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Preface

Accosiative rings and algebras are very interesting algebraic structures. In a strict
sense, the theory of algebras (in particular, noncommutative algebras) originated
from a single example, namely the quaternions, created by Sir William R. Hamilton
in 1843. This was the first example of a noncommutative ”number system”. During
the next forty years mathematicians introduced other examples of noncommutative
algebras, began to bring some order into them and to single out certain types of
algebras for special attention. Thus, low-dimensional algebras, division algebras,
and commutative algebras, were classified and characterized. The first complete
results in the structure theory of associative algebras over the real and complex
fields were obtained by T.Molien, E.Cartan and G.Frobenius.

Modern ring theory began when J.H.Wedderburn proved his celebrated clas-
sification theorem for finite dimensional semisimple algebras over arbitrary fields.
Twenty years later, E.Artin proved a structure theorem for rings satisfying both
the ascending and descending chain condition which generalized Wedderburn
structure theorem. The Wedderburn-Artin theorem has since become a corner-
stone of noncommutative ring theory.

The purpose of this book is to introduce the subject of the structure theory of
associative rings. This book is addressed to a reader who wishes to learn this topic
from the beginning to research level. We have tried to write a self-contained book
which is intended to be a modern textbook on the structure theory of associative
rings and related structures and will be accessible for independent study.

The basic tools of investigation are methods from the theory of modules, which,
in our opinion, give a very simple and clear approach to both classical and new
results. Other interesting tools which we use for studying rings in this book are
techniques from the theory of quivers. We define different kinds of quivers of rings
and discuss various relations between the properties of rings and their quivers.
This is unusual and became possibly only recently, as the theory of quivers is a
quite new arrival in algebra.

Some of the topics of the book have been included because of their fundamental
importance, others because of personal preference.

All rings considered in this book are associative with a nonzero identity.
The content of the book is divided into two volumes. The first volume is

devoted to both the standard classical theory of associative rings and to more
modern results of the theory of rings.

A large portion of the first volume of this book is based on the standard
university course in abstract and linear algebra and is fully accessible to students
in their second and third years. In particular, we do not assume knowledge of any
preliminary information on the theory of rings and modules.

ix



x ALGEBRAS, RINGS AND MODULES

A number of notes, some of them of a bibliographical others of a historical
nature, are collected at the end of each chapter.

In chapter 1 the fundamental tools for studying rings are introduced. In this
chapter we give a number of basic definitions, state several fundamental properties
and give a number of different examples. Some important concepts that play a
central role in the theory of rings are introduced.

The main objects of chapter 2 are decomposition theorems for rings. In par-
ticular, much attention is given to the two-sided Peirce decomposition of rings.
In section 2.2. we study semisimple modules which form one of the most im-
portant classes of modules and play a distinguished role in the theory of modules.
For semisimple rings we prove the fundamental Wedderburn-Artin theorem, which
gives the complete classification of such rings. In this chapter there is also provided
a brief introduction to the theory of lattices and Boolean algebras. In section 2.4
we introduce finitely decomposable rings and finitely decomposable identity rings
and study their main properties. For these rings we prove the decomposition theo-
rems using the general theory of Boolean algebras and the theory of idempotents.

Chapter 3 is devoted to studying Noetherian and Artinian rings and modules.
In particular, we prove the famous Jordan-Hölder theorem and the Hilbert basis
theorem. The most important part of this chapter is the study of the Jacobson
radical and its properties. In this chapter we also prove Nakayama’s lemma which
is a simple result with powerful applications. Section 3.6 presents a criterion of
rings to be Noetherian or Artinian. In section 3.7 we consider semiprimary rings
and prove a famous theorem, due to Hopkins and Levitzki, which shows that any
Artinian ring is also Noetherian.

Chapter 4 presents the fundamental notions of the theory of homological al-
gebra, such as categories and functors. In particular, we introduce the functor
Hom and the tensor product functor and discuss the most important properties
of them. In this chapter we also study tensor product of modules and direct and
inverse limits.

Chapter 5 gives a brief study of special classes of modules, such as free, pro-
jective, injective, and flat modules. We also study hereditary and semihereditary
rings. Finally we consider the Herstein-Small rings, which provide an example of
rings which are right hereditary but not left hereditary.

Homological dimensions of rings and modules are discussed in chapter 6. In
this chapter derived functors and the functors Ext and Tor are introduced and
studied. This chapter presents the notions of projective and injective dimensions
of modules. We also define global dimensions of rings and give some principal
results of the theory of homological dimensions of rings.

In chapter 7 we consider different classes of commutative domains, such as
principal ideal domains, factorial rings and Euclidean domains. We study their
main properties and prove the fundamental structure theorem for finitely generated
modules over principal ideal domains. We also give the main applications of this
theorem to the study of finitely generated Abelian groups and canonical forms of
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matrices.
Chapter 8 is devoted to studying Dedekind domains and finitely generated

modules over them. Besides that, we characterize commutative integral domains
that are hereditary and show that they are necessarily Dedekind rings. Finally in
this chapter some properties of Prüfer rings are studied.

In chapter 9 we briefly study the main problems of the theory of rings of frac-
tions. We start this chapter with the classical Ore condition and study necessary
and sufficient conditions for the existence of a classical ring of fractions. In sec-
tion 9.2 we introduce prime and semiprime ideals and rings, and consider the
main properties of them. Section 9.3 introduces the important notion of Goldie
rings and presents the proof of the famous Goldie theorem, which gives necessary
and sufficient conditions when a ring has a classical ring of quotients which is a
semisimple ring.

We start chapter 10 with introducing some important classes of rings, namely,
local and semilocal rings. As a special class of local rings we study discrete valu-
ation rings (not necessarily commutative). Section 10.3 is devoted to the study of
semiperfect rings which were first introduced by H.Bass. In this section we consider
the main properties of these rings using methods from the theory of idempotents.
The next section introduces the notion of a projective cover which makes it possi-
ble to study the homological characterization of semiperfect rings. In section 10.4
we introduce the notion of an equivalence of categories and study the properties of
it. Of fundamental importance in the study of rings is the famous Morita theorem,
which is proved in this chapter.

The last four chapters of this volume are devoted to more recent results: the
quivers of semiperfect rings, the structure theory of special classes of rings, such
as uniserial, hereditary, serial, and semidistributive rings. Some of the results of
these chapters until now have been available only in journal articles.

In chapter 11 we introduce and study different types of quivers for rings. The
notion of a quiver for finite dimensional algebra and its representations was intro-
duced by P.Gabriel in connection with a description of finite dimensional algebras
over an algebraically closed field with zero square radical. In Gabriel’s terminology
a quiver means the usual directed graph with multiple arrows and loops permit-
ted. In section 11.1 we introduce the notion of a quiver for a semiperfect right
Noetherian ring which coincides with the Gabriel definition of the quiver in the
case of finite dimensional algebras. The prime radical and their properties are
studied in section 11.2. We define the prime quiver of a right Noetherian ring and
prove that a right Noetherian ring A is indecomposable if and only if its prime
quiver PQ(A) is connected. In this chapter we prove the annihilation lemma and
the Q-Lemma which play the main role in the calculation of a quiver of a right
Noetherian semiperfect ring.

A ring is called decomposable if it is a direct sum of two rings, otherwise a
ring A is indecomposable. In the theory of finite dimensional algebras an alge-
bra is indecomposable if and only if its quiver is connected. This assertion still
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holds for Noetherian semiperfect rings, but it is not true for only right Noetherian
semiperfect rings. A serial Herstein-Small ring is a counterexample in this case.

Chapter 12 presents the most basic results for a specific class of rings, namely,
two-sided Noetherian serial rings. Serial rings provide the best illustration of the
relationship between the structure of a ring and its categories of modules. They
were introduced by T.Nakayama inspired by work of K.Asano and G.Köthe. These
rings were one of the earliest example of rings of finite representation type; their
introduction was fundamental to what has become known as the representation
theory of Artinian rings and finite dimensional algebras. In particular, in section
12.2 we prove a decomposition theorem which describes the structure of semiper-
fect principal ideal rings and which can be considered as a generalization of the
classical theorem about the structure of Artinian principal ideal rings. Using the
technique of quivers we prove the decomposition theorem which gives the structure
of Noetherian serial rings. We also prove the famous Michler theorem about the
structure of Noetherian hereditary semiperfect prime rings.

The most basic properties of right Noetherian serial rings are given in chapter
13. In particular, using the technique of matrix problems, we prove the Drozd-
Warfield theorem characterizing serial rings in terms of finitely presented modules.
Besides, in this section there is proved an implementation of the Ore condition for
serial rings. Using the technique of quivers we prove the structure theorem for right
Noetherian serial rings. We end this chapter by studying serial right hereditary
rings and the structure of Noetherian hereditary semiperfect semiprime rings.

In chapter 14 we study semidistributive rings and tiled orders. For tiled orders
over a discrete valuation ring, i.e., for prime Noetherian semiperfect and semidis-
tributive rings, we give a formula for adjacency matrices of their quivers, using
exponent matrices.

There is no complete list of references on the theory of rings and modules.
We point out only some textbooks and monographs in which the reader can get
acquainted with other aspects of the theory of rings and algebras.

We apologize to the many authors whose works we have used but not specif-
ically cited. Virtually all the results in this book have appeared in some form
elsewhere in the literature, and they can be found either in the books that are
listed in our bibliography at the end of the book, or in those listed in the bibli-
ographies in the notes at the end of each chapter.

In closing, we would like to express our cordial thanks to a number of friends
and colleagues for reading preliminary version of this text and offering valuable
suggestions which were taken into account in preparing the final version. We
are especially greatly indebted to Z.Marciniak, W.I.Suszczanski, M.A.Dokuchaev,
V.M.Futorny, A.N.Zubkov and A.P.Petravchuk, who made a large number of valu-
able comments, suggestions and corrections which have considerably improved the
book. Of course, any remaining errors are the sole responsibility of the authors.

Finally, we are most grateful to Marina Khibina for help in preparing the
manuscript. Her assistance has been extremely valuable for us.



1. Preliminaries

1.1 BASIC CONCEPTS AND EXAMPLES

We assume the reader is familiar with basic concepts of abstract algebra such as
semigroup, group, Abelian group. Let us recall the definition of a ring.

Definition. A ring is a nonempty set A together with two binary algebraic
operations, that we shall denote by + and · and call addition and multiplication,
respectively, such that, for all a, b, c ∈ A the following axioms are satisfied:

(1) a + (b + c) = (a + b) + c (associativity of addition);
(2) a + b = b + a (commutativity of addition);
(3) there exists an element 0 ∈ A, such that a + 0 = 0 + a = a (existence of a

zero element);
(4) there exists an element x ∈ A, such that a + x = 0 (existence of ”inverses”

for addition);
(5) (a + b) · c = a · c + b · c (right distributivity);
(6) a · (b + c) = a · b + a · c (left distributivity).

We shall usually write simply ab rather than a · b for a, b ∈ A. One can show
that an element x ∈ A satisfying property (4) is unique. Indeed, if a + x = 0 and
a + y = 0, then x = 0 + x = (y + a) + x = y + (a + x) = y + 0 = y. The element x
with this property we denote by −a.

The group, formed by all elements of a ring A under addition, is called the
additive group of A. The additive group of a ring is always Abelian.

A trivial example of a ring is the ring having only one element 0. This ring is
called the trivial ring or nullring. Since the trivial ring is not interesting in its
internal structure, we shall mostly consider rings having more than one element
and therefore having at least one nonzero element. Such a ring is called a nonzero
ring.

A ring A is called associative if the multiplication satisfies the associative law,
that is, (a1a2)a3 = a1(a2a3) for all a1, a2, a3 ∈ A.

A ring A is called commutative if the multiplication is commutative in A, that
is, a1a2 = a2a1 for any elements a1, a2 ∈ A; otherwise it is noncommutative.

By a multiplicative identity of a ring A we mean an element e ∈ A, which is
neutral with respect to multiplication, that is, ae = ea = a for all a ∈ A. Notice,
that if a nonzero ring has an identity element, then it is uniquely determined. It
is usually denoted by 1. In general, a ring need not have an identity. A ring with
the multiplicative identity is usually called a ring with identity or, for short, a
ring with 1.

1
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A nonempty subset S of a ring A is said to be a subring of A if S itself is
a ring under the same operations of addition and multiplication in A. For a ring
with 1 a subring is required to have the same identity.

In order to determine whether a set S is a subring of a ring A with 1 it is
sufficient to verify the following conditions:

a) the elements 0 and 1 are in S;
b) if x, y ∈ S, then x − y ∈ S and xy ∈ S.
From now on, if not stated otherwise, by a ring we shall always mean an

associative ring with identity 1 �= 0.
Let A be a ring. A nonzero element a ∈ A is said to be a right zero divisor

if there exists a nonzero element b ∈ A such that ba = 0. Left zero divisors
are defined similarly. In the commutative case the notions of right and left zero
divisors coincide and we may just talk about zero divisors. A ring A is called a
domain if ab �= 0 for any nonzero elements a, b ∈ A. In such a ring there are no
left (or right) zero divisors.

An element a ∈ A is said to be right invertible if there exists an element
b ∈ A such that ab = 1. Such an element b is called a right inverse for a. Left
invertible elements and their left inverses are defined analogously. If an element a
has both a right inverse b and a left inverse c, then c = c(ab) = (ca)b = b. In this
case we shall say that a is invertible or that a is a unit and the element b = c
is the inverse of a. It is easy to see that for any invertible element a its inverse
is uniquely determined and it is usually denoted by a−1. If a and b are units in a
ring A, then a−1 · a = a · a−1 = 1 and a · b · (b−1 · a−1) = (b−1 · a−1) · a · b = 1,
that is, a−1 and ab are also units. Therefore in a ring A the units form a group
with respect to multiplication, which is called the multiplicative group of A
and usually denoted by A∗ or U(A).

An element e of a ring A is said to be an idempotent if e2 = e. Two idem-
potents e and f are called orthogonal if ef = fe = 0. It is obvious that the
zero and the identity of any ring are idempotents. However, there may exist many
other idempotents.

A division ring (or a skew field) D is a nonzero ring for which all nonzero el-
ements form a group under multiplication; i.e., every nonzero element is invertible.
A commutative division ring is called a field.

Let a field L contain a field k. In this case we say that the field L is an
extension of k and that the field k is a subfield of L. Evidently, L is a vector
space over k. An element α ∈ L is called algebraic over the field k if α is a
root of some polynomial f(x) ∈ k[x].

A field L is called an algebraic extension of a field k if every element of
L is algebraic over k. An extension L of a field k is called finite if L is a finite
dimensional vector space over k. The dimension L over k is called the degree of
an extension and denoted by [L : k]. If [L : k] = n then for any element α ∈ L
the elements 1, α, ..., αn are linearly dependent over k, and therefore α is a root of
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some polynomial f(x) ∈ k[x]. Thus, any finite extension is algebraic.

Proposition 1.1.1. Let L ⊃ K ⊃ k be a chain of extensions, where K is a
finite extension of a field k with a basis w1, ..., wn, and L is a finite extension of
the field K with a basis θ1, ..., θm. Then wiθj (i = 1, ..., n; j = 1, ...,m) is a basis
of the field L over k. In particular,

[L : k] = [L : K][K : k].

The proof consists of a directly checking the fact that the elements wiθj form a
basis of the space L over k and is left to the reader.

An algebra over a field k (or k-algebra) is a set A which is both a ring and
a vector space over k in such a manner that the additive group structures are the
same and the axiom

(λa)b = a(λb) = λ(ab)

is satisfied for all λ ∈ k and a, b ∈ A.
A k-algebra A is said to be finite dimensional if the vector space A is finite

dimensional over k. The dimension of the vector space A over k is called the
dimension of the algebra A and denoted by [A : k].

If a field L contains a field k, then L is an algebra over k.

Just like for groups we can introduce the notions of a quotient ring, a homo-
morphism and an isomorphism of rings.

Definition. A map ϕ of a ring A into a ring A′ is called a ring morphism,
or simply a homomorphism, if ϕ satisfies the following conditions:

(1) ϕ(a + b) = ϕ(a) + ϕ(b)
(2) ϕ(ab) = ϕ(a)ϕ(b)
(3) ϕ(1) = 1
for any a, b ∈ A.

If a homomorphism ϕ : A → A′ is injective, i.e., a1 �= a2 implies ϕ(a1) �= ϕ(a2),
then it is called a monomorphism of rings. If a homomorphism ϕ : A → A′ is
surjective, i.e., for any element a′ ∈ A′ there is a ∈ A such that a′ = ϕ(a), then ϕ
is called an epimorphism of rings.

If a homomorphism ϕ : A → A′ is a bijection, i.e., it is both a monomorphism
and an epimorphism, then it is called an isomorphism of rings. If there exists an
isomorphism ϕ : A → A′, the rings A and A′ are said to be isomorphic, and we
shall write A � A′. Note that then ϕ−1 : A′ → A is also a morphism of rings, so
that ϕ is an isomorphism in the category of rings (see Chapter 4) in the categorial
sense. In case A = A′, ϕ is called an automorphism.

By the kernel of a homomorphism ϕ of a ring A into a ring A′ we mean the set
of elements a ∈ A such that ϕ(a) = 0. We denote this set Kerϕ. The subset of A′

consisting the elements of the form ϕ(a), where a ∈ A, is called the homomorphic
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image of A under a homomorphism ϕ : A → A′ and denoted Imϕ. It is easy to
verify that Kerϕ and Imϕ are both closed under the operations of addition and
multiplication. The kernel plays an important role in the theory of rings. It is
actually an ideal in A according to the following definition.

A subgroup I of the additive group of a ring A is called a right (resp. left)
ideal of A if ia ∈ I (resp. ai ∈ I) for each i ∈ I and every a ∈ A. A subgroup I,
which is both a right and left ideal, is called a two-sided ideal of A, or simply
an ideal. Of course, if A is commutative, every right or left ideal is an ideal.

Every ring A has at least two trivial ideals, the entire ring A and the zero
ideal, consisting of 0 alone. Any other right ( resp. left, two-sided ) ideal is called
a proper right ( resp. left, two-sided ) ideal.

For any family of right ideals {Ii : i ∈ I} of a ring A we can define its sum∑
i∈I

Ii as a set of elements of the form
∑
i∈I

xi, where xi ∈ Ii and all xi except a

finite number are equal to zero for i ∈ I.
We can also define the product of two right ideals I, J of A as the set of

elements of the form
∑
i

xiyi, where xi ∈ I, yi ∈ J and only a finite number of

xiyi are not equal to zero.
It is easy to verify that a sum and a product of right ideals are right ideals

as well. Similar statements hold of course for left ideals and ideals. In the usual
way, we denote II by I2; and in general for each positive integer n > 1 we write
In = In−1I for any right ideal I.

For any family of right ideals {Ii : i ∈ I} of a ring A we can consider its
intersection ∩

i∈I
Ii as a set of elements {x ∈ A} such that x ∈ Ii for any i ∈ I.

Obviously, it is a right ideal of A as well. Note that if I and J are two-sided
ideals, then IJ ⊆ I ∩ J . If I and J are right ideals, then IJ ⊂ I, but it is not
necessarily true that IJ ⊂ J .

The union of two ideals is not necessarily an ideal. However this is true for
some particular cases.

Proposition 1.1.2. Suppose {Ii : i ∈ N} is a family of proper right ideals
of a ring A with the property that In ⊆ In+1 for all n ∈ N. Then I =

⋃
n∈N

In is

a proper right ideal of A.

Proof. Suppose x ∈ I, then there exists n ∈ N such that x ∈ In. Therefore
for any a ∈ A we have xa ∈ In and so xa ∈ I. If y ∈ I, then there exists m ∈ N
such that y ∈ Im. Suppose k = max(n,m), then In ⊆ Ik and Im ⊆ Ik. Therefore
x, y ∈ Ik and x + y ∈ Ik. Hence, x + y ∈ I. Thus, I is an ideal of A. If I is not
proper, then I = A. In particular, 1 ∈ I. But then 1 ∈ In for some n ∈ N. Since
In is proper, this is impossible. We conclude that I is a proper right ideal of A.

Any proper ideal of a ring A is contained in a larger ideal, namely A itself. If
an ideal is so large that it is properly contained only in the ring A, then we call
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it maximal. More exactly, a right ideal M of a ring A is called maximal in A if
there is no right ideal I, different from M and A, such that M ⊂ I ⊂ A. Maximal
ideals are very important in the theory of rings, but unfortunately we do not have
any constructive method of obtaining the maximal ideals of a given ring. Only
Zorn’s lemma shows that, under reasonable conditions, maximal ideals exist.

Definition. A set S is called partially ordered or, for short, a poset if
there is a relation ≤ between its elements such that:

P1. a ≤ a for any a ∈ S (reflexivity);
P2. a ≤ b, b ≤ c implies a ≤ c for any a, b, c ∈ S ( transitivity);
P3. a ≤ b, b ≤ a implies a = b for any a, b ∈ S (antisymmetry).
Such a relation ≤ is called a partial order.

Example 1.1.1.
The usual relation ≤ is a partial order on the set of all positive integers.

Example 1.1.2.
Let S be a set. The power set P(S) is the collection of all subsets of S. Then

P(S) is a partially ordered set with respect to the relation of set inclusion.

Example 1.1.3.
Let A be a ring and let S be the set of all its right ideals. Obviously, S is a

partially ordered set with respect to the relation of ideal inclusion. Analogously,
one may consider the partially ordered sets of left and two-sided ideals.

Let S be a poset and let A be a subset of S. An element c ∈ S is called an
upper bound of A if a ≤ c for all a ∈ A. Of course, there may be several upper
bounds for a particular subset A, or there may be none at all. An element m ∈ S
is called maximal if from m ≤ a it follows that m = a for all a ∈ S having this
property. In general, not every poset S has maximal elements.

Definition. A partially ordered set S is linearly ordered (or a chain) if for
any two elements a, b ∈ S it follows that either a ≤ b or b ≤ a.

We can now state Zorn’s lemma. Zorn’s lemma gives a convenient sufficient
condition for the existence of maximal elements.

Zorn’s Lemma. If every chain contained in a partially ordered set S has an
upper bound, then the set S has at least one maximal element.

Zorn’s lemma is equivalent, as is well known, to the axiom of choice.

Axiom of choice. Let I be an indexing set and let Pi be a nonempty set for
all i ∈ I. Then there exists a map f from I to

⋃
I∈I

Pi such that f(i) ∈ Pi for all

i ∈ I. (This map is called a choice function.) In other words, the Cartesian
product of any nonempty collection of nonempty sets is nonempty.
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We use Zorn’s lemma to prove the following statement.

Proposition 1.1.3. Any proper right ideal I of a ring A with identity is
contained in a maximal proper right ideal.

Proof. Consider the poset S of all proper right ideals containing I. Since the
ring A has an identity, by proposition 1.1.2, the union of any chain of right proper
ideals is again a proper right ideal which is an upper bound of this chain. The
statement now immediately follows from Zorn’s lemma.

Note that all arguments above for right ideals have analogies for left and two-
sided ideals.

A right ideal I of a ring A is nilpotent if In = 0 for some positive integer
n > 1. In this case x1x2...xn = 0 for any elements x1, x2,...,xn of I.

If A is a ring and a ∈ A, then I = aA (resp. I = Aa) is a right (resp. left)
ideal which is called the right (resp. left) principal ideal, determined by a. A
ring, all of whose right (resp. left) ideals are principal, is called a principal right
(resp. left) ideal ring. Analogously, I = AaA is called the two-sided principal
ideal determined by a and it is denoted by (a). Each element of this ideal has
the form

∑
xiayi, where xi, yi ∈ A. A ring, all of whose right and left ideals are

principal, is called a principal ideal ring. A domain, all of whose right and left
ideals are principal, is called a principal ideal domain or a PID for short.

Proposition 1.1.4. Let A be a principal ideal ring. Then any family of right
(left) ideals {Ii : i ∈ N} of the ring A with the property that In ⊂ In+1 for all
n ∈ N contains only a finite number of ideals, i.e., there is a number k ∈ N such
that Ik = In for all n ≥ k.

Proof. Let A be a principal ideal ring and suppose we have a family of right
ideals {Ii : i ∈ N} of the ring A such that In ⊂ In+1 for all n ∈ N. By
proposition 1.1.2, I =

⋃
i∈N

Ii is a right ideal of A. Since A is a principal ideal ring,

I is a principal right ideal that has a generator a ∈ I. Now since a ∈
⋃

i∈N

Ii, there

exists a number k ∈ N such that a ∈ Ik. We claim that Ik = In for all n ≥ k.
For if this were not true, then there exists n > k such that Ik ⊂ In and Ik �= In,
i.e., the set X = In\Ik is nonempty. Let x ∈ X. Since x ∈ In, then x ∈ I, so
that x = ab for some b ∈ A. Also, since Ik is a right ideal and a ∈ Ik, we have
ab ∈ Ik. Since x = ab, x ∈ Ik. A contradiction.

Let I be a two-sided ideal of a ring A. Then we can construct a quotient
ring A/I by defining it as the set of all cosets of the form a + I for any a ∈ A
with the following operations of addition and multiplication

(a + I) + (b + I) = (a + b) + I,
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(a + I)(b + I) = (ab) + I.

The zero of this ring is the coset 0 + I, and the identity is the coset 1 + I.
The map π : A → A/I defined by π(a) = a + I, is an epimorphism of A onto

A/I and called the natural projection of A onto A/I.

Example 1.1.4.
The set of all integers Z forms a commutative ring under the usual operations

of addition and multiplication. We shall show that any ideal in Z is principal.
Let I be an ideal in Z. If I is the zero ideal, then I = (0) is the principal ideal
generated by 0. If I �= 0, then I contains nonzero positive integers. Let n be the
smallest positive integer which belongs to the ideal I. Obviously, (n) ⊆ I.

We shall show that I ⊆ (n) as well. Let m ∈ I. By the division algorithm
there exist integers q and r such that m = qn + r and 0 ≤ r < n. Since m,n ∈ I
and r = m− qn, it follows that r ∈ I. If r �= 0, then we have a positive integer in
I which is less than n. This contradiction shows that r = 0 and m = qn. From
this equality it follows that m ∈ (n), so I ⊆ (n). Therefore I = (n) is a principal
ideal generated by n. So the ring Z is a commutative principal ideal domain.

Example 1.1.5.
The sets Q, R, C of rational, real and complex numbers are fields.

Example 1.1.6.
Let A be a ring. Then the set

Cen(A) = {x ∈ A : xa = ax for any a ∈ A}

is called the center of the ring A. It is easy to verify that Cen(A) is a subring of
A. Obviously, Cen(A) is a commutative ring.

Example 1.1.7.
The polynomials in one variable x over a field K form a commutative ring K[x].

The field K may be naturally considered as a subring of K[x]. We shall show that
any ideal in K[x] is also principal. Let I �= 0 be an ideal in K[x]. We choose
in I a polynomial p(x) = a0x

n + a1x
n−1 + ... + an (a0 �= 0) with the smallest

degree deg(p(x)) = n. Obviously, (p(x)) ⊆ I. We shall show that I ⊆ (p(x))
as well. Let f(x) be an arbitrary element in I. Then by the division algorithm
there exist polynomials q(x), r(x) ∈ K[x] such that f(x) = q(x)p(x) + r(x) and
0 ≤ deg(r(x)) < n. Since p(x), f(x) ∈ I and r(x) = f(x) − q(x)p(x), it follows
that r(x) ∈ I. If r(x) �= 0, then we have the element in I whose degree is less
than n. This contradiction shows that r(x) = 0 and f(x) = q(x)p(x). Therefore
f(x) ∈ (p(x))) and I ⊆ (p(x)). Thus, I = (p(x)) is the principal ideal and K[x] is
a commutative principal ideal domain.

We can generalize this example. Let A be an arbitrary ring. We can consider
A[x], the set of all polynomials in one variable x over A (that is, with coefficients
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in A). If the ring A is commutative, then A[x] is also commutative. The identity
of A is also the identity of A[x]. However, there exist rings A such that not all
ideals in A[x] are principal. For example, let A = Z be the ring of integers and I
be the set of all polynomials with even constant terms. It is easy to see that I is
an ideal in Z[x] but it is not a principal ideal.

Analogously we can consider the ring A[x, y] of polynomials in two variables x
and y with coefficients in a ring A and so on.

Example 1.1.8.
Consider one more generalization of the previous example. Let K be a field

and let x be an indeterminate. Denote by K[[x]] the set of all expressions of the
form

f =
∞∑

n=0

anxn, an ∈ K; n = 0, 1, 2, ...

If

g =
∞∑

n=0

bnxn, bn ∈ K; n = 0, 1, 2, ...

is also an element of K[[x]] define addition and multiplication in K[[x]] as follows:

f + g =
∞∑

n=0

(an + bn)xn,

and

fg =
∞∑

n=0

dnxn,

where
dn =

∑
i+j=n

aibj , n = 0, 1, 2, ...

As is natural f = g if and only if an = bn for all n. It is easy to verify that
the set K[[x]] forms a commutative ring under the operations of addition and
multiplication as specified above, and it is called the ring of formal power series
over the field K. The elements of K and K[x] themselves can be considered as
elements of K[[x]]. So, the field K and the polynomial ring K[x] may naturally
be considered as subrings of K[[x]]. In particular, the identity of K is the identity
of K[[x]].

We shall now show that an element f ∈ K[[x]] is invertible in K[[x]] if and only
if a0 �= 0. Let f ∈ K[[x]] be invertible, then there exists an element g ∈ K[[x]]
such that fg = gf = 1. From the definition of multiplication it follows that
a0b0 = b0a0 = 1, i.e., a0 �= 0.

Conversely, suppose that f ∈ K[[x]] and a0 �= 0. We are going to show that
there exists an element g ∈ K[[x]] such that fg = gf = 1. Consider the following
system of equations:
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


a0b0 = 1
a0b1 + a1b0 = 0
a0b2 + a1b1 + a2b0 = 0
...
a0bn + a1bn−1 + ... + anb0 = 0
a0bn+1 + a1bn + ... + anb1 + an+1b0 = 0
...

for unknowns b0, b1, ..., bn, ....
Since K is a field and a0 �= 0, from the first equation we have b0 = a−1

0 ∈ K.
The second of these equations determines b1 as follows: b1 = −a−1

0 a1b0. By
induction, if b0, b1, ..., bn have been determined, then bn+1 is determined by the

last displayed equation. Therefore the element g =
∞∑

n=0
bnxn is the inverse for f .

We shall show now that any ideal I in K[[x]] is principal. Let I �= 0 and

f =
∞∑

n=k

anxn be an element in I with the least integer k for which ak �= 0.

Then this element can be written in the form f = xkε, where ε =
∞∑

n=k

anxn−k.

From the above it follows that the element ε is invertible. Therefore xk ∈ I and
(xk) ⊆ I. We shall show that I ⊂ (xk). Let g =

∞∑
n=m

bnxn ∈ I and bm �= 0. Then

g = xmξ, where ξ is invertible and m ≥ k, therefore g = xkxm−kξ ∈ (xk), i.e.,
I ⊆ (xk). Thus, every nonzero ideal I is principal and has the form (xk) for some
nonnegative integer k. Therefore K[[x]] is a principal ideal ring and all ideals in
K[[x]] form such a descending chain

K[[x]] ⊃ (x) ⊃ (x2) ⊃ (x3) ⊃ ... ⊃ (xn) ⊃ ....

Write Mn = (xn) and N =
∞
∩

n=0
Mn. We shall show that N = 0. Suppose that

N �= 0. Since N is an ideal in K[[x]] and any nonzero ideal in K[[x]] has the form
Mn, there exists a positive integer k > 0 such that N = Mk. Hence N = Mk ⊂ Mn

for any n and, in particular, for n > k. A contradiction. Therefore N = 0.

Example 1.1.9.
Denote by Z(p) (p is a prime integer) the set of irreducible fractions m

n in Q
such that (n, p) = 1. The set Z(p) forms the ring under the usual operations of
addition and multiplication and it is called the ring of p-integral numbers. We
shall show that an element a = m

n ∈ Z(p) is invertible if and only if (m, p) = 1.
Obviously, if (m, p) = 1 then b = n

m ∈ Z(p) and ab = ba = 1, i.e., a is invertible
and b is an inverse for a. Conversely, let a = m

n be an invertible element in Z(p),
then there exists an element b = m1

n1
such that ab = ba = 1. Hence, mm1 = nn1.
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Since (n, p) = 1 and (n1, p) = 1, we have (mm1, p) = 1. Thus, (m, p) = 1 and
(m1, p) = 1.

We are going to show that any ideal I in Z(p) is principal. Let I �= 0 and

a = pkm
n be an element in I with the least integer k for which (m, p) = 1. Then

this element can be written as a = pkε, where ε = m
n and (m, p) = 1. From

above assertions it follows that the element ε is invertible. Therefore pk ∈ I and
(pk) ⊆ I. We shall show that I ⊆ (pk).

Let b = psm
n ∈ I and (m, p) = 1, s ≥ 0. Then b = psξ, where ξ is invertible

and s ≥ k, therefore g = pkps−kξ ∈ (pk), i.e., I ⊆ (pk). Thus, every nonzero
ideal I is principal and has the form (pk) for some positive integer k. So, Z(p) is
a principal ideal domain and all its ideals form such a descending chain

Z(p) ⊃ (p) ⊃ (p2) ⊃ (p3) ⊃ ... ⊃ (pn) ⊃ ....

As in the case of the previous example it is easy to show that
∞
∩

n=0
(pn) = 0.1)

Example 1.1.10.
The set of all square matrices of order n over a division ring D forms the

noncommutative ring Mn(D) with respect to the ordinary operations of addition
and multiplication of matrices. This ring is usually called the full matrix ring.
An element of Mn(D) has the form




a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .
an1 an2 . . . ann




where all aij ∈ D. The elements of Mn(D) can also be written in another form.
For i, j = 1, 2, ..., n we denote by eij the matrix with 1 in the (i, j) position and
zeroes elsewhere. These n2 matrices eij are called the matrix units and form a
basis of Mn(D) over D, so that an element of Mn(D) can be uniquely written as
a linear combination

n∑
i,j=1

aijeij .

The elements eij multiply according to the rule

eijemn = δjmein (1.1.1)

where

δjm =
{

1 if j = m
0 if j �= m

1) Z(p) is what is called a localization of Z. Quite generally a localization of a PID is a PID.
This is just an instance. The proof in general is not more difficult.
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is the Kronecker delta. The matrix En = e11 +e22 + ...+enn, which has 1 along
the principal diagonal and zeroes elsewhere, is the identity matrix of Mn(D)
and we shall often denote it simply by E if we know the dimension n. Obviously,
the elements eii (i = 1, 2, ..., n) are orthogonal idempotents.

Let α ∈ D, then a matrix of the form αE is often called a scalar matrix.
Taking into account (1.1.1) it is easy to verify that eijα = αeij for any α ∈ D and
i, j = 1, 2, ..., n.

In a similar way we may consider the matrix ring Mn(A) with entries in an
arbitrary ring A.

Example 1.1.11.
Let K be any associative ring and let G be a multiplicative group. Consider

the set KG of all formal finite sums
∑

g∈G

agg with ag ∈ K. The operations in KG

are defined by the formulas:
∑
g∈G

agg +
∑
g∈G

bgg =
∑
g∈G

(ag + bg)g,

(
∑
g∈G

agg)(
∑
g∈G

bgg) =
∑
h∈G

chh,

where ch =
∑

axby with summation over all (x, y) ∈ G × G such that xy = h.
It is easy to verify that KG is indeed an associative ring. This ring is called the
group ring of the group G over the ring K. Clearly, KG is commutative if and
only if both K and G are commutative. Furthermore, if K is a field, then KG is
a K-algebra called the group algebra of the group G over the field K. If K is a
commutative ring with 1, the group ring KG is often called the group algebra
of the group G over the ring K as well.

Example 1.1.12.
Consider a vector space H of dimension four over the field R of real numbers

with the basis {1, i, j, k}. Define the multiplication in H by means of the following
multiplication table:

1 i j k
1 1 i j k
i i - 1 k -j
j j -k - 1 i
k k j -i - 1

It is to be understood that the product of any element in the left column by
any element in the top row is to be found at the intersection of the respective row
and column. This product can be extended by linearity to all elements of H. An
element of H can be written as a0 +a1i+a2j +a3k, where as ∈ R for s = 0, 1, 2, 3.
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Then the associative product law for any elements of H is given by

(a0 + a1i + a2j + a3k)(b0 + b1i + b2j + b3k) =

= (a0b0 − a1b1 − a2b2 − a3b3) · 1+

+(a0b1 + a1b0 + a2b3 − a3b2)i+

+(a0b2 − a1b3 + a2b0 + a3b1)j+

+(a0b3 + a1b2 − a2b1 + a3b0)k.

It is easy to verify that the set of elements H forms a noncommutative ring under
addition and multiplication defined as above. The identity of this ring is the
element 1 + 0i + 0j + 0k. If α = a + bi + cj + dk ∈ H, where a, b, c, d ∈ R, then
we define α = a − bi − cj − dk. It is easy to verify that

αα = αα = a2 + b2 + c2 + d2 ∈ R.

If α �= 0 then αα is a nonzero real number. Therefore, if α �= 0 then α has an
inverse element

α−1 = (a2 + b2 + c2 + d2)−1α ∈ H.

Hence, H is a division ring (more exactly, this is a division algebra over the field
R) and it is called the algebra of real quaternions. Historically, this algebra
was introduced in 1843 by Sir William Rowan Hamilton as the first example of a
noncommutative number system. As said before (in the introduction), this exam-
ple can be with justice considered the origin of noncommutative algebra. However,
Hamilton invented it for different reasons. Those came from mechanics. And from
that point of view the quaternions are a beautiful container of 3-dimensional vector
calculus including scalar and vector product.

Example 1.1.13.
The Cayley algebra (the algebra of octaves or octonions) O is an 8-dimensional

(non-associative) division algebra over the field of real numbers. The Cayley alge-
bra consists of all formal sums α + βe, where α, β are quaternions and e is a new
symbol with e2 = −1, with obvious addition and multiplication by real numbers.

In other words, it is an 8-dimensional vector space over R with basis
{1, i, j, k, e, ie, je, ke} and the following multiplication table:

1 i j k e ie je ke
1 1 i j k e ie je ke
i i -1 k -j ie -e -ke je
j j -k -1 i je ke -e -ie
k k j -i -1 ke -je ie -e
e e -ie -je -ke -1 i j k
ie ie e -ke je -i -1 -k j
je je ke e -ie -j k -1 -i
ke ke -je ie e -k -j i -1
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Example 1.1.14.
Division algebras and orthogonal permutations
Let Rn be the n-dimensional real vector space, and let ei = (0, . . . , 1, . . . , 0),

i = 1, . . . , n, be its standard basis. A linear transformation P : Rn → Rn is
called a (signed) linear permutation (or simply permutation) if for any a =
(a1, . . . , an) ∈ Rn, Pa = (ε1(P )απP (1) , . . . , εn(P )απP (n)), where πP ∈ Sn is a
permutation and εi(P ) ∈ {+1,−1}. Two linear permutations P and P ′ are called
orthogonal if (Pa, P ′a) = 0 for every a ∈ Rn; (a,b) being the standard scalar
product of a,b ∈ Rn. A set P = (P1, . . . , Pm) of (linear) permutations is called
an orthogonal system of permutations if Pi and Pj are orthogonal for any
two distinct i, j ∈ {1, . . . , m}. Obviously, m ≤ n. If m = n, then this orthogonal
system of permutations is said to be complete.

It is clear that, given any orthogonal system of permutations P = (P1, . . . , Pm)
and any permutation P , one can construct a new orthogonal system PP =
(PP1, . . . , PPm). That is why we shall only consider the systems such that P1 = E
(the identity mapping).

Given an orthogonal system of permutations P = (P1, . . . , Pm), put εij =

εi(Pj) and pi =
n∑

j=1

Piej . Then pi = (pi1 , . . . , pim
) with pij

= εijpπij , where

εij = εj(Pi) and πi = πPi
. Obviously, the system (p1, . . . , pn) determines the

orthogonal system of permutations P. Note that π1 is the identity permutation
since P1 = E.

To each complete system of orthogonal permutations P = (P1, . . . , Pm) we as-
sociate an R-algebra (not necessarily associative) AP with a basis ei (i = 1, . . . , n)
and the multiplication given by the rule: eia = Pia. Note that if P1 = E, the
vector e1 is a left unit of this algebra.

Theorem 1.1.5. For every complete system of orthogonal permutations P,
the algebra AP is a division algebra i.e., for any a,b ∈ AP , a �= 0, each of the
equations (1) xa = b and (2) ay = b has a unique solution).

Proof. Since AP is finite dimensional, it is enough to prove that one of the
equations (1) or (2) has a solution for every a �= 0 or, what is the same, that
the vectors eia (i = 1, . . . , n) form a basis of AP . But in our case the vectors
eia = Pia are nonzero and pairwise orthogonal. Hence, they form an orthogonal
basis of AP .

A division algebra A is called alternative if all its subalgebras generated by
two elements are associative. The following finite dimensional algebras over the
field of real numbers R are well-known:

0) the field of real numbers R;
1) the field of complex numbers C;
2) the division ring of quaternions H.
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Here is the structure of orthogonal permutations which corresponds to the field
of complex numbers C, the division ring of quaternions H and the Cayley algebra
O:

1) the complex numbers C.
Multiplying the complex number a1 + a2i corresponding to the vector a =

(a1, a2) by the basic elements 1 and i, we obtain:
P1a = (a1, a2)
P2a = (−a2, a1).

2) the quaternions H.
Again, multiplying the quaternion a1 + a2i + a3j + a4k corresponding to the

vector a = (a1, a2, a3, a4) ∈ R4 by the basic elements 1, i, j, k, we obtain the
following permutations in R4:

P1a = (a1, a2, a3, a4),
P2a = (−a2, a1,−a4, a3),
P3a = (−a3, a4, a1,−a2),
P4a = (−a4,−a3, a2, a1)

3) the Cayley algebra O.
Just in the same way one can obtain the following permutations in R8 (for

a = (a1, a2, a3, a4, a5, a6, a7, a8)):
P1a = (a1, a2, a3, a4, a5, a6, a7, a8),
P2a = (−a2, a1,−a4, a3,−a6a5, a8, a7),
P3a = (−a3, a4, a1,−a2,−a7,−a8, a5, a6),
P4a = (−a4,−a3, a2, a1,−a8, a7,−a6, a5),
P5a = (−a5, a6, a7, a8, a1,−a2,−a3,−a4),
P6a = (−a6,−a5, a8,−a7, a2, a1, a4,−a3),
P7a = (−a7,−a8,−a5, a6, a3,−a4, a1, a2),
P8a = (−a8, a7,−a6,−a5, a4, a3,−a2, a1).

Theorem 1.1.6. ( J.F.Adams (1960)) If A is a finite dimensional division
algebra over R, then dimR A = 2n for n = 0, 1, 2, 3.

Remark. The result of John Frank Adams should not be confused with one
of the famous results of A.Ostrowski (around 1917). In its usual formulation this
Ostrowski theorem says: If ϕ is an Archimedean norm on an associative (but
not necessarily commutative) field K then there exists an isomorphism of K onto
an everywhere dense subfield of R, C, or H such that ϕ is equivalent to the
norm induced by that of R, C, or H. (See V.I.Danilov, Norm on a field K, In:
M.Hazewinkel(ed.), Encyclopaedia of Mathematics, Vol.6, 461-462, KAP, 1990.)

In particular if K is complete it is isomorphic to R, C, or H. There is an
extension to not necessarily associative fields and then the Cayley numbers turn
up as the fourth and last possibility.

As a corollary we obtain the following statement:
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Corollary 1.1.7. There exists no complete system of orthogonal permutations
of n-dimensional vectors if n �= 1, 2, 4, 8.

1.2 MODULES AND HOMOMORPHISMS

One of the most important notions of modern algebra is the notion of a module,
which can be considered as a natural generalization of a vector space.

Definition. A right module over a ring A (or right A-module) is an
additive Abelian group M together with a map M × A → M such that to every
pair (m,a), where m ∈ M , a ∈ A, there corresponds a uniquely determined
element ma ∈ M and the following conditions are satisfied:

1. m(a1 + a2) = ma1 + ma2

2. (m1 + m2)a = m1a + m2a

3. m(a1a2) = (ma1)a2

4. m · 1 = m

for any m,m1,m2 ∈ M and any a, a1, a2 ∈ A.

In a similar way one can define the notion of a left A-module. We shall some-
times write M = MA to emphasize the right action of A. If A is a commutative
ring and M = MA then we can make M into a left A-module by defining am = ma
for m ∈ M and a ∈ A. Thus for commutative rings we can write the ring elements
on either side. If A is not commutative, in general not every right A-module is
also a left A-module. In what follows, by saying an A-module we shall mean a
right A-module.

Note that if A is a field, then a right A-module is precisely a right vector space.
Formally, the notion of a module is a generalization of the idea of a vector space.
In general, the properties of modules can be quite different from the properties of
vector spaces.

Example 1.2.1.
Let M = A and as the map ϕ : M ×A → M we take the usual multiplication,

i.e., ϕ(m,a) = ma ∈ M . Then we obtain a right module AA which is called the
right regular module. Analogously, we can construct the left regular module
AA. Therefore any ring A may be considered as a module over itself and any right
(left) ideal in A is clearly a right (left) A-module.

Example 1.2.2.
Let A = Z be the ring of integers. Then any Abelian group G is a Z-module, if

we define the map ϕ : G × Z → G as the usual multiplex addition ϕ(g, n) = gn =
g + ... + g ∈ G.

Example 1.2.3.
Let G be a primary Abelian group, i.e., every element g ∈ G has order pk for

some fixed prime integer p and an integer k. Let m
n be an element of Z(p). Since
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(n, p) = 1, we have (n, pk) = 1 as well. Therefore there exist integers x, y such that
nx+ pky = 1. Thus, for any element g ∈ G we have g · 1 = g ·nx+ g · pky = g ·nx.
So, g = g ·nx = (gx)n, i.e., the operation g · 1

n = gx is well defined in G. Therefore
we can define a map G × Z(p) → G by the following rule:

g · m

n
= (gm)x

and the primary Abelian group G can be considered as a Z(p)-module.

Now we introduce the concepts of homomorphisms and isomorphisms for mod-
ules.

Definition. A homomorphism of a right A-module M into a right A-module
N is a map f : M → N satisfying the following conditions

1. f(m1 + m2) = f(m1) + f(m2) for all m1,m2 ∈ M ;
2. f(ma) = f(m)a for all m ∈ M , a ∈ A.

The set of all such homomorphisms f is denoted by HomA(M,N).
If f, g ∈ HomA(M,N) then f + g : M → N is defined by (f + g)(m) =

f(m) + g(m) for all m ∈ M . One can verify that f + g is also a homomorphism
and the set HomA(M,N) forms an additive Abelian group.

If a homomorphism f : M → N is injective, i.e., m1 �= m2 implies f(m1) �=
f(m2), then it is called a monomorphism. In order to verify that f is a monomor-
phism of A-modules it is sufficient to show that f(m) = 0 implies m = 0. If a
homomorphism f : M → N is surjective, i.e., every element of N is of the form
f(m), then f is called an epimorphism.

If a homomorphism f : M → N is bijective, i.e., injective and surjective, then
it is called an isomorphism of modules. In this case we say that M and N
are isomorphic and we shall write M � N . Isomorphic modules have the same
properties and they can be identified. It is easy to check that then f−1 : N → M ,
defined by f−1(n) = m if and only if f(m) = n is also a homomorphism of modules,
so that a bijective homomorphism is an isomorphism in the categorical sense.

A nonempty subset N of an A-module M is called an A-submodule if N is
a subgroup of the additive group of M which is closed under multiplication by
elements of A. Note that since A itself is a right A-module, submodules of the
regular module AA are precisely the right ideals of A.

Let N be a submodule of an A-module M . We say that two elements x, y ∈ M
are equivalent if x − y ∈ N . Consider the set M/N of equivalence classes m + N ,
where m ∈ M . We can introduce a module structure on M/N if we define the
operations of addition and multiplication by an element a ∈ A by setting

(m + N) + (m1 + N) = (m + m1) + N,

(m + N)a = ma + N
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for all m,m1 ∈ M .
The A-module M/N is called the quotient module of M by N .
Note that the quotient module has a natural map π : M → M/N assigning

to each element m ∈ M the class m + N ∈ M/N . Moreover, it is easy to see
that π is an epimorphism of A-modules. This epimorphism is called the natural
projection of M onto the quotient module M/N .

Let f : M → N be a homomorphism of A-modules. The set

Ker(f) = {m ∈ M : f(m) = 0}

is a submodule of M . It is called the kernel of the homomorphism f . Obviously,
f(m1) = f(m2) holds if and only if m1 − m2 ∈ Ker(f). It is easy to prove that
for the natural projection π : M → M/N we have Ker(π) = N .

The image of a homomorphism f is the set Im(f) of all elements of N of the
form f(m). It is easy to verify that Im(f) is a submodule in N . The set

Coker(f) = N/Im(f)

is called the cokernel of the homomorphism f and it is the quotient module of N
by Im(f).

Proposition 1.2.1. Let f : M → N be a homomorphism of A-modules.
1. Suppose L is submodule of M contained in Kerf . Then there exists a unique

homomorphism ψ : M/L → N such that the diagram

M
ϕ

f

M/L

ψ

N

(1.2.1)

is commutative, i.e., ψϕ = f , where ϕ is the natural projection.
2. Suppose g : N1 → N is a monomorphism with Imf ⊂ Img, then there exists

a unique homomorphism h : M → N1 such that f = gh.

Proof.
1. Let m + L be an arbitrary element of M/L. Since L ⊆ Kerf , we can

define the map ψ : M/L → N setting ψ(m + L) = f(m). It is easy to see that
ψ is an A-module homomorphism. In fact, ψ(m + L + m1 + L) = ψ(m + m1 +
L) = f(m + m1) = f(m) + f(m1) = ψ(m + L) + ψ(m1 + L) and ψ(ma + L) =
f(ma) = f(m)a = ψ(m + L)a. Furthermore, if ϕ is a natural projection, then
ψϕ(m) = ψ(m + L) = f(m) for any m ∈ M . So ψϕ = f and ψ is the unique such
homomorphism.

2. For each m ∈ M , f(m) ∈ Imf ⊆ Img. Since g is a monomorphism, there
exists a unique n ∈ N1 such that g(n) = f(m). Therefore there is a function
defined by h(m) = n such that f = gh.



18 ALGEBRAS, RINGS AND MODULES

We shall often use the following simple but very useful statement:

Proposition 1.2.2. Let M and N be A-modules and f : M → N be a
homomorphism of A-modules. Then

(1) f is an epimorphism if and only if Imf = N ;
(2) f is a monomorphism if and only if Kerf = 0.

Suppose M is an A-module, I is an index set, and for each i ∈ I, Ni is a
submodule of M . Denote by

∑
i∈I

Ni the set of all finite sums of the form x1 + x2 +

...+xm, where each xk belongs to some Ni. Then
∑
i∈I

Ni is a submodule of M , and

it is called the sum of the family of submodules {Ni : i ∈ I}. In particular,
if I = {1, 2, ..., n} then the sum of submodules may be written as

N1 + N2 + ... + Nn = {x1 + x2 + ... + xn : ni ∈ Ni for each i ∈ I}.

It is easy to verify, that
⋂
i∈I

Ni = {m ∈ M : m ∈ Ni for each i ∈ I}

is also a submodule of M and it is called the intersection of the family of
submodules {Ni : i ∈ I}. Note that, if I = ∅ then

⋂
i∈∅

Ni = M .

Let X ⊂ M be a subset, then the set

N = {x1a1 + x2a2 + ... + xkak : xi ∈ X, ai ∈ A for each i}

is a submodule of M and it is called the submodule generated by the set X.
If M = N , then X is called the set of generators of M . If an A-module M
has a finite set of generators then it is called finitely generated. In this case
there exists a set of elements X = {m1,m2, ...,mn} ⊂ M such that every element

m ∈ M can be written as m =
n∑

i=1

miai for some ai ∈ A.

An A-module M is said to be cyclic if it generated by one element, i.e., it has
an element m0 such that every element of M is of the form m0a, where a ∈ A. So
in this case M = m0A. The element m0 is called a generator of the module M .
Clearly, this notion is analogous to the notion of a principal ideal.

1.3 CLASSICAL ISOMORPHISM THEOREMS

In this section we shall prove the fundamental Noether isomorphism theorems.

Theorem 1.3.1 (Homomorphism theorem). If M and N are A-modules
and f : M → N is an A-homomorphism, then

M/Ker(f) � Im(f).
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Proof. Let m+Ker(f) be an element of M/Ker(f). By proposition 1.2.1, there
exists a unique A-homomorphism g : M/Ker(f) → Imf , where g(m+Ker(f)) =
f(m). We need only show that g is an isomorphism. Since every element of
Im(f) has a form f(m) = g(m + Ker(f)), g is an epimorphism. Assume that
g(m + Ker(f)) = 0, then f(m) = 0, i.e., m ∈ Ker(f). Therefore m + Ker(f) =
0 + Ker(f) is the zero class of M/Ker(f). Thus, g is a monomorphism. Hence, g
is an isomorphism.

Denote r.ann(m) = {a ∈ A : ma = 0}. It is a right ideal in A and it is called
the right annihilator of the element m. If r.ann(m) �= 0, then the element m is
called a torsion element, otherwise it is called a torsion-free element. If all
elements of an A-module M are torsion, M is called a torsion module.

From theorem 1.3.1 it is easy to obtain the following statement.

Corollary 1.3.2. Every cyclic module is isomorphic to a quotient module of
the regular module by some right ideal.

Proof. Let M be a cyclic A-module with a generator m0, i.e., M = m0A. We
define a map f : A → M by setting f(a) = m0a. From the module axioms it follows
that f is a module homomorphism and, since m0 is the generator of M , we have
Im(f) = M . Now theorem 1.3.1 yields M � A/I, where I = Ker(f) is a right
ideal in A. It is easy to see that Ker(f) = r.ann(m0) and so m0A � A/r.ann(m0).

Theorem 1.3.3 (First isomorphism theorem). If L and N are submodules
of an A-module M , then

(L + N)/N � L/(L ∩ N).

Proof. Consider the natural projection π : L + N → (L + N)/N , then (L +
N)/N = π(L+N) = π(L). So we can consider the restriction π′ : L → (L+N)/N
which is an epimorphism. Furthermore, the kernel of this map is the set of those
elements of L that both map to 0 and belong to L, thus Ker(π′) = L∩N . By the
homomorphism theorem, we have

(L + N)/N � L/(L ∩ N).

This theorem has a simple illustration in the form of ”parallelogram”:

L + N

N L

L ∩ N
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where the quotient modules (L + N)/N and L/(L ∩ N) are the ”opposite sides
of the parallelogram”. Therefore this theorem is sometimes referred to in the
literature as the ”parallelogram law”.

Consider the natural homomorphism π : M → M/L with the kernel Ker(π) =
L. For a submodule N of M we set π(N) = {π(x) : x ∈ N}. Since N is a
submodule and π is a homomorphism, π(x1) + π(x2) = π(x1 + x2) ∈ π(N) and
π(x)a = π(xa) ∈ N for all x1, x2 ∈ N , a ∈ A. Therefore π(N) is a submodule of
M/L. If N ′ is a submodule of M/L we define π−1(N ′) = {m ∈ M : π(m) ∈ N ′}.
Since π(y) = 0 ∈ N ′ for any y ∈ L, we have L ⊂ N ′. Let m1,m2 ∈ π−1(N ′) and
a ∈ A, then π(m1 + m2) = π(m1) + π(m2) ∈ N ′ and π(m1a) = π(m1)a ∈ N ′.
Hence π−1(N ′) is a submodule of M containing L. Furthermore, every element
m ∈ N ′ is of the form π(m), where m ∈ M , and also m ∈ π−1(N ′) because
π(m) = m ∈ N ′. Hence we obtain the formula N ′ = π(π−1(N ′)). Let L ⊂ N .
Consider the restriction of π to N . We obtain a homomorphism π : L → M/L with
the kernel Ker(π) = L and the image Im(π) = π(N). Obviously, N ⊂ π−1(π(N)).
We now prove the converse inclusion. Let m ∈ π−1(π(N)), then π(m) = π(x),
where x ∈ N . Therefore π(m − x) = 0, i.e., m − x = y ∈ Ker(π) = L. Since
L ⊂ N , we have m = x + y ∈ N . As a result, π−1(π(N)) = N and, by theorem
1.3.1, π(N) = Im(π) � N/Ker(π) = N/L. So we have proved the following
lemma.

Lemma 1.3.4. Let L be a submodule of M and π : M → M/L be the natural
projection. For any submodule N ⊂ M and any submodule N ′ ⊂ M/L we have

1) π(N) is a submodule of M/L;
2) π−1(N ′) is a submodule of M ;
3) π(π−1(N ′)) = N ′;
4) if L ⊂ N then π−1(π(N)) = N .

As a corollary of this lemma we have the following theorem.

Theorem 1.3.5 (Second isomorphism theorem). Let L be a submodule of
an A-module M . Then any submodule of the A-module M/L has the form N/L,
where L ⊂ N ⊂ M , and

(M/L)/(N/L) � M/N.

Proof. Let π : M → M/L be the natural projection. Then π(M) = M/L. Con-
sider a submodule N ′ of π(M) and write N = π−1(N ′), which is a submodule of M .
Then by the previous lemma N ′ = π(N) = N/L. Let τ : M/L → (M/L)/(N/L)
be the natural projection, then we can consider the homomorphism τπ : M →
(M/L)/(N/L). Since τ and π are epimorphisms, τπ is also an epimorphism. The
kernel of the epimorphism τπ is equal to π−1(π(N)) = N by lemma 1.3.4. Now
the homomorphism theorem 1.3.1 yields (M/L)/(N/L) � M/N .

Theorem 1.3.6 (Modular law). Let A, B and C be submodules of M with
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B ⊆ A. Then:
A ∩ (B + C) = B + (A ∩ C).

Proof. It is clear that B + (A ∩ C) ⊆ A ∩ (B + C). We shall now show the
converse inclusion. Let x ∈ A ∩ (B + C), so that x = a = b + c for suitable
a ∈ A, b ∈ B, c ∈ C. Since B ⊆ A, we have c = a − b ∈ A, so c ∈ A ∩ C and
x = b + c ∈ B + (A ∩ C).

1.4 DIRECT SUMS AND PRODUCTS

Let M1,M2, ...,Mn be modules over a ring A. Consider the set M of the n-tuples
(m1,m2, ...,mn), where mi ∈ Mi, and define the operations componentwise:

(m1,m2, ...,mn) + (m′
1,m

′
2, ...,m

′
n) = (m1 + m′

1,m2 + m′
2, ...,mn + m′

n),

(m1,m2, ...,mn)a = (m1a, m2a, ..., mna), a ∈ A.

Obviously, M is an A-module under these operations and it is called the external
direct sum of the modules M1,M2, ...,Mn and denoted by M1 ⊕ M2 ⊕ ... ⊕ Mn,
or

n
⊕

i=1
Mi.

In a similar manner, if (Mi)i∈I is a set of A-modules, then we can introduce
the external direct sum ⊕

i∈I
Mi as the set of infinite tuples (mi)i∈I with mi ∈ Mi

for all i ∈ I and for almost all i ∈ I mi is equal to zero (i.e., only a finite number
of mi are not equal to zero). Furthermore, the operations on this set are defined
componentwise, so that (⊕imi) + (⊕im

′
i) = ⊕i(mi + m′

i) and (⊕imi)a = ⊕i(mia)
for all i ∈ I and any a ∈ A. If there is no assumption on the number of nonzero
components then we obtain the external strong direct sum. This one is denoted∏
i∈I

Mi and is called the direct product of the modules Mi. The external direct

sum coincides with the direct product of modules Mi, i ∈ I, if the set I is finite,
but in general there is not the case. For the finite case we may use either the
product or sum notation, i.e., M1 ⊕ M2 ⊕ ... ⊕ Mn = M1 × M2 × ... × Mn.

External direct sums may be described in terms of sets of homomorphisms.
Let M = ⊕

i∈I
Mi be the external direct sum of a family of submodules Mi (i ∈ I).

Then for every i ∈ I there exists the natural embedding σi : Mi → M given
by σi(mi) = (..., 0,mi, 0, ....) and the natural projection πi : M → Mi given by
πi(...,mj , ....,mi, ...) = mi. Clearly, πiσi = 1Mi

and πiσj = 0 for i �= j. Here 1Mi

is the identity map of a module Mi. Moreover, if the set I is finite, I = {1, 2, ..., n},
and M = M1 ⊕M2 ⊕ ...⊕Mn then σ1π1 + σ2π2 + ... + σnπn = 1M . If the set I is
infinite, then for any m ∈ M we have m = σi1πi1m + σi2πi2m + ... + σin

πin
m.

If M =
∏
i∈I

Mi is a direct product of modules, then the analogous set of ho-

momorphisms {σi} and {πi} defines it. But in this case we have the following
conditions:
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1) πiσi = 1Xi
and πiσj = 0 for i �= j;

2) if we have a set of elements {mi}, where there is only one element mi ∈ Mi

for each i ∈ I, then there exists a unique element m ∈
∏
i∈I

Mi such that πim = mi

for each i ∈ I.

Let A1, A2, ..., An be rings. Consider the set A of elements a = (a1, a2, ..., an),
where ai ∈ Ai, i = 1, 2, ..., n. Let b = (b1, b2, ..., bn) ∈ A. Define the operations of
addition and multiplication in A as follows

a + b = (a1 + b1, a2 + b2, ..., an + bn),

ab = (a1b1, a2b2, ..., anbn).

We shall consider that a = b if and only if ai = bi for i = 1, 2, ..., n. It is easy
to verify that the set A forms a ring under the above operations of addition and
multiplication and with identity element (1, 1, ..., 1), where the identity of the ring
Ai is at the i-th position. This ring is said to be the direct product of the finite
number of rings A1, A2, ..., An and denoted by A1 × A2 × ... × An.

Put ei = (0, ..., 1, ..., 0), where the identity of the ring Ai is at the i-th position
and zeroes elsewhere. Obviously, the elements e1, e2, ..., en are pairwise orthogonal
idempotents and e1 + e2 + ... + en is the identity of A. But in this particular case
the idempotents ei have an additional property: eia = (0, ..., ai, ..., 0) = aei for
any a = (a1, a2, ..., an) ∈ A, i.e., the idempotents ei are in the center of the ring
A. Such idempotents are said to be central.

If Ai = A for all i = 1, 2, ..., n, then we denote the direct product by An =
A × A × ... × A.

Suppose a ring A is a direct product of rings Ai (i = 1, 2, ..., n) A =
n∏

i=1

Ai.

Then the set of elements (0, ..., 0, ai, 0, ..., 0) ∈ A, where ai ∈ Ai, forms an ideal Ii

in A. Then the ring A, considered as the regular module, is a direct sum of the
ideals Ii. Conversely, let A = I1 ⊕ ... ⊕ In be a decomposition of a ring A into a

direct sum of ideals, then A �
n∏

i=1

(A/Ji), where Ji = ⊕
j �=i

Ij . Furthermore, every

ideal Ii is a ring which is isomorphic to A/Ji.

Definition. A module, which is isomorphic to a direct sum M1 ⊕ M2, where
M1 and M2 are nonzero modules, is said to be decomposable, otherwise it is
called indecomposable.

Here is an internal characterization of a decomposable module.

Proposition 1.4.1. Let M1 and M2 be submodules of a module M and let
f : M1 ⊕M2 → M be the homomorphism defined by f(m1,m2) = m1 + m2. Then
the following conditions are equivalent:

1) f is an isomorphism;
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2) M = M1 + M2 and M1 ∩ M2 = 0.

Proof.
1) ⇒ 2). Let the homomorphism f : M1 ⊕ M2 → M defined by f(m1,m2) =

m1 + m2 be an isomorphism. Since M � Imf , any element m ∈ M can be
written as m = m1 + m2. Let x ∈ M1 ∩ M2, then f(x,−x) = x − x = 0, i.e.,
(x,−x) ∈ Ker(f). Since Ker(f) = 0, we have x = 0. Therefore M1 ∩ M2 = 0.

2) ⇒ 1). Conversely, let M = M1 + M2 and M1 ∩ M2 = 0, then obviously f
is an epimorphism. If (x, y) ∈ Ker(f), then x + y = 0, i.e., x = −y. Therefore
x ∈ M1 ∩ M2 = 0, i.e., Ker(f) = 0. Hence, f is both an epimorphism and a
monomorphism, i.e., f is an isomorphism.

Inspired by this proposition we may introduce the following definition. A
module M is said to be the internal direct sum of submodules M1 and M2 if
the equivalent conditions of proposition 1.4.1 are satisfied. The submodules M1

and M2 are called direct summands of the module M .
The internal direct sum of several modules can be defined in a similar way. For

this purpose we shall prove the following statement.

Theorem 1.4.2. Let Mi (i ∈ I) be a family of submodules of a module M , and
f : ⊕

i∈I
Mi → M be the homomorphism defined by the formula f(⊕imi) =

∑
i mi.

Then the following conditions are equivalent:
1) f is an isomorphism;
2)
∑
i∈I

Mi = M and Mi ∩ (
∑
j �=i

Mj) = 0 for any i;

3)
∑
i∈I

Mi = M and Mi ∩ (
∑
j<i

Mj) = 0 for any i > 1.

Proof.
1) ⇒ 2). Since f is an epimorphism, we immediately have M = M1 + M2 +

... + Mn. Let x ∈ Mi ∩ (
∑
j �=i

Mj), then x = −mi =
∑
j �=i

mj , where mi ∈ Mi.

Hence f(⊕imi) =
∑

i mi = 0. Since f is a monomorphism, mi = 0 for all i, i.e.,
Mi ∩ (

∑
j �=i

Mj) = 0 for any i.

2) ⇒ 3). Trivial.
3) ⇒ 1). From the condition M =

∑
i∈I

Mi we obtain that f is an epimorphism.

Let f(⊕imi) = 0 and i be the last position for which mi �= 0, then mi = −
∑
j<i

mj ∈

Mi ∩ (
∑
j<i

Mj), and hence mi = 0. This contradiction shows that mi = 0 for all i.

Therefore f is a monomorphism and therefore it is an isomorphism.

We say that a module M is the internal direct sum of a family of submodules
Mi (i ∈ I) if the equivalent conditions of theorem 1.4.2 are satisfied.

We have introduced two definitions of a direct sum. In fact, there is a close
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connection between these notions. The external and internal definitions of a direct
sum are equivalent. Let M = ⊕

i∈I
Mi be an external direct sum. Then the set of the

elements (..., 0, ..., 0,mi, 0, ..., 0, ...) (all components but the i-th one are 0) forms
a submodule M ′

i in M and M ′
i � Mi. Therefore the decomposition M = ⊕

i∈I
M ′

i

gives an internal direct sum. In what follows we shall simply say the direct
sum, meaning the notion of the external direct sum if we deal with modules, and
meaning the notion of the internal direct sum if we deal with submodules.

The following proposition gives the description of modules over a direct product
of rings.

Proposition 1.4.3. Let A = A1 × ... × At be a direct product of a finite
number of rings. Then any right A-module can be decomposed into a direct sum
of A-modules such that each of them is a right Ai-module for some i = 1, .., t.

Proof. Let 1 = e1 + ... + et be a decomposition of the identity of a ring A
into a sum of mutually orthogonal central idempotents such that Ai = eiA = Aei

(i = 1, ..., t).
Let M be a right A-module. We shall show that M decomposes into the direct

sum of Ai-modules Mei (i = 1, .., t). Since ei is a central idempotent, we have
that Mei is an A-module and MeiAj = 0 for i �= j. Therefore, indeed, Mei is an
Ai-module.

On the other hand, any element m ∈ M can be written as
m = m · 1 = me1 + ... + met. Moreover, if m = m1 + m2 + ... + mt,
where mi ∈ Mei, then mei = mi. Therefore such a decomposition gives a
representation of the module M in the form of a direct sum of modules Mei

(i = 1, ..., t). The proposition is proved.

1.5 FINITELY GENERATED AND FREE MODULES

We have already met with finitely generated modules in section 1.2.1.
We recall that an A-module M is finitely generated if there is a finite number

of elements m1,m2, ...,mn of M such that every element m ∈ M can be written

as m =
n∑

i=1

miai, where ai ∈ A.

The following lemma gives some simple but useful properties of finitely gener-
ated modules.

Proposition 1.5.1. If M is an A-module then:
(i) If M is a sum of the finite number of finitely generated modules, then M is

a finitely generated module.
(ii) If M can be generated by n elements and N is a submodule of M , then

M/N can be generated by n elements.
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(iii) If M = M1 ⊕ M2 and M can be generated by n elements, then M1 can be
generated by n elements.

Proof.
(i) is obvious.
(ii) By assumption there exist n elements m1, ...,mn ∈ M such that any element

m ∈ M has the form m =
n∑

i=1

miai with ai ∈ A. Then m + N =
n∑

i=1

(mi + N)ai,

which shows that the n elements m1 + N, ...,mn + N generate M/N .
(iii) By theorem 1.3.3, we have M/M2 = (M1 ⊕ M2)/M2 � M1/(M1 ∪ M2 =

M1/0 � M1. Now by (ii) M/M2 can be generated by n elements. Hence, M1 can
be generated by n elements.

Now we introduce a special class of modules that can be considered as the most
natural generalization of vector spaces and that play a very important role in the
theory of modules.

Definition. An A-module M is called free if it is isomorphic to a direct sum
of regular modules, i.e., M � ⊕

i∈I
Mi. where Mi � AA for all i ∈ I.

Thus, if A = k is a field, every module over A is free, i.e., a vector space.

Free modules play an important role in the theory of modules. It is easy to
prove the following proposition.

Proposition 1.5.2. If an A-module M is finitely generated with n generators,
then it is isomorphic to a quotient module of the free module An.

Proof. Let {m1,m2, ...,mn} be a set of generators of an A-module M . Define

the map ϕ : An → M setting ϕ(a1, a2, ..., an) =
n∑

i=1

miai. It is easy to see that ϕ

is an epimorphism and by the homomorphism theorem M � An/Ker(ϕ).

Let F be a free A-module and α : F → ⊕
i∈I

AA be an isomorphism of A-modules.

Consider the elements fi for which α(fi) = ei are elements of ⊕
i∈I

AA having the

identity of A at the i-th position and zeroes elsewhere. Then any element f ∈ F
can be written as f =

∑
i∈I

fiai, where ai ∈ A and only a finite number of ai are

not equal to zero. Suppose f = 0. Since α(f) =
∑
i∈I

eiai = 0, all ai = 0. Therefore

f =
∑
i∈I

fiai = 0 if and only if all ai = 0. Hence, any element f ∈ F can be

uniquely written as a finite sum
∑
i∈I

fiai with ai ∈ A. Such a set of elements

{ fi ∈ F : i ∈ I} is called a free basis for F .
Conversely, let a module F have a free basis { fi ∈ F : i ∈ I}. Then
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f =
∑
i∈I

fiai = 0 if and only if all ai = 0. Therefore a map ⊕
i∈I

A → F given by∑
i

ai →
∑
i

fiai is an isomorphism.

Hence, we obtain the following result.

Proposition 1.5.3. A module F is free if and only if it has a free basis. In
particular, F has a finite free basis of n elements if and only if F is isomorphic to
An.

The following statement is a generalization of proposition 1.5.2 and shows the
importance of free modules.

Proposition 1.5.4. Any module is isomorphic to a quotient module of a free
module.

Proof. Let M be a right A-module and { mi ∈ M : i ∈ I } be a set of
generators of the module M , i.e., we can write M =

∑
i∈I

miA. Let ϕi(a) = mia

be an epimorphism of the module A onto the module miA. Then there is a
homomorphism ϕ : ⊕

i∈I
A → M , which coincides with ϕi on the direct summand

with index i. Obviously, ϕ is an epimorphism. The proposition follows now from
the homomorphism theorem.

As one can note the notion of a free basis for a free module is a generalization
of a vector space basis. But though for a finite dimensional vector space all bases
have the same number of elements, this is not always true for finitely generated free
modules over an arbitrary ring. There are rings A for which An � Am and n �= m.
But if A is a commutative ring, then any two free bases of a finitely generated free
A-module have the same number of elements. This number of elements is called
the rank of a free module.

Proposition 1.5.5. If A is a commutative ring, and F is a free A-module,
then any two free bases of F have the same cardinal number.

Proof. By Zorn’s lemma, A has a maximal ideal M . Let { fi ∈ F : i ∈ I}
be a free basis of F and denote by Fi an A/M -module fiA/fiAM � A/M .
If πi : fiA → Fi is a natural projection, then we denote πi(fi) = f̄i. Define
the homomorphism σi : Fi → F/FM by σi(f̄i) = fi + FM and the projection
τi :

∑
i∈I

Fi → Fi. Then it is easy to show that the homomorphism σ =
∑
i∈I

σiτi

gives an isomorphism of A/M -modules
∑
i∈I

Fi and F/FM . Since M is maximal

in A, A/M is a field, and so F/FM is a vector space over A/M . Hence, the
isomorphism F/FM �

∑
i∈I

Fi shows that any free basis of F has cardinal number

equal to the dimension of F/FM over the field A/M , and therefore any two free
bases of F have the same cardinality.
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1.6 NOTES AND REFERENCES

In fact, the term ”ring” was introduced by Richard Dedekind and David Hilbert in
the end of the 19-th century and only in the concrete setting of rings of algebraic
integers, which are commutative rings.

The first abstract definition of a ring was given by A.Fraenkel in 1914 in the
paper Über die Teiler der Null und die Zerlegung von Ringen // J. de Crelle, 145
(1914), 139-176. Among the main concepts introduced in this paper were ”zero
divisors” and ”regular elements”.

What we now call ”ring theory” was known in 19th century and in the first
decades of the 20th century as the theory of ”complex number systems” or ”hy-
percomplex number systems” or as the theory of ”linear associative algebras”.

The first example of a noncommutative algebra, namely the quaternions, was
given by Sir William Hamilton in 1843 (see W.R.Hamilton, Lecture on quaternions,
Dublin, 1853). Some years later H.Grassmann introduced his algebra, which is
now known as Grassmann’s algebra, (see H.Grassmann, Die Ausdehnungslehre
von 1862, t.I, Leipzig, 1896 and Sur les différents genres de multiplication // J.
de Grelle, 59 (1855)). In 1855, in a paper entitled Remarques sur la notation des
functions algebriques, Sir Arthur Cayley introduced matrices, defined the inverse
of a matrix and the product of two matrices, exhibited the relation of matrices
to quadratic and bilinear forms. In the paper entitled A memoir on the theory
of matrices // Phil. Trans., 1858) he also defined the sum of matrices and the
product of a matrix by a scalar, and showed that n×n matrices form an associative
algebra. During the next forty years mathematicians introduced other examples
of noncommutative algebras.

B.Peirce’s paper Linear Associative Algebra // Amer. J. Math., 1881, V.4,
pp.97-229 was of fundamental importance. In this paper Benjamin Peirce classi-
fied algebras of dimension ≤ 5 over the field of complex numbers by giving their
multiplication tables. What is important in this paper, though, is not the classi-
fication but the means used to obtain it. For here B.Peirce introduced concepts
and derived results, which were fundamental for subsequent development. Among
the conceptual advances in Peirce’s work were: an ”abstract” definition of a finite
dimensional associative algebra, the use of complex coefficients, introduction of
nilpotent and idempotent elements, and the ” two-sided Peirce decomposition”.

The first complete results in the structure theory of associative algebras over
the real and complex fields were obtained by T.Molien, E.Cartan and G.Frobenius.

A new departure was provided by Wedderburn’s ground breaking paper of 1908
entitled On hypercomplex numbers// Proc. London Math. Soc., V.6, N.2 (1908),
p.77-118. In this paper previous results were summarized and unified, placing
them in a new perspective and providing new directions for subsequent work in
the field. The major result in Wedderburn’s paper, namely the structure theorem
for finite dimensional algebras, was essentially the same as that given by E.Cartan.
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There was ”merely” an extension of the field of scalars of the algebra of real
numbers R and complex numbers C to an arbitrary field. This extension, however,
necessitated a new approach to the subject - a rethinking and reformulation of the
major concepts and results of the theory of hypercomplex number systems.

Group algebras were introduced by Sir Arthur Cayley in the paper enti-
tled On the theory of groups, as depending on the symbolic equation θn = 1,
Phil. Mag., 1854, in which he defined a finite abstract group. At the end
of this paper he gave the definition of a group algebra over the real or com-
plex numbers. The theory of group rings is a specious and very interest-
ing part of algebra which has a number of its own problems. Is was and
still stays an area of active study. (For an up-to-date survey see, S.K.Sehgal,
Group rings. In: M.Hasewinkel (ed.), Handbook of Algebra, Vol.3, Elsevier,
2003.) The most famous results in the theory of group rings and alge-
bras were obtained by G.Frobenius, I.Schur, T.Molien, H.Maschke, C.Rickart,
D.S.Passman, E.Zelmanov, K.W.Roggenkamp, A.E.Zalesskij, S.K.Sehgal,
Z.Marciniak, J.Krempa, C.Polcino Milies, J.Z.Gonsalves, A.Bovdi, G.Karpilovsky
and others. As a current account of the theory of group rings we can recom-
mend the books D.S.Passman, The algebraic structure of group rings, Wiley,
1977; S.K.Sehgal, Topics in group rings, M.Dekker, 1978; K.W.Roggenkamp,
M.Taylor, Group Rings and Class Groups, Birkhäuser Verlag, Basel, 1992;
G.Karpilovsky, Unit groups of group rings, Longman, Essex, 1989 and C.Polcino
Milies, S.K.Sehgal, An introduction to group rings. Algebra and Applications,
Kluwer Academic Publishers, Dordrecht, 2002.

The proof of theorem 1.1.6 was given by J.F.Adams in the paper On the non-
existence of elements of Hopf invariant one// Math. Ann., v.72, 1960. More
information about nonassociative algebras and rings may be found in the book:
K.A.Zhevlakov, A.M.Slin’ko, I.P.Shestakov, A.I.Shirshov, Rings that are nearly
associative. Translated from the Russian by Harry F.Smith. Pure and Applied
Mathematics, 104. Academic Press, New York-London, 1982.

The basic notions of the modern theory of rings were formed in the 1920-ies
basically in the works of Emmy Noether and Emil Artin.

The concept of a module seems to have made its first appearance in algebra
in algebraic number theory. Modules first became an important tool in algebra in
the late 1920’s largely due to the insights of Emmy Noether, who was the first to
realize the potential of the module concept. In particular, she observed that this
concept could be used to bridge the gap between two important developments of
algebra that had been going on side by side and independently: the theory of rep-
resentations (=homomorphisms) of finite groups by matrices due to G.Frobenius,
W.Burnside, and I.Schur, and the structure theory of algebras due to T.Molien,
E.Cartan and J.H.M.Wedderburn.

In 1929 E.Noether in her fundamental paper Hyperkomplexe Grössen und
Darstellungstheorie// Math. Zeitschr. XXX (1929), p.641-692 established a close
connection between the theory of algebras and the theory of representations and
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in this paper she introduced in general form the notion of homomorphisms of
groups with operators and proved for groups with operators the famous ”Isomor-
phism Theorems”, which generalized many theoretic-group theorems of W.Krull
and O.Yu.Schmidt.

Although the concept of an ideal first appeared in Cartan’s work (and, to
some extent, also in the Molien and Frobenius papers), but only in the papers of
J.H.Wedderburn, E.Noether and E.Artin this notion obtained an essential ap-
plication in the theory of rings and algebras (see J.H.N.Wedderburn, On hy-
percomplex numbers// Proc. London Math. Soc., V.6, N.2 (1908), p.77-118;
E.Noether, Idealtheorie in Ringenbereichen // Math. Ann, v.83 (1921), p.24-
66 and E.Noether, Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und
Funktionenkörpern// Math. Ann., v.96 (1927), p.26-61).

Among the first monographs in which the ideas of E.Artin, E.Noether,
R.Brauer and others were developed one should note the influential book of van
der Warden: Moderne Algebra. I, II, Springer, Berlin, 1931; and the 2d edi-
tion, Moderne Algebra, I, 1937; Moderne Algebra, II, 1940 and one of the first
monographs of N.Jacobson The Theory of Rings. American Mathematical Society
Surveys, Vol. 2, American Mathematical Society, Providence, 1943.



2. Decompositions of rings

In many cases the description of modules over a ring is reduced to the description of
indecomposable modules and conditions when a given module can be decomposed
into a direct sum of indecomposable ones.

Any decomposition of a module into a direct sum of submodules has a close
connection with idempotents of the ring. This connection will be considered in
the case of the example of the two-sided Peirce decomposition of a ring in section
2.1.

The first example of the decomposition of a module into a direct sum of in-
decomposable modules was obtained for semisimple modules and their complete
description is given by the famous Wedderburn-Artin theorem. Section 2.2 is
devoted to the proof of this remarkable theorem.

In section 2.3 we consider one more important class of rings which are called
Boolean algebras and their connection with lattices of a special type. Our main
goal of this section is to prove Stone’s theorem on decomposition for finite Boolean
algebras.

In section 2.4 we introduce a class of rings which we call finitely decomposable
rings (or, simply FD-rings) and finitely decomposable identity rings (or simply,
FDI-rings) and prove decomposition theorems for such rings. To this end we use
the results for Boolean algebras taking into account that the set of all central
idempotents of a ring forms a Boolean algebra.

2.1 TWO-SIDED PEIRCE DECOMPOSITION OF A RING

In the previous chapter we have already had occasions to use idempotents in
rings. Here we present results establishing a close connection between idempotents
and decompositions of rings. These results will play a main role in the following
chapters of the book.

Definition. Let A be a ring. We recall that an element e ∈ A is called
an idempotent if e2 = e. Two idempotents e and f are called orthogonal if
ef = fe = 0. An equality 1 = e1 + e2 + ... + en, where e1, e2,...,en are pairwise
orthogonal idempotents, will be called a decomposition of the identity of the
ring A.

Proposition 2.1.1. There is a bijective correspondence between decomposi-
tions of a ring A =

n
⊕

i=1
eiA (A =

n
⊕

i=1
Aei) into a direct sum of right (left) ideals

and decompositions 1 = e1 + e2 + ... + en of the identity of the ring A.

30
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Proof. Let A = I1 ⊕ ... ⊕ Im ⊕ ... be a decomposition of a ring A into a
direct sum of nonzero right ideals (the number of summands is not necessarily
finite). Suppose 1 = ej1 + ... + ejn

, where ejt
∈ Ijt

and the ejt
are not equal

to zero (t = 1, ..., n). Assume there exists Ik such that Ik �= Ijt
for t = 1, ..., n.

Let ak ∈ Ik. Then ak = 1 · ak =
n∑

t=1
ejt

ak ∈
n∑

t=1
Ijt

. Since the sum of ideals

Is (s = 1, 2, ...,m, ...) is direct, Ik = 0. We obtain a contradiction. Therefore
A = Ij1⊕....⊕Ijn

. Renumbering these ideals one may assume that A = I1⊕....⊕In

and 1 = e1+...+en. Since the sum is direct, ak = ekak for every ak ∈ Ik. Therefore
ek = e2

k and eiej = 0 for i �= j.
Conversely, let 1 = e1 + ... + en be a decomposition of the identity of a ring

A. The equality a = 1 · a = e1a + ... + ena gives a decomposition of the ring
A into a sum of ideals e1A, ..., enA. We shall show that this sum is direct. If
a ∈ eiA ∩

∑
j �=i

ejA, then a = eiai =
∑
j �=i

ejaj . Multiplying the last equality on the

left side by ei we obtain a = eia = e2
i ai =

∑
j �=i

eiejaj = 0, i.e., a = 0. From theorem

1.4.2 it follows that we have a decomposition of the ring A into a direct sum of
ideals eiA.

The proposition is proved.

We shall denote by HomA(M,N) the set of all homomorphisms from an A-
module M to an A-module N . If M = N , then this set is denoted by EndA(M)
and the elements of EndA(M) are called endomorphisms of the module M . In
this case we can define operations of addition and multiplication in the usual way:

(α + β)m = αm + βm,

(αβ)m = α(βm)

for any α, β ∈ EndA(M) and m ∈ M .
The set of all endomorphisms of the module M forms a ring with respect to

these operations. This ring is called the endomorphism ring of the module M .
The invertible elements of this ring are the automorphisms of M .

An important role in the structural theory of rings is played by the circumstance
that a ring may be considered as a module over itself and the fact that A �
EndA(A), as will be proved below.

Theorem 2.1.2. Let e and f be idempotents of a ring A. Then there is an
isomorphism between the additive groups HomA(eA, fA) and fAe. If f = e, then
EndA(eA) is a ring which isomorphic to eAe. In particular, A � EndA(A).

Proof. If ψ ∈ HomA(eA, fA), then for some a ∈ A we have ψ(e) = fa. Since
ψ is a homomorphism of modules, ψ(e) = ψ(e2) = ψ(e)e = fae ∈ fAe. Therefore
we can define the map θ : HomA(eA, fA) → fAe by the formula θ(ψ) = ψ(e).
From the above it follows that θ(ψ) = fae ∈ fAe. It is easy to verify that θ
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is a homomorphism of groups. We shall show that it is an isomorphism. Let
θ(ψ) = 0. Then ψ(ea1) = ψ(e)a1 = 0 for any a1 ∈ A. Hence ψ = 0, i.e.,
θ is a monomorphism. For any fae ∈ fAe we can construct a homomorphism
ψ ∈ HomA(eA, fA) by setting ψ(e) = fa and a homomorphism θ by setting
θ(ψ) = fae. So θ is an epimorphism and therefore θ is an isomorphism.

Taking f = e we have a group isomorphism θ : EndA(eA) → eAe. We are going
to show that θ preserves multiplication. Let ψ, ψ1 ∈ EndA(eA) and ψ(e) = ea,
ψ1(e) = ea1. Then θ(ψ) = ea and θ(ψ1) = ea1. Since ψψ1(e) = ψ(ea1) = ψ(e)a1 =
ψ(e2)a1 = ψ(e)ea1 = eaea1, we have θ(ψψ1) = ψψ1(e) = eaea1 = θ(ψ)θ(ψ1), as
desired.

Taking e = 1 we obtain EndA(A) � A.

Let 1 = e1 + ... + en be a decomposition of the identity of a ring A and
let A = e1A ⊕ ... ⊕ enA be a corresponding decomposition of the ring A into
a direct sum of right ideals. For any element a ∈ A we get a = 1 · a · 1 =

(e1 + ... + en)a(e1 + ... + en) =
n∑

i,j=1

eiaej . It is not difficult to verify that such a

decomposition defines a decomposition of the ring A into a direct sum of Abelian
groups eiAej (i, j = 1, 2, ..., n):

A =
n
⊕

i,j=1
eiAej .

Elements of Aij = eiAej will be denoted by aij . It is convenient to write any
element a ∈ A as a matrix

a =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann


 ,

where aij = eiaej ∈ Aij . So the ring A can be represented as a matrix ring

A =




A11 A12 . . . A1n

A21 A22 . . . A2n
...

...
. . .

...
An1 An2 . . . Ann




with the usual operations of addition and multiplication. This decomposition is
called the two-sided Peirce decomposition, or simply the Peirce decompo-
sition of the ring A. Note that, in view of theorem 2.1.2, the elements of eiAej

are naturally identified with homomorphisms from ejA to eiA.

Proposition 2.1.3. Let M = M1 ⊕ ... ⊕ Mn be a decomposition of an A-
module M into a direct sum of mutually isomorphic submodules M1 � M2 � ... �
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Mn. Then the ring of endomorphisms of the module M is isomorphic to the ring
Mn(EndA(M1)) of all square matrices of order n with entries in EndA(M1).

Proof. The projection πi of the module M onto the i-th direct summand Mi is,
obviously, an idempotent of the ring EndA(M), and moreover for 1 ∈ EndA(M)
we have the decomposition 1 = π1 + ...+πn. Consider the corresponding two-sided
Peirce decomposition of the ring EndA(M):

EndA(M) =
n
⊕

i,j=1
πiEndA(M)πj .

In accordance with this decomposition any element ϕ ∈ EndA(M) has the form

ϕ =




ϕ11 ϕ12 . . . ϕ1n

ϕ21 ϕ22 . . . ϕ2n
...

...
. . .

...
ϕn1 ϕn2 . . . ϕnn


 ,

where ϕij = πiϕπj . The elements ϕij are naturally considered as homomorphisms
of the module Mj to the module Mi. Let us fix isomorphisms µi : M1 −→ Mi

and assign to the matrix ϕ = (ϕij) the matrix ϕ̂ = (µ−1
i ϕijµi) ∈ Mn(EndA(M1)).

Clearly, this map yields an isomorphism between the rings EndA(M) and
Mn(EndA(M1)).

2.2 THE WEDDERBURN-ARTIN THEOREM

In this section we shall study a most important class of rings which are called
semisimple. Historically the first full classification of rings was obtained for
semisimple rings. We shall prove the fundamental Wedderburn-Artin theorem
which gives the complete description of these rings and which is one of the earliest
classification theorems in noncommutative ring theory.

The following two definitions are fundamental in the theory of modules.

Definition. A nonzero module M is called simple (or irreducible) if it
has exactly two submodules (the two trivial submodules M and the zero mod-
ule). A module M is called semisimple (or completely reducible) if it can be
decomposed into a direct sum of simple modules.

A ring A is called a right ( resp. left) semisimple if it is semisimple as a right
(resp. left) module over itself. Since A has an identity and any right submodule of
A is just a right ideal, A is right semisimple if A is a direct sum of a finite number
of simple right ideals.

The proof of the Wedderburn-Artin theorem is based on the following funda-
mental result which is known as Schur’s lemma.
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Proposition 2.2.1 (Schur’s lemma). Any nonzero homomorphism between
simple modules is an isomorphism. In particular, the endomorphism ring of a
simple module is a division ring.

Proof. Let f : U → V be a homomorphism from a simple module U to a simple
module V . Since Kerf and Imf are submodules of U and V , respectively, f �= 0
implies Kerf �= U and Imf �= 0. Since U and V are simple modules, Kerf = 0
and Imf = V , i.e., f is both a monomorphism and an epimorphism, hence f is
an isomorphism.

Theorem 2.2.2 (Wedderburn-Artin). The following conditions are equiv-
alent for a ring A:

(a) A is right semisimple;
(b) A is isomorphic to a direct sum of a finite number of full matrix rings over

division rings;
(c) A is left semisimple.

Proof.
(a) ⇒ (b). By definition, a ring A as the regular right A-module decomposes

into a finite direct sum of simple right modules. Grouping isomorphic modules
together we can consider that the decomposition has the form A = Pn1

1 ⊕ ...⊕Pns
s ,

where the modules P1, ..., Ps are mutually nonisomorphic simple right A-modules.
Let 1 = f1 + ... + fs be a decomposition of the identity of the ring A such that
fiA = Pni

i (i = 1, 2, ..., s). By Schur’s lemma (taking into account theorem 2.1.2)
fiAfj = 0 for i �= j and fiAfi are rings for i, j = 1, 2, ..., s. Therefore the ring
A decomposes into a direct sum of rings fiAfi � Pni

i (i = 1, .., s). In view of
theorem 2.1.2 and proposition 2.1.3, fiAfi � Mni

(EndA(Pi)). Since by Schur’s
lemma EndA(Pi) is a division ring, implication (a) ⇒ (b) is proved.

In a similar way implication (c) ⇒ (b) can be proved.
(b) ⇒ (a). To prove this implication it suffices to show that A = Mn(D), where

D is a division ring, is a right semisimple ring. Denote by eij the matrix units
of the full matrix ring Mn(D) (see example 1.1.10). Obviously, A = ⊕n

i=1eiiA.
We shall show that the right ideal eiiA is a simple A-module. Denote, for short,
eiiA = V . Let U be a nonzero A-submodule of V , a ∈ U and a �= 0,

a =




0 0 . . . 0
...

...
. . .

...
α1 α2 . . . αn
...

...
. . .

...
0 0 . . . 0




=
n∑

k=1

eikαk, where αk ∈ D.

Since a �= 0, there exists an index m such that αm �= 0.

Then aα−1
m emm = eim and any element b =

n∑
k=1

eikβk ∈ V , where βk ∈ D, can
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be written in the form b =
n∑

k=1

eikβk =
n∑

k=1

eimemkβk = aα−1
m emm

n∑
k=1

emkβk, i.e.,

b belongs to the ideal generated by the element a ∈ U . Therefore V ⊂ U , and
hence we obtain that V = U , i.e., V is a simple A-module and the ring Mn(D) is
semisimple.

We can also note that all modules eiiA (i = 1, ..., n) are mutually isomorphic.
Indeed, the multiplication on the left by the element eij of the elements of the
module ejjA gives a nonzero homomorphism of the module ejjA to the module
eiiA, which is an isomorphism by Schur’s lemma.

(b) ⇒ (c). The ring A = Mn(D) decomposes into a direct sum of left ideals

Aeii : A =
n
⊕

i=1
Aeii. Just in the same way as in the proof of the implication

(b) ⇒ (a) it can be shown that all left modules Aeii (i = 1, ..., n) are simple and
mutually isomorphic.

The theorem is proved.

In view of this theorem, we shall say that A is a semisimple ring if the
equivalent conditions of theorem 2.2.2 are satisfied.

Definition. A ring is called simple if it has no two-sided ideals different from
zero and the ring itself.

Proposition 2.2.3. The ring Mn(D), where D is a division ring, is simple.

Proof. Let I be a nonzero two-sided ideal of A and let m = (mij) be a
nonzero element of I. Suppose that mkl �= 0, then for every i = 1, 2, ..., n we have
eikmklekl = eikeklmkl = eilmkl �= 0. Therefore eikm �= 0. Since eikm ∈ I ∩ eiiA,
we have I ∩ eiiA �= 0 for any i. Taking into account that eiiA is simple and
I ∩ eiiA ⊂ eiiA, I ∩ eiiA ⊂ I we obtain I ∩ eiiA = eiiA ⊂ I for any i. Therefore

A =
n∑

i=1

eiiA ⊂ I, i.e., A = I, as required.

Proposition 2.2.4. The following conditions are equivalent for an A-module
M :

(a) M is a sum of some family of simple submodules;
(b) M is a semisimple module;
(c) any submodule N of M is a direct summand in M , i.e., there exists a

submodule N ′ ⊂ M such that M = N ⊕ N ′.
Moreover, any submodule and any quotient module of a semisimple module is

semisimple.

Proof.
(a) ⇒ (b). Let M =

∑
i∈I

Mi be a sum of simple submodules. Then there exists

an index subset J ⊂ I such that M =
∑
j∈J

Mj is a direct sum of submodules.
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Indeed, let J be a maximal subset in I such that
∑
j∈J

Mj is a direct sum. Since Mi

is a simple module, the intersection of
∑
j∈J

Mj with Mi is either equal to zero or

coincides with Mi. Hence, we may conclude that either Mi ⊂
∑
j∈J

Mj or the sum
∑
j∈J

Mj + Mi is a direct one, and the last contradicts the maximality of the set J .

(b) ⇒ (c). Suppose N is a submodule of a module M and J is a maximal index
subset in I such that the sum N +

∑
j∈J

Mj is direct. The same arguments as above

show that N +
∑
j∈J

Mj = M .

(c) ⇒ (a). We shall show that any nonzero submodule N of an A-module
M contains a simple submodule. Let n ∈ N and n �= 0. The kernel of the
homomorphism A → nA, for which a �→ na, is a right ideal X in the ring A. Since
X �= A, by proposition 1.1.3, there exists a maximal right ideal Y of A such that
X ⊂ Y . Then Y/X is a maximal submodule in A/X. Therefore nY is a maximal
submodule in nA. Then, by assumption, there exists a submodule M ′ of M such
that M = nY ⊕M ′. Let na ∈ nA, then na = ny +m′, where m′ ∈ M ′. This gives
a direct decomposition nA = nY ⊕ (M ′ ∩ nA) because m′ ∈ nA. Since nY is a
maximal submodule in nA, M ′ ∩ nA is a simple submodule in N .

Let M0 be the sum of all simple submodules of the module M . If M0 �= M ,
then, by assumption, M = M0 ⊕ M1 where M1 �= 0. As we have shown above
the submodule M1 contains a simple submodule, that contradicts the definition of
M0. So M is a sum of simple submodules.

Let N be a submodule of M and let N0 be the sum of all simple submodules
of N . By assumption M = N0 ⊕ M1. Any element n ∈ N can be unique written
as n = n0 + m1, where n0 ∈ N0 and m1 ∈ M1. Since m1 ∈ N , we obtain
N = N0 ⊕ (N ∩ M1). The submodule N ∩ M1 = 0; otherwise it contains a simple
submodule, that contradicts the definition of the module N0. Therefore N = N0.

The quotient module M/N is, obviously, isomorphic to a semisimple submodule
N ′ of the decomposition M = N ⊕ N ′. The proposition is proved.

Definition. A nonzero right ideal I of a ring A is called minimal if I contains
no other nonzero right ideal. In particular, I is minimal if and only if IA is a simple
right A-module.

Theorem 2.2.5. The following conditions are equivalent for a ring A:
(a) A is right semisimple;
(b) A is left semisimple;
(c) any right A-module M is semisimple;
(d) any left A-module M is semisimple.

Proof.
(a) ⇒ (c). Let M = MA be a right A-module. Since AA is a semisimple right
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A-module, A is a direct sum of minimal right ideals Ai (i ∈ I). The module M
can be written as the following sum: M =

∑
m∈M

mA =
∑

m∈M

∑
i∈I

mAi. For every

submodule mAi consider the homomorphism ϕ : Ai → mAi given by the formula
ϕ(ai) = mai. Since Ai is a minimal ideal, we conclude that either Im(ϕ) = mAi =
0 or Ker(ϕ) = 0. Hence mAi � Ai is a simple right module. Therefore M is a sum
of simple modules and from proposition 2.2.4 it follows that M is a semisimple
right A-module.

Analogously one can prove (b) ⇒ (d).
(c) ⇒ (a) and (d) ⇒ (b) are trivial.
(a) ⇔ (b) follows from the Wedderburn-Artin theorem.

Proposition 2.2.6. If A is a semisimple ring, then the full matrix ring Mn(A)
is semisimple as well.

Proof. We leave the proof of this statement as an exercise.

2.3 LATTICES. BOOLEAN ALGEBRAS AND RINGS

In this section we shall study certain partially ordered sets and their connection
with Boolean algebras and rings. Our main goal is to prove the fundamental Stone
theorem for finite Boolean algebras which yields their full description.

Recall the definition of a partially ordered set.

Definition. A set S is called partially ordered or, for short, a poset if it
is equipped with a relation ≤, which satisfies the following conditions:

P1. a ≤ a for any a ∈ S (reflexivity);
P2. a ≤ b, b ≤ c implies a ≤ c for any a, b, c ∈ S ( transitivity);
P3. a ≤ b, b ≤ a implies a = b for any a, b ∈ S (antisymmetry).
The relation ≤ is called a partial order.

Let b ≥ a mean a ≤ b. Then ≥ is also a partial order relation. In the theory of
partially ordered sets there exists a useful result which is known as the ”duality
principle”:

If in any theorem about partially ordered sets we replace the relation ≤ by the
relation ≥ we obtain a theorem which is true as well.

Let S be a poset and let T be a subset of S. An element a ∈ S is called an
upper bound (resp. lower bound) of T if t ≤ a (resp. a ≤ t) for all t ∈ T . In
general a set can have several upper bounds or it can have none at all.

An element a ∈ T is a greatest (resp. least) element of T if t ≤ a (resp.
a ≤ t) for all t ∈ T . Not every subset T of a poset S has a greatest (or least)
element. But if T has such an element then it is unique. Indeed, let x and y be
greatest elements of T . Then x ≤ y and y ≤ x. Hence from property P3 it follows
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that x = y. The uniqueness of a least element of T can be proved analogously. So
the greatest (resp. least) element, if it does exist, is unique and is an upper (resp.
lower) bound for T . If the set of upper bounds of T has a least element, then it
is called the least upper bound ( or supremum) of T and denoted by sup(T ).
If the set of lower bounds has a greatest element, it is called the greatest lower
bound (or infimum) of T and denoted by inf(T ). It is obvious that if a subset
T has a supremum (resp. infimum), then it is uniquely determined.

Definition. A poset S, whose every pair of elements has both a supremum
and an infimum in S, is said to be a lattice.

Example 2.3.1.
If X and Y are subsets in S, then their supremum in P(S) is equal to the union

X ∪ Y and their infimum in P(X) is the intersection X ∩ Y . Therefore P(X) is a
lattice.

Example 2.3.2.
Let A be a ring and X be the set of all ideals of the ring A ordered by inclusion.

Let I and J be ideals in A. Then their supremum in X is the sum I + J and
their infimum in X is the intersection I ∩ J . Therefore X is a lattice.

The operations sup and inf are not really binary operations for arbitrary
posets. But this is true for a lattice.

Let S be a lattice. Then each pair a, b ∈ S has both a supremum and an
infimum. Let us denote

a ∨ b = sup{a, b} and a ∧ b = inf{a, b} (2.3.1)

Then the maps ∨ and ∧ from S × S to S defined by

(a, b) �→ a ∨ b and (a, b) �→ a ∧ b

are binary operations on S.
The following proposition gives several interesting properties of these opera-

tions.

Proposition 2.3.1. Let S be a lattice with operations ∨ and ∧ defined by
(2.3.1). Then for all a, b, c ∈ S the following properties hold:

1) commutative laws: a ∨ b = b ∨ a; a ∧ b = b ∧ a;
2) associative laws: a ∨ (b ∨ c) = (a ∨ b) ∨ c; a ∧ (b ∧ c) = (a ∧ b) ∧ c;
3) idempotent laws: a ∨ a = a; a ∧ a = a;
4) absorption laws: a ∨ (a ∧ b) = a; a ∧ (a ∨ b) = a.

Proof. We shall prove the last of these laws; the proofs of the others are left as
exercises.

Proof that a ∨ (a ∧ b) = a: Since the partial ordering relation is reflexive, we
must have a ≤ a. Also, since a ∧ b is one of the lower bounds for {a, b}, we have
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a∧ b ≤ a. These two relations show that the element a is one of the upper bounds
of the set {a, a ∧ b}. Evidently, if c is any upper bounds of {a, a ∧ b} then a ≤ c.
Thus, by definition, sup{a, a ∧ b} = a.

The following proposition shows that these properties actually characterize a
lattice.

Proposition 2.3.2. If we have a set S with two binary operations ∨ and ∧
such that for all elements a, b, c ∈ S there hold

(i) a ∨ b = b ∨ a; a ∧ b = b ∧ a;
(ii) a ∨ (b ∨ c) = (a ∨ b) ∨ c; a ∧ (b ∧ c) = (a ∧ b) ∧ c;
(iii) a ∨ a = a; a ∧ a = a;
(iv) a ∨ (a ∧ b) = a; a ∧ (a ∨ b) = a

then there is a unique partial ordering in S that makes S a lattice and such that the
given operations ”∨” and ”∧” are, respectively, the supremum and the infumum
in the lattice.

Proof. For proof it suffices to show that the relation ” ≤ ” defined by

a ≤ b ⇐⇒ a ∨ b = b

is a partial ordering relation. We leave this to the reader as a simple exercise.

So far, in this section we have considered only conditions, which are satisfied
by all lattices. There are several interesting conditions which are satisfied by some
lattices, but not by others.

Definition. A lattice S is distributive if it satisfies the following property:

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

for all a, b, c ∈ S.

Using the ”duality principle” it is easy to obtain a symmetric definition:

Proposition 2.3.3. A lattice S is distributive if and only if for all a, b, c ∈ S
it satisfies the following property:

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

The lattices of examples 2.3.1 and 2.3.2 are distributive.
A partially ordered set can or can not have greatest and least elements. The

same is true for a lattice. The real numbers with the usual ordering form a lattice
with neither a greatest nor a least element; the real numbers between zero and one
inclusive form a lattice with both a greatest and a least element. If a lattice has a
greatest and/or a least element we shall denote them as 1 and/or 0, respectively.
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As we have seen, the power set P(S) of subsets of a given set S forms a lattice
under inclusion as the ordering relation. The greatest element 1 of this lattice is
S itself, and the least element 0 is the empty set ∅. The familiar set operations of
union and intersection are the operations sup and inf on the power set. But there
is another set operation, complementation, which we have not yet had occasion to
use. The complement X of a subset X in S is defined to be the collection of all
elements of S that are not elements of X. It is easy to see that X ∪ X = S and
X ∩X = ∅. This familiar set operation of complementation suggests the following
definition.

Let S be a lattice with the greatest element 1 and the least element 0. An
element b ∈ S is a complement of the element a ∈ S if a ∨ b = 1 and a ∧ b = 0.

Definition. A lattice is said to be complemented if it has a greatest element
and a least element and each its element has at least one complement.

We have defined a lattice as a special type of a poset. A Boolean algebra is a
special type of a lattice.

Definition. A Boolean algebra is a complemented distributive lattice.

It is easy to show that each element of a Boolean algebra has precisely one
complement. Indeed, let b and c be complements of an element a. Then

b = b ∧ 1 = b ∧ (a ∨ c) = (b ∧ a) ∨ (b ∧ c) = 0 ∨ (b ∧ c) =

(a ∧ c) ∨ (b ∧ c) = (a ∨ b) ∧ c = 1 ∧ c = c.

We shall use a to denote the complement of an element a in a Boolean algebra.

Example 2.3.3.
The power set P(S) is a Boolean algebra.

Example 2.3.4.
Consider the set B = {0, 1} with the ordinary logical operations of disjunction

∨ and conjunction ∧ and operation of complementation 0 = 1 and 1 = 0. Obvi-
ously, in this case we can write a∨ b = max{a, b}, a∧ b = min{a, b} and a = 1− a
for any a, b ∈ B. Then B with these operations is a Boolean algebra.

Example 2.3.5.
Consider a finite direct product Bn = B × ... × B which is the set of n-tuples

(b1, b2, ..., bn), where bi ∈ B. Let (a1, a2, ..., an) and (b1, b2, ..., bn) be elements in
Bn. Introduce the following ”coordinate wise” operations in Bn:

(a1, a2, ..., an) ∨ (b1, b2, ..., bn) = (a1 ∨ b1, a2 ∨ b2, ..., an ∨ bn)

(a1, a2, ..., an) ∧ (b1, b2, ..., bn) = (a1 ∧ b1, a2 ∧ b2, ..., an ∧ bn)



DECOMPOSITION OF RINGS 41

(a1, a2, ..., an) = (a1, a2, ..., an).

Then Bn is a Boolean algebra with greatest element 1 = (1, 1, ..., 1) and least
element 0 = (0, ..., 0). The number of all elements in Bn is equal to 2n.

The following proposition shows that the operations in a lattice have properties
analogous to set operations.

Proposition 2.3.4. In any Boolean algebra the operation of complementation
satisfies the following properties:1)

(a) a = a
(b) a ∨ b = a ∧ b
(c) a ∧ b = a ∨ b

(d) a ∨ b = a ∧ b

(c) a ∧ b = a ∨ b
(d) 1 = 0
(e) 0 = 1

We shall prove only property (b); the remainder of the proof is left to the
reader as an exercise. Since complements are unique in a Boolean algebra, any
element x which satisfies the properties (a∨ b)∨x = 1 and (a∨ b)∧x = 0 must be
the complement of a ∨ b. It remains only to verify this for the element x = a ∧ b.
We have

(a ∨ b) ∨ (a ∧ b) = [(a ∨ b) ∨ a] ∧ [(a ∨ b) ∨ b] = 1 ∧ 1 = 1

and
(a ∨ b) ∧ (a ∧ b) = [(a ∧ b) ∧ a] ∨ [(a ∧ b) ∧ b] = 0 ∨ 0 = 0.

In proposition 2.3.2 a characterization of a lattice was given in terms of two
binary operations. It is not difficult to prove the following proposition that gives
a similar characterization of a Boolean algebra.

Proposition 2.3.5. If we have a set S containing two special elements 1 and
0 with two binary operations ∨ and ∧ such that for all elements a, b, c ∈ S there
hold:

(i) a ∨ b = b ∨ a; a ∧ b = b ∧ a;
(ii) a ∨ (b ∨ c) = (a ∨ b) ∨ c; a ∧ (b ∧ c) = (a ∧ b) ∧ c;
(iii) a ∨ a = a; a ∧ a = a;
(iv) a ∨ (a ∧ b) = a; a ∧ (a ∨ b) = a;
(v) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c);
(vi) for any element a ∈ S there exists an element a ∈ S such that a ∨ a = 1

and a ∧ a = 0,
1) In the case of the Boolean algebra P(S) of subsets of a set (and also more generally) these

rules (properties) are known as the ”de Morgan laws”. (More strictly (b) and (c) are the de
Morgan laws.)
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then there is a unique partial ordering relation in S which makes S a Boolean
algebra and such that the given operations ∨ and ∧ are the supremum and the
infimum, respectively, in the Boolean algebra. Moreover, 1 and 0 are the greatest
and the least elements of S, respectively, and a is the complement of a.

Proof. By proposition 2.3.2, the conditions (i) through (iv) in proposition 2.3.5
imply that there is a unique partial ordering relation in S which makes S a lattice.
Conditions (v) states that this lattice is distributive.

For any element a of S we have

a ∨ 1 = a ∨ (a ∨ a) = (a ∨ a) ∨ a = a ∨ a = 1

and
a ∧ 0 = a ∧ (a ∧ a) = (a ∧ a) ∧ a = a ∧ a = 0,

thus 1 and 0 are, respectively, the greatest and the least elements of the lattice.
Condition (vi) now states that the lattice is complemented and that a is the
complement of a.

Lemma 2.3.6. In any Boolean algebra B the condition a ∨ b = a holds if and
only if a ∧ b = b.

Proof. If a ∨ b = b then a = (a ∨ b) ∧ a = b ∧ a = a ∧ b. The inverse statement
follows from the ”duality principle”.

From this lemma it follows that in any Boolean algebra we have

a ≤ b ⇔ a ∨ b = b ⇔ a ∧ b = a (2.3.2)

Lemma 2.3.7. In any Boolean algebra B there hold:
1. a ∧ b ≤ a ≤ a ∨ b
2. 0 ≤ a ≤ 1
for any a, b ∈ B.

Proof.
1. By the absorption law we have (a∧b)∨a = a. Hence, a∧b ≤ a. Analogously,

we obtain (a ∨ b) ∧ a = a and from lemma 2.3.6 it follows that a ≤ a ∨ b.
2. This follows from the facts that a ∨ 0 = a and a ∧ 1 = a.

