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Preface

Riemannian geometry is characterized, and research is oriented towards and
shaped by concepts (geodesics, connections, curvature, ...) and objectives, in
particular to understand certain classes of (compact) Riemannian manifolds
defined by curvature conditions (constant or positive or negative curvature,
...). By way of contrast, geometric analysis is a perhaps somewhat less system-
atic collection of techniques, for solving extremal problems naturally arising
in geometry and for investigating and characterizing their solutions. It turns
out that the two fields complement each other very well; geometric analysis
offers tools for solving difficult problems in geometry, and Riemannian geom-
etry stimulates progress in geometric analysis by setting ambitious goals.

It is the aim of this book to be a systematic and comprehensive intro-
duction to Riemannian geometry and a representative introduction to the
methods of geometric analysis. It attempts a synthesis of geometric and an-
alytic methods in the study of Riemannian manifolds.

The present work is the fourth edition of my textbook on Riemannian
geometry and geometric analysis. It has developed on the basis of several
graduate courses I taught at the Ruhr-University Bochum and the University
of Leipzig. Besides several smaller additions, reorganizations, corrections (I
am grateful to J.Weber and P.Hinow for useful comments), and a systematic
bibliography, the main new features of the present edition are a systematic in-
troduction to Kähler geometry and the presentation of additional techniques
from geometric analysis.

Let me now briefly describe the contents:
In the first chapter, we introduce the basic geometric concepts, like dif-

ferentiable manifolds, tangent spaces, vector bundles, vector fields and one-
parameter groups of diffeomorphisms, Lie algebras and groups and in par-
ticular Riemannian metrics. We also derive some elementary results about
geodesics.

The second chapter introduces de Rham cohomology groups and the es-
sential tools from elliptic PDE for treating these groups. In later chapters,
we shall encounter nonlinear versions of the methods presented here.

The third chapter treats the general theory of connections and curvature.
In the fourth chapter, we introduce Jacobi fields, prove the Rauch com-

parison theorems for Jacobi fields and apply these results to geodesics.
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These first four chapters treat the more elementary and basic aspects
of the subject. Their results will be used in the remaining, more advanced
chapters that are essentially independent of each other.

The fifth chapter treats symmetric spaces as important examples of Rie-
mannian manifolds in detail.

The sixth chapter is devoted to Morse theory and Floer homology.
The seventh chapter treats variational problems from quantum field the-

ory, in particular the Ginzburg-Landau and Seiberg-Witten equations. The
background material on spin geometry and Dirac operators is already devel-
oped in earlier chapters.

In the eighth chapter, we treat harmonic maps between Riemannian ma-
nifolds. We prove several existence theorems and apply them to Riemannian
geometry. The treatment uses an abstract approach based on convexity that
should bring out the fundamental structures. We also display a representative
sample of techniques from geometric analysis.

A guiding principle for this textbook was that the material in the main
body should be self contained. The essential exception is that we use material
about Sobolev spaces and linear elliptic PDEs without giving proofs. This
material is collected in Appendix A. Appendix B collects some elementary
topological results about fundamental groups and covering spaces.

Also, in certain places in Chapter 6, we do not present all technical details,
but rather explain some points in a more informal manner, in order to keep
the size of that chapter within reasonable limits and not to loose the patience
of the readers.

We employ both coordinate-free intrinsic notations and tensor notations
depending on local coordinates. We usually develop a concept in both no-
tations while we sometimes alternate in the proofs. Besides my not being a
methodological purist, the reasons for often prefering the tensor calculus to
the more elegant and concise intrinsic one are the following. For the analytic
aspects, one often has to employ results about (elliptic) partial differential
equations (PDEs), and in order to check that the relevant assumptions like
ellipticity hold and in order to make contact with the notations usually em-
ployed in PDE theory, one has to write down the differential equation in
local coordinates. Also, recently, manifold and important connections have
been established between theoretical physics and our subject. In the physical
literature, tensor notation is usually employed, and therefore familiarity with
that notation is necessary to explore those connections that have been found
to be stimulating for the development of mathematics, or promise to be so
in the future.

As appendices to most of the paragraphs, we have written sections with
the title “Perspectives”. The aim of those sections is to place the material in
a broader context and explain further results and directions without detailed
proofs. The material of these Perspectives will not be used in the main body
of the text. At the end of each chapter, some exercises for the reader are given.



Preface IX

We assume of the reader sufficient perspicacity to understand our system of
numbering and cross-references without further explanation.

The development of the mathematical subject of Geometric Analysis,
namely the investigation of analytical questions arising from a geometric
context and in turn the application of analytical techniques to geometric
problems, is to a large extent due to the work and the influence of Shing-
Tung Yau. This book, like its previous editions, is dedicated to him.

Jürgen Jost

Preface IX
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1. Foundational Material

1.1 Manifolds and Differentiable Manifolds

A topological space is a set M together with a family O of subsets of M
satisfying the following properties:

(i) Ω1, Ω2 ∈ O ⇒ Ω1 ∩Ω2 ∈ O
(ii) For any index set A :

(Ωα)α∈A ⊂ O ⇒
⋃

α∈A

Ωα ∈ O

(iii) ∅,M ∈ O
The sets from O are called open. A topological space is called Hausdorff if
for any two distinct points p1, p2 ∈M there exists open sets Ω1, Ω2 ∈ O with
p1 ∈ Ω1, p2 ∈ Ω2, Ω1 ∩ Ω2 = ∅. A covering (Ωα)α∈A (A an arbitrary index
set) is called locally finite if each p ∈ M has a neighborhood that intersects
only finitely many Ωα. M is called paracompact if any open covering possesses
a locally finite refinement. This means that for any open covering (Ωα)α∈A

there exists a locally finite open covering (Ω′
β)β∈B with

∀β ∈ B ∃α ∈ A : Ω′
β ⊂ Ωα.

A map between topological spaces is called continuous if the preimage of any
open set is again open. A bijective map which is continuous in both directions
is called a homeomorphism.

Definition 1.1.1 A manifold M of dimension d is a connected paracom-
pact Hausdorff space for which every point has a neighborhood U that is
homeomorphic to an open subset Ω of Rd. Such a homeomorphism

x : U → Ω

is called a (coordinate) chart.
An atlas is a family {Uα, xα} of charts for which the Uα constitute an

open covering of M.

Remarks.
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1) A point p ∈ Uα is determined by xα(p); hence it is often identified
with xα(p). Often, also the index α is omitted, and the components
of x(p) ∈ Rd are called local coordinates of p.

2) Any atlas is contained in a maximal one, namely the one consisting
of all charts compatible with the original one.

Definition 1.1.2 An atlas {Uα, xα} on a manifold is called differentiable if
all chart transitions

xβ ◦ x−1
α : xα(Uα ∩ Uβ) → xβ(Uα ∩ Uβ)

are differentiable of class C∞ (in case Uα∩Uβ 
= ∅). A maximal differentiable
atlas is called a differentiable structure, and a differentiable manifold of di-
mension d is a manifold of dimension d with a differentiable structure. From
now on, all atlases are supposed to be differentiable. Two atlases are called
compatible if their union is again an atlas. In general, a chart is called com-
patible with an atlas if adding the chart to the atlas yields again an atlas. An
atlas is called maximal if any chart compatible with it is already contained
in it.

Remarks.

1) Since the inverse of xβ ◦ x−1
α is xα ◦ x−1

β , chart transitions are differ-
entiable in both directions, i.e. diffeomorphisms.

2) One could also require a weaker differentiability property than C∞.

3) It is easy to show that the dimension of a differentiable manifold is
uniquely determined. For a general, not differentiable manifold, this
is much harder.

4) Since any differentiable atlas is contained in a maximal differentiable
one, it suffices to exhibit some differentiable atlas if one wants to
construct a differentiable manifold.

Definition 1.1.3 An atlas for a differentiable manifold is called oriented if
all chart transitions have positive functional determinant. A differentiable
manifold is called orientable if it possesses an oriented atlas.

It is customary to write the Euclidean coordinates of Rd, Ω ⊂ Rd open,
as

x = (x1, . . . , xd), (1.1.1)

and these then are considered as local coordinates on our manifold M when
x : U → Ω is a chart.

Example.
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1) The sphere Sn := {(x1, . . . , xn+1) ∈ Rn+1 :
n+1

Σ
i=1

(xi)2 = 1} is a

differentiable manifold of dimension n. Charts can be given as follows:
On U1 := Sn\{(0, . . . , 0, 1)} we put

f1(x1, . . . , xn+1) := (f1
1 (x1, . . . , xn+1), . . . , fn

1 (x1, . . . , xn+1))

:=
(

x1

1− xn+1
, . . . ,

xn

1− xn+1

)
and on U2 := Sn\{(0, . . . , 0,−1)}

f2(x1, . . . , xn+1) := (f1
2 (x1, . . . , xn+1), . . . , fn

2 (x1, . . . , xn+1))

:=
(

x1

1 + xn+1
, . . . ,

xn

1 + xn+1

)
.

2) Let w1, w2, . . . , wn ∈ Rn be linearly independent. We consider
z1, z2 ∈ Rn as equivalent if there are m1,m2, . . . ,mn ∈ Z with

z1 − z2 =
n∑

i=1

miwi

Let π be the projection mapping z ∈ Rn to its equivalence class. The
torus Tn := π(Rn) can then be made a differentiable manifold (of
dimension n) as follows: Suppose ∆α is open and does not contain
any pair of equivalent points. We put

Uα := π(∆α)

zα = (π|∆α
)−1.

3) The preceding examples are compact. Of course, there exist also non-
compact manifolds. The simplest example is Rd. In general, any open
subset of a (differentiable) manifold is again a (differentiable) mani-
fold.

4) If M and N are differentiable manifolds, the Cartesian product M ×
N also naturally carries the structure of a differentiable manifold.
Namely, if {Uα, xα}α∈A and {Vβ , yβ}β∈B are atlases for M and N,
resp., then {Uα × Vβ , (xα, yβ)}(α,β)∈A×B is an atlas for M ×N with
differentiable chart transitions.

Definition 1.1.4 A map h : M → M ′ between differentiable manifolds M
and M ′ with charts {Uα, xα} and {U ′

α, x
′
α} is called differentiable if all maps

x′β ◦ h ◦ x−1
α are differentiable (of class C∞, as always) where defined.

Such a map is called a diffeomorphism if bijective and differentiable in both
directions.
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For purposes of differentiation, a differentiable manifold locally has the
structure of Euclidean space. Thus, the differentiability of a map can be
tested in local coordinates. The diffeomorphism requirement for the chart
transitions then guarantees that differentiability defined in this manner is a
consistent notion, i.e. independent of the choice of a chart.

Remark. We want to point out that in the context of the preceding def-
initions, one cannot distinguish between two homeomorphic manifolds nor
between two diffeomorphic differentiable manifolds.

When looking at Definitions 1.1.2, 1.1.3, one may see a general pattern
emerging. Namely, one can put any type of restriction on the chart transitions,
for example, require them to be affine, algebraic, real analytic, conformal,
Euclidean volume preserving,..., and thereby define a class of manifolds with
that particular structure. Perhaps the most important example is the notion
of a complex manifold. We shall need this, however, only at certain places in
this book, namely in 5.1, 5.2.

Definition 1.1.5 A complex manifold of complex dimension d (dimCM = d)
is a differentiable manifold of (real) dimension 2d (dimRM = 2d) whose charts
take values in open subsets of Cd with holomorphic chart transitions.

In the case of a complex manifold, it is customary to write the coordinates
of Cd as

z = (z1, . . . , zd), with zj = xj + iyj , (1.1.2)

with i :=
√−1, that is, use (x1, y1, . . . , xd, yd) as Euclidean coordinates on

R2d. We then also put
zj̄ := xj − iyj .

The requirement that the chart transitions zβ ◦ z−1
α : zα(Uα∩Uβ) → zβ(Uα∩

Uβ) be holomorphic then is expressed as

∂zj
β

∂zk̄
α

= 0 (1.1.3)

for all j, k where
∂

∂zk̄
=

1
2

(
∂

∂xk̄
+ i

∂

∂yk̄

)
. (1.1.4)

We also observe that a complex manifold is always orientable because
holomorphic maps always have a positive functional determinant.

We conclude this section with a useful technical result.

Lemma 1.1.1 Let M be a differentiable manifold, (Uα)|α∈A an open cover-
ing. Then there exists a partition of unity, subordinate to (Uα). This means
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that there exists a locally finite refinement (Vβ)β∈B of (Uα) and C∞
0 (i.e. C∞

functions ϕβ with {x ∈ M : ϕβ(x) 
= 0} having compact closure) functions
ϕβ : M → R with

(i) suppϕβ ⊂ Vβ for all β ∈ B.

(ii) 0 ≤ ϕβ(x) ≤ 1 for all x ∈M,β ∈ B.

(iii) Σ
β∈B

ϕβ(x) = 1 for all x ∈M.

Note that in (iii), there are only finitely many nonvanishing summands at
each point since only finitely many ϕβ are nonzero at any given point because
the covering (Vβ) is locally finite.

Proof. See any advanced textbook on Analysis, e.g. J.Jost, Postmodern Anal-
ysis, 3rd ed., Springer, 2005. �

Perspectives. Like so many things in Riemannian geometry, the concept of a
differentiable manifold was in some vague manner implicitly contained in Bern-
hard Riemann’s habilitation address “Über die Hypothesen, welche der Geometrie
zugrunde liegen”, reprinted in [254]. The first clear formulation of that concept,
however, was given by H. Weyl[252].

The only one dimensional manifolds are the real line and the unit circle S1,
the latter being the only compact one. Two dimensional compact manifolds are
classified by their genus and orientability character. In three dimensions, there exists
a program by Thurston[243, 244] about the possible classification of compact three-
dimensional manifolds. References for the geometric approach to this classification
will be given in the Survey on Curvature and Topology after Chapter 4 below. – In
higher dimensions, the plethora of compact manifolds makes a classification useless
and impossible.

In dimension at most three, each manifold carries a unique differentiable struc-
ture, and so here the classifications of manifolds and differentiable manifolds coin-
cide. This is not so anymore in higher dimensions. Milnor[180, 181] discovered exotic
7-spheres, i.e. differentiable structures on the manifold S7 that are not diffeomorphic
to the standard differentiable structure exhibited in our example. Exotic spheres
likewise exist in higher dimensions. Kervaire[156] found an example of a manifold
carrying no differentiable structure at all.

In dimension 4, the understanding of differentiable structures owes important
progress to the work of Donaldson. He defined invariants of a differentiable 4-
manifold M from the space of selfdual connections on principal bundles over it.
These concepts will be discussed in more detail in §3.2.

In particular, there exist exotic structures on R4. A description can e.g. be
found in [79].
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1.2 Tangent Spaces

Let x = (x1, . . . , xd) be Euclidean coordinates of Rd, Ω ⊂ Rd open, x0 ∈ Ω.
The tangent space of Ω at the point x0,

Tx0Ω

is the space {x0}×E, where E is the d-dimensional vector space spanned by
the basis ∂

∂x1 , . . . ,
∂

∂xd . Here, ∂
∂x1 , . . . ,

∂
∂xd are the partial derivatives at the

point x0. If Ω ⊂ Rd, Ω′ ⊂ Rc are open, and f : Ω → Ω′ is differentiable, we
define the derivative df(x0) for x0 ∈ Ω as the induced linear map between
the tangent spaces

df(x0) :Tx0Ω → Tf(x0)Ω
′

v = vi ∂

∂xi
→ vi ∂f

j

∂xi
(x0)

∂

∂f j

Here and in the sequel, we use the Einstein summation convention: An index
occuring twice in a product is to be summed from 1 up to the space dimension.
Thus, vi ∂

∂xi is an abbreviation for

d∑
i=1

vi ∂

∂xi
,

vi ∂fj

∂xi
∂

∂fj stands for
d∑

i=1

c∑
j=1

vi ∂f
j

∂xi

∂

∂f j
.

In the previous notations, we put

TΩ := Ω × E ∼= Ω × Rd.

Thus, TΩ is an open subset of Rd × Rd, hence in particular a differentiable
manifold.

π :TΩ → Ω (projection onto the first factor)
(x, v) → x

is called a tangent bundle of Ω. TΩ is called the total space of the tangent
bundle.
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Likewise, we define

df :TΩ → TΩ′

(x, vi ∂

∂xi
) → (f(x), vi ∂f

j

∂xi
(x)

∂

∂f j
)

Instead of
df(x, v)

we write
df(x)(v).

If in particular, f : Ω → R is a differentiable function, we have for v = vi ∂
∂xi

df(x)(v) = vi ∂f

∂xi
(x) ∈ Tf(x)R

∼= R.

In this case, we often write v(f)(x) in place of df(x)(v) when we want to
express that the tangent vector v operates by differentiation on the function
f.

Let now M be a differentiable manifold of dimension d, and p ∈ M. We
want to define the tangent space of M at the point p. Let x : U → Rd be
a chart with p ∈ U, U open in M. We say that the tangent space TpM is
represented in the chart x by Tx(p)x(U). Let x′ : U ′ → Rd be another chart
with p ∈ U ′, U ′ open in M. Ω := x(U), Ω′ := x′(U ′). The transition map

x′ ◦ x−1 : x(U ∩ U ′) → x′(U ∩ U ′)

induces a vector space isomorphism

L := d(x′ ◦ x−1)(x(p)) : Tx(p)Ω → Tx′(p)Ω
′.

We say that v ∈ Tx(p)Ω and L(v) ∈ Tx′(p)Ω
′ represent the same tangent

vector in TpM. Thus, a tangent vector in TpM is given by the family of its
coordinate representations. This is motivated as follows: Let f : M → R

be a differentiable function. Assume that the tangent vector w ∈ TpM is
represented by v ∈ Tx(p)x(U). We then want to define df(p) as a linear map
from TpM to R. In the chart x, let w ∈ TpM be represented by v = vi ∂

∂xi ∈
Tx(p)x(U). We then say that

df(p)(w)

in this chart is represented by

d(f ◦ x−1)(x(p))(v).

Now

d(f ◦ x−1)(x(p))(v) = d(f ◦ x′−1 ◦ x′ ◦ x−1)(x(p))(v)

= d(f ◦ x′−1)(x′(p))(L(v))
by the chain rule

= d(f ◦ x′−1)(x′(p)) ◦ d(x′ ◦ x−1)(x(p))(v)
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Thus, in the chart x′, w is represented by L(v). Here, a fundamental idea
emerges that will be essential for the understanding of the sequel. TpM is
a vector space of dimension d, hence isomorphic to Rd. This isomorphism,
however, is not canonical, but depends on the choice of a chart. A change of
charts changes the isomorphism, namely at the point p by the linear trans-
formation L = d(x′ ◦x−1)(x(p)). Under a change of charts, also other objects
then are correspondingly transformed, for example derivatives of functions,
or more generally of maps. In other words, a chart yields local representations
for tangent vectors, derivatives, etc., and under a change of charts, these lo-
cal representations need to be correctly transformed. Or in still other words:
We know how to differentiate (differentiable) functions that are defined on
open subsets of Rd. If now a function is given on a manifold, we pull it back
by a chart, to an open subset of Rd and then differentiate the pulled back
function. In order to obtain an object that does not depend on the choice of
chart, we have to know in addition the transformation behavior under chart
changes. A tangent vector thus is determined by how it operates on functions
by differentiation.

Likewise, for a differentiable map F : M → N between differentiable
manifolds, dF is represented in local charts x : U ⊂ M → Rd, y : V ⊂ N →
Rc by

d(y ◦ F ◦ x−1).

In the sequel, in our notation, we shall frequently drop reference to the charts
and write instead of d(y ◦ F ◦ x−1) simply dF, provided the choice of charts
or at least the fact that charts have been chosen is obvious from the context.
We can achieve this most simply as follows:
Let the local coordinates on U be

(x1, . . . , xd),

and those on V be (F 1, . . . , F c). We then consider F (x) as abbreviation for

(F 1(x1, . . . , xd), . . . , F c(x1, . . . , xd)).

dF now induces a linear map

dF : TxM → TF (x)N,

which in our coordinates is represented by the matrix(
∂Fα

∂xi

)
α=1,...,c
i=1,...,d

A change of charts leads to a base change of the tangent spaces, and the
transformation behavior is determined by the chain rule. If

(x1, . . . , xd) → (ξ1, . . . , ξd)

and (F 1, . . . , F c) → (Φ1, . . . , Φc)
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are coordinate changes, then dF is represented in the new coordinates by(
∂Φβ

∂ξj

)
=
(
∂Φβ

∂Fα

∂Fα

∂xi

∂xi

∂ξj

)
.

Note that the functional matrix of the coordinate change of the image N, but
the inverse of the functional matrix of the coordinate change of the domainM
appears here. We also remark that for a function ϕ : N → R and a v ∈ TxM

(dF (v)(ϕ))(F (x)) : = dϕ(dF (v))(F (x))
by definition of the application of
dF (v) ∈ TF (x)N to ϕ : N → R

= d(ϕ ◦ F )(v)(x) by the chain rule
= v(ϕ ◦ F )(x) by definition of the application of

v ∈ TxM to ϕ ◦ F : M → R

Instead of applying the tangent vector dF (v) to the function, one may also
apply the tangent vector v to the “pulled back” function ϕ ◦ F.

We want to collect the previous considerations in a formal definition:

Definition 1.2.1 Let p ∈ M. On {(x, v) : x : U → Ω chart with p ∈ U, v ∈
Tx(p)Ω} (x, v) ∼ (y, w) : ⇐⇒ w = d(y ◦ x−1)v. The space of equivalence
classes is called the tangent space to M at the point p, and it is denoted by
TpM.

TpM naturally carries the structure of a vector space:
The equivalence class of λ1(x, v1) + λ2(x, v2) (λ1, λ2 ∈ R) is the one

of (x, λ1v1 + λ2v2). We now want to define the tangent bundle of a differ-
entiable manifold of dimension d. TM is the disjoint union of the tangent
spaces TpM,p ∈M, equipped with the following structure of a differentiable
manifold: First let π : TM →M with π(w) = p for w ∈ TpM be the projec-
tion onto the “base point”. If x : U → Rd is a chart for M, we let TU be the
disjoint union of the TpM with p ∈ U and define the chart

dx : TU → Tx(U) (:=
⋃

p∈x(U)

TpM)

where Tx(U) carries the differentiable structure of x(U)× Rd

w → dx(π(w))(w) ∈ Tx(π(w))x(U).

The transition maps
dx′ ◦ (dx)−1 = d(x′ ◦ x−1)

then are differentiable. π is locally represented by

x ◦ π ◦ dx−1
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and this map maps (x0, v) ∈ Tx(U) to x0.

Definition 1.2.2 The triple (TM, π,M) is called the tangent bundle of M,
and TM is called the total space of the tangent bundle.

Finally, we briefly discuss the case of a complex manifold M , to have it
at our disposal in 5.2. With the previous constructions and conventions in
the real case understood, we let zj = xj + iyj again be local holomorphic
coordinates near z ∈ M , as at the end of 1.1. TR

z M := TzM is the ordinary
(real) tangent space of M at z, and

TC

z M := TR

z M ⊗R C

is the complexified tangent space which we then decompose as

TC

z M = C{ ∂

∂zj
,
∂

∂zj̄
} =: T ′

zM ⊕ T ′′
z M

where T ′
zM = C{ ∂

∂zj } is the holomorphic and T ′′
z M = C{ ∂

∂zj̄ } the antiholo-
morphic tangent space. In TC

z M , we have a conjugation, mapping ∂
∂zj to ∂

∂zj̄ ,
and so, T ′′

z M = T ′
zM . The projection TR

z M → TC
z M → T ′

zM is an R-linear
isomorphism.

Perspectives. Other definitions of the tangent space of a differentiable manifold
M are possible that are more elegant and less easy to compute with.

A germ of a function at x ∈ M is an equivalence class of smooth functions
defined on neighborhoods of x, where two such functions are equivalent if they
coincide on some neighborhood of x. A tangent vector at x may then be defined as
a linear operator δ on the function germs at x satisfying the Leibniz rule

δ(f · g)(x) = (δf(x))g(x) + f(x)δg(x).

This definition has the obvious advantage that it does not involve local coordinates.

1.3 Submanifolds

A differentiable map f : M → N is called an immersion, if for any x ∈M

df : TxM → Tf(x)N

is injective. In particular, in this case m := dimM ≤ n := dimN. If an
immersion f : M → N maps M homeomorphically onto its image in N, f is
called differentiable embedding. The following lemma shows that locally, any
immersion is a differentiable embedding:
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Lemma 1.3.1 Let f : M → N be an immersion, dimM = m,dimN =
n, x ∈ M. Then there exist a neighborhood U of x and a chart (V, y) on N
with f(x) ∈ V, such that

(i) f|U is a differentiable embedding, and

(ii) ym+1(p) = . . . = yn(p) = 0 for all p ∈ f(U) ∩ V.

Proof. This follows from the implicit function theorem. In local coordinates
(z1, . . . , zn) on N, (x1, . . . , xm) on M let, w.l.o.g. (since df(x) is injective)(

∂zα(f(x))
∂xi

)
i,α=1,...,m

be nonsingular.

We consider

F (z, x) := (z1 − f1(x), . . . , zn − fn(x)),

which has maximal rank in x1, . . . , xm, zm+1, . . . , zn. By the implicit function
theorem, there locally exists a map

(z1, . . . , zm) → (ϕ1(z1, . . . , zm), . . . , ϕn(z1, . . . , zm))

with

F (z, x) = 0 ⇐⇒ x1 = ϕ1(z1, . . . , zm), . . . , xm = ϕm(z1, . . . , zm),

zm+1 = ϕm+1(z1, . . . , zm), . . . , zn = ϕn(z1, . . . , zm),

for which ( ∂ϕi

∂zα )α,i=1,...,m has maximal rank.

As new coordinates, we now choose

(y1, . . . , yn) = (ϕ1(z1, . . . , zm), . . . , ϕm(z1, . . . , zm),

zm+1 − ϕm+1(z1, . . . , zm), . . . , zn − ϕn(z1, . . . , zm)).

Then
z = f(x)
⇔ F (z, x) = 0

⇔ (y1, . . . , yn) = (x1, . . . , xm, 0, . . . , 0),

and the claim follows. �

If f : M → N is a differentiable embedding, f(M) is called a differentiable
submanifold of N. A subset N ′ of N, equipped with the relative topology, thus
is a differentiable submanifold of N, if N ′ is a manifold and the inclusion is
a differentiable embedding.
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Charts on N ′ then are simply given by restrictions of charts of N to
N ′, and Lemma 1.3.1 shows that one may here always find a particularly
convenient structure of the charts.

Similarly, the implicit function theorem implies

Lemma 1.3.2 Let f : M → N be a differentiable map, dimM = m, dimN =
n,m ≥ n, p ∈ N. Let df(x) have rank n for all x ∈ M with f(x) = p. Then
f−1(p) is a union of differentiable submanifolds of M of dimension m− n.

Proof. We again represent the situation in local coordinates around x ∈ M
and p = f(x) ∈ N. Of course, in these coordinates df(x) still has rank n. By
the implicit function theorem, there exist an open neighborhood U of x and
a differentiable map

g(xn+1, . . . , xm) : U2 ⊂ Rm−n → U1 ⊂ Rn

with
U = U1 × U2

and
f(x) = p ⇐⇒ (x1, . . . , xn) = g(xn+1, . . . , xm).

With
yα = xα − g(xn+1, . . . , xm) for α = 1, . . . , n
ys = xs for s = n+ 1, . . . ,m

we then get coordinates for which

f(x) = p ⇐⇒ yα = 0 forα = 1, . . . , n.

(yn+1, . . . , ym) thus yield local coordinates for {f(x) = p} and this implies
that in some neighborhood of x {f(x) = p} is a submanifold of M of dimen-
sion m− n. �

Let M be a differentiable submanifold of N, and let i : M → N be
the inclusion. For p ∈ M,TpM can then be considered as subspace of TpN,
namely as the image di(TpM).

The standard example is the sphere

Sn = {x ∈ Rn+1 : |x| = 1} ⊂ Rn+1.

By the Lemma 1.3.2, Sn is a submanifold of Rn+1.

Lemma 1.3.3 In the situation of Lemma 1.3.2, we have for the submanifold
X = f−1(p) and q ∈ X

TqX = ker df(q) ⊂ TqM.
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Proof. Let v ∈ TqX, (ϕ,U) a chart on X with q ∈ U. Let γ be any smooth
curve in ϕ(U) with γ(0) = ϕ(q), γ̇(0) := d

dtγ(t)|t=0 = dϕ(v), for example
γ(t) = ϕ(q) + tdϕ(v). c := ϕ−1(γ) then is a curve in X with ċ(0) = v.
Because of X = f−1(p),

f ◦ c(t) = p ∀ t,
hence df(q) ◦ ċ(0) = 0, and consequently v = ċ(0) ∈ ker df(q). Since also
TqX = dim ker df(q) = m− n, the claim follows. �

For our example Sn, we may choose

f : Rn+1 → R, f(x) = |x|2.
Then

TxS
n = ker df(x) = {v ∈ Rn+1 : x · v(= xivi) = 0}.

Perspectives. H. Whitney (1936) showed that any d-dimensional differentiable
manifold can be embedded into R2d+1. Thus, the class of abstract differentiable
manifolds is the same as the class of submanifolds of Euclidean space. Neverthe-
less, the abstract and intrinsic point of view offers great conceptual and technical
advantages over the approach of submanifold geometry of Euclidean spaces.

1.4 Riemannian Metrics

We now want to introduce metric structures on differentiable manifolds.
Again, we shall start from infinitesimal considerations. We would like to be
able to measure the lengths of and the angles between tangent vectors. Then,
one may, for example, obtain the length of a differentiable curve by integra-
tion. In a vector space such a notion of measurement is usually given by a
scalar product. We thus define

Definition 1.4.1 A Riemannian metric on a differentiable manifold M is
given by a scalar product on each tangent space TpM which depends smoothly
on the base point p. A Riemannian manifold is a differentiable manifold,
equipped with a Riemannian metric.

In order to understand the concept of a Riemannian metric, we again need
to study local coordinate representations and the transformation behavior of
these expressions.

Thus, let x = (x1, . . . , xd) be local coordinates. In these coordinates, a
metric is represented by a positive definite, symmetric matrix

(gij(x))i,j=1,...,d
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(i.e. gij = gji for all i, j, gijξ
iξj > 0 for all ξ = (ξ1, . . . , ξd) 
= 0), where the

coefficients depend smoothly on x. The transformation formula (1.4.3) below
will imply that this smoothness does not depend on the choice of coordinates.
Therefore, smooth dependence on the base point as required in def. 1.4.1 can
be expressed in local coordinates.

The product of two tangent vectors v, w ∈ TpM with coordinate repre-
sentations (v1, . . . , vd) and (w1, . . . , wd) (i.e. v = vi ∂

∂xi , w = wj ∂
∂xj ) then

is
〈v, w〉 := gij(x(p))viwj . (1.4.1)

In particular, 〈 ∂
∂xi ,

∂
∂xj 〉 = gij .

Similarly, the length of v is given by

‖v‖ := 〈v, v〉 1
2 .

We now want to study the transformation behavior. Let y = f(x) define
different local coordinates. In these coordinates, v and w have representations
(ṽ1, . . . , ṽd) and (w̃, . . . , w̃d) with ṽj = vi ∂fj

∂xi , w̃
j = wi ∂fj

∂xi . Let the metric in
the new coordinates be given by hk�(y).
It follows that

hk�(f(x))ṽkw̃� = 〈v, w〉 = gij(x)viwj , (1.4.2)

hence

hk�(f(x))
∂fk

∂xi

∂f �

∂xj
viwj = gij(x)viwj ,

and since this holds for all tangent vectors v, w,

hk�(f(x))
∂fk

∂xi

∂f �

∂xj
= gij(x). (1.4.3)

Formula (1.4.3) gives the transformation behavior of a metric under co-
ordinate changes.

The simplest example of a Riemannian metric of course is the Euclidean
one. For v = (v1, . . . , vd), w = (w1, . . . , wd) ∈ TxRd, the Euclidean scalar
product is simply

δijv
iwj = viwi,

where

δij =
{

1 for i = j
0 for i 
= j

is the standard Kronecker symbol.

Theorem 1.4.1 Each differentiable manifold may be equipped with a Rie-
mannian metric.

Proof. Let {(xα, Uα) : α ∈ A} be an atlas, (ϕα)α∈A a partition of unity
subordinate to (Uα)α∈A (see Lemma 1.1.1) (for simplicity of notation, we use
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the same index set for (ϕα) and (Uα); this may be justified by replacing the
original covering (Uα) by a locally finite refinement).

For v, w ∈ TpM and α ∈ A with p ∈ Uα let the coordinate representations
be (v1

α, . . . , v
d
α) and (w1

α, . . . , w
d
α). Then we put

〈v, w〉 :=
∑
α∈A

with p∈Uα

ϕα(p)vi
αw

i
α .

This defines a Riemannian metric. (The metric is simply obtained by
piecing the Euclidean metrics of the coordinate images together with the
help of a partition of unity.) �

Let now [a, b] be a closed interval in R, γ : [a, b] → M a smooth curve,
where “smooth”, as always, means “of class C∞”.
The length of γ then is defined as

L(γ) :=

b∫
a

‖dγ
dt

(t)‖dt

and the energy of γ as

E(γ) :=
1
2

b∫
a

‖dγ
dt

(t)‖2dt .

(In physics, E(γ) is usually called “action of γ” where γ is considered as the
orbit of a mass point.) Of course, these expressions can be computed in local
coordinates. Working with the coordinates (x1(γ(t)), . . . , xd(γ(t))) we use the
abbreviation

ẋi(t) :=
d

dt
(xi(γ(t))).

Then

L(γ) =

b∫
a

√
gij(x(γ(t)))ẋi(t)ẋj(t)dt

and

E(γ) =
1
2

b∫
a

gij(x(γ(t)))ẋi(t)ẋj(t)dt.

We also remark for later technical purposes that the length of a (continuous
and) piecewise smooth curve may be defined as the sum of the lengths of the
smooth pieces, and the same holds for the energy.

On a Riemannian manifold M, the distance between two points p, q can
be defined:
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d(p, q) := inf{L(γ) : γ : [a, b] →M piecewise smooth curve with
γ(a) = p, γ(b) = q}.

We first remark, that any two points p, q ∈ M can be connected by a
piecewise smooth curve, and d(p, q) therefore is always defined. Namely, let

Ep := {q ∈M : p and q can be connected by a
piecewise smooth curve.}

With the help of local coordinates one sees that Ep is open. But then also
M\Ep =

⋃
q/∈Ep

Eq is open. Since M is connected and Ep 
= ∅ (p ∈ Ep), we

conclude M = Ep.
The distance function satisfies the usual axioms:

Lemma 1.4.1

(i) d(p, q) ≥ 0 for all p, q, and d(p, q) > 0 for all p 
= q

(ii) d(p, q) = d(q, p)

(iii) d(p, q) ≤ d(p, r)+ d(r, q) (triangle inequality) for all points p, q, r ∈
M.

Proof. (ii) and (iii) are obvious. For (i), we only have to show d(p, q) > 0 for
p 
= q. For this purpose, let x : U → Rd be a chart with p ∈ U. Then there
exists ε > 0 with

Dε(x(p)) := {y ∈ Rd : |y − x(p)| ≤ ε} ⊂ x(U)

(the bars denote the Euclidean absolute value) and

q /∈ x−1(Dε(x(p))). (1.4.4)

Let the metric be represented by (gij(x)) in our chart. Since (gij(x)) is pos-
itive definite and smooth, hence continuous in x and Dε(x(p)) is compact,
there exists λ > 0 with

gij(y)ξiξj ≥ λ|ξ|2 (1.4.5)

for all y ∈ Dε(x(p)), ξ = (ξ1, . . . , ξd) ∈ Rd. Therefore, for any curve γ :
[a, b] →M with γ(a) = p, γ(b) = q

L(γ) ≥ L(γ ∩ x−1(Dε(x(p)))
≥ λε > 0, (1.4.6)

because x(γ) by (1.4.4) has to contain a point z ∈ ∂Dε(x(p)), i.e. a point
whose Euclidean distance from x(p) is ε. By (1.4.5), z then has distance from
x(p) at least λε w.r.t. the metric (gij). �
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Corollary 1.4.1 The topology on M induced by the distance function d co-
incides with the original manifold topology of M.

Proof. It suffices to show that in each chart the topology induced by d co-
incides with the one of Rd, i.e. the one induced by the Euclidean distance
function. Now for every x in some chart, there exists ε > 0 for which Dε(x)
is contained in the same chart, and positive constants λ, µ with

λ|ξ|2 ≤ gij(y)ξiξj ≤ µ|ξ|2 for all y ∈ Dε(x), ξ ∈ Rd.

Thus
λ|y − x| ≤ d(y, x) ≤ µ|y − x| for all y ∈ Dε(x),

and thus each Euclidean distance ball contains a distance ball for d, and vice
versa (with

B(z, δ) := {y ∈M : d(z, y) ≤ δ}
we have ◦

Dλδ(x) ⊂ ◦
B(x, δ) ⊂ ◦

Dµδ(x), if µδ ≤ ε). �

We now return to the length and energy functionals.

Lemma 1.4.2 For each smooth curve γ : [a, b] →M

L(γ)2 ≤ 2(b− a)E(γ), (1.4.7)

and equality holds if and only if ‖dγ
dt ‖ ≡ const.

Proof. By Hölder’s inequality

b∫
a

‖dγ
dt
‖dt ≤ (b− a)

1
2

⎛⎝ b∫
a

‖dγ
dt
‖2dt

⎞⎠
1
2

with equality precisely if ‖dγ
dt ‖ ≡ const. �

Lemma 1.4.3 If γ : [a, b] → M is a smooth curve, and ψ : [α, β] → [a, b] is
a change of parameter, then

L(γ ◦ ψ) = L(γ).

Proof. Let t = ψ(τ).

L(γ ◦ ψ) =

β∫
α

(
gij(x(γ(ψ(τ))))ẋi(ψ(τ))ẋj(ψ(τ))

(
dψ

dτ

)2
) 1

2

dτ

(by the chain rule)
= L(γ) (by change of variables). �
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Lemma 1.4.4 The Euler-Lagrange equations for the energy E are

ẍi(t) + Γ i
jk(x(t))ẋj(t)ẋk(t) = 0, i = 1, . . . , d (1.4.8)

with
Γ i

jk =
1
2
gi�(gj�,k + gk�,j − gjk,�),

where
(gij)i,j=1,...,d = (gij)−1 (i.e. gi�g�j = δij)

and
gj�,k =

∂

∂xk
gj�.

The expressions Γ i
jk are called Christoffel symbols.

Proof. The Euler-Lagrange equations of a functional

I(x) =

b∫
a

f(t, x(t), ẋ(t))dt

are given by
d

dt

∂f

∂ẋi
− ∂f

∂xi
= 0, i = 1, . . . , d.

In our case, we therefore get (E(γ) = 1
2

∫
gjk(x(t))ẋj ẋkdt)

d

dt
(gik(x(t))ẋk(t) + gji(x(t))ẋj(t))− gjk,i(x(t))ẋj(t)ẋk(t) = 0 for i = 1, . . . , d,

hence
gikẍ

k + gjiẍ
j + gik,�ẋ

�ẋk + gji,�ẋ
�ẋj − gjk,iẋ

j ẋk = 0.

Renaming some indices and using the symmetry gik = gki, we get

2g�mẍ
m + (g�k,j + gj�,k − gjk,�)ẋj ẋk = 0 � = 1, . . . , d (1.4.9)

and from this

gi�g�mẍ
m +

1
2
gi�(g�k,j + gj�,k − gjk,�)ẋj ẋk = 0 i = 1, . . . , d.

Because of
gi�g�m = δim, and thus gi�g�mẍ

m = ẍi

we obtain (1.4.8) from this. �

Definition 1.4.2 A smooth curve γ = [a, b] → M, which satisfies (with
ẋi(t) = d

dtx
i(γ(t)) etc.)

ẍi(t) + Γ i
jk(x(t))ẋj(t)ẋk(t) = 0 for i = 1, . . . , d
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is called a geodesic.

Thus, geodesics are the critical points of the energy functional. By Lemma
1.4.3, the length functional is invariant under parameter changes. As in the
Euclidean case, one easily sees that regular curves can be parametrized by arc
length. We shall attempt to minimize the length within the class of regular
smooth curves, and we shall succeed and complete the program in Corollary
1.4.2 below. As the length is invariant under reparametrization by Lemma
1.4.3, therefore, if one seeks curves of shortest length, it suffices to consider
curves that are parametrized by arc length. For such curves, by Lemma 1.4.2
one may minimize energy instead of length. Conversely, every critical point
of the energy functional, i.e. each solution of (1.4.8), i.e. each geodesic, is
parametrized proportionally to arc length.

Namely, for a solution of (1.4.8)

d

dt
〈ẋ, ẋ〉 =

d

dt
(gij(x(t))ẋi(t)ẋj(t))

= gij ẍ
iẋj + gij ẋ

iẍj + gij,kẋ
iẋj ẋk

= −(gjk,� + g�j,k − g�k,j)ẋ�ẋkẋj + g�j,kẋ
kẋ�ẋj

by formula (1.4.9) which is equivalent to (1.4.8)

= 0, since gjk,�ẋ
�ẋkẋj = g�k,j ẋ

�ẋkẋj

by interchanging the indices j and �

Consequently 〈ẋ, ẋ〉 ≡ const., and hence the curve is parametrized propor-
tionally to arc length. We have shown

Lemma 1.4.5 Each geodesic is parametrized proportionally to arc length.
�

Theorem 1.4.2 Let M be a Riemannian manifold, p ∈ M,v ∈ TpM. Then
there exist ε > 0 and precisely one geodesic

c : [0, ε] →M

with c(0) = p, ċ(0) = v. In addition, c depends smoothly on p and v.

Proof. (1.4.8) is a system of second order ODE, and the Picard-Lindelöf The-
orem yields the local existence and uniqueness of a solution with prescribed
initial values and derivatives, and this solution depends smoothly on the data.

�

We note that if x(t) is a solution of (1.4.8), so is x(λt) for any constant
λ ∈ R. Denoting the geodesic of Theorem 1.4.2 with c(0) = p, ċ(0) = v by cv,
we obtain

cv(t) = cλv(
t

λ
) for λ > 0, t ∈ [0, ε].
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In particular, cλv is defined on [0, ε
λ ].

Since cv depends smoothly on v, and {v ∈ TpM : ‖v‖ = 1} is compact,
there exists ε0 > 0 with the property that for ‖v‖ = 1 cv is defined at least
on [0, ε0]. Therefore, for any w ∈ TpM with ‖w‖ ≤ ε0, cw is defined at least
on [0, 1].

Definition 1.4.3 Let M be a Riemannian manifold, p ∈M,

Vp :={v ∈ TpM : cv is defined on [0, 1]}
expp :Vp →M

v → cv(1)

is called the exponential map of M at p.

By the preceding considerations, the domain of definition of the expo-
nential map always at least contains a small neighborhood of 0 ∈ TpM. In
general, however, Vp is not all of TpM, as is already seen in the example of a
proper, open subset of Rd, equipped with the Euclidean metric. Nevertheless,
we shall see in Theorem 1.4.7 below that for a compact Riemannian manifold,
expp can be defined on all of TpM.

Theorem 1.4.3 The exponential map expp maps a neighborhood of 0 ∈ TpM
diffeomorphically onto a neighborhood of p ∈M.

Proof. Since TpM is a vector space, we may identify T0TpM, the tangent
space of TpM at 0 ∈ TpM, with TpM itself. The derivative of expp at 0 then
becomes a map from TpM onto itself:

d expp(0) : TpM → TpM.

With this identification of T0TpM and TpM, for v ∈ TpM

d expp(0)(v) =
d

dt
ctv(1)|t=0

=
d

dt
cv(t)|t=0

= ċv(0)
= v

Hence
d expp(0) = id|TpM . (1.4.10)

In particular, d expp(0) has maximal rank, and by the inverse function
theorem, there exists a neighborhood of 0 ∈ TpM which is mapped diffeo-
morphically onto a neighborhood of p ∈M. �
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Let now e1, e2, . . . , ed (d = dimM) be a basis of TpM which is orthonor-
mal w.r.t. the scalar product on TpM defined by the Riemannian metric.
Writing for each vector v ∈ TpM its components w.r.t. this basis, we obtain
a map

Φ : TpM → Rd

v = viei → (v1, . . . , vd).

For the subsequent construction, we identify TpM with Rd via Φ. By The-
orem 1.4.3, there exists a neighborhood U of p which is mapped by exp−1

p

diffeomorphically onto a neighborhood of 0 ∈ TpM, hence, with our identi-
fication TpM ∼= Rd, diffeomorphically onto a neighborhood Ω of 0 ∈ Rd. In
particular, p is mapped to 0.

Definition 1.4.4 The local coordinates defined by the chart (exp−1
p , U) are

called (Riemannian) normal coordinates with center p.

Theorem 1.4.4 In normal coordinates, we have for the Riemannian metric

gij(0) = δij (1.4.11)
Γ i

jk(0) = 0 (and also gij,k(0) = 0) for all i, j, k . (1.4.12)

Proof. (1.4.11) directly follows from the fact that the above identification
Φ : TpM ∼= Rd maps an orthonormal basis of TpM w.r.t. the Riemannian
metric onto an Euclidean orthonormal basis of Rd.

For (1.4.12), we note that in normal coordinates, the straight lines through
the origin of Rd (or, more precisely, their portions contained in the chart
image) are geodesic. Namely, the line tv, t ∈ R, v ∈ Rd, is mapped (for suffi-
ciently small t) onto ctv(1) = cv(t), where cv(t) is the geodesic, parametrized
by arc length, with ċv(0) = v.

Inserting now x(t) = tv into the geodesic equation (1.4.8), we obtain
because of ẍ(t) = 0

Γ i
jk(tv)vjvk = 0, for i = 1, . . . , d . (1.4.13)

In particular at 0, i.e. for t = 0,

Γ i
jk(0)vjvk = 0 for all v ∈ Rd, i = 1, . . . , d . (1.4.14)

We put v = 1
2 (e� + em) and obtain because of the symmetry Γ i

jk = Γ i
kj

Γ i
�m(0) = 0 for all i.

Since this holds for all �,m, all Γ i
jk(0) vanish. By definition of Γ i

jk, we obtain
at 0 ∈ Rd

gi�(gj�,k + gk�,j − gjk,�) = 0 ∀ i, j, k,
hence also
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gjm,k + gkm,j − gjk,m = 0 ∀ j, k,m.
Adding now the relation (obtained by cyclic permutation of the indices)

gkj,m + gmj,k − gkm,j = 0,

we obtain (with gkj = gjk)

gjm,k(0) = 0, for all j, k,m. �

Later on (in Chapter 3), we shall see that in general the second derivatives
of the metric cannot be made to vanish at a given point by a suitable choice
of local coordinates. The obstruction will be given by the curvature tensor.

Further properties of Riemannian normal coordinates may best be seen
by using polar coordinates, instead of the Euclidean ones (obtained from the
map Φ). We therefore introduce on Rd the standard polar coordinates

(r, ϕ1, . . . , ϕd−1),

where ϕ = (ϕ1, . . . , ϕd−1) parametrizes the unit sphere Sd−1 (the precise
formula for ϕ will be irrelevant for our purposes), and we then obtain polar
coordinates on TpM via Φ again. We express the metric in polar coordinates
and write grr instead of g11, because of the special role of r. We also write
grϕ instead of g1�, � ∈ {2, . . . , d}, and gϕϕ as abbreviation for (gk�)k,�=2,...,d.
In particular, in these coordinates at 0 ∈ TpM (this point corresponds to
p ∈M)

grr(0) = 1, grϕ(0) = 0 (1.4.15)

by (1.4.11) and since this holds for Euclidean polar coordinates.
After these preparations, we return to the analysis of the geodesic equa-

tion (1.4.8). The lines ϕ ≡ const. are geodesic when parametrized by arc
length. They are given by x(t) = (t, ϕ0), ϕ0 fixed, and from (1.4.8)

Γ i
rr = 0 for all i

(we have written Γ i
rr instead of Γ i

11), hence

gi�(2gr�,r − grr,�) = 0, for all i,

thus
2gr�,r − grr,� = 0, for all �. (1.4.16)

For � = r, we conclude
grr,r = 0,

and with (1.4.15) then
grr ≡ 1. (1.4.17)

Inserting this in (1.4.16), we get



1.4 Riemannian Metrics 23

grϕ,r = 0,

and then again with (1.4.15)
grϕ ≡ 0. (1.4.18)

We have shown

Theorem 1.4.5 For the polar coordinates, obtained by transforming the Eu-
clidean coordinates of Rd, on which the normal coordinates with centre p are
based, into polar coordinates, we have

gij =

⎛⎜⎜⎝
1 0 . . . 0
0
... gϕϕ(r, ϕ)
0

⎞⎟⎟⎠ ,

where gϕϕ(r, ϕ) is the (d−1)×(d−1) matrix of the components of the metric
w.r.t. angular variables (ϕ1, . . . , ϕd−1) ∈ Sd−1. �

The polar coordinates of Theorem 1.4.5 are often called Riemannian po-
lar coordinates. The situation is the same as for Euclidean polar coordinates:
For example in polar coordinates on R2, the Euclidean metric is given by(

1 0
0 r2

)
. We point out once more that in contrast to Theorem 1.4.4, The-

orem 1.4.5 holds not only at the origin 0 ∈ TpM, but in the whole chart.

Corollary 1.4.2 For any p ∈ M, there exists ρ > 0 such that Riemannian
polar coordinates may be introduced on B(p, ρ) := {q ∈M : d(p, q) ≤ ρ}. For
any such ρ and any q ∈ ∂B(p, ρ), there is precisely one geodesic of shortest
length (= ρ) from p to q, and in polar coordinates, this geodesic is given
by the straight line x(t) = (t, ϕ0), 0 ≤ t ≤ ρ, where q is represented by
the coordinates (ρ, ϕ0), ϕ0 ∈ Sd−1. Here, “of shortest length” means that the
curve is the shortest one among all curves in M from p to q.

Proof. The first claim follows from Corollary 1.4.1 (and its proof) and The-
orem 1.4.3. For the second claim, let c(t) = (r(t), ϕ(t)), 0 ≤ t ≤ T, be an
arbitrary curve from p to q. c(t) need not be entirely contained in B(p, ρ)
and may leave our coordinate neighborhood. Let

t0 := inf{t ≤ T : d(x(t), p) ≥ ρ}.
Then t0 ≤ T, and the curve c|[0,t0] is entirely contained in B(p, ρ). We shall
show L(c|[0,t0]) ≥ ρ with equality only for a straight line in our polar coor-
dinates. This will then imply the second claim. The proof of this inequality
goes as follows:
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L(c|[0,t0]) =
t0∫
0

(gij(c(t))ċiċj)
1
2 dt

≥
t0∫
0

(grr(c(t))ṙṙ)
1
2 dt by (1.4.18) and

since gϕϕ is positive definite

=
t0∫
0

|ṙ|dt ≥
t0∫
0

ṙdt by (1.4.17)

= r(t0) = ρ by definition of t0,

and equality holds precisely if gϕϕϕ̇ϕ̇ ≡ 0, in which case ϕ̇(t) is constant and
ṙ ≥ 0 and c(t) thus is a straight line through the origin. �

In particular, under the assumptions of Corollary 1.4.2, the Euclidean ball

dρ(0) := {y ∈ Rd : |y| ≤ ρ} ⊂ TpM

is mapped under expp diffeomorphically onto the Riemannian ball with the
same radius,

B(p, ρ).

Corollary 1.4.3 Let M be a compact Riemannian manifold. Then there ex-
ists ρ0 > 0 with the property that for any p ∈ M, Riemannian polar coordi-
nates may be introduced on B(p, ρ0).

Proof. By Corollary 1.4.2, for any p ∈ M, there exists ρ > 0 with those
properties. By Theorem 1.4.2, expp is smooth in p. If thus expp is injective
and of maximal rank on a closed ball with radius ρ in TpM, there exists a
neighborhood U of p such that for all q ∈ U, expq is injective and of maximal
rank on the closed ball with radius ρ in TqM.

Since M is compact, it can be covered by finitely many such neighbor-
hoods and we choose ρ0 as the smallest such ρ. �

Corollary 1.4.4 Let M be a compact Riemannian manifold. Then there ex-
ists ρ0 > 0 with the property that any two points p, q ∈ M with d(p, q) ≤ ρ0

can be connected by precisely one geodesic of shortest length. This geodesic
depends continuously on p and q.

Proof. ρ0 from Corollary 1.4.3 satisfies the first claim by Corollary 1.4.2.
Moreover, by the last claim of Corollary 1.4.2, the shortest geodesic from p
to q ∈ B(p, ρ0) depends continuously on p. Exchanging the roles of p and q
yields the continuous dependence on p as well. �

We explicitly point out that for any compact Riemannian manifold there is
always more than one geodesic connection between any two points (This will
be discussed in Chapter 5.). Only the shortest geodesic is unique, provided p
and q are sufficiently close.
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We now want to show the existence of shortest (geodesic) connections
between any two points of arbitrary distance on a given compact Riemannian
manifold.

We recall the notion of homotopy between curves:

Definition 1.4.5 Two curves γ0, γ1 on a manifold M with common initial
and end points p and q, i.e. two continuous maps

γ0, γ1 : I = [0, 1] →M

with γ0(0) = γ1(0) = p, γ0(1) = γ1(1) = q, are called homotopic if there
exists a continuous map

Γ : I × I →M

with
Γ (0, s) = p, Γ (1, s) = q for all s ∈ I
Γ (t, 0) = γ0(t), Γ (t, 1) = γ1(t) for all t ∈ I

Two closed curves c0, c1 in M, i.e. two continuous maps

c0, c1 : S1 →M,

are called homotopic, if there exists a continuous map

c : S1 × I →M

with
c(t, 0) = c0(t), c(t, 1) = c1(t) for all t ∈ S1

(S1, as usual, is the unit circle parametrized by [0, 2π).).

Lemma 1.4.6 The concept of homotopy defines an equivalence relation on
the set of all curves in M with fixed initial and end points as well as on the
set of all closed curves in M.

The proof is elementary. �
With the help of this concept, we now want to show the existence of

geodesics:

Theorem 1.4.6 Let M be a compact Riemannian manifold, p, q ∈M. Then
there exists a geodesic in every homotopy class of curves from p to q, and this
geodesic may be chosen as a shortest curve in its homotopy class. Likewise,
every homotopy class of closed curves in M contains a curve which is shortest
and geodesic.

Proof. Since the proof is the same in both cases, we shall only consider the
case of closed curves.

As a preparation, we shall first show
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Lemma 1.4.7 Let M be a compact Riemannian manifold, ρ0 > 0 as in
Corollary 1.4.4. Let γ0, γ1 : S1 →M be curves with

d(γ0(t), γ1(t)) ≤ ρ0 for all t ∈ S1.

Then γ0 and γ1 are homotopic.

Proof. For any t ∈ S1 let ct(s) : I →M be the unique shortest geodesic from
γ0(t) to γ1(t) (Corollary 1.4.4), as usual parametrized proportionally to arc
length. Since ct depends continuously on its end points by Corollary 1.4.4,
hence on t,

Γ (t, s) := ct(s)

is continuous and yields the desired homotopy. �

Proof of Theorem 1.4.6: Let (γn)n∈N be a minimizing sequence for arc
length in the given homotopy class. Here and in the sequel, all curves are
parametrized proportionally to arc length. We may assume w.l.o.g. that the
curves γn are piecewise geodesic; namely, for each curve, we may find t0 =
0 < t1 < t2 < . . . < tm < tm+1 = 2π with the property that

L(γn|[tj−1,tj ]) ≤ ρ0/2

(ρ0 as in Corollary 1.4.4) for j = 1, . . . ,m+ 1 with tm+1 := 2π).

Replacing γn|[tj−1,tj ] by the shortest geodesic arc between γn(tj−1) and γn(tj),
we obtain a curve which is homotopic to and not longer than γn (the same
argument also shows that each homotopy class does contain curves of finite
length).

We may thus assume that for any γn there exist points p0,n, . . . , pm,n for
which d(pj−1,n, pj,n) ≤ ρ0 (pm+1,n := p0,n, j = 1, . . . ,m+1) and for which γn

contains the shortest geodesic arc between pj−1,n and pj,n. Since the lengths
of the γn are bounded as they constitute a minimizing sequence, we may also
assume that m is independent of n. After selection of a subsequence, by the
compactness of M, the points p0,n, . . . , pm,n converge to points p0, . . . , pm,
for n→∞. The segment of γn between pj−1,n and pj,n then converges to the
shortest geodesic arc between pj−1 and pj , for example by Corollary 1.4.4.
The union of these geodesic segments yields a curve γ. By Lemma 1.4.7, γ is
homotopic to the γn, and

L(γ) = lim
n→∞L(γn),

and since the curves γn are minimizing sequence for the length in their homo-
topy class, γ is a shortest curve in this class. Therefore, γ has to be geodesic.
Namely, otherwise, there would exist points p and q on γ for which one of the
two segments of γ between p and q would have length at most ρ0, but would
not be geodesic. By Corollary 1.4.4, γ could then be shortened by replacing
this segment by the shortest geodesic arc between p and q. By the argument
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of Lemma 1.4.7, this does not change the homotopy class, and we obtain a
contradiction to the minimizing property of γ.
γ thus is the desired closed geodesic. �

Corollary 1.4.5 On any compact Riemannian manifold M1, any two points
p, q can be connected by a curve of shortest length, and this curve is geodesic.

Proof. Minimize over all curves between p and q (and not only over those in
a fixed homotopy class) as in the proof of Theorem 1.4.6. �

We also show

Theorem 1.4.7 Let M be a compact Riemannian manifold. Then for any
p ∈M, the exponential map expp is defined on all of TpM, and any geodesic
may be extended indefinitely in each direction.

Proof. For v ∈ TpM, let

Λ := {t ∈ R+ : cv is defined on [−t, t]},
where cv is, as usual, the geodesic with cv(0) = p, ċv(0) = v. It follows
from cv(−t) = c−v(t) that ev may also be defined for negative t, at the
moment at least for those with sufficiently small absolute value. Theorem
1.4.2 implies Λ 
= ∅. The compactness of M implies the closedness of Λ. We
shall now show openness of Λ : Let cv be defined on [−t, t]; for example
ċv(t) = w ∈ Tcv(t)M. By Theorem 1.4.2 there exists a geodesic γw(s) with
γw(0) = cv(t), γ̇w(0) = ċv(t), for s ∈ [0, ε] and ε > 0. Putting cv(t+s) = γw(s)
for s ∈ [0, ε], we have extended cv to [−t, t + ε]. Analogously, cv may be
extended in the direction of negative t. This implies openness of Λ, hence
Λ = R+. The claims follow easily. �

We now want to address the question whether the results of Theorem
1.4.7 continue to hold for a more general class of Riemannian manifolds than
the compact ones. Obviously, they do hold for Euclidean space which is not
compact, but they do not hold for any proper open subset of Euclidean space,
essentially since such a set is not complete. It will turn out that completeness
will be the right condition for extending Theorem 1.4.7.

Definition 1.4.6 A Riemannian manifold M is geodesically complete if for
all p ∈ M, the exponential map expp is defined on all of TpM, or, in other
words, if any geodesic c(t) with c(0) = p is defined for all t ∈ R.

We can now state the Theorem of Hopf-Rinow.

Theorem 1.4.8 Let M be a Riemannian manifold. The following statements
are equivalent:
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(i) M is complete as a metric space (or equivalently, it is complete as a
topological space w.r.t. its underlying topology, see Corollary 1.4.1).

(ii) The closed and bounded subsets of M are compact.

(iii) There exists p ∈M for which expp is defined on all of TpM.

(iv) M is geodesically complete, i.e. for every p ∈ M, expp is defined on
all of TpM.

Furthermore, each of the statements (i) – (iv) implies

(v) Any two points p, q ∈M can be joined by a geodesic of length d(p, q),
i.e. by a geodesic of shortest length.

Proof. We shall first prove that if expp is defined on all of TpM, then any
q ∈M can be connected with p by a shortest geodesic. In particular, this will
show the implication (iv) ⇒ (v).

For this purpose, let
r := d(p, q),

and let ρ > 0 be given by Corollary 1.4.2, let p0 ∈ ∂B(p, ρ) be a point
where the continuous function d(q, ·) attains its minimum on the compact set
∂B(p, ρ). Then p0 = expp ρV, for some V ∈ TpM. We consider the geodesic

c(t) := expp tV,

and we want to show that
c(r) = q. (1.4.19)

c|[0,r] will then be a shortest geodesic from p to q.
For this purpose, let

I := {t ∈ [0, r] : d(c(t), q) = r − t}.
(1.4.19) means r ∈ I, and we shall show I = [0, r] for that purpose. I is
not empty, as it contains 0 by definition of r, and it is closed for continuity
reasons. I = [0, r] will therefore follow if we can show openness of I.

Let t0 ∈ I. Let ρ1 > 0 be the radius of Corollary 1.4.2 corresponding to
the point c(t0) ∈ M. W.l.o.g. ρ1 ≤ r − t0. Let p1 ∈ ∂B(c(t0), ρ1) be a point
where the continuous function d(q, ·) assumes its minimum on the compact
set ∂B(c(t0), ρ1). Then

d(p, p1) ≥ d(p, q)− d(q, p1). (1.4.20)

Now for every curve γ from c(t0) to q, there exists some

γ(t) ∈ ∂B(c(t0), ρ1).

Hence
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L(γ) ≥ d(c(t0), γ(t)) + d(γ(t), q)
= ρ1 + d(γ(t), q)
≥ ρ1 + d(p1, q) because of the minimizing property of p1.

Hence also
d(q, c(t0)) ≥ ρ1 + d(p1, q) (1.4.21)

and by the triangle inequality, we then actually must have equality. Inserting
(1.4.21) into (1.4.20) and recalling d(q, c(t0)) = r − t0 gives

d(p, p1) ≥ r − (r − t0 − ρ1) = t0 + ρ1.

On the other hand, there exists a curve from p to p1 of length t0 +ρ1; namely
one goes from p to c(t0) along c and then takes the geodesic from c(t0) to p1

of length ρ1. That curve thus is shortest and therefore has to be geodesic as
shown in the proof of Theorem 1.4.6. By uniqueness of geodesics with given
initial values, it has to coincide with c, and then

p1 = c(t0 + ρ1).

Since we observed that equality has to hold in (1.4.21), we get

d(q, c(t0 + ρ1)) = r − (t0 + ρ1),

hence
t0 + ρ1 ∈ I,

and openness of I follows, proving our claim.
It is now easy to complete the proof of Theorem 1.4.8:

(iv) ⇒ (iii) is trivial

(iii) ⇒ (ii) Let K ⊂ M be closed and bounded. Since bounded, K ⊂
B(p, r) for some r > 0. By what we have shown in the beginning, any point in
B(p, r) can be connected with p by a geodesic (of length ≤ r). Hence, B(p, r)
is the image of the compact ball in TpM of radius r under the continuous
map expp . Hence, B(p, r) is compact itself. Since K is assumed to be closed
and shown to be contained in a compact set, it must be compact itself.

(ii) ⇒ (i) Let (pn)n∈N ⊂ M be a Cauchy sequence. It then is bounded,
and, by (ii), its closure is compact. It therefore contains a convergent subse-
quence, and being Cauchy, it has to converge itself. This shows completeness
of M.

(i) ⇒ (iv) Let c be a geodesic in M, parametrized by arc length, and
being defined on a maximal interval I. I then is nonempty, and by Theorem
1.4.2, it is also open. To show closedness, let (tn)n∈N ⊂ I converge to t.

Since
d(c(tn), c(tm)) ≤ |tn − tm|
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as c is parametrized by arc length, c(tn) is a Cauchy sequence, hence has
a limit p ∈ M, because we assume M to be complete. Let ρ > 0 be as in
Corollary 1.4.2. Then B(p, ρ) is compact, being the image of the compact ball
of radius r in TpM under the continuous map expp . Therefore, the argument
of Corollary 1.4.3 and Corollary 1.4.4 applies to show that there exists ρ0 > 0
with the property that for any point q ∈ B(p, ρ) any geodesic starting from
q can be extended at least up to length ρ0.

Since c(tn) converges to p, for all sufficiently large m,n

d(c(tn), c(tm)) ≤ |tn − tm| ≤ ρ0/2

and
d(c(tn), p), d(c(tm), p) ≤ ρ0.

Therefore, the shortest geodesic from c(tn) to c(tm) can be defined at least on
the interval [−ρ0, ρ0]. This shortest geodesic, however, has to be a subarc of
c, and c thus can be defined up to the parameter value tn + ρ0, in particular
for t, showing closedness of I. �

Let now M be a differentiable submanifold of the Riemannian manifold
N. The Riemannian metric of N then induces a Riemannian metric on M, by
restricting the former one to TpM ⊂ TpN for p ∈ N. Thus, M also becomes
a Riemannian manifold.

In particular, Sn ⊂ Rn+1 obtains a Riemannian metric. We want to com-
pute this metric in the local chart of 1.1, namely

f(x1, . . . , xn+1) =
(

x1

1− xn+1
, . . . ,

xn

1− xn+1

)
for xn+1 
= 1

=: (y1, . . . , yn) ∈ Rn .

In the sequel, a Latin index occuring twice in a product has to be summed
from 1 to n+ 1, a Greek one from 1 to n. We compute

1 = xixi = yαyα(1− xn+1)2 + xn+1xn+1

hence
xn+1 =

yαyα − 1
yαyα + 1

and then

xi =
2yi

1 + yαyα
(i = 1, . . . , n).

For g := f−1 then

∂gj

∂yk
=

2δjk

1 + yαyα
− 4yjyk

(1 + yαyα)2
for j = 1, . . . , n, k = 1, . . . , n

∂gn+1

∂yk
=

4yk

(1 + yαyα)2
.
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Let a tangent vector to Sn be represented by w = (w1, . . . , wn) in our chart.
Then

〈w,w〉 = dg(w) · dg(w), where the point denotes the Euclidean

scalar product of Rn+1

=
1

(1 + yαyα)4
{
4(1 + yαyα)2wβwβ − 16(1 + yαyα)yβwβyγwγ

+ 16yβyβyγwγyδwδ + 16yβwβyγwγ
}

=
4

(1 + yαyα)2
wβwβ .

Thus, the metric in our chart is given by

gij(y) =
4

(1 + |y|2)2 δij .

Definition 1.4.7 A diffeomorphism h : M → N between Riemannian
manifolds is an isometry if it preserves the Riemannian metric. Thus, for
p ∈ M,v,w ∈ TpM, and if 〈·, ·〉M and 〈·, ·〉N denotes the scalar products in
TpM and Th(p)N, resp., we have

〈v, w〉M = 〈dh(v), dh(w)〉N .
A differentiable map h : M → N is a local isometry if for every p ∈M there
exists a neighborhood U for which h|U : U → h(U) is an isometry, and h(U)
is open in N.

If (gij(p)) and (γαβ(h(p)) are the coordinate representations of the metric,
an isometry has to satisfy

gij(p) = γαβ(h(p))
∂hα(p)
∂xi

∂hβ(p)
∂xj

.

A local isometry thus has the same effect as a coordinate change. Isometries
leave the lengths of tangent vectors and therefore also the lengths and ener-
gies of curves invariant. Thus, critical points, i.e. geodesics, are mapped to
geodesics.

With this remark, we may easily determine the geodesics of Sn. The
orthogonal group O(n+1) operates isometrically on Rn+1, and since it maps
Sn into Sn, it also operates isometrically on Sn. Let now p ∈ Sn, v ∈ TpS

n.
Let E be the two dimensional plane through the origin of Rn+1, containing v.
We claim that the geodesic cv through p with tangent vector v is nothing but
the great circle through p with tangent vector v (parametrized proportionally
to arc length), i.e. the intersection of Sn with E. For this, let S ∈ O(n+1) be
the reflection across that E. Together with cv, Scv is also a geodesic through
p with tangent vector v. The uniqueness result of Theorem 1.4.2 implies
cv = Scv, and thus the image of cv is the great circle, as claimed.



32 1. Foundational Material

As another example, we consider the torus T 2 introduced in 1.1. We in-
troduce a metric on T 2 by letting the projection π be a local isometry. For
each chart of the form (U, (π|U )−1), we use the Euclidean metric on π−1(U).
Since the translations

z → z +m1w1 +m2w2 (m1,m2 ∈ Z)

are Euclidean isometries, the Euclidean metrics on the different components
of π−1(U) (which are obtained from each other by such translations) yield
the same metric on U. Hence, the Riemannian metric on T 2 is well defined.

Since π is a local isometry, Euclidean geodesics of R2 are mapped onto
geodesics of T 2. The global behavior of geodesics on such a torus is most
easily studied in the case where T 2 is generated by the two unit vectors
w1 = (1, 0) and w2 = (0, 1) : A straight line in R2 which is parallel to one of
the coordinate axes then becomes a geodesic on T 2 that closes up after going
around once. More generally, a straight line with rational slope becomes a
closed, hence periodic geodesic on T 2, while the image of one with irrational
slope lies dense in T 2.

Before ending this paragraph, we want to introduce the following impor-
tant notion:

Definition 1.4.8 Let M be a Riemannian manifold, p ∈M. The injectivity
radius of p is

i(p) := sup{ρ > 0 : expp is defined on dρ(0) ⊂ TpM and injective}.
The injectivity radius of M is

i(M) := inf
p∈M

i(p).

For example, the injectivity radius of the sphere Sn is π, since the expo-
nential map of any point p maps the open ball of radius π in TpM injectively
onto the complement of the antipodal point of p.

The injectivity radius of the torus just discussed is 1
2 , since here the

exponential map is injective on the interior of a square with centre 0 ∈ TpM
and side length 1.

Perspectives. As the name suggests, the concept of a Riemannian metric was
introduced by B. Riemann, in his habilitation address [254]. He also suggested to
consider more generally metrics obtained by taking metrics on the tangent spaces
that are not induced by a scalar product. Such metrics were first systematically
investigated by Finsler and are therefore called Finsler metrics.

For a general metric space, a geodesic is defined as a curve which realizes the
shortest distance between any two sufficiently close points lying on it. Those metric
spaces that satisfy the conclusion of the Hopf-Rinow theorem that any two points
can be connected by a shortest geodesic are called geodesic length spaces, and
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they are amenable to geometric constructions as demonstrated by the school of
Alexandrov. See e.g. [194], [15].

A Lorentz metric on a differentiable manifold of dimension d + 1 is given by an
inner product of signature (1, d) on each tangent space TpM depending smoothly
on p. A Lorentz manifold is a differentiable manifold with a Lorentz metric. The
prototype is Minkowski space, namely Rd+1 equipped with the inner product

〈x, y〉 = −x0y0 + x1y1 + . . . + xdyd

for x = (x0, x1, . . . , xd), y = (y0, y1, . . . , yd). Lorentz manifolds are the spaces oc-
curing in general relativity. Let us briefly discuss some concepts. Tangent vectors
V with negative, positive, vanishing ‖V ‖2 = 〈V, V 〉 are called time-like, space-like,
and light-like, resp. Length and energy of a curve may be defined formally as in the
Riemannian case, and we again obtain geodesic equations. Geodesics whose tangent
vectors all have norm zero are called null geodesics. They describe the paths of light
rays. (Note that in our above description of the Minkowski metric, the conventions
have been chosen so that the speed of light is 1.) Submanifolds of Lorentz manifolds
whose tangent vectors are all space-like are ordinary Riemannian manifolds w.r.t.
the induced metric. For treatments of Lorentzian geometry, an introduction is [209].
Deeper aspects are treated in Hawking and Ellis[113].

J. Nash proved that every Riemannian manifold M can be isometrically em-
bedded into some Euclidean space Rk. For the proof of this result, he developed an
implicit function theorem in Fréchet spaces and an iteration technique that have
found other important applications. A simpler proof was found by Günther[107].

Although on a conceptual level, Nash’s theorem reduces the study of Rieman-
nian manifolds to the study of submanifolds of Euclidean spaces, in practice the
intrinsic point of view has proved to be preferable (see Perspectives on 1.3).

In our presentation, we only consider finite dimensional Riemannian manifolds.
It is also possible, and often very useful, to introduce infinite dimensional Rieman-
nian manifolds. Those are locally modeled on Hilbert spaces instead of Euclidean
ones. The lack of local compactness leads to certain technical complications, but
most ideas and constructions of Riemannian geometry pertain to the infinite di-
mensional case. Such infinite dimensional manifolds arise for example naturally as
certain spaces of curves on finite dimensional Riemannian manifolds. A thorough
treatment is given in [159].

