α) (thus a majority
join-irreducible) such that j ≤ j′. Then Proposition 7.50 implies that j is also majority
and, finally, so are all elements of Jx(α). �

We now define a class of distributive meet-semilattices where the element x(α)

always exists.

Definition 7.54 A median semilattice is a distributive meet-semilattice L such that,
for all x1,x2,x3 ∈ L, the element x1 ∨ x2 ∨ x3 exists as soon as all the three elements
x1 ∨ x2, x1 ∨ x3, and x2 ∨ x3 do.
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Table 7.5 Remoteness of elements of L from the profile π (Example 7.56)

x ∈ L ∅ a b c d e f g h i k l u
Jx ∅ a b c a,b a,c b,c a,b,g a,b,c b,c, i a,b,c,g a,b,c, i JL

Rδ(π ,x) 13 9 13 13 9 9 13 13 9 17 13 13 17

The existence of x′(α) = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3) holds for any profile
π = (x1,x2,x3) of length 3 of such a semilattice (why?). A straightforward algebraic
computation extends the existence of the lattice median x′(α) (but not that of x′(β))
to any profile of arbitrary finite length. The next characterization of medians for
the metric δ in such semilattices follows. It especially applies to distributive lattices
(which obviously are median semilattices).

Theorem 7.55 Let L be a median semilattice and π ∈ Lv a profile of L. If v is odd,
then the lattice median x(α)(= x′(α)) is the unique (metric) median of π ; if v is even,
then the set of medians of π is Medδ(π)= {∨J ′ : J (α)⊆ J ′ ⊆ J (β) and

∨
J ′ exists}.

Especially, in a distributive lattice, Medδ(π)= [x(α),x(β)].
Proof We already observed that, as a consequence of Proposition 7.48, any element

x satisfying J (α) ⊆ Jx ⊆ J (β) minimizes Rδ(π ,x). From the above considerations
and Proposition 7.52, the element x(α) = ∨

J (α) exists for any profile of a median
semilattice. Let j ∈ J such that j ≤ x(α). From Proposition 7.53, the equality Jx(α) =
J (α) holds, which proves that x(α) is a median. As we did in the latter proposition
we show that j ≤ ∨

J ′ and J ′ ⊆ J (β) imply j ∈ J (β). So the form of the elements
with the same remoteness as x(α) is

∨
J ′ with J (α) ⊆ J ′ ⊆ J (β). If v is odd, then

J (α)= J (β) and x(α) is the unique median.
In particular if x(β) exists – as is always the case in a distributive lattice – we have

Medδ(π)= [x(α),x(β)]. �

The essential fact in this result is that, in a median semilattice, the lattice median
is also a metric median. Possible other metric medians are derived from the former
by adding some “neutral” (that is, balanced) join-irreducibles.

Example 7.56 (continuing Example 7.47, on page 223) Table 7.5 gives, for each
element x of the lattice L, its representation Jx, then its remoteness Rδ(π ,x). The
latter is determined from Proposition 7.48 with �1≤i≤v|Jxi | = 13 and the values w(j)
given in Table 7.4. In this example we have x(α)= a and x(β)= h. Observe that the
set {a,d,e,h} of the medians of π = (a,a,e, f ,g,k) is the interval [a,h] of the lattice.

We have defined the median procedure for profiles of fixed length but, in fact, it
may be defined for profiles of non-fixed length. A profile may just be assumed to
have a finite length v and to belong to the set L∗ = ⋃

v∈N
Lv . Its length, denoted

by v(π), is now a parameter of the profile, with β = v(π)
2 whereas α is the
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least integer strictly greater than β. An axiomatic characterization of this more
general procedure has been obtained in median semilattices. Given two profiles
π = (x1, ...,xv(π)) and π ′ = (x′1, ...,x′v(π ′)) ∈ L∗, the concatenation of π and π ′ is
the profile ππ ′ = (x1, ...,xv(π),x′1, ...,x′v(π ′)) of length v(ππ ′)= v(π)+ v(π ′). Then,
the theorem below holds (its proof may be found in McMorris et al. (2000) – recall
that j− is the unique element covered by j):

Theorem 7.57 Let L be a median semilattice and F : L∗ #−→ (P(L) \ {∅}) an aggre-
gation procedure. Then F is the median procedure if and only if it satisfies the
properties:

Condorcet: π ∈ Lv with even v, j ∈ J (β) \ J (α), x ∈ L and x∨ j exists
imply (x∨ j− ∈ F(π) ⇐⇒ x∨ j ∈ F(π)).

consistency: π ,π ′ ∈ L∗ and F(π)∩F(π ′) �= ∅ imply
F(ππ ′)= F(π)∩F(π ′).

faithfulness: π = (x) ∈ L1 implies F(π)= {x}.

So, median semilattices constitute a type of structure where medians have a simple
characterization. Moreover, the determination of the algebraic median x(α) is easy,
as soon as that of the set Jx for any x ∈ JL and the computation of the join are so.
However, the search for medians for the symmetric difference distance in a lattice or
a semilattice of another type generally becomes difficult.

In a distributive meet-semilattice L which is not median, the conclusions in The-
orem 7.55 still apply to any profile such that x(α) exists. If x(α) does not exist, one
has to find the elements x of L of the form x = (

∨
J1)∨ (

∨
J2) where:

• J1 is a set of majority join-irreducibles such that
∨

J1 exists and maximizing
�j∈J1w(j) with this condition, and

• J2 is a set of balanced join-irreducibles such that x exists in L.

Such a search may be difficult.
When L is not distributive, it is no longer sure that x(α) is a median, even if this

element exists. Nevertheless, there remain some relations between medians and the
majority rule (Leclerc, 1994a):

Theorem 7.58 Let L be a meet-semilattice. For any profile π of L and for any median
x of π , the following properties hold:

1. If x(β) exists, then x ≤ x(β).
2. If x(α) exists, then there exists a median x′ such that x′ ≤ x∧ x(α) and such that

any element x′′ satisfying x′ ≤ x′′ ≤ x is a median.
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Proof Let x be a median of π such that x �≤ x(β). Write x′ = x∧ x(β) < x. The set
Jx \Jx′ is not empty and its elements are join-irreducibles j which are neither majority
nor balanced; that is, which satisfy w(j) < 0. The inequality Rδ(π ,x′) < Rδ(π ,x) then
follows from Proposition 7.48, a contradiction with the assumption that x is a median.

For the second part, consider a median x such that x �≤ x(α) and the element
x′′ = x ∧ x(α). As above, observe that the elements of Jx \ Jx′′ are not majority. So
they are balanced since x is a median. The equality Rδ(π ,x′′) = Rδ(π ,x) follows,
which extends to any element intermediate between x′′ and x. �

In order to go back to problems of classification aggregation, let us examine the
consequences of Theorems 7.55 and 7.57. They apply to any distributive lattice, in
particular to chains and direct products of chains such as, for example, Boolean lat-
tices and so to lattices 2E2

of binary relations on E. The interest in the formulation
of these results in the more general framework of median semilattices comes from
the observation that such semilattices, that are not lattices, are frequently encoun-
tered. Tree-ordered sets (see Exercise 2.5) provide a first class of such semilattices:
they satisfy the condition in Definition 7.54 since, in a tree-ordered set, the three
elements x ∨ x′, x ∨ x′′, and x′ ∨ x′′ exist if and only if the subset {x,x′,x′′} is a
chain.

Another class of median semilattices, neither including nor included in the previous
ones, appears when considering a set E endowed with a symmetric relation A modeling
the notion of a “compatibility” of some type. The subsets C of pairwise compatible
elements of E then correspond with the cliques of the graph G = (X ,A). We first
observe that the set of all these cliques is a downset of the Boolean lattice 2E and
so a distributive meet-semilattice (which is a lattice only in the very particular case
where G is a complete graph). Moreover, given three cliques C,C ′, and C ′′ of G, the
set (C ∩C ′)∪ (C ∩C ′′)∪ (C ′ ∩C ′′) is still a clique of G. It follows that the ordered
set of cliques of G ordered by inclusion is a median semilattice (which moreover is
atomistic). When for instance A is the comparability or the incomparability relation
of an ordered set P, we obtain:

Proposition 7.59 Let P be an ordered set. The sets of chains and of antichains of P,
ordered by inclusion, are median semilattices.

The ordered set (H,⊆)of hierarchies on E is another example of a clique semilattice,
as shown in the proof of the following result:

Proposition 7.60 The set (H,⊆) of all hierarchies on a set E, ordered by inclusion,
is a median semilattice.

Proof Consider the graph G = (P∗(E),A), with P∗(E) = {E′ ⊆ E : 2 ≤ |E′| < n}
and, for E′,E′′ ∈ P∗(E), (E′,E′′) ∈ A if and only if E′ ∩ E′′ ∈ {∅,E′,E′′}. It is easy
to see that any hierarchy H on E corresponds to a clique of the graph G, with the
addition of the trivial classes. So the ordered set (H,⊆) is a median semilattice. �
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We then check the following points:

• The atoms of the semilattice H are the hierarchies with a unique non-trivial class
H (and they are the only join-irreducibles of H).

• The symmetric difference distance between two hierarchies H and H′ is the number
δ(H,H′)= |H�H′| of classes belonging either to H or to H′ but not to both.

Consider a profile π = (H1, ...,Hv) of H. Then, it follows from Theorem 7.55 and
Proposition 7.60 that the set H(α) of all the classes belonging to more than half the
elements of π is a median hierarchy of π (for the previous distance). This median
is unique for odd v; otherwise the other medians are obtained by adding balanced
classes to H(α) (that is, classes belonging to half the elements of π ), provided that
these additions do not contradict Condition (2) in Definition 7.37.

Theorem 7.58 applies to the other classification ordered sets described in this
section (partitions, dendrograms, ultrametrics, Moore families) and also, for instance,
to the lattice of preorders or the meet-semilattice of orders.

7.4 Implicational systems, Moore families
and Galois data analysis

In many situations, the knowledge on a set E under study takes the form of a family
D of subsets of E. It is for instance the case for the clusters obtained by the use of a
classification method (as mentioned in the previous section) or for the Moore families
obtained by a Galois classification as described in Chapter 3. Other similar cases occur
in the framework of databases or knowledge representation. For instance a databasis is
frequently identified with the family D of the subsets (then often called transactions)
of the elements (or items) satisfying each possible request. In Doignon and Falmagne’s
theory of “knowledge (or learning) spaces” (1999, 2011, www/aleks.com/) the basic
set contains “knowledge units,” for instance mathematical problems of fourth-year
primary school. A “knowledge state” is the set of the problems that a pupil is able
to solve and a “knowledge structure” is a set of knowledge states; that is, a family
of subsets of the set of knowledge units. (Formally, a “knowledge space” is a dual
closure system; that is, up to a duality, a Moore family.)

In these various contexts, one frequently searches for implications (or association
rules, or functional dependencies). For instance, there exist such implications between
the above-mentioned mathematical problems; indeed any pupil able to solve some
subset A of these problems is also able to solve some other subset B (which can be
written as A−→B). This can be expressed as the fact that any element of the family D
of knowledge states which includes A also includes B and we will say that A−→ B is
a D-implication. In Definition 7.62 we will give another definition of a D-implication
and, in Proposition 7.64, we will prove the equivalence of these two definitions.
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A standard example is that of a marketing office concerned with observations such
as the following: in some “customer segment,” any coffee and filter buyer is also a
sugar buyer, which then expresses as {coffee, filter} −→ {sugar} (a famous example
associates beer with man and diaper). In fact, rather than exact implications, those
considered in the latter example are often approximate with, for instance, a condition
on a minimal proportion of cases where they are satisfied. We consider approximate
implications only in the Further topics section. As for exact implications, a significant
observation is that they may be very numerous and so an essential purpose consists
of selecting a small number of them forming a basis; that is, allowing us to recover
all others.

Let D = {A1, ...,Am} be a family of m subsets of a set E of size n. This family is
equivalent to a binary relation R on D×E which may be represented by a 0/1 array
t with m lines and n columns (where t[i, j] = 1 if j ∈ Ai). Conversely, given a binary
relation R on E′ ×E (or the associated 0/1 array), one can associate two families of
subsets : the first {Re : e ∈ E} on the set E′ and the second {e′R : e′ ∈ E′} on the set
E. In Galois data analysis the data is given in the form of a 0/1 array between a set
E′ of objects and a set E of attributes. Beware that in Chapter 3, the set of attributes
was denoted by E′ and that of objects by E but here it is more convenient to permute
these notations since we want to focus on the implications between attributes. So we
consider the implications determined by the family {e′R : e′ ∈E′}. Such an implication
A −→ B (with A,B ⊆ E) means that:

∀e′ ∈ E′,(∀e ∈ A,e′Re)=⇒ (∀e ∈ B,e′Re)

We illustrate this with the following example, which will be continued in the sequel.

Example 7.61 Using Galois lattices, Duquenne (1995) resumes an anthropological
study on 98 Javanese peasants (Schweizer, 1993). The latter are described with 31
binary attributes bearing on their housing, furniture, and livestock. Especially the six
attributes on livestock correspond to the following possessions:

H : Bantam chicken P: pedigree chicken
M : Manila duck D: (common) duck
U : water buffalo G: goat

So, we have a Galois lattice Gal(E′,E,R) (Chapter 3, Section 3.5.1) where E′ is
the set of peasants of the study, E = {D,G,H ,M ,P,U } is the set of above-mentioned
attributes, and R is the relation from E′ to E defined by (e′,e) ∈ R if peasant e′ has
livestock of type e. As said above, we are concerned with the D-implications where
D = {e′R : e′ ∈ E′}, i.e., the implications between attributes of the following type: all
the peasants who possess some given livestock species also possess some others. The
reader could check that these implications are the same as those associated with the
Moore family ψR(2E) on E, here denoted by F (see Propositions 7.63 and 7.64). The
closure operator ψR on 2E is that associated with R in Section 3.5.1: a subset F of E
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Table 7.6 The arrowed table of the lattice in Figure 7.8

DMP DHM DGH DHU DHP GH HU HP G U
D × × × × × � � � ↓ ↓
G � � × � � × ↓ ↓ × ↓
U � � � × � ↓ × ↓ ↓ ×
P × � � � × ↓ ↓ × ↓ ↓
H � × × × × × × × � �

DM × × � � �

∅

D G U P H

HPHUGH

DHM DGH DHU DHP

DGHMPU

DP DHDM

DMP

Figure 7.8 The lattice of livestock possessions (Example 7.61).

is closed by ψR if and only if there exists a class of peasants A ⊆ E′ who all share all
the possessions in F and have no others in common.

In the above example, the Moore family F has 18 elements. Figure 7.8 shows
the lattice (F ,⊆) and Table 7.6 gives the arrowed table of this lattice. The set of
meet-irreducibles of F is

MF = {DMP,DHM ,DGH ,DHU ,DHP,GH ,HU ,HP,G,U }

where, for instance, DGH is an abbreviated notation for {D,G,H }. The entire family
F is obtained by making all possible intersections of subsets of MF .

Since we observe that any closed set including M also includes D, we have the
(simple and natural) association rule M −→ D (“having Manila ducks implies hav-
ing common ducks”). We may also observe other rules, all the more interesting for
specialists since they are less expected, such as DU −→ H (“having common ducks
and water buffalo implies having Bantam chickens”). In the quoted paper, Duquenne
exhibits a set of nine particular implications allowing us to recover all the others in a
way that will be made explicit in the sequel.
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The purpose of this section is the study of the properties of the implications of
the above type together with the obtainment of a reduced subset of implications
accounting for the whole data. Let D be any arbitrary family of subsets of a given
set E. We first define the complete implicational system i(D) on P(E); that is, the
relation on P(E) formed from all the implications of the type A −→ B induced by
D (see Definition 7.62). We then characterize these relations in Theorem 7.65. A
particular Galois connection between the sets 2P(E) of families of subsets of E and
2(P(E))2

of binary relations on P(E), both ordered by inclusion, is defined. Among
other consequences, it follows that the sets F of all Moore families on E and I of
all complete implicational systems on P(E) constitute two dual lattices (Theorem
7.68). We give several properties of these lattices, useful when going back to the
search for reduced sets of implications allowing us to recover all the implications
of an element of I. The existence of such reduced sets is established, especially the
Guigues–Duquenne canonical implication basis which is described with its main
properties (Theorem 7.79 and Proposition 7.80).

As in Chapter 3 (Example 3.32) and in the previous section, we denote by m(D)=
{⋂C : C ⊆ D} the Moore family obtained by completing an arbitrary family D of
subsets of a set E with intersections. Then, in Example 7.61 above, F = m(MF ).
The definition of the closure operator ϕF on 2E associated with a Moore family F
(Definition 3.29) then extends and a complete implicational system is associated with
any family D of subsets.

Definition 7.62 Let D be a family of subsets of a set E.
(1) A map ϕD on P(E) is associated with D by writing ϕD(A) = ⋂{D ∈ D :

A ⊆ D} for any A ⊆ E. A subset F of E such that ϕD(A) = F for some A ⊆ E is said
to be D-closed (or simply closed when there is no ambiguity).

(2) A map i from P(P(E)) to P((P(E))2) is defined by writing i(D) = {(A,B) ∈
(P(E))2 : B ⊆ ϕD(A)}. The binary relation i(D) on P(E) is called the complete
implicational system associated with D. The ordered pair (A,B) ∈ i(D) is called a
D-implication (or simply an implication when there is no ambiguity) and will be
frequently written A −→D B (or simply A −→ B).

(3) A binary relation I on P(E) is a complete implicational system on P(E) if it is
equal to i(D) for some family D of subsets of E.

The expression “complete implicational system” will be abbreviated as CIS and
the set of all CIS on P(E) will be denoted by I.

It is worth noticing that the definition of ϕD implies ϕD(A) = E as soon as A is
included in no element of D (see Example 3.2).

The denomination of a D-closed set is justified by showing that the map ϕD on
P(E) is identical to the closure map ϕm(D) on 2E associated with the Moore family
m(D).
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Proposition 7.63 Let D be a family of subsets of a set E. With the previous notations,
the equality ϕD(A)= ϕm(D)(A) holds for any A ⊆ E.

Proof We already know that the meet operation of the lattice m(D) is the intersec-
tion whence ϕm(D)(A)=⋂{D ∈ m(D) : A ⊆ D}. Now since D is a meet-generating
set of m(D), ϕm(D)(A)=⋂{D ∈D : A ⊆ D} = ϕD(A) (Proposition 3.16). �

Thus, the pairs (A,B) in the relation i(D) may be characterized in several ways,
with the consequence that all implications in a CIS are obtained from a Moore family
on E, namely m(D).

Proposition 7.64 Let D be a family of subsets of a set E and A and B two subsets of
E. The following four conditions are equivalent:

1. A −→D B; that is, B ⊆ ϕD(A).
2. For any D ∈D,A ⊆ D =⇒ B ⊆ D.
3. For any F ∈ m(D),A ⊆ F =⇒ B ⊆ F.
4. B ⊆ ϕm(D)(A); that is, A −→m(D) B.

Proof (1) =⇒ (2) is a direct consequence of the definition of ϕD.
(2)=⇒ (3): let A,B⊆E satisfying Condition (2) and F be an element of m(D)\D.

If F = E, then A ⊆ E and B ⊆ E, which matches (3). Otherwise F is the intersection
of a non-empty subset C of D. Then A⊆F implies A⊆D and so B⊆D for any D ∈ C.
Thus B ⊆ F =⋂

C as required.
(3) =⇒ (4): from (3) any element of m(D) including A includes B. This is in

particular the case for ϕm(D)(A).
(4) =⇒ (1) is an immediate consequence of Proposition 7.63. �

A consequence of this proposition is that, when D is a Moore family, the CIS
i(D) may be derived from the only family MD of meet-irreducibles of the lattice D
(since m(MD) = D). Theorem 7.65 below gives a characterization of CIS which is
a variant of that by Armstrong (1974). In the literature, a relation on P(E) satisfying
the conditions of this theorem – that is, a CIS – is also called a complete family of
functional dependencies.

Theorem 7.65 A binary relation I on P(E) is a CIS if and only if it satisfies the
following three properties for all A,B,C,D ⊆ E:

1. B ⊆ A =⇒ (A,B) ∈ I .
2. (A,B) ∈ I and (B,C) ∈ I =⇒ (A,C) ∈ I .
3. (A,B) ∈ I and (C,D) ∈ I =⇒ (A∪C,B∪D) ∈ I .

Proof If I = i(D) it results from Proposition 7.64 that there exists a Moore family
F = m(D) on E such that I = i(F). Then (A,B) ∈ I is equivalent to B ⊆ ϕF (A) with
the following consequences:
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• B ⊆ A =⇒ B ⊆ ϕF (A) (since A ⊆ ϕF (A)) and Property (1) holds.
• B ⊆ ϕF (A)=⇒ ϕF (B)⊆ ϕF (ϕF (A))= ϕF (A); then C ⊆ ϕF (B)=⇒ C ⊆ ϕF (A)

and Property (2) holds.
• [B ⊆ ϕF (A) and D ⊆ ϕF (C)] =⇒ [B ⊆ ϕF (A ∪ C) and D ⊆ ϕF (A ∪ C)] =⇒

B∪D ⊆ ϕF (A∪C) and Property (3) holds.