We have seen that the power set P(S) for a given finite set S forms a finite
Boolean algebra. Actually, every finite Boolean algebra is isomorphic to a Boolean
algebra of sets with the partial ordering relation being set inclusion, and it can
always be arranged that each of these sets is a subset of some particular finite set
S. We are going to prove this result.

Definition. An element a �= 0 of a Boolean algebra is called an atom if it
cannot be expressed in the form a = b ∨ c with a �= b and a �= c.
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It is well known that any natural number can be factorized into a product of
prime numbers and this factorization is unique. We shall show that a similar fact
holds in any Boolean algebra, that is, any nonzero element of a finite Boolean
algebra can be expressed as a sum of different atoms.

Example 2.3.6.
An atom in the algebra P(S) is any one-element set {s}, where s ∈ S. Any set

A = {a1, a2, ..., am} ∈ P(S) can be written as A = {a1} ∪ {a2} ∪ ... ∪ {am}.

Example 2.3.7.
The Boolean algebra B has a unique atom which is equal to 1.

Example 2.3.8.
The Boolean algebra Bn has n atoms. They are of the form

ei = (0, ..., 0, 1, 0, ...0)

with 1 at the i-th position and 0 elsewhere. Any nonzero element b =
(b1, b2, ..., bn) ∈ Bn can be written as b = ei1 ∨ ei2 ∨ ... ∨ eik

where bij
= 1

for j = 1, ..., k and bij
= 0 for other ij .

Lemma 2.3.8. A nonzero element a of a Boolean algebra B is an atom if and
only if the inequality x ≤ a has exactly two solutions x = a and x = 0.

Proof. Let a nonzero element a ∈ B be an atom, and suppose x ≤ a, where
a �= 0. Assume x �= 0 and x �= a. Then we have a = a ∧ 1 = (x ∨ a) ∧ (x ∨ x) =
x ∨ (a ∧ x). Since a is an atom, it follows that either x or (a ∧ x) must be equal
to a. But by hypothesis x �= a, therefore a ∧ x = a. In this case, by lemma 2.3.6,
x = a ∧ x = (a ∧ x) ∧ x = a ∧ (x ∧ x) = a ∧ 0 = 0.

Conversely, if a is not an atom then a = x ∨ y for some x, y ∈ B and x �= a,
y �= a. Since, by lemma 2.3.6, x ≤ x ∨ y = a, it follows that x ≤ a and x �= a. At
the same time x �= 0. Otherwise we have a = 0 ∨ y = y �= a.

Lemma 2.3.9. For any nonzero element b of a finite Boolean algebra B there
exists at least one atom a ∈ B such that a ≤ b.

Proof. Let b be an element of a Boolean algebra B and b �= 0. If b is an atom,
the proposition is proved. If b is not an atom, By lemma 2.3.8, there are at least
three solutions for x ≤ b. Let c be any solution of this inequality different from
0 and b. If c is an atom, the result is evident; if not, let d be a solution of x ≤ c
which different from 0 and c. Since B is finite, continuing this process in such a
way we must arrive at an atom after a finite number of steps.

Let B be a finite Boolean algebra with set of atoms A = {a1, ..., an}. For any
element x ∈ B we denote by T (x) the set of all atoms a ∈ A such that a ≤ x.
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Proposition 2.3.10. Any nonzero element x ∈ B can be written as a finite
sum of distinct atoms:

x = ai1 ∨ ai2 ∨ ... ∨ aik
(2.3.3)

where aij
∈ T (x) for j = 1, ..., k. Moreover, this factorization is unique up to the

order of its elements and T (x) = {ai1 , ai2 , ..., aik
}.

Proof. First we shall show that any nonzero element x ∈ B can be written in
the form (2.3.3). Suppose that this is not true and let S be the set of all nonzero
elements of B which cannot be written as a finite sum of atoms. Let x ∈ S. Since
x is not an atom, it can be written as x = y ∨ z, where y ≤ x, z ≤ x and y, z �= x,
y, z �= 0. Moreover, at least one element either y or z belongs to S. So, for any
element x ∈ S there exists at least one element y ∈ S such that y ≤ x and y �= x,
y �= 0. Then it follows that for any x ∈ S there exists an infinite chain of nonzero
elements x = x0 ≥ x1 ≥ x2 ≥ ... and xi �= xi+1 for any i. But this contradicts the
finiteness of the Boolean algebra B. So any element x ∈ B can be written in the
form (2.3.3).

We shall now show that any element x can be written in the form (2.3.3), where
all atoms aij ∈ T (x).

Since 1 ∈ B, it follows that 1 can be written in form (2.3.3). Since 1∨a = 1 for
any element a ∈ B, we may consider that in the decomposition of 1 into a finite
sum of atoms there appear all atoms of A, i.e.,

1 = a1 ∨ a2 ∨ ... ∨ an.

Then for any element x ∈ B we have

x = x ∧ 1 = x ∧ (a1 ∨ a2 ∨ ... ∨ an) = (x ∧ a1) ∨ ... ∨ (x ∧ an).

Since x ∧ ai ≤ ai and ai is an atom, from lemma 2.3.8 it follows that either
x ∧ ai = ai if ai ∈ T (x) or x ∧ ai = 0 otherwise. So we obtain the required
decomposition.

We are going to prove the uniqueness of this form. Let x = b1 ∨ ...∨ bk, where
bi ∈ A are atoms, i = 1, ..., k. Then bi ≤ x for all i and therefore {b1, b2, ..., bk} ⊆
T (x). On the other hand, if a ∈ T (x) and a �= 0 then

a = a ∧ x = a ∧ (b1 ∨ ... ∨ bk) = (a ∧ b1) ∨ ... ∨ (a ∧ bk).

Since a �= 0, there exists an index i such that a∧ bi �= 0. Since a and bi are atoms,
a = a∧ bi = bi, that is, T (x) ⊆ {b1, b2, ..., bk}. Therefore T (x) = {b1, b2, ..., bk}, as
required.

Lemma 2.3.11. For any Boolean algebra B and any elements x, y ∈ B there
hold:

(i) T (x ∨ y) = T (x) ∪ T (y)
(ii) T (x ∧ y) = T (x) ∩ T (y)
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(iii) T (x) = T (X)

Proof.
(i) Let a ∈ T (x ∨ y), i.e., a ≤ x ∨ y. Then from (2.3.2) it follows that

a = a ∧ (x ∨ y) = (a ∧ x) ∨ (a ∧ y).

Since a is an atom, a ∧ x = a or a ∧ y = a, and hence a ≤ x or a ≤ y, that
is, a ∈ T (x) or a ∈ T (y). From the definition of set addition it follows that
a ∈ T (x) ∪ T (y). Therefore, T (x ∨ y) ⊆ T (x) ∪ T (y).

Conversely, let a ∈ T (x) ∪ T (y), then a ∈ T (x) or a ∈ T (y), which implies
a ≤ x or a ≤ y. From (2.3.2) we have a ∧ x = a or a ∧ y = a. By the absorption
law we obtain

a = (a ∧ x) ∨ (a ∧ y) = a ∧ (x ∨ y).

Hence, a ≤ x ∨ y, i.e., a ∈ T (x ∨ y). Therefore, T (x) ∪ T (y) ⊆ T (x ∨ y).
So, T (x ∨ y) = T (x) ∪ T (y).
(ii) Let a ∈ T (x ∧ y), i.e., a ≤ x ∧ y. Then from (2.3.2) it follows that

a = a ∧ (x ∧ y) = (a ∧ x) ∧ y = (a ∧ y) ∧ x.

Hence, a ≤ y and a ≤ x, that is, a ∈ T (x)∩T (y). Therefore T (x∧y) ⊆ T (x)∩T (y).
Let a ∈ T (x) ∩ T (y), then a ≤ y and a ≤ x. Hence, a = a ∧ x and a = a ∧ y.

Therefore a = (a∧ x)∧ y = a∧ (x∧ y), that is, a ≤ x∧ y. Therefore a ∈ T (x∧ y).
So, T (x ∧ y) = T (x) ∩ T (y).

(iii) Finally, S = T (1) = T (x ∨ x) = T (x) ∪ T (x) and ∅ = T (0) = T (x ∧ x) =
T (x)∩T (x) and owing to the uniqueness of the complement we have T (x) = T (x).

Lemma 2.3.12. For any element x ∈ B, sup T (x) = x.

Proof. If x = 0, then the statement is obvious. If x �= 0, then, by lemma
2.3.10, T (x) �= ∅ and because it is a finite subset in B, it has a supremum. Let
supT (x) = y and assume y �= x. Since x is one of the upper bounds of T (x),
we have y ≤ x. Since y �= x, we have x �≤ y. Hence, by (2.3.2), it follows that
x �= x ∧ y. Let y be a complement of y, then we have

x = x ∧ 1 = x ∧ (y ∨ y) = (x ∧ y) ∨ (x ∧ y)

Since x �= x ∧ y, we obtain that x ∧ y �= 0. Then, by lemma 2.3.7, x ∧ y ≤
(x∧ y)∨ (x∧ y) = x. Since x∧ y �= 0, by lemma 2.3.9, there exists an atom a ∈ A
such that a ≤ x ∧ y. Therefore a ≤ x and a ≤ y. Hence, a ∈ T (x) and by the
definition of supremum a ≤ y. Thus, a ≤ y and at the same time a ≤ y. Then
we have a = a ∧ y and a = a ∧ y. Hence, a = (a ∧ y) ∧ y = 0. This contradiction
shows that y = x.

From the uniqueness of the supremum for any set we obtain the following
result.
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Corollary 2.3.13. T (x) = T (y) if and only if x = y.

To prove the main theorem of this section we introduce the notion of an iso-
morphism of Boolean algebras.

Definition. For two Boolean algebras B1 and B2 a bijective mapping ϕ of
B1 onto B2 is called an isomorphism of Boolean algebras if it satisfies the
following conditions:

(1) ϕ(x ∨ y) = ϕ(x) ∨ ϕ(y)
(2) ϕ(x ∧ y) = ϕ(x) ∧ ϕ(y)
(3) ϕ(x) = ϕ(x)
for all x, y ∈ B1.

Theorem 2.3.14. Any finite Boolean algebra B with set of atoms A =
{a1, a2, ..., an} of size n is isomorphic to the Boolean algebra P(A) of all subsets
of the given set A. In particular, B has 2n elements and the element 1 of B has a
unique decomposition into a sum of all distinct atoms

1 = a1 ∨ a2 ∨ ... ∨ an. (2.3.4)

Proof. Consider the map ϕ : B → P(A), where ϕ(x) = T (x) for any element
x ∈ B. By corollary 2.3.13 and proposition 2.3.10, this map is one-to-one and onto.
By lemma 2.3.11, it follows that ϕ is an isomorphism of Boolean algebras. The
uniqueness of decomposition 1 ∈ B in the form (2.3.4) follows from proposition
2.3.10.

Since the number of all subsets of the set A is equal to 2n, we have proved the
theorem.

Theorem 2.3.14 is a particular case of the famous Stone theorem of which the
proof can also be found in the book R.Sikorsky, Boolean algebras, Springer, 1964:

Theorem 2.3.15 (Stone’s theorem). Any Boolean algebra is isomorphic to
the Boolean algebra of some (not necessarily all) subsets of a given set.

The following example gives a Boolean algebra which is not isomorphic to a
Boolean algebra formed by collection of all subsets of any set with inclusion as the
ordering relation.

Example 2.3.9.
Let S be an infinite set, and let H be a set of all finite or cofinite subsets of S.

(Here a cofinite subset means a subset with finite complement.) Clearly, the set
H is a Boolean algebra with inclusion as the ordering relation. The cardinality
of H is strictly less than the cardinality of the power set P(S), so H cannot be
isomorphic to a Boolean algebra formed by collection of all subsets of any set.
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As a corollary of theorem 2.3.14 we have the following result which says that
any finite Boolean algebra is completely determined by the number of its atoms.

Theorem 2.3.16. If B1 and B2 are two finite Boolean algebras with the sets
of their atoms equal to A1 = {a1, ..., an} and A2 = {b1, ..., bn}, respectively, then
there exists an isomorphism of Boolean algebras ϕ : B1 → B2 such that ϕ(ai) = bi

for i = 1, ..., n.

Consider the Boolean algebra Bn. It also has exactly n atoms and has 2n

elements. On the other hand, Bn is a finite direct product of n copies of the
simple Boolean algebra B. So we have also the following corollary.

Corollary 2.3.17. Any finite Boolean algebra B, having n atoms, is isomor-
phic to the Boolean algebra Bn, which is a finite product of n copies of the simple
Boolean algebra B.

Definition. An associative ring R (maybe without identity) is called a
Boolean ring if each its element a ∈ R is an idempotent, i.e., a2 = a.

Proposition 2.3.18.
1. Every Boolean ring R is commutative and a + a = 0 for any a ∈ R.
2. If R is a Boolean ring then the direct sum T = ⊕

i∈I
R of copies of R is a

Boolean ring as well.

Proof.
1. First, for any element a ∈ R we have

a + a = (a + a)2 = a2 + a2 + a2 + a2 = a + a + a + a

and hence a + a = 0.
On the other hand,

a + b = (a + b)2 = a2 + ab + ba + b2 = a + b + ab + ba

and hence ab + ba = 0. Then

ab = ab + (ba + ba) = (ab + ba) + ba = ba

2. Let a = (a1, a2, ..., ak) ∈ T . Then a2 = aa = (a2
1, a

2
2, ..., a

2
k) =

(a1, a2, ..., ak) = a.

We shall prove that in any Boolean ring R with identity it is possible to define
a partial ordering relation so that R becomes a Boolean algebra. Conversely, in
any Boolean algebra B it is possible to define two binary operations so that B
becomes a Boolean ring with identity.
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Proposition 2.3.19. Let B be a Boolean algebra. Then B becomes a Boolean
ring with identity if the binary operations of addition and multiplication are defined
on B by follows

a + b = (a ∧ b) ∨ (a ∧ b)

and
a · b = a ∧ b.

Proof. The proof of this proposition consists of simply checking all axioms of
a ring and we leave this to the reader as an exercise.

Proposition 2.3.20. Let R be a Boolean ring with identity. Then R becomes
a Boolean algebra if we set

a ∨ b = a + b + ab

a ∧ b = ab

and the ordering relation ” ≤ ” is defined in R by

a ≤ b ⇐⇒ ab = a.

Proof. It is evident that ” ≤ ” is a relation on R. To prove that ” ≤ ” is an
ordering relation, note that aa = a for any a ∈ R, that is, a ≤ a and thus ” ≤ ”
is reflexive. If a ≤ b and b ≤ a, then a = ab = ba = b, so ” ≤ ” is antisymmetric.
If a ≤ b and b ≤ c, then ac = (ab)c = a(bc) = ab = a. Thus, ” ≤ ” is transitive.
Therefore R is a partially ordered set.

To show that R is a lattice it suffices to prove that sup{a, b} = a + b + ab and
inf{a, b} = ab. Since aa = a, bb = b and ab + ab = 0, we have a(a + b + ab) = a.
Similarly, b(a + b + ab) = b. Hence, a ≤ a + b + ab and b ≤ a + b + ab; that is,
a + b + ab is an upper bound for {a, b}. If c is another upper bound for {a, b},
then ac = a and bc = b, thus (a + b + ab)c = ac + bc + abc = a + b + ab so that
a + b + ab ≤ c, proving that a + b + ab = sup{a, b}. The proof that inf{a, b} = ab
is similar.

It is easy to see that 1 and 0 are, respectively, the greatest and least element
in R. Moreover, 1 + a is a complement of a since a ∧ (1 + a) = a(1 + a) = 0 and
a ∨ (1 + a) = a + (1 + a) + a(1 + a) = 1.

The proof of distributivity of this lattice is left to the reader. Since R is a
complemented, distributive lattice, it is a Boolean algebra.

Since the Boolean algebra B is a simple ring, from corollary 2.3.17 we obtain
the following statement.

Theorem 2.3.21. Any finite Boolean ring R with identity is isomorphic to a
direct sum of simple Boolean rings.
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We conclude this section by considering other important types of posets and
their properties.

Definition. A poset S, in which every subset of S has both supremum and
infimum in S, is said to be a complete lattice.

Proposition 2.3.22. A partially ordered set S is a complete lattice if and only
if S has a supremum and every nonempty subset of S has an infimum in S.

Proof. It will suffice to prove that if X ⊆ S then X has a supremum in S. Let
a ∈ S be the greatest element of S. Then x ≤ a for all x ∈ S. In particular, the
set of upper bounds of X is not empty, so it has the infimum. It is clear that this
infimum is an upper bound of X and, hence, the supremum of X.

Definition. A lattice S is said to be modular if it satisfies the modularity
condition:

if b ≤ a then a ∧ (b ∨ c) = b ∨ (a ∧ c) (2.3.5)

for all a, b, c ∈ S.

Example 2.3.10.
If A is a subset in P(X) (that is, a set of subsets in X), then its supremum

in P(X) is the union ∪
Y ⊂X

Y and its infimum in P(X) is the intersection ∩
Y ⊂X

Y .

Therefore P(X) is a complete lattice. Moreover, it is modular.

Example 2.3.11.
Let A be a ring and X be a set of all ideals of a ring A. Let Y = {Ii : i ∈ I}

be a subset of X. We define supremum in X as the sum
∑
i∈I

Ii and infimum in

X as the intersection ∩
i∈I

Ii. Then X is a complete lattice. Moreover, by theorem

1.3.6, it is modular. Thus, we obtain the following result.

Proposition 2.3.23. The ideals in a ring form a complete modular lattice
with respect to ideal inclusion.

For ideals in a semisimple ring we can say much more. Actually, the following
theorem is a corollary of the Wedderburn-Artin theorem and theorem 2.3.14.

Theorem 2.3.24. The ideals in a semisimple ring A form a finite Boolean
algebra consisting of 2s elements.

Proof. From the Wedderburn-Artin theorem it follows that a semisimple ring
A is isomorphic to a direct sum of s full matrix rings over some division rings:

A = Mn1(D1) × Mn2(D2) × ... × Mns
(Ds). (2.3.6)
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Then any two-sided ideal I in A can be decomposed into a direct sum of ideals

I = I1 × I2 × ... × Is (2.3.7)

where every ideal Ik is a two-sided ideal in Mnk
(Dk). Since Mnk

(Dk) is a simple
ring, it follows that either Ik = 0 or Ik = Mnk

(Dk). Denote by S the set of
all two-sided ideals in the ring A. Then, by proposition 2.3.23, S is a complete
lattice. Consider the map ϕ of the set S to the Boolean algebra Bs by setting
ϕ(I) = (α1, α2, ...., αs), where αk = 1 if Ik = Mnk

(Dk) and αk = 0 if Ik = 0 in
decomposition (2.3.7) of the ideal I. Then it is easy to verify that this map is an
isomorphism of Boolean algebras.

2.4 FINITELY DECOMPOSABLE RINGS

We shall begin this section with a more careful study of the general properties
of idempotents which play such a central role in the structural theory of rings
and modules. Recall that an element e of a ring A is called an idempotent if
e2 = e. Any ring has always the two idempotents 0 and 1 which are called trivial
idempotents. Two idempotents e2 = e and f2 = f are called orthogonal if
ef = fe = 0. Let 1 = e1 + e2 + ... + en be a decomposition of the identity of a
ring A, i.e., e1, ..., en are pairwise orthogonal idempotents. The following theorem
establishes a connection between decompositions of an A-module M into a direct
sum of submodules and decompositions of the identity of the endomorphism ring
EndA(M) of M .

Theorem 2.4.1. There is a bijective correspondence between decompositions
of an A-module M into a direct sum of submodules and decompositions of the
identity of the ring E = EndA(M).

Proof. Let M = M1 ⊕ M2 ⊕ ... ⊕ Mn be a decomposition of an A-module M
into a direct sum of submodules. This means that every element m ∈ M can
be uniquely written in the form m = m1 + m2 + ... + mn, where mi ∈ Mi for
i = 1, ..., n. Let ei ∈ E be the natural projection from M to Mi, i.e., eim = mi

for i = 1, ..., n. Then m = e1m + e2m + ... + enm = (e1 + e2 + ... + en)m for
every m ∈ M . Hence, e1 + e2 + ... + en = 1E is the identity of the ring E. Since
eim = mi, we have e2

i m = ei(eim) = eimi = mi = eim for any m ∈ M , i.e.,
e2
i = ei. On the other hand, if i �= j then ejmi = 0. Hence, for any m ∈ M

we have 0 = ejmi = ejeim, i.e., ejei = 0 for i �= j. Therefore the e1, ..., en are
pairwise orthogonal idempotents of the ring E and 1 = e1 + e2 + ... + en is a
decomposition of the identity of the ring E.

Conversely, let 1 = e1 + e2 + ... + en be a decomposition of the identity of the
ring E. Put Mi = eiM . We shall show that M = M1 ⊕ M2 ⊕ ... ⊕ Mn. Indeed,
for any element m ∈ M we have m = (e1 + e2 + ... + en)m = e1m + e2m + ... +
enm = m1 + m2 + ... + mn, where mi ∈ Mi, that is, M = M1 + M2 + ... + Mn.
Let m ∈ Mi ∩ Mj for i �= j. Then m = eix and m = ejy. Since e2

i = ei,
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e2
j = ej and eiej = 0, we have eim = e2

i x = eix = m and analogously ejm = m.
Therefore m = eim = eiejm = 0, i.e., Mi ∩ Mj = 0. From 1.4.3 it follows that
M = M1 ⊕ M2 ⊕ ... ⊕ Mn.

The following statement is immediate from theorems 2.1.2 and 2.4.1.

Corollary 2.4.2. There is a bijective correspondence between decomposi-
tions of an A-module M and decompositions of the regular module over the ring
EndA(M).

Definition. An idempotent e ∈ A is said to be primitive if e has no
decomposition into a sum of nonzero orthogonal idempotents e = e1 + e2 in A.

Lemma 2.4.3. Let M be a nonzero A-module. Then the following statements
are equivalent:

1. M is indecomposable.
2. EndA(M) has no nontrivial idempotents.
3. 1 is a primitive idempotent in EndA(M).

Proof. This lemma is immediate from theorem 2.4.1 taking into account that
if e is a nontrivial idempotent in EndA(M), then e and f = 1 − e are orthogonal
idempotents, and 1 = e + (1 − e) is a decomposition of the identity of the ring
EndA(M).

The following proposition gives another characterization of a primitive idem-
potent.

Proposition 2.4.4. For any nonzero idempotent e ∈ A the following condi-
tions are equivalent:

1. eA is indecomposable as a right A-module.
2. Ae is indecomposable as a left A-module.
3. The ring eAe has no nontrivial idempotents.
4. The idempotent e is primitive.

Proof.
The equivalences 1 ⇐⇒ 3 and 2 ⇐⇒ 3 follow from the previous lemma taking

into account theorem 2.1.2.
3 ⇐⇒ 4. Assume e = e1 + e2, where e1, e2 are nonzero orthogonal idempotents

in A. Then e = e1 + (e − e1) is a decomposition of the identity of the ring eAe.
Applying lemma 2.4.3 we end the proof of the statement.

Recall that an idempotent e of a ring A is called central if ea = ae for any
element a ∈ A, i.e., e ∈ Cen(A).

Lemma 2.4.5. An idempotent e ∈ A is central if and only if eAf = fAe = 0,
where f = 1 − e ∈ A.
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Proof. Let a ∈ A and eaf = fae = 0, then ea = ea(e + f) = eae = (e +
f)ae = ae, i.e., e ∈ Cen(A). Conversely, from ef = fe = 0 it follows that
eaf = efa = fea = fae = 0 for any a ∈ A.

Let S be the set of all central idempotents of a ring A. Define an addition ⊕
on S by e ⊕ f = e + f − ef and define a multiplication × on S by the operation
of multiplication in A: e× f = ef . One can show that B = (S,⊕,×) is a Boolean
algebra.

Proposition 2.4.6. The set of all central idempotents of a ring A forms a
Boolean algebra B(A).

Proof.
1. Obviously, e ⊕ f = f ⊕ e.
2. e ⊕ (f ⊕ g) = e ⊕ (f + g − fg) = e + f + g − fg − ef − eg + efg and

(e ⊕ f) ⊕ g = (e + f − ef) ⊕ g = e + f − ef + g − eg − fg + efg.
3. e ⊕ e = e + e − e2 = e
The operation × satisfies analogous conditions because it is the operation of

multiplication in the ring A.
4. e⊕ (e× f) = e⊕ ef = e + ef − e2f = e and e× (e⊕ f) = e× (e + f − ef) =

e2 + ef − e2f = e.
5. e×(f⊕g) = e(f+g−fg) = ef+eg−efg and (e×f)⊕(e×g) = ef+eg−efg.
So the operations ⊕ and × satisfy the conditions (i)-(v) of proposition 2.3.5.

Since e ⊕ (1 − e) = e + 1 − e − e + e2 = 1 and e × (1 − e) = e − e2 = 0, for any
element e ∈ S there exists a complement 1− e. Moreover, 0 and 1 are two special
elements in B(A). Thus, by proposition 2.3.5, B(A) is a Boolean algebra.

In the Boolean algebra B(A) there is an ordering relation ≤ defined by

e ≤ f ⇐⇒ e ⊕ f = f ⇐⇒ e × f = e.

Definition. A central idempotent e ∈ A is called centrally primitive if it
cannot be written as a sum of two nonzero orthogonal central idempotents.

Lemma 2.4.7. A central idempotent e ∈ A is centrally primitive if and only
if e is an atom of the Boolean algebra B(A).

Proof. Suppose a central idempotent e ∈ A is not centrally primitive, i.e., there
exists a decomposition e = f1 + f2, where f1, f2 are nonzero orthogonal central
idempotents. Then f1e = f2

1 + f1f2 = f1, that is, f1 ≤ e and f1 �= 0, f1 �= e. But
this means that e is not an atom.

Conversely, suppose, e ∈ B(A) is not an atom, then there exists a nonzero
element f ∈ B such that f ≤ e and f �= e. Consider the decomposition e =
f + (e − f). Since f2 = f and f ≤ e implies fe = f , we have (e − f)2 =
e2 − fe − ef + f2 = e − f and f(e − f) = fe − f2 = f − f = 0, therefore both
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f and e − f are nonzero orthogonal central idempotents in A. Consequently, e is
not a centrally primitive idempotent. The lemma is proved.

Suppose the set of all central idempotents of a ring A is finite. Then the
Boolean algebra B(A) is finite and, by theorem 2.3.14, the identity of B(A) can be
uniquely decomposed into a sum of all its different atoms

1 = e1 ⊕ e2 ⊕ ... ⊕ en.

Since ei, ej are atoms and, by lemma 2.3.7, eiej ≤ ei we obtain that eiej = 0
for i �= j. Therefore ei ⊕ ej = ei + ej . So, by the previous lemma the identity
of A can be decomposed into a sum of all different centrally primitive orthogonal
idempotents

1 = e1 + e2 + ... + en.

Since, by proposition 2.3.10, any element of the Boolean algebra B(A) is uniquely
expressible as a finite sum of different atoms, any central idempotent of the ring
A is a sum of different centrally primitive idempotents. So, from the discussion
above we obtain the following result.

Proposition 2.4.8. Suppose a ring A has a finite number of central idempo-
tents. Then

1. The identity of A can be written as a sum of all different centrally primitive
orthogonal idempotents

1 = e1 + e2 + ... + en.

2. This decomposition is unique up to a permutation of the summands, i.e.,
if we have another decomposition of the identity into a sum of centrally primitive
orthogonal idempotents

1 = f1 + f2 + ... + fk

then n = k and there is a permutation σ of numbers {1, 2, ..., n} such that fi = eσ(i)

for i = 1, 2, ..., n.
3. Any centrally primitive idempotent e ∈ A belongs to the set {e1, e2, ..., en}.

In particular, any two distinct centrally primitive idempotents in A are orthogonal.
4. Any central idempotent e ∈ A can be uniquely written as a sum of distinct

centrally primitive idempotents

e = e1k
+ e2k

+ ... + esk

where eik
∈ {e1, e2, ..., en} for i = 1, ..., s.

Definition. A ring A is said to be indecomposable if A �= 0 and A cannot
be decomposed into a direct product of two nonzero rings.

Lemma 2.4.9. A ring A is indecomposable if and only if it has no nontrivial
central idempotents.
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Proof. Let A be an indecomposable ring. Suppose e ∈ A is a central idem-
potent, i.e., e �= 0, e �= 1 and ea = ae for any a ∈ A. Then f = 1 − e is also
an idempotent in A. Since ef = e(1 − e) = 0 and fa = (1 − e)a = a − ea =
a− ae = a(1− e) = af , we obtain that e, f are both nontrivial orthogonal central
idempotents and 1 = e + f . Hence eA = Ae = eAe, fA = Af = fAf and, by
lemma 2.4.5, eAf = fAe = 0. Therefore eAe, fAf are both rings with identities
e and f , respectively. So the two-sided Peirce decomposition has the form

A =
(

eAe 0
0 fAf

)
,

and so A can be decomposed into a direct product of two nonzero rings. This
leads to contradiction.

Conversely, let A = A1 × A2, where A1, A2 are nonzero rings. Put e1 = (1, 0)
and e2 = (0, 1). Then 1 = e1+e2 and e1, e2 are orthogonal idempotents. Moreover,
they are both central, because e1a = (a1, 0) = ae1 and e2a = (0, a2) = ae2 for any
a ∈ A. So in this case A has at least two nontrivial central idempotents.

Definition. A ring A is called a finitely decomposable ring (or, for
short, FD-ring) if it can be expressed as a direct product of a finite number of
indecomposable rings.

Suppose the identity of a ring A can be written as a sum of a finite number
of orthogonal centrally primitive idempotents 1 = e1 + e2 + ... + en. Then, by
proposition 2.1.1, we obtain a decomposition of the ring A into a direct sum
of right ideals A =

n
⊕

i=1
Ai, where Ai = eiA. Since ei is a central idempotent,

Ai = eiA = Aei = eiAei is a ring with the identity ei and eiAej = eiejA = 0.
Since every idempotent ei is centrally primitive, in view of proposition 2.4.9, all
the rings Ai are indecomposable. Then the two-sided Peirce decomposition of A
has the form

A =




A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . An


 .

But then A � A1 × A2 × ... × An and so A is an FD-ring.
Conversely, let A be an FD-ring, i.e., A = A1 × A2 × ... × An, where Ai is an

indecomposable ring, i = 1, ..., n. Put ei = (0, ..., 1, ..., 0), where the identity of the
ring Ai is at the i-th position and zeroes elsewhere. Obviously, e2

i = ei and eiej =
0, i.e., e1, e2, ..., en are pairwise orthogonal idempotents and 1 = e1 + e2 + ... + en.
Since eia = (0, ..., ai, ..., 0) = aei, each idempotent ei is central and therefore
A = I1 ⊕ I2 ⊕ ... ⊕ In, where Ii = eiA = Aei = eiAei is a two-sided ideal in A.
Moreover, since Ai is an indecomposable ring, due to lemma 2.4.9, ei is a centrally
primitive idempotent. So we have the following proposition.
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Proposition 2.4.10. A ring A is an FD-ring if and only if the identity of
A can be written as a sum of a finite number of orthogonal centrally primitive
idempotents.

As a corollary of propositions 2.4.8 and 2.4.10 we obtain the following main
result.

Theorem 2.4.11. Any FD-ring A can be uniquely decomposed into a direct
product of a finite number of indecomposable rings, that is, if A = B1 ×B2 × ...×
Bs = C1×C2× ...×Ct are two of such decompositions, then s = t and there exists
a permutation σ of {1, 2, ..., t} such that Bi = Cσ(i) for i = 1, 2, ..., t.

In view of the Wedderburn-Artin theorem, all semisimple rings are FD-rings.
Therefore theorem 2.4.11 is similar to the Krull-Schmidt theorem for semisimple
rings. An important class of FD-rings are all right Noetherian (and right Artinian)
rings which we shall consider in the next chapter. All semiperfect rings (which may
be neither Noetherian nor Artinian rings) are also examples of FD-rings. These
rings will be considered in chapter 10.

Now we consider another important class of FD-rings, namely, those rings
whose right regular modules can be decomposed into a direct sum of indecompos-
able right ideals. We are going to show that these rings are really FD-rings.

Suppose a ring A can be decomposed into a direct sum of indecomposable mod-
ules. Then from propositions 2.1.1 and 2.4.4 it follows that there is a decomposition
of the identity of A into a sum of pairwise orthogonal primitive idempotents:

1 = e1 + e2 + ... + en.

Thus, in this case we have a finite set of pairwise orthogonal primitive idempotents
S = {e1, e2, ..., en}. We shall introduce a binary relation on this set. We define
the relation e ∼ f for any e, f ∈ S to mean that there exists g ∈ S such that
eAg �= 0 and fAg �= 0. This relation is obviously symmetric and reflexive. Then it
generates some equivalence relation e ≈ f such that e ∼ ei1 ∼ ei2 ∼ ... ∼ eik ∼ f
for a sequence of idempotents ei1, ..., eik ∈ S.2)

Let E1, E2, ..., Ek be the equivalence classes of S. Then S =
k
∪

i=1
Ei and

Ei ∩ Ej = 0 for i �= j. Denote by ui the sum of all idempotents from the equiv-
alence class Ei, i.e., ui =

∑
eis∈Ei

eis. Then each ui is an idempotent in A and all

idempotents u1, u2, ..., uk are pairwise orthogonal with 1 = u1 + u2 + ... + uk. By
the definition of the relations ∼ and ≈, it follows that eAf = fAe = 0 if e and f
belong to different equivalence classes. So uiAuj = ujAui = 0 for i �= j and uiAui

is a ring with the identity ui for i = 1, ..., k. Thus, we have the following two-sided
Peirce decomposition of the ring A:

2) This relation ≈ is the socalled transitive closure of ∼.
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A =




u1Au1 0 . . . 0
0 u2Au2 . . . 0
...

...
. . .

...
0 0 . . . ukAuk


 . (2.4.1)

The idempotents u1, u2, ..., uk are called the block idempotents of A and the
rings u1Au1, u2Au2, ..., ukAuk are called the blocks of A determined by the set S.

To prove the main theorem about block decompositions we shall need the
following lemmas.

Lemma 2.4.12. For any primitive idempotent e ∈ S and a central idempotent
c ∈ A we have either e = ce ∈ cA or e = (1 − c)e ∈ (1 − c)A.

Proof. Let c be a nonzero central idempotent of a ring A. If e ∈ S, then
e = ce+(1−c)e and ce, (1−c)e are two orthogonal idempotents. Since e is primitive,
we obtain that either ce = 0 or (1−c)e = 0. In the first case e = (1−c)e ∈ (1−c)A
and otherwise e = ce ∈ cA.

Lemma 2.4.13. Let ei, ej ∈ S and ei ≈ ej. Then for any central idempotent
c ∈ A one has ei ∈ cA if and only if ej ∈ cA.

Proof. Let ei, ej ∈ S and ei ∼ ej , i.e., there exists an idempotent f ∈ S such
that eiAf �= 0 and ejAf �= 0. Suppose ei ∈ cA, then eiAf = eicAf = eiA(cf).
Since eiAf �= 0, this implies that cf �= 0 and by lemma 2.4.12 f = cf ∈ cA.
But then ejAf = ejA(cf) = (cej)Af �= 0. Hence cej �= 0 And, by lemma 2.4.12,
ej = cej ∈ cA.

Definition. A ring A is called a finitely decomposable identity ring (or
for short, a FDI-ring) if there exists a decomposition of the identity 1 ∈ A into a
finite sum

1 = e1 + e2 + ... + en

of pairwise orthogonal primitive idempotents ei.

Theorem 2.4.14. Let A be an FDI-ring. If u1, u2, ..., uk are the block idempo-
tents of A determined by the set S = {e1, e2, ..., en}, then u1, u2, ..., uk are pairwise
orthogonal centrally primitive idempotents with

1 = u1 + u2 + ... + uk.

Moreover, each block uiAui (i = 1, 2, ..., k) is an indecomposable ring and we have
a decomposition of A in form (2.4.1). This decomposition into a direct product of
rings is unique up to a permutation of blocks.

Proof. Taking into account the discussion above it suffices to show that each
idempotent ui is centrally primitive and that the decomposition (2.4.1) is unique.
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Let a ∈ A, then since uiAuj = 0 for i �= j, we have: uia = uia(u1 + u2 + ... +
uk) = uiaui = (u1 + u2 + ... + uk)aui = aui, i.e., each ui is a central idempotent.

We shall show that ui is the unique central idempotent in uiAui.
Let c be a nonzero central idempotent in uiAui. Then c = cui = c

∑
eis∈Ei

eis.

Since c �= 0, there exists eis ∈ Es such that ceis �= 0. From lemma 2.4.12 it follows
that eis ∈ cA and from lemma 2.4.13 this means that eij ∈ cA for all eij ∈ Ei.
Thus

c = cui = c
∑

eis∈Ei

eiscui =
∑

eis∈Ei

eis = ui

i.e., ui is the only central idempotent in uiAui and so, by lemma 2.4.9, it is
centrally primitive and the ring uiAui is indecomposable.

Corollary 2.4.15. Any FDI-ring is an FD-ring.

Remark. Note that the inverse statement to corollary 2.4.15 is not true. There
are FD-rings which are not FDI-rings. Here is an example of such a ring. Let A be
the set of all countably-dimensional square matrices with entries from an arbitrary
field k, so that any matrix of A has only a finite number of nonzero entries. This
is a countably-dimensional algebra over k without identity. We adjoin the identity
to A in the following way. Consider the algebra Ā consisting of pairs (a, α), where
a ∈ A and α ∈ k, with the componentwise addition and multiplication by scalar,
and ring multiplication defined by

(a, α)(b, β) = (ab + αb + aβ, αβ).

It is easy to verify that Ā is a countably-dimensional algebra over the field k and
that the element (0, 1) is its identity. Obviously, Ā is an indecomposable ring
which is not an FDI-ring.

2.5 NOTES AND REFERENCES

The Peirce decomposition was proposed by B.Peirce in his paper Linear Associative
Algebra // Amer. J. Math., 1881, V.4, p.97-229, were he also introduced and used
the notions of idempotent and nilpotent element.

Modern ring theory began when J.H.Wedderburn proved his celebrated clas-
sification theorem for finite dimensional semisimple algebras over fields (see
J.H.N.Wedderburn, On hypercomplex numbers// Proc. London Math. Soc., V.6,
N.2 (1908), p.77-118). Twenty years later, E.Noether and E.Artin introduced the
ascending chain condition and descending chain condition as substitutes for finite
dimensionality, and E.Artin proved the analogue of Wedderburn’s theorem for
general semisimple rings (see E.Artin, Zur Theorie der hyperkomplexen Zahlen //
Abh. Math. Sem. Univ. Hamburg, 5 (1927), p.251-260 ). This theorem, regarded
by many as the first major result in the abstract structure theory of rings, has
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remained as important today as it was in the early days of the twentieth century
when it was first discovered.

There are several different ways to define semisimplicity. J.H.Wedderburn, be-
ing interested mainly in finite dimensional algebras over fields, defined the radical
of such an algebra A to be the largest nilpotent ideal of A, and defined A to be
semisimple if this radical is zero, i.e., if there is no nonzero nilpotent ideal in A.
Since we are interested in rings in general, and not just finite dimensional algebras,
we have followed a somewhat more modern approach, using the convenient lan-
guage of modules. Our definition of right semisimple rings is somewhat different
from the one Wedderburn originally used.

Searching for the algebraic underpinnings of two-valued logic lead in the XIX-
th century to the definition of a Boolean algebra (see G.Boole, The Mathematical
Analysis of Logic // Cambridge and London, 1847 and G.Boole, An investigation
of the Laws of Thought // London, 1854).

The theory of Boolean algebras is important both from the historical and mod-
ern practical points of view. On the one hand, the theory of Boolean algebras is
comparatively simple, and on the other hand, it has a very rich structure. This
theory, along the theory of mathematical logic and set theory, is related to the
foundations of mathematics3) and at the same time it found wide applications,
in particular, in computer science. Recently the name of G.Boole (1815-1864) has
become known even to people far from mathematics and logic. The notions of a
Boolean algebra and Boolean variables are now known by all programmers and
specialists in computer science.4)

The general study of Boolean lattices was carried out in 1936 by M.H.Stone
in his famous large paper The theory of representations for Boolean algebras //
Trans. Amer. Math. Soc., v.40 (1936), p.37-111. In this paper M.H.Stone for the
first time introduced the notion of a Boolean ring and its connection with Boolean
lattices, and he proved his general theorem on representations of a Boolean lattice.

The theory of Boolean algebras has also been perfectly described by R.Sikorski
in his book Boolean algebras, Springer-Verlag, Berlin-Heidelberg-New York, 1964.

Finite decomposable rings and finite decomposable identity rings arise very
naturally though in fact only in this book these notions are first emphasized and
their connection with Stone’s theorem is made clear.

The proof of theorem 2.4.14 in many points follows the well-known book T.Y.
Lam, A First Course in Noncommutative Rings. Graduate Texts in Mathematics,
Vol. 131, Springer-Verlag, Berlin-Heidelberg-New York, 1991.

3) In particular Boolean valued models play a major role in set theory and foundatinal math-
ematics, especially in independence of axioms investigations. (See e.g. Yu.I.Manin, A course in
mathematical logic // Springer, 1977; J.Barkley Rosser, Simplified independence proofs. Boolean
valued models of set theory // Acad. Pr., 1969; Thomas Jech, Set theory // Acad. Pr., 1978.)

4) For an up to date survey of Boolean algebras, see J.Donald Monk, Robert Bonnet (eds.),
Handbook of Boolean algebras (3 volumes)// Elsevier, 1989.



3. Artinian and Noetherian rings

3.1 ARTINIAN AND NOETHERIAN MODULES AND RINGS

An important role in the theory of rings and modules is played by various
finiteness conditions, in particular, chain conditions on submodules and one-sided
ideals.

We say that a module M satisfies the descending chain condition (or d.c.c.)
if there does not exist an infinite strictly descending chain

M1 ⊃ M2 ⊃ M3 ⊃ ...

of submodules of M .
Sometimes the following equivalent formulation of this condition is useful:
A module M satisfies the descending chain condition (or d.c.c.) if every

descending chain of submodules of M

M1 ⊇ M2 ⊇ M3 ⊇ ...

contains only a finite number of elements, i.e., there exists an integer n such that
Mn = Mn+1 = Mn+2 = ....

Recall that a submodule N of a module M is said to be minimal if N �= 0 and
there is no submodule L, different from 0 and N , such that L ⊂ N ⊂ M . We say
that a module M satisfies the minimum condition if every nonempty family of
submodules of M has a minimal element with respect to inclusion.

Proposition 3.1.1. For a module M the following conditions are equivalent:
1) the family of all submodules of M satisfies d.c.c.;
2) any nonempty family of submodules of M has a minimal element1) (with

respect to inclusion).

Proof.
2) ⇒ 1). Let M1 ⊇ M2 ⊇ ... be a descending chain of submodules of a module

M . Because the set of submodules of this sequence has a minimal element Mn,
then Mn = Mn+1 = ....

1) ⇒ 2). Suppose S is a nonempty set of submodules of a module M without
minimal element. Let M1 be an arbitrary element of this set S. Since M1 is not
minimal, there exists M2 ∈ S such that M1 ⊃ M2. Since M2 is not minimal, it
contains a submodule M3 and so on. Continuing this process we obtain a strictly
descending infinite chain M1 ⊃ M2 ⊃ M3 ⊃ ... of submodules of M , contradicting
to d.c.c.

The proposition is proved.

1) Not necessarily an element that is a minimal submodule.

59
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Definition. A module M is called Artinian if the equivalent conditions of
proposition 3.1.1 are satisfied.

Analogously, in a dual way, we say that a module M satisfies the ascending
chain condition (or a.c.c.) if there does not exist an infinite strictly ascending
chain

M1 ⊂ M2 ⊂ M3 ⊂ ...

of submodules of M .
The equivalent formulation of this condition is follows:
A module M satisfies the ascending chain condition (or a.c.c.) if every

ascending chain of submodules of M

M1 ⊆ M2 ⊆ M3 ⊆ ...

contains only a finite number of elements, i.e., there exists an integer n such that
Mn = Mn+1 = Mn+2 = ....

Recall that a submodule N of a module M is said to be maximal if N �= M
and there is no submodule L, different from M and N , such that N ⊂ L ⊂ M .
We say that a module M satisfies the maximum condition if every nonempty
family of submodules of M has a maximal element.

The following proposition is dual to proposition 3.1.1 and therefore its proof
will be omitted.

Proposition 3.1.2. For a module M the following conditions are equivalent:
1) the family of all submodules of M satisfies a.c.c.;
2) any nonempty family of submodules of M has a maximal element (with

respect to inclusion).

Definition. A module M is called Noetherian if the equivalent conditions
of proposition 3.1.2 are satisfied.

Proposition 3.1.3. Let N be a submodule of a module M . Then M is Artinian
(Noetherian) if and only if M/N and N are both Artinian (Noetherian).

Proof. First we shall prove the proposition in the Artinian case.
Let M be an Artinian module. Since any descending chain of submodules of

N is also a chain of submodules of M , it is immediate that N is Artinian.
Let π : N → M/N be the natural projection and L1 ⊇ L2 ⊇ ... be a descending

chain of submodules of M/N . Then using lemma 1.3.4 we can form the descending
chain of submodules of M , L′

1 ⊇ �L′
2 ⊇ ... where L′

i = π−1(Li). Since M is Artinian
there exists some n such that L′

i = L′
n for all i ≥ n. Taking into account that

Li = π(L′
i) we also have that Li = Ln for all i ≥ n. Thus, M/N is Artinian.

Conversely, assume that modules M/N and N are Artinian. Let M1 ⊃ M2 ⊃ ...
be a descending chain of submodules of the module M . Consider the following
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two descending chains of submodules

M1 ∩ N ⊃ M2 ∩ N ⊃ ...

(M1 + N)/N ⊃ (M2 + N)/N ⊃ ...

in N and M/N . Then there exists some n such that Mi ∩ N = Mn ∩ N and
(Mi +N)/N = (Mn +N)/N for all i ≥ n. Hence, Mi +N = Mn +N for all i ≥ n.
Since Mi ⊆ Mn for i ≥ n, the modular law implies Mn∩(Mi+N) = Mi+(Mn∩N).
Then Mn = Mn∩(Mn+N) = Mn∩(Mi+N) = Mi+(Mn∩N) = Mi+(Mi∩N) =
Mi, i.e., Mn = Mi for all i ≥ n. Therefore, M is Artinian.

Analogous arguments prove the Noetherian case.

Corollary 3.1.4. A direct sum of a finite number of modules is an Artinian
(resp. Noetherian) module if and only if any summand is Artinian (resp. Noethe-
rian).

Proposition 3.1.5. A module is Noetherian if and only if each of its submod-
ules is finitely generated.

Proof. Assume that every submodule of a module M is finitely generated.
We shall show that the module M is Noetherian. Consider an ascending chain
M1 ⊆ M2 ⊆ ... of submodules of the module M . Denote by T the union of all
modules of this chain. The module T is finitely generated, i.e., there exists a
finite set of generators {x1, ..., xs} such that T = {x1, ..., xs}. Obviously then
there exists a submodule Mn such that all elements x1, ..., xs belong to Mn. Then
Mn = T and thus Mi = Mn for all i ≥ n, establishing a.c.c. for submodules of M .
Therefore M is Noetherian.

Conversely, assume that the module M is Noetherian but that there exists a
submodule N of M which is not finitely generated. Let x1 ∈ N and x1 �= 0. Then
{x1} �= N and there exists an element x2 ∈ N such that x2 �∈ {x1}. Continuing
this process we obtain an infinite strictly ascending chain of submodules {x1} ⊂
{x1, x2} ⊂ .... This contradicts the a.c.c for M .

This statement has some sort of analog for the Artinian case. For this we need
to introduce some definition which is dual to the notion of a finitely generated
module. A module M is finitely generated if M is generated by a finite subset of
M . This statement is equivalent to the statement:

If M =
∑
i∈I

Mi is a sum of submodules Mi, then there exists a finite subset

J ⊂ I such that M =
∑
i∈J

Mi.

Definition. An A-module M is said to be finitely cogenerated if for any
family Mi, i ∈ I, of submodules of M ,

⋂
i∈I

Mi = 0 implies
⋂

i∈J

Mi = 0 for some
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finite subset J of I.2)

Example 3.1.1.
Any finite dimensional vector space V over a field k is finitely cogenerated.

Example 3.1.2.
The regular module ZZ is not a finitely cogenerated, since

⋂
pZ = 0, where p

runs over all primes, but for any finite subset of prime numbers p1, p2,..., pm we

have
m⋂

i=1

piZ �= 0.

The following proposition is dual to proposition 3.1.5 and therefore its proof
will be omitted.

Proposition 3.1.6. A module is Artinian if and only if each of its quotient
modules is finitely cogenerated.

We are going to consider properties of endomorphisms of Artinian and Noethe-
rian modules.

Proposition 3.1.7. An endomorphism ϕ of an Artinian (resp. Noetherian)
module is an automorphism if and only if ϕ is a monomorphism (resp. epimor-
phism).

Proof. Let ϕ be an endomorphism of a Noetherian module M which is an
epimorphism. We shall show that Kerϕ = 0. There is the ascending chain of
submodules: 0 ⊂ Kerϕ ⊂ Kerϕ2 ⊂ ... which must stabilize, i.e., Kerϕn =
Kerϕn+1. Let m ∈ Kerϕ. From the fact that ϕn is an epimorphism we obtain
that m = ϕnm1. But then m1 ∈ Kerϕn+1 = Kerϕn, i.e., m = 0.

Now, let’s show that a monomorphism ϕ of an Artinian module M is an epi-
morphism. There is the descending chain of submodules M ⊃ Imϕ ⊃ Imϕ2 ⊃ ...
which must stabilize, i.e., Imϕn = Imϕn+1. Therefore, for an arbitrary m ∈ M
there is an equality ϕnm = ϕn+1m1, m1 ∈ M . Since ϕn is a monomorphism,
m = ϕm1, i.e., ϕ is an epimorphism.

The following proposition is known as Fitting’s lemma.3)

Proposition 3.1.8 (Fitting’s lemma). For any endomorphism ϕ of an
Artinian and Noetherian module M there exists an integer n such that M =
Imϕn ⊕ Kerϕn.

2) This is essentially a compactness notion. More precisely such modules are linearly com-
pact with respect to the discrete topology. (See V.I.Arnautov, Linearly-compact module, In:
M.Hazewinkel (ed.), Encyclopaedia of Mathematics. Vol.5, p.526, KAP, 1990, and N.Bourbaki,
Algébre commutative, Chapt.3, Hermann, 1961.)

3) Usually the Fitting lemma is just stated for endomorphisms of finite dimensional vector
spaces. Even Fitting’s original paper went deeper than that.
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Proof. Since M is both an Artinian and Noetherian module, for any endomor-
phism ϕ of M both chains of submodules

M ⊇ Imϕ ⊇ Imϕ2 ⊇ ... ⊇ Imϕn ⊇ Imϕn+1 ⊇ ...

and
0 ⊆ Kerϕ ⊆ Kerϕ2 ⊆ ... ⊆ Kerϕn ⊆ Kerϕn+1 ⊆ ...

must stabilize. Therefore there exists an n such that Imϕn = Imϕm and Kerϕn =
Kerϕm for all m ≥ n. Let x ∈ Imϕn ∩Kerϕn, then ϕn(x) = 0 and x = ϕn(y) for
some y ∈ M . Therefore 0 = ϕn(x) = ϕ2n(y) = ϕn(y) = x, i.e., Imϕn∩Kerϕn = 0.

On the other hand, for every element m ∈ M there holds the equality ϕn(m) =
ϕ2n(m1), i.e., ϕn(m − ϕnm1) = 0 and m = ϕnm1 + (m − ϕnm1). This yields the
decomposition of the module M into the direct sum of Imϕn and Kerϕn.

Corollary 3.1.9. If M is indecomposable and both an Artinian and a Noethe-
rian module, then any endomorphism of M is either an automorphism or nilpotent.

Proposition 3.1.10. The following conditions are equivalent for a semisimple
module M :

(a) M is Artinian;
(b) M is Noetherian;
(c) M is a direct sum of a finite number of simple modules.

Proof. Since a simple module is both Noetherian and Artinian, implications
(c) ⇒ (a) and (c) ⇒ (b) are true by corollary 3.1.4.

Conversely, suppose a module M is decomposed into an infinite direct sum of
simple modules: M = U1 ⊕ U2 ⊕ U3 ⊕ ..... Then in the module M there are two
chains of submodules: U1 ⊂ U1 ⊕ U2 ⊂ ... and M ⊃ U2 ⊕ U3 ⊕ ... ⊃ U3 ⊕ U4 ⊕ ....
From the existence of these chains there follow the remaining statements of the
proposition.

Definition. A ring A is called a right (left) Artinian (resp. Noetherian) if
the right regular module AA (left regular module AA) is Artinian (resp. Noethe-
rian). A ring A is called Artinian (resp. Noetherian), if it is right and left
Artinian (resp. Noetherian).

From corollary 3.1.4, proposition 3.1.10 and the Wedderburn-Artin theorem
we immediately obtain the following corollary:

Corollary 3.1.11. A semisimple ring is both Artinian and Noetherian.

Example 3.1.3.
Let V be an n-dimensional vector space over a field k. Then V is both Noethe-

rian and Artinian. For, if W is a proper subspace of V , then dimW < dimV = n.
Thus any proper ascending (or descending) chain of subspaces cannot have more
than n + 1 terms.
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Example 3.1.4.
Any principal ideal domain A is a Noetherian ring, because every ideal is

principal (see proposition 1.1.4).

Example 3.1.5.
The ring of integers Z is a Noetherian ring, since it is a PID. But it is not

Artinian. For example, we may form the infinite properly descending chain of
ideals:

(n) ⊃ (n2) ⊃ (n3) ⊃ ...

Example 3.1.6.
Now we present an example of a ring which is right Artinian and right Noethe-

rian but it is neither left Artinian nor left Noetherian.

Let A =
(

Q R
0 R

)
=
{(

α β
0 γ

)
: α ∈ Q;β, γ ∈ R

}
, i.e., A is a subring

of the algebra of upper triangle matrices T2(R) of order two over the field of real
numbers such that the entry at position (1,1) is rational.

It is not difficult to verify that the right ideals in the ring A are A, e11A,

e22A and the various R-subspaces of the two-dimensional space
(

0 R
0 R

)
. Hence,

it easily follows that the ring A is right Artinian and right Noetherian. At the

same time Q-subspaces in
(

0 R
0 0

)
are left ideals of the ring A. Since R is an

infinite space over Q, it is not difficult to build an infinite strictly ascending (or
descending) chain of left ideals. This shows that the ring A is neither left Artinian
nor left Noetherian.

Proposition 3.1.12. If A is a right Noetherian (resp. Artinian) ring, then
any finitely generated right A-module M is Noetherian (resp. Artinian).

Proof. If M is a finitely generated A-module, then it is isomorphic to a quo-
tient module F/K, where F is a finitely generated free A-module and K is a
submodule of F . Since F is isomorphic to a direct sum of a finite number of
copies of the Noetherian (resp. Artinian) module AA, it is Noetherian (resp. Ar-
tinian), by corollary 3.1.4. Then, by proposition 3.1.3, M must be Noetherian
(resp. Artinian).

Corollary 3.1.13. If A is a right Noetherian ring, then any submodule of
finitely generated right A-module M is finitely generated.

Proof. This follows from proposition 3.1.12 and proposition 3.1.5.

3.2 THE JORDAN-HÖLDER THEOREM

Definition. A finite chain of submodules of a module M : 0 = M0 ⊂ M1 ⊂
... ⊂ Mn = M is called a composition series for the module M if all quotient
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modules Mi+1/Mi are simple (i = 0, 1, ..., n− 1). The quotient modules Mi+1/Mi

are called the factors of this series and the number n is the length of the series.
By convention, the zero module is considered to have a composition series of length
zero with no composition factors.

Evidently, not every module has a composition series (for example, the ring Z
considered as a module over itself).

We shall say that a finite chain 0 ⊂ M1 ⊂ ... ⊂ Mt = M of submodules of a
module M can be included into a chain of submodules: 0 ⊂ L1 ⊂ ... ⊂ Ls = M
if each Mi (i = 1, 2, ..., t) is some Lj (j = 1, 2, ..., s). The number t is called the
length of the chain 0 ⊂ M1 ⊂ ... ⊂ Mt = M .

Theorem 3.2.1 (Jordan-Hölder). If a module M has a composition series,
then any finite chain of submodules of M can be included in a composition series.
The lengths of any two composition series of the module M are equal and between
the factors of these series one can establish a bijection in such a way that the
corresponding factors are isomorphic.

Proof. Let 0 = M0 ⊂ M1 ⊂ .... ⊂ Mn = M be a composition series of the
module M . We shall prove the theorem by induction on n. If n = 1, then the
module M is simple and everything is proved. Let 0 = N0 ⊂ N1 ⊂ ... ⊂ Nt = M
be an arbitrary finite chain of submodules of M . If Nt−1 = Mn−1, then in Mn−1 =
Nt−1 there exists a composition series of the length n− 1 and M/Nt−1 is a simple
module. Therefore by the induction hypothesis the chain 0 = N0 ⊂ N1 ⊂ ... ⊂
Nt = M can be included in a composition series of length n − 1 with factors that
are isomorphic to factors of the composition series 0 = M0 ⊂ M1 ⊂ ... ⊂ Mn−1.
In this case the theorem is proved.

Let Nt−1 �= Mn−1. Since the quotient module M/Mn−1 is simple, Mn−1 +
Nt−1 = M . In view of theorem 1.3.3, M/Nt−1 = (Mn−1 + Nt−1)/Nt−1 �
Mn−1/(Mn−1 ∩ Nt−1). From the induction hypothesis for the module M/Nt−1

there exists a composition series. Since M/Mn−1 = (Mn−1 + Nt−1)/Mn−1 �
Nt−1/(Mn−1 ∩ Nt−1) is a simple module and, by the induction hypothesis, the
length of the composition series of the module Mn−1∩Nt−1 does not exceed n−2,
we obtain that in the module Nt−1 the lengths of all composition series are not
more than n− 1. Therefore the chain of submodules Nt−1 ⊃ Nt−2 ⊃ .... ⊃ N0 = 0
can be included in a composition series. But then the entire chain 0 = N0 ⊂ N1 ⊂
... ⊂ Nt = M can be included in a composition series.

Let 0 ⊂ M1 ⊂ ... ⊂ Mn = M and 0 ⊂ K1 ⊂ ... ⊂ Kt = M be two composition
series for the module M . We shall show that their lengths are equal and that
their factors are isomorphic. One may assume that Mn−1 �= Kt−1. Then Mn−1 +
Kt−1 = M , moreover, the quotient modules M/Mn−1 � Kt−1/(Mn−1∩Kt−1) and
M/Kt−1 � Mn−1/(Mn−1 ∩ Kt−1) are simple. We now construct a composition
series for the module Mn−1 ∩ Kt−1. By the induction hypothesis its length is
equal to n−2. But then the module Kt−1 has a composition series of length n−1.
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Therefore all composition series of Kt−1 have length equal to n − 1. Thus n = t.
By the induction hypothesis the factors of the composition series Mn−1 ⊃ Mn−2 ⊃
... ⊃ M0 = 0 and Mn−1 ⊃ Mn−1∩Kn−1 ⊃ ... ⊃ 0 are isomorphic. In a similar way
the factors of Kn−1 ⊃ Kn−2 ⊃ ... ⊃ K0 = 0 and Kn−1 ⊃ Mn−1 ∩ Kn−1 ⊃ ... ⊃ 0
are isomorphic. Taking into account the isomorphisms mentioned above we obtain
that the factors of the initial series for some bijective correspondence are pairwise
isomorphic. The theorem is proved.

Proposition 3.2.2. A module M has a composition series if and only if M is
both Artinian and Noetherian.

Proof. Let M be both a Noetherian and Artinian module. Then there exists a
nonzero minimal submodule M1 of M . In the set of modules, which strictly contain
M1, we choose the minimal element M2. Obviously, the quotient module M2/M1

is simple. Continuing this process we obtain an ascending chain of submodules
0 = M0 ⊂ M1 ⊂ M2 ⊂ ... with simple factors that must stabilize because the
module M is Noetherian.

Conversely, let the module M have a composition series of length n. Suppose
that M is not Artinian. Then there is a strictly descending chain of submodules of
M with respect to inclusion, whose length is equal to n + 1. Clearly, it cannot be
included in a composition series of length n. This contradicts the Jordan-Hölder
theorem. Analogously, it can be proved that the module M is Noetherian. The
proposition is proved.

Definition. A module M is called a module of finite length if M is both
Artinian and Noetherian. The length of its composition series is called the length
of the module M and denoted by l(M). The factors of the composition series are
called the simple factors of M .

In view of the Jordan-Hölder theorem, the definitions of length and simple
factors do not depend on the choice of the composition series.

The next two propositions immediately follow from the Jordan-Hölder theorem.

Proposition 3.2.3. Let a module M have a composition series and let N be
a submodule of M . Then l(M) = l(N) + l(M/N).

Proposition 3.2.4. Let K and L be submodules of a module M and let the
module K + L have a composition series. Then

l(K + L) + l(K ∩ L) = l(K) + l(L).

Proposition 3.2.5 (The Krull-Schmidt theorem for semisimple mod-
ules). If M = U1⊕ ...⊕Un = V1⊕ ...⊕Vm are two decompositions of a semisimple
module M into a direct sum of simple modules, then m = n and, after a suitable
permutation, Ui � Vi for i = 1, ..., n.
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Proof. Obviously, 0 ⊂ U1 ⊂ U1 ⊕ U2 ⊂ ... ⊂ U1 ⊕ ... ⊕ Un = M and
0 ⊂ V1 ⊂ V1 ⊕ V2 ⊂ ... ⊂ V1 ⊕ ... ⊕ Vm = M are two composition series of the
module M with simple factors U1, ..., Un and V1, ..., Vm, respectively. Therefore
the statement immediately follows from the Jordan-Hölder theorem.

3.3 THE HILBERT BASIS THEOREM

Let A be a ring. Along with the ring A we can consider the polynomial ring in
one variable x with coefficients in the ring A. This ring is denoted by A[x]. The
aim of this section is to prove the following theorem:

Theorem 3.3.1 (Hilbert basis theorem). Let A be a right Noetherian ring.
Then the ring A[x] is right Noetherian as well.4)

Proof. Let the ring A be right Noetherian and let I be an arbitrary right ideal
in the ring A[x]. Clearly, the set

Î = {an ∈ A : a0 + a1x + ... + anxn ∈ I, an �= 0} ∪ {0}

forms a right ideal in A. By proposition 3.1.5, the ideal Î is finitely generated.
Therefore there is a finite set of generators b1, ..., bs such that Î = {b1, ..., bs}.
Denote by fi(x) a polynomial of I with the leading coefficient bi: fi(x) = bix

ni +...
(i = 1, ..., s) and denote by n the largest number among all such numbers ni.

Let f(x) be an arbitrary polynomial of I. We shall show that f(x) can be
expressed in the form:

f(x) = f1(x)g1(x) + ... + fs(x)gs(x) + h(x),

where the degree of the polynomial h(x) does not exceed n − 1. Let m be the
degree of f(x) and let a be its leading coefficient. If m < n, then everything is

proved. Let m ≥ n. We have a =
s∑

i=1

bici, where c1, ..., cs ∈ A. Consider the

polynomial

t1(x) = f(x) −
s∑

i=1

cifi(x)xm−ni .

Evidently, t1(x) ∈ I and the degree of t1(x) is strictly less than m. If the degree of
the polynomial t1(x) exceeds n−1, then applying to it the construction mentioned
above we obtain a polynomial t2(x), whose degree is strictly less than the degree
of t1(x). Continuing this process we obtain the needed form.

The coefficients at xn−i in the polynomials of the ideal I, whose degrees are not
more than n− i (i = 1, ..., n), form an ideal Li in the ring A. Denote by di

1, ..., d
i
si

4) Hilbert originally proved his basis theorem (1890) with a view towards invariant theory
(finiteness of a system of generating invariants), which, at the time, was very calculatory. It was
a revolution. A contemporary wrote ”this is not mathematics, this is theology”.
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systems of generators of the ideal Li and by f i
j(x) a polynomial of degree n− i of

I with the leading coefficient di
j (i = 1, ..., n; j = 1, ..., si). It is easy to verify that

the polynomials h(x) ∈ I, whose degrees do not exceed n−1, can be expressed by
the polynomials f i

j(x). Therefore a system of generators of the ideal I is formed by
the polynomials f1(x), ..., fs(x) and f i

j(x) (i = 1, ..., n; j = 1, ..., si). The theorem
is proved.

Corollary 3.3.2. If A is a right Noetherian ring, then the polynomial ring
A[x1, ..., xn] is right Noetherian.

Proof. The proof is immediate from the previous theorem by induction on the
number of variables n.

3.4 THE RADICAL OF A MODULE AND A RING

Let M be an arbitrary A-module. Denote by radM the intersection of all its
maximal submodules. By convention, if M does not have maximal submodules we
define radM = M . This submodule is called the radical of the module M .

For any nonzero homomorphism ϕ : M → U , where U is a simple A-module,
we have Imϕ = U . Therefore, by the homomorphism theorem, M/Kerϕ � U is
a simple module. Therefore Kerϕ is a maximal submodule of M . Conversely, for
any maximal submodule M1 ⊂ M we can build the projection π : M → M/M1 for
which Kerϕ = M1 and M/M1 is a simple module. Thus, we can give an equivalent
definition of the radical of the module M :

Proposition 3.4.1. radM = { ∩Kerϕ : ϕ runs through all homomorphisms
of M to all simple modules }.

Remark. The inclusion radM ⊂ M is not always strict. For example,
denote by Z(p) the ring of p-integral numbers (where p is a prime integer), i.e.,
Z(p) = {m

n ∈ Q : (n, p) = 1}. Clearly, Q may be considered as a Z(p)-module
and, so considered, radQ = Q.

Proposition 3.4.2. Let f : M → N be a homomorphism of A-modules. Then
f(radM) ⊂ radN .

Proof. Let m ∈ radM . We need to show that for any homomorphism ϕ : N →
U , where U is a simple module, ϕ(f(m)) = 0. Obviously, ϕf is a homomorphism
of the module M to the simple module U . Since m ∈ radM , we conclude that
ϕf(m) = 0, as required.

Proposition 3.4.3. rad ( ⊕
α∈I

Mα) = ⊕
α∈I

radMα.

Proof. Let ψ : M = ⊕
α∈I

Mα → U be a homomorphism of the module M to

a simple module U . Let πα : M → Mα be the projection of M onto Mα and
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iα : Mα → M be the natural inclusion of Mα into M . Then the homomorphism
ψ satisfies the formula ψ(m) =

∑
α∈I

ψiαπα(m) =
∑
α∈I

ψα(mα), where ψα = ψiα is

a homomorphism of Mα to the simple module U . Hence, if mα ∈ radMα, then
ψα(mα) = 0 for all α ∈ I. Therefore m =

∑
α∈I mα ∈ radM as well.

Let m =
∑

α∈I mα ∈ radM and let ψα be the family of homomorphisms of
Mα to a simple module U (α ∈ I). Consider a homomorphism ϕα from M to U
defined as ϕα(m) = ψαπα(m) = ψα(mα). Since m ∈ radM , we have ϕα(m) = 0,
and hence ψα(mα) = 0, i.e., mα ∈ radMα, for all α ∈ I.

Recall that a right (resp. left, two-sided) ideal M in a ring A is called maximal
in A if there is no right (resp. left, two-sided) ideal I, different from M and A,
such that M ⊂ I ⊂ A.

By proposition 1.1.3, in any nonzero ring with identity always there exist max-
imal proper right (left) ideals.

An important role in the theory of rings is played by the notion of the Jacobson
radical.

Definition. The intersection of all maximal right ideals in a ring A is called
the Jacobson radical of A.

Denote by R = radA the Jacobson radical of a ring A. We shall call the
Jacobson radical of A simply the radical.

In the definition of the radical of a ring we have used maximal right ideals. So
it should really be called the right radical of a ring and in a similar way we should
introduce the notion of the left radical of a ring. Fortunately, the definitions of
the right and left radical coincide. The next thing to show is that radA coincides
with the intersection of all maximal left ideals of the ring A.

In view of proposition 3.4.1, the radical of a ring A coincides with the inter-
section of all Kerψ, where ψ runs over all homomorphisms from A, as a right
A-module, to all simple A-modules.

Proposition 3.4.4. The radical R of a ring A is a two-sided ideal.

Proof. Evidently, R is a right ideal. Consider an endomorphism ϕ : A → A (as
a right module over itself) given by the formula ϕ(a) = a0a, where a0, a ∈ A. By
proposition 3.4.2, a0r ∈ R for any r ∈ R, a0 ∈ A.

Proposition 3.4.5. The radical R of a ring A coincides with the set of all
elements r ∈ A such that the element 1 − ra is right invertible for all a ∈ A.

Proof. Let r ∈ R, a ∈ A. Consider the right ideal (1− ra)A. If (1− ra)A = A,
then the element 1 − ra is right invertible. If (1 − ra)A �= A, then (1 − ra)A is
contained in a proper maximal right ideal I. Then 1− ra ∈ I. Since ra ∈ R ⊂ I,
we obtain that 1 ∈ I. A contradiction.
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Let now 1− ra be right invertible for all a. If r �∈ R, then there exists a proper
maximal right ideal J such that r �∈ J . Hence, rA + J = A, i.e., 1 = ra + j and
the element j = 1 − ra is not right invertible. A contradiction.

Proposition 3.4.6. The radical of a ring is the largest (with respect to inclu-
sion) two-sided ideal R among all two-sided ideals I such that 1 − i is two-sided
invertible for all i ∈ I.

Proof. By the previous proposition, R contains any such ideal I. We are going
to show the invertibility of 1−r for any r ∈ R. We know that 1−r is right invertible,
i.e., (1 − r)x = 1. It follows that 1 − x = −rx ∈ R and so 1 − (1 − x) = 1 + rx
is right invertible, i.e., xy = 1 for some y. But (1 − r)xy = ((1 − r)x)y = y, i.e.,
y = 1 − r and so the element 1 − r is left invertible.

In view of symmetry of proposition 3.4.6, there is the following consequence:

Proposition 3.4.7. The radical of a ring coincides with the intersection of all
maximal left ideals.

An important fact, which in many cases helps to calculate the radical of a ring,
is given by the following proposition.

Proposition 3.4.8. Let e2 = e ∈ A. Then rad(eAe) = eRe, where R is the
radical of A.

Proof. Assume r ∈ eRe. We shall show that for any a = ebe ∈ eAe the element
e− ra is right invertible in the ring eAe. By proposition 3.4.5, the element 1− ra
is right invertible in A. From a ∈ eAe it follows that there exists an element y
such that (1 − ra)y = 1. Multiplying this equality on the right and on the left by
e we obtain (e − ra)eye = e, i.e., e − ra is right invertible in eAe. By proposition
3.4.5, r ∈ rad(eAe).

Assume r = ere ∈ rad(eAe). Then for any a ∈ A the element e − rae is right
invertible in the ring eAe, i.e., (e− rae)y = e, where y = eye. Set e = e1 and e2 =
1−e1. Then e1e2 = e2e1 = 0 and e2

2 = e2. Write for the element 1−ra its two-sided
Peirce decomposition with respect to the decomposition 1 = e1 + e2 in the form

of a matrix of the order two: 1 − ra =
(

e1 − rae1 −rae2

0 e2

)
. Multiplying 1 − ra

on the right by the matrix Y1 =
(

y 0
0 e2

)
we obtain (1− ra)Y1 =

(
e1 −rae2

0 e2

)
.

Multiplying (1 − ra)Y1 on the right by the matrix
(

e1 rae2

0 e2

)
we obtain the

identity of the ring A. Hence, the element 1 − ra is invertible in R. Therefore we
have that rad(eAe) ⊂ R. Hence, rad(eAe) = eRe. The proposition is proved.

The following proposition is often useful.
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Proposition 3.4.9. Let M be a right A-module, and let R be the radical of
the ring A. Then MR ⊂ radM .

For any m ∈ M we define the homomorphism ψ : A → M by the formula
ψ(1) = m. Then ψ(R) = mR is a submodule of M and by proposition 3.4.2 it
belongs to radM for any m ∈ M , as required.

Proposition 3.4.10. Let B = Mn(A) be the ring of all square matrices of
order n over a ring A with radical R. Then rad(Mn(A)) = Mn(R).

Proof. We shall prove this proposition by induction on the order n. For n = 2
let eij be the matrix units5) of the ring B and X = rad(M2(B)). By proposition

3.4.8, we have e11Xe11 = R and e22Xe22 = R. Suppose,
(

0 a
0 0

)
∈ X. Then(

0 a
0 0

)
·
(

0 0
1 0

)
=
(

a 0
0 0

)
∈ X, which implies a ∈ R. So, e11Xe22 = R.

Analogously, e22Xe11 = R. Thus, rad(M2(A)) = M2(R). Let n ≥ 3 and X =
rad(Mn(A)). Write f1 = e11 + ... + en−1,n−1, f2 = e22 + ... + enn, f3 = e11 + enn.
Then by the induction hypothesis f1Xf1 = Mn−1(R), f2Xf2 = Mn−1(R) and by
the above f3Xf3 = M2(R). The proposition is proved.

The following Nakayama lemma plays an important role in many circum-
stances.

Lemma 3.4.11 (Nakayama’s Lemma). Let M be a finitely generated A-
module and MR = M . Then M = 0.

Proof. Let m1, ...,ms be a minimal system of generators of a nonzero module

M . Since M = MR, any m ∈ M can be written in the form m =
s∑

i=1

miri, where

r1, ..., rs ∈ R. In particular, m1 = m1r1 + ... + msrs. Consequently, m1(1 − r1) =
m2r2 + ... + msrs. Since the element 1 − r1 is invertible, we obtain m1 = m2a2 +
... + msas which contradicts the minimality property of s.

Nakayama’s lemma is often used in the following form:

Lemma 3.4.12 (Nakayama’s Lemma, version 2). Let N be a submodule
of a finitely generated module M and N + MR = M . Then N = M .

To prove this statement it suffices to apply Nakayama’s lemma to the quotient
module M/N .

3.5 THE RADICAL OF ARTINIAN RINGS

Historically, the notion of the radical was first introduced by E.Cartan for finite

5) I.e., the matrices with a 1 at position (i, j) and zeros everywhere else.
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dimensional nonassociative algebras and later was developed by T.Molien and
J.H.M.Wedderburn for studying the structure of finite dimensional associative al-
gebras over fields. Some years later E.Artin considered a new class of rings which
satisfied descending chain conditions (these rings are now called Artinian rings)
and extended Wedderburn’s theory and the notion of the radical to these rings.
I.M.Gel’fand introduced the notion of the radical for a normed ring as the inter-
section of all its maximal ideals. Finally, N.Jacobson introduced a generalization
of the notion of the radical to arbitrary rings, which now is known as the Jacobson
radical. For Artinian rings the Jacobson radical coincides with the classical Wed-
derburn radical. Therefore it is interesting to study the properties of the radical
for an Artinian ring.

Definition. An ideal I is called nilpotent if there exists a natural number n
such that In = 0.

Note that In = 0 means that a1a2...an = 0 for any n elements a1, a2, ..., an ∈ I.

Proposition 3.5.1 (C.Hopkins). The radical R of a right Artinian ring A
is nilpotent.

Proof. Let R be the radical of the ring A. Consider the set of all natural
powers Rn of the radical R. In this set there exists a minimal element X = Rn.
Obviously, X2 = X. Suppose X �= 0 and let Y be a minimal element in the set of
all right ideals Z of A such that Z ⊂ X and ZX �= 0. Evidently, yX �= 0 for some
y ∈ Y and (yX)X = yX2 = yX �= 0. Therefore yX = Y and, hence, yx = y for
some x ∈ X. We have y(1 − x) = 0. Since x ∈ X ⊂ R, by proposition 3.4.6 the
element 1 − x is invertible. Therefore y = 0. A contradiction.

Definition. An element a is called nilpotent if there exists a positive integer
n such that an = 0. An ideal is called a nil-ideal if all its elements are nilpotent.

Remark. There exist nil-ideals which are not nilpotent, as can be seen from
the following example.

Example 3.5.1.
Let A = k[x1, ..., xn, ...] be the polynomial ring over a field k in a countable

number of variables x1, x2, ..., xn,... and let J be the ideal generated by the set
of polynomials {x2

1, x
3
2, ..., x

n+1
n , ...}. Then in the quotient ring A = A/J the ideal

generated by images (under the natural projection A → A) of polynomials without
constant terms is, obviously, a nil-ideal but it is not a nilpotent ideal.

Proposition 3.5.2. The radical of a ring A contains all one-sided nil-ideals.

Here is a proof of this proposition for a right nil-ideal J taking into account
that by proposition 3.4.6 for left ideals one may use the left variant of proposition
3.4.5.

Let r be a nilpotent element and rn = 0. Then (1−r)(1+r+r2+...+rn−1) = 1
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and so 1 − r is an invertible element. Therefore for any i ∈ J and all a ∈ A the
element 1 − ia is invertible in A and by proposition 3.4.5 J ⊂ R.

Corollary 3.5.3. The Jacobson radical of a right Artinian ring is the largest
nilpotent ideal containing all one-sided nilpotent ideals.

Definition. A ring A is called semiprimitive if its Jacobson radical is equal
to zero.

The ring of integers Z and the ring of all square matrices over a division ring
are semiprimitive. At the same time the ring of p-integral numbers Z(p) is not
semiprimitive though its structure (in a way) is simpler than that of Z.

Proposition 3.5.4. If R is the radical of a ring A, then the quotient ring A/R
is semiprimitive.

The proof is left to the reader as an exercise.

Theorem 3.5.5. The following statements are equivalent for a ring A:
(a) A is semisimple;
(b) A is right Artinian and semiprimitive.

Proof.
(a) ⇒ (b). Obviously, the radical of a simple module is equal to zero. Therefore

this implication follows from proposition 3.4.3.
(b) ⇒ (a). Let R = 0. Then ∩Iα = 0, where Iα runs through all maximal

right ideals of the ring A. Because the ring A is right Artinian, we can choose
a finite number of maximal right ideals I1, ...,In such that

n
∩

k=1
Ik = 0. Denote

by ψi the natural projection of the ring A onto A/Ik (k = 1, ..., n). We set
ψ(a) = (ψ1(a), ..., ψn(a)). Evidently, ψ is a monomorphism of the right module

A into a semisimple module
n
⊕

k=1
A/Ik. By proposition 2.2.4 the module AA is

semisimple.

Theorem 3.5.6. A right Artinian ring A is right Noetherian.

Proof. Consider in the ring A a strictly descending chain of powers of the
radical R: A ⊃ R ⊃ R2 ⊃ ... ⊃ Rn−1 ⊃ Rn = 0. All quotient modules A/R,
R/R2,..., Rn−1/Rn are Artinian. At the same time, they are modules over the
ring A/R which is semisimple by theorem 3.5.5. Then by theorem 2.2.5 and
proposition 3.1.10 each of these modules can be decomposed into a direct sum
of a finite number of indecomposable modules. Therefore they are Noetherian.
Thus, the modules Rn−1/Rn = Rn−1 and Rn−2/Rn−1 are Noetherian. Hence, by
proposition 3.1.3, the module Rn−2 is Noetherian. Continuing this process in a
similar way we obtain that all modules Rn−1, Rn−2,...,R, A are Noetherian, as
required.
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Remark. Note that the example of the ring of integers shows that the inverse
statement is not true.

Recall that a ring A is called simple if it has no proper two-sided ideals.

Proposition 3.5.7. A right Artinian ring A is simple if and only if it is
isomorphic to the ring of square matrices over a division ring.

Proof. From proposition 2.2.3 it follows that if A � Mn(D), where D is a
division ring, then it is simple.

Conversely, let a ring A be right Artinian and simple. Since the radical of the
ring A is a two-sided ideal and A is simple, radA = 0, i.e., A is semiprimitive. By
theorem 3.5.5 it is semisimple. Therefore, by the Wedderburn-Artin theorem, A
is isomorphic to a direct sum of a finite number of full matrix rings over division
rings. Obviously, each direct summand is a two-sided ideal. Therefore A � Mn(D),
where D is a division ring.

Note that because the radical of a right Artinian ring is nilpotent, we have a
lemma similar to Nakayama’s lemma for any module over such a ring. Namely, the
following statement is true, which we shall call Nakayama’s lemma for Artinian
rings.

Lemma 3.5.8 (Nakayama’s lemma for Artinian rings). Let A be a right
Artinian ring, M be a right A-module and N + MR = M . Then N = M .

3.6 A CRITERION FOR A RING TO BE ARTINIAN OR NOETHERIAN

In this section we give a useful criterion which helps us to decide whether a ring
is Artinian (or Noetherian).

Theorem 3.6.1. Let A be an arbitrary ring with an idempotent e2 = e ∈ A.
Set f = 1 − e, eAf = X, fAe = Y , and let

A =
(

eAe X
Y fAf

)

be the corresponding two-sided Peirce decomposition of the ring A. Then the ring
A is right Noetherian (Artinian) if and only if the rings eAe and fAf are right
Noetherian (Artinian), X is a finitely generated fAf-module and Y is a finitely
generated eAe-module.

Proof. Let A be a right Noetherian ring and I be a right ideal in eAe. Set
I = (I, IX). Obviously, I is a right ideal in the ring A. Consider an ascending
chain I1 ⊆ I2 ⊆ ... of right ideals in the ring eAe and the associated chain
I1 ⊆ I2 ⊆ ... of ideals in A. Since the ring A is right Noetherian, this chain
stabilizes, i.e., In = In+1 = ..., and thus In = In+1 = .... Therefore, the ring eAe
is right Noetherian.
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Let L ⊆ X be a fAf -submodule of the module X. Clearly, L = (LY, L) is a
right ideal in the ring A. Suppose that fAf -module X is not finitely generated.
Then one can construct a strictly ascending chain of submodules in X : L1 ⊆ L2 ⊆
..., which implies the existence of a strictly ascending chain of right ideals L1 ⊆
L2 ⊆ ... in the ring A. But this contradicts the fact that A is right Noetherian.

Analogously, one can prove that fAf is a right Noetherian ring and Y is a
finitely generated right eAe-module.

Conversely, suppose now that the rings eAe and fAf are right Noetherian and
the modules X and Y are finitely generated. Let I be a right ideal of the ring A
lying in eA. Consider the Peirce decomposition of the right ideal I = Ie ⊕ If .
Obviously, Ie = I is a right ideal in the ring eAe while If = L is an fAf -
submodule in X.

Consider an ascending chain of right ideals in the ring A lying in eA: I1 ⊆
I2 ⊆ .... Using this chain we can construct two ascending chains I1 ⊆ I2 ⊆ ...
and L1 ⊆ L2 ⊆ .... They must stabilize, which implies that the right ideal eA is
Noetherian.

Similarly, one can prove that the ideal fA is Noetherian. Therefore, A is a
right Noetherian ring as a direct sum of Noetherian modules.

Since a right Artinian ring is also right Noetherian, by proposition 3.1.10, any
finitely generated module over this ring is both Artinian and Noetherian. Using
this fact one can prove analogously the theorem in the Artinian case. The theorem
is proved.

Corollary 3.6.2. Let K ⊂ L be fields such that dimKL = ∞. Then the ring

A =
(

K L
0 L

)

is right Noetherian and right Artinian, but neither left Noetherian nor left Ar-
tinian.

Example 3.6.1
Let Z be the ring of all integers and Q be the field of all real numbers. Consider

the following ring

H(Z, 1, 1) =
(

Z Q
0 Q

)
.

Since Z and Q are Noetherian rings and Q is a finitely generated Q-module,
H(Z, 1, 1) is a right Noetherian ring.

However, H(Z, 1, 1) is not a left Noetherian ring because Q is an infinitely
generated Z-module. Since Z is not an Artinian ring, the ring H(Z, 1, 1) is neither
right nor left Artinian.
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Example 3.6.2
Consider the following ring:

H(Q, 1, 1) =
(

Q R
0 R

)
.

This ring, by corollary 3.6.2, is right Artinian (and therefore right Noetherian)
but not left Artinian.

3.7 SEMIPRIMARY RINGS

In this section we consider an important class of rings.

Definition. A ring A with radical R is called semiprimary if A/R is semisim-
ple and R is nilpotent.

Semiprimary rings form a class of rings that contains both left and right Ar-
tinian rings. However, there are semiprimary rings which are neither left Artinian
nor right Artinian. Consider the ring of 2× 2 upper triangular real matrices with
all diagonal entries rational:

A =
(

Q R
0 Q

)
.

The radical of this ring

radA =
(

0 R
0 0

)

and so (radA)2 = 0 and A/R is semisimple. Thus, A is a semiprimary ring.
However, since R is an infinite dimensional vector space over the field Q, by
theorem 3.6.1, this ring is neither left nor right Artinian.

Theorem 3.7.1 (Hopkins-Levitzki). Let A be a semiprimary ring. Then
for any right A-module M the following statements are equivalent:

(1) M is Artinian.
(2) M is Noetherian.
(3) M has a composition series.

Proof.
(3) ⇒ (1) and (3) ⇒ (2) follows from proposition 3.2.2.
(1) ⇒ (3). Let A be a semiprimary ring with nilpotent radical R so that

Rn = 0 and A = A/R. Suppose M is a right Artinian module and consider a
chain of submodules:

M ⊇ MR ⊇ MR2 ⊇ ... ⊇ MRn = 0.
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To complete the proof it suffices to show that any factor Mk = MRk/MRk+1 has
a composition series. But Mk is a module over A. Since A is a semisimple ring,
by theorem 2.2.5, Mk is a semisimple module and therefore it is a direct sum of
simple A-modules. Since Mk is an Artinian module, this sum is finite, so Mk has
a composition series as A-module.

(1) ⇒ (2) is proved analogously.

Corollary 3.7.2 (Hopkins-Levitzki). A ring A is right Artinian if and only
if A is right Noetherian and semiprimary.

Proof. By proposition 3.5.1 and theorem 3.5.6, a right Artinian ring is right
Noetherian and semiprimary.

Due to the equivalence (1) ⇐⇒ (2) from the previous theorem applied to the
right regular module AA, it follows that a right Noetherian and semiprimary ring
is right Artinian.

Proposition 3.7.3. If e2 = e is an idempotent of a semiprimary ring A, then
eAe is semiprimary as well.

Proof. Denote by J the Jacobson radical of the ring eAe. Then, by proposi-
tion 3.4.8, J = eRe, where R is the Jacobson radical of the ring A. Since R is
nilpotent, J is also nilpotent. Since the ring A/R is Artinian, by theorem 3.6.1,
eAe/J is also Artinian. Then by theorem 3.5.5 the ring eAe/J is semisimple,
and so eAe is a semiprimary ring.

The ascending chain condition was introduced by R.Dedekind in connection with
his study of ideals in algebraic number fields. J.H.M.Wedderburn in his paper
on the structure of algebras uses ”descending chain condition” arguments without
employing that term. It was W.Krull and E.Noether who began to use these
notions systematically in their investigations. W.Krull used them for the study of
Abelian groups with operators and E.Noether used them for the characterization
of Dedekind rings.

In 1921 E.Noether extended the Dedekind theory of ideals and the represen-
tation theory of integral domains (and rings of algebraic numbers) to the case of
arbitrary commutative rings satisfying a.c.c. These rings are called now Noethe-
rian rings.

In two great papers Idealtheorie in Ringenbereichen // Math. Ann, v.83
(1921), p.24-66 and Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und
Funktionenkörpern // Math. Ann., v.96 (1927), p.26-61 on ideal theory Emmy
Noether founded the abstract study of rings with chain conditions. In the first
paper she gave an abstract treatment of the decomposition theories of D.Hilbert,
E.Lasker and F.S.Macaulay for polynomial rings, and in the second one an ax-

3.8 NOTES AND REFERENCES
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iomatic treatment of theories of R.Dedekind and L.Kronecker for algebraic num-
bers and function fields. (E.Lasker (1868-1941) was a famous German mathe-
matician and chess master. In particular, he introduced the notion of a primary
ideal and developed the theory of primary decomposition. He was the chess world
champion for 27 years. In 1921 E.Lasker lost the world championship match to
the Cuban chess master X.P.Capablanca.)

J.Levitzki in the paper: On rings which satisfy the minimum condition for
right-hand ideals // Compositto Math., v.7 (1939), p.214-222 and C.Hopkins in
the paper: Rings with minimal condition for left ideals // Ann. of Math., v.40
(1939), p.712-730 proved independently that a ring satisfying d.c.c. on left ideals
also satisfies a.c.c. on them. They proved that the radical of an Artinian ring
is nilpotent and so it was proved that the Wedderburn-Artin theorem is true for
rings with only d.c.c.

Artinian modules and Artinian rings were first systematically studied in the
book: E.Artin, C.Nesbitt, R.Thrall, Rings with Minimum condition, Michigan,
1944.

Fitting’s lemma was proved by H.Fitting in his paper: Die Theorie der Au-
tomorphismenringe Abelscher Gruppen und ihr Analogon bei nicht kommutativen
Gruppen // Math. Ann., v.107 (1933), p.514-542.

The Jordan-Hölder theorem was first proved for composition series of a finite
group. C.Jordan proved that for any two composition series of a finite group G,
the list of the orders of the composition factors in one series is a permutation of the
corresponding list for the other series (see C.Jordan, Théorèmes sur les équations
algébriques // J. Math. Pures Appl. (2) 14 (1869), p.139-146. and C.Jordan,
Commentaires sur Galois // Math. Annalen, v.1 (1869), p.141-160). The fact
that any two composition series for G are isomorphic was proved by O.Hölder in
his paper Zurückführung einer beliebigen algebraischen Gleichung auf eine Kette
von Gleichungen // Math. Ann., v.34 (1889), p.26-56.

The Krull-Schmidt theorem (one also finds the name Krull-Remak-Schmidt
theorem) was first proved for finite Abelian groups by R.Remak in his paper Über
die Zerlegung der endlichen Gruppen in direkte unzerlegbare Faktoren // J. Reine
Angew. Math., v.139 (1911), p.293-308 and by W.Krull in the paper Über verall-
gemeinerte endliche Abelsche Gruppen // Math. Z., 23, 1925, pp.161-196 and for
infinite Abelian groups with finiteness conditions by O.Yu.Schmidt in the paper
Über unendliche Gruppen mit endlicher Kette // Math. Z., 29, 1928, 34-41. This
result for rings has been proved by W.Krull in the paper Algebraische Theorie der
Ringe II // Math. Ann., 91 (1924), p.1-46.

The Hilbert basis theorem for commutative rings was proved by D.Hilbert in
his paper Über die Theorie der algebraischen Formen // Math. Ann., 1890, Bd.
36, S.473-534.

Historically, the notion of a radical was directly connected with the notion
of semisimplicity. It is interesting to remark that the radical was studied first
in the context of nonassociative rings. Namely, the notion of a radical appeared
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during the investigation of finite dimensional Lie algebras, first in a particular case
in a paper of G.Scheffers: Zurückführung complexer Zahlensysteme auf typische
Formen // Math. Ann. XXXIX (1891), p.293-390 and then in the papers of
T.Molien: Über Systeme höherer complexer Zahlen // Math. Ann. XLI (1893),
p.83-156 and E.Cartan : Les groupes bilinéaires et systémes de nombres complexes
// Ann. Fac. Sc. Toulouse, 1898. The term ”radical” is due to G.Frobenius.

Studying finite dimensional algebras over a field J.H.M.Wedderburn defined
for every such algebra A an ideal, radA, which is the largest nilpotent ideal in A,
i.e., the sum of all the nilpotent ideals in A. In parallel with Cartan’s theory of
finite dimensional Lie algebras, he called a finite dimensional associative algebra
A semisimple if and only if its radical is zero. E.Artin extended Wedderburn’s
theory of semisimple algebras to rings with minimum condition. For such a ring
A the sum of all its nilpotent ideals is nilpotent, so A has a largest nilpotent ideal
radA, called the Wedderburn radical of A.

For a ring A, which does not satisfy Artin’s descending chain condition, the
sum of all nilpotent ideals need no longer be nilpotent; thus, A may not possess
a largest nilpotent ideal, and so we no longer have the notion of a Wedderburn
radical. The problem of finding an appropriate generalization of Wedderburn’s
radical for an arbitrary ring was solved by N.Jacobson in his fundamental paper
The radical and semisimplicity for arbitrary rings //Amer. J. Math., 1945, v.67,
pp.300-320, where he introduced the general notion of a radical for an arbitrary
ring. In the introduction of this paper he wrote: ”The radical of an algebra with
a finite basis, or, more generally, of a ring A that satisfies the descending chain
condition is defined to be the join of the nil right (left) ideals of A. The importance
of the radical for the structure theory of these rings is due to the facts that 1)
the radical R is two-sided ideal whose difference ring A − R is semisimple in the
sense that its radical is 0, and 2) the structure of semisimple rings satisfying the
descending chain condition can be subjected to a thorough analysis that leads
in many important cases to a complete classification. Several investigations of
nil ideals in arbitrary rings have been made recently but none of these has led
to a structure theory for general semisimple rings (see R.Baer, Radical ideals //
American Journal of mathematics, vol. LXV (1943), pp.537-568). This is one of
a number of indications that in order to develop a satisfactory structure theory
for arbitrary rings it is necessary to abandon the concept of a nil ideal in defining
the radical.

Other possibilities for defining a radical are afforded by two important charac-
terizations of the radical R of an algebra A with a finite basis. One of these, due to
Perlis, makes use of the notion of quasi-regularity (see S.Perlis, A characterization
of the radical of an algebra // Bulletin of the American Mathematical Society, vol.
48 (1942), pp.128-132). An element z of A is right quasi-regular if there exists a z′

in A such that z + z′ + zz′ = 0. Perlis has shown that z ∈ R if and only if u+ z is
right quasi-regular for all right quasi-regular u. A second characterization of R for
algebras with an identity is that R is the intersection of the maximal right (left)
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ideals of A (see N.Jacobson, The theory of Rings // Mathematical Surveys, vol.
2 (New York, 1943), cf. also G.Birkhoff, The radical of a group with operators,
Bulletin of the American Mathematical Society, vol. 49 (1943), pp.751-753). A
start in the investigation of the first characterization as a possibility for defining
a radical for an arbitrary ring A was made by Baer, who showed that the totality
R of elements z that generated right ideals containing only right quasi-regular
elements is a right ideal (see R.Baer, Radical ideals, p.562). This definition of the
radical has been independently proposed by Hille and Zorn who proved that R is
two-sided ideal and that if A has an identity, R is the intersection of the maximal
right (left) ideals of A. These results were announced by Hille in his Colloquium
Lectures in August 1944)”.

For a ring satisfying a one-sided minimum condition, the Jacobson radical
coincides with the classical Wedderburn radical, so, in general, the former provides
a good substitute for the latter.

Earlier, in 1941, studying the special class of normed rings I.M.Gel’fand intro-
duced the notion of the radical of such rings in the form of the intersection of all
maximal ideals (see I.M.Gel’fand, Normierte Ringe// Mat. sb., new series, 1941,
v.9, p.3-23 and I.M.Gel’fand, Ideale und primare ideale in normierten Ringen //
Mat. sb., new series, 1941, v.9, p.41-48).

Also, there are several other radicals which can be defined for arbitrary rings,
and which provide alternate generalizations of the Wedderburn radical. These
other radicals may not be as fundamental as the Jacobson radical, but in one way
or another, they reflect more accurately the structure of the nil (and nilpotent)
ideals of the ring, so one might say that these other radicals resemble the Wedder-
burn radical more than does the Jacobson radical. The general theory of radicals
was systematically studied in the books V.A.Andrunakievich, Yu.M.Ryabukhin,
Radicals of Algebras and Structural theory, Nauka, Moscow, 1979; N.J.Divinsky,
Rings and Radicals, Univ. of Toronto Press, Toronto, 1965. It should be noted
that there are also papers of other mathematicians studying properties of radicals
in different types of rings (see, for example, N.J.Divinsky, J.Krempa, A.Sulinsky,
Strong radical properties of alternative and associative rings // J.Algebra, v.17,
1971, p.369-388; E.Jespers, J.Krempa, E.R.Puczylowski, On radicals of graded
rings // Comm. Algebra, v.10, 1982, N17, pp.1849-1854).

The idea of Nakayama’s lemma originated from the work of more than one
mathematician. In the commutative case and when M itself is an ideal of R,
(1) ⇒ (2) was discovered and used effectively by W.Krull. N.Jacobson proved
this lemma in the case when M is a right ideal contained in the radical (see
N.Jacobson, The radical and semi-simplicity for arbitrary rings // Amer. J. Math.
v.67 (1945), p.300-320). G.Azumaya carried over Jacobson’s proof to the module
case (see G.Azumaya, On maximally central algebras, Nagoya Math. J. v.2 (1951),
p.119-150). An alternative proof derived from a generalized result was presented
by T.Nakayama (see T.Nakayama, A remark on finitely generated modules //
Nagoya Math. J., v.3 (1951), p.139-140).
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A criterion for a ring to be Noetherian or Artinian first was proved in the
papers V.V.Kirichenko, Generalized uniserial rings // Mat. sb. v.99(141), N4
(1976), p.559-581 and V.V.Kirichenko, Rings and Modules, Kiev, 1981.

Semiprimary rings naturally arise as endomorphism rings of modules of fi-
nite length. The structure and properties of semiprimary rings was consid-
ered by G.Hopkins, Rings with minimal condition for left ideals // Ann. of
Math., v.40 (1939), p.712-730); J. Levitzki, A characteristic condition for semipri-
mary rings”, Duke Math. J., 1944, v.11, p.267-368, and On rings which satisfy
the minimum condition for right-hand ideals // Compositto Math., v.7 (1939),
p.214-222; K.Asano, Über Hauptidealringe mit Kettensatz // Osaka Math. J.,
v.1(1949), p.52-61; Über die Quotientenbildung von Schiefringen // J. Math.
Japan, v.1(1949), p.73-79; S.U.Chase Direct product of modules // Trans. Amer.
Math. Soc., v.97 (1960), p.457-473 and others.



4. Categories and functors

4.1 CATEGORIES, DIAGRAMS AND FUNCTORS

In this section we introduce some of the basic language of category theory involving
the notions of category and functor, which include the concept of a class. This
concept is intended to generalize the concept of a set and we use the Gödel-Bernay
axioms of the set theory, whose objects are classes. We assume the reader is more
or less familiar with notions of a set and a class. For our purposes all we need
to know is that the class concept is like the set concept, only some what broader.
Besides in set theory it is not possible to carry out the operations over classes
which can lead to problems such as Russell’s paradox. All sets are classes and all
the elementary set operations, like union, intersection, formation of function, etc.,
can be carried out for classes as well.

Definition. We shall say that we have a category C if there are defined:
1) a class ObC, whose elements are called the objects of the category C;
2) a set MorC, whose elements are called the morphisms of the category C;
3) for any morphism f ∈ MorC there is an ordered pair of objects (X,Y ) of

the category C (we shall say that f is a morphism from an object X to an object
Y and write f : X → Y ). The set of all morphisms from X to Y will be denoted
by HomC(X,Y ), or shortly Hom(X,Y );

4) for any ordered triple X,Y, Z ∈ ObC and any pair of morphisms f : X → Y
and g : Y → Z there is a uniquely defined morphism gf : X → Z, which is called
the composition or product of morphisms f and g.

These objects, morphisms and compositions are required to satisfy the following
conditions:

5) composition of morphisms is associative, i.e., for any triple of morphisms
f, g, h one has h(gf) = (hg)f whenever these products are defined;

6) if X �= X ′ or Y �= Y ′, then Hom(X,Y ) and Hom(X ′, Y ′) are disjoint sets;
7) for any object X ∈ ObC there exists a morphism 1X ∈ Hom(X,X) such

that f · 1X = f and 1X · g = g for any morphisms f : X → Y and g : Z → X.
It is easy to see that a morphism 1X with the above properties is unique. It is

called the identity morphism of the object X.
If in a category C the class ObC is actually a set, then that category is called

small.

Example 4.1.1.
Sets - category of sets. ObSets is the class of all sets. Hom(A,B) is the set

of all maps from A to B.

82
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Example 4.1.2.
Gr - category of groups. ObGr is the class of all groups. Hom(A,B) is the

set of all group homomorphisms from A to B.

Example 4.1.3.
Ab - category of Abelian groups. ObAb is the class of all Abelian groups.

Hom(A,B) is a set of all Abelian group homomorphisms from A to B.

Example 4.1.4.
Ring - category of rings. ObRing is the class of all nonzero rings with 1.

Hom(A,B) is a set of all (1-preserving) ring homomorphisms from A to B.

Example 4.1.5.
The main example of a category, which we shall consider in this book, is the

category C of right (resp. left) modules over a ring A. ObC is the class of all
right (resp. left) A-modules. Hom(X,Y ) is a set of all module homomorphisms
from X to Y . The category of right (resp. left) A-modules is often denoted by
mod-A (resp. A-mod) or MA (resp. AM). If the ring A is commutative we make
no distinction between MA and AM.

Example 4.1.6.
Given a category C, form the opposite category Cop: ObCop = ObC, while

HomCop(X,Y ) = HomC(Y, X). Composition of morphisms in Cop is defined
reversed, i.e., if ∗ denotes composition in Cop then f ∗ g = g · f .

We shall often use diagrams to illustrate the compositions of morphisms. Let C
be a category and X,Y ∈ ObC. Any morphism ϕ ∈ Hom(X,Y ) can be illustrated
by an arrow:

X
ϕ

Y

Let Mi, Ni ∈ ObC and ϕi ∈ Hom(Mi, Ni) (i = 1, 2), α ∈ Hom(M1,M2),
β ∈ Hom(N1, N2). Consider a diagram of morphisms of the form

M1
α

ϕ1

M2

ϕ2

N1
β

N2

(4.1.1)

If ϕ2α = βϕ1, then diagram (4.1.1) is said to be commutative.
Analogously, a triangular diagram of morphisms

M1
α

ϕ1

M2

ϕ2

N

(4.1.2)
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is called commutative if ϕ2α = ϕ1.
In general, a diagram is called commutative if all its square and triangular

and other subdiagrams are commutative. In other words, if in this diagram all
compositions of morphisms taken along each path that start from the same point
and finish at the same point are equal.

Note that a diagram is not a mathematical object but only a picture which
helps reading complicated expressions.

One of the most important concepts in category theory is the notion of a
functor.

Definition. A covariant functor F from a category C to a category D is
a pair of maps Fob : ObC → ObD and Fmor : MorC → MorD satisfying the
following conditions:

1) if X,Y ∈ ObC, then to each morphism f : X → Y in MorC there corre-
sponds a morphism Fmor(f) : Fob(X) → Fob(Y ) in MorD;

2) Fmor(1X) = 1Fob(X) for all X ∈ ObC;
3) if the product of morphisms gf is defined in C, then

Fmor(gf) = Fmor(g)Fmor(f).

Usually, instead of Fmor(f) and Fob(X) one simply writes F (f) and F (X).

A contravariant functor from a category C to a category D is literally a
covariant functor from C to Dop. That is, we have the following definition.

A contravariant functor F from a category C to a category D is a pair of
maps Fob : ObC → ObD and Fmor : MorC → MorD satisfying the following
conditions:

1) if X,Y ∈ ObC, then to each morphism f : X → Y in MorC there corre-
sponds a morphism Fmor(f) : Fob(Y ) → Fob(X) in MorD;

2) Fmor(1X) = 1Fob(X) for all X ∈ ObC;
3) if the product of morphisms gf is defined in C, then

Fmor(gf) = Fmor(f)Fmor(g).

A functor is defined as either a covariant functor or a contravariant functor.
A functor F is called additive if for any pair of morphisms f1 : X → Y and

f2 : X → Y we have F (f1 + f2) = F (f1) + F (f2). 1)
Besides functors in one variable, one may also consider functors in many vari-

ables. Such a functor may be covariant in some of its variables and covariant in
others. A functor in two variables is often called a bifunctor.

1) Here it is assumed that here is a sensible way to add morphisms in the categories C and
D, as is e.g. the case for categories of modules. (But not e.g. for the categories of sets or
noncommutative groups.)
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Definition. Let F and G be two functors from a category C to a category
D. A morphism (or a natural transformation) from the functor F to the
functor G is a map ϕ which assigns to each object X ∈ ObC a morphism ϕ(X) :
F (X) → G(X) of the category D with the following property: for any pair of
objects X,Y ∈ ObC and any any morphism f : X → Y of the category C we have
G(f)ϕ(X) = ϕ(Y )F (f), i.e., the following diagram commutes:

F (X)
ϕ(X)

F (f)

G(X)

G(f)

F (Y )
ϕ(Y )

G(Y )

A morphism of functors will be simply denoted by ϕ : F → G. If for every X ∈
ObC the morphism ϕ(X) is an isomorphism, then ϕ is an natural isomorphism
of functors which is written ϕ : F � G.

Suppose we have another functor H : C → D and a morphism of functors
ψ : G → H. In this situation one can define the composition ψϕ : F → H by
setting (ψϕ)(X) = ψ(X)ϕ(X). It is not difficult to verify that with this definition
the set of functors from the category C to the category D with the set of their
morphisms forms a category, which is called the functor category Func(C, D).

4.2 EXACT SEQUENCES. DIRECT SUMS AND DIRECT PRODUCTS

Consider the category of right A-modules over a fixed given ring A. A sequence
of A-modules and homomorphisms

... −→ Mi−1
fi−→ Mi

fi+1−→ Mi+1 −→ ... (4.2.1)

is said to be exact at Mi if Imfi = Kerfi+1. If the sequence (4.2.1.) is exact at
every Mi, then it is called exact.

In particular, a sequence
0 −→ N

f−→ M

is exact if and only if Kerf = 0, i.e., f is injective. Analogously, a sequence

N
f−→ M −→ 0

is exact if and only if Imf = M , i.e., f is surjective.
An exact sequence of the form

0 −→ N
f−→ M

g−→ L −→ 0 (4.2.2)

is called a short exact sequence. Since this sequence is exact at N , f is injective
and we can consider Imf as a submodule of M and identify it with N . Similarly,
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since the sequence is exact at L, we conclude that g is surjective and L can be
identified with the factor module M/Kerg. Since the sequence is exact at M ,
we have Imf = Kerg. Thus, the exact sequence (4.2.2) may be expressed in the
equivalent form

0 −→ Imf
f−→ M

g−→ M/Imf −→ 0 (4.2.3)

where f is the canonical embedding and g is the natural projection.
A short exact sequence (4.2.2) is said to be split if there exist homomorphisms

f : M → N and g : L → M such that ff = 1N and gg = 1L.2)
Let X ⊕ Y be the external direct sum of modules X and Y . Then there exist

the following canonical embeddings
iX : X → X ⊕ Y given by x �→ (x, 0)
iY : Y → X ⊕ Y given by y �→ (0, y)

and canonical projections
πX : X ⊕ Y → X given by (x, y) �→ x
πY : X ⊕ Y → Y given by (x, y) �→ y.
Clearly, πX iX(x) = π(x, 0) = x, i.e., πX iX = 1X is the identity map on X, and

analogously, πY iY = 1Y is the identity on Y . Furthermore, iXπX(x, y) = iX(x) =
(x, 0) and iY πY (x, y) = iY (y) = (0, y). Therefore iXπX + iY πY = 1X⊕Y is the
identity map on X ⊕ Y .

Consider an exact sequence of the form:

0 −→ X
iX−→ X ⊕ Y

πY−→ Y −→ 0 (4.2.4)

where iX and πY are the canonical maps defined above. Then there is the following
commutative diagram

0 � X
iX

�
πX

X ⊕ Y
πY

�
iY

Y � 0, (4.2.5)

i.e., πX iX = 1X and πY iY = 1Y . Thus, the sequence (4.2.4) is split.
We are going to prove the inverse statement. Suppose

0 −→ X
f−→ M

g−→ Y −→ 0 (4.2.6)

is an exact sequence and there exists a homomorphism g : Y → M such that
gg = 1Y . We construct a homomorphism ϕ : X ⊕ Y → M by setting ϕ(x, y) =
f(x) + g(y) and show that it is an isomorphism. Let ϕ(x, y) = 0. Since X ⊕ Y is
a direct sum, we can write down the canonical maps iX , iY , πX and πY defined
above. Because iXπX = 1X and iY πY = 1Y , we have 0 = ϕ(x, y) = fπX(x, y) =
f(x). Since f is a monomorphism, this implies x = 0. On the other hand,
0 = ϕ(x, y) = gπY (x, y) = g(y). Since gg = 1Y , from the last equality it follows
that 0 = gg(y) = y. Therefore ϕ is a monomorphism.

2) In fact if either f or g exists (such that ff = 1N , resp. gg = 1M ), so does the other. See
below.
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Let m be any element in M . Consider the element m1 = m−gg(m) ∈ M . Since
gg = 1Y , we have g(m1) = g(m − gg(m)) = g(m) − ggg(m) = g(m) − g(m) = 0,
i.e., m1 ∈ Kerg. Since Kerg = Imf there exists x ∈ X such that m1 = f(x).
If we write y = g(m) ∈ Y , then we obtain m = f(x) + g(y). Therefore, ϕ is an
epimorphism and, consequently, is an isomorphism.

Suppose that we have an exact sequence (4.2.6) and a homomorphism f : M →
X such that ff = 1X . Then we can define a homomorphism ψ : M → X ⊕ Y as
follows ψ(m) = (f(m), g(m)). Assume ψ(m) = 0, then f(m) = 0 and g(m) = 0,
i.e., m ∈ Kerg. Since Kerg = Imf , there exists x ∈ X such that m = f(x).
Taking into account that ff = 1X we have 0 = f(m) = ff(x) = x. Hence, x = 0
and m = f(x) = 0. Therefore ψ is a monomorphism.

Let’s now show that ψ is an epimorphism. Consider an element (x, y) ∈ X⊕Y .
Since g is an epimorphism, there exists an element m1 ∈ M such that g(m1) = y.
Denote it by m1 = g−1(y) and consider the element m = f(x−fg−1(y))+g−1(y).
Since ff = 1X , we have f(m) = ff(x − fg−1(y)) + fg−1(y) = x − fg−1(y) +
fg−1(y) = x. Taking into account that gf = 0 we have g(m) = gf(x−fg−1(y))+
gg−1(y) = y. Therefore any element (x, y) ∈ X ⊕ Y can be written in the form
(x, y) = (f(m), g(m)), where m is defined as above. Therefore ψ is an epimorphism
and, consequently, an isomorphism.