1.5 Vector Bundles

Definition 1.5.1 A (differentiable) vector bundle of rank n consists of a
total space E, a base M, and a projection π : E → M, where E and M
are differentiable manifolds, π is differentiable, each “fiber” Ex := π−1(x) for
x ∈M, carries the structure of an n-dimensional (real) vector space, and the
following local triviality requirement is satisfied: For each x ∈M, there exist
a neighborhood U and a diffeomorphism

ϕ : π−1(U) → U × Rn

with the property that for every y ∈ U

ϕy := ϕ|Ey
: Ey → {y} × Rn
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is a vector space isomorphism, i.e. a bijective linear map. Such a pair (ϕ,U)
is called a bundle chart.

In the sequel, we shall omit the word “differentiable” for a vector bundle.
Often, a vector bundle will simply be denoted by its total space.

It is important to point out that a vector bundle is by definition locally,
but not necessarily globally a product of base and fiber. A vector bundle
which is isomorphic to M × Rn (n = rank) is called trivial.

A vector bundle may be considered as a family of vector spaces (all iso-
morphic to a fixed model Rn) parametrized (in a locally trivial manner) by
a manifold.

Let now (E, π,M) be a vector bundle of rank n, (Uα)α∈A a covering of M
by open sets over which the bundle is trivial, and ϕα : π−1(Uα) → Uα × Rn

be the corresponding local trivializations. For nonempty Uα ∩ Uβ ,we obtain
transition maps

ϕβα : Uα ∩ Uβ → Gl (n,R)

by

ϕβ ◦ ϕ−1
α (x, v) = (x, ϕβα(x)v) forx ∈ Uα ∩ Uβ , v ∈ Rn, (1.5.1)

where Gl(n,R) is the general linear group of bijective linear self maps of Rn.
The transition maps express the transformation behavior of a vector in the
fiber under a change of local trivialization.

The transition maps satisfy

ϕαα(x) = idRn for x ∈ Uα (1.5.2)
ϕαβ(x)ϕβα(x) = idRn for x ∈ Uα ∩ Uβ (1.5.3)

ϕαγ(x)ϕγβ(x)ϕβα(x) = idRn for x ∈ Uα ∩ Uβ ∩ Uγ . (1.5.4)

These properties are direct consequences of (1.5.1).
A vector bundle can be reconstructed from its transition maps.

Theorem 1.5.1
E =

∐
α∈A

Uα × Rn/ ∼ ,

where � denotes disjoint union, and the equivalence relation ∼ is defined by

(x, v) ∼ (y, w) : ⇐⇒ x = y and w = ϕβα(x)v (x ∈ Uα, y ∈ Uβ , v, w ∈ Rn)

The proof of this fact is a straightforward verification of the properties
required in Definition 1.5.1. A reader who does not want to carry this out
him/herself may consult D. Husemoller, Fibre bundles, Springer, GTM 20,
1975. �
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Definition 1.5.2 Let G be a subgroup of Gl(n,R), for example O(n) or
SO(n), the orthogonal or special orthogonal group. We say that a vector
bundle has the structure group G if there exists an atlas of bundle charts for
which all transition maps have their values in G.

Definition 1.5.3 Let (E, π,M) be a vector bundle. A section of E is a
differentiable map s : M → E with π ◦ s = idM . The space of sections of E
is denoted by Γ (E).

We have already seen an example of a vector bundle above, namely the
tangent bundle TM of a differentiable manifold M.

Definition 1.5.4 A section of the tangent bundle TM of M is called a vector
field on M.

Let now f : M → N be a differentiable map, (E, π,N) a vector bundle
over N. We want to pull back the bundle via f, i.e. construct a bundle f∗E,
for which the fiber over x ∈M is Ef(x), the fiber over the image of x.

Definition 1.5.5 The pulled back bundle f∗E is the bundle over M with
bundle charts (ϕ ◦ f, f−1(U)), where (ϕ,U) are bundle charts of E.

We now want to extend some algebraic concepts and constructions from
vector spaces to vector bundles by performing them fiberwise. For example:

Definition 1.5.6 Let (E1, π1,M) and (E2, π2,M) be vector bundles over M.
Let the differentiable map f : E1 → E2 be fiber preserving, i.e.

π2 ◦ f = π1,

and let the fiber maps fx : E1,x → E2,x be linear, i.e. vector space homomor-
phisms. Then f is called a bundle homomorphism.

Definition 1.5.7 Let (E, π,M) be a vector bundle of rank n. Let E′ ⊂ E,
and suppose that for any x ∈ M there exists a bundle chart (ϕ,U) with
x ∈ U and

ϕ(π−1(U) ∩ E′) = U × Rm(⊂ U × Rn,m ≤ n).

The resulting vector bundle (E′, π|E′ ,M) is called subbundle of E of rank m.

Let us discuss an example: S1 = {x ∈ R2 : |x|2 = 1} is a submanifold of
R2. If we restrict the tangent bundle TR2 of R2 to S1, we obtain a bundle
E over S1 that is isomorphic to S1 ×R2. The tangent bundle of S1 has fiber
TxS

1 = {y ∈ R2 : x · y = 0} ⊂ R2 (where the dot · denotes the Euclidean
scalar product). TS1 is a subbundle of TR2|S1; the reader is invited to write
down explicit bundle charts.
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Definition 1.5.8 Let (E1, π1,M) and (E2, π2,M) be vector bundles over
M. The Cartesian product of E1 and E2 is the vector bundle over M with
fiber E1,x ×E2,x and bundle charts (ϕα × ψβ , Uα ∩ Vβ), where (ϕα, Uα) and
(ψβ , Vβ) are bundle charts for E1 and E2 resp., and

(ϕα × ψβ)(x, (v, w)) := (ϕα(x, v), ψβ(x,w)) (v ∈ E1,x, w ∈ E2,x).

Thus, the product bundle is simply the bundle with fiber over x ∈ M
being the product of the fibers of E1 and E2 over x. By this pattern, all
constructions for vector spaces can be extended to vector bundles. Of partic-
ular importance for us will be dual space, exterior and tensor product. Let
us briefly recall the definition of the latter:

Let V and W be vector spaces (as always over R) of dimension m and
n, resp., and let (e1, . . . , em) and (f1, . . . , fn) be bases. Then V ⊗W is the
vector space of dimension mn spanned by the basis (ei ⊗ fj) i=1,...,m

j=1,...,n
. There

exists a canonical bilinear map

L : V ×W → V ⊗W

mapping (aiei, b
jfj) onto aibjei ⊗ fj

One may then also define the tensor product of more than two vector
spaces in an associative manner.

Definition 1.5.9 Let M be a differentiable manifold, x ∈ M. The vector
space dual to the tangent space TxM to R is called the cotangent space of
M at the point x and denoted by T ∗

xM. The vector bundle over M whose
fibers are the cotangent spaces of M is called the cotangent bundle of M and
denoted by T ∗M. Elements of T ∗M are called cotangent vectors, sections of
T ∗M are 1-forms.

We now want to study the transformation behavior of cotangent vectors.
Let (ei)i=1,...,d be a basis of TxM and (ωj)j=1,...,d the dual basis of T ∗

xM, i.e.

ωj(ei) = δj
i =

{
1 for i = j
0 for i 
= j

.

Moreover, let v = viei ∈ TxM, η = ηjω
j ∈ T ∗

xM. We have η(v) = ηiv
i. Let

the bases (ei) and (ωj) be given by local coordinates, i.e.

ei =
∂

∂xi
, ωj = dxj .

Let now f be a coordinate change. v is transformed to

f∗(v) := vi ∂f
α

∂xi

∂

∂fα
.
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η then has to be transformed to

f∗(η) := ηj
∂xj

∂fβ
dfβ

because in this case

f∗(η)(f∗(v)) = ηj
∂xj

∂fα
vi ∂f

α

∂xi
= ηiv

i = η(v).

Thus a tangent vector transforms with the functional matrix of the coordinate
change whereas a cotangent vector transforms with the transposed inverse
of this matrix. This different transformation behavior is expressed by the
following definition:

Definition 1.5.10 A p times contravariant and q times covariant tensor on
a differentiable manifold M is a section of

TM ⊗ . . .⊗ TM︸ ︷︷ ︸
p times

⊗ T ∗M ⊗ . . .⊗ T ∗M︸ ︷︷ ︸
q times

.

Actually, one should speak of a tensor field, because “tensor” often also
means an element of the corresponding fibers, in the same manner, as a
(tangent) vector is an element of TxM and a vector field a section of TM.

If f is a coordinate change, a p times contravariant and q times covariant
tensor is transformed p times by the matrix (df) and q times by the matrix
(df−1)t.

Lemma 1.5.1 A Riemannian metric on a differentiable manifold M is a two
times covariant (and symmetric and positive definite) tensor on M.

Proof. From the formula (1.4.3) for the transformation behavior of a Rieman-
nian metric. �

A Riemannian metric thus is a section of T ∗M ⊗ T ∗M. We consequently
write the metric in local coordinates as

gij(x)dxi ⊗ dxj .

Theorem 1.5.2 The tangent bundle of a Riemannian manifold M of dimen-
sion d has structure group O(d).

Proof. Let (f, U) be a bundle chart for TM,

f : π−1(U) → U × Rd.
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Let e1, . . . , ed be the canonical basis vectors of Rd, and let v1, . . . , vd be the
sections of π−1(U) with f(vi) = ei, i = 1, . . . , d. Applying the Gram-Schmidt
orthogonalization procedure to v1(x), . . . , vd(x) for each x ∈ U we obtain
sections w1, . . . , wd of π−1(U) for which w1(x), . . . , wd(x) are an orthonormal
basis w.r.t. the Riemannian metric on TxM, for each x ∈ U. By

f ′ : π−1(U) → U × Rd

λiwi(x) → (x, λ1, . . . , λd)

we then get a bundle chart which maps the basis w1(x), . . . , wd(x), i.e. an
orthonormal basis w.r.t. the Riemannian metric, for each x ∈ U onto an
Euclidean orthonormal basis of Rd. We apply this orthonormalization process
for each bundle chart and obtain a new bundle atlas whose transition maps
always map an Euclidean orthonormal basis of Rd into another such basis,
and are hence in O(d). �

We want to point out, however, that in general there do not exist local
coordinates for which wi(x) = ∂

∂xi for i = 1, . . . , d.

Corollary 1.5.1 The tangent bundle of an oriented Riemannian manifold of
dimension d has structure group SO (d).

Proof. The orientation allows to select an atlas for which all transition maps
have positive functional determinant. From this, one sees that we also may
obtain transition functions for the tangent bundle with positive determinant.
The orthonormalization process of Theorem 1.5.2 preserves the positivity of
the determinant, and thus, in the oriented case, we obtain a new bundle atlas
with transition maps in SO(d). �

Definition 1.5.11 Let (E, π,M) be a a vector bundle. A bundle metric is
given by a family of scalar products on the fibers Ex, depending smoothly
on x ∈M.

In the same manner as Theorem 1.5.2, one shows

Theorem 1.5.3 Each vector bundle (E, π,M) of rank n with a bundle
metric has structure group O(n). In particular, there exist bundle charts
(f, U), f : π−1(U) → U × Rn, for which for all x ∈ U, f−1(x, (e1, . . . , en)) is
an orthonormal basis of Ex (e1, . . . , en is an orthonormal basis of Rn). �

Definition 1.5.12 The bundle charts of Theorem 1.5.3 are called metric.

In the same manner as Theorem 1.4.1, one shows

Theorem 1.5.4 Each vector bundle can be equipped with a bundle metric.
�
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It will be more important for us, however, that a Riemannian metric au-
tomatically induces bundle metrics on all tensor bundles over M. The metric
of the cotangent bundle is given in local coordinates by

〈ω, η〉 = gijωiηj for ω = ωidx
i, η = ηidx

i. (1.5.5)

(We recall that (gij) is the matrix inverse to (gij)).
Namely, this expression has the correct transformation behavior under

coordinate changes: If w → x(w) is a coordinate change, we get

ωidx
i = ωi

∂xi

∂wα
dwα =: ω̃αdw

α,

while gij is transformed into

hαβ = gij ∂w
α

∂xi

∂wβ

∂xj
,

and
hαβω̃αη̃β = gijωiηj .

Moreover, we get

‖ω(x)‖ = sup{ω(x)(v) : v ∈ TxM, ‖v‖ = 1}.
A Riemannian metric also induces an identification between TM and T ∗M :

v = vi ∂

∂xi
corresponds to ω = ωjdx

j

with ωj = gijv
i

or vi = gijωj .

(1.5.5) may also be justified as follows:
Under this identification, to v ∈ TxM there corresponds a 1-form ω ∈

T ∗
xM via

ω(w) := 〈v, w〉 for all w

and (1.5.5) means then that

‖ω‖ = ‖v‖.
For example, on TM ⊗ TM, the metric is given by

〈v ⊗ w, ξ ⊗ η〉 = gijv
iξjgk�w

kηl (1.5.6)

(v = vi ∂
∂xi etc. in local coordinates).

Definition 1.5.13 A local orthonormal basis of TxM of the type obtained
in Theorem 1.5.3 is called an (orthonormal) frame field.
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We put

Λp(T ∗
xM) := T ∗

xM ∧ . . . ∧ T ∗
xM︸ ︷︷ ︸

p times

(exterior product).

On Λp(T ∗
xM), we have two important operations: First, the exterior product

by η ∈ T ∗
xM = Λ1(T ∗

xM) :

Λp(T ∗
xM)→ Λp+1(T ∗

xM)
ω −→ ε(η)ω := η ∧ ω.

Second, the interior product or contraction by an element v ∈ TxM :

Λp(T ∗
xM) → Λp−1(T ∗

xM)
ω −→ ι(v)ω

with
(ι(v)ω(v1, . . . , vp−1) := ω(v, v1, . . . , vp−1)

for v, v1, . . . , vp−1 ∈ TxM.

In fact, such constructions may be carried out with any vector space W and
its dual W ∗ in place of T ∗

xM and TxM . This will be relevant in §1.8.
The vector bundle over M with fiber Λp(T ∗

xM) over x is then denoted by
Λp(M).

Definition 1.5.14 The space of sections of Λp(M) is denoted by Ωp(M),
i.e. Ωp(M) = Γ (Λp(M)). Elements of Ωp(M) are called (exterior) p-forms.

A p-form thus is a sum of terms of the form

ω(x) = η(x)dxi1 ∧ . . . ∧ dxip

where η(x) is a smooth function and (x1, . . . , xd) are local coordinates.

Definition 1.5.15 The exterior derivative d : Ωp(M) → Ωp+1(M) (p =
0, . . . , d = dimM) is defined through the formula

d(η(x)dxi1 ∧ . . . ∧ dxip) =
∂η(x)
∂xj

dxj ∧ dxi1 ∧ . . . ∧ dxip

and extended by linearity to all of Ωp(M).

Lemma 1.5.2 If ω ∈ Ωp(M), ϑ ∈ Ωq(M), then d(ω∧ϑ) = dω∧ϑ+(−1)pω∧
dϑ.

Proof. This easily follows from the formula ω ∧ ϑ = (−1)pqϑ ∧ ω and the
definition of d. �
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Let f : M → N be a differentiable map,

ω(z) = η(z)dzi1 ∧ . . . ∧ dzip ∈ Ωp(N).

We then define

f∗(ω)(x) = η(f(x))
∂f i1

∂xα1
dxα1 ∧ . . . ∧ ∂f ip

∂xαp
dxαp .

This obviously is the correct transformation formula for p-forms.

Lemma 1.5.3
d(f∗(ω)) = f∗(dω).

Proof. This easily follows from the transformation invariance

∂η(z)
∂zj

dzj =
∂η(f(x))
∂zj

∂f j

∂xα
dxα =

∂η(f(x))
∂xα

dxα. �

Corollary 1.5.2 d is independent of the choice of coordinates.

Proof. Apply Lemma 1.5.3 to a coordinate transformation f. �

Theorem 1.5.5 d ◦ d = 0.

Proof. By linearity of d, it suffices to check the asserted identity on forms of
the type

ω(x) = f(x)dxi1 ∧ . . . ∧ dxip .

Now
d ◦ d(ω(x))

= d
( ∂f
∂xj

dxj ∧ dxi1 ∧ . . . ∧ dxip
)

=
∂2f

∂xj∂xk
dxk ∧ dxj ∧ dxi1 ∧ . . . ∧ dxip

= 0,

since ∂2f
∂xj∂xk = ∂2f

∂xk∂xj (f is assumed to be smooth) and

dxj ∧ dxk = −dxk ∧ dxj . �

Let now M be a differentiable submanifold of the Riemannian manifold
N ; dimM = m,dimN = n. We saw already that M then also carries a
Riemannian metric. For x ∈M, we define

T⊥
x M ⊂ TxN
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by
T⊥

x M := {v ∈ TxN : ∀w ∈ TxM : 〈v, w〉 = 0},
where 〈., .〉, as usual, is the scalar product given by the Riemannian metric.

The spaces T⊥
x M are the fibers of a vector bundle T⊥M over M, and

TM and T⊥M are both subbundles of TN|M , the restriction of TN to M
(in a more complicated manner: TN|M = i∗TN, where i : M → N is the
differentiable embedding of M as a submanifold of N). In order to see this,
one may choose the first m basis vectors v1, . . . , vm of TN|M in the orthonor-
malization procedure of the proof of Theorem 1.5.2 in such a manner that
they locally span TM.

Then TM is also locally spanned by w1, . . . , wm (notation as in the proof
of Theorem 1.5.2), and the remaining basis vectors then span T⊥M, and we
have

〈wi, wα〉 = 0 for i = 1, . . . ,m, α = m+ 1, . . . , n.

Thus, T⊥M is the orthogonal complement of TM in TN|M .

Definition 1.5.16 T⊥M is called the normal bundle of M in N.

For our example of the submanifold S1 of R2, T⊥S1 is the subbundle of
TR2

|S1 , the restriction of TR2 to S1, with fiber T⊥
x S1 = {λx : λ ∈ R} ⊂ R2.

We conclude this section with a consideration of the complex case – again,
we remind the reader that is needed only in particular places, like 5.2.

Definition 1.5.17 A vector bundle E over a differentiable manifold M is
called a complex vector bundle if each fiber Ez = π−1(z) is a complex vector
space, i.e., isomorphic to z×Ck, and if that complex structure varies smoothly,
that is, the local trivializations are of the form

ϕ : π−1(U) → U × Ck.

We thus have transition maps

ϕβα : Uα ∩ Uβ → Gl (k,C).

Here, in contrast to the Definition 1.1.5 of a complex manifold, we neither
require that the base M be complex nor that these transition maps be holo-
morphic. If, however, these conditions are satisfied, that is, M is a complex
manifold and the transition maps are ho lomorphic, then we have a holomor-
phic vector bundle .

On a complex manifold M , in local holomorphic coordinates, we have the
1-forms

dzj := dxj + idyj , dzk̄ := dxj − idyj
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(recall (1.1.2)). We can then decompose the space Ωk of k-forms into sub-
spaces Ωp,q with p+ q = k. Namely, Ωp,q is locally spanned by forms of the
type

ω(z) = η(z)dzi1 ∧ . . . ∧ dzip ∧ dzj̄1 ∧ . . . ∧ dzj̄q .

Thus
Ωk(M) =

∑
p+q=k

Ωp,q(M). (1.5.7)

We can then let the differential operators

∂ =
1
2

(
∂

∂xj
− i

∂

∂yj

)
(dxj + idyj) and ∂̄ =

1
2

(
∂

∂xj
+ i

∂

∂yj

)
(dxj − idyj)

(1.5.8)
operate on such a form by

∂ω =
∂η

∂zi
dzi ∧ dzi1 ∧ . . . ∧ dzip ∧ dzj̄1 ∧ . . . ∧ dzj̄q (1.5.9)

and
∂̄ω =

∂η

∂zj̄
dzj̄ ∧ dzi1 ∧ . . . ∧ dzip ∧ dzj̄1 ∧ . . . ∧ dzj̄q . (1.5.10)

The following important relations link them with the exterior derivative
d:

Lemma 1.5.4 The exterior derivative d satisfies

d = ∂ + ∂̄. (1.5.11)

Moreover,

∂∂ = 0, ∂̄∂̄ = 0, (1.5.12)
∂∂̄ = −∂̄∂ . (1.5.13)

Proof. We have

∂ + ∂̄ =
1
2

(
∂

∂xj
− i

∂

∂yj

)
(dxj + idyj) +

1
2

(
∂

∂xj
+ i

∂

∂yj

)
(dxj − idyj)

=
∂

∂xj
dxj +

∂

∂yj
dyj = d.

Therefore,
0 = d2 = (∂ + ∂̄)(∂ + ∂̄) = ∂2 + ∂∂̄ + ∂̄∂ + ∂̄2

and decomposing this into types yields (1.5.12) and (1.5.13). One may verify
these relations also by direct computation, e.g.

∂∂̄ =
∂2

∂zj∂zk̄
dzj ∧ dzk̄ = − ∂2

∂zk̄∂zj
dzk̄ ∧ dzj = −∂̄∂.

�
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1.6 Integral Curves of Vector Fields. Lie Algebras

Let M be a differentiable manifold, X a vector field on M, i.e. a (smooth)
section of the tangent bundle TM. X then defines a first order differential
equation (or, more precisely, if dimM > 1, a system of differential equations):

ċ = X(c). (1.6.1)

This means the following: For each p ∈M, one wants to find an open interval
I = Ip around 0 ∈ R and a solution of the following differential equation for
c : I →M

dc

dt
(t) = X(c(t)) for t ∈ I

c(0) = p . (1.6.2)

One checks in local coordinates that this is indeed a system of differential
equations: in such coordinates, let c(t) be given by

(c1(t), . . . , cd(t)) (d = dimM)

and let X be represented by

Xi ∂

∂xi
.

Then (1.6.2) becomes

dci

dt
(t) = Xi(c(t)) for i = 1, . . . , d. (1.6.3)

Since (1.6.3) has a unique solution for given initial value c(0) = p by the
Picard-Lindelöf theorem, we obtain

Lemma 1.6.1 For each p ∈ M, there exist an open interval Ip ⊂ R with
0 ∈ Ip and a smooth curve

cp : Ip →M

with

dcp
dt

(t) = X(cp(t))

cp(0) = p. �

Since the solution also depends smoothly on the initial point p by the
theory of ODE, we furthermore obtain

Lemma 1.6.2 For each p ∈M, there exist an open neighborhood U of p and
an open interval I with 0 ∈ I, with the property that for all q ∈ U, the curve
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cq (ċq(t) = X(cq(t)), cq(0) = q) is defined on I. The map (t, q) → cq(t) from
I × U to M is smooth. �

Definition 1.6.1 The map (t, q) → cq(t) is called the local flow of the vector
field X. The curve cq is called the integral curve of X through q.

For fixed q, one thus seeks a curve through q whose tangent vector at each
point coincides with the value of X at this point, i.e. a curve which is always
tangent to the vector field X. Now, however, we want to fix t and vary q; we
put

ϕt(q) := cq(t).

Theorem 1.6.1 We have

ϕt ◦ ϕs(q) = ϕt+s(q), if s, t, t+ s ∈ Iq, (1.6.4)

and if ϕt is defined on U ⊂M, it maps U diffeomorphically onto its image.

Proof. We have
ċq(t+ s) = X(cq(t+ s)),

hence
cq(t+ s) = ccq(s)(t).

Starting from q, at time s one reaches the point cq(s), and if one proceeds a
time t further, one reaches cq(t+ s). One therefore reaches the same point if
one walks from q on the integral curve for a time t+ s, or if one walks a time
t from cq(s). This shows (1.6.4). Inserting t = −s into (1.6.4) for s ∈ Iq, we
obtain

ϕ−s ◦ ϕs(q) = ϕ0(q) = q.

Thus, the map ϕ−s is the inverse of ϕs, and the diffeomorphism property
follows. �

Corollary 1.6.1 Each point in M is contained in precisely one integral curve
for (1.6.1).

Proof. Let p ∈ M . Then p = cp(0), and so, it is trivially contained in an
integral curve. Assume now that p = cq(t). Then, by Theorem 1.6.1, q =
cp(−t). Thus, any point whose flow line passes through p is contained in the
same flow line, namely the one starting at p. Therefore, there is precisely one
flow line going through p. �

We point out, however, that flow lines can reduce to single points; this
happens for those points for whichX(p) = 0. Also, flow lines in general are not
closed even if the flow exists for all t ∈ R. Namely, the points limt→±∞ cp(t)
(assuming that these limits exist) need not be contained in the flow line
through p.
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Definition 1.6.2 A family (ϕt)t∈I (I open interval with 0 ∈ I) of diffeo-
morphisms from M to M satisfying (1.6.4) is called a local 1-parameter group
of diffeomorphisms.

In general, a local 1-parameter group need not be extendable to a group,
since the maximal interval of definition Iq of cq need not be all of R. This is
already seen by easy examples, e.g. M = R, X(τ) = τ2 d

dτ , i.e. ċ(t) = c2(t)
as differential equation.

However

Theorem 1.6.2 Let X be a vector field on M with compact support. Then
the corresponding flow is defined for all q ∈ M and all t ∈ R, and the local
1-parameter group becomes a group of diffeomorphisms.

Proof. By Lemma 1.6.2, for every p ∈ M there exist a neighborhood U and
ε > 0 such that for all q ∈ U, the curve cq is defined on (−ε, ε). Let now
suppX ⊂ K, K compact. K can then be covered by finitely many such
neighborhoods, and we choose ε0 as the smallest such ε.

Since for q 
∈ K X(q) = 0,

ϕt(q) = cq(t)

is defined on (−ε0, ε0) ×M, and for |s|, |t| < ε0/2, we have the semigroup
property (1.6.4).

Since the interval of existence (−ε0, ε0) may be chosen uniformly for all
q, one may iteratively extend the flow to all of R. For this purpose, we write
t ∈ R as

t = m
ε0
2

+ ρ with m ∈ Z, 0 ≤ ρ < ε0/2

and put
ϕt := (ϕε0/2)m ◦ ϕρ

(ϕt)t∈R then is the desired 1-parameter group. �

Corollary 1.6.2 On a compact differentiable manifold, any vector field gen-
erates a 1-parameter group of diffeomorphisms. �

The preceding is a geometric interpretation of systems of first order ODE
on manifolds. However, also higher order systems of ODE may be reduced
to first order systems by introducing additional independent variables. As an
example, we want to study the system for geodesics, i.e. in local coordinates

ẍi(t) + Γ i
jk(x(t))ẋj(t)ẋk(t) = 0, i = 1, . . . , d. (1.6.5)

We want to transform this second order system into a first order system on
the cotangent bundle T ∗M. As usual, we locally trivialize T ∗M by a chart

T ∗M|U � U × Rd
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with coordinates (x1, . . . , xd, p1, . . . , pd).
We also put

H(x, p) =
1
2
gij(x)pipj (gij(x)gjk(x) = δi

k) . (1.6.6)

(The transformation behavior of gij and pk implies that H does not depend
on the choice of coordinates.)

Theorem 1.6.3 (1.6.5) is equivalent to the following system on T ∗M :

ẋi =
∂H

∂pi
= gij(x)pj

ṗi = −∂H
∂xi

= −1
2
gjk

,i(x)pjpk (gjk
,i :=

∂

∂xi
gjk) . (1.6.7)

Proof. From the first equation

ẍi = gij(x)ṗj + gij
,k(x)ẋkpj

= gij ṗj + gij
,kẋ

kgj�ẋ
�

and with the second equation then

ẍi = −1
2
gijg�k

,jp�pk + gij
,kgj�ẋ

kẋ�

= +
1
2
gijg�mgmn,jg

nkg�rẋ
rgksẋ

s

− gimgmn,kg
njgj�ẋ

kẋ�

(from gijgjk = δi
k it follows that gij

,� = −gimgmn,�g
nj)

=
1
2
gijgmn,j ẋ

mẋn − gimgmn,kẋ
kẋn

=
1
2
gij(gmn,j − gjn,m − gjm,n)ẋmẋn

since gmn,kẋ
kẋn =

1
2
gmn,kẋ

kẋn +
1
2
gmk,nẋ

kẋn

and after renumbering some indices
= −Γ i

mnẋ
mẋn. �

Definition 1.6.3 The flow determined by (1.6.7) is called the cogeodesic
flow. The geodesic flow on TM is obtained from the cogeodesic flow by the
first equation of (1.6.7).

Thus, the geodesic lines are the projections of the integral curves of the
geodesic flow onto M.
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The reason for considering the cogeodesic instead of the geodesic flow is
that the former is a Hamiltonian flow for the Hamiltonian H from (1.6.6).

We remark that by (1.6.7), we have along the integral curves

dH

dt
= Hxi ẋi +Hpi

ṗi = −ṗiẋ
i + ẋiṗi = 0.

Thus, the cogeodesic flow maps the set Ex := {(x, p) ∈ T ∗M : H(x, p) = λ}
onto itself for every λ ≥ 0. If M is compact, so are all Eλ. Hence, by Corollary
1.6.2, the geodesic flow is defined on all of Eλ, for every λ. Since M = ∪

λ≥0
Eλ,

Theorem 1.6.3 yields a new proof of Theorem 1.4.7.

If ψ : M → N is a diffeomorphism between differentiable manifolds, and
if X is a vector field on M, we define a vector field

Y = ψ∗X

on N by
Y (p) = dψ(X(ψ−1(p))). (1.6.8)

Then

Lemma 1.6.3 For any differentiable function f : N → R

(ψ∗X)(f)(p) = X(f ◦ ψ)(ψ−1(p)) . (1.6.9)

Proof.

(ψ∗X)(f)(p) = (dψ ◦X)(f)(p)
= (df ◦ dψ ◦X)(ψ−1(p))
= X(f ◦ ψ)(ψ−1(p)). �

If ϕ : N → P is another diffeomorphism, obviously

(ϕ ◦ ψ)∗X = ϕ∗(ψ∗(X)) (1.6.10)

Lemma 1.6.4 Let X be a vector field on M, ψ : M → N a diffeomorphism.
If the local 1-parameter group generated by X is given by ϕt, the local group
generated by ψ∗X is

ψ ◦ ϕt ◦ ψ−1.

Proof. ψ ◦ϕt ◦ψ−1 is a local 1-parameter group, and therefore, by uniqueness
of solutions of ODE, it suffices to show the claim near t = 0. Now
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d

dt
(ψ ◦ ϕt ◦ ψ−1(p))|t=0 = dψ(

d

dt
ϕt ◦ ψ−1(p)|t=0)

(where dψ is evaluated at ϕ0 ◦ ψ−1(p)) = ψ−1(p))
= dψX(ψ−1(p)) = ψ∗X(p). �

Definition 1.6.4 For vector fields X,Y on M, the Lie bracket

[X,Y ]

is defined as the vector field

Xj ∂Y
i

∂xj

∂

∂xi
− Y j ∂X

i

∂xj

∂

∂xi
(X = Xi ∂

∂xi
, Y = Y i ∂

∂xi
).

We say that the vector fields X and Y commute, if

[X,Y ] = 0.

Lemma 1.6.5 [X,Y ] is linear (over R) in X and Y. For a differentiable
function f : M → R, we have [X,Y ]f = X(Y (f)) − Y (X(f)). Furthermore,
the Jacobi identity holds:

[[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0

for any three vector fields X,Y,Z.

Proof. In local coordinates with X = Xi ∂
∂xi , Y = Y i ∂

∂xi , we have

[X,Y ]f = Xj ∂Y
i

∂xj

∂f

∂xi
− Y j ∂X

i

∂xj

∂f

∂xi
= X(Y (f))− Y (X(f)) (1.6.11)

and this is linear in f,X, Y. This implies the first two claims. The Jacobi
identity follows by direct computation. �

Definition 1.6.5 A Lie algebra (over R) is a real vector space V equipped
with a bilinear map [·, ·] : V × V → V, the Lie bracket, satisfying:

(i) [X,X] = 0 for all X ∈ V.

(ii) [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 for all X,Y,Z ∈ V.

Corollary 1.6.3 The space of vector fields on M, equipped with the Lie
bracket, is a Lie algebra. �

Lemma 1.6.6 Let ψ : M → N be a diffeomorphism, X,Y vector fields on
M. Then

[ψ∗X,ψ∗Y ] = ψ∗[X,Y ]. (1.6.12)

Thus, ψ∗ induces a Lie algebra isomorphism.
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Proof. Directly from Lemma 1.6.3. �

We now want to investigate how one might differentiate tensor fields. A
function f : M → R, if smooth, may simply be differentiated at a point x by
comparing its values at x with those at neighbouring points. For a tensor field
S, this is not possible any more, because the values of S at different points
lie in different spaces, and it is not clear how to compare elements of different
fibers. For this purpose, however, one might use a map F of one fiber onto
another one, and an element v of the first fiber may then be compared with
an element w of the second fiber by comparing F (v) and w. One possibility
to obtain such a map at least between neighbouring fibers (which is sufficient
for purposes of differentiation) is to use a local 1-parameter group (ψt)t∈I

of diffeomorphisms. If for example X = Xi ∂
∂xi is a vector field, we consider

(ψ−t)∗X(ψt(x)). This yields a curve Xt in TxM (for t ∈ I), and such a curve
may be differentiated. In particular,

(ψ−t)∗
∂

∂xi
(ψt(x)) =

∂ψk
−t

∂xi

∂

∂xk
(evaluated atψt(x)). (1.6.13)

(In general, one has for ϕ : M → N ϕ∗ ∂
∂xi = ∂ϕk

∂xi
∂

∂ϕk , but in case M = N

and x and ϕ(x) are contained in the same coordinate neighborhood, of course
∂

∂ϕk = ∂
∂xk ).

If ω = ωidx
i is a 1-form, we may simply consider

(ψ∗
t )(ω)(x) = ωi(ψt(x))

∂ψi
t

∂xk
dxk, (1.6.14)

which is a curve in T ∗
xM.

In general for a smooth map ϕ : M → N and a 1-form ω = ωidz
i on N,

ϕ∗ω := ωi(ϕ(x))
∂zi

∂xk
dxk; (1.6.15)

note that ϕ need not be a diffeomorphism here.
Analogously, for a section h = hijdz

i ⊗ dzj , of T ∗N ⊗ T ∗N

(ϕ∗)h = hij
∂zi

∂xk

∂zj

∂x�
dxk ⊗ dx�. (1.6.16)

Finally, for a function f : N → R of course

ϕ∗f = f ◦ ϕ. (1.6.17)

If ϕ : M → N is a diffeomorphism, and Y is a vector field on N, we put

ϕ∗Y := (ϕ−1)∗Y. (1.6.18)

in order to unify our notation.
ϕ∗ is then defined analogously for other contravariant tensors.



1.6 Integral Curves of Vector Fields. Lie Algebras 51

In particular, for a vector field X on M and a local group (ψt)t∈I as
above:

(ψ∗
t )X = (ψ−t)∗X. (1.6.19)

Definition 1.6.6 Let X be a vector field with a local 1-parameter group
(ψt)t∈I of local diffeomorphisms, S a tensor field on M. The Lie derivative
of S in the direction X is defined as

LXS :=
d

dt
(ψ∗

t S)|t=0.

Theorem 1.6.4

i) Let f : M → R be a (differentiable) function. Then

LX(f) = df(X) = X(f).

ii) Let Y be a vector field on M. Then

LXY = [X,Y ].

iii) Let ω = ωjdx
j be a 1-form on M. Then for X = Xi ∂

∂xi

LXω =
(
∂ωj

∂xi
Xi +

∂Xi

∂xj
ωi

)
dxj .

Proof.

i) LX(f) = d
dtψ

∗
t f|t=0 = d

dtf ◦ ψt|t=0 = ∂f
∂xiX

i = X(f) (cf. (1.6.17)).

ii) Y = Y i ∂
∂xi .

LXY

=
d

dt
ψ∗

t (Y i ∂

∂xi
)|t=0

=
d

dt
(ψ−t)∗(Y i ∂

∂xi
)|t=0 by (1.6.19)

=
d

dt
(Y i(ψt)

∂ψj
−t

∂xi

∂

∂xj
)|t=0 by (1.6.13), Lemma 1.6.3

=
∂Y i

∂xk
Xkδj

i

∂

∂xj
+ Y i(−∂X

j

∂xi
)
∂

∂xj
, since ψ0 = id,

d

dt
ψ−t|t=0 = −X

= (Xk ∂Y
j

∂xk
− Y k ∂X

j

∂xk
)
∂

∂xj
= [X,Y ].
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iii)

LXω =
d

dt
(ψ∗

t ω)|t=0

=
d

dt
(ωj(ψt)

∂ψj
t

∂xk
dxk)|t=0 by (1.6.14)

=
∂ωj

∂xi
Xiδj

kdx
k + ωj

∂Xj

∂xk
dxk, since ψ0 = id,

d

dt
ψt|t=0 = X

= (
∂ωj

∂xi
Xi +

∂Xi

∂xj
ωi)dxj . �

In this manner, also Lie derivatives of arbitrary tensor fields may be com-
puted. For example for h = hijdx

i ⊗ dxj

LXh = hij,kX
kdxi ⊗ dxj

+ hij
∂Xi

∂xk
dxk ⊗ dxj + hij

∂Xj

∂xk
dxi ⊗ dxk . (1.6.20)

= (hij,kX
k + hkj

∂Xk

∂xi
+ hik

∂Xk

∂xj
)dxi ⊗ dxj

Remark. For vector fields X,Y,Z and ψ = ψt, the local flow of X, Lemma
1.6.6 yields by differentiation at t = 0

LX [Y,Z] = [LXY,Z] + [Y,LXZ],

and with Theorem 1.6.4 ii), we then obtain the Jacobi identity

[X, [Y,Z]] = [[X,Y ], Z] + [Y, [X,Z]]
= −[Z, [X,Y ]]− [Y, [Z,X]].

Definition 1.6.7 Let M carry a Riemannian metric

g = gijdx
i ⊗ dxj .

A vector field X on M is called a Killing field or an infinitesimal isometry if

LX(g) = 0. (1.6.21)

Lemma 1.6.7 A vector field X on a Riemannian manifold M is a Killing
field if and only if the local 1-parameter group generated by X consists of local
isometries.

Proof. From (1.6.21)
d

dt
(ψ∗

t g)|t=0 = 0. (1.6.22)
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Since this holds for every point of M, we obtain

ψ∗
t g = g for all t ∈ I.

Therefore, the diffeomorphisms ψt are isometries. Conversely, if the ψt are
isometries, (1.6.22) holds, hence also (1.6.21). �

Lemma 1.6.8 The Killing fields of a Riemannian manifold constitute a Lie
algebra.

Proof. The space of all vector fields on a differentiable manifold constitute a
Lie algebra by Corollary 1.6.3. The claim then follows if we show that the
space of Killing fields is closed under the Lie bracket [., .], i.e. that for any two
Killing fields X and Y, [X,Y ] is again a Killing field. This, however, follows
from the following identity which was derived in the proof of Theorem 1.6.4
ii):

[X,Y ] = LXY =
d

dt
dψ−tY (ψt)|t=0,

where (ψt)t∈I is the local group of isometries generated by X. Namely, for
any fixed t,

ψ−t ◦ ϕs ◦ ψt,

is the local group for dψ−tY (ψt), where (ϕs)s∈I is the local group generated
by Y. Since ψt and ϕs are isometries, so are ψ−t ◦ ϕs ◦ ψt.

It follows that

L[X,Y ]g =
∂2

∂s∂t
(ψ−tϕsψt)∗g|s=t=0 = 0.

Thus, [X,Y ] indeed is a Killing field. �

1.7 Lie Groups

Definition 1.7.1 A Lie group is a group G carrying the structure of a dif-
ferentiable manifold or, more generally, of a disjoint union of finitely many
differentiable manifolds for which the following maps are differentiable:

G×G→ G (multiplication)
(g, h) → g · h

and
G→ G (inverse)

g → g−1 .

We say that G acts on a differentiable manifold M from the left if there
is a differentiable map
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G×M →M

(g, x) → gx

that respects the Lie group structure of G in the sense that

g(hx) = (g · h)x for all g, h ∈ G, x ∈M.

An action from the right is defined analogously.
The Lie groups we shall encounter will mostly be linear algebraic groups.

In order to describe the most important ones, let V be a vector space over R

of dimension n. We put

Gl(V ) := {A : V → V linear and bijective},
the vector space isomorphisms of V .

If V is equipped with a scalar product 〈·, ·〉, we put

O(V ) := {A ∈ Gl(V ) : 〈Av,Av〉 = 〈v, v〉 for all v ∈ V .}
and

SO (V ) :={A ∈ O(V ) : the matrix 〈Aei, ej〉i,j=1,...,n has positive
determinant for some (and hence any) basis e1, ..., en of V }.

(In the terminology of § 2.1 below, one might express the last condition
as: A transforms positive bases into positive bases.) Clearly SO(V ) ⊂ O(V ).
Gl(V ), SO(V ) and O(V ) become Lie groups w.r.t. composition of linear maps.
Since bijectivity is an open condition, the tangent space to Gl(V ), for example
at the identity linear map, i.e. the Lie algebra of Gl(V ), can be identified with

gl(V ) := {X : V → V linear},
the space of endomorphisms of V . The Lie algebra bracket is simply given by

[X,Y ] = XY − Y X.

The Lie algebra of SO(V ) then is obtained by differentiating the relation
〈Av,Aw〉 = 〈v, w〉, i.e. as

so(V ) := {X ∈ gl(V ) : 〈Xv,w〉+ 〈v,Xw〉 = 0 for all v, w ∈ V },
the skew symmetric endomorphisms of V. (Of course, this is also the Lie
algebra of O(V ), and therefore in the sequel, we shall sometimes write o(V )
in place of so(V ).)

The relation between a Lie algebra and its Lie group is given by the
exponential map which in the present case is simply

eX = Id +X +
1
2
X2 +

1
3!
X3 + . . .
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For t ∈ R, we have

etX = Id + tX +
t2

2
X2 + . . .

As the ordinary exponential map converges, this series converges for all t ∈ R,
and etX is continuous in t.

For s, t ∈ R, we have
e(s+t)X = esXetX .

In particular
eXe−X = Id

Therefore, eX is always invertible, i.e. in Gl(V ), with inverse given by e−X .
Thus, for each X ∈ gl(V ),

t −→ etX

yields a group homomorphism from R to Gl(V ).
We assume that 〈·, ·〉 is nondegenerate. Every X ∈ gl(V ) then has a

adjoint X∗ characterized by the relation

〈Xv,w〉 = 〈v,X∗w〉 for all v, w ∈ V .

With this notation
X ∈ so(V ) ⇐⇒ X = −X∗.

For X ∈ so(V ), then(
eX

)∗
= Id +X∗ +

1
2
(X∗)2 + . . .

= Id−X +
1
2
X2 − . . . = e−X = (eX)−1,

hence eX ∈ SO(V ).
In fact, the exponential map maps so(V ) onto SO(V ). However, the ex-

ponential map from gl(V ) is not surjective; its image does not even contain
all elements of Gl+(V ), the subgroup of automorphisms of V with positive
determinant (w.r.t. some basis).

Typically, (V, 〈·, ·〉) will be the Euclidean space of dimension n, i.e. Rn

with its standard Euclidean scalar product. For that purpose, we shall often
use the notation Gl(n,R) in place of Gl(V ), gl(n), O(n), SO(n), o(n), so(n)
in place of gl(V ), O(V ), SO(V ), o(V ), so(V ) etc.

Sometimes, we shall also need complex vector spaces. Let VC be a vector
space over C of complex dimension m. We put

Gl(VC) := {A : VC → VC complex linear and bijective}.
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If VC is equipped with a Hermitian product 〈·, ·〉, we put

U(VC)(:= U(VC, 〈·, ·〉)) := {A ∈ Gl(VC) : 〈Av,Aw〉 = 〈v, w〉 for all v, w ∈ VC}
SU(VC) := {A ∈ U(VC) : detA = 1}.

The associated Lie algebras are

gl(VC) := {X : VC → VC complex linear}
u(VC) := {X ∈ gl(VC) : 〈Xv,w〉+ 〈v,Xw〉 = 0

for all v, w ∈ VC},
(the skew Hermitian endomorphisms of VC), and

su(VC) := {X ∈ u(VC) : trX = 0}
(the skew Hermitian endomorphisms with vanishing trace), where the trace
tr is defined using a unitary basis e1, . . . , em of VC, i.e. 〈ei, ej〉 = δij .

If V is Cm with its standard Hermitian product, we write Gl(m,C), U(m),
SU(m) etc. in place of Gl(VC), U(VC), SU(VC) etc.

For A,B ∈ Gl(V ), we have the conjugation by A.

Int(A)B = ABA−1 (1.7.1)

For X ∈ gl(V ), then the induced action of A is given by

(AdA)X = AXA−1,

and for Y ∈ gl(V ), we obtain the infinitesimal version

(adY )X = Y X −XY = [Y,X]

as follows by writing B = etX , A = esY and differentiating (1.7.1) w.r.t. t
and s and s = t = 0.

Thus, Ad and ad associate to each element in Gl(V ) resp. gl(V ) a linear
endomorphism of the vector space gl(V ). Thus, Ad and ad yield representa-
tions of the Lie group Gl(V ) and the Lie algebra gl(V ), resp., on the vector
space gl(V ). These representations are called adjoint representations.

The unit element of a Lie group G will be denoted by e.
For g ∈ G, we have the left translation

Lg : G→ G

h → gh

and the right translation
Rg : G→ G

h → hg.

Lg and Rg are diffeomorphisms of G, (Lg)−1 = Lg−1 .
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A vector field X on G is called left invariant if for all g, h ∈ G

Lg∗X(h) = X(gh),

(see (1.6.8) for the definition of Lg∗; note that we should write (Lg)∗ for Lg∗)
i.e.

Lg∗X = X ◦ Lg . (1.7.2)

Theorem 1.7.1 Let G be a Lie group. For every V ∈ TeG,

X(g) := Lg∗V (1.7.3)

defines a left invariant vector field on G, and we thus obtain an isomorphism
between TeG and the space of left invariant vector fields on G.

Proof.
X(gh) = L(gh)∗V = Lg∗Lh∗V = Lg∗X(h)

which is left invariance.
Since a left invariant vector field is determined by its value at any point

of G, for example at e, we obtain an isomorphism between TeG and the space
of left invariant vector fields. �

By Lemma 1.6.6, for g ∈ G and vector fields X,Y

[Lg∗X,Lg∗Y ] = Lg∗[X,Y ]. (1.7.4)

Consequently, the Lie bracket of left invariant vector fields is left invariant
itself, and the space of left invariant vector fields is closed under the Lie
bracket and hence forms a Lie subalgebra of the Lie algebra of all vector
fields on G (cf. Corollary 1.6.3).

From Theorem 1.7.1, we obtain

Corollary 1.7.1 TeG carries the structure of a Lie algebra. �

Definition 1.7.2 The Lie algebra g of G is the vector space TeG equipped
with the Lie algebra structure of Corollary 1.7.1.

We may easily construct so-called left invariant Riemannian metrics on
a Lie group G by the following procedure:

We select a scalar product 〈·, ·〉 on the Lie algebra TeG.

For h ∈ G,V ∈ ThG, there exists a unique Ve ∈ TeG with

V = Lh∗Ve (1.7.5)

since Lh is a diffeomorphism.
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We then put for V,W ∈ ThG

〈V,W 〉 := 〈Ve,We〉. (1.7.6)

This defines a Riemannian metric on G which is left invariant.

In analogy to the definition of a vector bundle (Definition 1.5.1) where
the fiber is a vector space we now define a principal bundle as one where the
fiber is a Lie group.

Definition 1.7.3 Let G be a Lie group. A principal G-bundle consists of a
base M, which is a differentiable manifold, and a differentiable manifold P,
the total space of the bundle, and a differentiable projection π : P → M,
with an action of G on P satisfying:

(i) G acts freely on P from the right: (q, g) ∈ P ×G is mapped to qg ∈ P,
and qg 
= q for g 
= e.

The G-action then defines an equivalence relation on P : p ∼ q : ⇐⇒
∃g ∈ G : p = qg.

(ii) M is the quotient of P by this equivalence relation, and π : P → M
maps q ∈ P to its equivalence class. By (i), each fiber π−1(x) can then
be identified with G.

(iii) P is locally trivial in the following sense:
For each x ∈ M, there exist a neighborhood U of x and a diffeomor-
phism

ϕ : π−1(U) → U ×G

of the form ϕ(p) = (π(p), ψ(p)) which is G-equivariant, i.e. ϕ(pg) =
(π(p), ψ(p)g) for all g ∈ G.

As in Definition 1.5.2, a subgroup H of G is called the structure group of
the bundle P if all transition maps take their values in H. Here, the structure
group operates on G by left translations.

The notions of vector and principal bundle are closely associated with
each other as we now want to explain briefly. Given a principal G-bundle
P → M and a vector space V on which G acts from the left, we construct
the associated vector bundle E →M with fiber V as follows:
We have a free action of G on P × V from the right:

P × V ×G→ P × V

(p, v) · g = (p · g, g−1v) .

If we divide out this G-action, i.e. identify (p, v) and (p, v) · g, the fibers of
(P × V )/G→ P/G become vector spaces isomorphic to V, and

E := P ×G V := (P × V )/G →M
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is a vector bundle with fiber G×G V := (G× V )/G = V and structure group
G. The transition functions for P also give transition functions for E via the
left action of G on V. Conversely, given a vector bundle E with structure
group G, we construct a principal G-bundle as∐

α

Uα ×G/ ∼

with

(xα, gα) ∼ (xβ , gβ) : ⇐⇒ xα = xβ ∈ Uα ∩ Uβ and gβ = ϕβα(x)gα

where {Uα} is a local trivialization of E with transition functions ϕβα, as in
Theorem 1.5.1.

P can be considered as the bundle of admissible bases of E. In a local
trivialization, each fiber of E is identified with Rn, and each admissible basis
is represented by a matrix contained in G. The transition functions describe
a base change.

For example, if we have an SO(n) vector bundle E, i.e. a vector bundle
with structure group SO(n), then the associated principal SO(n) bundle is
the bundle of oriented orthonormal bases (frames) for the fibres of E.

Perspectives. Lie groups, while only treated relatively briefly in the present text
book, form a central object of mathematical study. An introduction to their ge-
ometry and classification may be found in [116]. As symmetry groups of physical
systems, they also play an important role in modern physics, in particular in quan-
tum mechanics and quantum field theory.

We shall encounter Lie groups again in chapter 5 as isometry groups of sym-
metric spaces. A theorem of Myers-Steenrod says that the isometry group of a
Riemannian manifold is a Lie group. For a generic Riemannian manifold, the isom-
etry group is discrete or even trivial. A homogeneous space is a Riemannian man-
ifold with a transitive group G of isometries. It may thus be represented as G/H
where H := {g ∈ G : gx0 = x0} is the isotropy group of an arbitrarily selected
x0 ∈ M. Homogeneous spaces form important examples of Riemannian manifolds
and include the symmetric spaces discussed in chapter 5.

1.8 Spin Structures

For the definition of the Dirac operator in §3.4 and its applications in Chapter
7, we need a compact Lie group, Spin(n), which is not a subgroup of Gl(n,R),
but rather a two-fold covering of SO(n) for n ≥ 3. The case n = 4 will be
particularly important for our applications. In order to define Spin(n), we
start by introducing Clifford algebras.

We let V be a vector space of dimension n over R, equipped with a
positive definite inner product 〈·, ·〉. We put ‖v‖ := 〈v, v〉 1

2 , for every v ∈ V .
For a substantial part of the algebraic constructions to follow in fact a not
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necessarily nondegenerate quadratic form on V would suffice, but here we
have no need to investigate the most general possible construction. On the
contrary, for our purposes it suffices to take Rn with its standard Euclidean
scalar product. An orthonormal basis will be denoted by e1, . . . , en.

Definition 1.8.1 The Clifford algebra Cl(V), also denoted Cl(n), is the quo-
tient of the tensor algebra

⊕
k≥0

V ⊗ . . .⊗ V generated by V by the two sided

ideal generated by all elements of the form v ⊗ v + ‖v‖2 for v ∈ V .

Thus, the multiplication rule for the Clifford algebra Cl(V ) is

vw + wv = −2〈v, w〉 (1.8.1)

In particular, in terms of our orthonormal basis e1, . . . , en, we have

ei
2 = −1 and eiej = −eiej for i 
= j. (1.8.2)

From this, one easily sees that a basis of Cl(V ) as a real vector space is given
by

e0 := 1, eα := eα1eα2 . . . eαk

with α = {α1, . . . , αk} ⊂ {1, . . . , n} and α1 < α2 . . . < αk. For such an α, we
shall put |α| := k in the sequel. Thus, as a vector space, Cl(V ) is isomorphic
to Λ∗(V ) (as algebras, these two spaces are of course different). In particular,
the dimension of Cl(V ) as a vector space is 2n. Also, declaring this basis as
being orthonormal, we obtain a scalar product on Cl(V ) extending the one
on V .

We define the degree of eα as being |α|. The eα of degree k generate the
subset Clk(V ) of elements of degree k. We have

Cl0 = R

Cl1 = V.

Finally, we let Clev(V ) and Clodd(V ) be the subspaces of elements of even,
resp. odd degree. The former is a subalgebra of Cl(V ), but not the latter.

Lemma 1.8.1 The center of Cl(V ) consists of those elements that commute
with all v ∈ Cl1(V ) = V . For n even, the center is Cl0(V ), while for n odd,
it is Cl0(V )⊕ Cln(V ).

Proof. It suffices to consider basis vectors eα = eα1 . . . eαk
as above. For

j 
∈ α, we have
eαej = (−1)|α|ejeα,

and thus |α| has to be even for eα to commute with ej , while

eαeαj
= (−1)|α|−1eαj

eα,
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so that |α| needs to be odd for a commutation.
The conclusion follows easily for monomials and with a little algebra also

in the general case. �

We next observe that

Cl2 =: spin(V ) (or simply spin(n))

is a Lie algebra with the bracket

[a, b] = ab− ba (1.8.3)

For that, note that [a, b] ∈ Cl2(V ) if a, b ∈ Cl2(V ) as an easy consequence of
(1.8.2).

To verify this, let us first consider the case

a = eiej , b = ekel.

with the indices i, j, k, l all different. In this case

eiejekel − ekeleiej = eiekelej − ekeleiej

= ekeleiej − ekeleiej = 0 by (1.8.2)

Another case is
a = eiej , b = ejek.

Then, using (1.8.2)

eiejejek − ejekeiej = −eiek − ejejekei

= −eiek + ekei

= −2eiek ∈ Cl2(V ).

From these two cases, the general pattern should be clear.
In a similar manner, the bracket defines an action τ of Cl2(V ) on Cl1(V ) =

V :
τ(a)v := [a, v] := av − va (1.8.4)

Again, by (1.8.2) [a, v] ∈ Cl1(V ) if a ∈ Cl2(V ), v ∈ Cl1(V ).
Let us consider the two typical cases as before, first

a = eiej , v = ek,

with i, j, k all different. Then

eiejek − ekeiej = eiejek − eiejek = 0.

The second case is
a = eiej , v = ei,
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Then

eiejei − eieiej = −eieiej − eieiej = 2ej ∈ Cl1(V ).

Lemma 1.8.2 τ defines a Lie algebra isomorphism between spin(V ) and
so(V ).

Proof. Since, as noted, τ(a) preserves V , and since one readily checks that
τ [a, b] = [τ(a), τ(b)], τ defines a Lie algebra homomorphism from spin(V ) =
Cl2(V ) to gl(V ). For a ∈ Cl2(V ),

〈τ(a)v, w〉+ 〈v, τ(a)w〉 = −1
2
[[a, v], w]− 1

2
[v, [a,w]] by (1.8.1)

= 0 (1.8.5)

as one easily checks by employing (1.8.2), after the same pattern as above.
Therefore, τ(a) ∈ so(V ) for all a ∈ Cl2(V ). It follows from Lemma 1.8.1

that τ is injective on Cl2(V ). Since Cl2(V ) and so both are vector spaces of
dimension n(n−1)

2 , and τ is an injective linear map between them, τ in fact
has to be bijective. �

In the Clifford algebra Cl(V ), one can now define an exponential series as
in gl(V ), and one may define the group Spin(V ) as the exponential image of
the Lie algebra spin(V ). Spin(V ) then becomes a Lie group. This follows from
general properties of the exponential map. Here, however, we rather wish to
define Spin(v) directly, as this may be more instructive from a geometric
point of view.

For that purpose, let us first introduce an anti-automorphism a → at of
Cl(V ), defined on a basis vector eα1eα2 . . . eαk

as above by

(eα1eα2 . . . eαk
)t = eαk

. . . eα2eα1 (= (−1)
k(k−1)

2 eα1eα2 . . . eαk
) (1.8.6)

In particular

eα1eα2 . . . eαk
(eα1 . . . eαk

)t =
{ 1 if k is even
−1 if k is odd

(1.8.7)

Also, for all a, b ∈ Cl(V )
(ab)t = btat. (1.8.8)

Definition 1.8.2 Pin(V ) is the group of elements of Cl(V ) of the form

a = a1 . . . ak with ai ∈ V, ‖ai‖ = 1 for i = 1, . . . , k

Spin(V ) is the group Pin(V )∩Clev(V ), i.e. the group of elements of Cl(v) of
the form

a = a1 . . . a2m with ai ∈ V, ‖ai‖ = 1 for i = 1, . . . , 2m (m ∈ N).
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We shall often write Pin(n), Spin(n) in place of Pin(Rn), Spin(Rn), resp.

From (1.8.7), we see that Spin(V ) is the group of all elements a ∈ Pin(V )
with

aat = 1 (1.8.9)

Theorem 1.8.1 Putting
ρ(a)v := avat

defines a surjective homomorphism ρ : Pin(V ) → O(V ) with ρ(Spin(V )) =
SO(V ).

In particular, Pin(V ) ⊂ Cl(V ) acts on V . This is the so-called vector
representation, not to be confused with the spinor representation introduced
below.

Proof. We start with a ∈ V , ‖a‖ = 1. In that case, every v ∈ V decomposes
as

v = λa+ a⊥, with 〈a, a⊥〉 = 0, λ ∈ R.

Then, since a = at for a ∈ V

ρ(a)v = a(λa+ a⊥)a
= −λa− aaa⊥ since aa = aat = −1 by (1.8.7)

and a⊥a+ aa⊥ = 0 by (1.8.2)
= −λa+ a⊥.

Consequently ρ(a) is the reflection across the hyperplane orthogonal to a.
This is an element of O(V ). Then also for a general a = a1 . . . ak ∈ Pin(V ),
ρ(a) is a product of reflections across hyperplanes, hence in O(V ). The pre-
ceding construction also shows that all reflections across hyperplanes are
contained in the image of ρ(Pin(V )). Since every element in O(V ) can be rep-
resented as a product of such reflections1, it follows that ρ(Pin(V )) = O(V ).
If now a ∈ Spin(V ), then ρ(a) is a product of an even number of re-
flections, hence in SO(V ). Since every element SO(V ) can conversely be
represented as a product of an even number of reflections, it follows that
ρ(Spin(V )) = SO(V ).

From (1.8.8), it is clear that ρ(ab) = ρ(a)ρ(b), and so ρ defines a homo-
morphism. �

Let us now determine the kernel of

ρ : Spin(V ) → SO(V ).

1 Every rotation of a plane is a product of two reflections, and the normal form of
an orthogonal matrix shows that it can be represented as a product of rotations
and reflections in mutually orthogonal planes.
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If a ∈ kerρ, then ρ(a)v = v for all v ∈ V . From the definition of ρ and aat = 1
for a ∈ Spin(V ), we obtain that this is equivalent to

av = va for all v ∈ V,

i.e. a commutes with all elements of V . Since all elements in Spin(V ) are
even, Lemma 1.8.1 implies a ∈ R. Since aat = 1, we conclude that

a = ±1.

We next claim that Spin(V ) is connected for dimRV ≥ 2. Let

a = a1 . . . a2m ∈ Spin(V ), with ai in the unit sphere of V . (1.8.10)

Since that sphere is connected, we may connect every ai by a path ai(t) to
e1. Hence, a can be connected to e1 . . . e1 (2m times), which is ±1. Thus we
need to connect 1 and −1. We use the path

γ(t) =
(
cos

(π
2
t
)
e1 + sin

(π
2
t
)
e2

)(
cos

(π
2
t
)
e1 − sin

(π
2
t
)
e2

)
= − cos2

(π
2
t
)

+ sin2
(π

2
t
)
− 2 sin

(π
2
t
)

cos
(π

2
t
)
e1e2

since e1e1 = e2e2 = −1.

This path is contained in Spin(V ) and satisfy γ(0) = −1, γ(1) = 1, and we
have shown connectedness of Spin(V ) for dimRV ≥ 2.

(1.8.10) also easily implies that Spin(V ) is compact. If we finally use the
information that π1(SO(V )) = Z2 for n = dimRV ≥ 3, we obtain altogether

Theorem 1.8.2 ρ : Spin(V ) → SO(V ) is a nontrivial double covering.
Spin(V ) is compact and connected, and for dimRV ≥ 3, it is also simply
connected. Thus, for dimRV ≥ 3, Spin(V ) is the universal cover of SO(V ).

�

Let us briefly return to the relation between spin(V ) and Spin(V ). If we
differentiate the relation characterizing Spin(V ), i.e.

aat = 1 and avat ∈ V for all v ∈ V ,

(differentiating means that we consider a = 1 + εb + O(ε2) and take the
derivative w.r.t. ε at ε = 0), we obtain the infinitesimal relations

b+ bt = 0 and bv + vbt = bv − vb for all v ∈ V ,

which were the relations satisfied by elements of spin(V ) = Cl2(V ). Since
the preceding implies that Spin(V ) and spin(V ) have the same dimension,
namely the one of SO(V ) and so(V ), i.e. n(n−1)

2 , spin(V ) indeed turns out to
be the Lie algebra of the Lie group Spin(V ).

Let us also discuss the induced homomorphism
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dρ : spin(V )→ so(V ),

the infinitesimal version of ρ. The preceding discussion implies that dρ coin-
cides with the Lie algebra isomorphism τ of Lemma 1.8.2. In order to obtain
a more explicit relation, we observe that a basis for so(n), the Lie algebra of
skew symmetric n×n-matrices is given by the matrices ei∧ej , 1 ≤ i < j ≤ n,
(denoting the skew symmetric matrix that has −1 at the intersection of the
ith row and the jth column, +1 at the intersection of the jth row and the ith

column, and 0 entries elsewhere)2. ei∧ej is the tangent vector at the identity
of SO(n) for the one parameter subgroup of rotations through an angle ϑ
in the eiej plane from ei towards ej . In Spin(n), we may consider the one
parameter subgroup

ϑ → ei(− cos(ϑ)ei + sin(ϑ)ej) = cos(ϑ) + sin(ϑ)eiej .

Its tangent vector at 1, i.e. at ϑ = 0, is eiej .

Lemma 1.8.3
dρ(eiej) = 2(ei ∧ ej)

Proof. We have seen in the proof of Theorem 1.8.1, that ρ(a) is the reflection
across the hyperplane perpendicular to a, for a unit vector a ∈ Rn. Thus,
ρ(cos(ϑ) + sin(ϑ)eiej) is the reflection across the hyperplane orthogonal to
− cos(ϑ)ei + sin(ϑ)ej followed by the one across the hyperplane orthogonal
to ei. This, however, is the rotation in the ei, ej plane through an angle of
2ϑ from ei towards ej . �

Examples.

1) From its definition, the Clifford algebra Cl(R) is R[x]/(x2 + 1), the
algebra generated by x with the relation x2 = −1. In order to make
contact with our previous notation, we should write e1 in place of x.
Of course this algebra can be identified with C, and we identify the
basis vector e1 with i . Clev(R) = Cl0(R) then are the reals, while
Clodd(R) = Cl1(R) is identified with the purely imaginary complex
numbers. Pin(R) then is the subgroup of C generated by ±i, and
Spin(R) is the group with elements ±1.

2) Cl(R2) is the algebra generated by x and y with the relations

x2 = −1, y2 = −1, xy = −yx.
Again, we write e1, e2 in place of x, y. This algebra can be identified
with the quaternion algebra H, by putting

i = e1, j = e2, k = e1e2.

2 For the sake of the present discussion, we identify V with Rn (n = dimR V ).
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Since i2 = j2 = k2 = −1, ij + ji = ik + ki = jk + kj = 0
the relations (1.8.2) are indeed satisfied. The subalgebra Clev(R2)
is generated by k, and thus it is isomorphic to C ⊂ H, where
the purely imaginary complex numbers correspond to multiples of
k. Pin(R2) is generated by the circle cos(ϑ)i + sin(ϑ)j through i
and j (ϑ ∈ S1). Spin(R2) then is the group consisting of prod-
ucts (cos(ϑ1)i + sin(ϑ1)j)(cos(ϑ2)i + sin(ϑ2)j) (ϑ1, ϑ2 ∈ S1) =
− cosϑ1 cosϑ2 − sinϑ1 sinϑ2 + (cosϑ1 sinϑ2 − cosϑ2 sinϑ1)k, i.e. the
unit circle in the above subspace C ⊂ H. (So, while Pin(V ) is gener-
ated by 1, i, j, k, Spin(V ) is generated by 1, k. i and j act on R2 by
reflection while k acts as a rotation.) Thus, Spin(R2) is isomorphic
to U(1) ∼= S1. We should note, however, that it is a double cover of
SO(2) as ±1 both are mapped to the trivial element of SO(2).

3) Similarly, we identify Cl(R3) with H⊕H by putting

e0 = (1, 1), e1 = (i,−i), e2 = (j,−j) e3 = (k,−k).
Then

e1e2 = (k, k), e2e3 = (i, i), e3e1 = (j, j),

and Clev(R3) is identified with the diagonal embedding of H into
H⊕H. Since Cl1(R3) = R3 is identified with the pairs (α,−α) of purely
imaginary quaternions α, Pin(R3) is generated by such elements of
length 1. Spin(R3) then is the group of pairs (β, β) of unit quaternions
β, as every such pair can be obtained as a product (α1,−α1)(α2,−α2)
where α1, α2 are purely imaginary unit quaternions themselves. Thus,
Spin(R3) is isomorphic to the group Sp(1) of unit quaternions in H.
One also knows that this group is isomorphic to SU(2). In fact, we
have a natural linear embedding

γ : H → C2×2 (2 by 2 matrices with complex coefficients)

by writing w ∈ H as

w = (w0 + kw1) + j(w2 + kw3) = ω + jψ

with w0, w1, w2, w3 ∈ R while we consider ω and ψ as elements of C,
and putting

w −→
(
ω −ψ
ψ ω

)
.

Then

γ(i) =
(

0 i
i 0

)
, γ(j) =

(
0 −1
1 0

)
, γ(k) =

(
i 0
0 −i

)
.

These matrices satisfy the same commutation relations as i, j, k, and

γ(ww′) = γ(w)γ(w′), γ(w) = γ(w)∗
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for all w,w′ ∈ H. Thus, γ is an algebra homomorphism. γ induces an
isomorphism between Sp(1) and SU(2).

4) Cl(R4) is identified with H2×2, the space of two by two matrices with
quaternionic coefficients, by putting

e0 =
(

1 0
0 1

)
, e1 =

(
0 1
−1 0

)
, e2 =

(
0 i
i 0

)
,

e3 =
(

0 j
j 0

)
, e4 =

(
0 k
k 0

)
.

Pin(R4) is generated by the unit sphere in Cl1(R4) = R4, i.e. in our
identification by all linear combinations of e1 e2, e3, e4 of unit length.
Spin(R4) then is the group of products of two such elements, i.e. the

group of all elements of the form
(
α 0
0 β

)
where α and β are unit

quaternions. Thus, Spin(R4) is homeomorphic to S3 × S3 ∼= Sp(1)×
Sp(1) ∼= SU(2)× SU(2). From Theorem 1.8.2, we then infer that

SO(4) ∼= Spin(4)/Z2
∼= (SU(2)× SU(2))/Z2

In the sequel, we shall also need the complex Clifford algebra and the cor-
responding spin group. For V as before, we denote the complexified Clifford
algebra by

ClC(V ) = Cl(V )⊗R C.

Thus, the eα again form a basis, and the only difference is that we now admit
complex coefficients.

For the sequel, we need to choose an orientation of V , i.e. select an (or-
thonormal) basis e1, . . . , en of V being positive. (Any other basis of V ob-
tained from this particular one by an element of SO(V ) then is also called
positive.)

Definition 1.8.3 Let e1, . . . , en be a positive orthonormal basis of V . The
chirality operator is

Γ = ime1, . . . , en ∈ ClC(V )

with m = n
2 for even n, m = n+1

2 for odd n.

It is easy to check that Γ is independent of the chosen positive orthonor-
mal basis. To see the mechanism, let us just consider the case n = 2, and the
new basis f1 = cosϑe1 + sinϑe2, f2 = − sinϑe1 + cosϑe2. Then

f1f2 = − sinϑ cosϑe1e1 + sinϑ cosϑe2e2 + cos2 ϑe1e2 − sin2 ϑe2e1

= e1e2 by (1.8.2)
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Lemma 1.8.4 Γ 2 = 1.
For odd n, Γv = vΓ for all v ∈ V .
For even n, Γv = −vΓ for all v ∈ V .

Proof. A simple computation based on (1.8.2) �

Thus, we may use Γ to obtain a decomposition

ClC(V )±

of ClC(V ) into the eigenspaces with eigenvalue ±1 under multiplication by
Γ . This is particularly interesting for even n, because we have

vClC(V )± = ClC(V )∓ for every v ∈ V \ {0},
i.e. Clifford multiplication by v interchanges these eigenspaces. This is a sim-
ple consequence of Lemma 1.8.4, namely if e.g.

Γa = a

then
Γva = −vΓa = −va.

Definition 1.8.4 Spinc(V ) is the subgroup of the multiplicative group of
units of ClC(V ) = Cl(V )⊗C generated by Spin(V ) and the unit circle in C.

Lemma 1.8.5 Spinc(V ) is isomorphic to SpinV ×Z2 S
1, where the Z2 action

identifies (a, z) with (−a,−z).

Proof. By Lemma 1.8.1, the unit complex scalars are in the center of ClC(V ),
and hence commute with Spin(V ). Therefore, we obtain a map

Spin(V )× S1 → Spinc(V ), (1.8.11)

which is surjective. The kernel of this mapping are the elements (a, z) with
az = 1, which means a = z−1 ∈ Spin(V ) ∩ S1. We have already seen in
the preparations for Theorem 1.8.2 that this latter set consists precisely of
±1. �

By Lemma 1.8.5 changing (a, z) to (−a, z) amounts to the same as chang-
ing (a, z) to (a,−z), and thus we obtain an action of Z2 on Spinc(V ). The
quotient of Spinc(V ) by this action yields a double covering

Spinc(V ) → SO(V )× S1 (1.8.12)

that is nontrivial on both factors.
The maps given in (1.8.11), (1.8.12) allow to determine the fundamental

group π1(Spinc(V )). Namely, a homotopically nontrivial loop γ in S1 induces
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a loop in Spinc(V ) that is mapped to the loop 2γ in S1 by (1.8.12) (2γ means
the loop γ traversed twice) which again is nontrivial. Thus, π1(Spinc(V ))
contains π1(S1) = Z as a subgroup. On the other hand, if we have a loop
in Spinc(V ) that is mapped to a homotopically trivial one in S1 when we
compose (1.8.12) with the projection on the second factor, it is homotopic to
a loop in the kernel of that composition. That kernel can be identified with
Spin(V ) by (1.8.11), and since Spin(V ) is simply connected by Theorem 1.8.2
for dimV ≥ 3, such a loop is homotopically trivial for dimV ≥ 3. Thus

Theorem 1.8.3 For dimV ≥ 3

π1(Spinc(V )) = Z

�

Examples. The treatment here will be based on the above discussion of ex-
amples in the real case.
1) ClC(R) = Cl(R)⊗R C = C⊕ C, and Spinc(R) ∼= S1 sits diagonally in

this space.

2) ClC(R2) = Cl(R2)⊗R C = H⊗R C. We want to identify ClC(R2) with
C2×2, the space of two by two matrices with complex coefficients.
We consider the above homomorphism of algebras H → C2×2, and
extending scalars, we obtain an isomorphism of C-algebras

H⊗ C → C2×2.

Thus, we identify ClC(R2) with C2×2. Under this identification,
Spin(R2) corresponds to the elements(

α 0
0 α

)
with α ∈ S1 = U(1) ⊂ C.

Spinc(R2) then consists of the unitary diagonal matrices, i.e. Spinc(R2)
= U(1)×U(1) = S1 × S1.

3) Clc(R3) = Cl(R3)⊗C = (H⊕H)⊗C = C2×2⊕C2×2 from the preceding
example. We have identified Spin(R3) with SU(2), and so

Spinc(R3) ∼= {
eiϑU : ϑ ∈ R, U ∈ SU(2)

}
= U(2)

4) Similarly, Clc(R4) = Cl(R3) ⊗R C = H2×2 ⊗ C = C4×4. We have
identified Spin(R4) with SU(2)× SU(2), and so

Spinc(R4) = Spin(R4)×Z2 S
1

∼= {(U, V ) ∈ U(2)×U(2) : detU = detV }
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In order to describe the isomorphism Clc(R4) ∼= C4×4 more explicitly,
we recall the homomorphism γ : H → C2×2 from the description of
Cl(R3). We define

Γ : H → C4×4

via
Γ (w) =

(
0 γ(w)

−γ(w)∗ 0

)
.

