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Preface

Basic philosophy

Algebra, as we know it today (2005), consists of a great many ideas, concepts and results.
A reasonable estimate of the number of these different “items” would be somewhere be-
tween 50 000 and 200 000. Many of these have been named and many more could (and
perhaps should) have a “name”, or other convenient designation. Even a nonspecialist is
quite likely to encounter most of these, either somewhere in the published literature in the
form of an idea, definition, theorem, algorithm, . . . somewhere, or to hear about them, of-
ten in somewhat vague terms, and to feel the need for more information. In such a case, if
the concept relates to algebra, then one should be able to find something in this Handbook;
at least enough to judge whether it is worth the trouble to try to find out more. In addition
to the primary information the numerous references to important articles, books, or lecture
notes should help the reader find out more.

As a further tool the index is perhaps more extensive than usual, and is definitely not
limited to definitions, (famous) named theorems and the like.

For the purposes of this Handbook, “algebra” is more or less defined as the union of the
following areas of the Mathematics Subject Classification Scheme:

– 20 (Group theory)
– 19 (K-theory; this will be treated at an intermediate level; a separate Handbook of

K-theory which goes into far more detail than the section planned for this Handbook
of Algebra is under consideration)

– 18 (Category theory and homological algebra; including some of the uses of category in
computer science, often classified somewhere in section 68)

– 17 (Nonassociative rings and algebras; especially Lie algebras)
– 16 (Associative rings and algebras)
– 15 (Linear and multilinear algebra, Matrix theory)
– 13 (Commutative rings and algebras; here there is a fine line to tread between commu-

tative algebras and algebraic geometry; algebraic geometry is definitely not a topic
that will be dealt with in this Handbook; there will, hopefully, one day be a separate
Handbook on that topic)

– 12 (Field theory and polynomials)
– 11 The part of that also used to be classified under 12 (Algebraic number theory)
– 08 (General algebraic systems)
– 06 (Certain parts; but not topics specific to Boolean algebras as there is a separate three-

volume Handbook of Boolean Algebras)

v



vi Preface

Planning

Originally (1992), we expected to cover the whole field in a systematic way. Volume 1
would be devoted to what is now called Section 1 (see below), Volume 2 to Section 2, and
so on. A quite detailed and comprehensive plan was made in terms of topics that needed
to be covered and authors to be invited. That turned out to be an inefficient approach.
Different authors have different priorities and to wait for the last contribution to a volume,
as planned originally, would have resulted in long delays. Instead there is now a dynamic
evolving plan. This also permits to take new developments into account.

Chapters are still by invitation only according to the then current version of the plan, but
the various chapters are published as they arrive, allowing for faster publication. Thus in
this Volume 4 of the Handbook of Algebra the reader will find contributions from 5 sec-
tions.

As the plan is dynamic suggestions from users, both as to topics that could or should
be covered, and authors, are most welcome and will be given serious consideration by the
board and editor.

The list of sections looks as follows:

Section 1: Linear algebra. Fields. Algebraic number theory
Section 2: Category theory. Homological and homotopical algebra. Methods from logic

(algebraic model theory)
Section 3: Commutative and associative rings and algebras
Section 4: Other algebraic structures. Nonassociative rings and algebras. Commutative

and associative rings and algebras with extra structure
Section 5: Groups and semigroups
Section 6: Representations and invariant theory
Section 7: Machine computation. Algorithms. Tables
Section 8: Applied algebra
Section 9: History of algebra

For the detailed plan (2005 version), the reader is referred to the Outline of the Series
following this preface.

The individual chapters

It is not the intention that the handbook as a whole can also be a substitute undergraduate
or even graduate, textbook. Indeed, the treatments of the various topics will be much too
dense and professional for that. Basically, the level should be graduate and up, and such
material as can be found in P.M. Cohn’s three volume textbook ‘Algebra’ (Wiley) should,
as a rule, be assumed known. The most important function of the articles in this Handbook
is to provide professional mathematicians working in a different area with a sufficiency of
information on the topic in question if and when it is needed.

Each of the chapters combines some of the features of both a graduate level textbook
and a research-level survey. Not all of the ingredients mentioned below will be appropriate
in each case, but authors have been asked to include the following:
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– Introduction (including motivation and historical remarks)
– Outline of the chapter
– Basic concepts, definitions, and results. (These may be accompanied by proofs or (usu-

ally better) ideas/sketches of the proofs when space permits)
– Comments on the relevance of the results, relations to other results, and applications
– Review of the relevant literature; possibly complete with the opinions of the author on

recent developments and future directions
– Extensive bibliography (several hundred items will not be exceptional)

The present

Volume 1 appeared in 1995 (copyright 1996), Volume 2 in 2000, Volume 3 in 2003. Vol-
ume 5 is planned for 2006. Thereafter, we aim at one volume every two years (or better).

The future

Of course, ideally, a comprehensive series of books like this should be interactive and have
a hypertext structure to make finding material and navigation through it immediate and
intuitive. It should also incorporate the various algorithms in implemented form as well as
permit a certain amount of dialogue with the reader. Plans for such an interactive, hypertext,
CDROM (DVD)-based version certainly exist but the realization is still a nontrivial number
of years in the future.

Kvoseliai, July 2005 Michiel Hazewinkel

Kaum nennt man die Dinge beim richtigen Namen
so verlieren sie ihren gefährlichen Zauber

(You have but to know an object by its proper name
for it to lose its dangerous magic)

Elias Canetti
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Outline of the Series
(as of July 2005)

Philosophy and principles of the Handbook of Algebra

Compared to the outline in Volume 1 this version differs in several aspects.
First, there is a major shift in emphasis away from completeness as far as the more

elementary material is concerned and towards more emphasis on recent developments and
active areas. Second, the plan is now more dynamic in that there is no longer a fixed list of
topics to be covered, determined long in advance. Instead there is a more flexible nonrigid
list that can and does change in response to new developments and availability of authors.

The new policy, starting with Volume 2, is to work with a dynamic list of topics that
should be covered, to arrange these in sections and larger groups according to the major
divisions into which algebra falls, and to publish collections of contributions (i.e. chapters)
as they become available from the invited authors.

The coding below is by style and is as follows.

– Author(s) in bold, followed by chapter title: articles (chapters) that have been received
and are published or are being published in this volume.

– Chapter title in italic: chapters that are being written.
– Chapter title in plain text: topics that should be covered but for which no author has yet

been definitely contracted.

Chapters that are included in Volumes 1–4 have a (x; yy pp.) after them, where ‘x’ is the
volume number and ‘yy’ is the number of pages.

Compared to the plan that appeared in Volume 1 the section on “Representation and
invariant theory” has been thoroughly revised. The changes of this current version com-
pared to the one in Volume 2 (2000) and Volume 3 (2003) are relatively minor: mostly the
addition of quite a few topics.

Editorial set-up
Managing editor: M. Hazewinkel.
Editorial board: M. Artin, M. Nagata, C. Procesi, O. Tausky-Todd,† R.G. Swan,
P.M. Cohn, A. Dress, J. Tits, N.J.A. Sloane, C. Faith, S.I. Ad’yan, Y. Ihara, L. Small,
E. Manes, I.G. Macdonald, M. Marcus, L.A. Bokut’, Eliezer (Louis Halle) Rowen,
John S. Wilson, Vlastimil Dlab. Note that three editors have been added startingwith
Volume 5.

Planned publishing schedule (as of July 2005)
1996: Volume 1 (published)
2001: Volume 2 (published)
2003: Volume 3 (published)

ix



x Outline of the series

2005: Volume 4 (last quarter)
Further volumes at the rate of one every year.

Section 1. Linear algebra. Fields. Algebraic number theory

A. Linear Algebra

G.P. Egorychev, Van der Waerden conjecture and applications (1; 22 pp.)
V.L. Girko, Random matrices (1; 52 pp.)
A.N. Malyshev, Matrix equations. Factorization of matrices (1; 38 pp.)
L. Rodman, Matrix functions (1; 38 pp.)
Correction to the chapter by L. Rodman, Matrix functions (3; 1 p.)
J.A. Hermida-Alonso, Linear algebra over commutative rings (3, 59 pp.)
Linear inequalities (also involving matrices)
Orderings (partial and total) on vectors and matrices
Positive matrices
Structured matrices such as Toeplitz and Hankel
Integral matrices. Matrices over other rings and fields
Quasideterminants, and determinants over noncommutative fields
Nonnegative matrices, positive definite matrices, and doubly nonnegative matrices
Linear algebra over skew fields

B. Linear (In)dependence

J.P.S. Kung, Matroids (1; 28 pp.)

C. Algebras Arising from Vector Spaces

Clifford algebras, related algebras, and applications

D. Fields, Galois Theory, and Algebraic Number Theory

(There is also an article on ordered fields in Section 4)
J.K. Deveney, J.N. Mordeson, Higher derivation Galois theory of inseparable field

extensions (1; 34 pp.)
I. Fesenko, Complete discrete valuation fields. Abelian local class field theories (1;

48 pp.)
M. Jarden, Infinite Galois theory (1; 52 pp.)
R. Lidl, H. Niederreiter, Finite fields and their applications (1; 44 pp.)
W. Narkiewicz, Global class field theory (1; 30 pp.)
H. van Tilborg, Finite fields and error correcting codes (1; 28 pp.)
Skew fields and division rings. Brauer group
Topological and valued fields. Valuation theory
Zeta and L-functions of fields and related topics
Structure of Galois modules
Constructive Galois theory (realizations of groups as Galois groups)
Dessins d’enfants
Hopf Galois theory
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E. Nonabelian Class Field Theory and the Langlands Program

(To be arranged in several chapters by Y. Ihara)

F. Generalizations of Fields and Related Objects

U. Hebisch, H.J. Weinert, Semi-rings and semi-fields (1; 38 pp.)
G. Pilz, Near rings and near fields (1; 36 pp.)

Section 2. Category theory. Homological and homotopical algebra. Methods from
logic

A. Category Theory

S. MacLane, I. Moerdijk, Topos theory (1; 28 pp.)
R. Street, Categorical structures (1; 50 pp.)
B.I. Plotkin, Algebra, categories and databases (2; 68 pp.)
P.S. Scott, Some aspects of categories in computer science (2; 73 pp.)
E. Manes, Monads of sets (3; 87 pp.)
Operads

B. Homological Algebra. Cohomology. Cohomological Methods in Algebra.
Homotopical Algebra

J.F. Carlson, The cohomology of groups (1; 30 pp.)
A. Generalov, Relative homological algebra. Cohomology of categories, posets,

and coalgebras (1; 28 pp.)
J.F. Jardine, Homotopy and homotopical algebra (1; 32 pp.)
B. Keller, Derived categories and their uses (1; 32 pp.)
A.Ya. Helemskii, Homology for the algebras of analysis (2; 122 pp.)
Galois cohomology
Cohomology of commutative and associative algebras
Cohomology of Lie algebras
Cohomology of group schemes

C. Algebraic K-theory

A. Kuku, Classical algebraic K-theory: the functors K0,K1,K2 (3; 40 pp.)
A. Kuku, Algebraic K-theory: the higher K-functors (4; 72 pp.)
Grothendieck groups
K2 and symbols
KK-theory and EXT
Hilbert C∗-modules
Index theory for elliptic operators over C∗ algebras
Simplicial algebraic K-theory
Chern character in algebraic K-theory
Noncommutative differential geometry
K-theory of noncommutative rings
Algebraic L-theory
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Cyclic cohomology
Asymptotic morphisms and E-theory
Hirzebruch formulae

D. Model Theoretic Algebra

(See also P.C. Eklof, Whitehead modules, in Section 3B)
M. Prest, Model theory for algebra (3; 28 pp.)
M. Prest, Model theory and modules (3; 27 pp.)
Logical properties of fields and applications
Recursive algebras
Logical properties of Boolean algebras
F.O. Wagner, Stable groups (2; 40 pp.)
The Ax–Ershov–Kochen theorem and its relatives and applications

E. Rings up to Homotopy

Rings up to homotopy
Simplicial algebras

Section 3. Commutative and associative rings and algebras

A. Commutative Rings and Algebras

(See also C. Faith, Coherent rings and annihilator conditions in matrix and polyno-
mial rings, in Section 3B)

J.P. Lafon, Ideals and modules (1; 24 pp.)
General theory. Radicals, prime ideals etc. Local rings (general). Finiteness and

chain conditions
Extensions. Galois theory of rings
Modules with quadratic form
Homological algebra and commutative rings. Ext, Tor, etc. Special properties

(p.i.d., factorial, Gorenstein, Cohen–Macauley, Bezout, Fatou, Japanese, excel-
lent, Ore, Prüfer, Dedekind, . . . and their interrelations)

D. Popescu, Artin approximation (2; 34 pp.)
Finite commutative rings and algebras (see also Section 3B)
Localization. Local–global theory
Rings associated to combinatorial and partial order structures (straightening laws,

Hodge algebras, shellability, . . .)
Witt rings, real spectra
R.H. Villareal, Monomial algebras and polyhedral geometry (3; 58 pp.)

B. Associative Rings and Algebras

P.M. Cohn, Polynomial and power series rings. Free algebras, firs and semifirs (1;
30 pp.)

Classification of Artinian algebras and rings
V.K. Kharchenko, Simple, prime, and semi-prime rings (1; 52 pp.)
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A. van den Essen, Algebraic microlocalization and modules with regular singular-
ities over filtered rings (1; 28 pp.)

F. Van Oystaeyen, Separable algebras (2; 43 pp.)
K. Yamagata, Frobenius rings (1; 48 pp.)
V.K. Kharchenko, Fixed rings and noncommutative invariant theory (2; 38 pp.)
General theory of associative rings and algebras
Rings of quotients. Noncommutative localization. Torsion theories
von Neumann regular rings
Semi-regular and pi-regular rings
Lattices of submodules
A.A. Tuganbaev, Modules with distributive submodule lattice (2; 16 pp.)
A.A. Tuganbaev, Serial and distributive modules and rings (2; 19 pp.)
PI rings
Generalized identities
Endomorphism rings, rings of linear transformations, matrix rings
Homological classification of (noncommutative) rings
S.K. Sehgal, Group rings and algebras (3; 87 pp.)
Dimension theory
V. Bavula, Filter dimension (4; 29 pp.)
A. Facchini, The Krull–Schmidt theorem (3; 41 pp.)
Duality. Morita-duality
Commutants of differential operators
E.E. Enochs, Flat covers (3; 14 pp.)
C. Faith, Coherent rings and annihilator conditions in matrix and polynomial rings

(3; 30 pp.)
Rings of differential operators
Graded and filtered rings and modules (also commutative)
P.C. Eklof, Whitehead modules (3; 25 pp.)
Goldie’s theorem, Noetherian rings and related rings
Sheaves in ring theory
A.A. Tuganbaev, Modules with the exchange property and exchange rings (2;

19 pp.)
Finite associative rings (see also Section 3A)
Finite rings and modules
T.Y. Lam, Hamilton’s quaternions (3; 26 pp.)
A.A. Tuganbaev, Semiregular, weakly regular, and π -regular rings (3; 22 pp.)
Hamiltonian algebras
A.A. Tuganbaev, Max rings and V -rings (3; 20 pp.)
Algebraic asymptotics
(See also “Freeness theorems in groups and rings and Lie algebras” in Section 5A)

C. Coalgebras

W. Michaelis, Coassociative coalgebras (3; 202 pp.)
Co-Lie-algebras
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D. Deformation Theory of Rings and Algebras (Including Lie Algebras)

Deformation theory of rings and algebras (general)
Yu. Khakimdzanov, Varieties of Lie algebras (2; 31 pp.)
Deformation theoretic quantization

Section 4. Other algebraic structures. Nonassociative rings and algebras.
Commutative and associative algebras with extra structure

A. Lattices and Partially Ordered Sets

Lattices and partially ordered sets
A. Pultr, Frames (3; 67 pp.)
Quantales

B. Boolean Algebras

C. Universal Algebra

Universal algebra

D. Varieties of Algebras, Groups, . . .

(See also Yu. Khakimdzanov, Varieties of Lie algebras, in Section 3D)
V.A. Artamonov, Varieties of algebras (2; 29 pp.)
Varieties of groups
V.A. Artamonov, Quasivarieties (3; 23 pp.)
Varieties of semigroups

E. Lie Algebras

Yu.A. Bahturin, M.V. Zaitsev, A.A. Mikhailov, Infinite-dimensional Lie superal-
gebras (2; 34 pp.)

General structure theory
Ch. Reutenauer, Free Lie algebras (3; 17 pp.)
Classification theory of semisimple Lie algebras over R and C
The exceptional Lie algebras
M. Goze, Y. Khakimdjanov, Nilpotent and solvable Lie algebras (2; 47 pp.)
Universal enveloping algebras
Modular (ss) Lie algebras (including classification)
Infinite-dimensional Lie algebras (general)
Kac–Moody Lie algebras
Affine Lie algebras and Lie super algebras and their representations
Finitary Lie algebras
Standard bases
A.I. Molev, Gelfand–Tsetlin bases for classical Lie algebras (4; 62 pp.)
Kostka polynomials

F. Jordan Algebras (finite and infinite dimensional and including their cohomology
theory)
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G. Other Nonassociative Algebras (Malcev, alternative, Lie admissable, . . .)

Mal’tsev algebras
Alternative algebras

H. Rings and Algebras with Additional Structure

Graded and super algebras (commutative, associative; for Lie superalgebras, see
Section 4E)

Topological rings
M. Cohen, S. Gelaki, S. Westreich, Hopf algebras (4; 67 pp.)
Classification of pointed Hopf algebras
Recursive sequences from the Hopf algebra and coalgebra points of view
Quantum groups (general)
A.I. Molev, Yangians and their applications (3; 53 pp.)
Formal groups
p-divisible groups
F. Patras, Lambda-rings (3; 26 pp.)
Ordered and lattice-ordered groups, rings and algebras
Rings and algebras with involution. C∗-algebras
A.B. Levin, Difference algebra (4; 94 pp.)
Differential algebra
Ordered fields
Hypergroups
Stratified algebras
Combinatorial Hopf algebras
Symmetric functions
Special functions and q-special functions, one and two variable case
Quantum groups and multiparameter q-special functions
Hopf algebras of trees and renormalization theory
Noncommutative geometry à la Connes
Noncommutative geometry from the algebraic point of view
Noncommutative geometry from the categorical point of view
Solomon descent algebras

I. Witt Vectors

Witt vectors and symmetric functions. Leibniz Hopf algebra and quasi-symmetric
functions

Section 5. Groups and semigroups

A. Groups

A.V. Mikhalev, A.P. Mishina, Infinite Abelian groups: methods and results (2;
36 pp.)

Simple groups, sporadic groups
Representations of the finite simple groups
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Diagram methods in group theory
Abstract (finite) groups. Structure theory. Special subgroups. Extensions and de-

compositions
Solvable groups, nilpotent groups, p-groups
Infinite soluble groups
Word problems
Burnside problem
Combinatorial group theory
Free groups (including actions on trees)
Formations
Infinite groups. Local properties
Algebraic groups. The classical groups. Chevalley groups
Chevalley groups over rings
The infinite dimensional classical groups
Other groups of matrices. Discrete subgroups
M. Geck, G. Malle, Reflection groups (4; 47 pp.)
M.C. Tamburini, M. Vsemirnov, Hurwitz groups and Hurwitz generation (4;

42 pp.)
Groups with BN-pair, Tits buildings, . . .
Groups and (finite combinatorial) geometry
“Additive” group theory
Probabilistic techniques and results in group theory
V.V. Vershinin, Braids, their properties and generalizations (4; 39 pp.)
L. Bartholdi, R.I. Grigorchuk, Z. Šuniḱ, Branch groups (3; 124 pp.)
Frobenius groups
Just infinite groups
V.I. Senashov, Groups with finiteness conditions (4; 27 pp.)
Automorphism groups of groups
Automorphism groups of algebras and rings
Freeness theorems in groups and rings and Lie algebras
Groups with prescribed systems of subgroups
(see also “Groups and semigroups of automata transformations” in Section 5B)
Automatic groups
Groups with minimality and maximality conditions (school of Chernikov)
Lattice-ordered groups
Linearly and totally ordered groups
Finitary groups
Random groups
Hyperbolic groups

B. Semigroups

Semigroup theory. Ideals, radicals, structure theory
Semigroups and automata theory and linguistics
Groups and semigroups of automata transformations
Cohomology of semigroups
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C. Algebraic Formal Language Theory. Combinatorics of Words

D. Loops, Quasigroups, Heaps, . . .

Quasigroups in combinatorics

E. Combinatorial Group Theory and Topology

(See also “Diagram methods in group theory” in Section 5A)

Section 6. Representation and invariant theory

A. Representation Theory. General

Representation theory of rings, groups, algebras (general)
Modular representation theory (general)
Representations of Lie groups and Lie algebras. General

B. Representation Theory of Finite and Discrete Groups and Algebras

Representation theory of finite groups in characteristic zero
Modular representation theory of finite groups. Blocks
Representation theory of the symmetric groups (both in characteristic zero and mod-

ular)
Representation theory of the finite Chevalley groups (both in characteristic zero and

modular)
Modular representation theory of Lie algebras

C. Representation Theory of ‘Continuous Groups’ (linear algebraic groups, Lie groups,
loop groups, . . .) and the Corresponding Algebras

Representation theory of compact topological groups
Representation theory of locally compact topological groups
Representation theory of SL2(R), . . .
Representation theory of the classical groups. Classical invariant theory
Classical and transcendental invariant theory
Reductive groups and their representation theory
Unitary representation theory of Lie groups
Finite dimensional representation theory of the ss Lie algebras (in characteristic

zero); structure theory of semi-simple Lie algebras
Infinite dimensional representation theory of ss Lie algebras. Verma modules
Representation of Lie algebras. Analytic methods
Representations of solvable and nilpotent Lie algebras. The Kirillov orbit method
Orbit method, Dixmier map, . . . for ss Lie algebras
Representation theory of the exceptional Lie groups and Lie algebras
(See also A.I. Molev, Gelfand–Tsetlin bases for classical Lie algebras, in Sec-

tion 4E)
Representation theory of ‘classical’ quantum groups
A.U. Klimyk, Infinite dimensional representations of quantum algebras (2; 27 pp.)
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Duality in representation theory
Representation theory of loop groups and higher dimensional analogues, gauge

groups, and current algebras
Representation theory of Kac–Moody algebras
Invariants of nonlinear representations of Lie groups
Representation theory of infinite-dimensional groups like GL∞
Metaplectic representation theory

D. Representation Theory of Algebras

Representations of rings and algebras by sections of sheafs
Representation theory of algebras (Quivers, Auslander–Reiten sequences, almost

split sequences, . . .)
Quivers and their representations
Tame algebras
Ringel–Hall algebras

E. Abstract and Functorial Representation Theory

Abstract representation theory
S. Bouc, Burnside rings (2; 64 pp.)
P. Webb, A guide to Mackey functors (2; 30 pp.)

F. Representation Theory and Combinatorics

G. Representations of Semigroups

Representation of discrete semigroups
Representations of Lie semigroups

H. Hecke Algebras

Hecke–Iwahori algebras

I. Invariant Theory

Section 7. Machine computation. Algorithms. Tables

Some notes on this volume: Besides some general article(s) on machine computation in
algebra, this volume should contain specific articles on the computational aspects of the
various larger topics occurring in the main volume, as well as the basic corresponding
tables. There should also be a general survey on the various available symbolic algebra
computation packages.

The CoCoA computer algebra system
Combinatorial sums and counting algebraic structures
Groebner bases and their applications
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Section 8. Applied algebra

Section 9. History of algebra

(See also K.T. Lam, Hamilton’s quaternions, in Section 3B)
History of coalgebras and Hopf algebras
Development of algebra in the 19-th century
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Introduction

This chapter is a sequel to “Classical Algebraic K-Theory: The Functors K0, K1, K2”
published in Volume 3 of Handbook of Algebra [79]. The unexplained notions in this
chapter are those of [79]. Here, we shall provide higher-dimensional analogues to quite a
number of results in [79].

As already observed in [79], the functor K0 was defined by A. Grothendieck, K1 by
H. Bass and K2 by J. Milnor. The definition of K2 by Milnor in 1967 inspired many math-
ematicians to search for higher K-groups and the next five years (1967–1972) witnessed a
lot of vigorous activity in this respect. During this period, several higher K-theories were
proposed; notably by D. Quillen, [114,111], S. Gersten, [36], R.G. Swan, [138], I. Volodin,
[151], J. Milnor, [105], and F. Keune, [64]. These theories are briefly reviewed in Section 2
with connections between them highlighted. By far the most successful among the theories
are those of D. Quillen. Hence, a substantial part of this chapter is devoted to developments
of the subject arising from Quillen’s work.

We now review the contents of this chapter. Section 1 is a brief discussion of some of the
central notions in most constructions of higher K-theories – simplicial objects, classifying
spaces and spectra (see 1.1, 1.2).

In Section 2, we define QuillenK-theory,KQn (2.1);K-theory of Gersten and Swan,KSn
(2.2); K-theory of Karoubi and Villamayor Kk−vn (2.3); Volodin K-theory, KVn (2.4); and
Milnor K-theory, KMn (2.5) – also highlighting some connections between them, e.g., that
K
Q
n (A) coincides with KVn (A) and KSn (A) while KQn (A) coincides with Kk−vn (A) when

A is regular.
In Section 3, we define higher K-theory of exact, symmetric monoidal and Wald-

hausen categories, providing copious examples in each situation (see 3.1, 3.2, 3.3). Thus
we discuss for exact categories, higher K-theory of rings and schemes; mod-m and
profinite higher K-theory; equivariant higher K-theory, etc. For Waldhausen categories,
for instance, we discuss K-theory of perfect complexes and stable derived categories
(see 3.3.10).

In Section 4, we highlight, with copious examples, some fundamental results in higher
K-theory, most of which have classical analogues at the zero-dimensional level. The top-
ics covered include the resolution theorem for exact categories (4.1); the additivity theo-
rem for exact and Waldhausen categories (4.2), the devissage theorem (4.3); localization
sequences (4.4) leading to the Gersten conjecture and fundamental theorems for higher
K- and G-theories (4.4.3 and 4.5). We also discuss Waldhausen’s fibration sequence, lo-
calization sequence for Waldhausen’s K-theory and a long exact sequence which realizes
the cofibre of the Cartan maps as K-theory of a Waldhausen category. Finally, we discuss
excision, Mayer–Vietoris sequences and long exact sequence associated to an ideal.

In Section 5, we define Galois, étale and motivic cohomologies and discuss their in-
terconnections as well as connections with K-theory. We discuss in 5.2 the Bloch–Kato
conjecture including parts of it earlier proved – the Milnor conjecture and the Merkurjev–
Suslin theorem. In 5.3 we discuss Zariski and étale cohomology as well as connections
between them (see 5.3.6). Next we define motivic cohomology which we identify with
Lichtenbaum (étale) cohomology groups for smooth k-varieties as well as the connection
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of this to a special case of Bloch–Kato conjecture 5.4.8. Next we discuss Bloch’s higher
Chow groups and their connections with K-theory and motivic cohomology.

In Section 6, we discuss higher K-theory of rings of integers in local and global fields.
In 6.2 we define étale Chern characters of Soulé (6.2.3) with the observation that there are
alternative approaches through “anti-Chern” characters defined by B. Kahn, [56], and maps
from étale K-theory to étale cohomology due to Dwyer and Friedlander, [26]. We discuss
the Quillen–Lichtenbaum conjecture and record for all n� 2 computations of Kn(OS)(2),
Kn(OS)(l) in terms of étale cohomology groups where OS is a ring of integers in number
field F as well as Kn(OS) when F is totally imaginary. We also briefly discuss the motivic
Chern characters of Pushin used to identify K-groups of number fields and their integers
with motivic cohomology groups (see 6.2.18). In 6.3, we treat higher K-theory and zeta
functions including the Lichtenbaum conjecture, Wiles theorem and their consequences.
Finally we review in 6.4 some more explicit computations of Kn(Z).

Section 7 deals with the higher K-theory of orders, group rings and modules over
EI categories. In 7.1, we review some finiteness results due to Kuku, e.g.: If F is a
number field with integers OF and Λ any OF -order in a semi-simple F -algebra, then
for all n� 1, Kn(Λ), Gn(Λ) are finitely generated, SKn(Λ), SGn(Λ) are finite and
rankKn(Λ) = rankGn(Λ) (see 7.1.4, 7.1.6 and 7.1.11). We also discuss the result due
to R. Laubenbacher and D. Webb that SGn(OFG) = 0 for all n � 1 (see 7.1.8) as well
as the result of Kuku and Tang that for all n � 1,Gn(OFV ) is finitely generated where
V is virtually infinite cyclic group (see 7.1.10). We also exhibit D. Webb’s decomposition
of Gn(RG), R a Noetherian ring and G finite Abelian group as well as extensions of the
decomposition to some non-Abelian groups, e.g., quaternion and dihedral groups.

Next we review in 7.2 results on higher class groups Cln(Λ), n � 0, for orders. First
we observe Kuku’s result that Cln(Λ) is finite for all n � 1, as well as a result due to
Laubenbacher and Kolster that the only p-torsion possible in odd-dimensional class groups
Cl2n−1(Λ) are for primes p lying below prime ideals q for which Λ̂q are not maximal. An
analogous result due to Guo and Kuku for even-dimensional class groups Cl2n(Λ) is given
in 7.2.9 for Eichler orders in quaternion F -algebras and hereditary orders in semi-simple
F -algebras. In 7.3, we discuss Kuku’s results on profinite K-theory of orders and group-
rings providing several l-completeness results for orders in algebras over number fields
and p-adic fields as well as showing that for p-adic orders Λ, Gn(Λ)l , Kn(Σ)l are finite
groups if l �= p and that Kn(OFG)l is also finite for any finite group G. In 7.4, we exhibit
several finiteness results on higher K-theory of modules over ‘EI’ categories.

The last Section 8 deals with equivariant higher algebraic K-theory together with rela-
tive generalizations – for finite group action – due to Dress and Kuku with the observation
that there are analogous theories for profinite groups and compact Lie group actions due to
Kuku, [70,77]. Time and space prevented us from including the latter two cases. We also
remark that K. Shimakawa, [127], provided a G-spectrum formulation of the absolute part
of the theory discussed in Section 8, but again time and space has prevented us from going
into this.
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1. Simplicial objects, classifying spaces, and spectra

In this opening section, we briefly review some of the central notions in the construction
of higher K-theories.

1.1. Simplicial objects and classifying spaces

1.1.1. DEFINITION. Let Δ be the category defined as follows: ob(Δ)= ordered sets n=
{0 < 1 < · · · < n}. The set HomΔ(m,n) of morphisms from m to n consists of maps
f :m→ n such that f (i)� f (j) for i < j .

Let A be any category. A simplicial object in A is a contravariant functor X. :Δ→A
where we write Xn for X(n). Thus, a simplicial set (resp. group; resp. ring; resp. space,
etc.) is a simplicial object in the category of sets (resp. groups; resp. rings; resp. spaces,
etc.). A co-simplicial object is a covariant functor X :Δ→A.

Equivalently one could define a simplicial object in a category A as a set of objects Xn
(n � 0) in A and a set of morphisms δi :Xn→ Xn−1 (0 � i � n) called face maps as
well as a set of morphisms sj :Xn→Xn+1 (0 � j � n) called degeneracy maps satisfying
certain “simplicial identities” – [165, p. 256]. We shall denote the category of simplicial
sets by S. sets.

1.1.2. DEFINITION. The geometric n-simplex is the topological space

Δ̂n = {(x0, x1, . . . , xn) ∈Rn+1 | 0 � xi � 1 ∀i and Σxi = 1
}
.

The functor Δ̂ :Δ→ spaces given by n→ Δ̂n is a co-simplicial space.

1.1.3. DEFINITION. Let X∗ be a simplicial set. The geometric realization of X∗ written
|X∗| is defined by |X∗| :=X×Δ Δ̂=⋃n�0(Xn × Δ̂n)/≈ where the equivalence relation
‘≈’ is generated by (x,ϕ∗(y)) ≈ (ϕ∗(x), y) for any x ∈ Xn, y ∈ Ym, and ϕ :m→ n in Δ
and where Xn× Δ̂n is given the product topology and Xn is considered as a discrete space.

1.1.4. EXAMPLES/REMARKS.
(i) Let T be a topological space, Sing∗ T = {Singn T } where Singn T = {continuous

maps Δ̂n→ T }. A map f :n→m determines a linear map Δ̂n→ Δ̂m and hence
induces a map f̂ : Singm T → Singn T . So, Sing∗ T :Δ→ sets is a simplicial set.
Sing∗ T is called a Kan complex.

(ii) For any simplicial set X∗, |X∗| is a CW-complex with Xn in one-one correspon-
dence with n-cells in |X∗|.

(iii) For any simplicial sets X∗, Y∗, |X∗| × |Y∗| ∼= |X∗ × Y∗| where the product is such
that (X∗ × Y∗)n =Xn × Yn.

1.1.5. DEFINITION. Let A be a small category. The nerve of A written NA is the simpli-
cial set whose n-simplices are diagrams

An =
{
A0

f1−→A2 −→ · · · fn−→An
}
,
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where the Ai are A-objects and the fi are A-morphisms. The classifying space of A is
defined as |NA| and is denoted by BA.

1.1.6. PROPERTIES OF BA.
(i) BA is a CW -complex whose n-cells are in one-one correspondence with the dia-

grams An above (see 1.1.4(ii)).
(ii) From 1.1.4(iii), we have, for small categories C, D (I) B(C×D)≈ BC×BD where

BC × BD is given the compactly generated topology (see [128]). In particular we
have the homeomorphism (I) if either BC or BD is locally compact (see [128]).

(iii) Let F,G be functors, C→ D (where C, D are small categories). A natural trans-
formation of functors η :F → C induces a homotopy BC × I → BD from BC to
BD.

(iv) If F :C→D has a left or right adjoint, then F induces a homotopy equivalence.
(v) If C is a category with initial or final object, then BC is contractable.

1.1.7. EXAMPLES.
(i) A discrete group G can be regarded as a category with one object G whose mor-

phisms can be identified with the elements of G.
The nerve ofG, writtenN∗G is defined as follows:Nn(G)=Gn, with face maps

δi given by

δi(g1 . . . gn)=
{
(g2, . . . , gn), i = 0,
(g1, . . . , gigi+1, . . . , gn), 1 � i < n− 1,
(g1, . . . , gn1), i = n− 1,

and degeneracies si given by

si(g1, g2, . . . , gn)= (g1, gi,1, gi+1, gn).

The classifying space BG of G is defined as |N∗(G)| and it is a connected CW-
complex characterized up to homotopy type by the property that π1(BG,∗) = G
and πn(BG,∗) = 0 for all n > 0 where ∗ is some basepoint of BG. Note that BG
has a universal covering space usually denoted by EG (see [165]).

Note that the term classifying space ofG comes from the theory of fibre bundles.
So, if X is a finite cell complex, the set [X,BG] of homotopy classes of maps
X→ BG gives a complete classification of the fibre bundles over X with structure
group G.

(ii) Let G be a topological group (possibly discrete) and X a topological G-space.
The translation category X of X is defined as follows: ob(X) = elements of X;
HomΔ(x, x′) = {g ∈ G | gx = x′}. Then the nerve of X is the simplicial space
equal to Gn × X in dimension n. BX = |nerve of X| is the Borel space EG×

G
X

(see [94]).
(iii) Let C be a small category, F :C→ Sets a functor, then CF is the category defined

as follows

obCF =
{
(C,x) | C ∈ obC, x ∈ F(C)}.
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A morphism from (C,x) to (C′, x′) is a morphism f :C → C1 in C such that
f∗(x)= x′.

The homotopy colimit of F is defined as hocolim F := BCF . This construction is also
called the Bonsfield–Kan construction. If the functor F is trivial, we have BCF = BC.

1.1.8. Let C = Ctop be a topological category (i.e. the objects in C as well as
HomC(X,Y ) (X,Y ∈ C) are topological spaces). Then NCtop is a simplicial topological
space and BCtop = |NCtop| the geometric realization of NCtop. We could regard the iden-
tity map as a continuous function Cδ → Ctop between topological categories and get an
induced continuous maps BCδ→ BCtop. (Here Cδ is a discrete category, i.e. C with dis-
crete topology on objects.)

1.1.9. EXAMPLES.
(i) Any topological group G = Gtop is a topological category: π1(BGδ) = Gδ ,
πj (BGδ)= 0 if j �= 1, ΩBGtop =Gtop. Hence πi(BGtop)= πi−1G

top for i > 0.
(ii) If A is a C∗-algebra with identity, then put G in (i) as G= GL(A)=⋃nGLn(A),

and πi(BGL(A))= πi−1(GL(A)) which is by definitionK top
i (A) (higher ‘topolog-

ical’K-theory ofA).K top
0 (A)= π0(GL(A))=K0(P(A)δ), the usual Grothendieck

group of A and K1(A) = GL∞(A)/GL0(A) where GL0(A) is the connected
component of the identity in GL(A). In fact, Bott periodicity is satisfied, i.e.
Kn(A)∼=Kn+2(A) for all n� 0 (see [18]) and so, this theory is Z2-graded, having
only K top

0 (A)=K0(A) and K top
1 (A).

(iii) If A = C in (ii) and we denote by Un the unitary groups, then BUn is homotopy
equivalent to BGLn(C)top (because Un is a deformation retract of GLn(C)top).
Since GLn(C) is connected, we have K top

1 (C)= 0, and K0(C)=K top
0 (C)≈ Z.

1.1.10. REMARKS.
(i) Given a simplicial object A = {An} in an Abelian category, there exists a chain

complex (C(A), d), i.e.

C(A) : · · · → Cn→ Cn−1→ Cn−2→ ·· · ,

where Cn =An and dn :Cn→ Cn−1 is given by dn = δ0 − δ1 + · · · + (−1)nδn.
(ii) If R is a ring, then there exists a functor

Sets→R-Mod :X→R[X] = free R-module on X.

If X = {Xn} is a simplicial set, then R[X] = {R[Xn]} is a simplicial R-module and
H∗(X,R) := homology of the chain complex associated to R[X] (see (i) above).

Also H∗(X,R)=H∗(|X|,R), the singular homology of X.
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1.1.11. Let G= {Gn} be a simplicial group with face maps δi :Gn→Gn−1 and degen-
eracies si :Gn→Gn+1 (0 � i � n). Define πnG=Hn/dn+1Kn where Hn ⊂Kn ⊂Gn are
defined by

Kn := ker(δ0)∩ · · · ∩ ker(δn−1)

and

Hn =Kn ∩
(
ker(δn)

)
.

Say that G is acyclic if πn(G)= 0 ∀n.
We can regard a simplicial ring as a simplicial group using its additive structure and we

say that a simplicial ring is acyclic if πnR = 0 for all n.

1.1.12. A simplicial ring R is said to be free if there exists a basis Bn of Rn as a free
ring for all n and si(Bn)⊂ Bn+1 for all i and all n.

A simplicial ring R = {Ri} is said to have a unit if each Ri has a unit and all δi and si
are unit preserving.

1.2. Spectra – brief introduction

1.2.1. REMARKS. The importance of spectra for this chapter has to do with the fact that
higher K-groups are often expressed as homotopy groups of spectra E = {Ei} whose
spaces Ei ≈ ΩkEi+k (for k large) are infinite loop spaces. (It is usual to take i = 0 and
consider E0 as an infinite loop space.) Also to each spectrum can be associated general-
ized cohomology theory and vice-versa. Hence algebraicK-theory can always be endowed
with the structure of a generalized cohomology theory. We shall come across these notions
copiously in later sections.

1.2.2. DEFINITION. A spectrum E = {Ei}, i ∈ Z, is a sequence of based spaces En and
based homeomorphisms Ei ≈ ΩEi+1(I ). If we regard Ei = 0 for negative i, call E a
connective spectrum.

A map f :E = {Ei} → {Fi} = F of spectra is a sequence of based continuous maps
strictly compatible with the given homeomorphism (I). The spectra form a category which
we shall denote by Spectra.

1.2.3. From the adjunction isomorphism [ΣX,Y ] = [X,ΩY ] for spaces X,Y , we have
πn(ΩEi)∼= πn+1(E1), and so, we can define the homotopy groups of a connective spec-
trum E as πn(E)= πn(E)= πn+1(E1)= · · · = πn+i (Ei).

1.2.4. Each spectrum E = {En} gives rise to an extraordinary cohomology theory En in
such a way that if X+ is the space obtained from X by adjoining a base point, En(X) =
[X+,En] and conversely.
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One can also associate to E a homology theory defined by

En(X)= lim
k→∞πn+k(Ek ∧X+).

1.2.5. EXAMPLES.
(i) Eilenberg–MacLane spectrum.

Let Es = K(A, s) where each K(A, s) is an Eilenberg–MacLane space where
A is an Abelian group and πn(K(A, s))= δis(A). By adjunction isomorphism, we
have K(A,n)≈ΩK(A,n+ 1), and get the Eilenberg–MacLane spectrum whose
associated cohomology theory is ordinary cohomology with coefficients in A, oth-
erwise defined by means of singular chain complexes.

(ii) The suspension spectrum.
Let X be a based space. The n-th space of the suspension spectrum Σ∞X is

Ω∞Σ∞(ΣnX) and the homotopy groups are πn(Σ∞X)= limk→∞ πn+k(ΣkX).
When X = S0, we obtain the sphere spectrum Σ∞(S0) and πn(Σ∞(S0)) =
limk→∞ πn+k(Sk) is called the stable n-stem and denote by πSn .

Note that there is an adjoint pair (Σ∞,Ω∞) of functors between spaces and
spectra and we can writeΣ∞X = {X,ΣX,Σ2X, . . .}. Also if E is anΩ-spectrum,
Ω∞E is an infinite loop space. (Indeed, every infinite loop space is the initial space
of an Ω-spectrum and πn(E)= [Σ∞Sn,E] = πn(Ω∞E).)

2. Definitions of and relations between several higher algebraic K-theories
(for rings)

In this section, we define the higher K-functors KQn (Quillen K-theory), KSn (K-theory of
Swan), Kk−vn (Karoubi–Villamayor K-theory), KMn (Milnor K-theory) and KVn (Volodin
K-theory) for arbitrary rings with identity and discuss connections between the theories.
Because KQn has been the most successful and has been most often used, we shall eventu-
ally write Kn for KQn .

2.1. KQn – the K-theory of Quillen

The definition of KQn (A), A any ring with identity, will make use of the following result.

2.1.1. THEOREM [94,111]. Let X be a connected CW-complex, N a perfect normal sub-
group of π1(X). Then there exists a CW-complex X+ (depending on N ) and a map
i :X→X+ such that

(i) i∗ :π1(X)→ π1(X
+) is the quotient map π1(X)→ π1(X

+)/N .
(ii) For any π1(X

+)/N -module L, there is an isomorphism i∗ :H∗(X, i∗L) →
H∗(X+,L) where i∗L is L considered as a π1(X)-module.

(iii) The space X+ is universal in the sense that if Y is any CW-complex and f :X→ Y

is a map such that f∗ :π1(X)→ π1(Y ) satisfies f∗(N) = 0, then there exists a
unique map f+ :X+ → Y such that f+i = f .
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2.1.2. DEFINITION. Let A be a ring and take X = BGL(A) in Theorem 2.1.1. Then
π1BGL(A) = GL(A) contains E(A) as a perfect normal subgroup. Hence by Theo-
rem 2.1.1, there exists a space BGL(A)+. Define Kn(A)= πn(BGL(A)+).

2.1.3. Hurewitz map. For any ring A with identity, there exist Hurewitz maps:
(i) hn :Kn(A)= πn(BGL(A)+)→Hn(BGL(A)+,Z)≈Hn(GL(A),Z) ∀n� 1,

(ii) hn :Kn(A)= πn(BE(A)+)→Hn(BE(A)+,Z)≈Hn(E(A),Z) ∀n� 2,
(iii) hn :Kn(A)= πn(BSt(A)+)→Hn(BSt(A)+,Z)≈Hn(St(A),Z) ∀n� 3.

Note that BGL(A)+ is connected, BE(A)+ is simply connected (i.e. one-connected) and
BSt(A)+ is 2-connected.

For a comprehensive discussion of Hurewitz maps, see [6].

2.1.4. EXAMPLES/REMARKS. For n= 0,1,2, Kn(A) as defined in Section 2.1.2 can be
identified respectively with the classical Kn(A).

(i) π1(BGL(A)+)=GL(A)/E(A)=K1(A).
(ii) Note that BE(A)+ is the universal covering space of BGL(A)+ and so, we have

π2
(
BGL(A)+

) ≈ π2
(
BE(A)+

)≈H2
(
BE(A)+

)∼=H2
(
BE(A)

)
∼= H2
(
E(A)
)≈K2(A).

(iii) K3(A)=H3(St(A)). For a proof, see [38].
(iv) If A is a finite ring, then Kn(A) is finite (see [73] for a proof).
(v) For a finite field Fq , K2n(Fq) = 0, K2n−1(Fq) = Z/(qn − 1) (see [112]). In later

Sections 3–8, we shall come across many computations ofKn(A), for various rings,
fields, etc.

2.2. KSn – the K-theory of Swan and Gersten

2.2.1. In [138], R.G. Swan defined higherK-functors by resolving the functor GL in the
category of functors and S.M. Gersten in [36] defined higher K-functors by introducing a
cotriple construction in the category Ring of rings. Swan showed in [142] that Gersten’s
resolution applied to GL gives Swan’s groups. As has been the tradition, we denote this
theory by KSn (A).

2.2.2. Cotriples. A cotriple (T , ε, δ) in a category A is an endofunctor T :A→ A to-
gether with natural transformations ε :T → idA and δ :T → T 2 such that the following
diagrams commute for every object A.

TA
A

T (T A)

δTA

T (T (A))
T δ

T T (T A)

T A

= δ

=

TA T (T A)
T εA εT A

T A
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2.2.3. REMARKS.

(i) If A
L

�
V

B is an adjoint situation where L is left adjoint to V , then T = LV :B→ B
is part of a cotriple (T , ε, δ), where ε :LV → idB is the counit of the adjunction.

(ii) Given a cotriple T on A, and A ∈ obA, we have a simplicial object T ∗A= {T nA}
of A with face maps δi = T i ∈ T n−i :T n+1A→ T nA and degeneracy maps si =
T iδT n−1, T n+1A→ T n+2A.

2.2.4. Let Ring be the category of rings and for any ring A, let FA be the free ring on
the underlying set of A. Then F is a functor Set→Ring adjoint to the forgetful functor
and the adjointness yields a morphism ε :FA→ A and a morphism δ :FA→ F 2A such
that (F, ε, δ) is a cotriple in Ring.

Let |r| be the free generator of FA corresponding to r ∈A. Then ε(|r|)= r and δ(|r|)=
‖r‖. So, we obtain the augmented simplicial ring:

F ∗A :R FA F 2A F 3A · · · .

2.2.5. Define KSn (A) = π̂n(GL(F ∗A)) where π̂n = πn, n � 1, π̂0(GL(F ∗A)) =
ker(π0(GL(F ∗A)) ε→GL(A)) and π̂−1(GL(F ∗(A)))= Coker(GL(F ∗A)→GL(A)).

2.2.6. THEOREM [138]. KSn (FA)= 0.

2.2.7. THEOREM [38]. KQn (FA)= 0.

2.2.8. THEOREM [3]. For any ring A, there exists an exact sequence

→Kn+1(A)→KSn+1(A)→Kn(FA)→Kn(A)→KSn (A)→ .

2.2.9. COROLLARY (Connection with Quillen K-theory). KSn (A) = KQn (A) for any
ring A.

PROOF. This follows from 2.2.6, 2.2.7 and 2.2.8. �

2.3. Kk−vn – the K-theory of Karoubi and Villamayor

2.3.1. Let R(Δn)= R[t0, t1, tn]/(Σti − 1)� R[t1, . . . , tn]. Applying the functor GL to
R(Δn) yields a simplicial group GL(R(Δ∗)).

2.3.2. DEFINITION. Let R be a ring with identity. Define the Karoubi–Villamayor
K-groups by Kk−vn (R)= πn−1(GL(R[Δ∗]))= πn(BGL(R[Δ∗])) for all n� 1. Note that
π0(GL(R[Δ∗])) is the quotient GL(R)/uni(R) of K1(R) where uni(R) is the subgroup of
GL(R) generated by unipotent matrices, i.e. matrices of the form 1+N for some nilpotent
matrix N .
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2.3.3. THEOREM [151].
(i) For p � 1, q � 0, there is a spectral sequence E1

pq =Kp(R[Δq ])�⇒Kk−vp+q(R).
(ii) If R is regular, then the spectral sequence in (i) above degenerates and Kn(R) =

Kk−vn (R) for all n� 1.

2.3.4. DEFINITION. A functor F : Rings→ Z-mod (Chain complexes etc.) is said to be
homotopy invariant if for any ring R, the natural map R → R[t] induces an isomor-
phism F(R) ≈ F(R[t]). Note that if F is homotopy invariant, then the simplicial object
F(R[Δ∗]) is constant.

2.3.5. THEOREM [38]. The functors Kk−vn : Rings→ Z-mod are homotopy invariant, i.e.
Kk−vn (R)∼=Kk−vn (R[t]) for all n� 1.

2.4. KVn – Volodin K-theory

2.4.1. Let A be a ring with identity, γ a partial ordering of {1,2, . . . , n} and T γ (A) :=
{1+ (a′ij ) ∈GLn(A) | aij = 0 ∀i

γ

≮ j}. Note that if γ is the standard ordering {1< · · ·< n},
then T γ (A) is the subgroup of upper triangular matrices. The inclusion T γ (A) ↪→GL(A)
induces a cofibration on the classifying space BT γ (A) ↪→ BGL(A).

2.4.2. Define the Volodin space X(A) by X(A) :=⋃γ BT γ (A).
2.4.3. THEOREM [151]. For any ringA with identity, the connected spaceX(A) is acyclic
(H̃n(X(A))= 0) and is simple in dimension � 2.

2.4.4. DEFINITION. Define KVn (A) := πn−1(X(A)).

2.4.5. Connections with Quillen K-theory.

THEOREM [94]. There exists a natural homotopy fibrationX(A)→ BGL(A)→ BGL(A)+
and hence π1(X(A))= St(A), πn(X(A))=Kn+1(A) for all n� 2, i.e.

KVn (A)= πn
(
X(A)
)=Kn+1(A) ∀n� 2.

2.5. KMn – Milnor K-theory

2.5.1. Let A be a commutative ring with identity and T (A∗) the tensor algebra over
Z where A∗ is the Abelian group of invertible elements of A. For any x ∈ A∗ − {1}, the
elements x ⊗ (1 − x) and x ⊗ (−x) generate a 2-sided ideal I of T (A∗). The quotient
T (A∗)/I is a graded Abelian group whose component in degree 0, 1, 2 are respectively Z,
A∗ and KM2 (A) where KM2 (A) is the classical K2-group, see [105,79].
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2.5.2. Connections with Quillen K-theory.
(i) As remarked above KMn (A)=KQn (A) for n� 2.

(ii) First observe that there is a well defined product KQm (A)×KQn (A)→ K
Q
m+n(A),

due to J.L. Loday (see [95]). Now, there exists a map ϕ :KMn (A) → K
Q
n (A)

constructed as follows: We use the isomorphism K1(A) � A∗ to embed A∗ in
K1(A) and use the product in Quillen K-theory to define inductively a map
(A∗)n→K1(A)

n→Kn(A), which factors through the exterior power ΛnA∗ over
Z, and hence through the MilnorK-groupsKMn (A) yielding the map ϕ :KMn (A)→
Kn(A).

If F is a field, we have the following more precise result due to A. Suslin.

2.5.3. THEOREM [132]. The kernel of ϕ :KMn (F )→Kn(F) is annihilated by (n− 1)!.
We shall discuss more connections between Milnor and Quillen K-theories (especially

for fields) in Section 5.

3. Higher K-theory of exact, symmetric monoidal and Waldhausen categories

3.1. Higher K-theory of exact categories – definitions and examples

In [79, Section 3], we discussed K0 of exact categories C, providing copious examples.
In this section, we define Kn(C) for all n � 0 with the observation that this definition
generalizes to higher dimensions the earlier ones at the zero-dimensional level.

3.1.1. DEFINITION. Recall [108], [79, 3.1], that an exact category is a small additive
category C (which is embeddable as a full subcategory of an Abelian category A) together

with a family E of short exact sequences 0→ C′ i→ C j→ C′′ → 0 (I) such that E is the
class of sequences (I) in C that are exact in A and C is closed under extensions (i.e. for any

exact sequence 0→ C′ i→ C
j→ C′′ → 0 in A with C′,C′′ in C, we have C ∈ C).

In the exact sequence (I) above, we shall refer to i as an inflation or admissible monomor-
phism, j as a deflation or admissible epimorphism; and to the pair (i, j) as a conflation.

Let C be an exact category. We form a new category QC whose objects are the same
as objects of C such that for any two objects M,P ∈ ob(QC), a morphism from M to P

is an isomorphism class of diagrams M
j
�N

i
� P where i is admissible monomorphism

and j is an admissible epimorphism in C, i.e. i and j are part of some exact sequences

0→N
i

� P
j
� P ′ → 0 and 0→N ′ →N �M→ 0 respectively.

Composition of arrows M � N � P and P � R � T is defined by the following
diagram which yields an arrow

M N ×P R T

inQC
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M

N P

N ×P R R T

3.1.2. DEFINITION. For all n� 0, define

Kn(C) := πn+1(BQC, o)

(see [114]).

3.1.3. We could also obtain Kn(C) via spectra. For example, we could take the
Ω-spectrum (see 1.2) BQC = {ΩBQC,BQC,BQ2C, . . .} where QiC is the multicategory
defined in [154] and πn(BQC)=Kn(C).

3.1.4. EXAMPLES.
(i) For any ring A with identity, the category P(A) of finitely generated projective

modules over A is exact and we shall write Kn(A) for Kn(P(A)).
Note that for all n� 1,Kn(A) coincides with the groups πn(BGL(A)+) defined

in 2.1.2.
(ii) Let A be a left Noetherian ring. Then M(A), the category of finitely generated

(left) A-modules is an exact category and we denote Kn(M(A)) by Gn(A). The
inclusion functor P(A)→M(A) induces a homomorphism Kn(A)→Gn(A).

If A is regular, then Kn(A)≈Gn(A) (see 4.1.2).
(iii) Let X be a scheme, see [128], P(X) the category of locally free sheaves of OX-

modules of finite rank (or equivalently category of finite-dimensional (algebraic)
vector bundles on X). Then P(X) is an exact category and we write Kn(X) for
Kn(P(X)), see [114].

If X = Spec(A) for some commutative ring A, then we have an equivalence of
categories:

P(X)→P(A) :E→ Γ (X,E)= {A-modules of global sections}

with an inverse equivalence P(A)→ P(X) given by

P → P̃ :U→OX(U)⊗A P.

So,

Kn(A)≈Kn(X).
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(iv) If X is a Noetherian scheme, then the category M(X) of coherent sheaves of OX-
modules is exact. We write Gn(X) for Kn(M(X)). If X = Spec(A), then we have
an equivalence of categories M(X)≈M(A) and Gn(X)≈Gn(A).

(v) Let R be a commutative ring with identity,Λ an R-algebra that is finitely generated
as an R-module, PR(Λ) the category of left Λ-lattices. Then PR(Λ) is an exact
category and we writeGn(R,Λ) forKn(PR(Λ)). IfΛ=RG,G finite group, write
Gn(R,G) for Gn(R,RG). If R is regular, then Gn(R,Λ)≈Gn(Λ), see [67].

(vi) Let G be a finite group, S a G-set, S the translation category of S (or category
associated to S) see [72] or [25], or 1.1.7(ii). Then, the category [S,C] of functors
from S to an exact category C is also an exact category. We denote by KGn (S,C)
the Abelian group Kn([S,C]). As we shall see later KGn (−,C) : GSet→ Ab is a
‘Mackey’ functor see [24] or [25] or [80].

If S = G/G, and CG denotes the category of representations of G in C,
then [G/G,C] ≈ CG. In particular, [G/G,P(R)] ≈ P(R)G ≈ PR(RG) and so

KGn [G/G,P(R)] ≈ Kn(P(R)G) ≈ Gn(R,G) ≈ Gn(RG) if R is regular. As ex-
plained in [79,72], when R = C, K0(P(C)G) ≈ G0(C,G) ≈ G0(CG) = Abelian
group of characters χ :G→G.

We shall discuss relative generalizations of this in Section 8.
(vii) Let X be a compact topological space, F =R or C. Then the category VBF (X) of

vector bundles onX is an exact category and we can writeKn(VBF (X)) asKFn (X).
(viii) LetX be anH -space,m, n positive integers,Mn

m an n-dimensional mod-mMoore
space, i.e. the space obtained from Sn−1 by attaching an n-cell via a map of de-
gree m (see [16] or [107]). Write πn(X,Z/m) for [Mn

m,X] the set of homotopy
classes of maps form Mn

m to X. If X = BQC where C is an exact category, write
Kn(C,Z/m) for πn+1(BQC,Z/m), n � 1, and call this group the mod-m higher
K-theory of C. This theory is well defined for C = P(A) where A is any ring with
identity and we write Kn(A,Z(m)) for Kn(P(A),Z/m). If X is a scheme write
Kn(X,Z/m) for Kn(P(X),Z/m). For a Noetherian ring A, writeGn(A,Z/m) for
Kn(M(A),Z/m) while for a Noetherian scheme X, we shall write Gn(X,Z/m)
for Kn(M(X),Z/m). For the applications, it is usual to consider m= �s where �
is a prime and s a positive integer (see [16] or [78]).

(ix) Let G be a discrete Abelian group, Mn(G) the space with only one non-zero re-
duced integral cohomology group H̃ n(Mn(G)). Suppose that H̃ n(Mn(G))=G. If
we write πn(X,G) for [Mn(G),X], and we put G= Z/m, we recover (viii) above
since Mn

m = Mn(Z/m). If G = Z, Mn(Z) = Sn and so, πn(X,Z) = [Sn,X] =
πn(X).

(x) With notations as in (ix), let Mn+1
�∞ = lim−→s M

n+1
�s . For all n � 0, we shall denote

[Mn+1
�∞ ,BC] (C an exact category) by Kpr

n (C, Ẑ�) and call this group the profi-
nite (higher) K-theory of C. By way of notation, we shall write Kpr

n (A, Ẑl ) if
P =M(A), A any ring with identity: Gpr

n (A, Ẑl ) if C =M(A), A Noetherian;
K

pr
n (X, Ẑi ) if C =P(X),X any scheme andGpr

n (X, Ẑi ) if C =M(X),X a Noether-
ian scheme. For a comprehensive study of these constructions and applications
especially to orders and grouprings, see [78] or 7.3.
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3.2. Higher K-theory of symmetric monoidal categories – definitions and examples

3.2.1. A symmetric monoidal category is a category S equipped with a functor ⊥ :
S × S → S and a distinguished object ‘0’ such that ‘⊥’ is ‘coherently’ associative and
commutative in the sense of MacLane (i.e. satisfying properties and diagrams in [79,
1.4.1]). Note that BS is an H -space (see [39]).

3.2.2. EXAMPLES.
(i) Let (IsoS) denotes the subcategory of isomorphisms in S , i.e. ob(IsoS) = obS ;

morphisms are isomorphisms in S . π0(IsoS)= set of isomorphism classes of ob-
jects of S . Then S iso := π0(IsoS) is a monoid.

Iso(S) is equivalent to the disjoint union
∐

AutS(S) and B(IsoS) is homotopy
equivalent to

∐
B(AutS(S), S ∈ S iso.

(ii) If S = FSet in (1), AutFSet(S) � Σn (symmetric group on n letters) Iso(FSet) is
equivalent to the disjoint union

∐
Σn. B(Iso(FSet)) is homotopy equivalent to∐

BΣn.
(iii) B(IsoP(R)) is equivalent to the disjoint union

∐
BAut(P ), P ∈ P(R).

(iv) Let F(R)= category of freeR-modules (IsoF(R))=∐GLn(R) andB(Iso(F(R))
is equivalent to the disjoint union

∐
BGLn(R). If R satisfies the invariant basis

property, then Iso(F(R)) is a full subcategory of Iso(P(R)) and Iso(F(R)) is
cofinal in IsoP(R).

3.2.3. Suppose that every map in S is an isomorphism and every translation S⊥ :
AutS(T )→ AutS(S ⊥ T ) is an injection. We now define a category S−1S such that
K(S)= B(S−1S) is a ‘group completion’ of BS .

Recall that a group completion of a homotopy commutative and homotopy associative
H -space X is an H -space Y together with an H -space map X→ Y such that π0(Y ) is the
group completion of (i.e. the Grothendieck group associated to) the monoid π0(X) (see [79,
1.1]) and the homology ring H∗(Y,R) is isomorphic to the localization π0(X)

−1H∗(X,R)
of H∗(X,R).

3.2.4. DEFINITION. Define S−1S as follows:

ob
(
S−1S
)= {(S,T ) | S,T ∈ obS

}
,

morS−1S
(
(S1, T1),

(
S1

1 , T
1
1

))= { equivalence class of composites

(S1, T1)
S⊥−→ (S ⊥ S1, S ⊥ T1)

(f,g)−→ (S1
1 , T

1
1 )

}
NOTES.

(i) The composite (S1, T1)
S⊥−→ (S ⊥ S1, S ⊥ T1)

(f,g)
� (S′1, T ′1) is said to be equivalent

to (S1, T1)
T⊥−→ (T ⊥ S1, T ⊥ T1)

(f 1,g1)−→ (S′1, T ′1) if there exists an isomorphism
α :S ≈ T in S such that composition with α ⊥ S1, α ⊥ T1 sends f ′ and g′ to f .

(ii) Since we have assumed that every translation is an injection in 3.2.3, it means that
S−1S determines its objects up to unique isomorphism.
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(iii) S−1S is a symmetric monoidal category with (S,T )⊥ (S′, T ′)= (S ⊥ S′, T ⊥ T ′)
and the functor S → S−1S :S→ (o, S) is monoidal. Hence B(S−1S) is an H -
space (see [39]).

(iv) BS→ B(S−1S) is an H -space map and π0(S)→ π0(S−1S) is a map of Abelian
monoids.

(v) π0(S−1S) is an Abelian group.

3.2.5. EXAMPLES.
(i) If S =∐GLn(R) = IsoF(R), then B(S−1S) is a group completion of BS and
B(S−1S) is homotopy equivalent to Z×BGL(R)+, see [39] or [167], for a proof.
See theorem 3.2.8 below for a more general formulation of this.

(ii) For S = Iso(FSet), B(S−1S) is homotopy equivalent to Z×BΣ+ whereΣ is the
infinite symmetric group (see [167]).

3.2.6. DEFINITION. Let S be a symmetric monoidal category in which every morphism
is an isomorphism.

Define

K⊥n (S) := πn
(
B
(
S−1S
))
.

NOTE. K⊥0 (S) as defined above coincides with K⊥0 (S) as defined in [79, 1.4]. This is
because K⊥0 (S)= π0(B(S−1S)) is the group completion of the Abelian monoid π0(S)=
S iso. For a proof, see [167].

3.2.7. REMARKS. Suppose that S is a symmetric monoidal category which has a count-
able sequence of objects S1, S2, . . . such that Sn+1 = Sn ⊥ Tn for some Tn ∈ S and sat-
isfying the cofinality condition, i.e. for every S ∈ S , there exist an S′ and an n such that
S ⊥ S′ ≈ Sn. If this situation obtains, then we can form Aut(S)= colimn→∞AutS(Sn).

3.2.8. THEOREM [167]. Suppose that S = Iso(S) is a symmetric monoidal category
whose translations are injections, and that the conditions of 3.2.7 are satisfied so that
the group Aut(S) exists. Then the commutator subgroup E of Aut(S) is a perfect normal
subgroup; K1(S) = Aut(S)/E and BAut(S)+ is the connected component of the identity
in the group completion of B(S−1S).

Hence B(S−1S)∼=K0(S)×BAut(S)+.

3.2.9. EXAMPLE. Let R be a commutative ring with identity. We saw in [79, 1.43] that
(S = Pic(R),⊗) is a symmetric monoidal category. Since π0(S) is a group, S and S−1S
are homotopy equivalent (see [167]). Hence we get K0 Pic(R) = Pic(R), K1(Pic(R)) =
U(R) (units of R), and Kn(Pic(R))= 0 for all n� 2.
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3.3. Higher K-theory of Waldhausen categories – definitions and examples

3.3.1. DEFINITION. A category with cofibrations is a category C with zero object together
with a subcategory co(C) whose morphisms are called cofibrations written A� B and
satisfying the axioms

(C1) Every isomorphism in C is a cofibration.
(C2) If A� B is a cofibration and A→ C any C-map, then the pushout B ∪A C exists

in C
A B

C B ∪A C

• Hence coproducts exists in C and each cofibration A� B has a cokernel C =
B/A.
• Call A� B � B/A a cofibration sequence.

(C3) The unique map 0→ B is a cofibration ∀ C-objects B .

3.3.2. DEFINITION. A Waldhausen category (or W -category for short) C is a category
with cofibrations together with a subcategory w(C) of weak equivalences (w.e. for short)
containing all isomorphisms and satisfying.

GLUING AXIOM FOR WEAK EQUIVALENCES (W1). For any commutative diagram

C

∼

A

∼

B

∼

C′ A′ B ′

in which the vertical maps are weak equivalences and the two right horizontal maps are
cofibrations, the induced map B ∪A C→ B ′ ∪A′ C′ is also a weak equivalence.

We shall sometimes denote C by (C,w).

3.3.3. DEFINITION. A Waldhausen subcategory A of a W -category C is a subcategory
which is also W -category such that (a) the inclusion A ⊆ C is an exact functor, (b) the
cofibrations in A are the maps in A which are cofibrations in C and whose cokernel lies in
A and (c) the weak equivalences in A are the weak equivalences of C which lie in A.

3.3.4. DEFINITION. A W -category C is said to be saturated if whenever (f, g) are com-
posable maps and fg is a w.e., then f is a w.e., iff g is.
• The cofibrations sequences in a W -category C form a category E . Note that ob(E) con-

sists of cofibrations sequences E :A� B � C in C. A morphism E→E′ :A′� B ′�
C′ in E is a commutative diagram
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E A B C

E′ A′ B ′ C′

(I)

To make E a W -category, we define a morphism E → E′ in E to be a cofibration if
A→ A′,C → C′ and A′ ∪A B → B ′ are cofibrations in C while E → E′ is a w.e. if
its component maps A→A′,B→ B ′,C→ C′ are w.e. in C.

3.3.5. EXTENSION AXIOM. A W -category C is said to satisfy the extension axiom if for
any morphism f :E → E′ as in 3.3.4, maps A→ A′,C → C′ being w.e. implies that
B→ B ′ is also a w.e.

3.3.6. EXAMPLES.
(i) Any exact category C is a W -category where the cofibrations are the admissible

monomorphisms and the w.e. are isomorphisms.
(ii) If C is any exact category, then the category Chb(C) of bounded chain complexes

in C is a W -category where the w.e. are quasi-isomorphisms (i.e. isomorphisms
on homology) and a chain map A.→ B. is a cofibration if each Ai → Bi is a
cofibration (admissible monomorphism) in C.

(iii) Let C = category of finite based CW-complexes. Then C is a W-category where the
cofibrations are cellular inclusion and the w.e. are homotopy equivalences.

(iv) If C is a W-category, define K0(C) as the Abelian group generated by objects of C
with relations
(i) A

∼→ B⇒ [A] = [B].
(ii) A� B � C⇒ [B] = [A] + [C].
Note that this definition agrees with the earlierK0(C) given in [79, 3.1] for an exact
category.

3.3.7. In order to define the K-theory space K(C) such that

πn
(
K(C)
)=Kn(C)

for a W-category C, we construct a simplicial W-category S∗C, where SnC is the category
whose objects A. are sequences of n cofibrations in C, i.e.

A• : 0=A0 �A1 �A2 � · · ·�An
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together with a choice of every subquotient Aij = Aj/Ai in such a way that we have a
commutative diagram

An−1,n

A23 · · · A2n

A12 A13 · · · A1n

A1 A2 A3 · · · An

By convention put Ajj = 0 and A0j =Aj .
A morphism A• → B. is a natural transformation of sequences.
A weak equivalence in Sn(C) is a mapA• → B• such that eachAi→ Bi (and hence each

Aij → Bij ) is a w.e. in C. A map A• → B• is a cofibration if for every 0 � i < j < k � n
the map of cofibration sequences is a cofibration in E(C).

Aij Aik Ajk

Bij Bik Bjk

For 0< i � n, define exact functors δi :Sn(C)→ Sn+1(C) by omitting Ai from the no-
tation and re-indexing the Ajk as needed. Define δ0 :Sn(C)→ Sn+1(C) where δ0 omits the
bottom arrow. We also define si :Sn(C)→ Sn+1(C) by duplicating Ai and re-indexing (see
[154]).

We now have a simplicial category n → wSnC with degree-wise realization n →
B(wSnC), and denote the total space by |wS.C| (see [154]).

3.3.8. DEFINITION. TheK-theory space of a W-category C isK(C)=Ω|wS.C|. For each
n� 0, the K-groups are defined as Kn(C)= πn(KC).

3.3.9. By iterating the S• construction, one can show (see [154]) that the sequence{
Ω|wS•C|,Ω|wS•S•C|, . . . ,Ω

∣∣wSn•C∣∣ . . .}
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forms a connective spectrum K(C) called the K-theory spectrum of C. Hence K(C) is an
infinite loop space, see 1.2.2.

3.3.10. EXAMPLES.
(i) Let C be an exact category, Chb(C) the category of bounded chain complexes

over C. It is a theorem of Gillet and Waldhausen that K(C) ∼=K(Chb(C)) and so,
Kn(C)�Kn(Chb(C)) for every n� 0 (see [32]).

(ii) Perfect complexes. Let R be any ring with identity and M′(R) the exact category of
finitely presented R-modules. (Note that M′(R)=M(R) if R is Noetherian.) An
objectM• of CHb(M′(R)) is called a perfect complex ifM• is quasi isomorphic to
a complex in Chb(P(R)). The perfect complexes form a Waldhausen subcategory
Perf(R) of Chb(M′(R)). So, we have

K(R)�K(Chb
(
P(R)
))∼=K(Perf(R)

)
.

(iii) Derived categories. Let C be an exact category and Hb(C) the (bounded) homo-
topy category of C, i.e. the stable category of Chb(C) (see [63]). So, ob(Hb(C))=
Chb(C) and morphisms are homotopy classes of bounded complexes. Let A(C) be
the full subcategory of Hb(C) consisting of acyclic complexes (see [63]). The de-
rived category Db(C) of E is defined by Db(C) = Hb(C)/A(C). A morphism of
complexes in Chb(C) is called a quasi-isomorphism if its image in Db(C) is an
isomorphism. We could also define the unbounded derived category D(C) from
unbounded complexes Ch(C).

Note that there exists a faithful embedding of C in an Abelian category A such
that C ⊂A is closed under extensions and the exact functor C→A reflects exact
sequences. So, a complex in Ch(C) is acyclic iff its image in Ch(A) is acyclic. In
particular, a morphism in Ch(C) is a quasi-isomorphism iff its image in Ch(A) is
a quasi-isomorphism. Hence, the derived category D(C) is the category obtained
from Ch(C) formally inverting quasi-isomorphisms.

(iv) Stable derived categories and Waldhausen categories. Now let C =M′(R). A com-
plex M. in M′(R) is said to be compact if the functor Hom(M.,−) com-
mutes with arbitrary set-valued coproducts. Let Comp(R) denote the full subcat-
egory of D(M′(R)) consisting of compact objects. Then we have Comp(R) ⊂
Db(M′(R))⊂D(M′(R)).

Define the stable derived category of bounded complexes Db(M′(R)) as the
quotient category of Db(M′(R)) with respect to Comp(R). A morphism of
complexes in Chb(M′(R)) is called a stable quasi-isomorphism if its image in
Db(M′(R)) is an isomorphism. The family of stable quasi-isomorphisms in A=
Chb(M′(R)) is denoted ωA.

(v) THEOREM.
(1) w(Chb(M′(R)) forms a set of weak equivalences and satisfies the saturation

and extension axioms.
(2) Chb(M′(R)) together with the family of stable quasi-isomorphisms is a Wald-

hausen category.
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4. Some fundamental results and exact sequences in higher K-theory

4.1. Resolution theorem

4.1.1. RESOLUTION THEOREM FOR EXACT CATEGORIES [114]. Let P ⊂H be full exact
subcategories of an Abelian category A, both closed under extensions and inheriting their
exact structure from A. Suppose that (1) every objectM of H has a finite P-resolution and
(2) P is closed under kernels in H, i.e. if L→M � N is an exact sequence in H with
M,N ∈P , then L is also in P . Then KnP ∼=KnH for all n� 0.

4.1.2. REMARKS AND EXAMPLES.
(i) Let R be a regular Noetherian ring. Then by taking H =M(R), P = P(R) in

4.1.1, we have Kn(R)�Gn(R) for all n� 0.
(ii) Let R be any ring with identity and H(R) the category of all R-modules having

finite homological dimension (i.e. having a finite resolution by finitely generated
projective R-modules), Hs(R) the subcategory of modules in H(R) having reso-
lutions of length � s. Then by 4.1.1 applied to P(R) ⊆ Hs(R) ⊆ H(R) we have
Kn(R)∼=Kn(H(R))∼=Kn(Hs(R)) for all s � 1.

(iii) Let T = {Ti} be an exact connected sequence of functors from an exact category C
to an Abelian category, i.e. given an exact sequence 0→M ′ →M→M ′′ → 0 in
C there exists a long exact sequence · · · → T2M

′′ → T1M
′ → T1M→. Let P be

the full subcategory of T -acyclic objects (i.e. objects M such that Tn(M) = 0 for
all n� 1), and assume that for eachM ∈ C, there is a map P �M such that P ∈P
and that TnM = 0 for n sufficiently large. Then KnP ∼=KnC ∀n� 0 (see [114]).

(iv) As an example of (iii) let A,B be a Noetherian rings, f :A → B a homo-
morphism, B a flat A-module, then we have a homomorphism of K-groups:
(B ⊗A ?)∗ :Gn(A)→ Gn(B) (since B ⊗A ? is exact). Let B be of finite tor-
dimension as a right A-module. Then by applying (iii) above, to C =M(A),
Ti(M) = TorAi (B,M) and taking P as the full subcategory of M(A) consisting
of M such the TiM = 0 for i > 0, we have Kn(P)≈Gn(A).

(v) Let C be an exact category and Nil(C) the category whose objects are pairs (M,ν)
with M ∈ C and ν is a nilpotent endomorphism of M . Let C0 ⊂ C be an exact
subcategory of C such that every object of C has a finite C0-resolution. Then every
object of Nil(C) has a finite Nil(C0) resolution and so, by 4.1.1,

Kn
(
Nil(C0)

)≈Kn(Nil(C)
)
.

4.2. Additivity theorem (for exact and Waldhausen categories)

4.2.1. Let A,B be exact categories. A sequence of functors F ′ → F � F ′′ from A to
B is called an exact sequence of exact functors if 0→ F ′(A)→ F(A)→ F ′′(A)→ 0 is
an exact sequence in B for every A ∈A.

Let A, B be Waldhausen categories. If F ′(A)� F(A)� F ′′(A) is a cofibration se-
quence in B and for every cofibration A� A′ in A, F(A) ∪F ′(A) F ′(A′)→ F(A′) is a
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cofibration in B say that F ′� F � F ′′ a short exact sequence or a cofibration sequence
of exact functors.

4.2.2. ADDITIVITY THEOREM. Let F ′ � F � F ′′ be a short exact sequence of exact
functors from A to B where both A and B are either exact categories or Waldhausen
categories. Then F∗ � F ′∗ + F ′′∗ :Kn(A)→Kn(B).

4.2.3. REMARKS AND EXAMPLES.
(i) It follows from 4.2.2 that if 0→ F1→ F2→ ·· · → Fs→ 0 is an exact sequence

of exact functors A→ B then

s∑
k=0

(−1)kFk = 0 :Kn(A)→Kn(B)

for all n� 0 (see [167]).
(ii) Let X be a scheme, E ∈ P(X) (see 3.1.4(iii)). Then we have an exact functor

(E ⊗ ?) :P(X)→ P(X) which induces homomorphisms Kn(X)→Kn(X).
If 0 → E′ → E → E′′ → 0 is an exact sequence in P(X), then by 4.2.2

(E ⊗ ?)∗ = (E′ ⊗ ?)∗ + (E′′ ⊗ ?)∗ :Kn(X)→ Kn(X). Hence we obtain a ho-
momorphism

K0(X)⊗Kn(X)→Kn(X) : (E)⊗ y→ (E ⊗ ?)∗y, y ∈Kn(X),

making each Kn(X) a K0(X)-module.
(iii) Flasque categories. An exact (or Waldhausen) category is called flasque if there is

an exact functor ∞ :A→A and a natural isomorphism ∞(A) ∼= A�∞(A); i.e.
∞∼= 1�∞ where 1 is the identity functor. By 4.2.2,∞∗ = 1∗ �∞∗ and hence the
identity map 1∗ :K(A)→ K(A) is null homotopic. Hence K(A) is contractible
and so πn(K(A))=Kn(A)= 0 for all n.

4.3. Devissage

4.3.1. DEVISSAGE THEOREM [114]. Let A be an Abelian category, B a non-empty full
subcategory closed under subobjects, quotient objects and finite products in A. Suppose
that every object M of A has a finite filtration 0 =M0 ⊂M1 ⊂ · · · ⊂Mn =M such that
Mi/Mi−1 ∈ B for each i, then the inclusionQB→QA is a homotopy equivalence. Hence
Ki(B)∼=Ki(A).

4.3.2. COROLLARY [114]. Let a be a nilpotent two-sided ideal of a Noetherian ring R.
Then for all n� 0, Gn(R/a)∼=Gn(R).
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4.3.3. EXAMPLES.
(i) Let R be an Artinian ring with maximal ideal m such that mr = 0 for some r . Let
k =R/m (e.g., R ≡ Z/pr , k ≡ Fp). In 4.3.1 put B = category of finite-dimensional
k-vector spaces and A=M(R). Then we have a filtration 0=mrM ⊂mr−1M ⊂
· · · ⊂mM ⊂M for any M ∈M(R). Hence by 4.3.1, Gn(R)≈Kn(k).

(ii) LetX be a Noetherian scheme, i :Z ⊂X the inclusion of a closed subscheme. Then
M(Z) is an Abelian subcategory of M(X) via the direct image i: M(Z)⊂M(X).
Let MZ(X) be the Abelian category of OX-modules supported on Z, a an ideal
sheaf in OX such that OX/a = OZ . Then every M ∈MZ(X) has a finite filtra-
tion M ⊃Ma ⊃Ma2 ⊃ · · · and so, by devissage, Kn(MZ(X)) ≈ Kn(M(Z)) ≈
Gn(Z).

4.4. Localization

4.4.1. A full subcategory B of an Abelian category A called a Serre subcategory if
whenever:

0→M ′ →M→M ′′ → 0

is an exact sequence in A, thenM ∈ B if and only ifM ′,M ′′ ∈ B. Given such a B, construct
a quotient Abelian category A/B as follows:

ob(A/B)= obA.

A/B(M,N) is defined as follows: If M ′ ⊆M,N ′ ⊆ N are subobjects such that M/M ′ ∈
ob(B), N ′ ∈ ob(B), then there exists a natural isomorphism B(M,N)→ B(M ′,N/N ′).

As M ′, N ′ range over such pairs of objects, the group B(M ′,N/N ′) forms a direct
system of Abelian groups and we define

A/B(M,N)= lim−→
(M ′,N ′)

B(M ′,N/N ′).

NOTE. Let T :A→A/B be the quotient functor: M �→ T (M)=M .
(i) T :A→A/B is additive functor.

(ii) If μ ∈ A(M,N) then T (μ) is null if and only if Kerμ ∈ ob(B) and T (μ) is an
epimorphism if and only if Cokerμ ∈ ob(B).

(iii) A/B is an additive category such that T :A→A/B is an additive functor.

4.4.2. LOCALIZATION THEOREM [114]. If B is a Serre subcategory of an Abelian cate-
gory A, then there exists a long exact sequence:

−−−→ Kn(B)→Kn(A)→Kn(A/B)→Kn−1(B)→−−−
−−−→K0(B)→K0(A)→K0(/B)→ 0. (I)
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4.4.3. EXAMPLES.
(i) LetA be a Noetherian ring, S ⊂A a central multiplicative system; A=M(A), B =

MS(A), the category of finitely generated S-torsionA-modules, A/B �M(AS)=
category of finitely generated AS -modules.

Let T be the quotient functor M(A)→M(A)/MS(A), u :M(A)/MS(A)→
M(AS) is an equivalence of categories such the u.T � L, where L :M(A)→
M(AS). We thus have an exact sequence Kn+1(M(AS)) → Kn(MS(A)) →
Kn(M(A))→Kn(M(AS))→Kn−1(MS(A)), that is:

· · · →Kn
(
MS(A)

)→Gn(A)→Gn(AS)→Kn−1
(
MS(A)

)→ ·· · .
(ii) Let A = R in (i) be a Dedekind domain with quotient field F,S = R\{0}. Then,

one can show that

MS(R)=
⋃
m

M
(
R/mk
)

as m runs through all maximal ideals of R.
So,

Kn
(
MS(R)

) �⊕
m

lim
k→∞Gn

(
R/mk
)

=
⊕
m

Gn(R/m)=
⊕
m

Kn(R/m).

So, (I) gives

→ Kn+1(F )→
⊕
m

Kn(R/m)→Kn(R)→Kn(F)→
⊕
m

Kn−1(R/m)

→ ·· ·
⊕
m

→K2(R/m)→K2(R)→K2(F )→
⊕

K1(R/m)

→K1(R)→K1(F )→
⊕

K0(R/m)→K0(R)→K0(F ),

that is

· · · → · · ·→
⊕

K2(R/m)→K2(R)→K2(F )→
⊕
(R/m)∗

→ R∗ → F ∗ →
⊕
(Z)→ Z⊕Cl(R)→ Z→ 0.

(iii) Let R in (i) be a discrete valuation ring (e.g., the ring of integers in a p-adic field)
with unique maximal ideal m= sR. Let F = quotient field of R. Then F = R[ 1

s
],

with residue field =R/m= k. Hence, we obtain the following exact sequence

→Kn(k)→ Kn(R)→Kn(F)→Kn−1(k)→ ·· ·→K2(k)→K2(R)

→ K2(F )→K1(k)→ ·· ·→K0(F )→ 0. (II)
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Gersten’s conjecture says that the sequence (II) breaks up into split short exact
sequences

0→Kn(R)
αn−→Kn(F)

βn−→Kn−1(k)→ 0.

For this to happen, one must have that for all n � 1, Kn(k)→ Kn(R) is the zero

map and that there exists a map Kn−1(k)
ηn−→Kn(F) such that Kn(F)�Kn(R)⊕

Kn−1(k), i.e. βnηn = 1Kn−1(k).
True for n= 0,K0(R)�K0(F )� Z.
True for n= 1,K1F � F ∗,K1(R)=R∗,F ∗ =R∗ × {sn}.
True for n= 2.

0→K2(R)
α2−→K2(F )

β2−→K1(k)→ 0.

Here β2 is the tame symbol. If characteristic of F = characteristic of k, then Ger-
sten’s conjecture is also known to be true. When k is algebraic over Fp , then Ger-
sten’s conjecture is also true. It is not known in the case when char(F ) = 0 or
char(k)= p.

(iv) Let R be a Noetherian ring, S = {sn} a central multiplicative system B =MS(R),
A=M(R).

A/B =M(RS)=
∞⋃
n=1

M
(
R/snR

)
.

Then (I) gives

· · · →Gn+1(RS)→Kn
(
MS(R)

)→Gn(R)→Gn(RS)

→ Kn−1
(
MS(R)

)
.

Note that Kn(MS(R))=Kn(⋃∞n=1 M(R/snR)).
Now, by devissage Gn(R/snR)�Gn(R/sR).
Hence Kn(

⋃∞
n=1 M(R/snR)) = limn→∞Gn(R/snR) = Gn(R/sR). So, we

have

. . . Gn+1

(
R

(
1

s

))
→Gn(R/sR)→Gn(R)→Gn

(
R

(
1

s

))
→Gn−1(R/sR)→ ·· · .

(v) Let R be the ring of integers in a p-adic field F , Γ a maximal R-order in a semi-
simple F -algebra Σ , if S =R\{0}, then F =RS

B =MS(Γ ), A=M(Γ ), A/B =M(Σ).
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Then sequence (I) yields an exact sequence

· · · → Kn(Γ )→Kn(Σ)→Kn−1
(
MS(Γ )

)→Kn−1(Γ )

→ Kn−1(Σ). (I)

One can see from (iv) that if m = πR is the unique maximal ideal of R, then
Kn(MS(Γ )) = limn→∞Gn(Γ/πnΓ ) = Gn(Γ/πΓ ) � Kn(Γ/ radΓ ) (see [25]).
Here Σ = ΓS where S = {πi}. We have also used above the corollary to devissage
which says that if a is a nilpotent ideal in a Noetherian ring R, then Gn(R) �
Gn(R/a) (see 4.3.2).

(vi) Let R be the ring of integers in an algebraic number field F , Λ any R-order in
a semi-simple F -algebra Σ . Let S = R = 0. Then we have the following exact
sequence

· · · →Kn
(
MS(Λ)

)→Gn(Λ)→Gn(Σ)→Kn−1
(
MS(Λ)

)→ ·· · .
One can show that Kn(MS(Λ)) �⊕Gn(Λ/pΛ) where p runs through all the
prime ideals of R. See [69] for further details about how to use this sequence to
obtain finite generation of Gn(Λ), and the fact that SGn(Λ) is finite (see [69,71]).

(vii) Let X be a Noetherian scheme, U an open subscheme of X,Z =X\U , the closed
complement of U in X. Put A=M(X)= category of coherent 0X-modules, and
let B be the category of coherent OX-modules whose restriction to U is zero (i.e.
the category of coherent modules supported by Z). Let A/B be the category of
coherent OU -modules. Then we have the following exact sequence

. . . Gn(Z)→Gn(X)→Gn(U)→Gn−1(Z)→ ·· ·→G0(Z)

→G0(X)→G0(U)→ 0.

So far, our localization results have involved mainly theGn-theory which translates
into Kn-theory when the rings involved are regular. We now obtain localization for
Kn-theory.

4.4.4. THEOREM. Let S be a central multiplicative system for a ring R,HS(R) the cate-
gory of S-torsion finitely generated R-modules of finite projective dimension. If S consists
of non-zero divisors, then there exists an exact sequence

· · ·→Kn+1(RS)→Kn
(
HS(R)

) η−→Kn(R)
α−→Kn(RS)→ ·· · .

For a proof see [39].

4.4.5. REMARKS. It is still an open problem to understand Kn(HS(R)) for various
rings R.
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If R is regular (e.g., R = Z, the integers in a number field, a Dedekind domain, a maxi-
mal order), then MS(R)=HS(R) and

Kn
(
HS(R)

)=Kn(MS(R)
); Gn(R)=Kn(R).

So we recover G-theory. If R is not regular, then Kn(HS(R)) is not known in general.

4.4.6. DEFINITION. Let α :A→ B be a homomorphism of rings A,B . Suppose that s is a
central non-zero divisor in B. Call α an analytic isomorphism along s ifA/sA� B/α(s)B .

4.4.7. THEOREM. If α :A→ B is an analytic isomorphism along s ∈ S = {si} where s is
a central non-zero divisor, then HS(A)=HS(B).
PF follows by comparing the localization sequences for A→A[ 1

s
] and B→ B[ 1

s
].

4.5. Fundamental theorem for higher K-theory

4.5.1. Let C be an exact category, Nil(C) the category of nilpotent endomorphisms
in C, i.e. Nil(C) = {(M,ν) |M ∈ C, ν a nilpotent endomorphism of M}. Then we have
two functors Z :C → Nil(C) = Z(M) = (M,0) (where ‘0’ = zero endomorphism) and
F : Nil(C)→ C: F(M,ν)=M satisfying FZ = 1C . Hence we have a split exact sequence

0→Kn(C)
Z→Kn(Nil(C))→Niln(C)→ 0 which defines Niln(C) as the cokernel of Z.

Hence Kn(Nil(C))�Kn(C)⊕Niln(C).

4.5.2. Let R be a ring with identity,H(R) the category of R-modules of finite homolog-
ical dimension, HS(R) the category of S-torsion objects of H(R), MS(R) the category of
finitely generated S-torsion R-modules. One can show (see [167]) that if S = T+ = {t i},
the free Abelian monoid on one generator t , then there exist isomorphisms MT+(R[t])�
Nil(M(R)), HT+(R[t])�Nil(H(R)) and Kn(HT+(R[t]))�Kn(R)⊕Niln(R) where we
write Niln(R) for Niln(P(R)).

Moreover, the localization sequence 4.4.4 breaks up into short exact sequences

0→Kn
(
R[t])→Kn

(
R
[
t, t−1]) ∂→Kn−1

(
Nil(R)

)→ 0.

4.5.3. FUNDAMENTAL THEOREM OF HIGHER K -THEORY [114]. Let R be a ring with

identity. Define for all n� 0 NKn(R) :=Ker(Kn(R[t]) ĩ+→Kn(R)) where ĩ+ is induced by
the augmentation t �→ 1.

Then there are canonical decompositions for all n� 0
(i) Kn(R[t])�Kn(R)⊕NKn(R).

(ii) Kn(R[t, t−1])∼=Kn(R)⊕NKn(R)⊕NKn(R)⊕Kn−1(R).
(iii) Kn(Nil(R))∼=Kn(R)⊕NKn+1(R).
The above decompositions are compatible with a split exact sequence

0→Kn(R)→Kn
(
R[t])⊕Kn(R[t−1])→Kn

(
R
[
t, t−1])→Kn−1(R)→ 0.
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We close this subsection with the fundamental theorem for G-theory.

4.5.4. THEOREM. Let R be a Noetherian ring. Then
(i) Gn(R[t])�Gn(R).

(ii) Gn(R[t, t−1])�Gn(R)⊕Gn−1(R).

4.6. Some exact sequences in the K-theory of Waldhausen categories

4.6.1. Cylinder functors. A Waldhausen category has a cylinder functor if there exists
a functor T : ArA→A together with three natural transformations p, j1, j2 such that to
each morphism f :A→ B , T assigns an object Tf of A and j1 :A→ Tf , j2 :B→ Tf ,
p :Tf → B satisfying certain properties (see [154]).

CYLINDER AXIOM. For all f,p :Tf → B is in w(A).

4.6.2. Let A be a Waldhausen category. Suppose that A has two classes of weak equiv-
alences ν(A),w(A) such that ν(A) ⊂ w(A). Assume that w(A) satisfies the saturation
and extension axioms and has a cylinder functor T which satisfies the cylinder axiom.
Let Aw be the full subcategory of A whose objects are those A ∈ A such that 0→ A

is in w(A). Then Aω becomes a Waldhausen category with co(Aω) = co(A) ∩ Aω and
ν(Aω)= ν(A)∩Aω.

4.6.3. THEOREM (Waldhausen fibration sequence, [154]). With the notations and hypoth-
esis of 4.6.2, suppose that A has a cylinder functor T which is a cylinder functor for both
ν(A) and ω(A). Then the exact inclusion functors (Aω, ν)→ (A,ω) induce a homotopy
fibre sequence of spectra

K
(
Aω, ν
)→K(A, ν)→K(A,ω)

and hence a long exact sequence

Kn+1(A,ω)→Kn
(
Aω
)→Kn(A, ν)→Kn(A,ω)→ .

The next result is a long exact sequence realizing the cofibre of the Cartan map as
K-theory of a Waldhausen category, see [33].

4.6.4. THEOREM [33]. Let R be a commutative ring with identity. The natural map
K(P(R))→K(M′(R)) induced by P(R) ↪→M′(R) fits into a cofibre sequence of spec-
traK(R)→K(M′(R))→K(A,ω) where (A,ω) is the Waldhausen category of bounded
chain complexes over M′(R) with weak equivalences being quasi-isomorphisms. In par-
ticular, we have a long exact sequence

· · ·→Kn+1(A,ω)→Kn(R)→G′n(R)→Kn−1(A,ω)→ ·· · ,
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where

G′n(R)=Kn
(
M′(R)

)
.

(See 7.1.16 for applications to orders.)
We close this subsection with a generalization of the localization sequence 4.4.3. In 4.6.5

below, the requirement that S contains no zero divisors is removed.

4.6.5. THEOREM [144]. Let S be a central multiplicatively closed subset of a ring R with
identity, Perf(R,S) the Waldhausen subcategory of Perf(R) consisting of perfect complexes
M• such that S−1M is an exact complex. Then K(Perf(R,S))→K(R)→K(S−1R) is a
homotopy fibration. Hence there is a long exact sequence.

. . .Kn+1
(
S−1R
) δ−→Kn

(
Perf(R,S)

)→Kn(R)→Kn
(
S−1R
)→ ·· · .

4.7. Excision; relative and Mayer–Vietoris sequences

4.7.1. Let Λ be a ring with identity, a a 2-sided ideal of Λ. Define FΛ,a as the homo-
topy fibre of BGL(Λ)+ → BGL(Λ/a)+ where GL(Λ/a)= image(GL(Λ)→GL(Λ/a)).
Then FΛ,a depends not only on a but also on Λ.

If we denote πn(FΛ,a) by Kn(Λ,a), then we have a long exact sequence

→Kn(Λ,a)→Kn(Λ)→Kn(Λ/a)→Kn−1(Λ,a)→ (I)

from the fibration FΛ,a→ BGL(Λ)+ → BGL(Λ/a)+.

4.7.2. DEFINITION. Let B be any ring without unit and B̃ the ring with unit obtained by
formally adjoining a unit to B , i.e. B̃ = set of all (b, s) ∈ B×Z with multiplication defined
by (b, s)(b′, s′)= (bb′ + sb′ + s′b, ss′).

Define Kn(B) as Kn(B̃,B). If Λ is an arbitrary ring with identity containing B as a
2-sided ideal, then B is said to satisfy excision for Kn if the canonical map. Kn(B) :=
Kn(B̃,B)→Kn(Λ,B) is an isomorphism for any ring Λ containing B . Hence, if in 4.7.1
a satisfies excision, then we can replaceKn(Λ,a) byKn(a) in the long exact sequence (I).
We denote Fã,a by Fa .

4.7.3. We now present another way to understand Fa (see [17]). Let Γn(a) :=
Ker(GLn(a⊕Z))→GLn(Z) and write Γ (a)= lim−→Γn(a). LetΣn denote the n×n permu-
tation matrices. ThenΣn can be identified with the n-th symmetric group. PutΣ = lim−→Σn.
Then Σ acts on Γ (a) by conjugation and so, we can form Γ̃ (a)= Γ (a)�Σ . One could
think of Γ̃ (a) as the group of matrices in GLn(a⊕Z) whose image in GLn(Z) is a permu-
tation matrix. Consider the fibration BΓ a→ BΓ̃ (a)→ B(Σ). Note that B(Σ),BΓ̃ (a)
has an associated +-construction which are infinite loop spaces. Define Fa as the homo-
topy fibre

Fa→ BΓ̃ (a)+ → BΣ+.
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Then, for any ring Λ (with identity) containing a as a two-sided ideal, we have a map of
fibrations

Fa

fΛa

FΛ,a

BΓ̃ (a)+ BGL(Λ)+

BΣ+ BGL(Λ/a)+

4.7.4. DEFINITION. Let a be a ring without unit, S ⊆ Z a multiplicative subset. Say that
a is an S-excision ideal if for any ring Λ with unit containing a as a 2-sided ideal, fΛ,a
induces an isomorphism π∗(Fa)⊗ S−1Z≈ π∗(FΛ,a)⊗ S−1Z.

4.7.5. THEOREM [17]. Let a be a ring without unit and S ⊆ Z a multiplicative set such
that a⊗ S−1Z= 0 or a ⊗ S−1Z has a unit. Then a is an S-excision ideal and

H∗
(
Fa,S

−1Z
)∼=Hn(Γ (a);S−1Z

)
.

4.7.6. EXAMPLES/APPLICATIONS.
(i) If a is a 2-sided ideal in a ringΛ with identity such thatΛ/a is annihilated by some
s ∈ Z, then the hypothesis of 4.7.5 is satisfied by S = {si} and a is an S-excision
ideal.

(ii) Let R be the ring of integers in a number field F , Λ an R-order in a semi-simple
F -algebra Σ , Γ a maximal R-order containing Λ. Then there exists an s ∈ Z,
s > 0, such that sΓ ⊂Λ and so a = sΓ is a 2-sided ideal in both Λ and Γ . Since s
annihilates Λ/a (also Γ/a), a is an S-excision ideal and so, we have a long exact
Mayer–Vietoris sequence

→ Kn+1(Γ/a)

(
1

s

)
→Kn(Λ)

(
1

s

)
→Kn(Λ/a)

(
1

s

)
⊕Kn(Γ )

(
1

s

)
→Kn(Γ/a)

(
1

s

)
→,

where we have written A( 1
s
) for A⊗Z( 1

s
) for any Abelian group A.

(iii) Let Λ be a ring with unit and Kn(Λ,Z/r) the K-theory with mod-r coefficients
(see [16]). Let S = {s ∈ Z | (r, s)= 1}. Then multiplication by s ∈ S is invertible on
Kn(Λ,Z/r). Hence for an S-excision ideal a ⊂Λ,π∗(FΛ,a)⊗ S−1Z� π∗(Fa)⊗
S−1Z implies that π∗(FΛ,a;Z/r)∼= π∗(Fa,Z/r).

If we write Z(r) for S−1Z in this situation, we have that Kn(Λ,Z/r) satisfies
excision on the class of ideals a such that a⊗Z(r) = 0 or a⊗Z(r) has a unit.
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5. Higher K-theory and connections to Galois, étale and motivic cohomology
theories

5.1. Higher K-theory of fields

The importance of K-theory of fields lies not only in its connections with such areas as
Brauer groups; Galois, étale, motivic cohomologies; symbols in arithmetic; zeta functions;
Bernoulli numbers, etc., but also because understanding K-theory of fields also helps to
understand K theory of other rings, e.g., K-theory of rings of integers in number fields,
p-adic fields, algebras over such rings (e.g., orders) as well as K-theory of varieties and
schemes.

First, we present some well known calculations of the K-theory of some special fields.
Interested readers may see [41,132] for a comprehensive survey of this topic.

5.1.1. THEOREM [112].
(a) Let Fq be a finite field of order q . Then K2n(Fq) = 0 and K2n−1(Fq) is a cyclic

group of order qn − 1 for all n� 1.
(b) If E is finite extension of Fq , then the natural mapK2n−1(Fq)→K2n−1(E) is injec-

tive. Moreover the automorphisms of E over Fq act on K2n−1(E) by multiplication
by qn. If E/Fq is Galois then the natural map K2n−1(Fq)→K2n−1(E) is an iso-
morphism.

(c) If E is the algebraic closure of Fq , then for all n� 1,K2n(E)= 0 and K2n−1(E)∼=
(Q/Z) :=⊕(Q�/Z�).

OnK2n(F ), the Frobenius automorphism of Fq acts through multiplication by qn.

For more general fields we have

5.1.2. THEOREM [132]. Let F be an algebraically closed field. Then for n� 1, K2n(F )

is uniquely divisible and K2n−1(F ) is the direct sum of a uniquely divisible group and a
group isomorphic to Q/Z.

5.1.3. THEOREM [34]. Let F be a field of positive characteristic p. Then Kn(F) has no
p-torsion.

5.1.4. For any commutative ring A, we have a composition ⊗ : GLn(A)× GLp(A)→
GLnp(A) which induces γn,p :BGLn(A)+ × BGLp(A)+ → BGLn,p(A)+ → BGL(A)+.
Also γn,p induces BGL(A)+ × BGL(A)+ → BGL(A)+ which induces a product:
Kn(A) × Km(A)→ Kn+m(A). The product ∗ endows

⊕∞
n=1Kn(A) with the structure

of a skew-commutative graded ring. If m = n = 1, then the product coincides with the
Steinberg symbol (up to sign) discussed in [79]. This is in particular true for fields.
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5.1.5. THEOREM [144]. Let F be a number field with r1 real places and r2 complex
places. Then

rankKn(F)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, n= 0,
∞, n= 1,
0, n= 2k, k > 0,
r1 + r2, n= 4k + 1, k > 0,
r2 n= 4k + 3.

5.1.6. REMARKS. The above is also true for Kn(R) if R is the ring of integers in F for
n � 2 and n = 0. It is classical that rank K1(R) = r1 + r2 − 1 (see [9]). It is a result of
Quillen that Kn(R) is finitely generated for all n� 1 (see [115]).

5.1.7. THEOREM [41]. K2Q� Z/2⊕ (⊕p U(Z/p)).

5.1.8. THEOREM [89]. K3Q�K3(Z)� Z/48.

We now recall the definition of Milnor K-theory in the present context.

5.1.9. DEFINITION. Let F be any field, F ∗ the group of non-zero elements of F . Define
KM∗ (F )= T (F ∗)/J where T (F ) is the tensor algebra over F ∗ and J the ideal generated
by all x ⊗ (1− x). Thus KMn (F ) = (F ∗ ⊗ F ∗ ⊗ · · · ⊗ F ∗)/Jn where Jn is the subgroup
of F ∗ ⊗ F ∗ ⊗ · · · ⊗ F ∗ generated by all a1 ⊗ a2 ⊗ · · · ⊗ an such that ai + aj = 1 for
some i �= j . The image of x1 ⊗ x2 ⊗ · · · ⊗ xn in KM∗ (F ) is denoted by {x1, x2, . . . , xn}.
Note that by the Matsumoto theorem, K2(F )=KM2 (F )= F ∗ × F ∗/〈x ⊗ (1− x)〉. Also,
K1(F )=KM1 (F )= F ∗.

We also have a map ϕ :KMn (F )→Kn(F) defined by: {x1, x2, . . . , xn}→ x1 ∗x2 · · · ∗xn
where ∗ is the product defined in 5.1.4.

5.1.10. THEOREM [132]. The kernel of ϕ :KMn (F )→Kn(F) is annihilated by (n− 1)!.

5.1.11. THEOREM [134]. Let F be an infinite field. Then, there exists an isomorphism
Hn(GLn(F ))�Hn(GLn+1(F ),Z)� · · · �Hn(GL(F ),Z) and an exact sequence

Hn
(
GLn−1(F ),Z

)→Hn
(
GLn(F ),Z

)→KMn (F )→ 0.

We also have a map (cup product)

H1
(
GL1(F ),Z

)⊗ · · · ⊗H1
(
GL1(F ),Z

)→Hn
(
GLn(F ),Z

)
,

that is

F ∗ ⊗ · · · ⊗ F ∗ →Hn
(
GLn(F ),Z

)



36 A. Kuku

as well as a map δ :KMn (F )→Hn(GLn(F ),Z) which makes the following diagram com-
mutative

F ∗ ⊗ · · · ⊗ F ∗ Hn(GLn(F ),Z)

Kn(F )

δ

5.1.12. THEOREM [134]. There exists a map ψ :KnF →KMn (F ) defined by

Kn(F) = πn
(
BGL(F )+

)→Hn
(
GL(F ),Z

)�Hn(GLn(F ),Z
)

→Hn
(
GLn(F ),Z

)
/Im
(
Hn
(
GLn−1(F ),Z

))�KMn (F )
such that

(i) ϕ ◦ψ = c∗,
(ii) ψ ◦ ϕ = multiplication by (−1)n−1(n− 1)!.

5.1.13. THEOREM [132]. Let F be a number field with r1 real places. Then KMn (F ) ∼=
(Z/2)r1 for n� 3.

5.1.14. THEOREM [132]. Let F be a real number field. Then the map KM4 (F )→K4(F )

is not injective and the map KMn (F )→Kn(F) is zero for n� 5.

5.1.15. DEFINITION.

K ind
n (F ) := Coker

(
KMn (F )

ϕ−→Kn(F)
)
.

NOTE. It is well know that K ind
3 (F ) �= 0 for all fields, i.e. ϕ is never surjective. Also the

map is not injective in general.

5.1.16. THEOREM [132]. Let L/F be a field extension such that F is algebraically closed
in L. Then the map: K ind

3 F → K ind
3 L in an isomorphism on the torsion and cotorsion.

Hence K ind
3 L/K ind

3 F is uniquely divisible.

5.2. Galois cohomology

5.2.1. Let G be a profinite group. A discrete G-module is a G-module A such that if A
is given the discrete topology the multiplication map G×A→ A is continuous. If A is a
discrete G-module then for every a ∈ A, the stabilizer U of a is an open subgroup of G
and

a ∈AU = {a ∈A | gA=A for all g ∈U}.
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Note that A is a discrete G-module iff
⋃
AU = A. Note also that if G is a finite group,

then every G-module is discrete.
The category CG of discrete G-modules is an Abelian subcategory of G-mod with

enough injectives. The right derived functor of the left exact functor CG→ Ab; A→ AG

where AG = {a ∈ A | ga = a ∀g ∈G} are the cohomology groups of G with coefficients
in A and denoted by H ∗(G,A), see [165].

5.2.2. Let A be a discreteG-module (G a profinite group), Cn(G,A) the Abelian group
of continuous maps Gn→A and Cn(G,A)= lim−→(C

n(G/U,AU)) where U runs through
all open normal subgroups of G.

5.2.3. THEOREM. If G is a profinite group and A a discrete G-module

Hn(G,A) ∼= Hn(C∗(G,A))
∼= lim−→

U

Hn
(
G/U,AU

)
,

where U runs through all open normal subgroups of G.

5.2.4. EXAMPLE. Let Fs be the separable closure of a field F , i.e. Fs is the subfield of the
algebraic closure F consisting of all elements separable over F and Fs = F if char(F )= 0.

Krull’s theorem (see [165]) says that the group Gal(Fs/F ) ∼= lim←−Gal(Fi/F ) where Fi
runs through all finite Galois extensions of F . As such Gal(Fs/F ) is a profinite group and
Fs is a discrete Gal(Fs/F )-module.

We shall denote Hn(Gal(Fs/F ),Fs) by Hn(F,Fs).

5.2.5. Let F be field and Br(F ) the Brauer group of F , i.e. the group of stable isomor-
phism classes of central simple F -algebras with multiplication given by the tensor product
of algebras. See [119].

A central simple F -algebra A is said to be split by an extension E of F if E ⊗ A is
E-isomorphic toMr(E), the algebra of r × r matrices over E, for some positive integer r .
It is well known (see [60]) that such an E can be taken as some finite Galois extension
of F . Let Br(F,E) be the group of stable isomorphism classes of E split central simple
algebras. Then Br(F ) := Br(F,Fs) where Fs is the separable closure of F .

5.2.6. THEOREM [119]. Let E be a Galois extension of a field F , G= Gal(E/F). Then
there exists an isomorphism H 2(G,E∗) ∼= Br(F,E). In particular Br(F ) ∼= H 2(G,F ∗s )
where G = Gal(Fs/F ) = lim−→Gal(Ei/F ), where Ei runs through the finite Galois exten-
sions of F .

5.2.7. Now, for any m > 0, let μm be the group of m-th roots of 1, G = Gal(Fs/F ),
then we have the Kummer sequence of G-modules

0→ μm→ F ∗s → F ∗s → 0
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from which we obtain an exact sequence of Galois cohomology groups

F ∗ m−→ F ∗ →H 1(F,μm)→H 1(F,F ∗s )→ ·· · ,

where H 1(F,F ∗s ) = 0 by the Hilbert theorem 90. So we obtain an isomorphism
χm :F ∗/mF ∗ ∼= F ∗ ⊗Z/m→H 1(F,μm).

Now, the composite

F ∗ ⊗Z F
∗ → (F ∗ ⊗Z F

∗)⊗Z/m→H 1(F,μm)⊗H 1(F,μm)

→ H 2(F,μ⊗2

m

)
is given by a ⊗ b→ χm(a) ∪ χm(b) (where ∪ is the cup product) which can be shown to
be a Steinberg symbol inducing a homomorphism g2,m :K2(F )⊗Z/mZ→H 2(F,μ⊗2

m ).
We then have the following result due to A.S. Merkurjev and A.A. Suslin, see [100].

5.2.8. THEOREM [100]. Let F be a field, m an integer > 0 such that the characteristic of
F is prime to m. The map

g2,m :K2(F )/mK2(F )→H 2(F,μ⊗2

m

)
is an isomorphism where H 2(F,μ⊗2

m ) can be identified with the m-torsion subgroup of
Br(F ).

5.2.9. REMARKS. By generalizing the process outlined in 5.2.7 above, we obtain a map

gn,m :KMn (F )/mK
M
n (F )→Hn

(
F,μ⊗nm

)
. (I)

It is a conjecture of Bloch and Kato that gn,m is an isomorphism for all F,m,n. So,
5.2.8 is the g2,m case of the Bloch–Kato conjecture when m is prime to the characteristic
of F . Furthermore, A. Merkurjev proved that 5.2.8 holds without any restriction of F with
respect to m.

It is also a conjecture of Milnor that gn,2 is an isomorphism. In 1996, V. Voevodsky
proved that gn,2r is an isomorphism for any r , see [106].

5.3. Zariski and étale cohomologies

5.3.1. A site is a small category S . For T ∈ S , let Cov(T ) denote a family of coverings
of T where a covering of T is a family of maps {pi :Ui → T } satisfying the following
properties

(1) If f :S→ T is an isomorphism, then {f } ∈ Cov(T ).
(2) If {pα :Tα → T }α ∈ Cov(T ) and for each α we are given a cover {qβα :Uβα →

Tα}β , then {pα · qβα :Uβα→ T }βα is a cover.
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(3) If {Tα→ T }α ∈ Cov(T ) and g :V → T is an arbitrary morphism, then for all α, the
fibre product Tα×

T
V → T exists and {Tα×

T
T → V } is a cover.

A sheaf F on a site S with values in a suitable category A is a contravariant functor
(presheaf) F :S→A such that for every covering {Tα→ T }α , the sequence

F(T )→
∏
α

F (T α)⇒
∏
βα

F
(
Tα×

T
Tβ
)

is a difference kernel or equalizer diagram in A.
If, for example, the category A is Abelian, then the category of sheaves on the site S has

enough injectives; i.e. every object A or complex A∗ has an injective resolution A→ I or
A∗ → I ∗. The cohomology (resp. hypercohomology) of X is then the cohomology of the
complex I (X) (resp. I ∗(X)).

5.3.2. Zariski cohomology. Let Sch be a suitable category of schemes, S ∈ Sch. The
big Zariski site SZar (on S) is the category such that ob(SZar) = schemes over S and for
X ∈ Sch, a covering family is a Zariski open cover by open subschemes of X. If A= Sets
or Z-mod, etc., then a sheaf on Sch is a presheaf which when restricted to any scheme
X ∈ Sch is actually a sheaf in the usual Zariski topology of X.

A cohomology theory on Sch consists of a bounded below complex of sheaves Γ ∗
(which we could assume to be a complex of injectives) on SZar. If X is a scheme over S,
then the cohomology of X with coefficient in Γ is defined as the hypercohomology of X
with coefficient in the restriction of Γ ∗ to X and is denoted by H ∗(X,T ∗).

5.3.3. Étale cohomology. Let Sch be a suitable category of schemes, S ∈ Sch. The big
étale site Sét of S is defined as follows: ob(Sét)= schemes X ∈ Sch over S. Coverings are

étale coverings; i.e. families {Ui pi→ X} of maps where each pi is an étale mapping, i.e.
each pi is flat and unramified (see [101]).

For X ∈ Sch, we shall write Hnet(X,M) for the étale hypercohomology of X where M
is a complex of sheaves of the étale topology.

If R is a commutative ring with identity, we shall writeHnet(R,M) forHnet(Spec(R),M).
(Here M is a complex of sheaves on étale site of Spec(R).)

5.3.4. REMARKS AND NOTATIONS. In 5.3.3, M could be finite, torsion or profinite and
could take any of the following forms.

In what follows � is a rational prime, i a positive integer
(i) Gm =Gm(R)=R∗ = units of R.

(ii) μ(R)= torsion subgroup of R∗ = roots of unity in R.
(iii) μ�ν (R)= �ν-th roots of unity in R.
(iv) μ�∞(R)= all �-th power roots of unity in R.
(v) μ�ν = Z/�ν (in additive notation).

(vi) μ�ν (i)= Z/�ν(i) where μ�ν (i)= μ⊗i�ν = μ�ν ⊗μ�ν ⊗ · · · ⊗μ�ν︸ ︷︷ ︸
i times

.
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(vii) W(i)= lim−→Z/�ν (i), the direct limit taken over the injections Z/�ν (i)→ Z/�ν+1(i).
Note that W(i) is a discrete torsion group.

(viii) Z�(i) = lim←−Z/�ν(i), the inverse limit taken over projections π : Z/�ν+1(i)→
Z/�ν(i) is a profinite group.

5.3.5. EXAMPLES.
(i) For any commutative ring R with identity, Pic(R) � H 1

et(R,Gm), Br(R) �
H 2

et(R,Gm). If R is a field, Pic(F )�H 1(F,Gm)= 0 (see [166]).
(ii) Let F be a number field with ring of integers OF , � a prime, O ′F =OF ( 1

�
). Then

H 2
et(O

′
F ,Z�(n)) is finite and = 0 for almost all primes �. Also

rkZH
1
et

(
O ′F ,Z�(n)

)= { r1 + r2 if n is odd > 1,
r2 if n is even.

(iii) Let E be a p-adic field, then each Hnet(E,W(i)) is a discrete torsion group,
Hnet(E,Z�(i)) is a profinite group.

In particular for n �= 0,1,2, Hnet(E,W(i))= 0 and Hnet(E,Z�(i))= 0, see [166].
If E has residue field Fq of characteristic p �= �, then for all i > 1,

Hnet

(
E,W(i)

)� {Z/wi(Fq), n= 0,
Z/wi+1(Fq), n= 1,
0, otherwise

(see [166]). Also see 6.2.9 for the definition of ωi(F ).
(iv) Let F be a number field with separable closure Fs , � a prime. ThenHn(Gal(Fs/F ),

μ⊗n� )�Hnet(Spec(F ),μ⊗n� ), see [166].

5.3.6. Let � be a rational prime, F a number field with ring of integersOF . An extension
E of F is said to be unramified outside � when given any prime ideal p of OF such that
� does not divide p, we have pOF = p1

p
2
. . . p

n
where p

1
,p

2
, . . . , p

n
are distinct prime

ideals in OE .
Let F be the algebraic closure of F and Γ the union of all finite extensions E of F

which are unramified outside �.
Let F(μ�∞) = ⋃ν�1F(μ�ν ) be the maximal �-cyclotomic extension of F . Then

F(μ�∞)⊂ Γ .
For any i ∈ Z, the Gal(F (μ�∞)/F )-module Z�(i) is defined as the additive group Z� :=

lim←−Z/�ν equipped with Galois action g(x) = ε(g)ix where ε : Gal(F (μ�∞)/F )→ Z∗� is
defined by g(ξ)= ξε(g) for all ξ ∈ F such that ξ�

ν = 1 for some ν � 1.
One can regard Z�(i) as a continuous Gal(Γ/F)-module via the projection Gal(Γ/F)→

Gal(F (μ�∞)/F ). One can identify the Galois cohomology groups H(Gal(Γ/F),Z�(i))
with Hkēt(O

′
F ,Z�(i)); i.e. Hket(O

′
F ,Z�(i)) � Hk(Gal(Γ/F),Z�(i)) where O ′F = OF ( 1

�
).

Some authors use this Galois cohomology group to define Hket(O
′
F ,Z�(i)).



Higher algebraic K-theory 41

5.4. Motivic cohomology

5.4.1. Let Sm(k) be the category of smooth quasi-projective varieties over a field k
(usually of char 0). ForX,Y ∈ Sm(k), let c(X,Y ) := free Abelian group on the set of closed
irreducible subvarietiesZ ⊂X×k Y for which the projectionZ→X is finite and surjective
onto an irreducible component ofX. Call c(X,Y ) the group of finite correspondences from
X to Y .

Define a category Sm Cor(k) as follows

ob
(
Sm Cor(k)

)= ob
(
Sm(k)
)
,

HomSm Cor(k)(X,Y ) := c(X,Y ).
For any smooth k-variety X, define a functor L[X] : (Sm Cor(k))op→ Ab :Y �→ c(Y,X).

5.4.2. Let F : (Sm(k))op→ Ab be a presheaf of Abelian groups. Define a singular chain
complex C•(F ) as the presheaf of complexes C•(F ) : Sm(k)op→ chain complexes :X→
C•(F )(X) where C∗(F )X is the chain complex associated to the HS∗ (X), the singular
homology groups of X := homology groups of the chain complex C∗(X)(spec(k)). Now
define a presheaf of chain complexes

C∗L[X] :
(
Sm Cor(k)

)op→ chain complexes :Y �→ C∗L(X)(Y ).

Now let Gm =A1\{0} and for i � 0, let Li = cokernel of the morphism
⊕
L((Gm)

i−1)

→ L((Gm)
i) induced by (Gm)i−1 ⊂ (Gm)i which puts the j -th co-ordinate equal to 1.

Now let Z(i) be the presheaf of complexes on Sm(k) given by Z(i)= C∗(Li)[−1], the
i-th desuspension of C∗(Li). (See [106].)

5.4.3. DEFINITION. Let X be a smooth k-variety, i � 0. The Zariski hypercohomology
of X with coefficients in Z(i) is denoted by H ∗B(X,Z(i)). The bigraded Abelian group
H ∗B(X,Z(−)) is called the Beilinson motivic cohomology (or just motivic cohomology)
with coefficients in Z. It is usual to denote H ∗B(X,Z(∗)) by H ∗M(X,Z(∗)).

For any Abelian group A, X ∈ Sm(k), define the motivic cohomology of X with coeffi-
cients in A by H ∗M(X,A(∗)) where A(i)= Z(i)⊗A.

5.4.4. EXAMPLES.
(i) For any

X ∈ Sm(k), HnM
(
X,Z(0)

)= {0 if n �= 0,
Zπ0(X) if n= 0,

where π0(X)= set of connected components of X.
(ii)

HnM
(
X,Z(i)

)∼= {0 if n �= 1,2,
O∗X for n= 1,
Pic(X) for n= 2.
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(iii) k∗ ≡H 1
M(Spec(k),Z(1)).

(iv) Let H ∗M(k) := graded commutative ring equal in degree n to HnM(Spec(k),Z(n)).
Then for any field k, KM∗ (k)�H ∗M(k). (See [106].)

(v) For any field k and any integers n� 0, m> 0, we have

KMn (k)/m�HnM
(
Spec(k),Z/m(n)

)
(see [106]).

(vi) Let � be a rational prime, F a global field with ring of integers OF , O ′F =OF ( 1
�
).

Then there are isomorphisms HiM(OF ,Z(n)) ⊗ Z� � Hiet(O
′
F ,Z�(n)) for all

primes �, n� Z and i = 1,2 (see [106]).
(vii) Let F be a field of characteristic �= p. If the Bloch–Kato conjecture holds, then

there is an isomorphism

HiM
(
F,Z/�ν(n)

)� {Hiet(F,Z/�
ν(n)), 0 � i � n,

0, otherwise

(see [106]).

5.4.5. Let A be an Abelian group and X any smooth k-variety. Let H ∗L(X,A(i)) be
the hypercohomology groups of X of the presheaves A(i) in the étale topology. Call
HL(X,A(i)) the Lichtenbaum (or étale) cohomology groups of X with coefficients in A.

5.4.6. THEOREM [106]. Let k be a field, X a smooth k-variety, A a Q-vector space. Then

H ∗M
(
X,A(∗)) ∼−→H ∗L

(
X,A(∗)).

5.4.7. THEOREM [106]. Let A be a torsion Abelian group of torsion prime to char(k).
Let Aēt be the constant étale sheaf associated to A. For i � 0, let Aēt(i)= i-th Tate twist.
Then, for all i � 0 and any smooth k-variety X, we have

HnL
(
X,A(i)

)�Hnet

(
X,Aēt(i)

)
.

We close this subsection with the following result

5.4.8. THEOREM [106]. Let k be a field which admits resolution of singularities (e.g.,
char(k) = 0), � a prime number not equal to char(k). Then for any integer n � 0, the
following are equivalent

(i) For any field extension k ⊂ F of finite type,

gn,�: K
M
n (F )/�K

M
n (F )�Hn

(
Gal(Fs/F ),μ

⊗n
�

)
.

(ii) For any smooth K-variety X, and any integer m ∈ {0,1, . . . , n + 1}, we have an
isomorphism

HmM
(
X,Z�(n)

)�HmL (X : Z�(n)
)
.
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(iii) For any field extension k ⊂ F of finite type we have

Hn+1
L

(
Spec(F );Z�(n)

)= 0.

5.4.9. REMARKS. In 5.4.8, (i) is a special case of the Bloch–Kato conjecture which is
believed to have now been proved by Rost and Voevodsky. The case g2,� was proved by
Voevodsky in 1997 (see [106]). (ii) was a conjecture of S. Lichtenbaum.

5.5. Connections to Bloch’s higher Chow groups

5.5.1. Let k be a field and Δn = Spec(R) where R = k[t0 . . . tn]/(Σtj − 1). Let X be a
quasi-projective variety, zi(X,n) := free Abelian group on the set of codim i subvarieties
Z ofX×k Δn which meet all faces properly (see [106]). Call zi(X,∗) Bloch’s cycle group.
zi(X,∗) is a simplicial Abelian group.

Define CHij (X)= (πj zi(X,∗))=Hj of the associated chain complex.

5.5.2. REMARKS/EXAMPLES.
(i) For j = 0, CHi0(X) is the classical Chow group of codim i cycles in X modulo

rational equivalence.
(ii) CHij (X)= 0 for i > j + dim(X). See [106].

(iii) CHij (X)� CHij (X[t]) whereX(t)=X×k Spec(k[t]), i.e. the higher Chow groups
are homotopy invariant.

(iv) If X is smooth

CH1
j (X)=

{Pic(X), j = 0,
H 0(X,OX), j = 1,
0, otherwise.

5.5.3. THEOREM [106]. For every field k and all n,

KMn (k)
∼= CHnn(k).

Here X = Spec(k).

5.5.4. THEOREM [106]. Let X be a smooth scheme of finite type over a field k. Then for
n� 0, there is an isomorphism

Kn(X)Q �
⊕
d�0

CHdn(X)Q,

where AQ :=A⊗Q for any Abelian group A.

5.5.5. THEOREM [106]. Let X be a smooth algebraic variety. There exists a spectral se-
quence

E
p,q

2 = CH−q−q−q(X)⇒K−p−q(X).
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5.5.6. THEOREM [106]. Let k be a field of characteristic zero (more generally a field
which admits the resolution of singularities). Then, for each smooth scheme X of finite
type over k, there are natural isomorphisms

H
p

M
(
X,Z(q)

)� CHp2q−p(X).

6. Higher K-theory of rings of integers in local and global fields

6.1. Some earlier general results on the higher K-theory of ring of integers in global
fields

The first result is due to D. Quillen.

6.1.1. THEOREM [40,115]. LetOF be the ring of integers in a global field F . Then for all
n� 1, the Abelian groups Kn(OF ) are finitely generated.

The next result, due to A. Borel, computes the rank of Kn(OF ), Kn(F) for n� 2.

6.1.2. THEOREM [13]. Let F be a number field and let us write [F :Q] = r1+ 2r2, where
r1 is the number of distinct embeddings of F into R and r2 the number of distinct conjugate
pairs of embeddings of F into C with image not contained in R.

(i) If R denotes either the number field F or its ring of algebraic integers OF , then
the rational cohomology of the special linear group SL(R) is given by

H ∗
(
SL(R);Q)� ( ⊗

1�j�r1
Aj

)
⊗
( ⊗

1�k�r2
Bk

)
,

where j runs over all distinct embeddings of F into R, k over all distinct conjugate
pairs of embeddings of F into C with image not contained in R, and where Aj and
Bk are the following exterior algebras:

Aj =ΛQ(x5, x9, x13, . . . , x4l+1, . . .) and

Bk =ΛQ(x3, x5, x7, . . . , x2l+1, . . .),

where deg(xj )= j .
(ii) If R denotes either the number field F or its ring of algebraic integersOF , then for

any integer i � 2,

Ki(R)⊗Q�
{0 if i is even,

Qr1+r2 if i ≡ 1 mod 4,
Qr2 if i ≡ 3 mod 4.

6.1.3. REMARKS.
(i) As consequences of 6.1.2, we have
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(a) For all n� 1, the K2n(OF ) are finite groups and

rankK2n−1(OF )=
{
r1 + r2 if n is odd,
r2 if n is even.

(b) For all n� 1, K2n−1(F ) is finitely generated and K2n(F ) is torsion.
(ii) Let R be a Dedekind domain with quotient field F and finite residue field R/p for

each prime ideal p of R. Then it follows from the localization sequence 4.4.3(ii)
that we have an exact sequence (for all n� 1)

0→ K2n(R)→K2n(F )→
⊕
p

K2n−1(R/p)→K2n−1(R)

→ K2n−1(F )→ 0. (I)

The next result, due to C. Soulé shows that we do get short exact sequences out of the
sequence (I).

6.1.4. THEOREM [129]. Let OF be the ring of integers in a number field F . Then
(i) K2n−1(OF )≈K2n−1(F ) for all n� 1.

(ii) For all n� 1, K2n(F ) is an infinite torsion group and we have an exact sequence

0→K2n(OF )→K2n(F )→
⊕
p

K2n−1(OF /p),

where p runs through the prime ideals of OF .

6.1.5. EXAMPLES.
(i) If F = Q, OF = Z then K3(Z) �K3(Q) � Z/48. That K3(Z) � Z/48 is a result

of Lee and Szcarba, see [89].
(ii) F =Q(i), then K3(Q(i))� Z⊕Z/24.

6.1.6. Let F be a global field of characteristic p, i.e. F is finitely generated of finite
transcendence degree over Fq . It is well known (see [128]) that there is a unique smooth
projective curve X over Fq whose function field is F , i.e. F = Fq(X). If S is a non-empty
set of closed points of X, then X\S is affine and we shall refer to the coordinate ring of
X\S as the ring of S-integers in F .

6.1.7. THEOREM [166]. Let X be a smooth projective curve over a finite field of charac-
teristic p, then

(i) The groups Kn(X) are finite groups of order prime to p.
(ii) If R is the ring of S-integers in F = Fq(X) (S �= ∅ as in 6.1.6) then

(a) Ki(R)∼=R∗ � F∗q ×Zs , |S| = s + 1.
(b) For n� 2,Kn(R) is a finite group of order prime to p.
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For further information on Kn(X), see [166].
Next, we provide some general results on the higher K-theory of integers in local fields.

6.1.8. THEOREM [166]. Let E be a local field with discrete valuation ring A and residue
class field Fq of characteristic p. Assume that char(E) = p, then E = Fq((π)),A =
Fq [[π]] where π is a uniformizing parameter of A and we have for n� 2

(i) Kn(E)�Kn(A)⊕Kn−1(Fq),
(ii) Kn(A) � Kn(Fq)⊕ Un where the Un are uncountable uniquely divisible Abelian

groups.

REMARKS. 6.1.8 is a generalization of Moore’s theorem which states that K2(E) �
μ(E)×U2 and K2(A)∼= μp∞(E)×U2 (see [166]).

6.2. Étale and motivic Chern characters

6.2.1. A lot of the computations of K-theory of integers in number fields and p-adic
fields have been through mappingK-theory into “étale cohomology via étale Chern charac-
ters” initially defined by C. Soulé, see [129]. We now briefly review this construction with
the observation that since Soulé’s definition, there have been other approaches, e.g., maps
from étale K-theory to étale cohomology due to Dwyer and Friedlander, [26], and “anti-
Chern” characters, i.e. maps from étale cohomology to K-theory due to B. Kahn, [55].
Moreover the various interconnections already outlined in Section 5 between K-theory,
Galois, étale and motivic cohomologies have also made computations of the K-theory of
Z more accessible.

6.2.2. Let X be an H -space, Mn
m the n-dimensional mod-m Moore space. We write

πn(X,Z/m) for [Mn
m,X] (see 3.1.4(viii)). Note then πn(X,Z/m) is a group for n� 2.

Let hn :πn(X,Z/m)→ Hn(X,Z/m) be the mod-m Hurewitz map defined by α ∈
[Mn

m,X] �→ α∗(εn) where εn is the generator of Z/m � Hn(Sn,Z/m) � Hn(Mn
m,Z/m)

and α∗ is the homomorphism Hn(M
n
m,Z/m)→Hn(X,Z/m) : εn→ α∗(εn).

Then, hn is a group homomorphism for n� 3. IfX = BGL(A)+, then we have a mod-m
Hurewitz map Kn(A,Z/m)→Hn(GL(A),Z/m) (I) which is a group homomorphism.

6.2.3. Soulé’s étale Chern character. Let l be a rational prime, A a commutative ring
with identity such that 1/� ∈A. Let G be a group acting on Spec(A) and ρ :G→GLs(A)
(s an integer > 1) a representation of G, ci(ρ) ∈ H 2i

et (A,G,μ
⊗i
�ν ) where H 2i

et (A,G,μ
⊗i
�ν )

are étale cohomology of G-sheaves on the étale site of Spec(A). (See [101] and 5.3.3.)
Assume that G acts trivially on Spec(A) then there exists a homomorphism

φ :H 2i
et

(
A,G,μ⊗i�ν

)→ 2i∐
k=0

Hom
(
H2i−k
(
G,Z/
(
�ν
))
,Hket

(
A,μ⊗i�ν

))
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mapping ci(ρ) to cik(ρ) :H2i−k(G,Z/�ν)→Hket(A,μ
⊗i
�ν ). Put G= GLs(A), we obtain a

map

cik(id) :Hn
(
GL(A),Z/�ν

)→Hket

(
A,μ⊗i�ν

)
, (II)

where n+ k = 2i, n� 2.
Composing (I) in 6.2.2 with (II) above, yields the Soulé Chern characters

cik :Kn
(
A,Z/�ν

)→Hket

(
A,μ⊗i�ν

)
, n+ k = 2i, n� 2. (III)

6.2.4. Recall that if X is an H -space, then the quotient map Mn
�ν → Sn (see 3.1.4(ix))

induces a map

[
Sn,X
]→ [Mn

�νX
]
, i.e. πn(X)→ πn

(
X,Z/�ν

)
, (IV)

where n + k = 2i. If X = BGL(A)+, A as in 6.2.3, then we have a homomorphism
Kn(A)→Kn(A,Z/�ν), and by composing this map with (III) of 6.2.3, we obtain a homo-
morphism

cik :Kn(A)→Kn
(
A,Z/�ν

)→Hket

(
A,μ⊗i�ν

)
, n+ k = 2i. (V)

6.2.5. REMARKS/EXAMPLES.
(i) Let A be a Dedekind domain with field of fractions F , � a prime. Assume that A

contains 1/�. Then we have localization sequences

· · · → Kn
(
A,Z/�ν

)→Kn
(
F,Z/�ν

)→⊕
v

Kn−1
(
kv,Z/�ν

)
→ Kn−1

(
A,Z/�ν

)→ ·· ·
and

0→ H 1
et

(
A,μ⊗i�ν

)→H 1
et

(
F,μ⊗i�

)→⊕
v

H 0
et

(
kv,μ

⊗i−1
�v

)
→ H 2

et

(
A,μ⊗i�ν

)→ ·· · .
(ii) If in (i) A contains 1

�
and ξm, m = �ν , m �≡ 2 (4), and if all residue fields kv are

finite, then there is a map of localization sequences.
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· · · Kn+1(F,Z/m)
δ ⊕

Kn(kv,Z/m)

(i−1)ci−1,k−2

· · · Hk−1
et
(
F,μ⊗im

) δ ⊕
Hk−2

et
(
kν,μ

⊗i
m

)
ĩ

Kn(A,Z/m)

cik

Kn(F,Z/m)

cik

· · ·

Hket

(
A,μ⊗im

)
Hiet

(
F,μ⊗im

)
(iii) If A is the ring of integers in a p-adic field F with residue field k, and 1/� ∈ A

(� a rational prime, � �= p), then Kn(A,Z/�ν) �Kn(k,Z/�ν) and H ∗et(A,μ
⊗i
�ν )
∼=

H ∗et(k,μ
⊗i
�ν ) and cij can be identified with multiplication by ±(i − 1)! (see [166]).

6.2.6. Let F be a global field with ring of integers OF ,� a prime, � �= char(F ), O ′F =
OF (

1
�
), then by tensoring (V) (A=O ′F ) with Z� we obtain map

chn,k :K2n−k(OF )⊗Z�→Hkēt

(
O ′F ,Z�(n)

)
.

6.2.7. QUILLEN–LICHTENBAUM (Q–L) CONJECTURE. Let F be a global field with ring
of integers OF , � a rational prime, O ′F =OF ( 1

�
). Then the Chern characters

ch�i,n :K2n−k(OF )⊗Z�→Hker

(
O ′F ,Z�(n)

)
are isomorphisms for n � 2, i = 1,2 unless � = 2 and F is a number field with a real
embedding.

The following result 6.2.8 establishes the Q–L conjecture in a special case k � 2(n− 1).

6.2.8. THEOREM. In the notation of 6.2.6, when k = 1 or 2, the mapping

chn,k :K2n−k(OF )⊗Z�→Hket

(
O ′F ,Z�(n)

)
satisfies

(i) If 2n− k � 2 and � �= 2, then chn,k is split surjective.
(ii) If 2n− k = 2, 2n− k = 3, � �= 2 or when

√−1 ∈ F , 2n− k � 2 and � = 2, then
chn,k is an isomorphism.

6.2.9. DEFINITION. Let � be a fixed rational prime. For any field F , define integers ω�i (F )

by ω(�)i (F ) :=max{�ν |Gal(F (μ�ν)/F ) has exponent dividing i}.
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If there is no maximum ν, put ω(�)i (F )= �∞. Suppose that ω(�)i (F )= 1 for almost all �

and that ω(�)i (F ) is finite otherwise, write ωi(F )=∏ω�i (F ).
Note that if F(μ�) has only finitely many �-primary roots of unity for all primes � and
[F(μ�) : F ] →∞ as �→∞, then the ωi(F ) are finite for all i �= 0. This is true for all
local and global fields. See [166].

Also note that ωi(F )= |H 0(F,Q/Z(n))|.

6.2.10. EXAMPLES.
(i) wi(Fq)= qi − 1 ∀ positive integers i. HenceK2n−1(Fq)= qi − 1 unless (p− 1)|i.

(ii) ωi(Q̂p) = qi − 1 unless (p − 1)|i. If i = (p − 1)pbm, (p � m), then ωi(Q̂p) =
(qi − 1)p1+b .

For further information and results on the ωi(F ), see [166].

6.2.11. Let F be a number field. Then each real embedding δi :F → R induces a map
F ∗ → R∗ → Z/2 which detects the sign of F ∗ under δi . The sign map δ :F ∗ → (Z/2)r1
is the sum of the δi and δ is surjective. Ker δ is called the group of totally positive units in
F and denoted by F ∗+.

Now let S be a finite set of places of F , OS the ring of S-integers of F . Then the kernel
of δ|OS :OS→ F ∗ → (Z/2)ri is a subgroup of O∗S called the subgroup of totally positive
units in OS and denoted by O∗

S+ . The sign map δ|OS factors through F ∗/2=H 1(F,Z/2)
and hence factors through δ1 :H 1(OS,Z/2)→ (Z/2)ri . The signature defect j (OS) of
OF is defined as the dimension of the cokernel of δ1. Note that j (OS)� j (OF ) and that
j (F )= 0 if 0 � j (OS) < r1.

The narrow Picard group, Pic+(OS) is the cokernel of the restricted divisor map F ∗+ →⊕
p/∈S Z.

6.2.12. THEOREM [118]. Let � be an odd prime, F a number field,OS a ring of S-integers
in F containing 1

2 , j the signature defect of OS . Denote ω(2)i (F ) by ωi . Then, there exists
an integer m, j � m < r , such that for all n � 2, the 2-primary subgroup Kn(OS)(2) of
Kn(OS) is given by

Kn(O)S(2)∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H 2
et(OS, Ẑ2(4a + 1)) for n= 8a,

Z/2 for n= 8a + 1,
H 2

et(OS, Ẑ2(4a + 2)) for n= 8a + 2,
(Z/2)r1−1 ⊕Z/2ω4a+2 for n= 8a + 3,
(Z/2)m �H 2

et(OS,Z2(4a + 3)) for n= 8a + 4,
0 for n= 8a + 6,
H 2

et(OS; Ẑ2(4a + 4)) for n= 8a + 6,
Z/ω4a+4 for n= 8a + 7.

The next result is on the odd prime torsion subgroup of Kn(OS).
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6.2.13. THEOREM [166]. Let � be an odd prime, F a number field,OS a ring of S-integers
of F , O ′S =OS( 1

�
). Then for all n� 2, we have

Kn(OS)(�)∼=

⎧⎪⎨⎪⎩
H 2

et(O
′
S,Z�(i + 1)) for n= 2i > 0,

Zr2� ⊕Z/ω�i (F ) for n= 2i − 1, i even,

Zr1+r2� ⊕Z/ω(�)i (F ) for n= 2i − 1, i odd.

The following result gives a picture for Kn(OS) when F is totally imaginary.

6.2.14. THEOREM [166]. In the notation of 6.2.13, let F be totally imaginary. Then for
all n� 2

Kn(OS)∼=

⎧⎪⎪⎨⎪⎪⎩
Z⊕ Pic(OS) for n= 0,

Zr2+|S|−1 ⊕Z/ωi for n= 1,⊕
i H

2
et(O

′
S,Z�(i + 1)) for n= 2i � 2,

Zr2 ⊕Z/ωi for n= 2i − 1 � 3.

The next result which gives the picture of Kn(OF ) for each odd n� 3 is a consequence
of 6.2.13 and 6.2.14 and some other results which can be found in [166]. This reference
also contains details of the proof.

6.2.15. THEOREM [166]. Let F be a number field, OS a ring of S-integers. Then
(i) Kn(OS)�Kn(F) for each odd n� 3.

(ii) If F is totally imaginary then

Kn(F)∼= Zr2 ⊕Z/ωi(F ).

(iii) If i = n+1
2 , then

Kn(OS)�Kn(F)∼=

⎧⎪⎪⎨⎪⎪⎩
Zr1+r2 ⊕Z/ωi(F ), n≡ 1 (mod 8),

Zr1 ⊕Z/2ωi(F )⊕ (Z/2)r1−1, n≡ 3 (mod 8),

Zr1+r2 ⊕Z/ 1
2ωi(F ), n≡ 5 (mod 8),

Zr2 ⊕Z/ωi(F ), n≡ 7 (mod 8).

6.2.16. It follows from 6.2.15 thatKn(Q)� Z for all n≡ 5 (mod 8) (since wi(Q)= 2);
more generally, if F has a real embedding, and n≡ 5 (mod 8) thenKn(F) has no 2-primary
torsion. (Since 1

2ωi(F ) is an odd integer.)

6.2.17. THEOREM [166]. Let E be a p-adic field of degree d over Q̂p′ , with ring of
integers A. Then for all n� 2, we have

(i) Kn(A, Ẑp)∼=Kn(E, Ẑp)∼=
{

Z/ω(p)i E, n= 2i,

(Ẑp)d ⊕Z/ω(p)i (E), n= 2i − 1.
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(ii) K2i−1(E,Z/pν) ∼= H 1(E,μ⊗ipν) for all i and ν and for all i and �ν > ωi ,

H 1(E,μ⊗ipν)∼= (Z/pν)d ⊕Z/ωi−1.

(iii) Kn(E, Ẑp) are finitely generated Ẑp-modules.

6.2.18. REMARKS.
(i) Pushin, [110], has constructed motivic Chern characters chMi,n :K2n−i (F ) →
HiM(F,Z(n)) for n � 2, i = 1,2, which induce étale Chern characters after ten-
soring by Z�.

(ii) For all n� 2, there exist isomorphisms K2n−2(F )∼=H 2
M(F,Z(n)) and K2n−1(F )

∼=H 1
M(F,Z(n)) up to 2-torsion, see [166].

(iii) In view of 5.4.4(v), we have up to 2-torsion isomorphisms K2n−2(OF ) �
H 2
M(OF ,Z(n)) and K2n−1(OF )∼=H 1

M(OF ,Z(n)).

6.3. Higher K-theory and zeta functions

6.3.1. DEFINITION. Let s be a complex number with Re(s) > 1. The Riemann zeta func-
tion is defined as the convergent series ζ(s)=∑n�1

1
ns

.

Note that ζ(s) admits a meromorphic continuation to the whole complex plane with a
simple pole at s = 1 and no pole anywhere else.

For connections with K-theory we shall be interested in the values of ζ(s) at negative
integers.

6.3.2. The Bernoulli numbers Bn, n � 0, are the rational numbers which arise in the
power series expansion of x

ex−1 =
∑∞
n=0Bn

xn

n! .

6.3.3. THEOREM.
(i) For n odd � 3, ζ(s) has a simple zero at s = 1− n. For n even > 0, ζ(1− n) �= 0.

(ii) For n� 1, ζ(1− n)= (−1)n−1 Bn
n

.