Thus, we have proved the following proposition.

Proposition 4.2.1. The following statements for an exact sequence

0 −→ X
f−→ M

g−→ Y −→ 0

are equivalent:
1) the sequence is split;
2) there exists a homomorphism g : Y → M such that gg = 1Y ;
3) there exists a homomorphism f : M → X such that ff = 1X ;
4) M � X ⊕ Y .

In section 1.5 the notions of direct sum and direct product of modules were
introduced. External direct sums and direct products of modules can be also de-
scribed in terms of set of homomorphisms as has been done above for two modules.
In general, a direct sum (resp. direct product) of modules Xi (i ∈ I) defines for
each i ∈ I a canonical injection σi and a canonical projection πi

Xi
σi−→ ⊕

i∈I
Xi

πi−→ Xi

(resp. Xi
σi−→
∏
i∈I

Xi
πi−→ Xi), where σixi = (..., 0, xi, 0, ...), πi(..., xj , ..., xi, ...) =

xi, satisfying the following conditions:
1) πiσi = 1Xi

and πiσj = 0 for i �= j;
2) if the set I is finite, i.e., I = {1, 2, ..., n}, and X = X1 ⊕ ... ⊕ Xn, then

σ1π1 + ... + σnπn = 1X ;
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if the set I is infinite, then instead of 2) for a direct sum we have:
2′) each element x ∈ X can be written in the form of a finite sum x = σi1πi1x+

... + σin
πin

x;
and for a direct product we have:
2′′) if we have a set of elements {xi}, with only one element xi ∈ Xi for each

i ∈ I, then there exists a unique element x ∈
∏
i∈I

Xi such that πix = xi for each

i ∈ I.

The following statements are very useful and they are known as the universal
properties of direct sums and direct products.

Proposition 4.2.2. Let ϕi : Xi → Y be a set of homomorphisms of A-modules,
i ∈ I. Then there exists a unique homomorphism ψ such that the diagrams

Xi
σi

ϕi

⊕
i∈I

Xi

ψ

Y

(4.2.7)

are commutative for each i ∈ I.

Proof. Let x ∈ ⊕
i∈I

Xi. It can be written in the form x = σ1π1x + ... + σnπnx,

where the πk are the canonical projections. Let ψx = ϕ1π1x + ... + ϕnπnx. It
is easy to see that ψ is a A-homomorphism and ψσixi = ϕiπiσixi = ϕixi. If ψ′

is another homomorphism from ⊕
i∈I

Xi to Y , which makes the diagrams (4.2.7)

commutative, then (ψ − ψ′)(σixi) = 0 for all i ∈ I and so (ψ − ψ′)x = 0 for all
x ∈ ⊕

i∈I
Xi. Thus ψ = ψ′.

Proposition 4.2.3. Let ϕi : Y → Xi be a set of homomorphisms of A-modules,
i ∈ I. Then there exists a unique homomorphism ψ such that the diagrams

Y

ψ
ϕi

∏
i∈I

Xi
πi

Xi

(4.2.8)

are commutative for each i ∈ I.

Proof. Let y ∈ Y and ϕiy = xi ∈ Xi. By the properties of the direct product,
there exists a unique element x ∈

∏
i∈I

Xi such that πix = xi. Then we set ψy =

x ∈ X. Obviously, ψ is an A-homomorphism and πiψ = ϕi for each i ∈ I. If
ψ′ is another homomorphism from Y to

∏
i∈I

Xi, which makes the diagrams (4.2.8)
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commutative, then πi(ψ − ψ′)y = 0 for all i ∈ I and so all components of the
element (ψ − ψ′)y ∈

∏
i∈I

Xi are equal to zero. This means that (ψ − ψ′)y = 0 for

all y ∈ Y , i.e., ψ − ψ′ = 0.

Lemma 4.2.4 (Five Lemma). Let

M1
f1

ϕ1

M2
f2

ϕ2

M3
f3

ϕ3

M4
f4

ϕ4

M5

ϕ5

N1
g1

N2
g2

N3
g3

N4
g4

N5

(4.2.9)

be a commutative diagram with exact rows and isomorphisms ϕi, i = 1, 2, 4, 5.
Then ϕ3 is also an isomorphism.

Proof. Let x ∈ M3 be in the kernel of ϕ3, i.e., ϕ3x = 0. Then ϕ4f3x =
g3ϕ3x = 0 and thus, since ϕ4 is an isomorphism, f3x = 0, i.e., x ∈ Kerf3. Now,
in view of the exactness at M3, Kerf3 = Imf2. This means that there is an
element y ∈ M2 such that x = f2y. In addition, g2ϕ2y = ϕ3f2y = ϕ3x = 0. Thus,
ϕ2y ∈ Kerg2 = Img1, i.e., ϕ2y = g1z for some z ∈ N1. However, ϕ1 is also an
isomorphism and therefore z = ϕ1u with u ∈ M1 and ϕ2f1u = g1ϕ1u = g1z = ϕ2y.
Hence f1u = y and x = f2y = f2f1u = 0. Consequently, Kerϕ3 = 0 and so ϕ3 is
a monomorphism.

Now, choose an element a ∈ N3. Since ϕ4 is an isomorphism, there is b ∈ M4

such that ϕ4b = g3a. Moreover, ϕ5f4b = g4ϕ4b = g4g3a = 0 and thus f4b = 0
and b ∈ Kerf4 = Imf3. Hence b = f3c, where c ∈ M3. Put e = a − ϕ3c. Since
g3ϕ3c = ϕ4f3c = ϕ4b = g3a, g3e = 0 and e ∈ Kerg3 = Img2. Thus, e = g2d for
some d ∈ N2. Furthermore, d = ϕ2h for h ∈ M2. Then ϕ3f2h = g2ϕ2h = g2d = e
and we obtain a = e + ϕ3c = ϕ3(f2h + c) ∈ Imϕ3. It follows that ϕ3 is an
epimorphism, and thus an isomorphism.3)

Corollary 4.2.5. Let

0 M1

ϕ1

M2

ϕ2

M3

ϕ3

0

0 N1 N2 N3 0

(4.2.10)

be a commutative diagram with exact rows and isomorphisms ϕ1 and ϕ3. Then ϕ2

is also an isomorphism.

Proof. This follows immediately from lemma 4.2.4 if we complete diagram
(4.2.10) by the zero homomorphisms of the zero modules to the form of diagram
(4.2.9).

3) This type of argument is called ”diagram chasing”. It is an elegant, rewarding and powerful
technique.
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Corollary 4.2.6. Let

M1

ϕ1

M2

ϕ2

M3

ϕ3

0

N1 N2 N3 0

(4.2.11)

be a commutative diagram with exact rows and isomorphisms ϕ1 and ϕ2. Then ϕ3

is also an isomorphism.

Proof. This follows immediately from lemma 4.2.4 if we complete diagram
(4.2.11) to the diagram

M1

ϕ1

M2

ϕ2

M3

ϕ3

0 0

N1 N2 N3 0 0

by the zero homomorphism.

Similarly we have the following statement:

Corollary 4.2.7. Let

0 −→ M1 −→ M2 −→ M3

↓ ϕ1 ↓ ϕ2 ↓ ϕ3

0 −→ N1 −→ N2 −→ N3

(4.2.12)

be a commutative diagram with exact rows and isomorphisms ϕ2 and ϕ3. Then
ϕ1 is also an isomorphism.

4.3 THE HOM FUNCTORS

Let M and N be right A-modules, then the set HomA(M,N) of all A-
homomorphisms from M to N forms an additive Abelian group. We shall show
that for each fixed right A-module M HomA(M, ∗) is a covariant functor from
the category MA of right A-modules to the category Ab of Abelian groups and
HomA(∗,M) is a contravariant functor from MA to Ab.

Suppose M , B, C and D are right A-modules. If ϕ : B → C is an
A-homomorphism, then ϕ determines an additive group homomorphism ϕ∗ :
HomA(M,B) → HomA(M,C) given by ϕ∗(f) = ϕf for any f ∈ HomA(M,B).
If ψ ∈ HomA(C, D), then (ϕψ)∗(f) = (ϕψ)(f) = ϕ(ψf) = ϕ∗(ψf) = ϕ∗ψ∗f if
the product ϕψ is defined. Hence, (ϕψ)∗ = ϕ∗ψ∗. Moreover, (1B)∗ = 1Hom(M,B).
Thus, Hom(M, ∗) is a covariant functor.

In a similar way one can show that for a fixed right A-module M Hom(∗,M)
is a contravariant functor from MA to Ab. In this case for each ϕ ∈ HomA(B,C)
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and f ∈ HomA(C, M) we define ϕ∗ : HomA(C, M) → HomA(B,M) as ϕ∗(f) =
fϕ. If ψ ∈ HomA(C, D), then (ϕψ)∗(f) = fϕψ = (ϕ∗f)ψ = ψ∗(ϕ∗f) =
(ψ∗ϕ∗)(f). Hence, (ϕψ)∗ = ψ∗ϕ∗.

So HomA(M,N) is a bifunctor, which is covariant in the second variable and
contravariant in the first.

Note that if fi : M ′ → M and ϕ : N → N ′ for i = 1, 2, then

HomA(f1 + f2, N) = HomA(f1, N) + HomA(f2, N)

and
HomA(M,ϕ1 + ϕ2) = HomA(M,ϕ1) + HomA(M,ϕ2).

Thus, the Hom functor is additive.

Proposition 4.3.1. A sequence of right A-modules B1, B,B2

0 −→ B1
ϕ−→ B

ψ−→ B2 (4.3.1)

is exact if and only if for any right A-module M the sequence

0 −→ HomA(M,B1)
ϕ−→ HomA(M,B)

ψ−→ HomA(M,B2) (4.3.2)

is exact.

Proof.
1. Assume that sequence (4.3.1) is exact. Suppose that f1, f2 ∈ HomA(M,B1)

and ϕ(f1) = ϕ(f2). Then ϕf1 = ϕf2. But by hypothesis ϕ is a monomorphism,
so f1 = f2. Hence, ϕ is a monomorphism with the image

Imϕ = { α ∈ HomA(M,B) | Imα ⊆ Imϕ }.

Since Imϕ = Kerψ, we obtain that ψα = ψϕf = 0. But ψ = ψϕ, therefore
Imϕ ⊆ Kerψ. On the other hand, let β : M → B and β ∈ Kerψ, i.e., ψβ = 0.
Then Imβ ⊆ Kerψ = Imϕ and hence we obtain Kerψ ⊆ Imϕ. So we conclude
that Kerψ = Imϕ, and we have shown that the sequence (4.3.2) is exact.

2. Conversely, let the sequence (4.3.2) be exact for any M . Taking M = Kerϕ
we see that the map HomA(Kerϕ,B1) −→ HomA(Kerϕ,B2) is a monomorphism.
Thus, if i is the embedding of Kerϕ into B1, then ϕi = 0 and i = 0. Therefore
Kerϕ = 0 and ϕ is a monomorphism.

Now, let N = B1. Then ϕ1M = ϕ̄(1M ) ∈ Imϕ̄ = Kerψ̄. Thus, ψϕ = ψ̄(ϕ) = 0
and Imϕ ⊂ Kerϕ. Finally, taking M = Kerψ and denoting by σ the embedding
of M in B2 , we obtain ψ̄(σ) = ψσ = 0 Thus, σ ∈ Kerψ̄ = Imϕ̄. Therefore
σ = ϕθ, Kerψ = Imσ ⊂ Imϕ, and the sequence (4.3.1) is exact.

In a similar way one can prove the following statement:
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Proposition 4.3.2. A sequence of right A-modules B1, B,B2

B1
ϕ−→ B

ψ−→ B2 −→ 0 (4.3.3)

is exact if and only if for any right A-module M the sequence

0 −→ HomA(B2,M)
ϕ−→ HomA(B,M)

ψ−→ HomA(B1,M) (4.3.4)

is exact.

Let A and A′ be rings and let F : MA → MA′ be a covariant functor. Suppose
0 −→ B1

ϕ−→ B
ψ−→ B2 is an arbitrary exact sequence in MA, then we say that

F is left exact if the sequence

0 −→ F (B1)
ϕ−→ F (B)

ψ−→ F (B2)

is exact in MA′ . Analogously, we say that F is right exact if from the exactness
of an arbitrary sequence of right A-modules B1

ϕ−→ B
ψ−→ B2 −→ 0 there follows

the exactness of the sequence

F (B1)
ϕ−→ F (B)

ψ−→ F (B2) −→ 0

in MA′ . If F both left and right exact, i.e., if exactness of a sequence

0 −→ B1
ϕ−→ B

ψ−→ B2 −→ 0

always implies exactness of a sequence

0 −→ F (B1)
ϕ−→ F (B)

ψ−→ F (B2) −→ 0

then F is said to be an exact functor.

In accordance with these definitions we can reformulate propositions 4.3.1 and
4.3.2 in the following form:

Proposition 4.3.3. The Hom functor is left exact in each variable.

The following statements show the behavior of the Hom functor with regards
to direct sums and direct products.

Proposition 4.3.4. Let A be a ring and Y , Xi, (i ∈ I) be A-modules. Then
there exists a natural 4) isomorphism

HomA( ⊕
i∈I

Xi, Y ) �
∏
i∈I

HomA(Xi, Y ).

4) The technical meaning of ”natural” is ”functorial”, see the definition of ”natural trans-
formation” in section 4.1 above. It was precisely to distinguish ”natural” (iso)morphisms from
accidental ones that category theory was invented.



CATEGORIES AND FUNCTORS 93

Proof. Let ⊕
i∈I

Xi = X and σi : Xi → X be the canonical injection for the

direct sum. If now f ∈ HomA(X,Y ), then (..., fσi, ...) ∈
∏
i∈I

HomA(Xi, Y ). The

map ϕ : Hom( ⊕
i∈I

Xi, Y ) →
∏
i∈I

HomA(Xi, Y ) such that ϕ(f) = (..., fσi, ...) yields

the required isomorphism.

Proposition 4.3.5. Let A be a ring and X, Yi, (i ∈ I) be A-modules. Then
there exists a natural isomorphism

HomA(X,
∏
i∈I

Yi) �
∏
i∈I

HomA(X,Yi).

Proof. Let
∏
i∈I

Yi = Y and πi : X → Xi be the canonical projection for

the direct product. Then each A-homomorphism f ∈ HomA(X,
∏
i∈I

Yi) defines

homomorphisms πif ∈ HomA(X,Yi). Then the map

ϕ : Hom(X,
∏
i∈I

Yi) →
∏
i∈I

HomA(X,Yi)

such that ϕ(f) = (..., πif, ...) yields the required isomorphism.

4.4 BIMODULES

In general, the Abelian group HomA(M,N) is not a right A-module. However
there are some cases when this is true (in a natural way). For example, this is true
if A is a commutative ring. In this section we consider another important case
when HomA(M,N) is a module.

Definition. Let A and B be two rings. An Abelian group M is called an
(A,B)-bimodule, which is denoted by AMB , if M is both a left A-module and a
right B-module such that (am)b = a(mb) for all a ∈ A, m ∈ M , and b ∈ B.

If M and N are both (A,B)-bimodules, then a map f : M → N , which is si-
multaneously A-linear and B-linear, is called a homomorphism of bimodules.
Analogously for bimodules one can introduce all other concepts which were in-
troduced for modules: isomorphism, subbimodule, quotient bimodule, direct sum,
etc.

Example 4.4.1.
Every ring A may be considered as a bimodule over itself. This bimodule is

called the regular bimodule and denoted by AAA.

Example 4.4.2.
Every right A-module M is a (Z, A)-bimodule, i.e., M = ZMA.
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Example 4.4.3.
If C = Cen(A) is the center of a ring A, then every A-module is a (C, A)-

bimodule.

If M = BMA is a bimodule, then HomA(BMA, NA) may be considered as a
right B-module by setting (fb)(m) = f(bm) for any f ∈ HomA(BMA, NA), b ∈ B,
and m ∈ M . Analogously, if N = BNA is a bimodule, then HomA(MA, BNA)
may be considered as a left B-module by setting (bf)(m) = bf(m) for any f ∈
HomA(MA, BNA), b ∈ B, and m ∈ M .

Example 4.4.4.
If M is an Abelian group, then it is both a left and a right Z-module. Since

A is an (A,Z)-bimodule, then HomZ(A,M) = HomZ(AAZ,MZ) is a right
A-module. Analogously, HomZ(M,A) = HomZ(MZ, AAZ, ) is a left A-module.

4.5 TENSOR PRODUCTS OF MODULES

Let A be any ring, and let X ∈ MA be a right A-module and Y ∈ AM be a left
A-module.

Definition. Let A be a ring and G be an additive Abelian group. Suppose
X ∈ MA and Y ∈ AM. An A-balanced map from X × Y to G is a map
ϕ : X × Y → G satisfying the following identities:

1) ϕ(x, y + y′) = ϕ(x, y) + ϕ(x, y′),
2) ϕ(x + x′, y) = ϕ(x, y) + ϕ(x′, y),
3) ϕ(xa, y) = ϕ(x, ay)

for all x, x′ ∈ X, y, y′ ∈ Y , and a ∈ A.5)

Consider the free Abelian group F , whose free generators are the elements of
X × Y . In other words, each element of this group can be uniquely written as a
formal finite sum

∑
i,j

cij(xi, yj), where xi ∈ X; yj ∈ Y , and cij ∈ Z, but only a

finite number of the integers cij are allowed to be nonzero. Then we have a natural
monomorphism i : X × Y → F such that i(x, y) = i(x′, y′) if and only if x = x′

and y = y′.
Let H be the subgroup of F generated by all elements of the form:

(x + x′, y) − (x, y) − (x′, y)

(x, y + y′) − (x, y) − (x, y′)

(xa, y) − (x, ay)

Then there is the canonical projection π : F → F/H. Write ϕ = πi, then

ϕ((x + x′, y) − (x, y) − (x′, y)) = 0
5) Conditions 1) and 2) say that ϕ is a bilinear map of Abelian groups.
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ϕ((x, y + y′) − (x, y) − (x, y′)) = 0

ϕ((xa, y) − (x, ay)) = 0

i.e., the map ϕ is A-balanced from X × Y to F/H.
We write ϕ(x, y) = x⊗y and write X⊗Y (or X⊗A Y if A is to be emphasized)

for the Abelian quotient group F/H. With these notations we have that X ⊗ Y
is an Abelian group, whose generators x ⊗ y satisfy the following identities:

(x1 + x2) ⊗ y = (x1 ⊗ y) + (x2 ⊗ y)

x ⊗ (y1 + y2) = (x ⊗ y1) + (x ⊗ y2)

xα ⊗ y = x ⊗ αy

Note that these properties imply

(x ⊗ y)k = xk ⊗ y = x ⊗ ky

for all x ∈ X, y ∈ Y and k ∈ Z. In particular, 0 ⊗ y = x ⊗ 0 = 0 for all
x ∈ X, y ∈ Y . From these properties it follows that each element of X ⊗ Y can
be written as a finite sum of the form

∑
(x⊗ y), where x ∈ X and y ∈ Y , but this

representation is not unique in the general case. If a set {xi|i ∈ I} generates X
and {yj |j ∈ J} generates Y, then the set {xi ⊗ yj |i ∈ I, j ∈ J} generates X ⊗ Y .

We shall show that the Abelian group X⊗Y has a universal property, which
we formulate as the following proposition:

Proposition 4.5.1. Let A be a ring and G be an Abelian group. Let X ∈ MA

and Y ∈ AM. For any A-balanced map f : X × Y → G there exists a unique
morphism of Abelian groups g : X ⊗ Y → G such that the diagram

X × Y
ϕ

f

X ⊗ Y

g

G

is commutative.

Proof. Suppose f is an A-balanced map from X × Y to an Abelian group G.
Since F is a free Abelian group, there exists a unique homomorphism f̄ : F → G
such that the diagram

X × Y
f

i

G

F

f̄
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is commutative, i.e., f̄ i = f , where i is the natural embedding. Since f is an
A-balanced map from X × Y to G, this is also true for f̄ , i.e.,

f̄(x + x′, y) = f̄(x, y) + f̄(x′, y)

f̄(x, y + y′) = f̄(x, y) + f̄(x, y′)

f̄(xa, y) = f̄(x, ay)

So H ⊆ Kerf̄ and, by proposition 1.2.1, there exists a unique homomorphism
g : F/H → G such that the diagram

F
f̄

π

G

F/H

g

is commutative.
Let ϕ = πi, then gϕ = gπi = f̄ i = f and so the diagram

X × Y
ϕ

f

X ⊗ Y
g

G

is commutative.
Now, let’s show that g is unique in making this diagram commutative. If g′ is

another homomorphism from F/H to G, which makes this diagram commutative,
i.e., g′ϕ = f , then g′πi = g′ϕ = f = gπi = f̄ i. Hence, by uniqueness of f̄ , we have
g′π = f̄ . So g′π = f̄ = gπ and since π is surjective, we have g = g′. Hence, g is
unique.

As we have seen X⊗AY is more that just an Abelian group. It comes equipped
with a unique canonical map X × Y → X ⊗A Y having the universal property
described above. These observations give us the basis to introduce the following
formal definition:

Definition. Let XA and AY be modules over a ring A. A pair (T, θ) is a
tensor product of modules X and Y over A if T is an Abelian group and for any
Abelian group G and all A-balanced maps f : T → G there exists a unique group
homomorphism g : T → G such that the diagram

X × Y
θ

f

X ⊗ Y
g

G
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is commutative.

Then we obtain the following proposition:

Proposition 4.5.2. Let A be a ring and X ∈ MA and Y ∈ AM. Suppose that
(X ⊗A Y, ϕ) is as before, then:

1. (X ⊗A Y, ϕ) is a tensor product of X and Y ;
2. If (T, θ) is any other tensor product of X and Y , then there exists an Abelian

group isomorphism σ : X ⊗A Y → T such that σϕ = θ, i.e., the diagram

X × Y
ϕ

θ

X ⊗A Y

σ

T

is commutative.

Proof.
1. This follows immediately from proposition 4.5.1.
2. Let (T, θ) be any other tensor product of X and Y . Since θ is an A-balanced

map, by the universal property for X ⊗A Y , there exists σ : X ⊗A Y → T such
that σϕ = θ. Similarly, since ϕ : X × Y → X ⊗A Y is an A-balanced map, by the
definition of a tensor product, there exists τ : T → X ⊗ Y such that τθϕ. Thus,
τσϕ = ϕ and στθ = θ. Then uniqueness of θ and ϕ implies that τσ and στ are
both identity maps on appropriate groups. In particular, σ is an isomorphism.6)

Example 4.5.1.
Let A = Z, X = Q, Y = Zn = Z/(n), then X ⊗Z Y = Q ⊗Z Zn = 0. In fact

any element x ∈ X is of the form x = nq for some q ∈ Q. Thus, for any y ∈ Y we
have x ⊗ y = qn ⊗ y = q ⊗ ny = q ⊗ 0 = 0.

Example 4.5.2.
Let A = Z, X = Zp, Y = Zq, where 1 ≤ p, q ∈ Z and (p, q) = 1, the greatest

common divisor of the natural number p and q, then Zp ⊗ Zq = 0. In fact, since
(p, q) = 1, there exists a, b ∈ Z such that ap + bq = 1. Then

(x ⊗ y) = (x ⊗ y)(ap + bq) = (x ⊗ y)ap + (x ⊗ y)bq =

= (xap ⊗ y) + ((x ⊗ bqy) = (0 ⊗ y) + (x ⊗ 0) = 0.

Example 4.5.3.
More generally let A = Z, X = Zp, Y = Zq, where 1 ≤ p, q ∈ Z and (p, q) = d,

the greatest common divisor of the natural number p and q, then Zp ⊗ Zq � Zd.
6) This is an instance of a general observation. Objects (with the appropriate morphisms)

defined by a universal property are unique up to isomorphism. We have also already seen that
above in the case of direct sums and products.
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To see this, observe first that

x ⊗ y = x ⊗ (y · 1) = (xy) ⊗ 1 = xy(1 ⊗ 1)

from which it follows that Zp ⊗Zq is a cyclic group with 1⊗ 1 as generator. Since
p(1 ⊗ 1) = p ⊗ 1 = 0 ⊗ 1 = 0 and similarly q(1 ⊗ 1) = 1 ⊗ q = 1 ⊗ 0 = 0, we have
d(1⊗1) = 0, so this cyclic group has order dividing d. The map ϕ : Zp ×Zq → Zd

defining by ϕ(x modp, y modq) = xy modd is well defined since d divides both
p and q. It is clearly Z-bilinear. The induced map ψ : Zp ⊗ Zq → Zd maps the
element 1 ⊗ 1 to the element 1 ∈ Zd which is an element of order d. In particular
Zp ⊗Zq has order at least d. Hence 1 ⊗ 1 is an element of order d and ψ gives an
isomorphism Zp ⊗ Zq � Zd.

In general, the Abelian group X ⊗A Y is not an A-module. But in some
cases we can turn it into a module (in a natural way). Suppose, for instance,
that we have a right A-module XA and an (A,B)-bimodule AYB. Then every
element b ∈ B induces an A-module homomorphism b : Y → Y that assigns to
every y ∈ Y the element yb ∈ Y . This homomorphism induces a homomorphism
σb : X⊗Y → X⊗Y defined by: σb(x⊗y) = x⊗ (yb). Clearly, σb is an A-balanced
map and in this way X⊗A Y turns into a right B-module with (x⊗y)b = x⊗ (yb).
A similar situation BXA, AY defines on X ⊗A Y a left B-module structure by
b(x⊗ y) = (bx)⊗ y. Finally, in a situation when we have two bimodules BXA and
AYC , the tensor product X ⊗A Y becomes a (B,C)-bimodule with: (x ⊗ y)c =
x ⊗ (yc) and b(x ⊗ y) = (bx) ⊗ y for all b ∈ B and c ∈ C. This allows to iterate
the tensor product operation and define a product of three or more modules. The
following result shows the associativity of tensor product.

Proposition 4.5.3. Let A and B be rings and let XA, AYB and BZ be appro-
priate modules. Then there exists a canonical isomorphism:

(X ⊗A Y ) ⊗B Z � X ⊗A (Y ⊗B Z)

assigning to (x ⊗A y) ⊗B z the element x ⊗A (y ⊗B z). If X is (C, A)-bimodule,
then this is an isomorphism of C-modules.

Proof. For each fixed element z ∈ Z we can define the map σz : X × Y →
X ⊗A (Y ⊗B Z) by σz(x, y) = x ⊗A (y ⊗B z). Clearly, σz is an A-balanced map
and therefore there exists a unique homomorphism fz : X⊗A Y → X⊗A (Y ⊗B Z)
assigning to x⊗A y the element x⊗A (y⊗B z). Varying z, we obtain a B-balanced
map ϕ : (X⊗AY )×Z → X⊗A(Y ⊗BZ) that assigns to a pair (x⊗Ay, z) the element
x⊗A (y ⊗B z). In turn, ϕ defines a unique homomorphism f : (X ⊗A Y )⊗B Z →
X ⊗A (Y ⊗B Z) such that f((x⊗A y)⊗B z) = x⊗A (y⊗B z). In a similar manner,
we can construct a homomorphism g : X ⊗A (Y ⊗B Z) → (X ⊗A Y ) ⊗B Z such
that g(x ⊗A (y ⊗B z)) = (x ⊗A y) ⊗B z. Since all possible elements of the form
x ⊗A (y ⊗B z) (respectively, (x ⊗A y) ⊗B z) generate the group X ⊗A (Y ⊗B Z)
(respectively, (X ⊗A Y ) ⊗B Z), f is inverse of g, as required.
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Since A is an (A,A)-bimodule, X ⊗A A is a right A-module and A ⊗A Y is a
left A-module. In this situation we have the following statement.

Proposition 4.5.4. Suppose X is a right A-module and Y is a left A-module.
Then

1) the map ϕ : X → X ⊗A A that assigns to every x ∈ X the element x ⊗ 1 is
an isomorphism of right A-modules;

2) the map ψ : Y → A ⊗A Y that assigns to every y ∈ Y the element 1 ⊗ y is
an isomorphism of left A-modules.

Proof. It is sufficient to observe that the map X ×A → X, sending (x, a) into
xa, is evidently a balanced map and that the induced map X ⊗A A → X is a
homomorphism which is inverse to the map ϕ : X → X ⊗A A.

4.6 TENSOR PRODUCT FUNCTOR

We now consider some of the basic properties of tensor products. The following
statement defines the ”tensor product” of two homomorphisms.

Proposition 4.6.1. Let A be a ring, and let X,X ′ be right A-modules and
Y, Y ′ be left A-modules. For any pair of A-modules homomorphisms f : X → X ′

and g : Y → Y ′ there exists a unique group homomorphism f ⊗A g : X ⊗A Y →
X ′ ⊗A Y ′ such that (f ⊗A g)(x ⊗A y) = f(x) ⊗A g(y). If X,X ′ are moreover
(B,A)-bimodules for some ring B and f is also a B-module homomorphism, then
f ⊗A g is a homomorphism of left B-modules.

If f ′ : X ′ → X ′′ and g′ : Y ′ → Y ′′ is another pair of homomorphisms, then
(f ′ ⊗A g′)(f ⊗A g) = f ′f ⊗A g′g. In particular, if f and g are isomorphisms, then
so is f ⊗ g.

Proof. Consider the map σ : X ×Y → X ′ ×Y ′ given by σ(x, y) = (f(x), g(y)).
Then we have a bilinear map F : X×Y → X ′⊗Y ′ such that F (x, y) = ϕσ(x, y) =
(f(x) ⊗A g(y)), where ϕ′ : X ′ × Y ′ → X ′ ⊗ Y ′. Therefore there exists a unique
homomorphism f ⊗A g : X ⊗A Y → X ′ ⊗A Y ′ such that (f ⊗A g)(x ⊗A y) =
f(x) ⊗A g(y).

If X,X ′ are also (B,A)-bimodules for some ring B and f is also a B-module
homomorphism, then we have

(f ⊗ g)(b(x ⊗ y)) = (f ⊗ g)(bx ⊗ y) = f(bx) ⊗ g(y) = bf(x) ⊗ g(y).

Since (f ⊗g) is additive, this extends to sum of simple tensors to show that (f ⊗g)
is a B-module homomorphism.

The last statement is trivial.

From this proposition it follows that we can consider the tensor product as a
functor on a module category. More precisely, fix a left A-module Y and construct
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the functor ∗⊗A Y : MA → Ab as follows. Assign to every right A-module X the
Abelian group X⊗Y and to every homomorphism f : X → X ′ the homomorphism
f ⊗A 1 : X ⊗A Y → X ′ ⊗A Y . Proposition 4.6.1 shows that f ⊗A 1 is a group
homomorphism and we obtain a functor

∗⊗A : X → X ⊗A Y

from the category of right A-modules to the category of Abelian groups. If in
addition Y is an (A,B)-bimodule for some ring B, then f⊗A 1 is a homomorphism
of right B-modules and we obtain a functor from the category of right A-modules
to the category of right B-modules. Similarly, for a fixed right A-module X we
can construct the functor

X ⊗A ∗ : Y → X ⊗A Y

from the category of left A-modules to the category of Abelian groups (respectively,
to the category of left B-modules when X is a (B,A)-bimodule for some ring B).
Thus we have a functor of two variables which is called the tensor product and
we denote it by ∗ ⊗ ∗. This functor is covariant in both variables, because

f ′f ⊗ 1 = (f ′ ⊗ 1)(f ⊗ 1)

and
1 ⊗ g′g = (1 ⊗ g′)(1 ⊗ g)

The next proposition states that the tensor product functor preserves direct
sums.

Proposition 4.6.2. Let A be a ring and X ∈ MA, Y ∈ AM.
1. If X = ⊕

i∈I
Xi, then

X ⊗A Y � ⊕
i∈I

(Xi ⊗ Y )

2. If Y = ⊕
i∈I

Yi, then

X ⊗A Y � ⊕
i∈I

(X ⊗ Yi)

Proof. We prove only the first part of the proposition. The proof of the second
part is analogous. Let σi : Xi → X be the canonical injection and πi : X → Xi be
the canonical projection for the direct sum X = ⊕

i∈I
Xi. These satisfy the following

relations:
1) πiσi = 1Xi

and πiσj = 0 for i �= j;
2) each element x ∈ X can be written in the form of a finite sum x = σi1πi1x+

... + σin
πin

x.
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Then, by proposition 4.6.1, we have maps π̄i = πi ⊗ 1Y : X ⊗Y → Xi ⊗Y and
σ̄i = σi ⊗ 1Y : Xi ⊗ Y → X ⊗ Y , which satisfy analogous relations. So the set of
homomorphisms {π̄i}, {σ̄i} defines X ⊗ Y as the direct sum ⊕

i∈I
(Xi ⊗ Y ).

The following statement shows the connection between Hom and tensor prod-
ucts.

Proposition 4.6.3 (Adjoint isomorphism).
1. In a situation XA, AYB and BZ, there exists a canonical isomorphism:

HomB(X ⊗A Y, Z) � HomA(X,HomB(Y, Z)),

assigning to a homomorphism f : X ⊗A Y → Z the homomorphism f̄ : X →
HomB(Y, Z) such that f̄(x)(y) = f(x ⊗A y).

2. In a situation AX, BYA and BZ, there exists a canonical isomorphism:

HomB(Y ⊗A X,Z) � HomA(X,HomB(Y, Z)),

assigning to a homomorphism g : Y ⊗A X → Z the homomorphism ḡ : X →
HomB(Y, Z) such that ḡ(x)(y) = g(y ⊗A x).

Proof. Like in the previous proposition we prove only the first part of the
proposition. The proof of the second part is analogous. We show that the map f̄
is an A-module homomorphism, i.e., f̄(xa) = f̄(x)a for any a ∈ A. In fact:

f̄(xa)(y) = f(xa ⊗ y) = f(x ⊗ ay) = f̄(x)(ay) = [f̄(x)a](y).

Analogously it is easy to prove the other axioms of A-module homomorphisms.
We shall construct an inverse map. Let g : X → HomB(Y, Z) be an A-module
homomorphism. Then, evidently, the map X × Y → Z sending (x, y) into g(x)(y)
is a balanced map, and therefore defines a unique homomorphism ḡ : X⊗A Y → Z
such that ḡ(x⊗A y) = g(x)(y). Now, ḡ is clearly a B-module homomorphism and
the constructions f �→ f̄ and g �→ ḡ are mutually inverse.

Proposition 4.6.4. The tensor product functor is right exact in both variables.

Proof. We shall show that the tensor product functor is right exact in the first
variable, i.e., for any fixed (A,B)-module Y the functor ∗⊗A Y is right exact. Let
a sequence of right A-modules

X1 −→ X −→ X2 −→ 0 (4.6.1)

be exact. We need to show the exactness of the sequence

X1 ⊗A Y −→ X ⊗A Y −→ X2 ⊗A Y −→ 0 (4.6.2)
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for any (A,B)-bimodule Y . In view of proposition 4.3.2 it is equivalent to verify
the exactness of the sequence

0 −→ HomB(X2 ⊗A Y, Z) −→ HomB(X ⊗A Y, Z) −→

HomB(X1 ⊗A Y, Z) (4.6.3)

for any B-module Z. By proposition 4.6.3, the latter sequence can be rewritten as

0 −→ HomA(X2, HomB(Y, Z)) −→ HomA(X,HomB(Y, Z)) −→

HomA(X1, HomB(Y, Z)) (4.6.4)

and thus its exactness follows immediately from proposition 4.3.2. Analogously
we can show that the functor X ⊗A ∗ is right exact.

4.7 DIRECT AND INVERSE LIMITS

Definition. A partially ordered set S is called (upwards) directed if for any pair
a, b ∈ S there is an element c ∈ S such that a ≤ c and b ≤ c.

Let I be a directed partially ordered set, {Mi : i ∈ I} be a set of A-modules
and suppose that for any pair of indexes i, j ∈ I, where i ≤ j, there is given a
homomorphism ϕij : Mi → Mj such that for all i ≤ j ≤ k and n ∈ I the following
hold:

(1) ϕnn : Mn → Mn is the identity on Mn;
(2) ϕik = ϕjkϕij , i.e., the diagram

Mi

ϕij

ϕik

Mj

ϕjk

Mk

(4.7.1)

commutes.
In this case the triple

M = {{I,≤}; {Mi : i ∈ I}; {ϕij | i ≤ j ∈ I}} (4.7.2)

is called a directed system of right A-modules.
Let M be a directed system and M = ⊕

i∈I
Mi, where Mi ∈ M. Consider the

submodule N ⊂ M , which is generated by all elements mi − ϕijmi for i ≤ j. The
quotient module M/N is called the direct limit (also called injective limit) of
the directed system M and denoted by lim−→ Mi.

There are some important properties concerning the elements of N and M/N .
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1. The submodule N consists of all elements of the form

m = mi1 + ... + mik
, mi ∈ Mi

such that there exists a j ∈ I with j ≥ i1, ..., ik and

ϕi1jmi1 + ... + ϕikjmik
= 0. (4.7.3)

Indeed, let m = mi − ϕijmi ∈ M be any generator of N . Since

ϕijmi − ϕjj(ϕijmi) = 0

for any i ≤ j, then any generator of N has the required property (4.7.3). Therefore
any element of N has that property as well. The inverse follows from the following
equality:

mi1 + ... + mik
− ϕi1jmi1 − ... − ϕinjmik

=

= (mi1 − ϕi1jmi1) + ... + (min
− ϕinjmin

) ∈ N,

where j ≥ i1, i2, ..., ik.
2. Any element m∗ ∈ lim−→ Mi can be can be written in the form mj +N for some

j ∈ I. Indeed, any element m ∈ M can be written in the form m = mi1 + ...+mik
,

where mir
∈ Mir

. Since I is directed, there exists j ∈ I such that j ≥ i1, i2, ..., ik.

Consider the element x =
k∑

r=1
ϕirjmir

∈ Mj . Then by the previous property

x = mj ∈ N and m − x ∈ N . Therefore m = mj + N .
3. For each i ∈ I there exists a natural homomorphism πi : Mi −→ lim−→ Mi =

M/N given by π(mi) = mi + N . It is easy to verify that these homomorphisms
have the following properties:

a) all the diagrams

Mi

ϕij

ϕik

Mj

ϕjk

Mk

(4.7.1)

commute;
b) if πimi = 0 for some mi ∈ Mi, then there exists j ∈ I such that j ≥ i and

ϕijmi = 0;
c) if each homomorphism ϕij is a monomorphism, then all πi are monomor-

phisms;
d) lim−→ Mi = ∪

r∈I
πir

(Mir
), i.e., any element m∗ ∈ lim−→ Mi can be written in the

form πi1mi1 + ... + πik
mik

for some i1, ..., ik ∈ I.
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Example 4.7.1.
An ascending union ∪Mi of submodules of a module is a direct limit, i.e.,

∪Mi = lim−→ Mi.

Example 4.7.2.
Every module is the direct limit of its finitely generated submodules. In partic-

ular, every right ideal I is the direct limit of finitely generated left ideals contained
in I.

The direct limit posses a universal property, which determines the direct limit
uniquely up to an isomorphism.

Theorem 4.7.1. The direct limit lim−→ Mi of a directed system M has the
following property:

For any module X and any homomorphisms fi : Mi → X such that all diagrams
for i ≤ j

Mi

ϕij

fi

Mj

fj

X

(4.7.4)

commute, there exists a unique homomorphism σ : lim−→ Mi −→ X such that all
diagrams

Mi

πi

fi

lim−→ Mi
σ

X

(4.7.5)

commute. The module lim−→ Mi with homomorphisms πi is determined uniquely up
to isomorphism.

Proof. Let m∗ ∈ lim−→ Mi, then, by property 2, there exists an i ∈ I such that

m∗ = mi + N . In this case we set σ(m∗) = fi(mi). Since all diagrams (4.7.4)
are commutative, σ(m∗) does not depend on the index i ∈ I. Moreover, it is
easy to see that σ preserves addition and multiplication by an element of the ring
A. So that σ is a well-defined A-homomorphism from lim−→ Mi to X. Obviously,

σ(πimi) = σ(m∗) = fi(mi), i.e., the diagrams (4.7.5) are commutative.
If σ′ is another homomorphism from lim−→ Mi to X with such properties, then

(σ − σ′)πi = 0 for each i ∈ I, i.e., (σ − σ′)(Imπi) = 0. Then by property 3.d
σ − σ′ = 0, so that σ is unique.

We shall prove now the last part of the statement.7) Let Y be an A-module and

7) This is yet another instance of ”universal property ⇒ uniqueness”.
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let the homomorphisms τi : Mi → Y have the properties for lim−→ Mi and πi, which
have been proved above. Then we have a unique homomorphism σ : lim−→ Mi → Y

such that τi = σπi. On the other hand, by assumptions according to Y , we have
a unique homomorphism τ : Y → lim−→ Mi such that πi = ττi. So we obtain
πi = ττi = τσπi and simultaneously τi = σπi = σττi. Therefore τσ is the identity
homomorphism on all Imπi, and hence, by properties 3.d, on lim−→ Mi. Thus, σ is
an isomorphism.

For directed systems with the same index set we can introduce the idea of a
homomorphism between them. Suppose we have a partially ordered set I and two
directed systems of modules M = {Mi;ϕij ; i, j ∈ I} and N = {Ni;ψij ; i, j ∈ I}.
Then a homomorphism ϕ : M → N between these directed systems is a family
of homomorphisms fi :→ Ni such that all the following diagrams

Mi
fi

ϕij

Ni

ψij

Mj
fi

Nj

(4.7.6)

commute.
Let M∗ = lim−→ Mi and N∗ = lim−→ Ni. Then we have commutative diagrams

Mi
fi

ϕij

Ni

ψij

θi

Mj
fj

Nj
θj

N∗

which leads to the commutative diagrams

Mi

ψij

θifi

Mj
θjfj

N∗

So, by the universal property of the direct limit, there is a unique homomor-
phism f∗ : M∗ → N∗ such that f∗πi = θifi, i.e., all diagrams

Mi

πi

θifi

M∗
θjfj

N∗

(4.7.7)
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commute. We shall say that f∗ is the homomorphism induced by the family of ho-
momorphisms fi. If all the fi are surjective, then N∗ = ∪

i∈I
Im(θi) = ∪

i∈I
Im(θifi)

and so f∗ is surjective. Suppose all fi are injective and m ∈ Kerf∗. Then there
exists i ∈ I such that m = πimi, where mi ∈ Mi. Therefore θifimi = f∗πimi =
f∗m = 0 and so there exists j ≥ i such that ψijfimi = 0. Since ψijfi = fjϕij and
fi are injective, ϕijmi = 0, i.e., πimi = 0 and m = 0. Therefore f∗ is injective.

Thus, we have proved the following statement:

Theorem 4.7.2. If M, N are directed systems of A-modules and f : M → N
is a homomorphism of directed systems, then there exists a unique homomorphism
f∗ : M∗ → N∗ such that all diagrams (4.7.7) commute. If f = {fi} and all
homomorphisms fi are surjective (injective), then f∗ is also surjective (injective).

Theorem 4.7.3. If M, N, L are directed systems of A-modules and for each
i ∈ I the sequence

0 −→ Mi
fi−→ Ni

gi−→ Li −→ 0 (4.7.8)

is exact, then the sequence of direct limits

0 −→ lim−→ Mi
f∗−→ lim−→ Ni

g∗−→ lim−→ Li −→ 0 (4.7.9)

is also exact, where f∗ and g∗ are the induced homomorphisms.

Proof. Taking into account theorem 4.7.2 it is sufficient to prove that
Ker(g∗) = Im(f∗). Consider a diagram

Mi

πi

fi
Ni

gi

θi

Li

σi

M∗
f∗

N∗
g∗

L∗

(4.7.10)

which is commutative by the previous theorem. If m ∈ M∗, then πimi = m
for some i ∈ I, and so g∗f∗m = g∗f∗πimi = σigifimi = 0. Let n ∈ Ker(g∗).
Then n = θini for some ni ∈ Ni. So σigini = g∗θini = g∗n = 0. Therefore
there exists j ≥ i such that σijgini = 0 and so gjθijni = σijgini = 0. Since
Ker(gj) = Im(fj), there is mj ∈ Mj such that fjmj = θijni. If we set m = πjmj ,
then f∗m = f∗πjmj = θjfjmj = θjθijni = θini = n, i.e., n ∈ Im(f∗). Hence, the
sequence (4.7.9) is exact.

In a dual way we can define a notion of an inverse limit.

Let I be a partially ordered set, and let {Mi : i ∈ I} be a set of modules
and for any pair of indexes i, j ∈ I, where i ≤ j, there is given a homomorphism
ϕji : Mj → Mi such that for all i ≤ j ≤ k and n ∈ I:

(1) ϕnn : Mn → Mn is the identity on Mn;
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(2) ϕki = ϕjiϕkj , i.e., the diagram

Mk

ϕkj

ϕki

Mj

ϕji

Mi

(4.7.11)

commutes.
In this case the triple

M = {(I,≤); {Mi | i ∈ I}; {ϕij | i ≤ j ∈ I}} (4.7.12)

is called an inverse system of right A-modules.
So suppose we have an inverse system (4.7.12) of right A-modules. Set M =∏

i

Mi, where Mi ∈ M. Let πi be the system of canonical projections. Consider

the submodule N of M which is generated by all elements m ∈ M such that

πi(m) = ϕji(πj(m)) (4.7.13)

whenever i ≤ j. The submodule N is called the inverse limit of the inverse system
M and it is denoted by lim←− Mi. When we write elements of M as m = (mi)i∈I ,

then condition (4.7.13) takes the form mi = ϕji(mj).

Exactly like the direct limit, the inverse limit has a universal property, which
determines it uniquely up to isomorphism.

Theorem 4.7.4. The inverse limit lim←− Mi of an inverse system M has the
following property:

For any module X and any family of homomorphisms fi : X → Mi such that
all diagrams for i ≤ j

X
fi

fj

Mi

ϕij

Mj

commute, there exists a unique homomorphism τ : X −→ lim←− Mi such that all
diagrams

X
τ

fi

lim←− Mi

πi

Mi

commute. The module lim←− Mi with homomorphisms πi is determined uniquely up
to isomorphism.
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Proposition 4.7.5. If F is a left exact functor that preserves direct products,
then F preserves inverse limits.

Proof. Let F be a left exact functor from the category of A-modules to the cat-
egory of B-modules, which preserves direct products of modules. Let C = lim←− Mi

be the inverse limit of the inverse system M with the family of homomorphisms
πi : M → Mi such that for each ϕij : Mi → Mj all diagrams

C
πi

πj

Mi

ϕij

Mj

commute, i.e., ϕijπi = πj . Applying the functor F to these diagrams we obtain
that F (ϕij)F (πi) = F (πj).

Let D be a B-module with the family of homomorphisms fi : D → F (Mi) such
that all diagrams

D
fi

fj

F (Mi)

F (ϕij)

F (Mj)

are commutative.
Since the functor F preserves direct products, i.e., F (

∏
i∈I

Mi) is naturally equiv-

alent to
∏
i∈I

F (Mi), by the universal property of direct products (proposition 4.2.3),

there exists a unique homomorphism

ψ : D → F (
∏
i∈I

Mi)

such that all diagrams

D

ϕ
fi

F (
∏
i∈I

Mi) F (pi)
F (Mi)

are commutative, i.e., F (pi)ψ = fi, where the pi :
∏
i∈I

Mi → Mi are the canonical

projections. Since C is a submodule of
∏
i∈I

Mi, there exists a monomorphism

α : C →
∏
i∈I

Mi such that piα = πi. Applying F we have F (pi)F (α) = F (πi)
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for all i. Since F is left exact, F (α) is also monomorphism and so there exists
a homomorphism g : D → F (C) such that F (α)g = ψ. Therefore F (πi)g =
F (pi)F (α)g = F (pi)ψ = fi. By the universal property of the inverse limit this
means that F (lim←− Mi) = F (C) = lim←− F (Mi).

Corollary 4.7.6. For any A-module X the functor HomA(X, ∗) preserves
inverse limits.

Proof. This follows from the facts that, by proposition 4.3.3, HomA(X, ∗) is
left exact and, by proposition 4.3.5, HomA(X, ∗) preserves direct products.

The following statement is dual to proposition 4.7.4 and we leave the proof of
it as an exercise.

Proposition 4.7.7. If F is a right exact functor that preserves direct sums,
then F preserves direct limits.

Corollary 4.7.8. For any A-module X the functor X ⊗A ∗ preserves direct
limits.

Proof. This follows from the facts that, by proposition 4.6.4, X ⊗A ∗ is right
exact and, by proposition 4.6.2, X ⊗A ∗ preserves direct sums.

4.8 NOTES AND REFERENCES

The notion of a category was introduced by S.Eilenberg and S.MacLane in the
paper Natural isomorphisms in group theory // Proc. Nat. Sci. USA, 28, 1942,
pp.537-547 (see also S.Eilenberg and S.MacLane, General theory of natural equiv-
alences // Trans. Amer. Math. Soc., 58, 1945, pp.231-294). The notions of a
functor and the functor Hom were introduced in these papers. The functor Hom
was deeply studied by H.Cartan, S.Eilenberg in their book Homological algebra,
Princeton Univ. Press., Princeton, New Jersey, 1956.

It is interesting to note that the fundamental notions of homological algebra
(such as projective module and the functor Tor) arose in connection with the study
of the behavior of modules over Dedekind rings with respect to the tensor product.
These investigations were conducted by H.Cartan in 1948.

The first exact sequences appeared in the works of the famous topologist Witold
Hurewicz. The notion of the tensor product of Abelian groups first appeared in
the paper H.Whitney, Tensor products of Abelian groups // Duke Math. J., 4,
(1938), pp.495-528.

The theory of adjoint functors was developed by D.Kan in his paper Adjoint
functors // Trans. Amer. Math. Soc., v.87 (1958), p.294-329, where, in particu-
lar, proposition 4.6.3 was proved, which gives the connection between the functors
Hom and the tensor product functor.

Homological methods have invaded much of abstract algebra, and especially
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ring theory - both commutative and noncommutative - beginning with the 1950s.
In fact, many of the standard concepts and results have been rephrased in ho-
mological language. The first time this theory was systematically presented in
the book H.Cartan, S.Eilenberg, Homological Algebra, Princeton Univ. Press.,
Princeton, New Jersey, 1956.

For further reading on theory of categories and functors we recommend the
following books: S.MacLane, Homology, Springer-Verlag, 1963; S.MacLane, Cat-
egories for the working mathematician, Springer-Verlag, 1971; B.Mitchell, Theory
of categories, Acad. Press, 1965.



5. Projectives, injectives and flats

5.1. PROJECTIVE MODULES

Definition. A module P is called projective if for any epimorphism ϕ : M → N
and for any homomorphism ψ : P → N there is a homomorphism h : P → M such
that ψ = ϕh. This means that any diagram of the form

P

ψ

M
ϕ

N 0

(5.1.1)

with the bottom row exact can be completed to a commutative diagram

P
h

ψ

M
ϕ

N 0

(5.1.2)

The definition of projective modules can be given in terms of exactness of the
Hom functor.

Proposition 5.1.1. An A-module P is projective if and only if HomA(P, ∗)
is an exact functor.

Proof.
1. Let P be a projective A-module. Suppose we have an arbitrary exact

sequence of A-modules:

0 −→ M1
ϕ−→ M

ψ−→ M2 −→ 0 (5.1.3)

Then by proposition 4.3.1 we have an exact sequence:

0 −→ HomA(P,M1)
ϕ−→ HomA(P,M)

ψ−→ HomA(P,M2) (5.1.4)

where by definition ψ(g) = ψg for any g ∈ HomA(P,M). Since P is projective, for
any homomorphism f ∈ HomA(P,M2) there exists g ∈ HomA(P,M) such that
f = ψg = ψ(g), i.e., ϕ is an epimorphism and so HomA(P, ∗) is exact.

111
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2. Conversely, suppose HomA(P, ∗) is an exact functor. Let ϕ : M → N be an
epimorphism and ψ : P → N be an arbitrary homomorphism. Then we have the
following diagram

P

ψ

0 Kerϕ M
ϕ

N 0

with the bottom sequence exact.
Since HomA(P, ∗) is exact, ϕ : HomA(P,M) → HomA(P,N) is an epimor-

phism. Therefore there exists h ∈ HomA(P,M) such that ϕ(h) = ψ. Since, by
definition, ϕ(h) = ϕh, ψ = ϕh, i.e., P is projective.

An important example of projective modules is given by the following state-
ment.

Proposition 5.1.2. A free module F is projective.

Proof. Let F be a free A-module with a free basis {fi ∈ F : i ∈ I }, i.e., any
element f ∈ F can be uniquely written as a finite sum f =

∑
i∈I

fiai with ai ∈ A.

Consider a diagram
F

ψ

M
ϕ

N 0

with the bottom row exact.
Denote ψ(fi) = ni ∈ N . Since ϕ is an epimorphism, there exist elements

mi ∈ M such that ϕ(mi) = ni. Define a map h : F → M by h(f) = h(
∑

fiai) =∑
miai. Clearly, the map h is well defined, since any element f ∈ F can be written

uniquely in this form. It is trivial to verify that h is a homomorphism. Clearly,
ψ = ϕh. The proposition is proved.

Remark. Note that the converse statement to proposition 5.1.2 is not true
in the general case. There exist projective modules, which are not free. Some
examples of such modules will be given below in this section.

From propositions 5.1.2 and 1.5.4 we have the following corollary.

Corollary 5.1.3. Every module is isomorphic to a factor module of a projective
module.

Proposition 5.1.4. A direct sum P = ⊕
α∈I

Pα of modules Pα is a projective

module if and only if each Pα is projective.
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Proof.
1. Let P = ⊕

α∈I
Pα. For any α ∈ I there is the canonical inclusion iα : Pα → P

and the natural projection πα : P → Pα. Let P be a projective module and
suppose that for some α ∈ I we have a homomorphism ψα : Pα → N . Consider
the commutative diagram

P
πα

fα

Pα

ψα

M
ϕ

N 0

with the bottom row exact where fα = ψαπα. Since P is projective, there is
a homomorphism hα : P → M such that fα = ϕhα. Set h̄α = hαiα. Since
παiα = 1Pα

, ϕh̄α = ϕhαiα = fαiα = ψαπαiα = ψα. Thus, Pα is projective.
2. Conversely, let each module Pα be projective and consider a diagram

P

ψ

M
ϕ

N 0

with bottom row exact. For any α ∈ I define the homomorphism ψα : Pα → N
by ψα = ψiα. Since Pα is projective, there exists a homomorphism hα : Pα → M
such that ψα = ϕhα. Then we can define a homomorphism h : P → M by
h(p) =

∑
α∈I

hαπα(p) for any p ∈ P . We shall show that ψ = ϕh.

Since
∑
α∈I

iαπα(p) = p for any p ∈ P , we have
∑
α∈I

ψαπα(p) =
∑
α∈I

ψiαπα(p) =

ψ
∑
α∈I

iαπα(p) = ψ(p). On the other hand, ψ(p) =
∑
α∈I

ψαπα(p) =
∑
α∈I

ϕhαπα(p) =

ϕh(p). Therefore, P is projective.

Corollary 5.1.5. Every direct summand of a projective module is projective.

Remark. Now we can give some examples of projective modules which are
not free.

1. Consider the ring A = Z2 ⊕ Z3. By proposition 5.1.5, Z2 and Z3 are
projective modules (over A). But they cannot be free A-modules, because a free
A-module contains either an infinite number of elements or a finite number of k
elements, where k is a multiply of six.

2. Consider the algebra A = T2(R) of upper triangular matrices of order 2 over

the field of real numbers. Let P = e22A, where e22 =
(

0 0
0 1

)
. By proposition

5.1.4, the module P is projective but not free, since dimRP = 1 and dimRA = 3.

The following proposition gives another equivalent definition of a projective
module.
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Proposition 5.1.6. Let A be a ring. For an A-module P the following state-
ments are equivalent:

1) P is projective;
2) every short exact sequence 0 −→ N −→ M

π−→ P −→ 0 splits
3) P is a direct summand of a free A-module F .

Proof.
1) ⇒ 2). Let P be a projective module and consider a diagram

P

1P

0 N M
π

P 0

where π is an epimorphism. Since P is projective, there exists a homomorphism
i : P → M such that πi = 1P . Then by proposition 4.2.1 M � P ⊕ N and the
sequence

0 −→ N −→ M
π−→ P −→ 0

splits.
2) ⇒ 3). By proposition 1.5.4, for an A-module P there exists a free A-module

F such that the sequence 0 −→ Kerπ −→ F
π−→ P −→ 0 is exact. Then, by

hypothesis, it is split, i.e., F � P ⊕ Kerπ. So, P is a direct summand of a free
module.

2) ⇒ 3). Since, by proposition 5.1.2, F is projective, from corollary 5.1.5 it
follows that P is also projective.

Corollary 5.1.7. Let A be a ring. For any idempotent e = e2 ∈ A, eA is a
projective A-module.

Proof. Since eA is a direct summand of the free A-module A = eA⊕ (1− e)A,
it is projective.

Remark. It should be noted that proposition 5.1.4 is not true for infinite direct
products, which are not direct sums. In general, the direct product of projective
modules need not be projective. That can be seen from the following example,
which first was considered by R.Baer. The direct product of countable infinite
copies of Z

M = Z × Z × Z × ...

is not a projective Z-module. Assume the Z-module M to be projective. Then,
by corollary 5.1.6, it is isomorphic to a direct summand of a free Z-module F , i.e.,
F � M ⊕ X. Since F is a free Abelian group, M is also a free Abelian group,
because subgroups of free Abelian groups are free. A contradiction will arise if
we produce a non-free subgroup of M . One can prove that one such a subgroup
is the set of all sequences of the form (x1, x2, ..., xn, ...), where for any n ∈ N



PROJECTIVES, INJECTIVES AND FLATS 115

there exists m ∈ N such that xi divides 2n for all i > m. (For a proof, see, for
instance, J.Rotman, Homological algebra, Academic Press, New York, 1979, p.122.
Another proof of this fact, which does not use the theorem about subgroups of
free Abelian groups, is contained in the book T.Y.Lam, Lectures on Modules and
Rings, Springer-Verlag, 1998, p.22.)

The following proposition gives a simple way to calculate radicals of projective
modules.

Proposition 5.1.8. Let A be a ring. If P is a nonzero projective A-module,
then radP = P · radA �= P .

Proof. Let P be an arbitrary projective A-module and R = radA. Then there
exists a free A-module F such that we have a decomposition F = P ⊕ Q. By
proposition 3.4.3, FR = radF �= F . Therefore FR = radF = radP ⊕ radQ =
PR⊕QR, i.e., radP = PR. It remains to show that radP �= P . If PR = P , then
P ⊂ FR. Let x be a nonzero element of the module P and a free basis {fi|i ∈ I}
of the module F be chosen in such a way that in the expression x =

∑
i∈I

fiai

(ai ∈ A) the number of nonzero coefficients ai is minimal, say n, so that ai �= 0 for
i = 1, ..., n. Since F = P ⊕ Q, we have fi = pi + qi (pi ∈ P , qi ∈ Q, i = 1, ..., n).

Then pi =
n∑

j=1

fjrij , where rij ∈ R, since P ⊂ FR. We have x =
n∑

i=1

fiai =

n∑
i=1

piai +
n∑

i=1

qiai ∈ P , hence
n∑

i=1

qiai = 0. So x =
n∑

i=1

piai =
n∑

i=1

n∑
j=1

fjrijai =

n∑
i=1

fiai. Consequently, a1 =
n∑

i=1

ri1ai and (1 − r11)a1 =
n∑

i=2

ri1ai. Since r11 ∈ R,

we conclude that 1 − r11 is invertible and a1 =
n∑

i=2

ari1ai, where a = (1 − r11)−1.

Therefore x =
n∑

i=2

(fi + f1ari1)ai. The system {f1, f2 + f1ar21, ..., fn + f1arn1}
is linearly independent over A and together with {fi|i > n} forms a basis of the
module F such that in the decomposition of the element x with respect to this
basis the number of nonzero coefficients is equal to n − 1. A contradiction.

Remark. Note that for an arbitrary module M this proposition is not true.
But it is true, in particular, for modules over Artinian rings.

5.2. INJECTIVE MODULES

”Dual” to the notion of projectivity is that of injectivity. Under ”duality” we mean
”inverting all arrows” (maps) and interchanging ”epimorphism” with ”monomor-
phism”.

Definition. A module Q is called injective if for any monomorphism ϕ :
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M → N and for any homomorphism ψ : M → Q there exists a homomorphism
h : N → Q such that ψ = hϕ. This means that any diagram of the form

0 M
ϕ

ψ

N

Q

(5.2.1)

with the top row exact can be completed to a commutative diagram

0 M
ϕ

ψ

N

h

Q

(5.2.2)

The ”duality” between the definitions of projective and injective modules im-
plies that many statements for injective modules can be simply obtained by ”in-
verting the arrows” in the theorems on projective modules. In this way we obtain
immediately the following result, which gives an equivalent definition of injectivity
in terms of exactness of the Hom functor.

Proposition 5.2.1. An A-module Q is injective if and only if HomA(∗, Q) is
an exact functor.

Proposition 5.2.2. A direct product Q =
∏

α∈I

Qα of injective modules Qα is

injective if and only if each Qα is injective.

Proof.
1. Let Q =

∏
α∈I

Qα be an injective module and consider a homomorphism

fα : M → Qα. Since Q is a direct product, for any α ∈ I there is the inclusion
iα : Qα → Q and the projection πα : Q → Qα such that παiα = 1Qα

. Consider a
diagram

0 M
ϕ

fα

N

Qα
iα

Q

with the top row exact. Since Q is injective, there exists a homomorphism hα :
N → Q such that hαϕ = iαfα. Now define ψα : N → Qα by ψα = παhα. Since
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παiα = 1Qα
, it follows that ψαϕ = παhαϕ = παiαfα = fα, i.e., the diagram

0 M
ϕ

fα

N

hα
ψα

Qα

iα

Q
πα

is commutative. Thus, Qα is injective.
2. Conversely, let Q =

∏
α∈I

Qα. Suppose that each module Qα is injective and

consider a diagram

0 M
ϕ

f

N

Q

with the top row exact. For any α ∈ I there is the canonical inclusion iα :
Qα → Q and the projection πα : Q → Qα. So there are the homomorphisms
παf : M → Qα. Since Qα is injective, there exists a homomorphism hα : N → Qα

such that hαϕ = παf . Now define a homomorphism h : N → Q by the formula
h(x) = {hα(x)}α∈I for any n ∈ N . We shall show that the diagram

0 M
ϕ

f

N

hα
h

Q
πα

Qα

is commutative, i.e., f = hϕ.
Since Q is a direct product, for any x ∈ N we have

hϕ(x) = {hαϕ(x)}α∈I = {παf(x)}α∈I = f(x).

Hence, f = hϕ and Q is injective.

Remark. From proposition 5.2.2 it follows that a finite direct sum of injective
modules is injective. However, in general this is not true for an infinite direct sum.
There exist rings over which an infinite direct sum of injective modules need not
to be injective. This fact follows, for example, from proposition 5.2.12 below and
some examples of such rings will be presented in section 5.6.

As for projective modules we can easy prove the following proposition for in-
jective modules.

Proposition 5.2.3. Let A be a ring. If Q is an injective A-module then every
exact sequence of A-modules

0 → Q → M → N → 0
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splits.

Proof. Let Q be an injective A-module and consider a diagram

0 Q
i

1Q

M N 0

Q

with exact top row so that i is a monomorphism. Since Q is injective, there exists
a homomorphism π : M → Q such that iπ = 1Q. Then, by proposition 4.2.1,
M � Q ⊕ N and the sequence

0 → Q → M → N → 0

splits.

To prove the converse of this proposition we need to prove some dual statement
to corollary 5.1.3 for injective modules, i.e., that every module is a submodule of
an injective one. This is not so easy and it will be our goal for the next part of
this section.

Let M ⊂ N be A-modules and f : M → Q be any homomorphism of A-
modules. An extension of f is a pair (L, g), where M ⊆ L ⊆ N , g ∈ HomA(L, Q)
with g|M = f , where g|M is a restriction of g to M .

Proposition 5.2.4 (Baer’s Criterion). Let Q be a right module over a ring
A. Then the following statements are all equivalent:

1) Q is injective;
2) for any right ideal I ⊂ A and each f ∈ HomA(I, Q) there exists an extension

ϕ ∈ HomA(A,Q) of f , i.e., ϕi = f , where i is the natural embedding from I to A;
3) for any right ideal I ⊂ A and each f ∈ HomA(I, Q) there exists an element

q ∈ Q such that f(a) = qa, for all a ∈ I.

Proof.
1) ⇒ 2). This follows immediately from the definition of injectivity, since a

right ideal is just a submodule of A.
2) ⇒ 3). Let i be the natural embedding from I to A and f ∈ HomA(I, Q),

ϕ ∈ HomA(A,Q) such that f = ϕi. Since f, ϕ are A-homomorphisms, for any
a ∈ I we have f(a) = ϕi(a) = ϕ(1 · a) = ϕ(1)a = qa,

where q = ϕ(1) ∈ Q.
3) ⇒ 1). Let a module Q satisfy the given condition and consider a diagram

0 M
ϕ

ψ

N

Q
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with a given submodule M of a module N . Consider the set of extensions X ; i.e.,
the set of all pairs (C, h), where M ⊆ C ⊆ N and h : C → Q such that h|C = ψ.

Clearly, X �= ∅ because (M,ψ) ∈ X . We introduce in X an ordering relation
by setting (C1, h1) ≤ (C2, h2) if and only if C1 ⊆ C2 and h2 extends h1. One can
easily verify that this relation is a partial order on X . Every nonempty increasing
chain {(Ci, hi) | i ∈ I } in X has an upper bound (C ′, h′), where C ′ = ∪

i∈I
Ci and

h′|Ci
= hi. So, in view of Zorn’s Lemma, there exists a maximal element (C∗, h∗)

in X . By construction M ⊆ C∗ ⊆ N . The proof will be complete if we can show
that C∗ = N .

Suppose that there exists a nonzero element b ∈ N and b �∈ C∗. Set I =
{ a ∈ A | ba ∈ C∗ }. Then I is a right ideal in A and there is a homomorphism
f : I → A given by f(a) = h∗(ba). By assumption, there exists q ∈ Q such
that f(a) = qa = h∗(ba) for all a ∈ I. Therefore we can define a homomorphism
g : C∗ + bA → Q by setting g(c + ba) = h∗(c) + qa for all c ∈ C∗ and a ∈ A. It
extends the homomorphism h∗ and it is well defined. Indeed, suppose c1 + ba1 =
c2 + ba2 with c1, c2 ∈ C∗ and a1, a2 ∈ A. Then b(a1 − a2) = c2 − c1 ∈ C∗. So
a1−a2 ∈ I and hence f(a1−a2) = f(a1)−f(a2) = qa1− qa2. On the other hand,
f(a1)−f(a2) = h∗(ba1)−h∗(ba2) = h∗(ba1− ba2) = h∗(c2− c1) = h∗(c2)−h∗(c1).
Hence, we have h∗(c2) − h∗(c1) = qa1 − qa2. Thus, g(c1 + ba1) = h∗(c1) + qa1 =
h∗(c2) + qa2 = g(c2 + ba2), as required.

Since (C∗, h∗) ≤ (C∗ + bA, g), we obtain a contradiction with the maximality
of (C∗, h∗). The proposition is proved.

One should note that injective modules were investigated long before the ”dual”
notion of projective modules was considered. Injective modules first appeared in
the context of Abelian groups, in particular, divisible groups. Recall that an
additive Abelian group G is said to be divisible if for any g ∈ G and any nonzero
n ∈ Z there exists a g′ ∈ G with ng′ = g.

As we saw above every Abelian group can be considered as a Z-module and
every Z-module is an Abelian group. Therefore we can say that Z-module M is
divisible if nM = M for every nonzero n ∈ Z.

Example 5.2.1.
The additive group of the field of rational numbers Q is a divisible group.

Example 5.2.2.
The group Q/Z of rational numbers modulo 1 is a divisible group. This group

is isomorphic to the multiplicative group of roots of unity.

It is easy to show that a direct product and direct sum of divisible groups is a
divisible group and that a quotient group of a divisible group is also divisible.

Proposition 5.2.5. A Z-module Q is injective if and only if it is divisible.

Proof. Let a Z-module Q be injective. Consider an ideal I in Z. Since all
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ideals in Z are principal, I = nZ for some n ∈ Z. Let q be an arbitrary element of
Q and consider the Z-homomorphism f : nZ → Q defined by setting f(nm) = qm
for any m ∈ Z. Since Q is injective, there exists a Z-homomorphism h : Z → Q
extending f . Then we have q = f(n) = h(n) = nh(1) = nq′ ∈ nQ. It follows that
Q = nQ, i.e., Q is divisible.

Conversely, let Q be a divisible Z-module and consider an arbitrary ideal nZ
in Z. Consider a diagram

0 nZ
i

f

Z

Q

Put f(n) = q ∈ Q. Since Q is divisible, there is q′ ∈ Q such that q = nq′.
Define a Z-homomorphism h : Z → Q by h(m) = q′m for any m ∈ Z. Since
h(nm) = nh(m) = nq′m = qm = f(nm), it follows that h extends f . Therefore,
by theorem 5.2.4, Q is injective.

So examples 5.2.1, 5.2.2 give us examples of injective Z-modules.

Proposition 5.2.6. Every Z-module is a submodule of a divisible module.

Proof. Let M be a Z-module. Then M is isomorphic to a factor module of
some free Z-module F . Suppose M � F/L, where L is a submodule in F . Let
F = ⊕

i∈I
Z and D = ⊕

i∈I
Q, then F/L ⊂ D/L. Since D and D/L are divisible

groups, the proposition follows from proposition 5.2.5.

Let A be a ring and let D be an Abelian group. Since any ring A can be
considered as both a right A-module and a left Z-module, the Abelian group
HomZ(A,D) can be made into a right A-module if we set (fa)(x) = f(ax) for any
a, x ∈ A and f ∈ HomZ(A,D).

Lemma 5.2.7. If A is a ring and D is a divisible Z-module, then H =
HomZ(A,D) is an injective right A-module.

Proof. Let D be a divisible Z-module and H = HomZ(A,D). By proposition
5.2.1, it suffices to show that HomA(∗, H) is exact. Let 0 → M → N → L → 0
be an arbitrary short exact sequence of right A-modules. Since D is divisible, by
proposition 5.2.5, D is an injective Z-module. Therefore, by proposition 5.2.1, we
have an exact sequence

0 → HomZ(L, D) → HomZ(N,D) → HomZ(M,D) → 0

or
0 → HomZ(L ⊗A A,D) → HomZ(N ⊗A A,D) →

HomZ(M ⊗A A,D) → 0
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by proposition 4.5.4. Then the adjoint isomorphism (proposition 4.6.3) gives an
exact sequence:

0 → HomA(L, H) → HomA(N,H) → HomA(M,H) → 0

which shows exactness of HomA(∗, H).

Theorem 5.2.8 (Baer’s Theorem). Every module is a submodule of an
injective module.

Proof. Let M be a right A-module. It can also be considered as a left Z-
module and, by proposition 1.5.4, M � F/L, where F is a free Z-module and L
is a submodule. By proposition 1.5.3, F � F1 =

∑
i∈I

ZZ. Write E =
∑
i∈I

ZQ, then

F1 ⊂ E and F1/L ⊂ E/L. Since direct sums and quotient groups of divisible
groups are divisible, E/L is also a divisible group and, by proposition 5.2.5, E/L
is an injective group. So we have M � F1/L ⊂ D, where D is an injective Abelian
group. Thus, we have an exact sequence of left Z-modules

0 −→ M −→ D −→ D/M −→ 0

and, in view of proposition 4.3.1, the sequence

0 −→ HomZ(A,M) −→ HomZ(A,D) −→ HomZ(A,D/M)

is also exact. So we have an inclusion

HomZ(A,M) ⊆ HomZ(A,D)

where HomZ(A,D) is an injective right A-module, by proposition 5.2.7.
For any m ∈ M there exists a group homomorphism fm : A → M given by

fm(a) = ma for any a ∈ A. Let h : A → M be an arbitrary A-homomorphism,
then there is an element m ∈ M such that h(1) = m and h(a) = ma for any
a ∈ A. Therefore we can consider a map ϕ : HomA(A,M) → HomZ(A,M)
given by ϕ(h)(a) = fm(a), for any h ∈ HomA(A,M) and a ∈ A. Obviously, it
is an A-homomorphism. We shall show that ϕ is a monomorphism. Suppose,
ϕ(h)(a) = 0 = ma for any a ∈ A. Since h(1) = m, for any a ∈ A we have
h(a) = ma = 0. Hence, h = 0, i.e., ϕ is a monomorphism.

Finally, since there exists a natural isomorphism of right A-modules M and
HomA(A,M) given by m �→ fm, where fm(1) = m, we have a sequence of inclu-
sions of A-modules

M � HomA(A,M) ⊆ HomZ(A,M) ⊆ HomZ(A,D)

with an injective right A-module HomZ(A,D). So we obtain an exact sequence
0 → M → HomZ(A,D). The proposition is proved.
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Corollary 5.2.9. A module Q is injective if and only if any exact sequence of
the form

0 → Q → M → N → 0 (4.3.3)

splits.

Proof. The first part of this statement was proved in proposition 5.2.3.
Conversely, let Q be an arbitrary A-module. By proposition 5.2.8, there exists

an injective module M which contains the module Q, that is, we have an exact
sequence

0 → Q → M → M/Q → 0

which is split by hypothesis. So M � Q ⊕ M/Q. Then, by proposition 5.2.2, Q is
injective.

Corollary 5.2.10. A module Q is injective if and only if it is a direct summand
of every module which contains it.

Proof. Assume Q is injective and Q is a submodule of a module M , then we
have an exact sequence

0 → Q → M → M/Q → 0

which, in view of corollary 5.2.9, splits. Then Q is a direct summand of M .
Conversely, let Q be an arbitrary A-module, then, by proposition 5.2.8, there

exists an injective module M containing Q. Then, by hypothesis, Q is a direct
summand of M and from proposition 5.2.2 it follows that Q is injective.

In this section we have considered only divisible Z-modules and their connec-
tion with injective modules. As has been shown divisible Z-modules are really
injective modules. The notion of divisibility can be generalized to modules over
an arbitrary ring.

Definition. An element a of a ring A is called regular if xa �= 0 and ax �= 0
for any nonzero element x ∈ A.

Definition. A right A-module M is called divisible, if Ma = M for any
regular element a ∈ A.

Proposition 5.2.11. Any injective right A-module is divisible.

Proof. Let m be an arbitrary nonzero element of a right A-module M and let a
be a left nonzero divisor of a ring A. Then there is a homomorphism f : aA → M
given by f(a) = m. Since M is injective, by Baer’s Criterion (proposition 5.2.4)
applied to the homomorphism f , there exists an element m′ ∈ M such that f(a) =
m′a. Therefore m = m′a, i.e., M is a divisible module.
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Remark. For some rings the statement inverse to proposition 5.2.11 is true,
i.e., divisible implies injective. Examples of such rings are principal ideal domains,
as will be shown in chapter 8. But in general this inverse statement is not true.

The following result shows, in particular, that an infinite direct sum of injective
modules need not to be injective for an arbitrary ring.

Theorem 5.2.12 (H.Bass, Z.Papp). A ring A is right Noetherian if and
only if every direct sum of injective right A-modules is injective.

Proof. Suppose A is right Noetherian and I is a right ideal in A. Then, by
proposition 3.1.5, I is finitely generated, that is, I has a finite set of generators

{x1, x2, ..., xn} and any element x ∈ I can be written as x =
n∑

i=1

xiai. Suppose Q =

⊕
j∈J

Qj , where the Qj are injective right A-modules. Consider a homomorphism

ϕ : I → Q = ⊕
j

Qj . For each generator xi in I there are only finitely many j

such that ϕ(xi) has its j-th component unequal to zero. As there are only finitely
many xi it follows that there is a finite subset I0 of J such that ϕ factors through
⊕

j∈J0

Qj

σ
⊂ ⊕

j∈J
Qj where σ is the obvious inclusion. Since ⊕

j∈J0

Qj is injective, by

proposition 5.2.2, for any diagram

0 I θ

ϕ

A

Q

we can construct a commutative diagram

0 I θ

ϕ

A

g

⊕
j∈J0

Qj

σ

Q

where gθ = ϕ. Setting g′ = σg we obtain, by proposition 5.2.4, that Q is injective.
Conversely, suppose Q = ⊕

j∈J
Qj is injective whenever the Qj are injective right

A-modules. Assume that A is not right Noetherian. Then there exists an infinite
strictly ascending chain of right ideals: I1 ⊂ I2 ⊂ ... ⊂ In ⊂ .... Let I =

⋃
In.

By theorem 5.2.8, for any n there exists an injective module Qn such that the
sequence 0 → I/In

ϕn→ Qn is exact. Then we can define ϕ : I → Q by setting



124 ALGEBRAS, RINGS AND MODULES

ϕ(x) = ⊕ϕn(x + In) if x ∈ I. Since I =
⋃
In, for any x ∈ I there exists n

such that x ∈ In. Therefore ϕn(x + In) = 0 for all but finitely many n. So that
ϕ(x) ∈ ⊕

n∈S
ϕn(x + In) = Q′, where S is a finite set. By corollary 5.2.10, Q′ is

injective. Then there exists a homomorphism g : A → Q′ such that the following
diagram

0 I θ

ϕ

A

g

Q′

0 −→ I θ−→ A
↓ ϕ ↙ g
Q′

is commutative. In this case ϕn(x + In) = gn(x), where g(x) = ⊕gn(x). But now
ϕn(x + In) = gn(x) = xgn(1), for x ∈ In, implies that gn(1) �= 0, for all n ∈ S.
Thus, g(1) /∈ Q′. This contradiction shows that A is right Noetherian.

The structure and properties of semisimple rings have been considered in sec-
tion 2.2. The following theorem gives a characterization of semisimple rings in
terms of projective and injective modules.

Theorem 5.2.13. For a ring A the following statements are equivalent:
1. A is a semisimple ring.
2. Any A-module M is projective.
3. Any A-module M is injective.

Proof.
1 =⇒ 2. Assume A is a semisimple ring. Then the right regular module AA

decomposes into a direct sum of simple submodules. Therefore any free right A-
module F can also be decomposed into a direct sum of simple submodules, that
means F is a semisimple A module. Let M be a right A-module. Then M is
isomorphic to a quotient module of some free A-module F : M � F/K, where K
is a submodule of F . Since F is a semisimple A-module, by proposition 2.2.4, any
submodule is a direct summand of F . Thus, F = K ⊕ N , where N � M . Then,
by proposition 5.1.6, M is projective.

2 =⇒ 1. Suppose that any A-module is projective. Let N be a submodule of
a module M . Then, by hypothesis, the quotient module M/N is projective. Then
in the exact sequence

0 −→ N −→ M −→ M/N −→ 0

the module M/N is projective. Therefore, by proposition 5.1.6, this sequence
splits, i.e., N is isomorphic to a direct summand of the module M . Therefore, by
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proposition 2.2.4, M is a semisimple module. Since M is an arbitrary module, it
follows that A is a semisimple ring.

2 =⇒ 3. Assume that any A-module is projective. Let M be a right A-module.
By Baer’s Theorem, there exists an injective module Q containing M . Consider
the exact sequence

0 −→ M −→ Q −→ Q/M −→ 0

where Q/M is projective by hypothesis. Then, by proposition 5.1.6, this sequence
splits, i.e., M is isomorphic to a direct summand of the injective module Q. There-
fore, by corollary 5.2.10, M is injective.

3 =⇒ 2. Assume that any A-module is injective. Let M be a right A-module.
By corollary 5.1.3, M is isomorphic to a quotient module of some projective module
P . Consider the exact sequence

0 −→ M ′ −→ P −→ M −→ 0

where M ′ is injective, by hypothesis. Then, by corollary 5.2.9, this sequence
splits, i.e., M is isomorphic to a direct summand of the projective module P .
Therefore, by proposition 5.1.4, M is projective.

5.3. ESSENTIAL EXTENSIONS AND INJECTIVE HULLS

In the previous section it was shown that any module M can be embedded into an
injective module. There may be many such injective modules for a given module
M . The goal of this section is to show that among them there exists a minimal
one. We shall prove that every module M has such a minimal injective module and
we show that it is an essential extension of M , which is unique up to isomorphism.

Definition. If N is a submodule of a module M , we shall say that M is an
extension of N . A submodule N of M is called essential (or large) in M if it
has nonzero intersection with every nonzero submodule of M . We also say that
M is an essential extension of N .

For example, any module is always an essential extension of itself. This essential
extension is called trivial. Other essential extensions are called proper. The field
of all rational numbers Q considered as a Z-module is an essential extension of
the integers Z.

The next simple lemma gives a very useful test for essential extensions.

Lemma 5.3.1. An A-module M is an essential extension of an A-module N
if and only if for any 0 �= x ∈ M there exists a ∈ A such that 0 �= xa ∈ N .

Proof. Let M be an essential extension of N and 0 �= x ∈ M , then xA∩N �= 0,
that means there exists a ∈ A such that 0 �= xa ∈ N .

Conversely, let X ⊆ M and 0 �= x ∈ M . By hypothesis there exists a ∈ A such
that 0 �= xa ∈ N . Then 0 �= xa ∈ N ∩ X, i.e., N is essential in M .
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The following lemma shows that the relation of essential extension is transitive.

Lemma 5.3.2. Let M be an A-module with submodules K ⊆ N ⊆ M , then
M is an essential extension of K if and only if N is an essential extension of K
and M is an essential extension of N .

Proof. Let M be an essential extension of K and suppose 0 �= X ⊆ M , then
X ∩ K �= 0. In particular, this is true if X ⊆ N , so N is an essential extension of
K. Since K ⊆ N , we have X ∩ N �= 0. Therefore N is essential in M .

Conversely, let N be an essential extension of K and M be an essential exten-
sion of N . Suppose X ⊆ M , then X ∩ K = 0 implies X ∩ N = 0. But the last
equality means that X = 0. So, M is an essential extension of K.

The connection between injectivity and essential extensions is given by the
following theorem.

Theorem 5.3.3 (B.Eckmann, A.Schopf). A module Q is injective if and
only if it has no proper essential extensions.

Proof. Let M be an injective module and let E be an essential extension of
it. By proposition 5.2.10, M is a direct summand of E, i.e., E = M ⊕ N , where
M ∩ N = 0. If N �= 0, then E is not an essential extension, therefore N = 0 and
E = M .

Conversely, suppose M has no proper essential extensions. By Baer’s Theorem,
there exists an injective module Q containing M . Consider the set W of all
submodules S of Q with the property that S ∩ M = 0. This set is not empty
because 0 ∈ W . It is a partially ordered set with respect to the relation of subset
inclusion. Then, by Zorn’s Lemma, there exists a maximal element in this set.
Let N ⊂ Q be maximal in the set W . Then M ∩ N = 0 and M + N ⊆ Q. We
shall show that Q = M + N . Suppose M + N �= Q, then M + N/N ⊂ Q/N and
M+N/N �= Q/N . Consider a nonzero submodule 0 �= X/N ⊂ Q/N . Then N ⊂ X
and N �= X. Since N is a maximal element in W , we have M ∩X �= 0. Now taking
into account that M ∩N = 0 we obtain M ∩X �⊆ N . Therefore N ⊂ X∩(M +N),
which means that X/N ∩ (M +N)/N �= 0 and so Q/N is an essential extension of
(M + N)/N . In view of theorem 1.3.3, we have M � M/M ∩ N � (M + N)/N .
Hence M is essential in Q/N . Since, by hypothesis, M has no proper essential
extensions, Q/N = (M + N)/N and this implies Q = M + N . Since M ∩ N = 0,
we have Q = M ⊕ N . Hence, by proposition 5.2.2, M is an injective module.

Definition. A module Q is called an injective hull or injective envelope
of a module M if it is both an essential extension of M and an injective module.

Theorem 5.3.4. Every module M has an injective hull, which is unique up
to an isomorphism extending the identity of M .

Proof. By Baer’s Theorem there is an injective module Q containing a given



PROJECTIVES, INJECTIVES AND FLATS 127

module M . Consider the set W of all essential extensions of M contained in the
module Q. This set is not empty because M ∈ W and, in view of lemma 5.3.2, it
is a partially ordered set with respect to subset inclusion. We shall show that any
increasing chain of modules contained in the set W has an upper bound in W . Let

M ⊆ E1 ⊆ E2 ⊆ ... ⊆ En ⊆ ... ⊆ Q

be a chain of modules Ei ∈ W . Let E∗ = ∪
i∈I

Ei, then M ⊆ E∗ ⊆ Q. If 0 �= X ⊂
E∗, then there is i ∈ I such that X ∩ Ei �= 0 and therefore (X ∩ Ei) ∩ M �= 0.
Hence X ∩ M �= 0 and E∗ is an essential extension of M , i.e., E∗ ∈ W and it is
an upper bound of all Ei for i ∈ I. Therefore we can apply Zorn’s lemma to the
set W and conclude that there exists a maximal element E in W . We are going
to show that E is an injective module. By theorem 5.3.3, it suffices to prove that
E has no proper essential extensions.

Suppose that L is an essential extension of E. By construction E is a submodule
of Q. Since Q is injective, the diagram

0 E
iL

iQ

L

Q

with embeddings iL and iQ can be completed to a commutative diagram

0 E
iL

iQ

L

h

Q

Therefore hiL = iQ and Kerh ∩E = 0. Since L is an essential extension of E,
it follows that Kerh = 0, i.e., h is a monomorphism. Hence L = Imh � L and L is
an essential extension of E. Then, by lemma 5.3.2, L is also an essential extension
of the module M . Thus, we have the sequence M ⊆ E ⊆ L ⊆ Q and owing to
maximality of E we obtain that E = L, i.e., E = L and E has no proper essential
extensions. By theorem 5.3.3, E is an injective module, i.e., E is an injective hull
of M .

Now we shall prove the uniqueness of E up to isomorphism. Let E and E
be two injective hulls of M . Since E and E are injective modules, there exists a
homomorphism τ : E → E such that the diagram

0 M

1M

E

τ

0 M E
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with exact top and bottom rows is commutative. Then Kerτ ∩ M = 0 and,
since E is an essential extension of M , Kerτ = 0, i.e., τ is a monomorphism. So
E � Imτ ⊆ E and from the injectivity of E, by proposition 5.2.10, it follows
E = Imτ ⊕ N . Since M ⊆ Imτ , we have M ∩ N = 0 and, since E is an essential
extension of M , it follows that N = 0. Thus Imτ � E, that means τ is an
epimorphism and therefore τ is an isomorphism extending the identity 1M of M .
The theorem is proved.

We shall say that E is a maximal essential extension of a module M if
no module properly containing E can be an essential extension of M . We shall
also say that a module Q is minimal injective over M if no module properly
contained in Q and properly containing M can be injective.

Theorem 5.3.5. If N is a submodule of a module M , then the following
conditions are equivalent:

(1) M is a maximal essential extension of N .
(2) M is both an essential extension of N and an injective module.
(3) M is minimal injective over N .

Proof.
(1) =⇒ (2). By lemma 5.3.2, hypothesis (1) means that M has no proper

essential extensions. Therefore, by theorem 5.3.3, M is injective.
(2) =⇒ (3). Let N ⊆ Q ⊆ M where Q is an injective module. Then, by

corollary 5.2.10, M = Q ⊕ L. Since N ⊆ Q, we obtain that N ∩ L = 0. Because
M is an essential extension of N , L = 0, and so Q = M .

(3) =⇒ (1). Suppose M is minimal injective over N . From the proof of theorem
5.3.4 there exists a module E ⊆ M , which is a maximal essential extension of N .
Then E is an injective module and from the minimality of M it follows that
E = M .

Remark. We shall use the notation E(M) for an injective hull of a module
M . It is unique up to isomorphism and thus E(M) denotes any injective hull of
M .

The following proposition yields some other important properties of injective
hulls which will be needed in the sequel.

Proposition 5.3.6.
(1) E(M1 ⊕ M2) � E(M1) ⊕ E(M2) for any A-modules M1,M2.
(2) If ϕ : M → Q is a monomorphism and Q is an injective module, then

Q = Q1 ⊕ Q2, where Q1 � E(M).

Proof.
(1). Since, by proposition 5.2.2, E = E(M1) ⊕ E(M2) is an injective module,

to prove statement (1) it suffices to prove that E is an essential extension of the
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module M = M1 ⊕ M2.
Let x = e1 + e2 be an arbitrary nonzero element of E, where ei ∈ E(Mi),

i = 1, 2. By lemma 5.3.1, there exists an element a1 ∈ A such that 0 �= e1a1 ∈ M1.
Consider the element xa1 = e1a1 + e2a1. If e2a1 = 0, then 0 �= xa1 = e1a1 ∈ M
and the statement follows from lemma 5.3.1. Suppose e2a1 �= 0. Then by the
same lemma there exists an element a2 ∈ A such that 0 �= (e2a1)a2 ∈ M2. Hence,
0 �= xa1a2 = e1a1a2 + e2a1a2 ∈ M and from lemma 5.3.1 it follows that E is an
essential extension of M .

(2). Consider a diagram

0 M
iM

ϕ

E(M)

Q

with the top row exact, a monomorphism ϕ and the canonical embedding iM .
Since Q is an injective module, there exists a homomorphism τ extending iM ,
which makes the following diagram commutative

0 M
iM

ϕ

E(M)

τ

Q

Assume τ is not a monomorphism, i.e., Kerτ �= 0. Then Kerτ ∩ M = 0, since
τiM = ϕ and ϕ, iM are monomorphisms. But this contradicts the fact that
E(M) is an essential extension of the module M . So, we obtain that τ is a
monomorphism. By corollary 5.2.10, E(M) is isomorphic to a direct summand of
the module Q, i.e., Q = Q1 ⊕ Q2, where Q1 � E(M).

Definition. Let M be a right A-module. The socle of M , denoted by soc(M),
is the sum of all simple right submodules of M . If there are no such submodules,
then soc(M) = 0.

If M = AA, then soc(AA) is the sum of all minimal right ideals of A and it is
a right ideal of A. If I is a minimal right ideal in A, then for any x ∈ A either
xI = 0 or xI is a minimal right ideal, and in both cases xI ⊂ soc(AA). Therefore
soc(AA) is an ideal in A. Analogously we can consider soc(AA). However these
two socles do not coincide in general. As an example we can consider the ring of
all upper triangular 2 × 2 matrices over a field k.

For a semisimple module M we have soc(M) = M .

Since a homomorphic image of a simple module is a simple module or zero, for
any A-homomorphism ϕ : M → N of A-modules M , N , we have that ϕ(soc(M)) ⊆
soc(N).
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Proposition 5.3.7. If M is an A-module, then E(M) = E(soc(M)).

Proof. Since soc(M) is the sum of all simple submodules of a module M , for
any submodule X ⊆ M , we have X ∩ soc(M) �= 0, that means soc(M) is essential
in M . Since E(M) is an essential extension of M , by lemma 5.3.2, E(M) is also
an essential extension of soc(M). Taking into account that E(M) is an injective
module completes the proof of the proposition.

Slightly more categorically, the notion of an essential extension can be refor-
mulated as: ”An essential monomorphism is a monomorphism f : N → M such
that for each sequence of A-modules

N
f−→ M

g−→ X

with gf a monomorphism, g is a monomorphism.
The dual notion is that of an essential epimorphism (surjective homomorphism

in the case of modules). An epimorphism f : N → M is an essential epimorphism
if for each sequence of A-modules

X
g−→ M

f−→ N

such that fg is surjective, g is surjective.

Definition. A projective cover of a module M is a projective module P
together with an essential epimorphism P → M .

Proposition 5.3.8. Projective covers are unique up to isomorphism (assuming

there are any). In other words, if P
f→ M , P ′ f ′

→ M are two projective covers then
there is an isomorphism ϕ : P → P ′ such that f ′ϕ = f .

The notion of a projective cover is the dual of an injective hull. However,
unlike injective hulls, which always exist (the Baer theorem), projective covers do
not always exist. For instance the Z-module Z/(2) has no projective cover.1)

Definition. A ring A is called semiperfect if A/rad(A) is a semisimple ring
and if moreover every idempotent in A/rad(A) lifts to an idempotent in A.

Proposition 5.3.9. Let A be a semiperfect ring. Then every finitely generated
right (left) A-module has a right (left) projective cover.2)

For more on projective covers and semiperfect rings see chapter 10 below,
especially section 10.4.

1) This is an illustration of the fact that not everything in a category of A-modules dualizes.
2) This also goes the other way. If every finitely generated right A-module has a projective

cover, the ring A is a semiperfect (see H.Bass, Finitistic dimension and a homological general-
ization of semi-primary rings // Trans. Amer. Math. Soc. v.95 (1960), p.466-488).
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5.4. FLAT MODULES

Definition. An A-module X is called flat if X ⊗A ∗ is an exact functor.

In view of proposition 4.6.4, X is flat if and only if 1X ⊗ f is a monomorphism
whenever f is a monomorphism.

Proposition 5.4.1. If A is a ring, then the regular module AA is flat.

Proof. This follows immediately from proposition 4.5.4.

Proposition 5.4.2. A direct sum B = ⊕
α∈I

Bα of modules Bα is a flat module

if and only if each Bα is flat.

Proof. Let B = ⊕
α∈I

Bα. Consider an exact sequence of left A-modules: 0 −→

M
f−→ N . Then, by proposition 4.6.2, we have a commutative diagram

⊕
α∈I

Bα ⊗A M 1⊗f

ϕ

⊕
α∈I

Bα ⊗A N

ψ

⊕(Bα ⊗ M)
⊕(1Bα⊗fα)

⊕(Bα ⊗ N)

where ϕ and ψ are natural isomorphism determined by ϕ[(
∑

bα)⊗m] =
∑

(bα⊗m)
and ψ[(

∑
bα) ⊗ n] =

∑
(bα ⊗ n) for any m ∈ M and n ∈ N . Therefore 1 ⊗ f is a

monomorphism if and only if each 1Bα
⊗ fα is a monomorphism, that is, B is flat

if and only if each Bα is flat.

Corollary 5.4.3. Every direct summand of a flat module is flat.

Corollary 5.4.4. Every free module is flat.

Proof. Since, by proposition 5.4.1, A is flat, then from proposition 5.4.2 it
follows that every free module is flat.

Corollary 5.4.5. Every projective module is flat.

Proof. This follows from corollary 5.4.4, since every projective module is a
direct summand of a free module.

Remark. Note that the converse to 5.4.4 and 5.4.5 3) need not be true: there
are flat modules that are neither free nor projective. For example, if A = Z then the

3) The converse to 5.4.5 is true only for a special class of rings which are perfect rings. One
of the equivalent definitions says that a ring A is called right perfect if every right A-module has
a projective cover (see H.Bass, Finitistic dimension and a homological generalization of semi-
primary rings // Trans. Amer. Math. Soc. v.95 (1960), p.466-488). For more on perfect rings
see section 10.5 below.
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Z-module Q is flat but it is not projective. If A = Z(p) = {m
n ∈ Q : (n, p) = 1},

where p is prime, then the Z(p)-module Q is flat but it is not projective.

Proposition 5.4.6. Let M = {{I,≤}; {Mi | i ∈ I}; {ϕij | i ≤ j ∈ I}} be a
directed system of right A-modules. If each Mi is flat, then lim−→ Mi is also flat.

Proof. Let X be a left A-module. Consider the submodule N , which is gen-
erated by elements mi − ϕijmi for i ≤ j, as in the construction of lim−→ Mi, and

the corresponding submodule N0, for the construction of lim−→(Mi ⊗ X). Then

it is easy to verify, that the map ϕ : lim−→ Mi ⊗ X → lim−→(Mi ⊗ X) given by

ϕ((
∑

mi + N) ⊗ x) =
∑

mi ⊗ x + N0 is an isomorphism. Consider an exact

sequence 0 → X
f−→ Y of left A-modules. Then we have the commutative dia-

gram

lim−→ Mi ⊗ X 1⊗f

ϕ

lim−→ Mi ⊗ Y

ψ

lim−→(Mi ⊗ X)
lim−→(1Mi

⊗f)
lim−→(Mi ⊗ Y )

where ϕ and ψ are isomorphisms. By corollary 4.7.8, 1 ⊗ f is a monomorphism
because each 1Mi

⊗ f is. Therefore lim−→ Mi is flat.

Corollary 5.4.7. If every finitely generated submodule of M is flat, then M
is flat.

Proof. We obtain this statement from the previous proposition, taking into
account that every module is the direct limit of its finitely generated submodules.

To establish a connection between flat modules and injectives we introduce the
following very important definition.

Definition. If M is a right A-module, then the left A-module B∗ =
HomZ(M,Q/Z), is called its character module, where the action of A is defined
by (af)m = f(ma), for all a ∈ A and m ∈ M .

Lemma 5.4.8. For any Abelian group G with a given element 0 �= x ∈ G there
exists a group homomorphism f : G → Q/Z such that f(x) �= 0.

Proof. Let 0 �= x ∈ G and Zx be a cyclic subgroup of G generated by x.
Since for any 0 �= n ∈ N the quotient group Q/Z contains an element of order n,
namely 1/n + Z, there exists a homomorphism h : Zx → Q/Z with hx �= 0. Since
Q/Z is injective, h can be extended to a homomorphism f : G → Q/Z such that
f(x) �= 0.
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The next lemma gives a simple criterion for exactness of sequences in terms of
character modules.

Lemma 5.4.9. A sequence of right A-modules

M
f−→ N

g−→ L (5.4.1)

is exact if and only if the sequence of character modules

L∗ g∗
−→ N∗ f∗

−→ M∗ (5.4.2)

is exact.

Proof.
1. Since Q/Z is injective, exactness of sequence (5.4.1) implies exactness of

sequence (5.4.2).
2. Let sequence (5.4.2) be exact. We shall show that Kerf∗ = Img∗ implies

Kerg = Imf .
(a) Suppose Imf �⊂ Kerg, then there is an element n ∈ Imf ⊂ N such that

g(n) �= 0. Since n ∈ Imf , n = f(m) for some m ∈ M . Therefore gf(m) ∈ 0.
Then, by lemma 5.4.8, there exists a homomorphism h ∈ L∗ = HomZ(L,Q/Z)
such that h(gf(m)) �= 0. Hence, h(gf(m)) = (f∗g∗(h))(m) �= 0, i.e., f∗g∗ �= 0,
contradicting f∗g∗ = 0.

(b) Suppose Kerg �⊂ Imf , then there is an element n ∈ N such that n /∈ Imf
and n ∈ Kerg, i.e., g(n) = 0. Applying lemma 5.4.8 to N/Imf , there exists a
homomorphism h ∈ N∗ = HomZ((N,Q/Z) such that h(Imf) = 0 and f(n) �= 0.
The former means that f∗(h) = 0. Since Kerf∗ = Img∗, there exists ϕ ∈ L∗ =
HomZ(L,Q/Z). But then f(n) = G∗(ϕ)(n) = ϕ(g(n)) = 0, a contradiction.

Theorem 5.4.10 (J.Lambek). A right A-module B is flat if and only if its
character module B∗ is injective as a left A-module.

Proof. 1. Let a right A-module B be flat and consider an exact sequence of
left A-modules:

0 −→ M −→ N −→ L −→ 0 (5.4.3)

Then the sequence

0 −→ B ⊗A M −→ B ⊗A N −→ B ⊗A L −→ 0 (5.4.4)

is also exact. Then, by lemma 5.4.9, the sequence of character modules

0 −→ (B ⊗A L)∗ −→ (B ⊗A N)∗ −→ (B ⊗A M)∗ −→ 0 (5.4.5)

is also exact.
Using the adjoint isomorphism for an arbitrary left A-module C we have

(B ⊗A C)∗ = HomZ((B ⊗A C),Q/Z) � HomA(C, HomZ(B,Q/Z)) =
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= HomA(C, B∗) (5.4.6)

So we have the following exact sequence

0 −→ HomA(L⊗AB∗) −→ HomA(N⊗AB∗) −→ HomA(M⊗AB∗) −→ 0 (5.4.7)

Hence, by proposition 5.2.1, it follows that B∗ is injective.
2. Conversely, let B∗ be injective module and consider an exact sequence of left

A-modules (5.4.3). Then, by proposition 5.2.1, the sequence (5.4.7) is exact and
using the isomorphisms (5.4.6) we obtain that the sequence (5.4.5) is also exact.
Applying lemma 5.4.9 over the ring Z, it follows that the sequence (5.4.4) is also
exact. This shows that B is flat.

Proposition 5.4.11 (Flatness test). A right A-module B is flat if and only
if for each finitely generated left ideal I ⊆ A the natural map B ⊗A I → BI is an
isomorphism of Abelian groups.

Proof. Consider the natural homomorphism f : B ⊗A I → B ⊗A A. Since
B ⊗A A � B � B, Imf � BI. So to show that B ⊗A I → BI is an isomorphism
of Abelian groups is equivalent to show that the sequence

0 → B ⊗A I → B ⊗A A (5.4.8)

is exact.
1. Let a right A-module B be flat. Then for any left ideal I ⊆ A we have an

exact sequence 0 → I → A and, by definition, sequence (5.4.8) is exact.
2. Conversely, let the sequence (5.4.8) be exact for every finitely generated

left ideal I ⊆ A. Since any left ideal is a direct limit of finitely generated ideals,
applying corollary 4.7.8 we obtain that the sequence (5.4.8) is exact for any left
ideal I ⊆ A. Then using the isomorphisms (5.4.6) we obtain exactness of the
following sequence

HomA(A,B∗) −→ HomA(I, B∗) −→ 0

which by Baer’s Criterion means that B∗ is injective. Therefore B is flat, by
theorem 5.4.10.

The following proposition gives a useful criterion for a quotient module of a
flat module to be flat.

Proposition 5.4.12. Let a sequence of right A-modules 0 −→ M −→ F −→
B −→ 0 be exact, where F is flat. Then B is flat if and only if M ∩FI = MI for
each finitely generated left ideal I ⊆ A.

Proof. Let a sequence of right A-modules 0 −→ M −→ F −→ B −→ 0 be
exact, where F is flat, and let I be a finitely generated left ideal of A. Then we
have an exact sequence

M ⊗A I f−→ F ⊗A I g−→ B ⊗A I −→ 0 (5.4.9)
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Since F is flat, by proposition 5.4.11, F ⊗A J can be identified with FI. Since
from exactness of the sequence 5.4.9 Imf = Kerg and Imf � MI, by theorem
1.3.1, we have an isomorphism

ϕ : FI/MI → B ⊗A I

On the other hand, from the exactness of F → B → 0, by the Noether theorem,
we have an isomorphism

ψ : FI/M ∩ FI → BI

So we have the following commutative diagram

B ⊗A I f
BI

FI/MI

ϕ

g
FI/M ∩ FI

ψ

where ϕ, ψ are isomorphisms and f is the natural projection. Then g is an
isomorphism if and only if f is an isomorphism. By proposition 5.4.9, f is
an isomorphism if and only if B is flat, and g is isomorphism if and only if
M ∩ FI = MI, Therefore B is flat if and only if M ∩ FI = MI for every finitely
generated left ideal I, as required.

5.5. RIGHT HEREDITARY AND RIGHT SEMIHEREDITARY RINGS

Definition. A ring A is said to be right (resp. left ) hereditary if each right
(resp. left) ideal is projective. If a ring A is both right and left hereditary, we say
that A is a hereditary ring.

Example 5.5.1.
In view of theorem 5.2.13, any semisimple ring is hereditary.

Example 5.5.2.
Any principal ideal domain A is hereditary, since every nonzero ideal is iso-

morphic to A.

Theorem 5.5.1 (I.Kaplansky). If a ring A is right hereditary, then any
submodule of a free A-module is isomorphic to a direct sum of right ideals of A.

Proof. Let F be a free A-module with a free basis {eα}, where α ∈ I and
the index set I is well-ordered. Define the submodules of F : Fα = ⊕

β<α
eαA and

Fα = ⊕
β≤α

eαA. Let X be an arbitrary submodule of F . Any element x ∈ X ∩ Fα

has the form x = x0 + eαa, where x0 ∈ Fα and a ∈ A. The assignment x �→ a
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defines an epimorphism ϕ : X ∩ Fα → Iα, where Iα is a right ideal in the ring A.
Clearly, Kerϕ = X ∩ Fα. So we have an exact sequence

0 −→ X ∩ Fα −→ X ∩ Fα −→ Iα −→ 0.

Since the ideal Iα is projective, by proposition 5.1.6, this sequence splits, i.e.,
X ∩ Fα = X ∩ Fα ⊕ Cα, where Cα � Iα. We shall show that X is the direct sum
of the Cα.

Suppose c1 + ... + cn = 0, where ci ∈ Cαi
and we may assume that α1 < α2 <

... < αn in I. Then c1, ..., cn−1 ∈ X∩Fαn
and cn ∈ Cαn

. Since (X∩Fαn
)∩Cαn

= 0,
cn = 0 and c1 + ... + cn−1 = 0. Continuing in this way, we obtain that c1 = ... =
cn = 0. Finally, we need to show that X is the sum of Cα. Evidently,

∑
α

Cα ⊂ X.

Suppose X �=
∑
α

Cα. Then there is an element x ∈ X and x /∈
∑
α

Cα. Then there

exists a minimal index β such that the submodule X ∩ Fβ contains the element x
not belonging to

∑
α

Cα.

Writing the element x in the form x = x0 + c, where x0 ∈ X ∩ Fβ and c ∈ Cβ ,
we obtain that the submodule

∑
α

Cα does not contain the element x0. At the same

time x0 ∈ X ∩ Fγ for some γ < β, which contradicts the minimal property of the
index β. The theorem is proved.

From this theorem we obtain immediately the following statements.

Corollary 5.5.2. If A is a right hereditary ring, then every submodule of a
projective right A-module is projective.

Corollary 5.5.3. If A is a principal ideal domain, then every submodule of a
free A-module is free.

Corollary 5.5.4. If A is a principal ideal domain, then every projective A-
module is free.

Corollary 5.5.5. If A is a right hereditary ring, then a right A-module P is
projective if and only if it is embeddable into a free right A-module.

Theorem 5.5.6. The following conditions are equivalent for a ring A:
a) A is a right hereditary ring;
b) any submodule of a right projective A-module is projective;
c) any quotient of a right injective A-module is injective.

Proof.
a) =⇒ b) follows from corollary 5.5.5.
b) =⇒ a) is trivial from the definition of a right hereditary ring.
b) =⇒ c). Assume that any submodule of a right projective A-module is

projective. In particular, any right ideal I of the ring A is projective. Let Q/K
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be a quotient of an injective A-module Q. Consider a diagram

0 I i

ϕ

A

Q
ψ

Q/K 0

with top and bottom rows exact and canonical embedding i. Since the ideal I is
projective, there exists a homomorphism f : I → Q such that ϕ = ψf . Since Q is
injective, by Baer’s Criterion, there exists a homomorphism g : A → Q extending
f , i.e., gi = f . Set h = ψg. Then hi = ψgi = ψf = ϕ. Therefore h is a
homomorphism h : A → Q/K which extends ϕ. In view of Baer’s Criterion, Q/K
is injective.

c) =⇒ a). Assume that any quotient of a right injective module is injective.
Suppose we have a diagram

0 I i

ϕ

A

N
ψ

M 0

with top and bottom rows exact and canonical embedding i.
By Baer’s theorem, there exists an injective module Q containing N . Let

α : N → Q be the inbedding. Let Q1 = Q/Im(ασ) and Q2 = Im(ασ). Consider
the diagram

0 Kerψ
σ

N
ψ

α

M 0

0 Q2 Q
π

Q1 0

with top and bottom rows exact, the canonical imbedding α and the projection π.
Then we can construct a homomorphism β : M → Q1 by setting β(m) = παψ(n),
where m = ψ(n), n ∈ N . Therefore we obtain a commutative diagram

0 Kerψ
σ

N
ψ

α

M

β

0

0 Q2 Q
π

Q1 0

Then we can set h = βψ = πα. Since π is an epimorphism and α is a monomor-
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phism, h is an epimorphism. So we have the following diagram

0 I i

βϕ

A

N
h

Q1 0

By hypothesis the module Q1 = Q/Im(ασ) is injective and by Baer’s Criterion
there exists a homomorphism γ : A → Q1 extending βϕ, i.e., γi = βϕ. Since A is
obviously a projective A-module, there exists a homomorphism δ : A → N such
that hδ = γ. Therefore we can set σ = δi : I → N . It is easy to verify that
ψσ = ϕ, i.e., I is a right projective ideal in A. The theorem is proved.

Proposition 5.5.7. Let A be a right hereditary ring. Then for any nonzero
idempotent e2 = e ∈ A the ring eAe is also right hereditary.

Proof. Let I be a right ideal of a ring eAe. Consider the ideal Ĩ = IA which
is a right ideal of A. By assumption, Ĩ is projective. There is a free A-module F
for which Ĩ � F/K. Then we have an exact sequence

0 −→ K −→ F −→ Ĩ −→ 0.

Since Ĩ is projective, this sequence splits and we have F � Ĩ ⊕ K. Multiplying
this equality on the right by e we obtain Fe � Ĩe ⊕ Ke. From the decomposition
F = Fe ⊕ F (1 − e) it follows that Fe is projective. Since Ĩe = I, by proposition
5.1.4, I is a projective right ideal, i.e., eAe is a right hereditary ring.

Lemma 5.5.8. If a ring A is right hereditary, then any nonzero homomor-
phism ϕ : P1 → P2 of indecomposable projective right A-modules is a monomor-
phism.

Proof. Since Imϕ is a projective module, P1 � Imϕ ⊕ Kerϕ. Hence, due to
indecomposibility of P1, it follows that Kerϕ = 0.

Definition. A ring A is said to be right (left) semihereditary if each
finitely generated right (left) ideal is a projective A-module. A ring A which is
both right semihereditary and left semihereditary is called semihereditary.

For a right semihereditary ring we have statements, which are similar to propo-
sitions 5.5.1 and 5.5.6.

Proposition 5.5.9. If A is a right semihereditary ring, then every finitely
generated submodule of a free A-module is isomorphic to a direct sum of a finite
number of finitely generated right ideals of A.

Proof. Let F be a free A-module with a free basis {eα}, where α ∈ I. Suppose
X is a finitely generated submodule of F . Then each generator of X is a finite
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linear combination of eα’s, so that X is contained in a free summand of F , which
has a finite free basis. So we can suppose that F is a free module with finite free
basis e1, e2, ..., en.