Conversely, let I be a relation on P(E) satisfying Properties (1), (2), and (3). Write
ϕ(A) = {e ∈ E : (A,{e}) ∈ I} for any subset A of E. We first show the equivalence
(A,B) ∈ I ⇐⇒ B ⊆ ϕ(A).

It follows from (3) that (A,B) ∈ I and e ∈ ϕ(A) imply (A,B∪{e}) ∈ I . Then, it may
be shown by induction on |B| that B ⊆ ϕ(A) implies (A,B) ∈ I .

Now, assume (A,B)∈ I and consider an element e∈B. From (1), we have (B,{e})∈
I and so, from (2), (A, {e}) ∈ I ; that is, e ∈ ϕ(A). The inclusion B ⊆ ϕ(A) and the
required equivalence follow.

We then show that the map ϕ is a closure operator on P(E). Indeed, this map is:

• Extensive: from (1), e ∈ A implies e ∈ ϕ(A) whence A ⊆ ϕ(A).
• Isotone: let A and B be two subsets of E with A⊆B, and e ∈E such that (A,{e})∈ I .

Then (1) implies (B,A) ∈ I whence, from (2), (B,{e}) ∈ I . So e ∈ ϕ(B), which
implies ϕ(A)⊆ ϕ(B).

• Idempotent: since (A,ϕ(A)) ∈ I and (ϕ(A),ϕ(ϕ(A))) ∈ I , we have, from (2),
(A,ϕ(ϕ(A))) ∈ I which implies ϕ(ϕ(A)) ⊆ ϕ(A) and, since ϕ is extensive,
ϕ(ϕ(A))= ϕ(A).

We then conclude that (A,B) ∈ I if and only if B ⊆ ϕF (A), where F is the Moore
family associated with the closure ϕ; that is, I = i(F). �

According to Property (1) above, a CIS is reflexive, and, according to Property
(2), it is transitive. So, the CIS form a particular class of preorders on P(E), namely
those compatible with the dual inclusion order and satisfying Property (3) of union
preserving.

It is easy to see that the set I of all CIS on P(E) is a Moore family, which allows
us to give the following definition.

Definition 7.66 Let R be a relation on P(E). We denote by a(R) the smallest CIS on
P(E) including R.

The map R −→ a(R) is the closure operator on 2(P(E))2
associated with the Moore

family I.
The map i from 2P(E) to 2(P(E))2

was introduced in Definition 7.62. It associates
with any family of subsets D ⊆ P(E) its CIS i(D)⊆ (P(E))2. On the other hand, we
may associate a family of subsets of E with any binary relation R on P(E).
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Definition 7.67 The saturation operator s is defined on (P(E))2 by s(R)= {F ⊆ E :
A ⊆ F and (A,B) ∈ R imply B ⊆ F} for any binary relation R on P(E). The elements
of s(R) are called the saturated subsets of E for R.

Observe that saying F is saturated is equivalent to saying that the family (F] is an
“upset” of P(E) for the relation R (see Remark 5.26 on page 146).

In the next theorem, we prove that the pair (i,s) is a Galois connection with I and
F as images.

Theorem 7.68 Let E be a set. Then, with the previous definitions and notations:

1. The pair (i,s) constitutes a Galois connection between the ordered sets 2P(E) of
families of subsets of E and 2(P(E))2

of binary relations on E.
2. The image of 2(P(E))2

by s is the set F of Moore families on E and, for any D ∈ 2P(E),
the equality si(D)= m(D) holds.

3. The image of 2P(E) by i is the set I of CIS on P(E) and, for any R ∈ 2P(E)2
, the

equality is(R)= a(R) holds.

Proof In order to show (1) we first establish Item (2) in Theorem 3.39: for all
D ∈ 2P(E), R ∈ 2(P(E))2

, D ⊆ s(R) is equivalent to R ⊆ i(D).
Assume D ⊆ s(R) and show that any pair (A,B) ∈ R belongs to i(D); that is,

B ⊆ ϕD(A) = ⋂{D ∈ D : A ⊆ D}. We search for the elements D of D including A.
If there is no such element then, by definition, (A,B) ∈ i(D) since, in the lattice 2E ,
the meet of the empty family is E. Otherwise, by assumption, these subsets D belong
to s(R), which means that all of them include B. So B ⊆ ϕD(A) and (A,B) ∈ i(D).
Finally D ⊆ s(R) implies R ⊆ i(D).

Assume R⊆ i(D) and show that any element D of D belongs to s(R)={F ⊆E : A⊆
F and (A,B)∈R imply B⊆F}. If there is no pair (A,B)∈R with A⊆D, then D∈ s(R)

holds. Otherwise any such pair satisfies (A,B) ∈ i(D) whence, from Definition 7.62,
B ⊆ ϕD(A)⊆ D. So we obtain D ∈ s(R) and R ⊆ i(D) implies D ⊆ s(R) as required.

Let us show (2). Obviously, E ∈ s(R) for any relation R on P(E). Let F ,F ′ ∈ s(R)

and a pair (A,B) ∈ R such that A ⊆ F ∩F ′. We then have A ⊆ F and, by assumption,
B⊆F and similarly A⊆F ′ and B⊆F ′, whence B⊆F∩F ′. Thus F ,F ′ ∈ s(R) implies
F ∩F ′ ∈ s(R), whence s(R) ∈ F. So the image of 2(P(E))2

by s is included in the set F.
Let F be a Moore family on E. From the properties of Galois connections, si is a

closure operator on 2P(E), with F ⊆ si(F)= G. So the set G is a Moore family on E
and is, by definition of the map s, the set of the subsets G of E such that (A,B)∈ i(F)

and A⊆G imply B ⊆G. In other terms A⊆G implies B ⊆G and, if B ⊆ ϕF (A) then
B ⊆ ϕG(A). The inequality ϕF ≤ ϕG for the exponentiation order follows, which,
according to Proposition 3.26, implies G ⊆F and so F = G. Thus any Moore family
belongs to the image of 2(P(E))2

by s and the equalities s(2(P(E))2
)= si(2P(E))=F hold.

If D is an arbitrary family of subsets of E, then si(D) is the smallest Moore family
including D; that is, m(D).
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Figure 7.9 A Moore family F and the non-trivial implications of its associated CIS.

Finally, (3) is a direct consequence of Definition 7.62 together with the fact that
the relation a(R) (see Definition 7.66) is the smallest CIS including R. �

From Item (3) in Theorem 3.41, we obtain the following:

Corollary 7.69 The ordered sets (F,⊆) of Moore families on E and (I,⊆) of CIS on
P(E) are two dual lattices.

We will say that an implication A−→B is trivial if B⊆A. The example in Figure 7.9
shows the non-trivial implications of the CIS associated with a Moore family F .

According to the above theorem, the set F of Moore families on E (respectively,
the set I of CIS on P(E)) is a Moore family on P(E) (respectively, on (P(E))2).
The ordered sets (F,⊆) and (I,⊆) are dual lattices. The minimum of the lattice F is
the Moore family {E} and its maximum is P(E). Its atoms are the Moore families
FA = {A,E} for any A ⊂ E. The minimum of the lattice I is the dual of the inclusion
order on P(E) (why?) and its maximum is i({E})= (P(E))2.

Since F is the lattice of the families of 2P(E) closed by m, Proposition 3.28, Def-
inition 3.29, and their comments lead to the first of the following expressions, the
second being easy to obtain:

for all F ,F ′ ∈ F,F ∨F ′ = m(F ∪F ′)= {F ∩F ′ : F ∈F ,F ′ ∈F ′}
These expressions of the join in the lattice F allow a simple proof of the next

proposition which implies that any Moore family is a join of atoms FA. As above,
MF denotes the set of meet-irreducibles of the lattice F (that is, the subsets F which
cannot be obtained as the intersection of other elements of F).

Proposition 7.70 Let F be a Moore family on a set E and D a subset of F \ {E}.
Then, the equality F =∨{FD : D ∈D} in the lattice F is equivalent to the inclusion
MF ⊆D.
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Proof If D is a subset of F \ {E}, then the equalities

m(D)= m(D∪{E})= m(
⋃

{{D,E} : D ∈D})=
∨

{FD : D ∈D}

hold, where the latter is a consequence of the first expression of the join in F given
above. If D includes MF then, according to the second expression of the join, the
equality m(D) = ∨{FD : D ∈ D} = F follows. On the contrary, if there exists a
meet-irreducible A of F which does not belong to D, then A cannot be obtained as
the intersection of other elements of F , and so of D, and A does not belong to the
Moore family

∨{FD : D ∈D} which cannot be equal to F . �

According to this proposition, every Moore family is a join of atoms; that is,
the lattice F is atomistic (Definition 3.13). Moreover, any Moore family F has a
unique minimal join-irreducible representation corresponding to D = MF . As a
consequence the lattice F is lower locally distributive (see page 158). Precisely it is
a convex geometry (see the end of Section 5.6). The covering relation of F is easily
characterized:

Proposition 7.71 Let F and G be two Moore families on a set E. Then G covers F
in the lattice F of Moore families if and only if there exists a meet-irreducible A of G
such that G =F +{A}.

Proof Assume that there exists a subset A of E such that G is equal to F + {A}.
Then A ∈ MG since otherwise F is not intersection-stable. And G covers F in the
lattice F since the two families differ from only one element.

Conversely, assume G covers F in the lattice F and there exist two subsets A
and A′ of E such that {A,A′} ⊆ G \F . We then have G = F ∨FA = F ∨FA′ in F,
which implies the existence of two elements G and G′ of F such that A=G∩A′ and
A′ = G′ ∩A, whence A′ = G∩G′ ∩A′. So A′ ⊆ G and A = G∩A′ = A′. �

The map i (Definition 7.62) sends the join-irreducibles of the lattice F – that is,
its atoms – to the meet-irreducibles of the dual lattice I – that is, its coatoms. The
latter are characterized in Exercise 7.24. By duality with F, the lattice I is upper
locally distributive, which in particular implies that any CIS has a unique minimal
meet-irreducible representation.

Remark 7.72 Let E be a set and R a relation on P(E). The closure map is(R) is the
intersection of the CIS including R. So, it is the intersection of all the meet-irreducibles
of the lattice I which include R.

In what follows, we go back to the representations of a CIS is(R) as the join of a
set of elements of the lattice I, especially to the representations by bases (with the
notion of a basis defined in Definition 7.74). We first need the following lemma.

Lemma 7.73 Let A and B be two subsets of a set E.
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1. The family of subsets FA,B = {F ⊆ E : A �⊆ F or B ⊆ F} is a Moore family and the
relation [A −→ B] = {(C,D) ∈ P(E)2 : C �⊆ A or D ⊆ B} is a CIS. The equalities
FA,B = s({(A,B)}) and [A −→ B] = i(FA,B)= is({(A,B)}) hold.

2. For any relation R on P(E), the equality is(R)=∨{[A −→ B],(A,B) ∈ R} holds.
3. G = {[A −→ B] : A,B ⊆ E} is a join-generating set of the lattice I of CIS.

Proof (1) is straightforward from the definitions of the maps i and s and
Theorem 7.68.

For (2), consider a relation R on P(E). First observe that, since is is a closure map on
2(P(E))2

(as a consequence ofTheorem 7.68), we have is({(A,B)})=[A−→B]⊆ is(R)

for any pair (A,B) ∈ R. The inclusion
∨{[A −→ B] : (A,B) ∈ R} ⊆ is(R) follows,

where the join is that of the lattice I. We also have (A,B) ∈ is({(A,B)})= [A −→ B],
whence R⊆⋃{[A−→ B] : (A,B) ∈ R} ⊆∨{[A−→ B] : (A,B) ∈ R} and so, since the
latter element is closed by is, is(R)⊆ is(

∨{[A−→ B] : (A,B) ∈ R})=∨{[A−→ B] :
(A,B) ∈ R}. So the equality in (2) is obtained.

Taking an element R ∈ I we have R = is(R) = ∨{[A −→ B] : (A,B) ∈ R}. So, any
CIS is obtained as a join of elements of the subset G of I, which is (3).

�

Definition 7.74 Given a CIS I , a relation R on P(E) is said to be a basis of I if
is(R)= I and R is minimal for inclusion with this property.

Given a Moore family F on E, a relation R on P(E) is said to be an implication
basis of F (or of the associated closure ϕF ) if R is a basis of the relation i(F) (or
equivalently if s(R)=F).

In other terms, the relation R is a basis of a CIS I if I is the smallest CIS including
R and if the closure is(R′) of any proper sub-relation R′ of R is strictly included in
I . Similarly an implication basis of a Moore family F – or of the associated closure
ϕF – is a minimal set of implications which generates F (by the map s). It results
from Item (2) in Lemma 7.73 and Corollary 3.12 that the set G of implications of
the type [A −→ B] contains the join-irreducibles of I (that Exercise 7.24 proposes
to characterize). It is then clear that any minimal join-irreducible representation of a
CIS I of I corresponds to a basis of I . Nevertheless, the important point is that there
also exist bases of I (or F) the elements of which are not join-irreducibles of I and
which contain in general a smaller number of implications. This is the case for the
so-called Guigues–Duquenne canonical implication basis. Such a basis is defined for
any CIS I and so for the corresponding Moore family F = s(I) (it is also defined for
any family D such that m(D)=F). It will be denoted by KF in the sequel.

Obviously, it is possible to delete a closed set F from a Moore family without
leaving F if and only if F is a meet-irreducible of F. The following definitions, which
focus on possible additions, will allow us to characterize the Guigues–Duquenne basis
in Theorem 7.79 and to explain in Proposition 7.80 in what sense it is “canonical.”
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Figure 7.10 A Moore family F and its Guigues–Duquenne canonical basis.

We will go back to the importance of this basis in Section 7.6.4 of Further topics and
references.

Definition 7.75 Let F be a Moore family on a set E and F ∈F . A subset Q of E is:

• A quasi-closed set of F if Q �∈F and F +{Q} ∈ F.
• An F-quasi-closed set of F if Q is a quasi-closed set of F and ϕF (Q)= F .
• An F-critical set of F if Q is an F-quasi-closed set of F and is minimal with that

property.
• A critical set of F if Q is F-critical for some F ∈F .

The set of critical sets of F is denoted by CF . The Guigues–Duquenne canonical
implication basis of F is the relation KF = {(Q,ϕF (Q) \Q) : Q ∈ CF }, which also
writes as the set of implications KF = {Q −→F ϕF (Q) \Q : Q ∈ CF }.

Observe that a set Q �∈ F is a quasi-closed set of F if Q ∩ F ∈ F + {Q} for any
F ∈F , which also writes as m(F +{Q})=F +{Q}.

The previous definitions are illustrated on the Moore family F in the following
example.

Example 7.76 Figure 7.10 shows a Moore family F given in its lattice form. Its
F-quasi-closed sets are 4 (for F = 34) and 12, 13, 134, 23, and 234 (for F = 1234).
Its critical sets are 4, 12, 13, and 23 and its canonical implication basis is {4 −→F
3,12 −→F 34,13,−→F 24,23 −→F 14}.

The definitions in Definition 7.75 immediately extend to any family D of subsets
of E by replacing F with m(D). Exercise 7.25, where particular bases are associated
with any implication basis of F , allows us to possibly replace implications of the type
Q −→F ϕF (Q)\Q with those of the type Q −→F ϕF (Q). Observe that this simpler
general formulation in fact corresponds to redundant implications in the sense that
the elements of Q are repeated in their right-hand part.
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Proposition 7.71 implies the existence of quasi-closed sets – and so of critical sets –
for any Moore family F on E, different from the maximum P(E) of the lattice F.
Indeed in this case, F is covered by G = F + {Q} (so with Q a quasi-closed set of
F). Exercise 7.26 leads to the recognition of some critical sets.

Example 7.77 Consider again the Moore family F of Example 7.61. The set Q of
quasi-closed sets of F is given by:

Q= {M ,DG,DU ,GP,GU ,PU ,GHP,GHU ,GPU ,HPU ,DGHM ,DGHP,DGHU ,
DHMP,DHMU ,DHPU ,GHPU ,DGHMP,DGHMU ,DGHPU ,DGMPU ,DHMPU }

For instance, DG is a quasi-closed set of F since the intersection of any closed set
of F with DG belongs to {∅,D,G,DG}. It is not the same for GM since its intersection
with the closed set DM is M which is not closed. With some patience, the reader may
check the above list of quasi-closed sets. On the other hand, he can easily check
that ϕF (M ) = DM , ϕF (DG) = DGH , ϕF (DU ) = DHU , and ϕF (Q) = E in all
other cases. Applying the above definitions, we observe that M is DM -critical, DG
is DGH -critical, DU is DHU -critical, whereas GP, GU , PU , DGHM , DHMP, and
DHMU are E-critical. So the canonical implication basis KF of F is formed of the
following nine implications:

(1) M −→F D (2) DG −→F H (3) DU −→F H
(4) GP −→F DHMU (5) GU −→F DHMP (6) PU −→F DGHM
(7) DHMU −→F GP (8) DHMP −→F GU (9) DGHM −→F PU

Note that the three pairs (4) and (7), (5) and (8), (6) and (9) are pairs of converse
implications: for instance, GP (possession of goat and pedigree chicken) implies
DHMU (possession of common duck, Manila duck, Bantam chicken, and water
buffalo) and conversely. The six left-hand terms in these implications are the minimal
sets the presence of which implies that of all species of the livestock.

The justification of the “canonical basis” denomination has two parts. The follow-
ing theorem states that the previously defined set KF of implications is an implication
basis – in the sense of Definition 7.74 – of the Moore family F . Then, we specify
how this basis is canonical, this time referring to the literature for a proof. We first
give a proposition which will be useful in the proof of the theorem. It is related to
several results of this section (Proposition 7.71 and Exercise 7.26).

Proposition 7.78 Let F and G be two Moore families on a set E with F ⊂ G, and A
an element of G \F .

1. If A is minimal w.r.t. inclusion in G \F , then A is a quasi-closed set of F .
2. If A is maximal w.r.t. inclusion in G \F , then A is a meet-irreducible of the lattice G.

Proof (1) Let A be a minimal element of G \ F . If A is not a quasi-closed set
of F , then there exists a closed set F in F with A ∩ F �∈ F + {A}. Then we have
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A∩F ⊂ A and, since A∩F ∈ G \F , we find a contradiction with the assumption that
A is minimal.

(2) Let A be a maximal element of G \F . If A is not a meet-irreducible of (G,⊆),
then there exist G,G′ ∈ G with A = G ∩G′, A ⊂ G, and A ⊂ G′. By the maximality
assumption on A, this implies G,G′ ∈F and so A ∈F , a contradiction. �

Theorem 7.79 Let F be a Moore family on a set E and CF the set of critical sets
of F . Then the relation KF = {(Q,ϕF (Q) \Q) : Q ∈ CF } on P(E) is an implication
basis of F .

Proof The relation KF is an implication basis of F if s(KF ) = F , where s is the
saturation operator (given in Definition 7.67), and if F is minimal for this equality.

We first show the equality; that is, {F ⊆E : (A,B)∈KF and A⊆F imply B⊆F} =
F . The inclusion F ⊆ s(KF ) is obtained when observing that, by Definition 7.62,
any implication Q −→ ϕF (Q)\Q of KF belongs to the relation i(F). So KF ⊆ i(F),
whence F = m(F) = si(F) ⊆ s(KF ). Indeed, the former equality follows from the
fact that F is a Moore family and so is closed by m, the latter from Item (2) in
Theorem 7.68, and the inclusion from the antitony of the map s, a consequence of
Item (1) in the same theorem.

Now, we show that this inclusion is in fact an equality; that is, any subset A of E
which belongs to s(KF ) also belongs to F . To do so, we first characterize the subsets
A ∈ s(KF ). We deduce s(KF ) = sis(KF ) from the properties of Galois connections
(Item (1) in Theorem 3.41). The previously observed formula is(KF ) = ∨{[Q −→
ϕF (Q)\Q] : Q ∈ CF } (Lemma 7.73) implies s(KF )=⋂{s([Q−→ ϕF (Q)\Q]) : Q ∈
CF } =⋂{FQ,ϕF (Q)\Q : Q ∈ CF }, since the restriction of s to I is a dual isomorphism
between the lattices I and F and since s({(A,B)}) = FA,B (Item (1) in Lemma 7.73).
In other terms, a subset A of E belongs to s(KF ) if and only if, for any Q ∈ CF , it
satisfies the property [Q �⊆ A or ϕF (Q) \ Q ⊆ A], which also simply expresses as
[Q �⊆ A or ϕF (Q)⊆ A].