6.3.4. Let F be a number field with ring of integers OF , a, an ideal of OF , N(a) =
|OF/a|.

Then the Dedekind generalization of Riemann zeta function is defined by ζF (s) :=∑
0�=a⊂OF

1
N(a)s

. Note that ζF (s) is convergent for Re(s) > 1 and can be extended to a
meromorphic function on C with a single pole at s = 1.

6.3.5. THEOREM. Let F be a number field and let r1 = number of real embeddings of F ,
r2 = number of pairs of complex embeddings of F . Let dn be the order of vanishing of ζ(s)
at s = 1− n.

Then

dn =
{
r1 + r2 − 1 if n= 1,
r1 + r2 if n� 3 is odd,
r2 if n= is even.
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In view of 6.3.5, we now have a reformulation of 6.1.3(i)(a) in the following.

6.3.6. THEOREM. Let F be a number field and OF the ring of integers of F . Then for all
n� 2

K2n−1(OF )� Zdn ⊕ finite,

i.e. the rank of K2n−1(OF ) is the order of vanishing of ξF at s = 1− n.

6.3.7. DEFINITION. Define ξ∗(−2m) as the first non-vanishing coefficient in the Taylor
expansion around s =−2m and call this the special value of the zeta function at s =−2m.

6.3.8. Let F be a number field. Recall from [14] that there exist higher regulator maps
XBn (F ) :K2n−1(OF )→ Rdn with finite kernel and image a lattice of rankdn. The covol-
ume of the lattice is called the Borel regulator and denoted by RBn (F ). Borel proved that
ξ∗F (1− n)= qn ·RBn (F ) where qn is a rational number.

6.3.9. LICHTENBAUM CONJECTURE [91,92]. For all n� 2

ξ∗F (1− n)=±
|K2n−2(OF )|
|K2n−1(OF )tors|R

B
n (F )

up to powers of 2.

6.3.10. REMARKS.
(i) Birch and Tate had earlier conjectured a special case of 6.3.10 above viz. for a

totally real number field F , ξF (−1)=±|K2(OF |
ω2(F )

.
(ii) The next result is due to A. Wiles, [170].

6.3.11. THEOREM [170]. Let F be a totally real number field. If � is odd, and O ′F =
OF (

1
�
), then for all even n= 2i

ξF (1− n)= |H
2
et(O

′
F ,Z�(n))|

|H 1
et(O

′
F ,Z�(n))|

un,

where ui is a rational number prime to �.

6.3.12. THEOREM [166]. Let F be a totally real number field. Then

ζF (1− 2k)= (−1)kr1
|K4k−2(OF )|
|K4k−1(OF )|

up to a factor of 2.
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6.3.13. THEOREM [166]. Let F be a totally real number field, OF the ring of integers
of F , O ′F =OF ( 1

�
). Then for all even i > 0

2r1
|K2i−2(OF )|
|K2i−1(OF )| =

∏
�(H

2
ēt(O

′
F ,�2(�)))∏

� |H 1
et(O

′
F ,Z2(o))|

.

6.3.14. DEFINITION. Let F be a global field of characteristic p and X the associated
smooth projective curve over Fq , i.e. F = Fq(X), OF the integral closure of Fq [t] in F .
The maximal ideals of OF are the finite primes in F and the associated zeta function is
defined by

ζF (s)=
∏
p finite

1

(1−N(p)−s) .

6.3.15. THEOREM. Let F be a global field of characteristic p > 0. Then for all n� 2, we
have

ζF (1− n)=±H
2(OF ,Z(n))
ωn(F )

.

6.4. Higher K-theory of Z

In this subsection, we briefly survey the current situation with the computations of Kn(Z),
n� 0. Again, details of arguments leading to the computations can be found in [166]. First
we list specific information for Kn(Z), n= 0,1,2,3,4,5,6,7,9,10.

6.4.1. THEOREM. K0(Z) � Z, K1(Z) � Z/2, K2(Z) � Z/2, K3(Z) � Z/48, see [89].
K4(Z)= 0, see [117], K5(Z)= Z, see [166], K6(Z)= 0, see [166], K7(Z)= Z/240, see
[166], K9(Z)= Z⊕Z/2, K10(Z)= Z/2, [166].

More generally we have.

6.4.2. THEOREM.

Kn(Z)=
{

finite ∀n > 0, n �≡ 1 (4),
Z+ finite if n≡ 1 (4).

Using 6.2.10 and 6.2.12, one can prove.

6.4.3. THEOREM [166]. Let � be an odd rational prime
(i) K2n−1(Z) has �-torsion exactly when n≡ 0 mod(�− 1).

(ii) The �-primary subgroups of K2n(Z) are H 2
et(Z(

1
�
); Ẑ�(i + 1)).



54 A. Kuku

The following result is a consequence of 6.3.13 and shows that the Lichtenbaum conjec-
ture holds up to a factor of 2.

6.4.4. THEOREM [166]. For all n� 1, we have

|K4n−2(Z)|
|K4n−1(Z)| =

bn

4n
= −1n

2
ζ(1− 2n).

Hence if cn denotes the numerator of bn4n , then |K4n−2| =
{ cn, n even,

2cn, n odd.

6.4.5. DEFINITION. A prime p is said to be regular if Pic(Z[μp]) has no element of
exponent p, i.e. p does not divide the order hp of Pic(Z[μp]). Note that p is regular iff
Pic(Z[μpν]) has no p-torsion for all ν.

6.4.6. THEOREM [166]. If � is an odd regular prime, then K2n(Z) has no �-torsion.

The following result shows that the 2-primary subgroups of Kn(Z) are essentially peri-
odic of period 8.

6.4.7. THEOREM [166].

Kn(Z)(2)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z/2 if n≡ 1 (mod 8),
Z/2 if n≡ 2 (mod 8),
Z/16 if n≡ 3 (mod 8),
0 if n≡ 4 (mod 8),
0 if n≡ 5 (mod 8),
0 if n≡ 6 (mod 8),
Z/6a if n≡ 7 (mod 8),
0 if n≡ 8 (mod 8).

6.4.8. VANDIVER’S CONJECTURE. If � is an irregular prime, then Pic(Z[ξ�+ ξ−1
� ]) has

no �-torsion.

This conjecture is equivalent to the expression of the natural representation of G =
Gal(Q(ξ�)/Q) on Pic(Z[ξ�])/� as a sum of G-modules μ⊗i� when i is odd.

Note that Vandiver’s conjecture for � is equivalent to the assertion that K4n(Z) has no
�-torsion for all n < �−2

2 , see [166].
The following result is due independently to S. Mitchel and M. Kurihara.
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6.4.9. THEOREM [84]. If Vandiver’s conjecture holds, then

Kn(Z)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z⊕Z/2 if n≡ 1 (mod 8),
Z/2ck if n≡ 2 (mod 8),
Z/2ω2k if n≡ 3 (mod 8),
0 if n≡ 4 (mod 8),
Z if n≡ 5 (mod 8),
Z/ck if n≡ 6 (mod 8),
Z/ω2k if n≡ 7 (mod 8),
0 if n≡ 8 (mod 8).

7. Higher K-theory of orders, group-rings and modules over ‘EI’-categories

7.1. Higher K-theory of orders and group-rings

7.1.1. We recall that if R is a Dedekind domain with quotient field F , and Λ is any
R-order in a semi-simple F -algebra Σ , then SKn(Λ) := Ker(Kn(Λ)→ Kn(Σ)) and
SGn(Λ) := Ker(Gn(Λ)→ Gn(Σ)). Also, any R-order in a semi-simple F -algebra Σ
can be embedded in a maximal R-order Γ which has well-understood arithmetic prop-
erties relative to Σ . More precisely if Σ =∏ri=1Mni (Di) then Γ is Morita equivalent
to
∏r
i=1Mni (Γi) where the Γi are maximal orders in the division algebra Di and so

Kn(Γ ) ≈⊕Kn(Γi) while Kn(Σ) ≈⊕Kn(Di). So, the study of K-theory of maximal
orders in semi-simple algebras can be reduced to the K-theory of maximal orders in divi-
sion algebras.

As remarked in [79] the study of SKn(Λ) facilitates the understanding of Kn(Λ) apart
from the various known topological applications known for n= 0,1,2, whereΛ= ZG for
some groups G that are usually fundamental groups of some spaces (see [163,150,103]).
Also SKn(Λ) is connected to the definition of higher class groups which generalizes to
higher K-groups the notion of class groups of orders and group-rings. (See [48,65].)

First, we have the following result 7.1.2 on SKn of maximal orders in p-adic semi-simple
algebras. This result as well as the succeeding ones, 7.1.4 to 7.1.6, are due to Kuku.

7.1.2. THEOREM [68]. Let R be the ring of integers in a p-adic field F , Γ a maximal
R-order in a semi-simple F -algebra Σ . Then for all n� 1,

(i) SK2n(Γ )= 0.
(ii) SK2n−1(Γ ) = 0 if and only if Σ is unramified over its centre (i.e. Σ is a direct

product of matrix algebras over fields).

7.1.3. REMARK.
(i) The result above is a generalization to higherK-groups of an earlier result for SK1.

(ii) Before discussing arbitrary orders, we record the following consequences of 7.1.2
(a) 7.1.2 holds for group rings Γ =RGwhereG is a finite group of order relatively

prime to p and FG splits, see [19].
(b) If m= radΓ , then for all n� 1, the transfer map: K2n−1(Γ/m)→K2n−1(Γ )

is non-zero unless Σ is a product of matrix algebras over fields. Hence, the
Gersten conjecture does not hold in the non-commutative case.
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(c) For all n > 0, we have an exact sequence 0→ K2n(Γ )→ K2n−1(Σ)→
K2n−1(Γ/m)→ 0 if and only if Σ is a direct product of matrix algebras over
fields.

We now discuss arbitrary orders and the global situations.

7.1.4. THEOREM [74]. Let R be the ring of integers in a number field F,Λ any R-order
in a semi-simple F -algebra Σ . Then for all n� 1

(i) Kn(Λ) is a finitely generated Abelian group.
(ii) SKn(Λ) is a finite group.

(iii) If Λ̂p denotes the completion of Λ at a prime p of R, then SKn(Λ̂p) is a finite
group.

7.1.5. REMARKS.
(i) The above results 7.1.4 hold for Λ = RG, Λ̂p = R̂pG where G is a finite group

and R̂p is the completion of R at a prime p of R.
(ii) 7.1.4(i) was proved in [73]. Theorem 2.1.1, 7.1.4 (ii) and (iii) were proved for

group-ringsRG, R̂pG in [73], Theorem 3.2 and later forR-orders in [74], Theorem
1.1 (ii) and (iii).

We next discuss similar finiteness results for G-theory.

7.1.6. THEOREM [69,74]. Let R be the ring of integers in a number field F , Λ any
R-order in a semi-simple F -algebra Σ , p any prime ideal of R. Then for all n� 1

(i) Gn(Λ) is a finitely generated Abelian group.
(ii) G2n−1(Λp) is a finitely generated Abelian group.

(iii) SG2n(Λ)= SG2n(Λp)= SG2n(Λ̂p)= 0.
(iv) SG2n−1(Λ) is a finite group.
(v) SG2n−1(Λ̂p), SG2n−1(Λ̂p) are finite groups of order relatively prime to the rational

primes lying below p.

7.1.7. REMARKS.
(i) The results above hold for Λ=RG, Λ̂p =RpG, Λ̂p = R̂pG.

(ii) One can show from 7.1.6(i) that if A is any R-algebra finitely generated as an
R-module, then Gn(A) is finitely generated (see [73, Theorem 2.3]).

We also have the following result on the vanishing of SGn(Λ) (see [87]) due to Lauben-
bacher and Webb.

7.1.8. THEOREM [87]. Let R be a Dedekind domain with quotient field F ,Λ any R-order
in a semi-simple F -algebra. Assume that

(i) SG1(Λ)= 0.
(ii) Gn(Λ) is finitely generated for all n� 1.

(iii) R/p is finite for all primes p or R.
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(iv) If ξ is an �s -th root of unit for any rational prime � and positive integer s, R the
integral closure of R in F(ξ), then SG1(R̃⊗R Λ)= 0.

Then SGn(Λ)= 0 for all n� 1.

7.1.9. REMARKS. It follows from 7.1.8 that if R is the ring of integers in a number field
F then (i) SGn(RG)= 0, (ii) SGn(Λ̂p)= 0 for all prime ideals p of R and all n� 1 (see
[78, 1.9]), if Λ satisfies the hypotheses of 7.1.8.

The following extension of finiteness results for G-theory to group-rings of infinite
groups in significant. This result is due to Kuku and Tang, see [82].

7.1.10. THEOREM [82]. Let V =G�α T be the semi-direct product of a finite group G
of order p with an infinite cyclic group T = 〈t〉 with respect to the automorphism α :G→
G :g→ tgt−1. Then for all n� 0,Gn(RV ) is a finitely generated Abelian group, where R
is the ring of integers in a number field.

We also have the following result on the ranks of Kn(Λ),Gn(Λ), due to Kuku, see [76].

7.1.11. THEOREM [76]. Let R be the ring of integers in a number field F , Λ an R-order
in a semi-simple F -algebra Σ , Γ a maximal R-order containing Λ.

Then for all n� 2

rankKn(Λ)= rankGn(Λ)= rankKn(Σ)= rankKn(Γ ).

7.1.12. REMARKS.
(i) The above results 7.1.11 hold for Λ=RG where G is any finite group.

(ii) The ranks of Kn(R) and Kn(F) have been discussed in Section 6.

It then means that if Σ is a direct product of matrix algebras over fields and Γ is
a maximal order in Γ , then rankKn(Γ ) = rankKn(Σ) is completely determined since
Σ =∏Mni (Fi) and Γ =∏Mni (Ri) where Ri is the ring of integers in Fi . Also by theo-
rem 7.1.11 this is equal to rankGn(Λ) as well as rankKn(Λ) ifΛ is any R-order contained
in Γ .

However, if Σ does not split, there exists a Galois extension E of F which splits Σ , in
which case we can reduce the problem to that of computation of the ranks of Kn of fields.

We next obtain some results connecting Kn and Gn through the Cartan map. Recall
that if A is any Noetherian ring, the inclusions P(A)→M(A) induces a homomorphism
Kn(A)→Gn(A) for all n� 0. First we have the following result, whose proof uses meth-
ods of equivariant higher K-theory, is due to Dress and Kuku (see [25]).

7.1.13. THEOREM [25]. Let k be a field of characteristic p, G a finite group. Then the
inclusion functor P(kG) �→M(kG) induces an isomorphism Z( 1

p
)⊗Kn(kG) �→Z( 1

p
)⊗

Gn(kG) for all n� 0.

As a consequence of 7.1.13 one can prove the following result 7.1.14 and 7.1.15 due to
Kuku, [73].
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7.1.14. COROLLARY [73]. Let G be a finite group, k a finite field of characteristic p �= 0.
Then for all n� 1,

(1) K2n(kG) is a finite p-group.
(2) The Cartan map K2n−1(kG) → G2n−1(kG) is surjective and Kerϕ2n−1 is the

Sylow-p-subgroup of K2n−1(kG).

Finally we have the following:

7.1.15. THEOREM [74]. Let R be the ring of integers in a number field F , G a finite
group, p a prime ideal of R. Then for all n� 1.

(i) The Cartan homomorphisms Kn((R/p)G)→Gn((R/p)G) are surjective.
(ii) The Cartan homomorphismKn(RG)→Gn(RG) induces a surjection SKn(RG)→

SGn(RG).
(iii) SK2n(RG)=Ker(K2n(RG)→G2n(RG)).

7.1.16. REMARKS. Recall from 4.6.4 that if R is the ring of integers in a number field F
and Λ is any R-order in a semi-simple F -algebra Σ , then we have a long exact sequence

· · · →Kn+1(A,ω)→Kn(Λ)→Gn(Λ)→Kn−1(A,ω)→ ·· · ,

where (A,ω) is the Waldhausen category of bounded chain complexes over M(Λ) with
weak equivalences as quasi-isomorphisms.

It follows from 7.1.4 and 7.1.6 that for all n � 1, Kn+1(A,ω) is a finitely generated
Abelian group.

7.1.17. For the rest of this subsection, we shall focus briefly on the higher G-theory
of Abelian group-rings and some ramifications of this theory to non-commutative cases,
viz. dihedral and quaternion groups, nilpotent groups, and groups of square free order. The
work reported here is due to D. Webb (see [159–162]).

The following results generalize to higher G-theory of results in 2.2.5 of [79]. The no-
tations are those of 2.2.4, 2.2.5 of [28].

7.1.18. THEOREM [159]. Let π be an Abelian group and R a Noetherian ring (not nec-
essarily commutative). Then

Gn(Rπ)�
⊕
ρ∈X(π)

Gn
(
R〈ρ〉) for all n� 0,

where X(π) is the set of cyclic quotients of π .

Next we have the following ramifications of 2.5.20 of [28].

7.1.19. THEOREM [159]. Let G= π � Γ be the semidirect product of an Abelian group
π and a finite group Γ , R a Noetherian ring. Assume that the Γ -action stabilizes every
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cocyclic subgroup of π so that Γ acts on each cyclic quotient ρ of π . Let R〈ρ〉#Γ be the
twisted group-ring. Then for all n > 0

Gn(RG)�
⊕
ρ∈X(π)

Gn
(
R〈ρ〉#Γ ).

7.1.20. THEOREM [159]. LetG be a non-Abelian group of order pq , p|(q− 1). Let Γ be
the unique subgroup of Gal(Q(ξq)/Q) of order p. Then ∀n� 0

Gn(ZG)�Gn(Z)⊕Gn
(

Z
[
ςp,

1

p

])
⊕Gn
(

Z
[
ςq,

1

q

])Γ
.

7.1.21. REMARKS. Note that the dihedral group D2s of order 2s has the form π � Γ

where π is a cyclic group of order s and Γ has order 2. So, by 7.1.19

Gn(ZD2s)�
⊕
ρ∈X(π)

Gn
(
Z〈ρ〉#Γ ).

We now have a more explicit form of Gn(ZD2s).

7.1.22. THEOREM. For all n� 0,

Gn(ZD2s)�
⊕
( d/sd>2)

Gn

(
Z
[
ζd,

1

d

])
+
⊕Gn
(

Z
[

1

2

])ε
⊕Gn(Z),

where ε =
{

1 if s is odd,
2 if s is even

and Z[ζd, 1
d
]+ is the complex conjugation invariant subring of Z[ζd, 1

d
].

7.1.23. Now, let G be the generalized quaternion group of order 4.2s , i.e.

G= 〈x, y | x2 = y2, y4 = 1, yxy−1 = x−1〉.
For s � 0, let Γ = {1, γ } be a two-element group acting onQ[ς2s ] by complex conjugation
with fixed field Q[ς2s ]+, the maximal real subfield.

Let c :Γ × Γ →Q[ςss+1 ] be the normalized 2-cocycle given by c(γ, γ )= −1 and let
H =Q[ς2s+1 ]#cΓ be the cross-product algebra, L a maximal Z-order in H (see [58]).

7.1.24. THEOREM [161]. In the notation of 7.1.23

Gn(ZG)�
s⊕
j=0

Gn

(
Z
[
ξ2j ,

1

2j

])
⊕Gn
(
l

[
1

2s+1

])
⊕Gn
(

Z
(

1

2

)]2
.
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7.1.25. Let π be a finite nilpotent group whose 2-Sylow subgroup has no subquotients
isomorphic to the quaternion group of order 8, R a left Noetherian ring. The rational group
algebra Qπ ∼∏ρ∈X(π) Q(ρ) where each Q(ρ) is a simple algebra and ρ :π → GL(V )
is an irreducible rational representation of π and X(π) is a complete set of inequivalent
irreducible rational representation of π and Q(ρ) �Mn(ρ)(Kρ) is a full matrix algebra
over a field Kρ (see [161]).

Let Z(ρ)=Mn(ρ)(Oρ) be a maximal A-order in Q(ρ) where Oρ is the ring of integers
in Kρ . Put Z〈ρ〉 = Z(ρ)[ 1

|ρ| ] where |ρ| = index[π : kerρ]. Then we have the following.

7.1.26. THEOREM [161]. In the notation of 7.1.25

Gn(Rπ)�
⊕
ρ∈X(π)

Gn
(
R〈ρ〉), where R〈ρ〉 =R⊗Z〈ρ〉.

Hence

Gn(Zπ)�
⊕
ρ∈X(π)

Kn
(
Oρ
[
1/|ρ|]).

7.1.27. Now let G be a finite group of square free order. Then G is metacyclic and
hence can be written as G = π � Γ where π,Γ are cyclic of square free order. Then
QG�Qπ#Γ �∏ρ∈X(π) Q(ρ)#Γ where X(π) is the set of cyclic quotients of π .

7.1.28. THEOREM [162]. In the notation of 7.1.27 we have

Gn(RG)�
⊕
ρ∈X(π)

Gn
(
R〈ρ〉#Γ ).

7.1.29. REMARKS. For further simplification of each Gn(R〈ρ〉#Γ ) in the context of a
conjecture of Hambleton, Taylor and Williams, see [162].

7.2. Higher class groups of orders and group-rings

7.2.1. Let F be a number field with ring of integersOF ,Λ any R-order in a semi-simple
F -algebra Σ . In this subsection, we review briefly some results on the higher class groups
Cln(Λ), n � 0, of Λ which constitute natural generalization to higher dimensions of the
classical notion of class groups Cl(Λ) of an order (see [19] or [79]).

The class groups Cl(Λ), apart from generalizing the classical notion of class groups of
integers in number fields, is also intimately connected with representation theory while
Cl(ZG) is also known to house several topological/geometric invariants, see [156]. For
various computations of Cl(Λ), see [19].
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7.2.2. DEFINITION. Let F be a number field with ring of integers OF , Λ an OF -order in
a semi-simple algebra. The higher class groups are defined for all n� 0 by

Cln(Λ)=Ker

(
SKn(Λ)→

⊕
p

SKn(Λ̂p)

)
,

where p runs through all prime ideals of OF .

NOTE. One can show that Cl0(Λ)= Cl(Λ). Moreover, Cl1(OFG) is intimately connected
with the Whitehead groups of G.

The result below, due to Kuku, [73], says that ∀n� 1, Cln(Λ) are finite groups for any
OF -orders Λ.

7.2.3. THEOREM [74]. Let F be a number field with ring of integersOF ,Λ anyOF -order
in a semi-simple F -algebra Σ . Then the groups Cln(Λ) are finite.

Note that Cl0(Λ)= Cl(Λ) is finite is a classical result. See [19].
The next result due to M.E. Keating says that Cln(Γ ) vanishes for maximal orders Γ .

7.2.4. THEOREM [60]. Let F ,OF be as in 7.2.3, Γ a maximalOF -order in a semi-simple
algebra. Then for all n� 1, Cln(Γ )= 0.

The next result 7.2.6 due to Kolster and Laubenbacher, [65], gives information on pos-
sible torsion in odd-dimensional class groups. First we make some observations.

7.2.5. REMARKS. Let F be a number field with ring of integers OF , Λ any OF -order in
a semi-simple F -algebra Σ , and Γ a maximal order containing Λ. It is well known that
Λ̂p is a maximal order for all except a finite number of prime ideals p of OF at which
Λp is not maximal. We denote by PΛ the set of rational primes q lying below the primes
ideals p in SΛ, where SΛ denotes the finite set of prime ideals p of OF for which Λp is
not maximal.

7.2.6. THEOREM [65]. Let F ,OF ,Λ be as in 7.2.3. Then for all n� 1, Cl2n−1(Λ)(q)= 0
for q /∈ PΛ.

7.2.7. COROLLARY. Let G be a finite group. Then for all n � 1, the only p-torsion that
can possibly occur in Cl2n−1(OFG) are for those p dividing the order of G.

7.2.8. REMARKS. Finding out what p-torsion could occur in even-dimensional class
groups of arbitrary orders in semi-simple algebras is still open. However, we have the
following result 7.2.9 due to Guo and Kuku, [48], analogous to 7.2.6 above for Eichler and
hereditary orders.

7.2.9. THEOREM [48]. Let F be a number field with ring of integers OF , Λ an Eichler
order in a quaternion F -algebra or a hereditary order in a semi-simple F -algebra. Then,
in the notation of 7.2.3, Cl2n(Λ)(q)= 0 for q /∈ PΛ.
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7.3. Profinite higher K-theory of orders and group-rings

7.3.1. Let R be a Dedekind domain with quotient field F , Λ any R-order in a semi-
simple F -algebra. In the notation of 3.1.6(xi) and [78], we shall write Kpr

n (Λ, Ẑ�)
for Kpr

n (P(Λ), Ẑ�) (resp. Gpr
n (Λ, Ẑ�) for Kpr

n (M(Λ), Ẑ�)) respectively for the profinite
K-theory (resp. G-theory of Λ). Also, following the notations in 3.1.6(ix) and as in [78],
we shall write

Kn(Λ, Ẑ�)= lim←−Kn
(
P(Λ),Z/�s

)
, Gn(Λ, Ẑ�)= lim←−Kn

(
M(Λ),Z/�s

)
.

Note that this situation applies to R being ring of integers in number fields and p-adic
fields. Note that in the statements above and throughout this subsection � is a prime.

Although several of the computations in [78] do apply to general exact categories we
shall restrict ourselves in this section to results on orders and group rings. The results in
this subsection are all due to Kuku, [78].

7.3.2. THEOREM [78]. Let R be the ring of integers in a number field F , Λ an R-order
in a semi-simple F -algebra. Then we have

(1) For all n� 1

Kn(Λ)
[
�s
]∼=Kpr

n (Λ, Ẑ�)
[
�s
]; Gn(Λ)

[
�s
]∼=Gpr

n (Λ, Ẑ�)
[
�s
]
.

(2) For all n� 2

Kn(Λ)/�
s ∼=Kpr

n (Λ, Ẑ�)/�s; Gn(Λ)/�
s ∼=Gpr

n (Λ, Ẑ�)/�s.

(3) (a) Kn(Λ) ⊗ Ẑ� ∼= Kpr
n (Λ, Ẑ�) � Kn(Λ, Ẑ�) are �-complete profinite Abelian

groups for all n� 2.
(b) Gn(Λ ⊗ Ẑ�) � Gpr

n (Λ, Ẑ�) � Gn(Λ, Ẑ�) are �-complete profinite Abelian
groups for all n� 2.

(c) K2n+1(Σ) ⊗ Ẑ� � Kpr
2n−1(Σ, Ẑ�) � K2n−1(Σ, Ẑ�) are �-complete profinite

Abelian groups for all n� 2.

NOTE. An Abelian group G is said to be �-complete if G= lim←−(G/�
s).

We also have the following results in the local situation.

7.3.3. THEOREM [78]. Let p be a rational prime, F a p-adic field (i.e. any finite extension
of Q̂p), R the ring of integers of F , Γ a maximal R-order in a semi-simple F -algebra Σ .
Then for all n� 2 we have

(1) Kpr
n (Σ, Ẑ�)�Kn(Σ, Ẑ�) is an �-complete profinite Abelian group.

(2) Kpr
n (Γ, Ẑ�)�Kn(Γ, Ẑ�) is an �-complete profinite Abelian group.

7.3.4. THEOREM [78]. Let R be the ring of integers in a p-adic field F , � a rational
prime such that l �= p, Λ an R-order in a semi-simple F -algebra Σ . Then, for all n� 2,
G

pr
n (Λ, Ẑ�) is an �-complete profinite Abelian group.
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7.3.5. THEOREM [78]. Let R be the ring of integers in a p-adic field F , Λ an R-order in
a semi-simple F -algebra Σ , � a rational prime such the � �= p. Then for all n� 1,

(i) Gn(Λ)� are finite groups.
(ii) Kn(Σ)� are finite groups.

(iii) The kernel and cokernel of Gn(Λ)→G
pr
n (Λ, Ẑ�) are uniquely �-divisible.

(iv) The kernel and cokernel of Kn(Σ)→K
pr
n (Σ, Ẑ�) are uniquely �-divisible.

7.3.6. THEOREM [78]. Let R be the ring of integers in a number field F , Λ an R-order in
a semi-simple F -algebra Σ satisfying the hypothesis of 7.1.8, p any prime ideal of R and
� a rational prime such that � �= char(R/p). Then,

(i) Kn(Λ̂p)� is a finite group.

(ii) The map ϕ :Kn(Λ̂p)�→K
pr
n (Λ̂p, Ẑ�)� is an isomorphism.

7.4. Higher K-theory of modules over EI categories

7.4.1. An EI category C is a small category in which every endomorphism is an isomor-
phism.

C is said to be finite if the set Is(C) of isomorphism classes of C-objects is finite and for
any two C-objects X, Y the set morC(X,Y ) of C-morphisms from X to Y is also finite.

LetR be a commutative ring with identity. AnRC module is a contravariant functor from
C to the category R-mod of R-modules. There is a notion of finitely generated projective
RC-modules as well as a notion of finitely generated RC-modules (see 7.4.3 below). So,
for all n > 0, let Kn(RC) be the (Quillen) Kn of the category P(RC) and Gn(RC) the Kn
of the category M(RC) when R is Noetherian.

The significance of the study of K-theory of RC modules lies mainly in the fact that
several geometric invariants take values in the K-groups associated with RC where C is
an appropriately defined EI-category and R could be C, Q, R, etc. For example, if G is
a finite group, C = orb(G) (a finite EI-category), X a G-CW complex with round struc-
ture (see [96]), then the equivariant Reidemeister torsion takes values in Wh(Q orb(G))
where Wh(Q orb(G)) is the quotient ofK1(Q orb(G)) by the subgroups of “trivial units” –
see [96]. For more invariants in the lowerK-theory of modules over suitable EI-categories,
see [96].

The study of modules over EI-categories is a natural generalization of study of modules
over group rings.

7.4.2. EXAMPLES.
(i) Let G be a finite group, ob(C) = {G/H | H � G} and let the morphisms be
G-maps. Then C is a finite EI-category called the orbit category of G and denoted
by orb(G). Note that here, C(G/H,G/H) (� Aut(G/H)) � NG(H)/H where
NG(H) is the normalizer of H in G (see [75]). We shall denote NG(H)/H by
WG(H).

(ii) Let G be a Lie group, ob(C) = {G/H | H a compact subgroup of G}. Again the
morphisms are G-maps and C is also called the orbit category of G and denoted by
orb(G).
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(iii) Let G be a Lie group, ob(C) = {G/H | H compact subgroup of G}. For G/H ,
G/H ′ ∈ ob(C) let C(G/H,G/H ′) be the set of homotopy classes ofG-maps. Then
C is an EI-category called the discrete orbit category ofG and denoted by orb/(G).

(iv) Let G be a discrete group, F the family of all finite subgroups of G. Consider
the category OrF (G) such that ob(OrF (G)) = {G/H |H ∈ F}. OrF (G) is an EI
category.

7.4.3. Let R be a commutative ring with identity, C an EI-category. A C-module is a
contravariant functor C→R-mod.

An obC-set is a functor N from C to the category of sets. Alternatively, an obC-set
could be visualized as a pair (N,β) where N is a set and β :N→ obC is a set map. Then
N{β−1(X) |X ∈ obC}.

An obC-set (N,β) is said to be finite if N is a finite set. If S is an (N,β)-subset of an
RC-module M , define span S as the smallest RC-submodule of M containing S. Say that
M is finitely generated if M = spanS for some finite obC-subset S of M .

If R is a Noetherian ring and C an EI-category, letM(RC) be the category of finitely gen-
erated RC-modules. Then M(RC) is an exact category in the sense of Quillen, see [114].

An RC-module P is said to be projective if any exact sequence of RC-modules 0→
M ′ →M→ P → 0 splits or equivalently if HomRC(P,−) is exact.

Let P (RC) be the category of finitely generated projective (RC)-modules. The P(RC)
is also exact. We write Kn(RC) for Kn(P (RC)).

Now, let R be a commutative ring with identity, C an EI-category, PR(RC) the category
of finitely generated RC-modules M such that for each X ∈ obC M(X) is projective as
R-module. Then PR(RC) is an exact category and we write Gn(R,C) for Kn(PR(RC)).
Note that if R is regular, then Gn(R,C)�Gn(RC).

Finally, if R is a Dedekind domain with quotient field F , the inclusion functor
P(RC) �→M(RC) (C an EI-category) induces the Cartan maps Kn(RC)→Gn(RC). De-
fine SKn(RC) :=Ker(Kn(RC)→Kn(FC)), SGn(RC)=Ker(Gn(RC)→Gn(FC)).

First we have the following splitting result:

7.4.4. THEOREM.
(i) Let R be a commutative ring with identity; C an EI-category. Then

Kn(RC)�
⊕

X∈Is(C)
Kn
(
R
(
Aut(X)

))
.

(ii) If R is commutative Noetherian ring and C a finite EI-category then

Gn(RC)�
⊕

X∈Is(C)
Gn
(
R
(
Aut(X)

))
.

We now record the following.

7.4.5. THEOREM. Let R be the ring of integers in a number field F , C any finite EI-
category. Then for all n� 1, we have
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(i) Kn(RC) is finitely generated Abelian group.
(ii) Gn(RC) is a finitely generated Abelian group.

(iii) SKn(RC), SKn(R̂pC) are finite groups.

(iv) SGn(RC), SGn(R̂pC) are finite groups.

Finally, we present the following result on the Cartan map.

7.4.6. THEOREM. Let k be a field of characteristic p,C a finite EI-category. Then for all
n� 0, the Cartan homomorphism Kn(kC)→Gn(kC) induce an isomorphism

Z
(

1

p

)
⊗Kn(kC)� Z

(
1

p

)
⊗Gn(kC).

8. Equivariant higher algebraic K-theory together with relative generalizations

In order to economize on time and space, we restrict our discussion of equivariant higher
K-theory in this section to finite group actions, with the remark that there are analo-
gous theories for profinite group actions (see [70,80]) and compact Lie group actions (see
[77,80]).

8.1. Equivariant higher algebraic K-theory

8.1.1. Let G be a finite group, S a G-set and S the category associated with S (or
translation category of S), see [25,72].

If D is an exact category in the sense of Quillen, [114], then the category of [S,D] of
covariant functors from S to D is also exact (see [25]).

8.1.2. DEFINITION. Let KGn (S,D) be the n-th algebraic K-group associated to the cate-
gory [S,D] with respect to fibre-wise exact sequences.

We now have the following:

8.1.3. THEOREM. KCn (−D) : GSet→ Ab is a Mackey functor.

PROOF. See [24] and [25]. �

We now want to turn KG0 (−D) into a Green functor. We first recall the definition of a
pairing of exact categories (see [110]).

8.1.4. DEFINITION. Let D1, D2, D3 be exact categories. An exact pairing 〈 , 〉 :
D1 ×D2→D3 given by (X1,X2)→〈X1 ◦X2〉 is a covariant functor such that
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Hom
(
(X1,X2), (X

′
1,X

′
2)
)

=Hom(X1,X
′
1)×Hom(X2,X

′
2)→Hom

(〈X1 ◦X2〉, 〈X′1 ◦X′2〉
)

is biadditive and biexact (see 2.6.7 of [80]).

8.1.5. THEOREM. Let D1, D2, D3 be exact categories and D1×D2→D3 an exact pair-
ing of exact categories. Then the pairing induces fibre-wise a pairing [S,D1] × [S,D2]→
[S,D3] and hence a pairing KG0 (S,D1)×KGn (S,D2)→KGn (S,D3).

Suppose D is an exact category such that the pairing D × D→ D is naturally asso-
ciative and commutative and there exists E ∈D such that 〈E ◦M〉 = 〈M ◦E〉 =M . Then
KG0 (−,D) is a Green functor and KGn (−,D) is a unitary KG0 (−,D) module.

PROOF. See [24] or [25]. �

8.2. Relative equivariant higher algebraic K-theory

In this section, we discuss the relative version of the theory in 8.1.

8.2.1. DEFINITION. Let S, T be G-sets. Then the projection map S × T → S gives rise
to a functor S × T → S. Suppose that D is an exact category in the sense of Quillen, [78].
Then, a sequence ς1→ ς2→ ς3 of functors in [S,D] is said to be T -exact if the sequence
ζ ′1→ ζ ′2→ ζ ′3 of restricted functors S × T → S→D is split exact.

If ψ :S1→ S2 is a G-map, and ς1→ ς2→ ς3 is a T -exact sequence in [S2,Q], then

ζ ′1→ ζ ′2→ ζ ′3 is a T -exact sequence in [S1,D] where ς ′i :S1
ψ→ S2

ςi→D.
Let KGn (S,D, T ) be the n-th algebraic K-group associated to the exact category [S,D]

with respect to T -exact sequences.

8.2.2. DEFINITION. Let S, T beG-sets. A functor ς ∈ [S,D] is said to be T -projective if
any T -exact sequence ς1→ ς2→ ς is split exact. Let [S,D]T be the additive category of
T -projective functors in [S,D] considered as an exact category with respect to split exact

sequences. Note that the restriction functor associated to S1
ψ→ S2 carries T -projective

functors ς ∈ [S2,D] into T -projective functors ς ◦ ψ ∈ [S1,D]. Define PGn (S,D, T ) as
the n-th algebraic K-group associated to the exact category [S,D]T , with respect to split
exact sequences.

8.2.3. THEOREM [35]. KGn (−,D, T ) and PGn (−,D, T ) are Mackey functors from G-Set
to Ab for all n � 0. If the pairing D ×D→ D is naturally associative and commutative
and D contains a natural unit, then KG0 (−,D,T ) : GSet→ Ab is a Green functor and
KGn (−,D, T ) and PGn (−,D, T ) are KG0 (−,D, T ) modules.

PROOF. See [24] or [25]. �
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8.3. Interpretation in terms of group-rings

In this section, we discuss how to interpret the theories in the two previous sections in
terms of group-rings.

8.3.1. Recall that any G-set S can be written as a finite disjoint union of transitive
G-sets each of which is isomorphic to a quotient set G/H for some subgroup H of G.
Since Mackey functors, by definition, take finite disjoint unions into finite direct sums, it
will be enough to consider exact categories [G/H,D] where D is an exact category in the
sense of Quillen, [78].

For any ring A, letM(A) be the category of finitely generated A-modules and P(A) the
category of finitely generated projective A modules.

8.3.2. THEOREM [72]. Let G be a finite group, H a subgroup of G, A a commutative
ring with identity, then there exists an equivalence of exact categories [G/H,M(A)] →
M(AH). Under this equivalence, [G/H,P (A)] is identified with the category of finitely
generated A-projective left AH -modules.

We also observe that a sequence of functors ς1 → ς2 → ς3 in [G/H,P (A)] or
[G/H,M(A)] is exact if the corresponding sequence ς1(H)→ ς2(H)→ ς3(H) of AH -
modules is exact.

8.3.3. REMARKS.
(i) It follows that for every n� 0, KGn (G/H,P (A)) can be identified with the n-th al-

gebraic K-group of the category of finitely generated A-projective AH -modules
while KGn (G/H,M(A)) = Gn(AH) if A is Noetherian. It is well known that

KGn (G/H,P (A))=KGn (G/H,M(A)) is an isomorphism when A is regular.
(ii) Let φ :G/H1→G/H2 be aG-map forH1 �H2 �G. We may restrict ourselves to

the case H2 =G and so we have φ∗ : [G/G,M(A)]→ [G/H,M(A)] correspond-
ing to the restriction functor M(AG)→ M(AH), while φ∗ : [G/H,M(A)] →
[G/G,M(A)] corresponds to the induction functor M(AH)→M(AG) given by
N → AG⊗AH N . Similar situations hold for functor categories involving P(A).
So, we have corresponding restriction and induction homomorphisms for the re-
spective K-groups.

(iii) If D = P (A) and A is commutative, then the tensor product defines a naturally
associative and commutative pairing P(A) × P(A)→ P(A) with a natural unit
and so KGn (−,P (A)) are KG0 (−,P (A))-modules.

8.3.4. We now interpret the relative situation. So let T be a G-set. Note that a sequence
ζ1 → ζ2 → ζ3 of functors in [G/H,P (A)] or [G/H,M(A)] is said to be T -exact if

ςi(H)→ ς2(H)→ ς3(H) is AH ′-split exact for all H ′ � H such that T H
′ �= ∅ where

T H
′ = {t ∈ T | gt = t ∀g ∈H ′}. In particular, the sequence is G/H -exact (resp. G/G ex-

act) iff the corresponding sequence of AH -modules (resp. AG-modules) is split exact. If ε
is the trivial subgroup of G, it is G/ε-exact if it is split exact as a sequence of A-modules.
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So, KGn (G/H,P (A),T ) (resp. KGn (G/H,M(A),T )) is the n-th algebraic K-group of
the category of finitely generatedA-projectiveAH -modules (resp. category of finitely gen-
erated AH -modules) with respect to exact sequences which split when restricted to the
various subgroups H ′ of H such that T H

′ �= ∅.
Moreover, observe that PGn (G/H,P (A),T ) (resp. PGn (G/H,M(A),T )) is an algebraic

K-group of the category of finitely generated A-projective AH -modules (resp. finitely
generated AH -modules) which are relatively H ′-projective for subgroups H ′ of H such
that T H

′ �= ∅ with respect to split exact sequences. In particular, PGn (G/H,P (A),G/ε)=
Kn(AH). If A is commutative, the KG0 (−,P (A),T ) is a Green functor and
KGn (−,P (A),T ) and PGn (−,P (A),T ) are KG0 (−,P (A),T )-modules.

Now, let us interpret the maps associated to G-maps S1 → S2. We may special-
ize to maps ϕ :G/H1 → G/H2 for H1 � H2 � G and for convenience we may re-
strict ourselves to the case H2 = G, in which case we write H1 = H . In this case
ϕ : [G/G,M(A)]→ [G/H,M(A)] corresponds to the restriction of AG-modules to AH -
modules and ϕ∗ : [G/H,M(A)] → [G/G,M(A)] corresponds to the induction of AH -
modules to AG-modules (see [21]).

We hope that this wealth of equivariant higher algebraic K-groups will satisfy a lot of
future needs, and moreover, that the way they have been produced systematically, will help
to keep them in some order, and to produce new variants of them, whenever desired.

Since any G-set S can be written as a disjoint union of transitive G-sets, isomorphic to
some coset-set G/H , and since all the above K-functors satisfy the additivity condition,
the above identifications extend to K-groups, defined on an arbitrary G-set S.

8.4. Some applications

We are now in a position to draw various conclusions just by quoting well established
induction theorems, concerning KG0 (−,P (A)) and KG0 (−,P (A);T ) and, more generally
R ⊗Z KG0 (−,P (A)) and R ⊗Z KG0 (−,P (A);T ) for R a subring of Q or just any com-
mutative ring (see [23,20–22]). Since any exact sequence in P(A) is split exact, we have a
canonical identificationKG0 (−,P (A))=KG0 (−,P (A);G/ε) (ε �G the trivial subgroup)
and, thus, may direct our attention to the relative case, only.

So let T be a G-set. For p a prime and q a prime or 0, let D(p,T , q) denote the set of
subgroups H �G such that the smallest normal subgroup H1 of H with a q-factor group
has a normal Sylow-subgroup H2 with T H2 �= ∅ and a cyclic factor group H1/H2. Let Hq
denote the set of subgroupsH �G which are q-hyperelementary, i.e. have a cyclic normal
subgroup with a q-factor group (or are cyclic for q = 0).

For A and R commutative rings, let D(A,T ,R) denote the union of all D(p,T , q) with
pA �=A and qR �=R and let HR denote the union of all Hq with qR �=R.

Then it has been proved (see [20,21,23]), that R ⊗A KG0 (−,P (A);T ) is S-projective
for some G-set S if SH �= ∅ for all H ∈D(A,T ,R) ∪HR . Moreover (see [21]), if A is a
field of characteristic p �= 0, then KG0 (−,P (A);T ) is S-projective, already if SH �= ∅ for
all H ∈D(A,T ,R).
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8.4.1. Among the may possible applications of these results, we discuss just one
special case. Let A = k be a field a characteristic p �= 0, let R = Z( 1

p
) and let

S = ⋃H∈D(k,T ,R) G/H . Then R ⊗ KG0 (−,P (k), T ) and thus R ⊗ KGi (−,P (k), T )
and ⊗Pi(−,P (k);T ) are S-projective. Moreover the Cartan map PGi (X,P (k);T )→
Ki(XiP (k);T ) is an isomorphism for any G-set X, for which the Sylow-p-subgroups
H of the stabilizers of the elements in X having a non-empty fixed point set T H in T ,
since in this case T -exact sequences over X are split exact (see [23]) and thus all func-
tors ς :X→ P (k) are T -projective, i.e. [X,P (k)]T ↪→ [X,P (k)] is an isomorphism if
[X,P (k)] is taken to be exact with respect to T -exact and thus split exact sequences.

This implies in particular that for all G-sets X the Cartan map

PGi
(
X× S,P (k);T )→KGi

(
X× S,P (k);T )

is an isomorphism, since any stabilizer group of an element in X × S is a subgroup of a
stabilizer group of an element in S and thus, by the very definition of S andD(k,T ,Z( 1

p
)),

has a Sylow-p-subgroup H with T H �= ∅.
This finally implies that PGi (−,P (k);T )S→KGi (−,P (k), T )S is an isomorphism, so

by the general theory of Mackey functors,

Z
(

1

p

)
⊗ PGi (−,PkiT )→ Z

(
1

p

)
⊗KGi (−,PkiT )

is an isomorphism. In the special case T =G/ε this is just the K-theory of finitely gen-
erated projective kG-modules and KGi (−,P (k);G/ε) the K-theory of finitely generated
G-modules with respect to exact sequences.

Thus, we have proved:

8.4.2. THEOREM. Let k be a field of characteristic p, G a finite group. Then for all � 0
the Cartan map Kn(kG)→Gn(kG) induces isomorphisms

Z
(

1

p

)
⊗Kn(kG)� Z

(
1

P

)
⊗Gn(kG).

Finally, with the identification of Mackey functors: GSet→ Ab with Green’s G-functors
δG→ Ab as in [72], and the above interpretations of our equivariant theory in terms of
group rings, we now have from the foregoing, the following result 8.4.3 which says that
higher algebraic K-groups are hyper-elementary computable.

For the proof of this result, see [69].

8.4.3. THEOREM [69]. Let R be a Dedekind domain, G a finite group, M any of the
functors

Kn(R−),Gn(R−),SGn(R−),SKn(R−); δG→ Z-mod.
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For any commutative ring A with identity, define (A⊗M)(H)= A⊗M(H), H ∈ δG.
Let P be a set of rational primes, Zp = Z{ 1

q
| q /∈ P }, C(G) the collection of all cyclic

subgroups of G, hpC(G)=A, the collection of all hyper-elementary subgroups of G, i.e.
A= {H �G | ∃H ′ ∈ C(G), H/H ′ a p-group for some p ∈ P }.

Then Zp ⊗ M(G) = lim←−H Zp ⊗ M(H) where lim←−Zp ⊗ M(H) is the subgroup of

all (xH ) ∈ ∏H∈A ZP ⊗ M(H) such that for any H,H ′ ∈ A satisfying gH ′g−1 ⊂
H,ϕ :H ′ →H give by ϕ(h)= ghg−1, then Zp ⊗M(ϕ)(xH )= xH ′ .
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1. Introduction

Throughout the chapter, K is a field, a module M over an algebra A means a left module
denoted AM , ⊗=⊗K .

Intuitively, the filter dimension of an algebra or a module measures how ‘close’ stan-
dard filtrations of the algebra or the module are. In particular, for a simple algebra it also
measures the growth of how ‘fast’ one can prove that the algebra is simple.

The filter dimension appears naturally when one wants to generalize the Bernstein’s
inequality for the Weyl algebras to the class of simple finitely generated algebras.

The n-th Weyl algebra An over the fieldK has 2n generatorsX1, . . . ,Xn, ∂1, . . . , ∂n that
satisfy the defining relations

∂iXj −Xj∂i = δij , the Kronecker delta, XiXj −XjXi = ∂i∂j − ∂j ∂i = 0,

for all i, j = 1, . . . , n. When charK = 0 the Weyl algebra An is a simple Noetherian
finitely generated algebra canonically isomorphic to the ring of differential operators
K[X1, . . . ,Xn,

∂
∂X1
, . . . , ∂

∂Xn
] with polynomial coefficients (Xi ↔ Xi, ∂i ↔ ∂i

∂Xi
, i =

1, . . . , n).
Let K.dim and GK be the (left) Krull (in the sense of Rentschler and Gabriel, [22]) and

the Gelfand–Kirillov dimension respectively.

THEOREM 1.1 (The Bernstein’s inequality, [8]). Let An be the n-th Weyl algebra over a
field of characteristic zero. Then GK(M) � n for all non-zero finitely generated An-mo-
dules M .

Let A be a simple finitely generated infinite-dimensional K-algebra. Then dimK(M)
= ∞ for all non-zero A-modules M (the algebra A is simple, so the K-linear map
A→HomK(M,M), a �→ (m �→ am), is injective, and so ∞ = dimK(A) �
dimK(HomK(M,M)) hence dimK(M) =∞). So, the Gelfand–Kirillov dimension (over
K) GK(M)� 1 for all non-zero A-modules M .

DEFINITION. hA := inf{GK(M) |M is a non-zero finitely generated A-module} is called
the holonomic number for the algebra A.

PROBLEM. For a simple finitely generated algebra find its holonomic number.

To find an approximation of the holonomic number for simple finitely generated algebras
and to generalize the Bernstein inequality for these algebras was a main motivation for
introducing the filter dimension, [4]. In this chapter d stands for the filter dimension fd or
the left filter dimension lfd. The following two inequalities are central for the proofs of
almost all results in this chapter.

THE FIRST FILTER INEQUALITY [4]. Let A be a simple finitely generated algebra. Then

GK(M)� GK(A)

d(A)+max{d(A),1}
for all non-zero finitely generated A-modules M .
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THE SECOND FILTER INEQUALITY [5]. Under certain mild conditions (Theorem 4.2) the
(left) Krull dimension of the algebra A satisfies the following inequality

K.dim(A)� GK(A)

(
1− 1

d(A)+max{d(A),1}
)
.

The chapter is organized as follows. Both filter dimensions are introduced in Section 2.
In Sections 3 and 4 the first and the second filter inequalities are proved respectively. In
Section 4 we use both filter inequalities for giving short proofs of some classical results
about the rings D(X) of differential operators on smooth irreducible affine algebraic va-
rieties. The (left) filter dimension of D(X) is 1 (Section 5). A concept of multiplicity for
the filter dimension and a concept of holonomic module for (simple) finitely generated al-
gebras appear in Section 6. Every holonomic module has finite length (Theorem 6.8). In
Section 7 an upper bound is given (i) for the Gelfand–Kirillov dimension of commutative
subalgebras of simple finitely generated infinite-dimensional algebras (Theorem 7.2), and
(ii) for the transcendence degree of subfields of quotient rings of (certain) simple finitely
generated infinite-dimensional algebras (Theorems 7.4 and 7.5). In Section 8 a similar
upper bound is obtained for the Gelfand–Kirillov dimension of isotropic subalgebras of
strongly simple Poisson algebras (Theorem 8.1).

2. Filter dimension of algebras and modules

In this section, the filter dimension of algebras and modules will be defined.

2.1. The Gelfand–Kirillov dimension

Let F be the set of all functions from the set of natural numbers N = {0,1, . . .} to itself.
For each function f ∈F , the non-negative real number or∞ defined as

γ (f ) := inf
{
r ∈R | f (i)� ir for i& 0

}
is called the degree of f . The function f has polynomial growth if γ (f ) < ∞. Let
f,g,p ∈ F , and p(i)= p∗(i) for i& 0 where p∗(t) ∈Q[t] (the polynomial algebra with
coefficients from the field of rational numbers). Then

γ (f + g)� max
{
γ (f ), γ (g)

}
, γ (fg)� γ (f )+ γ (g),

γ (p)= degt
(
p∗(t)
)
, γ (pg)= γ (p)+ γ (g).

Let A=K〈a1, . . . , as〉 be a finitely generated K-algebra. The finite-dimensional filtration
F = {Ai} associated with algebra generators a1, . . . , as :

A0 :=K ⊆A1 :=K +
s∑
i=1

Kai ⊆ · · · ⊆Ai :=Ai1 ⊆ · · ·
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is called the standard filtration for the algebra A. Let M = AM0 be a finitely generated
A-module where M0 is a finite-dimensional generating subspace. The finite-dimensional
filtration {Mi :=AiM0} is called the standard filtration for the A-module M .

DEFINITION. GK(A) := γ (i �→ dimK(Ai)) and GK(M) := γ (i �→ dimK(Mi)) are called
the Gelfand–Kirillov dimensions of the algebra A and the A-module M respectively.

It is easy to prove that the Gelfand–Kirillov dimension of the algebra (resp. the module)
does not depend on the choice of the standard filtration of the algebra (resp. and the choice
of the generating subspace of the module).

2.2. The return functions and the (left) filter dimension

DEFINITION [4]. The function νF,M0 : N→N∪ {∞},

νF,M0(i) :=min
{
j ∈N∪ {∞}: AjMi,gen ⊇M0 for allMi,gen

}
is called the return function of the A-module M associated with the filtration F = {Ai}
of the algebra A and the generating subspace M0 of the A-module M where Mi,gen runs
through all generating subspaces for the A-module M such that Mi,gen ⊆Mi .

Suppose, in addition, that the finitely generated algebra A is a simple algebra. The return
function νF ∈ F and the left return function λF ∈ F for the algebra A with respect to the
standard filtration F := {Ai} for the algebra A are defined by the rules:

νF (i) := min
{
j ∈N∪ {∞} | 1 ∈AjaAj for all 0 �= a ∈Ai

}
,

λF (i) := min
{
j ∈N∪ {∞} | 1 ∈AaAj for all 0 �= a ∈Ai

}
,

where AjaAj is the vector subspace of the algebra A spanned over the field K by the
elements xay for all x, y ∈ Aj ; and AaAj is the left ideal of the algebra A generated by
the set aAj . The next result shows that under a mild restriction the maps νF (i) and λF (i)
are finite.

Recall that the centre of a simple algebra is a field.

LEMMA 2.1. Let A be a simple finitely generated algebra such that its centre Z(A) is an
algebraic field extension of K . Then λF (i)� νF (i) <∞ for all i � 0.

PROOF. The first inequality is evident.
The centre Z = Z(A) of the simple algebra A is a field that contains K . Let {ωj | j ∈ J }

be a K-basis for the K-vector space Z. Since dimK(Ai) <∞, one can find finitely many
Z-linearly independent elements, say a1, . . . , as , of Ai such that Ai ⊆ Za1 + · · · + Zas .
Next, one can find a finite subset, say J ′, of J such that Ai ⊆ V a1 + · · · + V as where
V =∑j∈J ′ Kωj . The field K ′ generated over K by the elements ωj , j ∈ J ′, is a finite
field extension of K (i.e. dimK(K ′) <∞) since Z/K is algebraic, hence K ′ ⊆ An for
some n� 0. Clearly, Ai ⊆K ′a1 + · · · +K ′as .
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The A-bimodule AAA is simple with ring of endomorphisms End(AAA) � Z. By the
Density theorem, [21, 12.2], for each integer 1 � j � s, there exist elements of the alge-
bra A, say xj1 , . . . , x

j
m, y

j

1 , . . . , y
j
m, m=m(j), such that for all 1 � l � s

m∑
k=1

x
j
k aly

j
k = δj,l, the Kronecker delta.

Let us fix a natural number, say d = di , such that Ad contains all the elements xjk , yjk ,
and the field K ′. We claim that νF (i)� 2d . Let 0 �= a ∈ Ai . Then a = λ1a1 + · · · + λsas
for some λi ∈K ′. There exists λj �= 0. Then

∑m
k=1 λ

−1
j x

j
k aj y

j
k = 1, and λ−1

j x
j
k , y

j
k ∈A2d .

This proves the claim and the lemma. �

REMARK. If the field K is uncountable then automatically the centre Z(A) of a simple
finitely generated algebra A is algebraic over K (since A has a countable K-basis and the
rational function field K(x) has uncountable basis over K since the elements 1

x+λ , λ ∈K ,
are K-linearly independent).

It is easy to see that for a finitely generated algebra A any two standard finite-
dimensional filtrations F = {Ai} and G = {Bi} are equivalent, (F ∼ G), that is, there
exist natural numbers a, b, c, d such that

Ai ⊆ Bai+b and Bi ⊆Aci+d for i& 0.

If one of the inclusions holds, say the first, we write F �G.

LEMMA 2.2. Let A be a finitely generated algebra equipped with two standard finite-
dimensional filtrations F = {Ai} and G= {Bi}.

(1) Let M be a finitely generated A-module. Then γ (νF,M0)= γ (νG,N0) for any finite-
dimensional generating subspaces M0 and N0 of the A-module M .

(2) If, in addition, A is a simple algebra then γ (νF )= γ (νG) and γ (λF )= γ (λG).

PROOF. (1) The module M has two standard finite-dimensional filtrations {Mi = AiM0}
and {Ni = BiN0}. Let ν = νF,M0 and μ= νG,N0 .

Suppose that F = G. Choose a natural number s such that M0 ⊆ Ns and N0 ⊆ Ms ,
so Ni ⊆Mi+s and Mi ⊆ Ni+s for all i � 0. Let Ni,gen be any generating subspace for
the A-module M such that Ni,gen ⊆Ni . Since M0 ⊆ Aν(i+s)Ni,gen for all i � 0 and N0 ⊆
AsM0, we haveN0 ⊆Aν(i+s)+sNi,gen, hence, μ(i)� ν(i+s)+s and finally γ (μ)� γ (ν).
By symmetry, the opposite inequality is true and so γ (μ)= γ (ν).

Suppose that M0 = N0. The algebra A is a finitely generated algebra, so all standard
finite-dimensional filtrations of the algebra A are equivalent. In particular, F ∼G and so
one can choose natural numbers a, b, c, d such that

Ai ⊆ Bai+b and Bi ⊆Aci+d for i& 0.

ThenNi = BiN0 ⊆Aci+dM0 =Mci+d for all i � 0, henceN0 =M0 ⊆Aν(ci+d)Ni,gen ⊆
Baν(ci+d)+bNi,gen, therefore μ(i)� aν(ci + d)+ b for all i � 0, hence γ (μ)� γ (ν). By
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symmetry, we get the opposite inequality which implies γ (μ)= γ (ν). Now, γ (νF,M0) =
γ (νF,N0)= γ (νG,N0).

(2) The algebra A is simple, equivalently, it is a simple (left) A⊗A0-module where A0

is the opposite algebra to A. The opposite algebra has the standard filtration F 0 = {A0
i },

opposite to the filtration F . The tensor product of algebras A⊗A0, so-called, the envelop-
ing algebra of A, has the standard filtration F ⊗ F 0 = {Cn} which is the tensor product of
the standard filtrations F and F 0, that is, Cn =∑{Ai ⊗A0

j , i + j � n}. Let νF⊗F 0,K be

the return function of the A⊗A0-module A associated with the filtration F ⊗ F 0 and the
generating subspace K . Then

νF (i)� νF⊗F 0,K(i)� 2νF (i) for all i � 0,

and so
γ (νF )= γ (νF⊗F 0,K), (1)

and, by the first statement, we have γ (νF ) = γ (νF⊗F 0,K) = γ (νG⊗G0,K) = γ (νG), as
required. Using a similar argument as in the proof of the first statement one can prove that
γ (λF )= γ (λG). We leave this as an exercise. �

DEFINITION [4]. fd(M) = γ (νF,M0) is the filter dimension of the A-module M , and
fd(A) := fd(A⊗A0A) is the filter dimension of the algebra A. If, in addition, the algebra A
is simple, then fd(A) = γ (νF ), and lfd(A) := γ (λF ) is called the left filter dimension of
the algebra A.

By the previous lemma the definitions make sense (both filter dimensions do not depend
on the choice of the standard filtration F for the algebra A).

By Lemma 2.1, lfd(A)� fd(A).

QUESTION. What is the filter dimension of a polynomial algebra?

3. The first filter inequality

In this chapter, d(A) means either the filter dimension fd(A) or the left filter dimen-
sion lfd(A) of a simple finitely generated algebraA (i.e. d= fd, lfd). Both filter dimensions
appear naturally when one tries to find a lower bound for the holonomic number (Theo-
rem 3.1) and an upper bound (Theorem 4.2) for the (left and right) Krull dimension (in the
sense of Rentschler and Gabriel, [22]) of simple finitely generated algebras.

The next theorem is a generalization of the Bernstein’s inequality (Theorem 1.1) to the
class of simple finitely generated algebras.

THEOREM 3.1 (The first filter inequality, [4,6]). Let A be a simple finitely generated al-
gebra. Then

GK(M)� GK(A)

d(A)+max{d(A),1}
for all non-zero finitely generated A-modules M where d= fd, lfd.
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PROOF. Let λ = λF be the left return function associated with a standard filtration F of
the algebra A and let 0 �= a ∈ Ai . It suffices to prove the inequality for λ (since fd(A) �
lfd(A)). It follows from the inclusion

AaMλ(i) =AaAλ(i)M0 ⊇ 1M0 =M0

that the linear map

Ai→Hom(Mλ(i),Mλ(i)+i ), a �→ (m �→ am),

is injective, so dimAi � dimMλ(i) dimMλ(i)+i . Using the above elementary properties of
the degree (see also [19, 8.1.7]), we have

GK(A) = γ (dimAi)� γ (dimMλ(i))+ γ (dimMλ(i)+i )

� γ (dimMi)γ (λ)+ γ (dimMi)max
{
γ (λ),1

}
= GK(M)

(
lfdA+max{lfdA,1})

� GK(M)
(
lfdA+max{lfdA,1}). �

The result above gives a lower bound for the holonomic number of a simple finitely
generated algebra

hA � GK(A)

d(A)+max{d(A),1} .

THEOREM 3.2. Let A be a finitely generated algebra. Then

GK(M)� GK(A) fd(M)

for any simple A-module M .

PROOF. Let ν = νF,Km be the return function of the module M associated with a stan-
dard finite-dimensional filtration F = {Ai} of the algebra A and a fixed non-zero element
m ∈M . Let π :M→K be a non-zero linear map satisfying π(m)= 1. Then, for any i � 0
and any 0 �= u ∈Mi : 1= π(m) ∈ π(Aν(i)u), and so the linear map

Mi→Hom(Aν(i),K), u �→ (a �→ π(au)
)
,

is an injective map hence dimMi � dimAν(i) and finally GK(M)� GK(A) fd(M). �

COROLLARY 3.3. Let A be a simple finitely generated infinite-dimensional algebra. Then

fd(A)� 1

2
.
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PROOF. The algebra A is a finitely generated infinite-dimensional algebra hence
GK(A) > 0. Clearly, GK(A⊗A0)� GK(A)+GK(A0)= 2GK(A). Applying Theorem 3.2
to the simple A⊗A0-module M =A we finish the proof:

GK(A)=GK(A⊗A0A)� GK
(
A⊗A0) fd(A⊗A0A)� 2GK(A) fd(A)

hence fd(A)� 1
2 . �

QUESTION. Is fd(A)� 1 for all simple finitely generated infinite-dimensional algebrasA?

QUESTION. For which numbers d � 1
2 there exists a simple finitely generated infinite-

dimensional algebra A with fd(A)= d?

COROLLARY 3.4. Let A be a simple finitely generated infinite-dimensional algebra. Then

fd(M)� 1

fd(A)+max{fd(A),1}
for all simple A-modules M .

PROOF. Applying Theorem 3.1 and Theorem 3.2, we have the result

fd(M)� GK(M)

GK(A)
� GK(A)

GK(A)(fd(A)+max{fd(A),1})
= 1

fd(A)+max{fd(A),1} . �

4. Krull, Gelfand–Kirillov and filter dimensions of simple finitely generated algebras

In this section, we prove the second filter inequality (Theorem 4.2) and apply both filter
inequalities for giving short proofs of some classical results about the rings of differential
operators on a smooth irreducible affine algebraic varieties (Theorems 1.1, 4.4, 4.5, 4.7).

We say that an algebra A is (left) finitely partitive, [19, 8.3.17], if, given any finitely
generated A-module M , there is an integer n= n(M) > 0 such that for every strictly de-
scending chain of A-submodules of M :

M =M0 ⊃M1 ⊃ · · · ⊃Mm

with GK(Mi/Mi+1)=GK(M), one hasm� n. McConnell and Robson write in their book
[19, 8.3.17], that “yet no examples are known which fail to have this property.”

Recall that K.dim denotes the (left) Krull dimension in the sense of Rentschler and
Gabriel, [22].
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LEMMA 4.1. Let A be a finitely partitive algebra with GK(A) <∞. Let a ∈N, b� 0 and
suppose that GK(M)� a+ b for all finitely generated A-modulesM with K.dim(M)= a,
and that GK(N) ∈ N for all finitely generated A-modules N with K.dim(N) � a. Then
GK(M)� K.dim(M)+ b for all finitely generated A-modules M with K.dim(M)� a. In
particular, GK(A)� K.dim(A)+ b.

REMARK. It is assumed that a module M with K.dim(M)= a exists.

PROOF. We use induction on n = K.dim(M). The base of induction, n = a, is true.
Let n > a. There exists a descending chain of submodules M = M1 ⊃ M2 ⊃ · · · with
K.dim(Mi/Mi+1)= n− 1 for i � 1. By induction, GK(Mi/Mi+1)� n− 1+ b for i � 1.
The algebra A is finitely partitive, so there exists i such that GK(M) > GK(Mi/Mi+1),
so GK(M) − 1 � GK(Mi/Mi+1) � n − 1 + b, since GK(M) ∈ N, hence GK(M) �
K.dim(M)+ b. Since K.dim(A)� K.dim(M) for all finitely generated A-modules M we
have GK(A)� K.dim(A)+ b. �

THEOREM 4.2 [5]. Let A be a simple finitely generated finitely partitive algebra with
GK(A) <∞. Suppose that the Gelfand–Kirillov dimension of every finitely generated A-
module is a natural number. Then

K.dim(M)� GK(M)− GK(A)

d(A)+max{d(A),1}
for any non-zero finitely generated A-module M . In particular,

K.dim(A)� GK(A)

(
1− 1

d(A)+max{d(A),1}
)
.

PROOF. Applying the lemma above to the family of finitely generated A-modules of Krull
dimension 0, by Theorem 3.1, we can put a = 0 and

b= GK(A)

d(A)+max{d(A),1} ,

and the result follows. �

Let K be a field of characteristic zero and B be a commutative K-algebra. The ring
of (K-linear) differential operators D(B) on B is defined as D(B) =⋃∞i=0 Di (B) where
D0(B)= EndR(B)� B ((x �→ bx)↔ b),

Di (B)=
{
u ∈ EndK(B): [u, r] ∈Di−1(B) for each r ∈ B}.

Note that the {Di (B)} is, so-called, the order filtration for the algebra D(B):

D0(B)⊆D1(B)⊆ · · · ⊆Di (B)⊆ · · · and Di (B)Dj (B)⊆Di+j (B),
i, j � 0.
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The subalgebra Δ(B) of EndK(B) generated by B ≡ EndR(B) and by the set DerK(B)
of all K-derivations of B is called the derivation ring of B . The derivation ring Δ(B) is a
subring of D(B).

Let the finitely generated algebra B be a regular commutative domain of Krull dimension
n <∞. In geometric terms, B is the coordinate ring O(X) of a smooth irreducible affine
algebraic variety X of dimension n. Then
• DerK(B) is a finitely generated projective B-module of rank n;
• D(B)=Δ(B);
• D(B) is a simple (left and right) Noetherian domain with GKD(B) = 2n (n =

GK(B)=K.dim(B));
• D(B)=Δ(B) is an almost centralizing extension of B;
• the associated graded ring grD(B)=⊕Di (B)/Di−1(B) is a commutative domain;
• the Gelfand–Kirillov dimension of every finitely generated D(B)-module is a natural

number.
For the proofs of the statements above the reader is referred to [19, chapter 15]. So, the

domain D(B) is a simple finitely generated infinite-dimensional Noetherian algebra, [19,
chapter 15].

EXAMPLE. Let Pn =K[X1, . . . ,Xn] be a polynomial algebra. DerK(Pn)=⊕n
i=1Pn

∂
∂Xi

,

D(Pn)=Δ(Pn)=K
[
X1, . . . ,Xn,

∂

∂X1
, . . . ,

∂

∂Xn

]
is the ring of differential operators with polynomial coefficients, i.e. the n-th Weyl alge-
bra An.

In Section 5, we prove the following result.

THEOREM 4.3 [5]. The filter dimension and the left filter dimension of the ring of differ-
ential operators D(B) are both equal to 1.

As an application we compute the Krull dimension of D(B).

THEOREM 4.4 [19, Chapter 15].

K.dimD(B)= GK(D(B))
2

=K.dim(B).

PROOF. The second equality is clear: (GK(D(B)) = 2GK(B) = 2K.dim(B)). It follows
from Theorems 4.2 and 4.3 that

K.dimD(B)� GK(D(B))
2

=K.dim(B).

The map I → D(B)I from the set of left ideals of B to the set of left ideals of D(B) is
injective, thus K.dim(B)� K.dimD(B). �
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This result shows that for the ring of differential operators on a smooth irreducible affine
algebraic variety the inequality in Theorem 4.2 is an equality.

THEOREM 4.5 [19, 15.4.3]. Let M be a non-zero finitely generated D(B)-module. Then

GK(M)� GK(D(B))
2

=K.dim(B).

PROOF. By Theorems 3.1 and 4.3,

GK(M)� GK(D(B))
1+ 1

= 2GK(B)

2
=GK(B)=K.dim(B). �

So, for the ring of differential operators on a smooth affine algebraic variety the inequal-
ity in Theorem 3.1 is in fact an equality.

In general, it is difficult to find the exact value for the filter dimension but for the Weyl
algebra An it is easy and one can find it directly.

THEOREM 4.6. Both the filter dimension and the left filter dimension of the Weyl algebra
An over a field of characteristic zero are equal to 1.

PROOF. Denote by a1, . . . , a2n the canonical generators of the Weyl algebraAn and denote
by F = {An,i}i�0 the standard filtration associated with the canonical generators. The as-
sociated graded algebra grAn :=⊕i�0 An,i/An,i−1 (An,−1 = 0) is a polynomial algebra
in 2n variables, so

GK(An)=GK(grAn)= 2n.

For every i � 0:

adaj :An,i→An,i−1, x �→ adaj (x) := ajx − xaj .

The algebra An is central (Z(An)=K), so

adaj (x)= 0 for all j = 1, . . . ,2n ⇔ x ∈Z(An)=K =An,0.

These two facts imply νF (i)� i for i � 0, and so d(An)� 1.
The An-module Pn :=K[X1, . . . ,Xn] �An/(An∂1+· · ·+An∂n) has Gelfand–Kirillov

dimension n. By Theorem 3.1 applied to the An-module Pn, we have

2n=GK(An)� n
(
d(A)+max

{
d(A),1

})
,

hence d(An)� 1, and so d(An)= 1. �

PROOF OF THE BERNSTEIN’S INEQUALITY (THEOREM 1.1). Since GK(An) = 2n and
d(An)= 1, Theorem 3.1 gives GK(M)� 2n

2 = n. �
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One also gets a short proof of the following result of Rentschler and Gabriel.

THEOREM 4.7 [22]. If charK = 0 then the Krull dimension of the Weyl algebra An is

K.dim(An)= n.

PROOF. Putting GK(An)= 2n and d(An)= 1 into the second formula of Theorem 4.2 we
have K.dim(An)� 2n

2 = n. The polynomial algebra Pn =K[X1, . . . ,Xn] is the subalgebra
of An such that An is a free right Pn-module. The map I �→AnI from the set of left ideals
of the polynomial algebra Pn to the set of left ideals of the Weyl algebra An is injective,
thus n=K.dim(Pn)� K.dim(An), and so K.dim(An)= n. �

5. Filter dimension of the ring of differential operators on a smooth irreducible
affine algebraic variety (proof of Theorem 4.3)

Let K be a field of characteristic 0 and let the algebra B be as in the previous section,
i.e. B is a finitely generated regular commutative algebra which is a domain. We keep
the notations of the previous section. Recall that the derivation ring Δ =Δ(B) coincides
with the ring of differential operators D(B), [19, 15.5.6], and is a simple finitely generated
finitely partitive K-algebra, [19, 15.3.8, 15.1.21]. We refer the reader to [19, Chapter 15]
for basic definitions. We aim to prove Theorem 4.3.

Let {Bi} and {Δi} be standard finite-dimensional filtrations onB andΔ respectively such
that Bi ⊆ Δi for all i � 0. Then the enveloping algebra Δe := Δ⊗Δ0 can be equipped
with the standard finite-dimensional filtration {Δei } which is the tensor product of the fil-
trations {Δi} and {Δ0

i } of the algebras Δ and Δ0 respectively.
Then B �Δ/ΔDerK B is a simple left Δ-module [19, 15.3.8] with GK(Δ)= 2GK(B),

[19, 15.3.2]. By Theorem 3.1,

d(Δ)+max
{
d(Δ),1

}
� GK(Δ)

GK(B)
= 2GK(B)

GK(B)
= 2,

hence d(Δ)� 1. It remains to prove the opposite inequality. For this, we recall some prop-
erties of Δ (see [19, Chapter 15], for details).

Given 0 �= c ∈ B , denote by Bc the localization of the algebra B at the powers of the
element c, then Δ(Bc)�Δ(B)c and the map Δ(B)→Δ(B)c , d→ d/1, is injective, [19,
5.1.25]. There is a finite subset {c1, . . . , ct } of B such that the algebra

∏t
i=1 Δ(Bci ) is left

and right faithfully flat over its subalgebra Δ,

t∑
i=1

Bci = B (see the proof of 15.2.13, [19]). (2)
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For each c = ci , DerK(Bc) is a free Bc-module with a basis ∂j = ∂
∂xj

, j = 1, . . . , n, for
some x1, . . . , xn ∈ B , [19, 15.2.13]. Note that the choice of the xj -th depends on the choice
of the ci . Then

Δ(B)c �Δ(Bc)= Bc〈∂1, . . . , ∂n〉 ⊇K〈x1, . . . , xn, ∂1, . . . , ∂n〉.
Fix c= ci . We aim to prove the following statement:
• there exist natural numbers a, b, α, and β , such that for any 0 �= d ∈Δk there exists

w ∈Δeak+b: wd = cαk+β. (∗)
Suppose that we are done. Then one can choose the numbers a, b, α, and β such that (∗)
holds for all i = 1, . . . , t . It follows from (2) that

t∑
i=1

fici = 1 for some fi ∈A.

Choose ν ∈N: all fici ∈Δν , and set N(k)= αk+ β , then

1=
(

t∑
i=1

fici

)tN(k)
=

t∑
i=1

gic
N(k)
i =

t∑
i=1

giwid =wd,

where the wi are from (∗), i.e. wi ∈ Δeak+b , wid = cN(k)i . So, w = ∑t
i=1 giwi ∈

Δe
νtN(k)+ak+b and so d(Δ)� 1, as required.
Fix c= ci . By [19, 15.1.24], DerK(Bc)�DerK(B)c and DerK B can be seen as a finitely

generated B-submodule of DerK(Bc), [19, 15.1.7].
The algebra B contains the polynomial subalgebra P =K[x1, . . . , xn]. The polynomial

algebra P has the natural filtration P =⋃i�0Pi by the total degree of the variables. Fix
a natural number l such that P1 ⊆ Bl , then Pi ⊆ Bli for all i � 0. We denote by Q =
K(x1, . . . , xn) the field of fractions of P . The field of fractions, say L, of the algebra B
has the same transcendence degree n as the field of rational functions Q. The algebra B is
a finitely generated algebra, hence L is a finite field extension of Q of dimension, say m,
overQ. Let e1, . . . , em ∈ B be aQ-basis for the vector space L overQ. Note that L=QB .
One can find a natural number β � 1 and a non-zero polynomial p ∈ Pβ such that

{B1, ej ek | j, k = 1, . . . ,m} ⊆
m∑
α=1

p−1Pβeα.

Then Bk ⊆ ∑m
j=1 p

−2kP2βkej and Bkei ⊆ ∑m
j=1 p

−3kP3βkej for all k � 1 and i =
1, . . . ,m. Let 0 �= d ∈ Bk . The m × m matrix of the bijective Q-linear map L→ L,
x �→ dx, with respect to the basis e1, . . . , em has entries from the set p−3kP3βk . So, its
characteristic polynomial

χd(t)= tm + αm−1t
m−1 + · · · + α0
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has coefficients in p−3mkP3mβk , and α0 �= 0 as x �→ dx is a bijection. Now,

P6mβk ) p3mkα0 = p3mk(−dm−1 − αm−1d
m−2 − · · · − α1

)
d

∈ B4mβkP3mβkd ⊆ Bmβk(4+3l)d. (3)

Let δ1, . . . , δt be a set of generators for the left B-module DerK(B). Then

∂i ∈
t∑
j=1

c−l′1Bl1δj for i = 1, . . . , n,

for some natural numbers l′1 � l1. Fix a natural number l2 such that δj (B1) ⊆ Bl2 and
δj (c) ∈ Bl2 for j = 1, . . . , t . Then

∂α(Bk)⊆ c−2|α|(l′1+1)Bk+3|α|(l1+l2) for all α ∈Nn, k � 1,

where α = (α1, . . . , αn), |α| = α1+ · · · + αn, ∂α = ∂α1
1 · · · ∂αnn . It follows from (3) that one

can find α ∈Nn such that |α|� 6mβk and

1 ∈K∗∂α(p3mkα0
) ⊆ ∂α(Bmβk(4+3l)d)

⊆ c−pkΔeqk+rd,

where p,q, r ∈N and K∗ =K\{0}. Now (∗) follows.
In fact we have proved the following corollary.

COROLLARY 5.1. There exist natural numbers a and b such that for any 0 �= d ∈Δk there
exists an element w ∈Δeak+b satisfying wd = 1.

6. Multiplicity for the filter dimension, holonomic modules over simple finitely
generated algebras

In this section, we introduce a concept of multiplicity for the filter dimension and a concept
of holonomic module for (some) finitely generated algebras. We will prove that a holo-
nomic module has finite length (Theorem 6.8). The multiplicity for the filter dimension is
a key ingredient in the proof.

First we recall the definition of multiplicity in the commutative situation and then for
certain non-commutative algebras (somewhat commutative algebras).

6.1. Multiplicity in the commutative situation

Let B be a commutative finitely generated K-algebra with a standard finite-dimensional
filtration F = {Bi}, and let M be a finitely generated B-module with a finite-dimensional
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generating subspace, say M0, and with the standard filtration {Mi = BiM0} attached to it.
Then there exists a polynomial p(t)= ltd + · · · ∈Q[t] with rational coefficients of degree
d =GK(M) such that

dimK(Mi)= p(i) for all i& 0.

The polynomial p(t) is called the Hilbert polynomial of the B-module M . The Hilbert
polynomial does depend on the filtration {Mi} of the moduleM but its leading coefficient l
does not. The number e(M) = d!l is called the multiplicity of the B-module M . It is a
natural number which does depend on the filtration F of the algebra B .

In the case when M = B is the homogeneous coordinate ring of a projective algebraic
variety X ⊆ Pm equipped with the natural filtration that comes from the grading of the
graded algebra B , the multiplicity is the degree of X, the number of points in which X
meets a generic plane of complementary degree in Pm (K is an algebraically closed field).

6.2. Somewhat commutative algebras

A K-algebra R is called a somewhat commutative algebra if it has a finite-dimensional
filtration R =⋃i�0Ri such that the associated graded algebra grR :=⊕i�0Ri/Ri−1 is
a commutative finitely generated K-algebra where R−1 = 0 and R0 = K . Then the al-
gebra R is a Noetherian finitely generated algebra since grR is so. A finitely generated
module over a somewhat commutative algebra has a Gelfand–Kirillov dimension which is
a natural number. We refer the reader to the books [16,19] for the properties of somewhat
commutative algebras.

DEFINITION. For a somewhat commutative algebra R we define the holonomic number,

hR :=min
{
GK(M) |M �= 0 is a finitely generated R-module

}
.

DEFINITION. A finitely generatedR-moduleM is called a holonomic module if GK(M)=
hR . In other words, a non-zero finitely generated R-module is holonomic iff it has
least Gelfand–Kirillov dimension. If hR = 0 then every holonomic R-module is finite-
dimensional and vice versa.

EXAMPLES. (1) The holonomic number of the Weyl algebra An is n. The polynomial
algebra K[X1, . . . ,Xn] �An/∑n

i=1An∂i with the natural action of the ring of differential
operators An =K[X1, . . . ,Xn,

∂
∂X1
, . . . , ∂

∂Xn
] is a simple holonomic An-module.

(2) Let X be a smooth irreducible affine algebraic variety of dimension n. The ring
of differential operators D(X) is a simple somewhat commutative algebra of Gelfand–
Kirillov dimension 2n with holonomic number hD(X) = n. The algebra O(X) of regular
functions of the variety X is a simple D(X)-module with respect to the natural action of
the algebra D(X). In more detail, O(X)�D(X)/D(X)DerK(O(X)) where DerK(O(X))
is the O(X)-module of derivations of the algebra O(X).
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Let R =⋃i�0Ri be a somewhat commutative algebra. The associated graded algebra
grR is a commutative affine algebra. Let us choose homogeneous algebra generators of
the algebra grR, say y1, . . . , ys , of graded degrees 1 � k1, . . . , ks respectively (that is yi ∈
Rki /Rki−1). A filtration Γ = {Γi, i � 0} of an R-module M =⋃∞i=0 Γi is called good if
the associated graded grR-module grΓ M :=

⊕
i�0 Γi/Γi−1 is finitely generated. An R-

moduleM has a good filtration iff it is finitely generated, and if {Γi} and {Ωi} are two good
filtrations of M , then there exists a natural number t such that Γi ⊆Ωi+t and Ωi ⊆ Γi+t
for all i. If an R-moduleM is finitely generated and M0 is a finite-dimensional generating
subspace of M , then the standard filtration {Γi = RiM0} is good (see [9–11,16,19,20] for
details). The following two lemmas are well-known by specialists (see their proofs, for
example, in [3, Theorem 3.2 and Proposition 3.3] respectively).

LEMMA 6.1. LetR =⋃i�0 Ri be a somewhat commutative algebra, k = lcm(k1, . . . , ks),
and let M be a finitely generated R-module with good filtration Γ = {Γi}.

(1) There exist k polynomials γ0, . . . , γk−1 ∈ Q[t] with coefficients from
[kGK(M)GK(M)!]−1Z such that

dimΓi = γj (i) for all i& 0 and j ≡ i (mod k).

(2) The polynomials γj have the same degree GK(M) and the same leading coefficient
e(M)/GK(M)! where e(M) is called the multiplicity of M . The multiplicity e(M)
does not depend on the choice of the good filtration Γ .

REMARK. A finitely generated R-module M has e(M)= 0 iff dimK(M) <∞.

LEMMA 6.2. Let 0→N→M→ L→ 0 be an exact sequence of modules over a some-
what commutative algebra R. Then GK(M) = max{GK(N),GK(L)}, and if GK(N) =
GK(M)=GK(L) then e(M)= e(N)+ e(L).

COROLLARY 6.3. Let the algebra R be as in lemma 6.1 with holonomic number h > 0.
(1) LetM be a holonomic R-module with multiplicity e(M). The R-moduleM has finite

length � e(M)kh.
(2) Every non-zero submodule or factor module of a holonomic R-module is a holo-

nomic module.

PROOF. This follows directly from Lemma 6.2. �

6.3. Multiplicity

Let f be a function from N to R+ = {r ∈ R: r � 0}, the leading coefficient of f is a
non-zero limit (if it exists)

lc(f )= lim
f (i)

id
�= 0, i→∞,
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where d = γ (f ). If d ∈N, we define the multiplicity e(f ) of f by

e(f )= d! lc(f ).

The factor d! ensures that the multiplicity e(f ) is a positive integer in some important
cases. If f (t)= adtd + ad−1t

d−1 + · · · + a0 is a polynomial of degree d with real coeffi-
cients then lc(f )= ad and e(f )= d!ad .

LEMMA 6.4. Let A be a finitely generated algebra equipped with a standard finite-
dimensional filtration F = {Ai} and M be a finitely generated A-module with generating
finite-dimensional subspaces M0 and N0.

(1) If lc(νF,M0) exists then so does lc(νF,N0), and lc(νF,M0)= lc(νF,N0).
(2) If lc(dimAiM0) exists then so does lc(dimAiN0), and lc(dimAiM0) =

lc(dimAiN0).

PROOF. (1) The module M has two filtrations {Mi = AiM0} and {Ni = AiN0}. Let ν =
νF,M0 andμ= νF,N0 . Choose a natural number s such thatM0 ⊆Ns andN0 ⊆Ms , soNi ⊆
Mi+s and Mi ⊆Ni+s for i � 0. Since M0 ⊆Aν(i+s)Ni,gen for each i and N0 ⊆AsM0, we
have N0 ⊆Aν(i+s)+sNi,gen, hence, μ(i)� ν(i+ s)+ s. By symmetry, ν(i)� μ(i+ s)+ s,
so if lc(μ) exists then so does lc(ν) and lc(μ)= lc(ν).

(2) Since dimNi � dimMi+s and dimMi � dimNi+s for i � 0, the statement is clear. �

Lemma 6.4 shows that the leading coefficients of the functions dimAiM0 and νF,M0 (if
they exist) do not depend on the choice of the generating subspaceM0. So, denote them by

l(M)= lF (M) and L(M)= LF (M)

respectively (if they exist). If GK(M) (resp. d(A)) is a natural number, then we denote
by e(M) = eF (M) (resp. E(M) = EF (M)) the multiplicity of the function dimAiM0
(resp. νF,M0 ).

We denote by L(A)= LF (A) the leading coefficient LF (A⊗A0A) of the return function
νF⊗F 0,K of the A⊗A0-module A.

6.4. Holonomic modules

DEFINITION. Let A be a finitely generated K-algebra, and hA be its holonomic number.
A non-zero finitely generated A-module M is called a holonomic A-module if GK(M)=
hA. We denote by hol(A) the set of all the holonomic A-modules.

Since the holonomic number is an infimum it is not clear at the outset that there will
be modules which achieve this dimension. Clearly, hol(A) �= ∅ if the Gelfand–Kirillov
dimension of every finitely generated A-module is a natural number.

A non-zero submodule or a factor module of a holonomic is a holonomic module (since
the Gelfand–Kirillov dimension of a submodule or a factor module does not exceed the
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Gelfand–Kirillov of the module). If, in addition, the finitely generated algebra A is left
Noetherian and finitely partitive then each holonomic A-module M has finite length and
each simple sub-factor of M is a holonomic module.

Let us consider algebras A having the following properties:
• (S) A is a simple finitely generated infinite-dimensional algebra.
• (N) There exists a standard finite-dimensional filtration F = {Ai} of the algebra A such

that the associated graded algebra grA :=⊕i�0Ai/Ai−1, A−1 = 0, is left Noetherian.
• (D) GK(A) <∞, fd(A) <∞, both l(A)= lF (A) and L(A)= LF (A) exist.
• (H) For every holonomic A-module M there exists l(M)= lF (M).

In many cases we use a weaker form of the condition (D).
• (D′) GK(A) <∞, d = fd(A) <∞, there exist l(A) = lF (A) and a positive number
c > 0 such that ν(i)� cid for i& 0 where ν is the return function νF⊗F 0,K of the left
A⊗A0-module A.
It follows from (N) that A is a left Noetherian algebra.

LEMMA 6.5 [4].
(1) The Weyl algebra An over a field of characteristic zero with the standard finite-

dimensional filtration F = {An,i} associated with the canonical generators satisfies
the conditions (S), (N), (D), (H). The return function νF (i)= i for i � 0, and so the
leading coefficient of νF is LF (An)= 1.

(2) νG,K(i)= i for i � 0 and LG(Pn)= 1 where νG,K is the return function of the An-
module Pn = K[X1, . . . ,Xn] = An/(An∂1 + · · · + An∂n) with the usual filtration
G= {Pn,i} of the polynomial algebra.

PROOF. (1) The only fact that we need to prove is that νF (i) = i for i � 0. We keep the
notation of Theorem 4.6. In the proof of Theorem 4.6 we have seen that νF (i)� i for i � 0.
It remains to prove the reverse inequality.

Each element u in An can be written in a unique way as a finite sum u=∑λαβXα∂β
where λαβ ∈ K and Xα denotes the monomial Xα1

1 · · ·Xαnn and similarly ∂β denotes the

monomial ∂β1
1 · · · ∂βnn . The element u belongs to An,m iff |α| + |β|�m, where |α| = α1 +

· · · + αn. If α ∈K[X1, . . . ,Xn], then

∂mi α =
m∑
j=0

(
m

j

)
∂jα

∂X
j
i

∂
m−j
i , m ∈N.

It follows that for any v ∈∑An,i ⊗ A0
n,j , i + j < m, the element vXm1 =

∑
λαβX

α∂β

has the coefficient λ0,0 = 0, hence it could not be a non-zero scalar, and so ν(i)� i for all
i � 0. Hence ν(i)= i all i � 0 and then LF (An)= 1.

(2) The standard filtration of the An-module Pn associated with the generating sub-
space K coincides with the usual filtration of the polynomial algebra Pn. Since ∂j (Pn,i)⊆
Pn,i−1 for all i � 0 and j , νG,K(i) � i for i � 0. Using the same arguments as above we
see that for any u ∈∑i−1

j=0An,j ⊗ A0
n,i−j−1 the element uXi1 belongs to the ideal of Pn

generated by X1, hence, νG,K(i)� i, and so νG,K(i)= i for all i � 0 and LG(Pn)= 1. �
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THEOREM 6.6 [4]. Assume that an algebra A satisfies the conditions (S), (H), (D),
resp. (D′), for some standard finite-dimensional filtration F = {Ai} of A. Then for every
holonomic A-module M its leading coefficient is bounded from below by a non-zero con-
stant:

l(M)�
√

l(A)

(L(A)L′(A))hA
,

where

L′(A)=
{
L(A), if d(A) > 1,
L(A)+ 1, if d(A)= 1,
1, if d(A) < 1,

resp.

l(M)�
√

l(A)

(c(c+ 1))hA
.

PROOF. Let M0 be a generating finite-dimensional subspace of M and {Mi = AiM0} be
the standard finite-dimensional filtration of M . In the proof of Theorem 3.1 we proved
that dimAi � dimMλ(i) dimMλ(i)+i for i � 0 where λ is the left return function of the
algebra A associated with the filtration F . Since λ(i) � ν(i) for i � 0 we have dimAi �
dimMν(i) dimMν(i)+i , hence, if (D) holds then

l(A)iGK(A) + · · ·� l2(M)(L(A)L′(A))GK(M)
iGK(M)(fd(A)+max{fd(A),1}) + · · · ,

where three dots denote smaller terms.
If (D′) holds then

l(A)iGK(A) + · · ·� l2(M)(c(c+ 1)
)GK(M)

iGK(M)(fd(A)+max{fd(A),1}) + · · · .

The moduleM is holonomic, i.e. GK(A)=GK(M)(fd(A)+max{fd(A),1}). Now, com-
paring the “leading” coefficients in the inequalities above we finish the proof. �

Let A be as in Theorem 6.6. We attach to the algebra A two positive numbers cA and c′A
in the cases (D) and (D′) respectively:

cA =
√

l(A)

(L(A)L′(A))hA
and
(
c′A
)=√ l(A)

(c(c+ 1))hA
.

COROLLARY 6.7. Assume that an algebra A satisfies the conditions (S), (N), (H), (D)
or (D′). Let 0→ N →M→ L→ 0 be an exact sequence of non-zero finitely generated
A-modules. Then M is holonomic if and only if N and L are holonomic, in that case
l(M)= l(N)+ l(L).
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PROOF. The algebra A is left Noetherian, so the moduleM is finitely generated iff both N
and L are so. The proof of Proposition 3.11, [19, p. 295], shows that we can choose finite-
dimensional generating subspaces N0, M0, L0 of the modules N , M , L respectively such
that the sequences

0→Ni =AiN0→Mi =AiM0→ Li =AiL0→ 0

are exact for all i, hence, dimMi = dimNi + dimLi and the results follow. �

THEOREM 6.8 [4]. Suppose that the conditions (S), (N), (H), (D) (resp. (D′)) hold.
Then each holonomic A-module M has finite length which is less or equal to l(M)/cA
(resp. l(M)/c′A).

PROOF. If M =M1 ⊃M2 ⊃ · · · ⊃Mm ⊃Mm+1 = 0 is a chain of distinct submodules,
then by corollary 6.7 and theorem 6.6

l(M)=
∑m

i=1
l(Mi/Mi+1)�mcA (resp. l(M)�mc′A),

thus m� l(M)/cA (resp. m� l(M)/c′A). �

7. Filter dimension and commutative subalgebras of simple finitely generated
algebras and their division algebras

In this section, using the first and the second filter inequalities, we obtain (i) an upper
bound for the Gelfand–Kirillov dimension of commutative subalgebras of simple finitely
generated infinite-dimensional algebras (Theorem 7.2), and (ii) an upper bound for the
transcendence degree of subfields of quotient division rings of (certain) simple finitely
generated infinite-dimensional algebras (Theorems 7.4 and 7.5).

For certain classes of algebras and their division algebras the maximum Gelfand–
Kirillov dimension/transcendence degree over the commutative subalgebras/subfields were
found in [1,12,17,13–15,2], and [23].

Recall that

the Gelfand–Kirillov dimension GK(C) = the Krull dimension K.dim(C)

= the transcendence degree tr.degK(C)

for every commutative finitely generated algebra C which is a domain.

7.1. An upper bound for the Gelfand–Kirillov dimensions of commutative subalgebras of
simple finitely generated algebras

PROPOSITION 7.1. Let A and C be finitely generated algebras such that C is a commuta-
tive domain with field of fractionsQ, B := C⊗A, and B :=Q⊗A. LetM be a finitely gen-
erated B-module such that M := B⊗B M �= 0. Then GK(BM)� GKQ(BM)+GK(C).
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REMARK. GKQ stands for the Gelfand–Kirillov dimension over the field Q.

PROOF. Let us fix standard filtrations {Ai} and {Ci} for the algebras A and C respectively.
Let h(t) ∈ Q[t] be the Hilbert polynomial for the algebra C, i.e. dimK(Ci) = h(i) for
i& 0. Recall that GK(C)= degt (h(t)). The algebra B has a standard filtration {Bi} which
is the tensor product of the standard filtrations {Ci} and {Ai} of the algebras C and A,
i.e. Bi :=∑i

j=0Cj ⊗ Ai−j . By the assumption, the B-module M is finitely generated,
so M = BM0 where M0 is a finite-dimensional generating subspace for M . Then the B-
moduleM has a standard filtration {Mi := BiM0}. TheQ-algebra B has a standard (finite-
dimensional overQ) filtration {Bi :=Q⊗Ai}, and the B-module M has a standard (finite-
dimensional over Q) filtration {Mi := BiM ′0 = QAiM ′0} where M ′0 is the image of the
vector space M0 under the B-module homomorphism M→M, m �→m′ := 1⊗B m.

For each i � 0, one can fix a K-subspace, say Li , of AiM ′0 such that dimQ(QAiM ′0)=
dimK(Li). Now, B2i ⊇ Ci ⊗ Ai implies dimK(B2iM0) � dimK((Ci ⊗ Ai)M0), and
((Ci ⊗Ai)M0)

′ ⊇ CiLi implies dimK(((Ci ⊗ Ai)M0)
′) � dimK(CiLi) =

dimK(Ci)dimK(Li)= dimK(Ci)dimQ(Mi ). It follows that

GK(BM) = γ
(
dimK(Mi)

)
� γ
(
dimK(M2i )

)= γ (dimK(B2iM0)
)

� γ
(
dimK
(
(Ci ⊗Ai)M0

))
� γ
(
dimK
((
(Ci ⊗Ai)M0

)′))� γ (dimK(Ci)dimQ(Mi )
)

= γ (dimK(Ci)
)+ γ (dimQ(Mi )

)
(since γ

(
dimK(Ci)

)= h(i), for i& 0)

= GK(C)+GKQ(BM). �

Recall that d= fd, lfd. A K-algebra A is called central if its centre Z(A)=K .

THEOREM 7.2 [7]. Let A be a central simple finitely generated K-algebra of Gelfand–
Kirillov dimension 0< n<∞ (over K). Let C be a commutative subalgebra of A. Then

GK(C)� GK(A)

(
1− 1

fA +max{fA,1}
)
,

where fA :=max{dQm(Qm ⊗A) | 0 �m� n}, Q0 :=K , and Qm :=K(x1, . . . , xm) is a
rational function field in indeterminates x1, . . . , xm.

PROOF. Let Pm = K[x1, . . . , xm] be a polynomial algebra over the field K . Then Qm
is its field of fractions and GK(Pm) = m. Suppose that Pm is a subalgebra of A. Then
m = GK(Pm) � GK(A) = n. For each m � 0, Qm ⊗ A is a central simple Qm-algebra,
[19, 9.6.9], of Gelfand–Kirillov dimension (over Qm) GKQm(Qm ⊗ A) = GK(A) > 0,
hence

GK(A) = GK(AAA)� GK(AAPm)=GK(Pm⊗AA) (Pm is commutative)
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� GKQm
(
Qm⊗A(Qm ⊗Pm A)

)+GK(Pm) (Lemma 7.1)

� GK(A)

dQm(Qm ⊗A)+max{dQm(Qm ⊗A),1}
+m (Theorem 3.1).

Hence,

m� GK(A)

(
1− 1

dQm(Qm ⊗A)+max{dQm(Qm ⊗A),1}
)

� GK(A),

and so

GK(C)� GK(A)

(
1− 1

fA +max{fA,1}
)
. �

As a consequence we have a short proof of the following well-known result.

COROLLARY 7.3. Let K be an algebraically closed field of characteristic zero, X be a
smooth irreducible affine algebraic variety of dimension n := dim(X) > 0, and C be a
commutative subalgebra of the ring of differential operators D(X). Then GK(C)� n.

PROOF. The algebra D(X) is central since K is an algebraically closed field of character-
istic zero [19, chapter 15]. By Theorem 4.3, fD(X) = 1, and then, by Theorem 7.2,

GK(C)� 2n

(
1− 1

1+ 1

)
= n. �

REMARK. For the ring of differential operators D(X) the upper bound in Theorem 7.2
for the Gelfand–Kirillov dimension of commutative subalgebras of D(X) is an exact up-
per bound since as we mentioned above the algebra O(X) of regular functions on X is a
commutative subalgebra of D(X) of Gelfand–Kirillov dimension n.

7.2. An upper bound for the transcendence degree of subfields of quotient division
algebras of simple finitely generated algebras

Recall that the transcendence degree tr.degK(L) of a field extension L of a field K coin-
cides with the Gelfand–Kirillov dimension GKK(L), and, by the Goldie’s theorem, a left
Noetherian semiprime algebra A has a quotient algebra D =DA (i.e. D = S−1A where S
is the set of regular elements = the set of non-zerodivisors of A). As a rule, the quotient
algebra D has infinite Gelfand–Kirillov dimension and is not a finitely generated algebra
(e.g., the quotient division algebraD(X) of the ring of differential operators D(X) on each
smooth irreducible affine algebraic variety X of dimension n > 0 over a field K of charac-
teristic zero contains a non-commutative free subalgebra sinceD(X)⊇D(A1) and the first
Weyl division algebraD(A1) has this property, [18]). So, if we want to find an upper bound
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for the transcendence degree of subfields in the quotient algebraD we can not apply Theo-
rem 7.2. Nevertheless, imposing some natural (mild) restrictions on the algebra A one can
obtain exactly the same upper bound for the transcendence degree of subfields in the quo-
tient algebra DA as the upper bound for the Gelfand–Kirillov dimension of commutative
subalgebras in A.

THEOREM 7.4 [7]. Let A be a simple finitely generated K-algebra such that 0 < n :=
GK(A) <∞, all the algebrasQm⊗A, m� 0, are simple finitely partitive algebras where
Q0 := K , Qm := K(x1, . . . , xm) is a rational function field and, for each m � 0, the
Gelfand–Kirillov dimension (over Qm) of every finitely generated Qm ⊗ A-module is a
natural number. Let B = S−1A be the localization of the algebra A at a left Ore subset S
of A. Let L be a (commutative) subfield of the algebra B that contains K . Then

tr.degK(L)� GK(A)

(
1− 1

fA +max{fA,1}
)
,

where fA :=max{dQm(Qm ⊗A) | 0 �m� n}.

PROOF. It follows immediately from a definition of the Gelfand–Kirillov dimension that
GKK ′(K ′ ⊗C)=GK(C) for any K-algebra C and any field extension K ′ of K . In partic-
ular, GKQm(Qm ⊗A)=GK(A) for all m� 0. By theorem 4.2,

K.dim(Qm ⊗A)� GK(A)

(
1− 1

dQm(Qm ⊗A)+max{dQm(Qm ⊗A),1}
)
.

Let L be a subfield of the algebra B that contains K . Suppose that L contains a rational
function field (isomorphic to) Qm for some m� 0.

m = tr.degK(Qm)� K.dim(Qm ⊗Qm)
� K.dim(Qm ⊗B)
(by [19, 6.5.3] sinceQm ⊗B is a freeQm ⊗Qm-module)

= K.dim
(
Qm ⊗ S−1A

)=K.dim
(
S−1(Qm ⊗A)

)
� K.dim(Qm ⊗A) (by [19, 6.5.3(ii)(b)])

� GK(A)

(
1− 1

dQm(Qm ⊗A)+max{dQm(Qm ⊗A),1}
)

� GK(A).

Hence

tr.degK(L)� GK(A)

(
1− 1

fA +max{fA,1}
)
. �

Recall that every somewhat commutative algebra A is a Noetherian finitely generated
finitely partitive algebra of finite Gelfand–Kirillov dimension, the Gelfand–Kirillov di-
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mension of every finitely generated A-modules is an integer, and (Quillen’s lemma): the
ring EndA(M) is algebraic over K (see [19, Chapter 8] or [16] for details).

THEOREM 7.5 [7]. Let A be a central simple somewhat commutative infinite-dimensional
K-algebra and let D = DA be its quotient algebra. Let L be a subfield of D that con-
tains K . Then the transcendence degree of the field L (over K)

tr.degK(L)� GK(A)

(
1− 1

fA +max{fA,1}
)
,

where fA :=max{dQm(Qm ⊗A) | 0 �m� GK(A)}.

PROOF. The algebra A is a somewhat commutative algebra, so it has a finite-dimensional
filtration A =⋃i�0Ai such that the associated graded algebra is a commutative finitely
generated algebra. For each integer m � 0, the Qm-algebra Qm ⊗ A =⋃i�0Qm ⊗ Ai
has the finite-dimensional filtration (over Qm) such that the associated graded algebra
gr(Qm ⊗A)=⊕i�0Qm ⊗Ai/Qm ⊗Ai−1 �Qm ⊗ gr(A) is a commutative finitely gen-
erated Qm-algebra. So, Qm ⊗A is a somewhat commutative Qm-algebra.

By the assumption dimK(A)=∞, hence dimK(gr(A))=∞ which implies GK(gr(A))
> 0, and so GK(A) > 0 (since GK(A) = GK(gr(A))). The algebra A is a central simple
K-algebra, so Qm ⊗ A is a central simple Qm-algebra, [19, 9.6.9]. Now, Theorem 7.5
follows from Theorem 7.4 applied to B =D. �

THEOREM 7.6. Let K be an algebraically closed field of characteristic zero, D(X) be the
ring of differential operators on a smooth irreducible affine algebraic variety X of dimen-
sion n > 0, and D(X) be the quotient division ring for D(X). Let L be a (commutative)
subfield of D(X) that contains K . Then tr.degK(L)� n.

REMARK. This inequality is, in fact, an exact upper bound for the transcendence degree of
subfields inD(X) since the field of fractionsQ(X) for the algebra O(X) is a commutative
subfield of the division ring D(X) with tr.degK(Q(X))= n.

PROOF. Since Qm ⊗ DK(O(X)) � DQm(Qm ⊗O(X)) and d(D(Qm ⊗O(X))) = 1 for
all m� 0 we have fD(X) = 1. Now, Theorem 7.6 follows from Theorem 7.5,

tr.degK(L)� 2n

(
1− 1

1+ 1

)
= n. �

Following [15] for a K-algebra A define the commutative dimension

Cdim(A) :=max
{
GK(C) | C is a commutative subalgebra of A

}
.

The commutative dimension Cdim(A) (if finite) is the largest non-negative integer m such
that the algebra A contains a polynomial algebra in m variables ([15, 1.1], or [19, 8.2.14]).
So, Cdim(A)=N∪ {∞}. If A is a subalgebra of B then Cdim(A)� Cdim(B).
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COROLLARY 7.7. Let X and Y be smooth irreducible affine algebraic varieties of di-
mensions n and m respectively, let D(X) and D(Y) be quotient division rings for the
rings of differential operators D(X) and D(Y ). Then there is no K-algebra embedding
D(X)→D(Y) if n >m.

PROOF. By Theorem 7.6, Cdim(D(X))= n and Cdim(D(Y ))=m. Suppose that there is
a K-algebra embedding D(X)→D(Y). Then n= Cdim(D(X))� Cdim(D(Y ))=m. �

For the Weyl algebras An = D(An) and Am = D(Am) the result above was proved by
Gelfand and Kirillov in [12]. They introduced a new invariant of an algebraA, the so-called
(Gelfand–Kirillov) transcendence degree GKtr.deg(A), and proved that GKtr.deg(Dn) =
2n. Recall that

GKtr.deg(A) := sup
V

inf
b

GK
(
K[bV ]),

where V ranges over the finite-dimensional subspaces of A and b ranges over the regular
elements of A. Another proofs of the corollary based on different ideas were given by
A. Joseph, [14], and R. Resco, [23], see also [19, 6.6.19]. Joseph’s proof is based on the
fact that the centralizer of any isomorphic copy of the Weyl algebra An in its division
algebra Dn := D(An) reduces to scalars ([15, 4.2]), Resco proved that Cdim(Dn) = n
([23, 4.2]) using the result of Rentschler and Gabriel, [22], that K.dim(An) = n (over an
arbitrary field of characteristic zero).

8. Filter dimension and isotropic subalgebras of Poisson algebras

In this section, we apply Theorem 7.2 to obtain an upper bound for the Gelfand–Kirillov
dimension of isotropic subalgebras of certain Poisson algebras (Theorem 8.1).

Let (P, {·, ·}) be a Poisson algebra over the field K . Recall that P is an associative
commutative K-algebra which is a Lie algebra with respect to the bracket {·, ·} for which
Leibniz’s rule holds:

{a, xy} = {a, x}y + x{a, y} for all a, x, y ∈ P,
which means that the inner derivation ad(a) :P → P , x �→ {a, x}, of the Lie algebra P is
also a derivation of the associative algebra P . Therefore, to each Poisson algebra P one
can attach an associative subalgebra A(P ) of the ring of differential operators D(P ) with
coefficients from the algebra P which is generated by P and ad(P ) := {ad(a) | a ∈ P }. If
P is a finitely generated algebra then so is the algebra A(P ) with GK(A(P ))� GK(D(P ))
<∞.

EXAMPLE. Let P2n = K[x1, . . . , x2n] be the Poisson polynomial algebra over a field K
of characteristic zero equipped with the Poisson bracket

{f,g} =
n∑
i=1

(
∂f

∂xi

∂g

∂xn+i
− ∂f

∂xn+i
∂g

∂xi

)
.
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The algebra A(P2n) is generated by the elements

x1, . . . , x2n, ad(xi)= ∂

∂xn+i
, ad(xn+i )=− ∂

∂xi
, i = 1, . . . , n.

So, the algebra A(P2n) is canonically isomorphic to the Weyl algebra A2n.

DEFINITION. We say that a Poisson algebra P is a strongly simple Poisson algebra if
(1) P is a finitely generated (associative) algebra which is a domain,
(2) the algebra A(P ) is central simple, and
(3) for each set of algebraically independent elements a1, . . . , am of the algebra P

such that {ai, aj } = 0 for all i, j = 1, . . . ,m, the (commuting) elements a1, . . . , am,
ad(a1), . . . , ad(am) of the algebra A(P ) are algebraically independent.

THEOREM 8.1 [7]. Let P be a strongly simple Poisson algebra, and C be an isotropic
subalgebra of P , i.e. {C,C} = 0. Then

GK(C)� GK(A(P ))

2

(
1− 1

fA(P ) +max{fA(P ),1}
)
,

where fA(P ) :=max{dQm(Qm ⊗A(P )) | 0 �m� GK(A(P ))}.

PROOF. By assumption the finitely generated algebra P is a domain, hence the finitely
generated algebra A(P ) is a domain (as a subalgebra of the domain D(Q(P )), the ring of
differential operators with coefficients from the field of fractionsQ(P ) for the algebra P ).
It suffices to prove the inequality for isotropic subalgebras of the Poisson algebra P that are
polynomial algebras. So, let C be an isotropic polynomial subalgebra of P in m variables,
say a1, . . . , am. By assumption, the commuting elements a1, . . . , am, ad(a1), . . . , ad(am)
of the algebra A(P ) are algebraically independent. So, the Gelfand–Kirillov dimension of
the subalgebra C′ of A(P ) generated by these elements is equal to 2m. By Theorem 7.2,

2GK(C)= 2m=GK(C′)� GK
(
A(P )
)(

1− 1

fA(P ) +max{fA(P ),1}
)
,

and this proves the inequality. �

COROLLARY 8.2.
(1) The Poisson polynomial algebra P2n = K[x1, . . . , x2n] (with the Poisson bracket)

over a field K of characteristic zero is a strongly simple Poisson algebra, the alge-
bra A(P2n) is canonically isomorphic to the Weyl algebra A2n.

(2) The Gelfand–Kirillov dimension of every isotropic subalgebra of the polynomial
Poisson algebra P2n is � n.

PROOF. (1) The third condition in the definition of strongly simple Poisson algebra is the
only statement we have to prove. So, let a1, . . . , am be algebraically independent elements
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of the algebra P2n such that {ai, aj } = 0 for all i, j = 1, . . . ,m. One can find polynomials,
say am+1, . . . , a2n, in P2n such that the elements a1, . . . , a2n are algebraically independent,
hence the determinant d of the Jacobian matrix J := ( ∂ai

∂xj
) is a non-zero polynomial. Let

X = ({xi, xj }) and Y = ({ai, aj }) be, so-called, the Poisson matrices associated with the
elements {xi} and {ai}. It follows from Y = J TXJ that det(Y ) = d2 det(X) �= 0 since
det(X) �= 0. The derivations

δi := d−1 det

⎛⎜⎝ {a1, a1} . . . {a1, ai−1} {a1, ·} {a1, ai+1} . . . {a1, a2n}
{a2, a1} . . . {a2, ai−1} {a2, ·} {a2, ai+1} . . . {a2, a2n}

. . .

{a2n, a1} . . . {a2n, ai−1} {a2n, ·} {a1, ai+1} . . . {a2n, a2n}

⎞⎟⎠,
i = 1, . . . ,2n, of the rational function field Q2n = K(x1, . . . , x2n) satisfy the following
properties: δi(aj ) = δi,j , the Kronecker delta. For each i and j , the kernel of the deriva-
tion Δij := δiδj − δj δi ∈ DerK(Q2n) contains 2n algebraically independent elements
a1, . . . , a2n. HenceΔij = 0 since the fieldQ2n is algebraic over its subfieldK(a1, . . . , a2n)

and char(K)= 0. So, the subalgebra, say W , of the ring of differential operators D(Q2n)

generated by the elements a1, . . . , a2n, δ1, . . . , δ2n is isomorphic to the Weyl algebra A2n,
and so GK(W)=GK(A2n)= 4n.

Let U be the K-subalgebra of D(Q2n) generated by the elements x1, . . . , x2n, δ1,

. . . , δ2n, and d−1. Let P ′ be the localization of the polynomial algebra P2n at the powers of
the element d . Then δ1, . . . , δ2n ∈∑2n

i=1P
′ ad(ai) and ad(a1), . . . , ad(a2n) ∈∑2n

i=1P
′δi ,

hence the algebra U is generated (over K) by P ′ and ad(a1), . . . , ad(a2n). The algebra U
can be viewed as a subalgebra of the ring of differential operators D(P ′). Now, the inclu-
sions, W ⊆ U ⊆ D(P ′) imply 4n = GK(W) � GK(U) � GK(D(P ′)) = 2GK(P ′) = 4n,
therefore GK(U) = 4n. The algebra U is a factor algebra of an iterated Ore exten-
sion V = P ′[t1; ad(a1)] · · · [t2n; ad(a2n)]. Since P ′ is a domain, so is the algebra V .
The algebra P ′ is a finitely generated algebra of Gelfand–Kirillov dimension 2n, hence
GK(V ) = GK(P ′) + 2n = 4n (by [19, 8.2.11]). Since GK(V ) = GK(U) and any proper
factor algebra of V has Gelfand–Kirillov dimension strictly less than GK(V ) (by [19,
8.3.5], since V is a domain), the algebras V and U must be isomorphic. Therefore, the
(commuting) elements a1, . . . , am, ad(a1), . . . , ad(am) of the algebra U (and A(P )) must
be algebraically independent.

(2) Let C be an isotropic subalgebra of the Poisson algebra P2n. Note that fA(P2n) =
fA2n = 1 and GK(A2n)= 4n. By Theorem 8.1,

GK(C)� 4n

2

(
1− 1

1+ 1

)
= n. �

REMARK. This result means that for the Poisson polynomial algebra P2n the right-hand
side of the inequality of Theorem 8.1 is the exact upper bound for the Gelfand–Kirillov
dimension of isotropic subalgebras in P2n since the polynomial subalgebra K[x1, . . . , xn]
of P2n is isotropic.
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1. Introduction

The theory of semisimple Lie algebras and their representations lies in the heart of modern
mathematics. It has numerous connections with other areas of mathematics and physics.
The simple Lie algebras over the field of complex numbers were classified in the work of
Cartan and Killing in the 1930s. There are four infinite series An, Bn, Cn, Dn which are
called the classical Lie algebras, and five exceptional Lie algebras E6, E7, E8, F4, G2.
The structure of these Lie algebras is uniformly described in terms of certain finite sets of
vectors in a Euclidean space called root systems. Due to the Weyl complete reducibility
theorem, the theory of finite-dimensional representations of the semisimple Lie algebras
is largely reduced to the study of irreducible representations. The irreducibles are parame-
trized by their highest weights. The characters and dimensions are explicitly known by the
Weyl formula. The reader is referred to, e.g., the books of Bourbaki, [11], Dixmier, [19],
Humphreys, [61], or Goodman and Wallach, [45], for a detailed exposition of the theory.

However, the Weyl formula for the dimension does not use any explicit construction of
the representations. Such constructions remained unknown until 1950 when Gelfand and
Tsetlin1 published two short papers, [41] and [42] (in Russian), where they solved the prob-
lem for the general linear Lie algebras (type An) and the orthogonal Lie algebras (types Bn
and Dn), respectively. Later, Baird and Biedenharn, [4] (1963), commented on [41] as
follows:

This paper is extremely brief (three pages) and does not appear to have been translated in either
the usual journal translations or the translations on group-theoretical subjects of the American
Mathematical Society, or even referred to in the review articles on group theory by Gelfand him-
self. Moreover, the results are presented without the slightest hint as to the methods employed and
contain not a single reference or citation of other work. In an effort to understand the meaning of
this very impressive work, we were led to develop the proofs . . . .

Baird and Biedenharn employed the calculus of Young patterns to derive the Gelfand–
Tsetlin formulas.2 Their interest to the formulas was also motivated by the connection
with the fundamental Wigner coefficients; see Section 2.4 below.

A year earlier (1962) Zhelobenko published an independent paper, [167], where he de-
rived the branching rules for all classical Lie algebras. In his approach the representations
are realized in a space of polynomials satisfying the “indicator system” of differential equa-
tions. He outlined a method to construct the lowering operators and to derive the matrix
element formulas for the case of the general linear Lie algebra gln. An explicit “infinites-
imal” form for the lowering operators as elements of the enveloping algebra was found
by Nagel and Moshinsky, [106] (1964), and independently by Hou Pei-yu, [59] (1966).
The latter work relies on Zhelobenko’s results, [167], and also contains a derivation of the
Gelfand–Tsetlin formulas alternative to that of Baird and Biedenharn. This approach was
further developed in the book by Zhelobenko, [168], which contains its detailed account.

The work of Nagel and Moshinsky was extended to the orthogonal Lie algebras oN

by Pang and Hecht, [133], and Wong, [164], who produced explicit infinitesimal expres-

1Some authors and translators write this name in English as Zetlin, Tzetlin, Cetlin, or Tseitlin.
2An indication of the proof of the formulas of [41] is contained in a footnote in the paper of Gelfand and

Graev, [39] (1965). It says that for the proof one has “to verify the commutation relations . . .; this is done by
direct calculation”.
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sions for the lowering operators and gave a derivation of the formulas of Gelfand and
Tsetlin, [42].

During the half a century passed since the work of Gelfand and Tsetlin, many different
approaches were developed to construct bases of the representations of the classical Lie
algebras. New interpretations of the lowering operators and new proofs of the Gelfand–
Tsetlin formulas were discovered by several authors. In particular, Gould, [46–48,50], em-
ployed the characteristic identities of Bracken and Green, [12,54], to calculate the Wigner
coefficients and matrix elements of generators of gln and oN . The extremal projector dis-
covered by Asherova, Smirnov and Tolstoy, [1–3], turned out to be a powerful instrument
in the representation theory of simple Lie algebras. It plays an essential role in the theory
of Mickelsson algebras developed by Zhelobenko which has a wide spectrum of appli-
cations from the branching rules and reduction problems to the classification of Harish-
Chandra modules; see Zhelobenko’s expository paper, [173], and his book, [174]. Two dif-
ferent quantum minor interpretations of the lowering and raising operators were given by
Nazarov and Tarasov, [109], and the author, [96]. These techniques are based on the theory
of quantum algebras called the Yangians and allow an independent derivation of the matrix
element formulas. We shall discuss the above approaches in more detail in Sections 2.3,
2.4 and 2.5 below.

A quite different method to construct modules over the classical Lie algebras is devel-
oped in the papers by King and El-Sharkaway, [69], Berele, [6], King and Welsh, [70],
Koike and Terada, [73], Proctor, [138], Nazarov, [107]. In particular, bases in the repre-
sentations of the orthogonal and symplectic Lie algebras parametrized by oN -standard or
sp2n-standard Young tableaux are constructed. This method provides an algorithm for the
calculation of the representation matrices. It is based on the Weyl realization of the repre-
sentations of the classical groups in tensor spaces; see Weyl, [159]. A detailed exposition
of the theory of the classical groups together with many recent developments are presented
in the book by Goodman and Wallach, [45].

Bases with special properties in the universal enveloping algebra for a simple Lie al-
gebra g and in some modules over g were constructed by Lakshmibai, Musili and Se-
shadri, [75], Littelmann, [81,82], Chari and Xi, [15] (monomial bases); De Concini and
Kazhdan, [18], Xi, [166] (special bases and their q-analogs); Gelfand and Zelevinsky, [44],
Retakh and Zelevinsky, [140], Mathieu, [85] (good bases); Lusztig, [83], Kashiwara, [66],
Du, [35,36] (canonical or crystal bases); see also Mathieu, [86], for a review and more
references. Algorithms for computing the global crystal bases of irreducible modules for
the classical Lie algebras were recently given by Leclerc and Toffin, [76], and Lecouvey,
[77,78]. In general, no explicit formulas are known, however, for the matrix elements of
the generators in such bases other than those of Gelfand and Tsetlin type. It is known,
although, that for the canonical bases the matrix elements of the standard generators are
nonnegative integers. Some classes of representations of the symplectic, odd orthogonal
and the Lie algebras of type G2 were explicitly constructed by Donnelly, [23,24,26], and
Donnelly, Lewis and Pervine, [27]. The constructions were applied to establish combina-
torial properties of the supporting graphs of the representations and were inspired by the
earlier results of Proctor, [134,135,137]. Another graph-theoretic approach is developed
by Wildberger, [160–163], to construct simple Lie algebras and their minuscule represen-
tations; see also Stembridge, [146].
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We now discuss the main idea which leads to the construction of the Gelfand–Tsetlin
bases. The first point is to regard a given classical Lie algebra not as a single object but as
a part of a chain of subalgebras with natural embeddings. We illustrate this idea using rep-
resentations of the symmetric groups Sn as an example. Consider the chain of subgroups

S1 ⊂S2 ⊂ · · · ⊂Sn, (1.1)

where the subgroup Sk of Sk+1 consists of the permutations which fix the index k + 1
of the set {1,2, . . . , k + 1}. The irreducible representations of the group Sn are indexed
by partitions λ of n. A partition λ = (λ1, . . . , λl) with λ1 � λ2 � · · · � λl is depicted
graphically as a Young diagram which consists of l left-justified rows of boxes so that the
top row contains λ1 boxes, the second row λ2 boxes, etc. Denote by V (λ) the irreducible
representation of Sn corresponding to the partition λ. One of the central results of the rep-
resentation theory of the symmetric groups is the following branching rule which describes
the restriction of V (λ) to the subgroup Sn−1:

V (λ)|Sn−1 =
⊕
μ

V ′(μ),

summed over all partitions μ whose Young diagram is obtained from that of λ by remov-
ing one box. Here V ′(μ) denotes the irreducible representation of Sn−1 corresponding to
a partition μ. Thus, the restriction of V (λ) to Sn−1 is multiplicity-free, i.e., it contains
each irreducible representation of Sn−1 at most once. This makes it possible to obtain a
natural parameterization of the basis vectors in V (λ) by taking its further restrictions to the
subsequent subgroups of the chain (1.1). Namely, the basis vectors will be parametrized by
sequences of partitions

λ(1)→ λ(2)→ ·· ·→ λ(n) = λ,

where λ(k) is obtained from λ(k+1) by removing one box. Equivalently, each sequence of
this type can be regarded as a standard tableau of shape λ which is obtained by writing the
numbers 1, . . . , n into the boxes of λ in such a way that the numbers increase along the rows
and down the columns. In particular, the dimension of V (λ) equals the number of standard
tableaux of shape λ. There is only one irreducible representation of the trivial group S1

therefore the procedure defines basis vectors up to a scalar factor. The corresponding basis
is called the Young basis. The symmetric group Sn is generated by the adjacent transpo-
sitions si = (i, i + 1). The construction of the representation V (λ) can be completed by
deriving explicit formulas for the action of the elements si in the basis which are also due
to A. Young. This realization of V (λ) is usually called Young’s orthogonal (or seminor-
mal) form. The details can be found, e.g., in James and Kerber, [63], and Sagan, [141];
see also Okounkov and Vershik, [112], where an alternative construction of the Young ba-
sis is produced. Branching rules and the corresponding Bratteli diagrams were employed
by Halverson and Ram, [56], Leduc and Ram, [79], Ram, [139], to compute irreducible
representations of the Iwahori–Hecke algebras and some families of centralizer algebras.
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Quite a similar method can be applied to representations of the classical Lie algebras.
Consider the general linear Lie algebra gln which consists of complex n× n-matrices with
the usual matrix commutator. The chain (1.1) is now replaced by

gl1 ⊂ gl2 ⊂ · · · ⊂ gln,

with natural embeddings glk ⊂ glk+1. The orthogonal Lie algebra oN can be regarded as
a subalgebra of glN which consists of skew-symmetric matrices. Again, we have a natural
chain

o2 ⊂ o3 ⊂ · · · ⊂ oN. (1.2)

Both restrictions gln ↓ gln−1 and oN ↓ oN−1 are multiplicity-free so that the application
of the argument which we used for the chain (1.1) produces basis vectors in an irreducible
representation of gln or oN . With an appropriate normalization, these bases are precisely
those of Gelfand and Tsetlin given in [41] and [42]. Instead of the standard tableaux, the
basis vectors here are parametrized by combinatorial objects called the Gelfand–Tsetlin
patterns.

However, this approach does not work for the symplectic Lie algebras sp2n since
the restriction sp2n ↓ sp2n−2 is not multiplicity-free. The multiplicities are given by
Zhelobenko’s branching rule, [167], which was re-discovered later by Hegerfeldt, [58].3

Various attempts to fix this problem were made by several authors. A natural idea is to
introduce an intermediate Lie algebra “sp2n−1” and try to restrict an irreducible represen-
tation of sp2n first to this subalgebra and then to sp2n−2 in the hope to get simple spectra
in the two restrictions. Such intermediate subalgebras and their representations were stud-
ied by Gelfand and Zelevinsky, [43], Proctor, [136], Shtepin, [142]. The drawback of this
approach is the fact that the Lie algebra sp2n−1 is not reductive so that the restriction of an
irreducible representation of sp2n to sp2n−1 is not completely reducible. In some sense, the
separation of multiplicities can be achieved by constructing a filtration of sp2n−1-modules;
cf. Shtepin, [142].

Another idea is to use the restriction gl2n ↓ sp2n. Gould and Kalnins, [51,53], con-
structed a basis for the representations of the symplectic Lie algebras parametrized by a
subset of the Gelfand–Tsetlin gl2n-patterns. Some matrix element formulas are also derived
by using the gl2n-action. A similar observation is made independently by Kirillov, [71], and
Proctor, [136]. A description of the Gelfand–Tsetlin patterns for sp2n and oN can be ob-
tained by regarding them as fixed points of involutions of the Gelfand–Tsetlin patterns for
the corresponding Lie algebra glN .

The lowering operators in the symplectic case were given by Mickelsson, [91]; see also
Bincer, [9,10]. The application of ordered monomials in the lowering operators to the high-
est vector yields a basis of the representation. However, the action of the Lie algebra gener-
ators in such a basis does not seem to be computable. The reason is the fact that, unlike the
cases of gln and oN , the lowering operators do not commute so that the basis depends on
the chosen ordering. A “hidden symmetry” has been needed (cf. Cherednik, [17]) to make

3Some western authors referred to Hegerfeldt’s result as the original derivation of the rule.
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a natural choice of an appropriate combination of the lowering operators. New ideas which
led to a construction of a Gelfand–Tsetlin type basis for any irreducible finite-dimensional
representation of sp2n came from the theory of quantized enveloping algebras. This is a
part of the theory of quantum groups originating from the work of Drinfeld, [28,30], and
Jimbo, [64]. A particular class of quantized enveloping algebras called twisted Yangians
introduced by Olshanski, [118], plays the role of the hidden symmetries for the construc-
tion of the basis. We refer the reader to the book by Chari and Pressley, [14], and the
review papers [103] and [104] for detailed expositions of the properties of these algebras
and their origins. For each classical Lie algebra we attach the Yangian Y(N)=Y(glN), or
the twisted Yangian Y±(N) as follows

type An type Bn type Cn type Dn
Y(n+ 1) Y+(2n+ 1) Y−(2n) Y+(2n).

The algebra Y(N) was first introduced in the work of Faddeev and the St.-Petersburg
school in relation with the inverse scattering method; see for instance Takhtajan and Fad-
deev, [147], Kulish and Sklyanin, [74]. Olshanski, [118], introduced the twisted Yangians
in relation with his centralizer construction; see also [105]. In particular, he established
the following key fact which plays an important role in the basis construction. Given ir-
reducible representations V (λ) and V ′(μ) of sp2n and sp2n−2, respectively, there exists a
natural irreducible action of the algebra Y−(2) on the space Homsp2n−2(V

′(μ),V (λ)). The
homomorphism space is isomorphic to the subspace V (λ)+μ of V (λ) which is spanned by
the highest vectors of weight μ for the subalgebra sp2n−2. Finite-dimensional irreducible
representations of the twisted Yangians were classified later in [97]. In particular, it turned
out that the representation V (λ)+μ of Y−(2) can be extended to the Yangian Y(2). Another
proof of this fact was given recently by Nazarov, [107]. The algebra Y(2) and its repre-
sentations are well-studied; see Tarasov, [149], Chari and Pressley, [13]. A large class of
representations of Y(2) admits Gelfand–Tsetlin-type bases associated with the inclusion
Y(1)⊂Y(2); see [96]. This allows one to get a natural basis in the space V (λ)+μ and then
by induction to get a basis in the entire space V (λ). Moreover, it turns out to be possible to
write down explicit formulas for the action of the generators of the symplectic Lie algebra
in this basis; see the author’s paper [98] for more details. This construction together with
the work of Gelfand and Tsetlin thus provides explicit realizations of all finite-dimensional
irreducible representations of the classical Lie algebras.

The same method can be applied to the pairs of the orthogonal Lie algebras oN−2 ⊂ oN .
Here the corresponding space V (λ)+μ is a natural Y+(2)-module which can also be ex-
tended to a Y(2)-module. This leads to a construction of a natural basis in the representa-
tion V (λ) and allows one to explicitly calculate the representation matrices; see [99,100].
This realization of V (λ) is alternative to that of Gelfand and Tsetlin, [42]. To compare
the two constructions, note that the basis of [42] in the orthogonal case lacks the weight
property, i.e., the basis vectors are not eigenvectors for the Cartan subalgebra. The reason
for that is the fact that the chain (1.2) involves Lie algebras of different types (B and D)
and the embeddings are not compatible with the root systems. In the new approach we use
instead the chains

o2 ⊂ o4 ⊂ · · · ⊂ o2n and o3 ⊂ o5 ⊂ · · · ⊂ o2n+1.
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The embeddings here “respect” the root systems so that the basis of V (λ) possesses the
weight property in both the symplectic and orthogonal cases. However, the new weight
bases, in turn, lack the orthogonality property of the Gelfand–Tsetlin bases: the latter are
orthogonal with respect to the standard inner product in the representation space V (λ). It
is an open problem to construct a natural basis of V (λ) in the B,C and D cases which
would simultaneously accommodate the two properties.

This chapter is structured as follows. In Section 2 we review the construction of the
Gelfand–Tsetlin basis for the general linear Lie algebra and discuss its various versions.
We start by applying the most elementary approach which consists of using explicit for-
mulas for the lowering operators in a way similar to the pioneering works of the sixties.
Remarkably, these operators admit several other presentations which reflect different ap-
proaches to the problem developed in the literature. First, we outline the general theory of
extremal projectors and Mickelsson algebras as a natural way to work with lowering oper-
ators. Next, we describe the gln-type Mickelsson–Zhelobenko algebra which is then used
to prove the branching rule and derive the matrix element formulas. Further, we outline the
Gould construction based upon the characteristic identities. Finally, we produce quantum
minor formulas for the lowering operators inspired by the Yangian approach and describe
the action of the Drinfeld generators in the Gelfand–Tsetlin basis.

In Section 3 we produce weight bases for representations of the orthogonal and symplec-
tic Lie algebras. Here we describe the relevant Mickelsson–Zhelobenko algebra, formulate
the branching rules and construct the basis vectors. Then we outline the properties of the
(twisted) Yangians and their representations and explain their relationship with the lower-
ing and raising operators. Finally, we sketch the main ideas in the calculation of the matrix
element formulas.

Section 4 is devoted to the Gelfand–Tsetlin bases for the orthogonal Lie algebras.
We outline the basis construction along the lines of the general method of Mickelsson
algebras.

At the end of each section we give brief bibliographical comments pointing towards the
original articles and to the references where the proofs or further details can be found.

2. Gelfand–Tsetlin bases for representations of gln

Let Eij , i, j = 1, . . . , n, denote the standard basis of the general linear Lie algebra gln over
the field of complex numbers. The subalgebra gln−1 is spanned by the basis elements Eij
with i, j = 1, . . . , n − 1. Denote by h = hn the diagonal Cartan subalgebra in gln. The
elements E11, . . . ,Enn form a basis of h.

Finite-dimensional irreducible representations of gln are in a one-to-one correspondence
with n-tuples of complex numbers λ= (λ1, . . . , λn) such that

λi − λi+1 ∈ Z+ for i = 1, . . . , n− 1. (2.1)

Here Z+ = {i ∈ Z: i � 0}.
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Such an n-tuple λ is called the highest weight of the corresponding representation which
we shall denote by L(λ). It contains a unique, up to a multiple, nonzero vector ξ (the
highest weight vector (highest vector)) such that Eiiξ = λiξ for i = 1, . . . , n and Eij ξ = 0
for 1 � i < j � n.

The following theorem is the branching rule for the reduction gln ↓ gln−1.

THEOREM 2.1. The restriction of L(λ) to the subalgebra gln−1 is isomorphic to the direct
sum of pairwise inequivalent irreducible representations

L(λ)|gln−1
�
⊕
μ

L′(μ),

summed over the highest weights μ satisfying the betweenness conditions

λi −μi ∈ Z+ and μi − λi+1 ∈ Z+ for i = 1, . . . , n− 1. (2.2)

The rule can presumably be attributed to I. Schur who was the first to discover the
representation-theoretic significance of a particular class of symmetric polynomials which
now bear his name. Without loss of generality we may regard λ as a partition: we can take
the composition of L(λ) with an appropriate automorphism of U(gln) which sends Eij to
Eij + δij a for some a ∈C. The character of L(λ) regarded as a GLn-module is the Schur
polynomial sλ(x), x = (x1, . . . , xn), defined by

sλ(x)= tr
(
g,L(λ)

)
,

where x1, . . . , xn are the eigenvalues of g ∈ GLn. The Schur polynomial is symmetric in
the xi and can be given by the explicit combinatorial formula

sλ(x)=
∑
T

xT , (2.3)

summed over the semistandard tableaux T of shape λ (cf. Remark 2.2 below), where xT is
the monomial containing xi with the power equal to the number of occurrences of i in T ;
see, e.g., Macdonald, [84, Chapter 1], or Sagan, [141, Chapter 4], for more details. To
find out what happens when L(λ) is restricted to GLn−1 we just need to put xn = 1 into
formula (2.3). The right-hand side will then be written as the sum of the Schur polynomials
sμ(x1, . . . , xn−1) with μ satisfying (2.2).

On the other hand, the multiplicity-freeness of the reduction gln ↓ gln−1 can be ex-
plained by the fact that the vector space Homgln−1(L

′(μ),L(λ)) bears a natural irreducible
representation of the centralizer U(gln)

gln−1 ; see, e.g., Dixmier, [19, Section 9.1]. How-
ever, the centralizer is a commutative algebra and therefore if the homomorphism space is
nonzero then it must be one-dimensional.

The branching rule is implicit in the formulas of Gelfand and Tsetlin, [41]. A proof based
upon an explicit realization of the representations of GLn was given by Zhelobenko, [167].
We outline a proof of Theorem 2.1 below in Section 2.3 which employs the modern theory
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of Mickelsson algebras following Zhelobenko, [174]. Two other proofs can be found in
Goodman and Wallach, [45, Chapters 8 and 12].

Successive applications of the branching rule to the subalgebras of the chain

gl1 ⊂ gl2 ⊂ · · · ⊂ gln−1 ⊂ gln

yield a parameterization of basis vectors in L(λ) by the combinatorial objects called the
Gelfand–Tsetlin patterns. Such a pattern Λ (associated with λ) is an array of row vectors

λn1 λn2 · · · λnn

λn−1,1 · · · λn−1,n−1

· · · · · · · · ·
λ21 λ22

λ11

where the upper row coincides with λ and the following conditions hold

λki − λk−1,i ∈ Z+, λk−1,i − λk,i+1 ∈ Z+, i = 1, . . . , k − 1, (2.4)

for each k = 2, . . . , n.

REMARK 2.2. If the highest weight λ is a partition then there is a natural bijection between
the patterns associated with λ and the semistandard λ-tableaux with entries in {1, . . . , n}.
Namely, the pattern Λ can be viewed as the sequence of partitions

λ(1) ⊆ λ(2) ⊆ · · · ⊆ λ(n) = λ,
with λ(k) = (λk1, . . . , λkk). Conditions (2.4) mean that the skew diagram λ(k)/λ(k−1) is
a horizontal strip; see, e.g., Macdonald, [84, Chapter 1]. The corresponding semistandard
tableau is obtained by placing the entry k into each box of λ(k)/λ(k−1).

The Gelfand–Tsetlin basis of L(λ) is provided by the following theorem. Let us set
lki = λki − i + 1.

THEOREM 2.3. There exists a basis {ξΛ} in L(λ) parametrized by all patternsΛ such that
the action of generators of gln is given by the formulas

EkkξΛ =
(

k∑
i=1

λki −
k−1∑
i=1

λk−1,i

)
ξΛ, (2.5)

Ek,k+1ξΛ =−
k∑
i=1

(lki − lk+1,1) · · · (lki − lk+1,k+1)

(lki − lk1) · · · ∧ · · · (lki − lkk) ξΛ+δki , (2.6)

Ek+1,kξΛ =
k∑
i=1

(lki − lk−1,1) · · · (lki − lk−1,k−1)

(lki − lk1) · · · ∧ · · · (lki − lkk) ξΛ−δki . (2.7)
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The arrays Λ± δki are obtained from Λ by replacing λki by λki ± 1. It is supposed that
ξΛ = 0 if the array Λ is not a pattern; the symbol ∧ indicates that the zero factor in the
denominator is skipped.

A construction of the basis vectors is given in Theorem 2.7 below. A derivation of the
matrix element formulas (2.5)–(2.7) is outlined in Section 2.3.

The vector space L(λ) is equipped with a contravariant inner product 〈 , 〉. It is uniquely
determined by the conditions

〈ξ, ξ 〉 = 1 and 〈Eijη, ζ 〉 = 〈η,Ejiζ 〉

for any vectors η, ζ ∈ L(λ) and any indices i, j . In other words, for the adjoint operator for
Eij with respect to the inner product we have (Eij )∗ =Eji .

PROPOSITION 2.4. The basis {ξΛ} is orthogonal with respect to the inner product 〈 , 〉.
Moreover, we have

〈ξΛ, ξΛ〉 =
n∏
k=2

∏
1�i�j<k

(lki − lk−1,j )!
(lk−1,i − lk−1,j )!

∏
1�i<j�k

(lki − lkj − 1)!
(lk−1,i − lkj − 1)! .

The formulas of Theorem 2.3 can therefore be rewritten in the orthonormal basis

ζΛ = ξΛ/‖ξΛ‖, ‖ξΛ‖2 = 〈ξΛ, ξΛ〉. (2.8)

They were presented in this form in the original work by Gelfand and Tsetlin, [41]. A proof
of Proposition 2.4 will be outlined in Section 2.3.

2.1. Construction of the basis: lowering and raising operators

For each i = 1, . . . , n − 1 introduce the following elements of the universal enveloping
algebra U(gln)

zin =
∑

i>i1>···>is�1

Eii1Ei1i2 · · ·Eis−1isEisn(hi − hj1) · · · (hi − hjr ), (2.9)

zni =
∑

i<i1<···<is<n
Ei1iEi2i1 · · ·Eisis−1Enis (hi − hj1) · · · (hi − hjr ), (2.10)

where s runs over nonnegative integers, hi = Eii − i + 1 and {j1, . . . , jr} is the comple-
mentary subset to {i1, . . . , is} in the set {1, . . . , i − 1} or {i + 1, . . . , n− 1}, respectively.
For instance,

z13 =E13, z23 =E23(h2 − h1)+E21E13,

z32 =E32, z31 =E31(h1 − h2)+E21E32.
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Consider now the irreducible finite-dimensional representation L(λ) of gln with the
highest weight λ= (λ1, . . . , λn) and the highest vector ξ . Denote by L(λ)+ the subspace
of gln−1-highest vectors in L(λ):

L(λ)+ = {η ∈ L(λ) |Eijη= 0, 1 � i < j < n
}
.

Given a gln−1-weight μ= (μ1, . . . ,μn−1) we denote by L(λ)+μ the corresponding weight
subspace in L(λ)+:

L(λ)+μ =
{
η ∈ L(λ)+ |Eiiη= μiη, i = 1, . . . , n− 1

}
.

The main property of the elements zni and zin is described by the following lemma.

LEMMA 2.5. Let η ∈ L(λ)+μ . Then for any i = 1, . . . , n− 1 we have

zinη ∈ L(λ)+μ+δi and zniη ∈ L(λ)+μ−δi ,

where the weight μ± δi is obtained from μ by replacing μi with μi ± 1.

This result allows us to regard the elements zin and zni as operators in the space L(λ)+.
They are called the raising and lowering operators, respectively. By the branching rule
(Theorem 2.1) the space L(λ)+μ is one-dimensional if the conditions (2.2) hold and it is
zero otherwise. The following lemma will be proved in Section 2.3.

LEMMA 2.6. Suppose that μ satisfies the betweenness conditions (2.2). Then the vector

ξμ = zλ1−μ1
n1 · · · zλn−1−μn−1

n,n−1 ξ

is nonzero. Moreover, the space L(λ)+μ is spanned by ξμ.

The U(gln−1)-span of each nonzero vector ξμ is a gln−1-module isomorphic to L′(μ).
Iterating the construction of the vectors ξμ for each pair of Lie algebras glk−1 ⊂ glk we
shall be able to get a basis in the entire space L(λ).

