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Introduction

It is well known that a local change in the electronic state in a crystal
leads to corresponding local changes in the interactions between individual
atoms of the crystal, and hence to the excitation of atomic oscillations, i.e.
the excitation of phonons. And vice versa, any local change in the state
of the lattice ions alters the local electronic state. It is common in this
situation to talk about an “electron–phonon interaction”. This interaction
manifests itself even at the absolute zero of temperature, and results in
a number of specific microscopic and macroscopic phenomena. When an
electron moves through the crystal, this state of polarization can move
together with it. This combined quantum state, of “moving electron +
accompanying polarization”, may be considered as a sort of a quasipar-
ticle with its own particular characteristics, such as effective mass, total
momentum, energy, and maybe other quantum numbers describing the
internal state of the quasiparticle in the presence of an external magnetic
field presence or in the case of a very strong lattice polarization that
causes self-localization of the electron in the polarization well with the
appearance of discrete energy levels. Such a quasiparticle is usually called
a “polaron state” or simply a “polaron”. Polaron formation is a conse-
quence of dynamic electron-lattice interaction which is also responsible for
scattering of charge carriers, phonon frequency renormalization as well as
screening of interaction between charge carriers in solids.

The concept of the polaron was introduced first by S.I. Pekar [1],
who investigated the most essential properties of stationary polaron in
the limiting case of very intense electron-phonon interaction, so that the
polaron behavior could be analyzed in the so-called adiabatic approxima-
tion. Such famous researchers as L.D. Landau, S.I. Pekar, H. Fröhlich and
R. Feynman have contributed to the development of polaron theory [1–5].

Despite the apparent simplicity of the formulation, the polaron prob-
lem has not yet been solved, and continues to attract much attention. It
plays an important role in statistical mechanics and quantum field theory
because it can be considered as the simplest example of a nonrelativistic
quantum particle interacting with a quantum field. Therefore many so-
phisticated mathematical techniques have been tested for the first time
using this problem as a model. A shining example of this is Feynman’s
functional integration method, which was applied first to the polaron
problem, before becoming one of the main methods used in statistical
mechanics and quantum field theory. Moreover, polaron theory is an
expanding field of investigation in solid state physics because polarons are
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4 Introduction

not only theoretical constructs but practically observable physical objects
(see e.g. [6]).

One of the most important contributions to polaron theory, made by
N.N. Bogolubov, is the rigorous adiabatic perturbation theory [7] created
in 1950, in which the kinetic energy of the phonon field was treated
as a small perturbation. The theory is translationally invariant (which
is important for the development of the strong coupling theory), and
reproduced at zeroth order the results for large values of the interaction
constant that had already been derived. Despite a systematic attempt to
calculate higher orders of the perturbation theory, these have not yet been
derived, although much effort has been devoted to the problem.

Bogolubov returned to the polaron problem in 1980, when he devel-
oped and applied the well-known method of chronological or T-products
[8]. This method appeared to be effective for the theory of the large-radius
polarons for all strengths (weak, intermediate and strong) of electron–
phonon interaction and also for the derivation of higher terms of the per-
turbation series in the weak-coupling limit. Like the functional integration
formalism, the T-product method has various applications in many fields
of quantum physics.

Interest to the polaron problem is growing: in addition to earlier
fields of research dealing mostly with spatially homogeneous systems,
investigation of charged-particle interactions with elementary excitations
in spatially inhomogeneous low-dimensional systems, such as quantum
wells, wires and boxes, is gaining significance. Experimental techniques
have had great success in producing such systems with well-controlled pa-
rameters, thus allowing the manufacturing of structures with predictable
characteristics. Electron–phonon interactions of the polaron type play a
very important role in the properties of low-dimensional quantum sys-
tems. Thus, much efforts has been devoted to the investigation of surface
polarons (see [9, 10] and references therein).

Of course, it is impossible to cover all off the numerous aspects of
polaron theory in this short introduction or even in a far larger text. The
main purpose of the present book is to acquaint the reader with methods
of modern mathematical physics developed in connection with polaron
theory.

The book is organized in the following way. Chapter 1 is an introduc-
tion to the T-product approach in the theory of a particle interacting with
bosonic fields. As an example, this method is applied to the linearized
polaron model and Feynman’s two-body oscillator model, for which all
calculations can be carried out explicitly. Feynman’s well-known inequal-
ity in polaron theory is also reproduced as a particular case. The rest of
the chapter is devoted to one version of finite-temperature perturbation
theory for the polaron partition function and the ground-state energy
developed on the basis of the T-product formalism. Adiabatic perturbation
theory for the polaron ground-state energy, which is valid for the strong-
coupling case, is also highlighted.
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Chapter 2 deals with the equilibrium-state investigation for the
Fröhlich polaron model. The main objective of this chapter is to derive
Bogolubov’s inequality for the reduced free energy of the polaron. This
inequality allows one to obtain various upper bounds for the polaron
ground-state energy relevant for different values of the particle–field
interaction strength.

Chapter 3 touches on some problems related to nonequilibrium polaron
theory including polaron kinetics. An exact evolution equation for a parti-
cle interacting with a bosonic field is derived here. It is shown that in the
weak-coupling case this equation can be reduced to the Boltzmann equa-
tion in the polaron theory. Special attention is paid to the investigation of
the nonequilibrium properties of the linearized polaron model. The main
characteristics of this system, such as the impedance and the admittance,
are calculated explicitly. It is also shown that the equilibrium momentum
distribution function in the weak coupling limit can be derived by means
of the T-product formalism without having recourse to the Boltzmann-
equation approach.

Investigation of the dynamics in a “small” system weakly coupled
to a “large” system (the heat bath) is one of the essential problems of
statistical mechanics. The work by N.N. Bogolubov and N.M. Krylov
[49] laid theoretical foundation for studies in this field. In this work the
problem of possibility of a stochastic process in a dynamic system being
under the influence of a large system was considered. The behavior of a
classical system was studied on the basis of the Liouville equation for the
probability distribution function in the phase space while for a quantum
system the equivalent von Neuman equation for the statistical operator
was employed. In [49] a method was developed allowing to derive the
Fokker-Planck equation already in the first order approximation. In [50]
a concrete model was studied in detail, the dynamics of which could be
described by integrable equations. This property allowed rigorous critical
analysis of various approximations to this model dynamics which had
been derived earlier. Similar results for quantum mechanical systems were
obtained in [51].

In lectures given by N.N. Bogolubov in 1974 while visiting the Rocke-
feller University, a modified version of the method, developed in [49], was
outlined and its relation to the theory of two-time Green functions was
discussed [52].

It is worth noticing that the notions of the “small” system and the
“large” system are to be comprehended in the sense that the number of
degrees of freedom of the former is much less than this number for the
latter one.

Further development of ideas outlined in [49–52] provided an oppor-
tunity to formulate, on the basis of a model polaron problem, a method
of derivation of exact system of hierarchic equations for time-dependent
averages [35]. Bose-variables elimination from operator dynamic equations
being averaged with respect to the initial statistical operator represents
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the cornerstone of the method. Special lemmas proved for the case of
adiabatic switching on of the interaction between the “small” and the
“large” systems played significant role in this elimination procedure [35].
If the “large” system is in the thermodynamically equilibrium state (being
the heat bath in effect), the method allows to describe approach to
equilibrium for the distribution of probabilities in the “small” system.

The above mentioned method proved itself very useful in studies of
superradiant generation processes [53–55]. The phenomenon of superradi-
ance reveals itself in appearance of spontaneous coherence of electromag-
netic radiation due to photon exchange between atoms of active medium
taking place under some additional conditions [56].

Here, in Chapter 3, an aproach to derive an exact equation for the
evolution of a particle interacting with bosonic field is proposed. It is
shown that in the case of weak interaction this equation can be reduced
to the Boltzmann equation in the polaron theory. Particular attention is
paid to investigation of nonequilibrium properties of the linearized polaron
model. Principle characteristics of this model, such as impedance and
admittance, are calculated explicitly. It is also shown that the equilibrium
function of momentum distribution in the limiting case of weak interaction
can be derived within the frame of the T-product formalism without any
recourse to approximate Boltzmann equation.

Polaron Model: General Discussion

Let us consider a slow electron in a dielectric crystal, interacting with
the lattice ions through long-range electrostatic forces. This electron will
be permanently surrounded by a region of lattice polarization. Moving
through the crystal, the electron carries the lattice distortion with it. The
electron together with the accompanying self-consistent polarization field
can be treated as a quasiparticle called a “polaron”. Its effective mass is
larger than that of a Bloch electron. Polaron formation is a consequence
of the dynamical electron–phonon interaction.

One may speak about a “cloud of phonons” accompanying the electron.
Thus a polaron can be also thought of as a compound system: “electron +
accompanying phonons”. The polaron problem was initially formulated in
the context of solid state physics, where this concept has some direct appli-
cations [6, 11, 12]. On the other hand, this problem is of great theoretical
interest quite apart from its particular solid-state interpretation, since it
provides a very simple example of a particle interacting with a quantum
field, and is thus a suitable model to probe the methods of quantum field
theory and quantum statistics, and to formulate intuitive ideas about the
properties of a particle moving through a fluctuating quantum medium.
A detailed discussion on the physical origins and basic features of the
polaron model can be found in old papers [11].

In this text we should like to give an introduction to a new method
in the equilibrium polaron theory based on the T-product operator
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technique. Here and below we follow mainly the ideas outlined in our
lectures [8].

Let us analyse in more detail the polaron Hamiltonian and its proper-
ties. From a general point of view, the polaron model may be considered
as a particular case of a “small” subsystem S interacting with a “large”
bosonic reservoir Σ. Let S be the electron and Σ be the phonon field
of a crystal. Denote by XS the set of arguments of the electron wave
function and denote by XΣ = (...nf ...) the set of occupation numbers of
the phonon modes.

The dynamical states of the polaron S + Σ are then characterized by
wave functions Ψ(XS ,XΣ) forming the space HS+Σ = HS

⊗HΣ, where
HS is the state space of the free electron while HΣ is the phonon Fock
space. We shall use below the notation A(S), A(Σ) and A(S,Σ) for the
operators acting correspondingly on the variables XS , XΣ and (XS ,XΣ)
of the wave function Ψ(XS ,XΣ). Note that the operators A(S) and A(Σ)
will always commute with each other. The polaron Hamiltonian may be
written as follows:

HP = H(S) + H(Σ) + Hint(S,Σ), (0.1)

with
H(S) = p2

2m
, (0.1a)

H(Σ) = 1
2

∑

(f)

(pfp−f + ω2
fqfq−f ), (0.1b)

Hint(S,Σ) = 1
V 1/2

∑

(f)

Lfqfeif ·r, (0.1c)

where the three operator terms correspond respectively to the Hamiltonian
of the free band electron H(S) with effective mass m, the Hamiltonian of
the optical lattice phonons H(Σ) with wave vectors f and frequencies ωf ,
and the Hamiltonian of the electron–phonon interaction Hint(S,Σ). The
electron–phonon interaction is characterized by the coupling parameter
Lf , which is assumed to be a real and spherically symmetric function:

Lf = L∗f = L(|f |),
r,p are quantum operators satisfying the usual commutation relations:

rαpβ − pβrα = ih̄δαβ (α,β = x, y, z).

he phonon amplitudes pf , and qf are also quantum operators satisfying
analogous relations:

qfpf ′ − pf ′qf = ih̄δff ′ ,

p†f = p−f , q†f = q−f .
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As usually, the phonon wave vector f runs over a quasidiscrete set of
values:

f =
(2πn1

L
, 2πn2

L
, 2πn3

L

)
,

where L3 = V is the volume of the system and n1,n2,n3 are integers.
In most articles the so-called Fröhlich polaron (also known as a large-

radius polaron) is considered. For the Fröhlich polaron, the electron is
supposed to interact with a dielectric continuum by means of long-range
Coulomb forces. This assumption is adequate if the polaron, composed of
the electron and the polarization well, which is induced by the electron
itself, spreads over a range large compared with the lattice constant.
Then, the polarization field P (r ) will be a smooth function of r and the
polarization of the medium can be characterized by macroscopic dielectric
constants ε∞ and ε0. The continuous approximation for the polarization
field and hence the Fröhlich Hamiltonian itself would lose their meaning
if the polaron size were comparable to the lattice constant.

The interaction parameter for the Fröhlich polaron model is deter-
mined in the following way:

Lf = g0
|f | , g0 = e

( 1
ε∞

− 1
ε

)
, (0.2)

where e is the electron charge, ε∞ and ε0 are high-frequency and low-
frequency dielectric constants. In the case of the usual Fröhlich model,
one deals with the optical phonon branch, for which

ωf → ω > 0 when f → 0,

and the dispersion is neglected, i. e. ωf ≡ ω.
It is generally accepted that the strength of the interaction in this stan-

dard model can be characterized by a dimensionless coupling constant:

α = g20
2πh̄ω2

(
m

2h̄ω

)1/2
. (0.3)

One usually distinguishes the cases of weak (α ¿ 1), strong (α > 10) and
intermediate (α ≈ 3−−6) coupling.

It should be noted that when investigating the polaron problem in the
general case, one should take into account the dependencies of ωf and
Lf on f . In particular, one or other modification of the Coulomb case
(0.2) might be analyzed. There are some physical reasons, for example,
to introduce some kind of damping of the interaction for large |f |. The
simplest way to do this is to supplement the conditions (0.2) with the
following restriction:

Lf ≡ 0, (0.2a)

for |f | > f0, preserving old definition (0.2) for |f | < f0 at the same
time. A natural value for the cut-off wave vector f0 is 2π/a, where a
is the reciprocal lattice vector, since phonons with |f | > 2π/|a| are not
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represented correctly in (0.1c) and thus can be omitted. Nevertheless,
later we shall consider the standard Fröhlich polaron without any cut-off.
And all calculations will be carried out, wherever possible, for an arbitrary
functional dependence of the interaction parameter Lf .

Symmetries and Quantum Properties
It must be stressed that the polaron problem is essentially quantum

in character. It may easily be shown, for instance, that for a “classical”
electron the interaction (0.1c) is not important and reduces simply to
some additive constant in the equivalent Hamiltonian.

Let us introduce in (0.1) instead of pf and qf the phonon creation and
annihilation operators b†f and bf :

qf =
(

h̄

2ωf

)1/2

(bf + b†−f ),

pf = i
(

h̄ωf

2

)1/2
(b†f − b−f )

(0.4)

satisfying the commutation relations

bfb†f ′ − b†f ′bf = δf ,f ′ , bfbf ′ − bf ′bf = 0, b†f b†f ′ − b†f ′b
†
f = 0. (0.4a)

Then the Hamiltonian (0.1) reads

HP = p2

2m
+

∑

(f)

h̄ωf

(
b†f bf + 1

2

)
+ 1

V 1/2

∑

(f)

Lf

(
h̄

2ωf

)1/2

(bf + b†−f )eif ·r,

(0.5)
It may also be rewritten as

HP = p2

2m
+

∑

(f)

h̄ωf

(
B†

fBf + 1
2

)
− 1

V

∑

(f)

L2
f

2ω2
f

, (0.6)

where
Bf = bfe−if ·r + 1

V 1/2
Lf

h̄ωf

(
h̄

2ωf

)1/2

,

B†
f = b†feif ·r + 1

V 1/2
Lf

h̄ωf

(
h̄

2ωf

)1/2

.

(0.6a)

The new operators Bf and B†
f satisfy the same standard commutation

relations as the Bose operators, (0.4a). If we assume that position and
momentum operators r and p are commuting C-functions in the classical
case then the operators Bf and B†

f in (0.6) commute with the term
p2/2m. In this case the relations (0.6a) can be interpreted as a canonical
transformation to new Bose operators Bf and B†

f . Comparing (0.5) and
(0.6), we conclude that for a classical electron the interaction is ineffective,
being reduced to an additive constant term in the Hamiltonian.
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On the contrary, in the quantum case, the “quasibosonic” ampli-
tudes Bf and B†

f do not commute with p2/2m because of the factors
exp(±if · r), and hence the electronic and the quasibosonic parts of the
Hamiltonian (0.6) are not independent of each other.

The difference between the classical and quantum situations may be
clarified further by performing a unitary transformation on the Hamilto-
nian. To this end, let us introduce unitary operators

U = exp
(

i
∑

(f)

f · rb†fbf

)
, (0.7)

compensating for the exponential phase factors in Bf and B†
f :

UBfU† = bf + Lf

h̄ωf

(
h̄

2ωf

)1/2

≡ b̃f , (0.8)

UB†
fU† = b†f + Lf

h̄ωf

(
h̄

2ωf

)1/2

≡ b̃†f . (0.9)

On the other hand the operator U transforms the electron momentum as
follows:

UpU† = p−∑

(f)

h̄fb†fbf . (0.10)

The second term on the right-hand side here is obviously the total mo-
mentum of phonons. Thus we get, after U -transformation of the polaron
Hamiltonian,a

H ′
P = UHP U† = 1

2m

(
p−

∑

(f)

h̄fb†f bf

)2

+
∑

(f)

h̄ωf

(
b̃†f b̃f + 1

2

)
−

∑

(f)

|Lf |2
2ω2

f

(0.10a)

= 1
2m

(
p−

∑

(f)

h̄fb†fbf

)2

+
∑

(f)

h̄ωfb†f bf +
∑

(f)

Lf

(
h̄

2ωf

)1/2

(bf + b†−f ).

(0.10b)

Comparing (0.5) and (0.10b) and bearing in mind that the factors
exp (±if · r) in (0.5) are unimportant phase factors that are negligible in
the classical case (in fact, they can be included in the operators b†f and
bf ), we see that the quantum effect in polaron theory manifests itself in
replacing the electron momentum p by the relative momentum of the
electron with respect to the total momentum of phonons. It is interesting
to note that the only important feature here is the quantum nature of the
model itself but not the strength of the interaction.

a It is known that a unitary transformation of a Hamiltonian does not change
the energy spectrum, and hence does not affect thermodynamic properties,
ground-state energy, and so on.
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Incidentally, it is possible to obtain some consequences of the represen-
tation (0.10) by observing that the momentum p is an integral of motion
for the transformed Hamiltonian:

pH ′
P −H ′

P p ≡ 0.

On performing the inverse transformation, one finds that the correspond-
ing integral of motion for the initial Hamiltonian is the sum of the electron
momentum and the momentum of phonons:

P = p +
∑

(f)

h̄fb†f bf , PHP −HP P ≡ 0. (0.11)

The latter identity can easily be verified by direct calculation. Note that
the total momentum P is the generator of the translational symmetry
group of the original Hamiltonian (0.5):

r → r + a (a = const),

bf → bfe−ia·f , b†f → b†feia·f . (0.12)

The unitary transformations (0.7)–(0.12) were first introduced by Bogol-
ubov [7] and Lee, Low and Pines [13] in order to develop appropriate
approximate methods for the polaron problem.

Problems and Methods of Polaron Theory
One can distinguish two basic directions in polaron studies: the first

deals with kinetic and transport properties, while the second investigates
equilibrium properties, including quantum-mechanical phenomena at zero
temperature.

In the kinetic theory one studies time-dependent phenomena in non-
equilibrium or quasi-equilibrium situations such as relaxation processes
(described by a Boltzmann-type equation) or the motion of an electron
under given external forces, etc.

The equilibrium theory deals with the properties of the system at a
given temperature. Of considerable interest are different averages related
to the electron or to the polaron as a whole: the average kinetic and
average total energies, the effective mass, the effective radius, etc. An
interesting problem is to study the equilibrium distribution function of the
electron momentum and its deviations from a Maxwellian form. Analogous
problems can be formulated for the polaron ground state, which can also
be considered as the limiting zero-temperature state (when T → 0).

The basic function at equilibrium is the free energy (the logarithm
of the partition function), which may be considered as a generating
functional in order to compute the average energy and the ground-state
energy. And, after introducing the corresponding fields (some additional
terms) into the Hamiltonian, the free energy may be used to compute one
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or another average, the effective mass, etc.b The equilibrium free energy
of a polaron will be the main quantity considered in the following sections.

Many important papers devoted to various aspects of the polaron
problem have been published. For the standard papers of the first period of
polaron studies one may consult [11] and references cited therein. Further
progress in the field is described in [6, 15, 37, 38, 59–61] and the numerous
references therein.

The general trend of developments can be seen from the titles of the
articles reproduced in the list of references, so we shall not review here all
the aspects of the polaron problem, making only some specific comments.
Examples of basic review articles are [6, 11, 17, 18].

Since the polaron Hamiltonian does not admit an exact solution, vari-
ous approximate methods have been proposed in order to obtain numerical
results. These methods usually involve elements of perturbation theory,
canonical transformations and variational principles.

At zero temperature the polaron problem is a quantum-mechanical
problem (see [11] and references therein). In the weak-coupling case α ¿ 1
one can apply a more or less standard perturbation approach. Some
improvements of the perturbation scheme can be achieved by appropriate
canonical transformation of the Hamiltonian and a proper choice of the
trial (variational) wave function (see [7, 11, 13, 19–24]). Special forms of
perturbation theory have also been developed for the strong-coupling case
[2, 7, 11, 20, 25–27].

The problem becomes more complicated when one investigates polaron
equilibrium properties at finite temperature [5, 28].

Analogous investigations have also been performed for the nonequilib-
rium situation in [29–32].

A new general method in the polaron theory has been proposed by
N.N. Bogolubov and N.N. Bogolubov, Jr. in [8, 33–35], which is based
on the elimination of the phonon degrees of freedom by means of the

b For an arbitrary system at equilibrium, with the temperature
ϑ = kT = β−1 and Hamiltonian H, the free energy is given by

f [H,β] = − 1
β

ln Tr e−βH,

where β = ϑ−1 is the inverse temperature. Here Tr e−βH is the so-called par-
tition function. An arbitrary average 〈A〉β,H can be obtained, in particular, by
differentiating the free energy with respect to the corresponding source term
introduced into the Hamiltonian:

〈A〉β,H = − ∂

∂x
f [β,H − xA]x=0.

For instance, the average energy is

〈H〉β,H =
∂

∂β
{βf [H,β]}.
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averaged T-product operator technique. This technique may be considered
as an analog of the path-integration approach. However, it seems to be
much more transparent and rigorous from the mathematical point of
view, and more convenient for practical calculations. For instance, when
treating equilibrium aspects of a polaron below, we shall deal in all cases
with proper quantum Gibbs averages over quadratic bosonic Hamiltonians
instead of cumbersome path integral analysis.

A generalized approximation scheme for the free energy (partition
function) has been developed in [8], based on a “linear-model” trial Hamil-
tonian. The linear model can be considered as a natural generalization
of Feynman’s two-body approximation (0.13) to the case of a continuum
of “heavy particles” coupled with the electron. All of the characteristics
of the linear-model Hamiltonian can be evaluated exactly in terms of
the spectral representation, thus providing the basis for a systematic
variational approach in a general form. In [36] a perturbation theory
for the free energy (partition function) has been considered within the
framework of the T-product approach. The T-product approach has also
been developed for the nonequilibrium case. In [33, 34] a generalized
kinetic equation with eliminated phonons has been derived. After simple
approximations this equation yields the standard Boltzmann equation for
a polaron, and may be used to obtain its generalizations. Some other
applications of the generalized kinetic equation with eliminated phonons
can be found in [35]. We should also mention that in [35]. the expression
for the impedance and the admittance of a polaron, derived earlier in
[29] by path integration, are reproduced on the basis of the linear-model
Hamiltonian in a simpler and more rigorous manner.

In [59] a linear polaron model in constant uniform magnetic field was
considered at zero temperature. An approach based on the model Hamil-
tonian diagonalization by means of the Bogolubov u–v transformation
was proposed. The ground state energy was studied in the simplest case
of equal frequencies for all the phonons involved in the interaction. Joint
effect of the magnetic field and the electron-phonon interaction on the
energy spectrum was studied too. It was also shown that the usage of the
linear model as a trial model results in the action functional commonly
employed in treatment of polarons in external constant uniform magnetic
field [57, 58].
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Chap t e r 1

LINEAR POLARON MODEL

This chapter is mainly a pedagogical introduction to a modern method
in equilibrium finite-temperature polaron theory based on the T-product
operator technique. As an example of the application of this method, Bo-
golubov’s exactly solvable linearized polaron model, as well as Feynman’s
two-body oscillator model, are considered.

1.1. Introduction to the Linear Polaron Model
Here we consider the so-called linear polaron model described by a

Hamiltonian that consists of the well-known oscillator Hamiltonian HS ,
the phonon field Hamiltonian HΣ and the interaction Hamiltonian HSΣ,
i.e.

HS+Σ = HS + HΣ + HSΣ, (1.1)

where

HS = p2

2m
+ K2r2

2
, HΣ = 1

2
∑

(f)

{pfp∗f + ν2(f)qfq∗f},

HSΣ = 1
V 1/2

∑

(f)

S(f)f · rqf .

Here r and p are respectively the position and the momentum of the
electron and S(f) = S(|f |) is a real radially symmetric function:

ν(f) = ν(|f |) > 0,
q−f = q∗f , p−f = p∗f .

Summation over f is over the range of quasidiscrete values

f =
(2πn1

L
, 2πn2

L
, 2πn3

L

)
,

where L3 = V is the volume of the system and n1,n2,n3 are integers
covering the whole space of integers from −∞ to +∞. The total number
of oscillators N is assumed to be finite for any finite volume V (later we
should take the so-called thermodynamic limit as usual; that is, we must
put N →∞, V →∞, imposing the additional condition N/V = const).

15
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It should be noted that the following identity holds:

1
2

∑

(f)

ν2(f)
{

qf − if · r
ν2(f)

S(f)

V 1/2

}{
q∗f + if · r

ν2(f)

S(f)

V 1/2

}
= 1

2

∑

(f)

ν2(f)qfq∗f

+ 1
2

∑

(f)

1
ν2(f)

S2(f)

V
(f · r)2 + i

2

∑

(f)

(
f · rqf − f · rq∗f

) S(f)

V 1/2 .

It is obvious that

−i
∑

(f)

f · rq∗f S(f)√
V

= − i

V 1/2

∑

(f)

f · rq−fS(−f) = 1
V 1/2

∑

(f)

f · rqfS(f),

where the property q−f = q∗f has been taken into account.
Because of the radial symmetry, the following identity holds for an

arbitrary function F (|f |):
∑

(f)

F (|f |)fαfβ = δαβ
1
3

∑

(f)

F (|f |)f2,

where

|f | = (f2
1 + f2

2 + f2
3 )1/2, f2 = |f |2.

Therefore

1
2V

∑

(f)

S2(f)

ν2(f)
(f · r)2 = r2

6V

∑

(f)

S2(f)f2

ν2(f)
.

Therefore the potential energy can be represented in the form

U = K2r2

2
+ 1

2
∑

(f)

ν2(f)qfq∗f + i

V 1/2

∑

(f)

S(f)f · rqf = (K2 −K2
0 )r2

2

+ 1
2

∑

(f)

ν2(f)
{

qf − if · r
ν2(f)

S(f)

V 1/2

}{
q∗f + if · r

ν2(f)

S(f)

V 1/2

}
, (1.2)

where

K2
0 = 1

3V

∑

(f)

S2(f)f2

ν2(f)
.

Consider the case K2 = K2
0 . For this case, U > 0, with U = 0 if

qf = if · r
ν2(f)

S(f)

V 1/2 .
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We write down the kinetic energy which is obviously positive:

p2

2m
+ 1

2
∑

(f)

|pf |2.

Let us introduce normal variables Qλ. Then r and qf are linear combina-
tions of the new variables Qλ. It will be noted that for K = K0 the system
(1.1) is described by the Hamiltonian H = T + U , where both quadratic
forms are positive-definite. It can be shown by purely linear algebraic
methods that these can be reduced to the diagonal form simultaneously,
and the Hamiltonian reads as

H =
∑

λ

(
Q̇2

λ + Ω2
λQ2

λ

)
.

if written in the new normal variables Qλ. In this case each Qλ satisfies
the following equation:

Q̈λ + Ω2
λQλ = 0.

For K = K0, it follows from (1.2) that U becomes zero if and only if all
qf belong to the three-dimensional set

qf = if · r
ν2(f)

S(f)

V 1/2 .

In other words, for K = K0 the Hamiltonian H is translation-invariant
with respect to the three-dimensional group of translations:

r → r + R, qf → qf + if ·R
ν2(f)

S(f)

V 1/2 .

Hence exactly three components among the whole set of Ω2
λ are equal

to zero, while the other Ω2
λ are positive. So, there are three modes of

collective evolution, such that

Q̈α = 0,

which correspond to inertial motion. Therefore r(t) describes uniform
inertial motion in the case K = K0, on which harmonic vibrations are
superimposed.

Note also that when K < K0, the form U is not positive, so that
some values Ω2

λ must be negative, and the motion is unstable and can be
characterized by the exponentially increasing function of t.

Later we will be interested especially in the case K = K0, but it is more
convenient for technical reasons to consider the more general expression

K2 = K2
0 + η2, (1.3)

having in mind a future passage to the limit η → 0 (which must be taken
before the usual limit V →∞).
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It is worth stressing that, with the above choice for K, the form U
is positive-definite because η2 > 0 by definition. So, all values Ω2

λ are
positive too. Therefore all of the functions r(t), p(t), qf (t) and pf (t) can
be represented as corresponding sums of harmonic vibrations.

1.2. Equations of Motion

Let us introduce Bose amplitudes bf and b†f by means of the relations

qf =
(

h̄

2ν(f)

)1/2

(bf + b†−f ), pf = i

(
h̄ν(f)

2

)1/2

(b†f − b−f ).

These amplitudes satisfy the usual commutation relations

bfb†f − b†fbf = 1.

One can see from here that

q−f = q∗f , p−f = p∗f ,

and also

[qf , pf ] = qfpf − pfqf

ih̄
= 1.

Therefore the Hamiltonian (1.1) can be rewritten in the form

H = p2

2m
+ 1

2
(K2

0 + η2)r2 + i
∑

(f)

1
V 1/2 S(f)

(
h̄

2ν(f)

)1/2

f · r(bf + b†−f )

+
∑

(f)

h̄ν(f)b†fbf + 1
2

∑

(f)

h̄ν(f). (1.4)

The equations of motion for this Hamiltonian are

dr

dt
= ∂H

∂p
, dp

dt
= −∂H

∂r
,

ih̄
dbf

dt
= bfH −Hbf , ih̄

db†−f

dt
= b†−fH −Hb†−f .

Transforming the right-hand sides of these equations, we see that

m
dr

dt
= p,
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dp

dt
= −(K2

0 + η2)r− i

V 1/2

∑

(f)

S(f)
(

h̄

2ν(f)

)1/2

f(bf + b†−f ),

ih̄
dbf

dt
= h̄ν(f)bf − i

V 1/2

(
h̄

2ν(f)

)1/2

S(f)f · r,
(1.5)

ih̄
db†−f

dt
= −h̄ν(f)b†−f + i

V 1/2

(
h̄

2ν(f)

)1/2

S(f)f · r.

Later we are going to convert the system of equations (1.5) into a
system of equations for Green functions. This step allows us to calcu-
late explicitly such Green functions as 〈〈rα, rβ〉〉 and 〈〈pα, pβ〉〉 , the
spectral function Jpαpβ

, and hence the equilibrium correlation functions
〈pα(t)pβ(τ)〉 calculated with respect to the Hamiltonian (1.4).

It is appropriate to recall the definition of the two-time correlation and
Green functions [40, 41]. For any two operators A(t) and B(τ) taken in
the Heisenberg representation, two-time equilibrium correlation functions
are usually defined in the following way:

〈A(t)B(τ)〉eq =
+∞
∫
−∞

JA,B(ω)e−iω(t−τ) dω,

〈B(τ)A(t)〉eq =
+∞
∫
−∞

JA,B(ω)e−βωh̄e−iω(t−τ) dω,
(1.6)

where
β = 1

ϑ
= 1

KβT
,

and Kβ is Boltzmann’s constant and T the absolute temperature.
Retarded and advanced Green functions can be introduced in the usual
manner [41]:

〈〈A(t),B(τ)〉〉ret = ϑ(t− τ)〈[A(t),B(τ)]〉eq
= ϑ(t− τ) 〈A(t)B(τ)−B(τ)A(t)〉eq

ih̄
, (1.7)

〈〈A(t)B(τ)〉〉adv = −ϑ(τ − t)〈[A(t),B(τ)]〉eq.
Here 〈...〉eq denotes the statistical-equilibrium average value calculated
with respect to the Hamiltonian (1.4):

〈...〉eq = Tr e−H/ϑ(...)

Tr e−H/ϑ
.

Introduce a function of the complex variable Ω, ImΩ 6= 0:

〈〈A,B〉〉Ω = 1
h̄

+∞
∫
−∞

JA,B(ν)1− e−βνh̄

Ω− ν
dν. (1.8)
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Then the spectral densities for the advanced and retarded Green functions
can be introduced by means of the relations

〈〈A(t),B(τ)〉〉adv = 1
2π

+∞
∫
−∞

〈〈A,B〉〉ω−i0e
−iω(t−τ) dω,

〈〈A(t),B(τ)〉〉ret = 1
2π

+∞
∫
−∞

〈〈A,B〉〉ω+i0e
−iω(t−τ) dω.

(1.9)

Taking into account the well-known formula

1
ω − ν ± iε

= P
( 1

ω − ν

)
∓ iπδ(ω − ν), (1.10)

we arrive at the important relation

〈〈A,B〉〉ω+i0 − 〈〈A,B〉〉ω−i0 = −2πi

h̄
JA,B(ω)(1− e−βh̄ω). (1.11)

Our aim is to derive a system of equations for the Green functions
(1.7). From a formal point of view,

d

dt
ϑ(t) = δ(t), d

dt
ϑ(−t) = −δ(t).

These relations allows us to differentiate formally both sides of (1.7), thus
leading to the desired equations for the Green functions:

i
d

dt
〈〈A(t),B(τ)〉〉ret, adv

= 1
h̄

δ(t− τ)〈AB −BA〉+
〈〈

i
dA(t)

dt
,B(τ)

〉〉

ret, adv
. (1.12)

From these equations one has, in the “Ω-representation”

Ω〈〈A,B〉〉Ω = 1
h̄
〈AB −BA〉+

〈〈
i
dA

dt
,B

〉〉
Ω
, (1.13)

or equivalently, in a slightly different form,

−iΩ〈〈A,B〉〉Ω = 1
ih̄
〈AB −BA〉+

〈〈
dA

dt
,B

〉〉
Ω

.
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We should note one more useful identity c:

〈B(τ)A(t)〉eq =
+∞
∫
−∞

JB,A(ω)e−iω(τ−t) dω =
+∞
∫
−∞

JB,A(−ω)e−iω(t−τ) dω,

where

JB,A(−ω) = JA,B(ω)e−βωh̄ (cf. (1.6)),

From (1.8), one has, after the permutation
(

A → B

B → A

)
,

the following equation:

〈〈B,A〉〉Ω = 1
h̄

+∞
∫
−∞

JA,B(ν)1− e−βνh̄

Ω− ν
dν = 1

h̄

+∞
∫
−∞

JB,A(−ν)1− eβνh̄

Ω + ν
dν

= 1
h̄

+∞
∫
−∞

JA,B(ν)e−βνh̄

(
1− eβνh̄

Ω + ν

)
dν = − 1

h̄

+∞
∫
−∞

JA,B(ν)1− e−βνh̄

Ω + ν
dν.

Thus we have proved the property

〈〈B,A〉〉Ω = 〈〈A,B〉〉−Ω, ImΩ 6= 0. (1.14)

1.3. Two-time Correlation Functions and Green Functions
for the Linear Polaron Model

Starting from (1.5) and (1.13), we construct a system of equations for
Green functions in the case of the linear polaron model d:

−imΩ〈〈rα, rβ〉〉Ω = 〈〈pα, rβ〉〉Ω, (1.15)

c Clarification:. Let us write the equality

〈A(t)B(τ)〉eq =
+∞
∫
−∞

JA,B(ω)e−iω(t−τ) dω.

Making the substitutions

A → B, t → τ , B → A, τ → t,
we arrive at the following result:

〈B(τ)A(t)〉eq =
+∞
∫
−∞

JB,A(ω)e−iω(τ−t) dω =
+∞
∫
−∞

JB,A(−ω)e−iω(t−τ) dω.

d Here: r = (r1, r2, r3), p = (p1, p2, p3) and pαrβ − rβpα = −ih̄δαβ .
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−iΩ〈〈pα, rβ〉〉Ω = −δα,β − (K2
0 + η2)〈〈rα, rβ〉〉Ω

− i

V 1/2

∑

f

S(f)
(

h̄

2ν(f)

)1/2

fα〈〈bf + b†−f , rβ〉〉Ω, (1.16)

h̄Ω〈〈bf , rβ〉〉Ω = h̄ν(f)〈〈bf , rβ〉〉Ω − i

V 1/2

(
h̄

2ν(f)

)1/2

S(f)〈〈f · r, rβ〉〉Ω,

h̄Ω〈〈b−f , rβ〉〉Ω = −h̄ν(f)〈〈b†−f , rβ〉〉Ω

+ i

V 1/2

(
h̄

2ν(f)

)1/2

S(f)〈〈f · r, rβ〉〉Ω.

(1.17)

From (1.17), we have

〈〈bf , rβ〉〉Ω = − i

V 1/2
1

Ω− ν(f)

(
1

2h̄ν(f)

)1/2

S(f)〈〈f · r, rβ〉〉Ω,

〈〈b†−f , rβ〉〉Ω = i√
V

1
Ω + ν(f)

(
1

2h̄ν(f)

)1/2

S(f)〈〈f · r, rβ〉〉Ω.

Thus

〈〈bf + b†−f , rβ〉〉Ω

= i√
V

(
1

Ω + ν(f)
− 1

Ω− ν(f)

)(
1

2h̄ν(f)

)1/2

S(f)〈〈f · r, rβ〉〉Ω.

Inserting this formula into (1.15) and (1.16), we find that

−mΩ2〈〈rα, rβ〉〉Ω = −(K0 + η2)〈〈rα, rβ〉〉Ω − δα,β

+ 1
V

∑

f

S2(f)

2ν(f)
fα

(
1

Ω + ν(f)
− 1

Ω− ν(f)

)
〈〈f · r, rβ〉〉Ω.

Since ∑

f

F (|f |)fαfβ = δαβ
1
3

∑

f

F (|f |)f2

and
K2

0 = 1
3V

∑

f

S2(f)f2

ν2(f)
,

the following equation results:

−mΩ2〈〈rα, rβ〉〉Ω = −η2〈〈rα, rβ〉〉Ω − 1
3V

∑

f

S2(f)f2

ν2(f)
〈〈rα, rβ〉〉Ω
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+ 1
V

∑

f

S2(f)

6ν(f)
f2

(
1

Ω + ν(f)
− 1

Ω− ν(f)

)
〈〈rα, rβ〉〉Ω − δαβ . (1.18)

However,

1
Ω + ν(f)

− 1
ν(f)

+ 1
ν(f)− Ω

− 1
ν(f)

= −Ω
(

1
ν(f){Ω + ν(f)} + 1

{Ω− ν(f)}ν(f)

)
.

Taking account of this transformation, (1.18) can be represented as

δα,β = 〈〈rα, rβ〉〉Ω

×
{

mΩ2 − η2 − Ω

V

∑

(f)

S2(f)

6ν2(f)
f2

(
1

Ω + ν(f)
+ 1

Ω− ν(f)

)}
. (1.19)

Let us define

4(Ω) = − 1
V

∑

(f)

S2(f)

6ν2(f)
f2

(
1

Ω + ν(f)
+ 1

Ω− ν(f)

)
(1.20)

and note that
4(−Ω) = −4(Ω). (1.21)

Then (1.19) can be rewritten in the form

〈〈rα, rβ〉〉Ω = δα,β

mΩ2 − η2 + Ω4(Ω)
. (1.22)

Taking (1.15) into account, we have also

〈〈pα, rβ〉〉Ω = −imΩδα,β

mΩ2 − η2 + Ω4(Ω)
. (1.23)

Recalling (1.14), we get

〈〈rβ , pα〉〉Ω = imΩδα,β

mΩ2 − η2 + Ω4(Ω)
. (1.24)



24 Ch. 1. Linear Polaron Model

Using (1.5) and (1.13), we have further

−iΩm〈〈rβ , pα〉〉Ω = m

ih̄
〈rβpα − pαrβ〉+ 〈〈pβ , pα〉〉Ω,

so that

〈〈pβ , pα〉〉Ω = −mδα,β + (mΩ)2δα,β

mΩ2 − η2 + Ω4(Ω)
= −δα,β

m(Ω4(Ω)− η2)

mΩ2 − η2 + Ω4(Ω)
.

(1.25)

For |ImΩ| > 0 we can take the limit η → 0, in (1.22) to (1.25). Then

〈〈rα, rβ〉〉Ω = δα,β

mΩ2 + Ω4(Ω)
,

〈〈pα, rβ〉〉Ω = −〈〈rβ , pα〉〉Ω = − imδα,β

mΩ +4(Ω)
,

〈〈pα, pβ〉〉Ω = −δα,β
m4(Ω)

mΩ +4(Ω)
.