Assume F ⊂ s(KF ) and consider a subset Q, minimal in s(KF ) \F . From Propo-
sition 7.78, Q is a quasi-closed set of F . Then, there exists a critical set Q′ ∈ CF for
which the inclusions Q′ ⊆ Q and Q ⊂ ϕF (Q′) = ϕF (Q) hold, a contradiction with
our assumption that Q belongs to s(KF ). So we have F = s(KF ) as required.

Finally, we complete the proof by showing that the relation KF is minimal w.r.t.
the equality s(KF ) = F . We have to show that, for any Q ∈ CF , the strict inclusion
F ⊂ s(KF \ {(Q,ϕF (Q)\Q)}) holds. This is satisfied since Q is not an element of F
and we are going to show that Q ∈ s(KF \{(Q,ϕF (Q)\Q)})=⋂{FQ′,ϕF (Q′)\Q′ : Q′ ∈
CF \{Q}}. So we have to show that, for any Q′ ∈ CF \{Q}, Q′ �⊆Q or ϕF (Q′)\Q′ ⊆Q.
Indeed let Q′ ∈ CF \ {Q}. If Q′ �⊆ Q, then Q ∈ FQ′,ϕF (Q′)\Q′ . Otherwise, we have
to show that ϕF (Q′) \ Q′ ⊆ Q. Since Q is quasi-closed, Q ∩ ϕF (Q′) ∈ {Q} ∪ F .
Now Q∩ϕF (Q′) = Q would imply Q ⊂ ϕF (Q′) whence, since Q′ ⊂ Q is assumed,
ϕF (Q) = ϕF (Q′), which is impossible (since Q and Q′ are critical sets). So Q′ ⊂
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Q ∩ ϕF (Q′) ∈ F and, as a consequence, ϕF (Q′) = Q ∩ ϕF (Q′). Now, since Q is a
critical set, ϕF (Q′)⊂ Q and ϕF (Q′) \Q′ ⊂ Q as required. �

To end this section we state a property of the canonical implication basis KF of
a Moore family F which implies, in particular, that this basis has a minimal size
among all implication bases of F . Moreover, any implication basis of the same size is
related to KF . In fact, Proposition 7.80 below is a simplified version of Theorem 51
in Caspard and Monjardet (2003). The proof is omitted and we refer the reader to this
paper for a more complete characterization of implication bases of F with its proof.
There one also finds further references and a survey of the terminology variants on
this topic in the literature.

The following statement uses the – easy to prove – fact that the family obtained by
adding all its quasi-closed sets to a Moore family F is still a Moore family G. The
closure operator associated with G is denoted by σ .

Proposition 7.80 Let F be a Moore family on a set E and R= {(A1,B1), ...,(Ar ,Br)}
an implication basis of F . Then, for any critical set C ∈ CF , there exists i ∈ {1, ...,r}
such that Ai ⊆ σ(Ai)= C.

Thus, any relation R on P(E) including an implication basis of a Moore family F
(that is, such that s(R) = F) has a size greater than or equal to that of the canonical
implication basis KF . Exercise 7.29 shows that the size of KF may be large.

7.5 Orders in scheduling

The word “scheduling” has several meanings. Here we use it within the framework of
management and operations research. In the most general way, one must temporally
assign some resources to a set of interdependent jobs (or tasks), that are required to
carry out a given project. More precisely, we will focus here on the problems of the
following type: so as to carry out this project, one has a number of resources (CPUs,
machines, etc.) used to execute the jobs, some of which have to be completed before
some others may get started; then the problem is about finding a temporal allocation
of the resources to the jobs, which is optimal with respect to some criterion. That kind
of problem has many variants, for which one must search for algorithms to obtain
an optimal solution and study their complexity. In the Further topics and references
section, as well as in Appendix A, we provide some general references on these
scheduling problems and on the complexity of the solving algorithms. Yet, in the
present section, we are only concerned with showing the ordinal aspects of some of
these problems and, so, we limit ourselves to presenting three of them, simple but
classic. The fact that the first two problems have an ordinal dimension is obvious since
the precedence constraints between jobs involve a strict (most often partial) order on
the latter. The third problem will illustrate a case which, although it is free from
precedence constraint, will also lead us to consider an order and its linear extensions.
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In the first two problems, the basic assumptions on the jobs and the machines require
that the jobs may not be parceled out, that each machine can only carry out one job
at a time, and that each job be carried out without interruption.

The criterion to minimize in the first problem is a cost whereas, in the last two,
it is the completion time of all the jobs; that is, the total duration of the project
(nevertheless, “time is money”!).

In the sequel, all ordered sets are assumed to be strict and the word “order” will
always stand for “strict order.”

7.5.1 The single-machine scheduling problem

We first consider the easiest variant of the problem, whose mathematical modeling
is as follows:

• An ordered set P = (X ,<), where X ={x,y,z, ...} is the set of the n jobs to be carried
out and where < is the order on the jobs given by some precedence constraints:
x < y if job y may not start before job x is completed.

• A machine to carry out the jobs.

In such a problem, the various possible orders for the execution of the set of jobs
are then all linear extensions of P. It is assumed that a cost is associated with each of
these linear extensions. The problem then becomes to determine a linear extension
of minimal cost.

Suppose for instance that, when x and y are two jobs incomparable for the prece-
dence order on jobs, carrying out y just after x has a cost, namely c(x,y). In a linear
extension of P containing the ordered pair (x,y), the latter then constitutes a jump
(Chapter 1, Definition 1.32) and the cost of that extension is the sum of the costs of
its jumps. If one moreover assumes that the cost of a jump is constant, the obtained
problem is to find a linear extension minimizing the number of jumps. This problem
is known to be NP-hard but may become polynomial for some classes of orders (see
Appendix A). A fortiori, the same observations may be made, in the case where the
costs of the jumps are no longer constant, on the problem of minimizing the sum of
the costs of the jumps.

A more realistic version of the single machine problem is the following: with a
job x are associated its execution time t(x) and a weight p(x). Consider a possible
scheduling of the jobs; that is, a linear extension L = x1...xi...xn of their precedence
order. Thus the job xi is ended at the time d(xi) = �j≤it(j). Then, with the linear
order L is associated the quantity D(L)=�n

i=1p(xi)d(xi), called the average weighted
completion time. The problem is then to find a linear extension of the precedence order
that minimizes that quantity. This optimization problem is in general very difficult
(NP-hard in the sense given in Appendix A). It may however be solved for some
order classes, such as the class of series–parallel orders. These results will be found
in Section A.2.3 of Appendix A.
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7.5.2 The m-machine scheduling problem

The considered mathematical model is the following:

• An ordered set P = (X ,<), where X ={x,y,z, ...} is the set of the n jobs to be carried
out and where < is the order on the latter given by some precedence constraints:
x < y if job y may not start before job x is completed.

• A set I = {1,2, ...,m} of m identical parallel machines to carry out the jobs.

The problem consists of finding an optimal scheduling of the jobs; that is, a
scheduling which minimizes the total completion time.

Saying that the machines are identical, we mean that each of them will carry out
a given job with the same duration time. Saying that they are parallel, we mean that
they can execute different jobs simultaneously. On the other hand, x < y means that
job y may not start on any machine before job x has been completed on any machine.
Time is measured by a (positive) integer and, in order to simplify the exposition, we
will assume here that executing a job takes a constant time independent of the job
and chosen equal to 1 time unit.

The notion of a scheduling in such a model is then formalized by the following
definition:

Definition 7.81 Let P = (X ,<) be an ordered set (of jobs) and I = {1,2, ...,m} a set
(of machines). An m-scheduling of P is a map f = (f1, f2) from P to the direct product
I ×N, such that the map f2 is strictly isotone (i.e., x < y implies f2(x) < f2(y)).

This definition must be understood as follows:

• The map f1 assigns a machine to a job: f1(x)= i if machine i is assigned to job x.
• The map f2 measures the execution time: f2(x)= p if job x is carried out during the

pth time unit. The fact that f2 must be isotone is the expression of the precedence
constraints on jobs.

Example 7.82 The set X of jobs is {a,b,c,d,e, f ,g} and their precedence order is
given by the diagram in Figure 7.11(a). Two machines are available. A 2-scheduling
is given by the table in Figure 7.11(b): the first machine successively executes the
jobs a,c,e,g, the second deals with the jobs b,d, f . Such a table is called a Gantt
chart.

The criterion chosen to determine an optimal scheduling is that of the total comple-
tion time of the n jobs; that is, max{f2(x),x∈P}, denoted by Cmax(f ).An m-scheduling
problem is then defined as follows:

Definition 7.83 For a given ordered set P, the m-scheduling problem consists of
minimizing the value of Cmax(f )= max{f2(x),x ∈ P} on all m-schedulings f of P.
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Figure 7.11 (a) An ordered set P of jobs and (b) the Gantt chart of a 2-scheduling of P.

We first give a number of translations of the latter problem by presenting, in an
ordinal framework, several equivalent notions of an m-scheduling. To do so, we use
strict weak orders (see Proposition 7.4), the width, the range, the extensions, and the
lattice of downsets of an ordered set (Definitions 1.30, 1.31, and Theorem 5.6).

Proposition 7.84 Let P = (X ,<) be an ordered set and k an integer. The following
properties are equivalent:

1. P has an m-scheduling of completion time equal to k.
2. P has as an extension a weak ordered set of width at most equal to m and of

range k.
3. In the lattice D(P) of downsets of P, there exists an extended chain ∅ = D0 ⊂

D1 ⊂ ...⊂Dk =X of length k and such that, for i = 1,2...,k, the set Ai =Di \Di−1

contains at most m maximal elements of Di.

Proof (1) =⇒ (2): given an m-scheduling f = (f1, f2), the map f2 induces a weak
order O including the order of P and defined by xOy if and only if f2(x) < f2(y)
(see Proposition 7.4); since an antichain of size t of this order corresponds to a set
of t jobs incomparable for the precedence order – so to which t distinct machines
can be simultaneously assigned – the size of the antichain is at most m; since the
order is weak, its range is the number of such antichains and so, is equal to the total
completion time of all jobs, i.e., the integer k .

(2) =⇒ (1): let O be a weak order, extension of P, of width at most m and of range
k . According to Proposition 7.4, it may be written as a linear sum A1 ⊕A2 ⊕ ...⊕Ak

of k antichains, each of size at most m. We write Ai = {xi1, ...,xiqi } with 1 ≤ qi ≤ m.
An m-scheduling f = (f1, f2) is realized by writing, for i = 1,2, ...,k and j = 1,2...,q,
f1(xij)= j and f2(xij)= i.

(2) ⇐⇒ (3): we know (see Remark 5.33) that the weak orders of range k which
are extensions of the order of P are in a one-to-one correspondence with the extended
chains of length k of the lattice of downsets of P. In this correspondence, Ai =
Di \Di−1 (i = 1, ...,k) is the antichain of rank i of the weak order, whence the second
condition of (3). �
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It follows from this proposition that the problem of searching for an m-scheduling
of P which minimizes the completion time comes down to searching for an extended
chain ∅ = D0 ⊂ D1 ⊂ ... ⊂ Dk = X in the lattice of downsets of P such that, for any
i = 1,2, ...,k , the set Ai = Di \Di−1 contains at most m maximal elements of Di, and
whose length k is minimal. So, in the m-scheduling, Ai is the set of the jobs which
are executed during the ith time unit and its size is at most m.

One may also state this problem in terms of graphs. Given the ordered set P =
(X ,<), one builds the directed graph Gm(P) whose vertices are all downsets of P
and whose arcs are the ordered pairs (D,D′) of downsets such that D ⊂D′ and where
D′ \D has at most m maximal elements of D′. Searching for an optimal m-scheduling
of P is then reduced to the search for a shortest path from the subset ∅ to the subset
X in the graph Gm(P).

We illustrate this procedure in Example 7.82, where m= 2. The lattice of downsets
of the ordered set P in this example (Figure 7.11) is represented in Figure 7.12(a). In
this lattice one only needs to build the graph G′

2(P), keeping only some of the vertices
of G2(P) defined as follows: starting from a kept vertex D (which in the beginning is
the empty set), one keeps all vertices D′ and all arcs (D,D′) where D′ is a downset of
the form D+A with A an antichain of size 2 or maximal of size 1. In Figure 7.12(a)
the graph G′

2(P) is represented on the diagram of D(P) as follows: its vertices are the
labeled ones and its arcs are represented either by an arrow put on the used covering arc
or by a dotted arc when the used arc is not covering. We see in this figure that there exist
three paths from the subset ∅ to the subset X , among which one of length 5 and two of
length 4, the latter two thus corresponding to two optimal 2-schedulings of P. Figure
7.11(b) shows one of these two schedulings, which corresponds to the first weak order
represented in Figure 7.12(b). As for the second weak order represented in the latter,
it corresponds to the path of length 5 in G′

2(P) and so with a non-optimal scheduling.
What precedes allows us to obtain complexity results. Since the search for a shortest

path in a graph may be done in polynomial time, it will be the same when searching for
an optimal m-scheduling of P, as soon as building Gm(P) will itself take a polynomial
time. In particular, since the number of antichains – and so of downsets – of an ordered
set of size n and of width at most � is bounded by n� (why?), the following result is
obtained:

Corollary 7.85 For some fixed integer �, the m-scheduling problem (with m ≤ �),
restricted to the class of ordered sets the width of which is at most �, can be solved in
polynomial time.

7.5.3 The two-step (and two-machine) scheduling problem

In this problem, the jobs to be carried out must be executed in two steps on two different
machines. Machine M executes the first part of job xi in time ti, and machine M ′ deals
with the second part in time t′i , which may start only after the end of the execution of
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Figure 7.12 (a) The lattice D(P) and the graph G′
2(P) of the ordered set P in Figure

7.11(a); (b) two weak orders of width 2, extensions of P.

the first part on M . Unlike the previous problems, no precedence constraint between
jobs is assumed here but we always suppose that each machine can execute one (part
of a) job at a time and that it carries it out without any interruption.

The mathematical model is as follows:

• A set X = {x1,x2, ...,xn} of n jobs to be carried out.
• A map f from X to the direct product R+ × R+ : f (xi) = (ti, t′i), where ti

(respectively, t′i) is the execution time of xi on machine M (respectively, on
machine M ′).

The problem consists of finding an optimal scheduling of the jobs; that is, a
scheduling which minimizes the total completion time.

Here a scheduling can be expressed as a pair (L,L′) of linear orders on X : machine
M executes the first parts of the jobs in the order of L and machine M ′ executes the
second parts in the order of L′.

First notice that an optimal scheduling of the form (L,L) can always be obtained.
Indeed, consider on the one hand the linear order L written as a permutation x1x2...xn

on X and on the other hand the principal downset x1x2...xixj of the linear order L′ up
to the first element xj (j > i+1), where L and L′ differ (to simplify the notation, xi in
these orders stands either for the first or the second part of the job). This implies that
xj and xi+1 have already been made on M . If we change L′ by inserting xi+1 between
xi and xj and by executing on M ′ the remaining jobs as soon as possible, then the
total completion time may not be increased (the reader can easily check that with a
drawing).
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Table 7.7 Minimums of execution times

min(ti , t′j) t′1 = 3 t′2 = 5 t′3 = 2 t′4 = 3

t1 = 1 1 1 1
t2 = 4 3 2 3
t3 = 2 2 2 2
t4 = 4 3 4 2

x1

x2

M

M x4

x4x2x3

x1 x3

0 1 3 4 6 7 11 12 15

Figure 7.13 Gantt chart of an optimal scheduling on the jobs x1,x2,x3,x4.

From now on, we search for an optimal scheduling given by a linear order L on X .
Machine M will execute the first parts of the jobs without interruption and following
the order L, so in a time equal to �n

i=1ti. Machine M ′ will execute the second part of
a job from the moment that the execution of the first part is finished by M (so with
possible interruptions).

Example 7.86 Figure 7.13 uses a Gantt chart to illustrate such a scheduling for the
following example: X = {x1,x2,x3,x4} and the execution times on M and M ′ are
given in Table 7.7.

Intuitively, one conceives that job xi should be executed early if ti is small and late
if t′i is large. More precisely, the following result holds, whose (non-difficult) proof
is left as an exercise (Exercise 7.34).

Lemma 7.87 Let x1...xk−1xk ...xl ...xn be the order L on the jobs. If job xl (l > k) satis-
fies tl ≤ min(tk , t′l), the order L′ = x1...xk−1xlxk ...xl−1xl+1...xn obtained by inserting
xl between xk−1 and xk has a completion time at most equal to that given by L.

In this case, one then considers that one had better execute xl before xk . The same
result holds if t′k ≤min(tk , t′l). This leads to defining a relation < on the set X of jobs,
that is shown to be a strict order:

Lemma 7.88 The relation < defined on X by xi < xj if min(ti, t′j) < min(tj , t′i) is a
strict order.

Proof In a linearly ordered set like (R+,≤) the minimum of two elements u and v

is equal to their meet: min(u,v)= u∧v. Since < is irreflexive, we just have to prove
its transitivity; that is, if ti ∧ t′j < tj ∧ t′i and tj ∧ t′k < tk ∧ t′j hold, so does ti ∧ t′k < tk ∧ t′i .
Now ti ∧ t′j < tj ∧ t′i and tj ∧ t′k < tk ∧ t′j imply (ti ∧ t′j)∧ (tj ∧ t′k) < (tj ∧ t′i)∧ (tk ∧ t′j).
The latter inequality may be rewritten as (ti ∧ t′k)∧ (tj ∧ t′j) < (tk ∧ t′i)∧ (tj ∧ t′j), which
in turn implies (since R+ is linearly ordered) that ti ∧ t′k < tk ∧ t′i , as required. �
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We call priority order (of the two-step scheduling problem) the order < defined
above. Lemma 7.87 then implies that, if xl is after xk in the order L on jobs and before
or incomparable to xk in the priority order, L may be modified by inserting xl before
xk without increasing the execution time. The following result then holds:

Proposition 7.89 All linear extensions of the priority order of a two-step scheduling
problem are optimal schedulings.

Proof Consider an arbitrary scheduling L. If it is not a linear extension of the
priority order <, there exist xi,xj such that xi < xj and xjLxi. The transformation given
in Lemma 7.87 can then be made by putting xi between xj−1 and xj in L, which does
not increase the completion time. Iterating this operation, we obtain a linear extension
of the priority order which does not increase the completion time. In particular, if L is
an optimal scheduling we obtain a linear extension of the priority order, which itself is
optimal. Moreover, it results from Theorem 5.41 that all linear extensions of an order
are obtained from one of them by commutations (swaps between two consecutive
elements). Since such commutations made on the obtained optimal linear extension
may neither reduce nor increase (Lemma 7.87) the completion time, the latter remains
optimal. �

It is worth noticing that the converse is not true. There may exist optimal schedul-
ings that are not linear extensions of the priority order. We provide the following
example.

Example 7.90 Consider the set X = {x1,x2,x3,x4} of jobs. Table 7.7 gives the min-
imum values min(ti, t′j) of their execution times. We deduce the priority order on X ,
that we represent in Figure 7.14. This order has three linear extensions x1x3x2x4,
x1x2x3x4, and x1x2x4x3, with which correspond three optimal schedulings, of total
completion time 15. The first one was represented in Figure 7.13.

If, in this example, the time t′3 becomes 1 instead of 2, we obtain a priority order
which is the linear order x1x2x4x3, of total completion time equal to 14. We can check
that x1x2x3x4 is also an optimal scheduling.

Exercise 7.35 describes a simple algorithm to obtain a linear extension of the
priority order without need to explicitly building the latter order.

x1

x3

x4

x2

Figure 7.14 The priority order on X .
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7.6 Further topics and references

7.6.1 Preference models

As we already mentioned, the ordinal models of preference presented in this section
are used in many fields. For operations research, one can for instance see the
publications of the “French school” of decision aid (Bouyssou and Roy, 1993; Bouys-
sou and Vincke 1997, 1998; Bouyssou et al., 2009). For artificial intelligence or
databases, one can consult the sites of specialized conferences, for instance the
one held in 2006 (Multidisciplinary Workshop on Advances in Preference Handling,
www.mycosima.com/ecai2006-preferences; see also Chomicki, 2003).