THEOREM 2.7. The basis vectors ξΛ of Theorem 2.3 can be given by the formula

ξΛ =
→∏

k=2,...,n

(
z
λk1−λk−1,1
k1 · · · zλk,k−1−λk−1,k−1

k,k−1

)
ξ, (2.11)

where the factors in the product are ordered according to increasing indices.
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2.2. Mickelsson algebra theory

The lowering and raising operators zni and zin in the space L(λ)+ (see Lemma 2.5) sat-
isfy some quadratic relations with rational coefficients in the parameters of the highest
weights. These relations can be regarded in a representation independent form with a suit-
able interpretation of the coefficients as rational functions in the elements of the Cartan
subalgebra h. In this abstract form the algebras of lowering and raising operators were
introduced by Mickelsson, [92], who, however, did not use any rational extensions of the
algebra U(h). The importance of this extension was realized by Zhelobenko, [169,170],
who developed a general structure theory of these algebras which he called Mickelsson
algebras. Another important ingredient is the theory of extremal projectors which origi-
nated in the work of Asherova, Smirnov and Tolstoy, [1–3], and was further developed by
Zhelobenko, [173,174].

Let g be a Lie algebra over C and let k be a subalgebra reductive in g. This means that
the adjoint k-module g is completely reducible. In particular, k is a reductive Lie algebra.
Fix a Cartan subalgebra h of k and a triangular decomposition

k= k− ⊕ h⊕ k+.

The subalgebras k− and k+ are respectively spanned by the negative and positive root
vectors e−α and eα with α running over the set of positive roots Δ+ of k with respect to h.
The root vectors will be assumed to be normalized in such a way that

[eα, e−α] = hα, α(hα)= 2 (2.12)

for all α ∈Δ+.
Let J= U(g)k+ be the left ideal of U(g) generated by k+. Its normalizer Norm J is the

subalgebra of U(g) defined by

Norm J= {u ∈U(g) | Ju⊆ J
}
.

Then J is a two-sided ideal of Norm J and the Mickelsson algebra S(g, k) is defined as the
quotient

S(g, k)=Norm J/J.

Let R(h) denote the field of fractions of the commutative algebra U(h). In what follows
it is convenient to consider the extension U′(g) of the universal enveloping algebra U(g)
defined by

U′(g)=U(g)⊗U(h) R(h).
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Let J′ = U′(g)k+ be the left ideal of U′(g) generated by k+. Exactly as with the ideal J
above, J′ is a two-sided ideal of the normalizer Norm J′ and the Mickelsson–Zhelobenko
algebra4 Z(g, k) is defined as the quotient

Z(g, k)=Norm J′/J′.

Clearly, Z(g, k) is an extension of the Mickelsson algebra S(g, k),

Z(g, k)= S(g, k)⊗U(h) R(h).

An equivalent definition of the algebra Z(g, k) can be given by using the quotient space

M(g, k)=U′(g)/J′.

The Mickelsson–Zhelobenko algebra Z(g, k) coincides with the subspace of k-highest vec-
tors in M(g, k)

Z(g, k)=M(g, k)+,

where

M(g, k)+ = {v ∈M(g, k) | k+v = 0
}
.

The algebraic structure of the algebra Z(g, k) can be described with the use of the ex-
tremal projector for the Lie algebra k. In order to define it, suppose that the positive roots
are Δ+ = {α1, . . . , αm}. Consider the vector space Fμ(k) of formal series of weight μ
monomials

e
k1−α1
· · · ekm−αmermαm · · · er1α1

with coefficients in R(h), where

(r1 − k1)α1 + · · · + (rm − km)αm = μ.

Introduce the space F(k) as the direct sum

F(k)=
⊕
μ

Fμ(k).

That is, the elements of F(k) are finite sums
∑
xμ with xμ ∈ Fμ(k). It can be shown that

F(k) is an algebra with respect to the natural multiplication of formal series. The algebra

4Zhelobenko sometimes used the names Z-algebra or extended Mickelsson algebra. The author believes the
new name is more appropriate and justified from the scientific point of view.



Gelfand–Tsetlin bases for classical Lie algebras 123

F(k) is equipped with a Hermitian anti-involution (antilinear involutive anti-automorphism)
defined by

e∗α = e−α, α ∈Δ+.

Further, call an ordering of the positive roots normal if any composite root lies between its
components. For instance, there are precisely two normal orderings for the root system of
type B2,

Δ+ = {α,α + β,α + 2β,β} and Δ+ = {β,α + 2β,α + β,α},

where α and β are the simple roots. In general, the number of normal orderings coincides
with the number of reduced decompositions of the longest element of the corresponding
Weyl group.

For any α ∈Δ+ introduce an element of F(k) by

pα = 1+
∞∑
k=1

ek−αekα
(−1)k

k!(hα + ρ(hα)+ 1) · · · (hα + ρ(hα)+ k) , (2.13)

where hα is defined in (2.12) and ρ is the half sum of the positive roots. Finally, define the
extremal projector p = pk by

p = pα1 · · ·pαm
with the product taken in a normal ordering of the positive roots αi .

THEOREM 2.8. The element p ∈ F(k) does not depend on the normal ordering onΔ+ and
satisfies the conditions

eαp = pe−α = 0 for all α ∈Δ+. (2.14)

Moreover, p∗ = p and p2 = p.

In fact, the relations (2.14) uniquely determine the element p, up to a factor from R(h).
The extremal projector naturally acts on the vector space M(g, k). The following corollary
states that the Mickelsson–Zhelobenko algebra coincides with its image.

COROLLARY 2.9. We have

Z(g, k)= pM(g, k).

To get a more precise description of the algebra Z(g, k) consider a k-module decompo-
sition

g= k⊕ p.
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Choose a weight basis e1, . . . , en (with respect to the adjoint action of h) of the comple-
mentary module p.

THEOREM 2.10. The elements

ai = pei, i = 1, . . . , n,

are generators of the Mickelsson–Zhelobenko algebra Z(g, k). Moreover, the monomials

a
k1
1 · · ·aknn , ki ∈ Z+,

form a basis of Z(g, k).

It can be proved that the generators ai of Z(g, k) satisfy quadratic defining relations;
see [173]. For the pairs (g, k) relevant to the constructions of bases of Gelfand–Tsetlin
type, the relations can be explicitly written down; cf. Sections 2.3 and 3.1 below.

Regarding Z(g, k) as a right R(h)-module, it is possible to introduce the normalized
elements

zi = aiπi, πi ∈U(h),

by multiplying ai by its right denominator πi . Therefore the zi can be viewed as elements
of the Mickelsson algebra S(g, k).

To formulate the final theorem of this section, for any g-module V set

V + = {v ∈ V | k+v = 0
}
.

THEOREM 2.11. Let V = U(g)v be the cyclic U(g)-module generated by an element
v ∈ V +. Then the subspace V + is linearly spanned by the elements

z
k1
1 · · · zknn v, ki ∈ Z+.

2.3. Mickelsson–Zhelobenko algebra Z(gln,gln−1)

For any positive integer m consider the general linear Lie algebra glm. The positive roots
of glm with respect to the diagonal Cartan subalgebra h (with the standard choice of the
positive root system) are naturally enumerated by the pairs (i, j) with 1 � i < j � m. In
accordance with the general theory outlined in the previous section, for each pair introduce
a formal series pij ∈ F(glm) by

pij = 1+
∞∑
k=1

(Eji)
k(Eij )

k (−1)k

k!(hi − hj + 1) · · · (hi − hj + k) ,
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where, as before, hi =Eii − i + 1. Then define the element p = pm by

p =
∏
i<j

pij ,

where the product is taken in a normal ordering on the pairs (i, j). By Theorem 2.8,

Eijp = pEji = 0 for 1 � i < j �m. (2.15)

Now set m = n− 1. By Theorem 2.10, ordered monomials in the elements Enn, pEin
and pEni with i = 1, . . . , n−1 form a basis of Z(gln,gln−1) as a left or right R(h)-module.
These elements can explicitly be given by

pEin =
∑

i>i1>···>is�1

Eii1Ei1i2 · · ·Eis−1isEisn
1

(hi − hi1) · · · (hi − his )
,

pEni =
∑

i<i1<···<is<n
Ei1iEi2i1 · · ·Eisis−1Enis

1

(hi − hi1) · · · (hi − his )
,

(2.16)

where s = 0,1, . . . . Indeed, by choosing appropriate normal orderings on the positive
roots, we can write

pEin = p1i · · ·pi−1,iEin and pEni = pi,i+1 · · ·pi,n−1Eni.

The lowering and raising operators introduced in Section 2.1 coincide with the normal-
ized generators:

zin = pEin(hi − hi−1) · · · (hi − h1),

zni = pEni(hi − hi+1) · · · (hi − hn−1),
(2.17)

which belong to the Mickelsson algebra S(gln,gln−1). Thus, Lemma 2.5 is an immediate
corollary of (2.15).

PROPOSITION 2.12. The lowering and raising operators satisfy the following relations

zniznj = znj zni for all i, j, (2.18)

zinznj = znj zin for i �= j, (2.19)

and

zinzni =
n∏

j=1, j �=i
(hi − hj − 1)+

n−1∑
j=1

znj zjn

n−1∏
k=1, k �=j

hi − hk − 1

hj − hk . (2.20)
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PROOF. We use the properties of p. Assume that i < j . Then (2.15) and (2.16) imply that
in Z(gln,gln−1)

pEnipEnj = pEniEnj , pEnjpEni = pEniEnj hi − hj + 1

hi − hj .

Now (2.18) follows from (2.17). The proof of (2.19) is similar. The “long” relation (2.20)
can be verified by analogous but more complicated direct calculations. We give a different
proof based upon the properties of the Capelli determinant C(u). Consider the n×n-matrix
E whose ij -th entry is Eij and let u be a formal variable. Then C(u) is the polynomial with
coefficients in the universal enveloping algebra U(gln) defined by

C(u)=
∑
σ∈Sn

sgnσ · (u+E)σ(1),1 · · · (u+E − n+ 1)σ(n),n. (2.21)

It is well known that all its coefficients belong to the center of U(gln) and generate the
center; see, e.g., Howe and Umeda, [60]. This also easily follows from the properties of
the quantum determinant of the Yangian for the Lie algebra gln; see, e.g., [104]. Therefore,
these coefficients act in L(λ) as scalars which can be easily found by applying C(u) to the
highest vector ξ :

C(u)|L(λ) = (u+ l1) · · · (u+ ln), li = λi − i + 1. (2.22)

On the other hand, the center of U(gln) is a subalgebra in the normalizer Norm J. We
shall keep the same notation for the image of C(u) in the Mickelsson–Zhelobenko algebra
Z(gln,gln−1). To get explicit expressions of the coefficients of C(u) in terms of the lower-
ing and raising operators we consider C(u) modulo the ideal J′ and apply the projection p.
A straightforward calculation yields two alternative formulas

C(u)= (u+Enn)
n−1∏
i=1

(u+ hi − 1)−
n−1∑
i=1

zinzni

n−1∏
j=1, j �=i

u+ hj − 1

hi − hj (2.23)

and

C(u)=
n∏
i=1

(u+ hi)−
n−1∑
i=1

znizin

n−1∏
j=1, j �=i

u+ hj
hi − hj . (2.24)

The formulas show that C(u) can be regarded as an interpolation polynomial for the prod-
ucts zinzni and znizin. Namely, for i = 1, . . . , n− 1, we have

C(−hi + 1)= (−1)n−1zinzni and C(−hi)= (−1)n−1znizin (2.25)

with the agreement that when we evaluate u in U(h)we write the coefficients of the polyno-
mial to the left from powers of u. Comparing the values of (2.23) and (2.24) at u=−hi+1
we get (2.20). �
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Note that the relation inverse to (2.20) can be obtained by comparing the values of (2.23)
and (2.24) at u=−hi .

Next we outline the proofs of the branching rule (Theorem 2.1) and the formulas for
the basis elements of L(λ)+ (Lemma 2.6). The module L(λ) is generated by the highest
vector ξ and we have

zinξ = 0, i = 1, . . . , n− 1.

So, by Theorem 2.11, the vector space L(λ)+ is spanned by the elements

z
k1
n1 · · · zkn−1

n,n−1ξ, ki ∈ Z+. (2.26)

Let us set μi = λi − ki for 1 � i � n− 1 and denote the vector (2.26) by ξμ. That is,

ξμ = zλ1−μ1
n1 · · · zλn−1−μn−1

n,n−1 ξ. (2.27)

It is now sufficient to show that the vector ξμ is nonzero if and only if the betweenness
conditions (2.2) hold. The linear independence of the vectors ξμ will follow from the
fact that their weights are distinct. If ξμ �= 0 then using the relations (2.18) we conclude

that each vector zλi−μini ξ is nonzero. On the other hand, zkiniξ is a gln−1-highest vector of
the weight obtained from (λ1, . . . , λn−1) by replacing λi with λi − ki . Therefore, if ki �
λi −λi+1+ 1 then the conditions (2.1) are violated for this weight which implies zkiniξ = 0.
Hence, λi −μi � λi − λi+1 for each i, and μ satisfies (2.2).

For the proof of the converse statement we shall employ the following key lemma which
will also be used for the proof of Theorem 2.3.

LEMMA 2.13. We have for each i = 1, . . . , n− 1

zinξμ =−(mi − l1) · · · (mi − ln)ξμ+δi , (2.28)

where

mi = μi − i + 1, li = λi − i + 1.

Here ξμ+δi = 0 if λi = μi .

PROOF. The relation (2.19) implies that if λi = μi then zinξμ = 0 which agrees
with (2.28). Now let λi −μi � 1. Using (2.18) and (2.25) we obtain

zinξμ = zinzniξμ+δi = (−1)n−1C(−hi + 1)ξμ+δi = (−1)n−1C(−mi)ξμ+δi .
The relation (2.28) now follows from (2.22) and the centrality of C(u). �

If the betweenness conditions (2.2) hold then by Lemma 2.13, applying appropriate
operators zin repeatedly to the vector ξμ we can obtain the highest vector ξ with a nonzero
coefficient. This gives ξμ �= 0.
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Thus, we have proved that the vectors ξΛ defined in (2.11) form a basis of the represen-
tation L(λ). The orthogonality of the basis vectors (Proposition 2.4) is implied by the fact
that the operators pEni and pEin are adjoint to each other with respect to the restriction of
the inner product 〈 , 〉 to the subspace L(λ)+. Therefore, for the adjoint operator to zni we
have

z∗ni = zin
(hi − hi+1 − 1) · · · (hi − hn−1 − 1)

(hi − h1) · · · (hi − hi−1)

and Proposition 2.4 follows from Lemma 2.13 by induction.
Now we outline a derivation of formulas (2.5)–(2.7). First, since Ennzni = zni(Enn+ 1)

for any i, we have

Ennξμ =
(

n∑
i=1

λi −
n−1∑
i=1

μi

)
ξμ

which implies (2.5). To prove (2.6) is suffices to calculate En−1,nξμν , where

ξμν = zμ1−ν1
n−1,1 · · · zμn−2−νn−2

n−1,n−2 ξμ

and the νi satisfy the betweenness conditions

μi − νi ∈ Z+ and νi −μi+1 ∈ Z+ for i = 1, . . . , n− 2.

Since En−1,n commutes with the zn−1,i ,

En−1,nξμν = zμ1−ν1
n−1,1 · · · zμn−2−νn−2

n−1,n−2 En−1,nξμ.

The following lemma is implied by the explicit formulas for the lowering and raising op-
erators (2.9) and (2.10).

LEMMA 2.14. We have the relation in U′(gln) modulo the ideal J′,

En−1,n =
n−1∑
i=1

zn−1,izin
1

(hi − h1) · · · ∧i · · · (hi − hn−1)
,

where zn−1,n−1 = 1.

By Lemmas 2.13 and 2.14,

En−1,nξμν =−
n−1∑
i=1

(mi − l1) · · · (mi − ln)
(mi −m1) · · · ∧i · · · (mi −mn−1)

ξμ+δi ,ν (2.29)
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which proves (2.6). To prove (2.7) we use Proposition 2.4. Relation (2.29) implies that

En,n−1ξμν =
n−1∑
i=1

ci(μ, ν)ξμ−δi ,ν

for some coefficients ci(μ, ν). Apply the operator zj,n−1 to both sides of this relation.
Since zj,n−1 commutes with En,n−1 we obtain from Lemma 2.13 a recurrence relation for
the ci(μ, ν): if μj − νj � 1 then

ci(μ, ν + δj )= ci(μ, ν)mi − γj − 1

mi − γj ,

where γj = νj − j + 1. The proof is completed by induction. The initial values of ci(μ, ν)
are found by applying the relation

En,n−1zn−1,i = zni 1

hi − hn−1
+ zn−1,iEn,n−1

hi − hn−1 − 1

hi − hn−1

to the vector ξμ and taking into account that En,n−1 = zn,n−1. Performing the calculation
we get

En,n−1ξμν =
n−1∑
i=1

(mi − γ1) · · · (mi − γn−2)

(mi −m1) · · · ∧i · · · (mi −mn−1)
ξμ−δi ,ν

thus proving (2.7).

2.4. Characteristic identities

Denote by L the vector representation of gln and consider its contragredient L∗. Note that
L∗ is isomorphic to L(0, . . . ,0,−1). Let {ε1, . . . , εn} denote the basis of L∗ dual to the
canonical basis {e1, . . . , en} of L. Introduce the n× n-matrix E whose ij -th entry is the
generator Eij . We shall interpret E as the element

E =
n∑

i,j=1

eij ⊗Eij ∈ EndL∗ ⊗U(gln),

where the eij are the standard matrix units acting on L∗ by eij εk = δjkεi . The basis ele-
ment Eij of gln acts on L∗ as −eji and hence E may also be thought of as the image of
the element

e=−
n∑

i,j=1

Eji ⊗Eij ∈U(gln)⊗U(gln).
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On the other hand, using the standard coproduct Δ on U(gln) defined by

Δ(Eij )=Eij ⊗ 1+ 1⊗Eij ,
we can write e in the form

e= 1

2

(
z⊗ 1+ 1⊗ z−Δ(z)), (2.30)

where z is the second-order Casimir element

z=
n∑

i,j=1

EijEji ∈U(gln).

We have the tensor product decomposition

L∗ ⊗L(λ)� L(λ− δ1)⊕ · · · ⊕L(λ− δn), (2.31)

where L(λ− δi) is considered to be zero if λi = λi+1. On the level of characters this is a
particular case of the Pieri rule for the expansion of the product of a Schur polynomial by
an elementary symmetric polynomial; see, e.g., Macdonald, [84, Chapter 1]. The Casimir
element z acts as a scalar operator in any highest weight representation L(λ). The corre-
sponding eigenvalue is given by

z|L(λ) =
n∑
i=1

λi(λi + n− 2i + 1).

Regarding now E as an operator on L∗ ⊗L(λ) and using (2.30) we derive that the restric-
tion of E to the summand L(λ − δr ) in (2.31) is the scalar operator with the eigenvalue
λr + n − r which we shall denote by αr . This implies the characteristic identity for the
matrix E,

n∏
r=1

(E − αr)= 0, (2.32)

as an operator in L∗ ⊗L(λ). Moreover, the projection P [r] of L∗ ⊗L(λ) to the summand
L(λ− δr ) can be written explicitly as

P [r] = (E − α1) · · · ∧r · · · (E − αn)
(αr − α1) · · · ∧r · · · (αr − αn)

with ∧r indicating that the r-th factor is omitted. Together with (2.32) this yields the spec-
tral decomposition of E,

E =
n∑
r=1

αrP [r]. (2.33)



Gelfand–Tsetlin bases for classical Lie algebras 131

Consider the orthonormal Gelfand–Tsetlin bases {ζΛ} of L(λ) and {ζΛ(r)} of L(λ− δr ) for
r = 1, . . . , n; see (2.8). Regarding the matrix element P [r]ij as an operator in L(λ) we
obtain 〈

ζΛ′ ,P [r]ij ζΛ
〉= 〈εi ⊗ ζΛ′,P [r](εj ⊗ ζΛ)〉, (2.34)

where we have extended the inner products on L∗ and L(λ) to L∗ ⊗L(λ) by setting

〈η⊗ ζ, η′ ⊗ ζ ′〉 = 〈η,η′〉〈ζ, ζ ′〉

with η,η′ ∈ L∗ and ζ, ζ ′ ∈ L(λ). Furthermore, using the expansions

εj ⊗ ζΛ =
n∑
s=1

∑
Λ(s)

〈εj ⊗ ζΛ, ζΛ(s)〉ζΛ(s) ,

brings (2.34) to the form∑
Λ(r)

〈εi ⊗ ζΛ′, ζΛ(r)〉〈εj ⊗ ζΛ, ζΛ(r)〉,

where we have used the fact that P [r] is the identity map on L(λ − δr ), and zero on
L(λ − δs) with s �= r . The numbers 〈εi ⊗ ζΛ′ , ζΛ(r)〉 are the Wigner coefficients (a par-
ticular case of the Clebsch–Gordan coefficients). They can be used to express the matrix
elements of the generators Eij in the Gelfand–Tsetlin basis as follows. Using the spectral
decomposition (2.33) we get

Eij =
n∑
r=1

αrP [r]ij .

Therefore, we derive the following result from (2.34).

THEOREM 2.15. We have

〈ζΛ′ ,Eij ζΛ〉 =
n∑
r=1

αr
∑
Λ(r)

〈εi ⊗ ζΛ′ , ζΛ(r)〉〈εj ⊗ ζΛ, ζΛ(r)〉.

Employing the characteristic identities for both the Lie algebras gln+1 and gln it is pos-
sible to determine the values of the Wigner coefficients and thus to get an independent
derivation of the formulas of Theorem 2.3. In fact, explicit formulas for the matrix ele-
ments of Eij with |i − j |> 1 can also be given; see Gould, [48], for details.

The approach based upon the characteristic identities also leads to an alternative presen-
tation of the lowering and raising operators. Taking ζΛ to be the highest vector ξ in (2.34)
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we conclude that P [r]ij ξ = 0 for j > r . Consider now gln as a subalgebra of gln+1. Sup-
pose that ξ is a highest vector of weight λ in a representation L(λ′) of gln+1. The previous
observation implies that the vector

n∑
i=r
En+1,iP [r]ir ξ

is again a gln-highest vector of weight λ− δr .

PROPOSITION 2.16. We have the following identity of operators on the space L(λ′)+λ :

pEn+1,r =
n∑
i=r
En+1,iP [r]ir ,

where p is the extremal projector for gln.

OUTLINE OF THE PROOF. Since both sides represent lowering operators they must be
proportional. It is therefore sufficient to apply both sides to a vector ξ ∈ L(λ′)+λ and com-
pare the coefficients at En+1,r ξ . For the calculation we use the explicit formula (2.16) for
pEn+1,r and the relation

P [r]rr ξ =
n∏

s=r+1

hr − hs − 1

hr − hs ξ

which can be derived from the characteristic identities. �

An analogous argument leads to a similar formula for the raising operators. Here one
starts with the dual characteristic identity

n∏
r=1

(E − ᾱr )= 0,

where the ij -th matrix element of E is −Eij , ᾱr =−λr + r − 1 and the powers of E are
defined recursively by

(
E
p)
ij
=

n∑
k=1

(
E
p−1)

kj
Eik.

For any r = 1, . . . , n the dual projection operator is given by

P [r] = (E − ᾱ1) · · · ∧r · · · (E − ᾱn)
(ᾱr − ᾱ1) · · · ∧r · · · (ᾱr − ᾱn) .
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PROPOSITION 2.17. We have the following identity of operators on the space L(λ′)+λ :

pEr,n+1 =
r∑
i=1

Ei,n+1P [r]ri .

2.5. Quantum minors

For a complex parameter u introduce the n× n-matrix E(u)= u1+E. Given sequences
a1, . . . , as and b1, . . . , bs of elements of {1, . . . , n} the corresponding quantum minor of
the matrix E(u) is defined by the following equivalent formulas:

E(u)
a1···as
b1···bs =

∑
σ∈Ss

sgnσ ·E(u)aσ(1)b1 · · ·E(u− s + 1)aσ(s)bs (2.35)

=
∑
σ∈Ss

sgnσ ·E(u− s + 1)a1bσ(1) · · ·E(u)asbσ(s) . (2.36)

This is a polynomial in u with coefficients in U(gln). It is skew symmetric under permuta-
tions of the indices ai , or bi .

For any index 1 � i < n introduce the polynomials

τni(u)=E(u)i+1···n
i···n−1 and τin(u)= (−1)i−1E(u)1···i1···i−1,n.

For instance,

τ13(u)=E13, τ23(u)=−E23(u+E11)+E21E13,

τ32(u)=E32, τ31(u)=E21E32 −E31(u+E22 − 1).

PROPOSITION 2.18. If η ∈ L(λ)+μ then

τni(−μi)η ∈ L(λ)+μ−δi and τin(−μi + i − 1)η ∈ L(λ)+μ+δi .

OUTLINE OF THE PROOF. The proof is based upon the following relations

[
Eij ,E(u)

a1···as
b1···bs
]= s∑

r=1

(
δjarE(u)

a1···i···as
b1···bs − δibrE(u)

a1···as
b1···j ···bs

)
, (2.37)

where i and j on the right-hand side are in the r-th slot. �

The relations (2.37) imply an important property of the quantum minors: for any in-
dices i, j we have[

Eaibj ,E(u)
a1···as
b1···bs
]= 0.
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In particular, this implies the centrality of the Capelli determinant C(u) = E(u)1···n1···n;
see (2.21).

The lowering and raising operators of Proposition 2.18 can be shown to essentially co-
incide with those defined in Section 2.1. To write down the formulas we shall need to
evaluate the variable u in U(h). To make this operation well-defined we use the agreement
used in the evaluation of the Capelli determinant. See just below (2.25).

PROPOSITION 2.19. We have the following identities for any i = 1, . . . , n− 1

τni(−hi − i + 1)= zni and τin(−hi)= zin. (2.38)

Using this interpretation of the lowering operators one can express the Gelfand–Tsetlin
basis vector (2.11) in terms of the quantum minors τki(u). The action of certain other
quantum minors on these vectors can be explicitly found. This will provide one more in-
dependent proof of Theorem 2.3. For m � 1 introduce the polynomials Am(u), Bm(u)
and Cm(u) by

Am(u)=E(u)1···m1···m, Bm(u)=E(u)1···m1···m−1,m+1,

Cm(u)=E(u)1···m−1,m+1
1···m .

We use the notation lmi = λmi − i + 1 and li = λi − i + 1.

THEOREM 2.20. Let {ξΛ} be the Gelfand–Tsetlin basis of L(λ). Then

Am(u)ξΛ = (u+ lm1) · · · (u+ lmm)ξΛ, (2.39)

Bm(−lmj )ξΛ =−
m+1∏
i=1

(lm+1,i − lmj )ξΛ+δmj for j = 1, . . . ,m,

Cm(−lmj )ξΛ =
m−1∏
i=1

(lm−1,i − lmj )ξΛ−δmj for j = 1, . . . ,m, (2.40)

where Λ± δmj is obtained from Λ by replacing the entry λmj with λmj ± 1.

Applying the Lagrange interpolation formula we can find the action of Bm(u) and Cm(u)
for any u. Note that these polynomials have degreem−1 with leading coefficients Em,m+1
and Em+1,m, respectively. Theorem 2.3 is therefore an immediate corollary of Theo-
rem 2.20.

Formula (2.40) prompts a quite different construction of the basis vectors of L(λ) which
uses the polynomials Cm(u) instead of the traditional lowering operators zni . Indeed, for a
particular value of u, Cm(u) takes a basis vector into another one, up to a factor. Given a
pattern Λ associated with λ, define the vector κΛ ∈ L(λ) by

κΛ =
→∏

k=1,...,n−1

{
Cn−1(−ln−1,k − 1) · · ·Cn−1(−lk + 1)Cn−1(−lk)
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×Cn−2(−ln−2,k − 1) · · ·Cn−2(−lk + 1)Cn−2(−lk)
× · · · ×Ck(−lkk − 1) · · ·Ck(−lk + 1)Ck(−lk)

}
ξ.

THEOREM 2.21. The vectors κΛ with Λ running over all patterns associated with λ form
a basis of L(λ) and one has κΛ =NΛξΛ for a nonzero constant NΛ.

The value of the constant NΛ can be found from (2.40). Using the relations between the
elements Am(u), Bm(u) and Cm(u) one can derive Theorem 2.20 from Theorem 2.21 with
the use of Proposition 2.22 below; see Nazarov and Tarasov, [109], for details.

Observe that Am(u) is the Capelli determinant (2.21) for the Lie algebra glm. Therefore,
its coefficients ami defined by

Am(u)= um + am1u
m−1 + · · · + amm

are generators of the center of the enveloping algebra U(glm). All together the elements ami
with 1 � i �m� n generate a commutative subalgebra An of U(gln) which is called the
Gelfand–Tsetlin subalgebra. By (2.39), the basis vectors ξΛ are simultaneous eigenvectors
for the elements of the subalgebra An. Introduce the corresponding eigenvalues of the
generators ami by

amiξΛ = αmi(Λ)ξΛ. (2.41)

Thus, αmi(Λ) is the i-th elementary symmetric polynomial in lm1, . . . , lmm.

PROPOSITION 2.22. For any pattern Λ associated with λ, the one-dimensional subspace
of L(λ) spanned by the basis vector ξΛ is uniquely determined by the set of eigenval-
ues {αmi(Λ)}.
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derivation of the Gelfand–Tsetlin formulas outlined in Section 2.1 follows Zhelobenko,
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tions of the Yangian of level p for gln which was previously introduced by Cherednik, [17].
In particular, the enveloping algebra U(gln) coincides with the Yangian of level 1. A more
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Nazarov and Tarasov, [110], via the trapezium or skew analogs of the Gelfand–Tsetlin pat-
terns. Their approach was motivated by the so-called centralizer construction devised by
Olshanski, [114,116,117], and also employed by Cherednik, [16,17]. Basis vectors in the
tame Yangian modules are characterized in a way similar to Proposition 2.22. The skew
Yangian modules were also studied in [101] with the use of the quantum Sylvester theorem
and the Mickelsson algebras.

The center of U(gln) possesses several natural families of generators and so does the
Gelfand–Tsetlin subalgebra An. The corresponding eigenvalues in L(λ) are known explic-
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Krob, Lascoux, Leclerc, Retakh and Thibon, [40, Section 7.3], as an application of their
theory of noncommutative symmetric functions and quasi-determinants.

The combinatorics of the skew Gelfand–Tsetlin patterns is employed by Berenstein and
Zelevinsky, [7], to obtain multiplicity formulas for the skew representations of gln. Ap-
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plications to continuous piecewise linear actions of the symmetric group were found by
Kirillov and Berenstein, [72].

The explicit realization of irreducible finite-dimensional representations of gln via the
Gelfand–Tsetlin bases has important applications in the representation theory of quantum
affine algebras and Yangians. In particular, Theorem 2.20 and its Yangian analog, [96],
are crucial in the proof of the irreducibility criterion of the tensor products of the Yangian
evaluation modules (a generalization to gln of Theorem 3.8 below); see [102].

Analogs of the Gelfand–Tsetlin bases for representations of some Lie superalgebras and
their quantum analogs were given by Ottoson, [119,120], Palev, [122–125], Palev, Stoilova
and van der Jeugt, [131], Palev and Tolstoy, [132], Tolstoy, Istomina and Smirnov, [156].
Highest weight irreducible representations for the Lie (super)algebras of infinite ma-
trices and their quantum analogs were constructed by Palev, [126,127], and Palev and
Stoilova, [128–130], via bases of Gelfand–Tsetlin-type.

The explicit formulas of Theorem 2.3 make it possible to define a class of infinite-
dimensional representations of gln by altering the inequalities (2.4). Families of such rep-
resentations were introduced by Gelfand and Graev, [39]. However, as was later observed
by Lemire and Patera, [80], some necessary conditions were missing in [39], so that only
a part of those families actually provides representations. A more general theory of the so-
called Gelfand–Tsetlin modules is developed by Drozd, Futorny and Ovsienko, [31–34],
Ovsienko, [121], and Mazorchuk, [87,88]. The starting point of the theory is to axiomatize
the property of the basis vectors (2.41) and to consider the module generated by an eigen-
vector for the Gelfand–Tsetlin subalgebra with a given arbitrary set of eigenvalues {αmi}.
Some q-analogs of such modules were constructed by Mazorchuk and Turowska, [90].

The formulas of Theorem 2.3 were applied by Olshanski, [113,115], to study unitary
representations of the pseudo-unitary groups U(p,q). In particular, he classified all ir-
reducible unitarizable highest weight representations of the Lie algebra u(p, q), [113].
This work was extended by the author to a family of the Enright–Varadarajan modules
over u(p, q), [95]. Analogs of the Gelfand–Tsetlin bases for the unitary highest weight
modules were constructed in [94].

Applications of the Gelfand–Tsetlin bases in mathematical physics are reviewed in the
books by Barut and Ra̧czka, [5], and Biedenharn and Louck, [8].

3. Weight bases for representations of oN and sp2n

Let gn denote the rank n simple complex Lie algebra of type B,C, or D. That is,

gn = o2n+1, sp2n, or o2n, (3.1)

respectively. Let V (λ) denote the finite-dimensional irreducible representation of gn with
the highest weight λ. The restriction of V (λ) to the subalgebra gn−1 is not multiplicity-free
in general. This means that if V ′(μ) is the finite-dimensional irreducible representation
of gn−1 with the highest weight μ, then the space

Homgn−1

(
V ′(μ),V (λ)

)
(3.2)
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need not be one-dimensional. In order to construct a basis of V (λ) associated with the
chain of subalgebras

g1 ⊂ g2 ⊂ · · · ⊂ gn

we need to construct a basis of the space (3.2) which is isomorphic to the subspace V (λ)+μ
of gln−1-highest vectors of weight μ in V (λ). The subspace V (λ)+μ possesses a natural
structure of a representation of the centralizer Cn = U(gn)gn−1 of gn−1 in the universal
enveloping algebra U(gn). It was shown by Olshanski, [118], that there exist natural ho-
momorphisms

C1← C2← ·· ·← Cn← Cn+1← ·· · .

The projective limit of this chain turns out to be an extension of the twisted Yangian Y+(2)
or Y−(2), in the orthogonal and symplectic case, respectively; see [118,104] and [105]
for the definition and properties of the twisted Yangians. In particular, there is an al-
gebra homomorphism Y±(2)→ Cn which allows one to equip the space V (λ)+μ with
a Y±(2)-module structure. By the results of [97], the representation V (λ)+μ can be ex-
tended to a larger algebra, the Yangian Y(2). This is a key fact which allows us to construct
a natural basis in each space V (λ)+μ . In the C and D cases the Y(2)-module V (λ)+μ is irre-
ducible while in the B case it is a direct sum of two irreducible submodules. This does not
lead, however, to major differences in the constructions, and the final formulas are similar
in all the three cases.

The calculations of the matrix elements of the generators of gn are based on the re-
lationship between the twisted Yangian Y±(2) and the Mickelsson–Zhelobenko alge-
bra Z(gn,gn−1); see Section 2.2. We construct an algebra homomorphism Y±(2)→
Z(gn,gn−1) which allows us to express the generators of the twisted Yangian, as opera-
tors in V (λ)+μ , in terms of the lowering and raising operators.

3.1. Raising and lowering operators

Whenever possible we consider the three cases (3.1) simultaneously, unless otherwise
stated. The rows and columns of 2n × 2n-matrices will be enumerated by the indices
−n, . . . ,−1,1, . . . , n, while the rows and columns of (2n+ 1)× (2n+ 1)-matrices will be
enumerated by the indices −n, . . . ,−1,0,1, . . . , n. Accordingly, the index 0 will usually
be skipped in the former case. For −n� i, j � n set

Fij =Eij − θijE−j,−i , (3.3)

where the Eij are the standard matrix units, and

θij =
{

1 in the orthogonal case,
sgn i · sgn j in the symplectic case.

(3.4)
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The matrices Fij span the Lie algebra gn. The subalgebra gn−1 is spanned by the ele-
ments (3.3) with the indices i, j running over the set {−n + 1, . . . , n − 1}. Denote by
h= hn the diagonal Cartan subalgebra in gn. The elements F11, . . . ,Fnn form a basis of h.

The finite-dimensional irreducible representations of gn are in a one-to-one correspon-
dence with n-tuples λ= (λ1, . . . , λn) where the numbers λi satisfy the conditions

λi − λi+1 ∈ Z+ for i = 1, . . . , n− 1, (3.5)

and

−2λ1 ∈ Z+ for gn = o2n+1,

−λ1 ∈ Z+ for gn = sp2n,

−λ1 − λ2 ∈ Z+ for gn = o2n.

(3.6)

Such an n-tuple λ is called the highest weight of the corresponding representation which
we shall denote by V (λ). It contains a unique, up to a constant factor, nonzero vector ξ
(the highest vector) such that

Fiiξ = λiξ for i = 1, . . . , n,
Fij ξ = 0 for −n� i < j � n.

Denote by V (λ)+ the subspace of gn−1-highest vectors in V (λ):

V (λ)+ = {η ∈ V (λ) | Fijη= 0, −n < i < j < n}.
Given a gn−1-weight μ= (μ1, . . . ,μn−1) we denote by V (λ)+μ the corresponding weight
subspace in V (λ)+:

V (λ)+μ =
{
η ∈ V (λ)+ | Fiiη= μiη, i = 1, . . . , n− 1

}
.

Consider the Mickelsson–Zhelobenko algebra Z(gn,gn−1) introduced in Section 2.2.
Let p = pn−1 be the extremal projector for the Lie algebra gn−1. It satisfies the conditions

Fijp = pFji = 0 for −n < i < j < n.

By Theorem 2.10, the elements

Fnn, pFia, a =−n,n, i =−n+ 1, . . . , n− 1, (3.7)

are generators of Z(gn,gn−1) in the orthogonal case. In the symplectic case, the algebra
Z(gn,gn−1) is generated by the elements (3.7) together with Fn,−n and F−n,n. To write
down explicit formulas for the generators, introduce numbers ρi , where i = 1, . . . , n, by

ρi =
{−i + 1/2 for gn = o2n+1,
−i for gn = sp2n,
−i + 1 for gn = o2n.
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The numbers−ρi are coordinates of the half-sum of positive roots with respect to the upper
triangular Borel subalgebra. Now set

fi = Fii + ρi, f−i =−fi
for i = 1, . . . , n. Moreover, in the case of o2n+1 also set f0 =−1/2. The generators pFia
can be given by a uniform expression in all the three cases. Let a ∈ {−n,n} and i ∈
{−n+ 1, . . . , n− 1}. Then we have modulo the ideal J′,

pFia = Fia +
∑

i>i1>···>is>−n
Fii1Fi1i2 · · ·Fis−1is Fisa

1

(fi − fi1) · · · (fi − fis )
,

(3.8)

summed over s � 1. It will be convenient to work with normalized generators of
Z(gn,gn−1). Set

zia = pFia(fi − fi−1) · · · (fi − f−n+1)

in the B,C cases, and

zia = pFia(fi − fi−1) · · · ̂(fi − f−i ) · · · (fi − f−n+1)

in the D case, where the hat indicates the factor to be omitted if it occurs. We shall also
use the elements zai defined by

zai = (−1)n−iz−i,−a and zai = (−1)n−i sgna · z−i,−a,

in the orthogonal and symplectic case, respectively. The elements zia satisfy some
quadratic relations which can be shown to be the defining relations of the alge-
bra Z(gn,gn−1). In particular, we have for all a, b ∈ {−n,n} and i + j �= 0,

ziazjb + zjazib(fi − fj − 1)= zibzja(fi − fj ). (3.9)

Thus, zia and zja commute for i + j �= 0. Also, zia and zib commute for i �= 0 and all
values of a and b. Analogs of the relation (2.20) in the algebra Z(gn,gn−1) can be explicitly
written down as well. However, we shall avoid using them in a way similar to the proof of
Lemma 2.13.

The elements zia naturally act in the space V (λ)+ by raising or lowering the weights.
We have for i = 1, . . . , n− 1:

zia :V (λ)+μ → V (λ)+μ+δi , zai :V (λ)+μ → V (λ)+μ−δi ,

whereμ±δi is obtained fromμ by replacingμi withμi±1. In theB case the operators z0a
preserve each subspace V (λ)+μ .
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We shall need the following element which can be checked to belong to the normal-
izer Norm J′, and so it can be regarded as an element of the algebra Z(gn,gn−1):

zn,−n =
∑

n>i1>···>is>−n
Fni1Fi1i2 · · ·Fis,−n(fn − fj1) · · · (fn − fjk )

in the B,C cases, and

zn,−n =
∑

n>i1>···>is>−n
Fni1Fi1i2 · · ·Fis,−n

(fn − fj1) · · · (fn − fjk )
2fn

in the D case, where s = 0,1, . . . and {j1, . . . , jk} is the complement to the subset
{i1, . . . , is} in {−n + 1, . . . , n − 1}. The following is a counterpart of Lemma 2.14 and
is crucial in the calculation of the matrix elements of the generators in the bases.

LEMMA 3.1. For a ∈ {−n,n} we have

Fn−1,a =
n−1∑

i=−n+1

zn−1,izia
1

(fi − f−n+1) · · · ∧i · · · (fi − fn−1)

in the B,C cases, and

Fn−1,a =
n−1∑

i=−n+1

zn−1,izia
1

(fi − f−n+1) · · · ∧−i,i · · · (fi − fn−1)

in the D case, where zn−1,n−1 = 1 and the equalities are considered in U′(gn) modulo the
ideal J′. The wedge indicates the indices to be skipped.

In order to write down the basis vectors, introduce the interpolation polynomials
Zn,−n(u) with coefficients in the Mickelsson–Zhelobenko algebra Z(gn,gn−1) by

Zn,−n(u)=
n∑
i=1

znizi,−n
n∏

j=1, j �=i

u2 − g2
j

g2
i − g2

j

(3.10)

in the B,C cases, and

Zn,−n(u)=
n−1∑
i=1

znizi,−n
n−1∏

j=1, j �=i

u2 − g2
j

g2
i − g2

j

(3.11)

in the D case, where gi = fi + 1/2. Accordingly, we have

Zn,−n(gi)= znizi,−n (3.12)
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with the agreement that when u is evaluated in U(h), the coefficients of the polynomial
Zn,−n(u) are written to the left of the powers of u, as is the case in the formulas (3.10)
and (3.11).

3.2. Branching rules, patterns and basis vectors

The restriction of V (λ) to the subalgebra gn−1 is given by

V (λ)|gn−1 �
⊕
μ

c(μ)V ′(μ),

where V ′(μ) is the irreducible finite-dimensional representation of gn−1 with highest
weight μ. The multiplicity c(μ) coincides with the dimension of the space V (λ)+μ , and
its exact value is found from the Zhelobenko branching rules, [167]. We formulate them
separately for each case recalling the conditions (3.5) and (3.6) on the highest weight λ. In
the formulas below we use the notation

li = λi + ρi + 1/2, γi = νi + ρi + 1/2,

where the νi are the parameters defined in the branching rules.
A parameterization of basis vectors in V (λ) is obtained by applying the branching rules

to its successive restrictions to the subalgebras of the chain

g1 ⊂ g2 ⊂ · · · ⊂ gn−1 ⊂ gn.

This leads to the definition of the Gelfand–Tsetlin patterns for the B,C and D types. Then
we give formulas for the basis vectors of the representation V (λ). We use the notation

lki = λki + ρi + 1/2, l′ki = λ′ki + ρi + 1/2,

where the λki and λ′ki are the entries of the patterns defined below.

B type case. The multiplicity c(μ) equals the number of n-tuples (ν′1, ν2, . . . , νn) satisfy-
ing the inequalities

−λ1 � ν′1 � λ1 � ν2 � λ2 � · · ·� νn−1 � λn−1 � νn � λn,
−μ1 � ν′1 � μ1 � ν2 � μ2 � · · ·� νn−1 � μn−1 � νn

with ν′1 and all the νi being simultaneously integers or half-integers together with the λi .
Equivalently, c(μ) equals the number of (n+1)-tuples ν = (σ, ν1, . . . , νn), with the entries
given by

(σ, ν1)=
{
(0, ν′1) if ν′1 � 0,

(1,−ν′1) if ν′1 > 0.
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LEMMA 3.2. The vectors

ξν = zσn0

n−1∏
i=1

z
νi−μi
ni z

νi−λi
i,−n ·

γn−1∏
k=ln

Zn,−n(k)ξ

form a basis of the space V (λ)+μ .

Define the B type pattern Λ associated with λ as an array of the form

σn λn1 λn2 · · · λnn

λ′n1 λ′n2 · · · λ′nn
σn−1 λn−1,1 · · · λn−1,n−1

λ′n−1,1 · · · λ′n−1,n−1

· · · · · · · · ·
σ1 λ11

λ′11

such that λ = (λn1, . . . , λnn), each σk is 0 or 1, the remaining entries are all nonpositive
integers or nonpositive half-integers together with the λi , and the following inequalities
hold

λ′k1 � λk1 � λ′k2 � λk2 � · · ·� λ′k,k−1 � λk,k−1 � λ′kk � λkk

for k = 1, . . . , n, and

λ′k1 � λk−1,1 � λ′k2 � λk−1,2 � · · ·� λ′k,k−1 � λk−1,k−1 � λ′kk

for k = 2, . . . , n. In addition, in the case of the integer λi the condition

λ′k1 �−1 if σk = 1

should hold for all k = 1, . . . , n.

THEOREM 3.3. The vectors

ξΛ =
→∏

k=1,...,n

(
z
σk
k0 ·

k−1∏
i=1

z
λ′ki−λk−1,i

ki z
λ′ki−λki
i,−k ·

l′kk−1∏
j=lkk

Zk,−k(j)
)
ξ

parametrized by the patterns Λ form a basis of the representation V (λ).
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C type case. The multiplicity c(μ) equals the number of n-tuples of integers ν =
(ν1, . . . , νn) satisfying the inequalities

0 � ν1 � λ1 � ν2 � λ2 � · · ·� νn−1 � λn−1 � νn � λn,
0 � ν1 � μ1 � ν2 � μ2 � · · ·� νn−1 � μn−1 � νn.

(3.13)

LEMMA 3.4. The vectors

ξν =
n−1∏
i=1

z
νi−μi
ni z

νi−λi
i,−n ·

γn−1∏
k=ln

Zn,−n(k)ξ

form a basis of the space V (λ)+μ .

Define the C type pattern Λ associated with λ as an array of the form

λn1 λn2 · · · λnn

λ′n1 λ′n2 · · · λ′nn
λn−1,1 · · · λn−1,n−1

λ′n−1,1 · · · λ′n−1,n−1

· · · · · ·
λ11

λ′11

such that λ = (λn1, . . . , λnn), the remaining entries are all non-positive integers and the
following inequalities hold

0 � λ′k1 � λk1 � λ′k2 � λk2 � · · ·� λ′k,k−1 � λk,k−1 � λ′kk � λkk

for k = 1, . . . , n, and

0 � λ′k1 � λk−1,1 � λ′k2 � λk−1,2 � · · ·� λ′k,k−1 � λk−1,k−1 � λ′kk

for k = 2, . . . , n.

THEOREM 3.5. The vectors

ξΛ =
→∏

k=1,...,n

(
k−1∏
i=1

z
λ′ki−λk−1,i

ki z
λ′ki−λki
i,−k ·

l′kk−1∏
j=lkk

Zk,−k(j)
)
ξ

parametrized by the patterns Λ form a basis of the representation V (λ).
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D type case. The multiplicity c(μ) equals the number of (n−1)-tuples ν = (ν1, . . . , νn−1)

satisfying the inequalities

−|λ1|� ν1 � λ2 � ν2 � λ3 � · · ·� λn−1 � νn−1 � λn,
−|μ1|� ν1 � μ2 � ν2 � μ3 � · · ·� μn−1 � νn−1

with all the νi being simultaneously integers or half-integers together with the λi . Set
ν0 =max{λ1,μ1}.

LEMMA 3.6. The vectors

ξν =
n−1∏
i=1

z
νi−1−μi
ni z

νi−1−λi
i,−n ·

γn−1−2∏
k=ln

Zn,−n(k)ξ

form a basis of the space V (λ)+μ .

Define the D type pattern Λ associated with λ as an array of the form

λn1 λn2 · · · λnn

λ′n−1,1 · · · λ′n−1,n−1

λn−1,1 · · · λn−1,n−1

· · · · · ·
λ21 λ22

λ′11

λ11

such that λ = (λn1, . . . , λnn), the remaining entries are all nonpositive integers or non-
positive half-integers together with the λi , and the following inequalities hold

−|λk1|� λ′k−1,1 � λk2 � λ′k−1,2 � · · ·� λk,k−1 � λ′k−1,k−1 � λkk,
−|λk−1,1|� λ′k−1,1 � λk−1,2 � λ′k−1,2 � · · ·� λk−1,k−1 � λ′k−1,k−1

for k = 2, . . . , n. Set λ′k−1,0 =max{λk1, λk−1,1}.

THEOREM 3.7. The vectors

ξΛ =
→∏

k=2,...,n

(
k−1∏
i=1

z
λ′k−1,i−1−λk−1,i

ki z
λ′k−1,i−1−λki
i,−k ·

l′k−1,k−1−2∏
j=lkk

Zk,−k(j)
)
ξ

parametrized by the patterns Λ form a basis of the representation V (λ).
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Proofs of Theorems 3.3, 3.5 and 3.7 will be outlined in the next two sections. These are
based on the application of the representation theory of the twisted Yangians. Clearly, due
to the branching rules, it is sufficient to construct a basis in the multiplicity space V (λ)+μ .

3.3. Yangians and their representations

We start by introducing the Yangian Y(2) for the Lie algebra gl2. In what follows it will be
convenient to use the indices −n,n to enumerate the rows and columns of 2× 2-matrices.
The Yangian Y(2) is the complex associative algebra with the generators t (1)ab , t

(2)
ab , . . .

where a, b ∈ {−n,n}, and the defining relations

(u− v)[tab(u), tcd (v)]= tcb(u)tad(v)− tcb(v)tad(u), (3.14)

where

tab(u)= δab + t (1)ab u−1 + t (2)ab u−2 + · · · ∈Y(2)
[[
u−1]].

Introduce the series sab(u), a, b ∈ {−n,n} by

sab(u)= θnbtan(u)t−b,−n(−u)+ θ−n,bta,−n(u)t−b,n(−u) (3.15)

with θij defined in (3.4). Write

sab(u)= δab + s(1)ab u−1 + s(2)ab u−2 + · · · .

The twisted Yangian Y±(2) is defined as the subalgebra of Y(2) generated by the elements
s
(1)
ab , s

(2)
ab , . . . where a, b ∈ {−n,n}. Also, Y±(2) can be viewed as an abstract algebra with

generators s(r)ab and quadratic and linear defining relations which have the following form(
u2 − v2)[sab(u), scd(v)]
= (u+ v)(scb(u)sad(v)− scb(v)sad(u))
− (u− v)(θc,−bsa,−c(u)s−b,d (v)− θa,−dsc,−a(v)s−d,b(u))
+ θa,−b

(
sc,−a(u)s−b,d (v)− sc,−a(v)s−b,d (u)

)
and

θabs−b,−a(−u)= sab(u)± sab(u)− sab(−u)
2u

.

Whenever the double sign ± or ∓ occurs, the upper sign corresponds to the orthogonal
case and the lower sign to the symplectic case. In particular, we have the relation[

sn,−n(u), sn,−n(v)
]= 0.
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The Yangian Y(2) is a Hopf algebra with the coproduct

Δ
(
tab(u)
)= tan(u)⊗ tnb(u)+ ta,−n(u)⊗ t−n,b(u). (3.16)

The twisted Yangian Y±(2) is a left coideal in Y(2) with

Δ
(
sab(u)

)= ∑
c,d∈{−n,n}

θbd tac(u)t−b,−d(−u)⊗ scd(u). (3.17)

Given a pair of complex numbers (α,β) such that α−β ∈ Z+ we denote by L(α,β) the
irreducible representation of the Lie algebra gl2 with highest weight (α,β) with respect to
the upper triangular Borel subalgebra. Then dimL(α,β)= α − β + 1. We equip L(α,β)
with a Y(2)-module structure by using the algebra homomorphism Y(2)→ U(gl2) given
by

tab(u) �→ δab +Eabu−1, a, b ∈ {−n,n}.
The coproduct (3.16) allows us to construct representations of Y(2) of the form

L= L(α1, β1)⊗ · · · ⊗L(αk,βk). (3.18)

Any finite-dimensional irreducible Y(2)-module is isomorphic to a representation of this
type twisted by an automorphism of Y(2) of the form

tab(u) �→
(
1+ ϕ1u

−1 + ϕ2u
−2 + · · ·)tab(u), ϕi ∈C.

There is an explicit irreducibility criterion for the Y(2)-module L. To formulate the result,
with each L(α,β) associate the string

S(α,β)= {β,β + 1, . . . , α − 1} ⊂C.

We say that two strings S1 and S2 are in general position if

either S1 ∪ S2 is not a string, or S1 ⊆ S2, or S2 ⊆ S1.

THEOREM 3.8. The representation (3.18) of Y(2) is irreducible if and only if the strings
S(αi, βi), i = 1, . . . , k, are pairwise in general position.

Note that the generators t (r)ab with r > k act as zero operators in L. Therefore, the opera-
tors Tab(u)= uktab(u) are polynomials in u:

Tab(u)= δabuk + t (1)ab uk−1 + · · · + t (k)ab . (3.19)

Let ξi denote the highest vector of the gl2-module L(αi,βi). Suppose that the Y(2)-module
L given by (3.18) is irreducible and the strings S(αi, βi) are pairwise disjoint. Set

η= ξ1 ⊗ · · · ⊗ ξk. (3.20)
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Then using (3.16) we easily check that η is the highest vector of the Y(2)-module L.
That is, η is annihilated by T−n,n(u), and it is an eigenvector for the operators Tnn(u)
and T−n,−n(u). Explicitly,

T−n,−n(u)η= (u+ α1) · · · (u+ αk)η,
Tnn(u)η= (u+ β1) · · · (u+ βk)η. (3.21)

Let a k-tuple γ = (γ1, . . . , γk) satisfy the following conditions: for each i

αi − γi ∈ Z+, γi − βi ∈ Z+. (3.22)

Set

ηγ =
k∏
i=1

Tn,−n(−γi + 1) · · ·Tn,−n(−βi − 1)Tn,−n(−βi)η.

The following theorem provides a Gelfand–Tsetlin type basis for representations of the
Yangian Y(2) associated with the embedding Y(1)⊂Y(2). Here Y(1) is the (commutative)
subalgebra of Y(2) generated by the elements t (r)nn , r � 1.

THEOREM 3.9. Let the Y(2)-module L given by (3.18) be irreducible and let the
strings S(αi, βi) be pairwise disjoint. Then the vectors ηγ with γ satisfying (3.22) form
a basis of L. Moreover, the generators of Y(2) act in this basis by the rules

Tnn(u)ηγ = (u+ γ1) · · · (u+ γk)ηγ ,
Tn,−n(−γi)ηγ = ηγ+δi ,

T−n,n(−γi)ηγ =−
k∏

m=1

(αm − γi + 1)(βm − γi)ηγ−δi ,

T−n,−n(u)ηγ =
k∏
i=1

(u+ αi + 1)(u+ βi)
u+ γi + 1

ηγ

+
k∏
i=1

1

u+ γi + 1
T−n,n(u)Tn,−n(u+ 1)ηγ .

(3.23)

These formulas are derived from the defining relations for the Yangian (3.14) with the
use of the quantum determinant

d(u) = T−n,−n(u+ 1)Tnn(u)− Tn,−n(u+ 1)T−n,n(u) (3.24)

= T−n,−n(u)Tnn(u+ 1)− T−n,n(u)Tn,−n(u+ 1). (3.25)
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The coefficients of the quantum determinant belong to the center of Y(2) and so d(u) acts
in L as a scalar which can be found by the application of (3.24) to the highest vector η.
Indeed, by (3.21)

d(u)η= (u+ α1 + 1) · · · (u+ αk + 1)(u+ β1) · · · (u+ βk)η.

This allows us to derive the last formula in (3.23) from (3.25). The operators T−n,n(u)
and Tn,−n(u) are polynomials in u of degree � k − 1; see (3.19). Therefore, their action
can be found from (3.23) by using the Lagrange interpolation formula.

We can regard (3.18) as a module over the twisted Yangian Y−(2) obtained by restric-
tion. An irreducibility criterion for such a module is provided by the following theorem.

THEOREM 3.10. The representation (3.18) of Y−(2) is irreducible if and only if each pair
of strings

S(αi, βi), S(αj ,βj ) and S(αi, βi), S(−βj ,−αj )

is in general position for all i < j .

The defining relations (3.14) allow us to rewrite formula (3.15) for sn,−n(u) in the form

sn,−n(u)= u+ 1/2

u

(
tn,−n(u)tnn(−u)− tn,−n(−u)tnn(u)

)
.

Therefore the operator in L defined by

Sn,−n(u) = u2k

u+ 1/2
sn,−n(u)

= (−1)k

u

(
Tn,−n(u)Tnn(−u)− Tn,−n(−u)Tnn(u)

)
(3.26)

is an even polynomial in u of degree � 2k − 2. Its action in the basis of L provided in
Theorem 3.9 is given by

Sn,−n(γi)ηγ = 2
k∏

a=1, a �=i
(−γi − γa)ηγ+δi , i = 1, . . . , k.

We have thus proved the following corollary.

COROLLARY 3.11. Suppose that the Y−(2)-module L is irreducible and we have

S(αi, βi)∩ S(αj ,βj )= ∅ and S(αi, βi)∩ S(−βj ,−αj )= ∅
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for all i < j .5 Then the vectors

ξγ =
k∏
i=1

Sn,−n(γi − 1) · · ·Sn,−n(βi + 1)Sn,−n(βi)η

with γ satisfying (3.22) form a basis of L.

Let us now turn to the orthogonal twisted Yangian Y+(2). For any δ ∈C denote byW(δ)
the one-dimensional representation of Y+(2) spanned by a vector w such that

snn(u)w = u+ δ
u+ 1/2

w, s−n,−n(u)w = u− δ + 1

u+ 1/2
w,

and sa,−a(u)w = 0 for a =−n,n. By (3.17) we can regard the tensor product L⊗W(δ)
as a representation of Y+(2). The representations of Y+(2) of this type, and the repre-
sentations of Y−(2) of type (3.18) essentially exhaust all finite-dimensional irreducible
representations of Y±(2), [97].

The following is an analog of Theorem 3.10.

THEOREM 3.12. The representation L⊗W(δ) of Y+(2) is irreducible if and only if each
pair of strings

S(αi, βi), S(αj ,βj ) and S(αi, βi), S(−βj ,−αj )

is in general position for all i < j , and none of the strings S(αi, βi) or S(−βi,−αi) con-
tains −δ.

Using the vector space isomorphism

L⊗W(δ)→ L, v⊗w �→ v, v ∈ L, (3.27)

we can regard L as a Y+(2)-module. Accordingly, using the defining relations (3.14) and
the coproduct formula (3.17) we can write sn,−n(u), as an operator in L, in the form

sn,−n(u)= u− δ
u
tn,−n(u)tnn(−u)+ u+ δ

u
tn,−n(−u)tnn(u).

Therefore the operator in L defined by

Sn,−n(u)= u2ksn,−n(u)

= (−1)k

u

(
(u− δ)Tn,−n(u)Tnn(−u)+ (u+ δ)Tn,−n(−u)Tnn(u)

)
(3.28)

5The second condition was erroneously omitted in the formulation of [98, Proposition 4.2] although it is implicit
in the proof.
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is an even polynomial in u of degree � 2k − 2. Its action in the basis of L provided in
Theorem 3.9 is given by

Sn,−n(γi)ηγ = 2(−δ − γi)
k∏

a=1, a �=i
(−γi − γa)ηγ+δi , i = 1, . . . , k.

We have thus proved the following corollary.

COROLLARY 3.13. Suppose that the Y+(2)-module L⊗W(δ) is irreducible and we have

S(αi, βi)∩ S(αj ,βj )= ∅ and S(αi, βi)∩ S(−βj ,−αj )= ∅

for all i < j . Then the vectors

ξγ =
k∏
i=1

Sn,−n(γi − 1) · · ·Sn,−n(βi + 1)Sn,−n(βi)η

with γ satisfying (3.22) form a basis of L.

3.4. Yangian action on the multiplicity space

Now we construct an algebra homomorphism Y±(2)→ Z(gn,gn−1) and then use it to
define an action of Y±(2) on the multiplicity space V (λ)+μ .

For a, b ∈ {−n,n} and a complex parameter u introduce the elements Zab(u) of the
Mickelsson–Zhelobenko algebra Z(gn,gn−1) by

Zab(u) = −
(
δab

(
u+ ρn + 1

2

)
+ Fab
) n−1∏
i=−n+

(u+ gi)

+
n−1∑

i=−n+1

zaizib

n−1∏
j=−n+1, j �=i

u+ gj
gi − gj (3.29)

in the B case,

Zab(u) =
(
δab

(
u+ ρn + 1

2

)
+ Fab
) n−1∏
i=−n+1

(u+ gi)

−
n−1∑

i=−n+1

zaizib

n−1∏
j=−n+1, j �=i

u+ gj
gi − gj (3.30)
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in the C case, and

Zab(u) = −
((
δab

(
u+ ρn + 1

2

)
+ Fab
) n−1∏
i=−n+1

(u+ gi)

−
n−1∑

i=−n+1

zaizib(u+ g−i )
n−1∏

j=−n+1, j �=±i

u+ gj
gi − gj

)
1

2u+ 1
(3.31)

in the D case, where gi = fi + 1/2 for all i. In particular, it can be verified that
each Zn,−n(u) coincides with the corresponding interpolation polynomial given in (3.10)
or (3.11).

Consider now the three cases separately. We shall assume μn = −∞ in the notation
below.

B type case.

THEOREM 3.14.
(i) The mapping

sab(u) �→ −u−2nZab(u), a, b ∈ {−n,n}, (3.32)

defines an algebra homomorphism Y+(2)→ Z(gn,gn−1).
(ii) The Y+(2)-module V (λ)+μ defined via the homomorphism (3.32) is isomorphic to

the direct sum of two irreducible submodules, V (λ)+μ �U ⊕U ′, where

U = L(0, β1)⊗L(α2, β2)⊗ · · · ⊗L(αn,βn)⊗W(1/2),
U ′ = L(−1, β1)⊗L(α2, β2)⊗ · · · ⊗L(αn,βn)⊗W(1/2),

if the λi are integers (it is supposed that U ′ = {0} if β1 = 0); or

U = L(−1/2, β1)⊗L(α2, β2)⊗ · · · ⊗L(αn,βn)⊗W(0),
U ′ = L(−1/2, β1)⊗L(α2, β2)⊗ · · · ⊗L(αn,βn)⊗W(1),

if the λi are half-integers, and the following notation is used

αi =min{λi−1,μi−1} − i + 1, i = 2, . . . , n,

βi =max{λi,μi} − i + 1, i = 1, . . . , n.
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C type case.

THEOREM 3.15.
(i) The mapping

sab(u) �→ (u+ 1/2)u−2nZab(u), a, b ∈ {−n,n}, (3.33)

defines an algebra homomorphism Y−(2)→ Z(gn,gn−1).
(ii) The Y−(2)-module V (λ)+μ defined via the homomorphism (3.33) is irreducible and

isomorphic to the tensor product

L(α1, β1)⊗ · · · ⊗L(αn,βn),

where α1 =−1/2 and

αi =min{λi−1,μi−1} − i + 1/2, i = 2, . . . , n,

βi =max{λi,μi} − i + 1/2, i = 1, . . . , n.

D type case.

THEOREM 3.16.
(i) The mapping

sab(u) �→ −2u−2n+2Zab(u), a, b ∈ {−n,n}, (3.34)

defines an algebra homomorphism Y+(2)→ Z(gn,gn−1).
(ii) The Y+(2)-module V (λ)+μ defined via the homomorphism (3.34) is irreducible and

isomorphic to the tensor product

L(α1, β1)⊗ · · · ⊗L(αn−1, βn−1)⊗W(−α0),

where α1 =min{−|λ1|,−|μ1|} − 1/2, α0 = α1 + |λ1 +μ1|,

αi =min{λi,μi} − i + 1/2, i = 2, . . . , n− 1,

βi =max{λi+1,μi+1} − i + 1/2, i = 1, . . . , n− 1.

OUTLINE OF THE PROOF. Part (i) of Theorems 3.14–3.16 is verified by using the compo-
sition of homomorphisms

Y±(2)→ Cn→ Z(gn,gn−1),

where Cn is the centralizer U(gn)gn−1 . The first arrow is the homomorphism provided by
the centralizer construction (see [105,118]) while the second is the natural projection.
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By the results of [97], every irreducible finite-dimensional representation of the twisted
Yangian is a highest weight representation. It contains a unique, up to a constant factor,
vector which is annihilated by s−n,n(u) and which is an eigenvector of snn(u). The cor-
responding eigenvalue (the highest weight) uniquely determines the representation. The
vectors in V (λ)+μ annihilated by s−n,n(u) can be explicitly constructed by using the lower-
ing operators. One of these vectors is given by

ξμ =
n−1∏
i=1

(
z

max{λi ,μi }−μi
ni z

max{λi ,μi }−λi
i,−n

)
ξ,

where ξ is the highest vector of V (λ). This is the only vector in the C,D cases, while in
the B case there is another one defined by

ξ ′μ = zn0ξμ.

Calculating the eigenvalues of these vectors we conclude that they respectively coincide
with the eigenvalues of the tensor product of the highest vectors of the modules L(αi,βi);
see (3.20). �

REMARK 3.17. Theorems 3.14–3.16 can be proved without using the branching rules for
the reductions sp2n ↓ sp2n−2 and oN ↓ oN−2. Therefore, the reduction multiplicities can
be found by calculating the dimension of the space V (λ)+μ . For instance, in the symplectic
case, Theorem 3.15 gives

c(μ)=
n∏
i=1

(αi − βi + 1)

which, of course, coincides with the value provided by the C type branching rule; see
Section 3.2.

While keeping λ and μ fixed we let ν run over the values determined by the branch-
ing rules; see Section 3.2. Using the homomorphisms of Theorems 3.14–3.16 we conclude
from (3.26) and (3.28) that the element Sn,−n(u) acts in the representation V (λ)+μ pre-
cisely as the operator −Zn,−n(u), Zn,−n(u), or −2Zn,−n(u), in the B,C or D cases, re-
spectively. Thus, by Corollaries 3.11 and 3.13, the following vectors ξν form a basis of the
space V (λ)+μ , where

ξν = zσn0

n∏
i=1

Zn,−n(γi − 1) · · ·Zn,−n(βi + 1)Zn,−n(βi)ξμ

in the B case,

ξν =
n∏
i=1

Zn,−n(γi − 1) · · ·Zn,−n(βi + 1)Zn,−n(βi)ξμ (3.35)
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in the C case, and

ξν =
n−1∏
i=1

Zn,−n(γi − 1) · · ·Zn,−n(βi + 1)Zn,−n(βi)ξμ

in the D case. Applying the interpolation properties of the polynomials Zn,−n(u) we bring
the above formulas to the form given in Lemmas 3.2, 3.4 and 3.6, respectively. Clearly,
Theorems 3.3, 3.5 and 3.7 follow.

3.5. Calculation of the matrix elements

Without writing down all explicit formulas we shall demonstrate how the matrix elements
of the generators of gn in the basis ξΛ provided by Theorems 3.3, 3.5 and 3.7 can be
calculated. The interested reader is referred to the papers [98–100] for details. We choose
the following generators

Fk−1,−k, Fk−1,k, k = 1, . . . , n,

in the B case,

Fk−1,−k, k = 2, . . . , n, and F−k,k, Fk,−k, k = 1, . . . , n,

in the C case, and

Fk−1,−k, Fk−1,k, k = 2, . . . , n, and F21, F−2,1

in the D case.
In the symplectic case the elements Fkk , Fk,−k , F−k,k commute with the subalgebra gk−1

in U(gk). Therefore, these operators preserve the subspace of gk−1-highest vectors in V (λ).
So, it suffices to compute the action of these operators with k = n in the basis {ξν} of the
space V (λ)+μ ; see Lemma 3.4. For Fnn we immediately get

Fnnξν =
(

2
n∑
i=1

νi −
n∑
i=1

λi −
n−1∑
i=1

μi

)
ξν.

Further, by (3.35)

Zn,−n(γi)ξν = ξν+δi , i = 1, . . . , n.

However,Zn,−n(u) is a polynomial in u2 of degree n−1 with the highest coefficient Fn,−n.
Applying the Lagrange interpolation formula with the interpolation points γi , i = 1, . . . , n,
we obtain

Zn,−n(u)ξν =
n∑
i=1

n∏
a=1, a �=i

u2 − γ 2
a

γ 2
i − γ 2

a

ξν+δi .
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Taking here the coefficient at u2n−2 we get

Fn,−nξν =
n∑
i=1

n∏
a=1, a �=i

1

γ 2
i − γ 2

a

ξν+δi . (3.36)

The action of F−n,n is found in a similar way with the use of Theorem 3.9.
In the orthogonal case the action of Fnn is found in the same way. However, the ele-

ments Fn,−n and F−n,n are zero. We shall use second-order elements of the enveloping
algebra instead. These are given by

Φ−a,a = 1

2

n−1∑
i=−n+1

F−a,iFia

with a ∈ {−n,n}. The elements Φ−a,a commute with the subalgebra gn−1 so that, like in
the symplectic case, they preserve the space V (λ)+μ and their action in the basis {ξν} is
given by formulas similar to those for F−a,a .

The calculation of the matrix elements of the generators Fk−1,−k is similar in all three
cases. We may assume k = n. The operator Fn−1,−n preserves the subspace of gn−2 highest
vectors in V (λ). Consider the symplectic case as an example. Suppose that μ′ is a fixed
gn−2 highest weight, ν′ is an (n− 1)-tuple of integers such that the inequalities (3.13) are
satisfied with λ, ν, μ respectively replaced by μ, ν′, μ′, and set γ ′i = ν′i + ρi + 1/2. It
suffices to calculate the action of Fn−1,−n on the basis vectors of the form

ξνμν′ =Xμν′ξνμ,
where ξνμ = ξν and Xμν′ denotes the operator

Xμν′ =
n−2∏
i=1

z
ν′i−μ′i
n−1,i z

ν′i−μi
n−1,−i ·

γ ′n−1−1∏
a=mn−1

Zn−1,−n+1(a),

where we have used the notation mi = μi + ρi + 1/2. The operator Fn−1,−n is permutable
with the elements zn−1,i and Zn−1,−n+1(u). Hence, we can write

Fn−1,−nξνμν′ =Xμν′Fn−1,−nξνμ.

Now we apply Lemma 3.1. It remains to calculate zniξνμ and Xμν′zn−1,−i . Using the
relations between the elements of the Mickelsson–Zhelobenko algebra Z(gn,gn−1) given
in (3.9), we find that

zniξνμ = ξν,μ−δi
if i > 0. Otherwise, if i =−j with positive j , write

zn,−j ξνμ = zn,−j znj ξν,μ+δj = Zn,−n(mj )ξν,μ+δj , (3.37)
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where we have used the interpolation properties (3.12) of the polynomials Zn,−n(u). Fi-
nally, we use the expression (3.35) of the basis vectors and Theorem 3.9 to present (3.37) as
a linear combination of basis vectors. The same argument applies to calculateXμν′zn−1,−i .

The final formulas for the matrix elements of the generators Fn−1,−n in all the three
cases are given by multiplicative expressions in the entries of the patterns which exhibit
some similarity to the formulas of Theorem 2.3.

In the orthogonal case we also need to find the action of the generators Fn−1,n. Unlike
the case of the generators Fn−1,−n, the corresponding matrix elements will be given by
certain combinations of multiplicative expressions for which it does not seem to be pos-
sible to bring them into a product form. There are two alternative ways to calculate these
combinations which we briefly outline below. First, as in the previous calculation, we can
write

Fn−1,nξνμν′ =Xμν′Fn−1,nξνμ.

Applying again Lemma 3.1, we come to the calculation of zinξνμ. This time the interpola-
tion property of Z−n,−n(u) (see (3.29) and (3.31)) allows us to write, e.g., for i > 0

zinξνμ = zinzniξν,μ+δi = z−n,−iz−i,−nξν,μ+δi = Z−n,−n(mi)ξν,μ+δi .

Now, as Z−n,−n(u) is, up to a multiple, the image of S−n,−n(u) under the homomorphism
Y+(2)→ Z(gn,gn−1), we can express this operator in terms of the Yangian operators
Tab(u) and then apply Theorem 3.9 to calculate its action.

Alternatively, the generator Fn−1,n can be written modulo the left ideal J′ of U′(gn) as

Fn−1,n =Φn−1,−n(2)Φ−n,n −Φ−n,nΦn−1,−n(0), (3.38)

where

Φn−1,−n(u)=
n−1∑

i=−n+1

zn−1,izi,−n
n−1∏

a=−n+1, a �=i

1

fi − fa ·
1

u+ fi + Fnn (3.39)

in the B case, and

Φn−1,−n(u)=
n−1∑

i=−n+1

zn−1,izi,−n
n−1∏

a=−n+1, a �=±i

1

fi − fa ·
1

u+ fi + Fnn (3.40)

in the D case. The action of Φn−1,−n(u) is found exactly as that of Fn−1,−n and the ma-
trix elements have a similar multiplicative form. Note, however, that formula (3.38), re-
garded as an equality of operators acting on V (λ)+, is only valid provided the denominators
in (3.39) or (3.40) do not vanish. Therefore, in order to use (3.38), we first consider V (λ)
with ‘generic’ entries of λ and calculate the matrix elements of Fn−1,n as functions in the
entries of the patterns Λ. The final explicit formulas can be written in a singularity-free
form and they are valid in the general case.



158 A.I. Molev
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The exposition here is based upon the author’s papers [98–100]. Slight changes in the no-
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The branching rules for all classical reductions oN ↓ oN−1 and sp2n ↓ sp2n−2 are due to
Zhelobenko, [167]; see also Hegerfeldt, [58], King, [68], Proctor, [138], Okounkov, [111],
Goodman and Wallach, [45]. The lowering operators for the symplectic Lie algebras were
first constructed by Mickelsson, [91]; see also Bincer, [9]. The explicit relations in the
algebra Z(sp2n, sp2n−2) were calculated by Zhelobenko, [170].

The algebra Y(n) was first studied in the work of Faddeev and the St.-Petersburg
school in relation with the inverse scattering method; see, for instance, Takhtajan and Fad-
deev, [147], Kulish and Sklyanin, [74]. The term “Yangian” was introduced by Drinfeld
in [28]. In that paper he defined the Yangian Y(a) for each simple finite-dimensional Lie
algebra a. Finite-dimensional irreducible representations of Y(a) were classified by Drin-
feld, [29], with the use of a previous work by Tarasov, [148,149]. Theorem 3.9 goes back
to this work of Tarasov; see also [96,110]. The criterion of Theorem 3.8 is due to Chari and
Pressley, [13]. It can also be deduced from the results of [148,149]; see [97]. The twisted
Yangians were introduced by Olshanski, [118]; see also [104]. Their finite-dimensional
irreducible representations were classified in the author’s paper [97] which, in particular,
contains the criteria of Theorems 3.10 and 3.12. For more details on the (twisted) Yangians
and their applications in classical representation theory see the expository papers [104,103]
and the recent work of Nazarov, [107,108], where, in particular, the skew representations
of twisted Yangians were studied.

In some particular cases, bases in V (λ) were constructed, e.g., by Wong and Yeh, [165],
Smirnov and Tolstoy, [143].

Weight bases for the fundamental representations of o2n+1 and sp2n were independently
constructed by Donnelly, [24–26], in a different way. He also demonstrated that these bases
of his coincide with those of Theorems 3.3 and 3.5, up to a diagonal equivalence.

Harada, [57], employed the results of [98] to construct a new integrable (Gelfand–
Tsetlin) system on the coadjoint orbits of the symplectic groups. This provides an analog
of the Guillemin–Sternberg construction, [55], for the unitary groups.

4. Gelfand–Tsetlin bases for representations of oN

In this section we sketch the construction of the bases proposed originally by Gelfand and
Tsetlin in [42]. It is based upon the fact that the restriction oN ↓ oN−1 is multiplicity-
free. This makes the construction similar to the gln case. We shall be applying the general
method of Mickelsson algebras outlined in Section 2.2. In particular, the corresponding
branching rules can be derived from Theorem 2.11; cf. Section 2.3.

It will be convenient to change the notation for the elements of the orthogonal Lie al-
gebra oN used in Section 3. We shall now use the standard enumeration of the rows and
columns of N ×N -matrices by the numbers {1, . . . ,N}. Define an involution of this set of
indices by setting i′ =N − i + 1. The Lie algebra oN is spanned by the elements

Fij =Eij −Ej ′i′ , i, j = 1, . . . ,N. (4.1)
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We shall keep the notation gn for oN with N = 2n+ 1 or N = 2n.
The finite-dimensional irreducible representations of gn are now parametrized by n-

tuples λ= (λ1, . . . , λn) where the numbers λi satisfy the conditions

λi − λi+1 ∈ Z+ for i = 1, . . . , n− 1, (4.2)

and

2λn ∈ Z+ for gn = o2n+1,

λn−1 + λn ∈ Z+ for gn = o2n.
(4.3)

Such an n-tuple λ is called the highest weight of the corresponding representation which
we shall denote by V (λ). It contains a unique, up to a constant factor, nonzero vector ξ
(the highest vector) such that

Fiiξ = λiξ for i = 1, . . . , n,

Fij ξ = 0 for 1 � i < j �N.

4.1. Lowering operators for the reduction o2n+1 ↓ o2n

Taking N = 2n+ 1 in the definition (4.1), we shall consider o2n as the subalgebra of o2n+1

spanned by the elements (4.1) with i, j �= n+ 1. In accordance with the branching rule, the
restriction of V (λ) to the subalgebra o2n is given by

V (λ)|o2n �
⊕
μ

V ′(μ),

where V ′(μ) is the irreducible finite-dimensional representation of o2n with highest
weight μ and the sum is taken over the weights μ satisfying the inequalities

λ1 � μ1 � λ2 � μ2 � · · ·� λn−1 � μn−1 � λn � |μn|, (4.4)

with all the μi being simultaneously integers or half-integers together with the λi .
The elements Fn+1,i span the o2n-invariant complement to o2n in o2n+1. Therefore, by

the general theory of Section 2.2, the Mickelsson–Zhelobenko algebra Z(o2n+1,o2n) is
generated by the elements

pFn+1,i , i = 1, . . . , n, n′, . . . ,1′, (4.5)

where p is the extremal projector for the Lie algebra o2n. Let {ε1, . . . , εn} be the basis
of h∗ dual to the basis {F11, . . . ,Fnn} of the Cartan subalgebra h of o2n. Set εi′ = −εi for
i = 1, . . . , n. Denote by pij the element pα given by (2.13) for the positive root α = εi−εj .
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Choosing an appropriate normal ordering on the positive roots, for any i = 1, . . . , n we can
write the elements (4.5) in the form

pFn+1,i = pi,i+1 · · ·pinpin′ · · ·pi1′Fn+1,i , (4.6)

where the factor pii′ is skipped in the product. Therefore the right denominator of this
fraction is

πi = fi,i+1 · · ·finfin′ · · ·fi1′ ,

where

fij =
{
Fii − Fjj + j − i if j = 1, . . . , n,
Fii − Fjj + j − i − 2 if j = 1′, . . . , n′.

Hence, the elements s′ni = pFn+1,iπi with i = 1, . . . , n belong to the Mickelsson algebra
S(o2n+1,o2n). One can verify that they are pairwise commuting.

Denote by V (λ)+ the subspace of o2n-highest vectors in V (λ). Given a o2n-highest
weight μ = (μ1, . . . ,μn) we denote by V (λ)+μ the corresponding weight subspace
in V (λ)+:

V (λ)+μ =
{
η ∈ V (λ)+ | Fiiη= μiη, i = 1, . . . , n

}
.

By the branching rule, the space V (λ)+μ is one-dimensional if the condition (4.4) is
satisfied. Otherwise, it is zero.

THEOREM 4.1. Suppose that the inequalities (4.4) hold. Then the space V (λ)+μ is spanned
by the vector

s
′λ1−μ1
n1 · · · s′λn−μnnn ξ.

4.2. Lowering operators for the reduction o2n ↓ o2n−1

Taking N = 2n in the definition (4.1), we shall consider o2n−1 as the subalgebra of o2n
spanned by the elements (4.1) with i, j �= n,n′ together with

1√
2
(Fni − Fn′i ), i = 1, . . . , n− 1, (n− 1)′, . . . ,1′.

In accordance with the branching rule, the restriction of V (λ) to the subalgebra o2n−1 is
given by

V (λ)|o2n−1 �
⊕
μ

V ′(μ),
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where V ′(μ) is the irreducible finite-dimensional representation of o2n−1 with the highest
weight μ and the sum is taken over the weights μ satisfying the inequalities

λ1 � μ1 � λ2 � μ2 � · · ·� λn−1 � μn−1 � |λn|, (4.7)

with all the μi being simultaneously integers or half-integers together with the λi .
The elements

Fnn, F ′ni =
1√
2
(Fni + Fn′i ), i = 1, . . . , n− 1, (n− 1)′, . . . ,1′, (4.8)

span the o2n−1-invariant complement to o2n−1 in o2n. Therefore, by the general theory of
Section 2.2, the Mickelsson–Zhelobenko algebra Z(o2n,o2n−1) is generated by the ele-
ments

pFnn, pF ′ni, i = 1, . . . , n− 1, (n− 1)′, . . . ,1′, (4.9)

where p is the extremal projector for the Lie algebra o2n−1. Let {ε1, . . . , εn−1} be the
basis of h∗ dual to the basis {F11, . . . ,Fn−1,n−1} of the Cartan subalgebra h of o2n−1. Set
εi′ = −εi for i = 1, . . . , n− 1. Denote by pij and pi the elements pα given by (2.13) for
the positive roots α = εi − εj and α = εi , respectively. Choosing an appropriate normal
ordering on the positive roots, for any i = 1, . . . , n− 1 we can write the elements (4.9) in
the form

pF ′ni = pi,i+1 · · ·pi,n−1pipi,(n−1)′ · · ·pi1′F ′ni, (4.10)

where the factor pii′ is skipped in the product. Therefore the right denominator of this
fraction is

πi = fi,i+1 · · ·fi,n−1fif
′
i fi,(n−1)′ · · ·fi1′ ,

where

fij =
{
Fii − Fjj + j − i if j = 1, . . . , n− 1,

Fii − Fjj + j − i − 2 if j = 1′, . . . , (n− 1)′

and fi = f ′i − 1 = 2(Fii + n − i). Hence, the elements sni = pF ′niπi with i = 1, . . . ,
n−1 belong to the Mickelsson algebra S(o2n,o2n−1). One can verify that they are pairwise
commuting.

Denote by V (λ)+ the subspace of o2n−1-highest vectors in V (λ). Given a o2n−1-highest
weight μ = (μ1, . . . ,μn−1) we denote by V (λ)+μ the corresponding weight subspace
in V (λ)+:

V (λ)+μ =
{
η ∈ V (λ)+ | Fiiη= μiη, i = 1, . . . , n− 1

}
.

By the branching rule, the space V (λ)+μ is one-dimensional if the condition (4.7) is
satisfied. Otherwise, it is zero.
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THEOREM 4.2. Suppose that the inequalities (4.7) hold. Then the space V (λ)+μ is spanned
by the vector

s
λ1−μ1
n1 · · · sλn−1−μn−1

n,n−1 ξ.

Note that the generator pFnn of the algebra Z(o2n,o2n−1) does not occur in the formula
for the basis vector as it has zero weight with respect to h.

4.3. Basis vectors

The representation V (λ) of the Lie algebra gn = o2n+1 or o2n is equipped with a con-
travariant inner product which is uniquely determined by the conditions

〈ξ, ξ 〉 = 1 and 〈Fiju, v〉 = 〈u,Fjiv〉

for all u,v ∈ V (λ) and any indices i, j .
Combining Theorems 4.1 and 4.2 we can construct another basis for each representa-

tion V (λ) of gn; cf. Section 3.2.

B type case. We need to modify the definition of the B type pattern Λ introduced in
section 3.2. Here Λ is an array of the form

λn1 λn2 · · · λnn

λ′n1 λ′n2 · · · λ′nn
λn−1,1 · · · λn−1,n−1

λ′n−1,1 · · · λ′n−1,n−1

· · · · · ·
λ11

λ′11

such that λ= (λn1, . . . , λnn), the remaining entries are all integers or half-integers together
with the λi , and the following inequalities hold

λk1 � λ′k1 � λk2 � λ′k2 � · · ·� λ′k,k−1 � λkk � |λ′kk|

for k = 1, . . . , n, and

λ′k1 � λk−1,1 � λ′k2 � λk−1,2 � · · ·� λ′k,k−1 � λk−1,k−1 � |λ′kk|

for k = 2, . . . , n.



Gelfand–Tsetlin bases for classical Lie algebras 163

THEOREM 4.3. The vectors

ηΛ = s′λ11−λ′11
11

→∏
k=2,...,n

(
s
′λk1−λ′k1
k1 · · · s′λkk−λ′kkkk s

λ′k1−λk−1,1

k1 · · · sλ
′
k,k−1−λk−1,k−1

k,k−1

)
ξ

parametrized by the patterns Λ form an orthogonal basis of the representation V (λ).

D type case. Here we define the D type patterns Λ as arrays of the form

λn1 λn2 · · · λnn

λ′n−1,1 · · · λ′n−1,n−1

λn−1,1 · · · λn−1,n−1

· · · · · ·
λ′11

λ11

such that λ= (λn1, . . . , λnn), the remaining entries are all integers or half-integers together
with the λi , and the following inequalities hold

λk1 � λ′k−1,1 � λk2 � λ′k−1,2 � · · ·� λk,k−1 � λ′k−1,k−1 � |λkk|

for k = 2, . . . , n, and

λ′k1 � λk1 � λ′k2 � λk2 � · · ·� λk,k−1 � λ′kk � |λkk|

for k = 1, . . . , n− 1.

THEOREM 4.4. The vectors

ηΛ =
→∏

k=1,...,n−1

(
s
λk+1,1−λ′k1
k+1,1 · · · sλk+1,k−λ′kk

k+1,k s
′λ′k1−λk1
k1 · · · s′λ′kk−λkkkk

)
ξ

parametrized by the patterns Λ form an orthogonal basis of the representation V (λ).

The norms of the basis vectors ηΛ can be found in an explicit form. The formulas for the
matrix elements of the generators of the Lie algebra oN in the original paper by Gelfand
and Tsetlin, [42], are given in the orthonormal basis

ζΛ = ηΛ/‖ηΛ‖, ‖ηΛ‖2 = 〈ηΛ,ηΛ〉.
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Bibliographical notes

The exposition of this section follows Zhelobenko, [171]. The branching rules were previ-
ously derived by him in [167]. The lowering operators for the reduction oN ↓ oN−1 were
constructed by Pang and Hecht, [133], and Wong, [164]; see also Mickelsson, [93]. They
are presented in a form similar to (2.9) and (2.10) although more complicated. A deriva-
tion of the matrix element formulas of Gelfand and Tsetlin, [42], was also given in [133]
and [164] which basically follows the approach outlined in Section 2.1. The defining re-
lations for the algebra Z(oN,oN−1) were given in an explicit form by Zhelobenko, [170].
Gould’s approach based upon the characteristic identities of Bracken and Green, [12,54],
for the orthogonal Lie algebras is also applicable; see Gould, [46,47,50]. It produces an
independent derivation of the matrix element formulas. Although the quantum minor ap-
proach has not been developed so far for the Gelfand–Tsetlin basis for the orthogonal Lie
algebras, it seems to be plausible that the corresponding analogs of the results outlined in
Section 2.5 can be obtained.

Analogs of the Gelfand–Tsetlin bases, [42], for representations of a nonstandard de-
formation U′q(oN) of U(oN) were given by Gavrilik and Klimyk, [38], Gavrilik and Ior-
gov, [37], and Iorgov and Klimyk, [62].

The Gelfand–Tsetlin modules over the orthogonal Lie algebras were studied by Ma-
zorchuk, [89], with the use of the matrix element formulas from [42].

Acknowledgements

It gives me pleasure to thank I.M. Gelfand for his comment on the preliminary version of
the chapter. My thanks also extend to V.K. Dobrev, V.M. Futorny, M.D. Gould, M. Harada,
M.L. Nazarov, G.I. Olshanski, S.A. Ovsienko, T.D. Palev, V.S. Retakh, and V.N. Tolstoy
who sent me remarks and references.

References

[1] R.M. Asherova, Yu.F. Smirnov and V.N. Tolstoy, Projection operators for simple Lie groups, Theor. Math.
Phys. 8 (1971), 813–825.

[2] R.M. Asherova, Yu.F. Smirnov and V.N. Tolstoy, Projection operators for simple Lie groups. II. General
scheme for constructing lowering operators. The groups SU(n), Theor. Math. Phys. 15 (1973), 392–401.

[3] R.M. Asherova, Yu.F. Smirnov and V.N. Tolstoy, Description of a certain class of projection operators for
complex semisimple Lie algebras, Math. Notes 26 (1–2) (1979), 499–504.

[4] G.E. Baird and L.C. Biedenharn, On the representations of the semisimple Lie groups. II, J. Math. Phys. 4
(1963), 1449–1466.

[5] A.O. Barut and R. Ra̧czka, Theory of Group Representations and Applications, 2nd ed., World Scientific
(1986).

[6] A. Berele, Construction of Sp-modules by tableaux, Linear and Multilinear Algebra 19 (1986), 299–307.
[7] A.D. Berenstein and A.V. Zelevinsky, Involutions on Gel’fand–Tsetlin schemes and multiplicities in skew

GLn-modules, Soviet Math. Dokl. 37 (1988), 799–802.
[8] L.C. Biedenharn and J.D. Louck, Angular Momentum in Quantum Physics: Theory and Application,

Addison-Wesley (1981).



Gelfand–Tsetlin bases for classical Lie algebras 165

[9] A. Bincer, Missing label operators in the reduction Sp(2n) ↓ Sp(2n− 2), J. Math. Phys. 21 (1980), 671–
674.

[10] A. Bincer, Mickelsson lowering operators for the symplectic group, J. Math. Phys. 23 (1982), 347–349.
[11] N. Bourbaki, Groupes et algèbres de Lie, Chapitres 4, 5 et 6, Hermann (1968).
[12] A.J. Bracken and H.S. Green, Vector operators and a polynomial identity for SO(n), J. Math. Phys. 12

(1971), 2099–2106.
[13] V. Chari and A. Pressley, Yangians and R-matrices, Enseign. Math. 36 (1990), 267–302.
[14] V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press (1994).
[15] V. Chari and N. Xi, Monomial bases of quantized enveloping algebras, Recent Developments in Quantum

Affine Algebras and Related Topics, Raleigh, NC, 1998, Contemp. Math. 248, Amer. Math. Soc. (1999),
69–81.

[16] I.V. Cherednik, A new interpretation of Gelfand–Tzetlin bases, Duke Math. J. 54 (1987), 563–577.
[17] I.V. Cherednik, Quantum groups as hidden symmetries of classic representation theory, Differential Geo-

metric Methods in Physics, A.I. Solomon (ed.), World Scientific (1989), 47–54.
[18] C. De Concini and D. Kazhdan, Special bases for SN and GL(n), Israel J. Math. 40 (1981), 275–290.
[19] J. Dixmier, Algèbres enveloppantes, Gauthier-Villars (1974).
[20] V.K. Dobrev and P. Truini, Irregular Uq(sl(3)) representations at roots of unity via Gelfand–(Weyl)–Zetlin

basis, J. Math. Phys. 38 (1997), 2631–2651.
[21] V.K. Dobrev and P. Truini, Polynomial realization of the Uq(sl(3)) Gelfand–(Weyl)–Zetlin basis, J. Math.

Phys. 38 (1997), 3750–3767.
[22] V.K. Dobrev, A.D. Mitov and P. Truini, Normalized Uq(sl(3)) Gelfand–(Weyl)–Zetlin basis and new sum-

mation formulas for q-hypergeometric functions, J. Math. Phys. 41 (2000), 7752–7768.
[23] R.G. Donnelly, Symplectic analogs of the distributive lattices L(m,n), J. Combin. Theory Ser. A 88

(1999), 217–234.
[24] R.G. Donnelly, Explicit constructions of the fundamental representations of the symplectic Lie algebras,

J. Algebra 233 (2000), 37–64.
[25] R.G. Donnelly, Explicit constructions of the fundamental representations of the odd orthogonal Lie alge-

bras, to appear.
[26] R.G. Donnelly, Extremal properties of bases for representations of semisimple Lie algebras, J. Algebraic

Combin. 17 (2003), 255–282.
[27] R.G. Donnelly, S.J. Lewis and R. Pervine, Constructions of representations of o(2n + 1,C) that imply

Molev and Reiner–Stanton lattices are strongly Sperner, Discrete Math. 263 (2003), 61–79.
[28] V.G. Drinfeld, Hopf algebras and the quantum Yang–Baxter equation, Soviet Math. Dokl. 32 (1985), 254–

258.
[29] V.G. Drinfeld, A new realization of Yangians and quantized affine algebras, Soviet Math. Dokl. 36 (1988),

212–216.
[30] V.G. Drinfeld, Quantum groups, Proc. Int. Congress Math., Berkeley, 1986, Amer. Math. Soc. (1987),

798–820.
[31] Yu.A. Drozd, V.M. Futorny and S.A. Ovsienko, Irreducible weighted sl(3)-modules, Funct. Anal. Appl.

23 (1989), 217–218.
[32] Yu.A. Drozd, V.M. Futorny and S.A. Ovsienko, On Gel’fand–Zetlin modules, Proceedings of the Winter

School on Geometry and Physics, Srní, 1990, Rend. Circ. Mat. Palermo (2) 26 (Suppl.) (1991), 143–147.
[33] Yu.A. Drozd, V.M. Futorny and S.A. Ovsienko, Gelfand–Zetlin modules over Lie algebra sl(3), Contemp.

Math. 131 (1992), 23–29.
[34] Yu.A. Drozd, V.M. Futorny and S.A. Ovsienko, Harish-Chandra subalgebras and Gel’fand–Zetlin mod-

ules, Finite-Dimensional Algebras and Related Topics, Ottawa, ON, 1992, NATO Adv. Sci. Inst. Ser. C
Math. Phys. Sci. 424, Kluwer Acad. Publ. (1994), 79–93.

[35] J. Du, Canonical bases for irreducible representations of quantum GLn, Bull. London Math. Soc. 24
(1992), 325–334.

[36] J. Du, Canonical bases for irreducible representations of quantum GLn II, J. London Math. Soc. 51 (1995),
461–470.

[37] A.M. Gavrilik and N.Z. Iorgov, q-deformed algebras Uq(son) and their representations, Methods Funct.
Anal. Topology 3 (1997), 51–63.



166 A.I. Molev

[38] A.M. Gavrilik and A.U. Klimyk, q-deformed orthogonal and pseudo-orthogonal algebras and their rep-
resentations, Lett. Math. Phys. 21 (1991), 215–220.

[39] I.M. Gelfand and M.I. Graev, Finite-dimensional irreducible representations of the unitary and the full
linear groups, and related special functions, Izv. Akad. Nauk SSSR, Ser. Mat. 29 (1965), 1329–1356
(Russian). English transl. I.M. Gelfand, Collected Papers, Vol. II, Springer-Verlag (1988), 662–692.

[40] I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V.S. Retakh and J.-Y. Thibon, Noncommutative symmetric
functions, Adv. Math. 112 (1995), 218–348.

[41] I.M. Gelfand and M.L. Tsetlin, Finite-dimensional representations of the group of unimodular matrices,
Dokl. Akad. Nauk SSSR 71 (1950), 825–828 (Russian). English transl. I.M. Gelfand, Collected Papers,
Vol. II, Springer-Verlag (1988), 653–656.

[42] I.M. Gelfand and M.L. Tsetlin, Finite-dimensional representations of groups of orthogonal matrices, Dokl.
Akad. Nauk SSSR 71 (1950), 1017–1020 (Russian). English transl. I.M. Gelfand, Collected Papers, Vol. II,
Springer-Verlag (1988), 657–661.

[43] I.M. Gelfand and A. Zelevinsky, Models of representations of classical groups and their hidden symme-
tries, Funct. Anal. Appl. 18 (1984), 183–198.

[44] I.M. Gelfand and A. Zelevinsky, Multiplicities and proper bases for gln, Group Theoretical Methods in
Physics, Vol. II, Yurmala, 1985, VNU Sci. Press (1986), 147–159.

[45] R. Goodman and N.R. Wallach, Representations and Invariants of the Classical Groups, Cambridge Univ.
Press (1998).

[46] M.D. Gould, The characteristic identities and reduced matrix elements of the unitary and orthogonal
groups, J. Austral. Math. Soc. B 20 (1978), 401–433.

[47] M.D. Gould, On an infinitesimal approach to semisimple Lie groups and raising and lowering operators
of O(n) and U(n), J. Math. Phys. 21 (1980), 444–453.

[48] M.D. Gould, On the matrix elements of the U(n) generators, J. Math. Phys. 22 (1981), 15–22.
[49] M.D. Gould, General U(N) raising and lowering operators, J. Math. Phys. 22 (1981), 267–270.
[50] M.D. Gould, Wigner coefficients for a semisimple Lie group and the matrix elements of the O(n) genera-

tors, J. Math. Phys. 22 (1981), 2376–2388.
[51] M.D. Gould, Representation theory of the symplectic groups I, J. Math. Phys. 30 (1989), 1205–1218.
[52] M.D. Gould and L.C. Biedenharn, The pattern calculus for tensor operators in quantum groups, J. Math.

Phys. 33 (1992), 3613–3635.
[53] M.D. Gould and E.G. Kalnins, A projection-based solution to the Sp(2n) state labeling problem, J. Math.

Phys. 26 (1985), 1446–1457.
[54] H.S. Green, Characteristic identities for generators of GL(n), O(n) and Sp(n), J. Math. Phys. 12 (1971),

2106–2113.
[55] V. Guillemin and S. Sternberg, The Gelfand–Cetlin system and quantization of the complex flag manifolds,

J. Funct. Anal. 52 (1983), 106–128.
[56] T. Halverson and A. Ram, Characters of algebras containing a Jones basic construction: the Temperley–

Lieb, Okada, Brauer, and Birman–Wenzl algebras, Adv. Math. 116 (1995), 263–321.
[57] M. Harada, The symplectic geometry of the Gel’fand–Cetlin–Molev basis for representations of Sp(2n,C),

Preprint math.SG/0404485.
[58] G.C. Hegerfeldt, Branching theorem for the symplectic groups, J. Math. Phys. 8 (1967), 1195–1196.
[59] Hou Pei-yu, Orthonormal bases and infinitesimal operators of the irreducible representations of group Un ,

Sci. Sinica 15 (1966), 763–772.
[60] R. Howe and T. Umeda, The Capelli identity, the double commutant theorem, and multiplicity-free actions,

Math. Ann. 290 (1991), 569–619.
[61] J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Math. 9,

Springer (1972).
[62] N.Z. Iorgov and A.U. Klimyk, The nonstandard deformation U ′q (son) for q a root of unity, Methods Funct.

Anal. Topology 6 (2000), 56–71.
[63] G. James and A. Kerber, The Representation Theory of the Symmetric Group, Addison-Wesley (1981).
[64] M. Jimbo, A q-difference analogue of U(g) and the Yang–Baxter equation, Lett. Math. Phys. 10 (1985),

63–69.
[65] M. Jimbo, Quantum R-matrix for the generalized Toda system, Comm. Math. Phys. 102 (1986), 537–547.



Gelfand–Tsetlin bases for classical Lie algebras 167

[66] M. Kashiwara, Crystallizing the q-analogue of universal enveloping algebras, Comm. Math. Phys. 133
(1990), 249–260.

[67] S.M. Khoroshkin and V.N. Tolstoy, Extremal projector and universalR-matrix for quantum contragredient
Lie (super)algebras, Quantum Group and Related Topics, Wrocław, 1991, Math. Phys. Stud. 13, Kluwer
Acad. Publ. (1992), 23–32.

[68] R.C. King, Weight multiplicities for the classical groups, Group Theoretical Methods in Physics, Fourth
Internat. Colloq., Nijmegen, 1975, Lecture Notes in Phys. 50, Springer (1976), 490–499.

[69] R.C. King and N.G.I. El-Sharkaway, Standard Young tableaux and weight multiplicities of the classical
Lie groups, J. Phys. A 16 (1983), 3153–3177.

[70] R.C. King and T.A. Welsh, Construction of orthogonal group modules using tableaux, Linear and Multi-
linear Algebra 33 (1993), 251–283.

[71] A.A. Kirillov, A remark on the Gelfand–Tsetlin patterns for symplectic groups, J. Geom. Phys. 5 (1988),
473–482.

[72] A.N. Kirillov and A.D. Berenstein, Groups generated by involutions, Gel’fand–Tsetlin patterns, and com-
binatorics of Young tableaux, St. Petersburg Math. J. 7 (1996), 77–127.

[73] K. Koike and I. Terada, Young-diagrammatic methods for the representation theory of the classical groups
of type Bn, Cn, Dn, J. Algebra 107 (1987), 466–511.

[74] P.P. Kulish and E.K. Sklyanin, Quantum spectral transform method: recent developments, Integrable
Quantum Field Theories, Lecture Notes in Phys. 151, Springer (1982), 61–119.

[75] V. Lakshmibai, C. Musili and C.S. Seshadri, Geometry ofG/P . IV. Standard monomial theory for classical
types, Proc. Indian Acad. Sci. Sect. A Math. Sci. 88 (1979), 279–362.

[76] B. Leclerc and P. Toffin, A simple algorithm for computing the global crystal basis of an irreducible
Uq(sln)-module, Internat. J. Alg. Comput. 10 (2000), 191–208.

[77] C. Lecouvey, An algorithm for computing the global basis of a finite dimensional irreducible Uq(so2n+1)

or Uq(so2n)-module, Comm. Algebra 32 (2004), 1969–1996.
[78] C. Lecouvey, An algorithm for computing the global basis of an irreducible Uq(sp2n)-module, Adv. in

Appl. Math. 29 (2002), 46–78.
[79] R. Leduc and A. Ram, A ribbon Hopf algebra approach to the irreducible representations of centralizer

algebras: the Brauer, Birman–Wenzl, and type A Iwahori–Hecke algebras, Adv. Math. 125 (1997), 1–94.
[80] F. Lemire and J. Patera, Formal analytic continuation of Gelfand’s finite-dimensional representations

of gl(n,C), J. Math. Phys. 20 (1979), 820–829.
[81] P. Littelmann, An algorithm to compute bases and representation matrices for SLn+1-representations,

J. Pure Appl. Algebra 117/118 (1997), 447–468.
[82] P. Littelmann, Cones, crystals, and patterns, Transformation Groups 3 (1998), 145–179.
[83] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990),

447–498.
[84] I.G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford Univ. Press (1995).
[85] O. Mathieu, Good bases for G-modules, Geom. Dedicata 36 (1990), 51–66.
[86] O. Mathieu, Bases des représentations des groupes simples complexes (d’après Kashiwara, Lusztig, Ringel

et al.), Sémin. Bourbaki, Vol. 1990/91, Astérisque 201–203, Exp. no. 743 (1992), 421–442.
[87] V. Mazorchuk, Generalized Verma Modules, Mathematical Studies Monograph Series 8, VNTL Publish-

ers, L’viv (2000).
[88] V. Mazorchuk, On categories of Gelfand–Zetlin modules, Noncommutative Structures in Mathematics and

Physics, Kiev, 2000, NATO Sci. Ser. II Math. Phys. Chem. 22, Kluwer Acad. Publ. (2001), 299–307.
[89] V. Mazorchuk, On Gelfand–Zetlin modules over orthogonal Lie algebras, Algebra Colloq. 8 (2001), 345–

360.
[90] V. Mazorchuk and L. Turowska, On Gelfand–Zetlin modules over Uq(gln), Quantum Groups and Inte-

grable Systems, Prague, 1999, Czechoslovak J. Phys. 50 (2000), 139–144.
[91] J. Mickelsson, Lowering operators and the symplectic group, Rep. Math. Phys. 3 (1972), 193–199.
[92] J. Mickelsson, Step algebras of semi-simple subalgebras of Lie algebras, Rep. Math. Phys. 4 (1973), 307–

318.
[93] J. Mickelsson, Lowering operators for the reduction U(n) ↓ SO(n), Rep. Math. Phys. 4 (1973), 319–332.
[94] A.I. Molev, Gelfand–Tsetlin basis for irreducible unitarizable highest weight representations of u(p,q),

Funct. Anal. Appl. 23 (1990), 236–238.



168 A.I. Molev

[95] A.I. Molev, Unitarizability of some Enright–Varadarajan u(p,q)-modules, Topics in Representation The-
ory, A.A. Kirillov (ed.), Advances in Soviet Math. 2, Amer. Math. Soc. (1991), 199–219.

[96] A.I. Molev, Gelfand–Tsetlin basis for representations of Yangians, Lett. Math. Phys. 30 (1994), 53–60.
[97] A.I. Molev, Finite-dimensional irreducible representations of twisted Yangians, J. Math. Phys. 39 (1998),

5559–5600.
[98] A.I. Molev, A basis for representations of symplectic Lie algebras, Comm. Math. Phys. 201 (1999), 591–

618.
[99] A.I. Molev, A weight basis for representations of even orthogonal Lie algebras, Combinatorial Methods

in Representation Theory, Adv. Studies in Pure Math. 28 (2000), 223–242.
[100] A.I. Molev, Weight bases of Gelfand–Tsetlin type for representations of classical Lie algebras, J. Phys. A:

Math. Gen. 33 (2000), 4143–4168.
[101] A.I. Molev, Yangians and transvector algebras, Discrete Math. 246 (2002), 231–253.
[102] A.I. Molev, Irreducibility criterion for tensor products of Yangian evaluation modules, Duke Math. J. 112

(2002), 307–341.
[103] A.I. Molev, Yangians and their applications, Handbook of Algebra, Vol. 3, M. Hazewinkel (ed.), Elsevier

(2003), 907–960.
[104] A. Molev, M. Nazarov and G. Olshanski, Yangians and classical Lie algebras, Russian Math. Surveys 51

(2) (1996), 205–282.
[105] A. Molev and G. Olshanski, Centralizer construction for twisted Yangians, Selecta Math. (N.S.) 6 (2000),

269–317.
[106] J.G. Nagel and M. Moshinsky, Operators that lower or raise the irreducible vector spaces of Un−1 con-

tained in an irreducible vector space of Un , J. Math. Phys. 6 (1965), 682–694.
[107] M. Nazarov, Representations of twisted Yangians associated with skew Young diagrams, Selecta Math.

(N.S.) 10 (2004), 71–129.
[108] M. Nazarov, Representations of Yangians associated with skew Young diagrams, Proceeding of the ICM-

2002, Vol. II, 643–654.
[109] M. Nazarov and V. Tarasov, Yangians and Gelfand–Zetlin bases, Publ. RIMS, Kyoto Univ. 30 (1994),

459–478.
[110] M. Nazarov and V. Tarasov, Representations of Yangians with Gelfand–Zetlin bases, J. Reine Angew.

Math. 496 (1998), 181–212.
[111] A. Okounkov, Multiplicities and Newton polytopes, Kirillov’s Seminar on Representation Theory, G. Ol-

shanski (ed.), Amer. Math. Soc. Transl. 181, Amer. Math. Soc. (1998), 231–244.
[112] A. Okounkov and A. Vershik, A new approach to representation theory of symmetric groups, Selecta Math.

(N.S.) 2 (1996), 581–605.
[113] G.I. Olshanski, Description of unitary representations with highest weight for the groups U(p,q)∼ , Funct.

Anal. Appl. 14 (1981), 190–200.
[114] G.I. Olshanski, Extension of the algebra U(g) for infinite-dimensional classical Lie algebras g, and the

Yangians Y (gl(m)), Soviet Math. Dokl. 36 (1988), 569–573.
[115] G.I. Olshanski, Irreducible unitary representations of the groups U(p,q) sustaining passage to the limit

as q→∞, Zapiski Nauchn. Semin. LOMI 172 (1989), 114–120 (Russian). English transl. J. Soviet Math.
59 (1992), 1102–1107.

[116] G.I. Olshanski, Yangians and universal enveloping algebras, J. Soviet Math. 47 (1989), 2466–2473.
[117] G.I. Olshanski, Representations of infinite-dimensional classical groups, limits of enveloping algebras,

and Yangians, Topics in Representation Theory, A.A. Kirillov (ed.), Advances in Soviet Math. 2, Amer.
Math. Soc. (1991), 1–66.

[118] G. Olshanski, Twisted Yangians and infinite-dimensional classical Lie algebras, Quantum Groups,
P.P. Kulish (ed.), Lecture Notes in Math. 1510, Springer (1992), 103–120.

[119] U. Ottoson, A classification of the unitary irreducible representations of SO0(N,1), Comm. Math. Phys.
8 (1968), 228–244.

[120] U. Ottoson, A classification of the unitary irreducible representations of SU(N,1), Comm. Math. Phys.
10 (1968), 114–131.

[121] S. Ovsienko, Finiteness statements for Gelfand–Tsetlin modules, Algebraic Structures and their Applica-
tions, Math. Inst., Kiev (2002).



Gelfand–Tsetlin bases for classical Lie algebras 169

[122] T.D. Palev, Finite-dimensional representations of the special linear Lie superalgebra sl(1|n) I. Typical
representations, J. Math. Phys. 28 (1987), 2280–2303.

[123] T.D. Palev, Finite-dimensional representations of the special linear Lie superalgebra sl(1|n) II. Nontypical
representations, J. Math. Phys. 29 (1988), 2589–2598.

[124] T.D. Palev, Irreducible finite-dimensional representations of the Lie superalgebra gl(n|1) in a Gel’fand–
Zetlin basis, J. Math. Phys. 30 (1989), 1433–1442.

[125] T.D. Palev, Essentially typical representations of the Lie superalgebras gl(n/m) in a Gel’fand–Zetlin
basis, Funct. Anal. Appl. 23 (1989), 141–142.

[126] T.D. Palev, Highest weight irreducible unitary representations of the Lie algebras of infinite matrices I.
The algebra gl(∞), J. Math. Phys. 31 (1990), 579–586.

[127] T.D. Palev, Highest weight irreducible unitarizable representations of the Lie algebras of infinite matrices.
The algebra A∞ , J. Math. Phys. 31 (1990), 1078–1084.

[128] T.D. Palev and N.I. Stoilova, Highest weight representations of the quantum algebra Uh(gl∞), J. Phys. A
30 (1997), L699–L705.

[129] T.D. Palev and N.I. Stoilova, Highest weight irreducible representations of the quantum algebra Uh(A∞),
J. Math. Phys. 39 (1998), 5832–5849.

[130] T.D. Palev and N.I. Stoilova, Highest weight irreducible representations of the Lie superalgebra gl(1|∞),
J. Math. Phys. 40 (1999), 1574–1594.

[131] T.D. Palev, N.I. Stoilova and J. van der Jeugt, Finite-dimensional representations of the quantum superal-
gebra Uq [gl(n/m)] and related q-identities, Comm. Math. Phys. 166 (1994), 367–378.

[132] T.D. Palev and V.N. Tolstoy, Finite-dimensional irreducible representations of the quantum superalgebra
Uq [gl(n/1)], Comm. Math. Phys. 141 (1991), 549–558.

[133] S.C. Pang and K.T. Hecht, Lowering and raising operators for the orthogonal group in the chain O(n)⊃
O(n− 1)⊃ · · ·, and their graphs, J. Math. Phys. 8 (1967), 1233–1251.

[134] R. Proctor, Representations of sl(2,C) on posets and the Sperner property, SIAM J. Algebraic Discrete
Methods 3 (1982), 275–280.

[135] R. Proctor, Bruhat lattices, plane partition generating functions, and minuscule representations, European
J. Combin. 5 (1984), 331–350.

[136] R. Proctor, Odd symplectic groups, Invent. Math. 92 (1988), 307–332.
[137] R. Proctor, Solution of a Sperner conjecture of Stanley with a construction of Gel’fand, J. Combin. Theory

Ser. A 54 (1990), 225–234.
[138] R. Proctor, Young tableaux, Gelfand patterns, and branching rules for classical groups, J. Algebra 164

(1994), 299–360.
[139] A. Ram, Seminormal representations of Weyl groups and Iwahori–Hecke algebras, Proc. London Math.

Soc. 75 (1997), 99–133.
[140] V. Retakh and A. Zelevinsky, Base affine space and canonical basis in irreducible representations of Sp(4),

Dokl. Akad. Nauk USSR 300 (1988), 31–35.
[141] B.E. Sagan, The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric Functions,

2nd ed., Graduate Texts in Math. 203, Springer-Verlag (2001).
[142] V.V. Shtepin, Intermediate Lie algebras and their finite-dimensional representations, Russian Akad. Sci.

Izv. Math. 43 (1994), 559–579.
[143] Yu.F. Smirnov and V.N. Tolstoy, A new projected basis in the theory of five-dimensional quasi-spin, Rep.

Math. Phys. 4 (1973), 97–111.
[144] D.T. Sviridov, Yu.F. Smirnov and V.N. Tolstoy, The construction of the wave functions for quantum systems

with the G2 symmetry, Dokl. Akad. Nauk SSSR 206 (1972), 1317–1320 (Russian).
[145] D.T. Sviridov, Yu.F. Smirnov and V.N. Tolstoy, On the structure of the irreducible representation basis for

the exceptional group G2, Rep. Math. Phys. 7 (1975), 349–361.
[146] J.R. Stembridge, On minuscule representations, plane partitions and involutions in complex Lie groups,

Duke Math. J. 73 (1994), 469–490.
[147] L.A. Takhtajan and L.D. Faddeev, Quantum inverse scattering method and the Heisenberg XYZ-model,

Russian Math. Surveys 34 (1979), 11–68.
[148] V.O. Tarasov, Structure of quantum L-operators for the R-matrix of the XXZ-model, Theor. Math. Phys.

61 (1984), 1065–1071.



170 A.I. Molev

[149] V.O. Tarasov, Irreducible monodromy matrices for the R-matrix of the XXZ-model and lattice local
quantum Hamiltonians, Theor. Math. Phys. 63 (1985), 440–454.

[150] V.N. Tolstoy, Extremal projectors for reductive classical Lie superalgebras with non-degenerate general-
ized Killing form, Uspekhi Mat. Nauk 40 (1985), 225–226 (Russian).

[151] V.N. Tolstoy, Extremal projectors for contragredient Lie algebras and superalgebras of finite growth,
Russian Math. Surveys 44 (1989), 257–258.

[152] V.N. Tolstoy, Extremal projectors and reduction superalgebras over Lie superalgebras, Group Theoretical
Methods in Physics, Vol. 2, M.A. Markov (ed.), Nauka (1986), 46–55 (Russian).

[153] V.N. Tolstoy, Extremal projectors for quantized Kac–Moody superalgebras and some of their applications,
Quantum Groups, Clausthal, 1989, Lecture Notes in Phys. 370, Springer (1990), 118–125.

[154] V.N. Tolstoy, Projection operator method for quantum groups, Special Functions 2000: Current Perspec-
tive and Future Directions, Proceedings of the NATO Advance Study Institute, J. Bustoz, M.E.H. Ismail
and S.K. Suslov (eds), NATO Sci. Series II 30, Kluwer Acad. Publ. (2001), 457–488.

[155] V.N. Tolstoy and J.P. Draayer, New approach in theory of Clebsch–Gordan coefficients for u(n)
and Uq(u(n)), Czech J. Phys. 50 (2000), 1359–1370.

[156] V.N. Tolstoy, I.F. Istomina and Yu.F. Smirnov, The Gel’fand–Tseı̆tlin basis for the Lie superalge-
bra gl(n/m), Group Theoretical Methods in Physics, Vol. I, Yurmala, 1985, VNU Sci. Press (1986),
337–348.

[157] K. Ueno, T. Takebayashi and Y. Shibukawa, Gelfand–Zetlin basis for Uq(gl(N + 1))-modules, Lett. Math.
Phys. 18 (1989), 215–221.

[158] A. van den Hombergh, A note on Mickelsson’s step algebra, Indag. Math. 37 (1975), 42–47.
[159] H. Weyl, Classical Groups, their Invariants and Representations, Princeton Univ. Press (1946).
[160] N.J. Wildberger, A combinatorial construction for simply-laced Lie algebras, Adv. in Appl. Math. 30

(2003), 385–396.
[161] N.J. Wildberger, A combinatorial construction of G2, J. Lie Theory 13 (2003), 155–165.
[162] N.J. Wildberger, Minuscule posets from neighbourly graph sequences, European J. Combin. 24 (6) (2003),

741–757.
[163] N.J. Wildberger, Quarks, diamonds and representations of sl(3), to appear.
[164] M.K.F. Wong, Representations of the orthogonal group I. Lowering and raising operators of the orthogo-

nal group and matrix elements of the generators, J. Math. Phys. 8 (1967), 1899–1911.
[165] M.K.F. Wong and H.-Y. Yeh, The most degenerate irreducible representations of the symplectic group,

J. Math. Phys. 21 (1980), 630–635.
[166] N. Xi, Special bases of irreducible modules of the quantized universal enveloping algebra Uv(gl(n)),

J. Algebra 154 (1993), 377–386.
[167] D.P. Zhelobenko, The classical groups. Spectral analysis of their finite-dimensional representations,

Russian Math. Surveys 17 (1962), 1–94.
[168] D.P. Želobenko, Compact Lie Groups and their Representations, Transl. Math. Monographs 40, Amer.

Math. Soc. (1973).
[169] D.P. Zhelobenko, S-algebras and Verma modules over reductive Lie algebras, Soviet Math. Dokl. 28

(1983), 696–700.
[170] D.P. Zhelobenko, Z-algebras over reductive Lie algebras, Soviet Math. Dokl. 28 (1983), 777–781.
[171] D.P. Zhelobenko, On Gelfand–Zetlin bases for classical Lie algebras, Representations of Lie Groups and

Lie Algebras, A.A. Kirillov (ed.), Akademiai Kiado (1985), 79–106.
[172] D.P. Zhelobenko, Extremal projectors and generalized Mickelsson algebras on reductive Lie algebras,

Math. USSR-Izv. 33 (1989), 85–100.
[173] D.P. Zhelobenko, An introduction to the theory of S-algebras over reductive Lie algebras, Representations

of Lie Groups and Related Topics, A.M. Vershik and D.P. Zhelobenko (eds), Adv. Studies in Contemp.
Math. 7, Gordon and Breach Science Publishers (1990), 155–221.

[174] D.P. Zhelobenko, Representations of Reductive Lie Algebras, Nauka (1994) (Russian).



Section 4H
Rings and Algebras

with Additional Structure



This page intentionally left blank



Hopf Algebras

Miriam Cohen1

Department of Mathematics, Ben Gurion University of the Negev, Beer Sheva, Israel
E-mail: mia@cs.bgu.ac.il

Shlomo Gelaki2

Faculty of Mathematics, Technion, Haifa, Israel
E-mail: gelaki@tx.technion.ac.il

Sara Westreich
Interdisciplinary Department of the Social Sciences, Bar-Ilan University, Ramat-Gan, Israel

E-mail: swestric@mail.biu.ac.il

Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Part 1. Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
1.1. Coalgebras and comodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
1.2. Hopf algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Definitions and basic examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
The finite dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

1.3. Modules and comodules for Hopf algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
1.4. Normal Hopf subalgebras, quotients and extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
1.5. Special Hopf algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
1.6. Twisting in Hopf algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
1.7. Constructing new Hopf algebras from known ones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Part 2. Fundamental theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
2.1. The fundamental theorem for Hopf modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
2.2. Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
2.3. Maschke’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
2.4. The antipode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
2.5. The Nichols–Zoeller theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
2.6. Kac–Zhu theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

1This research was supported by a grant from the United States–Israel Binational Science Foundation (BSF),
Jerusalem, Israel.
2This research was supported by The Israel Science Foundation founded by the Israel Academy of Sciences and
Humanities.

HANDBOOK OF ALGEBRA, VOL. 4
Edited by M. Hazewinkel
© 2006 Published by Elsevier B.V.

173



174 M. Cohen et al.

Part 3. Actions and coactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
3.1. Smash products, crossed products and invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
3.2. Galois extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
3.3. Duality theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
3.4. Analogues of two theorems of E. Noether; inner and outer actions . . . . . . . . . . . . . . . . . . . . 205
Part 4. Categories of representations of Hopf algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
4.1. Rigid tensor categories and Hopf algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
4.2. The FRT construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
4.3. Yetter–Drinfeld categories and the Drinfeld double . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

The Drinfeld double . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
4.4. Hopf algebras in braided categories, biproducts and bosonizations . . . . . . . . . . . . . . . . . . . . 218
Part 5. Structure theory for special classes of Hopf algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 221
5.1. Semisimple Hopf algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

The square of the antipode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Character theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Semisimple triangular Hopf algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Results for special dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
The exponent and the Schur indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Hopf algebras with positive bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

5.2. Pointed Hopf algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
The order of S2 for pointed Hopf algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Hopf algebras of rooted trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Related structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231



Hopf algebras 175

Introduction

Hopf algebras became an object of study from an algebraic standpoint only in the late
1960s. It soon became evident that applications of this theory are abundant in a wide variety
of fields. These applications range from topology, knot theory, algebraic geometry, C∗-
algebras and combinatorics to statistical mechanics, quantum field theory, language theory
in computer science, robotics, telecommunications and even chemistry.

The basic idea was developed in the work of H. Hopf, [108], on topological groups.
The (co)homology of such groups form what is now termed: graded Hopf algebras. Al-
gebraic properties of such Hopf algebras were first studied in Milnor and Moore’s [163]
fundamental work in the mid 60s.

Let us start by introducing an operation termed “comultiplication” which Hopf algebras
are endowed with and which are their main novelty. Comultiplication is in a sense going
into the “opposite” direction of multiplication. When multiplying, one takes a pair of ele-
ments and gets a single element, while when comultiplying one starts with a single element
which “opens up” to a sum of pairs.

Explicitly, if (A,μ,1) is an algebra over the base field k then 1 can be considered as a
map 1 : k→A satisfying μ ◦ (1⊗ id)= id and the multiplication μ :A⊗A→A satisfies
associativity. Dualizing this: A coalgebra (C,Δ, ε) has a counit ε satisfying (ε⊗ id)◦Δ=
id and a comultiplication Δ :C→ C ⊗C which is coassociative, namely, (Δ⊗ id) ◦Δ=
(id⊗Δ) ◦Δ. What coassociativity means is that after “opening up” C for the first time,
one can either “open up” the left or the right tensorands and get the same result.

A bialgebra is an algebra over k which is also a coalgebra such that Δ and ε are multi-
plicative. A Hopf algebra is a bialgebra with an additional special map called the antipode.

The special way in which coalgebras or better yet Hopf algebras arise in the study of the
variety of fields is best displayed in combinatorics, where these notions serve as a valu-
able formal framework. The coproduct displays all ways of decomposing a structure into
appropriate parts, while the antipode replaces the role usually played by Möbius inversion.

There are two basic examples of Hopf algebras. The group algebra kG of a group G,
where Δ is the diagonal map g �→ g ⊗ g, ε(g) = 1 and S(g) = g−1 for all g ∈ G. The
second example is U(g), the enveloping algebra of a Lie algebra g where Δ(x)= x ⊗ 1+
1⊗ x, ε(x)= 0 and S(x)=−x for each x ∈ g and extend these maps to U(g).

A geometrical motivation for the definition of a Hopf algebra is the following. LetG be a
finite group and let k be any field. Consider the k-vector spaceH := Fun(G) of all k-valued
functions onG. ThenH , equipped with the pointwise multiplication, is a commutative and
associative algebra with unit 1 (the function which assigns the value 1 ∈ k to every g ∈G).
Note that the multiplication and unit inH can be regarded as k-linear mapsμ :H⊗H →H

and η : k→H

μ(α⊗ β)(g) := α(g)β(g) and η(a) := a1.

The multiplication in G gives rise to a comultiplication map on H :

Δ :H →H ⊗H, Δ(α)(g,h)= α(gh)
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(here we identify Fun(G×G) with H ⊗H , which is allowed since G is finite). Since the
multiplication in G is associative, one sees easily that Δ is coassociative. Note also that Δ
is an algebra homomorphism.

Second, the unit element e ∈G gives rise to a counit map on H :

ε :H → k, ε(α)= α(e).

Note that ε is an algebra homomorphism.
Finally, the inverse operation in G gives rise to an antipode map on H :

S :H →H, S(α)(g)= α(g−1).
The axioms of the inverse operation in G translate to

(S ⊗ id) ◦Δ= η ◦ ε = (id⊗S) ◦Δ.

Summarizing, we see that the concept ‘G is a group’ can be expressed in terms of its
algebra of functions by saying that this algebra admits three additional structure maps Δ,
ε, S making it a commutative Hopf algebra.

More generally, if G is an affine algebraic group, one can similarly define a structure of
a (commutative) Hopf algebra on the coordinate ring H := Fun(G) of all regular functions
onG. The Hopf algebraH is affine (i.e. finitely generated and commutative with 0 radical).
Moreover, if G is an affine variety, then its coordinate ring H := Fun(G) of all regular
functions on G is an affine Hopf algebra if and only if G is an affine algebraic group. This
observation was used to develop the structure theory of algebraic groups (e.g., reductive,
solvable) using the theory of Hopf algebras.

In the language of schemes introduced by Grothendieck, one may think of affine Hopf
algebras as affine group schemes.

It is thus not surprising that much of the work on Hopf algebras in the 70s was inspired
by group theory. Kaplansky’s conjectures are good examples of this approach. It was soon
found that although quite a few properties can be generalized from group theory to the
theory of Hopf algebras, some others are either false in general or hard to translate.

During the beginning of the 80s Hopf algebras have entered in a fundamental way as a
unifying tool to analyze the theory of actions of various algebraic structures on algebras.
Group actions, group-gradings and actions of Lie algebras are all examples of the theory.
However the most striking boost to the theory was given in the beginning of the 80s with
the introduction of quantum groups. These are Hopf algebras arising from solutions to the
quantum Yang–Baxter equation from statistical mechanics. Another important connection
to physics is the realization that standard notions of renormalization theory are derived
from the Hopf algebra of rooted trees. This Hopf algebra acts on the Feinman diagrams.

During the 90s there has been a surge of interest in the structure of general Hopf al-
gebras (mainly finite-dimensional) and fundamental examples of quantum groups. Tech-
niques from other areas such as representation theory, algebraic geometry, category theory,
Lie theory and ring theory were employed to answer some basic questions. The best results
are attained for semisimple or pointed Hopf algebras.
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Categorical considerations enter in a fundamental way in the general study of Hopf
algebras since one of their striking properties is that they can be characterized by their
categories of modules or comodules. Most of the basic Hopf algebraic concepts can be
expressed in categorical terms. Furthermore, the theory of finite-dimensional (semisimple)
Hopf algebras is one of the main motivations for the study of finite (fusion) categories,
which is also motivated by physics (conformal field theory in the semisimple case and
logarithmic conformal field theories in the non-semisimple case).

In fact the theory of Hopf algebras also motivated the definition and study of several
other central algebraic objects; e.g., quasi-Hopf algebras and weak Hopf algebras.

Part 1. Basic concepts

Loosely speaking, a Hopf algebra is an algebra over a field k also equipped with a “dual”
structure, such that the two structures are compatible. In what follows we give precise
definitions of the concepts involved.

Throughout, we let k be a field. Vector spaces, algebras and tensor products are assumed
to be over k unless stated otherwise. Algebras A are assumed to have a unit 1 = 1A and
u : k→A is the unit map α �→ α1A for all α ∈ k.

Our basic references are [1,166,221]. Another reference with more emphasis on the
theory of coalgebras is [54].

1.1. Coalgebras and comodules

DEFINITION 1.1.1. A coalgebra over k (or simply a coalgebra) is a vector space C to-
gether with two linear maps, comultiplication Δ :C→ C ⊗ C and counit ε :C→ k, such
that:

(1) Δ is coassociative: (Δ⊗ id) ◦Δ= (id⊗Δ) ◦Δ.
(2) ε satisfies the counit property: (ε⊗ id) ◦Δ= id= (id⊗ ε) ◦Δ.

If (C,Δ, ε) is a coalgebra then C∗ is an algebra with multiplication given by Δ∗, the
dual map of Δ. However, if we begin with an algebra A and try to dualize then difficul-
ties arise for infinite-dimensional A. But if (A,μ,u) is a finite-dimensional algebra then
(A∗,μ∗, u∗) is a coalgebra with Δ= μ∗ and ε = u∗. Explicitly: Δf (a ⊗ b)= f (ab) and
ε(f )= f (1) for all f ∈A∗, a, b ∈A.

Inductively, one can apply Δ n times to any one of the tensorands and get the same
result. Trying to keep track of the multitude of indices involved in an n-fold application of
Δ would be prohibitive. It is in order to simplify this that Heyneman and Sweedler, [106],
introduced the extremely successful, so-called, sigma-notation.

SIGMA-NOTATION. For any c ∈ C write: Δ(c) =∑ c1 ⊗ c2. The subscripts 1 and 2 are
symbols and do not indicate particular elements. When Δ is applied again to the left ten-
sorand this would symbolically be written as

∑
c11 ⊗ c12 ⊗ c2, while applying Δ to the

right as:
∑
c1 ⊗ c21 ⊗ c22 . Coassociativity means that these two expressions are equal
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and hence it makes sense to write this element as
∑
c1 ⊗ c2 ⊗ c3. Iterating this proce-

dure gives Δn−1(c) =∑ c1 ⊗ · · · ⊗ cn where Δn−1(c) is the unique element obtained
by applying coassociativity (n − 1) times. In this notation the counit property says that
c=∑ ε(c1)c2 =∑ c1ε(c2) for all c ∈ C.

EXAMPLE 1.1.2. Let G be a group and C = kG, the group algebra. Define Δ, ε by
Δ(g) = g ⊗ g and ε(g) = 1, for all g ∈ G and extend linearly. It is obvious that Δ is
coassociative (in fact Δn−1(g)= g⊗ g⊗ · · ·⊗ g) and that ε is a counit. When referring to
kG in the sequel we regard it as a coalgebra equipped with these Δ and ε.

This inspired a general terminology for coalgebras:

DEFINITION 1.1.3. Let (C,Δ, ε) be a coalgebra. Then 0 �= c ∈ C is called a grouplike
element if Δ(c)= c⊗ c. Denote by G(C) the set of all grouplike elements of C.

REMARK 1.1.4 [221, p. 55]. G(C) is a linearly independent set over k.

Let V ,W be vector spaces. Then the flip (twist) map τ :V ⊗W →W ⊗V is defined by
v⊗w �→w⊗ v.

DEFINITION 1.1.5. Let (C,Δ, ε) be a coalgebra. An element c ∈ C is cocommutative if
Δ(c)= τ ◦Δ(c). The coalgebra C is cocommutative if all its elements are cocommutative.
(Compare: an algebra A with multiplication μ is commutative if μ= μ ◦ τ .)

Observe that the group algebra kG is cocommutative, while the following are examples
of a non-cocommutative coalgebras.

EXAMPLE 1.1.6. Let C = spk{1, g, x} with coalgebra structure given by Δ(1) = 1⊗ 1,
Δ(g)= g⊗ g, Δ(x)= x ⊗ 1+ g⊗ x and ε(1)= 1, ε(g)= 1, ε(x)= 0.

EXAMPLE 1.1.7. Let V be a finite-dimensional vector space and let End(V ) = Mn(k)
with {eij } its standard basis. Then the coalgebra structure on End(V )∗ which is dual to the
algebra structure of End(V ) is given explicitly by

Δ
(
T
j
i

)= n∑
k=1

T ki ⊗ T jk and ε
(
T
j
i

)= δij ,
where T ji are the coordinate functions given by T ji (ekl)= δikδjl .

DEFINITION 1.1.8. Let (C,ΔC, εC) and (D,ΔD,εD) be coalgebras. A (linear) map
f :C→D is a coalgebra map if

ΔD ◦ f = (f ⊗ f ) ◦ΔC and εC = εD ◦ f.
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DEFINITION 1.1.9. Let C �= 0 be a coalgebra.
C is simple if it has no proper subcoalgebras.
C is irreducible if any two non-zero subcoalgebras of C have a non-zero intersection.
It will be evident from local finiteness, described next, that C is irreducible if and only

if it contains a unique simple subcoalgebra. This is the reason for alternatively calling such
a coalgebra “colocal”.
C is indecomposable if C can not be expressed as a non-trivial coalgebra direct sum.

Coalgebras C have the following striking properties.
(1) Local finiteness: Every element of C is contained in a finite-dimensional subcoal-

gebra. Thus, in particular, C contains a simple subcoalgebra and every simple sub-
coalgebra of C is finite-dimensional.

(2) Distributivity: If C =⊕Ci , where each Ci is a subcoalgebra of C, and D is a
subcoalgebra of C, then D =⊕(D ∩Ci).

Consequences of the above properties are the following:

THEOREM 1.1.10 [116,101]. Every coalgebra is uniquely a direct sum of indecomposable
subcoalgebras.

Moreover, [116], if C is a cocommutative coalgebra then every indecomposable coal-
gebra is irreducible. Hence C is a unique direct sum of irreducible subcoalgebras. These
irreducible subcoalgebras are maximal with respect to the irreducibility property, they are
the so-called irreducible components of C.

The second part of the theorem above is not necessarily true if C in not cocommutative.
For example, the coalgebra defined in Example 1.1.6, is not a sum of irreducible subcoal-
gebras since its only irreducible components are k1 and kg.

REMARK 1.1.11. If g ∈ G(C), then kg is a simple subcoalgebra of C of dimension 1.
Conversely, any 1-dimensional subcoalgebra of C is of the form kg where g ∈G(C).

If k is algebraically closed and C is cocommutative then every simple subcoalgebra is
1-dimensional (this follows easily from considering the dual of C).

DEFINITION 1.1.12. Let C be a coalgebra.
The coradical C0 of C is the sum of all simple subcoalgebras of C.
C is cosemisimple if C0 = C.
C is pointed if every simple subcoalgebra of C is 1-dimensional (by Remark 1.1.11 this

means that C0 = kG(C)).
C is connected if C0 is one-dimensional.

The coradical C0 induces a filtration on C by the so-called wedge product as follows:
for each n� 1 define inductively

Cn =Δ−1(C ⊗Cn−1 +C0 ⊗C) := C0 ∧Cn−1.

In fact Cn = (J n)⊥ where J is the Jacobson radical of the algebra C∗. The following
hold:
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THEOREM 1.1.13. {Cn | n� 0} is a family of subcoalgebras of C satisfying
(1) Cn ⊆ Cn+1 and C =⋃n�0Cn,
(2) Δ(Cn)⊆∑n

i=0Ci ⊗Cn−i .
The filtration {Cn} is called the coradical filtration of C.
The following theorem has important implications:

THEOREM 1.1.14 [105]. Let C and D be coalgebras and f :C→ D a coalgebra mor-
phism so that the restriction of f to C1 is injective. Then f is injective.

DEFINITION 1.1.15. Let C be a coalgebra with a distinguished group like element 1
(which will be the unit element in the case C is the underlying coalgebra of a bialgebra or
Hopf algebra). Then x ∈ C is called a primitive element of C if Δ(x)= x⊗ 1+ 1⊗ x. The
set of primitive elements of C is denoted by P(C). More generally, an element x ∈ C is
called (σ, τ )-primitive if Δ(x)= x ⊗ σ + τ ⊗ x for some σ, τ ∈G(C).

The set of (σ, τ )-primitive elements is denoted by Pσ,τ (C). Such elements are also called
skew-primitive elements. By definition, skew-primitive elements of C are in C1.

The dual of the notion of an ideal is that of a coideal.

DEFINITION 1.1.16. A subspace I ⊆ C is a coideal if

Δ(I)⊆ I ⊗C +C ⊗ I and ε(I )= 0.

A subspace I ⊆ C is a left coideal if

Δ(I)⊆ I ⊗C.
Right coideals are defined analogously.

When I is a coideal of C, C/I is a coalgebra in a natural way.
Just as coalgebras and algebras are dual concepts so are comodules and modules.

DEFINITION 1.1.17. For a coalgebra (C,Δ, ε), a (right) C-comodule is a vector spaceM
with a k-linear map ρ :M→M ⊗C such that

(ρ ⊗ id) ◦ ρ = (id⊗Δ) ◦ ρ and id= (id⊗ ε) ◦ ρ.
Left C-comodules are defined analogously.
We sometimes write (M,ρ) or (M,ρM) for a C-comodule. There is also a sigma-

notation for right C-comodules. One writes

ρ(m)=
∑

m0 ⊗m1 ∈M ⊗C.

EXAMPLE 1.1.18.
(1) Every coalgebra (C,Δ, ε) is a rightC-comodule by choosing ρ =Δ. The right (left)

C-subcomodules of C are precisely the right (left) coideals.
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(2) A somewhat less obvious example is the following: Let G be a group and M =∑⊕
g∈GMg be a G-graded vector space. Then M is a right kG-comodule by setting

ρ(m)=m⊗ g for each m ∈Mg .
(3) Recall Example 1.1.7 that if V = Spk{v1, . . . , vn} is a finite-dimensional vector

space then (End(V ))∗ is a coalgebra. Now, V is a right End(V )∗-comodule via

ρ(vi)=
∑
j

vj ⊗ T ji .

Just as for coalgebras we have local-finiteness for comodules M . That is, a comodule
M contains a finite-dimensional subcomodule; in particular, M contains a simple subco-
module and every simple subcomodule of M is finite-dimensional. Moreover, if (M,ρ) is
a simple C-comodule then ρ−1(M ⊗C) is a simple subcoalgebra of C.

DEFINITION 1.1.19. Let (M,ρM) and (N,ρN) be right C-comodules. Then a map
f :M→N is a comodule-map if

ρN ◦ f = (f ⊗ id) ◦ ρM.
DEFINITION 1.1.20 [163]. Let C be a coalgebra and let (M,ρM) and (N,ρN) be right
and left C-comodules respectively. Then the cotensor product M�CN of M and N over
C is the equalizer

M ⊗N
idM ⊗ρN

ρM⊗idN

M ⊗C ⊗N.

That is

M�CN =
{
x ∈M ⊗N | (idM ⊗ρN)(x)= (ρM ⊗ idN)(x)

}
.

EXAMPLE 1.1.21. Let C be a coalgebra and M a right C-comodule then M�CC =
ρ(M)∼=M .

Let V be a vector space M,N and C as above. Then there exists a canonical isomor-
phism

V ⊗ (M�CN)= (V ⊗M)�CN
(where V ⊗M is a right C-comodule via id⊗ρM ).

The dual notion of a bi-module over two algebras is a bi-comodule over two coalgebras.

DEFINITION 1.1.22. Let H,L be coalgebras and letM be a left H -comodule via ρ and a
right L-comodule via η. Then M is an (H,L)-bicomodule if

(ρ ⊗ id) ◦ η= (id⊗η) ◦ ρ.
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DEFINITION 1.1.23. Let (C,Δ, ε) be a coalgebra and A an algebra. Then Homk(C,A)
becomes an algebra under the convolution product (f ∗g)(c)=∑f (c1)g(c2) for all f,g ∈
Homk(C,A) and c ∈ C. The unit element is uε.

In particular, as was already mentioned, C∗ =Hom(C, k) is an algebra. In fact the con-
volution product in C∗ is Δ∗.

We denote the evaluation p(c) by 〈p, c〉 for any p ∈ C∗ and c ∈ C.
Observe that if I is a coideal of C then I⊥ = {f ∈ C∗ | 〈f, I 〉 = 0} is a subalgebra of C∗.

While if J is a right coideal of C then J⊥ is a right ideal of C∗. If D is a subcoalgebra
of C then D⊥ is a two-sided ideal of C∗.

1.2. Hopf algebras

Definitions and basic examples

DEFINITION 1.2.1. Let H be an algebra with multiplication μ and unit map u, and a
coalgebra with comultiplication Δ and counit ε. Then H is a bialgebra if Δ and ε are
algebra maps or equivalently μ, u are coalgebra maps.

DEFINITION 1.2.2. Let H be a bialgebra. Then H is a Hopf algebra if there exists an
element S ∈ Endk(H) so that∑

S(h1)h2 = ε(h)1H =
∑

h1S(h2)

for all h ∈H . The map S is called an antipode for H . It is the inverse of the identity map
under convolution.

A map f :H → H ′ of bialgebras (Hopf algebras) H,H ′ is called a bialgebra (Hopf
algebra) homomorphism if it is both an algebra and a coalgebra homomorphism (and
f ◦ SH = SH ′ ◦ f ).

The kernel of a bialgebra (Hopf algebra) map is a biideal (Hopf ideal). That is, it is both
an ideal and a coideal (and stable under S).
H is a cocommutative Hopf algebra if it is cocommutative as a coalgebra.
H is a pointed Hopf algebra if it is pointed as a coalgebra.
H is a semisimple Hopf algebra if it is semisimple as an algebra.
H is a cosemisimple Hopf algebra if it is cosemisimple as a coalgebra.
It is easy to see that if H is either a commutative or a cocommutative Hopf algebra then

S2 = id.