We recall

γ(1) =
(

1 0
0 1

)
γ(i) =

(
0 i
i 0

)
γ(j) =

(
0 −1
1 0

)
γ(k) =

(
i 0
0 −i

)
.

We identify R4 with H, putting e1 = 1, e2 = i, e3 = j, e4 = k. Then

Γ (e1)Γ (e2) =

⎛⎜⎝
0 i
i 0

0 −i
−i 0

⎞⎟⎠ = −Γ (e2)Γ (e1)

Γ (e1)Γ (e3) =

⎛⎜⎝
0 −1
1 0

0 −1
1 0

⎞⎟⎠ = −Γ (e3)Γ (e1)

Γ (e1)Γ (e4) =

⎛⎜⎝
i 0
0 −i

−i 0
0 i

⎞⎟⎠ = −Γ (e4)Γ (e1)

Γ (e2)Γ (e3) =

⎛⎜⎝
i 0
0 −i

i 0
0 −i

⎞⎟⎠ = −Γ (e3)Γ (e2)

Γ (e2)Γ (e4) =

⎛⎜⎝
0 1
−1 0

0 1
−1 0

⎞⎟⎠ = −Γ (e4)Γ (e2)

Γ (e3)Γ (e4) =

⎛⎜⎝
0 i
i 0

0 −i
−i 0

⎞⎟⎠ = −Γ (e4)Γ (e3)

(always with 0’s in the off diagonal blocks). One also easily checks
that
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Γ (eα)Γ (eα) = −Id, for α = 1, 2, 3, 4.
Thus, Γ preserves the relations in the Clifford algebra, and it is not
hard to verify that Γ in fact extends to the desired isomorphism
between ClC(R4) and C4×4.

The preceding examples seem to indicate a general pattern that we now
wish to demonstrate by induction on the basis of

Lemma 1.8.6 For any vector space V as above

ClC(V ⊕ R2) ∼= ClC(V )⊗C ClC(R2)

Proof. We choose orthonormal bases v1, . . . , vn of V and e1, e2 of R2. In order
to define a map that is linear over R,

l : V ⊕ R2 → ClC(V )⊗C ClC(R2)

we put
l(vj) := ivj ⊗ e1e2 , j = 1, . . . , n
l(eα) := 1⊗ eα , α = 1, 2.

Since for example

l(vjvk + vkvj) = (−vjvk − vkvj)⊗ e1e2e1e2 = vjvk + vkvj ⊗ 1
l(vjeα + eαvj) = ivj ⊗ (e1e2eα + eαe1e2) = 0 for α = 1, 2

we have an extension of l as an algebra homomorphism

l : Cl(V ⊕ R2) → ClC(V )⊗C ClC(R2).

Extending scalars from R to C, we obtain an algebra homomorphism

l : ClC(V ⊕ R2) → ClC(V )⊗C ClC(R2).

Now l has become a homomorphism between two algebras of the same di-
mension, and it is injective (and surjective) on the generators, hence an iso-
morphism. �

Corollary 1.8.1
i) If dimRV = 2n, ClC(V ) ∼= C2n×2n

,
ii) If dimRV = 2n+ 1, ClC(V ) ∼= C2n×2n ⊕ C2n×2n

.

Proof. By example 2), ClC(R2) ∼= C2×2, and the proof follows from Lemma
1.8.6 by induction, starting with example 2) in the even and example 1) in
the odd dimensional case, and using

Cm×m ⊗C C2×2 ∼= C2m×2m

�

We now wish to identify ClC(V ) for even dimensional V as the algebra of
endomorphisms of some other vector space in a more explicit manner than in
Corollary 1.8.1. We thus assume that n = dimRV is even, n = 2m. We also
choose an orientation of V , i.e. select a positive orthonormal basis e1, . . . , en.
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In V ⊗ C, we consider the subspace W spanned by the basis vectors

ηj :=
1√
2
(e2j−1 − ie2j), j = 1, . . . ,m.

If we extend the scalar product 〈·, ·〉 to V ⊗ C by complex linearity,we have

〈ηi, ηj〉C = 0 for all j, (1.8.13)

hence
〈w,w〉C = 0 for all w ∈W (1.8.14)

(One expresses this by saying that W is isotropic w.r.t. 〈·, ·〉C)
We have

V ⊗ C = W ⊕W,

with W spanned by the vectors ηj = 1√
2
(e2j−1 + ie2j), j = 1, . . . ,m. Because

of (1.8.14), W is the dual space W ∗ of W w.r.t. 〈·, ·〉C, i.e. for every w ∈
W \ {0}, there exists a unique w′ ∈W with ‖w′‖ = 1 and

〈w,w′〉C = ‖w‖.

Definition 1.8.5 The spinor space S is defined as the exterior algebra ΛW
of W . If we want to emphasize the dimension n of V , we write Sn in place of
S.

We may then identify ClC(V ) as EndC(S) as follows: We write v ∈ V ⊗C

as
v = w + w′ with w ∈W, w′ ∈W,

and for s ∈ S = ΛW , we put

ρ(w)s :=
√

2ε(w)s (=
√

2w ∧ s, as ε denotes the exterior product)
ρ(w′)s := −√2ι(w′)s (where ι(w′) denotes the interior product; note that

we identify W with the dual space W ∗ of W , c.f.
§ 1.5)

ρ obviously extends to all of ClC(V ) by the rule ρ(vw) = ρ(v)ρ(w).
We have the following explicit rules for ε(w) and ι(w′): If s = ηj1 ∧ . . . ηjk

,
with 1 ≤ j1 < . . . < jk ≤ m, then

ε(ηj)s = ηj ∧ ηj1 ∧ . . . ∧ ηjk
(= 0 if j ∈ {j1, . . . , jk}), (1.8.15)

and

ι(ηj)s =
{

0 if j /∈ {j1, . . . , jk}
(−1)µ−1ηj1 ∧ . . . ∧ η̂jµ

∧ . . . ∧ ηjk
if j = jµ. (1.8.16)

In particular

ε(ηj)iι(ηj)s =
{

0 if j /∈ {j1, . . . , jk}
s if j ∈ {j1, . . . , jk} (1.8.17)
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ι(ηj)ε(ηj)s =
{
s if j /∈ {j1, . . . , jk}
0 if j ∈ {j1, . . . , jk} (1.8.18)

Thus, we have for all s and all j

(ε(ηj)ι(ηj) + ι(ηj)ε(ηj))s = s (1.8.19).

For subsequent use in 5.2, we also record that in the same manner, one sees
that

(ε(ηj)ι(η�) + ι(η�)ε(ηj))s = 0 for j 
= �. (1.8.20)

In order to verify that the claimed identification is possible, we need to
check first that ρ preserves the relations in the Clifford algebra. The following
examples will bring out the general pattern:

ρ
(
e1

2
)

= 2
(

1√
2
ε(η1)− 1√

2
ι(η1)

)(
1√
2
ε(η1)− 1√

2
ι(η1)

)
= −(ε(η1)ι(η1) + ι(η1)ε(η1)), since ε(η1)2 = 0 = ι(η1)

2

= −1 by (1.8.19)

ρ(e1e2) + ρ(e2e1) = (ε(η1)− ι(η1))i(ε(η1) + ι(η1))
+ i(ε(η1) + ι(η1))(ε(η1)− ι(η1))

= 0

ρ(e1e3) + ρ(e3e1) = (ε(η1)− ι(η1))(ε(η2)− ι(η2))
+ (ε(η2)− ι(η2))(ε(η1)− ι(η1))

= (ε(η1)ε(η2) + ε(η2)(ε(η1)
+ (ι(η1)ι(η2) + ι(η2)ι(η1))
− (ε(η1)ι(η2) + ι(η2)ε(η1))
− (ε(η2)ι(η1) + ι(η1)ε(η2))

= 0

since the ε(η1), . . . , ι(η2) all anticommute.

(e.g. ε(η1)ι(η2)η2 ∧ η3 = ε(η1)η3 = η1 ∧ η3

ι(η2)ε(η1)η2 ∧ η3 = ι(η2)η1 ∧ η2 ∧ η3 = −η1 ∧ η3.)

Now dimCClC(V ) = 2n = (dimC (ΛW ))2 = dimC (EndC(S)), and since ρ has
nontrivial kernel, we conclude

Theorem 1.8.4 If n = dimRV is even, ClC(V ) is isomorphic to the algebra
of complex linear endomorphisms of the spinor space S. �

(Later on, we shall omit the symbol ρ and simply say that ClC(V ) operates
on the spinor space S via Clifford multiplication, denoted by “·”). Now since

ηjηj − ηjηj = 2ie2j−1e2j ,
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we have
Γ = 2−m (η1η1 − η1η1) . . . (ηmηm − ηmηm)

and so Γ acts on the spinor space S = ΛW via

ρ(Γ ) = (−1)m(ε(η1)ι(η1)− ι(η1)ε(η1)) . . . (ε(ηm)ι(ηm)− ι(ηm)ε(ηm)),

and for the same reasons as in the computation of ρ(e12), we see that ρ(Γ )
equals (−1)k on ΛkW . As above, any representation of ClC(V ), in particular
ρ, decomposes into the eigenspaces of Γ for the eigenvalues ±1, and so in the
present case we have the decomposition

S± := Λ±W

where the + (−) sign on the r.h.s. denotes elements of even (odd) degree.
Since Spin(V ) sits in Cl(V ), hence in ClC(V ), any representation of the

Clifford algebra ClC(V ) restricts to a representation of Spin(V ), and we thus
have a representation

ρ : Spin(V ) → EndC(S).

Since Spin(V ) ⊂ Cl+(V ), Spin(V ) leaves the spaces S+ and S− invariant,
and thus the representation is not irreducible, but decomposes into the ones
on S+ and S−. (The latter are in fact irreducible.)

Definition 1.8.6 The above representation ρ of Spin(V ) on the spinor space
S is called the spinor representation, and the representations on S+ and S−

are called half spinor representations.

Note that the spinor space S = ΛW is different from the Clifford space
Cl(V ) (= Λ∗(V ) as a vector space). Cl(V ), and therefore also V , acts on both
of them by Clifford multiplication.

We now want to extend the representation of Spin(V ) to Spinc(V ).

Lemma 1.8.7 Let σ : Spin(V ) → EndC(T ) be a complex representation of
Spin(V ) on some vector space T , satisfying

σ(−1) = −1.

Then σ extends in a unique manner to a representation

σ̃ : Spinc(V ) → EndC(T ).

Proof. Since σ is complex linear, it commutes with multiplication by com-
plex scalars, in particular with those of unit length. Thus, σ extends to
σ′ : Spin(V )× S1 → EndC(T ). Since σ(−1) = −1, it descends to Spinc(V ).

�
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Corollary 1.8.2 The spinor and half spinor representations of Spin(V ) pos-
sess unique extensions to Spinc(V ). �

Of course, this is also clear from the fact that these representations of
Spin(V ) come from ClC(V ).

Let us discuss the example of Clc(R4) once more. We recall the isomor-
phism

Γ : Clc(R4) → C4×4

Γ in fact is the representation described in Theorem 1.8.4, and C4 is isomor-
phic to S4. The formulas given above for the products Γ (eα)Γ (eβ) also show
that the representation admits a decomposition into two copies of C2 that is
preserved by the elements of even order of Clc(R4). In fact, these yield the
half spinor representations S±

4 in dimension 4. In the above formulas, the
upper left block corresponds to S+, the lower right one to S−.

In dimension 4, we also have a decomposition

Λ2 = Λ2,+ ⊕ Λ2,− (Λ2 = Λ2V ∗, dimV = 4)

of exterior two forms. Namely, we have the Hodge ∗ operator (to be discussed
in §2.1 for arbitrary dimensions) determined by

∗(e1 ∧ e2) = e3 ∧ e4
∗(e1 ∧ e3) = −e2 ∧ e4
∗(e1 ∧ e4) = e2 ∧ e3
∗(e2 ∧ e3) = e1 ∧ e4
∗(e2 ∧ e4) = −e1 ∧ e3
∗(e3 ∧ e4) = e1 ∧ e2

and linear extensions, where e1, . . . , e4 is an orthonormal frame in V ∗.
We have

∗∗ = 1,

and ∗ thus has eigenvalues ±1, and Λ2,± then are defined as the corresponding
eigenspaces. Both these spaces are three dimensional. Λ2,+ is spanned by
e1 ∧ e2 + e3 ∧ e4, e1 ∧ e3 − e2 ∧ e4, e1 ∧ e4 + e2 ∧ e3, while Λ2,− is spanned
by e1 ∧ e2 − e3 ∧ e4, e1 ∧ e3 + e2 ∧ e4, e1 ∧ e4 − e2 ∧ e3. Elements of Λ2,+ are
called selfdual, those of Λ2,− antiselfdual.

We have a bijective linear map ΛV ∗ → Cl2(V ), given by ei ∧ ej → ei · ej

(where ei is the orthonormal frame in V ∗ dual to the frame ei in V ).
Therefore, Γ induces a map Γ 1 : Λ2V ∗ → End(C4). In the above decom-

position of the representation of Clc,ev(R4), the selfdual forms then act only
on C2⊕{0}, while the antiselfdual ones act only on {0}⊕C2, as one directly
sees from the formulae for Γ (eα)Γ (eβ) and the description of the bases of
Λ2,±.
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Finally, let us briefly summarize the situation in the odd dimensional case.
Here, according to Corollary 1.8.1, ClC(V ) is a sum of two endomorphism
algebras, and we therefore obtain two representations of ClC(V ). When re-
stricted to Spin(V ), these representations become isomorphic and irreducible.
This yields the spinor representation in the odd dimensional case. We omit
the details.

We also observe that the spinor representation is a unitary representation
in a natural manner. For that purpose, we now extend the scalar product
〈·, ·〉 from V to V ⊗ C as a Hermitian product, i.e.

〈
n∑

i=1

αiei,

n∑
j=1

βjej〉 =
n∑

i=1

αiβi for α1, . . . , αn, β1, . . . , βn ∈ C.

Note that this is different from the above complex linear extensions 〈·, ·〉C.
This product extends to ΛV by letting the monomials ei1 ∧ . . . eik

, 1 ≤ i1 <
. . . < . . . ik ≤ n, constitute an orthonormal basis. From the above computa-
tions for the ρ(ej), one checks that each ρ(ej) preserves 〈·, ·〉, i.e.

〈ρ(ej)s, ρ(ej)s′〉 = 〈s, s′〉 for all s, s′ ∈ ΛW.

Of course, this then holds more generally for every v ∈ V with ‖v‖ = 1, and
then also for products v1 . . . vk with ‖vj‖ = 1 for j = 1, . . . , k. This implies

Corollary 1.8.3 The induced representation of Pin(V ) and Spin(V ) on
EndC(S) preserves the Hermitian product 〈·, ·〉. �

Corollary 1.8.4

〈ρ(v)s, s′〉 = −〈s, ρ(v)s′〉 for all s, s′ ∈ ΛW, v ∈ V.

Proof. We may assume ‖v‖ = 1. Then ρ(v)2 = −1, hence

〈ρ(v)s, s′〉 = −〈ρ(v)s, ρ(v)ρ(v)s′〉 = −〈s, ρ(v)s′〉 by Corollary 1.8.3.

�

After these algebraic preparations, we may now define spin structures on
an oriented Riemannian manifold M . We let TM be the tangent bundle of
M . The Riemannian metric allows to reduce the structure group of TM to
SO(n) (n = dimM), and we obtain an associated principal bundle P over M
with fiber SO(n), the so-called frame bundle of M .

Definition 1.8.7 A spin structure on M is a principal bundle P̃ over M
with fiber Spin(n) for which the quotient of each fiber by the center ±1 is
isomorphic to the above frame bundle of M . A Riemannian manifold with a
fixed spin structure is called a spin manifold.
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In other words, we require that the following diagram commutes

where π denotes the projection onto the base point, and ρ is the nontrivial
double covering ρ : Spin(n) → SO(n) on each fiber as described in Theorem
1.8.2. This is also expressed by saying that the frame bundle is lifted to a
Spin(n) bundle. It is important to note that such a lift need not always be
possible. One way to realize this is by considering the corresponding transition
functions. We recall from §1.5 that the frame bundle P for each trivializing
covering (Uα)α∈A of M induces transition functions

ϕβα : Uα ∩ Uβ → SO(n)

satisfying

ϕαα(x) = id for x ∈ Uα

ϕαβ(x)ϕβα = id for x ∈ Uα ∩ Uβ

ϕαγ(x)ϕγβ(x)ϕβα(x) = id for x ∈ Uα ∩ Uβ ∩ Uγ .

Lifting the frame bundle to a Spin(n) bundle then requires finding transition
functions

ϕ̃βα : Uα ∩ Uβ → Spin(n)

with
ρ (ϕ̃βα) = ϕβα for all β, α (1.8.21)

and satisfying the same relations as the ϕβα. By making the Uα suffi-
ciently small, in particular simply connected, lifting the ϕβα to ϕ̃βα satisfying
(1.8.21), is no problem, but the problem arises with the third relation, i.e.

ϕ̃αβ(x)ϕ̃βγ(x)ϕ̃γα(x) = id for x ∈ Uα ∩ Uβ ∩ Uγ . (1.8.22)

Namely, it may happen that ϕ̃αβ(x)ϕ̃βγ(x) and ϕ̃γα(x) differ by the nontrivial
deck transformation of the covering ρ : Spin(n) → SO(n).

In fact, the existence of a spin structure, i.e. the possibility of such a
lift, depends on a topological condition, the vanishing of the so-called Stiefel-
Whitney class w2(M) ∈ H2(M,Z2). Here, however, we cannot define these
topological concepts. Furthermore, if a spin structure exists, it need not to
be unique.

Let us assume that M possesses a spin structure P̃ →M . Since the fiber
Spin(n) of P̃ operates on the spinor space Sn and for even n also on the half
spinor spaces S±

n via the (half) spinor representations, we obtain associated
vector bundles Sn, S±

n over M with structure group Spin(n),
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Sn := P̃ ×Spin(n) Sn, S±
n := P̃ ×Spin(n) S

±
n ,

with
Sn = S+

n ⊕ S−
n for even n.

Definition 1.8.8 Sn is called the spinor bundle, S±
n the half spinor bundles

associated with the spin structure P̃ . Sections are called (half) spinor fields.

From Corollary 1.8.3, we infer that these bundles carry Hermitian prod-
ucts that are invariant under the action of Spin(n), and even of Pin(n),
on each fiber. In particular, Clifford multiplication by a unit vector in
Rn ⊂ Cl(Rn) is an isometry on each fiber. We may also consider Spinc(n) in
place of of Spin(n) and ask for a lift of the frame bundle P over M to a princi-
pal Spinc(n) bundle P̃ c. Of course, the requirement here is that the map from
a fiber of P̃ c to the corresponding one of P is given by the homomorphism

Spinc(n) → SO(n)

obtained from (1.8.12) by projecting onto the first factor.

Definition 1.8.9 Such a principal Spinc(n) bundle P̃ c (if it exists) is called
a spinc structure on M . An oriented Riemannian manifold M equipped with
a fixed spinc structure is called a spinc manifold.

Again, the existence of a spinc structure depends on a topological con-
dition, namely that w2(M) lifts to an integral class in H2(M,Z2). Again,
however, we cannot explain this here any further. We point out, however,
that the required condition is satisfied for all oriented Riemannian manifolds
of dimension 4. Thus, each oriented four-manifold possesses a spinc structure.

Given a spinc structure, we may also consider the homomorphism

Spinc(n) → S1

obtained from (1.8.12) by projecting on the second factor. Identifying S1 with
U(1),we see that a spinc structure induces a set of transition functions for a
vector bundle L with fiber C, a so called (complex) line bundle.

Definition 1.8.10 The line bundle L is called the determinant line bundle
of the spinc structure.

As in the case of a spin structure, a spinc structure induces (half) spinor
bundles S±

n , cf. Corollary 1.8.2.
We return to the frame bundle P over M with fiber SO(n). SO(n) acts on

Cl(Rn) and Clc(Rn) simply by extending the action of SO(n) on Rn. Thus,
P induces bundles
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Cl(P ) = P ×SO(n) Cl(Rn)

ClC(P ) = P ×SO(n) ClC(Rn)

of Clifford algebras.

Definition 1.8.11 The bundles Cl(P ) and ClC(P ) are called the Clifford
bundles.

Again, these Clifford bundles can be decomposed into bundles of elements
of even and of odd degree. The chirality operator Γ (cf. Def. 1.8.3) is invariant
under the action of SO(n),and it therefore defines a section of ClC(P ) of norm
1.

The definition of the Clifford bundles did not need a spin or spinc structure
on M . But suppose now that we do have such a structure, a spin structure,
say. Spin(n) acts on ClC(Rn) by conjugation.

ρ(a)v = ava−1 for a ∈ Spin(n), v ∈ ClC(Rn) (1.8.23)

(cf. Theorem 1.8.1 (note that at = a−1 for a ∈ Spin(n) by (1.8.9)) for the
action of Spin(n) on Rn, and extend this action to ClC(Rn); this is of course
induced by the above action of SO(n) on ClC(Rn)). This action commutes
with the action of Spin(n) on ClC(Rn) given by (1.8.23) and the action of
Spin(n) on Sn; namely for a ∈ Spin(n), v ∈ ClC(Rn), s ∈ Sn

(ava−1)(as) = a(vs). (1.8.24)

This compatibility with the Spin(n) actions ensures that we get a global
action

ClC(Rn)× Sn → Sn (1.8.25)

which is the above action by Clifford multiplication on each fiber.

Perspectives. References for this § are [7], [166], [259], [18], [212], [187].

Exercises for Chapter 1

1) Give five more examples of differentiable manifolds besides those dis-
cussed in the text.

2) Determine the tangent space of Sn. (Give a concrete description of
the tangent bundle of Sn as a submanifold of Sn × Rn+1.)

3) Let M be a differentiable manifold, τ : M →M an involution without
fixed points, i.e. τ ◦ τ = id, τ(x) 
= x for all x ∈ M. We call points
x and y in M equivalent if y = τ(x). Show that the space M/τ
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of equivalence classes possesses a unique differentiable structure for
which the projection M →M/τ is a local diffeomorphism.
Discuss the example M = Sn ⊂ Rn+1, τ(x) = −x. M/τ is real pro-
jective space RPn.

4)
a: Let N be a differentiable manifold, f : M → N a homeomor-

phism. Introduce a structure of a differentiable manifold on M
such that f becomes a diffeomorphism. Show that such a dif-
ferentiable structure is unique.

b: Can the boundary of a cube, i.e. the set {x ∈ Rn; max{|xi| : i =
1, . . . , n} = 1} be equipped with a structure of a differentiable
manifold?

5) We equip Rn+1 with the inner product

〈x, y〉 := −x0y0 + x1y1 + . . .+ xnyn

for x = (x0, x1, . . . , xn), y = (y0, y1, . . . , yn). We put

Hn := {x ∈ Rn+1 : 〈x, x〉 = −1, x0 > 0}.
Show that 〈·, ·〉 induces a Riemannian metric on the tangent spaces
TpH

n ⊂ TpRn+1 for p ∈ Hn. Hn is called hyperbolic space.

6) In the notations of 5), let

s = (−1, 0, . . . , 0) ∈ Rn+1

f(x) := s− 2(x− s)
〈x− s, x− s〉

Show that f : Hn → {ξ ∈ Rn : |ξ| < 1} is a diffeomorphism (here,
Rn = {(0, x1, . . . , xn)} ⊂ Rn+1). Show that in this chart, the metric
assumes the form

4
(1− |ξ|2)2 dξ

i ⊗ dξi.

7) Determine the geodesics of Hn in the chart given in 6) (The geodesics
through 0 are the easiest ones.).
Hint for 5), 6), 7) : Consult §4.4.

8) Determine the exponential map of the sphere Sn, for example at the
north pole p. Write down normal coordinates. Compute the supremum
of the radii of balls in TpS

n on which expp is injective. Where does
expp have maximal rank?

9) Same as 8) for the flat torus generated by (1, 0) and (0, 1) ∈ R2.
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10) What is the transformation behavior of the Christoffel symbols under
coordinate changes? Do they define a tensor?

11) Let c0, c1 : [0, 1] → M be smooth curves in a Riemannian manifold.
If d(c0(t), c1(t)) < i(c0(t)) for all t, there exists a smooth map c :
[0, 1] × [0, 1] → M with c(t, 0) = c0(t), c(t, 1) = c1(t) for which the
curves c(t, ·) are geodesics for all t.

12) Consider the surface S of revolution obtained by rotating the curve
(x, y = ex, z = 0) in the plane, i.e. the graph of the exponential
function, about the x − ax in Euclidean 3-space, equiped with the
induced Riemannian metric from that Euclidean space. Show that X
is complete and compute its injectivity radius.

13) Show that the structure group of the tangent bundle of an oriented
d-dimensional Riemannian manifold can be reduced to SO(d).

14) Can one define the normal bundle of a differentiable submanifold of a
differentiable manifold in a meaningful manner without introducing
a Riemannian metric?

15) Let M be a differentiable submanifold of the Riemannian manifold
N. M then receives an induced Riemannian metric, and this metric
defines a distance function and a topology on M, as explained in §1.4.
Show that this topology coincides with the topology on M that is
induced from the topology of N.

16) We consider the constant vector field X(x) = a for all x ∈ Rn+1. We
obtain a vector field X̃(x) on Sn by projecting X(x) onto TxS

n for
x ∈ Sn. Determine the corresponding flow on Sn.

17) Let T be the flat torus generated by (1, 0) and (0, 1) ∈ R2, with
projection π : R2 → T. For which vector fields X on R2 can one
define a vector field π∗X on T in a meaningful way? Determine the
flow of π∗X on T for a constant vector field X.

18) Compute a formula for the Lie derivative (in the direction of a vector
field) for a p-times contravariant and q-times covariant tensor.

19) Show that for arbitrary vector fields X,Y, the Lie derivative satisfies

LX ◦ LY − LY ◦ LX = L[X,Y ].

20) Prove Corollaries 4.2.3 and 4.2.4 below with the arguments used in
the proofs of Theorem 1.4.5 and Corollary 1.4.2.



2. De Rham Cohomology and Harmonic
Differential Forms

2.1 The Laplace Operator

We need some preparations from linear algebra. Let V be a real vector space
with a scalar product 〈·, ·〉, and let ΛpV be the p-fold exterior product of V.
We then obtain a scalar product on ΛpV by

〈v1 ∧ . . . ∧ vp, w1 ∧ . . . ∧ wp〉 = det(〈vi, wj〉) (2.1.1)

and bilinear extension to Λp(V ). If e1, . . . , ed is an orthonormal basis of V,

ei1 ∧ . . . ∧ eip
with 1 ≤ i1 < i2 < . . . < ip ≤ d (2.1.2)

constitute an orthonormal basis of ΛpV.
An orientation on V is obtained by distinguishing a basis of V as positive.

Any other basis that is obtained from this basis by a base change with positive
determinant then is likewise called positive, and the remaining bases are
called negative.

Let now V carry an orientation. We define the linear star operator

∗ : Λp(V ) → Λd−p(V ) (0 ≤ p ≤ d)

by
∗(ei1 ∧ . . . ∧ eip

) = ej1 ∧ . . . ∧ ejd−p
, (2.1.3)

where j1, . . . , jd−p is selected such that ei1 , . . . , eip
, ej1 , . . . , ejd−p

is a positive
basis of V. Since the star operator is supposed to be linear, it is determined
by its values on some basis (2.1.3).

In particular,

∗ (1) = e1 ∧ . . . ∧ ed (2.1.4)
∗ (e1 ∧ . . . ∧ ed) = 1, (2.1.5)

if e1, . . . , ed is a positive basis.
From the rules of multilinear algebra, it easily follows that if A is a d×d-

matrix, and if f1, . . . , fp ∈ V , then

∗(Af1 ∧ . . . ∧Afp) = (detA) ∗ (f1 ∧ . . . ∧ fp).
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In particular, this implies that the star operator does not depend on the
choice of positive orthonormal basis in V , as any two such bases are related
by a linear transformation with determinant 1.

For a negative basis instead of a positive one, one gets a minus sign on
the right hand sides of (2.1.3), (2.1.4), (2.1.5).

Lemma 2.1.1 ∗∗ = (−1)p(d−p) : Λp(V ) → Λp(V ).

Proof. ∗∗ maps Λp(V ) onto itself. Suppose

∗(ei1 ∧ . . . ∧ eip
) = ej1 ∧ . . . ∧ ejd−p

(cf. (2.1.3)).

Then
∗ ∗ (ei1 ∧ . . . ∧ eip

) = ±ei1 ∧ . . . ∧ eip
,

depending on whether ej1 , . . . , ejd−p
, ei1 , . . . , eip

is a positive or negative basis
of V. Now

ei1 ∧ . . . ∧ eip
∧ ej1 ∧ . . . ∧ ejd−p

= (−1)p(d−p)ej1 ∧ . . . ∧ ejd−p
∧ ei1 ∧ . . . ∧ eip

,

and (−1)p(d−p) thus is the determinant of the base change from ei1 , . . . , ejd−p

to ej1 , . . . , eip
. �

Lemma 2.1.2 For v, w ∈ Λp(V )

〈v, w〉 = ∗(w ∧ ∗v) = ∗(v ∧ ∗w). (2.1.6)

Proof. It suffices to show (2.1.6) for elements of the basis (2.1.2). For any two
different such basis vectors, w ∧ ∗v = 0, whereas

∗ (ei1 ∧ . . . ∧ eip
∧ ∗(ei1 ∧ . . . ∧ eip

))
= ∗(e1 ∧ . . . ∧ ed), where e1, . . . , ed

is an orthonormal basis ((2.1.3))
= 1 ((2.1.5)),

and the claim follows. �

Remark. We may consider 〈·, ·〉 as a scalar product on

Λ(V ) :=
d⊕

p=0
Λp(V )

with Λp(V ) and Λq(V ) being orthogonal for p 
= q.

Lemma 2.1.3 Let v1, . . . , vd be an arbitrary positive basis of V.
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Then
∗(1) =

1√
det(〈vi, vj〉)

v1 ∧ . . . ∧ vd (2.1.7)

Proof. Let e1, . . . , ed be a positive orthonormal basis as before.
Then

v1 ∧ . . . ∧ vd = (det(〈vi, vj〉)) 1
2 e1 ∧ . . . ∧ ed,

and the claim follows from (2.1.4). �

Let now M be an oriented Riemannian manifold of dimension d. Since M
is oriented, we may select an orientation on all tangent spaces TxM, hence
also on all cotangent spaces T ∗

xM in a consistent manner. We simply choose
the Euclidean orthonormal basis ∂

∂x1 , . . . ,
∂

∂xd of Rd as being positive. Since
all chart transitions of an oriented manifold have positive functional deter-
minant, calling the basis dϕ−1( ∂

∂x1 ), . . . , dϕ−1( ∂
∂xd ) of TxM positive, will not

depend on the choice of the chart.
Since M carries a Riemannian structure, we have a scalar product on each

T ∗
xM. We thus obtain a star operator

∗ : Λp(T ∗
xM)→ Λd−p(T ∗

xM),

i.e. a base point preserving operator

∗ : Ωp(M) → Ωd−p(M) (Ωp(M) = Γ (Λp(M))).

We recall that the metric on T ∗
xM is given by (gij(x)) = (gij(x))−1. There-

fore, by Lemma 2.1.3 we have in local coordinates

∗(1) =
√

det(gij)dx1 ∧ . . . ∧ dxd. (2.1.8)

This expression is called the volume form.
In particular

vol (M) :=
∫
M

∗(1) (2.1.9)

(provided this is finite).
For α, β ∈ Ωp(M) with compact support, we define the L2-product as

(α, β) : =
∫
M

〈α, β〉 ∗ (1)

=
∫
M

α ∧ ∗β by Lemma 2.1.2 .

This product on Ωp(M) is obviously bilinear and positive definite.
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So far, we have considered only smooth sections of vector bundles, in
particular only smooth p-forms. For later purposes, we shall also need Lp-
and Sobolev spaces of sections of vector bundles. For this aim, from now
on, we deviate from Definition 1.5.3 and don’t require sections to be smooth
anymore. We let E be a vector bundle over M, s : M → E a section of E with
compact support. We say that s is contained in the Sobolev space Hk,r(E),
if for any bundle atlas with the property that on compact sets all coordinate
changes and all their derivatives are bounded (it is not difficult to obtain such
an atlas, by making coordinate neighborhoods smaller if necessary), and for
any bundle chart from such an atlas,

ϕ : E|U → U × Rn

we have that ϕ◦s|U is contained inHk,r(U).We note the following consistency
property: If ϕ1 : E|U1 → U1 ×Rn, ϕ2 : E|U2 → U2 ×Rn are two such bundle
charts, then ϕ1◦s|U1∩U2 is contained in Hk,r(U1∩U2) if and only if ϕ2◦s|U1∩U2

is contained in this space. The reason is that the coordinate change ϕ2 ◦ϕ−1
1

is of class C∞, and all derivatives are bounded on the support of s which was
assumed to be compact.

We can extend our product (·, ·) to L2(Ωp(M)). It remains bilinear, and
also positive definite, because as usual, in the definition of L2, functions that
differ only on a set of measure zero are identified.

We now make the assumption that M is compact, in order not to always
have to restrict our considerations to compactly supported forms.

Definition 2.1.1 d∗ is the operator which is (formally) adjoint to d on
d⊕

p=0
Ωp(M) w.r.t. (·, ·). This means that for α ∈ Ωp−1(M), β ∈ Ωp(M)

(dα, β) = (α, d∗β); (2.1.10)

d∗ therefore maps Ωp(M) to Ωp−1(M).

Lemma 2.1.4 d∗ : Ωp(M) → Ωp−1(M) satisfies

d∗ = (−1)d(p+1)+1 ∗ d ∗ . (2.1.11)

Proof. For α ∈ Ωp−1(M), β ∈ Ωp(M)

d(α ∧ ∗β) = dα ∧ ∗β + (−1)p−1α ∧ d ∗ β
= dα ∧ ∗β + (−1)p−1(−1)(p−1)(d−p+1)α ∧ ∗ ∗ (d ∗ β)

by Lemma 2.1.1 (d ∗ β is a (d− p+ 1)-form)

= dα ∧ ∗β − (−1)d(p+1)+1α ∧ ∗ ∗ d ∗ β
= ± ∗ (〈dα, β〉 − (−1)d(p+1)+1〈α, ∗d ∗ β〉).
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We integrate this formula. By Stokes’ theorem, the integral of the left hand
side vanishes, and the claim results. �

Definition 2.1.2 The Laplace(-Beltrami) operator on Ωp(M) is

∆ = dd∗ + d∗d : Ωp(M) → Ωp(M).

ω ∈ Ωp(M) is called harmonic if

∆ω = 0 .

Remark. Since two stars appear on the right hand side of (2.1.11), d∗ and
hence also ∆ may also be defined by (2.1.11) on nonorientable Riemannian
manifolds. We just define it locally, hence globally up to a choice of sign
which then cancels in (2.1.11). Similarly, the L2-product can be defined on
nonorientable Riemannian manifolds, because the ambiguity of sign of the ∗
involved cancels with the one coming from the integration.

More precisely, one should write

dp : Ωp(M) → Ωp+1(M)

d∗ : Ωp(M) → Ωp−1(M).

Then
∆p = dp−1d∗ + d∗dp : Ωp(M) → Ωp(M).

Nevertheless, we shall usually omit the index p.

Corollary 2.1.1 ∆ is (formally) selfadjoint, i.e.

(∆α, β) = (α,∆β) for α, β ∈ Ωp(M).

Proof. Directly from the definition of ∆. �

Lemma 2.1.5 ∆α = 0 ⇐⇒ dα = 0 and d∗α = 0.

Proof.
“ ⇐ ” : obvious
“ ⇒ ” : (∆α,α) = (dd∗α, α) + (d∗dα, α) = (d∗α, d∗α) + (dα, dα).
Since both terms on the right hand side are nonnegative and vanish only

if dα = 0 = d∗α, ∆α = 0 implies dα = 0 = d∗α. �

Corollary 2.1.2 On a compact Riemannian manifold, every harmonic func-
tion is constant. �

Lemma 2.1.6 ∗∆ = ∆ ∗ .
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Proof. Direct computation. �

We want to compare the Laplace operator as defined here with the stan-
dard one on Rd. For this purpose, let f : Rd → R be a differentiable function.
We have

df =
∂f

∂xi
dxi

and for ϕ = ϕidx
i with compact support, and ∗ϕ =

d

Σ
i=1

(−1)i−1ϕidx
1 ∧ . . . ∧

d̂xi ∧ . . . ∧ dxd

(df, ϕ) =
∫
Rd

∂f

∂xi
ϕidx

1 ∧ . . . ∧ dxd

= −
∫
Rd

f
∂ϕi

∂xi
dx1 ∧ . . . ∧ dxd, since ϕ is compactly supported.

It follows that d∗ϕ = −∂ϕi

∂xi = −divϕ, and

∆f = d∗df = −
d∑

i=1

∂2f

(∂xi)2
= −div(grad f).

This Laplace operator therefore differs from the usual one on Rd by a minus
sign. This is regrettable, but cannot be changed any more since the notation
has been established too thoroughly. With our definition above,∆ is a positive
operator.

More generally, for a differentiable function f : M → R

∆f = − 1√
g

∂

∂xj
(
√
ggij ∂f

∂xi
), (2.1.12)

with g := det(gij). This is seen as follows:
Since for functions, i.e. 0-forms, we have d∗ = 0, we get for ϕ : M → R

(differentiable with compact support)∫
∆f · ϕ√gdx1 ∧ . . . ∧ dxd = (∆f,ϕ) = (df, dϕ)

=
∫
〈df, dϕ〉 ∗ (1)

=
∫
gij ∂f

∂xi

∂ϕ

∂xj

√
gdx1 . . . dxd

= −
∫

1√
g

∂

∂xj

(√
ggij ∂f

∂xi

)
ϕ
√
gdx1 . . . dxd,

and since this holds for all ϕ ∈ C∞
0 (M,R), (2.1.12) follows.
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For a function f, we may define its gradient as

∇f := grad f := gij ∂f

∂xi

∂

∂xj
. (2.1.13)

We thus have for any vector field X

〈 grad f,X〉 = X(f) = df(X). (2.1.14)

The divergence of a vector field Z = Zi ∂
∂xi is defined as

divZ :=
1√
g

∂

∂xj
(
√
gZj) =

1√
g

∂

∂xj
(
√
ggij〈Z, ∂

∂xi
〉). (2.1.15)

(2.1.12) then becomes
∆f = −div grad f. (2.1.16)

In particular, if M is compact, and f : M → R is a smooth function, then
as a consequence of (2.1.16) and (2.1.15) or (2.1.12) and the Gauss theorem,
we have ∫

M

∆f ∗ (1) = 0. (2.1.17)

We now want to compute the Euclidean Laplace operator for p-forms. It
is denoted by ∆e; likewise, the star operator w.r.t. the Euclidean metric is
denoted by ∗e, and d∗ is the operator adjoint to d w.r.t. the Euclidean scalar
product.

Let now
ω = ωi1...ip

dxi1 ∧ . . . ∧ dxip

be a p-form on an open subset of Rd, as usual with an increasing p-
tuple 1 ≤ i1 < i2 < . . . < ip ≤ d. We choose j1, . . . , jd−p such that

∂
∂xi1 , . . . ,

∂
∂xip ,

∂
∂xj1 , . . . ,

∂

∂xid−p
is a positive orthonormal basis of Rd. In the

sequel always
� ∈ {1, . . . , p}, k ∈ {1, . . . , d− p}.

Now

dω =
d−p∑
k=1

∂ωi1...ip

∂xjk
dxjk ∧ dxi1 ∧ . . . ∧ dxip

∗e dω =
d−p∑
k=1

(−1)p+k−1 ∂ωi1...ip

∂xjk
dxj1 ∧ . . . ∧ d̂xjk ∧ . . . ∧ dxjd−p (2.1.18)

d ∗e dω =
d−p∑
k=1

(−1)p+k−1 ∂
2ωi1...ip

(∂xjk)2
dxjk ∧ dxj1 ∧ . . . ∧ d̂xjk ∧ . . . ∧ dxid−p

+
d−p∑
k=1

p∑
�=1

(−1)p+k−1 ∂
2ωi1...ip

∂xjk∂xi�
dxi�∧dxj1∧ . . . ∧d̂xjk ∧ ... ∧ dxid−p (2.1.19)
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∗e d ∗e dω =
d−p∑
k=1

(−1)p+p(d−p) ∂
2ωi1...ip

(∂xjk)2
dxi1 ∧ . . . ∧ dxip

+
d−p∑
k=1

p∑
�=1

(−1)pd+� ∂
2ωi1...ip

∂xjk∂xi�
dxjk ∧ dxi1 ∧ . . . ∧ d̂xi� ∧ . . . ∧ dxip . (2.1.20)

Hence with (2.1.11)

d∗dω =
d−p∑
k=1

(−1)
∂2ωi1...ip

(∂xjk)2
dxi1 ∧ . . . ∧ dxip

+
d−p∑
k=1

p∑
�=1

(−1)�+1 ∂
2ωi1...ip

∂xjk∂xi�
dxjk ∧ dxi1∧. . .∧d̂xi�∧. . .∧dxip . (2.1.21)

Analogously

∗e ω = ωi1...ip
dxj1 ∧ . . . ∧ dxjd−p (2.1.22)

d ∗e ω =
p∑

�=1

∂ωi1...ip

∂xi�
dxi� ∧ dxj1 ∧ . . . ∧ dxid−p (2.1.23)

∗e d ∗e ω =
p∑

�=1

(−1)p(d−p)+d−p+�−1 ∂ωi1...ip

∂xi�

dxi1 ∧ . . . ∧ d̂xi� ∧ . . . ∧ dxip (2.1.24)

d ∗e d ∗e ω =
p∑

�=1

(−1)p(d−p)+d−p+�−1 ∂
2ωi1...ip

(∂xi�)2

dxi� ∧ dxi1 ∧ . . . ∧ d̂xi� ∧ . . . ∧ dxip (2.1.25)

+
p∑

�=1

d−p∑
k=1

(−1)p(d−p)+d−p+�−1 ∂
2ωi1...ip

∂xi�∂xjk
dxjk ∧ dxi1 ∧ . . . ∧ d̂xi� ∧ . . . ∧ dxip ,

hence with (2.1.24)

dd∗ω =
p∑

�=1

(−1)
∂2ωi1...ip

(∂xi�)2
dxi1 ∧ . . . ∧ dxip (2.1.26)

+
p∑

�=1

d−p∑
k=1

(−1)� ∂
2ωi1...ip

∂xi�∂xjk
dxjk ∧ dxi1 ∧ . . . ∧ d̂xi� ∧ . . . ∧ dxip

(2.1.21) and (2.1.26) yield

∆eω = d∗dω + dd∗ω = (−1)
d∑

m=1

∂2ωi1...ip

(∂xm)2
dxi1 ∧ . . . ∧ dxip . (2.1.27)
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Some more formulae:
We write

η :=
√
gdx1 ∧ . . . ∧ dxd =: ηi1...id

dxi1 ∧ . . . ∧ dxid . (2.1.28)

For β = βj1...jp
dxj1 ∧ . . . ∧ dxjp

βi1...ip := gi1j1gi2j2 . . . gipjpβj1...jp
. (2.1.29)

With these conventions, for α = αi1...ip
dxi1 ∧ . . . ∧ dxip

(∗α)ip+1...id
=

1
p!
ηi1...ip

αi1...ip (2.1.30)

and

(d∗α)i1...ip−1 = −gk�
(∂αki1...ip−1

∂x�
− Γ j

k�αji1...ip−1

)
. (2.1.31)

Further

(α, β) = αi1...ip
βi1...ip (2.1.32)

(dα, dβ) =
∂αi1...ip

∂xk

∂βj1...jp

∂x�
gk�gi1j1 . . . gipjp (2.1.33)

(d∗α, d∗β) = (gk�
(∂αki1...ip−1

∂x�
− Γ j

k�αji1...ip−1

)
ei1∧. . .∧eip−1 ,

gmn
(∂βmj1...jp−1

∂xn
− Γ r

mnβrj1...jp−1

)
ej1∧. . .∧ejp−1) (2.1.34)

=
∂αki1...ip−1

∂x�

∂βmj1...jp−1

∂xn
gk�gmngi1j1 . . . gip−1jp−1

− ∂αki1...ip−1

∂x�
Γ i

mnβij1...jp−1g
k� . . . gip−1jp−1

− ∂βmj1...jp−1

∂xn
Γ j

mnαji1...ip−1g
k�gmngi1j1 . . . gip−1jp−1

Formula (2.1.30) is clear. (2.1.31) may be verified by a straightforward, but
somewhat lengthy computation. We shall see a different proof in 3.3 as a
consequence of Lemma 3.3.4. The remaining formulae then are clear again.

2.2 Representing Cohomology Classes
by Harmonic Forms

We first recall the definition of the de Rham cohomology groups. Let M
be a differentiable manifold. The operator d : Ωp(M) → Ωp+1(M) satisfies
(Theorem 1.5.5)

d ◦ d = 0 (d ◦ d : Ωp(M) → Ωp+2(M)). (2.2.1)
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α ∈ Ωp(M) is called closed if dα = 0, exact, if there exists η ∈ Ωp−1(M)
with dη = α. Because of (2.2.1), exact forms are always closed. Two closed
forms α, β ∈ Ωp(M) are called cohomologous if α− β is exact. This property
determines an equivalence relation on the space of closed forms in Ωp(M),
and the set of equivalence classes is a vector space over R, called the p-th de
Rham cohomology group and denoted by

Hp
dR(M,R).

Usually, however, we shall simply write

Hp(M).

In this Paragraph, we want to show the following fundamental result:

Theorem 2.2.1 Let M be a compact Riemannian manifold. Then every co-
homology class in Hp(M) (0 ≤ p ≤ d = dimM) contains precisely one
harmonic form.

Proof. Uniqueness is easy: Let ω1, ω2 ∈ Ωp(M) be cohomologous and both
harmonic. Then either p = 0 (in which case ω1 = ω2 anyway) or

(ω1 − ω2, ω1 − ω2) = (ω1 − ω2, dη)

for some η ∈ Ωp−1(M), since
ω1 andω2 are cohomologous

= (d∗(ω1 − ω2), η)
= 0, sinceω1 andω2 are harmonic,

hence satisfy d∗ω1 = 0 = d∗ω2 .

Since (·, ·) is positive definite, we conclude ω1 = ω2, hence uniqueness.

For the proof of existence, which is much harder, we shall use Dirichlet’s
principle.

Let ω0 be a (closed) differential form, representing the given cohomology
class in Hp(M).

All forms cohomologous to ω0 then are of the form

ω = ω0 + dα (α ∈ Ωp−1(M)).

We now minimize the L2-norm

D(ω) := (ω, ω)

in the class of all such forms.
The essential step consists in showing that the infimum is achieved by a

smooth form η. Such an η then has to satisfy the Euler-Lagrange equations
for D, i.e.
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0 =
d

dt
(η + tdβ, η + tdβ)|t=0 for allβ ∈ Ωp−1(M)

= 2(η, dβ). (2.2.2)

This implies δη = 0. Since dη = 0 anyway, η is harmonic.
In order to make Dirichlet’s principle precise, we shall need some re-

sults and constructions from the calculus of variations. Some of them will
be merely sketched (see §A.1, A.2), and for details, we refer to our textbook
“Postmodern Analysis”, Springer, 3rd edition, 2005. First of all, we have to
work with the space of L2-forms instead of the one of C∞-forms, since we
want to minimize the L2-norm and therefore certainly need a space that is
complete w.r.t. L2-convergence. For technical purposes, we shall also need
Sobolev spaces which we now want to define in the present context (See also
§A.1 of the Appendix).

On Ωp(M), we introduce a new scalar product

((ω, ω)) := (dω, dω) + (δω, δω) + (ω, ω)

and put
‖ω‖H1,2(M) := ((ω, ω))

1
2 .

We complete the space Ωp(M) of smooth p-forms w.r.t. the ‖ · ‖H1,2(M)-
norm. The resulting Hilbert space will be denoted by H1,2

p (M) or simply by
H1,2(M), if the index p is clear from the context.

Let now V ⊂ Rd be open. For a smooth map f : V → Rn, the Euclidean
Sobolev norm is given by

‖f‖H1,2

eucl.
(V ) :=

⎛⎝∫
V

f · f +
∫
V

∂f

∂xi
· ∂f
∂xi

⎞⎠ 1
2

,

the dot · denoting the Euclidean scalar product.
With the help of charts for M and bundle charts for Λp(M) for every

x0 ∈M, there exist an open neighborhood U and a diffeomorphism

ϕ : Λp(M)|U → V × Rn

where V is open in Rd, n =
(
d
p

)
is the dimension of the fibers of Λp(M), and

the fiber over x ∈ U is mapped to a fiber {π(ϕ(x))}×Rn, where π : V ×Rn →
V is the projection onto the first factor.

Lemma 2.2.1 On any U ′ � U, the norms

‖ω‖H1,2(U ′) and ‖ϕ(ω)‖H1,2

eucl.
(V ′)

(with V ′ := π(ϕ(U ′))) are equivalent.



94 2. De Rham Cohomology and Harmonic Differential Forms

Proof. As long as we restrict ourselves to relatively compact subsets of U,
all coordinate changes lead to equivalent norms. Furthermore, by a covering
argument, it suffices to find for every x in the closure of U ′ a neighborhood
U ′′ on which the claimed equivalence of norms holds.

After these remarks, we may assume that first of all π ◦ϕ is the map onto
normal coordinates with center x0, and that secondly for the metric in our
neighborhood of x0, we have

|gij(x)− δij | < ε and |Γ i
jk(x)| < ε for i, j, k = 1, . . . , d (2.2.3)

The formulae (2.1.32) - (2.1.34) then imply that the claim holds for suffi-
ciently small ε > 0, i.e. for a sufficiently small neighborhood of x0. Since
Ū ′ ⊂ U is compact by assumption, the claim for U ′ follows by a covering
argument. �

Lemma 2.2.1 implies that the Sobolev spaces defined by the norms
‖ · ‖H1,2(M) and ‖ · ‖H1,2

eucl.
coincide. Hence all results for Sobolev spaces in

the Euclidean setting may be carried over to the Riemannian situation. In
particular, we have Rellich’s theorem (cf. Theorem A.1.8):

Lemma 2.2.2 Let (ωn)n∈N ⊂ H1,2
p (M) be bounded, i.e.

‖ωn‖H1,2(M) ≤ K.

Then a subsequence of (ωn) converges w.r.t. the L2-norm

‖ω‖L2(M) := (ω, ω)
1
2

to some ω ∈ H1,2
p (M). �

Corollary 2.2.1 There exists a constant c, depending only on the Rieman-
nian metric of M, with the property that for all closed forms β that are
orthogonal to the kernel of d∗,

(β, β) ≤ c(d∗β, d∗β) (2.2.4)

Proof. Otherwise, there would exist a sequence of closed forms βn orthogonal
to the kernel of d∗, with

(βn, βn) ≥ n(d∗βn, d
∗βn) (2.2.5)

We put
λn := (βn, βn)−

1
2 .

Then
1 = (λnβn, λnβn) ≥ n(d∗(λnβn), d∗(λnβn)). (2.2.6)

Since dβn = 0, we have
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‖λnβn‖H1,2 ≤ 1 +
1
n
.

By Lemma 2.2.2, after selection of a subsequence, λnβn converges in L2 to
some form ψ. By (2.2.6), d∗(λnβn) converges to 0 in L2. Hence d∗ψ = 0; this
is seen as follows:

For all ϕ

0 = lim
n→∞(d∗(λnβn), ϕ) = lim(λnβn, dϕ)

= (ψ, dϕ) = (d∗ψ,ϕ) and hence d∗ψ = 0.

(With the same argument, dβn = 0 for all n implies dψ = 0.)
Now, since d∗ψ = 0 and βn is orthogonal to the kernel of d∗,

(ψ, λnβn) = 0. (2.2.7)

On the other hand, (λnβn, λnβn) = 1 and the L2-convergence of λnβn to ψ
imply

lim
n→∞(ψ, λnβn) = 1.

This is a contradiction, and (2.2.5) is impossible. �

We can now complete the proof of Theorem 2.2.1:
Let (ωn)n∈N be a minimizing sequence for D(ω) in the given cohomology

class, i.e.

ωn = ω0 + dαn

D(ωn) → inf
ω=ω0+dα

D(ω) =: κ (2.2.8)

By (2.2.8), w.l.o.g.
(ωn, ωn) = D(ωn) ≤ κ+ 1. (2.2.9)

As with Dirichlet’s principle in Rd, ωn converges weakly to some ω, after
selection of a subsequence.

We have

(ω − ω0, ϕ) = 0 for allϕ ∈ Ωp(M)with d∗ϕ = 0, (2.2.10)

because

(ωn − ω0, ϕ) = (dαn, ϕ) = (αn, d
∗ϕ) = 0 for all suchϕ.

(2.2.10) means that ω − ω0 is weakly exact.
We want to study this condition more closely and put

η := ω − ω0.

We define a linear functional on d∗(Ωp(M)) by
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�(δϕ) := (η, ϕ) (2.2.11)

� is well defined; namely if d∗ϕ1 = d∗ϕ2, then

(η, ϕ1 − ϕ2) = 0 by (2.2.10).

For ϕ ∈ Ωp(M) let π(ϕ) be the orthogonal projection onto the kernel of d∗,
and ψ := ϕ− π(ϕ); in particular d∗ψ = d∗ϕ.

Then
�(d∗ϕ) = �(d∗ψ) = (η, ψ) (2.2.12)

Since ψ is orthogonal to the kernel of δ, by Corollary 2.2.1

‖ψ‖L2 ≤ c‖d∗ψ‖L2 = c‖d∗ϕ‖L2 (2.2.13)

(2.2.12) and (2.2.13) imply

|�(d∗ϕ)| ≤ c‖η‖L2‖d∗ϕ‖L2 .

Therefore, the function � on d∗(Ωp(M)) is bounded and can be extended
to the L2-closure of d∗(Ωp(M)). By the Riesz representation theorem, any
bounded linear functional on a Hilbert space is representable as the scalar
product with an element of the space itself. Consequently, there exists α with

(α, d∗ϕ) = (η, ϕ) (2.2.14)

for all ϕ ∈ Ωp(M).
Thus, we have weakly

dα = η. (2.2.15)

Therefore, ω = ω0 + η is contained in the closure of the considered class.
Instead of minimizing among the ω cohomologous to ω0, we could have min-
imized as well in the closure of this class, i.e., in the space of all ω for which
there exists some α with

(α, d∗ϕ) = (ω − ω0, ϕ) for allϕ ∈ Ωp(M).

Then ω, as weak limit of a minimizing sequence, is contained in this class.
Namely, suppose ωn = ω0 + dαn weakly, i.e.

�n(d∗ϕ) := (αn, d
∗ϕ) = (ωn − ω0, ϕ) ∀ϕ ∈ Ωp(M).

By the same estimate as above, the linear functionals �n converge to some
functional �, again represented by some α. Since D also is weakly lower semi-
continuous w.r.t. weak convergence, it follows that

κ ≤ D(ω) ≤ lim
n→∞ inf D(ωn) = κ,

hence
D(ω) = κ.
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Furthermore, by (2.2.2),

0 = (ω, dβ) for allβ ∈ Ωp−1(M). (2.2.16)

In this sense, ω is weakly harmonic.
We still need the regularity theorem implying that solutions of (2.2.16)

are smooth. This can be carried out as in the Euclidean case. If one would be
allowed to insert β = d∗ω in (2.2.16) and integrate by parts, it would follow
that

0 = (d∗ω, d∗ω),

i.e. d∗ω = 0.
Iteratively, also higher derivatives would vanish, and the Sobolev embed-

ding theorem would imply regularity. However, we cannot yet insert β = d∗ω,
since we do not know yet whether dd∗ω exists. This difficulty, however, may
be overcome as usual by replacing derivatives by difference quotients (See
§A.2 of the Appendix.). In this manner, one obtains regularity and com-
pletes the proof. �

Corollary 2.2.2 Let M be a compact, oriented, differentiable manifold. Then
all cohomology groups Hp

dR(M,R) (0 ≤ p ≤ d := dimM) are finite dimen-
sional.

Proof. By Theorem 1.4.1, a Riemannian metric may be introduced on M. By
Theorem 2.2.1 any cohomology class may be represented by a form which
is harmonic w.r.t. this metric. We now assume that Hp(M) is infinite di-
mensional. Then, there exists an orthonormal sequence of harmonic forms
(ηn)n∈N ⊂ Hp(M), i.e.

(ηn, ηm) = δnm forn,m ∈ N. (2.2.17)

Since the ηn are harmonic, d∗ηn = 0, and dηn = 0. By Rellich’s theorem
(Lemma 2.2.2), after selection of a subsequence, (ηn) converges in L2 to some
η. This, however, is not compatible with (2.2.17), because (2.2.17) implies

‖ηn − ηm‖L2 ≥ 1 forn 
= m,

so that (ηn) cannot be a Cauchy sequence in L2.
This contradiction proves the finite dimensionality. �

Let now M be a compact, oriented, differentiable manifold of dimension
d. We define a bilinear map

Hp
dR(M,R)×Hd−p

dR (M,R) → R

by

(ω, η) →
∫
M

ω ∧ η (2.2.18)
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for representatives ω, η of the cohomology classes considered. It remains to
show that (2.2.18) depends only on the cohomology classes of ω and η, in
order that the map is indeed defined on the cohomology groups. If, however,
ω′ and ω are cohomologous, there exists a (p− 1) form α with ω′ = ω + dα,
and∫

M

ω′ ∧ η =
∫
M

(ω + dα) ∧ η =
∫
M

ω ∧ η +
∫
M

dα ∧ η
=

∫
M

ω ∧ η +
∫
M

d(α ∧ η),
since η is closed representing a cohomology
class by Stokes’ theorem

=
∫
M

ω ∧ η .

Therefore, (2.2.18) indeed depends only on the cohomology class of ω, and
likewise only on the cohomology class of η.

Let us now recall a simple result of linear algebra. Let V and W be finite
dimensional real vector spaces, and let

(·, ·) : V ×W → R

be bilinear and nondegenerate in the sense that for any v ∈ V, v 
= 0, there
exists w ∈W with (v, w) 
= 0, and conversely. Then V can be identified with
the dual space W ∗ of W, and W may be identified with V ∗. Namely,

i1 : V →W ∗

i2 : W → V ∗
with i1(v)(w) := (v, w)
with i2(w)(v) := (v, w)

are two injective linear maps. Then V and W must be of the same dimension,
and i1 and i2 are isomorphisms.

Theorem 2.2.2 Let M be a compact, oriented, differentiable manifold of di-
mension d. The bilinear form (2.2.18) is nondegenerate, and hence Hp

dR(M,R)
is isomorphic to (Hd−p

dR (M,R))∗.

Proof. For each nontrivial cohomology class in Hp(M), represented by some
ω (i.e. dω = 0, but not ω = dα for any (p− 1)-form α), we have to find some
cohomology class in Hd−p(M) represented by some η, such that∫

M

ω ∧ η 
= 0.

For this purpose, we introduce a Riemannian metric on M which is possible
by Theorem 1.4.1. By Theorem 2.2.1, we may assume that ω is harmonic
(w.r.t. this metric). By Lemma 2.1.6

∆ ∗ ω = ∗∆ω,
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and therefore, ∗ω is harmonic together with ω. Now∫
M

ω ∧ ∗ω = (ω, ω) 
= 0, since ω does not vanish identically.

Therefore, ∗ω represents a cohomology class in Hd−p(M) with the desired
property. Thus the bilinear form is nondegenerate, and the claim follows. �

Definition 2.2.1 The p-th homology group Hp(M,R) of a compact, differ-
entiable manifold M is defined to be (Hp

dR(M,R))∗. The p-th Betti number
of M is bp(M) := dimHp(M,R).

With this definition, Theorem 2.2.2 becomes

Hp(M,R) ∼= Hd−p
dR (M,R). (2.2.19)

This statement is called Poincaré duality.

Corollary 2.2.2 Let M be a compact, oriented, differentiable manifold of
dimension d. Then

Hd
dR(M,R) ∼= R. (2.2.20)

and
bp(M) = bd−p(M) for 0 ≤ p ≤ d. (2.2.21)

Proof. H0
dR(M,R) ∼= R. This follows e.g. from Corollary 2.1.2 and Theorem

2.2.1, but can also be seen in an elementary fashion.
Theorem 2.2.2 then implies (2.2.20), as well as (2.2.21). �

As an example, let us consider an n-dimensional torus Tn. As shown
in 1.4, it can be equipped with a Euclidean metric for which the covering
π : Rn → Tn is a local isometry.

By (2.1.27), we have for the Laplace operator of the Euclidean metric

∆(ωi1,...,ip
dxi1 ∧ . . . ∧ dxip) = (−1)

n∑
m=1

∂2ωi1...ip

(∂xm)2
dxi1 ∧ . . . ∧ dxip

(x1, . . . , xn Euclidean coordinates of Rn).

Thus, a p-form is harmonic if and only if all coefficients w.r.t. the basis
dxi1 ∧ . . .∧ dxip are harmonic. Since Tn is compact, by Corollary 2.1.2, they
then have to be constant. Consequently

bp(Tn) = dimHp(Tn) = dimΛp(Rn) =
(
n

p

)
(0 ≤ p ≤ n).
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2.3 Generalizations

The constructions of this chapter may easily be generalized. Here, we only
want to indicate some such generalizations.

Let E and F be vector bundles over the compact, oriented, differentiable
manifold M. Let Γ (E) and Γ (F ) be the spaces of differentiable sections.
Sobolev spaces of sections can be defined with the help of bundle charts:
Let (f, U) be a bundle chart for E, f then identifies E|U with U × Rn. A
section s of E is then contained in the Sobolev space Hk,p(E) if for any such
bundle chart and any U ′ � U, we have p2 ◦ f ◦ s|U ′ ∈ Hk,p(U ′,Rn), where
p2 : U ′ × Rn → Rn is the projection onto the second factor.

A linear map L : Γ (E) → Γ (F ) is called (linear) differential operator of
order � from E to F if in any bundle chart, L defines such an operator. For
the Laplace operator, of course E = F = Λp(T ∗M), � = 2.

In a bundle chart, we write L as

L = P�(D) + . . .+ P0(D),

where each Pj(D) is an (m × n)-matrix (m,n = fiber dimensions of E and
F , resp.), whose components are differential operators of the form∑

|α|=j

aα(x)Dα

where α is a multi index, and Dα is a homogeneous differential operator of
degree |α| = j. Let us assume that the aα(x) are differentiable.

For ξ = (ξ1, . . . , ξm) ∈ Rm, let Pj(ξ) be the matrix obtained for Pj(D)
by replacing Dα by ξα.
Pj(ξ) thus has components ∑

|α|=j

aα(x)ξα.

L is called elliptic at the point x, if P�(ξ) (� = degree of L) is nonsingular at
x for all ξ ∈ Rm\{0}. Note that in this case necessarily n = m.

L is called elliptic if it is elliptic at every point. Let now 〈·, ·〉E and 〈·, ·〉F
be bundle metrics on E and F, resp. (those always exist by Theorem 1.5.3), let
M carry a Riemannian metric (existing by Theorem 1.4.1) and an orientation.
Integrating the bundle metrics, for example

(·, ·)E :=
∫
M

〈·, ·〉Edvolg (dvolg =
√

det(gij)dx1 ∧ . . . ∧ dxd),

we obtain L2-metrics on Γ (E) and Γ (F ). Let L∗ be the operator formally
adjoint to L, i.e.

(Lv,w)F = (v, L∗w)E for v ∈ Γ (E), w ∈ Γ (F ).
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L is elliptic if L∗ is.
The importance of the ellipticity condition rests on the fact that solutions

of elliptic differential equations are regular, and the space of solutions has
finite dimension.

Here, however, this shall not be pursued any further.

Exercises for Chapter 2

1) Compute the Laplace operator of Sn on p-forms (0 ≤ p ≤ n) in the
coordinates given in §1.1.

2) Let ω ∈ Ω1(S2) be a 1-form on S2. Suppose

ϕ∗ω = ω

for all ϕ ∈ SO(3). Show that ω ≡ 0.
Formulate and prove a general result for invariant differential forms
on Sn.

3) Give a detailed proof of the formula

∗∆ = ∆ ∗ .

4) Let M be a two dimensional Riemannian manifold. Let the metric be
given by gij(x)dxi ⊗ dxj in local coordinates (x1, x2). Compute the
Laplace operator on 1-forms in these coordinates. Discuss the case
where

gij(x) = λ2(x)δij

with a positive function λ2(x).

5) Suppose that α ∈ H1,2
p (M) satisfies

(d∗α, d∗ϕ) + (dα, dϕ) = (η, ϕ) for all ϕ ∈ Ωp(M),

with some given η ∈ Ωp(M). Show α ∈ Ωp(M), i.e. smoothness of α.

6) Compute a relation between the Laplace operators on functions on
Rn+1 and the one on Sn ⊂ Rn+1.

7) Eigenvalues of the Laplace operator:
Let M be a compact oriented Riemannian manifold, and let ∆ be the
Laplace operator on Ωp(M). λ ∈ R is called eigenvalue if there exists
some u ∈ Ωp(M), u 
= 0, with

∆u = λu.
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Such a u is called eigenform or eigenvector corresponding to λ. The
vector space spanned by the eigenforms for λ is denoted by Vλ and
called eigenspace for λ.

Show:

a: All eigenvalues of ∆ are nonnegative.

b: All eigenspaces are finite dimensional.

c: The eigenvalues have no finite accumulation point.

d: Eigenvectors for different eigenvalues are orthogonal.

The next results need a little more analysis (cf. e.g. [139])

e: There exist infinitely many eigenvalues

λ1 ≤ λ2 ≤ . . . ≤ λn ≤ . . .

f: All eigenvectors of ∆ are smooth.

g: The eigenvectors of ∆ constitute an L2-orthonormal basis for
the space of p-forms of class L2.

8) Here is another long exercise:

Let M be a compact oriented Riemannian manifold with boundary
∂M 
= ∅. For x ∈ ∂M, V ∈ TxM is called tangential if it is contained
in Tx∂M ⊂ TxM and W ∈ TxM is called normal if

〈V,W 〉 = 0 for all tangential V.

An arbitrary Z ∈ TxM can then be decomposed into a tangential and
a normal component:

Z = Ztan + Znor.

Analogously, η ∈ Γ p(T x,M) can be decomposed into

η = ηtan + ηnor

where ηtan operates on tangential p-vectors and ηnor on normal ones.
For p-forms ω on M, we may impose the so-called absolute boundary
conditions

ωtan = 0
on ∂M

(δω)nor = 0
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or the relative boundary conditions

ωnor = 0
on ∂M

(dω)nor = 0.

(These two boundary conditions are interchanged by the ∗-operator.)
Develop a Hodge theory under either set of boundary conditions.



3. Parallel Transport, Connections, and
Covariant Derivatives

3.1 Connections in Vector Bundles

Let X be a vector field on Rd, V a vector at x0 ∈ Rd. We want to analyze
how one takes the derivative of X at x0 in the direction V. For this derivative,
one forms

lim
t→0

X(x0 + tV )−X(x0)
t

.

Thus, one first adds the vector tV to the point x0. Next, one compares the
vector X(x0 + tV ) at the point x0 + tV and the vector X(x0) at x0; more
precisely, one subtracts the second vector from the first one. Division by t
and taking the limit then are obvious steps.

A vector field on Rd is a section of the tangent bundle T (Rd). Thus,
X(x0 + tV ) lies in Tx0+tV (Rd), while X(x0) lies in Tx0(R

d). The two vectors
are contained in different spaces, and in order to subtract the second one from
the first one, one needs to identify these spaces. In Rd, this is easy. Namely,
for each x ∈ Rd, TxRd can be canonically identified with T0Rd ∼= Rd. For
this, one uses Euclidean coordinates and identifies the tangent vector ∂

∂xi at
x with ∂

∂xi at 0. This identification is even expressed by the notation. The
reason why it is canonical is simply that the Euclidean coordinates of Rd

can be obtained in a geometric manner. For this, let c(t) = tx, t ∈ [0, 1] the
straight line joining 0 and x. For a vector X1 at x, let Xt be the vector at
c(t) parallel to X1; in particular, Xt has the same length as X1 and forms the
same angle with ċ. X0 then is the vector at 0 that gets identified with X1.
The advantage of the preceding geometric description lies in the fact that X1

and X0 are connected through a continuous geometric process. Again, this
process in Rd has to be considered as canonical.

On a manifold, in general there is no canonical method anymore for iden-
tifying tangent spaces at different points, or, more generally fibers of a vector
bundle at different points. For example, on a general manifold, we don’t have
canonical coordinates. Thus, we have to expect that a notion of derivative
for sections of a vector bundle, for example for vector fields, has to depend
on certain choices.

Definition 3.1.1 Let M be a differentiable manifold, E a vector bundle over
M. A covariant derivative, or equivalently, a (linear) connection is a map
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D : Γ (E) → Γ (E)⊗ Γ (T ∗M)

with the properties subsequently listed:
By property (i) below, we may also consider D as a map from
Γ (TM)⊗ Γ (E) to Γ (E) and write for σ ∈ Γ (E), V ∈ TxM

Dσ(V ) =: DV σ.

We then require:

(i) D is tensorial in V :

DV +Wσ = DV σ +DWσ forV,W ∈ TxM,σ ∈ Γ (E) (3.1.1)

DfV σ = fDV σ for f ∈ C∞(M,R), V ∈ Γ (TM). (3.1.2)

(ii) D is R-linear in σ :

DV (σ + τ) = DV σ +DV τ forV ∈ TxM,σ, τ ∈ Γ (E) (3.1.3)

and it satisfies the following product rule:

DV (fσ) = V (f) · σ + fDV σ for f ∈ C∞(M,R). (3.1.4)

Of course, all these properties are satisfied for the differentiation of a
vector field in Rd as described; in that case, we have DV X = dX(V ).

Let x0 ∈ M, and let U be an open neighborhood of x0 such that a chart
for M and a bundle chart for E are defined on U. We thus obtain coordinate
vector fields ∂

∂x1 , . . . ,
∂

∂xd , and through the identification

E|U ∼= U × Rn (n = fiber dimension ofE),

a basis of Rn yields a basis µ1, . . . , µn of sections of E|U . For a connection D,

we define the so-called Christoffel symbols Γ k
ij (j, k = 1, . . . , n, i = 1, . . . , d)

by
D ∂

∂xi
µj =: Γ k

ijµk. (3.1.5)

We shall see below that the Christoffel symbols as defined here are a gener-
alization of those introduced in 1.4.

Let now µ ∈ Γ (E); locally, we write µ(y) = ak(y)µk(y). Also let c(t) be a
smooth curve in U. Putting µ(t) := µ(c(t)), we define a section of E along c.
Furthermore, let V (t) = ċ(t)(:= d

dtc(t)) = ċi(t) ∂
∂xi .

Then by (3.1.1) – (3.1.5)

DV (t)µ(t) = ȧk(t)µk(c(t)) + ċi(t)ak(t)D ∂

∂xi
µk (3.1.6)

= ȧk(t)µk(c(t)) + ċi(t)ak(t)Γ j
ik(c(t))µj(c(t)).
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(In particular, DXµ depends only on the values of µ along a curve c with
ċ(0) = X, and not on all the values of µ in a neighborhood of the base point
of X.)

DV (t)µ(t) = 0 thus represents a linear system of first order ODEs for the
coefficients a1(t), . . . , an(t) of µ(t). Therefore, for given initial values µ(0) ∈
Ec(0), there exists a unique solution of

DV (t)µ(t) = 0 . (3.1.7)

Definition 3.1.2 The solution µ(t) of (3.1.7) is called the parallel transport
of µ(0) along the curve c.

Thus, if x0 and x1 are points in M, the fibers of E above x0 and x1,
Ex0 and Ex1 , resp., can be identified by choosing a curve c from x0 to x1

(x0 = c(0), x1 = c(1)) and moving each µ0 ∈ Ex0 along c to Ex1 by parallel
transport. This identification depends only on the choice of the curve c. One
might now try to select geodesics w.r.t. a Riemannian metric as canonical
curves, but those are in general not uniquely determined by their endpoints.