We now provide more details about the various motivations that have led to many
rediscoveries of interval orders. It is a long and discontinuous history beginning in
the early twentieth century. Then, in Cambridge, the child prodigy mathematician
Norbert Wiener tried to answer a question raised by his mentor Bertrand Russell:
how to obtain the notion of an instant in time (or of a point on a line) from the notion
of an event in time (or of an interval on a line)? In his 1914 paper, Wiener defines a
relation O of “complete succession” by two conditions: O is irreflexive and satisfies
OIO ⊆ O, which is one of the characterizations of interval orders given in Exer-
cise 7.4. Two further Wiener papers (the main content of which, translated in modern
notations, can be found in Fishburn and Monjardet (1992)) contain developments
on these orders. They are motivated by the project of finding a valid measurement
theory for quantities such as the psychological perception of tonal height. For such
quantities one can only define a “just-noticeable difference” (jnd) relation introduced
by psychophysicists at the end of the nineteenth century. In this case, as observed by
Poincaré, the indiscernibility relation between two quantities is no longer necessarily
an equivalence, since it is not necessarily transitive.

In the 1930s, economists like Georgescu-Roegen or Armstrong observed a similar
phenomenon for preferences: the indifference relation can be non-transitive. And
25 years later, the desire to obtain an individual preference model taking account
of this possible intransitivity of indifference led Luce (1956) to define semiorders.
While Wiener’s papers have been largely forgotten (an exception is Riguet’s 1951
CRAS), interval orders come out again in Fishburn’s 1970 paper generalizing Luce’s
semiorders. In that paper, they are defined as irreflexive relations O satisfying the
condition that xOy and zOt imply xOt or zOy.

Previously, for a problem in genetics, Benzer had considered “interval graphs.”
It was later observed that these (undirected) graphs are exactly the incomparability
graphs of interval orders. Indeed the vertices of an interval graph are intervals (on the
line) and the edges link two intervals having a non-empty intersection.

Since interval orders, semiorders, interval graphs, and hypergraphs, or indifference
graphs (i.e., the incomparability graphs of semiorders) have appeared (or appeared
again, since they have often been rediscovered) in multiple contexts in pure or applied
mathematics and computer science: numerical and set representations of graphs,
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statistical estimation, seriation and archeology, data analysis, utility theory in math-
ematical psychology and microeconomics, decision aid, scheduling, temporal logics
etc. Very many results and references on these structures can be found in books by
Berge (1970), Golumbic (1980), Mirkin and Rodin (1984), Fishburn (1985), Pirlot
and Vincke (1997), Aleskerov et al. (2007), in Trotter’s survey (1997) or, much ear-
lier, in Monjardet (1978, 1988). Let us only quote an interesting result, in particular
for the algorithmic recognition of interval orders. Consider the following strict order
< between the maximal antichains of an order O: A < A′ if, for each x in A \ A′,
there exists x′ in A′ such that xOx′ (the associated reflexive order ≤ is a lattice; see
Behrendt (1988)). Then a strict order is an interval order if and only if the order <

between its maximal antichains is a strictly linear order (see, for instance, Felsner
et al. (1998) for more general results linking maximal chains in the lattice (P) with
interval reductions or extensions of an arbitrary ordered set P). Moreover the number
of maximal antichains of an interval order is exactly the number of “steps” of its
step-type tableaux. Let us also mention two basic references for algorithmic aspects
concerning these structures, namely the two Möhring’s surveys (1984, 1989).

The essential property for various applications of interval orders (respectively,
semiorders, weak orders) is that of their numerical representation with variable
threshold (respectively, constant threshold, 0 threshold). Theorem 7.14 on the numer-
ical representation of interval orders is due to Fishburn (1970) and Mirkin (1972).
Theorem 7.16 on the numerical representation of semiorders was called the Scott–
Suppes Representation Theorem, as a reference to the authors of its first proof (1958).
But, after their rather complicated constructive proof, many other proofs have been
found. A graph-theoretical proof due to Roy and Vincke is sketched in Exercise 7.7,
and we have given the particularly simple inductive proof due to Balof and Bogart
(2003). Other interesting proofs of the numerical representation results are based on
inductive characterizations of interval orders and semiorders by Leblet and Rampon
(2009). Let us also add that several classes of orders that generalize interval orders
and semiorders by means of properties bearing on numerical representations have
been studied; see their description in Fishburn’s survey (1997) and in Fishburn and
Trotter (1999b) about those called split semiorders.

The notion of a Ferrers relation was introduced by Riguet in 1951, the “Ferrers”
appellation coming from the link with the Ferrers–Sylvester graph associated with
an integer partition. However, the numerical representation is not mentioned and
the notion did not give rise to much interest. But almost 20 years later, Ducamp
and Falmagne (1969), motivated by the study of “Gutmann scales” in questionnaires
analysis, defined the corresponding notion for a binary relation defined between two
disjoint (and not necessarily finite) sets X and Y . They gave the following represen-
tation result: there exist two functions f from X to R and g from Y to R such that xRy
if and only if f (x) < g(y). The same result was independently obtained by Bouchet
(1971, 1984) in his study of binary relations codings. Sometimes renamed biorders,
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Ferrers relations and their valued generalizations (allowing, in “probabilistic con-
sistency” theory, to modelize the preferences of a subject at different times) have
fostered many works, especially about the “Ferrers dimension” (or “bidimension”)
of a relation (see for example Monjardet (1976a), Cogis (1982a,b), Ducamp et al.
(1984) or Doignon et al. (1986) as well as Falmagne’s book (1985)).

7.6.2 Preference aggregation: Arrowian theorems for orders

As stated in the introduction of Section 7.2, Arrow’s Impossibility Theorem has
led to a considerable development of social choice theory illustrated, for example,
by the books of Fishburn (1973), Kelly (1978), Moulin (1988) or Aizerman and
Aleskerov (1995). Before mentioning some of these developments, let us specify
the difference between our Theorem 7.32 (“Arrow for linear orders”) and Arrow’s
Theorem itself. The latter deals with preference aggregation functions (called “social
welfare functions” by Arrow) whose domain and codomain are respectively the set
of preference profiles formed of total preorders and the set of total preorders or,
equivalently (see Proposition 7.17 and Exercise 7.4), the set of profiles of weak
orders and the set of weak orders. It does not characterize those functions that are
independent and Paretian (the latter property concerning strict preferences) functions.
It only states the existence of a dictator, i.e., a voter imposing his strict preference: if
he/she strictly prefers candidate x to candidate y, so does the collective preference. But
if the dictator is indifferent between these two candidates, the collective preference
is not determined. It becomes so by strengthening some axioms. Then one obtains,
for example, a hierarchy of dictators: each one can impose his/her strict preference if
all his/her hierarchical superiors are indifferent. Whereas the initial version given by
Arrow to his theorem was partly wrong (and was corrected in the second edition of his
book, 1963), the correct version has now many proofs. We simply mention two proofs
related to ordinal considerations. First Leclerc (1991) gave a generalization ofArrow’s
Theorem when individual and collective preferences are “fuzzy preorders.” Next one
can get this theorem fromTheorem 7.32 that proves it for linear orders (see for example
Monjardet (2003)); now the latter theorem characterizing projections can be obtained
from results on projective ordered sets (Pouzet, 1998), where an ordered set P is
called projective if every isotone and idempotent map from Pn to P is a projection.
It is interesting to observe that, in Theorem 7.33 characterizing ∩-projections, the
independency property can be replaced by a purely ordinal property, namely that F
be a residual (see Leclerc and Monjardet (2012) for a more general result).

Several works of research motivated by Arrow’s Theorem consist of checking its
robustness by weakening the conditions making it possible. As seen in Section 7.2
(see also Barthélemy (1982)), to require that the collective preference be an order
rather than a linear order is not enough since, then, one obtains oligarchic preference
aggregation functions. If one weakens still more the demands on the collective pref-
erence by only requiring it to be cycle-free (which can be considered as a minimal
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level of rationality), the obtained functions are hardly more satisfactory since, for
example, they give veto rights to some voters.

Another research direction consists of weakening the hypothesis that the preference
aggregation function must provide a collective preference for any possible profile
of individual preferences. In fact if the domain of admissible profiles is suitably
restricted, Condorcet’s majority rule provides a transitive collective preference. Thus
this leads to searching for the so-called Condorcet (or acyclic) domains, i.e., for
subsets C of L such that the majority relation RMAJ (π) applied to any profile π of
linear orders taken in C is cycle-free. The first example of such a domain is when
the linear orders representing the voters’ preferences “respect” an “objective” linear
order on the candidates: if a voter prefers x to y and if, in the objective order, y is
preferred to z, then he also prefers x to z. It has been shown that this Condorcet
domain, defined by Black (1958), is a particular case of a large class of Condorcet
domains, all distributive and covering sublattices of the permutoedre lattice – see
Section 5.6 in Chapter 5 (Chameni-Nembua, 1989; Galambos and Reiner, 2005).
An example of such a Condorcet domain is given in Figure 7.15. It is a distributive
covering sublattice of size 45 of the permutoedre lattice �6 and it has been shown that
this size is maximum for a Condorcet domain in �6. These Condorcet domains can
be obtained from a maximal chain of the permutoedre lattice (Abello, 1991) or by ad
hoc procedures such as the “alternating scheme” (Fishburn, 1997). These results on
Condorcet domains provide another link between social choice theory and ordered set
theory (for a survey, see Monjardet (2009)). Working on a related problem, Fishburn
(1974) initiated another link relating these theories. One considers the profile π of
linear orders formed by the set L(P) of linear extensions of an ordered set P. The
strict majority relation RMAJ (π) applied to this profile may contain a 3-cycle only
if the width α(P) of P is greater than or equal to 3 (why?). Fishburn (1974) shows
that, as soon as the size n of the ordered set is greater than or equal to 31, there exists
an ordered set P of width 3 and height n− 3 such that the majority relation of the
profile L(P) contains a 3-cycle. This means that, even applied to almost unanimous
preferences, the majority rule may generate cycles. Since then it has been shown that
the minimum size of P for which a cycle may appear is 9 (Ewacha et al., 1990), and
such ordered sets have been counted up to 13 elements (de Loof et al., 2010).

One of the interests of Arrow’s “axiomatic” approach in preference aggregation is
to provide a theoretical basis for the fact that any aggregation rule has some unde-
sirable effects (its “paradoxes”), like the Condorcet effect for the majority rule or
that shown in Exercise 7.10 for Borda’s rule. Then one has sought to specify the
characteristics of the possible rules and, in particular, to characterize these rules by
some properties. Thus for example there are “axiomatic” characterizations of Borda’s
rule (Young, 1974) or of the median procedure considered in Example 1.24 (Young
and Levenglick, 1978). There we mentioned that the latter procedure coincides with
Condorcet majority rule if voters’ preferences are not arbitrary. In fact, it is the case
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Figure 7.15 A maximal Condorcet domain in S6.

if these preferences belong to some of the above-mentioned Condorcet domains (for
which the majority relation is cycle-free). Indeed a linear order L is a median order
for a profile π = (L1, ...,Ln) of linear orders if it maximizes among all possible linear
orders the sum of its agreements with the orders of this profile, i.e., the quantity∑

(y,x)∈L nπ (y,x). Hence it is easy to see that if the majority relation associated with a
profile π is cycle-free, any linear order including it is a median order for this profile.
The fact that these Condorcet domains are distributive lattices is connected with the
considerations of Section 7.6.3 on the links between majority irreducible elements
and median elements in median semilattices (and in particular in distributive lattices).
One will find a survey on these questions in Hudry et al. (2009).

Let us finally mention thatArrow’s “axiomatic” approach in preference aggregation
has been used in several other fields like for example data analysis, where one seeks to
aggregate several classifications obtained on the same set of objects into a consensus
classification. Several results similar to Arrow’s Theorem have been shown, and they
often bring into play the ordinal structure of the sets of classifications. Since then
it has been possible to develop an “axiomatic” ordinal (or lattice) consensus theory
allowing us to obtain such results in a unified way (see Monjardet (1990b), Leclerc
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and Monjardet (1995), and the Day and McMorris survey (2003)). This theory as
well as the metric ordinal approach will be mentioned in Section 7.6.3.

7.6.3 The roles of orders in cluster analysis

The applications of ordered sets presented in this section concern the so-called (by
Arabie (1982)) “Combinatorial Data Analysis,” see for instance the survey by Hubert
et al. (2001). The significance of the contribution of ordered set theory to clus-
ter analysis appeared with an ordinal axiomatic approach of fitting problems due to
Janowitz (1978), then with two surveys (Barthélemy et al., 1984, 1986). In particular,
Janowitz pointed out how residuation theory provides formalizations and generaliza-
tions to already known fitting methods (see also Leclerc (1994b)), while the papers
by Barthélemy et al. gave the first results stemming from the ordinal formalization of
problems of comparison and consensus (that is, aggregation) of classifications. More
recently, Domenach and Leclerc (2001, 2002) proposed a formalization of fitting
problems, subject to constraints on data and models, which extends some aspects of
those in Janowitz (1978) and Barthélemy et al. (1984).

The symmetric difference distance in a distributive semilattice L has been expressed
(Definition 7.44 and Proposition 7.45) in several ways: from the counting of join-
irreducibles (which amounts to (unit) weighting), or from the rank function of L, or
frompath lengths in theneighborhoodgraphof L. Eachof these characterizations leads
to the definition of a family of metrics in ordered sets. Exercises 7.21 and 7.22 give
an idea of some of these generalizations. In lattice theory, the study of valuations and
their associated metrics dates back to Glivenko’s work (1938). Monjardet’s survey
(1981) is concerned with the more general case of arbitrary ordered sets. A good
illustration of the practical interest of these developments is provided by the case
of partitions: various geodesic distances have been proposed for their comparison
(see Arabie and Boorman, 1973). For many of these distances the simple problem of
computing the distance between two partitions is NP-hard (Day and Wells, 1984).
On the contrary, the distances associated with (lower or upper) valuations are easily
computable. Barthélemy and Leclerc (1995) surveyed several such valuations in the
partition lattice (including Shannon’s entropy).

The first works on classification consensus concerned partition aggregation. The
latter was especially considered in statistics, where Régnier proposed as soon as 1965
to search for median partitions (that he called “central”) in the sense of Definition 7.42
for the symmetric difference distance. Yet linked with the well-known fact that the
partition lattice is not distributive, the problem of obtaining these medians turned out
to be NP-hard (see Barthélemy and Leclerc (1995) and Appendix A). The study of
the aggregation of classification trees was developed in taxonomy in the 1980s, espe-
cially about phylogenetic reconstruction problems. Margush and McMorris showed
as early as 1981 that using the majority rule on a profile of hierarchies provides a
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median hierarchy, unique for an odd profile. A similar property was already known
for distributive lattices (Birkhoff and Kiss, 1947; Barbut, 1961; Monjardet, 1980)
and for undirected trees of graph theory (Jordan, 1869; Zelinka, 1968). Theorem 7.55
unifies these results and extends the field where the majority rule and the median pro-
cedure coincide, namely the class of median semilattices (Bandelt and Barthélemy,
1984). This coincidence remains true with any metric associated with a weighting as
in Exercise 7.22 (Leclerc, 1994a). The graphs where any triple of vertices has a unique
median (for the distance of the minimum path length) are called median graphs; for
instance, trees are such graphs. Median graphs are exactly the neighborhood graphs
of median semilattices (Avann, 1961c). The reader will find in Hudry et al. (2009)
a general exposition on the relations between metrics and lattice medians. Theorem
7.58 shows that, in other lattices and semilattices, the relations between medians and
majorities remain in a weakened form (Leclerc, 1990b, 1993, 1994a).

Other approaches have been used for classification consensus, especially the
axiomatic ones mentioned in Section 7.2. For this topic, the reader may refer to
Monjardet (1990b), Leclerc and Monjardet (1995), and to Day and McMorris (2003).
The characterization of the median procedure in median semilattices given in Theo-
rem 7.57, due to McMorris et al. (2000), improves a previous version of Barthélemy
and Janowitz (1991). The consistency condition used in this characterization is a
general property of metric medians pointed out by Young and Levenglick (1978) in a
social choice context. The name of the first condition is a distorted echo of the 1785
use by Condorcet of the majority rule in voting procedures.

7.6.4 Implicational systems, Moore families, and Galois data analysis

Aconsiderable amount of work has been developed about the notion of an implication
and an association, the latter being an implication with statistical measures of range
(support) and precision (confidence). It was generally motivated by their use in various
fields of applications. Several such fields are mentioned at the beginning of this section
(knowledge discovery in databases, learning spaces, data analysis, etc.). It is worth
adding, among others, artificial intelligence and data mining, where the aim is to
extract some relevant information from a large amount of poorly structured data. The
multiplicity and variety of these fields entail a terminological multiplicity and it is
hard to find one’s way through the latter.

For instance, in Ganter and Wille (1999), the Guigues–Duquenne (canonical impli-
cation) basis is called the “stem basis” and, in the theory of knowledge spaces
mentioned at the beginning of Section 7.4, the complete implication systems are
called “entail relations.” In Caspard and Monjardet (2003) one will find some of
these terminological variations.

As already emphasized, an implication is defined here as the systematic association
of some attributes with some others. The term “implication” itself also appears in other
logic or algebraic contexts. In particular it is found, in the same or a close meaning,
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in the Boolean analysis of questionnaires (Degenne, 1972; Flament, 1976; Theuns,
1998), in knowledge spaces theory (Doignon and Falmagne, 1999), and in inductive
item tree analysis (Sargin and Ünlü, 2009).

The correspondence between Moore families and complete implicational systems
was first observed by Armstrong (1974) and then developed by many authors to
lead to the form given in Theorem 7.68 (see for instance Burosch et al. (1987) and
Doignon and Koppen (1989) who use dual closure systems, Demetrovics et al. (1992)
or Caspard and Monjardet (2003)).

Another equivalent notion is that of a nesting relation. Such a relation ð is defined
on P(E) by AðB if A⊂B and ϕ(A)⊂ϕ(B), where ϕ is a closure operator on P(E). The
latter is a strict order, studied and characterized in Domenach and Leclerc (2004). In a
more theoretic viewpoint, it is worth noticing that, since any lattice may be represented
by a Moore family (Theorem 3.52 in Chapter 3), it may also be represented by a CIS,
or a nesting order.

From an applied point of view we consider, as illustrated in Example 3.48, the
binary relation between a set of objects and a set E of attributes given in the form
of a 0/1 array and, equivalently, by a family D of subsets (of the set of attributes).
The Galois lattice of the latter is isomorphic to the Moore family F = m(D). From
Theorem 7.68, the latter is in turn determined by the set i(D)of implications associated
with D and also by its closure operator ϕD.

In practice, the relation i(D) is too large to provide a readable description of the
data represented by the family D. It is then interesting to search for exhaustive sum-
marizations and so for implication bases of D (Definition 7.74). In that direction, a
fundamental result is the existence and characterization of the Guigues–Duquenne
canonical implication basis (Guigues and Duquenne, 1986). The highlighting of the
latter has been preceded, attended, and followed by many works in the same direc-
tion, for instance Maier (1983), Duquenne (1987), Luxenburger (1991), Wild (1994),
Ganter and Wille (1999). See also the website at: http://dl.kr.org/dl2008/?id=25 (go to
“Invited Speakers,” then to “Slides of Bernhard Ganter”). Theorem 7.79 and Proposi-
tion 7.80 are variants of Guigues and Duquenne’s results. The proof given forTheorem
7.79 is based on Caspard and Monjardet (2003). The canonical basis has been charac-
terized by Caspard (1999), whereas the critical sets have been characterized by Diatta
(2009) from a new characterization of quasi-closed sets.

Using the canonical basis is not so easy since its determination is a difficult algorith-
mic problem (in the sense of Appendix A). This is why, among other reasons, several
authors have defined alternative implication bases, especially the direct canonical
basis, studied in Bertet and Monjardet (2005). They show in particular that this basis
has been rediscovered many times (in different forms) and they point out its relation
with the meet-irreducible representation of a Moore family in the lattice F, as well as
the representation of a Horn Boolean function by its prime implicants.

The implications between attributes considered in this section are “exact,” in the
sense that they correspond, as already said, to systematic associations. The problem
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then arises that some of these implications may have poor evidence in the family D,
i.e., may be satisfied by few objects. The extreme case is that of a subset A of the set
E of attributes, which is shared by no object. Then, since ϕD(A) = E, we obtain the
implication A −→D E \A which in fact is purely theoretic in the considered family
D. In his 1995 paper (from which Example 7.61 is extracted), Duquenne manages
this type of problem by taking into account the numbers of answers (an aspect that,
for the sake of brevity, we did not retain here). Another problem is that an implication
satisfied in, say, one hundred elements of D but contradicted in the one hundred and
first no longer appears in the above-described strict model. The need to consider all
significant implications (in a statistical sense) and to distinguish them from fortuitous
ones has prompted the introduction of statistical validations based on more or less
sophisticated probabilistic models (for instance in Bernard and Poitrenaud (1999)).