EXAMPLE 1.2.3.
(1) The group algebra kG with antipode S defined by S(g) = g−1 for all g ∈ G. It is

a pointed cosemisimple cocommutative Hopf algebra. If G is finite then (kG)∗ is a
commutative semisimple Hopf algebra.
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(2) Let g be a Lie algebra and U(g) its enveloping algebra. For each x ∈ g define
Δ(x) = 1 ⊗ x + x ⊗ 1 and S(x) = −x. Then U(g) is a connected, thus pointed,
cocommutative Hopf algebra.

(3) Let G be a group. Let H =R(G) be the Hopf algebra of all real-valued representa-
tive functions onGwith pointwise multiplication, coproduct given byΔ(f )(x, y)=
f (xy), counit given by ε(f )= f (e) and the antipode is given by S(f )(x)= f (x−1)

where f ∈R(G), x, y ∈G and e is the identity of G (see [1, 2.2] for details).

REMARK 1.2.4.
(1) If H is a Hopf algebra then G(H) is in fact a group, where g−1 = S(g).
(2) A combinatorial calculation implies that if x is a primitive element of H and k is

of characteristic zero then the set {xi | i > 0} is linearly independent. Hence if H is
finite-dimensional over k then P(H)= 0.

The following Hopf algebra is the smallest non-commutative, non-cocommutative Hopf
algebra. It is again pointed. This is Sweedler’s 4-dimensional Hopf algebra:

EXAMPLE 1.2.5. Let chk �= 2 and

H4 := k
〈
1, g, x, gx | g2 = 1, x2 = 0, xg =−gx〉

with coalgebra structure as in Example 1.1.6, S(g) = g and S(x) = −gx. Then H4 is a
Hopf algebra. Note that S has order 4.

Here are basic properties of the antipode:

THEOREM 1.2.6. Let H be a Hopf algebra with antipode S. Then
(1) S is an anti-algebra morphism; that is, S(hh′) = S(h′)S(h), for all h,h′ ∈ H and

S(1H )= 1H .
(2) S is an anti-coalgebra morphism; that is, Δ(S(h)) = ∑S(h2) ⊗ S(h1) and

ε(S(h))= ε(h), for all h ∈H .
(3) If H is finite-dimensional then S is bijective.

REMARK 1.2.7. Let H be a Hopf algebra with bijective antipode S and let H cop =H as
an algebra with comultiplication Δcop := τ ◦Δ (where τ is the standard flip map). Then
H cop is a Hopf algebra with antipode S−1.

Integrals. Integrals for Hopf algebras H are classically defined as certain elements in
H ∗. The name being motivated by the following example:

EXAMPLE 1.2.8. Let G be a compact topological group and H = R(G) as in Exam-
ple 1.2.3(3). Suppose η is a Haar measure on G and set T (f ) = ∫

G
f dη, f ∈ H . Then

T ∈H ∗ with an invariance property induced from the left invariance of the Haar measure.
Specifically: xT = 〈x,1〉T for all x ∈H ∗.
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The classical definition of a left integral for H is an element T ∈ H ∗ so that for each
x ∈ H ∗, xT = 〈x,1〉T . If H is finite-dimensional one can thus define an integral for H ∗
(which is an element of (H ∗)∗ = H ). By an abuse of notation it is called a left integral
in H .

DEFINITION 1.2.9. Let H be a finite-dimensional Hopf algebra. A left integral in H is
an element t ∈H such that ht = ε(h)t for all h ∈H . A right integral is an element t ′ ∈H
such that t ′h = ε(h)t ′ for all h ∈ H . The space of left (right) integrals is denoted by

∫ l
H

(
∫ r
H

) respectively. H is called unimodular if
∫ l
H
= ∫ r

H
.

Note that kt is a left ideal of H (it is in fact an ideal of H as seen in Theorem 2.2.1).

EXAMPLE 1.2.10. A prime example of an integral is the “averaging element”. Specifi-
cally, if G is a finite group and H = kG, then t =∑g∈G g generates the space of left and
right integrals in H .

EXAMPLE 1.2.11. Let H = H4 of Example 1.2.5. Then x + gx ∈ ∫ l
H

and x − gx ∈ ∫ r
H

.
Thus H is not unimodular.

The finite dual

One of the important features of Hopf algebras is that its definition is in a sense self-dual.
Namely, if H is a finite-dimensional Hopf algebra then its linear dual H ∗ has a canonical
structure of a Hopf algebra with structure maps the transposes of the structure maps of H .
It is called the dual Hopf algebra of H .

When H is an infinite-dimensional Hopf algebra, H ∗ is an algebra but no longer a
Hopf algebra. However H ∗ contains a Hopf algebra (which is maximal with respect to this
property) which is called the finite-dual of H .

DEFINITION 1.2.12. Let H be a Hopf algebra. Then the finite-dual of H is defined to be

H 0 = {p ∈H ∗ | p vanishes on an ideal of H of finite codimension}.

There are equivalent conditions for p ∈H ∗ to belong to H 0. Here is a typical one.

PROPOSITION 1.2.13 [221, p. 115]. Let H be a Hopf algebra, then

H 0 = {p ∈H ∗ | dim(H ⇀p) <∞},
where h⇀p is defined by 〈h⇀p,h′〉 = 〈p,h′h〉 for all h,h′ ∈H and p ∈H ∗.

THEOREM 1.2.14 [221, p. 122]. LetH be a Hopf algebra, thenH 0 is a Hopf algebra with
structure maps dual to those in H .
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H ∗ is a topological space with the finite discrete topology on Hom(H, k), where k has
the discrete topology. A subspace V of H ∗ is dense in H ∗ if it separates the points of H .

The finite-dual can be dense in H ∗, on the other hand it may be trivial.

EXAMPLE 1.2.15.
(1) If H is an affine commutative Hopf algebra then H 0 is dense in H , [221, p. 121].
(2) If g is a finite-dimensional semisimple Lie algebra and q is not a root of unity then

(Uq(g))
0 is dense in (Uq(g))∗, [111].

(3) If K is an infinite field of cardinality greater than that of k and G= PSL2(K), then
(kG)0 = kε, [24].

An equivalent criterion for density ofH 0 inH ∗ is thatH is residually finite-dimensional.
That is, there exists a family {πα} of finite-dimensional k-representations of A such that⋂
α Kerπα = {0}, [166].

1.3. Modules and comodules for Hopf algebras

The representation and co-representation theories for Hopf algebras are particularly rich,
as a result of the various structures involved. For any Hopf algebra H , there are several
ways in which H is acted upon by H or by H ∗. Here are some:

DEFINITION 1.3.1. If H is a Hopf algebra then:
(1) H is a left H ∗-module by

p⇀ h=
∑
〈p,h2〉h1

and a right H ∗-module by

h↼p =
∑
〈p,h1〉h2

for all h ∈H and p ∈H ∗.
(2) H is a left H -module via the left adjoint action adl :

h ·
adl
x =
∑

h1xS(h2)

and a right H -module via the right adjoint action adr :

x ·
adr
h=
∑

S(h1)xh2

for all h,x ∈H .

Notice that the adjoint actions boil down to the usual adjoint actions of groups and Lie
algebras for the Hopf algebras kG and U(g), respectively.
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There is more to say about the actions just described. The adjoint actions make H into
anH -module algebra while whenH is finite-dimensional then⇀ (↼) makesH into a left
(right) H ∗-module algebra, respectively.

DEFINITION 1.3.2. Let A be an algebra andH a Hopf algebra. If A is leftH -module then
A is an H -module algebra if

h · (ab)=
∑
(h1 · a)(h2 · b)

for all h ∈H , a, b ∈A.

Analogously one can define module coalgebras and comodule (co)algebras. In the lan-
guage of categories these mean that the structure maps of the algebras or the coalgebras are
maps in the category of H -modules or in the category of H -comodules. (For more details
see Part 4.)

EXAMPLE 1.3.3. H is a right H -comodule coalgebra via the right adjoint coaction:
ρ :H →H ⊗H given by h �→∑h2 ⊗ S(h1)h3.

REMARK 1.3.4. If H is a finite-dimensional Hopf algebra then (A,ρ) is a right H -
comodule (algebra) if and only if (A, ·) is a left H ∗-module (algebra), where · and ρ are
transposes of each other. That is, if (A,ρ) is a right H -comodule (algebra) then for a ∈A
with ρ(a)=∑a0 ⊗ a1 ∈A⊗H define

p · a =
∑
〈p,a1〉a0

for all p ∈H ∗. Conversely, given an action · of H ∗ on A define for a ∈A,

ρ(a)=
∑
(h∗i · a)⊗ hi,

where {hi}, {h∗i } are dual bases of H and H ∗.

EXAMPLE 1.3.5. If G is a finite group and A =∑⊕g∈GAg is a G-graded algebra (that
is, AgAh ⊂Agh) then as in Example 1.1.18(2), A is a right kG-comodule algebra. By the
remark above, A becomes a left (kG)∗-module algebra by defining for all a =∑ag ∈ A,
pg · a = ag , where {pg}g∈G is the basis of (kG)∗ dual to the basis {g}g∈G of kG.

DEFINITION 1.3.6. Let (M, ·) be a left H -module. Then the H -invariants are

MH = {m ∈M | h ·m= ε(h)m, for all h ∈H}.
Let (M,ρ) be a right H -comodule. Then the H -coinvariants are

McoH = {m ∈M | ρ(m)=m⊗ 1
}
.

coHM is defined similarly for left H -comodules.
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EXAMPLE 1.3.7.
(1) [24]. Let H be a left H -module by the left adjoint action ad, then HH is the center

of H .
(2) Let H be a right H -comodule via Δ. Then H coH = k.

REMARK 1.3.8. Just as the averaging map for the theory of group actions so do integrals
play a central role in the theory of actions of finite-dimensional Hopf algebras. For if M is
a left H -module then it is immediate that t ·M ⊂MH for t ∈ ∫ H

l
. If ε(t) �= 0 then this is

actually an equality (for then, t ·m= ε(t)m for m ∈MH implies that m= t · ( 1
ε(t)
m)).

1.4. Normal Hopf subalgebras, quotients and extensions

A basic concept in group theory is that of a normal subgroup, which is a subgroup stable
under the adjoint action of the group on itself. It is characterized by the property that every
right coset is a left coset as well. Equivalently, a normal subgroup is a kernel of a group
homomorphism, and thus the quotient group is defined.

The Hopf algebra analogue of normality is given by:

DEFINITION 1.4.1. Let K be a Hopf subalgebra of H . Then K is a normal in H if

(adl H)(K)⊆K and (adr H)(K)⊆K,

where adl , adr are the left and right adjoint actions of H on itself (Definition 1.3.1(2)).

It is straightforward to verify that if K is a normal Hopf subalgebra of H then HK+ =
K+H , where K+ = {h ∈K | ε(h)= 0}. Since HK+ is a Hopf ideal of H it follows that
H/HK+ is a Hopf algebra (while H/K is usually meaningless). Let H :=H/K+H then
we have the following exact sequence of Hopf algebras:

K ↪→H �H

and H is called a Hopf extension (of H by K).
However, in the converse direction, if π :H →H is a Hopf algebra epimorphism then

Kerπ is not necessarily of the form K+H for some normal Hopf subalgebra K . Further-
more, even if K is a Hopf subalgebra of H such that HK+ =K+H (and thus H/K+H is
a Hopf algebra) it is not always true that K is a normal Hopf subalgebra of H . To discuss
this (following [206,207]) we introduce the following notion:

Given any Hopf algebra epimorphism π :H → H , H becomes both a left and a right
H -comodule via

ρl = (π ⊗ id) ◦Δ, ρr = (id⊗π) ◦Δ.

Denote by H coH and coHH the algebras of coinvariants for those coactions (as defined in
Definition 1.3.6).
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If K satisfies HK+ = K+H and we let H = H/K+H , then clearly K ⊂ H coH and
K ⊂ coHH .

PROPOSITION 1.4.2 [207]. If H is faithfully flat over K then

K =H coH = coHH.

In this case K is indeed a normal Hopf subalgebra of H .

Examples for which H is faithfully flat over any Hopf subalgebra K are:
(1) The Hopf algebra H is finite-dimensional, [178] (see also Remark 3.2.8).
(2) If H is commutative, [59].
(3) If H0, the coradical of H , is cocommutative, [224]. In particular if H is cocommu-

tative or pointed.
Here is an example of a non-commutative non-cocommutative Hopf algebra which is

an extension of a commutative and cocommutative Hopf algebra (in fact the unique non-
commutative non-cocommutative semisimple Hopf algebra of dimension 8).

EXAMPLE 1.4.3 [115, Example 4.1]. Let k be of characteristic 0 and let

H8 := k
〈
x, y, z | x2 = y2 = 1, xy = yx, zx = yz, xz= zy,

z2 = 1

2
(1+ x + y − xy)

〉
with a coalgebra structure given by

Δ(x)= x ⊗ x, Δ(y)= y ⊗ y,
Δ(z)= 1

2

[
(1+ y)⊗ 1+ (1− y)⊗ x](z⊗ z).

Then K := k〈x, y〉 ∼= k(Z2 ×Z2) is a normal Hopf subalgebra of H and H =H/HK+ is
isomorphic to kZ2. So H is the Hopf extension

K ∼= k(Z2 ×Z2) ↪→H
π→ k(z̄)∼= k(Z2),

where π(x)= π(y)= 1, π(z)= z̄ and Δ(z̄)= z̄⊗ z̄.

1.5. Special Hopf algebras

A generalization of cocommutative Hopf algebras are quasitriangular Hopf algebras, intro-
duced by Drinfeld. The dual notion is that of coquasitriangular Hopf algebras (sometimes
called braided Hopf algebras). Though quasitriangular Hopf algebras were introduced in
the context of solutions of the quantum Yang–Baxter equation, they play an important role
in the general theory of Hopf algebras.



Hopf algebras 189

DEFINITION 1.5.1 [72]. A quasitriangular Hopf algebra is a pair (H,R), where H is a
Hopf algebra and R =∑R1 ⊗R2 ∈H ⊗H is invertible, such that the following hold:

(QT1) (Δ⊗ id)(R)=R13R23 =∑R1 ⊗ r1 ⊗R2r2,
(QT2) (id⊗Δ)(R)=R13R12 =∑R1r1 ⊗ r2 ⊗R2,
(QT3) (τ ◦Δ)(h)=RΔ(h)R−1 for all h ∈H ,

where r =R and R13 =∑R1 ⊗ 1⊗R2 ∈H⊗3 etc.
R is sometimes called a universal R-matrix.

A consequence of the above is that R−1 =∑S(R1)⊗ R2,
∑
ε(R1)R2 =∑R1ε(R2)

= 1 and (S ⊗ S)(R)=R.
If R−1 = Rτ (:=∑R2 ⊗R1) then (H,R) is called a triangular Hopf algebra and R is

called unitary.
It is property (QT3) which generalizes cocommutativity. In fact, Drinfeld termed Hopf

algebras satisfying this property almost cocommutative.

EXAMPLE 1.5.2. The following are basic examples of quasitriangular Hopf algebras:
(1) Every cocommutative Hopf algebra is triangular with R = 1⊗ 1.
(2) Let k be of characteristic �= 2, then the group algebra kZ2 = k〈1, g〉 is triangular

with

R = 1

2
(1⊗ 1+ 1⊗ g+ g⊗ 1− g⊗ g).

(3) [192]. Let H =H4 be as in Example 1.2.5. Then H is quasitriangular with a family
of quasitriangular structures Rα , α ∈ k, given by

Rα = 1

2
(1⊗ 1+ 1⊗ g + g⊗ 1− g⊗ g)

+ α
2
(x ⊗ x + x ⊗ gx − gx ⊗ x + xg⊗ xg).

An important element in (H,R) is the so-called Drinfeld element

u=
∑

S
(
R2)R1.

It is shown in [72] that u is an invertible element in H , Δ(u)= (u⊗ u)(RτR)−1 and S2 is
an inner automorphism of H induced by u; that is, S2(h)= uhu−1, all h ∈H . Moreover,
S4 is induced by the grouplike element uS(u)−1.

Another important ingredient of a quasitriangular Hopf algebra (H,R) is the Drinfeld
map f :H ∗ →H given by

f (p)= (id⊗p)RτR.

Usually, it is not an algebra map, however its restriction to

O(H ∗) := {p ∈H ∗ | 〈p,hh′〉 = 〈p,S2(h′)h
〉 ∀h,h′ ∈H}
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is an algebra map to the center of H . If H is semisimple and k is algebraically closed of
characteristic 0 then O(H ∗) coincides with the character ring of H (see Section 5.1 for
definition and properties) hence O(H ∗) is called the algebra of generalized characters.

DEFINITION 1.5.3. A finite-dimensional quasitriangular Hopf algebra for which the Drin-
feld map f is injective (and thus bijective) is called factorizable.

It was proved in [194] that every factorizable Hopf algebra is unimodular.
We have:

THEOREM 1.5.4. Let (H,R) be a finite-dimensional quasitriangular Hopf algebra. Then
the following are equivalent:

(1) H is factorizable.
(2) [97]. f (T ′) �= 0 where T ′ �= 0 is a right integral for H ∗.
(3) [52]. f restricted to O(H ∗) is injective.

EXAMPLE 1.5.5. The Drinfeld double, D(H), is defined for any finite-dimensional Hopf
algebra H . It is a factorizable Hopf algebra which contains H (see Section 4.3 for details).

When (H,R) is finite-dimensional, R ∈H ⊗H ∼= (H ∗ ⊗H ∗)∗, hence R defines a bi-
linear form (or an R-form) 〈 | 〉R on H ∗. The properties of this form define the axioms for
coquasitriangular Hopf algebras. Thus if (H,R) is a finite-dimensional Hopf algebra then
(H ∗, 〈 | 〉R) is a coquasitriangular Hopf algebra. Coquasitriangular Hopf algebras have
been studied by a number of people (cf. [142,136,155,202]).

DEFINITION 1.5.6. A coquasitriangular Hopf algebra is a pair (H, 〈 | 〉) where H is a
Hopf algebra over k and 〈 | 〉 :H⊗H → k is a k-linear form (braiding) which is convolution
invertible in Homk(H ⊗H,k) such that the following hold for all h,g, l ∈H :

(CQT1) 〈h|gl〉 =∑〈h1|g〉〈h2|l〉.
(CQT2) 〈hg|l〉 =∑〈g|l1〉〈h|l2〉.
(CQT3)

∑〈h1|g1〉g2h2 =∑h1g1〈h2|g2〉.

If
∑〈h1|g1〉〈g2|h2〉 = ε(g)ε(h) then (H, 〈 | 〉) is called a cotriangular Hopf algebra.

A non-trivial example of a cotriangular Hopf algebra is kG whereG is an Abelian group
with a symmetric bicharacter 〈 | 〉. This Hopf algebra is commutative and cocommutative
and it arises in the context of Lie color algebras (cf. [14]).

A special class of quasitriangular Hopf algebras is that of ribbon Hopf algebras.

DEFINITION 1.5.7. A finite-dimensional ribbon Hopf algebra over k is a triple (H,R,v),
where (H,R) is a finite-dimensional quasitriangular Hopf algebra over k and v ∈H satis-
fies the following axioms:

(R1) v is in the center of H ,
(R2) S(v)= v, and
(R3) Δ(v)= (v⊗ v)(RτR)−1 = (RτR)−1(v⊗ v).
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It follows from these axioms that ε(v) = 1 and v2 = uS(u). Also, observe that G :=
u−1v is a grouplike element of H . It is called the special grouplike element of H . Ribbon
Hopf algebras were introduced and studied by Reshetikhin and Turaev in connection with
invariants of links and 3-manifolds, [198]. Here u is the Drinfeld element.

REMARK 1.5.8. Any triangular Hopf algebra is ribbon with 1 as the ribbon element and
u−1 as the special grouplike element. Also, any semisimple quasitriangular Hopf algebra
such that S2 = id (e.g., if the characteristic of k is zero) is ribbon with u as the ribbon
element and 1 as the special grouplike element.

1.6. Twisting in Hopf algebras

LetH be a Hopf algebra. It is possible to twist either the comultiplication or the multiplica-
tion of H and thereby construct a new Hopf algebra. The following fundamental definition
is due to Drinfeld, [71].

DEFINITION 1.6.1. A dual Hopf 2-cocycle (= twist) for H is an invertible element J ∈
H ⊗H which satisfies:

(Δ⊗ id)(J )(J ⊗ 1)= (id⊗Δ)(J )(1⊗ J ),
(ε⊗ id)(J )= (id⊗ ε)(J )= 1.

Given a twist J for H , one can twist the comultiplication and define a new Hopf algebra
structure (HJ ,m,1,ΔJ , ε, SJ ) on the algebra (H,m,1). The coproduct and antipode are
determined by

ΔJ (a)= J−1Δ(a)J, SJ (a)=Q−1S(a)Q

for every a ∈H , where Q :=m ◦ (S ⊗ id)(J ).
Suppose (H,R) is also (quasi)triangular. Then it is straightforward to verify that

(HJ ,RJ ) is quasi(triangular) with universal R-matrix RJ := (J τ )−1RJ (where J τ =
τ(J )).

The tensor category of left (right) H -modules is equivalent to that of left (right) HJ -
modules.

Dually, one can twist the multiplication on H .

DEFINITION 1.6.2. A linear form σ :H ⊗H → k is called a Hopf 2-cocycle for H (see
[63]) if it has an inverse σ−1 under the convolution product ∗ in Homk(H ⊗ H,k), and
satisfies the cocycle condition:∑

σ(a1b1, c)σ (a2, b2)=
∑

σ(a, b1c1)σ (b2, c2),

σ (a,1)= ε(a)= σ(1, a)
for all a, b, c ∈H .
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Observe that any 2-cocycle σ on a groupG can be extended to a Hopf 2-cocycle for kG.
Given a Hopf 2-cocycle σ for H , one can construct a new Hopf algebra structure

(Hσ ,mσ ,1,Δ, ε,Sσ ) on the coalgebra (H,Δ,ε). The new multiplication is given by

mσ (a ⊗ b)=
∑

σ−1(a1, b1)a2b2σ(a3, b3)

for all a, b ∈H . The new antipode is given by

Sσ (a)=
∑

σ−1(a1, S(a2)
)
S(a3)σ

(
S(a4), a5

)
for all a ∈H .

Suppose H is also co(quasi)triangular with universal R-form 〈 | 〉 :H ⊗H → k. Then
Hσ is co(quasi)triangular with universal R-form (σ ◦ τ)−1 ∗ 〈 | 〉 ∗ σ .

Observe that a twist J on H yields a Hopf 2-cocycle σJ on H ∗ by identifying H ⊗H
with a subalgebra of (H ∗ ⊗H ∗)∗. If H is finite-dimensional then the existence of a twist
J for H is equivalent to the existence of a Hopf 2-cocycle σJ for H ∗.

EXAMPLE 1.6.3.
(1) If (H,R) is quasitriangular thenR is a twist for (H cop,Rτ ) and ((H cop)R, (Rτ )R)=

(H,R). Dually, if (H, 〈 | 〉) is coquasitriangular then 〈 | 〉 ◦ τ is a Hopf 2-cocycle
for H .

(2) Let G be a non-Abelian finite group, H = kG and J a twist for H . Since every
cocommutative Hopf algebra is triangular with R = 1⊗ 1 we have that (kG)J is a
triangular Hopf algebra with non-trivial triangular structure RJ := (J τ )−1J .

A dual Hopf 2-cocycle is a special case of what is known as a (dual) pseudo-cocycle.
A (dual) pseudo-cocycle for H is an invertible element J ∈ H ⊗H satisfying necessary
and sufficient conditions that make ΔJ = J−1ΔJ coassociative.

EXAMPLE 1.6.4 [180]. The Hopf algebra H8 in Example 1.4.3 can be obtained from the
group algebra of either D4 or Q by pseudo-twists (where D4 is the dihedral group and
Q is the quaternion group). However H8 has no non-trivial Hopf 2-cocycle or dual Hopf
2-cocycle, [229].

1.7. Constructing new Hopf algebras from known ones

Techniques in developing the structure theory for Hopf algebras entail constructing new
Hopf algebras from known ones by using several methods. Some of these methods have
been described already. We list them briefly.

(1) For two Hopf algebras H1 and H2 one can always define H1 ⊗H2, the tensor Hopf
algebra with tensor structure maps.

(2) Given a Hopf algebra H one can twist either the multiplication via a 2-cocycle or
the comultiplication via a dual 2-cocycle and obtain another Hopf algebraHσ orHJ

(Section 1.6).
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(3) Given Hopf algebras H and K one can sometimes define an extension K#τσH of H
by K by using a 2-cocycle σ and a dual 2-cocycle τ (Remark 3.2.8).

(4) Another possible product of two Hopf algebras H1 and H2 satisfying certain con-
ditions is the double crossed product H1 -.H2. In particular D(H)=H ∗cop -.H ,
the Drinfeld double of H , is defined for any finite-dimensional Hopf algebra H
(Definition 4.3.8).

(5) In certain cases the smash product A#H can be turned into a Hopf algebra in a
process called biproduct or bosonization (Theorem 4.4.6).

Part 2. Fundamental theorems

2.1. The fundamental theorem for Hopf modules

DEFINITION 2.1.1. Let H be a Hopf algebra. Then (M, ·, ρ) is a right H -Hopf module
if

(HM1) (M, ·) is a right H -module.
(HM2) (M,ρ) is a right H -comodule.
(HM3) The compatibility condition

ρ(m · h)=
∑

m0 · h1 ⊗m1h2

for all m ∈M , h ∈H , is satisfied.

EXAMPLE 2.1.2. Let V be a vector space and M = V ⊗H . (M, ·) is a right H -module
by (m⊗x) ·h=m⊗xh. (M,ρ) is a right H -comodule by ρ(m⊗x)=∑m⊗x1⊗x2 for
all m ∈M , x ∈H . These make M into a right H -Hopf module. It is called a trivial Hopf
module.

The fundamental theorem says that all Hopf modules are trivial with V =McoH . Ex-
plicitly:

THEOREM 2.1.3 [135]. LetM be a right H -Hopf module. ThenM ∼=McoH ⊗H as right
H -Hopf modules, where McoH ⊗H is a trivial Hopf module.

The isomorphism M→McoH ⊗H is given by:

m �→
∑

m0 ·
(
S(m1)

)⊗m2.

The crucial steps are to prove that
∑
m0 · (S(m1)) ∈McoH for all m ∈M and that this

map is an H -module isomorphism.
This theorem is essential in the proof about the uniqueness of the integral and in the

Nichols–Zoeller theorem (see Sections 2.2 and 2.5).
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2.2. Integrals

The following important theorem about integrals is due to Larson and Sweedler:

THEOREM 2.2.1 [135]. Let H be a finite-dimensional Hopf algebra. Then
(1)
∫ l
H

and
∫ r
H

are one-dimensional ideals (with generators 0 �= t and 0 �= t ′ respec-
tively).

(2) H ∗⇀ t =H = t ′↼H ∗. That is, H is a free left (right) H ∗-module of rank 1.

The major step in the proof of the theorem is to show thatH ∗ is a right H -Hopf module.
Now, H ∗ is a left H ∗-module via left multiplication. The transpose of this action makes
H ∗ into a right H -comodule as in Remark 1.3.4. Moreover, H ∗ is also a right H -module
via p↽ h=∑〈S(h),p2〉p1 for all h ∈H , p ∈H ∗. Once it is proved that this action and
coaction satisfy the compatibility condition for Hopf modules (HM3), the fundamental
Theorem 2.1.3 implies that H ∗ ∼= (H ∗)coH ⊗ H . However, (H ∗)coH = ∫ l

H ∗ . Thus since

dimH ∗ = dimH , this implies that
∫ l
H ∗ is one-dimensional.

It is quite surprising that the existence of 0 �= t ∈ H so that xt = ε(x)t for all x ∈
H implies that H is finite-dimensional. This follows from the following theorem and its
corollary

THEOREM 2.2.2 [220]. Let H be any Hopf algebra and 0 �= I a right ideal in H . Then
H ∗⇀I =H .

COROLLARY 2.2.3. If a Hopf algebra H contains a non-zero finite-dimensional left
(right) ideal then H is finite-dimensional.

As we have seen in Example 1.2.8, when the Hopf algebra H is infinite-dimensional
there may still exist 0 �= T ∈ H ∗ so that xT = 〈x,1〉T for all x ∈ H ∗. (Recall that H ∗ is
no longer a Hopf algebra.) It is straightforward to see that

xT = 〈x,1〉T ⇔〈T ,h〉 =
∑
〈T ,h2〉h1

for all h ∈H , which is equivalent to T being a left H -comodule map.
Here again the dimension of the space of such T is 1, [219], which means uniqueness of

the integral. Moreover,

THEOREM 2.2.4 [220]. Let H be a Hopf algebra, then the following are equivalent:
(1) H is cosemisimple.
(2) There exists T ∈H ∗ so that 〈T ,1〉 �= 0 and xT = 〈x,1〉T for all x ∈H ∗.

Some quantized coordinate algebras of algebraic groups G are known to be cosemisim-
ple (e.g., Oq(SLn) where q is not a root of unity, [104]).

Back to finite-dimensional Hopf algebras H . The space
∫ l
H

is a 2-sided 1-dimensional
ideal of H . Hence for any h ∈ H , th = 〈α,h〉t , where 〈α,h〉 ∈ k. Since the map α is an
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algebra map it follows that α ∈ G(H ∗). This element α is called the left distinguished
grouplike or left modular element of H (of course H is unimodular if and only if α = ε).
The right modular element of H is defined analogously and equals α−1.

Another consequence of Theorem 2.2.1 is that any finite-dimensional Hopf algebra is a
Frobenius algebra.

THEOREM 2.2.5 [183]. LetH be a finite-dimensional Hopf algebra, T ∈ ∫ H ∗
l

and t ′ ∈ ∫ H
r

such that 〈T , t ′〉 = 1. Then T is a Frobenius homomorphism with dual bases (S(t ′1), t ′2)
(that is, for all h ∈H , h=∑S(t ′1)〈T , t ′2h〉).

An important application is the use of the integral in computations of traces (Tr) of linear
endomorphisms.

THEOREM 2.2.6 [191]. Let H be a finite-dimensional Hopf algebra, t ∈ ∫ l
H

and T ′ ∈ ∫ r
H ∗

so that 〈T ′, t〉 = 1. Then Tr(f )=∑〈T ′, S(t2)〉f (t1) for all f ∈ Endk(H).

As a corollary we have

THEOREM 2.2.7. Let H,T ′ and t be as in Theorem 2.2.6, then

Tr
(
S2)= 〈ε, t〉〈T ′,1〉.

2.3. Maschke’s theorem

A classical result about finite groups G is Maschke’s theorem: kG is a semisimple algebra
if and only if |G|−1 ∈ k. In Hopf algebraic terms: Let t :=∑g∈G g, then t ∈ ∫

kG
and

ε(t)= |G|. Thus |G|−1 ∈ k if and only if ε(t) �= 0 in k. Hence kG is a semisimple algebra
if and only if ε(t) �= 0. Inspired by this, Larson and Sweedler showed the last statement to
be true for any finite-dimensional Hopf algebra.

THEOREM 2.3.1 [135]. Let H be any finite-dimensional Hopf algebra. Then H is semi-
simple if and only if ε(

∫ l
H
) �= 0 (if and only if ε(

∫ r
H
) �= 0).

One direction is easily proved. Assume H is a semisimple algebra. Since Ker ε is an
ideal of H , there exists a left ideal 0 �= I of H so that H = I ⊕ Ker ε. Then it is shown
directly that I ⊂ ∫ l

H
and hence ε(

∫ l
H
) �= 0.

For the converse choose t ∈ ∫ l
H

so that ε(t) = 1. Let M be any left H -module and N
be an H -submodule of M . The essence of the proof is to use the integral to produce an
H -complement of N from a mere k-complement of N . Let π :M → N be any k-linear
projection and define π̃ :M→N by π̃(m)=∑ t1 · π(S(t2) ·m) for all m ∈M . Then π̃ is
an H -projection of M onto N .

REMARK 2.3.2. If H is semisimple then H is unimodular (since if t ∈ ∫ H
l

with ε(t)= 1

and t ′ ∈ ∫ H
r

with ε(t ′)= 1, then t = t ′t = t ′).
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2.4. The antipode

Let H be a finite-dimensional Hopf algebra with antipode S. The antipode, intertwined
with the integral and the modular elements play a central role in the theory, [131,193].

THEOREM 2.4.1 [189]. Let α ∈G(H ∗) be the left modular element of H and g ∈G(H)
be the right modular element of H ∗. Then for all h ∈H

S4(h)= g(α ⇀ h↼α−1)g−1 = α ⇀ (ghg−1)↼α−1.

A simplified proof of this theorem appears in [209]. It depends on treatingH as a Frobe-
nius algebra as in Theorem 2.2.5. It can also be derived from the trace formula (Theo-
rem 2.2.6). Another way of proving this formula appears in [72] via the Drinfeld double.

Since H is finite-dimensional and since grouplike elements are linearly independent,
there exist only a finite number of powers of the grouplike elements a and α. Thus, a corol-
lary of the previous theorem is:

THEOREM 2.4.2 [189]. Let H be a finite-dimensional Hopf algebra, then S has finite
order (necessarily even).

It is worth mentioning that for any n there exists a Hopf algebra with an antipode of
order 2n; they are called the Taft algebras Hn.

EXAMPLE 2.4.3 [222]. Let n� 1 and ω ∈ k be a primitive n-th root of unity. Then Hn,ω
is a Hopf algebra defined as follows. As an algebra Hn,ω is generated by g, x subject to the
relations

gn = 1, xn = 0, and xg = ωgx.

The coalgebra structure of Hn,ω is determined by

Δ(g)= g⊗ g and Δ(x)= x ⊗ g + 1⊗ x.

Observe that dimHn,ω = n2; indeed {gıxj }0�ı,j<n is a linear basis for Hn,ω . The antipode
of Hn,ω is determined by S(g) = g−1 and S(x) = −xg−1. Hence S2 is the algebra auto-
morphism of Hn,ω determined by S2(g)= g and S2(x)= gxg−1 = ω−1x and so S2n = id.

2.5. The Nichols–Zoeller theorem

One of the fundamental results in the theory of finite-dimensional Hopf algebras is
the Nichols–Zoeller theorem which is a positive answer to one of Kaplansky’s conjec-
tures, [116]. This conjecture was inspired by the famous “Lagrange theorem” in group
theory, and boils down to it for H = kG.
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THEOREM 2.5.1 [178]. Let H be a finite-dimensional Hopf algebra and K a Hopf subal-
gebra of H . Then H is free as a right K-module. In particular, dimK divides dimH .

The theorem is actually more general. It says that every M ∈MH
K is free as a right K-

module. Here M ∈MH
K if M satisfies the conditions in Definition 2.1.1 with a modified

(HM1) in which K replaces H .
The essential part of the proof is based on the fact that any finite-dimensional Hopf

algebra is a Frobenius algebra, on the fundamental theorem for Hopf modules and on the
Krull–Schmidt theorem. By using these it is shown that if W is a finitely generated right
K-module and V is a finitely generated faithful right K-module so that W ⊗ V ∼=W dimV

as right K-modules, then W is free over K . Next it is proved that M ⊗H ∼=MdimH for
any M ∈MH

K . Both imply that M is free over K .
A simple corollary of this theorem is

COROLLARY 2.5.2. Let H be a finite-dimensional Hopf algebra over any field. Then the
order of G(H) divides dim(H).

Another corollary is

COROLLARY 2.5.3. Let H and K be as in Theorem 2.5.1 and assume H is semisimple,
then so is K .

2.6. Kac–Zhu theorem

The following theorem was conjectured in [116] and proved by Zhu using the Nichols–
Zoeller theorem and extending work of G.I. Kac, [114], who worked in the framework of
C∗-algebras.

THEOREM 2.6.1 [114,250]. Let H be a Hopf algebra over an algebraically closed field k
of characteristic 0. If dim(H)= p is prime thenH is isomorphic to the group algebra kZp .

If G(H) or G(H ∗) is non-trivial then by the Nichols–Zoeller theorem H = kZp and we
are done. Otherwise, S4 = id by the formula for S4 (Theorem 2.4.1). If p is odd then it
is easy to see that Tr(S2) �= 0 which implies by Theorem 2.2.7 that H is semisimple. If
p = 2 then semisimplicity can be proved directly. Now, the character theory of semisimple
Hopf algebras and the appropriate “class equation” described in Thorem 5.1.6 imply that
H = kZp .

Part 3. Actions and coactions

3.1. Smash products, crossed products and invariants

One of the important topics in ring theory during the 70s was, so-called, non-commutative
Galois theory. Specifically, if A is an algebra,G is a group of automorphisms of A and AG
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is the subalgebra of G-invariants, then the study concerned connections between the ideal
structure of A and AG. Much of the information is encoded in a generalized semidirect
product, the skew group algebra A ∗G, [165], and the connection AG ⊂A⊂A ∗G.

Another setup with a similar flavor is: A is an algebra, L is a Lie algebra of derivations
of A and AL = {a ∈ A | l(a)= 0 for all l ∈ L}. The analogue of A ∗G is not so obvious.
A third setup of the same nature is that of group-graded algebras, [48,176], where G is a
finite group. The analogue of AG and AL is A1 (where 1 is the identity element of G), but
the analogue of A ∗G is even less obvious.

It turns out that all three setups are unified by the fact that all the algebras A are H -
module algebras for appropriate H , [47,21], and once this is understood there exists a
generalization of the semidirect product which is A ∗G for H = kG. This is the smash
product A#H . It plays a central role in the theory as did A∗G for non-commutative Galois
theory.

DEFINITION 3.1.1. Let H be a Hopf algebra and let A be a left H -module algebra. Then
the smash product algebra A#H is defined as follows:

(1) As vector spaces, A#H =A⊗H . Write a#h for a⊗ h.
(2) Multiplication is given by:

(a#h)(b#g)=
∑

a(h1 · b)#h2k

for all a, b ∈A, h,g ∈H .

The smash product A#H is an algebra which contains A via a �→ a#1, for a ∈A, and H
via h �→ 1#h, for h ∈H .

A generalization of A#H is, as for group actions, the notion of a crossed product. It
is not necessary for the algebra A to be an H -module algebra, but only an H -measured
algebra. That is, there exists a linear map H ⊗A→ A given by h⊗ a �→ h · a, such that
h · 1= ε(h)1 and h · (ab)=∑(h1 · a)(h2 · b) for all h ∈H , a, b ∈A.

DEFINITION 3.1.2. Let H be a Hopf algebra and A an H -measured algebra. Assume
that σ is an invertible map (under convolution) in Homk(H ⊗H,A). The crossed product
A#σH is A⊗H as a vector space. We write a#h for element in A⊗H . Multiplication is
given by:

(a#h)(b#g)=
∑

a(h1 · b)σ (h2, g1)#h3g2

for all a, b ∈A, h,g ∈H .

THEOREM 3.1.3 [67,24]. A#σH is an associative algebra with identity element 1#1 if and
only if:

(1) A is a twisted H -module; that is, 1 · a = a and

h · (g · a)=
∑

σ(h1, g1)(h2g2 · a)σ−1(h3, g3)

for all h,g ∈H,a ∈A.
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(2) σ is a 2-cocycle; that is, σ(h,1)= σ(1, h)= ε(h)1 and∑
h1 · σ(g1,m1)σ (h2, g2m2)=

∑
σ(h1, g1)σ (h2g2,m2)

for all h,g,m ∈H .

REMARK 3.1.4. Observe that for the special case ofA= k (which is anH -module algebra
via h · α = ε(h)α for all h ∈H , α ∈ k) the definition of a 2-cocycle coincides with Hopf
2-cocycle (see Definition 1.6.2). In this case we can construct the crossed product k#σH
which is denoted also by σH and is called a twisted Hopf algebra (reminiscent of twisted
group rings; it is not a Hopf algebra though).

One can similarly define crossed product for right actions and can obtain a right twist
of H . The twist for H defined in Section 1.6 has then the form σHσ−1 (which is a Hopf
algebra).

Let A be anH -module algebra. By Remark 1.3.8 if t ∈ ∫ H
l

then t ·A⊂AH and equality
holds when H is semisimple. AH is connected to A#H in several ways:

[20]. Let H be finite-dimensional. Then AH ∼= (EndA#H (A))
op as algebra (op =

opposite algebra).
[44]. Let H be finite-dimensional and assume t ·A=AH . Then there exists an idempo-

tent e ∈A#H such that e(A#H)e=AHe∼=AH as algebras.
The close relationship between AH and A#H can be expressed in terms of a Morita

context.

THEOREM 3.1.5 [43,44]. Let H be a finite-dimensional Hopf algebra, 0 �= t ∈ ∫ H
l

and α
the distinguished grouplike element associated with it. Consider A as a left (right) AH -
module via left (right) multiplication, as a left A#H -module via (a#h) · b = a(h · b) and
as a right A#H -module via b · (a#h)= [S−1(α ⇀ h)] · (ba), for all a, b ∈A, h ∈H . Then
M := AHAA#H and N := A#HAAH together with the maps:

[ , ] :AAH⊗A→A#H given by [a, b] = (a#t)(b#1),

( , ) :AA#H⊗A→AH given by (a, b)= t · (ab)

give a Morita context for AH and A#H .

This extends earlier work on group actions by [37]. Note that (A,A)= t ·A.

COROLLARY 3.1.6. If both t · A = AH and (A#t)(A#1) = A#H then AH is Morita-
equivalent to A#H .

The surjectivity of the Morita map [ , ] has strong implications as will be seen in the
next section.

Using ring theoretic properties deduced from the theory of Morita contexts we have:
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COROLLARY 3.1.7 [44]. The following are equivalent:
(1) A#H is a prime ring.
(2) A is a left and right faithful A#H -module and A is a prime ring.
(3) If A is left and right faithful A#H -module then AH is a primitive ring if and only if

A#H is a primitive ring.

As for group actions, semiprimeness of A#H insures that the ideal structures of A and
AH are closely related. If A is semiprime it is known that A#kG is semiprime if |G|−1 ∈ k,
[94], in this case kG is semisimple. This suggests the still open generalized Maschke-type
theorems:

QUESTION 3.1.8.
(1) [43]. If H is semisimple and A is a semiprime H -module algebra, is A#H semi-

prime?
(2) [25]. More generally: under the conditions of (1), is A#σH semiprime for any

2-cocycle σ ?
(3) [42]. In a similar spirit, let B �� H be a double crossproduct of B and H ([153]).

If B and H are semisimple Hopf algebras is B ��H semisimple?

The answer to the first and second questions is positive in the following cases: (a) If A
is also Artinian, [43,25]. (b) If A is any k-affine PI algebra and the characteristic of k = 0
or with a suitable assumption on the PI degree if the characteristic of k > 0, [138]. (c) If
the action of H on A is inner (see Definition 3.4.5), [24,26]. (d) If H is commutative (for
then H is essentially (kG)∗ and the answer is positive in this situation by [47]). (e) If H is
pointed cocommutative, [39,172].

Question (3) has a positive answer when the field k is algebraically closed of character-
istic zero. It also has a positive answer over arbitrary fields for the Drinfeld double, namely,
for B =H ∗cop, [192].

A dual notion of the surjectivity of the form ( , ) in the Morita context is better suited
for infinite-dimensional Hopf algebras H and right H -comodule algebras A. This is the
notion of a total integral, [61].

DEFINITION 3.1.9 [61]. Let A be a right H -comodule algebra. Then a (right) total inte-
gral for A is a right H -comodule map Φ :H →A such that Φ(1)= 1.

REMARK 3.1.10 [43,61]. When H is finite-dimensional then surjectivity of the Morita
map ( , ) on an H -module algebra A is equivalent to the existence of a total integral for A
considered as a right H ∗-comodule algebra.

REMARK 3.1.11. Note that the existence of a total integral for k is equivalent to H being
cosemisimple by Theorem 2.2.4.

The existence of a total integral is also related to Galois extensions (see next section) by
the following:
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REMARK 3.1.12 [61]. If AcoH ⊂ A is a faithfully flat H -Galois extension then there
exists a total integral for A.

3.2. Galois extensions

Crossed products are examples of Hopf Galois extensions. The definition of these exten-
sions has its roots in the Chase, Harrison and Rosenberg, [37], approach to Galois theory
for groups acting on commutative rings. The definition is given in terms of coactions.

DEFINITION 3.2.1. Let (A,ρ) be a right H -comodule algebra. Then the extension
AcoH ⊂A is right H -Galois if the map

β :A⊗ AcoHA→A⊗H given by a⊗ b �→ (a ⊗ 1)ρ(b)

is bijective.

EXAMPLE 3.2.2.
(1) Classical Galois field extensions are examples of Hopf–Galois extensions, [165].
(2) Let a Hopf algebra H be a right H -comodule algebra via Δ. Then H coH = k

and k ⊂ H is right H -Galois with β−1 :H ⊗ H → H ⊗ H given by x ⊗ y �→∑
x(S(y1))⊗ y2.

(3) Let H be a finite-dimensional Hopf algebra, K a normal Hopf subalgebra and
H =H/K+H . Then K ⊂H is H -Galois. This is true since H coH =K by Propo-
sition 1.4.2, and the Galois map β :H ⊗K H → H ⊗H has as an inverse defined
similarly to β−1 of part (2).

(4) Let B = A#σH be any crossed product. Then B is an H -comodule algebra via
ρ = idA⊗Δ and BcoH =A#σ k1∼=A. The fact that A⊂ B is Galois follows since

(A#σH)⊗A (A#σH)∼= (A#σH)⊗H
and the Galois map has the form idA⊗β with an inverse idA⊗β−1 : (A#σH) ⊗
H → (A#σH)⊗H where β,β−1 are defined as in (2) above.

Recall Example 1.1.18(2). If A=∑⊕g∈GAg then A is a kG-comodule algebra by x �→
x ⊗ g for all x ∈Ag . In this case:

THEOREM 3.2.3 [234]. A1 ⊂A is kG-Galois if and only if AgAh =Agh for all g,h ∈G
(A is then called strongly graded).

Of special interest is the case where AcoH = k.

DEFINITION 3.2.4. If the extension k ⊂ A is H -Galois then A is called an H -Galois
object (sometimes the extension is called an H -Galois extension).

There also exists a two-sided analogue which plays an important role in the representa-
tion theory of H .
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DEFINITION 3.2.5. Let H , L be Hopf algebras and let A be an (H,L)-bicomodule alge-
bra. Then A is called an (H,L)-bi-Galois object if A is both a left H -Galois object and a
right L-Galois object.

When AcoH ⊂ A is right H -Galois then CA(AcoH ), the centralizer of AcoH in A, be-
comes a right H -module algebra via the so-called Miyashita–Ulbrich action.

DEFINITION 3.2.6 [235,68]. Let AcoH ⊂ A be a right H -Galois extension with Galois
map β . Define the right Miyashita–Ulbrich action as follows:

For h ∈H write β−1(1⊗ h)=∑ai ⊗ bi and then define

x← h=
∑

aixbi, for all x ∈ CA
(
AcoH ).

THEOREM 3.2.7. The above← defines a right action of H on CA(AcoH ). The algebra of
invariants of this action is Z(A), the center of A.

Back to crossed products. While all crossed products are Galois extensions, in order for
a Galois extension AcoH ⊂A to become a crossed product AcoH#σH , the extension must
have the normal basis property, that is

A∼=AcoH ⊗H

as a left AcoH -module and a right H -comodule. This is the essence of the work done by
[129,67,25].

REMARK 3.2.8. Normal Hopf subalgebrasK of finite-dimensionalH (Example 3.2.2(3))
are not only Galois but K ⊂ H satisfies the normal basis property, [207,66], hence H =
K#σH as algebras.

In fact, H =K#τσH as Hopf algebras where τ is a dual cocycle which twists the coal-
gebra structure of K ⊗H .

Progress in the theory of such extensions has been made in the case that K = (kG)∗ and
H = kG′, whereG andG′ are finite groups. These extensions can be described in terms of
actions, coactions, a cocycle and a dual cocycle relating the groupsG andG′ and satisfying
certain compatibility conditions. Such groups were considered in [225] and were named
matched pairs. The subject was further discussed in [146,148,5,3].

Other instances in which Galois extensions AcoH ⊂ A are crossed products A ∼=
AcoH#σH are:

THEOREM 3.2.9.
(1) [128]. If H is a finite-dimensional Hopf algebra and A is an H -Galois object then

A is a crossed product over k.
(2) [196]. If H is a finite-dimensional Hopf algebra such that A and A ⊗ H ∗ satisfy

Krull–Schmidt for projectives and AAcoH is free then A is a crossed product over
AcoH .
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As a corollary, if H is a finite-dimensional Hopf algebra over an algebraically
closed field k, any H -Galois extension AcoH ⊂ A with AcoH a local ring is a
crossed product over AcoH .

(3) [19]. If H and A satisfy the equivalent conditions of the following Theorem 3.2.12
and H is connected (as a coalgebra) then A is a crossed product over AcoH .

WhenH is finite-dimensional then a leftH -action onA gives rise to a rightH ∗-coaction
on A so that AH =AcoH ∗ . Thus it makes sense to ask when is the extension AH ⊂A right
H ∗-Galois. Here are some equivalences:

THEOREM 3.2.10 [44,129]. Let H be a finite-dimensional Hopf algebra and A a left
H -module algebra. Then the following are equivalent:

(1) AH ⊂A is right H ∗ Galois.
(2) The Morita map [ , ] of Theorem 3.1.5 is surjective.
(3) For anyM ∈ A#HMod,M ∼=A⊗ AHMH as an A#H -module (via a⊗m �→ a ·m).
(4) A is a generator for A#HMod.

When A=D is a division algebra more can be said.

THEOREM 3.2.11 [44]. If A =D is a division algebra then the equivalent conditions of
Theorem 3.2.10 are also equivalent to each of the following:

(1) The right (left) dimension of D over DH equals dimH .
(2) D#H is a simple ring.
(3) D is a faithful left or right D#H -module.
(4) D ∼=DH#σH ∗.

An extension of Theorem 3.2.10, which also generalizes a theorem for algebraic groups
on induction of modules and affine quotients is:

THEOREM 3.2.12 [206]. Let H be a Hopf algebra with bijective antipode and A a right
H -comodule algebra. Then the following are equivalent:

(1) AcoH ⊂ A is a right H -Galois extension and A is a faithfully flat left (or right)
AcoH -module.

(2) The Galois map β is surjective and A is an injective H -comodule.
(3) The map ModAcoH→MH

A given byN �→N⊗AcoHA is an equivalence (where MH
A

is the subcategory of A-modules in the category of H -comodules, [60]).

The ideal structures of AcoH and A are closely related for some Galois extensions.

THEOREM 3.2.13 [172]. Let A and H be as in Theorem 3.2.12 and assume AcoH ⊂A is
a right H -Galois extension and A is a faithfully flat AcoH -module. Then

(1) There exists a bijection between the following sets of ideals:{
I ⊂AcoH satisfying IA=AI} Φ�

Ψ

{J ⊂A which are H -subcomodules},
Φ : I→ IA and Ψ :J → J ∩AcoH .
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(2) If H is also finite-dimensional then there is a bijective correspondence between
H -equivalent primes of AcoH and H ∗-equivalent primes of A (the equivalence re-
lation is quite natural; see [172] for the exact definition).

If AcoH ⊂ Z(A), more can be said.

THEOREM 3.2.14. Let H be a finite-dimensional Hopf algebra and A an H -module al-
gebra. If A/AH is H ∗-Galois and AH ⊂ Z(A) then:

(1) By [13,129,61], A is a faithfully flat right AcoH ∗ -module and the Morita map ( , )
is surjective. In particular AH and A#H are Morita equivalent, [44].

(2) [49]. For every ideal I of A#H

I = (I ∩A)#H = ((I ∩AH )A)#H.
Consequently, if A is an H -Galois object then A#H is a simple ring.

(3) [172]. If H ∗ is pointed and G=G(H ∗), then there exists a bijection

Spec(A)/G→ Spec
(
AcoH ∗)

given by [P ] �→ P ∩ AcoH ∗ (where Spec(A)/G is the set of G-orbits [P ] in
Spec(A)).

3.3. Duality theorems

Let A be a G-graded algebra, where G is a finite group; then A is a left (kG)∗-module
algebra (Example 1.3.5) and A#(kG)∗ is a left kG-module where kG acts trivially on A
and by ⇀ (Definition 1.3.1) on kG. The first “duality” theorem was proved in this setup
and considerably generalized independently by [25] and [239].

THEOREM 3.3.1 [47]. Let G be a finite group and A be a G-graded algebra. Then(
A#(kG)∗

)
#kG∼=Mn(A),

where Mn(A) is the algebra of n× n matrices over A.

The following theorem deals with a general H . Again H ∗ acts on A#H as for the
G-graded case.

THEOREM 3.3.2 [25,239]. Let H be a finite-dimensional Hopf algebra and A an H -
module algebra. Then

(A#H)#H ∗ ∼=Mn(A).

This theorem is in fact a corollary of the most general result:
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THEOREM 3.3.3 [25]. Let H be a Hopf algebra and U a Hopf subalgebra of H 0 such
that both H and U have bijective antipodes, and assume that U satisfies the RL-condition
with respect to H (see [25] for the definition). Let A be a U -comodule algebra and define
an action of H on A by: h · a =∑〈a1, h〉a0. Then

(A#H)#U ∼=A⊗ (H#U).

In particular:

COROLLARY 3.3.4 [25]. Specifying Theorem 3.3.3 to a residually finite-dimensional Hopf
algebra H and U a dense Hopf subalgebra of H 0, then

(A#H)#U ∼=A⊗L,

where L is a dense subring of Endk(H).

The duality theorem has been reproved using other methods. For example, by using
the right smash product of a comodule algebra with a Hopf algebra, [16]. It has been
generalized by using other constructions. For example, by using “opposite smash products”
for right H -comodule algebras, [127].

There also exist duality theorems for crossed coproducts of Hopf algebras coacting
(weakly) on coalgebras, [55].

The duality theorem has its origin in operator algebra theory for actions and coactions
of locally compact groups on von Neumann algebras, [175], and Kac algebras, [75]. It has
been generalized to weak Kac algebras, [181].

3.4. Analogues of two theorems of E. Noether; inner and outer actions

A classical theorem of E. Noether on invariants states that if A is a commutative k-affine
algebra and G is a finite group of automorphisms on A then AG is k-affine. This theorem
has the following generalizations. Part (1) of the generalization is a consequence of a
result of Grothendieck, [59, p. 309]. A more explicit proof which uses determinants is due
to [92].

THEOREM 3.4.1 [92]. Let H be a finite-dimensional cocommutative Hopf algebra and let
A be a commutative H -module algebra. Then

(1) A is integral over AH .
(2) If A is k-affine then so is AH .

This was generalized as follows:

THEOREM 3.4.2 [51]. Let (H,R) be a triangular semisimple Hopf algebra in character-
istic 0. Let A be an H -commutative H -module algebra (see Definition 4.3.3), then:

(1) A is integral over AH .
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(2) A is a PI algebra.
(3) If A is k-affine then so is AH .

Another proof of the above theorem follows from [77] who proved that H in Theo-
rem 3.4.2 is a twisting of a group algebra kG, and from [170] who showed various algebra
properties invariant under twisting.

A result similar in flavor is:

THEOREM 3.4.3 [166]. Let H be a finite-dimensional Hopf algebra and A a left
Noetherian H -module algebra so that the Morita map ( , ) is surjective. If A is k-affine
then so is AH .

The following is an infinite-dimensional Noether-type theorem for coactions.

THEOREM 3.4.4 [74]. Let A = A0 ⊕ A1 ⊕ · · · be a right Noetherian N-graded algebra
with A0 = k. LetH be a cosemisimple Hopf algebra and suppose A is a rightH -comodule
so that each Ai is a subcomodule of A. Then the subalgebra AcoH is k-affine.

The classical Noether–Skolem theorem asserts that if A is a simple Artinian ring with
center Z and B ⊃ Z is a simple subalgebra of A with Z-finite dimension then any isomor-
phism of B into A extends to an inner automorphism of A. This can be generalized to Hopf
algebras as in the next theorem. First a definition.

DEFINITION 3.4.5. Let C be a coalgebra and B ⊂ A be algebras. Consider a left ac-
tion C ⊗B→A, given by c ⊗ b �→ c · b which measures B to A (that is x · (ab) =∑
(x1 · a)(x2 · b) and x · 1 = ε(x)1 for all x ∈ C, a, b ∈ B). Then the measuring is in-

ner if there exists a convolution invertible map u ∈ Hom(C,A) such that for all x ∈ C,
b ∈ B ,

x · b=
∑

u(x1)bu
−1(x2).

This definition boils down to the usual definition of inner automorphisms and inner
derivations in the appropriate settings. For if σ is an automorphism of A and there exists
a ∈A such that σ · x = axa−1 for all x ∈A then define u(σ )= a and extend the definition
to C := k〈σ 〉. Similarly, if a derivation δ satisfies δ(x)= ax−xa for some a ∈A all x ∈A,
then define u(δ)= a, u(1)= 1 and extend it to C := k〈1, δ〉.

EXAMPLE 3.4.6. The left adjoint action of H on A is inner (with u= id and u−1 = S).

THEOREM 3.4.7 [126]. Let A be a simple Artinian algebra with center k and let B be a
finite-dimensional simple subalgebra of A. Let C be a coalgebra which measures B to A.
Assume also that Bop⊗D∗ is a simple algebra for each simple subcoalgebraD of C. Then
the measuring is inner.

Important applications of this theorem are:
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COROLLARY 3.4.8. Let A be a simple Artinian algebra with center k and B be a finite-
dimensional simple subalgebra of A. Let C be a pointed coalgebra. Then any measuring
of B to A by C is inner.

The following was proved independently in [144].

COROLLARY 3.4.9. Let A be a simple algebra which is finite-dimensional over its center.
Let C be a coalgebra. Then any measuring of A by C is inner.

If H is a Hopf algebra and A is an H -module algebra we say that H is inner on A if the
measuring of A by H is inner.

If G is a group of automorphisms of A then the set N of all g ∈ G which are inner
automorphisms is a normal subgroup ofG and kN is the maximal sub-Hopf algebra of kG
which is inner on A. Moreover, G/N acts on AN . This can be generalized as follows:

THEOREM 3.4.10. Let H be a finite-dimensional pointed Hopf algebra and A an H -
module algebra. Then

(1) [145]. There exists a unique sub-Hopf algebra Hinn of H which is inner on A and is
maximal with respect to this property.

(2) [208]. If H is also cocommutative then Hinn is a normal sub-Hopf algebra and
H =H/H(Hinn)

+ acts on AHinn .

When a group G acts by automorphisms on a prime ring A then some g ∈G may fail
to be inner on A, but extending the action of G to Q, the symmetric Martindale ring
of fractions of A, it may be inner on Q. When this happens g is called X-inner (where
X stands for Kharchenko, see [123]). Extending these ideas to Hopf algebra actions on
algebras, [41], constructed H -quotient rings on which the action may be inner.

The best results are obtained for pointed Hopf algebras H ; it was proved that the action
of H can be extended to Q as for group actions, [167,171]. In this case one can define
X-inner actions to be actions which become inner when extended to Q.

While for actions of groups by automorphisms (or of restricted Lie algebras by deriva-
tions) we define X-outer actions as those for which the only inner automorphism (deriva-
tion) is trivial, it is rather unsatisfactory to extend this definition for general Hopf algebras.

The following definition for outer actions of pointed Hopf algebras is due to [161]. LetH
be a pointed Hopf algebra acting on a prime algebra A, letQ be the symmetric Martindale
ring of quotients of A and let K be the center of Q. Set E := CQ#H (A), the centralizer of
A in Q#H .

DEFINITION 3.4.11. Let H be a pointed Hopf algebra acting on a prime algebra A. Then
the action of H on A is X-outer if E =K .

Previous results obtained in [124] for X-outer actions of groups and restricted Lie al-
gebras can be generalized for X-outer actions of pointed Hopf algebras. We list some of
them below.
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THEOREM 3.4.12 [161]. Let H be a finite-dimensional pointed Hopf algebra acting on a
prime algebra A. If the action of H on A is X-outer, then:

(1) Q#H is a prime algebra, and if Q is H -simple then Q#H is a simple algebra.
(2) If A#H is a prime algebra and A is H -simple then A#H is a simple algebra.
(3) AH is a prime algebra.
(4) CQ(AH )=K , where CQ(AH ) is the centralizer of AH in Q.
(5) A and AH satisfy the same multilinear identities.

Based on these results, a Galois type correspondence theory forX-outer actions of finite-
dimensional pointed Hopf algebras on prime algebras was proved in [247,244,245].

THEOREM 3.4.13. Let k be a field of characteristic zero and letH be a finite-dimensional
pointed Hopf algebra over k acting on a prime algebra A such that the action is X-outer.
Consider A and K#H as subalgebras of Q#H . For a rationally complete intermediate
subalgebra U of A, let Φ(U) denote the centralizer of U in K#H , and for a right coideal
subalgebra Λ of K#H containing K , let RΛ denote the centralizer of Λ in A. Then
U = RΦ(U) and Λ= Φ(RΛ). Thus U →Φ(U) determines a one to one correspondence
between the set of rationally complete intermediate subalgebras U of A and the set of right
subcomodule algebras of K#H containing K .

Part 4. Categories of representations of Hopf algebras

The abundance of structures related to Hopf algebras give rise to a number of new con-
structions. Many constructions are related to quantum groups or to solutions of the quan-
tum Yang–Baxter equation, some are related to Hopf algebras in categories and others are
deformations of known objects.

4.1. Rigid tensor categories and Hopf algebras

An important point of view of Hopf algebras arises from categorical considerations.
Let (A,m,1) be a finite-dimensional unital associative algebra, and let C := Rep(A) be

the category of finite-dimensional leftA-modules. Clearly, C is a k-linear Abelian category.
Also, the algebra A can be reconstructed from C and the forgetful functor C→Vec.

Suppose that A=H is a Hopf algebra. Then C turns out to have a rich structure as seen
in the following:

(1) Since ε is an algebra map, k becomes an object of C by

a · x := ε(a)x
for any a ∈H , x ∈ k.

(2) Since Δ is an algebra map it follows that for any V,W ∈ C, V ⊗W becomes an
object of C by:

a · (v⊗w) :=
∑

a1 · v⊗ a2 ·w

for any a ∈H , v ∈ V and w ∈W .
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(3) The coassociativity of Δ implies that the standard associativity isomorphism
(U ⊗ V )⊗W →U ⊗ (V ⊗W) is an H -module map.

(4) Since S is an anti-algebra isomorphism it follows that for any V ∈ C, its linear dual
V ∗ becomes an object of C by:

(a · f )(v) := f (S(a) · v)
for any a ∈H , v ∈ V and f ∈ V ∗.

(5) Let V ∈ C then it is straightforward to verify that the maps

evV :V ∗ ⊗ V → k, f ⊗ v �→ f (v)

and coevV : k→ V ⊗ V ∗ determined by

1 �→
∑
i

vi ⊗ fi

are in factH -module maps, where {vi} and {fi} are dual bases of V,V ∗ respectively.
The above indicate that (Rep(H),⊗, k, a, l, r) is a rigid tensor (also called monoidal) cat-
egory where k is the unit object and a, l, r are the standard associativity and unit constrains
as in Vec. (See [150,151,200] for definitions and properties of such categories.)

In the following Tannaka–Krein type theorem it is shown that corresponding conditions
on Rep(A) when A is an algebra, induce a Hopf algebra structure on A (see, e.g., [89]):

THEOREM 4.1.1. Let (A,m,1) be an algebra and C := Rep(A). Then there exists a bi-
jection between:

(1) rigid tensor structures on C, together with a compatible tensor structure on the
forgetful functor Forget :C→Vec, and

(2) Hopf algebra structures on (A,m,1).

REMARK 4.1.2. If we omit the rigidity requirement from C then the corresponding struc-
ture on A is that of a bialgebra.

Similarly, the category HM of left H -comodules has a structure of a rigid tensor cate-
gory as well. It is thus useful to think of a Hopf algebra as an algebra (coalgebra) whose
representation category (the category of H -comodules) has a structure of a rigid tensor
category. The Hopf algebra structure is unique only up to twisting as discussed in the fol-
lowing Theorem 4.1.4.

DEFINITION 4.1.3. Let H and L be Hopf algebras. Then H and L are monoidally co-
Morita equivalent (or Morita–Takeuchi equivalent) if the categories LM and HM are
equivalent as tensor categories.

If H can be obtained from L by twisting the algebra structure then LM and HM are
monoidally co-Morita equivalent. But more is true:
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THEOREM 4.1.4 [204]. Let H and L be Hopf algebras. Then:
(1) H and L are monoidally co-Morita equivalent⇔ there exists an (H,L)-bi-Galois

object M .
(2) If a crossed product over k is an (H,L)-bi-Galois object then H can be obtained

from L by twisting the algebra structure.
(3) As a corollary of (2) and Theorem 3.2.9(1) if H and L are finite-dimensional

monoidally co-Morita equivalent then H can be obtained from L by twisting the
algebra structure.

The following is a very useful criteria for co-Morita equivalence.

THEOREM 4.1.5 [149]. Suppose K is a sub-Hopf algebra of a Hopf algebra H . If I, J
are Hopf ideals in K so that I = g ⇀ J ↼ g−1 for some g ∈ G(K)∗, then H/(I) and
H/(J ) are monoidally co-Morita equivalent (where (I ) and (J ) are the Hopf ideals in H
generated by I and J respectively).

The striking property of quasitriangular (coquasitriangular) Hopf algebras H is that the
tensor category C = Rep(H) (HM) of their category of representations (comodules) is also
braided. Namely, just like in group representations, there is a natural isomorphism between
X ⊗ Y and Y ⊗X for any two representations (comodules) X, Y (this is not necessarily
true in general). Specifically, if (H,R) is quasitriangular where R =∑R1 ⊗ R2, we can
define for any X,Y ∈ C an isomorphism

cX,Y :X⊗ Y → Y ⊗X

given by:

x ⊗ y �→ τ
(
R · (x ⊗ y))=∑R2 · y ⊗R1 · x.

Analogously we can define for comodules over a coquasitriangular Hopf algebra (H, 〈|〉)

x ⊗ y �→
∑
〈x1|y1〉y0 ⊗ x0

for all x ∈X, y ∈ Y .
The map cX,Y above is in fact an H -module map by property (QT2) of R (see Defini-

tion 1.5.1). The collection c := {cX,Y |X,Y ∈ C} determines a braided structure on C. The
meaning of (QT1) in the definition is that to move Z to the left or to the right of X⊗ Y is
the same thing as to permute X, Y separately with Z. (The reader is referred to [112,113]
for a detailed discussion of braided tensor categories.)

If (H,R) is triangular, then R determines a symmetric structure on C. The meaning of

this is that the compositionX⊗Y cX,Y→ Y ⊗X cY,X→ X⊗Y is the identity for everyX,Y . This
is a generalization of the standard flip τ in the category of representations of cocommuta-
tive Hopf algebras (e.g., the universal enveloping algebra U(g) or the group algebra kG).
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REMARK 4.1.6. If C is a braided tensor category then the braiding gives rise to a repre-
sentation of the braid group Bn on V⊗n, V ∈ C, in the following sense: Each generator
σi of Bn acts on V⊗n by applying the braiding cV,V to the (i, i + 1) component of V⊗n.
Explicitly, the representation ρn : Bn→Aut(V⊗n) is given by:

ρn(σi)= id⊗i−1⊗ cV,V ⊗ id⊗n−i−1 .

If the category is symmetric then it gives rise to a non-trivial representation of the sym-
metric group Sn on the n-th tensor product of objects of C.

REMARK 4.1.7. Theorem 4.1.1 extends to a bijective assignment between (quasi)triangular
structures on H , and (braided) symmetric rigid tensor structures on C.

Going a step further, just as algebras can be reconstructed from their category of rep-
resentations one can reconstruct a ((co)quasitriangular) Hopf algebra from a rigid tensor
category which admits a fiber (= exact, faithful and tensor) functor to the category of
vector spaces. This problem has been studied extensively by many authors who have con-
sidered various possible set-ups and have accordingly reconstructed various structures (cf.
[200,58,187,236,112,154,155,157,202]). Here is one example:

THEOREM 4.1.8 [236]. Let C be a small Abelian rigid tensor category and F a k-linear
fiber functor to Vec. Then there exists a Hopf algebra H such that C is equivalent to HM,
the category of left H -comodules, and F is isomorphic to the forgetful functor.

The basic idea of the proof is the following: For each V ∈Vec define a functor FV :C→
Vec by X �→ F(X)⊗ V for all X ∈ C. The finiteness assumptions on the category imply
that the functor V �→Mor(F,FV ) is representable, that is, there exists an object H ∈ Vec
such that

Homk(H,V )=Mor(F,FV )

for all V ∈ Vec. Then H is our desired Hopf algebra where the structure maps of H are
reconstructed as well.

To the notion of a ribbon Hopf algebra there corresponds the notion of a ribbon category.
A ribbon category C is a rigid braided tensor category with the following extra structure:
There exists an automorphism of the identity functor id of C, which is compatible with the
tensor product, braiding and taking duals in a certain natural sense. In ribbon categories it
is possible to define dimensions of objects (sometimes called quantum dimensions), and
more generally to define traces of endomorphisms. This allows to associate link invari-
ants to any ribbon category. In particular, all classical polynomial invariants (e.g., Jones
polynomial) can be constructed in this fashion. (The reader is referred to [120–122,194]
for an extensive study of ribbon Hopf algebras and their connections with Hennings’ and
Kauffman’s invariants of knots, links and 3-manifolds.)

An important class of ribbon categories is the class of modular categories, [15,232].
A modular category C is a semisimple ribbon category with finitely many (up to isomor-
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phism) irreducible objects {Vi | 0 � i � m} with V0 as the unit object, so that the matrix
s := (sij ), where sij := tr(cVJ∗ ,Vi cVi ,VJ∗ ), is invertible.

EXAMPLE 4.1.9 [77]. Let H be a semisimple Hopf algebra over an algebraically closed
field k of characteristic 0. Then Rep(D(H)) is a modular category. This is true essentially
since D(H) is factorizable.

Modular categories arise naturally in physics in the framework of quantum field theory,
and in topology in the framework of invariants of 3-manifolds (see, e.g., [232]).

4.2. The FRT construction

Let G be an affine algebraic group over k; we then associate to G in the usual way two
k-Hopf algebras: A(G) (sometimes denoted by O(G)), whose elements are representative
functions onG, and U(g), whose underlying k-algebra is the enveloping algebra of the Lie
algebra g of G. Those Hopf algebras certified by workers in the field as being “quantum
groups”, fall into two main classes: those deforming the typeU(g), the quantum enveloping
algebras, and those deforming the type A(G).

Perhaps the earliest systematic construction of infinite families of these two types of
Hopf algebras, was furnished by the following seminal work of Faddeev, Reshetikhin and
Takhtajan, [90,91]. It was studied later extensively by many authors (e.g., [12,40,103,136,
230,202,218,226] and others in quantum group theory).

Let V be a finite-dimensional vector space and let R :V ⊗ V → V ⊗ V be a linear
isomorphism that satisfies the braid relation, namely:

(R⊗ IV ) ◦ (IV ⊗R) ◦ (R⊗ IV )= (IV ⊗R) ◦ (R⊗ IV ) ◦ (IV ⊗R).

Let {v1, . . . , vn} be a basis of V and assume R as above is given by:

R(vi ⊗ vj )=
n∑

k,l=1

R
k,l
i,j vk ⊗ vl.

Recall, Example 1.1.18, that End(V )∗ is a coalgebra and V is a right End(V )∗-
comodule. Let T be the tensor algebra of End(V )∗. Then T is a bialgebra by extend-
ing the coproduct on End(V )∗ to T multiplicatively. We wish to construct a bialgebra
A(R) = T/I , for some biideal I , so that the map R will induce a braiding in the cate-
gory of right A(R)-comodules. This is given by the following defining relations which are
precisely those needed to make R into a right A(R)-comodule map.

n∑
I,J=1

RIJij T
i′
I T

j ′
J =

n∑
I,J=1

R
i′j ′
IJ T

I
j T

J
i , (1)

all 1 � i, i′, j, j ′ � n.
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We have:

THEOREM 4.2.1 [90]. Let T be as above and let I be the ideal of T generated by for-
mula (1). Then I is a biideal and thus A(R) is a bialgebra.

A Hopf algebra version H(R) of the FRT-construction is given in [202] with regard to a
rigid tensor category.

It was proved in [136] that A(R) is coquasitriangular with a braiding structure given on
generators by〈

T
j
i |T lk
〉
R
=Rljik.

The paper [90] goes on to construct inside (A(R))◦ a bialgebra, yet not a Hopf algebra.
This result was improved by Faddeev, Reshetikhin and Takhtajan in a later paper [91],
where they construct inside (A(R))◦ a Hopf algebra Û(R), properly containing their earlier
construction. The Hopf algebra Û (R) is defined as follows:

Let l+, l−, r+, r− be the following maps from A(R) to A(R)0.

l+(a)= 〈a|−〉R, r+(a)= 〈−|a〉R,
l−(a)= 〈a|−〉∗R, r+(a)= 〈−|a〉∗R,

where 〈 | 〉∗R is the convolution inverse of 〈 | 〉R . Then the following Hopf algebra is con-
structed:

Û(R)= Im(l+)+ Im(l−)+ Im(r+)+ Im(r−)⊂ (A(R))0.
The Hopf algebra (Û(R),R) is essentially quasitriangular in the following sense: The

braiding 〈 | 〉R =R is an element of (A(R)⊗A(R))∗. But more is true, R is an element
of Û (R) ⊗̂ Û (R) which is the topological completion of Û (R)⊗ Û(R) in the topological
space (A(R)⊗A(R))∗. (The topological aspects are discussed in details in [132].)

4.3. Yetter–Drinfeld categories and the Drinfeld double

One of the most significant categorical aspects of bialgebras H was introduced by Yetter
in [248]. The coalgebra and algebra structure of H are taken into account simultaneously.

DEFINITION 4.3.1. Let H be a bialgebra over k. The “Yetter–Drinfeld” category H
HYD

(HYDH ) is the category of objects which are left H -modules, left (right) H -comodules,
and each M ∈HH YD(HYDH ) satisfies the compatibility condition, namely, for all h ∈H ,
m ∈M ∑

h1m−1 ⊗ h2 ·m0 =
∑
(h1 ·m)−1h2 ⊗ (h1 ·m)0,
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where ρ(m)=∑m−1 ⊗m0 (or respectively∑
h1 ·m0 ⊗ h2m1 =

∑
(h2 ·m)0 ⊗ (h2 ·m)1h1,

where ρ(m)=∑m0 ⊗m1).

Similar compatibility conditions are given for right–right and right–left Yetter–Drinfeld
categories.

EXAMPLE 4.3.2.
(1) A particular example of an object in H

HYD (YDHH ) is H itself considered as a left
(right) H -comodule via Δ and a left (right) H -module via the left (right) adjoint
action.

(2) If (H,R) is a quasitriangular Hopf algebra then every left H -module M is in HHYD
by defining ρ :M �→H ⊗M by

ρ(m)=
∑

S
(
R1)⊗R2 ·m.

Similarly, if (H, 〈 | 〉) is a coquasitriangular Hopf algebra then every right H -
comodule M is in HYDH by defining

h ·m=
∑
〈m1|h〉m0

for all h ∈H , m ∈M .

The Yetter–Drinfeld category H
HYD has the following natural pre-braiding structure:

Given M,N ∈ HHYD, define cM,N :M ⊗N �→N ⊗M by:

cM,N(m⊗ n)=
∑

m−1 · n⊗m0

for m ∈M , n ∈N . When H is a Hopf algebra with an invertible antipode then HHYD is a
braided tensor category with a braiding structure defined by c.

The category HHMH
H of two-sided two-cosided Hopf-modules satisfying six compatibil-

ity relations (also called tetramodules) was considered in [246]. He discussed the interre-
lation between H

HYD and H
HMH

H . An equivalence between the pre-braided categories of
tetramodules and that of Yetter–Drinfeld modules over H was stated in [203].

Another related category is the category of Doi–Hopf modules, [62]. This category in-
cludes a variety of modules as special cases; for example Hopf modules and graded mod-
ules are Doi–Hopf modules. Furthermore, it was proved in [33] that HHYD can be con-
sidered as a special case of Doi–Hopf modules and in [18] that the same holds for two-
sided two-cosided Hopf modules, illustrating the “unifying” property of Doi’s concept.
In fact, the above mentioned category equivalence between Yetter–Drinfeld modules and
tetramodules can be described in terms of an adjoint pair of functors between categories of
Doi–Hopf modules (in the sense of [34]).
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In a Yetter–Drinfeld category we can consider commutativity in the category. This is
defined in general as follows:

DEFINITION 4.3.3. A left H -module and left H -comodule algebra (A, ·, ρ) is called H -
commutative (or quantum commutative) if

ab=
∑
(a−1 · b)a0 for all a, b ∈A.

H -commutativity is defined similarly for a right H -module and right H -comodule al-
gebras, etc.

REMARK 4.3.4. If (A, ·, ρ) isH -commutative then AcoH and AH are contained in Z(A).

EXAMPLE 4.3.5. The following are examples of H -commutative algebras.
(1) Let H be as in Example 4.3.2(1). Then (H, adl ,Δ) ((H, adr ,Δ) resp.) is H -com-

mutative.
(2) [49,160]. LetA be a commutative superalgebra, that isA is a Z2-graded algebra and

ab= (−1)dega degbba for homogeneous elements a, b ∈A. LetG= {1, g} ∼= Z2 and
H = kG. Consider A as an H -comodule by the Z2-grading and an H -module by
defining g · a = (−1)degaa for homogeneous a ∈A. Then A is H -commutative.

(3) [49]. LetA :=Cq [x, y], the quantum plane, that isA equals the free algebra C〈x, y〉
modulo the relation xy = qyx, where q is an n-th root of 1. Let G := Zn × Zn
and H = kG, then A is H -commutative for a certain action and coaction of H . If
we localize and obtain B := A[x−1, y−1] then B/BH is H -commutative and H ∗-
Galois.

Recall the Miyashita–Ulbrich action defined in Definition 3.2.6. The following theorem
describes how H -commutativity is related to H -Galois extensions and to objects in YDHH
via the Miyashita–Ulbrich action←.

THEOREM 4.3.6. Let AcoH ⊂A be a right H -Galois extension, then:
(1) [235,68]. (CA(AcoH ),←, ρ) is H -commutative.
(2) [35]. If H has a bijective antipode then(

CA
(
AcoH ),←, ρ) ∈ YDHH .

In particular, if AcoH ⊂ Z(A) then (A,←, ρ) ∈ YDHH .
(3) [45]. If A is a right H -commutative H -module algebra, then CA(AcoH ) = A, the

given action · coincides with← and (A, ·, ρ) ∈ YDHH .

EXAMPLE 4.3.7. Let A = H be a right H -comodule with ρ = Δ. Then by Exam-
ple 3.2.2(2), k ⊂ H is a right H -Galois with β−1(1 ⊗ h) =∑S(h1) ⊗ h2 and so the
Miyashita–Ulbrich action x← h=∑S(h1)xh2 is the right adjoint action.
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Theorem 4.3.6(3) generalizes now the right version of Example 4.3.2(1).

The Drinfeld double

If H is finite-dimensional then HYDH has a nice realization related to the so-called Drin-
feld double ofH constructed by Drinfeld, [71]. The Drinfeld double is a double crossprod-
uct, a construction described in [153] and modified in [192]. The double crossproduct of
the bialgebras H and B is defined when B is a left H -module coalgebra and H is a right
B-module coalgebra satisfying some compatibility conditions. A special case is whenH is
a finite-dimensional Hopf algebra, B =H ∗ and the actions are given by the left coadjoint
action of H on H ∗

h⇀⇀p =
∑

h1 ⇀p↼S−1(h2)

and the right coadjoint action of H ∗ on H

h↼↼p =
∑

S∗−1(p1)⇀ h↼p2

for h ∈H , p ∈H ∗.

DEFINITION 4.3.8. Let H be a finite-dimensional Hopf algebra. The Drinfeld double
D(H)=H ∗cop -.H is defined as the vector space H ∗cop⊗H with multiplication defined
by

(p -. h)(p′ -. h′)= p(h1 ⇀⇀p′2) -. (h2 ↼↼p′1)h′

and comultiplication given by the tensor comultiplication in the tensor coalgebra
H ∗cop ⊗H , that is:

ΔD(H)(p -. h)= (p2 -. h1)⊗ (p1 -. h2)

for all h ∈H , p ∈H ∗.
The antipode is given by

SD(H)(p -. h)=
(
1 -. S(h))(S∗(p) -. 1

)
.

More precise formulas for the multiplication in D(H) are given by:

(p -. h)(p′ -. h′)=
∑

p
(
h1 ⇀p′↼S−1(h3)

) -. h2p
′,

(p -. h)(p′ -. h′)=
∑

pp′ -. (S∗−1(p1)⇀ h↼p′3
)
h′.

Observe that the Hopf algebras H and H ∗cop are contained inD(H) hence a leftD(H)-
module M is in particular a left H -module and a left H ∗-module. Thus, by Remark 1.3.4,
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M is also a right H -comodule. Now, a straightforward (long) verification shows that the
definition of the multiplication inD(H) implies that h · (p ·m)= ((ε -. h)(p -. 1)) ·m for
all m ∈M , h ∈H is equivalent to M being an object in HYDH . We summarize:

THEOREM 4.3.9 [156]. Let H be a finite-dimensional Hopf algebra. Then the Yetter–
Drinfeld category HYDH is equivalent to the category of left modules over the Drinfeld
double D(H).

REMARK 4.3.10. The process of taking the double is mostly effective if it is done just
once; the double of D(H) can be obtained from the tensor product D(H) ⊗ D(H) by
twisting the comultiplication, [197,209].

The Drinfeld double D(H) is naturally quasitriangular by letting

R :=
∑
(ε -. hi)⊗ (h∗i -. 1),

where {hi} and {h∗i } are any dual bases of H and H ∗. Consequently, (D(H)∗, 〈 | 〉R) is
coquasitriangular. Moreover, D(H) is factorizable (hence unimodular), [71,197,194].

REMARK 4.3.11.
(1) [140]. Recall, Example 1.6.3, that σ = 〈 | 〉R ◦ τ is a Hopf 2-cocycle on D(H)∗.

Then

σD(H)
∗ ∼=H(H)=H#H ∗

as algebras, where σD(H)∗ is a twisted Hopf algebra as defined in Remark 3.1.4
and H(H) is the so-called “Heisenberg double” of H ; it is a simple algebra.

(2) It is straightforward to check that

J :=
∑
i

(h∗i ⊗ 1)⊗ (ε⊗ hi)

is a twist for the Hopf algebra H ∗op ⊗H where {hi} and {h∗i } are dual bases in H
and H ∗ respectively. Then (H ∗op⊗H)J , the Hopf algebra obtained by twisting the
comultiplication via J is isomorphic toD(H)∗op, the (opposite) dual of the Drinfeld
double of H .

For a braided monoidal category C, a Brauer group Br(C) was defined by [240] so that
many Brauer group constructions are particular cases. For example, the classical Brauer
group of a commutative ring k is Br(C) for C the category of k-modules; the Brauer
group of a scheme (X,OX) is Br(C) where is C is the category of OX-module sheaves;
the Brauer–Long group is Br(C) for C the category of H -dimodules (where H is a com-
mutative cocommutative Hopf algebra).

The Brauer–Long group was generalized and denoted by BQ(k,H) where H is any
Hopf algebra with a bijective antipode and the dimodules are replaced by Yetter–Drinfeld
modules. It is proved:
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THEOREM 4.3.12 [241]. Let H be a finite-dimensional Hopf algebra then there is an
exact sequence

1→G
(
D(H)∗

)→G
(
D(H)
)→AutHopf(H)→ BQ(k,H),

where D(H) is the Drinfeld double of H .

As a consequence, it follows that the Brauer group of Sweedler’s four-dimensional Hopf
algebraH4 contains k∗/{−1,1} as a subgroup and thus BQ(k,H) is in general highly non-
torsion.

4.4. Hopf algebras in braided categories, biproducts and bosonizations

One of the first comprehensive steps to abstract the notion of a Hopf algebra from the work
of Hopf in topology was carried out by Milnor and Moore, [163]. Though their notion of
a Hopf algebra is not the one used in this chapter, it turns out to be a Hopf algebra in the
category of kZ-comodules. Specifically,

EXAMPLE 4.4.1 [163]. LetA=A0⊕A1⊕· · · be a N-graded vector space over a field k. If
A and B are N-graded then the “twisting morphism” T :A⊗B→ B ⊗A is the morphism
defined by:

T (a ⊗ b)= (−1)pqb⊗ a

for a ∈Ap , b ∈ Bq .
A is called a graded Hopf algebra over k if
(1) (A,μ,1) is a graded k-algebra (as usual).
(2) (A,Δ,ε) is a graded k-coalgebra, viz., Δ(An)⊂∑n

i=0Ai ⊗An−i and
∑
i>0Ai ⊂

Ker ε.
(3) Δ ◦μ= (μ⊗μ) ◦ (id⊗T ⊗ id) ◦ (Δ⊗Δ) and ε is an algebra map.
(4) The identity map idA is invertible under convolution. In particular, its inverse S

satisfies S ◦μ= μ ◦ T ◦ (S ⊗ S).

It is condition (3) in the above example that reflects the basic idea of a bialgebra in a
braided category, where the braiding plays the role of the “twisting operator”.

Additional examples in the same spirit are enveloping algebras of Lie superalgebras and
more generally, of Lie color algebras, [205].

These examples were known without the formalism of category theory. The more gen-
eral notion of Hopf algebras in braided tensor categories was introduced in [159] and have
been since extensively studied by many authors. A comprehensive survey is given in [228].

Notions like algebras, coalgebras and bialgebras can be considered categorically, that is,
all structure maps are required to be maps in the category. (H -module algebras and H -
comodule algebras are examples that have already been mentioned.) To define a bialgebra
in a category requires an appropriate braiding. Explicitly:
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Given a braided tensor category with a braiding structure c, one can define an algebra
structure on the tensor product of two algebras as follows: For any (A,μA) and (B,μB) in
the category define μA⊗B : (A⊗B)⊗ (A⊗B) �→A⊗B by:

μA⊗B = (μA ⊗μB)(id⊗ cB,A ⊗ id).

Once the tensor product of two algebras is an algebra we can define:

DEFINITION 4.4.2. A bialgebra in a braided tensor category is a 5-tuple (A,μ,1,Δ, ε)
where (A,μ,1) is an algebra in the category and (A,Δ,ε) is a coalgebra in the category
so that

Δ ◦μA = μA⊗A ◦ (Δ⊗Δ).

A is a Hopf algebra in the category if moreover the identity idA is invertible under convo-
lution; its inverse is the antipode of A.

Hopf algebras in the category are also called braided Hopf algebras.

EXAMPLE 4.4.3 [11]. Let H be any Hopf algebra and let V ∈ HHYD. Then the tensor
algebra T (V )=⊕n�0 T (V )(n), where T (V )(n)= V⊗n is also an object in HHYD. If we
define ΔV (v)= 1⊗ v + v ⊗ 1 for all v ∈ V , then there is a unique extension of ΔV to a
map Δ :T (V )→ T (V )⊗ T (V ) which is an algebra map in HHYD. The counit ε is defined
by ε(v)= 0 for all v ∈ V and thus T (V ) is a (graded) bialgebra in the category. Moreover,
it can be proved that T (V ) is actually a Hopf algebra in HHYD.

Let I be the largest Hopf ideal generated by homogeneous elements of degree> 1. Then
B(V ) = T (V )/I is a (graded) Hopf algebra in H

HYD. The graded braided Hopf algebra
B(V ) is unique with respect to the following properties: B(V ) is connected as a coalgebra,
generated as an algebra by elements of degree 1 and V = B(V )(1)= P(B(V )), the space
of primitive elements of B(V ).

The braided Hopf algebra B(V ) was termed the Nichols algebra of V honoring Nichols
who described B(V ) in a different setting, [177].

Nichols algebras were rediscovered and studied independently by several authors. They
were treated as the invariant parts of “algebras of quantum differential forms” in [246] and
as “quantum symmetric algebras” in [199].

It has been proved that most of the fundamental properties of ordinary finite-dimensional
Hopf algebras can be generalized to braided Hopf algebra theory, even in a more general-
ized form, [228]. We summarize:

THEOREM 4.4.4. The following is true for Hopf algebras in a category:
(1) [143]. The fundamental theorem for Hopf modules (Theorem 2.1.3).
(2) [143,227]. The bijectivity of the antipode (Theorem 2.2.6).
(3) [143,227]. The uniqueness of the integral (Theorem 2.2.1).
(4) [95]. Frobenius property (Theorem 2.2.5).
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(5) [65]. Trace formulas (Theorem 2.2.6).
(6) [23]. A variation of the S4 formula (Theorem 2.4.1).
(7) [201]. Nichols–Zoeller theorem (Theorem 2.5.1).
(8) [22]. Characterizations of the Yetter–Drinfeld category and generalizations of

biproducts and bosonizations (see next section).

Starting from a Hopf algebra B in the braided tensor category H
HYD it is possible to

“lift” B to an ordinary Hopf algebra. The process was given in [190] (without using the
notion of a Hopf algebra in the category) and in [158].

To describe the process we need first to introduce the smash coproduct.
Let H be a bialgebra and A a left H -comodule coalgebra. To avoid confusion we write

for all a ∈A:

ΔA(a)=
∑

a1 ⊗ a2 and ρH (a)=
∑

a−1 ⊗ a0.

Then the tensor product A⊗H can be equipped with a coalgebra structure via the smash
coproduct as follows:

PROPOSITION 4.4.5 [164]. Let H be a Hopf algebra and let A be a left H -comodule
coalgebra. Let A#H be the vector space A⊗H with coproduct given by

Δ(a#h)=
∑

a1#
(
a2)
−1h1 ⊗

(
a2)

0#h2

and counit given by ε(a#h)= εA(a)εH (h). Then the above structure maps make A#H into
a coalgebra.

Let A⊗H be equipped with the smash product and the smash coproduct. We call it a
biproduct and denote it by A ∗H . Necessary and sufficient conditions for the biproduct to
be a Hopf algebra were given by Radford in [190]. We give a categorical version of the
theorem.

THEOREM 4.4.6. Let H be a bialgebra and let A be an algebra in HMod and a coalge-
bra in HCom. Then A ∗H is a bialgebra if and only if A is a bialgebra in HHYD.

If H is a Hopf algebra with a bijective antipode SH and A is a Hopf algebra in H
HYD

with an antipode SA then A ∗H is a Hopf algebra with antipode given by:

S(a ∗ h)= (1 ∗ S−1
H (a−1h)

)(
SA(a0) ∗ 1

)
.

A similar process was named bosonization, [158]. He considers the braided category
HMod over a quasitriangular Hopf algebra H and proves moreover that if H is triangular
and A is quasitriangular in the category, then A ∗H is quasitriangular.

EXAMPLE 4.4.7. LetH =H4 be Sweedler’s 4-dimensional Hopf algebra (Example 1.2.5)
then H =A ∗ kG where G= {1, g} ∼= Z2 and A= spk{1, x}.
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The following is a version of a structure theorem about biproducts. It is most useful in
the classification theory of finite-dimensional Hopf algebras.

THEOREM 4.4.8 [190]. IfH
i
↪→ B

π→H is a sequence of finite-dimensional Hopf algebra
maps where i is injective, π is surjective and π ◦ i = idH , then there exists a coideal
subalgebra A⊂ B such that:

(1) A is a left H -module algebra via the adjoint action.
(2) A is a left H -comodule algebra via ρ(b)=∑a(1) ⊗ a(2) =∑π(a(1))⊗ a(2).
(3) A∼= B/BH+ as Hopf algebras (where H+ =Ker ε).
(4) A is a Hopf algebra in the category HHYD.
(5) B ∼=A ∗H as a bialgebra.

Bosonizations and biproducts were used in [46,93] to prove a generalized Schur double
centralizer theorem for Lie algebras in certain symmetric tensor categories C. Explicitly,
for a finite-dimensional object V ∈ C one can define the C-analogue, U(glC(V )), of the
enveloping Lie algebra U(gl(V )) by using the braiding structure. Then U(glC(V )) is a
Hopf algebra in the category C and thus by Theorem 4.4.6, Ĥ = U(glC(V )) ∗ H is an
ordinary Hopf algebra. The Hopf algebra Ĥ acts on V⊗n viaΔ while the symmetric group
Sn acts on V⊗n via the usual flip map. It was proved:

THEOREM 4.4.9 [46]. Let C, V , U(glC(V )) and Ĥ be as above and assume that the
characteristic of k is 0. Then the actions of kSn and Ĥ on V⊗n centralize each other.

[93] have proved in the same spirit a double centralizer theorem for Lie color algebras.

Part 5. Structure theory for special classes of Hopf algebras

5.1. Semisimple Hopf algebras

There are several surveys regarding semisimple Hopf algebras, the reader is referred to
[168,169,4].

Observe first that since Ker ε is a non-zero ideal of H , it follows that there exist no Hopf
algebras which are simple as algebras. Thus the simplest objects are the semisimple Hopf
algebras.

A consequence of Corollary 2.2.3 is that all semisimple Hopf algebras are finite-
dimensional. For if H is semisimple then H = I ⊕ Ker ε where I is a 1-dimensional left
ideal of H (since Ker ε has codimension 1). Moreover, if H is a semisimple Hopf algebra
then it is a separable algebra (i.e. for any field extension E ⊇ k, H ⊗ E is semisimple).
This is easily seen from Maschke’s theorem (Theorem 2.3.1) and from the fact that the
extensions of Δ,ε,S to H =H ⊗E make H a Hopf algebra over E with integral

∫ l
H
⊗E.

Semisimple Hopf algebras in characteristic 0 are close in spirit to kG, G a finite group
as will be seen in this section. Some of Kaplansky’s conjectures, [116], are inspired by this
resemblance (see [213] for a detailed exposition).
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The square of the antipode

KAPLANSKY’S 5TH CONJECTURE. Let H be a semisimple Hopf algebra. Then S2 = id.

In [131] it is proved that if H is semisimple over an algebraically closed field then S2 is
an inner automorphism, and in [183] the same is proved over any base field k.

Observe that from Theorems 2.2.7 and 2.3.1, we deduce:

THEOREM 5.1.1. Let H be a finite-dimensional Hopf algebra then H is semisimple and
cosemisimple if and only if Tr(S2) �= 0.

By using Theorem 5.1.1, a positive answer to Kaplansky’s 5-th conjecture in character-
istic 0 was given by Larson and Radford:

THEOREM 5.1.2 [133,134]. Let H be a finite-dimensional Hopf algebra and assume that
the base field k has characteristic 0. Then the following are equivalent:

(1) S2 = id.
(2) H and H ∗ are semisimple.
(3) H is semisimple.
(4) H ∗ is semisimple.

When the characteristic of k is positive then (1)⇒ (3) is trivially false, for example, if
H = kG and the characteristic of k divides the order of G.

In positive characteristic it is thus natural to consider Hopf algebras which are both semi-
simple and cosemisimple. This was manifested in [76] where it was proved that any such
Hopf algebra in positive characteristic can be lifted to a semisimple (and hence cosemisim-
ple) Hopf algebra in characteristic 0 of the same dimension. This implies that, essentially,
it is enough to study semisimple Hopf algebras in characteristic 0, and lift the results to
positive characteristic. The proof of the lifting theorem uses Witt vectors (see, e.g., [211]),
and the so-called Gerstenhaber–Schack cohomology, [99]. In particular it allowed to prove:

THEOREM 5.1.3 [77]. Let H be a semisimple and cosemisimple Hopf algebra over any
field k. Then S2 = id. Moreover, if H is any finite-dimensional Hopf algebra over any field
k, then H is semisimple and cosemisimple⇔ S2 = id and dim(H) �= 0 in k.

If H is a semisimple Hopf algebra and the characteristic of k is large enough in compar-
ison to the dimension of H then H is also cosemisimple and hence S2 = id (see [212,76]).

Character theory

Motivated by group representation theory, a basic tool in the theory of semisimple Hopf
algebras H over an algebraically closed field of characteristic 0 is the character ring of H .
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Let V be a finite-dimensional left H -module and let ρV :H → End(V ) be the correspond-
ing representation. Then χV ∈H ∗ is defined by

χV (h) := Tr
(
ρV (h)
)

for any h ∈H . Since Tr(ρV (hh′))= Tr(ρV (h′h)) for all h,h′ ∈H it follows that χV is a
cocommutative element of H ∗.

If V is an irreducible module we say that χV is an irreducible character. It is easily seen
that

(1) χV⊕W = χV + χW ,
(2) χV⊗W = χV ∗ χW ,
(3) χV ∗ = S(χV ).
Define the character ring R(H) of H to be the k-span in H ∗ of all the characters on

H . Since H is semisimple it follows that R(H) is generated over k by the finite set of
its irreducible characters. Actually, R(H) is the subalgebra of all cocommutative elements
of H ∗.

Let t ∈ ∫ H
l

be such that ε(t)= 1. Define a form 〈 | 〉 on R(H) by:

〈ϕ|ψ〉 := 〈ϕ ∗ S(ψ), t 〉=∑〈ϕ, t1〉〈S(ψ), t2〉
for any characters ϕ,ψ ∈R(H).

As for characters of finite groups, there are orthogonality relations for irreducible char-
acters via this form. Let {V0,V1, . . . , Vm} be a complete set of irreducible left H -modules,
where V0 is the trivial module. Let ni = dim(Vi) and let χi denote the character χVi . We
have:

THEOREM 5.1.4 [131]. Let H be a semisimple Hopf algebra over an algebraically closed
field and let {χ0, . . . , χm} be the set of irreducible characters of H . Then 〈χi |χj 〉 = δij .

A consequence of the above theorem is that R(H) is a semisimple algebra.
Let RZ(H)=∑i Zχi ⊂R(H) where the {χi} are the irreducible characters onH . Since

the {χi} are Z-independent by orthogonality, RZ(H) is a finite free Z-module. In fact
RZ(H)∼=K0(H), the Grothendieck ring of H .

THEOREM 5.1.5 [180]. Two semisimple Hopf algebras have isomorphic Grothendieck
rings if and only if they are pseudo-twists of each other.

An important generalization from group theory is the class equation for semisimple
Hopf algebras.
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THEOREM 5.1.6 [114,250]. Let H be a semisimple Hopf algebra over an algebraically
close field of characteristic 0. Let {e0, e1, . . . , em} be a complete set of primitive orthogonal
idempotents in R(H), where e0 is an integral for H ∗. Then

dim(H)= 1+
m∑
i=1

dim(eiH
∗)

and dim(eiH ∗) divides dim(H) for all 0 � i �m.

Many results in the classification theory of semisimple Hopf algebras are due to the class
equation. An immediate one is the Kac–Zhu theorem (Theorem 2.6.1).

When H = kG, the theorem boils down to the usual class equation for finite groups.
WhenH = (kG)∗ thenR(H)=H ∗ = kG and the class equation says that the dimension of
an irreducible G-module divides the order of G. This is the classical theorem of Frobenius
for finite groups that motivated Kaplansky’s 6th conjecture:

KAPLANSKY’S 6TH CONJECTURE [116]. Let H be a semisimple Hopf algebra. Then the
dimension of any irreducible H -module divides the dimension of H .

We say that H is of Frobenius type if it satisfies this conjecture. Let the base field k
be algebraically closed of characteristic 0, then H is of Frobenius type in the following
cases:

(1) If (H,R) is quasitriangular, [78].
(2) If H is semisolvable, that is, H has a normal series of Hopf subalgebras such that

each Hopf quotient is either commutative or cocommutative, [173].
(3) If R(H) is central in H ∗, [249].
(4) If H is cotriangular, [81]. This was proved using Theorem 5.1.7 below.
In fact, for the case of semisimple quasitriangular Hopf algebra it is proved that the

dimension of any irreducible D(H)-module divides the dimension of H . The proof uses
the theory of modular categories (the representation category of D(H) is modular), and
in particular the Verlinde formula, [242], applies. See [210,231] for later proofs in the
quasitriangular case.

Other important results in this direction are that if H has an irreducible module of di-
mension 2 then H has even dimension, [179], and more generally that if H has an even-
dimensional irreducible module then H has even dimension, [119].

Semisimple triangular Hopf algebras

The structure of triangular Hopf algebras is far from trivial, and yet is more tractable than
that of general Hopf algebras, due to their proximity to groups and Lie algebras.

THEOREM 5.1.7 [77]. Any semisimple triangular Hopf algebra over an algebraically
closed field k of characteristic 0 is isomorphic to (kG)J for a unique (up to isomorphism)
finite group G and a unique (up to gauge equivalence) twist J .
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The proof of this theorem is based on a deep theorem of Deligne on Tannakian cate-
gories, [56]. The idea is that if (H,R) is a semisimple triangular Hopf algebra then one
can modify R to get an element R̃ such that the category Rep(H, R̃) is not only semisimple
and symmetric but also has the property that the categorical dimensions of its objects are
non-negative integers. Thus by the Deligne theorem, Rep(H, R̃) is Tannakian; that is, it is
equivalent to Rep(G) for a unique finite group G, [58].

This theorem is the key step in the complete classification of triangular semisimple Hopf
algebras described in the following theorem.

THEOREM 5.1.8 [80]. Triangular semisimple Hopf algebras of dimension N over k are
in one to one correspondence with quadruples (G,H,V,u), where G is a finite group of
order N , H <G, V is an irreducible projective representation of H of dimension |H |1/2,
and u ∈G a central element of order � 2.

By the previous theorem one needs to classify twists for a given finite group G, up to
gauge equivalence. It turns out that any twist J for G is gauge equivalent to a “minimal”
twist coming from a subgroup H of G. Finally, using Movshev’s theory, [174], one shows
that equivalence classes of minimal twists for a finite group H are in bijection with iso-
morphism classes of irreducible projective representation of H of dimension |H |1/2. It is
interesting to note that H is a central type group, so in particular solvable, [109].

For non-semisimple finite-dimensional triangular Hopf algebrasH over an algebraically
closed field k of characteristic 0 it is no longer true that the categorical dimensions of ob-
jects in Rep(H) are non-negative integers; so the Deligne theorem, [56], cannot be applied.
Nevertheless using a recent theorem of Deligne, [57], it was proved in [84] that any finite-
dimensional triangular Hopf algebra has the Chevalley property; namely, the semisimple
part of H is itself a Hopf algebra. This leads to the complete and explicit classification
of finite-dimensional triangular Hopf algebras over k. As a consequence, for example, it is
proved that in any finite-dimensional triangular Hopf algebraH , u2 = 1 and hence S4 = id.

Results for special dimensions

Another conjecture of Kaplansky is the following:

KAPLANSKY’S 10TH CONJECTURE. For each integer n > 0 there are only finitely many
isomorphism classes of n-dimensional Hopf algebras.

A positive answer to this conjecture was given in the semisimple case, any characteristic:

THEOREM 5.1.9 [216]. Let k be an algebraically closed field. Then for each integer
n > 0 there are only finitely many isomorphism classes of n-dimensional semisimple and
cosemisimple Hopf algebras.

Using three independent methods the conjecture was shown to be false in the non-
semisimple case, [8,17,96] (though all these Hopf algebras are twists of each other, [149]).
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In what follows we list results for special dimensions over an algebraically closed field
of characteristic zero. Let p �= q be prime numbers, then:

(1) If dimH = pq then H is either kG or (kG)∗ for some group G, [77,98].
(2) If dimH = p2 then H = kG for some finite group G, [147].
(3) Let p �= 2 and dimH = p3. Then there exist exactly p + 8 isomorphism classes.

Seven of these are of the form kG or (kG)∗ and the other p + 1 are all non-
commutative, non-cocommutative and self dual, [146].

(4) If dimH = pn, then H is solvable, in particular H is of Frobenius type, [173].
It follows that the first possible dimension for a semisimple Hopf algebra to be neither

commutative nor cocommutative is 8. An example of such a Hopf algebra was constructed
already in 1966, [115].

Using the above results semisimple Hopf algebras of odd dimension less then 60 over an
algebraically closed field of characteristic zero are all classified. Even-dimensional Hopf
algebras are less known. For specific dimensions see the surveys mentioned in the begin-
ning of this section.

It was proved in [85].

THEOREM 5.1.10. Let H be a Hopf algebra over an algebraically closed field of charac-
teristic 0 whose dimension is pq , where p,q are prime and p < q < 2p + 2. Then H is
semisimple, hence is either kG or (kG)∗ for some group G.

The exponent and the Schur indicator

Motivated by other aspects of group theory two other notions were generalized to Hopf
algebras: the exponent and the Schur indicator.

The classical notion of the exponent of a group is generalized in [79], motivated by [117,
118], in which the exponent of Hopf algebras whose antipode is involutive is studied. In
fact, for such Hopf algebras the notion of exponent has existed for over 30 years.

DEFINITION 5.1.11 [79]. The exponent exp(H) of H is the smallest positive integer n
such that mn ◦ (id⊗S−2 ⊗ · · · ⊗ S−2n+2) ◦ Δn = ε · 1, where mn, Δn are the iterated
product and coproduct.

IfH is involutive (for example,H is semisimple and cosemisimple), then exp(H) equals
the smallest positive integer n so that mn ◦Δn = ε · 1.

In [79] it is shown that exp(H) equals the order of the Drinfeld element u of the quantum
doubleD(H), and the order of RτR, where R is the universal R-matrix ofD(H). This was
motivated by a theorem in conformal field theory, [237].

In [118] it was conjectured that if H is semisimple and cosemisimple then exp(H) is
always finite and divides dim(H).

THEOREM 5.1.12 [79]. For a semisimple and cosemisimple Hopf algebra H , exp(H) is
finite and divides dim(H)3.
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In [119] it is proved that if 2 divides dim(H) then 2 divides exp(H). Whether this is true
for any odd prime p is still an open question.

For non-semisimple finite-dimensional Hopf algebras the exponent is usually infinite.
However, it was proved in [82] that the order of unipotency of u is always finite, since all
the eigenvalues of u are roots of unity. This order of unipotency of u was termed the quasi-
exponent of H , and is denoted by qexp(H); it reduces to exp(H) when H is semisimple.
In [82] equivalent definitions of qexp(H), generalizing the ones in the exponent case, are
given and it is proved that qexp(H) is an invariant of the tensor category Rep(H).

The theory of quasi-exponents was applied to study the group of grouplike elements of
twisted quantum groups at roots of unity, [82].

Another generalization of group theory is the Schur indicator ν.

DEFINITION 5.1.13 [137]. Let H be a semisimple Hopf algebra over an algebraically
closed field of characteristic 0, and t ∈ ∫

H
such that 〈ε, t〉 = 1. For any irreducible character

χ define the Schur indicator by

ν(χ)=
∑

χ(t1t2).

It is proved:

THEOREM 5.1.14 [137]. The Schur indicator satisfies the following:
(1) ν(χ) ∈ {0,1,−1} for all χ ∈ Irr(H).
(2) ν(χ) �= 0 if and only if Vχ ∼= Vχ∗

Moreover, ν(χ)= 1 (resp.−1) if and only if Vχ admits a symmetric (resp. skew symmetric)
non-degenerate bilinear H -invariant form.

Theorems 5.1.12 and 5.1.14 found an interesting applications in [119] where it is proved
that a semisimple Hopf algebra over C with a non-trivial self-dual irreducible representa-
tion or with an even-dimensional irreducible representation, must have even dimension.

Hopf algebras with positive bases

A finite-dimensional Hopf algebra H over C is said to have a positive base if it has a
linear basis with respect to which all the structure constants are positive. For example,
a bicrossproduct Hopf algebra arising from a finite group G and an exact factorization
G =G+G− of G is a Hopf algebra with a positive base (e.g., C[G] and D(G)). In fact,
if H is a Hopf algebra with a positive base then H is of this form, [141]. Note that in
particular H is semisimple.

5.2. Pointed Hopf algebras

The reader is referred to [4,9,11] for more results, explanations and details.
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Pointed Hopf algebras are of special interest as many important examples of Hopf alge-
bras are such. In particular group algebras, enveloping algebras of Lie algebras, quantized
enveloping algebras and many quantum groups are all pointed.

Moreover, by Remark 1.1.11, every cocommutative coalgebra C over an algebraically
closed field k is pointed. Group algebras and enveloping algebras of Lie algebras are clearly
cocommutative, but more is true. They serve as the building blocks in one of the first fun-
damental theorems about cocommutative Hopf algebras. This theorem was proved inde-
pendently by Cartier, [36] and Kostant, unpublished (see [221, Preface]).

THEOREM 5.2.1. A cocommutative Hopf algebra over an algebraically closed field of
characteristic 0 is a smash product of the group algebra kG and the enveloping algebra
U(g), whereG is the group of grouplike elements ofH and g is the Lie algebra of primitive
elements of H .

The converse is obviously true. Furthermore, the converse can be generalized to any
Hopf algebra H as follows: If H is generated as an algebra by G(H) and the skew-
primitive elements of H (see Definition 1.1.15) then H is pointed. In view of Theo-
rem 5.2.1 and the above generalized converse, it was conjectured, [9], that all finite-
dimensional pointed Hopf algebras over an algebraically closed field of characteristic 0
are generated as algebras by grouplike and skew-primitive elements. The conjecture is
false in the infinite-dimensional case, [11, Example 3.6].

Finite-dimensional pointed Hopf algebras were characterized in the following cases:
(1) For a prime number p > 2. The only pointed Hopf algebras of dimension p2 are the

Taft algebras. This was already shown in [177].
(2) For p = 2 there is exactly one isomorphism class of dimension 2n, [177,31]. These

pointed Hopf algebras are generalizations of Sweedler’s four-dimensional Hopf al-
gebra H4 and were investigated by, e.g., [17,185,186].

(3) Hopf algebras of dimension p3, p4, p5 and pq2, q another prime, are fully charac-
terized, [8,6,30,217,10,100].

(4) Partial results are known for pointed Hopf algebras with some special properties.
An essential tool in the study of a pointed coalgebra C is its coradical filtration Cn. This

structure, given in the fundamental theorem of Taft and Wilson, allows induction starting
from C0 = kG(C). The following version is somewhat stronger than the original one:

THEOREM 5.2.2 [223]. Let C be a pointed coalgebra. Then for any c ∈ Cn, n � 1, we
have

c=
∑

g,h∈G(C)
cg,h, where Δ(cg,h)= cg,h ⊗ g+ h⊗ cg,h +w

for some w ∈ Cn−1 ⊗Cn−1.

If H is a pointed Hopf algebra with coradical filtration Hn then H0 = kG(H) and

H1 = kG(H)⊕
( ⊕
σ,τ∈G(H)

Pσ,τ (H)

)
.
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Moreover, the coradical filtration is a Hopf algebra filtration, that is HiHj ⊂ Hi+j and
S(Hi)⊂Hi for all i, j � 0.

The coradical filtration is the starting point for the lifting method which is a powerful tool
in the structure theory of pointed Hopf algebras. This method was used in a series of works
of Andruskiewitsch and Schneider (for more details see the references at the beginning of
this section). We give a brief overview of this method and the main results.

Let H be a pointed Hopf algebra, let {Hn | n � 0} denote the coradical filtration of H
and set H−1 = k. Let

grH =
⊕
n�0

grH(n),

where grH(n)=Hn/Hn−1 for all n� 0. Since the coradical of H is a Hopf subalgebra it
follows by [166, 5.2.8] that grH is a graded Hopf algebra. Now, there is a Hopf algebra
projection π : grH → grH(0)= kG(H) and a Hopf algebra injection i : grH(0)→ grH .
By Theorem 4.4.6 this implies that we have a biproduct

grH ∼=R#kG(H),

where R = {x ∈ grH | (id⊗π)Δ(x)= x ⊗ 1} is a Hopf algebra in the category kG(H)kG(H)YD.
The structure of R is the key to understanding the structure of the original Hopf alge-

bra H . The vector space V of all primitive elements of R is also an object in kG(H)kG(H)YD and
thus has a braiding

c :V ⊗ V → V ⊗ V.

This braiding is called the infinitesimal braiding of H .
The subalgebra of R generated by V turns out to be B(V ), the so-called Nichols algebra

of V (see Example 4.4.3).
Given a groupG and a vector space (V , c) ∈ kGkGYD the first problem is to study the struc-

ture of the Nichols algebras B(V ) and to determine when B(V ) is finite-dimensional. The
second problem is to determine all pointed Hopf algebras H such that grH ∼= B(V )#kG
(the lifting problem).

The best results for this method were achieved in the case when G is Abelian and the
braiding is of Cartan type. That is, for a certain basis {v1, . . . , vn} of V we have

c(vi ⊗ vj )= qij (vj ⊗ vi),

where qij qji = qdiaij , q �= 0 and (aij ) is a generalized symmetrizable Cartan matrix with
positive integers {d1, . . . , dn} so that diaij = djaji .

The Cartan type of the pointed Hopf algebra is invariant under twisting.
Pointed Hopf algebras H (finite- or infinite-dimensional) such that G(H) is Abelian

and the braiding on V is of Cartan type (plus some additional requirements) were fully
characterized by Andruskiewitsch and Schneider. They are generalizations of quantized
Lie algebras.
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The order of S2 for pointed Hopf algebras

By Theorem 2.4.1, the order of S2 divides 2 dim(H), when H is a finite-dimensional Hopf
algebra. Using the coradical filtration the following was proved:

THEOREM 5.2.3 [197]. Let H be a finite-dimensional pointed Hopf algebra over C. Then
|S2| divides dim(H)/|G(H)|.

THEOREM 5.2.4 [82]. Let H be a finite-dimensional pointed Hopf algebra over C. Then
|S2| divides exp(G(H)) (and hence dim(H)).

This theorem was used to prove

THEOREM 5.2.5 [82]. Let H be a finite-dimensional pointed Hopf algebra over C. Then
qexp(H)= exp(G(H)).

Hopf algebras of rooted trees

The Z-graded Hopf algebra A of rooted trees was introduced in [102], in connection with
numerical algorithms for ordinary differential equations; this Hopf algebra is cocommuta-
tive but not commutative.

On the other hand Kreimer, [125], has discovered the interesting fact that the process of
renormalization in quantum field theory may be described by means of Hopf algebras re-
lated to operads of rooted trees. The Hopf algebra L of decorated rooted trees described by
A. Connes and D. Kreimer, [53], arises from the combinatorics of perturbative renormal-
ization, and is related to cyclic cohomology and non-commutative geometry. It is Z-graded
and commutative but not cocommutative.

In [184] the author proves that the Hopf algebras A and L are dual to one another.
Moreover, he identifies a certain linear operator on A as a dual operator to L.

Related structures

There are several algebraic structures generalizing the notion of a Hopf algebra, which are
very important and interesting in their own right and have been studied extensively. For
example, quasi-Hopf algebras, weak Hopf algebras, Hopf algebroids, infinitesimal Hopf
algebras, [2], multiplier Hopf algebras, [238], and dendriform Hopf algebras, [139], are
such algebraic structures. In the following we briefly discuss some of them.

(1) Quasi-Hopf algebras. The notion of a quasi-Hopf algebraH , due to V. Drinfeld, gen-
eralizes the notion of a Hopf algebra in that the associativity constraint (U ⊗ V )⊗W �
U ⊗ (V ⊗W) in the tensor category Rep(H) can be non-trivial, [28,29]. More precisely,
a quasi-Hopf algebra is a unital associative algebra with comultiplication Δ, counit ε, and
antipode S satisfying some axioms, where the main difference is that Δ is only coasso-
ciative up to conjugation by an invertible element in H ⊗ H ⊗ H , [73]. See also [215].
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The importance of these algebras lies in the fact that their representation category is ten-
sor (usually with a non-standard associativity). For example, they produce solutions to the
Knizhnik–Zamolodchikov equation in quantum field theory.

(2) Weak Hopf algebras. A weak Hopf algebra or a quantum groupoid is a unital associa-
tive algebra with comultiplicationΔ, counit ε and antipode S, satisfying some axioms. The
main difference between Hopf algebras and weak Hopf algebras is that in the latterΔ need
not map the identity in H to the identity in H ⊗H . This relaxation of the axioms of Hopf
algebras is very significant. For example, while not every finite (fusion) category is equiv-
alent to Rep(H) for some finite-dimensional (semisimple) Hopf algebra H , it is known
that it is equivalent to Rep(H) for some finite-dimensional (semisimple) weak Hopf alge-
bra. Thus the theory of weak Hopf algebras is very useful in the study of finite (fusion)
categories. See [27,86,87,182].

(3) Multiplier Hopf algebras. A multiplier Hopf algebra is an algebra A with or without
identity and a homomorphism Δ from A to the multiplier algebra of A ⊗ A satisfying
certain axioms (such as a form of coassociativity). If A has an identity then A is a usual
Hopf algebra.

Here, as for Hopf algebras, the motivating example arises from groups. Consider the al-
gebraA of all complex valued functions on a groupG and defineΔ, ε, S as for Fun(G),G a
finite group (see the introduction). IfG is infinite thenΔ(f ) does not necessarily belong to
A⊗A and thus A is not a Hopf algebra. However, if A is the algebra of (continuous) func-
tions with compact support on a discrete groupG thenΔ(f )(g⊗1), (1⊗f )Δ(g) ∈A⊗A
for all f,g ∈A. This fact implies that A is a multiplier Hopf algebra.

Many results for Hopf algebras can be generalized for multiplier Hopf algebras by using
similar methods (see, e.g., [238,70,69]).
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1. Introduction

Difference algebra as a separate area of mathematics was born in the 1930s when J.F. Ritt
(1893–1951) developed the algebraic approach to the study of systems of difference equa-
tions over function fields. In a series of papers published during the decade from 1929
to 1939, Ritt worked out the foundations of both differential and difference algebra, the
theories of abstract algebraic structures with operators that reflect the algebraic proper-
ties of derivatives and shifts of arguments of analytic functions, respectively. One can say
that differential and difference algebra grew out of the study of algebraic differential and
difference equations with coefficients from function fields in much the same way as the
classical algebraic geometry arose from the study of polynomial equations with numerical
coefficients.

Ritt’s research in differential algebra was continued and extended by H. Raudenbush,
H. Levi, A. Seidenberg, A. Rosenfeld, P. Cassidy, J. Johnson, W. Keigher, S. Morrison,
W. Sit and many other mathematicians, but the most important role in this area was played
by E. Kolchin who recast the whole subject in the style of modern algebraic geometry
with the additional presence of derivation operators. In particular, E. Kolchin developed
the contemporary theory of differential fields and created differential Galois theory where
finite-dimensional algebraic groups played the same role as finite groups play in the theory
of algebraic equations. Kolchin’s monograph, [86], is the most deep and complete book
on the subject, it contains a lot of ideas that determined the main directions of research in
differential algebra for the last thirty years.

The rate of development of difference algebra after Ritt’s pioneering work and works
by F. Herzog, H. Raudenbush and W. Strodt published in the 1930s (see [68,133,134,
136,137,140], and [141]) was much slower than the rate of expansion of its differential
counterpart. The situation began to change in the 1950s due to R.M. Cohn whose works,
[19–32], not only raised difference algebra to a level comparable with the level of devel-
opment of differential algebra, but also clarified why many ideas of differential algebra
cannot be realized in the difference case and a number of methods and results of differ-
ence algebra cannot have differential analogs. R.M. Cohn’s book, [29], up to now remains
the only fundamental monograph on difference algebra. Since the 60s various problems
of difference algebra were studied by A. Babbitt, [2], I. Balaba, [3–5], I. Bentsen, [7],
R.M. Cohn, [33–37], P. Evanovich, [49,50], C. Franke, [60–62], B. Greenspan, [63],
P. Hendrics, [65,66], M. Kondrateva, [87–91], B. Lando, [96,97], A. Levin, [87,88]
and [99–115], A. Mikhalev, [87,88,110–115] and [117–119], E. Pankratev, [87–91,117–
119] and [124–127], C. Praagman, [130,131], and some other mathematicians. Difference
Galois theory originated in the 60s and 70s in works by C. Franke, [56–59], A. Bialynicki-
Birula, [8], H.F. Kreimer, [93–95], R. Infante, [70–75], and E. Pankratev, [124,125], was
further actively developed in the last ten years by M. van der Put, M. Singer, and P.A. Hen-
drix, [64–67,142]. The current state of the theory is fully reflected in the recent monograph
by M. van der Put and M. Singer, [142].

Since the 70s difference algebra has been enriched by new methods and ideas from the
dimension theory of differential rings (see [41–43,78–82,84,85], and [139]), the theory of
Gröbner bases which originated in [13] and computer algebra. A number of deep results
were obtained in the model theory of difference fields developed by E. Hrushovski and
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Z. Chatzidakis, [15,16] and [69] (see also [46,128] and [129]). Nowadays, difference al-
gebra appears as a rich theory with its own methods and with applications to the study
of system of equations in finite differences, functional equations, differential equations
with delay, algebraic structures with operators, group and semigroup rings. A number of
interesting applications of difference algebra in the theory of discrete-time non-linear sys-
tems can be found in the works by M. Fliess, [51–55], E. Aranda-Bricaire, U. Kotta and
C. Moog, [1], and some other authors.

In what follows, Z, N, Q, R, and C denote the sets of integers, non-negative integers,
rational numbers, real numbers, and complex numbers respectively. Q[t] will denote the
set of all polynomials in one variable t with rational coefficients. By a ring we always
mean an associative ring with a unity. Every ring homomorphism is unitary (maps unity
onto unity), every subring of a ring contains the unity of the ring. An ideal I of a ring R is
said to be proper if I �=R. Unless otherwise indicated, by a module over a ring A we mean
a left A-module. Every module over a ring is unitary and every algebra over a commutative
ring is also unitary.

2. Basic concepts of difference algebra

2.1. Difference and inversive difference rings

A difference ring is a commutative ring R together with a finite set σ = {α1, . . . , αn} of
mutually commuting injective endomorphisms of R into itself. The set σ is called the basic
set of the difference ring R, and the endomorphisms α1, . . . , αn are called translations. In
other words, a difference ring R with a basic set σ = {α1, . . . , αn} is a commutative ring
possessing n additional unitary operations αi :a �→ αi(a) such that

αi(a)= 0 if and only if a = 0,

αi(a + b)= αi(a)+ αi(b),
αi(ab)= αi(a)αi(b),
αi(1)= 1, and

αi
(
αj (a)
)= αj (αi(a))

for any a ∈ R, 1 � i, j � n. (Formally speaking, a difference ring is an (n + 1)-tuple
(R,α1, . . . , αn) where R is a ring and α1, . . . , αn are mutually commuting injective endo-
morphisms of R. Unless the notation is inconvenient or ambiguous, we always write R for
(R,α1, . . . , αn).)

If α1, . . . , αn are automorphisms of R, we say that R is an inversive difference ring with
the basic set σ .

In what follows, a difference ring R with a basic set σ = {α1, . . . , αn} will be also called
a σ -ring. If n = 1, R is said to be an ordinary difference (σ -) ring, if Cardσ > 1, the
difference ring R is called partial.
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If R is an inversive difference ring with a basic set σ = {α1, . . . , αn}, then the set
{α1, . . . , αn,α

−1
1 , . . . , α−1

n } is denoted by σ ∗ and R is also called a σ ∗-ring.
If a difference ring with a basic set σ is a field, it is called a difference (or σ -) field. An

inversive difference field with a basic set σ is also called a σ ∗-field.
Let R be a difference ring with basic set σ = {α1, . . . , αn} and R0 a subring of R such

that α(R0)⊆R0 for any α ∈ σ . Then R0 is called a difference (or σ -) subring of R and the
ring R is said to be a difference (or σ -) overring of R0. In this case the restriction of an
endomorphism αi on R0 is denoted by same symbol αi . If the σ -ring R is inversive and R0
a σ -subring of R such that α−1(R0)⊆R0 for any α ∈ σ , then R0 is said to be a σ ∗-subring
of R. If R is a difference (σ -) field and R0 a subfield of R such that α(a) ∈ R0 for any
a ∈ R0, α ∈ σ , then R0 is said to be a difference (or σ -) subfield of R; R, in turn, is called
a difference (or σ -) field extension or a σ -overfield of R0. In this case we also say that
we have a σ -field extension R/R0. If R is inversive and its subfield R0 is a σ ∗-subring
of R, then R0 is said to be a σ ∗-subfield of R while R is called a σ ∗-field extension or a
σ ∗-overfield of R0. (We also say that we have a σ ∗-field extension R/R0.) If R0 ⊆R1 ⊆R
is a chain of σ - (σ ∗-) field extensions, we say that R1/R0 is a σ - (respectively, σ ∗-) field
subextension of R/R0.

If R is a difference ring with a basic set σ and J is an ideal of the ring R such that
α(J )⊆ J for any α ∈ σ , then J is called a difference (or σ -) ideal of R. If a prime (maxi-
mal) ideal P of R is closed with respect to σ (that is, α(P )⊆ P for any α ∈ σ ), it is called
a prime (respectively, maximal) difference (or σ -) ideal of R.

A σ -ideal J of a σ -ring R is called reflexive (or a σ ∗-ideal) if for any translation α,
the inclusion α(a) ∈ J (a ∈ R) implies a ∈ J . Clearly, if R is an inversive σ -ring, then
a σ -ideal J of R is reflexive if and only if it is closed under all automorphisms from the
set σ ∗. A prime (maximal) reflexive σ -ideal of a σ -ring R is also called a prime (respec-
tively, maximal) σ ∗-ideal of R.

EXAMPLES 2.1.1.
(1) Any commutative ring can be treated as a difference (or inversive difference) ring

with a basic set σ consisting of one or several identity automorphisms.
(2) Let z0 ∈C and let U be a region of the complex plane such that z+z0 ∈U whenever

z ∈ U (e.g., U = {z ∈C | (Re z)(Re z0)� 0}). Furthermore, let MU denote the field
of all functions of one complex variable meromorphic in U . ThenMU can be treated
as an ordinary difference field whose basic set consists of one translation α such
that α(f (z))= f (z+ z0) for any function f (z) ∈MU . It is clear that this difference
field is inversive if and only if z− z0 ∈U for any z ∈U . (In this case α−1 :f (z) �→
f (z− z0) for any f (z) ∈MU .)

(3) Let 0 �= z0 ∈C and let V be a region of the complex plane such that zz0 ∈U when-
ever z ∈ V (e.g., |z0| � 1 and V = {z ∈ C | |z| � r} for some positive real num-
ber r). Then the field of all functions of one complex variable meromorphic in the
region V can be considered as an ordinary difference field with a translation β such
that β(f (z))= f (z0z) for any function f (z) ∈MV . Clearly, MV is inversive if and
only if z

z0
∈ V for any z ∈ V .

(4) LetA be a ring of functions of n real variables continuous on Rn. Let us fix some real
numbers h1, . . . , hn and consider the mutually commuting injective endomorphisms
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α1, . . . , αn ofA given by (αif )(x1, . . . , xn)= f (x1, . . . , xi−1, xi+hi, xi+1, . . . , xn)

(i = 1, . . . , n). Then A can be treated as a difference ring with basic set σ =
{α1, . . . , αn}. This difference ring is denoted by A0(h1, . . . , hn).

Similarly, one can introduce the difference structure on the ring Cp(Rn) of all functions
of n real variables that are continuous on Rn together with all their partial derivatives
up to the order p (p ∈ N or p = +∞). It is easy to see that Cp(Rn) can be considered
as a difference ring with the basic set σ = {α1, . . . , αn} described above. This difference
ring is denoted by Ap(h1, . . . , hn). It is clear that Ap(h1, . . . , hn) is a σ -subring of the
σ -ring Aq(h1, . . . , hn) whenever p > q . The difference rings Ap(h1, . . . , hn) often arise
in connection with equations in finite differences when the i-th partial finite difference
Δif (x1, . . . , xn) = f (x1, . . . , xi−1, xi + hi, xi+1, . . . , xn) − f (x1, . . . , xn) of a function
f (x1, . . . , xn) ∈ Cp(Rn) is written as Δif = (αi − 1)f .

A number of interesting examples of difference rings can be found in [32, Chapter 1],
[88, Section 3.3], and [142, Chapter 1].

Let R be a difference ring with a basic set σ . An element c ∈ R is said to be a constant
if α(a)= a for any α ∈ σ . Clearly, the set of constants of the ring R is a σ -subring of R (it
is a σ ∗-subring of R, if the difference ring R is inversive). This subring is called the ring
of constants of R; it is denoted by CR .

If R is a difference ring with a basic set σ = {α1, . . . , αn}, then Tσ will denote the
free commutative semigroup with identity generated by α1, . . . , αn. Elements of Tσ will
be written in the multiplicative form α

k1
1 . . . α

kn
n (k1, . . . , kn ∈ N) and considered as endo-

morphisms of R. If the σ -ring R is inversive, then Γσ will denote the free commutative
group generated by the set σ . It is clear that elements of the group Γσ (written in the mul-
tiplicative form α

i1
1 . . . α

in
n where i1, . . . , in ∈ Z) act on R as automorphisms and Tσ is a

subsemigroup of Γσ .
For any a ∈ R and for any τ ∈ Tσ , the element τ(a) is called a transform of a. If the

σ -ring R is inversive, then an element γ (a) (a ∈R,γ ∈ Γσ ) is also called a transform of a.
If J is a σ -ideal of a σ -ring R, then J ∗ = {a ∈ R | τ(a) ∈ J for some τ ∈ Tσ } is a

reflexive σ -ideal of R contained in any reflexive σ -ideal of R containing J . The ideal J ∗
is called a reflexive closure of the σ -ideal J .

A difference (σ -) ring R is called simple if the only σ -ideals of R are (0) and R. In this
case the ring of constants CR is a field.

Let R be a difference ring with a basic set σ and S ⊆ R. Then the intersection of all
σ -ideals of R containing S is denoted by [S]. Clearly, [S] is the smallest σ -ideal of R
containing S; as an ideal, it is generated by the set TσS = {τ(a) | τ ∈ Tσ , a ∈ S}. If J = [S],
we say that the σ -ideal J is generated by the set S called a set of σ -generators of J . If S
is finite, S = {a1, . . . , ak}, we write J = [a1, . . . , ak] and say that J is a finitely generated
σ -ideal of the σ -ring R. (In this case elements a1, . . . , ak are said to be σ -generators of J .)

If R is an inversive difference (σ -) ring and S ⊆ R, then the inverse closure of the
σ -ideal [S] is denoted by [S]∗. It is easy to see that [S]∗ is the smallest σ ∗-ideal of R
containing S; as an ideal, it is generated by the set ΓσS = {γ (a) | γ ∈ Γσ , a ∈ S}. If S
is finite, S = {a1, . . . , ak}, we write [a1, . . . , ak]∗ for I = [S]∗ and say that I is a finitely
generated σ ∗-ideal of R. (In this case, the elements a1, . . . , ak are said to be σ ∗-generators
of I .)
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Let R be a difference ring with a basic set σ , R0 a σ -subring of R and B ⊆ R. The
intersection of all σ -subrings of R containing R0 and B is called the σ -subring of R
generated by the set B over R0, it is denoted by R0{B}. (As a ring, R0{B} coincides with
the ring R0[{τ(b) | b ∈ B,τ ∈ Tσ }] obtained by adjoining the set {τ(b) | b ∈ B,τ ∈ Tσ } to
the ring R0). The set B is said to be the set of σ -generators of the σ -ring R0{B} over R0. If
this set is finite, B = {b1, . . . , bk}, we say that R′ =R0{B} is a finitely generated difference
(or σ -) ring extension (or overring) of R0 and write R′ =R0{b1, . . . , bk}. If R is a σ -field,
R0 a σ -subfield of R and B ⊆R, then the intersection of all σ -subfields of R containingR0
and B is denoted by R0〈B〉 (or R0〈b1, . . . , bk〉 if B = {b1, . . . , bk} is a finite set). This is
the smallest σ -subfield of R containing R0 and B; it coincides with the field R0({τ(b) |
b ∈ B,τ ∈ Tσ }). The set B is called the set of σ -generators of the σ -field R0〈B〉 over R0.

Let R be an inversive difference ring with a basic set σ , R0 a σ ∗-subring of R and
B ⊆ R. Then the intersection of all σ ∗-subrings of R containing R0 and B is the smallest
σ ∗-subring of R containing R0 and B . This ring coincides with the ring R0[{γ (b) | b ∈
B,γ ∈ Γσ }]; it is denoted by R0{B}∗. The set B is said to be a set of σ ∗-generators
of R0{B}∗ over R0. If B = {b1, . . . , bk} is a finite set, we say that S = R0{B}∗ is a finitely
generated inversive difference (or σ ∗-) ring extension (or overring) of R and write S =
R0{b1, . . . , bk}∗.

If R is a σ ∗-field, R0 a σ ∗-subfield of R and B ⊆ R, then the intersection of all
σ ∗-subfields of R containing R0 and B is denoted by R0〈B〉∗. This is the smallest
σ ∗-subfield of R containing R0 and B; it coincides with the field R0({γ (b) | b ∈ B,
γ ∈ Γσ }). The set B is called the set of σ ∗-generators of the σ ∗-field extension R0〈B〉∗
over R0. If B is finite, B = {b1, . . . , bk}, we write R0〈b1, . . . , bk〉∗ for R0〈B〉∗.

In what follows we shall often consider two or more difference ringsR1, . . . ,Rp with the
same basic set σ = {α1, . . . , αn}. Formally speaking, it means that for every i = 1, . . . , p,
there is some fixed mapping νi from the set σ into the set of all injective endomorphisms
of the ring Ri such that any two endomorphisms νi(αj ) and νi(αk) of Ri commute (1 �
j, k � n). We shall identify elements αj with their images νi(αj ) and say that elements of
the set σ act as mutually commuting injective endomorphisms of the ringRi (i = 1, . . . , p).

Let R1 and R2 be difference rings with the same basic set σ = {α1, . . . , αn}. A ring
homomorphism φ :R1→ R2 is called a difference (or σ -) homomorphism if φ(α(a)) =
α(φ(a)) for any α ∈ σ,a ∈ R1. Clearly, if φ :R1 → R2 is a σ -homomorphism of in-
versive difference rings, then φ(α−1(a)) = α−1(φ(a)) for any α ∈ σ , a ∈ R1. If a σ -
homomorphism is an isomorphism (endomorphism, automorphism, etc.), it is called a dif-
ference (or σ -) isomorphism (respectively, difference (or σ -) endomorphism, difference
(or σ -) automorphism, etc.). If R1 and R2 are two σ -overrings of the same σ -ring R0 and
φ :R1→ R2 is a σ -homomorphism such that φ(a)= a for any a ∈ R0, we say that φ is a
difference (or σ -) homomorphism over R0 or that φ leaves the ring R0 fixed. It is easy to
see that the kernel of any σ -homomorphism of σ -rings φ :R→ R′ is an inversive σ -ideal
of R. Conversely, let g be a surjective homomorphism of a σ -ring R onto a ring S such
that Kerg is a σ ∗-ideal of R. Then there is a unique structure of a σ -ring on S such that
g is a σ -homomorphism. In particular, if I is a σ ∗-ideal of a σ -ring R, then the factor
ring R/I has a unique structure of a σ -ring such that the canonical surjection R→R/I is
a σ -homomorphism. In this case R/I is said to be the difference (or σ -) factor ring of R
by the σ ∗-ideal I .
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Since a radical of a difference ideal is a difference ideal, every maximal σ -ideal I of a
difference (σ -) ring R is radical and inversive. In this case R/I is a reduced σ -ring (that
is, a σ -ring without non-zero nilpotent elements).

EXAMPLE 2.1.2. LetA be the set of all sequences a= (a1, a2, . . .) of elements of an alge-
braically closed field C. Consider an equivalence relation on A such that a= (a1, a2, . . .)

is equivalent to b= (b1, b2, . . .) if and only if an = bn for all sufficiently large n ∈N (that
is, there exists n0 ∈N such that an = bn for all n > n0). Clearly, the corresponding set S of
equivalence classes is a ring with respect to coordinatewise addition and multiplication of
class representatives. This ring can be treated as an ordinary difference ring with respect
to the mapping α sending an equivalence class with a representative (a1, a2, a3, . . .) to the
equivalence class with the representative (a2, a3, . . .). It is easy to see that this mapping is
well-defined and it is an automorphism of the ring S. The field C can be naturally identified
with the ring of constants of the difference ring S.

Let C(z) be the field of rational functions in one complex variable z. Then C(z) can
be considered as an ordinary difference field with respect to the automorphism β such
that β(z) = z + 1 and β(a) = a for any a ∈ C. In this case, the mapping φ : C(z)→ S

that sends a function f (z) to the equivalence class of the element (f (0), f (1), . . .) is an
injective difference ring homomorphism.

Let R be a difference ring with a basic set σ = {α1, . . . , αn}. A σ -overring U of R is
called an inversive closure of R, if the elements of σ act as mutually commuting auto-
morphisms of the ring U (they are denoted by the same symbols α1, . . . , αn) and for any
a ∈U , there exists an automorphism τ ∈ Tσ of the ring U such that τ(a) ∈R.

The ordinary version of the following statement can be found in [32, Chapter 2, The-
orem II]; the corresponding theorem for partial difference rings was proved in [7, The-
orem 3.1]. (Actually, many results in difference algebra were first proved for ordinary
difference rings and then generalized to difference rings with several translations. In such
cases we refer to both corresponding publications.)

PROPOSITION 2.1.3 ([32, Chapter 2, Theorem II], [7, Theorem 3.1]).
(i) Every difference ring has an inversive closure.

(ii) If U1 and U2 are two inversive closures of a difference ring R, then there exists a
difference R-isomorphism of U1 onto U2.

(iii) If R is a difference ring with a basic set σ and U an inversive σ -ring containing R
as a σ -subring, then U contains an inversive closure of R.

(iv) If a difference ring R is an integral domain (a field), then its inversive closure is
also an integral domain (respectively, a field).

(v) Let R1 and R2 be two difference rings with the same basic set σ , R∗1 and R∗2 their
inversive closures, and φ :R1→ R2 a σ -homomorphism. Then φ has a unique ex-
tension to a σ -homomorphism R∗1→R∗2 .

The inversive closure of an ordinary difference ring R with a basic set σ = {α} can be
constructed as follows. Let R′ = α(R) and let R′′ be an isomorphic copy of R such that
R ∩ R′′ = ∅. Let β :R → R′′ be the corresponding isomorphism and R′′′ = β(R′) =
βα(R). If one replaces all elements of R′′′ by the corresponding elements of R, then
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R′′ will be transformed into an overring R1 of the ring R. The mapping (ρβ)−1, where
ρ denotes the replacement mapping R′′ → R1, is an injective endomorphism of R1 that
extends α. This endomorphism will be also denoted by α and R1 will be treated as a
σ -overring of R. Now, let us consider the sequence of σ -rings R = R0,R1,R2, . . . where
everyRn is a σ -overring ofRn−1 obtained by the forgoing procedure, that is,Rn = (Rn−1)1
for n= 1,2, . . . . Let us set R∗ =⋃n∈NRn and define the extension of α to R∗ as follows
(we denote this extension by the same letter α). If a ∈ R∗, then a ∈Rn for some n and the
extension of α to Rn determines an element α(a) ∈Rn which we consider as the image of a
under the mapping α :R∗ → R∗. It is easy to see that the obtained mapping α :R∗ → R∗
is well-defined (the image of an element a ∈R∗ does not depend on the choice of Rn such
that a ∈Rn) and R∗ is an inversive closure of R.

Let R be a partial difference ring with a basic set σ = {α1, . . . , αn}. Considering R as
an ordinary difference ring whose basic set consists of the endomorphism τ =∏ni=1 αi ,
we can construct the inversive closure R∗ of this ring. Now we can extend each αi (1 �
i � n) to R∗ as follows. For any a ∈ R∗, let r(a) denote the smallest non-negative integer
such that τ r(a)(a) ∈ R (we denote the extension of τ to R∗ by the same letter τ ). Setting
αi(a)= τ−r(a)αiτ r(a)(a) for any a ∈ R (1 � i � n), we obtain well-defined extensions of
the endomorphisms α1, . . . , αn to R∗ that make R∗ an inversive closure of the σ -ring R.

If H is an inversive difference field with a basic set σ and G a σ -subfield of H , then the
set {a ∈ H | τ(a) ∈ G for some τ ∈ Tσ } is a σ ∗-subfield of H denoted by G∗H (or G∗ if
one considers subfields of a fixed σ ∗-field H ). This field is said to be the inversive closure
of G in H . Clearly, G∗H is the intersection of all σ ∗-subfields of H containing G.

PROPOSITION 2.1.4 [7, Section 5]. Let H be a σ ∗-field and let ∗ be the operation that
assigns to each σ -subfield F ⊆ H its inversive closure in H . Let F and G be two σ -
subfields of H and 〈F,G〉 denote the σ -field F 〈G〉 = G〈F 〉 (the “σ -compositum” of F
and G). Then

(i) F ∗∗ = F ∗.
(ii) 〈F,G〉∗ = 〈F ∗,G∗〉.

(iii) Every σ -isomorphism of F onto G has a unique extension to a σ -isomorphism
of F ∗ onto G∗.

(iv) If K is a σ -subfield of H contained in F ∩ G and F and G are free (linearly
disjoint, quasi-linearly disjoint) overK , then F ∗ andG∗ are free (linearly disjoint,
quasi-linearly disjoint) over K∗.