From parallel transport on a Riemannian manifold, i.e. the identification
of the fibers of a vector bundle along curves, one may obtain a notion of
covariant derivative. For this purpose, given V ∈ TxM, let c be a curve in M
with c(0) = x, ċ(0) = V. For µ ∈ Γ (E), we then put

DV µ := lim
t→0

Pc,t(µ(c(t)))− µ(c(0))
t

,

where Pc,t : Ec(t) → Ec(0) is the identification by parallel transport along
c. In order to see that the two processes of covariant derivative and parallel
transport are equivalent, we select a basis of parallel sections µ1(t), . . . , µn(t)
of E along c,

i.e.
Dċ(t)µj(t) = 0 for j = 1, . . . , n. (3.1.8)

An arbitrary section µ of E along c is then written as

µ(t) = ak(t)µk(t),

and for X = ċ(0), we have

DXµ(t) = ȧk(t)µk(t) by (3.1.6), (3.1.8) (3.1.9)

and consequently,

(DXµ)(c(0)) = lim
t→0

ak(t)− ak(0)
t

µk(0)

= lim
t→0

Pc,t(µ(t))− µ(0)
t

.
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It is important to remark that this does not depend on the choice of the curve
c, as long as ċ(0) = X.

We want to explain the name “connection”. We consider the tangent
space at the point ψ to the total space E of a vector bundle, TψE. Inside
TψE, there is a distinguished subspace, namely the tangent space to the fiber
Ex containing ψ (x = π(ψ)). This space is called vertical space Vψ. However,
there is no distinguished “horizontal space” Hψ complementary to Vψ, i.e.
satisfying TψE = Vψ ⊕ Hψ. If we have a covariant derivative D, however,
we can parallely transport ψ for each X ∈ TxM along a curve c(t) with
c(0) = x, ċ(0) = X. Thus, for each X, we obtain a curve ψ(t) in E. The
subspace of TψE spanned by all tangent vectors to E at ψ of the form

d

dt
ψ(t)|t=0

then is the horizontal space Hψ. In this manner, one obtains a rule how the
fibers in neighbouring points are “connected” with each other.

We return to (3.1.6), i.e.

Dċi(t) ∂

∂xi
(aj(t)µj(c(t))) (3.1.10)

= ȧj(t)µj(c(t)) + ċi(t)aj(t)Γ k
ij(c(t))µk(c(t)).

Here,

ȧj(t) = ċi(t)
∂aj

∂xi
(c(t)). (3.1.11)

This part thus is completely independent of D.
Γ k

ij now has indices j and k, running from 1 to n, and an index running
from 1 to d. The index i describes the application of the tangent vector
ċi(t) ∂

∂xi . We thus consider (Γ k
ij)i,j,k as an (n × n)-matrix valued 1-form on

U :
(Γ k

ij)i,j,k ∈ Γ (gl(n,R)⊗ T ∗M|U ) (3.1.12)

(Here, gl(n,R) is the space of (n × n)-matrices with real coefficients.) In a
more abstract manner, we now write on U

D = d+A, (3.1.13)

where d is exterior derivative and A ∈ Γ (gl(n,R)⊗T ∗M|U ). Of course, A can
also be considered as an (n×n)-matrix with values in sections of the cotangent
bundle of M ; A, applied to the tangent vector ∂

∂xi , becomes (Γ k
ij)j,k=1,...,n.

By (3.1.10), the application of A to ajµj is given by ordinary matrix multi-
plication. Once more:

D(ajµj) = d(aj)µj + ajAµj , (3.1.14)

where A is a matrix with values in T ∗M.
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We now want to study the transformation behavior of A. As in 1.5, let
(Uα)α∈A be a covering of M by open sets over which the bundle is trivial,
with transition maps

ϕβα : Uα ∩ Uβ → Gl (n,R).

D then defines a T ∗M -valued matrix Aα on Uα. Let the section µ be repre-
sented by µα on Uα. Here, a Greek index is not a coordinate index, but refers
to the chosen covering (Uα). Thus,

µβ = ϕβα µα on Uα ∩ Uβ . (3.1.15)

But then we must also have

ϕβα(d+Aα)µα = (d+Aβ)µβ onUα ∩ Uβ ; (3.1.16)

on the left hand side we have first computed Dµ in the trivialization defined
by the Uα and then transformed the result to the trivialization defined by
Uβ , while on the right hand side, we have directly expressed Dµ in the latter
trivialization.

We obtain
Aα = ϕ−1

βαdϕβα + ϕ−1
βαAβϕβα. (3.1.17)

This formula gives the desired transformation behavior. Thus, Aα does not
transform as a tensor (see the discussion following Definition 1.5.10), because
of the term ϕ−1

βαdϕβα. However, the difference of two connections transforms
as a tensor. The space of all connections on a given vector bundle E thus is
an affine space. The difference of two connections D1, D2 is a gl(n,R)-valued
1-form, i.e. D1−D2 ∈ Γ (EndE⊗T ∗M), considering gl(n,R) as the space of
linear endomorphisms of the fibers.

We return to our fixed neighborhood U and thus drop the index α.
We want to extend D from E to other bundles associated with E, in

particular to E∗ and End(E) = E ⊗E∗.
We now write

Aµj = Ak
jµk, (3.1.18)

where each Ak
j now is a 1-form, Ak

j = Γ k
ijdx

i. Let µ∗
1, . . . , µ

∗
n be the basis dual

to µ1, . . . , µn on the bundle E∗ dual to E, i.e.

(µi, µ
∗
j ) = δij , (3.1.19)

where (·, ·) : E ⊗ E∗ → R is the bilinear pairing between E and E∗.

Definition 3.1.3 Let D be a connection on E. The connection D∗ dual to
D on the dual bundle E∗ is defined by the requirement

d(µ, ν∗) = (Dµ, ν∗) + (µ,D∗ν∗) (3.1.20)

for any µ ∈ Γ (E), ν∗ ∈ Γ (E∗).
(Dµ ∈ Γ (E⊗T ∗M), and (Dµ, ν∗) pairs the E-factor of Dµ with ν∗. Thus

(Dµ, ν∗), and similarly (µ,D∗ν∗), is a 1-form.)
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As usual, we write D = d+A on U and compute

0 = d(µi, µ
∗
j ) = (Ak

i µk, µ
∗
j ) + (µi, A

∗�
j µ

∗
� )

= Aj
i +A∗i

j by (3.1.19),

i.e.
A∗ = −At (3.1.21)

Recalling (3.1.5), we get

D∗
∂

∂xi
µ∗

j = −Γ j
ikµ

∗
k.

Definition 3.1.4 Let E1, E2 be vector bundles over M with connections
D1, D2, resp. The induced connection D on E := E1 ⊗ E2 is defined by the
requirement

D(µ1 ⊗ µ2) = D1µ1 ⊗ µ2 + µ1 ⊗D2µ2 (3.1.22)

for µi ∈ Γ (Ei), i = 1, 2.

In particular, we obtain an induced connection on End (E) = E ⊗ E∗,
again denoted by D. Let σ = σi

jµi⊗µ∗
j be a section of End (E). We compute

D(σi
jµi ⊗ µ∗

j ) = dσi
jµi ⊗ µ∗

j + σi
jA

k
i µk ⊗ µ∗

j − σi
jA

j
kµi ⊗ µ∗

k

= dσ + [A, σ]. (3.1.23)

The induced connection on End (E) thus operates by taking the Lie bracket.
We next want to extend the operation of a connection D from Γ (E) to

Γ (E)⊗Ωp(M) (0 ≤ p ≤ d). Since, on Ωp(M), we have the exterior derivative
d, we define in analogy with Definition 3.1.4 for µ ∈ Γ (E), ω ∈ Ωp(M)

D(µ⊗ ω) = Dµ ∧ ω + µ⊗ dω. (3.1.24)

(Here, we have employed a wedge product of forms with values in vec-
tor bundles, as Dµ is an element of Γ (E) ⊗ Ω1(M): If σ ∈ Γ (E), ω1 ∈
Ω1(M), ω2 ∈ Ωp(M), then

(σ ⊗ ω1) ∧ ω2 := σ ⊗ (ω1 ∧ ω2),

and the general case is defined by linear extension.)
As an abbreviation, we write

Ωp(E) := Γ (E)⊗Ωp(M), Ωp := Ωp(M).

Thus
D : Ωp(E) → Ωp+1(E), 0 ≤ p ≤ d.

We want to compare this with the exterior derivative

d : Ωp → Ωp+1.
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Here, we have
d ◦ d = 0.

Such a relation, however, in general does not hold anymore for D.

Definition 3.1.5 The curvature of a connection D is the operator

F := D ◦D : Ω0(E) → Ω2(E).

The connection is called flat, if its curvature satisfies F = 0.

The exterior derivative d thus yields a flat connection on the trivial bundle
M × R.

We compute for µ ∈ Γ (E)

F (µ) = (d+A) ◦ (d+A)µ
= (d+A)(dµ+Aµ)
= (dA)µ−Adµ+Adµ+A ∧Aµ

(the minus sign occurs, because A is a 1-form).
Thus

F = dA+A ∧A. (3.1.25)

If we write A = Ajdx
j , (3.1.24) becomes

F =
(
∂Aj

∂xi
+AiAj

)
dxi ∧ dxj

=
1
2

(
∂Aj

∂xi
− ∂Ai

∂xj
+ [Ai, Aj ]

)
dxi ∧ dxj (3.1.26)

(note that each Aj is an (n× n)-matrix).
We now want to compute DF. F is a map from Ω0(E) to Ω2(E), i.e.

F ∈ Ω2(E)⊗ (Ω0(E))∗ = Ω2(EndE).

We thus consider F as a 2-form with values in EndE. By (3.1.23) then

DF = dF + [A,F ]
= dA ∧A−A ∧ dA+ [A, dA+A ∧A] by (3.1.23)
= dA ∧A−A ∧ dA+A ∧ dA− dA ∧A+ [A,A ∧A]
= [A,A ∧A]

= [Aidx
i, Ajdx

j ∧Akdx
k]

= AiAjAk(dxi ∧ dxj ∧ dxk − dxj ∧ dxk ∧ dxi)
= 0.

This is the so-called second Bianchi identity.
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Theorem 3.1.1 The curvature F of a connection D satisfies

DF = 0. �

We now want to study the transformation behavior of F. We use the
same covering (Uα)α∈A as above, and on Uα, we write again D = d + Aα,
Aα = Aα,idx

i. F then has the corresponding representation

Fα =
1
2

(
∂Aα,j

∂xi
− ∂Aα,i

∂xj
+ [Aα,i, Aα,j ]

)
dxi ∧ dxj (3.1.27)

by (3.1.26). Using the transformation formula (3.1.16) for Aα, we see that in
the transformation formula for Fα, all derivatives of ϕβα cancel, and we have

Fα = ϕ−1
βαFβϕβα . (3.1.28)

Thus, in contrast to A, F transforms as a tensor.
We now want to express F in terms of the Christoffel symbols. In order to

make contact with the classical notation, we denote the curvature operator,
considered as an element of Ω2(EndE) by R :

F : Ω0(E) → Ω2(E)
µ → R(·, ·)µ,

and we define the components Rk
�ij by

R

(
∂

∂xi
,
∂

∂xj

)
µ� = Rk

�ijµk (3.1.29)

(k, � ∈ {1, . . . , n}, i, j ∈ {1, . . . , d}). By (3.1.26)

R(·, ·)µ� = Fµ�

=
1
2

(
∂Γ k

j�

∂xi
− ∂Γ k

i�

∂xj
+ Γ k

imΓ
m
j� − Γ k

jmΓ
m
i�

)
dxi ∧ dxj ⊗ µk, (3.1.30)

i.e.

Rk
�ij =

∂Γ k
j�

∂xi
− ∂Γ k

i�

∂xj
+ Γ k

imΓ
m
j� − Γ k

jmΓ
m
i� . (3.1.31)

Theorem 3.1.2 The curvature tensor R of a connection D satisfies

R(X,Y )µ = DXDY µ−DY DXµ−D[X,Y ]µ (3.1.32)

for all vector fields X,Y on M, and all µ ∈ Γ (E).

Proof. A direct computation is possible. However, one may also argue more
abstractly as follows: First, (3.1.32) holds for X = ∂

∂xi , Y = ∂
∂xj . Namely, in

this case [X,Y ] = 0, and (3.1.32) follows from (3.1.26).
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We have seen already that R transforms as a tensor (the tensorial trans-
formation behavior w.r.t. X,Y also follows from (3.1.26), for example), and
thus the value of R(X,Y )µ at the point x depends only on the values of X
and Y at x. Now for X = ξi ∂

∂xi , Y = ηj ∂
∂xj

DXDY µ−DY DXµ =ξi ∂η
j

∂xi
D ∂

∂xj
µ− ηj ∂ξ

i

∂xj
D ∂

∂xi
µ

+ ξiηj
(
D ∂

∂xi
D ∂

∂xj
−D ∂

∂xj
D ∂

∂xi

)
µ

and
D[X,Y ]µ = D

(ξi ∂ηj

∂xi
∂

∂xj −ηj ∂ξi

∂xj
∂

∂xi )
µ,

hence

DXDY µ−DY DXµ−D[X,Y ]µ = ξiηj
(
D ∂

∂xi
D ∂

∂xj
−D ∂

∂xj
D ∂

∂xi

)
µ,

and this has the desired tensorial form. �

In order to develop the geometric intuition for the curvature tensor, we
want to consider vector fields X,Y with [X,Y ] = 0, e.g. coordinate vector
fields ∂

∂xi ,
∂

∂xj . Then

R(X,Y ) = DXDY −DY DX .

When forming DXDY µ, we first move µ by infinitesimal parallel transport
in the direction Y and then in the direction X; when forming DY DXµ, the
order is reversed. R(X,Y )µ then expresses the difference in the results of
these two operations, or, in other words, the dependence of parallel transport
on the chosen path.

Corollary 3.1.1 We have

R(X,Y ) = −R(Y,X). (3.1.33)

Proof. From (3.1.32). �

Corollary 3.1.2
Rk

�ij = −Rk
�ji ∀ i, j, k, � .

Proof. This reformulation of (3.1.33) also follows from (3.1.30). �

Connections on the tangent bundle TM are particularly important:

Definition 3.1.6 Let ∇ be a connection on the tangent bundle TM of a
differentiable manifold M. A curve c : I →M is called autoparallel or geodesic
w.r.t. ∇ if
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∇ċċ ≡ 0 (3.1.34)

i.e. if the tangent field of c is parallel along c.

In local coordinates, ċ = ċi ∂
∂xi , and

∇ċċ = (c̈k + Γ k
ij ċ

iċj)
∂

∂xk
, (3.1.35)

and the equation for geodesics has the same form as the one in 1.4. The dif-
ference is that the Christoffel symbols now have been defined differently. We
shall clarify the relation between these two definitions below in 3.3. Accord-
ing to (3.1.35), (3.1.34) is a system of 2nd order ODE, and thus, as in 1.4,
for each x ∈ M,X ∈ TxM, there exist a maximal interval I = IX ⊂ R with
0 ∈ IX and a geodesic c = cX

c : I →M

with c(0) = x, ċ(0) = X.
C := {X ∈ TM : 1 ∈ IX} is a star-shaped neighborhood of the zero

section of TM, and as in 1.4, we define an exponential map by

exp : C →M

X → cX(1).

If X ∈ C, 0 ≤ t ≤ 1, then exp(tX) = cX(t).

Definition 3.1.7 The torsion tensor of a connection ∇ on TM is defined as

T (X,Y ) := T∇(X,Y ) := ∇XY −∇Y X−[X,Y ] (X,Y ∈ Γ (TM)). (3.1.36)

∇ is called torsion free if
T ≡ 0. (3.1.37)

Remark. It is not difficult to verify that T is indeed a tensor, i.e. that the
value of T (X,Y )(x) only depends on the values of X and Y at the point x.

In terms of our local coordinates, the components of the torsion tensor T
are given by

Tij = T

(
∂

∂xi
,
∂

∂xj

)
= ∇ ∂

∂xi

∂

∂xj
−∇ ∂

∂xj

∂

∂xi
= (Γ k

ij − Γ k
ji)

∂

∂xk
. (3.1.38)

We conclude

Lemma 3.1.1 The connection ∇ on TM is torsion free if and only if

Γ k
ij = Γ k

ji for all i, j, k. (3.1.39).
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�

Definition 3.1.8 A connection ∇ on TM is called flat if each point in M
possesses a neighborhood U with local coordinates for which all the coordi-
nate vector fields ∂

∂xi are parallel, that is,

∇ ∂

∂xi
= 0. (3.1.40)

Theorem 3.1.3 A connection ∇ on TM is flat if and only if its curvature
and torsion vanish identically.

Proof. When the connection is flat, all ∇ ∂

∂xi

∂
∂xj = 0, and so, all Christoffel

symbols Γ k
ij = 0, and therefore, also T and R vanish, as they can be expressed

in terms of the Γ k
ij .

For the converse direction, we need to find local coordinates for which
0 = ∇ ∂

∂xj

∂
∂xi for all i, j. Putting µi := ∂

∂xi , we obtain the system

∂

∂xj
µi + Γ k

jiµk = 0 for all i, j. (3.1.41)

In vector notation, this becomes

∂

∂xj
µ+ Γjµ = 0, (3.1.42)

and by the theorem of Frobenius, this can be solved if and only if the inte-
grability condition

[Γi, Γj ] +
∂

∂xi
Γj − ∂

∂xj
Γi = 0 (3.1.43)

holds for all i, j. With indices, this is

∂Γ k
j�

∂xi
− ∂Γ k

i�

∂xj
+ Γ k

imΓ
m
j� − Γ k

jmΓ
m
i� = 0 for all i, j, (3.1.44)

which by equation (3.1.31) means that the curvature tensor vanishes. We can
thus solve (3.1.41) for the µi. In order that these µi are coordinate vector
fields ∂

∂xi , the necessary and sufficient condition (again, by the theorem of
Frobenius) is

∂

∂xi
µj =

∂

∂xj
µi for all i, j, (3.1.45)

which by (3.1.41) in turn is equivalent to the condition Γ k
ij = Γ k

ji for all i, j, k,
that is, by Lemma 3.1.1, the vanishing of the torsion T . This completes the
proof. �
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Perspectives. Ehresmann was the first to arrive at the correct concept of a
connection in a vector bundle. Equivalently, the concept may also be introduced in
a principal bundle (see the discussion at the end of 1.7). The theory of connections
is systematically explored in [160, 161].

The curvature tensor introduced here generalizes the Riemann curvature tensor
derived from a Riemannian metric in §3.3 below.

The Bianchi identity (Theorem 3.1.1) may be derived in a more conceptual way
as the infinitesimal version of the equivariance of the curvature form F with respect
to certain transformations in horizontal directions, see[214].

For a more detailed and elementary discussion of integrability conditions and
the Frobenius theorem, we refer to [71].

3.2 Metric Connections. The Yang-Mills Functional

Definition 3.2.1 Let E be a vector bundle on the differentiable manifold M
with bundle metric 〈·, ·〉. A connection D on E is called metric if

d〈µ, ν〉 = 〈Dµ, ν〉+ 〈µ,Dν〉 for allµ, ν ∈ Γ (E). (3.2.1)

A metric connection thus has to respect an additional structure, namely
the metric.

We want to interpret condition (3.2.1). Let X ∈ TxM ; (3.2.1) then means

X〈µ, ν〉 = 〈DXµ, ν〉+ 〈µ,DXν〉. (3.2.2)

Let now c : I →M be a smooth curve, and let µ(t) and ν(t) be parallel along
c, i.e. Dċµ = 0 = Dċν. Then from (3.2.2)

d

dt
〈µ(t), ν(t)〉 = 0. (3.2.3)

This can be interpreted as follows:

Lemma 3.2.1 The parallel transport induced by a metric connection on a
vector bundle preserves the bundle metric in the sense that parallel transport
constitutes an isometry of the corresponding fibers.

Namely, (3.2.3) means that the scalar product is preserved under parallel
transport. �

Lemma 3.2.2 Let D be a metric connection on the vector bundle E with
bundle metric 〈·, ·〉. Assume that w.r.t. a metric bundle chart (cf. Definition
1.5.12 and Theorem 1.5.3), we have the decomposition

D = d+A.

Then for any X ∈ TM, the matrix A(X) is skew symmetric, i.e.
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A(X) ∈ o(n) (= Lie algebra of O(n)) (n = rank of E).

Proof. As described in Theorem 1.5.3, a metric bundle chart (f, U) generates
sections µ1, . . . , µn on U that form an orthonormal basis of the fiber Ex at
each x ∈ U , i.e.

〈µi(x), µj(x)〉 = δij .

Moreover, since the µi are constant in the bundle chart, we have for the
exterior derivative d defined by the chart

dµi ≡ 0 (i = 1, . . . , n).

Let now X ∈ TxM,x ∈ U.
It follows that

0 = X〈µi, µj〉 = 〈A(X)µi, µj〉+ 〈µi, A(X)µj〉
= 〈A(X)k

i µk, µj〉+ 〈µi, A(X)k
jµk〉

= A(X)j
i +A(X)i

j . �

By
Ωp(AdE),

we denote the space of those elements of Ωp(EndE) for which the endo-
morphism of each fiber is skew symmetric. Thus, if D = d + A is a metric
connection, we have

A ∈ Ω1(AdE).

We define
D∗ : Ωp(AdE) → Ωp−1(AdE)

as the operator dual to

D : Ωp−1(AdE) → Ωp(AdE)

w.r.t. (·, ·); thus

(D∗ν, µ) = (ν,Dµ) for allµ ∈ Ωp−1(AdE), ν ∈ Ωp(AdE). (3.2.4)

This is in complete analogy with the definition of d∗ in 2.1. Indeed, for D =
d+A (A ∈ Ω1(AdE)), A = Aidx

i

(ν, dµ+Aidx
i ∧ µ) = (d∗ν, µ)− (Aiν, dx

i ∧ µ), sinceAi is skew symmetric.
(3.2.5)

By Lemma 2.1.1, in this case

∗∗ = (−1)p(d−p).
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∗ : Ωp(AdE) → Ωd−p(AdE) operates on the differential form part as de-
scribed in 2.1 and leaves the AdE-part as it is:

∗(µ⊗ ω) = µ⊗ ∗ω forµ ∈ Γ (AdE), ω ∈ Ωp,

and by Lemma 2.1.4
d∗ = (−1)d(p+1)+1 ∗ d ∗ .

Moreover, Ai and ∗ commute, since Ai operates on the AdE-part and ∗ on
the form part. In particular,

∗Ai∗ = Ai.

Thus, from (3.2.5)

D∗ = (−1)d(p+1)+1 ∗ (d+A)∗ = (−1)d(p+1)+1 ∗D ∗ . (3.2.6)

(Note, however, that A operates on the form part by contraction and not by
multiplication with dxi).

In Chapter 7, we shall need to compute expressions of the form

∆〈ϕ,ϕ〉
where ϕ is a section of a vector bundle E with a metric connection D. We
obtain

∆〈ϕ,ϕ〉 = d∗d〈ϕ,ϕ〈
= (−1) ∗ d ∗ d〈ϕ,ϕ〉
= 2(−1) ∗ d ∗ 〈Dϕ,ϕ〉
= 2(−1) ∗ d ∗ 〈Dϕ,ϕ〉

= 2(−1) ∗ (〈D ∗Dϕ,ϕ〉+ 〈∗Dϕ,Dϕ〉)
= 2(〈D∗Dϕ,ϕ〉 − 〈Dϕ,Dϕ〉)

since D is metric
(Dϕ is a 1-form with
values in E, and ∗
operates on the form part
whereas 〈., .〉 multiplies
the vector parts, and so
∗ and 〈., .〉 commute)
sinde D is metric
by (3.2.6), and since
∗∗ = 1 on 2-forms.

Thus, we obtain the formula

∆〈ϕ,ϕ〉 = 2(〈D∗Dϕ,ϕ〉 − 〈Dϕ,Dϕ〉). (3.2.7)

We now study the curvature of metric connection and observe first

Corollary 3.2.1 Let D = d + A be a metric connection on E. Then the
curvature F of D satisfies
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F ∈ Ω2(AdE).

Proof. We consider (3.1.25). Under the conditions of Lemma 3.2.2,

∂Ai

∂xj
− ∂Aj

∂xi
+ [Ai, Aj ]

is a skew symmetric matrix for each pair (i, j), because the Lie bracket of
two skew symmetric matrices is skew symmetric again, since o(n) is a Lie
algebra. �

Note that Fij = 1
2

(
∂Ai

∂xj − ∂Aj

∂xi + [Ai, Aj ]
)

is always skew symmetric in i

and j. This is also expressed by Corollary 3.1.1. By way of contrast, Corollary
3.2.1 expresses the skew symmetry of the matrix

Rk
�ij

w.r.t. the indices k and � :

Corollary 3.2.2 For a metric connection,

Rk
�ij = −R�

kij for all i, j ∈ {1, . . . , d}, k, � ∈ {1, . . . , n} (3.2.8)
(d = dimM,n = rank of E). �

For A,B ∈ o(n), we put

A ·B = − tr (AB). (3.2.9)

This is the negative of the Killing form of the Lie algebra o(n). (3.2.9) defines
a (positive definite) scalar product on o(n). (3.2.9) then also defines a scalar
product on AdE. We now recall that we also have a pointwise scalar product
for p-forms: For ω1, ω2 ∈ ΛpT ∗

xM we have

〈ω1, ω2〉 = ∗(ω1 ∧ ∗ω2), (3.2.10)

cf. Lemma 2.1.2. Thus, we also have a scalar product for µ1 ⊗ ω1, µ2 ⊗ ω2 ∈
AdEx ⊗ ΛpT ∗

xM, namely

〈µ1 ⊗ ω1, µ2 ⊗ ω2〉 := µ1 · µ2〈ω1, ω2〉. (3.2.11)

Thus, by linear extension, we also obtain a scalar product on AdEx⊗ΛpT ∗
xM.

This in turn yields an L2-scalar product on Ωp(AdE) :

(µ1 ⊗ ω1, µ2 ⊗ ω2) :=
∫
M

〈µ1 ⊗ ω1, µ2 ⊗ ω2〉 ∗ (1), (3.2.12)

assuming again that M is compact and oriented.
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Definition 3.2.2 Let M be a compact, oriented Riemannian manifold, E
a vector bundle with a bundle metric over M, D a metric connection on E
with curvature FD ∈ Ω2(AdE). The Yang-Mills functional applied to D is

YM(D) := (FD, FD) =
∫
M

〈FD, FD〉 ∗ (1).

We now recall that the space of all connections on E is an affine space; the
difference of two connections is an element of Ω1(EndE). Likewise, the space
of all metric connections on E is an affine space; the difference of two metric
connections is an element of Ω1(AdE). If we want to determine the Euler-
Lagrange equations for the Yang-Mills functional, we may thus use variations
of the form

D + tB with B ∈ Ω1(AdE).

For σ ∈ Γ (E) = Ω0(E),

FD+tB(σ) = (D + tB)(D + tB)σ
= D2σ + tD(Bσ) + tB ∧Dσ + t2(B ∧B)σ (3.2.13)
= (FD + t(DB) + t2(B ∧B))σ,

since D(Bσ) = (DB)σ −B ∧Dσ (compare the derivation of (3.1.25)).
Consequently

d

dt
Y M(D + tB)|t=0 =

d

dt

∫
〈FD+tB, FD+tB〉 ∗ (1)|t=0

= 2
∫
〈DB,FD〉 ∗ (1). (3.2.14)

Recalling the definition of D∗ (3.2.4) (3.2.14) becomes

d

dt
Y M(D + tB)|t=0 = 2(B,D∗FD).

Thus, D is a critical point of the Yang-Mills functional if and only if

D∗FD = 0. (3.2.15)

Definition 3.2.3 A metric connection D on the vector bundle E with a
bundle metric over the oriented Riemannian manifold M is called a Yang-
Mills connection if

D∗FD = 0.

We write FD = Fijdx
i ∧ dxj , and we want to interpret (3.2.5) in local coor-

dinates with gij(x) = δij . In such coordinates,

d∗(Fijdx
i ∧ dxj) = −∂Fij

∂xi
dxj ,
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and from (3.2.5) hence

D∗FD =
(
−∂Fij

∂xi
− [Ai, Fij ]

)
dxj .

(3.2.15) thus means

∂Fij

∂xi
+ [Ai, Fij ] = 0 for j = 1, . . . , d. (3.2.16)

We now discuss gauge transformations.
Let E again be a vector bundle with a bundle metric. Aut (E) then is the

bundle with fiber over x ∈M the group of orthogonal self transformations of
the fiber Ex.

Definition 3.2.4 A gauge transformation is a section of Aut(E). The group
G of gauge transformations is called the gauge group of the metric bundle E.

The group structure here is given by fiberwise matrix multiplication. s ∈ G
operates on the space of metric connections D on E via

s∗(D) := s−1 ◦D ◦ s,
i.e.

s∗(D)µ = s−1D(sµ) (3.2.17)

for µ ∈ Γ (E). For D = d+A, we obtain as in the proof of (3.1.16)

s∗(A) = s−1ds+ s−1As. (3.2.18)

Subsequently, this notion will also be applied in somewhat greater generality.
Namely, if the structure group ofE is not necessarily SO(n), but any subgroup
of Gl(,R), we let Aut(E) the bundle with fiber given by G, and operating on
E again by conjugation. The group of sections of Aut(E) will again be called
the gauge group.

Given x0 ∈ M , we may always find a neighborhood of U of x0 and a
section s of Aut(E) over U , i.e. a gauge transformation defined on U , such
that

s∗(A)(x0) = 0

Namely, according to (3.2.18), we just have to solve

s(x0) = id, ds(x0) = −A(x0).

This is possible since A ∈ Ω1(AdE), and the fiber of AdE is the Lie algebra
of the fiber of Aut(E), a section of which s has to be. Thus,

Lemma 3.2.3 Let D be a connection on the vector bundle E over M . For any
x0 ∈M , there exists a gauge transformation s defined on some neighborhood
of x0 such that the gauge transformed connection s∗(D) satisfies
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s∗(D) = d at x0.

Of course, the gauge transformation can always be chosen to be compatible
with any structure preserved by D, in particular a metric.

Proof. �

In the same notation as in the derivation of (3.1.16), s as a section of
Aut(E) transforms as

sβ = ϕβαsαϕ
−1
βα. (3.2.19)

The curvature F of D transforms as in (3.2.17):

s∗F = s−1 ◦ F ◦ s. (3.2.20)

An orthogonal self map of E is an isometry of 〈·, ·〉, and hence

〈s∗F, s∗F 〉 = 〈F, F 〉. (3.2.21)

We conclude:

Theorem 3.2.1 The Yang-Mills functional is invariant under the operation
of the gauge group G. Hence also the set of critical points of YM, i.e. the set of
Yang-Mills connections, is invariant. Thus, if D is a Yang-Mills connection,
so is s∗D for s ∈ G. �

Corollary 3.2.3 The space of Yang-Mills connections on a given metric
vector bundle E of rank ≥ 2 is infinite dimensional, unless empty. �

For n > 2, 0(n) is nonabelian. Thus, by (3.2.18), in general not only
s−1As 
= A, but by (3.2.20) also

s∗F 
= F.

It is nevertheless instructive to consider the case n = 2. o(2) is a trivial Lie
algebra in the sense that the Lie bracket vanishes identically. AdE thus is
the trivial bundle M × R. Consequently for D = d+A

F = dA. (3.2.22)

Similarly, the Bianchi identity (Theorem 3.1.1) becomes

dF = 0, (3.2.23)

and the Yang-Mills equation (3.2.15) becomes

d∗F = 0. (3.2.24)

(3.2.22) does not mean that the 2-form F is exact, because (3.2.22) depends
on the local decomposition D = d + A which in general is not global. That
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F, as the curvature of a connection, satisfies the Bianchi identity, does mean,
however, that F is closed. F then is harmonic if and only if D is a Yang-Mills
connection, cf. Lemma 2.1.5. Thus, existence and uniqueness of the curvature
of a Yang-Mills connection are consequences of Hodge theory as in 2.2. Thus,
Yang-Mills theory is a generalization (nonlinear in general) of Hodge theory.

We now write (for n = 2) s ∈ G as s = eu. Then

s∗(A) = A+ du by (3.2.18). (3.2.25)

(3.2.24) becomes
d∗dA = 0. (3.2.26)

If we require in addition to d∗dA = 0 the gauge condition

d∗A = 0, (3.2.27)

we obtain the equation

∆A = (d∗d+ dd∗)A = 0. (3.2.28)

Without the gauge fixing (3.2.27), if A is a solution of the Yang-Mills equa-
tion, so is

A+ a with a ∈ Ω1, da = 0,

and conversely, this way, knowing one solution, one obtains every other one;
namely, if A + a with a ∈ Ω1 is a solution, we get d∗a = 0, hence as in 2.1
da = 0. If H1(M,R) = 0, for each such a, there exists a function u with
a = du. With s = eu, we put

s∗(A) = A+ a,

and thus, in this case G operates transitively on the space of Yang-Mills
connections.

We now consider the case d = 4 which is of special interest for the Yang-
Mills equations. As always, M is compact and oriented and carries a Rieman-
nian metric. ∗ then maps Λ2T ∗

xM into itself:

∗ : Λ2T ∗
xM → Λ2T ∗

xM (x ∈M).

Since by Lemma 2.1.1, ∗∗ = 1, we obtain a decomposition

Λ2T ∗
xM = Λ+ ⊕ Λ−

into the eigenspaces of ∗ corresponding to the eigenvalues ±1. Λ2T ∗
xM is

of dimension 6, and Λ+ and Λ− are both of dimension 3. Choosing normal
coordinates with center x, Λ+ is generated by

dx1 ∧ dx2 + dx3 ∧ dx4

dx1 ∧ dx4 + dx2 ∧ dx3

dx1 ∧ dx3 − dx2 ∧ dx4
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and Λ− by
dx1 ∧ dx3 + dx2 ∧ dx4

dx1 ∧ dx2 − dx3 ∧ dx4

dx1 ∧ dx4 − dx2 ∧ dx3.

The elements of Λ+ are called selfdual, those of Λ− antiselfdual.

Definition 3.2.5 A connectionD on a vector bundle over an oriented four di-
mensional Riemannian manifold is called (anti)selfdual or an (anti)instanton
if its curvature FD is an (anti)selfdual 2-form.

Theorem 3.2.2 Each (anti)selfdual metric connection is a solution of the
Yang-Mills equations.

Proof. The Yang-Mills equation is

D∗F = 0.

By (3.2.6), this is equivalent to

D ∗ F = 0. (3.2.29)

Let now F be (anti)selfdual. Then

F = ± ∗ F. (3.2.30)

(3.2.29) then becomes
D ∗ ∗F = 0,

hence by ∗∗ = 1,
DF = 0.

This, however, is precisely the Bianchi identity, which is satisfied by Theorem
3.1.1. �

In order to find a global interpretation of Theorem 3.2.2 in terms of the
Yang-Mills functional, it is most instructive to consider the case of U(m)
or SU(m) connections instead of SO(n) connections. The preceding theory
carries over with little changes from SO(n) to an arbitrary compact subgroup
of the general linear group, in particular U(m) or SU(m). We shall also need
the concept of Chern classes. For that purpose, let E now be a complex vector
bundle of rank m over the compact manifold M , D a connection in E with
curvature F = D2 : Ω0 → Ω2(E). We also recall the transformation rule
(3.2.28):

Fα = ϕ−1
βαFβϕαβ (3.2.31)

which allows to consider F as an element of AdE; at the moment, the struc-
ture group is Gl(m,C) (as E is an arbitrary complex vector bundle), and
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so AdE = EndE = HomC(E,E). We let Mm denote the space of complex
m×m-matrices, and we call a polynomial function, homogenous of degree k
in its entries,

P : Mm → C,

invariant if for all B ∈Mm, ϕ ∈ Gl(m,C)

P (B) = P (ϕ−1Bϕ).

Examples are the elementary symmetric polynomials P j(B) of the eigenval-
ues of B. Those satisfy

det(B + tId) =
m∑

k=0

Pm−k(B)tk (3.2.32)

Similary, a k-linear form

P̃ : Mm × . . .×Mm → C

is called invariant if for B1, . . . , Bk ∈Mm, ϕ ∈ Gl(m,C)

P̃ (B1, . . . , Bk) = P̃ (ϕ−1B1ϕ, . . . , ϕ
−1Bkϕ).

The infinitesimal version of this property is that for all B1, . . . , Bk ∈ Mm,
A ∈ gl(m,C)

k∑
i=1

P̃ (B1, . . . , [A,Bi], . . . , Bk) = 0 (3.2.33)

Restricting an invariant k-form to the diagonal defines an invariant polyno-
mial

P (B) = P̃ (B, . . . , B)

Conversely, given an invariant polynomial, we may obtain an invariant k-form
by polarization:

P̃ (B1, . . . , Bk) :=
(−1)k

k!

k∑
j=1

∑
i1<...<ij

(−1)jP (Bi1 + . . .+Bij
).

Given an invariant polynomial P of degree k, we may use the transformation
rule (3.2.31) for the curvature F of a connection D to define

P (F ) := P (Fα),

using any local trivialization. P (F ) then is a globally defined differential form
of degree 2k. In particular, P (F ) remains invariant under gauge transforma-
tions, as those transform F into s−1 ◦ F ◦ s, cf. (3.2.20)

Lemma 3.2.4 For an invariant polynomial of degree k, we have dP (F ) = 0.
Consequently, P (F ) defines a cohomology class [P (F )] ∈ H2k(M), and this
class does not depend on the chosen connection.
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Proof. Let P̃ be an invariant k-form with P̃ (B, . . . , B) = P (B) as above. As
explained in §3.1, we may extend D as

D : Ωp(EndE) → Ωp+1(EndE).

Since P̃ is linear, we have

dP̃ (B1, . . . , Bk) =
∑

i

(−1)P1+...,Pi−1 P̃ (B1, . . . , dBi, . . . , Bk)

By assumption
P (F ) = P̃ (F, . . . , F ),

is invariant under gauge transformations. For any x0 ∈ M , Lemma 3.2.3
means that after applying a local gauge transformation, we may assume that
at x0, we have

d = D.

Thus, at x0,
dP (F ) =

∑
i

P̃ (F, . . . ,DF, . . . F )
↑
ith entry

As x0 was arbitrary, this holds for all M .
(Alternatively, this may also be derived from (3.2.33), without using Lemma
3.2.3).

The Bianchi identy DF = 0 thus implies

dP (F ) = 0.

If D0, D1 are connections on E, then η := D1 −D0 ∈ Ω1(EndE). We write
locally

D0 = d+A,

and we put
Dt := D0 + tη = d+A+ tη.

The curvatures thus are given by

Ft = d(A+ tη) + (A+ tη) ∧ (A+ tη),

and
∂

∂t
Ft = Dtη.

We obtain

∂

∂t
P (Ft) = kP̃

(
∂

∂t
Ft, Ft, . . . , Ft

)
= kP̃ (Dtη, Ft, . . . , Ft)

= d(kP̃ (η, Ft, . . . , Ft)) as DtFt = 0 by the Bianchi identiy.
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Therefore

P (F1)− P (F0) =

1∫
0

∂

∂t
P (Ft) dt

is cohomologous to zero. �

Definition 3.2.6 The Chern classes of E are defined as

cj(E) =
[
P j

(
i

2π
F

)]
∈ H2j(M)

where P j is the jth elementary symmetric polynomial, and F is the curvature
of an arbitrary connection on E.

Recalling (3.2.32), we have

det
(

i

2π
F + tId

)
=

m∑
k=0

cm−k(E)tk,

or with the eigenvalues λα of i
2πF (the λα are 2-forms) and τ := t−1,

m∑
j=0

cj(E)τ j = det
(

i

2π
τF + Id

)
=

m∏
α=1

(1 + λατ) (3.2.34)

In particular, we have

c1(E) =
i

2π
trF (3.2.35)

c2(E)− m− 1
2m

c1(E) ∧ c1(E) =
1

8π2
tr(F0 ∧ F0), (3.2.36)

where

F0 := F − 1
m

trF · IdE is the trace free part of F . (3.2.37)

We now return to the situation of a U(m) vector bundle E over a four dimen-
sional oriented Riemannian manifold M . We let D be a unitary connection
on E with curvature F = D2 as usual. We decompose F0 into its selfdual
and antiselfdual components

F0 = F+
0 + F−

0 . (3.2.38)
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Then

tr(F0 ∧ F0) = tr(F+
0 ∧ F+

0 ) + tr(F−
0 ∧ F−

0 )
Since the ∧ product of a selfdual 2-
form with an antiselfdual one always
vanish (This can be seen from the
above generators of Λ+ and Λ−).

= tr(F+
0 ∧ ∗F+

0 )− tr(F−
0 ∧ ∗F−

0 )
since ∗F±

0 = ±F±
0

= −|F+
0 |2 + |F−

0 |2 cf. (3.2.9) (3.2.39)

Recalling (3.2.36), we conclude that integrating over M yields

(c2(E)− m− 1
2m

c1(E)2)[M ] = − 1
8π2

∫ (|F+
0 |2 − |F−

0 |2
) ∗ (1) (3.2.40)

The Yang-Mills functional decomposes as

YM(D) =
∫
M

(
1
m
|trF |2 + |F0|2

)
∗ (1)

=
∫
M

(
1
m
|trF |2 + |F+

0 |2 + |F−
0 |2

)
∗ (1) (3.2.41)

Since trF represents the cohomology class −2πic1(E), the cohomology class
of trF is fixed, and ∫

M

|trF |2 ∗ (1)

becomes minimal if trF is a harmonic 2-form in this class, see §2.1.
∫ |trF |2

and
∫ |F0|2 may be minimized independently, and because of the constraint

(3.2.40),
∫ |F0|2 becomes minimal if, depending on the sign of (c2(E) −

m−1
m c1(E)2)[M ],

F+
0 = 0 or F−

0 = 0 (3.2.42)

i.e. if F0 is antiselfdual or selfdual.

If D is a SU(m) connection, then the fiber of AdE is su(m) which is
tracefree, and thus F ∈ Ω2(AdE) satisfies

trF = 0 (3.2.43)

Hence, by (3.2.35)
c1(E) = 0,
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and by (3.2.36), (3.2.40)

c2(E)[M ] = − 1
8π2

∫
M

(|F+|2 − |F−|2) ∗ (1)

where F± are the (anti)selfdual parts of F .
Also,

YM(D) =
∫
M

(|F+|2 + |F−|2) ∗ (1)

then is minimized if F is (anti)selfdual, again depending on the sign of
c2(E)[M ]. In conclusion we obtain

Theorem 3.2.3 Let E be an SU(m) vector bundle over the compact oriented
four dimensional manifold M . Then an SU(m) connection D on E yields an
absolute minimum for YM if F is antiselfdual or selfdual (depending on the
sign c2(E)[M ]), i.e if it satisfies the first order equation F = ± ∗ F .

Remark. Here, we do not address the question when the lower bound for
the Yang-Mills functional just derived is achieved, i.e. when there exist (anti)
selfdual connections.

The Yang-Mills functional exhibits special features in dimension 4, as we
have seen. There is also a functional that is well adapted to 3 dimensional
manifolds, namely the Chern-Simons functional that we shall now briefly
discuss.

Let M be a compact 3 dimensional differentiable manifold, and let E be a
vector bundle over M with structure group a compact subgroup G of Sl(n,R),
with Lie algebra g as usual. We consider G-connections D, i.e. connections
that can locally be written as

D = d+A, with A ∈ Ω1(g).

(As before, we identify g with the fibers of AdE, the endomorphisms of the
fibers of E that are given by elements of g. The discussion here is a little
more general than the one we presented in the 4 dimensional case, but the
latter can easily be extended to the present level of generality as well.)

We also suppose that E is a trivial G-bundle, i.e. as a vector bundle, E
is isomorphic to M × Rn, and the connection on E given by the exterior
derivative d preserves the G-structure (e.g. if G = SO(n), and 〈·, ·〉 is the
corresponding metric on the fibers, then for any two sections σ1, σ2 of E (that
are considered as functions σ1, σ2 : M → Rn under the above isomorphism),
we have

d〈σ1, σ2〉 = 〈dσ1, σ2〉+ 〈σ1, dσ2〉).



130 3. Parallel Transport, Connections, and Covariant Derivatives

In this case, for any other G-connection

D = d+A

on E, A is a globally defined 1-form with values in g.

Definition 3.2.7 The Chern-Simons functional of A is defined as

CS(A) =
∫
M

tr
(
A ∧ dA+

2
3
A ∧A ∧A

)
(3.2.44)

(Here, tr of course is the trace in g, or in more general terms, the negative of
the Killing form of g. In fact, one may take any Ad invariant scalar product
on g here.)

Remark. Without the assumption that E is a trivial G-bundle, we need to
choose a base connection D0 = d + A0. For D = d + A, A − A0 then is a
globally defined 1-form with values in g, and we may thus insert A − A0 in
place of A in the definition of CS.

An important observation is that for the definition of CS, we do not
need to specify a Riemannian metric on M as the integrand is a 3-form on
a 3-dimensional manifold. Thus, any invariants constructed from the Chern-
Simons functional will automatically be topological invariants of the differ-
entiable manifold M .

In order to compute the Euler-Lagrange equations for CS, we consider
variations A+tB, B ∈ Ω1(g), as in the derivation of the Yang-Mills equations.
We have

d

dt
CS(A+ tB)|t = 0 =

∫
tr(B ∧ dA+A ∧ dB + 2B ∧A ∧A)

(cf. (3.2.13) and use, with A = Aidx
i,

B = Bidx
itr(A ∧ B ∧ A) = tr(Akdx

k ∧
Bidx

i ∧ Ajdx
j) = tr(Bidx

i ∧ Ajdx
j ∧

Akdx
k) = tr(B∧A∧A) and similary for

tr(A ∧ A ∧B), as the trace is invariant
under cyclic permutations)

= 2
∫

tr(B ∧ (dA+A ∧A))

(use
∫

tr
(
Aidx

i ∧ ∂Bk

∂dxj dx
j ∧ dxk

)
=
∫

tr(
Bkdx

k ∧ ∂Ai

∂xj dx
j ∧ dxi

)
)

= 2
∫

tr(B ∧ FA), (3.2.45)



3.2 Metric Connections. The Yang-Mills Functional 131

where FA = dA+A∧A is the curvature of the connection D = d+A. If this
expression vanishes for all variations B ∈ Ω1(g), then FA = 0. Consequently,
the Euler-Lagrange equations for CS are

FA = 0 (3.2.46)

i.e. A is a flat G-connection on E.
Like the Yang-Mills equation, the equation (3.2.46) obviously remains

invariant under gauge transformations. The equation (3.2.46) also arises as a
reduction of the (anti)selfduality equations to 3 dimensions. Namely, suppose
that M is a 3-dimensional oriented Riemannian manifold, and that we have
a selfdual connection D = d+A on the 4-dimensional manifold

N = M × R

with the product metric, and that D = d+A can be written locally as

d+A1dx
1 +A2dx

2 +A3dx
3,

where x1, x2, x3 are coordinates on M and where A1, A2, A3 are functions
of the x1, x2, x3 only, and independent of the R-direction. Thus, we assume
that D is trivial in the direction of the factor R. We denote the coordinate
in that direction by x4. We write, in our coordinates, the curvature of D as

F = Fijdx
i ∧ dxj =

(
∂Aj

∂xi
− ∂Ai

∂xj
+ [Ai, Aj ]

)
dxi ∧ dxj .

Our assumption implies that

Fi4 = 0 = F4j for all i, j. (3.2.47)

On the other hand, if x1, x2, x3 now are normal coordinates at the point of
M under consideration, the selfduality equations become

F12 = F34, F13 = −F24, F14 = F23. (3.2.48)

(3.2.47) and (3.2.48) imply
F = 0

i.e. D = d+A is flat.

Perspectives. In the work of Donaldson, detailed accounts of which can be found
in [79], [61], instantons were introduced as important tools for the study of the dif-
ferential topology of four-dimensional manifolds. Let M be a compact differentiable
four-manifold. As explained in 2.2, one has a natural pairing

Γ : H2(M) × H2(M) → R

(α, β) �→
∫
M

α ∧ β.

Γ is called intersection form of M.
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Donaldson showed that if M is simply connected (π1(M) = {1}) and if Γ is
definite, then for a suitable basis of H2(M), Γ is represented by ± identity matrix.
Since by the work of M. Freedman, there exist simply connected compact four-
dimensional manifolds with definite intersection form not equivalent to ± identity
matrix, it follows that such manifolds cannot carry a differentiable structure, or
in other words that there exist restrictions on the topology of compact, simply
connected differentiable four-dimensional manifolds that are not present for non-
differentiable ones. The crucial ingredient in the proof of Donaldson’s theorem is
the moduli space M of instantons on a vector bundle over M with structure group
SU (2) and with so-called topological charge

−1

8π2

∫
M

tr (F ∧ F ) = 1

for the curvature F of a SU(2)-connection. As explained, the topological charge
is a topological invariant of the bundle and does not depend on the choice of SU
(2)-connection (it is the negative of the second Chern class of the bundle). In order
to construct the moduli space of instantons, one identifies instantons that are gauge
equivalent, i.e. differ only by a gauge transformation (see Theorem 3.2.1). Donaldson
then showed that under the stated assumptions, M is an oriented five-dimensional
manifold with point singularities, at least for generic Riemannian metrics on M.
Neighborhoods of the singular points are cones over complex projective space CP2

(see 5.1 below), and M itself is the boundary of M. Deleting neighborhoods of
the singular points, one obtains a smooth oriented five-dimensional manifold with
boundary consisting of M and some copies of CP2. Therefore, in the terminology
of algebraic topology, M is cobordant to a union of CP2’s, and one knows that M
then has the same intersection form as this union of CP2’s. As will be demonstrated
in 5.1, H2(CP2, R) = R, and the intersection form of CP2 is 1. These facts then
imply Donaldson’s theorem. The main work in the proof goes into deriving the
stated properties of the moduli space M. In particular, one uses a theorem of
Taubes on the existence of self-dual connections over four-manifolds with definite
intersection form.

Donaldson then went on to use the topology and geometry of these moduli
spaces to define new invariants for differentiable four-manifolds, the so-called Don-
aldson polynomials. These invariants greatly enhanced the understanding of the
topology of differentiable four-manifolds. Subsequently, however, there has been
found a simpler approach to this theory that is based on coupled equations for a
section of a spinor bundle and a connection on an auxiliary bundle with an abelian
gauge group, namely U(1). This will be explained in Chapter 7.

3.3 The Levi-Civita Connection

Let M be a Riemannian manifold with metric 〈·, ·〉.
Theorem 3.3.1 On each Riemannian manifold M, there is precisely one
metric and torsion free connection ∇ (on TM). It is determined by the for-
mula

〈∇XY,Z〉 =
1
2
{
X〈Y,Z〉 − Z〈X,Y 〉+ Y 〈Z,X〉 (3.3.1)

− 〈X, [Y,Z]〉+ 〈Z, [X,Y ]〉+ 〈Y, [Z,X]〉}
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Definition 3.3.1 The connection ∇ determined by (3.3.1) is called the Levi-
Civita connection of M.

In the sequel, ∇ will always denote the Levi-Civita connection.
Proof of Theorem 3.3.1 We shall first prove that each metric and torsion

free connection ∇ on TM has to satisfy (3.3.1). This will imply uniqueness.
Since ∇ should be metric, it has to satisfy:

X〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉
Y 〈Z,X〉 = 〈∇Y Z,X〉+ 〈Z,∇Y X〉
Z〈X,Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉 .

Since ∇ should also be torsion free, this implies

X〈Y,Z〉 − Z〈X,Y 〉+ Y 〈Z,X〉
= 2〈∇XY,Z〉 − 〈[X,Y ], Z〉+ 〈Y, [X,Z]〉+ 〈X, [Y,Z]〉 ,

i.e. (3.3.1).
For the existence proof, for fixed X,Y, we consider the 1-form ω assigning

the right hand side of (3.3.1) to each Z. ω(Z) is tensorial in Z, because for
f ∈ C∞(M)

ω(fZ) =fω(Z) +
1
2
((Xf)〈Y,Z〉+ (Y f)〈Z,X〉 (3.3.2)

− (Xf)〈Y,Z〉 − (Y f)〈X,Z〉) = fω(Z),

and the additivity in Z is obvious.
Therefore, there exists precisely one vector field A with

ω(Z) = 〈A,Z〉 ,
since 〈·, ·〉 is nondegenerate. We thus put ∇XY := A. It remains to show
that this defines a metric and torsion free connection. Let us first verify that
∇ defines a connection: Additivity w.r.t. X and Y is clear, the tensorial
behavior w.r.t. X follows as in (3.3.2), and the derivation property ∇XfY =
f∇XY + X(f) is verified in the same manner. That ∇ is metric follows
from (3.3.1) by adding 〈∇XY,Z〉 and 〈∇XZ, Y 〉 . Likewise (3.3.1) implies
〈∇XY,Z〉 − 〈∇Y X,Z〉 = 〈[X,Y ], Z〉 , i.e. that ∇ is torsion free. �

As in 1.4, let the metric in a local chart be given by (gij)i,j=1,...,d. The
Christoffel symbols of the Levi-Civita connection ∇ then are

∇ ∂

∂xi

∂

∂xj
= Γ k

ij

∂

∂xk
, i, j = 1, . . . , d . (3.3.3)
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From (3.1.21), we then get

∇ ∂

∂xi
dxj = −Γ j

ikdx
k . (3.3.4)

Corollary 3.3.1 For the Levi-Civita connection, we have

Γ k
ij =

1
2
gk�(gi�,j + gj�,i − gij,�).

Thus, the Christoffel symbols coincide with those defined in 1.4. Likewise, the
two concepts of geodesics (from 1.4 and 3.1) coincide. In particular,

Γ k
ij = Γ k

ji for all i, j, k .

Proof.

Γ k
ij = gk�Γm

ij 〈
∂

∂xm
,
∂

∂x�
〉 = gk�〈∇ ∂

∂xi

∂

∂xj
,
∂

∂x�
〉

=
1
2
gk�

{
∂

∂xi
gj� − ∂

∂x�
gij +

∂

∂xj
gi�

}
by (3.3.1),

since the Lie brackets of coordinate vector fields vanish. �

We now want to exhibit some formulae for the curvature tensor R of the
Levi-Civita connection ∇. R is given by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

(cf. (3.1.32)). In local coordinates, as in (3.1.29),

R

(
∂

∂xi
,
∂

∂xj

)
∂

∂x�
= Rk

�ij

∂

∂xk
. (3.3.5)

We put
Rk�ij := gkmR

m
�ij ,

i.e.

Rk�ij = 〈R
(

∂

∂xi
,
∂

∂xj

)
∂

∂x�
,
∂

∂xk
〉.3 (3.3.6)

3 We point out that the indices k and l appear in different orders at the two
sides of (3.3.6). This somewhat unusual convention has been adopted in order
to achieve as much conformity as possible with the - often conflicting - sign
conventions that occur in Riemannian geometry. Differing sign conventions often
lead to considerable confusion, and we hope that the convention adopted here
does not add too much to that problem.
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Lemma 3.3.1 For vector fields X,Y,Z,W, we have

R(X,Y )Z = −R(Y,X)Z, i.e. Rk�ij = −Rk�ji (3.3.7)

R(X,Y )Z+R(Y,Z)X+R(Z,X)Y = 0, i.e. Rk�ij+Rkij�+Rkj�i = 0 (3.3.8)

〈R(X,Y )Z,W 〉 = −〈R(X,Y )W,Z〉, i.e. Rk�ij = −R�kij (3.3.9)

〈R(X,Y )Z,W 〉 = 〈R(Z,W )X,Y 〉, i.e. Rk�ij = Rijk� (3.3.10)

Proof. It suffices to verify all claims for coordinate vector fields ∂
∂xi . We may

thus assume that all Lie brackets of X,Y,Z and W vanish. (3.3.7) then is
Corollary 3.1.1. For (3.3.8), we observe

R(X,Y )Z +R(Y,Z)X +R(Z,X)Y
= ∇X∇Y Z −∇Y∇XZ +∇Y∇ZX −∇Z∇Y X +∇Z∇XY −∇X∇ZY = 0,

since ∇Y Z = ∇ZY etc. because ∇ is torsion free.
For (3.3.9) it suffices to show 〈R(X,Y )Z,Z〉 = 0 for all X,Y,Z, i.e.

Rkkij = 0. This follows from Corollary 3.2.2. (3.3.10) is proved as follows:
From (3.3.7), (3.3.8)

〈R(X,Y )Z,W 〉 = −〈R(Y,X)Z,W 〉
= 〈R(X,Z)Y,W 〉+ 〈R(Z, Y )X,W 〉, (3.3.11)

and from (3.3.8), (3.3.9)

〈R(X,Y )Z,W 〉 = −〈R(X,Y )W,Z〉
= 〈R(Y,W )X,Z〉+ 〈R(W,X)Y,Z〉. (3.3.12)

From (3.3.11) and (3.3.12)

2〈R(X,Y )Z,W 〉 = 〈R(X,Z)Y,W 〉+ 〈R(Z, Y )X,W 〉
+ 〈R(Y,W )X,Z〉+ 〈R(W,X)Y,Z〉. (3.3.13)

Analogously,

2〈R(Z,W )X,Y 〉 = 〈R(Z,X)W,Y 〉+ 〈R(X,W )Z, Y 〉
+ 〈R(W,Y )Z,X〉+ 〈R(Y,Z)W,X〉
= 2〈R(X,Y )Z,W 〉 ,

by applying (3.3.7) and (3.3.9) to all terms. �
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Remark. (3.3.7) holds for any connection, (3.3.8) for a torsion free one, and
(3.3.9) for a metric one.
(3.3.8) is called the first Bianchi identity.

Lemma 3.3.2 (Second Bianchi identity):

∂

∂xh
Rk�ij +

∂

∂xk
R�hij +

∂

∂x�
Rhkij = 0. (3.3.14)

Proof. This is a special case of Theorem 3.1.1. We want to exhibit a dif-
ferent method of proof, however. Since all expressions are tensors, in or-
der to prove (3.3.14) at a point x0 ∈ M, we may choose arbitrary coor-
dinates around x0. We thus choose normal coordinates with center x0, i.e.
gij(x0) = δij , gij,k(x0) = 0 = Γ k

ij(x0) for all i, j, k.
From (3.1.30), we obtain at x0

Rk�ij =
1
2
(gjk,�i + g�k,ij − gj�,ki − gik,�j − g�k,ij + gi�,kj)

=
1
2
(gjk,�i + gi�,kj − gj�,ki − gik,�j), (3.3.15)

hence also

Rk�ij,h =
1
2
(gjk,�ih + gi�,kjh − gj�,kih − gik,�jh),

since all other terms contain certain first derivatives of gij , hence vanish at
x0. Thus

Rk�ij,h +R�hij,k +Rhkij,� =
1
2
(gjk,�ih + gi�,kjh − gj�,kih − gik,�jh

+ gj�,hik + gih,�jk − gjh,�ik − gi�,hjk

+ gjh,ki� + gik,hj� − gjk,hi� − gih,kj�)
= 0. �

Formula (3.3.15) is often useful.

Definition 3.3.2 The sectional curvature of the plane spanned by the (lin-
early independent) tangent vectors X = ξi ∂

∂xi , Y = ηi ∂
∂xi ∈ TxM of the

Riemannian manifold M is

K(X ∧ Y ) := 〈R(X,Y )Y,X〉 1
|X ∧ Y |2

=
Rijk�ξ

iηjξkη�

gikgj�(ξiξkηjη� − ξiξjηkη�)

=
Rijk�ξ

iηjξkη�

(gikgj� − gijgk�)ξiηjξkη�
(3.3.16)

(|X ∧ Y |2 = 〈X,X〉〈Y, Y 〉 − 〈X,Y 〉2).



3.3 The Levi-Civita Connection 137

Definition 3.3.3 The Ricci curvature in the direction X = ξi ∂
∂xi ∈ TxM is

Ric(X,X) = gj�〈R(X,
∂

∂xj
)
∂

∂x�
, X〉. (3.3.17)

The Ricci tensor is
Rik = gj�Rijk�. (3.3.18)

From (3.3.10) and (3.3.18) we get the symmetry

Rik = Rki. (3.3.19)

Finally, the scalar curvature is

R = gikRik.

Thus, the Ricci curvature is the average of the sectional curvatures of
all planes in TxM containing X, and the scalar curvature is the average of
the Ricci curvatures of all unit vectors, i.e. of the sectional curvatures of all
planes in TxM.

Lemma 3.3.3 With K(X,Y ) := K(X ∧ Y )|X ∧ Y |2(= 〈R(X,Y )Y,X〉), we
have

〈R(X,Y )Z,W 〉 = K(X +W,Y + Z)−K(X +W,Y )−K(X +W,Z)
−K(X,Y + Z)−K(W,Y + Z) +K(X,Z) +K(W,Y )
−K(Y +W,X + Z) +K(Y +W,X) +K(Y +W,Z)
+K(Y,X + Z) +K(W,X + Z)−K(Y,Z)−K(W,X).

Thus, the sectional curvature determines the whole curvature tensor.

Proof. Direct computation from Lemma 3.3.1. �

For d = dimM = 2, the curvature tensor is simply given by

Rijk� = K(gikgj� − gijgk�), (3.3.20)

since TxM contains only one plane, namely TxM itself. The function K =
K(x) is called the Gauss curvature.

Definition 3.3.4 The Riemannian manifold M is called a space of constant
sectional curvature, or a space form if K(X∧Y ) = K ≡ const. for all linearly
independent X,Y ∈ TxM and all x ∈ M. A space form is called spherical,
flat, or hyperbolic, depending on whether K > 0,= 0, < 0.
M is called an Einstein manifold if

Rik = cgik, c ≡ const.

(note that c does not depend on the choice of local coordinates).
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From Lemma 3.3.3 and Theorem 3.1.3, we see that the Riemannian man-
ifolds of vanishing sectional curvature, the flat ones, are those that are locally
isometric to Euclidean space, that is, possess local coordinates for which the
coordinate vector fields ∂

∂xi are parallel and by a linear transformation can
then be chosen to satisfy

gij = 〈 ∂

∂xi
,
∂

∂xj
〉 ≡ δij .

Theorem 3.3.2 (Schur) Let d = dimM ≥ 3. If the sectional curvature of
M is constant at each point, i.e.

K(X ∧ Y ) = f(x) forX,Y ∈ TxM,

then f(x) ≡ const., and M is a space form.
Likewise, if the Ricci curvature is constant at each point, i.e.

Rik = c(x)gik,

then c(x) ≡ const., and M is Einstein.

Proof. Let K be constant at every point, i.e. K(X∧Y ) = f(x). From Lemma
3.3.3, we obtain with fh = ∂

∂xh (f)

Rijk� = f(x)(gi�gjk − gikgj�).

By Lemma 3.3.2, with normal coordinates at x, we obtain

0 = Rijk�,h +Rjhk�,i +Rhik�,j = fh(δi�δjk − δikδj�)
+ fi(δj�δhk − δjkδh�) + fj(δh�δik − δhkδi�).

Since we assume dimM ≥ 3, for each h, we can find h, i, j, k, � with i =
�, j = k, h 
= i, h 
= j, i 
= j. It follows that 0 = fh. Since this holds for all
x ∈ M and all h, we recall that M is connected by our general convention
and conclude f ≡ const.

The second claim follows in the same manner. �

Schur’s theorem says that the isotropy of a Riemannian manifold, i.e. the
property that at each point all directions are geometrically indistinguishable,
implies the homogeneity, i.e. that all points are geometrically indistinguish-
able. In particular, a pointwise property implies a global one.

Example. We shall show that Sn has constant sectional curvature, when
equipped with the metric of 1.4, induced by the ambient Euclidean met-
ric of Rn+1. The reason is simply that the group of orientation preserving
isometries of Sn,SO(n+1), operates transitively on the set of planes in TSn,
i.e. can map any plane in TSn into any other one. This is geometrically ob-
vious and also easily derived formally: First of all, we have already seen that
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SO(n + 1) operates transitively on Sn. It thus suffices to show that for any
point p, e.g. p = (1, 0, . . . 0),SO(n + 1) maps any plane in TpS

n onto any
other one. The isotropy group of p = (1, 0 . . . 0) is(

1 0
0 A

)
withA ∈ SO(n)

(here, the zeroes are (1, n) and (n, 1) matrices).
W.r.t. the Euclidean metric, TpS

n is orthogonal to p, and SO(n+1) thus
operates by X → AX on TpS

n, and this operation is transitive on the 2-
dimensional planes in TpS

n. Since curvature is preserved by isometries it
indeed follows that Sn has constant sectional curvature.

We want to consider the operation of the covariant derivative ∇ of Levi-
Civita on tensor fields once more. For a 1-form ω and vector fields X,Y, as
in 3.1

X(ω(Y )) = (∇Xω)(Y ) + ω(∇XY ). (3.3.21)

Next, as in 3.1, for arbitrary tensors S, T

∇X(S ⊗ T ) = ∇XS ⊗ T + S ⊗∇XT. (3.3.22)

If e.g. S is a p-times covariant tensor, and Y1, . . . , Yp are vector fields,

(∇XS)(Y1, . . . , Yp) = X(S(Y1, . . . , Yp)) (3.3.23)

− p

Σ
i=1

S(Y1, . . . , Yi−1,∇XYi, Yi+1, . . . , Yp).

If in particular S = gijdx
i ⊗ dxj =: g is the metric tensor, we get

∇Xg = 0 for all vectorfieldsX. (3.3.24)

This, of course, simply expresses the fact that ∇ is a metric connection.

We also want to compare ∇ with the Lie derivative of 1.6. From Theorem
1.6.4 (notations as there), we obtain

(LXS)(Y1, . . . , Yp) = X(S(Y1, . . . , Yp)) (3.3.25)

− p

Σ
i=1

S(Y1, . . . , Yi−1, [X,Yi], Yi+1, . . . , Yp).

Since ∇ is torsion free, [X,Yi] = ∇XYi−∇Yi
X, and with (3.3.23), we obtain

(LXS)(Y1, . . . , Yp)

= (∇XS)(Y1, . . . , Yp) +
p

Σ
i=1

S(Y1, . . . , Yi−1,∇Yi
X, . . . , Yp) (3.3.26)
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For example, for g = gijdx
i ⊗ dxj , we get

(LXg)(Y,Z) = g(∇Y X,Z) + g(Y,∇ZX) (3.3.27)
(= 〈∇Y X,Z〉+ 〈Y,∇ZX〉)

From (3.3.25), we obtain for a p-form ω

dω(Y0, . . . , Yp) =
p

Σ
i=0

(−1)iLYi
(ω(Y0, . . . , Ŷi, . . . , Yp)) (3.3.28)

+ Σ
0≤i<j≤p

(−1)i+jω([Yi, Yj ], Y0, . . . , Ŷi, . . . , Ŷj , . . . , Yp),

and hence

dω(Y0, . . . , Yp) =
p

Σ
i=0

(−1)i∇Yi
ω(Y0, . . . , Yi−1, Ȳi, Yi+1, . . . , Yp). (3.3.29)

Lemma 3.3.4 Let e1, . . . , ed (d = dimM) be a local orthonormal frame field
(i.e. e1(y), . . . , ed(y) constitute an orthonormal basis of TyM for all y in some
open subset of M). Let η1, . . . , ηd be the dual coframe field (i.e. ηj(ei) = δj

i ).
The exterior derivative satisfies

d = ηj ∧∇ej
(3.3.30)

and its adjoint (cf. Definition 2.1.1) is given by

d∗ = −ι(ej)∇ej
(3.3.31)

where ι denotes the interior product (ι : Ωp(M) → Ωp−1(M), and for ω ∈
Ωp(M), Y0, . . . , Yp−1 ∈ TyM, we have

(ι(Y0)ω)(Y1, . . . , Yp−1) = ω(Y0, Y1, . . . , Yp−1)). (3.3.32)

Proof. (3.3.30) is the same as (3.3.29). We are going to give a different method
of proof, however, that does not use the Lie derivative and that also gives
(3.3.31).

We put
d̃ := ηj ∧∇ej

.

In order to show that d = d̃, i.e. (3.3.30), we proceed in several steps:

1) d̃ does not depend on the choice of the frame field e1, . . . , ed.
Let f1, . . . , fd be another local frame field, with dual coframe field
ξ1, . . . , ξd. Then

fj = αk
j ek (3.3.33)

for some coefficients αk
j , and

ξj = βj
kη

k,
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with
αk

jβ
j
� = δk

�

from the standard transformation rules.
Consequently

ξj ∧∇fj
= βj

�η
� ∧∇αk

j
ek

= αk
jβ

i
�η

� ∧∇ek

= ηk ∧∇ek
.

d̃ is independent of the choice of frame field, indeed.

2) Since d does not depend on a choice of frame field either (see Lemma
1.5.2 and Corollary 1.5.1), it therefore suffices to check (3.3.30) for
one particular choice of frame field. The independence on the choice
of frame field of both sides of (3.3.30) will then imply that (3.3.30)
will hold for any choice of frame field.

3) We now choose normal coordinates (x1, . . . , xd) centered at x0 ∈ M
(Corollary 1.4.2) and the frame field ej = ∂

∂xj which is orthonormal
at x0. Then ηk = dxk. We are now going to verify (3.3.30) at the
point x0 for those choices of ej and ηk. By 2), and since x0 ∈ M is
arbitrary, that suffices.
At x0, the center of our normal coordinates, we have

∇ ∂

∂xj

∂

∂xk
= 0;∇ ∂

∂xj
dxk = 0 for all j, k (3.3.34)

(Theorem 1.4.4 and Corollary 3.3.1).
Since d and d̃ are both linear operators, it also suffices to verify the
claim on forms of the type ϕ(y)dxi1 ∧ . . .∧dxip . Renumbering indices,
it even suffices to consider the form

ϕ(y)dx1 ∧ . . . ∧ dxp.

Using (3.3.34), we have at x0

d̃(ϕ(x0)dx1 ∧ . . . ∧ dxp) = dxj ∧ (∇ ∂

∂xj
ϕ
)
(x0)dx1 ∧ . . . ∧ dxp

=
∂ϕ

∂xj
dxj ∧ dx1 ∧ . . . dxp

= d(ϕ(x0)dx1 ∧ . . . ∧ dxp)

which is the desired formula.

In order to verify (3.3.31), we use the same method.
We put

d̃∗ = −ι(ej)∇ej
.

1) Independence of the choice of frame field:
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Since both (fj)j=1,...,d and (ek)k=1,...,d constitute an orthonormal ba-
sis of TyM, the matrix (αk

j )j,k=1,...,d of (3.3.33) is orthogonal, i.e.

αk
jα

�
j = δk�.

Thus

−ι(fj)∇fj
= −ι(αk

j ek)∇α�
j
e�

= −αk
jα

�
jι(ek)∇e�

(3.3.35)

= −ι(ek)∇ek
.

2) By 1), it again suffices to verify (3.3.31) for one particular choice of
frame field.

3) We choose normal coordinates centered at x0 as before, and ej =
∂

∂xj , η
k = dxk.

Then again at x0

d̃∗(ϕ(x0)dx1 ∧ . . . ∧ dxp)

= −ι( ∂

∂xj
) (

∂

∂xj
ϕ)(x0)dx1 ∧ . . . ∧ dxp

= (−1)j(
∂

∂xj
ϕ)(x0)dx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxp

where in the last expression, j only runs from 1 to p. We compare this
with

d∗(ϕ(x0)dx1 ∧ . . . ∧ dxp)

= (−1)d(p+1)+1 ∗ d ∗ (ϕ(x0)dx1 . . . ∧ dxp) by Lemma 2.1.4

= (−1)d(p+1)+1 ∗ d(ϕ(x0)dxp+1 ∧ . . . ∧ dxd) by definition of ∗
= (−1)d(p+1)+1 ∗ dxj ∧ (∇ ∂

∂xj
ϕ
)
(x0)dxp+1 ∧ . . . ∧ dxd

by (3.3.30) and (3.3.34)

= (−1)d(p+1)+1(−1)(p−1)(d−p+1)+(p−j)∇ ∂

∂xj
ϕdx1

∧ . . . ∧ d̂xj ∧ . . . ∧ dxd by definition of ∗
= (−1)j∇ ∂

∂xj
ϕdx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxd.

Thus, d∗ = d̃∗. �

Remarks.
1) For (3.3.30), we do not need to assume that the frame field is or-

thonormal. It suffices that the vectors e1(y), . . . , ed(y) constitute a
basis of TyM. Of course, this is to be expected from the fact that the
definition of the exterior derivative does not involve a choice of metric.
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By way of contrast, in (3.3.31) the ej have to be orthonormal, and of
course, the definition of d∗ does depend on the choice of a metric.