(1.26)

It should be stressed that when calculating a spectral intensity
JA,B(ω), for example Jpα,pβ

(ω), we have to use (1.25), which contains
η > 0, and only after this can we take the limit η → 0.

By means of (1.11), we arrive at the following spectral density:

Jpα,pβ
(ω) = δα,β

ih̄

2π
(1− e−βh̄ω)−1 (mΩ)2

mΩ2 − η2 + Ω∆(Ω)

∣∣∣
ω+i0

ω−i0

= −mδα,β
ih̄

2π(1− e−βh̄ω)

(
Ω4(Ω)− η2

mΩ2 − η2 + Ω4(Ω)

) ∣∣∣
ω+i0

ω−i0
. (1.27)

Here we have introduced the notation

F (Ω)
∣∣∣
b

a
= F (b)− F (a).

It must be kept in mind that division by (1− e−βh̄ω)−1 in (1.27) may lead
to a delta function Kδ(ω) with some unknown coefficient K. However,
when η2 > 0, the expression

...
∣∣∣
ω+i0

ω−i0

in (1.27) is equal to zero in the vicinity of the point ω = 0. On the other
hand, we know that in this case (namely for η2 > 0), function pα(t) can
be represented as a sum of harmonic oscillations with nonzero frequencies.
Therefore the corresponding spectral intensity

Jpαpβ
(ω) = 0
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in a neighborhood of the point ω = 0 that does not contain the harmonic-
oscillator frequencies. Therefore we have to calculate (1.27) first of all
under the condition η2 > 0, and only after this can we take the limit
η → 0.

Let us consider in detail the simplest example when

ν(f) = ν = const > 0. (1.28)

In this case (1.20) if one takes into account that

K2
0 = 1

3V

∑

(f)

S2(f)

ν2(f)
f2

can be rewritten as

4(Ω) = −K2
0

2

( 1
Ω + ν

+ 1
Ω− ν

)
= − K2

0Ω

Ω2 − ν2
. (1.29)

From (1.27), we derive

Jpαpβ
(ω) = δα,β

ih̄

2π
(1− e−βh̄ω)−1 (mΩ)2(Ω2 − ν2)

mΩ4 − Ω2(K2
0 + η2 + mν2) + ν2η2

∣∣∣
ω+i0

ω−i0
.

(1.30)

Here the denominator has two roots with respect to Ω2:

ω2
1 = ν2η2

K2
0 + ν2m

+ O(η4), ω2
2 = K2

0 + ν2m

m
+ O(η2). (1.31)

Hence

mΩ4 − Ω2(K2
0 + η2 + ν2m) + ν2η2 = m(Ω2 − ω2

1)(Ω
2 − ω2

2).

Therefore

m2Ω2(Ω2 − ν2)

mΩ4 − Ω2(K2
0 + η2 + ν2m) + ν2η2

= mω2
1(ω

2
1 − ν2)

ω2
1 − ω2

2

1
Ω2 − ω2

1
+ mω2

2(ω
2
2 − ν2)

ω2
2 − ω2

1

1
Ω2 − ω2

2
+ E ,

where the expression E is regular and does not have singularities on the
real axis. On the other hand,

1
Ω2 − ω2

j

= 1
2ωj

(
1

Ω− ωj
− 1

Ω + ωj

)
, j = 1,2,

and
1

Ω2 − ω2
j

∣∣∣
ω+i0

ω−i0
= πi

ωj
{δ(ω − ωj)− δ(ω + ωj)} .
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Hence it follows from (1.30) that

Jpαpβ
(ω)

= 1
2

δα,β
m(ν2 − ω2

1)

ω2
2 − ω2

1

(
h̄ω1

1− e−βh̄ω1
δ(ω − ω1) + h̄ω1

eβh̄ω1 − 1
δ(ω + ω1)

)

+ 1
2

δα,β
m(ω2

2 − ν2)

ω2
2 − ω2

1

(
h̄ω2

1− e−βh̄ω2
δ(ω − ω2) + h̄ω2

eβh̄ω2 − 1
δ(ω + ω2)

)
.

(1.32)
Keeping in mind (1.31), one has ω1 → 0, when η → 0, and at the same
time

h̄ω1

1− e−βh̄ω1
→ 1

β
= ϑ, h̄ω1

eβh̄ω1 − 1
→ 1

β
= ϑ,

ω2 → µ =
(

K2
0

m
+ ν2

)1/2

.

Taking the limit η → 0 in (1.32), we find that

Jpαpβ
(ω) = δα,β

m2ν2ϑ

K2
0 + mν2

δ(ω)

+ K2
0δα,β

2µ

(
h̄

1− e−βh̄µ
δ(ω − µ) + h̄

eβh̄µ − 1
δ(ω + µ)

)
. (1.33)

If one knows the spectral intensity, one can easily calculate two-time
correlation functions:

〈pα(t)pβ(τ)〉eq = 0, α 6= β,

〈pα(t)pα(τ)〉eq (1.34)

= m2ν2ϑ

K2
0 + mν2

+ K2
0

2µ

(
h̄

1− e−βh̄µ
e−iµ(t−τ) + h̄

eβh̄µ − 1
eiµ(t−τ)

)
.

Now we consider the more general case when ν(f) possesses a contin-
uous spectrum in the limit V →∞. Let us return to (1.27) and transform
this formula into a new one:

Jpαpβ
(ω) = mδα,β

ih̄ω

2π(1− e−βh̄ω)

1
ω

fη(Ω)
∣∣∣
ω+i0

ω−i0
, (1.35)

where
−fη(Ω) = Ω4(Ω)− η2

mΩ2 − η2 + Ω4(Ω)
.

We can see that

fη(0) = −1 and fη(Ω)
∣∣∣
ω+i0

ω−i0
= 0
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for small enough ω. Hence, for small enough ω

1
Ω

fη(Ω)
∣∣∣
ω+i0

ω−i0
= fη(ω)

( 1
ω + iε

− 1
ω − iε

)
= −2πifη(ω)δ(ω) = 2πiδ(ω).

(1.36)
It should be stressed that the function 1/Ω has only one singular point
Ω = 0. So, for arbitrary real ω

1
Ω

fη(Ω)
∣∣∣
ω+i0

ω−i0
= 2πiδ(ω) + 1

ω
fη(Ω)

∣∣∣
ω+i0

ω−i0

or
1
ω

fη(Ω)
∣∣∣
ω+i0

ω−i0
= −2πiδ(ω) + 1

Ω
fη(Ω)

∣∣∣
ω+i0

ω−i0
.

Therefore it follows from (1.35) that

Jpαpβ
(ω) = δα,β

ih̄ωm

2π(1− e−βh̄ω)

(
− 2πiδ(ω) + 1

Ω
fη(Ω)

∣∣∣
ω+i0

ω−i0

)
.

But the function
Ω

1− e−βh̄Ω

is regular in the vicinity of the real axis, and so

h̄ω

1− e−βh̄ω

1
Ω

fη(Ω)
∣∣∣
ω+i0

ω−i0
= h̄

1− e−βh̄Ω
fη(Ω)

∣∣∣
ω+i0

ω−i0
.

Thus
Jpαpβ

(ω) = 0 if α 6= β,

and

Jpαpα(ω) = mϑδ(ω)− ih̄m

2π(1− e−βh̄Ω)

Ω4(Ω)− η2

mΩ2 − η2 + Ω4(Ω)

∣∣∣
ω+i0

ω−i0
.

As a result, we have
〈pα(t)pβ(τ)〉eq = 0 for α 6= β,

〈pα(t)pα(τ)〉eq = mϑ−
+∞
∫
−∞

ih̄me−iΩ(t−τ)

2π(1− e−βh̄Ω)

Ω4(Ω)− η2

mΩ2 − η2 + Ω4(Ω)

∣∣∣
ω+i0

ω−i0
dω.

Consider the function

fη(Ω) = − Ω4(Ω)− η2

mΩ2 − η2 + Ω4(Ω)
= −1 + mΩ2

mΩ2 − η2 + Ω4(Ω)

= −1 + mΩ

mΩ +4(Ω)− η2/Ω
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for Ω = iε + ω and Ω = −iε + ω; ε > 0. Taking account of (1.20), we
have

−Im4(ω + ε)

= ε

V

∑

(f)

S2(f)

6ν2(f)
f2

(
1

{ν(f) + ω}2 + ε2
+ 1
{ν(f)− ω}2 + ε2

)
> 0.

Then it is obvious that

Im −η2

Ω
= + η2ε

ω2 + ε2
> 0, Ω = ω + iε.

Hence
Im

(
mΩ +4(Ω)− η2

Ω

)
> εm, Ω = ω + iε

and ∣∣∣∣mΩ +4(Ω)− η2

Ω

∣∣∣∣ > εm. (1.37)

In the same way, it can be proved that, for ε = −ImΩ > 0
∣∣∣∣mΩ +4(Ω)− η2

Ω

∣∣∣∣ > ε.

Therefore the function fη(Ω) is a regular function of the complex variable
Ω on the two half-planes

ImΩ > 0 and ImΩ < 0. (1.38)

Then we note that the poles of the function

1
1− e−βh̄Ω

in the domain (1.38) in the vicinity of the real axis are

Ω = 2πi

h̄β
and Ω = −2πi

h̄β
.

in the domain (1.38) in the vicinity of the real axis are

0 < ImΩ <
2π
h̄β

or in the region
0 > ImΩ > − 2π

h̄β
.

Then
∫
L

e−iΩ(t−τ)

1− e−βh̄Ω
fη(Ω) dΩ = 0.
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We recall (1.20),

4(Ω) = − 1
V

∑

(f)

S2(f)

6ν2(f)
f2

(
1

ν(f) + Ω
+ 1

Ω− ν(f)

)
, (1.39)

which contains only a finite number (f), of terms if the volume V is fixed.
Therefore, for large enough |Ω|,

|Ω4(Ω)| = const, |ImΩ| > ε > 0 (1.40)

|4(Ω)| 6 const
|Ω| .

As a result, one can choose for the contour L an infinite contour
(see Fig. 1):

iε1 −∞ < −→ω < iε1 +∞, iε−∞ < ←−ω < iε +∞,

0 < ε < ε1 <
2π
h̄β

Fig. 1.1.

and obtain the expression

− imh̄

2π

iε1+∞∫
iε1−∞

e−iΩ(t−τ)

1− e−βh̄Ω

Ω4(Ω)− η2

mΩ2 − η2 + Ω4(Ω)
dΩ

= + imh̄

2π

iε+∞
∫

iε−∞
e−iΩ(t−τ)

1− e−βh̄Ω

Ω4(Ω)− η2

mΩ2 − η2 + Ω4(Ω)
dΩ = 0,

from which it follows that the integral

− imh̄

2π

iε+∞
∫

iε−∞
e−iΩ(t−τ)

1− e−βh̄Ω

Ω4(Ω)− η2

mΩ2 − η2 + Ω4(Ω)
dΩ

does not depend on the magnitude of ε, when ε belongs to the domain

0 < ε <
2π
h̄β

. (1.41)
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In full analogy with the previous consideration, one can prove that the
same integral, calculated along the closed contour (−iε −∞,−iε +∞),
situated on the lower half-plane, does not depend on the precise value of
ε, if ε belongs to the region (1.41). We can write (1.36) in the form

〈pα(t)pα(τ)〉eq = mϑ− imh̄

2π

iε+∞
∫

iε−∞
e−iΩ(t−τ)

1− e−βh̄Ω

Ω4(Ω)− η2

mΩ2 − η2 + Ω4(Ω)
dΩ

+ imh̄

2π

−iε+∞
∫

−iε−∞
e−iΩ(t−τ)

1− e−βh̄Ω

Ω4(Ω)− η2

mΩ2 − η2 + Ω4(Ω)
dΩ.

Here, owing to (1.37) and (1.40), we may pass to the limit η → 0 and
write

〈pα(t)pα(τ)〉eq = mϑ− imh̄

2π

iε+∞
∫

iε−∞
e−Ω(t−τ)

1− e−βh̄Ω

4(Ω)

mΩ +4(Ω)
dΩ

+ imh̄

2π

−iε+∞
∫

−iε−∞
e−iΩ(t−τ)

1− e−βh̄Ω

4(Ω)

mΩ +4(Ω)
dΩ. (1.42)

Consider now the standard limit V →∞. It follows from (1.20) that

4(Ω) = −
+∞
∫
−∞

EV (ν) dν

Ω− ν
,

where

EV (ω) = 1
V

∑

(f)

S2(f)

6ν2(f)
f2 {δ(ν(f) + ω) + δ(ν(f)− ω)} ,

EV > 0, EV (−ω) = EV (ω).

Let us suppose that this generalized function EV (ω) has the behavior

EV (ω) → E(ω) = 1
(2π)3

∫ S2(f)

6ν2(f)
f2 {δ(ν(f) + ω) + δ(ν(f)− ω)} df

if V →∞ in such a way that the convergence of the function:
(1◦) is uniform on any finite interval

+iε−∞ < ω < iε +∞, ε > 0 (1.43)

(on the upper half-plane) and

−iε−∞ < ω < −iε +∞, ε > 0 (1.44)

(on the lower half-plane):
+∞
∫
−∞

EV (ν) dν

Ω− ν
→ −4∞(Ω) =

+∞
∫
−∞

E(ν) dν

Ω− ν
;
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(2◦) for |ImΩ| > ε
|Ω4(Ω)| 6 Kε,

where Kε — is some constant independent of the volume V.
Under these conditions, we can go to the limit V →∞ in (1.42) and

write

〈pα(t)pα(τ)〉eq = mϑ− imh̄

2π

iε+∞
∫

iε−∞
e−iΩ(t−τ)

1− e−βh̄Ω

4∞(Ω)

mΩ +4∞(Ω)
dΩ +

+ imh̄

2π

−iε+∞
∫

−iε−∞
e−iΩ(t−τ)

1− e−βh̄Ω

4∞(Ω)

mΩ +4∞(Ω)
dΩ =

= mϑ− imh̄

2π

iε+∞
∫

iε−∞
e−iΩ(t−τ)

1− e−βh̄Ω

4∞(Ω)

mΩ +4∞(Ω)
dω

∣∣∣
ω+iε

ω−iε
, (1.45)

where
4(Ω) = −

+∞
∫
−∞

E(ν)

Ω− ν
dν, E(ν) = E(−ν) > 0, (1.46)

and, from (2◦)
|Ω4∞(Ω)| 6 Kε for |ImΩ| > ε. (1.47)

The right-hand side of (1.45) is independent of the value of ε, if ε is
positive and small enough. Owing to this fact, we can take the passage to
the limit ε → 0, ε > 0 in (1.45). The result is e

〈pα(t)pα(τ)〉eq = mϑ− imh̄

2π

+∞
∫
−∞

ωe−iω(t−τ)

1− e−βh̄ω

1
Ω

4∞(Ω)

mΩ +4∞(Ω)
dω

∣∣∣
ω+i0

ω−i0
.

Since
− 4∞(Ω)

mΩ +4∞(Ω)
= −1 + mΩ

mΩ +4∞(Ω)

and
− ih̄m

2π
ω

1− e−βh̄ω

1
Ω

∣∣∣
ω+i0

ω−i0
= −m

β
δ(ω) = −mϑδ(ω),

we come at last to the expression

〈pα(t)pα(τ)〉eq =
+∞
∫
−∞

J(ω)e−iω(t−τ) dω, (1.48)

e Here we assume that discontinuities of the expression
1
Ω

4∞(Ω)

mΩ +4∞(Ω)

∣∣∣
ω+i0

ω−i0

are of the first order, so that if F (Ω) — is an analytic function in the vicinity
of the real axis, such as the function

F (Ω) =
Ω

1− e−βh̄ω
, then {F (Ω)− F (ω)} 1

Ω

4∞(Ω)

mΩ +4∞(Ω)

∣∣∣
ω+i0

ω−i0
= 0.
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where
J(ω) = ih̄m2

2π
ω

1− e−βh̄ω

1
mΩ +4∞(Ω)

∣∣∣
ω+i0

ω−i0
.

From (1.46), one can derive

4∞(ω ± i0) = −∫ E(ν)P
( 1

ω − ν

)
dν ± iπE(ω).

It follows from this equation that

i
1

mΩ +4∞(Ω)

∣∣∣
ω+i0

ω−i0
> 0.

Because, in addition,
ω

1− e−βh̄ω
> 0,

it is easy to find that
J(ω) > 0. (1.49)

It should be noted that if we put E(ω) equal to

E(ω) = K2
0

2
{δ(ω − ν0) + δ(ω + ν0)} ,

we get from (1.48) our previous (1.34) that we derived earlier.

1.4. Free Energy Calculation for the Linear Polaron Model
We now proceed with the calculation of the free energy for the dynam-

ical system under consideration. The free energy is defined as

F = −ϑ ln Tr eβH , (H = Hlinear model).

The free energy for a single free particle of mass m that does not interact
with the phonon bath is

Fs = −ϑ ln Tr exp
(
−p2β

2m

)
= −ϑ lim

η→0
ln Tr exp

{
−

(
p2

2m
+ η2

2
r2

)
β

}
.

The free energy of the free-phonon field Σ is

FΣ = −ϑ ln Tr e−HΣβ, HΣ = 1
2

∑

(f)

{pfp∗f + ν(f)2qfq∗f}.

Because explicit expressions for these energies are well known, we need
calculate only that part of the total free energy that is due to the inter-
action between the phonon field and the particle, i.e.

Fint = F − FS − FΣ.
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For technical reasons, we introduce an auxiliary parameter λ (0 6 λ 6 1)
into the total Hamiltonian H = Hlinear model:

H(λ) = p2

2m
+ η2r2

2
+ λ2

V

∑

(f)

S2(f)

6ν2(f)
f2r2 + i

V 1/2

∑

(f)

λSfqf f · r + HΣ.

We see that
H(0) = HS + HΣ, H(1) = H.

Thus

Fint =
1
∫
0

dλ
∂F (λ)

∂λ
= −ϑ

1
∫
0

dλ
∂

∂λ
ln Tr e−βH(λ) =

=
1
∫
0

dλ
Tr[{∂H(λ)/∂λ}e−βH(λ)]

Tr e−βH(λ)
=

1
∫
0

dλ
〈

∂H

∂λ

〉
λ,eq

, (1.50)

i. e.
Fint =

1
∫
0

dλ
〈

∂H

∂λ

〉
λ,eq

. (1.51)

In this formula the subscript λ indicates that the averaging is with
respect to the Hibbs equilibrium statistical operator corresponding to the
Hamiltonian H(λ):

ρ(H(λ)) = e−βH(λ)/ Tr(e−βH(λ)).

But
∂H(λ)

∂λ
= λ

3V

∑

(f)

S2(f)

ν2(f)
f2r2 + i

V 1/2

∑

(f)

Sfqf f · r.

From another point of view, we can write the equations of motion (1.5)
for the Hamiltonian H(λ):

−m
d2r

dt2
− η2r = λ2

3

∑

(f)

S2(f)

ν2(f)
f2r + i√

V

∑

(f)

λSfqf f .

Therefore

λ

〈
∂H(λ)

∂λ

〉

λ,eq
= −

〈(
m

d2r

dt2
+ η2r

)
· r

〉

λ,eq
. (1.52)

Taking (1.6), (1.11) and (1.22) into account, we have

〈rα(t)rβ(τ)〉λ,eq = 0 for α 6= β,

〈rα(t)rα(τ)〉λ,eq = ih̄

2π

+∞
∫
−∞

e−iω(t−τ)

1− e−βh̄ω

1
mΩ2 − η2 + λ2Ω4(Ω)

∣∣∣
ω+i0

ω−i0
dω .

(1.53)
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Here we have not forgotten that on changing from the Hamiltonian H
to the Hamiltonian H(λ), we have introduced the parameter λ into Sf ,
which results in the necessity to change 4(Ω) into λ24(Ω). So
〈(

−m
d2rα(t)

dt2
− η2rα(t)

)
rα(τ)

〉

λ,eq

= ih̄

2π

+∞
∫
−∞

mω2 − η2

1− e−βh̄ω
e−iω(t−τ) 1

mΩ2 − η2 + λ2Ω4(Ω)

∣∣∣
ω+i0

ω−i0
dω

= ih̄

2π

+∞
∫
−∞

e−iω(t−τ)

1− e−βh̄ω

mΩ2 − η2

mΩ2 − η2 + λ2Ω4(Ω)

∣∣∣
ω+i0

ω−i0
dω,

if Ω −→ ω, and, inserting this result into (1.51) we see that

λ

〈
∂H(λ)

∂λ

〉

λ,eq
= 3 ih̄

2π

+∞
∫
−∞

1
1− e−βh̄ω

mΩ2 − η2

mΩ2 − η2 + λ2Ω4(Ω)

∣∣∣
ω+i0

ω−i0
dω.

Let us note that

mΩ2 − η2

mΩ2 − η2 + λ2Ω4(Ω)
= 1− Ωλ24(Ω)

mΩ2 − η2 + λ2Ω4(Ω)
,

mΩ2 − η2

mΩ2 − η2 + λ2Ω4(Ω)

∣∣∣
ω+i0

ω−i0
= − Ωλ24(Ω)

mΩ2 − η2 + λ2Ω4(Ω)

∣∣∣
ω+i0

ω−i0
.

Hence (1.51) gives us
〈

∂H(λ)

∂λ

〉

λ,eq
= −3 ih̄

2π

+∞
∫
−∞

1
1− e−βh̄ω

Ωλ4(Ω)

mΩ2 − η2 + λ2Ω4(Ω)

∣∣∣
ω+i0

ω−i0
dω

= −3 ih̄

2π

+∞
∫
−∞

Ω

1− e−βh̄Ω

λ4(Ω)

mΩ2 − η2 + λ2Ω4(Ω)

∣∣∣
ω+i0

ω−i0
dω . (1.54)

Using a similar approach for the calculation of the correlation function

〈pα(t)pα(τ)〉eq,
we find in the limit η → 0, V →∞ that
〈

∂H(λ)

∂λ

〉

λ,eq
= −3ih̄

2π

+∞
∫
−∞

Ω

1− e−βh̄Ω

1
Ω

λ4∞(Ω)

mΩ + λ24∞(Ω)

∣∣∣
ω+i0

ω−i0
dω . (1.55)

The right-hand side of this equation does not depend on ε when 0 < ε <
< 2π/h̄β. Thus, assuming ε > 0, ε → 0, we derive from (1.50)

Fint = −3ih̄
2π

1
∫
0

dλ
+∞
∫
−∞

Ω

1− e−βh̄Ω

1
Ω

λ4∞(Ω)

mΩ + λ24∞(Ω)

∣∣∣
ω+i0

ω−i0
dω. (1.56)
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Consider now the special “single-frequency” case

E(ω) = K2
0

2
{δ(ω − ν0) + δ(ω + ν0)}. (1.57)

Then

4∞(Ω) = − K2
0Ω

Ω2 − ν20
,

and

− 1
Ω

λ4∞(Ω)

mΩ + λ24∞(Ω)
= 1

Ω

λK2
0

mΩ2 − (mν20 + λ2K2
0 )

.

This expression has three poles:

Ω = 0, Ω = µ(λ), Ω = −µ(λ),

where

µ(λ) =
(

ν20 + λ2K2
0

m

)1/2

.

Let us notice that

1
Ω2 − µ2(λ)

= 1
2µ(λ)

(
1

Ω− µ(λ)
− 1

Ω + µ(λ)

)
.

Because of the obvious identity

− 1
Ω

λ4∞(Ω)

mΩ + λ24∞(Ω)

∣∣∣
ω+i0

ω−i0

= 2πiδ(ω)λK2
0

mν20 + λ2K2
0
− 2πiλK2

0

2µ2(λ)m
{δ(ω − µ(λ)) + δ(ω + µ(λ))}

and

− 3ih̄
2π

+∞
∫
−∞

Ω

1− e−βh̄Ω

1
Ω

λ4∞(Ω)

mΩ + λ24∞(Ω)

∣∣∣
ω+i0

ω−i0
dω

= −3ϑ λK2
0

mν20 + λ2K2
0

+ 3λK2
0 h̄

2mµ(λ)

(
1

1− e−βh̄µ(λ)
+ e−βh̄µ(λ)

1− e−βh̄µ(λ)

)

= d

dλ

(
−3ϑ

2
ln (mν20 + λ2K2

0 ) + 3
2
ϑ ln(1− e−βh̄µ(λ)) + 3

2
ϑ ln(eβh̄µ(λ) − 1)

)
.
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Therefore f

Fint = −3ϑ ln
(

m + K2
0/ν20

m

)1/2

+ 3h̄
2

(µ− ν0)− 3ϑ ln 1− e−βh̄ν0

1− e−βh̄µ
, (1.58)

where

µ =
(

ν20 + K2
0

m

)1/2

≡ µ(λ = 1).

As we have seen by now, all considered Green functions and correlation
functions relating to the particle S, as well as the free energy Fint, are
determined by one and the same function E(ν). The influence of the
phonon field upon these quantities depends exclusively on this spectral
intensity E(ν).

Thus, if we had two different systems of oscillators interacting with
the given particle S (in the manner considered), for which the function
E(ν) was one and the same, then all relevant quantities, mentioned above,
would remain unchanged.

To illustrate this statement, it is worth considering a two-body prob-
lem, for example

H = p2

2m
+ K2

0

2
(r−R)2 + P2

2M
=

3∑

α=1
Hα, (1.59)

where
Hα = p2α

2m
+ K2

0

2
(rα −Rα)2 + P 2

α

2M
,

and the corresponding “one-body” free Hamiltonians are:

HS = p2

2m
= 1

2m

3∑

α=1
p2α,

HΣ = P2

2M
+ K2

0

2
R2 =

3∑

α=1

(
P 2

α

2M
+ K2

0

2
R2

α

)
.

f Here we have used the fact that
3
2

ϑ
1
∫
0

dλ
d

dλ

{
ln (1− e−βh̄µ(λ)) + ln (eβh̄µ(λ) − 1)

}

=
3
2

ϑ

(
ln

eβh̄µ − 1
eβh̄ν0 − 1

+ ln
eβh̄µ − 1
eβh̄ν0 − 1

)

=
3
2

ϑ

(
ln

1− e−βh̄µ

1− e−βh̄ν0
+ ln

eβh̄µe−βh̄ν0 (1− e−βh̄µ)

1− e−βh̄ν0

)

= −3ϑ ln
1− e−βh̄ν0

1− e−βh̄µ
+

3h̄

2
(µ− ν0).
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We shall calculate explicitly the free energy

Fint = −ϑ ln Tr e−βH

Tr(S) e−βHS Tr(Σ) e−βHΣ
= −3ϑ ln Tr e−βH

Tr(S) e−βHS Tr(Σ) e−βHΣ
,

where the one-dimensional Hamiltonians H, HS and HΣ are given by the
following expressions:

H = p2

2m
+ K2

0

2
(x−X)2 + 1

2M
P 2,

HS = p2

2m
, HΣ = P 2

2M
+ K2

0

2
X2.

To diagonalize the one-dimensional Hamiltonian H, we introduce nor-
mal coordinates q, Q and corresponding normal momentum variables y,
Y :

q = mx + MX

m + M
, Q = x−X. (1.58a)

Noting that
∂

∂x
= m

m + M

∂

∂q
+ ∂

∂Q
,

(1.58b)

∂

∂X
= M

m + M

∂

∂q
− ∂

∂Q
,

we put
p = m

m + M
y + Y , P = M

m + M
y − Y. (1.58c)

Substituting these results into (1.57), we arrive at the canonically trans-
formed Hamiltonian

H = 1
2(m + M)

y2 + 1
2

M + m

Mm
Y 2 + K2

0

2
Q2 = Hin + Hosc, (1.61)

where

Hin = y2

2(m + M)
, Hosc = 1

2
M + m

Mm
Y 2 + K2

0

2
Q2.

Thus
Fint = −3ϑ ln Tr e−βHin

Tr e−βHS
− 3ϑ ln Tr e−βHosc

Tr e−βHΣ
.
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It is well known that the free energy of the oscillator HΣ with the
frequency ν0 =

(
K2

0/M
)1/2 in the one-dimensional case is g

FΣ = h̄ν0
2
− ϑ ln 1

1− e−βh̄ν0
,

and because the oscillator Hosc has frequency

µ =
(

K2
0 (M + m)

Mm

)1/2

= ν0

(
1 + M

m

)1/2
,

then Fosc is
Fosc = h̄µ

2
− ϑ ln 1

1− e−βh̄µ
.

Therefore

Fint = −3ϑ ln Tr e−βHin

Tr e−βHS
− 3ϑ ln 1− e−βh̄ν0

1− e−βh̄µ
+ 3

2
h̄(µ− ν0).

Because the position x — belongs to the interval −L/2 < x < L/2, the
corresponding momentum variable p can take only discrete values

2π
L

nh̄, n = 0,±1,±2, ... ,
and

Tr e−βHin

Tr e−βHS
=

∑

(n)

exp

{
−

(
2π
L

nh̄

)2
β

2(M + m)

}

∑

(n)

exp

{
−

(
2π
L

nh̄

)2
β

2m

}

L→∞
→

1
2πh̄

+∞
∫
−∞

exp
(
− βp2

2(M + m)

)
dp

1
2πh̄

+∞
∫
−∞

exp
(
−βp2

2m

)
dp

=
(

m + M

m

)1/2
.

Finally, we obtain the expression for the free energy:

Fint = −3ϑ ln
(

m + M

m

)1/2
− 3ϑ ln 1− e−βh̄ν0

1− e−βh̄µ
+ 3

2
h̄(µ− ν0).

g For the Hamiltonian

H =
P 2

2m
+

mω2X2

2
the free energy is given by the expression

F =
h̄ω

2
− ϑ ln (1− e−βh̄ω), ϑ = KβT.
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This expression coincides with (1.56) if one puts

K2
0

ν20
= M.

Observation. It is easy to obtain (1.34) for the correlator starting from
the Hamiltonian of the two-body problem (1.57). Put

Y = i(a† − a)
(

h̄Mµ

2

)1/2
, Q = (a† + a)

(
h̄

2Mµ

)1/2

, (1.62)

where a, a† are Bose-amplitudes,

M = Mm

M + m
.

and the mass parameter µ is determined by (1.59):

µ2 = K2
0

M .

Further, we proceed with the oscillator Hamiltonian rewritten in new
terms:

Hosc = h̄µ

2
+ h̄µa†a,

and
ih̄

da

dt
= h̄µa, ih̄

da†

dt
= −h̄µa†,

a(t) = e−iµta, a†(t) = eiµta†,

since
dy

dt
= 0, y = const.

It follows from (1.58a) that

pα(t) = m

m + M
y + i(a†eiµt − ae−iµt)

(
h̄Mµ

2

)1/2
. (1.63)

From this,

〈pα(t)pα(τ)〉eq =
(

m

m+M

)2
〈y2〉eq+ h̄Mµ

2
(〈aa†〉e−iµ(t−τ) +〈a†a〉eiµ(t−τ)).

(1.64)
But

〈y2〉eq = (m + M)ϑ,

〈aa†〉 = 1
1− e−βh̄µ

, 〈a†a〉 = 1
eβh̄µ − 1

, Mµ = Mµ2

µ
= K2

0

µ
,

and we arrive at the same equation (1.34) as before.
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Therefore we come to the conclusion that two-time equilibrium correla-
tion functions of the particle S variables are the same for the Hamiltonian
(1.1) in the single-frequency case то ν(f) = ν0 and when

E(ω) = K2

2
[δ(ω − ν0) + δ(ω + ω0)],

as in the case of the two-body problem Hamiltonian (1.57).
We now return to the expression for the free energy Fint in the single-

frequency case and consider the passage to classical mechanics. By setting
h̄ → 0, in (1.56), we get the classical result for the free energy:

Fint = 0.

It is obvious that the part of the free energy that is due to interaction
is always zero in classical mechanics for dynamical systems described by
a Hamiltonian of the kind (1.1) in the case K2 = K2

0 + η2. This statement
can be proved starting from (1.53), which can be rewritten as

〈
∂H(λ)

∂λ

〉

λ,eq
= −3ih̄

2π

+∞
∫
−∞

Ω

1− e−βh̄Ω

λ4(Ω)

mΩ2 − η2 + λ2Ω4(Ω)

∣∣∣
ω+i0

ω−i0
dω,

(1.65)
where

0 < ε <
2π
h̄β

.

In the classical limit,

lim
h̄→0

h̄Ω

1− e−βh̄Ω
= 1

β
= ϑ.

Consequently, it is true for the classical mechanics that
〈

∂H(λ)

∂λ

〉

λ,eq
= −3iϑ

2π

(
iε+∞
∫

iε−∞
F (Ω) dΩ− −iε+∞

∫
−iε−∞

F (Ω) dΩ

)
, (1.66)

where
F (Ω) = λ4(Ω)

mΩ2 − η2 + λ2Ω4(Ω)
. (1.67)

It should be observed that F (Ω) is a regular analytic function on the half-
plane

Im (Ω) > ε > 0.

Thus
∫
L

F (Ω) dΩ = 0 (1.68)

for any closed contour L lying in this half-plane. Let us take for L the
contour composed of the interval (iε − L, iε + L) and the half-circle C
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Fig. 1.2. Fig. 1.3.

with center at the point iε and of radius L (see Fig. 1.2). On this contour,

F (Ω) = O
( 1

L2

)
,

so we can see that
∫
C

F (Ω) dΩ = O
( 1

L

)
→ 0.

Therefore
iε+∞
∫

iε−∞
F (Ω) dΩ = 0.

The same considerations may be applied to prove that

−iε+∞
∫

−iε−∞
F (Ω) dΩ.

In fact, F (Ω) — is a regular analytic function on the lower half-plane

ImΩ 6 −ε < 0.

Therefore it is sufficient to choose the proper contour (see Fig. 1.3) and
to repeat all the previous reasoning.

Thus, taking (1.50) and (1.64) into account, we have

Fint = 0.

It should be stressed that this result follows entirely from the treatment
of the dynamical system within the framework of classical mechanics.

In the opposite, quantum mechanical case, (1.63) indicates that the
function

F (Ω) = h̄Ω

1− e−βh̄Ω

λ4(Ω)

mΩ2 − η2 + λ2Ω4(Ω)

has an infinite number of poles on the imaginary axis:

Ω = 2πin

h̄β
, for n integer, (1.69)

and for this reason integrals of the type (1.66) are not equal to zero (they
are equal to the sum of residues taken at the poles (1.67)).



42 Ch. 1. Linear Polaron Model

1.5. Average Values of T-products
Consider now equilibrium averages of the operator products

〈T {[rα(t)− rα(τ)][rα′(t)− rα′(τ)]}〉eq,
where T denotes the “Т-product” (i.e. the product of operators ordered in
time). By definition,

T{A(t1)B(t2)} =

{
A(t1)B(t2), t1 > t2,
B(t2)A(t1), t2 > t1.

(1.70)

Because

[rα(t)− rα(τ)][rα′(t)− rα′(τ)]

= rα(t)rα′(t)− rα(τ)rα′(t)− rα(t)rα′(τ) + rα(τ)rα′(τ),

the following relation holds:

T {[rα(t)− rα(τ)][rα′(t)− rα′(τ)]}

=

{
rα(t)rα′(t)− rα′(t)rα(τ)− rα(t)rα′(τ) + rα(τ)rα′(τ), t > τ ,
rα(t)rα′(t)− rα(τ)rα′(t)− rα′(τ)rα(t) + rα(τ)rα′(τ), t < τ.

Therefore, putting λ = 1 in (1.52), we get

〈T {[rα(t)− rα(τ)][rα′(t)− rα′(τ)]}〉eq = 0 if α 6= α′

and

〈T{[rα(t)− rα(τ)]2}〉eq

= ih̄

2π

+∞
∫
−∞

2(1− e−iω(t−τ))

1− e−βh̄ω

1
mΩ2 − η2 + Ω4(Ω)

∣∣∣
ω+i0

ω−i0
dω if t > τ ,

〈T{[rα(t)− rα(τ)]2}〉eq

= ih̄

2π

+∞
∫
−∞

2(1− e−iω(τ−t))

1− e−βh̄ω

1
mΩ2 − η2 + Ω4(Ω)

∣∣∣
ω+i0

ω−i0
dω if t < τ.

Thus

〈T{[rα(t)− rα(τ)]2}〉eq

= ih̄

2π

+∞
∫
−∞

2(1− e−iω|t−τ |)

1− e−βh̄ω

1
mΩ2 − η2 + Ω4(Ω)

∣∣∣
ω+i0

ω−i0
dω. (1.71)

For some applications it is helpful to be able to calculate the ordered
products of operators depending on an “imaginary-time” argument.
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Setting t = −is and choosing real s to be the ordering parameter, we
define the T-product as

T{rα(−is)rα′(−iσ)} =

{
rα(−is)rα′(−iσ) if s > σ,
rα′(−iσ)rα(−is) if σ > s.

Taking (1.52) into account under the condition λ = 1, one obtains

〈T {[rα(−is)− rα(−iσ)][rα′(−is)− rα′(−iσ)]}〉eq = 0 (1.72)

if α 6= α′, and, in the opposite case,

〈T{[rα(−is)− rα(−iσ)]2}〉eq

= ih̄

2π

+∞
∫
−∞

2(1− e−ω|s−σ|)

1− e−βh̄ω

1
mΩ2 − η2 + Ω4(Ω)

∣∣∣
ω+i0

ω−i0
dω. (1.73)

Consider the single-frequency case:

E(ω) = K2
0

2
{δ(ω − ν0) + δ(ω + ν0)}.

Here we are not allowed to use (1.69) and (1.71) directly, observing from
the very start that the final result would be just the same as in the case
of the two-body model (1.57). Rigorously speaking, we mean that

〈rα(t)rα(τ)〉eq = 〈x(t)x(τ)〉eq.
It follows from (1.58) that

x = q + M

m + M
Q.

Since the time evolution of q(t) and Q(t) is generated by independent
Hamiltonians Hin and Hosc respectively (see (1.59)), we have the equality

〈x(t)x(τ)〉eq = 〈q(t)q(τ)〉eq + M2

(m + M)2
〈Q(t)Q(τ)〉eq.

From which

〈T{[rα(−is)− rα(−iσ)]2}〉eq = 〈T{[q(−is)− q(−iσ)]2}〉eq

+ M2

(m + M)2
〈T{(Q(−is)−Q(−iσ))2}〉eq (1.74)

Thanks to (1.59),

q(t)− q(τ) = (t− τ)

(M + m)
y, y = const,

〈y2〉eq = (M + m)ϑ.

Hence
〈[q(t)− q(τ)]2〉eq = (t− τ)2ϑ

M + m
. (1.75)
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We also have

q(t)q(τ)− q(τ)q(t) =
t
∫
τ
{q′(t)q(τ)− q(τ)q′(t)} dt

= 1
M + m

t
∫
τ
{yq(τ)− q(τ)y} dt = t− τ

M + m
(yq − qy) = −ih̄

t− τ

M + m
. (1.76)

Consequently,

〈T{[q(−is)− q(−iσ)]2}〉eq = 〈q2(−is)− 2q(−is)q(−iσ) + q2(−iσ)〉eq
= 〈[q(−is)− q(−iσ)]2〉eq

+ 〈−q(−is)q(−iσ) + q(−iσ)q(−is)〉eq if s > σ,

and, thanks to (1.73) and (1.74),

〈T{[q(−is)− q(−iσ)]2}〉eq

= − (s− σ)2

M + m
ϑ + h̄

M + m
(s− σ) for s > σ.

Making the permutation s→←σ, it is easy to show that

〈T{[q(−is)− q(−iσ)]2}〉eq = − (s− σ)2

M + m
ϑ + h̄

M + m
|s− σ|. (1.77)

We must now find an explicit expression for the ordered correlator

〈T{[Q(−is)−Q(−iσ)]2}〉eq.
in order to calculate the left-hand side of (1.72). Let us note that

Q(t) = (eiµta† + e−iµta)
(

h̄

2Mµ

)1/2

,

from which it follows that

〈T{[Q(−is)−Q(−iσ)]2}〉eq
= h̄

2Mµ
{(eµsa† + e−µsa)(eµsa† + e−µsa)

+ (eµσa† + e−µσa)(eµσa†+ e−µσa)− 2T (eµsa†+ e−µsa)(eµσa†+ e−µσa)}.
Hence

〈T{[Q(−is)−Q(−iσ)]2}〉eq
= h̄

2Mµ
(2〈a†a〉+ 2〈aa†〉 − 2eµ|s−σ|〈a†a〉 − 2e−µ|s−σ|〈aa†〉). (1.78)

Here
〈a†a〉 = 1

eβh̄µ − 1
, 〈aa†〉 = 1 + 1

eβh̄µ − 1
.
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Since
1

m + M
= 1

Mm
M = K2

0

µ2Mm
=

(
ν0
µ

)2
1
m

(recalling that M = mM/(m + M)) and

M2

(m + M)2
1
Mµ

= M2

m2
1
Mµ

= M
m2µ

= K2
0

m2µ3 = µ2 − ν20

mµ3 ,

we find from (1.72), (1.75) and (1.76) that

〈T{[rα(−is)− rα(−iσ)]2}〉eq

= −
(

ν0
µ

)2
ϑ

m
(s− σ)2 + h̄

m

(
ν0
m

)2
|s− σ|

+ µ2 − ν20

mµ3 h̄

(
1

1− e−βh̄µ
(1− e−µ|s−σ|)− 1

eβh̄µ − 1
(eµ|s−σ| − 1)

)
.