In the same purpose of the selection of significant but not necessarily exact impli-
cations, a simple approach has known an important growth in data mining since the
1993 paper of Agrawal et al. It consists of the search for implications A −→D B
that are “frequently enough” satisfied in the databasis D. This search is done in two
steps. First the frequent or the frequent closed itemsets; that is, the sets of attributes
supported by (i.e., belonging to) at least p objects (where p is a fixed threshold called
the minsupp) are found. Exercise 7.23 is concerned with properties of the set of these
frequent itemsets. Then one searches for a partition of each frequent itemset into two
parts A and B in such a way that the implication A −→D B has enough occurrences.

The current literature is mainly devoted to the first step. The extraction of fre-
quent itemsets, which is essential in the procedure, has induced many algorithms, for
instance: APRIORI (Agrawal and Srikant, 1994), CHARM (Zaki and Hsiao, 2002),
TITANIC (Stumme et al., 2002), LCM (Uno et al., 2003), ECLAT Z (Szathmary et al.,
2008). Some of these works develop an approach based on Galois lattices (Ben Yahia
and Mephu Nguifo, 2004) or Valtchev et al. (2002, 2008).

It is interesting to observe that the frequent closed itemsets ordered by inclusion
form a lattice, called the iceberg lattice (see Stumme et al., 2002).

A more sophisticated approach initiated in the 2005 paper of Ventos and Soldano
to find frequent closed itemsets leads to the notion of alpha Galois lattice. In this
approach, the set of objects is partitioned into classes and an alpha closed set is formed
of attributes locally frequent w.r.t. these classes.

Finally let us mention the approach based on a notion of stability indicating how
much the concept intent depends on particular objects of the extent (Roth et al., 2008).

7.6.5 Orders in scheduling

Scheduling problems are one of the most studied classes of problems in operations
research. A very complete report is provided in Leung (2004). Some reports stressing
the ordinal aspects of these problems can be found in Lenstra and Rinnooy Kan
(1984), Möhring (1984, 1989), Jansen (1993) or Poguntke (1986), the presentation
of which has been chosen for this section.
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It has been shown that the m-machine scheduling problem can be solved in polyno-
mial time as soon as m= 2 and the job execution times are all equal (see, for instance,
Fujii et al. (1969)). Many works exist proving that the latter result remains true or on
the contrary that the problem becomes NP-hard, depending on the value of m, the
type of precedence order between jobs, and the assumptions made on the execution
times of the jobs (see Appendix A and/or Lenstra and Rinnooy Kan (1984)).

In the examples handled in the section, we have only considered the time dimen-
sion for the job accomplishment. More complete modelings take into account the
resources needed for the job execution; there are different types of resources with
the result that a resource vector is associated with any job. Every resource has a cost
that depends on its type. Therefore, one searches for minimizing a function which
depends, on the one hand, on a global performance measure based on execution times
and, on the other hand, on a total measure of the costs of the required resources. In
fact, the problem often arises in a different form where the aim is to optimize the
temporal performance criterion, the other criterion appearing as a constraint, each
resource being available only in a limited quantity. Thus, a classic problem (which
includes many variants) consists of minimizing the completion time with resource
constraints. Radermacher (1977, 1985–6) and Möhring (1984, 1989) have developed
an ordinal model for this problem, which leads to the obtention of branch and bound
solving algorithms. In such a model, a job scheduling (which respects the precedence
constraints) is given and defined by the job beginnings. The basic idea is then to
consider the interval order on X associated with the family [ti, ti + di] of intervals,
where ti is the beginning time of job xi and di its duration. This order is an extension
of the precedence order on jobs and induces another scheduling which can only bring
the job beginnings forward (or maintain them). In other words, the newly obtained
scheduling is necessarily better than (or equivalent to) the initial one. On the other
hand, one can determine the global amount of a given resource used in the latter
scheduling. Indeed if one defines the weight – with respect to a resource r – of a
job xi as the cost of r required for the execution of xi, the global amount of a given
resource used in the latter scheduling is equal to the maximum weight of an antichain
of the interval order. Then, it can be shown that an optimal scheduling (which more-
over respects the resource constraints) is obtained from some interval orders that are
extensions of the precedence order and that can be characterized.

7.7 Exercises

7.7.1 Preference models

Exercise 7.1 Let (X ,O) be the ordered set where X = {a,b,c,d,e, f ,g,h, i, j} and
where the covering relation of O is

(a,b),(c,a),(c,d),(e,g),(g,a),(g,d),(g, f ),(h, j),(j,c),(j,e), and (i,g)

(and where, for instance, (a,b) means that a ≺ b in O).
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Draw a diagram of this ordered set.
Show that O is an interval order (for instance, by computing the relations IO

and OI ).
Give a step-type tableau of this interval order and compare the number of “steps” of

this tableau with the number of maximal antichains of O (see Section 7.6.1 of further
topics).

Exercise 7.2 Let (X ,O) be the ordered set where X = {a,b,c,d,e, f ,g,h, i, j} and
where the covering relation of O is

(d,a),(e,a),(e,b),(e,c),(f ,a),(f ,b),(f ,c),(g,b),(g,c),(h,d),

(h,e),(h, f ),(i,d),(i,e),(i, f ),(h, j),(j,e),(j,g), and (j, f )

Answer the same questions as in Exercise 7.1 and, in particular, determine which
class of orders O belongs to.

Exercise 7.3 [“Trace” preorders Tr and Tl] Let R be a binary relation defined on a set
X . For x ∈ X , write d+(x) = |xR| = |{y ∈ X : xRy}|, d−(x) = |Rx| = |{y ∈ X : yRx}|,
and s(x)= d+(x)− d−(x). Consider the following relations on X :

• xTry if xR ⊇ yR, • xTly if Rx ⊆ Ry, • T = Tr ∩Tl ,
• xT+y if d+(x)≥ d+(y), • xT−y if d−(x)≤ d−(y), • xTsy if s(x)≥ s(y)

Decomposing these relations into their asymmetric and symmetric parts F and E,
we write:

• Tr = Fr +Er • Tl = Fl +El • T+ = F++E+
• T− = F−+E− • T = F +E • Ts = Fs +Es

Show the following relations:

1. Tr = (RRcd)cd ⊆ T+, Tl = (RcdR)cd ⊆ T− and T ⊆ Ts.
2. Fr = (RRcd)cd ∩ (RRcd), Fl = (RcdR)cd ∩ (RcdR), and F = (Fr ∩Tl)∪ (Fl ∩Tr).

When R is a strict order O and I = Ocd ∩Oc, show the following relations:

• Tr = (OI)cd , • Fr = (OI)cd ∩OI ,
• Tl = (IO)cd , • Fl = (IO)cd ∩ IO,
• T = (OI)cd ∩ (IO)cd = (OI ∪ IO)cd , • F = (OI ∪ IO)∩ (OI ∪ IO)cd ,
• E = (OI)c ∩ (OI)cd ∩ (IO)c ∩ (IO)cd , • O = OE ∪EO

Show the equivalences xEy if and only if [xO = yO and Ox = Oy], and if and only
if xI = yI .

Exercise 7.4 [Weak orders and total preorders] Let O be a binary relation defined on
a set X . Show that the following three properties are equivalent:

1. O is a weak order.
2. Ocd is a total preorder.
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3. There exists a numerical function f defined on X such that xOcdy if and only if
f (x)≤ f (y).

Exercise 7.5 [Multiple characterizations of interval orders] Let O be a strict order
defined on a set X . Using the notations in Exercise 7.3, show that the following
properties are equivalent:

1. O is an interval order.
2. OIO ⊆ O.
3. OI is cycle-free.
4. OI is asymmetric.
5. OI = Fr .
6. Tr is a total preorder.
7. Tr = T+.

Show that, in Characterizations (2), (3), (6), and (7) of an interval order O, the
latter does not have to be irreflexive. Find other characterizations of interval orders
using IO, Tl , or T−.

Exercise 7.6 [Multiple characterizations of semiorders] Let O be a strict order defined
on a set X . Using the notations in Exercise 7.3, show that the following properties
are equivalent:

1. O is a semiorder.
2. OIO ⊆ O and O2I ⊆ O.
3. OI ∪ IO is cycle-free.
4. OI ∪ IO is asymmetric.
5. OI ∪ IO = F .
6. T = OI ∪ IO∪E.
7. T is a total preorder.
8. T = T+.
9. O is an interval order satisfying Fr ∩ (Fl)

d = ∅.
10. For each pair {x,y} of incomparable elements of O, either (x,y) or (y,x) is an

O-critical ordered pair.

Show that, if O is a semiorder, then T = T+ ∩T−. Show that, in Characterizations
(2), (5), and (7) of a semiorder O, the latter does not have to be irreflexive.

Exercise 7.7 [Towards another proof of the Scott–Suppes Theorem] Let O be an
asymmetric binary relation defined on a set X and I = Ocd ∩Oc.

Show that O is an interval order if and only if each cycle of the relation Ocd

(= O+ I ) contains at least two consecutive ordered pairs belonging to I .
Show that O is a semiorder if and only if the relation Ocd is total and each cycle of

length 3 or 4 of this relation contains strictly more ordered pairs belonging to I than
belonging to O.
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Note This characterization of semiorders, used with the existence of a “potential
function” for a valued relation, allows us to give a proof of Theorem 7.16 of a
constant threshold numerical representation of semiorders (see Pirlot and Vincke
(1997), or Aleskerov et al. (2007)).

Exercise 7.8 [“S-orders”] Let O be a binary relation defined on a set X . Assume O
is irreflexive and satisfies the following condition (S):

For all x,y,z, t ∈ X , xOy and yOz imply xOt or tOz (S)

Show that:

1. O is a strict order (such a strict order is called an S-order).
2. A strict order O is an S-order if and only if there does not exist x,y,z, t ∈ X with

xOy, yOz, xIt, yIt, and zIt (where I = Ocd ∩Oc).

Show that the following three conditions are equivalent for an irreflexive binary
relation O defined on a set X :

1. O is an S-order.
2. For all x,y ∈ X , xO ⊇ yO or Oy ⊆ Ox.
3. For all x,y ∈ X , xO = yO or Ox = Oy or (xO ⊃ yO and Ox ⊂ Oy) or (yO ⊃ xO

and Oy ⊂ Ox).

Note Observe that a semiorder is an interval order that is also an S-order. The reader
will find a study of S-orders in Monjardet (1978) and in Doble et al. (2001), where
they are called almost connected orders.

7.7.2 Preference aggregation: Arrowian theorems for orders

Exercise 7.9 [Borda and pairwise comparisons] Let N be a set of n voters and
X a set of m candidates. Associate with a profile π ∈ LN the numbers nπ (y,x)
giving the results of the pairwise comparisons between candidates x and y. Show
that Borda’s preorder can be deduced from these numbers by proving the equality
R(x,π)=∑

y∈X nπ (y,x).

Show that �x∈X R(x,π)= nm(m+1)
2 .

Then prove that a candidate beaten in each pairwise comparison with the other
candidates cannot be the first one in Borda’s preorder.

Exercise 7.10 [A “paradox” of Borda’s rule, Fishburn (1981)] Let N be a set of
seven voters having the following preference profile on a set X = {x,a1,a2,a3} of
four candidates: π = (a1a2a3x : 3;a2a3xa1 : 2;a3xa1a2 : 2) (where, for example,
a1a2a3x : 3 means that three voters have a1 < a2 < a3 < x as their preference order
on the four candidates).
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1. Compute Borda’s preorder RB(π) for this profile.
2. Now assume that the four voters that do not have x as the preferred candidate

put him in last position in their ranking (this is a classic example of a strategic
voting where a voter downgrades the candidate the most “dangerous” for his preferred
one). Compute Borda’s preorder RB(π) for this new profile and compare it with that
obtained in (1).

3. Generalizing the previous example, show that on a set X = {x,a1,a2, ...,ap} of
size p+1≥ 3, one can find a profile π of 2p+1 voters such that RB(π)= apap−1...a1x
and such that for the profile π ′ where all the voters that do not have x as their preferred
candidate put him in last position, one obtains RB(π ′)= xa1...ap−1ap.

Exercise 7.11 [Proof of Proposition 7.22, McGarvey (1953)] Let X and N be two
sets.

1. For each π ∈ LN , show that RMAJ (π) is a reflexive and antisymmetric relation
and that RWMAJ (π) is a total relation.

2. Let R be a reflexive and antisymmetric relation defined on X . With each ordered
pair (x,y) of distinct elements of R, one associates the two linear orders L1(x,y)=Mxy
and L2(x,y) = xyMd defined on X and where M is an arbitrary linear order on
X \ {x,y}. One thus defines a profile π of linear orders on X ; compute its majority
relation RMAJ (π). Deduce Item (2) in Proposition 7.22 from this result and from a
similar result for total relations.

3. Show Item (3) in Proposition 7.22.

Exercise 7.12 [The semilattice of filters] Let F and F ′ be two filters defined on a
set N .

1. Show that F ∩F ′ is a filter. We write F ∨F ′ = {F ∩F ′,F ∈ F , and F ′ ∈ F ′}.
Show that F ∨F ′ is a filter if and only if F ∩F ′ is never empty.

2. Show that F is an ultrafilter if and only if F is a filter such that, for every S ⊆N ,
S �∈F implies N \S ∈F (clue for the necessary condition: if there exists S ⊆N such
that S �∈F and N \ S �∈F , consider F ∨FS , with FS = {T ⊆ N : S ⊆ T }).

3. Show that every filter F defined on a set N has the form F = FV , where the
basis V of the filter is a non-empty subset of N . Deduce that, if V = {i}, Fi is an
ultrafilter.

4. Deduce from the previous results that the ultrafilters on N are the n filters Fi of
basis i ∈ N (they are thus the maximal elements of the semilattice of filters).

Exercise 7.13 [Proof of Nakamura’s Theorem 7.35 (Nakamura, 1975)] Let R be a
binary relation defined on a set X .

1. Show that R is cycle-free if and only if it has no cycles of length at most equal
to the size of X .

2. Let F ⊆ P(N ) be a federation on N and FF the PAF that associates with each
profile π of LN the relation RF (π) (yRF (π)x if Nπ (y,x)∈F). Show that, if ν(F) > p
(for some integer p), RF (π) has no cycles of length at most equal to p, for each π ∈LN
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(clue: show that, if not, one can find a sub-family F ′ of F such that |F ′| ≤ p and⋂
F ′ = ∅).
3. With the notations in (2) show that, if RF (π) has no cycles of length at most

p, ν(F) > p holds. Clue: if ν(F) = k < p, build a profile π of LN such that RF (π)

contains a cycle x1x2, ...,xkx1; to do so consider a sub-family F ′ of F of size k and
with an empty intersection; writing F ′ = {S1,S2, ...,Sk}, begin by associating with
each i ∈ ⋃{Sh,Sh ∈ F ′} a relation R(i) formed from all the ordered pairs (xh,xh+1)

for which i ∈ Sh.
4. Deduce Nakamura’s Theorem from the previous results.
Note This proof, that simplifies Nakamura’s proof, can be found for example in

Moulin (1988).

Exercise 7.14 Let M be a set of orders defined on a set X and including the set
L = LX of linear orders on X . M is said to be L-∩-stable if, for all L,L′ ∈ L,
L∩L′ ∈ M (or, equivalently, if M contains all 2-dimensional orders). Show that, if
M is not L-∩-stable, an M-PAF from LN to M is independent and Paretian if and
only if it is a projection.

Deduce that, if M is the set of weak orders, of semiorders, or of interval orders,
an independent and Paretian M-PAF from LN to M is dictatorial.

7.7.3 The roles of orders in cluster analysis

Exercise 7.15 [The partition lattice is upper semimodular] Let PE be the set of
partitions of a set E. Show that, for P,P′ ∈PE , the inequality P≤P′ (for the refinement
order) is satisfied if and only if any class of P′ is a union of classes of P. Especially,
show that P′ covers P if and only if P′ is obtained from the union of exactly two
classes of P. Deduce that (PE ,≤) satisfies the condition of upper semimodularity
(Chapter 2, Definition 2.7).

Exercise 7.16 [The partition lattice is atomistic and coatomistic] Let PE be the par-
tition lattice of a set E of size n. What are the atoms and the coatoms of PE (Chapter
3, Definitions 3.13 and 3.20)? Prove that PE is atomistic and coatomistic.

Note So the partition lattice is a geometric lattice (that is, upper semimodular and
atomistic). To know more on this lattice, see for instance Grätzer (1998).

Exercise 7.17 Let E be a set and d a dissimilarity on E. Given e ∈ E and λ > 0, the
ball B(e,λ) is the set {e′ ∈ E : d(e,e′)≤ λ}. Show that d is an ultrametric if and only
if, for any fixed λ≥ 0, the set {B(e,λ) : e ∈ E} is a partition of E, denoted by Pd,λ.

Exercise 7.18 [Ultrametrics, valued hierarchies and dendrograms, Barthélemy et al.
(1984)] Let E be a set and k = {0 < 1 < ... < k − 1} a chain.
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1. Let u be an ultrametric on E taking its values in k and fu the map which associates
with any λ ∈ k the partition Pd,λ defined in the previous exercise. Show that fu is a
k-dendrogram on E and that the map u #−→ fu is injective.

2. Let f be a k-dendrogram on E and Hf =⋃{f (λ) : λ∈ k}. Write ιf (H )=min{λ∈
k : H is included in a class of f (λ)} for any H ∈ Hf . Show that the pair (Hf , ιf ) is a
valued hierarchy on E and that the map f #−→ (Hf , ιf ) is injective.

3. Let (H, ι) be a valued hierarchy on E taking its height values in k. Write
u(H,ι)(e,e′)= ι(H{e,e′}) for all e,e′ ∈ E. Show that the so-defined dissimilarity u(H,ι)

on E is an ultrametric (taking its values in k). Show that the map (H, ι) #−→ u(H,ι) is
injective.

4. Deduce from the previous results that the sets Uk of ultrametrics on E with values
in k , Dk of k-dendrograms on E, and H

ι
k of valued hierarchies on E with height values

in k are in pairwise one-to-one correspondence. Let u∈Uk , f ∈Dk , and (H, ι)∈H
ι
k be

three pairwise corresponding elements. Show the following equalities for all e,e′ ∈E:
u(e,e′)= min{λ ∈ k : e and e′ are in the same class of f (λ)} = ι(H{e,e′}).

Exercise 7.19 [Dendrograms are residual maps, Janowitz (1978) in the version of
Barthélemy et al. (1984)] Let u be an ultrametric on E with values in k = {0 < 1 <

... < k − 1}, and fu the k-dendrogram associated with u in Item (1) in the previous
exercise. Define a map gu from PE to k by writing gu(P)=max{u(e,e′) : e and e′ are
in the same class of P} for any partition P of E (so gu(P0)= 0, where P0 is the finest
partition).

Show that, for all P ∈PE and λ ∈ k , P ≤ fu(λ) if and only if gu(P)≤ λ.
Deduce that the k-dendrogram fu is a residual map from k to PE and that gu is the

associated residuated map (Definition 3.35 in Chapter 3).

Exercise 7.20 [Duality between the dendrogram and the ultrametric lattices, Leclerc
(1981)] Consider, on the one hand, the set Dk of k-dendrograms on a set E, endowed
with the exponentiation order (with the usual order on k and the refinement order on
PE) and, on the other hand, the set Uk of ultrametrics on E with values in k , endowed
with the pointwise order: u ≤ u′ if u(e,e′)≤ u′(e,e′) for all e,e′ ∈ E.

1. Show that, for all f , f ′ ∈ Dk , the maps f ∨ f ′ and f ∧ f ′ defined, for any λ ∈ k ,
by (f ∨ f ′)(λ)= f (λ)∨ f ′(λ) and (f ∧ f ′)(λ)= f (λ)∧ f ′(λ), are still k-dendrograms
on E.

2. Show that, for all u,u′ ∈ Uk , the dissimilarity u∨ u′ defined for all e,e′ ∈ E by
(u∨u′)(e,e′)= max(u(e,e′),u′(e,e′)) is still an element of Uk and deduce that Uk is
a lattice.

3. Show that, for the correspondence defined in Item (1) in Exercise 7.18, the
inequality u ≤ u′ implies fu′ ≤ fu. Deduce that Uk and Dk are dual lattices.

Exercise 7.21 [Lower valuation, Monjardet (1976b)] Let L be a meet-semilattice. A
strictly isotone function v from L to R+ is called a lower valuation if, for all x,y in L
such that x ∨ y exists, the inequality v(x)+ v(y) ≤ v(x ∧ y)+ v(x ∨ y) holds. Show
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that, if v is a lower valuation on L, then the function dv from L2 to R+ defined for
all x,y ∈ L by dv(x,y) = v(x)+ v(y)− 2v(x∧ y), is a metric on L; that is, it satisfies
dv(x,z)≤ dv(x,y)+ dv(y,z) for all x,y,z ∈ L.

