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Introduction

There is little doubt that the present explosion of interest in the algorithmic
aspects of mathematics is due to the development of computers — even though
special algorithms and their study can be traced back all the way through the
history of mathematics. Mathematics started out in Egypt and Babylon as a
clearly algorithmic science. In ancient Greece the foundations of its "descriptive"
or "structural" line were established; but even here we find algorithmic problems
— just think of the problem of constructibility of various geometric figures by
compass and ruler. I find it amazing that this problem was precisely formulated
in the framework of axiomatic geometry (reflecting the current state of devices at
the disposal of the Greeks when they were carrying out those constructions). It is
unnecessary to say how much this problem contributed to the later development
of geometry and to the creation of algebra: both the positive and the negative
results inspired fundamental notions and theorems (e.g. the golden ratio on the
one hand and the solvability of algebraic equations by radicals, in particular by
square roots, on the other).

In our day, the development of computers and the theory of algorithms and
their complexity have produced a similar situation. In the last centuries, a vast
body of "structural" mathematics has evolved. Now that we are interested in the
algorithmic aspects of these results, we meet extremely difficult problems. Some
of the most elementary results in number theory, geometry, algebra, or calculus
become utterly difficult when we ask for algorithms to find those objects whose
existence is (at least by now) easily established. Just think of the elementary
fact, known to Euclid, that any integer has a unique prime factorization, and
contrast it with the apparent intractability of the corresponding algorithmic
problem, namely, the problem of finding this decomposition.

One may remark at this point that there is a trivial way to factor a natural
number: just test all natural numbers up to its square root to find a proper
divisor (if any exists). To formulate the factorization problem precisely, one has
to explain why this solution is unsatisfactory. More generally speaking, one has
to introduce the right models of computation, observing the resources (time,

1



space), and contrast them with examples which are considered "good" or "bad"
on a practical basis. This approach has shown that one measure of efficiency,
namely polynomial time, accords particularly well with subjective feelings and
with rules-of-thumb concerning which problems are inherently "easy" or "dif-
ficult" and which algorithms are "superficial" or "deep". This fact justifies a
thorough study of polynomial time algorithms. (This is so in spite of the - just
- criticism which has been directed against the identification of polynomiality
with real world computational efficiency or practicality.) The frames of these
notes do not allow one to give a precise introduction to the theory of computa-
tional complexity. We accept polynomial time (i.e. running time bounded by a
polynomial of the length of the input) as our main criterion for the "goodness"
of an algorithm (from a theoretical point of view), and study the class P of
problems solvable in polynomial time. A (probably) wider class of problems is
the class NP , solvable in polynomial time by a non-deterministic Turing ma-
chine. The rather technical exact definition of this notion is not essential for
the understanding of this book; let it suffice to say at this point that almost
all combinatorial decision problems (e.g. planarity or 4-colorability of a graph
the existence of a perfect matching or Hamilton circuit, etc.) belong to this
class. The problem of whether P = NP is one of the most outstanding unsolved
problems in mathematics nowadays.

The class NP contains some problems, called NP-complete. to which every
other problem in NP can be reduced. So if P   NP then no NP-complete
problem can be solved in polynomial time. If a problem is not in NP (say. if
it is not a decision problem), but is at least as hard as some NP-complete
problem, then it is called NP-hard. We shall assert that certain problems
are NP-complete or NP-hard: the practical implication of this is that most
probably there is no polynomial time algorithm to solve such a problem at all.

With this framework of computational complexity theory at hand, a very
wide scientific program arises: to study, or rather to re-study, the results of clas-
sical "structural" mathematics from the point of view of the polynomial time
computability of the results. Very little of this program has been carried out.
We have a fairly good understanding of the algorithmic aspects of fundamen-
tal problems in graph theory and combinatorial optimization, and a deep and
promising entry into some parts of number theory group theory and geome-
try; we know very little about the complexity aspects of algorithmic algebra in
general or about algorithmic analysis.

I would not find it fortunate to consider such a program as a thesis about the
uselessness of "structural" mathematics. Rather, it ought to fertilize classical
mathematics with new problems and application possibilities. On the one hand.
the design of better and better algorithms requires more and more knowledge
of classical mathematics. On the other, the proof of negative results (e.g. P  
NP) will certainly require the development of entirely new structural results.
(Think of the proof of the non-constructibility of. say, the regular heptagon:
this required the development of analytic geometry and algebra!)
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It is of course possible that the farther away we get from the sources of
the notion of polynomial time, namely from combinatorial algorithms, the less
significant this notion becomes. But it is also true that some algorithms, which
were developed just from a theoretical point of view to resolve the question of
polynomial-time tractability of some rather special problems, have turned out
to have impact on much wider and more fundamental questions; some of those
algorithms appear to have practical applications as well. In these lecture notes
we study the implications of two such algorithms: the Ellipsoid Method and the
simultaneous diophantine approximation algorithm.

The Ellipsoid Method arose as a method in non-linear optimization, but
became widely known after it was applied by Khachiyan (1979) to solve an im-
portant, though mainly theoretical, problem, namely the polynomial time solv-
ability of linear programs. (This is the problem of finding a solution to a system
of linear inequalities in several variables that maximizes a given linear function.)
Since then, it has been shown (Grötschel, Lovász and Schrijver (1981,1984b))
that it provides a very general algorithmic principle, which is basic in algorithmic
geometry and polyhedral combinatorics.

From a practical point of view the Ellipsoid Method has proved a failure, but,
recently, Karmarkar (1984) developed another method to solve linear programs
in polynomial time which appears to be even practically competitive with the
Simplex Method. Karmarkar's method is based on different ideas, but some
influence of the Ellipsoid Method on his approach cannot be denied.

It is an important, though simple, fact from geometry that a closed convex
set can be defined as the convex hull of its extremal points, but also as the
intersection of its supporting halfspaces. One of the main consequences of the
Ellipsoid Method is that these two, in a sense dual, representations of a convex
set are not only logically but also algorithmically equivalent. This fact from
algorithmic geometry, in turn, has numerous consequences in combinatorics.

These combinatorial applications depend on another line of development in
the foundations of combinatorics, namely, polyhedral combinatorics. A combina-
torial optimization problem (e.g. finding a shortest path, a maximum matching,
a shortest traveling salesman tour, etc.) has typically only finitely many possible
solutions, so from a "classical" mathematical point of view, there is no problem
here: one may inspect these solutions (all paths, all matchings, etc.) one by
one, and select the best. The problem becomes non-trivial only when we try
to achieve this with much less work. This is only possible, of course, because
the set of solutions and values of the objective function is highly structured.
But how to formalize this "structuredness" in a way which makes the problem
tractable? One way to do so is to consider the convex hull of incidence vectors
of solutions. If the polyhedron obtained this way has a "nice" description as the
solution set of a system of linear inequalities, then one may use the powerful
results and methods from linear programming. So, for example, we may use
the Duality Theorem to obtain a "good characterization" of the optimum value.
There is, however, an important difficulty with this approach if we wish to use
it to obtain algorithms: the number of linear inequalities obtained this way will



in general be exponentially large (in terms of the natural "size" of the problem).
Nevertheless, good polyhedral descriptions and efficient algorithmic solvability
have usually gone hand in hand. Sometimes, a good polyhedral description fol-
lows from efficient algorithms. In other cases, the methods developed to obtain
polyhedral results (or, more or less equivalently, minimax results and good char-
acterizations of various properties) could be refined to obtain efficient algorithms.
Polyhedral descriptions are also used (and with increasing success) in obtaining
practical algorithms for otherwise intractable combinatorial optimization prob-
lems. But it was the Ellipsoid Method which provided the first exact results in
this direction (Karp and Papadimitriou (1980), Grötschel, Lovász and Schrijver
(1981), Padberg and Rao (1982)). The algorithmic equivalence of the two de-
scriptions of convex sets mentioned above implies the following. Suppose that
we find an (implicit) description of a polyhedron by linear inequalities, which
is "nice" enough in the sense that there exists a polynomial-time procedure to
check if a given vector satisfies all these inequalities. Then we can optimize any
linear objective function over this polyhedron in polynomial time.

It turns out that a very large number of combinatorial optimization problems
can be shown to be polynomially solvable using this principle. There are at least
two very important problems (finding a maximum independent set in a perfect
graph, and minimizing a submodular function) whose polynomial time solvability
is known only via this principle.

Note that I have tried to word these implications carefully. The polynomial
time algorithms which follow from these general considerations are very far from
being practical. In fact, often the Ellipsoid Method, which is quite impractical
in itself, has to be called as a subroutine of itself, sometimes even nested three
or four times. This ridiculous slowness is of course quite natural for a method
which can be applied in such a generality - and hence makes so little use of
the specialities of particular problems. Once polynomially solvable and NP-
hard problems have been "mapped out", one can try to find for those known
to be polynomially solvable special-purpose algorithms which solve them really
efficiently. Such research has indeed been inspired by "ellipsoidal" results, e.g.
in connection with the problem of minimizing submodular functions.

Polyhedral combinatorics also shows that combinatorial optimization prob-
lems are special cases of the integer linear programming problem (a variation
of the linear programming problem, where the variables are constrained to inte-
gers). There is, however, no hope of obtaining a polynomial-time algorithm for
the integer linear programming problem in general, since it is known to be NP-
complete. On the other hand, a celebrated result of H.W. Lenstra, Jr. (1983)
shows that for every fixed dimension, the integer linear programming problem
can be solved in polynomial time (of course, the polynomial in the time bound
depends on the dimension).

A most significant aspect of Lenstra's result is that it connects ideas from
number theory and optimization. If one formulates them generally, integer linear
programming and the geometry of numbers both study the existence of integral
points in (usually convex) bodies, but traditional conditions, concrete problems
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and solution methods in both fields are very different. Lenstra's work applied
ideas from the theory of diophantine approximation to integer linear programs.
This approach, as we shall see, has led to many further results in optimization.

The second main ingredient of these notes is an algorithm for finding good ap-
proximations to a set of real numbers by rationals with a common denominator.
This classical problem of diophantine approximation has come up - somewhat
unexpectedly - in settling a minor problem left open by the first results on the El-
lipsoid Method, namely extending the results to the case of non-full-dimensional
polyhedra. Using ideas of H.W. Lenstra's result mentioned above, A.K. Lenstra,
H.W. Lenstra and L. Lovász (1982) obtained a polynomial-time algorithm for
simultaneous diophantine approximation. Since then, this algorithm has been
applied to rather different problems in algebra, number theory, and combina-
torics. It has turned out that it nicely complements the Ellipsoid Method in
more than one case.

The organization of these notes is as follows. We begin with a discussion of a
very fundamental problem in numerical mathematics, namely rounding. It turns
out that the obvious way of rounding the data of a problem, namely one by one.
has some deficiencies from a theoretical point of view. More sophisticated (but
still polynomial-time) rounding procedures can be worked out, which satisfy
rather strong requirements. These procedures depend on simultaneous diophan-
tine approximation, and we shall discuss the algorithm of Lenstra, Lenstra and
Lovász in detail. We also go into several applications, refinements and analogs
of this algorithm. These considerations also lead to a certain model of compu-
tations with real numbers. Roughly speaking, we identify every real number
with an "oracle", which gives rational approximations of the number in question
with arbitrary precision. It is surprising and non-trivial that (under appropriate
side-constraints), for rational and algebraic numbers, this "oracle" model turns
out to be polynomial-time equivalent to the natural direct encodings.

Then we turn to the discussion and applications of the Ellipsoid Method.
We develop an "oracle" model for an algorithmic approach to convex bodies,
analogous to, and in a sense generalizing, the "oracle" model of real numbers.
We prove that a number of quite different descriptions of a convex body are
polynomial-time equivalent. The methods also yield a way to compute reason-
able upper and lower bounds on various measures of convex bodies, such as their
volumes, widths, diameters etc. The oracle model we use enables us to prove
that these measures cannot be exactly determined in polynomial time. This
approach was worked out by Grötschel, Lovász and Schrijver (1981, 1984a).

The two main algorithms come together when we study polyhedra with ra-
tional vertices. If we know an upper bound on the complexity of the vertices
(as is virtually always the case e.g. for combinatorial applications), then vari-
ous outputs of the Ellipsoid Method can be made "nicer" by rounding. So, for
example, "almost optimizing" points and "almost separating" hyperplanes can
be turned into optimizing vertices and separating facets. Similar methods were
very recently applied by A. Frank and É. Tardos (1985) to show that many (if
not most) combinatorial optimization algorithms can be turned from polynomial



into strongly polynomial (i.e. the number of arithmetic operations they perform
can be made independent of the size of the input numbers). A nice special case is
the result found by Tardos that the minimum cost flow problem can be solved in
strongly polynomial time, which settled a long-standing open problem. Further-
more, we show how a similar combination of previous ideas leads to a sharpened
version of Lenstra's result on integer programming in bounded dimension: it
turns out that the hard part of the work can be done in time which is polyno-
mially bounded even if the dimension varies, and the problem can be reduced to
distinguishing a finite number of cases, where this number depends only on the
dimension (but, unfortunately, exponentially).

We conclude these notes by surveying some applications of these results to
combinatorial optimization. We do not attempt to be comprehensive, but rather
to study three topics: first, cut problems (including flows, matchings, Chinese
Postman tours etc.); second, optimization in perfect graphs; and third, min-
imization of submodular functions. The moral of the first study is that using
the equivalence principles supplied by the Ellipsoid Method, linear programming
duality, the Greedy algorithm and some trivial reductions among combinatorial
optimization problems, a large number of very different combinatorial optimiza-
tion problems can be shown polynomial-time solvable. The second and the third
applications are interesting because so far the only way to show their polynomial-
time solvability is by the Ellipsoid Method.

Throughout these notes, I have put emphasis on ideas and illustrating exam-
ples rather than on technical details or comprehensive surveys. A forthcoming
book of M. Grötschel, L. Lovász and A. Schrijver (1985) will contain an in-
depth study of the Ellipsoid Method and the simultaneous diophantine approx-
imation problem, their versions and modifications, as well as a comprehensive
tour d'horizon over their applications in combinatorics.

Thus a large part of these notes is based on that book and on many discussions
we had while writing it, and I am most indebted to my co-authors for these
discussions and for their permission to include much of our common work in
these notes. Another basis of my work was the series of lectures I gave on this
topic at the AMS-CBMS regional conference in Eugene, Oregon, August 1984.
I have made use of many remarks by my audience there.

I am also most grateful to the Institute of Operations Research of the Uni-
versity of Bonn for both providing ideal circumstances for my work on this topic
and for the technical assistance in the preparation of these notes. My thanks are
due to Frau B. Schaschek for the careful typing into TEX.
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How to Round Numbers

1.0. Preliminaries: On algorithms involving numbers.

The most common objects of mathematics (be it algorithmic or descriptive)
are numbers. It is in fact somewhat difficult to convince a non-mathematician
that mathematics is concerned with many other kinds of objects: groups, ge-
ometric configurations, graphs, etc. It may be partly because everybody feels
very familiar with numbers that the role of numbers in various algorithms is
often not very clearly defined, and that there are various models of computation
with numbers.

Computers typically have a fixed number of bits reserved for each number,
and this precision is sufficient for most real-world problems. Therefore, the
number of digits rarely concerns a practicing programmer. However, there are
some reasons why computing with many digits is becoming important:

Multiprecision computation (if it can be done cheaply) may be a cure to
the instability of instable but otherwise favorable algorithms.

In the solution of a problem in which all inputs and outputs are small
numbers, information generated during the computation may be stored in
the form of long numbers. Later on we shall discuss how the computation
of a root of a polynomial with high precision can be a step in finding its
factorization into irreducible polynomials.

Number theoretic algorithms (primality testing, factoring an integer, etc.)
are interesting for integers with 100 to several hundred digits. These stud-
ies, in turn, have important applications in cryptography, random num-
ber generation and communication protocols. Alas, we cannot go into this
lovely area here.

To get a hardware-independent model of numbers in algorithms, two natural
possibilities arise:

7
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We shall refer to this model as the binary encoding. If we do not say specifi-
cally otherwise, we always mean this model.

Sometimes n\ is also used as a measure of how much the integer n con-
tributes to the input size. It is said then that n is in unary encoding. Measuring
the input size in unary encoding makes the algorithms seemingly faster. An algo-
rithm which is polynomial if the input data are given in the unary encoding, but
not if they are given in the binary encoding, is often called pseudopolynomial.
This notion, however, shall not concern us; we only use "unary encoding" as a
convention to measure the contribution of an input number to the size of the
input.

II. An important alternative, however, is to say that one integer contributes
one to the input. Addition, multiplication and comparison of two integers count
then as one step. When we say that the determinant of an n x n matrix can be
determined in O(n3) time, we mean it in this sense; if bitwise operations were
counted then, of course, the running time would depend on the lengths of the
entries of the matrix. We shall call this model of computation the arithmetic
encoding.

An algorithm may be polynomial in the binary sense but not in the arithmetic
sense; e.g. the computation of the g.c.d. of two numbers, or the binary search.
It may also happen conversely: n times repeated squaring takes O(n) time in
the arithmetic sense, but only to write down the result takes exponential time in

8 LASZLO LOVASZ

I. We can take into account the number of digits in, say, the binary expansion
of the numbers. This means that if an integer n occurs in the input, it adds

to the input size (this is the number of binary digits of n, plus 1 for the sign if n
is non-zero). Arithmetic operations like addition, multiplication and comparison
of two numbers must be carried out bitwise; so the multiplication of two A:-digit
numbers by the method learned at school adds about k2 to the running time.
In this model, rational numbers are encoded in the form r = p/q, where g.c.d.
(p, q) = 1 and q > 0 . It is convenient to extend the "input size" notation to
rational numbers by letting (r) = (p) + (Q) . If a = (01 , . . . , an)   Qn is a vector,
we set

The input size (A) of a rational matrix A is defined analogously. It is clear
that for any integer n, \n\ < 2^ . It is easy to see that if r   Q , r > 0 then

It is also easy to extend these estimates to vectors, matrices etc. An inequality
we shall need is the following: if A is a non-singular n x n matrix then
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the binary sense. But this is essentially the only thing that can go wrong with an
algorithm that uses only a polynomial number of arithmetic operations. If we can
prove that, besides, all numbers occurring during the run of the algorithm have
input size bounded by polynomial of the original input size, then the algorithm
will be also polynomial in the binary sense. We shall call an algorithm strongly
polynomial if it takes polynomial time in the arithmetic sense, and only takes
polynomial space in the binary encoding. Every strongly polynomial algorithm
is polynomial.

So far, we have only discussed computations with integers (and with rational
numbers, which are encoded as pairs of integers). It is questionable whether one
should bother with developing any model of real (or complex) number compu-
tations; obviously, all inputs and outputs of algorithms are necessarily rational.
But there are problems whose solution, at least in the theoretical sense, is an
irrational number (see e.g. Section 3.2). There are also some counterexam-
ples that involve irrational numbers, e.g. Ford and Fulkerson's example for the
non-termination of the flow algorithm. One feels that such examples do say
something about the real-word behaviour of these algorithms - but what?

In Section 1.4 we sketch a model for real number computations, based on an
"oracle"-approach. The main goal of this is not to propose new foundations for
"constructive analysis", but rather to point out two connections with the main
topic of this book. First, the role of rational and algebraic numbers in this model
can be very nicely described using the simultaneous diophantine approximation
techniques developed in this chapter. Second, we shall extend this "oracle" -
approach to higher dimensions in Chapter 2, and this will provide the framework
for our algorithmic treatment of convex sets. Another oracle model will be used
in Chapter 3 to describe algorithms for matroids and submodular functions (in
this context, oracles have been used for a long time).

1.1. Diophantine approximation. Problems.

In a general sense, this chapter is about how to "round" numbers. To "round"
a number a G R means that we replace it by a rational number which is of a
sufficiently simple form and at the same time sufficiently close to a . If we
prescribe the denominator q of this rational number p/q , then the best choice
for p is either p = [nq\ or p = \aq] . This is the most common way of rounding
a number; usually q = 10fc for some A; . The error resulting from such a rounding
is

We shall find, however, that often this approximation is not good enough. A
classical result of Dirichlet says that if we do not prescribe the denominator, but
only an upper bound Q for it, then there always exists a rational number p/q
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There also exists a classical method to find such a rational number p/q : this is
the so-called continued fraction expansion of a . One can write a uniquely in
the form

where ao = [a\ and a i , 0 2 , - . . are positive integers. In fact, 01 ,02, . . . can be
defined by the recurrence

For an irrational number a , this expansion is infinite; for a rational number a ,
it is finite but may be arbitrarily long. If we stop after the kth a^ , i.e. determine
the rational number

then we obtain the kth convergent of a . It is known that

and hk grows exponentially f<ist, so the right hand side of (1.1.3) tends to 0. If
we let k be the largest subscript for which hk < Q , then /ifc+i > Q and so

i.e. we have found an approximation satisfying (1.1.2).

such that

in fact,



By the choice of k , we have that hk+i = ^fc-i + a/c+i^fc > Q and hence by the
choice of ?' , we have 0 < ? < at+i . Hence ?k ~1 ~^J9,k lies between 9rk^L and ^±^-J ' ~~ 4. • "Jc- i+jn/c "k-i n-fc + i
and so in particular ^~|+

J^ < a •

Now if we show that every rational number in the interval ( f l
k ~ 1

 +
J9

h
k , jp-)

has denominator > Q , then it follows that one of the endpoints of this interval
must be the rational number closest to a with denominator < Q .