(1.79)
It is interesting to note that

〈T{[rα(−is)− rα(−iσ)]2}〉eq > 0 if |s− σ| 6 βh̄ = h̄/ϑ, (1.80)

where β = 1/ϑ and ϑ = KβT.

1.6. Averaged Operator T-Product Calculus for Some Model
Oscillatory Systems

Let the Hamiltonian Γ be a quadratic positive-definite form composed
of Bose operators bα, b†α. We denote the statistical sum as

Z = Tr e−βΓ

and consider linear forms composed of the Bose operators bα, b†α:

A1,A2, ... ,As,

and statistical averages consisting of the products of these linear forms:

〈A1A2 · · ·A3〉Γ = Z−1e−βΓ(A1A2 · · ·As). (1.81)

Let us apply to (1.79) the well-known Bloch–Dominicis theorem, which
generalizes the Wick theorem. If we introduce couplings of the type

AjAl = 〈AjAl〉Γ,
we see that the expression (1.79) is equal to the sum of products of all
possible couplings. For example,

〈A1A2A3A4〉Γ = 〈A1A2A3A4〉Γ + 〈A1A2A3A4〉Γ + 〈A1A2A3A4〉Γ
= 〈A1A2〉Γ〈A3A4〉Γ + 〈A1A3〉Γ〈A2A4〉Γ + 〈A1A4〉Γ〈A2A3〉Γ. (1.82)
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Of course, the expression (1.79) is zero if s is odd, because in this case
one of the operators A1,A2, ...,As is left uncoupled, and

〈Aj〉Γ = 0,

because Aj is a linear form composed of operators bα and b†α and Γ is a
quadratic form.

Then we apply this well-known technique to the calculation of the
expression

〈eA〉Γ,
where A is some linear form composed of the above-mentioned Bose
operators. We arrive at the following result:

〈eA〉Γ =
∞∑

n=0

1
n!
〈An〉Γ =

∞∑

k=0

1
(2k)!

〈A2k〉Γ = 1 +
∞∑

k=1

1
(2k)!

〈A2k〉Γ. (1.83)

Thanks to the Bloch–Dominicis theorem,

〈A2k〉Γ = G(k)〈A2〉kΓ,
where G(k) is the number of all possible couplings in the expression

〈A1 · · ·As〉Γ.

One can see that

G(1) = 1, G(2) = 3, G(k + 1) = (2k + 1)G(k).

Thus

G(k) = 1 · 3 · · · (2k − 1), G(k)

(2k!)
= 1 · 3 · · · (2k − 1)

1 · 2 · 3 · 4 · · · (2k)
= 1

2kk!
.

From where
〈eA〉Γ = 1 +

∞∑

k=1

1
k!
〈1
2

A2〉2Γ = e
1
2 〈A

2〉Γ . (1.84)

We are now going to consider T-products of operators ordered in the
parameter s. By definition,

T{A(s1)A(s2)} =

{
A(s1)A(s2) if s1 > s2,
A(s2)A(s1) if s2 > s1,

and respectively

TA(s1)A(s2) · · ·A(sn) = A(s′1) · · ·A(s′n),

where s′1, ..., s′n is just the same set of parameters s1, ..., sn, but ordered
in time in the following way:

s′1 > s′2 > ... > s′n.
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It is interesting to note that, thanks to the definition of the T-product,
the operators A(sj) commute under the sign of the T-product. For
example,

T{A(s1)A(s2)} = T{A(s2)A(s1)}.
Now we should try to simplify an expression of the kind

〈T{e
s1∫
s0

ds A(s)

}〉Γ, s0 < s1,

where the averaging is with respect to the quadratic in Bose operators
Hamiltonian Γ, (we have in mind here the same Hamiltonian as that one
presented in (1.79)) and A(s) are linear forms composed of these Bose
operators with coefficients dependent on the ordering parameter s.

〈
T

{
e

s1∫
s0

ds A(s)}〉
Γ

=
∞∑

n=0

〈
T

{(
s1∫
s0

dsA(s)
)n}〉

Γ

.

Keeping in mind that the Bloch–Dominicis theorem can be applied not
only to the ordinary products but also to the T-products, we may repeat
our previous reasoning and write down the final result at once:

〈
T

{
e

s1∫
s0

ds A(s)}〉
Γ

= exp
(
1
2

〈
T

{(
s1∫
s0

dsA(s)
)2}〉

Γ

)
.

From the other side,

T

{(
s1∫
s0

A(s)
)2}

= T

{
s1∫
s0

ds
s1∫
s0

dσ A(s)A(σ)
}

=
s1∫
s0

ds
s1∫
s0

dσ T{A(s)A(σ)}.

Therefore
〈
T

{
e

s1∫
s0

ds A(s)}〉
Γ

= exp
(
1
2

s1∫
s0

ds
s1∫
s0

dσ〈T{A(s)A(σ)}〉Γ
)

. (1.85)

We can now apply these results to the case of the oscillator Hamilto-
nian

Γ = p2

2m
+ mω2

2
q2. (1.86)

Put
Q(s) = e

s
h̄

Γqe−
s
h̄

Γ, (1.87)

and let λ(s) be a c — number function dependent on s. We want to
calculate the expression

〈
T

{
e

βh̄

∫
0

λ(s)Q(s) ds}〉
Γ

(1.88)

Note that the Heisenberg equation for the time-dependent variable q(t) is

ih̄
dq(t)

dt
= q(t)Γ− Γq(t), q(0) = q,
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from which it follows that

q(t) = e
it
h̄

Γqe−
it
h̄

Γ.

Equation (1.84) states that

Q(s) = q(−is), (1.89)

so that s could be treated as an “imaginary time”. Introducing Bose
amplitudes, we have

q =
(

h̄

2mω

)1/2
(b + b†), p = i

(2mω

h̄

)1/2
(b† − b) (1.90)

and
Γ = h̄ωb†b + h̄ω

2
.

Here Γ is represented by the sum of the quadratic form h̄ωb†b and the
constant term h̄ω/2. It is clear that the constant term does not influence
the calculation of averages of the type:

〈...〉Γ = Tr(...e−βΓ)

Tr e−βΓ
= 〈...〉h̄ωb†b.

Therefore we can apply (1.82) to calculate the expression (1.85):

〈
T

{
e

βh̄

∫
0

λ(s)Q(s) ds}〉
Γ

= exp
(
1
2

h̄β

∫
0

ds
h̄β

∫
0

dσ λ(s)λ(σ)〈T{Q(s)Q(σ)}〉Γ
)

.

(1.91)
Noting that

b(t) = e−iωtb, b†(t) = eiωtb†,

we obtain from (1.86) and (1.87) that

Q(s) =
(

h̄

2mω

)1/2
(e−ωsb + eωsb†)

and

〈T{Q(s)Q(σ)}〉Γ = h̄

2mω
(e−ω|s−σ|〈bb†〉Γ + eω|s−σ|〈b†b〉Γ)

= h̄

2mω
(1− e−βωh̄)

−1
(e−ω|s−σ| + e−ωβh̄+ω|s−σ|). (1.92)

It follows from here and from (1.88) that

〈
T

{
e

βh̄

∫
0

λ(s)Q(s) ds}〉
Γ

= exp
(

h̄β

∫
0

ds
h̄β

∫
0

dσ
h̄λ(s)λ(σ)(e−ω|s−σ| + e−ωβh̄+ω|s−σ|)

4mω(1− e−βωh̄)

)
. (1.93)
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Consider the expression

K(s,σ) = e−ω|s−σ| + e−ωβh̄+ω|s−σ| (1.94)

for
0 < s < βh̄, 0 < σ < βh̄ (1.95)

as a function of s. We get

K(0,σ) = e−ωσ + e−ωβh̄+ωσ,

K(βh̄,σ) = e−ω(βh̄−σ) + e−ωβh̄+ωβh̄−ωσ,

whence
K(0,σ) = K(βh̄,σ). (1.96)

Since
d

ds
(s− σ) = 1, d

ds
(σ − s) = −1,

we see that
d

ds
|s− σ| = ε(s− σ),

where

ε(s− σ) =

{
1, s > σ

−1, s < σ.

Therefore differentiation of the expression (1.91) yields

d

ds
K(s,σ) = ε(s− σ)(−ωe−ω|s−σ| + ωe−ωβh̄+ω|s−σ|).

Keeping in mind the trivial relations

ε2(s− σ) = 1, dε(s− σ)

ds
= 2δ(s− σ),

where δ(s− σ) — is the usual Dirac delta function, and taking (1.91) into
account, we obtain

d2K(s,σ)

ds2
− ω2K(s,σ) = −2ω(1− e−βωh̄)δ(s− σ). (1.97)

From here, for any σ, belonging to the interval (0,βh̄), the function
K(s,σ), taken as a function of s, satisfies the differential equation

d2y(s)

ds2
− ω2y(s) = −2ω(1− e−βωh̄)δ(s− σ) (1.98)

with boundary conditions

y(0) = y(βh̄), y′s(0) = y′s(βh̄). (1.99)
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The first condition follows from (1.93), while the second is a conse-
quence of the identities

K ′
s(0,σ) = e−ωσ + e−ωβh̄+ωσ,

K ′
s(βh̄,σ) = −ωe−ω(βh̄−σ) + ωe−ωβh̄+ω(βh̄−σ) = K ′

s(0,σ), (1.100)
0 < σ < βh̄.

It is easy to see that equation (1.95) with boundary conditions (1.96)
cannot have two different solutions. Suppose, on the contrary, that we
could find two different solutions y1(s), y2(s). Taking their difference

y1(s)− y2(s) = Z(s),

we construct a nontrivial solution Z(s) that satisfies the equation

d2Z(s)

ds2
− ω2Z(s) = 0, (1.101)

with boundary conditions

Z(0) = Z(βh̄), Z ′s(0) = Z ′s(βh̄). (1.102)

However, it follows from (1.98) that

Z(s) = Ae−ωs −Beωs,

whereas, from (1.99), we must have
A(1− e−βωh̄) + B(eωβh̄ − 1) = 0,

ωA(1− e−βωh̄) + ωB(eωβh̄ − 1) = 0.
(1.103)

The determinant of these two linear uniform equations is nonzero:

det = 2ω(1− e−βωh̄)(eωβh̄ − 1)

Thus (1.100) has only the trivial solution

A = 0, B = 0,

and consequently
Z(s) = 0.

Thus we have proved that the differential equation (1.95) with boundary
conditions (1.96) cannot have two different solutions. Remembering that
0 < σ < βh̄, we can rewrite (1.95) in the form

d2y(s)

ds2
− ω2y(s) = −2ω(1− e−βωh̄) 1

βh̄

∑

(n)

e
in

s−σ
βh̄

2π
. (1.104)

To satisfy the boundary conditions, we must put

y(s) =
∑

(n)

Cne
in

s
βh̄

2π,
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and, substituting this ansatz into (1.101), we arrive at
{(

2πn

βh̄

)2

+ ω2

}
Cn = 2ω(1− e−βωh̄) 1

βh̄
e
in

σ
βh̄

2π
.

Since there are no other solutions of (1.95) with the boundary conditions
(1.96), we see that

K(s,σ) = 2ω 1− e−βωh̄

βh̄

∑

(n)

e
in

s−σ
βh̄

2π

(2πn/βh̄)2 + ω2 . (1.105)

Thus, thanks to (1.90), we have

〈
T

{
e

βh̄

∫
0

λ(s)Q(s) ds}〉
Γ

= exp
(

1
mβ

h̄β

∫
0

ds
h̄β

∫
0

dσ
∑

(n)

e
in

s−σ
βh̄

2π

(2πn/βh̄)2 + ω2 λ(s)λ(σ)
)

= exp
(

1
mβ

∑

(n)

βh̄

∫
0

e
2π

ins
βh̄ λ(s) ds

βh̄

∫
0

e
−2π

ins
βh̄ λ(s) ds

(2πn/βh̄)2 + ω2

)
. (1.106)

Note that (1.102) was proved to be valid only for the domain

0 6 s 6 βh̄, 0 < σ < βh̄.

but, because the kernel K(s,σ) is continuous and the Fourier series on
the right-hand side of (1.102) converges absolutely and uniformly, we can
prove that the expression (1.102) holds even for the closed domain

0 6 s 6 βh̄, 0 6 σ 6 βh̄.

Let us now consider the case when, instead of the integral

βh̄
∫
0

λ(s)Q(s) ds

we have the finite sum ∑

16j6N+1
iνjQ(sj),

where νj are real and

s1 = 0, sN+1 = βh̄, 0 < s2 < s3 < ... < sN < βh̄. (1.107)
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Repeating all of previous reasoning, we find
〈

T

{
exp

(
i

∑

16j6N+1

iνjQ(sj)
)}〉

Γ

= exp
(
− 1

mβ

∑

(n)

∣∣∣∣
∑

16j6N+1

e
2πinsj

βh̄ νj

∣∣∣∣
2

(2πn/βh̄)2 + ω2

)
. (1.108)

Consider a quadratic form with respect to the variables νj :

Ω(... νj ...) = 1
mβ

∑

(n)

∣∣∣∣
∑

16j6N+1

e
2πinsj

βh̄ νj

∣∣∣∣
2

(2πn/βh̄)2 + ω2 . (1.109)

Because of (1.104)
∑

16j6N+1

νje
2πinsj

βh̄ = (ν1 + νN+1) +
∑

26j6N+1

νje
2πinsj

βh̄ . (1.110)

Therefore

Ω(... νj ...) = 1
mβ

∑

(n)

∣∣∣∣(ν1 + νN+1) +
∑

26j6N+1

νje
2πinsj

βh̄

∣∣∣∣
2

(2πn/βh̄)2 + ω2 , (1.111)

and hence
Ω(... νj ...) > 0.

We shall show that
Ω(... νj ...) = 0 (1.112)

if and only if all the variables ν1 + νN+1, ν2, ..., νN are zero:

ν1 + νN+1 = 0, ν2 = 0, ν3 = 0, ..., νN = 0. (1.113)

In fact, it follows directly from (1.108) that (1.109) holds only if, for any
integer n (positive, negative or zero),

(ν1 + νN+1) +
∑

26j6N+1

νje
2πinsj

βh̄ = 0. (1.114)

Let us sum these relations for each n = 0,1, ...,Λ and divide the result by
Λ + 1. We have

ν1 + νN+1 +
∑

26j6N+1

1
Λ + 1

νj
e
2πi(Λ+1)sj

βh̄ − 1

e
2πisj

βh̄ − 1
= 0.
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Note that, thanks to (1.104),

e
2πisj

βh̄ − 1 6= 0.

Hence, using the limiting procedure Λ →∞, we get

ν1 + νN+1 = 0.

Then, multiplying (1.111) by the factor e
2πisk

βh̄ (where k = 2, ...,N), per-
forming a summation over n = 1, ...,Λ + 1 and dividing the result by
Λ + 1, we have

1
Λ + 1

(ν1 + νN+1)
e
− 2πi(Λ+1)sk

βh̄ − 1

e
− 2πisk

βh̄ − 1
+ νk

+ 1
Λ + 1

∑
26j6N+1

j 6=k

νj
e
2πi(Λ+1)(sj−sk)

βh̄ − 1

e
2πi(sj−sk)

βh̄ − 1
= 0.

In this sum,

e
2πi(sj−sk)

βh̄ − 1 6= 0, for j 6= k.

Thus, passing here to the limit Λ →∞, we get

νk = 0, k = 2, ...,N.

It can be seen now that Ω(... νj ...) is a positive-definite quadratic form
in the variables ν1 + νN+1, ν2, ν3, ..., νN . Introducing the notation

ν′1 = ν1 + νN+1, ν′2 = ν2, ν′3 = ν3, ... , ν′N = νN , (1.115)

we can write (1.105) in the form
〈

T

{
exp

(
i

∑

16j6N+1

iνjQ(sj)
)}〉

Γ

= exp
(
−

N∑

j1=1

N∑

j2=1
Aj1,j2ν

′
j1ν

′
j2

)
,

(1.116)
where

N∑

j1=1

N∑

j2=1
Aj1,j2ν

′
j1ν

′
j2 = 1

mβ

∑

(n)

∣∣∣∣
∑

16j6N+1

e
2πinsj

βh̄ ν′j

∣∣∣∣
2

(2πn/βh̄)2 + ω2 (1.117)

is a positive-definite quadratic form in the variables ν′1, ..., ν′N . These
formulae can be used to establish the connection between averages of the
T-products 〈...〉H(L) and integration in functional space. Having in mind
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the situation that will be studied later, we shall now consider the three-
dimensional Hamiltonian

Γ = p2

2m
+ η2

2
r2 =

3∑

α=1
Γα, Γα = p2α

2m
+ mω2

2
r2α, ω = η

m1/2 . (1.118)

Let us put
R(s) = e

Γs
h̄ re−

Γs
h̄ , (1.119)

and note that

Rα(s) = e
Γαs

h̄ rαe−
Γαs

h̄ = e
Γs
h̄ rαe−

Γs
h̄ .

Because Γα — are operators acting upon functions of different variables,
Γα and Γ′α commute, and the Rα(s) also commute with Rα′(s) if α 6= α′.
Note that

〈T{Rα(s)Rα′(s′)}〉Γ = 0 for α 6= α′.

Therefore it is easily seen that the averages
〈

T

{
exp

(
i

∑

16j6N+1

νj ·R(sj)
)}〉

Γ

,

where sj , satisfy the condition (1.104) as before, are equal to

3∏

α=1

〈
T

{
exp

(
i

∑

16j6N+1

νj,αRα(sj)
)}〉

Γα

.

Thus, taking (1.113) into account, we can write
〈

T

{
exp

(
i

∑

16j6N+1

νj ·R(sj)
)}〉

Γ

= exp
(
−

3∑

α=1

N∑

j1=1

N∑

j2=1
Aj1,j2ν

′
j1,αν′j2,α

)
, (1.120)

where

ν′1,α = ν1,α + νN+1,α, ν′2,α = ν2,α, ν′3,α = ν3,α, = ... , ν′N ,α = νN ,α.

(1.121)
Consider the expression

∫
〈

T

{
ei

∑
16j6N+1 νj ·R(sj)

}〉

Γ

e−i
∑

16j6N+1 νj ·R′j dν1 · · · dνN dνN+1,

(1.122)
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where R′
j are real vectors and the integration with respect to each variable

νj,α is over the whole real axis. Let us denote

ν1 − νN+1

2
= ν′N+1, ν1 + νN+1 = ν′1,

and note that
∑

16j6N+1
νj ·R′

j = ν′1 · R′
1 + R′

N+1

2

+
∑

26j6N

νj ·R′
j + ν′N+1 · (R′

1 −R′
N+1),

∫(...) dν1 · · · dνN+1 = ∫(...) dν′1 · · · dν ′N+1.

From another point of view, (1.117) shows that the magnitude 〈...〉Γ,
which is contained in the left-hand side of (1.119), does not depend on
ν′N+1, thus the integration over νN+1 can be done independently:

∫ e−iν′j(R
′
1−R′N+1) dν′N+1 = (2π)3δ(R′

1 −R′
N+1).

Therefore

1
(2π)3(N+1) ∫

〈
T

{
e

(
i
∑

16j6N+1 νj ·R(sj)

)2

}〉

Γ

e−i
∑

16j6N+1 νj ·R′j{DNν}

= δ(R1 −RN+1)

(2π)3N
∫

3∏

α=1
e
−

N∑
j1=1

N∑
j2=1

Aj1,j2ν′j1,αν′j2,α−i

N∑
j=1

ν′j,αR′j,α
{DNν′}

= δ(R1 −RN+1)

(2π)3N

3∏

α=1
∫ e
−

N∑
j1=1

N∑
j2=1

Aj1,j2xj1xj2−i

N∑
j=1

xjR′j,α
{DNx}.

where {DN+1ν} = dν1 · · · dνN dνN+1, {DNν′} = dν′1,αdν′2,α · · · dν′N ,α,
а {DNx} = dx1 dx2 · · · dxN . Calculation of the usual Gaussian integral
results in

∫ exp
(
−

N∑

j1=1

N∑

j2=1
Aj1,j2xj1xj2 − i

N∑

j=1
xjR

′
j,α

)
dx1 dx2 · · · dxN

= πN/2

(DetA)1/2 exp
(
−1
4

N∑

j1=1

N∑

j2=1
(A−1)j1,j2R

′
j1,αR′j2,α

)
.
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Because the matrix A is positive-definite,

DetA > 0,

the inverse matrix A−1 is also positive-definite. We now have

1
(2π)3(N+1) ∫

〈
T

{
ei

∑
16j6N+1 νj ·R(sj)

}〉

Γ

e−i
∑

16j6N+1 νj ·R′j{DN+1ν}

= ρ(R′
1,R

′
2, ...,R

′
N+1), (1.123)

where {D
N+1ν} = dν1 · · · dνN dνN+1 and

ρ(R′
1,R

′
2, ...,R

′
N+1) = 1

23Nπ3N/2

δ(R′
1 −R′

N+1)

(DetA)3/2

× exp
(
−1
4

N∑

j1=1

N∑

j2=1
(A−1)j1,j2R

′
j1,αR′j2,α

)
. (1.124)

It is obvious that
ρ(R1,R2, ...,RN+1) > 0,

∫ ρ(R1,R2, ...,RN+1) dR1 dR2 · · · dRN+1 = 1.
(1.125)

These equations can be applied to disentangle expressions of the kind

〈T{f(R(s1), ...,R(SN+1)}〉Γ.

So, consider a function

f(R1, ...,RN+1),

that depends on N + 1 real vectors and whose Fourier representation is

f(...Rj ...)

= 1
(2π)3(N+1) ∫ ei(∑

(j) νjRj−
∑

(j) νjR
′
j)f(...R′

j ...) {DN+1R
′}{D

N+1ν},

where j = 1, ...,N + 1 and {D
N+1R

′} = dR′
1dR

′
2 · · · dR′

N+1. Because the
operators R(sj) commute under the sign of the T-product, we can write

T{f(R(s1), ...,R(sN+1)} = 1
(2π)3(N+1)

× ∫ T

{
ei

∑
(j) R(sj)·νj

}
e−i

∑
(j) νj ·R′j f(...R′

j ...) {DN+1R
′}{D

N+1ν},
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where {D
N+1R

′} = dR′
1dR

′
2 · · · dR′

N+1. Therefore, thanks to (1.120),

〈T{f(R(s1), ...,R(SN+1)}〉Γ
= ∫ f(...R′

j ...)ρ(...R′
j ...) dR′

1 dR′
2 · · · dR′

N+1, (1.126)

and, taking (1.122) into account, we see that

M > 〈T{f(...R(sj)...)}〉Γ > 0,

if
M > f(...R(sj)...) > 0. (1.127)

Now let us consider functionals F (R) that depend on real functions
R(s), defined on the interval

0 6 s 6 βh̄,

and use the following notation for the functional integral:

∫ F (R) dµ.

For a subset of “special functionals” of the type

F (R) = Φ(...R(sj)...),

that depend on a finite number N of vectors R(sj), we define this integral
by the following procedure:

∫ F (R) dµ = ∫ Φ(...R(sj)...)ρ(...Rj ...)
∏

(j)

dRj .

Then, thanks to (1.123) and (1.124),

〈T{f(R)}〉Γ = ∫ F (R) dµ,

〈T{f(R)}〉Γ > 0 if F (R) > 0
(1.128)

for arbitrary real vectors R(s). These relations can be generalized for a
broader set of functionals F (R) if one approximates these functionals by
corresponding sequences of the above-mentioned “special functionals” with
subsequent passage to the limit N →∞. For example, we can consider a
sequence of functions

RN (s) = R(sj), sj 6 s 6 sj+1, j = 1, ...,N (1.129)

s1 = 0, sN+1 = βh̄,

|sj+1 − sj | 6 ∆s → 0, N →∞
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and approximate the functional F (R) in question by the form F (RN ),
belonging obviously to the class of “special functionals”. We should like to
stress here that the technique of functional integration was developed first
by R. Feynman. His method (known as the “path integration method”)
was also applied by him to problems of quantum statistical mechanics
[5, 39].

In our approach, we prefer to deal directly with the averaged T-
products

〈T{F (R)}〉Γ.

Moreover, the only property we require is the nonnegativity of all these
averages in the case in which the functionals F (R) are positive:

〈T{F (R)}〉Γ > 0, (1.130)

if F (R) > 0 for arbitrary real vectors R(s). Let us choose instead of the
Hamiltonian Γ, given by expression (1.83), the Hamiltonian

H(Σ) = 1
2

∑

(f)

(pfpf
† + ω2qfq†f ), (1.131)

p†f = p−f , q†f = q−f .

As has already been stressed, one can introduce Bose amplitudes by

qf =
(

h̄

2ω(f)

)1/2

(bf + b†−f ), pf = i

(
2ω(f)

h̄

)1/2

(b†−f − bf ), (1.132)

and can transform H(Σ) into the form

H(Σ) =
∑

(f)

h̄ω(f)b†fbf + 1
2

∑

(f)

h̄ω(f). (1.133)

Let us consider

〈
T

{
e

βh̄

∫
0

ds
∑
(f)

Λf (s)Qf (s)}〉
H(Σ)

= Tr e−βH(Σ)T{e
βh̄
∫
0

ds
∑
(f)

Λf (s)Qf (s)

}
Tr e−βH(Σ)

,

(1.134)
where

Qf (s) = exp
(

sH(Σ)

h̄

)
qf exp

(
−sH(Σ)

h̄

)
. (1.135)

Here we are going to analyze the situation where all operators Λ(f)
commute with each other, as well as with all operators Qf (s), H(Σ), so
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that when calculating (1.131) we can treat Λf (s) as the usual C-functions.
Hence, using (1.82), we get

〈
T

{
e

βh̄

∫
0

ds
∑
(f)

Λf (s)Qf (s)}〉
H(Σ)

exp
(
1
2

h̄β

∫
0

ds
h̄β

∫
0

dσ

〈
T

{∑

(f)

Λf (s)Qf (s)
∑

(f ′)

Λf ′Qf ′(σ)
}〉

H(Σ)

)
.

On the other hand, it follows from (1.89), (1.129) and (1.130) that
〈

T

{∑

(f)

Λf (s)Qf (s)
∑

f ′
Λf ′Qf ′(σ)

}〉

H(Σ)

=
∑

(f)

Λf (s)Λ−f (σ)〈T{Qf (s)Q−f (σ)}〉H(Σ)

=
∑

(f)

Λf (s)Λ−f (σ) h̄

2ωf
(1− e−βωf h̄)−1(e−ωf |s−σ| + e−ωf βh̄+ωf |s−σ|).

Thus

〈
T

{
e

βh̄

∫
0

ds
∑
(f)

Λf (s)Qf (s)}〉
H(Σ)

= exp
(

h̄β

∫
0

ds
h̄β

∫
0

dσ
∑

(f)

h̄Λf (s)Λ−f (σ)

4ωf

(e−ωf |s−σ| + e−ωf βh̄+ωf |s−σ|)

1− e−βωf h̄

)
.

(1.136)
Let us assume that ...Λf ... are operators commuting with any of the
operators ...Q... and H(Σ), but not commuting with each other. Of
course, equation (1.133) does not hold at all in this case. However, consider
the situation where the left-hand side of (1.133) is subjected to another
T-ordering operation that does not affect the operators Qf , H(Σ), but
puts in order only operators containing ... Λf .... In short, we consider just
the expression

T ′
{
〈T{e

βh̄

∫
0

ds[A(s)+
∑
(f)

Λf (s)Qf (s)]

}〉H(Σ)

}
, (1.137)

where A, ... Λf ... are operators dependent only on those variables of the
wave function that are not influenced by the operators H(Σ), ...Qf ... and
vice versa. Here the symbol T ′ implies only the procedure of ordering for
operators

A, ... Λf ...
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Then (1.134) can be rewritten directly with the help of (1.133), as if
A, ... Λf ... were the usual C-functions. Consequently,

T ′
{〈

T
{

e

βh̄

∫
0

ds[A(s)+
∑
(f)

Λf (s)Qf (s)]}〉
H(Σ)

}

= T ′
{

exp

(
1
2

h̄β

∫
0

ds
h̄β

∫
0

dσ
∑

(f)

Λf (s)Λ−f (σ) h̄

2ωf
(1− e−βωf h̄)−1

× (e−ωf |s−σ| + e−ωf βh̄+ωf |s−σ|) +
h̄β
∫
0

dsA(s)

)}
. (1.138)

1.7. Auxiliary Operator Identities
Let us consider the operator equation

h̄
dU(s)

ds
= −{H0 + H1(s)}U(s), (1.139)

where U(0) = 1̂ — is the unit operator, and H1(s) is an operator that can
depend explicitly on s. It is easily seen that

U(s) = T

{
e
− 1

h̄

s

∫
0
{H0+H1(σ)} dσ

}
.

Then substitute into (1.136)

U(s) = e−
H0s

h̄ C(s).

This ansatz leads to the following equation for C(s)

h̄
dC(s)

ds
= −e

H0s
h̄ H1(s)e−

H0s
h̄ C(s), C(0) = 1,

which equation can be solved formally as

C(s) = T

{
e
− 1

h̄

s

∫
0

dσ e
H0σ

h̄ H1(σ)e−
H0σ

h̄
}

.

Therefore

U(βh̄) = T

{
e
− 1

h̄

βh̄

∫
0

ds {H0(s)+H1(s)}
}

= e−H0βT

{
e
− 1

h̄

βh̄

∫
0

ds e
H0s

h̄ H1(s)e
−H0s

h̄
}

. (1.140)
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In the particular case, where H1(s) = H1 and does not depend on s
explicitly, (1.136) gives

U(s) = e−(H0+H1)
s
h̄,

and it follows from (1.137) that

e−β(H0+H1) = e−βH0T

{
e
− 1

h̄

βh̄

∫
0

ds e
H0s

h̄ H1e−
H0s

h̄
}

. (1.141)
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Chap t e r 2

EQUILIBRIUM THERMODYNAMIC STATE
OF POLARON SYSTEM

The main objective of this chapter is the derivation of Bogolubov’s
inequality for the polaron reduced free energy by means of the algebraic
T-product method. This inequality is a source of various upper bounds
for the polaron ground-state energy. Feynman’s well-known inequality
is reproduced as a particular case of Bogolubov’s inequality. A weak-
interaction systematic finite-temperature perturbation scheme, based on
the same T-product formalism, as well as the adiabatic perturbation
approach, valid for the strong-coupling case, are also outlined.

2.1. Free Energy and Ground State Energy Calculation
Let us consider the standard polaron Hamiltonian

HP = H(S) + H(Σ) + Hint(S,Σ), (2.1)

where
H(S) = p2

2m
,

H(Σ) = 1
2

∑

(f)

{pfp†f + ω2(f)qfq†f}, q−f = q†f , p−f = p†f , (2.2)

Hint(S,Σ) = 1
V 1/2

∑

(f)

L(f)qfeif ·r, L(f) = L(−f) = L†(f).

Here, as in Chapter 1,

f =
(2πn1

L
, 2πn2

L
, 2πn3

L

)
,

where (n1,n2,n3) are arbitrary integers and L3 = V.
We can see that H(S) is the Hamiltonian of a free particle of mass m,

(the electron in polaron theory); H(Σ) is the Hamiltonian of the phonon
field, and the Hamiltonian Hint(S,Σ) describes the interaction between
the two systems Σ and S. In the case of the standard Fröhlich model

L(f) = g
|f | , g = const, (2.3)

ω(f) = ω = const.

63
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If we want the Hamiltonian Hint(S,Σ) to contain only a finite number of
terms (until the formal passage to the limit V →∞), we must put

L(f) =

{ g
|f | for |f | 6 fmax

0 for |f | > fmax

(2.4)

Staying within the framework of the standard Fröhlich model, we shall
assume that

fmax →∞ when V →∞.

However, we can consider the case when fmax is held fixed forever dur-
ing passage to the thermodynamic limit. The physical justification for
this assumption originates from the fact that the Fröhlich model does
not take proper account of the lattice structure. Thus a contribution
to the interaction Hamiltonian Hint(S,Σ) from any vector f such that
|f | > 2π/a, where a is the lattice constant, is not represented correctly in
the expression (2.2) and should be omitted.

The free energy for the Hamiltonian HP is given by the usual expres-
sion

−ϑ ln TrS,Σ eβHP.

This quantity is divergent in general. To make it finite, we must
subtract the free energies corresponding to the free particle S and to the
free phonon field Σ. As a result, we arrive at the so-called interaction free
energy corresponding to the Hamiltonian Hint(S,Σ):

−ϑ ln TrS,Σ eβHP −
(
−ϑ ln TrS eβH(S) − ϑ ln TrΣ eβH(Σ)

)

= −ϑ ln TrS,Σ e−βHP

TrS e−βH(S) TrΣ e−βH(Σ)
. (2.5)

Later we shall keep this expression in mind when considering the polaron
free energy.

It is usually assumed that the particle in question (i.e. the electron in
polaron theory) is confined within a limited region of space. This means
that the radius vector r of the particle S lays inside a finite volume V .
However, from a technical point of view, it is far more convenient to
assume that the radius vector r can take any value. To compensate for
the unwanted consequences of this assumption (namely the divergence of
the free energy of the free particle), we add an auxiliary term η2r2/2 to
the Hamiltonian H(S), which now reads

H(S) = Γ = p2

2m
+ η2r2

2
. (2.6)

This auxiliary term ensures soft confinement of the particle within
some effective volume. Smaller values of η lead to softer confinement, and
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thus to larger effective volume, and vice versa. Of course, we take the
passage to the thermodynamic limit

η →∞, V →∞. (2.7)

in the final results. In so doing, we see that the interaction free energy
can be represented finally by the following expression:

F
(p)
int = lim

η→0
lim

V→∞
F

(p)
int (V , η),

where
F

(p)
int (V , η) = −ϑ ln TrS,Σ e−βHP

TrS e−βH(S) TrΣ e−βH(Σ)
. (2.8)

Let us use (1.138), in which we choose

H0 = H(S) + H(Σ) = Γ + H(Σ), (2.9)

H1 = Hint(S,Σ).

We denote

R(s) = e
H0s

h̄ re−
H0s

h̄ , Qf (s) = e
H0s

h̄ qfe−
H0s

h̄ .

Then (2.2) results in

e
H0s

h̄ Hint(S,Σ)e−
H0s

h̄ = 1
V 1/2

∑

(f)

L(f)Qf (s)eif ·R(s),

and it follows from (1.138) that

e−βHP = e−βH(S)e−βH(Σ)T

{
exp

(
− 1

h̄V 1/2

h̄β

∫
0

ds
∑

(f)

L(f)Qf (s)eif ·R(s)

)}
.

(2.10)
Note that H(S) = Γ and H(Σ) act in completely different subspaces,
corresponding to the systems S and Σ. Therefore

R(s) = e
Γ
h̄

sre−
Γ
h̄

s, Qf (s) = e
H(Σ)

h̄
sqfe−

H(Σ)
h̄

s. (2.11)

Because R(s) acts only upon the variables of the system S, and Qf (s) only
upon the variables of the system Σ, the ordering T-operation in (2.10) can
be carried out in two steps: first of all we put into the proper order all
the operators Qf (s), and after this we order all the operators R(s). Thus
we find from (2.10) that

e−βHP = e−βΓe−βH(Σ)TR

{
TQ

{
exp

(
− 1

h̄V 1/2

h̄β

∫
0

ds
∑

(f)

L(f)Qf (s)eif ·R(s)

)}}
.

(2.12)
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Note further that the operator eβH(Σ) can be placed after the symbol
denoting the operation TR, because this operator does not act upon the
variables R(s). Taking this possibility into account, we find from (2.8)

F
(P )
int (V , η) = −ϑ ln TrS e−βΓe−βH(Σ)TR{F (R)}

Tr(S) e−βΓ
, (2.13)

where

F (R) =
〈

TQ

{
exp

(
− 1

h̄V 1/2

h̄β

∫
0

ds
∑

(f)

L(f)Qf (s)eif ·R(s)

)}〉

H(Σ)

.

In order to transform the right-hand side of this expression, we can
use (1.134), in which we make the substitution

T ′ → TR, T → TQ

and put

A(s) = 0, Λf (S) = 1
h̄V 1/2 L(f)eif ·R(s), ωf = ω. (2.14)

If we observe that
L(f)L(−f) = |L(f)|2,

we obtain

TR{eΦ} = TR

{〈
TQ

{
exp

(
− 1

h̄V 1/2

h̄β

∫
0

ds
∑

(f)

L(f)Qf (s)eif ·R(s)

)}〉

H(Σ)

}
,

(2.15)
where

Φ = 1
2h̄2V

∑

(f)

|L(f)|2 h̄

2ω
(1− e−βh̄ω)−1

× h̄β
∫
0

ds
h̄β
∫
0

dσ(e−ω|s−σ| + e−ωβh̄+ω|s−σ|)eif ·{R(s)−R(σ)}. (2.16)

Since eΦ on the right-hand side of (2.15) is a functional of the variables
R(s) only, not containing the variables Qf (s), there is no need to intro-
duce special notation TR. Therefore we shall denote the right-hand side
of (2.15) simply as

T{eΦ}.
Thus we obtain from (2.13) that

F
(P )
int (V , η) = −ϑ ln 〈T{eΦ}〉Γ. (2.17)
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Let us return now to the quadratic Hamiltonian of Chapter 1 and
rewrite it in the form

H(L) = H(S) + H(L)(Σ) + HL
int(S,Σ), (2.18)

where
H(S) = Γ

is given by the expression (2.6) as before, and

H(L)(Σ) = 1
2

∑

(f)

{pfp†f + ν2(f)qfq†f},

H
(L)
int (S,Σ) = K2

0r
2

2
+ i

V 1/2

∑

(f)

S(f)qf f · r

= 1
6V

∑

(f)

S2(f)f2

ν2(f)
r2 + i

V 1/2

∑

(f)

S(f)qf f · r.

(2.19)

We can repeat for the Hamiltonian H(L) all of our previous arguments,
developed for the Hamiltonian H(P ), if we put in (1.135)

A(s) = −K2
0R

2(s)

2h̄
, Λf (S) = − i

h̄V 1/2

∑

(f)

S(f) f ·R(s).

As a result, we obtain, instead of (2.17), the new expression

F
(L)
int (V , η) = −ϑ ln

TrS,Σ eβH(L)

TrS eβΓ TrΣ eβH(L)(Σ)
= −ϑ ln 〈T{eΦ0}〉Γ, (2.20)

where

Φ0 = −K2
0

2h̄
h̄β
∫
0

dsR2(s) + 1
2h̄2V

h̄β

∫
0

ds
h̄β

∫
0

dσ
∑

(f)

S2(f) h̄

2ν(f)

× Kν(f)(s,σ) f ·R(σ)

1− e−βh̄ν(f)
= −K2

0

2h̄
h̄β
∫
0

dsR2(s)

+ 1
2h̄2V

h̄β

∫
0

ds
h̄β

∫
0

dσ
∑

(f)

S2(f) h̄f2

6ν(f)

Kν(f)(s,σ)R(s) ·R(σ)

1− e−βh̄ν(f)
, (2.21)

and
Kν(f)(s,σ) = e−ν(f)|s−σ| + e−ν(f)βh̄+ν(f)|s−σ|. (2.22)
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It follows from (1.91) and (1.102) that

Kν(f)(s,σ) = 2ν(f)1− e−βh̄ν(f)

βh̄

∑

(n)

e
2πin

s−σ
βh̄

(2πn/βh̄)2 + ν2(f)
.

Hence

h̄β

∫
0

dσ
h̄

ν(f)
(1− e−βh̄ν(f))−1Kν(f)(s,σ)

=
h̄β

∫
0

ds
h̄

ν(f)
(1− e−βh̄ν(f))−1Kν(f)(s,σ) = 2

β

βh̄

ν2(f)
= 2h̄

ν2(f)
.

Therefore

1
4h̄2

h̄β

∫
0

ds
h̄β

∫
0

dσ
h̄

6ν(f)
(1− e−βh̄ν(f))−1Kν(f)(s,σ)[R2(s) + R2(σ)]

= 1
4h̄

h̄β

∫
0

ds
1

3ν2(f)
R2(s) + 1

4h̄

h̄β

∫
0

dσ
1

3ν2(f)
R2(σ) = 1

2h̄

h̄β

∫
0

ds
1

3ν2(f)
R2(s).

Since
K2

0 = 1
V

∑

(f)

S2(f)

ν2(f)

|f |2
3

,

we can see that

K2
0

2h̄
h̄β
∫
0

dsR2(s) = 1
4h̄2V

h̄β

∫
0

ds
h̄β

∫
0

dσ
∑

(f)

S2(f)f2

6ν(f)
h̄

Kν(f)(s,σ)[R2(s) + R2(σ)]

1− e−βh̄ν(f)
.