(The corresponding definitions can be found in [144, Vol. I, Chapter II].)
Let R be a difference ring with a basic set σ . A subset S of the ring R is said to be a

σ -subset of R if σ(s) ∈ S for any s ∈ S, α ∈ σ . If the σ -ring R is inversive and S is a
σ -subset of R such that α−1(s) ∈ S for any s ∈ S, α ∈ σ , then S is said to be a σ ∗-subset
of the ring R. By a multiplicative σ -subset of a σ -ring R we mean a σ -subset S of R such
that 1 ∈ S, 0 /∈ S, and st ∈ S whenever s ∈ R and t ∈ R. A multiplicative σ ∗-subset of an
inversive σ -ring R is a multiplicative σ -subset of R such that α−1(s) ∈ S for any s ∈ S,
α ∈ σ .

The following statement is a natural generalization of [32, Chapter 2, Theorem III].



250 A.B. Levin

PROPOSITION 2.1.5. Let S be a multiplicative σ -subset of a σ -ring R and let S−1R be
the ring of fractions of R with denominators in S. Then S−1R has the unique structure of
σ -ring such that the natural mapping ν :R→ S−1R (a �→ a

1 ) is a σ -homomorphism. If the
σ -ring R is inversive and S is a multiplicative σ ∗-subset of R, then S−1R is a σ ∗-overring
of R.

If S is a multiplicative σ -subset of a σ -ringR, then the ring S−1R is said to be a σ -ring of
fractions of R with denominators in S. If the σ -ring R is inversive and S is a multiplicative
σ ∗-subset of R, then S−1R is called the σ ∗-ring of fractions of R with denominators in S.

PROPOSITION 2.1.6. Let R and R′ be difference rings with the same basic set σ and
let φ :R→ R′ be a σ -homomorphism such that φ(s) is a unit of R′ for any s ∈ S. Then
φ factors uniquely through the canonical mapping ν :R→ S−1R: there exists a unique
σ -homomorphism ψ :S−1R→ R′ such that ψ ◦ ν = φ. (This σ -homomorphism is given
by ψ(a

s
)= φ(a)φ(s)−1.)

The last proposition shows that if a difference ring R with a basic set σ is an integral
domain, then its quotient fieldQ(R) can be naturally considered as a σ -overring of R. (We
identify an element a ∈ R with its canonical image a

1 in Q(R).) In this case Q(R) is said
to be the quotient difference (or σ -) field of R. Clearly, if the σ -ring R is inversive, then
its quotient σ -fieldQ(R) is also inversive. Furthermore, if a σ -field K contains an integral
domain R as its σ -subring, then K contains the quotient σ -fieldQ(R). Also, if the σ -field
K is inversive and R is a σ ∗-subring of K , then Q(R) is a σ ∗-subfield of K .

2.2. Rings of difference and inversive difference polynomials. Algebraic difference
equations

Let R be a difference ring with a basic set σ = {α1, . . . , αn}, Tσ the free commutative semi-
group generated by σ , and U = {uλ | λ ∈Λ} a family of elements from some σ -overring
of R. We say that the family U is transformally (or σ -algebraically) dependent over R,
if the family Tσ (U)= {τ(uλ) | τ ∈ Tσ ,λ ∈Λ} is algebraically dependent over R (that is,
there exist elements v1, . . . , vk ∈ Tσ (U) and a non-zero polynomial f (X1, . . . ,Xk) with
coefficients from R such that f (v1, . . . , vk) = 0). Otherwise, the family U is said to be
transformally (or σ -algebraically) independent over R or a family of difference (or σ -)
indeterminates over R. In the last case, the σ -ring R{(uλ)λ∈Λ}σ is called the algebra of
difference (or σ -) polynomials in the difference (or σ -) indeterminates {(uλ)λ∈Λ} over R.
If a family consisting of one element u is σ -algebraically dependent over R, the ele-
ment u is said to be transformally algebraic (or σ -algebraic) over the σ -ring R. If the set
{τ(u) | τ ∈ T } is algebraically independent over R, we say that u is transformally (or σ -)
transcendental over the ring R.

Let R be a σ -field, L a σ -overfield of R, and S ⊆ L. We say that the set S is σ -algebraic
over R if every element a ∈ S is σ -algebraic over R. If every element of L is σ -algebraic
over R, we say that L is a σ -algebraic field extension of the σ -field R.
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PROPOSITION 2.2.1 ([32, Chapter 2, Theorem I], [88, Proposition 3.3.7]). Let R be a
difference ring with a basic set σ and I an arbitrary set. Then there exists an algebra of
σ -polynomials over R in a family of σ -indeterminates with indices from the set I . If S and
S′ are two such algebras, then there exists a σ -isomorphism S→ S′ that leaves the ring R
fixed. If R is an integral domain, then any algebra of σ -polynomials over R is an integral
domain.

The algebra of σ -polynomials over the σ -ring R can be constructed as follows. Let
T = Tσ and let S be the polynomial R-algebra in the set of indeterminates {yi,τ }i∈I,τ∈T
with indices from the set I × T . For any f ∈ S and α ∈ σ , let α(f ) denote the polyno-
mial from S obtained by replacing every indeterminate yi,τ that appears in f by yi,ατ and
every coefficient a ∈R by α(a). We obtain an injective endomorphism S→ S that extends
the original endomorphism α of R to the ring S (this extension is denoted by the same
letter α). Setting yi = yi,1 (where 1 denotes the identity of the semigroup T ) we obtain a
σ -algebraically independent over R set {yi | i ∈ I } such that S =R{(yi)i∈I }. Thus, S is an
algebra of σ -polynomials over R in a family of σ -indeterminates {yi | i ∈ I }.

Let R be an inversive difference ring with a basic set σ , Γ = Γσ , I a set, and S∗ a poly-
nomial ring in the set of indeterminates {yi,γ }i∈I,γ∈Γ with indices from the set I×Γ . If we
extend the automorphisms β ∈ σ ∗ to S∗ setting β(yi,γ )= yi,βγ for any yi,γ and denote yi,1
by yi , then S∗ becomes an inversive difference overring of R generated (as a σ ∗-overring)
by the family {(yi)i∈I }. Obviously, this family is σ ∗-algebraically independent over R,
that is, the set {γ (yi) | γ ∈ Γ, i ∈ I } is algebraically independent over R.

(Note that a set is σ ∗-algebraically dependent (independent) over an inversive σ -ring
if and only if this set is σ -algebraically dependent (respectively, independent) over this
ring.) The ring S∗ =R{(yi)i∈I }∗ is called the algebra of inversive difference (or σ ∗-) poly-
nomials over R in the set of σ ∗-indeterminates {(yi)i∈I }. It is easy to see that S∗ is the
inversive closure of the ring of σ -polynomials R{(yi)i∈I } over R. Furthermore, if a fam-
ily {(ui)i∈I } from some σ ∗-overring of R is σ ∗-algebraically independent over R, then
the inversive difference ring R{(ui)i∈I }∗ is naturally σ -isomorphic to S∗. Any such over-
ring R{(ui)i∈I }∗ is said to be an algebra of inversive difference (or σ ∗-) polynomials over
R in the set of σ ∗-indeterminates {(ui)i∈I }. We obtain the following analog of Proposi-
tion 2.2.1.

PROPOSITION 2.2.1∗ [88, Proposition 3.4.4]. Let R be an inversive difference ring with
a basic set σ and I an arbitrary set. Then there exists an algebra of σ ∗-polynomials over
R in a family of σ ∗-indeterminates with indices from the set I . If S and S′ are two such
algebras, then there exists a σ ∗-isomorphism S→ S′ that leaves the ring R fixed. If R is
an integral domain, then any algebra of σ ∗-polynomials over R is an integral domain.

Let R be a σ -ring, R{(yi)i∈I } an algebra of difference polynomials in a family of σ -in-
determinates {(yi)i∈I }, and {(ηi)i∈I } a set of elements from some σ -overring of R. Since
the set {τ(yi) | i ∈ I, τ ∈ Tσ } is algebraically independent over R, there exists a unique
ring homomorphism φη :R[τ(yi)i∈I,τ∈Tσ ]→R[τ(ηi)i∈I,τ∈Tσ ] that maps every τ(yi) onto
τ(ηi) and leaves R fixed. Clearly, φη is a surjective σ -homomorphism of R{(yi)i∈I } onto
R{(ηi)i∈I }; it is called the substitution of (ηi)i∈I for (yi)i∈I . Similarly, if R is an inversive
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σ -ring, R{(yi)i∈I }∗ an algebra of σ ∗-polynomials over R and (ηi)i∈I a family of elements
from a σ ∗-overring of R, one can define a surjective σ -homomorphism R{(yi)i∈I }∗ →
R{(ηi)i∈I }∗ that maps every yi onto ηi and leaves the ring R fixed. This homomorphism
is also called the substitution of (ηi)i∈I for (yi)i∈I . (It will be always clear whether we
talk about substitutions for difference or inversive difference polynomials.) If g is a σ -
or σ ∗-polynomial, then its image under a substitution of (ηi)i∈I for (yi)i∈I is denoted
by g((ηi)i∈I ). The kernel of a substitution φη is an inversive difference ideal of the σ -ring
R{(yi)i∈I } (or the σ ∗-ring R{(yi)i∈I }∗); it is called the defining difference (or σ -) ideal of
the family (ηi)i∈I overR. IfR is a σ - (or σ ∗-) field and (ηi)i∈I is a family of elements from
some its σ - (respectively, σ ∗-) overfield S, then R{(ηi)i∈I } (respectively, R{(ηi)i∈I }∗) is
an integral domain (it is contained in the field S). It follows that the defining σ -ideal P
of the family (ηi)i∈I over R is a prime inversive difference ideal of the ring R{(yi)i∈I }
(respectively, of the ring of σ ∗-polynomials R{(yi)i∈I }∗). Therefore, the difference field
R〈(ηi)i∈I 〉 can be treated as the quotient σ -field of the σ -ring R{(yi)i∈I }/P . (In the case of
inversive difference rings, the σ ∗-field R〈(ηi)i∈I 〉∗ can be considered as a quotient σ -field
of the σ ∗-ring R{(yi)i∈I }∗/P .)

Let F be a difference field with a basic set σ and s a positive integer. By an s-tuple
over F we mean an s-dimensional vector a = (a1, . . . , as) whose coordinates belong to
some σ -overfield of F . If the σ -field F is inversive, the coordinates of an s-tuple over F
are supposed to lie in some σ ∗-overfield of F . If each ai (1 � i � s) is σ -algebraic over
the σ -field F , we say that the s-tuple a is σ -algebraic over F .

DEFINITION 2.2.2. Let F be a difference (inversive difference) field with a basic set σ
and let R be the algebra of σ - (respectively, σ ∗-) polynomials in finitely many σ - (re-
spectively, σ ∗-) indeterminates y1, . . . , ys over F . Furthermore, let Φ = {fj | j ∈ J } be
a set of σ - (respectively, σ ∗-) polynomials from R. An s-tuple η = (η1, . . . , ηs) over F
is said to be a solution of the set Φ or a solution of the system of difference algebraic
equations fj (y1, . . . , ys)= 0 (j ∈ J ) if Φ is contained in the kernel of the substitution of
(η1, . . . , ηs) for (y1, . . . , ys). In this case we also say that η annuls Φ . (If Φ is a subset of
a ring of inversive difference polynomials, the system is said to be a system of algebraic
σ ∗-equations.)

As we have seen, if one fixes an s-tuple η = (η1, . . . , ηs) over a σ -field F , then all
σ -polynomials of the ring F {y1, . . . , ys}, for which η is a solution, form a prime inversive
difference ideal. It is called the defining σ -ideal of η. If η is an s-tuple over a σ ∗-field F ,
then all σ ∗-polynomials g of the ring F {y1, . . . , ys}∗ such that g(η1, . . . , ηs) = 0 form a
prime σ ∗-ideal of F {y1, . . . , ys}∗. This ideal is called the defining σ ∗-ideal of η over F .

Let Φ be a subset of the algebra of σ -polynomials F {y1, . . . , ys} over a σ -field F . An
s-tuple η= (η1, . . . , ηs) over F is called a generic zero of Φ if for any σ -polynomial A ∈
F {y1, . . . , ys}, the inclusion A ∈ Φ holds if and only if A(η1, . . . , ηs) = 0. If the σ -field
F is inversive, then the notion of a generic zero of a subset of F {y1, . . . , ys}∗ is defined
similarly.

Two s-tuples η= (η1, . . . , ηs) and ζ = (ζ1, . . . , ζs) over a σ - (or σ ∗-) field F are called
equivalent over F if there is a σ -isomorphism F 〈η1, . . . , ηs〉 → F 〈ζ1, . . . , ζs〉 (respec-
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tively, F 〈η1, . . . , ηs〉∗ → F 〈ζ1, . . . , ζs〉∗) that maps each ηi onto ζi and leaves the field F
fixed.

PROPOSITION 2.2.3 ([32, Chapter 2, Theorem VII], [88, Proposition 3.3.20]). Let S
denote the algebra of σ -polynomials F {y1, . . . , ys} or the algebra of σ ∗-polynomials
F {y1, . . . , ys}∗ over a difference (respectively, inversive difference) field F with a basic
set σ .

(i) A set Φ � S has a generic zero if and only if Φ is a prime σ ∗-ideal of S. If
(η1, . . . , ηs) is a generic zero of Φ , then F 〈η1, . . . , ηs〉 (or F 〈η1, . . . , ηs〉∗ if we
consider the algebra of σ ∗-polynomials over a σ ∗-field F ) is σ -isomorphic to the
quotient σ -field of S/Φ .

(ii) Any s-tuple over F is a generic zero of some prime σ ∗-ideal of S.
(iii) If two s-tuples over F are generic zeros of the same prime σ ∗-ideal of S, then these

s-tuples are equivalent.

EXAMPLE 2.2.4 (see [32, Chapter 2, Example 4]). Let us consider C as an ordinary dif-
ference field whose basic set σ consists of the identity automorphism α. Let C{y} be the
algebra of σ -polynomials in one σ -indeterminate y over C and let (k)y denote the k-th
transform αky (k = 1,2, . . .). Furthermore, let M be the field of functions of one com-
plex variable z meromorphic on the whole complex plane. Then M can be viewed as a
σ -overfield of C if one extends α by setting αf (z)= f (z+ 1) for any function f ∈M . It
is easy to check that the σ -polynomial A= ((1)y − y)2 − 2((1)y + y)+ 1 is irreducible in
C{y} (when this ring is treated as a polynomial ring in the denumerable set of indetermi-
nates y, (1)y, (2)y, . . .). Furthermore, if c(z) is a periodic function from M with period 1,
then ξ = (z + c(z))2 and η = (c(z)eiπz + 1

2 )
2 are solutions of A. (ξ is a solution of the

system of the σ -polynomials A and A′ = (2)y − 2 (1)y + y − 2, while η is the solution
of the system of A and A′′ = (2)y − y.) The fact that an irreducible σ -polynomial in one
σ -indeterminate may have two distinct sets of solutions, each of which depends on an ar-
bitrary periodic function, does not have an analog in the theory of differential polynomials.

Let F be a difference field with a basic set σ , R = F {y1, . . . , ys} the algebra of σ -
polynomials in a set of s σ -indeterminates y1, . . . , ys over F , and Φ ⊆ R{y1, . . . , ys}.
Let ā = {ai,τ | i = 1, . . . , s, τ ∈ Tσ } be a family of elements from some σ -overfield of F .
The family ā (indexed by the set {1, . . . , s} × Tσ ) is said to be an algebraic solution of
the set of σ -polynomials Φ if ā is a solution of Φ when this set is treated as a set of
polynomials in the polynomial ring F [{yi,τ | i = 1, . . . , s, τ ∈ Tσ }]. (This polynomial ring
in the denumerable family of indeterminates {yi,τ | i = 1, . . . , s, τ ∈ Tσ } coincides with R
(yi,τ stands for τ(yi)), but it is not considered as a difference ring, so the solutions of its
subsets are solutions in the sense of classical algebraic geometry.)

It is easy to see that every solution a = (a1, . . . , as) of a set Φ ⊆ F {y1, . . . , ys} pro-
duces its algebraic solution ā = {τ(ai) | i = 1, . . . , s, τ ∈ Tσ }. On the other hand, not every
algebraic solution can be obtained from a solution in this way.

EXAMPLE 2.2.5 (see [32, Chapter 2, Example 6]). Let C be the field of complex numbers
considered as an ordinary difference field whose basic set consists of the complex conjuga-
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tion (that is, σ = {α} where α(a+ bi)= a− bi for any complex number a+ bi). Let C{y}
be the ring of σ -polynomials in one σ -indeterminate y. If A = y2 + 1 ∈ C{y}, then the
1-tuples (i) and (−i) are solutions of the σ -polynomial A that produce algebraic solutions
(i,−i, i,−i, . . .) and (−i, i,−i, i, . . .) of A. At the same time, the sequence (−i, i, i, i, . . .)
is an algebraic solution of A that is not a solution of this σ -polynomial.

If Φ is a subset of an algebra of σ ∗-polynomials F {y1, . . . , ys}∗ over an inversive dif-
ference field F with a basic set σ , then an algebraic solution of Φ is defined as a family
a∗ = {ai,γ | i = 1, . . . , s, γ ∈ Γσ } that annuls every polynomial from Φ when Φ is treated
as a subset of the polynomial ring F [{γ (yi) | i = 1, . . . , s, γ ∈ Γσ }]. As in the case of
σ -polynomials, every solution a = (a1, . . . , as) of a set of σ ∗-polynomials generates the
algebraic solution a∗ = {γ (ai) | i = 1, . . . , s, γ ∈ Γσ } of this set, but not all algebraic solu-
tions can be obtained in this way.

2.3. Autoreduced sets of difference and inversive difference polynomials.
Characteristic sets

Let F be a difference field with a basic set σ = {α1, . . . , αn}, T = Tσ , and R =
F {y1, . . . , ys} the algebra of difference polynomials in σ -indeterminates y1, . . . , ys over F .
Then R can be viewed as a polynomial ring in the set of indeterminates T Y = {τyi |
τ ∈ T ,1 � i � s} over F (here and below we often write τyi instead of τ(yi)). Ele-
ments of this set are called terms. If τ = αk1

1 . . . α
kn
n ∈ T (k1, . . . , kn ∈N), then the number

ord τ =∑n
ν=1 kν is called the order of τ . The order ordu of a term u = τyi ∈ T Y is de-

fined as the order of τ . As usual, if τ, τ ′ ∈ T , we say that τ ′ divides τ (and write τ ′|τ ) if
τ = τ ′τ ′′ for some τ ′′ ∈ T . If u= τyi and v = τ ′yj are two terms from T Y , we say that u
divides v (and write u|v) if i = j and τ |τ ′.

By a ranking of the family of indeterminates {y1, . . . , ys} we mean a well-ordering of
the set of terms from T Y that satisfies the following conditions. (We denote the order on
T Y by the usual symbol � and write u < v if u� v and u �= v.)

(i) u� τu for any u ∈ T Y, τ ∈ T .
(ii) If u,v ∈ T Y and u� v, then τu� τv for any τ ∈ T .
A ranking of the family {y1, . . . , ys} is also referred to as a ranking of the set of

terms T Y . It is said to be orderly if the inequality ordu < ord v (u,v ∈ T Y ) implies that
u < v. An important example of an orderly ranking is the standard ranking defined as fol-
lows: u = αk1

1 . . . α
kn
n yi � v = αl11 . . . αlnn yj ∈ T Y if and only if (

∑n
ν=1 kν, i, k1, . . . , kn)

is less than or equal to (
∑n
ν=1 lν, j, l1, . . . , ln) with respect to the lexicographic order

on Nn+2. In what follows, we assume that an orderly ranking of T Y has been fixed.
Let A ∈ F {y1, . . . , ys}. The greatest (with respect to the given ranking) element of T Y

that appears in the σ -polynomial A is called the leader of A; it is denoted by uA. If A
is written as a polynomial in uA, A =∑d

i=0 Iiu
i
A (d = deguA A and the σ -polynomials

I0, . . . , Id do not contain uA), then Id is called the initial of the σ -polynomial A; it is
denoted by IA.

Let A and B be two σ -polynomials from F {y1, . . . , ys}. We say that A has lower rank
than B (or simply A is less than B) and write A< B , if either A ∈ F,B /∈ F or uA < uB
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or uA = uB = u, degu A < degu B . If neither A < B nor B < A, we say that A and B
have the same rank and write rkA= rkB . The σ -polynomial A is said to be reduced with
respect to B if A does not contain any power of a transform τuB (τ ∈ Tσ ) whose exponent
is greater than or equal to deguB B . If Σ is any subset of F {y1, . . . , ys} \ F , then a σ -
polynomial A ∈ F {y1, . . . , ys} is said to be reduced with respect to Σ if A is reduced with
respect to every element of Σ .

A set Σ ⊆ F {y1, . . . , ys} is called an autoreduced set if either Σ = ∅ or Σ ∩ F = ∅
and every element of Σ is reduced with respect to all other elements of Σ . It is easy
to see that distinct elements of an autoreduced set have distinct leaders. It follows from
[86, Chapter 0, Lemma 15(a)] (see also [88, Lemma 2.2.1]) that every autoreduced set is
finite.

The ordinary version of the following reduction theorem was proved in [136, Section 5].
In [36] R.M. Cohn generalized the result to the case of partial difference polynomial rings
(actually, to the rings of partial difference-differential polynomials).

THEOREM 2.3.1. Let A= {A1, . . . ,Ap} be an autoreduced set in a ring of σ -polynomials
F {y1, . . . , ys} over a difference field F with basic set σ . Let I (A)= {B ∈ F {y1, . . . , ys} |
either B = 1 or B is a product of finitely many σ -polynomials of the form τ(IAi ) (τ ∈
Tσ , i = 1, . . . , p)}. Then for any C ∈ F {y1, . . . , ys}, there exist σ -polynomials J ∈ I (A)
and C0 ∈ F {y1, . . . , ys} such that C0 is reduced with respect to A and JC ≡ C0 (mod [A])
(i.e., JC −C0 ∈ [A]).

With the notation of the theorem, the σ -polynomial C0 is called the remainder of the σ -
polynomial C with respect to A. We also say that C reduces to C0 modulo A. (If A= {A},
we say that C0 is a remainder of C with respect to the σ -polynomial A.)

The reduction process, that is, a transition from a given σ -polynomial C to a σ -
polynomial C0 satisfying the conditions of the theorem, can be performed in many ways.
Let us describe one of them.

If C is reduced with respect to A, we can take C0 = C and J = 1. If C is not reduced
with respect to A, then C contains a power (τuAi )

k of some term τuAi (τ ∈ Tσ ,1 � i � p)
whose exponent is greater than or equal to deguAi Ai . Such a term τuAi of the highest pos-
sible rank is called the A-leader of C and denoted by vA,C . Obviously, C can be written
as C =DvdA,C +E where D does not contain vA,C and degvA,C Q < d . Let vA,C = τuAj
(τ ∈ Tσ ,1 � j � p). Then vA,C is the leader of τAj , IτAj = τIAj , and degvA,C (τAj ) =
dj where dj = deguAj Aj . Consider the σ -polynomial C′ = (τIAj )C − vd−djA,C (τAj )D.

Clearly, vA,C′ � vA,C and in the case of equality, degvA,C′ C
′ < d . Furthermore, C′ ≡

C (mod [A]). Applying the same procedure to C′ instead of C and continuing this process,
we obtain a σ -polynomial C such that C ≡ C (mod [A]) and vA,C < vA,C . Repeating the
foregoing procedure we obtain a σ -polynomial C0 that satisfies the conditions of the last
theorem.

In what follows, the elements of an autoreduced set are always written in the order
of increasing rank. (Thus, if A = {A1, . . . ,Ap} an autoreduced set in F {y1, . . . , ys}, we
assume that A1 < · · ·<Ap .)
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DEFINITION 2.3.2. Let A= {A1, . . . ,Ap} and B = {B1, . . . ,Bq} be two autoreduced sets
in the algebra of difference polynomials F {y1, . . . , ys}. We say that A has lower rank than
B and write rkA< rkB if one of the following conditions holds:

(i) there exists k ∈ N, 1 � k � min{p,q}, such that rkAi = rkBi for i = 1, . . . , k − 1
and Ak < Bk ;

(ii) p > q and rkAi = rkBi for i = 1, . . . , q .

The proof of the following result is similar to the proof of the corresponding statement
about autoreduced sets of differential polynomials (see [86, Chapter 1, Proposition 3]).

PROPOSITION 2.3.3. In every non-empty set of autoreduced subsets of F {y1, . . . , ys}
there exists an autoreduced set of lowest rank.

If J is a non-empty subset (in particular, an ideal) of the ring F {y1, . . . , ys}, then the
family of all autoreduced subsets of J is not empty (if 0 �= A ∈ J , then A = {A} is an
autoreduced set). It follows from the last proposition that J contains an autoreduced subset
of lowest rank. Such a subset is called a characteristic set of J . The following proposition
describes some properties of characteristic sets of difference polynomials.

PROPOSITION 2.3.4. Let F be a difference field with a basic set σ , J a difference ideal
of the algebra of σ -polynomials F {y1, . . . , ys}, and Σ a characteristic set of J . Then:

(i) The σ -ideal J does not contain non-zero difference polynomials reduced with re-
spect to Σ . In particular, if A ∈Σ , then IA /∈ J .

(ii) Let I =∏A∈Σ IA. If the ideal J is prime, then J = [Σ] :Λ(Σ) where Λ(Σ) is the
free commutative multiplicative semigroup generated by the set {τ(I ) | τ ∈ Tσ }.

Let F be an inversive difference field with a basic set σ = {α1, . . . , αn} and Γ the free
commutative group generated by σ . Let Z− denote the set of all non-positive integers
and let Z1,Z2, . . . ,Z2n be all distinct Cartesian products of n factors each of which is
either N or Z− (we assume that Z1 = Nn). These sets are called orthants of Zn. For any
j = 1, . . . ,2n, we set Γj = {γ = αk1

1 . . . α
kn
n ∈ Γ | (k1, . . . , kn) ∈ Zj }. Furthermore, if γ =

α
k1
1 . . . α

kn
n ∈ Γ , then the number ord γ =∑n

i=1 |ki | will be called the order of γ .
Let F {y1, . . . , ys}∗ be the algebra of σ ∗-polynomials in σ ∗-indeterminates y1, . . . , ys

over F and let Y denote the set {γyi | γ ∈ Γ,1 � i � s} whose elements are called terms
(here and below we often write γyi for γ (yi )). By the order of a term u = γyj we mean
the order of the element γ ∈ Γ . Setting Yj = {γyi | γ ∈ Γj ,1 � i � s} (j = 1, . . . ,2n) we

obtain a representation of the set of terms as a union Y =⋃2n
j=1 Yj .

DEFINITION 2.3.5. A term v ∈ Y is called a transform of a term u ∈ Y if and only if u
and v belong to the same Yj (1 � j � 2n) and v = γ u for some γ ∈ Γj . If γ �= 1, v is said
to be a proper transform of u.

DEFINITION 2.3.6. A well-ordering of the set of terms Y is called a ranking of the family
of σ ∗-indeterminates y1, . . . , ys (or a ranking of the set Y ) if it satisfies the following
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conditions. (We use the standard symbol � for the ranking; it will be always clear what
order is denoted by this symbol.)

(i) If u ∈ Yj and γ ∈ Γj (1 � j � 2n), then u� γ u.
(ii) If u,v ∈ Yj (1 � j � 2n), u� v and γ ∈ Γj , then γ u� γ v.

A ranking of the σ ∗-indeterminates y1, . . . , ys is called orderly if for any j = 1, . . . ,2n

and for any two terms u,v ∈ Yj , the inequality ordu < ord v implies that u < v (as
usual, v < w means v � w and v �= w). As an example of an orderly ranking of the
σ ∗-indeterminates y1, . . . , ys one can consider the standard ranking defined as follows:
u= αk1

1 . . . α
kn
n yi � v = αl11 . . . αlnn yj if and only if (

∑n
ν=1 |kν |, i, k1, . . . , kn) is less than or

equal to (
∑n
ν=1 |lν |, j, l1, . . . , ln) with respect to the lexicographic order on Zn+2.

In what follows, we assume that an orderly ranking � of the set of σ ∗-indeterminates
y1, . . . , ys has been fixed. If A ∈ F {y1, . . . , ys}∗, then the greatest (with respect to the
ranking �) term of Y that appears in A is called the leader of A; it is denoted by uA. If
d = degu A, then the σ ∗-polynomial A can be written as A= Idud + Id−1u

d−1 + · · · + I0
where Ik (0 � k � d) do not contain u. The σ ∗-polynomial Id is called the initial of A; it
is denoted by IA.

The ranking of the set of σ ∗-indeterminates y1, . . . , ys generates the following relation
on F {y1, . . . , ys}∗. If A and B are two σ ∗-polynomials, then A is said to have rank less
than B (we writeA<B) if eitherA ∈ F,B /∈ F orA,B ∈ F {y1, . . . , ys}∗ \F and uA < uB
or uA = uB = u, degu A < degu B . If uA = uB = u and degu A = degu B , we say that A
and B are of the same rank and write rkA= rkB .

Let A,B ∈ F {y1, . . . , ys}∗. The σ ∗-polynomialA is said to be reduced with respect to B
if A does not contain any power of a transform γ uB (γ ∈ Γσ ) whose exponent is greater
than deguB B . If Σ ⊆ F {y1, . . . , ys}∗ \ F , then a σ ∗-polynomial A ∈ F {y1, . . . , ys}∗, is
said to be reduced with respect to Σ if A is reduced with respect to every element of the
set Σ .

A setΣ ⊆ F {y1, . . . , ys}∗ is said to be autoreduced if either it is empty orΣ∩F = ∅ and
every element of Σ is reduced with respect to all others. As in the case of σ -polynomials,
distinct elements of an autoreduced set have distinct leaders and every autoreduced set is
finite. The following statement is an analog of Theorem 2.3.1.

THEOREM 2.3.7 [88, Theorem 3.4.27]. Let A= {A1, . . . ,Ar} be an autoreduced subset of
F {y1, . . . , ys}∗ and let D ∈ F {y1, . . . , ys}∗. Furthermore, let I (A)= {B ∈ F {y1, . . . , ys} |
eitherB = 1 or B is a product of finitely many polynomials of the form γ (IAi ) (γ ∈ Γσ , i =
1, . . . , r)}. Then there exist σ -polynomials J ∈ I (A) and D0 ∈ F {y1, . . . , ys} such that D0
is reduced with respect to A and JD ≡D0 (mod [A]).

The transition from a σ ∗-polynomialD to a σ ∗-polynomialD0 satisfying the conditions
of the theorem can be performed in the same way as in the case of σ -polynomials (see the
description of the corresponding reduction process after Theorem 2.3.1). We say that D
reduces to D0 modulo A.

As in the case of σ -polynomials, the elements of an autoreduced set in F {y1, . . . , ys}∗
will be always written in the order of increasing rank. If A = {A1, . . . ,Ar} and B =
{B1, . . . ,Bs} are two autoreduced sets of σ ∗-polynomials, we say that A has lower rank
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than B and write rkA < rkB if either there exists k ∈ N,1 � k � min{r, s}, such that
rkAi = rkBi for i = 1, . . . , k−1 and Ak < Bk , or r > s and rkAi = rkBi for i = 1, . . . , s.

Repeating the proof of [86, Chapter 1, Proposition 3], one obtains that every family of
autoreduced subsets of F {y1, . . . , ys}∗ contains an autoreduced set of lowest rank. In par-
ticular, if ∅ �= J ⊆ F {y1, . . . , ys}∗, then the set J contains an autoreduced set of lowest rank
called a characteristic set of J . The following statement is the version of Proposition 2.3.4
for inversive difference polynomials (see [88, Proposition 3.4.32]).

PROPOSITION 2.3.8. Let F be a difference field with a basic set σ , J a σ ∗-ideal of the
algebra of σ ∗-polynomials F {y1, . . . , ys}∗, and Σ a characteristic set of J . Then:

(i) The ideal J does not contain non-zero σ ∗-polynomials reduced with respect to Σ .
In particular, if A ∈Σ , then IA /∈ J .

(ii) If J is a prime σ ∗-ideal, then J = [Σ] :Υ (Σ) where Υ (Σ) denote the set of all
finite products of elements of the form γ (IA) (γ ∈ Γσ ,A ∈Σ).

Let F be a difference field with a basic set σ and F {y1, . . . , ys} an algebra of σ -
polynomials in σ -indeterminates y1, . . . , ys over F . A σ -ideal I of F {y1, . . . , ys} is called
linear if it is generated (as a σ -ideal) by linear σ -polynomials (that is, σ -polynomials of
the form

∑m
i=1 aiτiyki where ai ∈ F, τi ∈ Tσ ,1 � ki � s for i = 1, . . . ,m). If the σ -field

F is inversive, then a σ ∗-ideal of an algebra of σ ∗-polynomials F {y1, . . . , ys}∗ is called
linear if it is generated (as a σ ∗-ideal) by linear σ ∗-polynomials, i.e., polynomials of the
form
∑m
i=1 aiγiyki (ai ∈ F,γi ∈ Γσ ,1 � ki � s for i = 1, . . . ,m). As in the case of linear

differential polynomials (see [88, Proposition 3.2.28]), one can show that if I is a proper
linear σ -ideal of F {y1, . . . , ys} or a proper linear σ ∗-ideal of F {y1, . . . , ys}∗ then the ideal
I is prime.

DEFINITION 2.3.9. Let F be a difference field with a basic set σ and A an autoreduced
set in F {y1, . . . , ys} that consists of linear σ -polynomials (respectively, let F be a σ ∗-field
and A an autoreduced set in F {y1, . . . , ys}∗ that consists of linear σ ∗-polynomials). The
set A is called coherent if the following two conditions hold.

(i) If A ∈A and τ ∈ Tσ (respectively, γ ∈ Γσ ), then τA (respectively, γA) reduces to
zero modulo A.

(ii) If A,B ∈ A and v = τ1uA = τ2uB is a common transform of the leaders uA and
uB (τ1, τ2 ∈ Tσ or τ1, τ2 ∈ Γσ if we consider the case of σ ∗-polynomials), then the
σ -polynomial (τ2IB)(τ1A)− (τ1IA)(τ2B) reduces to zero modulo A.

The following result is proved in [88, Theorem 6.5.3] for autoreduced sets of inversive
difference polynomials. The proof for the case of difference polynomials is similar.

THEOREM 2.3.10. Let F be a difference field with a basic set σ and I a linear σ -ideal of
the algebra of σ -polynomials F {y1, . . . , ys} (respectively, let F be a σ ∗-field and I a linear
σ ∗-ideal of F {y1, . . . , ys}∗). Then any characteristic set of I is a coherent autoreduced set
of linear σ - (respectively, σ ∗-) polynomials.

Conversely, if A⊆ F {y1, . . . , ys} (respectively, A⊆ F {y1, . . . , ys}∗) is any coherent au-
toreduced set consisting of linear σ - (respectively, σ ∗-) polynomials, then A is a charac-
teristic set of the linear σ -ideal [A] (respectively, of the linear σ ∗-ideal [A]∗).
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COROLLARY 2.3.11. Let F be an inversive difference field with a basic set σ and
let 
 be a preorder on F {y1, . . . , ys}∗ such that for any two σ ∗-polynomials A1 and A2,
A1 
 A2 if and only if uA2 is a transform of uA1 . Let A be a linear σ ∗-polynomial from
F {y1, . . . , ys}∗ \ F and ΓσA = {γA | γ ∈ Γσ }. Then the set of all minimal (with respect
to 
) elements of ΓσA is a characteristic set of the σ ∗-ideal [A]∗.

Theorem 2.3.10 implies the following method of constructing a characteristic set of
a proper linear σ ∗-ideal I in F {y1, . . . , ys}∗ (a similar method can be used for building
a characteristic set of a σ -ideal in F {y1, . . . , ys}). Suppose that I = [A1, . . . ,Ap]∗ where
A1, . . . ,Ap are linear σ ∗-polynomials and A1 < · · ·<Ap . It follows from Theorem 2.3.10
that one should find a coherent autoreduced set Φ ⊆ F {y1, . . . , ys}∗ such that [Φ]∗ = I .
Such a set can be obtained from the set A = {A1, . . . ,Ap} via the following two-step
procedure.

Step 1. Constructing an autoreduced set Σ ⊆ I such that [Σ]∗ = I .
If A is autoreduced, set Σ =A. If A is not autoreduced, choose the smallest i (1 � i �

p) such that some σ ∗-polynomial Aj , 1 � i < j � p, is not reduced with respect to Ai .
Replace Aj by its remainder with respect to Ai (obtained by the procedure described after
Theorem 2.3.1) and arrange the σ ∗-polynomials of the new set A1 in ascending order.
Then apply the same procedure to the set A1 and so on. After each iteration the number of
σ ∗-polynomials in the set does not increase, one of them is replaced by a σ ∗-polynomial of
lower or equal rank, and the others do not change. Therefore, the process terminates after
a finite number of steps and then we have the desired autoreduced set Σ .

Step 2. Constructing a coherent autoreduced set Φ ⊆ I .
Let Σ0 =Σ be an autoreduced subset of I such that [Σ]∗ = I . If Σ is not coherent, we

build a new autoreduced setΣ1 ⊆ I by adding toΣ0 new σ ∗-polynomials of the following
types.

(a) σ ∗-polynomials (γ1IB1)γ2B2 − (γ2IB2)γ1B1 constructed for every pair B1,B2 ∈Σ
such that the leaders uB1 and uB1 have a common transform v = γ1uB1 = γ2uB2 and
(γ1IB1)γ2B2 − (γ2IB2)γ1B1 is not reducible to zero modulo Σ0.

(b) σ ∗-polynomials of the form γA (γ ∈ Γσ ,A ∈ Σ0) that are not reducible to zero
modulo Σ0.

It is clear that rkΣ1 < rkΣ0. Applying the same procedure to Σ1 and continuing in the
same way, we obtain autoreduced subsets Σ0,Σ1, . . . of I such that rkΣi+1 < rkΣi for
i = 0,1, . . . . Obviously, the process terminates after finitely many steps, and so we obtain
an autoreduced set Φ ⊆ I such that Φ =Σk =Σk+1 = · · · for some k ∈N. It is easy to see
that Φ is coherent, so it is a characteristic set of the ideal I .

2.4. Perfect difference ideals. Ritt difference rings

DEFINITION 2.4.1. Let R be a difference ring with a basic set σ . A σ -ideal J of the
ring R is called perfect if for any a ∈ R,τ1, . . . , τr ∈ Tσ and k1, . . . , kr ∈ N, the inclusion
τ1(a)

k1 . . . τr (a)
kr ∈ J implies a ∈ J .

It is easy to see that every perfect ideal is reflexive and every reflexive prime ideal is per-
fect. Furthermore, if the σ -ring R is inversive, then a σ -ideal J of R is perfect if and only
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if any inclusion γ1(a)
k1 . . . γr (a)

kr ∈ J (a ∈ R,γ1, . . . , γr ∈ Γσ , k1, . . . , kr ∈ N) implies
a ∈ J .

If B is a subset of a difference ring R with a basic set σ , then the intersection of all
perfect σ -ideals of R containing B is the smallest perfect ideal containing B . It is denoted
by {B} and called the perfect closure of the set B . The ideal {B} can be obtained from
the set B via the following procedure introduced in [137] and called shuffling. For any
set M ⊆ R, let M ′ denote the set of all a ∈ R such that τ1(a)

k1 . . . τr (a)
kr ∈M for some

τ1, . . . , τr ∈ Tσ and k1, . . . , kr ∈ N (r � 1). Starting with B0 = B , set B1 = [B0]′,B2 =
[B1]′, . . . . Then {B} =⋃∞i=0Bi .

PROPOSITION 2.4.2 [32, Chapter 3, Section 2]. LetA and B be two subsets of a difference
ring R. Then

(i) AkBk ⊆ (AB)k for any k ∈N. (By the product UV of two sets U,V ⊆ R we mean
the set UV = {uv | u ∈U,v ∈ V }.)

(ii) {A}{B} ⊆ {AB}.
(iii) (AB)k ⊆Ak ∩Bk for any k ∈N, k � 1.
(iv) Ak ∩Bk ⊆ (AB)k+1 for any k ∈N.
(v) {A} ∩ {B} = {AB}.

Let J be a subset of a difference ring R. Then a finite subset A of J is called a basis of
J if {A} = {J }. If {J } =Am for some m ∈N, A is said to be an m-basis of J . A difference
ring in which every subset has a basis is called a Ritt difference ring.

PROPOSITION 2.4.3 [32, Chapter 3, Theorem I]. A difference ring R is a Ritt difference
ring if and only if every perfect difference ideal of R has a basis. If every perfect differ-
ence ideal of R has an m-basis, then every set in R has an m-basis. (In this and similar
statements the number m is not fixed but depends on the set.)

PROPOSITION 2.4.4 [32, Chapter 3, Theorem II]. A difference ring R is a Ritt difference
ring if and only if it satisfies the ascending chain condition for perfect difference ideals.

In [35] R.M. Cohn introduced and studied conservative systems of ideals of a commu-
tative ring, that is, sets of ideals closed with respect to unions of linearly ordered subsets
and intersections. The set of all perfect difference ideals of a difference ring R is an ex-
ample of such a system. If R is a Ritt difference ring, then its perfect difference ideals
form a Noetherian perfect conservative system, that is, a conservative system where every
ideal coincides with its radical and every ascending chain of ideals is finite. A number of
results that describe general properties of conservative systems can be also found in [86,
Chapter 0, Section 7] and [88, Section 1.4].

The following statement is a version of the J. Ritt and H. Raudenbush theorem, [137],
for partial difference rings.

THEOREM 2.4.5 [88, Theorem 3.3.42]. Let R be a Ritt difference ring with a basic set σ
and let S = R{η1, . . . , ηs} be a σ -overring of R generated by a finite family of elements
{η1, . . . , ηs}. Then S is a Ritt σ -ring. Moreover, if every set in R has anm-basis, then every
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set in S has an m-basis. In particular, an algebra of difference polynomials R{y1, . . . , ys}
in a finite set of difference indeterminates y1, . . . , ys is a Ritt difference ring.

If R is an inversive Ritt σ -ring and S∗ =R{η1, . . . , ηs}∗ a finitely generated σ ∗-overring
of R, then S∗ is a Ritt σ ∗-ring. If every set in R has an m-basis, then every set in S∗ has an
m-basis. In particular, an algebra of σ ∗-polynomials in a finite set of σ ∗-indeterminates
over R is a Ritt σ ∗-ring.

It is not known whether the existence of bases of perfect difference ideals implies the
existence ofm-bases. Another open problem is to find out whether there is a positive integer
k such that every set in an algebra of difference polynomials over a difference field has a
k-basis. In [32, Chapter 3, Section 13] R.M. Cohn showed that if such an integer k exists,
it exceeds 1. More precisely, R.M. Cohn proved that if Q is considered as an ordinary
difference field with the identity automorphism and S =Q{u,v} is an algebra of difference
polynomials in two difference indeterminates u,v over Q, then the perfect difference ideal
{uv} of S has no 1-basis.

The following statement strengthens the result of Theorem 2.4.5 for a wide class of rings
of difference polynomials over ordinary difference fields.

THEOREM 2.4.6 [21]. Let F be an ordinary difference field containing an element t which
is distinct from all its non-trivial transforms. Let S = F {y1, . . . , ys} be a ring of difference
polynomials in difference indeterminates y1, . . . , ys over F . Then every perfect difference
ideal of S has a basis consisting of n+ 1 difference polynomials.

Let R be a difference ring with a basic set σ and J a proper perfect σ -ideal of R. For
every x ∈ R \ J , let Px denote the set of all perfect σ -ideals I of R such that J ⊆ I and
x /∈ I . By the Zorn lemma, the set Px contains, a maximal (relative to inclusion) perfect
ideal Px (Px �= ∅, since J ∈ Px ). It follows from Proposition 2.4.2(ii) that the ideal Px is
prime. Since J =⋂x∈R\J Px , we obtain that every proper perfect σ -ideal of a difference
ring can be represented as an intersection of prime reflexive σ -ideals. The following state-
ment, the first version of which appeared in [137], specifies this result for Ritt difference
rings. (Recall that a representation of a radical ideal J of a commutative ring R as a finite
intersection of prime ideals, J =⋂ri=1Pi , is called irredundant if Pi 	 Pj for i �= j . Prime
ideals Pi from such a representation are called the essential prime divisors of J .)

PROPOSITION 2.4.7. Let R be a difference ring with a basic set σ and J a proper perfect
σ -ideal of R.

(i) There exists an irredundant representation of J as an intersection of prime σ -ideals,
J = P1 ∩ · · · ∩ Pr .

(ii) The σ -ideals P1, . . . ,Pr are reflexive and uniquely determined by the ideal J .

Let R be a difference ring with a basic set σ and I , J two σ -ideals of R. The ideals
I and J are called separated if {I, J } = R and strongly separated if [I, J ] = R. The σ -
ideals I1, . . . , Ir of R are called (strongly) separated in pairs if any two of the ideals Ii, Ij
(1 � i < j � r) are (strongly) separated. It is easy to show that if the ideals I1, . . . , Ir are
strongly separated in pairs, then

⋂r
i=1 Ii =

∏r
i=1 Ii .
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In [32, Chapter 3, Sections 11, 15] R.M. Cohn gives two examples that illustrate the
relationships between some characteristics of difference ideals.

Let S =Q{y} be the algebra of σ -polynomials in one σ -indeterminate y over Q (treated
as an ordinary difference field whose basic set consists of the identity isomorphism α).
The first example presents two separated σ -ideals that are not strongly separated. Let A=
1+ yα(y), B = y + α(y) ∈ S. Then {A,B} = S, but [A,B] is a proper ideal of the ring S.
(Moreover, even [{A}, {B}] is a proper ideal of S.)

The second example gives the irreducible representation of the perfect ideal {y2 − 1}
of S as an intersection of prime reflexive ideals: {y2 − 1} = {y − 1} ∩ {y + 1}. At the
same time, the σ -ideal [y2 − 1] cannot be represented as an intersection (or product) of
two σ -ideals whose perfect closures are {y − 1} and {y + 1}. Moreover, [y2 − 1] cannot
be represented as an intersection (or product) of any two proper σ -ideals (such an ideal is
called indecomposable).

We conclude this section with the description of two more types of difference ideals
introduced and studied in [134] (see also [32, Chapter 3]). The corresponding results are
formulated for partial difference rings.

Let R be a difference ring with a basic set σ . A σ -ideal I of R is called complete if for
every element a ∈ {I }, there exist τ ∈ Tσ , k ∈N such that τ(a)k ∈ I . It is easy to check that
a σ -ideal is complete if and only if the presence in I of a product of powers of transforms
of an element implies the presence in I of a power of a transform of the element. One can
also define a complete σ -ideal as a σ -ideal I such that {I } is the reflexive closure of

√
I

(here and below
√
I denotes the radical of I ).

PROPOSITION 2.4.8 [134, Theorem II]. Let I be a complete difference ideal in a differ-
ence ring R with a basic set σ . Suppose that {I } is the intersection of s perfect ideals
J1, . . . , Js which are strongly separated in pairs. Then there exist uniquely determined
complete σ -ideals I1, . . . , Is such that I = I1 ∩ · · · ∩ Is and {Ik} = Jk (1 � k � s). In this
representation, the ideals I1, . . . , Is are strongly separated in pairs. Furthermore, if the
ideal I is reflexive, then so are I1, . . . , Is .

As we have seen, the ideal [y2 − 1] of the ring of difference polynomials Q{y} (Q is
treated as an ordinary difference ring with the identity translation) is indecomposable and
its essential prime divisors {y − 1} and {y + 1} are strongly separated. In this case Propo-
sition 2.4.8 shows that the difference ideal [y2 − 1] is not complete.

Propositions 2.4.7 and 2.4.8 lead to the following decomposition theorem for complete
difference ideals.

PROPOSITION 2.4.9 [32, Chapter 3, Theorem IX]. Let I be a proper complete difference
ideal in a Ritt difference ring R with a basic set σ . Then there exist proper complete σ -
ideals I1, . . . , Is of R such that

(i) I = I1 ∩ · · · ∩ Is ,
(ii) I1, . . . , Is are strongly separated in pairs (hence, I = I1I2 . . . Is ),

(iii) no Ik (1 � k � s) is the intersection of two strongly separated proper σ -ideals.
The ideals I1, . . . , Is are uniquely determined. If I is reflexive, so are the Ik (1 � k � s).
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The ideals I1, . . . , Is whose existence is established by Proposition 2.4.9 are called the
essential strongly separated divisors of the σ -ideal I . The following result is a consequence
of Proposition 2.4.9.

PROPOSITION 2.4.10. Let R be a Ritt difference ring with a basic set σ and let J be a
proper perfect σ -ideal of R. Then

(i) the essential strongly separated divisors of J are perfect σ -ideals;
(ii) the ideal J can be represented as J = J1 ∩ · · · ∩ Js where J1, . . . , Js are proper

perfect σ -ideals separated in pairs and no Jk (1 � k � s) can be represented as
an intersection of two separated proper perfect σ -ideals. The ideals J1, . . . , Js are
uniquely determined by the ideal J . (They are called the essential separated divisors
of J .)

A difference ideal I of a difference (σ -) ring R is called mixed if the inclusion ab ∈ I
(a, b ∈ R) implies that aα(b) ∈ I for every α ∈ σ . It is easy to see that every perfect ideal
is mixed and every mixed ideal is complete.

Let Q{y} be the ring of difference polynomials in one difference indeterminate y over Q
(treated as an ordinary difference ring with the identity translation α). In [32, Chapter 3,
Section 21] R.M. Cohn showed that the difference ideal [yα(y)] is not complete, while
[y2] is complete, but not mixed. He also proved that if the ideal I in the hypothesis of
Proposition 2.4.9 is mixed, then so are the I1, . . . , Is . Thus, the essential strongly separated
divisors of a mixed difference ideal in a Ritt difference ring are mixed difference ideals.

2.5. Varieties of difference polynomials

Let F be a difference field with a basic set σ , F {y1, . . . , ys} an algebra of σ -polynomials
in σ -indeterminates y1, . . . , ys over F and E a family of σ -overfields of F . Furthermore,
let Φ ⊆ F {y1, . . . , ys} and let ME (Φ) denote the set of all s-tuples a = (a1, . . . , as)

with coordinates from some field Fa ∈ E which are solutions of the set Φ (that is,
f (a1, . . . , as) = 0 for any f ∈ Φ). Then ME (Φ) is said to be the E-variety defined by
the set Φ (it is also called the E-variety of the set Φ over F {y1, . . . , ys} or over F ). The
σ -field F is said to be the ground σ -field of the E-variety.

Now, let M be a set of s-tuples such that the coordinates of every point a ∈M belong
to some field Fa ∈ E . If there exists a set Φ ⊆ F {y1, . . . , ys} such that M=ME (Φ), then
M is said to be an E-variety over F {y1, . . . , ys} (or over F ).

DEFINITION 2.5.1. Let F be a difference field with a basic set σ , G= F(x1, x2, . . .) the
field of rational fractions in a denumerable set of indeterminates x1, x2, . . . over F , and
G the algebraic closure of G. Then the family U(F ) of all σ -overfields of F which are
defined on subfields of G is called the universal system of σ -overfields of F . If Φ is a
subset of the algebra of σ -polynomials F {y1, . . . , ys} and U = U(F ), then the U -variety
MU (Φ) (also denoted by M(Φ)) is called the variety defined by the setΦ over F (or over
F {y1, . . . , ys}).
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A set of s-tuples M over the field F is said to be a variety over F {y1, . . . , ys} (or a
variety over F ) if there exists a set Φ ⊆ F {y1, . . . , ys} such that M=MU(F )(Φ).

In what follows, we assume that a difference field F with a basic set σ , an algebra of σ -
polynomials F {y1, . . . , ys}, and a family E of σ -overfields of F are fixed. E-varieties and
varieties over F {y1, . . . , ys} will be called simply E-varieties and varieties, respectively.

PROPOSITION 2.5.2 [32, Chapter 4, Section 3]. Let η= (η1, . . . , ηs) be an s-tuple over the
σ -field F . Then there exists and s-tuple ζ = (ζ1, . . . , ζs) over F such that ζ is equivalent
to η and all ζi (1 � i � s) belong to some field from the universal system U(F ).

If A1 and A2 are two E-varieties and A1 ⊆A2 (A1 � A2), then A1 is said to be a E-
subvariety (respectively, a proper E-subvariety) of A2. U(F )-subvarieties of a variety A
are called subvarieties of A. An E-variety (variety) A is called reducible if it can be rep-
resented as a union of two its proper E-subvarieties (subvarieties). If such a representation
does not exist, the E-variety (variety) A is said to be irreducible.

Let an E-variety (variety) A be represented as a union of its E-subvarieties (subvarieties):
A = A1 ∪ · · · ∪Ak . This representation is called irredundant if Ai 
 Aj for i �= j (1 �
i, j � k).

The following proposition summarizes basic properties of E-varieties. As before, we
assume that a family E of σ -overfields of F is fixed. Furthermore, if A is a set of s-
tuples a with coordinates from a σ -field Fa ∈ E (we say that A is a set of s-tuples from E
over F ), then ΦE (A) denotes the perfect σ -ideal {f ∈ F {y1, . . . , ys} | f (a1, . . . , as) = 0
for any a = (a1, . . . , as) ∈A} of the ring F {y1, . . . , ys}.

PROPOSITION 2.5.3.
(i) If Φ1 ⊆Φ2 ⊆ F {y1, . . . , ys}, then ME (Φ2)⊆ME (Φ1).

(ii) If A1 and A2 are two sets of s-tuples from E over F and A1 ⊆A2, thenΦE (A2)⊆
ΦE (A1).

(iii) If A is a E-variety, then A=ME (ΦE (A)).
(iv) If J1, . . . , Jk are σ -ideals of the ring F {y1, . . . , ys} and J = J1 ∩ · · · ∩ Jk , then

ME (J )=ME (J1)∪ · · · ∪ME (Jk).
(v) If A1, . . . ,Ak are E-varieties over F and A=A1∪· · ·∪Ak , then A is a E-variety

over F and ΦE (A)=ΦE (A1)∩ · · · ∩ΦE (Ak).
(vi) The intersection of any family of E-varieties is an E-variety.

(vii) An E-variety A is irreducible if and only if ΦE (A) is a prime reflexive ideal of
F {y1, . . . , ys}.

(ix) Every E-variety A has a unique irredundant representation as a union of irre-
ducible E-varieties, A = A1 ∪ · · · ∪ Ak . (The E-varieties A1, . . . ,Ak are called
irreducible E-components of A.) Furthermore, Ai 


⋃
j �=iAj for i = 1, . . . , k.

(x) If A1, . . . ,Ak are the irreducible E-components of an E-variety A, then the prime
σ ∗-ideals ΦE (A1), . . . ,ΦE (Ak) are the essential prime divisors of the perfect σ -
ideal ΦE (A).

The last proposition implies that A �→ΦE (A) is an injective mapping of the set of all E-
varieties over F {y1, . . . , ys} into a set of all perfect σ -ideals of the ring F {y1, . . . , ys}. If E
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is the universal system of σ -overfields of F , then this mapping is bijective. More precisely,
we have the following statement about varieties (see [32, Chapter 4, Section 5]).

PROPOSITION 2.5.4.
(i) If J is a perfect σ -ideal of the ring F {y1, . . . , ys}, then Φ(M(J ))= J .

(ii) M(J )= ∅ if and only if J = F {y1, . . . , ys}.
(iii) The mappings A �→ Φ(A) and P �→M(P ) are two mutually inverse mappings

that establish one-to-one correspondence between the set of all varieties over F
and the set of all perfect σ -ideals of the ring F {y1, . . . , ys}.

(iv) The correspondence A �→Φ(A) maps irreducible components of an arbitrary va-
riety B onto essential prime divisors of the perfect σ -ideal Φ(B) in F {y1, . . . , ys}.
In particular there is a one-to-one correspondence between irreducible varieties
over F and prime σ -ideals of the σ -ring F {y1, . . . , ys}.

If A is an irreducible variety over F {y1, . . . , ys}, then a generic zero of the corresponding
prime ideal Φ(A) is called a generic zero of the variety A.

The following result is a version of the Hilbert’s Nullstellensatz for difference fields.

THEOREM 2.5.5. Let F be a difference field with a basic set σ and F {y1, . . . , ys} an
algebra of σ -polynomials in σ -indeterminates y1, . . . , ys over F . Let f ∈ F {y1, . . . , ys},
Φ ⊆ F {y1, . . . , ys}, and M(Φ) the variety defined by the set Φ over F . Then the following
conditions are equivalent.

(i) Every s-tuple from M(Φ) is a solution of the σ -polynomial f .
(ii) Every s-tuple η = (η1, . . . , ηs) ∈M(Φ) which is σ -algebraic over F is a solution

of f .
(iii) f ∈ {Φ}.

Two varieties A1 and A2 over the ring of difference polynomials F {y1, . . . , ys} are
called separated if A1 ∩A2 = ∅.

If a variety A is represented as a union of pairwise separated varieties A1, . . . ,Ak and
no Ai is the union of two non-empty separated varieties, then A1, . . . ,Ak are said to be
essential separated components of A. (All varieties are considered over the same ring
F {y1, . . . , ys}.)

The following statement is due to R.M. Cohn (see [32, Chapter 4, Section 7]).

PROPOSITION 2.5.6. Let F be a difference field with a basic set σ and F {y1, . . . , ys} an
algebra of σ -polynomials in σ -indeterminates y1, . . . , ys over F .

(i) Two varieties A1 and A2 over F {y1, . . . , ys} are separated if and only if the perfect
σ -ideals Φ(A1) and Φ(A2) are separated.

(ii) Two perfect ideals J1 and J2 of the ring F {y1, . . . , ys} are separated if and only if
the varieties M(J1) and M(J2) are separated.

(iii) Every non-empty variety A over F {y1, . . . , ys} can be represented as a union of
a uniquely determined family of its essential separated components. Each of these
components is a union of some irreducible components of A.
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(iv) If A1, . . . ,Ak are essential separated components of a variety A, then Φ(A1), . . . ,

Φ(Ak) are essential separated divisors of the perfect σ -idealΦ(A) in F {y1, . . . , ys}.

Now, let F be an inversive difference field with a basic set σ , F {y1, . . . , ys}∗ an algebra
of σ ∗-polynomials in σ ∗-indeterminates y1, . . . , ys over F , and E a set of σ ∗-overfields
of F . If Φ ⊆ F {y1, . . . , ys}∗, then the set ME (Φ) consisting of all s-tuples a which have
coordinates in some field Fa ∈ E and annul every σ ∗-polynomial from Φ is called an
E-variety over F {y1, . . . , ys}∗ determined by the set Φ .

Let A be a set of s-tuples over F such that all coordinates of each s-tuple a ∈A belong
to some σ ∗-field Fa ∈ E . Then A is said to be an E-variety over F {y1, . . . , ys}∗ if there
exists a set Φ ⊆ F {y1, . . . , ys}∗ such that A=ME (Φ).

Let L = F(x1, x2, . . .) be the field of rational fractions in a denumerable set of in-
determinates x1, x2, . . . over the σ ∗-field F and let L̄ be the algebraic closure of L.
Then the family U∗(F ) consisting of all σ ∗-overfields of F defined on subfields of L̄
is called the universal system of σ ∗-overfields of F . As in the case of non-inversive dif-
ference fields, one can prove that if η = (η1, . . . , ηs) is any s-tuple over the σ ∗-field
F , then there exists an s-tuple ζ = (ζ1, . . . , ζs) such that ζ is equivalent to η and
all coordinates of the point ζ lie in some σ ∗-field Fζ ∈ U∗(F ) (see [88, Proposi-
tion 3.4.34]). A U∗(F )-variety over F {y1, . . . , ys}∗ is called a variety over this ring of
σ ∗-polynomials.

The concepts of E-subvariety, proper E-subvariety, subvariety, and proper subvariety
over F {y1, . . . , ys}∗, as well as the notions of reducible and irreducible E-varieties and
varieties, are precisely the same as in the case of s-tuples over an algebra of (non-inversive)
difference polynomials. If an E-variety (variety) A over F {y1, . . . , ys}∗ is represented as
a union of its E-subvarieties (subvarieties), A = A1 ∪ · · · ∪ Ak , and Ai � Aj for i �= j
(1 � i, j � k), then this representation is called irredundant.

All properties of E-varieties and varieties over an algebra of difference polynomials
listed in Propositions 2.5.3, 2.5.4, 2.5.6 and Theorem 2.5.5 are also valid for E-varieties
and varieties over F {y1, . . . , ys}∗. The formulations of the corresponding statements are
practically the same. One should just replace the ring F {y1, . . . , ys} by F {y1, . . . , ys}∗
and treat ME (Φ) (Φ ⊆ F {y1, . . . , ys}∗) and ΦE (A) (A is a set of s-tuples a over F
whose coordinates belong to some σ ∗-field Fa ∈ E) as the set {a = (a1, . . . , as) | a1, . . . , as
belong to some field Fa ∈ E and f (a1, . . . , as) = 0 for all f ∈ Φ} and the perfect σ -
ideal {f ∈ F {y1, . . . , ys}∗ | f (a1, . . . , as) = 0 for any a = (a1, . . . , as) ∈ A} of the ring
F {y1, . . . , ys}∗, respectively. (If E = U∗(F ), then ΦE (A) and ME (Φ) are denoted by
M(Φ) and Φ(A), respectively.) By a generic zero of an irreducible variety A over
F {y1, . . . , ys}∗ we mean a generic zero of the corresponding perfect σ -ideal Φ(A) of the
ring F {y1, . . . , ys}∗. The concept of separated varieties over F {y1, . . . , ys}∗ is introduced
in the same way as in the case of varieties over an algebra of difference polynomials.

A family E of difference overfields of a difference (σ -) field F is called a complete
system of σ -overfields of F if distinct perfect σ -ideals of any ring of σ -polynomials over
F have distinct E-varieties. Clearly, the universal system of σ -overfields of F is com-
plete.

The proof of the following result can be found in [32, Chapter 8].
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PROPOSITION 2.5.7. Let F be an ordinary difference field with a basic set σ = {α}.
(i) There exists a complete system C of σ -overfields of F where each σ -field is σ -

algebraic over F . If F is algebraically closed, C may be chosen to consist of one
σ -field.

(ii) Let the σ -field F be aperiodic (that is, there is no n ∈N such that αn(a)= a for all
a ∈ F ) and CharF = 0. Let E be a family of difference overfields of F and let F {y}
be a ring of σ -polynomials in one σ -indeterminate y over F . Then E is a complete
system if and only if given any prime σ ∗-ideal P of F {y} and any σ -polynomial
A ∈ F {y} \ P , ME (P ) contains a solution not annulling A.

We conclude this section with a brief discussion of a realization of an abstract variety
of difference polynomials as a set of complex-valued functions. The following results are
due to R.M. Cohn, [33], who provided such a realization by means of an existence theorem
yielding solutions of difference equations as complex-valued functions defined, except for
isolated singularities, on the non-negative real axis.

A complex-valued function f (x) is said to be permitted function if it is defined for all
real values x � 0 except at a set S(f ) which has no limit points, is analytic in each of
the intervals into which the non-negative real axis is divided by omission of the points of
S(f ), and is either identically 0 or is 0 at only finitely many points in any finite interval.
A permitted difference ring is an ordinary difference ring R whose elements are permitted
functions and whose basic set consists of the translation α such that (αf )(x)= f (x + 1)
for any f (x) ∈R. (More precisely, the elements of R are equivalence classes of permitted
functions, with f (x) equivalent to g(x) if they coincide except possibly on S(f ) ∪ S(g).)
It follows from the definition of permitted functions that α is an isomorphism of R
into itself.) A permitted difference ring which is a field is called a permitted difference
field.

Let K0 be the ordinary difference field of rational functions f : R→ C with complex
coefficients whose basic set consists of the translation α :f (x) �→ f (x + 1) (f (x) ∈K0).
Then K0 may be regarded as a permitted difference field by restricting the domain of
its members to x � 0. In what follows, K denotes the set of permitted difference over-
fields of K0 and K∗ = {K ∈ K | there exists an infinite set of functions analytic through-
out [0,1] which is algebraically independent over K (regarded as a field of functions
over [0,1])}.

The following existence theorem was proved in [33] where one can also find a discus-
sion of the existence of continuous solutions of reflexive prime ideals in K0{y} and K{y}
(K ∈K∗).

THEOREM 2.5.8. With the above notation, let K ∈ K∗ and let J be a proper reflexive
prime ideal of the ring of difference polynomials K{y} in one difference indeterminate y.
Then

(i) K is a complete system of difference overfields of K .
(ii) The ideal J has a generic zero in one of the members of K.
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3. Difference modules

3.1. Ring of difference operators. Difference modules

Let R be a difference ring with a basic set σ = {α1, . . . , αn} and T the free commutative
semigroup generated by the elements α1, . . . , αn. Furthermore, for any r ∈ N, let T (r) =
{τ ∈ T | ord τ � r} (as before, by the order of an element τ = αk1

1 . . . α
kn
n ∈ T we mean the

number ord τ =∑n
i=1 ki ).

DEFINITION 3.1.1. An expression of the form
∑
τ∈T aτ τ , where aτ ∈ R for any τ ∈ T

and only finitely many elements aτ are different from 0, is called a difference (or σ -) oper-
ator over the difference ring R. Two σ -operators

∑
τ∈T aτ τ and

∑
τ∈T bτ τ are considered

to be equal if and only if aτ = bτ for any τ ∈ T .

Let D denote the set of all σ -operators over the σ -ring R. This set can be equipped
with a ring structure if we set

∑
τ∈T aτ τ +

∑
τ∈T bτ τ =

∑
τ∈T (aτ + bτ )τ , a

∑
τ∈T aτ τ =∑

τ∈T (aaτ )τ , (
∑
τ∈T aτ τ )τ1 = ∑τ∈T aτ (ττ1), τ1a = τ1(a)τ1 for any

∑
τ∈T aτ τ ,∑

τ∈T bτ τ ∈D, a ∈ R, τ1 ∈ T , and extend the multiplication by distributivity. The ring
obtained in this way is called the ring of difference (or σ -) operators over R.

The order of a σ -operator A = ∑τ∈T aτ τ ∈ D is defined as the number ordA =
max{ord τ | aτ �= 0}. If for any q ∈ N we define D(q) = {∑τ∈T aτ τ ∈ D | ord τ = q for
every τ ∈ T such that aτ �= 0} and set D(q) = 0 for any q ∈ Z, q < 0, then the ring D
can be considered as a graded ring (with positive grading): D =⊕q∈Z D(q). It can be
also treated as a filtered ring with the ascending filtration (Dr )r∈Z such that Dr = 0 for
any r < 0 and Dr = {A ∈ D | ordA � r} for any r ∈ N. Below, while considering D as
a graded or filtered ring, we always mean the grading with the homogeneous components
D(q) (q ∈ Z) or the filtration (Dr )r∈Z, respectively.

DEFINITION 3.1.2. Let R be a difference ring with a basic set σ and D the ring of σ -
operators over R. Then a left D-module is called a difference R-module or a σ -R-module.
In other words, an R-module M is a difference (or σ -) R-module, if the elements of σ act
onM in such a way that α(x+ y)= α(x)+α(y), α(βx)= β(αx), and α(ax)= α(a)α(x)
for any x, y ∈M,α,β ∈ σ , a ∈R.

If R is a difference (σ -) field, then a σ -R-module M is also called a difference vector
space over R or a vector σ -R-space.

We say that a difference R-module M is finitely generated, if it is finitely generated
as a left D-module. By a graded difference (σ -) R-module we always mean a graded left
module over the ring of σ -operators D =⊕q∈Z D(q). If M =⊕q∈ZM

(q) is a graded

σ -R-module and M(q) = 0 for all q < 0, we say that M is positively graded and write
M =⊕q∈NM

(q).
Let R be a difference ring with a basic set σ and D the ring of σ -operators over R

equipped with the ascending filtration (Dr )r∈Z. In what follows, by a filtered σ -R-module
we always mean a left D-module equipped with an exhaustive and separated filtration.
Thus, a filtration of a σ -R-module M is an ascending chain (Mr)r∈Z of R-submodules of
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M such that DrMs ⊆Mr+s for all r, s ∈ Z, Mr = 0 for all sufficiently small r ∈ Z, and⋃
r∈ZMr =M .
A filtration (Mr)r∈Z of a σ -R-moduleM is called excellent if all R-modulesMr (r ∈ Z)

are finitely generated and there exists r0 ∈ Z such that Mr = Dr−r0Mr0 for any r ∈ Z,
r � r0.

If (Mr)r∈Z is a filtration of a σ -R-module M , then gr M will denote the associate
graded D-module with homogeneous components grrM =Mr+1/Mr (r ∈ Z). Since the
ring grD =⊕r∈Z Dr+1/Dr is naturally isomorphic to D, we identify these two rings.

Let R be a difference ring with basic set σ and letM and N be two σ -R-modules. A ho-
momorphism of R-modules f :M→ N is said to be a difference (or σ -) homomorphism
if f (αx)= αf (x) for any x ∈M , α ∈ σ . A surjective (respectively, injective or bijective)
difference homomorphism is called a difference (or a σ -) epimorphism (respectively, a
difference monomorphism or a difference isomorphism).

If M and N are equipped with filtrations (Mr)r∈Z and (Nr)r∈Z, respectively, and a σ -
homomorphism f :M → N has the property that f (Mr) ⊆ Nr for any r ∈ Z, then f is
said to be a homomorphism of filtered σ -R-modules.

The following result generalizes the classical theorem on the Hilbert polynomial. (As
usual, by the length of a finitely generated module N over an Artinian ring we mean the
length of a composition series of N .)

THEOREM 3.1.3 [88, Theorem 6.1.3]. LetR be an Artinian difference ring with a basic set
σ = {α1, . . . , αn} andM =⊕q∈ZM

(q) a finitely generated positively graded σ -R-module.
Then

(i) the length lR(M(q)) of every R-module M(q) is finite;
(ii) there exists a polynomial φ(t) ∈Q[t] such that φ(q)= lR(M(q)) for all sufficiently

large q ∈N (i.e., there exists q0 ∈N such that the equality holds for all q � q0);
(iii) degφ(t)� n− 1 and the polynomial φ(t) can be written as φ(t)=∑n−1

i=0 ai
(
t+i
i

)
where a0, a1, . . . , an−1 ∈ Z.

Let us consider the ring R as a filtered ring with the trivial filtration (Rr)r∈Z such that
Rr = R for all r � 0 and Rr = 0 for any r < 0. Let P be an R-module and let (Pr)r∈Z be
a non-descending chain of R-submodules of P such that

⋃
r∈ZPr = P and Pr = 0 for all

sufficiently small r ∈ Z. Then P can be treated as a filtered R-module with the filtration
(Pr)r∈Z and the left D-module D⊗R P can be considered as a filtered σ -R-module with
the filtration ((D⊗R P )r)r∈Z where (D⊗R P )r is the R-submodule of D⊗R P generated
by the set {u⊗ x | u ∈ Di and x ∈ Pr−i ,0 � i � r)}. In what follows, while considering
D⊗R P as a filtered σ -R-module (P is an exhaustively and separately filtered module over
the σ -ring R with the trivial filtration) we shall always mean the filtration ((D⊗R P )r)r∈Z.

THEOREM 3.1.4 [88, Theorem 6.2.5]. Let R be an Artinian difference ring with a basic
set σ = {α1, . . . , αn} and let (Mr)r∈Z be an excellent filtration of a σ -R-module M . Then
there exists a polynomial ψ(t) ∈ Q[t] such that ψ(r) = lR(Mr) for all sufficiently large
r ∈ Z. Furthermore, degψ(t) � n and the polynomial ψ(t) can be written as ψ(t) =∑n
i=0 ci
(
t+i
i

)
where c0, c1, . . . , cn ∈ Z.
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The polynomialψ(t)whose existence is established by theorem 3.1.4 is called the differ-
ence (σ -) dimension polynomial or characteristic polynomial of the module M associated
with the excellent filtration (Mr)r∈Z.

EXAMPLE 3.1.5. Let R be a difference field with a basic set σ = {α1, . . . , αn} and
D the ring of σ -operators over R treated as a filtered σ -R-module with the excellent
filtration (Dr )r∈Z. If r ∈ N, then the elements αk1

1 , . . . , α
kn
n , where k1, . . . , kn ∈ N and∑n

i=1 ki � r , form a basis of the vector R-space Dr . Therefore, lR(Dr ) = dimRDr =
Card{(k1, . . . , kn) ∈ Nn | k1 + · · · + kn � r} = (r+n

n

)
whence ψD(t) =

(
t+n
n

)
is the char-

acteristic polynomial of the ring D associated with the filtration (Dr )r∈Z.

Let R be a difference ring with a basic set σ , D the ring of σ -operators over R, M
a filtered σ -R-module with a filtration (Mr)r∈Z, and R[x] the ring of polynomials in one
indeterminate x over R. Let D′ denote the subring

∑
r∈N Dr⊗R Rxr of the ring D⊗R R[x]

and M ′ denote the left D′-module
∑
r∈NMr ⊗R Rxr . The proof of the following three

results can be found in [88, Section 6.2].

LEMMA 3.1.6. With the above notation, let all components of the filtration (Mr)r∈Z be
finitely generated R-modules. Then the filtration (Mr)r∈Z is excellent if and only if M ′ is
a finitely generated D′-module.

LEMMA 3.1.7. Let R be a Noetherian inversive difference ring with a basic set σ . Then
the ring of σ -operators D and the ring D′ are left Noetherian.

THEOREM 3.1.8. Let R be a Noetherian inversive difference ring with a basic set σ . Let
ρ :N→M be an injective homomorphism of filtered σ -R-modules and let the filtration of
the module M be excellent. Then the filtration of N is also excellent.

Let R be a difference field with a basic set σ = {α1, . . . , αn}, D the ring of σ -operators
over R, and M a finitely generated σ -R-module with generators x1, . . . , xm (i.e., M =∑m
i=1 Dxi ). Then the vectorR-spacesMr =∑m

i=1 Drxi (r ∈ Z) form an excellent filtration
of M . It is easy to see that if (M ′r )r∈Z is another excellent filtration of M , then there
exist k ∈ Z,p ∈ N such that Mr ⊆M ′r+p and M ′r ⊆Mr+p for all r ∈ Z, r � k. Thus, if
ψ(t) and ψ1(t) are the characteristic polynomials of the σ -R-module M associated with
the excellent filtrations (Mr)r∈Z and (M ′r )r∈Z, respectively, then ψ(r) � ψ1(r + p) and
ψ1(r)�ψ(r + p) for all sufficiently large r ∈ Z. It follows that degψ(t)= degψ1(t) and
the leading coefficients of the polynomials ψ(t) and ψ1(t) are equal. Since the degree of
a characteristic polynomial of M does not exceed n, Δnψ(t) = Δnψ1(t) ∈ Z. (The n-th
finite difference Δnf (t) of a polynomial f (t) is defined as usual: Δf (t) = f (t + 1) −
f (t),Δkf (t)=Δ(Δk−1f (t)) for k = 1,2, . . . .) We arrive at the following result.

THEOREM 3.1.9. LetR be a difference field with a basic set σ = {α1, . . . , αn},M a finitely
generated σ -R-module, and ψ(t) the difference dimension polynomial associated with an
excellent filtration of M . Then the integers Δnψ(t), d = degψ(t), and Δdψ(t) do not
depend on the choice of the excellent filtration.
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With the notation of the last theorem, the numbers Δnψ(t), d = degψ(t), and Δdψ(t)
are called the difference (or σ -) dimension, difference (or σ -) type, and typical difference
(or σ -) dimension of M , respectively. These characteristics of the σ -R-module M are
denoted by δ(M), t (M), and tδ(M), respectively.

The following two theorems give some properties of the difference dimension (see [99]
or [88, Section 6.2]).

THEOREM 3.1.10. Let R be an inversive difference field with a basic set σ = {α1, . . . , αn}
and let 0 −→ N

i−→M
j−→P −→ 0 be an exact sequence of finitely generated σ -R-

modules. Then δ(N)+ δ(P )= δ(M).

THEOREM 3.1.11. LetR be an inversive difference field with a basic set σ = {α1, . . . , αn},
D the ring of σ -operators over R, and M a finitely generated σ -R-module. Then δ(M) is
equal to the maximal number of elements of M linearly independent over D.

Type and dimension of difference vector spaces

Let M be a module over a commutative ring R, U a family of R-submodules of M , and
BU the set of all pairs (N,N ′) ∈ U ×U such that N ′ ⊆N . Furthermore, let Z denote the
set Z ∪ {∞} considered as a linearly ordered set with the natural order (a <∞ for any
a ∈ Z). As is shown in [80], there exists a unique map μU :BU → Z such that

(i) μU(N,N ′)�−1 for every pair (N,N ′) ∈ BU ;
(ii) for any d ∈ N, the inequality μU(N,N ′) � d holds if and only if N �= N ′ and

there exists an infinite chain N = N0 ⊇ N1 ⊇ · · · ⊇ N ′ such that Ni ∈ U and
μU(Ni−1,Ni)� d − 1 for i = 1,2, . . . .

With the above notation, sup{μU(N,N ′) | (N,N ′) ∈ BU } is called the type of the
R-module M over the family U ; it is denoted by typeU M . The least upper bound
of the lengths p of chains N0 ⊇ N1 ⊇ · · · ⊇ Np such that Ni ∈ U (0 � i � p) and
μU(Ni−1,Ni) = typeU M for i = 1, . . . , p is called the dimension of M over U ; it is de-
noted by dimU M .

THEOREM 3.1.12 [102]. Let K be a difference field with a basic set σ = {α1, . . . , αn},M
a finitely generated σ -K-module, and U the family of all σ -K-submodules of M .

(i) If δ(M) > 0, then typeU M = n and dimU M = δ(M).
(ii) If δ(M)= 0, then typeU M < n.

3.2. Inversive difference modules. σ ∗-dimension polynomials and their invariants

Let R be an inversive difference ring with a basic set σ = {α1, . . . , αn} and let Γ denote the
free commutative group generated by σ . As before, we set σ ∗ = {α1, . . . , αn,α

−1
1 , . . . , α−1

n }
and call R a σ ∗-ring. If γ = αk1

1 . . . α
kn
n ∈ Γ , then the number

∑n
i=1 |ki | is called the order

of the element γ ; it is denoted by ord γ . For any r ∈ N, the set {γ ∈ Γ | ord γ � r} is
denoted by Γ (r).
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DEFINITION 3.2.1. An expression of the form
∑
γ∈Γ aγ γ , where aγ ∈ R for any γ ∈ Γ

and only finitely many elements aγ are different from 0, is called an inversive difference
(or σ ∗-) operator over the difference ring R. Two σ ∗-operators

∑
γ∈Γ aγ γ and

∑
γ∈Γ bγ γ

are considered to be equal if and only if aγ = bγ for any γ ∈ Γ .

The set of all σ ∗-operators over R can be naturally equipped with a ring structure if
one sets

∑
γ∈Γ aγ γ +

∑
γ∈Γ bγ γ =

∑
γ∈Γ (aγ + bγ )γ , a

∑
γ∈Γ aγ γ =

∑
γ∈Γ (aaγ )γ ,

(
∑
γ∈Γ aγ γ )γ1 = ∑γ∈Γ aγ (γ γ1), γ1a = γ1(a)γ1 for any σ ∗-operators

∑
γ∈Γ aγ γ,∑

γ∈Γ bγ γ and for any a ∈ R, γ1 ∈ Γ , and extends the multiplication by distributivity.
The ring obtained in this way is called the ring of inversive difference (or σ ∗-) operators
over R; it is denoted by E . Clearly, the ring of difference (σ -) operators D introduced in
the preceding section is a subring of E .

IfA=∑γ∈Γ aγ γ ∈ E , then the number ordA=max{ord γ | aγ �= 0} is called the order
of the σ ∗-operator A. Setting Er = {A ∈ E | ordA � r} for any r ∈ N and Er = 0 for any
r ∈ Z, r < 0, we obtain an ascending filtration (Er )r∈Z of the ring E called the standard
filtration of this ring. In what follows, while considering E as a filtered ring, we always
mean this filtration.

THEOREM 3.2.2 [100]. If R is a Noetherian inversive difference ring with a basic set σ ,
then the corresponding ring of σ ∗-operators E is left Noetherian. If R is a σ ∗-field, then E
is a left Ore ring.

DEFINITION 3.2.3. Let R be an inversive difference ring with a basic set σ and E the ring
of inversive difference operators over R. Then a left E-module is said to be an inversive
difference R-module or a σ ∗-R-module. In other words, an R-module M is called a σ ∗-
R-module if elements of the set σ ∗ act on M in such a way that α(x + y) = αx + αy,
α(βx)= β(αx), α(ax)= α(a)α(x), and α(α−1x)= x for any α,β ∈ σ ∗; x, y ∈M ; a ∈R.

If R is a σ ∗-field, a σ ∗-R-module M is said to be a vector σ ∗-R-space (or an inversive
difference vector space over R).

It is clear that any σ ∗-R-module can be naturally treated as a σ -R-module. Also, if M
and N are two σ ∗-R-modules, then any difference (σ -) homomorphism f :M→ N has
the property that f (αx)= αf (x) for any x ∈M and α ∈ σ ∗.

Let R be an inversive difference ring with a basic set σ and E the ring of σ ∗-operators
over R. For any σ ∗-R-module M , the set C(M) = {x ∈ M | αx = x for all α ∈ σ } is
called the set of constants of M , its elements are called constants. Obviously, C(M) is a
subgroup of the additive group of M and C :M �→ C(M) is a functor from the category of
σ ∗-R-modules (i.e., the category of all left E-modules) to the category of Abelian groups.

If M and N are two σ ∗-R-modules, then each of the R-modules HomR(M,N) and
M⊗R N can be equipped with a structure of a σ ∗-R-module if for any f ∈HomR(M,N),∑k
i=1 xi ⊗ yi ∈M ⊗R N (x1, . . . , xk ∈M; y1, . . . , yk ∈ N ), and α ∈ σ ∗, one defines αf

by (αf )x = αf (α−1x) and sets α(
∑k
i=1 xi ⊗ yi) =

∑k
i=1 αxi ⊗ αyi . It is easy to check

that αf ∈HomR(M,N) and the actions of elements of σ ∗ on HomR(M,N) and M ⊗R N
satisfy the conditions of Definition 3.2.3. In what follows, while considering HomR(M,N)
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andM⊗R N as σ ∗-R-modules (for some σ ∗-R-modulesM andN ), we always mean these
inversive difference structures of these modules.

PROPOSITION 3.2.4 [88, Section 3.4]. Let R be an inversive difference ring with a basic
set σ , and let M , N , and P be σ ∗-R-modules.

(i) The natural isomorphism of R-modules

η : HomR(P ⊗R M,N)→HomR(P,HomR(M,N))

(defined by [(ηf )x](y)= f (x⊗y) for any f ∈HomR(P ⊗RM,N), x ∈ P , y ∈M)
is a σ ∗-isomorphism.

(ii) C(HomR(M,N))=HomE (M,N).
(iii) The functors C and HomE (R, ·) are naturally isomorphic.
(iv) The functor C is left exact and for any positive integer p, its p-th right derived

functor RpC is naturally isomorphic to the functor ExtpE (R, ·).
(v) The functors HomE (· ⊗R M,N) and HomE (·,HomR(M,N)) are naturally iso-

morphic and the same is true for the functors HomE (M ⊗R ·,N) and HomE (M,
HomR(·,N)).

(vi) For any positive integers p and q , there exists a spectral sequence converging to
Extp+qE (M,N) whose second term is equal to Ep,q2 = (RpC)(ExtpR(M,N)).

DEFINITION 3.2.5. Let R be an inversive difference ring with a basic set σ , E the ring
of σ ∗-operators over R (considered as a filtered ring with the standard filtration (Er )r∈Z),
and M a σ ∗-R-module. An ascending chain (Mr)r∈Z of R-submodules of M is called a
filtration ofM if ErMs ⊆Mr+s for all r, s ∈ Z,Mr = 0 for all sufficiently small r ∈ Z, and⋃
r∈ZMr =M . A filtration (Mr)r∈Z of the σ ∗-R-module M is called excellent if all R-

modulesMr (r ∈ Z) are finitely generated and there exists r0 ∈ Z such thatMr = Er−r0Mr0
for any r ∈ Z, r � r0.

THEOREM 3.2.6. Let R be an Artinian σ ∗-ring with a basic set σ = {α1, . . . , αn} and
let (Mr)r∈Z be an excellent filtration of a σ ∗-R-module M . Then there exists a numerical
polynomial χ(t) ∈Q[t] such that

(i) χ(r)= lR(Mr) for all sufficiently large r ∈ Z;
(ii) degχ(t) � n and the polynomial χ(t) can be represented in the form χ(t) =∑n

i=0 2iai
(
t+i
i

)
where a0, . . . , an ∈ Z.

The polynomial χ(t) whose existence is established by Theorem 3.2.6 is called the σ ∗-
dimension polynomial or the characteristic polynomial of the module M associated with
the excellent filtration (Mr)r∈Z.

EXAMPLE 3.2.7. Let R be an inversive difference field with a basic set σ = {α1, . . . , αn},
E the ring of σ ∗-operators over R, and χE (t) the difference dimension polynomial asso-
ciated with the standard filtration (Er )r∈Z. Then χE (r)= lR(Er )= dimR(Er )= Card{γ =
α
k1
1 . . . α

kn
n ∈ Γ | ord γ =∑n

i=1 |ki | � r} for all sufficiently large r ∈ Z. Applying [88,
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Proposition 2.1.9] we obtain three expressions for the last number that lead to the follow-
ing three forms of the polynomial χE (t):

χE (t)=
n∑
i=0

2i
(
n

i

)(
t

i

)
=

n∑
i=0

(
n

i

)(
t + i
n

)
=

n∑
i=0

(−1)n−i2i
(
n

i

)(
t + i
i

)
.

Let Fm be a free left E-module of rank m (m� 1) with free generators f1, . . . , fm. Then
for every l ∈ Z, one can consider the excellent filtration ((F lm)r )r∈Z of the module Fm
such that (F lm)r =

∑m
i=1 Er−lfi for every r ∈ Z. We obtain a filtered σ ∗-R-module that

will be denoted by F lm. A finite direct sum of such filtered σ ∗-R-modules is called a free
filtered σ ∗-R-module. The representations of χE (t) imply the following expressions for
the σ ∗-dimension polynomial χ(t) of F lm:

χ(t) = mχE (t − l)=m
n∑
i=0

2i
(
n

i

)(
t − l
i

)
=m

n∑
i=0

(
n

i

)(
t + i − l
n

)

= m
n∑
i=0

(−1)n−i2i
(
n

i

)(
t + i − l
i

)
.

Let R be an inversive difference ring with a basic set σ = {α1, . . . , αn}, E the ring of σ ∗-
operators over R, M a filtered σ ∗-R-module with a filtration (Mr)r∈Z, and R[x] the ring
of polynomials in one indeterminate x over R. Let E ′ denote the subring

∑
r∈N Er ⊗R Rxr

of the ring E ⊗R R[x] andM ′ denote the left E ′-module
∑
r∈NMr ⊗R Rxr . The following

three results are similar to the corresponding statements for difference modules.

LEMMA 3.2.8. With the above notation, let all components of the filtration (Mr)r∈Z be
finitely generated R-modules. Then the filtration (Mr)r∈Z is excellent if and only if M ′ is
a finitely generated E ′-module.

LEMMA 3.2.9. If R is a Noetherian inversive difference ring, then the ring E ′ considered
above is left Noetherian.

Let R be an inversive difference ring with a basic set σ and let M and N be filtered
σ ∗-R-modules with filtrations (Mr)r∈Z and (Nr)r∈Z, respectively. Then a σ -homo-
morphism f :M → N is said to be a σ -homomorphism of filtered σ ∗-R-modules if
f (Mr)⊆Nr for any r ∈ Z.

THEOREM 3.2.10. Let R be a Noetherian inversive difference ring with a basic set σ
and let ρ :N→M be an injective homomorphism of filtered σ ∗-R-modules. Furthermore,
suppose that the filtration of the module M is excellent. Then the filtration of N is also
excellent.

As in the case of difference modules, for any two excellent filtrations (Mr)r∈Z and
(M ′r )r∈Z of a finitely generated σ ∗-module M over an inversive difference (σ ∗-) field K ,
there exist p ∈ N such that Mr ⊆M ′r+p and M ′r ⊆Mr+p for all r ∈ Z. This observation



Difference algebra 275

leads to the following statement that gives some invariants of the σ ∗-dimension polynomial
of M .

THEOREM 3.2.11. LetK be an inversive difference field with a basic set σ = {α1, . . . , αn},
M a finitely generated σ ∗-K-module, and χ(t) the characteristic polynomial associated

with an excellent filtration ofM . Then the integers Δ
nχ(t)
2n , d = degχ(t), and Δdχ(t)

2d
do not

depend on the choice of the excellent filtration of M .

With the notation of the last theorem, the numbers Δnχ(t)
2n , d = degχ(t), and Δdχ(t)

2d
are called the inversive difference (or σ ∗-) dimension, inversive difference (or σ ∗-) type,
and typical inversive difference (or typical σ ∗-) dimension of the module M , respectively.
These characteristics of the σ ∗-K-module M are denoted by iδ(M), it (M), and t iδ(M),
respectively. (If we want to indicate the basic set with respect to which K is considered as
a difference field, we will use the notation iδσ (M), itσ (M), and t iδσ (M), respectively.)

LetK be an inversive difference field with a basic set σ = {α1, . . . , αn}, Γ the free com-
mutative group generated by σ , andM a σ ∗-K-module. Elements z1, . . . , zm ∈M are said
to be σ ∗-linearly independent over K if the set {γ zi | 1 � i �m,γ ∈ Γ } is linearly inde-
pendent over the σ ∗-field K . Otherwise, z1, . . . , zm are said to be σ ∗-linearly dependent
over K .

THEOREM 3.2.12 [100]. Let K be an inversive difference field with a basic set σ =
{α1, . . . , αn} and let 0 −→ N

i−→M
j−→P −→ 0 be an exact sequence of finitely gen-

erated σ ∗-K-modules. Then iδ(N)+ iδ(P )= iδ(M).

THEOREM 3.2.13 [100]. Let K be an inversive difference field with a basic set σ =
{α1, . . . , αn}, E the ring of σ ∗-operators overK , andM a finitely generated σ ∗-K-module.
Then iδ(M) is equal to the maximal number of elements of M that are σ ∗-linearly inde-
pendent over K .

THEOREM 3.2.14 [102]. Let K be an inversive difference field with a basic set σ =
{α1, . . . , αn}, M a finitely generated σ ∗-K-module, and U the family of all σ ∗-K-
submodules of M . Then

(i) If iδ(M) > 0, then typeU M = n and dimU M = iδ(M).
(ii) If iδ(M)= 0, then typeU M < n.

Let R be an inversive difference ring with a basic set σ = {α1, . . . , αn} and Γ the free
commutative group generated by σ . It is easy to see that if σ1 = {τ1, . . . , τn} is another
system of free generators of Γ , then there exists a matrix K = (kij )1�i,j�n ∈ GL(n,Z)
such that αi = τ ki11 . . . τ

kin
n (1 � i � n). The σ ∗-ring R can be also treated as a σ ∗1 -ring and

the corresponding ring of σ ∗1 -operators coincides with the ring of σ ∗-operators E over R.
We say that two finite sets of automorphisms σ = {α1, . . . , αn} and σ1 = {τ1, . . . , τn} of
the same ring R are equivalent if there exists a matrix (kij )1�i,j�n ∈ GL(n,Z) such that

αi = τ ki11 . . . τ
kin
n (1 � i � n).
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THEOREM 3.2.15 [88, Theorem 6.3.19]. Let K be an inversive difference field with a
basic set σ = {α1, . . . , αn}, M a finitely generated σ ∗-K-module, and d = itσ (M). Then
there exists a set σ ′ = {β1, . . . , βn} of pairwise commuting automorphisms of K such that

(i) The sets σ and σ ′ are equivalent.
(ii) Let σ ′′ = {β1, . . . , βd}. Then M is a finitely generated σ ′′∗-K-module and

iδσ ′′(M) > 0.

There are several publications devoted to methods and algorithm of computation of char-
acteristic polynomials of difference and inversive difference modules (see [87,89–91], [88,
Chapters 6, 9], [113,119], and [127]). The corresponding techniques are based either on
constructing resolutions of free filtered difference modules (whose characteristic polyno-
mials are given in Example 3.2.7) or by applying the Gröbner basis method to modules
over rings of difference and inversive difference operators.

3.3. Reduction in a free difference vector space. Characteristic sets and multivariable
dimension polynomials

In this section we apply the method of characteristic sets to difference and inversive dif-
ference modules whose basic sets of translations are represented as unions of their disjoint
subsets. In the case of difference and inversive difference vector spaces, we generalize the
results of the two preceding sections and show the existence of characteristic polynomials
in several variables associated with partitions of the basic set. We also present invariants of
such polynomials.

Let K be a difference field with a basic set σ = {α1, . . . , αn} and let a partition of σ into
a union of p its proper disjoint subsets be fixed: σ =⋃pj=1 σj where σ1 = {α1, . . . , αn1},
σ2 = {αn1+1, . . . , αn1+n2}, . . . , σp = {αn1+···+np−1+1, . . . , αn} (p � 1, n1, . . . , np ∈ N). As
before, T and D denote the free commutative semigroup generated by σ and the ring of
σ -operators over K , respectively. If t = αk1

1 . . . α
kn
n ∈ T , then the order of the element t

with respect to σi (1 � i � p) is defined as ordi t =∑n1+···+ni
ν=n1+···+ni−1+1 kν (if i = 1, then the

lower index in the last sum is 1). The order of t is still defined as ord θ = k1 + · · · + kn.
Our partition of the set σ induces p orderings <1, . . . ,<p of the semigroup T de-

fined as follows: t = αk1
1 . . . α

kn
n <i t

′ = αl11 . . . αlnn if and only if the (n + p + 1)-
tuple (ordi t,ord t,ord1 t, . . . ,ordi−1 t,ordi+1 t, . . . ,ordp t, kn1+···+ni−1+1, . . . , kn1+···+ni ,
k1, . . . , kn1+···+ni−1 , kn1+···+ni+1, . . . , kn) is less than the (n+ p+ 1)-tuple (ordi t ′,ord t ′,
ord1 t

′, . . . ,ordi−1 t
′,ordi+1 t

′, . . . ,ordp t ′, ln1+···+ni−1+1, . . . , ln1+···+ni , l1, . . . , ln1+···+ni−1 ,

ln1+···+ni+1, . . . , ln) with respect to the lexicographic order on Nn+p+1.
For any r1, . . . , rp ∈N, T (r1, . . . , rp) will denote the set {t ∈ T | ord1 t � r1, . . . ,ordp t

� rp}; the vectorK-subspace of D generated by this set will be denoted by Dr1...rp . Setting
Dr1...rp = 0 for (r1, . . . , rp) ∈ Zp \ Np , we obtain a family {Dr1...rp | (r1, . . . , rp) ∈ Zp}
called the standard p-dimensional filtration of the ring D.

DEFINITION 3.3.1. A family {Mr1...rp | (r1, . . . , rp) ∈ Zp} of vector K-subspaces of a
σ -K-module M is called a p-dimensional filtration of M if
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(i) for any fixed integers r1, . . . , ri−1, ri+1, . . . , rp (1 � i � p), Mr1...ri ...rp ⊆
Mr1...ri−1,ri+1,ri+1...rp and Mr1...rp = 0 for all sufficiently small ri ∈ Z;

(ii)
⋃{Mr1...rp | (r1, . . . , rp) ∈ Zp} =M ;

(iii) Dr1...rpMs1...sp ⊆Mr1+s1,...,rp+sp for any (r1, . . . , rp) ∈Np, (s1, . . . , sp) ∈ Zp .

If every vector K-space Mr1...rp is finitely generated and there exists an element
(h1, . . . , hp) ∈ Zp such that Rr1...rpMh1...hp =Mr1+h1,...,rp+hp for any (r1, . . . , rp) ∈ Np ,
then the p-dimensional filtration is called excellent.

It is easy to see that if u1, . . . , un is a finite system of generators of a left D-module M ,
then the filtration {∑n

i=1Rr1...rpui | (r1, . . . , rp) ∈ Zp} is excellent.
Let F be a finitely generated free σ -K-module (that is, a free left D-module) and let

f1, . . . , fq be a fixed basis of F over D. Then elements tfk (t ∈ T ,1 � k � q) are called
terms; the set of all terms is denoted by Tf . The order of a term tfk and the order of this
term with respect to σi (1 � i � p) are defined as the order of the element t ∈ T and the
order of t relative to σi , respectively. A term tfi is said to be a multiple of a term t ′fj if
i = j and t ′ divides t in the semigroup T (that is, t = t ′′t ′ for some t ′′ ∈ T ). In this case we
also say that the term t ′fj divides tfi and write t ′fj | tfi .

Below we consider p orderings of the set Tf that correspond to the orderings of the
set T . These ordering are denoted by the same symbols<1, . . . ,<p and defined as follows:
if tfk, t ′fl ∈ Tf , then tfk <i t ′fl if and only if t <i t ′ in T or t = t ′ and k < l.

Since the set Tf is a basis of the vector K-space F , every element f ∈ F has a unique
representation in the form

f = a1t1fi1 + · · · + amtmfim, (∗)
where ti ∈ T , ai ∈ K , ai �= 0 (1 � i � m), 1 � i1, . . . , im � q and all terms tνfiν (1 �
ν � m) are distinct. For any j = 1, . . . , p, the greatest with respect to <j term of the set

{tνfiν | 1 � ν �m} is called the j -leader of the element f ; it is denoted by u(j)f . (Of course,

it is possible that u(j)f = u(l)f for some distinct numbers j and l.)
In what follows, we say that an element f ∈ F contains a term tfj if the term appears

in the representation (∗) with a non-zero coefficient. The coefficient of the j -leader of an
element f ∈ F will be denoted by lcj (f ) (1 � j � p).

DEFINITION 3.3.2. Let f and g be two elements of the free σ -K-module F considered
above. The element f is said to be reduced with respect to g if f does not contain any mul-
tiple tu(1)g (t ∈ T ) of the 1-leader u(1)g such that ordj (tu

(j)
g )� ordj u

(j)
f for j = 2, . . . , p.

An element h ∈ F is said to be reduced with respect to a set A⊆ F , if h is reduced with
respect to every element of A. A set Σ ⊆ F is called autoreduced if every element of Σ
is reduced with respect to any other element of this set. An autoreduced set Σ is called
normal if lc1(g)= 1 for every element g ∈Σ .

THEOREM 3.3.3. Let Σ be an autoreduced set in the free σ -K-module F . Then:
(i) The set Σ is finite, Σ = {g1, . . . , gr}.

(ii) For any f ∈ F , there exists an element g ∈ F such that f −g =∑r
i=1 λigi for some

λ1, . . . , λr ∈D and g is reduced with respect to Σ .
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Let f and g be two elements of the free σ -K-module F . We say that f has lower rank
than g and write rk(f ) < rk(g) if either u(1)f <1 u

(1)
g or there exists some k, 2 � k � p,

such that u(ν)f = u(ν)g for ν = 1, . . . , k − 1 and u(k)f <k u
(k)
g . If u(i)f = u(i)g for i = 1, . . . , p,

we say that f and g have the same rank and write rk(f )= rk(g). In what follows, while
considering autoreduced sets in F , we always assume that their elements are arranged in
order of increasing rank.

DEFINITION 3.3.4. LetΣ = {h1, . . . , hr} andΣ ′ = {h′1, . . . , h′s} be two autoreduced sub-
sets of the free σ -K-module F . An autoreduced set Σ is said to have lower rank than Σ ′
if one of the following two cases holds:

(1) There exists k ∈N such that k � min{r, s}, rk(hi)= rk(h′i ) for i = 1, . . . , k − 1 and
rk(hk) < rk(h′k).

(2) r > s and rk(hi)= rk(h′i ) for i = 1, . . . , s.
If r = s and rk(hi)= rk(h′i ) for i = 1, . . . , r , thenΣ is said to have the same rank asΣ ′.

As in the case of autoreduced sets of difference polynomials, one can show that in every
non-empty set of autoreduced subsets of the free σ -K-module F there exists an autore-
duced subset of lowest rank. If N is a D-submodule of F , then an autoreduced subset of
N of lowest rank is called a characteristic set of the module N .

THEOREM 3.3.5. Let N be a D-submodule of the free σ -K-module F and let Σ =
{g1, . . . , gr} be a characteristic set of N .

(i) An element f ∈N is reduced with respect to Σ if and only if f = 0.
(ii) If N is a cyclic D-submodule of F generated by an element g, then {g} is a char-

acteristic set of N .
(iii) The set Σ generates N as a left D-module.
(iv) Let the characteristic setΣ be normal and letΣ1 = {h1, . . . , hs} be another normal

characteristic sets of N . Then r = s and gi = hi for i = 1, . . . , r .

THEOREM 3.3.6. LetK be a difference field with a basic set σ , D the ring of σ -operators
over K , and M a finitely generated σ -K-module with a system of generators {e1, . . . , eq}.
Furthermore, let F be a free σ -K-module with a basis f1, . . . , fq , π :F →M the natural
D-epimorphism (π(fi) = ei for i = 1, . . . , q), and Σ = {g1, . . . , gd} a characteristic set
of the D-module N =Kerπ . Finally, for any r1, . . . , rp ∈N, let Mr1...rp =

∑p

i=1 Dr1...rp ei
and Ur1...rp = {w ∈ Tf | ordj w � rj for j = 1, . . . , p, and eitherw is not a multiple of any

u
(1)
gi (1 � i � d) or for any t ∈ T ,gi ∈Σ such that w = tu(1)gi , we have ordj (tu

(j)
gj ) > rj for

some j , 2 � j � p}. Then π(Ur1...rp ) is a basis of the vector K-space Mr1...rp .

THEOREM 3.3.7. Let K be a difference field with a basic set σ and let {Mr1...rp |
(r1, . . . , rp) ∈ Zp} be an excellent p-dimensional filtration of a σ -K-module M . Then
there exists a polynomial φ(t1, . . . , tp) ∈Q[t1, . . . , tp] such that

(i) φ(r1, . . . , rp)= dimK Mr1...rp for all sufficiently large (r1, . . . , rp) ∈ Zp (i.e., there

exists (r(0)1 , . . . , r
(0)
p ) ∈ Zp such that the equality holds for all (r1, . . . , rp) that ex-

ceed (r(0)1 , . . . , r
(0)
p ) ∈ Zp with respect to the product order on Zp);
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(ii) degti φ � ni for i = 1, . . . , p (in particular, the total degree of φ does not exceed n)
and the polynomial φ(t1, . . . , tp) can be represented as

φ =
n1∑
i1=0

. . .

np∑
ip=0

ai1...ip

(
t1 + i1
i1

)
. . .

(
tp + ip
ip

)
,

where ai1...ip ∈ Z for all i1, . . . , ip .

The numerical polynomial φ(t1, . . . , tp), whose existence is established by Theo-
rem 3.3.7, is called the difference (or σ -) dimension polynomial of the module M asso-
ciated with the p-dimensional filtration {Mr1...rp | (r1, . . . , rp) ∈ Zp}.

Any permutation (j1, . . . , jp) of the set {1, . . . , p}, defines a lexicographic order
�j1,...,jp on Np such that (r1, . . . , rp)�j1,...,jp (s1, . . . , sp) if and only if either rj1 < sj1 or
there exists k ∈N, 1 � k � p− 1, such that rjν = sjν for ν = 1, . . . , k and rjk+1 < sjk+1 . In
what follows, we use these orders to associate with every setΣ ⊆Np the setΣ ′ = {e ∈Σ |
e is a maximal element of Σ with respect to one of the p! lexicographic orders �j1,...,jp }.
For example, if Σ = {(3,0,2), (2,1,1), (0,1,4), (1,0,3), (1,1,6), (3,1,0), (1,2,0)} ⊆
N3, then Σ ′ = {(3,0,2), (3,1,0), (1,1,6), (1,2,0)}.

THEOREM 3.3.8. Let K be a difference field with a basic set σ ,M be a finitely generated
σ -K-module, {Mr1...rp | (r1, . . . , rp) ∈ Zp} an excellent p-dimensional filtration ofM , and

φ(t1, . . . , tp)=
n1∑
i1=0

. . .

np∑
ip=0

ai1...ip

(
t1 + i1
i1

)
. . .

(
tp + ip
ip

)

the σ -dimension polynomial associated with this filtration. Let E = {(i1, . . . , ip) ∈ Np |
0 � ik � nk (k = 1, . . . , p) and ai1...ip �= 0}.

Then the total degree d of the polynomial φ, an1...np , p-tuples (j1, . . . , jp) ∈ E′, the
corresponding coefficients aj1,...,jp , and the coefficients of the terms of total degree d do
not depend on the choice of the excellent filtration.

Methods of computation of multivariable characteristic polynomials of difference and
inversive difference vector spaces are similar to those for multivariable Hilbert and differ-
ential dimension polynomials, see [106,107], and [109]. In particular, these papers contain
examples showing that multivariable characteristic polynomials can carry essentially more
invariants than classical dimension polynomials in one variable.

4. Difference field extensions

4.1. Transformal dependence. Difference transcendental bases and difference
transcendental degree

LetK be a difference field with a basic set σ , T the free commutative semigroup generated
by σ , and L a σ -overfield ofK . We say that an element v ∈ L is transformally dependent or
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σ -algebraically dependent on a set A⊆ L over K if v is σ -algebraic over the field K〈A〉.
Obviously, an element v ∈ L is σ -algebraically dependent on a set A ⊆ L if and only if
there exists a finite family {η1, . . . , ηs} ⊆A such that v is σ -algebraic over K〈η1, . . . , ηs〉.

Let K be an inversive σ -field, L a σ ∗-overfield of K and A⊆ L. It is easy to see that an
element v ∈ L is σ ∗-algebraically dependent on A over K (that is, v is σ -algebraic over
the σ ∗-field K〈A〉∗) if and only if v is σ -algebraically dependent on A over K .

All the statements in the rest of this section can be proved in the same way as their
ordinary versions (see [32, Chapter 5]).

PROPOSITION 4.1.1. Let K be a difference field with a basic set σ , L a σ -overfield of K
and A⊆ L.

(i) The set A is σ -algebraically dependent over K if and only if there exists v ∈A such
that v is σ -algebraically dependent on A \ {v} over K .

(ii) The set A contains a maximal subset σ -algebraically independent over K . In other
words, there exists a set B ⊆A such that B is σ -algebraically independent over K
and any subset of A properly containing B is σ -algebraically dependent over K .

A set B , whose existence is established by Proposition 4.1.1(ii), is called a basis for
transformal transcendence or a difference (or σ -) transcendence basis of A over K . If
A = L, the set B is called a basis for transformal transcendence or a difference (or σ -)
transcendence basis of L overK . (We use this terminology when L is a difference overfield
of a σ -field K or an inversive difference field extension of a σ ∗-field K .)

PROPOSITION 4.1.2. Let K be a difference (inversive difference) field with a basic set
σ and L a σ -overfield of K . Furthermore, let B and B ′ be two subsets of L and
v,u1, . . . , um ∈ L.

(i) If v is σ -algebraically dependent on B over K and every element of B is σ -
algebraically dependent on B ′ over K , then v is σ -algebraically dependent on
B ′ over K .

(ii) If v is σ -algebraically dependent on {u1, . . . , um}, but not on {u1, . . . , um−1}
over K , then um is σ -algebraically dependent on the set {u1, . . . , um−1, v}
over K .

(iii) Suppose that B ′ ⊆ B , u1, . . . , um ∈ B are σ -algebraically independent overK , and
each ui (1 � i �m) is σ -algebraically dependent on B ′ over K . Then there exist
elements v1, . . . , vm ∈ B ′ such that each vi is σ -algebraically dependent over K
on the set B ′′ obtained from B ′ by replacing vj by uj (j = 1, . . . ,m).

PROPOSITION 4.1.3. Let K be a difference field with a basic set σ , L a σ -overfield of K
and A⊆ L.

(i) Suppose that B is a subset of A which is σ -algebraically independent over K . Then
B is a σ -transcendence basis of A over K if and only if every element of A is
σ -algebraically dependent on B over K .

(ii) All σ -transcendence bases of A over K either contain the same finite number of
elements or are infinite.
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DEFINITION 4.1.4. Let K be a difference (in particular, inversive difference) field with
a basic set σ , L a σ -overfield of K and A ⊆ L. Then the σ -transcendence degree of A
overK is the number of elements of any σ -transcendence basis ofA overK , if this number
is finite, or infinity in the contrary case.

The σ -transcendence degree of A over K is denoted by σ -trdegK A. In particular, if
A = L, then σ -trdegK L denotes the σ -transcendence degree of the σ - (or σ ∗-) field ex-
tension L/K .

PROPOSITION 4.1.5. Let K be a difference field with a basic set σ and L a σ -overfield
of K .

(i) Any family of σ -generators of L over K contains a σ -transcendence basis of this
difference field extension. If the σ -field K is inversive and L a σ ∗-overfield of K ,
then any system of σ ∗-generators of L over K contains a σ -transcendence basis
of L over K .

(ii) Let η1, . . . , ηm ∈ L. Then σ -trdegK K〈η1, . . . , ηm〉�m. If K is inversive and L a
σ ∗-overfield of K , then σ -trdegK K〈η1, . . . , ηm〉∗ �m.

(iii) Let {η1, . . . , ηm} and {ζ1, . . . , ζs} be two finite subsets of L such thatK〈η1, . . . , ηm〉
=K〈ζ1, . . . , ζs〉 (orK〈η1, . . . , ηm〉∗ =K〈ζ1, . . . , ζs〉∗ ifK is inversive and L a σ ∗-
overfield of K). If the set {ζ1, . . . , ζs} is σ -algebraically independent over K , then
s �m.

(iv) Let S =K{y1, . . . , ys} be the ring of σ -polynomials in σ -indeterminates y1, . . . , ys
over K . If k �= s, then S cannot be a ring of σ -polynomials in k σ -indeterminates
over K . Similarly, if the difference field K is inversive, then a ring of σ ∗-
polynomials K{y1, . . . , ys}∗ cannot be a ring of σ ∗-polynomials in k σ ∗-indeter-
minates over K if k �= s.

PROPOSITION 4.1.6. Let H ⊆ K ⊆ L be difference (in particular, inversive difference)
field extensions with the same basic set σ . Then σ -trdegH L= σ -trdegK L+ σ -trdegH K .

4.2. Dimension polynomials of difference and inversive difference field extensions

The results of this section first appeared in [99–101,103], and [3–5]. Most of the proofs
can be also found in [88, Chapter 6].

Let us consider Nn as a partially ordered set relative to the product order �P such
that (a1, . . . , an) �P (b1, . . . , bn) if and only if ai � bi for i = 1, . . . , n. For any A⊆Nn

and r ∈ N, let A(r) = {(e1, . . . , en) ∈ A | ∑n
i=1 ei � r}. Furthermore, let VA = {v =

(v1, . . . , vn) ∈Nn | there is no a ∈A such that a �P v}.
The following result is due to E. Kolchin (see [86, Chapter 0, Lemma 16]).

LEMMA 4.2.1. With the above notation, there exists a polynomial ωA(t) ∈Q[t] with the
following properties.

(i) ωA(r)= CardVA(r) for all sufficiently large r ∈N.
(ii) degωA � n.
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(iii) degωA = n if and only if A= ∅. In this case ωA(t)=
(
t+n
n

)
.

(iv) ωA = 0 if and only if (0, . . . ,0) ∈A.

The polynomial ωA(t) is called the Kolchin polynomial of the set A⊆Nn. Some meth-
ods and examples of computation of Kolchin polynomials can be found in [87] and [88,
Chapter 2].

In [139] W. Sit proved that the set W of all Kolchin polynomials is well-ordered with
respect to the order / on Q[t] such that f (t)/ g(t) if and only if f (r)� g(r) for all suffi-
ciently large r ∈ N. Furthermore, this set coincides with the set of all Hilbert polynomials
of standard graded algebras over a field, as well as with the set of all differential dimension
polynomials of finitely generated differential field extensions (see [108]).

In the rest of this section we assume that all fields have zero characteristic. The fol-
lowing theorem is a difference version of the Kolchin theorem on differential dimension
polynomials [84].

THEOREM 4.2.2 [99]. Let K be a difference field with a basic set σ = {α1, . . . , αn}, T the
free commutative semigroup generated by σ , and for any r ∈ N, T (r) = {τ ∈ T | ord τ �
r}. Furthermore, let L=K〈η1, . . . , ηs〉 be a σ -overfield of K generated by a finite family
η= {η1, . . . , ηs}. Then there exists a polynomial φη|K(t) ∈Q[t] with the following proper-
ties.

(i) φη|K(r)= trdegK K({τηj | τ ∈ T (r),1 � j � s}) for all sufficiently large r ∈N.
(ii) degφη|K(t) � n and the polynomial φη|K(t) can be written as φη|K(t) =∑n

i=0 ai
(
t+i
i

)
where a0, . . . , an ∈ Z.

(iii) The integers an, d = degφη|K(t) and ad are invariants of φη|K(t), that is, they
do not depend on the choice of a system of σ -generators η. Furthermore, an =
σ -trdegK L.

(iv) Let P be the defining σ -ideal of (η1, . . . , ηs) in the ring of σ -polynomials
K{y1, . . . , ys} and let A be a characteristic set of P with respect to some or-
derly ranking of {y1, . . . , ys}. Furthermore, for every j = 1, . . . , s, let Ej =
{(k1, . . . , kn) ∈ Nn | αk1

1 . . . α
kn
n yj is a leader of a σ -polynomial from A}. Then

φη|K(t)=∑s
i=1ωEj (t) where ωEj (t) is the Kolchin polynomial of the set Ej .

The polynomial φη|K(t) whose existence is established by Theorem 4.2.2 is called the
difference (or σ -) dimension polynomial of the difference field extension L of K associ-
ated with the system of σ -generators η. The integers d = degφη|K(t) and ad are called,
respectively, the difference (or σ -) type and typical difference (or σ -) transcendence de-
gree of L overK . These invariants of φη|K(t) are denoted by σ -typeK L and σ -t.trdegK L,
respectively.

THEOREM 4.2.3. Let K be a difference field with a basic set σ = {α1, . . . , αn} and let L
be a finitely generated σ -field extension of K with a set of σ -generators η = {η1, . . . , ηs}
such that {η1, . . . , ηd} is a σ -transcendence basis of L over K (1 � d � s). Then
φ(ηd+1,...,ηs )|K〈η1,...,ηd 〉(t)/ φη|K(t)− d

(
t+n
n

)
.
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THEOREM 4.2.4. Let K be a difference field with a basic set σ = {α1, . . . , αn}, L =
K〈η1, . . . , ηs〉, and φη|K(t) the σ -dimension polynomial of the extension L/K associated
with the family of σ -generators η = {η1, . . . , ηs}. Then φη|K(t) = m

(
t+n
n

)
(m ∈ N if and

only if σ -trdegK L= trdegK K(η1, . . . , ηs)=m.

The following theorem gives versions of Theorems 4.2.2–4.2.4 for finitely generated
inversive difference field extensions.

THEOREM 4.2.5 ([101], [88, Theorems 6.4.8, 6.4.16 and 6.4.17]). Let K be an inver-
sive difference field with basic set σ = {α1, . . . , αn}, Γ the free commutative group gener-
ated by σ and for any r ∈ N, and Γ (r) = {γ = αk1

1 . . . α
kn
n ∈ Γ | ord γ =∑n

i=1 |ki | � r}.
Furthermore, let L = K〈η1, . . . , ηs〉∗ be a σ ∗-overfield of K generated by a finite family
η = {η1, . . . , ηs}. Then there exists a polynomial ψη|K(t) ∈ Q[t] with the following prop-
erties.

(i) ψη|K(r)= trdegK K({γ ηj | γ ∈ Γ (r),1 � j � s}) for all sufficiently large r ∈N.
(ii) degψη|K(t) � n and the polynomial ψη|K(t) can be written as ψη|K(t) =∑n

i=0 2iai
(
t+i
i

)
where a0, . . . , an ∈ Z.

(iii) The integers an, d = degφη|K(t) and ad do not depend on the choice of a system of
σ -generators η. Furthermore, an = σ -trdegK L.

(iv) If {η1, . . . , ηd} is a σ -transcendence basis of L over K (1 � d � s), then
ψ(ηd+1,...,ηs )|K〈η1,...,ηd 〉(t)/ψη|K(t)− d

∑n
i=0(−1)n−i2i

(
n
i

)(
t+i
i

)
.

(v) ψη|K(t)=m∑n
i=0(−1)n−i2i

(
n
i

)(
t+i
i

)
for some m ∈N if and only if

σ - trdegK L= trdegK K(η1, . . . , ηs)=m.

The polynomialψη|K(t) is called the σ ∗-dimension polynomial of the σ ∗-field extension
L/K associated with the system of σ ∗-generators η. The integers d = degψη|K(t) and ad
are called, respectively, the σ ∗-type and typical σ ∗-transcendence degree of L over K .
These invariants of ψη|K(t) are denoted by σ ∗-typeK L and σ ∗-t.trdegK L, respectively.

As in the last part of Theorem 4.2.2, the polynomial ψη|K(t) can be expressed as a
sum of certain analogs of Kolchin polynomials. Let A ⊆ Zn (n � 1) and let Z1, . . . ,Z2n

be the orthants of Zn (introduced just before Definition 2.3.5). Let us consider the fol-
lowing partial order � on Zn: (a1, . . . , an) � (b1, . . . , bn) if and only if (a1, . . . , an) and
(b1, . . . , bn) belong to the same orthant and |ai |� |bi | for i = 1, . . . , n. As in the case of
subsets of Nn, one can show that if WA = {w ∈W | a � w for any a ∈ A} and WA(r) =
{(w1, . . . ,wn) ∈W |∑n

i=1 |wi |� r} (r ∈ N), then there exists a polynomial ψA(t) ∈Q[t]
such that ψA(r) = CardWA(r) for all sufficiently large r ∈ N. Furthermore, degψA � n,
and degψA = n if and only if A = ∅; in the last case ψA(t) =∑n

i=0(−1)n−i2i
(
n
i

)(
t+i
i

)
.

Some properties and methods of computation of polynomialsψA(t) (A⊆ Zn) can be found
in [87] and [88, Chapter 2].

THEOREM 4.2.6. With the notation of Theorem 4.2.5, let P be the defining σ ∗-ideal of the
s-tuple (η1, . . . , ηs) in the ring of σ ∗-polynomialsK{y1, . . . , ys}∗ and let A be a character-
istic set of P with respect to some orderly ranking of {y1, . . . , ys}. Furthermore, for every
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j = 1, . . . , s, let Aj = {(k1, . . . , kn) ∈ Zn | αk1
1 . . . α

kn
n yj is a leader of a σ ∗-polynomial

from A}. Then ψη|K(t)=∑s
i=1ψAj (t).

As it is shown in [88, Chapter 2] and [108], the set of all polynomials ψA(t) (A⊆ Zn),
the set of all difference dimension polynomials of finitely generated difference field ex-
tensions, the set of all σ ∗-dimension polynomials of finitely generated inversive difference
(σ ∗-) field extensions, and the set W of all Kolchin polynomials coincide. Since the set
W is well-ordered, the family of σ -dimension polynomials associated with various finite
systems of σ -generators of a given finitely generated difference (σ -) field extension has a
minimal element. It is called the minimal σ -dimension polynomial of the extension. Simi-
larly, if L is a finitely generated σ ∗-overfield of an inversive difference fieldK with a basic
set σ , then the set of all σ ∗-dimension polynomials associated with finite systems of σ ∗-
generators of L/K has a minimal element called the minimal σ ∗-dimension polynomial of
this σ ∗-field extension.

Let K be an inversive difference field with a basic set σ and L = K〈η1, . . . , ηs〉∗ a
σ ∗-overfield of K generated by a finite family η = {η1, . . . , ηs}. It is easy to check that
the vector L-space DerK L of all K-linear derivations of the field L into itself becomes a
σ ∗-L-module if one defines the actions of elements of σ on DerK L as follows: α(D) =
α ◦D ◦ α−1 for any α ∈ σ,D ∈ DerK L. As in Section 3.2, one can consider a structure
of a σ ∗-L-module on the dual vector L-space (DerK L)∗ = HomL(DerK L,L) and on
the vector L-space of differentials ΩK(L). (This vector space is generated over L by all
elements dζ ∈ (DerK L)∗ (ζ ∈ L) such that dζ(D)=D(ζ) for any D ∈DerK L; it is easy
to check that α(dζ )= dα(ζ ) for any ζ ∈ L.)

The following theorem clarifies the connection between dimension polynomials of in-
versive difference field extensions and inversive difference vector spaces.

THEOREM 4.2.7. With the above notation, let ΩK(L)r (r ∈ N) denote the vector L-
subspace ofΩK(L) generated by the set {dγ (ηi) | γ ∈ Γ (r),1 � i � s} and letΩK(L)r =
0 for r < 0. Then

(i) (ΩK(L))r )r∈Z is an excellent filtration of the σ ∗-L-module ΩK(L).
(ii) dimK ΩK(L)r = trdegK K({γ ηj | γ ∈ Γ (r),1 � j � s}) for all r ∈N.

(iii) The σ ∗-dimension polynomial φη|K(t) is equal to the σ ∗-dimension polynomial
of ΩK(L) associated with the filtration ((ΩK(L))r )r∈Z.

The last theorem allows one to reduce the computation of a σ ∗-dimension polynomial
of an inversive (σ ∗-) difference field extension L/K to the computation of a σ ∗-dimension
polynomial of the vector σ ∗-L-space ΩK(L). The corresponding algorithms can be found
in [88, Chapters 6 and 9], [89–91,119], and [127].

REMARK 4.2.8. By analogy with the theory of differential fields, one can expect that if
L is a finitely generated σ ∗-field extension of an inversive difference field K with a basic
set σ and σ -trdegK L = 0, then there is a set σ1 = {β1, . . . , βn} of automorphisms of L
such that σ1 is equivalent to σ and L is a finitely generated as a {β1, . . . , βn−1}∗-overfield
of K . This is not true (see [88, Example 6.4.18]), but we have a weaker version of such a
statement proved in [88, Section 6.4].
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THEOREM 4.2.9. Let K be an inversive difference field with a basic set σ = {α1, . . . , αn},
L a finitely generated σ ∗-field extension of K , and d = σ - typeK L. Then there exists a set
σ1 = {β1, . . . , βn} of automorphisms of L and a finite family {ζ1, . . . , ζq} ∈ L such that

(a) σ1 is equivalent to σ ;
(b) if K is treated as an inversive difference field with the basic set σ2 = {β1, . . . , βd}

and H is the σ ∗2 -field extension ofK generated by ζ1, . . . , ζq , then L is an algebraic
extension of H .

We conclude this section with a result on multivariable dimension polynomials that gen-
eralizes Theorem 4.2.2.

LetK be a difference field whose basic set σ = {α1, . . . , αn} is a union of p disjoint finite
sets (p � 1): σ = σ1 ∪ · · · ∪ σp , where σ1 = {α1, . . . , αn1}, σ2 = {αn1+1, . . . , αn1+n2}, . . . ,
σp = {αn1+···+np−1+1, . . . , αn} (n1, . . . , np ∈N). Let T be the free commutative semigroup
generated by σ , and for any (r1, . . . , rp) ∈Np , let T (r1, . . . , rp)= {θ ∈ T | ordi θ � ri for
i = 1, . . . , p}.

THEOREM 4.2.10. With the above notation, let L = K〈η1, . . . , ηs〉 be a σ -field exten-
sion of K generated by a finite set η = {η1, . . . , ηs}. Then there exists a polynomial
Φη(t1, . . . , tp) in p variables t1, . . . , tp with rational coefficients such that

(i) Φη(r1, . . . , rp) = trdegK K(
⋃n
j=1 T (r1, . . . , rp)ηj ) for all sufficiently large

(r1, . . . , rp) ∈Np;
(ii) degti Φη � ni (i = 1, . . . , p) and the polynomialΦη can be written asΦη(t1, . . . , tp)

=∑n1
i1=0 . . .

∑np
ip=0 ai1...ip

(
t1+i1
i1

)
. . .
(tp+ip
ip

)
where ai1...ip ∈ Z for all i1, . . . , ip .

(iii) Let Eη = {(i1, . . . , ip) ∈Np | 0 � ik � nk (k = 1, . . . , p) and ai1...ip �= 0}. Then the
total degree d of the polynomial Φ , an1...np , p-tuples (j1, . . . , jp) ∈ E′η (we use
the notation of Theorem 3.3.8), the corresponding coefficients aj1, . . . , ajp , and the
coefficients of the terms of total degree d do not depend on the choice of the system
of σ -generators η.

Theorem 4.2.10, as well as its analog for finitely generated inversive difference field
extensions, can be proven in the same way as the corresponding results on multivariable
differential and difference-differential dimension polynomials obtained in [107] and [109].
These papers also show that multivariable dimension polynomials can carry essentially
more invariants of a difference field extension then the dimension polynomials obtained in
Theorems 4.2.2 and 4.2.5.

Dimension polynomials and the strength of a system of difference equations

Let K be an inversive difference field with a basic set σ = {α1, . . . , αn}, E the cor-
responding ring of σ ∗-operators, K{y1, . . . , ys}∗ an algebra of σ ∗-polynomials in σ ∗-
indeterminates y1, . . . , ys , and P a prime σ ∗-ideal of K{y1, . . . , ys}∗. If η = (η1, . . . , ηs)

is a generic zero of P , then the dimension polynomial ψη|K(t) associated with the σ ∗-field
extensionK〈η1, . . . , ηs〉∗/K is called the σ ∗-dimension polynomial of the ideal P ; it is de-
noted by ψP (t). (Clearly, if η and ζ are two generic zeros of P , then ψη|K(t)=ψζ |K(t), so



286 A.B. Levin

that the σ ∗-dimension polynomial of P is well-defined.) It can be shown (see [88, Proposi-
tion 6.2.4] that if P1 and P2 are prime σ ∗-ideals of K{y1, . . . , ys}∗ such that P1 � P2, then
ψP2(t)≺ψP2(t) (that is, ψP2(r) < ψP2(r) for all sufficiently large r ∈N).

If Φ = {Aλ | λ ∈Λ} is a family of σ ∗-polynomials in K{y1, . . . , ys}∗, then an s-tuple η
that annuls every Aλ is said to be a solution of the system of algebraic difference (or σ ∗-)
equations Aλ(y1, . . . , ys)= 0 (λ ∈Λ). By Theorem 2.4.5, the last system is equivalent to
some its finite subsystem, that is, there is a finite set Φ0 = {A1, . . . ,Am} ⊆Φ such that the
set of solutions of the original system coincides with the set of solutions of the system

Ai(y1, . . . , ys)= 0 (i = 1, . . . ,m). (4.2.1)

A system of algebraic σ ∗-equations (4.2.1) is called prime if the perfect σ ∗-ideal
{A1, . . . ,Am} of the σ ∗-ring K{y1, . . . , ys}∗ is prime. Note that any linear homoge-
neous system of difference equations (that is, a system of the form

∑s
j=1wijyj = 0

(i = 1, . . . ,m) where wij ∈ E) is prime.
If (4.2.1) is a prime system of σ ∗-equations, then the σ ∗-dimension polynomialψP (t) of

the prime σ ∗-ideal P = {A1, . . . ,Am} is called the σ ∗-dimension polynomial of the system.
This polynomial is an algebraic version of the concept of strength of a system of equations
in finite differences defined as follows (by analogy with the similar notion for a system of
differential equations introduced and studied by A. Einstein, [45]). Let us consider a system
of equations in finite differences with respect to s unknown grid functions f1, . . . , fs of n
real variables with coefficients from a function field F . Suppose that the difference grid,
whose nodes form the domain of the considered functions, has equal cells of dimension
h1 × · · · × hn (h1, . . . , hn ∈ R) and fills the whole space Rn. Furthermore, let us fix some
node X0 and say that a node X of the grid is a node of order i (with respect to X0) if the
shortest route between X and X0 passing along the edges of the grid consists of i steps
(i = 0,1, . . .). (By a step we mean a path from a node to a neighboring node along the
edge between them.)

Let us consider the values of the grid functions f1, . . . , fs at the nodes whose order
does not exceed i (i ∈ N). If the functions fj (1 � j � s) do not satisfy any system of
equations, their values at the nodes of any order may be chosen arbitrarily. Because of
the system of equations in finite differences (and equations obtained from ones of the
system by transformations of the form fj (x1, . . . , xn) �→ fj (x1 + r1h1, . . . , xn + rnhn)
(r1, . . . , rn ∈ Z), the number of independent values of the functions f1, . . . , fs at the nodes
of order less than or equal to i decreases. This number Si is a function of i called the
strength of the system of equations.

Suppose that the mappings αj :f (x1, . . . , xn) �→ f (x1, . . . , xj + hj , . . . , xn) (j =
1, . . . , n) are automorphisms of the field of coefficients F . Then F can be treated as an
inversive difference field with a basic set σ = {α1, . . . , αn}. If we replace the unknown
functions fk by the σ ∗-indeterminates yk (1 � k � s) from the algebra of σ ∗-polynomials
F {y1, . . . , ys}∗, then the given system of equations in finite differences generates a sys-
tem of algebraic σ ∗-equations of the form (4.2.1). Suppose that the last system is prime
(e.g., linear), so that the σ ∗-polynomials in its left-hand sides generate a prime σ ∗-ideal
P in F {y1, . . . , ys}∗. Then the σ ∗-dimension polynomial ψP (t) of this ideal is said to be
the σ ∗-dimension polynomial of the original system of equations in finite differences. It is
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easy to see that ψP (i)= Si for all i ∈N, so the strength of the system of equations in finite
differences can be determined if one can find the polynomial ψP (t) (that is, the dimension
polynomial of the σ ∗-field extension F 〈η1, . . . , ηs〉∗/F where (η1, . . . , ηs) is a generic
zero of the ideal P ). A number of examples of computation of the strength of systems of
difference equations can be found in [88, Chapters 6 and 9], [90,91,119], and [127].

4.3. Finitely generated difference and inversive difference field extensions. Limit degree.
Finitely generated difference algebras

Let K be an ordinary difference ring with a basic set σ = {α} and L=K〈η1, . . . , ηs〉 a σ -
overfield ofK generated by a finite set η= {η1, . . . , ηs}. Furthermore, for any r = 1,2, . . . ,
let Lr =K({αi(ηj ) | 1 � j � s,0 � i � r}) and dr = Lr :Lr−1, the dimension of Lr as a
vector Lr−1-space. It is easy to see that d1 � d2 � · · ·. Moreover, as it is shown in [30],
min{dr | r = 1,2, . . .} does not depend on the choice of the system of σ -generators η. This
minimum value is called the limit degree of the σ -field extension L/K , it is denoted by
ldL/K .

If a σ -field extension L of a difference (σ -) field K is not finitely generated, we define
its limit degree ldL/K as the maximum of limit degrees of all finitely generated σ -field
subextensions of L/K , if this maximum exists or∞ if it does not. Clearly, if σ -trdegK L>
0, then ldL/K =∞. If σ -trdegK L = 0 and L is a finitely generated σ -field extension
of K , then ldL/K <∞.

The concept of limit degree was introduced by R.M. Cohn, [30]. The proofs of the
following results on limit degrees of ordinary difference field extensions can be found in
[32, Chapter 5].

THEOREM 4.3.1. LetK be an ordinary difference field with a basic set σ ,M a σ -overfield
of K and L/K a σ -field subextension of M/K . Then ldM/K = (ldM/L)(ldL/K).

THEOREM 4.3.2. Let K be an ordinary difference field and L a difference overfield of K .
Furthermore, let K∗ and L∗ denote the inversive closures of K and L, respectively. Then
ldL∗/K = ldL∗/K∗ = ldL/K .

REMARK 4.3.3. In the case of ordinary difference fields, there are several concepts related
to the notion of limit degree. In the case of fields of characteristic p > 0, one can define an
analog of limit degree using separable factor of degree in place of degree of Lr over Lr−1
(we refer to the notation from the beginning of this section). The corresponding invariant
of the difference field extension is called the reduced limit degree of L/K and denoted
by rldL/K ; it has the same properties that are established for ldL/K in Theorems 4.3.1
and 4.3.2.

If K is an inversive difference field with a basic set σ = {α}, then K can be also treated
as a difference field with the basic set σ ′ = {α−1} called the inverse difference field ofK . It
is denoted byK ′. Let L be a σ -field extension ofK and L′ the inverse difference field of L
(so that L′ is a σ ′-field extension of K ′). The inverse limit degree of L over K is defined
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to be ldL′/K ′ (it is denoted by ildL/K), and the inverse reduced limit degree of L over K
is defined to be rldL′/K ′ (it is denoted by irldL/K). The analogs of Theorems 4.3.1
and 4.3.2 are valid for these concepts, as well.

THEOREM 4.3.4. Let K be an ordinary difference field with a basic set σ .
(i) If L is a finitely generated σ -field extension of K , then ldL/K = 1 if and only if
L=K(S) for some finite set S ⊆ L.

(ii) The following two statements are equivalent:
(a) L/K is a finitely generated σ -field extension, L is algebraic over K , and

ldL/K = 1.
(b) L :K is finite.

THEOREM 4.3.5. Let K be an ordinary difference field and L a difference field extension
of K which is algebraic over K . Then

(i) ldL/K = ildL/K and rldL/K = irldL/K .
(ii) If ldL/K = 1 and K is inversive, then L is inversive.

The natural generalizations of the concept of limit degree to the case of partial difference
fields were obtained in [50].

Let K be a difference field with a basic set σ = {α1, . . . , αn} and L a finitely gener-
ated σ -field extension of K : L = K〈S〉 where S is a finite subset of L. In what follows

we adopt the following notation. If σ1 = {αi1, . . . , αip } ⊆ σ , then the set {αj1i1 . . . α
jp
ip
(s) |

j1, . . . , jp ∈N, s ∈ S} is denoted by S(αi1 ,...,αip ). Furthermore, for any k = 0,1, . . . , we set

Sk =⋃ki=0 α
i
n(S

(αi1 ,...,αin−1 )) (if n = 1, S(αi1 ,...,αin−1 ) = S), and for any positive integers
i1, . . . , it (1 � t � n), we set

S∗(in, in−1 . . . it ) =
in−1⋃
i=0

αin
(
S(α1,...,αn−1)

)∪ in−1−1⋃
i=0

αinn α
i
n−1

(
S(α=1,...,αn−2)

)∪ · · ·
∪
it−1⋃
i=0

αinn . . . α
it−1
t−1α

i
t

(
S(α1,...,αt−1)

)
and S(in, in−1 . . . it ) = S∗(in, in−1 . . . it+1, it + 1). Finally, if K is treated as a difference
field with a basic set σ1, it is denoted by (K;σ1) or (K;αi1, . . . , αip ); the difference
transcendence degree of (K(Sk);α1, . . . , αn−1) over (K(Sk−1);α1, . . . , αn−1) is denoted
by δk . (If n= 1, then δk = trdegK(Sk−1)

K(Sk).)
With the above notation, the limit transformal transcendence degree σl-trdegK L of L

over K is defined by σl-trdegK L=min{δk | k = 1,2, . . .}.

PROPOSITION 4.3.6 [50]. Let K be a difference field with a basic set σ = {α1, . . . , αn}
and L a finitely generated σ -field extension of K . Then

(i) σl-trdegK L = σ -trdegK L. Thus, σl-trdegK L is independent of the finite set of σ -
generators and the translation from σ chosen as αn to define σl-trdegK L.
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(ii) If S is a finite set of σ -generators of L overK , then there exists a finite subset Z ⊆ S
and positive integers k1, . . . , kn with the following properties:
(a) Z is a σ -transcendence basis of L over K .
(b) If t ∈ {1, . . . , n}, ij � kj for j = t, . . . , n, and σ ′ = {α1, . . . , αt−1}, then

α
in
n . . . α

it
t (Z) is a σ ′-transcendence basis of (K(S(in, . . . , it );α1, . . . , αt−1)

over (K(S∗(in, . . . , it );α1, . . . , αt−1) (and σ -trdegK L is the σ ′-transcendence
degree of this extension).

With the notation of the last proposition, a set Z that satisfies conditions (a) and (b) for
some positive integers k1, . . . , kn is called a limit basis of transformal transcendence of L
over K .

In [50] P. Evanovich introduced an invariant ldn(M/K) of a partial difference field
extension M/K that can be viewed as a generalization of the concept of limit degree.
ldn(M/K) is inductively defined as an element of the set N∪ {∞} that satisfies the follow-
ing conditions (ld1)–(ld5). Let K be a difference field with a basic set σ = {α1, . . . , αn},
M a σ -overfield of K and L/K is a σ -field subextension of M/K . Then

(ld1) If there exists a finite set S ⊆ M such that M = L〈S〉, then there exists a fi-
nitely generated σ -overfield K ′ of K contained in L such that ldn(M/L) =
ldn(K ′〈S〉/K ′).

(ld2) If S ⊆M , then ldn(L〈S〉/K〈S〉)� ldn(L/K) and ldn(L〈S〉/L)� ldn(K〈S〉/K).
Equality will hold in both if S is σ -algebraically independent over L.

(ld3) If there is a σ -isomorphism φ of L onto a σ -field L′ and K ′ is a σ -subfield of L′
such that φ(K)=K ′, then ldn(L/K)= ldn(L′/K ′).

(ld4) If the σ -field extension L/K is finitely generated, then σ -trdegk L= 0 if and only
if ldn(L/K) <∞.

(ld5) ldn(M/K)= ldn(M/L) · ldn(L/K).
If n = 1, ld1 is defined to be the limit degree ld for ordinary difference fields. Sup-

pose that ldn−1 is defined for difference field extensions whose basic sets consist of
n − 1 translations. Let K be a difference field with a basic set σ = {α1, . . . , αn} and L
a σ -field extension of K . Assume first that L/K is finitely generated, say L = K〈S〉
for some finite set S ⊆ L. For any m ∈ N, let Lm = (K(Sm);α1, . . . , αn−1). Then
Lm is finitely generated extension of Lm−1 (we set K(S−1) = K). Applying (ld3)
and (ld2) we obtain that ldn−1(Lm/Lm−1) � ldn−1(Lm+1/Lm), whence there exists the
limit limm→∞ ldn−1(Lm/Lm−1)= a where a ∈N or a =∞. As in the case of limit degree
of ordinary difference fields, [30], one can show that a is independent on the choice of
σ -generators of L/K . Now we define ldn(L/K)= a.

If L/K is not finitely generated, ldn(L/K) is defined to be the maximum of ldn(K ′/K)
where K ′/K is a finitely generated σ -field subextension of L/K , if the maximum exists
and∞ if it does not. As in the case of limit degrees of ordinary difference fields, if L/K
itself is finitely generated, then ldn(L/K) is the maximum of ldn(K ′/K) where K ′/K is a
finitely generated σ -field subextension of L/K . The proof of the fact that the so defined ldn
satisfies (ld1)–(ld5) can be found in [50, section 3]. In the same paper P. Evanovich used
the properties of ldn to prove the following fundamental result that was first established by
R.M. Cohn, [32, Chapter 5], for ordinary difference fields.
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THEOREM 4.3.7. Let K be a difference field with a basic set σ = {α1, . . . , αn}, M a
finitely generated σ -overfield of K and L/K a σ -field subextension of M/K . Then the
σ -field extension L/K is finitely generated.

We conclude this section with some results on finitely generated difference algebras.
LetK be a difference (inversive difference) ring with a basic set σ . AK-algebraR is said

to be a difference algebra over K or a σ -K-algebra (respectively, an inversive difference
algebra over K or a σ ∗-K-algebra) if elements of σ (respectively, σ ∗) act on R in such a
way that R is a σ - (respectively, σ ∗-) ring and α(au) = α(a)α(u) for any a ∈ K,u ∈ R,
α ∈ σ (for any α ∈ σ ∗ if R is a σ ∗-K-algebra). A σ -K- (respectively, σ ∗-K-) algebra R is
said to be finitely generated if there exists a finite family {η1, . . . , ηs} of elements of R such
that R =K{η1, . . . , ηs} (respectively, R =K{η1, . . . , ηs}∗). If a σ -K- (or σ ∗-K-) algebra
R is an integral domain, then the σ -transcendence degree of R over K is defined as the
σ -transcendence degree of the corresponding σ - (respectively, σ ∗-) field of quotients of R
over K .

In what follows we consider inversive difference algebras over inversive fields. All re-
sults formulated below for such algebras remain valid for difference algebras over differ-
ence fields (with replacement of the prefix σ ∗- by σ -).

Let R be an inversive difference algebra over an inversive difference fieldK with a basic
set σ = {α1, . . . , αn} and let U denote the set of all prime σ ∗-ideals of R. As at the end
of section 3.1, one can consider the set BU = {(P,Q) ∈ U × U | P ⊇Q} and the uniquely
defined mapping μU :BU → Z such that

(i) μU (P,Q)�−1 for every pair (P,Q) ∈ BU ;
(ii) for any d ∈N, the inequalityμU (P,Q)� d holds if and only if P �=Q and there ex-

ists an infinite chain P = P0 ⊇ P1 ⊇ · · · ⊇Q such that Pi ∈ U and μU (Pi−1,Pi)�
d − 1 for i = 1,2, . . . .