We shall prove our statement by induction on the number of elements n.
Let n = 1, i.e., F = eA. Suppose X is a finitely generated submodule of F

with a system of generators {x1, x2, ..., xk}. Then any element x ∈ X has the form

x =
k∑

i=1

xiai =
k∑

i=1

ebiai = e

k∑
i=1

biai

and X is isomorphic to the finitely generated right ideal I with system of genera-
tors {b1a1, b2a2, ..., bkak}.

Suppose n > 1 and X is a finitely generated submodule of F with free basis
{e1, e2, ..., en}. We define Y = X ∩ (e1A⊕ e2A⊕ ...⊕ en−1A). Any element x ∈ X
has a unique form x = y + ena, where y ∈ Y , a ∈ A. The assignment x �→ a
defines an epimorphism ϕ : X −→ I, where I is a right ideal of A. So we have an
exact sequence:

0 −→ Y −→ X
ϕ−→ I −→ 0

Since I is a finitely generated right ideal of A and A is right semihereditary, I is
projective. Then, by proposition 5.1.6, this sequence splits, i.e., X � Y ⊕I. Since
Y is a finitely generated submodule of e1A ⊕ e2A ⊕ ... ⊕ en−1A, by the induction
hypothesis, Y is isomorphic to a direct sum of finitely generated right ideals of A.

Corollary 5.5.10. A ring A is right semihereditary if and only if every finitely
generated submodule of a right projective A-module is projective.

Proof. 1. Let A be a right semihereditary ring and P be a projective right
A-module. Suppose X is a finitely generated submodule of P . Since P is a direct
summand of some free A-module F , by theorem 5.5.6, X is isomorphic to a direct
sum of a finite number of finitely generated right ideals of A:

X �
n
⊕

i=1
Ii

Since A is right semihereditary, each Ii is projective and by proposition 5.1.4 X
is also projective.

2. Since A is projective A-module, by hypothesis, each of its finitely generated
right ideal is also projective, i.e., A is a right semihereditary ring.

5.6. HERSTEIN-SMALL RINGS

In this section we consider a class of rings, which shows that the notion of a right
hereditary ring is different from that of a left hereditary ring. The first example,
which shows this difference, was constructed by I.Kaplansky. Another, easier



140 ALGEBRAS, RINGS AND MODULES

example, was later constructed by L.Small. He considered an important family of
rings and showed that these rings are right Noetherian and right hereditary but
they are neither left Noetherian nor left hereditary.

I.N.Herstein used such a ring as an example of a right Noetherian ring in which
the intersection of natural powers of the Jacobson radical is not equal to zero.

Let Q be the field of rational numbers, and let p be a prime integer, Z(p) =
{m

n ∈ Q | (n, p) = 1}. As it has been shown in section 1.1 the ring Z(p) has the
unique composition series

Z(p) ⊃ pZ(p) ⊃ p2Z(p) ⊃ ... ⊃ pnZ(p) ⊃ ...

So, Z(p) is a principal ideal domain, which is Noetherian but not Artinian. Con-
sider the following ring

H(Z(p), 1, 1) =
(

Z(p) Q
0 Q

)
.

We shall show that the ring A = H(Z(p), 1, 1) is right Noetherian but not left
Noetherian, that it is right hereditary but not left hereditary and that the in-
tersection of natural powers of the Jacobson radical of this ring is not equal to
zero. We write e = e11 and f = e22 (the matrix units). So that eAe = Z(p) is
Noetherian but not Artinian, fAf = Q is a field, eAf = Q is a finitely generated
right Q-module and an infinitely generated left Z(p)-module. From theorem 3.6.1
it is immediate that the ring A is right Noetherian but not left Noetherian, it is
neither right nor left Artinian.

Since radZ(p) = pZ(p), the radical R of H(Z(p), 1, 1) has the following form

R =
(

pZ(p) Q
0 0

)
.

Hence we obtain that for any n > 0

Rn =
(

pnZ(p) Q
0 0

)

and the intersection of all natural powers of the Jacobson radical of the ring
H(Z(p), 1, 1) coincides with the ideal

I =
∞
∩

n=1
Rn =

(
0 Q
0 0

)
�= 0.

Let us describe all right ideals J in the ring A = H(Z(p), 1, 1). If J e �= 0,
then J e coincides with pnZ(p) for some n. Assume that the right ideal J has an

element
(

α β
0 γ

)
with γ �= 0. Then J has the following form:

J =
(

pnZ(p) Q
0 Q

)
.
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If γ = 0 for all elements of J , then, obviously, J = Rn. In the case J e = 0
right ideals J are given by the various Q-subspaces in the two-dimensional space(

0 Q
0 Q

)
.

Thus, all the right ideals of the ring A are given by A, eA, fA, Rn, Rn ⊕ fA

and various Q-subspaces in the two-dimensional space
(

0 Q
0 Q

)
.

Evidently, all these right ideals are projective. Therefore the ring A is right
hereditary.

At the same time the left ideal

I =
(

0 Q
0 0

)

is, in fact, a left Z(p)-module and it is obviously indecomposable. Assume I is
a projective left A-module. Then the Z(p)-module Q is a submodule of a free
Z(p)-module of countable rank. This contradiction shows that I is not projective
and so, the ring A is not left hereditary.

5.7. NOTES AND REFERENCES

It is interesting to note that the fundamental notions of homological algebra (such
as projective module and the functor Tor) arose in connection with the study of
the behaviour of modules over Dedekind rings with respect to the tensor product.
These investigations were carried out by H.Cartan in 1948.

Homological methods have invaded much of abstract algebra, and especially
ring theory - both commutative and noncommutative - beginning with the 1950s.
In fact, many of the standard concepts and results have been rephrased in homo-
logical language. The first systematic theory of projective and injective modules
was presented in the book H.Cartan, S.Eilenberg, Homological Algebra, 1956.

It is interesting to note that the theory of injective modules was investigated
long before the dual notion of projective modules. Injective modules first appeared
in the context of Abelian groups. L.Zippin observed in 1935 that an Abelian group
is divisible if and only if it is a direct summand of any larger group containing it as a
subgroup, and that the divisible Abelian groups can be completely described. The
general notion of an injective module over an arbitrary ring was first investigated by
R.Baer in the paper Abelian groups that are direct summands of every containing
Abelian group // Bull. Amer. Math., v. 46 (1940), p.800-806 (but the term
”injective” was only introduced in the paper: B.Eckmann and A.Schopf, Über
injektive Moduln // Arch. der. Math. v.4 (1953), p.75-78) where it was also
shown that categories of modules are ”injective rich”.

R.Baer worked with what he called ”complete” modules over a ring R, namely
modules A such that every homomorphism from a one-sided ideal of R to A extends
to a homomorphism from R to A. He proved that every module is a submodule
of a complete module, and that a module is complete if and only if it is a direct
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summmand of every module that contains it (see R.Baer, Abelian groups that are
direct summands of every containing Abelian group //Bull. Amer. Math. Soc.
v.46 (1940), p. 800-806). The method we have used for the proof of Baer’s
theorem is due to B.Eckmann and A.Schopf: B.Eckmann and A.Schopf, Über
injektive Moduln // Arch. der. Math. v.4 (1953), p.75-78. In their elegant little
paper it was also proved that a module is injective if and only if it has no proper
essential extensions.

The concept of an injective hull was developed by B.Eckmann and A.Schopf
in their paper Über injektive Moduln // Arch. der. Math. v.4 (1953), p.75-
78. The term ”injective envelope” appeared in the paper of E.Matlis: E.Matlis,
Injective modules over noetherian rings // Pacific J.Math. v.8 (1958), p.511-528
and the term ”injective hull” appeared in the paper of A.Rozenberg and D.Zelinsky
A.Rozenberg and D.Zelinsky, Finiteness of the injective hull // Math. Zeitschrift,
v.70 (1959), p.372-380.

For the proofs of the results on projective covers at the end of sections 5.3
and more information on them see C.Curtis, I.Reiner, Methods of representation
theory, vol.1, §6c, Wiley, 1981.

That a ring R is right Noetherian if and only if every direct sum of injective
right R-modules is injective was proved independently by Z.Papp (see Z.Papp, On
algebraically closed modules // Publ. Math. Debrecen v.6 (1959), v.311-327) and
H.Bass (see H.Bass, Injective dimension in Noetherian rings // Trans. Amer.
Math. Soc. v.102 (1962), p.18-29 ).

The notions of torsion and torsionfreeness of an injective left module were
first developed systematically by P.Gabriel (see, Des catégories Abéliennes //
Bulletin de la Societé Math.de France, v.90 (1962), p.323-448) and L.E.Dickson
(see, A torsion theory for Abelian categories // Trans. Amer. Math. Soc., v.121
(1966),p.223-235).

Theorem 5.4.10, which gives a connection between a flat module and it char-
acter module, was proved by J.Lambek in the paper A module is flat if and only
if its character module is injective, Canad. Math. Bull., v. 7 (1964), p.237-243.

The examples of Herstein-Small rings were first presented in the papers
L.W.Small, An example in Noetherian rings // Proc. Nat. Sci. USA, v.54 (1965),
p.1035-1036 and I.N.Herstein, A counter example in Noetherian rings // Proc.
Nat. Sci. USA, v.54 (1965), p.1036-1037.



6. Homological dimensions

6.1. COMPLEXES AND HOMOLOGY. FREE RESOLUTIONS

In section 4.2 we considered exact sequences. In this section we shall consider a
generalization of this notion.

Definition. A complex S is a sequence of modules and homomorphisms

... −→ Sn
dn−→ Sn−1

dn−1−→ Sn−2 −→ ... (6.1.1)

where n ∈ Z, such that dn−1dn = 0 for all n, i.e., Kerdn−1 ⊂ Imdn. The maps
dn are called the differentials of the given complex S. The modules Hn(S) =
Kerdn/Imdn+1 are called the homology modules of S.

Note, that a complex is an exact sequence if and only if Hn(S) = 0 for all n.
For this reason exact sequences is often called acyclic complexes.

If S′ is another complex, then a homomorphism of complexes f : S −→ S′

is a family of homomorphisms fn : Sn → S′
n making the following diagram

. . . Sn
dn

Sn−1 . . .

. . . S′
n

d′
n

S′
n−1

. . .

commutative, i.e., fn−1dn = d′nfn for all n.

The homology coset x + Imdn+1, where x ∈ Kerdn, will be denoted by [x].
Clearly, a family of homomorphisms making up a morphism of complexes induces
homology morphisms

Hn(f) : Hn(S) → Hn(S′)

defined by Hn(f)[x] = [fn(x)] for all n.
In this way we can consider the category of complexes of A-modules, which

we shall denote by com-A and the family of functors Hn : com-A → mod-A.

Let f : S −→ S′ be a homomorphism of complexes. Then, obviously,
d′n(Imfn) ⊂ Imfn−1 and dn(Kerfn) ⊂ Kerfn−1. So we have the complexes
Imf = {Imfn} and Kerf = {Kerfn}. Therefore we can define exact sequences
of complexes just in the same way as exact sequences of modules. In particular, if
S′, S′ and S′′ are complexes, then a sequence

S′ f−→ S
g−→ S′′

143
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is exact if Kerg = Imf (at all n).

Theorem 6.1.1. Let 0 −→ S′ f−→ S
g−→ S′′ −→ 0 be an exact sequence of

complexes. Then for each n there exists a homomorphism δn : Hn(S′′) → Hn−1(S′)
such that the following sequence is exact:

... −→ Hn+1(S′′)
δn+1−→ Hn(S′)

Hn(f)−→ Hn(S)
Hn(g)−→

Hn(g)−→ Hn(S′′) δn−→ Hn−1(S′)
Hn−1(f)−→ Hn−1(S) −→ ... (6.1.2)

Proof. Let [x] be a homology coset of Hn(S′′). Since gn is surjective for any
n, x = gn(y) for some y ∈ Sn. Now, gn−1dny = d′′ngny = d′′nx = 0. And in
view of exactness, there exists z ∈ S′′

n−1 such that dn(y) = fn−1(z). Furthermore,
fn−2d

′
n−1z = dn−1fn−1z = dn−1dny = 0 and therefore d′

n−1z = 0, because fn−2

is a monomorphism.
Then we can set δn[x] = [z]. We shall show that it is a well-defined homo-

morphism from Hn(S′′) to Hn−1(S′), i.e., [z] depends neither on the choice of y
nor on the choice of x in the homology coset [x]. Indeed, if gn(y′) = gn(y) then
gn(y′ − y) = 0 and so, in view of exactness, y′ − y = fn(u) for some u ∈ S′

n.
Thus, dn(y′) = dn(y) + dnfn(u) = fn−1(z) + fn−1d

′
n(u) = fn−1(z + d′

n(u)) and
so [z] = [z + d′

n(u)]. Furthermore, let [x] = [x′], i.e., x′ = x + d′′n+1(v) for some
v ∈ S′′

n+1. Then there exists w ∈ Sn+1 such that v = gn+1(w) and therefore
x′ = gn(y) + gndn+1(w) = gn(y + dn+1(w)). Since dn(y + dn+1(w)) = dn(y), the
choice of x′ does not change the coset [z]. Thus, δn : Hn(S′′) → Hn−1(S′) is a
well-defined homomorphism.

Now we shall show that sequence (6.1.2) is exact. We shall show that
KerHn(f) ⊂ Imδn+1 and Kerδn ⊂ ImHn(g) and leave exactness at all other
spots to the reader.

1. Let Hn(f)[x] = 0, that means fn(x) = dn+1(y) for some y ∈ Sn+1. We
put z = gn+1(y), then dn+1z = gndn+1(y) = gnfn(x) = 0 and we obtain [z] ∈
Hn+1(S′′) satisfying δn+1[z] = [x] according to the definition of δ.

2. Let δn[x] = 0. By the definition of δ this means that if x = gn(y) and
dn(y) = fn−1(z), then z = d′n(u) for some u ∈ S′

n. Hence, x = gn(y − fn(u))
and dn(y − fn(u)) = dn(y) − fn−1d

′
n = 0, which gives [x] = Hn(g)[y − fn(u)], as

required.

A most important example of homomorphisms of complexes is given by ho-
motopic homomorphisms. Let S and S′ be two complexes. Two homomorphisms
f and g : S → S′ are called homotopic, and we write f ∼ g, if there are ho-
momorphisms ∆n : Sn → S′

n+1 such that fn − gn = d′n+1∆n + ∆n−1dn for all
n.

Proposition 6.1.2. If two homomorphisms f and g : S → S′ are homotopic,
then Hn(f) = Hn(g) for all n.
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Proof. Let [x] be a coset of a complex S. Since dn(x) = 0, we have: Hn(f)[x] =
[fn(x)] = [gn(x) + d′n+1∆n(x) + ∆n−1dn(x)] = [gn(x) + d′n+1∆n(x)] = [gn(x)] =
Hn(g)[x].

Two complexes S and S′ are called homotopic if there exist homomorphisms
f : S → S′ and g : S′ → S such that fg ∼ 1 and gf ∼ 1.

Corollary 6.1.3. If the complexes S and S′ are homotopic, then Hn(f) =
Hn(g) for all n.

Definition. A free resolution of a module M is an exact sequence

... −→ Fn
dn−→ Fn−1 −→ ... −→ F1

d1−→ F0 −→ M −→ 0,

where each Fn is a free module.

Proposition 6.1.4. Every module has a free resolution.

Proof. By proposition 1.5.4, for any A-module M there exists an exact sequence

0 −→ K0 −→ F0 −→ M −→ 0,

where F0 is a free module. Now K0 need not be free, but there exists an exact
sequence

0 −→ K1 −→ F1 −→ K0 −→ 0,

where F1 is a free module. Now again K1 need not be free, so we continue this
procedure. By induction, we have an exact sequence

0 −→ Kn −→ Fn −→ Kn−1 −→ 0,

where Fn is a free module. In general, this process can be continued infinitely
without arriving at a free kernel. Linking all these exact sequences together we
obtain an infinite commutative diagram:

. . . F3
d3

F2
d2

F1
d1

F0 M 0

K2 K1 K0

where each Fn is a free module and the maps dn are just the indicated composites.
Since for any n, Kerdn = Kn and Imdn = Kn−1, we have Kerdn = Imdn+1 and
so the top sequence is exact.

Remark. A given module M can have many different free resolutions.
Exactness of a free resolution means that Imdn+1 = Kerdn. Therefore a free
resolution is a complex and all its homology is 0. In fact, the homology measures
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how much a sequence differs from being exact.

6.2. PROJECTIVE AND INJECTIVE RESOLUTIONS. DERIVED FUNCTORS

A generalization of a free resolution is a projective one. The properties of projective
resolutions will be considered in this section.

Definition. Let M be an A-module. A projective resolution of M is an
exact sequence of A-modules

... −→ P2
d2−→ P1

d1−→ P0
π−→ M −→ 0 (6.2.1)

in which all Pn are projective.

Proposition 6.2.1. Every module has a projective resolution.

Proof. This is a corollary of proposition 6.1.4 as free modules are projective.

In a dual way one can define an injective resolution of an A-module M as
an exact sequence of A-modules

0 −→ M
i−→ Q0

d0−→ Q1
d1−→ Q2 −→ (6.2.2)

in which all Qn are injective.

In this chapter we shall generally deal with projective resolutions, leaving the
corresponding statements and results for injective resolutions to the reader. 1)

Let P be a projective resolution of a module M and P′ be a projective reso-
lution of a module M ′. Then for every homomorphism of complexes f : P → P′,
i.e., a commutative diagram:

. . . P2
d2

f2

P1
d1

f1

P0
π

f0

M

ϕ

0

. . . P ′
2

d2
P ′

1

d1
P ′

0
π′

M ′ 0

The homomorphism f is called an extension of ϕ to the resolutions P and
P′.

Theorem 6.2.2. Let P be a projective resolution of a module M and P′ be a
projective resolution of a module M ′. Then

1. Every homomorphism ϕ : M → M ′ can be extended to the resolutions P
and P′.

1) Note that injective resolutions always exist. Just take repeated injective hulls and combine
them. Just as in the case of projective or free resolutions where one takes repeated projective or
free surjections Pn → Mn.
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2. Any two extensions of ϕ to a given pair of resolutions P and P′ are homo-
topic.

3. Any two projective resolutions of a module M are homotopic.

Proof.
1. Consider the homomorphism ϕπ : P0 → M ′. Since P0 is projective and

π′ : P ′
0 → M ′ is epimorphism, there exists a homomorphism f0 : P0 → P ′

0 such
that a diagram

P0
π

f0

M

ϕ

0

P ′
0

π′
M ′ 0

is commutative, i.e., π′f0 = ϕπ. Therefore π′f0d1 = ϕπd1 and thus f0(Imd1) ⊂
Ker(π′) = Im(d′1). So we have a sequence of homomorphisms:

P1
d1→ Im(d1)

f0→ Im(d′1).

Since P1 is projective, there is a homomorphism f1 : P1 → P ′
1 such that the

diagram

P1
d1

f1

Im(d1)

f0

0

P ′
1

d′
1

Im(d′1) 0

is commutative, i.e., f0d1 = d′1f1.
Suppose f0, f1, ..., fn have been defined. We define fn+1 recursively. From the

commutative property of the constructed diagram we have fn−1dn = d′nfn. Since
dn+1dn = 0, 0 = d′

nfndn+1, i.e., fn(Imdn+1) ⊂ Ker(d′n) = Im(d′n+1). Therefore,
we have a sequence of homomorphisms:

Pn+1
dn+1→ Im(dn+1)

fn→ Im(d′n+1).

Since Pn+1 is projective, there is a homomorphism fn+1 : Pn+1 → P ′
n+1 such that

fndn+1 = d′n+1fn+1. Continuing this process we obtain an extension f : P → P′

of the homomorphism ϕ.
2. Let g : P → P′ be another extension of the homomorphism ϕ.
We shall show that f ∼ g. To this end we shall construct homomorphisms ∆n

recursively much like above. Note that π′f0 = ϕπ = π′g0, that is, π′(f0 − g0) = 0.
So Im(f0 − g0) ⊂ Ker(π′) = Im(d′1). So there is a ∆0 making the following
diagram

P0

f0−g0
∆0

P ′
1

d′
1

Im(d′1) 0
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commutative.
Suppose ∆0,∆1, ...,∆n have been defined. In this case fn − gn = d′n+1∆n +

∆n−1dn. So that

d′n+1(fn+1 − gn+1 − ∆ndn+1) = d′n+1fn+1 − d′n+1gn+1 − d′n+1∆ndn+1 =

= fndn+1−gndn+1−d′n+1∆ndn+1 = (fn−gn−d′n+1∆n)dn+1 = ∆n−1dndn+1 = 0.

Therefore, Im(fn+1 − gn+1 − ∆ndn+1) ⊂ Ker(d′n+1) = Im(d′n+2). So that there
is a ∆n+1 making the following diagram

Pn+1

fn+1−gn+1−∆ndn+1
∆n+1

P ′
n+2

d′
n+2

Im(d′n+2) 0

commutative.
3. Let P and P′ be two projective resolutions of a module M . In this case there

are two extensions f : P → P′ and g : P′ → P of the identity homomorphism
1M : M → M . But then fg and gf also extend 1M : M → M . Since 1P : P → P
and 1P ′ : P′ → P′ extend 1M : M → M as well, property 2 of the statement of
the theorem implies fg ∼ 1 and gf ∼ 1, i.e., P ∼ P′.

From this theorem, proposition 6.1.2, and corollary 6.1.3 we obtain the follow-
ing important consequence:

Proposition 6.2.3.
1. Let F be a functor from the category of A-modules to the category of B-

modules and let P be a projective resolution of an A-module M . Then the homology
Hn(F (P)) is independent of the choice of the resolution P.

2. If P′ is a projective resolution of an A-module M ′ and f : P → P′ is an
extension of a homomorphism ϕ : M → M ′, then Hn(F (f)) is independent of the
choice of the extension f .

Taking into account this proposition we can introduce the notion of a derived
functor. Let F be a functor from the category of A-modules to the category
of B-modules, let P be a projective resolution of an A-module M , let P′ be a
projective resolution of an A-module M ′ and let f : P → P′ be an extension
of a homomorphism ϕ : M → M ′. Then for each A-module M we shall write
LnF (M) = Hn(F (P)) = Ker(Fdn)/Im(Fdn+1) and LnF (ϕ) = Hn(F (f)). If f
is extension of ϕ and g is extension of ψ : M ′ → M ′′, then gf is an extension
of ψϕ and thus LnF (ψϕ) = LnF (ψ)LnF (ϕ), i.e., LnF is a functor from AM to
BM and it is called the n-th left derived functor of a functor F . In a similar
way, replacing projective resolutions by injective resolutions, one can introduce
the right derived functors RnF of a functor F . The definitions of left and right
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derived functors of a contravariant functor G can be given dually, using injective
resolutions for LnG and projective resolutions for RnG.

Proposition 6.2.4. A right (left) exact functor F satisfies L0F � F (respec-
tively, R0f � F ).

Proof. If P is a projective resolution of a A-module M , then P1
d1→ P0 → M → 0

is an exact sequence. Therefore F (P1)
F (d1)→ F (P0) → F (M) → 0 is also an exact

sequence. Hence,

L0F (M) = H0(F (P)) = F (P0)/ImF (d1) � F (M).

Lemma 6.2.5. Suppose

0 → M ′ ϕ−→ M
ψ−→ M ′′ −→ 0

be an exact sequence of modules. Then there is an exact sequence

0 → P′ f−→ P
g−→ P′′ −→ 0

of projective resolutions, in which f extends ϕ and g extends ψ.

Proof. Consider the epimorphisms P ′
0

π′
−→ M ′ −→ 0 and P ′′

0
π′′
−→ M ′′ −→ 0.

Put P0 = P ′
0 ⊕ P ′′

0 and consider the homomorphism π = (π′, α) : P0 → M , where
α is a homomorphism α : P ′′

0 → M such that ψα = π′′. Then it is easy to verify
that π is an epimorphism and that the following diagram

0 0 0

0 M ′
1

ϕ1
M1

ψ1
M ′′

1 0

0 P ′
0

f0

π′

P0
g0

π

P ′′
0

π′′

0

0 M ′ ϕ
M

ψ
M ′′ 0

0 0 0

is commutative, where M ′
1 = Kerπ′, M1 = Kerπ and M ′′

1 = Kerπ′′. Moreover,
all columns and all rows of this diagram are exact. Therefore we may apply the
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same construction to the first row. Continuing this process we obtain the required
exact sequence of resolutions.

Lemma 6.2.6. Suppose

0 → S′ −→ S −→ S′′ −→ 0

is an exact sequence of complexes, where all modules S′′
n are projective, then the

sequence
0 → FS′ −→ FS −→ FS′′ −→ 0

is exact for every functor F .

Proof. Since every sequence 0 → S′
n −→ Sn −→ S′′

n −→ 0 splits, the sequence
0 → F (S′

n) −→ F (Sn) −→ F (S′′
n) −→ 0 also splits for every functor F .

Applying lemma 6.2.5, lemma 6.2.6 and theorem 6.1.1 we obtain the following
important theorem about long exact sequences:

Theorem 6.2.7. Suppose

0 → M ′ ϕ−→ M
ψ−→ M ′′ −→ 0

is an exact sequence of modules. Then for any functor F there is a sequence of
homomorphisms δn : LnF (M ′′) → Ln−1F (M ′) such that the following sequence

... −→ Ln+1F (M ′′)
δn+1−→ LnF (M ′)

LnF (ϕ)−→ LnF (M)
LnF (ψ)−→

LnF (ψ)−→ LnF (M ′′) δn−→ Ln−1F (M ′)
Ln−1F (ϕ)−→ Ln−1F (M) −→ ...

is exact.

6.3. THE FUNCTOR TOR

We apply the construction of derived functors considered in the previous section
to the functors ∗⊗A Y , and X ⊗A ∗. Since they are right exact covariant functors,
it is natural to consider left derived functors by means of projective resolutions.

Definition. Let X, Y be A-modules and F = ∗ ⊗A Y , then by definition
TorA

n (∗, Y ) = LnF . In particular,

TorA
n (X,Y ) = Hn(P ⊗A Y ) = Ker(dn ⊗ 1)/Im(dn+1 ⊗ 1),

where P:
... → P2

d2−→ P1
d1−→ P0 → X → 0

is a projective resolution of the A-module X.



HOMOLOGICAL DIMENSIONS 151

In view of proposition 6.2.3, the definition of TorA
n (X,Y ) is independent of

the choice of a projective resolution of X. It is easy to see that TorA
n (∗, Y ) is an

additive covariant functor.
Analogously we can introduce the functors TorA

n (X, ∗) as the left derived func-
tors of the functor F = ∗ ⊗A Y , i.e., TorA

n (X, ∗) = LnF . In particular,

TorA
n (X,Y ) = Hn(X ⊗A P) = Ker(dn ⊗ 1)/Im(dn+1 ⊗ 1),

where P:
... → P2

d2−→ P1
d1−→ P0 → Y → 0

is a projective resolution of an A-module Y .
TorA

n (X, ∗) is also an additive covariant functor.
So we have two different constructions for TorA

n (X,Y ) and there arises the
natural question: whether the value of TorA

n (X, ∗) on Y is the same as the value
of TorA

n (∗, Y ) on X? It is remarkable fact that this is actually true, i.e., these two
constructions give the same result:

Theorem 6.3.1. For any right A-module X and any left A-module Y , and
each n ≥ 0 we have:

Hn(X ⊗A P) = Hn(P′ ⊗A Y ),

where P is a projective resolution of Y and P′ is a projective resolution of X.

We leave the proof of this statement to the reader. Alternatively consult
one of the standard books on homological algebra such as S.MacLane, Homol-
ogy, Springer, 1963 or Charles A.Weibel, An introduction to homological algebra,
Cambr. Univ. P., 1994, where there are different proofs of this fact.

The common value of these two derived functors as defined in theorem 6.3.1 is
denoted by TorA

n (X,Y ).
Since the functor X ⊗A Y is right exact in both variables, from proposition

6.2.4 it immediately follows that:

Proposition 6.3.2. TorA
0 (X,Y ) is naturally equivalent to X ⊗A Y .

Since in the definition of TorA
n (X,Y ) we use projective resolutions, i.e., com-

plexes which are 0 for n < 0, we have the following statement:

Proposition 6.3.3. If n is negative, TorA
n (X,Y ) = 0 for all X, Y .

As a corollary to theorem 6.2.7 we can obtain the following important state-
ment.

Theorem 6.3.4. Suppose 0 → X ′ → X → X ′′ → 0 is an exact sequence of
A-modules. Then for all A-modules Y there is a long exact sequence

... → TorA
n+1(X

′′, Y )
δn+1−→ TorA

n (X ′, Y ) → TorA
n (X,Y ) →
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→ TorA
n (X ′′, Y ) δn−→ ... → TorA

1 (X,Y ) → TorA
1 (X ′′, Y ) →

→ X ′ ⊗A Y → X ⊗A Y → X ′′ ⊗A Y → 0;

and similarly in the other variable.

Proposition 6.3.5. If P is projective, then TorA
n (P, Y ) = 0 for all Y and for

all n > 0. Similarly, TorA
n (X,P ) = 0 for all X and for all n > 0.

Proof. Since the TorA
n (P, Y ) are independent of the choice of a projective

resolution of P , we can choose the following projective resolution of P :

... → 0 −→ 0 −→ P
1P−→ P −→ 0

Hence TorA
n (P, Y ) = 0 for any Y and all n > 0.

Proposition 6.3.6. If X is a flat A-module, then TorA
n (X,Y ) = 0 for all Y

and for all n > 0.

Proof. Let
... −→ P2

d2−→ P1
d1−→ P0

π−→ Y −→ 0

be a projective resolution of Y . If X is flat and n ≥ 1, then the sequence

X ⊗A Pn+1 −→ X ⊗A Pn −→ X ⊗A Pn−1

is exact, since X ⊗A ∗ is an exact functor. Hence TorA
n (X,Y ) = 0 for any Y and

all n > 0.

Proposition 6.3.7. If TorA
1 (X,Y ) = 0 for all Y , then X is flat.

Proof. If 0 −→ Y ′ α−→ Y −→ Y ′′ −→ 0 is exact, then so is the sequence:

TorA
1 (X,Y ′′) −→ X ⊗A Y ′ 1⊗α−→ X ⊗A Y

Since TorA
1 (X,Y ′′) = 0, 1 ⊗ α is a monomorphism and so X is flat.

Proposition 6.3.8. If 0 −→ X ′ −→ X −→ X ′′ −→ 0 is exact with X flat,
then TorA

n (X ′, Y ) � TorA
n+1(X

′′, Y ) for all Y and n > 0.

Proof. Since X is flat, we have an exact sequence:

0 = TorA
n+1(X,Y ) −→ TorA

n+1(X
′′, Y ) −→ TorA

n (X ′, Y ) −→ TorA
n (X,Y ) = 0

Hence, TorA
n (X ′, Y ) � TorA

n+1(X
′′, Y ).

Proposition 6.3.9. Suppose Y is a left A-module and TorA
1 (A/I, Y ) = 0 for

every finitely generated right ideal I. Then Y is flat.
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Proof. Consider the short exact sequence 0 −→ I −→ A −→ A/I −→ 0
and apply theorem 6.3.4 to it. Then we have an exact sequence
0 = TorA

1 (A/I, Y ) −→ I ⊗A Y −→ A ⊗A Y � Y . Hence, by the flatness
test (proposition 5.4.9), Y is flat.

6.4. THE FUNCTOR EXT

In this section we apply the construction of derived functors to the functors
HomA(∗, Y ) and HomA(X, ∗) and consider the properties of these functors.

For the contravariant left exact functor HomA(∗, Y ) we consider right derived
functors using projective resolutions.

Definition. Let X, Y be A-modules and F = HomA(∗, Y ), then ExtnA(∗, Y ) =
RnF . In particular,

ExtnA(X,Y ) = H−n(HomA(P, Y )) = KerHom(dn+1, Y )/ImHom(dn, Y ),

where P:
... → P2

d2−→ P1
d1−→ P0 → X → 0

is a projective resolution of the A-module X.
In view of proposition 6.2.3, the definition of ExtnA(X,Y ) is independent of

the choice of a projective resolution of X. It is easy to see that ExtnA(∗, Y ) is an
additive contravariant functor.

For the covariant left exact functor HomA(X, ∗) we consider right derived
functors using injective resolutions.

Definition. Let X, Y be A-modules and F = HomA(X, ∗), then
ExtnA(X, ∗) = RnF . In particular,

ExtnA(X,Y ) = H−n(HomA(X,Q)) = KerHom(X, dn)/ImHom(X, dn−1),

where Q:
0 → Y → Q0

d0−→ Q1
d1−→ Q2 → ...

is an injective resolution of an A-module Y .
ExtnA(X, ∗) is also an additive covariant functor and it is independent of the

choice of an injective resolution of Y .
As in the case of the functor Tor we have the following remarkable fact:

Theorem 6.4.1. For any right A-modules X and Y , and each n ≥ 0 we have:

H−n(HomA(X,Q)) = H−n(HomA(P, Y )),

where P is a projective resolution of X and Q is an injective resolution of Y .

The common value of these two derived functors as defined in theorem 6.4.1 is
denoted by ExtAn (X,Y ).
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Since the functor HomA(X,Y ) is left exact in both variables, from proposition
6.2.4 there immediately follows the following statement:

Proposition 6.4.2. Ext0A(X,Y ) is naturally equivalent to HomA(X,Y ).

From the construction of the functor Ext we obtain immediately the following
statement:

Proposition 6.4.3. If n is negative, ExtnA(X,Y ) = 0 for all X, Y .

As a corollary of theorem 6.3.4 we obtain the following two statements:

Theorem 6.4.4. If 0 −→ Y ′ −→ Y −→ Y ′′ −→ 0 is an exact sequence of
modules, then there exists a long exact sequence

0 −→ HomA(X,Y ′) −→ HomA(X,Y ) −→ HomA(X,Y ) −→ Ext1A(X,Y ) −→ ...

... −→ ExtnA(X,Y ′) −→ ExtnA(X,Y ) −→ ExtnA(X,Y ′′) −→ Extn+1
A (X,Y ′) −→ ...

Theorem 6.4.5. If 0 −→ X ′ −→ X −→ X ′′ −→ 0 is an exact sequence of
modules, then there exists a long exact sequence

0 −→ HomA(X ′′, Y ) −→ HomA(X,Y ) −→ HomA(X ′, Y ) −→ Ext1A(X ′′, Y ) −→ ...

... −→ ExtnA(X ′′, Y ) −→ ExtnA(X,Y ) −→ ExtnA(X ′, Y ) −→ Extn+1
A (X ′′, Y ) −→ ...

Proposition 6.4.6. If P is projective, then ExtnA(P, Y ) = 0 for all Y and all
n > 0.

Proof. Since the ExtnA(P, Y ) are independent of the choice of a projective
resolution of P , we can choice the following projective resolution of P :

... → 0 −→ 0 −→ P
1P−→ P −→ 0

Hence, ExtnA(P, Y ) = 0 for any Y and all n > 0.

Analogously there is the following statement:

Proposition 6.4.7. If Q is injective, then ExtnA(X,Q) = 0 for all X and all
n > 0.

Proposition 6.4.8. Suppose 0 −→ Y −→ Q −→ Y ′ −→ 0 is an exact short
sequence of A-modules with Q injective. Then ExtnA(X,Y ′) � Extn+1

A (X,Y ) for
all A-modules X and n > 0.

Proof. Since Q is injective, by the previous proposition ExtnA(X,Q) = 0, and
by theorem 6.4.4 we have an exact sequence

0 = ExtnA(X,Q) −→ ExtnA(X,Y ′) −→ Extn+1
A (X,Y ) −→ Extn+1

A (X,Q) = 0.
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Hence, ExtnA(X,Y ′) � Extn+1
A (X,Y ) for all A-modules X and n > 0.

Proposition 6.4.9. Suppose Y is an A-module. The following conditions are
equivalent:

1) X is projective.
2) ExtnA(X,Y ) = 0 for all Y and all n > 0.
3) Ext1A(X,Y ) = 0 for all Y .

Proof.
1) ⇒ 2) is proposition 6.4.6.
2) ⇒ 3) is trivial.
3) ⇒ 1) Consider an exact sequence 0 −→ Y −→ Y ′ −→ Y ′′ −→ 0. Then, by

theorem 6.4.4, we have an exact sequence:

0 −→ HomA(X,Y ) −→ HomA(X,Y ′) −→ HomA(X,Y ′′) −→ Ext1A(X,Y ) = 0,

i.e., HomA(X, ∗) is an exact functor. Hence, by proposition 5.1.1, X is projective.

Dually we have the following statement:

Proposition 6.4.10. Suppose X is an A-module. The following conditions
are equivalent:

1) Y is injective.
2) ExtnA(X,Y ) = 0 for all X and all n > 0.
3) Ext1A(X,Y ) = 0 for all X.

Proposition 6.4.11. If A is a right hereditary ring, then ExtnA(X,Y ) = 0 for
all right A-modules X, Y and all n ≥ 2.

Proof. For each right A-module X there is an exact sequence

0 −→ P1 −→ P0 −→ X −→ 0 (6.4.1)

where P0 is projective. Since A is right hereditary, P1 is also projective. Hence
the sequence 6.4.1 is a projective resolution of X, i.e., Pn = 0 for n ≥ 2 and so
that ExtnA(X,Y ) = 0 for all n ≥ 2.

6.5. PROJECTIVE AND INJECTIVE DIMENSIONS

In this section we introduce some notions which measure how far a module is from
being projective (or injective).

Definition. Let A be a ring and M be a right A-module. We say that the
projective dimension of M is equal to n and write proj.dimAM = n if there is
a projective resolution of length n:

0 −→ Pn −→ ... −→ P1 −→ P0 −→ X −→ 0 (6.5.1)
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and there is no shorter one.
We set proj.dimAM = ∞ if there is no finite length resolution.

Example 6.5.1.
proj.dimAM = 0 if and only if M is projective.

Example 6.5.2.
If A is a right hereditary ring, proj.dimAM ≤ 1 for any right A-module M .

From the definition of projective dimension we have immediately the following
simple statements, which we formulate as propositions for later reference:

Proposition 6.5.1. Let 0 −→ L −→ P −→ M −→ 0 be an exact sequence with
a projective module P . If M is not projective, then proj.dimAM = proj.dimAL+1.

Proposition 6.5.2. Let

0 −→ L −→ Pk−1 −→ ... −→ P1 −→ P0 −→ M −→ 0

be an exact sequence with projective modules P0,.P1,..., Pk−1. If proj.dimAM ≥ k,
then proj.dimAM = proj.dimAL + k.

Lemma 6.5.3 Let

... −→ P2
d2−→ P1

d1−→ P0
π−→ X −→ 0 (6.5.1)

be a projective resolution of an A-module X. Then for all modules Y
Extn+1

A (X,Y ) � Ext1A(Kerdn−1, Y ).

Proof. Since Extn+1
A (X,Y ) is computed by using the projective resolution

(6.5.1) of X and ExtnA(Kerd0, Y ) is computed by using the projective resolution
of Kerd0 where d0 = π:

... −→ Pk −→ Pk−1 −→ ... −→ P1 −→ Kerd0 −→ 0,

so Extn+1
A (X,Y ) � ExtnA(Kerd0, Y ). Using the iteration process we obtain:

Extn+1
A (X,Y ) � ExtnA(Kerd0, Y ) � Extn−1

A (Kerd1, Y ) � ... � Ext1A(Kerdn−1, Y )

Proposition 6.5.4. The following conditions are equivalent for a right A-
module X:

1) proj.dimAX ≤ n;
2) ExtkA(X,Y ) = 0 for all modules Y and all k ≥ n + 1;
3) Extn+1

A (X,Y ) = 0 for all modules Y ;
4) for any projective resolution of X, Kerdn−1 is a projective module.
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Proof.
1) ⇒ 2). By the definition of projective dimension, there is a projective reso-

lution of length n, i.e., Pk = 0 for all k ≥ n + 1. Hence ExtkA(X,Y ) = 0 for all
modules Y and all k ≥ n + 1.

2) ⇒ 3) is trivial.
3) ⇒ 4) Consider a projective resolution of X

... −→ P2
d2−→ P1

d1−→ P0
π−→ X −→ 0

By lemma 6.5.3, Extn+1
A (X,Y ) � Ext1A(Kerdn−1, Y ), therefore

Ext1A(Kerdn−1, Y ) = 0 for all Y . Then, by proposition 6.4.9, Kerdn−1 is
projective.

4) ⇒ 1). Consider the projective resolution (6.5.1) of X. Then we have an
exact sequence

0 −→ Kerdn−1 −→ Pn−1 −→ ... −→ P1 −→ P0 −→ X −→ 0

with projective modules P0,.P1,..., Pn−1, Kerdn−1. Hence proj.dimAX ≤ n.

Analogously we can introduce the notion of injective dimension.

Definition. Let A be a ring and M be a right A-module. We say that the
injective dimension of M is equal to n and write inj.dimAM = n if there is a
injective resolution of length n:

0 −→ M −→ Q0 −→ ... −→ Qn−1 −→ Qn −→ 0 (6.5.2)

and there is no shorter one .
Dual to the results pertaining to projective dimension we can obtain the fol-

lowing statements:

Proposition 6.5.5. Let 0 −→ M −→ Q −→ N −→ 0 be an exact sequence
with an injective module Q. If M is not injective, then inj.dimAM = inj.dimAN+
1.

Proposition 6.5.6. Let

0 −→ M −→ Q0 −→ ... −→ Qk−1 −→ N −→ 0

be an exact sequence with injective modules Q0,.Q1,..., Qk−1. If inj.dimAM ≥ k,
then inj.dimAM = inj.dimAL + k.

Lemma 6.5.7. Let

0 −→ X
ε−→ Q0

d0−→ Q1
d1−→ Q2 −→ ...

be an injective resolution of A-module X. Then for all modules Y

Extn+1
A (X,Y ) � Ext1A(X, Imdn−1)



158 ALGEBRAS, RINGS AND MODULES

Proposition 6.5.8. The following conditions are equivalent for a right A-
module X:

1) inj.dimAX ≤ n;
2) ExtkA(X,Y ) = 0 for all modules Y and all k ≥ n + 1;
3) Extn+1

A (X,Y ) = 0 for all modules Y ;
4) for any injective resolution of X Imdn−1 is an injective module.

6.6. GLOBAL DIMENSIONS

We now can define dimensions for a ring A itself.

Definition. If A is a ring, then its right projective global dimension,
abbreviated as r.proj.gl.dim, is defined as follows:

r.proj.gl.dimA = sup{proj.dimAM : M ∈ MA}

Analogously we can introduce the left projective global dimension of A:

l.proj.gl.dimA = sup{proj.dimAM : M ∈ AM}

Theorem 6.5.4 immediately implies:

Corollary 6.6.1. r.proj.gl.dimA ≤ n if and only if Extn+1
A (X,Y ) = 0 for all

right A-modules X and Y .

Proposition 6.6.2. r.proj.gl.dimA = 0 if and only if A is semisimple.

Proof. By corollary 6.6.1, r.proj.gl.dimA = 0 if and only if Ext1A(X,Y ) = 0
for all right A-modules X and Y . This means, by proposition 6.4.9, that all right
A-modules are projective and hence, by theorem 5.2.13, A is a semisimple ring.

Proposition 6.6.3. r.proj.gl.dimA ≤ 1 if and only if A is right hereditary.

Proof. Sufficiency is theorem 6.4.11.
Conversely, suppose r.proj.gl.dimA ≤ 1. Let X be a submodule of a right

projective A-module P . Then we have an exact sequence

0 −→ X −→ P −→ Y −→ 0,

where Y = P/X. In a usual way we can construct a projective resolution of Y with
Kerd0 = X. By hypothesis, r.proj.gl.dimA ≤ 1, so, by theorem 6.5.4, the right
A-module X is projective. Hence, by proposition 5.5.3, A is a right hereditary
ring.

Dually we can define right injective global dimension of a ring.
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Definition. If A is a ring, then its right injective global dimension,
abbreviated as r.inj.gl.dim, is defined as follows:

r.inj.gl.dimA = sup{inj.dimAM : M ∈ MA}

Analogously we can introduce the left injective global dimension of A:

l.inj.gl.dimA = sup{inj.dimAM : M ∈ AM}

Theorem 6.5.4 immediately implies:

Corollary 6.6.4. r.inj.gl.dimA ≤ n if and only if Extn+1
A (X,Y ) = 0 for all

right A-modules X and Y .

Comparing corollary 6.6.1 and 6.6.4 we obtain:

Theorem 6.6.5. For any ring A r.proj.gl.dimA = r.inj.gl.dimA.

In view of this theorem we can define the right global dimension of a ring A,
abbreviated as r.gl.dim, as the common value of r.proj.gl.dimA and r.inj.gl.dimA.
If we consider left A-modules, then analogously we can define the left global
dimension of a ring A. From propositions 6.6.2, 6.6.3 and theorem 6.6.5 we
immediately obtain the following proposition:

Proposition 6.6.6.
1. r.gl.dim = 0 if and only if A is semisimple.
2. r.gl.dim ≤ 1 if and only if A is right hereditary.

Remark. As follows from the example of Herstein-Small rings, considered in
section 5.6, r.gl.dim �= l.gl.dim in general. However, as proved by M.Auslander
(1955), equality holds in the case when the ring is right and left Noetherian.

6.7. NOTES AND REFERENCES

Homological algebra mainly studies derived functors on various categories. The
first steps in studying fundamental algebraic objects by homological methods were
made in the papers of S.Eilenberg, S.MacLane, and independently in a paper of
D.K.Faddeev (see On quotient systems in Abelian groups with operators // Dokl.
Acad. Nauk SSSR, v.58, N3 (1947), p.361-364 (in Russian)).

Cohomology and homology groups occur in many areas of mathematics. The
formal notions of homology and cohomology groups arose from algebraic topology
around the middle of the 20-th century in the study of relations between the higher
homotopy groups and the fundamental group of a topological space.

Resolutions (without these names) were used long before by D.Hilbert (see,
for example, Über die Theorie der Algebraischen Formen // Math. Ann., v.36
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(1890), p.473-534). They were also used by H.Hopf in describing homology groups
(see, Über die Bettischen Gruppen, die zu einer beliebigen Gruppe gehören //
Comment. Math. Helv., v.17 (19944/1945), s.39-79)) and by H.Cartan for the
theory of cohomology groups (see Séminaire de topologie algébrique, 1950-1951.
(École Norm. Sup.), Paris, 1951). The functor Extn was defined by means of
resolutions by H.Cartan and S.Eilenberg (see, H.Cartan, S.Eilenberg, Homological
Algebra, Princeton Univ. Press., Princeton, New Jersey, 1956). The functor Ext
was also studied by N.Yoneda (see, On the homology theory of modules // J. Fac.
Sci. Tokyo, Sec.I, v.7 (1954), p. 193-227; Notes on product in Ext // Proc. AMC,
v.9 (1958), p.873-875).

The homological dimensions of modules and algebras were studied by many
authors, for example, by H.Cartan and S.Eilenberg (see their book quoted above);
by M.Auslander (see, On the dimension of modules and algebras. (III). Global
dimension // Nagoya Math. J., v.9 (1955), p.67-77) and I.Kaplansky (see, On
the dimension of modules and algebras. X // Nagoya Math. J., v.13 (1958), p.85-
88). Homological dimension in Noetherian rings was studied by M.Auslander and
D.A.Buchsbaum (see, for example, Homological dimension in Noetherian rings //
Proc. NAS USA, v.42 (1956), p.36-38; Homological dimension in Noetherian rings
II // Trans. AMS, v.88 (1958), p.194-206); by E.Matlis (see, Injective modules
over Noetherian rings // Pac. J. Math., v.8 (1958), p.511-528) and by J.P.Jans
(see, Duality in Noetherian rings // Proc. AMS, (1961), p.829-835).



7. Integral domains

The subject we are dealing with in this chapter is the theory of divisibility in
some commutative domains with unique factorization. In fact, the most impor-
tant notions of the theory of rings, such as the notions of an ideal and a ring,
were introduced by R.Dedekind in connection with the problem of non-unique fac-
torization of algebraic integers in algebraic number fields. The ring of integers Z
is the main example of a ring with unique factorization of elements into primes.
Another most important example of such rings is the ring of polynomials over
a field. In this chapter we shall consider other examples of commutative rings
with unique factorization, such as Euclidean rings and principal ideal domains.
Our main goal will be to describe finitely generated modules over principal ideal
domains. Specializing the principal ideal domain to be Z, we shall also obtain
the main structure theorem for finitely generated Abelian groups, and, hence, for
finite Abelian groups.

The central concept of the axiomatic development of linear algebra is a vector
space over a field. A central problem of linear algebra is the study of linear
transformations in a finite dimensional vector space over a field. For the given
linear transformation A in a vector space V over a field K we can use A to make
V into a module over the polynomial ring K[x] in one variable x. The study of this
module leads to the theory of canonical forms of matrices of a linear transformation
and to the solution of the similarity problem of matrices. In the last section we
apply the structure theorem of finitely generated modules over a PID to obtain the
decomposition of finitely generated modules over the polynomial ring K[x] and,
hence, canonical forms for square matrices.

All the rings considered in this chapter will be commutative with identity
1 �= 0. Denote by N the set of all natural numbers, i.e., the set of all (strictly)
positive integers, and by A∗ the set of all units (=invertible elements) of a ring A.

7.1 PRINCIPAL IDEAL DOMAINS

Let A be a commutative ring. Recall that a nonzero element a ∈ A is called a
zero divisor if there exists a nonzero element b ∈ A such that ab = 0. An element
a ∈ A is called a unit (or a divisor of the identity) if there exists an element
c ∈ A such that ac = 1.

Definition. A commutative ring A is called an integral domain if it has no
zero divisors.

161
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Since all nonzero elements of any field k are units, a field contains no zero divi-
sors and therefore is a domain. The other obvious examples of integral domains are
the ring of integers Z and a ring of polynomials k[x] over a field k. In this chapter
we shall consider integral domains only. Therefore sometimes we shall say domain
for short, instead of an integral domain. An integral domain A has an important
property, which is usually called the cancellation law of multiplication. We
give it as the following lemma:

Lemma 7.1.1. Let A be an integral domain. Then ax = ay implies x = y for
any nonzero a ∈ A and x, y ∈ A.

Proof. If ax = ay, then the ring axioms give a(x − y) = 0. Therefore, since a
is not a zero divisor, we must have x − y = 0. Hence, x = y.

Let A be a domain and let a, b ∈ A be nonzero elements. If there exists a
nonzero element c ∈ A such that b = ac, we say that a is a divisor of b, or that a
divides b, and we write a|b or b ≡ 0(mod a). If b = ac and c is not a unit, then a
is called a proper divisor of b.

If ε ∈ A is a unit and a ∈ A, then there is always the factorization a = ε(ε−1a).
Such factorization is considered inessential. Two elements a and b in a domain
A are called associated elements, or simply associates, if there exists a unit
ε ∈ A such that a = εb. In other words, two elements a, b ∈ A are associates, if
a|b and b|a. It is obvious that being associates is an equivalence relation.

Definition. A nonzero element p ∈ A is called irreducible if it is not a unit
and every factorization p = bc with b, c ∈ A implies that either b or c is a unit in
A.

In other words, any irreducible element is divisible only by units and its asso-
ciates.

It is easy to verify the following proposition whose proof we leave to the reader.

Proposition 7.1.2. Suppose A is a domain and a, b ∈ A. Then a|b if and
only if (b) ⊆ (a). Moreover, (a) = (b) if and only if a and b are associates. If a is
a proper divisor of b in A, then (a) ⊂ (b).

Here (a) is the principal ideal generated by a.

Definition. A nonzero element d ∈ A is called the greatest common divisor
of two elements a and b if

1) d|a and d|b;
2) if d1 is a common divisor of both elements a and b, then d1|d.

The greatest common divisor of elements a and b is denoted by (a, b). Clearly,
(a, b) is defined uniquely up to a unit factor. And so, (a, b) is really a set, in which
every two elements are associates.

Analogously we can introduce the greatest common divisor of n elements
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a1, a2, ..., an ∈ A. We shall denote it as d = (a1, a2, ..., an). In the ring Z any
n nonzero elements have a greatest common divisor.

This fact is true for more general rings, in particular, for principal ideal do-
mains. We recall, that an integral domain is said to be a principal ideal domain
(or a PID for short), if each of its ideals is principal. As it was shown in chapter
1 the rings Z and k[x] are principal ideal domains.

Proposition 7.1.3. Let A be a principal ideal domain. Then:
1) for any nonzero elements a1, a2, ..., an ∈ A there exists their greatest common

divisor d = (a1, a2, ..., an);
2) for any nonzero elements a1, a2, ..., an ∈ A there exist elements

x1, x2, ..., xn ∈ A such that a1x1 +a2x2 + ...+anxn = d, where d = (a1, a2, ..., an).

Proof. Let (a1, a2, ..., an) be the ideal generated by the elements a1, a2,...,
an. Since A is a principal ideal domain, there exists an element d ∈ A such that
(d) = (a1, a2, ..., an). Therefore there exist elements x1, x2, ..., xn ∈ A such that
a1x1 + a2x2 + ... + anxn = d. Since ai ∈ (d), there exist elements ti ∈ A such
that ai = dti and so d|ai for i = 1, 2, ..., n. Let d1|ai for i = 1, 2, ..., n. From
a1x1 + a2x2 + ... + anxn = d it follows that d1|d. Thus, d is a greatest common
divisor of a1, a2, ..., an. The proposition is proved.

The elements a1, a2, ..., an of a domain A are said to be relatively prime
when (a1, a2, ..., an) = 1. From proposition 7.1.3 it follows that for relatively
prime elements a1, a2, ..., an ∈ A there exist elements x1, x2, ..., xn ∈ A such that
a1x1 + a2x2 + ... + anxn = 1.

Definition. A nonzero element p in a domain A is called prime if p is not a
unit and p|ab implies either p|a or p|b.

Proposition 7.1.4. Let A be an integral domain. Then any prime element
p ∈ A is irreducible.

Proof. Let p be a prime element in a domain A. Then p is not a unit, by
definition. Let p = ab with a, b ∈ A. Then p|ab and, by definition, either p|a or
p|b. In the first case there exists c ∈ A such that a = pc. Then p = pcb and
by cancellation law cb = 1, i.e., b is a unit. Similarly, if p|b, then a is a unit.
Therefore, p is irreducible.

In a general case the inverse statement is not true, but it is true for a principal
integral domain. In particular, this is true for the ring of integers.

Proposition 7.1.5. Let A be a PID. Then any irreducible element p ∈ A is
prime in A.

Proof. Let p be an irreducible element in a PID A and let p|ab for a, b ∈ A.
Suppose that p does not divide a. Then (p, a) = 1 and, by proposition 7.1.2, there
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exist x, y ∈ A such that 1 = px + ay. Consequently, b = bpx + bay and since p
divides the right side of the equality, p|b. So p is prime in A.

So, for a PID the notions of prime element and an irreducible element are the
same thing. But in general these notions are different. Nevertheless, for some
PIDs it is more convenient to use the term prime element (for example, for Z),
and in the other cases we prefer to use the term irreducible element (for example,
for k[x]).

By induction on the number of factors, we can easily obtain the following
statement:

Proposition 7.1.6. Let A be a PID and a1, a2, ..., an, p ∈ A such that p ∈ A
is prime and the a1, a2, ..., an are nonzero elements. If p|a1a2...an, then there
exists a k (1 ≤ k ≤ n) such that p|ak.

7.2. FACTORIAL RINGS

As we know the ring of integers Z have an important property which is called the
factorization property; that is, any nonzero element in Z has a factorization into
prime integers, and this factorization is unique up to order and association of the
factors. The ring of polynomials k[x] over a field k has the same property. In this
section we discuss the general class of rings with this property.

We say that a nonzero element a of a ring A has a unique factorization into
irreducible elements a = p1...pr if the p1, ..., pr are irreducible elements in A,
and this factorization is unique up to order and association of the factors, i.e.,
if we have two such factorizations a = p1....pr = q1...qs, then r = s and after a
suitable renumbering pi = εiqi, where the εi are units in A (i = 1, ..., s).

Definition. An integral domain is called a factorial ring or a unique fac-
torization domain (or a UFD for short), if every nonzero element, which is not
a unit, has a unique factorization into irreducible elements.

The rings Z and k[x] considered above are factorial rings.

One of the most important discoveries of the 19-th century is that not all
number rings are factorial. In particular, the factorization into irreducible elements
in some quadratic and cyclotomic fields is not necessarily unique.1)

Consider a quadratic field K, that is an algebraic extension of degree 2 of
the field of rational numbers Q. Then there exists an element θ ∈ K such that
K = Q(θ) and θ is a root of a quadratic equation

f(x) = x2 + ux + v,

1) The fact that factorization in cyclotomic fields is not necessarily unique was (and is) the
main obstruction in proving Fermat’s last theorem.The theorem is now proved of course (A.Wiles,
R.Taylor, a.o). Had it been true that the cyclotomic fields have unique factorization a proof could
(and would) have been written down a 150 years ago.
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where f(x) ∈ Q[x]. After a suitable substitution we can see to it that

f(x) = x2 − D,

where D �= 1, D is a square-free integer and so K = Q(
√

D).
There is a non-identity automorphism of the field K given by:

√
D �−→ −

√
D

which takes one root of the polynomial f(x) to the other one. Therefore the field
K has 2 different automorphisms and so it is a Galois extension of Q with a Galois
group of the form G = {1, σ}, where σ(

√
D) = −

√
D. Any element of the field K

has the form
α = a + b

√
D,

where a, b ∈ Q. The element α′ = a−b
√

D is called the conjugate of the element
α. It is easy to see that (α′)′ = α, (α1 + α2)′ = α′

1 + α′
2 and (α1α2)′ = α′

1α
′
2. For

any element α ∈ K we can define the norm of α: N(α) = αα′ and the trace of
α: Sp(α) = α + α′ which have the following properties2):

Sp(α1 + α2) = Sp(α1) + Sp(α2)

Sp(cα) = cSp(α) for any c ∈ Q

N(α1α2) = N(α1)N(α2)

N(α) = 0 if and only if α = 0.

An element α ∈ K is an algebraic integer over Q if and only if N(α) ∈ Z and
Sp(α) ∈ Z.

Bellow we give some examples of domains which are not factorial rings.

Examples 7.2.1.
1. Let A = Z[

√
−5], i.e., the subset of complex numbers of the form a+ b

√
−5,

where a, b ∈ Z. Clearly, 6 = 2·3 = (1+
√
−5)(1−

√
−5). We shall show that, indeed,

these are two different factorizations of the number 6 into irreducible elements of
the ring Z[

√
−5].

In order to deal with factorization in Z[
√
−5] we use the norm from the field

of complex numbers to Q. For every element α = a + b
√
−5 we set, as above,

α′ = a −
√
−5 and N(α) = αα′ = a2 + 5b2. So N is a mapping from Z[

√
−5]

to N and it is multiplicative, i.e., if α and β are elements of the ring Z[
√
−5],

then N(αβ) = N(α)N(β). Note that N(a + b
√
−5) = a2 + 5b2. If α ∈ Z[

√
−5]

is a unit, it is immediate that N(α) = 1. Consequently, ±1 are the only units of
Z[
√
−5]. Therefore the numbers 2, 3, 1 +

√
−5, 1 −

√
−5 are not units. We shall

show that these elements are irreducible. Assume, conversely, that 2 = αβ. Then
4 = N(α)N(β) and there are three possibilities for the norm of α: N(α) = 1,

2) The notion ”Sp” comes from ”Spur”, the German word for trace.
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N(α) = 2, N(α) = 4. If N(α) = 1, then α = ±1 are units. If N(α) = 4, then β is
a unit. Finally, the equation 2 = a2 + 5b2 has no integer solutions. Therefore, 2
is an irreducible element in Z[

√
−5]. Similarly one can verify that the remaining

elements are irreducible.
Also, it is not difficult to show that the elements 2, 3 are not associates to the

elements 1 +
√
−5, 1 −

√
−5. Therefore the ring Z[

√
−5] is not factorial.

In a similar way it is easy to prove that all rings given below are not factorial.
In each of these rings we indicate one counterexample for unique factorization.

2. In the ring Z[
√
−6] we have non-unique factorization into irreducible ele-

ments, in particular, 6 = 2 · 3 = −
√
−6 ·

√
−6.

3. In the ring Z[
√

10] there are the equalities: 10 = 2 · 5 =
√

10 ·
√

10.
4. In the ring Z[

√
82] we have the equalities: −713 = −23 · 21 = (5 + 3

√
82) ·

(5 − 3
√

82).

All examples quoted above are taken from the remarkable book on the theory
of numbers H.Hasse, Vorlesungen über Zahlentheorie, Berlin, 1950.

The following example of a domain quoted below, which also is not a factorial
ring, was considered by E.Matlis in his article: The two generator problem for
ideals // Michigan Math. J. 1970, v.17, N3, p.257-265.

5. Let K1 be the subring of K[[x]] (the ring of formal series in one variable
x over a field K), whose elements are formal series that have no linear term, i.e.,
every element of K1 is of the form

α = a0 + a2x
2 + a3x

3 + ... + anxn + ...

where ai ∈ K, i = 0, 2, 3, .... Obviously, K1 is a domain and we have the following
two different factorizations of x6 into irreducible elements:

x6 = x3x3 = x2x2x2.

Theorem 7.2.1. A principal ideal domain A is a factorial ring.

Proof. First we shall show that any nonzero element of a ring A can be decom-
posed into prime factors. Suppose the contrary. Then there is a nonzero element
a ∈ A that cannot be decomposed into a product of prime elements. Then a is not
prime itself and so there exist elements a1, b1 such that a = a1b1 and neither a1

nor b1 is a unit. Furthermore, since a cannot decomposed into a product of prime
elements, then a1 or b1 (or both) cannot either. Without loss of generality we may
assume that it is a1. Since b1 is not a unit, then, by proposition 7.1.2, (a) ⊂ (a1).
Now since a1 is not prime, there exist a2, b2 ∈ A such that a1 = a2b2 and neither
a2 nor b2 is a unit. Once again, since a1 cannot be written as a product of prime
elements, then a2 or b2 (or both) cannot either. Without loss of generality we may
assume that it is a2. Since b2 is not a unit then (a1) ⊂ (a2). Continuing in the
same way, we can build a family of ideals {(ai) | i ∈ N} such that (an) ⊂ (an+1)
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(where the inclusions are strict). This contradicts proposition 1.1.4. Thus, any
element of A can be written as a product of prime elements.

We shall show uniqueness of factorization into primes. Let a = p1...pr = q1...qs

be two factorizations of an element a into primes and let r be the least number of
prime factors entering into factorizations of a. We shall proceed by induction on r.
The base of induction r = 1 is trivial. Let r > 1. Since p1|q1...qs, by proposition
7.1.6, there is an element qj such that p1|gj . Renumbering the elements q1, ..., qs

one may assume that that qj = q1. Since q1 is a prime element, q1 = ε1p1, where
ε1 is a unit. Applying the cancellation law we have p2...pr = ε1q2...qs. Now the
induction hypothesis finishes the proof.

The following theorem yields an equivalent definition of a factorial ring.

Theorem 7.2.2. Let O be an integral domain, in which any nonzero element,
that is not a divisor of identity, is decomposable into a product of irreducible ele-
ments. Then the following conditions are equivalent:

(1) the ring O is factorial;
(2) any irreducible element p ∈ O is prime;
(3) for any irreducible element p ∈ O there are no divisors of zero in the

quotient ring O/pO.

Proof.
(1) ⇒ (2). Let p|ab and let a = p1...pn, b = pn+1...pn+m be decompositions of

the elements a and b into products of irreducible ones.
Therefore p|p1...pnpn+1...pn+m, i.e., pu = p1...pnpn+1...pn+m for some u ∈ O.

Since the ring O is factorial, the irreducible element p is associated with one of
the irreducible elements pj (j = 1, ..., n + m). So either p|a or p|b.

(2) ⇒ (3). If (a + pO)(b + pO) = pO, then ab ∈ pO, i.e., p|ab. Then, by
hypothesis, it follows that p divides either a or b, i.e., either a or b belongs to pO.

(3) ⇒ (1). Suppose that in the domain O we have two factorizations of a
nonzero element, which is not a divisor of identity, into a product of irreducible
elements:

p1...pn = q1...qm (7.2.1)

Suppose, m ≤ n. From the fact that (q1)(q2...qm) ∈ p1O it follows that either
q1 ∈ p1O or q2...qm ∈ p1O. Therefore for some i the element qi ∈ p1O, i.e., qi is
associated with p1. Renumbering the elements q1, q2, ..., qm we can assume that
qi = q1. Since O is a domain, we can cancel the factor p1 on both sides of the
equality (7.2.1). Using induction on m, after m steps we shall obtain an equality

pm+1...pn = ε1...εm.

Since all pi are irreducible elements, which are not units, it follows that m = n and
for any i = 1, ...,m every irreducible element pi is associated with some irreducible
element qi, i.e., the ring O is factorial.
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Note that from this theorem it follows, in particular, that in a factorial ring
the notions of a prime element and an irreducible element coincide.

In the previous section we have proved that any two elements of a principal
ideal domain have a greatest common divisor. We shall show that this fact also
holds in a factorial ring. Let a, b be nonzero elements of a factorial ring O and let
{p1, p2, ..., pn} be the set of different prime elements of the ring O such that any
prime factor of the elements a and b is associated with one and only one element
of this set. Then the elements a and b can be written as

a = εpr1
1 ...prn

n , b = ε′ps1
1 ...psn

n (7.2.2)

where ε, ε′ are units of O and ri ≥ 0, si ≥ 0 for i = 1, ..., n. If c|a and c|b, then c
can be written as c = ε′′pt1

1 ...ptn
n , where ε′′ is a unit of O and ti ≥ 0 for i = 1, ..., n.

Then the greatest common divisor of a and b is the element d = pk1
1 ...pkn

n , where
ki = min(ri, si), i = 1, ..., n. Therefore any two elements of a factorial ring have
a greatest common divisor. It is clear that this fact is also true for any finite
number of elements of the ring O, i.e., any finite number of elements a1, a2, ..., an

of a factorial ring have a greatest common divisor, which is unique up to a unit
factor. We shall denote the greatest common divisor of the elements a1, a2, ..., an

by d = (a1, a2, ..., an).
Now consider another useful notion for a ring O. Let a, b ∈ O. An element

m ∈ O is called a common multiple of a and b if m = aa1 = bb1 for some
a1, b1 ∈ O. An element m ∈ O is called a least common multiple of a and b if
m is a common multiple of a and b and in addition every common multiple of a
and b is divisible by m. We shall denote the least common multiple of a and b by
m = [a, b].

Now let O be a factorial ring and a and b have factorizations as in (7.2.2).
Then it is easy to see that the element m = pk1

1 ...pkn
n , where ki = max(ri, si),

i = 1, ..., n, is a least common multiple of a and b. It is defined uniquely up to a
unit factor. Therefore any two elements of a factorial ring have a least common
multiple and this fact is also true for any finite number of elements of the ring
O, i.e., any finite number of elements a1, a2, ..., an of a factorial ring have a least
common multiple, which is unique up to a unit factor. We shall denote the least
common multiple of the elements a1, a2, ..., an by m = [a1, a2, ..., an].

So we have the following statement.

Proposition 7.2.3. Let a and b be two nonzero elements of a factorial ring
O. Let a = εpr1

1 ...prn
n and b = ε′ps1

1 ...psn
n be prime factorizations of a and b, where

the ε, ε′ are units and the p1, ..., pn are distinct primes of O. Then
1. The element d = pk1

1 ...pkn
n , where ki = min(ri, si), i = 1, ..., n, is a greatest

common divisor of a and b.
2. The element m = pt1

1 ...ptn
n , where ti = max(ri, si), i = 1, ..., n, is a least

common multiple of a and b.
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Remark. It is obvious that this statement is also true for any finite set of
elements of a factorial ring.

7.3. EUCLIDEAN DOMAINS

As we know the ring of integers Z possesses a division algorithm, the socalled
Euclidean algorithm. This algorithm can be stated formally for Z as follows:

Division algorithm. Let a, b ∈ Z\{0}. Then there exist unique q, r ∈ Z such
that b = aq + r and 0 ≤ r < |a|.

Here |a| is the absolute value of a.

In this section we study the class of rings possessing a division algorithm. It is
natural to call them Euclidean rings.

Definition. An integral domain A is called a Euclidean domain if there
exists a map

π : A → N ∪ {0}
satisfying the following conditions:

ED1. π(0) = 0;
ED2. Given a ∈ A\{0} and b ∈ A there exist elements r, g ∈ A such that

b = ga + r, and either r = 0 or π(r) < π(a).
The map π is called a Euclidean function on A. If π(a) > 0 for all a �= 0,

then π is called positive.
Note, there may be different Euclidean functions which make a given integral

domain into a Euclidean domain.

Obvious examples of Euclidean domains are the rings Z and k[x], where k is a
field. In the first case π(z) = |z| and in the second case π(f(x)) = degf(x) is the
degree of a polynomial f(x).

Any field K is a trivial example of a Euclidean domain if we define π(a) = 1
for all a �= 0 or define π(a) = 0 for all a �= 0, a ∈ K.

Here is another example of a Euclidean domain. Denote by Z[i] the ring of all
Gaussian integers, i.e., elements of the form a + bi, where a, b ∈ Z and i2 = −1.

Define the map π : Z[i] → N ∪ {0} by π(a + bi) = a2 + b2. We propose to the
reader to verify that the ring Z[i] with this function π is Euclidean.

Theorem 7.3.1. Any Euclidean domain A is a principal ideal domain.

Proof. Let I be an ideal in a Euclidean ring A. If I = {0}, then I is certainly
principal. Therefore we may assume I �= 0. Let 0 �= d ∈ I be an element
with the least value π(d) among all nonzero elements in I. We shall show that
I = (d) = Ad. Indeed, by ED2, for any c ∈ I we have c = gd + r, where r = 0
or π(r) < π(d). If r �= 0, then r = c − gd ∈ I and π(r) < π(d), which contradicts
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the choice of the element d. Therefore r = 0, and so c = gd ∈ (d). The theorem is
proved.

Note that the inverse statement is not always true. Not every principal ideal
domain is Euclidean. Examples of such rings will be given below. From theorem
7.2.1 and 7.3.1 we have immediately the following statement:

Corollary 7.3.2. Any Euclidean domain is a factorial ring.

Thus, we may summarize the results obtained in these sections as the following
chain of classes of rings:

(Euclidean domains) ⊂ ( Principal ideal domains) ⊂ (Factorial rings)

It can be shown that these inclusions are strict. First we shall show that there
exist principal ideal domains that are not Euclidean. To this end we introduce a
new notion that may be considered as a generalization of a Euclidean function.

Definition. Let A be an integral domain. A map N : A → N∪ {0} satisfying
the following conditions:

1) N is a positive norm, i.e., N(a) = 0 if and only if a = 0;
2) for every nonzero a, b ∈ A either b ∈ (a) or there exists a nonzero element

c ∈ (a, b) such that 0 < N(c) < N(a)
is called a Dedekind-Hasse norm on A.

Remark. If A is an Euclidean domain with an Euclidean positive function π,
then the Dedekind-Hasse conditions hold with N = π. Indeed, by condition ED2,
for any a, b ∈ A and a, b �= 0, there exists an r = b − ga ∈ (a, b) such that either
r = 0, i.e., b ∈ (a), or π(c) < π(a).

Proposition 7.3.3. An integral domain A is a principal ideal domain if and
only if it has a Dedekind-Hasse norm.

Proof. Let A is an integral domain which has a Dedekind-Hasse norm N . Let
I be any nonzero ideal of A and let a ∈ I be an element with N(a) minimal.
Suppose b �= 0 is any other element of I. Then (a, b) ⊂ I and from the minimality
property of a it follows that b ∈ (a). So I = (a) is principal.

Conversely, suppose A is a principal ideal domain. Then A is a factorial ring.
Define a norm N by setting N(0) = 0, N(u) = 1 if u ∈ A∗, and N(a) = 2n if a =
p1p2...pn is a factorization of a into prime elements pi. This norm is well defined
because we have a unique factorization in A. Obviously, N(ab) = N(a)N(b). So,
N is multiplicative and positive. We shall show that N is a Dedekind-Hasse norm.
Let a, b ∈ A and a, b �= 0, then (a, b) = (r) is a principal ideal. If b �∈ (a), then
r �∈ (a) as well. Since a ∈ (r), a = rc for some c ∈ A. Then c is not a unit of
A, because r does not divide a. So N(a) = N(r)N(c) > N(r). Hence, N is a
Dedekind-Hasse norm.
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Example 7.3.1.
Just as in section 7.2 we consider a quadratic field K = Q(

√
D) over the field

of rational numbers Q. We shall distinguish two cases: if D < 0 we have an
imaginary quadratic field K, and if D > 0 we have a real quadratic field K.

It has been proved (see, for example the book of H.Hasse cited above, or the
book E.Weiss, Algebraic Number Theory, McGraw-Hill, 1963) that only the imag-
inary quadratic fields K = Q(

√
D) for D = −11,−7,−3,−2,−1 are Euclidean.

So these fields have uniqueness of factorization. Besides these there exists an
infinite number of real quadratic fields which are Euclidean. Among them are
the fields K = Q(

√
D) with D = 2, 3, 5, 13. So there exist real and imaginary

quadratic fields which are not Euclidean. In particular, the imaginary quadratic
field K = Q(

√
−19) is not Euclidean. Consider the ring A of all algebraic integers

of the field K = Q(
√
−19). This is the ring A of all numbers of the form

a + b
√
−19

2

where a, b ∈ Z and a ≡ b(mod2). Define the positive norm N(a+b(1+
√
−19)/2) =

a2 + ab + 5b2. It can be show that N is a Dedekind-Hasse norm (see, for example,
J.C.Wilson, A principal ideal ring that is not a Euclidean ring // Math.Mag.,
v.46, pp.34-38, 1973; or D.S.Dummit, R.M.Foote, Abstract algebra, Printice Hall,
Upper Saddle River, p.283). So, by proposition 7.3.3, this ring is a principal
ideal domain. But it is not a Euclidean ring, since it is a subring of the field
K = Q(

√
−19) which is not Euclidean and K is the quotient field of A.

Other examples of such rings are Z(
√
−43), Z(

√
−67), Z(

√
−163).

An example of a real quadratic field, which is not Euclidean is the field K =
Q(

√
53). The ring Z(

√
53) of algebraic integers of this field is a principal ideal

domain but it is not Euclidean. (See, H.Hasse, Vorlesungen über Zahlentheorie,
Berlin, 1950).

There are factorial rings which are not principal ideal domains. Examples of
such rings shall be given in section 7.6.

7.4. RINGS OF FRACTIONS AND QUOTIENT FIELDS

In this section we shall show that any commutative ring A with regular elements
can be embedded in a ring Q with identity such that any regular element of A
is invertible in Q. In particular, any integral domain O can be embedded into a
field k such that any element of the field k has the form ab−1, where a, b ∈ O and
b �= 0.

Let A be a commutative ring. Recall that a nonzero element a ∈ A is regular
if it is not a zero divisor.

Definition. A nonempty subset S of a ring A is called a multiplicative set
if for all a, b ∈ S we have ab ∈ S. If, in addition, each element of S is regular, then
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S is called a regular multiplicative set.

Examples 7.4.1.
1. The set of all regular elements of a ring A is a regular multiplicative set.
2. If A is an integral domain, then S = A\{0} is a regular multiplicative set.

Let A be a commutative ring and S be a multiplicative set. Consider the set
A × S of all ordered pairs (a, b), where a ∈ A and b ∈ S. Introduce on A × S
the relation (a, b) ∼ (c, d) if and only if there exists an element t ∈ S such that
t(ad − bc) = 0. It is easy to verify that this is an equivalence relation. We denote
by a/b or ab−1 the equivalence class of (a, b). The set of all equivalence classes is
denoted by AS . Note that all pairs (0, b) form the class 0/b which is zero in AS .

Introduce in the set AS operations of addition and multiplication by the fol-
lowing rules:

a/b + a1/b1 = (ab1 + ba1)/bb1 (7.4.1)

and
(a/b)(a1/b1) = aa1/bb1. (7.4.2)

It is easy to show that these operations are well defined in AS , and that they are
associative and commutative and that multiplication is distributive with respect
to addition. The multiplicative identity in AS is the class b/b for all b ∈ S. The
checking of these facts is left to the reader. Thus, the set AS with respect to
addition and multiplication forms a ring.

So there is the following theorem (to be proved by the reader).

Theorem 7.4.1. If A is a commutative ring and S is a multiplicative set, then
AS is a ring with identity.

Definition. The ring AS is called the ring of fractions of A with respect to
S or the localization of A at S. If S consists of all regular elements of A, then
AS is called the total quotient ring of A.

Assigning to an element a ∈ A the class ϕ(a) = as/s, where a ∈ A and s ∈ S
is some fixed element, we obtain a natural homomorphism ϕ of the ring A into
the ring AS . In fact, if a, b ∈ A, then

ϕ(a + b) = (a + b)s/s = as/s + bs/s = ϕ(a) + ϕ(b)

ϕ(ab) = (ab)s/s = as/s · bs/s = ϕ(a)ϕ(b)

Suppose a ∈ Kerϕ, then as/s = 0/s and t(as2 − 0s) = 0 for some t ∈ S. Hence,
tas2 = 0, i.e., there exists x = ts2 ∈ S such that ax = 0. The converse is also true.
Indeed, if ax = 0 for some x ∈ S, then a ∈ Kerϕ. So, ϕ is a monomorphism if
and only if ax = 0 for a ∈ A and x ∈ S implies a = 0.

Now consider the case, when S is the set of all regular elements of A. Then
ϕ is a monomorphism. And we can identify any element a ∈ A with the element
ϕ(a) = as/s, where s is some element of S.
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Suppose a is a regular element of the ring A and ϕ(a) = as/s. Then s/as ∈ AS

is inverse to as/s, since as ∈ S and as/s · s/as is the identity of AS .
Finally, let a/b ∈ AS , then (a/b) = (as/s)(s/bs) = ϕ(a)[ϕ(b)]−1.
Thus, we have proved the following theorem.

Theorem 7.4.2. Let A be a commutative ring with regular elements. Let S
be a set of all regular elements of A. Then the total ring of fractions AS has the
following properties:

1) A is embedded in AS.
Regarding A as subring of AS we have
2) any regular element of A is invertible in AS .
3) any element of AS has the form ab−1, where a ∈ A and b ∈ S.

Let O be an integral domain and S = O\{0} be a set of all regular elements
of O. So S is a regular multiplicative set in O and from theorem 7.4.2 we obtain
that in this case the ring OS is a field, which is called the quotient field (or the
field of fractions) of the ring O.

Thus, we have the following statement.

Theorem 7.4.3. For any integral domain O there is the quotient field k which
has the following properties:

1) A is embedded in k.
Regarding A as subring of k we have
2) any nonzero element of A is invertible in AS .
3) any element of k has the form ab−1, where a ∈ A and b �= 0.

Examples 7.4.2.
1. The field of rational numbers Q is the quotient field of the ring of integers

Z.
2. If k is a field, then its field of fractions is just k itself.
3. If O is an integral domain, then O[x] is also an integral domain. And its

field of fractions is the field of rational functions in one variable x over O whose
elements have the form p(x)/q(x), where p(x), q(x) ∈ O[x] and q(x) �= 0.

Definition. An ideal P of a commutative ring O is called prime if the quotient
ring O/P is an integral domain.

According to this definition an ideal P is prime if P �= O and for any x, y ∈ O
from xy ∈ P it follows that either x ∈ P or y ∈ P.

Definition. A ring A is called local if it has a unique maximal right ideal.

Proposition 7.4.4. Let A be a commutative ring and P be a prime ideal in
A. Then S = A\P is a multiplicative set and AS is a local ring with a unique
maximal ideal PS = {a/s | a ∈ P, s �∈ S}.
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In this particular case this ring of fractions is called the localization at P and
is denoted by AP .

Proof. First we shall show that S is a multiplicative set. Let a, b ∈ S, then
a �∈ P, b �∈ P. Hence, since P is a prime ideal, ab �∈ P, i.e., ab ∈ S.

Now we shall show that PS is an ideal in AS . Let a/s1, b/s2 ∈ PS and r/s ∈ AS .
Then

a/s1 − b/s2 = (as2 − bs1)/s1s2 ∈ PS

(a/s1)(r/s) = ar/s1s2 ∈ PS

Hence, PS is an ideal in AS .
Finally, we shall show that PS is the unique maximal ideal in AS . Suppose

r/s �∈ AS\PS), then r �∈ P. Therefore s/r ∈ AS and is invertible in AS . Hence,
all elements which not belong to PS are invertible in AS . Therefore PS is the
unique maximal ideal in AS .

7.5. POLYNOMIAL RINGS OVER FACTORIAL RINGS

It is well known that the polynomial ring k[x] over a field k is a factorial ring. We
are going to prove that the ring of polynomials k[x1, ..., xn] in n variables x1, ..., xn

over a field k is factorial as well. In fact, we shall prove the following, more general
statement.

Theorem 7.5.1 (C.F.Gauss). The polynomial ring O[x] over a factorial ring
O is factorial.

Let O be a factorial ring. First consider the main properties of the ring O[x].
It is easy to see that the units of this ring can be only the units of the ring O.

Recall that a polynomial p(x) ∈ O[x] is called irreducible if it is not a unit of
the ring O[x] and from the equality p(x) = f(x)g(x) it follows that either f(x) or
g(x) is a unit of O[x]. Also one can see that the ring O[x] has no divisors of zero,
i.e., it is a domain. Therefore, all irreducible elements in O are also irreducible
elements in O[x].

Lemma 7.5.2. If an irreducible element of a factorial ring O divides a product
of polynomials f(x) and g(x) of O[x], then it divides at least one of the factors.

Proof. Let p be an irreducible element of a factorial ring O. Consider the
quotient ring O[x]/pO[x]. Clearly, it is isomorphic to the ring O1[x], where O1 =
O/pO. In view of theorem 7.2.2, O1 is a ring without divisors of zero. Since
p|f(x)g(x), it follows that f̄(x)ḡ(x) = 0̄ (where h̄(x) is the image of the polynomial
h(x) ∈ O[x] in the ring O1[x] ). Because the ring O1[x] is also without divisors of
zero, we conclude that either f̄(x) or ḡ(x) is equal to 0, i.e., either f(x) or g(x) is
divisible by p.
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Definition. Let O be a factorial ring. A polynomial f(x) ∈ O[x] is said to be
primitive if the greatest common divisor of all its coefficients is a unit.

If f(x) ∈ O[x], then f(x) can be written in the form f(x) = cf1(x), where
c ∈ O and f1 ∈ O[x] is primitive. We may choose the element c to be equal to the
greatest common divisor of the coefficients of f(x). The element c is determined
uniquely up to a unit factor. It is called the content of f(x) and denoted by c(f).
Note that f(x) is primitive if and only if c(f) is the unit element.

Denote by k the quotient field of the ring O. It is well known that the ring k[x]
is a factorial ring. From the unique factorization in the ring O it follows that any
element in k may be uniquely written in the form a/b, where a and b are mutually
prime elements in O, i.e., (a, b) is the unit element 1. Then any polynomial
f(x) ∈ k[x] can be written in the form: f(x) = k0x

n + k1x
n−1 + ... + kn ∈ k[x],

where ki = ai/bi, ai, bi ∈ O and bi ∈ O∗. Let d = (a0, a1, ..., an) be the greatest
common divisor and m = [b0, b1, ..., bn] be the least common multiple. We define
c(f) = d/m. The element c(f) ∈ k is determined uniquely up to a unit factor and
called the content of f(x) ∈ k[x]. Note that if f(x) ∈ O[x], then c(f) ∈ O and
this notion coincides with the one defined above.

Lemma 7.5.3. Let k be the quotient field of a factorial ring O. Then any
f(x) ∈ k[x] is of the form f(x) = c(f)f1(x), where f1(x) ∈ O[x] is a primitive
polynomial.

Proof. Let f(x) ∈ k[x] and f(x) = k0x
n + k1x

n−1 + ... + kn ∈ k[x], where
ki = ai/bi, ai, bi ∈ O and bi ∈ O∗. Let d = (a0, a1, ..., an) be the greatest common
divisor and m = [b0, b1, ..., bn] be the least common multiple. Then

mf(x) = a0m/b0x
n + a1m/b1x

n−1 + ... + anm/bn ∈ O[x]

Since ai = dci for some ci ∈ O, i = 0, 1, ..., n, we have

mf(x) = d(c0m/b0x
n + c1m/b1x

n−1 + ... + cnm/bn) = df1(x),

where f1(x) ∈ O[x] and (c0, c1, ..., cn) is 1. We shall prove that f1(x) is a primitive
polynomial. Suppose f1(x) is not primitive. Then there exists a prime element p ∈
O such that p divides all coefficients cim/bi for i = 0, 1, ..., n. Since the elements
m/bi are relatively prime, i.e., (m/b0,m/b1, ...,m/bn) is 1, and (c0, c1, ..., cn) is 1,
there exist i �= j such that p|ci, while p does not divide m/bi and p|m/bj , while
p does not divide cj . Since (ci, bi) is 1, it follows that p does not divides bi and,
so, p does not divides m. Simultaneously, the same reasoning for for the index j
show that p|m. A contradiction.

Lemma 7.5.4 (Gauss’ lemma). Let O be a factorial ring with quotient field
k and f(x), g(x) ∈ k[x]. Then

c(fg) = c(f) · c(g). (7.5.1)
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In particular, the product of primitive polynomials is primitive.

Proof. We begin with the last statement. Let f(x) and g(x) be primitive
polynomials of O[x]. Then from lemma 7.5.2 it follows immediately that their
product f(x)g(x) is also primitive.

By lemma 7.5.3 we can write polynomials f(x), g(x) ∈ k[x] in the form
f(x) = c(f)f1(x) and g(x) = c(g)g1(x), where f1(x), g1(x) ∈ O[x] are primitive.
Then f(x)g(x) = c(f)c(g)f1(x)g1(x). Since f1(x)g1(x) is primitive, we obtain the
required equality (7.5.1).

Corollary 7.5.5. Let O be a factorial ring, k its quotient field and let
f(x), g(x) ∈ O[x]. If f(x) is primitive and f(x)|g(x) in k[x], then f(x)|g(x) in
O[x] as well.

Proof. Let f(x) is primitive and f(x)|g(x) in k[x], then g(x) = f(x)h(x),
where h(x) ∈ k[x]. By Gauss’ lemma, c(g) = c(f)c(h). Since f(x) is primitive,
c(f) ∈ O∗. Therefore, c(h) ∈ O and h(x) ∈ O[x].

Corollary 7.5.6. Let O be a factorial ring with quotient field k. Any ir-
reducible polynomial in the ring O[x] is either an irreducible element of O or a
primitive polynomial which is irreducible in the ring k[x].

Proof. Let p(x) be an irreducible polynomial in O[x]. If deg(f) < 1, then,
obviously, p(x) is a constant and irreducible in O. Assume that deg(f) ≥ 1.
Then it is, obviously, a primitive polynomial. Suppose, p(x) is not irreducible in
k[x], that is, p(x) = f(x)g(x) in k[x]. By lemma 7.5.3, f(x) = c(f)f1(x), where
f1(x) ∈ O[x] is primitive. Then f1(x)|p(x) in k[x] and, by corollary 7.5.5, we have
f1(x)|p(x) in O[x]. A contradiction.

Proof of theorem 7.5.1. For the proof this theorem use theorem 7.2.2. We
first show that any nonunit element of O[x] factors into irreducible polynomials.
Without loss of generality it suffices to prove this fact for primitive polynomials.
We shall prove this by induction on the degree of a polynomial f(x) ∈ O[x].
Suppose deg(f) ≤ 0, then the result follows from the fact that O is a factorial
ring. Assume that deg(f) = n > 0, and that the result is true for all polynomials
of degree < n.

If f(x) is irreducible, we are done. Otherwise we can write f(x) = f1(x)f2(x)
and deg(f1) < n, deg(f2) < n. Then the result follows by induction.

Now we prove that any irreducible element in O[x] is prime. Let p(x) be an
irreducible polynomial in O[x] and p(x)|f(x)g(x), where f(x), g(x) ∈ O[x]. We
must prove then that either p(x)|f(x) or p(x)|g(x). If deg(p) = 0, then p(x) ∈ O
and the statement follows from lemma 7.5.2. If deg(p) > 0, then, by corollary
7.5.6, p(x) is a primitive polynomial, which is irreducible in k[x]. Since k[x] is
a factorial ring, p(x) divides one of the factors in k[x] and, by corollary 7.5.5, it
divides one of the factors in O[x]. The theorem is proved.
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Theorem 7.5.7. Let O be a factorial ring, then O[x1, x2, ..., xn] is a factorial
ring as well.

The proof of this theorem follows from theorem 7.5.1 by induction on the
number of variables.

Now we can give examples of factorial rings which are not principal ideal do-
mains.

Example 7.5.1.
Let R = Z[x] be the polynomial ring in one variable x over the ring of integers

Z. Since Z is a factorial ring, by theorem 7.5.1, the ring Z[x] is factorial as well.
But it is not a principal ideal domain because, for example, the ideal (2, x) is not
principal in Z[x].

Example 7.5.2.
Consider the ring R = k[x, y] of polynomials in two variables x and y over

a field k. By theorem 7.5.7, this ring is factorial. However, it is not a principal
ideal domain. This follows from the fact that the ideal I = (x, y) is not principal.
Indeed, if I = (f(x, y)), then x = cf(x, y) and y = df(x, y) for some c, d ∈ k[x, y].
Looking at the degree in x and y it immediately follows that f(x, y) must be
of the form a0 + a1x + a2y + a3xy. Looking at the total degree gives a3 = 0.
Also it cannot be that a1 = a2 = 0 because then either (f(x, y)) = 0 or
(f(x, y)) = k[x, y]. So f(x, y) = a0 + a1x + a2y with a1 �= 0 or a2 �= 0. It is now
easy to check that there are no solutions to x = cf(x, y), y = df(x, y), c, d ∈ k[x, y].

7.6. THE CHINESE REMAINDER THEOREM

There are a lot of different formulations of the well-known ”Chinese remainder
theorem”. We give one of them.

Theorem 7.6.1 (Chinese remainder theorem). Let A be a principal ideal
domain and n = pn1

1 pn2
2 ...pns

s be a factorization of n ∈ A, where p1, p2, ..., ps ∈ A
are distinct primes. Then

A/(n) � A/(pn1
1 ) × A/(pn2

2 ) × ... × A/(pns
s ).

In fact we shall prove a certain generalization of this theorem and as corollary
of this theorem obtain theorem 7.6.1.

Definition. Two ideals I and J in a ring A is called comaximal if I+J = A.

Theorem 7.6.2. Let I1, I2, ...,In be pairwise comaximal ideals in a commu-
tative ring A. Then

A/(I1I2...In) � A/(I1) × A/(I2) × ... × A/(In).
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To prove this theorem we need the following lemma often called the ”Chinese
remainder theorem for two elements”:

Lemma 7.6.3. Let I1 and I2 be ideals in a commutative ring A such that
I1 +I2 = A. Then for any x1, x2 ∈ A there exists x ∈ A such that x ≡ xi(mod Ii)
for i = 1, 2. Moreover, I1I2 = I1 ∩ I2 and

A/I1I2 � A/I1 × A/I2.

Proof. Obviously, I1I2 ⊂ I1 ∩ I2. Let y ∈ I1 ∩ I2. Since I1 + I2 = A, there
exist ai ∈ Ii (i = 1, 2) such that a1 + a2 = 1. Then a1y + a2y = y ∈ I1I2. So,
I1I2 = I1 ∩ I2.

Let x1, x2 ∈ A and set x = x2a1 + x1a2 where a1, a2 are as above. From the
equalities x1 = x1a1 +x1a2, x2 = x2a1 +x2a2 we obtain x = x2a1 +(x1 −x1a1) =
x1 +(x2 −x1)a1 ≡ x1(mod I1) and, similarly, x = x1a2 +(x2 −x2a2) = x2 +(x1 −
x2)a2 ≡ x2(mod I2).

Now we can form the map ϕ : A → A/I1 × A/I2 by ϕ(x) = (x1, x2), where
x ≡ x1(mod I1) and x ≡ x2(mod I2). From what has just been said it is easy
to see that ϕ is an epimorphism with Kerϕ = I1 ∩ I2 = I1I2. Applying the
homomorphism theorem we obtain the statement of the lemma.

Proof of theorem 7.6.1. In the general case when n > 2 we can prove this
theorem by induction on the number of ideals n using the previous lemma. To
this end we apply lemma 7.6.3 for the two ideals I = I1 and J = I2...In.

We need only to show that the ideals I and J are comaximal, i.e.,
I + I2...In = A. Since the ideals I1, I2, ...,In are pairwise comaximal, for any
i = 2, 3, ..., n there exist ai ∈ I1 and bi ∈ Ii such that ai + bi = 1. Since
ai + bi ≡ bi (mod I1), we obtain 1 = (a2 + b2)...(an + bn) ≡ b2b3...bn(mod I1),
i.e., 1 ∈ I1+I2...In. This means that I1+I2...In = A and this completes the proof.

7.7. SMITH NORMAL FORM OVER A PID

The remainder of this chapter will be devoted to the study of finitely generated
modules over a PID. We shall need some general theory connected with this topic.
In this section we consider some facts concerning matrices with entries in a PID.
Throughout in this section O is a commutative principal ideal domain. Consider
the set Mm×n(O) of all m × n matrices over O. We write Mn(O) for Mn×n(O).

Definition. Two m × n matrices A and B with entries in O are said to be
equivalent if there exists an invertible matrix P ∈ Mm(O) and an invertible
matrix Q ∈ Mn(O) such that B = PAQ.

Obviously ”being equivalent” is an equivalence relation on the set Mm×n(O)
and we write A ∼ B if A is equivalent to B. This equivalence relation divides the
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set Mm×n(O) into equivalence classes. Our purpose is to choose in each equivalence
class a representative, which has a particularly simple form.

We first introduce in the ring Mn(O) of all square matrices of order n the
following matrices

Tij(α) = E + αeij

Di(γ) = E − eii + γeii

Pij = E − eii − ejj + eij + eji

where i �= j, the eij are the matrix units of Mn(O), E = e11 + e22 + ... + enn,
α ∈ O and γ is a unit in O.

It is easy to verify that Tij(α)−1 = Tij(−α), Di(γ)−1 = Di(γ−1) and P−1
ij =

Pij . Therefore, the matrices Tij(α), Di(γ) and Pij are all invertible and they are
called elementary matrices.3)

Left multiplication of a m×n matrix A by elementary matrices Tij(α), Di(γ)
and Pij of Mm(O) gives respectively the following elementary operations on the
rows of A:

1. Multiplying the jth row by α and adding it to the ith row.
2. Multiplying the ith row by γ ∈ O∗.
3. Interchanging the ith and the jth rows.
Right multiplication of a matrix A by these elementary matrices of Mn(O)

gives analogously elementary operations on the columns of A.
Multiplication of a matrix A by these elementary matrices is called an ele-

mentary operation.
Obviously, any matrix obtained by a finite sequence of elementary operations

on rows and columns of A is equivalent to A.
We shall say that a matrix B ∈ Mm×n(O) is in diagonal form if

B = diag{b11, b22, ..., bkk, 0, ..., 0} =

=




b11 0 . . . 0 0 . . . 0
0 b22 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . bkk 0 . . . 0
0 0 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . . 0




where k ≤ min{m,n}.

Let O be a principal ideal domain. Then it is a factorial ring, i.e., each nonzero
element a ∈ O has a unique factorization into prime elements p1p2...pr and the
number r of prime factors is an invariant. We shall call the number r the length

3) The phrase ”elementary matrices” has a different meaning in algebraic K-theory.
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of the element a and denote it by l(a). By convention l(ε) = 0 if and only if ε is a
unit of O.

It is easy to see that
1) l(ab) = l(a) + l(b);
2) if a|b then l(a) ≤ l(b);
3) if a|b and l(a) = l(b), then a = εb, where ε is a unit of O.

Theorem 7.7.1. Every matrix A ∈ Mm×n(O) with entries in a principal ideal
domain O is equivalent to a matrix, which has diagonal form

B = diag{b11, b22, ..., bkk, 0, ..., 0},

where k ≤ min{m,n}, bii �= 0 and moreover b11|b22|...|bkk.

Proof. Let A ∈ Mm×n(O). On the set Mm×n(O) we have the binary relation
of equivalent matrices, which divides this set on equivalence classes. We shall show
that the equivalence class containing the matrix A has a representative which has
a diagonal form.

If A = 0 there is nothing to prove. Therefore we may assume that there is at
least one nonzero element in the matrix A. Let us consider the matrix A and the
equivalence class E to which this matrix belongs. In the class E choose a matrix B
such that it has a nonzero entry of the least length among all matrices equivalent
to A.

Since all elementary matrices are invertible, we can perform arbitrary elemen-
tary operations on the matrix B over the ring O.

By elementary operations of type 3 (both column and row) we can move the
entry of least length to the (1, 1) position. So, we can assume that the entry b11

has least length in the equivalence class E . We shall prove that either b1j = 0 or
b11|b1j for all j = 1, ..., n and either bi1 = 0 or b11|bi1 for all i = 1, ..,m. Suppose
b12 �= 0 and b11 does not divide it. Let d = (b11, b12) and b11 = dα, b12 = dβ. Then
there exist elements x, y ∈ O such that d = b11x + b12y and hence d = dαx + dβy.
Since O is a domain, αx + βy = 1. Consider the matrix equality[

b11 b12

b21 b22

] [
x −β
y α

]
=
[

d 0
b′12 b′22

]

where the matrix

U =
[

x −β
y α

]

is invertible, since detU = αx + βy = 1. Consequently, the matrix

Ū =




x −β 0 . . . 0
y α 0 . . . 0
0 0 1 . . . 0
...

...
. . . . . .

...
0 0 0 . . . 1



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is also invertible in Mn(O) and multiplying B on the right side by this matrix Ū we
obtain an equivalent matrix with d at the position (1, 1) and zero at the position
(1, 2). Since b11 does not divide b12, the length of d is less than that of b11. So
l(d) < l(b11). This contradicts the choice of the matrix B as a matrix with an
entry at position (1,1) of least length. Therefore b11|b12. Analogously we can prove
that if b1j �= 0, then b11|b1j for all j = 1, ..., n. In this case instead of the matrix Ū
we use the matrix Ūi = xe11 −βje1j + yej1 + e22 + ...+αejj + ej+1,j+1 + ...+ enn.
In a similar way we can prove that either bi1 = 0 or b11|bi1 for all i = 1, ...,m.
Therefore there exists a matrix B equivalent to the matrix A and either b1j = 0
or b11|b1j for all j = 1, ..., n and either bi1 = 0 or b11|bi1 for all i = 1, ..,m. Then
elementary operations on the rows and columns of type I give an equivalent matrix
of the form:

A∗ =




b11 0 . . . 0
0 c22 . . . c2n

. . . . . . . . . . . .
0 cm2 . . . cmn


 .

By induction applying this process to the matrix

C =


 c22 . . . c2n

. . . . . . . . .
cm2 . . . cmn




we obtain the equivalent matrix, which has a diagonal form

PAQ = diag{b11, b22, ..., bkk, 0, ..., 0}.

Finally, we show that we can reduce PAQ further such that b11|b22|...|bkk. Assume,
b11 does not divide b22. Then adding the second row to the first one, we obtain
the first row in the form:

(b11 b22 0 ... 0)

Then performing the operations described above we can reduce the length of b11.
A contradiction. So, b11|b22 and, analogously, b11|bii, i = 3, ..., k. The theorem is
proved.

A matrix equivalent to a given matrix A and having the diagonal form given
in theorem 7.7.1 is called the Smith normal form for A. The nonzero diagonal
elements of the Smith normal form of a matrix A are called the invariant
factors of A. It can be shown that the invariant factors are unique up to unit
multipliers and two matrices are equivalent if and only if they have the same
invariant factors. We leave the proof of these statements to the reader.

7.8. FINITELY GENERATED MODULES OVER A PID

The purpose of this section is to prove the fundamental structure theorem for
finitely generated modules over a principal ideal domain.
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Lemma 7.8.1. Let A be a principal ideal domain, and F be a finitely generated
free A-module with a free basis consisting of n elements. Then any submodule K
of F is also finitely generated free A-module with a free basis consisting of m
elements, where m ≤ n.

Proof. Since A is a hereditary Noetherian ring, the proof follows from corollary
3.1.13 and corollary 5.5.3.

Let A be a PID and M be a finitely generated A-module. Then, by proposition
1.5.2, M is isomorphic to a quotient of a free module An, i.e., M � An/K. Since
K is a submodule of a finitely generated free A-module, by lemma 7.8.1, K is also
a finitely generated free A-module, i.e., K � Am, where m ≤ n. So, we have a
short exact sequence:

0 −→ Am ψ−→ An −→ M −→ 0

and M � Mψ = An/Imψ. Let ξ be an automorphism of the module Am and let
η be an automorphism of the module An. Then it is not difficult to verify that
Mψ � Mηψξ.

Let e1, ..., em be a free basis for module Am and f1, f2, ..., fn be a free basis
for An. In the usual way a homomorphism ψ : Am → An is the same thing as an
(m × n)-matrix [ψ] with entries ψij in A:

ψ(e1) = ψ11f1 + ψ12f2 + ... + ψ1nfn

ψ(e2) = ψ21f1 + ψ22f2 + ... + ψ2nfn

. . .

ψ(em) = ψm1f1 + ψm2f2 + ... + ψmnfn

where ψij ∈ A. This matrix is called the matrix of ψ relative to the bases e1, ..., em

and f1, f2, ..., fn. In a similar way an automorphism ξ : Am → Am corresponds to
an invertible matrix [ξ] ∈ Mm(A) and an automorphism η : An → An corresponds
to an invertible matrix [η] ∈ Mn(A). It is not difficult to verify that Mψ � Mηψξ

if and only if the matrix [ψ] is equivalent to the matrix [ηψξ]. By theorem 7.7.1,
this latter matrix can be assumed to be in Smith normal form:

[ψ] ∼ diag{b1, b2, ..., bt, 0, ..., 0},

where t ≤ m and b1|b2|...|bt

Therefore Imψ = b1A ⊕ ... ⊕ btA ⊕ 0, where b1|b2|...|bt. Since M � An/Imψ,
we have M � A/b1A ⊕ ... ⊕ A/btA ⊕ An−t. As every A-module A/biA is cyclic,
we obtain the following theorem:

Theorem 7.8.2. Any finitely generated A-module M over a principal ideal
domain A is isomorphic to a finite direct sum of cyclic submodules:

M � A/b1A ⊕ ... ⊕ A/btA ⊕ An−t
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where t ≤ n, and the bi are nonzero nonunit elements in A such that b1|b2|...|bt.

Definition. The integer r = n − t in theorem 7.8.2 is called the free rank of
M and the elements b1, b2, ..., bk ∈ A (defined up to multiplication by units in A)
are called the invariant factors of M .

Let us take a good look at the form of a module A/αA, where α ∈ A. Since A
is a factorial ring, there is a unique factorization of α = pn1

1 ...pns
s , where p1, ..., ps

are distinct primes.
Then, by the Chinese remainder theorem (theorem 7.6.1), we have a decompo-

sition into a direct sum: A/αA �
s
⊕

i=1
A/(pni

i ). Thus, any submodule of the form

A/biA is isomorphic to a direct sum of submodules of the form A/(pni
i ). We shall

show that each such submodule is indecomposable.
Consider O = A/pnA, π = p + pnA, M = πO where p is a prime element of

A. We shall show that in the ring O there is only one chain of ideals: O ⊃ M ⊃
M2 ⊃ ... ⊃ Mn−1 ⊃ 0. Let β ∈ O and β �= 0, β = a + pnA. Denote by ν the
largest power of the element p such that pν divides a. Then β = pνa1 + pnA and
(p, a1) = 1. Therefore (pn, a1) = 1 and hence 1 = a1v + pnu for some u, v, i.e., in
the ring O the element a1 + pnA is invertible. So we have shown that any element
β ∈ O has the form β = πνε, where ε is a unit of O. The number ν is called
the exponent of the element β. Clearly, any nonzero ideal of O is generated
by a nonzero element contained in it with least exponent. Therefore, any ideal
in the ring O has the form πνO. Thus, in particular, O is an indecomposable A-
module. Since Mk/Mk+1 � F , where F is the field A/(p), the A-module A/pnA
is Artinian. Thus, A/pnA is an indecomposable module, which is both Artinian
and Noetherian. Since any such module is cyclic, we have proved the following
fundamental result:

Theorem 7.8.3. Any finitely generated module M over a principal ideal do-
main A is isomorphic to a finite direct sum of indecomposable cyclic modules of
the form A/αA, where either α = 0 or α = pn (where p is a prime element of the
ring A), i.e.,

M � Ar ⊕ A/(pn1
1 ) ⊕ ... ⊕ A/(pnk

k )

where r ≥ 0 and the pni
i are positive powers of (not necessary distinct) primes in

A.

Definition. The prime powers pn1
1 , pn2

2 , ..., pnk

k ∈ A in theorem 7.8.3 (defined
up to multiplication by units in A) are called the elementary divisors of M .
The A-module A/pni

i A in this theorem is called a primary component of M .

Definition. Let M be a right module over a commutative domain A. An
element m ∈ M is called a torsion element if there exists a nonzero element
x ∈ A such that mx = 0. A nonzero element m ∈ M is called a torsion-free
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element if mx = 0, x ∈ A implies m = 0. The set of all torsion elements of M is
denoted by t(M).

It is easy to verify, that t(M) is submodule of M , and it is called the torsion
submodule of M . We call M a torsion module if and only if t(M) = M , and
M is a torsion-free module if and only if t(M) = 0. Clearly, M/t(M) is a
torsion-free module. A free module over a commutative domain is torsion-free.

Theorem 7.8.4. Any finitely generated module M over a PID A decomposes
into a direct sum of a finitely generated torsion-free module and a finitely generated
torsion module.

Proof. By the structure theorem for finitely generated modules over a PID,
any such A-module is isomorphic to a direct sum:

M � A/b1A ⊕ ... ⊕ A/btA ⊕ Ak

where bi are nonzero nonunit elements in A such that b1|b2|...|bt. Then it follows
that M = F ⊕ T , where F � Ak and T � A/b1A ⊕ ... ⊕ A/btA. Obviously, F is a
finitely generated torsion-free module. We shall show that T = t(M). It is clear,
that btT = 0, i.e., T ⊂ t(M). Conversely, let m ∈ t(M). Then m = m1 + m2,
where m1 ∈ F and m2 ∈ T . So m1 = m − m2 ∈ t(M), and hence there exists
a ∈ A, a �= 0, such that m1a = 0. Let e1, e2, ..., ek be a free basis of F , then
m1 = e1a1 + e2a2 + ... + ekak = 0 and m1a = e1a1a + e2a2a + ... + ekaka = 0.
Hence, aia = 0 for each i = 1, ..., k. Since A is a PID and a �= 0, ai = 0 for each
i = 1, ..., k. Therefore m1 = 0, i.e., m ∈ T . Thus, T = t(M).

The uniqueness of decomposition of finitely generated modules over a PID will
be proved in chapter 10 as a corollary of the fundamental Krull-Schmidt theorem
for semiperfect rings. Now we shall only prove one part of this theorem.

Proposition 7.8.5. If two finitely generated modules M1 and M2 over a PID
A are isomorphic, then they have the same free rank.4)

Proof. Suppose M1 and M2 are isomorphic. Since any isomorphism between
M1 and M2 maps the torsion submodule of M1 to the torsion submodule of M1,
we must have M1/t(M1) � M2/t(M2). Then Ar1 � Ar2 , where ri is the free rank
of Mi for i = 1, 2. Then, by proposition 1.5.5, r1 = r2.

An important example of modules are the Abelian groups which are naturally
considered as modules over the ring of integers. Applying theorem 7.8.3 to the
case A = Z we obtain the main theorem on finitely generated Abelian groups:

Theorem 7.8.6. Every finitely generated Abelian group is isomorphic to
a direct product of cyclic groups. Every finite Abelian group is isomorphic to a

4) There are rings A for which An � Am for certain n �= m.
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direct sum of cyclic primary groups.

7.9. THE FROBENIUS THEOREM

In this section we apply the fundamental structure theorem of finitely generated
modules over a PID to obtain a famous canonical form for square matrices over a
field.

From any course on linear algebra it is well known that the problem of describ-
ing linear transformations acting on various vector spaces V over a field K, and the
problem of describing square matrices over a field K up to similarity is the same
problem. This problem reduces to describing up to isomorphism K[x]-modules
which are finite dimensional vector spaces over the field K.

Let V be a finite dimensional vector space over a field K and let A be a linear
transformation from V to itself. As usual, for any f(x) = a0x

n+a1x
n−1+...+an ∈

K[x] we set f(A) = a0An + a1An−1 + ... + anE , where E is the identity mapping
of V into itself. Then f(A) is also a linear transformation acting on V , i.e.,
f(A) ∈ EndK(V ). Introduce on V the structure of a K[x]-module by setting that
f(x)v = f(A)v for every f(x) ∈ K[x] and v ∈ V .

Note that if V is a finite dimensional vector space over K, then V is a finitely
generated K[x]-module. Moreover, if u1, u2, ..., un is a basis of V over K, then
u1, u2, ..., un is a set of generators of V as K[x]-module.

Let m = dimKV be the dimension of a vector space V over a field K. Then
the set EndK(V ) is simultaneously a ring and a vector space over the field K and
its dimension is equal to m2. Therefore the transformations E ,A,A2, ...,Am2

are
linearly dependent over K for any transformation A ∈ EndK(V ), and so there
exists a nonzero polynomial g(x) ∈ K[x] such that g(x)v = g(A)v = 0 for any
v ∈ V . Thus, any finite dimensional vector space V as a K[x]-module is a torsion
module.

Since K[x] is a PID, from theorem 7.8.3 we immediately obtain the following
fundamental structure theorem:

Theorem 7.9.1. Any finitely generated K[x]-module decomposes into a direct
sum of indecomposable cyclic submodules.