So let
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The continued fraction expansion has many nice properties. The numbers
gk and hk satisfy the recurrence

which makes them easily computable. They satisfy the important identity

One can use continued fractions to find approximations of various kinds. For
example, consider the following problem:

(1.1.4) Best approximation problem.
Given a number a E Q , and an integer Q > 0 , find a rational number p/q such
that 0 < q < Q and |a — - is as small as possible.

We can solve (1.1.4) as follows (see e.g. Khintchine (1935)). Let, as before,
gk/hk be the last convergent of a with hk < Q . Then gk/hk is a very good
approximation of a , but it may not be the best. It is certainly the best if
a — gk/hk , so we may assume that this is not the case. To find the best
approximation, compute the largest j > 0 such that

Then either ?k l^J9,k or tr- is the rational number with denominator at most
n-k-l+jnk hk

Q closest to a . Let us assume e.g. that

(i.e. k is odd). Then we also have that



This shows that r/s is no solution to our problem.
Sometimes this problem arises in a "reverse" form: (*) Given a £ Q and

e   Q. e > 0 , find a rational number 2 such that q > 0, -|o - E | < e and g is as
small as possible. These two problems are however in a sense equivalent. This
is best seen by noticing that both are equivalent to the following: (**) Given
a G Q. e   Q. e > 0 and Q 6 Z. Q > 0, decide if there exist integers p. q such
that 0 < q < Q and la - -I < e and find such integers if thev exist. If we can

•* V | Q | ^ V

solve the Best Approximation Problem, then of course we can also solve (**) by
simply checking to see if the rational number p/q with 0 < q < Q and closest to
Q satisfies \a — -\ < e . Conversely, if we can solve (**) then by binary search
over the interval (0,1) . we can find the smallest t for which (**) has a solution
and so we can also find the best approximation of a with denominator < Q . A
similar argument can be used to show the equivalence of (*) and (**).

Suppose now that we have several numbers a\ on to round. We may do
this individually: however, some unpleasant things may happen. For example, if
we want to round QI = 1.5 and c*2 = 1-5 to the next integer, then we may obtain
QI — 1 and 02 ~ 2 7^ 1. . So equality may not be preserved by rounding! Of
course, we may add some artificial conventions to break the ties (e.g. round "up"
in such cases). But then consider QI = 0.1422, o2 = 0.2213 and Q3 = 0.6359
(so that QI + 02 + 03 = 1). Choose some Q . say Q — 100 , and compute the
best approximations of 6*1.02 and 03 by rational numbers with denominators
< 100 . One obtains
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where r, s 6 I, s > 0 . Then clearly

and

On the other hand.

So

and hence
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These numbers are indeed much nicer, but we did lose the property that a\ +
o2 + 0:3 = 1 ; in fact, y + | - | - ^ - ^ l . I n a sense, the main purpose of this
chapter is to give a simultaneous rounding procedure in which such a simple
relation among the numbers is never lost. We shall, however, postpone the exact
formulation of this property to Section 1.4.

The main trick is to use a rounding procedure which results in rational ap-
proximations 21 , . . . , 2s- with the same denominator. If we prescribe the denomi-
nator, the trivial error (1.1.1) can of course be achieved. But we need a rounding
procedure that gives better approximation, its expense being that only an upper
bound on the (common) denominator can be prescribed.

(1.1.5) Simultaneous diophantine approximation problem.
Given a\,..., an E Q, e > 0, and Q > 0 , find integers p\,..., pn and q provided

2
The bound of 2n is rather large. However, in many applications the bound
on q does not play any role, as long as q can be bounded independently of
a i , . . . , an and the number of its digits is poly normally bounded.

A closely related problem is the following (in fact it is easy to find a common
form of the two problems (see the next section)):

(1.1.8) Small integer combination problem.
Given QQ, #1 , . . . , an £ Q, and e, Q > 0 , find integers qo, q\,..., qn , not all 0,
such that

If e = \ , then this problem is trivially solvable, even if we prescribe q ; for
e < ^ , however, we have to choose an appropriate q . How large must this
q be? Dirichlet's theorem extends to this general case and asserts that there
always exists a solution of (1.1.5) provided

However, contrary to the case of a single a , no efficient algorithm is known
for finding such an approximation. The main result of this chapter will be a
polynomial-time algorithm that solves (1.1.5) provided

and Qi < Q (i — 1,. . . , n) .
It is customary to assume that ao = 1 ; this is, of course, no restriction of

generality. Also note that no upper bound on qo is prescribed; indeed a bound



and 0 < q < Q .
Contrary to the inhomogeneous case, such integers may not exist even if we

let Q be arbitrarily large. For example, if all the a^s are multiples of ^, and
fa = | , then qal — pt is also a multiple of ̂  and hence
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on qo follows trivially from the others. (The more general problems discussed in
the next section will also contain the version when bounds are given for all the
9t's.)

An analogue of Dirichlet's theorem tells us that there always exists a solution
of this problem provided Q > e"1/71 . Again, no efficient algorithm is known
to solve this problem; however, we shall be able to find a solution provided
Q > 2ne~1/n , which will be good enough for our applications.

Let us briefly mention the problem of inhomogeneous diophantine approxima-
tion. In this case, we are given 2n numbers a\,..., an, fli,..., /3n , and e, Q > 0 ,
and we are looking for integers p i , . . . ,pn, Q such that

So in this case, the inhomogeneous diophantine approximation problem with-
out a bound on q is equivalent to the solution of a special linear diophantine
equation. This can be done in polynomial time (Frumkin (1976), Voytakov and
Frumkin (1976), von zur Gathen and Sieveking (1976)). But of course we are
interested in the problem with an upper bound on q . To find the least common
denominator q for a given e is JVP-hard (van Emde-Boas (1981)), but we
shall describe a method of Babai (1985), which shows that a denominator q

(ii) There exist integers MI , . . . , un such that uiOt\ + ... + unan is an integer
but uifli + ... + un(3n is not.

Let us remark that if QI, . . . , an, / ? i , . . . , j3n are rational (which is the case
interesting from an algorithmic point of view), then (i) is equivalent to:

(i') There exist integers p i , . . . ,pn
 and q such that

for any choice of p\,..., pn and q . Kronecker gave a general condition for the
solvability of this problem (see Cassels (1965)):

(1.1.9) Theorem. For any In real numbers QI, . . . , an and / ? i , . . . , /3n , exactly
one of the following two conditions holds:

(i) For each e > 0 , there exist integers p\,..., pn and q such that q > 0
and



at most 3n times the smallest, yielding an error at most 3nc , can be found in
polynomial time.

1.2. Lattices, bases, and the reduction problem.

A classical tool in the study of diophantine approximation problems is the
"geometry of numbers", developed by Minkowski around the turn of the cen-
tury. This approach involves representing our problems as geometrical problems
concerning lattices of points. While the geometric arguments can of course be
"translated" into arithmetic (and they have to be if e.g. an algorithm is to be
carried out), the geometric insight gained by such representations is a powerful
aid to thinking about both classical and algorithmic problems.

Let a i , . . . , an G Qn be linearly independent vectors; let A be the n x n
matrix A — ( a i , . . . , an) . Define the lattice generated by a\,... ,an as

form a basis for the dual lattice, called the dual basis of ( 6 1 , . . . , bn) . The deter-
minant of the dual lattice is det £* = l/det£ .

Geometrically, the determinant of a lattice is the common volume of those
parallelohedra whose vertices are lattice points and which contain no other lat-
tice point; equivalently, of those parallelohedra spanned by bases. Hence the
following inequality, called Hadamard's inequality, is natural from a geometric
point of view:

The dual of the standard lattice Zn is itself, and the dual of a rational lattice is
rational. If ( 6 1 , . . . , 6n) is a basis of £ then the vectors GI , . . . , cn defined by

where A — ( a i , . . . , a n ) is any basis of £ . (One may discard the hypothesis
here that the number of vectors al is as large as the dimension, and study
non-full-dimensional lattices. Most of what follows could be extended to this
more general case by restricting our attention to the linear subspace generated
by £ - )

Every lattice £ has a dual lattice, called £* , which is defined by

We say that a i , . . . , an is a basis of L . The same lattice £ may have many bases,
but at least they all have the same determinant (up to its sign). So we define
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(Here ||a|| denotes the euclidean norm of the vector a . We shall also need the
^i-norm ||a||i and the ^oo-norm | a oo .)

Hermite proved that every lattice £ has a basis (61 , . . . , bn) such that

where cn is a constant depending only on n . It is known that the best value of
cn is less than nn .

z Note that if 6 1 , . . . , bn is an orthogonal basis then | & i | | . . . \bn \ — det £ .
Hence the ratio |&i | . . . ||6n||/det £ is also called the orthogonality defect of the
basis.

Let us remark that if we choose n linearly independent vectors n

in £ . then they do not in general form a basis, but, contrary to intuition, the
product | GI | . . . ||cn| may be smaller than for any basis. A well-known theorem
of Minkowski on successive minima implies that every lattice £ contains n
linearly independent vectors G I , . . . ,cn with c i | | . . . H c ^ H < nn/2 det £ .

The result of Hermite suggests the following algorithmic problem:

(1.2.2) Basis reduction problem.
Given a lattice £ = £,(A) , and C > 0 , find a basis ( & i , . . . , & n ) of £ such that

So this problem has a solution if C > nn . It is. however, not known how to find
such a basis. To find a basis for which & i | . . . \\bn\\ is minimal is ArP-hard.

A related problem is the following.

(1.2.3) Short vector problem.
Given a lattice £ = £(A) and a number A > 0 , find a vector b e £, 6 ^ 0 such
that I & H < A .

Hermite showed that if A > "yn >/det £ then such a vector b always exists.
Let "yn denote the smallest constant here. It is known that 7n < \f^ and
In > x/lif^ • Note, however, that a lattice £ may contain a vector much shorter
than \/det £ .

If we could solve the Short Vector Problem in polynomial time, then of course
by binary search over A , we could also find a shortest non-zero vector in the
lattice. We shall denote the length of a shortest non-zero vector in the lattice
£ by A(£) . It is not known whether the Short Vector Problem (or the Shortest
Vector Problem) is JVP-complete, although I suspect that it is. It is not known
either whether the weaker problem of finding a solution if A = ^Jn • \/det £ is
JVP-hard.

A more "round" result follows from Minkowski's theorem on lattice points
in centrally symmetric convex bodies, if we replace the euclidean norm by the
foo-norm.
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(1.2.4) Theorem. Every lattice £ contains a vector b e £, 6 ^ 0 with H&Hoo <
\/det £.

(Note that "yn < ̂  follows from this immediately, since ||6|| < ^fn • ||6||oo-)
Since we want to make some comments on it, let us sketch the (standard)

proof of this theorem. We may assume without loss of generality that det £ = 1 .
Let Q denote the cube Q — {x 6 Rn : | x||oo < ^} , i.e. the unit cube with center
0. Then vol (Q) = 1 . Consider the cubes Q + b, b e £ . Some two of these
cubes must intersect; in fact, if they were disjoint then the density of their union
would be less than 1, but on the other hand it is exactly one, as follows by a
simple counting argument. So there are two vectors 61,62 £ £> 61 7^ 62 such
that (Q + bi) n (Q + 62) ^ 0 • But then ||6i - 62||oo < 1 and since 61 - 62   £ ,
we are done.

The above proof, of course, can be turned into a finite algorithm. If Q + bi
intersects Q + 62 then Q 4- (61 — 62) intersects Q . So it suffices to look for a cube
of the form Q + 6, 6   £ , which intersects Q . Moreover, if £ is given by a basis
A — ( a i , . . . , an) , then every vector 6 — Aiai + . . . + Anan G £ that needs to be
considered here satisfies

This, however, means the consideration of 2n'^ vectors, which is a very "badly"
exponential number: it is exponential in the input size even if n is fixed, and it is
exponential in n even if the entries of A are "very decent", say (0, ±l}-vectors.

We shall see that one can find in polynomial time a vector satisfying Minkow-
ski's bound (indeed, a shortest vector) if n is fixed (Lenstra (1983)), and also
that we can find in polynomial time a vector not longer than 2n v/det £ even for
varying n . On the other hand, Lagarias (1983) proved that to find a non-zero
vector in a lattice £ which is shortest in the oo-norm is JVP-complete.

Let us return to the euclidean norm for the rest of this chapter. Since from
now on we shall be concerned only with finding short vectors or short bases that
come within a factor of the optimum, where the factor is a function of n , it
does not make any essential difference which norm we use.

Any algorithm that produces a lattice vector "almost" as short as the shortest
non-zero vector must also (implicitly) show that the lattice does not contain any
vector that is much shorter. Let us turn this around and state first a simple lower
bound for the length of the shortest non-zero vector in a lattice. The algorithm
described below will make use of this bound.

We need a very basic construction from linear algebra.
Let (61, . . . , bn) be a basis of Rn . Let us denote by bi(j) the component of

bi orthogonal to 61 , . . . , &-,_! . So 6 t(j) — 0 if i < j . We set 6* = bj(j) . Then
( 6 J , . . . , 6 * ) is a basis, which is called the Gram-Schmidt orthogonalization of
( & ! , . . . , & „ ) . (Note that the 6* depend also on the order of the original basis vec-
tors.) The vectors & * , . . . , b*n are mutually orthogonal, and they can be computed



Proof. Let b G £, 6 ^ 0 . Then we can write

where 1 < k < n, At   Z and A& 7^ 0 (we have omitted the 0 terms from the end
of this sum). Substituting from (1.2.5) we obtain

where by /Zfcfc = 1 , we know that \'k = Afc is a non-zero integer. Hence
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from ( 6 1 , . . . , bn] by the recurrence

We can write this recurrence in the following form:

where [in = 1 . This form shows that for all 1 < i < //, 6 1 , . . . , bi span the same
subspace as 6|,. . . , 6* .

It is also easy to see that

We can now state a lower bound on the length of the shortest non-zero vector
i n £ .

(1.2.6) Lemma. Let 61 , . . . , bn be a basis of a lattice £, and let 6 J , . . . , 6^ be its
Gram-Schmidt orthogonalization. Then
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which proves the lemma.
The following observation shows another connection between the length of

basis vectors and the length of their orthogonalizations. Let (61, . . . , 6n) be any
basis of a lattice £ and (6J, . . . , & £ ) its orthogonalization. Write, as before,

Then there is another basis (61 , . . . , 6 n ) with the same orthogonalization
( & ! , . . . , & £ ) such that if we write

then \fj,ij < ^ for 1 < j < i < n . A basis (61, . . . ,&n) with this property will
be called weakly reduced. In fact, a weakly reduced basis is easily constructed
by the following procedure. Suppose that ( & i , . . . , & n ) is not weakly reduced,
then there are indices i and j, 1 < j < i < n such that |/^j| > | . C
such a pair with j as large as possible, and let ra denote the integer nearest
to fiij . Then (61,.. . ,6 t_ i ,6 t — mbj, bl+i,... ,6n) is a basis of £ , it has the
same orthogonalization ( 6 J , . . . , &£) as the original basis, and expressing the basis
vectors as linear combinations of the orthogonalized basis vectors only the ith
expression changes:

where fj,it = fat for j < t < i , and ^it = fat — mnjt for 1 < t < j . So in
particular we still have //lt < ^ for j < y < i , and in addition we now have

P-ij — \^ij — ™| < 5 • Repeating this at most (!£) times, we obtain a weakly
reduced basis.

We now turn to our main basis reduction algorithm for rinding a short vector
(in fact, a basis consisting of reasonably short vectors). The algorithm will also
produce a "certificate", via Lemma (1.2.6), that no substantially shorter vector
exists. So we want to find a basis which consists of "short" vectors on the one
hand, and whose Gram-Schmidt orthogonalization consists of reasonably long
vectors on the other. The following short discussion will be useful for illuminating
the situation. Clearly

(since 6* is a projection of bi] , and



and hence

So by induction,

(1.2.11) Theorem. Given a non-singular matrix A e Qnxn , a reduced basis in
£ = t(A] can be found in polynomial time.

Let us sketch the proofs of these results. Without loss of generality we may
assume that A has integral entries. Let (61,.. . ,6n) be a reduced basis. Then
by (1.2.9) and weak reducedness,

(1.2.10) Theorem. Let ( & i , . . . , bn) be a reduced basis of the lattice £ . Then

(Without the coefficient |, condition (1.2.9) would mean that if bi and bi+\
were interchanged, the orthogonalized sequence | |6J | | , . . . , ||6* || would not de-
crease lexicographically. The coefficient | is there for technical reasons, 
sure faster convergence. It could be replaced by any number larger than 1 but
less than | .)

The main properties of this notion of reducedness are summarized in the
following two theorems (A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovasz (1982)):
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is fixed. Typically, the short vectors among 6J , . . . , & £ will be at the end of the
sequence. So we shall try to make the sequence | |6J | | , . . . , ||6^|| lexicographically
as small as possible. Also, we shall try to make the gap in (1.2.7) as small as
possible. These arguments motivate the following definition.

Definition. A basis ( 6 1 , . . . , 6n) of a lattice £ is called reduced if it is weakly
reduced, and

n



It is obvious that Step I does not change D(b\,... ,6n) , and it is easy to verify
that Step II reduces it by a factor of 2/\/3 or more (this is where the fac-
tor | in the definition of reducedness plays its role!). Now D(a i , . .

(max; ||at-||)( a ) . On the other hand, let (61, . . . , &„) be any basis of £ , then for
any i ,

This proves (iii).
The algorithm which is claimed in Theorem (1.2.11) is quite obvious. We

maintain a basis (61,... , 6n) , which we initialize by (61,.. . , 6n) — (ai , . . . , an) .
Two kinds of steps alternate: in Step I, we achieve (1.2.8), i.e. we make the basis
weakly reduced by the simple pivoting procedure described above. In Step II,
we look for an i violating (1.2.9), and then interchange 6; and 6;+i .

It is obvious that if we get stuck, i.e. neither Step I nor Step II can be carried
out, then we have a reduced basis. What is not so clear is that the algorithm
terminates, and in fact in polynomial time.

To this end, let us consider the following quantity:

and hence

whence (ii) follows. Finally, we can estimate \\bi\\ as follows:

This proves (i). We also have by (1.2.12) that

and thus by Lemma (1.2.6),

AN ALGORITHMIC THEORY 21



This proves that the procedure terminates after a polynomial number of steps.
Thus the whole reduction procedure requires only a polynomial number of arith-
metic operations. It still remains to be shown that these arithmetic operations
have to be performed on numbers whose input size does not exceed a polynomial
of the input size of the problem. This can be done by similar, albeit slightly more
tedious, computations. (Note that in the proofs of (i) and (ii), the condition of
weak reducedness was only partially used: only |/^+i, i\ < \ was needed. So 
vector with property (i) could be found in a smaller number of arithmetic opera-
tions, achieving only l/^+i^l < ^ in Step I. However, it seems that to guarantee
that the numbers occurring in the procedure do not grow too big, one does need
the full strength of weak reducedness.)

We close this section with a discussion of some algorithmic implications
among the main problems studied here, and with some improvements on our
results. The exponential factors 2^n~1^/4 etc. in Theorem (1.2.10) are rather
bad and an obvious question is can they be replaced by a more decent function,
at the expense of another, maybe more complicated but still polynomial reduc-
tion algorithm. By replacing the "technical factor" | in (1,2.9) by 1 + e
e is positive but very small, we could replace the base number 2 in the factor
2(n-i)/4 by any number c > 2/^3 .

Let us also remark that already this algorithm can be used to find a shortest
lattice vector in polynomial time if the dimension n of the space is fixed (of
course, the polynomial in the time bound will depend on n) . For, if (61, . . . , bn)
is a reduced basis and z = X^=i ̂ ^ ^ ^n ' ^nen ^ ^s not difficult to show that
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and hence D(b\,..., bn) > 1 . So after p steps of the algorithm, we have

and hence

Since we are only interested in vectors z with z < \\bi\\ , this means that it
suffices to check all vectors z = Y^i=i -^ suc^ tnat ^ e (~3n,..., 3n} . This
is a large number, but for n fixed, it is only a constant.