Exercise 7.22 [Valuation, Leclerc (1994a)] Let P be an ordered set and w a real
strictly positive weight function on the set JP of join-irreducibles of P.

1. Show that the function δw defined, for all x,y ∈ P, by δw(x,y) = �j∈Jx�Jyw(j),
is a distance on P2.

2. Assume that P is a meet-semilattice. Using the definitions in the previous exer-
cise, show that the function v defined on P by v(x)=�j∈Jxw(j) is a lower valuation
on P and that dv(x,y)= δw(x,y) for all x,y ∈ L.

3.Assume that P is a distributive meet-semilattice. Show that the functionv satisfies
v(x)+v(y)= v(x∨y)+v(x∧y) for all x,y in P such that x∨y exists (then v is called
a valuation on P).

4. Show that, conversely, any valuation on a distributive meet-semilattice P may
be obtained as above from a function w defined on JP .

7.7.4 Implicational systems, Moore families, and Galois data analysis

Exercise 7.23 [Frequent itemsets] Let D be a family of subsets of a set E and p≤ |D|
an integer. A non-empty subset M of E is called a frequent itemset if it is included
in at least p elements of D. Show that the set M of frequent itemsets constitutes a
downset of the ordered set 2E . Show that the maximal frequent itemsets are closed
by the closure ϕD associated with D.

Take D = MF , where MF is the family of 10 meet-irreducibles of the Moore
family F in Example 7.61 and p= 3. Find the corresponding frequent itemsets (there
are 6 such itemsets, 4 of which are maximal).

Exercise 7.24 [Meet-irreducibles of the lattice F and join-irreducibles of the lattice I]
Show that the meet-irreducible elements of the lattice F of Moore families on a set E
are the families of the form FA,{e} (Definition 7.74), where A is a non-empty subset
of E and e ∈ E \A. Deduce a general expression for the join-irreducibles of the lattice
I of CIS.

From the form of the join-irreducibles of F, show that a meet-irreducible of I has
the form {(C,D) ∈ (P(E))2 : C �⊆ A or D ⊆ A}.

Exercise 7.25 Let F be a Moore family on a set E and R = {(A1,B1), ...,(Ar ,Br)} a
relation on P(E). Write R′ = {(A1,ϕF (A1)), ...,(Ar ,ϕF (Ar))}. Use Theorem 7.65 to
show that, if R is an implication basis of F , then so is R′.

Assume that, moreover, ϕF (Ai) \ Ai ⊆ Bi for i = 1, ...,r. Show that R is then an
implication basis of F if and only if so is R′.
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Exercise 7.26 [Easily computable critical sets] Let F be a Moore family on a set
E. Show that any element minimal w.r.t. inclusion in P(E) \F is a critical set of F .
Which elements of E are critical sets? In Example 7.77, which critical sets are of the
previous type?

Exercise 7.27 [Acharacterization of the quasi-closed sets of a Moore family, Caspard
and Monjardet (2003)] Let F be a Moore family on a set E, ϕ the associated closure,
and Q ∈ P(E) \F . Show that, if Q is a quasi-closed set of F , then, for any A ⊂ Q,
ϕ(A)⊂ ϕ(Q) implies ϕ(A)⊂ Q.

Conversely, let Q ∈ P(E) \F satisfying ϕ(A)= ϕ(Q) or ϕ(A)⊂ Q for any A ⊆ Q.
Show that F ∩Q ∈ F for any F ∈ F incomparable with Q w.r.t. inclusion. Deduce
that such a Q is a quasi-closed set of F . Conclude that a subset Q ∈ P(E) \F is a
quasi-closed set of F if and only if, for any A ⊂ Q, ϕ(A)⊂ ϕ(Q) implies ϕ(A)⊂ Q.

Exercise 7.28 Let F be a Moore family on a set E and ϕ the associated closure. Write
xR(F)y if ϕ(x) ⊆ ϕ(y). Use the result in Exercise 7.27 to show that, if a subset Q of
E is a quasi-closed set of F of size at least 2, then Q is a downset of the preorder
R(F) (see page 144).

Exercise 7.29 [Canonical basis of a downset of 2E] Let E be a set and A an antichain
of the Boolean lattice 2E . Show that the canonical basis of the CIS i((A[) is the set of
all implications of the form A −→(A[ E \A, where A ∈A. Use the results in Section
4.3 (Chapter 4) to derive the maximum number of implications that such a basis may
contain.

Note The Moore families of the form F = (A[∪{E} have various characterizations
and it is the same for their CIS of the form i((A[). Then, in relational databases, such
a CIS is said to be “Boyce–Codd normal form” (see Caspard and Monjardet (2003),
Proposition 33 (3) and Remark 64 (2)).

7.7.5 Orders in scheduling

Exercise 7.30 [k-jump critical ordered sets] An ordered set P is said to be k-jump
critical if s(P)= k (see Definition 1.32) and if, for any element x of P, s(P \ x) < k .
Show that the ordered set S3 (see Example 6.12, on page 172) is 3-jump critical. Let
P = A1 ⊕ A2 ⊕ ... ⊕ Ak be a weak ordered set, where Ai is an antichain of size ni

(i = 1,2, ...,k). Prove that P is [(n1 + n2 + ...+ nk)− k]-jump critical. Consider the
case k = 3 and find four other 3-jump critical ordered sets.

Exercise 7.31 Prove that the jump number of an ordered set P satisfies the following
inequalities: for any x ∈ P, s(P)− 1 ≤ s(P \ x)≤ s(P).
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Exercise 7.32 Let P = (X ,O) be an ordered set with X = {a,b,c,d,e, f ,g,h, i} and
where the order O is given by the following covering relation:

(a,d),(b,e),(b,d),(c,d),(c, f ),(d,g),(f ,h),(g, i)

Compute an optimal 2-scheduling and an optimal 3-scheduling of P.

Exercise 7.33 [Execution time and range] Let k be the total execution time of an
optimal m-scheduling of an ordered set P. Show that the range of P (Definition 1.30)
satisfies k ≥ κ(P). Give an example of an ordered set for which the execution time
of an optimal 2-scheduling is strictly greater than its range. More generally, give an
example of a connected ordered set P for which the latter time is equal to κ(P)+ h
(for an arbitrary integer h).

Exercise 7.34 Prove the result of Lemma 7.87 (examine the different possible cases).

Exercise 7.35 [Computing an optimal linear extension] Consider the priority order
associated with a 2-step 2-machine problem (Lemma 7.88). In order to build a par-
ticular linear extension of the priority order, the following algorithm is proposed:
consider the minimum of all the execution times; if the latter is some ti (respectively,
some t′i), xi is placed as the minimum (respectively, the maximum of the sought linear
extension). That process is then iterated (after deletion of xi, ti, and t′i). Show that the
obtained result is a linear extension of the priority order, whence an optimal linear
extension.



Appendix A

About algorithmic complexity

Using the notions and results presented in this book requires answering some questions
about an ordered set modeling such situations. It may, for instance, be about determin-
ing a linear extension of the ordered set, or the lattice of its downsets, or its covering
graph, or computing its width or its dimension.

The effective resolution of these problems requires the use of an “efficient algo-
rithm” implemented by a program to be run on a computer. But given a problem, is
there a solving algorithm and, if so, is it efficient and how could we measure this
efficiency? We consider a two-level study of that type of question.

On the one hand there is the computational complexity theory which, from a for-
malization of the notions of a problem and an algorithm (for example by means of
“languages accepted” by a “Turing machine”), leads to a problem classification with
respect to the difficulty of solving them algorithmically – and independently of the
algorithm used. The aim of the first part of this appendix is briefly to provide an
intuitive idea on this classification.1

On the other hand, for a given problem, we will search for the most efficient
algorithms (or heuristics2), taking into account the numerous factors which in practice
may improve their efficiency.3

In the second part of this appendix, we will give a list of problems on ordered
sets with, for each of them, the mention of the complexity of at least one resolution
algorithm (but not necessarily of the “best” algorithm) and associated references.

1 However, the reader should be warned: the definition of – for instance – the class P of problems, that
will be found further on, makes sense only in the formalized context of computational complexity theory.
The goal here is not to present this theory and so we refer the reader to excellent books, such as those
written by Garey and Johnson (1979), Harel and Feldman (2004), Lewis and Papadimitriou (1998) or
Wegener (2005) and, for French-reading readers, to two brilliant books written by Stern (1990) and by
Wolper (1991) as well as the related chapters in Barthélemy et al. (1992) or Charon et al. (1996).

2 Unlike an algorithm, the aim of a heuristic is not to provide the exact answer to a problem but rather to
approach at best the solution or, at least, to provide an acceptable one.

3 For the conception and analysis of algorithms and heuristics one may, for instance, refer to the books
of Cormen et al. (2009), Sedgewick and Wayne (2011), and, obviously, to the fundamental 2011 Knuth
treatise.
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A.1 Computational complexity theory

Informally speaking, an algorithm is a procedure allowing us to solve a problem and
which, from an “input” (the data of the problem) leads by means of a finite number of
instructions to an “output” (the solution of the problem). The specification of the data
that define the algorithm input is a so-called instance of the problem. For example,
for the dimension computation (in the sense of Chapter 6), an instance will be some
ordered set. On the other hand, solving a problem with an algorithm implemented on
a computer requires that the data of the problem be comprehensible by the machine;
that is, represented by a sequence of 0 and 1. The length λ of this sequence defines
the size of the instance of the problem. The time complexity of an algorithm supposed
to solve the problem is the function t(λ) on N which returns the maximum number
of “elementary operations”4 required by the execution of the algorithm for solving
the problem on an instance of size λ of this problem (the worst possible case is then
considered).5

The algorithm complexity will depend not only on the algorithm itself but also on
the type of coding used for the instance. For example, an ordered set may be described
by the whole set of its ordered pairs or only by those of its covering relation, and the
ordered pairs may be given by an adjacency matrix or by a predecessor or a successor
list. However, the definition (given further on) of an efficient algorithm provided in
complexity theory will allow us, in return for some precautions, to leave this factor
aside. Thus an efficient algorithm for a “reasonable” coding of the instance will still
be efficient for any polynomially related coding (that is, such that the instance size in
the first coding is majored by a polynomial function of the instance size in the second
one, and conversely). Therefore, one proves that it is possible to replace the instance
size, as defined above as a sequence of 0 and 1, by an “intuitive” size which, in the
case of an ordered set, may be the number n of elements of the set, but also the number
m of ordered pairs of its order relation, the number m≺ of ordered pairs of its covering
relation, or the sums n+m or n+m≺. For the following definitions, we choose n
as the size and we then consider the time complexity function t(n) which returns,
for a given algorithm, the maximum number of elementary operations required for
the algorithm execution for solving the problem on an instance of size n. The exact
computation of the complexity will often be difficult. Consequently one searches for
a bound of it, using classic notions and notations on orders of magnitude, that we
recall below.

Two relations O and � are defined on the set of functions on N as follows: for
f and g two functions on N, g is said to asymptotically upper (respectively, lower)

4 The notion of an elementary operation will depend on the considered problem; it may be about an arith-
metic operation, a comparison operation or an affectation of elements. However, the notions of classes
of complexity introduced further on are independent of a precise definition of elementary operations.

5 Here we will not adress the “space complexity,” which measures the memory space required for the
algorithm.
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bound f if there exist a non-negative real number c and a positive integer n0 such
that, for any integer n > n0, f (n) ≤ cg(n) (respectively, f (n) ≥ cg(n)). Rather than
the notation fOg (respectively, f �g), one writes f = O(g) (respectively, f = �(g))
and one also says that f is O(g) (respectively, f is �(g)).

The reader can check that both relations O and � define two dual preorders on the
set of functions on N. He will also specify the induced equivalence, which is denoted
by f =�(g) and is translated into the expression “f and g have (asymptotically) the
same order of magnitude.”

An algorithm is said to be polynomial-time if its time complexity function t(n) is
O(nk) for a given number k ≥ 1. In this case the algorithm is considered to be efficient
or “good.”6 In the other cases the algorithm is said to be exponential-time7 and is
considered as inefficient.8 It is, for example, the case if its complexity is �(kn) for
some number k > 1, i.e., if it is lower bounded by an exponential function.

One easily realizes how relevant this distinction is when comparing the values
t(n) obtained for a polynomial and an exponential function. Assuming that t(n) is
expressed in seconds, the computation of n3 and 3n with, for example, n = 40,
respectively gives a little less than 18 hours and 3855 centuries! Thus, except for
data of very small size, the exponential complexity of an algorithm makes it normally
impracticable.

We now go back to the following question: is there for any given problem an
efficient algorithm allowing us to solve it? The theory of complexity classes proposes
to study this question by building up a typology of the so-called decision problems.
A decision problem is made up of an input and a question. The input specifies a
particular instance of the problem and the question has only two possible answers,
“yes” or “no.” Formally a decision problem is defined as a pair (I ,J ) where I is the
set of all instances of the problem and J the (non-empty) subset of I of all positive
instances; that is, those instances whose answer to the question is “yes.” Here, we
are concerned with decision problems on ordered sets. Thus, the input will be a given
ordered set P and the question will be to know whether P satisfies a given property
(for example, is P an interval ordered set?). The problem of searching for the value
of a parameter of P, for example its dimension, is not a decision problem but it may
be re-expressed so as to become one (for example, is the dimension of P less than or
equal to a given number q?).

We also note that – unlike the so-called undecidable problems, for which there is
no algorithm allowing us to answer the question – for the decision problems about a
finite ordered set, there normally is an algorithm allowing us (in theory) to solve them.

6 It is clear that, in practice, the efficiency of an algorithm will be even better since k is small. In particular
one may consider as very efficient the algorithms said to be linear-time, i.e., those whose time complexity
function is �(n).

7 Even though t(n) is not an exponential function, for example, if t(n)= n!.
8 That terminology should not be understood too literally. One knows exponential-time algorithms that

are in practice very efficient. It is the case for the simplex algorithm for linear programming problems
and for the APRIORI algorithm mentioned at the end of Section 7.6.4.
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For example, for the above-mentioned problem on the dimension of an ordered set P,
it “is enough” to compute all its linear extensions (by going through the n! possible
linear orders), then to compute all possible intersections of q among the latter, to make
sure that one of these intersections is – or is not – equal to P. Such an algorithm has
clearly an exponential complexity and, therefore, is inefficient. Actually the decision
problem about the dimension is one of the many examples of problems for which
no efficient algorithm is known, even though it is not either proved that an efficient
algorithm does not exist. That point will be specified with the definitions below of
the two fundamental complexity classes.

Definition A.1 The class P is the set of all decision problems for which, for
any instance of any problem, there is a polynomial-time algorithm allowing us to
determine if the answer is “yes” or “no.”

The class NP is the set of all decision problems for which, for any instance of
any problem, there is a polynomial-time algorithm applied to a “succinct certificate”
(i.e., a certificate of polynomial size with respect to the instance size) allowing us to
check that the answer is “yes” if and only if the instance is positive.

Let us consider, for example, the problem whose statement is as follows: “is the
dimension of P less than or equal to q?” (with P an ordered set and q≤ |P|

2 , according

to Theorem 6.21). Such a certificate will be the data of q ≤ |P|
2 linear extensions of P

and it may be checked in polynomial time that their intersection is P.
More precisely, the problems of the class NP are said to be “solved” by a non

deterministic algorithm in the following sense: in the first step of the algorithm an
“oracle” provides a certificate (of polynomial size) allowing for a positive instance
of the problem to answer yes. In that case, the second step is the verification one and
consists in a polynomial-time algorithm applied to the latter certificate; so it allows us
to answer yes in case of a positive instance. If, on the contrary, the instance is negative,
there is no such certificate. Such an algorithm does not really solve the problem since,
if there was no soothsayer to provide a certificate (if it exists), it might be necessary
to test an exponential number of cases (for example the binomial coefficient

(n!
q

)
of

sets of q linear extensions of P) to have the answer.
More formally, in computational complexity theory, one modelizes the computation

made by an algorithm by means of a “Turing machine.” Problems in the class P
(respectively, in the class NP) are then those which can be solved in polynomial time
by a “deterministic” (respectively, “non-deterministic”) Turing machine. The reader
can refer to the books quoted in footnote 1 on page 270 for the formal exposition of
the theory.

We want only to stress the fact that translating “NP” into “non-polynomial” would
be wrong, since it means on the contrary “polynomial in a non-deterministic way.”

Result: P is included in NP .
Open question: is this inclusion strict or are these classes equal?
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In fact it is considered highly probable that the classP is different from the classNP
but, since it has not been proved so far, the assertion “P �=NP” is still a conjecture.
If anyone proves it right (which will allow him/her to win a million dollars, see the
site www.claymath.org/millennium/), that will imply all the problems in NP that are
not in P are “difficult,” in the sense that there is no polynomial-time algorithm to
solve them.

A decision problem is said to be NP-complete if it belongs to the class NP and
is at least as hard as any problem in the class NP , in the sense that the existence of
a polynomial-time algorithm to solve a NP-complete problem would imply that of
polynomial-time algorithms to solve any problem in the class NP (one would then
have P =NP).9

Consequence: P �= NP holds if and only if the class of NP-complete problems
and the class P are disjoint.

Remark A.2 The previous notions are in fact ordinal. Let us define a relation of
polynomial reduction between problems of NP by saying that a problem A reduces
to a problem B if there is a polynomial-time computable function that transforms any
instance of A into an instance of B with the same (positive or negative) nature. This
relation is a preorder on NP and the associated equivalence defines equivalent prob-
lem classes. The quotient order between the latter classes has a least element, namely
the class P , and a greatest element, namely the class of NP-complete problems. If
P �= NP , it can also be shown that the previous preorder has an infinity of classes
formed of problems whose difficulty is “intermediate” between that of the minimum
and the maximum classes, and that it is not total.

The fundamental two classes P and NP have been defined in the 1970s. Since
then many other classes have been added (see www.complexityzoo.com for the
“complexity zoo”) and we here give only a few examples.

A problem is said to be NP-hard if it is at least as hard (in the same sense
as previously) as an NP-complete problem. Any NP-complete problem is then
NP-hard and the following relation holds:

{NP-hard problems}∩ {problems in NP} = {NP-complete problems}
The complement of a problem is the problem where the yes/no answers are reversed.

For instance, the problem: “is the ordered set P an interval order?” has for complement
the problem “is the ordered set P not an interval order?”

A problem is said to be in co-NP if and only if its complement is in NP , i.e., if
it can be solved by a non-deterministic algorithm (in the sense given above for the

9 The notion of NP-complete problems has been introduced by Cook (1971), who proved the existence of
such problems by showing that the problem of the satisfiability of a Boolean expression (in conjunctive
normal form) is NP-complete. Since then many problems have been proved to be NP-complete and
we will mention some of them – that deal with ordered sets – in the second part of this appendix.
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problems in NP). A problem is said to be co-NP-complete if it belongs to the class
co-NP and is at least as hard as any problem in the class co-NP (in the same sense
as that defined above for a NP-complete problem).

It should be observed that here we use the term “problem” without having speci-
fied its definition. The latter will depend on the context; for example, optimization
problems are those where, with any instance of the problem, is associated a set S
of “possible solutions” and where one searches for a solution minimizing (or max-
imizing) a real-valued function f defined on S. Any optimization problem has an
associated decision problem. For example, to search for the jump number s(P) of an
ordered set P is an optimization problem consisting of minimizing on the set L(P)

of linear extensions L of P the number s(P,L) of jumps of L. The associated decision
problem has the ordered set P and an integer k as the input and asks the question:
does s(P)≤ k hold? If the decision problem associated with an optimization problem
is NP-complete, the latter is NP-hard.

The classes #P , #P-complete, and #P-hard of problems have been introduced
(by Valiant (1979a,b)) to report the difficulty of enumerative problems for some
combinatorial objects; that is, of determining the number of such objects and/or
listing them (for example, all linear extensions of an ordered set). Similarly to what
is written above, one has:

{#P-hard problems}∩ {problems in #P} = {#P-complete problems}

The enumeration version of most NP-complete problems is a #P-complete prob-
lem but it may also be the case for problems in the class P (for example the problem
of computing the number of matchings in a bipartite directed graph).