If we introduce the notation

L(|s− σ|) = 1
4h̄2V

∑

(f)

S2(f)f2

6ν(f)
h̄

[e−ν(f)|s−σ| + e−ν(f)βh̄+ν(f)|s−σ|]

(1− e−βh̄ν(f))
. (2.23)

then it follows from (2.21) that

Φ0 = −h̄β
∫
0

ds
h̄β
∫
0

dσ L(|s− σ|)[R(s)−R(σ)]2. (2.24)

As the next step, we shall try to consider this functional as a possible
approximation to the true initial functional Φ. Our aim is to derive an
approximate expression for the polaron interaction free energy (2.17).
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Generally speaking, if y is a quantity of the first order of smallness
then, up to terms of the second order of smallness (in fact, we may neglect
such terms)

ln (x + y)− ln (x) =
x+y

∫
x

dξ

ξ
∼= y

x
.

Thus, regarding the difference Φ− Φ0 as an expression of the first order
of smallness from a formal point of view, we can write in the “first
approximation”

ln 〈T{eΦ}〉Γ = ln 〈T{eΦ0}〉Γ + 〈T{eΦ(Φ− Φ0)}〉Γ
〈T{eΦ0}〉Γ

.

It is interesting to note that the corresponding approximation

appF
(P )
int (V , η) = −ϑ ln 〈T{eΦ0}〉Γ − ϑ

〈T{eΦ(Φ− Φ0)}〉Γ
〈T{eΦ0}〉Γ

(2.25)

provides us with an upper bound on the interaction free energy calculated
for the initial polaron Hamiltonian (here “app” assumes approximation for
precise linear model):

appF
(P )
int (V , η) > F

(P )
int (V , η). (2.26)

To prove this statement, consider the function

f(ξ) = ln 〈T{eΦ0+ξ(Φ−Φ0)}〉Γ. (2.27)

We have
f ′(ξ) = 〈T{eΦ0+ξ(Φ−Φ0)(Φ− Φ0)}〉Γ

〈T{eΦ0+ξ(Φ−Φ0)}〉Γ
, (2.28)

and hence 〈T{eΦ0+ξ(Φ−Φ0)(Φ− Φ0 − f ′(ξ))}〉Γ
〈T{eΦ0+ξ(Φ−Φ0)}〉Γ

= 0. (2.29)

Further, by means of (2.28) we find that

f ′′(ξ) = 〈T{eΦ0+ξ(Φ−Φ0)(Φ− Φ0)
2}〉Γ

〈T{eΦ0+ξ(Φ−Φ0)}〉Γ

− 〈T{eΦ0+ξ(Φ−Φ0)(Φ− Φ0)}〉Γ〈T{eΦ0+ξ(Φ−Φ0)(Φ− Φ0)}〉Γ
〈T{eΦ0+ξ(Φ−Φ0)}〉Γ2

.

It follows from this equation that

f ′′(ξ) = 〈T{eΦ0+ξ(Φ−Φ0)(Φ− Φ0)
2}〉Γ

〈T{eΦ0+ξ(Φ−Φ0)}〉Γ
= −(f ′(ξ))2

= 〈T{eΦ0+ξ(Φ−Φ0)[(Φ− Φ0)
2 − (f ′(ξ))2)]}〉Γ

〈T{eΦ0+ξ(Φ−Φ0)}〉Γ
.
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On the other hand, taking (2.29) into account, we can write

〈T{eΦ0+ξ(Φ−Φ0)[(Φ− Φ0)2 − (f ′(ξ))2]}〉Γ
= 〈T{eΦ0+ξ(Φ−Φ0)[(Φ− Φ0)2 − (f ′(ξ))2 − 2f ′(ξ)(Φ− Φ0 − f ′(ξ))]}〉Γ

= 〈T{eΦ0+ξ(Φ−Φ0)(Φ− Φ0 − f ′(ξ))2}〉Γ,
so that

f ′′(ξ) = 〈T{eΦ0+ξ(Φ−Φ0)(Φ− Φ0 − f ′(ξ))2}〉Γ
〈T{eΦ0+ξ(Φ−Φ0)}〉Γ

. (2.30)

We see that the expressions

eΦ0+ξ(Φ−Φ0), eΦ0+ξ(Φ−Φ0)(Φ− Φ0 − f ′(ξ))2

are positive for arbitrary real R(s) if they are considered to be functionals
of R(s) for (0 6 s 6 βh̄). Thus, using the property of the Γ-averages for
T-products investigated before (see (1.127)), we can show that

f ′′(ξ) > 0. (2.31)

It follows from (2.31) that

f ′′(ξ) > f ′(0) if ξ > 0

and
f(1)− f(0) =

1
∫
0
f ′(ξ) dξ > f ′(0),

or
f(0) + f ′(0) 6 f(1).

Multiplying the last inequality by −ϑ, we obtain

−ϑf(0)− ϑf ′(0) > −ϑf(1).

Taking (2.17), (2.25), (2.27) and (2.28) into account, we get

−ϑf(1) = F
(P )
int (V , η),

−ϑf(0)− ϑf ′(0) = appF
(P )
int (V , η),

and consequently our main inequality (2.26) is proved. It can now be
noted that, because of (2.20) and (2.25), we can write

appF
(P )
int (V , η) = appF

(L)
int (V , η)− ϑ

〈T{eΦ0(Φ− Φ0)}〉Γ
〈T{eΦ0}〉Γ

. (2.32)

It is worth stressing that the quantity F
(L)
int (V , η) has been calculated in

Chapter 1 (see (1.50)–(1.54)), as well as the limiting relation

F
(L)
int = lim

η→0
lim

V→∞
F

(L)
int (V , η)
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(see (1.54)). For the special case when H(L)(Σ) is a single-frequency
Hamiltonian, i.e. when ν(f) = ν = const, we obtain a simple closed-form
expression (1.56) from the Chapter 1 for F

(L)
int .

Let us now transform the second term on the right-hand side of (2.32).
Taking (2.16) and (2.24) into account, we obtain

〈T{eΦ(Φ− Φ0)}〉Γ
〈T{eΦ0}〉Γ

= 1
2h̄2V

∑

(f)

L2(f) h̄

2ω
(1− e−βh̄ω)−1

×
h̄β

∫
0

ds
h̄β

∫
0

dσ (e−ω|s−σ| + e−ωβh̄+ω|s−σ|) 〈T{e
Φ0+if ·{R(s)−R(σ)}}〉Γ
〈T{eΦ0}〉Γ

+
h̄β

∫
0

ds
h̄β

∫
0

dσ L(|s− σ|) 〈T{e
Φ0 [R(s)−R(σ)]2}〉Γ
〈T{eΦ0}〉Γ

.

Thus we need only to transform the expressions

〈T{eΦ0+if ·[R(s)−R(σ)]}〉Γ
〈T{eΦ0}〉Γ

(2.33)

〈T{eΦ0 [R(s)−R(σ)]2}〉Γ
〈T{eΦ0}〉Γ

. (2.34)

To do this, we first calculate the auxiliary expression

〈T{eΦ0+
h̄β

∫
0

ds λ(s) f ·R(s)}〉Γ, (2.35)

in which we can put for example

λ(s) = i[δ(s− s1)− δ(s− s0)], (2.36)

0 < s0 < βh̄, 0 < s1 < βh̄.

Consider the operator equation

h̄
dU(s)

ds
= −[H(L) − h̄λ(s) f · r]U(s)

= −[H(S) + H(Σ) + H
(L)
int (S,Σ)− h̄λ(s) f · r]U(S), (2.37)

U(0) = 1.

This equation corresponds to (1.136), in which we put

H0 = H(S) + H(L)(Σ), H1(S) = H
(L)
int (S,Σ)− h̄λ(s) f · r.

We repeat our previous reasoning when calculating the magnitude
TrS,Σ U(βh̄)

Tr(S) e−βH(S) TrΣ e−βH(L)(Σ)
,
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noting that in this case, when using (1.135), we have to choose

A(S) = K2
0R

2(S)

2h̄
+ λ(S) f ·R(s).

Thus we can find that

TrS,Σ U(βh̄)

Tr(S) e−βH(S) TrΣ e−βH(L)(Σ)
=

〈
T

{
e
Φ0+

h̄β

∫
0

dsλ(s) f ·R(s)}〉
Γ
.

But, because of (2.20),

TrS,Σ e−βH(L)

Tr(S) e−βH(S) TrΣ e−βH(L)(Σ)
= 〈T{eΦ0}〉Γ.

Thus 〈
T

{
e
Φ0+

βh̄
∫
0

ds λ(s) f ·R(s)}〉
Γ

〈T{eΦ0}〉Γ
=

TrS,Σ U(βh̄)

TrS,Σ e−βH(L) . (2.38)

Let us now return to (1.136) and (2.37), and choose

H0 = H(L), H1(s) = −h̄λ(s) f · r.
Then, because of (1.137), we find that

U(h̄β) = e−βH(L)
T

{
exp

(
h̄β

∫
0

ds λ(S)eH(L) s
h̄ f · r e−H(L) s

h̄

)}
. (2.39)

We note that in the Heisenberg representation the operator r(t) defined
by the linear equation of motion, which is induced by the Hamiltonian
H(L), would be as follows:

r(t) = ei
t
h̄

H(L)
re−i

t
h̄

H(L)
,

Therefore
e

s
h̄

H(L)
re−

s
h̄

H(L)
= r(−is).

It follows from (2.39) that

U(h̄β) = e−βH(L)
T

{
e

h̄β

∫
0

dsλ(s) f ·r(−is)}
.

Thus
TrS,Σ U(βh̄)

TrS,Σ e−βH(L) =
〈
T

{
e

h̄β

∫
0

dsλ(s) f ·r(−is)}〉
H(L)

. (2.40)
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Because H(L) is also a positive-definite form composed of Bose operators,
we can use (1.82) and write down

〈
T

{
e

h̄β

∫
0

dsλ(s) f ·r(−is)}〉
H(L)

= exp
〈

T

{(
h̄β

∫
0

ds λ(s) f · r(−is)
)2}〉

H(L)

.

But (1.52) gives the identities

〈rα(t)rα′(τ)〉H(L) = 0 if α 6= α′,

〈rα(t)rα(τ)〉H(L) = 〈r1(t)r1(τ)〉H(L) , α = 1, 2, 3,

from which it follows that〈
T

{
h̄β

∫
0

ds λ(s)rα(−is)
h̄β

∫
0

ds λ(s)rα′(−is)
}〉

H(L)

= 0, α 6= α′,

〈
T

{(
h̄β

∫
0

ds λ(s)rα(−is)
)2}〉

H(L)

=
〈

T

{(
h̄β

∫
0

ds λ(s)r1(−is)
)2}〉

H(L)

and
〈
T

{(
h̄β

∫
0

ds λ(s)f · r(−is)
)2}〉

H(L)

= f2
〈
1
2

T

{(
h̄β

∫
0

ds λ(s)r1(−is)
)2}〉

H(L)

= f2

6

〈
T

{ 3∑

α=1

(
h̄β

∫
0

ds λ(s)rα(−is)
)2}〉

H(L)

= f2

6

〈
T

{(
h̄β

∫
0

ds λ(s)r(−is)
)2}〉

H(L)

.

We can derive from (2.38) and (2.40) that

〈
T

{
eΦ0e

h̄β
∫
0

dsλ(s) f ·R(s)}〉
Γ

〈T{eΦ0}〉Γ
= exp f2

6

〈
T

{(
h̄β

∫
0

dsλ(s) r(−is)
)2}〉

H(L)

.

(2.41)
In particular, for the function λ(s) defined by (2.36), relation (2.41) results
in 〈T{eΦ0+if ·[R(s1)−R(s2)]}〉Γ

〈T{eΦ0}〉Γ
= e−

f2

6 〈T{[r(−is1)−r(−is2)]
2}〉

H(L) ,

or, after a change of variables,

〈T{eΦ0+if ·[R(s)−R(σ)]}〉Γ
〈T{eΦ0}〉Γ

= e−
f2

6 〈T{[r(−is)−r(−iσ)]2}〉
H(L) . (2.42)

If we apply the operator

−
3∑

α=1

∂2

∂f2
α
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to both sides of (2.42) and put f = 0, we obtain

〈T{eΦ0 [R(s)−R(σ)]2}〉Γ
〈T{eΦ0}〉Γ

= 〈T{(r(−is)− r(−iσ))2}〉H(L) . (2.43)

From (2.23), (2.42) and (2.43), we can derive the identity

appF
(P )
int (V , η) = appF

(L)
int (V , η)− ϑ

1
2h̄2V

∑

(f)

L2(f) h̄

2ω
(1− e−βωh̄)−1

×
h̄β

∫
0

ds
h̄β

∫
0

dσ (e−ω|s−σ| + e−ωβh̄+ω|s−σ|)e−
f2

6 〈T{[r(−is)−r(−iσ)]2}〉
H(L)

− ϑ
1

4h̄2V

∑

(f)

S2(f)f2h̄

6ν(f)
(1− e−βh̄ν(f))−1

×h̄β
∫
0
ds

h̄β
∫
0

dσ (e−ν(f)|s−σ|+ e−ν(f)βh̄+ν(f)|s−σ|)〈T{[r(−is)− r(−iσ)]2}〉H(L) .

(2.44)
We should note that the expression

〈T{[r(−is)− r(−iσ)]2}〉H(L)

has already been considered in Chapter 1. So, keeping in mind (1.71) and
(1.72), we can write

〈T{[r(−is)− r(−iσ)]2}〉H(L)

= 3ih̄
2π

+∞
∫
−∞

2(1− e−ν|s−σ|)

1− e−h̄νβ

1
mΩ2 − ηΩ + Ω∆(Ω)

∣∣∣
ν+i0

ν−i0
dν, (2.45)

where (see (1.20))

∆(Ω) = − 1
V

∑

(f)

S2(f)

6ν2(f)
f2

(
1

Ω + ν(f)
+ 1

Ω− ν(f)

)
. (2.46)

We are now going to consider the classical limit of the expression
(2.44). To make a transition to classical mechanics, we should take the
limit h̄ → 0. It is convenient to introduce new variables in (2.44):

s = h̄s′, σ = h̄σ′.

Then we can see from (2.44) and (2.45) that

appF
(P )
int (V , η) = appF

(L)
int (V , η)− ϑ

2V

∑

(f)

L2(f) h̄

2ω(1− e−βh̄ω)

×
β

∫
0

ds′
β

∫
0

dσ′ (e
−ωh̄|s′−σ′| + e−ωh̄β+ωh̄|s′−σ′|)

e
f2

6 〈T{[r(−ih̄s′)−r(−ih̄σ′)]2}〉
H(L)
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− ϑ

4V

∑

(f)

S2(f)f2

6ν(f)

h̄

2ω(1− e−βh̄ν(f))

×
β

∫
0

ds′
β

∫
0

dσ′ (e
−ν(f)h̄|s′−σ′| + e−ν(f)h̄β+ν(f)h̄|s′−σ′|)

e
f2

6 〈T{[r(−ih̄s′)−r(−ih̄σ′)]2}〉
H(L)

, (2.47)

〈T{[r(−ih̄s′)− r(−ih̄σ′)]2}〉H(L)

= 3i
2π

+∞
∫
−∞

2h̄
1− e−h̄νβ

(1− e−ν|s′−σ′|h̄) 1
mΩ2 − ηΩ + Ω∆(Ω)

∣∣∣
ν+i0

ν−i0
dν, (2.48)

If the variables V and η are fixed then the expression for ∆(Ω) contains
only a finite number of terms. Hence we see that

〈T{[r(−ih̄s′)− r(−ih̄σ′)]2}〉H(L) → 0 for h̄ → 0.

Observing that all sums in (2.47) contain only a finite number of terms,
we have in the classical limit

appF
(P )
int (V , η) = − 1

2V ω2

∑

(f)

L2(f), (2.49)

because it was shown earlier that for classical mechanics the following
identity holds

appF
(L)
int (V , η) = 0.

We shall show now that (2.49) gives the exact value of the free energy
appF

(P )
int in the classical limit. In fact, the Hamiltonian H(P ) is the sum

of the potential and kinetic energies. Therefore, in the case of classical
mechanics,

F (P ) = kinF (P ) + potF (P ), kinF (P ) = kinFS + kinFΣ

and
F

(P )
int = F (P ) − FS − FΣ = potF (P ) − potFS − potFΣ.

Therefore we arrive at the expression

F
(P )
int (V , η)

= −ϑ ln

∫ exp

(
−β

η2r2

2
− ω2

2
β
∑

(f)

qfq†f −
β

V 1/2

∑

(f)

L(f)qfeif ·r
)

drDq

∫ exp

(
−β

η2r2

2

)
dr ∫ exp

(
−βω2

2

∑

(f)

qfq†f

)
Dq

.

(2.50)



76 Ch. 2. Equilibrium Thermodynamic State of Polaron System

Here
qf = xf + iyf , q−f = xf − iyf ,

i. e.
x−f = xf , y−f = −yf ,

and
Dq =

∏

(f)

′
dxf dyf .

Here the symbol
∏′

denotes that only different dxf and dyf are
included; thus if f 6= 0 is included in the product then −f is not included.
After the change of variables

qf → qf − L(f)

ω2V 1/2 e−if ·r, q†f → q†f −
L(f)

ω2V 1/2 eif ·r,

the expression
ω2

2
β
∑

(f)

qfq†f + β

V 1/2

∑

(f)

L(f)qfeif ·r

transforms into

ω2

2
β
∑

(f)

qfq†f −
ω2

2
β
∑

(f)

L(f)

V 1/2

e−if ·rq†f + eif ·rqf

ω2

+ ω2β

2

∑

(f)

L2(f)

ω4V
+ β

V 1/2

∑

(f)

L(f)qfeif ·r − β

V

∑

(f)

L2(f)

ω2

= ω2

2

∑

(f)

qfq†f −
β

2ω2V

∑

(f)

L2(f).

Therefore (2.50) can be represented as

F
(P )
int (V , η)

= −ϑ ln

∫ exp

(
− β

η2r2

2
− ω2

2
β
∑

(f)

qfq†f +
β

2ω2V

∑

(f)

L2(f)

)
drDq

∫ exp

(
− β

η2r2

2

)
dr ∫ exp

(
− βω2

2

∑

(f)

qfq†f

)
Dq

= − 1
2V ω2

∑

(f)

L2(f). (2.51)

Hence we see that in classical mechanics the approximation given by (2.49)
leads to the exact result.
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Now we shall investigate (2.44) in the quantum case. It is convenient
to use the function

EV (ω) = 1
V

∑

(f)

S2(f)

6ν2(f)
f2[δ(ν(f) + ω) + δ(ν(f)− ω)] (2.52)

introduced in Chapter 1. With this function, (2.44) can be rewritten in
the form

appF
(P )
int (V , η) = F

(L)
int (V , η)

− ϑ

4V h̄2

∑

(f)

L2(f) h̄

ω(1− e−βh̄ω)

h̄β

∫
0

ds
h̄β

∫
0

dσ
(e−ω|s−σ| + e−βh̄ω+ω|s−σ|)

e
f2

6 DV (s,σ)

− ϑ

4h̄2
∞
∫
0

dω EV (ω) h̄ω

1− e−βh̄ω

h̄β

∫
0
ds

h̄β

∫
0

dσ(e−ω|s−σ| + e−βh̄ω+ω|s−σ|)DV (s,σ),

(2.53)
where (see (2.45), (2.46) and (2.52))

DV (s,σ) = 3ih̄
π

+∞
∫
−∞

1− e−ω|s−σ|

1− e−h̄ωβ

1
mΩ2 − η2 + Ω∆(Ω)

∣∣∣
ω+i0

ω−i0
dω, (2.54)

∆(Ω) = −
+∞
∫
−∞

EV (ω)

Ω− ω
. (2.55)

We note that, because of (2.52),

EV (ω) > 0, EV (−ω) = EV (ω). (2.56)

It follows from these relations and from (2.55) that

∆(−Ω) = −
+∞
∫
−∞

E(ω)

−Ω− ω
= −

+∞
∫
−∞

E(ω)

−Ω + ω
= −∆(Ω). (2.57)

Let us introduce new notation for brevity:

1
mΩ2 − η2 + Ω∆(Ω)

= Φ(Ω), 3ih̄
π

(
1− e−ω|s−σ|

1− e−h̄ωβ

)
= φ(ω).

Then the right-hand side of (2.54) can be expressed as
+∞
∫
−∞

φ(ω){Φ(ω + i0)− Φ(ω − i0)}.

But it follows from (2.57) that

Φ(Ω) = Φ(−Ω),

and in particular,

Φ(ω + i0)− Φ(ω − i0) = Φ(−ω − i0)− Φ(−ω + i0).
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From here
+∞
∫
−∞

φ(ω){Φ(ω + i0)−Φ(ω − i0)}dω =
+∞
∫
−∞

φ(−ω){Φ(ω − i0)−Φ(ω + i0)}dω,

that yields

+∞
∫
−∞

φ(ω){Φ(ω + i0)− Φ(ω − i0)} dω

= 1
2

+∞
∫
−∞

{φ(ω)− φ(−ω)}{Φ(ω + i0)− Φ(ω − i0)} dω.

On the other hand,

1− e−ω|s−σ|

1− e−h̄ωβ
− 1− eω|s−σ|

1− eh̄ωβ
= 1 + e−h̄ωβ − e−ω|s−σ| − e−βh̄ω+ω|s−σ|

1− e−h̄ωβ
.

Therefore we can derive from (2.54)

DV (s,σ) = 3ih̄
2π

+∞
∫
−∞

1 + e−h̄ωβ − e−ω|s−σ| − e−βh̄ω+ω|s−σ|

(1− e−h̄ωβ)(mΩ2 − η2 + Ω∆(Ω))

∣∣∣
ω+i0

ω−i0
dω. (2.58)

It will be noted that (1.91) and (1.102) give us the following result:

h̄
e−ω|s−σ| + e−h̄ωβ+ω|s−σ|−

2ω(1− e−h̄ωβ)
= 1

β

∑

(n)

e
in2π

s−σ
βh̄

(2πn/βh̄)2 + ω2

= 1
β

∑

(n)

cos {2πn(s− σ)/βh̄}
(2πn/βh̄)2 + ω2 . (2.59)

Thus

h̄(1 + e−h̄ωβ − e−ω|s−σ| − e−βh̄ω+ω|s−σ|)

2ω(1− e−h̄ωβ)
= 1

β

∑

(n6=0)

1− e
in2π

s−σ
βh̄

(2πn/βh̄)2 + ω2

= 1
β

∑

(n6=0)

1− cos {2πn(s− σ)/βh̄}
(2πn/βh̄)2 + ω2 . (2.60)

These expressions are valid in the domain

0 6 s 6 βh̄, 0 6 σ 6 βh̄, (2.61)

but their right-hand sides are defined for all real s and σ and they are
periodic functions of s− σ with period βh̄. It follows from (2.58) that

DV (s,σ) = DV (s− σ), (2.62)
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where

DV (s) = 3ih̄
2π

+∞
∫
−∞

1 + e−h̄ωβ − e−ω|s| − e−βh̄ω|s|

(1− e−h̄ωβ)(mΩ2 − η2 + Ω∆(Ω))

∣∣∣
ω+i0

ω−i0
dω, (2.63)

This function can be continued to the whole real axis,

DV (s) = 3i
πβ

∑

n6=0

+∞
∫
−∞

1− cos {2πns/βh̄}
(2πn/βh̄)2 + ω2

ω

mΩ2 − η2 + Ω∆(Ω)

∣∣∣
ω+i0

ω−i0
dω,

(2.64)
such that it is periodic and symmetric one:

DV (−s) = DV (s), DV (s + βh̄) = DV (s). (2.65)

Let us consider the functions

R(P )(s) = (e−ωs + e−βh̄ω+ωs)e−
f2

6 DV (s), 0 6 s 6 βh̄,

R(L)(s) = (e−ωs + e−βh̄ω+ωs)DV (s).

Taking (2.59) and (2.64) into account, we can show that these functions
can be continued to the whole real axis s in such a way that they possess
properties of periodicity and symmetry similar to those given by (2.65).
Hence we have the identities

R(P ,L)(s) =
∑

(n)

R(P ,L)
n e

2πin
s

βh̄

and
R(P ,L)(s− σ) =

∑

(n)

R(P ,L)
n e

2πin
s−σ
βh̄ ,

from which it follows that
h̄β
∫
0

dσR(P ,L)(s− σ) = R(P ,L)
0 βh̄ =

h̄β
∫
0

dσR(P ,L)(σ),

h̄β
∫
0

ds
h̄β
∫
0

dσR(P ,L)(s− σ) = βh̄
h̄β
∫
0

dσR(P ,L)(σ).
(2.66)

Thanks to (2.65), which are satisfied by the functions R(P ,L)(s) too, we
have

h̄β
∫
0

dσR(P ,L)(σ) =
βh̄/2
∫
0

dσR(P ,L)(σ) +
βh̄
∫

βh̄/2
dσR(P ,L)(σ)

=
βh̄/2
∫
0

dσR(P ,L)(σ) +
βh̄/2
∫
0

dσR(P ,L)(βh̄− σ) = 2
βh̄/2
∫
0

dσR(P ,L)(σ).

(2.67)
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Therefore (2.53) can be transformed into the following:

appF
(P )
int (V , η) = appF

(L)
int (V , η)

− 1
4V

∑

(f)

L2(f) 1
ω(1− e−βωh̄)

h̄β

∫
0

dσ (e−ωσ + e−βh̄ω+ωσ)e
f2

6 DV (σ)

− 1
4

∞
∫
0

dω EV (ω) ω

1− e−βωh̄

h̄β

∫
0

dσ (e−ωσ + e−βh̄ω+ωσ)DV (σ), (2.68)

or, equivalently,

appF
(P )
int (V , η) = appF

(L)
int (V , η)

− 1
2V

∑

(f)

L2(f) 1
ω(1− e−βωh̄)

βh̄/2
∫
0

dσ (e−ωσ + e−βh̄ω+ωσ)e−
f2

6 DV (σ)

− 1
2

∞
∫
0

dω EV (ω) ω

1− e−βωh̄

βh̄/2
∫
0

dσ (e−ωσ + e−βh̄ω+ωσ)DV (σ). (2.69)

Let us proceed with the passage to the limit

lim
η→0

lim
V→∞

. (2.70)

Then, using the identity (2.26), we have

appF
(P )
int > F

(P )
int , (2.71)

where
appF

(P )
int = lim

η→0
lim

V→∞
appF

(P )
int (V , η). (2.72)

It should be stressed that the functions S(f) and ν(f), which characterize
the auxiliary Hamiltonian H(L), could be chosen arbitrarily.

To calculate (2.72), it is convenient to choose for S(f) and ν(f) some
continuous functions on the real axis, such that

ν(f) > 0, 1
V

∑

|f |>R

S(f)

ν2(f)
f2 6 δ

( 1
R

)
R→∞
→ 0,

where δ(1/R) does not depend on V . In this case, if φ(ω) is an arbitrary
continuous and finite function on the real axis then we have
+∞
∫
−∞

dω φ(ω)EV (ω) = 1
6V

∑

(f)

S2(f)

ν2(f)
f2{φ(ν(f)) + φ(−ν(f))}

→ 1
(2π)3

∫ S2(f)

6ν2(f)
f2{φ(ν(f)) + φ(−ν(f))} df
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= 4π
(2π)3

∞
∫
0

df
S2(f)

6ν2(f)
f4{φ(ν(f)) + φ(−ν(f))} when V →∞. (2.73)

Thus the generalized limit

E(ω) = lim
V→∞

EV (ω) (2.74)

exists and we can write
+∞
∫
−∞

dω φ(ω)EV (ω) V→∞−→
+∞
∫
−∞

dω φ(ω)EV (ω). (2.75)

This function E(ω)has the following obvious properties:

E(ω) > 0, E(−ω) = E(ω), (2.76)

+∞
∫
−∞

dω E(ω) = 1
6π2

∞
∫
0

df
S2(f)

ν2(f)
f4.

It follows from (2.75), in particular, that

∆(Ω) → ∆∞(Ω) = −
+∞
∫
−∞

E(ω)

Ω− ω
dω when ImΩ 6= 0, (2.77)

and
∆∞(Ω) = −∆∞(−Ω).

Thus, as we can see,

E(ω) = 1
2πi

{∆∞(ω + i0)−∆∞(ω − i0)}

= 1
2πi

{∆∞(ω + i0) + ∆∞(−ω + i0)}. (2.78)

The calculation of (2.72) should be commenced with the proper choice of
the function ∆∞(Ω). Let us choose an analytic function ∆+(Ω) that is
regular in the upper half–plane and possesses the following properties:

(1) for large enough R,

|∆+(Ω)| 6 C

|Ω| , C = const, |Ω| > R, ImΩ > 0;

(2) the generalized function

lim
ε→0,ε>0

∆+(ω + iε) = ∆+(ω + i0)

exists on the real axis ω, and the expression
1
2πi

{∆+(ω + i0) + ∆+(−ω + i0)} > 0.
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The integral of this expression, taken over the whole real axis, converges.
Let us now choose

∆(Ω) = ∆+(Ω), ImΩ > 0,

∆(Ω) = −∆+(−Ω), ImΩ > 0.
(2.79)

Bearing the conditions (1) and (2) in mind, it is easy to see that this func-
tion (2.79) and the corresponding function E(ω) satisfy all the conditions
mentioned above.

Supposing ∆∞ to be fixed, we choose S(f) and ν(f) in such a way that
the limit conditions (2.74)–(2.76) are obliged. To analyze the expression

lim
η→0

lim
V→∞

DV (s),

we start from the definition (2.63), noting that the expression

L(s,Ω) = 1 + e−h̄βΩ − e−Ωs − e−βh̄Ω+Ωs

Ω(1− e−βh̄Ω)
, 0 6 s 6 βh̄, (2.80)

is an analytic function of Ω on the whole complex plane that has poles at

Ω = 2πni

βh̄
, where n is an integer,

and is free from any other singularities. We are going to show now that
the point Ω = 0 is not a pole, so the function (2.80) is regular in the
vicinity of this point. In fact, the expansion in powers of Ω = 0 results in
the series

1 + e−h̄βΩ − e−Ωs − e−βh̄Ω+Ωs = Ω2(βh̄s− s2) + Ω3 ...,

Ω(1− e−βh̄Ω) = βh̄Ω2 + Ω3 ... .

These expansions lead to the final expansion for the function in question:

L(s,Ω) = s

(
1− s

βh̄

)
+ Ω ... (2.81)

Therefore the only singularities of L(s,Ω), as a function of Ω, are simple
poles:

Ω = 2πni

βh̄
, n = ±1,±2,±3, ...

These features allows us to rewrite (2.63) and (2.80) in the form

DV (s) = 3ih̄
2π

+∞
∫
−∞

L(s,Ω) Ω

mΩ2 − η2 + Ω∆(Ω)

∣∣∣
ω+i0

ω−i0
dω, (2.82)

0 6 s 6 βh̄.
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This expression can be treated by the method developed in Chapter 1.
Note that the expression

L(s,Ω) Ω

mΩ2 − η2 + Ω∆(Ω)
, 0 6 s 6 βh̄

is nothing other than an analytic function of Ω that is regular on the strips

0 < ImΩ <
2π
βh̄

, 0 > ImΩ > − 2π
βh̄

,

and has an order 1/|Ω|2 as Ω →∞. Therefore it follows from (2.82) that

DV (s) = 3ih̄
2π

+∞
∫
−∞

L(s,Ω) Ω

mΩ2 − η2 + Ω∆(Ω)

∣∣∣
ω+iε

ω−iε
dω, (2.83)

where ε is an arbitrary number from the interval

0 < ε <
2π
βh̄

, (2.84)

and (2.83) does not depend on ε in this interval. Fixing ε , we can go to
the limit

lim
η→0

lim
V→∞

in (2.83), thus obtaining

lim
η→0

lim
V→∞

DV (s) = 3ih̄
2π

+∞
∫
−∞

L(s,Ω) 1
mΩ + ∆∞(Ω)

∣∣∣
ω+i0

ω−i0
dω

= 3ih̄
2π

+∞
∫
−∞

L(s,ω) 1
mΩ + ∆∞(Ω)

∣∣∣
ω+i0

ω−i0
dω. (2.85)

In order to get the limiting expression

appF
(P )
int = lim

η→0
lim

V→∞
appF

(P )
int (V , η)

consider the case of the true Fröhlich model with L(f) given by (2.3). In
this case

lim
η→0,V→∞

1
V

∑

(f)

L2(f)e−
f2

6 DV (s) = 1
(2π)3

∫ g2

|f2| e
− f2

6 DV (s) df

= 4πg2

(2π)3

∞
∫
0

e−
f2

6 DV (s) df = 4πg2

(2π)3
π1/2

2

(
6

D(s)

)1/2

. (2.86)
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From (2.68) and (2.69), we obtain

appF
(P )
int = appF

(L)
int −

g2π
(2π)3

π1/2

2
1

ω(1− e−βωh̄)

×
h̄β

∫
0

dσ (e−ωσ + e−ωh̄β+ωσ)
(

6
D(σ)

)1/2

− 1
4

∞
∫
0

dω E(ω) ω

1− e−βωh̄

×h̄β
∫
0

dσ (e−ωσ + e−ωh̄β+ωσ)D(σ), (2.87)

or

appF
(P )
int = appF

(L)
int

− g2π3/2

(2π)3
1

ω(1− e−βωh̄)

βh̄/2
∫
0

dσ (e−ωσ + e−ωh̄β+ωσ)
(

6
D(σ)

)1/2

− 1
2

∞
∫
0

dω E(ω) ω

1− eβωh̄

βh̄/2
∫
0

dσ (e−ωσ + e−ωh̄β+ωσ)D(σ). (2.88)

This equation gives a function that satisfies the inequality

appF
(P )
int > F

(P )
int ,

so that we can try to construct an effective approximation, consider-
ing trial functions ∆∞(Ω) that contain some variational parameters.
These parameters will be fixed later by the minimization condition for
appF

(P )
int (V , η). To illustrate the idea, we begin with the simplest but

meaningful choice

∆∞(Ω) = − K2
0Ω

Ω2 − ν20
, E(ω) = K2

0

2
{δ(ω − ν0) + δ(ω + ν0)}. (2.89)

As pointed out in Chapter 1, this choice is equivalent to Feynman’s model,
in whichH(L) is the two-body Hamiltonian describing a particle S that
interacts with another particle Σ via harmonic force. h From (2.89), we
have

1
mΩ + ∆∞(Ω)

= ν20 − Ω2

mΩ(ν20 − Ω2)
= ν20 − Ω2

mΩ

1
2µ0

(
1

Ω + µ0
− 1

Ω− µ0

)
,

(2.90)
where

µ2
0 = K2

0

m
+ ν20 , K2

0 = m(µ2
0 − ν20).

h See also Chapter 8, Section 4 in Feynman’s book [5].
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Hence
1

mΩ + ∆∞(Ω)

∣∣∣
ω+i0

ω−i0

= −2πi

{
1
m

(
ν0
µ0

)2

δ(ω) + µ2
0 − ν20

2mµ2
0

[δ(ω − µ0) + δ(ω + µ0)]

}
.

Now we use (2.85), keeping in mind that, because of (2.80),

L(s,ω) = L(s,−ω).

From this, we have

D(s) = 3h̄
m

(
ν0
µ0

)2

L(s, 0) + 3h̄
m

µ2
0 − ν20

µ2
0

L(s,µ0).

This result can be transformed thanks to (2.80) and (2.81):

D(s) = 3h̄
m

(
ν0
µ0

)2

s

(
1− s

βh̄

)

+ 3h̄
m

µ2
0 − ν20

µ3
0

(
1 + e−h̄βµ0 − e−sµ0 − e−βh̄µ0+sµ0

1− e−βh̄µ0

)
, (2.91)

where 0 6 s 6 βh̄. This expression has already been derived in Chapter:1
when we considered Feynman’s two-body model. Let us note that for
the choice (2.89) the corresponding expression for appF

(L)
int has also been

calculated there:

appF
(L)
int = −3ϑ ln µ0

ν0
+ 3h̄

2
(µ0 − ν0)− 3ϑ ln 1− e−βh̄ν0

1− e−βh̄µ0
. (2.92)

Let us substitute now (2.91) and (2.92) into (2.88). It is convenient to
introduce dimensionless parameters

µ = µ0

ω
, ν = ν0

ω
(2.93)

and dimensionless constants

βd = βh̄ω, α = g2

4πh̄ω2

(
m

2h̄ω

)1/2
. (2.94)

Then, putting

z = ωσ, dσ = 1
ω

dz, 0 6 z 6 βd,

in the integrand, we we come to the main result of this chapter

appF
(P )
int

h̄ω
= − 3

βd
ln µ

ν
− 3

βd
ln 1− e−βdν

1− e−βdµ
+ 3

2
(µ− ν)

− α

(1− e−βd)π1/2

βd/2
∫
0

dz (e−z + e−βd+z)
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×
{(

ν

µ

)2

z

(
1− z

βd

)
+ µ2 − ν2

µ3
1 + e−βdµ − e−µz − e−βdµ+zµ

1− e−βdµ

}−1/2

− 3
4

ν(µ2 − ν2)(1− e−βdν)−1
βd/2
∫
0

dz (e−νz + e−βdν+νz)

×
{(

ν

µ

)2

z

(
1− z

βd

)
+ µ2 − ν2

µ3
1 + e−βdµ − e−µz − e−βdµ+zµ

1− e−βdµ

}
. (2.95)

The parameters µ and ν can be treated as positive variational parameters
that must be chosen to minimize the expression (2.95), thus providing
the best possible approximation for the true value of the interaction free
energy

F
(P )
int

h̄ω
. (2.96)

It will turn out that (2.90) and (2.95) result in the inequality

µ2 − ν2 = K2
0

mω2 > 0. (2.97)

Hence the domain of possible values of the parameters µ and ν is given
by the inequality

µ > ν > 0. (2.98)

Let us begin with the simplest (but not the best) choice of variational
parameters:

µ = ν.

For this choice, the approximating formula (2.95) is simplified radically
and reduces to

− α

π1/2

βd/2
∫
0

e−z + e−βd+z

1− e−βd

dz

{z(1− z/βd)}1/2 . (2.99)

It is easy to see that (2.99) represents exactly the first term in the
expansion of the free energy F

(P )
int in powers of the dimensionless interac-

tion parameter α (i.e. g2). In fact, thanks to (2.97), the equality µ = ν
corresponds to the absence of the interaction term in the Hamiltonian
H(L) , and the functional Φ0, which is defined by (2.23) and (2.24), is
identical zero.

We see also from (2.16) that Φ is proportional to α. Hence the approx-
imation (2.26) contains two terms of expansion for F

(P )
int in powers of α,

i.e. the zeroth-order term and the first-order term.
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The zeroth-order term is now equal to zero and the first-order term is
expressed by (2.99). Of course, such an approximation is satisfactory only
in the case of small α. But, on the other hand, it is easy to take further
steps in this situation and to calculate the term proportional to α2. This
can be done by means of the regular expansion

appF
(P )
int = −ϑ ln 〈T{eΦ}〉Γ = A1 + A2 + · · · ,

A1 = −ϑ〈T{Φ}〉Γ,

A2 = −ϑ
1
2
〈T{Φ2} −A2

1〉Γ, ...
(2.100)

Here A1 is already known, and A2 can be easily constructed by the method
discussed before.

After these remarks, we may turn to (2.95) and consider it from the
point of view of the minimum principle, which allows us to determine
parameters µ and ν satisfying the inequalities (2.98). To simplify all
calculations, we are interested only in the case when

1
βd

= ϑ

h̄ω
¿ 1. (2.101)

Substituting βd = ∞ into (2.95), we obtain an approximation formula for
zero temperature:

app F
(P )
int

h̄ω
= 3(µ− ν)

2
− 3ν(µ2 − ν2)

4

×
∞
∫
0

e−νz

{(
ν

µ

)2

z + µ2 − ν2

µ3 (1− e−µz)

}
dz

− α

π1/2

∞
∫
0

e−νz

{(
ν

µ

)2

z + µ2 − ν2

µ3 (1− e−µz)

}−1/2

dz. (2.102)

After integration, we have

∞
∫
0

e−νz

{(
ν

µ

)2

z + µ2 − ν2

µ3 (1− e−µz)

}
dz =

(
ν

µ

)2
1
ν2

+ µ2 − ν2

µ3

(
1
ν
− 1

µ + ν

)
= 1

µ2 + µ2 − ν2

νµ3(µ + ν)
µ = 1

µ2 + µ− ν

νµ2 = 1
µν

.

Thus the two first terms on the right-hand side of (2.102) give us

3
2

(µ− ν)− 3ν
4

(µ2 − ν2) 1
µν

= 3
4µ

(2µ2 − 2µν − µ2 + ν2) = 3
4µ

(µ− ν)2.
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Therefore (2.102) results in

app F
(P )
int

h̄ω
= 3

4µ
(µ− ν)2

− α

π1/2

∞
∫
0

e−z

{(
ν

µ

)2

z + µ2 − ν2

µ3 (1− e−µz)

}−1/2

dz. (2.103)

This formula was derived for the first time by R. Feynman.
Let us investigate the applicability of this formula for the case of small

α and try to find parameters ν and µ from the minimum principle in such
a way as to take into account terms proportional to α2. As we have seen
(see (2.99)), the term of appF

(P )
int , that is proportional to α in the case

β = ∞ under consideration, will be equal to

− α

π1/2

∞
∫
0

dz
e−z

z1/2 = −2 α

π1/2

∞
∫
0

e−x2 dx = −α.