2) We may now give a proof of formula (2.1.31):
We recall from formula (3.3.35) that we have for arbitrary (not nec-
essarily orthonormal) bases of TyM with

fj = αk
j ek

that
−ι(fj)∇fj

= −αk
jα

�
jι(ek)∇ek

. (3.3.36)

We now choose (fj)j=1,...,d to be orthonormal and ek = ∂
∂xk w.r.t.

local coordinates. Then of course

〈ek, e�〉 = 〈 ∂

∂xk
,
∂

∂x�
〉 = gk�

and hence
δij = 〈fi, fj〉 = 〈αk

i ek, α
�
je�〉 = αk

i α
�
jgk�,

and thus
αk

i α
�
j = δijg

k�. (3.3.37)

From (3.3.31), (3.3.36), (3.3.37) (since (fj) is orthonormal)

d∗ = −gk�ι
( ∂

∂xk

)∇ ∂

∂x�
. (3.3.38)

Then for α = αi1...ip
dxi1 ∧ . . . ∧ dxip

d∗α = −gk�ι
( ∂

∂xk

)(∂αi1...ip

∂x�

− αi1...ip
Γ j

�mdx
m ∧ dxi1 ∧ dxîj ∧ . . . ∧ dxip

)
(3.3.39)

using (3.3.4) and thus

d∗αi1...ip−1 = −gk�
(∂αki1...ip−1

∂x�
− Γ j

�kαji1...ip−1

)
which is (2.1.31).

We next want to express the Laplace-Beltrami operator ∆ (cf. Definition
2.1.2) in terms of the Levi-Civita connection ∇. For that purpose, we define
the second covariant derivative as

∇2
XY = ∇X∇Y −∇∇XY . (3.3.40)

Theorem 3.3.3 (Weitzenböck Formula). Let e1, . . . , ed (d = dimM) be a
local orthonormal frame field as in Lemma 3.3.4, with the dual coframe
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field η1, . . . , ηd. Then the Laplace-Beltrami operator acting on p-forms (p =
0, 1, . . . , d) is given by

∆ = −∇2
eiei

− ηi ∧ ι(ej)R(ei, ej). (3.3.41)

Proof. We shall use invariance arguments as in the proof of Lemma 3.3.4.
The right hand side of (3.3.4) is independent of the choice of our orthonormal
frame field vi. Therefore, if we want to verify (3.3.41) at an arbitrary point
x0 ∈M, we choose normal coordinates centered at x0 and put at x0,

ei =
∂

∂xi
.

Then, always at x0,

∇ ∂

∂xi

∂

∂xj
= 0,

hence
∇2

eiei
= ∇ei

∇ei
(3.3.42)

and also [ ∂
∂xi ,

∂
∂xj ] = 0, hence

R(ei, ej) = ∇ei
∇ej

−∇ej
∇ei

(cf. (3.1.32)). (3.3.43)

Using Lemma 3.3.4, we then have at x0

d∗d = −ι(ej)∇ej
(ηi ∧∇ei

)

= −ι(ej)(ηi ∧∇ej
∇ei

) since ∇ej
ηi = 0 at x0

= −∇ek
∇ek

+ ηi ∧ ι(ej)∇ej
∇ei

. (3.3.44)

Next

dd∗ = −ηi ∧∇ei
(ι(ej)∇ej

)

= −ηi ∧ ι(ej)∇ei
∇ej

(3.3.45)
since at x0, ι(ej)∇ei

= ∇ei
ι(ej) because of ∇ek

ηj = 0.

(3.3.42) – (3.3.45) imply (3.3.41). �

Remark. On functions, i.e. 0-forms f, we have

R(ei, ej)f = fR(ei, ej)1 = 0

because of the tensorial property of R.

Hence for a function f : M → R,

∆f = −∇2
eiei

f (3.3.46)
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Definition 3.3.5 The Hessian of a differentiable function f : M → R on a
Riemannian manifold M is

∇df.

We have df = ∂f
∂xi dx

i in local coordinates, hence

∇ ∂

∂xj
df =

∂2f

∂xi∂xj
dxi − ∂f

∂xi
Γ i

jkdx
k,

i.e.

∇df =
(

∂2f

∂xi∂xj
− ∂f

∂xk
Γ k

ij

)
dxi ⊗ dxj . (3.3.47)

We also have
∇df(X,Y ) = 〈∇X grad f, Y 〉, (3.3.48)

since Y (f) = 〈grad f, Y 〉 and thus

X(Y (f)) = X〈 grad f, Y 〉
= 〈∇X grad f, Y 〉+ 〈 grad f,∇XY 〉
= 〈∇X grad f, Y 〉+ (∇XY )(f),

and applying (3.3.47) to X and Y yields

∇df(X,Y ) = X(Y (f))− (∇XY )(f). (3.3.49)

This formula can be given the following geometric interpretation: Let X ∈
TpM and take a geodesic c : [0, ε) → M (for some ε > 0) with c(0) = p,
ċ(0) = X. Then at p

∇df(X,X) =
d2

dt2
f(c(t))|t = 0 (3.3.50)

Namely
X(X(f)) = ċ〈gradf(p), ċ〉

= ċ

(
d

dt
f(c(t))|t = 0

)
=

d2

dt2
f(c(t))|t = 0

and
∇ċċ = 0,

since c is geodesic (see (3.1.34) and Corollary 3.3.1) so that (3.3.50) follows
from (3.3.49).

Definition 3.3.6 The differentiable function f : M → R is called (strictly)
convex if the Hessian ∇df is positive semidefinite (definite).
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Theorem 3.3.4 Let M be a compact Riemannian manifold with metric ten-
sor g. There then exists a constant c (depending on the geometry of M) such
that for any (smooth) vector field X on M∫

M

‖∇X‖2dvol +
∫
| div X|2dvol ≤ c (

∫
M

‖X‖2dvol +
∫
M

‖LXg‖2dvol ),

(3.3.51)
where LXg is the Lie derivative of g in the direction of X (see (1.6.20)).

Proof. In local coordinates, by (1.6.20),

LXg = (gkj
∂Xk

∂xi
+ gik

∂Xk

∂xj
+ gij,kX

k)dxi ⊗ dxj

Thus,

‖LXg‖2 = 2 gkmg
i� ∂X

k

∂xi

∂Xm

∂x�
+ 2

∂Xk

∂xi

∂Xi

∂xk
+ P (X,∇X) (3.3.52)

where, here and in the sequel, P (X,∇X) stands for any terms that are
bounded by

const (‖X‖ ‖∇X‖+ ‖X‖2).
Now

∂Xk

∂xi

∂Xi

∂xk
=

∂

∂xi
(Xk ∂X

i

∂xk
−Xi ∂X

k

∂xk
) +

∂Xk

∂xk

∂Xi

∂xi
. (3.3.53)

Also

‖∇X‖2 = gkmg
i� ∂X

k

∂xi

∂Xm

∂x�
+ P (X,∇X), (3.3.54)

| div X|2 =
∂Xk

∂xk

∂Xi

∂xi
+ P (X,∇X). (3.3.55)

From (3.3.52) - (3.3.55),∫
‖∇X‖2 +

∫
| div X|2 ≤ 1

2

∫
‖LXg‖2 +

∫
P (X,∇X) (3.3.56)

Using the inequality

‖X‖ ‖∇X‖ ≤ δ

2
‖∇X‖2 +

2
δ
‖X‖2 for any δ > 0,

we can estimate ∫
P (X,∇X) ≤ ε

∫
‖∇X‖2 + c(ε)

∫
‖X‖2, (3.3.57)

where c(ε) depends on ε > 0 and on the constants involved in the terms
P (X,∇X), i.e. on bounds for the metric tensor g and its first derivatives.

Using (3.3.57) with ε = 1
2 in (3.3.56), we easily obtain (3.3.51). �
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Corollary 3.3.2 Let M be a compact Riemannian manifold. Then the vector
space of Killing fields (cf. Def. 1.6.7) on M is finite dimensional.

Proof. By definition of a Killing field X,

LXg = 0.

Inserting this into (3.3.51), we obtain∫
M

‖∇X‖2 +
∫
M

| div X|2 ≤ c

∫
M

‖X‖2. (3.3.58)

If (Xn)n∈N then is a sequence of Killing fields with
∫ ‖Xn‖2 = 1 for all

n, we bound their Sobolev H1,2-norm by (3.3.58), apply Rellich’s theorem
(Theorem A. 1.8 in the Appendix), and conclude that the Xn contain a
subsequence that converges in L2 . This implies that the space of Killing
fields is a finite dimensional subspace of the space of L2-vector fields on M .

�

Perspectives. The sectional curvature as an invariant of a Riemannian metric
was introduced by Riemann in his habilitation address (quoted in the Perspectives
on 1.1). The tensor calculus for Riemannian manifolds was developed by Christoffel,
Ricci, and others. It also played an important role in the development of Einstein’s
theory of general relativity.

Levi-Civita introduced the notion of parallel transport for a Riemannian man-
ifold. (Similar concepts were also developed by other mathematicians at about the
time.) The concept was expanded and clarified by Weyl, see [253]. For a historical
account, see also [219, 220].

Space forms are quotients of the sphere Sn, Euclidean space Rn, or hyperbolic
space Hn (see §4.4). They can be classified, cf. Wolf[258].

Einstein manifolds form an important class of Riemannian manifolds. Every two
dimensional manifold carries a metric of constant curvature, i.e. is a space form,
by the uniformization theorem. In higher dimensions, some necessary topological
conditions have been found for the existence of Einstein metrics. The question which
manifolds admit Einstein metrics is far from being solved. Even in three dimensions
where a metric is Einstein if and only if it has constant sectional curvature, the
question is not yet fully solved. See however [243], [244]. A comprehensive account
of Einstein manifolds is given in the monograph [19].

Theorem 3.3.4 is a Riemannian version of Korn’s inequality. This result, and the
proof of Cor. 3.3.2 given here, are taken from [48]. One may also identify the terms
P (X,∇X) in (3.3.52) in terms of the Ricci curvature to obtain the Bochner–Yano
formula, see [25].
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3.4 Connections for Spin Structures and the Dirac
Operator

Let ∇ be the Levi-Civita connection of the oriented manifold M of dimension
n, according to Theorem 3.3.1. By Lemma 3.2.2, it admits a local decompo-
sition

∇ = d+A (3.4.1)

with A ∈ Ω1(AdTM), i.e. a one form with values in so(n) that transforms
according to (3.1.17). Conversely, given a vector bundle E with bundle metric
〈·, ·〉 on which SO(n) acts by isometries, and a one form A with values in
so(n) that transforms by (3.1.17), then (3.4.1) can be used to define a metric
connection on E according to the discussion in §3.2. Consequently, for any
such bundle E on which SO(n) acts with the same transition functions as for
the action on TM , the Levi-Civita connection induces a connection. Applying
this observation to the Clifford bundles Cl(P ) and ClC(P ) from Definition
1.8.11, we conclude that the Levi-Civita connection induces a connection,
again denoted by ∇, on each Clifford bundle.

Lemma 3.4.1 For smooth sections µ, ν of Cl(P ) (or ClC(P )) we have

∇(µν) = ∇(µ)ν + µ∇(ν) (3.4.2)

Proof. It is clear that the exterior derivative d satisfies the product rule, and
we recall that A in the decomposition (3.4.1) is in so(n), i.e. acts by the
infinitesimal version of the SO(n) action on Cl(P ). Since this SO(n) action
extends to the one on the tangent bundle TM , B ∈ SO(n) acts via

B(µν) = B(µ)B(ν), (3.4.3)

and differentiating (3.4.3) yields the product rule for A. �

Corollary 3.4.1 ∇ leaves the decomposition of the Clifford bundles into el-
ements of even and odd degree invariant.

Proof. It is clear from the definition, that subbundles of degree 0 and 1 are
preserved, and the claim then easily follows from (3.4.2). �

Since the chirality operator Γ of Definition 1.8.3 defines a section of
ClC(P ) that is invariant under the action of SO(n), it must be covariantly
constant, i.e.

Lemma 3.4.2 ∇(Γ ) = 0 �

Similarly, since the Lie algebra spin(n) can be identified with so(n) (see
Lemma 1.8.2), in the case of a spin structure P̃ over M (cf. Definition 1.8.7),
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we may use the same procedure to obtain induced connections on the asso-
ciated spinor bundles. We denote them again by ∇. The action of ClC(P ) on
the spinor bundle Sn via Clifford multiplication on each fiber (see (1.8.24))
is compatible with these connections; more precisely

Lemma 3.4.3 For smooth sections µ of ClC(P ), σ of Sn

∇(µσ) = ∇(µ)σ + µ∇(σ) (3.4.4)

(where the products of course are given by Clifford multiplication.)

Proof. Similar to the one of Lemma 3.4.1. �

Suppose that in a local trivialization of TM , A from (3.4.1) is given by
the (skew symmetric) matrix Ωij . We write

A =
∑
i<j

Ωijei ∧ ej ,

where ei∧ej denotes the matrix with (−1) at the place (i, j), +1 at (j, i), and
0 otherwise. According to Lemma 1.8.3, ei ∧ ej in so(n) corresponds to 1

2eiej

in spin(n). Thus, the connection on the spinor bundle w.r.t. the induced local
trivialization is given by

d+
1
2

∑
i<j

Ωijeiej . (3.4.6)

Here, eiej of course operates by Clifford multiplication on spinors.
We next consider the case of a spinc structure P̃ over M (cf. Definition

1.8.9). Here, the Levi-Civita connection ∇ does not suffice to determine a
unique connection on bundles on which Spinc acts. Namely, since the Lie
algebra of Spinc(n) is spin(n) ⊕ u(1), we need to specify in addition a con-
nection on the u(1) part, i.e. on the determinant line bundle L of the spinc

structure (Def 1.8.10). We identify the Lie algebra u(1) of U(1) with iR, and
thus, a unitary connection on L is locally represented by a function iA with
imaginary values. Given the Levi-Civita connection and such a connection
on L, we represent the induced spinc connection ∇A locally as

∇A = d+
1
2

⎛⎝∑
i<j

Ωijeiej + iA

⎞⎠ (3.4.7)

as in (3.4.6).
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Definition 3.4.1
(i) Let P̃ →M be a spin structure on the oriented Riemannian manifold

M , with Levi-Civita connection ∇ as explained above. The Dirac
operator D operates on sections σ of the spinor bundle Sn via

Dσ(x) = ei∇ei
(σ)(x) (3.4.8)

where ei, i = 1, . . . , n, is an orthonormal basis of TxM (x ∈ M).
The product on the right hand side of (3.4.8) is given by Clifford
multiplication.

(ii) Let P̃ c →M be a spinc structure on M , and let A represent a unitary
connection on the associated determinant line bundle L. The Dirac
operator DA operating on Sn is given by

DAσ(x) = ei∇A,ei
(σ)(x)

Remark. Since V also operates on the Clifford space Cl(V ), = Λ∗(V ) as
a vector space, we can also define a Dirac operator on the Clifford bundle
instead of the spinor bundle, namely,

D := d+ d∗, with d = ηj ∧∇ej
, d∗ = −ι(ej)∇ej

as in Lemma 3.3.4 that then satisfies

D2 = ∆, the Laplacian.

These two Dirac operators should not be confused.

Lemma 3.4.4 The Dirac operators D and DA do not depend on the choice
of an orthonormal frame ei.

Proof. Any other such frame fj , j = 1, . . . , n, can be obtained as

fj = bijei

for some B = (bij)j,i=1,...,n ∈ O(n). Then

fj∇fj
= bjiei∇bjkek

= bjibjkei∇ek
= δikei∇ek

since B ∈ O(n)
= ei∇ei

which is the invariance of D, and the same computation works for DA. �
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A more abstract way to express the Dirac operator is the following. Let

cl : TM ⊗ S→ S

v ⊗ σ → v · σ
denote the Clifford multiplication. Thus, tangent vectors of M act on spinors
by Clifford multiplication. Denote the space of smooth sections of a vector
bundle E over M by Γ (E). Then

D = cl ◦ ∇ : Γ (S) ∇→ Γ (T ∗M ⊗ S) ∼= Γ (TM ⊗ S) cl→ Γ (S)

where the identification between Γ (T ∗M ⊗ S) and Γ (TM ⊗ S) uses the Rie-
mannian metric of M .

Lemma 3.4.5 Let M be even dimensional, and let S±
n be the half spinor

bundles for a spin or a spinc structure on M . Then the Dirac operator D
(DA) maps Γ

(
S±

n

)
to Γ

(
S∓

n

)
.

Proof. By Corollary 3.4.1,∇, and similarly∇A, leaves the decomposition into
sections of even and odd degree invariant, while Clifford multiplication by ei

interchanges sections of even and odd degree. �

We recall from Corollary 1.8.3 that on the bundle Sn of spinors, we have
a pointwise Hermitian product 〈·, ·〉 (invariant under Spin(n)). We suppose
now that M is compact. We may then form the associated L2 product

(σ1, σ2) :=
∫
M

〈σ1(x), σ2(x)〉 ∗ (1)

where ∗(1) is the volume form of M (see 2.1.18)).

Lemma 3.4.6 Let M be a compact Riemannian manifold with a spin struc-
ture. Then the corresponding Dirac operator D is formally selfadjoint, i.e.

(Dσ1, σ2) = (σ1,Dσ2) (3.4.9)

for all spinor fields σ1, σ2.

Proof. Let x ∈M , and choose normal coordinates centered at x. With ei :=
∂

∂xi , we then have at x

∇ei
(ej) = 0 for all i, j (cf. Theorem 1.4.4 and Corollary 3.3.1) (3.4.10)
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We then have

〈Dσ1(x), σ2(x)〉 = 〈ei∇ei
σ1(x), σ2(x)〉

= −〈∇ei
σ1(x), eiσ2(x)〉 since 〈·, ·〉 is invariant under Clif-

ford multiplication by the unit
vector ei

= −ei〈σ1(x), eiσ2(x)〉+ 〈σ1(x),∇ei
(eiσ2)(x)〉

since ∇ is a metric connection
= −ei〈σ1(x), eiσ2(x)〉+ 〈σ1(x), ei∇ei

σ2(x)〉 by (3.4.10)
= −ei〈σ1(x), eiσ2(x)〉+ 〈σ1(x),Dσ2(x)〉.

We now consider V i = 〈σ1(x), eiσ2(x)〉 as the ith component of a vector field
V (in fact V is a complexified vector field, i.e. a section of TM ⊗ C). The
preceding formula then becomes

〈Dσ1(x), σ2(x)〉 = −divV (x) + 〈σ1(x),Dσ2(x)〉. (3.4.11)

Since all terms in (3.4.11) are independent of the particular choice of coordi-
nates, they continue to hold regardless of whether (3.4.10) is satisfied. (This
point has been discussed in §3.3, e.g. in the derivation of Lemma 3.3.4, but
since this an important computational trick, we repeat it here). Since∫

M

divV (x) ∗ (1) = 0

by the Gauss theorem (see the discussion in §2.1), (3.4.9) follows by integrat-
ing (3.4.11). �

Corollary 3.4.2 On a compact spin manifold M , Dσ = 0 for a spinor field
iff D2σ = 0.

Proof. This follows from (D2σ, σ
)

= (Dσ,Dσ)

by Lemma 3.4.6. �

Definition 3.4.2 A spinor field satisfying Dσ = 0 is called harmonic.

We now come to Weitzenböck formulas that constitute analogues of The-
orem 3.3.3.

Theorem 3.4.1 Let M be a spin manifold with a local orthonormal frame
field e1, . . . , en (as in Lemma 3.3.4, n = dimM). Then the Dirac operator D
satisfies
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D2 = −∇2
eiei

+
1
4
R, (3.4.13)

where R is the scalar curvature of M .

Proof. As in (3.4.10), we assume

∇ei
(ej) = 0 at the point x ∈ M under con-

sideration, for all i, j,
(3.4.14)

as well as
[ei, ej ] = 0 since this holds for all coordinate

vector fields ei = ∂
∂xi .

(3.4.15)

We compute, for a spinor field σ, at x,

D2σ = ej∇ej
((ei∇ei

)σ) = ejei∇ej
∇ei

σ by (3.4.14)
= −∇ei

∇ei
σ

+
∑
i<j

ejei

(∇ej
∇ei

−∇ei
∇ej

)
σ

because of ejei + eiej = −2δij

= −∇2
eiei

σ +
∑
i<j

ejeiR(ej , ei)σ (3.4.16)

by (3.3.42) and whereR(·, ·)
is the curvature tensor of
the Levi-Civita connection
∇ and where we have used
Theorem 3.1.2 and (3.4.15)

R(ej , ei) here acts on spinor fields, and if we express this operator w.r.t. our
local frame field ek, we obtain a factor 1

2 as in (3.4.6), coming from Lemma
1.8.3:

R(ei, ej) =
1
2

∑
k<l

〈R(ei, ej)ek, el〉ekel, (3.4.17)

where ekel again operates by Clifford multiplication. In order to derive
(3.4.13) from (3.4.16), it thus remains to evaluate

1
2

∑
j<i

∑
k<l

〈R(ei, ej)ek, el〉eiejekel =
1
8

∑
i,j,k,l

〈R(ei, ej)ek, el〉eiejekel (3.4.18)

If i, j, k are all distinct,

eiejek = ejekei = ekeiej ,

and the first Bianchi identity (see Lemma 3.3.1) implies in this case that

R(ei, ej)ek +R(ej , ek)ei +R(ek, ei)ej = 0.
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The remaining terms are

1
8

∑
i,j,k,l

(〈R(ei, ek)ek, el〉eiekekel + 〈R(ek, ei)ek, el〉ekeiekel)

= −1
4

∑
i,k,l

〈R(ei, ek)ek, el〉eiel by (3.1.33) and e2k = −1

= −1
4
Rileiel where Ril is the Ricci tensor

=
1
4
Rii since Ril = Rli (see (3.3.19)), eiel + elei = −2δij

=
1
4
R

�

Theorem 3.4.2 Let M be a spinc manifold with a local orthonormal frame
field e1, . . . , en and a spinc connection ∇A. The Dirac operator DA satisfies

D2
A = −∇2

A,eiei
+

1
4
R+

1
2
FA (3.4.19)

where FA, an imaginary valued two-form, is the curvature of A. (FA acts on
spinors by Clifford multiplication; in our frame field,

∑
i<j

FA,ijei ∧ ej becomes

1
2

∑
i<j

FA,ijeiej as usual.)

Proof. The proof is the same as the one of Theorem 3.4.1, except for the
additional u(1) part A of the connection that leads to the additional FA in
the formula. �

Perspectives. See the references given in the perspectives on §1.8. The Dirac
operator on the spinor bundle (Definition 3.4.1) was introduced by Atiyah and
Singer [8] in their investigation of the index of elliptic operators. The simpler Dirac
operator on the Clifford bundle had been studied earlier by Kähler[152]

3.5 The Bochner Method

Lemma 3.5.1 Let (ei)i=1,...,d be a local orthonormal frame field on M, with
dual coframe field (ηi)i=1,...,d, as in Lemma 3.3.6.

If ω is a harmonic form, then

−∆〈ω, ω〉 =2〈∇ei
ω,∇ei

ω〉
− 2〈ω, ηi ∧ ι(ej)R(ei, ej)ω〉 . (3.5.1)
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Proof. Let x0 be a point in M where we perform the computations, and
choose normal coordinates centered at x0 and ei = ∂

∂xi . Again, the formulae
will not depend on the choice of a local orthonormal frame. Then, by the
remark after Theorem 3.3.3 and (3.3.42)

−∆〈ω, ω〉 = ∇ei
∇ei

〈ω, ω〉
= 2〈∇ei

ω,∇ei
ω〉+ 2〈ω,∇ei

∇ei
ω〉 . (3.5.2)

(3.3.42) and (3.3.41) then yield (3.5.1), since ∆ω = 0 by assumption. �

Lemma 3.5.2 With the notation of Lemma 3.5.1, we have for a harmonic
1-form ω on M

−∆〈ω, ω〉 = 2|∇ω|2 + 2Ric(ω, ω) (3.5.3)

with |∇ω|2 := 〈∇ei
ω,∇ei

ω〉 and writing ω = fiη
i,

Ric(ω, ω) := Ric(fiei, fjej) = fifj Ric(ei, ej).

Proof. We compute the curvature term in (3.5.1) for a 1-form ω :

〈ω, ηi ∧ ι(ej)R(ei, ej)ω〉
= 〈f�η

�, ηi ∧ ι(ej)R(ei, ej)fkη
k〉

= −f�fk〈η�, ηi ∧ ι(ej)Rkmijη
m〉

= −f�fk〈η�, Rkjijη
i〉

= −f�fkRkj�j

= −f�fkRk�

= − Ric (ω, ω)

where we have used the tensor notation of 3.3, (e.g. (3.3.6) and (3.3.18)). �

Theorem 3.5.1 (Bochner)

(i) Let M be a compact Riemannian manifold with nonnegative Ricci
curvature. Then every harmonic 1-form ω is parallel (i.e. ∇ω ≡ 0).
In particular, the first de Rham cohomology group satisfies

dimH1
dR(M,R) ≤ d(= dimM).

(ii) If M is a compact Riemannian manifold of positive Ricci curvature,
then M has no nontrivial harmonic 1-form. Thus,

H1
dR(M,R) = {0}.

Proof. We integrate formula (3.5.3): Then from (2.1.17)
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0 = −
∫
M

∆〈ω, ω〉 ∗ (1) = 2
∫
M

(|∇ω|2 + Ric(ω, ω)) ∗ (1). (3.5.4)

By our assumption, the integrand on the right hand side is pointwise non-
negative. It therefore has to vanish identically. This implies in particular

∇ω ≡ 0, (3.5.5)

and ω is parallel.
A parallel 1-form is determined by its value at one point of M (cf. the

discussion before Definition 3.1.2).
Therefore, the dimension of the vector space of parallel 1-forms is at most

the dimension of the cotangent space T ∗
xM, i.e. d. Likewise, (3.5.4) implies

Ric(ω, ω) ≡ 0. (3.5.6)

Thus, if M has positive Ricci curvature, we must have ω ≡ 0. �

Remark. In (ii) of the preceding theorem, it suffices to assume that M has
nonnegative Ricci curvature, and that there exists some point x0 where the
Ricci curvature is positive. Namely, from

Ric(ω, ω) ≡ 0,

we then conclude that, ω(x0) = 0, and since ω is parallel, it then vanishes
everywhere.

Below, we shall derive a stronger result (Corollary 4.3.1, Theorem of
Bonnet-Myers) on the topology of Riemannian manifolds of positive Ricci
curvature by a different method. Nevertheless, the Bochner method is an im-
portant tool in Riemannian geometry because it has a rather general range
of applicability. It also applies to harmonic sections of bundles (suitably de-
fined), harmonic mappings (see chapter 8) etc. The harmonicity of the object
under consideration will imply a formula of the type of (3.5.1). The essential
point of (3.5.1) is that instead of third order derivatives that would appear
for a general, nonharmonic object, one only has a commutator term given by
a curvature expression. The other term on the right hand side is a square,
hence nonnegative. If one then assumes that the curvature is such that the
curvature term also is nonnegative, both terms have to vanish identically, be-
cause the integral of the left hand side vanishes. The vanishing of the square
term then implies that the object is parallel. If the curvature is even positive,
the vanishing of the curvature term implies that the object itself vanishes.

We shall see another instance of the Bochner method in 8.7.
When combining the preceding reasoning with the Weitzenböck formula

of Theorem 3.4.1, we get
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Theorem 3.5.2 (Lichnerowicz) Let M be a compact spin manifold. If M
has nonnegative scalar curvature, then every harmonic spinor field is parallel.
If the scalar curvature is positive, then every harmonic spinor field vanishes.

Proof. As in the proof of Lemma 3.5.1, we compute for a harmonic spinor
field σ

−∆〈σ, σ〉 = 2〈∇ei
σ,∇ei

σ〉+ 2〈σ,∇2
eiei

σ〉
= 2〈∇ei

σ,∇ei
σ〉+

1
2
R〈σ, σ〉 by (3.4.13).

As in the proof of Theorem 3.5.1, we integrate this formula to get

2
∫
〈∇ei

σ,∇ei
σ〉 ∗ (1) +

1
2

∫
R〈σ, σ〉 ∗ (1) = 0

If R ≥ 0, both integrands have to vanish identically; in particular ∇ei
≡ 0

meaning that σ is parallel. If R > 0, σ ≡ 0. �

Perspectives. Further applications of the Bochner method may be found in the
monograph [259]. See also the Perspectives on 8.7.

3.6 The Geometry of Submanifolds. Minimal
Submanifolds

Let M be an m-dimensional submanifold of the n-dimensional Riemannian
manifold N. The metric 〈., .〉 on N induces a metric on M, as described in
1.4. The question arises how to compute the Levi-Civita connection ∇M of
M from the one on N, ∇N .

Theorem 3.6.1 We have

∇M
X Y = (∇N

XY )� forX,Y ∈ Γ (TM), (3.6.1)

where  : TxN → TxM for x ∈M denotes the orthogonal projection.

Proof. In order that the right hand side of (3.6.1) is defined, we have to
extend X and Y locally to a neighbourhood of M in N. This is most easily
done in local coordinates around x ∈ M that locally map M to Rm ⊂ Rn.
The extension of X = ξi(x) ∂

∂xi then for example is

X̃(x1, . . . , xn) =
m

Σ
i=1

ξi(x1, . . . , xn)
∂

∂xi
.
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We then have
〈X̃, Ỹ 〉(x) = 〈X,Y 〉(x)

[X̃, Ỹ ](x) = [X,Y ](x).

Since (3.3.1) has to hold for ∇M as well as for ∇N , (3.6.1) follows. (It follows
from the representation of ∇N by Christoffel symbols, that (∇N

XY )� does
not depend on the chosen extensions. It is also clear that (∇N

XY )T defines a
torsion free connection on M because ∇N is a torsion free connection on M ,
and since ∇N

XY − ∇N
Y X − [X,Y ] vanishes, also the part of this expression

that is tangential to M has to vanish.) �

With the help of Theorem 3.6.1, we may easily determine the Levi-Civita
connection of Sn ⊂ Rn+1.

Let ν(x) be a vector field in a neighborhood of x0 ∈ M ⊂ N, that is
orthogonal to M, i.e.

〈ν(x), X〉 = 0 for allX ∈ TxM. (3.6.2)

We denote the orthogonal complement of TxM in TxN TxM
⊥. The bundle

TM⊥ with fiber TxM
⊥ at x ∈M is called normal bundle of M in N. (3.6.2)

thus means
ν(x) ∈ TxM

⊥.

Lemma 3.6.1 (∇N
Xν)

�(x) only depends on ν(x), the value of ν at x.

Proof. For a real valued function f in a neighborhood of x

(∇N
Xfν)

�(x) = (X(f)(x)ν(x))� + f(x)(∇Xν)�(x)

= f(x)(∇Xν)�(x),

since ν(x) ∈ TxM
⊥. �

Lemma 3.6.1 makes the following definition possible.

Definition 3.6.1 The second fundamental tensor of M at the point x is the
map

S : TxM × TxM
⊥ → TxM, (3.6.3)

defined by S(X, ν) = (∇N
Xν)

�.

Lemma 3.6.2 For X,Y ∈ TxM,

�ν(X,Y ) := 〈S(X, ν), Y 〉 (3.6.4)

is symmetric in X and Y.
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Proof.

�ν(X,Y ) = 〈(∇N
Xν)

�, Y 〉
= 〈∇N

Xν, Y 〉, since Y ∈ TxM

= −〈ν,∇N
XY 〉, since 〈ν, Y 〉 = 0and∇N is metric

= −〈ν,∇N
Y X + [X,Y ]〉, since ∇N is torsionsfree(3.6.5)

= −〈ν,∇N
Y X〉, since [X,Y ] ∈ TxM,ν ∈ TxM

⊥

= 〈∇N
Y ν,X〉, since 〈ν,X〉 = 0and∇N is metric

= 〈(∇N
Y ν)

�, X〉, since X ∈ TxM

= �ν(Y,X) . �

Definition 3.6.2 �ν(·, ·) is called the second fundamental form of M w.r.t.
N.

Remark. The first fundamental form is the metric, applied to X and Y ∈
TxM, i.e. 〈X,Y 〉.

For a fixed normal field ν, we write Sν(X) = S(X, ν). Sν : TxM →
TxM then is selfadjoint w.r.t. the metric 〈., .〉, by Lemma 3.6.2. Suppose now
〈ν, ν〉 ≡ 1; i.e. ν is a unit normal field. The m eigenvalues of Sν which are
all real by self adjointness are called the principal curvatures of M in the
direction ν, and the corresponding eigenvectors are called principal curvature
vectors.

The mean curvature of M in the direction ν is

Hν :=
1
m

trSν .

The Gauss-Kronecker curvature of M in the direction ν is

Kν := detSν .

For an orthonormal basis e1, . . . , em of TxM,

Kν = det(�ν(ei, ej)).

We now consider the case where M has codimension 1, i.e. n = m+ 1. In
this case, for each x ∈M, there are precisely two normal vectors ν ∈ TxM

⊥

with 〈ν, ν〉 = 1. We locally fix such a normal field and drop the subscript ν.
If we would choose the opposite normal field instead, � and S would change
their sign, and the mean curvature M as well. For even m, however, the
Gauss-Kronecker curvature does not depend on the choice of the direction of
ν.

Furthermore, because of 〈ν, ν〉 ≡ 1 ∇N
Xν is always tangential to M, and

geometrically, it measures the “tilting velocity” with which ν is tilted (relative
to a fixed parallel vector field in N) when moving on M in the direction X.
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We now want to compare the curvature tensors of M and N, RM and RN .
It turns out that their difference is given by the second fundamental tensor;
namely

Theorem 3.6.2 (Gauss equations). Let M be a submanifold of the Rieman-
nian manifold N, m = dimM,n = dimN, k = n −m,x ∈ M, ν1, . . . , νk an
orthonormal basis for (TxM)⊥, Sα := Sνα

, �α := �να
(α = 1, . . . , k). With the

convention that a Greek minuscule occuring twice is summed from 1 to k, for
X,Y,Z,W ∈ TxM

RM (X,Y )Z − (RN (X,Y )Z)� (3.6.6)
= �α(Y,Z)SαX − �α(X,Z)SαY

and hence also

〈RM (X,Y )Z,W 〉 − 〈RN (X,Y )Z,W 〉 (3.6.7)
= �α(Y,Z)�α(X,W )− �α(X,Z)�α(Y,W )

Proof. Since everything is tensorial, we extend X,Y,Z,W, ν1, . . . , νk to vector
fields in TM and TM⊥, resp., with the να always being orthonormal.

∇N
Y Z = (∇N

Y Z)� + (∇N
Y Z)⊥ = ∇M

Y Z + 〈να,∇N
Y Z〉να,

since the να form an orthonormal basis of TM⊥.
Hence

∇N
X∇N

Y Z = ∇N
X∇M

Y Z +X(〈να,∇N
Y Z〉)να + 〈να,∇N

Y Z〉∇N
Xνα,

i.e.

(∇N
X∇N

Y Z)� = ∇M
X∇M

Y Z + 〈να,∇N
Y Z〉(∇N

Xνα)� (3.6.8)
= ∇M

X∇M
Y Z − �α(Y,Z)Sα(X) by (3.6.5)

Analogously

(∇N
Y ∇N

XZ)� = ∇M
Y ∇M

X Z − �α(X,Z)Sα(Y ). (3.6.9)

Moreover,
(∇N

[X,Y ]Z)� = ∇M
[X,Y ]Z by Theorem 3.6.1. (3.6.10)

(3.6.6) follows from (3.6.8) - (3.6.10), and (3.6.7) follows from (3.6.6). �

The “theorema egregium” of Gauss is the following special case of Theo-
rem 3.6.2:

Corollary 3.6.2 For a surface M in R3 (i.e. m = 2, n = 3) the Gauss
curvature, defined as the determinant of the second fundamental form, hence
defined through the embedding of M in R3, coincides with the Riemannian
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curvature of M which is determined by the metric, hence independent of the
embedding. Thus, the Gauss curvature does not depend on the embedding of
M into R3 either. �

Definition 3.6.3 A Riemannian submanifold M of a Riemannian manifold
N is called totally geodesic if all geodesics in M are also geodesics in N.

Theorem 3.6.3 M is totally geodesic in N if and only if all second funda-
mental forms of M vanish identically.

Proof. Let c : I →M be geodesic in M, i.e. ∇M
ċ ċ = 0. Because of (∇N

ċ ċ)
� =

∇M
ċ ċ (Theorem 3.6.1), c is geodesic in N if and only if (∇N

ċ ċ)
⊥ = 0, i.e.

〈∇N
ċ ċ, ν〉 = 0 for all ν ∈ TM⊥.

Now
〈∇N

ċ ċ, ν〉 = −〈ċ,∇N
ċ ν〉, since 〈ċ, ν〉 = 0 and ∇N is metric

= −�ν(ċ, ċ).
The claim directly follows. �

For example, each closed geodesic in a Riemannian manifold defines a
1-dimensional compact totally geodesic submanifold.

The totally geodesic submanifolds of Euclidean space are precisely the
affine linear subspaces (and their open subsets). The closed totally geodesic
subspaces of the sphere Sn ⊂ Rn+1 are precisely the intersections of Sn with
linear subspaces of Rn+1, hence spheres themselves. This follows directly from
the description of the geodesics on Sn in 1.4. A generic Riemannian manifold,
however, does not have any totally geodesic submanifolds of dimension > 1.

We want to briefly discuss a global aspect.
Let M be an oriented submanifold of the oriented Riemannian manifold

N. This means that M itself is an oriented manifold whose orientation coin-
cides with the one induced by N. If thus for x ∈ M e1, . . . , en is a positive
basis of TxN for which e1, . . . , em are tangential to M, then e1, . . . , em con-
stitute a positive basis of TxM.

If under this assumption, we have n = m+ 1, we may also determine the
sign of the unit normal field ν by requiring that if e1, . . . , em is a positive
basis of TxM, then e1, . . . , em, ν is a positive basis of TxN. Suppose now that
N = Rn, i.e. that M is an oriented hypersurface of Rn. Let p : TRn → Rn

map each fiber of TRn isomorphically onto Rn, in the usual canonical manner,
i.e. by parallel transport into the origin.

Definition 3.6.4 p ◦ ν : M → Sn−1 is called the Gauss map of M.

The Gauss-Kronecker curvature, i.e. the Jacobian of dν(x) : TxM →
TxM, then becomes the Jacobian of the Gauss map. It thus measures the
infinitesimal volume distortion of M by the Gauss map.



162 3. Parallel Transport, Connections, and Covariant Derivatives

Theorem 3.6.2 allows an easy computation of the curvature of the sphere
Sn ⊂ Rn+1. Namely, for x = (x1, . . . , xn+1) ∈ Sn, a unit normal vector ν(x)
is given by

ν(x) = xi ∂

∂xi
.

Furthermore,

∇R
n+1

∂

∂xj
ν(x) =

∂

∂xj
(xi)

∂

∂xi
=

∂

∂xj
.

Since we have already seen that the isometry group of Sn operates transitively
on Sn, we may consider w.l.o.g. the north pole (0, 0, . . . , 0, 1). ∂

∂x1 , . . . ,
∂

∂xn

are tangential to Sn at this point. It follows that

S(
∂

∂xj
) =

∂

∂xj
− 〈ν(x),

∂

∂xj
〉ν(x)

=
∂

∂xj
for j = 1, . . . , n

and
�(

∂

∂xj
,
∂

∂xk
) = 〈 ∂

∂xj
,
∂

∂xk
〉 = δjk.

We conclude

〈RSn

(
∂

∂xi
,
∂

∂xj
)
∂

∂xk
,
∂

∂x�
〉 = δjkδi� − δikδj�. (3.6.11)

In particular, the sectional curvature is 1.
We also obtain the formula

RSn

(X,Y )Z = 〈Y,Z〉X − 〈X,Z〉Y. (3.6.12)

We want to consider a particular class of submanifolds in more detail, namely
those that are critical points of the volume functional.

Let M̃ be an m-dimensional submanifold of N, with frame ẽ1, . . . , ẽm,
coframe η̃1, . . . , η̃m and volume form η̃ as before, and let

Φ : M → M̃

be a diffeomorphism. Let e1, . . . , em be a frame on M, η the volume form.
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Then

Vol(M̃) =

∣∣∣∣∣∣∣
∫
M̃

η̃

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
M

Φ∗η̃

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
M

Φ∗η̃1 ∧ . . . ∧ Φ∗η̃m

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
M

|Φ∗e1 ∧ . . . ∧ Φ∗em|η
∣∣∣∣∣∣ (3.6.14)

=

∣∣∣∣∣∣
∫
M

〈Φ∗e1 ∧ . . . ∧ Φ∗em, Φ∗e1 ∧ . . . ∧ Φ∗em〉 1
2 η

∣∣∣∣∣∣
We now consider a more special situation. We define a local variation of M
to be a smooth map

F : M × (−ε, ε) → N (ε > 0)

with

supp F := {x ∈M : F (x, t) 
= x for some t ∈ (−ε, ε)} (3.6.15)

being a compact subset of M and

F (x, 0) = x for all x ∈M.

For small enough |t|, Φt(·) := F (·, t) then is a diffeomorphism from M onto
a submanifold Mt of N, by the implicit function theorem. We assume that
ε > 0 is chosen so small, that this is the case for all t ∈ (−ε, ε). Since the
subsequent computations are local, we also assume that {x ∈ M : F (x, t) 
=
x} is orientable and that e1, . . . , em is a positively oriented orthonormal basis.

The variation of volume then is (by (3.6.14))

d

dt
Vol(Φt(M))|t=0

=
d

dt

∫
M

〈Φt∗e1 ∧ . . . ∧ Φt∗em, Φt∗e1 ∧ . . . ∧ Φt∗em〉 1
2 η|t=0

=
m

Σ
α=1

∫
M

〈Φt∗e1 ∧ . . . ∧ ∂
∂tΦt∗eα ∧ . . . ∧ Φt∗em, Φt∗e1 ∧ . . . ∧ Φt∗em〉

|Φt∗e1 ∧ . . . ∧ Φt∗em| η|t=0 .

Putting

X :=
∂

∂t
Φt|t=0 ,
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we obtain

d

dt
Vol(Φt(M))|t=0

=
m

Σ
α=1

∫
M

〈e1 ∧ . . . ∧∇N
eα
X ∧ . . . ∧ em, e1 ∧ . . . ∧ em〉
|e1 ∧ . . . ∧ em| η

Namely, if cα(s) is a curve on M with cα(0) = x, c′α(0) = eα, and cα(s, t) =
Φt(cα(s)), then

Φt∗eα =
∂

∂s
cα(s, t)|s=0

and
∂

∂t
Φt∗eα|t=0 =

∂

∂t

∂

∂s
cα(s, t)|s=t=0 =

∂

∂s

∂

∂t
cα(s, t)|s=t=0

= ∇N
∂

∂s
X|s=0 = ∇N

eα
X .

Therefore,

d

dt
Vol(Φt(M))|t=0 =

∫
M

〈∇N
eα
X, eα〉η

=
∫
M

{eα〈X, eα〉 − 〈X,∇N
eα
eα〉}η . (3.6.16)

Now eα〈X, eα〉 = divXT , and since X vanishes outside a compact subset of
M (see(3.6.15)), we have by Gauss’ theorem∫

M

eα〈X, eα〉 = 0.

As in the proof of Lemma 3.3.4 (3), we may assume that at the point under
consideration

∇M
eα
eα = 0.

We then obtain from (3.6.16)

d

dt
Vol(Φt(M))|t=0 = −

∫
M

〈X⊥,∇N
eα
eα〉 · η . (3.6.17)

We conclude

Theorem 3.6.4 A submanifold M of the Riemannian manifold N is a crit-
ical point of the volume function, i.e.

d

dt
Vol(Φt(M))|t=0 = 0 (3.6.18)
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for all local variations of M if and only if the mean curvature Hν of M
vanishes for all normal directions ν.

Proof. We choose an orthonormal basis ν1, . . . , νk (k = n−m) of TxM
⊥ for

x ∈M and write
X⊥ = ξjνj . (3.6.19)

Then
〈X⊥,∇N

eα
eα〉 = ξj trSνj

= mξjHνj
. (3.6.20)

Since every section X of TM⊥ over M with compact support on M defines
a local variation

F (x, t) := expx tX(x)

of M, (3.6.18) holds if and only if (3.6.20) vanishes for all choices of ξj , and
the conclusion follows. �

Definition 3.6.5 A submanifold M of the Riemannian manifold N is called
minimal if its mean curvature Hν vanishes for all normal directions ν.

We want to consider a somewhat more general situation. We let M and
N be Riemannian manifolds of dimension m and n, resp., and we let

f : M → N

be an isometric immersion. This means that for each p ∈ M, there exists a
neighborhood U for which

f : U → f(U)

is an isometry (f(U) is equipped with the metric induced from N). The
point here is that f(M) need not be an embedded submanifold of N but
may have self-intersections or may even be dense in N. We may then define
local variations F (x, t) : M → N with F (x, 0) = f(x) as before, and f(M) is
critical for the volume functional if and only if its mean curvature vanishes,
in the sense that for all U as above, f(U) has vanishing mean curvature in
all normal directions. Such an f(M) then is called an immersed minimal
submanifold of N. We now want to write the condition for the vanishing of
the mean curvature, namely

(∇N
eα
eα)⊥ = 0 (3.6.21)

in terms of f.
For that purpose, we introduce normal coordinates at the point x ∈ M

under consideration, i.e. at x

〈 ∂

∂xα
,
∂

∂xβ
〉 = δαβ (3.6.22)

∇M
∂

∂xα

∂

∂xβ
= 0 for α, β = 1, . . . ,m .
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Here , ∇M is the Levi-Civita connection of M, and because f is an isometric
immersion, for all X and Y ∈ TxM,

∇M
X Y = ∇f(M)

f∗X f∗Y = (∇N
f∗Xf∗Y )� by Theorem 3.6.1. (3.6.23)

(This fact may also be expressed by saying that ∇M is the connection in the
pull back bundle f∗(Tf(M)) induced by the Levi-Civita connection of N).

eα := f∗(
∂

∂xα
) =

∂f i

∂xα

∂

∂f i

where (f1, . . . , fn) now are local coordinates for N near f(x). Thus, for a
function ϕ : N → R, (eα(ϕ))(f(x)) = ∂

∂xαϕ ◦ f(x).
Then, computing at x,

(∇N
eα
eα)⊥ = ∇N

eα
eα by (3.6.22), (3.6.23)

= ∇N
∂fi

∂xα
∂

∂fi

∂f j

∂xα

∂

∂f j

=
∂2ff

(∂xα)2
∂

∂f j
+

∂f i

∂xα

∂fk

∂xα
Γ j

ik

∂

∂f j
.

Here, Γ j
ik are the Christoffel symbols of N.

We conclude that f(M) has vanishing mean curvature, i.e. (3.6.21) holds
if and only if

∂2f j

(∂xα)2
+ Γ j

ik(f(x))
∂f i

∂xα

∂fk

∂xα
= 0 for j = 1, . . . , n. (3.6.24)

(3.6.24) requires that the coordinates are normal at x. In arbitrary coordi-
nates, (3.6.24) is transformed into

−∆Mf j + γαβ(x)Γ j
ik(f(x))

∂f i

∂xα

∂fk

∂xβ
= 0 for j = 1, . . . , n (3.6.25)

where∆M is the Laplace-Beltrami operator ofM (see 2.1) and (γαβ)α,β=1,...,m

is the metric tensor of M.
In §8.1, solutions of (3.6.25) will be called harmonic maps. Thus, an iso-

metric immersion is minimal if and only if it is harmonic.
A consequence of (3.6.25) is

Corollary 3.6.3 The one dimensional immersed minimal submanifolds of
N are the geodesics in N. �

We now consider the case where N is Euclidean space Rn. In Euclidean
coordinates, all Christoffel symbols Γ j

ik vanish, and we obtain

Corollary 3.6.4 An immersed submanifold of Rn is minimal if and only if
all coordinate functions are harmonic (w.r.t. the Laplace-Beltrami operator
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of the submanifold induced by the ambient Euclidean metric). In particular,
there are no nontrivial compact minimal submanifolds of Euclidean space.

Proof. The first claim follows from (3.6.25). The second one follows from the
fact that, on a compact manifold, every harmonic function is constant by
Corollary 2.1.2. And a manifold whose coordinate functions are all constant
is a point, hence trivial. �

There is, however, a multitude of noncompact, but complete minimal
surfaces in R3. Besides the trivial example of a plane, we mention:

1) The catenoid, given by the coordinate representation

f(s, t) = (cosh s cos t, cosh s sin t, s).

2) The helicoid, given by the coordinate representation

f(s, t) = (t cos s, t sin s, s).

3) Enneper’s surface, given by the coordinate representation

f(s, t) = (
s

2
− s3

6
+
st2

2
,− t

2
+
t3

6
− s2t

2
,
s2

2
− t2

2
).

We leave it as an exercise to the reader to verify that these have vanishing
mean curvature and hence are minimal surfaces indeed.

In order to obtain a further slight generalization of the concept of a mini-
mal surface in a Riemannian manifold, we observe that (3.6.25) is not affected
if the operator occuring in that formula is multiplied by some (non-vanishing)
function. In order to elaborate on that observation, we assume that Σ is a
two dimensional Riemannian manifold and that coordinates x1, x2 are chosen
on Σ for which ∂

∂x1 and ∂
∂x2 are always orthogonal and of the same length

w.r.t. the metric 〈·, ·〉γ of Σ, i.e.

〈 ∂

∂x1
,
∂

∂x1
〉γ = 〈 ∂

∂x2
,
∂

∂x2
〉γ , 〈 ∂

∂x1
,
∂

∂x2
〉γ = 0. (3.6.26)

This is equivalent to the metric γ being represented by

λ2(x)(dx1 ⊗ dx1 + dx2 ⊗ dx2) (3.6.27)

with some positive function λ2(x) (x = (x1, x2)). Moreover, the precise value
of λ2(x) is irrelevant for (3.6.26).

In those coordinates, (3.6.25) becomes, for an isometric immersion f :
Σ → N,

1
λ2(x)

(
∂2f i

(∂x1)2
+

∂2f i

(∂x2)2
+ Γ i

jk(f(x))(
∂f j

∂x1

∂fk

∂x1
+
∂f j

∂x2

∂fk

∂x2
)) = 0,



168 3. Parallel Transport, Connections, and Covariant Derivatives

and since as observed the factor 1
λ2(x) is irrelevant, this becomes

∂2f i

(∂x1)2
+

∂2f i

(∂x2)2
+ Γ i

jk(f(x))(
∂f j

∂x1

∂fk

∂x1
+
∂f j

∂x2

∂fk

∂x2
)) = 0, (3.6.28)

Since f is required to be an isometric immersion, (3.6.26) becomes

〈 ∂f
∂x1

,
∂f

∂x1
〉 = 〈 ∂f

∂x2
,
∂f

∂x2
〉, 〈 ∂f

∂x1
,
∂f

∂x2
〉 = 0, (3.6.29)

where now the metric is the one of N.
In order to provide a conceptual context for a reformulation of the pre-

ceding insights, we state

Definition 3.6.6 A surface Σ with a conformal structure is a two dimen-
sional differentiable manifold with an atlas of so-called conformal coordinates
whose transition functions z = ϕ(x) satisfy

dz1 ⊗ dz1 + dz2 ⊗ dz2 = µ2(x)(dx1 ⊗ dx1 + dx2 ⊗ dx2) (3.6.30)

(z = (z1, z2), x = (x1, x2)), for some positive function µ2(x). A map f : Σ →
N from a surface Σ with a conformal structure into a Riemannian manifold
N is called conformal if in conformal coordinates always

〈 ∂f
∂x1

,
∂f

∂x1
〉 = 〈 ∂f

∂x2
,
∂f

∂x2
〉 and 〈 ∂f

∂x1
,
∂f

∂x2
〉 = 0. (3.6.31)

In order to interpret (3.6.30), we compute

dz1 ⊗ dz1 + dz2 ⊗ dz2 = (ϕ1
xiϕ1

xj + ϕ2
xiϕ2

xj )dxi ⊗ dxj .

(3.6.30) then implies

∂ϕ1

∂x1

∂ϕ1

∂x1
+
∂ϕ2

∂x1

∂ϕ2

∂x1
=
∂ϕ1

∂x2

∂ϕ1

∂x2
+
∂ϕ2

∂x2

∂ϕ2

∂x2

and
∂ϕ1

∂x1

∂ϕ1

∂x2
+
∂ϕ2

∂x1

∂ϕ2

∂x2
= 0.

Thus, the coordinate transformations are conformal in the Euclidean sense.
A special case of a surface with a conformal structure is a Riemann surface
as defined in Definition 8.2.1 below.

We also observe that (3.6.31) is independent of a particular choice of
conformal coordinates, by a computation analogous to the one just performed.

Definition 3.6.7 Let Σ be a surface with conformal structure, N a Rieman-
nian manifold.

A (parametric) minimal surface in N is a nonconstant map f : Σ → N
satisfying (3.6.28) and (3.6.29).



Exercises for Chapter 3 169

This definition includes the previous definition of a minimal surface, i.e.
a twodimensional minimal submanifold of N. Namely, the pull back (f∗g)αβ

of the metric tensor gij of N is given by

γαβ(x) = gij(fx))
∂f i

∂xα

∂f j

∂xβ
= 〈 ∂f

∂xα
,
∂f

∂xβ
〉,

and if f is conformal, i.e. satisfies (3.6.29), then

γαβ(x) = λ2(x)δαβ

for some function λ2(x).
If λ2(x) 
= 0, this is the situation previously discussed, and the vanish-

ing of the mean curvature of f(Σ) was shown to be equivalent to (3.6.28).
λ2(x) 
= 0 means that the derivative of f has maximal rank at x, and thus is
a local immersion. Therefore, the only generalization of our previous concept
admitted by Definition 3.6.7 is that we now include the degenerate case where

〈 ∂f
∂x1

,
∂f

∂x1
〉 = 0 = 〈 ∂f

∂x2
,
∂f

∂x2
〉 (3.6.32)

at some (but not all) points of Σ.
It may actually be shown that this can happen at most at a discrete set

of points.

Perspectives. The theorema egregium of Gauss was the starting point of mod-
ern differential geometry. It provided the first instance of a nontrivial intrinsic
differential invariant of a metric, and it motivated Riemann’s definition of sectional
curvature. For more details, we refer to [71]. In that textbook, also parametric min-
imal surfaces in R3 are treated. For a comprehensive treatment of minimal surfaces,
we refer to the monographs [55], [195]. A good reference for minimal submanifolds
of arbitrary dimension and codimension is [261].

Some further discussions about minimal surfaces may be found in chapter 8.

Exercises for Chapter 3

1) Compute the transformation behaviour of the Christoffel symbols of
a connection under coordinate transformations.

2) Let E be a vector bundle with fiber Cn and a Hermitian bundle metric.
Develop a theory of unitary connections, i.e. of connections respecting
the bundle metric.

3) Show that each vector bundle with a bundle metric admits a metric
connection.

4) Let x0 ∈M, D a flat metric connection on a vector bundle E over M.
Show that D induces a map π1(M,x0) → O(n), considering O(n) as
the isometry group of the fiber Ex0 .
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5) Let Sn
r := {x ∈ Rn+1 : |x| = r} be the sphere of radius r. Compute

its curvature tensor and volume.

6) Consider the hyperboloid in R3 defined by the equation

x2 + y2 − z2 = −1, z > 0.

Compute its curvature and volume.

7) Verify that the catenoid, the helicoid, and Enneper’s surface are mi-
nimal surfaces.

8) Determine all surfaces of revolution in R3 that are minimal. (Answer:
The catenoid is the only one.)

9) Let F : Mm → Rm+1 be an isometric immersion (m = dimM). Give
a complete derivation of the formula

∆F = mη

where ∆ is the Laplace-Beltrami operator of M and η is the mean
curvature vector of F (M).

10) Let F : Mm → Sn ⊂ Rn+1 be an isometric immersion. Show that
F (M) is minimal in Sn if and only if there exists a function ϕ on M
with ∆F = ϕF and that in this case necessarily ϕ ≡ m.

11) Show that for n ≥ 4, there exists no hypersurface (i.e. a submanifold
of codimension 1) in Rn with negative sectional curvature.

12) Verify the formula D = cl ◦ ∇ given in 3.4.



4. Geodesics and Jacobi Fields

4.1 1st and 2nd Variation of Arc Length and Energy

We start with a preliminary technical remark:
Let M be a d-dimensional Riemannian manifold with Levi-Civita connec-

tion ∇. Let H be a differentiable manifold, and let f : H → M be smooth.
In the sequel, H will be an interval I or a square I × I in R2. Since f is not
necessarily injective, it is not always possible to speak in an unambiguous
way about the tangent space to f(H) at a point p ∈ f(H), even, if f is an
immersion. Let for example p = f(x) = f(y) with x 
= y. If f is an immersion,
we may restrict f to sufficiently small neighbourhoods U and V of x and y
such that f(U) and f(V ) have well defined tangent spaces at p. Thus, in a
double point of f(H), the tangent space can be specified by specifying the
preimage (x or y). This can be formalized as follows: We consider the bundle
f∗(TM) over H, pulled back by f. The fiber over x ∈ H here is Tf(x)M. This
process already has been treated in a more general context in Definition 1.5.5.
We now introduce a connection f∗(∇) on f∗(TM) by putting for X ∈ TxH,
Y a section of f∗(TM),

(f∗∇)XY := ∇df(X)Y (4.1.1)
(here, f∗(TM)x is identified withTf(x)M).

As in 3.4, in order that the right hand side is well defined, Y first has to be
extended to a neighbourhood of f(H); as in 3.4, however, it turns out that
the result will not depend on the choice of extension. In the sequel, instead
of (f∗∇), we shall simply write ∇, since the map f will be clear from the
context.

A section of f∗(TM) is called a vector field along f. An important rôle
will be played by vector fields along curves c : I →M, i.e. sections of c∗(TM).

Let now c : [a, b] → M be a smooth curve, ε > 0. A variation of c
is a differentiable map F : [a, b] × (−ε, ε) → M with F (t, 0) = c(t) for
all t ∈ [a, b]. The variation is called proper if the endpoints stay fixed, i.e.
F (a, s) = c(a), F (b, s) = c(b) for all s ∈ (−ε, ε). We also put cs(t) := c(t, s) :=
F (t, s), ċ(t, s) := ∂

∂tc(t, s) (more precisely, dF ( ∂
∂t )c(t, s)), c′(t, s) = ∂

∂sc(t, s)
(more precisely dF ( ∂

∂s )c(t, s)).
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As in 1.4, let L(γ) and E(γ) denote the length and the energy of a curve
γ. The following lemma is a reformulation of formulae from 1.4.

Here, we want to give an intrinsic proof:
For simplicity, we shall write L(s), E(s) in place of L(cs), E(cs) resp.

Lemma 4.1.1 L(s) and E(s) are differentiable w.r.t. s, and we have

L′(0) =

b∫
a

(
∂
∂t 〈c′, ċ〉
〈ċ, ċ〉 1

2
−
〈c′,∇ ∂

∂t
ċ〉

〈ċ, ċ〉 1
2

)
dt (4.1.2)

E′(0) =〈c′(b, 0), ċ(b, 0)〉 − 〈c′(a, 0), ċ(a, 0)〉

−
b∫
a

〈∂c
∂s
,∇ ∂

∂t

∂c

∂t
(t, s)〉dt . (4.1.3)

Proof.

E(s) =
1
2

b∫
a

〈∂c
∂t

(t, s),
∂c

∂t
(t, s)〉dt

d

ds
E(s) =

1
2

b∫
a

∂

∂s
〈∂c
∂t

(t, s),
∂c

∂t
(t, s)〉dt

=

b∫
a

〈∇ ∂
∂s

∂c

∂t
(t, s),

∂c

∂t
(t, s)〉dt, since∇preserves the metric

(to be precise, we should write F ∗(∇) ∂
∂s

or ∇dF ( ∂
∂s )

instead of ∇ ∂
∂s

)

=

b∫
a

〈∇ ∂
∂t

∂c

∂s
(t, s),

∂c

∂t
(t, s)〉dt, since∇ is torsionfree

=

b∫
a

(
∂

∂t
〈∂c
∂s

(t, s),
∂c

∂t
(t, s)〉 − 〈∂c

∂s
,∇ ∂

∂t

∂c

∂t
(t, s)〉

)
dt

= 〈∂c
∂s
,
∂c

∂t
〉|t=b

t=a −
b∫
a

〈∂c
∂s
,∇ ∂

∂t

∂c

∂t
(t, s)〉dt ,
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and similarly

L(s) =

b∫
a

〈∂c
∂t

(t, s),
∂c

∂t
(t, s)〉 1

2 dt

d

ds
L(s) =

b∫
a

〈∇ ∂
∂t

∂c
∂s (t, s), ∂c

∂t (t, s)〉
〈∂c

∂t (t, s),
∂c
∂t (t, s)〉

1
2

dt

=

b∫
a

(
∂
∂t 〈c′, ċ〉
〈ċ, ċ〉 1

2
−
〈c′,∇ ∂

∂t
ċ〉

〈ċ, ċ〉 1
2

)
dt . �

In the special case where c = c0 is parametrized proportionally to arc-
length, i.e. ‖ċ(t, 0)‖ ≡ const., (4.1.2) becomes

L′(0) =
1

〈ċ, ċ〉 1
2
(〈c′, ċ〉|t=b,s=0

t=a,s=0 −
b∫
a

〈c′,∇ ∂
∂t
ċ〉dt). (4.1.4)

Lemma 4.1.1 implies that c is stationary for E (w.r.t. variations that keep
the endpoints fixed) and if parametrized proportionally to arc length, also
stationary for L if and only if

∇ ∂
∂t
ċ(t, 0) ≡ 0. (4.1.5)

We recall that ∇ ∂
∂t

stands for ∇dF ( ∂
∂t ); now dF ( ∂

∂t ) = ∂
∂tc(t, s) = ċ, and

(4.1.5), as to be expected is the equation for c being geodesic.

For the case where c = c0 is geodesic, we now want to compute the second
derivatives of E and L at s = 0 :

Theorem 4.1.1 Let c : [a, b] →M be geodesic. Then

E′′(0) =

b∫
a

〈∇ ∂
∂t
c′(t, 0),∇ ∂

∂t
c′(t, 0)〉dt (4.1.6)

−
b∫
a

〈R(ċ, c′)c′, ċ〉dt|s=0 + 〈∇ ∂
∂s
c′, ċ〉|t=b,s=0

t=a,s=0

and with c′⊥ := c′ − 〈 ċ
‖ċ‖ , c

′〉 ċ
‖ċ‖ (the component of c′ orthogonal to ċ)

L′′(0) =
1
‖ċ‖

{ b∫
a

(〈∇ ∂
∂t
c′⊥,∇ ∂

∂t
c′⊥〉

− 〈R(ċ, c′⊥)c′⊥, ċ〉)dt+ 〈∇ ∂
∂s
c′, ċ〉|t=b

t=a

}
|s=0

. (4.1.7)
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An important point is that for a geodesic c, the second variation depends
only on the first derivative ∂

∂sc(t, s)|s=0 of the variation, but not on higher
derivatives. This fact will allow the definition of the index form I below.

Proof. According to the formulae of the proof of lemma 4.1.1

d2

ds2
E(s) =

b∫
a

∂

∂s
〈∇ ∂

∂t

∂c

∂s
(t, s),

∂c

∂t
(t, s)〉dt

=

b∫
a

〈∇ ∂
∂t

∂c

∂s
(t, s),∇ ∂

∂t

∂c

∂s
(t, s)〉dt

+

b∫
a

〈∇ ∂
∂s
∇ ∂

∂t

∂c

∂s
(t, s),

∂c

∂t
(t, s)〉dt

again, since ∇ is metric and torsionfree

=

b∫
a

〈∇ ∂
∂t

∂c

∂s
(t, s),∇ ∂

∂t

∂c

∂s
(t, s)〉dt

+

b∫
a

〈∇ ∂
∂t
∇ ∂

∂s

∂c

∂s
(t, s),

∂c

∂t
(t, s)〉dt

−
b∫
a

〈R
(
∂c

∂t
,
∂c

∂s

)
∂c

∂s
,
∂c

∂t
〉dt by def. of R.

Since c is geodesic, we have ∇ ∂
∂t

∂c
∂t (t, 0) = 0, and conclude

d2

ds2
E(0) =

b∫
a

〈∇ ∂
∂t

∂c

∂s
(t, 0),∇ ∂

∂t

∂c

∂s
(t, 0)〉dt

−
b∫
a

〈R
(
∂c

∂t
,
∂c

∂s

)
,
∂c

∂s

∂c

∂t
〉dt|s=0

+ 〈∇ ∂
∂s

∂c

∂s
,
∂c

∂t
〉|t=b,s=0

t=a,s=0 .
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Similarly

d2

ds2
L(0) =

b∫
a

∂

∂s

( 〈∇ ∂
∂t

∂c
∂s (t, s), ∂c

∂t (t, s)〉
〈∂c

∂t (t, s),
∂c
∂t (t, s)〉

1
2

)
dt|s=0

=
1
‖ċ‖

{ b∫
a

〈∇ ∂
∂t

∂c

∂s
(t, 0),∇ ∂

∂t

∂c

∂s
(t, 0)〉dt

−
b∫
a

〈R
(∂c
∂t
,
∂c

∂s

)∂c
∂s
,
∂c

∂t
〉dt|s=0

+〈∇ ∂
∂s

∂c

∂s
,
∂c

∂t
〉|t=b,s=0

t=a,s=0

}
− 1
‖ċ‖3

b∫
a

(
〈∇ ∂

∂t

∂c

∂s
(t, 0),

∂c

∂t
(t, 0)〉

)2

dt

=
1
‖ċ‖

{ b∫
a

〈∇ ∂
∂t

(c′ − 〈 ċ

‖ċ‖ , c
′〉 ċ

‖ċ‖ ),∇ ∂
∂t

(c′ − 〈 ċ

‖ċ‖ , c
′〉 ċ

‖ċ‖ )〉dt

−
b∫
a

〈R
(∂c
∂t
,
∂c

∂s

)∂c
∂s
,
∂c

∂t
〉dt

+〈∇ ∂
∂s

∂c

∂s
,
∂c

∂t
〉|t=b

t=a

}
|s=0

.

Also
〈R(ċ, c′)c′, ċ〉

=〈R(ċ, c′〉 − 〈 ċ

‖ċ‖ , c
′〉 ċ

‖ċ‖ )(c′ − 〈 ċ

‖ċ‖ , c
′〉 ċ

‖·c‖ ), ċ〉,

so that for the second variation of L through a proper variation, only the
component of the variation vector field ∂c

∂s orthogonal to ċ appears. �

In the same manner, we may consider closed geodesics c : S1 → M. The
formulae for the second variations of E and L then of course do not contain
any boundary terms anymore. Otherwise, they remain the same.

We can already draw some consequences:
If the sectional curvature of M is nonpositive, the curvature term in the

second variation formula is always nonnegative, because of the negative sign
in front of it. The first term only vanishes for parallel variations and is positive
otherwise. If we consider a proper variation that is nontrivial, i.e. c′ 
= 0, we
get d2

ds2E(0) > 0, hence E(cs) > E(c0) for sufficiently small |s|. We conclude
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Corollary 4.1.2 On a manifold with nonpositive sectional curvature, geo-
desics with fixed endpoints are always locally minimizing.

(Here, ”locally minimizing” means that there exists some δ > 0 such that
for any (smooth) curve γ : [a, b] → M with γ(a) = c(a), γ(b) = c(b) and
d(γ(t), c(t)) ≤ δ for all t ∈ [a, b], we have E(γ) ≥ E(c).)

Proof Let c : [a, b] → M be a smooth geodesic, and let γ : [a, b] → M be
another curve with γ(a) = c(a), γ(b) = c(b), and such that for no t ∈ [a, b],
the distance between γ(t) and c(t) exceeds the injectivity radius of c(t). We
may then find a smooth geodesic interpolation between c and γ, namely
the family c(t, s) := expc(t) s exp−1

c(t) γ(t), i.e. a family that satisfies c(t, 0) =
c(t), c(t, 1) = γ(t) for all t ∈ [a, b], and for which all the curves c(t, s) for fixed
t and s varying in [0, 1] are geodesic. Thus, ∇∂

∂s
∂c
∂s (t, s) = 0 for all t and s,

and from the proof of Theorem 4.1.1 d2

ds2E(s) ≥ 0 for all s ∈ [0, 1], not only
for s = 0. Since d

dsE(s)|s=0 = 0 as c is geodesic, we conclude E(γ) ≥ E(c).
(Since we may assume that γ is parametrized proportionally to arclength, we
also get L(γ) ≥ L(c).) �

Although it is a general fact that sufficiently short geodesics are minimiz-
ing (cf. 1.4), on a positively curved manifold, longer geodesics need not be
minimizing anymore, as is already seen on S2.

Similarly

Corollary 4.1.3 On a manifold with negative sectional curvature, closed
geodesics are strict local minima of E (and L) (except for reparametrizations).

Proof. For each variation normal to ċ the curvature term is positive, because
of the negative sign in front of it. �

On a manifold with vanishing curvature, geodesics are still minimizing,
but not necessarily strictly so anymore, as the example of a flat torus or
cylinder shows. On a manifold with positive curvature, closed geodesics in
general do not minimize anymore, see S2 again. We want to derive a global
consequence of this fact.

Theorem 4.1.2 (Synge). Any compact oriented even-dimensional Rieman-
nian manifold with positive sectional curvature is simply connected.

Proof. Otherwise, there exists a nontrivial element of π1(M,x0) (let x0 ∈M
be the base point). Let this element be represented by a closed curve γ :
S1 →M. γ cannot be homotopic to a constant curve even if we do not keep
the base point fixed. On the other hand, by Theorem 1.4.6, γ is homotopic
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to a closed geodesic c of shortest length (and smallest energy) in this free
homotopy class. Thus, c : S1 →M cannot be a constant curve.

Parallel transport P along c from c(0) to c(2π) = c(0) is orientation
preserving and leaves the orthogonal complement E of ċ(0) invariant. Since
E has odd dimension (since M has an even one), there exists a vector v ∈ E
with Pv = v.

Let now X be the parallel vector field along c with X(0) = v. We consider
a variation c : S1 × (−ε, ε) : (t, s) → c(t, s) of c with c′(t, 0) = X(t) for all t.

Since c is geodesic, E′(0) = 0. Since X is parallel and X(0) = X(2π),

E′′(0) =

2π∫
0

〈∇ ∂
∂t
X(t),∇ ∂

∂t
X(t)〉dt−

2π∫
0

〈R(ċ, X)X, ċ〉dt

= −
2π∫
0

〈R(ċ, X)X, ċ〉dt

< 0.

Hence
E(cs) < E(c) for sufficiently small s,

and c cannot have least energy in its homotopy class.
This contradiction proves the claim. �

Remark. The previous reasoning would have applied to L instead of E as
well.

Let now X be a vector field along c, i.e. a section of c∗(TM); in the sequel,
c will always be geodesic. There exists a variation c : [a, b]× (−ε, ε) →M of
c(t) with ∂c

∂s |s=0
= X.

We put

I(X,X) :=

b∫
a

(
〈∇ ∂

∂t
X,∇ ∂

∂t
X〉 − 〈R(ċ, X)X, ċ〉

)
dt,

i.e.

I(X,X) =
d2

ds2
E(0), if X(a) = 0 = X(b).

Instead of a 1-parameter variation c(t, s), we may also consider a 2-parameter
variation and put (Y := ∂c

∂r )

I(X,Y ) :=

b∫
a

(〈∇ ∂
∂t
X,∇ ∂

∂t
Y 〉 − 〈R(ċ, X)Y, ċ〉)dt. (4.1.8)
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I(X,Y ) is bilinear and symmetric in X and Y (by (3.3.10)).

Definition 4.1.1 I is called the index form of the geodesic c.

For a vector field X along c that is only piecewise differentiable, we define
I(X,X) as the sum of the respective expressions on those subintervals where
X is differentiable. Each piecewise smooth vector field X along c may be
approximated by smooth vector fields Xn in such a manner that I(Xn, Xn)
converges to I(X,X). For technical purposes, it is useful, however, to consider
piecewise smooth vector fields. A variation that is piecewise C2 gives rise to
a piecewise C1 vector field, and vice versa.

4.2 Jacobi Fields

Definition 4.2.1 Let c : I → M be geodesic. A vector field X along c is
called a Jacobi field if

∇ d
dt
∇ d

dt
X +R(X, ċ)ċ = 0 . (4.2.1)

As an abbreviation, we shall sometimes write

Ẋ = ∇ d
dt
X, Ẍ = ∇ d

dt
∇ d

dt
X,

(4.2.1) then becomes
Ẍ +R(X, ċ)ċ = 0 . (4.2.2)

Lemma 4.2.1 A vector field X along a geodesic c : [a, b] → M is a Jacobi
field if and only if the index form of c satisfies

I(X,Y ) = 0

for all vector fields Y along c with Y (a) = Y (b) = 0.

Proof.