The fact that in bounded dimension we can find a shortest vector in polyno-
mial time (which of course also follows from H. W. Lenstra's integer programming
algorithm in bounded dimension, see Section 2.4), was used by Schnorr (1985)
to obtain a more substantial improvement over the basis reduction algorithm
described above (at least in a theoretical sense). He proved that for every fixed
e > 0 , we can find a basis ( & i , . . . , & „ ) in polynomial time such that

s



or

;i-2.14) 116*11* < ( t + l)(t+1)/2||&*+1||...||&;.+tl

and
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(The polynomial of course depends on e .)
Schnorr's method can be described as follows. Let (61, . . . , 6n) be a weakly

reduced basis. Condition (1.2.9), in the definition of reducedness, if we disregard
the "technical factor" | , says that bi(i) is not longer than &i+i(z) . Hor
using weak reducedness it is easy to see that this is the same as saying that b{(i)
is not longer than any vector in the lattice generated by bi(i] and 6 j+ i ( i ) . This
observation suggests the idea of fixing any integer k > 1 and saying that the
lattice L is k-reduced if it is weakly reduced and, for all 1 < i < n ,

Since 6* = b,(i] is an almost shortest vector in this lattice, we have

where a/t is a constant depending on k only.
Note that (k + l)1//fc —> 1 as k —»• oo . So if we choose k sufficiently large,

then e.g. the coefficient of A(£) in (i) is less than (1 + e}n for large n .
We only sketch the basic idea of the proof. Let 1 < t < k , and let

£i,t denote the lattice generated by &;(i),6;+i(i), . . . ,6 l+ t(z) . Then det £ t i t =
H f y N I • • • l l ^ i + t l l ' and so by Hermite's theorem,

(1.2.13) Theorem. Let (61 , . . . , 6n) be a k-reduced basis of the lattice L . Then

(if i + k > n , then we disregard the undefined vectors among the generators on
the right hand side).

Now Theorem (1.2.10) can be generalized to fc-reduced bases as follows:



where flfc is a constant depending only on k . This proves (i). The other two
assertions in the theorem follow by similar considerations.

The next thing to show would be that a fc-reduced basis can be found in poly-
nomial time. This, however, seems difficult and is not known to hold. Schnorr
overcomes this difficulty by changing the notion of fc-reducedness in a rather
technical manner, whose details are suppressed here.

Even if we give up the idea of finding a shortest vector for variable dimension,
it is still interesting to find numbers a(n),b(n) and c(n) as small as possible so
that the following tasks can be solved in polynomial time:
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This inequality tells us that the numbers ||6*|| do not decrease too fast. In fact,
one can derive from (1.2.14) by induction on n that

Let c i , . . . , c n be any n linearly independent vectors in £ ordered so that
I ki 1 1 < C211 < . . . < | |cn11 (they need not form a basis). Then for each 1 < i < k ,
at least one of G I , . . . , Cfc is not in the span of 61 , . . . , bk-i . So for this Cj , the
projection Cj(k) G £fc is non-zero and hence by the choice of b*k ,

It would be particularly desirable to be able to solve the problems in poly-
nomial time if a(n), b(n) and \/c(n) are polynomials. We do not know if this is
possible; but there are some trivial and less trivial relations among these tasks,
which in particular show that the problems if a(n), b(n) and \Jc(n] can be chosen
as polynomials are equivalent.

(1.2.18) If we can soJve (1.2.15) in polynomial time with some a(n), then we
can solve (1.2.16) with b(n) = v/na(n) trivially.

(1.2.19) If we can solve (1.2.15) in polynomial time with some a(n) , then
we can solve (1.2.16) with c(n) = nn • a(n)n .

This is a slight generalization of a result of Schnorr (1985). We choose the
basis & i , . . . , 6 n successively. Let 61 be an "almost shortest" non-zero vector
of £ , which we can find in polynomial time by hypothesis. Assuming that
61 , . . . ,bi have already been selected, let us consider the lattice £z+i obtained
by projecting £ on the orthogonal complement of 61, . . . ,6t and let 6*+1 be an
"almost shortest" vector in d+i , supplied by our oracle. Let, further, bi+i be
any vector in £ whose image in Li+i is 6*+1 . Then 61 , . . . , bn is a basis of £
whose Gram-Schmidt orthogonalization is just b\ = bi,..., 6* . We may clearly
assume that 6 1 , . . . , bn is weakly reduced.

Now we claim that



(1.2.20) If we can solve (1.2.17) in polynomial time with some c(n) , then
we can solve (1.2.16) with b(n) = \/c(n) , just by choosing the shortest member
of the basis.

(1.2.21) Perhaps the most interesting is the observation, based on an idea
of H. W. Lenstra and C. P. Schnorr (1984), that if we can solve (1.2.16) in
polynomial time with some b(n) , then we can solve (1.2.15) with a(n) — b(n)2

in polynomial time.

In fact, a slightly weaker hypothesis will do. If we choose a vector c G £ and
also a vector d G £* such that c, d ̂  0 and

So by weak reducedness.

AN ALGORITHMIC THEORY 25

and so

It follows from Minkowski's theorem on successive minima that c\ c^ can
be chosen so that

So

then

In what follows, we shall use only the consequence that we can find such a pair
of vectors in every lattice and its dual in polynomial time.

Let ci G £ and d\ G £* such that \\c\\\ • \d\\\ < b(n)2 . Assume that we
have already chosen non-zero vectors c i , . . . , Cfc G £ and d\,... ,dk G Rn such
that c ? i , . . . , dfc are mutually orthogonal. Let us consider the lattice Zfc — {x G
£ : d^x = ... = d^x = 0} , and choose c^+i G Hk and dk+i G 1Lk such that
l | c fc+i | | ' M/c+i l l < b(n - k)2 < b(n)2 . Since Zfc C £ , we have Cfc+i G £ ; on the
other hand, ~Lk is not in general a sublattice of £* , so in general dk+i £ £* .
But still dk+i belongs to the linear hull of Zjt , i.e. d^dk+i — . • . = d^dk+i = 0 .
We go on until we have chosen c i , . . . , cn and d\,..., dn .

Let c be the shortest vector among c i , . . . , cn . Then
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To complete the argument, it suffices to note that it is easy to construct a basis
in £ whose Gram-Schmidt orthogonalization is just (dn/| |dn | |2,... ,di/| |di||2) ,
and so by Lemma (1.2.6),

So

and thus c is a solution of (1.2.15) with a(n] = b(n)2 .
Remark. Lenstra and Schnorr have used this argument to show that the

lower bound in Lemma (1.2.6) is not too far from A(£): there exists a basis
( & i , . . . , b n ) in any lattice £ such that

Let 6 be a shortest non-zero vector in the lattice £ . We may not be able to
prove in polynomial time that b is shortest, but we can prove in polynomial
time that 6 is "almost shortest" in the sense that no non-zero lattice vector
is shorter than ||6||/n . It would be most desirable to design a polynomial-time
algorithm that would either conclude that no non-zero lattice vector is shorter
than \\b\\fn , or find a vector shorter than b .

Finally, let us address a related problem. Let £ be any lattice in Rn and
y 6 Rn . Suppose that we want to find a lattice vector which is nearest to y . Let
d(£, y) denote the minimum distance of y from the vectors in £ (it is obvious
that this minimum is attained). To find d(£,y) is TVP-hard (van Emde-Boas
(1981)). However, we describe an algorithm that determines this number up to
a factor of (3/>/2)n in polynomial time, and also finds a vector 6 G £ such that
| | 6 -y | |<(3 />/2) n d(£ , i / ) .

Similarly, as in the shortest lattice vector case, we may observe that any such
algorithm must provide an (implicit) proof of the fact that d(£, y) is not smaller
than 2~n | | fe — y|| . One obvious bound is the following. Let w G £* , then

(note that d(Z,wTy) — min {wTy — [wTy\, \wTy] - wTy} and so is easily
computable). Khintchine (1948) (see also Cassels (1971, p. 318)) proved that
this lower bound is not "too bad" in the sense that there exists a number /un

such that

We shall see that /un = (3/\/2)n suffices.
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To find a vector of £ "close" to y , and at the same time a vector w   £*
such that d(Z, wTy)/\\w\\ is "big", we describe an algorithm due to Babai (1985).

(1.2.22) Theorem. Given a non-singular matrix A G Qnxn and a vector y £
Qn , we can find in polynomial time a vector b G t(A) and another vector
w e £*(A) such that

Hence also

Proof. Let (&i, . . . , & „ ) be any reduced basis of £ = £(A). We use the nota-
tion (1.2.5).

Let us write

Let mi be the integer next to A; and set A; = A; - mt . Now 6 = £"=1
 m*^ e £

and we shall show that 6 is a "reasonably good" approximation of y , i.e. that
y' = y — b is "short".

Let ( c i , . . . , cn) be the basis of £* dual to (61, . . . ,&n) . Then from

we get that A; = cfy' and since |A; < \ , we have that d(Z,c[y') = |A;| .So

It remains to estimate the last sum. We know that ||6j|| < 2* 1//2||6*|| . On the
other hand, we can write
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(since 6^/||6n||2,... ,6*/||6J||2 is the Gram-Schmidt orthogonalization of the ba-
sis ( c n , c n _i , . . . ,c i ) ) , and hence

So

Now the matrix N = (^fc)"fc=i is just the inverse of M = (/^fc)"fc=1 , and hence
a routine calculation shows'that this sum is at most 2n~1/2 • (3/2)n < 3n -2-n/2 
Hence the theorem follows. D

1.3. Diophantine approximation and rounding.

Let QI, . . . , an G Q . The problem of finding a good simultaneous approxi-
mation of these numbers can be transformed into a short lattice vector problem
as follows. Given 0 < e < 1 and Q > 0 , consider the matrix

and the lattice £(A) generated by its columns. Any vector b   £(A) can be
written as 6 = Ap , where p = (p\,..., pn+i)T 6 Zn+1 . Suppose that 6 ^ 0 but
||6 | <   . Then clearly pn+i ^ 0 .

We may assume without loss of generality that pn+i < 0 . Let q = —pn+i ,
then we have

and



Applying Theorem (1.2.10) (ii) again, we find that if e = 2n/4 n+i/det£(A') i.e.
if Q — 2(n+1)/4e~1/n then such a vector 6 can be found in polynomial time. So
we obtain the following.
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or

Thus, a "short" vector in C(A) yields a "good" simultaneous approximation of
o t i , . . . ,Qn .

To make this argument precise, choose Q = 2n(n+1)/4e~n . We know by
Theorems (1.2.10) (ii) and (1.2.11) that we can find, in polynomial time, a vector
6 e £(A) such that 6 ^ 0 and

and hence

Hence we obtain the following theorem.

(1.3.2) Theorem. Given Q i , . . . , a n e Q and 0 < e < 1 , we can find in
polynomial time integers pi, . . . ,pn

 and q such that

and

and the lattice £(A'} generated by its columns. Then any b'   L(A'} can be
written as b' = A'p' , where q = (QQ, ..., qn)

T   Zn+1 . Suppose that b' ^ 0 but
||6'|| < e . T h e n

We can also view the Small Integer Combination Problem as a special case of
the problem of finding a short lattice vector. To this end, let QQ — 1? < * i » • • • ,®n £
Q, 0 < c < 1 and Q > 0 . Consider the matrix

and
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(1.3.3) Theorem. Given c*o = l , a i , . . . , a n E Q and e > 0 , we can find in
polynomial time integers go, < ? i , . . . , qn   1 , not all 0, such that

and

Remark. If we consider, instead, the matrix

then we could obtain a version of the last theorem where all the coefficients
go, • • • , <?n are uniformly bounded. The details of this are left to the reader as an
exercise (note that the lattice generated by A is not full-dimensional).

The geometric methods developed in the previous section also apply to non-
homogeneous diophantine approximation and yield the following result, which
may be viewed as an algorithmic, effective version of Kronecker's Theorem
(1.1.9).

(1.3.4) Theorem. Given a, {3 e Qn and e, Q > 0 , we can achieve in polynomial
time one of the following:

(i) find p 6 Zn and q e 7. such that 0 < q < Q and

(ii) find u G Zn such that

Remark. Conclusions (i) and (ii) are not mutually exclusive, but is easy to
see that if (i) has a solution in p and q then for all u £ Zn , one has

Hence if (ii) has a solution for some e and Q then (i) has no solution with
£' = £ . n-1/2(3/v/2)n and Q> = Qn-i/2(3/x/2)n

Proof. Consider the matrix (1.3.1) and the vector y = (^ ) e Qn+1 . Apply-
ing Theorem (1.2.22) we can find, in polynomial time, two vectors b 6 £(^4) and
w e £*(A} such that
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we have

and hence from (1.3.5) we find that (ii) is achieved.
A slightly different way of applying the basis reduction algorithm to obtain

inhomogeneous diophantine approximation was used by Odlyzko and te Riele
(1985). They used it in conjunction with deep methods from analytic number
theory and with numerical procedures to disprove Mertens' conjecture, a long-
standing open problem in number theory. This conjecture asserted that

for all x > 1, where /z is the Mobius function. They used a transformation of the
problem into an assertion involving the roots of the Riemann zeta function, which
they disproved obtaining good non-homogeneous simultaneous approximation
for 70 of these roots.

For some further applications of these methods, in particular in cryptography,
see Lagarias and Odlyzko (1983).

For our purposes, the main use of the simultaneous diophantine approxima-
tion will be that it provides a "rounding" process with very nice properties. Let
y G Qn be any vector of "data". Suppose that we want to replace y by a
"nearby" vector y such that (y) is "small". If we only want that \\y — y\\ be

Now there are two cases to distinguish.
Case 1. | \y - b\ \ < e . Then just as before, we set b = Ap' , where p' — (~p) 

Zn+1, q>0 . So we have

and also

Case 2. ||y - 6|| > e . Then we set w = (JJ)T , where u   Qn and v 6 Q . So

From w G £*(A) we see that u   Zn and also that uTa + v-g is an integer. Hence
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small then the best we can do is to round the entries of y independently of each
other. But if we use simultaneous diophantine approximation then much more
can be achieved: We can require that all linear inequalities which hold true for
y and which have relatively simple coefficients remain valid for y ; even more,
all such linear inequalities which "almost" hold for y should be "repaired" and
hold true for y . We state this exactly in the following theorem.

(1.3.6) Theorem. Given y e Qn with ||y||oo = 1 and k > n , we can compute
in time polynomial in (y) and k a vector y   Q™ such that

(i) (y-)<6A;n2;
(ii) for any linear inequality aTx < a with (a) + (a} < k , if y "ahnost

satisfies" aTx < a in the sense that aTy < a + 2~4nk , then we have
aTy < a .

Note that (ii) implies that y satisfies the inequalities sz < yl < r? , where
Si, Ti are the rational numbers with input size at most k — n - 1 next to y; .
From the results on continued fractions it follows that \S{ — r^| < 2~( f c~ n~ 1) and
hence ||y-y||00<2-( fc-"-1) .

If y satisfies or "almost " satisfies a linear equation aTx = a with (a) + (a) <
k , then applying (ii) to aTx < a and aTx > a , we find that y will satisfy
aTy — a . In particular if (y^) < k — n — 1 for some i , then yi = y; .

Proof. We set e = 2~2fc~1 and apply Theorem (1.3.1) to find integers
p i , . . . ,p n , q such that 0 < q < 2n(n+1)/4Vn and |pt - qyl\ < e . We claim
that y = (E i , . . . , Ea) satisfies the conditions. Condition (i) is obvious. To show
that (ii) holds, let aTx < a be any linear inequality "almost satisfied" by y
(i.e. aTy < a + 2~4nfc) , and assume that (a) + (a) < k . Let T denote the
least common denominator of the entries of o and a ; then it is easy to see
that T < 2k . Now

But aTy — a is an integral multiple of -^ , and so it follows that aTy - a

< 0 .
The fact that the above-described rounding procedure "corrects" small vio-

lations of linear inequalities is very important in many applications, as we shall
see. In other cases, however, it is quite undesirable, because it implies that
the procedure does not preserve strict inequalities. A. Frank and E. Tardos
(1985) have found another rounding procedure which preserves "simple" strict
inequalities. Their result is the following:
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(1.S.7) Theorem. Given y  Qn with \\y\\oo = 1 an  ̂A; > n , we can compute
in time polynomial in (y) and k a vector y G Qn such that

(i) (y) < 6fcn4 ;
(ii) for any linear equation ATx = a with (a) + (a) < k , if y satisfies it

then y satisfies it;
(iii) for any strict h'near inequality aTx < a with (a) + (a) < k , if y satisfies

it then y satisfies it.
Perhaps the most interesting special case arises when A: = 2n + 1 . Then

all inequalities and equations of the form 5Zi/ 1 yi > Z^e/2 J/» anc^ Y^ieii ^ =

Z^e/2 yi are Preserved by the rounding process.
Proof. First, we construct the vector y obtained by the rounding process in

Theorem (1.3.6). If y = y we have nothing to do, so suppose that y ^ y . Let
yj — (y — y ) / \ \ y — y\\oo • Again, apply the rounding process in Theorem (1.3.6)
to yi , and let yl be the resulting vector. Then let y2 = (yi - yi)/\\yi - t / i l loo ,
etc.

First we remark that this procedure terminates in at most n steps. In fact,
y has a coordinate which is ±1 by hypothesis, and then this coordinate is the
same in y . Hence y\ has at least one coordinate 0. Similarly, y? has at least two
O's etc., yn = 0 . Thus we have obtained a decomposition

Finally, consider a strict inequality aTx < a with (a) + (a) < k satisfied
by y . Then it follows by the properties of the first rounding procedure that y
satisfies the non-strict inequality ay < a .

Case 1. Assume first that aTy < a . Let q denote the least common
denominator of the entries of y and let T be the least common denominator of
the entries of a and a . Then a = aTy is an integral multiple of ̂  , and hence

We claim that y satisfies the requirements in the theorem. Condition (i) is easily
checked. To verify (ii), let aTx = a be a "simple" linear equation satisfied by
y . Then we also have aTy = a by the properties of the first rounding, and
so aT(y - y) = 0 . Hence aTx = 0 is a "simple" linear equation satisfied by
yi — (y — y } / \ \ y — y\\<x> and so again it follows that aTyl = 0 . Similarly we find
that aryi = 0 and so

Let 6 = 2~6nk and define
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So

(1.4.1)

It is obvious that if we have such a box (and it works as its manufacturer
guarantees), then it does indeed determine a unique real number. Such a black
box ("oracle") can now be included in any algorithm as a subroutine. Since
we do not know how the box works, we shall count one call on this oracle as
one step. If we are interested in polynomial-time computations then, however,
an additional difficulty arises: the output of the oracle may be too long, and it
might take too much time just to read it. So we shall assume that our black
boxes also have the following additional tag:

(1.4.2)

1.4. What is a real number?

It is a little black box, with two slots. If we plug in a (rational) number e > 0
on one side, it gives us back a rational number r on the other (which is meant
to be an approximation of the real number a described by the box, with error
less than e).

It is important to know that the answers given by the box are reasonable;
therefore we require that the box wear a little tag like this:

i.e. the strict inequality is preserved.
Case 2. Assume that aTy = a . Consider the numbers aTy^ aTy2,... .

Not all of these can be 0, since then we would find that aTy = a , contrary to
hypothesis. So there is a first index i such that aT^ 7^ 0 . Now from aTy = a
it follows that aT(y — y) < 0 and so aTyi < 0 . If ary1 = 0 then it follows that
aT2/2 < 0 etc., we find that aTyi < 0 . So by the properties of rounding, we find
that aTj7j < 0 , and by the choice of i, aTyi < 0 . Hence we can conclude by
the same argument as in Case 1 that aTy < a , i.e. that the strict inequality is
preserved in this case as well.

ADDITIONAL GUARANTEE:

For any input e > 0 , the output

r satisfies (r) < ki(e) .

MANUFACTURER'S GUARANTEE:

For any two inputs ei,  2 > 0 , the outputs

TI and TI satisfy \r\ — r-2 < ti +  2 -
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(Here k\ is a constant explicitly given in unary encoding.) An oracle with
guarantees (1.4.1) and (1.4.2) will be called a real number box. The number k\
is the contribution of this box to the input size of any problem in which the box
is used as a subroutine.