On the other hand, for the problems of enumerating combinatorial objects on a
set of size n, and where the number N of these objects may be exponential in n (for
example when considering the linear extensions of an ordered set), other notions
have been introduced. A listing algorithm of the N objects (that is, which provides a
listing of the latter) is in polynomial time if its complexity is in O((n+N )k), with k
a constant at least equal to 1. It is in polynomial (respectively, linear) time by object
if its complexity is in O(nkN ), with k a constant at least equal to 1 (respectively, in
O(nN )). In that case the algorithm is also said to have a polynomial (respectively,
linear) amortized time complexity. When the complexity is in O(N ) one says that
the algorithm has a constant amortized time complexity or also that it is in constant
amortized time (TCA). If moreover the (time) complexity for going from an object
of the list to its successor is upper bounded by a constant, the algorithm is said to be
loopless (or in constant worst case time). At last, the provided list is of the Gray code
type if the difference between two successive objects of the list is small (for example
if, in a list of all linear orders, two successive orders differ only by the inversion of
an ordered pair).
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A.2 Complexity results

Consider the following problem: is the dimension of an ordered set at most equal to
k > 2? The difficulty of this problem depends on the class of ordered sets concerned in
the question. Trivial when applied on linear ordered sets, the problem is NP-complete
when considering the class of all ordered sets but becomes polynomial for some given
classes of ordered sets. We shall then start in SectionA.2.1 with complexity results for
algorithms on “easy” problems (that may or may not be decision problems); that is,
for which there always exists a polynomial-time algorithm. Then in Section A.2.2 we
will give a list of “difficult” problems (NP-complete, NP-hard or #P-complete) on
the class of all ordered sets. There are several possibilities to solve such problems on a
specified ordered set. First, the size of the ordered set may happen to be small enough
to allow the problem being solved by an exponential-time algorithm. Then, the ordered
set may belong to a particular class of ordered sets for which the problem has been
proved to be polynomial; in SectionA.2.3 we will give a table presenting some classes
of (polynomially recognizable) ordered sets for which some of the previous difficult
problems become polynomial. At last, if none of the previous possibilities applies,
one may turn to approximation (polynomial) algorithms – when they exist – giving
an approximate solution whose quality may sometimes be guaranteed by means of
performance bounds; we will not give further information on this possibility, which
is the purpose of many research works; we refer the interested reader to Vazirani’s
book (2001) or to the Demange and Paschos text (2010) for example (however and
with few exceptions, the approximation results for order problems may only be found
in journals or reviews of specialized conferences).

Finally, the results stated in the following three subsections provide a substantial
sample of those obtained in the algorithmic literature on orders. The reader will
find some of the latter results with, if need be, the description of the corresponding
algorithms in the surveys due to Bouchitté and Habib (1989), Möhring (1984, 1989),
and Spinrad (1994).

It is worth noticing that the complexity of some problems has so far remained
unknown. It is the case for the decision problem about the isomorphism of two
ordered sets (like – more generally – that of two graphs). Likewise for the problem of
enumerating all minimal transversals of a federation (see Definition 7.23 in Chapter 7).

A.2.1 Easy problems (polynomial-time algorithms)

The problems on ordered sets quoted below may be solved by a polynomial-time
algorithm, no matter whether they are decision problems of the class P or others.
The complexity of such an algorithm may depend significantly on the data structures
used for the representation of the ordered set. However, the purpose here is not to
specify that data structure nor the algorithm used; in fact, the reader can find the
(time) complexity of one or two algorithms solving the problem and some references
giving the algorithms together with detailed information on their implementation. Let
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us specify that the references mentioned are not always the original ones – the latter
are sometimes not easily accessible – and that the given complexity is not always the
“best” one.

As already mentioned, the complexity will be evaluated as a function of a “size”
of the ordered set P = (X ,≤). The latter may be the size n of X , the number m of
ordered pairs of the order relation≤, the number m≺ of the ordered pairs of its covering
relation ≺, or still a function of n,m or m≺. On the other hand, the input of these
algorithms is sometimes a cycle-free non-directed graph G = (X ,U ) rather than the
order or the covering relation of an ordered set. Considering the transitive closure of
this graph as the ordered set, it amounts to taking a sub-relation U of the latter closure
such that ≺ is included in U which itself is included in ≤. The size is then measured
by the number of arcs of the graph G, i.e., by the integer mU (with m≺ ≤ mU ≤ m).
Thus, in the following complexities, the appearance of m≺ (respectively, mU or m)
in an expression means that the input data of the algorithm is the covering relation of
an order (respectively, a cycle-free graph or an order relation).

1. Computation of the order relation of P from a sub-relation (including the
covering relation of P).

(a) O(n3): Roy (1959), Warshall (1962), Schröder (2002).
(b) O(nmU ): Goralcikova and Koubek (1979), Mehlhorn (1984).
(c) If P is ranked, O(n+mU ): Goralcikova and Koubek (1979).
(d) If P is an ordered set of dimension 2 (respectively, a distributive lattice), O(n2):

Ma and Spinrad (1991) (respectively, Bordat (1991a)).
(e) If P has a bounded width, O(n+m): Habib et al. (1993b).

2. Computation of the covering relation of P from its order relation.

(a) O(n3): Schröder (2002).
(b) O(nm+ n2): Freese et al. (1995).
(c) If P is an ordered set of dimension 2, O(n2): Ma and Spinrad (1991).
(d) If P is an N -free ordered set (respectively, of bounded width), O(n+m): Ma and

Spinrad (1991) (respectively, Habib et al. (1993b)).
(e) If P is a lattice: O(n2), Freese et al. (1995).

Note The former problem is that of the reflexo-transitive closure of a graph (here
directed and cycle-free). Both problems 1. and 2. are equivalent to that of the com-
putation of the product of two n×n matrices. The upper bound in n3 for this problem
has been improved but thanks to algorithms which are not necessarily implementable
in practice.

3. Downset (A] generated by a subset A of P.

O(n+mU ): Bordat (1985).
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4. Computation of a linear extension of P.

O(n+mU ): Kahn (1962), Knuth and Szwarcfiter (1974), Freese et al. (1995).

Note If G = (X ,U ) is an arbitrary directed graph, the algorithm allows us to test if
it is cycle-free (and so if the reflexo-transitive closure of U is an order).

5. Decomposition tree of P.

(a) O(n2): Müller and Spinrad (1984, 1989), McConnell (1995).
(b) O(n+m): Cournier and Habib (1994), McConnell and de Montgolfier (2005).

COMPUTATION OF SOME PARAMETERS OF P

6. Range κ(P) of P.

(a) O(n2): Möhring (1984).
(b) If P is a 2-dimensional ordered set, O(nloglogn): see Spinrad (1985), in the

equivalent form of the search for a clique of maximum size in a permutation
graph (see Exercise 6.12).

7. Width α(P) of P.

(a) O(n
5
2 ): via Hopfcroft and Karp (1973).

(b) O(nm): via Nemhauser and Wolsey (1988).
(c) If P is an interval ordered set (given by an interval representation), O(n2):

Schröder (2002).
(d) If P is a 2-dimensional ordered set, O(nloglogn): see Spinrad (1985), in the

equivalent form of the search for an independent subset of maximum size in a
permutation graph (see Exercise 6.12).

Note 1. The algorithm in (a) (respectively, (b)) first associates with the ordered
set the appropriate bipartite graph (see on page 124 and Exercise 4.5) then uses the
algorithm of maximum matching in a bipartite graph due to Hopfcroft and Karp
(1973) (respectively, Nemhauser and Wolsey (1988)).

2. Some changes in the previous algorithm in (a) allow us, with a complexity
in O(kn2), to decide whether α(P) ≤ k (with k an integer) and, if so, to obtain a
maximum antichain or a partition of P into α(P) chains: Felsner et al. (2003) – see
also Gavril (1987).

3. An algorithm due to Bogart and Magagnosc allows us to find α(P) and a partition
of P into α(P) chains in O(n3) (see Freese et al., 1995).

RECOGNITION PROBLEMS

In these problems the question is the following: is P an ordered set of the indicated
type?
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8. Series–parallel ordered set.

(a) O(n3): Möhring (1989).
(b) O(n+mU ): Valdes et al. (1982).

Note These algorithms provide the decomposition tree of P and, for (b), the order
and the covering relation of P.

9. N -free ordered set.

O(n+m≺): Valdes et al. (1982) Sysło (1982), Habib and Jégou (1985) – see Möhring
(1989).

Note The Habib and Jégou algorithm gives the decomposition tree of P.

10. Interval ordered set.

(a) O(n+m): Papadimitriou and Yannakakis (1979).
(b) O(n+mU ): Baldy and Morvan (1993).

Note These algorithms provide an interval representation of P.

11. Semiordered set.

O(n+mU ): Mitas (1994).

Note The algorithm provides a unit-interval representation of P.

12. 2-dimensional ordered set.

(a) O(n2): Spinrad and Valdes (1983), Spinrad (1985), Ma and Spinrad (1991).
(b) O(n+mU ): McConnell and Spinrad (1999).

Note The input of the first two algorithms is the order relation of P; in the third one
it is a sub-relation of the order including the covering relation of P and, in the fourth
one, a comparability graph G = (X ,U ). These algorithms provide two linear orders
forming a basis of P.

13. Ordered set of width at most k .

O(kn2): Gavril (1987), Felsner et al. (2003).

14. Ordered set whose decomposition diameter is at most k .

O(n2): Müller and Spinrad (1984).

15. Ranked ordered set.

O(n+mU ).

16. Semimodular ordered set.

(a) O(n3), O(n(n+mU )): Bordat (1985).
(b) If P is a semilattice, O(n2): Bordat (1985).
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17. Semilattice.

(a) O(n
5
2 ), O(n+mU ): Goralcik et al. (1981), Freese et al. (1995).

(b) O(n(n+mU )): Bordat (1985).

Note The input of the algorithm in (a) is the table of a binary operation on X or a
cycle-free graph. The input of the algorithm in (b) is a cycle-free graph.

18. Lattice.

O(n
5
2 ): Goralcik et al. (1981), Freese et al. (1995).

Note The input of the algorithm is an arbitrary relation and allows us, if the latter
is a lattice order, to obtain the tables of its join and meet operations, as well as its
covering relation.

19. Distributive lattice.

(a) O(n2): Bordat (1985).
(b) O(n+m≺): Bordat (1985).

Note 1. The input of the algorithm in (a) is a directed graph whose transitive closure
is a lattice whereas for the algorithm in (b), it is the covering graph of a lattice.

2. The ideal tree associated with a linear extension of the ordered set ML of a
distributive lattice L (see page 156) is obtained in O(n + m≺) from the covering
relation of the lattice and conversely allows us, with the same complexity, to obtain
the latter; using such an ideal tree, the transitive closure of the relation ≺ may be
computed – as well as the operations join and meet of L – in O(|ML|) (Habib and
Nourine, 1996; Habib et al., 2001).

The last considered recognition problem is not about an ordered set but about a
non-directed graph.

20. Recognition of a comparability graph.

O(�(G)), where �(G) is the maximum degree of a vertex of the non-directed graph
G, Golumbic (1977) – see Möhring (1984).

Note The transitive orientation of a comparability graph is done in O(n2) or
O(m logn) if the input is the decomposition tree of the comparability graph (Spinrad,
1985, 1994) and in O(n+mU ) if the input is the latter graph G = (X ,U ) (McConnell
and Spinrad, 1999).

A.2.2 Difficult problems

Difficult problems are the NP-complete, NP-hard, co-NP-complete, co-NP-hard,
#P-complete, #P-hard problems for which no polynomial-time algorithm is known.
In this section we will also mention enumeration problems that are not difficult (in
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the above sense) but for which the size of the answer is not bounded by a polynomial
function of the size of the data (for example, searching for all elements of the Galois
lattice of a relation).

The following decision problems are NP-complete.

Input: a non-directed graph G.
Question: is there an ordered set P satisfying G = Neigh(P)?

Nešetřil and Rödl (1987), Brightwell (1993b).
Note Remains NP-complete for a 4-colorable graph (Brightwell, 1993b).

Input: an ordered set P and an integer k ≥ 3.
Question: does dimP ≤ k hold?

Yannakakis (1982).
Note Remains NP-complete for an N -free ordered set, Kierstead and Penrice

(1989).

Input: a bipartite ordered set P.
Question: does dimP ≤ 4 hold?

Yannakakis (1982).

Input: an ordered set P and an integer k .
Question: does dim2 P ≤ k hold?

Stahl and Wille (1986), Habib et al. (2004).
Note In Proposition 6.7 we have proved that dim2 P ≥ λ(P)(= κ(P) − 1). The

problem is recognizing whether dim2 P = λ(P) is NP-complete (Habib et al., 2004).
A study of the heuristics for the computation of the 2-dimension is given in Caseau
et al. (1999).

Input: an ordered set P.
Question: does s(P)= α(P)− 1 hold?

Bouchitté and Habib (1987).
Note By definition, the latter question amounts to recognizing whether P is a

Dilworth ordered set.

The following optimization problems are NP-hard:

Input: an ordered set P.
Output: a linear extension L of P minimizing the jump number (s(L)= s(P)).

Pulleyblank (1981, unpublished), Bouchitté and Habib (1987).
Note The computation of s(P) remains NP-hard for bipartite ordered sets

(Pulleyblank, 1981) or interval ordered sets (Mitas, 1991).

Input: an ordered set P of size n and two tuples (t1, t2, ..., tn),(p1,p2, ...,pn) ∈ Rn.
Output: a linear extension of P minimizing the total weighted completion time.

Lawler (1978).
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Note The problem remains NP-hard on N -free ordered sets even when all ti’s (or
all pi’s) are equal (Habib and Möhring, 1987). For approximation algorithms, see
Woeginger (2001).

Input: a profile π = (L1, ...,Li, ...,Ln) of linear orders.
Output: a median order of π .

See Hudry (2004) and, for approximation algorithms, Hudry (1997).

The following counting problems are #P-complete.

Input: an ordered set P.
Output: the number |D(P)| of downsets of P (or also the number of its antichains).

Provan and Ball (1983).

Note Enumeration of D(P):

(a) O(n|D(P)|): Steiner (1986), in Gray code manner (Pruesse and Ruskey, 1994).
(b) O(logn|D(P)|): Squire (1995).
(c) O(α(P)|D(P)|): Bordat (1991b).
(d) O(�(P)|D(P)|) (where �(P) is the maximum number of elements covered by

an element of P): Habib et al. (2001) – see also Habib et al. (1997).
(e) O(n|D(P)|) in Gray code manner, Abdo (2009).
(f) If P is an interval ordered set, O(|D(P)|) (in Gray code manner with a “loop-free”

algorithm): Habib et al. (1997).

Covering relation of D(P):

(a) O(α(P)|D(P)|): Bordat (1991b).
(b) O(n+m) (with the covering tree of D(P) as the input, see page 156): Habib et al.

(2001).

Input: an ordered set P.
Output: the number |L(P)| of linear extensions of P.

Brightwell and Winkler (1991).

Note Enumeration of L(P):

(a) O(|L(P)|): Pruesse and Ruskey (1994).
(b) Korsh and LaFollette (2002, with a “loop-free” algorithm).
(c) For approximation algorithms, see Brightwell and Winkler (1991).
(d) For an enumeration algorithm of all extensions of an ordered set, see Corrêa and

Szwarcfiter (2005).

Input: (E′,E,R), where R ⊆ E′ ×E is a binary relation from E′ to E.
Output: |Gal(E′,E,R)|.

Kuznetsov (2001).
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Note In particular, computing the number of elements of a lattice given by its
table is #P-complete. Many algorithms exist for enumerating the closed elements of
the Galois lattice and/or determining its covering relation. See for example Ganter
(1984), Kuznetsov and Obiedkov (2001) where the efficiencies of 10 algorithms are
compared, Nourine and Raynaud (2002) or Gely (2005).

The following counting problem is #P-hard.

Input: (E′,E,R), where R ⊆ E′ ×E is a binary relation from E′ to E.
Output: the number |CF | of critical sets of the Moore family F on E associated

with R.
Kuznetsov (2004).

Note Recognition of a critical set.
The following decision problem is co-NP-complete.
Input: (E′,E,R), where R ⊆ E′ × E is a binary relation from E′ to E, and a set

C ⊆ E.
Question: is C a critical set of the Moore family F on E associated with R?

Babin and Kuznetsov (2010).
Enumeration of |CF |.
See Distel and Sertkaya (2011).

A.2.3 Difficult problems and particular classes of orders

TableA.1 crosses a number of order classes easy to recognize and some problems that
are in general difficult (or whose status is unknown, like the isomorphism problem)
but that may become polynomial for such classes. The corresponding cell in the table
is then labeled “P” (for polynomial) or contains the complexity of a polynomial-
time algorithm. The cells filled in with a “?” are those for which we know that the
answer is unknown, whereas the empty cells are those for which we have found no
information. The “jump number” and “total weighted completion time” problems (the
third and fourth columns) are the two one-machine scheduling problems presented in
Section 7.5.1.

For each of the order classes in the table, we give below – ordered with respect to
the problems given in the columns – the references of the complexity results given in
the table cells.

1. Series–parallel order.

• Isomorphism: Lawler (1978), Valdes et al. (1982).
• Dimension (it is equal to 2): Valdes et al. (1982).
• Jump number: Cogis and Habib (1979).
• Total weighted completion time: Lawler (1978).
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Table A.1 Order classes and problem complexities

Order Isomorphism DimP Jump number

series–parallel order P P P
N -free order complete isomorphisma NP P
2-dimensional order O(n2) − ?
interval order P ? NP
semiorder P P P
weak order P P P
order of width at most k ? ? O(nk )

order of decomposition diameter
at most k

O(n2k2k!) O(n2k!) O((2k)!n2)

a A problem is complete isomorphism if it is at least as difficult as the graph isomorphism
problem.

Order total weighted completion time |D(P)| |L(P)|
series–parallel order O(nlogn) P P
N -free order NP ? ?
2-dimensional order ? P ?
interval order ? P ?
semiorder P ?
weak order P P P
order of width at most k O(n2k+1) O(nk+1)

order of decomposition
diameter at most k

O(nk2
) P O(nk2

)

• Number of downsets and of linear extensions: they are obtained by formulas using
the decomposition tree of P, Faigle et al. (1986), Faigle and Schrader (1986).

2. N -free order.

• Isomorphism: Habib and Möhring (1987).
• Dimension: Kierstead and Penrice (1989).
• Jump number: Rival (1982, “greedy" algorithm of construction of an optimal linear

extension), Faigle et al. (1985), Bouchitté and Habib (1989).
• Total weighted completion time: Habib and Möhring (1987).

3. 2-dimensional order.

• Isomorphism: Spinrad and Valdes (1983).
• Number of downsets: Steiner (1984).
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Note Following a 2003 Ceroi result showing that a weighted version of the problem
of the jump number on a 2-dimensional ordered set is NP-complete, it may be
conjectured that so is the non-weighted version.

4. Interval order.

• Isomorphism: Lueker and Booth (1979).
• Jump number: Mitas (1991); for approximation algorithms, see Faigle and Schrader

(1985) and Felsner (1990).
• Number of downsets: it is obtained by recurrence formulas, Faigle et al. (1986).

5. Semiorder.

• Jump number: Arnim and de la Higuera (1994).
• Number of downsets: Faigle and Schrader (1986).

6. Weak order.

• Folklore.

7. Order of width at most k.

• Recognition: Felsner et al. (2003).
• Jump number: Colbourn and Pulleyblank (1985).
• Number of downsets: Faigle and Schrader (1986).
• Number of linear extensions: Steiner (1987).

8. Order of decomposition diameter at most k.

• Isomorphism: Habib and Möhring (1987).
• Dimension: Habib and Möhring (1987), Möhring (1989).
• Jump number: Habib and Möhring (1987), Möhring (1989).
• Total weighted completion time: Möhring and Radermacher (1985).
• Number of downsets: Faigle and Schrader (1986).
• Number of linear extensions: Habib and Möhring (1987).
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The 58 types of connected ordered sets
of size at most 5

K2,2 = CR2

n = 3

C4

n = 2n = 1

n = 4

K3,1

K2,1K1,2

C3

C2

B2

K1,3

Figure B.1 The 14 types of connected ordered sets of size at most 4.
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C5 N5 M3

K2,3

K1,4

n = 5

(b)

(a)

Figure B.2 The 44 types of connected ordered sets of size 5. (a)Autodual ones. (b) Others,
without the representation of their dual ordered sets; the reader can turn the book upside
down in order to see the latter appear.
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The numbers of ordered sets and of types
of ordered sets

Table C.1 Numbers of orders and of connected orders defined on a set with
n ≤ 18 elements (see Brinkmann and McKay (2002))

n Orders Connected orders

1 1 1
2 3 2
3 19 12
4 219 146
5 4231 3060
6 130 023 101 642
7 6 129 859 5 106 612
8 431 723 379 377 403 266
9 44 511 042 511 40 299 722 580
10 6 611 065 248 783 6 138 497 261 882
11 1 396 281 677 105 899 1 320 327 172 853 172
12 414 864 951 055 853 499 397 571 105 288 091 506
13 171 850 728 381 587 059 351 166 330 355 795 371 103 700
14 98 484 324 257 128 207 032 183 96 036 130 723 851 671 469 482
15 77 567 171 020 440 688 353 049 939 76 070 282 980 382 554 147 600 692
16 83 480 529 785 490 157 813 844 256 579 82 226 869 197 428 315 925 408 327 266
17 122 152 541 250 295 322 862 941 281 269 151 120 722 306 604 121 583 767 045 993 825 620
18 241 939 392 597 201 176 602 897 820 148 085 023 239 727 397 782 668 638 856 762 574 296 226 842

Bounds for the number |On| of orders defined on a set with n elements

1

4
n2 + 1

3
n− 3log2n ≤ log2|On| ≤ 1

4
n2 + 3

2
n+ clog2n

where c is a constant.