The type and dimension of the σ ∗-K-algebra R over U are defined, respectively, as
sup{μU (P,Q) | (P,Q) ∈ BU } and the least upper bound of the lengths k of chains P0 ⊇
P1 ⊇ · · · ⊇ Pk such that P0, . . . ,Pk ∈ U and μU (Pi−1,Pi) = typeU R for i = 1, . . . , k.
These characteristics are denoted by typeU R and dimU R, respectively.

THEOREM 4.3.8 [102]. Let K be an inversive difference field with a basic set σ =
{α1, . . . , αn}, R = K{η1, . . . , ηs}∗ a σ ∗-K-algebra without zero divisors generated by a
finite set η= {η1, . . . , ηs}, and U the family of all prime σ ∗-ideals of R. Then:

(i) typeU R � n.
(ii) If σ -trdegK R = 0, then typeU R < n.

(iii) If typeU R = n, then dimU R � σ -trdegK R.
(iv) If η1, . . . , ηs are σ -algebraically independent over K , then typeU R = n and

dimU R = s.

Let K be an inversive difference field with a basic set σ . A σ ∗-K-algebra R is said to be
a local σ ∗-K-algebra if R is a local ring (in this case its maximal ideal is a σ ∗-ideal). We
say that R is a local σ ∗-K-algebra of finitely generated type if R is a local σ ∗-K-algebra
and there exist a finite set {η1, . . . , ηs} ⊆ R such that R =K{η1, . . . , ηs}m where m is the
maximal ideal of R.
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THEOREM 4.3.9 [102]. Let K be an inversive difference field of zero characteristic with a
basic set σ . Let an integral domain R be a local σ ∗-K-algebra of finitely generated type,
m the maximal ideal of R, and k = R/m the corresponding σ ∗-field of residue classes.
Then:

(i) m/m2 is a finitely generated vector σ ∗-k-space.
(ii) dimk m/m2 � σ ∗-trdegK R − σ ∗-trdegK k.

4.4. Difference kernels. Realizations

Let F be an ordinary inversive difference field with a basic set σ = {α}. A difference
kernel of length r over F is an ordered pair R = (F (a0, . . . , ar ), τ ) where each ai is
itself an s-tuple (a(1)i , . . . , a

(s)
i ) over F (a positive integer s is fixed) and τ is an exten-

sion of α to an isomorphism of F(a0, . . . , ar−1) onto F(a1, . . . , ar ) such that τai = ai+1

for i = 0, . . . , r − 1. (In other words, τ(a(j)i ) = a(j)i+1 for 0 � i � r − 1, 1 � j � s.) If
r = 0, then τ = α. The degree of transcendence of the difference kernel R is defined to be
trdegF(a0,...,ar−1)

F (a0, . . . , ar ); it is denoted by δR. Below, while considering difference
kernels over a difference field F , we always assume that F is inversive.

A prolongation R′ of a difference kernel R= (F (a0, . . . , ar ), τ ) is a difference kernel
of length r + 1 consisting of an overfield F(a0, . . . , ar , ar+1) of F(a0, . . . , ar ) and an
extension τ ′ of τ to an isomorphism of F(a0, . . . , ar ) onto F(a1, . . . , ar+1).

In what follows, a set of the form a = {a(i) | i ∈ I } will be referred to as an indexing
of a (with the index set I ). If J ⊆ I , the set {a(i) | i ∈ J } will be called a subindex-
ing of a. If R = (F (a0, . . . , ar ), τ ) is a difference kernel and ã0 is a subindexing of a0

(that is, ã0 = (a(i1)0 , . . . , a
(iq )

0 ), 1 � i1 < · · · < iq � s), then ãk (k = 1, . . .) will denote
the corresponding subindexing of ak . The proofs of the following results on prolonga-
tions of difference kernels over ordinary difference fields can be found in [32, Chap-
ter 6].

THEOREM 4.4.1. Every difference kernel R= (F (a0, . . . , ar ), τ ) over an ordinary differ-
ence field F has a prolongation R′ = (F (a0, . . . , ar , ar+1), τ

′). Moreover, one can chose
a prolongation R′ with the following properties.

(i) If ã0 is a subindexing of a0 such that ãr is algebraically independent over
F(a0, . . . , ar−1), then ãr+1 is algebraically independent over F(a0, . . . , ar ) (so that
δR= δR′).

(ii) If ã0 is as in (i), then
⋃r+1
i=0 ãi is algebraically independent over F .

With the above notation, a prolongation R′ of a difference kernel R is called generic if
δR= δR′.

A generic prolongation of a difference kernel R= (F (a0, . . . , ar ), τ ) over an ordinary
difference field can be constructed as follows. Let P be the prime ideal with generic zero
ar of a polynomial ring F(a0, . . . , ar−1)[X1, . . . ,Xs] in s indeterminates X1, . . . ,Xs . Let
P ′ be obtained from P by replacing the coefficients of the polynomials of P by their im-
ages under τ . Then P ′ is a prime ideal of F(a1, . . . , ar )[X1, . . . ,Xs] and generates an
ideal P̂ in F(a0, . . . , ar )[X1, . . . ,Xs]. Let Q be an essential prime divisor of P̂ in the
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last ring and let ar+1 be a generic zero of Q. Then ar+1 is also a generic zero of P ′ and
there is an isomorphism τ ′ :F(a0, . . . , ar )→ F(a1, . . . , ar+1) that extends τ . We obtain
the desired generic prolongation. Conversely, if R′ = (F (a0, . . . , ar+1), τ

′) is any generic
prolongation of R, then ar+1 is a solution of the ideal P̂ and hence of one of its essen-
tial prime divisors Q. It follows that dimQ = dimP = trdegF(a0,...,ar−1)

F (a0, . . . , ar ) =
trdegF(a0,...,ar )

F (a0, . . . , ar+1), so that ar+1 is a generic zero of Q.

EXAMPLE 4.4.2 [32, Chapter 6, Section 2]. Let F be an ordinary difference field with a
basic set σ = {α}, F {y} the ring of σ -polynomials in one σ -indeterminate y over F , and
A an algebraically irreducible σ -polynomial from F {y} (that is, A is irreducible as a poly-
nomial in y,α(y),α2(y), . . .). Assuming that A contains y and αmy, m> 0, is the highest
transform of y in A, we shall use prolongations of difference kernels to construct a solution
of A. First, let us consider an m-tuple a = (a(1), . . . , a(m)) whose coordinates constitute an
algebraically independent set over F . Now we define an m-tuple a1 as follows: we set
a
(i)
1 = a(i+1) for i = 1, . . . ,m− 1, replace yi−1 by a(i) in A (1 � i �m), find a solution of

the resulting polynomial in one unknown ym and take it as a(m). Since A involves y, a(1)

will be algebraically dependent on a(2), . . . , a(m), a(m)1 over F . Therefore, a(1)1 , . . . , a
(m)
1

are algebraically independent over F whence there is a difference kernel R1 defined over
F by the extension of the translation α to an isomorphism τ0 :F(a)→ F(a1). By succes-
sive applications of Theorem 4.4.1 we find a sequence a0 = a, a1, . . . such that a kernel
Rk+1 is defined by an isomorphism τk :F(a0, . . . , ak)→ F(a1, . . . , ak+1) (k = 0,1, . . .)
and Rk+1 is a prolongation of Rk . Then F(a0, a1, . . .) becomes a difference overfield of
F where the extension of α (denoted by the same letter) is defined by α(b)= τk(b) when-
ever b ∈ F(a0, . . . , ak). It is clear that this field coincides with F 〈a(1)〉 and the element
a(1) is a solution of A.

PROPOSITION 4.4.3. Let R= (F (a0, . . . , ar ), τ ) be a difference kernel.
(i) There are only finitely many distinct (that is, pairwise non-isomorphic) generic pro-

longations of R.
(ii) Let R′ be a generic prolongation of a R and let ã0 be a subindexing of a0 which is

algebraically independent over F(a1, . . . , ar ). Then ã0 is algebraically independent
over F(a1, . . . , ar+1).

Let R = (F (a0, . . . , ar ), τ ) be a difference kernel and let ã0 be a subindexing of a0.
If ãr is a transcendence basis of ar over F(a0, . . . , ar−1), then ã is called a special set.
Clearly, such a set consists of δR elements and it is also a special set for any generic
prolongation R′ of R. If b denotes a subindexing b0 of a0 such that b contains a spe-
cial set and trdegF(b,...,br−1)

F (b, . . . , br ) = δR, then the order of R with respect to b
is defined as ordbR = trdegF(b,...,br ) F (a0, . . . , ar−1). (In this case, b is said to be a
subindexing of a0 for which ordbR is defined.) Furthermore, if b itself is a special
set, we define the degree dbR and reduced degree rdbR of R with respect to b to
be F(a0, . . . , ar ) :F(a0, . . . , ar−1;br) and [F(a0, . . . , ar ) :F(a0, . . . , ar−1;br)]s , respec-
tively. (As usual, if L is a field extension of a field K , [L :K]s denotes the separable factor
of the degree of L over K .)
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PROPOSITION 4.4.4. With the above notation, let b be a subindexing of a0 for which
ordbR is defined.

(i) If R′ is a generic prolongation of R, then ordbR′ is defined and ordbR= ordbR′.
(ii) Suppose that b itself is a special set. Then dbR and rdbR are finite. Furthermore,

if R′1, . . . ,R′h are all distinct (pairwise non-isomorphic) prolongations of R, then∑h
i=1 rdbR′i = rdbR and

∑h
i=1 dbR′i � dbR. In the case of characteristic 0 the

last inequality becomes an equality.

Let F be a difference field with a basic set σ and let a = {a(i) | i ∈ I } be an indexing
of elements in a σ -overfield of F . A specialization of a over F is a σ -homomorphism
φ of F {a} into a σ -overfield of F that leaves F fixed. The image φa = {φa(i) | i ∈ I }
is also called a specialization of a over F . A specialization φ is called generic if it is a
σ -homomorphism. Otherwise it is called proper.

Let F be an ordinary difference field with a basic set σ = {α} and G = F 〈η1, . . . , ηs〉
a σ -overfield of F generated by an s-tuple η = (η1, . . . , ηs). Then the contraction
of α to an isomorphism τr :F(η,αη, . . . , αr−1η)→ F(αη, . . . , αrη) (r = 1,2, . . .) de-
fines a difference kernel R = (F (a0, . . . , ar ), τr ) of length r over F . Conversely, let
R = (F (a0, . . . , ar ), τ ) be a difference kernel with a0 = (a(1)0 , . . . , a

(s)
0 ). An s-tuple

η = (η1, . . . , ηs) with coordinates from a σ -overfield of F is called a realization of R
if η,αη, . . . , αrη is a specialization of a0, . . . , ar over F . If this specialization is generic,
the realization is called regular. If there exists a sequence R(0) =R,R(1),R(2), . . . of ker-
nels, each a generic prolongation of the preceding, such that η is a regular realization of
each R(i), then η is called a principal realization of R.

The proofs of the following two statements can be found in [32, Chapter 6, Section 6].

PROPOSITION 4.4.5. Let R= (F (a0, . . . , ar ), τ ) be a difference kernel over an ordinary
difference field F .

(i) There exists a principal realization of the kernel R. If η is such a realization, then
σ -trdegF F 〈η〉 = δR.

(ii) Let b be a subindexing of a such that ordbR is defined and let ζ is the correspond-
ing subindexing of a principal realization η of R. Then trdegF 〈ζ 〉F 〈η〉 = ordbR.
Furthermore, if b is a special set, then ζ is a σ -transcendence basis of F 〈η〉 over F .

(iii) The number of distinct principal realizations of the kernel R is finite. Let us denote
them by (1)η, . . . , (h)η. If b is a special set and (i)ζ is the corresponding subset
of the components of (i)η (1 � i � h), then

∑h
i=1 rldF 〈(i)η〉/F 〈(i)ζ 〉 = rdbR and∑h

i=1 ldF 〈(i)η〉/F 〈(i)ζ 〉� dbR.
(iv) If η is a regular realization of the kernel R, but not a principal realization, then

σ -trdegF F 〈η〉< δR.
(v) A realization of the kernel R which specializes over F to a principal realization is

a principal realization, and the specialization is generic.

PROPOSITION 4.4.6. Let η = (η1, . . . , ηs) be an s-tuple over an ordinary difference
field F . Then η is the unique principal realization of a kernel R over F such that every
realization of R is a specialization of η over F .
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Note that every kernel R= (F (a0, . . . , ar ), τ ) over an ordinary difference field F with
a basic set σ = {α} is equivalent to a kernel of length 0 or 1 in the sense that its realizations
generate precisely the same extensions. Indeed, if r > 1, we can define sr-tuples b0 and b1
with components of the s-tuples a0, . . . , ar−1 and s-tuples a1, . . . , ar , respectively. Then
the difference kernel R∗ = (F (b0, b1), τ ) of length 1 is equivalent to R.

Many concepts and results of this section formulated for the ordinary case can be ex-
tended to partial difference fields. In what follows we review such generalizations most of
which can be found in [7].

Let F be an inversive difference field with a basic set σ = {α1, . . . , αn}, σq = σ \ {αq}
for some αq ∈ σ (1 � q � n), and let Fq denote the σq -field F (that is, the field F
treated as a difference field with the basic set σq ). A difference kernel R of length r
over F (r ∈N, r > 0) is an ordered pair (F q〈a0, . . . , ar〉, τ ), where Fq〈a0, . . . , ar 〉 is a σq -

overfield of Fq generated by a set of s-tuples ai = (a(1)i , . . . , a(s)i ), 0 � i � r (a positive in-
teger s is fixed), and τ is a σq -isomorphism of Fq〈a0, . . . , ar−1〉 onto Fq〈a1, . . . , ar 〉 such

that τa(k)i = a(k)i+1 for i = 0, . . . , r−1; k = 1, . . . , s and the restriction of τ on Fq coincides
with αq . (If r = 0, then τ = αq .) A prolongation of R is a difference kernel R′ consisting
of a σq -overfield Fq〈a0, . . . , ar+1〉 of Fq〈a0, . . . , ar 〉 together with the extension τ ′ of τ

such that τ ′ :a(k)r �→ a
(k)
r+1, 1 � k � s. (If a kernel is of length 1 or 0, then Fq〈a1, . . . , ar〉

and Fq〈a0, . . . , ar−1〉 respectively are interpreted as Fq .) A prolongation R′ of R is called
generic if Fq〈a0, . . . , ar+1〉∗ is a free join of Fq〈a0, . . . , ar 〉∗ and Fq〈a1, . . . , ar+1〉∗ over
Fq〈a1, . . . , ar 〉∗. It follows from Proposition 2.1.4 that if R′ is a prolongation of a ker-
nel R= (F q〈a0, . . . , ar 〉, τ ) such that Fq〈a0, . . . , ar 〉 and Fq〈a1, . . . , ar+1〉 are free over
Fq〈a1, . . . , ar 〉, then R′ is a generic prolongation of R.

DEFINITION 4.4.7. We say that a kernel R satisfies property P if there exists a σq -
overfield E1 of Fq〈a0, . . . , ar〉, a σq -subfield E of E1 which contains Fq〈a0, . . . , ar−1〉,
and an extension of τ to a σq -isomorphism τ̃ of E into E1 such that

(a) E1/E is primary (that is, the algebraic closure of E in E1 is purely inseparable
over E);

(b) E and Fq〈a0, . . . , ar〉 are free over Fq〈a0, . . . , ar−1〉;
(c) if r = 0, then τ̃E ⊆ E. If r > 0, then E1 = 〈E, τ̃E〉 (we use the notation of Propo-

sition 2.1.4).

DEFINITION 4.4.8. A kernel R is said to satisfy property P∗ if there exists an in-
versive σq -overfield G1 of Fq〈a0, . . . , ar 〉, a σ ∗q -subfield G of G1 which contains
Fq〈a0, . . . , ar−1〉, and an extension of τ to a σq -isomorphism τ̃ of G into G1 such that

(a) G1/G is primary;
(b) G and Fq〈a0, . . . , ar 〉∗ are free over Fq〈a0, . . . , ar−1〉∗;
(c) if r = 0, then τ̃G⊆G. If r > 0, then G1 = 〈G, τ̃G〉.
If the word “free” in (b) is replaced by “quasi-linearly disjoint”, the difference kernel R

is said to satisfy property L∗.

PROPOSITION 4.4.9.
(i) The properties P and P∗ are equivalent.
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(ii) With the above notation, a difference kernel R satisfies L∗ if and only if the field
extension Fq〈a0, . . . , ar 〉∗/Fq〈a0, . . . , ar−1〉∗ is primary.

(iii) If a difference kernel R satisfies P∗ then R has a generic prolongation R′ which
satisfies P∗.

(iv) If a generic prolongation R′ of a difference kernel R satisfies P∗, then there exists
a triple (G,G1, τ̃ ) with respect to which R satisfies P∗ and trough which a generic
prolongation R′′ of R can be obtained such that R′′ is equivalent to R′ in sense of
isomorphism.

(v) If a difference kernel satisfies L∗, then all its generic prolongations are equivalent
and satisfy L∗.

Let R = (F q〈a0, . . . , ar 〉, τ ) be a difference kernel over an inversive difference field
with a basic set σ = {α1, . . . , αn} (we use the above notation; in particular, a0, . . . , ar are
s-tuples and σq = σ \ {αq}, 1 � q � n). Let η denote an s-tuple in a σ ∗-overfield H of F
and let β be the translation of H which is the extension of αq . Then with the notation η0 =
η,ηj = βjη (j = 1,2, . . .), we say that η is a realization of R in H over F if (η0, . . . , ηr)

is a specialization of (a0, . . . , ar ) over Fq with a(k)j �→ η
(k)
j (1 � k � s,0 � j � r). We also

say that β is a realization of τ in H over F . If the specialization is generic, η is called a
regular realization of R. If there exists a sequence of kernels R0 =R,R1, . . . such that
for each h ∈N, Rh+1 is a generic prolongation of Rh and η is a regular realization of Rh
over F , then η is said to be a principal realization of R.

Two realizations η and ζ of a difference kernel R are said to be equivalent if the σ -field
extensions F 〈η〉/F and F 〈ζ 〉/F are σ -isomorphic with η(k) �→ ζ (k) (1 � k � s).

PROPOSITION 4.4.10. The following statements about a difference kernel R are equiva-
lent.

(i) R satisfies P∗.
(ii) R has a principal realization.

(iii) R has a regular realization.

PROPOSITION 4.4.11. If a difference kernel R over an inversive difference field F satisfies
L∗, then R has a principal realization over F and all principal realizations of R are
equivalent.

THEOREM 4.4.12. If η is a principal realization of a difference kernel R over an inversive
difference field F , then η is not a proper specialization over F of any other realization of R.

One can also prove an analog of Proposition 4.4.6 for partial difference kernels: with the
above notation, if η is an s-tuple over a partial inversive difference field F , there exists a
difference kernel R such that η is the unique principal realization of R over F and every
realization of R is a specialization of η over F .

As before, if R= (F q〈a0, . . . , ar 〉, τ ) is a difference kernel over an inversive difference
(σ ∗-) field F (we use the above notation) and ã0 a subindexing of a0, then ãj will denote
the corresponding subindexing of aj (1 � j � r). Furthermore, we say that an indexing
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a = {a(i) | i ∈ I } is σ -algebraically independent over F if a(i) are distinct and form a
σ -algebraically independent set over F .

LEMMA 4.4.13. Let R′ be a generic prolongation of a kernel R= (F q〈a0, . . . , ar 〉, τ ).
(i) If ã0 is a subindexing of a0 such that ãr is σq -algebraically independent over
Fq〈a0, . . . , ar−1〉, then ãr+1 is σq -algebraically independent over Fq〈a0, . . . , ar 〉.
Furthermore, the set

⋃r+1
i=1 ãi is σq -algebraically independent over Fq .

(ii) If ã0 is a subindexing of a0 which is σq -algebraically independent over
Fq〈a1, . . . , ar 〉, then ã0 is σq -algebraically independent over Fq〈a1, . . . , ar+1〉 and⋃r+1
i=1 ãi is σq -algebraically independent over Fq .

THEOREM 4.4.14. Let η be a principal realization of a kernel R= (F q〈a0, . . . , ar 〉, τ ).
(i) If ã0 is a subindexing of a0 such that ãr is σq -algebraically independent over
Fq〈a0, . . . , ar−1〉, then the corresponding subindexing of η is σq -algebraically in-
dependent over F .

(ii) If ã0 is a subindexing of a0 which is σq -algebraically independent over
Fq〈a1, . . . , ar 〉, then the corresponding subindexing of η is σq -algebraically in-
dependent over F .

4.5. Ordinary difference polynomials. Existence theorem

Let F be an ordinary difference field with basic set σ = {α} and let R = F {y1, . . . , ys} be
a ring of σ -polynomials in σ -indeterminates y1, . . . , ys over F . Throughout this section
a k-th transform αkg of an element of a σ -ring will be also denoted by (k)g.

Suppose that a σ -polynomial A ∈ R contains one or more transforms of yi, 1 � i � s
(that is, one or more transforms of yi appear in the irreducible representation of A as a
linear combination of monomials in y1, . . . , ys with coefficients from F ; we treat yi as its
transform (0)yi ). Let (p)yi and (q)yi be the transforms of yi of lowest and highest order,
respectively, contained in A. Then q and q − p are called the order and effective order
of A in yi ; they are denoted by ordyi A and Eordyi A, respectively. If A does not contain
transforms of yi , both the order and effective order of A in yi are defined to be 0.

PROPOSITION 4.5.1 [32, Chapter 2, Theorem VIII]. Let F be an ordinary difference field
with a basic set σ and F {y} a ring of σ -polynomials in one σ -indeterminate y over F .
Let an element η from some σ -overfield of F be σ -algebraic over F and let r ∈ N be
the smallest integer such that F {y} contains a non-zero σ -polynomial of order r with the
solution η. Then trdegF F 〈η〉 = r .

Let G be a difference overfield of an ordinary difference (σ -) field F . In the the-
ory of ordinary difference fields the transcendence degrees trdegF G and trdegF ∗G

∗ are
also called the order and effective order of the σ -field extension G/F ; they are denoted
by ordG/F and EordG/F , respectively. (As usual, K∗ denotes the inversive closure of
a difference field K .) Clearly, EordG/F � ordG/F , EordG/F = ordG/F if F is inver-
sive, and ordG/F =∞ if σ -trdegF G > 0. Furthermore, the properties of transcendence
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degree imply that for any chain F ⊆ G ⊆ H of ordinary difference field extensions we
have ordH/F = ordH/G+ ordG/F and EordH/F = EordH/G+ EordG/F .

The proofs of the statements in the rest of this section can be found in [32, Chap-
ters 6–10].

PROPOSITION 4.5.2. Let F be an ordinary difference (σ -) field and φ a specialization of
an s-tuple a = (a(1), . . . , a(s)) over F . Let {i1, . . . , iq} be a subset of {1, . . . , s}, ã denote
the set {a(i1), . . . , a(iq )}, and φã = {φa(i1), . . . , φa(iq )}.

(i) If φã is σ -algebraically independent over F , so is ã. Thus, σ -trdegF F 〈φa(1), . . . ,
φa(s)〉� σ -trdegF F 〈a(1), . . . , a(s)〉.

(ii) If φã is a transcendence basis of {a(1), . . . , a(s)} over F , then ordF 〈φa(1), . . . ,
φa(s)〉/F 〈φã〉 � ordF 〈a(1), . . . , a(s)〉/F 〈ã〉, EordF 〈φa(1), . . . , φa(s)〉/F 〈φã〉 �
EordF 〈a(1), . . . , a(s)〉/F 〈ã〉, and the equality occurs if and only if the specializa-
tion φ is generic.

PROPOSITION 4.5.3. Let F be an ordinary difference field with a basic set σ , F {y} a ring
of σ -polynomials in one σ -indeterminate y over F , and η an element of some σ -overfield
of F which is σ -algebraic over F . Let r ∈ N be the smallest non-negative integer such
that F {y} contains a non-zero σ -polynomial of effective order r with the solution η. Then
EordF 〈η〉/F = r .

Let F be an ordinary difference field with a basic set σ , F {y1, . . . , ys} a ring of σ -
polynomials in σ -indeterminates y1, . . . , ys over F , and M a non-empty irreducible vari-
ety over F {y1, . . . , ys}. If (η1, . . . , ηs) is a generic zero of M, then σ -trdegF F 〈η1, . . . , ηs〉,
ordF 〈η1, . . . , ηs〉/F , EordF 〈η1, . . . , ηs〉/F , and ldF 〈η1, . . . , ηs〉/F are called the dimen-
sion, order, effective order, and limit degree of the variety M, respectively. They are de-
noted by dimM, ordM, EordM, and ldM, respectively. If M = ∅, we set dimM =
ordM= EordM=−1 and ldM= 0. Obviously, if dimM> 0, then ordM=∞.

If P is a prime inversive difference ideal of F {y1, . . . , ys} then the dimension, order,
effective order, and limit degree of P (they are denoted by dimP , ordP , EordP , and ldP ,
respectively) are defined as the corresponding values of the variety M(P ). (Thus, these
concepts are determined as above through the σ -field extension F 〈η1, . . . , ηs〉/F where
(η1, . . . , ηs) is a generic zero of P .)

Let M be a non-empty irreducible variety over F {y1, . . . , ys}, (η1, . . . , ηs) a generic
zero of M, and {yi1, . . . , yiq } is a subset of the set of σ -indeterminates {y1, . . . , ys}.
Then the dimension, order, effective order, and limit degree of M relative to yi1, . . . , yiq
are defined as σ -trdegF 〈ηi1 ,...,ηiq 〉F 〈η1, . . . , ηs〉, ordF 〈η1, . . . , ηs〉/F 〈ηi1 , . . . , ηiq 〉,
EordF 〈η1, . . . , ηs〉/F 〈ηi1, . . . , ηiq 〉, and ldF 〈η1, . . . , ηs〉/F 〈ηi1, . . . , ηiq 〉, respectively.
These characteristics of M are denoted by dim(yi1, . . . , yiq )M, ord(yi1 , . . . , yiq )M,
Eord(yi1, . . . , yiq )M, and ld(yi1, . . . , yiq )M, respectively. If P is a prime inversive dif-
ference ideal of F {y1, . . . , ys} then the dimension, order, effective order, and limit degree
of P relative to yi1, . . . , yiq are defined as the corresponding characteristics of M(P ) (the
notation is the same: dim(yi1, . . . , yiq )P , ord(yi1, . . . , yiq )P , Eord(yi1, . . . , yiq )(P ), and
ld(yi1, . . . , yiq )(P ), respectively).
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A subset {yi1, . . . , yiq } of {y1, . . . , ys} is called a set of parameters of P (or M(P )) if P
contains no non-zero σ -polynomial in F {yi1, . . . , yiq }. A set of parameters of P which is
not a proper subset of any set of parameters of P is called complete. Clearly, every reflexive
prime σ -ideal of F {y1, . . . , ys} has at least one complete set of parameters, and every set
of parameters can be extended to a complete one.

PROPOSITION 4.5.4. With the above notation, a set of parameters of a proper inversive
difference ideal P of F {y1, . . . , ys} is complete if and only if it contains dimP elements.

PROPOSITION 4.5.5. Let M1 and M2 be two irreducible varieties over F {y1, . . . , ys}
such that M1 ⊆M2. Then

(i) dimM1 � dimM2.
(ii) If {yi1, . . . , yiq } is a complete set of parameters of Φ(M1) (we use the nota-

tion of section 2.5), then ord(yi1, . . . , yiq )M1 � ord(yi1, . . . , yiq )M2, and the
equality occurs if and only if M1 =M2. Furthermore, Eord(yi1, . . . , yiq )M1 �
Eord(yi1, . . . , yiq )M2, and the equality occurs if and only if M1 =M2.

Let F be an ordinary difference field with a basic set σ = {α} and R = F {y1, . . . , ys}
a ring of σ -polynomials in σ -indeterminates y1, . . . , ys over F . Let A ∈ R be an alge-
braically irreducible σ -polynomial, that is, A /∈ F and A is irreducible as a polynomial in
the indeterminates (j)yi (1 � i � s; j = 0,1, . . .) (in this case R is treated as a polynomial
ring in this denumerable set of indeterminates over F ; as above, (j)yi denotes αjyi ). An ir-
reducible component M of M(A) is called a principal component of the variety M(A) if
whenever A contains a transform of yi (1 � i � s), the family {y1, . . . , yi−1, yi+1, . . . , ys}
is a complete set of parameters of M and Eord(y1, . . . , yi−1, yi+1, . . . , ys)M is the effec-
tive order of A in yi . (This implies that dimM = s − 1.) Irreducible components of M
which are not principal are called singular.

The following proposition shows that no component of M(A) is “larger” than a principal
component.

PROPOSITION 4.5.6.
(i) With the above notation, let η = (η1, . . . , ηs) be a solution of the non-zero σ -poly-

nomial A ∈ R. Then either σ -trdegF F 〈η1, . . . , ηs〉< s − 1 or σ -trdegF F 〈η1, . . . ,

ηs〉 = s − 1 and for each k (1 � k � s), such that the set η̃k = {η1, . . . , ηk−1,

ηk+1, . . . , ηs} is σ -algebraically independent over F , A contains a transform of
yk and ordF 〈η(1), . . . , ηs(s)〉/F 〈η̂k〉 � ordyk A, EordF 〈η(1), . . . , ηs(s)〉/F 〈η̂k〉 �
Eordyk A.

(ii) Let a σ -polynomial A ∈ R be algebraically irreducible, σ -trdegF F 〈η1, . . . , ηs〉 =
s − 1, and for each k (1 � k � s) such that A contains a transform of yk ,
EordF 〈η(1), . . . , ηs(s)〉/F 〈η̂k〉 = Eordyk A. Then η is a generic zero of a principal
component of M(A).

The following fundamental result is an abstract form of an existence theorem for ordi-
nary algebraic difference equations.
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THEOREM 4.5.7. Let F be an ordinary difference field with a basic set σ , R =
F {y1, . . . , ys} a ring of σ -polynomials in σ -indeterminates y1, . . . , ys over F , and A ∈ R
an algebraically irreducible σ -polynomial. Then

(i) The variety M(A) has principal components.
(ii) Let A contain a transform of some yi (1 � i � s). Then

(a) If A contains a transform of order 0 of some σ -indeterminate yj and M
is a principal component of M(A), then ord(y1, . . . , yi−1, yi+1, . . . , ys)M =
ordyi A.

(b) If M1, . . . ,Mk are the principal components of M(A) and d and e denote,
respectively, the degree and reduced degree of A in the highest transform
of yi which it contains, then

∑k
j=1 ld(y1, . . . , yi−1, yi+1, . . . , ys)Mj � d and∑k

j=1 rld(y1, . . . , yi−1, yi+1, . . . , ys)Mj = e.
(c) If d1 and e1 denote, respectively, the degree and reduced degree of A in the

lowest transform of yi contained in A, then
∑k
j=1 ild(y1, . . . , yi−1, yi+1, . . . ,

ys)Mj � d1 and
∑k
j=1 irld(y1, . . . , yi−1, yi+1, . . . , ys)Mj = e1.

(d) Let q = Eordyi A and let M be a component of M(A) such that {y1, . . . , yi−1,

yi+1, . . . , ys} is a complete set of parameters of M and Eord(y1, . . . , yi−1,

yi+1, . . . , ys)M= q . Then is M a principal component of M(A).

COROLLARY 4.5.8. Every ordinary difference field F has an algebraic closure G which
is a difference overfield of F .

PROPOSITION 4.5.9. Let F be an ordinary difference field with a basic set σ , F {y} a ring
of σ -polynomials in one σ -indeterminate y over F , and A an algebraically irreducible
σ -polynomial of order 0. Then, if any component of M(A) has limit degree 1, so do all
components. Similar statements hold for rld, ild, and rild.

THEOREM 4.5.10. Let F be an ordinary difference field with a basic set σ and R =
F {y1, . . . , ys} a ring of σ -polynomials in σ -indeterminates y1, . . . , ys over F .

(i) If M is an irreducible variety over F {y1, . . . , ys}, then dimM= s − 1 if and only
if M is a principal component of the variety of an algebraically irreducible σ -
polynomial.

(ii) Let A ∈ R \ F and let M be an irreducible component of the variety M(A) of the
σ -polynomial A. Then dimM= s − 1.

(iii) Let A,B ∈ R be σ -polynomials of order at most 1 in each yi (1 � i � s). If
M(A,B) is not empty, it has a component of dimension not less than s − 2.

R.M. Cohn [32, Chapter 10] conjectured that if η is a realization of a kernel R over
an ordinary difference field F , then η is a specialization over F of a realization ζ such
that σ -trdegF F 〈ζ 〉 � δR. If this statement is true, it would strengthen the conclusion of
Theorem 4.5.10(iii) to the statement that every component of M(A,B) has dimension at
least s − 2.

Let F be an ordinary difference field with a basic set σ = {α} and let R = F {y1, . . . , ys}
be a ring of σ -polynomials in a set of σ -indeterminates Y = {y1, . . . , ys} over F . Let Φ ⊆
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R, Y ′ ⊆ Y , and let the orders of the σ -polynomials of Φ in each yi ∈ Y \ Y ′ be bounded
(in particular, Φ may be a finite family). For every yi ∈ Y \ Y ′, let ri denote the maximum
of the orders of the σ -polynomials of Φ in yi . Then the number R(Y ′)Φ =∑i ri (the
summation extends over all values of the index i such that yi ∈ Y \ Y ′) is called the Ritt
number of the system Φ associated with the set Y ′ ⊆ Y . If Y ′ = ∅, we set R(Y ′)Φ =∑s
i=1 ri .
Let 0 �= A ∈ Φ and let h(A) be the greatest non-negative integer such that for each i

with yi ∈ Y \ Y ′, αh(A)(A) is of order at most ri in yi . Let h = max{h(A) | 0 �= A ∈ Φ},
that is, h is the greatest integer such that some polynomial in Φ may be replaced by its
h-th transform without altering the Ritt number of Φ . The number G(Y ′)Φ =R(Y ′)Φ−h
is called the Greenspan number of the system Φ associated with the set Y ′ ⊆ Y . If Y ′ = ∅,
we write GΦ for G(Y ′)Φ .

Now, let the system of σ -polynomials Φ be finite, Φ = {A1, . . . ,Am}, and let rij =
ordyj Ai (1 � i � m,1 � j � s). Then the number J (Φ) = max{∑s

i=1 riji | (j1, . . . , js)

is a permutation of 1, . . . , s} is called the Jacobi number of the system Φ . The following
theorem (where we use the above notation) gives some bounds on the effective orders with
respect to Y ′ that involve the Ritt, Greenspan and Jacobi numbers.

THEOREM 4.5.11.
(i) Suppose that the Ritt number R(Y ′)Φ for a system of σ -polynomials Φ (and a set
Y ′ ⊆ Y ) is defined. If M is a component of M(Φ) for which Y ′ contains a complete
set of parameters, then Eord(Y ′)M � R(Y ′)Φ .

(ii) If GΦ is defined, M is a component of M(Φ) and Y ′ contains a complete set of
parameters of every component of M(Φ), then Eord(Y ′)M � G(Y ′)Φ .

(iii) Let Φ = {A1, . . . ,Am} where A1, . . . ,Am are first-order σ -polynomials (that is
rij � 1 for i = 1, . . . ,m; j = 1, . . . , s and at least one rij is equal to 1). If M is an
irreducible component of M(Φ) of dimension 0, then EordM � J (Φ).

A number of results on the Jacobi bound for systems of algebraic differential equations
(see, for example, [41,42] and [88, Section 5.8]) give a hope that the last theorem can be
essentially strengthened and generalized to the case of partial difference polynomials.

In [32, Chapter 10, Example 2] R.M. Cohn showed that it is possible for a difference
kernel R to have a realization η such that σ -trdegF F 〈η〉 > δR. His example also shows
that if R′ is a kernel over an ordinary inversive difference field F , ζ is a principal realiza-
tion of R′, and R is a kernel over F which specializes to R′, there may be no principal
realization of R which specializes to ζ . The following theorem presents conditions that
imply the existence of such a realization. It also implies that every regular realization of a
kernel is the specialization of a principal realization.

THEOREM 4.5.12 [96]. Let F be an ordinary inversive difference field. Let R =
(F (a0, . . . , ar ), τ ) and R′ = (F (a′0, . . . , a′r ), τ ) (r ∈ N) be two difference kernels over
F such that there is an F -isomorphism of F(a0, . . . , ar−1) onto F(a′0, . . . , a′r−1). Let ζ be
a principal realization of R′. If R specializes to R′, then there exists a principal realization
η of R which specializes to ζ .
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In the rest of this section we use the notation and conventions of Section 4.4. Let F be
an ordinary inversive difference field with a basic set σ = {α} and R= (F (a0, . . . , ar ), τ )

a difference kernel (a0 = (a(1)0 , . . . , a
(s)
0 )). A realization η= (η1, . . . , ηs) of the kernel R is

called singular if it is not a specialization of a principal realization of R. A realization of
R is called multiple if it is a specialization of two principal realizations which are distinct
in the sense of isomorphism. The following two examples (see [32, Chapter 6, Section 21])
illustrate these concepts.

EXAMPLE 4.5.13. Let us consider the algebraically irreducible σ -polynomial A =
(2)yy + (1)y in the ring of σ -polynomials F {y} in one difference indeterminate y (as
before, (k)y stands for αky). Then yα(A) − A = (1)y((3)yy − 1). If η �= 0 is a generic
zero of an irreducible component M of M(A), then η must annul (3)yy − 1, whence
(3)yy− 1 ∈Φ(M), 0 /∈M. Thus, the solution 0 of A itself constitutes an irreducible com-
ponent of M(A). Clearly, it is a singular component and furnishes a singular realization of
the kernel produced for A by the procedure described in Example 4.4.2. It should be noted
(see [19, Theorem V]) that the variety of a first-order σ -polynomial cannot have a singular
component.

EXAMPLE 4.5.14. With the notation of the previous example, letB = ((1)y)2 + y2 ∈ F {y}
where F =Q (and α = idQ). Then α(B)−B = ((2)y − y)((2)y − y). It can be shown (see
[32, Chapter 6, Theorem IV]) that M(B) has two principal components M1 and M2
which annul (2)y − y and (2)y − y, respectively. Furthermore, 0 ∈M1 ∩M2, so 0 is
a multiple solution of the kernel R formed for B by the procedure described in Exam-
ple 4.4.2.

PROPOSITION 4.5.15. Let R= (F (a0, . . . , ar ), τ ) be a difference kernel over an ordinary
inversive difference (σ -) field F of zero characteristic. Let S denote the polynomial ring in
s(r+1) indeterminates F [{(j)yi | 1 � i � s,0 � j � r}] ⊆ F {y1, . . . , ys}, and let P be the
prime ideal of S with the general zero (a0, . . . , ar ). Then:

(i) There exist σ -polynomials A,B ∈ S \ P such that
(a) Every singular realization of R annuls A.
(b) Every multiple realization of R annuls B .

(ii) If r = 0, then R has no singular realization (even if CharF �= 0).

Let F be an ordinary difference (σ -) field and R = F {y1, . . . , ys} a ring of σ -
polynomials over F . Suppose that a σ -polynomial A ∈R contains one or more transforms
of a σ -indeterminate yi (1 � i � s) and let (p)yi and (q)yi be such transforms of lowest and
highest orders, respectively. Then the formal partial derivatives ∂A/∂(p)yi and ∂A/∂(q)yi
are called the separants of A with respect to yi . If A is written as a polynomial in (q)yi ,
then the coefficient of the highest power of (q)yi is called the initial of A with respect to yi .

PROPOSITION 4.5.16. With the above notation, let F be a σ -field of zero characteristic
and A ∈R an algebraically irreducible σ -polynomial. Then

(i) Every singular component of M(A) and every solution common to two principal
components of M(A) annuls the separants of A.
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(ii) If M(A) has only one principal component, then every singular component of
M(A) annuls the initials of A.

PROPOSITION 4.5.17. Let F be an ordinary difference field and P a reflexive prime
difference ideal in a ring of difference polynomials F {y1, . . . , ys}. Unless dimP = 0,
EordP = 0, there exist difference overfields of F containing arbitrarily many generic zeros
of P .

An element a of an ordinary difference ring R with a basic set σ = {α} is called periodic
if αk(a)= a for some k ∈ N. (In particular, every constant c ∈ R is periodic.) Clearly, the
set of all periodic elements of R is a σ -subring of R; it is called the σ -subring of periodic
elements of R.

A difference ring R with a basic set σ = {α} is said to be periodic if there exists m ∈N
such that αm(a) = a for all a ∈ R. In particular, if m = 1, the σ -ring R is said to be
invariant.

PROPOSITION 4.5.18. Let F be an ordinary difference field with a basic set σ and let F ′
and F ′′ be its σ -subfields of constants and periodic elements, respectively. Then F ′′ is the
algebraic closure of F ′ in F .

An ordinary difference field with a basic set σ = {α} is called completely aperiodic if
either CharF = 0 or CharF = p > 0 and for any i, j, k, l ∈N, i �= j, k �= l, no element of
F satisfies the equation (αi(y))p

k = (αj (y))pl . (It is easy to see that if an ordinary differ-
ence field F of positive characteristic is aperiodic and contains infinitely many constants,
then F is completely aperiodic.)

THEOREM 4.5.19 [25]. Let F be a completely aperiodic ordinary difference (σ -) field,
G a σ -overfield of F , R = G{y1, . . . , ys} a ring of σ -polynomials in σ -indeterminates
y1, . . . , ys over G, and 0 �=A ∈R. Then

(i) There exists an s-tuple (η1, . . . , ηs) of elements of F which is not a solution of A.
(ii) Suppose that G/F is a finitely generated σ -field extension, σ -trdegF G = 0, and

either CharF = 0 or CharF > 0 and rldG.F = ldG/F . Then there exist ζ ∈G, k ∈
N such that αk(a) ∈ F 〈ζ 〉 for every element a ∈G. Moreover, such an element ζ can
be chosen as a linear combination of the members of any finite set of σ -generators
of G/F with coefficients from any pre-assigned completely aperiodic σ -subfield
of F .

Using the last theorem, R.M. Cohn [32, Chapter 8] showed that the solutions of any
irreducible variety M over an ordinary difference field F can be obtained by rational
operations, transforming, and the inverse of transforming from the solutions of a principal
component N of the variety of an algebraically irreducible difference polynomial (N is the
variety over F , but not necessarily over the same ring of difference polynomials, as M).
More precisely, we have the following statement.

THEOREM 4.5.20. Let F be an ordinary difference field with a basic set σ = {α},
F {y1, . . . , ys} a ring of σ -polynomials in σ -indeterminates y1, . . . , ys over F , and M
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an irreducible variety over F {y1, . . . , ys}. Suppose that F is completely aperiodic or that
dimM > 0, and also that M possesses a complete set of parameters {y1, . . . , yk} such
that rld(y1, . . . , yk)M = ld (y1, . . . , yk)M. (We assume that the σ -indeterminates are so
numbered that the first k of them constitute the complete set of parameters. Note also that
the last equality always holds if CharF = 0.) Then there exist:

(a) an irreducible variety N over the ring of σ -polynomials F {y1, . . . , yk;w} (w is the
(k + 1)-th σ -indeterminate of this ring);

(b) σ -polynomials Ak+1, . . . ,As ∈ F {y1, . . . , yk}, σ -polynomials Bk+1, . . . ,Bs , C ∈
F {y1, . . . , yk;w}, C /∈N , and an integer t � 0 such that

(i) N is a principal component of the variety of an algebraically irreducible σ -
polynomial of F {y1, . . . , yk;w}, y1, . . . , yk constitute a complete set of para-
meters of N , and Eord(y1, . . . , yk)N = Eord(y1, . . . , yk)M.

(ii) If (η1, . . . , ηs) is any solution in M, there is a solution in N with yi = ηi for
i = 1, . . . , k, andw given by the result of substituting ηj for yj in

∑s
i=k+1Aiyi .

(iii) If yi = ζi , i = 1, . . . , k, w = θ is a solution in N which does not annul C, then
there is a solution in M with yi = ζi , i = 1, . . . , k, and yj , k+1 � j � s, given
by applying α−t to the result of substituting ζk+1, . . . , ζs, θ for yk+1, . . . , ys,w,
respectively, in Bj/C.

(iv) IfD ∈ F {y1, . . . , ys} \Φ(M), then there exists a σ -polynomial E ∈ F {y1, . . . ,

yk;w} \ Φ(N ) such that any solution in N not annulling E gives rise by a
procedure described in (iii) to a solution in M not annulling D.

(v) The procedures of (ii) and (iii) carry generic zeros of M or N into generic ze-
ros of N or M. Whenever (iii) is defined, these procedures, applied to elements
of M or N , are inverses of each other.

With the notation of the last theorem, W =∑s
i=k+1Aiyi is called a resolvent for M

or for Φ(M), and Φ(N ) is called a resolvent ideal for M or for Φ(M). One can say
that M is obtained from the solutions of its resolvent ideal by the relations αtyi = Bi/C
(k + 1 � i � s) and the solutions of the resolvent ideal are obtained from those of M by
the relation w =W .

We conclude this section with a summary of the basic properties of a variety of one
ordinary difference polynomial (see [32, Chapters 6 and 10]).

Let F be an ordinary difference (σ -) field (we assume CharF = 0, except in (i) and (iii)),
R = F {y1, . . . , ys} a ring of σ -polynomials over F and A ∈ R \ F an algebraically irre-
ducible σ -polynomial. Then

(i) The variety M(A) consists of one or more principal components and (possibly) of
singular components. Each component of M(A) has dimension s − 1.

(ii) The relative effective orders and (with certain limitations) the relative orders of
principal components of M(A) are determined by the effective orders and orders
of A. Furthermore, it is sufficient for a component to have dimension s− 1 and one
of these effective orders for it to be a principal component.

(iii) Except in the case that s = 1 and A is of effective order 0, every principal compo-
nent of M(A) contains infinitely many generic zeros.

(iv) The relative effective orders of the singular components of M(A) are less by at
least 2 than those of the principal components. More precisely, if Eordyi A = ri
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(1 � i � s) and M is a singular component of M(A), then either y1, . . . , yi−1,

yi+1, . . . , ys do not constitute a set of parameters of M or they do constitute such
a set and Eord(y1, . . . , yi−1, yi+1, . . . , ys)M � ri − 2.

(v) Any singular component of M(A) is itself a principal component of M(B) for
some algebraically irreducible σ -polynomial B ∈ R. It follows from (iv), for each
i, 1 � i � s, either B contains no transforms of yi or Eordyi B � ri − 2.

(vi) If s = 1 and A is a first-order σ -polynomial in R, then M(A) has no singular
components.

A number of additional important results on varieties of ordinary difference polynomials
can be found in [133,19,20,22,23,26,28,33,34], and [32, Chapter 10].

4.6. Compatibility of difference field extensions. Specializations

Let F be a difference field with a basic set σ and let G and H be two σ -overfields of F .
The difference field extensions G/F and H/F are said to be compatible if there exists a
σ -field extension E of F such that G/F and H/F have σ -isomorphisms into E/F . (As
usual, this means that there exist σ -isomorphisms ofG and H into E that leave the σ -field
F fixed.) Otherwise, the σ -field extensions G/F and H/F are called incompatible.

EXAMPLE 4.6.1 [32, Chapter 1, Example 4]. Let us consider Q as an ordinary difference
field whose basic set σ consists of the identity automorphism α. If one adjoins to Q an
element i such that i2 = −1, then the resulting field Q(i) has two automorphisms that
extend α: one of them is the identity mapping (we denote it by the same letter α) and
the other (denoted by β) sends an element a + bi ∈ Q(i) (a, b ∈ Q) to a − bi (complex
conjugation). Then Q(i) can be treated as a difference field with the basic set {α}, as well as
a difference field with the basic set {β}. Denoting these two difference fields by G and H ,
respectively, we can naturally consider them as σ -field extensions of Q. Let us show that
G/Q and H/Q are incompatible σ -field extensions. Indeed, suppose that there exists a σ -
field extension E of Q and σ -isomorphisms φ and ψ , respectively, of G/Q and H/Q into
E/Q. Let j = φ(i), k = ψ(i), and let γ denote the translation of E that extends α and β .
Then j2 = k2 = −1 whence either j = k or j = −k. Since γ (j) = j and γ (k) = −k, in
both cases we obtain that j =−j , that is, j = 0. This contradiction implies that the σ -field
extensions G/Q and H/Q are incompatible.

The existence of incompatible extensions plays an important part in the development
of the theory of difference algebra. Of particular concern here is the fact that the pres-
ence of incompatible extensions can inhibit the extension of difference isomorphisms for
difference field extensions.

EXAMPLE 4.6.2 [32, Chapter 9, Example 1]. As in the preceding example, let us con-
sider Q as an ordinary difference field with a basic set σ = {α} where α is the identity
automorphism. Let a denote the positive fourth root of 2 (we assume a ∈C) and let i ∈C
be the square root of −1. Then the field Q(a, i) can be treated as a σ -field extension
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of Q such that α(i) = −i and α(a) = −a. Obviously, Q(i)/Q can be treated as a σ -
field subextension of Q(a, i)/Q. Let φ be a σ -isomorphism of Q(a, i)/Q(i) into some
σ -field extension M/Q(i) where M is a σ -overfield of Q(a, i). Since the field extension
Q(a, i)/Q(i) is normal, φ is an automorphism of Q(a, i). Clearly, φ(a) = ika for some
k ∈N. Since α(a)=−a, α(ika)=−ika. But α(ika)= (−1)k+1(ika), so k is even and ei-
ther φ(a)= a or φ(a)=−a. It follows that every σ -isomorphism of Q(a, i)/Q(i) leaves
the elements of Q(i)〈a2〉 fixed. On the other hand, there exists a σ -automorphism ψ of
Q(i)〈a2〉/Q(i) such that ψ(a2)=−a2. Clearly, such a σ -automorphism has no extension
to a σ -isomorphism of Q(a, i)/Q(i).

Let F be a difference field with a basic set σ and G/F , H/F two σ -field extensions
of F . Then the number of σ -isomorphisms of G/F into H/F is called the replicability
ofG/F inH/F . The replicability of the σ -field extensionG/F is defined as the maximum
of replicabilities of G/F in all σ -field extensions of F , if this maximum exists, or∞ if it
does not. Clearly, if G/F is finitely generated (as a σ -field extension), then it is sufficient
to define the replicability of G/F considering only σ -overfields in the universal system
over F .

THEOREM 4.6.3 [32, Chapter 7, Theorem II]. A necessary condition for finite replicability
of an ordinary difference field extension G/F is that every element of G have a transform
of some order that is algebraic over F . This condition is sufficient ifG is finitely generated
over F .

Let F be an ordinary difference field with a basic set σ and a an indexing of elements
lying in a σ -overfield of F . We say that almost every specialization of a over F has prop-
erty P if there exists a non-zero element u ∈ F {a} such that every specialization of a over
F which does not specialize u to 0 has property P . The statement that almost every spe-
cialization which has property P has property Q means that almost every specialization
has the property “not P or Q”.

In [32, Chapter 7] R.M. Cohn showed that a set of elements and a specialization of the
set can generate incompatible difference field extensions over a given difference field. At
the same time, the following statement implies that “in most cases” a finite indexing and
one of its specializations generate compatible extensions.

THEOREM 4.6.4. Let F be an ordinary difference field with a basic set σ and a a finite
indexing of elements from some σ -overfield of F . Then almost every specialization of a
over F generates a σ -field extension of F compatible with F 〈a〉/F .

The last theorem implies that if M is a non-empty irreducible variety over an ordinary
difference field F , then almost every solution in M has the property of compatibility with
a generic zero of M. That is, there exists a difference polynomial A /∈Φ(M) such that if
(η1, . . . , ηs) is a generic zero of M and (η′1, . . . , η′s) a solution in M not annulling A, then
F 〈η1, . . . , ηs〉/F and F 〈η′1, . . . , η′s〉/F are compatible.

THEOREM 4.6.5 [32, Chapter 7, Theorem IV]. Let F be an ordinary difference field with a
basic set σ . Let a and b be finite indexings of elements lying in a σ -overfield of F , u a non-
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zero element of F {a, b}, and B a σ -transcendence basis of b over F 〈a〉. If F 〈a, b〉/F 〈a〉
is primary, then almost every specialization a′ = φa of a over F can be extended to a
specialization a′, b′ of a, b in such a way that

(i) The specialization of u is not 0.
(ii) Every σ -transcendence basis of b over F 〈a〉 specializes to a σ -transcendence basis

of b′ over F 〈a′〉.
(iii) If B ′ denote the specialization of B , then EordF 〈a′, b′〉/F 〈a′,B ′〉 = EordF 〈a, b〉/

F 〈a,B〉.
Let G be a difference overfield of an ordinary difference field F with a basic set σ . The

core GF of G over F is defined to be the set of elements a ∈G algebraic and separable
over F and such that ldF 〈a〉/F = 1. (It follows from Theorem 4.3.1 that GF is a σ -field
and ldGF/F = 1.) Example 4.6.1 shows that a core GF need not to be F . Furthermore, if
CharF = 0 or G/F is separable, it follows from Theorem 4.3.4 that G=GF if and only
if G :F is finite.

Suppose now that F is an inversive ordinary difference field with a basic set σ and G
an algebraic σ -overfield of F (that is, G is algebraic over F in the usual sense). Since it
is possible to define a structure of a σ -overfield of G on the algebraic closure of this field
(see Corollary 4.5.8), one can define a structure of a σ -overfield of G on a normal closure
G′ of G over F . In what follows, this difference field will be called a normal closure
of the σ -field G over F . Clearly, the normal closures of G over F are generated by the
σ -generators of G/F and their conjugates with respect to F . Hence, if G/F is a finitely
generated σ -field extension, then any normal closure of G over F is a finitely generated
σ -field extension of F . If G is inversive, the normal closures of G over F are inversive.

PROPOSITION 4.6.6. Let F be an inversive ordinary difference field with a basic set σ , G
an algebraic σ -overfield of F , and G′ a normal closure of G over F . Then G′F contains a
normal closure of GF over F .

Let F be an ordinary difference field with a basic set σ = {α} and let G be a fi-
nitely generated σ -field extension of F which is an algebraic, normal and separable
overfield of F . It is easy to see that one can choose a finite set of σ -generators S of
G over F such that F(S) is normal over F . Then there exists an element v ∈ G such
that F(S) = F(v) (hence G = F 〈v〉) and v is normal over F . Furthermore, there ex-
ists k ∈ N such that F(v, . . . , αkv) :F(v, . . . , αk−1v) = ldF 〈v〉/F . Let w be such that
F(w)= F(v, . . . , αk−1v). Then w is normal over F , F 〈w〉 =G, and F(w,αw) :F(w)=
ldF 〈w〉/F . An element with these properties is called the standard generator ofG over F .
If w is a standard generator such that F(w) :F is as small as possible, then w is called a
minimal standard generator.

With the above assumptions, if there exists an element u ∈G such that G= F 〈u〉, u is
normal over F , and F(u) :F = ldG/F , then G/F is said to be a benign σ -field extension.
(Clearly, a σ -generator of a benign extension has the properties ascribed to u if and only if
it is a minimal standard generator.)

PROPOSITION 4.6.7. LetG/F be a benign ordinary difference field extension with a basic
set σ and let u be a minimal standard generator of G over F . Then
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(i) G/F is compatible with every σ -field extension of F .
(ii) The replicability of G/F is ldG/F .

(iii) If K is a σ -subfield of F , η a set of σ -generators of F over K , and 0 �= v ∈ G,
then almost every specialization of η over K can be extended to a specialization of
η,u, v over K such that the specialization of v is not 0.

(iv) Let F 〈u′〉 be a σ -field extension of F such that the field extensions F(u′)/F and
F(u)/F are isomorphic with u corresponding to u′. Then F 〈u′〉/F and F 〈u〉 are
isomorphic σ -field extensions with u corresponding to u′.

Let K be an inversive difference field with a basic set σ and let K1 and K2 be σ -
subfields of this field whose inversive closures in K coincide with K . Let L1 and L2 be
σ -field extensions of K1 and K2, respectively, and let L′1 and L′2 be the inversive closures
of L1 and L2, respectively. The σ -field extensions L1/K1 and L2/K2 are called equivalent
if L′1/K and L′2/K are σ -isomorphic.

THEOREM 4.6.8 (Babbitt’s decomposition, [2]). Let F be an ordinary difference field
with a basic set σ = {α} and letG be a finitely generated σ -field extension of F which is an
algebraic, normal and separable overfield of F . Then there exist σ -fields G1 ⊆ · · · ⊆Gr ,
withG1 =GF , such thatGr/F is equivalent toG/F and for every i = 2, . . . , r , the σ -field
Gi is inversive and Gi/Gi−1 is equivalent to a benign σ -field extension of Gi−1.

The following three propositions on compatibility are consequences of the last theorem.

PROPOSITION 4.6.9. Let F be an ordinary difference field with a basic set σ and let G
and H be two σ -field extensions of F . Then the following statements are equivalent.

(i) G/F and H/F are incompatible.
(ii) There exist finitely generated σ -field extensions G′ and H ′ of F such that G′ ⊆G,

H ′ ⊆H , and G′/F and H ′/F are incompatible.
(iii) GF/F and HF/F are incompatible.
(iv) GF/F and H/F are incompatible.

PROPOSITION 4.6.10. Let F be an ordinary difference field with a basic set σ and G a
σ -overfield of F such that the field extensionG/F is primary. LetH andK be σ -overfields
of G such that HG/G is equivalent to G〈HF 〉/G, and KG/G is equivalent to G〈KF 〉/G.
Then H/G and K/G are compatible if and only if H/F and K/F are compatible.

PROPOSITION 4.6.11. Let F be an ordinary difference field with a basic set σ and G a
σ -overfield of F such that G = F 〈S〉 for some σ -algebraically independent over F set
S ⊆G.

(i) If H is a σ -overfield of G, then the σ -field extensions HG/G and G〈HF 〉/G are
equivalent.

(ii) Let L be a σ -overfield of F such that L/F is equivalent to G/F , and let M and N
be two σ -overfields of L. Then M/G and N/G are compatible if and only if M/F
and N/F are compatible.
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PROPOSITION 4.6.12. Let F be an ordinary difference field with a basic set σ , and let
a and b be finite indexings of elements lying in some σ -overfield of F . Let G = F 〈a〉,
H = F 〈a, b〉, and let c be a finite set of σ -generators of HF over G. Let u �= 0 be an
element of F {a, b} and B a σ -transcendence basis of b over F 〈a〉. Then almost every
specialization a′ of a over F which can be extended to a specialization a′, c′ of a, c over
F , can be extended to a specialization a′, b′ of a, b with the properties (i), (ii), (iii) of
Theorem 4.6.5.

THEOREM 4.6.13. Let F be an ordinary difference field of zero characteristic with a
basic set σ . Let a = (a(1), . . . , a(s)) and b be finite indexings of elements from some σ -
overfield of F such that a(1), . . . , a(s) are σ -algebraically independent over F . Further-
more, let B be a σ -transcendence basis of b over F 〈a〉 and 0 �= u an element of F {a, b}.
Finally, let R = F {y1, . . . , ys} be the ring of σ -polynomials in σ -indeterminates y1, . . . , ys
over F . Then there exists a non-zero σ -polynomial A ∈ R with the following property:
if c = (c(1), . . . , c(s)) is an indexing in a σ -overfield of F , c is not a solution of A, and
F 〈c〉/F is compatible with F 〈a, b〉/F , then there is a specialization c, b′ of a, b with the
properties (i), (ii), (iii) of Theorem 4.6.5.

The following three theorems generalize the correspondent statements for ordinary case
(see [32, Chapter 7]) to partial difference field extensions.

THEOREM 4.6.14. Let F be an inversive difference field with a basic set σ and let G/F
and H/F be two σ -field extensions of F . Then

(i) If the extension G/F is primary, then there exists a σ -field extension L/F such
that G/F and H/F have σ -isomorphisms into L/F with the images of G and H
quasi-linearly disjoint over F .

(ii) Let G′ and H ′ denote the separable parts of G and H , respectively, over F . Then
G/F and H/F are compatible if and only if the σ -field extensionsG′/F and H ′/F
are compatible.

THEOREM 4.6.15 [7, Theorem 3.6]. Let F be an inversive difference field with a basic set
σ , G/F a primary σ -field extension, and τ a σ -isomorphism of F into G. Then

(i) τ has an extension to a σ -isomorphism τ1 of G into a σ -overfield E of G such
that E = 〈G,τ1G〉, G and τ1G are quasi-linearly disjoint over τF , and E/G is a
primary extension. Furthermore, if G is inversive, then E is inversive.

(ii) Let E′ be a σ -overfield of G such that τ has an extension to a σ -isomorphism τ ′ of
G into E′ and E′ is the free join of G and τ ′G over τF . Then there exists a unique
σ -isomorphism ψ of E/G onto E′/G such that ψτ1(a)= τ ′ψ(a) for any a ∈G.

Let K be a difference field with a basic set σ = {α1, . . . , αn}. We say that K satisfies the
universal compatibility condition if every two σ -extensions ofK are compatible.K is said
to satisfy the stepwise compatibility condition if there exists a permutation (i1, . . . , in) of
(1, . . . , n) such that all difference fields (K;αi1 , . . . , αik ), 1 � k � n, satisfy the universal
compatibility condition. (As in Section 4.3, (K;αi1, . . . , αik ) denotes the difference field
K with the basic set {αi1, . . . , αik }.)
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THEOREM 4.6.16 [7]. Let K be a difference field with a basic set σ , α ∈ σ , and let K ′
denote the field K treated as a difference field with the basic set σ \ {α}. If K ′ satisfies the
stepwise compatibility condition, then there exists a σ -overfield L of K such that L is an
algebraic closure of K .

Although any ordinary difference fieldK has a difference overfield which is an algebraic
closure of K (see Corollary 4.5.8), the following example shows that this result cannot be
generalized to partial difference fields. Furthermore, the converse of theorem 4.6.16 is not
true (see [7, Example 3.9]).

EXAMPLE 4.6.17 [7]. Let us consider Q as a difference field with a basic set σ = {α1, α2}
where α1 and α2 are the identity automorphisms. Let b and i denote the positive
square root of 2 and the square root of −1, respectively (we assume b, i ∈ C), and
let F = Q(b, i). Let us extend α1 and α2 to automorphisms of the field F by setting
α1(b) = −b, α1(i)= i, α2(b) = b, α2(i) = −i, and consider F as a σ -overfield of Q.
Then there exists no σ -overfield of F which is an algebraic closure of F . Indeed, if there
were one, then there exists a σ -overfield G of F which contains an element a such that
a2 = b. Since (α1(a))

2 = α1(a
2)=−b and (α2(a))

2 = α2(a
2)= b, we have α1(a)= λai

and α2(a) = μa where λ and μ denote plus or minus 1. Then α1α2(a) = λμia and
α2α1(a)=−λμia. Thus, α1 and α2 do not commute at a, which contradicts the assump-
tion that G is a σ -overfield of F .

REMARK 4.6.18. As we have seen in Section 4.5, every ordinary algebraically irreducible
difference polynomial has an abstract solution. One can use the last example to show that
this result cannot be extended to partial difference polynomials. Indeed, let F and b be
as in the example, and let F {y} be a ring of σ -polynomials in one σ -indeterminate y
over F . If a is a solution for A= y2 − b ∈ F {y}, then a2 = b which, as demonstrated in
Example 4.6.17, is impossible.

The following statement is the version of the existence theorem for difference fields with
two translations.

THEOREM 4.6.19 [7, Theorem 6.1]. Let F be an inversive difference field with a basic set
σ consisting of two translations. Let R = F {y1, . . . , ys} be the ring of σ -polynomials in
σ -indeterminates y1, . . . , ys over F . Furthermore, suppose that there exists a translation
α ∈ σ such that if F is treated as a difference field with the basic set σ ′ = σ \ {α} (we
denote this σ ′-field by F ′), then every two σ ′-field extensions of F ′ are compatible.

Then every algebraically irreducible σ -polynomial A ∈ R \ F has a solution η =
(η1, . . . , ηs) with the following properties.

(i) η is not a proper specialization over F of any solution of A.
(ii) If A contains a transform of some yk (1 � k � s), then the elements η1, . . . , ηk−1,

ηk+1, . . . , ηs are σ -algebraically independent over F . Furthermore, if a σ -
polynomial B ∈ R \ F is annulled by η and contains only those transforms of yk
which are contained in A, then B is a multiple of A.
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COROLLARY 4.6.20.
(i) If F and A are is in the last theorem, then A has at most a finite number of isomor-

phically distinct solutions of the type described in the theorem.
(ii) The conclusion of Theorem 4.6.19 holds if F is an inversive difference field with two

translations and F is separably algebraically closed or algebraically closed.

COROLLARY 4.6.21. Let F be a difference field whose basic set σ consists of two trans-
lations, and let R = F {y1, . . . , ys} be the ring of σ -polynomials in σ -indeterminates
y1, . . . , ys over F . Then the following statements are equivalent:

(a) F has an algebraic closure which is a σ -field extension of F .
(b) Every algebraically irreducible σ -polynomial A ∈ R \ F has a solution η with the

properties stated in Theorem 4.6.19.
(c) If a is any element that is separably algebraic and normal over F , then F may be

extended to the σ -field F 〈a〉.

4.7. Isomorphisms of difference fields. Monadicity

We have already seen that difference field isomorphisms cannot be extended as freely as
field isomorphisms. The following theorem proved in [32, Chapter 9] gives some condi-
tions under which σ -isomorphisms of a given difference (σ -) field can be extended.

THEOREM 4.7.1. Let F be an ordinary difference field with a basic set σ and G a σ -
overfield of F . If G/F is compatible with every σ -field extension of F (in particular, if
GF = F ), then every σ -isomorphism of F into a σ -overfield H of G extends to a σ -
isomorphism of G into a σ -overfield of H .

COROLLARY 4.7.2. Let F be an ordinary difference field with a basic set σ , G a σ -
overfield of F , and H a σ -field extension of G. Then the replicability of H/F is not less
than the replicability of HG/F .

Let F be a difference field with a basic set σ . A σ -field extensionG/F is called monadic
if its replicability is 1, that is, G/F has at most one σ -isomorphism into any σ -field exten-
sion of F . It follows from Corollary 4.7.2 that a monadic extension has a monadic core.

A monadic extension G/F is called properly monadic if G �= F and there exists an
element a ∈G such that no transform of a belongs to F .

PROPOSITION 4.7.3 [2]. Let F be an inversive difference field with a basic set σ and let
G and H be σ -overfields of F . Then

(i) G/F and H/F are incompatible if and only if the inversive closures G∗ and H ∗
are incompatible σ -field extensions of F .

(ii) The σ -field extension G/F is monadic if and only if G∗/F is monadic.

EXAMPLE 4.7.4 [32, Chapter 1, Example 6]. Let G= C(x) be the field of rational frac-
tions in one variable x over C. Let us consider G as an ordinary difference field with a
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basic set σ = {α} where αf (x) = f (x2) for any f (x) ∈ F . If t = x3 and F = C(t), then
the field F can be viewed as a σ -subfield ofG. Let us show thatG/F is a monadic σ -field
extension.

Let φ and ψ be two σ -isomorphisms of G/F into some σ -field extension H/F . Let
y = φ(x) and z= ψ(x). Then y3 = t , α(y)= y2, z3 = t , and α(z)= z2. Clearly, in order
to prove that φ =ψ , one should show that z= y. Since t = y3 = z3, we find z= ωy where
ω3 = 1, ω ∈C⊆ F . It follows that α(ω)= ω and ωα(y)= ω2y2, α(y)= ωy2 (we use the
fact that α(z)= z2). Since α(y) �= 0, ω= 1 whence z= y and φ =ψ .

In what follows we show that a finitely generated separable monadic extension coincides
with its core (generally speaking, this is not true for extensions of finite replicability). The
proofs of the results of the rest of this section can be found in [2] and in [32, Chapter 9].

PROPOSITION 4.7.5. Let F be an ordinary difference field with a basic set σ , G an alge-
braic σ -overfield of F , and G′ the separable part of G. Then G/F is monadic if and only
if G′/F is monadic.

THEOREM 4.7.6. Let F be an inversive ordinary difference field with a basic set σ and
G/F a finitely generated monadic σ -field extension of F . Then:

(i) G is purely inseparable over its core.
(ii) If G/F is separable, G=GF .

(iii) ordG/F = 0 and rldG/F = 1. (If CharF = 0, then ldG/F = 1.)

THEOREM 4.7.7. Let F be an inversive ordinary difference (σ -) field, B a σ -algebraically
independent set over F , and G the inversive closure of F 〈B〉. If H/G is a finitely gen-
erated, separable monadic σ -field extension of G, then there exists a finitely generated
monadic σ -field extension K/F such that H = G〈K〉. Conversely, if K/F is monadic
(whether finitely generated or not), then H/G is monadic, where H =G〈K〉.

THEOREM 4.7.8. Let F be an ordinary difference field with a basic set σ and G a σ -
overfield of F of finite degree (that is |G :F | <∞). Then G/F is compatible with every
σ -field extension of F if and only if it is monadic.

COROLLARY 4.7.9. A difference subextension of a finitely generated monadic extension
of an ordinary difference field is monadic.

Notice that the restriction to finitely generated difference field extensions made in the
last statement is essential (see [32, Chapter 9, Example 4]).

A difference (σ -) field extension G/F is called pathological if either it is incompatible
with some other σ -field extension of F or G/F is monadic.

EXAMPLE 4.7.10. Let F = C(x) be the field of rational fractions in one variable x over
C considered as an ordinary difference field with a basic set σ = {α} where αf (x) =
f (x + 1) for any f (x) ∈ F . Then F has no finitely generated pathological extensions (see
[2, Theorem 2.9]).
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EXAMPLE 4.7.11. Let us consider the field C(x) from the previous example as an ordi-
nary difference field K with a translation α :f (x) �→ f (qx) (f (x) ∈ C(x)), where q is
a non-zero complex number such that qn �= 1 for every n ∈ N. By [32, Chapter 9, Theo-
rem XX], a σ -field extension G/K is incompatible with some other σ -field extension of
K if and only if G contains a k-th root of x for some k ∈ N, k > 1. Therefore, K has no
finitely generated properly monadic extensions.

THEOREM 4.7.12 [2]. If an ordinary inversive difference field admits a pathological ex-
tension, it admits a pathological extension of finite degree of the same type.

4.8. Difference valuation rings and extensions of difference specializations

Let K be a difference field with a basic set σ . A maximal difference (or σ -) specialization
of K is a σ -homomorphism φ of a σ -subring R of K onto a difference (σ -) domain Λ
such that φ cannot be extended to a σ -homomorphism of a larger σ -subring of K onto a
domain which is a σ -overring ofΛ. (It can be easily shown that the σ -domainΛ is, in fact,
a σ -field.) The σ -domain R ⊆K is called the maximal difference (or σ -) ring of K . If K
is the quotient field of R, we say that R is a difference (or σ -) valuation ring of K , and φ
is called a difference (or σ -) place of K . It is easy to see that if the σ -field K is inversive,
then every its maximal σ -ring is also inversive.

A difference ring R with a basic set σ is called a local difference (or σ -) ring if the non-
units of R form a σ -ideal. This ideal will be denoted by M(R). If R0 is a local σ -subring
of R andM(R)∩R0 =M(R0), we say that R dominates R0. Clearly, a localization RP of
a difference (σ -) ring R by a prime σ -ideal P of R is a local σ -ring.

In what follows, we present some results on extensions of difference specializations that
are natural generalizations of the corresponding statements proved in [97] for ordinary
difference rings and fields.

PROPOSITION 4.8.1. Let K be a difference field with a basic set σ and R a local σ -
subring of K . Then the following statements are equivalent.

(i) R is a maximal σ -ring of K .
(ii) R is maximal among local σ -subrings of K ordered by domination.

(iii) If x ∈K and x /∈R, then 1 ∈ {R{x}M(R)}, the perfect σ -ideal generated byM(R)
in R{x}.

Let K be a difference field with a basic set σ and R a difference valuation ring of
K . Then the set U of units of R forms a subgroup of K ′ = K \ {0} and one may de-
fine the natural homomorphism v :K ′ → K ′/U . Let K ′/U be denoted by Υ , with the
operation written as addition. Then v is called a difference (or σ -) valuation of K . Let
Υ + = v(M(R) \ {0}); then for a ∈ Υ + we have −a /∈ Υ +. For any a, b ∈ Υ we define
a < b if b− a ∈ Υ +. Then Υ becomes a partially ordered group which is not necessarily
linearly ordered. Clearly, x ∈ R \ {0} if and only if v(x) � 0, and x ∈M(R) \ {0} if and
only if v(x) > 0.

Notice that there are difference valuation rings which are not valuation rings (and, thus,
difference valuations which are not valuations), see the example in [97, Section 1].
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THEOREM 4.8.2. Let R be a local difference subring of a difference field K with a ba-
sic set σ , M(R) the maximal ideal of R, and x ∈ K . Then the natural σ -homomorphism
φ :R→R/M(R) extends to one sending x to 0 if and only if 1 /∈ [x] in R{x}.

If R is a maximal difference ring of K , then x ∈M(R) if and only if 1 /∈ [x].

COROLLARY 4.8.3. Let K be a difference field with a basic set σ and let R be a maximal
difference ring of K .

(i) If S is another maximal difference ring of K such that R ⊆ S, thenM(S)⊆M(R).
(ii) Let P be a prime σ ∗-ideal of R. Then there is a maximal difference ring R1 of K

such that R ⊆R1 and M(R1)= P .
(iii) The prime σ ∗-ideals of R are linearly ordered by inclusion.
(iv) Every perfect σ -ideal of R is prime.
(v) Let S be a maximal difference ring of K with a specialization φ :S→Λ, and let

R ⊆ S. Then φ(R) is a maximal difference ring of Λ.

Let K be a difference field with a basic set σ and K{y} a ring of σ -polynomials in one
σ -indeterminate y over K . Let R be a σ -subring of K and g a σ -polynomial in R{y} with
a constant term b ∈ R. Furthermore, let {g}R and {g}K denote perfect σ -ideals generated
by g in the σ -rings R{y} and K{y}, respectively.

PROPOSITION 4.8.4. With the above notation, let the σ -ideal {g}K be prime, η a
generic zero of {g}K , and φ :R→ Λ a difference specialization of K with φ(b) = 0. If
{g}K ∩R{y} = {g}R , then φ can be extended to R{η} with φ(η)= 0.

PROPOSITION 4.8.5. Let K be a difference field with a basic set σ , R0 a σ -subring of K
with prime σ ∗-ideals P and Q such that P ⊆Q. Let S be a proper maximal σ -ring of K
with R0 ⊆ S andM(S)∩R0 = P . Then there exists a proper maximal σ -ring R of K such
that R0 ⊆ R and M(R)∩R0 =Q. Furthermore, if S is a σ -valuation ring of K then R is
also.

COROLLARY 4.8.6. Let K be a difference field with a basic set σ and R0 a local σ -
subring of K . Let L be a σ -overfield of K and S a proper maximal σ -ring (valuation ring)
of L containing R0. Then there exists a proper maximal σ -ring (valuation ring) R of L
dominating R0.

The existence of S in the corollary is equivalent to the condition that L has a subring S0,
S0 ⊆R0, which contains a proper non-zero prime σ ∗-ideal. This condition does not always
hold. For example, if Q is treated as an ordinary difference (σ -) field with the identity
translation α and Q{b} is a σ -overring of Q such that b is transcendental over Q and
α(b)= b, then the σ -specialization b→ 1 does not extend to a σ -place Q〈a〉 where a2 = b
and α(a)=−a (see [32, Chapter 7, Example 3]). However, the condition does hold in the
situation of the following proposition.

PROPOSITION 4.8.7. Let R0 be a local difference ring with a basic set σ and K the
difference quotient field of R0.
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(i) Suppose that R0 does not contain minimal non-zero prime σ ∗-ideals. If L is a pri-
mary finitely generated σ -field extension of K , L=K〈η1, . . . , ηs〉, then there exists
a difference valuation ring R of L dominating R0.

(ii) Let ζ be an element from some σ -overfield of K which is σ -algebraically indepen-
dent over K . If N =K〈ζ, η1, . . . , ηs〉 is a primary σ -field extension of K〈ζ 〉, then
there exists a difference valuation ring of N dominating R0.

5. Difference Galois theory

5.1. Algebraic difference field extensions. Galois correspondence

Let K be an inversive difference field with a basic set σ = {α1, . . . , αn} and L a σ ∗-
overfield of K . As usual, Gal(L/K) denotes the corresponding Galois group, that is,
the group of all automorphisms (not necessarily σ -automorphisms) that leave the field
K fixed. It is easy to see that the mappings ᾱi : θ �→ α−1

i θαi (θ ∈ Gal(L/K),1 � i � n)
are automorphisms of the group Gal(L/K); they are called the induced automorphisms of
Gal(L/K). A subgroup B of Gal(L/K) is called σ -stable if ᾱi (B)= B for i = 1, . . . , n.
If ᾱi (b) = b for every b ∈ B,αi ∈ σ , the subgroup B is called σ -invariant. The largest
σ -invariant subgroup of Gal(L/K) consists of all σ -automorphisms of L that leave the
field K fixed. This group is called the difference or σ -Galois group of L/K ; it is denoted
by Galσ (L/K).

If M/K is a σ ∗-field subextension of L/K , then {θ ∈ Gal(L/K) | θ(a) = a for every
a ∈ M} is a σ -stable subgroup of Gal(L/K) denoted by M ′. Also, if B is an σ -stable
subgroup of Gal(L/K), then {a ∈ L | θ(a) = a for every θ ∈ B} is a σ ∗-overfield of K
denoted by B ′. As usual, we denote the field (M ′)′ by M ′′ and the group (B ′)′ by B ′′.

In what follows, the group Gal(L/K) is considered as a topological group with the Krull
topology. A fundamental system of neighborhoods of the identity in this topology is the
set of all groups Gal(L/M)⊆Gal(L/K) such that M is a subfield of L which is a Galois
extension of K of finite degree. (When L is of finite degree over K , the Krull topology is
discrete.) The topological group G=Gal(L/K) is compact, Hausdorff, and has a basis at
the identity consisting of the collection of invariant, open (and hence closed and of finite
index in G) subgroups of G. If H is a closed invariant stable subgroup of G, then each
ᾱi induces a topological automorphism βi on G/H such that βi(gH) = ᾱi (g)H for any
g ∈G.

THEOREM 5.1.1 [49]. Let L,K , and G=Gal(L/K) be as above. Then
(i) The mappingM �→M ′ establishes a 1-1 correspondence between the set of σ ∗-field

subextensions of L/K and the closed stable subgroups of G. If M/K is a σ ∗-field
subextension of L/K , then M ′′ =M , and if H is a closed stable subgroup of G,
then H ′′ =H .

(ii) Let M/K be a σ ∗-field subextension of L/K such that M is normal over K . Let
γ1, . . . , γn be the automorphisms of the group Gal(M/K) induced by α1, . . . , αn
(treated as automorphisms of M/K), respectively. Then there is a natural iso-
morphism of topological groups φ :G/M ′ → Gal(M/K) such that φβi = γiφ
(1 � i � n) where βi is the automorphism of G/M ′ induced by ᾱi .
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DEFINITION 5.1.2. LetM be an ordinary inversive difference field with a basic set σ and
N a σ ∗-overfield of M . The extension N/M is said to be universally compatible if given
a σ ∗-field extension Q/M , there exist a σ ∗-field extension R/M and σ ∗-monomorphisms
φ :N/M→R/M and ψ :Q/M→R/M .

The following two theorems combine the main results on difference Galois groups, uni-
versal compatibility and monadicity obtained in [49].

THEOREM 5.1.3. Let K be an ordinary inversive difference field with a basic set σ = {α}
and L a σ ∗-overfield of K such that L/K is a Galois extension. Then:

(i) Galσ (L/K) is a closed subgroup of Gal(L/K).
(ii) Let λ be the mapping of Gal(L/K) into itself such that λ(g)= g−1ᾱ(g) (as before,

ᾱ denotes the automorphism of Gal(L/K) induced by α). Then
(a) λ is a continuous function;
(b) L/K is universally compatible if and only if λ maps Gal(L/K) onto itself ;
(c) L/K is monadic if and only if λ is one-to-one on Gal(L/K).

(iii) If L/K is universally compatible andM/K a σ ∗-subextension of L/K , thenM/K
is universally compatible.

(iv) Let M/K be a σ ∗-subextension of L/K such that M/K is a Galois extension. If
L/M and M/K are universally compatible then L/K is universally compatible. If
L/K is monadic and L/M is universally compatible, then M/K is monadic.

(v) L/K is universally compatible if and only if every σ ∗-subextension of L/K which
is finite-dimensional Galois over K is universally compatible.

THEOREM 5.1.4. LetK and L be as in Theorem 5.1.3 and letM/K be a σ ∗-subextension
of L/K such that M is a Galois extension of K . Then

(i) Galσ (L/M) is a closed normal stable subgroup of Galσ (L/K).
(ii) There exists a natural monomorphism ψ : Galσ (L/K)/Galσ (L/M) →

Galσ (M/K). If L/M is universally compatible then ψ is an isomorphism.
(iii) IfL/K is universally compatible andψ is an isomorphism, thenL/M is universally

compatible.

5.2. Picard–Vessiot theory of linear homogeneous difference equations

Throughout this section all fields have characteristic zero and all difference fields are in-
versive and ordinary. If K is such a difference field with a basic set σ = {α}, then its
field of constants {c ∈ K | α(c) = c} will be denoted by CK . All topological statements
of this section will refer to the Zariski topology. As before, K{y} will denote the ring of
σ -polynomials in one σ -variable y over K . Furthermore, for any n-tuple b= (b1, . . . , bn),
C∗(b) will denote the determinant of the matrix (αibj )0�i�n−1,1�j�n.

Let us consider a linear homogeneous difference equation of order n over K , that is an
algebraic difference equation of the form

αny + an−1α
n−1y + · · · + a0y = 0, (5.2.1)
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where a0, . . . , an−1, an ∈ K (n > 0) and a0 �= 0. A σ ∗-overfield M of K is said to
be a solution field over K for equation (5.2.1) or for the σ -polynomial f (y) = αny +
an−1α

n−1y+· · ·+ a0y, ifM =K〈b〉∗ for an n-tuple b= (b1, . . . , bn) such that f (bj )= 0
for j = 1, . . . , n and C∗(b) �= 0. Any such n-tuple b is said to be a basis of M/K or
a fundamental system of solutions of (5.2.1). If, in addition, CK is algebraically closed
and CM = CK , then M is said to be a Picard–Vessiot extension (PVE) of K (for equa-
tion (5.2.1)).

Note that if C∗(b) �= 0, then the elements b1, . . . , bn are linearly independent over the
constant field of any difference field containing them (see [32, Chapter 8, Lemma II]).

PROPOSITION 5.2.1 [56]. With the above notation, let M be a σ ∗-overfield of K and
R ⊆ CM .

(i) A subset of R that is linearly (algebraically) dependent over K is linearly (respec-
tively, algebraically) dependent over CK .

(ii) If N is a σ ∗-overfield of K with CN = CK , then N and K(R) are linearly disjoint
over K .

(iii) CK(R) = CK(R).

If M is a solution field for equation (5.2.1) over K with basis b= (b1, . . . , bn) and b′ is
any solution of (5.2.1) in a σ ∗-overfield N of M , then b′ =∑n

i=1 cj bj for some elements
c1, . . . , cn ∈ CN (see [32, Chapter 8, Theorem XII]). It follows that a σ -homomorphism h

of K{b}/K into a σ ∗-overfield N of M determines an n× n-matrix (cij ) over CN by the
equations h(bi)=∑n

i=1 cij bj . The following theorem and corollary proved in [56] show
that the matrices corresponding to σ -homomorphisms satisfy a set of algebraic equations
over CM , and, in the case of a PVE, form an algebraic matrix group.

THEOREM 5.2.2. If M/K is a solution field with basis b = (b1, . . . , bn), then there is a
set Sb in the polynomial ring CM [xij ] (1 � i, j � n) so that if N is a σ ∗-overfield of M
then the following hold.

(i) A σ -homomorphism of K{b}/K to N/K determines a matrix over CN that annuls
every polynomial of Sb . (In the last case we say “the matrix satisfies Sb”.)

(ii) A matrix over CN satisfying Sb defines a σ -homomorphism of K{b}/K to N/K .
(iii) If CM = CK then a σ -homomorphism of K{b}/K to N/K determines a σ -

isomorphism if and only if its matrix is non-singular.

COROLLARY 5.2.3. IfM/K is a PVE then the difference Galois group Galσ (M/K) is an
algebraic matrix group over CK .

If M is a solution field for equation (5.2.1) and b = (b1, . . . , bn) a basis of M/K , then
Sb will denote the set of polynomials in Theorem 5.2.2 (Sb ⊆ CM [xij ], 1 � i, j � n), and
Tb will denote the variety of Sb over the algebraic closure of CM . The following example
shows that a matrix in Tb may not correspond to a difference homomorphism of K{b}.

EXAMPLE 5.2.4 [56]. Let b be a solution of the difference equation αy + y = 0 which is
transcendental over K . Then the constant field of K(b) contains CK(b2), Sb = {0}, and Tb
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contains the algebraic closure of CK(b2). Since no σ ∗-overfield of K〈b〉∗ contains b in its
constant field, Theorem 5.2.2 does not apply to the matrix (b). The algebraic isomorphism
h :K{b}→K{b} defined by h(b)= b2, is not a σ -homomorphism.

Let L be an intermediate σ ∗-field of a difference (σ ∗-) field extension M/K (M is a
solution field for equation (5.2.1) over K). A σ ∗-overfield N of M is said to be a uni-
versal extension of M for L if every σ -isomorphism of L over K can be extended to
a σ -isomorphism of M into N . It follows from Theorem 4.7.1 that if L is algebraically
closed in M , then universal extensions of M for L exist. At the same time, Example 5.2.4
shows that even if L itself is a solution field over K , M need not be a universal σ ∗-field
extension for L.

PROPOSITION 5.2.5. Let M be a solution field for equation (5.2.1) over a difference field
K and b a basis ofM/K . If the field K is algebraically closed inM , then the variety Tb is
irreducible and dimTb = trdegK M .

Let M be a σ ∗-overfield of a difference field K with a basic set σ . We say that the
extension M/K is σ -normal if for every x ∈M \K , there exists a σ -automorphism φ of
M such that φ(x) �= x and φ(a) = a for every a ∈ K . (Note that C. Franke, [56], called
such extensions “normal” while similar differential field extensions are called “weakly
normal”.) The existence of proper monadic algebraic difference extensions suggests the
existence of solution fields that are not σ -normal extensions.

The following result is a version of the fundamental Galois theorem for PVE. As usual,
primes indicate the Galois correspondence.

THEOREM 5.2.6 [56]. Let M/K be a difference (σ ∗-) PVE, G = Galσ (M/K), L an in-
termediate σ ∗-field of M/K , and H an algebraic subgroup of G. Then

(i) L′ is an algebraic matrix group.
(ii) H ′′ =H .

(iii) If L is algebraically closed in M , then M is σ -normal over L and L′′ = L.
(iv) There is a one-to-one correspondence between intermediate σ ∗-fields ofM/K that

are algebraically closed in M and connected algebraic subgroups of G.
(v) LetK denote the algebraic closure ofK inM . IfH is a connected normal subgroup

of G, then G/H is the full group of H ′ over K (that is, G/H is isomorphic to
Galσ (H ′/K)) and H ′ is σ -normal over K .

(vi) If L is algebraically closed in M and σ -normal over K , then L′ is a normal sub-
group of G and G/L′ is the full group of L over K .

LetM be a σ ∗-overfield of a difference (σ ∗-) fieldK andH a subgroup of Galσ (M/K).
If L is an intermediate σ ∗-field ofM/K , then L′H will denote the group {h ∈H | h(a)= a
for all a ∈ L} ⊆H . A subgroup A of H is said to be Galois closed in H if (A′)′H =A. An
intermediate field N of M/K is said to be Galois closed with respect to H if (N ′H )′ =N .

THEOREM 5.2.7 [56,58]. LetM be a solution field for a difference equation (5.2.1) over a
difference (σ -) field K . Let b be a basis of M/K and H a subgroup of Galσ (M/K) which
is naturally isomorphic to the set of matrices Tb corresponding to H . Then:
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(i) Algebraic subgroups of H are Galois closed in H .
(ii) Connected subgroups of H correspond to intermediate σ ∗-fields of M/K alge-

braically closed in M .
(iii) Let L be an intermediate σ ∗-field of M/K which is algebraically closed in M . Let

T Lb be the variety obtained by considering M as a solution field over L with basis
b. If L′H is dense in T Lb , then (L′H )′ = L and L′H is connected.

(iv) If the algebraic closure of K(CM) in M coincides with K , then M/K is a σ -
normal extension. In this case, there is a one-to-one correspondence between con-
nected algebraic subgroups of Galσ (M/K) and intermediate σ ∗-fields of M/K
algebraically closed in M .

Some generalization of the last theorem was obtained in [59]. LetK andM be as in The-
orem 5.2.7, L an intermediate σ ∗-field ofM/K , and N a σ ∗-overfield ofM . Furthermore,
let IL denote the set of all σ -isomorphisms of M into N leaving L fixed.

PROPOSITION 5.2.8. If L is algebraically closed in M , then IL is a connected alge-
braic matrix group. Furthermore, Galσ (M/L) is dense in IL and IL is isomorphic to
Galσ (M(CN)/L(CN)).

THEOREM 5.2.9. Let K and M be as in Theorem 5.2.7, H an algebraic subgroup of
Galσ (M/K), and L an intermediate σ ∗-field of M/K . Then

(i) H ′′ =H .
(ii) If the field L is algebraically closed inM , then L′′ = L andM is σ -normal over L.

(iii) There is a one-to-one correspondence between connected algebraic subgroups of
Galσ (M/K) and intermediate σ ∗-fields of M/K algebraically closed in M .

(iv) Assume that H is connected and L=H ′. In this case
(a) H is a normal subgroup of Galσ (M/K) if and only if L is σ -normal over K .
(b) If H is a normal subgroup of Galσ (M/K) and N is any universal extension of

M for L, then IL is a normal subgroup of IK . The homomorphisms defined by
restriction and extension determine natural isomorphisms Galσ (M/K)/H →
Galσ (L/K)→ IK/IL and the image of Galσ (M/K)/H is dense in IK/IL.

In general a full difference Galois group G= Galσ (M/K) is not naturally isomorphic
to a matrix group (if g,h ∈G, then the matrix of the composite of g and h is the matrix
of g times the matrix obtained by applying g to the entries of the matrix of h). However,
if we adjoin CM to K and consider M as a solution field over K(CM), we obtain a group
D which is naturally isomorphic to a group of matrices contained in an algebraic variety
T . Theorem 5.2.2 implies that T consists only of isomorphisms and singular matrices. The
Galois correspondence given in Theorem 5.2.7 for D and fields between K(CM) and M
depends in part on whether a subgroup of D is dense in a variety containing it. Examples
where this is not the case are not known.

If M is a solution field for (5.2.1) over K with a basis b, then the subsets of Tb and
D consisting of non-singular matrices with entries in CK are automorphism groups. The
following two results obtained in [56] deal with these groups.
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PROPOSITION 5.2.10. LetM be a solution field for the difference equation (5.2.1) over a
difference (σ -) field K . Let b be a basis of M/K , Λ a subfield of CM , and Sb the subset
of the polynomial ring CM [xij ] (1 � i, j � n) whose existence is established by Theo-
rem 5.2.2. Then there exists a set S′b ⊆Λ[xij ] so that the following hold.

(i) Every solution of the set S′b is a solution of Sb .
(ii) Every solution of Sb that lies in Λ is a solution of S′b.

(iii) If Λ is algebraically closed and contained in K , then the variety of S′b over Λ is an
algebraic matrix group of automorphisms of M/K plus singular matrices.

Note that Theorem 5.2.7 can be applied to any group G(1)b obtained by deleting the

singular matrices from a variety T (1)b determined as in Proposition 5.2.10 by a basis b and
a subfield Λ.

PROPOSITION 5.2.11. Let K , M and b be as in Proposition 5.2.10, and let Λ be an
algebraically closed field of constants of K . Let G(1)b be the group determined by b and Λ

as in Proposition 5.2.10 and let C(1)b be the component of the identity of G(1)b . Finally, let
Cb be the irreducible subvariety of Tb determined by K (the algebraic closure of K inM).
The following are equivalent and imply that K is Galois closed with respect to C(1)b .

(i) C(1)b is dense in Cb .

(ii) dimCb = dimC(1)b .
(iii) There is a basis for the ideal of Cb in the polynomial ring C[xij ] (1 � i, j � n).

Let M be a solution field for difference equation (5.2.1) over a difference (σ -) field
K . M/K is called a generalized Picard–Vessiot extension (GPVE) if there is a basis b of
M/K and an algebraically closed subfield Λ of CK such that C(1)b is dense in Cb . M is
said to be a generic solution field for equation (5.2.1) if trdegK M = n2 (n is the order of
the difference equation).

PROPOSITION 5.2.12. Every linear homogeneous difference equation over a difference
field K has a generic solution field M . Therefore, if CK contains an algebraically closed
subfield, then every linear homogeneous difference equation over K has a solution field
which is a GPVE.

THEOREM 5.2.13. If L =K〈a〉∗ and M = K〈b〉∗ are solution fields of equation (5.2.1)
over a difference (σ -) field K , then trdegK(CL) L = trdegK(CM)M . Furthermore, if L/K
and M/K are compatible, then

(i) There is a difference (σ -) field M1 isomorphic to M and a set of constants R such
that L(R)=M1(R).

(ii) If L is a PVE, then there is a specialization b→ b′ with L=K〈b′〉∗.
(iii) If L and M are PVE of K , then L and M are σ -isomorphic over K .

As in the corresponding theory for the differential case, three types of extensions are
used in constructing solution fields for linear homogeneous difference equations over
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a difference field K : solution fields for difference equations αy = Ay or αy − y = B
(A,B ∈K), and algebraic extensions. The following is a brief account of this approach
(the proofs can be found in [56]).

PROPOSITION 5.2.14. Let K be a difference field with a basic set σ = {α}, 0 �= B ∈ K ,
and let a be a solution of the difference equation

αy − y = B. (5.2.2)

Then M =K(a) is a corresponding solution field over K with basis b= (a,1).
If there is no solution of equation (5.2.2) in K , then a is transcendental over K , K(a)

has no new constants, and there are no intermediate σ ∗-fields different from K and K(a).
If there is a solution f ∈ K , then K(a) is an extension of K generated by a constant

which may be either transcendental or algebraic over K . If a is transcendental, then Tb is
the set of matrices

( 1 c
0 1

)
where c lies in the algebraic closure of CM . If CM = CK , then the

full Galois group of M/K is isomorphic to the additive group of CK .

PROPOSITION 5.2.15. LetK be as before, a a non-zero solution of the difference equation

αy −Ay = 0 (5.2.3)

(A ∈K), and there is no non-zero solution in K of the equation

αy −Any = 0 (5.2.4)

for n ∈N, n > 0. Then a is transcendental over K and K(a) has no new constants.
If L is an intermediate σ ∗-field, then L=K(an) for some n ∈N.
If equation (5.2.4) has a solution for some n ∈ N, n > 0, then K(a) is obtained from

K by an extension by a constant, which may be either transcendental or algebraic over
K , followed by an algebraic extension. If a is transcendental over K , the variety Ta is
the full set of all constants. If CK(a) = CK , then the full Galois group of K(a)/K is a
multiplicative subgroup of CK .

DEFINITION 5.2.16. Let K be a difference field with a basic set σ and N a σ ∗-overfield
of K . N/K is said to be a Liouvillian extension (LE) if there exists a chain

K =K0 ⊆K1 ⊆ · · · ⊆Kt =N, Kj+1 =Kj 〈aj 〉∗ (j = 0, . . . , t − 1), (5.2.5)

where aj is one of the following.
(a) A solution of an equation (5.2.2) where B ∈Kj and there is no solution of (5.2.2)

in the field Kj .
(b) A solution of an equation (5.2.3) where A ∈Kj and for any n ∈ N, n > 0, there is

no non-zero solution of (5.2.4) in the field Kj .
(c) An algebraic element over Kj .
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More generally, N/K is said to be a generalized Liouvillian extension (GLE) if there
exists a chain (5.2.5) where aj is either a solution of (5.2.2) with B ∈ Kj or a solution
of (5.2.3) with A ∈Kj , or an algebraic element over Kj .

It follows from the definition that if a difference field K has an algebraically closed
field of constants and a solution field M for a difference equation (5.2.1) is contained in a
Liouvillian extension N of K , then M is a PVE of K .

The following results connect the solvability of a difference equation with the solvability
of a matrix group.

THEOREM 5.2.17. Let M be a solution field for the difference equation (5.2.1) over a
difference (σ -) fieldK . LetH be a connected group of automorphisms ofM/K with matrix
entries with respect to some basis b in an algebraically closed subfield of CM . (It need not
be isomorphic to the set of matrices corresponding to H .)

(i) If H is solvable, then M/H ′ is a GLE.
(ii) If H is reducible to diagonal form, then M/H ′ can be obtained by solving equa-

tions of the type (5.2.3).
(iii) If H is reducible to special triangular form, thenM/H ′ can be obtained by solving

equations of the type (5.2.2).

THEOREM 5.2.18. Let K be a difference field with a basic set σ = {α} and M a σ ∗-
overfield of K .

(i) If M/K is a PVE, then M/K is a GLE if and only if the component of identity of
the Galois group is solvable.

(ii) If M is a solution field of a difference equation (5.2.1) contained in a GLE N/K ,
then the component of the identity of Gal(M/K(CM)) is solvable. Furthermore, if
M/K(CM) is a GPVE, then M/K is a GLE.

(iii) Suppose that M and L are solution fields of a difference equation (5.2.1) over K .
If L is contained in a GLE N of K and M/K is compatible with N/K , then M is
contained in a GLE of K .

(iv) If N is a generic solution field for (5.2.1) over K and a solution field L for (5.2.1)
is contained in a GLE of K , then N is contained in a GLE of K .

The following example indicates that it is not satisfactory to consider equation (5.2.1) to
be “solvable by elementary operations” only if its solution field is contained in a GLE.

EXAMPLE 5.2.19. With the notation of Theorem 5.2.18, suppose that K contains an el-
ement j with α(j) �= j and α2(j) = j , and an element u with the following property. If
uk = vα(v) or uk = α(v)

v
for some v ∈K, k ∈N, then k = 0.

If η is any non-zero solution of the difference equation α2y − uy = 0, then M =K〈η〉∗
is a solution field for this equation with basis (η,α(η)), trdegK M = 2, CM = CK and
Galσ (M/K) is commutative. However, as it is shown in [57, Example 1], M is not a GLE
of K .

In what follows we consider some results by C. Franke (see [57] and [62]) that character-
ize the solvability of a difference equation of the form (5.2.1) “by elementary operations”.
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Throughout the rest of the section K denotes an inversive difference field with a basic set
σ = {α}. If L is a σ ∗-overfield of K , then KL will denote the algebraic closure of K(CL)
in L.

DEFINITION 5.2.20. Let N be a σ ∗-overfield of K , and q a positive integer. A q-chain
from K to N is a sequence of σ ∗-fields K =K1 ⊆K1 ⊆ · · · ⊆Kt = N , Ki+1 =Ki〈ηi〉∗
where ηi is one of the following.

(a) Algebraic over K .
(b) A solution of an equation αqy = y +B for some B ∈Ki .
(c) A solution of an equation αqy =Ay for some A ∈Ki .
If there is a q-chain from K to N , then N is called a qLE of K .

Let K(q) denote the field K treated as an inversive difference field with basic set σq =
{αq} and let N(q) be a σ ∗-overfield N of K treated as a σ ∗q -overfield of K(q). In this case

N is a qLE of K if and only if N(q) is a GLE of K(q) (see [57, Proposition 2.1]).

THEOREM 5.2.21. If M is a σ -normal σ ∗-overfield of K such that K = KM and the
group Galσ (M/K) is solvable, then M is contained in a qLE of K . If, in addition, M/K
is a σ ∗-field extension generated by a fundamental system of solutions of a difference
equation (5.2.1), then M is contained in a GLE of K .

THEOREM 5.2.22. Let N be a qLE of K and L an intermediate σ ∗-field of N/K . Then
Galσ (L/KL) is solvable.

Let M be a σ ∗-field extension of K . We say that difference equation (5.2.1) is solvable
by elementary operations inM over K ifM is a solution field for (5.2.1) over K andM is
contained in a qLE of K . This concept is independent of the solution field M , as follows
from the second statement of the next theorem.

THEOREM 5.2.23. Let a σ ∗-field M be a solution field for (5.2.1) over K .
(i) Equation (5.2.1) is solvable by elementary operations in M over K if and only if

the group Galσ (M/K) has a subnormal series whose factors are either finite or
commutative.

(ii) If (5.2.1) is solvable by elementary operations in M over K and N is another
solution field for (5.2.1) over K , then (5.2.1) is solvable by elementary operations
in N overK . (This property allows one to say that (5.2.1) is solvable by elementary
operations over K if it is solvable by elementary operations in some solution field
M ⊇K .)

(iii) If (5.2.1) is solvable by elementary operations over K and L a σ ∗-overfield of K ,
then (5.2.1) is solvable by elementary operations over L.

A number of results that specify the results of this section for the case of second-order
difference equations were obtained in [56] and [57]. C. Franke, [56], also showed that the
properties of having algebraically closed field of constants and having full sets of solutions
of difference equations can be incompatible. Indeed, ifK is a difference field with basic set
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σ = {α} (CharK �= 2) such that CK is algebraically closed, then the difference equation
αy + y = 0 has no non-zero solution in K . (If b is such a solution, then α(b2) = b2, so
b2 ∈ CK . Since CK is algebraically closed, b ∈ CK contradicting the fact that α(b)=−b.)

This observation and the fact that one could not associate a Picard–Vessiot-type exten-
sion to every difference equation have led to a different approach to the Galois theory of
difference equations. This approach, based on the study of simple difference rings rather
than difference fields, was realized by M. van der Put and M.F. Singer in their mono-
graph [142]. In the next section we give an outline of the corresponding theory.

We conclude this section with one more theorem on the Galois correspondence for dif-
ference fields (see Theorem 5.2.27 below). This result is due to R. Infante who developed
the theory of strongly normal difference field extensions (see [70–74]). Under some natural
assumptions, the class of such extensions of a difference fieldK includes, in particular, the
class of solution fields of linear homogeneous difference equations over K .

Let K be an ordinary inversive difference field of zero characteristic with basic set σ =
{α}. LetM be a finitely generated σ ∗-overfield of K such that K is algebraically closed in
M and CM = CK = C. As above, KM will denote the algebraic closure of K(CM) in M .
Furthermore, for any σ -isomorphism φ of M/K into a σ ∗-overfield of M , Cφ will denote
the field of constants of M〈φM〉∗.

DEFINITION 5.2.24. With the above conventions, M is said to be a strongly normal ex-
tension of K if for every σ -isomorphism φ of M/K into a σ ∗-overfield of M , M〈Cφ〉∗ =
M〈φM〉∗ = φM〈Cφ〉∗.

PROPOSITION 5.2.25. Let M be a solution field of a difference equation of the
form (5.2.1) over K . Then M is a strongly normal extension of KM .

PROPOSITION 5.2.26. Let M be a strongly normal σ ∗-field extension of K . Then
(i) ldM/K = 1.

(ii) If φ is any σ -isomorphism of M/K into a σ ∗-overfield of M , then Cφ is a finitely
generated extension of C and trdegM M〈φM〉∗ = trdegC Cφ .

THEOREM 5.2.27. IfM is a strongly normal σ ∗-field extension of K , then there is a con-
nected algebraic groupG defined over CM such that the connected algebraic subgroups of
G are in one-to-one correspondence with the intermediate σ ∗-fields ofM/K algebraically
closed in M . Furthermore, there is a field of constants C′ such that C′-rational points of
G are all the σ -isomorphisms of M/K into M〈C′〉∗ and this set is dense in G.

5.3. Picard–Vessiot rings and the Galois theory of difference equations

In this section we discuss some basic results of the Galois theory of difference equations
based on the study of simple difference rings associated with such equations. The complete
theory is presented in [142] where one can find the proofs of all statements of this section.

All difference rings and fields considered below are supposed to be ordinary and inver-
sive. The basic set of a difference ring will be always denoted by σ and the only element



324 A.B. Levin

of σ will be denoted by φ (we follow the notation of [142]). As usual, GLn(R) will denote
the set of all non-singular n× n-matrices over a ring R.

Let R be a difference ring, A ∈ GLn(R), and Y a column vector (y1, . . . , yn)
T whose

coordinates are σ ∗-indeterminates over R. (The corresponding ring of σ ∗-polynomials
is still denoted by R{y1, . . . , yn}∗.) In what follows, we will study systems of difference
equations of the form φY = AY where φY = (φy1, . . . , φyn)

T. Notice that an n-th order
linear difference equation φny + · · · + a1φy + a0y = 0 (a0, a1, . . . ∈ R and y is a σ ∗-
indeterminate over R) is equivalent to such a system with yi = φi−1y (i = 1, . . . , n) and

A=

⎛⎜⎜⎝
0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . .

−a0 −a1 −a2 . . . −an−1

⎞⎟⎟⎠ .
Clearly, A ∈GLn(R) if and only if a0 �= 0.

With the above notation, a fundamental matrix with entries in R for φY = AY is a
matrix U ∈ GLn(R) such that φU = AU (φU is the matrix obtained by applying φ to
every entry of U ). If U and V are fundamental matrices for φY = AY , then V = UM for
someM ∈GLn(CR) since U−1V is left fixed by φ. (As in Section 5.2, CR denotes the ring
of constants of R, that is, CR = {a ∈R | φa = a}.)

DEFINITION 5.3.1. Let K be a difference field. A K-algebra R is called a Picard–Vessiot
ring (PVR) for an equation

φY =AY (A ∈GLn(K)) (5.3.1)

if it satisfies the following conditions.
(i) R is a σ ∗-K-algebra (as usual, the automorphism of R which extends φ is denoted

by the same letter).
(ii) R is a simple difference ring, that is, the only difference ideals of R are (0) and R.

(iii) There exists a fundamental matrix for φY =AY with entries in R.
(iv) R is minimal in the sense that no proper subalgebra R satisfies (i)–(iii).

EXAMPLE 5.3.2 (see [142, Examples 1.3 and 1.6]). Let C be an algebraically closed
field, CharC �= 2. Let us define an equivalence relation on the set of all sequences a =
(a0, a1, . . .) of elements ofC by saying that a is equivalent to b= (b0, b1, . . .) if there exists
N ∈ N such that an = bn for all n > N . With coordinatewise addition and multiplication,
the set of all equivalence classes forms a ring S. This ring can be treated as a difference
ring with respect to its automorphism φ that maps an equivalent class of (a0, a1, . . .) to
the equivalent class of (a1, a2, . . .). (It is easy to check that φ is well-defined.) To simplify
notation we shall identify a sequence a with its equivalence class.

Let R be the difference subring of S generated by C and j = (1,−1,1,−1, . . .), that
is, R = C[j ]∗. The 1× 1-matrix whose only entry is j is the fundamental matrix of the
equation φy =−y. This ring is isomorphic to C[X]/(X2−1) (C[X] is the polynomial ring
in one indeterminate X over C) whose only non-trivial ideals are generated by the cosets
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of X− 1 and X+ 1. Since the ideals generated in R by j + 1 and j − 1 are not difference
ideals, R is a simple difference ring. Therefore, R is a PVR for φy =−y over C. Note that
R is reduced but it is not an integral domain.

PROPOSITION 5.3.3. Let K be a difference (σ ∗-) field with an algebraically closed field
of constants CK .

(i) If a σ ∗-K-algebra R is a simple difference ring finitely generated as a K-algebra,
then CR = CK .

(ii) If R1 and R2 are two PVR’s for a difference equation (5.3.1), then there exists a
σ -isomorphism between R1 and R2 that leaves the field K fixed.

To form a PVR for a difference equation (5.3.1) one can use the following procedure
suggested in [142, Chapter 1]. Let (Xij ) denote an n× n-matrix of indeterminates over K
and det denote the determinant of this matrix. Then one can extend φ to an automorphism
of the K-algebra K[Xij ,det−1] by setting (φXij )= A(Xij ). If I is a maximal difference
ideal of K[Xij ,det−1] then K[Xij ,det]/I is a PVR for (5.3.1), it satisfies all conditions
of Definition 5.3.1. (It is easy to see that I is a radical σ ∗-ideal and K[Xij ,det]/I is a
reduced prime difference ring.) Moreover, any PVR for difference equation (5.3.1) will be
of this form.

Let K denote the algebraic closure of K and let D =K[Xij ,det−1]. Then the automor-
phism φ extends to an automorphism of K which, in turn, extends to an automorphism of
D such that (φXij )=A(Xij ) (the extensions of φ are also denoted by φ). It is easy to see
that every maximal idealM ofD has the form (X11−b11, . . . ,Xnn−bnn) and corresponds
to a matrix B = (bij ) ∈ GLn(K). Then φ(M) is a maximal ideal of D that corresponds to
the matrix A−1φ(B) where φ(B) = (φ(bij )). Thus, the action of φ on D induces a map
τ on GLn(K) such that τ(B) = A−1φ(B). The elements f ∈D are seen as functions on
GLn(K). For any f ∈ D,B ∈ GLn(K), we have (φf )(τ (B)) = φ(f (B)). Furthermore,
if J is an ideal of K[Xij ,det−1] such that φ(J ) ⊆ J , then φ(J ) = J . Also, for reduced
algebraic subsets Z of GLn(K), the condition τ(Z)⊆ Z implies τ(Z)= Z.

PROPOSITION 5.3.4 [142, Lemma 1.10]. The ideal J of a reduced algebraic subset Z of
GLn(K) satisfies φ(J )= J if and only if Z(K) satisfies τZ(K)= Z(K).

An ideal I maximal among the φ-invariant ideals corresponds to a minimal (reduced)
algebraic subset Z of GLn(K) such that τZ(K) = Z(K). Such a set is called a minimal
τ -invariant reduced set.

Let Z be a minimal τ -invariant reduced subset of GLn(K) with an ideal I ⊆
K[Xij ,det−1] and let O(Z)=K[Xij ,det−1]/I . Let us denote the image of Xij in O(Z)
by xij and consider the rings

K

[
Xij ,

1

det

]
⊆ O(Z)⊗K K

[
Xij ,

1

det(Xij )

]
= O(Z)⊗C C

[
Yij ,

1

det(Yij )

]
⊇ C
[
Yij ,

1

det(Yij )

]
. (5.3.2)
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Let (I ) denote the ideal of O(Z) ⊗K K[Xij ,det−1] generated by I and let J =
(I ) ∩ C[Yij ,det−1]. The ideal(I ) is φ-invariant, the set of constants of O(Z) is C, and
J generates the ideal (I ) in O(Z)⊗K K[Xij ,det−1]. Furthermore, one has natural map-
pings

O(Z)→O(Z)⊗K O(Z)

=O(Z)⊗C
(
C

[
Yij ,

1

det(Yij )

]
/J

)
← C

[
Yij ,

1

det(Yij )

]
/J. (5.3.3)

Suppose that O(Z) is a separable extension of K (for example, CharK = 0 or K is per-
fect). One can show (see [142, Section 1.2]) that O(Z)⊗K O(Z) is reduced. Therefore,
C[Yij ,det(Yij )−1]/J is reduced and J is a radical ideal. Furthermore, the following con-
siderations imply that J is the ideal of an algebraic subgroup of GLn(C).

Let A ∈ GLn(C) and let δA denote the action on the terms of (5.3.2) defined by
(δAXij ) = (Xij )A and (δAYij ) = (Yij )A. Then the following eight properties are equiv-
alent:

(1) ZA= Z;
(2) ZA∩Z �= ∅;
(3) δAI = I ;
(4) I + δAI is not the unit ideal of K[Xij ,det−1];
(5) δA(I )= (I );
(6) (I )+ δA(I ) is not the unit ideal of O(Z)⊗K[Xij ,det−1];
(7) δAJ = J ;
(8) J + δAJ is not the unit ideal of O(Z)⊗C[Yij ,det−1].
The set of all matrices A ∈ GLn(C) satisfying the equivalent conditions (1)–(8) form a

group.

PROPOSITION 5.3.5 (see [142, Lemma 1.12]). Let O(Z) be a separable extension of K .
With the above notation, A satisfies the equivalent conditions (1)–(8) if and only if A lies
in the reduced subspace V of GLn(C) defined by J . Therefore, the set of such A is an
algebraic group.

Let G denote the group of all automorphisms of O(Z) over K which commute with the
action of φ. The group G is called the difference Galois group of the equation φ(Y )=AY
over the field K .

If δ ∈ G, then (δxij ) = (xij )A where A ∈ GLn(C) is such that δA (as defined above)
satisfies δAI = I . Therefore, one can identify G and the subspace V from the last propo-
sition. Denoting the ring C[Yij ,det−1]/J by O(G) and setting O(Gk) = O(G) ⊗C k,
GK = spec(O(Gk)), one can use (5.3.3) to obtain the sequence

O(Z)→O(Z)⊗K O(Z)=O(Z)⊗C O(G)=O(Z)⊗K O(GK). (5.3.4)

The first embedding of rings corresponds to the morphism Z × GK → Z given by
(z, g) �→ zg. The identification O(Z)⊗K O(Z) = O(Z)⊗C O(G) =O(Z)⊗K O(GK)
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corresponds to the fact that the morphism Z ×GK → Z ×Z given by (z, g) �→ (zg, z) is
an isomorphism. Thus, Z is a K-homogeneous space for GK , that is Z/K is a G-torsor.
The following result (proved in [142, Section 1.2]) shows that a PVR is the coordinate ring
of a torsor for its difference Galois group.

THEOREM 5.3.6. Let R be a separable PVR over K , a difference field with an alge-
braically closed field of constants C. Let G denote the group of the K-algebra automor-
phisms of R which commute with φ. Then

(i) G has a natural structure as reduced linear algebraic group over C and the affine
scheme Z over K has the structure of a G-torsor over K .

(ii) The set of G-invariant elements of R is K and R has no proper, non-trivial G-
invariant ideals.

(iii) There exist idempotents e0, . . . , et−1 ∈R (t � 1) such that
(a) R =R0 ⊕ · · · ⊕Rt−1 where Ri = eiR for i = 0, . . . , t − 1.
(b) φ(ei) = ei+1 (mod t) and so φ maps Ri isomorphically onto Ri+1 (mod t)

and φt leaves each Ri invariant.
(c) For each i,Ri is a domain and is a Picard–Vessiot extension of eiK with respect

to φt .

Let K be a difference field with an algebraically closed field of constants C and R
a PVR for an equation φ(Y ) = AY over K . Let δ = δA and let R = R0 ⊕ · · · ⊕ Rt−1
(Ri = eiR for i = 0, . . . , t − 1) be as in the last theorem. Then δ :Ri → Ri+1 is an
isomorphism and R0 is a PVR over K with respect to the automorphism δt . Let us
define two mappings Γ : Gal(R0/K)→ Gal(R/K) and Δ : Gal(R/K)→ Z/tZ as fol-
lows. For any ψ ∈ Gal(R0/K), we set Γ (ψ) = χ where for r = (r0, . . . , rt−1) ∈ R,
χ(r0, . . . , rt−1) = (ψ(r0), δψδ−1(r1), . . . , δ

t−1ψδ1−t (rt−1)). In order to define Δ, notice
that if χ ∈Gal(R/K), then χ permutes with each ei . If χ(e0)= ej , we define Δ(χ)= j .

PROPOSITION 5.3.7. Let R be a separable PVR over K , a difference field with an alge-
braically closed field of constants C.

(i) With the above notation, we have the exact sequence 0 → Gal(R0/K)
Γ→

Gal(R/K)
Δ→Z/tZ→ 0.

(ii) Let G denote the difference Galois group of R over K . If H 1(Gal(K/K),G(K))=
0, then Z = spec(R) is G-isomorphic to the G-torsor GK and so R = C[G] ⊗K .

In what follows we present a characterization of the difference Galois group of a PVR
over the field of rational functions C(z) in one variable z over an algebraically closed field
C of zero characteristic (one can assume C = C). We fix a ∈ C(z), a �= 0, and consider
C(z) as an ordinary difference field with the basic automorphism φa : z �→ z+ a (φa leaves
the field C fixed). This difference field will be denoted by K . Note that φa does not extend
to any proper finite field extension of K (see [142, Lemma 1.19]).

THEOREM 5.3.8. Let K = C(z) be as above and let G be an algebraic subgroup of
GLn(C). Let φ(Y )=AY be a system of difference equations with A ∈G(K). Then
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(i) The Galois group of φ(Y )=AY over K is a subgroup of GC .
(ii) Any minimal element in the set of C-subgroupsH ofG for which there exists a B ∈

Gln(K) with B−1A−1φ(B) ∈H(K) is the difference Galois group of φ(Y )= AY
over K .

(iii) The difference Galois group of φ(Y ) = AY over K is G if and only if for any
B ∈G(K) and any proper C-subgroup H of G, one has B−1A−1φ(B) /∈H(K).

DEFINITION 5.3.9. Let K be an ordinary difference field with a basic set σ = {φ} and
let A ∈ Gln(K). A difference overring L of K is said to be the total Picard–Vessiot ring
(TPVR) of the equation φ(Y )=AY over K if L is the total ring of fractions of the PVR R
of the equation.

As we have seen, a PVR R is a direct sum of domains: R =R0⊕· · ·⊕Rt−1 where each
Ri is invariant under the action of φt . The automorphism φ of R permutes R0, . . . ,Rt−1 in
a cyclic way (that is, φ(Ri)=Ri+1 for i = 1, . . . , t − 2 and φ(Rt−1)=R0). It follows that
the TPVR L is the direct sum of fields: L= L0 ⊕ · · · ⊕Lt−1 where each Li is the field of
fractions of Ri , and φ permutes L0, . . . ,Lt−1 in a cyclic way.

PROPOSITION 5.3.10. With the above notation, let K be a perfect difference field with an
algebraically closed field of constants C and let φ(Y )= BY be a difference equation over
K (B ∈Gln(K)). Let a difference ring extension K ′ ⊇K have the following properties:

(i) K ′ has no nilpotent elements and every non-zero divisor of K ′ is invertible.
(ii) The set of constants of K ′ is C.

(iii) There is a fundamental matrix F for the equation with entries in K ′.
(iv) K ′ is minimal with respect to (i), (ii), and (iii).
Then K ′ is K-isomorphic as a difference ring to the TPVR of the equation.

COROLLARY 5.3.11. Let K be as in the last proposition and let φ(Y )= AY be a differ-
ence equation over K (A ∈ Gln(K)). Let a difference overring R ⊇K have the following
properties.

(i) R has no nilpotent elements.
(ii) The set of constants of the total quotient ring of R is C.

(iii) There is a fundamental matrix F for the equation with entries in R.
(iv) R is minimal with respect to (i), (ii), and (iii).
Then R is a PVR of the equation.

With the above notation, letR =R0⊕· · ·⊕Rt−1 be the PVR of the equation φ(Y )=AY
(A ∈ Gln(K)). Let us consider the difference field (K,φt ) (that is, the field K treated as
a difference field with the basic set σt = {φt }) and the difference equation φt (Y ) = AtY
with At = φt−1(A) . . . φ2(A)φ(A)A.

PROPOSITION 5.3.12.
(i) Each component Ri of R is a PVR for the equation φt (Y )=AtY over the difference

field (K,φt ).
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(ii) Let d � 1 be a divisor of t . Using cyclic notation for the indices {0, . . . , t − 1}, we
consider the subrings

⊕(t/d)−1
m=0 Ri+md of R =R0 ⊕ · · · ⊕Rt−1. Then each of these

subrings is a PVR for the equation φd(Y )=AdY over the difference field (K,φd).

PROPOSITION 5.3.13. Let L be the TPVR of an equation φ(Y )=AY (A ∈Gln(K)) over
a perfect difference field K whose field of constants C = CK is algebraically closed. Let
G denote the difference Galois group of the equation and let H be an algebraic subgroup
of G. Then G acts on L and moreover:

(i) LG, the set of G-invariant elements of L, is equal to K .
(ii) If LH =K , then H =G.

The following result describes the Galois correspondence for total Picard–Vessiot rings.
As is noticed in [142, Section 1.3], one cannot expect a similar theorem for Picard–Vessiot
rings. Indeed, let K be as in the last proposition and R = K ⊗C C[G] where C[G] is
the ring of regular functions on an algebraic group G defined over C. For an algebraic
subgroup H of G, the ring of invariants RH is the ring of regular functions on (G/H)K .
In some cases, e.g., G= Gln(C) and H a Borel subgroup, the space G/H is a connected
projective variety and so the ring of regular functions on (G/H)K is just K .

THEOREM 5.3.14. Let K be a difference field of zero characteristic with a basic set σ =
{φ}. Let A ∈ GLn(K) and let L be a TVPR of the equation φ(Y ) = AY over K . Let F
denote the set of intermediate difference rings F such that K ⊆ F ⊆ L and every non-zero
divisor of F is a unit of F . Furthermore, let G denote the set of algebraic subgroups ofG.

(i) For any F ∈F , the subgroupG(L/F)⊆G of the elements ofG which fix F point-
wise, is an algebraic subgroup of G.

(ii) For any algebraic subgroup H of G, the ring LH belongs to F .
(iii) Let α :F → G and β :G→ F denote the maps F �→G(L/F) and H �→ LH , re-

spectively. Then α and β are each others inverses.

COROLLARY 5.3.15. With the notation of Theorem 5.3.14, a group H ∈ G is a normal
subgroup of G if and only if the difference ring F = LH has the property that for every
z ∈ F \K , there is an automorphism δ of F/K which commutes with φ and satisfies δz �= z.
If H ∈ G is normal, then the group of all automorphisms δ of F/K which commute with φ
is isomorphic to G/H .

COROLLARY 5.3.16. With the above notation, suppose that an algebraic group H ⊆ G
contains G0, the component of the identity of G. Then the difference ring RH (R is a
PVR for the equation φ(Y )= AY over K) is a finite dimension vector space over K with
dimension equal to G :H .

A number of applications of the above-mentioned results on ring-theoretical difference
Galois theory to various types of algebraic difference equations can be found in [64–67]
and [142]. Using the technique of difference Galois groups, the monograph [142] also
develops the analytic theory of ordinary difference equations over the fields C(z) and
C({z−1}).
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We conclude this section with a fundamental result on the inverse problem of ring-
theoretical difference Galois theory.

THEOREM 5.3.17 [142, Theorem 3.1]. Let K = C(z) be the field of fractions of one vari-
able z over an algebraically closed field C of zero characteristic. Consider K as an ordi-
nary difference field with respect to the automorphism φ that leaves the field C fixed and
maps z to z + 1. Then any connected algebraic subgroup G of Gln(C) is the difference
Galois group of a difference equation φ(Y )=AY , A ∈Gln(K).
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This chapter is concerned with the theory of finite reflection groups, that is, finite groups
generated by reflections in a real or complex vector space. This is a rich theory, both for
intrinsic reasons and as far as applications in other mathematical areas or mathematical
physics are concerned. The origin of the theory can be traced back to the ancient study
of symmetries of regular polyhedra. Another extremely important impetus comes from the
theory of semisimple Lie algebras and Lie groups, where finite reflection groups occur as
“Weyl groups”. In the last decade, Broué’s “Abelian defect group conjecture” (a conjecture
concerning the representations of finite groups over fields of positive characteristic) has
lead to a vast research program, in which complex reflection groups, corresponding braid
groups and Hecke algebras play a prominent role. Thus, the theory of reflection groups is
at the same time a well-established classical piece of mathematics and still a very active
research area. The aim of this chapter (and a subsequent one on Hecke algebras) is to give
an overview of both these aspects.

As far as the study of reflection groups as such is concerned, there are (at least) three
reasons why this leads to an interesting and rich theory:

Classification. Given a suitable notion of “irreducible” reflection groups, it is possible
to give a complete classification, with typically several infinite families of groups and a
certain number of exceptional cases. In fact, this classification can be seen as the simplest
possible model for much more complex classification results concerning related algebraic
structures, such as complex semisimple Lie algebras, simple algebraic groups and, even-
tually, finite simple groups. Besides the independent interest of such a classification, we
mention that there is a certain number of results on finite reflection groups which can be
stated in general terms but whose proof requires a case-by-case analysis according to the
classification. (For example, the fact that every element in a finite real reflection group is
conjugate to its inverse.)

Presentations. Reflection groups have a highly symmetric “Coxeter type presentation”
with generators and defining relations (visualised by “Dynkin diagrams” or generalisations
thereof), which makes it possible to study them by purely combinatorial methods (length
function, reduced expressions and so on). From this point of view, the associated Hecke
algebras can be seen as “deformations” of the group algebras of finite reflection groups,
where one or several formal parameters are introduced into the set of defining relations.
One of the most important developments in this direction is the discovery of the Kazhdan–
Lusztig polynomials and the whole theory coming with them. (This is discussed in more
detail in the chapter on Hecke algebras.)

Topology and geometry. The action of a reflection group on the underlying vector space
opens the possibility of using geometric methods. First of all, the ring of invariant sym-
metric functions on that vector space always is a polynomial ring (and this characterises
finite reflection groups). Furthermore, we have a corresponding hyperplane arrangement
which gives rise to the definition of an associated braid group as the fundamental group of
a certain topological space. For the symmetric group, we obtain in this way the classical
Artin braid group, with applications in the theory of knots and links.
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Furthermore, all these aspects are related to each other which – despite being quite
elementary taken individually – eventually leads to a highly sophisticated theory.

We have divided our survey into four major parts. The first part deals with finite complex
or real reflection groups in general. The second part deals with finite real reflection groups
and the relations with the theory of Coxeter groups. The third part is concerned with the
associated braid groups. Finally, in the fourth part, we consider complex irreducible char-
acters of finite reflection groups.

We certainly do not pretend to give a complete picture of all aspects of the theory of
reflection groups and Coxeter groups. Our references cover the period up until 2003. Es-
pecially, we will not say so much about areas that we do not feel competent in; to our best
knowledge, we try to give at least some references for further reading in such cases. This
concerns, in particular, all aspects of infinite (affine, hyperbolic, . . .) Coxeter groups.

1. Finite groups generated by reflections

1.1. DEFINITIONS. Let V be a finite-dimensional vector space over a field K . A reflec-
tion on V is a non-trivial element g ∈ GL(V ) of finite order which fixes a hyperplane
in V pointwise. There are two types of reflections, according to whether g is semisim-
ple (hence diagonalisable) or unipotent. Often, the term reflection is reserved for the first
type of elements, while the second are called transvections. They can only occur in positive
characteristic. Here, we will almost exclusively be concerned with ground fieldsK of char-
acteristic 0, which we may and will then assume to be subfields of the field C of complex
numbers. Then, by our definition, reflections are always semisimple and (thus) diagonalis-
able. Over fields K contained in the field R of real numbers, reflections necessarily have
order 2, which is the case motivating their name. Some authors reserve the term reflection
for this case, and speak of pseudo-reflections in the case of arbitrary (finite) order.

Let g ∈GL(V ) be a reflection. The hyperplane CV (g) fixed point-wise by g is called the
reflecting hyperplane of g. Then V = CV (g)⊕ Vg for a unique g-invariant subspace Vg
of V of dimension 1. Any non-zero vector v ∈ Vg is called a root for g. Thus, a root for a
reflection is an eigenvector with eigenvalue different from 1. Now assume in addition that
V is Hermitean. Then conversely, given a vector v �= 0 in V and a natural number n � 2
we may define a reflection in V with root v and of order n by g.v := exp(2πi/n)v, and
g|V⊥ = id.

A reflection group on V is now a finite subgroup W � GL(V ) generated by reflections.
Note that any finite subgroup of GL(V ) leaves invariant a non-degenerate Hermitean form.
Thus, there is no loss in assuming that a reflection group W leaves such a form invariant.

1.2. Invariants

Let V be a finite-dimensional vector space over K � C. Let K[V ] denote the algebra of
symmetric functions on V , i.e., the symmetric algebra S(V ∗) of the dual space V ∗ of V .
So K[V ] is a commutative algebra over K with a grading K[V ] =⊕d�0K[V ]d , where,

for any d � 0, K[V ]d denotes the d-th symmetric power of V ∗. If W � GL(V ) then W
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acts naturally on K[V ], respecting the grading. Now reflection groups are characterised by
the structure of their invariant ring K[V ]W :

1.3. THEOREM (Shephard and Todd, [167], Chevalley, [46]). Let V be a finite-dimensional
vector space over a field of characteristic 0 and W � GL(V ) a finite group. Then the fol-
lowing are equivalent:

(i) the ring of invariants K[V ]W is a polynomial ring,
(ii) W is generated by reflections.

The implication from (i) to (ii) is an easy consequence of Molien’s formula

P
(
K[V ]W,x)= 1

|W |
∑
g∈W

1

detV (1− gx)

for the Hilbert series P(K[V ]W,x) of the ring of invariants K[V ]W , see Shephard and
Todd, [167, p. 289]. It follows from Auslander’s purity of the branch locus that this im-
plication remains true in arbitrary characteristic (see Benson, [7, Theorem 7.2.1], for ex-
ample). The other direction was proved by Shephard and Todd as an application of their
classification of complex reflection groups (see Section 1.13). Chevalley gave a general
proof avoiding the classification which uses the combinatorics of differential operators.

Let W be an n-dimensional reflection group. By Theorem 1.3 the ring of invariants is
generated by n algebraically independent polynomials (so-called basic invariants), which
may be taken to be homogeneous. Although these polynomials are not uniquely deter-
mined in general, their degrees d1 � · · ·� dn are. They are called the degrees of W . Then
|W | = d1 · · ·dn, and the Molien formula shows that N(W) :=∑n

i=1mi is the number of
reflections in W , where mi := di − 1 are the exponents of W .

The quotientK[V ]W ofK[V ] by the ideal generated by the invariants of strictly positive
degree is called the coinvariant algebra of (V ,W). This is again a naturally graded W -
module, whose structure is described by:

1.4. THEOREM (Chevalley, [46]). Let V be a finite-dimensional vector space over a field
K of characteristic 0 and W � GL(V ) a reflection group. Then K[V ]W carries a graded
version of the regular representation of W . The grading is such that

∑
i�0

dimK[V ]iW xi =
n∏
i=1

xdi − 1

x − 1
,

where K[V ]iW denotes the homogeneous component of degree i.

(See also Bourbaki, [25, V.5.2, Theorem 2].) The polynomial

PW :=
∑
i�0

dimK[V ]iW xi

is called the Poincaré-polynomial of W .



342 M. Geck and G. Malle

1.5. Parabolic subgroups

Let W be a reflection group on V . The parabolic subgroups of W are by definition the
pointwise stabilisers

WV ′ := {g ∈W | g · v = v for all v ∈ V ′}.
of subspaces V ′ � V . The following result is of big importance in the theory of reflection
groups:

1.6. THEOREM (Steinberg, [175]). Let W � GL(V ) be a complex reflection group. For
any subspace V ′ � V the parabolic subgroup WV ′ is generated by the reflections it con-
tains, that is, by the reflections whose reflecting hyperplane contains V ′. In particular,
parabolic subgroups are themselves reflection groups.

For the proof, Steinberg characterises reflection groups via eigenfunctions of differ-
ential operators with constant coefficients that are invariant under finite linear groups.
Lehrer [129] has recently found an elementary proof. For a generalisation to positive char-
acteristic see Theorem 5.4.

1.7. Exponents, coexponents and fake degrees

Let W be a complex reflection group. For w ∈W define k(w) := dimV 〈w〉, the dimension
of the fixed space of w on V . Solomon, [169], proved the following remarkable formula
for the generating function of k

∑
w∈W

xk(w) =
n∏
i=1

(x +mi),

by showing that the algebra ofW -invariant differential forms with polynomial coefficients
is an exterior algebra of rank n over the algebra K[V ]W , generated by the differentials of
a set of basic invariants (see also Flatto, [79], Benson, [7, Theorem 7.3.1]). The formula
was first observed by Shephard and Todd, [167, 5.3] using their classification of irreducible
complex reflection groups. Dually, Orlik and Solomon, [154], showed∑

w∈W
detV (w)x

k(w) =
n∏
i=1

(
x −m∗i

)
for some non-negative integers m∗1 � · · · � m∗n, the coexponents of W (see Lehrer and
Michel, [130], for a generalisation, and Kusuoka, [123], Orlik and Solomon, [155,156],
for versions over finite fields).

Let χ be an irreducible character of W . The fake degree of χ is the polynomial

Rχ :=
∑
d�0

〈
K[V ]dW ,χ∗

〉
W
xd = 1

|W |
∑
w∈W

χ(w)

detV (xw− 1)∗
n∏
i=1

(
xdi − 1

) ∈ Z[x],
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that is, the graded multiplicity of χ∗ in theW -moduleK[V ]W . Thus, in particular, Rχ spe-
cialises to the degree χ(1) at x = 1. The exponents (ei(χ) | 1 � i � χ(1)) of an irreducible
character χ of W are defined by the formula Rχ =∑χ(1)

i=1 x
ei(χ). The exponents mi of W

are now just the exponents of the contragradient of the reflection representation ρ∗ := trV ∗ ,
that is, Rρ∗ =∑n

i=1 x
mi . Dually, the coexponents are the exponents of ρ. In particular, for

real reflection groups exponents and coexponents coincide. In generalN∗(W) :=∑n
i=1m

∗
i

equals the number of reflecting hyperplanes ofW . The d∗i :=m∗i − 1 are sometimes called
the codegrees of W .

IfW is a Weyl group (see Section 2.10), the fake degrees constitute a first approximation
to the degrees of principal series unipotent characters of finite groups of Lie type with Weyl
group W . See also Section 4.8 for further properties.

1.8. Reflection data

In the general theory of finite groups of Lie type (where an algebraic group comes with
an action of a Frobenius map) as well as in the study of Levi subgroups it is natural to
consider reflection groups together with an automorphism φ normalising the reflection
representation; see the survey article Broué and Malle, [36]. This leads to the following
abstract definition.

A pair (V ,Wφ) is called a reflection datum if V is a vector space over a subfield K ⊆
C and Wφ is a coset in GL(V ) of a reflection group W ⊆ GL(V ), where φ ∈ GL(V )
normalises W .

A sub-reflection datum of a reflection datum (V ,Wφ) is a reflection datum of the form
(V ′,W ′(wφ)|V ′), where V ′ is a subspace of V , W ′ is a reflection subgroup of NW(V ′)|V ′
stabilising V ′ (hence, a reflection subgroup of NW(V ′)/WV ′ ), and wφ is an element of
Wφ stabilising V ′ and normalising W ′. A Levi sub-reflection datum of (V ,Wφ) is a sub-
reflection datum of the form (V ,WV ′(wφ)) for some subspace V ′ � V (note that, by Theo-
rem 1.6,WV ′ is indeed a reflection subgroup ofW ). A torus of G is a sub-reflection datum
with trivial reflection group.

Let G = (V ,Wφ) be a reflection datum. Then φ acts naturally on the symmetric al-
gebra K[V ]. It is possible to choose basic invariants f1, . . . , fn ∈ K[V ]W , such that
f
φ
i = εifi for roots of unity ε1, . . . , εn. The multiset {(di, εi)} of generalised degrees of G

then only depends on W and φ (see, for example, Springer, [170, Lemma 6.1]). The poly-
nomial order of the reflection datum G= (V ,Wφ) is by definition the polynomial

|G| := εGx
N(W)

1
|W |
∑
w∈W 1

detV (1−xwφ)∗
= xN(W)

n∏
i=1

(
xdi − εi

)
,

where εG := (−1)nε1 · · · εn. Let Φ(x) be a cyclotomic polynomial over K . A torus T =
(V ′, (wφ)|V ′) of G is called a Φ-torus if the polynomial order of T is a power of Φ .

Reflection data can be thought of as the skeletons of finite reductive groups.
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1.9. Regular elements

In this section we present results which show that certain subgroups respectively subquo-
tients of reflection groups are again reflection groups. Let (V ,wφ) be a reflection datum
over K =C. For wφ ∈Wφ and a root of unity ζ ∈C× write

V (wφ, ζ ) := {v ∈ V |wφ · v = ζv}

for the ζ -eigenspace of wφ. Note that (V (wφ, ζ ),wφ) is an (x − ζ )-torus of (V ,wφ) in
the sense defined above. These (x − ζ )-tori for fixed ζ satisfy a kind of Sylow theory.
Let f1, . . . , fn be a set of basic invariants for W and Hi the surface defined by fi = 0.
Springer, [170], proves that⋃

wφ∈Wφ
V (wφ, ζ )=

⋂
i:εiζ di=1

Hi,

the irreducible components of this algebraic set are just the maximal V (wφ, ζ ), W acts
transitively on these components, and their common dimension is just the number a(d,φ)
of indices i such that εiζ di = 1, where d denotes the order of ζ . (Note that a(d,φ) only
depends on d , not on ζ itself.) From this he obtains:

1.10. THEOREM (Springer, [170, Theorems 3.4 and 6.2]). Let (V ,Wφ) be a reflection
datum over C, ζ a primitive d-th root of unity. Then:

(i) max{dimV (wφ, ζ ) |w ∈W } = a(d,φ).
(ii) For any w ∈ W there exists a w′ ∈ W such that V (wφ, ζ ) ⊆ V (w′φ, ζ ) and

V (w′φ, ζ ) has maximal dimension.
(iii) If dimV (wφ, ζ ) = dimV (w′φ, ζ ) = a(d,φ) then there exists a u ∈ W with

u · V (wφ, ζ )= V (w′φ, ζ ).

This can be rephrased as follows: Let K be a subfield of C, Φ a cyclotomic polynomial
over K . A torus T of G is called a Φ-Sylow torus, if its order equals the full Φ-part of
the order of G. Then Φ-tori of G satisfy the three statements of Sylow’s theorem. (For an
analogue of the statement on the number of Sylow subgroups see Broué, Malle and Michel,
[37, Theorem 5.1(4)]).

This can in turn be used to deduce a Sylow theory for tori in finite groups of Lie type
(see Broué and Malle, [34]).

A vector v ∈ V is called regular (for W ) if it is not contained in any reflecting hyper-
plane, i.e. (by Theorem 1.6), if its stabiliser Wv is trivial. Let ζ ∈ C be a root of unity. An
element wφ ∈Wφ is ζ -regular if V (wφ, ζ ) contains a regular vector. By definition, if wφ
is regular for some root of unity, then so is any power of wφ. If φ = 1, theorem 1.6 of
Steinberg implies that the orders of w and ζ coincide. An integer d is a regular number
for W if it is the order of a regular element of W .

1.11. THEOREM (Springer, [170, Theorem 6.4 and Proposition 4.5]). Let wφ ∈Wφ be
ζ -regular of order d . Then:
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(i) dimV (wφ, ζ )= a(d,φ).
(ii) The centraliser of wφ in W is isomorphic to a reflection group in V (wφ, ζ ) whose

degrees are the di with εiζ di = 1.
(iii) The elements of Wφ with property (i) form a single conjugacy class under W .
(iv) Let φ = 1 and let χ be an irreducible character ofW . Then the eigenvalues of w in

a representation with character χ are (ζ ei (χ) | 1 � i � χ(1)).

In particular, it follows from (iv) that the eigenvalues of a ζ -regular element w on V are
(ζm

∗
i | 1 � i � n).

Interestingly enough, the normaliser modulo centraliser of arbitrary Sylow tori of re-
flection data are naturally reflection groups, as the following generalisation of the previous
result shows:

1.12. THEOREM (Lehrer and Springer, [131,132]). Let w ∈ W and Ṽ := V (wφ, ζ ) be
such that (Ṽ ,wφ) is a Φ-Sylow torus. Let N := {w′ ∈W |w′ · Ṽ = Ṽ } be the normaliser,
C := {w′ ∈W |w′ · v = v for all v ∈ Ṽ } the centraliser of Ṽ .

(i) Then N/C acts as a reflection group on Ṽ , with reflecting hyperplanes the inter-
sections with Ṽ of those of W .

(ii) A set of basic invariants of N/C is given by the restrictions to Ṽ of those fi with
εiζ

di = 1.
(iii) If W is irreducible on V , then so is N/C on Ṽ .

In the case of regular elements, the second assertion of (i) goes back to Lehrer, [128, 5.8],
Denef and Loeser, [64]; see also Broué and Michel, [39, Proposition 3.2].

1.13. The Shephard–Todd classification

Let V be a finite-dimensional complex vector space and W � GL(V ) a reflection group.
SinceW is finite, the representation on V is completely reducible, andW is the direct prod-
uct of irreducible reflection subgroups. Thus, in order to determine all reflection groups
over C, it is sufficient to classify the irreducible ones. This was achieved by Shephard and
Todd, [167].