Since any finite dimensional vector space V as a K[x]-module is a torsion
module, from this theorem it follows that any indecomposable K[x]-module is of
the form V = K[x]/(pi(x)), where p(x) is an irreducible polynomial. Let v be
an arbitrary element in V and g(x) = pi(x) = xs + a1x

s−1 + ... + as. Consider
the linear transformation A ∈ EndK(V ) giving by Av = xv. Since g(x)v = 0 for
any v ∈ V , A is a root of the polynomial g(x) = xs + a1x

s−1 + ... + as, that is
As + a1As−1 + ... + asE = 0. If v is a generator of V then vectors v,Av, ...,As−1v
form a basis of V . Now write down the matrix of the linear transformation A in
this basis. Since
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Av = Av
A(Av) = A2v

. . .
A(As−2v) = As−1v

A(As−1v) = −asv − as−1Av − ... − a1As−1v

we obtain the following matrix

Φ =




0 0 0 . . . 0 −as

1 0 0 . . . 0 −as−1

0 1 0 . . . 0 −as−2

...
...

...
. . .

...
...

0 0 0 . . . 0 −a2

0 0 0 . . . 1 −a1




(7.9.1)

which is called the Frobenius block or the companion matrix of the polynomial
g(x).

Let A be the matrix of a linear transformation A acting on a linear vector
space V . Taking into account theorem 7.9.1 we obtain the following theorem.

Theorem 7.9.2 (Frobenius theorem). For any square matrix A over a
field K with a minimal polynomial t(x) = pn1

1 (x)...pns
s (x) there is an invertible

matrix S such that

SAS−1 =




B1 0 . . . 0
0 B2 . . . 0
...

...
. . .

...
0 0 . . . Bn


 (7.9.2)

where Bi is a Frobenius block corresponding to the powers pni
i (x) of an irreducible

polynomial pi(x) ∈ K[x], i = 1, ..., s. These blocks are indecomposable.

We shall call (7.9.2) the classical canonical form or the Frobenius normal
form of the matrix A over the field K.

Consider the Frobenius theorem for the case that K is an algebraically closed
field. Then the minimal polynomial t(x) of a matrix A decomposes into a product
of linear factors. Assume the matrix A to be indecomposable. In this case an
indecomposable module W is isomorphic to a module of the form K[x]/(x − a)r.
Choose the following basis for it: 1, x − a, ..., (x − a)r−1. Then there exists an
invertible matrix S such that

S(A − aE)S−1 = Jr(0) =




0 0 . . . 0 0
1 0 . . . 0 0
...

. . . . . .
...

...
0 0 . . . 0 0
0 0 . . . 1 0


 .
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which is called the Jordan block of order r with zero eigenvalue. Hence

SAS−1 = Jr(0) + aE =




a 0 . . . 0 0
1 a . . . 0 0
...

. . . . . .
...

...
0 0 . . . a 0
0 0 . . . 1 a


 = Jr(a)

A matrix Jr(a) of this form is called the Jordan block of order r with an eigen-
value a. The matrix A of the form (7.9.2), where each Bi is a Jordan block, is
called the Jordan normal form of the matrix A.

Note that for the modules M considered in theorem 7.8.3 there holds unique-
ness of the decomposition M into a direct sum of indecomposable modules. Let
module M be expressed in two different ways into the form of a direct sum of
indecomposable modules: M =

n
⊕

i=1
Mi =

m
⊕

j=1
Nj . Then m = n and there is a

permutation τ of the numbers from 1 to n such that Mi � Nτ(i) (i = 1, ..., n).
Hence, in particular, there follows uniqueness of the Frobenius normal form up to
a permutation of blocks.

Uniqueness of the decomposition shall be proved in chapter 10. This is (an
instance of) the famous Krull-Schmidt theorem.
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Chicago, 1974 and Hideyuki Maksumura, Commutative ring theory, Cambridge
Univ. Press, 1989.



8. Dedekind domains

In this chapter we shall consider some particular examples of commutative rings,
such as Dedekind domains and Prüfer rings. We consider the main properties of
these rings and describe finitely generated modules over Dedekind domains.

All the rings considered in this chapter will be commutative with 1 �= 0. As
before, denote by N the set of all natural numbers and by A∗ the set of all units
of a ring A.

8.1. INTEGRAL CLOSURE

Let O be an integral domain with a quotient field k. If a field L contains the ring
O, then it contains a field which is isomorphic to k. Therefore one can assume that
L ⊃ k ⊃ O. We shall say that a polynomial f(x) ∈ k[x] is monic if its leading
coefficient is equal to 1.

Proposition 8.1.1. Let L be a field containing an integral domain O and
α ∈ L. Then the following conditions are equivalent:

1. An element α is a root of some monic polynomial f(x) ∈ O[x].
2. There is a finitely generated nonzero O-module M ⊂ L such that αM ⊂ M .

Proof.
1 ⇒ 2. Let f(x) = xn + a1x

n−1 + ... + an ∈ O[x] and f(α) = 0. Consider the
O-module M generated by the elements 1, α, ..., αn−1. Clearly, αM ⊂ M .

2 ⇒ 1. Let M = {w1, ..., wn} be a nonzero finitely generated O-module such
that αM ⊂ M , then there exist elements aij ∈ O such that

αw1 = a11w1 + ... + a1nwn

. . .

αwn = an1w1 + ... + annwn

Denote by A the matrix (aij) ∈ Mn(O). So we have a uniform system of linear
algebraic equations with respect to variables w1, ..., wn with matrix A−αE. This
system has a nonzero solution in the field L. From linear algebra it is known
that in this case det(αE − A) = 0, i.e., α is a root of the monic polynomial
f(x) = det(xE − A), whose coefficients are linear combinations of products of
elements of the matrix A. Thus, f(x) = det(xE − A) ∈ O[x] and is monic.

189
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Definition. Let L be a field containing a ring O. An element α ∈ L is
called integral over the ring O if it satisfies one of the equivalent conditions
of proposition 8.1.1. If every element of a subring A in L is integral over O, we
say that A is integral over O. An element α is called algebraic over a field k if
there exists f(x) ∈ k[x] such that f(α) = 0.

Proposition 8.1.2. Let O be an integral domain with a quotient field k con-
tained in some field L, and let α ∈ L be an algebraic element over k. Then there
exists a nonzero element c ∈ O such that the element cα is integral over O.

Proof. Let α ∈ L and L ⊃ k. Then there exists a polynomial f(x) = a0x
n +

a1x
n−1 + ... + an ∈ k[x] such that a0 �= 0 and

a0α
n + a1α

n−1 + ... + an = 0.

Multiplying this equality by an−1
0 we obtain

(a0α)n + a1(a0α)n−1 + ... + anan−1
0 = 0,

that is, the element a0α is a root of a monic polynomial over O.

Proposition 8.1.3. Let O be a ring contained in a field k. Denote by ∆ the
set of all elements of the field k, which are integral over O. Then ∆ is a ring.

Proof. Let α, β ∈ ∆ and let M , N be finitely generated O-modules such
that αM ⊂ M and βN ⊂ N . Then the module MN is finitely generated and
αβMN ⊂ MN , (α ± β)MN ⊂ MN .

Definition. The ring ∆ introduced in theorem 8.1.3, i.e., the set of all elements
of k that are integral over O, is called the integral closure of the ring O in the
field k. A ring O contained in a field L is called integrally closed in L if any
element of this field, which is integral over O, belongs to O. A ring O is called
integrally closed if it is integrally closed in its quotient field k.

Proposition 8.1.4. Any factorial ring O is integrally closed.

Proof. Let α ∈ k be an integral element over O. Suppose α �∈ O. Then α can
be written in the form a/b, where a, b ∈ O and (a, b) = 1. Since O is factorial there
exists a prime element p ∈ O, which divides b and does not divide a. Let F (x) =
xn +a1x

n−1 + ...+an ∈ O[x] and F (a/b) = 0. Then an +a1a
n−1b+ ...+anbn = 0.

Since p|b, we have p|an and, hence, p|a. A contradiction.

Let L be a finite extension of a field k. For a fixed element α ∈ L we define an
endomorphism α̂ of the field L into itself by α̂(a) = aα for an arbitrary element
a ∈ L. Clearly, this endomorphism is a linear transformation of L considered as a
vector space over k.



DEDEKIND AND PRÜFER RINGS 191

Denote by Endk(L) the set of all linear transformations of the field L considered
as a vector space over the field k. Clearly, the map α �→ α̂ gives a monomorphism
of the field L into the ring Endk(L).

The characteristic polynomial χα̂(x) of the linear transformation α̂ is called
the characteristic polynomial of the element α and is denoted by χα(x);
the minimal polynomial µα̂(x) of the transformation α̂ is called the minimal
polynomial of the element α and denoted by µα(x). Clearly, χα(α) = µα(α) =
0; moreover χα(x), µα(x) ∈ k[x] and µα(x) is the monic polynomial of least degree,
which has α as a root. Therefore, µα(x) is an irreducible polynomial.

Let α ∈ L. Denote by k(α) the smallest subfield of the field L containing
both the field k and the element α. Let µα(x) = xm + a1x

m−1 + ... + am ∈
k[x]. Since µα(α) = 0, we have αm = −(a1α

m−1 + ... + am). Therefore any
expression b0α

n + ... + bn with coefficients from k may be rewritten in the form
c1α

m−1+c2α
m−2+...+cm, where ci ∈ k, i = 1, 2, ...,m. The set of all such elements

forms a ring. Clearly, the elements 1, α, ..., αm−1 are linearly independent over the
field k.

We shall show that an arbitrary nonzero element c1α
m−1 +c2α

m−2 + ...+cm is
invertible. Let h(x) = c1x

m−1 + c2x
m−2 + ... + cm. Since the degree of h(x)

is less than m, owing to the irreducibility of µα(x), we have (h(x), µα(x)) =
1. Therefore, there exist polynomials u(x) and v(x) such that 1 = u(x)h(x) +
µα(x)v(x). Substituting the element α in this equality we obtain 1 = u(α)h(α),
i.e., the element h(α) is invertible. Hence, it follows that

k(α) = {c1α
m−1 + ... + cm−1α + cm | c1, ..., cm ∈ k}.

Therefore, [k(α) : k] = m.
Assume that the elements θ1, ..., θn ∈ L form a basis of the field L over the field

k(α). Then, by proposition 1.1.1, the elements θ1, θ1α, ..., θ1α
m−1, ..., θn, θnα,

..., θnαm−1 form a basis of the field L over k. Clearly, the matrix of the linear
transformation α̂ in this basis is a block diagonal matrix, in which on the main
diagonal there are n copies of the Frobenius block corresponding to the polynomial
µα(x), i.e., matrices of the form:

Φ = Φ(µα(x)) =




0 0 0 . . . 0 −am

1 0 0 . . . 0 −am−1

0 1 0 . . . 0 −am−2

...
...

...
. . .

...
...

0 0 0 . . . 0 −a2

0 0 0 . . . 1 −a1




Since the characteristic and minimal polynomials of the Frobenius block Φ coincide
and are equal to µα(x), we have χα(x) = [µα(x)]n.

The trace of the linear transformation α̂ is called the trace of the element
α and denoted by Sp(α). Clearly, Sp(α) ∈ k. The map Sp : L → k is a linear
operator of the k-vector space L into the field k.
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A finite extension L of a field k is called separable if the linear operator
Sp : L → k is nonzero.

Proposition 8.1.5. Let O be a factorial ring with a quotient field k, and let
L be a finite extension of k. Assume α ∈ L is integral over O. Then Sp(α) ∈ O.

Proof. Let α ∈ L be an integral element over the factorial ring O. Therefore,
there exists a monic polynomial F (x) ∈ O[x] such that F (α) = 0. Let µα(x) =
xm + a1x

m−1 + ... + am ∈ k[x] be the minimal polynomial of the element α.
Applying the arguments above we obtain that Sp(α) = −na1. Therefore, to
prove the proposition it is sufficient to show that µα(x) ∈ O[x]. Since µα(α) =
0, we have µα(x)|F (x) in k[x], that is, there exists a polynomial h(x) ∈ k[x]
such that F (x) = µα(x)h(x). Since F (x) is a monic polynomial in O[x], by the
Gauss lemma, c(F ) = c(µα)c(h) is a unit of the ring O. By lemma 7.5.3 we can
write µα(x) = c(µα(x))µ̄α(x) and h(x) = c(h(x))h̄(x) where µ̄α(x) and h̄(x) are
primitive polynomials in O[x]. Then F (x) = µ̄α(x)h̄(x). Let a′

0 and b′0 be the
leading coefficients of the polynomials µ̄α(x) and h̄(x), respectively. Then a′

0b
′
0

is a unit and, since a′
0c(µα) is a also unit, we obtain µα(x) ∈ O[x]. Therefore,

Sp(α) ∈ O.

Theorem 8.1.6. Let O be a Noetherian factorial ring, and let L be a finite
separable extension of its quotient field k. Then the integral closure ∆ of the ring
O in the field L is finitely generated over O.

To prove this theorem we shall need the following lemma.

Lemma 8.1.7. Let L be a finite separable extension of a field k and let
w1, ..., wn be a basis of the field L over k. Then the matrix S = (Sp(wiwj)) ∈
Mn(k), (i, j = 1, ..., n), is invertible.

Proof. The entries of the matrix S belong to the field k. Assume that the
matrix S is not invertible. Then the rows of the matrix S are linearly dependent
over the field k, i.e., there are elements c1, ..., cn ∈ k, which are all not equal to zero
and such that c1Sp(w1wi) + c2Sp(w2wi) + ... + cnSp(wnwi) = 0 for i = 1, 2, ..., n.
Let α = c1w1 + ... + cnwn. Then α �= 0 and, because Sp is a linear operator, we
obtain that Sp(αwi) = 0 for every i = 1, 2, ..., n. Therefore Sp(αβ) = 0 for any
β ∈ L, contradicting the separability of the field L.

Proof of theorem 8.1.6. By proposition 8.1.2, one may assume that the elements
w1, ..., wn are integral over O. Denote by M = w1O + ... + wnO the finitely
generated O-module generated by w1, w2, ..., wn. It is a submodule of ∆. Set
M∗ = {α ∈ L | Sp(αm) ∈ O for any m ∈ M}. It is easy to verify that if there
exist elements w∗

1 , ..., w∗
n ∈ L such that Sp(wiw

∗
j ) = δij (i, j = 1, 2, ..., n), then

M∗ = w∗
1O + ... + w∗

nO.
We now show that such elements exist. We shall look for w∗

j in the form
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w∗
j = xj

1w1 + ... + xj
nwn, where xj

1, ..., x
j
n are variables. For each j = 1, .., n this

yields a system of linear equations:

n∑
i=1

Sp(wiwk)xj
i = Sp(wkw∗

j ) (k = 1, .., n)

with respect to the variables xj
1, ..., x

j
n with matrix S. In view of lemma 8.1.7, by

Cramer’s rule such a system has a unique solution.
Since M ⊂ ∆, for any δ ∈ ∆ and any m ∈ M we have δm ∈ ∆ and, by

proposition 8.1.5, Sp(δm) ∈ O. So, ∆ ⊂ M∗. Since ∆ is an O-module and the
ring O is Noetherian, the ring ∆ is a finitely generated O-module as a submodule
of the finitely generated O-module M∗. The theorem is proved.

Theorem 8.1.8. Let O be a principal ideal domain and let L be a finite
separable extension of its quotient field k with degree equal to n. Then there exist
elements w1, ..., wn ∈ ∆ such that ∆ = w1O ⊕ ... ⊕ wnO, where ∆ is the integral
closure of the ring O in L.

Proof. By theorem 8.1.6 the ring ∆ is a finitely generated as O-module.
Therefore, by theorem 7.8.2, ∆ decomposes into a direct sum of cyclic O-modules.
Since ∆ is a torsion free O-module, all its summands are isomorphic to O. There-
fore there are elements w1, ..., wm ∈ ∆ such that ∆ = w1O ⊕ w2O ⊕ ... ⊕ wmO.
Clearly, the elements w1, ..., wn are linearly independent over k. By proposition
1.1.1, any element of L can be written as a linear combination of elements
w1, ..., wm with coefficients of k. Therefore, the elements w1, ..., wm form a basis
of the field L over k, and, hence, m = n. The theorem is proved.

8.2. DEDEKIND DOMAINS

Let k be a finite extension of the field Q of rational numbers. Consider the integral
closure O of the integers Z in the field k. The ring O consists of all algebraic
integers, which are in the field k. By proposition 8.1.2, the field k is the quotient
field of the ring O.

Let [k : Q] = n. Then Sp(1) = n �= 0 and, therefore, k is a separable extension
of the field Q. By theorem 8.1.8 the additive group of the ring O is a free Abelian
group of rank n, i.e., O � Zn. Since any subgroup of a free Abelian group of rank
n is free of rank m ≤ n, it follows that the ring O is Noetherian.

Lemma 8.2.1. An ideal P of a ring O is prime if and only if for any ideals
A,B ⊂ O the inclusion AB ⊂ P implies that either A ⊂ P or B ⊂ P.

Proof. Let P be a prime ideal. Suppose that AB ⊂ P but A �⊂ P and
B �⊂ P. Then there are elements a ∈ A, b ∈ B such that ab ∈ P but a, b �∈ P. A
contradiction.
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Conversely, assume that from the inclusion AB ⊂ P it follows that either
A ⊂ P or B ⊂ P. Suppose that an ideal P is not prime. Then there are elements
a, b �∈ P such that ab ∈ P. Considering the principal ideals (a) and (b) we obtain
that (a) �⊂ P, (b) �⊂ P, but (a)(b) ⊂ P.

Recall that an ideal M in a ring A is called maximal if there is no ideal I in
A, distinct from M and A, such that M ⊂ I ⊂ A.

Proposition 8.2.2. An ideal M in a commutative ring A is maximal if and
only if A/M is a field.

Proof. Let π : A → A/M be the natural projection. Then A/M is a field if
and only if any element of the form π(a), a �∈ M, is invertible.

Let M be a maximal ideal in a ring A. Consider an arbitrary nonzero element
π(x) ∈ A/M. Then x ∈ A and x �∈ M. Consider the ideal I = (x) + M �= M.
Since M is a maximal ideal, I = A. Therefore, there exists an element y ∈ A and
an element m ∈ M such that xy + m = 1. Then π(x)π(y) = 1 in A/M so that
π(x) is invertible in A/M, i.e., A/M is a field.

Conversely, let A/M be a field for some ideal M in A. Consider an ideal I
such that M ⊂ I ⊂ A. Suppose I �= M. Then there exists an element x ∈ I and
x �∈ M. Then π(x) �= 0 and, since A/M is a field, there exists a nonzero element
π(y) ∈ A/M such that π(x)π(y) = 1 with y ∈ A, y �∈ M. Therefore there is an
element m ∈ M such that xy = 1 + m. Since x ∈ I and m ∈ M ⊂ I, we have
1 ∈ I, i.e., I = A. This completes the proof of the proposition.

From this proposition it immediately follows that all elements of a local ring,
which do not belong to the unique maximal ideal are invertible.

Proposition 8.2.3. A maximal ideal M of a commutative ring O is prime.

Proof. This proposition immediately follows from proposition 8.2.2 and the
simple fact that any field is, obviously, a domain.

Let A ⊂ O be an ideal of the integral closure O of the integers Z in a field k
and let w1, ..., wn be a basis of the additive group O as a free Abelian group. If
α ∈ A and α �= 0, then the elements w1α, ..., wnα are linearly independent over
Z and are in A. Therefore the rank of the additive group A is equal to n and
the quotient ring O/A is finite. Since a finite commutative domain is a field, any
nonzero prime ideal in the ring O is maximal.

We shall show that the ring O is integrally closed. Let α be an element of the
field k which is integral over O. Set M = O[α]. Clearly, M is a finitely generated
Z-module and αM ⊂ M . Then, by definition, the element α is integral over Z
and α ∈ O. Therefore, the ring O is integrally closed.

Thus, we have shown that the ring O of all algebraic integers, which are in
a finite extension of the field of rational numbers, is a Noetherian commutative
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integrally closed domain in which any nonzero prime ideal is maximal. Such rings
were a subject of study in connection with the problem of the uniqueness of fac-
torization into prime elements. These rings play an important role in the theory
of rings; they are called Dedekind rings.

Definition. A Noetherian commutative integrally closed domain in which any
nonzero prime ideal is maximal is called a Dedekind domain.

Thus, we have already proved above the following theorem.

Theorem 8.2.4. The ring of all algebraic integers in a field of algebraic
numbers is a Dedekind domain.

In fact, Dedekind domains first appeared precisely as rings of integers of al-
gebraic number fields. For such rings R.Dedekind introduced the notion of an
ideal.1) It was shown that uniqueness of factorization into prime elements usually
does not hold in such rings but uniqueness of factorization into prime ideals does
hold. The main purpose of this section is to show that any nonzero ideal of a
Dedekind domain can be uniquely decomposed into a product of prime ideals.

Note that there are rings which are factorial but not Dedekind and vice versa.

Example 8.2.1.
Let k[x, y] be the ring of polynomials in two variables x and y over a field k.

By theorem 7.5.7, it is a factorial ring. On the other hand, it is clear that the
ideal (x), generated by the variable x, is prime but it is not maximal. Therefore
k[x, y] is not a Dedekind domain.

Example 8.2.2.
Now we give an example of a ring which is Dedekind but not factorial. For

this purpose we consider the integral closure of the ring Z in the quadratic field
Q(

√
−5) and show that it is the ring Z[

√
−5]. The minimal polynomial of any

element r + r1

√
−5 over Q has the form x2 + ax + b with a, b ∈ Q. The quadratic

field Q(
√
−5) is a Galois extension of Q of degree 2 with Galois group {1, σ},

where
σ(r + r1

√
−5) = r − r1

√
−5

for all r, r1 ∈ Q. Since the element ᾱ = r − r1

√
−5 is conjugate to the element

α = r + r1

√
−5, we have Sp(α) = α + ᾱ = 2r and N(α) = αᾱ = r2 + 5r2

1. Let
α = r + r1

√
−5 ∈ Q(

√
−5) be an algebraic integer. Then the minimal polynomial

of α has the form µα(x) = x2−Sp(α)x+N(α), where N(α), Sp(α) ∈ Z. Therefore
2r, r2 + 5r2

1 ∈ Z, whence we obtain r =
m

2
, r1 =

n

2
, where m,n ∈ Z. Hence,

m2 + 5n2 ≡ 0(mod 4). (8.2.1)

1) The word ”ideal” historically comes from ”ideal number”. That is, to preserve unique
factorization one has to introduce ideal numbers besides ”normal” algebraic numbers.
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Since we have either b2 ≡ 0(mod 4) or b2 ≡ 1(mod 4) for any b ∈ Z, equality
(8.2.1) is true in Z if and only if m ≡ n ≡ 0(mod 2), i.e., r, r1 ∈ Z. Thus, Z[

√
−5]

is the ring of all algebraic integers of the quadratic field Q(
√
−5) and by theorem

8.2.4 it is a Dedekind domain. On the other hand, in section 7.2 it was shown that
this ring is not factorial.

Definition. Let O be a domain with a quotient field k. A fractional ideal
of the ring O in the field k is any O-module A ⊂ k, for which there exists an
element c �= 0, c ∈ O such that cA ⊂ O. In particular, an ordinary ideal I ⊂ O is
a fractional ideal and we shall also call it an integral ideal.

Any finitely generated O-module M contained in the field k is a fractional
ideal in k. Indeed, let M be generated by elements x1, x2, ..., xn ∈ k. Suppose,

xi = ai/bi, where ai, bi ∈ O. If m =
n∏

i=1

bi, then xi may be rewritten in the form

xi = yi/m, where yi ∈ O. Therefore mM ⊆ O and m �= 0, m ∈ O. On the other
hand, if the ring O is Noetherian, then the module cA and hence A is finitely
generated. So, any fractional ideal in a Noetherian ring O is a finitely generated
O-module.

The intersection of any set of fractional ideals is also a fractional ideal. We
can also define the product of fractional ideals A, B as a module generated by
all products ab, where a ∈ A and b ∈ B. It is clear that a product of finitely
generated modules is a finitely generated module. Therefore in a Dedekind domain
the product of fractional ideals is also a fractional ideal. Since the multiplication of
ideals is associative and commutative and, since the product of nonzero fractional
ideals is not equal to zero, we can talk about a semigroup of nonzero fractional
ideals. The identity of this semigroup is the domain O itself. Thus, we have proved
the following statement.

Lemma 8.2.5. The set of all fractional ideals of a Dedekind domain forms a
semigroup with respect to ideal multiplication.

The main purpose of this section is to prove that the nonzero fractional ideals of
a Dedekind domain, in fact, form an Abelian group with respect to multiplication.

A fractional ideal A in the field k is called invertible if there exists a fractional
ideal A−1 such that AA−1 = O.

Theorem 8.2.6. The nonzero fractional ideals of a Dedekind domain O with
a quotient field k form an Abelian group with respect to multiplication.

Proof. We shall prove this theorem following E.Noether. Let A be a nonzero
ideal of the ring O. We shall show that there is a product of nonzero prime ideals
P1, ...,Pr contained in A. If this is not so, then, in view of the Noetherianness of
the ring O, there exists a nonzero ideal B, which is maximal in the set of ideals



DEDEKIND AND PRÜFER RINGS 197

not containing a product of prime ideals. By hypothesis, this ideal is not prime.
Therefore, there are elements b1, b2 ∈ B such that b1b2 ∈ B but b1 �∈ B and b2 �∈ B.
Let B1 = (B, b1) and B2 = (B, b2). Clearly, Bi �= B (i = 1, 2) and B1B2 ⊂ B.
Since the ideal B is maximal in the set described above, then the ideals B1 and
B2 contain some products of prime ideals. But then B also contains a product of
prime ideals. A contradiction.

Now, let’s show that any maximal ideal P ⊂ O is invertible. Let P−1 = {α ∈
k | αP ⊂ O}. It is clear that P−1 is a fractional ideal in k. We claim that
P−1 �= O. Indeed, let a ∈ P, a �= 0 and consider the least number r for which
there is a product P1...Pr ⊂ (a) ⊂ P. Since the ideal P is prime, one of the ideals,
for example P1, is contained in P, i.e., P1 ⊂ P. Because the ideal P1 is maximal,
we obtain that P = P1. Since r is minimal, we have P2...Pr �⊂ (a). Therefore
there is an element b ∈ P2...Pr, b �∈ (a) and bP ⊂ (a). But then ba−1P ⊂ O, i.e.,
ba−1 ∈ P−1. Since b �∈ (a), we have ba−1 �∈ O. Therefore, P−1 �= O.

Thus, there are the inclusions P ⊆ PP−1 ⊆ O. Since the ideal P is maximal,
we obtain that either PP−1 = P or PP−1 = O. Suppose, we have the first
case, that is, PP−1 = P. Let α ∈ P−1\O. Then αP ⊂ P. Since the ring O
is Noetherian and integrally closed, by proposition 8.1.1, α ∈ O. The obtained
contradiction shows that PP−1 = O.

The next step of the proof is to show that every nonzero ideal A ⊂ O has
a fractional inverse. Suppose that this is not the case. Then the set of proper
ideals that has not a fractional inverse is not empty. Therefore, by the Noetherian
property of O, this set contains a maximal element B. Thus, B is a noninvertible
ideal and this ideal cannot be maximal in O. Therefore there exists a maximal
ideal P �= O such that B ⊂ P ⊂ O. Then we have

B ⊂ BP−1 ⊂ BB−1 ⊂ O.

Moreover, B �= BP−1, since the ring O is integrally closed and O �= P−1. There-
fore, by the maximal property of B, there is a fractional ideal C ⊂ k, which is the
inverse of BP−1, i.e., BP−1C = O. Hence, the ideal C1 = P−1C is an inverse of B.
A contradiction.

It remains to prove that any nonzero fractional ideal A of the ring O is invert-
ible. There exists an element c ∈ O, c �= 0 such that cA ⊂ A. Since the ideal cA is
invertible, for some fractional ideal B we have cAB = O, i.e., the ideal cB is then
an inverse of A.

Taking into account lemma 8.2.5 the theorem is proved.

Definition. Let A and B be ideals of an integral domain O. We shall say that
A divides B and write A|B if there is an ideal C such that AC = B.

If A divides B, then certainly B ⊂ A. If O is a Dedekind domain the converse
is also true. In fact, the inclusion B ⊂ A is equivalent to an equality AC = B,
since we can put C = A−1B ⊂ A−1A = O.
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Lemma 8.2.1 states that for a prime ideal P ⊂ O from P|AB it follows that
either P|A or P|B.

Now we can prove the uniqueness of factorization of ideals into prime ideals in
a Dedekind domain.

Theorem 8.2.7. Any nonzero integral ideal A of a Dedekind domain O with
a quotient field k can be uniquely decomposed into a product of prime ideals.

Proof. Suppose that there is a nonzero integral ideal, which cannot be de-
composed into a product of prime ideals. Consider the set of all integral ideals
with such a property. Then, by the Noetherian property of O, this set contains a
maximal element. Let the ideal B be a maximal element in this set. Clearly, it is
not prime. Therefore, there exists a prime ideal P �= O such that B ⊂ P ⊂ O. But
then B ⊂ BP−1 ⊂ O and, because the ring O is integrally closed and Noetherian,
the inclusion B ⊂ BP−1 is strict. By the maximal property of B, BP−1 = P2...Pr,
and, hence, B = PP2...Pr. A contradiction.

The uniqueness of factorization of an ideal into a product of prime ideals is
established by induction on the least number of prime ideals in its factorization.
Let P1...Pr = Q1...Qs be two factorizations of an ideal into products of prime ones.
Then P1|Q1...Qs and, hence, P1 divides one of the ideals Q1, ...,Qs and, in view
of the maximal property, it coincides with one of them. Multiplying both sides of
the equality by P−1

1 , by the induction hypothesis, we obtain that r = s and the
prime factors on the right side and on the left side coincide up to a permutation.
The theorem is proved.

Let O be a Dedekind domain with a quotient field k. If I is a nonzero fractional
ideal of the ring O, then there exists a nonzero element c ∈ O such that cI ⊂ O.
Let (c) = P1...Pr and cI = Q1...Qs be decompositions of these ideals into products
of prime ideals. Then, obviously, I = Q1...QsP−1

1 ...P−1
r . Grouping the same

prime ideals together we obtain I =
∏
P
PrP , where the rP are integers, and only a

finite number of them are not equal to zero. The number rP is called the exponent
of the ideal I with respect to P and denoted by ordPI.

Proposition 8.2.8. Let O be a Dedekind domain and let I and J be two
nonzero integral ideals in O with prime ideal factorizations I =

∏
P
PrP and J =∏

P
PsP , where rP , sP ≥ 0 for all prime ideals P ⊂ O. Then

(1) I ⊃ J if and only if ordPI ≤ ordPJ for all prime ideals P ⊂ O.
(2) I +J = (I,J ) and ordP(I +J ) = min{ordPI, ordPJ }. In particular, I

and J are comaximal, i.e., I +J = O if and only if they have no common prime
ideal factors.

(3) ordP(I ∩ J ) = max{ordPI, ordPJ } .
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Proof. Statement (1) follows from the definition of prime ideals and the fact
proved above that I ⊂ J if and only if J divides I.

Since I+J is the smallest ideal containing both I and J , statement (2) follows
from statement (1).

Statement (3) is obvious.

Consider fractional ideals I =
∏
P
PrP and J =

∏
P
PsP . We have IJ =∏

P
PrP+sP . Let the ideals I and J have the property that the nonzero expo-

nents of ideals I and J belong to distinct prime ideals. Then from proposition
8.2.8 it immediately follows that IJ = I ∩ J .

In particular, if I ⊂ O is an integral ideal of the ring O and I = Pn1
1 ...Pns

s ,
where the prime ideals P1, ...,Ps are all distinct, then Pn1

1 ∩ Pn2
2 ∩ ... ∩ Pns

s = I.
Taking into account that the Pni are pairwise comaximal ideals and using theorem
7.6.2 we obtain a Chinese remainder theorem for Dedekind domains:

Theorem 8.2.9. Let O be a Dedekind domain, let P1,P2, ...,Ps be distinct
prime ideals in O and let ni ≥ 0 be integers, i = 1, 2, ..., s. Then

O/Pn1
1 ...Pns

s � O/Pn1
1 × ... ×O/Pns

s

Equivalently, for any sets of s elements a1, a2, ..., as ∈ O there exists an element
a ∈ O such that a ≡ ai(modPni

i ) for i = 1, 2, ..., s.

8.3. HEREDITARY DOMAINS

Recall that a ring A is called right hereditary if every right ideal of it is pro-
jective. In this section we shall study the connection of Dedekind domains with
commutative hereditary rings.

First we shall prove the following criterion of the projective property of a
module over an arbitrary ring.

Proposition 8.3.1. An A-module P is projective if and only if there is a
system of elements {pα} of P and a system of homomorphisms {ϕα}, ϕα : P → A
such that any element p ∈ P may be written in the form:

p =
∑
α

pα(ϕα(p)), (8.3.1)

where only a finite number of elements ϕα(p) ∈ A are not equal to zero.

Proof. Let π : F → P be an epimorphism of a free module F with free basis
{eα} onto the module P and let pα = π(eα). By proposition 5.1.6, P is projective
if and only if there is a homomorphism i : P → F such that πi = 1P . Any element
i(p) may be written in the form i(p) =

∑
α

(ϕαp)eα and the maps p → ϕα(p)
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define a system of homomorphisms ϕα : P → A with the property that for any
element p ∈ P only a finite number of elements ϕα(p) are not equal to zero. Since
πi = 1P , we have p =

∑
α

pα(ϕαp). So, if the module P is projective, then there is

a representation (8.3.1).
Conversely, assume there exist a system of elements, homomorphisms and a

representation (8.3.1). Then setting π(
∑
α

eαaα) =
∑
α

pαaα we obtain a homomor-

phism π : F → P . Using the system of homomorphisms ϕα construct a homomor-
phism i : P → F defined by i(p) =

∑
α

eα(ϕαp). Clearly, from the representation

(8.3.1) it follows that 1P = πi. The proposition is proved.

In the following two propositions we assume that O is an integral domain with
quotient field k.

Proposition 8.3.2. A nonzero ideal I of an integral domain O is projective
if and only if it is invertible.

Proof. Let I be a nonzero invertible ideal. Then there exists a fractional
ideal J of the ring O such that IJ = O. This means that there are elements
α1, ..., αn ∈ I and q1, ..., qn ∈ k such that

∑
i

αiqi = 1 and qiI ⊂ O for i =

1, ..., n. Set ϕiα = qiα for i = 1, 2, .., n, where α ∈ I. Then there is a system
of homomorphisms ϕi : I → O for which

∑
i

αi(ϕiα) =
∑
i

αi(qiα) = α. By the

previous proposition, the ideal I is projective.
Conversely, let a nonzero ideal I be projective and let {pi}, {ϕi} be systems

of elements and homomorphisms as specified in proposition 8.3.1. Let α ∈ I
and α �= 0. Set qi = ϕi(α)/α. By the properties of the homomorphisms ϕi

there are only a finite number of elements qi such that qi �= 0. Let these be the
elements q1, ..., qn. For any β ∈ I we have ϕi(αβ) = ϕi(α)β = ϕi(β)α. Therefore
ϕi(β) = qiβ. So qiI ⊂ O. Since α =

∑
i

(ϕiα)pi =
∑
i

(qiα)pi =
∑
i

(qipi)α, it follows

that
∑
i

qipi = 1 and the ideal I is invertible. The proposition is proved.

Proposition 8.3.3. Any invertible ideal I in an integral domain O has a
finite number of generators.

Proof. Let 1 =
∑
i

qiαi, where αi ∈ I, qi ∈ k and qiI ∈ O for i = 1, 2, ..., n.

Then for any element α ∈ I we have the equality α =
∑
i

(qiα)αi. Since qiα ∈ O,

{α1, ..., αn} is the system of generators of the ideal I and I =
∑
i

αiO.

Theorem 8.3.4. The following conditions are equivalent for an integral do-
main O:

(a) O is a Dedekind domain;
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(b) O is a hereditary ring.

Proof.
The implication (a) ⇒ (b) follows from proposition 8.3.2.
(b) ⇒ (a).
1. From propositions 8.3.2 and 8.3.3 it follows that the ring O is Noetherian.
2. Let J be a fractional ideal of the ring O. There exists an element α ∈ O

such that αJ is an integral ideal in O. By proposition 8.3.2, the ideal αJ ⊂ O
is invertible and, by proposition 8.3.3, it is finitely generated as an O-module,
i.e., αJ =

∑
i∈I

αiO. Then {αi/α | i ∈ I } will be a system of generators of J
as an O-module. Thus, any fractional ideal of the ring O has a finite number of
generators. We shall show that the fractional ideal J is invertible. Since the ideal
αJ ⊂ O is invertible, there exists a fractional ideal A such that αJA = O, and
hence the ideal J is invertible as well. Thus, all nonzero fractional ideals of the
ring O form a group with respect to multiplication.

We shall show that the ring O is integrally closed. Let αI ⊂ I for some
fractional ideal of the ring O and α ∈ k. Multiplying both sides of this inclusion
by I−1 we obtain αO ⊂ O, i.e., α ∈ O. By proposition 8.1.1, this means that the
ring O is integrally closed.

3. Let P be a prime ideal in the ring O and suppose it is not maximal, i.e., P
is strongly contained in some maximal ideal M. Then

P ⊂ PM−1 ⊂ MM−1 = O.

Since (PM−1)M ⊂ P and P is a prime ideal, M �⊂ P, it follows that PM−1 ⊂ P.
Therefore P ⊂ PM−1 ⊂ P, and thus PM−1 = P. Multiplying this equality by
MP−1 we obtain that M = O. Therefore any prime ideal is maximal.

The theorem is proved.

8.4. DISCRETE VALUATION RINGS

In this section we discuss an important class of rings which are called discrete
valuation rings.

Definition. Let k be a field. A discrete valuation on k is a function ν :
k∗ → Z satisfying

(i) ν(xy) = ν(x) + ν(y) for all x, y ∈ k∗;
(ii) ν is surjective;
(iii) ν(x + y) ≥ min{ν(x), ν(y)} for all x, y ∈ k∗ with x + y �= 0.

The set R = {x ∈ k∗ | ν(x) ≥ 0} ∪ {0} is a subring of k which is called the
valuation ring of ν. Consider the set M = {x ∈ k∗ | ν(x) > 0}. It is easy to
verify, that M is a maximal ideal in R. An integral domain O is called a discrete
valuation ring if there is a valuation ν on its quotient field such that O is the
valuation ring of ν.
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Examples 8.4.1.
1. Let k be a field. The formal series ring k[[x]] is a discrete valuation ring.2)
2. Let p ∈ Z be a prime integer, then Z(p) is a discrete valuation ring.3)

Proposition 8.4.1. Any discrete valuation ring is a Euclidean domain.

Proof. Let O be a discrete valuation ring with valuation ν and a quotient field
k. Note that ν(1) = ν(1) + ν(1) implies ν(1) = 0. Therefore ν(a−1) = −ν(a) for
any nonzero a ∈ k. Define N(0) = 0 and N(x) = ν(x) for any nonzero element
x ∈ O. We show that N is a Euclidean function. Let a, b ∈ O\{0}. Then

ED1. N(0) = 0
ED2. Suppose ν(b) < ν(a), then b = 0 · a + b and for r = b we have N(r) =

ν(b) < ν(a) = N(a). If ν(b) ≥ ν(a), we set g = a−1b. Since ν(g) = ν(a−1) + ν(b)
= ν(b) − ν(a) ≥ 0, we have g ∈ O. Therefore b = ga and r = 0.

From propositions 7.3.1, 7.2.1, 8.1.4 and 8.4.1 we immediately obtain the fol-
lowing statement:

Corollary 8.4.2. If O is a discrete valuation ring, then
1. O is a PID.
2. O is a hereditary ring.
3. O is a factorial ring.
4. O is integrally closed.

Proposition 8.4.3. Let O be a discrete valuation ring with valuation ν and
quotient field k. Let t be any element of O with ν(t) = 1. Then

1. A nonzero element u ∈ O is a unit if and only if ν(u) = 0.
2. Every nonzero element r ∈ O can be written in the form r = utn for some

unit u ∈ O∗ and some n ≥ 0. Every nonzero element x ∈ k∗ can be written in the
form x = utn for some unit u ∈ O∗ and some n ∈ Z.

3. Every nonzero ideal of O is principal and of the form (tn) = Mn for some
n ≥ 0, where M = {x ∈ k∗ | ν(x) > 0}.

4.
∞
∩

n=0
Mn = 0, where M = {x ∈ k∗ | ν(x) > 0}.

Proof.
1. Let u ∈ O∗, then there is an element v ∈ O such that uv = 1. Therefore

0 = ν(uv) = ν(u) + ν(v). Since ν(u), ν(v) ≥ 0, we have ν(u) = ν(v) = 0.
Conversely, suppose u �= 0 and ν(u) = 0, then for u−1 ∈ k∗ and we have

ν(u−1) = −ν(u) = 0, hence u−1 ∈ O, so u is a unit in O.
2. Suppose r ∈ O and ν(r) = n, then ν(rt−n) = ν(r) + ν(t−n) = 0. Hence

rt−n = u is a unit and r = utn. If x ∈ k∗, then x = ab−1, with a, b ∈ O. Let

2) Here ν(
∞∑

i=1
aix

i) = largest n such that a0 = a1 = ... = an−1 = 0.

3) With ν(pia) = i if and only if (p, a) = 1.
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a = utn and b = vtm, where u, v ∈ O∗. Then x = (uv−1)tn−m = εts, where ε ∈ O∗

and s ∈ Z.
3. Let I be an ideal in O, and let x ∈ I be an element with ν(x) minimal. If

ν(x) = n, then x = utn, where u is a unit. Hence (tn) ⊂ I. Let a be an arbitrary
element in I, then ν(a) ≥ n. So ν(at−n) ≥ 0, whence ν(at−n) ∈ O and a ∈ (tn).
Therefore I = (tn) = tnO. In particular, M = tO. And therefore I = Mn. This
means, that M is the unique prime ideal in O.

4. Let x ∈ O, x �= 0. Let n = ν(x). Then x �∈ Mn+1 because ν(y) ≥ n + 1 for
all y ∈ Mn+1 by 3. Thus

∞
∩

n=0
Mn = 0.

From this proposition we can immediately obtain the main properties of dis-
crete valuation rings which we formulate as the following statement:

Corollary 8.4.4. Let O be a discrete valuation ring. Then
1. O is a local ring with a unique maximal ideal M = {x ∈ O | ν(x) > 0} and

any nonzero ideal of O is of the form Mn for some integer n ≥ 0.
2. The only nonzero prime ideal of O is M .

The next two statements give properties of a ring which may be used as other
equivalent definitions of a discrete valuation ring without using valuations.

Proposition 8.4.5. The following properties of a ring O are equivalent:
1. O is a discrete valuation ring.
2. O is a PID with a unique prime ideal M �= 0.
3. O is a PID with a unique maximal ideal M �= 0.
4. O is a Noetherian integral domain that is also a local ring whose unique

maximal ideal is nonzero and principal.
5. O is a Noetherian integrally closed integral domain that is also a local ring

with unique nonzero prime ideal.

Proof.
That statement 1 implies the others was proved above.
Since any maximal ideal in commutative ring is prime we have statement 2 ⇒ 3.
3 ⇒ 1. Let O be a PID with a unique maximal ideal M �= 0. Let t1, t2 ∈ O

be distinct irreducible elements , then (t1) ⊂ M and (t2) ⊂ M are distinct prime
ideals. Then (t1) + (t2) ∈ M and (t1) + (t2) = O. A contradiction. Therefore
there is a unique irreducible element of O. Since O is a factorial ring, any element
x ∈ O can be written uniquely in the form x = utn, where u ∈ O∗ and n ≥ 0.
Then it is easy to verify, that ν(x) = n is a valuation on O.

4 ⇒ 2. Suppose M = (t) is a unique maximal ideal in O. Note that Mn �=
Mn+1 for all n ≥ 0, since otherwise, by Nakayama’s lemma, we obtain Mn = 0
and so tn = 0. Since O is a domain, t = 0. A contradiction. We now prove that
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∞
∩

n=0
Mn = 0. Let x ∈

∞
∩

n=0
Mn, x �= 0. Then for suitable ai ∈ O

x = a0 = a1t = a2t
2 = ... = antn = ...

This gives a chain of ideals (a1) ⊂ (a2) ⊂ ... which must stabilize because O is
Noetherian. So (an) = (an+1) for some n, and an+1 = anb for some b ∈ O. Also
antn = an+1t

n+1 so an = an+1t using that O is a domain, and an+1 = anb =
an+1tb. So using again that O is a domain, tb = 1. This would make t a unit
which is not the case.

Let I be an arbitrary ideal in O. Since I ⊆ M and
∞
∩

n=0
Mn = 0, there exists

n ≥ 1 such that I ⊆ Mn but I �⊆ Mn+1. Let x ∈ I. Then x ∈ Mn but x �∈ Mn+1.
Therefore x = utn, where u �∈ M and so u is a unit in the local ring O. So any
element a ∈ I is of the form tnu, i.e., the ideal I = (tn) and is principal.

5 ⇒ 4. Let M be a unique prime ideal in a local domain O with quotient field
k. Since any ideal is contained in some maximal ideal of O and any maximal ideal
in a commutative domain is prime, M is also the unique maximal ideal in O.

Let I be an arbitrary nonzero ideal in O. Then I ⊆ M . We shall show that
there exists an integer n > 0 such that Mn ⊂ I. Suppose the contrary. Then by
the Noetherian property of O there is a nonzero ideal J in O which is maximal
in the set of all ideals not containing Mn for any n. Obviously, J �= M , i.e., it is
not prime. Therefore there are elements x, y ∈ J with xy ∈ J , but x �∈ J and
y �∈ J . Let J1 = (J , x) and J1 = (J , y). It is clear, that Ji �= J for i = 1, 2, and
J1J2 ⊆ J . Since J is a maximal element, then J1 and J2 contain some power of
M . But then J is also contains some power of M . A contradiction. Thus, any
nonzero ideal of O contains some power of M .

Suppose Mn = Mn+1. Since O is a Noetherian ring, by Nakayama’s lemma, it
follows that Mn = 0. Since O is a domain, we have that M = 0. A contradiction.
Therefore Mn+1 �= Mn for any n and so there is always an element x ∈ Mn with
x �∈ Mn+1.

Let M−1 = {x ∈ k : xM ⊂ O }. It is clear that M−1 is a fractional ideal in
k. Let a be an arbitrary element of M . Consider the principal ideal (a) ⊆ M . By
the proof above there is an integer n > 0 such that Mn ⊆ (a). Let n be the least
such number, i.e., Mn−1 �⊂ (a). Then there is an element b ∈ Mn−1 such that
b �∈ (a) and bM ⊆ (a). But then ba−1M ⊆ O, i.e., ba−1 ∈ M−1. Since b �∈ (a), we
have ba−1 �∈ O. Thus, M−1 �= O.

Thus, we have inclusions M ⊆ MM−1 ⊆ O. Since the ideal M is maximal,
we obtain that either MM−1 = M or MM−1 = O. Suppose, we have the first
case, that is, MM−1 = M . Let y ∈ M−1\O. Then yM ⊂ M . Since the ring
O is Noetherian and integrally closed, by proposition 8.1.1, y ∈ O. The obtained
contradiction shows that MM−1 = O, i.e., M would be an invertible ideal.

Since M2 �= M there is an element a ∈ M and a �∈ M2. Then we have
aM−1 ⊆ O and aO �⊂ M2. Since MM−1 = O, we have that aM−1 �⊆ M . So
aM−1 is an ideal in O and aM−1 is not contained in any maximal ideal. Therefore
aM−1 = O, i.e., M = (a) is principal.
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Finally it is trivial that 2 ⇒ 3. This finishes the proof of the proposition.

Corollary 8.4.6. Let P be a nonzero prime ideal of a Dedekind domain O.
Then the localization OP is a discrete valuation ring.

Proof. We use property 5 of the previous proposition. Let O be a Dedekind
ring with a quotient field k.

Since any ideal of the ring OP is of the form IOP , where I is some ideal of O,
a finite set of generators of I over O is also a set of generators of IOP over OP .
Therefore, OP is a Noetherian ring.

Let x ∈ k be a integral element over OP , i.e., xn +b−1a1x
n−1 + ...+b−1an = 0,

where b, ai ∈ O and b �∈ P. Then the element bx is integral over O. Since O is
integrally closed, bx ∈ O and x ∈ OP . So OP is integrally closed.

By proposition 7.4.4 OP is a local ring with a unique prime ideal. Thus, the
ring OP satisfies all conditions of property 5 of proposition 8.4.5 and so it is a
discrete valuation ring.

Dedekind domains are generalization of PIDs, for which each ideal is principal,
i.e., can be generated by only one element. The following proposition proves the
interesting fact that every ideal of Dedekind domain can be generated by only two
elements.

Proposition 8.4.7. Let I be a nonzero ideal of a Dedekind domain O. Then
1. There exists an ideal J of O relatively prime to I such that the product

IJ = (a) is a principal ideal.
2. The quotient ring O/I is a PID.
3. Every ideal of O can be generated by two elements.

Proof.
1. Suppose I = Pn1

1 ...Pns
s is a factorization of I into prime ideals of O. Let ai ∈

Pni
i \Pni+1

i for i = 1, 2, ..., s. Then by the previous theorem there exists an element
a ∈ O such that a ≡ ai(modPni+1

i ) for all i. Hence a ∈ Pni
i \Pni+1

i for all i. Then,
by proposition 8.2.8, ordPi

(a) = ni for i = 1, 2, ..., s. Therefore the factorization
of (a) into prime ideals of O has the form (a) = Pn1

1 ...Pns
s Pns+1

s+1 ...Pnk

k = IJ .
2. By theorem 8.2.9 it suffices to prove that every ideal O/Pn is principal for

any prime ideal P. But since O/Pn � OP/PnOP and by corollary 8.4.6 OP is a
PID, O/Pn is also a PID.

3. For any nonzero ideal J and any ideal I of O containing J from property
2 it follows that I = J + bO for some b ∈ O. Then b ∈ I as well. Let a ∈ I, then
taking J = aO we obtain I = aO + bO as required.

8.5. FINITELY GENERATED MODULES OVER DEDEKIND DOMAINS

We shall begin by studying properties of injective modules over integral domains.
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In section 4.3 we introduced the notion of divisible modules and showed that
any injective module is divisible. The converse statement is not true in general,
that is, a divisible module over an arbitrary ring need not be injective, but this is
true for a principal ideal domain.

Proposition 8.5.1. If A is a principal ideal domain, then a right A-module
M is injective if and only if it is divisible.

Proof. Let M be a divisible module. Since any element of A is regular, by
Baer’s Criterion, it is sufficient to prove that for any nonzero right ideal I in
A and homomorphism f : I → M there exists an element m′ ∈ M such that
f(a) = m′a, a ∈ I. Since A is a principal ideal domain, any right ideal in A
has the form I = aA for some nonzero element a ∈ A. Let f : I → M be a
homomorphism and f(a) = m. Since M is a divisible module, there exists an
element m′ ∈ M such that m = m′a. An arbitrary element of the ideal I has
the form ab, where b ∈ A. Therefore f(ab) = f(a)b = mb = m′ab = m′(ab), as
required.

Proposition 8.5.2. Let A be an integral domain and let M be a torsion-free
right A-module. Then M is injective if and only if it is divisible.

Proof. From proposition 5.2.11 it follows that it sufficient to prove the inverse
part of the statement. Let M be a divisible A-module and let f be a homo-
morphism from an ideal I ⊆ A to the module M . Suppose that for a fixed
element a ∈ I we have f(a) = m. Since M is a divisible module, there ex-
ists an element m′ ∈ M such that m = m′a. For any element b ∈ I we have
f(b)a = f(ba) = f(ab) = f(a)b = mb = m′ab = m′ba = (m′b)a. Since M is
torsion-free, f(b) = m′b for all b ∈ I, and from Baer’s Criterion it follows that M
is injective.

Proposition 8.5.3. Any finitely generated torsion-free module M over an
integral domain O can be embedded into a finitely generated free module.

Proof. Let O be an integral domain with quotient field k and let M be a finitely
generated torsion-free right A-module. Let M̃ = M ⊗O k. Clearly, M̃ is a finite
dimensional vector space over the field k. The natural homomorphism from M to
M ⊗O k is injective. So we can consider M as O-submodule of M̃ . We denote
by e1, ..., en a basis of M̃ over k. Let m1, ...,mt be a system of generators of the
module M . Then mi =

∑
j

αijej , where αij ∈ k, for i = 1, ..., t and j = 1, ..., n. Let

αij = aij/bij , where aij , bij ∈ O. Let s =
∏
i,j

bij , and set yj = s−1ej for j = 1, ..., n

and βij = αijs ∈ O. Then mi =
∑
j

βijyj , i.e., M is contained in the O-module

N = Oy1 + ... + Oyn. Since the system of elements e1, ..., en is independent over
k, it is easy to see that the system of elements f1, ..., fn is independent over O,
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i.e., is a free basis of the module N . Thus, M can be embedded into the finitely
generated free module N .

From theorems 8.5.3 and 5.5.1 we obtain the following corollary.

Corollary 8.5.4. A finitely generated torsion-free module M over a Dedekind
ring O decomposes into a direct sum of ideals of the ring O, and therefore it is a
projective module.

Definition. A module is called uniserial if its submodules form a chain. A
commutative ring is called uniserial if the set of its ideals is linearly ordered, i.e.,
it is a chain.

Let O be a Dedekind ring with quotient field k and let M be a finitely generated
O-module. If t(M) is the torsion submodule of M , then M/t(M) is a finitely
generated torsion-free module and by corollary 8.5.4 it is projective. Therefore
the exact sequence

0 → t(M) → M → M/t(M) → 0

splits, i.e., M � t(M)⊕M/t(M). Since the structure of finitely generated torsion-
free modules is given by corollary 8.5.4 it remains to study finitely generated
torsion modules.

Let M be a torsion finitely generated module over a Dedekind domain O and
let I = AnnM = {a ∈ O | ma = 0 for all m ∈ M}. Let I = Pn1

1 ...Pns
s be

the prime ideal factorization of I, where P1, ...,Ps are distinct prime ideals. Then
by the Chinese remainder theorem for Dedekind rings (theorem 8.2.9) we have

O/I � O/Pn1
1 × ... ×O/Pns

s

Since M is an O/I-module, it decomposes into a direct sum of modules M =
M1 ⊕ ...⊕Mn, where Mi = M/MPni

i is a finitely generated Ōi = O/Pni
i -module.

Therefore to describe finitely generated torsion O-modules it is sufficient to de-
scribe modules over rings of the form O/Pn.

We have O/Pn � OP/PnOP , where OP is the localization of O at the prime
ideal P. Since O is a Dedekind ring, by corollary 8.4.5 each OP is a PID. So
we can apply the fundamental theorem for finitely generated modules over a PID
(theorem 7.8.3) which say that any f.g. torsion module M/MPn is isomorphic as
an OP -module to a finite direct sum of modules of the form OP/PmOP , where
m ≤ n. Therefore each module M/MPn is isomorphic as an O-module to a finite
direct sum of modules of the form O/PmO, where m ≤ n.

Finally, using the fact that O/Pn is an Artinian uniserial module of finite
length, we obtain the following main theorem of this section:

Theorem 8.5.5. Any finitely generated module M over a Dedekind domain
O is isomorphic to a direct sum of a finite number of ideals of the ring O and
a finite direct sum of modules of the form O/Pn, which are Artinian uniserial
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modules of finite length.

8.6. PRÜFER RINGS

Because of the equivalence of (a) and (b) of theorem 8.3.4, the characterization
of Dedekind ring as a hereditary domain is often taken as the definition. A natural
generalization of this definition of a Dedekind ring is the notion of a Prüfer ring.

Definition. A semihereditary 4) domain is called a Prüfer ring.

Theorem 8.6.1. A domain A is a Prüfer ring if and only if every finitely
generated torsion-free module is projective.

Proof. Suppose A is a Prüfer ring and M is a finitely generated torsion-free
module. Then by proposition 8.5.3 it can be imbedded in a finitely generated free
module. Since A is semihereditary, by corollary 5.5.10, M is projective.

Conversely, let every finitely generated torsion-free module is projective. Since
for a domain an ideal is torsion-free, we have that every finitely generated ideal is
projective, i.e., A is a semihereditary domain, that is A is a Prüfer ring.

Theorem 8.6.2. If A is a Prüfer ring, an A-module M is flat if and only if
it is torsion free.

Proof. Let M be a flat A-module. Consider an exact sequence

0 −→ K −→ F −→ M −→ 0

where F is a free module. Since F is flat as well, by proposition 5.4.10, K ∩FI =
KI for any f.g. ideal I ⊂ A.

Let t(M) be the torsion submodule of M and m ∈ t(M). Then there exists
x ∈ A such that mx = 0. Consider the principal ideal I = (x). Then K∩Fx = Kx.
Since ϕ : M → F/K is an A-homomorphism, then there exists an f ∈ F such that
ϕ(m) = f + K. So 0 = ϕ(mx) = ϕ(m)x = fx + K, i.e., fx ∈ K ∩ Fx = Kx.
Therefore there exists a k ∈ K such that fx = kx, i.e., (f − k)x = 0. Since F is
torsion free, we have f = k ∈ K, i.e., m = 0 and t(M) = 0. Thus, M is torsion
free.

Conversely, let M be torsion free and let P ⊂ M be a finitely generated
submodule in M . Then P is torsion free as well and, by theorem 8.6.1, P is
projective. This means that P is flat as well. So that any finitely generated
submodule of M is flat. By corollary 5.4.7, it follows that M is flat.

4) See section 5.5.
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8.7. NOTES AND REFERENCES

The development of the general theory of ideals in a commutative ring, from the
historical point of view, has two sources: the theory of integral algebraic numbers
and the theory of ideals in a polynomial ring. The main problem of the theory of
integral algebraic numbers is the uniqueness of the factorization into prime factors.

Basically, the papers of R.Dedekind, starting in 1871, were the basis of the
theory of algebraic numbers. R.Dedekind created and fully completed a theory
of modules and ideals for rings of integral algebraic numbers. These results and
the essence of his methods were published in the paper: R.Dedekind, Über die
Theorie der ganzen algebraischen Zahlen, vol. III, p.1-222 (= Supplement XI von
Dirichlets Vorlesungen u̧ber Zahlentheorie, 4, Aufl. (1894), p.434-657), which has
become recognized as his masterpiece. In this paper the notion of the ring of
all integral elements of a number field was put in the central place of his theory.
R.Dedekind proved the existence of a basis of this ring and introduced the notion
of the discriminant of a field. The central result of this paper was the theorem
on existence and uniqueness of the factorization of ideals into prime ones. In two
subsequent publications R.Dedekind gave two different proofs of his theorem. In
his third proof there appeared the notion of fractional ideals and it was proved
that they form a group.

All these results, up to terminology, were known by L.Kronecker in 1860 as
particular cases of his general theory.

From the viewpoint of commutative algebra the theory of Dedekind domains
was practically completed in 1895, except for the study of structure of finitely gen-
erated modules over these rings. The beginning of the study such modules over
the ring of integral numbers is also due to R.Dedekind. In the papers Rechteckige
Systeme und Moduln in algebraischen Zahlköpern // Math. Ann., LXXI (1912),
p. 328-354; and LXXII (1912), p.297-345, E.Steinitz investigated the structure
of modules over a number field. Except for these papers the first important con-
tributions in the field of general commutative rings are two large papers of Emmy
Noether on the theory of ideals: Idealtheorie in Ringbereichen // Math. Ann.,
LXXXIII (1921), p.24-66 and Abstracter Aufbau der Idealtheorie in algebraischen
Zahl- und Funktionenkörpern // Math. Ann., XCVI (1927), 26-61. In the second
paper there was given a full axiomatic description of Dedekind domains. At this
time the study of the factorization of ideals was completed and the beginning of
modern commutative algebra was laid down.

In this chapter we followed the classical Dedekind theory of ideals in the modern
form as proposed by Emmy Noether.

The transition from Dedekind domains to hereditary domains first occurred in
the famous book ”Homological algebra” of H.Cartan, S.Eilenberg.

Prüfer domains (without this name) were studied by H.Prüfer in 1932 and
W.Krull in 1936. The name Prüfer ring was introduced by H.Cartan and
S.Eilenberg in their book ”Homological algebra”.



9. Goldie rings

9.1. THE ORE CONDITION. CLASSICAL RINGS OF FRACTIONS

In chapter 7 we have shown that any commutative domain O can be embedded in
a field k in such a way that every element of k has the form αβ−1, where α ∈ O
and β ∈ O∗. The field k is called the quotient field of the commutative domain O.

Unfortunately not every noncommutative ring can be embedded in a division
ring in a similar way. But for some rings which have some particular properties
such a construction can be realized.

Recall, that an element y of a ring A is called regular if ay �= 0 and ya �= 0
for any nonzero element a ∈ A.

Definition. Let A be a subring of a ring Q. The ring Q is called a classical
right ring of fractions (or classical right ring of quotients) of the ring A if
and only if the following conditions are satisfied:

a) all regular elements of the ring A are invertible in the ring Q;
b) each element of the ring Q has the form ab−1, where a, b ∈ A and b is a

regular element in A.
Analogously we can define a classical left ring of fractions.

Assume Q is a classical right ring of fractions of a ring A. Let a, r ∈ Q and
r be a regular element in A. By condition b) we can write r−1a = by−1, where
b, y ∈ A and y is a regular element of A. Multiplying this equality on the left side
by r and on the right side by y we obtain a necessary condition for the existences
of a classical right ring of fractions in the following form:

The (right) Ore condition: Let A be a ring with nonempty set S of all
regular elements in A. For any element a ∈ A and any regular element r ∈ S
there exists a regular element y ∈ S and an element b ∈ A such that ay = rb.

Analogously we can define the left Ore condition.

Definition. A ring A satisfying the right (resp. left) Ore condition is called
a right (resp. left) Ore ring. A ring which is both a right and left Ore ring is
called an Ore ring. If, in addition, the ring is a domain, then it is called an Ore
domain.

Example 9.1.1.
1. Any commutative ring with regular elements is an Ore ring.
2. Any commutative integral domain is an Ore domain.

210
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Note that from the right Ore condition it follows that aS ∩ bA �= 0 for any
a ∈ A and b ∈ S, where S is a set of all regular elements of the ring A. If A is
a domain, then the right Ore condition may be expressed in the equivalent form:
aA ∩ bA �= 0 for any nonzero a, b ∈ A.

Example 9.1.2.
Consider the associative ring A = k〈X,Y 〉 over a field k (or any other suitable

ring) in two noncommuting indeterminates X, Y . This is the free ring over k in
two indeterminates. (The elements of A are polynomials in the noncommuting
variables X,Y with coefficients from k.) Then A is not an Ore ring.

Theorem 9.1.1. A ring A has a classical right ring of fractions if and only if
it satisfies the right Ore condition, i.e., A is a right Ore ring.

Proof. Let a ring A satisfy the right Ore condition and S be a set of all regular
elements of A.

We introduce a relation ∼ on the direct product A×S as follows: (a, b) ∼ (c, d)
if and only if there exist x, y ∈ A, such that bx = dy ∈ S and ax = cy ∈ A.

First we shall prove that ∼ is an equivalence relation on A × S. Reflexivity
and symmetry are obvious from the definition of ∼. So we need only to prove
transitivity. Assume that (a, b) ∼ (c, d) and (c, d) ∼ (f, g). Then by definition
there exist x, y, x1, y1 ∈ A such that bx = dy ∈ S, ax = cy ∈ A and dx1 = gy1 ∈ S,
cx1 = fy1 ∈ A. From the right Ore condition it follows that bxS ∩ dx1A �= 0,
hence there exists s ∈ S and a ∈ A such that bxs = dx1a ∈ S. Since bx = dy,
we have dys = bxs = dx1a, or d(ys − x1a) = 0. Since d is a regular element,
ys = x1a. Then from the obtained equalities we have a(xs) = (ax)s = cys =
cx1a = fy1a = f(y1a) ∈ A and b(xs) = (bx)s = dys = dx1a = gy1a = g(y1a) ∈ S.
This means that (a, b) ∼ (f, g). Thus, the relation ∼ is an equivalence relation on
the set A × S. Denote the set of all equivalence classes by AS−1 and denote the
equivalence class of (a, b) by a/b or ab−1. If a/b, c/d ∈ AS−1, then, by the Ore
condition, there exist x, y ∈ S such that m = bx = dy ∈ S. Define

a/b + c/d = (ax + cy)/m. (9.1.1)

(Clearly, a/b = ax/m and c/d = cy/m). The definition of the addition (9.1.1)
does not depend on the choice of m, since if m′ = bx′ = dy′, where x′, y′ ∈ S, and
mu = m′v for u, v ∈ S, we have bxu = bx′v, i.e., xu = x′v. Analogously, yu = y′v
and therefore (ax + cy)u = (ax′ + cy′)v. Hence, (ax + cy)/m = (ax′ + cy′)/m′.

We shall show that the definition of the addition (9.1.1) also does not depend
on the choice of a representative of the class a/b. Indeed, if a/b = a′/b′, then there
are elements x′, y′, z ∈ S such that m′ = bx′ = dy′ = b′z. Hence, ax′ = a′z. Then
t = a/b + c/d = (ax + cy)/m = (ax′ + cy′)/m′. Therefore, t = (a′z + cy′)m′ =
a′/b′ + c/d.

Analogously, by the Ore condition there are elements y1 ∈ S, x1 ∈ A such that
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n = bx1 = cy1 ∈ S, then we define

(a/b)(c/d) = ax1/dy1. (9.1.2)

(Note that a/b = ax1/n and c/d = n/dy1). The definition of the multiplication
(9.1.2) also does not depend on the choice of elements x1, y1 in the equality bx1 =
cy1 and does not depend on the choice of representatives for the classes a/b and c/d.
Let a/b = a′/b′. Choose u, v ∈ S such that bu = b′v. Then au = a′v. Let x, y ∈ A,
y ∈ S such that n′ = bux = cvy. Then, since the definition (9.2.2) does not depend
on the choice of n = bx1 = cy1, we obtain t = (a/b)(c/d) = (aux)/(dvy). However,
au = a′v and bu = b′v. Hence, n′ = b′vx = cvy and t = a′vx/dvy = (a′/b′)(c/d).

It is not difficult to verify that with respect to the addition (9.1.1) and the
multiplication (9.1.2) the set of equivalence classes AS−1 forms a ring with mul-
tiplicative identity 1/1. The map ϕ : A → AS−1, given by ϕ(a) = a/1, is a
monomorphism of rings. Moreover, if a ∈ S, then a/1 is an invertible element of
the ring AS−1 and (a/1)−1 = 1/a. Finally, if a/b ∈ AS−1, then a/b = (a/1)(b/1).
This shows that AS−1 is a classical right ring of fractions of the subring Imϕ.
Therefore, the ring A has a right classical ring of fractions.

Theorem 9.1.2. A is a right Ore domain if and only if A has a classical right
ring of fractions which is a division ring.

Proof. If A is a right Ore domain, then by previous theorem it has a classical
right ring of fractions AS−1. We shall show that AS−1 is a division ring. Let
a/b ∈ AS−1 and a/b �= 0. Then a �= 0 and since A is a domain, a ∈ S. Therefore
b/a ∈ AS−1 and it is an inverse of a/b, i.e., AS−1 is a division ring.

Conversely, let a, b ∈ A and a, b �= 0. Since all regular elements are invertible
in AS−1, a−1b ∈ AS−1, so a−1b = xy−1 for some nonzero elements x, y ∈ A. This
implies ax = by, i.e., A is a right Ore ring. Since AS−1 is a division ring, all
nonzero elements of A are not zero divisors, i.e., A is a domain.

If A is an Ore ring, then it has a classical right ring of fractions AS−1 and a
classical left ring of fractions S−1A. In this case it is easy to prove that both these
rings are the same. This common ring is called a classical ring of fractions of
A.

Corollary 9.1.3.
1. A ring A has a classical ring of fractions if and only if A is an Ore ring.
2. A is an Ore domain if and only if its classical ring of fractions is a division

ring.

The remainder of this section will be devoted to studying the relationship
between ideals of a ring A and ideals in its classical ring of fractions AS−1 and
their properties.

Lemma 9.1.4. Let A be a right Ore ring and let S be the nonempty set of all
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regular elements of A. Then for any a1b
−1
1 , a2b

−1
2 ∈ AS−1 there exists s ∈ S and

ti ∈ A such that aib
−1
i = (aiti)s−1 for i = 1, 2.

Proof. From the right Ore condition it follows that for any b1, b2 ∈ S there exist
t1 ∈ S and t2 ∈ A such that s = b1t1 = b2t2 ∈ S. Then aib

−1
i = (aib

−1
i )ss−1 =

aib
−1
i bitis

−1 = (aiti)s−1.

Lemma 9.1.5. Let A be a right Ore ring and let S be the nonempty set of all
regular elements of A. Then

1. If I is a right ideal of A, then IS−1 = {xs−1 | x ∈ I, s ∈ S} is a right ideal
of AS−1.

2. If I1⊕I2⊕ ...⊕In is a direct sum of right ideals of A, then I1S
−1⊕I2S

−1⊕
... ⊕ InS−1 is also a direct sum of right ideals of AS−1.

Proof.
1. Let ai ∈ I and aib

−1
i ∈ IS−1 for i = 1, 2. By lemma 9.1.4 there exist

s ∈ S and ti ∈ A such that aib
−1
i = (aiti)s−1 for i = 1, 2. Then we have

a1b
−1
1 + a2b

−1
2 = (a1t1)s−1 + (a2t2)s−1 = (a1t1 + a2t2)s−1 ∈ IS−1. Thus, IS−1 is

closed under addition.
Since S−1A ⊆ AS−1, we have IS−1 · AS−1 ⊆ IA · S−1 = IS−1. Therefore,

IS−1 is a right ideal of AS−1.
2. Let aib

−1
i ∈ IS−1 for i = 1, 2, ..., n and a1b

−1
1 + a1b

−1
1 + ... + a1b

−1
1 = 0.

Using lemma 9.1.4 by induction we obtain that there exist s ∈ S and ti ∈ A such
that aib

−1
i = (aiti)s−1 for i = 1, 2, ..., n. Then we have (a1t1)s−1+(a2t2)s−1+ ...+

(antn)s−1 = 0 or (a1t1) + (a2t2) + ... + (antn) = 0. Thefore aiti = 0 for all i, since
I1 ⊕ I2 ⊕ ... ⊕ In is a direct sum of right ideals of A. Then aib

−1
i = (aiti)s−1 = 0

for i = 1, 2, ..., n, i.e., I1S
−1 ⊕ I2S

−1 ⊕ ... ⊕ InS−1 is also a direct sum of right
ideals of AS−1.

Lemma 9.1.6. Let A be a right Ore ring and let S be the nonempty set of all
regular elements of A. Then

1. If I is a right ideal of AS−1, then I∩A is a right ideal of A and (I∩A)S−1 =
(I ∩ A)(AS−1).

2. If I1 ⊕I2 ⊕ ...⊕In is a direct sum of right ideals of AS−1, then (I1 ∩A)⊕
(I2 ∩ A) ⊕ ... ⊕ (In ∩ A) is also a direct sum of right ideals of A.

Proof.
1. Obviously, (I∩A)S−1 ⊆ I. Conversely, if x = ab−1 ∈ I, then a = xb ∈ I∩A,

whence x ∈ (I ∩ A)S−1.
2. This is obvious.

Definition. Let A ⊆ Q be rings. Then A is called a right order in Q if
(1) each regular element of A is invertible in Q;
(2) every element of Q has the form as−1, where a ∈ A and s is a regular

element of A.
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Analogously one can define a left order. If A is both a right and left order in
Q, then A is called an order in Q.

Using this notions we can obtain the following result:

Proposition 9.1.7. A ring A is a right Ore ring if and only if it is a right
order in some ring Q. In this case Q is isomorphic to the classical right ring of
fractions of A. If, in addition, A is a domain, then Q is a division ring.

9.2. PRIME AND SEMIPRIME RINGS

Recall that a prime ideal in a ring A is a two-sided ideal I in A such that
J1J2 ⊆ I implies that either J1 ⊆ I or J2 ⊆ I for any two-sided ideals J1, J2 of
A.

Definition. The ring A is called prime if 0 is a prime ideal in A, i.e., the
product of any two nonzero two-sided ideals of A is not equal to zero.

Proposition 9.2.1. For a proper ideal I in a ring A the following conditions
are equivalent:

(1) I is a prime ideal.
(2) A/I is a prime ring.
(3) If J1 and J2 are any right ideals in A such that J1J2 ⊆ I, then J1 ⊆ I or

J2 ⊆ I.
(4) If J1 and J2 are any left ideals in A such that J1J2 ⊆ I, then J1 ⊆ I or

J2 ⊆ I.
(5) If x, y ∈ A with (x)(y) ⊆ I, then x ∈ I or y ∈ I.
(6) If x, y ∈ A with xAy ⊆ I, then x ∈ I or y ∈ I.

Proof.
(1) =⇒ (2). Let A and B be ideals in A/I, where I is a prime ideal in A.

Then there exist ideals A1 ⊇ I and B1 ⊇ I such that A = A1/I and B = B1/I.
Suppose AB = 0, then A1B1 ⊆ I. Since I is a prime ideal in A, it follows that
either A1 ⊆ I or B1 ⊆ I, and so either A = 0 or B = 0.

(2) =⇒ (1). Let A/I be a prime ring and A, B be ideals of A satisfying
AB ⊆ I, then (A+ I)/I and (B + I)/I are ideals in A/I whose product is equal
to zero. Since A/I is a prime ring, we have that (A+ I)/I = 0 or (B + I)/I = 0.
Hence, A ⊆ I or B ⊆ I.

(1) =⇒ (3). Since J1 is a right ideal, (AJ1)(AJ2) = AJ1J2 ⊆ I. Thus
AJ1 ⊆ I or AJ2 ⊆ I, and so J1 ⊆ I or J2 ⊆ I.

(1) =⇒ (5). This is trivial.
(3) =⇒ (6). Since (xA)(yA) ⊆ IA = I, xA ⊆ I or yA ⊆ I, and so x ∈ I or

y ∈ I.
(5) =⇒ (6). Since xAy ⊆ (x)(y) ⊆ I, by hypothesis x ∈ I or y ∈ I.
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(6) =⇒ (1). Let A and B be ideals of the ring A such that AB ⊆ I. Assume
that A �⊆ I. Choose an element x ∈ A such that x �∈ I. Then for any y ∈ B we
have xAy ⊆ AB ⊆ I and so, by hypothesis, y ∈ I, i.e., B ⊂ I.

(1) =⇒ (4) and (4) =⇒ (1) by symmetry.

By induction from this proposition it immediately follows that if I is a prime
ideal in A and J1,J2, ...,Jn are right ideals in A such that J1J2...Jn ⊆ I, then
Ji ⊆ I for some i ∈ {1, ..., n}.

Proposition 9.2.2. Every maximal ideal M in a ring A is a prime ideal.

Proof. If I and J are ideals in A not contained in M , then I + M = A and
J + M = A. Therefore

A = (I + M)(J + M) = IJ + IM + MJ + M2 ⊆ IJ + M

and hence IJ �⊆ M .

Corollary 9.2.3. Every nonzero ring has at least one prime ideal.

The proof follows immediately from Zorn’s lemma and proposition 9.2.2.

Denote by C(P ) = A\P the complement of an ideal P in a ring A, that is, the
set of all elements of A which do not belong to P . We shall need the following
definition.

Definition. A nonempty set S of a ring A is called an m-system if for any
a, b ∈ S there exists x ∈ A such that axb ∈ S.

As a corollary of proposition 9.2.1 (equivalence 1 and 6) we have the following
statement which gives a characterization of a prime ideal P in terms of properties
of C(P ).

Proposition 9.2.4. An ideal P in a ring A is a prime ideal in A if and only
if C(P ) is an m-system.

Definition. An ideal I in a ring A is called semiprime if it has the following
property:

If J is a right (or left) ideal in the ring A such that J 2 ⊆ I, then J ⊆ I.

It is clear that any prime ideal is semiprime. Moreover, the intersection of any
set of semiprime ideals is a semiprime ideal.

Proposition 9.2.5. Let I be a semiprime ideal in a ring A. If J is a right
(or left) ideal in the ring A such that J n ⊆ I for some positive integer n, then
J ⊆ I.
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Proof. We shall prove the statement of proposition by induction on n. If n = 2
the statement follows from definition of a semiprime ideal. Let n > 2. Assume
that the statement is true for all m < n. Then we have 2n − 2 ≥ n, whence

(J n−1)2 = J 2n−2 ⊆ J n ⊆ I.

Then from the definition of a semiprime ideal it follows that J n−1 ⊆ I and
therefore, by the induction hypothesis, J ⊆ I.

Definition. The ring A is called semiprime if 0 is a semiprime ideal, i.e., A
does not contain nonzero nilpotent ideals.

Proposition 9.2.6. For any ideal I in a ring A the following statements are
equivalent:

(1) I is a semiprime ideal.
(2) A/I is a semiprime ring.
(3) If x ∈ A and (x)2 ⊆ I, then x ∈ I.
(4) If x ∈ A and xAx ⊆ I, then x ∈ I.
(5) If J is any right ideal of A such that J 2 ⊆ I, then J ⊆ I.
(6) If J is any left ideal of A such that J 2 ⊆ I, then J ⊆ I.

Proof. The proof of this statement is a very easy modification of the proof of
proposition 9.2.1 and is omitted.

As a simple corollary of this statement is the following proposition.

Proposition 9.2.7. For a ring A the following conditions are equivalent:
(a) A is semiprime;
(b) A has no nonzero nilpotent ideals;
(c) A has no nonzero nilpotent right ideals.

Lemma 9.2.8 (R.Brauer).
If I is a minimal right ideal of a ring A, then either I2 = 0 or I = eA, where

e is an idempotent.

Proof. Assume that I2 �= 0, i.e., there are nonzero elements a, b ∈ I such that
ab �= 0. Then the map f : I → I given by f(x) = ax is a nonzero homomorphism
and since I is a simple right A-module, by proposition 2.2.1, f is an isomorphism.
Therefore, there is a nonzero element e ∈ I such that ae = a. But then ae = ae2,
i.e., f(e) = f(e2) and since f is an isomorphism, e = e2, i.e., e is an idempotent.
Since 0 �= eA ⊆ I and I is a minimal right ideal in A, we have I = eA.

Proposition 9.2.9. For an Artinian ring A the following statements are
equivalent:

(a) A is semisimple;
(b) every right ideal of A is of the form eA, where e is an idempotent;
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(c ) every nonzero ideal in A contains a nonzero idempotent;
(d) A has no nonzero nilpotent ideals;
(e) A has no nonzero nilpotent right ideals.

Proof.
(a) ⇒ (b). If I is a right ideal of a semisimple ring A, then, by theorem

2.2.5 and proposition 2.2.4, A = I ⊕ I ′. Let 1 = e + e′ be a corresponding
decomposition of the identity of the ring A in a sum of orthogonal idempotents,
then, by proposition 2.1.1, I = eA.

(b) ⇒ (c) is trivial.
(c) ⇒ (d) follows from the fact that if e is a nonzero idempotent, then en =

e �= 0 for every n.
(d) ⇒ (e). If I �= 0 is a nilpotent right ideal, then AI is a two-sided ideal of A

and (AI)n = AIn implies that AI is nilpotent as well.
(e) ⇒ (a). If I is a simple submodule of the right regular module, i.e., a

minimal right ideal in the ring A, then by hypothesis I2 �= 0 and, by lemma 9.2.8,
I = eA, where e is a nonzero idempotent. Therefore, by proposition 2.1.1, there
is a decomposition of A in the form A = I ⊕ I ′, where I ′ = (1 − e)A, and taking
into account that A is Artinian, by proposition 2.2.4, the ring A is semisimple.

From propositions 9.2.7 and 9.2.9 we immediately obtain the following state-
ment:

Proposition 9.2.10. For a ring A the following statements are equivalent:
1. A is semisimple.
2. A is a right Artinian and semiprime.

The following definition is analogous to the definition of an m-system.

Definition. A nonempty set S of a ring A is called an n-system if for any
a ∈ S, there exists x ∈ A such that axa ∈ S.

As a corollary of proposition 9.2.6 (equivalence 1 and 6) we have the follow-
ing statement which gives a characterization of a semiprime ideal P in terms of
properties of C(P ).

Proposition 9.2.11. An ideal P in a ring A is a semiprime ideal in A if and
only if C(P ) is an n-system.

The following statement gives another useful characterization of a semiprime
ideal which is taken as the definition of a semiprime ideal in many books.

Proposition 9.2.12. An ideal I in a ring A is a semiprime ideal if and only
if I is an intersection of prime ideals in A.

Proof. Assume that I is the intersection of some set of prime ideals {Pi | i ∈ I }.
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Let x ∈ A be an element such that xAx ∈ I. Then xAx ∈ Pi for each i ∈ I. By
proposition 9.2.1, x ∈ Pi for each i ∈ I, i.e., x ∈ I. From proposition 9.2.6 it
follows that I is a semiprime ideal in A.

Conversely, assume that I is a semiprime ideal. We shall prove that I equals
the intersection of all those prime ideals in A which contain I.

Let J = ∩
i∈I

Pi, where Pi is a prime ideal such that I ⊆ Pi ⊆ A. Obviously,

I ⊂ J . Suppose, I �= J . Then there exists an element a ∈ J such that a �∈ I.
We now form an m-system M such that a ∈ M and M ⊂ C(I). First, set a1 = a.
Since a = a1 ∈ C(I) and I is a semiprime ideal, by proposition 9.2.6, a1Aa1 �⊆ I.
Therefore there exists a nonzero element a2 ∈ C(I) and a2 ∈ a1Aa1. In general, if
an is defined, with an ∈ C(I), choose an+1 ∈ C(I) and an+1 ∈ anAan. Thus, we
can form a set M = {a1, a2, ...., an, ...} such that a ∈ M and M ⊆ C(I). We shall
show that M is an m-system. Suppose, ai, aj ∈ M and let m = max(i, j). Then
am+1 ∈ amAam ⊆ aiAaj . Therefore there exists x ∈ A such that aixaj = am+1 ∈
M , that is, M is an m-system.

So, if there exists an element a ∈ C(I)∩J , then we can form an m-system M
such that a ∈ M and M ∩ I = ∅. Now consider the set W of all ideals K in A
such that I ⊆ K and M ∩K = ∅. This set is not empty since I is one such ideal.
By Zorn’s Lemma there is an ideal P ⊇ I which is maximal in the set W . It is
clear that a �∈ P and M ∩ P = ∅.

We shall show that P is a prime ideal in A. Assume, a, b ∈ A and a, b �∈ P .
Since P is a maximal element in the set W , we have (P + (a)) ∩ M �= ∅ and
(P + (b)) ∩ M �= ∅. Hence there exist elements m1,m2 ∈ M and m1 ∈ P + (a),
m2 ∈ P + (b). Since M is an m-system, there exists an element x ∈ A such that
m1xm2 ∈ M . Moreover, m1xm2 ∈ (P + (a))(P + (b)). Now, if (a)(b) ⊆ P , then
(P + (a))(P + (b)) ⊆ P and therefore m1xm2 ∈ P . But this is impossible, since
m1xm2 ∈ M and M ∩ P = ∅. Hence (a)(b) �⊆ P And, by proposition 9.2.1, P is a
prime ideal.

So, starting from the assumption I �= J we have constructed a prime ideal P
such that I ⊆ P but J �⊆ P . This contradiction completes the proof.

We shall need the following useful statements.

Proposition 9.2.13. Let A be a prime (resp. semiprime) ring, e2 = e ∈ A.
Then the ring eAe is prime (resp. semiprime).

Proof. Let A be a prime ring. Suppose that eAe is not a prime ring. Then,
by proposition 9.2.1, there are non-zero elements a, b ∈ eAe such that a(eAe)b =
0. Write e1 = e and e2 = 1 − e, then we have the following two-sided Peirce
decomposition of the ring A:

A =
(

A11 A12

A21 A22

)
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where Aij = eiAej (i, j = 1, 2). We set

ā =
(

a 0
0 0

)
, b̄ =

(
b 0
0 0

)
.

Then

āAb̄ =
(

aA11b 0
0 0

)
= 0,

which contradicts the fact that A is a prime ring.
If A is a semiprime ring, then we set b = a �= 0 and apply proposition 9.2.6.

Proposition 9.2.14. A ring A is prime (resp. semiprime) if and only if the
full matrix ring Mn(A) is prime (resp. semiprime).

Proof. If Mn(A) is a prime (resp. semiprime) ring, then from the previous
proposition it follows that A is a prime (resp. semiprime) ring.

Conversely, if Mn(A) is not prime, then it has nonzero ideals Ī, J̄ such that
ĪJ̄ = 0. Since Ī = Mn(I) and J̄ = Mn(J ), where I, J are certain nonzero
ideals in A, we obtain IJ = 0, i.e., A is not a prime ring.

Analogously we can prove the inverse statement for the semiprime case.

9.3. GOLDIE RINGS. GOLDIE’S THEOREM

We have seen above that if a ring is an Ore domain then it has a classical ring of
fractions which is a division ring. The next main problem which we shall study in
this section is to answer the question: which rings have classical rings of fractions
that are semisimple. The answer to this question was given by the famous Goldie
theorem, which we shall prove here.

Let S be a subset in a ring A. Then r.annA(S) = {x ∈ A | sx = 0 for all s ∈
S} is the right annihilator of S. A right ideal I of A is called a right annihi-
lator if there is a set S ⊆ A such that I = r.annA(S). In a similar way we can
define the left annihilator l.annA(S) of S. And an ideal of the form l.annA(S)
is called a left annihilator.

In this section we shall write for short rA(S) or r(S) instead of r.annA(S) and
lA(S) or l(S) instead of l.annA(S).

Note that a right ideal I of A is a right annihilator if and only if I = r(l(I)).
Indeed, if I = r(X) for some set X ⊆ A, then X ⊆ l(I), whence I = r(X) ⊇
r(l(I)) ⊇ I.

Definition. We say that A is a right Goldie ring if
1) A satisfies the ascending chain condition on right annihilators;
2) A contains no infinite direct sum of nonzero right ideals.
Analogously we can define a left Goldie ring. A ring A, which is both a right

and left Goldie ring, is called a Goldie ring.
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Examples 9.3.1.
1. Any right Noetherian ring is a right Goldie ring.
2. Any commutative domain is a Goldie ring.

The main purpose of this section is to give the proof of a remarkable theorem
proved by A.Goldie in the late 1950’s.

Theorem 9.3.1. If A is a semiprime right Goldie ring, then it has a classical
right ring of fractions, which is a semisimple ring.

We shall prove this statement following C.Procesi and L.W.Small.1) Before
proving it we need to prove a number of lemmas.

Lemma 9.3.2. Let A be a semiprime ring satisfying the ascending chain
condition on right annihilators. If I and J are right ideals of A, J ⊆ I and
l(I) �= l(J ), then there is an element a ∈ I such that aI �= 0 and aI ∩ J = 0.

Proof. Because taking annihilators reverses inclusion, it follows from J ⊆ I,
that l(J ) ⊇ l(I) and hence l(J ) ⊃ l(I) by the assumptions in the statement of
the lemma. Again, because taking annihilators reverses inclusions, the ascending
chain condition on right annihilators implies the descending chain condition on
left annihilators. (This also uses that a left ideal is a left annihilator if and only if
it is the left annihilator of a right annihilator, see above just after the definition
of annihilators.)

Now let U be a left annihilator that is minimal with respect to the property:
l(J ) ⊇ U ⊃ l(I) (where the right inclusion is strict). It follows that UI �= 0. and
so, because A is semiprime, UIUI �= 0. So there exists an au ∈ IU such that

UauI �= 0. (9.3.1)

The claim is now that auI ∩ J = 0, which suffices to prove the lemma. Suppose
this is not the case. Then there is an x ∈ I such that 0 �= aux ∈ J . Now x ∈ I
and so l(x) ⊇ l(I) and thus U ∩ l(x) ⊇ l(I). By the minimality of U this means
either U ∩ l(x) = l(I) or U ∩ l(x) = U (because intersections of left annihilators
are left annihilators). In the latter case U ⊂ l(x) so that ux = 0 contradicting
aux �= 0. In the former case, note that l(J ) ⊇ U , aux ∈ J , so that Uaux = 0 and
hence Uau ⊂ l(x). Also Uau ⊂ U and that would give Uau ⊂ l(I) which is not
the case because of (9.3.1). This proves the lemma.

Corollary 9.3.3. Let A be a semiprime ring satisfying the ascending chain
condition on right annihilators. If xA and yA are right essential ideals of A, then
yxA is a right essential ideal of A as well.

Proof. Let I be a nonzero right ideal of a ring A and let B = {a ∈ A : ya ∈ I}.
Since the ideal yA is essential, B �= 0 and yB = yA ∩ I �= 0. By the definition

1) See C.Procesi, L.Small, On a theorem of Goldie // J. of Algebra, v.2 (1965), p.80-84.
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of B, it follows that r(y) ⊆ B. Since yB �= 0 and yr(y) = 0, it follows that
l(B) �= l(r(y)). Then by lemma 9.3.2, there exists an u ∈ B such that uB �= 0 and
uB ∩ r(y) = 0. It is easy to see that uB is a right ideal in A and uB ⊂ B. Write
J = uB. Then J �= 0 and J ∩ r(y) = 0. Suppose K = {a ∈ A : xa ∈ J }. Since
xA is an essential ideal, xK = xA ∩ J �= 0. Then yxK �= 0. In the same time
yxK ⊆ yJ ⊆ yA ⊆ A. So, yxA ∩ I �= 0. Therefore, the ideal yxA is essential.

Corollary 9.3.4. Let A be a semiprime ring satisfying the ascending chain
condition on right annihilators. If xA is a right essential ideal in A, then the
element x is regular in A.

Proof. Since A is semiprime, l(A) = 0. If l(x) �= 0, then we have the conditions
of lemma 9.3.2 for the ideals I = A and J = xA. Since xA is essential, we have
l(x) = 0.

Consider r(x). By the ascending chain condition on right annihilators the chain
r(x) ⊆ r(x2) ⊂ ... stabilizes, i.e., there exists n > 0 such that r(xn) = r(xn+1). If
a ∈ xnA ∩ r(x), then a = xny and xa = 0 = xn+1y, whence y ∈ r(xn+1) = r(xn)
and a = 0. Thus, xnA ∩ r(x) = 0. Since, by corollary 9.3.3, the ideal xnA is
essential, we have r(x) = 0.

Lemma 9.3.5. Let A be a semiprime right Goldie ring. Then A satisfies the
descending chain condition on right annihilators.

Proof. Let R1 ⊃ R2 ⊃ ... ⊃ Rn ⊃ ... be a strong descending chain of right
annihilators, i.e., l(Rn) �= l(Rn+1) for any n. Applying lemma 9.3.2 we find a
nonzero right ideal Ii ⊆ Ri such that Ii ∩ Ri+1 = 0. Then the Ii form an infinite
direct sum of right ideals in A. This contradicts the fact that A is a right Goldie
ring.

Lemma 9.3.6. Let A be a semiprime right Goldie ring. If x ∈ A and r(x) = 0,
then xA is an essential ideal, and so x is a regular element.

Proof. Suppose that there exists a nonzero right ideal I of a ring A such that
I ∩xA = 0. We shall show that in this case the right ideals xnI for n ≥ 0 form an
infinite direct sum. Note that xnI �= 0 (by induction because r(x) = 0). In fact,
let there be an equality a0 + xa1 + x2a2 + ... + xnan = 0, where ai ∈ I and n is a
minimal integer with this property. Then a0 ∈ I∩xA = 0 and the equality has the
form x(a1+xa2+...+xn−1an) = 0. Since r(x) = 0, a1+xa2+...+xn−1an = 0 which
contradicts the minimal property of n. Therefore a0 = a1 = ... = an = 0. Since A
does not contain an infinite direct sum of right ideals, we obtain I ∩ xA �= 0, i.e.,
xA is an essential right ideal and, by corollary 9.3.4, x is regular.

Lemma 9.3.7. Let A be a semiprime right Goldie ring. If I is an essential
right ideal of A, then I contains a regular element of A.

Proof. We first prove that any nonzero right ideal I of A contains an element
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x with r(x) = r(x2). Since A is semiprime, it contains non-nilpotent elements.
Consider the set of right annihilators S = {r(y) | y ∈ I, yn �= 0}. Since A is a right
Goldie ring, any descending chain of elements of the set S has a maximal element.
Therefore, by Zorn’s lemma, S has a maximal element r(x). Since r(x) ⊆ r(x2),
we have a strong equality r(x) = r(x2).

Now let I be an essential ideal of the ring A. We suppose that I does not
contain any element d ∈ A with r(d) = 0. In this case we can construct for
each n a sequence of nonzero elements a1, a2, ..., an ∈ I satisfying the following
conditions:

1. r(ai) = r(a2
i ) for all i.

2. aiaj = 0 for all i < j.
3. a1A ⊕ a2A ⊕ ... ⊕ anA is a direct sum.
The first induction step n = 1 was proved above. Suppose, we have formed

a sequence a1, a2, ..., an ∈ I satisfying (1)-(3). Let b = a1 + a2 + ... + an ∈
a1A ⊕ a2A ⊕ ... ⊕ anA. Since by assumption I does not contain any element d

with r(d) = 0, it follows that b �= 0 and r(b) =
n
∩

i=1
r(ai) �= 0. Let X = r(b) ∩ I.

Since I is an essential right ideal and r(b) �= 0, we have X �= 0. Therefore
by the proof above X contains a nonzero non-nilpotent element an+1 such that
r(an+1) = r(a2

n+1). Since an+1 ∈ r(b), we have aian+1 = 0 for all i < n + 1.
We shall show that a1A ⊕ a2A ⊕ ... ⊕ anA ⊕ an+1A is a direct sum. Let y ∈
(a1A ⊕ a2A ⊕ ... ⊕ anA) ∩ an+1A. Then y = an+1x =

n∑
i=1

aixi for some x, xi ∈ A

and we have 0 = a1an+1x =
n∑

i=1

a1aixi = a2
1x1. Hence x1 ∈ r(a2

1) = r(a1), i.e.,

a1x1 = 0. Therefore an+1x =
n∑

i=2

aixi. Suppose ajxj = 0 for all j < i ≤ n,

i.e., an+1x =
n∑

j=i

ajxj . Then 0 = aian+1x =
n∑

j=i

aiajxj = a2
i xi, whence aixi = 0.

Continuing this process we conclude that y = 0. In other words we can construct
an infinite direct sum a1A⊕a2A⊕ ...⊕anA⊕an+1A⊕ ... of nonzero right ideals. A
contradiction. Thus I must contain an element d with r(d) = 0. Then, by lemma
9.3.5, d is a regular element in A.

Proof of theorem 9.3.1. We first show that A is a right Ore ring. Let a ∈ A and
b ∈ S. Then, by lemma 9.3.6, bA is essential in A. Then X = {u ∈ A : au ∈ bA
is also a right essential ideal in A. By lemma 9.3.7, X contains a regular element
x ∈ S. So, ax = by for some y ∈ A. By theorem 9.1.1, A has a classical right ring
of fractions Q = AS−1.

We now show that Q is semisimple. Let I be a right ideal of Q. Then I1 = I∩A
is a right ideal of A, by lemma 9.1.6. By lemma 9.1.5, there is a maximal direct
sum of right ideals J = I1⊕I2⊕...⊕In of A that contains I1 as a direct summand.
From the maximal property of J it follows that J is an essential ideal. Then, by
lemma 9.3.7, it contains a regular element. Hence, by lemma 9.1.5, JQ = Q. Write
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P = I2 ⊕ ...⊕ In, then by lemma 9.1.5 we have Q = JQ = (I1 ⊕ P )Q = I ⊕ PQ.
By proposition 2.1.1, there is an idempotent e ∈ Q such that I = eQ. Thus,
any right ideal of Q is principal. Therefore the ring Q is right Noetherian and
right Goldie. Since any right ideal of Q is generated by an idempotent, Q does
not contain nilpotent ideals. This follows from the fact that if e is a nonzero
idempotent, then en = e �= 0 for every n. Therefore Q is semiprime.

Let I be a right ideal of Q, then I = eQ, where e2 = e is an idempotent of
Q. Since e and f = 1 − e are pairwise orthogonal idempotents, l(I) = l(e) = fQ
and eQ = r(f) = r(fQ). Hence, any right ideal of Q is a right annihilator. Since
Q is a semiprime right Goldie ring, by lemma 9.3.5, Q satisfies the descending
chain condition on right annihilators and therefore it is a right Artinian ring. By
proposition 9.2.10, the ring Q is semisimple.

Remark. If A is a semiprime Goldie ring, then from theorem 9.3.1 and its left-
sided analog it follows that A has a classical right ring of fractions and a classical
left ring of fractions, which coincide. Thus, a semiprime Goldie ring has a classical
ring of fractions, which is a semisimple ring.

Proposition 9.3.8. Let Q be a semisimple ring and A be a right order in Q.
Then A is a semiprime right Goldie ring. Moreover, if Q is a simple ring, then A
is prime.

Proof. First we shall show that A is a right Goldie ring. Let I1 ⊆ I2 ⊆ ... be an
ascending chain of right annihilators in A. As it was remarked above for any right
annihilator In we have In = r(l(In)). Set Jn = l(In). Then J1 ⊇ J2 ⊇ ... and
In = r(Jn). Then in the ring Q we have an ascending chain of right annihilators:
rQ(J1) ⊆ rQ(J2) ⊆ .... Since Q is semisimple, it is Noetherian, and so this chain
stabilizes, i.e., there is n such that such that rQ(Jn) = rQ(Jm) for all m ≥ n.
Therefore In = rQ(Jn) ∩ A = rQ(Jm) ∩ A = Im for all m ≥ n.

From lemma 9.1.5 it follows that A does not contain infinite direct sum of right
ideals. Thus, A is a right Goldie ring.

Let N be a nonzero nilpotent ideal in A. Assume Nm = 0 and Nm−1 �= 0.
Then QNQ is an ideal in Q and since Q is semisimple there is a central idempotent
e ∈ Q such that QNQ = eQ = Qe. Let e =

∑
aixibi, where ai, bi ∈ Q and xi ∈ N .

By lemma 9.1.4, there exists a regular element a ∈ A such that ai = a−1ci and
ci ∈ A for all i. Then e = a−1

∑
cixibi = a−1

∑
dibi, where di ∈ N for all i.

Since e is a central idempotent, we have Nm−1ea = Nm−1ae = Nm−1
∑

dibi = 0.
Since a is a regular element in A, we have Nm−1e = 0, whence Nm−1 = 0. A
contradiction. Therefore A is semiprime.

Suppose Q is simple and I �= 0, J are arbitrary ideals in A such that IJ = 0.
Then QIQ is an ideal in Q. Since Q is simple, QIQ = Q. Therefore 1 =

∑
aixibi

for some ai, bi ∈ Q and xi ∈ I. By lemma 9.1.4, there exists a regular element
a ∈ A such that ai = a−1ci and ci ∈ A for all i. Then 1 = a−1

∑
cixibi. So

aJ =
∑

cixibiJ = 0. Since a is regular, J = 0. Therefore A is prime.
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Theorem 9.3.9 (Goldie’s theorem). A ring A has a classical right ring of
fractions, which is a semisimple ring, if and only if A is a semiprime right Goldie
ring.

Proof. This is just the combination of theorem 9.3.1 and proposition 9.3.8.

Proposition 9.3.10. Let Q be a semisimple ring and A be a right order in Q.
Then Q is a simple ring if and only if A is prime.

Proof. Necessity is implied by proposition 9.3.8.
Conversely, assume A is prime. Let I, J be nonzero ideals of Q such that IJ =

0. By lemma 9.1.5, I ∩A, J ∩A are nonzero ideals in A and (I ∩A)(J ∩A) = 0.
Since A is prime, I ∩ A or J ∩ A must be zero. A contradiction. So Q is a prime
semisimple ring. Then it is clear that Q is simple.

Theorem 9.3.11 (A.W.Goldie, L.Lesieur-R.Croisot). A ring A is a right
order in a simple ring Q if and only if A is a prime right Goldie ring.

Proof. This is proved by proposition 9.3.8 and proposition 9.3.10.

9.4. NOTES AND REFERENCES
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10. Semiperfect rings

10.1. LOCAL AND SEMILOCAL RINGS

Recall that a nonzero ring A is called local if it has a unique maximal right ideal.
The first order of business in this chapter is to study the basic properties of local
rings.

Proposition 10.1.1. The following conditions are equivalent for a ring A with
radical R:

(a) A is local;
(b) R is the unique maximal right ideal in A;
(c) all non-invertible elements of A form a proper ideal;
(d) R is the set of all non-invertible elements of A;
(e) the quotient ring A/R is a division ring.

Proof.
(a) ⇒ (b). This follows from the fact that the radical R is the intersection of

all maximal right ideals of A.
(b) ⇒ (c). Let S be the set of all non-invertible elements of the ring A with

radical R and let x ∈ S. Then, by proposition 1.1.3, the right ideal xA �= A is
contained in some maximal right ideal and therefore it is contained in R. Hence
S ⊆ R. If x, y ∈ S, then x, y ∈ R, whence x + y ∈ R. So x + y is a non-invertible
element, that is, x + y ∈ S. If x ∈ S and a ∈ A, then xa ∈ R and ax ∈ R, and
hence xa, ax ∈ S. Thus, S is a two-sided proper ideal of A.

(c) ⇒ (d). Since any element of R is not invertible, R ⊆ S. Taking into
account that S ⊆ R we obtain that the radical R is just the set of all non-invertible
elements, as required.

(d) ⇒ (e). Since R is the set of all non-invertible elements of A, every element
of A, which is not contained in R, is invertible. Therefore any element of A/R is
invertible, thus A/R is a division ring.

(e) ⇒ (a). This is clear, since A/R has no nontrivial one-sided ideals.

In view of the symmetry of condition 10.1.1 (e) we have the following result.

Corollary 10.1.2. For any nonzero ring A the following statements are equiv-
alent:

1) A has a unique maximal right ideal.
2) A has a unique maximal left ideal.

The following result is often used to verify whether a ring is local or not.

226
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Proposition 10.1.3. For any nonzero ring A the following statements are
equivalent:

1) A is a local ring.
2) if a ∈ A, then either a or 1 − a is invertible.

Proof.
1) ⇒ 2). Let A be a local ring with radical R and let a be a non-invertible

element of A. Then by proposition 10.1.1 (d) a ∈ R and by proposition 3.4.6 the
element 1 − a is invertible in A.

2) ⇒ 1). Let A be a ring with radical R and let a be a non-invertible element of
A. Then the element xa ∈ A is non-invertible for any x ∈ A. Since by hypothesis
the element 1 − xa is invertible for any x ∈ A, by proposition 3.4.5, a ∈ R. The
statement now follows from proposition 10.1.1 (d).

Corollary 10.1.4. Let A be a ring, all of whose non-invertible elements are
nilpotent. Then A is a local ring.

Proof. Let x be a non-invertible element of a ring A. Then it is nilpotent, i.e.,
there exists an integer n > 0 such that xn = 0. From the equality 1 = 1 − xn =
(1−x)(1+x+x2 + ...+xn−1) it follows that 1−x is invertible and, by proposition
10.1.3, A is a local ring.

As a consequence of this result and corollary 3.1.9 using Fitting’s lemma we
obtain the following classical statement.

Proposition 10.1.5. The endomorphism ring EndA(M) of an indecomposable
A-module M , which is both Artinian and Noetherian, is local.

Proof. Let ϕ be an endomorphism of an indecomposable A-module M , which
is both Noetherian and Artinian. Then by Fitting’s lemma 3.1.8 there exists a
positive integer n such that M decomposes into the direct sum of Im(ϕn) and
Ker(ϕn). But then from the indecomposability of M it follows that either M =
Ker(ϕn) or M = Im(ϕn). Consequently, any endomorphism M is either an
automorphism or is nilpotent. Therefore the ring EndAM is local.

Another simple corollary from proposition 10.1.3 can be formulated as follows.

Proposition 10.1.6. A local ring A has no nontrivial idempotents (i.e., any
idempotent in A is either 0 or 1).

Proof. Let A be a local ring and e = e2 be an idempotent in A. Consider the
element f = 1 − e, which is an idempotent in A as well. By proposition 10.1.3, it
follows that either e or f is invertible in A. From ef = e(1− e) = 0 it follows that
either e or f is equal to 0, as required.

Proposition 10.1.7. Any local hereditary ring is a domain.
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Proof.
This follows from lemma 5.5.8.

Theorem 10.1.8. If A is a local ring, then each finitely generated projective
A-module is free.

Proof. Let A be a local ring with radical R and let P be a finitely generated
projective A-module. Then A/R is a division ring and P/PR is a finitely generated
module over A/R. So P/PR is a finitely generated free A/R-module. Therefore

P/PR �
n
⊕

i=1
(A/R). Let F be the free A-module F =

n
⊕

i=1
(A), then P/PR � F/FR.

Let ψ : F/FR → P/PR be the corresponding isomorphism of A/R modules, and
let π : F → F/FR and σ : P → P/PR be the natural projections. Then α = ψπ is
a homomorphism from F to P/PR. Since F is a free module, and so a projective
module, there exists a homomorphism ϕ : F → P such that the following diagram

0 FR F
π

ϕ
α

F/FR

ψ

0

0 PR P
σ

P/PR 0

is commutative, i.e., σϕ = α = ψπ.
We shall show that ϕ is an isomorphism.
For any f ∈ F we have ψπ(f) = ψ(f +FR) = ϕ(f)+PR. Since ψ is surjective,

Imϕ + PR = P . Since P is finitely generated, by Nakayama’s lemma Imϕ = P ,
i.e., ϕ is also surjective.

Consider the exact sequence

0 −→ Kerϕ −→ F
ϕ−→ P −→ 0

Since P is projective, we have F = W ⊕ X � Kerϕ ⊕ P , where W � Kerϕ
and X � P . Then FR = WR ⊕ XR. Since WR ⊂ W ⊂ FR, we have W =
WR ⊕ (W ∩ XR). But W ∩ XR ⊂ W ∩ X = 0, therefore W = WR. Since W is
a direct summand of a finitely generated module, it is also finitely generated and,
by Nakayama’s lemma, we obtain that W = 0, i.e., ϕ is a monomorphism. Thus,
ϕ is an isomorphism, and so P is free.

Remark. This theorem still holds in a more general setting. Namely,
I.Kaplansky proved that all projective modules over a local ring are free (see
I.Kaplansky, Projective modules // Ann. of Math., v.68, 1958, pp.372-377.)

We introduce a new class of rings which are a generalization both of local rings
and of one-sided Artinian rings. These rings arise naturally in the theory of rings
and play an important role in it.

Definition. A ring A is called semilocal if Ā = A/R is a right Artinian ring.
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From the results of section 3.5 it follows that in this case Ā can be decomposed
into a direct sum of a finite number of simple modules (minimal right ideals), i.e.,
it is a semisimple ring.

Examples 10.1.1.
1. Any division ring is a local ring.
2. Any right Artinian ring is semilocal.
3. Any local ring is semilocal.
4. Let K[[x]] be the ring of formal power series over a field K and let M = (x).

As has been shown in section 1.1, M is a maximal ideal in K[[x]]. Therefore the
quotient ring K[[x]]/M is a field isomorphic to the field K. Thus, K[[x]] is a local
ring. Recall that a ring is said to be uniserial if all its ideals are linearly ordered
with respect to inclusion. Since all ideals in K[[x]] form a linear chain

K[[x]] ⊃ (x) ⊃ (x2) ⊃ (x3) ⊃ ... ⊃ (xn) ⊃ ....

the ring K[[x]] is a local uniserial ring.
5. Let p be a prime integer and let Z(p) be the ring of p-integral numbers.

Then as it has been shown in section 1.1 Z(p) has a unique maximal ideal (p) and
all ideals in Z(p) form a linear chain. Therefore Z(p) is a local uniserial ring.

6. Let q be an arbitrary natural number, Z(q) = {m

n
∈ Q|(n, q) = 1} be the

ring of q-integral numbers. The ring Z(q) is semilocal. This follows from the fact
that if q = pα1

1 ...pαs
s , where p1, ..., ps are distinct primes and r = p1...ps, then

rad(Z(q)) = rZ(q).
7. A finite direct product of local rings is semilocal.
8. Let A be a semilocal ring. Then B = Mn(A) is also a semilocal

ring. In fact, by proposition 3.4.10, we have radB = Mn(radA). Thus,
B/radB � Mn(A/radA). Since A/radA is semisimple, by proposition 2.2.6,
Mn(A/radA) is also semisimple. Therefore B is a semilocal ring.

10.2. NONCOMMUTATIVE DISCRETE VALUATION RINGS

In section 8.4 commutative discrete valuation rings were discussed. As a matter
of fact this notion can be generalized to noncommutative rings as well.

Definition. Let D be a division ring. A discrete valuation on D is a
function ν : D∗ → Z satisfying

(i) ν(xy) = ν(x) + ν(y) for all x, y ∈ D∗;
(ii) ν is surjective;
(iii) ν(x + y) ≥ min{ν(x), ν(y)} for all x, y ∈ D∗ with x + y �= 0.
The set O = {x ∈ D∗ : ν(x) ≥ 0}∪{0} is a subring of D called the valuation

ring of ν. Consider the set M = {x ∈ O : ν(x) > 0}. It is easy to verify, that
M is a maximal ideal in O.
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A domain (not necessary commutative) O is called a discrete valuation ring
if there is a valuation ν on its division ring of fractions such that O is the valuation
ring of ν.

Examples 10.2.1.
Let K be a field, and σ : K → K be a nontrivial automorphism of K. Then

the ring of K[[x, σ]] with xa = σ(a)x and, hence, multiplication defined by:

(
∑

aix
i)(
∑

bix
i) = (

∑
aiσ

i(bj)xi+j)

is a noncommutative discrete valuation ring. This ring is called a skew formal
series ring.

Proposition 10.2.1. Let O be a discrete valuation ring with a valuation ν
and division ring of fractions D. Let t be any element of O with ν(t) = 1. Then

1. A nonzero element u ∈ O is a unit if and only if ν(u) = 0.
2. Every nonzero element r ∈ O can be written in the form r = utn = tnv

for some units u, v ∈ O∗ and some n ≥ 0. Every nonzero element x ∈ D∗ can be
written in the form x = utn = tnv for some units u, v ∈ O∗ and some n ∈ Z.

3. Every nonzero right (left) ideal of O is right (left) principal of the form tnO
(Otn) for some n ≥ 0.

4. If M = tO = Ot, then
∞
∩

n=0
tnA =

∞
∩

n=0
Atn = 0.