It is not difficult to assemble a box named \/2 , or a box named TT , etc. In fact,
one can realize these boxes so that they work in polynomial time. Furthermore, if
we have two boxes named "a" and "/?" then it is easy to design a box for "a + /?"
which satisfies the right kinds of guarantees and which works in polynomial time;
similarly for "a — /?" and "a-/3". The situation is more complicated with division.
There is no difficulty with designing a box for "a//?", provided we can compute
a positive lower bound on \/3\ in polynomial time. But what happens if such a
bound cannot be computed? This then means that (3 cannot be distinguished
from 0 in polynomial time. This leads us to the discovery that the equality of two
real numbers cannot be determined from the black box description above. At
first sight this seems to be a serious handicap of this model, but it in fact reflects
a real requirement in numerical analysis: stability. If an algorithm contains, say,
a branching depending on the condition a = (3 , then it should also be correct if
the condition is replaced by |Q - /3\ < t for any sufficiently small e ; since if a
and /3 are only approximately known, their exact equality cannot be decided.

We shall not spend much effort here to elaborate this model of real numbers,
but it should be remarked that a similar approach has been put forth by many;
let us just refer to Turing (1937), Bishop (1967), and Ko (1983). Most of these
approaches deal with computability properties of particular real numbers, an
interesting question which we cannot touch upon here. Our motivation is not a
constructivist philosophy of mathematics either; it is rather to supply a tool to
formalize and analyse real number computations. We are also going to point out
how this model leads to algorithmic problems which are non-trivial, and whose
solutions need much of the machinary developed in this chapter. This may turn
out to be no more than a curiosity; but a similar "oracle" model for convex
bodies (which is a direct extension of this oracle model) is rather convincingly
the "right" framework in which to discuss the main results of the next chapter.

It is natural to ask: why did we take the Cauchy sequence model of real
numbers as the basis of our work? Why not the Dedekind cut model? One
could do the latter; indeed then the oracle would accept rational numbers r
as its input, and answer "my real number is larger/ not larger than r ". The
two models are not equivalent (cf. Ko (1983)); the "Cauchy sequence oracle" is
weaker, and yet sufficient for at least those results which follow.

We shall only address one question concerning real number boxes: how do
special classes of real numbers fit in? There is no problem with integers. First,
if a is any integer then we may design a box which answers "a" to any query;
as output-guarantee we can write "{r) < (a) • (e)" on it. Conversely, if we have
a real number box which we know represents an integer, then we can recover
this integer by plugging in e = \ and then rounding the output to the next
integer. So integers may be viewed as (and are polynomial time equivalent to)
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real number boxes with an additional tag:

(1.4.3)
ADDITIONAL GUARANTEE:

This number is an integer.

Let us turn to rational numbers. One might think that it suffices to supply
those boxes describing a rational number with a tag:

ADDITIONAL GUARANTEE:

This number is rational.

Note, however, that this guarantee is meaningless: you can never catch the
manufacturer of the box cheating. In fact, after any finite number of calls on
any real number oracle, there will always be a rational number satisfying all the
previous answers!

The way out is to require a stronger guarantee from the manufacturer; say
the following:

(1.4.4)

ADDITIONAL GUARANTEE:

This number is rational with

input size at most k-2 .

Here k% is a constant explicitly given in unary encoding. This value ki must
be added to the input size of the box, which will thus be k\ + &2 (&i from tag
(1.4.2) and k2 from tag (1.4.4)).

(1.4.5) Theorem. Rational numbers and real number boxes with guarantee
(1.4.4) are polynomial time equivalent.

Proof. First, given a rational number a , we can easily design a box which
answers a to any possible query, and take ki = k? = (a) in the guarantees.

Second, assume that we have a real number box with a correct rationality
guarantee (1.4.4). Plug in e = 2~2fc2~1 , then we obtain from it a rational
number r such that the rational number p/q in question lies in the interval
(r - e,r + e) . We know that q < 2fc2 . The difference of two rational numbers
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with denominator less that 2fc2 is at least 2~2fc2 = 2e . So the interval (r-c, r + c)
contains at most one such number.

So the box, with the given guarantees, determines p/q uniquely. But how can
we compute p/q? Since the interval (r—e, r+c) contains no other rational number
with denominator less than 2fcz , the number p/q is the rational number with
denominator less that 2fc* closest to r . In Section 1.1 we have shown that this
number can be determined in polynomial time in (2fc2) + (r) < k-z 4-1 + ki(t) =
ki + 3k2 + 4 . This proves Theorem (1.4.5.).

We face deeper problems if we go a step further and study algebraic numbers.
Let us recall from classical algebra that a complex number a is algebraic if there
is a polynomial f(x) = ao + aix + ... + anx

n with integral (or, equivalently
with rational) coefficients such that a is a root of / , i.e. /(a) = 0 . It is well
known that among these polynomials there is one, called the minimal polynomial
of a , such that all the others are multiples of this. This minimal polynomial is
uniquely determined up to multiplication by a constant.

A non-constant polynomial / with rational coefficients is called irreducible
if it cannot be obtained as the product of two non-constant polynomials with
rational coefficients. Every polynomial has an essentially unique factorization
into irreducible polynomials. The minimal polynomial of any algebraic number
is irreducible.

One way to describe an algebraic number, at least if it is real, is by a real
number box with an additional guarantee:

(1.4.6)

ADDITIONAL GUARANTEE:

This number is algebraic and its

minimal polynomial has input size < k$

If a is not real, we can describe it by a pair of such boxes, one for its real
part and one for its imaginary part. But one also would like to think about
algebraic numbers as v/2, v^5 etc. What does \/2 mean? It means "the unique
root of the polynomial x2 — 2 in the interval (0, oo)". This suggests that we
use their minimal polynomials to specify algebraic numbers. It will be worth
allowing a little more: we use any polynomial / with rational coefficients which
has a as a root to specify a .

A polynomial has in general more than one root, so we also have to specify
which of them we mean. If a is real, then this can be done e.g. by specifying
an interval (a, 6) (a, 6 G Q) such that a is the unique root of / in (o, 6) . For
complex numbers, we can replace this interval by a square in the complex plane.

So a real algebraic number can be encoded as a triple (/; a, 6) , where f ( x ) =
ao + a^x + ... + anx

n is a polynomial with rational coefficients and (a,6) is an
interval which contains exactly one root of / . The input size of such an encoding
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IS

The input sizes (a) and (6) do not matter very much. It is not difficult to see
that the roots of / are spread out sufficiently well so that one can always find
appropriate a and 6 such that (a), (6) are bounded by a polynomial of {/} .

On the other hand, it is important that in the definition of {/) , we consider
all terms, even those with a^ — 0 . Hence in particular {/} > n .

This encoding of algebraic numbers is not unique; it is, however, not difficult
to find a polynomial-time test to see if two triples {/; a, 6} and (g\ c, d] describe
the same algebraic number. It is somewhat more difficult to compute triples
encoding the sum, difference, product and ratio of two algebraic numbers, but
it can also be done in polynomial time.

It can be perhaps expected, but it is by no means easy to show, that the de-
scriptions of real algebraic numbers given above are polynomial time equivalent.
This can be stated exactly as follows.

(1.4.7) Theorem, (a) Given an algebraic number triple (/; a, 6) and an e > 0 ,
we can compute in polynomial time a rational number r which approximates
the root a of f in (a, 6) with error less than e .

(b) Given a rational number r , a (unary) integer k , and the information
that there exists a real algebraic number a whose minimal polynomial has input
size at most k and for which \r — a| < 2~4fc , we can compute the minimal
polynomial of a in polynomial time.

Proof. (Sketch.) (a) is easy by binary search over the interval (a, 6) . The
hard part is (b). To solve this, let f(x) — ao 4- a\x + ... + amxm be the minimal
polynomial of ct (which we want to determine). We do know that m < k . Let
1 < n < k , and consider the matrix

Let L(A) be the lattice generated by the columns of A , and let b G t(A] , 6 ^ 0
be a vector in £,(A) which is "almost shortest" in the sense that \\z\\ > 2~n||6||
for every z£ £(A) ,z^Q .

How short is this 6 ? Suppose first that n > m . Combining the columns
of a with coefficients ao,. . . , am , and aTO+i = ... = on = 0 , we find that the
vector z — (0 = /(a), 2~3 f c 3ao,. . . , 2~3/c3an) belongs to £(A) . So in this case



AN ALGORITHMIC THEORY 39

Here ja^ l < 2fc by the hypothesis on the minimal polynomial of a and so

Conversely, suppose that b   C,(A) is any vector such that

We can write b = (g(a), 2~3fc 60 , . . . , 2 3k bn}
T , where g(x) = b0 + b\x + ... +

bnx
n is some polynomial with integral coefficients. Hence in particular

and

We claim that g(a) = 0 . Let a = a i , a 2 - - - < * m be the conjugates of a , i.e.
the roots of its minimal polynomial. Then it is known from classical algebra
that ar^g(o.\)... g(am) is an integer. But it follows by routine computation that
al\ < 2fc and hence \g(ai)\ < 2fc2+3fc . Thus

which shows that g((*i}.. • g(am} = 0 . So g(oti] = 0 for some i . But since
a = <*! , . . . , am are conjugates, this implies that g(a] = 0 .

So we can find the minimal polynomial by the following procedure: for n =
1,2, . . . , k , we determine an "almost shortest" vector b in the lattice L(A] . If
H & l l > 22fc~3fc , then the minimal polynomial of a has larger degree, and we
can move on to the next n . If ||6|| < 22fc~3fc , then the coefficients & o » • • • ,bn

in the representation of b as an integer linear combination of the columns of
£(A) yield the minimal polynomial of a .

There is still some cheating in this argument, since we do not know a and
hence we cannot work with £,(A) . But r is a sufficiently good approximation
of a , so that we can replace a by r in the definition of A and the same
argument holds.

Remark. In order that part (a) of Theorem (1.4.7) can really be interpreted
as "given a triple, we can design a box", we also need an upper bound on the
input size of the minimal polynomial of a . We do know one polynomial / has
a as a root, but the input size of the minimal polynomial g of a may be
larger than the input size of /. Fortunately it follows from a result of Mignotte
(1974) that (g) < 2n{/) , so this is easily achieved.

We conclude with an application of these considerations. The following result
was proved by A. K. Lenstra, H. W. Lenstra and L. Lovasz (1982) in a different
way. The algorithm given here was sketched in that paper and elaborated on by
R. Kannan, A. K. Lenstra and L. Lovasz (1984).
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(1.4.8) Corollary. A polynomial with rational coefficients can be factored into
irreducible polynomials in polynomial time.

Proof. Let a be any root of the given polynomial / . For simplicity,
assume that a is real (else, we could apply a similar argument to the real and
imaginary parts of a). Using Theorem (1.4.7) (a), we can design a real number
box description of a . Using part (b) of this same theorem, we can determine
the minimal polynomial g of a in polynomial time.

Now if / = g then / is irreducible and we have nothing to prove. If / ^ g
then g divides / by the fundamental property of the minimal polynomial, and
then we have the decomposition / = g-(f/g) . Replacing / by f/g and repeating
this argument, we obtain a decomposition of / into irreducible factors.



2.0. Preliminaries: Inputting a set.

In this chapter we shall consider algorithms involving a convex set. Convex
sets occur in a large number of algorithmic problems in numerical analysis, lin-
ear programming, combinatorics, number theory and other fields. Due to this
diversity of their origin, they may be given to us in very many forms: as the
solution set of a system of linear inequalities, or as the convex hull of a set of
vectors (where this set itself may be given explicitly or implicitly, like the set of
incidence vectors of matchings in a graph), or as the epigraph of a function etc.
So a problem like "determine the volume of a convex body" is not well posed:
the algorithms one chooses will depend on how the set is given.

For lattices, we have always assumed that they were given by a basis. This
hypothesis was good enough for the algorithms discussed in the preceding chapter
(see, however, Lovasz (1985) for a discussion of other possible descriptions of
lattices).

For convex sets, however, there is no single most natural description. So
we will take the approach of formulating several alternative ways of description
(using the notion of oracles) and will prove theorems establishing the algorithmic
equivalence of these. Similarly to the ways in which we obtained the results in
Section 1.4, we can apply these to explicit special cases and obtain non-trivial
algorithms. For example, the polynomial-time solvability of linear programming
will occur as such a special case. Many further applications will be contained in
Chapter 3.

Let us include here a brief informal discussion of inputting a set.

We may encode the set as an explicit list of its elements. This only works
for finite sets; even then it may be impractical if the set is very large in
comparison with the "natural" input size of the problem, e.g. the set of
all matchings in a graph.

We may encode a set S by providing a subroutine (oracle) which tells us
whether or not a given element of some natural large universe (e.g. Qn
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in the case of a convex set) belongs to S . We shall call such an oracle a
membership oracle.

It may be that if the oracle answers that a £ S then there is always
a simple reason for this, and we may require the oracle to supply this
reason. For closed convex sets in Rn , for example, if a £ S then there
is always a hyperplane separating a from S . So we may want to have
an oracle (called a separation oracle in this case) that improves upon the
membership oracle inasmuch as if it answers a ^ 5, then it also supplies
us with the "reason", i.e. with the separating hyperplane.

The existence of separating hyperplanes for convex bodies is equivalent
to the fact that each convex closed set is the intersection of all closed
halfspaces containing it. So the convex set S could as well be described
by specifying the set S* of halfspaces containing it. This can again
be done by a membership oracle for S* , which is then called a validity
oracle for S .

In the next section we formulate these oracles precisely, and also discuss what
kind of "manufacturer's guarantees" are needed to make them algorithmically
tractable (in the spirit of Section 1.4).

2.1. Algorithmic problems on convex sets.

Let XT be a closed convex set in Rn . Then there are two basic questions we
can ask:

(2.1.1) MEMBERSHIP PROBLEM. Given a point y <E Qn , is y e < ?

(2.1.2) VALIDITY PROBLEM. Given a halfspace {x : CTX < 7} = H (c £
Qn, 7 6 Q) , does it contain K ?

In both cases, if the answer is "No", we may want to have a "certificate"
of this. One way to "certify" our answer is formulated in the following two
problems.

(2.1.3) SEPARATION PROBLEM. Given a point y e Qn , decide if y e K ,
and if not, find a hyperplane separating y from K .

(2.1.4) VIOLATION PROBLEM. Given a halfspace H , decide if K < H ,
and if not, find a point in H — K. .

Of course, the first two questions can be asked for any set in Rn ; the reason
for restricting our attention to closed convex sets is that in this case the MEM-
BERSHIP problem and the VALIDITY problem are "logically" equivalent: if
we know the answer to either one of them for all inputs then we also know the
answer to the other. The main result in this chapter will show that under appro-
priate additional hypotheses, these two problems are not only logically but also
algorithmically equivalent. Also, the SEPARATION and VIOLATION problems
will turn out algorithmically equivalent under reasonable conditions.
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We show in some examples that these problems may be quite different for
the same convex set.

(2.1.5) Let K be a polyhedron defined by a system of linear inequalities
alx < bi (i = 1, . . . , m) . Then it is trivial to solve the separation problem and
hence the membership problem for K : just substitute the given point y in
each of the given linear inequalities, to see if they are satisfied. On the other
hand, the validity problem is equivalent to the solvability of a system of linear
inequalities, which in turn is equivalent to linear programming. This can be
solved by various algorithms, but far from easily.

(2.1.6) Let K be the convex hull of a given finite set of vectors. Then it is
trivial to solve the violation problem and hence the validity problem for K . On
the other hand, the membership problem for K is again equivalent to a linear
program.

(2.1.7) Let / : Rn -> R be a convex function and Gf = { ( x , t ) : f ( x ) < t} .
Then the membership problem for Gf is trivial to solve, provided f(x] can be
computed for x G Qn . To solve the separation problem for Gf , we need to
be able to compute the subgradient of / . Concerning the validity problem for
Gf , even to check whether halfspaces of the form { ( x , t ) : t > c} contain Gf is
equivalent to finding the minimum of / .

The above examples show that the difficulty of the problems formulated above
depends very much on the way the convex body is given. Our approach will be
to assume that K is given by an oracle which solves one of the problems above,
and then study the polynomial solvability of the others.

Since we want to allow non-polyhedral convex sets, as well as polyhedra
with irrational vertices, we have tq formulate some weaker versions of these
problems, where an error e > 0 is allowed. Let, for K C Rn, S ( K , e ) denote the
e-neighborhood of K , i.e. S ( K , t ) — {x 6 Rn : infyeK||z - y I < e} • We let
S(K, -e) = K — S(Rn — X", e) . It helps to understand the definitions below if we
read y 6 S ( K , —e) as "j/ is almost in K " and y   S ( K , e] as "y is deep in K ".

(2.1.8) WEAK MEMBERSHIP PROBLEM. Given a point y e Qn and a
rational e > 0 , conclude with one of the following:

(i) assert that y <E S(K,e] ;
(ii) assert that y £ S(K, -e) .

(2.1.9) WEAK SEPARATION PROBLEM. Given a vector y e Qn , and a
number e E Q, e > 0 , conclude with one of the following:

(i) assert that y E S(K",e);
(ii) find a vector c £ Qn such that \\c\\^ — 1 and CTX < cTy + c for every

xeS(K,-e) .

(2.1.10) WEAK VALIDITY PROBLEM. Given a vector c e Qn , a number
7 6 Q and a number e 6 Q, e > 0 , conclude with one of the following:

(i) assert that CTX < 7 + e for all x e S(K, -e);
(ii) assert that CTX > 7 - e for some x e S(K, e) .
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(2.1.11) WEAK VIOLATION PROBLEM. Given a vector c <E Qn , a number
7   Q and a number e e Q, e > 0 , conclude with one of the following:

(i) assert that CTX < 7 + e for all z e 5(/C, -e);
(ii) find a vector y G S(X, e) such that cTy > 7 — e .

Remark. Some of the e's in the formulation of the "weak" problems above
are redundant. The formulation above uses the weakest possible versions for
the sake of uniformity and for later convenience. Of course, the two possible
conclusions in either one of these problems are not mutually exclusive; there is
a margin left for borderline cases when either output is legal.

To derive non-trivial relationships between these problems, we shall need
some additional information on the convex sets. We shall restrict ourselves for
most of this chapter to bounded and full-dimensional bodies. However, we want
a guarantee for these properties. So if the convex set K is given by an oracle
which solves one of the problems listed above, the black box will have to wear a
guarantee:

(2.1.12)
The convex set described by

this box is contained in S(0,R}.

and also one like

(2.1.13)

The convex set described by

this box contains a ball with

radius r .

Instead of this last guarantee, we could require other guarantees for the "non-
flatness" of < :

(2.1.14)
The convex set described by this

box has width at least w
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(the width of K is the minimum distance of two parallel hyperplanes with AT
between them) or

(2.1.15)
The convex set described by this

box has volume at least v .

These three versions are, however, equivalent in the following sense. If (2.1.13)
holds, then trivially (2.1.14) holds with w = 2r . Conversely, if (2.1.14) holds,
then (2.1.13) holds with r = w/(n + 1) . It is not hard to check that if (2.1.12)
and (2.1.13) hold then we can compute from r, R and n in polynomial time a
v > 0 for which (2.1.15) holds and vice versa, if (2.1.12) and (2.1.15) hold then
we can compute from v, R and n in polynomial time an r > 0 for which (2.1.13)
holds.

It will be convenient to assume that in these guarantees we have always R > 1
and r, v, w < 1 . For our purposes, the interesting cases will be when r, v, w are
very small and R is very large.

Sometimes we shall need a stronger guarantee instead of these: we need also
the center of the inscribed ball.

(2.1.16)
The convex set described by this

box contains the ball S(a,r).

If an oracle describing a convex body has guarantees (2.1.12) and (2.1.13) we
shall call it well-guaranteed. If it has guarantees (2.1.12) and (2.1.16), we shall
call it centered well-guaranteed.

Of course, the boxes describing our convex sets have to wear guarantees that
the sets are indeed convex and that different answers given by the oracle do
not contradict each other. Also, the guarantees (2.1.12) - (2.1.16) have to'be
translated into explicit statements about the inputs and outputs of the oracle,
depending on which of the above 8 problems is answered by the oracle. For
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example, a well-guaranteed validity oracle can have the following guarantees:

For any two inputs (c 1,71), (02,72)

if the answer is "yes" for both then it is

also "yes" for the input (c\ + c^\ 71+72)-

For any input (0,7) and any number A G Q+,

if the answer is "yes" for (c, 7)

then it is also "yes" for (Ac, A7).

For any input (c, 7) such that

7 > PC the answer is "yes".

For any input (c, 7) for which the answer

is "yes", the answer to the input (—c, —7 + w \c\ }

is "no".

Accordingly, the input size of such an oracle is defined as n + (R} + (w).
Let us mention two important problems which are closely related to the ones

above:

(2.1.17) (LINEAR) OPTIMIZATION PROBLEM. Given a vector c G Qn ,
find a vector y   K such that cTy > CTX for all x E K.