To describe this classification, first recall that a subgroupW � GL(V ) is called imprim-
itive if there exists a direct sum decomposition V = V1 ⊕ · · · ⊕ Vk with k > 1 stabilised
by W (that is, W permutes the summands). The bulk of irreducible complex reflection
groups consists of imprimitive ones. For any d, e,n � 1 let G(de, e, n) denote the group
of monomial n× n-matrices (that is, matrices with precisely one non-zero entry in each
row and column) with non-zero entries in the set of de-th roots of unity, such that the
product over these entries is a d-th root of unity.

Explicit generators may be chosen as follows: G(d,1, n) is generated on Cn with
standard Hermitean form by the reflection t1 of order d with root the first stan-
dard basis vector b1 and by the permutation matrices t2, . . . , tn for the transpositions
(1,2), (2,3), . . . , (n− 1, n). For d > 1 this is an irreducible reflection group, isomorphic
to the wreath product Cd 1Sn of the cyclic group of order d with the symmetric group Sn,
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where the base group is generated by the reflections of order d with roots the standard
basis vectors, and a complement consists of all permutation matrices.

Let γd :G(d,1, n)→C× be the linear character of G(d,1, n) obtained by tensoring the
determinant on V with the sign character on the quotient Sn. Then for any e > 1 we have

G(de, e, n) := ker
(
γ dde
)
�G(de,1, n).

This is an irreducible reflection subgroup of G(de,1, n) for all n� 2, d � 1, e� 2, except
for (d, e, n)= (2,2,2). It is generated by the reflections

te1 , t
−1
1 t2t1, t2, t3, . . . , tn,

where the first generator is redundant if d = 1. Clearly, G(de, e, n) stabilises the de-
composition V = Cb1 ⊕ · · · ⊕ Cbn of V , so it is imprimitive for n > 1. The order of
G(de, e, n) is given by dnen−1n!. Using the wreath product structure it is easy to show
that the only isomorphisms among groups in this series are G(2,1,2) ∼= G(4,4,2), and
G(de, e,1) ∼= G(d,1,1) for all d, e, while G(2,2,2) is reducible. All these are isomor-
phisms of reflection groups.

In its natural action on Qn the symmetric group Sn stabilises the 1-dimensional sub-
space consisting of vectors with all coordinates equal and the (n − 1)-dimensional sub-
space consisting of those vectors whose coordinates add up to 0. In its action on the latter,
Sn is an irreducible and primitive reflection group. The classification result may now be
stated as follows (see also Cohen, [50]):

1.14. THEOREM (Shephard and Todd, [167]). The irreducible complex reflection groups
are the groups G(de, e, n), for de� 2, n� 1, (de, e, n) �= (2,2,2), the groups Sn (n� 2)
in their (n− 1)-dimensional natural representation, and 34 further primitive groups.

Moreover, any irreducible n-dimensional complex reflection group has a generating set
of at most n+ 1 reflections.

The primitive groups are usually denoted by G4, . . . ,G37, as in the original arti-
cle [167] (where the first three indices were reserved for the families of imprimitive
groups G(de, e, n) (de,n � 2), cyclic groups G(d,1,1) and symmetric groups Sn+1).
An n-dimensional irreducible reflection groups generated by n of its reflections is called
well-generated. The groups for which this fails are the imprimitive groups G(de, e, n),
d, e,n > 1, and the primitive groups

Gi with i ∈ {7,11,12,13,15,19,22,31}.

By construction G(de, e, n) contains the well-generated group G(de, de,n). More gener-
ally, the classification implies the following, for which no a priori proof is known:

1.15. COROLLARY. Any irreducible complex reflection group W � GL(V ) contains a
well-generated reflection subgroup W ′ �W which is still irreducible on V .
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The primitive groups G4, . . . ,G37 occur in dimensions 2 up to 8. In Table 1 we col-
lect some data on the irreducible complex reflection groups. (These and many more data
for complex reflection groups have been implemented by Jean Michel into the CHEVIE-
system, [89].) In the first part, the dimension is always equal to n, in the second it can be
read of from the number of degrees. We give the degrees, the codegrees in case they are
not described by the following Theorem 1.16 (that is, if W is not well-generated), and the
character fieldKW of the reflection representation. For the exceptional groups we also give
the structure of W/Z(W) and we indicate the regular degrees by boldface (that is, those
degrees which are regular numbers forW , see Cohen, [50, p. 395 and p. 412], and Springer,
[170, Tables 1–6]). The regular degrees for the infinite series are: n,n+ 1 for Sn+1, dn
for G(de, e, n) with d > 1, (n− 1)e for G(e, e,n) with n|e, and (n− 1)e, n for G(e, e,n)
with n� |e. Lehrer and Michel, [130, Theorem 3.1], have shown that an integer is a regular
number if and only if it divides as many degrees as codegrees.

Fundamental invariants for most types are given in Shephard and Todd, [167], as well as
defining relations and further information on parabolic subgroups (see also Coxeter, [56],
Shephard, [166], and Broué, Malle and Rouquier, [38], for presentations, and the tables in
Cohen, [50], and Broué, Malle and Rouquier, [38, Appendix 2]).

If the irreducible reflection group W has an invariant of degree 2, then it leaves in-
variant a non-degenerate quadratic form, so the representation may be realised over the
reals. Conversely, if W is a real reflection group, then it leaves invariant a quadratic
form. Thus the real irreducible reflection groups are precisely those with d1 = 2, that
is, the infinite series G(2,1, n), G(2,2, n), G(e, e,2) and Sn+1, and the six exceptional
groups G23,G28,G30,G35,G36,G37 (see Section 2.5).

The degrees and codegrees of a finite complex reflection group satisfy some remarkable
identities. As an example, let us quote the following result, for which at present only a
case-by-case proof is known:

1.16. THEOREM (Orlik and Solomon, [154]). Let W be an irreducible complex reflection
group in dimension n. Then the following are equivalent:

(i) di + d∗n−i+1 = dn for i = 1, . . . , n,
(ii) N +N∗ = ndn,

(iii) d∗i < dn for i = 1, . . . , n,
(iv) W is well-generated.

See also Terao and Yano, [180], for a partial explanation.
From the Shephard–Todd classification, it is straightforward to obtain a classification of

reflection data. An easy argument allows to reduce to the case where W acts irreducibly
on V . Then either up to scalars φ can be chosen to be a reflection, or W =G28 is the real
reflection group of type F4, and φ induces the graph automorphism on the F4-diagram
(see Broué, Malle and Michel, [37, Proposition 3.13]). An infinite series of examples is
obtained from the embedding of G(de, e, n) into G(de,1, n) (which is the full projective
normaliser in all but finitely many cases). Apart from this, there are only six further cases,
which we list in Table 2.
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Table 1
Irreducible complex reflection groups

Infinite series

W Degrees Codegrees KW

G(d,1, n) (d � 2, n� 1) d,2d, . . . , nd ∗ Q(ζd )
G(de, e, n) (d, e, n� 2) ed,2ed, . . . , (n− 1)ed,nd 0, ed, . . . , (n− 1)ed Q(ζde)
G(e, e, n) (e� 2, n� 3) e,2e, . . . , (n− 1)e, n ∗ Q(ζe)
G(e, e,2) (e� 3) 2, e ∗ Q(ζe + ζ−1

e )

Sn+1 (n� 1) 2,3, . . . , n+ 1 ∗ Q

Exceptional groups

W Degrees Codegrees KW W/Z(W)

G4 4, 6 ∗ Q(ζ3) A4
G5 6, 12 ∗ Q(ζ3) A4
G6 4, 12 ∗ Q(ζ12) A4
G7 12, 12 0, 12 Q(ζ12) A4
G8 8, 12 ∗ Q(i) S4
G9 8, 24 ∗ Q(ζ8) S4
G10 12, 24 ∗ Q(ζ12) S4
G11 24, 24 0, 24 Q(ζ24) S4
G12 6, 8 0, 10 Q(

√−2) S4
G13 8, 12 0, 16 Q(ζ8) S4
G14 6, 24 ∗ Q(ζ3,

√−2) S4
G15 12, 24 0, 24 Q(ζ24) S4
G16 20, 30 ∗ Q(ζ5) A5
G17 20, 60 ∗ Q(ζ20) A5
G18 30, 60 ∗ Q(ζ15) A5
G19 60, 60 0, 60 Q(ζ60) A5
G20 12, 30 ∗ Q(ζ3,

√
5) A5

G21 12, 60 ∗ Q(ζ12,
√

5) A5
G22 12, 20 0, 28 Q(i,

√
5) A5

G23 2, 6, 10 ∗ Q(
√

5) A5
G24 4, 6, 14 ∗ Q(

√−7) GL3(2)
G25 6, 9, 12 ∗ Q(ζ3) 32 : SL2(3)
G26 6, 12, 18 ∗ Q(ζ3) 32 : SL2(3)
G27 6, 12, 30 ∗ Q(ζ3,

√
5) A6

G28 2, 6, 8, 12 ∗ Q 24 : (S3 ×S3)

G29 4, 8, 12, 20 ∗ Q(i) 24 :S5
G30 2, 12, 20, 30 ∗ Q(

√
5) A5 1 2

G31 8, 12, 20, 24 0, 12, 16, 28 Q(i) 24 :S6
G32 12, 18, 24, 30 ∗ Q(ζ3) U4(2)
G33 4, 6, 10, 12, 18 ∗ Q(ζ3) O5(3)
G34 6, 12, 18, 24, 30, 42 ∗ Q(ζ3) O−6 (3).2
G35 2, 5, 6, 8, 9, 12 ∗ Q O−6 (2)
G36 2, 6, 8, 10, 12, 14, 18 ∗ Q O7(2)
G37 2, 8, 12, 14, 18, 20, 24, 30 ∗ Q O+8 (2).2



Reflection groups 349

Table 2
Exceptional twisted reflection data

W di εi Field Origin of φ

G(4,2,2) 4,4 1, ζ3 Q(i) < G6
G(3,3,3) 3,6,3 1,1,−1 Q(ζ3) < G26
G(2,2,4) 2,4,4,6 1, ζ3, ζ

2
3 ,1 Q <G28

G5 6,12 1,−1 Q(ζ3,
√−2) < G14

G7 12,12 1,−1 Q(ζ12) < G10
G28 2,6,8,12 1,−1,1,−1 Q(

√
2) graph aut.

2. Real reflection groups

In this section we discuss in more detail the special case where W is a real reflection
group. This is a well-developed theory, and there are several good places to learn about
real reflection groups: the classical Bourbaki volume, [25], the very elementary text by
Benson and Grove, [8], the relevant chapters in Curtis and Reiner, [58], Hiller, [99], and
Humphreys, [105]. Various pieces of the theory have also been recollected in a concise way
in articles by Steinberg, [178]. The exposition here partly follows Geck and Pfeiffer, [95,
Chapter 1]. We shall only present the most basic results and refer to the above textbooks
and our bibliography for further reading.

2.1. Coxeter groups

Let S be a finite non-empty index set and M = (mst )s,t∈S be a symmetric matrix such that
mss = 1 for all s ∈ S and mst ∈ {2,3,4, . . .} ∪ {∞} for all s �= t in S. Such a matrix is
called a Coxeter matrix. Now let W be a group containing S as a subset. (W may be finite
or infinite.) Then the pair (W,S) is called a Coxeter system, and W is called a Coxeter
group, if W has a presentation with generators S and defining relations of the form

(st)mst = 1 for all s, t ∈ S with mst <∞;

in particular, this means that s2 = 1 for all s ∈ S. Therefore, the above relations (for s �= t)
can also be expressed in the form

sts · · ·︸ ︷︷ ︸
mst times

= tst · · ·︸ ︷︷ ︸
mst times

for all s, t ∈ S with 2 �mst <∞.

We say that C is of finite type and that (W,S) is a finite Coxeter system if W is a fi-
nite group. The information contained in M can be visualised by a corresponding Cox-
eter graph, which is defined as follows. It has vertices labelled by the elements of S, and
two vertices labelled by s �= t are joined by an edge if mst � 3. Moreover, if mst � 4,
we label the edge by mst . The standard example of a finite Coxeter system is the pair
(Sn, {s1, . . . , sn−1}) where si = (i, i + 1) for 1 � i � n− 1. The corresponding graph is
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An−1 �

s1
�

s2
�

s3
� � � �

sn−1

Coxeter groups have a rich combinatorial structure. A basic tool is the length function
l :W →N0, which is defined as follows. Let w ∈W . Then l(w) is the length of a shortest
possible expression w = s1 · · · sk where si ∈ S. An expression of w of length l(w) is called
a reduced expression for w. We have l(1)= 0 and l(s)= 1 for s ∈ S. Here is a key result
about Coxeter groups.

2.2. THEOREM (Matsumoto, [141]; see also Bourbaki, [25]). Let (W,S) be a Coxeter
system and M be a monoid, with multiplication ' :M×M→M. Let f :S→M be a
map such that

f (s) ' f (t) ' f (s) ' · · ·︸ ︷︷ ︸
mst times

= f (t) ' f (s) ' f (t) ' · · ·︸ ︷︷ ︸
mst times

for all s �= t in S such that mst <∞. Then there exists a unique map F :W →M such
that F(w)= f (s1) ' · · · ' f (sk) whenever w = s1 · · · sk (si ∈ S) is reduced.

Typically, Matsumoto’s theorem can be used to show that certain constructions with
reduced expressions of elements ofW actually do not depend on the choice of the reduced
expressions. We give two examples.

(1) Let w ∈ W and take a reduced expression w = s1 · · · sk with si ∈ S. Then the set
{s1, . . . , sk} does not depend on the choice of the reduced expression.

(Indeed, let M be the monoid whose elements are the subsets of S and product given by
A ' B := A ∪ B . Then the assumptions of Matsumoto’s theorem are satisfied for the map
f :S→M, s �→ {s}, and this yields the required assertion.)

(2) Let w ∈W and fix a reduced expression w = s1 · · · sk (si ∈ S). Consider the set of
all subexpressions:

S(w) := {y ∈W | y = si1 · · · sil where l � 0 and 1 � i1 < · · ·< il � k}.
Then S(w) does not depend on the choice of the reduced expression for w.

(Indeed, let M be the monoid whose elements are the subsets of W and product given
by A ' B := {ab | a ∈ A,b ∈ B} (for A,B ⊆W ). Then the assumptions of Matsumoto’s
theorem are satisfied for the map f :S →M, s �→ {1, s}, and this yields the required
assertion.)

We also note that the so-called exchange condition and the cancellation law are further
consequences of the above results. The “cancellation law” states that, given w ∈W and an
expression w = s1 · · · sk (si ∈ S) which is not reduced, one can obtain a reduced expression
of w by simply cancelling some of the factors in the given expression. This law together
with (2) yields that the relation

y �w def⇐⇒ y ∈ S(w)
is a partial order on W , called the Bruhat–Chevalley order. This ordering has been exten-
sively studied; see, for example, Verma, [184], Deodhar, [65], Björner, [19], Lascoux and
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Schützenberger, [126], and Geck and Kim, [90]. By Chevalley, [48], it is related to the
Bruhat decomposition in algebraic groups; we will explain this result in 2.16 below.

2.3. Cartan matrices

Let M = (mst )s,t∈S be a Coxeter matrix as above. We can also associate with M a group
generated by reflections. This is done as follows. Choose a matrix C = (cst )s,t∈S with
entries in R such that the following conditions are satisfied:

(C1) For s �= t we have cst � 0; furthermore, cst �= 0 if and only if cts �= 0.
(C2) We have css = 2 and, for s �= t , we have cst cts = 4 cos2(π/mst ).

Such a matrix C will be called a Cartan matrix associated withM . For example, we could
simply take cst := −2 cos(π/mst ) for all s, t ∈ S; this may be called the standard Cartan
matrix associated with M . We always have 0 � cst cts � 4. Here are some values for the
product cst cts :

mst 2 3 4 5 6 8 ∞
cst cts 0 1 2 (3+√5)/2 3 2+√2 4

Now let V be an R-vector space of dimension |S|, with a fixed basis {αs | s ∈ S}. We define
a linear action of the elements in S on V by the rule:

s :V → V, αt �→ αt − cstαs (t ∈ S).

It is easily checked that s ∈ GL(V ) has order 2 and precisely one eigenvalue −1 (with
eigenvector αs ). Thus, s is a reflection with root αs . We then define

W =W(C) := 〈S〉 ⊂GL(V );

thus, if |W | <∞ is finite, then W will be a real reflection group. Now we can state the
following basic result.

2.4. THEOREM (Coxeter, [54,55]). Let M = (mst )s,t∈S be a Coxeter matrix and C be a
Cartan matrix associated with M . Let W(C)= 〈S〉 ⊆GL(V ) be the group constructed as
in 2.3. Then the pair (W(C),S) is a Coxeter system. Furthermore, the groupW(C) is finite
if and only if

the matrix
(− cos(π/mst )

)
s,t∈S is positive-definite, (∗)

i.e., we have det(− cos(π/mst ))s,t∈J > 0 for every subset J ⊆ S. All finite real reflection
groups arise in this way.

The fact that (W(C),S) is a Coxeter system is proved in [95, 1.2.7]. The finiteness
condition can be found in Bourbaki, [25, Chapter V, §4, no. 8]. Finally, the fact that all
finite real reflection groups arise in this way is established in [25, Chapter V, §3, no. 2].
The “note historique” in [25] contains a detailed account of the history of the above result.
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2.5. Classification of finite Coxeter groups

(See also Section 1.13.) LetM = (mst )s,t∈S be a Coxeter matrix. We say thatM is decom-
posable if there is a partition S = S1�S2 with S1, S2 �=∅ and such that mst = 2 whenever
s ∈ S1, t ∈ S2. If C = (cst ) is any Cartan matrix associated with M , then this condition
translates to: cst = cts = 0 whenever s ∈ S1, t ∈ S2. Correspondingly, we also have a di-
rect sum decomposition V = V1 ⊕ V2 where V1 has basis {αs | s ∈ S1} and V2 has basis
{αs | s ∈ S2}. Then it easily follows that we have an isomorphism

W(C)
∼−→W(C1)×W(C2), w �→ (w|V1 ,w|V2).

In this way, the study of the groupsW(C) is reduced to the case whereC is indecomposable
(i.e., there is no partition S = S1 � S1 as above). If this holds, we call the corresponding
Coxeter system (W,S) an irreducible Coxeter system.

2.6. THEOREM. The Coxeter graphs of the indecomposable Coxeter matricesM such that
condition (∗) in Theorem 2.4 holds are precisely the graphs in Table 3.

For the proof of this classification, see [25, Chapter VI, no. 4.1]. The identification with
the groups occurring in the Shephard–Todd classification (see Theorem 1.14) is given in
the following table.

Coxeter graph Shephard–Todd
An−1 Sn

Bn G(2,1, n)
Dn G(2,2, n)
I2(m) G(m,m,2)
H3 G23
H4 G30
F4 G28
E6 G35
E7 G36
E8 G37

Thus, any finite irreducible real reflection group is the reflection group arising from a Car-
tan matrix associated with one of the graphs in Table 3.

Now, there are a number of results on finite Coxeter groups which can be formulated in
general terms but whose proof requires a case-by-case verification using the above classi-
fication. We mention two such results, concerning conjugacy classes.

2.7. THEOREM (Carter, [41]). Let (W,S) be a finite Coxeter system. Then every element
in W is conjugate to its inverse. More precisely, given w ∈W , there exist x, y ∈W such
that w = xy and x2 = y2 = 1.

Every element x ∈W such that x2 = 1 is a product of pairwise commuting reflections
in W . Given w ∈ W and an expression w = xy as above, the geometry of the roots in-
volved in the reflections determining x, y yields a diagram which can be used to label the
conjugacy class of w. Complete lists of these diagrams can be found in [41].
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Table 3
Coxeter graphs of irreducible finite Coxeter groups
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The numbers on the vertices correspond to a chosen labelling of the elements of S.

2.8. Conjugacy classes and the length function

Let (W,S) be a Coxeter system and C be a conjugacy class in W . We will be interested in
studying how conjugation inside C relates to the length function on W . For this purpose,
we introduce two relations, following Geck and Pfeiffer, [94].

Given x, y ∈W and s ∈ S, we write x
s−→ y if y = sxs and l(y)� l(x). We shall write

x→ y if there are sequences x0, x1, . . . , xn ∈W and s1, . . . , sn ∈ S (for some n� 0) such
that

x = x0
s1−→ x1

s2−→ x2
s3−→ · · · sn−→ xn = y.

Thus, we have x→ y if we can go from x to y by a chain of conjugations by generators
in S such that, at each step, the length of the elements either remains the same or decreases.

In a slightly different direction, let us now consider two elements x, y ∈W such that

l(x)= l(y). We write x
w∼ y (where w ∈W ) if wx = yw and l(wx)= l(w)+ l(x) or xw =

wy and l(wy)= l(w)+ l(y). We write x ∼ y if there are sequences x0, x1, . . . , xn ∈W and
w1, . . . ,wn ∈W (for some n� 0) such that

x = x0
w1∼ x1

w2∼ x2
w3∼ · · · wn∼ xn = y.

Thus, we have x ∼ y if we can go from x to y by a chain of conjugations with elements of
W such that, at each step, the length of the elements remains the same and an additional
length condition involving the conjugating elements is satisfied. This additional condition
has the following significance. Consider a group M with multiplication ' and assume that
we have a map f :S→M which satisfies the requirements in Matsumoto’s Theorem 2.2.
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Then we have a canonical extension of f to a map F :W →M such that F(ww′) =
F(w) ' F(w′) whenever l(ww′)= l(w)+ l(w′). Hence, in this setting, we have

x ∼ y ⇒ F(x),F (y) are conjugate in M.

Thus, we can think of the relation “∼” as “universal conjugacy”.

2.9. THEOREM (Geck and Pfeiffer, [94,95]). Let (W,S) be a finite Coxeter system and C
be a conjugacy class in W . We set lmin(C) :=min{l(w) |w ∈ C} and

Cmin :=
{
w ∈ C | l(w)= lmin(C)

}
.

Then the following hold:
(a) For every x ∈ C, there exists some y ∈ Cmin such that x→ y.
(b) For any two elements x, y ∈ Cmin, we have x ∼ y.

Precursors of the above result for typeA have been found much earlier by Starkey, [173];
see also Ram, [162]. The above result allows to define the character table of the Iwahori–
Hecke algebra associated with (W,S). This is discussed in more detail in the chapter on
Hecke algebras. See Richardson, [165], Geck and Michel, [93], Geck and Pfeiffer, [95,
Chapter 3], Geck, Kim and Pfeiffer, [91] and Shi, [168], for further results on conjugacy
classes. Krammer, [121], studies the conjugacy problem for arbitrary (infinite) Coxeter
groups.

2.10. The crystallographic condition

Let M = (mst )s,t∈S be a Coxeter matrix such that the connected components of the cor-
responding Coxeter graph occur in Table 3. We say that M satisfies the crystallographic
condition if there exists a Cartan matrix C associated with M which has integral coeffi-
cients. In this case, the corresponding reflection group W =W(C) is called a Weyl group.
The significance of this notion is that there exists a corresponding semisimple Lie algebra
over C; see 2.15.

Now assume thatM is crystallographic. By condition (C2) this impliesmst ∈ {2,3,4,6}
for all s �= t . Conversely, if mst satisfies this condition, then we have

cst cts = 0 if mst = 2,

cst cts = 1 if mst = 3,

cst cts = 2 if mst = 4,

cst cts = 3 if mst = 6.

Thus, in each of these cases, we see that there are only two choices for cst and cts : we
must have cst =−1 or cts =−1 (and then the other value is determined). We encode this
additional information in the Coxeter graph, by putting an arrow on the edge between the
nodes labelled by s, t according to the following scheme:
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Edge between s �= t Values for cst , cts
mst = 3 no arrow cst = cts =−1

mst = 4 �
s
> �

t

cst =−1 cts =−2

mst = 6 �
s

> �
t

cst =−1 cts =−3

Table 4
Dynkin diagrams of Cartan matrices of finite type
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The Coxeter graph ofM equipped with this additional information will be called a Dynkin
diagram; it uniquely determines an integral Cartan matrix C associated with M (if such a
Cartan matrix exists). The complete list of connected components of Dynkin diagrams is
given in table 4. We see that all irreducible finite Coxeter groups are Weyl groups, except
for those of type H3, H4 and I2(m) where m = 5 or m � 7. Note that type Bn is the
only case where we have two different Dynkin diagrams associated with the same Coxeter
graph.

The following discussion of root systems associated with finite reflection groups follows
the appendix on finite reflection groups in Steinberg, [176].

2.11. Root systems

Let V be a finite-dimensional real vector space and let ( , ) be a positive-definite scalar
product on V . Given a non-zero vector α ∈ V , the corresponding reflection wα ∈ GL(V )
is defined by

wα(v)= v− 2
(v,α)

(α,α)
α for all v ∈ V.
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Note that, for any w ∈ GL(V ), we have wwαw−1 = ww(α). A finite subset φ ⊆ V \ {0} is
called a root system if the following conditions are satisfied:

(R1) For any α ∈Φ , we have Φ ∩Rα = {±α};
(R2) For every α,β ∈Φ , we have wα(β) ∈Φ .

Let W(Φ) ⊆ GL(V ) be the subgroup generated by the reflections wα (α ∈ Φ). A subset
Π ⊆Φ is called a simple system if Π is linearly independent and if any root in Φ can be
written as a linear combination of the elements of Π in which all non-zero coefficients are
either all positive or all negative. It is known that simple systems always exist, and that any
two simple systems can be transformed into each other by an element of W(Φ). Let now
fix a simple system Π ⊆Φ . Then it is also known that

W(Φ)= 〈wα | α ∈Π〉 and (α,β)� 0 for all α �= β in Π.

For α �= β in Π , let mαβ � 2 be the order of wαwβ in GL(V ). Then wαwβ is a rotation in
V through the angle 2π/mαβ and that we have the relation

(α,β)

(α,α)

(β,α)

(β,β)
= cos2(π/mαβ) for all α �= β in Π.

Thus, if we set M := (mαβ)α,β∈Π (where mαα = 1 for all α ∈Π ) and define

C := (cαβ)α,β∈Π where cαβ := 2
(α,β)

(α,α)
for α,β ∈ S,

then M is a Coxeter matrix, C is an associated Cartan matrix and W(Φ) =W(C) is the
Coxeter group with Coxeter matrixM ; see theorem 2.4. Thus, every root system leads to a
finite Coxeter group.

Conversely, let (W,S) be a Coxeter system associated to a Coxeter matrix M =
(mst )s,t∈S . Let C be a corresponding Cartan matrix such that cst = cts = −2 cos(π/mst )
for every s �= t in S such that mst is odd. Then one can show that

Φ =Φ(C) := {w(αs) |w ∈W,s ∈ S}⊆ V
is a root system with simple system {αs | s ∈ S} and that W(Φ)=W ; see, e.g., Geck and
Pfeiffer, [95, Chapter 1]. Thus, every Coxeter group leads to a root system.

Given a root system Φ as above, there is a strong link between the combinatorics of the
Coxeter presentation of W =W(Φ) and the geometry of Φ . To state the following basic
result, we set

Φ+ :=
{
α ∈Π

∣∣∣α =∑
β∈Π

xββ where xβ ∈R�0 for all β ∈Π
}
;

the roots in Φ+ will be called positive roots. Similarly, Φ− := −Φ+ will be called the set
of negative roots. By the definition of a simple system, we have Φ =Φ+ �Φ−.
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2.12. PROPOSITION. Given α ∈Π and w ∈W , we have

w−1(α) ∈Φ+ ⇔ l(wαw)= l(w)+ 1,
w−1(α) ∈Φ− ⇔ l(wαw)= l(w)− 1.

Furthermore, for any w ∈W , we have l(w)= |{α ∈Φ+ |w(α) ∈Φ−}|.

The root systems associated with finite Weyl groups are explicitly described in Bourbaki,
[25, pp. 251–276]. For type H3 and H4, see Humphreys, [105, 2.13].

Bremke and Malle, [26,27], have studied suitable generalisations of root systems and
length functions for the infinite series G(d,1, n) and G(e, e,n), which have subsequently
been extended in weaker form by Rampetas and Shoji, [163], to arbitrary imprimitive re-
flection groups. For investigations of root systems see also Nebe, [147], and Hughes and
Morris, [103]. But there is no general theory of root systems and length functions for com-
plex reflection groups (yet).

2.13. Torsion primes

Assume that Φ ⊆ V is a root system as above, with a set of simple roots Π ⊆Φ . Assume
that the corresponding Cartan matrix C is indecomposable and has integral coefficients.
Thus, its Dynkin diagram is one of the graphs in Table 4. Following Springer and Steinberg,
[172, §I.4], we shall now discuss “bad primes” and “torsion primes” with respect to Φ .

For every α ∈Φ , the corresponding coroot is defined by α∗ := 2α/(α,α). Then Φ∗ :=
{α∗ | α ∈ Φ} also is a root system, the dual of Φ . The Dynkin diagram of Φ∗ is obtained
from that of Φ by reversing the arrows. (For example, the dual of a root system of type Bn
is of type Cn.)

Let L(Φ) denote the lattice spanned by Φ in V . A prime number p > 0 is called bad
for Φ if L(Φ)/L(Φ1) has p-torsion for some (integrally) closed subsystem Φ1 of Φ . The
prime p is called a torsion prime if L(Φ∗)/L(Φ∗1 ) has p-torsion for some closed subsys-
tem Φ1 of Φ . Note that Φ∗1 need not be closed in Φ∗, and so the torsion primes for Φ
and the bad primes for Φ∗ need not be the same. The bad primes can be characterised as
follows. Let α0 =∑α∈Π mαα be the unique positive root of maximal height. (The height
of a root is the sum of the coefficients in the expression of that root as a linear combination
of simple roots.) Then we have:

p bad ⇔ p =mα
for some α

⇔ p divides mα
for some α

⇔ p �mα
for some α

.

Now let α∗0 =
∑
α∈Π m∗αα∗. Then p is a torsion prime if and only if p satisfies one of the

above conditions, with mα replaced by m∗α . For the various roots systems, the bad primes
and the torsion primes are given as follows.

Type An Bn Cn Dn G2 F4 E6 E7 E8
(n� 2) (n� 2) (n� 4)

Bad none 2 2 2 2,3 2,3 2,3 2,3 2,3,5
Torsion none 2 none 2 2 2,3 2,3 2,3 2,3,5
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The bad primes and torsion primes play a role in various questions related to sub-root sys-
tems, centralisers of semisimple elements in algebraic groups, the classification of unipo-
tent classes in simple algebraic groups and so on; see [172] and also the survey in [43,
§§1.14–1.15].

2.14. Affine Weyl groups

LetΦ ⊆ V be a root system as above, with Weyl groupW . Let L(Φ) :=∑α∈Π Zα ⊆ V be
the lattice spanned by the roots in V . ThenW leaves L(Φ) invariant and we have a natural
group homomorphism W →Aut(L(Φ)). The semidirect product

Wa(Φ) := L(Φ)�W

is called the affine Weyl group associated with the root system W ; see Bourbaki, [25,
Chapter VI, §2]. The group Wa(Φ) itself is a Coxeter group. The corresponding presen-
tation can also be encoded in a graph, as follows. Let α0 be the unique positive root of
maximal height in Φ . We define an extended Cartan matrix C̃ by similar rules as before:

c̃αβ := 2
(α,β)

(α,α)
for α,β ∈Π ∪ {−α0}.

The extended Dynkin diagrams encoding these matrices for irreducible W are given in
Table 5. They are obtained from the diagrams in Table 4 by adjoining an additional node
(corresponding to −α0) and putting edges according to the same rules as before.

Table 5
Extended Dynkin diagrams
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In the following subsections, we describe some situations where Coxeter groups and
root systems arise “in nature”.

2.15. Kac–Moody algebras

Here we briefly discuss how Coxeter groups and root systems arise in the theory of Lie
algebras or, more generally, Kac–Moody algebras. We follow the exposition in Kac, [113].
Let C = (cst )s,t∈S be a Cartan matrix all of whose coefficients are integers. We also assume
that C is symmetrisable, i.e., there exists a diagonal invertible matrix D and a symmetric
matrix B such that C =DB . A realisation of C is a triple (h,Π,Π∨) where h is a complex
vector space, Π = {αs | s ∈ S} ⊆ h∗ := Hom(h,C) and Π∨ = {α∨s | s ∈ S} are subsets of
h∗ and h, respectively, such that the following conditions hold.

(a) Both sets Π and Π∨ are linearly independent;
(b) we have 〈α∨s , αt 〉 := αt (α∨s )= cst for all s, t ∈ S;
(c) |S| − rank(C)= dimh− |S|.

Let g(C) be the corresponding Kac–Moody algebra. Then g(C) is a Lie algebra which
is generated by h together with two collections of elements {es | s ∈ S} and {fs | s ∈ S},
where the following relations hold:

[es, ft ] = δstα∨s (s, t ∈ S),
[h,h′] = 0 (h,h′ ∈ h),

[h, es] = 〈h,αs, 〉es (s ∈ S,h ∈ h),

[h,fs] = −〈h,αs〉fs (s ∈ S,h ∈ h),

(ad es)1−cst et = 0 (s, t ∈ S, s �= t),
(adfs)1−cst ft = 0 (s, t ∈ S, s �= t).

(By [113, 9.11], this is a set of defining relations for g(C).) We have a direct sum decom-
position

g(C)= h⊕
⊕

0�=α∈Q
gα(C), whereQ :=

∑
s∈S

Zαs ⊆ h∗

and gα(C) := {x ∈ g(C) | [h,x] = α(h)x for all h ∈ h} for all α ∈Q; here, h= g0. The set
of all 0 �= α ∈Q such that gα(C) �= {0} will be denoted by Φ and called the root system
of g(C).

For each s ∈ S, we define a linear map σs :h∗ → h∗ by the formula

σs(λ)= λ−
〈
λ,α∨s
〉
αs for λ ∈ h∗.

Then it is easily checked that σs is a reflection where σs(αs)=−αs . We set

W =W(C)= 〈σs | s ∈ S〉 ⊆GL(h∗).

Now we can state (see [113, 3.7, 3.11 and 3.13]):
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(a) The pair (W, {σs | s ∈ S}) is a Coxeter system; the corresponding Coxeter matrix is
the one associated to C.

(b) The root systemΦ is invariant under the action ofW and we have l(σsw)= l(w)+1
if and only if w−1(αs) ∈Φ+, where Φ+ is defined as in (2.11).

Thus,W andΦ have similar properties as before. Note, however, that here we did not make
any assumption on C (except that it is symmetrisable with integer entries) and so W and
Φ may be infinite. The finite case is characterised as follows:

|W |<∞ ⇔ |Φ|<∞ ⇔ dimg(C) <∞
⇔ all connected components of C occur in table 4.

(This follows from [113, 3.12] and the characterisation of finite Coxeter groups in Theo-
rem 2.4.) In fact, the finite-dimensional Kac–Moody algebras are precisely the “classical”
semisimple complex Lie algebras (see, for example, Humphreys, [104]). The Kac–Moody
algebras and the root systems associated to so-called Cartan matrices of affine type have
an extremely rich structure and many applications in other branches of mathematics and
mathematical physics; see Kac, [113].

2.16. Groups with a BN -pair

LetG be an abstract group. We say thatG is a group with a BN -pair or thatG admits a Tits
system if there are subgroups B,N ⊆G such that the following conditions are satisfied.

(BN1) G is generated by B and N .
(BN2) T := B ∩N is normal in N and the quotient W :=N/T is a finite group gener-

ated by a set S of elements of order 2.
(BN3) nsBns �= B if s ∈ S and ns is a representative of s in N .
(BN4) nsBn⊆ BnsnB ∪BnB for any s ∈ S and n ∈N .

The groupW is called the Weyl group ofG. In fact, it is a consequence of the above axioms
that the pair (W,S) is a Coxeter system; see [25, Chapter IV, §2, Théorème 2]. The notion
of groups with a BN -pair was invented by Tits; see [181]. The standard example of a group
with a BN -pair is the general linear group G=GLn(K), where K is any field and

B := subgroup of all upper triangular matrices in G,

N := subgroup of all monomial matrices in G.

(A matrix is called monomial if it has exactly one non-zero entry in each row and each
column.) We have

T := B ∩N = subgroup of all diagonal matrices in G

and W = N/T ∼= Sn. Thus, Sn is the Weyl group of G. More generally, the Chevalley
groups (and their twisted analogues) associated with the semisimple complex Lie algebras
all have BN -pairs; see Chevalley, [45], Carter, [42], and Steinberg, [176].
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The above set of axioms imposes very strong conditions on the structure of a group G
with a BN -pair. For example, we have the following Bruhat decomposition, which gives
the decomposition of G into double cosets with respect to B:

G=
∐
w∈W

BwB.

(More accurately, we should write BnwB where nw is a representative of w ∈W in N .
But, since any two representatives of w lie in the same coset of T ⊆ B , the double coset
BnwB does not depend on the choice of the representative.)

Furthermore, the proof of the simplicity of the Chevalley groups and their twisted ana-
logues is most economically performed using the simplicity criterion for abstract groups
with a BN -pair in Bourbaki, [25, Chapter IV, §2, no. 7].

Groups with a BN -pair play an important rôle in finite group theory. In fact, it is known
that every finite simple group possesses a BN -pair, except for the cyclic groups of prime
order, the alternating groups of degree � 5, and the 26 sporadic simple groups; see Goren-
stein et al., [96]. Given a finite groupG with a BN -pair, the irreducible factors of the Weyl
group W are of type An, Bn, Dn, G2, F4, E6, E7, E8 or I2(8). This follows from the
classification by Tits, [181] (rank � 3), Hering, Kantor, Seitz, [98,117] (rank 1) and Fong
and Seitz, [81] (rank 2). Note that there is only one case where W is not crystallographic:
this is the case where W has a component of type I2(8) (the dihedral group of order 16),
which corresponds to the twisted groups of type F4 discovered by Ree (see Carter, [42], or
Steinberg, [176]).

In another direction, BN -pairs with infinite Weyl groups arise naturally in the theory of
p-adic groups; see Iwahori and Matsumoto, [109].

2.17. Connected reductive algebraic groups

Here, we assume that the reader has some familiarity with the theory of linear algebraic
groups; see Borel, [23], Humphreys, [106], or Springer, [171]. LetG be a connected reduc-
tive algebraic group over an algebraically closed field K . Let B ⊆G be a Borel subgroup.
Then we have a semidirect product decomposition B =U T where U is the unipotent rad-
ical of B and T is a maximal torus. Let N = NG(T ), the normaliser of T in G. Then
the groups B,N form a BN -pair in G; furthermore, W must be a finite Weyl group (and
not just a Coxeter group as for general groups with a BN -pair). This is a deep, important
result whose proof goes back to Chevalley, [47]; detailed expositions can be found in the
monographs by Borel, [23, Chapter IV, 14.15], Humphreys, [106, §29.1], or Springer, [171,
Chapter 8].

For example, in G = GLn(K), the subgroup B of all upper triangular matrices is a
Borel subgroup by the Lie–Kolchin theorem (see, for example, Humphreys, [106, 17.6]).
Furthermore, we have a semidirect product decomposition B = U T where U ⊆ B is the
normal subgroup consisting of all upper triangular matrices with 1 on the diagonal and
T is the group of all diagonal matrices in B . Since K is infinite, it is easily checked that
N =NG(T ), the group of all monomial matrices.
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Returning to the general case, let us consider the Bruhat cells BwB (w ∈ W ). These
are locally closed subsets of G since they are orbits of B × B on G under left and right
multiplication. The Zariski closure of BwB is given by

BwB =
⋃

y∈S(w)
ByB.

This yields the promised geometric description of the Bruhat–Chevalley order � on W
(as defined in the remarks following Theorem 2.2.) The proof (see, for example, Springer,
[171, §8.5]) relies in an essential way on the fact that G/B is a projective variety.

3. Braid groups

3.1. The braid group of a complex reflection group

For a complex reflection group W � GL(V ), V =Cn, denote by A the set of its reflecting
hyperplanes in V . The topological space

V reg := V \
⋃
H∈A

H

is (pathwise) connected in its inherited complex topology. For a fixed base point x0 ∈ V reg

we define the pure braid group of W as the fundamental group P(W) := π1(V
reg, x0).

Now W acts on V reg, and by the theorem of Steinberg (Theorem 1.6) the covering
¯ :V reg→ V reg/W is Galois, with group W . This induces a short exact sequence

1→ P(W)→ B(W)→W → 1 (1)

for the braid group B(W) := π1(V
reg/W, x̄0) of W .

IfW =Sn in its natural permutation representation, the group B(W) is just the classical
Artin braid group on n strings, [4].

We next describe some natural generators of B(W). Let H ∈ A be a reflecting hyper-
plane. Let xH ∈ H and r > 0 such that the open ball B(xH ,2r) around xH does not in-
tersect any other reflecting hyperplane and x0 /∈ B(xH ,2r). Choose a path γ : [0,1] → V

from the base point x0 to xH , with γ (t) ∈ V reg for t < 1. Let t0 be minimal subject to
γ (t) ∈ B(xH , r) for all t > t0. Then γ ′ := γ (t/t0) is a path from x0 to γ (t0). Then

λ : [0,1]→ B(xH ,2r), t �→ γ (t0) exp(2πit/eH ),

where eH = |WH | is the order of the fixator ofH inW , defines a closed path in the quotient
V reg/W . The homotopy class in B(W) of the composition γ ′ ◦ λ ◦ γ ′−1 is then called a
braid reflection (see Broué, [33]) or generator of the monodromy around H . Its image in
W is a reflection sH generating WH , with non-trivial eigenvalue exp(2πi/eH ). It can be
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shown that B(W) is generated by all braid reflection, when H varies over the reflecting
hyperplanes of W (Broué, Malle and Rouquier, [38, Theorem 2.17]).

Assume from now on that W is irreducible. Recall the definition of N , N∗ in Sec-
tions 1.2 and 1.7 as the number of reflections respectively of reflecting hyperplanes. The
following can be shown without recourse to the classification of irreducible complex re-
flection groups:

3.2. THEOREM (Bessis, [11]). Let W � GLn(C) be an irreducible complex reflection
group with braid group B(W). Let d be a degree of W which is a regular number for W
and let r := (N +N∗)/d . Then r ∈ N, and there exists a subset S= {s1, . . . , sr } ⊂ B(W)
with:

(i) s1, . . . , sr are braid reflections, so their images s1, . . . , sr ∈W are reflections.
(ii) S generates B(W), and hence S := {s1, . . . , sr} generates W .

(iii) There exists a finite set R of relations of the formw1 =w2, wherew1,w2 are words
of equal length in s1, . . . , sr , such that 〈s1, . . . , sr |R〉 is a presentation for B(W).

(iv) Let es denote the order of s ∈ S. Then 〈s1, . . . , sr |R; ses = 1 ∀s ∈ S〉 is a presenta-
tion for W , where now R is viewed as a set of relations on S.

(v) (s1 · · · sr )d is central in B(W) and lies in P(W).
(vi) The product c := s1 · · · sr is a ζ := exp(2πi/d)-regular element of W (hence has

eigenvalues ζ−m1, . . . , ζ−mr ).

It follows from the classification (see table 1) that there always exists a regular degree. In
many cases, for example if W is well-generated, the number (N +N∗)/r is regular, when
r is chosen as the minimal number of generating reflections for W (so n � r � n + 1).
Thus, in those cases B(W) is finitely presented on the same minimal number of generators
as W . Under the assumptions (i) or (ii) of Theorem 1.16, the largest degree dn is regular,
whence Theorem 1.16(iv) is a consequence of the previous theorem.

At present, presentations of the type described in Theorem 3.2 have been found for all
but six irreducible types, by case-by-case considerations, see Bannai, [5], Naruki, [146],
Broué, Malle and Rouquier, [38]. For the remaining six groups, conjectural presentations
have been found by Bessis and Michel using computer calculations.

For the case of real reflection groups, Brieskorn, [28], and Deligne, [61], determined
the structure of B(W) by a nice geometric argument. They show that the generators in
Theorem 3.2 (with r = n) can be taken as suitable preimages of the Coxeter generators,
and the relations R as the Coxeter relations. For the case ofW(An)=Sn+1 of the classical
braid group, this was first shown by Artin, [4].

A topological space X is called K(π,1) if all homotopy groups πi(X) for i �= 1 vanish.
The following is conjectured by Arnol’d to be true for all irreducible complex reflection
groups:

3.3. THEOREM. Assume that W is not of type Gi , i ∈ {24,27,29,31,33,34}. Then V reg

and V reg/W are K(π,1)-spaces.

This was proved by a general argument for Coxeter groups by Deligne, [61], after Fox
and Neuwirth, [82], showed it for type An and Brieskorn, [29], for those of type different
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from H3,H4,E6,E7,E8. For the non-real Shephard groups (non-real groups with Coxeter
braid diagrams), it was proved by Orlik and Solomon, [158]. The case of the infinite series
G(de, e, r) has been solved by Nakamura, [145]. In that case, there exists a locally trivial
fibration

V reg(G(de, e, n))→ V reg(G(de, e, n− 1)
)
,

with fiber isomorphic to C minus m(de, e, n) points, where

m(de, e, n) :=
{
(n− 1)de+ 1 for d �= 1,

(n− 1)(e− 1) for d = 1.

This induces a split exact sequence

1→ Fm→ P
(
G(de, e, n)

)→ P
(
G(de,1, n− 1)

)→ 1

for the pure braid group, with a free group Fm of rank m=m(de, e, n). In particular, the
pure braid group has the structure of an iterated semidirect product of free groups (see
Broué, Malle and Rouquier, [38, Proposition 3.37]).

3.4. The centre and regular elements

Denote by π the class in P(W) of the loop

[0,1]→ V reg, t �→ x0 exp(2πit).

Then π lies in the centre Z(P (W)) of the pure braid group. Furthermore,

[0,1]→ V reg, t �→ x0 exp
(
2πit/
∣∣Z(W)∣∣),

defines a closed path in V reg/W , so an element β of B(W), which is again central. Clearly
π = β |Z(W)|.

The following was shown independently by Brieskorn and Saito, [30], and Deligne, [61],
for Coxeter groups, and by Broué, Malle and Rouquier, [38, Theorem 2.24], for the other
groups:

3.5. THEOREM. Assume that W is not of type Gi , i ∈ {24,27,29,31,33,34}. Then the
centre of B(W) is infinite cyclic generated by β , the centre of P(W) is infinite cyclic
generated by π , and the exact sequence (1) induces an exact sequence

1→ Z
(
P(W)
)→ Z

(
B(W)
)→Z(W)→ 1.
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In their papers, Brieskorn and Saito, [30], and Deligne, [61], also solve the word problem
and the conjugation problem for braid groups attached to real reflection groups.

For each H ∈A choose a linear form αH :V → C with kernel H . Let eH := |WH |, the
order of the minimal parabolic subgroup fixing H . The discriminant of W , defined as

δ := δ(W) :=
∏
H∈A

α
eH
H ,

is then a W -invariant element of the symmetric algebra S(V ∗) of V ∗, well-defined up to
non-zero scalars (Cohen, [50, 1.8]). It thus induces a continuous function δ :V reg/W →
C×, hence by functoriality a group homomorphism π1(δ) :B(W)→ π1(C×,1) ∼= Z. For
b ∈ B(W) let l(b) := π1(δ)(b) denote the length of b. For example, every braid reflection
s has length l(s)= 1, and we have

l(β)= (N +N∗)/∣∣Z(W)∣∣ and hence l(π)=N +N∗

by Broué, Malle and Rouquier, [38, Corollary 2.21].
The elements b ∈ B(W) with l(b)� 0 form the braid monoid B+(W). A d-th root of π

is by definition an element w ∈ B+ with wd = π .
Let d be a regular number for W , and w a d-th root of π . Assume that the image w

of w in W is ζ -regular for some d-th root of unity ζ (in the sense of 1.9). (This is, for
example, the case if W is a Coxeter group by Broué and Michel, [39, Theorem 3.12].)
By Theorem 1.11(ii) the centraliser W(w) := CW(w) is a reflection group on V (w, ζ ),
with reflecting hyperplanes the intersections of V (w, ζ ) with the hyperplanes in A by
Theorem 1.12(i). Thus the hyperplane complement ofW(w) on V (w, ζ ) is just V reg(w) :=
V reg ∩ V (w, ζ ). Assuming that the base point x0 has been chosen in V reg(w), this defines
natural maps

P
(
W(w)
)→ P(W) and ψw :B

(
W(w)
)→ B(W).

By Broué and Michel, [39, 3.4], the image of B(W(w)) in B(W) centralises w. It is conjec-
tured (see Bessis, Digne and Michel, [12, Conjecture 0.1]) that ψw defines an isomorphism
B(W(w))∼= CB(W)(w). The following partial answer is known:

3.6. THEOREM (Bessis, Digne and Michel, [12, Theorem 0.2]). Let W be an irreducible
reflection group of type Sn, G(d,1, n) or Gi , i ∈ {4,5,8,10,16,18,25,26,32}, and let
w ∈W be regular. Then ψw induces an isomorphism B(W(w))∼= CB(W)(w).

This has also been proved by Michel, [142, Corollary 4.4], in the case thatW is a Coxeter
group and w acts on W by a diagram automorphism. The injectivity of ψw was shown for
all but finitely many types of W by Bessis, [10, Theorem 1.3].

The origin of Artin’s work on the braid group associated with the symmetric group lies
in the theory of knots and links. We shall now briefly discuss this connection and explain
the construction of the “HOMFLY-PT” invariant of knots and links (which includes the
famous Jones polynomial as a special case). We follow the exposition in Geck and Pfeiffer,
[95, §4.5].
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3.7. Knots and links, Alexander and Markov theorem

If n is a positive integer, an oriented n-link is an embedding of n copies of the interval
[0,1] ⊂ R into R3 such that 0 and 1 are mapped to the same point (the orientation is in-
duced by the natural ordering of [0,1]); a 1-link is also called a knot. We are only interested
in knots and links modulo isotopy, i.e., homeomorphic transformations which preserve the
orientation. We refer to Birman, [16], Crowell and Fox, [57], or Burde and Zieschang, [40],
for precise versions of the above definitions.

By Artin’s classical interpretation of B(Sn) as the braid group on n strings, each gen-
erator of B(Sn) can be represented by oriented diagrams as indicated below; writing any
g ∈ B(Sn) as a product of the generators and their inverses, we also obtain a diagram for g,
by concatenating the diagrams for the generators. “Closing” such a diagram by joining the
end points, we obtain the plane projection of an oriented link in R3:
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By Alexander’s theorem (see Birman, [16], or, for a more recent proof, Vogel, [186]), every
oriented link in R3 is isotopic to the closure of an element in B(Sn), for some n� 1. The
question of when two links in R3 are isotopic can also be expressed algebraically. For this
purpose, we consider the infinite disjoint union

B∞ :=
∐
n�1

B(Sn).

Given g,g′ ∈ B∞, we write g ∼ g′ if one of the following relations is satisfied:
(I) We have g,g′ ∈ B(Sn) and g′ = x−1gx for some x ∈ B(Sn).

(II) We have g ∈ B(Sn), g′ ∈ B(Sn+1) and g′ = gsn or g′ = gs−1
n .

The above two relations are called Markov relations. By a classical result due to Markov
(see Birman, [16], or, for a more recent proof, Traczyk, [183]), two elements of B∞ are
equivalent under the equivalence relation generated by ∼ if and only if the corresponding
links obtained by closure are isotopic. Thus, to define an invariant of oriented links is
the same as to define a map on B∞ which takes equal values on elements g,g′ ∈ B∞
satisfying (I) or (II).

We now consider the Iwahori–Hecke algebra HC(Sn) of the symmetric group Sn over
C. By definition, HC(Sn) is a quotient of the group algebra of B(Sn), where we factor
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by an ideal generated by certain quadratic relations depending on two parameters u,v ∈C.
This is done such that

T 2
si
= uT1 + vTsi for 1 � i � n− 1,

where Tsi denotes the image of the generator si of B(Sn) and T1 denotes the identity
element. For each w ∈Sn, we have a well-defined element Tw such that

TwTw′ = Tww′ whenever l(ww′)= l(w)+ l(w′).

This follows easily from Matsumoto’s Theorem 2.2. In fact, one can show that the elements
{Tw | w ∈ Sn} form a C-basis of HC(Sn). (For more details, see the chapter on Hecke
algebras.) The map w �→ Tw (w ∈Sn) extends to a well-defined algebra homomorphism
from the group algebra of B(Sn) over C ontoHC(Sn). Furthermore, the inclusion Sn−1 ⊆
Sn also defines an inclusion of algebras HC(Sn−1)⊆HC(Sn).

3.8. THEOREM (Jones, Ocneanu, [112]). There is a unique family of C-linear maps
τn :HC(Sn)→C (n� 1) such that the following conditions hold:

(M1) τ1(T1)= 1;
(M2) τn+1(hTsn)= τn+1(hT

−1
sn
)= τn(h) for all n� 1 and h ∈HC(Sn);

(M3) τn(hh′)= τn(h′h) for all n� 1 and h,h′ ∈HC(Sn).
Moreover, we have τn+1(h)= v−1(1− u)τn(h) for all n� 1 and h ∈HC(Sn).

In [112], Jones works with an Iwahori–Hecke algebra of Sn where the parameters are
related by v = u− 1. The different formulation above follows a suggestion by J. Michel.
It results in a simplification of the construction of the link invariants below. (The simpli-
fication arises from the fact that, due to the presence of two different parameters in the
quadratic relations, the “singularities” mentioned in [112, p. 349, notes (1)] simply disap-
pear.) Generalisations of Theorem 3.8 to typesG(d,1, n) andDn have been found in Geck
and Lambropoulou, [92], Lambropoulou, [125], and Geck, [87].

3.9. The HOMFLY-PT polynomial

We can now construct a two-variable invariant of oriented knots and links as follows. Con-
sider an oriented link L and assume that it is isotopic to the closure of g ∈ B(Sn) for n� 1.
Then we set

XL(u, v) := τn(ḡ) ∈C with τn as in Theorem 3.8.

Here, ḡ denotes the image of g under the natural map C[B(Sn)] → HC(Sn), w �→ Tw
(w ∈Sn). It is easily checked that XL(u, v) can be expressed as a Laurent polynomial in u
and v; the properties (M2) and (M3) make sure that τn(ḡ) does not depend on the choice
of g. If we make the change of variables u = t2 and v = tx, we can identify the above
invariant with the HOMFLY-PT polynomial PL(t, x) discovered by Freyd et al., [83], and
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Przytycki and Traczyk, [161]; see also Jones, [112, (6.2)]. Furthermore, the Jones polyno-
mial JL(t) is obtained by setting u = t2, v =√t(t − 1) (see [112, §11]). Finally, setting
u = 1 and v = √t − 1/

√
t , we obtain the classical Alexander polynomial AL(t) whose

definition can be found in Crowell and Fox, [57].
For a survey about recent developments in the theory of knots and links, especially since

the discovery of the Jones polynomial, see Birman, [17].

3.10. Further aspects of braid groups

One of the old problems concerning braid groups is the question whether or not they are lin-
ear, i.e., whether there exists a faithful linear representation on a finite-dimensional vector
space. Significant progress has been made recently on this problem. Krammer, [122], and
Bigelow, [15], proved that the classical Artin braid group is linear. Then Digne, [69], and
Cohen and Wales, [53], extended this result and showed that all Artin groups of crystallo-
graphic type have a faithful representation of dimension equal to the number of reflections
of the associated Coxeter group.

On the other hand, there is one particular representation of the braid group associated
with Sn, the so-called Burau representation (see Birman, [16], for which it has been a long-
standing problem to determine for which values of n it is faithful. Moody, [143], showed
that it is not faithful for n� 10; this bound was improved by Long and Paton, [133], to 6.
Recently, Bigelow, [14], showed that the Burau representation is not faithful already for
n= 5. (It is an old result of Magnus and Peluso that the Burau representation is faithful for
n= 3.)

In a different direction, Deligne’s and Brieskorn–Saito’s solution of the word and conju-
gacy problem in braid groups led to new developments in combinatorial group and monoid
theory; see, for example, Dehornoy and Paris, [60], and Dehornoy, [59].

4. Representation theory

In this section we report about the representation theory of finite complex reflection groups.

4.1. Fields of definition

Let W be a finite complex reflection group on V . Let KW denote the character field of the
reflection representation of W , that is, the field generated by the traces trV (w), w ∈W . It
is easy to see that the reflection representation can be realised over KW (see, for example,
[7, Proposition 7.1.1]). But we have a much stronger statement:

4.2. THEOREM (Benard, [6], Bessis, [9]). Let W be a complex reflection group. Then the
field KW is a splitting field for W .

The only known proof for this result is case-by-case, treating the reflection groups ac-
cording to the Shephard–Todd classification.
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The field KW has a nice description at least in the case of well-generated groups, that is,
irreducible groups generated by dim(V ) reflections. In this case, the largest degree dn ofW
is regular, so there exists an element c := s1 · · · sn as in theorem 3.2(vi) of Bessis, called a
Coxeter element of W , with eigenvalues ζ−m1, . . . , ζ−mn in the reflection representation,
where ζ := exp(2πi/dn) and the mi are the exponents of W .

If W is a real reflection group, thenW is a Coxeter group associated with some Coxeter
matrix M (see Theorem 2.4) and we have

KW =Q
(
cos(2π/mst ) | s, t ∈ S

)⊂R.

In particular, this shows that KW =Q if W is a finite Weyl group.
For well-generated irreducible complex reflection groupsW � GL(V ), the field of defi-

nition KW is generated over Q by the coefficients of the characteristic polynomial on V of
a Coxeter element, see Malle, [140, Theorem 7.1]. This characterisation is no longer true
for non-well generated reflection groups.

4.3. Macdonald–Lusztig–Spaltenstein induction

Let W be a complex reflection group on V . Recall from Section 1.7 the definition of the
fake degree Rχ of an irreducible character χ ∈ Irr(W). The b-invariant bχ of χ is defined
as the order of vanishing of Rχ at x = 0, that is, as the minimum of the exponents ei(χ)
of χ . The coefficient of xbχ in Rχ is denoted by γχ .

4.4. THEOREM (Macdonald, [136], Lusztig and Spaltenstein, [135]). Let W be a com-
plex reflection group on V , W ′ a reflection subgroup (on V1 := V/CV (W ′)). Let ψ be an
irreducible character of W ′ such that γψ = 1. Then IndW

W ′(ψ) has a unique irreducible
constituent χ ∈ Irr(W) with bχ = bψ . This satisfies γχ = 1. All other constituents have
b-invariant bigger than bψ

The character χ ∈ Irr(W) in Theorem 4.4 is called the j -induction jW
W ′(ψ) of the charac-

terψ ∈ Irr(W ′). Clearly, j -induction is transitive; it is also compatible with direct products.
An important example of characters ψ with γψ = 1 is given by the determinant char-

acter detV :W → C× of a complex reflection group (see Geck and Pfeiffer, [95, Theo-
rem 5.2.10]).

4.5. Irreducible characters

There is no general construction of all irreducible representations of a complex reflection
group known. Still, we have the following partial result:

4.6. THEOREM (Steinberg). LetW � GL(V ) be an irreducible complex reflection group.
Then the exterior powers Λi(V ), 1 � i � dimV , are irreducible, pairwise non-equivalent
representations of W .
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A proof in the case of well-generated groups can be found in Bourbaki, [25, V, §2,
Example 3(d)], and Kane, [114, Theorem 24-3 A], for example. The general case then
follows with corollary 1.15.

We now give some information on the characters of individual reflection groups. The
irreducible characters of the symmetric group Sn were determined by Frobenius, [84],
see also Macdonald, [137], and Fulton, [85]. Here we follow the exposition in Geck and
Pfeiffer, [95, 5.4].

Let λ = (λ1, . . . , λr ) 4 n be a partition of n. The corresponding Young subgroup Sλ

of Sn is the common setwise stabiliser {1, . . . , λ1}, {λ1 + 1, . . . , λ1 + λ2}, . . . , abstractly
isomorphic to Sλ =Sλ1 × · · · ×Sλr . This is a parabolic subgroup of Sn in the sense of
Section 1.5. For any m � 1, let 1m, εm denote the trivial respectively the sign character
of Sm. For each partition we have the two induced characters

πλ := IndSn

Sλ
(1λ1 # · · ·#1λr ), θλ := IndSn

Sλ
(ελ1 # · · ·#ελr ).

Then πλ and θλ∗ have a unique irreducible constituent χλ ∈ Irr(Sn) in common, where
λ∗ denotes the partition dual to λ. This constituent can also be characterised in terms of
j -induction as

χλ = jSn

Sλ
(1λ1# · · ·#1λr ).

Then the χλ are mutually distinct and exhaust the irreducible characters of Sn, so
Irr(Sn) = {χλ | λ 4 n}. From the above construction it is easy to see that all χλ are af-
forded by rational representations.

The construction of the irreducible characters of the imprimitive group G(d,1, n) goes
back at least to Osima, [159] (see also Read, [164], Hughes, [102], Bessis, [9]) via their
abstract structure as wreath product Cd 1Sn. Let us fix d � 2 and write Wn :=G(d,1, n).
A d-tuple α = (α0, α1, . . . , αd−1) of partitions αi 4 ni with

∑
ni = n is called a d-

partition of n. We denote by Wα the natural subgroup Wn0 × · · · ×Wnd−1 of Wn, where
αj 4 nj , corresponding to the Young subgroup Sn0 × · · · ×Snd−1 of Sn. Via the natural
projection Wnj →Snj the characters of Snj may be regarded as characters of Wnj . Thus
each αj defines an irreducible character χαj of Wnj . For any m, let ζd :Wm→ C× be the
linear character defined by ζd(t1) = exp(2πi/d), ζd(ti) = 1 for i > 1, with the standard
generators ti from 1.13. Then for any d-partition α of n we can define a character χα
of Wn as the induction of the exterior product

χα := IndWnWα
(
χα0 #(χα1 ⊗ ζd)# · · ·#

(
χαd−1 ⊗ ζ d−1

d

))
.

By Clifford-theory χα is irreducible, χα �= χβ if α �= β , and all irreducible characters ofWn
arise in this way, so

Irr(Wn)=
{
χα | α = (α0, . . . , αd−1) 4d n

}
.

We describe the irreducible characters of G(de, e, n) in terms of those of Wn :=
G(de,1, n). Recall that the imprimitive reflection group G(de, e, n) is generated by the
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reflections t2, t̃2 := t−1
1 t2t1, t3, . . . , tn, and te1 . Denote by π the cyclic shift on de-partitions

of n, i.e.,

π(α0, . . . , αde−1)= (α1, . . . , αde−1, α0).

By definition we then have χπ(α)⊗ ζde = χα . Let se(α) denote the order of the stabiliser of
α in the cyclic group 〈πd〉. Then upon restriction to G(de, e, n) the irreducible character
χα of Wn splits into se(α) different irreducible constituents, and this exhausts the set of
irreducible characters of G(de, e, n). More precisely, let α be a de-partition of n with
ẽ := se(α), Wα,e :=Wα ∩G(de, e, n), and ψα the restriction of

χα0 #(χα1 ⊗ ζde)# · · ·#
(
χαde−1 ⊗ ζ de−1

de

)
to Wα,e . Then ψα is invariant under the element σ := (t2 · · · tn)n/ẽ (note that ẽ = se(α)
divides n), and it extends to the semidirect product Wα,e.〈σ 〉. The different extensions of
ψα induced to G(de, e, n) then exhaust the irreducible constituents of the restriction of χα
toG(de, e, n). Thus, we may parametrise Irr(G(de, e, n)) by de-partitions of n up to cyclic
shift by πd in such a way that any α stands for se(α) different characters.

In order to describe the values of the irreducible characters we need the following defin-
itions. We identify partitions with their Young diagrams. A d-partition α is called a hook if
it has just one non-empty part, which is a hook (i.e., does not contain a 2 × 2-block).
The position of the non-empty part is then denoted by τ(α). If α, β are d-partitions
such that βi is contained in αi for all 0 � i � d − 1, then α \ β denotes the d-partition
(αi \ βi | 0 � i � d − 1), where αi \ βi is the set theoretic difference of αi and βi . If
α \ β is a hook, we denote by lαβ the number of rows of the hook (α \ β)τ(α\β) minus 1.
With these notations the values of the irreducible characters ofG(d,1, n) can be computed
recursively with a generalised Murnaghan–Nakayama rule (see also Stembridge, [179]):

4.7. THEOREM (Osima, [159]). Let α and γ be d-partitions of n, let m be a part of γt for
some 1 � t � d , and denote by γ ′ the d-partition of n−m obtained from γ by deleting the
part m from γt . Then the value of the irreducible character χα on an element of G(d,1, n)
with cycle structure γ is given by

χα(γ )=
∑

α\β4dm
ζ std (−1)l

α
β χβ(γ

′)

where the sum ranges over all d-partitions β of n−m such that α \ β is a hook and where
s = τ(α \ β).

An overview of the irreducible characters of the exceptional groups (and of their projec-
tive characters) is given in Humphreys, [107]. All character tables of irreducible complex
reflection groups are also available in the computer algebra system CHEVIE, [89].
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4.8. Fake degrees

The fake degrees (introduced in Section 1.7) of all complex reflection groups are known.
For the symmetric groups, they were first determined by Steinberg, [174], as generic de-
grees of the unipotent characters of the general linear groups over a finite field. From that
result, the fake degrees of arbitrary imprimitive reflection groups can easily be derived (see
Malle, [138, Bem. 2.10 and 5.6]).

4.9. THEOREM (Steinberg, [174], Lusztig, [134]). The fake degrees of the irreducible
complex reflection groups G(de, e, n) are given as follows:

(i) Let χ ∈ Irr(G(d,1, n)) be parameterised by the d-partition (α0, . . . , αd−1), where
αi = (αi1 � · · · � αimi ) 4 ni , and let (S0, . . . , Sd−1), where Si = (αi1 + mi − 1,
. . . , αimi ), denote the corresponding tuple of β-numbers. Then

Rχ =
n∏
i=1

(
xid − 1

) d−1∏
i=0

Δ(Si, x
d)xini

Θ(Si, xd)x
d(
mi−1

2 )+d(mi−2
2 )+···

,

where, for a finite subset S ⊂N,

Δ(S,x) :=
∏
λ,λ′∈S
λ′<λ

(
xλ − xλ′), Θ(S, x) :=

∏
λ∈S

λ∏
h=1

(
xh − 1

)
.

(ii) The fake degree of χ ∈ Irr(G(de, e, n)) is obtained from the fake degrees in
G(de,1, n) as

Rχ = xnd − 1

xnde − 1

∑
ψ∈Irr(G(de,1,n))

〈χ,ψ |G(de,e,n)〉Rψ.

For exceptional complex reflection groups, the fake degrees can easily be computed, for
example in the computer algebra system CHEVIE, [89]. In the case of exceptional Weyl
groups, they were first studied by Beynon and Lusztig, [13].

The fake degrees of reflection groups satisfy a remarkable palindromicity property:

4.10. THEOREM (Opdam, [151,152], Malle, [140]). LetW be a complex reflection group.
There exists a permutation δ on Irr(W) such that for every χ ∈ Irr(W) we have

Rχ(x)= xcRδ(χ̄)
(
x−1),

where c=∑r (1− χ(r)/χ(1)), the sum running over all reflections r ∈W .

The interest of this result also lies in the fact that the permutation δ is strongly related
to the irrationalities of characters of the associated Hecke algebra. Theorem 4.10 was first
observed empirically by Beynon and Lusztig, [13], in the case of Weyl groups. Here δ
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is non-trivial only for characters such that the corresponding character of the associated
Iwahori–Hecke algebra is non-rational. An a priori proof in this case was later given by
Opdam, [151]. IfW is complex, Theorem 4.10 was verified by Malle, [140, Theorem 6.5],
in a case-by-case analysis. Again in all but possibly finitely many cases, δ comes from the
irrationalities of characters of the associated Hecke algebra. Opdam, [152, Theorem 4.2
and Corollary 6.8], gives a general argument which proves theorem 4.10 under a suitable
assumption on the braid group B(W).

The above discussion is exclusively concerned with representations over a field of char-
acteristic 0 (the “semisimple case”). We close this chapter with some remarks concerning
the modular case.

4.11. Modular representations of Sn

Frobenius’ theory (as developed further by Specht, James and others) yields a parametri-
sation of Irr(Sn) and explicit formulas for the degrees and the values of all irreducible
characters. As soon as we consider representations over a field of characteristic p > 0, the
situation changes drastically. James, [110], showed that the irreducible representations of
Sn still have a natural parametrisation, by so-called p-regular partitions. Furthermore, the
decomposition matrix relating representations in characteristic 0 and in characteristic p
has a lower triangular shape with 1s on the diagonal. This result shows that, in principle, a
knowledge of the irreducible representations of Sn in characteristic p is equivalent to the
knowledge of the decomposition matrix.

There are a number of results known about certain entries of that decomposition ma-
trix, but a general solution to this problem is completely open; see James, [110], for a
survey. Via the classical Schur algebras (see Green, [97]) it is known that the decompo-
sition numbers of Sn in characteristic p can be obtained from those of the finite general
linear group GLn(Fq) (where q is a power of p). Now, at first sight, the problem of com-
puting the decomposition numbers for GLn(Fq) seems to be much harder than for Sn.
However, Erdmann, [77], has shown that, if one knows the decomposition numbers of Sm

(for sufficiently large values of m), then one will also know the decomposition numbers
of GLn(Fq). Thus, the problem of determining the decomposition numbers for symmetric
groups appears to be as difficult as the corresponding problem for general linear groups.

In a completely different direction, Dipper and James, [70], showed that the decompo-
sition numbers of Sn can also be obtained from the so-called q-Schur algebra, which is
defined in terms of the Hecke algebra of Sn. Thus, the problem of determining the rep-
resentations of Sn in characteristic p is seen to be a special case of the more general
problem of studying the representations of Hecke algebras associated with finite Coxeter
groups. This is discussed in more detail in the chapter on Hecke algebras. In this context,
we just mention here that James’ result on the triangularity of the decomposition matrix
of Sn is generalised to all finite Weyl groups in Geck, [88].

5. Hints for further reading

Here, we give some hints on topics which were not touched in the previous sections.
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5.1. Crystallographic reflection groups

Let W be a discrete subgroup of the group of all affine transformations of a finite-
dimensional affine space E over K = C or K = R, generated by affine reflections. If W
is finite, it necessarily fixes a point and W is a finite complex reflection group. If W is
infinite andK =R, the irreducible examples are precisely the affine Weyl groups (see Sec-
tion 2.14). In the complex case K =C there are two essentially different cases. If E/W is
compact, the groupW is called crystallographic. The non-crystallographic groups are now
just the complexifications of affine Weyl groups. The crystallographic reflection groups
have been classified by Popov, [160] (see also Kaneko, Tokunaga and Yoshida, [182,115],
for related results). As in the real case they are extensions of a finite complex reflection
group W0 by an invariant lattice which is generated by roots for W0.

It turns out that presentations for these groups can be obtained as in the case of affine
Weyl groups by adding a further generating reflection corresponding to a highest root in a
root system for W0 (see Malle, [139]). As for the finite complex reflection groups in Sec-
tion 3.1, the braid group B(W) ofW is defined as the fundamental group of the hyperplane
complement. For many of the irreducible crystallographic complex reflection groups it is
known that a presentation for B(W) can be obtained by omitting the order relations from
the presentation ofW described above (see Dũng, [72], for affine groups, Malle, [139], for
the complex case).

5.2. Quaternionic reflection groups

Cohen, [51], has obtained the classification of finite reflection groups over the quaternions.
This is closely related to finite linear groups over C generated by bireflections, that is,
elements of finite order which fix pointwise a subspace of codimension 2. Indeed, using
the identification of the quaternions as a certain ring of 2× 2-matrices over the complex
numbers, reflections over the quaternions become complex bireflections. The primitive
bireflection groups had been classified previously by Huffman and Wales, [101,189]. One
of the examples is a 3-dimensional quaternionic representation of the double cover of the
sporadic Hall–Janko group J2, see Wilson, [191].

Presentations for these groups resembling the Coxeter presentations for Weyl groups are
given by Cohen, [52].

In recent work on the McKay correspondence, quaternionic reflection groups play an
important rôle under the name of symplectic reflection groups in the construction of so-
called symplectic reflection algebras, see, for example, Etingof and Ginzburg, [78].

5.3. Reflection groups over finite fields

Many of the general results for complex reflection groups presented in section 1 are no
longer true for reflection groups over fields of positive characteristic. Most importantly,
the ring of invariants of such a reflection group is not necessarily a polynomial ring. Nev-
ertheless we have the following criterion due to Serre, [25, V.6, Example 8], and Naka-
jima, [144], generalising Theorem 1.6:
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5.4. THEOREM (Serre, Nakajima, [144]). Let V be a finite-dimensional vector space over
a field K and W � GL(V ) a finite group such that K[V ]W is polynomial. Then the point-
wise stabiliser of any subspace U � V has polynomial ring of invariants (and thus is
generated by reflections).

The irreducible reflection groups over finite fields were classified by Wagner, [187,188],
and Zalesskiı̆ and Serežkin, [192], the determination of transvection groups was completed
by Kantor, [116]. In addition to the modular reductions of complex reflection groups, there
arise the infinite families of classical linear, symplectic, unitary and orthogonal groups, as
well as some further exceptional examples. For a complete list see, for example, Kemper
and Malle, [118, Section 1].

The results of Wagner, [188], and Kantor, [116], are actually somewhat stronger, giving
a classification of all indecomposable reflection groups W over finite fields of characteris-
tic p for which the maximal normal p-subgroup is contained in the intersectionW ′ ∩Z(W)
of the centre with the derived group.

Using this classification, the irreducible reflection groups over finite fields with polyno-
mial ring of invariants could be determined, leading to the following criterion:

5.5. THEOREM (Kemper and Malle, [118]). Let V be a finite-dimensional vector space
over K , W � GL(V ) a finite irreducible linear group. Then K[V ]W is a polynomial ring
if and only if W is generated by reflections and the pointwise stabiliser in W of any non-
trivial subspace of V has a polynomial ring of invariants.

The list of groups satisfying this criterion can be found in [118, Theorem 7.2]. That
paper also contains some information on indecomposable groups.

It is an open question whether at least the field of invariants of a reflection group in
positive characteristic is purely transcendental (by Kemper and Malle, [119], the answer is
positive in the irreducible case).

For further discussions of modular invariant theory of reflection groups see also Derksen
and Kemper, [68, 3.7.4].

5.6. p-adic reflection groups

Let R be an integral domain, L an R-lattice of finite rank, i.e., a torsion-free finitely gen-
erated R-module, and W a finite subgroup of GL(L) generated by reflections. Again one
can ask under which conditions the invariants of W on the symmetric algebra R[L] of the
dual L∗ are a graded polynomial ring. In the case of Weyl groups Demazure shows the
following extension of Theorem 1.3:

5.7. THEOREM (Demazure, [63]). Let W be a Weyl group, L the root lattice of W , and R
a ring in which all torsion primes of W are invertible. Then the invariants of W on R[L]
are a graded polynomial algebra, and R[L] is a free graded module over R[L]W .

In the case of general lattices for reflection groups, the following example may be in-
structive: Let W =S3 the symmetric group of degree 3. Then the weight lattice L of S3,
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Table 6
p-adic reflection groups

W Conditions

G(de, e, n) ((d,n) �= (1,2)) p ≡ 1 (mod de); none when de= 2
G(e, e,2) (e� 3) p ≡±1 (mod e); none when e= 3,4,6
Sn+1 –

W Conditions W Conditions

G4 p ≡ 1 (mod 3) G21 p ≡ 1,49 (mod 60)
G5 p ≡ 1 (mod 3) G22 p ≡ 1,9 (mod 20)
G6 p ≡ 1 (mod 12) G23 p ≡ 1,4 (mod 5)
G7 p ≡ 1 (mod 12) G24 p ≡ 1,2,4 (mod 7)
G8 p ≡ 1 (mod 4) G25 p ≡ 1 (mod 3)
G9 p ≡ 1 (mod 8) G26 p ≡ 1 (mod 3)
G10 p ≡ 1 (mod 12) G27 p ≡ 1,4 (mod 15)
G11 p ≡ 1 (mod 24) G28 –
G12 p ≡ 1,3 (mod 8) G29 p ≡ 1 (mod 4)
G13 p ≡ 1 (mod 8) G30 p ≡ 1,4 (mod 5)
G14 p ≡ 1,19 (mod 24) G31 p ≡ 1 (mod 4)
G15 p ≡ 1 (mod 24) G32 p ≡ 1 (mod 3)
G16 p ≡ 1 (mod 5) G33 p ≡ 1 (mod 3)
G17 p ≡ 1 (mod 20) G34 p ≡ 1 (mod 3)
G18 p ≡ 1 (mod 15) G35 –
G19 p ≡ 1 (mod 60) G36 –
G20 p ≡ 1,4 (mod 15) G37 –

considered as Z3-lattice, yields a faithful reflection representation of S3 with the follow-
ing property: Z3[L]S3 is not polynomial, while both the reflection representations over the
quotient field Q3 and over the residue field F3 have polynomial invariants, the first with
generators in degrees 2 and 3, the second with generators in degrees 1 and 6.

The list of all irreducible p-adic reflection groups, that is, reflection groups over the field
of p-adic numbers Qp , was obtained by Clark and Ewing, [49], building on the Shephard–
Todd theorem. We reproduce it in Table 6.

Using a case-by-case argument based on the Clark–Ewing classification and his own
classification of p-adic lattices for reflection groups, Notbohm, [150], was able to deter-
mine all finite reflection groups W over the ring of p-adic integers Zp , p > 2, with poly-
nomial ring of invariants. This was subsequently extended by Andersen, Grodal, Møller
and Viruel, [3], to include the case p = 2.

5.8. p-compact groups

The p-adic reflection groups play an important rôle in the theory of so-called p-compact
groups, which constitute a homotopy theoretic analogue of compact Lie groups. By def-
inition, a p-compact group is a p-complete topological space BX such that the homol-
ogy H∗(X;Fp) of the loop space X = ΩBX is finite. Examples for p-compact groups
are p-completions of classifying spaces of compact Lie groups. Further examples were
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constructed by Clark and Ewing, [49], Aguadé, [2], Dwyer and Wilkerson, [73], and Not-
bohm, [149]. To each p-compact groupX Dwyer and Wilkerson, [74], associate a maximal
torus (unique up to conjugacy) together with a ‘Weyl group’, which comes equipped with
a representation as a reflection group over the p-adic integers Zp , which is faithful if X
is connected. Conversely, by a theorem of Andersen et al., [3], a connected p-compact
group, for p > 2, is determined up to isomorphism by its Weyl group data, that is, by its
Weyl group in a reflection representation on a Zp-lattice.

It has been shown that at least for p > 2 all p-adic reflection groups (as classified by
Clark and Ewing) and all their Zp-reflection representations arise in that way (see Ander-
sen et al., [3], Notbohm, [149], and also Adams and Wilkerson, [1], Aguadé, [2]).
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1. Introduction

A (2,3,7)-generated group is a group generated by two elements of order 2 and 3 respec-
tively such that their product has order 7. Such a group is called Hurwitz if it is finite. In
other words, Hurwitz groups are the non-trivial finite homomorphic images of the abstract
triangle group T (2,3,7) defined by the presentation

T (2,3,7)= 〈X,Y |X2 = Y 3 = (XY)7 = 1
〉
.

In particular, the Hurwitz groups form a wide and remarkable class of the so-called (2,3)-
generated groups, i.e. the non-trivial epimorphic images of the free product

C2 ∗C3 =
〈
X,Y |X2 = Y 3 = 1

〉
.

It is well known that C2 ∗C3 is isomorphic to PSL2(Z) (R. Fricke and F. Klein, [32]). The
structure of normal subgroups of PSL(2,Z) and the corresponding factor groups were the
subject of intensive study; for instance, see [26,27,77,81,80] and, especially, the remark-
able paper of M.W. Liebeck and A. Shalev, [50].

The study of Hurwitz groups goes back to the late XIX century and shows an important
connection with the theory of Riemann surfaces. In 1893, A. Hurwitz, [37], proved that
the automorphism group of an algebraic curve of genus g � 2 always has order at most
84(g − 1) and that this upper bound is attained precisely when the group is an image of
T (2,3,7). Hurwitz’s discovery originated from the example (due to F. Klein, [45]), of
PSL2(7), the smallest Hurwitz group, acting as the automorphism group of the quartic
x3y + y3z+ z3x = 0 of genus 3.

Since then, examples of Hurwitz groups were rather fragmentary until the pioneering
paper of A.M. Macbeath, [57], appeared in 1969. In this paper he describes all prime
powers q such that the group PSL2(q) is Hurwitz. On the other hand, a result of J. Co-
hen, [6], asserts that the Hurwitz subgroups of PSL3(q) are just those which arise from
representations of the above groups discovered by A.M. Macbeath. And this fact may have
erroneously discouraged, for a long time, the search for (projective) linear groups which
are Hurwitz.

The next significant step in the positive direction was done by G. Higman and M.D.E.
Conder who developed a very powerful method of building new permutational representa-
tions of T (2,3,7) via combinatorial diagrams. As a result, Conder, [8], proved that almost
all alternating groups are Hurwitz. Later in the papers of A. Lucchini, M.C. Tamburini
and J.S. Wilson, [55,56], these constructive ideas were generalized to a linear context, pro-
viding a new bunch of Hurwitz groups, which include most finite classical simple groups
of sufficiently large rank. Actually several authors considered the problem of determining
which finite simple groups are Hurwitz. Among them, G. Malle, [60,61], gave precise an-
swers for many classes of exceptional simple groups of Lie type. And, by the contributions
of A. Woldar, [95], R.A. Wilson, [92–94], and others, it is now known exactly which of
the 26 sporadic simple groups are Hurwitz.

It can be shown that there are 2ℵ0 non-isomorphic (2,3,7)-generated groups, [56]. So
any attempt to classify all of them is not realistic. But, as mentioned above, there have
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been significant achievements in studying specific classes of groups (e.g., finite simple
groups) with respect to the property of being Hurwitz. And there have been achievements
in classifying the low-dimensional linear and projective representations of T (2,3,7) over
an algebraically closed field F of characteristic p � 0, [82,78].

In this connection there is a crucial formula, due to L.L. Scott, [68]. Given a group
H = 〈a1, . . . , am〉 and a representation f :H → GLn(F), this formula restricts the simi-
larity invariants of f (a1), . . . , f (am) and of the product f (a1 · · ·am). Using Scott’s result,
L. Di Martino, M.C. Tamburini and A.E. Zalesskii, [25], excluded most of the linear clas-
sical groups in dimensions up to 19 from being Hurwitz. For small n, further combination
of Scott’s formula with results of K. Strambach and H. Völklein, [74], on linearly rigid
triples allows to classify the irreducible Hurwitz subgroups of SLn(F) and PSLn(F), for
n� 5. We refer to Section 4.3, which is devoted to this classification, and to [82].

There are other aspects of Hurwitz groups which are interesting in themselves, and also
shed more light on the understanding of the groups. For example, using number theory,
M. Vsemirnov, V. Mysovskikh and M.C. Tamburini, [88], gave an alternative definition of
T (2,3,7) as a unitary group over an appropriate ring. This result also has a strict relation
to Macbeath’s theorem.

The aim of this chapter is to survey the main achievements and ideas in this field as
well as bring together recent results widely dispersed in the literature. Some of the results
or proofs appear here for the first time. However, we do not touch some specific matters
already covered in previous survey articles. For further reading we recommend the survey
articles [13,22,23,40], and [91].

2. Triangle groups

DEFINITION 2.1. Let G be a group and k, l, m be integers � 2. If x, y ∈G have orders
k and l, respectively, and z= xy has order m, we say that the triple (x, y, z) is a (k, l,m)-
triple. A group G is called (k, l,m)-generated if it can be generated by two elements x
and y such that (x, y, xy) is a (k, l,m)-triple. In this case we also say that (x, y, xy) is a
(k, l,m)-generating triple.

In particular, any (k, l,m)-generated group is a homomorphic image of the abstract tri-
angle group T (k, l,m) defined by the presentation

T (k, l,m)= 〈X,Y |Xk = Y l = (XY)m = 1
〉
.

The groups T (k, l,m) have a nice geometric description.1 Let6=6(k, l,m) be a trian-
gle having angles of size π

k
, π
l

, π
m

, that is 6 is a spherical, Euclidean or hyperbolic triangle
depending on whether

1

k
+ 1

l
+ 1

m

1This geometric interpretation also explains the terminology ‘triangle group’.
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is greater than, equal to or less than 1. Then T (k, l,m) can be defined as a group of motions
of the two-dimensional space (sphere, Euclidean plane or hyperbolic plane, respectively),
namely, as the group generated by rotations of angles 2π

k
, 2π
l

2π
m

around the correspond-
ing vertices of 6. We just mention that hyperbolic triangle groups are special cases of
Fuchsian groups, i.e., finitely generated discontinuous groups of orientation-preserving
non-Euclidean motions (for instance, see [59]).

Let T ∗(k, l,m) be the group of motions, generated by reflections around the sides of 6.
It can be shown that the images of 6 under T ∗(k, l,m) tessellate the corresponding space
without overlapping. In addition, T ∗(k, l,m) admits the presentation

T ∗(k, l,m)= 〈X,Y,T |Xk = Y l = (XY)m = T 2 = (XT )2 = (YT )2 = 1
〉

and T (k, l,m) is a subgroup of index 2 in T ∗(k, l,m). In particular, T (k, l,m) is finite
precisely when

1

k
+ 1

l
+ 1

m
> 1,

see, e.g., [18, Section 6.4], where these groups appear under the name polyhedral groups.
The above geometric description of triangle groups T (k, l,m) allows to embed them

into PSL(2,C). We indicate an explicit embedding only when

1

k
+ 1

l
+ 1

m
< 1.

The following construction is taken from [59, Chapter II, Exercises 5, 6]. Set

κ = e
−iπ
k , λ= e

iπ
l , μ= e

iπ
m , r = ρ−1 − ρ,

where ρ is the positive root of

t2
(
μ+μ−1 + λκ−1 + κλ−1)= μ+μ−1 + λκ + (λκ)−1.

Let X, Y be the Möbius transformations with matrices(
κ 0
0 κ−1

)
and r−1

(
ρλ−1 − λρ−1 λ− λ−1

λ−1 − λ λρ − (λρ)−1

)
,

respectively. Then X, Y map the interior of the unit disc |z|< 1 into itself and k, l, m are
respectively the exact orders of X, Y , XY . In addition, the fixed points of X, Y , XY within
the unit disc are the vertices of a non-Euclidean triangle 6 with angles π

k
, π
l
, π
m

and X, Y
actually generate the triangle group T (k, l,m).

The above interpretation relates triangle groups and in particular T (2,3,7) to hyper-
bolic geometry and the theory of Riemann surfaces. The following theorem explains the
importance of T (2,3,7) and Hurwitz groups in this context.
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THEOREM 2.2 (Hurwitz, [37]). Let S be a compact Riemann surface of genus g � 2 and
H be its automorphism group. Then |H |� 84(g− 1). Moreover, a finite group H of order
84(g− 1) is the automorphism group of a compact Riemann surface of genus g if and only
if H is (2,3,7)-generated.

The proof of this result is based on the fact that, among all Fuchsian groups, T (2,3,7)
has the fundamental domain of the smallest volume. Details can be found in many standard
textbooks like [59, Section II.7] or [42, Section 5.11]. For example, the smallest Hurwitz
group PSL2(7) of order 168 is the group of automorphisms of Klein’s quartic x3y+ y3z+
z3x = 0 of genus 3. As we will see later, there are infinitely many non-isomorphic Hurwitz
groups. In other words there are infinitely many other values of the genus g for which
the Hurwitz upper bound is attained. However, it is not attained when g = 2. Moreover, it
can be shown that there are infinitely many values of g for which it is not attained. The
precise values of g for which the Hurwitz bound is attained are still unknown, see, e.g.,
[42, Section 5.11] where this problem was posed. M.D.E. Conder, [11,12], showed that
in the range 1 < g < 11905 there are just 32 integers g such that there exists a compact
Riemann surface of genus g with the automorphism group of the maximal possible order
84(g− 1). Moreover, Conder also determined all the 92 normal subgroups of T (2,3,7) of
index less than 106. In particular, there are exactly 14 simple Hurwitz groups of order less
than one million, [12, Table 1].

Finally, the above geometric interpretation also gives some information about indices of
subgroups of T (2,3,7). LetG be a subgroup of T (2,3,7) of index n. It has a fundamental
domain consisting of n translates of the hyperbolic triangle6(2,3,7). The domain has, say,
r (respectively, s, t) elliptic vertices of order 2 (respectively, 3, 7) and the corresponding
Riemann surface has genus g. The numbers n, g, r , s, t are not independent: they are
related via the genus formula

n= 84(g− 1)+ 21r + 28s + 36t. (1)

As an easy consequence, we have that n must satisfy[
n

2

]
+ 2

[
n

3

]
+ 6

[
n

7

]
� 2n− 2. (2)

W.W. Stothers, [73], showed that, with the exception of (16,0,0,1,2), (21,1,1,0,0)
and (31,1,0,0,1), any quintuple (n, g, r, s, t) satisfying (1) corresponds to a subgroup
of T (2,3,7).

3. Finite simple and quasi-simple groups which are Hurwitz

Throughout this chapter F always denotes an algebraically closed field of characteristic
p � 0. The first significant and well-known result is the following:

THEOREM 3.1 (Macbeath, [57]). Let p > 0. The group PSL2(F) contains exactly one
conjugacy class of Hurwitz subgroups. Namely,
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(1) PSL2(p), if p ≡ 0, ±1 (mod 7);
(2) PSL2(p

3), if p ≡±2, ±3 (mod 7).

We will give a short proof of a more general statement in Theorem 4.9. In fact Macbeath
himself showed more, because he classified all the subgroups of PSL2(F) which are finite
epimorphic images of triangle groups. His original proof is based on a detailed analysis of
conjugacy classes and knowledge of the subgroups of PSL2(q).

This subject is investigated further in [47] and [49], where criteria are established to
determine for which finite fields GF(q) a given triangle group has PSL2(q) or PGL2(q)

as factor group with torsion free kernel. Finally, permutational representations of the trian-
gle group T (2,3,7), which arise from the action of PSL2(q) on the corresponding finite
projective line, are studied in [63].

3.1. Alternating groups

As noted at the end of the previous section, the above result provides many transitive
permutational representations of T (2,3,7). For example those arising from the action of
PSL2(q), when Hurwitz, on the q+1 points of the projective line. Permutational represen-
tations of T (2,3,7) of small degrees, and a method of joining them via handles developed
by G. Higman, were the starting point for constructive methods, and culminated in the fa-
mous theorem that almost all the alternating groups are Hurwitz, which appeared in the
paper of M.D.E. Conder, [8]. The same methods, later generalized to a linear context by
A. Lucchini, M.C. Tamburini and J.S. Wilson, led to the discovery that most finite classical
groups are Hurwitz. In this section we attempt to describe the above results in a uniform
way, which is close to the approach used in [55].

Let V be a free module over a ring R, with basis Ω of cardinality n, and let GLn(R) act
on V . It is natural to identify Sym(Ω) with the subgroup of GLn(R) consisting of permu-
tation matrices, and Alt(Ω) with the subgroup of SLn(R) of even permutation matrices.
Assume that (X,Y,Z) is a (2,3,7)-generating triple of the triangle group T (2,3,7), and
that

ψ :T (2,3,7)→GLn(R)

is a representation.

DEFINITION 3.2. An ordered pair (v1, v2) of distinct elements from Ω is called a handle
for ψ if the following conditions hold:

(1) ψ(X) fixes v1 and v2 and leaves invariant the submodule 〈Ω \ {v1, v2}〉;
(2) ψ(Y ) acts as the permutation (v1, v2, v3) for some v3 ∈ Ω , and leaves invariant
〈Ω \ {v1, v2, v3}〉.

The role of handles, in the process of joining representations of the triangle group, is
made clear by the following lemma. Here we assume that {e1, . . . , en} is the canonical basis
of the free R-module Rn and, similarly, that {e′1, . . . , e′n′ } is the canonical basis of Rn

′
.
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LEMMA 3.3. Given two representations

ψ :T (2,3,7)→GLn(R), ψ ′ :T (2,3,7)→GLn′(R)

assume that ψ has handles {e1, e2} and ψ ′ has handles {e′1, e′2}.
Let Xi to be one of the following involutions of GLn+n′(R):

X1 :=

⎛⎜⎜⎝
I2

In−2

I2
In′−2

⎞⎟⎟⎠ , X2 :=

⎛⎜⎜⎝
I2 tI2

In−2

−I2
In′−2

⎞⎟⎟⎠ ,
where t ∈R. Then, for i = 1,2, the map

X �→Xi

(
ψ1(X)

ψ2(X)

)
, Y �→

(
ψ1(Y )

ψ2(Y )

)
defines a representation T (2,3,7)→GLn+n′(R).

This elementary lemma rests on the following two facts.
(1) For i = 1,2, the involution Xi and the involution(

ψ1(X)

ψ2(X)

)
commute, having disjoint supports. Hence their product is again an involution.

(2) The product

Xi

(
ψ1(XY)

ψ2(XY)

)
has order 7, being conjugate to(

ψ1(XY)

ψ2(XY)

)
.

In particular, if ψ and ψ ′ are transitive permutational representations of T (2,3,7), of
respective degrees n and n′, the representation described in Lemma 3.3, relative to X1, is
a transitive permutational representation of degree n+ n′.

In [8], to define a (2,3,7)-generating triple (x, y, z) of Alt(Ω) when n > 167 and
n �= 173,174,181,188,202, Conder uses 3+ 14 transitive permutational representations
of T (2,3,7), each of which is depicted by a diagram, whose vertices are permuted by
T (2,3,7). The first three diagrams, denoted A,E and G, have respectively 14, 28 and 42
vertices. (A, for example, corresponds to the action of PSL2(13) on the 14 points of the
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projective line.) The remaining fourteen diagrams can be labeled Hd , d = 0, . . . ,13. Each
Hd has d ′ vertices, where d ′ is the unique integer determined by the conditions

d ′ ∈D :=
{

36, 42, 57, 77, 115, 135, 136,
142, 144, 165, 180, 187, 195, 216

}
(3)

and d ′ ≡ d (mod 14). To avoid too many details we do not include these diagrams here.
However in the appendix we present an explicit description for Conder’s generators, which
allows to restore all these diagrams. As the numbers inD give all residues modulo 14, each
n big enough can be written in the form

n= 42a + 14b+ d ′, a � 2, b ∈ {0,1,2}, d ′ ∈D.

So, if Ω is a set of cardinality n, one can take

Ω :=G1 ∪ · · · ∪Ga ∪Hd ∪Ω0,

where d ≡ n (mod 14), each Gi is a copy of G and Ω0 is empty if b = 0, whereas Ω0
coincides with A if b = 1 or with E if b = 2. As the diagram G has 3 handles and each
of the diagrams A, E and Hd has at least one handle, repeated application of Lemma 3.3
with respect to X1, gives a transitive permutational representation of T (2,3,7) over Ω. In
fact it is possible to join the a copies of G into a chain, join Ga with Hd and, if necessary,
with A or E. There is a certain degree of flexibility in making the joins, depending on
the choice of the handles. But, no matter how the joins are performed, any representation
ψ :T (2,3,7)→ Sym(Ω) obtained in this way has the following properties. Set

ψ(X)= x, ψ(Y )= y. (4)

Then we have (see appendix):
(i) [x, y]9·11·13 fixes each vector in Ω \ (Hd ∪Ga);

(ii) there exists a multiple k = k(d) of 9 · 11 · 13 such that

c := [x, y]k

is a cycle of prime length r /∈ {2,3,11,13}, with support Γ ⊆Hd ;
(iii) Γ contains an orbit of x and two points from an orbit of y;
(iv) |Γ ∪ Γy|� r + 3.

In the appendix the cycle c is written explicitly in each case.
In particular, 〈c, cy〉 = Alt(Γ ∪ Γy) and the normal closure of this group under the

transitive subgroup 〈x, y〉 of Alt(Ω) is easily seen to be Alt(Ω).
Similar considerations, with more specific arguments for some values of n, lead to the

following:

THEOREM 3.4 (Conder, [8]). The alternating group An is Hurwitz for all n > 167 and for
the values of n displayed in the following table.
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15 21 22
28 29 35 36 37
42 43 45 49 50 51 52
56 57 58 63 64 65 66
70 71 72 73 77 78 79 80 81
84 85 86 87 88 91 92 93 94 96
98 99 100 101 102 105 106 107 108 109

112 113 114 115 116 117 119 120 121 122 123 124
126 127 128 129 130 132 133 134 135 136 137 138
140 141 142 143 144 145 147 148 149 150 151 152 153
154 155 156 157 158 159 160 161 162 163 164 165 166

Actually, in the paper [8], the previous theorem is obtained as a corollary of the following
remarkable result. Whenever n > 167, the symmetric group Sn is an epimorphic image of
T ∗(2,3,7). To prove this it is essential to have a third generator T , which corresponds to
a symmetry in the vertical axis of each of the 17 diagrams mentioned above.

There are variations of these results in several directions. For example, in [14], Conder
shows that all but finitely many of the alternating groupsAn can be generated by a (2,3,7)-
generating triple (x, y, xy) satisfying the further relation [x, y]84 = 1.

Many authors considered other triangle groups. Conder, [9], obtained the following re-
sult.

THEOREM 3.5 (Conder, [9]). For each k � 7, there exists an nk such that, for all n� nk ,
An is an epimorphic image of T (2,3, k).

Actually he proves more than he claims, because a careful analysis of his diagrams leads
to the stronger conclusion that An is (2,3, k)-generated.

Using a similar technique Q. Mushtaq and G.-C. Rota, [64], proved

THEOREM 3.6 (Mushtaq and Rota, [64]). Let k be even, k � 6 and l � 5k − 3. For suffi-
ciently large n, the group An is a homomorphic image of T (2, k, l).

An even more striking generalization of the above results was given by B. Everitt.

THEOREM 3.7 (Everitt, [29]). Any Fuchsian group surjects almost all of the alternating
groups.

Recently, M.W. Liebeck and A. Shalev, [51], gave another proof of this result. Their
proof uses character-theoretic and probabilistic methods and it is totally independent from
Higman’s and Conder’s diagrams.

3.2. Classical groups

Already in [77] constructive, permutational methods had been used by the first author of
this survey to show that, for all n � 25 and all prime powers q , the special linear group
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SLn(q) can be generated by an element of order 2 and an element of order 3, i.e., is an
epimorphic image of the modular group PSL2(Z). This result actually originated from the
following:

THEOREM 3.8 (Tamburini and Wilson, [79]). Let A and B be finite groups which are
non-trivial. If |A||B|� 12, then for all n� |A||B| + 12 the group PSLn(q) has subgroups
Ā�A and B � B such that 〈Ā,B〉 = PSLn(q).

A key tool in the proof of this theorem is a simple and beautiful idea of H. Wielandt, [89],
which requires the hypothesis that at least one of the groups A and B has order � 4. But an
appropriate variation of the proof of this theorem was used in [77] to establish the similar
result for the smallest possible values of |A| and |B|, namely 2 and 3. And, indeed, the
(2,3)-generation of the projective special linear groups PSLn(q), provided n > 4 when q
is odd and n > 12 when q is even, has been established by L. Di Martino and N. Vavilov
in [26] and [27], in a constructive way which involves quite a lot of case by case analysis
and heavy computation.

A combination of the linear methods in [77] with the (2,3,7) generators for Alt(Ω) of
Theorem 3.4, gives the following:

THEOREM 3.9 (Lucchini, Tamburini and Wilson, [56]). For all n� 287, the special linear
group SLn(q) is Hurwitz.

The authors take n = |Ω| big enough in order to guarantee that the representation of
T (2,3,7) affording the generators x, y of Alt(Ω) in (4) has a couple of handles (e1, e2)

and (e′1, e′2), Thus they can apply Lemma 3.3 to extend the generating triple (x, y, xy) of
Alt(Ω) to a (2,3,7)-generating triple (xX2, y, xX2y) of SLn(q). In the definition of X2

they take t �= 2 to be a generator of GF(q) (as a ring). Their proof consists in showing that

Alt(Ω)� 〈xX2, y〉

and their claim follows from the fact that for n� 6, SLn(q) is generated byX2 and Alt(Ω).
An inspection of the proof shows that SLn(q) (and SLn(Z)) are (2,3,7)-generated for

all n in the set

{14m+ d |m� 6, d ∈D} ∪ {42+ d | d ∈D},

where D is as in (3). There are 93 integers less than 286 in this set. Further improvement
was made in [86], where 60 new values of nwere found. In particular it follows that SLn(q)
is Hurwitz for all n� 252 and for 118 more values of n, the smallest of which is 49.

Duplication of the (2,3)-generators of SLn(q), according to a well-known embedding
of this group into the classical groups of degree 2n or 2n + 1 over GF(q), had already
been used in [81] and [80] to show that classical groups of sufficiently large rank are
(2,3)-generated. In a similar way, duplication of the (2,3,7)-generators of SLn(q), and
an application of Lemma 3.3 with appropriate choices of Xi , leads to the following results.
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THEOREM 3.10 (Lucchini and Tamburini, [55]). For each n� 371, the following classical
groups are Hurwitz:

Sp2n(q), SU2n(q),Ω
+
2n(q), all q;

SU2n+7(q),Ω2n+7(q), q odd.

As above, analysis of the proof shows that this result holds for all n = 42a + 14b + d
with d ∈D as in (3), and either a � 4 or a = 3 and b = 0. There are many such integers
less than 371, the smallest of which is 162.

As in the permutational case, further generalizations to other triangle groups are possi-
ble. For example, A. Lucchini in [54] and J.S. Wilson in [91] independently proved that for
any k � 7 there is an integer nk such that the group SLn(q) is (2,3, k)-generated provided
n� nk . In fact, their result is a consequence of a more general statement; see Theorem 5.9.

It may be worth noting that the problem of determining which finite classical groups are
Hurwitz deserves further investigation, having received only partial answers. In fact there
are two classes which are not even considered in the above theorem, namely the orthogonal
groups Ω−2n(q) and the unitary groups SU2n+1(2t ). Moreover, although the above results
are satisfactory if considered asymptotically with respect to the ranks of the groups under
consideration, the lower bounds for their ranks are certainly much higher than necessary
for the existence of Hurwitz generators. Some evidence for this claim will be given in
Section 4.3 dedicated to groups of small rank. In fact it will be shown that the reason
why the Hurwitz subgroups of PSLn(F), with n � 4, are essentially those discovered by
Macbeath is rigidity. On the other hand, already for n= 5 and n= 7 there are new (2,3,7)-
generated projective subgroups. In the theorems mentioned above, the assumptions on the
lower bounds are forced by the permutational approach, based on the diagrams of Conder,
which has the advantage of being constructive and allowing rather uniform proofs.

But the treatment of linear groups of relatively small ranks requires different techniques,
which may in any case involve quite a lot of computation and consideration of special
cases. In fact the property of being Hurwitz for groups of small rank depends also on the
size of the field and its characteristic. Evidence of this is given by the above mentioned
result of Macbeath and also by the results in [60,61] and [82,78] which will be mentioned
in the following sections.

3.3. Exceptional groups of Lie type and sporadic simple groups

A key tool in the approach to these groups has been the use of multiplication constants
defined as follows. Let X1, . . . ,Xr denote the conjugacy classes of a finite group G. For
a fixed z ∈Xk, the number of pairs (x, y) such that x ∈Xi , y ∈Xj and xy = z coincides
with the number

aijk := |Xi ||Xj ||G|
∑

χ∈Irr(G)

χ(gi)χ(gj )χ(gk)

χ(1)
,

where g� ∈ X�, 1 � � � r . (See [33, Theorem 2.12], for example.) These numbers, also
called the multiplication constants, are useful in determining whether G is Hurwitz. One
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first computes the class constants for each choice of classes of elements of order 2, 3 and 7
inG. Clearly, if they are all 0, thenG has no Hurwitz subgroup. But, apart from this trivial
case, one can use rather sophisticated techniques, based on additional information about
G. Like calculating the class constants in appropriate subgroups of G, in order to evaluate
how many solutions generate proper subgroups. A refined version of this technique is due
to Philip Hall, [35] (see also [41]).

Using the Green–Deligne–Lusztig parameterizations of characters of groups of Lie type,
G. Malle studied the Hurwitz generation of many exceptional simple groups of Lie type.
For a more detailed description we refer also to the survey [22] of L. Di Martino, and to
the survey [41] of G. Jones.

THEOREM 3.11 (Malle, [60,61]). As to the exceptional simple groups of Lie type:
(1) G2(p

m) are Hurwitz if and only if pm � 5;
(2) 2G2(32m+1) are Hurwitz if and only if m �= 1;
(3) 3D4(p

m) are Hurwitz if and only if p �= 3, pm �= 4;
(4) 2F4(22m+1)

′
are Hurwitz if and only if m≡ 1 mod 3.

For the Ree groups 2G2(32m+1) see also, [40] and [67]. The results of Theorem 3.11
do not produce explicit (2,3,7) generators. With different methods two explicit matrices
x, y ∈ SL7(p), p � 5, are constructed in [87] such that x2 = y3 = (xy)7 = [x, y]2p = I
and 〈x, y〉 is isomorphic to G2(p).

By the contribution of several authors, the problem of determining which of the 26
sporadic simple groups are Hurwitz, has now a complete answer.

THEOREM 3.12. The sporadic simple groups which are Hurwitz are the following:
(1) J1 (Sah, [67]);
(2) J2 (Finkelstein and Rudvalis, [31]);
(3) Co3 (Worboys, [97] and Woldar, [95]);
(4) He, Ru, HN, Ly, Fi22, J4 (Woldar, [95,96]);
(5) Th (Linton, [52]);
(6) Fi′24 (Linton and Wilson, [53]);
(7) M (Wilson, [94]).

The orders of M11, M12 and J3 are not divisible by 7. The proof that the remaining
simple groups are not Hurwitz comes from the determination of their symmetric genus,
[16,44]. The technique is a combination of the above method of multiplication constants
and Scott’s formula. The latter will be discussed in Section 4.

4. Low-dimensional representations of Hurwitz groups

Clearly, a (2,3,7)-generated group G must have order divisible by 2, 3 and 7 and it must
be perfect, i.e. with trivial abelianizationG/G′. Moreover, for any subgroup S ofG, its in-
dex n, when finite, must satisfy the classical genus formula (2). But there are other methods
which can be used to exclude that a group G is (2,3,7)-generated. They will be illustrated
in this section.
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4.1. Scott’s formula and negative results

Theorem 4.1 below, which is a special case of a result of L.L. Scott, provides a very efficient
tool to show that certain groups are not (2,3,7)-generated. We state this result only in the
form needed for our purposes. However the original theorem of Scott applies to a more
general context and deals with representations of any finitely generated group H . To state
the theorem, we need some notation. Given a group H and a representation

f :H →GLn(F)

let V be the vector space Fn. For any subset A of H , define VA as the subspace of fixed
points of f (A) and denote by dAV its dimension over F. In symbols:

VA :=
{
v ∈ V | f (a)v = v, for all a ∈A}, dAV := dim(VA). (5)

Define d̂AV in the same way, with respect to the dual representation, namely set

V̂A :=
{
v ∈ V | (f (a))t v = v, for all a ∈A}, d̂AV := dim

(
V̂A
)
. (6)

In the above notations:

THEOREM 4.1 (Scott, [68]). Assume that H is generated by x and y. Then

dxV + dyV + dxyV � n+ dHV + d̂HV . (7)

PROOF. Consider V as an H -module via f . Set z= (xy)−1 and let C be the direct sum

C := (1− x)V ⊕ (1− y)V ⊕ (1− z)V .

Define the linear transformations β :V → C and δ :C→ V respectively by

v �→ ((1− x)v, (1− y)v, (1− z)v),
(v1, v2, v3) �→ v1 + xv2 + z−1v3.

We have dim(Imβ) = n − dHV , since Kerβ is the space of fixed points of H. Using the
identity a(1− b) = (1 − a)(b − 1) + (1 − b), for all a, b in the group algebra FH , it is
easy to deduce that Im δ coincides with the subspace (1 − x)V + (1 − y)V + (1 − z)V
and, moreover, that Im δ is H -invariant. Thus Im δ is the smallest H -submodule of V with
trivial action on the quotient. Let B = B0 ∪ B1 be a basis of V such that B0 is a basis of
Im δ. With respect to B, f (H) consists of matrices of the form(∗ ∗

0 I

)
.
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This observation easily implies that |B1| = d̂HV , hence dim(Im δ)= n− d̂HV .
From Imβ � Ker δ � C we deduce

dimC = dim(Imβ)+ dim
Ker δ

Imβ
+ dim

C

Ker δ

� dim(Imβ)+ dim
C

Ker δ
= dim(Imβ)+ dim(Im δ).

We conclude

dimC = (n− dxV )+ (n− dyV )+ (n− dzV )� (n− dHV )+ (n− d̂HV )
whence dxV + dyV + dxyV � n+ dHV + d̂HV . �

As noticed by L.L. Scott in [68], the genus formula (2) itself is a consequence of (7). The
argument is the following. Assume that a (2,3,7)-generated group G has a subgroup S of
index n. Let f :G→ GLn(C) be the linear representation of G induced by the transitive
permutational action on the (left) cosets of S and let V = Cn be the corresponding G-
module. For every g ∈G of prime order r whose cyclic structure consists of � non-trivial
cycles, we have

n− dgV = (r − 1)�� (r − 1)

[
n

r

]
.

So, if (x, y, xy) is a (2,3,7)-generating triple for G, then[
n

2

]
� n− dxV , 2

[
n

3

]
� n− dyV , 6

[
n

7

]
� n− dxyV ,

hence [
n

2

]
+ 2

[
n

3

]
+ 6

[
n

7

]
� 3n− (dxV + dyV + dxyV ).

By the transitivity, the multiplicity of the trivial representation is 1. Hence dGV = d̂GV = 1,
and Scott’s formula gives

dxV + dyV + dxyV � n+ 2.

We conclude[
n

2

]
+ 2

[
n

3

]
+ 6

[
n

7

]
� 2n− 2.

Scott himself observed that his formula could be used for proving that certain linear
groups are not (2,3,7)-generated. In [68] he considered, as examples, the groups SL6(3)
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and SL9(3). But a more systematic application was first made in [25], where this formula
was applied essentially to the following representations of an absolutely irreducible sub-
group H of SLn(F), with (2,3,7)-generating triple (x, y, xy).

(1) The conjugation action of H on M =Matn(F). In this case, the fixed-points sub-
space of M is the centralizer of H and therefore, by Schur’s lemma, it consists of
scalar matrices. Hence Scott’s formula reads

dxM + dyM + dxyM � n2 + 2. (8)

The values of the left-hand side of this equation are easily calculated using a
well-known formula, due to F.G. Frobenius (e.g., see [39, p. 207, Theorem 3.16]).
Namely, let n1 � · · ·� ns be the degrees of the similarity invariants of a ∈M . Then

daM =
s∑
j=1

(2s − 2j + 1)nj = (2s + 1)n− 2
s∑
j=1

jnj . (9)

In particular daM � n+ s2 − s.
(2) The diagonal action of H on the symmetric square S of Fn. Scott’s formula takes

the shape

dxM + dyM + dxyM � n(n+ 1)

2
+ 2. (10)

Moreover if n(n+1)
2 < dxM + dyM + dxyM � n(n+1)

2 + 2 then H is orthogonal for p �= 2
and H is symplectic for p = 2. This claim was first stated in Lemma 4.1 of [25], but
the proof in characteristic 2 was inaccurate. For a revised proof see [78, Lemma 2.1]
or [84].

The values of the left-hand side of (10), for the relevant elements g ∈ GLn(F), are af-
forded by the following formulas (see [25]). Assume first that g is semisimple. If ν is an
eigenvalue of g, let mν denote the multiplicity of ν. Then

d
g
S =

m1(m1 + 1)+m−1(m−1 + 1)

2
+
∑

mνmν−1,

where the summation runs over all pairs ν, ν−1 of eigenvalues of g in F with ν �= ν−1. Next
assume that g is unipotent, of prime order p. Let ki be the number of similarity invariants
of g of degree i, 1 � i � p. Then, if p = 2

d
g
S =

k2
1 + 2k2

2

2
+ k1k2 + k1 + 2k2

2
;

otherwise

d
g
S =

p∑
i=1

ik2
i

2
+
p−1∑
i=1

p∑
j=i+1

ikikj +
p−1

2∑
i=0

k2i+1

2
.
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A detailed analysis of conjugacy classes and comparison of (8) with (10) lead to con-
clude that many classical linear groups of rank � 19 are not Hurwitz. As an example, we
quote some of the results.

THEOREM 4.2 (Di Martino, Tamburini and Zalesski, [25]). Let H denote an irreducible
subgroup of SLn(F), with n ∈ {4,5,6,7,10}. Assume thatH is not contained in an orthog-
onal group if p �= 2, and that H is not contained in a symplectic group if p = 2. If n= 6
and p = 2, assume further that H = SL6(q) or SU6(q). Then H is not (2,3,7)-generated.
In particular, if n ∈ {4,5,6,7,10}, then

(1) the groups SLn(q), Spn(q), SUn(q2) are not Hurwitz, with the only possible excep-
tion of Spn(2

t ), n� 6;
(2) every complex irreducible character of degree n of a (2,3,7)-generated group is

real.

REMARK 4.3. The case of Sp4(2
t ) was not excluded in [25]. But the fact that the sym-

plectic groups Sp4(2
t ) are not Hurwitz can be deduced either from [50], where it is shown

that they are not even (2,3)-generated, or from our Theorem 4.16.

THEOREM 4.4 (Di Martino, Tamburini and Zalesski, [25]). Let H denote an absolutely
irreducible subgroup of SLn(Q), with n � 19 or n = 22. If H is not contained in an
orthogonal group, then H is not (2,3,7)-generated. In particular, for these values of n,
the group SLn(Z) is not (2,3,7)-generated.

We will not prove Theorems 4.2 and 4.4 here. We just observe that, when n = 4,5,
a stronger result holds. In fact there is now a complete classification of the irreducible
Hurwitz subgroups of PSL4(F) and PSL5(F). For details see Section 4.3 and [82]. Recently
R. Vincent and A. Zalesskii have extended Theorems 4.2 and 4.4 to other values of n, [84].
Their results depend on the residues of q modulo 42.

4.2. Rigidity

The following definition is a special case of a more general one. Among the first who used
it we quote G.V. Belyi, [1], and J.G. Thompson, [83]. But for more complete historical
information, we refer to [62].

DEFINITION 4.5. Let a1, a2, a3 ∈ GLn(F) be such that a1a2 = a3. The triple (a1, a2, a3)

is called linearly rigid if, whenever b1, b2, b3 are matrices such that b1b2 = b3 and each bi
is conjugate to ai , there exists g ∈GLn(F) such that gbig−1 = ai , for i = 1,2,3.

Rigid generators of finite groups have been studied in the inverse Galois problem
(see [62] and [85]). The same concept, under the name of physical rigidity (for F = C)
appeared in the totally different context of linear differential equations and local systems
on the sphere (see [43]).
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In Section 4.3 we will illustrate some applications of linear rigidity to the context of
Hurwitz generation, based on a useful criterion for recognizing rigid triples. In order to
describe this criterion we recall some notation.

As above we set M =Matn(F) and, for each a ∈M , daM = dimCM(a).

THEOREM 4.6 (Strambach and Völklein, [74]). Assume that a1, a2 ∈GLn(F) generate an
irreducible subgroup. Set a3 = a1a2 and suppose that

3∑
i=1

d
ai
M = n2 + 2. (11)

Then the triple a1, a2, a3 is linearly rigid.

PROOF. Let bi = agii for i � 3, with b3 = b1b2. Consider the linear transformations σi of
M =Matn(F) defined by

m �→ bi
−1mai.

For c ∈M , let us denote by λc and ρc the endomorphisms of M given by left and right
multiplication by c. Then

σi = λbi−1ρai = λgi−1λai−1λgi ρai = λgi−1(λai−1ρai )λgi .

Thus σi is conjugate in GL(M) to conjugation by ai . Therefore dσiM = dimCM(ai), hence
d
σi
M = daiM . Set H = 〈σ1, σ2〉. Since H � GL(M), we may consider M as an H -module.

Thus, applying Theorem 4.1, we obtain

3∑
i=1

d
σi
M � n2 + dHM + d̂HM .

Together with assumption (11) this yields

n2 + 2 � n2 + dHM + d̂HM .

It follows that dHM > 0 or d̂HM > 0. Thus there exists a non-zero matrix g such that either

bi
−1gai = g or bti

−1
gati = g, for i = 1,2,3. We claim that g is non-singular. Otherwise let

W be the eigenspace of g relative to the eigenvalue 0. In the first caseW would be invariant
under the irreducible subgroup 〈a1, a2〉. In the second case it would be invariant under its

transpose, again a contradiction. We conclude either bi = ag
−1

i or bi = ag
t

i , for i � 3. �

The above proof shows that dHM > 0 if and only if d̂HM > 0. Moreover, in this case, both
of them must be 1 because, by Schur’s lemma, the centralizer in Matn(F) of the irreducible
group 〈a1, a2〉 consists of scalar matrices.
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REMARK 4.7. If there are a1, a2 and a3 = a1a2 ∈GLn(F) that satisfy (11) but generate a
reducible subgroup of GLn(F), then theorem 4.6 also implies that no other triple with the
same set of similarity invariants can generate an irreducible subgroup of GLn(F). However
there may be more that one conjugacy class of triples generating reducible subgroups.

To conclude this section we quote the following result which, ultimately, depends on a
well known theorem of S. Lang and R. Steinberg (see, e.g., [72]).

THEOREM 4.8. Let (a1, a2, a3) be a linearly rigid triple, with ai ∈GLn(F). Let Ci be the
conjugacy class of ai and suppose that Ci ∩GLn(q) (respectively, Ci ∩U(n, q2)) is non-
empty, for i = 1,2,3. Then there exists g ∈ GLn(F) such that agi ∈ GLn(q) (respectively
∈Un(q2)), for i = 1,2,3.

4.3. Classical groups of small rank which are Hurwitz

THEOREM 4.9 (Macbeath, [57]). Let k be a prime number � 7. If p > 0 and p �= k denote
by n the order of p modulo k. The group PSL2(F) contains exactly one isomorphism type
of (2,3, k)-generated subgroups, namely

(1) 6(2,3, k), if p = 0;
(2) PSL2(p), if p = k;
(3) PSL2(p

n), if p �= k and n is odd;
(4) PSL2(p

n
2 ), if p �= k and n is even.

Moreover, if p > 0, there is just one conjugacy class of such groups.

REMARK 4.10. We recall that PSL2(q) has order q(q + 1)(q − 1)/(2, q − 1). So the
groups listed in items (2), (3) and (4) in the statement correspond precisely to the smallest
power of p such that PSL2(q) has order divisible by k.

PROOF. The assumption k � 7 implies that any (2,3, k)-generated group is perfect, hence
non-soluble. The latter fact will be used in the following without further mention.

If p �= k, define ε ∈ F to be a primitive k-th root of unity. If p = k, put ε = 1.
First, we consider the case when p = 0. Note that, for each � such that (�, k) = 1, the

projective image of

x =
(

0 −1
1 0

)
, y� =

(
0 ε−�
−ε� −1

)
, xy� =

(
ε� 1
0 ε−�

)
(12)

is a (2,3, k)-triple. The group 〈x, y1〉 is isomorphic to 〈x, y�〉, for each �, under the auto-
morphism of Mat2(Z[ε]) induced by the map ε �→ ε�. On the other hand, a slight modifi-
cation of the arguments given in the proof of theorem 1 in [25] shows that the preimage of
a (2,3, k)-generated subgroup of PSL2(F) must be conjugate to 〈x, y�〉, for some �. Our
claim follows from the classical embedding of T (2,3, k) into PSL2(C) (see [59, Theo-
rem 2.8]).
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Now assume p > 0. Let q = p if p = k; q = pn if p �= k and n is odd; q = pn/2 if p �= k
and n is even. So θ� = ε�+ ε−� is an element of GF(q). For each � such that 1 � �� k−1

2 ,
define

x =
(

0 −1
1 0

)
, y� =

(
b a

a − θ� −1− b
)
,

xy� =
(
θ� − a 1+ b
b a

)
, (13)

where

a(a − θ�)+ b(1+ b)=−1. (14)

If p = 2, we can take a = b= (1+ θ�)−1. For p > 2, equation (14) is equivalent to

(2a − θ�)2 + (2b+ 1)2 =−3+ θ2
� ,

which is always solvable over GF(q) since every element of a finite field is a sum of two
squares. Thus, 〈x, y�〉� SL2(q) and the projective image of (x, y�, xy�) is a (2,3, k)-triple.
As observed in Remark 4.10, n and q are defined so that SL(2, q0) does not have elements
of projective order k, for any proper divisor q0 of q . It follows from Dickson’s classification
of the subgroups of PSL2(q) (see, for example, [20, Chapter XII] or [36, 8.27]) that the
perfect group 〈x, y�〉 coincides with SL2(q).

On the other hand, every triple (x′, y′, x′y′) in SL2(F), whose projective image is a
(2,3, k)-triple, is such that x′ ∼ x, y′ ∼ y� and x′y′ ∼ xy� for some �, where x and y� are
as in (13). Moreover we can assume that 1 � �� k−1

2 . Thus our final claim follows from
Theorem 4.6. �

Actually the factorizations in (12) and (13), may be viewed as a special case of the
following (constructive) factorization theorem for matrices.

THEOREM 4.11 (Sourour, [70]). Let a ∈ GLn(F) be non-scalar, and let βi and γi (1 �
i � n) be elements of F such that

n∏
j=1

βjγj = deta.

There exist b and c in GLn(F), with respective eigenvalues βi and γi , such that a = bc.

In order to classify the Hurwitz subgroups of PSLn(F), it is necessary to keep in mind
the irreducible representations of PSL2(q), when Hurwitz. In the natural characteristic they
are described in [3]. But we prefer to give an independent proof of what is relevant for us.
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In what follows we consider a field K of characteristic p, and describe a bunch of ab-
solutely irreducible representations of SL2(K) over K. For any automorphism σ of the
field K, SL2(K) acts on the polynomial ring K[t1, t2] via

t i1t
j

2 �→
(
σ(a11)t1 + σ(a21)t2

)i(
σ(a12)t1 + σ(a22)t2

)j
,

where
( a11 a12
a21 a22

)
is in SL2(K). For anym and any σ , the space of homogeneous polynomials

of degree m is invariant under this action. We will denote this module by V σm .

THEOREM 4.12. Let m� p− 1 if p > 0 and m� 1 if p = 0. The SL2(K)-module V σm is
absolutely irreducible for each σ .

PROOF. Let K be the algebraic closure of K and let U be a non-zero SL2(K)-invariant
subspace of V σm ⊗ K. Let us fix 0 �= f ∈ U . We first show that tm2 ∈ U . This is clear if
f = λ0t

m
2 , otherwise write

f (t1, t2)= λdtd1 tm−d2 + λd−1t
d−1
1 tm−d+1

2 + · · · ,

where λd �= 0. Let Δ be the difference operator

(Δf )(t1, t2)= f (t1, t2)− f (t1 − t2, t2).

Then Δf ∈U and its d-th iterate Δ(d) satisfies(
Δ(d)f

)
(t1, t2)= d!λdtm2 .

Note that d! �= 0 in K for any p (for p > 0 we use d � p − 1). Therefore tm2 ∈ U . Now,
for j = 0,1, . . . ,m, the polynomials (t2+ j t1)m are in U and are linearly independent. We
conclude that U = Vm ⊗K. �

For each σ and m� 1, the above action has a non-trivial kernel, namely 〈−I 〉, exactly
when q is odd andm is even. Otherwise it is faithful. Moreover, this action consists of linear
transformations of determinant 1. Thus it gives an embedding of PSL2(K) into SLm+1(K)
when m is even, and into PSLm+1(K) when m is odd. Thus the above result, together with
Theorem 4.9, allows to construct projective representations of T (2,3,7) of degree m, for
each m� p.

THEOREM 4.13 (Cohen, [6]). Any Hurwitz subgroup H of PSL3(F) has a preimage H in
SL3(F) which is also Hurwitz. If H is reducible, then p = 2, H � PSL2(8)= SL2(8), and
there are two conjugacy classes of such groups. If H is irreducible, one of the following
holds:

(1) p �= 7 and H � PSL2(7);
(2) p ≡ 0,±1 (mod 7) and H =Ω3(p) � PSL2(p), or 2 < p ≡±2, ±3 (mod 7) and

H =Ω3(p
3)� PSL2(p

3).
Moreover, in both cases (1) and (2) there is just one conjugacy class of Hurwitz groups.
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PROOF. Let (x̄, ȳ, x̄ȳ = z̄) be a (2,3,7)-generating triple for H . First, we show that we
can choose x, y ∈ SL3(F) such that x �→ x̄, y �→ ȳ and (x, y, xy = z) is also a (2,3,7)-
triple. This is true if the characteristic of F is 3 since PSL3(F) = SL3(F) in that case. So
suppose that the characteristic is different from 3. Multiplying x and y by scalar matrices, if
necessary, we can assume that x2 = I and z7 = (xy)7 = I . In particular, x has eigenvalues
−1 (with multiplicity 2) and 1. We claim that y cannot be a matrix of order 9 such that y3

is scalar. In fact, in this case, y is diagonalizable with eigenvalues η, with multiplicity 2,
and η7, for some primitive 9-th root of unity η. Therefore there exists a non-zero vector v
such that xv =−v, yv = ηv. It follows zv =−ηv, a contradiction since z has order 7. We
conclude that y must have order 3.

Set H = 〈x, y〉. Assume that H is reducible. Replacing H with its transpose, if neces-
sary, we may assume that H fixes a one-dimensional space U , hence a non-zero vector.
In odd characteristic, the action of x modulo U should be scalar. From here it is easy to
deduce that H would be soluble, a contradiction. Thus the characteristic is 2 and, by The-
orem 4.9, H should induce on the quotient F3/U the group PSL2(8). In particular, up to
conjugation, we can take

z=
(
ε 1 0
0 ε−1 0
0 0 1

)
, x =

( 0 1 0
1 0 0
α α 1

)
,

where ε7 = 1 and α is either 0 or 1. Direct computation shows that both choices of α give
a group isomorphic to PSL2(8). Moreover these two groups are not conjugate.

Now suppose that H is irreducible. Then the similarity invariants must be t + 1, t2 − 1
for x, t3 − 1 for y and (t − ε�)(t − ε2�)(t − ε4�) with �= 1,3 or (t − 1)(t − ε�)(t − ε−�)
with �= 1,2,3 for z. Thus, by Theorem 4.6, H belongs to at most five conjugacy classes
(just one, if p = 7), corresponding to the five possibilities for xy.

(1) If p �= 7, then PSL2(7) has two dual irreducible representations of degree 3 over F.
This fact can be deduced from the knowledge of its ordinary and Brauer characters.
These representations exhaust the first two possibilities for xy.

(2) As to the remaining possibilities for xy, let us consider the embedding of PSL2(q)

into SL3(q) described just before Theorem 4.12, with σ = 1 and m= 2. Under this
embedding, the three non-conjugate (2,3,7)-triples generating PSL2(q) are mapped
to three non-conjugate triples in SL3(F). Moreover the image of PSL2(q) preserves
a symmetric (non-zero) bilinear form on the space of homogeneous polynomials of
degree 2. This form is non-degenerate precisely when p > 2 (see also the proof of
Theorem 1 in [25]). Thus, when p = 2, the remaining possibilities for xy do not
give rise to irreducible subgroups of SL3(F), by Remark 4.7. On the other hand,
when p > 2, this embedding exhausts the remaining possibilities for xy giving rise
to an irreducible subgroup of Ω3(q). Our claim (2) follows from the isomorphism
PSL2(q)�Ω3(q) and Theorem 4.9. �

The following result deals with classical groups of rank 4. The first statement is related
to a fact already proved by Macbeath in [57]. Namely that, when p ≡ ±1 (mod 7), there
are three normal subgroups of T (2,3,7) with quotient isomorphic to PSL2(p).
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LEMMA 4.14. Let p > 0 and letH be a Hurwitz subgroup of PSL2(F)×PSL2(F). Assume
that H is not isomorphic to the Hurwitz subgroup of PSL2(F). Then p ≡±1 (mod 7) and
H is conjugate to PSL2(p)× PSL2(p).

PROOF. For i = 1,2 let πi be the projections of PSL2(F) × PSL2(F) onto PSL2(F).
Since Kerπi � PSL2(F), our assumption implies that 1 �= π1(H) and 1 �= π2(H). Hence
π1(H)� π2(H)� PSL2(q), with q ∈ {p,p3} as in Theorem 4.9, case k = 7. By the same
theorem, up to conjugation we may assume that H is the image of

H = 〈(x, x), (y�, ym)〉� SL2(q)× SL2(q), (15)

where x, y�, ym are as in (13), � �=m by our assumptions. In particular, p �= 7.
If q = p3 with p ≡±2,±3 (mod 7), then there exists a field automorphism σ of PSL2(q)

such that x = σ(x) and ym = σ(y�). We conclude that H is isomorphic to PSL2(q).
Now assume q = p ≡±1 (mod 7). We note that

πi(Kerπj ∩H)� πi(H)= PSL2(q).

If π1(Kerπ2 ∩ H) is trivial, it follows that Kerπ1 ∩ H = 1. In this case the restriction
π1 :H → PSL2(q) would be an isomorphism, against our assumption. Thus π1(Kerπ2 ∩
H)= PSL2(q) by the simplicity of PSL2(q), i.e. Kerπ2 ∩H = PSL2(q). From π2(H)=
PSL2(q) we conclude that H = PSL2(q)× PSL2(q). �

For any field K , consider the homomorphism ϕ : SL2(K)× SL2(K)→ SL4(K)

(a, b) �→ a ⊗ b. (16)

The kernel of ϕ is 〈(−I,−I )〉. Moreover the image of ϕ preserves the bilinear symmetric
form defined by the matrix(

0 1
−1 0

)
⊗
(

0 1
−1 0

)
= antidiag(1,−1,−1,1).

Hence the image of ϕ is an orthogonal group in odd characteristic, a symplectic group in
characteristic 2.

REMARK 4.15. Assume K = GF(q), with q ∈ {p,p3} as in the theorem of Macbeath,
p �= 7, and let H be defined as in (15) with � �=m. Then y� ⊗ ym does not have the eigen-
value 1. It follows that ϕ(H) does not fix any one-dimensional subspace and this fact
easily implies that it is absolutely irreducible. Moreover ϕ(H) is a subgroup of Ω+4 (q)
for p odd, of Sp4(8) for p = 2. In particular, when p ≡ ±1 (mod 7), by order rea-
sons ϕ induces an isomorphism from the Hurwitz central product SL2(p) ◦ SL2(p) onto



408 M.C. Tamburini and M. Vsemirnov

Ω+4 (p). Factorizing this central product by its center we obtain the Hurwitz direct product
PSL2(p)× PSL2(p)� PΩ+4 (p). The details are left to the reader.

THEOREM 4.16. If p > 0, the irreducible subgroups of PSL4(F) which are Hurwitz are
isomorphic to:

(1) PSL2(p)× PSL2(p)� PΩ+4 (p), when p ≡±1 (mod 7);
(2) PSL2(q) with q ∈ {p,p3} as in Macbeath’s theorem;
(3) PSL2(7), when p �= 2.
In particular PΩ+4 (q) � PSL2(q) × PSL2(q) is Hurwitz if and only if q = p ≡
±1 (mod 7), whereas the following groups are never Hurwitz: PΩ−4 (q) � PSL2(q

2),
PSL4(q)� PΩ+6 (q), PSU4(q

2)� PΩ−6 (q), and PSp4(q)� PΩ5(q).

PROOF. Let x, y ∈ SL4(F) be such that the projective image of (x, y, xy) is a (2,3,7)-
generating triple of an irreducible subgroup of PSL4(F). Multiplying x and y by scalar
matrices of determinant 1, if necessary, we may assume that y3 = (xy)7 = 1 and

x2 = I, if p = 2; x2 ∈ 〈iI 〉, where i ∈ F has order 4, if p > 2.

By Scott’s formula, in the notation of Section 4.1,

dxM + dyM + dxyM � 18. (17)

Direct calculation based on the formula (9) of Frobenius shows that

dxM � 8, d
y
M � 6, d

xy
M � 4. (18)

It follows that in (17) and (18) we have all equalities. In particular x must have two equal
similarity invariants, namely t2− 1, t2− 1, or t2+ 1, t2+ 1. In the first case x2 = I , in the
second x2 =−I . On the other hand y must have similarity invariants t − 1 and t3 − 1; xy
must have a unique similarity invariant. Thus, when p = 7, xy is conjugate to the Jordan
block of order 4. When p �= 7, xy has 4 different eigenvalues and its similarity invariants
can only be either(

t − ε�)(t − ε−�)(t − ε2�)(t − ε−2�), with �= 1,2,3,

or

(t − 1)
(
t − ε�)(t − ε2�)(t − ε4�), with �= 1,3.

Assume first x2 = I and p > 2. By what shown in [25], 〈x, y〉 is a subgroup of the
orthogonal group Ω4(F, f ), where f is a non-degenerate quadratic form of Witt index 2.
Since PΩ4(F, f ) is isomorphic to PSL2(F)× PSL2(F) (see [21]), by the previous lemma
the projective image of 〈x, y〉 can only be of type (1) or of type (2).

Remark 4.15 tells us that (1) actually occurs, and that we obtain an irreducible subgroup
of type (2) whenever p �= 7.
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Now assume either p = 2 and x2 = I =−I , or p odd and x2 =−I . Equality in relation
(17) implies that (x, y, xy) is a linearly rigid triple, by Theorem 4.6. Thus 〈x, y〉 belongs to
at most five conjugacy classes of irreducible subgroups (just one, if p = 7) corresponding
to the five possibilities for xy. Moreover, if SL4(F) contains a reducible subgroup gener-
ated by a triple (x′, y′, x′y′) such that x ∼ x′, y ∼ y′, xy ∼ x′y′, then the triple (x, y, xy)
cannot generate an irreducible subgroup; see Remark 4.7.

Let q ∈ {p,p3} be defined as in the theorem of Macbeath. If p > 2, we consider the
embeddings of PSL2(q) into PSL4(F) arising from the action of SL2(q) on homogeneous
polynomials of degree 3. They are irreducible when p �= 3. If p = 2, we consider the
irreducible embeddings of PSL2(8) into PSL4(F) corresponding to the projective image of
ϕ(H), as in Remark 4.15. These embeddings of PSL2(q) exhaust the first three possibilities
for xy. Hence they give rise to a unique conjugacy class of irreducible subgroups, whenever
p �= 3. On the other hand, when p = 3, they are reducible. By what was observed above
there is no irreducible subgroup generated by a triple of this kind.

Finally, when p �= 2, SL2(7) has faithful irreducible representations of degree 4 over
F, the existence of which can be deduced from the knowledge of ordinary, modular and
Brauer characters of SL2(7). They give rise to projective representations of PSL2(7) which
exhaust the remaining cases for xy. On the other hand, when p = 2, there are copies of
PSL2(7)∼ SL3(2) arising from the embedding of SL3(F) into SL4(F) = PSL4(F) which
exhaust the possibilities for xy. Since this embedding is reducible, there is no irreducible
subgroup of this kind when p = 2.

For the reader’s convenience, we give explicitly these representations of PSL2(7) for
p �= 2. When p = 7, we have the above representation on the homogeneous polynomials
of degree 3. So we may assume p �= 7. Let ε be a primitive 7-th root of unity in F and let
τ = ε+ ε2 + ε4 or τ = ε3 + ε6 + ε5. Define

x :=
⎛⎜⎝

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞⎟⎠ , y :=
⎛⎜⎝

1 0 0 τ

0 1 0 1+ τ
0 0 0 −1
0 0 1 −1

⎞⎟⎠ .
Direct calculation shows that for both values of τ we have

x2 =−I, y3 = (xy)7 = I, [x, y]4 =−I,

and, moreover, that 〈x, y〉 fixes only the zero vector. It follows easily that this group is irre-
ducible. Since PSL2(7) has the presentation x2 = y3 = (xy)7 = [x, y]4 = 1, the projective
image of 〈x, y〉 is isomorphic to PSL2(7).

The remaining claims which do not follow directly from what shown above are conse-
quences of Theorem 4.9 and of the isomorphisms in the statement. These isomorphisms
are well known and can be found in [17, page xii]. �

THEOREM 4.17 (Tamburini and Zalesskii, [82]). Assume that k � 7 is a prime number. If
k = p, set q = p. Otherwise, let n be the order of p modulo k, and suppose n �≡ 0 (mod 4).
Set q = pn if n is odd, q = p n

2 if n is even.
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(1) The following groups are (2,3, k)-generated:
PSL5(q), if p ≡ 1 (mod 5);
PSU5(q

2), if p ≡−1 (mod 5);
PSU5(q

4), if p ≡±2 (mod 5).
(2) If k = 7, the only other irreducible Hurwitz subgroups of PSL5(F) are isomorphic

to PSL2(q) with q as above, except PSL2(8) and PSL2(27).

Note that the assumptions on n are certainly satisfied if k ≡ 3 (mod 4). In particular, for
k = 7, this theorem gives a new example of a Hurwitz group in each characteristic p �= 0,5.
The proof, which avoids calculations, relies on the following results.

We recall that a pair (b, c) of elements in Matn(F) is said to be spectrally complete with
respect to the product if, for every λ1, . . . , λn ∈ F such that λ1 · · · · · λn = det(bc), there
exist b′ conjugate to b and c′ conjugate to c under GLn(F), such that b′c′ has eigenvalues
λ1, . . . , λn.

THEOREM 4.18 (Silva, [69]). Assume n� 3 and let b, c ∈GLn(F). Denote by

f1(t), . . . , fr(t), g1(t), . . . , gs(t)

the non-trivial similarity invariants of tIn − b and of tIn − c, respectively. Then (b, c) is
spectrally complete with respect to the product provided that r + s � n and at least one of
the polynomials fi(t) or gj (t) has degree �= 2.

This theorem, at least in characteristic p �= k, guarantees the existence of a (2,3,5k)
triple (x, y, ηz), where (ηz)k is scalar, of order 5. It follows immediately that 〈x, y〉 is an
irreducible subgroup of SL5(F). Then the proof that the projective image of 〈x, y〉 coin-
cides with one of the above groups is based on the knowledge of the subgroups of SL5(K),
when K is a finite field, and Theorem 4.8.

5. Related results

5.1. Number-theoretic aspects

In this section we give an alternative description of some triangle groups T (2,3, k), and
in particular T (2,3,7), as two-dimensional projective unitary groups over rings of alge-
braic integers. The corresponding unitary groups can be identified, in turn, with groups of
principal units in certain orders of generalized quaternion algebras. This description sheds
more light on number-theoretic aspects of Hurwitz generation and provides a new view on
some classical results like Macbeath’s Theorem 3.1. The treatment in this section mainly
follows, [88].

Let F = C and define ε ∈ C to be a primitive 2k-th root of unity if k is even, and a
primitive k-th root of unity if k is odd. We also set

η= ε− ε−1, θ = ε+ ε−1.
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It follows from the proof of Theorem 4.9 that T (2,3, k) is isomorphic to the projective
image of the group generated by matrices x and z= z1 (or x and y1), which were defined
in (12). It is immediate to verify that both x and z preserves the Hermitian form defined by
the matrix

B =
(
η2 η

−η η2

)
,

which is non-degenerate provided k �= 6. Thus, T (2,3, k) is isomorphic to the projective
image of a subgroup of

SU
(
2,B,Z[ε])= {A ∈ SL

(
2,Z[ε]) | ĀtBA= B}.

The problem when 〈x, z〉 coincides with SU(2,B,Z[ε]) was studied in [88].

THEOREM 5.1 (Vsemirnov, Mysovskikh and Tamburini, [88]). The equality

〈x, z〉 = SU
(
2,B,Z[ε])

holds if and only if k ∈ {2,3,4,5,7,9,11}. In particular, T (2,3, k) ∼= PSU(2,B,Z[ε])
precisely for the values of k listed above.

In fact, the proof in [88] shows more. Namely, for k odd � 13 or k even � 6, the group
generated by x and z has infinite index in SU(2,B,Z[ε]). As C. Maclahlan noticed in a
private correspondence, [58], this ‘negative’ result can be also deduced from the description
of all arithmetic Fuchsian groups given by K. Takeuchi, [75,76]. However, the ‘positive’
part of Theorem 5.1 is more delicate: it ensures not only that T (2,3, k) is arithmetic for
k = 7,9, and 11, or equivalently, that it has a finite index in PSU(2,B,Z[ε]), but also
proves the coincidence of these two groups.

It is convenient to treat the elements of SU(2,B,Z[ε]) as quaternions of norm 1. For
this purpose, we note that the matrices

1=
(

1 0
0 1

)
, i=

(
0 −1
1 0

)
, j=

(
η 1
1 −η

)
, k=

(−1 η

η 1

)

form a standard basis over Q(θ) for the generalized quaternion algebra
(−1,θ2−3

Q(θ)

)
. More-

over, for any element (given as a matrix) in this algebra, its quaternion norm coincides
with the determinant. It is then easy to see that SU(2,B,Z[ε]) is exactly the set H∗1 of all
quaternions of norm 1 in the subring

H=
{
a01+ a1i+ a2j+ a3k

∣∣∣∣2ai ∈ Z[θ ], a0 − a3 − a2θ ∈ Z[θ ],
a1 + a2 − a3θ ∈ Z[θ ]

}
.