Proof. 1. Let u ∈ O∗, then there is an element v ∈ O such that uv = 1, whence
0 = ν(uv) = ν(u) + ν(v). Since ν(u), ν(v) ≥ 0, we have ν(u) = ν(v) = 0.

Conversely, let u �= 0 and ν(u) = 0, then for u−1 ∈ D we have ν(u−1) = ν(u) =
0, hence u−1 ∈ O, so u is a unit in O.

2. Suppose x ∈ O and ν(x) = n, then ν(xt−n) = ν(x) + ν(t−n) = 0. Hence
xt−n = u is a unit and x = utn. Analogously, t−nx = v ∈ O∗ and so x = tnv. If
x ∈ D∗, then x = ab−1, where a, b ∈ O. Let a = utn = tnu1 and b = vtm = tmv1,
where u, v, u1, v1 ∈ O∗. Then x = wtn−m, where w ∈ O∗ and n − m ∈ Z.

3. Let I be a right ideal in O, and let x ∈ O be an element with ν(x) minimal.
If ν(x) = n, then x = tnv, where v is a unit. Hence tn ⊂ I and so tnO ⊂ I.
Let a be an arbitrary element in I, then ν(a) ≥ n. Then ν(at−n) ≥ 0, whence
ν(at−n) ∈ O and a ∈ tnO. Therefore I = tnO. Analogously, any left ideal in O is
principal and it is of the form Otn for some n ≥ 0. In particular, since t ∈ M , we
have that M = tO = Ot is a two-sided principal ideal in O. Since any ideal of O
is contained in M and any element which does not contained in M is invertible,
we obtain that O is a local ring with radical M .

4. Assume I =
∞
∩

n=0
tnO �= 0. Then there is a nonzero element a ∈ I. By

property 3 there is n ≥ 0 and u ∈ O∗ such that a = tnu. Since a ∈
∞
∩

n=0
tnO,

a ∈ tn+1O, i.e., there is v ∈ O∗ such that a = tn+1v. So a = tnu = tn+1v, whence
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tn(u − tv) = 0. Since O is a domain, we have u − tv = 0. Therefore u = tv ∈ M .
A contradiction. Thus, a = 0. Analogously, we can prove, that

∞
∩

n=0
Otn = 0.

An element t ∈ M with ν(t) = 1 and M = tO = Ot is called a uniformizing
parameter or a prime element of O and it is defined uniquely up to multipli-
cation by a unit.

From this proposition we can immediately obtain the main properties of dis-
crete valuation rings which we formulate as the following statement:

Corollary 10.2.2. Let O be a discrete valuation ring. Then
1. O is both a right and left PID.
2. O is a local ring with the radical M = {x ∈ O | ν(x) > 0} which is a

two-sided principal ideal of the form M = tO = Ot and any nonzero right (left)
ideal of O is of the form tnO (Otn) for some integer n ≥ 0.

3. O is a Noetherian ring.
4. O is a hereditary ring.

The next statement gives properties of a ring which may be used as other
equivalent definitions of a discrete valuation ring without using the notion of a
valuation.

Theorem 10.2.3. The following properties of a ring O are equivalent:
1. O is a discrete valuation ring.
2. O is both a right and left PID, which is also a local ring with radical M �= 0.
3. O is a local Noetherian domain with radical M �= 0, which is a two-sided

principal ideal.
4. O is a local right Noetherian ring with radical of the form M = tO = Ot

and t ∈ O is not nilpotent.

Proof. That statement 1 implies the others was proved above. The implications
2 ⇒ 3 and 3 ⇒ 4 are trivial.

4 ⇒ 1. Let O be a local right Noetherian ring with radical of the form M =
tO = Ot. We shall prove that I =

∞
∩

n=0
Otn = 0. Note that Otn �= Otn+1 for all

n ≥ 0, since otherwise, by Nakayama’s lemma, we obtain Mn = Otn = 0 and so
tn = 0. Assume I �= 0, then there is a nonzero element a ∈ I. If a = btn = ctn+1,
then (b− ct)tn = 0. If b is invertible, then (b− ct) is also invertible, by proposition
3.4.5. Hence tn = 0. Since t is not nilpotent, we obtain a contradiction. So b is not
invertible, and since O is a local ring, b ∈ M . Thus, there is a sequence of nonzero
elements a1, a2, ... such that a = a1t = a2t

2 = ... = antn = ... and an = an+1t for
all n > 0. Consider the ascending chain of right ideals

a1O ⊂ a2O ⊂ ... ⊂ anO ⊂ an+1O ⊂ ...

Since O is a right Noetherian ring, this sequence stabilizes, i.e., there is n > 0
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such that anO = an+1O. Then an+1 = anx = an+1tx, or an+1(1 − tx) = 0. Since
(1 − tx) is invertible in O, we obtain an+1 = 0 and a = 0.

Thus, I =
∞
∩

n=0
Otn = 0. Since M = tO = Ot is a maximal ideal in O, then

for any x ∈ O there is an integer n ≥ 0 such that x ∈ tnO and x �∈ tn+1O.
We set n = ν(x). Thus any element a ∈ O can be uniquely written in the form
x = tν(x)ε = ε′tν(x), where ε, ε′ are units in O. If x = tnu and y = tmv, where
u, v ∈ O∗, then xy = tn+mw, where w ∈ O∗. So, in particular, we obtain that O
is a domain. Therefore it has a classical ring of fractions D, which is a division
ring and we can assume that O is embedded in D. Any element of D is of the
form ab−1, where a, b ∈ O and b is a regular element of O. Therefore we can set
ν(ab−1) = ν(a) − ν(b). The function ν thus defined is a valuation on D and so O
is a discrete valuation ring.

Lemma 10.2.4. Let M be a finitely generated A-module. If it has a unique
maximal submodule, then M is a cyclic module.

Proof. Let M be a finitely generated A-module and N be its unique maximal
submodule. We can choose an element x ∈ M and x �∈ N . Then xA ⊂ M and
xA �⊂ N . Since N is a unique maximal submodule in M , we obtain xA = M , i.e.,
M is cyclic.

Theorem 10.2.5. Let O be a local prime right Noetherian ring. Then the
following statements are equivalent:

1. O is a discrete valuation ring.
2. O is a maximal (under inclusion) order in its classical ring of fractions Q,

and the socle of the right O-module Q/O is not equal to zero.

Proof.
1 ⇒ 2 is trivial.
2 ⇒ 1. By Goldie’s theorem Q is a simple ring. Note that the radical R of

O contains a regular element, because otherwise O = Q, that contradicting the
formulation of the theorem. Let M be a minimal O-submodule in Q. Suppose M
has a maximal submodule X in Q which is different from O. Then X∩O = R and
XR ⊂ R. Therefore O ⊂ S = {x ∈ Q | xR ⊂ R} and this inclusion is strict. Hence
S = Q. Since R contains a regular element, Q = O. A contradiction. Thus, M
has a unique maximal submodule O and, by lemma 10.2.4, M is a cyclic module,
i.e., M = mO. Since O ⊂ mO, m is a regular element and so R = m−1O. Denote
t = m−1. Since O is a maximal order, R = tO = Ot is a two-sided principal ideal
and t is not nilpotent. Applying theorem 10.2.3 we obtain that O is a discrete
valuation ring.

Corollary 10.2.6. Let O1, O2 be different local right Noetherian orders in a
division ring D, which satisfy statement 2 of theorem 10.2.5. Then O1O2 = D,



SEMIPERFECT RINGS 233

where
O1O2 = {

∑
aibi | ai ∈ O1, bi ∈ O2}.

Theorem 10.2.7. If A is a local hereditary Noetherian ring, then A is either
a division ring or a discrete valuation ring.

Proof. Let A be a local hereditary Noetherian ring with radical R. By
proposition 10.1.7, A is a domain. Therefore if R = 0, then A is a division
ring. Suppose R �= 0. Since A is a Noetherian hereditary ring, R is a finitely
generated projective A-module and, by theorem 10.1.8, R is a finitely generated
free A-module, i.e., R � An. Since A is a domain, we obtain that R � A, i.e., R is
a principal right and left ideal. By proposition 10.2.3, A is a discrete valuation ring.

10.3. LIFTING IDEMPOTENTS. SEMIPERFECT RINGS

An idempotent e ∈ A is called local if the ring eAe is local. Clearly, a local
idempotent is always a primitive idempotent.

Assume that a ring A is semilocal. Then the quotient ring Ā = A/R can be
decomposed into a direct sum of minimal right ideals: Ā = ē1Ā⊕ ...⊕ ēnĀ. Since
all rings ēiĀēi are division rings, all idempotents ēi are local. Then there arises
a natural question: when, starting from a decomposition of Ā, can one form a
decomposition of the ring A = e1A ⊕ ... ⊕ enA such that ei + R = ēi.

The example of the ring Z(q) shows that this cannot always be done. However,
there are a lot of important cases when it is possible. We shall say that idem-
potents may be lifted modulo an ideal I of a ring A if from the fact that
g2 − g ∈ I, where g ∈ A, it follows that there exists an idempotent e2 = e ∈ A
such that e − g ∈ I.

Proposition 10.3.1. Idempotents can be lifted modulo any nil-ideal I of a
ring A.

Proof. Let g2 − g ∈ I and set r = g2 − g, g1 = g + r− 2gr. Obviously, gr = rg.
Calculating g2

1 − g1 we obtain g2 + r2 + 4g2r2 + 2gr − 4g2r − 4gr2 − g − r + 2gr =
r2 + 4g2r2 + 4gr − 4g2r − 4gr2 = r2 + 4r3 − 4r2 = r2(4r − 3).

Setting r1 = r2(4r − 3) ∈ I and g2 = g1 + r1 − 2g1r1 we obtain that r2 =
g2
2 − g2 = r2

1(4r1 −3), i.e., in the expression of r2 the element r4 enters as a factor.
Since rk = 0 for some integer k > 0, continuing this process we obtain that rn = 0
for some n, i.e., g2

n = gn. Since g1 − g ∈ I and gi − gi−1 ∈ I for all i = 1, 2, ..., n,
we have that gn = e is an idempotent and g − e ∈ I.

In view of this proposition and proposition 3.5.1, we have the following corol-
lary.

Corollary 10.3.2. Idempotents can be lifted modulo the radical of an Artinian
ring.
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In general, if we have a pair of orthogonal idempotents g1 + I and g2 + I in
A/I, which lift to idempotents e1, e2 ∈ A, there is no guarantee that e1 and e2

will be orthogonal. However, in the case of nil-ideals orthogonality of idempotents
can be preserved. For this purpose the following statement will be useful which
we shall prove following J.Lambek.1)

Lemma 10.3.3. Let I ⊆ R be an ideal of a ring A with radical R such
that idempotents in A/I can be lifted modulo the ideal I. If g2 = g ∈ A and
u2 − u ∈ I, ug, gu ∈ I, then there exists an idempotent e ∈ A such that e − u ∈ I
and eg = ge = 0.

Proof. Let u2 − u ∈ I, g2 = g ∈ A, and ug, gu ∈ I. According to proposition
10.3.1 there exists an idempotent f2 = f ∈ A such that f−u ∈ I. Since gu, ug ∈ I,
we have fg, gf ∈ I. From I ⊆ R it follows in particular, that 1−fg is an invertible
element of the ring A. Consider the element h = (1 − fg)−1f(1 − fg). Clearly, h
is an idempotent of A and hg = 0. Multiplying h on the left side by 1 − fg we
obtain h − f = fg − fgh ∈ I.

Set e = h−gh = (1−g)h. Obviously, ge = 0 = eg. Since e−f = h−gh−f ∈ I
and f −u ∈ I, we have e−u ∈ I. Moreover, e2 = (1− g)h(1− g)h = (1− g)h = e,
i.e., e is an idempotent of the ring A and e − u ∈ I, as required.

Proposition 10.3.4. Let I ⊆ R be an ideal in a ring A with radical R
such that idempotents in A/I can be lifted modulo the ideal I. Then for any
finite or countable set of pairwise orthogonal idempotents u1, u2, ..., un, ... in A
such that uiuj − δijui ∈ I, there exists a set of pairwise orthogonal idempotents
e1, e2, ..., en, ... in A such that ei − ui ∈ I and eiej = δijei for all i, j.

Proof. Suppose we have already found the elements e1, e2, ..., ek−1 satisfying
the conditions of the proposition. It suffices to show how to find an element ek.
Set g = e1 + e2 + ... + ek−1.

Obviously, g2 = g, and guk, ukg ∈ I. Then by lemma 10.3.3 there exists an
idempotent e2

k = ek ∈ A such that ek − uk ∈ I and gek = ekg = 0.
Then ekei = eiek = 0 for all i < k. Since uk �∈ I, we have ek �= 0.

Definition. A semilocal ring A is called semiperfect if idempotents can be
lifted modulo the radical R of the ring A.

Semiperfect rings were introduced by H.Bass in 1960. From corollary 10.3.2
we obtain the following theorem.

Theorem 10.3.5. A right Artinian ring is semiperfect.

We are going to give two criteria for a ring to be semiperfect. To this end we
shall need the following lemma.

1) See J.Lambek, Lectures on rings and modules, Blaidell Publishing Company, 1966.
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Lemma 10.3.6. Let a ring A have two different decompositions into a direct
sum of right ideals: A = e1A⊕ ...⊕enA = f1A⊕ ...⊕fnA (where 1 = e1+ ...+en =
f1 + ... + fn are two decompositions of 1 ∈ A into a sum of pairwise orthogonal
idempotents), and suppose, moreover, after renumbering if necessary, eiA � fiA
(i = 1, ..., n). Then there is an invertible element a ∈ A such that fi = aeia

−1.

Proof. By theorem 2.1.2 the isomorphism eiA � fiA is realized by multipli-
cation on the left side by some element ai ∈ fiAei. Then fiai = aiei = ai. We
set a = a1 + ... + an. Obviously, aei = ai and fia = ai. Consider the elements
bi ∈ eiAfi realizing the inverse isomorphisms. We set b = b1 + ... + bn. Then

eib = bi = bfi and aibi = fi, biai = ei. Clearly, ab =
n∑

i=1

aibi =
n∑

i=1

fi = 1 and

ba =
n∑

i=1

biai =
n∑

i=1

ei = 1, i.e., b = a−1. Since aei = fia, we have fi = aeia
−1.

Theorem 10.3.7. A ring A is semiperfect if and only if it can be decomposed
into a direct sum of right ideals each of which has exactly one maximal submodule.

Proof. Let Ā = A/R = ē1Ā ⊕ ... ⊕ ēnĀ be a decomposition of Ā into a direct
sum of minimal right ideals. Since the ring A is semiperfect, for each idempotent
ēi there is an idempotent ei such that ei + R = ēi. Write ēiĀ = Ui and Pi = eiA.
Since R is a two-sided ideal, Pi ∩R = PiR and therefore by the first isomorphism
theorem (Pi + R)/R � Pi/PiR � Ui. Therefore every module Pi has exactly

one maximal submodule. Let P =
n
⊕

i=1
Pi. Obviously, there is an epimorphism

ϕ : P → Ā. Denote by π the natural projection A onto Ā . Since the module
P is projective, there exists a homomorphism ψ : P → A such that πψ = ϕ. It
is not difficult to verify that Imψ + R = A. By Nakayama’s lemma, Imψ = A.
We shall show that X = Kerψ = 0. Because the module A is projective, we have
P � Imψ ⊕ Kerψ = A ⊕ Kerψ. Consider P/PR. Then P/PR � Ā and, on the
other hand, P/PR � Ā ⊕ X/XR. By the Krull-Schmidt theorem for semisimple
modules (theorem 3.2.5), the module X/XR is equal to zero. Because the module
X is finitely generated as the image of P , by Nakayama’s lemma X = 0, i.e., ψ is
an isomorphism. Therefore A decomposes into a direct sum of right ideals ψ(eiA),
each of which has exactly one maximal submodule.

Conversely, let A = P1 ⊕ ... ⊕ Pn be a decomposition of a ring A into a direct
sum of right ideals, each of which has exactly one maximal submodule. Then
R = radP1 ⊕ ... ⊕ radPn, and it follows that Ā = A/R is a right semisimple ring.
Let 1 = f1 + ... + fn be a decomposition of the identity of the ring A into a sum
of pairwise orthogonal idempotents such that Pi = fiA (i = 1, ..., n). We shall
show that for any idempotent ē2 = ē ∈ Ā there is an idempotent e ∈ A such
that e + R = ē. By proposition 2.2.4 the right ideal ēĀ is semisimple as a right
module over the semisimple ring Ā. Therefore there is a decomposition of 1̄ ∈ Ā
into a sum of pairwise orthogonal idempotents 1̄ = ē1 + ... + ēs + ... + ēn such
that ē = ē1 + ... + ēs and all modules ēiĀ are simple. On the other hand, let
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1̄ = f̄1 + ... + f̄n be a decomposition of 1̄ ∈ Ā into a sum of pairwise orthogonal
idempotents such that the modules f̄iĀ are simple. By the Krull-Schmidt theorem
for semisimple modules (theorem 3.2.5), for an appropriate renumeration we have
ēiĀ � f̄iĀ (i = 1, ..., n). By lemma 10.3.6, there exists an element ā ∈ Ā such
that ēi = ā−1f̄iā (i = 1, ..., n). Let ā be the image of a and ā−1 be the image
of b = a−1. Obviously, ab = 1 + r, where r ∈ R. Since (1 + r)x = 1, we have
x = 1 − rx = 1 − r1, where r1 ∈ R. Therefore b(1 − r1) = a−1, and, moreover,
the image of the element a−1 under the epimorphism π coincides with ā−1. Then
π(e) =

∑
π(a−1fia) =

∑
ā−1f̄iā = ē. The theorem is proved.

Theorem 10.3.8 (B.J.Müller). A ring A is semiperfect if and only if 1 ∈
A can be decomposed into a sum of a finite number of pairwise orthogonal local
idempotents.

Proof. Let a ring A be semiperfect. By theorem 10.3.7, A = e1A ⊕ ... ⊕ enA,
where the e1, ..., en are idempotents and each right ideal Pi = eiA (i = 1, ..., n)
has exactly one maximal submodule. Then Hom(Pi, Pi) � eiAei and for any
ψ : Pi → Pi either Imψ = Pi or Imψ ⊆ PiR. In the first case, since Pi is
projective, we have Pi = Imψ ⊕ Kerψ, which implies Kerψ = 0 and so ψ is an
automorphism. In the second case, ψ is a non-invertible element and, obviously,
all non-invertible elements form an ideal. By proposition 10.1.1, the ring eiAei is
local.

Conversely, let π : A → Ā be the natural projection of the ring A on the ring
Ā = A/R (R is the radical of the ring A). We write π(a) = ā. Let e be a local
idempotent of the ring A. We shall show that the module π(eA) = ēĀ is simple.
Suppose, the ring A is not local (a local ring is, obviously, semiperfect). Consider
(1̄− ē)Ā. Since it is a proper right ideal in the ring Ā, it is contained in a maximal
right ideal Ī of the ring Ā. We shall show that ēĀ ∩ Ī = 0. If this is not so, then
(ēĀ ∩ Ī)2 �= 0, since Ā is a semiprimitive ring and therefore it has no nilpotent
right ideals. Then there is an element ēā ∈ Ī and ēāē �= 0. Since eAe is a local ring
and rad(eAe) = eRe, we conclude that the ring ēĀē is a division ring. Therefore
there is an element ēx̄ē ∈ ēĀē such that ēāēx̄ē = ē. Therefore ē ∈ Ī and, thus,
1̄ ∈ Ī. A contradiction. Therefore ēĀ ∩ Ī = 0 and Ā = ēĀ ⊕ Ī. Since Ī is a
maximal ideal in the ring Ā, the module ēĀ is simple. The theorem is proved.

Corollary 10.3.9. A semiperfect ring A is an FD-ring.

The proof is immediate from Müller’s theorem and corollary 2.4.15.

As a corollary of this statement and theorem 2.4.11 we have the following
theorem.

Theorem 10.3.10.
Any semiperfect ring A can be uniquely decomposed into a finite direct product

of indecomposable rings, that is, if A = B1 × B2 × ... × Bs = C1 × C2 × ... × Ct
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are two different decompositions, then s = t and there is a permutation σ of the
numbers {1, 2, ..., t} such that Bi = Cσ(i) for i = 1, 2, ..., t.

Corollary 10.3.11. Let A be a semiperfect ring, e2 = e ∈ A. Then the ring
eAe is semiperfect.

The proof immediately follows from theorem 10.3.8.

Examples 10.3.1.
1. Let p1, p2, ..., pn be primes (not necessary distinct), let Z(pi) be the ring of

pi-integral numbers, and let Q be a ring of rational numbers. Then a ring of the
form

A =




Z(p1) Q . . . Q
0 Z(p2) . . . Q
...

...
. . .

...
0 0 . . . Z(pn)




is a semiperfect ring.
2. Any finite direct product of local rings is semiperfect.
3. A commutative ring is semiperfect if and only if it is a finite direct product

of commutative local rings.
4. Let O be a local ring. Then A = Mn(O) is a semiperfect ring.
5. If O is a semiperfect ring, then so is A = Mn(O) and vica versa.
6. The ring of integers Z is not semiperfect.
7. The ring of polynomials k[x] is also not semiperfect.
8. If B is a non-local ring in which 1 ∈ B is a primitive idempotent (e.g.

B = Z), then Mn(B) is a noncommutative non-semiperfect ring.

10.4. PROJECTIVE COVERS. THE KRULL-SCHMIDT THEOREM

In this section we shall introduce the notion of a projective cover, which is ”dual”
to the notion of an injective hull. However, whereas any module has an injective
hull, a module has a projective cover only in special cases.

A submodule N of a module M is called small (or superfluous) if the equality
N + X = M implies X = M for any submodule X of the module M .

Examples 10.4.1.
1. If A is an Artinian ring with Jacobson radical R and M is a right A-module,

then by Nakayama’s lemma MR is a small submodule in M .
2. If M is a finitely generated A-module, then by Nakayama’s lemma MR is

small in M .
3. A nonzero direct summand of A-module M is never small. In particular, if

M is semisimple, the only small submodule is the zero submodule.



238 ALGEBRAS, RINGS AND MODULES

Definition. A projective module P is called a projective cover of a module
M and it is denoted by P (M) if there is an epimorphism ϕ : P → M such that
Kerϕ is a small submodule in P .

Lemma 10.4.1. If P
ϕ−→ M −→ 0 is a projective cover of a module M , then

Kerϕ ⊆ rad(P ).

Proof. Suppose that Kerϕ �⊂ rad(P ). Then Kerϕ + rad(P ) = P . Since Kerϕ
is a small submodule in P , we have rad(P ) = P . Because P �= 0, we obtain a
contradiction with proposition 5.1.8. Therefore Kerϕ ⊆ rad(P ).

Corollary 10.4.2. If P
ϕ−→ U −→ 0 is a projective cover of a simple module

M , then Kerϕ = rad(P ). So, a projective cover of a simple module has exactly
one maximal submodule.

Proof. From lemma 10.4.1 it follows that Kerϕ ⊆ rad(P ). If this inclusion
is strict, then the simple module U contains a proper submodule rad(P )/Kerϕ.
This contradiction shows that Kerϕ = rad(P ) and so a projective cover has a
single maximal submodule radP = PR, by proposition 5.1.8.

Corollary 10.4.3. If A is a semiprimitive ring and P (U) is a projective cover
of a simple A-module U , then P (U) � U .

Proof. Let P (U)
ϕ−→ U −→ 0 be a projective cover of a simple A-module U .

Since R = radA = 0, by proposition 5.1.8, radP (U) = P (U)R = 0. So from the
previous lemma it follows that Kerϕ = 0, i.e., P (U) � U .

Thus, if A is a semiprimitive ring, then only projective A-modules have pro-
jective covers.

Note that in general the inverse statement to lemma 10.4.1 is not true. But it
is true if P is a finitely generated module.

Lemma 10.4.4. Let P be a projective finitely generated A-module, and let
ϕ : P → M be an epimorphism with Kerϕ ⊆ rad(P ). Then P is a projective
cover of M .

Proof. Suppose that Kerϕ ⊆ rad(P ). Suppose for some submodule X ⊂ P we
have X +Kerϕ = P and therefore X +rad(P ) = P . Since rad(P ) = PR, we have
X + PR = P . Applying Nakayama’s lemma we obtain that X = P , i.e., Kerϕ is
a small submodule in P . The proof is complete.

Lemma 10.4.5 (H.Bass). Let ψ : P → M be an epimorphism of a projective
module P onto a module M , K = Kerψ and let ϕ : P (M) → M be a projective
cover of M . Then there is a decomposition P � P (M) ⊕ P ′, where P ′ ⊂ K and
P (M) ∩ K is a small submodule in P (M).
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Proof. Since P is projective, there is a homomorphism π : P → P (M) such
that ϕπ = ψ. It is easy to see that Imπ + Kerϕ = P (M). Since Kerϕ is a
small submodule, we obtain that Imπ = P (M). Identifying P (M) with a direct
summand of P we may write P = P (M) ⊕ P ′, where P ′ = Kerπ. Clearly,
ψ(P ′) = 0 and ψ induces an epimorphism P (M) → M whose kernel coincides
with P (M) ∩ K = N . We shall show that N is a small submodule in P (M). Let
N+X = P (M) for a submodule X ⊂ P (M). Then P (M) = N+X ⊆ Kerϕ+X ⊆
P (M) and so Kerϕ +X = P (M). Since Kerϕ is a small submodule in P (M), we
have X = P (M). This means that N is also a small submodule in P (M).

From this lemma we obtain the following corollary.

Corollary 10.4.6. If a module M has a projective cover P (M), then the cover
is unique up to isomorphism.

Proposition 10.4.7. The projective cover P (M) of M , where M = M1⊕M2,
is equal to P (M1) ⊕ P (M2).

The proof of this proposition we leave to the reader as an exercise.
We are going to prove the following main theorem due to H.Bass.

Theorem 10.4.8 (H.Bass). The following conditions are equivalent for a
ring A:

(a) A is semiperfect;
(b) any finitely generated right A-module has a projective cover.
(c) any cyclic right A-module has a projective cover.

Before we shall start with the proof of this theorem we note that if condition
(c) holds for a ring A, then it holds for any quotient ring of the ring A. We shall
need the following lemma.

Lemma 10.4.9. A semiprimitive ring satisfying condition (c) of theorem
10.4.8 is semisimple.

Proof. Let A be a semiprimitive ring, i.e., radA = R = 0 and suppose every
cyclic right A-module has a projective cover. We shall show that A is the sum
of all its minimal right ideals. Let S = soc(AA) be the sum of all minimal right
ideals of the ring A. If S �= A, then S is contained in a maximal right ideal I of
the ring A. The module A/I = U is simple and by hypothesis it has a projective
cover P (U), which is isomorphic to U by corollary 10.4.3. Because U � P (U) is
a projective module, it follows that A � I ⊕ U . Since U ∩ I = 0 and S ⊂ I, we
obtain U �⊂ S. This contradiction shows that A = soc (AA) and by proposition
2.2.4 A is a semisimple ring. The lemma is proved.

Proof of theorem 10.4.8.
(c) ⇒ (a). By lemma 10.4.9, the ring Ā = A/R is semisimple: Ā = U1⊕...⊕Un,
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where the Ui (i = 1, .., n) are simple modules. By proposition 10.4.7, P (Ā) =
P (U1)⊕ ...⊕P (Un) and, by corollary 10.4.2, every module P (Ui) (i = 1, ..., n) has
exactly one maximal submodule. Denote by π the natural projection of the ring
A on Ā and by ϕ an epimorphism of P (Ā) onto U1 ⊕ ... ⊕ Un. Since P = P (Ā)
is a projective module, there is a homomorphism ψ such that πψ = ϕ. Obviously,
Imψ+Kerπ = A and since Kerπ = R, by Nakayama’s lemma, Imψ = A. Because
ψ is an epimorphism and A is a projective module, we have P � Imψ⊕Kerψ = A⊕
Kerψ. Since P/PR � Ā, by the Krull-Schmidt theorem for semisimple modules,
Kerψ/(KerψR) = 0 and from Nakayama’s lemma it follows that Kerψ = 0.
Therefore the ring A is isomorphic to a direct sum of indecomposable right ideals,
each of which has exactly one maximal submodule. By theorem 10.3.7, the ring
A is semiperfect.

(a) ⇒ (b). We are going to show that any finitely generated module M has a
projective cover. Obviously, M/MR is an Ā-module and, by Nakayama’s lemma,
M �= MR, since M is finitely generated. The module M/MR decomposes into
a direct sum of a finite number of simple modules: M/MR = Ui1 ⊕ ... ⊕ Uim

.
Since A is a semiperfect ring, from theorem 10.3.7 it follows that any simple Ā-
module U has the form U = P/PR, where P is an indecomposable projective
A-module. Let Pik

/Pik
R = Uik

(k = 1, ...,m), where Pik
is an indecomposable

projective A-module. In a similar way as above it can now be shown that there is
an epimorphism ψ : Pi1⊕...⊕Pim

→ M , and, moreover, Kerψ ⊂ (Pi1⊕...⊕Pim
)R.

By Nakayama’s lemma, Kerψ is a small submodule in Pi1 ⊕ ... ⊕ Pim
and hence

Pi1 ⊕ ... ⊕ Pim
is a projective cover of M .

(b) ⇒ (c) trivial.
So the theorem is proved.

Remark. In the proof of the implication (c) ⇒ (a) we have actually given
a method of constructing a projective cover for an arbitrary finitely generated
module over a semiperfect ring.

Clearly, M/MR is a module over the semisimple Artinian ring Ā. Therefore

it is isomorphic to a finite direct sum of simple Ā-modules: M/MR =
s
⊕

j=1
U

mj

j ,

where U1, ..., Us are all mutually nonisomorphic simple Ā-modules. Lifting the
idempotents we obtain that Uj � ejA/ejR where e2

j = ej ∈ A. Then P (M) =
s
⊕

j=1
(ejA)mj .

The following theorem describes projective modules over a semiperfect ring.

Theorem 10.4.10. Any indecomposable projective module over a semiperfect
ring A is finitely generated, it is a projective cover of a simple A-module and has
exactly one maximal submodule. There is a one-to-one correspondence between mu-
tually nonisomorphic indecomposable projective A-modules P1, ..., Ps and mutually
nonisomorphic simple A-modules which is given by the following correspondences:
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Pi �→ Pi/PiR = Ui and Ui �→ P (Ui).

Proof. Let P be an indecomposable projective module over a semiperfect ring
A. If P �= 0, then P �= PR and P/PR is a nonzero semisimple A-module. Let
a simple module U be a direct summand of the module P/PR. Then there is
an epimorphism ψ : P → U . By lemma 10.4.4, P � P (U) ⊕ P ′. Since P is
indecomposable, P � P (U). The remaining statements of the theorem follow
from the above.

Definition. An indecomposable projective right module over a semiperfect
ring A is called a principal right module. A principal left module can be
defined analogously.

Any principal right (resp. left) A-module has the form eA (resp. Ae), where e
is a local idempotent.

We shall use the results obtained to prove the famous Krull-Schmidt theorem.
This theorem is often formulated in the following form:

Theorem 10.4.11 (Krull-Schmidt theorem). Let an A-module M have

two different decompositions as a direct sum of submodules M =
n
⊕

i=1
Mi =

m
⊕

i=1
Ni,

whose endomorphism rings are local. Then m = n and there is a permutation τ
of the numbers i = 1, 2, ..., n such that Mi � Nτ(i) (i = 1, ..., n).

Proof. Denote by πi the projection of the module M onto the submodule Mi

and by pi the projection of M onto Ni. Obviously, 1M = π1+...+πn = p1+...+pm

are two decompositions of 1M ∈ EndAM into a sum of pairwise orthogonal local
idempotents. Therefore, by theorem 10.3.8, the ring EndAM is semiperfect.

Assume that there are two different decompositions of the semiperfect ring A
into a direct sum of principal right modules A = P1 ⊕ ... ⊕ Pn = Q1 ⊕ ... ⊕ Qm.
Then Ā = P1/P1R⊕ ...⊕Pn/PnR = Q1/Q1R⊕ ...⊕Qm/QmR. Since all modules
P1/P1R, ..., Pn/PnR,Q1/Q1R, ..., Qm/QmR are simple, from the Krull-Schmidt
theorem for semisimple modules, taking into account corollary 10.4.6, we obtain
that m = n and for a suitable numeration Pi � Qi (i = 1, ..., n).

From lemma 10.3.6 we have the following statement.

Lemma 10.4.12. Let the identity of a semiperfect ring A be decomposed into a
sum of pairwise orthogonal local idempotents in two different ways 1 = e1+...+en =
f1 + ... + fm. Then m = n and there exists a permutation τ of numbers from 1 to
n and an invertible element a ∈ A such that fτ(i) = aeia

−1 for i = 1, 2, ..., n.

Taking into account theorems 10.3.9 and 10.3.10, the Krull-Schmidt theorem
may be reformulated in the following way:
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Theorem 10.4.13 (Krull-Schmidt Theorem). If the endomorphism ring
EndA(M) of an A-module M is semiperfect, then the module M has a unique
decomposition into a direct sum of indecomposable modules.

Proof. Let M =
n
⊕

i=1
Mi =

n
⊕

i=1
Ni be two different decompositions of an A-

module M into a direct sum of indecomposable modules. Consider the corre-
sponding decompositions of the identity of M : 1M = π1 + ... + πn = p1 + ... + pm,
where πi is the projection of M onto Mi and pj is the projection of M onto Nj .
Since the ring EndA(M) is semiperfect and the submodules M1, ...,Mn, N1, ..., Nm

are indecomposable, by theorem 10.3.8, the idempotents π1, ..., πn, p1, ..., pm are
local. By lemma 10.4.12, m = n and there exists a permutation τ of the numbers
i = 1, ..., n and an automorphism ψ ∈ EndA(M) such that πτ(i) = ψpiψ

−1.
Consider ψ : M → M . Obviously, ψ(Ni) = ψpi(Ni) = πτ(i)ψ(Ni) ⊂ Mτ(i),

i.e., the module Ni is embedded in Mτ(i). On the other hand, let m ∈ Mτ(i).
Then m = πτ(i)m = πτ(i)ψ(m′) = ψ(pi(m′)), i.e., the map ψ : Ni → Mτ(i) is an
isomorphism. The theorem is proved.

Note that under the stated hypothesis the Krull-Schmidt theorem can be con-
sidered as a corollary of the Jordan-Hölder theorem.

Corollary 10.4.14. Any finitely generated projective right module over a
semiperfect ring can be uniquely decomposed into a direct sum of principal right
modules.

It is not difficult to see that if M is an Artinian or Noetherian module then
it can be decomposed into a direct sum of indecomposable modules. Besides, a
finitely generated module over a right Artinian ring is, obviously, both an Artinian
and Noetherian module. Note that the Krull-Schmidt theorem holds for finitely
generated modules over right Artinian rings.

Proposition 10.4.15. Any finitely generated module over a commutative prin-
cipal ideal domain uniquely decomposes into a finite direct sum of indecomposable
cyclic modules, in the other words, any two finitely generated modules over a com-
mutative PID is isomorphic if and only if they have the same free rank and the
same list of elementary divisors.

Proof. Let A be a commutative principal ideal domain. If two A-modules M1

and M2 have the same free rank and list of elementary divisors, then they are
clearly isomorphic.

Suppose two A-modules M1 and M2 are isomorphic. Then by proposition
7.8.5 they have the same free rank. So we can consider the case when M1 and
M2 are torsion modules and have the same list of elementary divisors. Since
each primary component of each module M1 and M2 is indecomposable Artinian
and Noetherian module, by proposition 10.1.6, its endomorphism ring is local.
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Therefore our theorem follows from the Krull-Schmidt theorem.

10.5. PERFECT RINGS

One of the main properties that are characteristic of a semiperfect ring is that
every finitely generated module has a projective cover. This restriction to finitely
generated modules is absent for perfect rings, the object of study in this section.

Some fundamental properties of perfect rings depend on a generalization of
the idea of nilpotence, which is T -nilpotence. We shall now discus the important
concept of a T -nilpotent ideal (right, left, two-sided).2)

Definition. An ideal (right, left, two-sided) J is called right (resp. left)
T -nilpotent if for any sequence a1, a2, . . . , an . . . of elements ai ∈ J there exists
a positive integer k such that akak−1...a1 = 0 (resp. a1a2 . . . ak = 0). An ideal J
is called T -nilpotent if it is right and left T -nilpotent.

Clearly, any T -nilpotent ideal is a nil-ideal. However, not every T -nilpotent
ideal is nilpotent. Nor is every nil-ideal necessarily a T -nilpotent ideal. So, T -
nilpotent ideals are situated between nilpotent ideals and nil-ideals.

Example 10.5.1.
Let k be a field of two elements and let k[x1, x2, ..., xn, ...] be the polynomial ring

over the field k in a countable number of variables x1, x2, ..., xn, .... Consider the
ring B = k[x1, x2, ..., xn, ...]/(x2

1, x
2
2, ..., x

2
n, ...). Let I be the ideal of B generated

by the elements x̄1, x̄2,...,x̄n,... which are images of x1, x2, ..., xn, .... Then b2 = 0
for every b ∈ I and x̄1x̄2...x̄n �= 0̄ for all n. Thus, I is a nil-ideal but is not
T -nilpotent.

The following theorem may be considered as some kind of generalization of
Nakayama’s lemma for arbitrary right modules.

Theorem 10.5.1. For any right ideal I in a ring A the following conditions
are equivalent:

(1) I is right T -nilpotent;
(2) a right A-module M satisfying the equality MI = M is equal to zero;
(3) MI is a small submodule in M for any non-zero right A-module;
(4) ANI is a small submodule in AN , where AN is a free module of countable

rank.

Proof.
(1) ⇒ (2). Suppose MI = M and M �= 0. Then there exist elements m1 ∈ M

and a1 ∈ I such that m1a1 �= 0. Let m1 =
∑

nibi, where ni ∈ M , bi ∈ I. Then

2) The notions of perfect rings and T -nilpotent ideals were introduced by H.Bass (see H.Bass,
Finitistic dimension and a homological generalization of semi-primary rings, Trans. AMS, v.
95, 1960, the definition on p.466).
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m1a1 =
∑

nibia1. As m1a1 �= 0 there exists an index i such that nibia1 �= 0.
Set m2 = ni, a2 = bi. Then m2a2a1 �= 0. Let m2 =

∑
n′

ici, where n′
i ∈ M ,

ci ∈ I, then m2a2a1 =
∑

n′
icia2a1 �= 0. Therefore there exists an index i such

that n′
icia2a1 �= 0. Set m3 = n′

i, a3 = ci. Then m3a3a2a1 �= 0. Continuing
this process, we can build a sequence a1, a2, ..., an, ... of elements of the ideal I
such that anan−1...a2a1 �= 0 for any positive integer n. But this contradicts the
hypothesis that the ideal I is right T -nilpotent.

(2) ⇒ (3). Let N be a non-zero right A-module and let MI + N = M . Then
(M/N)I = M/N . So, by (2), M/N = 0. This means that n = M and so MI is a
small submodule in M .

(3) ⇒ (4). This is obvious, because (4) is a particular case of (3).
(4) ⇒ (1). Consider F = AI as a right A-module with a free basis

x1, x2, ..., xn, .... For a given sequence a1, a2, ..., an, ... of elements of the ideal

I consider the submodule G of the module F given by G =
∞∑

i=1

giA, where

gi = xi − xi+1ai, i ∈ N . Clearly, FI + G = F , then by hypothesis G = F .
In particular, x1 ∈ G and therefore there exists a decomposition of the element x1

in the basis g1, g2, ..., gn, ....: x1 =
k∑

i=1

gibi, where bi ∈ A for i = 1, ..., k. Therefore

we have:

x1 =
k∑

i=1

gibi = x1b1 + x2(b2 − a1b1) + x3(b3 − a2b2) + ...

+xk(bk − ak−1bk−1) − xk+1akbk.

Since the elements x1, x2, ..., xk, xk+1 are part of a free basis of the module F ,
we obtain the following system of equalities: b1 = 1, b2 = a1, b3 = a2a1, ...,
bk = ak−1...a1, akbk = 0. Therefore akak−1...a1 = 0, i.e., I is a right T -nilpotent
ideal. The theorem is proved.

Corollary 10.5.2. Let I be a right T -nilpotent right ideal of A and let P
and Q be any two projective right A-modules. Then P/PI � Q/QI implies that
P � Q.

Proof. Let f̄ be a given isomorphism from P/PI to Q/QI. Since P is a
projective module, there exists an A-homomorphism f : P → Q which makes the
diagram:

P P/PI

f̄

Q Q/QI

commutative. The surjectivity of f̄ implies that Imf + QI = Q. Since I is T -
nilpotent, by theorem 10.5.1, Imf = Q, i.e., f is epimorphism. From projectivity
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of Q it follows that there exists a decomposition P = P ′ ⊕ Q′, where P ′ = Kerf
and Q′ � Q. Reducing modulo I, we obtain P/PI � P ′/P ′I ⊕ Q′/Q′I. Since
P/PI � Q′/Q′I, we obtain that P ′/P ′I = 0. And applying theorem 10.5.1 again,
we see that P ′ = 0. This means that P = Q′ � Q.

Definition. A ring A with Jacobson radical R is called right (resp., left)
perfect if A/R is semisimple and R is right (resp., left) T -nilpotent. If A is both
right and left perfect, R is called a perfect ring.

Examples 10.5.2.
1. Any right (resp., left) Artinian ring is perfect, because the Jacobson radical

of it is nilpotent, and so is both right and left T -nilpotent.
2. Since the Jacobson radical R of a right (resp., left) perfect ring is right (resp.,

left) T -nilpotent, R is a nil-ideal. So idempotents of A can be lifted modulo R.
Consequently, a right (or left) perfect ring is semiperfect.

3. Note that the notion right perfect is not symmetric, i.e., there are right
perfect rings that are not left perfect (and vice versa). Here we give the example
of a ring which is left perfect but not right perfect.3) Let k be a field, and let kw

be the algebra of all infinite matrices over k. We denote by N the set of all strictly
lower triangular matrices in kw having a finite number of nonzero entries. Let A
be the subalgebra of kw generated by N together with the identity. Then N is the
radical of A, A/R � k, and N is left T -nilpotent, but N is not right T -nilpotent.
Thus, A is left perfect, but not right perfect. Note that every nilpotent ideal is
right and left T -nilpotent. Consequently, N is not nilpotent ideal, that gives us
the example of the left T -nilpotent ideal that is not nilpotent.

Theorem 10.5.3 (H.Bass). Let A be a ring with Jacobson radical R. Then
the following are equivalent:

1. A is right perfect.
2. Every right A-module has a projective cover.

Proof.
(1) ⇒ (2). Let A be a right perfect ring with Jacobson radical R and let

M be a right A-module. Let 1 = e1 + e2... + en be a decomposition into a
sum of orthogonal local idempotents. Then A/R is semisimple and M/MR as an
A/R-module decomposes into a direct sum of a finite number of right simple A/R-
modules: M/MR = Ui1 ⊕ ... ⊕ Uim

. Since every right perfect ring is semiperfect,
from theorem 10.3.7 it follows that any right simple Ā-module U has the form
U = P/PR, where P is an indecomposable projective A-module. Let Pik

/Pik
R =

Uik
(k = 1, ...,m), where Pik

is an indecomposable projective A-module. Set
P = Pi1 ⊕ ... ⊕ Pim

, which is a projective A-module. Then using the projectivity

3) See H.Bass, Finitistic dimension and a homological generalization of semi-primary rings
// Trans. Amer. Math. Soc., v.95 (1960), p.466-488).
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of P we have the following commutative diagram:

P

ψ

Pi1/Pi1R ⊕ ... ⊕ Pik
/Pik

R 0

0 MR M M/MR � Ui1 ⊕ ... ⊕ Uim 0

for a suitable homomorphism ψ. Then Im(ψ) + MR = M and Ker(ψ) ⊆ (Pi1 ⊕
... ⊕ Pim

)R = PR. Since R is right T -nilpotent, from theorem 10.5.1 it follows
that Im(ψ) = M , i.e., ψ is an epimorphism. Since PR is a small submodule in P ,
Ker(ψ) ⊆ PR implies that Ker(ψ) is a small submodule in P . So, ψ : P → M is
a projective cover of M .

(2) ⇒ (1). By theorem 10.4.8, A is a semiperfect ring. We need only to check
that the Jacobson radical R of A is T -nilpotent. Let M be a right A-module.
Since M has a projective cover, we have MR ⊆ radM ⊂ M and radM �= M . In
particular, for any right A-module M , MR = M implies that M = 0. This means,
by theorem 10.5.1, that R is right T -nilpotent and A is right perfect.

Proposition 10.5.4. Let {a1, a2, ....} ⊆ A be given. Let F =
∞
⊕

i=0
eiA be a free

A-module, and let K be its free submodule generated by

{fi = ei − ei+1ai+1 : i ≥ 0}.

Then the right A-module M = F/K is flat. Moreover, M is projective only if the
descending chain of principal left ideals

Aa1 ⊇ Aa2a1 ⊇ ...

stabilizes.

Proof. To see that M = F/K is flat it suffices, by proposition 6.3.7, to show
that, for any left A-module X, K⊗AX → F⊗AX is injective. Note that K⊗AX =
∞
⊕

i=0
(fi ⊗X) and F ⊗A X =

∞
⊕

i=0
(ei ⊗X). Suppose y =

∞∑
i=0

(fi ⊗xi) ∈ K ⊗A X maps

to zero, then

0 = (e0 − e1a1) ⊗ x0 + ... + (en − en+1an+1) ⊗ xn =

= e0 ⊗ x0 + e1 ⊗ (x1 − a1x0) + ... + en ⊗ (xn − anxn−1)−
−en+1 ⊗ an+1xn.

Therefore, x0 = x1 = ... = xn = 0 and so y = 0. Thus, M is flat.
Now assume that M is projective. Then the short exact sequence

0 → K → F → M
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splits, i.e., F � K ⊕ M . Therefore there exists a projection π : F → K. Let
π(ei) =

∑
j

fjbij (where the bij ∈ A are almost all zero for any given i). Then

fi = π(fi) =
∑

j

fjbij −
∑

j

fjbi+1,jai+1,

and we have bii − bi+1,iai+1 = 1 for all i �= j. For sufficiently large j we have

0 = b0j = b1ja1 = b2ja2a1 = ... = bjjaj ...a2a1.

As a result, we have

aj ...a2a1 = aj ...a2a1 − bjjaj ...a2a1 = (1 − bjj)aj ...a2a1 =

= −bj+1,jaj+1aj ...a2a1

for sufficiently large j’s. This means that the descending chain of ideals Aa1 ⊇
Aa2a1 ⊇ ... stabilizes.

Theorem 10.5.5 (H.Bass). Let A be a ring with Jacobson radical R. Then
the following are equivalent:

1. A is right perfect.
2. Every flat right A-module is projective.
3. A satisfies the descending chain condition on principal left ideals.

Proof.
(1) ⇒ (2). Let M be a flat right A-module. By theorem 10.5.3 it has a

projective cover ϕ : P → M which induces a short exact sequence:

0 → K −→ P
ϕ−→ M → 0

Since M is flat, the sequence

0 → K ⊗A Ā −→ P ⊗A Ā
ϕ⊗1−→ M ⊗A Ā → 0

is also exact, where Ā = A/R. Since M ⊗A Ā � M/MR and ϕ is the projective
cover, ϕ⊗1 defines an isomorophism P/PR � M/MR. This means that K/KR =
0. Since R is T -nilpotent, from theorem 10.5.1 it follows that K = 0, that is M � P
is projective.

(2) ⇒ (3). Consider a descending chain of principal right ideals, we can write
by

Aa1 ⊇ Aa1a2 ⊇ .... (10.5.1)

As in proposition 10.5.4 we can associate a flat module M to the sequence
{a1, a2, ...}. Since by hypothesis M is projective, by proposition 10.5.4, the se-
quence (10.5.1) stabilizes.
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(3) ⇒ (4). We now show that the Jacobson radical R of A is right T -nilpotent.
Consider an arbitrary sequence {a1, a2, ...} ⊆ R. Since the sequence (10.5.1)
stabilizes, we have an..a1 = ban+1an...a1 for some n and some b ∈ A. Then
(1 − ban+1)an...a1 = 0. Since, by proposition 3.4.5, the element 1 − ban+1 is
invertible in A, an...a1 = 0, that is R is right T -nilpotent.

Since every descending chain of principal right ideals in Ā = A/R can be
written in the form

Āā1 ⊇ Āā1ā2 ⊇ .... (10.5.2)

the d.c.c. on principal left ideals of A implies the same for Ā. Thus, A/R is
semisimple, and so A is right perfect.

10.6. EQUIVALENT CATEGORIES

In chapter 4 we introduced the general notions of category and functor. In this
chapter we are interested only in categories of modules over rings and additive
functors between them. The main notion in this section will be the notion of an
equivalence of categories of modules, which is a mathematical formulation of the
idea ”having the same structure”.

Definition. Two categories C and D are isomorphic if there are functors
F : C → D and G : D → C such that GF = 1C and FG = 1D, where 1C and 1D
are the respective identity functors.

Unfortunately this notion of an isomorphism of categories is not very useful in
the theory of modules. Very often categories which intuitively must be ’equal’ are
not isomorphic according to this definition. So we introduce a weaker, but more
useful definition.

Recall that a functor F from a category C to a category D is additive if F (f +
g) = F (f) + F (g) for any morphisms f, g ∈ MorC. The most important functors
in the theory of modules, the functors Hom and ⊗, are additive.

Recall the definition of a natural isomorphism of functors which we introduced
in section 4.1.

Definition. Let F and G be two functors from a category C to a category
D. A morphism (or a natural transformation) from the functor F to the
functor G is a map ϕ which assigns to each object X ∈ ObC a morphism ϕ(X) :
F (X) → G(X) of the category D with the following property: for any pair of
objects X,Y ∈ ObC and any any morphism f : X → Y of the category C we have
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G(f)ϕ(X) = ϕ(Y )F (f), i.e., the following diagram commutes:

F (X)
ϕ(X)

F (f)

G(X)

G(f)

F (Y )
ϕ(Y )

G(Y )

A morphism of functors will simply be denoted by ϕ : F → G. If for every
X ∈ ObC the morphism ϕ(X) is an isomorphism, then one says that ϕ is an
natural isomorphism of functors and writes ϕ : F � G. Then there is a
natural transformation ϕ−1 : G → F defined by ϕ−1(X) = ϕ(A)−1. In this
case the two functors F, G from the category C to the category D are said to be
isomorphic and we shall write F � G.

Definition. An additive covariant functor F : C → D is called an equivalence
of categories C and D if there exists a covariant additive functor G : D → C such
that GF � 1C and FG � 1D. A functor G with this property is called an inverse
equivalence to F . In this case we shall also say that a pair of functors F and G
give an equivalence of the categories C and D. If there is such an equivalence, the
categories C and D are called equivalent, written as C ≈ D.

Obviously, isomorphic categories are equivalent, but not conversely.

This section is devoted to the study of some of the main properties of equivalent
categories.

Proposition 10.6.1. If the functors F : C → D and G : D → C are an
equivalence of categories, then

1. The correspondence HomC(X,Y ) → HomD(F (X), F (Y )) mapping f to
F (f) is bijective;

2. The correspondence HomD(U, V ) → HomC(G(U), G(V )) mapping g to G(g)
is bijective;

3. A morphism f ∈ MorC is an isomorphism if and only if F (f) is an isomor-
phism;

4. A morphism g ∈ MorD is an isomorphism if and only if G(g) is an iso-
morphism;

5. Every object X ∈ ObC is isomorphic to an object of the form G(U), where
U ∈ ObD;

6. Every object U ∈ ObD is isomorphic to an object of the form F (X), where
X ∈ ObC.

Proof. 1. Let G : D → C be a functor inverse to F . Let f : X → Y be
a morphism of the category C and ϕ : GF → 1C be a natural isomorphism of
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functors. Consider the commutative diagram:

GF (X)
ϕ(X)

GF (f)

X

f

GF (Y )
ϕ(Y )

Y

Since ϕ(X) is an isomorphism, f = ϕ(Y )GF (f)ϕ−1(X). So if F (f) = F (f1),
GF (f) = GF (f1) and hence f = f1 for f1 ∈ MorC. Thus, the map
HomC(X,Y ) → HomD(F (X), F (Y )) is injective.

Let g : F (X) → F (Y ) be an arbitrary monomorphism. We consider f =
ϕ(Y )G(g)ϕ−1(X) and g1 = F (f). Then, as before, f = ϕ(Y )G(g1)ϕ−1(X) and
thus G(g) = G(g1). Consequently, g = g1 = F (f), i.e., the map HomC(X,Y ) →
HomD(F (X), F (Y )) is surjective, and therefore it is bijective.

3. If f is an isomorphism, then F (f) is an isomorphism without any special
assumption on the functor F .

Conversely, suppose F (f) : F (X) → F (Y ) is an isomorphism. Then there
exists a homomorphism α : F (Y ) → F (X) such that F (f)α = 1F (Y ) and αF (f) =
1F (X). By property 1, there is a homomorphism g : Y → X such that F (g) =
α. Hence F (gf) = F (g)F (f) = αF (f) = F (1F (X)) and F (fg) = F (f)F (g) =
F (f)α = F (1F (Y )). Again, by property 1, we obtain that fg = 1F (Y ) and gf =
1F (X). Thus, f is an isomorphism.

5. Since GF � 1C , GF (X) � X for any X ∈ ObC. Then X � G(U), where
U = F (X) ∈ ObD.

The other statements of the proposition are proved similarly.

Definition. An additive functor F : C → D is called faithful if F (f) = 0
implies f = 0, where f ∈ MorC. In other words, F is faithful if the homomorphism
HomC(X,Y ) → HomD(F (X), F (Y )) is injective for all X, Y .

An additive functor F : C → D is said to be full if the homomorphism
HomC(X,Y ) → HomD(F (X), F (Y )) is surjective for all X, Y .

From proposition 10.6.1 we now obtain the following statement:

Proposition 10.6.2. An additive covariant functor F : C → D is an equiva-
lence of categories if and only if

1. F is a faithful functor;
2. F is a full functor;
3. Every object U ∈ ObD is isomorphic to an object of the form F (X), where

X ∈ ObC.

Proposition 10.6.3. If two functors F : mod-A → mod-B and G : mod-B →
mod-A constitute an equivalence of categories, then there exist natural isomor-
phisms

HomB(N,F (M)) � HomA(G(N),M)
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HomB(F (M), N) � HomA(M,G(N))

of Abelian groups in each variable.

Proof. Let N be a right B-module. Since FG � 1B , there is an isomorphism
ωN : FG(N) � N . For any right A-module M this isomorphism induces an
isomorphism of Abelian groups

HomB(F (M), FG(N)) � HomB(F (M), N)

Since F is an equivalence, by proposition 10.6.2, F is faithful and full, and so we
have an isomorphism

HomA(M,G(N)) � HomB(F (M), FG(N)) � HomB(F (M), N))

in which f ∈ HomA(M,G(N)) corresponds to ωNF (f) ∈ HomB(F (M), N)). We
shall show that this isomorphism is a natural transformation in each variable.
Suppose we have a homomorphism u : N → N1 in mod-B.

Then because uωN = ωN1FG(u), we have

ωN1F ((G(u)f) = ωN1(FG(u))F (f) = u(ωNF (f))

which shows that the diagram

HomA(M,G(N)) −→ HomB(F (M), N)
↓ ↓

HomA(M,G(N1)) −→ HomB(F (M), N1)

is commutative. The statement for the other variable is proved similarly. This
completes the proof.

Proposition 10.6.4. Let a functor F be an equivalence of the categories mod-
A and mod-B, then a sequence of A-modules

0 −→ M1
f−→ M2

g−→ M3 −→ 0 (10.6.1)

is exact if and only if the sequence of B-modules

0 −→ F (M1)
F (f)−→ F (M2)

F (g)−→ F (M3) −→ 0 (10.6.2)

is exact.

Proof. Assume that the sequence (10.6.1) is exact. We shall prove that se-
quence (10.6.2) is also exact. Since f is a monomorphism and g is an epimor-
phism, by proposition 10.6.1, it follows that F (f) is a monomorphism and F (g)
is an epimorphism. Since gf = 0, we obtain that F (g)F (f) = F (gf) = 0
and therefore ImF (f) ⊆ KerF (g). Thus all that remains to be proved is
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that KerF (g) ⊆ ImF (f). Write K = KerF (g). Let iK : K → F (M)
be a natural inclusion. By proposition 10.6.3, there is an isomorphism ϕ :
HomB(K,F (M)) � HomA(G(K),M), where G is the inverse functor to F .
Then ϕ(iK) ∈ HomB(K,F (M)) and by this proposition we have gϕ(iK) =
ϕ(F (g)(iK)) = ϕ(0) = 0. Therefore Imϕ(iK) ⊆ Kerg = Imf . Then by propo-
sition 1.2.1 there is a homomorphism h : G(K) → M1 such that fh = ϕ(iK).
Since ϕ is an isomorphism, we obtain iK = ϕ−1(fh) = F (f)ϕ−1(h). Hence
K = KerF (g) = ImiK ⊆ ImF (f). This proves that sequence (10.6.2) is exact.

Conversely, let sequence (10.6.1) be exact. Since G is also an equivalence, then
by the proof above the sequence

0 −→ GF (M1)
GF (f)−→ GF (M2)

GF (g)−→ GF (M3) −→ 0

is also exact. But GF � 1mod−A, so the sequence (10.5.1) is exact, as required.

Corollary 10.6.5. If a functor F is an equivalence of categories between mod-
A and mod-B, then it is exact.

Proposition 10.6.6. If a functor F is an equivalence of the categories mod-A
and mod-B, then a right A-module P is projective if and only if the right B-module
F (P ) is projective.

Proof. Suppose P is a projective right A-module and

0 → N1 → N → N2 → 0

is an exact sequence of right B-modules. Let G be the functor inverse to F .
Since G is an equivalence, G is exact by corollary 10.6.5, and so we have an exact
sequence of right A-modules:

0 → G(N1) → G(N) → G(N2) → 0

Since P is projective, HomA(P, ∗) is an exact functor, and so we have an exact
sequence:

0 → HomA(P,G(N1)) → HomA(P,G(N)) → HomA(P,G(N2)) → 0

By proposition 10.6.3 we have also the following exact sequence:

0 → HomB(F (P ), N1) → HomB(F (P ), N) → HomB(F (P ), N2) → 0

which shows that F (P ) is a projective right B-module.
Conversely, let F (P ) be projective, then GF (P ) is also projective, since G is

an equivalence. Since GF (P ) � P , we obtain that P is projective.

Definition. We say that a right A-module P is a generator for the category
mod-A, if for every right A-module M there is an epimorphism

P (I) −→ M −→ 0
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for some set I, where P (I) denotes the direct sum of the modules Pi (i ∈ I), all Pi

being isomorphic to P .
For example, AA is a generator for the category mod-A, since any right A-

module is a quotient of a free module.

Proposition 10.6.7. A right A-module P is a generator for the category mod-
A if and only if there exists an isomorphism Pn � A ⊕ X of A-modules for some
integer n > 0 and some A-module X.

Proof. Since P is a generator, it generates the right regular A-module AA.
However AA is finitely generated, so P is finitely generates AA, i.e., there is an
epimorphism

Pn −→ A −→ 0

for some integer n > 0. Since AA is projective, this sequence splits, i.e., Pn �
A ⊕ X.

The inverse statement is obvious, since any module is a quotient of a free
module.

The following statement may be considered as giving equivalent definitions of
the concept of a generator.

Proposition 10.6.8. For a right A-module P the following statements are
equivalent:

1. P is a generator for the category mod-A;
2. For any right A-module M we have M = HomA(P,M)P =

∑
{ϕP | ϕ ∈

HomA(P,M)} ;
3. HomA(P, ∗) is a faithful functor from mod-A to the category of Abelian

groups.

Proof.
(1) ⇒ (2) and (2) ⇒ (1) are obvious.
(2) ⇒ (3). Note that HomA(P, ∗) is a faithful functor means that for any

nonzero f ∈ HomA(M,N) there exists g ∈ HomA(P,M) such that fg �= 0.
Let f ∈ HomA(M,N) be given and f �= 0. Take an m ∈ M for which fm �= 0.

By hypothesis m = ϕ1x1+ϕ2x2+...+ϕnxn for some ϕ1, ϕ2, ..., ϕn ∈ HomA(P,M)
and x1, x2, ..., xn ∈ P . Thus fϕ1x1 + fϕ2x2 + ... + fϕnxn �= 0. Without loss of
generality, let fϕ1x1 �= 0. Then fϕ1 �= 0, as required.

(3) ⇒ (2). Suppose there exists a right A-module M such that K =
HomA(P,M)P �= M , i.e., the inclusion K = HomA(P,M)P ⊂ M is strict. Let
f : M → M/K be the natural projection, then f �= 0. By hypothesis there is
g ∈ HomA(P,M) such that fg �= 0. But Img ⊆ K. A contradiction. Hence,
K = M .

From this proposition we see that the property of being a generator is a cate-
gorical one and so we have the following statement.
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Proposition 10.6.9. If a functor F is an equivalence of categories mod-A and
mod-B, then a right A-module P is a generator of mod-A if and only if the right
B-module F (P ) is a generator of mod-B.

Proposition 10.6.10. A right A-module P is projective and finitely generated
if and only if there is an isomorphism P ⊕ X � An for some integer n > 0 and
some A-module X.

Proof. Since a module P is projective and finitely generated if and only if it
is a direct summand of a finitely generated free module, we have an epimorphism
An −→ P −→ 0 for some integer n > 0. Since P is projective, this sequence is
split, i.e., An � P ⊕ X for some module X.

Definition. We say that a right A-module P is a progenerator for mod-A,
if it is a finitely generated projective generator.

In particular, AA is a progenerator for mod-A and AA is a progenerator for
A-mod.

From propositions 10.6.7 and 10.6.10 there follows immediately the next state-
ment:

Proposition 10.6.11. A right A-module P is a progenerator for mod-A if
and only if there are integers n > 0, m > 0, and A-modules X, Y such that
Pn � A ⊕ X and Am � P ⊕ Y .

Since the property of being a finitely generated module is a categorical property,
propositions 10.6.6 and 10.6.9 yield the following statement:

Proposition 10.6.12. If a functor F is an equivalence of the categories mod-
A and mod-B, then a right A-module P is a progenerator of mod-A if and only if
the right B-module F (P ) is a progenerator of mod-B.

Consider the category mod-A of right A-modules. Let P be a right A-module.
Put B = EndA(P ). Then P becomes a left B-module, by ϕp = ϕ(p). It is easy
to check that this turns P into a left B-module. Since ϕ(pa) = ((ϕ(p))a = (ϕp)a,
P is an (B,A)-bimodule. Then HomA(P, ∗) is an additive covariant functor from
mod-A to mod-B. Moreover, for any right A-module M , HomA(P,M) is a right
B-module. Indeed, for any f : P → M and any ϕ : P → P we can consider fϕ as
a composition of two homomorphisms. If we take M = P , then we can consider
HomA(P,P ) = EndA(P ) = B as a right module over itself. And by proposition
2.1.2 we have a ring isomorphism:

B = EndA(P ) → HomB(F (P ), F (P )) = EndB(B)

Thus we obtain the following statement.
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Proposition 10.6.13. Let functors F : mod-A → mod-B and G : mod-B →
mod-A constitute an equivalence of categories and let P = G(B). Then P is a
progenerator of mod-A such that EndA(P ) � B.

Proposition 4.3.5 shows that the functor HomA(P, ∗) preserves finite direct
sums. In the situation when P is a finitely generated module we have a stronger
statement, namely that this functor preserves any direct sum as well.

Proposition 10.6.14. Let the Mi (i ∈ I) be right A-modules. If P is a finitely
generated right A-module, then there is an isomorphism

HomA(P, ⊕
i∈I

Mi) � ⊕
i∈I

HomA(P,Mi)

as Abelian groups. If B = EndA(P ), then this is in addition an isomorphism of
right B-modules.

Proof. Let M = ⊕
i∈I

Mi, let πi : M → Mi be a natural projection and let

f ∈ HomA(P,A). Since P is a finitely generated A-module, πif is the zero
homomorphism for almost all i and hence {πif}i∈I is in ⊕

i∈I
HomA(P,Mi). Then

the mapping α : HomA(P, ⊕
i∈I

Mi) → ⊕
i∈I

HomA(P,Mi) such that α(f) = {πif}i∈I

is a homomorphism of Abelian groups, which is obviously a monomorphism. We
shall show that α is an epimorphism as well. Let {gi}i∈I be in ⊕

i∈I
HomA(P,Mi).

For any p ∈ P we put g(b) = {gi(b)}i∈I . Then g ∈ HomA(P,M) and α(g) =
{gi}i∈I . Thus, α is an epimorphism, and so an isomorphism of Abelian groups.

If B = EndA(P ), then, as was shown above, the HomA(P,M) and each
HomA(P,Mi) can be regarded as right B-modules. If ϕ ∈ B, then {πifϕ}i∈I

is the product of {πif}i∈I and ϕ. Therefore the constructed isomorphism ϕ is
not only an isomorphism of Abelian groups but also an isomorphism of B-modules.

10.7. THE MORITA THEOREM

In this section we shall prove the famous Morita theorem, which gives the answer
to the question: which rings A and B are such the categories of modules over them
have the ”same” structure?

Theorem 10.7.1. Let P be a progenerator in the category mod-A, B =
EndA(P ), F = HomA(P, ∗) and G = ∗ ⊗B P . Then F , G give an equivalence of
the categories mod-A and mod-B.

Proof. For the functors F and G we can construct a functor morphism ϕ :
1mod−B → FG in the following way. For every B-module N we define ϕ(N) to
be the homomorphism N → HomA(P,N ⊗B P ), mapping an element x ∈ N into
the A-homomorphism ux : P → N ⊗B P giving by ux(p) = x ⊗B p. Also there is
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a functor morphism ψ : 1mod−A → GF defined as follows. For every A-module M
define ψ(M) to be the homomorphism HomA(P,M)⊗B P → M mapping f ⊗B p
into f(p) ∈ M , where f ∈ HomA(P,M) and p ∈ P . It is easy to verify that
ϕ and ψ are functor morphisms. We shall show that they are, indeed, functor
isomorphisms, i.e., natural.

Indeed, ϕ(B) is a natural isomorphism, since B = HomA(P,P ) �
HomA(P,B ⊗B P ) = FG(B). As P is a finitely generated A-module, using
propositions 10.6.14 and 4.6.2 we obtain that FG(B(I)) = HomA(P,B(I)⊗B P ) �
HomA(P,P (I)) � B(I) for any index set I.

Since B is a progenerator of mod-B, for any right B-module N there is an
epimorphism f : B(I) → N . Let N1 = Kerf . There is also an epimorphism
g : B(J) → N1. Then the sequence

B(J) g−→ B(I) f−→ N −→ 0 (10.7.1)

is exact. Since P is projective, the functor F is exact, and G is right exact, so the
functor FG is also right exact. Applying the functor FG to the sequence (10.7.1)
we obtain again an exact sequence

FG(B(J))
FG(g)−→ FG(B(I))

FG(f)−→ FG(N) −→ 0 (10.7.2)

Since we have isomorphisms ϕ1 : B(I) → FG(B(I)) and ϕ2 : B(J) → FG(B(J)),
we obtain the following commutative diagram

B(J)
g

ϕ1

B(I)
f

ϕ2

N

ϕ(N)

0

FG(B(J))
FG(g)

FG(B(I))
FG(f)

FG(N) 0

with exact rows and isomorphisms ϕ1 and ϕ2. Then by corollary 4.2.6 ϕ(N) is
also an isomorphism. Thus FG(N) � N for any right B-module N .

In a similar way we shall show that GF (M) � M for any right A-module M .
Since P is a progenerator of mod-A, for any right A-module M there is an

epimorphism f : P (I) → M . Let M1 = Kerf . There is also an epimorphism
g : P (J) → M1. Then the sequence

P (J) g−→ P (I) f−→ M −→ 0 (10.7.3)

is exact. We have natural isomorphisms

GF (P ) = HomA(P,P ) ⊗B P � EndA(P ) ⊗B P = B ⊗B P � P

On the other hand, since P is a finitely generated A module, applying propositions
10.6.14 and 4.6.2 gives that

GF (P (I)) = HomA(P,P (I)) ⊗B P � B(I) ⊗B P � ⊗
I
(B ⊗B P ) � P (I)
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for any index set I. Therefore applying the functor GF to the sequence (10.6.2)
we obtain the following commutative diagram

P (J)
g

ϕ1

P (I)
f

ϕ2

M

ϕ(N)

0

GF (P (J))
GF (g)

GF (P (I))
GF (f)

GF (M) 0

with exact rows and isomorphisms ϕ1 and ϕ2. Then by corollary 4.2.6 ϕ(M) is
also an isomorphism. Thus GF (M) � M for any right A-module M .

Definition. Two rings A and B are said to be Morita equivalent if their
categories of modules mod-A and mod-B are equivalent.

From proposition 10.6.13 and theorem 10.7.1 we immediately obtain the fol-
lowing famous theorem:

Theorem 10.7.2 (K.Morita). Two rings A and B are Morita equivalent if
and only if there is a progenerator P in mod-A such that B � EndA(P ). In this
case, an equivalence of the categories of mod-A and mod-B is realized by the pair
of functors F = HomA(P, ∗) and G = ∗ ⊗B P .

Corollary 10.7.3. Let A be a ring and n > 0 be a natural number. Then the
rings A and Mn(A) are Morita equivalent.

Proof. Since A is a progenerator for mod-A, the module An is also a progen-
erator for mod-A for any integer n > 0. Then A is Morita equivalent to the ring
B � EndA(An) � Mn(A).

Corollary 10.7.4. If A and B are Morita equivalent rings, then there is an
idempotent e ∈ Mn(A) such that B � eMn(A)e.

Proof. Since the rings A and B are Morita equivalent, there is a progenerator P
such that B � EndA(P ). By proposition 10.6.11 it follows that there is an integer
n > 0 such that An � P ⊕ Y . Then Mn(A) � EndA(An) � EndA(P ⊕ Y ). And
from the two-sided Peirce decomposition we obtain that there is an idempotent
e ∈ Mn(A) such that EndA(P ) � eMn(A)e.

Let A be an FDI-ring (see section 2.4). Then the identity of A can be de-
composed into a sum of pairwise orthogonal primitive idempotents and A can be
decomposed into a direct sum of a finite number of indecomposable right ideals
of the form eiA. Each such ideal is an indecomposable principal right A-module.
Writing eiA = Pi and grouping isomorphic modules together we can write this
decomposition in the form: A = Pn1

1 ⊕ ... ⊕ Pns
s where the P1, ..., Ps are pairwise

nonisomorphic indecomposable right ideals. Clearly, an FDI-ring A can also be
decomposed into a sum of indecomposable left ideals.
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Corollary 10.7.5. Let A be an FDI-ring with a decomposition A = Pn1
1 ⊕ ...⊕

Pns
s into a direct sum of pairwise nonisomorphic right ideals. Let B = EndA(P )

be the ring of endomorphisms of the module P = P1 ⊕ ... ⊕ Ps. Then the rings A
and B are Morita equivalent.

Proof. It is obvious that there are integers n > 0 and m > 0 such that
Pn � A ⊕ X and Am � P ⊕ Y . Then from proposition 10.5.11 it follows that
P is a progenerator. Then the statement is immediately follows from the Morita
theorem.

A nonzero subset I ⊂ MorC is called an ideal of a category C if I(MorC) ⊂ I
and (MorC)I ⊂ I (products are understood in the usual sense).

A morphism f : X → Y is called right invertible if there is a morphism
g : Y → X such that fg = 1Y . A left invertible morphism is defined analogously.
A right and left invertible morphism is called invertible or an isomorphism.

A category is called local if the set of its nonivertible morphisms forms an
ideal.

Consider an FDI-ring A. We construct a category C(P1, ..., Ps) for a decompo-
sition A = Pn1

1 ⊕ ...⊕ Pns
s of A by the following way: the objects of this category

are the right ideals P1, ..., Ps and Hom(Pi, Pj) is the set of all homomorphisms
from the module Pi to the module Pj (i, j = 1, ..., s).

Theorem 10.7.6. An FDI-ring A is semiperfect if and only if there is a
decomposition A = Pn1

1 ⊕ ... ⊕ Pns
s such that the category C(P1, ..., Ps) is local.

Proof. Let the category C(P1, ..., Ps) be local. Then the rings Hom(Pi, Pi)
(i = 1, ..., s) are local. By theorem 10.3.8 the ring A is semiperfect.

Conversely, if the ring A is semiperfect, then it can be represented in the
form A = Pn1

1 ⊕ ... ⊕ Pns
s and by theorem 10.3.7 every right ideal Pi has exactly

one maximal submodule. By theorem 10.3.8 the rings Hom(Pi, Pi) (i = 1, ..., s)
are local. Since the modules Pi and Pj for i �= j are nonisomorphic, Hom(Pi, Pj)
consists of non-invertible morphisms for i �= j. Therefore the category C(P1, ..., Ps)
is local.

Proposition 10.7.7. Let A be an FDI-ring and A = Pn1
1 ⊕ ... ⊕ Pns

s . In the
category C(P1, ..., Ps) any nonzero morphism is an epimorphism if and only if the
ring A is a semisimple ring.

Proof. If A is a semisimple ring, then the statement follows from the
Wedderburn-Artin theorem.

Conversely, since each Pi is an indecomposable principal A-module, by propo-
sition 5.1.6, any nonzero morphism ψ : Pi → Pi (i = 1, ..., s) is an isomorphism
and all morphisms between nonisomorphic modules Pi and Pj are zeroes. By the-
orem 2.1.2, proposition 2.1.3 and the Wedderburn-Artin theorem, the ring A is
isomorphic to a direct product of a finite number of full matrix rings over division
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rings, i.e., is a semisimple ring.

Proposition 10.7.8. Let A be a ring and 1 =
n∑

i=1

ei be a decomposition

of 1 ∈ A into a sum of mutually orthogonal idempotents. Then the following
statements are equivalent:

1. For any ei and ek each nonzero homomorphism ϕ ∈ HomA(eiA, ekA) is a
monomorphism.

2. For any ei each nonzero homomorphism ϕ ∈ HomA(eiA,A) is a monomor-
phism.

3. For all ei, ej, ek we have ab �= 0 for any nonzero elements a ∈ eiAej and
b ∈ ejAek.

Proof. These equivalences can be directly verified and are left to the reader.

Remark. Since condition (3) is symmetrical, conditions (1) and (2) can be
replaced by their left-side analogs.

Definition. Let A be a ring and let 1 =
n∑

i=1

ei be a decomposition of 1 ∈ A

into a sum of mutually orthogonal idempotents. A ring A is called a piecewise
domain (with respect to {e1, e2, ..., en}) if it satisfies the equivalent statements of
proposition 10.7.8.

Recall that a ring A is called right semihereditary if any finitely generated right
ideal in the ring A is projective.

Proposition 10.7.9. In the category C(P1, .., Ps) of a right semihereditary
FDI-ring A = Pn1

1 ⊕ ...⊕Pns
s any nonzero morphism is a monomorphism, that is,

a right semihereditary FDI-ring is a piecewise domain.

Proof. Let ψ : Pi → Pj be a nonzero homomorphism (i, j = 1, ..., s). Since Pj

is a principal module and A is a semihereditary ring, Imψ ⊂ Pj is a projective
module and by proposition 5.1.6, Pi � Imψ ⊕ Kerψ. Hence, Kerψ = 0 because
Pi is indecomposable.

Let A = Pn1
1 ⊕...⊕Pns

s be a decomposition of an FDI-ring A into a direct sum of
pairwise nonisomorphic right ideals. Denote B = EndAP , where P = P1⊕ ...⊕Ps.

Definition. We say that a property P is Morita invariant, if whenever a
ring A has this property, so does any other ring B which is Morita equivalent to
A.

Many ring-theoretical properties are Morita invariant. Examples of such prop-
erties are being semisimple, right Noetherian, right hereditary, right semiheredi-
tary, right primitive, right semiprimitive.
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10.8. NOTES AND REFERENCES

In noncommutative algebra, there is a natural generalization of the notion of a
local ring. However in noncommutative algebra, the theory of localization does
not work nearly as well as in the commutative case. Due to the lack of a good
localization theory, the role of local rings in noncommutative algebra is not nearly
as prominent as in the commutative case. Nevertheless, noncommutative local
rings do arise naturally, and form an important class for study.

Many rings which arise naturally in the theory of rings are semilocal rings. The
importance of semilocal rings is determined by a large number of applications in
such different domains, as algebraic geometry, commutative and noncommutative
algebra, the theory of groups, the theory of modules and the theory of categories.

Proposition 10.1.5 was proved by H.Fitting in his paper H.Fitting, Die Theorie
der Automorphismenringe Abelscher Gruppen und ihr Analogon bei nicht kommu-
tativen Gruppen // Math. Ann. , v.107 (1933), p.514-542).

Note, that C.Faith in his book Algebra: Rings, Modules and Categories. I,
Springer-Verlag, Berlin-Heidelberg-New York, 1973 introduced a notion of a lift-
ring, i.e., a ring for which idempotents may lifted modulo any right ideal. Rings
for which idempotents can be lifted modulo the radical of the ring were considered
by I.Kaplansky and N.Jacobson, and were called SBI-rings (see N. Jacobson,
Structure of Rings. American Mathematical Society Colloquium Publications, Vol.
37, American Mathematical Society, Providence, 1956).

In 1960 H.Bass introduced perfect and semiperfect rings in his famous pa-
per Finitistic dimension and homological generalization of semiprimary rings //
Trans. Amer. Math. Soc., v.95 (1960), p.466-488. He called a ring A left semiper-
fect if every cyclic left A-module has a projective cover. The definition of a perfect
(resp. semiperfect) ring in this book is one of the equivalent conditions of theorem
P. (resp. theorem 2.1) in this paper of H.Bass.

Classically, there was a rich and very well-developed theory of modules over
one-sided Artinian rings. In the early 1960’s, part of this theory was extended to
the wider class of semiperfect rings. However, the passage from one-sided Artinian
rings to semiperfect rings is not just a generalization for generalization’s sake.
Semiperfect rings turn out to be a significant class of rings from the viewpoint
of homological algebra, since they are precisely the rings whose finitely generated
(left or right) modules have projective covers. At the same time, right perfect
rings are precisely the rings for which all right flat modules are projective. These
interesting module-theoretic characterizations led to many more applications of
homological methods in ring theory, and helped establish the notions of perfect
and semiperfect rings firmly in the literature.

Theorem 10.3.8 first was proved by B.Müller in his paper B.Müller, On semi-
perfect rings // Ill. J. Math., v.14, N.3 (1970), p.464-467.

The formulation of theorem 10.4.13 in this form is due to V.V.Kirichenko in
Rings and Modules, Kiev University, 1981.
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Theorem 10.6.6 shows that semiperfect rings from the categorial point of view
are a naturally generalization of local rings.

Chapter 22 of the book C.Faith, Algebra: Rings, Modules and Categories II.
Springer-Verlag, Berlin-Heidelberg-New York, 1976 and Chapter 11 of the book
F.Kasch, Modules and Rings. Academic Press, New York, 1982 are devoted to
the theory of semiperfect rings.

The famous Morita theorems were proved in the paper K.Morita, Duality for
modules and its applications to the theory of rings with minimum condition // Sci.
Rep. Tokyo Kyoiku Daigaku, v.6 (1958), p.83-142.

Piecewise domains were studied by R.Gordon and L.W.Small in the paper
Piecewise domains // J. Algebra, v.23, 1972, p.553-564.



11. Quivers of rings 1)

11.1 QUIVERS OF A SEMIPERFECT RING

In this section we define the quiver of a right Noetherian semiperfect ring and
consider its properties. The notion of a quiver for a finite dimensional algebra
over an algebraically closed field was introduced by P.Gabriel in 1972 in connection
with problems of the representation theory of finite dimensional algebras. In 1975
V.V.Kirichenko carried over this notion to the case of semiperfect right Noetherian
rings. For the case of finite dimensional algebras over an algebraically closed field
the notion of a quiver for semiperfect right Noetherian rings coincides with the
notion of a Gabriel quiver.

Recall the definition of the Gabriel quiver for a finite dimensional algebra A
over a field k. We can restrict ourselves to basic split algebras. (An algebra
A is called basic if A/R is isomorphic to a product of division algebras, where
R is the Jacobson radical of A. An algebra A over a field k is called split if
A/R � Mn1(k) × Mn2(k) × .... × Mns

(k).) All algebras over algebraically closed
fields are split.

Let P1, ..., Ps be all pairwise nonisomorphic principal right A-modules. Write
Ri = PiR (i = 1, ..., s) and Vi = Ri/RiR. Since Vi is a semisimple module,

Vi =
s
⊕

j=1
U

tij

j , where Uj = Pj/Rj are simple modules. It is equivalent to the

isomorphism P (Ri) �
s
⊕

j=1
P

tij

j . To each module Pi assign a point i in the plane

and join the point i with the point j by tij arrows. The so constructed graph is
called the quiver of A in the sense of P.Gabriel and denoted by Q(A).

Let AA = Pn1
1 ⊕ . . . ⊕ Pns

s be the decomposition of a semiperfect ring A
into a direct sum of principal right A-modules, and let P = P1 ⊕ ... ⊕ Ps, B =
EndA(P ). By the Morita theorem the category of right A-modules is equivalent
to the category of right B-modules. Obviously, B/radB is a direct sum of division
rings. The ring B is called the basic ring of the ring A.

Definition. A semiperfect ring A is called reduced if its quotient ring by the
Jacobson radical R is a direct sum of division rings.

1) That is, this chapter is about the various quivers (of modules) that are defined for certain
rings. The title phrase of this chapter does not refer to quivers (i.e., oriented graphs) with a ring
attached to each vertex.

262
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This is equivalent to the fact that there are no isomorphic modules in the
decomposition of the ring A into a direct sum of principal right A-modules.

Examples 11.1.1.
1. Let D be a division ring, and P = {α1, ..., αn} be a poset with partial order

≤. Consider the subring A in Mn(D) with eiiAejj = D if αi ≤ αj and eiiAejj = 0
otherwise. Then Mn(D) is a nonreduced semiperfect ring, while A is a reduced
semiperfect ring, moreover, A is an Artinian ring.

2. Analogously, let O be a discrete valuation ring, and P = {α1, ..., αn} be
a poset with partial order ≤. Consider a subring A in Mn(O) with eiiAejj = O
if αi ≤ αj and eiiAejj = 0 otherwise. Then Mn(O) is a nonreduced semiperfect
ring, while A is a reduced semiperfect ring, moreover, A is a non-Artinian ring.

From the Morita theorem it follows that the category of modules over a semiper-
fect ring A is equivalent to the category of modules over a reduced semiperfect
ring, i.e., the basic ring of the ring A. A semiperfect ring is called self-basic if it
coincides with its basic ring.

Let A be a semiperfect right Noetherian ring, P1, ..., Ps be all pairwise non-
isomorphic principal right A-modules. Consider the projective cover of Ri = PiR

(i = 1, ..., s), which, as above, we shall denote by P (Ri). Let P (Ri) =
s
⊕

j=1
P

tij

j .

We assign to the principal modules P1, ..., Ps points 1, .., s in the plane and join
the point i with the point j by tij arrows. The so constructed graph is called the
right quiver (or simply the quiver) of the semiperfect right Noetherian ring A
and will be denoted by Q(A).

Analogously, one can define the left quiver Q′(A) of a left Noetherian semiper-
fect ring.

One can show that the right quiver of a finite dimensional algebra A over a
field K coincides with the Gabriel quiver of A.

Note, that the quiver of a semiperfect right Noetherian ring does not change
by switching to its basic ring. Indeed, from the definition of projective cover it
follows that Q(A) = Q(A/R2).

Definition. Let A be a semiperfect ring such that A/R2 is a right Artinian
ring. The quiver of the ring A/R2 is called the quiver of the ring A and is denoted
by Q(A).

Examples 11.1.2.
1) The quiver of a semisimple ring is a disconnected union of points and so it

has the form:
{ • • . . . • }

2) Consider the quiver of the ring of p-integral numbers A = Z(p), where p is a
prime integer. It is a local ring with a unique principal module which is regular.
The projective cover of this module is the radical R = pZ(p) of the ring A. Since
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R is cyclic, the quiver of Z(p) is a one-pointed cycle and so it has the following
form:

{ ��
��

� }

3) Let A = Tn(D) be the ring of upper triangular matrices of degree n over
a division ring D. It has n principal A-modules of the form eiiA, where the eii

are the matrix units. It is easy to verify that Ri � Pi+1 for i = 1, 2, .., n − 1 and
Rn = 0. Therefore, the quiver of A is a chain which has the following form:

{
1 2 n − 1 n

• • . . . • •

}

4) Let A =
(

Z(p) Q
0 Q

)
, where Z(p) is the ring of p-integral numbers, and Q

is the field of rational numbers. It is easy to verify that the quiver Q(A) has the
form:

{ ��
��

� � }
Let AA = Pn1

1 ⊕ ... ⊕ Pns
s be the decomposition of a semiperfect ring A

into a direct sum of principal right A-modules and let 1 = f1 + ... + fs be the
corresponding decomposition of the identity of A into a sum of pairwise orthogonal
idempotents, i.e., fiA = Pni

i . Then AA = Af1 ⊕ . . . ⊕ Afs = Qn1
1 ⊕ . . . ⊕ Qns

s is
the decomposition of the semiperfect ring A into a direct sum of principal left A-
modules, i.e. Afi = Qni

i , where Qi is an indecomposable projective left A-module
(i = 1, . . . , s). Now consider the two-sided Peirce decomposition of the ring A

A =




A11 A12 . . . A1n

A21 A22 . . . A2n

...
...

. . .
...

An1 An2 . . . Ann


 .

Consider also the two-sided Peirce decomposition of the Jacobson radical R of A:
R = ⊕

i,j
fiRfj . Since R is a two-sided ideal, fiRfj ⊂ R for all i, j. By proposition

3.4.8 we have Rii = fiRfi = rad(fiAfi) for i = 1, ..., n. We shall show that
fiRfj = fiAfj for i �= j. Indeed, multiplying on the left elements from fjA
by an element fiafj we obtain a homomorphism ϕji of the module fjA to fiA.
If Im(ϕji) = fiA, then ϕji is an epimorphism. Since fiA = Pni

i , fjA = P
nj

j

are projective modules, by proposition 5.1.6, and Pni
i is isomorphic to a direct

summand of the module P
nj

j . But this is impossible, since the indecomposable
modules Pi and Pj are non-isomorphic. Therefore Im(ϕji) ⊂ fiA. We can write
the homomorphism ϕji in the form of a matrix ϕji = (ϕrs

ji ), where ϕrs
ji : Pj −→ Pi
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are homomorphisms of indecomposable non-isomorphic projective modules Pj and
Pi for r = 1, ..., ni, s = 1, ..., nj . Since Im(ϕrs

ji ) �= Pi, we have Im(ϕrs
ji ) ⊆ PiR.

Therefore Im(ϕji) ⊆ fiAR = fiR, i.e., fiAfj ⊆ fiR. Hence Aij = fiAfj = fiRfj

for i �= j. Thus, we obtain the following result.

Proposition 11.1.1. Let A = Pn1
1 ⊕ ... ⊕ Pns

s be the decomposition of a
semiperfect ring A into a direct sum of principal right A-modules and let 1 =
f1 + ... + fs be a corresponding decomposition of the identity of A into a sum of
pairwise orthogonal idempotents, i.e., fiA = Pni

i . Then the Jacobson radical of
the ring A has a two-sided Peirce decomposition of the following form:

R =




R11 A12 . . . A1n

A21 R22 . . . A2n

...
...

. . .
...

An1 An2 . . . Rnn


 , (11.1.1)

where Rii = rad(fiAfi), Aij = fiAfj for i, j = 1, ..., n.

The ring fiAfi is isomorphic to EndA(Pni
i ) � Mni

(End(Pi)), where
EndA(Pi) = O is a local ring by theorem 10.3.8. By proposition 3.4.10
radMni

(O) = Mni
(radOi).

We now set Ui = Pi/PiR. Since Ā = A/R = Un1
1 ⊕ . . . ⊕ Uns

s , the idempo-
tents f1, . . . , fs are central modulo the radical and all simple right A-modules are
exhausted by the modules U1, . . . , Us. Analogously, let Vi = Qi/RQi, then all
simple left A-modules are exhausted by the modules V1, . . . , Vs.

Definition. An idempotent f ∈ A is called canonical if f̄ Ā = Āf̄ =
Mnk

(Dk) for some k = 1, . . . , s; f̄ = f + R.

Equivalently, f is a minimal central idempotent modulo R.
A decomposition 1 = f1 + . . .+fs into a sum of pairwise orthogonal canonical

idempotents will be called a canonical decomposition of the identity of a
ring A.

It is clear that the decomposition of identity, used in proposition 11.1.1, is a
canonical decomposition of the identity of the ring A.

Lemma 11.1.2. (Annihilation lemma). Let 1 = f1+. . .+fs be a canonical
decomposition of 1 ∈ A. For every simple right A-module Ui and for each fj we
have Uifj = δijUi, i, j = 1, . . . , s. Similarly, for every simple left A-module Vi

and for each fj , fjVi = δijVi, i, j = 1, . . . , s.

Proof. We shall give the proof for the case of right modules. From the previous
proposition we obtain that fiRfj = fiAfj for i �= j. Hence Pni

i fj ⊂ fiR. But
fiA/fiR � Uni

i . Therefore Uni
i fj = 0 and so Uifj = 0 for i �= j.

We are going to show that Uifi = Ui. Let u ∈ Ui. Then u ·1 = u(f1+ ...+fs) =
ufi since ufj = 0 for i �= j. The lemma is proved.
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Let A be a reduced semiperfect ring, and let 1 = e1+...+es be a decomposition
of 1 ∈ A into a sum of mutually orthogonal local idempotents.

Set Ui = eiA/eiR and Vi = Aei/Rei.

Lemma 11.1.3 (Q-Lemma). The simple module Uk (resp. Vk) appears in
the direct sum decomposition of the module eiR/eiR

2 (resp. Rei/R2ei) if and only
if eiR

2ek (resp. ekR2ei) is strictly contained in eiRek (resp. ekRei).

Proof. If Uk is a direct summand of the module Wi = eiR/eiR
2, then by

proposition 2.2.4 and lemma 11.1.2, Wiek �= 0. Therefore eiRek does not equal
eiR

2ek and the inclusion eiRek ⊃ eiR
2ek is strict.

Conversely, suppose that eiR
2ek is strictly contained in eiRek. Consider a

submodule Xk contained in eiR,

Xk = eiRei ⊕ ... ⊕ eiRek−1 ⊕ eiR
2ek ⊕ eiRek+1 ⊕ ... ⊕ eiRes

(here the direct sum sign denotes a direct sum of Abelian groups).
From the inclusions eiR ⊃ Xk ⊃ eiR

2 it follows that eiR/Xk is a semisimple
module. We have the equalities eiR/Xk = eiRek/eiR

2ek = (eiR/Xk)ek. By
lemma 11.1.2 the module eiR/Xk decomposes into a direct sum of some copies of
the module Uk. Since eiR/Xk is isomorphic to a direct summand Wi, the module
Uk is contained in Wi as a direct summand.

For left modules Vk the statement is proved analogously. The lemma is proved.

Lemma 11.1.4. Let A be a semiperfect ring, and e, f be nonzero idempotents
of the ring A such that ē = f̄ ∈ Ā. Then there exists an invertible element a ∈ A
such that f = aea−1.

Proof. Let W1 = ēĀ = f̄ Ā. Obviously, eA and fA are projective covers of the
semisimple A-module W1. Therefore they are isomorphic. The modules (1 − e)A
and (1−f)A are projective covers of the semiperfect A-module W2 = (1̄− f̄)Ā =
(1̄ − ē)Ā. Consequently, they are isomorphic too. Write e1 = e, e2 = 1 − e and
f1 = f, f2 = 1 − f .

Now using lemma 10.3.6 we obtain that fi = aeia
−1 and f = aea−1.

Lemma 11.1.5. Let 1 = f1 + . . . + fs be a canonical decomposition of the
identity 1 ∈ A into a sum of pairwise canonical idempotents and g be a central
idempotent modulo R. There exists an invertible element a ∈ A such that fi1 +
. . . + fik

= aga−1 for a suitable subset {i1, i2, ..., ik} of {1, 2, ..., s}.

Proof. Let ḡĀ = Āḡ = Mni1
(Di1)× . . .×Mnik

(Dik
). Then f = fi1 + . . .+fik

is a central idempotent modulo R and f̄ Ā = ḡĀ. By lemma 10.3.6 we have
f = aga−1.

Corollary 11.1.6. Each central idempotent modulo R g is a sum of canonical
idempotents and there exists a canonical decomposition of 1 ∈ A into a sum of
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pairwise orthogonal canonical idempotents such that 1 = g1 + . . . + gk + gk+1 +
. . .+ gs, where g = g1 + . . .+ gk and f = fi1 + . . .+ fik

= ag1a
−1 + . . .+ agka−1

for some invertible a ∈ A.

Theorem 11.1.7. Let A be a semiperfect ring and 1 = f1 + . . . + fs = g1 +
. . .+gt be two canonical decompositions of 1 ∈ A into a sum of pairwise orthogonal
canonical idempotents. Then s = t and there exist an invertible element a ∈ A
and a permutation τ of {1, . . . , s} such that fi = agτ(i)a

−1 for each i = 1, . . . , s.

Proof. Applying the Wedderburn-Artin theorem to Ā, we immediately obtain
that s = t. Let fi = e

(i)
1 + . . .+e

(i)
ni be a decomposition of fi into a sum of pairwise

orthogonal local idempotents. Then, obviously, Uie
(i)
k �= 0 for k = 1, . . . , ni.

From the annihilation lemma it follows that Uigσ(i) = Ui for some gσ(i) and,
moreover, Uigj = 0 for j �= σ(i). Renumber the idempotents g1, . . . gs such that
Uigi = Ui (i = 1, . . . , s). Now decompose gi = h

(i)
1 + . . . + h

(i)
ni into a sum of

pairwise orthogonal local idempotents. Then we obtain two decompositions of
1 ∈ A, which satisfy the assumptions of lemma 10.3.6. Hence, there exists a
conjugating element a ∈ A which transforms one decomposition into the other,
up to a permutation. From our numeration of the idempotents g1, . . . gs it follows
that a{h(i)

1 , . . . , h
(i)
ni }a−1 = {e(i)

1 , . . . , e
(i)
ni } for each i = 1, . . . , s and, consequently,

agia
−1 = fi (i = 1, . . . , s).

We shall need a lemma, which allows one to compute the minimal number of
generators µA(X) of a finite dimensional module X over a semiperfect ring A.

Lemma 11.1.8. Let A =
s
⊕

i=1
Pni

i be the decomposition of a semiperfect ring A

into a direct sum of principal right A-modules, let µA(X) be the minimal number

of generators of a finite generated right A-module X and P (X) =
s
⊕

i=1
Pmi

i . If

m = maxmi
ni

is an integer, then µA(X) = m. Otherwise, µA(X) = [m] + 1.2)

Proof. Suppose m is not an integer and set µ = [m] + 1. Then µni ≥ mi for
all i. Therefore, Aµ = P (X)⊕P ′, where P ′ is a projective module. Clearly, there
is an epimorphism Aµ → X → 0, i.e., µA(X) ≤ µ.

Conversely, from the exact sequence AµA(X) → X → 0, in view of lemma
10.4.5, we obtain a decomposition AµA(X) = P (X) ⊕ P ′. Hence µA(X) ≥ mi for
all i. Therefore µA(X) ≥ µ.

In the second case the proof is analogous. The lemma is proved.

Definition. The quiver Q(A) of a ring A is called connected if it cannot be
represented in the form of a union of two nonempty disjoint subsets Q1 and Q2

which are not connected by any arrows.

2) Here [m] is the entire of m, i.e., the largest integer ≤ m.
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Theorem 11.1.9. The following conditions are equivalent for a semiperfect
Noetherian ring A:

(a) A is an indecomposable ring;
(b) A/R2 is an indecomposable ring;
(c) the quiver of A is connected.

Proof. Obviously, the conditions of the theorem are preserved by passing to
the Morita equivalent rings. Therefore we can assume that the ring A is reduced.

(a) ⇒ (b). Let Ā = A/R2 � Ā1 × Ā2 and let 1̄ = f̄1 + f̄2 be the corresponding
decomposition of the identity of the ring A/R2 into a sum of orthogonal idem-
potents. Let g1, g2 ∈ A be elements such that g1 + R2 = f̄1 and g2 + R2 = f̄2.
There are idempotents f1, f2 ∈ A such that f1 = g1 + r1 and f2 = g2 + r2,
where r1, r2 ∈ R2. Since f̄1Āf̄2 = 0 and f̄2Āf̄1 = 0, we have g1ag2 ∈ R2 and
g2ag1 ∈ R2 for any a ∈ A. Clearly, fi = figifi + firifi (i = 1, 2). Then the
element f1af2 = f1g1f1af2g2f2 +f1g1f1af2r2f2+ f1r1f1af2g2f2+ f1r1f1af2r2f2

belongs to R2 for any a ∈ A. This is immediate from proposition 11.1.1. Exactly
in the same way f2Af1 ⊂ R2. Therefore f2Af1 = f2R

2f1 and f1Af2 = f1R
2f2.

By proposition 11.1.1, the two-sided Peirce decomposition of R has the form:

R =
(

R1 A12

A21 R2

)
, where Ri = Rad(fiAfi) (i = 1, 2) and Aij = fiAfj for i �= j.

Calculating R2 we obtain

R2 =
(

R2
1 + A12A21 R1A12 + A12R2

A21R1 + R2A21 A21A12 + R2
2

)
.

From the above we have: A12 = R1A12 + A12R2 and A21 = R2A21 + A21R1.
By theorem 3.6.1, taking into account Nakayama’s lemma, we obtain that A12 = 0
and A21 = 0 and therefore A = A11 × A22, where Aii = fiAfi (i = 1, 2).

(a) ⇒ (c). Let the quiver of the ring A be disconnected. Then Q(A) = Q1∪Q2

and Q1 ∩ Q2 = ∅, and the points of the sets Q1 and Q2 are not connected by any
arrows. Renumbering, if necessary, the principal right A-modules P1, ..., Ps one
may assume that Q1 = {1, ..., k} and Q2 = {k+1, ..., s}. Let A = P1⊕ ...⊕Ps be a
decomposition of the ring A into a direct sum of principal right A-modules (where
Pi = eiA, e2

i = ei ∈ A, 1 = e1 + ...+es) and 1 = f1 +f2, where f1A = P1⊕ ...⊕Pk

and f2A = Pk+1⊕ ...⊕Ps. We set Aij = fiAfj , Ri = radAii (i = 1, 2). If A12 �= 0,
then by theorem 3.6.1, taking into account Nakayama’s lemma, we obtain that
the inclusion A12 ⊃ R1A12 + A12R2 is strict. But R1A12 + A12R2 = f1R

2f2.
Therefore there are local idempotents ei and ej such that ei is a summand of f1

and ej is a summand of f2 and eiR
2ej is strictly contained in eiRej . By lemma

11.1.3 we obtain that there is an arrow which connects the point i with the point
j. A contradiction. Analogously it can be proved that A21 = 0.

(c) ⇒ (a). If the ring A is decomposable then A/R2 is also decomposable.
Clearly, in this case Q(A) is disconnected.

(b) ⇒ (a) is trivial.
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The theorem is proved.

Remark. Theorem 11.1.9 is not true for semiperfect one-sided Noetherian

rings. As an example one can consider the ring A =
(

Z(p) Q
0 Q

)
introduced in

section 5.6. As was pointed out at the beginning of the section its quiver has the
form:

{ ��
��

� � }

As was shown in section 5.6 R2 =
(

p2Z(p) Q
0 Q

)
. So the ring A/R2 decom-

poses into a direct product of rings:

A/R2 � Z(p)/p2Z(p) × Q.

However, the ring A itself is indecomposable into a direct product of rings.

One can prove that if the quiver of a semiperfect right Noetherian indecom-
posable ring is disconnected, then the intersection of natural powers of the radical
of this ring is not equal to zero.

Proposition 11.1.10. Let A be a semiperfect ring such that A/R2 is left and
right Artinian. Then:

(1) if Q(A) has an arrow from i to j, the left quiver Q′(A) has an arrow from
j to i;

(2) if Q(A) has an arrow σij from i to j, there exist a nonzero homomorphisms
from Pj to Pi and from Qi to Qj.

The proof immediately follows from the definition of Q(A).

Denote by Qu the quiver obtained from Q by replacing all arrows from i to j
by a single arrow (we allow i = j). If Q has no arrows from i to j then neither
does Qu.

Let Q be the non-oriented graph obtained from Q by ignoring the orientation
of the arrows.

Corollary 11.1.11. Let A be a ring such that A/R2 is right and left Artinian.
Then Qu(A) = Q′

u(A).

The proof follows from proposition 11.1.10.

11.2 THE PRIME RADICAL

Definition. The prime radical of a ring A is the intersection of all prime ideals
in A. We shall denote it by Pr(A).
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Since by proposition 9.2.2 any maximal ideal is prime, for any ring A the
Jacobson radical rad(A) contains the prime radical Pr(A), i.e.,

Pr(A) ⊆ rad(A). (11.2.1)

The next useful statement follows immediately from this definition and propo-
sition 9.2.12.

Proposition 11.2.1. The prime radical Pr(A) of a ring A is a semiprime
ideal which is contained in every semiprime ideal in A, i.e., Pr(A) is the smallest
semiprime ideal in A.

Recall that a right (or left) ideal I in a ring A is called nilpotent if In = 0
for some positive integer n. An element a ∈ A is nilpotent if an = 0 for some
positive integer n. A right (or left) ideal I is called nil-ideal if every element of
I is nilpotent.

Proposition 11.2.2. The prime radical of a ring A contains all nilpotent
one-sided ideals of A.

Proof. Let I be a right (or left) nilpotent ideal in A so that In = 0 for some
positive integer n, then, obviously, In ⊆ Pr(A). Since Pr(A) is a semiprime ideal,
by proposition 9.2.5 it follows that I ⊆ Pr(A).

Proposition 11.2.3. For a right Artinian ring A the Jacobson radical rad(A)
is equal to the prime radical Pr(A), i.e., rad(A) = Pr(A).

Proof. By proposition 3.5.1 the Jacobson radical rad(A) of a right Artinian ring
A is nilpotent and so by proposition 11.2.2 we have the inclusion rad(A) ⊆ Pr(A).
Taking into account the inverse inclusion (11.2.1), which holds for any ring A, we
obtain the required equality.

Proposition 11.2.4. For any ring A the following statements are equivalent:
(1) A is a semiprime ring.
(2) The prime radical of A is equal to zero.
(3) A has no nonzero nilpotent ideals.
(4) A has no nonzero right nilpotent ideals.
(5) A has no nonzero left nilpotent ideals.

Proof. The equivalence (1) ⇐⇒ (2) follows immediately from the definition of
a semiprime ring and proposition 11.2.1.

All other implications are clear.

Corollary 11.2.5. If Pr(A) denotes the prime radical of a ring A then
Pr(A/Pr(A)) = 0.
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The proof of this statement follows immediately from propositions 11.2.4 and
9.2.4.

Let us give an internal characterization of the prime radical. We need the
following definition.

Definition. An element a ∈ A is called strongly nilpotent if all terms of
any sequence {ai}∞i=0 such that a0 = a and an+1 ∈ anAan are equal to zero for
sufficiently large n.

It is easy to show that each strongly nilpotent element is nilpotent. Indeed,
let a ∈ A be a strongly nilpotent element. Consider the sequence {ai}∞i=0 given
by a0 = a, a1 = a2, a2 = a2

1 = a4,...,an+1 = a2
n = a2n+1 ∈ anAan. Then for some

positive integer k we have ak = a2k+1
= 0, i.e., the element a is nilpotent.

Proposition 11.2.6 (J.Levitzki). The prime radical of a ring A coincides
with the set of all strongly nilpotent elements of A.

Proof. Let a ∈ A be an element which does not belong to the prime radical
Pr(A). Then there exists a prime ideal P such that a0 = a �∈ P . By proposition
9.2.1 a0Aa0 �∈ P . Therefore there exists an element a1 ∈ a0Aa0 such that a1 �∈ P .
Continuing this process, we obtain for each n an element an+1 ∈ anAan such that
an+1 �∈ P . So, there is a sequence {ai}∞i=0 of elements such that an+1 ∈ anAan and
an �∈ P . Therefore an �= 0 for all n, i.e., the element a is not strongly nilpotent.

Conversely, let an element a ∈ A be not strongly nilpotent and {ai}∞i=0 be
a sequence such that an+1 ∈ anAan for all n and with an �= 0 for all n. Let
M = {a0, a1, ..., an, ...}. Then 0 �∈ M . By Zorn’s lemma there exists an ideal P
which is maximal among all ideals which does not contain elements of the set M ,
i.e., such that P ∩ M = ∅.

We shall show that P is a prime ideal in A. Assume I and J are right (or
left) ideals of the ring A such that I �⊆ P and J �⊆ P . Since P + I �= P and
P +J �= P , by the maximality of the ideal P it follows that (P + I)∩M �= ∅ and
(P + J ) ∩ M �= ∅. Let ai ∈ P + I, aj ∈ P + J and m = max(i, j), then

am+1 ∈ amAam ⊆ (P + I)(P + J ) ⊆ P + IJ .

But am+1 �∈ P , therefore IJ �⊆ P . By proposition 9.2.1
P is a prime ideal and a0 = a �∈ P . Therefore a �∈ Pr(A).

Since each strongly nilpotent element is nilpotent, we have the following corol-
lary.

Corollary 11.2.7. The prime radical of a ring A is a nil-ideal.

Since idempotents can be lifted modulo any nil-ideal, by proposition 10.3.1 the
following proposition is true.
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Proposition 11.2.8. In any ring idempotents can be lifted modulo the prime
radical.

Proposition 11.2.9. Let Pr(A) be the prime radical of a ring A, e2 = e ∈ A
and e �= 0. Then ePr(A)e coincides with the prime radical of the ring eAe.

Proof. Let a ∈ ePr(A)e. Then a = eae is a strongly nilpotent element,
moreover all elements of the sequence a0, a1, a2, ..., such that a0 = a and an+1 ∈
anAan belongs to eAe.

Conversely, let an element a belong to the prime radical Pr(eAe) of the ring
eAe. Then, obviously, an arbitrary sequence a0 = a, a1, ..., an, ... such that an+1 ∈
anAan belongs to eAe. Therefore am = 0 for some positive integer m, and so
a ∈ Pr(A).

Proposition 11.2.10. For any ring A we have Pr(Mn(A)) = Mn(Pr(A)).

Proof. Let J = Pr(A) be the prime radical of the ring A. Then A/J is
a semiprime ring and by proposition 9.2.14 it follows that Mn(A/J ) is also a
semiprime ring. Since Mn(A/J ) � Mn(A)/Mn(J ), Mn(J ) is a semiprime ideal
in Mn(A). Therefore, by proposition 11.2.1, Pr(Mn(A)) ⊆ Mn(J ).

We shall show that the reverse inclusion also holds. For this we need to show
that Mn(J ) ⊆ P for any prime ideal P in Mn(A). Note that P = Mn(T ), where
T is an ideal in A. It is easy to see that T is a prime ideal in A. If aAb ∈ T , then
aeiiAbeii ∈ P for any matrix unit eii, and so by proposition 9.2.14 we have either
a ∈ T or b ∈ T . Since T is prime, we have J ⊆ T ⊆ P , therefore Mn(J ) ⊆ P .

Proposition 11.2.11. The prime radical Pr(A) of a Noetherian ring A is the
largest nilpotent right ideal in A.

Let A be a Noetherian ring. Consider the set S of all nilpotent right ideals in
A. Let N be a maximal element in S with respect to inclusion. Suppose Nn = 0.
If N1 is another nilpotent ideal in A and Nk

1 = 0 then (N + N1)n+k = 0 and
N ⊆ N + N1. Since N is a maximal element in S, N1 ⊆ N + N1 = N , and so N
is the largest nilpotent right ideal in A.

If N is a nilpotent ideal then, by proposition 11.2.2, N ⊆ Pr(A). We shall
show that the inverse inclusion is also true. Suppose I is a right ideal in A and
Im ⊆ N for some positive integer m. Then Imn = 0, i.e., I is a nilpotent right
ideal in A. Since N is the largest nilpotent right ideal, I ⊆ N . Therefore, by
definition, N is a semiprime ideal in A. Since by proposition 11.2.1 Pr(A) is the
smallest semiprime ideal, Pr(A) ⊆ N . So, Pr(A) = N is the largest nilpotent
right ideal in A.

11.3 QUIVERS (FINITE DIRECTED GRAPHS)

Definition. Following P.Gabriel, a finite directed graph (with possibly multiple
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arrows and loops) will be called a quiver.

Denote by 1, . . . , s the vertices of a quiver Q and assume that we have tij
arrows starting at the point i and ending at the point j. The matrix


 t11 t12 · · · t1s

· · · · · · · · · · · ·
ts1 ts2 · · · tss




is called the adjacency matrix of the quiver Q and denoted by [Q].
A real matrix A = (aij) is called non-negative if all elements aij are non-

negative. Note that every adjacency matrix is non-negative. Moreover, all ele-
ments of the adjacency matrix of a simply laced quiver3) are equal to 0 or 1.

Denote by Mn(R) the set of all real square matrices of order n.
Let τ be a permutation of the numbers 1, 2, . . . , n and let

Pτ =
n∑

i=1

eiτ(i)

be the corresponding permutation matrix where the eij are matrix units. Clearly,
PT

τ Pτ = PτPT
τ = E is the identity matrix of Mn(R).

Definition. A matrix B ∈ Mn(R) is called permutationally reducible if
there exists a permutation matrix Pτ such that

PT
τ BPτ =

(
B1 B12

0 B2

)
, (11.3.1)

where B1 and B2 are square matrices of order less that n. Otherwise, the matrix
is called permutationally irreducible.

Note that the transformation of a matrix B to the form PT
τ BPτ , where Pτ is

a permutation matrix, amounts to a special permutation of the elements of the
matrix B. The rows are permuted according to τ while at the same time the
columns are permuted according to τ−1.

Consider a matrix B ∈ Mn(R). If it is permutationally reducible then there
exists a permutation matrix P1 such that

PT
1 BP1 =

(
C E
0 D

)
,

where C and D are square matrices of order less that n.