We obtain a more general problem if we replace the objective function by a
more general concave function. Changing sign to obtain a more familiar form,
let us assume that K C Rn is a convex set and / : K —»• R is a convex function.
Then we can formulate the following.

(2.1.18) CONSTRAINED CONVEX FUNCTION MINIMIZATION PROB-
LEM. Find a vector y   < such that f ( x ) > f(y) for all x 6 K .

Note that even the special case when K = Rn is very important; this is called
the Unconstrained Convex Function Minimization Problem.

Note, however, that the Constrained Convex Function Minimization Problem
can be reduced to the Linear Optimization Problem easily: Just consider the set
{ ( x , t) : x e K, t > f ( x ) } and the linear objective function (x, t) *-> t .

The reader will have no difficulty in formulating the weak versions of these
problems.

We also have to say some words about how the function / is given. We shall
assume that it is given by an oracle whose input is a vector x 6 K and a number
e e Q, e > 0 , and whose output is a number r e Q such that \f(x) — r\ < e .
We shall call this a weak evaluation oracle.
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2.2. The Ellipsoid Method.

The Ellipsoid Method is so well known that we shall only describe it briefly,
omitting computational details. Instead, we shall spend more time on a lesser
known version (namely on shallow cuts), because it is not so well known, but at
the same time it is very important for many of the applications of the method.

The Ellipsoid Method is based on a method of Shor (1970) for convex func-
tion minimization using gradient projection with space dilatation. The method
was described explicitly by Yudin and Nemirovskii (1976) and Shor (1977).
Khachiyan (1979) adapted the method to show the polynomial time solvabil-
ity of the linear programming problem. For an extensive survey of the topic, see
Bland, Goldfarb and Todd (1981) and Schrader (1982) .

The basic ellipsoid method can be used to prove the following result.

(2.2.1) Lemma. For a convex set K C Rn given by a well-guaranteed separation
oracle, one can find a point in K in polynomial time.

Proof. We construct a sequence of ellipsoids EQ, E\,..., Ek such that EQ —
S(O,R] (i.e. the ball occurring in guarantee (2.1.12)). If Ek is constructed, we
inspect its center Xk using the separation oracle. If Xk G K , we are done. If
not, the separation oracle provides a vector Ck G Qn such that the halfspace
Hk = {x : c£x < cjjTxfc} contains K . Consider the half-ellipsoid Ek fl Hk and
let Ek+i be an ellipsoid with minimum volume including Ek n Hk .

Then the following can be proved rather easily:

This gives a polynomial upper bound on the number of ellipsoids in the sequence.
It takes more work to see that the ellipsoids Ek can be computed in polynomial
time. From a geometric point of view, this is still quite simple. We encode each
ellipsoid Ek by a pair (Ak,Xk) where Xk is the center of Ek and Ak is a
positive definite matrix such that

Hence

On the other hand, Ek contains K , and so by guarantee (2.5),

From this observation it follows that the sequence of ellipsoids must terminate
after a finite, and in fact polynomial, number of steps. Equation (2.2.2) implies
that



The difficulties arise from the numerical calculations of the update formulas
(2.2.3). They are twofold. First, the square root in (2.2.3) may result in irrational
numbers, and so we cannot in general stay within the rational field. Hence one
has to round, and it takes a somewhat tedious computation to show that it
suffices to round to a polynomial number of digits. Second, one has to make
sure that the input size of the numbers which arise remains bounded by some
polynomial of the input size. This can also be done by carefully estimating the
norms of the matrices Ak and A^1 . We suppress these considerations here
and refer instead e.g. to Grotschel, Lovasz and Schrijver (1981).

Since rounding is involved anyway, it turns out that it suffices to have a weak
separation oracle. Of course, in that case we can find only a vector y G S(K, e)
with the method, for any prescribed e > 0.

To attack the violation problem for K , we may replace K by the convex set
K - H , for which a separation oracle is trivially constructed from a separation
oracle for K . However, this separation oracle is not well-guaranteed in general;
no lower bound on the volume (or width) or K — H can be derived immediately.
So we have to add to the Ellipsoid Method as described above a new stopping
rule: if vol Ek < f1 for an appropriate prescribed e' then we also stop.

Now the ellipsoid method may have two outcomes: either it stops with a point
in K , or it stops with a certificate for vol (K — H) < e' . In this second case, we
can be sure that S(K, —e) C H if we have chosen e' = (jfi}nv . So the method
yields a solution to the weak violation problem. Since again a weak separation
oracle was sufficient, we have sketched the proof of the following result, which is
fundamental for the sequel.

(2.2.4) Lemma. For a convex set given by a well-guaranteed weak separation
oracle, the weak violation problem can be solved in polynomial time.

Let us remark that if we can solve the weak violation problem, then, using
binary search, a polynomial algorithm to solve the weak optimization problem
is easily obtained. Hence

(2.2.5) Corollary. For a convex set given by a Weil-guaranteed weak separation
oracle, the weak optimization problem can be solved in polynomial time.

Our next goal is to prove a converse of Lemma (2.2.4). This will be relatively
easy by a polarity argument, but first we have to find a point "deep in K ",
which can then serve as the center of the polarity. This is the purpose of the
next lemma.
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Then it follows by a simple geometric argument that

v
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(2.2.6) Lemma. For a convex set K C Rn given by a well-guaranteed weak
violation oracle, we can determine in polynomial time a vector a   Qn and a
number r' E Q, r' > 0 such that 5(a, r') C K .

Proof. (Sketch.) We choose a very small e > 0 and then select affinely
independent points XQ, . . . ,xn e S(K,e) as follows. First, by calling the weak
violation oracle with any c ̂  0,7 < —-R||c|| and the given e , we obtain a vector
XQ e 5(A", e) . If XQ, ..., Xi are already selected (i < n) , then let c ^ 0 be any
vector such that CTXQ — ... = crxl , and call the weak violation oracle with
(c, cTXi + f ||c||, e) and (-c, -cTxl + y||c||, e) , where w is the lower bound
on the width of K guaranteed by (2.3). Then in at least one case the oracle
supplies a point xl+\   S(K,c) .

Now if ZQ, . . . ,zn are found, then we can let S(a,r") be the ball inscribed
in the simplex conv{zo,... ,xn} . Then with r' — r" — e, we will have that
S(a,r'}CK. D

We can prove now the converse of Lemma (2.2.4).

(2.2.7) Lemma. For a convex set given by a wel]-guaranteed wealc violation
oracle, the weak separation problem can be solved in polynomial time.

Proof. Let K C Rn be our convex set. Using Lemma (2.2.6), we can find
in polynomial time a vector a   Qn and a number r'   Q, r' > 0 such that
S(a,r') C K . For notational convenience, we assume that a = 0 and r' = r .
Let K* = {x e Rn : xTy < 1 for all y   K} be the polar of K .

Let us note first that

and hence guarantees that (2.1.12) and (2.1.13) (even (2.1.16)) can easily be
supplied for K* .

Furthermore, the separation problem for K * is easily solved in polynomial
time. Let y e Qn and e   Q, e > 0 be given. Call the validity oracle for K
with the input (y, 1,e') where f.' = 2(1+\\ \\\* • ̂  ^ finds that yTx < 1 + e' for all

x e S(K, -e1} , then yTx < l + e'|M| for all x e K and hence l+ ,^,^ -y e K*
by the definition of K* . Hence y G S(K*, e) .

On the other hand, if the weak violation oracle for K gives a vector u 
S(K,e') such that yTu > 1 - e' then let c = u/\\u\\ . We claim that c is a
valid output for (ii) in the weak separation problem for K* . Let x G S(K*, —e).
Then in particular x   K* . Since u   S(K,e') , there is a vector UQ e K such
that ||w — ttol l <f! • Hence

and so



This completes the proof of the fact that the weak separation problem for K*
is solvable in polynomial time.

So by Lemma (2.2.4), the violation problem for K* can be solved in poly-
nomial time. But interchanging the role of K and K*, the preceding argument
then shows that the separation problem for K* can be solved in polynomial
time. D

Next we turn to the study of the membership oracle. It is clear that the
membership oracle is weaker than the separation oracle; it does not even suffice
to find a point in the set S(K,e] in polynomial time. This can be formulated
precisely as follows.

(2.2.8) Theorem. Every algorithm which finds, for every convex set K given
by a well-guaranteed (weak or strong) membership oracle and for every c > 0 ,
a vector in S(K, e) in polynomial time, takes an exponential number of steps in
the worst case.

Proof. We construct an oracle which even promises to describe one of the
ran little cubes (not telling, of course, which one) obtained by splitting the
unit cube into cubes of size 1/ra , where ra is any natural number. From this
promise, guarantees (2.1.12) and (2.1.13) are easily derived. Let us design the
inside of the box, however, so that for any membership query it should answer
"no" as long as there is at least one little cube no point of which was queried. So
its answer to the first mn — 1 questions in particular will be no, and it takes at
least ran — 1 questions before the algorithm can find a point which is certainly
in K . D

Remark. Note that mn is exponentially large in the input size (m) -I- n
even if m or n is fixed!

It is quite surprising that if we strengthen the guarantee just a little, and require
(2.1.16) instead of (2.1.13) (i.e., if we assume that the center of the little ball inside K is
explicitly given by the manufacturer of the black box for the weak membership oracle),
then the membership problem is in fact equivalent to the weak separation (or viola-
tion) problems. This fact was first proved by Yudin and Nemirowskii (1976). We shall
sketch the proof, which involves a little-known version of the Ellipsoid Method, the
so-called Shallow Cut Ellipsoid Method. However, we shall have to skip computa-
tional details.

Since the membership problem is a relaxation of the separation problem, it is
a natural idea to use a (weak) membership oracle to obtain a (weak) separation. How-
ever, no direct way to achieve this is known. What we can do is to obtain a "very weak
separation" from this membership oracle, and then strengthen the Ellipsoid Method
so that even this "very weak separation" should be enough for it. More precisely, we
prove the following result.
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Thus



is just a unit vector such that the rotational cone with vertex in y , axis parallel
to c and semi-angle arctg(n + 1) (which is quite close to Tr/2) is disjoint from
K . With the c in the statement, it suffices to find a congruent cone with vertex
closer to y than c and disjoint from K ; and this is what we shall achieve.

We assume, to make the main idea behind the algorithm more clear, that
we have a strong membership oracle; with a weak oracle, it would take some
additional work but no essentially new idea to carry out the calculations.

First, we call the membership oracle to test if y   K ; if the answer is "yes",
we are done, so suppose that y £ K .

By binary search along the segment connecting the "center" point a in
guarantee (2.1.16) and y , we can find two vectors p and q and a small
but positive (and polynomial computable) 6 > 0 such that \p - q\\ < |
S(p,S] C K but q $_ K . For notational convenience, suppose that p = 0 and
Q = y •

Let «!,..., un-i e Rn be vectors orthogonal to y and to each other, such
that \\Ui\\ = \\y\\ . Consider the 2n - 2 points v% = ay + /3ut and wT = ay — 0ul ,

where a = ^+2n+\^ P = n*+S+\ • (So °> V and anv ^ from a narrow

rectangular triangle with the rectangle at point vt- , and similarly for WT .) We
call the membership oracle for each of the points vt and Wi , and distinguish
two cases.

Case 1. For all z, Vi £ K and W{   K . Then we claim that no vector in the
cone
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(2.2.9) Lemma. For a convex set K C Rn given by a centered, well-guaranteed
membership oracle, for any vector y G Qn and any number e e Q, c > 0 , one
can reach one of the following two conclusions in polynomial time:

(i) assert that y  E S(K, c) ;
(ii) find a vector c G Qn such that \\c\\ — 1 , and for every x G K ,

Proof. (Sketch.) It may be easier to see the geometric content of (ii) if we
remark that a vector c such that \\c\\ = 1 and

belongs to K . Assume that u — y + Y^=i ^i(y~vi) + Y^i=i ^i(y~wi]   K f°r

some \i,iii > 0 . Clearly not each A; and //z is 0 . Let Y^i=i ^ + Y^i=i Pi — *
and consider the vector
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By the convexity of K, z e K and hence also y^z + -^u G K . But -^z +

Y^u = y , which is a contradiction.
Also note that C contains the rotational cone with center y , axis y and

half-angle arctg(n + 1) . So by the remark after the statement of the lemma, we
are done.

Case 2. Suppose that e.g. vl £ K . Then we replace y by Vi and repeat the
procedure.

It remains to show that after a polynomial number of iterations in Case 2,
Case 1 must occur; and also that the vertices of the cones do not "drift away"
from y . Both of these facts follow from the observation that

which is polynomial in the input size.
Remark. We could replace the coefficient ^W in (ii) by any number —^ ,

where p is a polynomial. What will be important for us, however, is that it is
smaller than £ .

(2.2.10) Lemma. For a convex set given by a centered, we]]-guaranteed wealc
membership oracle, we can solve the weak violation problem in polynomial time.

Proof. Let a halfspace H and a number e > 0 be given. We proceed as in
the basic version of the Ellipsoid Method: we construct a sequence EQ, E\,... of
ellipsoids such that K-H C Ek and vol(E'jt) decreases. The sequence terminates
if the center Xk of Ek is in K — H . Again, we can take EQ = S(O, R) .

Suppose that Ek is constructed but its center Xk <£ K — H . If Xk £ H then
we include Ek — H in an ellipsoid Ek+i just like in the basic ellipsoid method

and we have vol(£fc+i) < e ~ 2 ( n + 1 > vol (Ek) • So suppose that Xk £ H . Then
XkiK .

Let Q be an affine transformation mapping Ek onto the unit ball 5(0,1) .
Then 0 ̂  QK . Furthermore, it is easy to design a centered well-guaranteed weak
membership oracle for QK . So we can use Lemma (2.2.9) to find a "very weak
separation" for 0 , i.e. a vector c e Rn such that H e ' l l = 1 and CTX < e+ ^-j- \x\
for all x e K .

Consider now the set

So all cone vertices remain no further away from y than 2||y|| < e ; and the
number of iterations is at most



This shrinking factor is closer to 1 than in the basic ellipsoid method, but it still
suffices to show that the procedure must terminate in a polynomial number of
steps.

(The crucial fact that B' can be included in an ellipsoid whose volume is
smaller than the volume of 5(0,1) depends on the fact that the number ^^i
occurring in (2.2.11) is smaller than £ . If we replace this number by any num-
ber > ^ , the ellipsoid with smallest volume containing B' would be 5(0,1)
itself.) D

Using a polarity argument similar to the one in the proof of Lemma (2.2.5),
we can derive that for a convex set given by a centered, well-guaranteed weak
validity oracle, we can solve the weak separation problem in polynomial time. In
this result, however, we do not need the hypothesis that we know the "center".

(2.2.12) Lemma. For a convex set given by a well-guaranteed weak validity
oracle, we can solve the weak separation problem in polynomial time.

Proof. Let K C Rn be the given set. Embed Rn into Rn+1 by appending
an (n + l)8t coordinate. Let a = (°) e Rn+1 and let K = conv (KU5(a, 1/2)) .

Then it is trivial to design a weak validity oracle for K , and also to supply it
with proper guarantees. A ball contained in K is also given, so by the remark
above, we can solve the weak separation problem for K .

Now, let y G Rn and e > 0 be given. Let y = ( ] f ) where t = e/5R . Call the
weak separation algorithm for K with very small error 8 . If this concludes that
y 6 S(K,6) then there follows an easy geometric argument that y   S(K,t) .
On the other hand, if it finds a separating hyperplane, then this intersects Rn

in a hyperplane of Rn separating y from K . (Again we have suppressed some
technical details, arising mainly from the fact that the separating hyperplane in
Rn+1 may intersect Rn in a rather small angle. But this can be handled.)

Finally, consider optimization problems.

(2.2.13) Lemma. For a convex set given by a wealc violation oracle, the weak
linear optimization problem can be solved in polynomial time.

Proof. Let c   Qn and e   Q, e > 0, and say, \\c\\ = 1 . By binary search,
we can find a number 7   Q such that CTX < 7 is found "almost valid" by the
oracle but CTX < 7 — | is found "almost violated", with error |. This s
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By the choice of c , B1 contains K . Now B' is more than a half ball;
still, it can be included in an ellipsoid E'k+1 such that vol E'k+l < vol 5(0,1).
In fact,

by lengthy but elementary computations. Hence if we take Ek+i — Q 1E'k+l ,
we have
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that the oracle has asserted that CTX < 7 + | is valid for all x G S(K, t
that it also supplies a vector y £ S(K, |) such that cTy > 7 — y . So it follows
that y e S(K, e) and that cTy > 7 - y > CTX - e for all x  S(/f, -c) , and s
y is a solution to the weak linear optimization problem.

As a corollary, we find that the weak linear optimization problem can be
solved in polynomial time if we have a well-guaranteed separation, violation,
validity or centered membership oracle. Since, conversely, an oracle for the weak
linear optimization problem trivially answers the weak violation problem, we
obtain the following result.

(2.2.14) Theorem. For a convex set K , the following oracles, when well-
guaranteed, are polynomially equivalent.

(a) centered weak membership;
(b) weak validity;
(c) weak separation;
(d) weak violation;
(e) weak linear optimization.

We have also seen that if we drop "centered" from (a) then we obtain a
strictly weaker oracle.

We conclude this section with the following important application of the
preceding results.

(2.2.15) Theorem. Let K C Rn be a convex set given by any well-guaranteed
oracle of the list in Theorem (2.2.14). Let / : K —» R be a convex function given
by a weak evaluation oracle. Then the weak constrained function minimization
problem for K and f can be solved in polynomial time.

Proof. By our general hypothesis on oracles, we can compute in polynomial
time an upper bound // on max {|/(z)| : x e K} . Consider the set

Clearly, K is a convex set. It is trivial to design a membership oracle for
K . It is also easy to supply this with guarantees (2.1.12) and (2.1.16). So by
Theorem (2.2.14), the weak linear optimization problem for K is polynomially
solvable. But then in particular we can find in polynomial time for every e > 0
a vector (t/, s) that "almost minimizes" the linear objective function ( x , t ) >—>
t . Then y is a solution of the weak constrained convex function minimization
problem.

2.3. Rational polyhedra.

Let P C Rn be a polyhedron and 0 and v positive integers. We say that
P has facet complexity at most <f> if P can be described as the solution set of a
system of linear inequalities each of which has input size < 0 . We say that P has
vertex complexity at most v if P can be written as P = conv (V) + cone (E) ,
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where V, E C Qn are finite and each vector in V U E has input size < v . By
an elementary computation one can see that </> and v can be estimated by
polynomials of each other. More exactly, if P has facet complexity < 0 then
it has vertex complexity < 403 and conversely, if it has vertex complexity < v
then it has facet complexity < 4i>3 .

So the facet and vertex complexities are in a sense equivalent, and we shall
use whichever is more convenient. It is also easy to see that n<v,<$>.

If we know an upper bound on the facet (or vertex) complexity of P ,
then various other properties can be derived. The following two are the most
important.

(2.3.1) Lemma. If P is a polytope (i.e. a bounded polyhedron) with vertex
complexity < v , then P C S(0,2") .

(2.3.2) Lemma. If P is a full-dimensional polyhedron with facet complexity
<$> , then it contains a ball with radius 2~7<i> .

If a polyhedron P is given by some oracle, then a rationality guarantee for
P is one of the following form:

The polyhedron described by this

box has facet complexity < <fi

(we could equivalently guarantee that the vertex complexity is small). We con-
sider here 4> in unary encoding. So Lemmas (2.3.1) and (2.3.2) imply that for
a full-dimensional bounded polyhedron with rationality guarantee, we can give
guarantees of the form (2.1.12) and (2.1.13).

Our main result on rational polyhedra shows that a rationality guarantee en-
ables us to strengthen the main result of the previous section (Theorem (2.2.14))
in several directions: for the last three problems, the weak and strong versions
are equivalent, and the boundedness and full-dimensionality hypotheses can be
dropped.

(2.3.3) Theorem. For a polyhedron P the following oracles, with rationality
guarantee, are polynomially equivalent:

(a) strong separation,
(b) strong violation,
(c) strong h'near optimization.

If P is full-dimensional, then the following oracles (with rationality guarantee)
are also polynomially equivalent with (a):

(d) weak separation,
(e) weak violation,
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(f) weak linear optimization,
(g) centered weak membership,
(h) centered strong membership.