This situation corresponds to the choice of parameters ν = µ. Thus we
now put

µ = ν(1 + ξα) (2.104)

and evaluate the right-hand side of (2.103) with a precision up to terms
proportional to α2. We have

∞
∫
0

e−z dz
{

z +
µ2 − ν2

µν2
(1− e−µz)

}1/2

=
∞
∫
0

e−z dz

z1/2 −
µ2 − ν2

2µν2

∞
∫
0

e−z(1− e−µz)

z3/2 dz + α2...

= 2
∞
∫
0

e−x2 dx− µ2 − ν2

µν2

∞
∫
0

e−x2(1− e−µx2)

x2
dx + α2... (2.105)

Observing that

∂

∂µ

∞
∫
0

e−x2(1− e−µx2)

x2
dx =

∞
∫
0
e−(1+µ)x2 dx = π1/2

2
(1 + µ)−1/2,

we get
∞
∫
0

e−x2(1− e−µx2)

x2
dx = π1/2{(1 + µ)1/2 − 1}.
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The relation (2.105) leads to the formula
∞
∫
0

e−z dz
{

z +
µ2 − ν2

µν2
(1− e−µz)

}1/2

= π1/2 − µ2 − ν2

µν2
π1/2{(1 + µ)1/2 − 1}+ α2...

Hence, thanks to (2.104), the right-hand side of this equation can be
written as

π1/2(1− αξD) + α2... ,

where
D = 2

ν
((1 + ν)1/2 − 1). (2.106)

It follows from (2.103) and (2.104) that

app F
(P )
int

h̄ω
= 3α2

4(1 + αξ)
νξ2 − α(1 + αξ)(1− αξD) + α3...

Neglecting terms of order α3, we derive the following approximate result:

app F
(P )
int

h̄ω
= −α + α2

(3
4

νξ2 − ξ + ξD
)

. (2.107)

Here
ξ > 0, ν > 0

are parameters that must be determined through the minimum principle
for the expression

app F
(P )
int

h̄ω
= min.

Let us determine the value of ξ first. We have the extreme condition
∂

∂ξ

(3
4

νξ2 − ξ + ξD
)

= 3
2

νξ − 1 + D,

so that
ξ = 2

3ν
(1−D). (2.108)

Inserting this value into (2.107), we obtain

app F
(P )
int

h̄ω
= −α− α2

3ν
(1−D)2 = −α− α2

3ν

(
1− 2

ν
{(1 + ν)1/2 − 1}

)2
.

(2.109)

Now ν must be determined in such a way that it provides the minimum
for the right-hand side of (2.109) or, equivalently, to ensure the maximum
of the expression

+ 1
ν

(
1− 2

ν
{(1 + ν)1/2 − 1}

)2
.



90 Ch. 2. Equilibrium Thermodynamic State of Polaron System

We can see that the required value is

ν = 3. (2.110)

Inserting this value into (2.109), we arrive at the approximation

app F
(P )
int

h̄ω
= −α− α2

81
= −α− 1.23

(
α

10

)2
. (2.111)

It will be noted that the standard expansion in perturbation theory in
powers of α, which has been accomplished up to the second order, gives
the following expansion instead of (2.111):

−α− 1.26
(

α

10

)2
. (2.112)

Thus we see that the variational approximation with the simplest choice
for the function E(ν), which corresponds to Feynman’s two-body interac-
tion model, provides us with a very precise result in the case of small α.

We now have to consider just the opposite case αÀ 1. It is well known
that the theory of strong coupling yields in the leading term

−0.109α2. (2.113)

Thus, to transform (2.103) in the case of strong interaction, we should
apply the following scheme: we assume that µ has order α2, and ν is
proportional to α0. We obtain from (2.103)

app F
(P )
int

h̄ω
= 3

4
µ− 3

2
ν + 3

4
ν2

µ

− α

π1/2

(
µ3

µ2 − ν2

)1/2 ∞
∫
0
e−z

(
1− e−µz + ν2µ

µ2 − ν2
z

)−1/2

dz. (2.114)

Observing that
ν2µ

µ2 − ν2
= O

(
1
µ

)
= O

( 1
α2

)
,

we can exploit the expansion

∞
∫
0
e−z

(
1− e−µz + ν2µ

µ2 − ν2
z

)−1/2

dz =
∞
∫
0
e−z(1− e−µz)−1/2 dz

− ν2µ

2(µ2 − ν2)

∞
∫
0
e−zz(1− e−µz)−3/2 dz +O

(
1
µ2

)
(2.115)
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and evaluate integrals on the right-hand side of (2.115) by means of the
asymptotic formula i:
∞
∫
0
e−z(1− e−µz)−1/2 dz =

∞
∫
0
e−z dz +

∞
∫
0
e−z{(1− e−µz)−1/2 − 1} dz

= 1 + 1
µ

∞
∫
0
e
− x

µ {(1− e−x)−1/2 − 1} dx

= 1 + 1
µ

∞
∫
0
{(1− e−x)−1/2 − 1} dx +O

(
1
µ2

)
= 1 + 2 ln 2

µ
+O

(
1
µ2

)
,

∞
∫
0
e−zz(1− e−µz)−3/2 dz

=
∞
∫
0
e−zz dz +

∞
∫
0
e−zz{(1− e−µz)−3/2 − 1} dz

= 1 + 1
µ2

∞
∫
0
e
− x

µ x{(1− e−x)−3/2 − 1} dx = 1 +O
(

1
µ2

)
.

The expression (2.115) now gives

∞
∫
0
e−z

(
1− e−µz + ν2µ

µ2 − ν2
z

)−1/2

dz = 1 + 2 ln 2− ν2/2
µ

+O
(

1
µ2

)
,

and therefore it follows from (2.114) that

app F
(P )
int

h̄ω
= 3

4
µ− 3

2
ν + 3

4
ν2

µ
− α

π1/2 µ1/2
(
1 + 2 ln 2− ν2/2

µ

)
+O

( 1
α2

)

= 3
4

µ− 3
2

ν − α

π1/2 µ1/2
(
1 + 2 ln 2− ν2/2

µ

)
+O

( 1
α2

)
. (2.116)

To minimize this expression, let us consider the extreme conditions
∂

∂ν
E = 0, ∂

∂µ
E = 0,

i The first integral can be expressed through the Γ-function:
∞
∫
0
e−z(1− e−µz)−1/2 dz =

1
µ

Γ(1/µ)
√

π

Γ(1/µ + 1/2)
.

Introducing the variable e−x = U , we get
∞
∫
0
{(1− e−x)−1/2 − 1} dx

=
1
∫
0
{(1− U)−1/2 − 1}dU

U
=

1
∫
0

d

dU

{
ln

1− (1− U)1/2

1 + (1− U)1/2 − ln U

}
dU

= ln
1− (1− U)1/2

U{1 + (1− U)1/2}

∣∣∣
1

0
= − ln

1
4

= 2 ln 2.



92 Ch. 2. Equilibrium Thermodynamic State of Polaron System

where

E = 3
4

µ− 3
2

ν − α

π1/2 µ1/2 − αµ−1/2

π1/2 2 ln 2 + αµ−1/2

2π1/2 ν2. (2.117)

These equations give us

ν = 3
2

π1/2

α
µ1/2, µ1/2 = 2α

3π1/2 −
αµ−14 ln 2

3π1/2 + αµ−1ν2

3π1/2 .

From here, it follows that

µ1/2 = 2α
3π1/2 +O

( 1
α

)
, ν = 1 +O

( 1
α2

)
.

So,
µ1/2 = 2α

3π1/2 −
3π1/2 ln 2

α
+ 3π1/2

4α
+O

( 1
α3

)
.

Therefore, neglecting terms of order 1/α2, we obtain

µ = 4α2

9π
− 4 ln 2 + 1, ν = 1, (2.118)

and the asymptotic expression for Feynman’s approximation is

E = −α2

3π
− 3 ln 2− 3

4
= −0.106α2 − 2.83 if α À 1. (2.119)

The optimal determination of the parameters ν and µ that provides the
minimum for the corresponding approximate magnitude of the free energy
(2.103) in the case of intermediate values of α needs more elaborate numer-
ical calculations. These calculations have been done (see R. Feynman [5],
p. 273). Results of the approximations within the framework of Feynman’s
model seem to be quite satisfactory when one is interested in the case of
statistical equilibrium.

But, as was pointed out by J.T. Devreese and a few other authors,
Feynman’s model leads to difficulties if it is applied to the investigation
of kinetic processes. In fact, this model is characterized by only two
parameters: ν and µ. It follows from the previous consideration that the
frequency ν0 = νω corresponds to the frequency of the phonon field, while
µ0 = µω is the true polaron frequency, determined by the interaction
between the electron and the phonon field.

Thus we see that by putting ν 6= 1 we distort the true frequency of
the phonon field, which is just equal to ω, not νω. And it is clear that this
distortion is essential when collisions between phonons and polarons are
considered. Therefore the Hamiltonian H(L) cannot be used to describe
kinetic processes when ν 6= 1. One of the possibilities to improve the
situation for intermediate values of α consists in a coarser approximation,
under which one puts ν = 1 and then minimizes (2.103) with respect to
the parameter µ only. In doing so, we find that the approximation

−α− 0.98
(

α

10

)2
.
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holds for small enough values of α instead of (2.111):

−α− 1.23
(

α

10

)2
.

We believe that the results for the single-frequency model might be
improved significantly if proper damping is taken into account.

2.2. Equilibrium Momentum Distribution Function in the
Polaron Theory

Let us consider the equilibrium momentum distribution function of
the S particle (the electron):

W (p0) =
TrS,Σe−βH(P )δ(p− p0)

TrS,Σe−βH(P )
, (2.120)

satisfying the usual normalization condition:

∫ W (p0) dp0 = 1.

Using the Fourier representation for the three-dimensional Dirac δ-func-
tion δ(p− p0), we get

W (p(0)) = 1
(2π)3

∫ W̃ (λ)e−iλ·p0 dλ, (2.121)

where
W̃ (λ) =

TrS,Σe−βH(P )eiλ·p

TrS,Σe−βH(P )
.

It should be noted that we have dropped the symbol

lim
η→0

lim
V→∞

here because it will always be clear in future at which step of calculations
this passage to the limit is taken. Let us introduce the notation

TrS,Σe−βH(P )eiλ·p

TrS e−βΓ TrΣ e−βH(Σ)
= W (λ). (2.122)

Then
W̃ (λ) = W (λ)

W (0)
. (2.123)

Now we apply to (2.122) the same procedure that was used earlier to
transform (2.5) into (2.17). Thus we obtain

W (λ) = 〈T{eΦ}eiλ·p 〉Γ.
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Note that the operators under the T-operation are ordered in such a way
that the ordering parameter, say s, increases from the right to the left.
One has s = 0 at the right end, while s = βh̄ at the left end. We also note
the identity

p = p(0).

From here, we get

T{eΦ}eiλ·p = T{eΦ}eiλ·p(0) = T{eΦeiλ·p(0)}.
Hence

W (λ) = 〈T{eΦeiλ·p(0)}〉Γ.

Because of this, (2.153) gives

W̃ (λ) = 〈T{eΦeiλ·p(0)}〉Γ
〈T{eΦ}〉Γ

. (2.124)

To derive an approximation for (2.124) we follow the same scheme that
we implemented in Section 2.1 for the analysis of the free energy F

(P )
int .

In other words, we shall treat formally the difference Φ− Φ0, appearing
in the expansion

T{eΦ...} = T{eΦ0 ...}+ T{eΦ0(Φ− Φ0)...}+ ...

as a magnitude of the “first order of smallness”. Then, neglecting in (2.124)
terms of higher order of smallness, we get the following approximation:

W̃app(λ) = 〈T{eΦ0eiλ·p(0)}〉Γ
〈T{eΦ0}〉Γ

+ 〈T{eΦ0(Φ− Φ0)e
iλ·p(0)}〉Γ

〈T{eΦ0}〉Γ

− 〈T{eΦ0eiλ·p(0)}〉Γ
〈T{eΦ0}〉Γ2

〈T{eΦ0(Φ− Φ0)}〉Γ. (2.125)

Using the auxiliary Hamiltonian H(L), we see easily that

〈T{eΦ0eiλ·p(0)}〉Γ
〈T{eΦ0}〉Γ

= 〈eiλ·p 〉H(L) .

Because H(L) is a positive-definite quadratic form made of Bose operators,
we can write

〈eiλ·p 〉H(L) = e
− 1

2

∑
αβ

〈pαpβ〉H(L)λαλβ

= e−
λ2〈p 2〉

H(L)

6 , (α,β = 1, 2, 3),
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and, from here,

〈T{eΦ0eiλ·p(0)}〉Γ
〈T{eΦ0}〉Γ

= exp
(
−λ2〈p2〉H(L)

6

)
. (2.126)

Let us note that it follows from (1.48) that

1
3
〈p2〉H(L) =

+∞
∫
−∞

J(ω) dω

= ih̄m2

2π

+∞
∫
−∞

ω

1− e−βωh̄

1
mΩ + ∆∞(Ω)

∣∣∣
ω+i0

ω−i0
dω. (2.127)

In the particular case of the single-frequency Σ-system, where

∆∞(Ω) = − K2
0Ω

Ω2 − ν20
,

in the notations of (2.89), we have

1
3
〈p2〉H(L) = m2/β

m + (K0/ν0)
2 + K2

0 h̄

2µ0

(
1

1− e−βh̄µ0
+ 1
−1 + e−βh̄µ0

)
. (2.128)

Now we are going to calculate the expression

〈T{eΦ0(Φ− Φ0)e
iλ·p(0)}〉Γ

〈T{eΦ0}〉Γ
.

Taking into account the definitions of Φ and Φ0 (see (2.16), (2.23), (2.24)
and (2.52)), we get, in full analogy with (2.33),

I(λ) ≡ 〈T{eΦ0(Φ− Φ0)e
iλ·p(0)}〉Γ

〈T{eΦ0}〉Γ
= 1

4h̄2V

∑

(f)

L2(f) h̄

ω
(1− e−βωh̄)

−1

×
h̄β

∫
0

ds
h̄β

∫
0

dσ (e−ω|s−σ| + e−βωh̄+ω|s−σ|) 〈T{e
Φ0+if ·[R(s)−R(σ)]+iλ·p(0)}〉Γ

〈T{eΦ0}〉Γ
+ 1

4h̄2
∞
∫
0

dω′
h̄β

∫
0

ds
h̄β

∫
0

dσ EV (ω′) h̄ω′

1− e−βh̄ω′
(e−ω′|s−σ| + e−βω′h̄+ω′|s−σ|)

× 〈T{e
Φ0 [R(s)−R(σ)]2eiλ·p(0)}〉Γ

〈T{eΦ0}〉Γ
. (2.129)

Note that

〈T{eΦ0 [R(s)−R(σ)]2eiλ·p(0)}〉Γ
〈T{eΦ0}〉Γ

= −
{ 3∑

α=1

∂2

∂f2
α

〈T{eΦ0+if ·[R(s)−R(σ)]+iλ·p(0)}〉Γ
〈T{eΦ0}〉Γ

}

f=0
. (2.130)



96 Ch. 2. Equilibrium Thermodynamic State of Polaron System

Generalizing the procedure that led to (2.40) and (2.42), we can derive

〈T{eΦ0+if ·[R(s)−R(σ)]+iλ·p(0)}〉Γ
〈T{eΦ0}〉Γ

= 〈T{eif ·[r(−is)−r(−iσ)]+iλ·p(0)}〉H(L)

= exp
(1
2
〈T{eif ·[r(−is)−r(−iσ)]+iλ·p(0)}2〉H(L)

)
. (2.131)

Furthermore, we have

〈T{{f · [r(−is)− r(−iσ)] + iλ · p(0)}2}〉H(L)

= 〈T{{f · [r(−is)− r(−iσ)]}2}〉H(L)

+ 2〈T{{f · [r(−is)− r(−iσ)]}λ · p(0)}〉H(L) + λ2

3
〈p2〉H(L) . (2.132)

Here 0 < s < βh̄, 0 < σ < βh̄. As was shown in Section 2.1,

〈T{{f · [r(−is)− r(−iσ)]}2}〉H(L) = f2

3
D(s− σ). (2.133)

Here the limiting magnitude is implied on the right-hand side. Note the
following important property of D-function:

D(s) = D(−s), D(h̄β − s) = D(s). (2.134)

It is worth recalling (1.52) for the averaging procedure with H(L):

〈rα(t)rβ(τ)〉H(L) = δαβ
h̄i

2π

+∞
∫
−∞

e−iω(t−τ)

(1− e−βωh̄)

1
mΩ2 − η2 + Ω∆(Ω)

∣∣∣
ω+i0

ω−i0
dω,

We note that the function

F̃ (Ω) = − 1
mΩ2 − η2 + Ω∆(Ω)

is invariant with respect to the transformation Ω → −Ω:

F̃ (Ω) = F̃ (−Ω).

Therefore

F̃ (−ω + i0)− F̃ (−ω − i0) = −[F̃ (ω + i0)− F̃ (ω − i0)],

and we can conclude that

〈rα(t)rβ(τ)〉H(L) = h̄i

2π
δαβ

∞
∫
0

(
e−iω(t−τ)

1− e−βωh̄
− eiω(t−τ)

1− eβωh̄

)
F̃ (Ω)

∣∣∣
ω+i0

ω−i0
dω,
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or, in other words,

〈rα(t)rβ(τ)〉H(L)

= δαβ
h̄i

2π

∞
∫
0

e−iω(t−τ) + e−βωh̄+iω(t−τ)

1− e−βωh̄

1
mΩ2 − η2 + Ω∆(Ω)

∣∣∣
ω+i0

ω−i0
dω.

It follows from this equation that

〈pα(t)rβ(τ)〉H(L) = m
d

dt
〈rα(t)rβ(τ)〉H(L)

= δαβ
h̄m

2π

∞
∫
0

e−iω(t−τ) − e−βωh̄+iω(t−τ)

1− e−βωh̄

ω

mΩ2 − η2 + Ω∆(Ω)

∣∣∣
ω+i0

ω−i0
dω,

〈rα(t)pβ(τ)〉H(L)

= −δαβ
h̄m

2π

∞
∫
0

e−iω(t−τ) − e−βωh̄+iω(t−τ)

1− e−βωh̄

ω

mΩ2 − η2 + Ω∆(Ω)

∣∣∣
ω+i0

ω−i0
dω.

Taking the usual passage to the thermodynamic limit, we obtain

〈pα(t)rβ(τ)〉H(L)

= δαβ
h̄m

2π

∞
∫
0

e−iω(t−τ) − e−βωh̄+iω(t−τ)

1− e−βωh̄

1
mΩ + ∆∞(Ω)

∣∣∣
ω+i0

ω−i0
dω, (2.135)

〈rα(t)pβ(τ)〉H(L)

= −δαβ
h̄m

2π

∞
∫
0

e−iω(t−τ) − e−βωh̄+iω(t−τ)

1− e−βωh̄

1
mΩ + ∆∞(Ω)

∣∣∣
ω+i0

ω−i0
dω.

Consider the functions

F (s) = − ih̄m

2π

∞
∫
0

e−ωs − e−βh̄ω+ωs

1− e−βωh̄

1
mΩ + ∆∞(Ω)

∣∣∣
ω+i0

ω−i0
dω (2.136)

for 0 < s < βh̄ and

F (s) = ih̄m

2π

∞
∫
0

eωs − e−βh̄ω−ωs

1− e−βωh̄

1
mΩ + ∆∞(Ω)

∣∣∣
ω+i0

ω−i0
dω

for −βh̄ < s < 0 which possess the obvious properties

F (−s) = −F (s), −βh̄ < s < βh̄,

F (s + βh̄) = F (s), −βh̄ < s < 0, (2.137)

F (s− βh̄) = F (s), 0 < s < βh̄.
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If we put t = −iu and τ = −is in the first relation in (2.135), and t = −is,
τ = −iu in the second relation, we get

〈pα(−iu)rβ(−is)〉H(L) = iδαβF (u− s) = −iδαβF (s− u), (2.138)

〈rα(−is)pβ(−iu)〉H(L) = −δαβF (s− u).

Hence, in particular,

〈[rα(−is)− rα(−iσ)]pβ(0)〉H(L) = −iδαβ [F (s)− F (σ)], (2.139)

from which it follows that

〈{f · [r(−is)− r(−iσ)]}λ · p(0)〉H(L) = −if · λ[F (s)− F (σ)].

Thanks to (2.132), (2.133) and (2.139), we have

〈T{eΦ0+if ·[R(s)−R(σ)]+iλ·p(0)}〉Γ
〈T{eΦ0}〉Γ

= exp
(
−f2

6
D(|s− σ|) + if · λ[F (s)− F (σ)]− λ2

6
〈p2〉H(L)

)
. (2.140)

Thus, from (2.130), we find

〈T{eΦ0 [R(s)−R(σ)]2eiλ·p(0)}〉Γ
〈T{eΦ0}〉Γ

=
{D(|s− σ|) + λ2[F (s)− F (σ)]2

}
e−

λ2

6 〈p
2〉

H(L) . (2.141)

As a consequence, (2.129) transforms into

I(λ) ≡ 1
4h̄2

∫ df L2(f) h̄

ω(1− e−βωh̄)

h̄β

∫
0

ds
h̄β

∫
0

dσ
(
e−ω|s−σ| + e−βωh̄+ω|s−σ|

)

× 1
(2π)3

exp
(
−f2

6
D(|s− σ|) + if · λ[F (s)− F (σ)]− λ2

6
〈p2〉H(L)

)

+ 1
4h̄2

∞
∫
0

dω′
h̄β

∫
0

ds
h̄β

∫
0

dσ E(ω′) ω′h̄

1− e−βωh̄

(
e−ω′|s−σ| + e−βω′h̄+ω′|s−σ|

)

×{D(|s− σ|) + λ2[F (s)− F (σ)]2
}

e−
λ2

6 〈p
2〉

H(L) . (2.142)

But, because of (2.125), (2.126) and (2.129),

W̃app(λ) = e−
λ2

6 〈p
2〉

H(L) + I(λ)− I(0)e−
λ2

6 〈p
2〉

H(L) . (2.143)
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Thus it is easy to conclude that

W̃app(λ) =
(
1 + 1

4(2π)3
∫ df L2(f)

h̄ω(1− e−βωh̄)

×
h̄β

∫
0

ds
h̄β

∫
0

dσ (e−ω|s−σ| + e−βωh̄+ω|s−σ|)e−
f2

6 D(|s−σ|)

× [exp {if · λ[F (s)− F (σ)]} − 1]

+ λ2

4h̄2
∞
∫
0

dω′
h̄β

∫
0

ds
h̄β

∫
0

dσ E(ω′) h̄ω′

1− e−βωh̄

×(e−ω′|s−σ| + e−βω′h̄+ω′|s−σ|)[F (s)− F (σ)]2
)

e−
λ2

6 〈p
2〉

H(L) . (2.144)

Let us now return to (2.144) for the case of the standard Fröhlich
model (2.3), for which

L2(f) = g2

f2 .

Here we can perform an integration of the kind

∫ df F (f2, f · λ).

It is convenient to choose the direction λ as the z-axis in f -space. Then

∫ df F (f2, f · λ) = 2π
∞
∫
0

df
π
∫
0

dϑ f2F (f2,λf cosϑ) sin ϑ

= 2π
∞
∫
0

df
+1
∫
−1

dt F (f2, fλt)f2 = 2π
+∞
∫
−∞

df
1
∫
0

dt f2F (f2, fλt).

Therefore (2.144) yields

W̃app(λ) =
(
1 +

βh̄

∫
0
ds1

βh̄

∫
0
ds2

g2

4(2π)2

+∞
∫
−∞

df
1
∫
0

dt
e−ω|s1−s2| + e−βh̄ω+ω|s1−s2|

h̄ω(1− e−βωh̄)

×e−
f2

6 D(s1−s2) [ exp {ifλt[F (s1)− F (s2)]} − 1]

+ λ2

4h̄2
βh̄

∫
0

ds1
βh̄

∫
0

ds2
∞
∫
0

dω′E(ω′)h̄ω′ e
−ω′|s1−s2| + e−βh̄ω′+ω′|s1−s2|

1− e−βω′h̄

×[F (s1)− F (s2)]2
)

e−
λ2

6 〈p
2〉

H(L)
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On the other hand,

+∞
∫
−∞

df exp
(
−f2

6
D(s1 − s2) + ifλt[F (s1)− F (s2)]

)

=
(

6π
D(s1 − s2)

)1/2

e
− 3

2 t2λ2
[F (s1)−F (s2)]

2

D(s1−s2) ,

and we get

W̃app(λ) =

[
1 + g2

4(2π)2ωh̄

1
∫
0

dt
βh̄

∫
0

ds1
βh̄

∫
0

ds2

(
6π

D(s1 − s2)

)1/2

×e−ω|s1−s2| + e−βh̄ω+ω|s1−s2|

1− e−βωh̄

(
e
− 3

2 t2λ2
[F (s1)−F (s2)]

2

D(s1−s2) − 1
)

+ λ2

4h̄2
βh̄

∫
0

ds1
βh̄

∫
0

ds2
∞
∫
0

dω′E(ω′)h̄ω′ e
−ω′|s1−s2| + e−βh̄ω′+ω′|s1−s2|

1− e−βω′h̄

×[F (s1)− F (s2)]2
]
e−

λ2

6 〈p
2〉

H(L) . (2.145)

Let us now investigate the case of the single-frequency system Σ(L) dis-
cussed in Section 2.1, for which (2.89) is true and

E(ω′) = K2
0

2
[δ(ω′ − ν0) + δ(ω′ + ν0)], K2

0 = m(µ2
0 − ν20). (2.146)

For this particular case, (2.145) transforms into

W̃app(λ) =
[
1 + g2

4(2π)2ωh̄

1
∫
0

dt
βh̄

∫
0

ds1
βh̄

∫
0

ds2

(
6π

D(s1 − s2)

)1/2

×e−ω|s1−s2| + e−βh̄ω+ω|s1−s2|

1− e−βωh̄

(
e
− 3

2 t2λ2
(F (s1)−F (s2))

2

D(s1−s2) − 1
)

+ λ2m(µ2
0 − ν20)ν0
8h̄

βh̄

∫
0

ds1
βh̄

∫
0

ds2
e−ν0|s1−s2| + e−βh̄ν0+ν0|s1−s2|

1− e−βh̄ν0

× [F (s1)− F (s2)]2
]
e−

λ2

6 〈p
2〉

H(L) . (2.147)
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Recall that (see (1.34) and (2.91))

D(s) = 3h̄
m

[(
ν0
µ0

)2

|s|
(
1− |s|

βh̄

)

− µ2
0 − ν20

µ3
0

1 + e−h̄βµ0 − e−|s|µ0 − e−βh̄µ0+µ0|s|

1− e−βh̄µ0

]
, (2.148)

−βh̄ < s < βh̄,
1
3m
〈p2〉H(L) = ν20

βµ2
0

+ µ2
0 − ν20
2µ0

h̄
1 + e−βh̄µ0

1− e−βh̄µ0
, (2.149)

and that in the case under consideration it follows from (2.136) that

F (s) = h̄

[(
ν0
µ0

)2 (
s

βh̄
− 1

2

)
+ µ2

0 − ν20

2µ2
0

e−βh̄µ0+µ0s − e−µ0s

1− e−βh̄µ0

]
, (2.150)

0 < s < βh̄.

Introducing the dimensionless parameters and variables

µ0

ω
= µ, ν0

ω
= ν, βh̄ω = βd, α = g2

4πh̄ω2

(
m

2h̄ω

)1/2
, (2.151)

σ1 = ωs1, σ2 = ωs2

we get in the new notation

D(s) = 3h̄
mω

Dd(σ), F (s) = h̄Fd(σ),

Dd(σ) =
(

ν

µ

)2

|σ|
(
1− |σ|

βd

)
+ µ2 − ν2

µ3
1 + e−βdµ − e−|σ|µ − e−βdµ+µ|σ|

1− e−βdµ
,

−βd < σ < βd, (2.152)

Fd(σ) =
(

ν

µ

)2 (
σ

βd
− 1

2

)
+ µ2 − ν2

2µ2
e−βdµ+µ|σ| + e−µσ

1− e−βdµ
,

0 < σ < βd,

〈p2〉H(L) = 3mωh̄

[
1
βd

(
ν

µ

)2

+ µ2 − ν2

2µ
1 + e−βdµ

1− e−βdµ

]
.

In this notation, (2.147) takes the form

W̃app(λ) =
[
1 + α

2π1/2

1
∫
0

dt
βd∫
0

dσ1
βd∫
0

dσ2

(
1

Dd(σ1 − σ2)

)1/2

×e−|σ1−σ2| + e−βd+|σ1−σ2|

1− e−βd

(
e
− t2λ2

2 mωh̄
[Fd(σ1)−Fd(σ2)]

2

D(σ1−σ2) − 1
)
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+ λ2(mωh̄)

8
ν(µ2 − ν2)

βd∫
0

dσ1
βd∫
0

dσ2
e−ν|σ1−σ2| + e−βdν+ν|σ1−σ2|

1− e−βdν

×[Fd(σ1)− Fd(σ2)]2
]
e−

λ2

6 〈p
2〉

H(L) . (2.153)

The simplest choice of parameters ν and µ,

ν = µ = 1, (2.154)

corresponds to the case when we put

H
(L)
int = 0, H(L)(Σ) = H(Σ), (2.155)

and thus
r(−is) = R(s), Φ0 = 0. (2.156)

Under such circumstances, the functional Φ in (2.124) is proportional to
g2, i.e. α. Hence we can make use of the formal expansion of the right-
hand side of (2.124) in powers of α. It easy to see that if one neglects all
terms of second and higher orders in α then (2.153) holds. Therefore the
terms in (2.153) are equal to the respective zeroth- and first-order terms
in α of this expansion. For the case (2.154) in question, (2.152) gives

D(σ) = |σ|
(
1− |σ|

βd

)
, −βd < σ < βd,

Fd(σ1)− Fd(σ2) = 1
βd

(σ1 − σ2), 0 < σ1 < βd, 0 < σ2 < βd, (2.157)

〈p2〉H(L) = 3mωh̄

βd
= 3mϑ,

from which it follows that

(
1

Dd(σ1 − σ2)

)1/2
e−|σ1−σ2| + e−βd+|σ1−σ2|

1− e−βd

(
e
− t2λ2

2 mωh̄
[Fd(σ1)−Fd(σ2)]

2

D(σ1−σ2) − 1
)

= Φ(|σ1 − σ2|),

0 < σ1 < βd, 0 < σ2 < βd,
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where

Φ(z) =
[
z

(
1− z

βd

)]−1/2
e−z + e−βd+z

1− e−βd

(
e
− t2λ2

2β2
d

mωh̄
z

1−z/βd − 1

)
,

0 < z < βd.

As long as Φ(|σ1 − σ2|) is a symmetric function of σ1 and σ2, we have

βd

∫
0

dσ1
βd

∫
0

dσ2 Φ(|σ1 − σ2|)

= 2
βd

∫
0

dσ1
σ1∫
0

dσ2 Φ(|σ1 − σ2|) = 2
βd

∫
0

dz
βd−z
∫
0

Φ(z) dσ2

= 2
βd

∫
0
(βd − z)Φ(z) dz = 2

βd/2
∫
0

Φ(z) dz + 2
βd

∫
βd/2

(βd − z)Φ(z) dz

= 2
βd/2
∫
0

(βd − z)Φ(z) dz + 2
βd/2
∫
0

zΦ(βd − z) dz.

Hence (2.153) gives

W̃I(λ) = e−
λ2mϑ

2 + α

π1/2 e
−λ2mωh̄

2βd

[
1
∫
0

dt
βd/2
∫
0

dz βd

(
1− z/βd

z

)1/2

×e−z + e−βd+z

1− e−βd

(
e
− t2λ2

2β2
d

mωh̄
z

1−z/βd − 1

)

+
1
∫
0

dt
βd/2
∫
0

dz

(
z

1− z/βd

)1/2
e−z + e−βd+z

1− e−βd

(
e−

t2λ2

2 mωh̄
1−z/βd

z − 1
)]

.

(2.158)

If βd À 1 then the terms e−βd/2 and e−βd are negligible, and (2.158)
becomes

W̃I(λ) = e
λ2mωh̄
2βd + α

π1/2 e
−λ2mωh̄

2βd

1
∫
0

dt
βd/2
∫
0

dz

(
1
z
− 1

βd

)1/2

e−zβd

×
(

e
− t2λ2

2β2
d

mωh̄
z

1−z/βd − 1

)
+ α

π1/2 e
−λ2mωh̄

2βd

×
1
∫
0

dt
βd/2
∫
0

(
z

1− z/βd

)1/2

e−z

(
e
− t2λ2

2 mωh̄(
1
z
− 1

βd
) − 1

)
dz. (2.159)

Taking into account that

∫ e−Aλ2−ip·λ dλ =
(

π

A

)3/2
e−

p2

4A , A > 0, (2.160)
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it is easy to derive a momentum partition function in the first order of
approximation:

WI(p) = 1
(2π)3

∫ W̃I(λ)e−iλ·p dλ.

For the sake of simplicity, we restrict ourselves to the case of absolute
zero temperature, when βd →∞. Then (2.159) yields

W̃I(λ) = 1 + α

π1/2

1
∫
0

dt
∞
∫
0

dz z1/2e−z

(
e−

t2λ2mωh̄
2z − 1

)

= 1− α

2
+ α

π1/2

1
∫
0

dt
∞
∫
0

dz z1/2e−ze−
t2λ2mωh̄

2z , (2.161)

and hence

WI(p) =
(
1− α

2

)
δ(p)

+ 1
(2π)3

α

π1/2

1
∫
0

dt
∞
∫
0

dz z1/2e−ze−
zp2

2t2mωh̄

( 2πz

t2mωh̄

)3/2

=
(
1− α

2

)
δ(p) + α

π2(2mωh̄)3/2

1
∫
0

dt

t3

∞
∫
0

dz z2e
−z

(
1+ p2

2t2mωh̄

)

=
(
1− α

2

)
δ(p) + 2α

π2(2mωh̄)3/2

1
∫
0

dt

t3
1(

1 + p2/(2t2mωh̄)
)3

=
(
1− α

2

)
δ(p) + α

π2(2mωh̄)3/2

∞
∫
1

dτ
1(

1 + p2τ/(2mωh̄)
)3 . (2.162)

Thus we arrive at the expression

WI(p ) =
(
1− α

2

)
δ(p) + α

(2π)2(2mωh̄)1/2
1

p2
(
1 + p2/(2mωh̄)

)2 . (2.163)

We now see that the approximating Hamiltonian H(L) considered
above does not ensure a correct approximation for the partition function
W (p), whatever the choice of the spectral function E(ω). In fact, we
always have the equality

〈eiλ·p 〉H(L) = e−
λ2

6 〈p
2〉

H(L) .

Therefore the corresponding momentum partition function will always be
of a “nearly Maxwellian type”:

WL(p ) = 1
(2π)3

∫ e−
λ2

6 〈p
2〉

H(L)−iλ·p dλ = 1
(2π)3

(
6π

〈p2〉H(L)

)3/2

e
− 3p2

2〈p2〉
H(L) .

(2.164)
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The choice of E(ω) will affect only the magnitude of 〈p2〉H(L) (see (2.127)).
For example, if E(ω) is chosen in the form (2.146) then it follows from
(2.148) that

〈p2〉H(L)

mωh̄
= 3

2
µ2 − ν2

µ
. (2.165)

And in the first-order approximation (3.153), WL(p) does not include
even the terms of first order in α. Let us return to (2.153). As shown in
the “Note” below, we have

δF (Γ) + δ(appFint) = ∫ Wint(p)Ψ(p) dp δξ,

i. e.
〈Ψ(p)〉Γδξ + δ(appFint) = ∫ Wint(p)Ψ(p) dp δξ, (2.166)

where the variation is implied to be taken in the form

p2

2m
→ p2

2m
+ Ψ(p)δξ.

Consider the variation of mass

p2

2m
→ p2

2(m + δm)
= p2

2m
− p2

2m
δm.

Hence

−
〈

p2

2m2

〉

Γ

+ ∂(appFint)

∂m
= −∫ Wapp(p) p2

2m2 dp. (2.167)

In particular, for the zero-temperature case (ϑ = 0), we have
〈

p2

2m2

〉

Γ

= 0,

so that
∫ p2Wapp(p) dp = −2m2 ∂(appFint)

∂m
.

But, as was shown in Section 2.1, if ϑ = 0 then the function

appFint

h̄ω

is only a function of α, and, on the other hand, α is proportional to
m1/2. Whence

m
∂

∂m
= α

2
∂

∂α

and
1

mωh̄
∫ p2Wapp(p) dp = −α

∂

∂α

(appFint

h̄ω

)
for ϑ = 0. (2.168)
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We also have
1

mωh̄
∫ p2Wapp(p) dp = −α

∂

∂α

(appFint

ωh̄

)
for ϑ = 0. (2.169)

Because (appFint) is a good approximation for the free energy Fint, we
may conclude that

∫ p2Wapp(p) dp

will ensure a close-enough approximation for the true expression

∫ p2W (p) dp.

However, the quality of the approximation provided by the function
Wapp(p) for the function W (p) is less satisfactory in some cases. It can be
shown, for example, that for small α and ϑ = 0 the function Wapp(p) even
becomes negative for some region of values of the parameter p2/(mωh̄)
(of the order α).

We should note that (2.143) for W̃ (λ) can be derived immediately
from the expression for the free energy. Consider the Hamiltonian

H(P ) + δΓ = H(P ) + Ψ(p) δξ, (2.170)

where dx – is an infinitesimal parameter. The corresponding free energy
is

F (H(P ) + δΓ) = −ϑ lnTrS,Σe−β(H(P )+δΓ).

Hence

δF = F (H(P ) + δΓ)− F (H(P )) =
TrS,Σe−βH(P )

δΓ

TrS,Σe−βH(P ) = 〈δΓ〉H(P ) =

= 〈Ψ(p)〉H(P )δξ = ∫〈δ(p− p0)〉H(P )Ψ(p0) dp0 δξ.

It follows from (2.120) that

δF = ∫ W (p0)Ψ(p0) dp0 δξ. (2.171)

Let us say a few words now about the free energy corresponding to the
Hamiltonian H ′ that can be constructed from H(P ) by substitution the
kinetic energy of the S particle p2/(2m) — with a more general function
of the momentum Γ′(p).

Keeping in mind the method clarified in Section 2.1, which led us to
(2.17), we see that the latter does not depend on the particular appearance
of the kinetic energy S, so we can write

Fint(H ′) = −ϑ ln 〈T{eΦ}〉Γ′ , (2.172)

F (H ′) = Fint(H ′) + F (Γ′) + F (H(Σ)).
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Here Φ has the same appearance as in Section 2.1 with the only difference
that R(s), which is given by (2.11), has been changed for

R(s) = e−
sΓ′
h̄ re−

sΓ′
h̄ . (2.173)

It is also useful to note that, in full analogy with (2.38)
〈

T

{
exp

(
Φ0 + i

h̄β

∫
0

ds λ̃(s) f ·R(s)

)}〉

Γ′

〈T{eΦ0}〉Γ′
=

TrS,ΣU ′(h̄β)

TrS,Σe−βH
′(L)

. (2.174)

Here H
′(L) is the Hamiltonian H(L), in which p2/2m is changed for the

Hamiltonian Γ′(p). Φ0 has the same appearance as in Section 2.1 with
R(s) given by (2.173) and U(s) is determined by the equation generalizing
(2.37):

h̄
dU ′(s)

ds
= −[H

′(L) − ih̄λ̃(s) f · r]U ′(s), (2.175)

U ′(0) = 1.

After all these preliminary remarks, we return to the expression (2.172)
for the free energy and introduce the approximate expression

appFint(H ′) = −ϑ ln 〈T{eΦ0}〉Γ′ − ϑ
〈T{eΦ0(Φ− Φ0)}〉Γ′

〈T{eΦ0}〉Γ′
, (2.176)

appF (H ′) = appFint(H ′) + F (Γ′) + F (H(Σ)). (2.177)

Consider the first-order variation

δ appF = appF (H(P ) + δΓ)− appF (H(P ))

= appF (H(P ) + Ψ(p)δξ)− appF (H(P )). (2.178)

As long as δξ is infinitesimal, this variation will be proportional to δξ.
The corresponding coefficient is obviously a linear functional Ψ(p). Thus
we can write

δ(appF ) = ∫ f(p(0))Ψ(p(0)) dp(0) δξ.

Beginning with (2.171), we shall consider f(p(0)) as an approximation for
W (p(0)):

δ(appF ) = ∫ Wapp(p(0))Ψ(p(0)) dp(0) δξ. (2.179)
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We intend to show that the Fourier transform

W̃ (λ) = ∫ Wapp(p(0))eiλ·p(0) dp(0) (2.180)

is the same as (2.143) derived before.
Let us start to evaluate (2.178). It must be pointed out here that H(L),

upon which appF (H(L)) depends, contains some parameters arising in ex-
pressions for H

(L)
int and H(L)(Σ). These parameters have to be determined

from the minimum principle

appFint(HP ) = min . (2.181)

For example, in Chapter 2 we analyzed the case where the left-hand side
of (2.181) depended on two parameters: ν and µ.