I(X,Y ) =

b∫
a

(〈∇ d
dt
X,∇ d

dt
Y 〉 − 〈R(X, ċ)ċ, Y 〉)dt

using the symmetries of the curvature tensor

=

b∫
a

(〈−∇ d
dt
∇ d

dt
X,Y 〉 − 〈R(X, ċ)ċ, Y 〉)dt,

since ∇ is metric and Y (a) = 0 = Y (b),
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and this vanishes for all Y if

∇ d
dt
∇ d

dt
X +R(X, ċ)ċ = 0

holds (by the fundamental lemma of the calculus of variations). �

Lemma 4.2.2 A vector field X along the geodesic c : [a, b] →M is a Jacobi
field if and only if it is a critical point of I(X,X) w.r.t. all variations with
fixed endpoints, i.e.

d

ds
I(X + sY,X + sY )|s=0 = 0

for all vector fields Y along c with Y (a) = 0 = Y (b).

Proof. We compute

d

ds
I(X + sY,X + sY )|s=0 = 2

b∫
a

(−〈∇ ∂
∂t
∇ ∂

∂t
X,Y 〉 − 〈R(X, ċ)ċ, Y 〉)dt

by the proof of Lemma 4.2.1. �

The Jacobi equation thus is the Euler-Lagrange equation for
I(X) := I(X,X).

More generally, one can consider the second variation for each critical
point of a variational problem. The second variation then is a quadratic in-
tegral in the variation vector fields, and the second variation may hence be
considered as a new variational problem. This new variational problem is
called accessory variational problem of the original one. Most of the consid-
erations of this Paragraph may be generalized to such accessory variational
problems.

We now want to prove existence and uniqueness of Jacobi fields with given
initial values. For this purpose, we shall simply interpret the Jacobi equation
as a system of d(= dimM) linear second order ODEs.

Lemma 4.2.3 Let c : [a, b] → M be geodesic. For any v, w ∈ Tc(a)M, there
exists a unique Jacobi field X along c with

X(a) = v, Ẋ(a) = w.

Proof. Let v1, . . . , vd be an orthonormal basis of Tc(a)M. Let X1, . . . , Xd be
parallel vector fields along c with Xi(a) = vi, i = 1, . . . , d. Then, for each
t ∈ [a, b], X1(t), . . . , Xd(t) is an orthonormal base of Tc(t)M. An arbitrary
vector field X along c is written as

X = ξiXi (ξi(t) = 〈X(t), Xi(t)〉).
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Since the vector fields Xi are parallel, we have

∇ d
dt
X =

dξi

dt
Xi,∇ d

dt
∇ d

dt
X =

d2ξi

dt2
Xi.

We likewise write the curvature term in (4.2.1) as a linear combination of the
Xk :

R(Xi, ċ)ċ = ρk
i Xk;

and then also
R(X, ċ)ċ = ξiρk

i Xk.

The Jacobi equation (4.2.1) now becomes(
d2ξk

dt2
+ ξiρk

i

)
Xk = 0,

i.e. a system of d linear 2nd order ODE

d2ξk(t)
dt2

+ ξi(t)ρk
i (t) = 0, k = 1, . . . , d,

and for such systems, the desired existence and uniqueness result is valid. �

It is easy to describe those Jacobi fields that are tangential to c.

Lemma 4.2.4 Let c : [a, b] →M be geodesic, λ, µ ∈ R. Then the Jacobi field
X along c with X(a) = λċ(a), Ẋ(a) = µċ(a) is given by

X(t) = (λ+ (t− a)µ)ċ(t).

Proof. Directly from (4.2.1), since R(ċ, ċ) = 0 because of the skew symmetry
of R. �

Thus, tangential Jacobi fields do not depend at all on the geometry of
M, and hence, they cannot yield any information about the geometry of M.
Consequently, they are without any interest for us. We shall see in the sequel,
however, that normal Jacobi fields are extremely useful tools for studying the
geometry of Riemannian manifolds.

Examples.

1) In Euclidean space Rn, geodesics are straight lines. Jacobi fields are
linear: Namely, the Jacobi field X along a straight line c with c mit
X(a) = v, Ẋ(a) = w is given by

X(t) = V (t) + (t− a)W (t), (4.2.3)

where V (t) and W (t) are parallel fields along c with V (a) = v,W (a) =
w.
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2) Sn ⊂ Rn+1. Let c : [0, T ] → Sn be geodesic with ‖ċ‖ ≡ 1, v, w ∈
Tc(0)S

n, V,W parallel vector fields along c with V (0) = v,W (0) = w.
Assume 〈v, ċ(0)〉 = 0 = 〈w, ċ(0)〉. We claim that the Jacobi field X
with X(0) = v, Ẋ(0) = w along c is given by

X(t) = V (t) cos t+W (t) sin t. (4.2.4)

Namely, since V and W are parallel,

Ẋ(t) = −V (t) sin t+W (t) cos t

Ẍ(t) = −V (t) cos t−W (t) sin t.

By (3.6.12),

R(X, ċ)ċ = 〈ċ, ċ〉X − 〈X, ċ〉ċ = X, since 〈ċ, ċ〉 = 1

and since v and w, hence also V and W are orthogonal to ċ.

Hence,
Ẍ +R(X, ċ)ċ = 0,

and X indeed is a Jacobi field.

Arbitrary initial values that are not necessarily orthogonal to ċ may be
split into a tangential and a normal part. The desired Jacobi field then is the
sum of the corresponding tangential and normal ones, because as (4.2.1) is
linear the sum of two solutions of (4.2.1) is a solution again.

If more generally ‖ċ‖ = µ, the Jacobi field with initial values v, w normal
to ċ is given by

X(t) = V (t) cos(µt) +W (t) sin(µt). (4.2.5)

If we consider more generally the sphere

Sn
ρ := {x ∈ Rn+1 : |x| = ρ}

of radius ρ, then the curvature is given by

R(X,Y )Z =
1
ρ2

(〈Y,Z〉X − 〈X,Z〉Y )

and the Jacobi field with initial values v, w normal to ċ with ‖ċ‖ = 1

X(t) = V (t) cos
t

ρ
+ ρW (t) sin

t

ρ
. (4.2.6)

Theorem 4.2.1 Let c : [0, T ] → M be geodesic. Let c(t, s) be a variation of
c(t) (c(·, ·) : [0, T ] × (−ε, ε) → M), for which all curves c(·, s) =: cs(·) are
geodesics, too. Then,

X(t) :=
∂

∂s
c(t, s)|s=0

is a Jacobi field along c(t) = c0(t). Conversely, every Jacobi field along c(t)
may be obtained in this way, i.e. by a variation of c(t) through geodesics.
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Proof.

Ẍ(t) = ∇ ∂
∂t
∇ ∂

∂t

∂c

∂s |s=0
= ∇ ∂

∂t
∇ ∂

∂s

∂c

∂t |s=0

= ∇ ∂
∂s
∇ ∂

∂t

∂c

∂t |s=0
−R

(
∂c

∂s
,
∂c

∂t

)
∂c

∂t |s=0
by def. ofR

= −R
(
∂c

∂s
,
∂c

∂t

)
∂c

∂t |s=0
,

since all curves cs are geodesic

= −R
(
X,

∂c

∂t

)
∂c

∂t
, by def. ofX.

Thus, X indeed is a Jacobi field.
Conversely, let X be a Jacobi field along c(t). Let γ be the geodesic

γ : (−ε, ε) →M with γ(0) = c(0), γ′(0) = X(0).
Let V and W be parallel vector fields along γ with

V (0) = ċ(0),W (0) = Ẋ(0).

We put
c(t, s) := expγ(s)(t(V (s) + sW (s))). (4.2.7)

Then all curves c(·, s) = cs(·) are geodesic (by definition of the exponential
map), and c(t, 0) = expc(0) tċ(0) = c(t). Thus, c(t, s) is a variation of c(t)
through geodesics. By the first part of the proof,

Y (t) :=
∂

∂s
c(t, s)|s=0

then is a Jacobi field along c0. Finally,

Y (0) = ∂
∂s (expγ(s) 0)|s=0

= ∂
∂sγ(s)|s=0 = X(0) by def. of γ

Ẏ (0) = ∇ ∂
∂t

∂
∂sc(t, s)|s=0

= ∇ ∂
∂s

∂
∂tc(t, s)|s=0, since∇ is torsionfree

= ∇ ∂
∂s

(V (s) + sW (s))|s=0

= W (0), sinceV andW are parallel along γ

= Ẋ(0) .

Thus, Y is a Jacobi field along c0 with the same initial values Y (0), Ẏ (0) as
X. The uniqueness result of Lemma 4.2.3 implies X = Y. We have thus shown
that X may be obtained from a variation of c(t) through geodesics. �

The computation at the beginning of the previous proof reveals the geo-
metric origin of the Jacobi equation:
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Let c(t, s) = cs(t) be a family of geodesics parametrized by s, i.e.

∇ ∂
∂t

∂c

∂t
(t, s) = 0 for all s.

Then also
∇ ∂

∂s
∇ ∂

∂t

∂c

∂t
(t, s) = 0,

and this implies that X(t) = ∂c
∂s (t, s)|s=0 satisfies the Jacobi equation. Conse-

quently, the Jacobi equation is the linearization of the equation for geodesic
curves. This also illuminates the relation between Jacobi fields and the in-
dex form. If one has in particular a proper variation of a geodesic through
geodesics, then also the 2nd derivative of the length and energy functionals
w.r.t. the family parameter vanish.

As an example, consider the family of great semicircles on Sn through
two fixed antipodal points, e.g. north pole and south pole. Here, the length
is even constant on the whole family.

The theory of Jacobi fields can be generalized to other variational prob-
lems, and actually, this theory was already conceived by Jacobi in general
form.

Corollary 4.2.1 Every Killing field X on M is a Jacobi field along any
geodesic c in M.

Proof. By Lemma 1.6.7, a Killing field X generates a local 1-parameter group
of isometries. Isometries map geodesics to geodesics. Thus, X generates a
variation of c through geodesics. Theorem 4.2.1 then implies the claim. �

Corollary 4.2.2 Let c : [0, T ] →M be a geodesic, p = c(0), i.e.

c(t) = expp tċ(0).

For w ∈ TpM, the Jacobi field X along c with X(0) = 0, Ẋ(0) = w then is
given by

X(t) = (D expp)(tċ(0))(tw) or, in different notation, Dtċ(0) expp(tw)
(the derivative of the exponential map expp : TpM →M, (4.2.8)
evaluated at the point tċ(0) ∈ TpM and applied to tw) .

Proof. c(t, s) := expp t(ċ(0)+sw) is a variation of c(t) through geodesics, and
by Theorem 4.2.1, the corresponding Jacobi field is

X(t) =
∂

∂s
c(t, s)|s=0 = (D expp)(tċ(0))(tw),
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and

X(0) = (D expp)(0)(0) = 0

Ẋ(0) = w (as in the proof of Theorem 4.2.1). �

Consequently, the derivative of the exponential map can be computed
from Jacobi fields along radial geodesics.

Corollary 4.2.2 yields an alternative method for a quick computation of
the curvature tensor of Sn. Let x0 ∈ Sn, z ∈ Tx0S

n with ‖z‖ = 1. The
geodesic c : R → Sn with c(0) = x0, ċ(0) = z then is given by

c(t) = (cos t)x0 + (sin t)z .

Let w ∈ Tx0S
n, ‖w‖ = 1, 〈w, z〉 = 0

c(t, s) = (cos t)x0 + (sin t)((cos s)z + (sin s)w)

then is a variation of c(t) through geodesics. Furthermore, the vector field
along c(t) defined by W (t) = w is parallel (cf. Theorem 3.4.1). Hence, the
corresponding Jacobi field is

X(t) =
∂

∂s
c(t, s)|s=0 = (sin t)W (t) (cf. (4.2.4)).

We have
Ẍ(t) +X(t) = 0.

The Jacobi equation then implies

X(t) = R(X(t), ċ)ċ,

and in particular

〈R(w, z)z, w〉 = 1 = 〈w,w〉〈z, z〉 − 〈w, z〉2.
Lemma 3.3.3 implies

〈R(u, v)w, z〉 = 〈u, z〉〈v, w〉 − 〈u,w〉〈v, z〉, i.e. (3.4.11).

Another consequence is the so called Gauss lemma:

Corollary 4.2.3 Let p ∈ M,v ∈ TpM, c(t) := expp tv the geodesic with
c(0) = p, ċ(0) = v (t ∈ [0, 1]), assuming that v is contained in the domain of
definition of expp . Then for any w ∈ TpM

〈v, w〉 = 〈(Dv expp)v, (Dv expp)w〉, (4.2.9)

where Dv expp, the derivative of expp at the point v, is applied to the vectors
v and w considered as vectors tangent to TpM at the point v.
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Proof. By Corollary 4.2.2,

X(t) = Dtv expp(tw) (4.2.10)

is a Jacobi field along c, and

Ẋ(0) = w,

and hence
〈v, w〉 = 〈ċ(0), Ẋ(0)〉. (4.2.11)

We split X(t) into a part Xtan tangential to c and a part Xnor normal to c.
By Lemma 4.2.4

Xtan(t) = tµċ(t), with Ẋtan(0) = µċ(0). (4.2.12)

Hence

〈v, w〉= 〈ċ(0), Ẋtan(0)〉 with (4.2.11) and since
〈ċ(t), Xnor(t)〉 ≡ 0

= 〈ċ(1), Xtan(1)〉 with (4.2.12)
= 〈ċ(1), X(1)〉 since 〈ċ(t), Xnor(t)〉 ≡ 0
= 〈(Dv expp)v, (Dv expp)w〉 with (4.2.10). �

(4.2.9) means that expp is a radial isometry in the sense that the length
of the radial component of any vector tangent to TpM is preserved. If a curve
γ(s) in TpM intersects the radius orthogonally, then the curve expp γ(s) in
M intersects the geodesic c(t) = expp tv orthogonally as well. In particular,
c(t) = expp tv is orthogonal to the images of all distance spheres in TpM.

Moreover, we may repeat Corollary 1.4.2:

Corollary 4.2.4 Let p ∈ M, and let v ∈ TpM be contained in the domain
of definition of expp, and let c(t) = expp tv. Let the piecewise smooth curve
γ : [0, 1] → TpM be likewise contained in the domain of definition of expp,
and assume γ(0) = 0, γ(1) = v. Then

‖v‖ = L(expp tv|t∈[0,1]) ≤ L(expp ◦γ), (4.2.13)

and equality holds if and only if γ differs from the curve tv, t ∈ [0, 1] only by
reparametrization.

Proof. We shall show that any piecewise smooth curve γ : [0, 1] → TpM with
γ(0) = 0 satisfies

L(expp γ) ≥ ‖γ(1)‖ , (4.2.14)

with equality precisely for those curves whose image under expp is the radius
tγ(1), 0 ≤ t ≤ 1. This will then imply (4.2.13).
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We write
γ(t) = r(t)ϕ(t) (r(t) ∈ R, ϕ(t) ∈ TpM)

with ‖ϕ(t)‖ ≡ 1 (polar coordinates in TpM). Applying the subsequent esti-
mates on any subinterval of [0, 1] on which γ is differentiable, we may assume
from the onset that γ is smooth everywhere.

We have

γ̇(t) = ṙ(t)ϕ(t) + r(t)ϕ̇(t) with 〈ϕ(t), ϕ̇(t)〉 ≡ 0.

Thus, by Corollary 4.2.2, also

〈Dγ(t) expϕ(t), Dγ(t) exp ϕ̇(t)〉 = 0, ‖Dγ(t) expϕ(t)‖ = ‖ϕ(t)‖ = 1,

and it follows that

‖(expp ◦γ)·(t)‖ = ‖(Dγ(t) expp)(γ̇(t))‖
≥ |ṙ(t)|,

hence

L(expp γ) =

1∫
0

‖(expp ◦γ)·(t)‖dt ≥
1∫
0

|ṙ(t)|dt ≥ r(1)− r(0) = ‖γ(1)‖,

with equality only, if ϕ̇(t) ≡ 0 and r(t) is monotone, i.e. if γ(t) coincides with
the radial curve tγ(1), 0 ≤ t ≤ 1 up to reparametrization. �

We point out that alternatively, one can also prove Corollaries 4.2.3 and
4.2.4 with the arguments of the proofs of Theorem 1.4.5 and Corollary 1.4.2.

Corollary 4.2.4 by no means implies that the geodesic c(t) = expp tv is
the shortest connection between its end points. It only is shorter than any
other curve that is the exponential image of a curve with the same initial and
end points as the ray tv, 0 ≤ t ≤ 1.

4.3 Conjugate Points and Distance Minimizing
Geodesics

Definition 4.3.1 Let c : I → M be geodesic. For t0, t1 ∈ I, t0 
= t1, c(t0)
and c(t1) are called conjugate along c if there exists a Jacobi field X(t) along
c that does not vanish identically, but satisfies

X(t0) = 0 = X(t1).

Of course, such a Jacobi field X is always normal to c (Lemma 4.2.4).
If t0, t1 ∈ I, t0 
= t1, are not conjugate along c, then for v ∈ Tc(t0)M,w ∈
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Tc(t1)M, there exists a unique Jacobi field Y (t) along c with Y (t0) =
v, Y (t1) = w. Namely, let Jc be the vector space of Jacobi fields along c
(dimJc = 2 dimM by Lemma 4.2.3). We define a linear map

A : Jc → Tc(t0)M × Tc(t1)M

by
A(Y ) = (Y (t0), Y (t1)).

Since t0 and t1 are not conjugate along c, the kernel of A is trivial, and A is
injective, hence bijective as domain and range of A have the same dimension.

Theorem 4.3.1 Let c : [a, b] →M be geodesic.

(i) If there does not exist a point conjugate to c(a) along c, then there
exists ε > 0 with the property that for any piecewise smooth curve

g : [a, b] →M

with g(a) = c(a), g(b) = c(b), d(g(t), c(t)) < ε for all t ∈ [a, b], we have

L(g) ≥ L(c) (4.3.1)

with equality if and only if g is a reparametrization of c.

(ii) If there does exist τ ∈ (a, b) for which c(a) and c(τ) are conjugate
along c, then there exists a proper variation

c(t, s) : [a, b]× (−ε, ε) →M

with

L(cs) < L(c) for 0 < |s| < ε (cs(t) := c(t, s)). (4.3.2)

Proof.

(i) We want to apply Corollary 4.2.4. We therefore have to show that in
the absence of conjugate points, for each curve as in (i), there exists
a curve γ as described in Corollary 4.2.4. W.l.o.g. a = 0, b = 1. We
put v := ċ(0).
By Corollary 4.2.2, since there are no conjugate points along c, the
exponential map expp is of maximal rank along any radial curve
tv, 0 ≤ t ≤ 1. Thus, by the inverse function theorem, for each
such t, expp is a diffeomorphism in a suitable neighborhood of tv.
We cover {tv, 0 ≤ t ≤ 1} by finitely many such neighborhoods
Ωi, i = 1, . . . , k;Ui := expp Ωi.
Let us assume

tv ∈ Ωi for ti−1 ≤ t ≤ ti (t0 = 0, tk = 1).
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If ε > 0 is sufficiently small, we have for any curve g : [0, 1] → M
satisfying the assumptions of (i),

g([ti−1, ti]) ⊂ Ui. (4.3.3)

We now claim that for any g satisfying (4.3.3), there exists a curve γ
in TpM with expp γ = g, γ(0) = 0, γ(1) = v.
For this, we simply put

γ(t) = (expp|Ωi
)−1(g(t)) for ti−1 ≤ t ≤ ti

γ then satisfies the assumption of Corollary 4.2.4, and we obtain (i).

(ii) Again, w.l.o.g. a = 0, b = 1. Let X be a nontrivial Jacobi field along c
with X(0) = 0 = X(τ). We have Ẋ(τ) 
= 0, since otherwise X ≡ 0 by
the uniqueness result of Lemma 4.2.3. Let now Z(t) be an arbitrary
vector field along c with

Z(0) = 0 = Z(1), Z(τ) = −Ẋ(τ).

For η > 0, we put

Y 1
η (t):= X(t) + ηZ(t) for 0 ≤ t ≤ τ
Y 2

η (t):= ηZ(t) for τ ≤ t ≤ 1

Yη(t) :=
{
Y 1

η (t) for 0 ≤ t ≤ τ
Y 2

η (t) for τ ≤ t ≤ 1 .

With Z1 := Z|[0,τ ], Z
2 := Z|[τ,1] we have

I(Y 1
η , Y

1
η ) = 〈Ẋ(τ), 2ηZ(τ)〉+ η2I(Z1, Z1)

= −2η‖Ẋ(τ)‖2 + η2I(Z1, Z1)

I(Y 2
η , Y

2
η ) = η2I(Z2, Z2).

Hence

I(Yη, Yη) = I(Y 1
η , Y

1
η ) + I(Y 2

η , Y
2
η ) = −2η‖Ẋ(τ)‖2 + η2I(Z,Z)

for sufficiently small η > 0. The variation c(t, s) := expc(t) sYη(t) then
satisfies (withL(s) := L(cs))

L′(0) = 0, L′′(0) = I(Yη, Yη) < 0,

and the claim follows from Taylor’s theorem. �

Theorem 4.3.1(i) implies only that in the absence of conjugate points, a
geodesic is length minimizing when compared with sufficiently close curves.
As is seen by considering geodesics on a flat cylinder or torus that wind
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around more than once, even when there are no conjugate points, a geodesic
need not be the global shortest connection between its end points.

On the sphere Sn, on any geodesic the first point conjugate to the initial
point is reached precisely after travelling a semi circle (see (4.2.4)). By Theo-
rem 4.3.1 consequently each geodesic arc shorter than a great semi circle, i.e.
shorter than π, is locally length minimizing, whereas any geodesic arc on Sn

longer than π is not even locally the shortest connection of its end points.
For a curve c : [a, b] →M let Vc be the space of vector fields along c, i.e.

Vc = Γ (c∗TM),

and let
◦
Vc be the space of vector fields along c satisfying V (a) = V (b) = 0.

Lemma 4.3.1 Let c : [a, b] → M be geodesic. Then there is no pair of
conjugate points along c if and only if the index form I of c is positive definite

on
◦
Vc.

Proof. Assume that c has no conjugate points. Theorem 4.3.1(i) implies

I(X,X) ≥ 0 for all X ∈
◦
Vc, (4.3.4)

because otherwise c(t, s) := expc(t) sX(t) would be a locally length decreasing

deformation. If I(Y, Y ) = 0 for some Y ∈
◦
Vc, then by (4.3.4) for all

Z ∈
◦
Vc, λ ∈ R 0 ≤ I(Y −λZ, Y −λZ) = −2λI(Y,Z)+λ2 I(Z,Z), and hence

I(Y,Z) = 0 for all Z ∈
◦
Vc. Lemma 4.2.1 then implies that Y is a Jacobi

field. Since there are no conjugate points along c, we get Y = 0. Hence, I is
positive definite.

Now assume that for t0, t1 ∈ [a, b] (w.l.o.g. t0 < t1), c(t0) and c(t1) are
conjugate along c. Then there exists a nontrivial Jacobi field X along c with
X(t0) = 0 = X(t1). We put

Y (t) :=

{ 0 for a ≤ t ≤ t0
X(t) for t0 ≤ t ≤ t1
0 for t1 ≤ t ≤ b

.

Then I(Y, Y ) = 0, and I is not positive definite. �

We now introduce the following norm on
◦
Vc :

‖X‖ :=
( b∫

a

(〈Ẋ, Ẋ〉+ 〈X,X〉)dt
) 1

2
. (4.3.5)

Let
◦
H 1

c be the completion of
◦
Vc w.r.t. ‖ · ‖.
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Introducing an orthonormal basis {Vi} of parallel vector fields (i =
1, . . . , d = dimM) and writing

X = ξiVi,

we have Ẋ = ξ̇iVi, and

‖X‖ =
( b∫

a

(ξ̇iξ̇i + ξiξi)dt
) 1

2
.

Hence,
◦
H 1

c can be identified with the Sobolev space
◦
H 1,2(I,Rd). We now

consider the index form of c as a quadratic form on
◦
H 1

c :

I :
◦
H 1

c ×
◦
H 1

c → R,

I(X,Y ) =

b∫
a

(〈Ẋ, Ẏ 〉 − 〈R(ċ, X)Y, ċ〉)dt . (4.3.6)

Definition 4.3.2 The index of c, Ind(c), is the dimension of the largest

subspace of
◦
H 1

c , on which I is negative definite, and the extended index of

c, Ind0(c), is the dimension of the largest subspace of
◦
H 1

c , on which I is
negative semidefinite. Finally, the nullity of c is

N(c) := Ind0(c)− Ind(c).

Lemma 4.3.2 Ind(c) and N(c) are finite.

Proof. Otherwise, there exists a sequence (Xn)n∈N with

I(Xn, Xn) ≤ 0 (4.3.7)

and
b∫
a

〈Xn, Xm〉dt = δnm (4.3.8)

for all n,m ∈ N. ((4.3.8) means that (Xn) is an orthonormal sequence w.r.t.
the L2-product.)

(4.3.7) and (4.3.8) imply

b∫
a

〈Ẋn, Ẋn〉 ≤ sup |R|E(c) (where R is the curvature tensor of M). (4.3.9)
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By (4.3.8) and (4.3.9)
‖Xn‖ ≤ const. (4.3.10)

By Rellich’s Theorem (Corollary A.1.3), a subsequence converges in L2. This,
however, is not compatible with (4.3.8), since an orthonormal sequence cannot
be a Cauchy sequence. �

For t ∈ (a, b] let J t
c be the space of Jacobi fields X along c with X(a) =

0 = X(t).

Lemma 4.3.3 N(c) = dimJb
c .

Proof. From Lemma 4.2.1. �

We now want to derive the Morse Index Theorem.

Theorem 4.3.2 Let c : [a, b] → M be geodesic. Then there are at most
finitely many points conjugate to c(a) along c, and

Ind(c) =
∑

t∈(a,b)

dimJ t
c , (4.3.11)

Ind0(c) =
∑

t∈(a,b]

dimJ t
c . (4.3.12)

Proof. For each ti ∈ (a, b], for which c(ti) is conjugate to c(a), there exists a
Jacobi field Xi along c with Xi(a) = 0 = Xi(ti). We put

Yi(t) :=
{
Xi(t) for a ≤ t ≤ ti
0 otherwise

.

The Yi are linearly independent, and I(Yi, Yi) = 0 for all i. Therefore, the
number of conjugate points is at most Ind0(c), hence finite by Lemma 4.3.2.

For τ ∈ (a, b], we put

ϕ(τ) := Ind(c|[a,τ ]), ϕ0(τ) = Ind0(c|[a,τ ]).

(i) ϕ(τ) is left continuous.

(ii) ϕ0(τ) is right continuous.
Proof of (i). For τ ∈ (a, b] let Iτ be the index form of c|[a,τ ]. Let the vector

field X along c|[a,τ ] satisfy Iτ (X,X) < 0, ‖X‖ = 1. We consider the vector
field X̃ defined by X̃(t) := X( τ

σ t) on [a, σ].
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Then
σ∫
0

〈
.

X̃(t),
.

X̃(t)〉dt =

σ∫
0

(
τ

σ
)2〈Ẋ(

τ

σ
t), Ẋ(

τ

σ
t)〉dt

= (
τ

σ
)

τ∫
0

〈Ẋ(s), Ẋ(s)〉ds,

hence
σ∫
0

〈
.

X̃(t),
.

X̃(t)〉dt→
τ∫
0

〈Ẋ(t), Ẋ(t)〉dt forσ → τ.

Moreover, because of ‖X‖ = 1, X is continuous by the Sobolev embedding
theorem (Theorem A.1.7). Hence, X̃ also converges pointwise to X as σ → τ,
hence also

σ∫
0

〈R(ċ, X̃)X̃, ċ〉dt→
τ∫
0

〈R(ċ, X)X, ċ〉dt forσ → τ.

We conclude
Iσ(X̃, X̃) → Iτ (X,X) forσ → τ.

In particular,

Iσ(X̃, X̃) < 0, ifσ is sufficiently close to τ.

For each orthonormal basis of a space on which Iτ is negative definite, we
may thus find a basis of some space on which Iσ is negative definite, provided
σ is sufficiently close to τ.

Since ϕ is monotonically increasing, this implies the left continuity of ϕ.
Proof of (ii). Let (τn)n∈N ⊂ (a, b] converge to τ ∈ (a, b]. For each n ∈ N, let

Xn be a vector field along c|[a,τn] with ‖Xn‖ = 1 and Iτn
(Xn, Xn) ≤ 0. After

selecting a subsequence, Xn converges weakly in the Sobolev H1,2 topology
to some vector field X along c|[a,τ ] (cf. Theorem A.1.9). Then

τ∫
0

〈Ẋ, Ẋ〉dt ≤ lim inf
n→∞

τn∫
0

〈Ẋn, Ẋn〉dt.

Furthermore, by Rellich’s theorem (Corollary A.1.3), Xn also converges
(strongly) in L2, hence

τ∫
0

〈R(ċ, X)X, ċ〉dt = lim
n→∞

τn∫
0

〈R(ċ, X)X, ċ〉dt.
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We conclude

Iτ (X,X) ≤ lim inf
n→∞ Iτn

(Xn, Xn) ≤ 0.

We also need to check thatX does not vanish identically. Since I(Xn, Xn) ≤
0, we have

τn∫
0

< Ẋn, Ẋn > dt ≤ κ

τn∫
0

< Xn, Xn > dt,

where the constant κ depends on the norm of ċ and the curvature tensor R.
Since the Sobolev norm ‖Xn‖ = 1, this implies that the rhs cannot go to
0 as otherwise so would the lhs, and then also ‖Xn‖ would go to 0. Since
Xn converges strongly to X in L2, by Relich’s theorem, the L2-norm of X
is positive as well. Moreover, by a similar argument, if we have two such
sequences (X1

n), (X2
n), with

∫
< X1

n, X
2
n > dt = 0 for all n, then the same

holds for the limits X1, X2.
Since ϕ0 is monotonically increasing, this implies the right continuity of

ϕ0.
We can now easily conclude the proof of Theorem 4.3.2:
Let a < t1 < t2 < . . . < tk ≤ b be the points for which c(ti) is conjugate

to c(a). Lemma 4.3.3 implies

ϕ0(t)− ϕ(t) = 0 for t ∈ (a, b]\{t1, . . . , tk}. (4.3.13)

Hence ∑
t∈(a,b]

dimJ t
c =

∑
t∈(a,b]

(ϕ0(t)− ϕ(t)) =
k∑

i=1

(ϕ0(ti)− ϕ(ti)).

Since ϕ is left continuous and ϕ0 is right continuous, we have

ϕ0(ti) = ϕ(ti+1) (i = 1, . . . , k − 1).

Hence
k∑

i=1

(ϕ0(ti)− ϕ(ti)) = ϕ0(tk)− ϕ(t1).

Since ϕ is left continuous, Lemma 4.3.1 implies ϕ(t1) = 0. The continuity
properties of ϕ and ϕ0 and (4.3.13) imply that ϕ and ϕ0 can jump only at
those points τ where ϕ0(τ) 
= ϕ(τ), i.e. at the conjugate points. In particu-
lar, ϕ0 is constant on [tk, b], hence ϕ0(tk) = ϕ0(b). Altogether, we conclude
ϕ0(b) = Σ

t∈(a,b]
dimJ t

c , i.e. (4.3.12). (4.3.11) then follows with the help of

Lemma 4.3.3. �

As an application of the second variation, we now present the Theorem
of Bonnet-Myers:
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Corollary 4.3.1 Let M be a Riemannian manifold of dimension n with Ricci
curvature ≥ λ > 0, i.e.

Ric(X,X) ≥ λ〈X,X〉 for allX ∈ TM.

Let M be complete in the sense that it is closed and any two points can be
joined by a shortest geodesic (cf. the Hopf-Rinow Theorem 1.4.8). Then the

diameter of M is less or equal to π
√

n−1
λ . In particular, M is compact. Also,

M has finite fundamental group π1(M).

Remark. The diameter is defined as

diam(M) := sup
p,q∈M

d(p, q),

where d(·, ·) denotes the distance function of the Riemannian metric.
The sphere

Sn(r) := {x ∈ Rn+1 : |x| = r}
of radius r has curvature 1

r2 , hence Ricci curvature n−1
r2 and diameter πr. We

choose r such that λ = n−1
r2 . Corollary 4.3.1 then means that if M has Ricci

curvature not less than the one of Sn(r), then the diameter of M is at most
the one of Sn(r).

Proof. For each ρ < diam(M), there exist p, q ∈M with d(p, q) = ρ and then
by the completeness assumption a shortest geodesic arc c : [0, ρ] → M with
c(0) = p, c(ρ) = q. Let e1, . . . , en be an orthonormal basis of TpM, e1 = ċ(0).
As usual, from this, we may construct a parallel orthonormal basis

{ċ(t), X2(t), . . . , Xn(t)}
along c. With Yi(t) := (sin πt

ρ )Xi(t), i = 2, . . . , n we have

I(Yi, Yi) =

ρ∫
0

(−〈Ÿi, Yi〉 − 〈R(Yi, ċ)ċ, Yi〉)dt

=

ρ∫
0

(
sin2 πt

ρ

)(π2

ρ2
− 〈R(Xi, ċ)ċ, Xi〉

)
dt .

Since c is the shortest connection of its end points, by Theorem 4.3.1 (ii),
there is no pair of conjugate points in the interior of c, and Lemma 4.3.1
implies

I(Yi, Yi) ≥ 0 for all i,

hence also
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0 ≤
n∑

i=2

I(Yi, Yi) =

ρ∫
0

(
sin2 πt

ρ

)
(
n2

ρ2
(n− 1)− Ric(ċ, ċ))dt

≤ (
π2

ρ2
(n− 1)− λ)

ρ∫
0

sin2 πt

ρ
dt,

since the Yi form an orthonormal basis of the subspace of Tc(t)M normal to

ċ. Consequently, ρ ≤ π
√

n−1
λ , and since this holds for any ρ < diam(M), we

obtain the estimate for the diameter. The universal cover of M satisfies the
same assumption on the Ricci curvature. Hence, it is compact as well. This
implies that the group of covering transformations, i.e. π1(M), is finite. �

4.4 Riemannian Manifolds of Constant Curvature

We have already met Euclidean spaces and spheres as Riemannian manifolds
of vanishing and constant positive sectional curvature, resp. We now want
to discuss hyperbolic space as an example of a Riemannian manifold with
constant negative sectional curvature.

For this purpose, we equip Rn+1 with the quadratic form

〈x, x〉 := −(x0)2 + (x1)2 + . . .+ (xn)2 (x = (x0, . . . , xn)).

We define
Hn := {x ∈ Rn+1 : 〈x, x〉 = −1, x0 > 0}.

Thus, Hn is a hyperboloid of revolution; the condition x0 > 0 ensures that
Hn is connected.

The symmetric bilinear form

I := −(dx0)2 + (dx1)2 + . . .+ (dxn)2

induces a positive definite symmetric bilinear form on Hn. Namely, if p ∈ Hn,
TpH

n is orthogonal to p w.r.t. 〈·, ·〉. Therefore, the restriction of I to TpH
n is

positive definite by Sylvester’s theorem. We thus obtain a Riemannian metric
〈·, ·〉 on Hn. The resulting Riemannian manifold is called hyperbolic space.

Let O(n, 1) be the group of those linear self maps of Rn+1 that leave the
form 〈., .〉 invariant. Those elements of O(n, 1) that map the positive x0-axis
onto itself, then also leaveHn invariant and operate onHn by isometries. This
is completely analogous to the isometric operation of O(n+1) on Sn ⊂ Rn+1.
As we have seen in 1.4 for Sn, we see here that the geodesics of Hn are
precisely the intersections of Hn with twodimensional linear subspaces of
Rn+1.

If p ∈ Hn, v ∈ TpH
n with ‖v‖ = 1, the geodesic c : R → Hn with

c(0) = p, ċ(0) = v is given by
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c(t) = (cosh t)p+ (sinh t)v.

Indeed,
〈c(t), c(t)〉 = − cosh2 t+ sinh2 t = −1,
since 〈p, p〉 = −1, 〈p, v〉 = 0, 〈v, v〉 = 1

and 〈ċ(t), ċ(t)〉 = − sinh2 t+cosh2 t = 1. As on Sn, we may now compute the
curvature with the help of Jacobi fields.

For this, let w ∈ TpH
n, 〈w,w〉 = 1, 〈w, v〉 = 0. We then obtain a family

of geodesics

c(t, s) := (cosh t)p+ sinh t(cos s v + sin sw).

The corresponding Jacobi field

X(t) =
∂

∂s
c(t, s)|s=0 = (sinh t)w

then satisfies
Ẍ(t) = X(t).

The Jacobi equation implies R(X, ċ)ċ = −X, and so, the sectional curvature
is −1.

We may then also obtain a space Hn(ρ) of constant sectional curvature
−ρ by scaling the metric with factor ρ and considering

〈·, ·〉ρ := ρ〈·, ·〉 .

4.5 The Rauch Comparison Theorems and Other
Jacobi Field Estimates

We first compare the three model spaces Sn,Rn,Hn of curvature 1, 0,−1.
Let c(t) be a geodesic with ‖ċ‖ = 1, v ∈ Tc(0)M,M ∈ {Sn,Rn,Hn} with
‖v‖ = 1. The Jacobi field J(t) along c with

J(0) = 0, J̇(0) = v

is given by
(sin t)v, tv, (sinh t)v resp.

According to our geometric interpretation of Jacobi fields as infinitesimal
families of geodesics (Theorem 4.2.1) this means, that on Sn, geodesics with
the same initial point initially diverge, but then converge again, whereas
such geodesics diverge linearly on Rn and even exponentially on Hn.

Let now M be a Riemannian manifold with curvature K satisfying

λ ≤ K ≤ µ
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and suppose initially λ ≤ 0, µ ≥ 0. We shall estimate a Jacobi field in M
from above by the Jacobi field in Hn(−λ) with initial values of same lengths,
and from below by the corresponding one in Sn(µ). This implies that the
distance between geodesics and also the derivative of the exponential map
of M can be controlled by the geometry of the model spaces Hn(−λ) and
Sn(µ). Since tangential Jacobi fields are always linear (Lemma 4.2.4), hence
independent of the geometry of M, for our curvature bounds λ ≤ K ≤ µ, we
shall need to assume in the sequel λ ≤ 0 and µ ≥ 0, or else, we shall have to
restrict attention to Jacobi fields whose tangential component J tan vanishes
identically.

For abbreviation, we put for ρ ∈ R

cρ(t) :=

⎧⎨⎩ cos(
√
ρt) if ρ > 0

1 if ρ = 0
cosh(

√−ρt) if ρ < 0

and

sρ(t) :=

⎧⎨⎩
1√
ρ sin(

√
ρt) if ρ > 0

t if ρ = 0
1√−ρ

sinh(
√−ρt) if ρ < 0 .

These functions are solutions of the Jacobi equation for constant sectional
curvature ρ, namely

f̈(t) + ρf(t) = 0 (4.5.1)

with initial values f(0) = 1, ḟ(0) = 0, resp. f(0) = 0, ḟ(0) = 1. c(t) will
always be a geodesic on M parametrized by arc length, i.e. satisfying

‖ċ‖ ≡ 1 . (4.5.2)

Let J(t) be a Jacobi field along c(t).

Theorem 4.5.1 Suppose K ≤ µ, and as always, ‖ċ‖ ≡ 1. Assume either
µ ≥ 0 or J tan ≡ 0. Let fµ := |J(0)|cµ + |J |·(0)sµ solve

f̈ + µf = 0

with f(0) = |J(0)|, ḟ(0) = |J |·(0), i.e. fµ = |J(0)|cµ + |J |·(0)sµ.
If

fµ(t) > 0 for 0 < t < τ, (4.5.3)

then

〈J, J̇〉fµ ≥ 〈J, J〉ḟµ on [0, τ ] (4.5.4)

1 ≤ |J(t1)|
fµ(t1)

≤ |J(t2)|
fµ(t2)

, if 0 < t1 ≤ t2 < τ (4.5.5)

|J(0)|cµ(t) + |J |·(0)sµ(t) ≤ |J(t)| for 0 ≤ t ≤ τ . (4.5.6)
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We point out that the assumption (4.5.3), i.e.

fµ(t) > 0 on (0, τ)

is indeed necessary. To see this, let M = Sn(µ− ε), J(0) = 0; fµ(t) then has
a zero at t = π√

µ , J(t) one at t = π√
µ−ε

. In particular, for small positive ε

and any t which is only a little larger than π√
µ−ε

, we have |J(t)|
f(t) < 1, and for

example, (4.5.5) does not hold anymore.

Proof.

|J |·· + µ|J | = 1
|J | (−〈R(J, ċ)ċ, J〉+ µ〈J, J〉)

+
1
|J |3 (|J̇ |2 |J |2 − 〈J, J̇〉2) ≥ 0 becauseK ≤ µ,

for 0 < t < τ, provided J has no zero on (0, τ).
We then also have

(|J |·fµ − |J |ḟµ)· = |J |··fµ − |J |f̈µ ≥ 0,

since f̈µ + µfµ = 0, provided fµ(t) ≥ 0.
Because of |J |(0) = fµ(0), |J |·(0) = ḟµ(0), we conclude

|J |·fµ − |J |ḟµ ≥ 0,

i.e. (4.5.4).
Next

(
|J |
fµ

)· =
1
f2

µ

(|J |·fµ − |J |ḟµ) ≥ 0,

and from this and the initial conditions, we get (4.5.5). In particular, the
first zero of J cannot occur before the first zero of fµ, and the preceding
considerations are valid on (0, τ).

(4.5.5) implies (4.5.6). �

Corollary 4.5.1 Assume K ≤ µ, cµ ≥ 0 on (0, τ), and in addition either
µ ≥ 0 or J tan ≡ 0.
Furthermore, let ‖ċ‖ ≡ 1, J(0) = 0, |R| ≤ Λ where R stands for the curvature
tensor.

Then
|J(t)− tJ̇(t)| ≤ |J(τ)|1

2
Λt2. (4.5.7)

Proof. Let P be a parallel vector field of length 1 along c, t ∈ (0, τ)
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|〈J(t)− tJ̇(t), P (t)〉·| = |t〈R(J, ċ)ċ, P 〉(t)|
≤ Λt|J(t)|

≤ Λt|J(τ)| sµ(t)
sµ(τ)

by (4.5.5) because ofJ(0) = 0
≤ Λt|J(τ)|, since cµ ≥ 0 on [0, τ ].

Integrating this yields (4.5.7), as J(0) = 0. �

We now want to study the influence of lower curvature bounds. It will
turn out that this is more complicated than for upper curvature bounds.

Theorem 4.5.2 Assume λ ≤ K ≤ µ and either λ ≤ 0 or J tan ≡ 0; ‖ċ‖ ≡ 1.
Moreover, let J(0) and J̇(0) be linearly dependent.

Assume
s 1

2 (λ+µ) > 0 on (0, τ). (4.5.8)

Then for 0 ≤ t ≤ τ

|J(t)| ≤ |J(0)|cλ(t) + |J |·(0)sλ(t). (4.5.9)

Proof. Let ρ ∈ R, η := max(µ− ρ, ρ− λ).
Let A be the vector field along c with

Ä+ ρA = 0, A(0) = J(0), Ȧ(0) = J̇(0). (4.5.10)

((4.5.10) is a system of linear 2nd order ODEs, and hence, for given initial
value and initial derivative, there is a unique solution.) Let a : I → R be the
solution of

ä+ (ρ− η)a = η|A|, a(0) = ȧ(0) = 0, (4.5.11)

and let b : I → R be the solution of

b̈+ ρb = η|J |, b(0) = ḃ(0) = 0 (4.5.12)

(since (4.5.11) and (4.5.12) are linear 2nd order ODE, too, again there exist
unique solutions).

For each vector field P along c with ‖P‖ ≡ 1, we then have by (4.5.10)

|〈J −A,P 〉·· + ρ〈J −A,P 〉| = |〈J̈ + ρJ, P 〉| ≤ η|J |
by choice of η and since J solves the Jacobi equation.

Therefore, by (4.5.12) for d := (〈J −A,P 〉 − b)·sρ − (〈J −A,P 〉 − b)ṡρ

ḋ = (〈J −A,P 〉 − b)··sρ − (〈J −A,P 〉 − b)s̈ρ ≤ 0,

and hence, if sρ > 0 on (0, t], because d(0) = 0
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(
1
sρ

(〈J −A,P 〉 − b))·(t) =
d(t)
s2ρ(t)

≤ 0. (4.5.13)

Note that 〈J −A,P 〉 − b has a second order zero at t = 0, and hence
1
sρ

(〈J −A,P 〉 − b) vanishes for t = 0.
Therefore, we obtain from (4.5.13)

1
sρ

(〈J −A,P 〉 − b) ≤ 0 on (0, τ). (4.5.14)

If sρ > 0 on (0, τ), this implies

|J −A| ≤ b on (0, τ) (4.5.15)

and by (4.5.12) then
b̈+ (ρ− η)b ≤ η|A|. (4.5.16)

From (4.5.12) and (4.5.16) we conclude with the same argument as the one
leading to (4.5.14),

1
sρ−η

(b− a) ≤ 0,

i.e.
b ≤ a (4.5.17)

provided
sρ−η > 0 on (0, τ).

From (4.5.15) and (4.5.17)
|J −A| ≤ a. (4.5.18)

Now by (4.5.10)
(〈Ȧ, Ȧ〉〈A,A〉 − 〈A, Ȧ〉〈A, Ȧ〉)· = 0 (4.5.19)

and hence
〈Ȧ, Ȧ〉〈A,A〉 − 〈A, Ȧ〉〈A, Ȧ〉 ≡ 0, (4.5.20)

because this expression vanishes for t = 0, since A(0) = J(0) and Ȧ(0) = J̇(0)
are linearly dependent by assumption. This implies

|A|·· + ρ|A| = 0,

i.e. putting

fσ = |J(0)|cσ + |J |·(0)sσ (4.5.21)
we have

|A| = fρ . (4.5.22)

This implies in turn in conjunction with (4.5.11)

a = fρ−η − fρ. (4.5.23)
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(4.5.18), (4.5.22), (4.5.23) yield

|J | ≤ fρ−η.

Putting ρ = 1
2 (µ + λ), i.e. ρ − η = λ, we get (4.5.9). (Note that then η =

1
2 (µ− λ) ≥ 0, and hence sρ > 0 implies sρ−η > 0 on (0, τ).) �

Theorem 4.5.3 Suppose ‖ċ‖ ≡ 1, |K| ≤ Λ. Let J(0) and J̇(0) be linearly
dependent. Let Pt denote parallel transport along c from c(0) to c(t).

Then

|J(t)− Pt(J(0) + tJ̇(0))| ≤ |J(0)|(cosh(
√
Λt)− 1) (4.5.24)

+ |J |·(0)(
1√
Λ

sinh(
√
Λt)− t).

Proof. From (4.5.20) (
A

|A|
)·

= 0.

This means that A
|A| is a parallel vector field. In the proof of Theorem 4.5.2,

we now put ρ = 0. We then get |A| = ρ0 (cf. 4.5.22)), i.e.

A(t) = Pt(J(0) + tJ̇(0)).

With ρ = 0, we have η = Λ, and hence sρ and sρ−η > 0 for t > 0, as required
in the proof of Theorem 4.5.2. (4.5.18) and (4.5.23) then yield the claim. �

Remark. If we do not assume ‖ċ‖ ≡ 1, in all the preceding estimates, t has
to be replaced by t‖ċ‖ as argument of sτ , cτ , fτ etc.

Namely, let

c̃(t) = c(
t

‖ċ‖ )

be the reparametrization of c by arc length, i.e. ‖ ˙̃c‖ = 1.
Then

J̃(t) = J(
t

‖ċ‖ )

is the Jacobi field along c̃ with J̃(0) = J(0),
.

J̃(0) = J̇(0)
‖ċ‖ ; namely, since J

satisfies the Jacobi equation, J̃ satisfies

¨̃J +R(J̃ , ˙̃c)˙̃c = 0.

Thus, estimates for J̃ yield corresponding estimates for J.

Remark. The derivation of the Jacobi field estimates of the present para-
graph follows P. Buser and H. Karcher, Gromov’s almost flat manifolds,
Astérisque 81, 1981.
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Perspectives. The Rauch comparison theorems are infinitesimal comparison re-
sults for the geometry of a Riemannian manifold in terms of the geometry of spaces
of constant curvature.

A global comparison result is Toponogov’s theorem:
Let M be a Riemannian manifold with sectional curvature K ≥ λ. Let ∆

be a triangle in M with corners p, q, r and distance minimizing geodesic edges
cpq, cqr, cpr. Then there exists a geodesic triangle ∆0 in the simply connected space
Mλ of curvature λ with the same side lengths as ∆ and with angles at its corners
not larger than the ones of ∆ at the corresponding corners. In case λ > 0, we have
in particular

L(∂∆) ≤ 2π√
λ

.

4.6 Geometric Applications of Jacobi Field Estimates

We first recall Corollary 4.2.2: Let c(t) = expp tċ(0) be geodesic, w ∈ TpM,

J the Jacobi field along c with J(0) = 0, J̇(0) = w. J(t) then yields the
derivative of the exponential map

J(t) = (Dtċ(0) expp)(tw). (4.6.1)

We obtain

Corollary 4.6.1 Let the sectional curvature of M satisfy λ ≤ K ≤ µ. Fur-
thermore, let 〈w, ċ(0)〉 = 0. Then, provided t‖ċ(0)‖ ≤ π√

µ in case µ > 0,

|w|sµ(t‖ċ(0)‖)
t‖ċ(0)‖ ≤ |(Dtċ(0) expp)w| ≤ |w|

sλ(t‖ċ(0)‖)
t‖ċ(0)‖ . (4.6.2)

(Of course, if w is a multiple of ċ(0), we have (Dtċ(0)expp)w = w.)

Proof. For ‖ċ(0)‖ = 1, this follows from (4.5.6) and (4.5.9).
We now put c̃(t) := expp t

ċ(0)
‖ċ(0)‖ . c̃ thus is a reparametrization of c, and

‖ ˙̃c‖ ≡ 1. Let J̃ be the Jacobi field along c̃ with J̃(0) = 0, ˙̃J(0) = w. Finally,

(Dtċ(0) expp)(tw) =
1

‖ċ(0)‖ (Dt‖ċ(0)‖ ˙̃c(0) expp)(t‖ċ(0)‖w)

=
1

‖ċ(0)‖ J̃(t‖ċ(0)‖),

and J̃(t‖ċ(0)‖) is controlled by sµ(t‖ċ(0)‖) and sλ(t‖ċ(0)‖) from below and
above, resp. �

Theorem 4.6.1 Let the exponential map expp : TpM → M be a diffeomor-
phism on {v ∈ TpM : ‖v‖ ≤ ρ}. Let the curvature of M in the ball
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B(p, ρ) := {q ∈M : d(p, q) ≤ ρ}
satisfy

λ ≤ K ≤ µ, withλ ≤ 0, µ ≥ 0,

and suppose
ρ <

π

2
√
µ

in caseµ > 0. (4.6.3)

Let r(x) := d(x, p), k(x) := 1
2d

2(x, p). Then k is smooth on B(p, ρ) and sat-
isfies

grad k(x) = − exp−1
x p (4.6.4)

and therefore
| grad k(x)| = r(x). (4.6.5)

√
µr(x) ctg (

√
µr(x))‖v‖2 ≤ ∇dk(v, v) (4.6.6)

≤ √−λr(x) ctgh (
√−λr(x))‖v‖2

for x ∈ B(p, ρ), v ∈ TxM.

Proof. We have
grad k(x) = − exp−1

x p,

because the gradient of k is orthogonal to the level surfaces of k, and those
are the spheres S(p, r) := {q ∈ M : d(p, q) = r} = expp{v ∈ TpM : ‖v‖ =
r} (r ≤ ρ); in particular, the gradient of k has length d(x, p), proving (4.6.5).

The Hessian ∇dk of k is symmetric, and can hence be diagonalized. It
thus suffices to show (4.6.6) for each eigen direction v of ∇dk. Let γ(s) be
the curve in M with γ(0) = x, γ′(0) = v.

c(t, s) := expγ(s)(t exp−1
γ(s) p), (4.6.7)

in particular c(0, s) = γ(s), c(1, s) ≡ p.
Then by (4.6.4)

(grad k)(γ(s)) = − ∂

∂t
c(t, s)|t=0,

hence

(∇v grad k)(x) = −∇ ∂
∂s

∂

∂t
c(t, s)|t=0,s=0

= −∇ ∂
∂t

∂

∂s
c(t, s)|t=0,s=0 (4.6.8)

J(t) = ∂
∂sc(t, s)|s=0 is a Jacobi field along the geodesic from x to p with

J(0) = γ̇(0) = v, J(1) = 0 ∈ TpM (by (4.6.7)). (4.6.8) thus implies

∇v grad k(x) = −J̇(0),
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i.e.
∇dk(v, v) = 〈∇v grad k, v〉 = −〈J̇(0), J(0)〉. (4.6.9)

Since v is an eigen direction of ∇dk, ∇v grad k and v, i.e. J̇(0) and J(0) are
linearly dependent. (4.5.6) and (4.5.9) imply for t = 1 (J(1) = 0) (recall the
remark at the end of § 4.5)

|v|cµ(r(x)) + |J |·(0)sµ(r(x)) ≤ 0 ≤ |v|cλ(r(x)) + |J |·(0)sλ(r(x))

and with (4.6.9), this gives (4.6.6). �

We want to briefly describe the relation between Jacobi fields and the 2nd
fundamental form of the distance spheres

∂B(p, r) = {q ∈M,d(p, q) = r}.
Assume the hypotheses of Theorem 4.6.1; in particular, assume that expp is
a diffeomorphism of {‖v‖ ≤ ρ} onto B(p, ρ), and that r ≤ ρ.

We have

N(x) = grad k(x) = − exp−1
x p (by (4.6.4)); (4.6.10)

where N(x) is the exterior normal vector of the distance up here containing
x. For the second fundamental form S of the distance sphere and for X
tangential to this sphere, we then have

S(X,N) = ∇XN (since N(x) has constant length r

on ∂B(p, r) the part of ∇xN

normal to ∂B(p, r) vanishes) (4.6.11)
= ∇X grad k.

We now obtain a diffeomorphism from ∂B(p, r) onto ∂B(p, r + t) (assuming
r + t ≤ ρ) by

Et(x) := expx tN(x) (x ∈ ∂B(p, r)).

Let γ(s) be a curve in ∂B(p, r) with γ̇(0) = v, γ(0) = x. Then

J(t) =
∂

∂s
Et(γ(s))|s=0 (4.6.12)

is a Jacobi field along Et(x) with

J(0) = γ̇(0) = v
J̇(0) = ∇ ∂

∂t

∂
∂s expγ(s)(tN(γ(s)))= ∇ ∂

∂s

∂
∂t expγ(s)(tN(γ(s)))|t=0

s=0

= ∇ ∂
∂s
N(γ(s))|s=0

= S(v,N) = S(J(0), N).

Since Et(γ(s)) is a curve in ∂B(p, r + t), we likewise have
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J̇(t) = S(J(t), N). (4.6.13)

We put St(·) = S(·, N(t)).
From this, we get

J̈(t) = ∇ ∂
∂t

(St(J(t)) = Ṡt(J(t)) + St(J̇(t)).

The Jacobi equation J̈ + R(J,N)N = 0 thus implies a Riccati equation for
St :

Ṡt(·) = −R(·, N)N − St ◦ St(·). (4.6.14)

Thus, on one hand, (4.6.13) describes the geometry of distance spheres
through Jacobi fields. On the other hand, solutions of the Riccati equation
satisfy a 1st order ODE and hence are easy to estimate, and from such es-
timates one may then obtain Jacobi field estimates. In order to explain this
last point, let P be a vector field parallel along Et(x) with ‖P‖ = 1. Then

〈St(P ), P 〉· = −〈R(P,N)N,P 〉 − 〈S2
t (P ), P 〉. (4.6.15)

Since the 2nd fundamental tensor is symmetric,

〈S2
t (P ), P 〉 = 〈St(P ), St(P )〉 (cf. Lemma 3.4.2). (4.6.16)

We put Σ(·) = 1
‖N‖St(·). Since all expressions in (4.6.15) are quadratically

homogeneous in ‖N‖, we obtain

〈Σ(P ), P 〉· = −〈R(P,
N

‖N‖ )
N

‖N‖ , P 〉 − 〈Σ(P ), Σ(P )〉

≤ −〈R(P,
N

‖N‖ )
N

‖N‖ , P 〉 − 〈Σ(P ), P 〉2. (4.6.17)

If the sectional curvature satisfies λ ≤ K, because of ‖P‖ = 1,

ϕ := 〈Σ(P ), P 〉
then satisfies the differential equation

ϕ̇ ≤ −λ− ϕ2. (4.6.18)

Now

ctλ(t) :=
ṡλ(t)
sλ(t)

=
cλ(t)
sλ(t)

satisfies the differential equation

cṫλ = −λ− ct2λ,

and it easily follows that

ϕ(t) ≤ ctλ(t), providedϕ(s) > −∞ for all swith 0 < s < t.
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With (4.6.13), we conclude from this for a Jacobi field J along Et with J(0) =
0 ( |J(t)|

sλ(t)

)·
(t) ≤ 0,

provided in (0, t] there is no point conjugate to 0.
In particular

|J(t)| ≤ |J |·(0)sλ(t), (4.6.19)

i.e. a special case of (4.5.9), up to the first conjugate point.

Perspectives. Let Mρ be the simply connected space form of curvature ρ. Let
V ρ(r) denote the volume of a ball in Mρ with radius r. Let M be a Riemannian
manifold, p ∈ M, r < i(p) (= injectivity radius of p) (i.e. B(p, r) is disjoint from
the cut locus of p). We then have the volume comparison theorems of R. Bishop:

If Ric(M) ≥ Ric(Mρ), then

Vol(B(p, r)) ≤ V ρ(r)

and P. Günther:

If K(M) ≤ ρ (K is the sectional curvature), then

Vol(B(p, r)) ≥ V ρ(r).

These estimates are also proved with the help of Jacobi field estimates.

4.7 Approximate Fundamental Solutions and
Representation Formulae

Lemma 4.7.1 Suppose expp : TpM → M is a diffeomorphism on the ball
{v ∈ TpM : ‖v‖ ≤ ρ}, and suppose the sectional curvature in B(p, ρ) satisfies

λ ≤ K ≤ µ with λ ≤ 0, µ ≥ 0,

put Λ := max(−λ, µ), and assume

ρ <
π√
µ

in case µ > 0.

Then, with r(x) = d(x, p), for x 
= p

|∆ log r(x)| ≤ 2Λ if n = dimM = 2 (4.7.1)

|∆(r(x)2−n)| ≤ n− 2
2

Λr2−n(x) if n = dimM ≥ 3 . (4.7.2)

Proof. We prove only (4.7.2) as (4.7.1) is similar.
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−∆r(x)2−n = −∆(d2(x, p))
2−n

2

=
2− n

2
(−n

2
)(d2(x, p))−

n+2
2 ‖grad d2(x, p)‖2

+
2− n

2
(d2(x, p))−

n
2 (−∆)d2(x, p).

Now by Theorem 4.6.1

‖grad d2(x, p)‖2 = 4d2(x, p),

2n(1− µr2(x)) ≤ −∆d2(x, p) ≤ 2n(1− λr2(x))
(noting −∆ = trace∇d),

and (4.7.2) follows. �

Lemma 4.7.2 Suppose B(p, ρ) is as in Lemma 4.7.1. Let ωn be the volume
of the unit sphere in Rn, n = dimM. For h ∈ C2(B(p, ρ),R) then (with Λ as
in Lemma 4.7.1)

if n = 2 |ω2h(p)−
∫

B(p,ρ)

(∆h) log
r(x)
ρ
− 1
ρ

∫
∂B(p,ρ)

h| ≤ 2Λ
∫

B(p,ρ)

|h| (4.7.3)

if n ≥ 3 |(n− 2)ωnh(p)−
∫

B(p,ρ)

(∆h)
( 1
r(x)n−2

− 1
ρn−2

)
− n− 2

ρn−1

∫
∂B(p,ρ)

h|

≤ n− 2
2

Λ

∫
B(p,ρ)

|h|
r(x)n−2

(4.7.4)

Proof. We prove only (4.7.4) as (4.7.3) is similar.
We put

g(x) := r(x)2−n − ρ2−n.

Then for ε > 0∫
B(p,ρ)\B(p,ε)

(g∆h− h∆g) =
∫

∂(B(p,ρ)\B(p,ε))

〈h grad g − g gradh, d−→ν 〉 .

(−→ν denotes the outer unit normal of ∂(B(p, ρ)\B(p, ε)).)
Now
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B(p,ρ)\B(p,ε)

|h∆g| ≤ n− 2
2

Λ

∫
B(p,ρ)

|h|
rn−2(x)

by (4.7.2)

g|∂B(p,ρ) = 0∫
∂B(p,ρ)

h〈 grad g, d−→ν 〉 =
n− 2
ρn−1

∫
∂B(p,ρ)

h

lim
ε→0

∫
∂B(p,ε)

g〈 gradh, d−→ν 〉 = 0

lim
ε→0

∫
∂B(p,ε)

〈 grad g, d−→ν 〉 = −(n− 2)ωnh(p),

and (4.7.4) follows. �

For the interpretation of the preceding formulae, we observe that in the
Euclidean case

∆r(x)2−n = 0 for x 
= p, (4.7.5)

whereas individual second derivatives of r(x)2−n grow like r(x)−n for x→ p.
Therefore, in the Riemannian case, although (4.7.5) is not an identity any-
more it holds up to an error term which gains two orders of magnitude against
the crude growth estimate r(x)−n. The same holds for the representation for-
mulae in Lemma 4.7.2. The error terms on the right hand side are two orders
better than the other integrands.

Perspectives. The results of this paragraph are from [141]. Extensions of these
results can be found in [126].

4.8 The Geometry of Manifolds of Nonpositive
Sectional Curvature

In this §, we shall present some results that apply to compact or complete
Riemannian manifolds of nonpositive sectional curvature. It is very instruc-
tive to see how strongly an infinitesimal geometric condition, namely that
the sectional curvature is nonpositive, influences the global geometry and
topology of the manifold in question.

At one place, we shall refer to a subsequent Chapter for a proof ingredient.
This is done for the sake of conciseness although the result in question can
also be given an elementary - but not entirely trivial - proof with the tools
already developed, and an ambitious reader may wish to find such a proof.

From § 4.6, we obtain
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Lemma 4.8.1 Let N be a Riemannian manifold with sectional curvature
≤ 0. Let p ∈M . Then the exponential map

expp : TpN → N

has everywhere maximal rank.
Furthermore, for

k(x) :=
1
2
d2(x, p)

if expp is a diffeomorphism on the ball B(p, ρ), x ∈ B(p, ρ), v ∈ TxN , we have

∇dk(v, v) ≥ ‖v‖2 (4.8.1)

Proof. Corollary 4.6.1 and Theorem 4.6.1. �

These are local results. We shall now state a fundamental global result:

Theorem 4.8.1 Let N be a complete Riemannian manifold of nonpositive
sectional curvature, p, q ∈ N. Then in any homotopy class of curves from p
to q, there is precisely one geodesic arc from p to q, and this arc minimizes
length in its class.

Proof. There exists a sequence (γn) of curves from p to q with

lim
n→∞L(γn) = r := inf{lengths in given homotopy class}

(L denoting length).
W.l.o.g., for all n

γn ⊂ B(p, r + 1)

in particular
γn ∩B(p, r + 2)\B(p, r + 1) = ∅.

The proof of Theorem 1.4.6 therefore works with B(p, r + 1) instead of the
Riemannian manifold M considered there to show the existence of a shortest
geodesic arc γ from p to q in the given homotopy class.

To show uniqueness, we first observe that by Theorem 4.1.1, every
geodesic arc γ from p to q is a strict local minimum of energy among all
arcs with endpoints p and q, because Iγ(W,W ) > 0 for all W 
≡ 0 with
W (p) = 0 = W (q). (Here, W is a section along γ. The index form Iγ was
defined in (4.1.8).)

Let now γi : [0, 1] → N, i = 1, 2, be homotopic geodesic arcs from p to q,
with γ1 
= γ2, and let

Γ : [0, 1]× [0, 1] → N

be a homotopy, i.e. with
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Γ (t, 0) = γ1(t), Γ (t, 1) = γ2(t) for all t
Γ (0, s) = p, Γ (1, s) = q for all s

Let
R := max

s∈[0,1]
E(Γ (·, s)). (4.8.2)

As in Theorem 6.11.3 below, one shows that there exists another geodesic arc
γ3, different from γ1 and γ2, with

max(E(γ1), E(γ2)) < E(γ3) ≤ R. (4.8.3)

Again, by Theorem 4.1.1, γ3 is a strict local minimum of E, and so, replacing
e.g. γ2 by γ3 in the previous argument, we obtain a fourth geodesic arc γ4

with
E(γ3) < E(γ4) ≤ R.

(It is not hard to see from the proof of Theorem 6.11.3, that γ3 may be
connected with γ1 or γ2 through arcs of energy ≤ R so that the maximum
in (4.8.2) will not be increased.) We therefore obtain a sequence (γn)n∈N of
geodesic arcs from p to q with

E(γn) ≤ R for all n.

Let γn(t) = expp tvn with vn ∈ TpN, ‖vn‖2 ≤ 2R. After selection of a sub-
sequence, (vn)n∈N converges to some v ∈ TpM with ‖v‖2 ≤ 2R. Since all vn

are different from each other, but expp vn = q for all n, expp cannot have
maximal rank at v. This is a contradiction, since by Lemma 4.8.1, the expo-
nential map of a manifold of nonpositive curvature has everywhere maximal
rank. Thus, γ1 = γ2, proving uniqueness. �

As a corollary, we have the following result of Hadamard-Cartan

Corollary 4.8.1 Let Y be a simply connected complete Riemannian man-
ifold of nonpositive sectional curvature. Then Y is diffeomorphic to Rn

(n = dimY ), and such a diffeomorphism can be obtained from the exponential
map

expp : TpY (= Rn) → Y

of any p ∈ Y . This exponential map is distance nondecreasing, i.e.

‖v − w‖ ≤ d(expp v, expp w) for all v, w ∈ TpY.

Proof. Theorem 4.8.1 implies that for every p, q ∈ Y, there exists precisely
one geodesic arc from p to q because there is only one homotopy class of such
arcs as Y is simply connected. One easily concludes that for every p ∈ Y,
expp : TpY → Y is injective and surjective. (It is defined on all of TpY because
Y is complete.) Since it is of maximal rank everywhere by Lemma 4.8.1, it
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follows that Y is diffeomorphic to TpY. The distance increasing property of
the exponential map follows from Corollary 4.6.1. �

Lemma 4.8.2 Let Y be a simply connected complete manifold of nonpositive
curvature, p ∈ Y. Then, with k(x) = 1

2d
2(x, p), for every v ∈ TxY, x ∈ Y

∇dk(v, v) ≥ ‖v‖2. (4.8.4)

Proof. From Corollary 4.8.1 and Lemma 4.8.1. �

We also have

Theorem 4.8.2 Let c1(t) and c2(t) be geodesics in Y , a simply connected
complete manifold of nonpositive sectional curvature. Then

d2(c1(t), c2(t))

is a convex function of t.

Proof. Since the geodesic arc from c1(t) to c2(t) is uniquely determined by
Theorem 4.8.1, it depends smoothly on t. Hence d2(c1(t), c2(t)) is a smooth
function of t. For each t, we denote this geodesic arc from c1(t) to c2(t) by
γ(s, t), with s the arc length parameter. Then

d2(c1(t), c2(t)) = 2E(γ(·, t)). (4.8.5)

Now by Theorem 4.1.1 (exchanging the rôles of s and t in that theorem)

d2

dt2
E(γ(·, t)) =

d(c1(t),c2(t))∫
0

〈∇ ∂
∂s

∂

∂t
γ(s, t),∇ ∂

∂s

∂

∂t
γ(s, t)〉ds

−
d(c1(t),c2(t))∫

0

〈R
(
∂γ

∂s
,
∂γ

∂t

)
∂γ

∂t
,
∂γ

∂s
〉ds, (4.8.6)

where R denotes the curvature tensor of Y. Since Y has nonpositive sectional
curvature, (4.8.6) implies

d2

dt2
E(γ(·, t)) ≥ 0

and with (4.8.5) the claim follows. �

A reformulation of the preceding result is

Corollary 4.8.2 Let Y be a simply connected complete manifold of nonpos-
itive (sectional) curvature. Then
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d2 : Y × Y → R

is a convex function. (Note that here, d2 is considered as a function of two
variables.)

Proof. According to Definition 3.3.6, we have to show that the Hessian of d2

is positive semidefinite.
By (3.3.50), we have to compute the second derivative of d2 along

geodesics in Y × Y . Such geodesics c are given as (c1, c2) where c1, c2 are
geodesics in Y . We thus have to show that d2(c1(t), c2(t) is a convex function
of the arc length parameter t. This is Theorem 4.8.2. �

Remark. On a not necessarily simply connected Riemannian manifold N
of nonpositive sectional curvature, the results of Lemma 4.8.2 and Theorem
4.8.2 hold locally:

If
expp : TpN → N

is a diffeomorphism on the ball {v ∈ TpN : ‖v‖ ≤ ρ) ⊂ TpN for some ρ > 0,
then (4.8.4) holds for x ∈ B(p, ρ) ⊂ N , and d2 is convex on B(p, ρ)×B(p, ρ),
i.e. for any geodesics c1, c2 : [0, 1] → B(p, ρ), d2(c1(t), c2(t)) is a convex
function of t.

Building upon Lemma 4.8.2, we shall now derive some quantitative ver-
sions of the preceding convexity results

Lemma 4.8.3 As always in this §, let N be a Riemannian manifold of non-
positive sectional curvature, p ∈ N , and suppose that

expp : TpN → N

is a diffeomorphism on the ball {v ∈ TpN : ‖v‖ ≤ ρ} (here, ρ > 0, and if N
is complete and simply connected, we may take ρ = ∞ by Corollary 4.8.1).

Then

d2(p, γ(t)) ≤ (1− t)d2(p, γ(0)) + td2(p, γ(1)) (4.8.7)
− t(1− t)d2(γ(0)), γ(1)).

Proof. Let k0 : [0, 1] → R be the function with

k0(0) = d2(p, γ(0)), k0(1) = d2(p, γ(1)), k′′0 (t) = 2‖γ′(t)‖2.
Then

d2(p, γ(t)) ≤ k0

as a consequence of (4.8.4). Since
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k0(t) = (1− t)k0(0) + tk0(1)− t(1− t)d2(γ(0), γ(1))

(note ‖γ′(t)‖ = d(γ(0), γ(1))), the claim follows. �

Corollary 4.8.3 Under the assumptions of Lemma 4.8.3, let γ1, γ2 : [0, 1] →
B(γ, ρ) ⊂ N be geodesics with

γ1(0) = p = γ2(0).

Then, for 0 ≤ t ≤ 1

d(γ1(t), γ2(t)) ≤ td(γ1(1), γ2(1)). (4.8.8)

Proof. Applying (4.8.7) to γ1(1) in place of p, γ2(t) in place of γ(t),

d2(γ1(1), γ2(t)) ≤ td2(γ1(1), γ2(1)) + (1− t)d2(γ1(1), p)

− t(1− t)d2(γ2(1), p)

Applying (4.8.7) to γ2(t) in place of p, γ1(t) in place of γ(t)

d2(γ1(t), γ2(t)) ≤ td2(γ1(1), γ2(t)) + (1− t)d2(p, γ2(t))

− t(1− t)d2(γ1(1), p)

Noting d2(p, γ2(t)) = t2d2(p, γ2(1)) and inserting the first inequality into the
second one yields the result. �

Remark. It is also easy to give a direct proof of Lemma 4.8.3 based on the
Jacobi field estimate (4.5.5).

We now come to Reshetnyak’s quadrilateral comparison theorem:

Theorem 4.8.3 As in the preceding lemma, let

expp : TpN → N

be a diffeomorphism on the ball of radius ρ in TpN , N a Riemannian manifold
of nonpositive sectional curvature.

Let
γ1, γ2 : [0, 1] → B(p, ρ) ⊂ N

be geodesics. For 0 ≤ t ≤ 1, and a parameter 0 ≤ s ≤ 1 then

d2(γ1(0), γ2(t)) + d2(γ1(1), γ2(1− t))
≤ d2(γ1(0), γ2(0)) + d2(γ1(1), γ2(1)) + 2t2d2(γ2(0), γ2(1)) (4.8.9)

+ t(d2(γ1(0), γ1(1))− d2(γ2(0), γ2(1)))
− ts(d(γ1(0), γ1(1))− d(γ2(0), γ2(1)))2

− t(1− s)(d(γ1(0), γ2(0))− d(γ1(1), γ2(1)))2.
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Note that this inequality is sharp for certain quadrilaterals in the Euclidean
plane.