Thus, Theorem 5.1 can be restated in the following way.
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THEOREM 5.2. We have 〈x, z〉 =H∗1 if and only if k ∈ {2,3,4,5,7,9,11}. In particular,
T (2,3, k)∼=H∗1/{±1} precisely for the values of k listed above.

Note that the norm in the corresponding quaternion algebra is given by

a2
0 + a2

1 −
(
θ2 − 3

)
a2

2 −
(
θ2 − 3

)
a2

3 .

For a given k these norm forms depend on θ , i.e. on the choice of a primitive root of unity,
and there is a natural action of Gal(Q(θ)/Q) on their coefficients. If k = 2,3,4 or 5 all
corresponding forms are positively definite, while for each k = 7,9 and 11 there is exactly
one indefinite form. The proof of Theorems 5.1 and 5.2 is effective in the following sense.
It provides a procedure for representing any element of H∗1 (or SU(2,B,Z[ε])) as a word
in the generators x, z. For example, when k = 7,9, or 11 let us choose the quaternion
algebra H which corresponds to the indefinite form above. Then a more detailed analysis
of the proof in [88] shows that any u = a01+ a1i+ a2j+ a3k ∈H∗1 can be written as a
word in x and z of length O(log(a2

2 + a2
3)).

To conclude this section we indicate some relations with Macbeath’s theorem. For the
sake of simplicity we deal only with Hurwitz groups, i.e., we assume k = 7. However, a
similar observation can be applied when k = 9 or 11. It is well known that, for k = 7, the
ring Z[θ ] is a principal ideal domain (see [66]; the tables from [66] are reproduced in [19,
pp. 141–145]; also see [2, Table 7]). In addition, by a special case of a theorem due to
E. Kummer (see, e.g., [28, §2.11, Corollary 1]) we have that for any rational prime p the
following holds:
• p remains a prime in Z[θ ] if and only if p ≡±2,±3 (mod 7);
• p splits into a product of three different primes in Z[θ ] if and only if p ≡±1 (mod 7);
• p ramifies in Z[θ ] if and only if p = 7.
In particular, if p is a prime in Z[θ ] lying over a rational prime p, then Z[θ ]/p= GF(q),
where q = p for p ≡ 0,±1 (mod 7) and q = p3 otherwise.

If p lies over an odd rational prime, then there is a natural residue homomorphism

ψ :H→
(−1, θ2 − 3

Z[θ ]/p
)
∼=Mat2

(
GF(q)

)
.

Now, Theorem 4.9 combined with Theorem 5.2 asserts that the restriction of ψ to H∗1 is
onto SL2(q). It is interesting to notice that we can also go in the opposite direction and
deduce Macbeath’s theorem from the fact that the above restriction is onto. From this point
of view it would be very interesting to find a purely number-theoretic proof of Macbeath’s
theorem not using Dickson’s classification of subgroups of SL2(q).

We remark that results similar to the above were obtained, independently, in [71].

5.2. Other groups which are (2,3,7)-generated

The (2,3,7)-generation of SLn(q), for n� 287, was actually obtained as a special case of
a more general result, which has many other applications.
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Namely, given a ring R with identity element, let En(R) denote the group generated by
the set of elementary matrices:

{1+ reij | r ∈R,1 � i �= j � n}.

Clearly En(R) can only be a finitely generated group ifR is a finitely generated ring. On the
other hand, applications of the permutational methods of Higman and Conder in a linear
context, as explained in Section 3.1, led to the following result.

THEOREM 5.3 (Lucchini, Tamburini and Wilson, [56]). LetR be a ring which is generated
by elements α1, . . . , αm, where 2α1 − α2

1 is a unit of R of finite multiplicative order. Then
En(R) is (2,3,7)-generated for all n� 287+ 84(m− 1).

For n� 3, the groups En(R) and SLn(R) coincide, in particular, if R is commutative and
either semi-local or a Euclidean domain, see, e.g., [34, 1.2.11 and 4.3.9]. As the hypothesis
on R of the above theorem holds with m= 1 if R is a finite field or the ring Z of integers,
the same theorem implies that SLn(q) and SLn(Z) are (2,3,7)-generated for n� 287. This
lower bound for n was improved to 252 in [86].

An easy corollary of Theorem 5.3 also shows that the derived group of the automorphism
group Aut(Fn) of a free group of rank n is (2,3,7)-generated, provided that n� 329.

But there are other applications of this theorem, which shed further light on the class of
(2,3,7)-generated groups.

Let p be a prime number. For each positive integer l, let Nl be the kernel of the
epimorphism SLn(Z)→ SLn(Z/plZ). Thus, N1/Nl is a finite p-group for each l, and⋂
l�1Nl = 1. Since N1 (the group of matrices in SLn(Z) congruent to 1 modulo p) is non-

soluble, we conclude that there is no bound on the derived lengths of the groups N1/Nl .
Applying Theorem 5.3 we have the following result:

COROLLARY 5.4 [56]. Let n � 287 and let p be a prime. There exist Hurwitz groups
which are extensions of p-groups of arbitrarily large derived length by the group SLn(p).

Since the direct product of two Hurwitz groups without common composition factors is
again a Hurwitz group, one is led to study direct powers of simple groups. To this purpose,
consider the polynomial ring R = GF(q)[t1, . . . , tl]. Then R can be generated by l + 1
elements, the first of which can be chosen to be a non-zero element α of GF(q) satisfying
2α − α2 �= 0. Let I be the intersection of the kernels of the homomorphisms from R to
GF(q) which extend the identity map on GF(q). By the Chinese remainder theorem, R/I
is isomorphic to the direct product of ql copies of GF(q), and the quotient map induces
an epimorphism from En(R) to the direct product of ql copies of SLn(q). We conclude
from the theorem that this direct product is a Hurwitz group provided that n� 287+ 84l.
Therefore we have the following result, which shows that, for large n, the direct power of
many copies of SLn(q) is a Hurwitz group.

COROLLARY 5.5 [56]. Let q be a prime power and let n� 287. Then the direct product
of r copies of SLn(q) is a Hurwitz group, where r = q[(n−287)/84].
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In [90], J. Wilson constructed a family of simple non-commutative, finitely generated
rings S, with the property that, for each n� 8, the central quotient group PEn(S) of En(S)
is simple. Moreover, it was shown that the groups PEn(S) arising from rings S in this family
fall into 2ℵ0 isomorphism classes. It follows from Theorem 5.3 that each of these groups is
(2,3,7)-generated for n sufficiently large. Therefore we have the following result, which
makes irrealistic any attempt of classifying all (2,3,7)-generated groups.

COROLLARY 5.6 [56]. There are 2ℵ0 isomorphism classes of infinite simple (2,3,7)-
generated groups.

Of course, there are no more than 2ℵ0 isomorphism classes of finitely generated groups.
Another application of Theorem 5.3, recently made by M. Conder, gives a complete

answer to the question of what centres are possible in finite quotients of the triangle group
T (2,3,7). This question was raised in 1965 by John Leech, [48], who later produced two
infinite families of Hurwitz groups with centres of order 2 and 4. In [10], M. Conder used
similar methods to prove the existence of infinitely many Hurwitz groups with a centre of
order 3 and in [13] he constructed a family of central products of 2-dimensional special
linear groups to show that the centre of a Hurwitz group could be an elementary Abelian
2-group of arbitrarily large order. Actually the centre of a Hurwitz group can be anything,
in virtue of the following:

THEOREM 5.7 (Conder, [15]). Given any finite Abelian groupA, there exist infinitely many
Hurwitz groups G such that the centre Z(G) of G is isomorphic to A.

We give a sketch of the elegant proof, which consists in taking a product of appropriately
chosen special linear Hurwitz groups. Indeed, let A be any finite Abelian group and write

A= Cm1 × · · · ×Cms

as a direct product of cyclic groups. Now choose any prime p such that (p, |A|)= 1 and
let q = pe with e = φ(|A|), where φ denotes Euler’s totient function. Then q − 1= �imi
for some integer �i (1 � i � s). Further, if ki is any positive integer coprime to �i , then

(kimi, q − 1)= (kimi, �imi)=mi.

In particular there are infinitely many possibilities for each ki , and all can be chosen such
that kimi �= kjmj for i �= j and kimi � 287, for 1 � i � s. Next let Hi = SLkimi (q) and
set

G=
∏

1�i�s
Hi.

Using Theorem 5.3, it is easily seen that G has the required properties.
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We mention another application of the same theorem, to the maximal parabolic sub-
groups of En+n̄(R). Namely, let:

Pn,n̄(R)=
{(
A B

0 Ā

)
|A ∈ En(R), Ā ∈ En̄(R), B ∈Matn,n̄(R)

}
.

THEOREM 5.8 (Di Martino and Tamburini, [24]). Let R be a ring generated by elements
α1, . . . , αm, where 2α1−α2

1 is a unit of R of finite multiplicative order. Then Pn,n̄(R) (and
therefore also the Levi subgroup L) is (2,3,7)-generated for all n, n̄� 84(m+ 1)+ 396.

Finally, we mention that A. Lucchini in [54] and, independently, J.S. Wilson in [91] have
generalized Theorem 5.3 to any k � 7. Lucchini’s version reads:

THEOREM 5.9 (Lucchini, [54]). Let R be a ring which is generated by elements
α1, . . . , αm, where 2α1 − α2

1 is a unit of R of finite multiplicative order. For any fixed
k � 7 there exist two integers nk and ak such that En(R) is (2,3, k)-generated for all
n� nk + akm.
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Appendix

As mentioned in Section 3, to define a (2,3,7)-generating triple (x, y, z) of Alt(Ω) when
n > 167 and n �= 173,174,181,188,202, Conder uses 3 + 14 transitive permutational
representations of T (2,3,7), each of which is depicted by a diagram (see [8]). Here we
describe explicitly each of these representations and give some information about the com-
mutator [x, y], useful to understand the considerations above theorem 3.4. We assume that
the joins of diagrams, in order to obtain [x, y], are made as described there: in particular
each diagram of type Hd is joined to a diagram of type G.

The following rule, which can easily be checked, has repeated application. Let ψ and
ψ ′ be permutation representations of T (2,3,7) = 〈X,Y 〉 on disjoint sets - and -′, with
respective handles (e1, e2) and (e′1, e′2). Let e3 be the image of e2 under ψ(Y ) and e′3 be
the image of e′2 under ψ ′(Y ). Consider the representation ϕ on the set -∪-′ defined by

ϕ(X)=ψ(X)ψ ′(X)(e1, e
′
1)(e2, e

′
2), ϕ(Y )=ψ(Y )ψ ′(Y )

as described in Lemma 3.3. Assume, for simplicity, that e1 and e3 are in the same cycle of
the commutator [ψ(X),ψ(Y )] and let Γ be the support of this cycle. Let Γ ′ be the union of
the supports of the cycles of [ψ ′(X),ψ ′(Y )] (not necessarily distinct) which contain e′1 and
e′3. Then the set Γ ∪Γ ′ is invariant under the commutator [ϕ(X),ϕ(Y )]. Moreover, setting
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|Γ ∪ Γ ′| = 2m + s, 0 � s � 1, the cycle structure of the restriction [ϕ(X),ϕ(Y )]Γ ∪Γ ′
consists of two cycles of length m if s = 0 and of one cycle of length 2m + 1 if s = 1.
Furthermore, the cycle structure of [ϕ(X),ϕ(Y )] on-∪-′ \ {Γ ∪Γ ′} is the juxtaposition
of the cycles of [ψ(X),ψ(Y )] and [ψ ′(X),ψ ′(Y )].

In view of the application to the linear context, our treatment differs slightly from that of
Conder. In particular we avoid the use of the odd involution t ∈ Sym(Ω), which centralizes
x and inverts y by conjugation. But the two approaches are essentially equivalent in virtue
of the obvious relation (xyt)2 = [x, y]t .

NOTATION. The cycle structure of a permutation will be denoted by

(i, . . .)︸ ︷︷ ︸
j

�
k1
1 �

k2
2 . . . .

This means a cycle of length j whose support contains i, followed by k1 cycles of length
�1, followed by k2 cycles of length �2, etc.

DIAGRAM G: degree 42. Handles: (2,3), (14,15), (32,33).

xG = (1,4)(5,7)(6,10)(8,12)(9,24)(11,29)(13,16)(17,19)(18,25)(20,27)

(21,23)(22,39)(26,30)(28,41)(31,34)(35,37)(36,40)(38,42)(2)(3)

(14)(15)(32)(33).

yG =
13∏
i=0

(3i + 1,3i + 2,3i + 3).

[xG,yG] = (2, . . . ,1, . . .)︸ ︷︷ ︸
13

(14, . . . ,13, . . .)︸ ︷︷ ︸
13

(32, . . . ,31, . . .)︸ ︷︷ ︸
13

13.

REMARK. This representation is given by the action of PSL2(13) on the cosets of a sub-
group N of index 42.

DIAGRAM A: degree 14. Handle: (1,2).

xA = (3,4)(5,9)(6,11)(7,10)(8,13)(12,14)(1)(2).

yA =
3∏
i=0

(3i + 1,3i + 2,3i + 3)(13)(14).

[xA,yA] = (1, . . . ,3, . . .)︸ ︷︷ ︸
13

11.
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REMARK. This representation is given by the action of PSL2(13) on the points of the
projective line.

DIAGRAM E: degree 28. Handle: (1,2).

xE = (3,4)(5,9)(6,11)(7,10)(8,13)(12,24)(14,26)(15,16)(18,19)(21,22)

(23,25)(27,28)(1)(2)(17)(20).

yE =
8∏
i=0

(3i + 1,3i + 2,3i + 3)(28).

[xE,yE] = (1, . . . ,3, . . .)︸ ︷︷ ︸
9

1192.

DIAGRAM H0: degree 42≡ 0 (mod 14). Handle: (1,2).

xH0 = (3,5)(4,12)(6,7)(8,11)(9,17)(10,32)(13,21)(14,29)(15,16)(18,36)

(19,23)(22,27)(24,38)(25,30)(28,33)(31,40)(34,39)(37,42)(1)(2)

(20)(26)(35)(41).

yH0 =
13∏
i=0

(3i + 1,3i + 2,3i + 3).

[xH0, yH0] = (1, . . .)︸ ︷︷ ︸
5

(3, . . .)︸ ︷︷ ︸
5

1131111171.

c = [x, y]3·5·11·13·23

= (14,31,38,20,24,40,29,19,25,15,34,22,27,39,16,30,23).

DIAGRAM H1: degree 57≡ 1 (mod 14). Handle: (16,17).

xH1 = (2,9)(3,5)(4,35)(6,12)(7,41)(8,11)(10,13)(14,15)(18,20)

(19,27)(21,22)(23,26)(24,32)(25,47)(28,36)(29,44)(30,31)

(33,51)(34,38)(37,42)(39,53)(40,45)(43,48)(46,55)(49,54)(52,57)

(1)(16)(17)(50)(56).

yH1 =
18∏
i=0

(3i + 1,3i + 2,3i + 3).
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[xH1 , yH1] = (16, . . .)︸ ︷︷ ︸
5

(18, . . .)︸ ︷︷ ︸
5

11315172122.

c= [x, y]4·3·7·11·13·23 = (1,6,9,2,12).

DIAGRAM H2: degree 142≡ 2 (mod 14). Handle: (77,78).

xH2 = (1,8)(2,20)(3,4)(5,6)(7,14)(9,10)(11,19)(12,22)(13,24)(15,16)
(17,18)(21,26)(23,30)(25,48)(27,29)(28,45)(31,59)(32,60)(33,34)
(35,39)(36,41)(37,40)(38,50)(42,54)(43,47)(44,49)(46,52)(51,56)
(53,55)(57,58)(61,62)(63,67)(64,69)(65,68)(66,71)(70,86)(72,90)
(73,74)(75,81)(76,83)(79,80)(82,84)(85,87)(88,100)(89,98)(91,96)
(92,101)(93,102)(94,95)(97,99)(103,104)(105,109)(106,111)
(107,110) (108,113)(112,130)(114,135)(115,116)(117,120)
(118,125)(121,132) (123,131)(124,126)(127,128)(129,142)
(133,137)(136,138)(139,141) (77)(78)(119)(122)(134)(140).

yH2 =
18∏
i=0

(3i + 1,3i + 2,3i + 3)(58)
47∏
i=20

(3i − 1,3i,3i + 1).

[xH2 , yH2] = (77,79, . . .)︸ ︷︷ ︸
13

1531113124171231.

c = [x, y]4·3·7·11·13·23

= (115,125,126,121,132,124,118,116,129,136,137,131,119,123,133,

138,142).

DIAGRAM H3: degree 115≡ 3 (mod 14). Handle: (1,2).

xH3 = (3,4)(5,9)(6,11)(7,10)(8,14)(12,24)(13,17)(15,26)(16,20)(18,38)
(19,22)(21,35)(23,25)(27,28)(30,32)(41,31)(33,44)(34,36)(37,39)
(40,42)(43,47)(45,84)(46,51)(48,50)(49,85)(52,53)(54,56)(55,65)
(57,69)(58,60)(59,107)(61,63)(62,110)(64,66)(67,79)(68,72)
(70,81) (71,77)(73,74)(75,76)(78,80)(82,83)(86,93)(87,105)
(88,89)(90,91) (92,99)(94,95)(96,104)(97,113)(98,115)(100,101)
(102,103)(106,108) (109,111)(112,114)(1)(2)(29).

yH3 =
8∏
i=0

(3i + 1,3i + 2,3i + 3)(28)
38∏
i=10

(3i − 1,3i,3i + 1).

[xH3 , yH3] = (1,3, . . .)︸ ︷︷ ︸
9

112252114152171.
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[x, y]2·3·5·11·13

= (13,17,30,21,27,37,40,25,16,29,20,23,42,39,28,35,32).

DIAGRAM H4: degree 144≡ 4 (mod 14). Handle: (64,65).

xH4 = (1,10)(2,7)(3,4)(5,76)(6,77)(8,13)(9,11)(12,28)(14,37)(15,17)
(16,20)(18,32)(19,25)(21,22)(23,24)(26,31)(27,29)(30,40)(33,34)
(35,48)(36,55)(38,42)(39,43)(41,60)(44,62)(45,46)(47,53)(49,50)
(51,52)(54,56)(57,58)(59,72)(61,70)(63,68)(66,67)(69,71)(73,82)
(74,85)(75,80)(78,79)(81,83)(84,102)(86,103)(87,89)(88,95)
(90,91) (92,111)(93,118)(94,100)(96,97)(98,126)(99,133)(101,141)
(104,143) (105,106)(107,109)(110,116)(112,113)(114,115)
(117,119)(120,121) (122,142)(123,124)(125,131)(127,128)
(129,130)(132,134)(135,137) (138,139)(140,144)(64)(65)(108)(136).

yH4 =
47∏
i=0

(3i + 1,3i + 2,3i + 3).

[xH4, yH4] = (64,66, . . .)︸ ︷︷ ︸
11

135382112171302.

c = [x, y]8·3·5·11·13

= (108,129,115,120,128,110,135,113,125,131,112,137,116,127,121,

114,130).

DIAGRAM H5: degree 187≡ 5 (mod 14). Handle: (1,2).

xH5 = (3,4)(5,11)(6,21)(8,13)(9,17)(10,14)(12,20)(15,75)(16,19)(18,69)
(22,90)(23,46)(24,25)(26,28)(27,37)(29,63)(30,35)(31,32)(33,34)
(36,38)(39,81)(40,102)(41,103)(42,43)(44,53)(45,47)(48,55)
(49,50) (51,52)(54,56)(57,58)(59,108)(60,61)(62,64)(65,67)
(66,78)(68,70) (71,111)(72,73)(74,76)(77,79)(80,82)(83,114)
(84,85)(86,95)(87,88) (89,99)(91,92)(93,94)(96,97)(98,100)
(101,117)(104,118)(105,106) (107,109)(110,112)(113,115)
(116,128)(119,125)(120,129)(121,133)(122,134)(123,124)(126,127)
(130,139)(131,143)(132,137)(135,136)(138,140)(141,153)(142,145)
(144,155)(146,182)(147,148)(149,179)(150,151)(152,154)(156,157)
(158,165)(159,177)(160,161)(162,163)(164,171)(166,167)(168,176)
(169,185)(170,187)(172,173)(174,175)(178,180)(181,183)(184,186)
(1)(2)(7).
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yH5 =
51∏
i=0

(3i + 1,3i + 2,3i + 3)(157)
62∏
i=53

(3i − 1,3i,3i + 1).

[xH5 , yH5] = (1,3, . . .)︸ ︷︷ ︸
17

134292102124152431.

c = [x, y]4·9·5·11·13

= (7,100,62,58,41,18,94,76,52,107,71,92,70,50,72,113,95,66,53,

13,102,82,80,40,8,44,78,86,115,73,49,68,91,111,109,51,74,93,

69,103,57,64,98).

DIAGRAM H6: degree 216≡ 6 (mod 14). Handle: (70,71).

xH6 = (1,9)(2,5)(4,32)(6,11)(7,26)(8,10)(12,13)(14,15)(16,40)(17,41)
(18,19)(20,23)(21,36)(22,25)(24,35)(27,28)(29,31)(33,34)(37,46)
(38,49)(39,44)(42,43)(45,47)(48,66)(50,68)(51,52)(53,59)(54,61)
(55,170)(56,58)(57,169)(60,62)(63,64)(65,78)(67,76)(69,74)(72,73)
(72,73)(75,77)(79,83)(80,121)(81,92)(82,88)(84,85)(86,87)(89,91)
(90,162)(93,94)(95,97)(96,114)(98,127)(99,100)(101,116)(102,103)
(104,211)(105,106)(107,208)(108,109)(110,115)(111,112)(113,150)
(117,118)(119,141)(120,142)(122,182)(123,124)(125,134)(126,128)
(129,136)(130,131)(132,133)(135,137)(138,139)(140,163)(143,180)
(144,145)(146,155)(147,148)(149,159)(151,152)(153,154)(156,157)
(158,160)(161,185)(164,181)(165,166)(167,173)(168,175)(171,172)
(174,176)(177,178)(179,186)(183,184)(187,194)(188,206)(189,190)
(191,192)(193,200)(195,196)(197,205)(198,214)(199,216)(201,202)
(203,204)(207,209)(210,212)(213,215)(3)(30)(70)(71).

yH6 =
71∏
i=0

(3i + 1,3i + 2,3i + 3).

[xH6 , yH6] = (70, . . . ,72, . . .)︸ ︷︷ ︸
13

1542516272111122132172322.

c= [x, y]32·3·7·11·13·17 = (1,3,9,11,6).

DIAGRAM H7: degree 77≡ 7 (mod 14). Handle: (50,51).

xH7 = (1,22)(2,23)(3,4)(5,8)(6,21)(7,11)(9,20)(10,13)(14,16)(18,19)
(24,25)(26,30)(27,32)(28,31)(29,35)(33,45)(34,37)(36,47)(38,67)
(39,40)(41,69)(42,43)(44,46)(48,49)(52,53)(54,58)(55,60)(56,59)
(57,63)(61,73)(62,66)(64,75)(65,68)(70,71)(72,74)(76,77)(12)(15)
(17)(50)(51).
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yH7 =
15∏
i=0

(3i + 1,3i + 2,3i + 3)(49)
25∏
i=17

(3i − 1,3i,3i + 1)(77).

[xH7, yH7] = (50, . . . ,52, . . .)︸ ︷︷ ︸
9

13224294171.

c = [x, y]4·9·7·11·13

= (1,22,24,3,26,5,33,19,36,12,47,18,45,8,30,4,25).

DIAGRAM H8: degree 36≡ 8 (mod 14). Handle: (16,17).

xH8 = (1,9)(2,5)(4,32)(6,11)(7,27)(8,10)(12,13)(14,15)(18,19)(20,23)
(21,36)(22,26)(24,35)(25,29)(30,31)(33,34)(3)(16)(17)(28).

yH8 =
11∏
i=0

(3i + 1,3i + 2,3i + 3).

[xH8, yH8] = (16, . . . ,18, . . .)︸ ︷︷ ︸
11

114251111.

c= [x, y]4·3·11·13 = (1,11,3,6,9).

DIAGRAM H9: degree 135≡ 9 (mod 14). Handle: (124,125).

xH9 = (3,4)(5,8)(6,21)(7,10)(9,20)(11,48)(12,13)(14,16)(17,42)(18,19)
(22,68)(23,69)(24,25)(26,30)(27,32)(28,31)(29,34)(33,54)(35,55)
(36,37)(38,40)(39,51)(41,43)(44,60)(45,46)(47,49)(50,52)(53,62)
(56,58)(59,61)(64,73)(65,70)(66,67)(71,76)(72,74)(75,93)(77,100)
(78,79)(80,95)(81,83)(82,88)(84,85)(86,87)(89,94)(90,91)(92,103)
(96,97)(98,111)(99,118)(101,105)(102,106)(104,123)(107,131)
(108,109)(110,116)(112,113)(114,115)(117,119)(120,121)(122,135)
(126,127)(128,132)(129,134)(130,133)(1)(2)(15)(57)(63)(124)(125).
yH9 =

∏44
i=0(3i + 1,3i + 2,3i + 3).

[xH9, yH9] = (124,126, . . .)︸ ︷︷ ︸
11

1431425282112191212.

c = [x, y]8·3·5·7·11·13

= (1,11,31,29,18,3,40,32,52,8,5,50,27,38,4,19,34,28,48).
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DIAGRAM H10: degree 136≡ 10 (mod 14). Handle: (55,56).

xH10 = (1,9)(2,5)(4,32)(6,11)(7,26)(8,10)(12,13)(14,15)(16,37)(17,38)
(18,19)(20,23)(21,36)(22,25)(24,35)(27,28)(29,31)(33,34)(39,40)
(41,45)(42,47)(43,46)(44,49)(48,66)(50,74)(51,52)(53,59)(54,61)
(57,58)(60,62)(63,64)(65,78)(67,79)(68,80)(69,70)(71,75)(72,77)
(73,76)(81,82)(83,87)(84,89)(85,88)(86,92)(90,102)(91,94)
(93,104)(95,131)(96,97)(98,128)(99,100)(101,103)(105,106)
(107,114)(108,126)(109,110)(111,112)(113,120)(115,116)
(117,125) (118,134)(119,136)(121,122)(123,124)(127,129)
(130,132)(133,135)(3)(30)(55)(56).

yH10 =
34∏
i=0

(3i + 1,3i + 2,3i + 3)(106)
45∏
i=36

(3i − 1,3i,3i + 1).

[xH10 , yH10] = (55, . . . ,57, . . .)︸ ︷︷ ︸
13

154251113126.

c= [x, y]4·3·11·13 = (1,11,3,6,9).

DIAGRAM H11: degree 165≡ 11 (mod 14). Handle: (160,161).

xH11 = (1,26)(2,27)(3,4)(5,8)(6,21)(7,11)(9,20)(10,14)(15,16)(18,19)
(22,31)(23,28)(24,25)(29,34)(30,32)(33,51)(35,58)(36,38)(37,41)
(39,53)(40,46)(42,43)(44,45)(47,52)(48,49)(50,61)(54,55)(56,69)
(57,76)(59,63)(60,64)(62,81)(65,83)(66,67)(68,74)(70,72)(71,73)
(75,77)(78,79)(80,93)(82,91)(84,89)(85,98)(86,99)(87,88)(90,92)
(94,103)(95,100)(96,97)(101,112)(102,104)(105,123)(106,118)
(107,117) (108,109)(110,111)(113,130)(114,115)(116,125)
(119,124)(120,121) (122,133)(126,127)(128,141)(129,148)
(131,135)(132,136)(134,153) (137,155)(138,139)(140,146)
(142,143)(144,145)(147,149)(150,151)(152,159)(154,157)
(156,164)(158,165)(162,163)(12)(13)(17)(160)(161).

yH11 =
54∏
i=0

(3i + 1,3i + 2,3i + 3).

[xH11 , yH11] = (160,162, . . .)︸ ︷︷ ︸
11

152242548411619.

c = [x, y]8·3·5·11·13

= (1,53,3,4,39,26,8,49,24,18,29,31,12,22,34,19,25,48,5).
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DIAGRAM H12: degree 180≡ 12 (mod 14). Handle: (5,6).

xH12 = (1,10)(2,7)(3,4)(8,13)(9,11)(12,30)(14,37)(15,16)(17,32)(18,19)
(20,22)(21,25)(23,24)(26,31)(27,28)(29,40)(33,34)(35,48)(36,55)
(38,42)(39,43)(41,60)(44,62)(45,46)(47,53)(49,50)(51,52)(54,56)
(57,58)(59,72)(61,70)(63,68)(64,163)(65,164)(66,67)(69,71)
(73,82) (74,79)(75,76)(77,78)(80,121)(81,86)(83,85)(84,156)
(87,88)(89,91) (90,108)(92,115)(93,94)(95,110)(96,97)(99,100)
(102,103)(104,109) (105,106)(107,118)(111,112)(113,138)
(114,139)(116,126)(117,133) (119,144)(120,153)(122,176)
(123,124)(125,131)(127,128)(129,130) (132,134)(135,136)
(137,157)(140,174)(141,142)(143,149)(145,146) (147,148)
(150,151)(152,154)(155,179)(158,175)(159,160)(161,167)
(162,169)(165,166)(168,170)(171,172)(173,180)(177,178)
(5)(6)(98)(101).

yH12 =
59∏
i=0

(3i + 1,3i + 2,3i + 3).

[xH12, yH12] = (4, . . . ,5, . . .)︸ ︷︷ ︸
11

1352627282112132191471.

c = [x, y]8·3·5·7·11·13·19

= (36,155,113,66,157,101,137,67,138,179,55,124,111,163,171,100,

142,63,174,178,45,120,104,166,167,96,117,59,175,158,72,133,97,

161,165,109,153,46,177,140,68,141,99,172,64,112,123).

DIAGRAM H13: degree 195≡ 13 (mod 14). Handle: (180,178).

xH13 = (1,8)(2,20)(3,4)(5,6)(7,11)(9,16)(10,30)(12,13)(14,15)(17,19)
(18,28)(21,23)(22,37)(24,26)(25,40)(27,29)(32,34)(33,43)(35,46)
(36,38)(39,41)(42,44)(45,51)(47,86)(48,53)(49,52)(50,87)(54,55)
(56,58)(57,61)(59,77)(60,65)(62,69)(63,81)(64,116)(66,68)
(67,113) (70,79)(71,76)(72,73)(74,75)(78,83)(80,82)(84,85)
(88,97)(89,94) (90,91)(92,93)(95,138)(96,101)(98,100)(99,170)
(102,103)(104,106) (105,123)(107,130)(108,109)(110,125)
(111,112)(114,115)(117,118) (119,124)(120,121)(122,135)
(126,127)(128,152)(129,156)(131,140) (132,149)(133,158)
(134,168)(136,190)(137,141)(139,145)(142,144) (143,147)
(146,150)(148,153)(151,174)(154,188)(155,159)(157,163)
(160,162)(161,165)(164,166)(167,171)(169,193)(172,192)
(173,177) (175,181)(176,186)(179,180)(182,184)(185,189)
(187,194)(191,195) (31)(178)(180).

yH13 =
64∏
i=0

(3i + 1,3i + 2,3i + 3).
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[xH13 , yH13] = (179, . . . ,180, . . .)︸ ︷︷ ︸
51

1122526272134142231.

c = [x, y]32·3·5·7·11·13

= (2,19,37,32,42,24,9,18,7,27,39,31,41,29,11,28,16,26,44,34,

22,17,20).
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Abstract
In the chapter we give a survey on braid groups and subjects connected with them. We start

with the initial definition, then we give several interpretations as well as several presentations
of these groups. Burau presentation for the pure braid group and the Markov normal form are
given next. Garside normal form and his solution of the conjugacy problem are presented as
well as more recent results on the ordering and on the linearity of braid groups. Next topics
are the generalizations of braids, their homological properties and connections with the other
mathematical fields, like knot theory (via Alexander and Markov theorems) and homotopy
groups of spheres.
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1. Introduction

Braid groups describe intuitive concept of classes of continuous deformations of braids,
which are collections of intertwining strands whose endpoints are fixed. Mathematically
they can be considered from various points of view. The first intuitive approach is for-
malized naturally as isotopy classes of a collection of n connected curves (strings) in
3-dimensional space. This point of view is connected with the definition of a braid group
as the fundamental group of a configuration space of n points on a plane. Also braids
can be interpreted as a mapping class group of a punctured disc and as a subgroup of the
automorphism group of a free group (Section 3.3).

The present survey is organized as follows. In Section 2 we make some historical re-
marks. Definition and general properties are considered in Section 3. Configuration spaces
appear in Section 3.2. Connections with groups of automorphisms of free groups are given
in Section 3.3. Presentations of the braid group which appeared quite recently are observed
in Section 3.4. Section 4 is devoted to F.A. Garside’s classical work, [91], and Section 5 to
that of P. Dehornoy on ordering for braids. Representations and in particular linearity are
discussed in Section 6. In Section 7 various generalization of braids are presented. Homo-
logical properties are observed in Section 8. In the last Section 9 we discuss connection
with the knot theory given by the Alexander and Markov theorems and with the homotopy
groups of spheres.

2. Historical remarks

Braids were rigorously defined by E. Artin, [7], in 1925, although the roots of this natural
concept are seen in the works of A. Hurwitz ([117], 1891), R. Fricke and F. Klein ([89],
1897) and even in the notebooks of C.-F. Gauss. E. Artin, [7], gave the presentation of the
braid group (see formulas (3.2) in Section 3) which is common now. Already in the book of
Felix Klein, [126], published in 1926 there appeared a chapter about braids. Essential topics
about braids were also presented in the Reidemeister’s Knotentheorie, [175], published
in 1932.

In the 30ies there appeared a series of papers of Werner Burau, [48–50], where he in
particular gave the presentation of the pure braid group (see Section 3.5) and introduced the
Burau representation (Section 6.1). Wilhelm Magnus in his work [138] published in 1934
established relations between braid groups and the mapping class groups. At the same
time there appeared the work of A.A. Markov, [149], which together with the Alexander
theorem, [3], builds a bijection between links and equivalence classes of braids. It became
an essential ingredient in study of links and knots (in the work of V.F.R. Jones, [121], for
example). In 1936–37 were published papers of O. Zariski, [200,201], where he discovered
connections between braid groups and the fundamental group of the complement of the
discriminant of the general polynomial

fn(t)= a0t
n + a1t

n−1 + · · · + an−1t + an,
a point of view later rediscovered by V.I. Arnold, [5]. Zariski also understood connections
between braids and configuration spaces, gave the presentation of the braid group of the
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sphere, and studied the braid groups of Riemann surfaces. Amazingly and unfortunately
these works of Zariski were not noticed by the specialists on braids and are not mentioned
even in books and papers where the presentations of braids of surfaces are discussed.

In the beginning of 60ies R. Fox and L. Neuwirth, [86], and E. Fadell and L. Neuwirth,
[80], studied configuration spaces which turned out to be K(π,1)-spaces and so give
a natural geometrical model of the classifying spaces for the braid groups. Later,
V.I. Arnold, [5], in this direction proved the first results on the cohomology of braids.
The motivation for his study was a connection (which he discovered) with the problem of
representing algebraic functions in several variables by superposing algebraic functions in
fewer variables. Also, in 1969 V.I. Arnold completely described the cohomology of pure
braid groups, [4].

In 1969 there appeared the publication of F.A. Garside’s work [91] where he suggests a
new normal form of elements in the braid group and with its help gives a new solution of
the word problem and also solves the conjugacy problem. In 1968 was published a two-
page note of G.S. Makanin, [142], where he sketches his algorithm for the solution of the
conjugacy problem. The complete publication of Makanin’s work didn’t appear (as far as
the author is aware).

In the 70ies the study of cohomology of braids was continued independently and by dif-
ferent methods by D.B. Fuks, [90], who determined the mod 2 cohomology, and F.R. Co-
hen, [54–56], who described the homology with coefficients in Z and in Z/p as modules
over the Steenrod algebra.

In 1984–85, independently, N.V. Ivanov, [118], and J. McCarthy, [151], proved the “Tits
alternative” for the mapping class groups of surfaces and as a consequence it is true for the
braid groups. Namely, they proved that every subgroup of the mapping class group either
contains an Abelian subgroup of finite index, or contains a non-Abelian free group.

The question of whether braid groups are linear attracted significant attention. It was
realized that the Burau representation is faithful for Br3, [92,141]. Then, after a long
break, in 1991 J.A. Moody, [153], proved that Burau representation is unfaithful for
n � 9. This bound was improved to n � 6 by D.D. Long and M. Paton, [137], and to
n= 5 by S. Bigelow, [28]. In 1999–2000 there appeared preprints of papers of D. Kram-
mer, [128,129], and S. Bigelow, [29], who proved that Brn is linear for all n (using the
other representation).

At the beginning of nineties P. Dehornoy, [68–70], proved that there exists a left order
in braid groups.

Interesting generalizations of braids were introduced in the work of E. Brieskorn, [42].
The configuration space can also be considered as the orbit space of the complement of the
complexification of the arrangement of hyperplanes corresponding to the Coxeter group
An−1 =Σn. Generalizing this approach to any finite Coxeter group, E. Brieskorn defined
the so-called generalized braid groups which are also called Artin groups.

Another way of generalization is to consider braid groups in 3-manifolds, possibly with a
boundary. The simplest examples are braid groups in handlebodies. A.B. Sossinsky, [182],
was the first who studied them. Such a group can be interpreted as the fundamental group of
the configuration space of a plane without g points where g is the genus of the handlebody.
The generalized braid group of type C is isomorphic to the braid group in the solid torus.
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In the context of the influence of the theory of Vassiliev–Goussarov (finite-type) in-
variants singular braids were introduced. The corresponding algebraic structures are the
Baez–Birman monoid, [10,33], and the braid-permutation group by R. Fenn, R. Rimányi
and C. Rourke, [83,84]. Various properties of these objects were studied in [85,202,93,94,
66,119,62,104].

3. Definitions and general properties

3.1. Systems of n curves in three-dimensional space and braid groups

First of all, as was already mentioned, braids naturally arise as objects in 3-space. Let us
consider two parallel planes P0 and P1 in R3, which contain two ordered sets of points
A1, . . . ,An ∈ P0 and B1, . . . ,Bn ∈ P1. These points are lying on parallel lines LA and LB
respectively. The space between the planes P0 and P1 we denote by Π . Suppose that
the point Bi is lying under the point Ai , as a result of the orthogonal projection of the
plane P0 onto the plane P1. Let us connect the set of points A1, . . . ,An with the set of
points B1, . . . ,Bn by simple nonintersecting curves C1, . . . ,Cn lying in the space Π and
such that each curve meets only once each parallel plane Pt lying in the space Π (see Fig-
ure 1). This object is called a braid and the curves are called the strings of a braid. Usually
braids are depicted by projections on the plane passing through the lines LA and LB . This
projection is supposed to be in general position so that there is only finite number of dou-
ble points of intersection which are lying on pairwise different levels and intersections are
transversal. The simplest braid σi (Figure 2) corresponds to the transposition (i, i + 1).

Let us introduce the following equivalence relation on the set of all braids with n strings
and with fixed P0, P1, Ai and Bi . It is defined by homeomorphisms h :Π → Π , which
are the identity on P0 ∪ P1 and such that h(Pt ) = Pt . Braids β and β ′ are equivalent
if there exists a homeomorphism h such that h(β) = β ′. On the set Brn of equivalence
classes under the considered relation the structure of a group is introduced as follows. We
put a copy Π ′ of the domain Π under the Π in such a way that P ′0 coincides with P1 and
eachAi coincides with Bi and we glue the braids β and β ′. This gluing gives a composition
of braids ββ ′ (Figure 3). The unit element is the equivalence class containing a braid of n
parallel intervals, the braid β−1 inverse to β is defined by reflection of β with respect to

A1 An

BnB1

C1 Cn

P0

P1

Fig. 1.
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the plane P1/2. A string Ci of a braid β connects the point Ai with the point Bki defining a
permutation Sβ . If this permutation is the identity then the braid β is called pure. The map
β→ Sβ defines an epimorphism τn of the braid group Brn on the permutation group Σn
with the kernel consisting of all pure braids:

1→ Pn→ Brn
τn−→Σn→ 1. (3.1)

The following presentation of the braid group Brn with generators σi , i = 1, . . . , n− 1,
and two types of relations:{

σiσj = σjσi, if |i − j |> 1,

σiσi+1σi = σi+1σiσi+1
(3.2)

is the algebraic expression of the fact that any isotopy of braids can be broken down into
“elementary moves” of two types that correspond to the two types of relations.
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If we add a vertical interval to the system of curves on Figure 1 we can get a canonical
inclusion jn of the group Brn into the group Brn+1

jn : Brn→ Brn+1.

If the symmetric group Σn is given by its canonical presentation with generators si ,
i = 1, . . . , n− 1, and relations:⎧⎪⎨⎪⎩

sisj = sj si, if |i − j |> 1,

sisi+1si = si+1sisi+1,

s2
i = 1,

(3.3)

then the homomorphism τn is given by the formula

τn(σi)= si , i = 1, . . . , n− 1.

It is possible to consider braids as classes of equivalence of braid diagrams which are
generic projections of three-dimensional braids on a plane. The classes of equivalence are
defined by the Reidemeister moves depicted in Figure 4.

3.2. Braid groups and configuration spaces

If we look at Figure 1, then this picture can be interpreted as a graph of a loop in the
configuration space of n points on a plane, that is the space of unordered sets of n points
on a plane, see Figure 5. So, it is possible to interpret the braid group as the fundamental
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group of the configuration space. Formally it is done as follows. The symmetric group Σm
acts on the Cartesian power (R2)m of the space R2:

w(y1, . . . , ym)= (yw−1(1), . . . , yw−1(m)), w ∈Σm. (3.4)

Denote by F(R2,m) the space of m-tuples of pairwise different points in R2:

F
(
R2,m
)= {(p1, . . . , pm) ∈

(
R2)m: pi �= pj for i �= j}.

This is the space of regular points of our action. We call the orbit space of this action
B(R2,m)= F(R2,m)/Σm the configuration space of n points on a plane. The braid group
Brm is the fundamental group of this configuration space

Brm = π1
(
B
(
R2,m
))
.

The pure braid group Pm is the fundamental group of the space F(R2,m). The covering

p :F
(
R2,m
)→ B

(
R2,m
)

defines an exact sequence:

1→ π1
(
F
(
R2,m
)) p∗→ π1

(
B
(
R2,m
))→Σn→ 1, (3.5)

which is equivalent to the sequence (3.1).
It can be used for proving the canonical presentation of the braid group (3.2) as is done,

for example, in the book of J. Birman, [32].
Such considerations were done by R. Fox and L. Neuwirth, [86].

3.3. Braid groups as automorphism groups of free groups and the word problem

Another important approach to the braid group is based on the fact that this group may be
considered as a subgroup of the automorphism group of a free group.

Let Fn be the free group of rank n with the set of generators {x1, . . . , xn}. Denote by
AutFn the automorphism group of Fn.

We have the standard inclusions of the symmetric group Σn and the braid group Brn
into AutFn. For the braid group it may be described as follows. Let σ̄i ∈ AutFn, i =
1,2, . . . , n− 1, be given by the following formula, which describes its action on the gen-
erators: ⎧⎨⎩

xi �→ xi+1,

xi+1 �→ x−1
i+1xixi+1,

xj �→ xj , j �= i, i + 1.
(3.6)

Let us define a map ν of the generators σi , i = 1, . . . , n− 1, of the braid group Brn to these
automorphisms:

ν(σi)= σ̄i . (3.7)
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THEOREM 3.1. Formulas (3.7) define correctly a homomorphism

ν : Brn→AutFn

which is a monomorphism.

Theorem 3.1 gives a solution of the word problem for the braid groups. This was done
first by E. Artin, [7].

The free group Fn is a fundamental group of a discDn without n points and the generator
xi corresponds to a loop going around the i-th point. The braid group Brn is the mapping
class group of a disc Dn with its boundary fixed, [32], and so it acts on the fundamental
group of Dn. This action is described by the formulas (3.6) where xi corresponds to the
canonical loops onDn which form the generators of the fundamental group. Geometrically
this action is depicted in Figure 6.

3.4. Commutator subgroup and other presentations

Let us define a homomorphism from the braid group to the integers by taking the sum of
exponents of the entries of the generators σi in the expression of any element of the group
through these canonical generators:

deg : Brn→ Z, deg(b)=
∑
j

mj , where b= (σi1)m1 · · · (σik )mk .

PROPOSITION 3.1. The homomorphism

deg : Brn→ Z

gives the Abelianization of the braid group and the commutator subgroup Br′n is charac-
terized by the condition

b ∈ Br′n if and only if deg(b)= 0.
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PROOF. Let a : Brn→ A be a homomorphism to any other Abelian group A, then from
the relations (3.2) we have:

a(σi)a(σi+1)a(σi)= a(σi+1)a(σi)a(σi+1).

The commutativity of A gives that a(σi+1) = a(σi). This means that the homomorphism
deg is universal. �

Of course, there exist another presentations of the braid group. Let

σ = σ1σ2 · · ·σn−1,

then the group Brn is generated by σ1 and σ because

σi+1 = σ iσ1σ
−i , i = 1, . . . , n− 2.

The relations for the generators σ1 and σ are the following{
σ1σ

iσ1σ
−i = σ iσ1σ

−iσ1 for 2 � i � n/2,
σ n = (σσ1)

n−1.
(3.8)

This was observed by Artin in the initial paper [7].
An interesting series of presentations was given by V. Sergiescu, [181]. For every planar

graph he constructed a presentation of the group Brn, where n is the number of vertices
of the graph, with generators corresponding to edges and relations reflecting the geometry
of the graph. Artin’s presentation in this context corresponds to the graph consisting of the
interval from 1 to n with the natural numbers (from 1 to n) as vertices and with segments
between them as edges. For generalizations of braids graph presentations of these type
were considered by P. Bellingeri and V. Vershinin, [17,21].

J.S. Birman, K.H. Ko and S.J. Lee, [35], introduced the presentation with the generators
ats with 1 � s < t � n and relations{

atsarq = arqats for (t − r)(t − q)(s − r)(s − q) > 0,

atsasr = atrats = asratr for 1 � r < s < t � n.
(3.9)

The generators ats are expressed by the canonical generators σi in the following form:

ats = (σt−1σt−2 · · ·σs+1)σs
(
σ−1
s+1 · · ·σ−1

t−2σ
−1
t−1

)
for 1 � s < t � n. (3.10)

Geometrically the generators as,t are depicted in Figure 7.
The set of generators for braid groups were even enlarged in the work of Jean

Michel, [152], as follows. Let | | :Σn→ Z be the length function on the symmetric group
with respect to the generators si : for x ∈ Σn, |x| is the smallest natural number k such
that x is a product of k elements of the set {s1, . . . , sn−1}. It is known ([41], Section 1,
Example 13(b)) that two minimal expressions for an element of Σn are equivalent by us-
ing only the relations (3.2). This implies that the canonical projection τn : Brn→Σn has
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a unique set-theoretic section r :Σn→ Brn such that r(si) = σi for i = 1, . . . , n− 1 and
r(xy) = r(x)r(y) whenever |xy| = |x| + |y|. Then the group Brn admits a presentation
by generators {r(x) | x ∈ Σn} and relations r(xy) = r(x)r(y) for all x, y ∈ Σn such that
|xy| = |x| + |y|.

3.5. Presentation of the pure braid group and Markov normal form

Let f (y1, . . . , ym) be a word with (possibly empty) entries of yεi , where the yi are some
letters and ε may be ±1. If yi are elements of a group G then f (y1, . . . , ym) will be
considered as the corresponding element of G.

Let us define the elements si,j , 1 � i < j �m, of the braid group Brm by the formula:

si,j = σj−1 · · ·σi+1σ
2
i σ
−1
i+1 · · ·σ−1

j−1.

These elements satisfy the following Burau relations ([48,150], see also [134]):⎧⎪⎪⎪⎨⎪⎪⎪⎩
si,j sk,l = sk,lsi,j for i < j < k < l and i < k < l < j ,

si,j si,ksj,k = si,ksj,ksi,j for i < j < k,

si,ksj,ksi,j = sj,ksi,j si,k for i < j < k,

si,ksj,ksj,ls
−1
j,k = sj,ksj,ls−1

j,k si,k for i < j < k < l.

(3.11)

W. Burau and later A.A. Markov proved that the elements si,j with the relations (3.11) give
a presentation of the pure braid group Pm, [150]. The following formula is a consequence
of the Burau relations and is also due to A.A. Markov:[

si,l , s
ε
j,k

]= f (s1,l , . . . , sl−1,l), ε =±1, k < l. (3.12)

Let us define the elements σk,l , 1 � k � l �m, by the formulas

σk,k = e,

σk,l = σ−1
k · · ·σ−1

l−1.

Let P km be the subgroup of Pm generated by the elements si,j with k < j .
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THEOREM 3.2 (A.A. Markov).
(i) Every element of the group Brm can be uniquely written in the form

fm(s1,m, . . . , sm−1,m) · · ·fj (s1,j , . . . , sj−1,j )

· · ·f2(s1,2)σim,m · · ·σij ,j · · ·σi2,2. (3.13)

(ii) The factor group P km/P
k+1
m is the free group on free generators si,k+1, 1 � i � k.

The form (3.13) is called the Markov normal form, it also gives the solution of the word
problem for the braid groups.

4. Garside normal form, center and conjugacy problem

An essential role in Garside’s work [91] is played by the monoid of positive braids Br+n ,
that is the monoid which has a presentation with generators σi , i = 1, . . . , n, and rela-
tions (3.2). In other words each element of this monoid can be represented as a word on
the elements σi , i = 1, . . . , n, with no entrances of the σ−1

i . Two positive words A and B
in the alphabet {σi, i = 1, . . . , n− 1} will be said to be positively equal if they are equal
as elements of Br+n . In this case we shall write A

.= B .
First of all Garside proves the following statement.

PROPOSITION 4.1. In Br+n for i, k = 1, . . . , n− 1, given σiA
.= σkB , it follows that

if k = i, then A
.= B ,

if |k − i| = 1, then A
.= σkσiZ, B

.= σiσkZ for some Z,
if |k − i|� 2, then A

.= σkZ, B
.= σiZ for some Z.

The same is true for the right multiples of σi .

COROLLARY 4.1. If A
.= P , B

.=Q, AXB
.= PYQ, (L(A)� 0, L(B)� 0), then X

.= Y .
That is, monoid Br+n is left and right cancellative.

Garside’s fundamental word Δ in the braid group Brn+1 is defined by the formula:

Δ= σ1 · · ·σnσ1 · · ·σn−1 · · ·σ1σ2σ1.

If we use Garside’s notation Πt ≡ σ1 · · ·σt , then Δ≡Πn−1 · · ·Π1.
For a positive word W in σi , i = 1, . . . , n, we say that Δ is a factor of W or simply W

contains Δ, ifW
.=AΔB with A and B being arbitrary positive words, probably empty. If

W does not contain Δ we shall say W is prime to Δ.
Garside’s transformation of words R is defined by the formula

R(σi)≡ σn−i .

This gives the automorphism of Brn and the positive braid monoid Br+n .
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PROPOSITION 4.2. In Brn

σiΔ
.=ΔR(σi).

Geometrically this commutation is shown on Figure 8 (Δσ3 = σ1Δ).

PROPOSITION 4.3. If W is an arbitrary positive word in Br+n such that either

W
.= σ1A1

.= σ2A2
.= · · · .= σn−1An−1,

or

W
.= B1σ1

.= B2σ2
.= · · · .= Bn−1σn−1,

then W
.=ΔZ for some Z.

PROPOSITION 4.4. The canonical homomorphism

Br+n → Brn

is a monomorphism.

Among positive words on the alphabet {σ1 · · ·σn} let us introduce a lexicographical or-
dering with the condition that σ1 < σ2 < · · ·< σn. For a positive word W the base of W is
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the smallest positive word which is positively equal toW . The base is uniquely determined.
If a positive word A is prime to Δ, then for the base of A the notation Ā will be used.

THEOREM 4.1 (F.A. Garside). Every word W in Brn+1 can be uniquely written in the
form ΔmĀ, where m is an integer.

The form of a word W established in this theorem we call the Garside left normal form
and the index m we call the power of W . The same way the Garside right normal form
is defined and the corresponding variant of Theorem 4.1 is true. The Garside normal form
also gives a solution to the word problem in the braid group.

THEOREM 4.2 (F.A. Garside). The necessary and sufficient condition that two words in
Brn+1 are equal is that their Garside normal forms are identical.

Garside normal form for the braid groups was precised in the subsequent works of
S.I. Adyan, [1], W. Thurston, [78], E. El-Rifai and H.R. Morton, [76]. Namely, there was
introduced the left-greedy form (in the terminology of W. Thurston, [78])

ΔtA1 · · ·Ak,

where Ai are the successive possible longest fragments of the word Δ (in the terminology
of S.I. Adyan, [1]) or positive permutation braids (in the terminology of E. El-Rifai and
H.R. Morton, [76]). Certainly, the same way the right-greedy form is defined. With the help
of this form it was proved that the braid group is biautomatic.

The center of the braid group was fist found by W.-L. Chow, [53]. Namely, as follows
from the presentation of braid groups with two generators σ1 and σ and relations (3.8)
given in Section 3.1 the element σn commutes with σσ1 and so with σ1. Chow proved
that it generates the center. Garside normal form gives an elegant proof of the following
theorem.

THEOREM 4.3.
(i) When n= 1, the center of the group Brn+1 is generated by Δ.

(ii) When n > 1 the center of the group Brn+1 is generated by Δ2.

Let α be a positive word such that Δ
.= αX, where X is a positive word, possibly empty.

For any word W in Brn+1, the word α−1Wα, reduced to Garside normal form is called an
α-transformation of W .

For any wordW in Brn+1 with the Garside normal formΔmĀ≡W1 consider the follow-
ing chains of α-transformations: take all the α-transformations of W1 and let those which
are of power �m and which are distinct from each other be W2, W3, . . . ,Wt . Now repeat
the process for each of the words W2, W3, . . . ,Wt in turn, denoting successively by Wt+1,
Wt+2, . . . , any new words occurring, the condition being always that each new word must
be of power �m. Continue to repeat the process for every new distinct word arising, as the
sequence W1, W2, Wt+2, . . . , expands.
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PROPOSITION 4.5. The set W1, W2, Wt+2, . . . , is finite.

Suppose that in the set W1, W2, Wt+2, . . . , the highest power reached is s and that the
words of power s form the subset V1, V2, . . . . Then this set V1, V2, . . . is called the summit
set of W .

THEOREM 4.4 (F.A. Garside). Two elements A and B of the group Brn+1 are conjugate if
and only if their summit sets are identical.

J.S. Birman, K.H. Ko, and S.J. Lee considered the word δ = an(n−1) · · ·a32a21 =
σn−1 · · ·σ2σ1, as a fundamental in their system of generators and proved that every ele-
ment in Brn has a representative W = δjA1A2 · · ·Ak with positive Ai in a unique way in
some sense. Based on this form they gave an algorithm for the word problem in Bn which
runs in time (nm2) for a given word of length m.

5. Ordering of braids

A group G is said totally (or linearly) left (correspondingly right) ordered if it has a total
order < invariant by left (right) multiplication, i.e. if a < b, then ca < cb for any c ∈G. If
this order is also invariant by right (left) multiplication, then the groupG is called ordered.

For any left ordered group G denote by P the set of positive elements {x ∈G: x > 1},
then the set of negative elements is defined by the formula: P−1 = {x ∈G: x ∈ P }. The
total character of an order on G is expressed by the partition

G= P � {1} � P−1.

The invariance of multiplication is expressed by the inclusion P 2 ⊂ P , where P 2 is formed
by products of couples of elements of P . Conversely, if there exists a subset P of a groupG
with the properties:

G= P � {1} � P−1, P 2 ⊂ P,
then G is left ordered by the order defined by: x < y if and only if x−1y ∈ P . A group G
then is ordered if and only if xPx−1 ⊂ P for all x ∈G.

Let i ∈ {1, . . . , n} and considered a word w on the alphabet {σ1, . . . , σn} expressed in
the form

w0σiw1σi · · ·σiwr,
where the subwords w0, . . . ,wr are the words on the letters σ±1

j with j > i. Then such a

word is called σi -positive. This means that all entries of σ±1
i in the word w with i minimal

must be positive. If all such entries are negative then a wordw is called σi -negative. A braid
of Brn+1 is called σi -positive (σi -negative) if there exists its expression as a word on the
standard generators which is σi -positive (σi -negative). A braid is called σ -positive (σ -
negative) if there exists a number i, such that it is σi -positive (σi -negative).
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THEOREM 5.1 (P. Dehornoy). Every braid in Brn+1 different from 1 is either σ -positive
or σ -negative.

COROLLARY 5.1. For all n the braid group Brn+1 is left ordered.

6. Representations

6.1. Burau representation

Let us map the generators of the braid group Brn to the following elements of the group
GLnZ[t, t−1]

σi �→

⎛⎜⎜⎝
Ei−1 0 0 0

0 1− t t 0
0 1 0 0
0 0 0 En−i−1

⎞⎟⎟⎠ , (6.1)

where Ei is the unit i × i matrix. The formula (6.1) gives a well-defined representation of
the braid group in GLnZ[t, t−1]:

r : Brn→GLnZ
[
t, t−1],

which is called Burau representation, [50].

THEOREM 6.1. Burau representation is faithful for n= 3.

THEOREM 6.2 (J.A. Moody, D.D. Long and M. Paton, S. Bigelow). The Burau represen-
tation is not faithful for n� 5.

The case n= 4 remains open.

6.2. Lawrence–Krammer representation

Consider the ring K = Z[q±1, t±1] of Laurent polynomials in two variables q, t , and the
free K-module

V =
⊕

1�i<j�n
Kxi,j .

For k ∈ {1,2, . . . , n− 1}, define the action of the braid generators σk on the specified basis
of V by the formula:



Braids, their properties and generalizations 443

σk(xi,j )=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi,j , k < i − 1 or j < k;

xi−1,j + (1− q)xi,j , k = i − 1;

tq(q − 1)xi,i+1 + qxi+1,j , k = i < j − 1;

tq2xi,j , k = i = j − 1;

xi,j + tqk−i (q − 1)2xk,k+1, i < k < j − 1;

xi,j−1 + tqj−i (q − 1)xj−1,j , k = j − 1;

(1− q)xi,j + qxi,j+1, k = j .

(6.2)

Direct computation shows that this defines a representation

ρn : Brn→GL(V ),

which was firstly defined by R. Lawrence, [133], in topological terms and in the explicit
form (6.2) by D. Krammer, [129].

THEOREM 6.3 (S. Bigelow, [29], D. Krammer, [129]). The representation

ρn : Brn→GL(V )

is faithful for all n� 1.

REMARK 6.1. Actually, S. Bigelow, [29], proved this theorem for the representation ρn
characterized in homological terms and D. Krammer, [129], proved the following. LetK =
R[t±1], q ∈ R, and 0 < q < 1. Then the representation ρn defined by (6.2) is faithful for
all n � 1. This result implies Theorem 6.3: if a representation over Z[q±1, t±1] becomes
faithful after assigning a real value to q , then it is faithful itself.

M.G. Zinno, [203], established a connection between the Birman–Murakami–Wenzl al-
gebra, [40,155], and the Lawrence–Krammer representation. Namely, he proved that the
Lawrence–Krammer representation is identical to the irreducible representations of the
Birman–Murakami–Wenzl algebra parametrized by Young diagrams of shapes (n− 2) and
(1n−2). This means that the Young diagram in the case considered consists of one row
(respectively of one column) only, with n− 2 boxes. It follows that Lawrence–Krammer
representation is irreducible.

7. Generalizations of braids

7.1. Configuration spaces of manifolds

The notion of a configuration space as in Section 3.2 can be naturally generalized for a
configuration space of a manifold as follows. Let Y be a connected topological manifold
and let W be a finite group acting on Y . A point y ∈ Y is called regular if its stabilizer
{w ∈ W : wy = y} is trivial, i.e. consists only of the unit of the group W . The set Ỹ
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of all regular points is open. Suppose that it is connected and nonempty. The subspace
ORB(Y,W) of the space of all orbits Orb(Y,W) consisting of the orbits of all regular
points is called the space of regular orbits. There is a free action of W on Ỹ and the pro-
jection p : Ỹ → Ỹ /W =ORB(Y,W) defines a covering. Let us consider the initial segment
of the long exact sequence of this covering:

1→ π1
(
Ỹ , y0
) p∗→ π1

(
ORB(Y,W),p(y0)

)→W → 1. (7.1)

The fundamental group π1(ORB(Y,W),p(y0)) of the space of regular orbits is called the
braid group of the action of W on Y and is denoted by Br(Y,W). The fundamental group
π1(Ỹ , y0) is called the pure braid group of the action ofW on Y and is denoted by P(Y,W).
The spaces Ỹ and ORB(Y,W) are path connected, so the pair of these groups is defined
uniquely up to isomorphism and we may omit mentioning the base point y0 in the notations.

For any space Y the symmetric groupΣm acts on the Cartesian power Ym of the space Y
by the formulas (3.4). We denote by F(Y,m) the space of m-tuples of pairwise different
points in Y :

F(Y,m)= {(p1, . . . , pm) ∈ Ym: pi �= pj for i �= j}.
This is the space of regular points of this action. In the case when Y is a connected
topological manifold M without boundary and dimM � 2, the space of regular orbits
ORB(Mm,Σm) is open, connected and nonempty. We call ORB(Mm,Σm) the configu-
ration space of the manifold M and denote by B(M,m). The braid group Br(Mm,Σm)

is called the braid group on m strings of the manifold M and is denoted by Br(m,M).
Analogously, we call the group P(Mm,Σm) the pure braid group onm strings of the man-
ifold M and denote it by P(m,M). These definitions of braid groups were given by R. Fox
and L. Neuwirth, [86].

7.2. Artin–Brieskorn braid groups

The braid groups are included in the series of so-called generalized braid groups (this
was their name in the work of E. Brieskorn of 1971, [42]), or Artin groups (as they were
called by E. Brieskorn and K. Saito in the paper of 1972, [45]). They were defined by
E. Brieskorn, [42], so we call them Artin–Brieskorn groups.

Let V be a finite-dimensional real vector space (dimV = n) with Euclidean structure.
Let W be a finite subgroup of GL(V ) generated by reflections. Let M be the set of hy-
perplanes such that W is generated by orthogonal reflections with respect to M ∈M. We
suppose that for everyw ∈W and every hyperplaneM ∈M the hyperplanew(M) belongs
to M.

The group W is generated by the reflections wi = wi(Mi), i ∈ I , satisfying only the
following relations

(wiwj )
mi,j = e, i, j ∈ I,
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where the natural numbers mi,j = mj,i form the Coxeter matrix of W from which
the Coxeter graph Γ (W) of W is constructed, [41]. We use the following notation of
P. Deligne, [74]: prod(m;x, y) denotes the product xyxy · · · (m factors). The generalized
braid group (or Artin–Brieskorn group) Br(W) of W , [42,74], is defined as the group with
generators {si, i ∈ I } and relations:

prod(mi,j ; si, sj )= prod(mj,i; sj , si).
From this we obtain the presentation of the group W by adding the relations:

s2
i = e; i ∈ I.

We will see in Theorem 7.1 that this definition of the generalized braid group agrees with
our general definition of a braid group of an action of a group W (Section 7.1). We denote
by τW the canonical homomorphism from Br(W) to W . The classical braids on k strings
Brk are obtained by this construction if W is the symmetric group on k + 1 symbols. In
this case mi,i+1 = 3, and mi,j = 2 if j �= i, i + 1.

The classification of irreducible (with connected Coxeter graph) Coxeter groups is well
known (see, for example, Theorem 1, Chapter VI, §4 of [41]). It consists of the three infinite
series: A, C (which is also denoted by B because in the corresponding classification of
simple Lie algebras two different series B and C have this group as their Weyl group)
and D as well as the exceptional groups E6,E7,E8,F4, G2, H3, H4 and I2(p).

Now let us consider the complexification VC of the space V and the complexifica-
tion MC of M ∈M. Let YW = VC − ⋃M∈MMC . The group W acts freely on YW .
Let XW = YW/W then YW is a covering over XW corresponding to the group W . Let
y0 ∈ A0 be a point in some chamber A0 and let x0 stand for its image in XW . We are in
the situation described in Section 7.1 in the definition of the braid group of the action of
the group W . This braid group is defined as the fundamental group of the space of regu-
lar orbits of the action of W . In our case ORB(VC,W) = XW . So, the generalized braid
group is π1(XW ,x0). For each j ∈ I , let �′j be the homotopy class of paths in YW start-
ing from y0 and ending in wj(y0) which contains a polygon line with successive vertices:
y0, y0+ iy0,wj (y0)+ iy0,wj (y0). The image �j of the class �′j in XW is a loop with base
point x0.

THEOREM 7.1. The fundamental group π1(XW ,x0) is generated by the elements �j sat-
isfying the following relations:

prod(mj,k;�j , �k)= prod(mk,j ;�k, �j ).
This theorem was proved by E. Brieskorn, [43].
The word problem and the conjugacy problem for Artin–Brieskorn groups were solved

by E. Brieskorn and K. Saito, [45], and P. Deligne, [74]. The biautomatic structure of these
groups was established by R. Charney, [51].

In the case when V is complex finite-dimensional space and W is a finite subgroup
of GL(V ) generated by pseudo-reflections the corresponding braid groups were studied by
M. Broué, G. Malle and R. Rouquier, [47], and also by D. Bessis and J. Michel, [27].
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7.3. Braid groups of surfaces

The braid groups of a sphere Brn(S2) also have simple geometric interpretation as a group
of isotopy classes of braids lying in a layer between two concentric spheres. It has the
presentation with generators δi, i = 1, . . . , n− 1, and relations:⎧⎪⎨⎪⎩

δiδj = δj δi, if |i − j |> 1,

δiδi+1δi = δi+1δiδi+1,

δ1δ2 · · · δn−2δ
2
n−1δn−2 · · · δ2δ1 = 1.

(7.2)

This presentation was found by O. Zariski, [200], in 1936 and then rediscovered by
E. Fadell and J. Van Buskirk, [81], in 1961.

Presentations of braid groups of all closed surfaces were obtained by G.P. Scott, [180],
and others.

7.4. Braid groups in handlebodies

The subgroup Br1,n+1 of the braid group Brn+1 consisting of braids with the first string
fixed can be interpreted also as the braid group in a solid torus. Here we study braids in a
handlebody of the arbitrary genus g.

Let Hg be a handlebody of genus g. The braid group Brgn on n strings in Hg was first
considered by A.B. Sossinsky, [182]. LetQg denote a subset of the complex plain C, con-
sisting of g different points,Qg = {z0

1, . . . , z
0
g}, say, z0

j = j . The interior of the handlebody
Hg may be interpreted as the direct product of the complex plane C without g points:
C \Qg , and an open interval, for example, (−1,1):

Ḣg = (C \Qg)× (−1,1).

The space F(C \Qg,n) can be interpreted as the complement of the arrangement of hy-
perplanes in Cg+n given by the formulas:

Hj,k: zj − zk = 0 for all j, k;

Hij : zj = z0
i for i = 1, . . . , g; j = 1, . . . , n.

The braids in Brgn are considered as lying between the planes with coordinates z = 0 and
z= 1 and connecting the points ((g + 1,0), . . . , (g + n,0)). So Brgn can be considered as
a subgroup of the classical braid group Brg+n on g + n strings such that the braids from
Brgn leave the first g strings unbraided. In this subsection we denote by σ̄j the standard
generators of the group Brg+n. Let τk , k = 1,2, . . . , g, be the following braids:

τk = σ̄gσ̄g−1 · · · σ̄k+1σ̄
2
k σ̄
−1
k+1 · · · σ̄−1

g−1σ̄
−1
g .

Such a braid is depicted in Figure 9. The elements τk , k = 1,2, . . . , g, generate a free
subgroup Fg in the braid group Brg+n. It follows for example from the Markov nor-
mal form that the elements τk , k = 1,2, . . . , g, together with the standard generators
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σ̄g+1, . . . , σ̄g+n−1 generate the group Brgn. So, the braid group in the handlebody Brgn can
be considered as a subgroup of Brg+n, generated by two subgroups: Fg and Brn. Denote by
σ1, . . . , σn−1 the standard generators of Brn considered as the elements of Brgn, σi = σ̄g+i ,
i = 1, . . . , n − 1. So we have the presentation of Brgn with the generators τk and σi and
relations, [182,189,192]:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σiσj = σjσi if |i − j |> 1,

σiσi+1σi = σi+1σiσi+1,

τkσi = σiτk if k � 1, i � 2,

τkσ1τkσ1 = σ1τkσ1τk, k = 1,2, . . . , g,

τkσ
−1
1 τk+lσ1 = σ−1

1 τk+lσ1τk, k = 1,2, . . . , g − 1; l = 1,2, . . . , g− k.

(7.3)

The relation of the fourth type in (7.3) is the relation of the braid group of type B (C).
The relations of the fifth type in (7.3) describe the interaction between the generators of
the free group and their closest neighbor σ1. Geometrically this is seen in Figure 10. If we
introduce new generators θk, k = 1,2, . . . , g − 1; by the formulas:

θk = σ−1
1 τkσ1

we obtain the “positive” presentation of the group Bgn with generators of the types σi , τk ,
θk and relations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

σiσj = σjσi if |i − j |> 1,

σiσi+1σi = σi+1σiσi+1,

τkσi = σiτk if k � 1, i � 2,

τkσ1τkσ1 = σ1τkσ1τk, k = 1,2, . . . , g,

τkθk+l = θk+lτk, k = 1,2, . . . , g − 1; l = 1,2, . . . , g − k,

σ1θk = τkσ1, k = 1,2, . . . , g − 1.

(7.4)

There is an analog of Markov Theorem 3.2 for the group Brgn, [189,192].
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7.5. Braids with singularities

Let BPn be the subgroup of AutFn, generated by both sets of the automorphisms σi of (3.6)
and ξi of the following form:⎧⎨⎩

xi �→ xi+1,

xi+1 �→ xi,

xj �→ xj , j �= i, i + 1.

This is the braid-permutation group. R. Fenn, R. Rimányi and C. Rourke proved, [83,84],
that this group is given by the set of generators: {ξi, σi, i = 1,2, . . . , n− 1} and relations:⎧⎪⎨⎪⎩

ξ2
i = 1,

ξiξj = ξj ξi, if |i − j |> 1,

ξiξi+1ξi = ξi+1ξiξi+1.

The symmetric group relations{
σiσj = σjσi, if |i − j |> 1,

σiσi+1σi = σi+1σiσi+1.

The braid group relations
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σiξj = ξjσi, if |i − j |> 1,

ξiξi+1σi = σi+1ξiξi+1,

σiσi+1ξi = ξi+1σiσi+1.

The mixed relations

R. Fenn, R. Rimányi and C. Rourke also gave a geometric interpretation of BPn as a
group of welded braids. First they define a welded braid diagram on n strings as a col-
lection of n monotone arcs starting from n points at a horizontal line of a plane (the top
of the diagram) and going down to n points at another horizontal line (the bottom of the
diagram). The diagrams may have crossings of two types: (1) the same as usual braids as
for example on Figure 2 or (2) welds as depicted in Figure 11.

Composition of welded braid diagrams on n strings is defined by stacking one diagram
under the other. The diagram with no crossings or welds is the identity with respect to
composition. So the set of welded braid diagrams on n strings forms a semigroup which is
denoted by WDn.

R. Fenn, R. Rimányi and C. Rourke defined the allowable moves on welded braid di-
agrams. They consist of the usual Reidemeister moves (Figure 4) and the specific moves
depicted in Figures 12, 13, 14. The automorphisms of Fn which lie in BPn can be char-
acterized as follows. Let π ∈Σn be a permutation and wi , i = 1,2 . . . , n, be words in Fn.
Then the mapping

xi �→w−1
i xπ(i)wi

determines an injective endomorphism of Fn. If it is also surjective, we call it an automor-
phism of permutation-conjugacy type. The automorphisms of this type comprise a sub-
group of AutFn which is precisely BPn.
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The Baez–Birman monoid SBn or singular braid monoid, [10,33], is defined as the
monoid with generators gi, g

−1
i , ai , i = 1, . . . , n− 1, and relations

gigj = gjgi if |i − j |> 1,

aiaj = ajai if |i − j |> 1,

aigj = gjai if |i − j | �= 1,

gigi+1gi = gi+1gigi+1,

gigi+1ai = ai+1gigi+1,

gi+1giai+1 = aigi+1gi,

gig
−1
i = g−1

i gi = 1.

In these pictures gi corresponds to canonical generator of the braid group and ai represents
an intersection of the i-th and (i + 1)-st strand as in Figure 15. A more detailed geometric
interpretation of the Baez–Birman monoid can be found in the article of J. Birman, [33].
R. Fenn, E. Keyman and C. Rourke proved, [82], that the Baez–Birman monoid embeds in
a group SGn which they called the singular braid group:

SBn→ SGn.

So, in SGn the elements ai become invertible and all relations of SBn remain true.
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The analogue of the Birman–Ko–Lee presentation for the singular braid monoid was
obtained in [198]. Namely, it was proved that the monoid SBn has a presentation with
generators ats , a

−1
ts for 1 � s < t � n and bqp for 1 � p < q � n and relations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

atsarq = arqats for (t − r)(t − q)(s − r)(s − q) > 0,

atsasr = atrats = asratr for 1 � r < s < t � n,

atsa
−1
ts = a−1

ts ats = 1 for 1 � s < t � n,

atsbrq = brqats for (t − r)(t − q)(s − r)(s − q) > 0,

atsbts = btsats for 1 � s < t � n,

atsbsr = btrats for 1 � r < s < t � n,

asrbtr = btsasr for 1 � r < s < t � n,

atrbts = bsratr for 1 � r < s < t � n,

btsbrq = brqbts for (t − r)(t − q)(s − r)(s − q) > 0.

(7.5)

The elements ats are defined the same way as in (3.10) and the elements bqp for 1 � p <
q � n are defined by

bqp = (σq−1σq−2 · · ·σp+1)xp
(
σ−1
p+1 · · ·σ−1

q−2σ
−1
q−1

)
for 1 � p < q � n. (7.6)

Geometrically the generators bs,t are depicted in Figure 16.

s

. . .

t

. . .. . .

Fig. 16.
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8. Homological properties

8.1. Configuration spaces and K(π,1)-spaces

Let (qi)i∈N be a fixed sequence of distinct points in the manifold M and put Qm =
{q1, . . . , qm}. We use

Qm,l = (ql+1, . . . , ql+m) ∈ F(M \Ql,m)

as the standard base point of the space F(M \Ql,m). If k <m we define the projection

proj :F(M \Ql,m)→ F(M \Ql, k)

by the formula: proj(p1, . . . , pm)= (p1, . . . , pk). The following theorems were proved by
E. Fadell and L. Neuwirth, [80].

THEOREM 8.1. The triple proj :F(M \Ql,m)→ F(M \Ql, k) is a locally trivial fiber
bundle with fiber proj−1Qk,l homeomorphic to F(M \Qk+l ,m− k).

Consideration of the sequence of fibrations

F(M \Qm−1,1)→ F(M \Qm−2,2)→M \Qm−2,

F (M \Qm−2,2)→ F(M \Qm−3,3)→M \Qm−3,

. . .

F (M \Q1,m− 1)→ F(M,m)→M

leads to the following theorem.

THEOREM 8.2. For any manifold M

πi
(
F(M \Q1,m− 1)

)= m−1⊕
k=1

πi(M \Qk)

for i � 2. If proj :F(M,m)→M admits a section then

proji πi
(
F(M,m)

)= m−1⊕
k=0

πi(M \Qk), i � 2.

COROLLARY 8.1. If M is Euclidean r-space, then

πi
(
F(M,m)

)= m−1⊕
k=0

πi
(
Sr−1 ∨ · · · ∨ Sr−1︸ ︷︷ ︸

k

)
, i � 2.
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COROLLARY 8.2. If M is Euclidean 2-space, then F(R2,m) is the K(Pm,1)-space and
B(R2,m) is the K(Brm,1)-space.

Let XW be the space defined in Section 7.2.

THEOREM 8.3. The universal covering of XW is contractible, and so XW is a K(π;1)-
space.

This theorem for the groups of typesCn,G2 and I2(p), was proved by E. Brieskorn, [42],
in much the same way as E. Fadell and L. Neuwirth, [80], proved Theorems 8.1, 8.2 and
Corollary 8.2. For the groups of typesDn and F4 E. Brieskorn used this method with minor
modifications. In the general case Theorem 8.3 was proved by P. Deligne, [74].

It follows from Theorem 8.2 that F(C \Qg,n) and B(C \Qg) are K(π,1)-spaces, that
π1B(C \Qg)= Brgn, and so, B(C \Qg) can be considered as the classifying space of Brgn.

8.2. Cohomology of pure braid groups

The cohomology of pure braid groups was first calculated by V.I. Arnold, [4]. The map

φ :Sn−1→ F
(
Rn,2
)
,

described by the formula φ(x) = (x,−x), is a Σ2-equivariant homotopy equivalence.
Denote by A the generator of Hn−1(F (Rn,2),Z) that is mapped by φ∗ to the stan-
dard generator of Hn−1(Sn−1,Z). For i and j , such that 1 � i, j � m, i �= j , specify
πi,j :F(Rn,m)→ F(Rn,2) by the formula πi,j (p1, . . . , pm)= (pi,pj ). Put

Ai,j = π∗i,j (A) ∈Hn−1(F (Rn,m),Z).
It follows that Ai,j = (−1)nAj,i and A2

i,j = 0. For w ∈Σm there is an action w(Ai,j ) =
Aw−1(i),w−1(j), since πi,jw = πw−1(i),w−1(j). Note also that under restriction to

F
(
Rn \Qk,m− k

)∼= π−1(Qk)⊂ F
(
Rn,m
)
,

the classes Ai,j with 1 � i, j � k go to zero since in this case the map πi,j is constant on
π−1(Qk).

THEOREM 8.4. The cohomology group H ∗(F (Rn \ Qk,m − k),Z) is the free Abelian
group with generators

Ai1,j1Ai2,j2 · · ·Ais,js ,

where k < j1 < j2 < · · ·< js �m and ir < jr for r = 1, . . . , s.
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The multiplicative structure and theΣm-algebra structure ofH ∗(F (Rn,m),Z) are given
by the following theorem which is proved using the Σ3-action on H ∗(F (Rn,3),Z).

THEOREM 8.5. The cohomology ring H ∗(F (Rn,m),Z) is multiplicatively generated by
the square-zero elements

Ai,j ∈Hn−1(F (Rn,m),Z), 1 � i < j �m,

subject only to the relations

Ai,kAj,k =Ai,jAj,k −Ai,jAi,k for i < j < k. (8.1)

The Poincaré series for F(Rn,m) is the product
∏m−1
j=1 (1+ j tn−1).

REMARK 8.1. In the case of R2 = C the cohomology classes Aj,k can be interpreted as
the classes of cohomology of the differential forms

ωj,k = 1

2πi

dzj − dzk
zj − zk .

E. Brieskorn calculated the cohomology of pure generalized braid groups, [42], using
ideas of V.I. Arnold for the classical case. Let V be a finite-dimensional complex vector
space andHj ∈ V , j ∈ I , be the finite family of complex affine hyperplanes given by linear
forms lj . E. Brieskorn proved the following fact.

THEOREM 8.6. The cohomology classes, corresponding to the holomorphic differential
forms

ωj = 1

2πi

dlj
lj
,

generate the cohomology ring H ∗(V \⋃j∈I Hj ,Z). Moreover, this ring is isomorphic to
the Z-subalgebra generated by the forms ωj in the algebra of meromorphic forms on V .

The cohomology of pure generalized braid groups is described as follows.

THEOREM 8.7.
(i) The cohomology group Hk(P (W),Z) of the pure braid group P(W) with integer

coefficients is a free Abelian group, and its rank is equal to the number of elements
w ∈ W of length l(w) = k, where l is the length considered with respect to the
system of generators consisting of all reflections of W .

(ii) The Poincaré series for H ∗(P (W),Z) is the product
∏n
j=1(1 + mj t), where the

mj are the exponents of the group W .
(iii) The multiplicative structure of H ∗(P (W),Z) coincides with the structure of the

algebra generated by the 1-forms described in the previous theorem.
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8.3. Homology of braid groups

To study the cohomology of the classical braid groups H ∗(Brn,Z), V.I. Arnold, [5], in-
terpreted the space K(Brn,1)∼= B(R2, n) as the space of monic complex polynomials of
degree n without multiple roots

Pn(t)= tn + z1t
n−1 + · · · + zn−1t + zn.

Using this idea he proved theorems of finiteness, of recurrence and of stabilization. Homol-
ogy with coefficients in Z/2 was calculated by D.B. Fuks in the following theorems, [90].

THEOREM 8.8. The homology of the braid group on an infinite number of strings with
coefficients in Z/2 as a Hopf algebra is isomorphic to the polynomial algebra on infinitely
many generators ai, i = 1,2, . . .; degai = 2i − 1:

H∗(Br∞,Z/2)∼= Z/2[a1, a2, . . . , ai, . . .]

with the coproduct given by the formula:

Δ(ai)= 1⊗ ai + ai ⊗ 1.

THEOREM 8.9. The canonical inclusion Brn → Br∞ induces a monomorphism in ho-
mology with coefficients in Z/2. Its image is the subcoalgebra of the polynomial algebra
Z/2[a1, a2, . . . , ai, . . .] with Z/2-basis consisting of the monomials

a
k1
1 · · ·akll such that

∑
i

ki2
i � n.

THEOREM 8.10. The canonical homomorphism Brn → BOn, 1 � n � ∞, induces a
monomorphism (of Hopf algebras if n=∞)

H∗(Brn,Z/2)→H∗(BOn,Z/2).

F.R. Cohen calculated the homology of braid groups with coefficients Z/p, p > 2, also
as modules over the Steenrod algebra, [54–56].

Later V.V. Goryunov, [108,109], applied the methods of Fuks and expressed the coho-
mology of the generalized braid groups of types C and D in terms of the cohomology of
the classical braid groups.

9. Connections with the other domains

9.1. Markov theorem

Suppose a braid depicted in Figure 1 is placed in a cube. On the boundary of the cube join
the point Ai to the point Bi by a simple arc Di , such that Di and Dj are mutually disjoint
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B1 B2 B3
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D2
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Fig. 17.

if i �= j . Since our initial braid does not intersect the boundary of the cube except at the
points A1, . . . ,An and B1, . . . ,Bn we obtain a link (or, in particular, a knot), i.e. a system
of simple closed curves in R3. A link obtained in such a manner is called the closure of the
braid, see Figure 17.

THEOREM 9.1 (J.W. Alexander). Any link can be represented by a closed braid.

The next step is to understand equivalence classes of braids which correspond to links.
The following Markov theorem gives an answer to this question. At first we define two
types of Markov moves for braids.

Type 1 Markov move replaces a braid β on n strings by its conjugate γβγ−1.
Type 2 Markov move replaces a braid β on n strings by the braid jn(β)σn on n+1 strings

or by jn(β)σ−1
n where jn is the canonical inclusion of the group Brn into the group Brn+1

(see Section 3.1)

jn : Brn→ Brn+1.

THEOREM 9.2 (A.A. Markov). Suppose that β and β ′ are two braids (not necessary with
the same number of strings). Then, the closures of β and β ′ represent the same link if and
only if β can be transformed into β ′ by means of a finite number of type 1 and type 2
Markov moves. Namely there exists the following sequence,

β = β0→ β1→ ·· ·→ βm = β ′,

such that, for i = 0,1 . . . ,m− 1, βi+1 is obtained from βi by the application of a type 1
or 2 Markov moves or their inverses.

In other words, if we consider the disjoint union of all braid groups

n∐
n=1

Brn,
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then the Markov moves of types 1 and 2 define the equivalence relation ∼ on this set such
that the quotient set

n∐
n=1

Brn/∼

is in one-to-one correspondence with isotopy classes of links.
There exist a lot of proofs of Markov theorem, see, for example, the work of

P. Traczyk, [185].

9.2. Homotopy groups of spheres and Makanin braids

Consider the coordinate projections for the spaces F(M,m) where M is a manifold (see
Section 7.1)

di :F(M,n+ 1)→ F(M,n), i = 0, . . . , n,

defined by the formula

di(p1, . . . , pi+1, . . . , pn+1)= (p1, . . . , pi,pi+2, . . . , pn+1).

By taking the fundamental group the maps di induces group homomorphisms

di∗ :Pm+1(M)→ Pm(M), i = 0, . . . , n.

A braid β ∈ Brn+1 is called Makanin (smooth in the terminology of D.L. Johnson, [120],
Brunnian in the terminology of J.A. Berrick, F.R. Cohen, Y.L. Wong and J. Wu, [22]) if
di(β) = 1 for all 0 � i � n. We call them Makanin, because up to our knowledge it was
G.S. Makanin who first mentioned them, [127, page 78, Question 6.23]. In other words the
group of Makanin braids Makn+1(M) is given by the formula

Makn+1(M)=
n⋂
i=0

Ker
(
di∗ :Pm+1(M)→ Pm(M)

)
.

The canonical embedding of the open disc D2 into the sphere S2

f :D2→ S2

induces a group homomorphism

f∗ : Makn
(
D2)→Makn

(
S2),

where Makn(D2) is the Makanin subgroup Makn of the classical braid group Brn. The
group Makn is free, [112,120]. The following theorem is proved in [22].
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THEOREM 9.3. The is an exact sequence of groups

1→Makn+1
(
S2)→Makn

(
D2)→ πn−1

(
S2)→ 1

for n� 5.

Here as usual πk(S2) denote the k-th homotopy group of the sphere S2.
For instance, Mak5(S

2) modulo Mak5 is π4(S
2)= Z/2. The other homotopy groups of

S2 are as follows

π5
(
S2)= Z/2, π6

(
S2)= Z/12, π7

(
S2)= Z/2, π8

(
S2)= Z/2, . . . .

Thus, up to certain range, Makn(S2) modulo Makn are known by nontrivial calculation
of π∗(S2).
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1. Finiteness conditions, examples

Groups with conditions of finiteness were traditionally studied by V.P. Shunkov’s school.
Weak conditions imposed on subgroups, on normalizers of finite subgroups, suddenly yield
unexpected effects and extend over the whole group or give it some interesting properties.

Examples of infinite groups with different conditions of finiteness always played impor-
tant role in the theory of infinite groups. This section cites definitions of different finiteness
conditions and constructs several examples, illustrating non-coincidence and differences of
the properties of some classes of infinite groups.

The conditions of biprimitive finiteness, conjugate biprimitive finiteness are consecutive
weakening of the conditions of local finiteness and binary finiteness. They appear in the
work of V.P. Shunkov in the 70ies when he was studying periodic groups. Here we consis-
tently state these conditions of finiteness and give examples of biprimitively finite groups,
which are not binary finite, constructed by M.Yu. Bakhova, [3], and A.A. Cherep, [4].

We shall need the following definitions:
A groupG is locally finite, if every finite set of elements in it generates a finite subgroup.
A group G is called s-finite, if any s elements in it generate a finite subgroup.
An s-finite group with s = 2 is called binary finite.
A group is called conjugately n-finite, if any its n conjugate elements generate a finite

subgroup.
A groupG is called biprimitively finite, if for every finite subgroup K fromG every two

elements of prime order in NG(K)/K generate a finite subgroup.
A group G is called p-biprimitively finite, if for every finite subgroup K from G every

two elements of the prime order p in NG(K)/K generate a finite subgroup.
A groupG is called conjugately biprimitively finite or a Shunkov group, if for every finite

subgroup K from G in NG(K)/K every two conjugate elements of prime order generate
a finite subgroup.

This class of groups receive the title Shunkov group in the articles of L. Hammoudi,
A.V. Rojkov, V.I. Senashov, A.I. Sozutov, A.K. Shlepkin.

These classes of groups have been introduced by V.P. Shunkov. These conditions have
been successfully used in the proof of many theorems in for already more then thirty years.

Examples of periodic non-locally finite groups are not a sensation already: there are
examples of S.P. Novikov, S.I. Adian, [1], examples of A.Yu. Ol’shanskii, [21], examples
of E.S. Golod, [11]).

It is not difficult to see, that the class of finite groups belongs to the class of locally finite
groups; the class of locally finite groups belongs to the class of binary finite groups; the
class of binary finite groups belongs to the class of biprimitively finite groups.

From the Golod examples, [11], ensues, that there exist binary finite, but not locally
finite groups.

There exist biprimitively finite groups, which are not binary finite. Examples of such
groups have been constructed by M.Yu. Bakhova, [3], and A.A. Cherep, [4]. We shall cite
both constructions.

Here is a construction of M.Yu. Bakhova, [3].
Let n be a composite number, Fn be a free group with n generators x1, . . . , xn. Denote

by c an element from AutFn, for which xci = xi+1 (i = 1, . . . , n− 1) and xcn = x1. Take



470 V.I. Senashov

in HolFn the subgroup W = Fnλ〈c〉. Let ϕ be the homomorphism Fn→ P , where P is a
Golod p-group with n generators. V is the kernel of this homomorphism. By the homo-
morphism theorem, [16], Fn/V ∼= P . Obviously, V c

i
(i = 1,2, . . . , n) and D =⋂ni=1 V

ci

are normal subgroups in Fn. It is not difficult to show, that D is normal in W . Consider
now the quotient group G =W/D. The subgroup Fn/D from G will be a sub-Cartesian
product of groups isomorphic to P , and therefore the given subgroup is (n− 1)-finite.

Let’s introduce notations:

B = Fn/D, a = cD, bi = xiD (i = 1, . . . , n).

Then G= Bλ〈a〉 and B = 〈b1, . . . , bn〉. But bai = bi+1 (i = 1, . . . , n− 1) and ban = b1.
Hence, G = 〈b1, a〉, and this means, that the group G is not binary finite, with π(G) =
π(n)∪ {p}.

Further, as in the groupG every subgroup and every quotient group are the extensions of
an (n− 1)-finite group by means of a cyclic group, and n is a composite number, then the
group G is biprimitively finite. So, the following assertion is valid: there exists a biprimi-
tively finite group G, which is not binary finite.

As it ensues from the structure of the above given group G, a finite extension of the
binary finite group may be not a binary finite group.

Here is the example of A.A. Cherep, [4].
Consider a direct product A=∏i∈Z〈ai〉 of cyclic groups 〈ai〉 of order 2 and the group

G= (Aλ〈h〉)λ〈t〉, where the element h of infinite order acts on the generators from A by
the rule h−1aih= ai+2 (i ∈ Z), and the action of the element t of order 4 is determined by
the equalities:

t−1ait = a−i (i ∈ Z), t−1ht = h−1a0a1.

It is obvious that for each i ∈ Z, t−4ait
4 = ai . It is also easy to check that

t−2ht2 = a0a1ha0a−1 = ha−1a0a2a3,

t−3ht3 = h−1a0a1a0a1a−2a−3 = h−1a−2a−3,

t−4ht4 = a0a1ha2a3 = h.

Hence, the group G has been determined correctly. Let B = 〈A, t2〉, L = 〈B,h〉. As
t2 ∈ CG(A) and t2A ∈ Z(G/A), B is an elementary Abelian 2-subgroup, and the periodic
elements from L lie in B . Further, the relation in the quotient-group G/B(

thkB
)2 = t2h−khkB = B

shows that the elements from the set G \L have order 4.
In [4] is shown that the group G is biprimitively finite, but not binary finite.
There is a V.P. Shunkov problem: are the classes of biprimitively finite and conjugately

biprimitively finite groups different.
The following theorem solves this problem in the class of soluble groups.
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THEOREM 1.1 (A.A. Cherep, [5]). A soluble conjugately biprimitively finite group is
biprimitively finite.

The proof of this theorem contains more than it states; in fact, it shows, that if in a soluble
group a certain periodic element generates with each of its conjugates a finite subgroup,
then it lies in the locally finite normal divisor.

A group G is called group with unmixed factors if it has an ordered normal series

1=G0 �G1 � · · ·�Gα =G,

whose factors are either locally finite, or torsion-free.
It can be directly checked, that this property can be extended to the subgroups and quo-

tient groups with respect to a periodic normal divisor. In addition, the periodic subgroups
of a group with unmixed factors, are locally finite.

THEOREM 1.2 (A.A. Cherep, [5]). If G is a group with unmixed factors, then conditions
(1)–(3) are equivalent:

(1) The group G is conjugately biprimitively finite.
(2) The group G is biprimitively finite.
(3) For every finite subgroup H in the quotient group NG(H)/H the elements of prime

order generate a locally finite subgroup.

The conditions of conjugate biprimitive finiteness and biprimitive finiteness coincide in
a more general case.

THEOREM 1.3 (A.A. Cherep, [5]). If in the group G every two elements generate a sub-
group with unmixed factors, then the conjugate biprimitive finiteness of G is equivalent to
its biprimitive finiteness.

The next theorem gives infinitely many examples of infinite groups which separated
classes of n-finite and (n+ 1)-finite p-group for an arbitrary large enough number n.

THEOREM 1.4 (A.V. Rojkov, [26]). Let p be a prime number, 1 � n � k be a natural
number. Then there exists a finitely generated finitely approximate conjugately k-finite n-
finite, but not a (n+ 1)-finite p-group. In particular, a p-group can be non-binary finite,
but conjugately k-finite, where k is any large enough number.

2. Layer-finite groups

Another kind of finiteness conditions of groups is a finiteness of its layers (a layer is a set
of elements of given order).

Layer-finite groups appeared for the first time in a paper by S.N. Chernikov written in
1945, [6]. This particular kind of group was mentioned, but without any name. Chernikov
used the name of “layer-finite” in some of his later works.
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A group is layer-finite if any set of its elements of any given order is finite.
Investigations of properties of layer-finite groups were carried out by S.N. Chernikov,

R. Baer, Kh.Kh. Mukhamedjan in 1945–1960. The basic properties were described in dif-
ferent journals and remained in this form until 1980, when S.N. Chernikov’s book, [9], was
published. In that book, S.N. Chernikov collected all of his results in one paragraph. It is
possible to find practically all the properties of layer-finite groups and the nearest related
questions in the monograph [30].

When all the properties of layer-finite groups were described, the question about the
place of this class among other groups arose. The first of such characterizations of
layer-finite groups was the establishment of the interconnection with the nearest class
of groups: locally normal groups. The idea of this connection appeared in articles of
S.N. Chernikov, R. Baer, Kh.Kh. Mukhamedjan, [2,6,7,19,20]. But more complete is a
theorem by Chernikov:

THEOREM 2.1 (S.N. Chernikov, [9]). A class of layer-finite groups coincides with a class
of locally normal groups if all their Sylow subgroups satisfy the minimality condition.

It should be noted, that a group G is called a Chernikov group if it is a finite extension
of a direct product of a finite number of quasi-cyclic groups.

The Shmidt theorem on the closure of locally finite groups with respect to extensions by
locally finite groups is valid for locally finite groups. There is no similar theorem for the
class of layer-finite groups. Even the finite extensions of layer-finite groups lead us beyond
the limits of this class. But nevertheless, some hereditary properties for layer-finite groups
do exist:

THEOREM 2.2 (S.N. Chernikov, [9]). The thin layer-finite groups are precisely locally
normal groups, all of whose Sylow subgroups are finite.

THEOREM 2.3 (S.N. Chernikov, [9]). A group G, which is an extension of the layer-finite
group by the layer-finite group, is layer-finite if and only if it is locally normal.

THEOREM 2.4 (S.N. Chernikov, [9]). If the group G can be represented in the form of a
product of two layer-finite normal divisors, then the group G is layer-finite.

THEOREM 2.5 (V.I. Senashov, [28,29]). A periodic group is layer-finite if and only if it is
conjugately biprimitively finite and every one of its locally finite subgroups is layer-finite.

COROLLARY 2.1. If in a binary finite group any locally soluble subgroup is layer-finite,
then the group is layer-finite too.

The statement of the corollary immediately follows from Theorem 2.5.
The condition of conjugate biprimitive finiteness in the theorem is necessary because

there are examples such as the Novikov–Adian group, [1], and the Ol’shanskii group, [21],
in which all the conditions of the theorem are valid except for the condition of finiteness,
but they are not layer-finite.
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It is impossible to make this condition weaker by replacing it by the F ∗-condition (for
the definition of the F ∗-condition see below), because the Ol’shanskii group from [21] is
an F ∗-group and any of its locally soluble subgroups is layer-finite, but the group is not
layer-finite. So the condition of conjugate biprimitive finiteness is limiting in the theorem.

The next theorem gives one more characterization of layer-finite groups in the class of
periodic binary soluble groups: here the condition of layer-finiteness is not global, but only
for subgroups with the element a.

THEOREM 2.6 (V.O. Gomer, [12]). Let G be a periodic binary soluble group, and a an
element of prime order p such that:

(1) in CG(a) every locally finite subgroup is layer-finite and has finite Sylow q-
subgroups for all primes q;

(2) every locally finite subgroup with the element a is layer-finite.
Then G is a locally soluble (locally finite) layer-finite group.

The next results characterized layer-finite groups in the class of periodic almost locally
soluble groups with the condition: the centralizer of any non-identity element from some
elementary Abelian subgroup of order p2 is layer-finite.

THEOREM 2.7 (M.N. Ivko, [13]). Let G be a periodic almost locally soluble group, pos-
sessing an elementary Abelian subgroup V of order p2. If the centralizer in G of any
non-identity element from V is layer-finite, then the group G is layer-finite.

THEOREM 2.8 (M.N. Ivko, [13]). The 2-biprimitively-finite group G of the form G =
HλL, where H is the subgroup without involutions, and L is the Klein four group, is
layer-finite if and only if the centralizer in G of any involution from L is layer-finite.

Recall that an element of the order 2 is called an involution.
The next corollary characterizes layer-finite groups in the class of periodic groups with-

out involutions.

COROLLARY 2.2. The periodic group H without involutions whose holomorph contains
a Klein four subgroup L, is layer-finite if and only if the centralizer in H of any involution
from L is layer-finite.

A group G satisfies the p-minimality condition (min-p condition), if every descending
chain of subgroups of it

H1 >H2 > · · ·>Hn > · · ·

is such that if Hn \Hn+1 contains p-elements for all n it terminates at a finite number.
By π(G) we shall denote a set of prime divisors of orders of elements of the group G.
A group G satisfies the primary minimality condition, if it satisfies the p-minimality

condition for every prime number p ∈ π(G).
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A group G is called finitely approximate if for every set of different elements of G there
is a homomorphism of G on a finite group such that the images of these elements are
different.

The group G is called an Fq -group (q ∈ π(G)), if for every finite subgroup H and
any elements a, b ∈ T = NG(H)/H of order q there exists an element c ∈ T , such that
〈a, c−1bc〉 is finite.

If every subgroup from G is an Fq -group, then G is called an F ∗q -group. If G is a
Fq - (respectively, F ∗q -) group for any number q ∈ π(G), then G is called simply an F -
(respectively, F ∗-) group.

The next theorem gives the feature of layer-finiteness of periodic finitely approximate
F ∗-group, in which locally finite subgroups are layer-finite.

THEOREM 2.9 (E.I. Sedova, [27]). A periodic finitely approximate F ∗-group, in which
every locally finite subgroup is layer-finite, is a layer-finite group.

On the base of this result, descriptions of locally solvable layer-finite groups and groups
with primary minimality condition in the class of binary solvable groups are given by the
next theorems.

THEOREM 2.10 (E.I. Sedova, [27]). A periodic group is a locally soluble layer-finite
group if and only if it is binary soluble and every one of its locally soluble subgroup is
layer-finite.

THEOREM 2.11 (E.I. Sedova, [27]). A periodic group is a locally soluble group with min-
p condition if and only if it is binary soluble and every one of its locally soluble subgroups
satisfies min-p condition.

Recall that a group G satisfies the p-minimality condition (min-p condition), if every
descending chain of its subgroups

H1 >H2 > · · ·>Hn > · · ·

is such, that if Hn \Hn+1 contains p-elements for all n, it terminates at a finite number.

3. Groups with layer-finite periodic part

Remind that the periodic part of groups is a set of all of its elements that have finite order
if they form a subgroup.

Here we adduce some criteria of layer-finiteness for the periodic part of a group.

THEOREM 3.1 (V.I. Senashov, [32]). A group has a layer-finite periodic part if and only
if it is conjugately biprimitively finite and every one of its locally solvable subgroup is
layer-finite.
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THEOREM 3.2 (M.N. Ivko, V.P. Shunkov, [15]). A group G without involutions has a
layer-finite periodic part if and only if in it for some element a of prime order p the fol-
lowing conditions hold:

(1) the normalizer of any non-trivial 〈a〉-invariant finite elementary Abelian subgroup
of the group G has a layer-finite periodic part;

(2) almost all subgroups of the form 〈a, ag〉 are finite.

COROLLARY 3.1. A groupG without involutions is layer-finite if and only if in it for some
element a of prime order p the following conditions hold:

(1) the normalizer of any non-trivial 〈a〉-invariant finite elementary Abelian subgroup
from G is layer-finite;

(2) almost all subgroups of the form 〈a, ag〉 are finite.

To obtain the characterization of groups having a layer-finite periodic part, in one of
the group classes not containing involutions, it would be reasonable to obtain such a char-
acterization in the general case. This problem with some additional limitations is solved
by:

THEOREM 3.3 (M.N. Ivko, V.P. Shunkov, [15]). A group G, containing an element a of
prime order p �= 2 has a layer-finite periodic part if and only if the following conditions
hold:

(1) the normalizer of any non-trivial 〈a〉-invariant finite subgroup of the group G has a
layer-finite periodic part;

(2) any locally finite subgroup, containing the element a is almost locally soluble;
(3) all subgroups of the form 〈a, ag〉, where g ∈G, are finite and almost all of them are

soluble.

COROLLARY 3.2. An infinite group G is layer-finite if and only if in it for some element a
of prime order p �= 2 the following conditions are fulfilled:

(1) the normalizer of any non-trivial 〈a〉-invariant finite subgroup of the group G is
layer-finite;

(2) any locally finite subgroup, containing the element a, is almost locally soluble;
(3) all subgroups of the form 〈a, ag〉, where g ∈G, are finite.

Removing in Theorem 3.3 condition (2) and replacing the condition (1) with a stronger
restriction, we can obtain another characterization of groups, having a layer-finite periodic
part. Namely, the following theorem is valid.

THEOREM 3.4 (M.N. Ivko, V.P. Shunkov, [15]). An infinite group G has a layer-finite
periodic part if and only if in it for some element a of prime order p �= 2 the following
conditions are fulfilled:

(1) the normalizer of any non-trivial 〈a〉-invariant locally finite subgroup of the group
G has a layer-finite periodic part;

(2) all subgroups of the form 〈a, ag〉, where g ∈G, are finite and almost all are soluble.
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COROLLARY 3.3. An infinite group G is layer-finite if and only if in it for some element a
of prime order p �= 2 the following conditions are valid:

(1) the normalizer of any non-trivial 〈a〉-invariant locally finite subgroup of the group
G is layer-finite;

(2) all subgroups of the form 〈a, ag〉, where g ∈G, are finite and almost all are soluble.

We have so characterized groups with layer-finite periodic part with Φ-group accuracy
(see the definition in the section “Φ-groups”).

THEOREM 3.5 (M.N. Ivko, V.I. Senashov, [14]). Let G be a group, a an involution of it,
that satisfies the following conditions:

(1) all the subgroups of the form 〈a, ag〉, g ∈G, are finite;
(2) the normalizer of every non-trivial 〈a〉-invariant finite subgroup has a layer-finite

periodic part.
Then either the set of all finite order elements generates a layer-finite group or G is a

Φ-group.

4. Generalizations of layer-finite groups

Now, let’s discuss a few different generalizations of layer-finite groups as described by
L.A. Kurdachenko in [17,18]. These generalizations appeared under different considera-
tions of layer-finite groups.

The first generalization appeared on the base of the definition of layer-finite group: from
the definition remove the demand of finiteness from a finite number of layers. Such groups
are named QLF-groups. For such groups there holds

THEOREM 4.1 (L.A. Kurdachenko, [17]). For every locally finite QLF-group is either an
almost layer-finite extension of finite group by a QLF-group, or all non-trivial layers of it
are infinite (so, the group has a finite number of layers).

COROLLARY 4.1. The orders of the elements of a locally normal group, which has at least
one infinite layer, bounded globally.

Layer-finite groups can be consider as groups, in which every primary layer is finite. On
this basis one more generalization of layer-finiteness is constructed.

A groupG is named an LB-group, if the number of all its infinite primary layers is finite.

THEOREM 4.2 (L.A. Kurdachenko, [17]). Let G be a locally finite LB-group. Then it is
an extension of locally normal LB-group by a group with a global bound on the orders of
its elements. If, in particular, all Sylow subgroups of a group G are Chernikov, then it is
almost layer-finite.

Earlier, layer-finite groups were characterized as locally normal groups with Chernikov
Sylow subgroups. Hence appears a second generalization of layer-finite group: groups in
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which the Sylow p-subgroups are non-Chernikov only for a finite set of prime numbers p
(QSE-group). More precisely:

A periodic groupG is called a QSE-group, if only for a finite (and particularly an empty
set) of prime numbers the p Sylow p-subgroups of the group G are non-Chernikov.

The next theorem shows the relation between QSE-groups and LB-groups under the
condition of locally normality.

THEOREM 4.3 (L.A. Kurdachenko, [17]). A locally normal QSE-group is LB-group if and
only if when the orders of all its elements are globally bounded.

Further developments of investigations on these generalizations of layer-finite groups
can be find in the paper [17] under additional conditions of finiteness of classes of conju-
gate elements.

5. Layer-Chernikov groups

Here we consider layer-Chernikov groups, i.e. the groups, in which every set of elements of
the same order generates a Chernikov group. This class of groups was called layer-extreme
groups in the work of Ya.D. Polovitskii, [24], in 1960, when the name “Chernikov groups”
for the class of finite extensions of the Abelian groups with minimality condition had not
yet been settled down and such groups were called extreme or ch-groups.

The layer-Chernikov groups are close to layer-finite groups not in the sense of the defi-
nitions only, but also in their properties. In Section 2, in particular, the layer-finite groups
have been specified as locally normal groups with Chernikov Sylow p-subgroups. The
same role with respect to the layer-Chernikov groups is played by the locally Chernikov
groups. A group is called locally Chernikov if every element is contained in its Chernikov
normal divisor. Further we examine the subclass of the locally Chernikov groups: the lo-
cally finite groups, whose quotient groups by every p-center are Chernikov (the p-center of
an arbitrary group is the name of the intersection of the centralizers of all its p-elements).
This allows to define the class of layer-Chernikov groups in a new fashion.

A direct product of a number of periodic groups is called a primary thin direct product,
if whatever is the prime number p, the p-elements are contained in not more, than in a
finite number of direct factors.

THEOREM 5.1 (Ya.D. Polovitskii, [25]). The layer-Chernikov groups and only they are
the subgroups of the primary thin direct products of Chernikov groups.

This theorem can be strengthened, taking into account Theorem 8.1 of Chernikov from
[8] as follows:

THEOREM 5.2. A layer-Chernikov group embeds into a primary thin direct product of
such Chernikov groups, that the maximum complete subgroup of every one of them is a
p-group, with the orders of the elements of every two maximum complete subgroups of
different multipliers of this direct product being mutually prime.
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COROLLARY 5.1. The quotient group of the layer-Chernikov group with respect to the
arbitrary p-center is a Chernikov group.

A description of layer-Chernikov groups is given by the next theorem:

THEOREM 5.3 (Ya.D. Polovitskii, [25]). The group G is layer-Chernikov if and only if
it decomposes into a product G= AB where A is an layer-finite complete Abelian group
that is invariant in G and B is a thin layer-finite group, and for every number p ∈ π(G)
all Sylow q-subgroups of the group A (q is a prime number), except for, maybe, a finite
number, are in the p-center of the group G.

A layer-Chernikov group does not necessarily decompose into the semi-direct product
of a complete Abelian group and a thin layer-finite group, as such an assertion does not
take place even for the layer-finite groups.

The following theorems describe relations between the locally Chernikov and layer-
Chernikov groups.

THEOREM 5.4 (Ya.D. Polovitskii, [25]). The class of layer-Chernikov groups coincides
with the class of locally Chernikov groups which have Chernikov Sylow p-subgroups (with
respect to all p).

THEOREM 5.5 (Ya.D. Polovitskii, [25]). A central extension of a periodic group by means
of a layer-Chernikov group is a locally Chernikov group.

The next theorem gives a property of π -minimality of a locally Chernikov group.

THEOREM 5.6 (Ya.D. Polovitskii, [25]). A locally Chernikov group satisfies the π -mini-
mality condition if and only if all its Sylow π -subgroups are Chernikov ones.

The locally Chernikov groups can also be determined in a different way as seen from

THEOREM 5.7 (Ya.D. Polovitskii, [25]). A group G is locally Chernikov if and only if
every Chernikov subgroup of it is contained in some Chernikov normal divisor of the
group G.

COROLLARY 5.2. A central extension of a layer-Chernikov group by means of a layer-
Chernikov group is a layer-Chernikov group.

The assertion, analogous to Theorem 5.5 for central extensions by means of layer-finite
groups has been proved by I.I. Yeremin, [10].

Let’s add some more results for layer-Chernikov groups.

THEOREM 5.8 (Ya.D. Polovitskii, [25]). The quotient groups of a locally finite groupG by
each p-center are Chernikov if and only if the group G is a central extension of a periodic
group by means of a layer-Chernikov group.
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THEOREM 5.9 (Ya.D. Polovitskii, [44]). A group G is a central extension of a periodic
group by means of a thin layer-finite group if and only if its quotient groups are finite over
each p-center.

COROLLARY 5.3. A locally finite group such that the quotient groups over each p-center
are Chernikov is locally Chernikov.

COROLLARY 5.4. A group G is layer-Chernikov if and only if all its Sylow p-subgroups
are Chernikov and the quotient groups by each p-center are Chernikov.

It is of interest to note that by virtue of Theorem 5.3, a layer-Chernikov group is an
extension of a complete Abelian group with Chernikov Sylow subgroups by means of the
layer-finite group.

6. Generalized Chernikov groups

It is very natural to use the theory of layer-finite groups when one studies generalized
Chernikov groups. Because such groups with conditions of a periodic type and almost
locally solvability are extensions of layer-finite groups by layer-finite groups.

The imposition of restrictions on chains of subgroups has often been used in investiga-
tions concerning the structure of infinite groups. Many authors have in particular consid-
ered groups satisfying the minimality condition on all subgroups or the minimality con-
dition on all Abelian subgroups. On the other hand, generalizing the concept of a locally
finite group, S.P. Strunkov introduced in [59] binary finite groups, and later V.P. Shunkov,
[46], considered the wider class of conjugately biprimitively finite groups. One of the main
results relating to these finiteness conditions is due to A.N. Ostylovskii and V.P. Shunkov,
[22], and states that a conjugate biprimitive finite group without involutions and satisfying
the minimality condition on subgroups is a Chernikov group. Examples of P.S. Novikov,
S.I. Adian, [1], and A.Yu. Ol’shanskii, [21], show that this result cannot be generalized to
arbitrary periodic groups without involutions.

We shall say that a group G satisfies the primary minimality condition if for each prime
p every chain

G1 >G2 > · · ·>Gn > · · ·

of subgroups ofG, such that each setGn \Gn+1 contains an element gn with gp
kn

n ∈Gn+1
for some kn, stops after finitely many steps.

An almost locally soluble group satisfying the primary minimality condition will be
called a generalized Chernikov group. This name is motivated by the following result:
every almost locally soluble group G satisfying the primary minimality condition contains
a complete part G̃, the quotient group G/G̃ is locally normal, and every element of G
centralizes all but finitely many Sylow subgroups of G̃ (see, for instance, [23]).

Recall that a group G has a complete part A, if A is an Abelian group generated by all
complete Abelian subgroups fromG andG/A does not have complete Abelian subgroups.
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The next results characterize generalized Chernikov groups in the class of periodic
groups without involutions and in the class of mixed groups.

THEOREM 6.1 (V.I. Senashov, [31]). Let G be a periodic group without involutions. Then
G is a generalized Chernikov group if and only if it is conjugately biprimitively finite and
the normalizers of all its finite non-trivial subgroups are generalized Chernikov groups.

The earlier mentioned examples by Novikov, Adian, [1], and Ol’shanskii, [21], prove
that in this theorem the condition that G is conjugately biprimitively finite cannot be re-
moved.

It is possible to consider class of groups with generalized Chernikov periodic part of the
normalizer of any finite non-trivial subgroup. Among these groups there are the examples
of the Novikov–Adian and Ol’shanskii groups.

The term “generalized Chernikov groups” was first used in [57]. Its use can be justified
by the fact that according to the theorem of Ya.D. Polovitskii a generalized Chernikov
group G is an extension of the direct product A of quasi-cyclic p-groups with a finite
number of multipliers for any prime number p by a locally normal group B , and each of
the elements from B is element-wise non-permutable with only a finite number of Sylow
primary subgroups from A. For comparison a Chernikov group is a finite extension of a
direct product of finite number of quasi-cyclic groups.

Here some properties of generalized Chernikov groups.

THEOREM 6.2 (V.I. Senashov, [33]). In a generalized Chernikov group primary subgroups
are Chernikov.

THEOREM 6.3 (V.I. Senashov, [33]). If a generalized Chernikov group G does not have
complete subgroups, it is a thin layer-finite group.

THEOREM 6.4 (V.I. Senashov, [33]). In a non-Chernikov generalized Chernikov group
any element has infinite centralizer.

Let’s introduce the definition of a T -group.

DEFINITION. Let G be a group with involutions. Each involution i from G is associated
with a subgroup Vi from G defined as follows. If the Sylow 2-subgroups from the order
eighth dihedral group and i are contained in a Klein four-subgroup Ri such that CG(i) <
NG(Ri) and CG(i) has an infinite torsion subgroup, we take Vi = NG(Ri). In all other
cases Vi is taken to be Vi = CG(i).

A group G with involutions will be said to be a T -group if it satisfies the conditions:
(1) any two involutions from G generate a finite subgroup;
(2) the normalizer of any locally finite subgroup from G containing involutions has

locally finite periodic part;
(3) the set G \ Vi possesses involutions and Vi is an infinite subgroup for every involu-

tion i from G;
(4) for every element c from G \ Vi strictly real with respect to i, for which ci = c−1,

there exists in CG(i) such an element sc , that the subgroup 〈c, csc 〉 is infinite.
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The class of T -groups has been introduced by V.P. Shunkov.
Recall that a group, generated by two involutions is called a dihedral group. An element

a of a group G is called strictly real with respect to an involution i ∈G, if iai−1 = a−1.
In 1987 there appeared a conjecture by V.P. Shunkov according to which his Theorem 3.1

from [51] could possibly generalize to more wide classes of groups. And, indeed, in The-
orem 6.5 below the second condition of the Shunkov theorem is replaced by a weaker
condition: a normalizer with involutions of every finite non-trivial subgroup has general-
ized Chernikov periodic part. We proved that under this condition and if every subgroup
generated by two involutions is finite, then it has a generalized Chernikov periodic part or
it is T -group. So, the conjecture is proved.

THEOREM 6.5 (V.I. Senashov, [33,34]). Let G be a group with involutions satisfying the
conditions:

(1) any two involutions from G generate a finite subgroup;
(2) the normalizer of any finite non-trivial subgroup containing involutions has gener-

alized Chernikov periodic part.
Then either G has a generalized Chernikov periodic part or G is a T -group.

The next theorem characterizes groups with generalized Chernikov periodic part.

THEOREM 6.6 (V.I. Senashov, [33,34]). A group has a generalized Chernikov periodic
part if and only if it is conjugate biprimitive finite and the normalizer of any finite non-
trivial subgroup containing involutions has generalized Chernikov periodic part.

7. T0-groups

At the beginning of the 90ies the concept of a T0-group appeared. This class is defined by
finiteness conditions. Here is the definition of the class of T0-groups (V.P. Shunkov).

DEFINITION. Let G be a group with involutions, and let i be one of its involutions. We
shall call the group G a T0-group, if it satisfies the following conditions (for the given
involution i):

(1) all subgroups of the form 〈i, ig〉, g ∈G, are finite;
(2) Sylow 2-subgroups from G are cyclic or generalized groups of quaternions;
(3) the centralizer CG(i) is infinite and has a finite periodic part;
(4) the normalizer of any non-trivial 〈i〉-invariant finite subgroup fromG is either con-

tained in CG(i), or has a periodic part being a Frobenius group with Abelian kernel
and a finite complement of even order;

(5) CG(i) �=G and for any element c from G \CG(i), strictly real relating i (i.e. such
that ci = c−1), there is an element sc in CG(i), such that the subgroup 〈c, csc 〉 is
infinite.

Let’s consider the construction of Shunkov’s example of a T0-group from [52] based on
the well-known example of S.P. Novikov, S.I. Adian, [1].
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EXAMPLE OF A T0-GROUP [52]. Let A=A(m,n) be a torsion-free group A(m,n), which
is a central extension of cyclic group with help of group B(m,n), m> 1, n > 664 an odd
number, [1]. The group A(m,n) has non-trivial center Z(A) = 〈d〉 and A/〈d〉 is isomor-
phic to B(m,n), [1]. Let’s consider a group B =A 1 〈x〉, where x is an involution.

Let’s take an element u= d · d−x from A×Ax . It is obvious, that u ∈ Z(A×Ax), and
ux = u−1. As is shown in [52], the group G= B/〈u〉, and it’s involution i = x · 〈u〉 satisfy
conditions (1)–(5) from the definition of a T0-group, and G= V λ〈i〉, CG(i) is an infinite
group with periodic part 〈i〉, all subgroups 〈i, ig〉 in G are finite and every maximal finite
subgroup fromG with involution i is a dihedral group of the order 2n andG is a T0-group.

EXAMPLE OF A T0-GROUP [53]. Let V =O(p) (see the definition of groups of the type
O(p), C(∞) in the introduction). The group V has a non-trivial center Z(V ) = (t) and
V/Z(V )= V/(t)� C(∞), [16].

Consider the group T = V 1 (k) = (V × V )λ(k), where k is an involution. Let us take
from V × V the element b = (t, t−1). Obviously, b ∈ Z(V × V ) and bk = b−1. Let us
take quotient group M = T/(b), and in it an involution j = k(b). Further, using abstract
properties of the groups V =O(p), C(∞), [16], it is easy to show that the group M and
its involution j satisfy the conditions (1)–(5) of the definition. Hence, M = T/(b) is a T0-
group (with respect to the involution j = k(b)). Let us also note that in M any maximum
periodic subgroup containing the involution j is a dihedral group of order 2p.

Here are some results on T0-groups. Details can be found in [55].

THEOREM 7.1 (V.P. Shunkov, [53,56]). Let G be a group and a be an element of prime
order p, satisfying the following conditions:

(1) the subgroups of the form 〈a, ag〉, g ∈G, are finite and almost all are solvable;
(2) in the centralizer CG(a) the set of elements of finite order is finite;
(3) in the group G the normalizer of any non-trivial 〈a〉-invariant finite subgroup has

periodic part;
(4) for p �= 2 and for q ∈ π(G), q �= p, any 〈a〉-invariant elementary Abelian

q-subgroup of G is finite.
Then either G has an almost nilpotent periodic part, or G is a T0-group and p = 2.

COROLLARY 7.1. Let G be a (periodic) group and let a be an element of prime order
p �= 2, satisfying conditions (1)–(4) of Theorem 7.1.

Then G has an almost nilpotent periodic part.

The following statement is equivalent to Theorem 7.1 and gives an abstract characteri-
zation of T0-groups in the class of all groups.

COROLLARY 7.2. Let G be a group, a be an element of prime order p. The group G is a
T0-group and p = 2 if and only if for the pair (G,a) the conditions (1)–(4) of theorem are
satisfied and the subgroup 〈ag | g ∈G〉 is not periodic almost nilpotent.

The particular case when p = 2 requires special consideration, since in this case condi-
tion (4) of Theorem 7.1 is superfluous, i.e. the following statements are true.
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COROLLARY 7.3. Let G be a group with involutions and i be one of its involutions, satis-
fying the following conditions:

(1) the subgroups of the form 〈i, ig〉, g ∈G, are finite;
(2) in the centralizer CG(i) the set of elements of finite order is finite;
(3) in the group G the normalizer of any non-trivial 〈i〉-invariant finite subgroup has

periodic part.
Then either G has almost nilpotent periodic part, or G is a T0-group.

The conditions (1)–(3) of Corollary 7.3 are independent, i.e. none of them follows from
the other two.

COROLLARY 7.4. Let G be a group with involutions, and let i be one of its involutions.
The group G is a T0-group if and only if for the pair (G, i) conditions (1)–(3) of Corol-
lary 7.3 are satisfied and the subgroup 〈ig | g ∈G〉 is not periodic almost nilpotent.

THEOREM 7.2 [53]. Let G be a group with involutions and i be an involution, satisfying
the following conditions:

(1) the subgroups of the form 〈i, ig〉, g ∈G, are finite;
(2) in the centralizer CG(i) the set of elements of finite order is finite;
(3) in the group G the normalizer of any non-trivial 〈i〉-invariant finite subgroup has

periodic part.
Then either G has almost nilpotent periodic part, or G is a T0-group.

THEOREM 7.3 [53]. Let G be a group and a be an element of prime order p, satisfying
the following conditions:

(1) subgroups of the form 〈a, ag〉, g ∈G, are finite and almost all are solvable;
(2) the centralizer CG(a) is finite;
(3) for p �= 2 and for q ∈ π(G), q �= p, any 〈a〉-invariant elementary Abelian

q-subgroup of G is finite.
Then G is a periodic almost nilpotent group.

THEOREM 7.4 [53]. A non-trivial finitely generated group G is finite if and only if in it
there exists an element a of prime order p satisfying the following conditions:

(1) the subgroups of the form 〈a, ag〉, g ∈G, are finite and almost all solvable;
(2) the centralizer CG(a) is finite;
(3) when p �= 2 and for q ∈ π(G), q �= p, any (a)-invariant elementary Abelian

q-subgroup is finite.

Theory of T0-groups was created by V.P. Shunkov in [55].

8. Φ-groups

This section investigates properties of the new class of Φ-groups. Such groups are very
close to T0-groups, but in this sections we also point out the difference.
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This group class is rather broad: among them are groups of Burnside type, [1],
Ol’shanskii monsters, [21]. It is very closely connected with the groups of Burnside type
of odd period n� 665.

DEFINITION. Let G be a group, let i be an involution of G, satisfying the following con-
ditions:

(1) all subgroups of the form 〈i, ig〉, g ∈G, are finite;
(2) CG(i) is infinite and has a layer-finite periodic part;
(3) CG(i) �=G and CG(i) is not contained in other subgroups from G with a periodic

part;
(4) if K is a finite subgroup from G, which is not inside CG(i), and V =K ∩ CG(i)
�= 1, then K is a Frobenius group with complement V .

The group G with a specified involution i satisfying these conditions (1)–(4) is called a
Φ-group.

This class of groups has been introduced by V.P. Shunkov.

EXAMPLE OF A Φ -GROUP (V.P. Shunkov). Let A = 〈b, c〉 (where bn = cn = d and n is
a positive integer) be a torsion free group and let A/〈d〉 be the free Burnside group with
period n, [1]. Consider the group B = A 1 〈x〉 = (A× A)λ〈x〉, where x is an involution.
Let us take from A×A the element v = (d, d−1). Obviously v ∈Z(A×A) and vx = v−1.
Further, the group G = B/〈v〉 and its involution i = x〈v〉 (which is easy to see from the
abstract properties of the groupA= 〈b, c〉, [1]) satisfy all the conditions from the definition
of a Φ-group. Hence, G= B/〈v〉 is a Φ-group.

THEOREM 8.1 (V.I. Senashov, [14]). A Φ-group G satisfies the properties:
(1) all involutions are conjugate;
(2) Sylow 2-subgroups are locally cyclic or finite generalized quaternion groups;
(3) there are infinitely many elements of finite order in G, which are strictly real with

respect to the involution i and for every such element c of this set there exists an
element sc from the centralizer of i such that 〈c, csc 〉 is an infinite group.

V.P. Shunkov posed the problem of studying groups with some additional limitations in
the form that for the given finite subgroup B , the next condition is valid: the normalizer of
any non-trivial B-invariant finite subgroup has a layer-finite periodic part.

This problem is partly solved in the class of locally soluble groups and for the case
|B| = 2 under more general limitations, it is solved with Φ-groups accuracy.

THEOREM 8.2 (M.N. Ivko, V.I. Senashov, [14]). A periodic locally soluble group is layer-
finite if and only if for some finite subgroupB of it the next condition is valid: the normalizer
of any non-trivial B-invariant finite subgroup is layer-finite.

THEOREM 8.3 (M.N. Ivko, V.I. Senashov, [14]). Let G be a group, let a be an involution
of G, satisfying the conditions:

(1) all subgroups of the form 〈a, ag〉, g ∈G, are finite;
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(2) the normalizer of every non-trivial 〈a〉-invariant finite subgroup has a layer-finite
periodic part.

Then either the set of all elements of finite orders forms a layer-finite group or G is an
Φ-group.

COROLLARY 8.1 (M.N. Ivko, V.I. Senashov, [14]). Let G be a group with involutions and
let i be some involution from G satisfying the conditions:

(1) G is generated by the involutions which are conjugate with i;
(2) almost all groups 〈i, ig〉 are finite, g ∈G;
(3) the normalizer of every 〈i〉-invariant finite subgroup has a layer-finite periodic part.

Then G is either a finite or an Φ-group.

In a Φ-group G all involutions are conjugate; the Sylow 2-subgroups are locally cyclic
or finite generalized quaternion groups; there are infinitely many elements of finite order
in G, which are strictly real with respect to the involution i and for every such element c
of this set there exists an element sc from the centralizer of i such that 〈c, csc 〉 is an infinite
group.

Layer-finite groups are characterized in the class of locally solvable groups and groups
with a layer-finite periodic part in more general case with Φ-groups accuracy.

In the article [52], V.P. Shunkov bring up next question for discussion:
Do the classes of Φ0-groups and T0-groups coincide or not?
In the same article V.P. Shunkov specially emphasized that the most difficult part of the

problem is the establishing of satisfiability for a Φ0-group of conditions (4) and (5) from
the definition of a T0-group.

In [35] V.I. Senashov proved, that a Φ0-group satisfies all conditions from the definition
of a T0-group except for the fourth condition. In the same article an example of aΦ0-group
which is not a T0-group was constructed, i.e. it was shown that the fourth condition does
not hold in every Φ0-group.

EXAMPLE OF A Φ0-GROUP (V.I. Senashov, [35]). Let’s take isomorphic copies of the
T0-groups G= V λ(i) from [52]:

G1 = V1λ(i1), G2 = V1λ(i1), . . . , Gn = Vnλ(in), . . . .
In the Cartesian product of the groups Gn, n = 1,2, . . . , consider the subgroup U =

Wλ(j), whereW is the direct product of the subgroups Vn, n= 1,2, . . . , and j = i1 · i2 · · · ·
is an involution from the Cartesian product of the Gn, n = 1,2, . . . . Such a group U is a
Φ0-group. It is easy to see that fourth condition from the definition of a T0-group does not
hold for the group U .

9. Almost layer-finite groups

A group is said to be the almost layer-finite if it is a finite extension of layer-finite group.
To start with here are some theorems which describe almost layer-finite groups in the

class of locally finite groups.
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THEOREM 9.1 (V.P. Shunkov, [40]). A locally finite group G is almost layer-finite if and
only if in G the following condition is valid: the normalizer of any non-trivial finite sub-
group from G is almost layer-finite.

Next, here is the theorem which characterizes almost layer-finite groups in the class of
periodic groups without involutions.

THEOREM 9.2 (V.I. Senashov, [37]). Let G be a conjugately biprimitively finite group
without involutions. If in G the normalizer of any non-trivial finite subgroup has an almost
layer-finite periodic part, the group G has an almost layer-finite periodic part.

The condition of conjugate biprimitive finiteness in this theorem should be taken into
account in view of examples of the Novikov–Adian, [1], and Ol’shanskii groups, [21].

The next theorem describes almost layer-finite groups in the class of periodic groups
with involutions.

THEOREM 9.3 (V.I. Senashov, [36,38]). Let G be a periodic group of Shunkov type with
strongly embedded subgroup. If inG the normalizer of any non-trivial finite subgroup from
G is almost layer-finite, then the group G is almost layer-finite.

Let’s recall that a subgroup H of a group G is called strongly embedded in G, if H is
a proper subgroup of G and H ∩ x−1Hx has odd order for all x ∈G \H .

We know the structure of the infinite Sylow 2-subgroups of the periodic non-almost
layer-finite group of Shunkov:

THEOREM 9.4 (V.I. Senashov, [38]). Let G be the periodic non-almost layer-finite group
of Shunkov with almost layer-finite normalizers of any non-trivial finite subgroups. If the
Sylow 2-subgroup of group G is infinite, then it is a quasi-dihedral 2-subgroup.

Recall, that a quasi-dihedral group is an extension of a quasi-cyclic 2-group with the
help of an inverting automorphism (this group received this name because it is an union of
infinite number of finite dihedral 2-groups).

Using the known results about locally finite groups with Chernikov primary Sylow sub-
groups, we now obtain the following characterization of almost layer-finite groups in the
class of locally soluble groups, which is an analog of one of the main results of [41].

THEOREM 9.5 (M.N. Ivko, [13]). Let G be a periodic almost locally soluble group, pos-
sessing a Klein four-subgroup L. If the centralizer in G of any involution from L is layer-
finite, then the group G is almost layer-finite.

10. Periodic groups with minimality condition

A group G satisfies the minimality condition for subgroups (Abelian subgroups), if in G
every decreasing chain of subgroups (Abelian subgroups) H1 >H2 > · · · stops at a finite
number, i.e. Hn =Hn+1 = · · · for some n.
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Let any decreasing chain of subgroups in the infinite locally finite group stop at a finite
number. Will such a group be a finite extension of the direct product of the finite number
of quasi-cyclic groups? This is the problem of minimality in the class of locally finite
groups. In 1965 it became possible to reduce that problem to the case when the Sylow
2-subgroups in the group are finite. Those results were published in [42,43]. The problem
of minimality in the class of locally finite groups was positively solved by V.P. Shunkov
in [45]. Locally finite groups with the condition of minimality for Abelian subgroups were
described in [47].

In 1968 P.S. Novikov and S.I. Adian published the solution of the famous Burnside
problem. Moreover, the following theorem was proved: the free Burnside group B(m,n),
m � 2, of odd period n � 4381, is infinite, the centralizer of any non-trivial element is
finite and is contained in a cyclic subgroup of order n from B(m,n). In particular, in such
a group all Abelian subgroups are finite, the group also satisfies the condition of minimal-
ity for Abelian subgroups. Moreover, for any odd prime number p and natural number
s with ps > 4381 the free Burnside p-group B(m,ps) is infinite and every elementary
Abelian p-subgroup is finite. At once the following question emerged: what can be said
about the 2-groups in which some maximal elementary Abelian subgroup is finite? In 1970,
V.P. Shunkov obtained the answer to that question. In fact, he proved the following

THEOREM 10.1 (V.P. Shunkov, [46]). If some maximal elementary Abelian subgroup is
finite in an infinite 2-group, then the group itself is a finite extension of the direct product
of the finite number of quasi-cyclic groups.

Recall that a group G satisfies the p-minimality condition (min-p condition), if every
descending chain of subgroups

H1 >H2 > · · ·>Hn > · · ·
that is such, that Hn \Hn+1 contains p-elements, terminates at a finite number.

Earlier we already pay attention to the fact that the extension of a locally finite group by
a locally finite group is locally finite, but at the same time this is incorrect for layer-finite
groups. The periodic almost locally soluble groups with min-p condition are the extensions
of layer-finite groups by layer-finite groups. In fact, in this case the groupG has a complete
part A, and G/A is locally normal, and every element of G is unpermutational element-
wise only with finite number of Sylow p-subgroups of A. The quotient group G/A is
locally normal and obviously has finite Sylow p-subgroups, hence it is layer-finite group.
The group A is an Abelian group constructed from a quasi-cyclic group, and by the min-p
condition every p ∈ π(A) in A has only a finite number of quasi-cyclic groups. Hence A
is a layer-finite group too.

Let’s discuss some results for groups with minimality condition.
A positive solution of the minimality problem for locally finite groups is given by the

next theorem:

THEOREM 10.2 (V.P. Shunkov, [45]). A locally finite group with minimality condition for
subgroups is either finite or it is a finite extension of a direct product of a finite number of
quasi-cyclic groups.
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THEOREM 10.3 (Ya.D. Polovitskii, [24,25]). Let G be an almost locally soluble group
with min-p condition. Then it has a complete part A; moreover G/A is locally normal,
and every element of G is unpermutational element-wise only with finite number of Sylow
p-subgroups of A.

THEOREM 10.4 (V.P. Shunkov, [49]). Let G be a conjugately biprimitively finite group
without involution with min-p condition. Then G has a complete part R and the quotient-
group G/R is conjugate biprimitive finite with min-p condition and with finite Sylow
p-subgroups for every p ∈ π(G).

THEOREM 10.5 (V.P. Shunkov, A.K. Shlepkin, [49]). Every periodic conjugately biprim-
itively finite group without involutions with min-p condition is locally finite.

COROLLARY 10.1. Every periodic conjugately biprimitively finite group without involu-
tions with finite Sylow subgroups, satisfying the min-p condition is layer-finite.

THEOREM 10.6 (E.I. Sedova, [27]). A periodic group is a locally soluble group with min-
p condition if and only if it is binary soluble and every one of its locally soluble subgroups
satisfies the min-p condition.

THEOREM 10.7 (A.N. Ostylovskii, V.P. Shunkov, [22]). A conjugately biprimitively fi-
nite group without involutions with minimality condition is locally finite and is a solvable
Chernikov group.

THEOREM 10.8 (N.G. Suchkova, V.P. Shunkov, [60]). Every conjugately biprimitively fi-
nite group with minimality condition for Abelian subgroups is a Chernikov group.

Results on groups with minimality condition can be found in the monograph [39].

11. Groups with finitely embedded involution

We now go on to introduce the next concept introduced by V.P. Shunkov at the end of the
80ies.

Let G be a group, i one of its involutions and let Li = {ig | g ∈ G} be the set of
conjugated involutions from G with i. We shall call the involution i finitely embedded
in G, if for any element g from G the intersection (LiLi) ∩ gCG(i) is finite, where
LiLi = {ig1 = ig2 | g1, g2 ∈G}.

Let’s give the most simple examples of the groups with a finitely embedded involution.
(1) If in the group G there exists an involution i with finite centralizer CG(i), then i is

a finitely embedded involution in G.
(2) If in some group G the involution i is contained in finite normal subgroup from G,

then i is a finitely embedded involution in G.
(3) Let G be a Frobenius group with a periodic kernel and infinite complement H ,

containing an involution i. Then i is a finitely embedded involution in G.
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(4) Let

B1,B2, . . . ,Bn, . . .

be an infinite sequence of finite groups, in which there is only a finite number
of the groups of even order, and let Bnλ(in) be a subgroup from the holomorph
Hol(Bn), where in is an involution, inducing in Bn an automorphism of order two
(n= 1,2, . . .). Let’s consider the group G= Bλ(i), where

B = B1 ×B2 × · · · ×Bn × · · · ,

and i is the involution

i = (i1, i2, . . . , in, . . .).

It is easy to show, that i is a finitely embedded involution.
An involution of a group is called a finite involution, if it generates a finite subgroup

with every involution, that is conjugate to it.
Now let us formulate some results, the main of which is the following.

THEOREM 11.1 (V.P. Shunkov, [50]). Let G be a group, and let i be a finite and finitely
embedded involution in it, Li = {ig | g ∈ G}, B = 〈Li〉, R = 〈LiLi〉, and Z let be the
subgroup generated by all 2-elements from R.

Then B , R, Z are normal subgroups in G and one of the next statements holds:
(1) B is a finite subgroup;
(2) the subgroup B is locally finite, B =Rλ(i) and Z is a finite extension of a complete

Abelian 2-subgroup A2 with the condition of minimality, and ici = c−1 (c ∈A2).

A number of corollaries follow from this theorem.

COROLLARY 11.1. If a group has a finite involution with a finite centralizer, then it is
locally finite.

COROLLARY 11.2. If a periodic group has an involution with a finite centralizer, then it
is locally finite.

COROLLARY 11.3. If a finite finitely embedded involution exists in a group, then its clo-
sure is a periodic subgroup.

COROLLARY 11.4. A simple group with involutions is finite if and only if one of its invo-
lutions is finite and is finitely embedded.

As in a periodic group any involution is finite, the next results follow from Corol-
lary 11.4.
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COROLLARY 11.5. A periodic simple group with involutions is finite if and only if some
involution in it is finitely embedded.

COROLLARY 11.6. Let G be a group, let H be a subgroup of it containing a finite involu-
tion, and let (G,H) be a Frobenius pair. The groupG is a Frobenius group with a periodic
Abelian kernel and with complement H = CG(i) if and only if i is a finitely embedded in-
volution in G.

Corollary 11.6 does not hold, even in a periodic group, if the involution i is not finitely
embedded.

12. Frobenius groups and finiteness conditions

When one study groups with finiteness conditions it is very helpful to use Frobenius group
type properties.

A group of the form G= FλH is called a Frobenius group with kernel F and comple-
ment H , if H ∩Hg = 1 for every g ∈G \H and F \ (1)=G \⋃g∈GHg , where H is a
proper subgroup.

Let G be a group, H subgroup. G and H are said to form a Frobenius pair, if H ∩Hx
= 1 for every element x ∈G \H .

Let G be a group, H a subgroup of it, satisfying the following condition: for any g ∈
G \H the intersection H ∩ g−1Hg = 1. In this case we shall call the pair (G,H) a Frobe-
nius pair. If G is a finite group, G = FλH . This is a famous Frobenius theorem which
plays a fundamental role in the theory of finite groups.

Let a Frobenius pair (G,H) be given and G= FλH . If F \ (1)=G \⋃g∈GHg , then
G is called a Frobenius group with kernel F and with complement H . According to the
Adian theorem from the book “Burnside Problem and Identities in Groups” (Moscow:
Science, 1975), in the group B(m,n), m� 2, n is an odd number and n� 665, each finite
subgroup is contained in a cyclic subgroup of order n, making with the group B(m,n) a
Frobenius pair, and B(m,n) is an infinite group. If we take a prime number p > 665 as
n, then according to the well-known Kostrikin theorem, B(m,p) has a finitely generated
subgroup H(p) of finite index in B(m,p), not having subgroup of the finite index of its
own.

The group H(p) with its each cyclic subgroup of the prime order p makes a Frobenius
pair. However, it is not a Frobenius group with a non-invariant cyclic multiplier of prime
order p. Let us give another interesting example.

Let V = B(m,p), where p is a prime number and p > 665. As is well known, V has
an automorphism φ of order 2 which takes all free generators into their inverse. In the
holomorph Hol(V ) take the subgroup G = V λ(i), where i is an involution, inducing the
automorphism φ in V . If the centralizer CG(i) were finite, then according to statement 4,
formulated above, the group G would be finite, it couldn’t be possible. Hence, H = CG(i)
is an infinite group. Further, according to the Adian theorem, formulated above, (G,H) is
a Frobenius pair, but G is not a Frobenius group with the non-invariant infinite multiplier
H = CG(i).
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That is how the situation in periodic groups having Frobenius pairs stands. But, probably,
the following V.P. Shunkov theorem can lead to further progress.

THEOREM 12.1 (V.P. Shunkov, [48,50]). Let G be a group, H a subgroup of it, a an
element of prime order p �= 2 from H , satisfying the following condition: for every g ∈
G \H , 〈a,g−1ag〉 is a Frobenius group with the complement (a). Then

(1) H = T λNG((a)) and K = T λ(a) is either a Frobenius group with a complement
(a) and a kernel T , or K = (a);

(2) Fa = T ∪ N is a subgroup in G and G = FaNG((a)), where N is the set of all
p-real elements from G \H relating the element a;

(3) E = T \L is an invariant set in G, where L is the set of all such elements from T ,
which is p-real relating some element from

L=
⋃
x∈G

[(
x−1ax

) \ {1}].
Finally we note a feature of unsimplicity for infinite groups.

THEOREM 12.2 (A.I. Sozutov, V.P. Shunkov, [58]). Suppose G is a group, H a proper
subgroup, a an element of order p �= 2 in G such that
(∗) for almost all (i.e. except for perhaps a finite number) of elements of the form g−1ag,

where g ∈G \H , the subgroups Lg = 〈a,g−1ag〉 are Frobenius groups with com-
plement 〈a〉.

Then either G = FλNG(〈a〉) and Fλ〈a〉 is a Frobenius group with complement 〈a〉 and
kernel F , or the index of CG(a) in G is finite.

This feature of unsimplicity plays a very important role in the research of infinite groups
with finiteness conditions.
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