3) ”Simply laced” means no multiple arrows and (hence) no multiple loops.
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If one of matrices C or D is permutationally reducible then it can be expressed
in the form analogous to (11.3.1). This means that the matrix B can be trans-
formed by means of a permutation matrix P2 to the form:

PT
2 BP2 =


 K L M

0 H G
0 0 F


 .

If any of matrices K, H, F is permutationally reducible, then this process can
be continued. Continuing the matrix B can be transformed by means of some
permutation matrix P to the following form:

PT BP =




B1 B12 · · · B1t

0 B2 · · · B2t

· · · · · · · · · · · ·
0 0 · · · Bt


 , (11.3.2)

where the square matrices B1, B2, . . . , Bt are permutationally irreducible.
Thus we have obtained the following statement:

Proposition 11.3.1. Let B ∈ Mn(R). Then there exists a permutation matrix
P such that PT BP has the form (11.3.2).

Let Q = (V Q,AQ, s, e) be a quiver, which is given by two sets V Q, AQ and
two mappings s, e : AQ → V Q. The elements of V Q are called vertices or points,
and those of AQ arrows. Usually the vertices of Q will be denoted by numbers
1, 2, . . . , s. If an arrow σ ∈ AQ connects the vertex i ∈ V Q with the vertex j ∈ V Q,
then i = s(σ) is called its start vertex (or source vertex) and j = e(σ) is called
its end vertex (or target vertex). This will be denoted as σ : s(σ) → e(σ), or
short σ : i → j.

A path of the quiver Q from the vertex i to the vertex j is an ordered set
of k arrows {σ1, σ2, ..., σk} such that the start vertex of each arrow σm coincides
with the end vertex of the previous one σm−1 for 1 < m ≤ k, and moreover, vertex
i is the start vertex of σ1, while vertex j is the end vertex of σk. The number k of
arrows is called the length of the path.

The start vertex i of the arrow σ1 is called the start of the path and the
end j of the arrow σk is called the end of the path. We shall say that the path
connects the vertex i with the vertex j and this is denoted by σ1σ2...σk : i → j.

By convention we shall consider that the path εi of length zero connects vertex
i with itself without any arrow.

Definition. A path, connecting a vertex of a quiver with itself and of length
not equal to zero, is called an oriented cycle. An oriented cycle of the length 1
is called a one-pointed cycle or a loop. A quiver without multiple arrows and
multiple loops is called a simply laced quiver.
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For a quiver Q and a field k one can define the path algebra kQ of Q over k. It
is the (free) vector space with a k-basis consisting of all paths of Q. Multiplication
in kQ is defined by obviously way: if the path σ1 . . . σm connects i and j and the
path σm+1 . . . σn connects j and k, then the product σ1 . . . σmσm+1 . . . σn connects
i with k. Otherwise, the product of these paths equals 0.

The identity of this algebra is the sum of all paths εi of length zero. Extending
the multiplication by the distributivity, we obtain a k-algebra (not necessarily
finite dimensional).

Note that kQ is finite dimensional if and only if Q is finite and has no cyclic
path. Moreover, in this case kQ is a basic split algebra. If k is an algebraically
closed field and Q is a finite quiver without oriented cycles, then the quiver of kQ
can be constructed from Q by reversing of all arrows.

Definition. Denote by V Q the set of all vertices and by AQ the set of all
arrows of a quiver Q. A quiver Q1 with V Q1 ⊆ V Q and AQ1 ⊆ AQ is called a
subquiver of the quiver Q.

Let Q1 and Q2 be subquivers of a quiver Q. We shall say that the subquiver
Q1 contains the subquiver Q2 and write Q2 ⊆ Q1 if V Q2 ⊆ V Q1 and AQ2 ⊆ AQ1.

Definition. A quiver is called strongly connected if there is a path between
any two of its vertices. By convention, the one-pointed graph without arrows will
be considered to be a strongly connected quiver.

Example 11.3.1.
The quiver of the following form:

1 2
• •

•
3

is strongly connected. But the following quiver

1 2
• •

•
3

is not strongly connected.

Let B ∈ Mn(R) be a matrix with real entries. Using B one can construct a
simply laced quiver Q(B) in the following way:
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1) the set of vertices V Q(B) of Q(B) is {1, 2, ..., n};
2) the set of arrows AQ(B) is defined as follows: There is an arrow from i to

j if and only if bij �= 0.

Proposition 11.3.2. A matrix B ∈ Mn(R) is permutationally irreducible if
and only if the quiver Q(B) is strongly connected.

Proof. Let the quiver Q(B) be strongly connected. Then if the matrix B is
permutationally reducible then there exists a permutation matrix Pτ such that

PT
τ BPτ =

(
B1 B12

0 B2

)
,

where B1 ∈ Mp(R), B2 ∈ Mq(R); p < n; q < n and p + q = n. We can renumber
the vertices of Q(B) in such a way that there are no arrows in Q(B) which connect
vertices of the set {p + 1, ..., n} with vertices of the set {1, ..., p}. Therefore the
matrix B is permutationally irreducible.

Conversely, let a matrix B be permutationally irreducible. If the quiver Q(B)
is not strongly connected, then there exists a pair of vertices k and l (k �= l) such
that there is no path between vertices k and l.

Denote by V Q(k) the set of all vertices of the quiver Q which are the ends of
each path with the start vertex k, V Q = V Q(B). Clearly, l �∈ V Q(k). Denote
X = V Q(k), Y = V Q\V Q(k). Since X �= ∅, Y �= ∅, X ∪ Y = V Q, X ∩ Y = ∅
and there are no arrows σ : x → y, where x ∈ X, y ∈ Y , the matrix B is
permutationally reducible. The obtained contradiction proves the proposition.

Corollary 11.3.3. A quiver Q is strongly connected if and only if the matrix
[Q] is permutationally irreducible.

Note that a renumbering of vertices of the quiver Q transforms the matrix [Q]
into the matrix PT

τ [Q]Pτ . As an immediate corollary of proposition 11.3.1 we have
the following statement:

Proposition 11.3.4. Let Q be a quiver with adjacency matrix [Q]. Then there
exists a permutation matrix P such that

PT [Q]P =




B1 B12 · · · B1t

0 B2 · · · B2t

· · · · · · · · · · · ·
0 0 · · · Bt


 , (11.3.3)

where the square matrices B1, B2, . . . , Bt are permutationally irreducible.

Definition. The numeration of the vertices of Q will be called standard if
[Q] is of the form as in the proposition 11.3.4.

Definition. A maximal (with respect to inclusion) strongly connected sub-
quiver of Q is called a strongly connected component.
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Definition. A partition of the set of vertices of a quiver Q into non-intersecting
subsets such that the subquivers corresponding to these subsets are strongly con-
nected quivers (strongly connected components of the quiver Q) shall be called the
partition of the quiver Q into strongly connected components Q1, Q2, ..., Qm;
it is denoted by P (Q;Q1, ..., Qm).

The existence of a partition of a quiver Q immediately follows from proposition
11.3.4. We shall show that partition is unique up to a renumbering of vertices.

To show the uniqueness of such a decomposition we introduce a binary relation
on the set V S(Q) = {v1, v2, ..., vn} of all vertices of the quiver Q. We say that
vi ∼ vj if and only if there exists a path from the vertex vi to the vertex vj and
there exists a path from the vertex vj to the vertex vi. Obviously, this relation is
symmetric, reflexive and transitive, so it is an equivalence relation.

Let E1, E2, ..., Em be equivalence classes of V S(Q). Then S =
m
∪

i=1
Ei and

Ei ∩ Ej = ∅ for i �= j. Moreover, these equivalence classes are strongly connected
components of the quiver Q. Now the uniqueness of the partition of the quiver Q
follows from the uniqueness of the partition of the set V S(Q) into the equivalence
classes E1, E2, ..., Em.

Thus, we have proved the following statement.

Theorem 11.3.5. Every quiver Q has a partition P (Q;Q1, ..., Qm) into
strongly connected components Q1, Q2,...,Qm. This partition is unique up to
a renumbering of vertices of the quiver Q, that is, if P (Q;Q1, ..., Qm) and
P (Q;G1, ..., Gn) are two such partitions, then m = n and there exists a permuta-
tion σ of the set {1, 2, ...,m} such that Qi = Gσ(i) for i = 1, 2, ...,m.

Definition. Let P (Q;Q1, ..., Qm) be a partition of a quiver Q into strongly
connected components Q1, . . . , Qm. The condensation Q∗ of the quiver Q is
the quiver, whose vertices are the points q1, . . . , qm corresponding to strongly con-
nected components Q1, . . . , Qm, and, moreover, there is an arrow with start vertex
qi and end vertex qj if and only if Q has an arrow with the start vertex belonging
to V Qi and the end vertex belonging to V Qj (i �= j; i, j = 1, 2, ...,m).

Example 11.3.2.
Consider the following quiver

1 2
• •

•
3

Then its strongly connected components are
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Q1 =
{

1 2
• •

}

and

Q2 =
{

3
•

}

The condensation of this quiver is:

Q∗ =
{

1 2
• •

}

Definition. A quiver without oriented cycles is called an acyclic quiver.

The following statement is clear.

Proposition 11.3.6. A strongly connected acyclic quiver is a point.

The next statement follows immediately from proposition 11.3.4.

Proposition 11.3.7. The condensation of any quiver is an acyclic simply
laced graph.

Definition. A vertex of a quiver Q is called a sink (resp. a source) if there
is no arrow with end (resp. start) at this vertex.

Proposition 11.3.8. Every acyclic quiver has a sink and a source.

Proof. Due to proposition 11.3.4 the adjacency matrix [Q] of the quiver Q can
be transformed to the form (11.3.3). Since Q has no cycles, any diagonal matrix
Bi in this decomposition has order 1. Since Q has no loops, all these matrices are
equal to zero. So there exists a permutation matrix P such that

PT [Q]P =




0 ∗ · · · ∗ ∗
0 0 · · · ∗ ∗
· · · · · · · · · · · · · · ·
0 0 · · · 0 ∗
0 0 · · · 0 0


 . (11.3.4)

From the form (11.3.4) of the adjacency matrix [Q] of an acyclic quiver Q we

immediately obtain the following corollaries.

Corollary 11.3.9. The adjacency matrix [Q] of an acyclic quiver Q is nilpo-
tent.
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Corollary 11.3.10. Suppose that the set of vertices of an acyclic quiver con-
sists of t elements. Then we can enumerate these elements by numbers 1, . . . , t in
such a way that the existence of an arrow from i to j implies i < j.

Definition. Let S = {α1, . . . , αn} be a finite poset with an ordering relation ≤.
The diagram of S is the quiver Q(S) with as set of vertices V Q(S) = {1, . . . , n}
and the set of arrows AQ(S) is given by: there is an arrow σ : i → j (i �= j) if and
only if αi ≤ αj , and moreover, there is no element αk such that αi ≤ αk ≤ αj ,
where αk �= αi, αk �= αj .4)

An arrow σ : i → j of an acyclic quiver Q is called extra if there exists a path
from i to j of length greater than 1.

Clearly, the diagram of a finite poset S is an acyclic simply laced quiver without
extra arrows.

Proposition 11.3.11. Let Q be an acyclic simply laced quiver without extra
arrows. Then Q is the diagram of some finite poset S. Conversely, the diagram
Q(S) of a finite poset S is an acyclic simply laced quiver without extra arrows.

Proof. By corollary 11.3.10 there exists a numbering of the vertices of the
quiver Q by the numbers {1, . . . , t} such that i < j whenever there is an arrow
from i to j. Since there are no extra arrows, the existence of an arrow σ : i → j
implies that there is no vertex k, (k �= i, k �= j) such that there is a path from i
to k and from k to j. It follows immediately that Q is the diagram of the poset of
its vertices. The converse statement was discussed above. Thus, the proposition
is proved.

Remark. Let Q = (V Q,AQ, s, e) be a quiver and let k be a field. A rep-
resentation V = (Vx, Vσ) of Q over k is given by a family of vector spaces Vx

(x ∈ V Q) and a family of linear mappings Vσ : Vs(σ) → Ve(σ) (σ ∈ AQ). Given
two representations V, V ′, a mapping f = (fx) : V → V ′ is given by linear map-
pings fx : Vx → V ′

x such that for each σ ∈ AQ one has fs(σ)V
′
σ = Vσfe(σ). If Q

is finite, then the category of right kQ-modules is equivalent to the category of
representations of Q.

Let A be an associative algebra over a field k. A representation of A is an
algebra homomorphism T : A → Endk(V ), where V is a vector space over k. If
the space V is finite dimensional, then its dimension is called the dimension (or
degree) of the representation T .

For any representation of the algebra A we can construct a right module over
that algebra, and vice versa: for any right module we can construct a representa-
tion.

Let T : A → Endk(V ) be a representation of the algebra A. Define va = vT (a)
for v ∈ V , a ∈ A. It follows immediately from the definition of representation that,

4) This diagram is often called the Hasse diagram of the poset S (see e.g. Encyclopaedia of
Mathematics, Vol.7, p.100, KAP, 1991).
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in this way, V becomes a right A-module. We say that this module is corresponds
to the representation T . On the other hand, any right A-module is obtained in
this way. Indeed, if M is a right A-module, then for a fixed a ∈ A, the map
T (a) : m �→ ma is a linear transformation in M . Assigning to every a ∈ A the
operator T (a) we obtain a representation of the algebra A corresponding to the
module M .

Given two representations T1 : A → Endk(V1) and T2 : A → Endk(V2), a
mapping f : T1 → T2 is a linear transformtation f : V1 → V2 satisfying f(vT1(a)) =
f(v)T2(a) for v ∈ V , a ∈ A, or, rewritten, f(va) = f(v)a; hence it is an A-module
homomorphism. Thus, the category of all representations of A is equivalent to the
category of all right A-modules.

We say that a representation T of A is indecomposable if its corresponding
right A-module is indecomposable. The algebra A is said to be finite represen-
tation type (or short finite type) if there are only finitely many isomorphism
classes of indecomposable representations of A.

A finite quiver Q is said to be finite representation type (or short finite
type) if the path algebra kQ has this property.

Theorem 11.3.12 (P.Gabriel).5) A connected quiver Q is of a finite type if
and only if the underlying undirected graph Q of Q (obtained from Q by deleting
the orientation of the arrows) is a Dynkin diagram of the form An, Dn, E6, E7, E8.

This theorem was applied to describe some classes of algebras of finite repre-
sentation type.

For any finite quiver Q = (V Q,AQ, s, e) we can construct a bipartite
quiver Qb = (V Qb, AQb, s1, e1) in the following way. Let V Q = {1, 2, ..., s},
AQ = {σ1, σ2, ..., σk}. Then V Qb = {1, 2, ..., s, b(1), b(2), ..., b(s)} and AQb =
{τ1, τ2, ..., τk}, such that for any σj ∈ AQ we have s1(τj) = s(σj) and e1(τj) =
b(e(σj)). In other words, in the quiver Qb from the vertex i to vertex b(j) go tij
arrows if and only if in the quiver Q from the vertex i to vertex j go tij arrows.
As above, denote by Q an undirected graph which is obtained from Q by deleting
the orientation of all arrows.

Theorem 11.3.13 (P.Gabriel). Let A be a finite dimensional algebra over
an algebraically closed field k with zero square radical and the quiver Q. Then A
is of finite type if and only if Qb is a finite disjoint union of Dynkin diagrams of
the form An, Dn, E6, E7, E8:

An :
• • . . . • •
1 2 n

n ≥ 1

5) See P.Gabriel, Unzerlegbare Darstellungen I // Manuscripta Math., v.6 (1972), p.71-103.
and I.N.Berstein, I.M.Gel’fand, V.A.Ponomarev, Coxeter functors and Gabriel’ theorem //
Russian Math. Surveys, v.28, no.2 (1973), p.17-32.
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Dn :

1
•

• • . . . • •
3 n

•
2

n ≥ 4

E6 :

3
•

• • • • •
1 2 4 5 6

E7 :

3
•

• • • • • •
1 2 4 5 6 7

E8 :

3
•

• • • • • • •
1 2 4 5 6 7 8

For much more about representations of algebras and quivers see volume 2 of
this book.

11.4. THE PRIME QUIVER OF A SEMIPERFECT RING

Let A be a semiperfect ring and let J be an ideal in A contained in the Jacobson
radical R of A such that the idempotents can be lifted modulo J .

Consider the quotient ring Ā = A/J = Ā1 × · · · × Āt, where all the rings
Ā1, . . . , Āt are indecomposable and 1̄ = f̄1 + · · · + f̄t ∈ Ā is the correspond-
ing decomposition into a sum of pairwise orthogonal central idempotents. Put
W = J /J 2 and represent the idempotents f̄1, . . . , f̄t by the corresponding points
1, . . . , t. We join the points i and j by an arrow if and only if f̄iWf̄j �= 0. The
thus obtained finite directed graph Q(A,J ) is called the quiver associated with
the ideal J . The set of points {1, 2, ..., t} will be called the set of vertices and
the set of arrows between these points will be called the set of arrows of the quiver
Q(A,J ). Taking into account theorem 10.3.10, one can easily see that the quiver
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Q(A,J ) of the semiperfect ring A is defined uniquely up to a renumbering of the
vertices and it is not changed by passing to Morita equivalent rings. Moreover,

Q(A,J ) = Q(A/J 2,W ).

Since idempotents can be lifted modulo J , by proposition 10.3.4, the idem-
potents f̄1, ..., f̄t can be lifted modulo J preserving their orthogonality, i.e., the
equality 1 = f1 + f2 + ... + ft holds, where fifj = δijfi and f̄i = fi + J for
i, j = 1, ..., t. Write Aij = fiAfj and Jii = fiJ fi for i, j = 1, ..., t. Obviously,
fiAfj ⊂ J for i �= j. Therefore the two-sided Peirce decomposition of the ideal J
has the following form:

J =




J11 A12 . . . A1n

A21 J22 . . . A2n
...

...
. . .

...
An1 An2 . . . Jnn


 . (11.4.1)

Now we shall give a criterion of nilpotency of a two-sided ideal I in a semiperfect
ring A.

Theorem 11.4.1. An ideal I in a semiperfect ring A is nilpotent if and only
if for each local idempotent e ∈ A the ideal eIe in the ring eAe is nilpotent. In
particular, if eIe = 0 for every local idempotent e ∈ A, then I is nilpotent.

Proof. Clearly, if an ideal I in a ring A is nilpotent, then eIe is nilpotent in
the ring eAe.

The inverse statement we prove by induction on the number of local idempo-
tents appearing in a decomposition 1 = e1 + e2 + ...+ en of the identity of A into a
sum of pairwise orthogonal local idempotents. For n = 1 the statement is trivial.

Write e = e1 and f = 1 − e, I1 = eIe, I2 = fIf , I12 = eIf , I21 = fIe. By
the induction hypothesis, I2 is a nilpotent ideal in the ring fAf .

Further we proceed by induction on the maximum m of the exponents of nilpo-
tency m1 and m2 of the ideals I1 and I2. If m = 0, then I2 = 0. By simple
calculation one can verify that eI4e ⊂ I2

1 + I12I2
2I21 and fI4f ⊂ I2

2 + I21I2
1I12.

Obviously, (I2
1 +I12I2

2I21)m−1 = 0 and (I2
2 +I21I2

1I12)m−1 = 0. By the induction
hypothesis, I4 is a nilpotent ideal. The theorem is proved.

Theorem 11.4.2.
Let A be a semiperfect ring. The quiver Q(A,J ) associated with a nilpotent

ideal J is connected if and only if A is an indecomposable ring.

Proof. Clearly, if the ring A is decomposable, then the quiver Q(A,J ) is
disconnected. Conversely, let the quiver Q(A,J ) be disconnected and let the set
of vertices V (Q(A,J )) of the quiver Q(A,J ) decompose as V (Q(A,J )) = S ∪ T ,
where S ∩ T = ∅, S �= ∅, T �= ∅ and there are no arrows between points of S
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and points of T . Let us renumber the idempotents f1, ..., ft in such a way that
S = {1, 2, ...,m}, T = {m + 1, ..., t}. We set e1 = f1 + ... + fm and e2 = 1 − e1.
From (11.4.1) it follows that

J =
(

J1 X
Y J2

)
,

where Jk = ekJ ek (k = 1, 2); X = e1Ae2; Y = e2Ae1.
Since J is a nilpotent ideal, J1 and J2 are also nilpotent ideals in their corre-

sponding rings. Clearly,

J 2 =
(

J 2
1 + XY J1X + XJ2

Y J1 + J2Y J2 + Y X

)
.

We shall show that if X �= 0 then the inclusion J1X + XJ2 ⊂ X is strict. Oth-
erwise, X = J1X + XJ2. Substituting in the second summand of the right side
the expression J1X +XJ2, instead of X we obtain X = J1X +XJ 2

2 . Continuing
this process, we have X = J1X + XJ m

2 . Since J2 is nilpotent, X = J1X. Since
the ideal J1 is also nilpotent, X = 0.

Let W = J /J 2. Then, assuming that X �= 0 we obtain e1We2 �= 0, i.e., there
exist idempotents fi, i ∈ S, and fj , j ∈ T , such that fiWfj �= 0 that contradicts
the fact that between points of S and T there are no arrows.

Analogously, Y = 0. The theorem is proved.

Since any semiprimary ring A is a semiperfect ring and its Jacobson radical is
nilpotent, we have the following corollary

Corollary 11.4.3. Let A be a semiprimary ring with Jacobson radical R.
Then the quiver Q(A,R) is connected if and only if A is an indecomposable ring.

Since by corollary 11.2.7 the prime radical Pr(A) of a ring A is a nil-ideal, it is
contained in the Jacobson radical R of A. Using the fact that the idempotents can
be lifted modulo any nil-ideal one can consider Q(A,Pr(A)), the quiver associated
with the prime radical Pr(A).

Definition. The quiver Q(A,Pr(A)) of a semiperfect ring A is called the
prime quiver of A and denoted by PQ(A).

Remark. If A is a right Artinian ring then by proposition 11.2.3 the prime
radical coincides with the Jacobson radical. Therefore in this case the prime quiver
PQ(A) is obtained from the quiver Q(A) by changing all arrows going from one
vertex to another one to one arrow, i.e., PQ(A) = Qu(A).

Example 11.4.1.
Let O be a discrete valuation ring. Assume M is its unique maximal ideal,
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M = πO = Oπ. Consider the ring

A =


 O O O

0 O πO
0 0 O


 .

The prime radical I of the ring A is

I =


 0 O O

0 0 πO
0 0 0


 .

It is clear that

I2 =


 0 0 πO

0 0 0
0 0 0




and

I/I2 =


 0 O O/πO

0 0 πO
0 0 0


 .

Therefore

PQ(A) =




1 2
• •

•
3




At the same time the Jacobson radical R of the ring A has the form

R =


 πO O O

0 πO πO
0 0 πO


 .

It is clear that

R2 =


 π2O πO πO

0 π2O π2O
0 0 π2O




so that

R/R2 =


 πO/π2O O/πO O/πO

0 πO/π2O πO/π2O
0 0 πO/π2O


 .

Therefore the quiver Q(A) of the ring A is
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��
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1 2

3

The following statement immediately follows from theorem 11.4.2.

Corollary 11.4.4. Let A be a semiperfect ring with prime radical Pr(A). If
Pr(A) is a nilpotent ideal, then the prime quiver PQ(A) is connected if and only
if A is an indecomposable ring.

Since by proposition 11.2.11 the prime radical of a Noetherian ring is nilpotent,
from corollary 11.4.4 we obtain the following statement:

Corollary 11.4.5. Let A be a semiperfect Noetherian ring with prime radical
Pr(A). Then the prime quiver PQ(A) is connected if and only if A is an
indecomposable ring.

11.5 THE PIERCE QUIVER OF A SEMIPERFECT RING

Let A be a semiperfect ring. Suppose that e1, ..., er are pairwise orthogonal idem-
potents corresponding to different principal right A-modules Pi = eiA (i = 1, ..., r).

Definition. The Pierce quiver of a semiperfect ring A with the Jacobson rad-
ical R is the directed graph Γ(A) = (V,E), with as set of vertices V = {e1, ..., er}
and as set of arrows E = {(ei, ej) | eiRej �= 0}.

Remark. The Pierce quiver first appeared in the books R.S.Pierce, Associa-
tive Algebras. Graduate Texts in Mathematics, Vol.88, Springer-Verlag, Berlin-
Heidelberg-New York, 1982 and L.H.Rowen, Ring theory, I, II. Academic Press,
New York-Boston, 1988.

Obviously, the quiver Γ(A) will be the same for rings Morita equivalent to A.
Recall that a finite dimensional algebra A over a field k is called an algebra of
finite type if it has a finite number of non-equivalent indecomposable represen-
tations. Note that if A is an algebra of finite type with zero square of the radical
then its Gabriel quiver Q(A) coincides with the Pierce quiver Γ(A). This fact is
not true in a general, as we can see from the following examples.
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Examples 11.5.1.
1. Let Z(p) be the ring of p-integral numbers and let Q be the field of rational

numbers. Consider the ring from section 6.6

A = H(Z(p), 1, 1) =
(

Z(p) Q
0 Q

)
. (11.5.1)

Then

radA = R =
(

pZ(p) Q
0 0

)

and

Pr(A) =
(

0 Q
0 0

)
.

For this ring its quiver Q(A) is

{ ��
��

� � }
the prime quiver PQ(A) is {

1 2
• •

}

and the Pierce quiver Γ(A) is:

{ ��
��

� �� }
2. Let O be a discrete valuation ring (not necessary commutative) with classical

ring of fractions D which is a division ring and unique maximal ideal M. Consider
the ring of s × s matrices of the form

A = Hs(O) =




O O . . . O
M O . . . O
...

...
. . .

...
M M . . . O


 . (11.5.2)

In this case the quiver Q(A) has the form
{

1 2 n − 1 n 1
• • . . . • • •

}

PQ(A) =
{

1
•

}

and Γ(A) is the full graph on s vertices, i.e., from each vertex of Γ(A) to every
vertex of Γ(A) there is an arrow and at every vertex of Γ(A) there is a loop.
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3. Let R, C be the field of real and complex numbers, respectively. Consider
the following ring

A =


 R C C

0 R C
0 0 R


 . (11.5.3)

In this case Q(A) is: 


1 2 3

• • •




PQ(A) is {
1 2 3
• • •

}

and Γ(A) is

PQ(A) =




1 2
• •

•
3




Let us reformulate the definition of the quiver Γ(A) of a semiperfect ring A
in terms of principal right A-modules P1, P2, ..., Pr. Let A = Pn1

1 ⊕ ... ⊕ Pnr
r be

the decomposition of a semiperfect ring A into a direct sum of right principal A-
modules. Moreover, let 1 = f1 + ... + fr be the corresponding decomposition of
the identity 5 ∈ A into a sum of pairwise orthogonal idempotents, i.e., fiA = Pni

i

(i = 1, ..., r) and let the modules Q1, ..., Pr be pairwise non-isomorphic. Taking
into account that Hom(eA, fA) � fAe one can easily see that the quiver Γ(A)
can be defined as the set of vertices 1, . . . , s corresponding to modules P1, . . . , Ps

(or to idempotents f1, . . . , fs). The set of arrows of Γ(A) consists of all arrows
starting at i and ending at j (i �= j) if and only if Hom(Pj , Pi) �= 0 and there is a
loop at i if and only if Hom(Pi, PiR) �= 0.

Theorem 11.5.1. A semiperfect ring A is indecomposable if and only if the
quiver Γ(A) is connected.

Proof. Clearly, if A = A1 × A2 is a direct product of rings A1 and A2, then
Γ(A) = Γ(A7) ∪ Γ(A2) is a disjoint union of quivers Γ(A1) and Γ(A2).

Conversely, let Γ(A) = Γ1 ∪ Γ2 be a disjoint union of two quivers Γ1 and Γ2

and let V (Γ1) = {1, ...,m}, V (Γ2) = {m + 1, ..., r}. Then Hom(Pni
i , P

nj

j ) = 0 for
i = m + 1, ..., r, j = 1, ...,m and i = 1, ...,m, j = m + 1, ..., r. Therefore A can be
written as the direct product of the rings A1 = (f1 + ... + fm)A(f1 + ... + fm) and
A2 = (fm+1 + ... + fr)A(fm+1 + ... + fr). The theorem is proved.
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11.6 DECOMPOSITIONS OF SEMIPERFECT RINGS

Let A be a semiperfect ring. We assume in the next theorem that the adjacency
matrix [Γ(A)] of the Pierce quiver Γ(A) has the following form:

B =




B1 ∗ · · · ∗ ∗
0 B2 · · · ∗ ∗
· · · · · · · · · · · · · · ·
0 0 · · · Bt−8 ∗
0 0 · · · 0 Bt


 , (11.6.1)

where the square matrices B1, B2, . . . , Bt are permutationally irreducible.

Theorem 11.6.1.6) Let A be a semiperfect ring with Pierce quiver Γ(A), and
such that the adjacency matrix B = [Γ(A)] has the form (11.6.3). Then there
exists a decomposition of 1 ∈ A into a sum of mutually orthogonal idempotents:
1 = g1 + · · · + gt such that

A =
t⊕

i,j=8

giAgj

is the two-sided Peirce decomposition with giAgj = 0 for j < i, and, moreover, the
adjacency matrices of the Pierce quivers Γ(Ai) of the rings Ai = giAgi coincide
with the Bi (i = 1, . . . , t).

Proof. Let A by a semiperfect ring with Pierce quiver Γ(A). Let A = Pn1
1 ⊕

Pn2
2 ⊕ ... ⊕ Pnt

t be a decomposition of A into a direct sum of principal right A-
modules where Pi is not isomorphic to Pj if i �= j and let 1 = f6 + f2 + ... + ft

be the corresponding decomposition of 1 ∈ A into a sum of pairwise orthogonal
idempotents. Suppose that Q1, . . . , Qt are the strongly connected components of
the Pierce quiver Γ(A), whose adjacency matrices are B1, . . . , Bt. Let gi be the
sum of idempotents from the decomposition 6 = f1 + · · · + ft corresponding to
the points of Qi, i = 1, . . . , t. It follows immediately that the two-sided Peirce

decomposition A =
t
⊕

i,j=1
giAgi satisfies the conditions of the theorem.

Corollary 11.6.2. A semiperfect ring A can be uniquely decomposed into
a finite direct product of indecomposable rings A1, . . . , Am with connected Pierce
quivers Γ(Ai), i = 1, . . . , m.

Theorem 11.6.3. Let A be a semiperfect two-sided Noetherian ring with the
quiver Q(A). Suppose, the matrix [Q] is block upper triangular with permutation-
ally irreducible matrices B1, . . . , Bt on the main diagonal of (11.6.1). Then there

6) As recorded in this theorem the Peirce decomposition and the Pierce quiver have much to
do with one another. Note the difference in spelling. The concept Peirce decomposition comes
from B.O.Peirce; the concept of the Pierce quiver was named for R.S.Pierce.
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exists a decomposition of 1 ∈ A into a sum of mutually orthogonal idempotents:
1 = g1 + · · · gt such that

A =
t⊕

i,j=1

giAgj

is the two-sided Peirce decomposition with giAgj = 0 for j < i, moreover, the
adjacency matrices of the quivers Q(Ai) of the rings Ai = giAgi coincide with
Bi, i = 1, . . . , t.

Proof. Let A = Pn1
1 ⊕ Pn2

2 ⊕ ... ⊕ Pns
s be a decomposition of a ring A into a

direct sum of non-isomorphic principal right A-modules and let 1 = f1+f2+...+fs

be the corresponding decomposition of 1 ∈ A into a sum of pairwise orthogonal
idempotents. Then, moreover, fiA = Pni

i for i = 1, ..., s. Let Q1, . . . , Qt be the
strongly connected components of the quiver Q(A) corresponding to the matrices
B1, . . . , Bt on the main diagonal of the adjacency matrix [Q(A)] (see proposition
11.4.2). We shall prove the theorem by induction on t. The case t = 1 is trivial.
Denote by g1 = e the sum of idempotents from the set of idempotents {f1, . . . , fs}
corresponding to the component Q1, f = 1 − e.

Set A1 = eAe, A2 = fAf , eAf = X, fAe = Y . By proposition 11.1.1 we have
the following form for the Jacobson radical R of A

R =
(

R1 X
Y R2

)
,

where Ri is the Jacobson radical of the ring Ai (i = 1, 2).
Obviously,

R2 =
(

R2
1 + XY R1X + XR2

Y R1 + R2Y R2
2 + Y X

)
.

From the form (11.6.1) of the matrix [Q(A)] it follows that the quiver Q(A)
contains no arrows from vertices m+1, . . . , s to the vertices 1, . . . , m. Now the two-
sided Peirce decompositions of A and R imply that Y = Y R1 + R2Y . Applying
theorem 3.6.1 we conclude that Y is a finitely generated left A2-module and a
finitely generated right A1-module. From Nakayama’s lemma it follows that Y = 0,
i.e.,

A =
(

A1 X
0 A2

)
.

Clearly,

[Q(A2)] =




B2 B23 . . . B2t

0 B3 . . . B3t

. . . . . . . . . . . .
0 0 . . . Bt




and we can apply the induction hypothesis to the ring A2, which completes the
proof of the theorem.
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Corollary 11.6.4. A semiperfect Noetherian ring A can be uniquely decom-
posed into a finite direct product of indecomposable rings A1, . . . , Am with con-
nected quivers Q(Ai), i = 1, . . . , m.

Corollary 11.6.5. A reduced Noetherian semiperfect ring A with an acyclic
quiver Q(A) is Artinian and there exists a decomposition of 1 ∈ A into a sum of
mutually orthogonal local idempotents : 1 = e1 + · · · es such that eiAej = 0 for
j < i and the rings eiAei are division rings, i, j = 1, . . . , s.

Theorem 11.6.6. Let A be a semiperfect ring with nilpotent prime radical
Pr(A) and let the matrix [PQ(A)] be block upper triangular with permutation-
ally irreducible diagonal matrices B1, . . . , Bt so that it is of the form (11.6.1).
Then there exists a decomposition of 1 ∈ A into a sum of mutually orthogonal

idempotents 1 = g1 + · · ·+ gt such that A =
t
⊕

i,j=1
giAgj is the two-sided Peirce de-

composition of A with giAgj = 0 for j < i, and moreover, the adjacency matrices
of the quivers Q(Ai) of the rings Ai = giAgi coincide with Bi (i = 1, . . . , t).

The proof of this theorem is similar to the proof of theorem 11.6.3.

Corollary 11.6.7. A semiperfect ring A with a nilpotent prime radical
can be uniquely decomposed into a finite direct product of indecomposable rings
A1, . . . , Am with connected prime quivers PQ(Ai), i = 1, . . . , m.

The next theorem can be considered as a version of the Wedderburn-Artin
theorem:

Theorem 11.6.8. The following conditions are equivalent for a semiperfect
ring A:

(1) A is semisimple;
(2) the Pierce quiver Γ(A) is a finite set of (isolated) points.

Proof.
The implication (1) =⇒ (2) is trivial.
(2) =⇒ (1). By corollary 11.6.2 a semiperfect ring can be decomposed into a

finite direct product of full matrix rings over local rings, moreover, by definition
of the Pierce quiver Γ(A), it follows that the unique maximal ideal of each such
ring is equal to zero. The theorem is proved.

We are going to prove one more version of the Wedderburn-Artin theorem.

Theorem 11.6.9. The following conditions are equivalent for a semiperfect
right Noetherian ring A:

(1) A is semisimple;
(2) the quiver Q(A) is a finite set of (isolated) points.
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Proof.
The implication (1) =⇒ (2) is obvious.
(2) =⇒ (1). We shall prove this inclusion by induction on the number s of

vertices of the quiver Q(A). We can consider the ring A to be reduced. If s = 1,
then A = O is a local right Noetherian ring with a unique maximal ideal M.
Moreover, by definition of the quiver Q(A), it follows that M2 = M. Then by
Nakayama’s lemma we obtain that M = 0 and the ring O is a division ring.

Let the number of vertices of Q(A) equal s > 1, let e be a local idempotent,
f = 1 − e. Then A1 = eAe = O is a local ring with a unique maximal ideal M,
A2 = fAf . Let R2 be the Jacobson radical of the ring A2, X = eAf , Y = fAe.

By proposition 11.1.1 it follows that

R =
(

M X
Y R2

)
.

Then

R2 =
(

M2 + XY MX + XR2

Y M + R2Y R2
2 + Y X

)
.

If X = 0 and Y = 0, then the ring O is a division ring and by the induction
hypothesis the ring A2 is a direct product of s − 1 division rings.

Suppose, Y = 0. The quiver Q(A2) is a disconnected union of s− 1 points. By
theorem 3.6.1 the ring A2 is right Noetherian and therefore it is a direct product
of division rings, thus R2 = 0 and hence by theorem 3.6.1 and Nakayama’s lemma
we have M2 = M. Therefore O = D is a division ring and by lemma 11.1.3
X = MX + XR2, whence X = 0.

The case X = 0 can be considered analogously.
Suppose, X �= 0 and Y �= 0. Then by lemma 11.1.3 X = MX + XR2 and

Y = Y M + R2Y . By theorem 3.6.1 and Nakayama’s lemma we obtain X = MX
and XY = M. But XY = MXY , whence M = M2 and M = 0. From the
equality X = MX we obtain that X = 0. A contradiction.

Remark. The authors do not know whether this theorem is true for an
arbitrary semiperfect ring.

11.7 THE PRIME QUIVER OF AN FDD-RING

In this section A is an associative (non necessarily semiperfect) ring.

Definition. Let Pr(A) be the prime radical of a ring A. The quotient ring
A/Pr(A) is called the diagonal of the ring A.

Note that by proposition 11.2.2 and corollary 11.2.5 the diagonal of a ring is a
semiprime ring.

Definition. A ring A is called a ring with finitely decomposable diago-
nal, or simply FDD-ring, if its diagonal A/Pr(A) is an FD-ring.
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Taking into account proposition 11.2.9 and theorem 2.4.11 one can form the
two-sided Peirce decomposition of the prime radical Pr(A) of an FDD-ring A in
the following way:

Let Ā = Ā1 × ... × Āt be a decomposition of the diagonal Ā = A/Pr(A)
into a direct product of a finite number of indecomposable rings and let 1̄ =
f̄1 + ...+ f̄t be the corresponding decomposition of the identity 1̄ ∈ Ā into a sum of
pairwise orthogonal central idempotents. Since by corollary 11.2.7 Pr(A) is a nil-
ideal, by proposition 10.3.1 the idempotents f̄1, ..., f̄t may be lifted modulo Pr(A)
preserving their orthogonality, i.e., we have an equality 1 = f1 +f2 + ...+ft where
fifj = δijfi and f̄i = fi+Pr(A) for i, j = 1, ..., t. Obviously, Aij = fiAfj ⊂ Pr(A)
(i �= j; i, j = 1, ..., t ) and Ii = fiPr(A)fi is the prime radical Pr(Ai) of Ai = fiAfi

(i = 1, ..., t). Therefore the two-sided Peirce decomposition of the prime radical
Pr(A) of the ring A has the following form:

Pr(A) =




I1 A12 . . . A1t

A21 I2 . . . A2t

...
...

. . .
...

At1 At2 . . . It


 . (11.7.1)

Moreover, Ā = A/Pr(A) = A1/I1 × ... × At/It, i.e., Āk = Ak/Ik for k = 1, ..., t.
Thus, we have the following proposition.

Proposition 11.7.1. The prime radical of an FDD-ring has a two-sided
Peirce decomposition

Pr(A) =
t
⊕

i,j=1
fiPr(A)fj

of the form (11.7.1), where fiPr(A)fi = Pr(Ai) = Ii and fiPr(A)fj = Aij,
(i �= j; i, j = 1, . . . , t) and, moreover, Ā = A/Pr(A) = A1/I1 × ... × At/It, i.e.,
Āk = Ak/Ik for k = 1, ..., t.

Using the notations of this chapter we now give the definition of the prime
quiver for an arbitrary FDD-ring.

Definition. Let A be an FDD-ring with prime radical I = Pr(A) and let W =
I/I2. Let {1, .., t} be t different points corresponding to idempotents f̄1, ..., f̄t, and
let there be an arrow from i to j if and only if f̄iWf̄j �= 0. The finite directed
graph obtained in this way is called the prime quiver of the FDD-ring A and
it is denoted by PQ(A).

Obviously, PQ(A) = PQ(A/Pr2(A)) and PQ(A) is uniquely defined up to
a renumbering of its vertices. Moreover, the prime quivers of Morita equivalent
FDD-rings coincide.

Theorem 11.7.2. The following conditions are equivalent for a ring A with a
T -nilpotent prime radical Pr(A):
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(1) A is indecomposable;
(2) the quotient ring A/Pr2(A) is indecomposable.

Proof.
(1) ⇒ (2). Denote I = Pr(A). Suppose that Ā = A/I2 = Ā1 × Ā2 and let

1̄ = f̄1 + f̄2 be the corresponding decomposition of the identity 1̄ of the ring Ā
into a sum of orthogonal central idempotents. Since I2 is a nil-ideal, there exist
idempotents f1, f2 ∈ A such that 1 = f1 + f2 and f̄1 = f1 + I2, f̄2 = f2 + I2.

Consider the two-sided Peirce decomposition of A corresponding to the decom-
position 1 = f1 + f2:

A =
(

A1 X
Y A2

)
,

where Ai = fiAfi (i = 1, 2), X = f1Af2, Y = f2Af1.
Since f̄1Āf̄2 = 0 and f̄2Āf̄1 = 0, we have X ⊂ I2 and Y ⊂ I2. Hence

X = f1I2f2 and Y = f2I2f1.
By proposition 11.2.9 we have

I =
(

I1 X
Y I2

)
,

where Ii is the prime radical of the ring Ai (i = 1, 2).
Computing I2 we obtain:

I2 =
(

I2
1 + XY I1X + XI2

Y I1 + I2Y I2
2 + Y X

)
.

Since X = f1I2f2 and Y = f2I2f1, we have X = I1X +XI2 and Y = Y I1 +I2Y .
Since I is T -nilpotent, by theorem 10.5.1, we obtain X = 0 and Y = 0. Therefore
A = A1 × A2. The obtained contradiction proves the implication (1) ⇒ (2).

The inverse implication (2) ⇒ (1) is obvious.

Using theorems 10.5.1, 11.7.2 and the decomposition of the prime radical in
form (11.7.1), we can prove the following theorem in the same way as we proved
theorem 11.1.5:

Theorem 11.7.3. Let A be an FDD-ring. The prime quiver of an FDD-ring
A with T -nilpotent prime radical Pr(A) is connected if and only if the ring A is
indecomposable.

11.8 THE QUIVER ASSOCIATED WITH AN IDEAL

Let J be a two-sided ideal of a ring A contained in the Jacobson radical R of A
such that the idempotents can be lifted modulo J .

Definition. The quotient ring A/J is called the J-diagonal of a ring A.
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In particular, if J = Pr(A), then Pr(A) ⊂ R and the idempotents can be lifted
modulo Pr(A).

Definition. A ring A is called a ring with finitely decomposed J-
diagonal (or in short FD(J)-ring), if its J-diagonal A/J is an FD-ring.

For arbitrary FD(J)-ring A we now construct the quiver Q(A, J).
Consider the J-diagonal of the FD(J)-ring A: Ā = A/J = Ā1 × . . . × Āt,

where all the rings Ā1, . . . , Āt are indecomposable and 1̄ = f̄1 + . . . + f̄t is the
corresponding decomposition of 1̄ ∈ Ā into a sum of mutually orthogonal central
idempotents, i.e., f̄i Ā f̄i = f̄i Ā = Ā f̄i = Āi for i = 1, . . . , t. Put W = J/J2. Let
the idempotents f̄1, . . . , f̄t correspond with vertices 1, . . . , t and connect vertex i
with vertex j by an arrow with start at i and end at j if and only if f̄iWf̄j �= 0. The
thus obtained finite directed graph Q(A, J) will be called the quiver associated
with the ideal J .

Taking into account theorem 2.4.11, one can easily see that the quiver Q(A, J)
of an FD(J)-ring A is defined uniquely up to a renumeration of the vertices and
that Q(A, J) = Q(A/J2,W ).

By definition, the quiver Q(A, J) is a simply-laced quiver so that the adjacency
matrix [Q(A, J)] is a (0, 1)-matrix.

Suppose that J is a two-sided ideal of a ring A contained in the Jacobson
radical R of an FD(J)-ring A such that the idempotents can be lifted modulo J .
Let Ā = A/J = Ā1 × . . . × Āt be a decomposition of Ā into a direct product of
indecomposable rings Ā1, . . . , Āt and let 1̄ = f̄1 + . . . + f̄t be the corresponding
decomposition of 1̄ ∈ Ā into a sum of mutually orthogonal idempotents.

By proposition 10.3.1 the idempotents f̄1, . . . , f̄t can be lifted modulo J pre-
serving orthogonality: 1 = f1 + . . . + ft, where fifj = δijfj and f̄i = fi + J (i, j =
1, . . . , t).

Let Aij = fiAfj and Ji = fiJfi (i, j = 1, . . . , t). Then we have the following
two-sided Peirce decompositions of A and J :

A =




A11 A12 ... A1t

A21 A22 ... A2t

... ... ... ...
At1 At2 ... Att


 , (11.8.1)

J =




J1 A12 ... A1t

A21 J2 ... A2t

... ... ... ...
At1 At2 ... Jt


 . (11.8.2)

Definition. The two-sided Peirce decomposition of an FD(J)-ring A will be
called J-standard, if Q(A, J) has a standard numeration of its vertices.
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The two-sided Peirce decomposition of an FDD-ring A is called standard, if
PQ(A) has a standard numeration of its vertices.7)

Lemma 11.8.1. If J is a two-sided right T -nilpotent ideal of a ring A, then
eJe is a right T -nilpotent ideal of a ring eAe for every nonzero idempotent e ∈ A.

Proof. Obviously, a set eJe is a two-sided ideal of the ring eAe. Let a1, a2, . . .
be a sequence of elements of eJe. Since eJe ⊂ J , we have akak−1 . . . a1 = 0 for
some k.

Theorem 11.8.2. The following conditions are equivalent for a ring A with a
T -nilpotent ideal J :

(1) the ring A is indecomposable;
(2) the quotient ring A/J2 is indecomposable.

Proof. Using lemma 11.8.1, the proof of this theorem is analogous to the proof
of theorem 11.7.2.

Using theorems 11.6.2, 11.8.2 and the standard two-sided Peirce decomposition
of an FDD-ring A with a T -nilpotent prime radical, we can prove the following
theorem:

Theorem 11.8.3. Let A be an FDD-ring. The prime quiver of an FDD-ring
A with the T -nilpotent prime radical Pr(A) is connected if and only if the ring A
is indecomposable.

Definition. An FDD-ring A will be called connected if the prime quiver
PQ(A) of A is connected.

Taking into account that the prime radical of a right Noetherian ring is nilpo-
tent (see proposition 11.2.11), one obtains the following result.

Corollary 11.8.4. A right Noetherian ring has a unique decomposition into
a finite direct product of connected rings.

Recall, that a ring A is right perfect if A/R is semisimple Artinian and R is
right T -nilpotent. As we know, every right (or left) perfect ring is semiperfect.

Theorem 11.8.5. A right perfect piece-wise domain A is semiprimary.

Proof. By lemma 11.8.1 one can assume that A is reduced and that eRe is right
T -nilpotent for every local idempotent e ∈ A. Since A is a piece-wise domain, eAe
is a local domain (not necessarily commutative) and eRe = 0. So eAe is a division
ring. By theorem 11.4.1, R is nilpotent and A is semiprimary.

7) See just above proposition 11.3.4 for the definition of ”standard enumeration”.
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To conclude this section here are two statements about decompositions of
FDD-rings with T -nilpotent prime radical.

Let A be an FDD-ring with prime radical Pr(A). We assume that in the
next theorem the adjacency matrix [PQ(A)] of the prime quiver PQ(A) has the
following form:

[PQ(A)] =




B1 ∗ · · · ∗ ∗
0 B2 · · · ∗ ∗
· · · · · · · · · · · · · · ·
0 0 · · · Bt−1 ∗
0 0 · · · 0 Bt


 , (11.8.3)

where the square matrices B1, B2, . . . , Bt are permutationally irreducible, i.e., that
the numeration of the vertices of PQ(A) is standard.

Theorem 11.8.6. Let A be an FDD-ring with prime quiver PQ(A), whose
adjacency matrix [PQ(A)] has the form (11.8.3). Then there exists a decomposi-
tion of 1 ∈ A into a sum of mutually orthogonal idempotents : 1 = g1 + · · · + gt

such that

A =
t⊕

i,j=1

giAgj

is the two-sided Peirce decomposition with giAgj = 0 for j < i, and, moreover, the
adjacency matrices of the prime quivers PQ(Ai) of the rings Ai = giAgi coincide
with Bi (i = 1, . . . , t).

Proof. Taking into account theorem 10.5.1 the proof of this theorem is analo-
gous to the proof of theorem 11.6.3.

Corollary 11.8.7. An FDD-ring A with a T -nilpotent prime radical can
be uniquely decomposed into a finite direct product of indecomposable rings
A1, . . . , Am with connected prime quivers PQ(Ai), i = 1, . . . , m.

11.9 THE LINK GRAPH OF A SEMIPERFECT RING

Let AA = Pn1
1 ⊕ . . . ⊕ Pns

s be a decomposition of a ring A into a direct sum of
the indecomposable projective modules, where P1, . . . , Ps represent, up to isomor-
phism, all (different) indecomposable right projective modules.

Let
Mk = Pn1

1 ⊕ . . . ⊕ P
nk−1
k−1 ⊕ (PkR)nk ⊕ P

nk+1
k+1 ⊕ . . . ⊕ Pns

s

for 1 ≤ k ≤ s. Then M1, . . . , Ms are maximal (two-sided) ideals in A and
s⋂

k=1

Mk =

R. Conversely, every maximal (two-sided) ideal M coincides with some Mk.
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We assign to the maximal ideals M1, . . . , Ms the vertices 1, . . . , s and join vertex
i with vertex j by one arrow if and only if the product MiMj is strictly contained
in Mi ∩ Mj .

The thus obtained simply laced quiver is called the link graph of a semiperfect
ring A (or, simply, link graph of A) and is denoted by LG(A). (cf. B.J.Müller
Localization in fully bounded Noetherian rings, Pacific J. Math., 67, 1976, pp.
233-245).

Let Q be a quiver. Denote by Qu the quiver, obtained from Q, by replacing
the set of arrows from i to j by a single arrow if that set is nonempty (we allow
i = j). If Q has no arrows from i to j, then neither does Qu.

Theorem 11.9.1 If A is a right Noetherian semiperfect ring, then LG(A) =
Qu(A).

Proof. From proposition 11.1.1 it follows that Mk has the following two-sided
Peirce decomposition:

Mk =




A11 . . . A1k . . . A1s

. . . . . . . . . . . . . . .
Ak1 . . . Rkk . . . Aks

. . . . . . . . . . . . . . .
As1 . . . Ask . . . Ass




Consider Mi ∩ Mj .
Case (a) i = j: Mi∩Mi = Mi. Consequently, there is a loop at the i-th vertex

of the link graph LG(A) if and only if M2
i is strictly contained in Mi. Obviously,

M2
i is strictly contained in Mi if and only if fiR

2fi is strictly contained in fiRfi.
Therefore, by the Q-Lemma there exists a loop at the i-th vertex of Q(A) if and
only if there is a loop at the i-th vertex of LG(A).

Case (b) i < j:

Mi ∩ Mj =




A11 . . . A1i . . . A1j . . . A1s

. . . . . . . . . . . . . . . . . . . . .
Ai1 . . . Rii . . . Aij . . . Ais

. . . . . . . . . . . . . . . . . . . . .
Aj1 . . . Aji . . . Rjj . . . Ajs

. . . . . . . . . . . . . . . . . . . . .
As1 . . . Asi . . . Asj . . . Ass




and

MiMj =




. . . . . . . . . . . . . . .

. . . Rii . . . RiiAij + AijRjj +
∑
k �=i

AikAkj . . .

. . . . . . . . . . . . . . .

. . . . . . . . . Rjj . . .

. . . . . . . . . . . . . . .




.
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Consequently, fiR
2fj is strictly contained in fiRfj if and only if the product

MiMj is strictly contained in Mi ∩ Mj . Therefore, by the Q-lemma, there exists
an arrow from i to j in Q(A) if and only if this is the case for LG(A).

Case (c) i > j is handled analogously. The theorem is proved.

Remark. In general for a semiperfect ring A with Jacobson radical R the
link graph LG(A) coincides with the quiver Q(A,R) associated with R.
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Nauchn. Sem. LOMI, v.28, 1972, p.5-31. In the paper Partially ordered sets
of finite type // Zap. Nauchn. Sem. LOMI, v.28, 1972, p.32-41. M.M.Kleiner
gave a criterion of finiteness of type for representations of posets. The fundamental
monograph of D.Simson: Linear representations of partially ordered sets and vector
space categories. Algebra, Logic and Applic. v.4, Gordon and Breach Science
Publishers, 1992, is devoted to the theory of representations of posets.

V.V.Kirichenko in his papers Generalized uniserial rings // Preprint IM-75-1,
Kiev, 1975 and Generalized uniserial rings // Mat. sb. v.99(141), N4 (1976),
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n∑

i=1
Vi and Vi ⊂ Vj whenever αi ≤ αj .
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rings (see, for example, V.V.Kirichenko, Decompositions theorems for semi-perfect
rings //Mat. Stud., v.8 (1997), N.2, p.157-161; Kh.M.Danlyev, V.V.Kirichenko,
Yu.V.Yaremenko, On weakly prime Noetherian semiperfect rings with two-
generated right ideals // Dopov. Nats. Akad. Nauk Ukr., 1996, N.12, p.7-9;
V.V.Kirichenko, Semi-perfect rings and their quivers // An. Ştiinţ. Univ. Ovidius
Constanţa Ser Mat. v.4 (1996), N.2, p.89-97; V.V.Kirichenko, S.Valio, Semiper-
fect rings and their quivers // Infinite groups and related algebraic structures,
Acad. Nauk Ukr., Inst. Mat., Kiev, 1993, p.438-456. In particular, quivers and
prime quivers are used for the description of semihereditary semiperfect semidis-
tributive rings (see V.V.Kirichenko, Semi-Perfect Semi-Distributive Rings // Al-
gebras and Representation Theory, v.3, 2000, p.81-98). Moreover, PQ(A) = Q(Ã),
where Ã is the classical quotient ring of the ring A.

N.H.McCoy in his paper N.H.McCoy, Prime ideals in general rings // Amer.
J. Math., v.71 (1949), p.823-833 showed that the prime radical, which is the
intersection of prime ideals, can be characterized as the set of all elements r such
that any ”m-system containing it contains also 0”. McCoy proved also that the
prime radical coincides with the intersection of all minimal prime ideals.

J.Levitzki in the paper: Prime ideals and the lower radical // Amer. J. Math.,
v.73 (1951), p.25-29 proved that the prime radical is the set of all strongly nilpo-
tent elements.

In addition to the two radicals of a ring which have been studied in this book,
a number of other radicals have been introduced and studied from various points
of view. As references, we may mention the following papers: of S.A.Amitsur
(see A general theory of radicals, I,II,III, Amer. J.Math., v.74, 1952, p.774-786;
v.76, 1954, p.100-125; v.76, 1954, p.355-361), R.Baer (see Radical ideals //Amer.
J.Math., v.65, 1943, p.537-568), B.Brown and N.H.McCoy (see Radicals and sub-
direct sums // Amer. J. Math., v.69, 1947, p.46-58; The radical of a ring // Duke
Math. J., v.15, 1948, p.495-499), J.Levitzki (see On the radical of a general ring
// Bul. Amer. Math. Soc., v.49, 1943, p.462-466; Prime ideals and the lower
radical // Amer. J. Math., v.73, 1951, p.25-29), J.Krempa (see Lower radical
properties for alternative rings // Bull. Acad. Polon. Sci. Sér. Sci. Math. As-
tronom. Phys, v.23, 1975, N2, p.139-142; Radicals of semi-group rings // Fund.
Math., v.85, N.1, 1974, p.57-71).

The prime quiver of an associative ring with some finiteness conditions,
which are automatically valid for semiperfect rings, was considered in the pa-
per V.V.Kirichenko, L.Mashchenko, Yu.V.Yaremenko, Decomposition theorem for
associative rings // Problems in Algebra, N.11, 1997, p.42-47. (see also the pa-
per N.M.Gubareni, V.V.Kirichenko, U.S.Revitskaya, Semiperfect semidistributive
semihereditary rings of bounded representation type // Proc. Gomel. State Univ.,
v.1, N.1 (15), 1999, Problems in Algebra, p.18-36).



12. Serial rings and modules

12.1 QUIVERS OF SERIAL RINGS

Definition. A module is called uniserial if the lattice of its submodules is a
chain, i.e., the set of all its submodules is linearly ordered by inclusion. A module
is called serial if it decomposes into a direct sum of uniserial submodules.

A ring is called right (resp. left) uniserial if it is a right (resp. left) uniserial
module over itself, i.e., the lattice of right ideals is linearly ordered. A ring is
called right (resp. left) serial if it is a right (resp. left) serial module over itself.
A ring which is both a right and left serial ring is called a serial ring.

Examples 12.1.1.
1. Let G be a finite Abelian group. The main theorem about finite Abelian

groups implies that G is a serial Z-module.
2. Let A ∈ Mn(k) be a square matrix of order n with elements in a field k,

and let V be the module over the ring k[x] obtained by letting x act on kn like
the matrix A. The Frobenius theorem says that V is a serial k[x]-module.

Rings, over which all modules are serial, were first systematically considered
by G.Köthe and T.Nakayama. T.Nakayama introduced generalized uniserial rings
and showed that all modules over them are serial.

In our terminology generalized uniserial rings are Artinian serial rings.
A right (left) serial ring can be decomposed into a direct sum of a finite number

of right (left) ideals each of which has exactly one maximal submodule. By theorem
10.3.7 such rings are semiperfect. So, serial rings are a special case of semiperfect
rings.

Example 12.1.2.

Let A =
{(

α β
0 γ

) ∣∣∣ α ∈ R;β, γ ∈ C
}

, where R is the field of real numbers

and C is the field of complex numbers.
It is not difficult to see that A is a right serial ring which is not left serial.

Obviously, the basic ring of a right (resp. left ) serial ring is right (resp. left)
serial.

Proposition 12.1.1. A right (left) serial ring A with nilpotent Jacobson rad-
ical R is right (left) Artinian.

300
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Proof. Let R be the radical of a right serial ring A and Rm = 0. It is sufficient
to show that any principal module P is Artinian. Indeed, since the ideal R is
nilpotent, there is a strictly descending chain of submodules: P ⊃ PR ⊃ ... ⊃
PRm = 0. The factors of this sequence are semisimple A-modules, and since P is
a uniserial module they are simple. So there exists a composition series for P and
A is a right Artinian ring. The proposition is proved.

We now define the quiver Q(A) of a serial ring A with Jacobson radical R by
the formula: Q(A) = Q(A/R2). Since, by proposition 12.1.1, A/R2 is an Artinian
serial ring, this is well defined. Analogously we can introduce the left quiver Q′(A)
of a serial ring A.

Example 12.1.3.

Let A =
{(

α β
0 γ

) ∣∣∣ α, γ ∈ Z(p);β ∈ Q
}

. Obviously, A is a serial ring which

is right Noetherian but not left Noetherian. Clearly, A/R2 = Z(p)/p2Z(p) ×Q and
the quiver Q(A) looks as follows

{ ��
��

� � }

Theorem 12.1.2. The quiver of a serial ring A is a disconnected union of
cycles and chains.

Proof. Assume that the ring A is reduced. Since A is a right serial module
over itself it follows that from every vertex of the quiver of A there exits not more
that one arrow.

We are going to show that, also, each vertex is an end of not more than one
arrow. Indeed, let us assume that the vertex k is an end of arrows with starting
vertices j1, ..., jm (m > 1). From the above it follows that all these points are
distinct. By the Q-Lemma, there are strict inclusions

ej1R
2ek ⊂ ej1Rek, ..., ejm

R2ek ⊂ ejm
Rek.

Consider the left quotient module Rek/R2ek. By the Q-lemma, it contains as
direct summands the left simple modules Vj1 , ..., Vjm

(Vi = Aei/Rei). Therefore
the left module Aek is not uniserial and we have a contradiction. As there are
only two types of finite connected graphs having the properties pointed out – a
cycle and a chain. The theorem is proved.

From this theorem and theorem 11.1.5 we obtain the following corollary.

Corollary 12.1.3. The quiver of a serial two-sided Noetherian indecomposable
ring is either a cycle or a chain.
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This corollary is a generalization of H.Kupisch’s results for serial two-sided
Noetherian rings, see the notes at the end of the chapter for a precise reference.

12.2 SEMIPERFECT PRINCIPAL IDEAL RINGS

Definition. A ring A is called a principal ideal ring if all its right ideals are
right principal and all its left ideals are left principal.

Recall that the ring O (not necessary commutative) is called a principal ideal
domain if it has no zero divisors and all its right and left ideals are principal.

In the fourth chapter of N.Jacobson’s book ”The Theory of Rings” (Amer.
Math. Soc. Surveys, v.2, New York, 1943), there is theorem 37, which can be
formulated in modern terminology as follows:

Theorem 12.2.1. If every two-sided ideal in an Artinian ring A is a right
principal ideal and also a left principal ideal then A is isomorphic to a finite direct
product of full matrix rings over Artinian uniserial rings.

Note that, conversely, each right ideal in such a ring is a right principal ideal
and every left ideal is a left principal ideal.

Theorem 12.2.2. Let A be a semiperfect ring such that every two-sided ideal
in A is both a right principal ideal and a left principal ideal. Then A is a principal
ideal ring isomorphic to a direct product of a finite number of full matrix rings
over Artinian uniserial rings and local principal ideal domains. Conversely, all
such rings are semiperfect principal ideal rings.

Proof. Suppose a semiperfect ring A satisfies the conditions of the theorem
and A = A1 × . . . × At is a decomposition of A into a direct product of a finite
number of indecomposable rings A1, . . . , At. Let 1 = g1 + . . . + gt be the cor-
responding decomposition of the identity of A into a sum of pairwise orthogonal
central idempotents, i.e., giA = Agi = Ai for i = 1, . . . , t. Let Ik be a two-sided
ideal of Ak. Obviously, Ik is also a two-sided ideal of A. We have Ik = xA = Ay
and

(1) Ik = gkIk = gkxA = xgkA = xgkgkA = xkAk, where xk ∈ Ak.
(2) Ik = Ikgk = Aygk = Agky = Agkgky = Akyk, where yk ∈ Ak.

Therefore Ik is both a right principal ideal and a left principal ideal of Ak. Thus,
the conditions of the theorem are true for any indecomposable ring Ak and we can
assume that A is an indecomposable ring.

Let A = Pn1
1 ⊕ ... ⊕ Pns

s be a decomposition of a ring A into a direct sum of
principal modules and let 1 = f1+...+fs be the corresponding decomposition of the
identity of A into a sum of pairwise orthogonal idempotents, i.e., fiA = Pni

i . Then
Afi = Qni

i , where Q1, ..., Qs are pairwise nonisomorphic principal left modules.
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From proposition 11.1.1 it follows that

Pn1
1 ⊕ ... ⊕ P

nk−1
k−1 ⊕ (PkR)nk ⊕ P

nk+1
k+1 ⊕ ... ⊕ Pns

s = Ik

is a two-sided ideal. If PkR �= 0 then, by lemma 11.1.8, PkR/PkR2 � Uk. Hence
it follows immediately that both the right quiver and the left quiver of the ring
Ā = A/R2 is a disconnected union of points and loops.

Assume that P is an Artinian principal A-module. Since P/PR � PR/PR2,
we have P (PR) � P and therefore PR/PR2 � PR2/PR3. Continuing this pro-
cess, we conclude that the module P has exactly one composition series, all factors
of which are isomorphic. Without loss of generality one may assume that P = P1.
Then HomA(P ′, Pn1

1 ) = 0, where P ′ = Pn2
2 ⊕ ...⊕Pns

s . Let 1 = e+ f be a decom-
position of 1 ∈ A into a sum of idempotents such that eA = Pn1

1 and fA = P ′.
Analogously one can prove that HomA(eA, fA) = 0. From the above we conclude
that A = eAe is a two-sided Artinian ring, whose quiver is either a loop or a point
(when PR = 0).

Therefore one may assume that among both the left and the right principal
A-modules there are no Artinian modules.

Consider the ring Ā = A/R2. It decomposes into a direct product of rings,
whose quivers are either points or loops. Hence it follows that R̄ = p̄Ā = Āp̄, where
R̄ is the radical of the ring Ā. Denote by p an element, whose image is p̄ under
the natural projection A onto Ā. We have the equalities pA+R2 = R = Ap+R2,
and hence, by Nakayama’s lemma, R = Ap = pA.

Let N =
∞
∩

m=0
Rm. We shall show that N = 0. If this is not so, then NR + RN

is strictly contained in N . Factoring A by the ideal NR + RN one can assume
that in the initial ring we have NR+RN = 0. Thus, RN = 0 and NR = 0, hence
N is a semisimple cyclic right A-module and a semisimple cyclic left A-module.

Consider the two-sided Peirce decomposition: N =
s⊕

i,j=1

fiNfj . By proposition

11.1.1, every set Nij = fiNfj is a two-sided ideal in the ring A.
It is easy to verify that the set

Li = f1N ⊕ ... ⊕ fi−1N ⊕ Pni
i ⊕ fi+1N ⊕ ... ⊕ fsN

is a two-sided ideal in the ring A (i = 1, ..., s).
If every two-sided ideal

N1i ⊕ ... ⊕ Ni−1i ⊕ Ni+1i ⊕ ... ⊕ Nsi

is nonzero, then µA(Li) > 1 by lemmas 11.1.3 and 11.1.8.
Therefore the two-sided Peirce decomposition of the ideal N is of the form:

N = N11 ⊕ ... ⊕ Nss.
Without loss of generality one can assume that N11 �= 0. Using the same

lemmas we obtain that N11 = Un1
1 as a right module and M11 = V n1

1 as a left
module.
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Therefore each principal module P has a countable chain of submodules:

P ⊃ PR ⊃ ... ⊃ PRk ⊃ PRk+1 ⊃ ...

where PRk+1 is a unique maximal submodule in PRk for each positive integer k.

If
∞⋂

m=1
PRm �= 0, then

∞⋂
m=1

PRm = U , where U = P/PR. Then it follows that

Hom(Pi, Pj) = 0 for all principal modules Pi, Pj (i �= j).
Since the ring A is indecomposable, A = Pn = Qn, where P is a principal

uniserial right A-module, and Q is a principle uniserial left A-module.
Multiplication on the left side by p is an endomorphism of the ring A as a

right A-module. We shall denote it by the same letter p. If we can show that
Kerp = 0, then N = 0. We are going to prove that Kerp ⊂ Rm for all natural m.
Indeed, let px = 0, x �∈ N and x �= 0. Let 1 = e1 + ... + en be a decomposition
of the identity of the ring A into a sum of local pairwise orthogonal idempotents.
If xei ∈ Rmei for all i and m, then x ∈ N . Therefore there exists an index
j such that xej ∈ Rmej but xej �∈ Rm+1ej . As above Rm+1ej is the unique
maximal submodule in Rmej for any natural m. Therefore by Nakayama’s lemma
Axej = Rmej . Hence pAxej = Apxej = 0. On the other hand,

Rm+1ej = RAxej = pAAxej = pAxej .

Therefore the module Aej is Artinian and we obtain a contradiction. So we have
shown that the two-sided ideal Kerp is contained in N . Therefore Kerp = N . So
x = pmam for some am for any natural m. Hence am �∈ Kerpm, but am ∈ Kerpm+1

since px = 0. Therefore the inclusion Kerpm ⊂ Kerpm+1 is strict and we have
formed an infinite ascending chain of two-sided ideals 0 ⊂ Kerp ⊂ Kerp2 ⊂ ....

Write Kerp2 = M . Note that eiN �= 0 and Nei �= 0 for i = 1, ..., n. Moreover,
RM = pAM = pM belongs to Kerp. As above, we obtain that the module P is
Artinian. Therefore N = 0. So all submodules of eiA (Aei) are exhausted by the
modules eiR

m (Rmei) and the ring A is two-sided Noetherian as a direct sum of
Noetherian modules.

Therefore one can assume that A = Pn, the module P is uniserial and all factors
PRi/PRi+1 are isomorphic. Since A � EndAA � EndAPn � Mn(EndAP ), it
follows that O � EndAP is a local uniserial ring, and it is not difficult to see that
it is either a local Artinian uniserial ring or a local principal ideal domain.

Conversely, all rings of the form given in the formulation of the theorem are
semiperfect principal ideal rings. The theorem is proved.

12.3 SERIAL TWO-SIDED NOETHERIAN RINGS

In this section we are going to describe all serial two-sided Noetherian rings.

Proposition 12.3.1 (Yu.A.Drozd) For a semiperfect ring A the following
conditions are equivalent:
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1) A is a right (left) serial ring;
2) for any two nonzero homomorphisms of right (left) principal A-modules

fi : Pi → P (i = 1, 2) one of the two equations: f1 = f2x or f2 = f1y is solvable;
3) for any two nonzero homomorphisms of left (right) principal A-modules

fi : P → Pi (i = 1, 2) one of the two equations f1 = xf2 or f2 = yf1 is solvable,
with x ∈ HomA(P1, P2), y ∈ HomA(P1, P2).

Proof.
1) ⇒ 2). If the ring A is right serial, then either Imf1 ⊂ Imf2, or Imf2 ⊂

Imf1. In the first case the solvability of the equation f1 = f2x follows from the
projectivity of P1 and in the second case the solvability of the equation f2 = f1y
follows from the projectivity of P2.

2) ⇒ 1). If the ring A is not right serial then in some right principal A-module
P there are nonzero submodules M1, M2 and nonzero elements a1 ∈ M1\M2,
a2 ∈ M2\M1. Then there are local idempotents e1 and e2 of the ring A such that
a1e1 ∈ M1\M2 and a2e2 ∈ M2\M1. Denote by Pi = eiA and fi : Pi → P the
homomorphisms which transform ei into aiei for i = 1, 2. Since Imf1 �⊂ Imf2 and
Imf2 �⊂ Imf1, both equations f1 = f2x and f2 = f1y are not solvable.

The equivalence of conditions 2) and 3) follows from the isomorphisms:
Hom(eA, fA) � fAe � Hom(Af,Ae), when f and e are idempotents of the
ring A.

From this proposition we obtain the following corollary.

Corollary 12.3.2. Let A be a semiperfect ring and let 1 = e1 + ... + en be a
decomposition of 1 ∈ A into a sum of local pairwise orthogonal idempotents. The
ring A is right serial if and only if for each idempotent e, which is a sum of not
more than three different local idempotents from the set {e1, e2, ..., en}, the ring
eAe is right serial.

Proof. Let A be a right serial ring and let e ∈ A be a nonzero idempotent.
Then the ring eAe is right serial. Write 1 = e+ f , eAe = A1, eAf = X, fAe = Y ,
fAf = A2. Let e = e1 + ... + em be the decomposition e in the sum of pairwise
orthogonal local idempotents. Suppose the module eiAe is not uniserial. Then in
eiAe there exist two eAe-submodules M1 and M2 such that M1 ∩ M2 �= M1 and
= M1 ∩ M2 �= M2. Write M1 = M1A and M2 = M2A. Clearly, M1 ⊂ eiA and
M1e = Mi for i = 1, 2. Therefore the principal A-module eiA is not uniserial and
so we have a contradiction.

Conversely, if a principal A-module P = eiA is not uniserial, then there exist
two submodules K and L of P such that = K∩L �= K and K∩L �= L. So one can
choice k ∈ K and l ∈ L such that k �∈ L and l �∈ K. Let K1 = kA and L1 = lA. Let
P (K1) =

s
⊕

j=1
P

mj

j , where Pj = ejA, and = m1 + .. + ms ≥ 2. If there exists t such

that mt ≥ 2, then the ring = (ei+et)A(ei+et) is not right serial. In the case if there
exist two numbers mp = 1 and mq = 1, then the ring (ei + ep + eq)A(ei + ep + eq)
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is not righ serial. So, K1 is a local module, i.e., P (K1) = Pj . Analogously,
P (L1) = Pm. Therefore the ring (ei + ej + em)A(ei + ej + em) is not right serial.
A contradiction.

We are going to consider serial two-sided Noetherian rings. According to theo-
rems 11.1.9 and 12.1.2 one can assume that the quiver of a serial two-sided Noethe-
rian indecomposable ring is either a chain or a cycle. Such a ring will be called a
ring of the first type if its quiver is a chain and a ring of the second type if
its quiver is a cycle.

Since the basic ring of a serial ring is also a serial ring, in future we shall assume
that the serial ring A is reduced.

First we consider a ring A of the first type. Suppose, the quiver Q(A) is of the
form {

1 2 t − 1 t
• • . . . • •

}

Consider the corresponding decomposition of the ring A into a direct sum of
principal A-modules: A = P1 ⊕ ... ⊕ Pt. Let 1 = e1 + ... + et be a decomposition
of the identity of A such that Pi = eiA. The corresponding two-sided Peirce
decomposition has the form:

A =


A11 . . . A1t

. . . . . . . . .
At1 . . . Att




The components A12, A23, ...A(t−1),t are nonzero, because there is an arrow i →
i + 1 for each i in the quiver.

By theorem 11.6.3 we have Aij = 0 for i > j and Q(Aii) is a point for all i.
Consequently, Aii is a division ring for i = 1, . . . , t.

The two-sided Peirce decomposition of the radical R of the ring A has the form
R = ⊕

i<j
Aij . Therefore Rt = 0 and by proposition 12.1.1 A is a two-sided Artinian

ring.
Since eiR/eiR

2 � Ui+1 (i = 1, ..., t − 1), by the Q-Lemma, it follows that
eiR

2ei+1 is the unique maximal A(i+1),(i+1)-submodule in eiRei+1 = eiAei+1,
i = 1, 2, ..., t − 1. Since eiR

2ei+1 is strictly contained in eiRei+1, and the ring
A is serial, it follows that Rei/R2ei � Vi−1 for i = 2, ..., t (where the V1, ..., Vt

are simple left A-modules). Choosing an element ai,(i+1) ∈ eiRei+1\eiR
2ei+1

we have, by Nakayama’s lemma, that Ai,(i+1) = ai,(i+1)A(i+1),(i+1) = Aiiai,(i+1),
i = 1, ..., t−1. We set p = a12+a23+...+a(t−1),t. Obviously, ai,(i+1)A+eiR

2 = eiR,
i = 1, ..., t − 1. By Nakayama’s lemma, eiR = ai,(i+1)A. Therefore R = pA.
Analogously, R = Ap. Note that eip = pei+1, i = 1, ..., t − 1.

Since Aii = Di is a division ring for i = 1, ..., t and Ai,(i+1) = ai,(i+1)Di+1 =
= Diai,(i+1), the map σi,(i+1) : Di → Di+1, given by diai,(i+1) = ai,(i+1)d

σi,(i+1)
i ,

di ∈ Di, is an isomorphism from the division ring Di to the division ring Di+1.
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Here d
σi,(i+1)
i means ”apply the mapping σi,(i+1) to di”. Write τi,(i+1) = σ−1

i,(i+1),
i = 1, ..., t − 1.

Let B be a ring and let 1 = f1 + ... + fn be a decomposition of the identity
of B into a sum of pairwise orthogonal idempotents, Bij = fiBfj , bij ∈ Bij for
i, j = 1, 2, ..., n, and let ∆ be a ring. Consider for a fixed integer k = 1, 2, ..., n an
isomorphism τ : Bkk → ∆ of rings. Using the isomorphism τ one can form a ring
C in the following way: the components of the two-sided Peirce decomposition of
the ring C are given by the rule: Cpq = Bpq for (p, q) �= (k, k) and Ckk = ∆. The
multiplication in the ring C, which will be denoted by a little circle, is given by the
rule: csr ◦ crp = csrcrp if csr, crp �∈ ∆; ckk ◦ ckp = cσ−1

kk ckp and cpkcσ−1

kk = cpk ◦ ckk

if p �= k; ckk ◦ c′kk = ckkc′kk. It is trivial to verify that the map ψ : C → B, given
by the formula ψ[(cij)] = (bij), where bij = cij for (i, j) �= (k, k) and bkk = cσ−1

kk , is
an isomorphism of the rings C and B. In future we shall refer to this construction
as the (K.12.3) construction.

Using the construction (K.12.3) with the automorphism τ12 = σ−1
12 and keep-

ing the same symbols for the new ring, we have α1 ◦ a12 = α1a12 = a12α
σ12
1 =

a12α
τ−1
12

1 = a12 ◦ α1 in the new ring. Therefore we have identified the division
ring D2 with the division ring D1. Moreover, in the new ring, σ12 is the identity
automorphism. Keeping for the remaining automorphisms previous symbols we
shall identify the division ring D3 with the division ring D1 by means of the auto-
morphism σ23, moreover, in the new ring σ12 and σ23 are identity automorphisms
of the division ring D1. Continuing this process, we obtain a ring B in which the
automorphisms τi,(i+1) (i = 1, ..., t− 1) are identity automorphisms of the division
ring D1 and Bii = D1 for i = 1, ..., t. Write D1 = D. Let 1 = b11 + ... + btt

be the corresponding decomposition of the identity of the ring B into a sum of
pairwise orthogonal idempotents. Let bi,(i+1) ∈ Bi,(i+1) be nonzero elements such
that dbi,(i+1) = bi,(i+1)d for any element d ∈ D (i = 1, ..., t). As above for the
element p = b12 + b23 + ... + b(t−1),t we have R = pB = Bp (R is the radical of B)
and biip = pbi+1,i+1 = bi,(i+1). Suppose that i < j and Bij �= 0. Then

biiRbjj = biipBbjj = biipb(i+1),(i+1)Bbjj

= bi,(i+1)b(i+1),(i+1)Bbjj = bi,(i+1)b(i+1),(i+1)pBbjj =

= bi,(i+1)b(i+1),(i+2)b(i+2),(i+2)pBjj = bi,(i+1)...b(j−1),jbjjBbjj .

Let bij = bi,(i+1)...b(j−1),j . Clearly, Dbij = bijD = Bij and dbij = bijd for any
d ∈ D. If Bpq = 0 then we set bpq = 0.

Consider the ring Tt(D) of the upper triangular matrices over the division
ring D. The

∑
i≤j

dijeij are the elements from Tt(D) (where the eij are the matrix

units, dij ∈ D ). The correspondence ψ : Tt(D) → B such that ψ(
∑
i≤j

dijeij) =

=
∑
i≤j

dijbij yields an epimorphism of additive groups from the ring Tt(D) onto

B.
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Note that Kerψ is a two-sided ideal in the ring Tt(D). This follows from the
fact that if bjk = 0 then bik = 0 for i < j. Therefore the ring B is isomorphic to a
quotient ring of the ring of upper triangular matrices over a division ring.

To consider a ring of the second type we shall need the well known Schanuel
lemma.

Lemma 12.3.3 (Schanuel’s lemma). Let P1/X1 � P2/X2, where P1 and
P2 are projective modules. Then P1 ⊕ X2 � P2 ⊕ X1.

Proof. Let P1/X1 � P2/X2 = W . Denote by πi : Pi → W the corresponding
natural projections, Xi = Kerπi, i = 1, 2. Denote by Q the submodule in P1 ⊕P2

consisting of the pairs (p1, p2) such that π1(p1) = π2(p2), and define the homomor-
phisms ψ1 : Q → P1 and ψ2 : Q → P2 by ψ1(p1, p2) = p1 and ψ2(p1, p2) = p2.1)
Clearly, Kerψ1 � X2, Kerψ2 � X1 and Imψ1 = P1, Imψ2 = P2. Then we have
two exact sequences

0 → X2 −→ Q
ψ1−→ P1 → 0

0 → X1 −→ Q
ψ2−→ P2 → 0

with projective modules P1, P2. So they must split and therefore Q � P1 ⊕ X2

and Q � P2 ⊕ X1. The lemma is proved.

Assume that A is a ring of the second type. Let A = P1 ⊕ ... ⊕ Pt be the
corresponding decomposition of A into a direct sum of principal A-modules, let
1 = e1 + ... + et be a decomposition of the identity of A into a sum of pairwise
orthogonal idempotents such that Pi = eiA, i = 1, ..., t; Aij = eiAej , i, j = 1, ..., t.

Let the quiver Q(A) have the form
{

1 2 t 1
• • . . . • •

}

Since eiR/eiR
2 � Ui+1 (i = 1, ..., t − 1) and etR/etR

2 � U1, by the Q-Lemma,
eiR

2ei+1 is the unique maximal A(i+1),(i+1)-submodule in eiRei+1 = eiAei+1 (i =
1, ..., t − 1) and etR

2e1 is the unique maximal A11-submodule in etRe1 = etAe1.
Since etR

2e1 is strictly contained in etRe1, it follows from the fact that the ring A
is serial that Re1/R2e1 � Vt and therefore that etR

2e1 is the unique maximal left
Att-submodule in etAe1. Exactly in the same way Rei/R2ei � Vi−1 for i = 2, ..., t
(where the V1, ..., Vt are simple left A-modules). Choosing an element ai,(i+1) ∈

1) Q is the socalled pushout or fibred product of the diagram
P2

↓
P1 −→ W

which is a

commutative diagram
Q −→ P2

↓ ↓
P1 −→ W

with certain universality properties.
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eiRei+1\eiR
2ei+1, by Nakayama’s lemma, we have that Ai,(i+1) = ai,i+1Ai+1,i+1

(i = 1, ..., t − 1).
Exactly in the same way one can choose at1 and then At1 = at1A11 = Attat1.

We set p = a12 + ...+at−1,t +at1. Obviously, ai,i+1A+eiR
2 = eiR (i = 1, ..., t−1)

and at1A + etR
2 = etR. By Nakayama’s lemma ai,i+1A = eiR and at1A = etR.

Therefore R = pA. Analogously R = Ap. Note that eip = pei+1 for i = 1, ..., t− 1
and e1p = pet.

Multiplication of elements of A on the left (right) side by p is an endomorphism
of A as a right (left) module over itself. Therefore we have the following equalities:

pPj = Pj−1R = aj−1,jPj ; (12.3.1)

pP1 = PtR = at1P1.

Suppose that the ring A is not Artinian. From equality (12.3.1) it immediately
follows that all modules P1,...,Pt are not Artinian.

We shall show that Ker(p) = 0. Consider N =
∞
∩

m=0
Rm. If N �= 0 then

RN + NR is a proper submodule in N and factoring the ring A by it we may
consider that in the initial ring RN + NR = 0.

We are going to show that Ker(p) ⊂ N . Suppose the contrary. Let x ∈ Ker(p),
x �∈ N and x �= 0. Consider xei (i = 1, ..., t). If xei ⊂ Rmei for all i,m then x ∈ N .
Therefore there is an index j and an integer m such that xej ∈ Rmej\Rm+1ej .
By Nakayama’s lemma, Axej = Rmej . Hence Rm+1ej =RAxej = pAAxej=
pAxej =Apxej = 0, i.e., the module Aej is Artinian. A contradiction. So x =
pmam for any natural m, where am �∈ Ker(pm). But am ∈ Ker(pm+1), because
px = 0. Therefore the inclusion Ker(pm) ⊂ Ker(pm+1) is strict and we have built
the infinite strictly ascending chain of ideals:

0 ⊂ Ker(p) ⊂ Ker(p2) ⊂ ...,

which contradicts the Noetherian property of the ring A. Hence it follows that
N =

∞
∩

m=0
Rm = 0. So all proper submodules of the principal modules eiA (Aei)

are exhausted by the eiR
m (Rmei) (where m is a natural number).

Since multiplication by p is a monomorphism, from the equality (12.3.1) it
follows that all modules PiR

m are projective. Analogously, all submodules of the
left principal modules are projective.

We are going to show that any right ideal I in the ring A is projective as well.
We shall carry out the proof by induction on the minimal number of principal
A-modules in the decomposition of the ideal I. The base of induction has been
proved above. Let I ⊂ Pi1 ⊕ ... ⊕ Pin

. Consider the ideal I + Pi1 . Obviously,
I+Pi1 = I ′⊕Pi1 , where I ′ is the image of the projection from I onto Pi2⊕...⊕Pin

.
By the induction hypothesis I ′ is a projective A-module. Since (I + Pi1)/I �
Pi1/(Pi1 ∩ I), by Schanuel’s lemma I ⊕ Pi1 � (I + Pi1) ⊕ (I ∩ Pi1). Hence I is
a projective A-module. Therefore the ring A is right hereditary. Exactly in the
same way one can show that A is left hereditary.
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We are going to show that every nonzero two-sided ideal in the ring A contains
a power of the radical R of A. Since I �= 0, there is a principal module P such
that P ∩ I �= 0. Then P ∩ I = PRm for some natural number m. Then from
the equality (12.3.1) it follows that I ⊃ Rm+t. Therefore the product of nonzero
two-sided ideals of A is not equal to zero and the ring A is prime, by definition.
(Recall that the ring is called prime if the product of every two of its nonzero
two-sided ideals is not equal to zero.) So we have shown that A is a two-sided
Noetherian and two-sided hereditary prime semiperfect ring.

Denote by Ht(O) the ring of t × t matrices of the form:

Ht(O) =


 O O . . . O

M O . . . O
M M . . . O




where O is a a discrete valuation ring.
Note that the statement: Artinian (resp. hereditary and so on) ring denotes

two-sided Artinian (resp. two-sided hereditary ring and so on). In future we shall
not again explicity recall that.

It is easy to see that the ring Ht(O) is a Noetherian serial prime hereditary
ring.

Theorem 12.3.4. A Noetherian semiperfect prime reduced hereditary ring A
is either a division ring or is isomorphic to a ring of the form Ht(O) where O is
a discrete valuation ring.

To prove this theorem we shall need some more statements that are also of
independent interest.

Lemma 12.3.5. Let A be a semiperfect semiprime two-sided Noetherian ring
whose quiver is connected. If the ring A is not a division ring then each vertex of
Q(A) is the end of at least one arrow and each vertex of Q(A) is the start of at
least one arrow.

Proof. Let A be a semiperfect semiprime two-sided Noetherian ring whose
quiver is connected. One may assume that the ring A is reduced. Suppose that no
arrow enters to the point 1 (this can be assumed without any loss of generality).
Consider the corresponding two-sided Peirce decomposition of the ring A: A =(

A11 A12

A21 A22

)
, and the corresponding decomposition of the identity 1 = e1 + e2 of

A into a sum of orthogonal idempotents. Then e1A = P1 is a principal A-module.
By proposition 11.1.1 A21R1 + R2A21 = A21, where Ri is the Jacobson radical of
the ring Aii (i = 1, 2). Hence, by theorem 3.6.1 and Nakayama’s lemma, A21 = 0.
Since the ring A is semiprime, it follows that A12 = 0. Therefore, since Q(A) is a
connected quiver, we obtain that the ring A is a division ring. The rest is proved
analogously.
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Proposition 12.3.6. The quiver (left quiver) of a semiperfect prime Noethe-
rian hereditary ring A is either a point or a cycle.

Proof. Suppose there exist arrows going from the vertex 1 to two different
vertices i and j. Then P1R contains as a direct summand a module N , which is
isomorphic to Pi ⊕ Pj . Fix monomorphisms ϕ : Pi → P1, ψ : Pj → P1, such that
Im(ϕ ⊕ ψ) = N .

Due to the fact that the ring A is prime, the sets Hom(P1, Pi) and Hom(P1, Pj)
are both different from zero. Obviously, the sets ϕHom(P1, Pi) and ψHom(P1, Pj)
are right ideals in the ring End(P1) and they are not contained in one another.
This contradicts theorem 10.2.7. By propositions 9.2.13 and 5.5.7 one may assume
that the ring A is reduced. We are going to show that not more than one arrow ends
at one and the same vertex. Consider the vertex with number k. It is sufficient to
consider the case when there exist arrows going from two different vertices j1 and j2
to vertex k. Then by the Q-Lemma there are strict inclusions: ej1R

2ek ⊂ ej1Rek,
ej2R

2ek ⊂ ej2Rek. We set Qk = Aek, where ek is an idempotent corresponding to
the principal module Pk. By the Q-lemma we conclude that the simple modules
Vj1 and Vj2 enter into the quotient module RQk/R2Qk. Therefore RQk = Qj1 ⊕
Qj2 ⊕X. This again contradicts the fact that End(Qk) is a discrete valuation ring.
Now the statement of the proposition follows from lemma 12.3.5. The proposition
is proved.

Proof of theorem 12.3.4. By proposition 12.3.6, the quiver of such a ring is
either a point or a cycle. If the quiver of A is a point, then A � P , where P is
a simple module, and therefore A � EndA(P ) is a division ring. Let the quiver
Q(A) be a cycle:

{
1 2 t − 1 t 1
• • . . . • • •

}

Note that the left quiver of the ring A is also a cycle consisting of t points.
Therefore the quotient ring A/R2 is a serial ring. Keeping the same symbols,
we find the elements ai,i+1 ∈ Ai,i+1 (i = 1, ..., t − 1) and at1 ∈ At1, such that
Ai,i+1 = ai,i+1Ai+1,i+1 = Aiiai,i+1 (i = 1, ..., t − 1) and At1 = at1A11 = Attat1.
We set p = a12 + a23 + ... + at−1,t + at1. Clearly, eip = pei+1 (i = 1, ..., t − 1) and
e1 = pet. By proposition 10.7.9, A is a piecewise domain. Define the isomorphisms
σi,i+1 : Aii → Ai+1,i+1 (i = 1, ..., t − 1) by αiai,i+1 = aiai+1α

σi,i+1
i . Analogously

one can define the isomorphism σt1.
Using the (K.12.3) construction one can identify the rings A11, ..., Att and

assume that the automorphisms σ12, ..., σt−1,t are identity automorphisms of the
discrete valuation ring A11 which we shall denote by O. We denote by σ the
automorphism σt1.

Let us set ei = eii (i = 1, ..., t) and eij = ai,j+1...aj−1,j for i < j.
Clearly, the product ai,i+1...at−1,tat1a12...ai−1,i ∈ (eiiReii)\(eiiReii)2. Denote
this product by eiiπeii (i = 1, ..., t). Let us set at1 = ettπe11 and ejjπeii =
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ej,j+1...et−1,tettπe11e12...ei−1,i. It is not difficult to verify that the map which to
the element 


α11 α12 . . . α1t

πα21 α22 . . . α2t

. . . . . . . . . . . .
παt1 παt2 . . . αtt


 ∈ Ht(O)

assigns the element
∑
i≤j

eiiαijeij +
∑
m<n

ennπemmαnmemm,

is an isomorphism. The theorem is proved.

Using corollary 10.7.5, theorem 2.1.2 and proposition 2.1.3, we obtain the fol-
lowing corollary which yields the structure of Noetherian semiperfect prime hered-
itary rings.

Corollary 12.3.7. Any prime Noetherian hereditary semiperfect ring is iso-
morphic to either the ring Mn(D), where D is a division ring, or a ring of the
form: 


Mn1×n1(O) Mn1×n2(O) . . . Mn1×nt

(O)
Mn2×n1(πO) Mn2×n2(O) . . . Mn2×nt

(O)
. . . . . . . . . . . .

Mnt×n1(πO) Mnt×n2(πO) . . . Mnt×nt
(O)




where O is a discrete valuation ring. Clearly, the above rings are serial hereditary
Noetherian prime rings.

Therefore we have proved the following structural theorem for Noetherian serial
rings.

Theorem 12.3.8. Any serial Noetherian ring can be decomposed into a finite
direct product of an Artinian serial ring and a number of semiperfect Noetherian
prime hereditary rings. Conversely, all such rings are serial and Noetherian.

Lemma 12.3.9. If A is a semiperfect right (left) Noetherian ring with Jacob-
son radical R, then the quotient ring Ā = A/R2 is right (left) Artinian.

Proof. Obviously, it is sufficient to prove the lemma for a right Noetherian
ring. We shall show that the quotient ring Ā = A/R2 has a composition series.
Indeed, if R̄ = R/R2, then Ā ⊃ R̄ ⊃ 0. Since Ā/R̄ � A/R, between Ā and R̄ one
can find only a finite chain of right ideals with simple factors. Since R̄ is an A/R-
module, it is semisimple. The ideal R is finitely generated and by Nakayama’s
lemma µA(R̄) = µA(R). Therefore in the decomposition of R̄ there are only a
finite number of simple modules. Hence R̄ is an Artinian module and Ā is a right
Artinian ring. The lemma is proved.
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Since in the proof of theorem 12.3.8 we have used only the fact that the quiver
of an indecomposable direct summand is either a chain or a cycle, taking into
account lemma 12.3.9, we have proved the following theorem.

Theorem 12.3.10. A semiperfect Noetherian ring is serial if and only if A/R2

is a serial Artinian ring.

Theorem 12.3.11. A semiperfect Noetherian ring is serial if and only if its
right and left quivers are disconnected unions of cycles and chains.

Proof. Let R be the Jacobson radical of a semiperfect Noetherian ring A and
let the right and left quiver of the ring A be disconnected unions of cycles and
chains. Then the ring A/R2 is a serial right (left) module and by theorem 12.3.10
the ring A is serial. The converse statement follows from theorem 12.1.2.

Remark. We have introduced the quiver of a serial ring A by Q(A) =
Q(A/R2). Note that theorem 12.3.11 is not true even in the class of semiper-
fect right Noetherian rings. Let O be a local principal ideal domain with classical
ring of fractions D, which is a division ring, and

A =
{(

α β
0 γ

)∣∣∣α ∈ O, β ∈ D × D, γ ∈ D
}

.

Obviously,

R =
{(

α1 β1

0 0

)∣∣∣α1 ∈ M, β1 ∈ D × D
}

(M is the unique maximal ideal of O). So

R2 =
{(

α2 β2

0 0

)∣∣∣α2 ∈ M2, β2 ∈ D × D
}

.

Hence it follows immediately that both the right and left quiver of the ring A is a
disconnected union of a cycle and a point, but the ring A is not serial.

12.4 PROPERTIES OF SERIAL TWO-SIDED NOETHERIAN RINGS

In this section we shall assume that A is a serial two-sided Noetherian ring.

Lemma 12.4.1. Let A be a serial reduced ring with radical R such that R2 = 0.
Then R = pA = Ap (for some suitable p). Conversely, if the radical of a right
Artinian ring A with R2 = 0 has the form R = pA = Ap, then A is a serial ring.

Proof. Let A be a serial reduced ring with the radical R such that R2 = 0.
Obviously, one may assume that the ring A cannot be decomposed into a direct
product of rings, i.e., A is indecomposable. Indeed, if A = A1 × A2 × ... × At

is a direct product of indecomposable rings A1, A2,..., At with Jacobson radicals
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R1, R2,...,Rt and Ri = piA = Api for i = 1, 2, ..., t, then R = pA = Ap where
p = p1 + ... + pt. Thus, one can assume that the ring A is indecomposable. Then
by theorem 11.1.9, proposition 12.1.1 and theorem 12.1.2 one may assume that
the quiver of the ring A is either a cycle or a chain. In this case the left quiver
of the ring A is either a cycle or a chain. If Q(A) is a one-pointed cycle then the
left quiver of A is a one-pointed cycle as well. Then R is a one-dimensional left
and right space over A/R. Therefore R = pA = Ap. Let 1 = e1 + ... + et be
a decomposition of the identity of the ring A into a sum of pairwise orthogonal
local idempotents (t > 1). Then if Q(A) is a cycle, we can assume without loss
of generality that A12 �= 0, A23 �= 0,..., At−1,t �= 0, At1 �= 0 where Aij = eiAej

(i, j = 1, 2, ..., t). Moreover, Aii is obviously a division ring (i = 1, ..., t). By the
Q-Lemma all the remaining Aij are equal to zero. Since A is a serial ring, it
follows that Ai,i+1 is a one-dimensional left Aii-space and a one-dimensional right
Ai+1,i+1-space (i = 1, ..., t − 1), and At1 is a one-dimensional left Att-space and a
one-dimensional right A11-space. Let xi,i+1 ∈ Ai,i+1 (i = 1, ..., s − 1), xs1 ∈ As1

be nonzero elements, and x = x12 + x23 + ... + xs−1,s + xs1. Then, obviously,
xA = R = Ax. In a similar way, in the case of a chain, we obtain R = Ax = xA.

Conversely, assume that A is a right Artinian ring with the radical R such that
R2 = 0 and R = pA = Ap. Let the length of the module eiR be equal to m > 1.
Since eiR is a cyclic module and the ring A is reduced (lemma 11.1.8), there
are no isomorphic principal modules in the projective cover of eiR. Therefore all
simple modules, containing in the decomposition of the semisimple module eiR,
are distinct.

By the Q-Lemma, it follows from here that there exist numbers j1, ..., jm

such that eiRejk
�= 0 and eiR

2ejk
= 0 for k = 1, ...,m. Let us consider Rejk

(k = 1, ..,m). By the same lemma, a left simple module Vi is contained in the
module Rejk

as a direct summand. Hence the principal left A-module Aei is
contained in the projective cover of the ideal R at least twice and therefore, by
lemma 11.1.8 the ideal R is not left cyclic. The lemma is proved.

Corollary 12.4.2. Let A be a serial two-sided Noetherian indecomposable
ring. Then the endomorphism rings of all simple A-modules are all isomorphic.

Proof. Obviously, the conditions of the corollary are not changed by passing to
Morita equivalent rings. Therefore we shall consider that the ring A is reduced. A
simple module U is a module over the ring A/R2 which is Artinian and, by theorem
12.1.2, its quiver is either a cycle or a chain. Keeping the notations of lemma
12.4.1 we have aixi,i+1 = xi,i+1a

σi
i (i = 1, ..., s − 1), asxs1 = xs1a

σs
s . Moreover,

σi is an isomorphism of Aii to Ai+1,i+1 (i = 1, ..., s − 1) and σs : Ass → A11 is
an isomorphism of Ass to A11. Since the Aii are endomorphism rings of simple
A-modules, they are all isomorphic.

Corollary 12.4.3. A semiperfect two-sided Noetherian reduced ring A is serial
if and only if its Jacobson radical R is both a right and left principal ideal.
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The proof follows immediately from lemma 12.4.1 and Nakayama’s lemma.

Lemma 12.4.4. Let A be a right Artinian indecomposable ring with the radical
R. Suppose R is a right and left principal ideal and R2 = 0. Let A = Pn1

1 ⊕...⊕Pns
s

be a decomposition of the ring into a direct sum of principal A-modules. Then the
ring A is a serial ring and n1 = ... = ns.

Proof. Let 1 = f1 + ... + ft be a decomposition of 1 ∈ A into a sum of pairwise
orthogonal idempotents such that fiA = Pni

i (i = 1, ..., s); A = Qn1
1 ⊕ ... ⊕ Qns

s ,
where Qni

i = Afi (i = 1, ..., s). Since R is a principal left ideal, A is a left Artinian

ring. Consider the projective covers P (PiR) and P (RQi). Let P (PiR) =
m
⊕

j=1
P

tij

j

and P (RQi) =
m
⊕

j=1
Q

t′ij

j . Clearly, if tij = 0, then t′ji = 0 and vice versa. Consider

the matrices K = (tij) and K ′ = (t′ij). Let �a = (a1, ..., as) and �b = (b1, ..., bs)
be integral vectors. We shall say that �a ≤ �b if ai ≤ bi for i = 1, ..., s. By lemma
11.1.8 from the conditions of the lemma we obtain that (n1, ..., ns)K ≤ (n1, ..., ns)
and (n1, ..., ns)K ′ ≤ (n1, ..., ns). But then (n1, ..., ns)KK ′ ≤ (n1, ..., ns). This

means that
s∑

j,i=1

nitijt
′
jk ≤ nk for any fixed k. Set i = k and consider the sum

s∑
j=1

nktkjt
′
jk. Obviously, this is not more than nk. Therefore,

s∑
j=1

tkjt
′
jk ≤ 1 and

hence
s∑

j=1

tkj ≤ 1. Analogously,
s∑

j=1

t′jk ≤ 1. Therefore the left quiver and the right

quiver of the ring A are disconnected unions of cycles and chains and by theorem
12.3.11 the ring A is serial. Supposing the ring A to be indecomposable, we may
assume that Q(A) is either a cycle or a chain. If Q(A) is a cycle, then K = (tij)
where ti,i+1 = 1 for i = 1, ..., s − 1, ts1 = 1, and the other tij are equal to zero.
Since (n1, ...ns)K ≤ (n1, ..., ns), we have ns ≤ n1 ≤ n2 ≤ ... ≤ ns−1 ≤ ns and so
n1 = n2 = ... = ns. The case of a chain is treated analogously. The lemma is
proved.

By theorem 12.3.10, taking into account the fact that the ring A is semiperfect,
the statement of lemma 12.4.4 carries over to semiperfect two-sided Noetherian
rings.

Remark. If the Jacobson radical of a reduced ring A is a right principal ideal,
but not a left principal ideal, the ring A is not necessarily serial. As an example
consider the algebra A of the matrices over a field k of the following form:

A =


 a b c

0 d 0
0 0 e




where a, b, c, d, e ∈ k; then radA = R = (e12 + e13)A. At the same time R �
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Ae11 ⊕ Ae11 is not a left principal ideal, by lemma 11.1.8.

Definition. A ring A with Jacobson radical R is called primary if the quotient
ring A/R is a simple Artinian ring.

A serial ring is called a primary decomposable serial ring if it is isomorphic
to a finite direct product of primary rings.

Theorem 12.4.6. For a semiperfect two-sided Noetherian ring A the following
conditions are equivalent:

(a) A is a principal ideal ring;
(b) A is a primary decomposable serial ring;
(c) both the right and left quiver of A is a disconnected union of points and

one-pointed cycles.

Proof.
The implications (a) ⇒ (b) and (b) ⇒ (c) follow from theorems 12.1.2 and

12.2.1.
(c) ⇒ (a). One may assume that A is an indecomposable ring. Then the quiver

of A is either a point or a one-pointed cycle. If the quiver is a point, then the
corresponding principal module is simple and A � Mn(D), where D is a division
ring. Suppose that the quiver of the ring A is a one-pointed cycle. In this case
A = Pn and P/PR � PR/PR2. Clearly, in this case Q/RQ � RQ/R2Q, where
Q is the unique principal left A-module. Hence, it follows that P (PR) � P and
therefore PR/PR2 � PR2/PR3, RQ/R2Q � R2Q/R3Q. Continuing this process
in the Artinian case we conclude that all simple factors of the modules P and Q
are isomorphic. Therefore A � EndAA = Mn(EndAP ) and the ring EndAP is
a local uniserial ring. If the ring A is not Artinian, then by theorems 12.3.9 and
12.3.4 EndAP � O, where O is a local principal ideal domain. Again A � Mn(O).
In each case A is a principal ideal ring. The theorem is proved.

Remark. The rings considered in theorem 12.4.6 for the Artinian case were
introduced for the first time by G.Köthe in his paper Verallgemeinerte Abelsche
Gruppen mit hyperkomplexen Operatorenring // Math. Z., v.39 (1934), p.29-44.
He used the term ”Einreihig” for such rings. In the general case R.Warfield in
his paper Serial rings and finitely presented modules // J.Algebra, v. 37 (1975),
p.187-222 used the term ”homogeneously serial ring”. We use the term ”primary
decomposable serial rings” for such rings.

12.5 NOTES AND REFERENCES

Artinian uniserial, or primary decomposable serial rings, were first introduced and
studied by G.Köthe in the paper G.Köthe, Verallgemeinerte Abelsche Gruppen
mit Hyperkomplexen Operatorenring // Math. Z., v.39 (1935), p.31-44, where
he proved that any module over such a ring is a direct sum of cyclic modules (he
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called such rings ”Einreihige Ringen”). This result was generalized by T.Nakayama
for Artinian serial rings, who called these rings ”generalized uniserial rings”, (see
T.Nakayama, On Frobeniusean algebras I,II // Ann. of Math., v.40 (1939), p.611-
633; v.42(1941), p.1-21 and Note on uniserial and generalized uniserial rings //
Proc. Imp. Acad. Tokyo, v.16 (1940), p.285-289). In these papers T.Nakayama
proved that any module over such a ring is a direct sum of uniserial submodules
each of which is a homomorphic image of an ideal generated by a primitive idem-
potent. T.Nakayama also showed that, conversely, these are the only rings whose
indecomposable finitely generated modules (both left and right) are homomorphic
images of ideals generated by primitive idempotents.

Artinian principal ideal rings were studied in papers of G.Köthe and K.Asano
(see K.Asano, Über verallgemeinerte Abelsche Gruppen mit hyperkomplexen Oper-
atorenring und ihre Anwendungen // Japan J. Math., v.15 (1939), p.231-253 and
K.Asano, Über Hauptidealringe mit Kettensatz // Osaka Math. J., v.1 (1949),
p.52-61), where it was proved that any Artinian principal right ideal ring is right
uniserial. In fact, K.Asano proved that an Artinian ring is uniserial if and only if
each ideal is a principal right ideal and a principal left ideal. The classical proof
of this theorem is given in the book of N.Jacobson The theory of rings. Amer.
Math. Soc., v.2, Surveys, New Jork, 1943. For such rings K.Asano also proved an
analogue of the Wedderburn-Artin theorem, namely, he proved that any Artinian
uniserial ring can be decomposed into a direct sum of full matrix rings of the form
Mn(A), where A is a local Artinian ring with a cyclic radical. A one-sided charac-
terization of Artinian principal ideal rings and its connection with primary decom-
posable serial rings is given in theorem 2.1 of the paper D.Eisenbud, P.Griffith,
The structure of serial rings // Pacific J. Math., v.36, N1, 1971, p.109-121). So
theorems 12.2.2 and 12.4.6 can be considered as a generalization of these theorems
for the case of semiperfect rings.

L.A.Skornyakov studied serial rings, which he called ”semi-chain rings”, in his
paper When are all modules semi-chained? // Mat. Zametki, v.5, 1969, p.173-
182. He proved there that A is a right and left Artinian serial ring if and only
if every left A-module is a direct sum of uniserial modules. His result generalizes
a theorem proved by K.R.Fuller (see On indecomposable injectives over artinian
rings // Pacific J. Math., v. 29, 1969, p.115-135), to the effect that if each left
module over a ring A is a direct sum of uniserial modules, then A is a serial left
Artinian ring.

With each serial Artinian indecomposable ring one can associate a series of
principal modules, first studied by H.Kupisch (see Beiträge zur Theorie nichthal-
beinfacher Ringe mit Minimalbedingung // Crelles Journal, v.201, 1959, p.100-
112), and later by I.Murase in his classification of these rings (see On the structure
of generalized uniserial rings. I, II, III // Sci. Pap. Coll. Gen. Educ., Univ.
Tokyo, v. 13, 1963, p.1-13; v. 13, 1963, p. 131-158; v.14, 1964, p. 11-25). The
generalization of Murasa’s results was obtained in the papers of D.Eisenbud and
P.Griffith, where the full description, in module-theoretic terms, of the structure
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of serial Artinian rings is given (see D.Eisenbud, P.Griffith, Serial rings // J. Al-
gebra, v.17, 1971, p.389-400 and D.Eisenbud, P.Griffith, The structure of serial
rings // Pacific J. Math., v.36, N1, 1971, p.109-121). H.Kupisch obtained a de-
scription of serial Artinian algebras over an algebraically closed field in his paper
Beiträge zur Theorie nichthalbeinfacher Ringe mit Minimalbedingung // Crelles
Journal, v.201, 1959, p.100-112 and in the general case in the paper Über eine
Klasse von Ringen mit Minimalbedingung I., Arch. Math., v.17, 1966, p. 20-35.

The paper of G.Ivanov Left Generalized Uniserial Rings // J. Algebra, v. 31,
1974, p.166-181 gives a description of the two-sided Peirce decomposition of left
serial rings.

Theorem 12.3.4, which gives the full description of semiperfect two-sided
Noetherian and hereditary prime rings using the technique of quivers, was first
proved by G.Michler in his paper Structure of semi-perfect hereditary Noetherian
rings // J. Algebra, v. 13, N.3, 1969, p.327-344.

Local Noetherian and hereditary rings were studied by P.M.Cohn (see Heredi-
tary local rings // Nagoya Math. J., v.27, N1, 1966, p.223-230) and A.Zaks (see
Hereditary local rings // Michigan Math. J., v.17, 1970, p.267-272).

The first serial non-Artinian rings were studied and described by R.B.Warfield
and V.V.Kirichenko. In particular, they gave a full description of the structure of
serial Noetherian rings.

In this chapter we have followed the papers V.V.Kirichenko, Generalized unise-
rial rings // Preprint IM-75-1, Kiev, 1975 and V.V.Kirichenko, Generalized unis-
erial rings // Mat. sb. v.99(141), N4 (1976), p.559-581, where the technique of
quivers was used systematically.

Using a different approach to the study of serial Noetherian rings, analo-
gous results about the structure of such rings to those presented in this chapter,
were obtained simultaneously and independently by R.B.Warfield in his paper:
R.B.Warfield, Serial rings and finitely presented modules // J. Algebra, v. 37
(1975), p.187-222.

The readers are also recommended to look at the book C.Faith, Algebra II:
Ring Theory, chapter 25, where the results of this chapter are presented using the
approach of R.B.Warfield.



13. Serial rings and their properties

13.1. FINITELY PRESENTED MODULES

In this section we give a method for describing finitely presented modules over a
semiperfect ring A.

Definition. A module M is called finitely presented if it is finitely generated
and there is an epimorphism ψ of a finitely generated projective module P onto
the module M such that Kerψ is a finitely generated module.1)

In view of lemma 10.4.4 to show that a module M over a semiperfect ring is
finitely presented it is sufficient to verify that M is finitely generated and the mod-
ule Kerπ is finitely generated as well, where π : P (M) → M is the epimorphism
of the projective cover P (M) to M .

Let M be a finitely presented module over a semiperfect ring A. Write P0 =
P (M), X = Kerπ0, P = P (X) and π : P → X. In this case we have an exact
sequence: P

π−→ P0
π0−→ M −→ 0.

Lemma 13.1.1. If P
π−→ P0

π0−→ M → 0 and Q
f−→ Q0

f0−→ M → 0 are
two exact sequences, where P0 and Q0 are projective covers of the module M ,
and P (resp. Q) is the projective cover of Kerπ0 (resp. Kerf0), then there is a
commutative diagram

P
π

ϕ

P0
π0

ϕ0

M

1M

0

Q
f

Q0
f0

M 0

where ϕ0 and ϕ are isomorphisms.