Proof. We first consider the case t = 1, s = 0. For simplicity of notation, we
define

ai := d(γi(0), γi(1)),
b1 := d(γ1(0), γ2(0)),
d1 := d(γ2(0), γ1(1)),

i = 1, 2,
b2 := d(γ1(1), γ2(1)),
d2 := d(γ1(0), γ2(1)).

Fig. 4.8.1

Also, we let δ : [0, 1] → B(p, ρ) ⊂ N be the geodesic arc from γ1(0) to γ2(1),
as always parametrized proportionally to arclength. Its length is d2. We also
put for 0 < λ < 1

d′λ := d(γ2(0), δ(λ)), d′′λ := d(γ1(1), δ(λ)).

Then by (4.8.7)

d′2λ ≤ (1− λ)b21 + λa2
2 − λ(1− λ)d2

2

d′′2λ ≤ λb22 + (1− λ)a2
1 − λ(1− λ)d2

2.

Therefore, for 0 < ε,

d2
1 ≤ (d′λ + d′′λ)2 ≤ (1 + ε)d′2λ +

(
1 +

1
ε

)
d′′2λ

≤ (1 + ε)(1− λ)b21 + (1 + ε)λa2
2

+
(

1 +
1
ε

)
λb22 +

(
1 +

1
ε

)
(1− λ)a2

1

−
(

2 + ε+
1
ε

)
λ(1− λ)d2

2.

We choose ε = 1−λ
λ so that the coefficient in front of d2

2 becomes 1. This
yields

d2
2 + d2

1 ≤ a2
1 + a2

2 +
1− λ

λ
b21 +

λ

1− λ
b22.
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With
λ =

b1
b1 + b2

,

we obtain
d2
1 + d2

2 ≤ a2
1 + a2

2 + b21 + b22 − (b1 − b2)2.

This is the required inequality for t = 1, s = 0. For symmetry reasons, we
also obtain the inequality for t = 1, s = 1, namely

d2
1 + d2

2 ≤ a2
1 + a2

2 + b21 + b22 − (a1 − a2)2,

and taking convex combinations yields the inequality for t = 1, 0 ≤ s ≤ 1 :

d2
1 + d2

2 ≤ a2
1 + a2

2 + b21 + b22 − s(a1 − a2)2 − (1− s)(b1 − b2)2. (4.8.10)

We therefore obtain the inequality for 0 ≤ t ≤ 1 from (4.8.7) and (4.8.10)

d2(γ1(0), γ2(t)) + d2(γ1(1), γ2(1− t))

≤ (1− t)b21 + td2
2 − t(1− t)a2

2 + (1− t)b22 + td2
1 − t(1− t)a2

2

≤ b21 + b22 + 2t2a2
2 − t(a2

2 − a2
1)− ts(a1 − a2)2 − t(1− s)(b1 − b2)2.

�

Theorem 4.8.3 allows us to derive the following quantitative version of
the convexity of the distance between geodesics.

Corollary 4.8.4 Let γ1, γ2 : [0, 1] → N be geodesics as in Theorem 4.8.3.
Then we have for 0 ≤ t ≤ 1, 0 ≤ s ≤ 1

d2(γ1(t), γ2(t)) ≤ (1− t)d2(γ1(0), γ2(0)) + td2(γ1(1), γ2(1)) (4.8.11)
− t(1− t){s(d(γ1(0), γ1(1))− d(γ2(0), γ2(1)))2

+ (1− s)(d(γ1(0), γ2(0))− d(γ1(1), γ2(1)))2}.

Proof. We shall show the inequality for t = 1
2 . It is then straightforward to

deduce the inequality for arbitrary t.
We keep the notations of the preceding proof, and we also put

e1 := d(γ1(0), γ2(
1
2
)), e2 := d(γ1(1), γ2(

1
2
)).

Then by (4.8.7)

d2(γ1(
1
2
), γ2(

1
2
)) ≤ 1

2
e21 +

1
2
e22 −

1
4
a2
1.

By (4.8.8)

e21 + e22 ≤ b21 + b22 +
1
2
a2
1 −

1
2
s(a1 − a2)2 − 1

2
(1− s)(b1 − b2)2.
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Thus

d2(γ1(
1
2
), γ2(

1
2
)) ≤ 1

2
b21 +

1
2
b22 −

1
4
s(a1 − a2)2 − 1

4
(1− s)(b1 − b2)2

which yields the inequality for t = 1
2 . �

As an application of Theorem 4.8.3, let us consider the following Pythago-
ras inequality

Corollary 4.8.5 Let the assumptions of Lemma 4.8.3 hold.
Suppose

d(γ(0), p) = min
0≤t≤1

d(γ(t), p)

(i.e. γ(0) is the point on γ closest to p). Then

d2(γ(s), p) ≥ d2(γ(0), p) + s2d2(γ(0), γ(1)) for 0 ≤ s ≤ 1. (4.8.12)

Proof. It suffices to treat the case s = 1.
By (4.8.7),

d2(γ(t), p) ≤ (1− t)d2(γ(0), p) + td2(γ(1), p)− t(1− t)d2(γ(0), γ(1)).

Since by assumption
d2(γ(0), p) ≤ d2(γ(t), p),

we get

td2(γ(1), p) ≥ td2(γ(0), p) + td2(γ(0), γ(1))− t2d2(γ(0), γ(1)).

Dividing by t and letting t→ 0 yields the desired inequality. �

We now turn to Karcher’s center of mass constructions and their applica-
tions. While such constructions are meaning- and useful under more general
conditions, here we only consider nonpositively curved manifolds, because in
that case, the geometry is most favorable to them.

Thus, let Y be a complete, simply connected, nonpositively curved Rie-
mannian manifold. We recall that by Corollary 4.8.1, expp : TpY → Y is a
global diffeomorphism. This will be used implicitly below at several places.

Let µ be a probability measure on Y , i.e. a nonnegative measure with

µ(Y ) =
∫
dµ = 1.

Definition 4.8.1 q ∈ Y is called a center of mass for µ if∫
d2(q, y)dµ(y) = inf

p∈Y

∫
d2(p, y)dµ(y) <∞ (4.8.13)
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In the sequel we shall always assume that the infimum in (4.8.13) is finite.
This is satisfied if, for example, the support of the measure µ is bounded.

Examples:
1) If µ is a Dirac measure δq supported at q ∈ Y , then q is its center of

mass.
2) If µ = 1

2 (δq1 + δq2) for q1, q2 ∈ Y , then the center of mass is γ( 1
2 )

where γ : [0, 1] → Y is the unique geodesic from q1 to q2.

Lemma 4.8.4
F (p) :=

1
2

∫
d2(p, y)dµ(y)

is a differentiable function of p, with

grad F (p) = −
∫

exp−1
p (y)dµ(y) (here, exp−1

p : Y → TpY (4.8.14)

is considered as a vector valued function.)

Thus, q is a center of mass of µ if∫
exp−1

q (y)dµ(y) = 0. (4.8.15)

Proof. (4.8.14) follows from (4.6.4). Thus, F is differentiable, and a minimizer
has to satisfy grad F (p) = 0, i.e. (4.8.15). �

We now use the nonpositive curvature of Y in an essential manner:

Lemma 4.8.5
F (p) =

1
2

∫
d2(p, y)dµ(y)

is a strictly convex function of p.

Proof. From Lemma 4.8.2 by integration, because µ is nonnegative. �

We deduce

Theorem 4.8.4 There exists a unique center of mass for µ, i.e. a unique
q ∈ Y with ∫

d2(q, y)dµ(y) = inf
p∈Y

∫
d2(p, y)dµ(y)

Proof. This follows from the strict convexity and the fact that F (p) is coer-
cive, i.e.
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F (pn) →∞ if d2(pn, p0) →∞ for some fixed p0

and a sequence (pn)n∈N ⊂ Y.

�

Remark. Up to this point, we have not used the normalization

µ(Y ) = 1.

Thus, Theorem 4.8.4 holds for any nonnegative measure (provided the in-
fimum in (4.8.13) is finite, of course). This will be applied in § 8.4 below.
The subsequent estimates, however, will use this normalization; without that
normalization, additional factors will occur.

Lemma 4.8.6 Let q be the center of mass of µ. Then for every p ∈ Y

d(p, q) ≤ ‖grad F (p)‖ (4.8.16)

and for every v ∈ TqY, ‖∇vgrad F (q)‖ ≥ ‖v‖ (4.8.17)

Proof. Let γ : [0, 1] → Y be the geodesic from q to p.
Thus,

‖γ̇(t)‖ = d(p, q) for all t ∈ [0, 1].

We have

〈 grad F (p), γ̇(1)〉 =−
∫
〈exp−1

p y, γ̇(1)〉dµ(y)

=−
∫ ⎛⎝ 1∫

0

d

dt
〈exp−1

γ(t) y, γ̇(t)〉dt
⎞⎠ dµ(y)

−
∫
〈exp−1

q y, γ̇(0)〉dµ(y).

The last integral vanishes by (4.8.15), since q is the center of mass for µ. By
the proof of Corollary 4.6.1, since Y has nonpositive curvature (and since
D d

dt
γ̇(t) = 0 as γ is geodesic)

− d

dt
〈exp−1

γ(t) Y, γ̇(t)〉 ≥ ‖γ̇(t)‖2.

Thus ‖ grad F (p)‖d(p, q) ≥ 〈 grad F (p), γ̇(1)〉 ≥ d(p, q)2 which implies
(4.8.16). (4.8.17) is the infinitesimal version of (4.8.16) (of course, (4.8.17)
can also be derived directly from the proof of Corollary 4.6.1). �

Lemma 4.8.7 Let µ1, µ2 be two probability measures on Y , with centers of
mass q1, q2 resp. Then
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d(q1, q2) ≤
∫
d(q2, y)|dµ1 − dµ2|(y) (4.8.18)

Proof. By (4.8.16), with Fi(p) = 1
2

∫
d2(y, p)dµi(y), for i = 1, 2,

d(q1, q2) ≤ ‖ grad F1(q2)‖
≤ |

∫
exp−1

q2
(y) dµ1(y)|

= |
∫

(exp−1
q2
y)(dµ1 − dµ2)(y)| since grad F2(q2) = 0.

We use | exp−1
q2

y| = d(q2, y) to get (4.8.18). �

We now consider the situation where

µ = f∗ν,

for some measurable map f : A→ Y for a set A with a probability measure
ν.

Then ∫
d2(q, y)dµ(y) =

∫
d2(q, f(x))dν(x). (4.8.19)

For the moment, ν will be fixed, and so we shall call a minimizer a center of
mass for the map f .

Lemma 4.8.8 Let f1, f2:A → Y be measurable maps with centers of mass
q1, q2, resp. Then

d(q1, q2) ≤
∫
d(f1(x), f2(x)) dν(x) (4.8.20)

Proof. By Lemma 4.8.6 and (4.8.14)

d(q1, q2) ≤
⏐⏐⏐⏐∫ exp−1

q2
f1(x) dν(x)

⏐⏐⏐⏐
=
⏐⏐⏐⏐∫ (

exp−1
q2

f1(x)− exp−1
q2

f2(x)
)
dν(x)

⏐⏐⏐⏐
because q2 is the center of mass for f2

≤
∫
d(f1(x), f2(x)) dν(x),

because the exponential map into a space of nonpositive curvature is distance
nondecreasing by Corollary 4.8.1. �
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Corollary 4.8.6 Let f : A→ Y be measurable with center of mass q. Then,
for all x ∈ A,

d(f(x), q) ≤
∫
d(f(x), f(y)) dν(y) (4.8.21)

Proof. We consider the map f1(y) = f(y) and the constant map f2(y) = f(x),
for all y ∈ A; the former has center of mass q, the latter center of mass f(x).
We apply (4.8.20). �

The next result will be applied in § 8.9 below only:

Corollary 4.8.7 Let f1: (A1, ν1) → Y, f2: (A2, ν2) → Y be measurable maps
from probability measure spaces into Y .

Let q1, q2 be the corresponding centers of mass.
Let ϕ : (A1, ν1) → (A2, ν2) be measurable, with f2 = f1 ◦ ϕ.
Then

d(q1, q2) ≤
∫
d(f1(x), f2(ϕ(x))) dν1(x) (4.8.22)

+
∫
d(f2(x), q2)|dν2 − ϕ∗dν1|(x).

Proof. Let q′2 be the center of mass for f2 ◦ ϕ w.r.t. ν1.
By Lemma 4.8.8

d(q1, q′2) ≤
∫
d(f1(x), f2 ◦ ϕ(x)) dν1(x).

By Lemma 4.8.7, since q′2 is the center of mass for f2 w.r.t. ϕ∗ν1

d(q2, q′2) ≤
∫
d(f2(x), q2)|dν2 − ϕ∗dν1|(x).

�

We now turn to the smoothing or mollification of maps with values in
spaces of nonpositive curvature; this generalizes the standard construction
for functions (”Friedrichs mollification”).

We consider any C∞
0 function

ρ : R → R

with ρ(s) ≥ 0 for all s and ρ(s) = 0 for |s| ≥ 1, for example

ρ(s) :=
{

exp 1
s2−1 for |s| < 1

0 for |s| ≥ 1.
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Given a ball B(x, h) ⊂ M in some Riemannian manifold M , with 0 < h <
injectivity radius of M at x, we put

ρx,h(y) =
ρ
(

d(x,y)
h

)
∫

B(x,h)
ρ
(

d(x,z)
h

)
dz

(4.8.23)

Here, d(x, y) is the distance from x to y ∈ B(x, h) w.r.t. the Riemannian
metric of M .

To simplify the presentation, and in particular to eliminate an additional
dependence on x, here, we do not work with the Riemannian volume form on
B(x, h) but rather with the Euclidean one, dz, induced via the exponential
map expx : TxM →M . Because of the denominator in (4.8.23),

ρx,h(y) dy

defines a probability measure on B(x, h) (which we may extend by 0 to the
rest of M).

Definition 4.8.2 Given a map

f : M → N,

N a Riemannian manifold of nonpositive sectional curvature

its mollification with parameter h ( < injectivity radius of M) is defined by

fh(x) := center of mass of f w.r.t. the measure

ρx,h(x) dy on B(x, h)

Thus, fh(x) is the unique minimizer of

F (p) =
1
2

∫
B(x,h)

d2(f(z), p)ρx,h(z)dz

Here, we do not need to assume that N is simply connected because on the
simply connected ball, we can lift f to a map f : B(x, h) → Ñ into the
universal cover of N , apply the center of mass construction there and project
back to N .

Lemma 4.8.9 If f is locally integrable, then fh : M → N is continuous for
h > 0.

Proof. Let x1, x2 ∈ M ; we denote the above measures defined by ρh on the
balls B(x1, h), B(x2, h) by ν1 and ν2, resp. By Lemma 4.8.7

d(fh(x1), fh(x2)) ≤
∫
d(f(x), fh(x2))|dν1 − dν2|(x),
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and the difference measure dν1−dν2 goes to 0 if the distance between x1 and
x2 goes to 0. �

In fact, fh is even smooth for h > 0. To see this, recall that fh(x) as a
center of mass is characterized by (4.8.15), i.e.

grad F (fh(x)) = −
∫

B(x,h)

exp−1
fh(x)(f(z))ρx,h(z)dz = 0

Thus, in order to compute the derivative of fh w.r.t. x, by the implicit func-
tion theorem, we must show that the derivative of grad F (p) w.r.t. p is non
zero.

This, however, follows from (4.8.17).

Theorem 4.8.5 Let f : M → N be locally integrable. Then, for 0 < h <
injectivity radius of M , the mollification fh of f is smooth.

Proof. We have just seen how the first derivative of fh w.r.t. x ∈ M can be
computed from the implicit function theorem. Because of the smoothness of
ρx,h(z) w.r.t. x, higher derivatives then also exist. �

Lemma 4.8.10 Let f be continuous at x ∈M . Then

lim
h→0

fh(x) = f(x) (4.8.24)

If f is uniformly continuous, then it is the uniform limit of the maps fh for
h→ 0.

Proof. Since f is continuous at x, given ε > 0, we may find δ > 0 such that

f(B(x, δ)) ⊂ B(f(x), ε).

Because the ball B(f(x), ε) is convex, therefore also

fh(x) ⊂ B(f(x), ε)

for 0 < h ≤ δ. This implies (4.8.24). The remaining statement also follows
from these considerations.

We close this § with some constructions and results about the asymptotic
geometry of complete simply connected Riemannian manifolds of nonpositive
sectional curvature. Let Y be such a manifold for the rest of this §.

Definition 4.8.1 Two geodesic rays c1(t), c2(t)(t ≥ 0) in Y (i.e. c1, c2 :
[0,∞) → Y ) parametrized by arc length are called asymptotic if there exists
k ∈ R with

d(c1(t), c2(t)) ≤ k
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for all t ≥ 0. This defines an equivalence relation on the space of geodesic
rays parametrized by arc length, and the set of equivalence classes is denoted
by Y (∞). (Y (∞) is sometimes called the sphere at infinity of Y.)

Example. In Euclidean space, two geodesic rays, i.e. straight half lines, are
equivalent iff they are parallel.

Lemma 4.8.11 For each pair p ∈ Y, x ∈ Y (∞), there exists a unique geodesic
ray c = cpx parametrized by arc length in the equivalence class defined by x
with c(0) = p.

Proof. Existence: Let c0 be a geodesic ray representing x. For n ∈ N, let cn(t)
be the geodesic arc from p = cn(0) to c0(n), parametrized by arc length as
usual, tn := d(p, c0(n)), i.e. cn(tn) = c0(n), and vn := d

dtcn(t)|t=0 ∈ TpY the
tangent vector to cn at p. Since cn is parametrized by arc length, vn has length
1, hence converges towards some v ∈ TpY after selecting a subsequence. We
put

c(t) := expp tv, t ≥ 0.

Because of the convexity of d2(c0(t), cn(t)) (Theorem 4.8.2), for 0 ≤ t ≤ tn

d2(cn(t), c0(t)) ≤ max(d2(cn(0), c0(0)), d2(cn(tn), c0(tn))). (4.8.25)

We have

tn = d(cn(0), cn(tn)), since cn ist parametrized by arc length
≤ d(cn(0), c0(0)) + d(c0(0), c0(n)) since c0(n) = cn(tn)
= d(p, c0(0)) + n

and likewise
n = d(c0(0), c0(n))
≤ d(c0(0), cn(0)) + d(cn(0), c0(n))
= d(c0(0), p) + d(cn(0), cn(tn))
= d(p, c0(0)) + tn,

hence altogether

d(c0(tn), c0(n)) = |n− tn| ≤ d(p, c0(0)).

This implies in conjunction with (4.8.25) for 0 ≤ t ≤ tn

d(cn(t), c0(t)) ≤ max(d(p, c0(0)), d(c0(n), c0(tn)))
= d(p, c0(0)).

For n→∞, we therefore also get

d(c(t), c0(t)) ≤ d(p, c0(0)). (4.8.26)
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(4.8.26) means that c0 and c are asymptotic. This proves the existence of
cpx = c.

Uniqueness: Let c1, c2 be rays asymptotic to c0 with c1(0) = p = c2(0).
Then for all t ≥ 0

d2(c1(t), c2(t)) ≤ const.

Since d2(c1(t), c2(t)) ist convex in t by Theorem 4.8.2 and vanishes for t = 0,
it vanishes identically, hence c1(t) = c2(t), proving uniqueness. �

Lemma 4.8.11 implies that for each p, Y (∞) can be identified with the
unit sphere SpY := {v ∈ TpY : ‖v‖ = 1} in TpY. Namely, each unit tangent
vector uniquely determines an equivalence class of asymptotic geodesic rays.
It is also not difficult to realize that the topology on Y (∞) defined through
this identification is independent of the choice of p. We thus obtain a natural
topology on Ȳ = Y ∪ Y (∞), the so-called cone topology. Ȳ thus becomes a
compact space. We call v ∈ TpY,w ∈ TqY asymptotic if the geodesic rays
expp tv, expp tw(t ≥ 0) are asymptotic.

Since any isometry of Y maps geodesics onto geodesics and classes of
asymptotic geodesic rays onto classes of asymptotic geodesic rays, each iso-
metry of Y induces an operation on Y (∞), hence on Ȳ , too.

Perspectives. Corollary 4.8.1 goes back to the work of von Mangoldt, Hadamard,
and E. Cartan.

The center of mass has been likewise instroduced by E. Cartan. The construc-
tions and applications presented here are due to Karcher[154]. In fact, Karcher’s
constructions are more general than presented here and also apply to the case where
the manifold can have positive curvature. Then, however, one has to work with local
constructions, and one needs to assume that the measures are supported in some
convex ball, more precisely in a ball of a radius that is smaller than min (injectivity
radius, π/2

√
κ), κ ≥ 0 being an upper bound for the sectional curvature. Inspite of

this restriction, of course the mollifications are quite useful, for example for creating
or investigating Lipschitz maps.

More generally, using triangle comparison properties as in this §, one can also
introduce and investigate metric spaces with any upper and/or lower curvature
bounds. For a general treatment, we refer to [15].

The theory of spaces with lower curvature bounds in the sense of Alexandrov
has been systematically developed by Yu. Burago, M. Gromov, G. Perel’man[33].

Spaces with both upper and lower curvature bounds naturally arise as limits of
Riemannian manifolds with those same curvature bounds, as will be discussed in
the following Survey.

Theorem 4.8.3 is a special case of a result of Y. G. Reshetnyak[205]. The proof
given here is taken from [137].

If X is a complete, simply connected Riemannian manifold of nonpositive cur-
vature, then by Theorem 4.8.2 the squared distance between any two geodesics is a
convex function of the arclength parameter. One may then abstract this property
and call a complete metric space (Y, d) that is a geodesic length space, i.e. for which
any two points can be joined by a length minimizing curve - such curves then again
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are called geodesics - a metric space of nonpositive curvature if that convexity prop-
erty holds. These spaces have been named after Busemann as he was the first to
systematically investigate this property. A stronger property - which is still satisfied
by all complete, simply connected Riemannian manifolds of nonpositive curvature
as shown in Lemma 4.8.3 - is the one introduced by Alexandrov that the distances
between any two points on a geodesic triangle are always less than or equal to the
ones in a Euclidean triangle with the same side lengths. In fact, in the Riemannian
case, both Busemann’s and Alexandrov’s property are equivalent to nonpositive
sectional curvature. In the context of metric spaces, however, Busemann’s property
is more general. A reference for these theories is [137]. For applications of these
concepts, see the Perspectives on § 8.10.

The compactification Ȳ = Y ∪ Y (∞) of a complete simply connected Rieman-
nian manifold of nonpositive curvature, sometimes called a Hadamard manifold,
through asymptotic equivalence classes of geodesic rays is due to Eberlein and
O’Neill[66].

Anticipating some of the Perspectives for Chapter 8, the following monographs
explore the geometry of nonpositive curvature: [12], [11], [64].

Exercises for Chapter 4

1) Let M1,M2 be submanifolds of the Riemannian manifold M. Let the
curve c : [a, b] → M satisfy c(a) ∈ M1, c(b) ∈ M2. A variation c :
[a, b]×(−ε, ε) →M is called variation of c(t) w.r.t. M1,M2 if c(a, s) ∈
M1, c(b, s) ∈M2 for all s ∈ (−ε, ε).
What are the conditions for c to be an extremal of L or E w.r.t. such
variations?
Compute the second variation of E for such an extremal and express
the boundary terms by the second fundamental forms of M1 and M2.

2) Let M be a submanifold of the Riemannian manifold N, c : [a, b] → N
geodesic with c(a) ∈M, ċ(a) ∈ (Tc(a)M)⊥. For τ ∈ (a, b], c(τ) is called
a focal point of M along c if there exists a nontrivial Jacobi field X
along c with X(a) ∈ Tc(a)M,X(τ) = 0.

Show:

a: If M has no focal point along c, then for each τ ∈ (a, b), c is
the unique shortest connection to c(τ) when compared with all
sufficiently close curves with initial point on M.

b: Beyond a focal point, a geodesic is no longer the shortest con-
nection to M.

3) Let Sn−1 := {(x1, . . . , xn, 0) ∈ Rn+1, Σxixi = 1} ⊂ Sn be the equator
sphere. Determine all focal points of Sn−1 in Sn, and also all focal
points of Sn in Rn+1.
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4) Let p, q be relatively prime integers. We represent S3 as

S3 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1}.
Zq operates on S3 via

(z1, z2) → (z1e
2πim

q , z2e
2πimp

q ) (0 ≤ m ≤ q − 1).

Show that this operation is isometric and free. The quotient L(q, p) :=
S3/Zq is a so-called lens space. Compute its curvature and diameter.

5) Show that any compact odd-dimensional Riemannian manifold with
positive sectional curvature is orientable. (Hint: Use the argument of
the proof of Synge’s theorem 4.1.2)

6) Show that the real projective space RPn (cf. exercise 3 of Chapter
1) is orientable for odd n and nonorientable for even n. (Hint: Use
Synge’s theorem 4.1.2 and the preceding exercise)

7) Show that Synge’s theorem does not hold in odd dimensions. (Hint:
Use the preceding exercise or exercise 4 to give a counterexample)

8) Try to generalize the theory of Jacobi fields to other variational prob-
lems.

9) Here is a more difficult exercise:
Compute the second variation of volume for a minimal submanifold
of a Riemannian manifold.

10) Give examples to show that a curve c(t) = expp tv as in Corollary 4.2.4
need not be the shortest connection of its endpoints. (Hint: Consider
for example a flat torus.)

11) Let c : [0,∞) → Sn be a geodesic parametrized by arc length. For
t > 0, compute the dimension of the space J t

c of Jacobi fields X
along c with X(0) = 0 = X(t). Use the Morse index theorem 4.3.2 to
compute the indices and nullities of geodesics on Sn.

12) Show that if under the assumptions of Theorem 4.5.1 we have equality
in (4.5.6) for some t with 0 < t ≤ τ, then the sectional curvature of the
plane spanned by ċ(s) and J(s) is equal to µ for all s with 0 ≤ s ≤ t.
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13) Let p ∈M,n = dimM, r(x) = d(x, p),

w(x, t) :=
1
t

n
2

exp(−r
2(x)
4t

).

In the Euclidean case, w(x, t) is fundamental solution of the heat
operator, i.e. for (x, t) 
= (p, 0)

(
∂

∂t
+∆)w(x, t) = 0.

Under the assumptions of Lemma 4.7.1, derive the estimate

|( ∂
∂t

+∆)w(x, t)| ≤ 2Λ2 r
2(x)
4t

w(x, t)

for (x, t) 
= (p, 0).



A Short Survey on Curvature and Topology

We have now covered half of the chapters of the present textbook and the
more elementary aspects of the subject. Before penetrating into more ad-
vanced topics, a short survey on some directions of global Riemannian geom-
etry may be a useful orientation guide. Because of the size and scope of the
present book, this survey needs to be selective.

A basic question, formulated in particular by H. Hopf, is to what extent
the existence of a Riemannian metric with particular curvature properties
restricts the topology of the underlying differentiable manifold.

The classical example is the
Gauss-Bonnet Theorem. Let M be a compact oriented, two-dimensional
Riemannian manifold with curvature K. Then its Euler characteristic is de-
termined by

χ(M) =
1
2π

∫
M

K dvol M.

We have also seen some higher dimensional examples already, namely
the Theorem 4.1.2 of Synge on manifolds with positive sectional curvature,
the Theorem 3.5.1 of Bochner and the Bonnet-Myers Theorem (Corollary
4.3.1) on manifolds of positive Ricci curvature. We have already seen a result
for nonpositive sectional curvature, namely the Hadamard-Cartan Theorem
(Corollary 4.8.1) that a simply-connected, complete manifold of nonpositive
sectional curvature is diffeomorphic to some Rn, and in Chapter 8, we shall
prove the Preissmann Theorem (Corollary 8.10.2) that any abelian subgroup
of the fundamental group of a compact manifold of negative sectional curva-
ture is infinite cyclic, i.e. isomorphic to Z. In order to put these results in a
better perspective, we want to discuss the known implications of curvature
properties for the topology more systematically.

We start with the implications of positive sectional curvature. Here, we
have the

Sphere Theorem. Let M be a compact, simply connected Riemannian man-
ifold whose sectional curvature K satisfies

0 <
1
4
κ < K ≤ κ
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for some fixed number κ. Then M is homeomorphic to the sphere Sn (n =
dimM).

This was shown by Berger[16] and Klingenberg[157].
The pinching number 1

4 is optimal in even dimensions ≥ 4, because CPm

(see § 5.1) is simply connected, has sectional curvature between 1
4 and 1 for

its Fubini-Study metric and is not homeomorphic to S2m for m > 1. In odd
dimensions, the pinching number can be decreased below 1

4 , as shown by
Abresch and Meyer[2, 3], but the optimal value of the pinching constant is
unknown at present.

For n = 2 or 3, the conclusion is valid already if M has positive sectional
curvature. For n = 2, this follows from the Gauss-Bonnet Theorem. For
n = 3, Hamilton[109] showed that any simply connected compact manifold of
positive Ricci curvature is diffeomorphic to S3. Hamilton studied the so-called
Ricci flow, i.e. he considered the evolution problem for a time dependent
family of metrics gij on M with Ricci curvature Rij .

∂

∂t
gij(x, t) =

2
n
r(t)gij(x, t)− 2Rij(x, t),

with initial metric gij(x, 0) = g0
ij(x) where

r(t) =
∫
R(x, t) dvol(g(·, t))∫

dvol(g(·, t))
is the average of the scalar curvature of the metric gij(·, t). He showed that if
g0

ij is a metric with positive Ricci curvature on a compact 3-manifold, then a
solution of this evolution problem exists for all time, the Ricci curvature stays
positive for all t, and as t → ∞, gij(·, t) converges to a metric of constant
(positive) sectional curvature.

This method has since become important in Riemannian geometry, al-
though in general without suitable curvature assumptions on the initial met-
ric, singularities will develop in finite time. the analysis was carried further in
[110]. Recently, these singularities have been understood in complete detail
by Perel’man, with profound implications for the structure and classification
of 3-manifolds, see [196, 198, 197].

It is not known whether M as in the sphere theorem is diffeomorphic
instead of just homeomorphic to Sn. In other words, one has to exclude that
exotic spheres carry 1

4 -pinched metrics. This so far has only been achieved
for certain pinching numbers greater than 1

4 ; for a sample of results see e.g.
[121], [207], [123], [235].

It is not even known whether some exotic spheres can carry a metric of
positive sectional curvature. Also, the problem of H. Hopf whether S2 × S2

can carry a metric of positive sectional curvature is unsolved. The essential
question is to understand compact, simply connected Riemannian manifolds
of positive sectional curvature. Only very few examples of such manifolds are
known. In fact, besides the general series of compact rank one symmetric
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spaces (spheres, complex projective spaces (see § 5.1 below) in all even di-
mensions, quaternionic projective spaces in all dimensions that are multiples
of 4, and the Cayley projective plane in dimension 16), one only knows the
family of Allof-Wallach spaces in dimension 7 and the isolated examples of
Eschenburg and Bazaikin.

In recent years, however, the first indications of a general structure theory
seem to emerge, in the work of Petrunin, Tuschmann, Rong, Fang [202],
[203], [72]. For a comprehensive treatment, see [249]. Essential points of this
approach are that one studies the more general class of Alexandrov spaces of
positive curvature which allows to study sequences of positively curved spaces
and use compactness arguments by the result of Nikolaev quoted below, and
in particular to utilize collapsing techniques and that the rôle of the second
homotopy group becomes more prominent in determining the topological
possibilities of positively curved spaces. (So, one might speculate that the
theory of minimal 2-spheres developed in § 8.3 might furnish useful tools for
understanding the topology of positively curved spaces.)

We also mention that Wilking[255] showed that in general, a metric of
positive curvature outside a finite number of points on a compact manifold
cannot be deformed into a metric of positive curvature everywhere.

For positive Ricci curvature, we have already exhibited some results. An
important generalization of these results is Gromov’s

First Betti Number Theorem. Let M be a compact Riemannian manifold
of dimension n, with diameter ≤ D and Ricci curvature ≥ λ (i.e. (Rij −
λgij)i,j is a positive semidefinite tensor). Then the first Betti number satisfies

b1(M) ≤ f(n, λ,D)

with an explicit function f(n, λ,D)

(f(n, 0, D) = n, f(n, λ,D) = 0 for λ > 0).

See [98, 101].

Finally, it has been determined which simply connected manifolds admit
metrics of positive scalar curvature and which ones don’t, in the work of
Schoen and Yau[218], Gromov and Lawson[102] and S. Stolz[232].

In the non simply-connected case, also restrictions for positive scalar cur-
vature are known. For example, for dimension ≤ 7, a torus cannot admit a
metric of positive scalar curvature, see Schoen and Yau[217]. Such a result
for any n and other restrictions on metrics of positive scalar curvature were
given by Gromov and Lawson[103].

The preceding results all apply to compact manifolds. For noncompact
manifolds, let us only quote the
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Splitting Theorem. The universal covering M̃ of a compact Riemannian
manifold with nonnegative Ricci curvature splits isometrically as a product
M̃ = N × Rk, 0 ≤ k ≤ dimM , where N is a compact manifold.

See Cheeger and Gromoll[43].

For a more detailed survey of manifolds of nonnegative curvature, we refer
to the survey article [95].

For manifolds of negative or nonpositive sectional curvature, much more
is known than for those of positive curvature. Some discussion can be found
in the Perspectives on 8.10. We also refer to the survey article [65].

Lohkamp[170, 171] proved that any differentiable manifold of dimension
≥ 3 admits a complete metric of negative Ricci curvature. As a consequence,
negative Ricci curvature does not imply any topological restrictions.

Riemannian manifolds of vanishing sectional curvature are called flat. The
compact ones are classified by the

Bieberbach Theorem. Let M be a compact flat Riemannian manifold of
dimension n. Then its fundamental group contains a free abelian normal sub-
group of rank n and finite index. Thus, M is a finite quotient of a flat torus.

In analogy to the sphere theorem, one may ask about the structure of
Riemannian manifolds that are almost flat in the sense that their curvature
is close to zero. Since the curvature of a Riemannian metric may always be
made arbitrarily small by rescaling the metric, the appropriate curvature
condition has to be more carefully formulated in a scaling invariant manner.
Let us look at the typical example:

We consider the nilpotent Lie group H of upper triangular matrices with
1’s on the diagonal. Its Lie algebra is

h =
{
A =

⎛⎜⎝ 0 aij

...
0 0

⎞⎟⎠ : aij ∈ R, 1 ≤ i < j ≤ n
}
.

On h, we may introduce a family of scalar products via

‖A‖2q := Σ
i<j

a2
ijq

2(j−i)

for q > 0. These scalar products induce left invariant Riemannian metrics on
H whose curvature can be estimated as

‖Rq(A,B)C‖q ≤ 24(n− 2)2‖A‖2q‖B‖2q‖C‖2q.
This bound is independent of q. By a q-independent rescaling, we may there-
fore assume that the sectional curvature satisfies |K| ≤ 1. We let H(Z) be the
subgroup of H with integer entries, and one may thus construct left invariant
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metrics on H which induce on the quotient H/H(Z) metrics with |K| ≤ 1
and diam < ε, for every ε > 0, simply by choosing q sufficiently small.

Conversely,

Theorem. For every n, there exists ε(n) > 0 with the property that any
compact n-dimensional Riemannian manifold M with

|K| (diam)2 < ε(n)

is diffeomorphic to a finite quotient of a nilmanifold. (A nilmanifold is by
definition a compact homogeneous space of a nilpotent Lie group.)

This is due to Gromov, see [34] for an exposition, and for the refinement
that M as above is actually an infranilmanifold by Ruh[206].

In order to place this result in a broader context, we introduce the notions
of convergence and collapse of manifolds. For compact subsets A1, A2 of a
metric space Z, we define

dZ
H(A1, A2) := inf{r : A1 ⊂ ∪

x∈A2

◦
B(x, r), A2 ⊂ ∪

x∈A1

◦
B(x, r)}

where
◦
B(x, r) := {y ∈ Z : d(x, y) < r}.

For compact metric spaces X1, X2, their Hausdorff distance is

dH(X1, X2) := inf
Z

{
dZ

H(i(X1), j(X2)),

where i : X1 → Z, j : X2 → Z are

isometries into a metric space Z
}
.

This distance then defines the notion of Hausdorff convergence of compact
metric spaces. Let M0 be a compact differentiable manifold of dimension n.
We say that M0 admits a collapse to a compact metric space X of lower
(Hausdorff) dimension than M0 if there exists a sequence (gj)j∈N of Rie-
mannian metrics with uniformly bounded curvature on M0 such that the
Riemannian manifolds (M0, gj) as metric spaces converge to X. This phe-
nomenon has been introduced and studied by Cheeger, Gromov, and Fukaya
[44, 45], [82].

It is easy to see that any torus can collapse to a point; for this purpose,
one just rescales a given flat metric by a factor ε and lets ε→ 0. The diameter
then shrinks to 0, while the curvature always remains 0. Berger showed that
S3 admits a collapse onto S2. The construction is based on the Hopf fibration
π : S3 → S2 = CP1 (see § 5.1), and one lets the fibers shrink to zero in length.

In this terminology the above theorem (as refined by Ruh) says that
those manifolds that can collapse to a point are precisely the infranilmani-
folds. More recently, it was shown by Tuschmann[248] that any manifold that
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admits a collapse onto some flat orbifold is homeomorphic to an infrasolv-
manifold and conversely, that any infrasolvmanifold also admits a sequence
of Riemannian metrics for which it collapses to a compact flat orbifold. Here,
an infrasolvmanifold is a certain type of quotient of a solvable Lie group.

We next mention the following result of Cheeger[41], with the improve-
ments by Peters[199].

Finiteness Theorem. For any n ∈ N, Λ < ∞, D < ∞, v > 0, the class
of compact differentiable manifolds of dimension n admitting a Riemannian
metric with

|K| ≤ Λ, diam ≤ D, Volume ≥ v

consists of at most finitely many diffeomorphism types.

The lower positive uniform bound on volume prevents collapsing and is
necessary for this result to hold.

Diffeomorphism finiteness can however actually also be obtained if no
volume bounds are present and collapsing may take place.

This is demonstrated by the following recent finiteness theorem by Petrunin
and Tuschmann[203]. Instead of volume bounds this result only uses a merely
topological condition:

π2-Finiteness Theorem. For any n ∈ N, Λ <∞, and D <∞, the class of
compact simply connected differentiable manifolds of dimension n with finite
second homotopy group admitting a Riemannian metric with

|K| ≥ Λ, diam ≤ D

consists of at most finitely many diffeomorphism types.

Cheeger’s finiteness theorem was refined in the so-called Gromov conver-
gence theorem, which we are going to present in the form proved by Pe-
ters[200] and Greene and Wu[93].

Convergence Theorem. Let (Mj , gj)j∈N be a sequence of Riemannian man-
ifolds of dimension n satisfying the assumptions of the finiteness theorem
with Λ,D, v independent of j. Then a subsequence converges in the Haus-
dorff distance and (after applying suitable diffeomorphisms) also in the (much
stronger) C1,α topology (for any 0 < α < 1) to a differentiable manifold with
a C1,α-metric.

Such a family of manifolds is known to have a uniform lower bound on
their injectivity radius. The crucial ingredient in the proof then are the a-
priori estimates of Jost-Karcher for harmonic coordinates described in the
Perspectives on 8.10. Namely, these estimates imply convergence of subse-
quences of local coordinates on balls of fixed size, and the limits of these
coordinates then are coordinates for the limiting manifold.
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Nikolaev[193] showed that the Hausdorff limits of sequences of compact
n-dimensional Riemannian manifolds of uniformly bounded curvature and
diameter and with volume bounded away from 0 uniformly are precisely the
smooth compact n-manifolds with metrics of bounded curvature in the sense
of Alexandrov.

Let us conclude this short survey by listing some other textbooks on
Riemannian geometry that treat various selected topics of global differential
geometry and which complement the present book, Chavel[40], Cheeger and
Ebin[42], do Carmo [60], Gallot, Hulin and Lafontaine[83], Gromoll, Klingen-
berg and Meyer[96], Klingenberg[159], Petersen[201], Sakai[211].

Finally, we wish to mention the stimulating survey Berger[17].



5. Symmetric Spaces and Kähler Manifolds

5.1 Complex Projective Space

We consider the complex vector space Cn+1. A complex linear subspace of
Cn+1 of complex dimension one is called a line. We define the complex pro-
jective space CPn as the space of all lines in Cn+1. Thus, CPn is the quotient
of Cn+1\{0} by the equivalence relation

Z ∼W : ⇐⇒ ∃λ ∈ C\{0} : W = λZ.

Namely, two points of Cn+1\{0} are equivalent iff they are complex linearly
dependent, i.e. lie on the same line. The equivalence class of Z is denoted by
[Z] .

We also write
Z = (Z0, . . . , Zn) ∈ Cn+1

and define
Ui := {[Z] : Zi 
= 0} ⊂ CPn,

i.e. the space of all lines not contained in the complex hyperplane {Zi = 0}.
We then obtain a bijection

ϕi : Ui → Cn

via

ϕi([Z0, . . . , Zn]) :=
(
Z0

Zi
, . . . ,

Zi−1

Zi
,
Zi+1

Zi
, . . . ,

Zn

Zi

)
.

CPn thus becomes a differentiable manifold, because the transition maps

ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj) = {z = (z1, . . . , zn) ∈ Cn : zj 
= 0} → ϕj(Ui ∩ Uj)

ϕj ◦ ϕ−1
i (z1, . . . , zn) = ϕj([z1, . . . , zi, 1, zi+1, . . . , zn])

=
(
z1

zj
, . . . ,

zi

zj
,
zi+1

zj
, . . . ,

zj−1

zj
,
zj+1

zj
, . . . ,

zn

zj

)
(w.l.o.g. i < j)

are diffeomorphisms. They are even holomorphic; namely, with zk = xk + iyk

(i =
√−1) and
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∂

∂zk
:=

1
2

(
∂

∂xk
− i

∂

∂yk

)
∂

∂zk̄
:=

1
2

(
∂

∂xk
+ i

∂

∂yk

)
we have

∂

∂zk̄
ϕj ◦ ϕ−1

i (z1, . . . , zn) = 0 for k = 1, . . . , n.

Thus, CPn is a complex manifold in the sense of Definition 1.1.5.
We consider the (n+ 1)-tuple

(Z0, . . . , Zn)
(satisfying the restriction that not all Zj vanish identically)

as homogeneous coordinates [Z] = [Z0, . . . , Zn]. These are not coordinates
in the usual sense, because a point in a manifold of dimension n here is
described by (n+ 1) complex numbers. The coordinates are defined only up
to multiplication with an arbitrary nonvanishing complex number λ

[Z0, . . . , Zn] = [λZ0, . . . , λZn];

this fact is expressed by the adjective “homogeneous”. The coordinates
(z1, . . . , zn) defined by the charts ϕi are called Euclidean coordinates. The
vector space structure of Cn+1 induces an analogous structure on CPn by
homogenization: Each linear inclusion Cm+1 ⊂ Cn+1 induces an inclusion
CPm ⊂ CPn. The image of such an inclusion is called a linear subspace. The
image of a hyperplane in Cn+1 is again called a hyperplane, and the image of
a twodimensional space C2 is called a line.

Instead of considering CPn as a quotient of Cn+1\{0}, we may also view
it as a compactification of Cn. One says that the hyperplane H at infinity is
added to Cn; this means the following: The inclusion

Cn → CPn

is given by
(z1, . . . , zn) → [1, z1, . . . , zn].

Then
CPn\Cn = {[Z] = [0, Z1, . . . , Zn]} =: H,

and H is a hyperplane CPn−1.
It follows that

CPn = Cn ∪ CPn−1 = Cn ∪ Cn−1 ∪ . . . ∪ C0, (5.1.1)
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(disjoint union). Topologically, CPn thus is the union of (n+ 1) cells of real
dimension 0, 2, . . . , 2n. With the help of the Mayer-Vietoris sequence of coho-
mology theory4, we may easily compute the cohomology of CPn from (5.1.1).
In order to represent CPn as the union of two open sets as required for the
application of this sequence, we put

U := Cn, V := {z ∈ Cn : ‖z‖ = zjzj̄ > 1} ∪ CPn−1 (as in (5.1.1)).

Then V has CPn−1 as a deformation retract (consider

rt : V → V, rt(z) = tz for z ∈ Cn, rt(w) = w for w ∈ CPn−1

and let t run from 1 to ∞), and U ∩ V is homotopically equivalent to the
unit sphere S2n−1 of Cn.

We now observe first that CP1 is diffeomorphic to S2. It actually follows
already from (5.1.1) that the two spaces are homeomorphic. In order to see
that they are diffeomorphic, we recall that S2 may be described via stereo-
graphic projection from the north and south pole by two charts with image
C and transition map

z → 1
z

(cf. 1.1). This, however, is nothing but the transition map

[1, z] → [
1
z
, 1]

of CP1.
In particular, H0(CP1) = H2(CP1) = R,H1(CP1) = 0. For the general

case, the relevant portion of the Mayer-Vietoris sequence is

Hq−1(S2n−1) → Hq(CPn) → Hq(Cn)⊕Hq(CPn−1) → Hq(S2n−1). (5.1.2)

We now want to show by induction w.r.t. n that

Hq(CPn) =
{

R for q = 0, 2, . . . , 2n
0 otherwise

This is obvious for q = 0. For 2 ≤ q ≤ 2n − 1 we have Hq−1(S2n−1) =
0,Hq(Cn) = 0, and for q = 2, . . . , 2n − 2 we obtain from (5.1.2) that
Hq(CPn) = R since by inductive assumption Hq(CPn−1) = R, while for
q = 1, 3, . . . , 2n − 1, again by inductive assumption, Hq(CPn−1) = 0, hence
also Hq(CPn) = 0. The case q = 1 is similar. H2n(CPn) = R again follows
from (5.1.2) or even more easily from Corollary 2.2.2.

Let us also show that CPn can be considered as a quotient of the unit
sphere S2n+1 in Cn+1. Namely, each line in Cn+1 intersects S2n+1 in a circle

4 This sequence has been derived in the previous editions of this textbook, but for
the present edition, we are not including an introduction to cohomology theory
anymore as that can be readily found in standard textbooks on algebraic topology.
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S1, and we obtain the point of CPn defined by this line by identifying all
points on that circle.

The projection
π : S2n+1 → CPn

is called the Hopf map. In particular, since CP1 = S2, we obtain a map

π : S3 → S2

with fiber S1.
The unitary group U(n + 1) operates on Cn+1 and transforms complex

subspaces into complex subspaces, in particular lines into lines. Therefore,
U(n+ 1) also operates on CPn.

We now want to introduce a metric on CPn. For this purpose, let

π : Cn+1\{0} → CPn

be the standard projection, U ⊂ CPn, Z : U → Cn+1\{0} a lift of π, i.e. a
holomorphic map with π ◦ Z = id. We put

ω :=
i

2
∂∂̄ log ‖Z‖2, (5.1.3)

putting for abbreviation

∂ :=
∂

∂Zj
dZj , ∂̄ :=

∂

∂Z k̄
dZ k̄.

If Z ′ : U → Cn+1\{0} is another lift, we have

Z ′ = ϕZ,

where ϕ is a nowhere vanishing holomorphic function.
Hence

i

2
∂∂̄ log ‖Z ′‖2 =

i

2
∂∂̄(log ‖Z‖2 + logϕ+ log ϕ̄)

= ω +
i

2
(∂∂̄ logϕ− ∂̄∂ log ϕ̄) (cf. (5.1.10) below)

= ω,

since ∂̄ logϕ = 0 = ∂ log ϕ̄, because ϕ is holomorphic and nowhere vanishing.
Therefore, ω does not depend on the choice of chart and thus defines a 2-form
on CPn.

We want to represent ω in local coordinates; for this purpose, let as above

U0 = {[Z0, . . . , Zn] : Z0 
= 0},

since zi = Zi

Z0 on U0, Z = (1, z1, . . . , zn) is a lift of π over U0. Then
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ω =
i

2
∂∂̄ log(1 + zjzj̄)

=
i

2
∂

(
zjdzj̄

1 + zkzk̄

)
,

hence

ω =
i

2

{
dzj ∧ dzj̄

1 + zkzk̄
− zj̄zkdzj ∧ dzk̄

(1 + z�z�̄)2

}
. (5.1.4)

At [1, 0, . . . , 0] again

ω =
i

2
dzj ∧ dzj̄ = dxj ∧ dyj . (5.1.5)

Thus, ω is positive definite (in a sense to be made precise in Definition 5.1.1)
at the point [1, 0, . . . , 0]. Since ω is invariant under the operation of U(n+ 1)
on CPn, it is therefore positive definite everywhere.

We want to generalize the object ω just introduced in the following

Definition 5.1.1 Let M be a complex manifold with local coordinates z =
(z1, . . . , zn). A Hermitian metric on M is given by an expression of the form

hjk̄(z)dzj ⊗ dzk̄

where hjk̄(z) depends smoothly (i.e. C∞) on z and is positive definite and
Hermitian for every z.

The expression
i

2
hjk̄(z)dzj ∧ dzk̄

is called the Kähler form of the Hermitian metric.

That hjk̄ is Hermitian means

hkj̄ = hjk̄. (5.1.6)

We also put
hk̄j = hjk̄, hjk = 0 = hj̄k̄. (5.1.7)

Let now
v = vj ∂

∂zj
+ vj̄ ∂

∂zj̄
, w = wj ∂

∂zj
+ wj̄ ∂

∂zj̄

be tangent vectors (with complex coefficients) in z ∈M.
We put

〈v, w〉 := hjk̄(z)vjwk̄ + hkj̄(z)v
j̄wk. (5.1.8)

If v and w are tangent vectors with real coefficients, i.e.

v = vj ∂

∂xj
+ vj+n ∂

∂yj
, w = wj ∂

∂xj
+ wj+n ∂

∂yj
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with vα, wα ∈ R, α = 1, . . . , 2n, then because of

∂

∂xj
=

∂

∂zj
+

∂

∂zj̄
,

∂

∂yj
= i

(
∂

∂zj
− ∂

∂zj̄

)
we have

〈v, w〉 = hjk̄(vj + ivj+n)(wk − iwk+n)

+ hjk̄(vj − ivj+n)(wk + iwk+n)

= 2Rehjk̄(vjwk + vj+nwk+n)

+ 2 Imhjk̄(vjwk+n − wkvj+n).

Consequently, each Hermitian metric induces a Riemannian one. This justifies
the name “Hermitian metric”.

Definition 5.1.2 A Hermitian metric hjk̄dz
j⊗dzk̄ is called a Kähler metric,

if for every z there exists a neighborhood U of z and a function F : U → R

with i
2hjk̄dz

j ∧ dzk̄ = ∂∂̄F . ∂∂̄F then is called the Kähler form.

The 2-form ω from (5.1.3) defines a Kähler metric on CPn, called the
Fubini-Study metric.

This metric has many special properties. In particular, the operation of
U(n+1) on Cn+1 induces an isometric operation of U(n+1) on CPn equipped
with this metric. This follows from (5.1.5) and the fact that ‖ · ‖ is invariant
under the operation of SO(2n + 2), hence in particular invariant under the
one of U(n+ 1).

For a line L in Cn+1 we may also consider the reflection at L, i.e.

s|L = id,

s|L⊥ = − id

s then induces an isometry σ of CPn (equipped with the Fubini-Study metric)
with fixed point π(L) and

dσ = − id : Tπ(L)CPn → Tπ(L)CPn.

In particular
σ2 = id.

Definition 5.1.3 A Riemannian manifold is called symmetric if for every
p ∈M there exists an isometry σp : M →M with

σp(p) = p,

Dσp(p) = − id (as a self map of TpM)

Such an isometry is also called an involution.



5.2 Kähler Manifolds 243

Thus, CPn, equipped with the Fubini-Study metric, is a symmetric space.

Thus, complex projective space carries two different structures: it is both
a Kähler manifold and a symmetric space. The rest of this chapter is devoted
to an investigation of those structures.

5.2 Kähler Manifolds

In the preceding section, we have introduced complex projective space as
an example of a Kähler manifold. There exist simpler examples. Namely, Cd

with its standard Euclidean metric is a Kähler manifold with Kähler form

ω =
i

2
dzj ∧ dzj̄ .

Also, any complex 1-dimensional manifold Σ, that is, any Riemann surface
(see 8.2) is automatically a Kähler manifold since dω is a 3-form and therefore
vanishes on the real 2-dimensional manifold Σ.

Moreover, any complex submanifold N of a Kähler manifold M is auto-
matically a Kähler manifold itself; we simply need to restrict the local Kähler
potential F of M to N . Therefore, in particular, all complex projective man-
ifolds, that is, those that admit a holomorphic embedding into some complex
projective space, are Kähler manifolds. This makes Kähler geometry a useful
tool in algebraic geometry.

In this section, we want to give a systematic introduction to Kähler ge-
ometry. We start by recalling the rules from Lemma 1.5.4 for the calculus of
the operators ∂ and ∂̄:

d = ∂ + ∂̄, (5.2.1)
∂∂ = 0, ∂̄∂̄ = 0, (5.2.2)
∂∂̄ = −∂̄∂ . (5.2.3)

We can now state various equivalent versions of the Kähler condition

ω :=
i

2
hjk̄dz

j ∧ dzk̄ = ∂∂̄F, (5.2.4)

that is, that for every z, there exist some neighborhood U and some function
F defined on U with this property.

Theorem 5.2.1 The following conditions are equivalent to a Hermitian man-
ifold M being Kähler.

(i)
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dω = 0, (5.2.5)

i.e. the Kähler form ω is closed.

(ii) In local (holomorphic) coordinates

∂hij̄

∂zk
=
∂hkj̄

∂zi
for all i, j, k (5.2.6)

or equivalently,
∂hij̄

∂z�̄
=
∂hi�̄

∂zj̄
for all i, j, �. (5.2.7)

(iii) At each z0 ∈M, holomorphic normal coordinates can be introduced,
i.e.

hij̄(z0) = δij ,
∂hij̄

∂zk
(z0) = 0 =

∂hij̄

∂z�̄
(z0) for all i, j, k, �. (5.2.8)

In other words, we can find holomorphic coordinates near any z0,
which we then take the liberty to identify with 0, so that for z near 0

hij̄(z) = δij +O(|z|2) (5.2.9).

The last condition expresses the essential content of the Kähler condition,
namely the compatibility of the Riemannian and the complex structure. Con-
dition (i) has the advantage of expressing the Kähler condition in a global,
coordinate invariant manner. This will make it particularly useful.

Proof. We first show that the Kähler condition implies (i).

d(∂∂̄F ) = (∂ + ∂̄)(∂∂̄F ) = ∂∂∂̄F − ∂∂̄∂̄F = 0 by (5.2.2), (5.2.3).

This yields (i). (ii) is the local coordinate version of (i). In turn, (i) implies
the Kähler condition by the Frobenius theorem. Namely, since ω is closed,
dω = 0, on each sufficiently small open set U , we can find a 1-form η with
dη = ω. ω is a (1,1)-form, and so, when we decompose the 1-form η into a
(1,0)- and a (0,1)-form, η = η1,0 + η0,1, we have

ω = dη = (∂ + ∂̄)η = ∂η0,1 + ∂̄η1,0

with
∂̄η0,1 = 0 = ∂η1,0.

From the last condition, on our sufficiently small U , we can then find s func-
tions α and β with

η0,1 = ∂̄α, η1,0 = −∂β,
and so, keeping (5.2.3) in mind,
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ω = ∂∂̄(α+ β).

Since ω is real (ω̄ = ω), we may then also assume that the function F := α+β
is real, and we have deduced the Kähler condition from (i). It thus only
remains to show that (iii) is equivalent to the other conditions. It is clear
that (5.2.9) implies dω(z0) = 0, that is, (i). For the converse, we first achieve
by a linear change of coordinates that hij̄(z0) = δij . Thus,

ω =
i

2
hjk̄dz

j ∧ dzk̄ =
i

2
(δjk + ajklz

l + ajkl̄z
l̄)dzj ∧ dzk̄.

Here, (5.1.6) implies that
akjl̄ = ājkl (5.2.10)

and (i) yields
ajkl = alkj . (5.2.11)

We shall now make the linear terms disappear by the following change of
coordinates

zj = ζj − 1
2
aljkζ

kζl. (5.2.12)

This yields

ω =
i

2
(dζj − aljkζ

kdζl) ∧ (dζ j̄ − ānjmζ
m̄dζ n̄)

+
i

2
(ajklζ

l + ajkl̄ζ
l̄)dζj ∧ dζ k̄ +O(|z|2)

=
i

2
δjkdζ

j ∧ dζ k̄ +O(|z|2),

using (5.2.10), (5.2.11). This is (5.2.9). �

In particular, the Kähler form ω, being closed, represents a (complex)
cohomology class, i.e. an element of H2(M)⊗ C.

Lemma 5.2.1 The Kähler form µ of a Kähler metric on a complex manifold
M with dimC M = n satisfies

µn = n! ∗ (1). (5.2.13)

Proof. (5.2.13) is a pointwise identity. Let p ∈ M. Since a Hermitian form
can be diagonalized by a unitary transformation, we may assume that local
coordinates are chosen such that at p

µ =
i

2
dzj ∧ dzj̄ = dxj ∧ dyj .

Therefore,
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µn = n!dx1 ∧ dy1 ∧ dx2 ∧ dy2 ∧ . . . ∧ dxn ∧ dyn

= n! ∗ (1),

since dx1, dy1, dx2, dy2, . . . , dxn, dyn constitute a positive orthonormal basis
of T ∗

pM. �

Corollary 5.2.1 The Kähler form of a Kähler metric on a compact manifold
represents a nontrivial cohomology class, and so does every µj , j = 1, . . . , n.
Therefore, the cohomology groups H2(M),H4(M), . . . , H2n(M) of a compact
Kähler manifold are nontrivial.

Proof. By Lemma 5.2.1∫
M

µn = n!
∫
M

∗(1) = n! vol(M) > 0.

If we now had µj = dψ for some j ∈ {1, . . . , n}, then we would also have∫
M

µn =
∫
M

µj ∧ µn−j =
∫
M

dψ ∧ µn−j =
∫
M

d(ψ ∧ µn−j),

since µ is closed by Theorem 5.2.1
= 0 by Stokes theorem.

This is a contradiction. �

Corollary 5.2.1 expresses an instance of the important fact that the exis-
tence of a Kähler metric yields nontrivial topological restrictions for a mani-
fold. We shall soon derive some deeper such results. Before doing that, how-
ever, we state some useful local formulae in Kähler geometry.

For the inverse of the Hermitian metric (hij̄), we use the convention

hij̄hkj̄ = δik (5.2.14)

(note the switch of indices). With h := det(hij̄), the Laplace-Beltrami oper-
ator (2.1.12) becomes

∆ = − 1
h

∂

∂zi

(
hhij̄ ∂

∂zj̄

)
= −hij̄ ∂2

∂zi∂zj̄
. (5.2.15)

This is most easily seen by using the coordinates given in (iii) of Theorem
5.2.1 and then observing that both expressions transform in the right manner
under coordinate transformations.

Similarly, we have for the Christoffel symbols of a Kähler manifold

Γ k
ij = hk�̄hi�̄,j , Γ k̄

īj̄ = hmk̄hmī,j̄ , (5.2.16)
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because of (5.1.6), (5.2.6), (5.2.7). All other Christoffel symbols, that is, all
those that contain both bared and unbared indices, vanish. Using this, the
formula (3.1.31), (3.3.6) for the Riemannian curvature tensor also simplifies
to become

Rij̄k�̄ =
∂2

∂zk∂z�̄
hij̄ − hmn̄

(
∂

∂zk
hin̄

)(
∂

∂z�̄
hmj̄

)
. (5.2.17)

Also,
Rijk̄�̄ = Rīj̄k� = 0. (5.2.18)

With the first Bianchi identity (3.3.8), and

Ri�̄j̄k = −Ri�̄kj̄ (5.2.19)

we then obtain
Rij̄k�̄ = Ri�̄kj̄ (5.2.20)

and analogously
Rkj̄i�̄ = Rij̄k�̄. (5.2.21)

The Ricci tensor (3.3.18) of a Kähler metric is given by

Rk�̄ = hij̄Rij̄k�̄. (5.2.22)

From (5.2.17), we then have a simple formula for the so-called Ricci form

Rk�̄dz
k ∧ dz�̄ = −∂∂̄ log det(hij̄). (5.2.23)

Finally, the scalar curvature of a Kähler metric is

R = ∆ log det(hij̄). (5.2.24)

The Ricci form is closed by (5.2.1)–(5.2.3) and therefore defines a cohomology
class, the so-called first Chern class

c1(M) :=
i

2π
Rk�̄dz

k ∧ dz�̄ (5.2.25)

which is independent of the choice of Kähler metric. Namely, if h′
ij̄

is another

Kähler metric on M with Ricci class R′
k�̄
dzk ∧ dz�̄ = −∂∂̄ log det(h′

ij̄
), then

(Rk�̄ −R′
k�̄)dz

k ∧ dz�̄ = −∂∂̄ log
det(hij̄)
det(h′

ij̄
)
, (5.2.26)

and this is exact since det(hij̄)

det(h′
ij̄

) is a globally defined function independent of the

choice of coordinates (this follows from the transformation formula (1.4.3)).

We recall from the end of 1.5 that on a complex manifold, the space of
(complex-valued) k-forms Ωk(M) admits a decomposition
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Ωk(M) =
∑

p+q=k

Ωp,q(M). (5.2.27)

The elements of Ωp,q are called (p, q)-forms. Ωp,q is generated by forms of
the type

ϕ(z)dzi1 ∧ . . . ∧ dzip ∧ dzj̄1 ∧ . . . ∧ dzj̄q . (5.2.28)

We now use the Kähler form ω to define

L : Ωp,q → Ωp+1,q+1, L(η) := η ∧ ω (5.2.29)

and its adjoint w.r.t. the L2-product

(η, σ) =
∫

M

η ∧ ∗σ̄ (5.2.30)

(where the star-operator ∗ introduced in 2.1 has been linearly extended from
the real to the complex case),

Λ := L∗ : Ωp,q → Ωp−1,q−1.

For example, for η = ηjk̄dz
j ∧ dzk̄, we have, recalling ω = i

2hjk̄dz
j ∧ dzk̄,

Λ(η) = −2ihjk̄ηjk̄ (5.2.31)

Theorem 5.2.2 On a Kähler manifold, we have the identities

[Λ, ∂̄] = −i∂∗ (5.2.32)
[Λ, ∂] = i∂̄∗. (5.2.33)

([A,B] = AB −BA).

Proof. Since Λ is a real operator because ω is real, each of these two identi-
ties implies the other by conjugation. We shall now verify (5.2.33). For this,
we shall use the Kähler condition in an essential way. Namely, Λ being the
adjoint of the multiplication with the Kähler form ω, its operation involves
the Hermitian metric hij̄ , but no derivatives of it, see e.g. (5.2.31). Thus,
the commutator of Λ with the first derivative operator ∂ involves at most
first derivatives of the Hermitian metric. By (iii) of Theorem 5.2.1, we may
assume that these first derivatives vanish at the point under consideration.
Therefore, we can neglect them and compute as on Euclidean space. Thus, we
only need to verify (5.2.33) on Cd, and we proceed to do so. In fact, most of
the relevant formalism has been developed already in 1.8 and 2.1; we briefly
recall it here. We have the L2-product of k-forms

(α, β) =
∫

Cd

α ∧ ∗β̄. (5.2.34)

To see the pattern, we check that in the case d = 1
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∗dz = ∗(dx+ idy) = dy − idx = −idz and
∗dz̄ = ∗(dx− idy) = dy + idx = idz̄,

as well as
∗(1) = dx ∧ dy =

i

2
dz ∧ dz̄. (5.2.35)

We let εj be the exterior product with 1√
2
dzj ,

εjα :=
1√
2
dzj ∧ α,

and similarly

εj̄α :=
1√
2
dzj̄ ∧ α.

The factor 1√
2

here is inserted because the Euclidean norm of dzj = dxj+idyj

is 1√
2
. Thus, the L2-adjoint ιj of εj is given by contraction with 1√

2
dzj , that

is

ιj(dzj1 ∧ . . . ∧ dzjp ∧ dz�̄1 ∧ . . . ∧ dz�̄q )

=
{

0 if j /∈ {j1, . . . , jp}
(−1)µ−1

√
2 dzj1 ∧ . . . ∧ d̂zjµ ∧ . . . ∧ dzjp ∧ dz�̄1 ∧ . . . ∧ dz�̄q if j = jµ.

We check this in a simple case – the general pattern will then be clear:

(ε1dz1̄, dz1 ∧ dz1̄) = (
1√
2
dz1 ∧ dz1̄, dz1 ∧ dz1̄)

=
√

2(dz1̄, dz1̄)

= (dz1̄, ι1(dz1 ∧ dz1̄)).

Next, we either recall (1.8.19), (1.8.20) (where, however, a somewhat different
notation had been employed) or check directly that

εjιj + ιjεj = 1 (5.2.36)
εjι� + ι�εj = 0 for j 
= � (5.2.37)
εjι�̄ + ι�̄εj = 0 for all j, �. (5.2.38)

Putting ∂j := ∂
∂zj and ∂j̄ := ∂

∂zj̄ , we then have

∂ =
√

2
∑

j

∂jεj =
√

2
∑

j

εj∂j

∂̄ =
√

2
∑

j

∂̄jεj̄ =
√

2
∑

j

εj̄ ∂̄j

∂∗ = −
√

2
∑

j

∂̄jιj
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∂̄∗ = −
√

2
∑

j

∂jιj̄

L = i
∑

j

εjεj̄

Λ = −i
∑

j

ιj̄ιj .

Equipped with these formulae, it is now straightforward to complete the
proof:

Λ∂ = −i
√

2
∑
j,�

ι�̄ι�∂jεj

= −i
√

2
∑
j,�

∂jι�̄ι�εj

= −i
√

2

⎛⎝∑
j

∂jιj̄ιjεj +
∑
j �=�

∂jι�̄ι�εj

⎞⎠
= −i

√
2

⎛⎝−∑
j

∂jιj̄εjιj +
∑

j

∂jιj̄ −
∑
j �=�

∂jι�̄εjι�

⎞⎠
= −i

√
2

⎛⎝∑
j

∂jεjιj̄ιj +
∑

j

∂jιj̄ +
∑
j �=�

∂jεjι�̄ι�

⎞⎠
= −i

√
2
∑
j,�

∂jεjι�̄ι� − i
√

2
∑

j

∂jιj̄

= ∂Λ+ i∂̄∗.

Thus, we have shown the identity on Cd, and the Kähler condition then makes
this also valid on a general Kähler manifold, as explained. �

In addition to the Laplacian

∆ = dd∗ + d∗d, (5.2.39)

we can also build the operators

∆∂ := ∂∂∗ + ∂∗∂ and (5.2.40)
∆∂̄ := ∂̄∂̄∗ + ∂̄∗∂̄. (5.2.41)

Theorem 5.2.3 On a Kähler manifold,

∆ = 2∆∂ = 2∆∂̄ . (5.2.42)

Proof. From Theorem 5.2.2,
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∆∂ = i(∂[Λ, ∂̄] + [Λ, ∂̄]∂)
= i(∂Λ∂̄ − ∂∂̄Λ+ Λ∂̄∂ − ∂̄Λ∂)
= i(∂Λ∂̄ + ∂̄∂Λ− Λ∂∂̄ − ∂̄Λ∂) by (5.2.3)
= −i(∂̄[Λ, ∂] + [Λ, ∂]∂̄)
= ∆∂̄ . (5.2.43)

Next,

∂∂̄∗ + ∂̄∗∂ = −i(∂(Λ∂ − ∂Λ) + (Λ∂ − ∂Λ)∂) = 0, (5.2.44)

by Theorem 5.2.2 and (5.2.2). Finally, from (5.2.44) and (5.2.1), we easily get

∆ = ∆∂ +∆∂̄ . (5.2.45)

The relations (5.2.43) and (5.2.45) yield (5.2.42). �

In 2.2, we had defined the cohomology groups Hk(M) and identified them
with spaces of harmonic forms, that is, solutions of

∆η = 0, (5.2.46)

see Theorem 2.2.1. From Theorem 5.2.3, we infer that the operator ∆ pre-
serves the decomposition (1.5.7) which in fact is orthogonal w.r.t. the L2-
product,

Ωk(M) =
⊕

p+q=k

Ωp,q(M), (5.2.47)

that is,
∆ : Ωp,q(M) → Ωp,q(M). (5.2.48)

If we then define Hp,q(M) := Hk(M) ∩ Ωp,q(M) (p + q = k) as the space
of harmonic forms of bidegree (p, q), we obtain the first part of the Hodge
decomposition theorem, while the second part follows from the fact that
∆ is a real operator and therefore, complex conjugation maps harmonic forms
to harmonic forms:

Corollary 5.2.2 For a compact Kähler manifold M,

Hk(M,C) =
⊕

p+q=k

Hp,q(M,C) (5.2.49)

Hp,q(M,C) = Hq,p(M,C) (complex conjugate). (5.2.50)

The kth Betti number of the compact manifold M (see Definition 2.2.1)
is given by

bk(M) = dimCH
k(M,C), (5.2.51)

and if we put
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hp,q(M) = dimCH
p,q(M,C), (5.2.52)

we obtain

Corollary 5.2.3 For a compact Kähler manifold M ,

bk(M) =
∑

p+q=k

hp,q(M) (5.2.53)

and
hq,p(M) = hp,q(M), (5.2.54)

and consequently
bk(M) is even for odd k. (5.2.55)

We have already seen a restriction on the topology of a compact Kähler
manifold in Corollary 5.2.1. (5.2.55) is a deeper such restriction.

Perspectives. Kähler geometry started with the remarkable paper of Kähler[151]
that introduced the Kähler condition and derived all the basic formulae and the
perspectives for the subsequent development of the subject. A thorough discussion
of Kähler’s paper can be found in [27] and [153].

Some references that we have used in the present section are[251], [94] and [129].
Let us briefly mention some further aspects of Kähler geometry. Metrics on

Kähler manifolds satisfying

Rij̄ = µhij̄ for some constant µ

are called Kähler-Einstein metrics.
Since the Ricci form represents a cohomology class c1(M), there are necessary

conditions for the existence of a Kähler-Einstein metric with positive, negative
or vanishing µ. Namely, c1(M) has to be representable by a positive or negative
cohomology class, or has to be cohomologous to 0, resp. For nonpositive µ, these
conditions were also shown to be sufficient for the existence of a Kähler-Einstein
metric on a compact M in famous work of S.T. Yau[263] (the case of negative µ
was also independently solved by Aubin, see the account in [9]).

The case of positive µ is not yet completely solved. In that case, there exist
obstructions for the existence of Kähler-Einstein metrics. Existence results in cases
where these obstructions vanish were obtained by Tian[245], Tian and Yau[247],
Siu[226], Nadel[191]. Yau, Problem 65 in [264], conjecturally related the existence of
a Kähler-Einstein metric to stability properties in the sense of algebraic geometry
of the underlying manifold. Tian[246] developed the appropriate stability notion
and showed its necessity for the existence of a Kähler-Einstein metric. He thus
disproved the conjecture that a compact Kähler manifold with positive Chern class
always admits a Kähler-Einstein metric if it has no nontrivial holomorphic vector
field (another condition that is known to be necessary).

As noted, every complex manifold with dimC M = 1, i.e. every Riemann surface
(see Definition 8.2.1), is Kähler since condition (i) above is trivially satisfied for any
Hermitian metric. Moreover, in that case, the Kähler-Einstein metrics are simply
the ones of constant curvature, and by the uniformization theorem, every Riemann
surface admits such a metric since its universal cover (C, S2 or the hyperbolic
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upper half-plane H = {z = x + iy, y > 0}) does; in the latter case, the metric is
1

y2 (dx2 + dy2), see also 4.4. Moreover, the metric is unique up to isometries.

If one studies the space of all compact Riemann surfaces of a given topological
type (Teichmüller theory), it is then convenient to investigate the space of all metrics
of constant curvature on a given differentiable surface, because one can exploit
additional geometric information. In a similar vein, the aforementioned results of
S.T. Yau have found important applications in the classification of Kähler manifolds
and algebraic varieties.

A certain class of Kähler manifolds, the so-called special Kähler manifolds (see
[78]), has become important in string theory.

5.3 The Geometry of Symmetric Spaces

Besides CPn, we have already seen other examples of symmetric spaces:

• Rd, equipped with the Euclidean metric, i.e. d-dimensional Euclidean
space Ed. The involution at p ∈ Ed is the map σp(x) = 2p− x.

• the sphere Sd : Since its isometry group operates transitively on Sd,
it suffices to display an involution σ at the north pole (1, 0, . . . , 0);
such an involution is given by

σ(x1, . . . , xd+1) = (x1,−x2, . . . ,−xd+1)

in the usual coordinates.