If P is bounded then
(i) strong validity,

if P is both bounded and full-dimensional then also
(j) weak validity

(with rationality guarantee] is equivalent to (a).
We shall not give the proof of this theorem in detail; in the outline which

follows, we shall expose the points where the difficulty lies.
First, it follows from Theorem (2.2.14) that for bounded, full-dimensional

polyhedra the weak oracles (d), (e), (f) , (g) and (j) are polynomially equivalent.
It is not difficult to extend these results in the first three cases to the unbounded
case. Next one shows that in the full-dimensional case, the strong versions of
these problems are also equivalent. This can be done by finding appropriate
approximations to the solutions and then by careful rounding. At this point,
one can make use of the simultaneous diophantine approximation algorithm in
the preceding chapter. The main tool is the following reformulation of Theorem
(1.3.6):

(2.3.4) Lemma. Let P be a polyhedron with facet complexity < p , and
y G Qn , such that y   S(P, 2~4np] ; then we can compute in polynomial time a
vector y<=P such that \\y-y\\< 2~2p •

By a similar method, if we have a linear inequality aTx < a that is "almost
valid" for P , then by simultaneous diophantine approximation, we can find a
valid inequality for P .

It is interesting to note that the rounding procedure in both cases is inde-
pendent of P (it only depends on the facet or vertex complexity of P ) . One
may also check that such a rounding cannot be achieved by rounding each entry
individually.

Using the rounding procedures described above, it is not hard to show that
weak and strong optimization as well as weak and strong violation are equivalent
for full-dimensional polyhedra. The case of weak and strong separation is slightly
more involved, but one can use the Ellipsoid Method to find a little ball inside
P , and then apply polarity just as in the proof of Lemma (2.2.7).

The most difficult part is to deal with non-full-dimensional polyhedra. The
key step is to determine their affine hull; then the problem is reduced to the
full-dimensional case.

If the polyhedron P is given by a strong violation or strong optimization
oracle (with rationality guarantee), then the affine hull of P can be found in
polynomial time using the same sort of procedure as in the proof of Lemma
(2.2.6) (Edmonds, Lovasz and Pulleyblank (1982)).

Suppose now that P is given by a strong separation oracle. Assuming that
the complexity of the output is uniformly bounded, Karp and Papadimitriou
(1981) proved that the strong optimization problem is solvable then for P . A
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similar result was obtained by Padberg and Rao (1984) under the related hypoth-
esis that the oracle gives facets as separation. To obtain this result without any
assumption about the oracle, we use simultaneous diophantine approximation
again.

So let P be given by a strong separation oracle. We want to find the affine
hull of P . It is easy to see that one may assume that P is bounded.

We start with the basic ellipsoid method and construct a sequence E\, EI ,...
of ellipsoids such that P C Ek and vol Ek —> 0 . If we find that the center Zfc
of Ek belongs to P , then we check also the points Xk + eel , where e > 0 is
very small and e i , . . . ,en are the basis vectors of Rn . If we find that all these
n points are in P then P is full-dimensional and so its affine hull is Rn .
So we may assume that we always find a vector Xk + eei £ P . Then from the
separation oracle we obtain a hyperplane separating Xk + ee^ from P , and we
can use this as a "slightly shallow" cut to obtain Ek+i .

In a polynomial number of steps we have that vol (Ek} < 1~lvn . Then the
width of Ek is less than 2~6"n , i.e. there is a hyperplane aTx = a such that
both inequalities aTx < a + 2~6"n and aTx > a — 2~6"n are valid for Ek and,
consequently, also valid for P . But then rounding a and a as sketched above
using simultaneous diophantine approximation, we obtain a hyperplane CTX = v
which contains P . From here we can go on by induction on the dimension of
the space and find the affine hull of P in polynomial time.

Several other algorithmic questions concerning polyhedra can be settled using
these methods. Let us list some:

(a) Find a vertex (if any).
(b) Given a vector y 6 P , find vertices VQ, . . . , vn and numbers a a , . . . , an

such that oti > 0, ^T, ai — 1 an^ ^o^o + . . . + otnvn = y .
(c) Given a valid inequality CTX < v, find facets ajx < oti (i = 1,. . . , n) and

numbers TT^ (i = 1,..., n) such that TT^ > 0, ^ ̂ iai — c> Z^ ̂ iai ^ v •
(d) Given a point y £ P , find a facet aTx < a such that aTy > a .

(2.3.5) Theorem. If P is a polyhedron given by a strong separation (violation,
optimization) oracle with rationality guarantee, then problems (a)-(d) above can
be solved in polynomial time.

We use the methods of this section to derive one, seemingly technical, strength-
ening of the previous results. This is based on results of Tardos (1984) and Frank
and Tardos (1985).

(2.3.6) Theorem. Let P C Rn be a polyhedron given by a strong separation
oracle with rationality guarantee, and let c e Qn . Then a vertex of P max-
imizing the linear objective function CTX over P can be found in time which
is polynomial in the input size of the oracle and strongly polynomial in c (i.e.
the number of arithmetic and other operations does not depend on c , only on
the input size of the numbers on which the operations are performed).
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Before proving this result, some comments on its significance are in order.
First, one obtains as a special case:

(2.3.7) Corollary. The h'near program

can be solved by an algorithm which is polynomial in<A> + <b> and
strongly polynomial in c .

By applying a similar argument also to the dual program, one can prove even
more:

(2.3.9) Theorem. The h'near program (2.3.8) can be solved by an algorithm
which is polynomial in < A > and strongly polynomial in 6, c .

A more direct proof of this result, avoiding simultaneous diophantine approx-
imation, has also been found by Tardos (1985) .

In many cases, especially in those arising in combinatorial optimization, the
matrix A has very simple entries, often O's and ±l's. Hence in these cases
the strong polynomiality of the algorithm follows. In particular, one finds as
a corollary that the Minimum Cost Flow Problem can be solved in strongly
polynomial time (see Chapter 3).

Let us sketch a proof of Theorem (2.3.6). We may assume that HcHoo = 1 .
For brevity, assume that P is bounded, and let P have vertex complexity
< v . By Theorem (1.3.7) we can find a vector c   Qn such that (c) < 12i/n4 and
every strict linear inequality with input size < 2v satisfied by c is also satisfied
by c . In particular, if CTV\ > cTv<2 for two vertices of P then crv\ > crV2 and
vice versa. So the same vertices of P maximize c and c . Hence it suffices to
maximize c?x over P . But (c) is bounded independently of (c) .

2.4. Some other algorithmic problems on convex sets.

Let K be a convex set given by a well-guaranteed oracle for the weak
separation, violation, validity or optimization problem, or by a centered weak
membership oracle. Since all these are poly normally equivalent, we shall not
distinguish between them, and will call K given by any of them a convex body.

It was proved by Lowner (cf. Danzer, Grunbaum, and Klee (1963)) and John
(1948) that for every convex body K C Rn there exist a pair (E1, E) of ellipsoids
such that E' C K C E, E' and E are concentric, and E' arises from E by
shrinking by a factor 1/n . In fact, if we choose E to be the smallest volume
ellipsoid including K , or E' the largest volume ellipsoid contained in K ,
then such a pair arises. We call such a pair a Lowner-John pair for K .

The main result in this section is that an approximation of a Lowner-John
pair can be computed for every convex body in polynomial time. This result
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can then be applied to finding approximations for other important geometric
parameters of K .

Let us call a pair (£', E) of ellipsoids a weak Ldwner-John pair for K if
E' C K C E, E' and E are concentric and E1 arises from E by shrinking
by a factor l/(n + i)^/n .

(2.4.1) Theorem. Let K C Rn be a convex body. Then a weak Ldwner-John
pair for K can be computed in polynomial time.

Proof. Let us assume that K is given by a weak separation oracle. We shall
in fact assume that the oracle is strong; this is not justified but the proof will
be clearer. We use the shallow cut ellipsoid method. We construct a sequence
of ellipsoids EQ,EI,... such that K C Ek for all k and

This sequence must terminate in a polynomial number of steps. Suppose we
have Ek • We show that either Ek determines a weak Lowner-John pair for K
or we can construct Ek+i .

First, check if the center Xk of Ek belongs to K . If not, we proceed by the
basic ellipsoid method. Suppose that Xk G K . Next, determine the endpoints of
the axes of Ek ; let these points be Xk ± a» (i = 1,..., n) . Check if Xk ± ^jflt 
K , for i = 1,..., n . If all these 2n points are in K , then so is their convex
hull P . But P contains the ellipsoid E'k with center Xk obtained from Ek by
shrinking by a factor l/(n -f l}\/n . So (Ek,Ek) is a weak Lowner-John pair.

Suppose now that e.g. Xk + ̂ 1^1 ̂  K • Then the separation oracle gives a
halfspace H such that K C H but Xk + ̂ i^i £ H . Such a H is a "shallow
cut", i.e. if we let Ek+i be an ellipsoid with smallest volume including Ek fl H ,
then (2.4.2) holds, and we are done. D

Remarks. 1. If we apply an affine transformation which maps the weak
Lowner-John pair onto balls, then the image of K is reasonably "round" in
the sense that its circumscribed ball is at most (n -f 1) • >/n times larger than its
inscribed ball. This is to what the chapter title refers.

2. To see why (2.4.2) holds, one may apply an affine transformation mapping
Ek on 5(0,1) . Then (2.4.2) is just the same formula as in the proof of Lemma
(2.2.10).

3. For special convex bodies K , one may improve the factor l/(n -f l)-\/n .
If K is centrally symmetric, then one obtains 1/n . If K is a poly tope given
either as the solution set of a system of linear equations or as the convex hull
of a set of vectors, then l/(n -f 1) can be achieved. Finally, if A" is a centrally
symmetric polytope and is given as above, then l/\/n + 1 can be achieved.

Let us turn to other geometric problems. Perhaps the most important is the
volume. Theorem (2.4.1) implies immediately:



Proof. Let 5(0,1) be the unit ball in Rn, vn its volume, and let v(n,p)
denote the maximum volume of a polytope representable as the convex hull of
p points in 5(0,1) .

Suppose that we have an algorithm which computes an upper bound on
the volume in polynomial time. We shall restrict ourselves to convex bodies
contained in 5(0,1) and containing 5(0,1/2) , and hence we may assume that
the bodies in consideration are given by a membership oracle.

Let us apply our algorithm to 5(0,1) , and assume that it finds the value
/Z(5(0,1)) . Let vi,..., vp be those points in 5(0,1) whose membership has been
tested; since the algorithm is polynomial, p is bounded by a polynomial in n
(the other input parameters being constant : R — 1 and r = ^).

Now if we run our algorithm with K — conv (u i , . . . ,vp} , we obtain the
same answers and so the result will be the same number:
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(2.4.3) Corollary. For every convex body K , one can compute in polynomial
time a number n(K] such that

Proof. Let n(K] — vol (E') for any Lowner-John pair (E1, E] for K.
The coefficient nn / 2(n+ l)n seems to be outrageously bad. But the following

result of G. Elekes (1982) shows that every polynomial time algorithm must leave
a very bad margin for error.

(2.4.4) Theorem. There is no polynomial time algorithm which would compute
a number fl(K] for each convex body K such that

Let vol(5(0,1)) = vn , then we have that

and also

Comparing the lower bound in the first inequality with the upper bound in the
second, we find that

by the definition of v(n,p) . I do not know the exact value of v(n,p) , but to
obtain the theorem, the following rough estimate will do:



An argument similar to the proof of Theorem (2.4.4) shows that one cannot
get closer to r(K) and to w(K) than a factor of ^/n/log n in polynomial time.

The situation is similar for the smallest circumscribed ball and the diameter.
Let d(K) denote the diameter of K and R(K] the radius of the smallest
circumscribed ball.

(2.4.7) Corollary. For every convex body K , one can compute in polynomial
time a number do(K] such that

2.5. Integer programming in a fixed dimension.

Integer linear programming, that is, the problem of maximizing a linear ob-
jective function over the integer solutions of a system of linear inequalities, occurs
in many models in operations research. In the next chapter we shall see that it
also provides an important and useful framework for most combinatorial opti-
mization problems.
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Since p is polynomial in n , this is a contradiction if n is large enough.
To see (2.4.5), it suffices to notice that K is contained in the union of the

"Thales-balls" over the segments connecting 0 to Vi (i = 1,... ,p) , and that
the volume of each of these balls is 2~nv

If K is a polytope, then there may be much better ways to compute vol (K} ,
but very little seems to be known in this direction. For example, if K is given
as the solution set of a system of linear inequalities or as the convex hull of a
set of vectors, can vol(-fiT) be computed in polynomial time? I suspect that the
answer is no, but no NP—hardness results seem to be known.

It may be worthwhile to mention here the following observation. Let P =
{v\,..., vn} be a partially ordered set and let K C Rn be defined by

Then n\ vol(K) gives the number of linear extensions of P . While I do not
know if this number is NP—hard or not, I suspect that it is (probably even
#P—complete) and this may not be too difficult to prove.

Next we consider the width and the inscribed ball. Let w(K] denote the
width of K and let r(K] denote the radius of the largest ball in K . From
Theorem (2.4.1) we obtain immediately:

(2.4.6) Corollary. For every convex body K , one can compute in polynomial
time a number wo(K] such that
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It is, however, in a sense too general: it is TVP-hard. In the next chapter
we shall see how special cases of it, corresponding to some combinatorial opti-
mization problems, can be solved in polynomial time. Here we treat another
polynomially solvable special case, namely the case of fixed dimensional integer
linear programs. We shall prove the celebrated result of H. W. Lenstra that
gives a polynomial-time algorithm for this problem (where the polynomial in
the time bound depends, of course, on the dimension). Lenstra introduced basis
reduction techniques to solve the problem. We shall show that replacing these
by the more powerful techniques described in Chapter 1, and combining them
with the "shallow cut" version of the Ellipsoid Method, one can do most of the
work in time which is polynomial even for varying dimension. Exponentiality
enters only at a trivial case distinction at the end of the argument.

The main result of this section is the following. Recall that a convex body
is a convex set in Rn given by a well-guaranteed oracle for weak separation,
violation, validity or optimization, or by a centered weak membership oracle.
(Since all these oracles are polynomially equivalent, it does not matter which
one we choose.) The general problem is to decide if K contains an integer
vector. The following result shows that this is the case unless K. is "flat" in
one direction.

(2.5.1) Theorem. Given a convex body K , we can achieve in polynomial time
one of the following:

(i) find an integral vector in K ;
(ii) find an integral vector c £ Zn such that

Proof. First we use Theorem (2.4.1) to find a weak Lowner-John ellipsoid
pair for K , i.e. a pair (E1', E) or concentric ellipsoids such that E' C K C E
and E' arises from E by shrinking by a factor l/(n + 1)\A* • Let x be the
common center of E and E' .

Let T be any linear transformation of Rn which maps E' onto a unit ball.
Let L = r(Zn) be the image of the standard lattice Zn under this transformation,
and let y = T(X) .

Now, use the algorithm of Theorem (1.2.22) to find a lattice point "near" y .
This algorithm gives us a lattice point 6 £ L as well as a proof that no lattice
point is "much closer". This is supplied in terms of a vector d   L* such that the
distance of y from the two lattice hyperplanes d?x = [dTy\ and drz = \(fy\
is at least (v/2/3)n||& - y|| . What we need from this is that the distance of these
two lattice hyperplanes is at least (v/2/3)n||& - y|| . So \\d\\ < (3/V2)n\\b -y\\ •

Let a = r~1b and c = r*d , where T* is the adjoint of T .
Case 1. If ||6 - y|| < 1 then 6   S(y, 1) = r(E') and hence a   E' C K . So

we have found an integral vector in K .



This result can be used to design a recursive algorithm to find a lattice vector
in K . The idea is the following. If we run the algorithm of Theorem (2.5.1) and
it ends up with (i), we are done. Suppose that it ends up with (ii). Then we
consider the (n — 1)-dimensional convex bodies K3 — K n {x : dTx = j ] for all
j G Z with min{cTx : x   K} < j< max{cTa; : x £ K} . There are exponentially
many cases to consider; for fixed n , however, there is only a fixed number of
them, and we can proceed by induction.

A little care has to be exercised, however, with the values j ~ min{crx : x G
K} and j ~ max{cTz : x G K} (here ~ means that we cannot distinguish the
two values in polynomial time). Since K is only given by a weak oracle, we
cannot really know if the hyperplanes CTX = j avoid, touch, or intersect K .
So we can only detect those integral vectors in K which are in S ( K ; e) for any
fixed e . So we have proved:

(2.5.2) Corollary. For every fixed n , given a convex body K C Rn , we can
achieve in polynomial time one of the following:

(i) find an integral vector in S ( K , e ) ;
(ii) assert that S(K, — e) contains no integral points.

Using the notion of rational polyhedra, and the techniques developed in the
preceding section, it is easy to obtain a "strong" version of this theorem.

(2.5.3) Corollary. If P C Rn is a polyhedron given by a strong separation
(violation, optimization) oracle with rationality guarantee, then there is an al-
gorithm which finds an integer point in P , or concludes that none exists, in
time which is polynomial if the dimension n is fixe

The reduction to the bounded case is based on a result of Borosh and Treybig
(1976), which implies that if a rational polyhedron facet complexity 0 contains
any integral vector at all, then it contains one with \\z\\oo < n1n<^ . The reduction
to the full-dimensional case, and the refinement of the "weak" to the "strong"
result can be achieved by the same methods as in the case of other algorithmic
problems on rational polyhedra.

We conclude with the result of H. W. Lenstra:

(2.5.4) Corollary. Given a system of linear inequalities in n variables, there
is an algorithm which finds an integral solution, or concludes that none exists,
in time which is polynomial for each fixed n .
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Case 2. If ||6 - y|| > 1 then \\d\\ < 9n . Hence

fix
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3.1. Cuts and joins.

Perhaps the single most important combinatorial optimization problem is the
flow problem. We are given a digraph G , two points s,t   V(G) (called the
source and the smfc), and a non-negative capacity c(e) assigned to each edge e .
To avoid some trivial difficulties, let us assume that no edge enters s and no
edge leaves t . We would like to send as much "flow" from s to t as possible.
The way to model this is to look for an "intensity" /(e) for each edge e , so that
the following conditions are satisfied:

65

Some Applications in Combinatorics

CHAPTER 3

and

These last conditions, versions of KirchhofF's Current Law, express that the
amount of flow entering point v is the same as the amount leaving it. An
assignment / : E(G) -* R satisfying (3.1.1) and (3.1.2) is called an (s,t)-flow
or briefly, a flow. The sum on the left hand side of (3.1.2) for v = t defines the
value of the flow:

It is easy to see that the same value, but with opposite sign, occurs if we consider
the source point s:
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We are trying to find the maximum of v(f) , subject to (3.1.1), (3.1.2), (3.1.3)
and (if you like) (3.1.4). This is just a linear program in the variables f(e) (e G
E(G)) and v(f) . (We could easily eliminate the variable v(f) from the program,
and view the right hand side of (3.1.3) as the objective function. But we have
chosen this form to preserve a greater degree of symmetry among the points.
For the same reason, we have included the superflows equation (3.1.4) among
the constraints.)

Now the maximum of v(f) subject to (3.1.1) - (3.1.4) can be determined in
polynomial time by various linear programming algorithms, e.g. by the Ellipsoid
Method (but for this special case, the Simplex Method can also be implemented
in polynomial time). Ford and Fulkerson (1962) developed an extremely impor-
tant augmenting path technique to solve this problem more efficiently. But our
concern is to derive its polynomial solvability from general principles.

There is also a famous min-max result for this maximum, the Max-Flow-
Min-Cut Theorem of Ford and Fulkerson (1962). For a set A C V(G), s 
A, t ^ A , we define the (s,t)-cut determined by A as the set of edges whose
tail is in A and whose head is in V(G) — A . The capacity of an (5, t)-cut C is
defined by c(D) = ^2eC  c(e) . With this terminology, we can state the following
fundamental result.

(3.1.5) Max-Flow-Min-Cut Theorem. The maximum value of an (s, t)-fiow is
equal to the minimum capacity of an (s,£)-cut.

The minimum capacity of an (s, t)-cut can again be formulated as the opti-
mum of a linear program. In fact (not too surprisingly) it is just the minimum
in the dual program of (3.1.1) - (3.1.4). But this is not entirely straightforward.
In the dual linear program, we will have a variable ye for each e  E E(G] corre-
sponding to the upper bound in (3.1.1) as well as a variable zv for each v G V
corresponding to the Kirchhoff equations and the formulas for v(f) . This dual
program is as follows:

and

The dual objective function is

Since only differences of the z's occur, we may assume that zt = 0, zs = 1 . We
can construct a solution of this program by taking an (s, t)-cut C determined



Then ^e c(e}ye = XleeC c(e) *s Just ^e caPacity of the cut C . So indeed the
capacity of every (s, i)-cut is a value of the dual objective function (and hence,
trivially, an upper bound on the maximum value is primal). But more can be
said. The solutions given by (3.1.10) are not just any odd solutions of the dual
program: they are precisely the vertices of the polyhedron formed by all dual
solutions. This important non-trivial fact follows from the observation that the
matrix of this program is totally unimodular^ i.e. every subdeterminant of this
matrix is 0 or ±1 . So if we compute the coordinates of any vertex by Cramer's
Rule, they will turn out to be integral. It takes a little play with the zu's to show
that every vertex has not only integral but 0-1 entries. But then it is obvious
that every vertex is of the form given above.