Proof. By the definition of a projective module, there is a homomorphism
ϕ0 such that π0 = f0ϕ0. We shall show that ϕ0 is an isomorphism. For any
element q0 ∈ Q0 there exists an element p0 ∈ P0 such that f(q0) = π0(p0).
Since q0 = q0 − ϕ0(p0) + ϕ0(p0), where q0 − ϕ0(p0) ∈ Ker(f0), we obtain Q0 =
Imϕ0 + Kerf0. By the definition of projective cover Ker(f0) is small and so
Imϕ0 = Q0. Therefore by proposition 5.1.6 P0 � Imϕ0 ⊕ Kerϕ0 and, due to the
uniqueness of a projective cover, Kerϕ0 = 0, i.e., ϕ0 is an isomorphism. Write
Y = Kerf0. Clearly, Im(ϕ0π0) = Y . Since Imf = Y , by the definition of
a projective module, there is a homomorphism ϕ : P → Q such that ϕ0π = fϕ.
Applying the assertions mentioned above to the module Y and taking into account
that Q is a projective cover of Y , we conclude that ϕ is an isomorphism. The
lemma is proved.

1) Equivalently M is a quotient of a finitely generated free module with finitely generated
kernel.

319
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Let P and P0 be finitely generated projective A-modules and let π : P → P0

be a homomorphism such that Imπ ⊂ P0R and Kerπ ⊂ PR. Clearly, the module
Mπ = P0/Imπ is a finitely presented module. Moreover, P0 is the projective
cover of the module Mπ and P is the projective cover of the module Imπ. If
ϕ : P → Q and ϕ0 : P0 → Q0 are isomorphisms then we have Mϕ0πϕ−1 � Mπ.
Conversely, if π : P → P0 is the homomorphism indicated above and f : Q → Q0

is a homomorphism such that Imf ⊂ Q0R, Kerf ⊂ QR and Mπ � Mf , then,
by lemma 13.1.1, f = ϕ0πϕ−1. Any finitely generated projective module over
a semiperfect ring A uniquely decomposes into a direct sum of principal ones.
Let P and P0 be finitely generated projective A-modules with decompositions
P = P k1

1 ⊕ ...⊕P ks
s , P0 = Pm1

1 ⊕ ...⊕Pms
s into direct sums of principal A-modules

and let π : P → P0 be a homomorphism.

The homomorphism π can be written in the form of a matrix [π] with elements
in HomA(P kj

j , Pmi
i ) (i, j = 1, 2, ..., s), where HomA(P kj

j , Pmi
i ) is a mi ×kj matrix

with entries in HomA(Pj , Pi). Let e1, ..., es be pairwise orthogonal local idempo-
tents of the decomposition of 1 ∈ A into a sum of pairwise orthogonal idempotents
and Pi � eiA (i = 1, ..., s). Then HomA(Pj , Pi) � eiAej . Therefore one can
assume that [π] is a block matrix with elements in eiAej (i, j = 1, ..., s). Divide
the matrix [π] (permuting rows and columns if necessary) into s horizontal and
s vertical strips so that in the block of intersection of i-th horizontal and j-th
vertical strips there are the elements from eiAej .

Let us clarify the conditions which such a matrix [π] must satisfy so that
P0 = P (Mπ) and P = P (Imπ). Since P0 = P (Mπ), it follows that [π] is a
block matrix with elements in eiRej (i, j = 1, ..., s). Recall that since the modules
P1, ..., Ps are pairwise non-isomorphic, eiRej = eiAej (i �= j). Then one can
assume that P = P (Imπ). In fact, this reduces to the fact that some columns
may be thrown out of the matrix [π].

If a finitely presented module M is decomposable and M = M1 ⊕ M2, then
P0 = P (M1)⊕P (M2) and M = P (M1)/X1⊕P (M2)/X2 where Kerπ0 = X1⊕X2.
Then Imπ = X1⊕X2 and P (Imπ) = P (X1)⊕P (X2). Hence it immediately follows
that the matrix [π] has block-diagonal form.

Lemma 13.1.2. A finitely presented module M = Mψ is decomposable if and
only if for a homomorphism ψ : Q → P of finitely generated projective modules
such that Imψ ⊂ PR and Q is a projective cover of Imψ there exist automorphisms
α and β of modules Q and P such that [βψα] is a block-diagonal matrix.

Proof. Suppose there exist automorphisms α and β of modules Q and P such
that [βψα] is a block-diagonal matrix. Then Mψ � Mβψα and since the homo-
morphism βψα : Q → P satisfies the same conditions as ψ, the module Mβψα is
decomposable in accordance with the decomposition of the matrix [βψα].

Conversely, let the module M be decomposable. Then we consider the com-
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mutative diagram:

Q
ψ

α

P
θ

β

M 0

P (X1) ⊕ P (X2)
π

P (M1) ⊕ P (M2)
ν

M1 ⊕ M2 0

which exists by lemma 13.1.1. Clearly, π = βψα−1. Fix isomorphisms α0 : Q →
P (X1) ⊕ P (X2) and β0 : P → P (M1) ⊕ P (M2). We set Qi = α−1

0 P (Xi) and
P ′

i = β−1
0 P (Mi) (i = 1, 2). Then β−1

0 πα0 = β−1
0 βψα−1α0 where α−1α0 and

β−1
0 β are automorphisms of modules Q and P . Moreover, the homomorphism

β−1
0 βψα−1α0 : Q1 ⊕ Q2 → P ′

1 ⊕ P ′
2 is obviously block-diagonal. The lemma is

proved.

Now we turn our attention to the study of automorphisms of finitely generated
modules over a semiperfect ring.

Let O be a local ring with unique maximal ideal M.
Any automorphism of a finitely generated projective O-module P is given by

an invertible2) matrix B of order n with elements in the ring O.3)
Consider the following elementary matrices over O

Tij(α) = E + αeij

Di(γ) = E − eii + γeii

where i �= j, the eij are the matrix units of the ring Mn(O), E = e11+e22+...+enn

is the identity matrix, α ∈ O and γ is a unit in O.
An automorphism of a module P , corresponding to an elementary matrix, is

called elementary automorphism. Multiplications on the left (right) side of
a matrix B by elementary matrices correspond to elementary row (column)
operations on the matrix B.

Proposition 13.1.3. Any invertible matrix B over a local ring O can be
reduced by elementary row (columns) operations on B to the identity matrix.

Proof. We shall carry out the proof for the case of elementary row operations.
Since all elementary matrices are invertible, after elementary row operations the
newly obtained matrix will be invertible as well.

First, suppose that b11 �∈ M. Multiplying the first row on the left by b−1
11 we

obtain at position (1, 1) the identity of the ring O. After that by elementary row

2) Invertible over O.
3) Because each finitely generated projective module over a local rings is free, see theorem

10.1.8.
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operations we reduce the matrix B to the form:

B =




1 | ∗
− − −
0 |
0 | B1

... |
0 |




The matrix B1 is obviously invertible and by induction it can be reduced to
the identity matrix. But then, clearly, the first row entries except the first one,
which remains fixed can be made zeroes.

If b11 ∈ M, then as B is invertible, there exists an element bj1 �∈ M (j �= 1).
Adding to the first row the j-th one we obtain at the position (1, 1) an invertible
element from O. This reduces things to the previous case. The proposition is
proved.

Corollary 13.1.4. An invertible matrix B over a local ring O can be decom-
posed into a product of elementary matrices.

The proof of this corollary and the next one is obvious.

Corollary 13.1.5. A matrix B = (bij) over a local ring O is invertible if and
only if the matrix B̄ = (b̄ij) is invertible, where b̄ij = bij + M.

Consider the matrix [ψ] corresponding to an automorphism ψ of a finitely
generated module P = P k1

1 ⊕ ... ⊕ P ks
s . As above

[ψ] ∈




Mn1×n1(e1Ae1) Mn1×n2(e1Ae2) . . . Mn1×ns
(e1Aes)

Mn2×n1(e2Ae1) Mn2×n2(e2Ae2) . . . Mn2×ns
(e2Aes)

. . . . . . . . . . . .
Mns×n1(esAe1) Mns×n2(esAe2) . . . Mns×ns

(esAes)




where the rings Oi = eiAei are local by theorem 10.3.8. We shall show that the
matrix [ψi] consisting of all elements of the matrix [ψ] from Mni

(eiAei) is invertible
for all i = 1, ..., s. If it is not the case, after some elementary transformation of
rows one obtains that in some row of the matrix [ψi] all elements will belong to Mi,
where Mi is the unique maximal ideal of Oi. The new matrix also corresponds to
an automorphism θ of the module P . Let [θ−1] be a matrix corresponding to the
automorphism θ−1. Then [θ][θ−1] = diag(e1, ..., e1, e2, ..., e2, ..., es, ..., es), where
the element ei appears ni times (i = 1, ..., s) along the main diagonal. From the
form of the matrix θ we obtain ei ∈ R; but that is impossible. Indeed, e(1−e) = 0,
where 1 − e is an invertible element. Therefore e = 0. Hence all the matrices [ψi]
are invertible.

As above one can prove the following theorem.
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Theorem 13.1.6. Any matrix [ψ], corresponding to an automorphism ψ of
a finitely generated projective module P , can be decomposed into a product of
elementary matrices. Any automorphism ψ can be decomposed into a product of
elementary automorphisms.

13.2. THE DROZD-WARFIELD THEOREM. THE ORE CONDITION FOR
SERIAL RINGS

In this section we aim to prove a theorem characterizing serial rings in terms of
finitely presented modules and we shall discuss the Ore condition for serial rings.

Theorem 13.2.1 (Yu.A.Drozd-R.B.Warfield). For a ring A the following
conditions are equivalent:

(1) A is serial;
(2) any finitely presented right A-module is serial;
(3) any finitely presented left A-module is serial.

Proof.
(1) ⇒ (2). As was shown above any finitely presented A-module is isomorphic

to the cokernel of a homomorphism f : P → Q, where P and Q are finitely
generated projective modules. Decompose the modules P and Q into direct sums
of principal A-modules: P = P k1

1 ⊕ ... ⊕ P ks
s , Q = Pm1

1 ⊕ ... ⊕ Pms
s . Then the

homomorphism f can be described by a matrix

[ψ] =


 ψ11 . . . ψ1n

. . . . . . . . .
ψm1 . . . ψmn


 ,

where the elements ψij are homomorphisms of the principal modules Pj and Pi.
We are going to show that there exist automorphisms α : P → P and β : Q →

Q such that βfα : P → Q can be described by a diagonal matrix [g] = (gij). I.e.,
gij = 0 if i �= j for a suitable numbering of the principal modules.

We carry out the proof by induction on m + n where it can be assumed that
m ≤ n. We shall show that the matrix [ψ] can be reduced by elementary operations
to a diagonal form. The basis of induction, m + n = 2, is trivial.

Suppose that the statement has been already proved for all numbers less than
m + n. The matrix consisting of the first m − 1 rows of the matrix [ψ] by the
induction hypothesis can be reduced to diagonal form, so that [ψ] can be reduced
to something of the form:

[ψ] =




ψ11 0 . . . 0 0 . . . 0
0 ψ22 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . ψm−1,m−1 0 . . . 0
ψm1 ψm2 . . . ψm,m−1 ψmm . . . ψmn



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If for some j the equation ψmj = xψjj is solvable, then applying the corresponding
elementary row operation to the matrix [ψ], we obtain ψmj = 0. Otherwise, by
proposition 12.3.1, there exists a xj : Pm → Pj such that ψjj = xjψmj . From the
same proposition it follows that there exists a number k such that ψmj = ψmkyj

for all j �= k. Again applying the corresponding elementary row and column
operations on the matrix [ψ] we reduce it to the form:

[ψ] =




0

∗
... ∗
0

0 . . . 0 ψmn 0 . . . 0




To finish the proof we use the induction hypothesis.
(2) ⇒ (1). The ring A is automatically right serial. If it is not left serial, then

by proposition 12.3.1 there exist two homomorphisms of principal right A-modules
ψi : P → Pi (i = 1, 2) such that equations ψ1 = xψ2 and ψ2 = yψ1 cannot be

solved. Let ψ : P → P1⊕P2 be a homomorphism given by the matrix [ψ] =
(

ψ1

ψ2

)
.

Clearly, ψ satisfies the condition of lemma 13.1.2. By theorem 13.1.6 the matrix
ψ is indecomposable. Hence the module (P1 ⊕ P2)/Imψ is indecomposable and it
is not uniserial.

The remaining implications are proved exactly in the same way.
The theorem is proved.

Theorem 13.2.2. Every serial ring satisfies the Ore condition, i.e., every
serial ring has the classical ring of fractions.

To prove this theorem, the following two lemmas will be used.

Suppose A is a serial ring. Denote by N l
ij(N

r
ij) the set of all elements of

Aij which have nonzero right (left) annihilators; Nij = N l
ij + Nr

ij , Xij = Aij\Nij .
Clearly, ei ∈ Xii for i = 1, . . . , n. Besides, we have XijXji ⊆ Xii for i, j = 1, . . . , n.
Indeed, if xijxjia = 0 for a ∈ Aik, then xjia ∈ Ajk, and since xij ∈ Xij , then
xjia = 0 and therefore a = 0. Exactly in the same way from bxijxji = 0 (b ∈ Aki)
it follows that b = 0.

Lemma 13.2.3. The set Nij is an Aii-Ajj-bimodule. If xijxji ∈ Xii where
xij ∈ Aij, xji ∈ Aji then xij ∈ Xij and xji ∈ Xji.

Proof. To prove that Nij is an Aii-Ajj-bimodule it suffices to show that N l
ij

and Nr
ij are both Aii-Ajj-bimodules. Let m ∈ N l

ij have a nonzero right annihilator
0 �= z ∈ Ajk. Then for every a ∈ Aii we have amz = 0, i.e., am ∈ N l

ij . Let us
show that for every b ∈ Ajj the element mb belongs to N l

ij . Consider the right
ideals zA and bA. They are submodules of the uniserial module ejA. Thus either
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zA ⊃ bA, or zA ⊂ bA. The first case yields relations b = zc and mb = mzc = 0,
the second one gives z = by and mz = mby = 0, i.e., mb ∈ N l

ij .
Let xijxji ∈ Xii and xij ∈ Nij . Assume xij ∈ N l

ij . Then there exists 0 �= y ∈
Ajk such that xijy = 0. Consider the right ideals xjiA and yA. As above either
xjiA ⊃ yA, or yA ⊃ xjiA. If xjiA ⊃ yA, then y = xjib and xijxjib = 0, and
therefore b = 0 and y = 0. If yA ⊃ xjiA, then xji = ya and xijxji = xijya = 0.
This contradiction proves that xij ∈ Xij .

Lemma 13.2.4. For any a ∈ A and x = x1 + ... + xn, xi ∈ Xii, there exist
y = y1 + ... + yn, yi ∈ Xii, and b ∈ A such that ay = xb.

Proof. Set aij = eiaej . Let us show that for every aij there exists a k
(i)
j ∈ Xjj

such that aijk
(i)
j ∈ xiA. Consider the right ideals xiA and aijA. If aijA ⊂ xiA, then

aijej ∈ xiA, where ej ∈ Xjj . If xiA ⊂ aijA, then xi = aijaji. By lemma 13.2.3,
aij ∈ Xij and aji ∈ Xji. Hence, ajj = ajiaij ∈ Xjj and aijajj = aijajiaij = xiaij .
Set k

(i)
j = ajj . Let us consider the right ideals k

(i)
j A, i = 1, . . . , n. These ideals

are linearly ordered, and suppose k
(i0)
j A is the least of them. Write yj = k

(i0)
j .

Obviously, aijyj ∈ xiA for i = 1, . . . , n. Let us set y = y1 + · · · + yn. Clearly
ay = xb. The proof of the lemma is completed.

Proof of theorem 13.2.2. We shall show how the statement of theorem 13.2.2
follows from lemmas 13.2.3 and 13.2.4. Let us prove that for any a ∈ A and any
regular element r ∈ A there exists a regular element y ∈ A and an element b ∈ A
such that ay = rb. By theorem 13.2.1, there exist invertible elements k1 and k2

such that in the two-sided Peirce decomposition of the element k1rk2 in any row
and any column there exists exactly one nonzero element belonging to Xij for some
i and j. Therefore for some positive integer n the element (k1rk2)n = x = k1rb1

is of diagonal form and its diagonal elements lie in Xii.
Let us consider the elements k1a and x. By lemma 13.2.4 there exists a ”diago-

nal” regular element y ∈ A and a b ∈ A such that k1ay = xb. Hence, k1ay = k1rb1b,
and therefore ay = rb1b. The proof of theorem is complete.

Remark. Obviously, the classical ring of fractions of a serial ring is also a
serial ring.

13.3. MINORS OF SERIAL RIGHT NOETHERIAN RINGS

Let A be a ring, P a finitely generated projective A-module which can be decom-
posed into a direct sum of n indecomposable modules. The endomorphism ring
B = EndA(P ) of the module P is called a minor of order n of the ring A.

Many properties of a ring are reflected by its minors. By theorem 10.3.8 a ring
is semiperfect if and only if any minor of the first order of this ring is semiperfect
(or what is the same, is local).
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From theorem 3.6.1 it immediately follows that minors of (right) Noetherian,
(right) Artinian rings are (right) Noetherian, (right) Artinian, respectively. By
corollary 12.3.2 the ring is serial if and only if all its minors of order three are
serial.

The next goal is to describe serial right Noetherian rings. To this end we are
going to describe minors of the first and second order of serial right Noetherian
rings. It will be shown that they are either uniserial right Noetherian, or serial right
Noetherian rings, whose identity decomposes into a sum of two local idempotents.

Proposition 13.3.1. A local right Noetherian ring O is serial if and only if
it is either a discrete valuation ring or an Artinian uniserial ring.

Proof. Obviously, a discrete valuation ring is a serial two-sided Noetherian
ring.

Let O be a local serial (so uniserial) right Noetherian ring with unique maximal
ideal M. Since M is strictly contained in M2 and the quotient module M/M2 is
simple, M = πO by Nakayama’s lemma, where π is any element of M\M2. Note
that M/M2 is a simple left module as well. Obviously, M ⊃ Oπ ⊃ M2. But
then M = Oπ. Denote also by π the endomorphism of O of multiplication on the
right side by π. Let N =

∞
∩

n=0
Mn. If the endomorphism π is nilpotent then by

proposition 12.1.1 O is an Artinian uniserial ring. Suppose that π is not nilpotent.
We shall prove that in this case Ker(π) = 0. Suppose Ker(π) �= 0, x ∈ Ker(π),
x �= 0. Let us show that Ker(π) ⊂ N . If this is not the case, then there is a
natural number m such that MxO = OπxO = 0 and MxO = Mm+1. Therefore
Mm+1 = 0, which contradicts the hypothesis. Therefore x = πnxn for any positive
integer n for a suitable xn. Clearly, xn ∈ Ker(πn+1) but xn �∈ Ker(πn). Therefore
there is a strictly increasing chain of two-sided ideals:

0 ⊂ Ker(π) ⊂ Ker(π2) ⊂ ... ⊂ Ker(πn) ⊂ Ker(πn+1) ⊂ ...

Since the ring O is right Noetherian, we obtain a contradiction. Therefore Kerπ =
0. Let us show that N = 0. Passing to the quotient ring O/(NM) if necessary,
one can assume that in the initial ring O there holds NM = 0. Consider the set
N ′ = {n′ ∈ O|πn = n′π, n ∈ N}. Clearly, N ′ �= 0. We shall show that N ′ is a
two-sided ideal. If n′ ∈ N ′, then there exists n ∈ N such that n′π = πn. Then
n′aπ = n′πa′ = πna′ and since na′ ∈ N , also n′a ∈ N ′. Analogously N ′ is a left
ideal. Let us show that N ′ ⊆ N . Obviously, πN = N ′π = N ′Oπ = N ′M. If
N ′ �⊆ N , then there exists a natural number t such that N ′ ⊃ Mt. Therefore
N ′M ⊃ Mt+1 which contradicts the inclusion N ′M ⊆ N . Therefore N ′ ⊆ N .
Since N ′ is a submodule of the simple module N , we have N ′M = 0 which
contradicts the equality Ker(π) = 0. So all ideals (right, left, two-sided) of the
ring O are natural powers of the ideal M. Since Ker(π) = 0, we conclude that O
is a discrete valuation ring. The proposition is proved.

Let O be a discrete valuation ring (not necessary commutative) with a classical
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ring of fraction D which is a division ring. Denote by Hm(O) the ring of m × m
matrices of the following form:

Hm(O) =




O O . . . O
M O . . . O
. . . . . . . . . . . .
M M . . . O




(M is the unique maximal ideal in O). We shall also use the ring of matrices
H(O,m, n) of the form

H(O,m, n) =
(

Hm(O) X
0 Tn(D)

)
,

where Tn(D) is the ring of upper triangular matrices of order n over the division
ring D, and X is a set of all rectangular matrices of size m × n over the division
ring D.

Lemma 13.3.2. H(O,m, n) is a serial right Noetherian ring.

Proof. The proof immediately follows from theorem 3.6.1 and corollary 12.3.2.

Lemma 13.3.3. Let A be a serial ring, 1 = e + f , where e and f are idempo-
tents of A. Then eAf is a right serial fAf- (resp. left eAe-) module. In particular,
if e (resp. f) is a local idempotent, then eAf is a uniserial right fAf- (resp. left
eAe-) module.

Proof. We carry out the proof for right modules. Let 1 = e1+...+es+f1+...+ft

be a decomposition of 1 ∈ A into a sum of pairwise orthogonal local idempotents,
with, moreover, e1 + ... + es = e and f1 + ... + ft = f . Obviously, eAf =

s
⊕

i=1
eiAf .

Let us show that eiAf is a uniserial right fAf -module. Suppose that this is
not the case. Then there exist fAf -submodules M1 and M2 belonging to eiAf
which are not contained one in the other. Then M̃1 = (M1fAe, M1) and M̃2 =
(M2fAe, M2) are submodules of eiA which are not contained one in the other.
The lemma is proved.

Lemma 13.3.4. The right uniserial modules over the ring Hm(O) are ex-
hausted by the Dm, all principal Hm(O)-modules and quotient modules of these
modules.

Proof. Obviously, the modules listed in the formulation are uniserial. The ring
Hm(O) is two-sided hereditary because of corollary 8.3.8. It is easy to see that
Dm is an injective Hm(O)-module and that any quotient module of Dm is also
injective by theorem 5.5.6. Set Pi = eiHm(O) and Pi/PiR = Ui. Obviously, Dm

is an injective hull of Pi for i = 1, ...,m.
The module Dm/Pi = Ci is an injective hull of the module Ui−1 for i = 2, ...,m

and the module Dm/P1 = C1 is an injective hull of Um. Let M be a uniserial
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module. If it is finitely generated, then, obviously, it is a quotient module of a
principal module. If M is not finitely generated, then it contains either a principal
module P or a nontrivial quotient module of it and hence a simple module U . The
injective hull Dm of the module P coincides with the injective hull of M and the
injective hull Ci of the module U coincides with the injective hull of M . Since all
the proper modules Ci and Dm are finitely generated, we obtain the statement of
the lemma.

Proposition 13.3.5. A semiperfect reduced indecomposable ring B is a minor
of the second order of a serial right Noetherian ring if and only if it is isomorphic
to one of the following rings:

a) a reduced serial two-sided Noetherian ring B whose identity is a sum of two
local idempotents;

b) a ring H(O, 1, 1), where O is a discrete valuation ring.

Proof. Let 1 = e1 + e2 be a decomposition of the identity of the ring B into

a sum of local idempotents, and let B =
2
⊕

i,j=1
eiBej be the corresponding two-

sided Peirce decomposition. Write Bij = eiBej (i, j = 1, 2). By the above, Bii

is a uniserial two-sided Noetherian ring (i = 1, 2). The Jacobson radical R of the

ring B has the form: R =
(

R1 B12

B21 R2

)
, where Ri is the Jacobson radical of Bii

(i = 1, 2). As usual,

R2 =
(

R2
1 + B12B21 R1B12 + B12R2

R2B21 + B21R1 R2
2 + B21B12

)
.

By theorem 12.1.2 we have the following possibilities for the quiver of B:

a) { • • }

b) { • • }

c) { • • }

d) { ��
��

� � }

e) { ��
��

� ��
��

� }
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In case a) e1BR = 0 and e2BR = 0, i.e., rad(B) = 0 and B is a semisimple
Artinian ring.

In case b) e2B is a simple module, hence B21 = 0 and B22 is a division ring.
By the Q-Lemma , R2

1 = R1, whence R1 = 0 and by proposition 12.1.1 B is an
Artinian serial ring.

In case c) by the Q-Lemma we obtain B12B21 = R1, B21B21 = R2 and strict
inclusions R1B12 + B12R2 ⊂ B12, R2B21 + B21R1 ⊂ B21. But then R1B12 =
B12R2 and R2B21 = B21R1. Let b21 ∈ B21\B21R1 and b12 ∈ B12\B12R2. Then,
obviously, B22b21 = B21 and B11B12 = B12. By theorem 3.6.1, B is a two-sided
Noetherian ring.

In case d) by the Q-Lemma we obtain B21 = 0, R2 = 0, and hence B22 is
a division ring, R1B12 = B12. Therefore B11 is a discrete valuation ring. Write

O = B11 and D = B22. So B =
(
O B12

0 D

)
. By lemma 13.3.3, B12 is a right

uniserial D-module and a left uniserial O-module. Therefore B12 = bD, where
b ∈ D. By lemma 13.3.4, taking into account the equality R1B12 = B12, we obtain
that B12 = D1b where D1 is the division ring of the ring O. Since B12 = D1b = bD,
the mapping σ : D1 → D given by the formula αb = bασ, where α ∈ D1 and
σ is an isomorphism of the division rings D1 and D. Assigning to an element(

α β
0 γ

)
∈ H(O, 1, 1) the element

(
α βb
0 γσ

)
∈ B we obtain an isomorphism

between the rings H(O, 1, 1) and B.
In case e) we have the equalities: R2

1 + B12B21 = R2
1, R1B12 + B12R2 = B12,

R2B21 + B21R1 = B21, R2
2 + B21B12 = R2

2. By Nakayama’s lemma, R1B12 = B12

and B21 = R2B21. Obviously, B12B21 is an ideal in the ring B11. If the ring B11

is Artinian then B12 = 0. Consider the ideal I =
(

R1 0
B21R1 0

)
(R1 is the radical

of the ring B11) and the quotient ring B = B/I. If B21 �= 0 then B22 is a discrete
valuation ring and B21/B12R1 as a left B22-module is isomorphic to the quotient
division ring of B22. By theorem 3.6.1, the ring B is not right Noetherian. Exactly
in the same way, if B22 is an Artinian ring, then B12 = 0 and B21 = 0. Therefore
B11 and B22 are discrete valuation rings. If B12B21 �= 0, then B12B21 = Rm

1 .
Since R1B12 = B12, we have Rm

1 = B12B21 = R1B12B21 = Rm+1
1 which leads to

a contradiction. Analogously, B21B12 = 0. If at least one from B12 and B21 is not
equal to zero, then without loss of generality one can assume that B12 = 0. The

left ideals
[

B12

R2
2

]
and

[
B12R

2
2

R2

]
are not contained one in another. Therefore the

left module
[

B12

B22

]
is not uniserial. Hence B12 = 0 and B21 = 0. The proposition

is proved.
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13.4. STRUCTURE OF SERIAL RIGHT NOETHERIAN RINGS

Let A be a serial right Noetherian ring. Assume that it is reduced. Order all the
non-isomorphic principal A-modules in the following way: first all non-Artinian
modules P1, ..., Pt (in some order) and then the Artinian modules Pt+1, ..., Pt+m,
where t + m = s. Denote by P the direct sum of the modules P1, ..., Pt and by Q
the direct sum of the modules Pt+1, ..., Pt+m. Then A = P ⊕ Q. Let 1 = e1 + e2

be the corresponding decomposition of the identity of the ring A into a sum of
idempotents.

The two-sided Peirce decomposition corresponding to this decomposition of the
identity looks like:

A =
(

A1 X
Y A2

)

where Ai = eiAei (i = 1, 2), X = e1Ae2, Y = e2Ae1.
The two-sided Peirce decomposition of the Jacobson radical R of the ring A

has the form:

R =
(

R1 X
Y R2

)

where Ri is the Jacobson radical of the ring Ai (i = 1, 2).

Lemma 13.4.1. In the quiver of a serial right Noetherian ring A there is
no arrow going from a vertex corresponding to a non-Artinian principal module
Pi (i = 1, ..., t) to a vertex corresponding to an Artinian principal module Pt+j

(j = 1, ...,m). If at least one point of a cycle corresponds to an Artinian principal
module, then all points of this cycle correspond to Artinian principal modules. All
points of a chain correspond to Artinian modules.

Proof. Suppose, Pi is a non-Artinian principal A-module. Let Pk be the
projective cover of the module PiR. This means that there is an arrow going from
the vertex i to the vertex k. If the module Pk is Artinian then, obviously, the
module Pi is also Artinian and this leads to a contradiction. Hence it follows that
either all points of a cycle correspond to Artinian modules or all points of the
cycle correspond to non-Artinian modules, and all points of a chain correspond to
Artinian modules. The lemma is proved.

Let us show that HomA(P,Q) � e2Ae1 = 0. By lemma 13.4.1 and the-
orem 12.1.2 there are no arrows between points of the subset {1, ..., t} and
{t + 1, ..., t + m}. By the Q-Lemma we have the following equalities X =
R1X + XR2, Y = Y R1 + R2Y . By theorem 3.6.1, X (resp. Y ) is a finitely gen-
erated right A1(resp. A2)-module. By Nakayama’s lemma, we obtain X = R1X
and Y = R2Y . The right ideal (Y, R2) is an Artinian and Noetherian module
therefore there is a natural number n such that (Y, R2)Rn = 0. It is easy to verify
that (Y, R2)Rn = (Y, Y X + Rn+1

2 ) = (0, 0). Therefore Y = 0 and Rn+1
2 = 0. By
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proposition 12.1.1, the ring A2 is Artinian. So, the ring A has the form:

A =
(

A1 X
0 A2

)
,

where A2 is a serial Artinian ring.
By theorem 12.1.2 the ring A2 can be decomposed into a direct product of

rings whose quivers are cycles and chains:

A2 = A
(1)
2 × . . . × A

(r)
2 .

It is natural to assume that the ring A is indecomposable. We are going to show
that in this case all the quivers of the rings A

(1)
2 , . . . , A

(r)
2 are chains.

Assume that this is not so. Without loss of generality one can assume that
A

(1)
2 = A2 and that the quiver of the ring A2 is a cycle.

Obviously, the set

I =
(

0 XR2

0 R2
2

)

is a two-sided ideal in the ring A. Let Ā = A/I. Write X̄ = X/XR2 and

R̄2 = R2/R2
2. Obviously, the left ideals in the ring Ā given by

(
0 X̄
0 0

)
and(

0 0
0 R̄2

)
are nonzero and neither contains the other. On the other hand, X̄ and

R̄2 are semisimple Ā2-modules (Ā2 = A2/R2
2). Therefore by the Q-Lemma there

exists a local idempotent g in the ring Ā2 such that X̄g �= 0 and R̄2g �= 0. But then
the left ideals X̄g, R̄2g are submodules of the uniserial module Āg which are not
contained one in another. This contradicts the fact that the principal Ā-module
Āg is uniserial. So, all quivers of the rings A

(1)
2 ,..., A

(r)
2 are chains and from the

results of section 12.3 it follows that the ring A2 is isomorphic to a direct product
of quotient rings of upper triangular matrices over division rings.

We are going to describe the ring A1 from the decomposition

A =
(

A1 X
0 A2

)
.

From lemma 13.4.1 it follows that the quiver of the ring A1 is a disconnected
union of cycles. We shall show that the ring of endomorphisms of any principal
A1-module is a discrete valuation ring.

Let 1 ∈ A and let 1 = h1+ . . .+ht+ht+1+ . . .+ht+m be a decomposition of the
identity of the ring A into a sum of pairwise orthogonal local idempotents, where,
moreover, the rings hiA1hi are not Artinian and the rings hjAhj are Artinian for
j ≥ t + 1. By proposition 13.3.1, the hiAhi (i = 1, ..., t) are discrete valuation
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rings. Because the quiver of the ring A1 is a disconnected union of cycles, one can
assume that the two-sided Peirce decomposition of A1 has the form:

A1 =




A11 A12 . . . A1q

A21 A22 . . . A2q

. . . . . . . . . . . .
Aq1 Aq2 . . . Aqq


 ,

where the quiver of the ring Aii is a cycle (i = 1, . . . , q) and AijAji ⊂ R2
i for i �= j

(Ri is the Jacobson radical of the ring Aii ). Obviously, the sets

I1 =




A1i
...

Ai−1,i

R2
i

Ai+1,i

...
Aiq




and I2 =




A1iRi
...

Ai−1,iRi

Ri

Ai+1,iRi

...
AiqRi




are left ideals in the ring A1 (i = 2, . . . q). If A1i �= 0, then Ā1i = A1i/A1iRi �= 0.
By the Q-Lemma there is a local idempotent g such that Ā1ig �= 0 and R̄ig =
(Ri/R2

i )g �= 0. This follows from the fact that the quiver of the ring Aii is a cycle.
The submodules I1g and I2g of the left serial module Ag are not contained one
in another. Therefore A1i = 0 for i = 2, . . . , q. By proposition 13.3.5 Aj1 = 0 for
i �= j. Hence the ring A1 is a direct product of rings whose quivers are cycles.

Theorem 13.4.2. A serial right Noetherian reduced ring, which is not Ar-
tinian and whose quiver is a cycle, is isomorphic to a ring of the form Hs(O).

Proof. We shall carry out the proof by induction on the number of principal
modules in the direct decomposition A = P1 ⊕ . . . ⊕ Ps. Let 1 = e1 + . . . + es

be the corresponding decomposition of the identity of the ring A into a sum of
local pairwise orthogonal idempotents, let A =

s
⊕

i,j=1
(Aij) be the corresponding

two-sided Peirce decomposition. For s = 1 the statement follows from proposition
13.3.1.

Let the quiver Q(A) have the form{
1 2 s − 1 s 1
• • . . . • • •

}

Then Ai,i+1 �= 0 for i = 1, . . . , s − 1 and As1 �= 0. Consider the ring A′ =
(1 − e1)A(1 − e1). Obviously, the quiver Q(A′) has a path 2 → . . . → s − 1 → s.
By proposition 13.3.5, Q(A′) cannot be a chain. Therefore Q(A′) has the form{

2 3 s − 1 s 2
• • . . . • • •

}
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Hence, by the induction hypothesis, A′ is isomorphic to the ring Hs−1(O). The
module

Y =




A21
...

As1




is a left uniserial A′-module. By lemma 13.3.4 and proposition 13.3.5, Y is a
finitely generated left A′-module. Consider the ring A′′ = (1 − es)A(1 − es).
Again by induction we conclude that A12, ..., A1,s−1 are finitely generated left
A11-modules. By proposition 13.3.5, A1s is a finitely generated left A11-module.
Hence, X = (A12, . . . , A1s) is a finitely generated left A11-module. By theorem
3.6.1, A is a two-sided Noetherian ring. The statement now follows from theorem
12.3.8 and corollary 12.3.7. The theorem is proved.

Thus, the two-sided Peirce decomposition of a serial right Noetherian ring A

has the form A =
(

A1 X
0 A2

)
, where A1 = H1 × . . . × Hq is a direct product of

rings which are isomorphic to rings of the form Hs(O) and A2 = B1 × . . . × Br

is a direct product of quotient rings of the rings of upper triangular matrices over
division rings.

We shall need the following useful construction. Let Λ and Γ be rings and
let ΛXΓ be a Λ-Γ-bimodule. In this situation one can construct the ring A =(

Λ X
0 Γ

)
with coordinatewise addition and matrix multiplication. Let ϕ : Λ → ∆

and ψ : Γ → A be ring isomorphisms. We can make X into a ∆-A-bimodule by
the rule: δxw = δϕ−1

xwψ−1
, where δ ∈ ∆, w ∈ A, x ∈ X. Consider the ring

A′ =
(

∆ X
0 A

)
with multiplication:

(
δ x
0 w

)(
δ1 x1

0 w1

)
=
(

δδ1 δϕ−1
x1 + xwψ−1

1

0 ww1

)

and coordinatewise addition. It is easy to verify that the map Φ : A → A′ given

by Φ
[(

λ x
0 γ

)]
=
[

λϕ x
0 γψ

]
is an isomorphism.

Therefore, using this construction, we can assume Hi = Hsi
(Oi) for i =

1, 2, ..., q and Bj = Tmj
(Dj)/Ij for j = 1, ..., r. Let 1 = h1+. . .+hq+f1+. . .+fr be

a decomposition of the identity of A into a sum of pairwise orthogonal idempotents
such that hiAhi = Hi and fjAfj = Bj (i = 1, . . . , q; j = 1, . . . , r).

Suppose that Xi0j0 = hi0Afj0 �= 0. Consider the ring H = (hi0 +

fj0)A(hi0 + fj0) =
(

Hi0 Xi0j0

0 Bj0

)
. We can assume that Hi0 = Hs(O) and

Bj0 = Tm(D)/I. As pairwise orthogonal local idempotents of the ring A,
whose sum is equal to the identity of the ring H, we have the matrix units
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e11, . . . , ess, es+1,s+1, . . . , es+m,s+m. The right Bj0-module eiiXi0j0 (i = 1, . . . , s)
is a finitely generated uniserial Tm(D)-module. Therefore it is isomorphic to
a quotient module of es+j,s+jTm(D) where j is one of the integers from 1 to
m. We shall show that j = 1. Suppose that this is not true. We set
h = eii + es+j−1,s+j−1 + es+j,s+j (j > 1). Then the ring hAh has the form:

hAh =


O 0 X13

0 D D
0 0 D




where X13 �= 0. Obviously, the ring hAh is not serial. By proposition 12.3.1 the
ring A is not serial. Thus, eiiXi0j0 � es+1,s+1Tm(D)/I is a finite dimensional
D-space. Because of lemma 13.3.4, all the modules eiiXi0j0 (i = 1, . . . , s) are
pairwise isomorphic. Therefore hiAfj0 = 0 for i �= i0 and hi0Afj = 0 for j �= j0.
If the ring A cannot be decomposed into a direct product, then t = r = 1. Thus,
the ring A has the form:

A =
(

Hs(O) X
0 Tm(D)/I

)

Since eiiX is isomorphic to a quotient module of the first principal module of
Tm(D), taking into account lemma 13.3.4, we can find a nonzero element xs,s+1 ∈
essXes+1,s+1 such that elements eisxs,s+1es+1,s+j (j = 1, . . . , q), where q ≤ m
(i = 1, . . . , s), form a basis of the right vector D-space X. As above we denote
by σ : O → D the monomorphism defined by αxs,s+1 = xs,s+1α

σ, where α ∈ O.
Write O1 = Imσ. By proposition 13.3.5 the classical ring of fractions of O1

coincides with D. We shall construct an isomorphism σ̄ between the rings Hs(O)
and Hs(O1). Let h ∈ Hs(O), h = (αij), (i, j = 1, . . . , s). We set hσ̄ = (ασ

ij).

Now form a new ring A0, whose elements are matrices of the form
(

h̄ x
0 t

)
,

where h̄ ∈ Hs(O1), t ∈ Tm(D)/I. Addition of elements is coordinatewise and
multiplication is defined by the rule:

(
h̄ x
0 t

)(
h̄1 x1

0 t1

)
=
(

h̄h̄1 h̄σ̄−1
x1 + xt1

0 tt1

)
.

The mapping ψ : A0 → A, ψ
[(

h̄ x
0 t

)]
=
(

h̄σ̄−1
x

0 t

)
is an isomorphism of the

rings A0 and A.
The monomorphism σ0 : O1 → D given by the formula βxs,s+1 = xs,s+1β

σ0 ,
where β ∈ O1, is the identity map.

Consider the ring

H ′(O1, s,m) =
(

Hs(O1) X1

0 Tm(D)

)



SERIAL RINGS AND MODULES OVER THEM 335

where

X1 = {(eiixs,s+1es+1,s+jαij) | αij ∈ D; i = 1, . . . , s; j = 1, . . . , m;

αxs,s+1 = xs,s+1α, where α ∈ O1}.

The ring H ′(O1, s,m) is isomorphic to H(O1, s,m). This isomorphism is given by
the rule: (

h x1

0 t

)
→
(

h (αij)
0 t

)

where x1 ∈ X1. We shall show that H ′(O1, s,m) is surjectively mapped onto A0.
Every element b ∈ H ′(O1, s,m) can be uniquely written in the form b = a0 + b1

where a0 ∈ A0. The elements b for which a0 = 0 form a two-sided ideal in the ring
H ′(O1, s,m). Assigning to an element b the element a0, we obtain an epimorphism
of the ring H ′(O1, s,m) on the ring A0.

Thus, taking into account lemma 13.3.2 we obtain a full description of serial
right Noetherian rings.

Theorem 13.4.3. Any serial right Noetherian ring is Morita equivalent to a
direct product of a finite number of rings of the following types:

1) Artinian serial rings;
2) rings isomorphic to rings of the form Hs(O);
3) rings isomorphic to quotient rings of H(O, s,m),

where O is a discrete valuation ring.
Conversely, all rings of this form are serial and right Noetherian.

13.5. SERIAL RIGHT HEREDITARY RINGS.
SERIAL SEMIPRIME AND RIGHT NOETHERIAN RINGS

This section is devoted to descriptions of the rings from the section title.

Theorem 13.5.1. A serial right hereditary ring is right Noetherian.

Proof. Suppose that A = Pn1
1 ⊕ . . . ⊕ Pns

s is a decomposition of the ring A
into a direct sum of principal right A-modules. Consider a nonzero submodule N
of the principle module Pi. Since Pi is a uniserial module, N is indecomposable
and projective. As follows from 5.5.1 the module N is isomorphic to a principal
module. Therefore any submodule of a principal module is finitely generated.
Hence the ring A is right Noetherian as a direct sum of Noetherian modules. The
theorem is proved.

Theorem 13.5.2. A serial right hereditary ring A is Morita equivalent to
a direct product of rings isomorphic to rings of upper triangular matrices over
division rings, rings of the form Hm(O) and rings of the form H(O,m, n), where
O is a discrete valuation ring.
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Proof. Obviously, one can assume that the ring A is indecomposable and
reduced. By theorem 13.4.3 in this case A is either a two-sided Noetherian ring or
it is isomorphic to a quotient ring of H(O,m, n). A two-sided Noetherian reduced
ring A is either non-Artinian or it is an Artinian ring having a simple projective
module. In the first case it is isomorphic to a ring of the form Hm(O), where O
is a discrete valuation ring. Conversely, a ring of the form Hm(O) is a two-sided
hereditary and serial ring.

In the second case A � Tn(D)/I, where I is a two-sided ideal in the ring
Tn(D). Obviously, eiiAejj = D or eiiAejj = 0 for i < j (i, j = 1, . . . , n; the eii

are matrix units). Since the ring A is indecomposable, one may assume that the
quiver Q(A) of the ring A is a chain:

{
1 2 n − 1 n

• • . . . • •

}

Therefore A contains the matrix units e12, e23, . . . , en−1,n. But then by lemma
5.5.8 there is a chain of submodules in P1 isomorphic to P2, ..., Pn : P1 ⊃ P2 ⊃
. . . ⊃ Pn where Pi � eiiA (i = 1, . . . , n). Since dimDP1 ≤ n and all inclusions
Pi ⊃ Pi+1 (i = 1, . . . , n − 1) are strict, dimDPi = n − i + 1. Hence I = 0.
Thus, A � Tn(D). Conversely, a ring of the form Tn(D) is serial and two-sided
hereditary.

When A is only right Noetherian and right hereditary by means of analogous
arguments one can show that A � H(O,m, n). It is easy to see that H(O,m, n)
is right hereditary. The theorem is proved.

Recall that a ring A is called semiprime if it does not have nonzero nilpotent
ideals. A ring A is called prime if a product of any two nonzero ideals is not equal
to zero. From the definition it follows that a prime ring is always semiprime.

The following theorem gives a description of serial semiprime and right Noethe-
rian rings.

Theorem 13.5.3. A serial semiprime and right Noetherian ring can be de-
composed into a direct product of prime rings. A serial prime and right Noetherian
ring is also left Noetherian and two-sided hereditary. In the Artinian case such
a ring is Morita equivalent to a division ring and in the non-Artinian case it is
Morita equivalent to a ring isomorphic to Hm(O), where O is a discrete valuation
ring. Conversely, all such rings are prime two-sided hereditary and Noetherian.

Proof. By proposition 11.2.9 we can assume that the ring A is reduced and
indecomposable. We again use theorem 13.4.3. If A is an Artinian ring, then its
radical R is equal to zero. Therefore the ring A is isomorphic to a division ring. If
the ring A is two-sided Noetherian and non-Artinian then A � Hm(O), where O is
a discrete valuation ring. If the ring A is isomorphic to a quotient ring of the ring

H(O,m, n), then the ideal
(

0 X
0 0

)
is nilpotent. Hence, the right Noetherian
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quotient ring of the ring H(O,m, n) is not semiprime. The converse statement
follows from theorem 13.5.2.

To conclude this section we shall give a proof of Michler’s theorem, which gives
a description of two-sided hereditary semiprime semiperfect rings. This proof uses
the notion of the quiver of a semiperfect ring.

Lemma 13.5.4. Let A be a semiperfect semiprime two-sided Noetherian ring
whose quiver is connected. If the ring A is not a division ring then for any point
of Q(A) there exists an arrow going out from it and there exists an arrow going in
to it.

Proof. One can assume that the ring A is reduced. Suppose no arrow en-
ters vertex 1 (this may be assumed without loss of generality). Consider the

corresponding two-sided Peirce decomposition A: A =
(

A11 A12

A21 A22

)
, where

1 = e1 + e2, e1A = P1, P1 is a principal A-module, e2
1 = e1. By proposition

11.1.1, A21R1 + R2A21 = A21, where Ri is the Jacobson radical of the ring Aii

(i = 1, 2). Hence by theorem 3.6.1 and Nakayama’s lemma A21 = 0. Since the
ring A is semiprime, it follows that A12 = 0. Therefore, since Q(A) is a connected
quiver, it follows that the ring A is a division ring.

The remaining statement is proved by similar arguments.

Theorem 13.5.5. The quiver (left quiver) of a semiperfect semiprime two-
sided Noetherian hereditary ring A is a disconnected union of points and cycles.

Proof. Suppose that there exist arrows going from vertex 1 to two different
vertices i and j. Then P1R contains as a direct summand a module N which is
isomorphic to Pi ⊕ Pj . Fix monomorphisms ϕ : Pi → P1, ψ : Pj → P1 and write
Im(ϕ ⊕ ψ) = N .

Because the ring A is semiprime, the sets Hom(P1, Pi) and Hom(P1, Pj) are
both different from zero. Obviously, the sets ϕHom(P1, Pi) and ψHom(P1, Pj)
are right ideals in the ring EndP1 which are not contained one in another. This
contradicts proposition 10.2.7. By propositions 5.5.7 and 11.2.9 one can assume
that the ring A is reduced. We are going to show that there does not exist more
than one arrow going to each vertex. Consider the vertex with number k. Suppose
that there exist two arrows going to the vertex k from different vertices j1 and j2.
Then by the Q-Lemma we have strict inclusions:

ej1R
2Ek ⊂ ej1Rek, ej2R

2ek ⊂ ej2Rek.

Set Qk = Aek, where ek is an idempotent corresponding to the principal module
Pk. By the Q-lemma, the simple modules Vj1 and Vj2 are contained in the quotient
module RQk/R2Qk. Therefore RQk = Qjk

⊕Qj2 ⊕X. This again contradicts the
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fact that EndQk is a discrete valuation ring. Now the theorem follows from lemma
13.5.4.

Corollary 13.5.6. A semiperfect semiprime two-sided Noetherian hereditary
ring is serial.

The proof follows immediately from the theorem 13.5.5.

Proposition 13.5.7. Let A =
(

A1 X
Y A2

)
be a two-sided Peirce decomposi-

tion of a ring A and let σ : A1 → A0 be an isomorphism of rings. There exists a

ring Ā =
(

A0 X
Y A2

)
isomorphic to A.

Proof. Any element α0 in A0 can be written in the form α0 = ασ for some

α ∈ A1. In the ring Ā =
(

A0 X
Y A2

)
we introduce multiplication by the rule:

(
ασ x
y β

)(
ασ

1 x1

y1 β1

)
=
(

(αα1)σ + (xy1)σ αx1 + xβ1

yα1 + βy1 yx1 + ββ1

)
,

and addition coordinatewise. The map ϕ : A → Ā given by ϕ
[(

α x
y β

)]
=(

ασ x
y β

)
is, obviously, an isomorphism.

Proposition 13.5.8. Let A be a reduced semiperfect semiprime two-sided
Noetherian hereditary ring, whose quiver is a cycle consisting of two points. Then
A is isomorphic to the ring H2(O), where O is a discrete valuation ring. In

particular, if A =
(

A1 A3

Y A2

)
, where A1, A2, A3 are rings, then A1 = A2 = A3.

Proof. The quiver Q(A) is{
1 2 1
• • •

}

Let A =
(

A1 X
Y A2

)
be the corresponding two-sided Peirce decomposition.

By proposition 11.1.1 we have the equalities XY = R1, Y X = R2 (Ri is the
Jacobson radical of the ring Ai, i = 1, 2) and strict inclusions R1X + XR2 ⊂ X,
R2Y + Y R1 ⊂ Y . Since by corollary 13.5.6 A is a serial Noetherian ring, by
theorem 10.3.8, lemma 11.1.3 and proposition 12.3.6 there exist elements x ∈ X
and y ∈ Y such that X = xA2 = A1x and Y = yA1 = A2y. Moreover, A1 and A2

are discrete valuation rings. The map σ : A1 → A2, defined by a1x = xaσ
1 , is an

isomorphism. Applying proposition 13.5.8 one can assume that: A =
(

A2 X
Y A2

)
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and a2x = xaσ
1 for any a2 ∈ A2. But then this ring is, obviously, isomorphic to

A =
(

A2 A2

Y A2

)
, moreover, Y is the unique maximal ideal of the ring A2.

If X = A3 is a ring, then A1 ⊂ A3 and A2 ⊂ A3. From the equality A3 =
a2A2 = A1a2 it follows that a2 is an invertible element of the ring A2. Therefore
A1 = A2 = A3. The proposition is proved.

We shall prove that a reduced semiprime semiperfect two-sided Noetherian
hereditary ring is isomorphic to a direct product of division rings and rings of the
form Hs(O) where O is a discrete valuation ring. By theorems 13.5.5 and 11.1.9
one can assume that Q(A) is a cycle:{

1 2 s 1
• • . . . • •

}

Let 1 = f1 + . . . + fs be the corresponding decomposition of the identity of
the ring A into a sum of pairwise orthogonal idempotents. Let A = (Aij) be the
corresponding two-sided Peirce decomposition (i, j = 1, . . . , s). We shall carry out
the proof by induction on s. By proposition 13.5.4 and 13.5.8 one may assume
that s > 2.

Set f̂i = f1 + . . . + fi−1 + fi+1 + . . . + fs. By theorem 3.6.1, proposition 5.5.7
and lemma 11.2.9 the ring Âs = f̂sAf̂s satisfies the conditions listed above. From
the fact that A12, . . . , As−2,s−1 are not equal to zero it follows that Q(Âs) is a
cycle: {

1 2 s − 2 s − 1 1
• • . . . • • •

}

Therefore by induction and proposition 13.5.7 one can assume that
Âs = Hs−1(O). Considering the ring Â1 = f̂1Af̂1, by induction, we again
have Â1 = Hs−1(O1). So all Aij for i ≤ j besides A1s are rings. We set
A1s = (f1 + fs)A(f1 + fs). Since As1 �= 0, Q(A1s) is a cycle consisting of two
points. Therefore A1s = H2(O2). Hence all Aij are rings for i ≤ j. By proposition
13.5.8, Aij = A11 for i ≤ j and Aij = M for j < i, where M is the unique
maximal ideal in the ring A11. Therefore A is isomorphic to the ring Hs(A11).
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14. Semiperfect semidistributive rings

14.1 DISTRIBUTIVE MODULES

Recall that a module M is called distributive if for all submodules K,L,N

K ∩ (L + N) = K ∩ L + K ∩ N.

Clearly, a submodule and a quotient module of a distributive module is distribu-
tive. A module is called semidistributive if it is a direct sum of distributive
modules. A ring A is called right (left) semidistributive if the right (left) reg-
ular module AA (AA) is semidistributive. A right and left semidistributive ring is
called semidistributive.

Obviously, every uniserial module is a distributive module and every serial
module is a semidistributive module.

Example 14.1.1.
Let S = {α1, . . . , αn} be a finite poset with ordering relation ≤ and let D be

a division ring. Denote by A(S,D) the following subring of Mn(D):

A(S,D) = {
∑

αi≤αj

dijeij | dij ∈ D}.

It is not difficult to check that A(S,D) is a semidistributive Artinian ring.
In particular, the hereditary semidistributive ring

A3 =




 d11 d12 d13

0 d22 0
0 0 d33


 | dij ∈ D




is of the form:
A3 = A(P3, D),

where P3 is the poset with the diagram

2 3
• •

•
1

It is also clear that A3 is the semidistributive ring, which is left serial, but not
right serial.

341
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Proposition 14.1.1. Let M be an A-module. Then M is a distributive module
if and only if all submodules of M with two generators are distributive modules.

Proof. Suppose that all two-generated submodules of M are distributive mod-
ules. Let K, L, N be submodules of M and k = l + n ∈ K ∩ (L + N); l ∈ L,
n ∈ N . Obviously, kA ⊂ lA+nA and kA = kA∩(lA+nA) = kA∩ lA+kA∩nA.
Therefore, k ∈ K ∩L + K ∩N , i.e., K ∩ (L + N) ⊆ K ∩L + K ∩N . The inclusion
K ∩ L + K ∩ N ⊆ K ∩ (L + N) is always valid.

Lemma 14.1.2. Let M be a distributive module over a ring A. Then for any
m,n ∈ M there exist a, b ∈ A such that 1 = a + b and maA + nbA ⊂ mA ∩ nA.

Proof. Write t = m + n and H = mA ∩ nA. Obviously, tA ⊆ mA + nA
and tA ∩ (mA + nA) = tA = (tA ∩ mA) + (tA + nA). So there exist b, d ∈ A
such that tb ∈ mA, td ∈ nA and t = tb + td. Then nb = tb − mb ∈ H and
md = td− nd ∈ H. Let a = 1− b and g = 1− b− d. We have tg = t− tb− td = 0
and ng = tg−mg = −mg ∈ H. So ma = md+mg ∈ H and maA+nbA ⊆ mA∩nA.

Lemma 14.1.3. Let M be a A-module. Then M is a distributive module if
and only if for any m,n ∈ M there exist four elements a, b, c, d of A such that
1 = a + b and ma = nc, nb = md.

Proof. Necessity follows from lemma 14.1.2. Conversely, let k ∈ K ∩ (L + N),
where K,L,N are submodules of M . Then k = m + n, where m ∈ L and n ∈ N .
By assumption there exist a, b ∈ A such that 1 = a + b and ma ∈ mA ∩ nA,
nb ∈ mA ∩ nA. Consequently, ka = ma + na ∈ kA ∩ nA and kb = mb + nb ∈
kA ∩ mA. Therefore, k = ka + kb ∈ (kA ∩ nA) + (kA ∩ mA) ⊂ K ∩ L + K ∩ N ,
i.e., K ∩ (L + N) = K ∩ L + K ∩ N .

Let M be an A-module. Given two elements m,n ∈ M we set

(m : n) = {a ∈ A |na ∈ mA}.

Theorem 14.1.4 (W.Stephenson). A module M is distributive if and only
if

(m : n) + (n : m) = A

for all m,n ∈ M .

Proof. This immediately follows from lemma 14.1.3.

Definition. A module M has square-free socle if its socle contains at most
one copy of each simple module.

Theorem 14.1.5 (V.Camillo). Let M be an A-module. Then M is a dis-
tributive module if and only if M/N has square-free socle for every submodule
N .
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Proof. Necessity. Every quotient and submodule of a distributive module is
distributive, so that if M/N contains a submodule of the form U⊕U , then M is not
a distributive module. Simply because U⊕U is not distributive module. Indeed, for
the diagonal D(U⊕U) = {(u, u) |n ∈ U} of U⊕U we have D(U)∩(U⊕U) = D(U)
and D(U) ∩ (U ⊕ 0) = 0 and D(U) ∩ (0 ⊕ U) = 0.

Conversely. Let m,n ∈ M . We show that (m : n) + (n : m) = A. Let
K be a maximal right ideal of A and U = A/K. Consider the quotient module
mA + nA/mK + nK. The socle of mA + nA/mK + nK doesn’t contain U ⊕U if
one of the following conditions hold:

(1) m ∈ nA + mK + nK = nA + mK;
(2) n ∈ mA + mK + nK = mA + nK.
In case (1) we have m = na + nK or m(1 − k) = na. So (1 − k) ∈ (n : m).

Since (1 − k) �∈ K, we have (n : m) �⊆ K. In case (2) analogously (m : n) �⊆ K.

Theorem 14.1.6. A semiprimary right semidistributive ring A is right Ar-
tinian.

Proof. It is sufficient to show that each indecomposable projective A-module
P = eA is Artinian (e is a nonzero idempotent of A). Let m be the minimal
natural number with PRm = 0. Since the module P is distributive, by theorem
14.1.5, the quotient module PRi/PRi+1 decomposes into a finite direct sum of
simple modules (i = 1, . . . , m − 1). Thus, the module P possesses a composition
series and the module P is Artinian.

14.2 REDUCTION THEOREM FOR SPSD-RINGS

We write SPSDR-ring (SPSDL-ring) for a semiperfect right (left) semidistribu-
tive ring and SPSD-ring for a semiperfect semidistributive ring.

Theorem 14.2.1 (A.Tuganbaev). A semiperfect ring A is right (left)
semidistributive if and only if for any local idempotents e and f of the ring A
the set eAf is a uniserial right fAf-module (uniserial left eAe-module).

Proof. Obviously one may take A to be reduced. We shall prove the theorem
for the right case.

Let AA = P1 ⊕ . . . ⊕ Ps be the decomposition of the ring A into a direct
sum of the pairwise non-isomorphic projective indecomposable A-modules, with
1 = f1 + . . .+fs the corresponding decomposition of 1 ∈ A into a sum of pairwise
orthogonal local idempotents, Aij = fiAfj . We shall show that if A is right
semidistributive, then Aij is a uniserial right Ajj-module. Indeed, if Aij is not
a right uniserial Ajj-module, then there exist submodules X1 and X2 of module
Aij such that one can find elements x1 ∈ X1 and x2 ∈ X2, satisfying x1 �∈
X2 and x2 �∈ X1. Set N = x1Ajj + x2Ajj and Ñ = NA. If N is a cyclic
Ajj-module, then there exists a unique maximal submodule (since Ajj is local)
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and either N = x1Ajj or N = x2Ajj . We have Ñ/ÑR = Uj ⊕ Uj , where
Uj = Pj/PjR. So, by theorem 14.1.5 the submodule Ñ of Pi is not distributive.
Consequently, Aij is a right uniserial Ajj-module. Now let’s show that for any
two local idempotents e and f of the ring A the set eAf is a right uniserial fAf -
module. Write f = f1 and e = e1. Let 1 = e1 + . . . + en = f1 + . . . + fn be
two decompositions of 1 ∈ A into a sum of pairwise orthogonal local idempotents.
By lemma 11.1.4 e1 = afσ(1)a

−1 for a certain a ∈ A. Then the right A11-
module e1Af1 = afσ(1)a

−1Af1 = afσ(1)Af1 = aAσ(1)1 is isomorphic to the right
A11-module Aσ(1)1 (the isomorphism is realized by multiplying by the invertible
element a ∈ A). So eAf is a right uniserial fAf -module.

The next step is to show that if eAf is a right uniserial fAf -module for any
local idempotents e, f ∈ A, then A is right semidistributive.

Any submodule N of a indecomposable projective module P = eA has the
following Peirce decomposition N = Nf1 ⊕ . . . ⊕ Nfs, where Nf1, . . . , Nfs are
Abelian groups.

Finally, the socle of the quotient module P/N is square-free. Indeed, let Y
be a submodule of N such that Y/N is simple. By the Q-Lemma there exist a
unique number i such that Y fk = Nfk for k �= i and Y fi strictly contains Nfi.
This means Y/N � Ui. If P ⊃ Y1 ⊃ N and Y1/N � Ui then by the Q-Lemma
Y1fk = Nfk for k �= i and Y1fi strictly contains Nfi. Then Y1fi = Y fi and
Y = Y1. So P is distributive by theorem 14.1.5.

Theorem 14.2.1 has the following corollary.

Corollary 14.2.2. Let A be a semiperfect ring, and let 1 = e1 + ... + en be a
decomposition of 1 ∈ A into a sum of mutually orthogonal local idempotents. The
ring A is right (left) semidistributive if and only if for any idempotents ei and ej

of the above decomposition, the set eiAej is a uniserial right ejAej-module (left
eiAei-module).

Corollary 14.2.3 (Reduction Theorem for SPSD-rings). Let A be a
semiperfect ring, and let 1 = e1 + ... + en be a decomposition of 1 ∈ A in a sum of
mutually orthogonal local idempotents. The ring A is right (left) semidistributive
if and only if for any idempotents ei and ej (i �= j) of the above decomposition the
ring (ei + ej)A(ei + ej) is right (left) semidistributive.

Proof. It is sufficient to prove the corollary for a reduced ring A. If A is
right semidistributive, then eiAej is right uniserial ejAej-module (i �= j) and
the ring eiAei is right uniserial for i = 1, . . . , n. By corollary 14.2.2, the ring
(ei+ej)A(ei+ej) is right semidistributive. Conversely, if the ring (ei+ej)A(ei+ej)
is right semidistributive, then, by theorem 14.2.1, the set eiAej is a uniserial right
Ajj-module and, by corollary 14.2.2, the ring A is right semidistributive.

Corollary 14.2.4. Let A be a Noetherian SPSD-ring, and let 1 = e1+· · ·+en

be a decomposition of the identity 1 ∈ A into a sum of mutually orthogonal local
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idempotents, let Aij = eiAej and let Ri be the Jacobson radical of a ring Aii.
Then RiAij = AijRj for i, j = 1, . . . , n.

Proof. By theorems 3.6.1 and 14.2.1, Aij is a cyclic uniserial right Ajj-module
and a cyclic uniserial left Aii-module. By Nakayama’s Lemma, AijRj is the unique
proper maximal Ajj-submodule in Aij and RiAij is the unique maximal left Aii-
submodule in Aij . Since RiAij is a right Ajj-module and a left Aii-module, we
have RiAij = AijRjj .

Example 14.2.1.
Consider

A =
(

R C
0 C

)

as an R-algebra (R is the field of real numbers, C is the field of complex numbers).
The Peirce decomposition of the Jacobson radical R = R(A) has the form

R =
(

0 C
0 0

)

and the R-algebra A is right serial, i.e., right semidistributive.

The left indecomposable projective Q2 =
(

C
C

)
has socle

(
C
0

)
, which is

a direct sum of two copies of the left simple module
(

R
0

)
. Consequently, by

theorem 14.1.1, the R-algebra A is an SPSDR-ring but it is not an SPSDL-ring.

14.3 QUIVERS OF SPSD-RINGS

Recall that a quiver without multiple arrows and multiple loops is called a simply
laced quiver. Let A be an SPSD-ring. By theorem 14.1.6, the quotient ring
A/R2 is right Artinian and its quiver Q(A) is defined by Q(A) = Q(A/R2).

Theorem 14.3.1. The quiver Q(A) of an SPSD-ring A is simply laced.
Conversely, for any simply laced quiver Q there exists an SPSD-ring A such that
Q(A) = Q.

Proof. We may assume that A is reduced and R2 = 0. Let AA = P1⊕ . . .⊕Ps,
where P1, . . . , Ps are indecomposable. Then PiR is a semisimple A-module:

PiR =
s⊕

j=1

U
tij

j ,

where UJ = Pj/PjR are simple. The A-module PiR is a submodule of a distribu-
tive A-module and, therefore, PiR is distributive. By the definition of Q(A) we
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have [Q(A)] = (tij) and, by theorem 14.1.5, 0 ≤ tij ≤ 1. So Q(A) is a simply
laced quiver.

Conversely, let kQ be the path k-algebra of a simply laced quiver Q and J be its
fundamental ideal, i.e., the ideal generated by all arrows of Q. Write B = kQ/J2

and π : kQ → B for the natural epimorphism. Let π(εi) = ei, where ε1, . . . , εs

are all paths of length zero. Then B = e1B ⊕ . . . ⊕ esB, where e1B, . . . , esB are
indecomposable. Let R be the Jacobson radical of B and AQ = {σij} be the set
of all arrows of Q. The elements π(σmp), where σmp ∈ AQ form a basis of emR.
Obviously, emR2 = 0 for m = 1, . . . , s. So, emR is the semisimple module and
emR = ⊕

p
Up for all those p, where σmp ∈ AQ. Therefore Q(B) = Q and emR is a

distributive module, by theorem 14.5.1. Thus, B is a right semidistributive ring.
The analogous arguments show that B is a left semidistributive ring.

So B = kQ/J2 is an SPSD-algebra over a field k and Q(B) = Q.

Corollary 14.3.2. The link graph LG(A) of an SPSD-ring A coincides with
a Q(A).

Proof. For any SPSD-ring A the following equalities hold: LG(A) =
Q(A,R) = Q(A).

Theorem 14.3.3. For an Artinian ring A with R2 = 0 the following conditions
are equivalent:

(a) A is semidistributive;
(b) Q(A) is simply laced and the left quiver Q′(A) can be obtained from Q(A)

by reversing all arrows.

Proof.
(a) =⇒ (b). By theorem 14.3.1 it is sufficient to show that Q′(A) can be

obtained from Q(A) by reversing all arrows. One can assume that A is reduced.
Write AA as a direct sum AA = P1 ⊕ . . . ⊕ Ps, where the Pi are indecomposable
projective and let 1 = e1 + · · · es be the corresponding decomposition of 1 ∈ A
into a sum of mutually orthogonal local idempotents. If Aij = eiAej �= 0, then, in
view of corollary 14.2.4,

AijRj = RiAij and Aij ⊂ R for i �= j.
Hence, AijRj = RiAij = 0 for i �= j and, in view of the Q-Lemma, it follows that
there is a loop at the vertex i both in Q(A) and in Q′(A). Thus the left quiver
Q′(A) can be obtained from Q(A) by reversing all arrows.

(b) =⇒ (a). By the Peirce decomposition for R we have: R =
s⊕

i,j=1

eiRej ,

eiRei = Ri and eiRej = A, i �= j; i, j = 1, . . . , s.
It follows that

PiR = (Ai1, . . . , Aii−1, Ri, Aii+1, . . . , Ais)

for i = 1, . . . , s. If Aij �= 0, for i �= j, then, in view of the Q-Lemma, Aij is a
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simple right Ajj-module and a simple left Aii-module. If Ri �= 0, then Ri is a
simple Aii-module and a left simple Aii-module. Thus, in view of theorem 14.2.1,
the ring A is semidistributive.

Remark. The implication (b) =⇒ (a) isn’t true even in the case of finite
dimensional algebras as is shown by the following example.

Let A = kQ4 be the path k-algebra of the quiver Q4

Q4 =




2
•

1 • • 4

•
3




The basis of kQ4 is ε1, ε2, ε3, ε4, σ12, σ13, σ24, σ34, σ12σ24, σ13σ34. The indecom-
posable projective A-modules are: P1 = {ε1, σ12, σ13, σ12σ24, σ13σ34}; P2 =
{ε2, σ24}; P3 = {ε3, σ34}; P4 = {ε4}. Obviously, soc P1 � P4 ⊕ P4. By the-
orem 14.1.5, P1 is not distributive, but Q(A) = Q4 and

Q′(A) =




2
•

4 • • 1

•
3




i.e., A satisfies condition (b) of theorem 14.3.3.

Definition. A semiperfect ring A such that A/R2 is Artinian will be called
Q-symmetric if the left quiver Q′(A) can be obtained from the right quiver Q(A)
by reversing all arrows.

Corollary 14.3.4. Every SPSD-ring is Q-symmetric.

Remark. Example 14.2.1 shows that an SPSDR-ring is not always Q-
symmetric.

14.4 SEMIPRIME SEMIPERFECT RINGS

In this section we shall describe the minors of first and second order of right
Noetherian semiprime SPSD-rings.
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Definition. The endomorphism ring of an indecomposable projective module
over a semiperfect ring is called a principal endomorphism ring.

Proposition 14.4.1. An Artinian principal endomorphism ring of a
semiprime semiperfect ring is a division ring.

Proof. This ring is an Artinian prime local ring and, consequently, is a division
ring.

Lemma 14.4.2. Let AA = Pn1
1 ⊕ Pn2

2 ⊕ . . . ⊕ Pns
s be the decomposition of a

semiprime semiperfect ring A into principal modules and let EndA(P1) = D1 be
a division ring. Then A = Mn1(D1) × End(Pn2

2 ⊕ . . . ⊕ Pns
s ).

Proof. Let 1 = f1 + . . . + fs be a canonical decomposition of 1 ∈ A into a
sum of pairwise orthogonal idempotents, i.e., fiA = Pni

i for i = 1, . . . , s. Let
f1Af1 = A1, (1 − f1)A(1 − f1) = A2, X = f1A(1 − f1), Y = (1 − f1)Af1. If

either X �= 0 or Y �= 0, then K =
(

0 X
Y Y X

)
is a nilpotent ideal and we have

the contradiction. So X = 0, Y = 0, proving the lemma.

Theorem 14.4.3 (Decomposition theorem for semiprime semiperfect
rings). A semiprime semiperfect ring is a finite direct product of indecomposable
rings. An indecomposable semiprime semiperfect ring is either a simple Artinian
ring or an indecomposable semiprime semiperfect ring such that all its principal
endomorphism rings are non-Artinian.

A proof immediately follows from lemma 14.4.2.

Let 1 = g1 + g2 be a decomposition of the identity of A into a sum of the
mutually orthogonal idempotents, and let A = (Aij) be the corresponding Peirce
decomposition of A, i.e., Aij = giAgj , i, j = 1, 2. Similarly, if M is a two-
sided ideal of A, then M = (Mij) is the Peirce decomposition of M , where
Mij = giMgj , i, j = 1, 2.

Lemma 14.4.4. Let M = (Mij) be a two-sided ideal of a semiprime ring
A. If Mij �= 0 for i �= j, then Mji �= 0. Moreover, if Mij �= 0 for i �= j, then
MijMji �= 0 and MjiMij �= 0.

Proof. Let MijMji = 0. Clearly, Z = MijAji + AijMji + Mij + Mji is a
two-sided ideal and Z8 = 0. The remaining cases are treated analogously.

Corollary 14.4.5. Let 1 = e1+. . .+en be a decomposition of the identity of A
into a sum of the mutually orthogonal idempotents, Aij = eiAej, i, j = 1, . . . , n,
and let M be a two sided ideal in A, Mij = eiMej, i, j = 1, . . . , n. If Mij �= 0 for
i �= j, then Mji �= 0 and MijMji �= 0, MjiMij �= 0. Moreover, from the equality
AijAji = 0 it follows that Aij = 0 and Aji = 0.
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Theorem 14.4.6. For a semiprime semiperfect ring A the following conditions
are equivalent:

(1) A is a finite direct product of prime rings;
(2) all principal endomorphism rings of A are prime.

Proof.
(1) ⇒ (2) follows from proposition 9.2.13.
(2) ⇒ (1). Obviously, we can assume that A is indecomposable and reduced.

Let 1 = e1 + . . . + en be a decomposition of 1 ∈ A into the sum of pair-wise
orthogonal local idempotents. We shall prove the theorem by induction on n.
The case n = 1 is obvious. Suppose that A is not prime. Then there exist two-
sided nonzero ideals M , N such that MN = 0. Let h1 = e1 + . . . + en−1 and
h2 = en. We have the equality h1Mh1Nh1 = 0. By the induction hypothesis
either h1Mh1 = 0 or h1Nh1 = 0. Let h1Mh1 = 0, then by corollary 14.4.5
h1Mh2 = 0 and h2Mh1 = 0. If h2Mh2 = 0, then the theorem is proved, so
h2Mh2 �= 0 and h2Nh2 = 0. We have again h2Nh1 = 0 and h1Nh2 = 0. One
can assume that eiNei �= 0 for i = 1, . . . , t and ejNej = 0 for j = t+1, . . . , n. So
NiiAij = 0 for i = 1, . . . , t and j = t+1, . . . , n. Consequently, NiiAijAji = 0 for
the same i and j. Since the Aii are prime, it follows that AijAji = 0. By corollary
14.4.5, we obtain Aij = 0 and Aji = 0 for i = 1, . . . , t and j = t + 1, . . . , n.
Hence, the ring A is decomposable and we obtain a contradiction, which proves
the theorem.

Proposition 14.4.7. Every minor of an SPSD-ring is an SPSD-ring.

The proof follows from theorem 14.2.1 and corollary 14.2.2.

Corollary 14.4.8. Every minor of a right Noetherian semiprime SPSD-ring
is a right Noetherian semiprime SPSD-ring.

The proof follows from theorem 3.6.1 and proposition 9.2.13.
From theorems 14.2.1 and 3.6.1 we obtain the following statement.

Corollary 14.4.9. Every minor of a Noetherian SPSD-ring is a Noetherian
SPSD-ring.

Proposition 14.4.10. A minor of the first order of a right Noetherian SPSD-
ring is uniserial and it is either a discrete valuation ring or an Artinian uniserial
ring.

A proof follows from theorem 14.2.1, theorem 3.6.1 and proposition 13.3.1.

Corollary 14.4.11. A minor of the first order of a right Noetherian semiprime
SPSD-ring is either a discrete valuation ring or a division ring.

Definition. A ring A is called semimaximal if it is a semiperfect semiprime
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right Noetherian ring such that for each local idempotent e ∈ A the ring eAe is a
discrete valuation ring (not necessarily commutative), i.e., all principal endomor-
phism rings of A are discrete valuation rings.

Proposition 14.4.12. A semimaximal ring is a finite direct product of prime
semimaximal rings.

A proof follows from theorem 14.4.6.

So, a semimaximal ring A is indecomposable if and only if A is prime.

Proposition 14.4.13. A semiperfect reduced indecomposable ring B is a sec-
ond order minor of a right Noetherian semiprime SPSD-ring if and only if B is
semimaximal.

Proof. Let 1 = e1 + e2 be a decomposition of 1 ∈ B into a sum of local

idempotents, let B =
2⊕

i,j=1

eiBej be the corresponding two-sided Peirce decom-

position, and let Bij = eiBej (i, j = 1, 2). The Jacobson radical R of B has the

form: R =
(

R1 B12

B21 R2

)
, where Ri is the Jacobson radical of Bii (i = 1, 2).

Obviously,

R2 =
(

R2
1 + B12B21 R1B12 + B12R2

R2B21 + B21R1 R2
2 + B21B12

)
.

By corollary 14.4.10, Bii is either a discrete valuation ring or a division ring.

If B11 = D is a division ring, then R =
(

0 B12

B21 R2

)
. Obviously, J =(

0 B12

B21 B21B12

)
is a nonzero ideal in B and J2 = 0. So B is semimaximal.

Let’s now show that a semimaximal ring B is semidistributive. We can as-
sume that B is prime. Let Ri = πiBii = Biiπi (i = 1, 2). Now b12b2 �= 0
for any b12 �= 0 and b2 �= 0 (b12 ∈ B12, b2 ∈ B22). Indeed, we can suppose

that b2 = πm
2 . Then

(
0 b12

0 0

) (
B11 B12

B21 B22

) (
0 0
0 b2

)
�= 0 and, conse-

quently, b12B22π
m
2 = b12π

m
2 B22 �= 0. So, b12π

m
2 �= 0. Analogously, bijbj �= 0

and bibij �= 0 for i, j = 1, 2. Further bijbji �= 0 for i �= j and both factors
are nonzero. We shall prove that b21b12 �= 0 for b12 �= 0 and b21 �= 0. Indeed,(

0 b12

0 0

) (
B11 B12

B21 B22

) (
0 0

b21 0

)
�= 0. So, b12B22b21 �= 0 and thus there

exists b2 ∈ B22 such that b12b22b21 �= 0. If b21b12 = 0, then b21b12b22b21 = 0 and
we obtain a contradiction.

Next B12 is a uniserial right B22-module and a uniserial left B11-module.
By theorem 3.6.1, B12 is a finitely generated B22-module. Consequently, if B12

isn’t uniserial, then B12 = B
(1)
12 ⊕ B

(2)
12 , where B

(1)
12 and B

(2)
12 are nonzero B22-
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submodules of B12. Let b21 �= 0. Then b21B12 = b21B
(1)
12 ⊕ b21B

(2)
12 , where b21B

(1)
12

and b21B
(1)
12 are the nonzero right ideals in O2. This is a contradiction. Conse-

quently, B12 is a uniserial right B22-module.
Finally B12 is a uniserial left B11-module. If this isn’t true, then there exists

a left B11-submodule N12 with two noncyclic generators in B12. Consequently,
N12 = N

(1)
12 ⊕ N

(2)
12 is a direct sum of two nonzero left B11-submodules and so

N12b21 = N
(1)
12 b21 ⊕ N

(2)
12 b21 is a direct sum of two nonzero left ideals in B11 for

any nonzero b21. This is a contradiction and so B12 is a uniserial left B11-module.
Analogously, B21 is a uniserial right B11-module and a uniserial left B22-module.
Thus, by theorem 14.2.1 B is semidistributive. The proposition is proved.

Corollary 14.4.14. An intersection of a finite number of nonzero submodules
of an indecomposable projective module over a Noetherian prime SPSD- ring is
nonzero.

We leave the proof of this corollary to the reader as an exercise.

Lemma 14.4.15. A local idempotent of a Noetherian prime SPSD-ring A is
a local idempotent of its classical ring of fractions.

Proof. By proposition 9.3.10 A is a right order in the simple Artinian ring
Q = Mn(D). One can assume that the local idempotent e ∈ A is a sum of matrix
idempotents e = ei1i1 + . . . + eikik

. Let k ≥ 2. Then there exist q1, . . . , qk ∈ Q
such that ei1i1q1, . . . , eikik

qk ∈ A and, consequently, ei1i1q1A, . . . , eikik
qkA are

nonzero right submodules of the right indecomposable projective module eA and
eimim

qmA ∩ eipip
qpA = 0 for m �= p. We obtain a contradiction with corollary

14.4.14.

14.5 RIGHT NOETHERIAN SEMIPRIME SPSD-RINGS

The following is a decomposition theorem for semiprime right Noetherian
SPSD-rings.

Theorem 14.5.1. The following conditions for a semiperfect semiprime right
Noetherian ring A are equivalent:

(a) the ring A is semidistributive;
(b) the ring A is a direct product of a semisimple Artinian ring and a semi-

maximal ring.

Proof.
(a)⇒(b). From theorem 14.4.3 it follows that A is a finite direct product of

indecomposable semiprime rings. Every indecomposable ring is either a simple
Artinian ring or a semiprime semiperfect ring such that all its principal endomor-
phism rings are non-Artinian. In the second case, by corollary 14.4.11, such a ring
is semimaximal.
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(b)⇒(a). Obviously, a semiprime Artinian ring is a semiprime SPSD-ring.
A semimaximal ring is an SPSD-ring, by proposition 14.4.3 and the reduction
theorem for SPSD-rings.

Theorem 14.5.2. Each semimaximal ring is isomorphic to a finite direct
product of prime rings of the following form:

A =




O πα12O . . . πα1nO
πα21O O . . . πα2nO

. . . . . . . . . . . .
παn1O παn2O . . . O


 , (14.5.1)

where n ≥ 1, O is a discrete valuation ring with a prime element π, and the αij

are integers such that αij + αjk ≥ αik for all i, j, k (αii = 0 for any i).

Proof. By proposition 14.4.12 a semimaximal ring is a finite direct product
of prime semimaximal rings. We shall show, that a prime semimaximal ring is
isomorphic to a ring of form (14.5.1).

Let 1 = e1 + . . . + em be a decomposition of 1 ∈ A into a sum of pairwise
orthogonal local idempotents, Aij = eiAej for i, j = 1, . . . , m. Denote by Bij

(i �= j) the following second order minor: Bij =
(

Aii Aij

Aji Ajj

)
. If Bij isn’t

reduced, then Bij � M2(Aii) and Bij is left Noetherian. If Bij is reduced, then
Aijaji ⊂ Aij , ϕji : Aij → Aii being the monomorphism of left Aii-modules
(for any nonzero aji) such that ϕji(aij) = aijaji. If Aij isn’t finitely generated,
then Aii contains a non finitely generated left Aii-submodule Aijaji, where aji �=
0. This gives a contradiction. So, by lemma 13.3.4, Aij � Aii and Bij is left
Noetherian, by theorem 3.6.1. Applying induction on m and theorem 3.6.1, we
see that A is left Noetherian. Consequently, A is a prime Noetherian SPSD-ring.
By proposition 9.3.10, A is a right order in a simple Artinian ring Q = Mn(D).
Suppose that every local idempotent ei from the above decomposition 1 = e1 +
. . . + em is local in Mn(D). Hence, the two decompositions: 1 = e1 + . . . + em

and 1 = e11 + . . . + enn are conjugate. Consequently, m = n and we can assume
that the matrix idempotents are the local idempotents of A.

Denote Aii by Ai. We have Q =
n∑

i,j=1

eijD (D is a division ring, the eij are

matrix units commuting with the elements from D) and A =
n∑

i,j=1

eijAij , where

Aij ⊂ D. All Ai are discrete valuations rings, AijAjk ⊂ Aik and Aij �= 0 for
i, j = 1, . . . , n (A is prime and eiiAejj = Aij �= 0).

We shall prove that Aij = dijAj = Aidij , where dij ∈ Aij ⊂ D. In-
deed, let Ri be the Jacobson radical of Ai and let πiAi = Aiπi = Ri. By
corollary 14.2.4, RiAij = AijRj . Take an element 0 �= dij ∈ Aij so that
Aidij + RiAij = Aij . By Nakayama’s Lemma Aij = dijAj = Aidij . Let
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T = diag (d−1
12 , d−1

23 , . . . , d−1
n−1n, 1). Consider TAT−1. One can assume that the fol-

lowing equalities d12 = . . . = dn−1n hold in A, hence A1 = A2 = . . . = An. Write
A1 = O, where O is a discrete valuation ring (non-necessarily commutative).
Consequently, Aij ⊃ O for i ≤ j. From AijAji ⊂ O we have AijAji ⊃ Aji and
Aji ⊂ O for j ≤ i. So, one can assume that dji = παji , where M = πO = Oπ
is the unique maximal ideal of O, αji ≥ 0 for j ≥ i. Obviously, dij = παij , where
αij ≥ −αji. Hence, we obtain a ring of the form 14.5.1. The converse assertion
follows from the definition of a semimaximal ring.

Definition. A ring A is called a tiled order if it is a prime Noetherian
SPSD-ring with nonzero Jacobson radical.

Remark. Let O be a discrete valuation ring. Then from theorems 14.5.1 and
14.5.2 it follows that each tiled order is of the form (14.5.1).

The ring O is embedded into a classical ring of fractions D, which is a division
ring. Therefore (14.5.1) denotes the set of all matrices (aij) ∈ Mn(D) such that
aij ∈ παijO = eiiAejj , where the e11, . . . , enn are the matrix units of Mn(D). It
is clear that Mn(D) is the classical ring of fractions of A.

According to the terminology of V.A.Jategaonkar and R.B.Tarsy, a ring A ⊂
Mn(K), where K is the quotient field of a commutative discrete valuation ring
O, is called a tiled order over O, if Mn(K) is the classical ring of fractions of A,
eii ∈ A and eiiAeii = O for i = 1, . . . , n, where the e11, . . . , enn are the matrix
units of Mn(K) (see V.A.Jategaonkar, Global dimension of tiled orders over a
discrete valuation ring // Trans. Amer. Math. Soc., 196, 1974, pp. 313-330).

Thus, our definition of a tiled order is a generalization of the definition of
a tiled order over a discrete valuation ring in the sense of V.A.Jategaonkar and
R.B.Tarsy.

Denote by Mn(Z) the ring of all square n×n-matrices over the ring of integers
Z. Let E ∈ Mn(Z). We shall call a matrix E = (αij) an exponent matrix if
αij + αjk ≥ αik for i, j, k = 1, . . . , n and αii = 0 for i = 1, . . . , n. A matrix E is
called a reduced exponent matrix if αij + αji > 0 for i, j = 1, . . . , n.

We shall use the following notation: A = {O, E(A)}, where E(A) = (αij) is the

exponent matrix of a ring A, i.e., A =
n∑

i,j=1

eijπ
αijO, where the eij are the matrix

units. If a tiled order is reduced, then αij + αji > 0 for i, j = 1, . . . , n, i �= j, i.e.,
E(A) is reduced.

Definition. Let O be a discrete valuation ring. A right (resp. left) A-module
M (resp. N) is called a right (resp. left) A-lattice if M (resp. N) is a finitely
generated free O-module.

For example, all finitely generated projective A-modules are A-lattices.
Given a tiled order A we denote by Latr(A) (resp. Latl(A)) the category

of right (resp. left) A-lattices. We denote by Sr(A) (resp. Sl(A)) the partially
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ordered set (by inclusion), formed by all A-lattices contained in a fixed simple
Mn(D)-module U (resp. in a left simple Mn(D)-module V ). Such A-lattices are
called irreducible.

Note that every simple right Mn(D)-module is isomorphic to a simple Mn(D)-
module U with D-basis e1, . . . , en such that eiejk = δijek, where ejk ∈ Mn(D)
are the matrix units. Respectively, every simple left Mn(D)-module is isomorphic
to a left simple Mn(D)-module V with D-basis e1, . . . , en such that eijek = δjkei.

Let A = {O, E(A)} be a tiled order, and let U (resp. V ) be a simple right
(resp. left) Mn(D)-module as above.

Then any right (resp. left) irreducible A-lattice M (resp. N) lying in U (resp.
in V ) is an A-module with O-basis (πα1e1, . . . , π

αnen), while
{

αi + αij ≥ αj , for the right case;
αij + αj ≥ αi, for the left case. (14.5.2)

Thus, irreducible A-lattices M can be identified with integer-valued vector
(α1, . . . , αn) satisfying (14.5.2). We shall write [M ] = (α1, . . . , αn) or M =
(α1, . . . , αn).

The order relation on the set of such vectors and the operations on them
corresponding to sum and intersection of irreducible lattices are obvious.

Remark. Obviously, two irreducible A-lattices M1 = (α1, . . . , αn) and M2 =
(β1, . . . , βn) are isomorphic if and only if αi = βi + z for i = 1, . . . , n and (a
fixed) z ∈ Z. We shall denote by (α1, ..., αn)T the column vector with coordinates
α1, ..., αn.

Note that the posets Sr(A) and Sl(A) do not depend on the choice of simple
Mn(D)-modules U and V .

Proposition 14.5.3. The posets Sr(A) and Sl(A) are anti-isomorphic dis-
tributive lattices.

Proof. Since A is a semidistributive ring, Sr(A) (resp. Sl(A)) is a distributive
lattice with respect to sum and intersection of submodules.

Let M = (α1, . . . , αn) ∈ Sr(A). We put M∗ = (−α1, . . . ,−αn)T ∈ Sl(A). If
N = (β1, . . . , βn)T ∈ Sl(A), then N∗ = (−β1, . . . ,−βn) ∈ Sr(A).

Obviously, the operation ∗ satisfies the following conditions:
1. M∗∗ = M ; 2. (M1 + M2)∗ = M∗

1 ∩ M∗
2 ; 3. (M1 ∩ M2)∗ = M∗

1 + M∗
2

in the right case and there are analogous rules in the left case. Thus, the map ∗:
Sr(A) −→ Sl(A) is the anti-isomorphism.

Remark. The map ∗ defines a duality for irreducible A-lattices.

If M1 ⊂ M2, (M1,M2 ∈ Sr(A)), then M∗
2 ⊂ M∗

1 . In this case, the A-lattice
M2 is called an overmodule of the A-lattice M1 (resp. M∗

1 is an overmodule of
M∗

2 ).
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14.6 QUIVERS OF TILED ORDERS

Recall that a quiver is called strongly connected if there is a path between any
two vertices. By convention, a one-point graph without arrows will be considered
a strongly connected quiver. A quiver Q without multiple arrows and multiple
loops is called simply laced, i.e., Q is a simply laced quiver if and only if its
adjacency matrix [Q] is a (0, 1)-matrix.

Theorem 14.6.1. The quiver Q(A) of a right and left Noetherian indecom-
posable semiprime semiperfect ring A is strongly connected.

A proof follows from theorem 11.6.3 and proposition 9.2.13. We use notations
from theorem 11.6.3. If Q(A) isn’t strongly connected, then the ring (g1+g2)A(g1+

g2) isn’t semiprime. Indeed, for the nonzero ideal J =
(

0 g1Ag2

0 0

)
we have

J2 = 0.

Let I be a two-sided ideal of a tiled order A. Obviously,

I =
n∑

i,j=1

eijπ
µijO,

where the eij are matrix units. Denote by E(I) = (µij) the exponent matrix of
the ideal I. Suppose that I and J are two-sided ideals of the ring A, E(I) = (µij),
and E(J) = (νij). It follows easily that E(IJ) = (δij), where δij = min

k
{µik +νkj}.

Theorem 14.6.2. The quiver Q(A) of a tiled order A over a discrete valuation
ring O is strongly connected and simply laced. If A is reduced, then Q(A) =
E(R2) − E(R).

Proof. Taking into account that A is a prime Noetherian semiperfect ring, it
follows from theorem 14.6.1, that Q(A) is a strongly connected quiver. Let A be
a reduced order. Then [Q(A)] is a reduced matrix. We shall use the following
notation: E(A) = (αij); E(R) = (βij), where βii = 1 for i = 1, . . . , n and
βij = αij for i �= j (i, j = 1, . . . , n); E(R2) = (γij), where γij = min

1≤k≤n
{βik +

βkj} for i, j = 1, . . . , n. Since, E(A) is reduced, we have αij + αji ≥ 1 for i, j =
1, . . . , n, i.e., γii = min

1≤k≤n
{βik + βki} = min

1≤k≤n, k �=i
{βik + βki}. Hence γii is equal

to 1 or 2. If i �= j, then βij = αij and γij = min{ min
1≤k≤n, k �=i,j

{αik + αkj}, αij+1},
i.e., γij equals αij or αij + 1.

To any irreducible A-lattice M with O-basis (πα1e1, . . . , π
αnen) associate the

n-tuple [M ] = (α1, . . . , αn). Let us consider

[Pi] = (αi1, . . . , 0, . . . , αin),



356 ALGEBRAS, RINGS AND MODULES

[PiR] = (αi1, . . . , 1, . . . , αin) = (βi1, . . . , βin).

Set [PiR
2] = (γi1, . . . , γin). Then �qi = [PiR

2] − [PiR] is a (0, 1)-vector. Sup-
pose that the positions of the units of �qj are j1, . . . , jm. In view of the annihilation
lemma, this means that PiR/PiR

2 = Uj1 ⊕ . . . ⊕ Ujm
. By the definition of Q(A)

we have exactly one arrow from the vertex i to each of j1, . . . , jm. Thus, the
adjacency matrix [Q(A)] is:

[Q(A)] = E(R2) − E(R).

The theorem is proved.

Definition. A tiled order A = {O, E(A)} is called a (0, 1)-order if E(A) is a
(0, 1)-matrix.

Henceforth a (0, 1)-order will always mean a tiled (0, 1)-order over a discrete
valuation ring O.

With a reduced (0, 1)-order A we associate the partially ordered set

PA = {1, . . . , n}

with the relation ≤ defined by i ≤ j ⇔ αij = 0.
Obviously, (P, ≤) is a partially ordered set (poset).
Conversely, to any finite poset P = {1, . . . , n} assign a reduced (0, 1)-matrix

Ep = (Aij) in the following way: Aij = 0 ⇔ i ≤ j, otherwise Aij = 1. Then
A(P ) = {O, EP } is a reduced (0, 1)-order.

We give a construction which for a given finite partially ordered set P =
{p1, . . . , pn} yields a strongly connected quiver without multiple arrows and mul-
tiple loops.

Denote by Pmax (respectively Pmin) the set of the maximal (respectively min-
imal) elements of P and by Pmax × Pmin their Cartesian product.

Definition. The quiver Q̃(P ) obtained from the diagram Q(P ) by adding the
arrows σij : i → j for all (pi, pj) ∈ Pmax × Pmin is called the quiver associated
with the partially ordered set P .

Obviously, Q̃(P ) is a strongly connected simply laced quiver.

Theorem 14.6.3. The quiver Q(A(P )) coincides with the quiver Q̃(P ).

Proof. Recall that [Q(A(P ))] = E(R2) − E(R). Suppose that in Q(P ) there
is an arrow from s to t. This means that αst = 0 and there is no positive integer
k (k �= s, t) such that αsk = 0 and αkt = 0. The elements βss and βtt of the
exponent matrix E(R) = (βij) are equal to 1. We have that E(R2) = (γij), where
γij = min

1≤k≤n
(βsk + βkt) = 1. Thus, in [Q(A(P ))] at the (s, t)-th position we have

γst − βst = 1−αst = 1− 0 = 1. Consequently, Q(A(P )) has an arrow from s to
t.
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Suppose that p ∈ Pmax. This means that αpk = 1 for k �= p. There-
fore the entries of the p-th row of E(R) are all 1, i.e., (βp1, . . . , βpp, . . . , βpn) =
(1, . . . , 1, . . . , 1).

Similarly, if q ∈ Pmin, then the q-th column (β1q, . . . , βqq, . . . , βnq)T of E(R) is
(1, . . . , 1, . . . , 1)T . Hence, γpq = 2, βpq = 1, and Q(A(P )) has an arrow from p

to q. Consequently, we proved that Q̃(P ) is a subquiver of Q(A(P )).
We show now the converse inclusion. Suppose that γpq = 2. Then obviously

(βp1, . . . , βpp, . . . , βpq) = (1, . . . , 1, . . . , 1)

and
(β1q, . . . , βqq, . . . , βnq)T = (1, . . . , 1, . . . , 1)T .

Therefore p ∈ Pmax, q ∈ Pmin and there is an arrow, which goes from p to q.
Suppose γpq = 1 and βpq = 0. Consequently, p �= q, βpq = αpq = 0 and

p < q. Since γpq = min
1≤k≤n

(βpk + βkp), then βpk + βkq ≥ 1 for k = 1, . . . , n. Thus,

for k �= p, q we have βpk + βkq ≥ 1, whence we obtain αpk + αkp ≥ 1. Therefore,
there is no positive integer k (k �= p, q) such that αpk = αkq = 0. This means
that there is an arrow from p to q in Q̃(P ), and this proves the opposite inclusion.

14.7 QUIVERS OF EXPONENT MATRICES

Let E = (αij) be a reduced exponent matrix. Set E(1) = (βij), where βij = αij

for i �= j and βii = 1 for i = 1, . . . , n, and E(2) = (γij), where γij = min
1≤k≤n

(βik +

βkj). Obviously, [Q] = E(2) − E(1) is a (0, 1)-matrix. From theorem 14.3.1 and
theorem 14.6.1 we obtain the following statement.

Theorem 14.7.1 The matrix [Q] = E(2) −E(1) is the adjacency matrix of the
strongly connected simply laced quiver Q = Q(E).

Definition. The quiver Q(E) is called the quiver of a reduced exponent
matrix E .

Definition. A strongly connected simply laced quiver is called admissible if
it is a quiver of a reduced exponent matrix.

Definition. A reduced exponent matrix E = (αij) ∈ Mn(Z) is called Goren-
stein if there exists a permutation σ of {1, 2, . . . , n} such that αik+αkσ(i) = αiσ(i)

for i, k = 1, . . . , n.

The permutation σ is denoted by σ(E). Notice that σ(E) for a reduced Goren-
stein exponent matrix E has no cycles of length 1.

Recall that a quasigroup is a nonempty set Q with a binary algebraic oper-
ation (called multiplication) such that the equations ax = b and ya = b have a
unique solution x, respectively y, in Q. Obviously, any group is a quasigroup.
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Definition. A Latin square of order n is a square matrix with rows and
columns each of which is a permutation of a set S = {s1, . . . , sn}. Every Latin
square is a Cayley table of a finite quasigroup. In particular, the Cayley table
of a finite group is a Latin square. As the set S we shall usually take S =
{0, 1, . . . , n − 1}.

Definition. A real non-negative n×n-matrix P = (pij) is doubly stochastic

if
n∑

j=1

pij = 1 and
n∑

i=1

pij = 1 for all i, j = 1, . . . , n.

Example 14.7.1.
The Cayley table of the Klein four-group (2)×(2) can be written in the following

form:

K = K(4) =




0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0


 .

Then K(4) is a reduced Gorenstein exponent matrix with permutation σ =
σ(K(4)) = (14)(23). Obviously,

K(2) =




2 2 3 3
2 2 3 3
3 3 2 2
3 3 2 2




and

[Q(K)] = K(2) − K(1) =




1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1


 = 3 · P1,

where P1 is a doubly stochastic matrix, and Q(K) is

��
��

�

�

�

��
��

���

�� ��

�

��
���

��
��

Definition. A quasigroup Q is called entropic if it satisfies the identity
(xu)(vy) = (xv)(uy) for all x, y, u, v ∈ Q. (see Plugfelder, H.O., Quasigroups and
loops: Introduction, Berlin: Heldermann, 1990, p. 140).
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Example 14.7.2.
Let Q(5) = {0, 1, 2, 3, 4, } be the quasigroup with the following Cayley table

0 0 1 2 3 4
0 0 4 3 2 1
1 1 0 4 3 2
2 2 1 0 4 3
3 3 2 1 0 4
4 4 3 2 1 0

It is clear that Q(5) is an entropic quasigroup. The Cayley table

E(5) =




0 4 3 2 1
1 0 4 3 2
2 1 0 4 3
3 2 1 0 4
4 3 2 1 0




of Q(5) is a reduced Gorenstein exponent matrix with σ(E(5)) = (12345).
Obviously,

[Q(E(5))] =




1 0 0 0 1
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1


 = 2P2,

where P2 is a doubly stochastic matrix.
For the Cayley table

E(n) =




0 n − 1 n − 2 . . . 2 1
1 0 n − 1 . . . 3 2
2 1 0 . . . 4 3

. . . . . . . . . . . . . . . . . .
n − 2 n − 3 n − 4 . . . 0 n − 1
n − 1 n − 2 n − 3 . . . 1 0




of the entropic quasigroup Q(n), we have [Q(E(n))] = En + J−
n (0) + e1n, where

J−
n (0) = e21 + . . . + enn−1 is the lower nilpotent Jordan block.

Definition. A finite quasigroup Q defined on the set S = {0, 1, . . . , n − 1} is
called Gorenstein if its Cayley table C(Q) = (αij) has a zero main diagonal and
there exists a permutation σ : i → σ(i) for i = 1, . . . , n such that αik + αkσ(i) =
αiσ(i) for i = 1, . . . , n.

If σ is a cycle, then Q is called a cyclic Gorenstein quasigroup. Write
σ = σ(Q).
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Proposition 14.7.2. The quasigroup Q(n) is Gorenstein with permutation
σ = (12 . . . n), i.e., Q(n) is a cyclic Gorenstein quasigroup.

Proof. This is obvious.

Theorem 14.7.3. For any permutation σ ∈ Sn without fixed elements there
exists a Gorenstein reduced exponent matrix E order A with permutation σ(E) = σ.

Proof. Because σ has no fixed elements, it has no cycles of length 1 and
decomposes into a product of non-intersecting cycles σ = σ1 · · ·σk, where σi has
length mi. Denote by t the least common multiple of the numbers m1−1, . . . , mk−
1.

Consider the matrix

E(m1, . . . , ms) =




t1E(m1) tUm1×m2 tUm1×m3 . . . tUm1×mk

0 t2E(m2) tUm2×m3 . . . tUm2×mk

0 0 t3E(m3) . . . tUm3×mk

. . . . . . . . .
. . . . . .

0 0 0 . . . tkE(mk)




,

where tj = t
mj−1 , Umi×mj

is an mi ×mj - matrix whose entries equal 1; E(m) =

(εij), εij =
{

i − j, if i ≥ j;
i − j + m, if i < j.

Let us remark that εij + εjσ(i) = εiσ(i) = m − 1 for all i, j.

Evidently, E(m1, . . . , ms) is a Gorenstein reduced exponent matrix with a per-
mutation σ(E(m1, . . . , ms)) = (123 . . . m1)(m1 + 1 . . . m1 + m2) · · · (m1 + m2 +
· · · + mk−1 + 1 . . . m1 + m2 + · · · + mk−1 + mk).

Since the permutations σ and σ(E(m1, . . . , ms)) have the same type, these
permutations are conjugate, i. e., there exists a permutation τ such that σ =
τ−1σ(E(m1, . . . , ms))τ .

Consequently, the matrix PT
τ E(m1, . . . , ms)Pτ is the Gorenstein reduced expo-

nent matrix with a permutation σ.

There exist the Gorenstein quasigroups, which are not exponent matrices.

Example 14.7.3. (B.V. Novikov).

The matrix
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C(L12) =




0 1 2 3 4 5 6 7 8 9 10 11
1 0 5 2 3 4 7 8 9 6 11 10
2 5 0 4 1 3 8 10 7 11 6 9
3 2 4 0 5 1 10 6 11 7 9 8
4 3 1 5 0 2 9 11 6 10 8 7
5 4 3 1 2 0 11 9 10 8 7 6
6 7 8 10 9 11 0 2 1 3 4 5
7 8 10 6 11 9 2 0 5 1 3 4
8 9 7 11 6 10 1 5 0 4 2 3
9 6 11 7 10 8 3 1 4 0 5 2
10 11 6 9 8 7 4 3 2 5 0 1
11 10 9 8 7 6 5 4 3 2 1 0




is the Cayley table of a Gorenstein quasigroup L12 with permutation

σ =
(

1 2 3 4 5 6 7 8 9 10 11 12
12 11 10 9 8 7 6 5 4 3 2 1

)
.

The ring inequalities do not hold, since:

α17 + α79 = 7 < α19 = 8.

14.8 EXAMPLES

In the book Tuganbaev A.A., Semidistributive Modules and Rings, Kluwer Aca-
demic Publishers, 1998 the following open questions for Noetherian semidistribu-
tive ring A were stated (Exercises 11.76):

(1) Is it necessary that A is a direct product of an Artinian ring and semiprime
ring?

(2) When is every finitely generated A-module semidistributive?
(3) If A is semiprime, is it hereditary?

We shall give negative answers to questions (1) and (3).

Example 14.8.1 (Negative answer to question 1).
Let Zp be a ring of p-integers (p is prime), and let Fp = Zp/pZp be the field

of p elements. Consider the SPSD-ring A of 2× 2-matrices of the following form:

A =
(

Zp Fp

Fp Fp

)
.

We describe the multiplication and the addition in A. Denote by e11, e12, e21,
e22 the matrix units of A: e12e21 = 0 and e21e12 = 0. Let ϕ : Zp → Fp be
the canonical epimorphism. If a ∈ Zp, then ae11e12 = ϕ(a)e12 = e12ϕ(a) and
e21ae11 = e21ϕ(a) = ϕ(a)e21. Further, ae11 = e11a for a ∈ Zp and αe22 = e22α
for α ∈ Fp. The addition is defined elementwise, the multiplication is defined as
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multiplication of 2 × 2-matrices. Obviously, A is an indecomposable Noetherian
SPSD-ring.

It is easy to see that R(A) =
(

pZp Fp

Fp 0

)
and R(A)2 =

(
p2Zp 0

0 0

)
. So,

R(A)/R(A)2 =
(

pZp/p2Zp Fp

Fp 0

)
and by the Q-Lemma the quiver Q(A) is the

two-pointed quiver with the adjacency matrix [Q(A)] =
(

1 1
1 0

)
.

This example shows, that there is no analogue to the decomposition theorem
for serial Noetherian rings (see theorem 12.3.8) even for Noetherian SPSD-rings
with two-pointed quiver.

Example 14.8.2 (Negative answer to question 3).

Consider the following ring of 2 × 2-matrices A =
(

Zp pZp

pZp Zp

)
. The

Jacobson radical R of A is: R =
(

pZp pZp

pZp Zp

)
. Consider the following right

ideal J of A: J =
(

pZp pZp

0 0

)
. Obviously, JR =

(
p2Zp p2Zp

0 0

)
. It is

clear, that J is indecomposable as a right module and is not projective. It follows

that J contains exactly two maximal submodules: J1 =
(

(p2Zp pZp

0 0

)
and

J2 =
(

pZp p2Zp

0 0

)
, J1∩J2 = JR. Consequently, A is a prime non-hereditary

SPSD-ring.

14.9 NOTES AND REFERENCES

It is well known that many important classes of rings are naturally character-
ized by the properties of modules over them. As examples, we mention semisimple
Artinian rings, uniserial rings, semiprime hereditary semiperfect rings and semidis-
tributive rings.

There is the following chain of strict inclusions:
semisimple Artinian rings ⊂ generalized uniserial rings ⊂

⊂ serial rings ⊂ semidistributive rings.
In this chain the first three classes of rings are semiperfect. The example of the
ring of integers Z shows, that a distributive ring is non-necessarily semiperfect.

The first papers on the theory of semidistributive rings were appeared in the
middle of XX century (see R.L.Blair, Ideal lattice and the structure of rings //
Trans. Amer. Math. Soc., 75, N 1, (1953), pp. 136-153; E.A.Behrens, Distribu-
tive Darstellbare Ringe I // Math. Z., 73, N 5, (1960), pp. 409-432; W.Menzel,
Über der Untergruppenverband einer Abelschen Operatorgruppe. Teil II. Distribu-
tive und M.-Verbande von Untergruppen einer Abelschen Opertorgruppe // Math.
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Z., 74, N 1, (1960), pp. 52-65; W.Menzel, Ein Kriterium für Distributivität
des Untergruppenverbands einer Abelschen Opertorgruppe // Math. Z., 75, N 3,
(1961), pp. 271-276; E.A.Behrens, Distributive Darstellbare Ringe II // Math.
Z., 76, N 4, (1961), pp. 367-384).

The paper W.Stephenson, Modules whose lattice of submodules is distributive
// Proc. London Math. Soc., 28, N 2, (1974), pp. 291-310 was the important
step in the development of this theory.

Papers of H.H.Brungs, V.Camillo, A.Facchini, R.B.Feinberg, M.Ferrero,
K.R.Fuller, J.Gräter, I.Kaplansky, R.Mazurek, A.V.Mikhalev, B.Müller,
B.Osofsky, E.Puchylowski, G.Puninskii, G.Törner, A.Tuganbaev, P.Vámos,
R.B.Warfield, R.Wisbauer, M.H. Wright were devoted to studying different classes
of semidistributive rings.

We note a few monographs, which can help the reader become acquainted
better with this area: P.Cohn, Free Rings and Their Relations, Academic Press,
London, 1971; A.A.Tuganbaev, Semidistributive modules and rings, Kluwer Acad.
Publ., Dordrecht, 1998; A.A.Tuganbaev, Distributive modules and Related Topics,
Gordon and Breach Science Publishers, 1999.

Theorem 14.1.4 was proved in W.Stephenson’s paper (see above). Theorem
14.1.5 first appeared in the paper V.Camillo, Distributive modules // J. Algebra
36 (1975), pp. 6-26.

The reduction theorem for SPSD-rings and decomposition theorem for
semiprime right Noetherian SPSD-rings were proved in the paper V.V.Kirichenko
and M.A.Khibina, Semi-perfect semi-distributive rings, In: Infinite Groups and
Related Algebraic Topics, Institute of Mathematics NAS Ukraine, 1993, pp. 457-
480 (in Russian).

Quivers and prime quivers of SPSD-rings were studied in V.V.Kirichenko,
Semi-perfect semi-distributive rings // Algebras and Representation theory, v. 3,
2000, pp. 81-98.

Moreover, in this paper, for semihereditary SPSD-ring A the existence of a
classical ring of fractions Ã was proved, so that the prime quiver PQ(A) coincides
with a quiver Q(Ã). This is false for Noetherian semiperfect piecewise domains,
as is shown by the following example

A =


 O O O

0 O πO
0 0 O


 ,

where O is a discrete valuation ring with unique maximal ideal M = πO = Oπ.
Theorem 14.5.2 was first proved in A.G.Zavadskij and V.V.Kirichenko,

Torsion-free Modules over Prime Rings // Zap. Nauch. Seminar. Leningrad.
Otdel. Mat. Steklov. Inst. (LOMI) - 1976. - v. 57. - p. 100-116 (in Russian).
English translation in J. of Soviet Math., v. 11, N 4, April 1979, p. 598-612.

In sections 14.6 and 14.7 we have followed papers Zh.T.Chernousova,
M.A.Dokuchaev, V.V.Kirichenko, M.A.Khibina, S.G.Miroshnichenko,
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V.N.Zhuravlev, Tiled orders over discrete valuation rings, finite Markov
chains and partially ordered sets, I // Algebra and Discrete mathematics, N
1, 2002, pp. 32-63 and Zh.T.Chernousova, M.A.Dokuchaev, V.V.Kirichenko,
M.A.Khibina, S.G.Miroshnichenko, V.N.Zhuravlev, Tiled orders over discrete
valuation rings, finite Markov chains and partially ordered sets, II // Algebra and
Discrete mathematics, N 2, 2003, pp. 47-86.

For studying the theory of quasigroups we recommend the monographs
H.O.Plugfelder, Quasigroups and loops: Introduction, Berlin: Heldermann, 1990
and V.D.Belousov, Foundations of quasigroup and loop theory, Moscow, Nauka,
1967 (in Russian). And for studying Latin squares we recommend a fundamental
monograph on this topic A.D.Keedwell, J.Denes, Latin squares and their applica-
tions, New York, Academic Press, 1974.

Examples 14.8.1 and 14.8.2 are considered in the paper V.V.Kirichenko,
Yu.V.Yaremenko, On semiperfect semidistributive rings // Math. Notes, v. 69, N
1, 2001, pp. 153-156 (in Russian).
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