In the general case, some other parameters might be included in
appFint(HP ) through H

(L)
int and H(L)(Σ). Let us denote them as Cj . With

this choice, the left-hand side of (2.181) will be a function of Cj :

appFint(HP ) = f(...Cj ...),

and, thanks to the minimum condition, these parameters must satisfy the
set of equations

∂f(...Cj ...)

∂Cj
= 0.

In addition, it follows from (2.177) that the difference

appF (H(P ))− appFint(H(P )) = F (Γ) + F (H(Σ))

does not depend on the parameters (...Cj ...). Therefore the first-order
variation

δ(appF (H(P ))) =
∑

(j)

∂f(...Cj ...)

∂Cj
δCj ,

which is calculated with respect to the variations of the parameters Cj ,
is zero. This feature allows us to assume all ...Cj ... to be fixed when
calculating the first-order variation of (2.178).

Let us consider a form

F (H
′(L)) = −ϑ ln 〈T{eΦ0}〉Γ′ + F (Γ′) + F (H(L)(Σ))

and note that, thanks to the variational property mentioned above,

F (H(L) + δΓ)− F (H(L)) = [−ϑ ln 〈T{eΦ0}〉Γ+δΓ + F (Γ + δΓ)]

− [−ϑ ln 〈T{eΦ0}〉Γ + F (Γ)],

or, in a brief notation,

δF (H
′(L)) = −ϑδ ln 〈T{eΦ0}〉Γ′ + δF (Γ′). (2.182)
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On the other hand, the arguments that were used in the derivation of
(2.171) lead to

δF (H
′(L)) = ∫ WL(p0)Ψ(p0) dp0 δξ, (2.183)

where WL(p0) is the momentum partition function for the particle S of
the dynamical system characterized by the Hamiltonian H(L).

Thanks to (2.176), (2.177) and (2.179), we have

∫ Wapp(p0)Ψ(p0) dp0 δξ = ϑδ ln 〈T{eΦ0}〉Γ′ + δF (Γ′)

− ϑδ
〈T{eΦ0(Φ− Φ0)}〉Γ′

〈T{eΦ0}〉Γ′
= δF (H

′(L))− ϑδ
〈T{eΦ0(Φ− Φ0)}〉Γ′

〈T{eΦ0}〉Γ′
.

Bearing (2.183) in mind, we get

δ(Fapp) = ∫ Wapp(p0)Ψ(p0) dp0 δξ = ∫ WL(p0)Ψ(p0) dp0δξ

− ϑδ
〈T{eΦ0(Φ− Φ0)}〉Γ′

〈T{eΦ0}〉Γ′
. (2.184)

The definitions of Φ and Φ0 (see (2.16), (2.23) and (2.24)) make it clear
that

δ
〈T{eΦ0(Φ− Φ0)}〉Γ′

〈T{eΦ0}〉Γ′
= 1

4h̄2V

∑

(f)

L2(f) h̄

ω(1− e−βωh̄)

×
βh̄

∫
0

ds1
βh̄

∫
0

ds2 (e−ω|s1−s2| + e−βωh̄+ω|s1−s2|)δ 〈T{e
Φ0+if ·[R(s1)−R(s2)]}〉Γ′
〈T{eΦ0}〉Γ′

+ 1
4h̄2

∞
∫
0

dω′EV (ω′)
βh̄

∫
0

ds1
βh̄

∫
0

ds2
h̄ω′

1− e−βω′h̄

× (e−ω′|s1−s2| + e−βω′h̄+ω′|s1−s2|)

×
{
−

3∑

α=1

∂2

∂f2
α

δ
〈T{eΦ0+if ·[R(s1)−R(s2)]}〉Γ′

〈T{eΦ0}〉Γ′

}

f=0
. (2.185)

Introducing a function

λ̃(s) = δ(s− s1)− δ(s− s2),
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it follows from (2.174) that

δ
〈T{eΦ0+if ·[R(s1)−R(s2)]}〉Γ′

〈T{eΦ0}〉Γ′
= δ

〈
T

{
exp

(
Φ0 + i

h̄β

∫
0

ds λ̃(s) f ·R(s)

)}〉

Γ′

〈T{eΦ0}〉Γ′

= δ
TrS,ΣU ′(h̄β)

TrS,Σe−βH
′(L)

. (2.186)

Here
h̄

dU ′(s)
ds

= −[H(L) − ih̄λ̃(s) f · r + Ψ(p)δξ]U ′(s),

U ′(0) = 1,

and hence
U ′(s) = U(s) + δU(s), (2.187)

where
h̄

dU(s)

ds
= −H(L)U(s) + ih̄λ̃(s) f · rU(s), (2.188)

U(0) = 1, (2.189)

and

h̄
dδU(s)

ds
= [−H(L) + ih̄λ̃(s) f · r] δU(s)−Ψ(p)U(s)δξ, (2.190)

δU(0) = 0.

It can also be seen that, thanks to (2.183),

δ
1

TrS,Σe−βH
′(L)

= δeF (H
′(L)) = βeβH

′(L)
δF (H

′(L))

= βeβF (H(L)) ∫ WL(p0)Ψ(p0) dp0 δξ = β ∫ WL(p0)Ψ(p(0)) dp0 δξ

TrS,Σe−βH(L) .

With the help of (2.186), we obtain

δ
〈T{eΦ0+if ·[R(s1)−R(s2)]}〉Γ′

〈T{eΦ0}〉Γ′

=
TrS,Σ δU(h̄β)

TrS,Σe−βH(L) + [Tr
S,ΣU(h̄β)] δ 1

TrS,Σe−βH
′(L)

=
TrS,ΣδU(h̄β)

TrS,Σe−βH(L) + β
TrS,ΣU(h̄β)

TrS,Σe−βH(L) ∫ WL(p0)Ψ(p0) dp0 δξ. (2.191)



2.2. Equilibrium Momentum Distribution Function 111

It follows from (2.188) and (2.189) that

U(s) = e−s
H(L)

h̄ T

{
exp

(
i

s

∫
0

λ̃(σ) f · r(−iσ) dσ

)}
. (2.192)

To solve (2.190), let us consider a solution U = U(s,u) of (2.188) that is
equal to the unit operator if s = u:

h̄
∂U(s,u)

∂s
= [−H(L) + ih̄λ̃(s) f · r]U(s,u), U(u,u) = 1. (2.193)

Put here
U(s,u) = e−s

H(L)

h̄ A(s,u)eu
H(L)

h̄ .

Then

h̄
∂A(s,u)

∂s
= ih̄λ̃(s)es

H(L)

h̄ f · r e−s
H(L)

h̄ A(s,u) = ih̄λ̃(s)f · r(−is)A(s,u),

A(u,u) = 1.

The solution of this equation is

A(s,u) = T

{
exp

(
i

s

∫
u

λ̃(σ) f · r(−iσ) dσ

)}
,

and

U(s,u) = e−s
H(L)

h̄ T exp
{(

i
s

∫
u

λ̃(σ) f · r(−iσ) dσ

)}
eu

H(L)

h̄ . (2.194)

Now, it is easy to prove that

δU(s) = − 1
h̄

s
∫
0
U(s,u)Ψ (p)U(u) du δξ. (2.195)

Really, equation (2.195) gives

h̄
∂δU(s)

∂s
= −U(s, s)Ψ(p)U(s) δξ −

s

∫
0

∂U(s,u)

∂s
Ψ(p)U(u) du δξ,

or, thanks to (2.193),

h̄
∂δU(s)

∂s

= −Ψ(p)U(s) δξ −
(
−H(L) + ih̄λ(s) f · r

) 1
h̄

s
∫
0
U(s,u)Ψ(p)U(u) du δξ.

Thus we see that (2.195) satisfies (2.190) with the initial condition

δU(0) = 0.

It follows from (2.195) that

δU(βh̄) = − 1
h̄

βh̄
∫
0

U(βh̄,u)Ψ(p)U(u) du δξ. (2.196)
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But, thanks to (2.194) and (2.192),

U(βh̄,u)Ψ(p)U(u) = e−βH(L)
T

{
exp

(
i

βh̄

∫
u

λ̃(σ) f · r(−iσ)
)}

× eu
H(L)

h̄ Ψ(p)e−u
H(L)

h̄ T

{
exp

(
i

u

∫
0

dσλ̃(σ) f · r(−iσ)
)}

= e−βH(L)
T

{
exp

(
i

βh̄

∫
u

λ̃(σ) f · r(−iσ)
)}

Ψ(p(−iu))

×T

{
exp

(
i

u

∫
0

dσ λ̃(σ) f · r(−iσ)
)}

.

Paying attention to the structure of the ordering in the T-products,
we can write down this equation in condensed form:

U(βh̄,u)Ψ(p)U(u) = e−βH(L)
T

{
exp

(
i
h̄β

∫
0

dσ λ̃(σ) f · r(−iσ)
)

Ψ(p(−iu))
}

.

(2.197)

We substitute (2.192), (2.196) and (2.197) into (2.191), recalling that

λ̃(σ) = δ(σ − s1)− δ(σ − s2).

This results in

δ
〈T{eΦ0+if ·[R(s1)−R(s2)]}〉Γ′

〈T{eΦ0}〉Γ′

= − 1
h̄

βh̄
∫
0

du 〈T{ef ·[r(−is1)−r(−is2)]Ψ(p(−iu))}〉H(L)δξ

+ β〈T{ef ·[r(−is1)−r(−is2)]}〉H(L) ∫ WL(p0)Ψ(p0) dp0 δξ. (2.198)

Up to now we have not chosen any explicit form for the function Ψ(p).
A possible choice is

Ψ(p) = eiλ·p.

Thanks to the definition of WL(p), it is obvious that

∫ WL(p0)eiλ·p0 dp0 = 〈eiλ·p 〉H(L) ,

and thus
∫ WL(p0)eiλ·p0 dp0 = e−

λ2

6 〈p
2〉

H(L) . (2.199)
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This result allows further transformations in (2.198):

〈T{ef ·[r(−is1)−r(−is2)]Ψ(p(−iu))}〉H(L)

= 〈T{ef ·[r(−is1)−r(−is2)]+iλ·p(−iu)}〉H(L)

= exp
(
−1
2
〈T{{f · [r(−is1)− r(−is2)] + λ · p(−iu)}2}〉H(L)

)
. (2.200)

We can also write, as usual (compare with (2.132))

〈T{{f · [r(−is1)− r(−is2)] + λ · p(−iu)}2}〉H(L)

= 〈T{{f · [r(−is1)− r(−is2)]}2}〉H(L)

+ 2〈T{{f · [r(−is1)− r(−is2)]}λ · p(−iu)}〉H(L) + λ2

3
〈p2〉H(L) .

But it follows from (2.138) that

〈T{rα(−is)pβ(−iu)}〉H(L) = −iδαβF (s− u),

with the obvious consequence

〈T{{f · [r(−is1)− r(−is2)]}λ · p(−iu)}〉H(L)

= −if · λ [F (s1 − u)− F (s2 − u)].

Bearing in mind our previous result (2.133), we can reduce (2.200) to the
form

〈T{ef ·[r(−is1)−r(−is2)]Ψ(p(−iu))}〉H(L)

= exp
(
−f2

6
D(s1 − s2) + if · λ [F (s1 − u)− F (s2 − u)]− λ2

6
〈p2〉H(L)

)
.

(2.201)

We now divide both sides of (2.2) by dx and incorporate (2.198),
(2.199) and (2.201) for further transformations. This allows us to derive
the following relation:

W̃app(λ) = e−λ2
〈p2〉

H(L)

6 + J(λ)− J(0)e−
λ2

6 〈p
2〉

H(L) , (2.202)
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where

J(λ) = 1
4h̄2

∫ df L2(f)

(2π)3
1

βh̄

βh̄

∫
0

du
βh̄

∫
0

ds1
βh̄

∫
0

ds2
h̄(e−ω|s1−s2| + e−βωh̄+ω|s1−s2|)

ω(1− e−βωh̄)

× exp
(
−f2

6
D(s1 − s2) + if · λ [F (s1 − u)− F (s2 − u)]− λ2

6
〈p2〉H(L)

)

+ 1
4h̄2

+∞
∫
0

dω′ 1
βh̄

βh̄

∫
0

du
βh̄

∫
0

ds1
βh̄

∫
0

ds2
h̄ω′E(ω′)

1− e−h̄βω′

×
(
e−ω′|s1−s2| + e−βω′h̄+ω′|s1−s2|

)

× exp
{D(s1 − s2) + λ2[F (s1 − u)− F (s2 − u)]2

}
e−

λ2

6 〈p
2〉

H(L) . (2.203)

It follows from (2.143) that we need only to show that

J(λ) = I(λ) (2.204)

(where I(λ) is defined by (2.142)) in order to prove the equivalence of
(2.203) and (2.143). To compare these expressions, we may represent them
in more convenient form:

J(λ) = 1
βh̄

βh̄
∫
0

du
βh̄
∫
0

ds1
βh̄
∫
0

ds2 Φ(s1 − u, s2 − u|λ), (2.205)

I(λ) =
βh̄
∫
0

ds1
βh̄
∫
0

ds2Φ(s1, s2|λ). (2.206)

But, as has been shown in Section 2.1, the functions

D(s), e−ω|s| + e−ωβh̄+ω|s|, e−ω′|s| + e−ω′βh̄+ω|s|

appearing in Φ(s1, s2) which are defined only on the interval (−βh̄, βh̄),
can be continued to the whole real axis in such a way that they will be
periodic functions of s with period βh̄.

Equation (2.136) shows that j

F (s′) = F (s′′) when |s′ − s′′| = βh̄, −βh̄ < s′, s′′ < βh̄.

j Note that, for 0 < sj < βh̄ (j = 1,2), 0 < u < βh̄, we have
−βh̄ < sj − u < βh̄.
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Hence F (s) can be continued from the corresponding interval (−βh̄, βh̄)
to the whole axis (−∞, +∞). In addition, this continued function will be
a periodic function of s with period βh̄. We can put, for example,

F (s) = F (s− βh̄) for βh̄ < s < 2βh̄,

F (s) = F (s + βh̄) for − 2βh̄ < s < −βh̄,

and so on.
We therefore see that Φ(s1, s2|λ) can be considered as a periodic

function of two arguments s1 and s2 with period βh̄. In this situation, it
is convenient to apply the Fourier transform:

Φ(s1, s2|λ) =
∑

(n1,n2)

An1,n2(λ)ei(n1s1+n2s2)
2π
βh̄,

Φ(s1 − u, s2 − u|λ) =
∑

(n1,n2)

An1,n2(λ)ei
2π
βh̄

(n1s1+n2s2)e
i
2π
βh̄

(n1+n2)u,

which enables us to derive the relations
βh̄
∫
0

ds1
βh̄
∫
0

ds2 Φ(s1 − u, s2 − u|λ) = (βh̄)2A0,0(λ) =
βh̄
∫
0

ds1
βh̄
∫
0

ds2 Φ(s1, s2|λ),

and
1

βh̄

βh̄
∫
0

du
βh̄
∫
0

ds1
βh̄
∫
0

ds2 Φ(s1 − u, s2 − u|λ) =
βh̄
∫
0

ds1
βh̄
∫
0

ds2Φ(s1, s2|λ).

Hence (2.205) and (2.206) are equivalent, so that (2.204) is correct. This
completes the proof of the equivalence of (2.202) and (2.143).
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Chap t e r 3

KINETIC EQUATIONS IN POLARON THEORY

Ideas and methods put forward by N.N. Bogolubov in [49–51] are
outlined and employed in the course of the studies of nonequilibrium
polaron properties throughout this chapter. His approach was character-
ized essentially by an attempt to derive kinetic equations of a physical
system rigorously, i. e. without recourse to any approximations based
on phenomenological ideas, from the corresponding reversible dynamic
equations of classical or quantum mecnanics taken as the starting point.
In the work by N.M. Krylov and N.N. Bogolubov [49] a problem of the
origin of stochastic behavior in a dynamic system being in weak contact
with “large” system was considered.

For classical systems this problem was treated on the basis of the
Liouville equation for the probability distribution functions in phase space
while the von Neumann equation for statistical density operators was
employed in the case of quantum systems [51].

In [49] a method was introduced which allowed derivation of the
Fokker-Planck-type equation in the first order approximation. In the
monograph [50], published in 1945, methods to derive kinetic equations for
“large” systems on the basis of general principles of statistical mechanics
were found. In lectures given by N.N. Bogolubov in 1974 at the workshop
on statistical mechanics a modified version of the approach [49] was
presented an its relation to the theory of two-time correlation Green’s
functions was discussed [52].

It is worth noticing that the terms “small” and “large” regarding to
physical systems are to be understood in that the number of degrees of
freedom of the former system is much smaller than this number of the
latter one.

Development of ideas outlined in [49–52] enabled formulation of a
method of derivation of hierarchical system of formally exact equations
for time-dependent averages [35].

An elimination of Bose variables from operator dynamic equations
by averaging them out with a properly chosen initial statistical density
operator was laid into the foundation of this method. Special lemmas,
proved for the case of adiabatic switching on of the interaction between
“small” and “large” systems [35], are another cornerstone of this method.
In the case when the “large” system is in the state of thermodynamic
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equilibrium, thus constituting a heat bath, this method allows to describe
the process of relaxation to thermodynamic equilibrium for the probability
distribution function or statistical density operator of the “small” system.
This method also proved itself useful for investigation of superradiant
generation processes studied in nonlinear optics [53–55]. Let us also note
that this chapter generalizes work by N.N. Bogolubov [33] and outlines
approaches to treatment of the electron–phonon system and the elimina-
tion of phonon operators from the corresponding kinetic equations.

In particular, a polaron kinetic equation is derived for the interac-
tion of an electron with a phonon field. Moreover, under the proper
approximation, the exact Boltzmann equation for the polaron system
follows from this kinetic equation. Methods of calculation of the response
functions (impedance and admittance), based on the “approximating”
Hamiltonian with linear interaction, are also proposed. The equilibrium
density probability function of the particle is also calculated.

3.1. Generalized Kinetic Equation.
Method of Rigorous Bose-Amplitude Elimination

Consider a dynamical system S interacting with a phonon field Σ. Let
XS be a set of wave function arguments for a single isolated system S
and let XΣ = (...nk...) stand for the set of the phonon field occupation
numbers. Then the dynamical states of the combined system (S,Σ) can
be characterized by wave functions of the kind

Ψ = Ψ(XS ,XΣ). (3.1)

Let us denote by
F (t,S), f(S) (3.2)

operators that, generally speaking, can depend explicitly on time t and act
only on the XS arguments of the wave functions Ψ(XS ,XΣ). Analogously,
we denote by

G(t,Σ), g(Σ) (3.3)

operators that act on the wave function Ψ as a function of the arguments
XΣ. Such operators are, for example, Bose-amplitudes ...bk...b†k.... It is
important to stress that, because F (t.S) and G(t,S) act on different vari-
ables of the wave function, they commute with each other. In particular,
F (t,S) commutes with all bk(t) and b†k(t). The Hamiltonian of the free
phonon field

H(Σ) =
∑

(k)

h̄ω(k)b†k(t)bk(t), ω(k) > 0. (3.4)

represents an example of an operator (3.3). Finally, we denote by

U(t,S,Σ)
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operators acting on either the XS or XΣ variables of the wave func-
tions Ψ(XS ,XΣ). Let us remark that all these operators are considered
in the Schrödinger representation of dynamical variables. Consider the
case when the full Hamiltonian of the system (S,Σ) is, in the notation
introduced above,

Ht = H(t,S,Σ) = Γ(t,S) +
∑

(k)

[Ck(t,S)bk(t) + C†k(t,S)b†k(t)] + H(Σ),

(3.5)
where Γ(t,S) — is the free Hamiltonian of the system S and the second
term in (3.5) with summation over k describes an interaction between
subsystems S and Σ.. Consider two examples of such a system.

I. Polaron theory. The simplest polaron model describes an electron
moving through an ionic crystal. The system S consists of one electron
placed in an external electric field E:

Γ(t,S) = p2

2m
+ eεtE(t) · r, E(t) = −eE(t),

Ck(t,S) = eεt

V 1/2 L(k)
(

h̄

2ω(k)

)1/2

eik·r,
(3.6)

where e — is the electron charge,

L∗(k) = L(k),

r, p — are the position and momentum of the electron, and L(k), and
ω(k) — are radially symmetric functions of the wave vector k. Summation
over k is over the usual quasidiscrete spectrum:

k =
(2πn1

L
, 2πn2

L
, 2πn3

L

)
, L3 = V ,

where n1,n2 and n3 — are integers (positive and negative). Of course, in
doing so one keeps in mind the limit V → ∞ leading to the continuous
spectrum. The factor eεt (ε > 0) is introduced, as usual, to ensure the
adiabatic switching on of the interaction. In this case, operators of the
type f(S) are functions of operators p, and r, for example

f(p), eik·r, f(p)eik·r,

and so on. Sometimes we have to use a more general expression for the
kinetic energy T (p) instead of p2/2m . Then the Hamiltonian (3.6) must
be rewritten as

Γ(t,S) = T (p) + eεtE(t) · r. (3.7)
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II. Fermionic system. The system S is a system of free fermions
characterized by the Fermi amplitudes a†f , and af , In this case,

Γ(t,S) =
∑

(f)

Λ(f)a†faf , Ck(t,S) = eεt

V 1/2 Lk

∑

(f)

a†f+kaf ,

C∗k(t,S) = eεt

V 1/2 L∗k
∑

(f)

a†faf+k = eεt

V 1/2 L∗k
∑

(f)

a†f−kaf ,
(3.8)

where Lk and L∗k are “c-numbers”. Because fermions possess a spin degree
of freedom, f = (f ,σ),, where the vector f belongs to the quasidiscrete
spectrum and σ is a spin quantum number. The symbol f + k implies
that f + k = (f + k,σ). We also can investigate a system of interacting
fermions. In this case, we have to include an interaction operator and
terms responsible for the interaction between fermions and external fields
in the Hamiltonian Γ(t,S).

For dynamical systems of type II, the operators f(S) may be repre-
sented as arbitrary combinations of the Fermi amplitudes ...af ...a†f ...,
that do not contain any Bose amplitudes, for example a†f1af2 . Let us note
that problems in the theory of superconductivity and electron transport
in metals can be readily reduced to type rimII dynamical systems.

Let us return to the Hamiltonian (3.5) and write the Liouville (von
Neumann) equation for the statistical operator Dt of the system (S,Σ):

ih̄
∂Dt

∂t
= H(t,S,Σ)Dt −DtH(t,S,Σ) (3.9)

with initial condition
Dt0 = ρ(S)D(Σ),

D(Σ) = Z−1e−βH(Σ), Z = TrΣ e−βH(Σ), (3.10)

Tr
S

ρ(S) = 1, TrΣ D(Σ) = 1. (3.11)

It can be seen that the initial condition corresponds to the situation where
the phonon field Σ is in a state of equilibrium at the time t0, at which
the interaction between the phonon system and the dynamical S system,
characterized by the statistical operator ρ(S), is “switched on”.

It follows from (3.9) that

Tr(S,Σ)Dt = Tr(S,Σ)Dt0 ,

and
Tr(S,Σ)Dt = Tr

S
ρ(S)TrΣ D(Σ) = 1.

Thus we have usual normalization condition for the statistical operator
Dt of the dynamical system (S,Σ).
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Let us introduce an operator U(t, t0) = U(t, t0,S,Σ), defined by the
equation

ih̄
∂U(t, t0)

∂t
= H(t,S,Σ)U(t, t0), U(t0, t0) = 1.

Because any Hamiltonian is a Hermitian operator,

−ih̄
∂U†(t, t0)

∂t
= U†(t, t0)H(t,S,Σ), U†(t0, t0) = 1.

We can see that U is a unitary operator:

U†(t, t0) = U−1(t, t0).

With the help of the operators U , we have, from (3.9),

Dt = U(t, t0)Dt0U
−1(t, t0).

Consider now some dynamical variable in the Schrödinger
representation,U(t,S,Σ). Its average value at t is

〈U〉t = Tr(S,Σ)U(t,S,Σ)Dt = Tr(S,Σ)U(t,S,Σ)U(t, t0)Dt0U
−1(t, t0)

= Tr(S,Σ){U−1(t, t0)U(t,S,Σ)U(t, t0)}Dt0 . (3.12)

It can be seen that the expression

U−1(t, t0)U(t,S,Σ)U(t, t0) (3.13)

is the Heisenberg representation of the dynamical variable U(t,S,Σ),
which corresponds to the Schrödinger representation at t = t0. We shall
denote this Heisenberg representation by U(t,St,Σt):

U(t,St,Σt) = U−1(t, t0)U(t,S,Σ)U(t, t0). (3.14)

In particular, if we consider a dynamical variable given in the Schrödinger
representation by the operator F (t,S) then

F (t,St) = U−1(t, t0)F (t,St)U(t, t0) = U†(t, t0)F (t,St)U(t, t0). (3.15)

From (3.12), we get

Tr(S,Σ)F (t,St)Dt0 = Tr(S,Σ)F (t,S)Dt = Tr(S) F (t,S)(Tr(Σ) Dt).

Let us introduce further a statistical operator

ρt(S) = Tr(Σ) Dt.
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Thenk
Tr(S,Σ)F (t,St)Dt0 = Tr(S) F (t,S)ρt(S). (3.16)

Consider now a dynamical system described by the Hamiltonian (3.5)
with initial condition (3.10) for the statistical operator. Starting from
(3.14) for the Heisenberg representation, we have

[U(t,St,Σt),B(t,St,Σt)] = U−1(t, t0)[U(t,S,Σ),B(t,S,Σ)]U(t, t0),

where [U ,B] denotes the commutator

[U ,B] = UB − BU .

From here, we see that if the commutator of two dynamical variables
taken in the Schrödinger representation is a c-number then the commuta-
tor of these variables in the Heisenberg representation will have the same
value.

Denote the Heisenberg representation for the Bose amplitudes as
...bk(t), ...b†k(t). Then, according to the definition (3.14),

bk(t0) = bk, b†k(t0) = b†k.

Because the operators b†k, bk commute with Γ(t,S), Ck(t,S), and C†k(t,S),
we see that

[bk(t);Γ(t,St)] = 0, [b†k(t);Γ(t,St)] = 0,

[bk(t);Ck(t,St)] = 0, [b†k(t);Ck(t,St)] = 0, (3.17)

[bk(t);C†k(t,St)] = 0, [b†k(t);C†k(t,St)] = 0.

For the same reason,
[H(Σt); f(St)] = 0. (3.18)

k By definition, the average value at the moment t is
〈F 〉t = Tr F (t,S) ·Dt(S,Σ).

The trace is calculated over the complete set of the states of the system S + Σ.
Taking the tensor products |S〉 ⊗ |σ〉 of the base states |S〉 of the system S by
the base states |σ〉 of the system Σ as the base states |s,σ〉 of the whole system
S + Σ, let us write down 〈F 〉t as

〈F 〉t = TrS F (t,S) · TrΣ Dt(S,Σ) = Tr(S) F (t,S) · ρt(S),
where ρt = TrΣ Dt(S,Σ) is the density matrix of the S-system.
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It is clear that b†k(t) and bk(t) satisfy the same commutation relations
as b†k and bk. Bearing in mind (3.5) and (3.17), we can write dynamical
equations for the Bose amplitudes:

ih̄
∂bk(t)

∂t
= [bk(t),H(t,St,Σt)],

ih̄
∂bk(t)

∂t
= h̄ω(k)bk(t) + C†k(t,St),

i. e.
∂bk(t)

∂t
= −iω(k)bk(t)− i

h̄
C†k(t,St),

The conjugate equation is

∂b†k(t)

∂t
= iω(k)b†k(t) + i

h̄
Ck(t,St).

Taking into account the initial conditions, we can write the formal solution
of these equations:

bk(t) = b̃k(t)− iBk(t),

b̃k(t) = e−iω(k)(t−t0)bk, (3.19)

Bk(t) = 1
h̄

t
∫
t0

dτ e−iω(k)(t−τ)C†k(τ ,Sτ ),

and also
b†k(t) = b̃†k(t) + iB†k(t),

b̃†k(t) = eiω(k)(t−t0)b†k, (3.20)

B†k(t) = 1
h̄

t
∫
t0

dτ eiω(k)(t−τ)Ck(τ ,Sτ ).

Let us consider a dynamical variable, which can be expressed in the
Schrödinger representation by the explicitly time-independent operator
f(S). The equation of motion for f(St) follows from (3.5) and (3.17):

ih̄
∂f(St)

∂t
= [f(St),H(t,St,Σt)]

This equation can be rewritten in the explicit form

ih̄
∂f(St)

∂t
= [f(St),Γ(t,St)]

+
∑

(k)

bk(t)[f(St),Ck(t,St)] +
∑

(k)

b†k[f(St),C
†
k(t,St)].
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Substituting (3.19) and (3.20) into the last equation and taking the trace
over all variables Tr(S,Σ) ...Dt0 , we get

ih̄
∂

∂t
Tr(S,Σ)f(St)Dt0 + Tr(S,Σ) [Γ(t,St), f(St)]Dt0

= −i
∑

(k)

Tr(S,Σ)Bk(t)[f(St),Ck(t,St)]Dt0

+ i
∑

(k)

Tr(S,Σ)B†k(t)[f(St),C
†
k(t,St)]Dt0

+
∑

(k)

Tr(S,Σ) b̃k(t)[f(St),Ck(t,St)]Dt0

+
∑

(k)

Tr(S,Σ) b̃
†
k(t)[f(St),C

†
k(t,St)]Dt0 . (3.21)

In order to get rid of the Bose amplitudes b̃k and b̃†k on the right-hand
side of (3.21), we formulate the following lemma.

Lemma For average values of the product of two operators b̃k(t) and
U(S,Σ), the following relations hold:

Tr(S,Σ) b̃k(t)U(S,Σ)Dt0 = (1+ Nk)Tr(S,Σ){b̃k(t)U(S,Σ)−U(S,Σ)̃bk(t)}Dt0 ,

where
Nk = e−βh̄ω(k)

1− e−βh̄ω(k)
,

Tr(S,Σ)U(S,Σ)̃bk(t)Dt0 = NkTr(S,Σ){b̃k(t)U(S,Σ)− U(S,Σ)̃bk(t)}Dt0 .

For the proof, see Appendix I.
Choosing U(S,Σ) = [f(St),Ck(t,St)], we derive the useful relations

Tr(S,Σ) b̃k(t)[f(St),Ck(t,St)]Dt0

= (1 + Nk)Tr(S,Σ) [̃bk(t), [f(St),Ck(t,St)]]Dt0 ,

Tr(S,Σ) b̃
†
k(t)[f(St),C

†
k(t,St)]Dt0

= NkTr(S,Σ) [[f(St),C
†
k(t,St)], b̃

†
k(t)]Dt0 . (3.22)

Because the operators ...bk...b†k... commute with [f(St)Ck(t,St)], and
[f(St),C

†
k(t,St)],

[bk(t), [f(St),Ck(t,St)]] = 0, [[f(St),C
†
k(t,St)], b

†
k(t)] = 0.
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Substituting (3.19) and (3.20) into these identities, we find that

[̃bk(t), [f(St),Ck(t,St)]] = i[Bk(t), [f(St),Ck(t,St)]]

= iBk(t)[f(St),Ck(t,St)]− i[f(St),Ck(t,St)]Bk(t),
(3.23)[[f(St),C

†
k(t,St)], b̃

†
k(t)] = −i[[f(St),C

†
k(t,St)],B†k(t)]

= iB†k(t)[f(St),C
†
k(t,St)]− i[f(St),C

†
k(t,St)]B†k(t).

Making use of (3.22) and (3.23), we derive from (3.21)

ih̄
∂

∂t
Tr(S,Σ)f(St)Dt0 + Tr(S,Σ) [Γ(t,St), f(St)]Dt0

+
∑

(k)

i
{

NkTr(S,Σ)Bk(t)[f(St),Ck(t,St)]Dt0

+ (1 + Nk)Tr(S,Σ) [Ck(t,St), f(St)]Bk(t)Dt0

}

+ i
∑

(k)

{
(1 + Nk)Tr(S,Σ)B†k(t)[f(St),C

†
k(t,St)]Dt0

+ NkTr(S,Σ) [C
†
k(t,St), f(St)]B†k(t)Dt0

}
. (3.23a)

Note that, thanks to (3.16),

Tr(S,Σ)f(St)Dt0 = Tr(S) f(S)ρt(S),

Tr(S,Σ) [Γ(t,St), f(St)]Dt0 = Tr(S){Γ(t,S)f(S)− f(S)Γ(t,S)}ρt(S).

Substituting the operators bk(t) and b†k(t) in (3.23a) with their explicit
expressions (3.19) and (3.20), and dividing both sides of the resulting
equation by ih̄, we find that

Tr(S)

(
f(S)∂ρt(S)

∂t
+ Γ(t,S)f(S)− f(S)Γ(t,S)

ih̄
ρt(S)

)

= 1
h̄2

∑

(k)

t
∫
t0

dτ Tr(S,Σ)e
−iω(k)(t−τ){NkC†k(τ ,Sτ )[f(St),Ck(t,St)]

+ (1 + Nk)[C†k(t,St), f(St)]Ck(τ ,Sτ )}Dt0

+ 1
h̄2

∑

(k)

t
∫
t0

dτ Tr(S,Σ)e
iω(k)(t−τ){(1 + Nk)Ck(τ ,Sτ )[f(St),C

†
k(t,St)]

+ Nk[C†k(t,St), f(St)]Ck(τ ,Sτ )}Dt0 . (3.23′)
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Thus we have constructed the generalized kinetic equation. Now we pass
to the consideration of the polaron model itself, which was proclaimed to
be the main goal of this chapter. Substituting (3.6), i. e.

Γ(t,S) = T (p) + eεtE(t) · r, E(t) = −eE(t),

Ck(t,S) = eεt

V 1/2 L(k)
(

h̄

2ω(k)

)1/2

eik·r,

into the right-hand side of the generalized kinetic equation, we find that

Tr(S)

{
f(S)∂ρt(S)

∂t
+ eεtE(t) · [rf(S)−f(S)r]+T (p)f(S)− f(S)T (p)

ih̄
ρt(S)

}

= 1
V

e2εt
∑

(k)

L2(k)

2h̄ω(k)

t

∫
t0

dτ e−ε(t−τ)[Nke−ω(k)(t−τ) + (1 + Nk)eω(k)(t−τ)]

× Tr(S,Σ){e−ik·rτ f(St)eik·rt − e−ik·rτ eik·rtf(St)}Dt0

+ 1
V

e2εt
∑

(k)

L2(k)

2h̄ω(k)

t

∫
t0

dτ e−ε(t−τ)[(1 + Nk)e−ω(k)(t−τ) + Nkeω(k)(t−τ)]

× Tr(S,Σ){eik·rtf(St)e−ik·rτ − f(St)eik·rte−ik·rτ }Dt0 , (3.24)

It is interesting to observe that the operators of the phonon field do not
enter this equation explicitly. The right-hand side of the equation depends
only on the electron trajectory.

Let us stress that the electron operators r(τ) and p(τ), (t0 6 τ 6 t)
depend on the initial values r,p, ..., bk, b†k in a very complicated manner.
Therefore, in order to derive some relevant results from (3.24) we have
to restrict ourselves to a proper approximation, assuming, for example,
that f(S) = f(p) and substituting the intricate time dependence of the
electron trajectory rτ with the uniform-motion trajectory

r(τ) = r(t)− p(t)

m
(t− τ),

considered as the “zeroth-order approximation”. Within the framework of
the Fröhlich model, taking into account the smallness of the electron–
phonon interaction parameter, one can derive explicitly the approximate
Boltzmann equation for the polaron. This equation contains an integral
term induced only by the one-phonon emission and absorption processes.

Consider the spatially uniform case, i. e the case when f(S) = f(p ) and
hence f(St) = f(pt). From the usual quantum mechanical commutative
rules, we have

rf(p)− f(p)r = ih̄
∂f(p)

∂p
.
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It is obvious that

Tr(S) f(p)ρt(S) = ∫ f(p)Wt(p) dp,

where
Wt(p) = Tr(S) δ(p− p0)ρt(S). (3.25)

Let pt be a momentum operator in the Heisenberg representation. Then,
with the help of (3.16)

Tr(S,Σ)F (pt)Dt0 = ∫ F (p)Wt(p) dp.

It follows from (3.11) and (3.25) that

∫ Wt(p) dp = 1.

It is clear that Wt(p ) may be interpreted as the probability density at
time t. The left-hand side of (3.24) can be represented as

Tr(S)

(
f(p)∂ρt(S)

∂t
+ eεtE(t) · ∂f(p)

∂p
ρt(S)

)

= ∫ dp f(p)
(

∂Wt(p)

∂t
+ eεtE(t) · ∂f(p)

∂p
Wt(p)

)
. (3.26)

It is easily seen that

eik·rf(p) = f(p− h̄k)eik·r, f(p)eik·r = eik·rf(p + h̄k), (3.27)

and also

eik·rtf(pt) = f(pt − h̄k)eik·rt , f(pt)eik·rt = eikrtf(pt + h̄k).

Taking into account the invariance of both sides of (3.24) with respect
to the transformation k → −k and the notes made above about the
probability density function, we find that

∫ dp f(p)
(

∂Wt(p)

∂t
− eεtE(t) · ∂Wt(p)

∂p

)

= ∫ dp f(p)
(

∂Wt(p)

∂t
+ eεtE(t) · ∂f(p)

∂p
Wt(p)

)

= 1
V

e2εt
∑

(k)

L2(k)

2h̄ω(k)

t

∫
t0

dτ e−ε(t−τ)[Nke−ω(k)(t−τ) + (1 + Nk)eω(k)(t−τ)]

×Tr(S,Σ)

{
eik·rτ e−ik·rt [f(pt − h̄k)− f(p)]Dt0

}

+ 1
V

e2εt
∑

(k)

L2(k)

2h̄ω(k)

t

∫
t0

dτ e−ε(t−τ)[(1 + Nk)e−ω(k)(t−τ) + Nkeω(k)(t−τ)]

×Tr(S,Σ)

{
[f(pt − h̄k )− f(p)]eik·rte−ik·rτ Dt0

}
, (3.28)
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where Dt0 = ρ(S)D(Σ). The rigorous equation (3.28) will be considered
in the next section as a source for the derivation of various approximate
kinetic equations.

Let us note in conclusion that the generalized equation (3.23′) can be
used in other applications. For example, it can be applied to investigate
the motion of electrons in a metal if one derives the corresponding kinetic
equations. For this purpose, one must put in (3.23′)

f(S) = a†faf , Γ =
∑

(f)

Tfa†faf .

Then

Tr(S) f(S)ρt(S) = Tr(S) a†fafρt(S) = 〈a†f (t)af (t)〉t0 = nf (t)

and
Tr(S) f(S)∂ρt(S)

∂t
= ∂

∂t
nf (t),

and the expression

Ck(t,S) = exp (εt)

V 1/2 Lk

∑

(f)

a†f+kaf (t)

would stand for the operator Ck(t,S). Let us define the operators a†f+k(t)
and af (t) entering this combination, assuming that they satisfy the fol-
lowing approximate equation of motion without interaction:

ih̄
daf

dt
= Tfaf (t).

From here,

af (τ) = exp
(
−i

Tf

h̄
(τ − t)

)
af (t), a†f (τ) = exp

(
i
Tf

h̄
(τ − t)

)
a†f (t).

Thus

Ck(τ ,Sτ ) = exp (ετ)

V 1/2

∑

(f)

exp
(
−i

Tf+k − Tf

k
(t− τ)

)
a†f+k(t)af (t).

Taking into account the discussion above and substituting the approxi-
mate expression for Ck(τ ,Sτ ) into the generalized kinetic equation (3.23′),
after simple transformations and the standard passage to the limit t0 →−
−∞, ε→ 0, we arrive at the well-known Bloch quantum kinetic equation,
the basic equation in the theory of the electrical and thermal conductivity
of metals and semiconductors [48].

3.2. Kinetic Equations in the First-Order Approximation for
Weak Interactions

In this section we are concerned with the weak-interaction case. It is
convenient to characterize the electron-phonon interaction strength by a
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small dimensionless parameter, denoted by α, under the assumption that
L2(k) is proportional to α. For example, within the framework of the
Fröhlich model,

α = g2

4πh̄ω2

(
m

2h̄ω

)1/2
. (3.29)

is generally adopted as the standard dimensionless parameter. We also
assume that the external force E is formally proportional to some small
parameter.

In the “zeroth-order approximation”, when we neglect the electron–
phonon interaction, the following equation of motion holds:

ih̄
dr

dτ
= rT (p)− T (p)r, (3.30)

from which it follows that

rτ = e
i
h̄

T (p)(τ−τ0)rτ0e
− i

h̄
T (p)(τ−τ0).