If the feasible polyhedron of a linear program has any vertices, then the
optimum of any (bounded) linear objective function is attained at one of these.
So the optimum value of the dual program (3.1.6) - (3.1.9) is just the minimum
capacity of an (s, t)-cut. Moreover, having found an optimum vertex solution to
this dual program, we automatically find a minimum cut as well.

The fact that we could find a combinatorial object (a cut) by linear program-
ming depended on the integrality of the vertices of the dual program, which in
turn depended on the total unimodularity of the matrix of the program. The
transpose of this matrix is also totally unimodular, and hence we obtain another
important result on flows:

(3.1.11) Integrality Theorem. If all capacities c(e) are integral, then there exists
an optimum now in which all intensities f(e) are integral.

If we try to extend the Integrality Theorem to more general combinatorial
situations, then the first idea is to look for other totally unimodular matrices.
This approach does not lead too far, however; a very deep result of Seymour
(1980) says that every totally unimodular matrix can be "glued together" (in a
somewhat complicated but precisely defined sense) from matrices corresponding
to the maximum flow problem or to its dual. While one does get totally uni-
modular linear programs which are substantially different from maximum flows
(minimum cost flows, for example), the range of this approach is limited.

We can extend these methods much further if we analyse the combinatorial
meaning of the Integrality Theorem. Let / be any (5, £)-flow with v(f] > 0 . It
is easy to find a directed (s, £)-path P such that f(e) > 0 for all e   P . Let xP

denote the incidence vector of P ; then \p is a special kind of (s, <)-flow with
value 1. Set \p = mm (f(e) : e e P} , then /' = / - \p • XP is an (s,t)-flow
with value v(f'} = v(f) — XP . Going on similarly, we can decompose / into
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by a set A C V(G) (s e A C V(G) - t) , and setting



where v(/o) = 0 . So v(f) = Apt + ... 4- \pm . Now if f(e) is integral then so
are the Ap , and we may view this decomposition as a collection of (s, t)-paths,
in which Pi occurs with multiplicity \pi . The condition that f(e) < c(e) can
then be translated into the condition that this family of paths uses each edge e
at most c(e) times. The objective function is then just the number of paths in
the collection.

If we take each capacity c(e) = 1 , then the Max-Flow-Min-Cut Theorem
translates into a classical result:

(3.1.12) Monger's Theorem. If G is a digraph and s,t   V(G) , then the
maximum number of edge-disjoint directed (s, t) -paths is equal to the minimum
cardinality of an (s,t)-cut.

Let us play a little with these problems by interchanging the roles of paths
and cuts. Then the values c(e) may be viewed as "lengths", and instead of a
minimum capacity cut, we may look for a shortest directed path from s to
t . Instead of packing paths, we shall be packing (s, t)-cuts. An interpretation
of such a packing is not as straightforward as the "flow" interpretation of a
packing of paths. But we can do the following. Let d,..., Cm be (s, t)-cuts
determined by the sets A\,..., Am , respectively, and AI, ..., Am > 0 such that
(Ci,.. . , Cm; AI , ..., Am) is a c-packing of (s, t)-cuts, i.e.
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directed (s, t)-paths and possibly into a flow with value 0:

holds for all e e E . Consider the following function defined on the points:

Then TT(S) = 0, 7r(t) = £V A» , and for every edge uv we have

A function IT : V —> Q is called a potential (with respect- to the length function
c ) i f
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for each edge uv . The last inequality says that to go from u to v , we have to
go at least as long as the difference between the potentials of u and v .

The Max-Flow-Min-Cut Theorem has the following (substantially easier)
analogue:

(3.1.13) Mill-Path-Max-Potential Theorem. The minimum length of an (s, t)-
path is equal to the maximum potential difference between u and v .

It takes the solution of a linear program to find the maximum potential dif-
ference. A basic optimum solution to the dual of this linear program would yield
a shortest (5, t)-path. However, in this case there is a simple straigthforward
algorithm to determine, for a fixed point s , a shortest (a, i)-path for each x ,
as well as a potential which simultaneously maximizes the potential difference
between s and each other point x (Dijkstra (1959)).

Is there any reason why we have obtained another meaningful result by inter-
changing "paths" and "cuts"? Is there any connection between the algorithmic
solvability of the shortest path and maximum flow problems? To answer these
questions, let us formulate these problems quite generally.

Suppose that instead of the paths, we have any collection M of subsets of a
finite set E such that no member of H contains another. Such a set-system is
called a clutter. We can generalize the maximum flow problem as follows. Given
"capacities" c(e) e Z+ for each e 6 E , find a maximum collection of members
of M which use every e e E at most c(e) times. We call such a collection a
c -packing of members of M . We can also formulate a "fractional" version of this
problem: find a list (Pi,..., Pm) of members of X and non-negative rational
numbers AI , . . . , Am such that

So the minimum capacity of members of bl(#) is an upper bound on the maxi-
mum value of a fractional c-packing of members of M .

and Y^, ^t is maximum. Such a system (Pi,..., Pm, AI , . . . , Am} is called a frac-
tional c-packing of members of U .

What will correspond to cuts in this general setting? Observe that an (s, <)-
cut meets every (s, i)-path; and that every set of edges meeting all (5, t)-paths
contains an (s, £)-cut. It may happen that an (s, £)-cut contains another (s, £)-
cut as a proper subset; but as long as we are only interested in the minimum
capacity of (s, £)-cuts, we may disregard the first. So the inclusion-minimal
(s, £)-cuts are just the minimal sets of edges which meet every (s, <)-path.

This motivates the following definition: the blacker bl(#) of X consists of
all minimal sets which meet every member of M . If (Pi,..., Pm; AI, . . . , Am) is
any (integral or fractional) c-packing of members of # , and if Q .  bl(#) , then
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We say that # has the max-flow-min-cut property if equality holds here
for every capacity function c : E —» Q+ . It is a common form of very many
combinatorial min-max results that certain clutters # have the max-flow-
min-cut property.

It is easy to verify that bl(bl(#)) = M for every M . A simple but important
result of Lehman (1965) asserts that if M has the max-flow-min-cut property
then so does bl(#) . So in a sense the Max-Flow-Min-Cut Theorem and the
Min-Path-Max-Potential Theorem are equivalent: they follow from each other
by Lehman's result. This result will be better understood (and quite simply
proved) if we introduce some further polyhedral considerations.

Let M be any clutter of subsets of a set E . Define the dominant of H by

In fact, this minimum is finite and will therefore be achieved by a vertex of
dmt)/ . But the vertices of dmt# are, trivially, the vectors \p, P 6 U , and
CT\P = c(P) for such vectors.

So we have formulated the problem of finding a minimum weight member of
H as the problem of minimizing a linear objective function over a polyhedron.
This is just a linear program! Well, not quite ... . To be able to handle it as a
linear program, we would need a description of dmt M as the solution set of a
system of linear inequalities. It is well known that such a description does exist
for each polyhedron, but how to find it in our case?

Let us guess at some inequalities which are at least valid for all vectors in
dmt X . The class

If we have any function c : E —> Q+ , and want to find a set P 6 U with c(P)
minimum (e.g. a minimum capacity (s, £)-cut or a shortest (s, £)-path), then we
can write this as

is trivial. For any Q   bl(#) we obtain a non-trivial constraint:

If x = xP is any vertex of dmt # then

and this inequality is trivially inherited for all vectors in the convex hull and
"above".
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Now the max-flow-min-cut property for bl (#) holds if and only if the in-
equalities (3.1.15) and (3.1.16) suffice to describe that a fractional packing of
members of bl (#) is just a feasible dual solution to the linear program

maximize CTX

subject to (3.1.15) and (3.1.16) ,

and that this has the same optimum value as (3.1.14) if and only if (3.1.15) and
(3.1.16) describe exactly dmt )/ .

We may find yet another equivalent form of this property.
The polyhedron dmt # has the following property: whenever x e dmt # and

y > x then also y   dmt # . A set with this property will be called up-monotone.
Let K C R^ be any up-monotone convex polyhedron. We define the blocking

polyhedron BL(jK") of K by

Applying the BL operator to both sides we get

The right-hand side here is just the solution set of (3.1.15) and (3.1.16). So #
has the max-flow-min-cut property if and only if

Interchanging the role of # and bl U we obtain

Since an inequality xTy > 1 (y > 0) holds true for all x   dmt)/ if and only if
it holds true for each of the vertices of dmt M , we can write this as

This notion, which is a version of the classical notion of polarity of polyhedra,
is due to Fulkerson (1970). It follows by standard linear algebra that EL(K) is
again up-monotone and

There are a number of nice relations between K and BL(K) , for example, the
vertices of K correspond nicely to the non-trivial facets of BL(K] and vice
versa, but we shall not elaborate on these.

Let us determine the blocking polyhedron of dmt H . By definition,
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But this simply means that bl(^/) has the max-flow-min-cut property! So we
have proved Lehman's Theorem.

Let us complement this by an algorithmic result.
Note that it is easy to give rationality guarantees for dmt (#) . So if # has the

max-flow-min-cut property, then by the results of Chapter 2, the Optimization
Problem for dmt# is polynomial time equivalent to the Optimization Problem
for dmt(bl(^/)) . This yields the following general result.

(3.1.17) Theorem. Let K be a class of clutters (E, #) with the max-fiow-min-
cut property, encoded so that the problem "Given (E, M) £ K and c : E —> Q+ ,
find P £ M with c(P) minimum" can be solved in polynomial time. Then the
problem "Given (E, #)   JC and c : E -* Q+ , find Q   bl(#) with c(Q)
minimum" can be solved in polynomial time.

In particular, the fact that a shortest (s, <)-path can be found in polynomial
time implies in this generality that a minimum capacity (s, £)-cut can be found
in polynomial time. In what follows, we shall show that Theorem (3.1.17) applies
to many other situations.

But first let me make some comments on the conditions of this theorem.
First, the hypothesis that the clutters have the max-flow-min-cut property is
essential. For example, if (E, #) is a graph explicitly given (i.e., if # consists of
some 2-element subsets of E ), then to find min{c(P) : P 6 )/} is trivial if we
scan all edges. On the other hand, bl(#) consists of all point-covers, and to find
a minimum weight (even minimum cardinality) point-cover is NP-haid.

Second, the hypothesis that a minimum weight member of # can be chosen
in polynomial time may be superfluous, as far as I know. It may perhaps be
true that if all the members of /C are encoded in a reasonable way, and if they
all have the max-flow-min-cut property, then a minimum weight member of #
can be found in polynomial time. There is a somewhat similar result for the
"antiblocking" situation, to be discussed in the next section.

Now let us describe other examples of hypergraphs with the max-flow-min-
cut property and the algorithmic implications of Theorem (3.1.17). Various
families of cuts give rise to such hypergraphs.

Let G be a digraph and s e V(G) . An s-cut is a cut determined by a
set A C V(G) such that s G A . So the set of s-cuts is the union of the sets of
(s, £)-cuts for te V(G}- S .

It is easy to work out that the blocker of s-cuts consists of all spanning
trees of G directed so that every point different from 3 has indegree 1. Such a
spanning tree will be called an s-branching. The clutter of s-cuts (and therefore,
by Lehman's Theorem, the clutter of s-branchings) has the max-flow-min-cut
property. These two results were proved by Edmonds (1973) and Fulkerson
(1974). (The results of Edmonds and Fulkerson assert in fact more; they also
imply the existence of integral optimum dual solutions. We shall return to this
later.)

It is trivial to find a minimum weight s-cut in polynomial time: all we have to
do is to find a minimum weight (s, i)-cut for each t G V(G) - s , and pick the best
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of these. Theorem (3.1.17) implies then that we can also find a minimum weight
s-branching in polynomial time. This task is non-trivial; a direct polynomial
algorithm to solve it was given by Edmonds (1967).

A next possible step would be to consider all cuts, but this clutter does
not have the max-flow-min-c'ut property. Its blocker consists of all strongly
connected subgraphs of G . The problem of finding a minimal strongly connected
subgraph contains the'Hamilton circuit problem, and is, therefore, NP-haxd.

But we get another nice family if we consider directed cuts or, briefly, dicuts.
A dicut is a cut determined by a set A C V(G), A ^ 0 if there is no edge
with tail in V(G) - A and head in A . The blocker of the dicuts will consist of
all minimal sets P C E(G) such that by contracting P we obtain a strongly
connected digraph. Such a set will be called a dijoin. The clutter of dijoins (as
well as the clutter of dicuts) has the max-flow-min-cut property. This follows
from a theorem of Lucchesi and Younger (1978).

It is not difficult to find a minimum capacity dicut in a graph. Let us add,
for each edge uv , a reverse edge uv with infinite capacity. Then every cut will
have infinite capacity, except the dicuts, and so a minimum capacity cut in these
modified digraphs is just a minimum capacity dicut in the original.

By Theorem (3.1.17), we can find then a minimum length dijoin in polynomial
time. Again, this is quite a difficult task,,and the direct algorithms to achieve it
(Lucchesi (1976), Frank (1981)) are quite involved.

Perhaps the most interesting families of cuts and joins with the max-flow-
min-cut property are T-cuts and T-joins. Let G be an undirected graph
and T C V(G), \T\ even. A T-cut is a cut determined by a set A C V(G)
with |AflT| odd. A T-join is a minimal set of edges meeting every T-cut. It
is easy to work out what T-joins are: they are those subforests of G which
have odd degree at the points of T and even degree (possibly 0) elsewhere.
So if T = (w, v} then the T-cuts are the (u, u)-cuts and the T-joins are the
(u, v)-paths.

As another special case of interest, let T = V(G) . Then T-cuts are cuts with
an odd number of points on both sides, while T-joins are spanning forests with all
degrees odd. In particular, every T-join has at least ^ JV^G)! edges, and equality
holds if the T-join is a perfect matching. So to find a minimum cardinality T-
join contains the problem of finding a perfect matching. The problem of finding a
minimum weight perfect matching (one of the most prolific problems in discrete
optimization) can also be reduced to a minimum weight T-join problem. Let G
be a graph with at least one perfect matching and w : E(G] —> Q+ any weighting
of its edges. Add a big constant N to all weights, then the weight of any T-
join which is not a perfect matching is automatically larger than the weight of
any perfect matching. So if we look for a minimum weight T-join using these
modified weights, then only perfect matchings come into consideration. But for
perfect matchings, adding this constant TV to all edges means adding ^ N - \V(G}\
to the weight of each perfect matching, and so finding one with minimum new
weight is tantamount to finding one with minimum old weight.
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Let us remark that, conversely, the problem of finding a minimum weight
T-join can be reduced to finding a minimum weight perfect matching in some
auxiliary graph; this is the way Edmonds and Johnson (1973) solved the problem.

It follows from the results of Edmonds and Johnson that the clutter of T-
joins (and the clutter of T-cuts) has the max-flow-min-cut property. Hence
Theorem (3.1.17) implies that the problem of finding a minimum weight T-join
is polynomial time equivalent to the problem of finding a minimum weight T-cut.
Neither one of these problems is obvious; yet a minimum weight T-cut can be
found by a conceptually simpler and more general procedure, which also reduces
the problem to several minimum cut computations. From this the polynomial
time solvability of the minimum T-join problem (and hence of the weighted
matching problem) follows by general principle.

Let us describe an algorithm to find a minimum weight T-cut, due to Padberg
and Rao (1982). First, we find a minimum weight cut C separating at least two
points in T . This can be done by the usual trick, finding a minimum (s,t)-cut
for each pair s, t   T of points and taking the best of these. Now if C happens
to be a T-cut, then it is clearly minimal, and we are done.

So suppose that C is not a T-cut. Then C is determined by a set A such
that |T n .41 is even. Since C separates at least two points of T , we have that
\Tr\A\ >2and \T - A\ > 2 .

Construct two new graphs GI and G-2 by contracting the sets A and
V(G) — A , respectively, to a single point. Keep the old weights on all the non-
contracted edges. Set T\ = T — A, T^ = T n A . Find a minimum weight Tj-cut
C{ in Gi (i = 1,2) and let, say, C\ have the smaller weight of these two cuts. C\
may also be viewed as a T-cut in G . We claim that C\ is a minimum weight
T-cut in G .

To this end, let C' be any other T-cut in G , determined by a set B C V(G] .
Then |T n B\ is odd and hence one of |T n B n A\ and \Tr\B-A\ is odd, the
other is even. Suppose e.g. that |T D B D A\ is odd.

Since T - A ̂  0 it follows that either (T - A) n B or T - A - B is non-empty.
We may assume that T — A — 5 ^ 0 , or else we can replace B by V(G] — B .
Now the cut C* determined by A U B separates T , and hence

by the choice of C . Moreover, the T-cut C** determined by A n B is also a
T-cut in G-2 , and hence

An easy calculation yields the simple but important inequality

Hence
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Thus Ci is indeed a minimum weight T-cut in the whole graph.
This consideration gives rise to a recursive algorithm to compute a minimum

weight T-cut. With a little care it is not difficult to see that its running time is
polynomial.

Let X be a clutter with the max-flow-min-cut property. Along with the
problem of finding a minimum weight member of )/ goes a dual problem: find
a maximum fractional packing of members of bl (H] . Quite often it happens
that this fractional packing problem has an integral optimum solution. In this
case we say that bl ()/) has the Z+-max-flow-min-cut property. The clutters
of (s,t)-paths, (s,t)-cuts, s-branchings, s-cuts and directed cuts have the Z+-
max-flow-min-cut property; but the clutters of dijoins, T-cuts and T-joins do
not. So this property is not preserved by the blocker operation.

If we can find a minimum weight member of bl- (M) (or, equivalently, of #)
in polynomial time, then we can optimize any linear objective function over dmt
bl (#) . As we remarked in Chapter 2, this also implies that we can find a dual
solution in polynomial time, i.e. a maximum fractional packing of members of
M . We may even find a basic dual solution.

Assume now that # has the Z+-max-flow-min-cut property. Does this
mean that we can find an optimum integral packing of members of # ? In the
case of (s, t)-paths and (s, <)-cuts, the total unimodularity implies that the basic
dual solutions are automatically integral. So if we find a basic dual solution we
have also found an optimum integral packing of members of # .

This does not work as simply in the case of s-branchings, s-cuts and dicuts;
one needs special techniques to turn a basic, but possibly non-integral, optimal
dual solution into an integral one. I do not know if there is a general polynomial
time algorithm to do so.

3.2. Chromatic number, cliques, and perfect graphs.

The chromatic number is one of the most famous (or notorious) invariants of
a graph; it suffices to refer to the Four Color Theorem. Recall that the chromatic
number is defined as the least number k for which the nodes of the graph can
be fc-colored so that the two endpoints of any edge have different colors. A set of
nodes no two of which are adjacent is called stable. So a coloration is a partition
of V(G) into stable sets. We denote the chromatic number of G by x(G) •

To determine the chromatic number of a general graph is a very difficult
(JVP-hard) problem. One general approach is to find bounds on this number.
For our purposes, it will suffice to consider only lower bounds. We start with
one which is perhaps the most trivial. Let u;(G) denote the number of nodes
in a largest complete subgraph of G . Since these u;(G) points must be colored
differently in every legal coloration, we have

The example of a pentagon shows that equality does not always hold here. The
graphs for which equality holds are interesting because for them this common



Before proving this theorem, we generalize it in a certain way. Such a gen-
eralization will be essential to the algorithm, at least if we also want to find an
optimum coloration (not merely the number of colors in one).

Let w : V(G) —> Z+ be any weighting of the nodes of a graph G with non-
negative integers. Then we denote by u;(G; w) the maximum weight of a complete
subgraph in G . We define a w-coloration of G as a list (Ai , . . . , Ak} of stable
sets and a list ( A i , . . . , \k} of positive integers such that w = \iXAl +• • -+^kXAk •
We may view A» as the "multiplicity" of Ai in the multiset { A i - A i , . . . ; A f c - A f c } .
The number AI 4- . . . + Afc is then the number of colors in this lu-coloring. We
denote by x(G; w) the minimum number of colors in any u;-coloring of G . Then
we also have
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value of u;(G) and x(G) can De determined in polynomial time, as we shall se
below. In fact, we can prove the following (Grotschel, Lovasz and Schrijver
(1981)).

(3.2.2) Theorem. One can compute in polynomial time a number fo(G} such
that

Remarks. 1. Obviously, if we set w = 1 here then we obtain the preceding
theorem.