See Kleitman and Rothschild (1975).
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Table C.2 Numbers of order types and of types of connected orders defined on a set
with n ≤ 16 elements (see Brinkmann and McKay, 2002).

n Order types Types of connected orders

1 1 1
2 2 1
3 5 3
4 16 10
5 63 44
6 318 238
7 2 045 1 650
8 16 999 14 512
9 183 231 163 341

10* 2 567 284 2 360 719
11 46 749 427 43 944 974
12 1 104 891 746 1 055 019 099
13 33 823 827 452 32 664 984 238
14 1 338 193 159 771 1 303 143 553 205
15 68 275 077 901 156 66 900 392 672 168
16 4 483 130 665 195 087 4 413 439 778 321 689

* The number 2 567 284 of order types on a set of size 10 comes from Culberson and Rawlins
(1991).
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Documentation marks

As already said, the study of ordered sets has long been almost exclusively devoted
to that of lattices. Things started to change in the 1970s and, since then, hundreds of
papers have been concerned with other ordered sets, in particular with finite ones. It
would therefore require several copious books to describe just the principal results
obtained in this field (in comparison, the “Handbook” on Boole algebras published by
Elsevier in 3 volumes has 1440 pages). However, with regard to books, the situation
has not changed much. Whereas there exist dozens of books on lattice theory, the
number of books on ordered sets is still very low and the latter are often concerned
with particular aspects. That is why we have given, in the last section of each chapter,
a number of notions and important results, referring the reader to the (numerous)
references allowing us to know more on these subjects. Below, we give some marks
and indications to help the reader find his bearings among these references and, more
generally, in the documentary resources of the field.

D.1 Internet and the inescapable Google

If we ask that search engine, for instance, for “partial order dimension,” we obtain
almost 14 million answers, with many appropriate references in the first pages. It is
then clear that Google may be a very efficient tool, even though important – but old –
references may not be found.

Besides, there exist generalist sites where one may find a number of definitions
and results:

• http://en.wikipedia.org/wiki/Category:Order_theory
• http://en.wikipedia.org/wiki/Partially_ordered_set
• http://mathworld.wolfram.com/search/?query=poset&x=0

&y=0
• www.math.niu.edu/ rusin/known-math/index/06-XX.html

The latter contains some sites with queries/answers on ordered sets.
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D.2 Books

D.2.1 Generalist books on ordered sets

So far, only two other books exist in English on arbitrary ordered sets. These two
excellent books deal with finite as well as infinite ordered sets, the second being much
more devoted to the latter. Neither of them is concerned with applications of ordered
sets.

• B.S.W. Schröder (2002), Ordered Sets. An Introduction, Birkhaüser, Boston.
• E. Harzheim (2005), Ordered Sets, Series: Advances in Mathematics, Vol. 7,

Springer-Verlag, New York.

D.2.2 Specialized books on ordered sets

In English, one finds books devoted to a specific topic in the theory of ordered sets:

• B.A. Davey and H.A. Priestley (1990, 2002), Introduction to Lattices and Order,
Cambridge University Press, Cambridge.

Indeed, in spite of its title, the brilliant introduction of Davey and Priestley mainly
concentrates on lattices, as does the last book of the following list:

• P.C. Fishburn (1985), Interval Orders and Interval Graphs. A Study of Partially
Ordered Sets, John Wiley & Sons, Inc. New York.

• I. Anderson (1987), Combinatorics of Finite Sets, Clarendon Press, Oxford.
• W.T.Trotter (1992), Combinatorics and Partially Ordered Sets: Dimension Theory,

The John Hopkins University Press, Baltimore, MD.
• M. Pirlot and Ph. Vincke (1997), Semiorders. Properties, Representations,

Applications, Kluwer, Dordrecht.
• K. Engel (1997), Sperner Theory, Encyclopedia of Mathematics and its Applica-

tions 65, Cambridge University Press, Cambridge.

• S. Roman (2009), Lattices and Ordered Sets, Springer, New York.

D.2.3 Book chapters or parts

In many books on discrete mathematics and combinatorics, one finds chapters/parts
dedicated to ordered sets. This is true for textbooks as well as for research books. In
the former category we can quote for example:

• T.S. Foldes (1994), Fundamental Structures of Algebra and Discrete Mathematics,
John Wiley & Sons, Inc., New York.

• V. Krishnamurthy (1986), Combinatorics: Theory and Applications, Halsted Press,
New York.
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• R.C. Penner (1999), Discrete Mathematics: Proof Techniques and Mathematical
Structures, World Scientific Publishing Co. Pte. Ltd, Singapore.

• H.F. Mattson (1993), Discrete Mathematics with Applications, John Wiley and
Sons, Inc., New York.

For the second category, we can mention the following books:

• M. Aigner (1979), Combinatorial Theory, Springer-Verlag, Berlin.
• R.P. Stanley (1986), Enumerative Combinatorics, Vol. 1, Wadsworth and Brooks,

Monterey.
• D. Stanton and D. White (1986), Constructive Combinatorics, Springer-Verlag,

New York.

Let us also observe that, as early as 1962, Öre devoted two chapters to ordered sets
in his book Theory of Graphs.

D.2.4 Other references

One may notice that some books on ordered sets were published earlier in other
languages. For instance, one finds in French:

• N. Bourbaki (1956), Éléments de Mathématiques – Livre I – Théorie des ensembles,
Chapter 3, Ensembles ordonnés. N. Hermann & Cie Editeurs, Paris, and (2006)
Éléments de Mathématiques – Théorie des ensembles, Springer, Berlin.

The particular Bourbaki style does not allow us to recommend this chapter as an
introductory text, certainly, but we have to note that, at that time, it contained – with
its exercises – most of what was known on arbitrary ordered sets. On the other hand,
one of its merits consisted of the introduction of a terminology for the basic notions
which almost became a standard for French-speaking authors.

• M. Barbut and B. Monjardet (1970), Ordre et Classification, Algèbre et Combina-
toire, tomes I and II, Hachette, Paris.

This book (out of print for a long time but which may be found in good libraries) con-
centrates on applications of ordinal structures to human sciences. However, lattices
occupy a great deal of the book.

More recent books are:

• in German, the marvellous:

M. Erné (1982), Einführung in die Ordnungstheorie, Bibliographisches Institut,
Mannheim.

• in French:
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N. Caspard, B. Leclerc, and B. Monjardet (2007), Ensembles ordonnés finis:
concepts, résultats et usages, Springer, Berlin.

In fact, the present book in English is an updated and deeply revised version of the
latter (2007).

D.3 Journals

Papers on ordered sets have for long been published in very diverse mathematical
reviews. This is still the case but, in 1984, Ivan Rival (at that time author or co-author
of more than 60 papers in the field) launched the publication in D. Reidel of the
specialized journal Order.

The latter journal (now published by Springer) has then become a privileged place
to publish excellent papers on ordered sets. After I. Rival and W.T. Trotter, the present
main editor is D. Duffus.

The list of published papers may be found on the website of the journal:

www.springerlink.com/content/100324/

We shall not forget the two journals of reviews whose ambition is to give a brief
comment (sometimes limited to a summary) for any published paper in mathematics:

• Mathematical Reviews, published by the American Mathematical Society and
which presents the papers with respect to a classification whose last update dates
back to 2010; the latter may be found on the site:

www.ams.org/mathscinet/msc/msc2010.html

• ZentralBlatt Mathematik (www.zentralblatt-math.org/zmath/).

D.4 Reviews and proceedings

Ivan Rival (deceased in 2002) wanted to publish advanced research in Order but also
encourage diffusion of the results and communication between researchers and their
fields of study. With this aim, he was the initiator of several conferences principally
dedicated to survey talks, presented by one or two specialists (these conferences also
had sessions of open problems). These talks were later published in the following
proceedings:

• Ordered sets. Proceedings of the NATO Advanced Study Institute held in Banff,
Alta, August 28–September 12, 1981. I. Rival (ed.). NATO ASI Series C 83.
D. Reidel Publishing Co., Dordrecht-Boston, MA, 1982. xviii+966 pp.
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• Graphs and order. The role of graphs in the theory of ordered sets and its appli-
cations. Proceedings of the NATO Advanced Study Institute held in Banff, Alta,
May 18–31, 1984. I. Rival (ed.), NATO ASI Series, 147. D. Reidel Publishing Co.,
Dordrecht-Boston, MA, 1985. xix+796 pp.

• Combinatorics and ordered sets. Proceedings of the AMS–IMS–SIAM joint
summer research conference held at Humboldt State University, Arcata, CA,
August 11–17, 1985. I. Rival (ed.). Contemporary Mathematics, 57. American
Mathematical Society, Providence, RI, 1986. xvi+285 pp.

• Algorithms and order. Proceedings of the NATO Advanced Study Institute held
in Ottawa, Ontario, June 1–12, 1987. I. Rival (ed.). Kluwer Academic Publishers,
Dordrecht-Boston, MA, 1989. x+498 pp.

We should also mention the conference proceedings that may also contain reviews:

• Orders: Descriptions and Roles, M. Pouzet and D. Richard (eds), Annals of Discrete
Mathematics 23, 1984, North-Holland.

• Orders, Algorithms and Applications, International Workshop ORDAL’94, Lyon,
France, July 4–8, 1994. Proceedings Series: Lecture Notes in Computer Science,
Vol. 831, Bouchitté, V., Morvan, M. (eds) 1994, IX, 204 pp.

• Orders, Algorithms and Applications, International Workshop ORDAL’96,
Ottawa, Ont., Canada, August 5–9, 1996. Theoretical Computer Science, 217
(2), I. Rival, N. Zaguia (eds) 1999, Elsevier Science Publishers, B.V., Amsterdam,
1999. pp. i–iv and 173-436.

We may also add to this list two survey texts exclusively devoted to finite ordered
sets:

• C. Greene and D. Kleitman (1978), Proof techniques in the theory of finite sets, in
Studies in Combinatorics, ed. by G.-C.Rota, MathematicalAssociation ofAmerica,
22–79.

• W.T. Trotter (1995), Chapter 8, Partially ordered sets, in R.L. Graham,
M. Grötschel, L. Lovász (eds), Handbook of Combinatorics, Vol. 1, Elsevier,
Amsterdam, 433–480.

D.5 Software

Software called “the posets package” and containing 41 programs written in
MAPLE has been developed by John Stembridge (www.math.lsa.umich.edu/
jrs/maple.html). Among the procedures available for an ordered set, one finds
the search for its covering relation, for chains or antichains, the determination of its
linear extensions or of its lattice of downsets, some recognition tests of a number of
properties (existence of a rank, recognition of a lattice structure). One also finds a test
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for the isomorphism of two ordered sets and a library of the 19.449 types of ordered
set of size at most 8 and of the 7.372 types of lattice of size at most 10.

Another software package called “A Mathematica Package for Studying Posets”
has been developed by Erica Greene and Curtis Greene:

www.haverford.edu/math/cgreene/posets.html

They write: “It is designed to generate, display, and explore partially ordered sets,
with an emphasis on topics of current interest in combinatorics. The package has
two distinctive features: (1) a large repertoire of standard examples (2) the ability to
generate a poset directly from its formal definition, i.e., from a Mathematica program
giving its covering function” (last version: summer 2008).

Another more specialized Mathematica package called “Mathematica package to
cope with partially ordered sets” has been developed by P. Codara. In particular, it
offers the ability to enumerate, create, and display monotone and regular partitions of
partially ordered sets as well as the capability of constructing its lattices of partitions:

www.cody.it/pietrocodara_files/pub_cod_ugm2010_pre.pdf

Karell Bertet has incorporated in the free software Graphviz of graph vizualization
some functions to handle orders (transitive/symmetric closure/reduction) and a set
of Java classes allowing us to instantiate an implicational system (set of implication
rules), to test and apply some properties on these rules, and to generate the associated
closure system. See:

http://perso.univ-lr.fr/kbertet/dotty.html

Besides, let us mention the last chapter, called “Computational aspects of lattice
theory,” of the book Free Lattices (Freese et al., 1995). It contains numerous algo-
rithms, written in a simple language, on orders and lattices. In particular, it contains
the following: transitive closure, transitions between different representations of an
order, linear extensions, antichains, chain partitions.

Software for graph handling, such as LEDA – “a Library of Efficient Data types
and Algorithms”:

www.cs.sunysb.edu/ algorith/implement/LEDA/
implement.shtml

contains algorithms of transitive closure and reduction.
At last, let us note that a lot of software has been developed for the use of ordinal

tools in data analysis and data mining. We can quote, for instance:
TOCKIT: http://tockit.sourceforge.net/
GALICIA: www.iro.umontreal.ca/galicia
and CONCEPTS: www.st.cs.uni-saarland.de/lindig/#
colibri
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S-order 263
(weak) Bruhat 12
almost connected 263
Dilworth 62
divisibility 10
dominance 40
exponentiation 70
factor 39
interval 15
lexicographic 39
linear 2

median 16
permutoedre 12
priority 250
quotient 14
random 37
refinement 11
semiorder 49
series–parallel 50
strict 3
strictly linear 3
total 2
weak 14

ordered set 2
N -free 49
atomistic 74
bipartite 46

complete 46
regular 115

bounded 23
coatomistic 75
conjugate 178
connected 6
covering N -free 49
decomposable 35
d-irreducible 186, 190
dismantable 62
distributive 63
interval 49
lower directed 65
modular 46
planar 61
ranked 43

Sperner 116
strongly unimodal 120
unimodal 117

semimodular
lower 46
upper 46

semiordered 49
series-parallel 50
strictly linearly 3
strictly ordered 3
tree-ordered set 49
weakly 49

ordered subset 17
covering 17

Öre 98, 185, 292
origin of a chain 18

Pálfy 157
Papadimitriou 270, 279
Pareto see property
partition 11 see lattice, 216

antichain partition 108
chain partition 108

Paschos 276
Pasquier 259
path 14, 56

Hamiltonian 56
Peirce 32



Index 335

Peled 61
Penner 292
Penrice 281, 284
permutation 12
permutoedre see graph, lattice, order
Permutograph 151
Pichat 99
Pichon 123
Pirlot 251, 252, 263, 291
planar see Lattice, Ordered set
Poguntke 34, 35, 259
Poitrenaud 259
polynomial reduction 274
Pouzet 32, 155, 190, 253, 277
Powers 228, 257
Prade 251
preference aggregation function 208
preference profile 207
preorder 14

of principal sets 41
trace 199, 261

Priestley 63, 149, 291
problem

#P-complete 275
#P-hard 275
in #P , 275
NP-hard 274
decision 272
in NP 273
NP-complete 274
in P 273
undecidable 272

procedure
median 222

product
direct 30
lexicographic 29

projection 212
∩-projection 212

Promel 37, 38
property

Condorcet 228
consistency 228
FPP (fixed point property) 102
independence 213
Jordan–Dedekind 45
Pareto 213
Sperner 116

Provan 282
Pruesse 282
Pulleyblank 281, 285

Quackenbush 38, 160
quasi-closed set 240

Rabinovitch 188
Raderanirina 158
Radermacher 61, 260, 285
Raghavan 278, 279, 285
Rampon 62, 190, 252, 277

range of an ordered set 19
rank (function)

of an ordered set 43
normalized rank 43

of a tournament 57
rank (parameter) 43
rank symmetry–unimodality see condition
rank-set 44

R-regular 116
minimum-R-regular 116

Rawlins 289
Raynaud 98, 281, 283
Reading 63, 162
realization (of an order) 21
realization (of an ordered set) 170
reductive see map
Régnier 256
regularity see Condition
Reinelt 16
Reiner 254
relation

Morgado 103
(binary) relation 2

antisymmetric 2
asymmetric 3
codual 194
comparability 5
complementary 2
covering 6
double-arrow 22
downarrow 21
dual 194
Ferrers 198
forcing 21
incomparability 5
indifference 192
irreflexive 3
majority 208
negatively transitive 194
preference 14, 192
quasi-transitive 205
reduced 92
reflexive 2
total 2, 57
transitive 2
uparrow 22
weakly total 2

(binary) relation between two sets 86
remoteness 221
representation

join-irreducible 73
of a distributive lattice 138

residual see map
residuated see map
retract 76
Reuter 189
Richard 32
Riesenfeld 37
Riguet 251, 252
Rinnooy Kan 259, 260
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Roberts 185
Robertson 125
Rodin 252
Rödl 280, 281
Roman 291
Rosenstiehl 157
Ross 187
Rotem 34
Roth 259
Rothschild 37, 288
Roubens 253
Roush 157
Roy 251, 252, 277
Ruskey 282

Saks 37
Sargin 258
scheduling 243

2-step 2-machine 247
m-scheduling 245

Schmidt 101, 157
Schnyder 188
Schrader 61, 284, 285
Schröder 102, 277, 278, 291
Schützenberger 100, 155, 156
Schweitzer 231
Scott–Suppes 262
Sedgewick 270
semilattice 51

distributive 222
join-, 50
median 226
meet-, 50
semimodular 66
sub-join-, 51
sub-meet 51

semiorder 197
Sep 144
Serra 101
Sertkaya 283
set

critical 240
join-generating 25
meet-generating 25
quasi-closed 240

Seymour 125
Shapley 158
Shepp 36, 37
Shmuely 98
Shum 126
Silcock 157
simple game 210
size (of an instance) 271
Slater 64
Soldano 259
sorting 36

Spencer 36
Sperner 107, 116 see family, ordered set,

property, theorem, 119
Sperner by rank-sets see condition
Spieksma 126
spindle of linear orders 150
Spinrad 191, 276–80, 284, 285
Squire 282
Srikant 259
Stahl 186, 216, 281
Stanley 38, 102, 155, 158, 292
Stanton 292
Steger 37, 38
Stein 270
Steiner 15, 280, 282, 284, 285
stem basis 257
Stembridge 294
Stern 270
Strecker 101
Streib 35
strictly linear see order
strictly linearly ordered see ordered set
Stumme 259
sub-join-semilattice 51
sub-meet-semilattice 51
sublattice 52
suborder 17
subset

D-closed 233
convex 17, 151
geodesically convex 153
homogeneous 34
join-closed 24
join-stable 24
lower bounded 23
meet-closed 24
meet-stable 24
Moore 77
saturated 236
upper bounded 23

substitution 27
sum (of ordered sets)

disjoint union 28
linear sum 28

Sumner 35
surjection 8
Swami 259
symmetric difference distance 152
Sysło 61, 279
system of distinct representatives 128
Szasz 63
Szathmary 259
Szpilrajn 184
Szwarcfiter 278, 282

table of an ordered set 89
arrowed table 89
reduced table 92

tableau of a binary relation 193
step-type tableau 193
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Taouil 259
Tarjan 279, 283
theorem

Arrow 213
Birkhoff 138
Dilworth 109
Ford and Fulkerson 125
Hiraguchi 177
Kleitman–Rothschild 38
König–Egerváry 114
König–Hall 115
König–Öre 114
Nakamura 215
Scott–Suppes 203
Sperner 119

Theuns 258
Thierry 155, 281
Thomas 125
Thomassé 125
(time) complexity 271
Toft 125
topological sorting 57
topology 134

complemented 146
linear 146
quasi-separated 146
saturated linear 146
T0-topology 146

totally ordered set 2
tournament 57
transversal

of a bipartite ordered set 112
of a family of subsets 142

tree
classification 217
decomposition 35
of subsets 11

Trenk 35
Trotter 35, 37, 62, 126, 158, 185–89, 191, 252,

291, 293, 294
Trotter Jr., 126
Turán 61, 284, 285
Tverberg 124

Uchida 259
ultrafilter 210

ultrametric 220
unimodal see ordered set
Ünlü 258
Uno 259
upper bound 23
upset 26
Urrutia 34, 62

Valdes 279, 283, 284
Valiant 275
Valtchev 259
Vazirani 276
Ventos 259
Verbin 37
Vergès 100
Vincke 251–53, 263, 291

Wagner 35
Wang 123
Warshall 277
Wayne 270
Wegener 270
Wells 256
Welsh 124
West 124, 186, 189
White 292
Whitney numbers 44
width 19, 108
Wiedemann 160
Wiener 15, 251
Wild 258
Wille 99, 100, 156, 162, 184, 257, 258, 281
Winkler 34, 35, 37, 38, 156, 282
winning coalition 210
Wismath 98, 99
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Wolper 270
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