Let τ0 = t; then

rt = e
i
h̄

T (p)(τ−t)rτ0e
− i

h̄
T (p)(τ−t),

and

eik·rτ = exp
(

i

h̄
T (pt)(τ − t)

)
eik·rt exp

(
− i

h̄
T (pt)(τ − t)

)
. (3.31)

Moving eik·rt to the right in (3.31) with the help of (3.27), we obtain

eik·rτ = e
i
h̄

T (pt)(τ−t)e−
i
h̄

T (pt−h̄k)(τ−t)eik·rt = e
i
h̄

[T (pt)−T (pt−h̄k)](τ−t)eik·rt ,
(3.32a)

and also
eik·rτ = eik·rte

i
h̄

[T (pt+h̄k)−T (pt)](τ−t). (3.32b)

Under the transformation k → −k, we have

e−ik·rτ = e−ik·rte
i
h̄

[T (pt−h̄k)−T (pt)](τ−t).

This “approximation” will be used in (3.28) only for the terms proportional
to α.

We substitute (3.32a) and (3.32b) under the trace operation, exploiting
the “zeroth-order approximation” in the following manner:

Eapp =
{

Tr(S,Σ)e
ik·rτ e−ik·rt [f(pt − h̄k )− f(pt)]Dt0

}
app

= Tr(S,Σ)e
i
h̄

[T (pt)−T (pt−h̄k)(τ−t)[f(pt − h̄k)− f(pt)]Dt0 , (3.33)
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E∗app =
{

Tr(S,Σ) [f(pt − h̄k)− f(pt)]eik·rte−ik·rτ

}
app

= Tr(S,Σ) [f(pt − h̄k )− f(pt)]e
i
h̄

[T (pt−h̄k)−T (pt)](τ−t)Dt0 .

It should be pointed out that all of these expressions are multiplied by
the magnitude L(k), which is proportional to α.

Thus we suppose that the terms of first order on the right-hand side
of (3.28) are evaluated correctly. This is just the approximation we have
been striving for. Further, take the limit V →∞, t0 →−∞, and then put
ε → 0. in the final results. First of all, however, we have to transform the
expressions (3.33) for E∗app and Eapp. Let us return to the relation

Tr(S,Σ)F (pt)Dt0 = ∫ F (p)Wt(p) dp,

which holds for an arbitrary function of the momentum, F (p). For F (p)
we choose

F (p) = e
i
h̄

[T (pt)−T (pt−h̄k)(τ−t)[f(pt − h̄k)− f(pt)],

and we have, as a result,

Eappe = ∫ dp e
i
h̄

[T (p)−T (p−h̄k)](τ−t)[f(p− h̄k )− f(p )]Wt(p )

= ∫
(p→p+h̄k)

dp e−
i
h̄

[T (p+h̄k)−T (p)](τ−t)f(p)Wt(p + h̄k )

− ∫ dp e
i
h̄

[T (p)−T (p−h̄k)(τ−t)f(p)Wt(p ).

It is easily seen that E∗app is the complex conjugate of Eapp:

E∗app = ∫ dp e−
i
h̄

[T (p+h̄k)−T (p)](τ−t)f(p)Wt(p + h̄k)

− ∫ dp e
i
h̄

[T (p−h̄k)−T (p)](τ−t)f(p)Wt(p).

We substitute these expressions into (3.28), taking the limit V →∞, and
changing all sums V −1∑

(k)

(...) to integrals (2π)−3 ∫ dk. It is also convenient

to make the transformation k → −k in the integrals containing Wt(p).
Let us introduce a new variable of integration t− τ = ξ, so that

t
∫
t0

dτ (...) =
t−t0∫
0

dξ (...).

In the limit t0 →−∞, these integrals take the form
∞
∫
0

dξ (...). In this way,

we can derive the first-order approximation for (3.28):

∫ dp f(p)
(

∂Wt(p)

∂t
− eεtE(t) · ∂Wt(p)

∂p

)

= e2εt

(2π)3
∫ dp f(p) ∫ dk L2(k)

2h̄ω(k)
Aε(p,k),
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where

Aε(p,k) =
∞
∫
0

dξ e−εξ[(1 + Nk)eiω(k)ξ + Nke−iω(k)ξ]

×[e−iξ∆p,kWt(p + h̄k)− eiξ∆p,kWt(p)]

+
∞
∫
0

dξ e−εξ[(1 + Nk)e−iω(k)ξ + Nkeiω(k)ξ]

×[eiξ∆p,kWt(p + h̄k)− e−iξ∆p,kWt(p)]

and where
∆p,k = T (p + h̄k)− T (p)

h̄
.

In view of the fact that f(p) is arbitrary function of the momentum, p ,
this equation can be reduced to an equation for the probability density
function Wt(p):

∂Wt(p)

∂t
− eεtE(t) · ∂Wt(p)

∂p
= e2εt

(2π)3
∫ dk L2(k)

2h̄ω(k)
Aε(p,k). (3.34)

Collecting similar terms in the expression for Aε(p,k), we find that

Aε(p,k) = [(1 + Nk)Wt(p + h̄k)−NkWt(p)]

×
(∞
∫
0
e−εξe−ξ[∆p,k−ω(k)] dξ +

∞
∫
0
e−εξeiξ[∆p,k−ω(k)] dξ

)

+ [NkWt(p + h̄k)− (1 + Nk)Wt(p)]

×
(∞
∫
0
e−εξe−ξ[∆p,k+ω(k)] dξ +

∞
∫
0
e−εξeiξ[∆p,k+ω(k)] dξ

)
.

Here
Nk = e−βh̄ω(k)

1− e−βh̄ω(k)
.

or, that is

Aε(p,k) = Wt(p + h̄k)− e−βh̄ω(k)Wt(p)

1− e−βh̄ω(k)
Dε(∆p,k − ω(k))

+ Wt(p + h̄k)e−βh̄ω(k) −Wt(p)

1− e−βh̄ω(k)
Dε(∆p,k + ω(k)),

Dε(z) =
+∞
∫
−∞

e−ε|ξ|eiξz dξ.
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Let us also observe that

lim
ε→0

Dε(∆p,k ∓ ω(k)) = 2πδ(∆p,k ∓ ω(k)) = 2πδ

(
h̄∆p,k ∓ h̄ω(k)

h̄

)

= 2πh̄δ(h̄∆p,k ∓ h̄ω(k)),

Therefore

lim
ε→0

Aε(p,k) = 2πh̄

1− e−βh̄ω(k)
[Wt(p + h̄k)− e−βh̄ω(k)Wt(p)]

× δ(T (p + h̄k)− T (p)− h̄ω(k))

+ 2πh̄

1− e−βh̄ω(k)
[Wt(p + h̄k)e−βh̄ω(k) −Wt(p)]

× δ(T (p + h̄k)− T (p) + h̄ω(k)).

Now, let us take the final step, putting ε→ 0 in (3.34). As a result, we
get the final form of the kinetic equation in the first-order approximation:

∂Wt(p)

∂t
−E(t) · ∂Wt(p)

∂p
= 1

(2π)2
∫ dk L2(k)

2ω(k)(1− e−βh̄ω(k))

× [Wt(p + h̄k)− e−βh̄ω(k)Wt(p)]δ(T (p + h̄k)− T (p)− h̄ω(k))

+ 1
(2π)2

∫ dk L2(k)

2ω(k)(1− e−βh̄ω(k))

× [Wt(p + h̄k )e−βh̄ω(k) −Wt(p)]δ(T (p + h̄k)− T (p) + h̄ω(k)). (3.35)

Thus we have obtained generalized Boltzmann equations. Consider
now an important particular case,

T (p) = p2

2m
.

Consequently, all δ-functions take the form

δ

(
(p + h̄k)2

2m
− p2

2m
± h̄ω(k)

)
.

It is obvious that (3.35) will be the usual Boltzmann equation, in which the
integral terms on the right-hand side correspond to one-phonon emission
and absorption. Such a Boltzmann equation has been studied intensely in
the investigation of transport properties.



3.2. Kinetic Equations in the First-Order Approximation 133

If the electric field is time-independent then the stationary Boltzmann
equation reads as

−E(t) · ∂W (p)

∂p
= 1

(2π)2
∫ dk L2(k)

2ω(k)(1− e−βh̄ω(k))

× [W (p + h̄k)− e−βh̄ω(k)W (p)]δ
(

(p + h̄k)2

2m
− p2

2m
− h̄ω(k)

)

+ 1
(2π)2

∫ dk L2(k)

2ω(k)(1− e−βh̄ω(k))

× [W (p + h̄k)e−βh̄ω(k) −W (p)]δ
(

(p + h̄k)2

2m
− p2

2m
+ h̄ω(k)

)
. (3.36)

The factor e−βh̄ω(k) in (3.36) can be omitted in the case of low tempera-
tures. The resulting equation was analyzed by Devreese and Evrard [6] for
the Fröhlich polaron model. Very complicated behavior of the stationary
probability density function W (p) was revealed, apparently indicating the
existence of a fundamental peculiarity at E = 0.

In conclusion we should like to say a few words about one approxima-
tion used to determine the relation between the applied electric field and
the average stationary electron velocity V .

We multiply both sides of (3.36) by p and integrate over the whole of
momentum space. After simple transformations, we find that

−E = 1
(2π)2

∫ dk L2(k)h̄k

2ω(k)(1− e−βh̄ω(k))

× ∫dpW (p)δ
(
− (h̄k)2

2m
+h̄

k · p
m

− h̄ω(k)
)

− 1
(2π)2

∫ dk L2(k)h̄k

2ω(k)(eβh̄ω(k) − 1)
∫ dpW (p)δ

(
(h̄k)2

2m
+ h̄

k · p
m

− h̄ω(k)
)

.

(3.37)

Here, according to the notations of Chapter 1,

E = −ecE, (3.38)

where E is for the external electric field.
Thus the relation (3.37) is a rigorous consequence of the Boltzmann

equation. We assume the “coarse approximation”, choosing for of W (p) a
“shifted” Maxwellian distribution function with average velocity V ,

W (p) = ρM (p−mV), ρM (p) =
(

β

2mπ

)3/2
e−β

p2

2m ,
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and substitute this distribution into (3.37). This leads us to the approxi-
mate equation

ecE = 1
(2π)2

∫ dk L2(k)h̄k

2ω(k)(1− e−βh̄ω(k))

× ∫ dp ρM (p)δ
(
− (h̄k)2

2m
+ h̄

k · p
m

− h̄[ω(k)− k · V ]
)

− 1
(2π)2

∫ dk L2(k)h̄k

2ω(k)(eβh̄ω(k) − 1)

× ∫ dp ρM (p)δ
(

(h̄k)2

2m
+ h̄

k · p
m

− h̄[ω(k)− k · V ]
)

. (3.39)

Note that

δ

(
− (h̄k)2

2m
+ h̄

k · p
m

− h̄[ω(k)− k · V ]
)

= 1
(2π)

+∞
∫
−∞

exp
[
i

(
(h̄k)2

2m
− h̄

k · p
m

+ h̄[ω(k)− k · V ]
)

ξ

]
dξ,

δ

(
(h̄k)2

2m
+ h̄

k · p
m

− h̄(ω(k)− k · V)
)

= 1
(2π)

+∞
∫
−∞

exp
[
i

(
(h̄k)2

2m
+ h̄

k · p
m

− h̄[ω(k)− k · V ]
)

ξ

]
dξ

and
∫ ρM (p)e−iξ

h̄k·p
m dp = exp

(
− (h̄k)2

2m
ξ2

β

)
,

∫ ρM (p)eiξ
h̄k·p

m dp = exp
(
− (h̄k)2

2m
ξ2

β

)
.

Therefore, we find from (3.39) that

ecE =
+∞
∫
−∞

dξ
1

(2π)3
∫ dk L

2(k)h̄k

2ω(k)

×
(

eih̄[ω(k)−k·V ]ξ

1− e−βh̄ω(k)
− e−ih̄[ω(k)−k·V ]ξ

eβh̄ω(k) − 1

)
exp

[
− (h̄k)2

2m

(
ξ2

β
− iξ

)]
. (3.40)
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This approximate equation was first derived by K.K. Thornber and
R.P. Feynman [30] for weak interactions.l They found that the mobility
derived from (3.40) in the weak-interaction limit does not coincide with
the mobility found by the standard method from the Boltzmann equation.
We see here that this discrepancy originates from an inadequate approx-
imation, namely the choice of a Maxwellian distribution concentrated in
the “vicinity of the average velocity” V , as a trial momentum distribution
function in (3.37). This distribution is itself the rigorous consequence of
some Boltzmann equation. The connection between (2.13) and the use
of a Maxwellian for the trial equilibrium distribution function was also
noticed by J.T. Devreese (private communication).

3.3. Nonequilibrium Properties of the Linear Polaron Model
In this section we are going to show that the results of [6] and [30]

regarding the impedance calculations in the polaron model can be derived
immediately without functional integration.

Let us begin with the rigorous equation (3.36), in which we choose

f(p) = p. (3.41)

for the arbitrary function f(p). We denote the average electron momen-
tum by

〈p 〉t = ∫ pWt(p) dp.

Introducing notation

Tr(S,Σ)e
ik·r(τ)e−ik·r(t)Dt0 = Φk(t, τ , t0), (3.42)

and, in addition,

Tr(S,Σ)e
ik·r(t)e−ik·r(τ)Dt0 = Tr(S,Σ){eik·r(τ)e−ik·r(t)}†Dt0 = Φ∗k(t, τ , t0).

it follows from (3.36), on taking (3.41) and (3.42) into account, that

d〈p〉t
dt

+ eεtE(t) = − 1
V

e2εt
∑

(k)

L2(k)k

2ω(k)(1− e−βh̄ω(k))

× t
∫
t0

dτ [eiω(k)(t−τ) + e−iω(k)(t−τ)e−βh̄ω(k)]e−ε(t−τ)Φk(t, τ , t0)

l According to the notation and system of units used in [30],

h̄ = 1, Ck =
1

V 1/2

(
1

2ω(k)

)1/2

L(k), E = ecE,
equation (3.40) takes the form

E =
+∞
∫
−∞

dξ
∑

(k)

|Ck|2
(

eih̄[ω(k)−k·V ]ξ

1− e−βh̄ω(k)
− e−ih̄[ω(k)−k·V ]ξ

eβh̄ω(k) − 1

)
exp

[
− k2

2m

(
ξ2

β
− iξ

)]
.

This equation corresponds to formula (3.17) of [30].
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− 1
V

e2εt
∑

(k)

L2(k)k

2ω(k)(1− e−βh̄ω(k))

× t
∫
t0

dτ e−ε(t−τ)[e−iω(k)(t−τ) + eiω(k)(t−τ)e−βh̄ω(k)]Φ∗k(t, τ , t0). (3.43)

This is still a rigorous relation. To derive some kind of approximate
equation, we have to find some approximation for Φk(t, τ , t0) in explicit
form. To solve this task, it is appropriate to employ a model Hamiltonian
that leads to exactly solvable equations of motion. To get the desired
approximation, this Hamiltonian should be constructed in such a way that
the behavior of the approximate trajectory r(t) has some resemblance
with the exact trajectory given by the Hamiltonian (3.5).

Let us start with the case of zero external field,

E = 0, (3.44)

and consider the Hamiltonian

H(L) = p2

2m∗ + C2r2

2
+

∑

(k)

h̄ν(k)b†kbk

+ i

V 1/2

∑

(k)

(
h̄

2ν(k)

)1/2

Λ(k)k · r(bk + b†−k), (3.45)

where Λ(k) is spherically symmetric function of k, ν(k) is a spherically
symmetric function that is strictly positive:

ν(k) > 0.

Until we take the limit V →∞, we assume that the volume V is finite
and the number of terms nV in all sums over k is also finite. Then the
corresponding Heisenberg equations of motion form a finite linear system
of ordinary differential equations with constant coefficients that is exactly
solvable in principle, i. e.

dr

dt
= p

m
,

dp

dt
= −C2r(t)− i

V 1/2

∑

(k)

(
h̄

2ν(k)

)1/2

Λ(k)k[bk(t) + b†−k(t)],

bk(t)

dt
= −iν(k)bk(t)− 1

V 1/2

(
1

2h̄ν(k)

)1/2

Λ(k)k · r(t),

b†−k(t)

dt
= iν(k)b†−k(t) + 1

V 1/2

(
1

2h̄ν(k)

)1/2

Λ(k)k · r(t), (3.46)

r(t0) = r, p(t0) = p, bk(t0) = bk, b†−k(t0) = b†−k.
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Let us show now that the Hamiltonian (3.45) is translationally invariant
under a proper choice of the constant C2. We begin with the identity

∑

(k)

h̄ν(k)
(

b†k + ik · r
V 1/2

Λ(k)

ν(k)[2h̄ν(k)]1/2

)(
bk − ik · r

V 1/2
Λ(k)

ν(k)[2h̄ν(k)]1/2

)

=
∑

(k)

h̄ν(k)b†kbk + i√
V

∑

(k)

(
h̄

2ν(k)

)1/2

Λ(k)k · r bk

− i

V 1/2

∑

(k)

(
h̄

2ν(k)

)1/2

Λ(k)k · r b†k + 1
V

∑

(k)

Λ2(k)

2ν2(k)
(k · r)2,

and note that, thanks to the spherical symmetry of the functions
Λ(k), ν(k)

1
V

∑

(k)

Λ2(k)

ν2(k)
(k · r)2 = r2

1
V

∑

(k)

Λ2(k)

3ν2(k)
k2.

On account of this,

H(L) = p2

2m∗ +
(

C2 − 1
V

∑

(k)

Λ2(k)

3ν2(k)
k2

)
r2

2

+
∑

(k)

h̄ν(k)
(

b†k + ik · r
V 1/2

Λ(k)

ν(k)[2h̄ν(k)]1/2

)(
bk − ik · r

V 1/2
Λ(k)

ν(k)[2h̄ν(k)]1/2

)
.

Therefore if we choose

C2 = 1
V

∑

(k)

Λ2(k)

3ν2(k)
k2 (3.47)

then the Hamiltonian H(L) becomes invariant with respect to the group
of translations

r → r + R, bk → bk + ik ·R
V 1/2

Λ(k)

ν(k)[2h̄ν(k)]1/2 . (3.48)

This invariance leads to the existence of a conservation law for a vector P ,

dP
dt

= 0, (3.49)



138 Ch. 3. Kinetic Equations in Polaron Theory

that could be interpreted as the conservation of a kind of “total momen-
tum”. To find an explicit expression for P we use (3.6), from which it
follows that

d[bk(t)− b†−k(t)]

dt
= − iν(k)[bk(t)− b†−k(t)]

− 2 1
V 1/2

∑

(k)

(
1

2h̄ν(k)

)1/2

Λ(k)k · r(t),

and from here

d

dt

1
V 1/2

(
h̄

2ν(k)

)1/2

Λ(k)
bk(t)− b†−k(t)

ν(k)
k

= −i
1

V 1/2

∑

(k)

(
h̄

2ν(k)

)1/2

Λ(k)k[bk(t) + b†−k(t)]− 1
V

∑

(k)

Λ2(k)

ν2(k)
k · r(t)k

= dp(t)

dt
+ C2r(t)− 1

V

∑

(k)

Λ2(k)

ν2(k)
k · r(t)k.

But, thanks to (3.47),

− 1
V

∑

(k)

Λ2(k)

ν2(k)
k · r(t)k = r(t) 1

V

∑

(k)

Λ2(k)

3ν2(k)
k2 = C2r(t).

Therefore

d

dt

[
p(t)− 1

V 1/2

∑

(k)

kΛ(k)

ν(k)

(
h̄

2ν(k)

)1/2

[bk(t)− b†−k(t)]
]

= 0.

It follows from the last equation that the constant “total momentum”
vector has the form

P = p− 1
V 1/2

∑

(k)

kΛ(k)

ν(k)

(
h̄

2ν(k)

)1/2

[bk(t)− b†−k(t)]. (3.50)

Now let us introduce an external electric field, replacing the Hamilto-
nian H(L) with

H̃(L) = H(L) + E(r) · r. (3.51)

Because H(L) commutes with P and because

Pβ , rγ ] = [pβ , rγ ] = −ih̄δβγ , β, γ = 1, 2, 3,
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we see that
dP
dt

= −E(t). (3.52)

It can be seen that for the Hamiltonian (3.5), under the condition (3.44),
the translation group is defined by the transformations

r → r + R, bk → bke−ik·R. (3.53)

Under these circumstances, the “total momentum” is determined by the
expression

P = p +
∑

(k)

h̄kb†kbk. (3.54)

In the case when the external field is turned on, P also satisfies (3.52).
Consider the Hamiltonian (3.51), the corresponding Heisenberg equa-

tions and the corresponding initial conditions for the statistical operator
Dt. We shall use the same form for these initial conditions as in (3.10):

Dt0 = ρ(S)DL(Σ).

But now we put as a natural choice

DΣ = const · exp
(
−β

∑

(k)

h̄ν(k)b†kbk

)
.

Here DΣ is the statistical operator for the statistically equilibrium model
system Σ. The equations of motion for the whole model system S + Σ are

m∗ r(t)
dt

= p(t),

dp(t)

dt
= −C2r(t)− i

V 1/2

∑

(k)

(
h̄

2ν(k)

)1/2

Λ(k)k[bk(t) + b†−k(t)]−E(t),

(3.55)

bk(t)

dt
= −iν(k)bk(t)− 1

V 1/2

(
1

2h̄ν(k)

)1/2

Λ(k)k · r(t),

b†−k(t)

dt
= iν(k)b†−k + 1

V 1/2

(
1

2h̄ν(k)

)1/2

Λ(k)k · r(t),
(3.56)

r (t0) = r, p (t0) = p, bk(t0) = bk, b†−k(t0) = b†−k,

from which it follows that

bk(t) = bke−iν(k)(t−t0) − 1
V 1/2

(
1

2h̄ν(k)

)1/2

Λ(k)
t
∫
t0

dτ e−iν(k)(t−τ)k · r(τ),

b†−k(t) = b†−keiν(k)(t−t0) + 1
V 1/2

(
1

2h̄ν(k)

)1/2

Λ(k)
t
∫
t0

dτ eiν(k)(t−τ)k · r(τ).
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Substitution of these expressions into (3.55) leads to the equation for the
electron momentum:

dp(t)

dt
+ C2r(t) + i

V

∑

(k)

Λ2(k)k

2ν(k)

t

∫
t0

dτ k · r(τ)(eiν(k)(t−τ) − e−iν(k)(t−τ))

= − i

V 1/2

(∑

(k)

h̄

2ν(k)

)1/2

Λ(k)k(bke−iν(k)(t−t0) + b†−keiν(k)(t−t0))−E(t).

Integrating by parts,

i
t
∫
t0

dτ k · r(τ)(eiν(k)(t−τ) − e−iν(k)(t−τ))

= − 1
ν(k)

t

∫
t0

dτ k · r(τ) d

dτ
(eiν(k)(t−τ) + e−iν(k)(t−τ))

= −2k · r(t)
ν(k)

+ 2k · r
ν(k)

cos[ν(k)(t− t0)]

+ 2
ν(k)

t

∫
t0

dτ k · dr(τ)

dτ
cos [ν(k)(t− τ)],

and remembering that

− 1
V

∑

(k)

Λ2(k)

ν2(k)
k · r(t)k = − 1

V

∑

(k)

Λ2(k)

3ν2(k)
k2r(t) = −C2r(t)

= 1
V

∑

(k)

Λ2(k)k

ν2(k)
k · dr(τ)

dτ
cos [ν(k)(t− τ)]

= 1
V

∑

(k)

Λ2(k)k2

3ν2(k)
cos [ν(k)(t− τ)] dr(τ)

dτ
,

we obtain

dp(t)

dt
+ 1

m∗
t
∫
t0

dτ K(t− τ)p(τ) = −rK(t− t0)

− i

V 1/2

(
h̄

2ν(k)

)1/2

Λ(k)k(bke−iν(k)(t−t0) + b†−keiν(k)(t−t0))−E(t),

(3.57)
where

K(t− τ) = 1
V

∑

(k)

Λ2(k)k2

3ν2(k)
cos [ν(k)(t− τ)]. (3.58)
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We average this equation with the initial statistical operator

Dt0 = ρ(S)D(Σ) (3.59)

and denote
m∗〈V(t)〉 = 〈p (t)〉 = Tr(S,Σ)p (t)Dt0 ,

〈r〉 = Tr(S,Σ)rDt0 = Tr(S) rρ(S).

Because 〈bk〉 = 0, 〈b†−k〉 = 0, equation (3.57) can be reduced to

m∗ d〈V(t)〉
dt

+
t
∫
t0

dτ 〈V(τ)〉K(t− τ) = −〈r 〉K(t− t0)−E(t). (3.60)

Here 〈V(t)〉 is the average velocity of the particle.
Let us now consider the situation where E(t) is a periodic function of

t multiplied by eεt (ε > 0), corresponding to the adiabatic switching on
of the external electric field at time t→−∞. We shall seek the stationary
solutions of (3.60), i.e. solutions that can be represented as a product of
eεt and some periodic function.

Since (3.60) is a linear equation, we can restrict ourselves to consider-
ation of the simplest ansatz

E(t) = Eωe(−iω+ε)t. (3.61)

In fact, if E(t) were a sum of terms with different frequencies ω then the
resulting stable solutions of (3.60) would be a sum of solution of the type
(3.61).

Thus consider the equation

m∗ d〈V(t)〉
dt

+
t
∫
−∞

dτ 〈V(τ)〉K(t− τ) = −Eωe(−iω+ε)t.

Substituting
〈V(t)〉 = Vωe−(iω+ε)t,

into this equation, we get
(

m∗(−iω + ε) +
∞
∫
0
K(t)e(iω−ε)t dt

)
Vω = −Eω.

The definition (3.58) leads to the relation

∞
∫
0
K(t)e(−iω+ε)t dt = 1

V

∑

(k)

Λ2(k)k2

6ν2(k)

(
1

ε− i[ω + ν(k)]
+ 1

ε− i[ω − ν(k)]

)
.
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Denote

1
V

∑

(k)

Λ2(k)k2

6ν2(k)
[δ(ν(k)− Ω) + δ(ν(k) + Ω)] = I(Ω). (3.62)

Then I(−Ω) = I(Ω), I(Ω) > 0, and

∞
∫
0
K(t)e(iω−ε)t dt = i

+∞
∫
−∞

I(Ω) dΩ

ω + iε− Ω
. (3.63)

Therefore
(

m∗(−iω + ε) + i
+∞
∫
−∞

I(Ω) dΩ

ω + iε− Ω

)
〈V(t)〉 = −Eωe(−iω+ε)t.

But, thanks to (3.38),
Eω = −ecEω,

and, according to the definition of the electric current,

jω(t) = −ec〈V(t)〉,
we have

(
m∗(−iω + ε) + i

+∞
∫
−∞

I(Ω) dΩ

ω + iε− Ω

)
jω(t) = e2cEωe(−iω+ε)t. (3.64)

Let us take the limit V →∞, assuming that for any real ω and any
positive ε,

+∞
∫
−∞

I(Ω) dΩ

ω + iε− Ω
→

+∞
∫
−∞

J(Ω) dΩ

ω + iε− Ω
. (3.65)

After the passage to the limit, we put ε → 0 in (3.64). We get

jω(t) = 1
Z+(ω)

e2cEωe−iωt,

where
Z+(ω) = −m∗iω + i

+∞
∫
−∞

J(Ω) dΩ

ω − Ω + i0
. (3.66)

Choosing a system of units for which the electron charge ec is unity, we see
that (3.66) is exactly the impedance corresponding to the frequency −ω.

As we shall see later in connection with the process of the passage
to the limit , all expressions used further, including (3.42), will depend
only on the function J(Ω),, but not on the particular choice of functions
ν(k) and Λ(k). Therefore we have to employ, first of all, an appropriate
expression for J(Ω). Let us allot the following properties to this function:
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1) J(Ω) is an analytic function of the complex variable, regular on the
strip

|ImΩ| 6 η0.

2) J(Ω) = J(−Ω).
3) |J(Ω)| 6 C/|Ω|2 for |Ω| > ω0, where ω0, C are constants.
4) For real Ω

J(Ω) > 0. (3.67a)

Then we take expressions for Λ(k) and ν(k) such that m

1
V

∑

ν(k)>ω

Λ2(k)k2

6ν2(k)
<

C1

ω
, where C1 is some constant independent of V ,

(3.67b)
1
V

∑

ν(k)6ω

Λ2(k)k2

6ν2(k)
→

∞
∫
0
J(Ω) dΩ, 0 < ω < ∞. (3.67c)

In the considered situation it is clear that (3.65) holds for any fixed ε >
> 0 and that the convergence is uniform with respect to ω in the interval
−∞ < ω < +∞).

Let us now introduce the following function of the complex variable W :

∆(W ) = i
+∞
∫
−∞

J(Ω) dΩ

W − Ω
. (3.68)

We see that this function is regular for |ImW | > 0. In connection with
the properties (3.67), it is obvious that

∆(W ) = lim
V→∞

i
+∞
∫
−∞

I(Ω) dΩ

W − Ω
, ImW 6= 0. (3.69)

Here, thanks to (3.62),

i
+∞
∫
−∞

I(Ω) dΩ

W − Ω
= i

V

∑

(k)

Λ2(k)k2

6ν2(k)

(
1

W − ν(k)
+ 1

W + ν(k)

)
,

and hence this function is analytic on the whole complex plane and has
singularities (poles) only on the real axis at W = ±ν(k). However, the
limit function has a cut along the whole real axis, such that

∆(ω + i0)−∆(ω − i0) = 2πJ(ω) > 0.

m One of the ways to find such expressions for the functions Λ(k) and ν(k)

results in the following. We take k =
(2πn1

L
, 2πn2

L
, 2πn3

L

)
, L3 = V ; n1, n2,

n3 to be positive and negative integers; it is assumed that n2
1 + n2

2 + n2
3 6= 0,

this prevents the appearance of zero value for k in all sums over k. Then we
put ν(k) = s|k|, Λ(k) = 2π2(s3/|k|2)J(s|k|), where s is some positive constant
independent of V .
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Thus we have two analytic functions

∆+(W ) = i
+∞
∫
−∞

J(Ω) dΩ

W − Ω
for ImW > 0,

∆−(W ) = −i
+∞
∫
−∞

J(Ω) dΩ

W − Ω
for ImW 6 0.

(3.70)

Thanks to properties (2) and (4) in (3.67a), these functions are connected
with each other in a simple way:

∆−(W ) = −∆+(−W ) for ImW < 0. (3.71)

Hence, we need to investigate only one of them, for example, ∆+(−W ).
Denote

ReW = ω, ImW = y > 0. (3.72)

Then, for any fixed ω1 > 0

∆+(ω + iy) = i ∫
|Ω−ω|>ω1

J(Ω) dΩ

ω + iy − Ω
+ i

ω+ω1∫
ω−ω1

J(Ω) ω − Ω− iy

(ω − Ω)2 + y2
dΩ.

But
ω+ω1∫
ω−ω1

ω − Ω

(ω − Ω)2 + y2
dΩ = −

ω1∫
−ω1

Ω

Ω2 + y2
dΩ = 0,

and therefore

∆+(ω + iy) = i ∫
|Ω−ω|>ω1

J(Ω) dΩ

ω + iy − Ω

+ i
ω+ω1∫
ω−ω1

J(Ω)− J(ω)

(ω − Ω)2 + y2
(ω − Ω) dΩ +

ω+ω1∫
ω−ω1

J(Ω) y

(ω − Ω)2 + y2
dΩ. (3.73)

From which it follows that

∆+(ω) = lim
y→0

∆+(ω + iy)

= i ∫
|Ω−ω|>ω1

J(Ω) dΩ

ω − Ω
+ i

ω+ω1∫
ω−ω1

J(Ω)− J(ω)

ω − Ω
dΩ + πJ(ω). (3.74)

Thus ∆+(ω) is also an analytic function on the real axis. Using (3.73), it
is easy to prove that

|∆+(ω)| 6 const
|W | , |W | → ∞. (3.75)

Furthermore, we have

∆+(ω) = ∆−(ω) + 2πJ(ω) = −∆+(−ω) + 2πJ(ω).
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Thanks to condition (1), the function −∆+(−Ω) + 2πJ(ω) is analytic in
the domain

0 > ImW > −η0. (3.76)

Because this function coincides with ∆+(ω) on the real axis, we see that
∆+(ω), defined initially for ImW > 0, can be continued analytically to
the domain (3.76). Thus we can write

∆+(W ) = −∆+(−W ) + 2πJ(W ) for 0 > ImW > −η0. (3.77)

It can be shown that the inequality (3.75) is justified anywhere for

ImW > −η0. (3.78)

Let us consider now the impedance function

Z+(W ) = −im∗W + ∆+(Ω)

in the domain (3.78) and note that it does not have any zeros in the upper
half-plane or on the real axis, because, thanks to (3.73),

ReZ+(W ) > 0 for ImW > 0.

Hence all zeros of this function in the considered domain (3.78), if any,
must be confined within the domain (3.76) . But

∆+(W ) → 0 for |W | → ∞,

and therefore zeros of the function Z+(W ) might be observed only in the
closed domain

|ReW | 6 const, 0 > ImW > −η0. (3.79)

As is well known, an analytic function can possess only a finite number
of zeros in any closed domain. If a few zeros are contained in the domain
(3.70) then we can choose η > 0 such that −η is larger than any of the
imaginary parts of these zero points. If, on the other hand, the domain
(3.79) does not contain any zeros of the function Z+(W ) then we choose
η = η0. In any case, we see that by choosing an appropriate value η > 0,
we can always ensure that the domain

ImW > −η (3.80)

does not contain any zeros of the impedance function Z+(W ). Therefore
the admittance function 1/Z+(W ) is a regular analytic function in the
domain (3.80). Its behavior at infinity is given by the relation

1
Z+(W )

= 1
−m∗iW + ∆+(W )

= − 1
m∗iW

+ ∆+(W )

m∗iW (−m∗iW + ∆+(W ))

= − 1
m∗iW

+ O
( 1

W 3

)
, |W | → ∞. (3.81)
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In conclusion, we should like to consider the following example. Let
us take

∆+(W ) = i
K2

0

2

(
1

W − ν0 + iγ
+ 1

W + ν0 + iγ

)
, γ > 0, ImW > −γ,

∆−(W ) = −∆+(−W ) = i
K2

0

2

(
1

W + ν0 − iγ
+ 1

W − ν0 − iγ

)
, ImW < γ.

Then

J(ω) = 1
(2π)

[∆+(ω)−∆−(ω)] = K2
0

2π

(
γ

(ω − ν0)
2 + γ2

+ γ

(ω + ν0)
2 + γ2

)
.

(3.82)

For this example, all of our conditions are fulfilled. A similar result would
be obtained if, instead of the single term in (3.82), the sum of a few terms
of this type were considered.

After these lengthy speculations on the analyticity of the impedance
and admittance functions, we return to our fundamental equation (3.57),
in which we put

E(t) =
∑

ω

Eωe−iωt. (3.83)

It is convenient to solve this equation by the Laplace transform. Thus we
multiply both sides of the equation by the factor

eiWt, W = Ω + iδ, (3.84)

and integrate over t:

∞
∫
t0

dt eiWt dp (t)

dt
+ 1

m∗
∞
∫
t0

eiWt
t

∫
t0

dτ K(t− τ)p (τ)

= −r
∞
∫
t0

dt eiWtK(t− t0)−
∑

ω

Eω

∞
∫
t0

ei(W−ω)t − i

V 1/2

(
h̄

2ν(k)

)1/2

Λ(k)k

×
(

bk

∞
∫
t0

dt ei(W−ν(k))teiν(k)t0 + b†−k

∞
∫
t0

dt ei(W+ν(k))te−iν(k)t0

)
. (3.85)
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But ∞
∫
t0

dt eiWt dp(t)

dt
= −peiWt0 − iW

∞
∫
t0

dt eiWtp(t),

∞
∫
t0

dt eiWt t
∫
t0

dτ K(t− τ)p(τ)−∞
∫
0
K(t)eiWt dt

∞
∫
t0

eiWtp (t) dt.

Therefore

1
m∗

(
−im∗W +

∞
∫
0
K(t)eiWt dt

)∞
∫
t0

eiWtp(t) dt

= peiWt0 − reiWt0
∞
∫
0
K(t)eiWt dt +

∑

(ω)

Eω
ei(W−ω)t0

i(W − ω)

+ 1
V 1/2

∑

(k)

(
h̄

2ν(k)

)1/2

Λ(k)k
(

bkeiWt0

W − ν(k)
+

b†−keiWt0

W + ν(k)

)
.

From here, thanks to (3.63), we have

∞
∫
0
K(t)eiWt dt = i

+∞
∫
−∞

I(ν) dν

W − ν
.

Introducing the notation

−im∗W + i
+∞
∫
−∞

I(ν) dν

W − ν
= Z(V )(W ), i

+∞
∫
−∞

I(ν) dν

W − ν
= ∆V (W ).

(3.86)
we get
∞
∫
t0

dt eiWtp(t)

= m∗peiWt0

Z(V )(W )
−m∗r∆(V )(W )

Z(V )(W )
eiWt0 − i

∑

(ω)

m∗Eω
eiWt0e−iωt0

(W − ω)Z(V )(W )

+ 1
V 1/2

∑

(k)

m∗
(

h̄

2ν(k)

)1/2
Λ(k)keiWt0

Z(V )(W )

(
bk

W − ν(k)
+

b†−k

W + ν(k)

)
. (3.87)

Because

f(t) = 1
(2π)

+∞
∫
−∞

e(δ−iΩ)t

(∞
∫
t0

f(τ)e(iΩ−δ)τ dτ

)
dΩ, t > t0,

Therefore, using the notation

i

2π

+∞
∫
−∞

e(δ−iΩ)(t−t0)

(Ω + iδ − ν)Z(V )(Ω + iδ)
dΩ = f(ν, δ, t− t0),
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1
2π

+∞
∫
−∞

e(δ−iΩ)(t−t0)

Z(V )(Ω + iδ)
dΩ = 1

2πm∗
+∞
∫
−∞

(
− 1

iΩ− δ
+ ∆(V )(Ω + iδ)

(iΩ− δ)Z(V )(Ω + iδ)

)

× e(δ−iΩ)(t−t0) dΩ = g0(δ, t− t0),

1
2π

+∞
∫
−∞

∆(V )(Ω + iδ)

Z(V )(Ω + iδ)
e(δ−iΩ)(t−t0) dΩ = g1(δ, t− t0), (3.88)

we obtain from (3.87)

p(t) = p(S)(t) + p(E)(t) + p(Σ)(t),

p(S)(t) = m∗pg0(δ, t− t0)−m∗rg1(δ, t− t0), (3.89)

p(E)(t) = −m∗ ∑

(ω)

Eωf(ω, δ, t− t0)e−iωt,

p(Σ)(t) = −im∗

V 1/2

∑

(k)

(
h̄

2ν(k)

)1/2

× Λ(k)k[bkf(ν(k), δ, t− t0) + b†−kf(−ν(k), δ, t− t0)].

It should be stressed that the functions (3.88) depend essentially on V .
Thanks to our choice, which leads to conditions1)–4) and (3.67), we

can take the passage to the limit V →∞. Up to the present, δ has been
arbitrary. Let us now choose

δ = η

2
. (3.90)

From the other side, it is easy to see that

g0(δ, t− t0) → Ψ0(t− t0) = 1
2π

+∞
∫
−∞

e(δ−iΩ)(t−t0)

Z+(Ω + iδ)
dΩ,

g1(δ, t− t0) → Ψ1(t− t0) = 1
2π

+∞
∫
−∞

∆+(Ω + iδ)

Z+(Ω + iδ)
e(δ−iΩ)(t−t0) dΩ, (3.91)

f(ν, δ, t− t0) → Φ(ν, t− t0) = i

2π

+∞
∫
−∞

e(δ−iΩ)(t−t0) dΩ

(Ω + iδ − ν)Z+(Ω + iδ)

as V →∞. Taking into account the identity

1
Z(Ω + iδ)

= 1
δ − iΩ

+ ∆(Ω + iδ)

(iΩ− δ)Z(Ω + iδ)
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and the magnitude δ fixed by (3.90), one can show that the convergence

|f(ν, δ, t− t0)− Φ(ν, t− t0)| → 0,
ν|f(ν, δ, t− t0)− Φ(ν, t− t0)| → 0, (3.92)

V →∞
is uniform with respect to real ν when |t− t0| 6 T . Here T is some constant
independent on V .

Let us begin to study the asymptotic behavior of the limiting functions
Ψ0, Ψ1 and Φ for t − t0 → ∞. It is suitable to remind that functions
∆+(Ω + iδ); 1/Z+(Ω + iδ) are regular analytic functions of Ω in the
domain ImΩ > −δ − η = −3δ. Therefore the integration in the expres-
sions for Ψ0 and Ψ1 can be distorted from the real axis to the axis
(−3iδ −∞,−3iδ +∞), which implies the change of variables

Ω → Ω− 3iδ.