2. It might sound easier to define the number x(G,w) as the minimum
number of colors in a coloration of the nodes where each node x gets not one
but w(x) colors, and no two adjacent nodes have any color in common. But if
w is large, to encode such a coloration would take about w(V(G}) space rather
than (w) . In the cases which we will consider, we shall be able to describe an
optimum coloration in polynomial space by specifying a list (Ai,..., Ak} where
k < nconst and then the "multiplicities" Ai , which then clearly have (At) < (w) .

3. It is easy to observe that the weighted problems introduced above may be
reduced to their unweighted versions by replacing each node v by a set Bv of
w(v) nodes, and connecting two nodes x   Bu and y   Bv if and only if u = v
or uv is an edge of G . This "blown up" graph Gu has

Such a reduction allows one to extend several results on chromatic number and
complete graphs to the weighted case. From an algorithmic point of view, how-
ever, it is not very useful, since it increases the size of the graph considerably:

Moreover, we shall prove

(3.2.3) Theorem. One can compute in polynomial time a number fo(G; w} such
that
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IVCGuOl = w(V(G)) , which is not polynomial in (w} . If, however, w(V(G}} is
bounded by a polynomial in |V(G)| , then this reduction is polynomial.

4. It would be interesting to find other examples of "sandwich theorems" like
•(3.2.2), asserting that if /, g are two graph invariants such that / < g and the
properties / > k and g < k are in NP , then there is a polynomially computable
invariant h such that / < h < g .

The proof of Theorem (3.2.3) depends on the right definition of fo(G] .
For now, I know of (essentially) one such polynomially computable function.
The direct definition of this is quite ad /ioc, and the way we shall present it is,
unfortunately, quite involved. This function was introduced by Lovasz (1979)
as a bound on the so-called Shannon capacity of a graph. We shall describe
the proof in the unweighted case, i.e. if w = 1 . For further motivation and an
extension of these methods to the "weighted case", we refer to Grotschel, Lovasz
and Schrijver (1984a, 1984d).

So let us jump into the middle of things, and consider a graph G on V (G) =
(1,..., n} . Let A be the set of all symmetric n x n matrices for which (A}ij = 1
if i = j or if i and j are adjacent in G . We let the elements of A corresponding
to non-adjacent positions vary.

For any symmetric matrix A , we denote by A.(A) its largest eigenvalue.
(Since A is symmetric, its eigenvalues are real.) This value A (A) is not neces-
sarily the eigenvalue of A with the largest absolute value; A may have negative
eigenvalues with larger absolute value.

We define

Theorem (3.2.2) follows if we prove the following two results.

(3.2.5) Lemma. $(G) can be computed in polynomial time.
A word of warning is in order here: the number $(G) is in general not even

rational! For example, one can show that if G is the pentagon then $(G) = \/5 .
So we have to determine i?(G) in the sense of a real number box, i.e., for every
e > 0 we can compute in polynomial time a rational number r such that
| r - 0 ( G ) | < £ .

To compute a function fo(G) as in Theorem (3.2.2), we choose e = 5..Let r
be the output of the algorithm in Lemma (3.2.5). Then we define fo(G] as the
integer nearest to r . It follows from Lemma (3.2.4) that

and so

as claimed.



To prove the other inequality, let k — \(G] . It suffices to consider the
case of "/c-partite Turan graphs", i.e. the case where V(G] has a partition
V(G] = Vi U . . . U Vk such that |Vi| = . . . = |Vfc| = m (say) and two nodes
are adjacent if and only if they belong to different classes Vi . Let B denote
the adjacency matrix of the complement of G of G , i.e. let (B)ij = 1 if and
only if i and j are adjacent points in G . Then clearly A — J + tB belongs
to A for all real t (where J is the mk x mk matrix of all 1's). Since G
is a regular graph, B has constant row and column sums and hence J and
B commute. Since J has eigenvalues /cm, 0 , . . . , 0 and B has eigenvalues
m - I (k times) and -1 (k(m — 1) times) , the matrix A has eigenvalues
km + t(m — 1), t(m — 1) (k — 1 times) and — t (k(m — 1) times) . For the choice
t = —k , largest of these is k . So for this t, A.(A) = k and so d(G) <
A.(A) = k .

Proof of Lemma (3.2.5). By elementary properties of eigenvalues, the largest
eigenvalue A(A) is a convex function of the (symmetric) matrix A . This convex
function must be minimized over the affine subspace A . This can be done in
polynomial time by Theorem (2.2.15), provided we can find a ball or cube about
which we know a priori that it contains the minimum.

Suppose that A e A minimizes A.(A) . Then we can write A — T*DT ,
where T is an orthogonal matrix and D is the diagonal matrix formed by
the eigenvalues A I , . . . , Xn of A . Note that ^"=1 \i = Tr A = n , and hence
A.(A) > Xz = n- Y^j^i Xi > n-(n- l)k(A) for all i . Since trivially A.(A) < n ,
we have |A;| < r?2 . Hence

So it suffices to minimize A(^4) over the polytope {A   A : \\A\\oo < n2} .
We have to add one more thing: we have to be able to evaluate the function

A(A) in polynomial time for each rational A e A with ||A||oo < n2 , with given
error e > 0 . Almost any standard algorithm in linear algebra would do here

Hence
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So indeed it suffices to prove Lemmas (3.2.4) and (3.2.5).

Proof of Lemma (3.2.4). Let, say, nodes 1 ,2 , . . . , w of G form a maximum
complete subgraph of G . Then the upper left w x w submatrix A' of any
A E A consists of 1's, and so
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(at least in theory), although the polynomiality of the procedures is usually not
proved explicitly. Let us describe one, whose polynomiality is perhaps the easiest
to verify (although it is certainly not the most efficient).

For any real number t , we have t > A(A) iff tl — A.(A) is positive definite.
So it suffices to be able to check in polynomial time whether or not a matrix is
positive definite; then we can determine A(A) by binary search.

Now the matrix A is positive definite if and only if all the upper left-
hand corner subdeterminants (the principal minors) are positive. These n
determinants can be evaluated in polynomial time. (In fact, a single Gaussian
elimination procedure suffices to compute all these determinants: if we pivot
at each step on the next element in the main diagonal, then the products of
the first k of these elements, k = l , . . . , n , give the determinants of these
principal minors. So it suffices to check whether or not these elements are all
positive.)

Assume that G is a graph for which w(G) = x(G] holds. Then of course
also /o(G) — tf(G) = w(G] = x(G) , so for such graphs, the chromatic number
and the size of the maximum clique can be computed in polynomial time.

Unfortunately, it is JVP-complete to decide whether or not w(G] — x(G]
holds for a given graph. We can reduce the well-known JVP-complete problem
of deciding whether a graph H is 3-colorable to this as follows. We may assume
that H does not contain a complete 4-graph, or else the answer is trivially "no".
Let G be the disjoint union of H with a triangle. Then x(G] = w(G] iff H
is 3-colorable.

A similar simple construction shows that it is WP-hard to find, in every
graph G with w(G) = x(G] , a maximum clique and a minimum coloration.

If we look, however, at the following subclass of such graphs, we obtain much
nicer results and still retain most of the interesting examples. A graph G
is called perfect if w(H] = x(H) holds for every induced subgraph of G (i.e.
for all subgraphs obtained by deleting some nodes and those lines adjacent to
these nodes). This notion was introduced by Berge in 1960, and since then
many interesting structural properties, as well as many interesting classes, of
perfect graphs have been discovered. We cannot go into these questions here; the
interested reader should consult Golumbic (1980) or Berge and Chvatal (1984).
Let us just mention some of the most important examples of perfect graphs.

(3.2.6) Example. Let G be a bipartite graph. Then trivially G is
perfect. But also the complement of G is perfect; this fact translates to the
classical result of Konig that in every bipartite graph, the maximum size of a
stable set of nodes is equal to the minimum number of edges covering all nodes.
We may also consider the line-graph of G , i.e. the graph £(G) whose nodes
are the edges of G; two are connected by an edge if and only if they have a node
in common. This graph is also perfect; this is equivalent to a second classical
result of Konig asserting that the chromatic index of any bipartite graph is equal
to the maximum degree of its nodes. Finally, consider the complement of the
line-graph of a bipartite graph. This graph is again perfect, by a third famous
theorem of Konig. This asserts in direct terms that the maximum number of
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independent edges of any bipartite graph is equal to the minimum number of
nodes covering all edges.

(3.2.7) Example. Let (P, <) be a poset, and let G be the comparability
graph of P , i.e. the graph obtained by connecting any two comparable elements
of P by an edge. Then it is an easy exercise to show that G is perfect. We may
also consider the complement of G . This is also perfect; this result is equivalent
to Dilworth's Theorem on partitioning a poset into chains.

(3.2.8) Example. Let G be a rigid circuit graph, i.e. a graph in which
every circuit longer than 3 has a chord. Then both G and its complement are
perfect.

It is no coincidence that perfect graphs come in pairs in these examples. In
fact, the complement of every perfect graph is perfect. This fact was conjectured
by Berge and proved in Lovasz (1972). Fulkerson (1971) was motivated by this
conjecture when he developed the theory of anti-blocking polyhedra. Since these
show a nice analogy with the theory of blocking polyhedra, whose combinatorial
aspects were discussed in Section 3.1, and also play an important role in the
algorithmic treatment of perfect graphs, we shall discuss them briefly.

For any graph G , we define the clique polytope of G by

It would be desirable to have a description of Q(G) as the solution set of a
system of linear inequalities. This is of course an JVP-hard task in general, but
for certain special classes of graphs, in particular for perfect graphs, it has a nice
answer.

It is easy to find the following inequalities, which are valid for all vectors in
Q(G) (although in general they are not sufficient to characterize Q(G)} :

Now the following result shows that perfect graphs form a very well-behaved
class of graphs from the point of view of polyhedral combinatorics (Fulkerson
(1971), Chvatal (1975)):

We shall also be interested in the clique polytope of the complement of G, Q (<j) .
The vertices of Q(G] are the incidence vectors of stable sets of points in G , and
Q(G) is often called the stable set polytope or vertex packing polytope of G .

The significance of the clique polytope lies in the fact that it contains, in a
sense, the solution of the problem of finding a maximum weight clique in G
for each weighting of the nodes of G . More exactly, if w : V(G) —> Z+ is any
weighting of the nodes of G then we have



(The only difference from the usual notion of polar is that we restrict ourselves
to the non-negative orthant.) It is not difficult to see that ABL(P) is down-
monotone. Furthermore, ABL(ABL(P}} = P .

Now Theorem (3.2.10) can be rephrased as follows.

(3.2.11) Corollary. A graph G is perfect if and only if Q(G) and Q(G] are
antiblockers of each other.

Note that in this form the corollary also contains the assertion that G is
perfect iff G is perfect.

So perfect graphs lead to interesting pairs of antiblocking polyhedra with
integral vertices. In fact, every pair of antiblocking polytopes with integral
vertices consists of the clique polytopes of a pair of complementary graphs.

Turning our attention to algorithmic problems on perfectness, we have to
start with an unsolved problem: no algorithm is known to test perfectness of a
graph in polynomial time. It is not known either whether this problem is NP-
hard. (In view of the positive results below, I would guess that perfectness can
be tested in polynomial time.)

Suppose now that G is perfect. We can find the value of w(G) by Lemma
(3.2.5). But more than that, we can find a maximum clique in G in polynomial
time. To this end, it suffices to remove points from G as long as we can do so
without decreasing w(G) . The remaining points then form a maximum clique.

It is more difficult to find an optimum coloration, and we have to use a few
more of the general algorithmic results on polyhedra. The fact that we can find
a maximum weight clique in G in polynomial time means that the optimization
problem for Q(G] is polynomially solvable. Since Q(G] has integral vertices,
an appropriate rationality guarantee is trivial. So we can use the results of
Section 2.3, in particular the assertion of Theorem (2.3.5) on problem (c). For
the valid inequality 1 • x < w(G] , we find facets of x < cti (i = 1,... , n) and
numbers TTI, . . . , 7rn such that TTZ > 0, X)t ̂ t = 1 an<^ Y^i Ki&i < w(G] . Now if
B is any maximum size clique in G then \B £ Q(G) and hence
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(3.2.10) Theorem. A graph G is perfect if and only if its clique polytope is
exactly the solution set of (3.2.8).

We can put this result in a different form. Let P C R™ be a non-empty
polyhedron. We say that P is down-monotone if whenever x G P and 0 < y < x
then also y   P . So e.g. the clique polytope of a graph is down-monotone. We
define the cmtiblocker of P by



Since G is perfect, we know by Theorem (3.2.10) that every facet of Q(G) is of
the form xv > 0 or \A • x < 1 > where A is a stable set of nodes. Trivially, at
least one of the inequalities of x < a; is of the second kind; say ajx < &i is just
the inequality \A • x < 1 . So for every maximum clique B in G , we have

Submodular setfunctions play a central role in combinatorial optimization, anal-
ogous to the role of convex functions in discrete optimization. We cannot go into
the details of their theory; we refer the reader e.g. to Lovasz (1983). Let us,
however, give three of the most important examples of submodular setfunctions.

I. Let S be a set of vectors in a linear space Fn , where F is any field. Let,
for each X C 5, r(X) denote the rank of the set X , i.e. the maximum number
of members of X linearly independent over F . Then r is a submodular
setfunction. Besides the submodularity (3.3.1), the rank function r satisfies the
following:

In other words, we have found a stable set A which intersects every maximum
clique in G .

From here we can conclude with elementary arguments. By the choice of
A\ = A above, we have u(G - A\) < u;(G) - 1 . Since G - A\ is again a perfect
graph, we can find in it a stable set AI which meets all maximum cliques of
G — AI , i.e. we have w(G — A\ — A^} < w(G) — 2 . Going on in a similar manner,
we can partition V(G) into u(G) stable sets, i.e. we can color V(G] with u(G}
colors. Thus we have proved:

(3.2.12) Theorem. A maximum clique and an optimum coloration of a perfect
graph can be found in polynomial time.

3.3. Minimizing a submodular function.

Let S be a finite set and / : 2s —»• R any function defined on the subsets of
5 . We say that / is submodular, if the following inequality holds for each pair
X,Y CS :
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So we must have equality here, in particular



Because we have chosen the two matroids here appropriately, a large variety of
combinatorial min-max theorems follow.

II. Let V be any finite set and S C 2V . Define, for X C 5, f(X) as
the number of elements of V covered by X . Then f(X) is a submodular
setfunction.

This setfunction is featured in the famous theorem of P. Hall. We say that
S has a system of distinct representatives if we can assign to each A e S , an
element QA 6 A so that QA / QB if A / B . Hall's Theorem tells us that S has
a system of distinct representatives if and only if f(X) > \X\ for each X C S ,
i.e. if the setfunction f(X] — X\ (which is also submodular) is non-negative.

III. Let G be a graph and let, for X C V(G), 6(X] denote the number of
edges of G connecting X to V(G) — X . Then 8 is a submodular setfunction.
This setfunction occurs in many graph theoretic results. In particular, G is
fc-edge-connected if and only if 6(X) > k for each X C V(G), X ^ 0, V(G) .

A version of this example has already come up before. If G is a digraph,
s,t 6 V(G] and c : E(G] —> Q+ is any capacity function on the edges of G ,
then we can define, for each X C V(G) — s — t, oc(X] as the capacity of the s — t
cut determined by X U {5} , i.e.
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A submodular, subcardinal and monotone setfunction r : 2s —> Z+ defines a
matroid. Vectors in linear spaces, or equivalently, columns of a matrix, form
a matroid (that is where the name comes from). But there are many other
important constructions which yield matroids. Let it suffice to mention that the
edges of any graph G form a matroid, if we define the rank of a set X of
edges of G as the maximum number of edges in X containing no circuit. For
a comprehensive treatment of matroid theory, we refer to Welsh (1976).

Matroids give rise to a rich theory of very general min-max theorems and
deep polynomial-time algorithms. Let us restrict ourselves to one of the most
important results. To formulate this, we need the following definition. Let S
be a finite set and r , a matroid rank function on S .

An independent set in (5, r) is a set X C S such that r(X) = \X\ (in the
case of our original example, this would just mean linear independence). The
maximum size of an independent set is r(S) ; an independent set of this size
is called a basis. It is easy to find a basis in a matroid: it follows easily from
submodularity that if we select elements while repeatedly taking care that the
elements be independent, then we always end up with a basis.

Assume now that we have two matroids (S,r\) and (8^2) on the same set
S . We are looking for a largest common independent set of these matroids. A
theorem of Edmonds (1970, 1979) states that
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Then 6C is a submodular setfunction, and the Max-Flow-Min-Cut Theorem
asserts that the maximum value of an s - t flow is the minimum of 8C(X) for
X C V(G) - s - t .

Our main result in this section will be an algorithm to compute the minimum
of a submodular setfunction. The examples above show that this is indeed a
problem which comes up very often in combinatorial optimization.

We have to add a few remarks here about how / is given. Of course, /
could be given as a table of all its values. In this case, it is a trivial task to find
the minimum of / : scanning this table to find the minimum value does not take
essentially more time than reading the input data. To get a more meaningful
problem, we shall assume that / is given as an oracle that, for each input
X C S , returns the value f(X) . It also has the following guarantee:

(3.3.5)

For any two sets X, Y C S, the outputs satisfy

f(X) + f ( Y ) > f ( X \ j Y ) + f ( X C i Y ) .

For any X C 5, the output satisfies

{/(*)> < *•

The input size of this oracle is defined as k . Then we have the following theorem
(Grotschel, Lovasz and Schrijver (1981)):

(3.3.6) Theorem. Given a submodular setfunction f by an oracle, a subset
X C S minimizing f can be found in polynomial time.

Proof. The idea is to reduce the problem to the minimization of a convex
function over the whole unit cube. / may be viewed as defined on 0-1 vectors,
i.e., on the vertices of this cube. We may assume without loss of generality that
/(0) = 0 , since otherwise we can subtract /(0) from all values of / . Now we
define a function / : R+ —>• R as follows. Let c e R+. . Then we can write c
uniquely in the form

where AI, . . . , An > 0, a i , . . . , an are 0-1 vectors and a\ > 0,3 > ... > an .
In fact, this decomposition is easily constructed. We let ai be the incidence
vector of the support of c , and AI , the smallest non-zero entry of c . Then
c — \ia\ > 0 but has more zero entries as c . Going on in this fashion, we obtain
the decomposition (3.3.7).

Having found this decomposition, we set
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Now it is not too difficult to verify that if / is submodular then / is convex.
Furthermore, the minimum of / over the unit cube is attained at a vertex of
the cube (this is a very special property of this convex function; usually concave
functions have such properties!). Hence the "minimum of / over the unit cube is
equal to the minimum of / over the subsets of S .

Thus it suffices to find the minimum of / over the unit cube. But this can
be accomplished in polynomial time by Theorem (2.2.15) and the methods of
Section 2.3.

The examples above show that this theorem can be applied to finding, in
polynomial time, a minimum s - t cut; to checking whether a setsystem has
a system of distinct representatives; to finding the maximum size of common
independent sets in two matroids, etc. It is quite natural that there are more
efficient special-purpose algorithms for each of these tasks. But the problem
of finding a combinatorial algorithm to minimize a submodular function is still
open. More exactly, Cunningham (1984) proposed such an algorithm, which is,
however, only pseudopolynomial: its running time is polynomial in the values of
the function but not in their input size.

It is quite natural to ask why one is concerned with the minimization of a
submodular setfunction and not with its maximization. Let us take the example
above, and assume that all sets in S have k elements. Consider the submodular
setfunction g(X) = f(X] — (k — 1) \X\ . Then it is easy to see that the maximum
value of g(X) is the maximum number of disjoint members of S .

This example has two implications.

Even for very simple realizations of the oracle describing a submodular
setfunction / , the problem of maximizing / may be NP-haid. In fact,
the problem of finding the maximum number of disjoint members of a
system of 3-sets is TVP-hard. One can prove that in the oracle model, it
takes exponential time to find the maximum of a submodular setfunction.

There are special cases of the submodular function maximization problem
that can be solved by quite involved methods. Most notably, case A: = 2
of the above example is just the matching problem for graphs. This
algorithm can be extended to a larger class of submodular functions, but
a real understanding of this phenomenon is still missing. For some details,
see Lovasz (1983).

Finally, let us remark that Theorem (3.3.6) can be extended in different ways
to the case in which we want to find the minimum of / only over some subfamily
of 2s . Perhaps most notable (and certainly most difficult to show) is the fact that
the minimum of a submodular setfunction / : 2s —> Q over the odd cardinality
subsets of S can be found in polynomial time (Grotschel, Lovasz and Schrijver
(1985)). As a special case we find that a minimum weight T-cut can be found
in polynomial time (cf. Section 3.1).
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