Because of this,

Ψ1(t− t0) = 1
2π

+∞
∫
−∞

∆+(Ω− iη)

Z+(Ω− iη)
e−iΩ(t−t0) dΩ e−η(t−t0),

Ψ0(t− t0) = 1
2π

+∞
∫
−∞

e−iΩ(t−t0)

Z+(Ω− iη)
dΩ e−η(t−t0)

= 1
2π

+∞
∫
−∞

∆+(Ω− iη)

(η + iΩ)Z+(Ω− iη)
e−iΩ(t−t0) dΩ e−η(t−t0),

since
+∞
∫
−∞

e−iΩ(t−t0)

η + iΩ
dΩ = 0

for t > t0. Hence, taking into account the inequalities proved before, we
have

|Ψ1(t− t0)| 6 K1e
−η(t−t0),

Ψ0(t− t0) 6 K0e
−η(t−t0),

t > t0,

(3.93)

where K0 and K1 are some constants. We apply a similar procedure to
the function Φ(ν, t− t0). But here we need only pay attention to the fact
that the function under the integral (3.91) has a pole at Ω = ν − iδ in the
domain ImΩ + δ > −η. As a consequence,

Φ(ν, t− t0) = e−iν(t−t0)

Z+(ν)
+ i

2π
e−η(t−t0)

+∞
∫
−∞

e−iΩ(t−t0) dΩ

(Ω + iδ − ν)Z+(Ω− iη)

= e−iν(t−t0)

Z+(ν)
+ i

2π
e−η(t−t0)

+∞
∫
−∞

∆+(Ω− iη)e−iΩ(t−t0) dΩ

(Ω− iη − ν)(iΩ + η)Z+(Ω− iη)
, (3.94)



150 Ch. 3. Kinetic Equations in Polaron Theory

because
+∞
∫
−∞

e−iΩ(t−t0)

(Ω− iη − ν)(iΩ− iη)
dΩ = 0, t > t0.

The expressions (3.94) lead to the following inequalities:
∣∣∣∣Φ(ν, t− t0)− e−iν(t−t0)

Z+(ν)

∣∣∣∣ 6 K2e
−η(t−t0),

∣∣∣∣νΦ(ν, t− t0)− ν
e−iν(t−t0)

Z+(ν)

∣∣∣∣ 6 K3e
−η(t−t0).

(3.95)

Here K2 and K3 are some constants.
Now we can pass to the calculation of the expressions (3.42) for the

model based on the Hamiltonian H(L). We have

Φ(a)
k (t, τ , t0) = Tr eik·r(τ)e−ik·r(t)Dt0 . (3.96)

Here the index (a) indicates that we have used an approximation: instead
of the function r(t) determined by the exact equations of motion, the
function r(t) given by (3.56), which follows from the model Hamiltonian
H(L), has been substituted.

The approximate equation, which we propose to solve instead of the
exact one (3.43), is formulated as

〈p〉t
dt

+ E(t) = − lim
ε>0,ε→0

1
(2π)3

∫ dk kL2(k)

2ω(k)(1− e−βh̄ω(k))

t

∫
−∞

dτ e−ε(t−τ)

×[eiω(k)(t−τ) + e−iω(k)(t−τ)e−βh̄ω(k)] lim
t0→−∞

lim
V→∞

Φ(a)
k (t, τ , t0)

− lim
ε>0,ε→0

1
(2π)3

∫ dk kL2(k)

2ω(k)(1− e−βh̄ω(k))

t

∫
−∞

dτ e−ε(t−τ)

× [e−iω(k)(t−τ) + eiω(k)(t−τ)e−βh̄ω(k)] lim
t0→−∞

lim
V→∞

Φ∗(a)
k (t, τ , t0). (3.97)

We note that this equation follows from (3.43) by replacing Φk with Φ(a)
k

and taking the sequence of limits V →∞, t0 → −∞, ε → 0.
To write the approximate equation (3.97) in explicit form, we consider

the expression (3.96) for Φ(a)
k . Let us pay attention first of all to the fact

that the “model equations” (3.56) are linear, so the commutators

[rj(t), rj′(t)], j, j′ = 1, 2, 3
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are c-numbers. Therefore

eik·r(τ)e−ik·r(t) = e
1
2 [k·r(τ),k·r(t)]eik·[r(t)−r(τ)],

Φ(a)
k (t, τ , t0) = e−ik·r(t) = e

1
2 [k·r(τ),k·r(t)]Tr(S,Σ)exp

(
−ik

t

∫
τ

p(s)

m∗ ds

)
Dt0 .

(3.98)
Inserting (3.89) into this equation and observing that

Dt0 = ρ(S)d(Σ), D(Σ) = const · exp
(
−β

∑

(k)

h̄ν(k)b+
k bk

)
, (3.99)

Tr(S) ρ(S) = 1, Tr(Σ) D(Σ) = 1,

we get from (3.98)

Φ(a)
k (t, τ , t0) = Φ(1)

k (t, τ , t0)Φ
(2)
k (t, τ , t0), (3.100)

Φ(1)
k (t, τ , t0) = e

1
2 [k·r(τ),k·r(t)] exp

(
−i

k

m∗ ·
t

∫
τ
p(E)(s) ds

)

×Tr(Σ) exp
(
−i

k

m∗ ·
t

∫
τ
p(Σ)(s) ds

)
D(Σ), (3.101)

Φ(2)
k (t, τ , t0) = Tr(S) exp

(
−i

k

m∗ ·
t

∫
τ
p(S)(s) ds

)
ρ(S). (3.102)

Furthermore, we have

[k · r(τ),k · r(t)] = 1
m∗

[
k · r(τ),

t

∫
τ
k · p(s) ds

]
, r(τ) = r(t)−

t

∫
τ

p(s)

m
ds,

[k · r(τ),k · p(s)] = [k · {r(τ)− r(s)},k · p(s)] + ih̄k2

= − 1
m∗

[
s

∫
τ
k · p(σ) dσ,k · p(s)

]
+ ih̄k2.

Thus

[k · r(τ),k · r(t)] = ih̄k2

m∗ (t− τ)−
( 1

m∗

)2 t
∫
τ

ds
s
∫
τ

dσ [k · p(σ),k · p(s)]

= ih̄
k2

m∗ (t− τ) +
( 1

m∗

)2 t
∫
τ

ds
t
∫
s

dσ[k · p(σ),k · p(s)],
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because

t
∫
τ

ds
t
∫
τ

dσ [k · p(σ),k · p(s)] =
[

t

∫
τ
k · p(ξ) dξ,

t

∫
τ
k · p(ξ) dξ

]
= 0

and
t
∫
τ

s
∫
τ
A +

t
∫
τ

t
∫
s
A =

t
∫
τ

t
∫
τ
A = 0.

On the basis of (3.89) and observing that all terms in the sum

p(t) = p(S)(t) + p(Σ)(t) + p(E)(t)

commute with each other, we find that

[k · r(τ),k · r(t)] = ih̄k2

m∗ (t− τ) +
( 1

m∗

)2 t
∫
τ
ds

t
∫
s
dσ[k · p(S)(σ),k · p(S)(s)]

+
( 1

m∗

)2 t
∫
τ

ds
t
∫
s

dσ[k · p(Σ)(σ),k · p(Σ)(s)]. (3.103)

Here, because of (3.89),

( 1
m∗

)2
[k · p (S)(σ),k · p(S)(s)]

= ih̄k2[g0(δ,σ − t0)g1(δ, s− t0)− g0(δ, s− t0)g1(δ,σ − t0)] (3.104)

and
( 1

m∗

)2
[k · p(Σ)(σ),k · p(Σ)(s)] = k2[F (σ, s, t0)− F (s,σ, t0)], (3.105)

where

F (σ, s, t0) = 1
V

∑

(k)

h̄

6ν(k)

Λ2(k)k2

(1− e−βh̄ν(k))
[f(ν(k), δ,σ − t0)

× f(−ν(k), δ, s− t0) + e−βh̄ν(k)f(−ν(k), δ,σ − t0)f(ν(k), δ, s− t0)]

or

F (σ, s, t0) =
∞
∫
0

dν I(ν) h̄ν

1− e−βh̄ν
[f(ν(k), δ,σ − t0)f(−ν(k), δ, s− t0)

+ e−βh̄ν(k)f(−ν(k), δ,σ − t0)f(ν(k), δ, s− t0)]. (3.106)
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Let us note further that because of the form (3.99) of the operator
DL(Σ) and the linearity of p(Σ(s)) with respect to the Bose operators, we
can write n:

Tr(Σ) exp
(
−i

k

m∗ ·
t

∫
τ
p(Σ)(s) ds

)
DL(Σ)

= exp
[
− 1
2m2 Tr(Σ)

(
t

∫
τ
p (Σ)(s) ds

)2

DL(Σ)
]

= exp
(
− 1
2m2

t

∫
τ

ds
t

∫
τ

dσ Tr(Σ) k · p(Σ)(s)k · p(Σ)(σ)DL(Σ)
)

= exp
(
−k2

2

t

∫
τ

ds
t

∫
τ

dσ F (s,σ, t0)
)

. (3.107)

Let us also recall that
1

m∗ pE(t) = −∑

(ω)

Eωf(ω, δ, t− t0)e−iωt0 . (3.108)

Bearing in mind (3.67), (3.91) and (3.92), we get

[k · r(τ),k · r(t)]V→∞ → ih̄
k2

m∗ (t− τ)

+ ih̄k2
t
∫
τ

ds
t
∫
s

dσ [Ψ0(σ − t0)Ψ1(s− t0)−Ψ0(s− t0)Ψ1(σ − t0)]

+ k2
t
∫
τ

ds
t
∫
s

dσ[F∞(σ, s, t0)− F∞(s,σ, t0)]. (3.109)

Here, in connection with (3.106),

F∞(σ, s, t0) = lim
V→∞

F (σ, s, t0) =
∞
∫
0
J(ν) h̄ν

1− e−βh̄ν

× [Φ(ν,σ − t0)Φ(−ν, s− t0) + e−βh̄νΦ(ν, s− t0)Φ(−ν,σ − t0)] dν.

(3.110)

We also have, from (3.108),

1
m∗ p(E)(t) → −∑

(ω)

EωΦ(ω, t− t0)e−iωt0 . (3.111)

n Here 〈eA〉 = e〈A
2〉/2, where A is a linear form in Bose operators, has

been used, and the averaging is with respect to the quadratic Hamiltonian∑

(ω)

Eωb†ωbω.
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Then we can write (see (3.100))

Φ(1)
k (t, τ , t0) → e

1
2 lim

V→∞
[k·r(τ),k·r(t)]

exp
(
−i

k

m∗
t

∫
τ

lim
V→∞

p(E)(s) ds

)

× exp
(
−k2

2

t

∫
τ

ds
t

∫
τ

dσ F∞(s,σ, t0)
)
, (3.112)

taking into account (3.109), (3.100) and (3.111).
Now, let us consider the situation when t0 → −∞. Because of (3.95)

and (3.111), we observe that
∣∣∣∣∣ lim

V→∞
1

m∗ p(E)(t)− v(t)

∣∣∣∣∣ 6
∑

(ω)

|Eω|K2e
−η(t−t0), (3.113)

v(t) = −
∑

(ω)

Eω

Z+(ω)
e−iωt. (3.114)

Furthermore, incorporating (3.95) for the evaluation of the expression
(3.100), we find

|F∞(σ, s, t0)− F (σ − s)| 6 K̃(e−η(σ−t0) + e−η(s−t0)), K̃ = const,
(3.115)

F (σ − s) =
∞
∫
0

dν J(ν) h̄ν

1− e−βh̄ν

e−iν(σ−s) + e−βh̄νeiν(σ−s)

Z+(ν)Z+(−ν)
,

or, as long as J(ν) = J(−ν),

F (σ − s) =
+∞
∫
−∞

dν J(ν) h̄ν

1− e−βh̄ν

e−iν(σ−s)

Z+(ν)Z+(−ν)
. (3.116)

We transform this formula slightly. Because

2πJ(ν) = ∆+(ν)−∆−(ν) = Z+(ν)− Z−(ν) = Z+(ν) + Z+(−ν),

we have

1
Z+(ν)Z+(−ν)

J(ν) = 1
2π

Z+(ν) + Z+(−ν)

Z+(ν)Z+(−ν)
= 1

2π

(
1

Z+(ν)
+ 1

Z+(−ν)

)

= 1
2π

(
1

Z+(ν)
− 1

Z−(ν)

)
.

Furthermore, because of the reality of J(ν), the following relation holds

ImZ+(ν) = −ImZ+(−ν).

But, by definition,

Z+(ν) = i
+∞
∫
−∞

J(Ω)

Ω− ν + i0
dΩ,
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and hence
ReZ+(ν) = πJ(ν) = ReZ+(−ν),

so that
Z+(−ν) = Z∗+(ν),

As a consequence, we may rewrite (3.116) in the form

F (σ − s) =
+∞
∫
−∞

G(ν) h̄ν

1− e−βh̄ν
e−iν(σ−s) dν,

G(ν) = 1
2π

(
1

Z+(ν)
− 1

Z+(ν)

)
= J(ν)

|Z−(ν)|2 .

(3.117)

As the final result, keeping in mind (3.101), (3.109), (3.112), (3.115) and
(3.93), we obtain

lim
t0→−∞

lim
V→∞

Φ(1)
k (t, τ , t0) = e

−i
t

∫
τ
k·V(s)) ds

A(k2, t− τ), (3.118)

where

A(k2, t− τ) = exp
[
k2

(
ih̄

2m∗ (t− τ) + 1
2

t
∫
τ

ds
t
∫
s

dσ [F (σ − s)− F (s− σ)]

− 1
2

t
∫
τ

ds
t
∫
τ

dσ F (s− σ)

)]
. (3.119)

But, because of (3.117),

1
2

t
∫
τ

ds
t
∫
τ

dσ F (s− σ) =
+∞
∫
−∞

G(ν)1− cos ν(t− τ)

ν2
h̄ν

1− e−βh̄ν
dν,

F (σ − s)− F (s− σ) = 2i
+∞
∫
−∞

G(ν) h̄ν

1− e−βh̄ν
sin ν(s− σ) dν

= 2i
+∞
∫
−∞

G(ν) h̄ν

1− eβh̄ν
sin ν(s− σ) dν

= −2i
+∞
∫
−∞

G(ν) e−βh̄ν h̄ν

1− e−βh̄ν
sin ν(s− σ) dν =

+∞
∫
−∞

G(ν)h̄ν sin ν(s− σ) dν,

t
∫
τ

ds
t
∫
s

dσ [F (σ − s)− F (s− σ)] = ih̄
+∞
∫
−∞

G(ν)
(

sin ν(t− τ)

ν
− (t− τ)

)
dν,
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Thus (3.119) yields

A(k2, t, τ) = A(k2, t− τ)

= exp
{

k2
[

ih̄

2m∗ (t− τ) + ih̄

2

+∞
∫
−∞

G(ν)
(

sin ν(t− τ)

ν
− (t− τ)

)
dν

− 1
2

+∞
∫
−∞

G(ν) h̄[1− cos ν(t− τ)]

ν(1− e−βh̄ν)
dν

]}
. (3.120)

Now consider the expression

Φ(2)
k (t, τ , t0) = Tr(S) exp

(
− i

m∗
t

∫
τ
k · p(S)(σ) dσ

)
ρ(S).

Here
i

m∗
t
∫
τ
k · p(S)(σ) dσ = k · p t

∫
τ
g0(δ,σ − t0) dσ − k · r t

∫
τ
g1(δ,σ − t0) dσ.

In accordance with the results mentioned above,
t
∫
τ
g0(δ,σ − t0) dσ → t

∫
τ
Ψ0(σ − t0) dσ,

t
∫
τ
g1(δ,σ − t0) dσ → t

∫
τ
Ψ1(σ − t0) dσ, V →∞,

(3.121)

and also ∣∣∣∣
t

∫
τ

Ψ0(σ − t0) dσ

∣∣∣∣ 6 K0
t

∫
τ

e−η(σ−t0) dσ,

∣∣∣∣
t

∫
τ

Ψ1(σ − t0) dσ

∣∣∣∣ 6 K1
t

∫
τ

e−η(σ−t0) dσ.

(3.122)

From here it is natural to see that

Φ(2)
k (t, τ , t0) = Tr(S) ρ(S)

× exp
(
−ik · p

t

∫
τ
g0(δ,σ − t0) dσ + ik · r

t

∫
τ

g1(δ,σ − t0) dσ

)

→ Tr(S) ρ(S) exp
(
−ik · p

t

∫
τ

Ψ0(σ − t0) dσ + ik · r
t

∫
τ

Ψ1(σ − t0) dσ

)

(3.123)
as V →∞, and

Tr(S) ρ(S) exp
(
−ik · p

t

∫
τ

Ψ0(σ − t0) dσ + ik · r
t

∫
τ

Ψ1(σ − t0) dσ

)

→ Tr(S) ρ(S) = 1. (3.124)
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However, in spite of (3.121) and (3.122), considerable difficulties arise in
the proof of (3.123) and (3.124). They originate from the unboundedness
of the operators r and p.

Nevertheless, the validity of (3.123) and (3.124) can be confirmed
(see Appendix II) in the case when the statistical operator ρ(S) does not
depend on V or t0. In this case,

lim
t0→−∞

lim
V→∞

Φ(2)
k (t, τ , t0) = 1, (3.125)

and hence, on the basis of (3.100) and (3.118), we conclude that

lim
t0→−∞

lim
V→∞

Φ(a)
k (t, τ , t0) = e

−i
t

∫
τ
k·V(σ)) dσ

A(k2, t− τ). (3.126)

We substitute this expression into the approximate equation (3.97):

d〈p 〉t
dt

+ E(t) = − lim
ε>0,ε→0

1
(2π)3

∫ dk kL2(k)

2ω(k)(1− e−βh̄ω(k))

t

∫
−∞

dτ e−ε(t−τ)

×(eiω(k)(t−τ) + e−iω(k)(t−τ)e−βh̄ω(k))e
−i

t

∫
τ
k·V(σ) dσ

A(k2, t− τ)

+ lim
ε>0,ε→0

1
(2π)3

∫ dk kL2(k)

2ω(k)(1− e−βh̄ω(k))

t

∫
−∞

dτ e−ε(t−τ)

×(e−iω(k)(t−τ) + eiω(k)(t−τ)e−βh̄ω(k))e
i

t

∫
τ
k·V(σ) dσ

A∗(k2, t− τ). (3.127)

Thus we have derived a general approximate equation from which all
results of [6, 30] could be deduced. Note that in[6, 30], m = m∗ and the
function (3.82) is used in the limit γ → 0.

Consider, in particular, the case of a weak external field, when one
can restrict oneself to a linear approximation of the average velocity with
respect to E. Put in (3.127)

e
±i

t

∫
τ
k·V(σ)) dσ

= 1± i
t
∫
τ
k · V(σ) dσ.

Bearing in mind the radial symmetry, we find

〈p〉t
dt

+ E(t) = − lim
ε→0,ε>0

i

(2π)3
∫ dk k2L2(k)

6ω(k)(1− e−βh̄ω(k))

t

∫
−∞

dτ e−ε(t−τ)

×(eiω(k)(t−τ) + e−iω(k)(t−τ)e−βh̄ω(k))
t
∫
τ
V(σ) dσ A(k2, t− τ)

− lim
ε→0,ε>0

i

(2π)3
∫ dk k2L2(k)

6ω(k)(1− e−βh̄ω(k))

t

∫
−∞

dτ e−ε(t−τ)

×(e−iω(k)(t−τ) + eiω(k)(t−τ)e−βh̄ω(k))
t
∫
τ
V(σ) dσ A∗(k2, t− τ). (3.128)
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Here
V(t) = −

∑

(ω)

Eω

Z+(ω)
e−iωt

represents the stationary average velocity induced in the model system
by the external field

E(t) =
∑

(ω)

Eωe−iωt.

Note that in the considered case of weak-enough field, we can express
the stationary average velocity for the real system analogously:

〈p (t)〉
m

= −
∑

(ω)

Eω

z+(ω)
e−iωt,

but, of course, with different coefficients; here z+(ω) corresponds to the
impedance of the real system.

To derive a “self-consistent” equation to determine this impedance, we
choose

Z+(ω) = z+(ω) (3.129)

and take advantage of (3.128). We get

−i
t
∫
τ
V(σ) dσ = −

∑

(ω)

Eωe−iωt

Z+(ω)

1− eiω(k)(t−τ)

ω
.

Introducing the integration argument t− τ = s, we find

m∗∑

(ω)

Eωiωe−iωt

z+(ω)
+

∑

(ω)

Eωe−iωt = lim
ε>0,ε→0

∑

(ω)

Eωe−iωt

z+(ω)

×
(

1
(2π)3

∫ dk k2L2(k)

6ω(k)(1− e−βh̄ω(k))

∞
∫
0

ds e−εs(e−iω(k)s + eiω(k)se−βh̄ω(k))

×eiωs − 1
ω

A∗(k2, s)− 1
(2π)3

∫ dk k2L2(k)

6ω(k)(1− e−βh̄ω(k))

×
∞
∫
0

ds e−εs(eiω(k)s + e−iω(k)se−βh̄ω(k))eiωs − 1
ω

A(k2, s)
)

. (3.130)

Thus the impedance is determined self-consistently from the approximate
equation

z+(ω) = −iωm + lim
ε>0,ε→0

1
(2π)2

∫ dk k2L2(k)

6ω(k)(1− e−βh̄ω(k))

×
∞
∫
0

ds e−εs
(
(e−iω(k)s + eiω(k)se−βh̄ω(k))eiωs − 1

ω
A∗(k2, s)

− (eiω(k)s + e−iω(k)se−βh̄ω(k))eiωs − 1
ω

A(k2, s)
)
. (3.131)



3.3. Nonequilibrium Properties of the Linear Polaron Model 159

Consider, as an example, (3.127) in the case of a constant field, when

E = const, V = const. (3.132)

Since, because of (3.119), A∗(k2, s) = A(k2,−s), on making the trans-
formation k → −k in the terms containing e±iω(k)se−βh̄ω(k), we can
write:

−E = lim
(ε>0,ε→0)

1
(2π)3

∫ dk kL2(k)

2ω(k)

+∞
∫
−∞

ds e−ε|s|

×
(

ei[ω(k)−k·V ]s

1− e−βh̄ω(k)
− e−i[ω(k)−k·V ]s

eβh̄ω(k) − 1

)
A(k2, s). (3.133)

Equation (3.40) follows from here in the case of weak interaction if we
substitute A(k2, s) with its “zeroth-order approximation” (which neglects
interaction) and put s = h̄ξ.

In conclusion, we should make a few remarks on the structure of the
stationary probability density for the momentum of the particle S in the
model system described by the Hamiltonian H(L). Letting wt(p), stand
for this probability density distribution, we have

∫ e−iλ·pwt(p) dp = Tr(S,Σ)e
−iλ·p(t)Dt0

= e−iλ·p(E)(t) Tr(S) e−iλ·p(S)(t)ρ(S)Tr(Σ) e−iλ·p(Σ)(t)DL(Σ). (3.134)

Here, as before,

e−iλ·p(Σ)(t)DL(Σ) = exp
(
−λ2m∗2

2
F (t, t, t0)

)
. (3.135)

We now recall that

p(E)(t)
V→∞
→ p(E)

∞ (t) = −m∗ ∑

(ω)

EωΦ(ω, t− t0)e−iωt0 ,

p(E)
∞ (t)−m∗V(t)

t→+∞
→ 0, (3.136)

p(S)(t)
V→∞
→ p∞(t) = m∗pΨ0(t− t0)−m∗rΨ1(t− t0)

and
F (t, t, t0)

V→∞
→ F∞(t1, t, t0), (3.137)

|F∞(t, t, t0)− F (0)| < 2K̃e−η(t−t0)

t→+∞
→ 0

Here
F (0) =

+∞
∫
−∞

J(ν)

|Z+(ν)|2
h̄ν

1− e−βh̄ν
dν > 0. (3.138)



160 Ch. 3. Kinetic Equations in Polaron Theory

Repeating arguments used to investigate the function Φ(a)
k , we find, as a

consequence of (3.134),

∫ e−iλ·pwt(p) dp
V→∞
→ e−iλ·p(E)

∞ (t) Tr(S) e−iλ·p(S)
∞ (t)ρ(S)

× exp
(
−λ2m∗2

2
F∞(t, t, t0)

)
(3.139)

and

lim
V→∞

∫ e−iλ·pwt(p) dp− e−im∗λ·v(t) exp
(
−λ2m∗2

2
F (0)

)
= 0. (3.140)

Let us now consider the momentum distribution function itself:

ωt(p) = 1
(2π)3

∫ dλ eiλ·p
(
∫ e−iλ·pwt(p) dp

)
. (3.141)

Note that
∣∣∣∣eiλ·p ∫ e−iλ·pwt(p) dp

∣∣∣∣ 6 exp
(
−λ2m∗2

2
F (t, t, t0)

)
. (3.142)

But, thanks to (3.137) and (3.139), it is easy to prove that

F∞(t, t, t0) >
F (0)
2

> 0 (3.143)

for a large-enough difference t− t0. Fix such t and t0. Because, for fixed
t and t0, F (t, t, t0) → F∞(t, t, t0) as V → ∞, we see that, for large
enough V ,

F∞(t, t, t0) >
F (0)
4

> 0

and ∣∣∣∣∣e
iλ·p ∫ e−iλ·pwt(p) dp

∣∣∣∣∣ 6 e
iλ2m∗2

8 F (0).

Therefore the passage to the limit in (3.141) as V → ∞ can be carried
out on the basis of (3.139) before the integration over λ . Hence we get

lim
V→∞

ωt(p) = 1
(2π)3

∫ dλ eiλ·[p−p(E)
∞ (t)]

[
Tr(S) e−iλ·p(S)

∞ (t)ρ(S)
]

× exp
(
−λ2m∗2

2
F∞(t, t, t0)

)
. (3.144)
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Thanks to (3.143), the absolute value of the integrand in (3.144) will

be smaller than e
iλ2m∗2

4 F (0) for a large-enough difference t − t0. As a
consequence, we can again take the limit t →∞ under the integral over
λ in (3.144) and obtain, in accordance with (3.140),

lim
t→∞

[
ωt(p)− 1

(2π)3
∫ dλ exp

(
iλ · [p−m∗V(t)]− λ2m∗2

2
F (0)

)]
= 0.

(3.145)
Having calculated the Gaussian integral, we find that

1
(2π)3

∫ dλ exp
(

iλ · [p−m∗V(t)]− λ2m∗2

2
F (0)

)

=
(

2π
m∗2F (0)

)3/2

exp
(

[p−m∗V(t)]2

m∗2F (0)

)
.

Thus, if the initial statistical operator for a model system has the form
Dt0 = ρ(S)DL(Σ), and, moreover, ρ(S) does not depend on either V or
t0, then the corresponding distribution function of momentum p in the
limit V →∞, i. e.

lim
V→∞

ωt(p) = lim
V→∞

Dt,

converges to the stationary distribution function:

lim
V→∞

[
ωt(p)−

( 1
m∗

)3 (
2π

F (0)

)3/2

exp
(

[p−m∗V(t)]2

m∗2F (0)

)]

t→∞
= 0.

(3.146)

As can be seen, this stationary distribution function of momentum p is
represented by a “shifted” Maxwellian function.

Thus the use of the Hamiltonian H̃(L) as the approximate one is bound
up with the assumption that a shifted Maxwellian distribution may be
used for the initial approximation.
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Appendix I

Lemma. For the averaged product of the operators b̃k(t) and U(S,Σ)
the following equality holds

Tr(S,Σ) b̃k(t)U(S,Σ)Dt0

= 1
1− e−βh̄ω(k)

Tr(S,Σ){b̃k(t)U(S,Σ)− U(S,Σ)̃bk(t)}Dt0 ,

Dt0 = ρ(S)DL(Σ).

Proof . Note that the Bose operators bk commute with arbitrary
operators of the electron subsystem Φ(S). Constructing an operator ex-
pression averaged with the statistical operator of the whole system, i.e.
Dt0 = ρ(S)D(Σ); we have

Tr(S,Σ) b̃k(t)U(S,Σ)Dt0 = Tr(S,Σ) b̃k(t)U(S,Σ)ρ(S)D(Σ)

= Tr(Σ) b̃k(t){Tr(S) U(S,Σ)ρ(S)}D(Σ),

Tr(S,Σ)U(S,Σ)̃bk(t)Dt0 = Tr(S,Σ)U(S,Σ)̃bk(t)ρ(S)D(Σ)

= Tr(Σ){Tr(S) U(S,Σ)ρ(S)}b̃k(t)D(Σ).

Denote
Tr(S) U(S,Σ)ρ(S) = B(Σ);

then
Tr(S,Σ) b̃k(t)U(S,Σ)Dt0 = Tr(Σ) b̃k(t)B(Σ)D(Σ),

Tr(S,Σ)U(S,Σ)̃bk(t)Dt0 = Tr(Σ) B(Σ)̃bk(t)D(Σ).
(A.1)

It is worth recalling here an important property of the equilibrium
Gibbs averages in statistical mechanics. Consider an isolated dynamical
system described by some time-independent Hamiltonian H and two
dynamical variables A and B relating to this system, which are also time-
independent. Then, for the equilibrium averages

〈A(t)B〉eq = TrA(t)BDeq, 〈BA(t)〉eq = TrBA(t)Deq

(Deq — heat bath equilibrium statistical operator), in which

A(t) = e
i
h̄

HtA(0)e−
i
h̄

Ht,

163
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we have

〈A(t)B〉eq =
+∞
∫
−∞

J(ω)e−iωt dω, 〈BA(t)〉eq =
+∞
∫
−∞

e−βh̄ωJ(ω)e−iωt dω.

We write these relations in the form

Tr
(
e

i
h̄

H(t−t0)Ae−
i
h̄

H(t−t0)BDeq

)
=

+∞
∫
−∞

J(ω)e−iω(t−t0) dω,

Tr
(
Be

i
h̄

H(t−t0)Ae−
i
h̄

H(t−t0)Deq

)
=

+∞
∫
−∞

e−βh̄ωJ(ω)e−iω(t−t0) dω.

(A.2)

Let us put now

H = H(Σ), Deq = D(Σ), A = bk, B = B(Σ).

In this case,

b̃k(t) = e−iω(k)(t−t0)bk = e
i
h̄

H(t−t0)bke−
i
h̄

H(t−t0).

Hence (A.2) can be transformed into

Tr(Σ) b̃k(t)B(Σ)D(Σ) = e−iω(k)(t−t0) Tr(Σ) b̃kB(Σ)D(Σ)

=
+∞
∫
−∞

Jk(ω)e−iω(t−t0) dω,

Tr(Σ) B̃(Σ)̃bk(t)D(Σ) = e−iω(k)(t−t0) Tr(Σ) B̃(Σ)bkD(Σ)

=
+∞
∫
−∞

e−βh̄ωJk(ω)e−iω(t−t0) dω.

(A.3)

These relations show that Jk(ω) is proportional to δ(ω − ω(k)):

Jk(ω) = Ikδ(ω − ω(k)),

and from here
e−βh̄ωJk(ω) = e−βh̄ω(k)Jk(ω).

Hence we get from (A.3)

Tr(Σ) B(Σ)̃bk(t)D(Σ) = e−βh̄ω(k) Tr(Σ) b̃k(t)B(Σ)D(Σ).

Using (A.1),

Tr(S,Σ)U(S,Σ)̃bk(t)Dt0 = e−βh̄ω(k)Tr(S,Σ) b̃k(t)U(S,Σ)Dt0 ,

which gives

Tr(S,Σ){b̃k(t)U(S,Σ)− U(S,Σ)̃bk(t)}Dt0

= (1− e−βh̄ω(k))Tr(S,Σ) b̃k(t)U(S,Σ)Dt0 .



Appendix I 165

We observe now that
Tr(S,Σ) b̃k(t)U(S,Σ)Dt0

= 1
1− e−βh̄ω(k)

Tr(S,Σ){b̃k(t)U(S,Σ)− U(S,Σ)̃bk(t)}Dt0 ,

Tr(S,Σ)U(S,Σ)̃bk(t)Dt0

= e−βh̄ω(k)

1− e−βh̄ω(k)
Tr(S,Σ){b̃k(t)U(S,Σ)− U(S,Σ)̃bk(t)}Dt0 .

(A.4)

Thus the lemma is proved.
Let us introduce the notation

e−βh̄ω(k)

1− e−βh̄ω(k)
= Nk.

Then the relations (A.4) can be expressed in terms of the phonon occu-
pation numbers b†kbk:

Tr(S,Σ) b̃k(t)U(S,Σ)Dt0 = (1+ Nk)Tr(S,Σ){b̃k(t)U(S,Σ)−U(S,Σ)̃bk(t)}Dt0 ,

Tr(S,Σ)U(S,Σ)̃bk(t)Dt0 = NkTr(S,Σ){b̃k(t)U(S,Σ)− U(S,Σ)̃bk(t)}Dt0 .

Observation. From the proof outlined above, the suspicion might
have arisen that the operator U(S,Σ) should not depend explicitly on
the time t. However, it is not difficult to see that the validity of the
lemma in the general case of an explicitly time-dependent operator follows
immediately from its correctness for the time-independent case.

Indeed, consider an operator U(t,S,Σ) and fix t = t1. In this case,
U(t,S,Σ) does not depend on time from a formal point of view, and the
relations (A.4) hold. Because the time t1 can be fixed arbitrarily, one can
put t1 = t in (A.4) and satisfy oneself as to their correctness.
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Appendix II

It will be noted that our statement regarding (3.123) and (3.124) will
be proved if we are able to prove the following lemma.

Lemma. Let AN and BN be a sequence of real three-dimensional
vectors converging to finite limits as N →∞:

AN → A, BN → B as N →∞. (B.1)

So, if our statistical operator ρ(S) does not depend on N , then

Tr(S) ei(AN ·r+BN ·p)ρ(S) → Tr(S) ei(A·r+B·p)ρ(S) (B.2)

In the case of (3.123), we have to put in this lemma, N = V ,

BN = − k
t
∫
τ
g0(δ,σ − t0) dσ, AN = k

t
∫
τ
g1(δ,σ − t0) dσ,

B = − k
t
∫
τ
ψ0(σ − t0) dσ, A = k

t
∫
τ
ψ1(σ − t0) dσ.

And in the case of (3.124), we can put N = t− t0, with τ fixed, and

BN = − k
t
∫
τ
ψ0(σ − t0) dσ, AN = k

t
∫
τ
ψ1(σ − t0) dσ,

B = 0, A = 0.

Let us turn to the proof of the lemma.
Proof . As long as the commutators of the components of vector

operators p and r are c-numbers,

pαrβ − rβpα = −ih̄δαβ ,

then, according to the well-known identity

ei(C1·r+C2·p) = e
ih̄
2 C1·C2eiC1·reiC2·p

we can write:

ei(AN ·r+BN ·p) − ei(A·r+B·p) = e
ih̄
2 AN ·BN eiAN ·reiBN ·p

− e
ih̄
2 A·BeiA·reiB·p =

(
e

ih̄
2 AN ·BN − e

ih̄
2 A·B

)
eiAN ·reiBN ·p

+ e
ih̄
2 A·B [

eiAN ·r (
eiBN ·p − eiB·p)

+
(
eiAN ·r − eiA·r) eiB·p]

.
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But, because the operator eiAN ·reiBN ·p is unitary owing to the reality of
AN , BN , we have ∣∣∣ Tr(S) eiAN ·reiBN ·pρ(S)

∣∣∣ 6 1,

and hence
∣∣∣ Tr(S)

(
ei(AN ·r+BN ·p)ρ(S)

)
− Tr(S)

(
ei(A·r+B·p)ρ(S)

) ∣∣∣

6
∣∣∣e ih̄

2 (AN ·BN−A·B) − 1
∣∣∣ +

∣∣∣ Tr(S) eiAN ·r (
eiBN ·p − eiB·p)

ρ(S)
∣∣∣

+
∣∣∣ Tr(S)

(
eiAN ·r − eiA··r) eiB·pρ(S)

∣∣∣. (B.3)

Bearing in mind that, since it is statistical operator, ρ(S) is non-
negative, the following general inequality holds (see Appendix III):

∣∣∣ Tr(S) UV ρ(S)
∣∣∣
2

6 Tr(S) UU†ρ(S)Tr(S) V †V ρ(S). (B.4)

With the help of this inequality, we evaluate the first and second expres-
sions with the symbol Tr(S) on the right-hand side of (B.3), choosing

UI = eiAN ·r, VI =
(
eiBN ·p − eiB·p)

, UII =
(
eiAN ·r − eiA·r) , VII = eiB·p.

It can be seen that VII and UI are unitary, and because

Tr(S) ρ(S) = 1,

for any statistical operator, we have

Tr(S) UIU
†
I ρ(S) = Tr(S) V †

IIVII = 1.

Furthermore, because the components of the vector r commute with each
other, as do the components of the vector p , we get

UIIU
†
II = 2[1− cos (AN −A) · r],

V †
I VI = 2[1− cos (BN −B) · p].

Therefore we find from (B.3) that
∣∣∣ Tr(S)

(
eiAN ·r+BN ·pρ(S)

)− Tr(S)

(
eiA·r+B·pρ(S)

) ∣∣∣

6
[
2

(
1− cos h̄

2
(AN ·BN −A ·B)

)]1/2

+
{

Tr(S) 2[1− cos (BN −B) · p]ρ(S)
}1/2

+
{
Tr(S) 2[1− cos (AN −A) · r]ρ(S)

}1/2
. (B.5)
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Consider matrix elements of ρ(S) in the r-representation, i.e.
〈r|ρ(S)|r〉, and in the p-representation, 〈p|ρ(S)|p〉. Then
Tr(S)(1− cos (BN −B) · p)ρ(S) = ∫ [1− cos (BN −B) · p]〈p|ρ(S)|p〉 dp,
Tr(S) [1− cos (AN −A) · p]ρ(S) ∫ [1− cos (AN −A) · r]ρ(S)〈r|ρ(S)|r〉 dr.
But diagonal elements of a non-negative operator are non-negative:

〈p|ρ(S)|p〉 > 0, 〈r|ρ(S)|r〉 > 0,

and, because of the identity Tr(S) ρ(S) = 1, we have

∫〈p|ρ(S)|p〉 = 1, ∫〈r|ρ(S)|r〉 = 1.

Taking into account that ρ(S) does not depend on N and also that

1− cosX 6 2, 1− cos (AN −A) · r → 0 при N →∞
for bounded r and

1− cos (BN −B) · p →∞ as N →∞
for bounded p, and

Tr(S) [1− cos (AN −A) · p]ρ(S) → 0 as N →∞,
Tr(S) [1− cos (BN −B) · p]ρ(S) → 0 as N →∞.

Hence we conclude on the basis of (B.5) that the lemma is proved. It is
obvious that the inequality (B.5) is valid whether or not ρ(S) depends on
N . Besides that, it is clear that 2(1− cosx) < x2. Hence
∣∣∣ Tr(S)

{
ei(AN ·r+BN ·p)ρ(S)

}
− Tr(S)

{
ei(A·r+B·p)ρ(S)

} ∣∣∣

6 h̄

2
|AN ·BN −A ·B|+ [Tr(S) |p|2ρ(S)]1/2|BN −B|

+ |AN −A|[Tr(S) |r|2ρ(S)]1/2.

Thus, if ρ(S) depends on N , such that

Tr(S) |p|2ρ(S) 6 K2
1 , Tr(S) |r|2ρ(S) 6 K2

2 ,

where K1 and K2 do not depend on N , then (B.2) holds. Therefore, if in
Chapter 3 ρ(S) depends on t0 and V , but in such a way that

〈p2〉t0 = Tr(S) |p|2ρ(S), 〈r2〉t0 = Tr(S) |r|2ρ(S)

are bounded by some magnitudes independent of V or t0, then all the
speculations and conclusions of Chapter 3 remain valid.
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Let us consider an average of a two-operator product 〈AB〉 as a bilinear
form in A and B (linear with respect to each of these operators).

Let Z(A,B) be an arbitrary bilinear form in A and B with the
following properties:

Z(A†,A) > 0, (C.1)

{Z(A,B)}∗ = Z(B†,A†). (C.2)

We are going to show that the following inequality always holds:

|Z(A,B)|2 6 Z(A,A†)Z(B†,B). (C.3)

Putting here
A = U [ρ(S)]1/2,

B = V [ρ(S)]1/2,

we arrive at the inequality (B.4).
To prove this inequality, let us not, first of all, that, thanks to

(C.1),
Z(xA + y∗B†, x∗A† + yB) > 0, (C.4)

where x and y are arbitrary numbers. Removing the parentheses, we get

xx∗Z(A,A†) + xyZ(A,B) + y∗x∗Z(B†,A†) + y∗yZ(B†,B) > 0.

Choose for x, y, x∗, y∗
x∗ = −Z(A,B),

x = −{Z(A,B)}∗ = −Z(B†,A†),

y = y∗ = Z(A,A†).

Then
−|Z(A,B)|2Z(A,A†) + [Z(A,A†)]2Z(B†,B) > 0.

From here, if Z(A,A†) 6= 0, we get the inequality (C.3).
It only remains to show that if Z(A,A†) = 0, then

Z(A,B) = 0. (C.5)
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For this purpose, we put in (C.4)

x∗ = −Z(A,B)R,
x = −Z(B†,A†)R,

y = y∗ = 1,

where R is an arbitrary positive number. We find that

−2R|Z(A,B)|2 + Z(B†,B) > 0. (C.6)

Let R → ∞. Then, if (C.5) is wrong, we see that the left-hand side of
(C.6) must approach −∞, which is impossible.
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