• hyperbolic space Hd from 4.4. Again, the isometry group operates
transitively, and it suffices to consider the point (1, 0, . . . , 0) (in the
notations from 4.4), the isometry here is

σ(x0, . . . , xd) = (x0,−x1, . . . ,−xd).

In the sequel, ∇ will always denote the Levi-Civita connection.

Lemma 5.3.1 An involution σp : M →M of a symmetric space reverses the
geodesics through p. Thus, if c : (−ε, ε) → M is geodesic with c(0) = p (as
always parametrized proportionally to arc length), then σpc(t) = c(−t).

Proof. As an isometry, σp maps geodesics to geodesics. If c is a geodesic
through p (with c(0) = p), then

Dσpċ(0) = −ċ(0).

The claim follows since a geodesic is uniquely determined by its initial point
and initial direction (cf. Theorem 1.4.2). �

Lemma 5.3.2 Let c be a geodesic in the symmetric space M, c(0) = p, c(τ) =
q. Then
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σqσp(c(t)) = c(t+ 2τ) (5.3.1)

(for all t, for which c(t) and c(t + 2τ) are defined). For v ∈ Tc(t)M,
DσqDσp(v) ∈ Tc(t+2τ)M is the vector at c(t+ 2τ) obtained by parallel trans-
port of v along c.

Proof. Let c̃(t) := c(t+ τ). c̃ then is geodesic with c̃(0) = q. It follows that

σqσp(c(t)) = σq(c(−t)) by Lemma 5.3.1
= σq(c̃(−t− τ))
= c̃(t+ τ)
= c(t+ 2τ).

Let v ∈ TpM and let V be the parallel vector field along c with V (p) = v.
Since σp is an isometry, DσpV is likewise parallel. Moreover, DσpV (p) =
−V (p). Hence

DσpV (c(t)) = −V (c(−t)),
Dσq ◦DσpV (c(t)) = V (c(t+ 2τ)) as before. �

Corollary 5.3.1 A symmetric space is geodesically complete, i.e. each geodesic
can be indefinitely extended in both directions, i.e. may be defined on all of
R.

Proof. (5.3.1) implies that geodesics can be indefinitely extended. One simply
uses the left hand side of (5.3.1) to define the right hand side. �

The Hopf-Rinow Theorem 1.4.8 implies

Corollary 5.3.2 In a symmetric space, any two points can be connected by
a geodesic. �

By Lemma 5.3.1, the operation of σp on geodesics through p is given by a
reversal of the direction. Since by Corollary 5.3.2, any point can be connected
with p by a geodesic, we conclude

Corollary 5.3.3 σp is uniquely determined. �

Definition 5.3.1 Let M be a symmetric space, c : R → M a geodesic. The
translation along c by the amount t ∈ R is

τt := σc(t/2) ◦ σc(0).

By Lemma 5.3.2, τt thus maps c(s) onto c(s + t), and Dτt is parallel
transport along c from c(s) to c(s+ t).
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Remark. τt is an isometry defined on all of M. τ = τt maps the geodesic c
onto itself. The operation of τ on geodesics other than c in general is quite
different, and in fact τ need not map any other geodesic onto itself. One may
see this for M = Sn.

Convention For the rest of this paragraph, M will be a symmetric
space. G denotes the isometry group of M. G0 is the following subset of G :

G0 :={gt for t ∈ R, where s → gs

is a group homomorphism from R to G },
i.e. the union of all one-parameter subgroups of G. (It may be shown that
G0 is a subgroup of G.)

Examples of such one-parameter subgroups are given by the families of
translations (τt)t∈R along geodesic lines.

Theorem 5.3.1 G0 operates transitively on M.

Proof. By Corollary 5.3.2, any two points p, q ∈ M can be connected by a
geodesic c; let p = c(0), q = c(s). If (τt)t∈R is the family of translations along
c, then

q = τs(p).

We thus have found an isometry from G0 that maps p to q. �

Definition 5.3.2 A Riemannian manifold with a transitive group of isome-
tries is called homogeneous.

Theorem 5.3.2 The curvature tensor R of M is parallel, ∇R ≡ 0.

Proof. Let c be a geodesic, and let X,Y,Z,W be parallel vector fields along
c, p = c(t0), q = c(t0 + t). Then q = τt(p) and

〈R(X(q), Y (q))Z(q),W (q)〉 = 〈R(dτtX(p), dτtY (p))dτtZ(p), dτtW (p)〉
by Lemma 5.3.2

= 〈R(X(p), Y (p))Z(p),W (p)〉
since τt is an isometry.

Let now v := ċ(t0). The preceding relation gives

v〈R(X,Y )Z,W 〉 = 0,

and since X,Y,Z,W are parallel,

〈(∇vR)(X,Y )Z,W 〉 = 0.

Since ∇vR like R is a tensor, (∇vR)(X,Y )Z depends only on the values of
X,Y,Z at p. Since this holds for all c,X, Y, Z,W we get ∇R ≡ 0. �
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Definition 5.3.3 A complete Riemannian manifold with ∇R ≡ 0 is called
locally symmetric.

Remark. One can show that for each locally symmetric space N there exist
a simply connected symmetric space M and a group Γ operating on M
discretely, without fixed points, and isometrically, such that

N = M/Γ. (5.3.2)

Conversely, it is clear that such a space is locally symmetric. Examples are
given by compact Riemann surfaces of genus g ≥ 2 which may be realized as
quotients of the hyperbolic planeH2. Let us also introduce different examples,
the so called lens spaces:

We consider S3 as unit sphere in C2 :

S3 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1}.
On S3, we then have an isometric action of the torus S1 × S1, namely

(z1, z2) → (eiϕ1
z1, eiϕ2

z2) for 0 ≤ ϕ1, ϕ2 ≤ 2π.

Let now p, q ∈ N be relatively prime with 1 ≤ p < q.
Let Zq be the cyclic group of order q. We then obtain a homomorphism

Zq → S1 × S1

r → (e2πir/q, e2πipr/q).

Thus, Zq operates isometrically on S3. Since p and q are relatively prime,
this operation has no fixed points, and the lens space

L(q, p) := S3/Zq

is a manifold.
Actually, L(2, 1) is not only locally symmetric, but symmetric. More pre-

cisely, L(2, 1) is the three dimensional real projective space.
For q > 2, however, the lens spaces are not symmetric. For example, the

involution at p = (1, 0) ∈ S3 is given by

σp(z1, z2) = (z1̄,−z2)

(in our complex notation) (recall the definition of Sd at the beginning of this
paragraph). σp therefore does not commute with the Zq action. Therefore,
the involution σp does not carry over to L(q, p). Since on the other hand
each involution is already determined by its operation on the tangent space
and since an involution would have to operate in the same way as σp on the
tangent space of the point corresponding to p in the lens space, the lens space
cannot possess any such involution and hence cannot be symmetric.
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We now want to determine the Jacobi fields on (locally) symmetric spaces.
For a Riemannian manifold N, p ∈ N, v ∈ TpN we define an operator

Rv : TpN → TpN

by
Rv(w) = R(w, v)v. (5.3.3)

For a geodesic c, Rċ(t) maps the orthogonal complement of ċ(t) in Tc(t)N
onto itself.

The operator Rċ(t) is self-adjoint. This follows from (3.3.10) and (3.3.9)
or (3.3.7):

〈Rv(w), w′〉 = 〈R(w, v)v, w′〉 = 〈R(w′, v)v, w〉 = 〈Rv(w′), w〉.
Since R is parallel for a locally symmetric space, Rċ(t) commutes with parallel
transport along c.

Let v be an eigenvector of Rċ(0) with eigenvalue ρ with ‖v‖ = 1, ‖ċ(0)‖ = 1
(this can be achieved by reparametrization), and

〈v, ċ(0)〉 = 0,

i.e.
R(v, ċ(0))ċ(0) = Rċ(0)(v) = ρv.

Let v(t) be the vector field obtained by parallel transport of v along c. Then
v(t) is an eigenvector of Rċ(t) with eigenvalue ρ, since R is parallel. Thus

R(v(t), ċ(t))ċ(t) = ρv(t). (5.3.4)

(5.3.4) implies that the vector fields

J1(t) := cρ(t)v(t) and J2(t) := sρ(t)v(t) (5.3.5)

(cρ and sρ defined as in 4.5) satisfy the Jacobi equation:

J̈i(t) +R(Ji(t), ċ(t))ċ(t) = 0 (i = 1, 2). (5.3.6)

Thus

Theorem 5.3.3 Let N be a locally symmetric space, c geodesic in N,
c(0) =: p, v1, . . . , vn−1 an orthonormal basis of eigenvectors of Rċ(0) or-
thogonal to ċ(0) with eigenvalues ρ1, . . . , ρn−1, v1(t), . . . , vn−1(t) the parallel
vector fields along c with vj(0) = vj (j = 1, . . . , n − 1). The Jacobi fields
along c (orthogonal to ċ) then are linear combinations of Jacobi fields of the
form

cρj
(t)vj(t) and sρj

(t)vj(t). (5.3.7)

�
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Definition 5.3.4 Let g be the Lie algebra of Killing fields (cf. Lemma 1.6.8)
on the symmetric space M, and let p ∈M. We put

k := {X ∈ g : X(p) = 0}
p := {X ∈ g : ∇X(p) = 0}.

Theorem 5.3.4 k⊕ p = g, k ∩ p = {0}.

Proof. k ∩ p = {0} follows from the facts that each Killing field is a Jacobi
field (Corollary 4.2.1) (along any geodesic) and that Jacobi fields that vanish
at some point together with their derivative vanish identically (by Lemma
4.2.3) and finally that by Corollary 5.3.2 any two points can be connected
by a geodesic. Let now X ∈ g with X(p) 
= 0. Let c(t) := expp tX(p) be the
geodesic with ċ(0) = X(p), and let τt be the group of translations along c
(Definition 5.3.1). Then

Y (q) :=
d

dt
τt(q)|t=0 (5.3.8)

is a Killing field, since the τt are isometries (Lemma 1.6.7).
We have

Y (p) = X(p). (5.3.9)

For v ∈ TpM, let γ(s) be a curve with γ′(0) = v. Then

∇vY (p) = ∇ ∂
∂s

∂

∂t
τt(γ(s))|s=t=0

= ∇ ∂
∂t

∂

∂s
τt(γ(s))|s=t=0

= ∇ ∂
∂t
Dτt(v)|t=0

= 0, (5.3.10)

since by Lemma 5.2.2 Dτt is parallel transport along c, and hence Dτt(v) is
a parallel vector field along c.

We conclude

X = (X − Y ) + Y with (X − Y ) ∈ k by (5.3.9),
Y ∈ p by (5.3.10) . �

Theorem 5.3.5 As a vector space, p is isomorphic to TpM. The one-
parameter subgroup of isometries generated by Y ∈ p is the group of transla-
tions along the geodesic expp tY (p).

Proof. Let w ∈ TpM. Let c(t) := expp tw be the geodesic with ċ(0) = w. Let
τt be the group of translations along c. As in (5.3.8), we put
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Y (q) :=
d

dt
τt(q)|t=0 for all q ∈M. (5.3.11)

As in the proof of Theorem 5.3.4, we obtain

Y (p) = w and Y ∈ p.

This induces a linear map from TpM to p. The inverse of this map is simply
the restriction mapping Y ∈ p to Y (p). Thus, we have found a bijective linear
map between TpM and p. By (5.3.11), Y also generates the one-parameter-
subgroup τt (surjectivity follows from the proof of Theorem 5.3.4). �

Let us introduce the following notation: For a Killing field we denote the
(at this point only local) 1-parameter group of isometries generated by X by
etX (instead of the previous notation ψt or ϕt).

Lemma 5.3.3 Let X be a Killing field on the symmetric space M. Then etX

is defined for all t ∈ R. Thus, (etX)t∈R is a 1-parameter-group of isometries.

Proof. Let q ∈ M. We want to show that etX(q) is defined for all t ∈ R. We
shall show that this is true for t > 0, since the case t < 0 is analogous. Let
now

T := sup{t ∈ R : eτX(q) is defined for all τ ≤ t}.
We assume T <∞ and want to reach a contradiction.

We put
m := sup{d(q, etX(q)) : t ≤ T/2}.

Since each g ∈ G is an isometry, we have for all x, y ∈M

d(gx, gy) = d(x, y).

Hence also
d(g2q, gq) = d(gq, q),

and thus
d(g2q, q) ≤ 2d(gq, q).

Therefore for 0 ≤ t < T

d(etX(q), q) ≤ 2d(et/2 X(q), q) ≤ 2m.

Therefore, for all 0 ≤ t < T , etX(q) is contained in

B(q, 2m),

which is a compact set.
As in the proof of Corollary 1.4.3, we see that there exists ε > 0 with

the property that for all x ∈ B(q, 2m) etX(x) is defined for |t| ≤ ε. Thus, for
τ := T − ε/2,

eεX(eτX(q)) = e(T+ε/2)X(q)
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is defined.
This contradicts the assumption on T and proves the claim. �

For Y ∈ p, we thus obtain from Theorem 5.3.5

etY = τt, (5.3.12)

where (τt) is the family of translations along the geodesic expp tY (p).
We now define a group homomorphism

sp : G→ G

by
sp(g) = σp ◦ g ◦ σp, (5.3.13)

where σp : M →M is the involution at p. Since σ2
p = id, we have

sp(g) = σp ◦ g ◦ σ−1
p . (5.3.14)

We obtain a map
θp : g → g

by
θp(X) :=

d

dt
sp(etX)|t=0. (5.3.15)

Theorem 5.3.6 θp|k = id, θp|p = − id.

Proof. Let X ∈ k, i.e. X(p) = 0. Then for all t

etX(p) = p. (5.3.16)
Let c1 be a geodesic with c1(0) = p. Then for all t,

c2(s) := etXc1(s)

likewise defines a geodesic through p, i.e. c2(0) = p. It follows that

sp(etX)c1(s) = σp ◦ etX ◦ σpc1(s)

= σp ◦ etXc1(−s) by Lemma 5.3.1
= σpc2(−s)
= c2(s),

i.e. sp(etX)c1(s) = etXc1(s).
Since each q ∈M can be connected with p by a geodesic (Corollary 5.3.2),

we obtain

sp(etX)(q) = etX(q)
for all q ∈M, i.e. sp(etX) = etX , and hence also

θp(X) = X,

i.e. θp|k = id.5

5 One may easily modify the proof at this place so as to avoid using the completeness
of M.
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Let now Y ∈ p. From (5.3.12) (cf. Theorem 5.3.15),

etY = τt = σc(t/2) ◦ σp by Definition 5.3.1,

where c(t) = expp tY (p). Hence

sp(etY ) = σp ◦ σc(t/2) ◦ σp ◦ σp

= σp ◦ σc(t/2) because of σ2
p = id

= τ−t,

which may be seen e.g. as follows: Let q = c(t/2), c̃(s) = c(t/2 − s). Then
p = c̃(t/2), c̃(0) = q, hence

σp ◦ σc(t/2) = σc̃(t/2) ◦ σc̃(0).

Therefore, this is the translation along c̃ by the amount t. Since c̃ is traversed
in opposite direction as c, this is the same as translation along c by the amount
−t.

Since
τ−t = e−tY

it follows that
sp(etY ) = e−tY

hence
θp(Y ) = −Y,

i.e.
θp|p = −id. �

Lemma 5.3.4 θp[X,Y ] = [θpX, θpY ] for all X,Y ∈ g. Thus, θp is a Lie
algebra homomorphism.

Proof. By definition of θp (5.3.15), θp(X) generates the 1-parameter group
etθp(X), i.e.

sp(etX) = etθp(X). (5.3.17)

Now

[X,Y ] =
d

dt
De−tX ◦ Y ◦ etX |t=0 cf. Theorem 1.6.4 (ii)

=
∂2

∂t∂s
e−tXesY etX |t=s=0. (5.3.18)
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Hence

θp[X,Y ] =
∂2

∂t∂s
σpe

−tXesY etXσp|t=s=0

=
∂2

∂t∂s
σpe

−tXσ−1
p σpe

sY σ−1
p σpe

tXσp|t=s=0

=
∂2

∂t∂s
sp(e−tX)sp(esY )sp(etX)|t=s=0 (cf. (5.3.14))

=
∂2

∂t∂s
e−tθp(X)esθp(Y )etθp(X)|t=s=0 by (5.3.17)

= [θp(X), θp(Y )] by (5.3.18). �

Theorem 5.3.7 [k, k] ⊂ k, [p, p] ⊂ k, [k, p] ⊂ p.

Proof. Because of θ2
p = id, θp has eigenvalues −1 and 1. By Theorem 5.3.6,

k is the eigenspace with eigenvalue 1, p the eigenspace with eigenvalue −1
(note that by Theorem 5.3.5, g = k⊕p). If X is an eigenvector with eigenvalue
λ, Y one with eigenvalue µ, then, since θp is a Lie algebra homomorphism
(Lemma 5.3.3), [X,Y ] is an eigenvector with eigenvalue λµ. This easily gives
the claim. �

Corollary 5.3.3 k is a Lie subalgebra of g.

Proof. k is a subspace of g and closed w.r.t. the Lie bracket by Theorem 5.3.7.
�

Corollary 5.3.4 With the identification

TpM � p from Theorem 5.3.5,

the curvature tensor of M satisfies

R(X,Y )Z(p) = −[[X,Y ], Z](p) (5.3.19)

for X,Y,Z ∈ p.

Proof. Let X ∈ g, Y ∈ p. The geodesic expp tY (p) satisfies

Y (c(t)) = ċ(t) for all t ∈ R.

This follows e.g. from Theorem 5.3.5.
Since by Corollary 4.2.1, X is a Jacobi field along c, we obtain

∇Y∇Y X +R(X,Y )Y = 0 (5.3.20)

along c, hence in particular at p.
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This implies that we have also for Y,Z ∈ p, since then also Y + Z ∈ p,
that

∇Y∇ZX +∇Z∇Y X +R(X,Y )Z +R(X,Z)Y = 0 (5.3.21)

at p.
Now by (3.3.7)

R(X,Z)Y = −R(Z,X)Y, (5.3.22)

by (3.3.8)
R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = 0 (5.3.23)

and by (3.3.3)

R(Y,Z)X = ∇Y∇ZX −∇Z∇Y X −∇[Y,Z]X. (5.3.24)

By Theorem 5.3.7, for Y,Z ∈ p, [Y,Z] ∈ k, hence

[Y,Z](p) = 0. (5.3.25)

(5.3.21) – (5.3.25) imply

∇Y∇ZX +R(X,Y )Z = 0 (5.3.26)

at p.
By (5.3.23) and (5.3.22) for X,Y,Z ∈ p

R(X,Y )Z(p) = −R(Y,Z)X(p) +R(X,Z)Y (p)
= ∇Z∇XY (p)−∇Z∇Y X(p) by (5.3.26)
= ∇Z [X,Y ](p)
= ∇[X,Y ]Z(p)− [[X,Y ], Z](p)
= −[[X,Y ], Z](p)

because of [X,Y ](p) = 0 (Theorem 5.3.7). �

Corollary 5.3.5 The sectional curvature of the plane in TpM spanned by
the orthonormal vectors Y1(p), Y2(p) (Y1, Y2 ∈ p) satisfies

K(Y1(p) ∧ Y2(p)) = −〈[[Y1, Y2], Y2], Y1〉(p).

Proof. From (5.3.19). �
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5.4 Some Results about the Structure of Symmetric
Spaces

In this paragraph, we shall employ the conventions established in the previous
one.

Let us first quote the following special case of a theorem of Myers and
Steenrod:

Theorem. The isometry group of a symmetric space M is a Lie group, and
so is the group G0 defined in 5.3. Moreover g is the Lie algebra of both G and
G0.

A proof may be found, e.g., in [116]. �
Technically, this result will not be indispensable for the sequel, but it is

useful in order to gain a deeper understanding of symmetric spaces.

We now start with some constructions that are valid not only for the
isometry group of a symmetric space but more generally for an arbitrary Lie
group G with Lie algebra denoted by g.

Each h ∈ G defines an inner automorphism of G by conjugation:

Int(h) : G→ G

g → hgh−1.

Putting h = σp, here we obtain sp from 5.3.
g as a Lie algebra in particular is a vector space, and we denote the group

of vector space automorphisms of g by Gl(g).

Definition 5.4.1 The adjoint representation of G is given by

Ad : G→ Gl(g)
h → De Int(h)

where e ∈ G is the identity element.

In the notations of 5.3 we thus have

θp = Ad(σp). (5.4.1)

Lemma 5.4.1 Ad is a group homomorphism, and for each h ∈ G, Adh ∈
Gl(g) is a Lie algebra homomorphism, i.e.

Adh[X,Y ] = [AdhX, AdhY ] for all X,Y ∈ g. (5.4.2)

This result generalizes Lemma 5.3.4.
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Proof. That Ad is a group homomorphism follows from

Int(h1h2) = Int(h1)Int(h2).

That Ad h is a Lie algebra homomorphism follows as in the proof of Lemma
5.3.4. �

Definition 5.4.2 The adjoint representation of g is given by

ad : g → gl(g)
X → (De Ad)(X)

where gl(g) is the space of linear self maps of g.

Lemma 5.4.2
(adX)Y = −[X,Y ]. (5.4.3)

Proof.

(adX)Y =
d

dt
De Int(etX)Y|t=0

=
∂2

∂t∂s
Int(etX)esY |t=s=0

= [−X,Y ] by Theorem 1.6.4 (ii). �

Corollary 5.4.1

(adX)[Y,Z] = [(adX)Y,Z] + [Y, (adX)Z].

Proof. From Lemma 5.4.2 and the Jacobi identity (Lemma 1.6.5). �

Corollary 5.4.2 eadX = Ad eX for all X ∈ g.

Proof. d
dte

ad tX |t=0 = adX = (De Ad)X = d
dt Ad etX |t=0, which easily im-

plies the claim. �

Definition 5.4.3 The Killing form of g is the bilinear form

B : g× g → R

(X,Y ) → tr(adX ◦ adY ).

g (and likewise G) is called semisimple if the Killing form of g is nondegen-
erate.



266 5. Symmetric Spaces and Kähler Manifolds

Lemma 5.4.3 The Killing form B of g is symmetric. B is invariant under
automorphisms of g. In particular

B((Adg)X, (Ad g)Y ) = B(X,Y ) for all X,Y ∈ g, g ∈ G. (5.4.4)

Moreover

B((adX)Y,Z) +B(Y, (adX)Z) = 0 for all X,Y,Z ∈ g. (5.4.5)

Proof. The symmetry of B is a direct consequence of the formula

tr(AC) = tr(CA) (5.4.6)

for linear self maps of a vector space.
Let now σ be an automorphism of g. Then

(adσX)(Y ) = [σ(−X), Y ] by (5.4.3)

= [σ(−X), σσ−1Y ] = σ[−X,σ−1Y ]

= (σ ◦ adX ◦ σ−1)(Y ).

Therefore

tr(adσX adσY ) = tr(σ adX adY σ−1) = tr(adX adY ) with (5.4.6),

i.e.
B(σX, σY ) = B(X,Y ). (5.4.7)

Therefore, B is invariant under automorphisms of g. We now choose

σ = Ad(etX).

Differentiating (5.4.7) w.r.t. t at t = 0 yields (5.4.5). �

We also define
K := {g ∈ G : g(p) = p}.

K then is a subgroup of G. For X ∈ k, we have etX ∈ K.
We now have two scalar valued products on p. Namely, for Y,Z ∈ p, we

may form 〈Y (p), Z(p)〉, where 〈., .〉 denotes the Riemannian metric of M, as
well as

B(Y,Z).

We now want to compare these two products.

Lemma 5.4.4 Ad K leaves p and the product 〈·, ·〉 on p invariant.

Proof. Since for k ∈ K, k(p) = p, for Y ∈ p, Int(k) maps the geodesic
expp tY (p) through p onto another geodesic through p, and this geodesic is
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generated by Dk◦Y (k−1(p)) = DkY (p). Therefore, (Ad k)(Y ) = Dk◦Y (k−1)
is in p as well (cf. the proof of Theorem 5.3.6). Moreover, for Y,Z ∈ p

〈Y (p), Z(p)〉 = 〈Dk ◦ Y (p), Dk ◦ Z(p)〉, since k is an isometry
= 〈Dk ◦ Y (k−1(p)), Dk ◦ Z(k−1(p))〉 since k−1(p) = p

= 〈Ad kY (p), Ad kZ(p)〉. �

Corollary 5.4.3 The Killing form B is negative definite on k.

Proof. Let X ∈ k, Y, Z ∈ p. By Lemma 5.4.4

〈Ad(etX)Y (p), Ad(etX)Z(p)〉 = 〈Y (p), Z(p)〉. (5.4.8)

We differentiate (5.4.8) at t = 0 w.r.t. t and obtain

〈ad(X)Y (p), Z(p)〉+ 〈Y (p), ad(X)Z(p)〉 = 0. (5.4.9)

By Theorem 5.3.7 or Lemma 5.4.4, ad X yields a linear self map of p, and
by (5.4.9), this map is skew symmetric w.r.t. the scalar products 〈·, ·〉(p) on
p. We choose an orthonormal basis of p w.r.t. 〈·, ·〉(p) and write ad X =
(aij)i,j=1,...,n as a matrix w.r.t. this basis. Since ad X is skew symmetric, we
have

aij = −aji for i, j = 1, . . . , n.

Therefore
B(X,X) = tr adX ◦ adX = − n

Σ
i,j=1

a2
ij ,

and negative definiteness follows, since for X ∈ k, X 
= 0, also ad X 
= 0
because otherwise Ad etX = id, hence by etX ∈ K,DetX would be the
identity of TpM, i.e. etX , i.e. X = 0. �

We now define the following scalar product on g :
For Y,Z ∈ p

〈Y,Z〉g := 〈Y (p), Z(p)〉, where the scalar product on the right hand

side is the Riemannian metric on TpM ,

for X,W ∈ k
〈X,W 〉g := −B(X,W )

for X ∈ k, Y ∈ p
〈X,Y 〉g := 0.

Lemma 5.4.5 〈·, ·〉g is positive definite and Ad K-invariant.

Proof. Positive definiteness follows from positive definiteness of the Rieman-
nian metric on TpM and Corollary 5.4.3. Ad K-invariance follows from Lem-
mas 5.4.3 and 5.4.4. �
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The infinitesimal version of the Ad K-invariance of 〈·, ·〉g is

〈(adX)Y,Z〉g + 〈Y, (adX)Z〉g = 0 forY,Z ∈ g, X ∈ k. (5.4.10)

For Y ∈ p, we now consider the linear functional

p → R

X → B(X,Y ),

where B again denotes the Killing form of g. Then there exists Y ∗ ∈ p with

B(X,Y ) = 〈X,Y ∗〉g.
Since B is symmetric (Lemma 5.4.3), the map

p → p

Y → Y ∗

is self adjoint w.r.t. 〈·, ·〉. Therefore, there exists an orthonormal basis
Y1, . . . , Yn of eigenvectors:

Y ∗
j = λjYj (j = 1, . . . , n).

Then
B(Yi, Yj) = 〈Yi, Y

∗
j 〉 = λj〈Yi, Yj〉

= 〈Yj , Y
∗
i 〉 = λi〈Yi, Yj〉.

Thus, eigenspaces of different eigenvalues are orthogonal not only w.r.t.
〈·, ·〉g, but also w.r.t. B. We write the decomposition of p into eigenspaces

as
p = p1 ⊕ . . .⊕ pm.

The eigenvalue of pj is denoted by µj (j = 1, . . .m).

Lemma 5.4.6
[pi, pj ] = 0 for i 
= j. (5.3.11)

If g is semisimple, i.e. B nondegenerate, then

〈·, ·〉g = −B|k +
1
µ1
B|p1 + . . .+

1
µm

B|pm
. (5.4.12)

Proof. Let Yi ∈ pi, Yj ∈ pj . Then

B([Yi, Yj ], [Yi, Yj ]) = −B(Yj , [Yi, [Yi, Yj ]]) by (5.4.3), (5.4.5)
= −µj〈Yj , [Yi, [Yi, Yj ]]〉
= −µj〈Yi, [Yj , [Yj , Yi]]〉,

for example by Corollary 5.3.5 and by
the symmetries of the curvature tensor.
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In the same manner, however, we also obtain

B([Yi, Yj ], [Yi, Yj ]) = −µi〈Yi, [Yj , [Yj , Yi]]〉, (5.4.13)

and hence, since B is nondegenerate, we must have

[Yi, Yj ] = 0.

Namely, by Theorem 5.3.7, [Yi, Yj ] ∈ k, and by Corollary 5.4.3 B is negative
definite on k. That the restriction of 〈·, ·〉g onto k coincides with −B|k is a
consequence of the definition of 〈·, ·〉g. Moreover, for Y,Z ∈ pj

B(Y,Z) = µj〈Y,Z〉,
and pi and pj for i 
= j are orthogonal w.r.t. 〈·, ·〉 and B. This implies (5.4.12),
because, since B is nondegenerate, all µj must be 
= 0. �

Definition 5.4.4 Let g = k ⊕ p be the usual decomposition of the space of
Killing fields of the symmetric space M.

M is called of Euclidean type, if

[p, p] = 0,

i.e. if the restriction of the Killing form vanishes identically on p.
M is called semisimple, if g is semisimple.
M is called of compact (noncompact) type, if it is semisimple and of

nonnegative (nonpositive) sectional curvature.

Corollary 5.4.4 A semisimple symmetric space is of (non)compact type if
and only if B is negative (positive) definite on p.

Proof. Since B is negative definite on p, all µi are < 0, and Corollary 5.4.3
and (5.4.13) imply

−〈Yi, [Yj , [Yj , Yk]]〉 ≥ 0,
hence K ≥ 0 by Corollary 5.3.5. If conversely K ≥ 0, B must be negative
definite on p, because otherwise we would contradict (5.4.13), since by Corol-
lary 5.4.3 B([Yi, Yj ], [Yi, Yj ]) ≤ 0. The case K ≤ 0 is analogous. �

Perspectives. Symmetric spaces were introduced and investigated by E. Car-
tan. They form a central class of examples in Riemannian geometry, combin-
ing the advantage of a rich variety of geometric phenomena with the possibility
of explicit computations. Moreover, symmetric spaces can be completely classi-
fied in a finite number of series (like Sn = SO(n + 1)/SO(n), hyperbolic space
Hn = SO0(n, 1)/SO(n), CPn = SU(n+1)/S(U(n)×U(1)), Sl(n, R)/SO(n), Sp(p+
q)/Sp(p) × Sp(q), etc.) plus a finite list of exceptional spaces. Moreover, there ex-
ists a duality between the ones of compact and of noncompact type. For example,
the dual companion of the sphere Sn = SO(n + 1)/SO(n) is hyperbolic space
Hn = SO0(n, 1)/SO(n). A reference for the theory of symmetric spaces is Helga-
son[116].
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5.5 The Space Sl(n, R)/SO(n, R)

We now want to consider examples: In fact, we shall specialize the examples
of §1.7 to the case where we identify the vector space with Rn.

Let Mn be the space of (n× n)-matrices over R (Mn � Rn2
),

Gl(n,R) := {A ∈Mn : detA 
= 0} (linear group)
Sl(n,R) := {A ∈Mn : detA = 1} (special linear group)

SO(n) := SO(n,R) := {A ∈Mn : At = A−1, detA = 1} (special orthogonal
group) .

(Note that At is the adjoint A∗ of A w.r.t. the Euclidean scalar product).
Obviously, these are Lie groups.

gl(n,R) := Mn

when equipped with the Lie bracket

[X,Y ] := XY − Y X

becomes a Lie algebra, and so do

sl(n,R) := {X ∈Mn : trX = 0}
so(n) := so(n,R) := {X ∈Mn : Xt = −X};

these are the Lie algebras of Gl(n,R),Sl(n,R),SO(n,R). As in §1.7, one ver-
ifies this by considering for X ∈ gl(n,R) the exponential series

etX := Id + tX +
t2

2
X2 + . . . .

We have,
det(eX) = etrX , (5.5.1)

as is easily seen with the help of the Jordan normal form.
In particular, for all t ∈ R

etX ∈ Gl(n,R).

By (5.5.1), if X ∈ sl(n,R), then eX ∈ Sl(n,R). Moreover, for X ∈ so(n,R)

(eX)t = Id +Xt +
1
2
(Xt)2 + . . . = Id−X +

1
2
(X)2 − . . . = e−X = (eX)−1,

i.e. eX ∈ SO(n,R).
The series representation of etX also easily implies that the derivative of

gl(n,R) → Gl(n,R)

X → eX
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at X = 0 is the identity; note in particular that gl(n,R) and Gl(n,R) are of
the same dimension. Therefore, the exponential map X → eX is a diffeomor-
phism in the vicinity of X = 0.

The exponential map then also yields a diffeomorphism between neigh-
borhoods of 0 in sl(n,R) and so(n), resp., and neighborhoods of Id in Sl(n,R)
and SO(n), resp., because the corresponding spaces again have the same di-
mension.

From §1.7, we recall that for A,B ∈ Gl(n,R),

Int(A)B = ABA−1.

Therefore, for X ∈ gl(n,R)

(AdA)X =
d

dt
AetXA−1|t=0 = AXA−1 (5.5.2)

and for Y ∈ gl(n,R) then

(adY )X =
∂2

∂t∂s
esY etXe−sY |s=t=0 = Y X −XY = [Y,X]. (5.5.3)

We now let Eij ∈ mn be the matrix with entry 1 at the intersection of the
ith row and the jth column and entries 0 otherwise, Eij = (eij

k�)k,�=1,...,n.
Then with X = (xk�), Y = (yk�)

adX adY Eij = (xk�y�me
ij
mh−xk�e

ij
�mymh−yk�e

ij
�mxmh +eij

k�x�mymh)k,h=1,...n

and hence

tr adX adY = 〈Eij , adX adY Eij〉
= nxijyji − xiiyjj − yiixjj + nxjiyij (5.5.4)
= 2n trXY − 2 trX trY.

If X = λ Id (Id = identity matrix), then

adX = 0.

Therefore, gl(n,R) is not semisimple. On sl(n,R), however, the Killing form
satisfies by (5.5.4)

B(X,Y ) = 2n trXY. (5.5.5)

Therefore, for X 
= 0
B(X,Xt) > 0, (5.5.6)

and the Killing form is nondegenerate.
A similar computation applies to so(n) : so(2) = R is not semisimple. For

n > 2, we choose { 1√
2
(Eij − Eji) : i < j} as a basis for so(n). Then

〈 1√
2
(Eij − Eji),

1√
2
(Ek� − E�k)〉 = δikδj� for i < j, k < �
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and
tr adX adY = 〈 1√

2
(Eij − Eji), adX adY

1√
2
(Eij − Eji)〉

= (n− 1)xk�y�k + xijyij

using trX = trY = 0 for X,Y ∈ so(n).

Since X = −Xt for X ∈ so(n), we obtain

tr adX adY = (n− 2) trX · Y.
In particular, for n > 2 let B now denote the Killing form of so(n), then for
X 
= 0

B(X,Xt) < 0,

and also
B(X,X) < 0.

Thus, the Killing form of so(n) is negative definite for n > 2. Note that the
Killing form of so(n) does not coincide with the restriction of the Killing form
of sl(n,R) onto so(n). In the sequel, we shall employ the latter one.

(5.5.5) directly implies that B is Ad (Sl(n,R)) invariant. We now put

G = Sl(n,R),K = SO(n),
g = sl(n,R), k = so(n), p = {X ∈ sl(n,R) : Xt = X}.

Then because of X = 1
2 (X −Xt) + 1

2 (X +Xt),

g = k⊕ p. (5.5.7)

Moreover, because of (XY − Y X)t = Y tXt −XtY t

[k, k] ⊂ k, [p, p] ⊂ k, [k, p] ⊂ p. (5.5.8)

Next, let
M := G/K;

more precisely, M is the space of equivalence classes w.r.t. the following
equivalence relation on G :

g1 ∼ g2 : ⇐⇒ ∃k ∈ K : g2 = g1k.

Thus,M is the space of left cosets of K inG. AsK is not a normal subgroup of
G, M is not a group. We want to equip M with a symmetric space structure.
G operates transitively on M by

g′K → gg′K for g ∈ G.

Let
π : G→M

be the projection.
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A subset Ω of M is called open, if π−1(Ω) is open in G. Then π becomes
an open map.

We want to show that M is a Hausdorff space. The preimage of K under
the continuous map

G×G→ G

(g1, g2) → g−1
1 g2

is closed since K is closed in G. Thus, if g−1
1 g2 
∈ K, in G × G there exists

a neighborhood of (g1, g2) of the form Ω̃1 × Ω̃2 which is disjoint from the
preimage of K. If now g1K 
= g2K, then g−1

1 g2 
∈ K, and Ωi := π(Ω̃i), i = 1, 2,
are disjoint neighborhoods of g1K and g2K. Namely, if gK ∈ Ωi, there exists
ki ∈ K with gki ∈ Ω̃i, and if we had gK ∈ Ω1 ∩ Ω2, (gk1, gk2) would be
mapped to k−1

1 k2 ∈ K, and Ω̃1 × Ω̃2 would not be disjoint to the preimage
of K. This shows the Hausdorff property.

In order to construct coordinate charts, we first have to recall the Cauchy
polar decomposition of an invertible matrix.

Lemma 5.5.1 For A ∈ Gl(n,R), there exist an orthogonal matrix R and a
symmetric positive definite matrix V with

A = V R,

and this decomposition is unique.

Proof. Since A is invertible,
H := AAt

is symmetric and positive definite. We are going to show that there exists a
unique symmetric, positive definite matrix V with V 2 = H. For this purpose,
we first observe that H may be diagonalized by an orthogonal matrix S :

H = StΛS with Λ = diag(λi), λi > 0 by positive definiteness.

We put
V := St diag (

√
λi)S.

V then is symmetric, positive definite, and because of St = S−1, it satisfies

V 2 = H.

This shows existence. For uniqueness, we first show that for a symmetric,
positive definite matrix V, each eigenvector of V 2 with eigenvalue λ is an
eigenvector of V with eigenvalue λ

1
2 . Namely, from V 2x = λx it follows that

(V +
√
λ Id)(V −

√
λ Id)x = 0,

and therefore we must have y := (V − √λ Id)x = 0, because otherwise y
would be an eigenvector of V with eigenvalue −√λ < 0, contradicting the
positive definiteness of V.
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This implies that the relation V 2 = H uniquely determines V, because all
eigenvalues and eigenvectors of V are determined by those of H.

We now put
R = V −1A.

Then
RRt = V −1AAtV −1 = V −1V 2V −1 = Id,

and R is orthogonal.
This shows the existence of the decomposition. Uniqueness is likewise

easy:
If

A = V R, with orthogonal R and with symmetric, positive definite V,

then
AAt = V RRtV t = V 2,

and by the preceding, this uniquely determines V. R then is unique as well.
�

Let
P := {A ∈ Sl(n,R) : At = A,A pos. def.}

(Note that P is not a group.)
For X ∈ p, then

eX ∈ P

and the exponential map again yields a diffeomorphism between a neighbor-
hood of O in p and a neighborhood of Id in p. We now decompose A ∈ Sl(n,R)
according to Lemma 5.5.1

A = V R

with R ∈ O(n), V ∈ P.
Let A be contained in a sufficiently small neighborhood of Id.
There then exist unique

X ∈ so(n), Y ∈ p

with
eX = R, eY = V.

This implies the existence of neighborhoods Ω1 of 0 in p, Ω2 of 0 in so(n) for
which

Ω1 ×Ω2 → G

(Y,X) → eY eX

is a diffeomorphism onto its image.

Lemma 5.5.2 G/K is homeomorphic to P. If G/K is equipped with the
differentiable structure of P,
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exp : p → G/K � P, V → eV

becomes a local diffeomorphism between a neighborhood of 0 in p and a neigh-
borhood of Id ·K in G/K.

Proof. We first construct a homeomorphism Φ between G/K and P. For gK
we write by Lemma 5.5.1

g = V R with V ∈ P,R ∈ SO(n)

and put
Φ(g) = V.

This does not depend on the choice of representative of gK. Namely, if gK =
g′K, there exists S ∈ SO(n) = K with gS = g′, hence g′ = V RS = V R′ with
R′ := RS ∈ SO(n), and Φ(g′) = V = Φ(g). If conversely Φ(g) = Φ(g′) =: V,
then g = V R, g′ = V S with R,S ∈ SO(n), hence g′ = g(R−1S) with R−1S ∈
SO(n), hence gK = g′K. Therefore, Φ is bijective. Φ is continuous in both
directions, because

π : G→ G/K

and
π : G→ P

A → V,

with A = V F (the unique decomposition of Lemma 5.5.1), both are continu-
ous and open.

Moreover exp(p) ⊂ P, and since exp : gl(n,R) → Gl(n,R) is a local
diffeomorphism, and p and P have the same dimension, exp|p is a local dif-
feomorphism, too, between a neighborhood of 0 in p and a neighborhood of
Id in P. �

By Lemma 5.5.2, G/K becomes a differentiable manifold. We have already
displayed a chart near Id · K. In order to obtain a chart at gK, we simply
map a suitable neighborhood U of gK via g−1 onto a neighborhood g−1U of
Id ·K and use the preceding chart.

G then operates transitively on G/K by diffeomorphisms,

G×G/K → G/K

(h, gK) → hgK

The isotropy group of Id ·K is K itself. The isotropy group of gK is gKg−1,
and this group is conjugate to K.

We want to construct Riemannian metrics on G on G/K w.r.t. which G
operates isometrically on G/K.

For this purpose, we use the Killing form B of sl(n,R) and the decompo-
sition g = sl(n,R) = k⊕ p (with k = so(n)). We put
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〈X,Y 〉g :=

⎧⎨⎩B(X,Y ) for X,Y ∈ p
−B(X,Y ) for X,Y ∈ k
0 for X ∈ p, Y ∈ k or vice versa.

By (5.5.5), 〈·, ·〉g is positive definite.
For abbreviation, we put

e := Id (identity matrix)

and we identify g with TeG. For each g ∈ G, we then also obtain a metric on
TgG by requesting that the left translation

Lg : G→ G

h → gh

is an isometry between TeG and TgG (dLg : TeG → TgG). We also obtain a
metric on G/K : restricting 〈·, ·〉g to p, we get a metric on TeKG/K � p; the
metric on TgKG/K then is produced by

L̃g : G/K → G/K

hK → ghK

by requesting again that those maps are isometries.
The metric is well defined; namely, if

gK = g′K,

then
g′ = gk with k ∈ K,

hence L̃g′ = L̃g ◦ L̃k. L̃k now maps eK onto itself, and dL̃k : TeKG/K →
TeKG/K is an isometry, since for V ∈ P, LkV = kV = (kV k−1)k =
((Int k)V )k, hence dL̃k(X) = (Ad k)X for X ∈ p � TeKG/K, and Ad k
is an isometry of p because it leaves the Killing form invariant. Therefore,
the metric on G/K is indeed well defined. By definition, G then operates
isometrically on G/K.

We want to define involutions onG/K so as to turn G/K into a symmetric
space.

We first have an involution

σe : G→ G

h → (h−1)t

with
dσe : g → g

X → −Xt,

hence
dσe|k = id, dσe|p = −id, σe|K = id.
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For g ∈ G, we then obtain an involution

σg : G→ G

by
σgh = Lgσe(Lg−1h) = g((g−1h)−1)t = ggt(h−1)t.

We have
σ2

g(h) = ggt(((ggt(h−1)t)−1)t) = h,

hence
σ2

g = id

and
σg(g) = g.

Since σe|K = id, σe induces an involution

σeK : G/K → G/K

with σeK(eK) = eK, dσeK : TeKG/K → TeKG/K, dσeK = − id. Since G
operates transitively on G/K, at each gK ∈ G/K, we then also obtain an
involution σgK = L̃g ◦ σeK ◦ L̃g−1 .

We have thus shown

Theorem 5.5.1 G/K carries a symmetric space structure. �

The group of orientation preserving isometries of G/K is G itself. Namely,
that group cannot be larger than G, because any such isometry is already
determined by its value and its derivative at one point, and G operates transi-
tively on M = G/K, and so does K on TeKM, and hence G already generates
all such isometries.

We want to establish the connection with the theory developed in 5.3 and
5.4. We first want to compare the exponential map on sl(n,R) and the induced
map on G/K with the Riemannian exponential map. Let a one parameter
subgroup of G be given, i.e. a Lie group homomorphism

ϕ : R → G.

Thus ϕ(s+ t) = ϕ(s) ◦ ϕ(t), hence

ϕ(t+ h)− ϕ(t)
h

= ϕ(t)
ϕ(h)− 1

h
,

hence
dϕ

dt
(t) =

dϕ

dt
(0)ϕ(t).

As usual, this implies
ϕ(t) = et dϕ

dt (0).
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Thus, the exponential map generates all one parameter subgroups of G.
If c is a geodesic in G/K with c(0) = eK =: p, the translations τt along

c yield a one parameter subgroup of G, hence

expp tċ(0) = c(t) = τt(p) = etX(p) for some X TeKG/K ∼= p. (5.5.9)

Here, on the left, we have the Riemannian exponential map, whereas on the
right, we have the one of G. Since the derivative of the Lie group exponential
map at 0 is the identity, we obtain X = ċ(0), and the two exponential maps
coincide. In particular, the Lie group exponential map, when applied to the
straight lines through the origin in p, generates the geodesics of G/K.

We also obtain a map ψ from the Lie algebra sl(n,R) of Sl(n,R) into the
Lie algebra of Killing fields of G/K. For X ∈ sl(n,R) we put

ψ(X)(q) =
d

dt
getX(p)|t=0 for q = g(p)

=
d

dt
Lge

tX(p)|t=0.

Now
ψ(XY )(q) = dgXY (p)

=
∂2

∂t∂s
getXesY (p)|t=s=0

=
d

dt
ψ(Y )(getX(p))|t=0

= ψ(Y )ψ(X)(q)

hence
ψ([X,Y ]) = [ψ(Y ), ψ(X)] = −[ψ(X), ψ(Y )].

We thus obtain an antihomomorphism of Lie algebras. This explains the
difference in sign between (5.4.3) and (5.5.3).

Corollary 5.4.1 Sl(n,R)/SO(n) is a symmetric space of noncompact type.
The sectional curvature of the plane spanned by the orthonormal vectors
Y1, Y2 ∈ p is given by

K = B([Y2, Y1], [Y2, Y1]) = −‖[Y1, Y2]‖2g ≤ 0.

Proof. As observed above ((5.5.5)), the Killing form is nondegenerate, and
the symmetric space is semisimple. By Corollary 5.3.5 the sectional curvature
of the plane spanned by Y1, Y2 ∈ p satisfies

K = −〈[[Y1, Y2], Y2], Y1〉
= −B([[Y1, Y2], Y2], Y1) (5.5.10)
= −B([Y2, [Y2, Y1]], Y1)
= B([Y2, Y1], [Y2, Y1]),
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because the Killing form is AdG invariant.
This expression is ≤ 0, because by [p, p] ⊂ k, [Y2, Y1] ∈ k and B is negative

definite on k. �

Definition 5.5.1 A subalgebra a of g is called abelian if [A1, A2] = 0 for all
A1, A2 ∈ a.

We want to find the maximal abelian subspaces of p. Let a be an abelian
subspace of p, i.e. an abelian subalgebra of g that is contained in p. Thus

A1A2 −A2A1 = 0 for all A1, A2 ∈ a.

The elements of a therefore constitute a commuting family of symmetric
(n×n) matrices. Hence, they can be diagonalized simultaneously. Thus, there
exists an orthonormal basis v1, . . . , vn of Rn consisting of common eigenvec-
tors of the elements of a. We write our matrices w.r.t. an orthonormal basis
e1, . . . , en of Rn, and we choose S ∈ SO(n) with

S(vi) = ±ei (i = 1, . . . , n).

SaS−1 then is an abelian subspace of p with eigenvectors e1, . . . , en. Thus,
all elements of SaS−1 are diagonal matrices (with trace 0 since they are
contained in p). This implies that the space of diagonal matrices of trace 0 is
a maximal abelian subspace of p. Furthermore, it follows that each maximal
abelian subspace is conjugate to this one, w.r.t. an element from K = SO(n).
Therefore, any two maximal abelian subspaces of p are conjugate to each
other.

Let now a be an abelian subspace of p. We put

A := exp a,

where exp, as usual, is the exponential map g → G. A then is a Lie subgroup
of G. For g1, g2 ∈ A, we have

g1g2 = g2g1,

because for any two commuting elements X,Y ∈ g

eX+Y = eXeY = eY eX ,

as is easily seen from the exponential series. Thus, A is an abelian Lie group.
On the other hand, because of a ⊂ p A also is a subspace of M = G/K.

Lemma 5.5.3 A is totally geodesic in M and flat, i.e. its curvature vanishes.

Proof. Let Y ∈ a. By definition of A, the geodesic etY is contained in A. A is
thus totally geodesic at the point eK := P in the sense that any geodesic of
M through p and tangential to A at p is entirely contained in A. A operates
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transitively and isometrically on itself by left translations. Let now q ∈ A.
There then exists a ∈ A with ap = q. Since a as element of G is an isometry,
it maps the geodesics of A and those of M through p onto geodesics through
q. This implies that A is totally geodesic Al at q as well, hence everywhere.
The curvature formula (5.5.10) implies that A is flat. �

Let conversely N be a flat subspace of M. Since the Killing form of k is
negative definite, the curvature formula (5.5.10) implies [Y1, Y2] = 0 for all
Y1, Y2 ∈ TpN. Thus, TpN is an abelian subspace of p.

We conclude

Corollary 5.5.2 The maximal flat subspaces of M through p = eK, i.e. those
not contained in any larger flat subspace of M, bijectively correspond to the
maximal abelian subspaces of p. �

The assertions of Lemma 5.5.3 and Corollary 5.5.2 are valid for all sym-
metric spaces.

Definition 5.5.2 The rank of a symmetric space M is the dimension of a
maximal flat subspace.

Thus, the rank is the dimension of a maximal abelian subalgebra of g
contained in p. As remarked above, any two such subalgebras are conjugate
to each other. Likewise, because G operates transitively on M, the dimension
of a maximal flat subspace through any given point of M is the same.

Corollary 5.5.3 Rank (Sl(n,R)/SO(n)) = n− 1.

Proof. As observed above, a maximal abelian subalgebra of g contained in p
consists of the space of diagonal matrices with vanishing trace, and the latter
space has dimension n− 1. �

Corollary 5.5.4 A symmetric space M of noncompact type has rank 1 if
and only if its sectional curvature is negative.

Proof. The rank is 1 if for two linearly independent Y1, Y2 ∈ TpM , we have
[Y1, Y2] 
= 0. Since B is negative definite on k and [Y1, Y2] ∈ k for Y1, Y2 ∈ TpM
(identified with p), (5.5.10) yields the claim. �

Lemma 5.5.4 For X ∈ k adX : g → g is skew symmetric w.r.t. 〈·, ·〉g, and
for X ∈ p, it is symmetric.

Proof. Let X ∈ k, Y, Z ∈ k. Then (adX)Y = [X,Y ] ∈ k, hence

〈[X,Y ], Z〉g = −B([X,Y ], Z) = B(Y, [X,Z])

= −〈Y, [X,Z]〉g by (5.4.5) .
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For X ∈ k, Y ∈ p, Z ∈ k, we have [X,Y ] ∈ p, [X,Z] ∈ k, hence

〈[X,Y ], Z〉g = 0 = 〈Y, [X,Z]〉g.
For X ∈ k, Y, Z ∈ p, we have [X,Y ] ∈ p, [X,Z] ∈ p and

〈[X,Y ], Z〉g = B([X,Y ], Z) = −B(Y, [X,Z])

= −〈Y, [X,Z]〉g by (5.4.5) .

Altogether, this implies that adX is skew symmetric for X ∈ k. Let now
X ∈ p, Y, Z ∈ k. Then [X,Y ] ∈ p, [X,Z] ∈ p, hence

〈[X,Y ], Z〉g = 0 = 〈Y, [X,Z]〉g.

For X ∈ p, Y ∈ k, Z ∈ p, we have [X,Y ] ∈ p, [X,Z] ∈ k, hence

〈[X,Y ], Z〉g = B([X,Y ], Z) = −B(Y, [X,Z]) by (5.4.5) = 〈Y, [X,Z]〉g.
Finally for X ∈ p, Y, Z ∈ p, we have [X,Y ] ∈ k, [X,Z] ∈ k, hence

〈[X,Y ], Z〉g = 0 = 〈Y, [X,Z]〉g.
Altogether, this implies that adX is skew symmetric for X ∈ p. �

Lemma 5.5.5 If X,Y ∈ g commute, i.e. [X,Y ] = 0, then so do adX and
adY.

Proof.

adX adY Z = [X, [Y,Z]]
= −[Y, [Z,X]]− [Z, [X,Y ]] by the Jacobi identity
= [Y, [X,Z]] because of [X,Y ] = 0
= adY adXZ. �

Let now a be a fixed maximal abelian subspace of p. By Lemmas 5.5.4,
5.5.5, for X ∈ a, the maps adX : g → g are symmetric w.r.t. 〈·, ·〉g and com-
mute with each other. Therefore, g can be decomposed as a sum orthogonal
w.r.t. 〈·, ·〉g of common eigenvectors of the adX,X ∈ a :

g = g0 ⊕
∑
α∈Λ

gα.

Definition 5.5.3 Λ is called the set of roots, and the α ∈ Λ are called the
roots of g w.r.t. a.
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We have

[X,Y ] = (adX)Y = α(X)Y for X ∈ a, Y ∈ gα. (5.5.11)

Thus α(X) is the eigenvalue of adX on gα, with 0(X) := 0 for all X. Since
a is abelian, of course

a ⊂ g0.

Moreover, α : a → R is linear for all α ∈ Λ, since

ad(X + Y ) = adX + adY, ad(µX) = µ adX for X,Y ∈ a, µ ∈ R.

We now recall the involution

σe : G→ G,

θ := dσe : g → g,

σe(h) = (h−1)t.

θ(X) = −Xt

which is also called Cartan involution, and the decomposition

g = k⊕ p,

k being the eigenspace of θ with eigenvalue 1, p the one with eigenvalue −1,
is called Cartan decomposition. We thus may write

〈X,Y 〉g = −B(X, θY ). (5.5.12)

In the same manner as e does, any element g of G, hence also any element
gK of G/K induces a Cartan decomposition g = k′ ⊕ p′ with k′ = Ad(g)k
etc. (cf. also 5.3).

Lemma 5.5.6

(i) [gα, gβ ] ⊂ gα+β for α+ β ∈ Λ, [gα, gβ ] = 0 for α+ β /∈ Λ.

(ii) α ∈ Λ ⇐⇒ −α ∈ Λ, and for each α ∈ Λ, θ : gα → g−α is an
isomorphism.

(iii) θ leaves g0 invariant, g0 = g0 ∩ k + a.

(iv) For X ∈ a, Y ∈ gα, Ad(etX)Y = etα(X)Y.

(v) For α 
= −β, B(gα, gβ) = 0.

Proof. Let Y ∈ gα, Z ∈ gβ , X ∈ a. Then

(adX)[Y,Z] = [X, [Y,Z]] = −[Y, [Z,X]]− [Z, [X,Y ]]
because of the Jacobi identity

= β(X)[Y,Z] + α(X)[Y,Z] = (α+ β)(X)[Y,Z].

This implies (i).
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Next

[X, θY ] = [X,−Y t] = −[Xt, Y t] (X = Xt, since X ∈ a ⊂ p)
= [X,Y ]t = α(X)Y t = −α(X)θY,

hence θY ∈ g−α. This proves (ii), and the first part of (iii), too, hence also
g0 = (g0 ∩ k) + (g0 ∩ p).

Since a is maximal abelian in p and commutes with all elements of g0, it
follows that g0 ∩ p = a which is the remaining part of (iii).

Next

Ad(etX) = etadX = Id +
∞∑

n=1

tn

n!
(adX)n

which implies (iv).
Finally, (v) follows from

0= 〈gα, gβ〉g for α 
= β
= −B(gα, θ(gβ)) by (5.5.11)
= −B(gα, g−β) by (ii) . �

We now want to determine the root space decomposition of g = sl(n,R).
For that purpose, let Eij be as above, and

Hi := Eii − Ei+1,i+1, i = 1, . . . , n− 1.

{Eij(i 
= j) and Hk(k = 1, . . . , n− 1)} then constitute a basis of g. Let a be
the space of diagonal matrices with vanishing trace, i.e. a maximal abelian
subspace of p.

For X = diag(λ1, . . . , λn) =
n

Σ
i=1

λiE
ii, we have

(adX)Eij = (λi − λj)Eij

(adX)Hi = 0

for i 
= j

for i = 1, . . . , n− 1, since Hi ∈ a.

We thus obtain n(n− 1) nonzero roots αij(i 
= j) with

αij(X) = λi − λj (X = diag(λ1, . . . , λn)).

The corresponding root spaces gαij
are spanned by the Eij . g0 is spanned by

H1, . . . , Hn−1; in particular
g0 = a.

Definition 5.5.4 A maximal flat abelian subspace of G/K is called a flat.
A geodesic in G/K is called regular if contained in one flat only; otherwise it
is called singular. Tangent vectors of regular (singular) geodesics are called
regular (singular).
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Lemma 5.5.7 X ∈ a is singular iff there exists Y ∈ g\g0 with [X,Y ] = 0,
i.e. if there exists α ∈ Λ with α(X) = 0.

Proof. Let X be singular. Then X is contained in another maximal abelian
subspace a′ of p besides a. Therefore, there exists Y ∈ a′, Y /∈ a. Because of
X,Y ∈ a′,

[X,Y ] = 0.

Since g0 ∩ p = a (Lemma 5.5.6 (ii)), Y /∈ g0. (5.5.11) implies α(X) = 0 for at
least one α ∈ Λ.

Let now α(X) = 0 for such a α ∈ Λ. Let Y ∈ gα, Y 
= 0. Then

[X,Y ] = α(X)Y = 0. (5.5.13)

We decompose
Y = Yk + Yp with Yk ∈ k, Yp ∈ p. (5.5.14)

For A ∈ a, we have because of Y ∈ gα

[A, Y ] = α(A)Y, (5.5.15)

and because of [k, p] ⊂ p, [p, p] ⊂ k, (5.5.14), (5.5.15) imply

[A, Yk] = α(A)Yp (5.5.16)
[A, Yp] = α(A)Yk. (5.5.17)

If we had Yp = 0, then by (5.5.16) also Yk = 0, since α does not vanish on a,
hence Y = 0. Likewise, Yk cannot vanish. By (5.5.17), Yp thus is contained
in p\a. Since (5.5.13) – (5.5.17) imply

[X,Yp] = 0,

X and Yp are contained in some abelian, hence also in some maximal abelian
subspace of p different from a. Thus, X is singular. �

By Lemma 5.5.7, the singular elements of a constitute the set

asing = {X ∈ a : ∃α ∈ Λ : α(X) = 0}.
asing thus is the union of finitely many so called singular hyperplanes

{X ∈ a : α(X) = 0} for α ∈ Λ.

Likewise, the set of regular elements of a is

areg = {X ∈ a : ∀α ∈ Λ : α(X) 
= 0}.
The singular hyperplanes partition areg into finitely many components which
are called Weyl chambers.

For g = sl(n,R), a = {diag(λ1, . . . , λn),
n

Σ
i=1

λi = 0}, we have
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asing = {diag(λ1, . . . , λn) : ∃i 
= j : λi = λj ,

n∑
i=1

λi = 0},

the space of those diagonal matrices whose entries are not all distinct. This
follows from the fact that the roots are given by

αij(diag(λ1, . . . , λn)) = λi − λj

as computed above.
One of the Weyl chambers then is

a+ := {diag(λ1, . . . , λn) : λ1 > λ2 > . . . > λn, Σλj = 0}.
We call

Λ+ := {α ∈ Λ : ∀A ∈ a+ : α(A) > 0}
the space of positive roots (this obviously depends on the choice of a+). In
our case,

Λ+ = {αij : i < j}.
Λ+

b := {α12, α23, . . . , αn−1,n} ⊂ Λ+ then is a fundamental system of positive
roots, meaning that each α ∈ Λ+ can be written as

α =
n−1∑
i=1

siαi,i+1

with some si ∈ N. For abbreviation, we put αi := αi,i+1, i = 1, . . . , n− 1.
The sets

{A ∈ a : αiν
(A) > 0 for ν = 1, . . . , r, αiν

(A) = 0 for ν = r + 1, . . . , n− 1},
where {i1, . . . , in−1} = {1, . . . , n − 1}, then are the r′-dimensional “walls”
of the Weyl chamber a+. The relation “is contained in the closure of” then
defines an incidence relation on the space of all Weyl chambers and all Weyl
chamber walls of all maximal abelian subspaces of p. This set with this inci-
dence relation is an example of a so-called Tits building. Via the exponential
map, we obtain a corresponding incidence structure on the set of all flats and
all images of Weyl chamber walls through each given point of G/K.

We next introduce the Iwasawa decomposition of an element of Sl(n,R) =
G. Let, as before,

K = SO(n),

and moreover

A := {diag(λ1, . . . , λn) : λi > 0 for i = 1, . . . , n,
n∏

i=1

λi = 1}

N := {upper triangular matrices with entries 1 on the diagonal}
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Theorem 5.5.2 (Iwasawa decomposition). We have

G = KAN.

More precisely, for each g ∈ G there exist unique k ∈ K, a ∈ A,n ∈ N with

g = kan.

We first prove

Lemma 5.5.8 For each g ∈ Gl(n,R), there exists a unique h ∈ O(n) with

(hg)ij = 0 for i < j

(hg)ii > 0.

Proof. We denote the columns of g by v1, . . . , vn. The rows r1, . . . , rn of h ∈
O(n) satisfying the assertions of the lemma must satisfy

(i) r1, . . . , rn is an orthonormal basis of Rn (since h ∈ O(n)).

(ii) rj · vi = 0 for i < j. (“·” here denotes the Euclidean scalar product).

(iii) rj · vj > 0 for all j.

Conversely, if these three relations are satisfied, h has the desired prop-
erties.

We first determine rn by the conditions

rn · rn = 1, rn · vn > 0, rn · vi = 0 for i = 1, . . . , n− 1.

Since the columns of g, i.e. the vi, are linearly independent, there indeed exists
such an rn. Assume now that we have iteratively determined rj , rj+1, . . . , rn.
Let Wj be the subspace of Rn spanned by v1, . . . , vj−2, rj , . . . , rn. Wj then has
codimension 1 because of the properties of the vectors rj , . . . , rn. Then rj−1

has to be orthogonal to Wj and satisfies rj−1 · vj−1 > 0 and rj−1 · rj−1 = 1.
There exists a unique such rj−1. Iteratively, we obtain r1, . . . , rn, hence h.

�

Proof of Theorem 5.5.2: By Lemma 5.5.8, there exist k ∈ SO(n), namely
k = h−1 from Lemma 5.5.8 (for g ∈ Sl(n,R), we get h ∈ SO(n)) and an
upper triangular matrix m = (mij) with positive diagonal entries with

g = km.

We put λi := mii, nii = 1, nij = 1
λi
mij for i 
= j, a = diag(λ1, . . . , λn),

n = (nij) and obtain
g = km = kan.

The uniqueness of this decomposition is implied by the uniqueness statement
of Lemma 5.5.8. �
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5.6 Symmetric Spaces of Noncompact Type as
Examples of Nonpositively Curved Riemannian
Manifolds

We continue to study the symmetric space M = Sl(n,R)/SO(n). It is com-
plete (Corollary 5.3.1), nonpositively curved (Corollary 5.5.1), and simply
connected (this follows from Lemma 5.5.2 since P is simply connected). Thus,
the constructions at the end of § 4.8 may be applied to M. (Actually, what fol-
lows will be valid for any symmetric space of noncompact type.) We continue
to use the notations of 5.5, e.g. G = Sl(n,R),K = SO(n).

For x ∈M(∞), let

Gx := {g ∈ G : gx = x}
be the isotropy group of x. Gx then is a subgroup of G. Let gx be the corre-
sponding sub Lie algebra of g.

Theorem 5.6.1 Let x ∈ M(∞), p ∈ M, g = k ⊕ p be the Cartan decompo-
sition w.r.t. p. Let X be the element of p ∼= TpM with

cpx(t) = etX(p) (= expp tX).

Let a be a maximal abelian subspace of p with X ∈ a, and let

g = g0 +
∑
α∈Λ

gα

be the root space decomposition of g determined by a. Then

gx = g0 +
∑

α(X)≥0

gα. (5.6.1)

Corollary 5.6.1 Let B1, B2 be Weyl chambers or Weyl chamber walls with
B1 ⊂ B̄2. Let X1 ∈ B1, X2 ∈ B2 ‖X1‖ = ‖X2‖ = 1, x1, x2 ∈ M(∞) be the
classes of asymptotic geodesic rays determined by X1 and X2, resp. Then

Gx2 ⊂ Gx1 . (5.6.2)

Conversely, Gx2 ⊂ Gx1 implies B1 ⊂ B̄2.

Proof of Corollary 5.6.1: B1 and B are contained in a common maximal
abelian subspace a of p. Let Λ be the set of roots of the root space decom-
position of g determined by a. Each α ∈ Λ which is nonnegative on B2 then
is nonnegative on B1, too. Theorem 5.6.1 then implies the claim. �
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By Corollary 5.6.1, the geometric relation B1 ⊂ B̄2 defining the incidence
relation for the Tits building may be replaced by the algebraic relation (5.6.2)
between subgroups of G.

Proof of Theorem 5.6.1: For abbreviation, we put

c(t) := cpx(t).

Let Y ∈ g. We decompose

Y = Y0 +
∑
α∈Λ

Yα with Y0 ∈ g0, Yα ∈ gα

and put

Y (t) := Ad(e−tX)Y = Y0 +
∑
α∈Λ

e−tα(X)Yα by Lemma 5.5.6 (iv). (5.6.3)

Then for all s, t ∈ R

d(esY c(t), c(t)) = d(esY etX(p), etX(p))
= d(e−tXesY etX(p), p), since etX is an isometry of M
= d(Ad(e−tX)esY (p), p) (5.6.4)
= d(esY (t)(p), p).

Let now
Y ∈ g0 +

∑
α(X)≥0

gα.

We put
Y ′ := Y0 +

∑
α(X)=0

Yα.

(5.6.3), (5.6.4) imply for each s

lim
t→∞ d2(esY c(t), c(t)) = d2(esY ′

(p), p).

Since by Theorem 4.8.2, d2(esY c(t), c(t)) is convex in t, it has to be bounded
for t ≥ 0. Hence esY c is asymptotic to c, hence

esY ∈ Gx for all s,

hence
Y ∈ gx.

Let conversely Y ∈ gx. We write Y = Y1+Y2 with Y1 := Y0+
∑

α(X)≥0

Yα, Y2 :=∑
α(X)<0

Yα. By what we have just proved, we obtain

Y1 ∈ gx, hence also Y2 = Y − Y1 ∈ gx.
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Therefore, for any fixed s,

d2(esY2c(t), c(t))

is bounded for t ≥ 0. On the other hand (5.6.3), (5.6.4) imply

lim
t→−∞ d2(esY c(t), c(t)) = 0.

Since this function is convex by Theorem 4.8.2, it then vanishes identically.
We obtain

esY2c(t) = c(t)

hence in particular
esY2p = p,

hence Y2 ∈ k. Therefore, letting θp denote the Cartan involution at p,

Y2 = θp(Y2) ∈ θp

( ∑
α(X)<0

gα

)
since θp|k = id|k,

=
∑

α(X)>0

gα by Lemma 5.5.6(ii).

By definition of Y2, this implies dimY2 = 0, hence

Y = Y1 ∈ g0 +
∑

α(X)≥0

gα.

�

Remark. The isotropy groups of any two points p, q ∈ M are conjugate. If
q = gp, then

Gq = gGpg
−1.

(The isotropy group of p ∈M is by definition Gp = {g ∈ G : gp = p}.)
The isotropy groups of points in M(∞), however, are not necessarily

conjugate as one sees from Theorem 5.6.1. However, there are only finitely
many conjugacy classes.

Example. Let
X = diag(λ1, . . . , λn)

and let x be the element in M(∞) determined by X.
Then

gx = {A = (aij)i,j=1,...,n ∈ sl(n,R) with aij = 0 for λi < λj}.
For example, if

λ1 > . . . > λn,

then gx is the space of upper triangular matrices.
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Perspectives. For a differential geometric treatment of symmetric spaces of non-
compact type, our sources and references are [63, 64], [12].

Let G/K be a symmetric space of noncompact type. A discrete subgroup Γ of
G is called a lattice if the quotient Γ\G/K has finite volume in the induced locally
symmetric metric. Here, Γ operates on G/K by isometries since the whole group
G does. Γ may have fixed points so that the quotient need not be a manifold. Any
such Γ, however, always contains a subgroup Γ ′ of finite index which is torsion
free, i.e. operates without fixed points (i.e. there do not exist γ ∈ Γ ′, γ �= id, and
z ∈ G/K with γz = z), and the quotient Γ\G/K then is a manifold and a finite
covering of Γ\G/K. Therefore, one may usually assume w.l.o.g. that Γ itself has no
fixed points, and we are hence going to do this for simplicity of discussion. A lattice
Γ is called uniform or cocompact if the quotient is compact, nonuniform otherwise.

We now discuss the rigidity of such lattices.
For G = Sl(2, R) � SO0(2, 1) and K = SO(2), there exist continuous families

of compact quotients, namely Riemann surfaces of a given genus p ≥ 2. Thus, no
rigidity result holds in this case. This, however, is a singular phenomenon.

The first rigidity result was obtained by Calabi and Vesentini[36] who showed
that compact quotients of any irreducible Hermitian symmetric space of noncom-
pact type other than Sl(2, R)/SO(2) are infinitesimally, hence locally, rigid. They
showed that the relevant cohomology group rising from the theory of Kodaira and
Spencer vanishes in all these cases. Their result means that there do not exist non-
trivial continuous families of uniform lattices in G/K other than Sl(2, R)/SO(2).

Mostow[190] showed strong rigidity of compact quotients of irreducible symmet-
ric spaces of noncompact type. This means that any two such lattices Γ, Γ ′ which
are isomorphic as abstract groups are lattices in the same G and isomorphic as
subgroups of G. Geometrically this means that the quotients Γ\G/K and Γ ′\G/K
are isometric. (Here, as always, they carry the Riemannian metric induced from the
symmetric metric on G/K.)

Margulis[173] then showed superrigidity if rank (G/K) ≥ 2. This essentially
means that any homomorphism ρ : Γ → H(Γ as above) extends to a homomorphism
G → H, if H, like G, is a simple noncompact algebraic group (defined over R) and
if ρ(Γ ) is Zariski dense, or that ρ(Γ ) is contained in a compact subgroup of H,
if H is an algebraic subgroup of some Sl(n, Qp). Here, Qp stands for the p-adic
numbers. More generally and precisely, if G is a semisimple Lie group without
compact factors with maximal compact subgroup K, rank (G/K) ≥ 2, if Γ is an
irreducible lattice in G (irreducibility means that no finite cover of the quotient
Γ\G/K is a nontrivial product; this condition is nontrivial only in the case where
G/K itself is not irreducible, i.e. a nontrivial product), and if H is a reductive
algebraic group over R, C, or some Qp, then any homomorphism ρ : Γ → H with
Zariski dense image (this means that ρ(Γ ) is not contained in a proper algebraic

subgroup of H) factors through a homomorphism where L is a compact group. The
results of Margulis and their proofs can be found in [266]. Important generalizations
are given in [174]. Margulis also showed that superrigidity implies arithmeticity of a
lattice Γ. This means that Γ is obtained from the prototype Sl(n, R) by certain finite
algebraic operations, namely taking the intersection of Sl(n, Z) with Lie subgroups
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of Sl(n, R), applying surjective homomorphisms between Lie groups with compact
kernels, passing to sublattices of finite index or taking finite extensions of lattices.

In the Perspectives on 8.10, we shall discuss how harmonic maps can be used
to prove superrigidity.

Exercises for Chapter 5

1) Show that real projective space RPn (cf. exercise 3 of Chapter 1) can
be obtained as the space of all (real) lines in Rn+1. Show that RP1

is diffeomorphic to S1. Compute the cohomology of RPn. Show that
RPn carries the structure of a symmetric space.

2) Similarly, define and discuss quaternionic projective space HPn as
the space of all quaternionic lines in quaternionic space Hn+1. In
particular, show that it is a symmetric space.

3) Determine all Killing fields on Sn.

4) Determine the Killing forms of the groups Sl(n,C),Sp(n,R),SU(n),U(n).

5) Discuss the geometry of Sn by viewing it as the symmetric space
SO(n+ 1)/SO(n).

6) Show that CPn = SU(n + 1)/S(U(1) × U(n)). Compute the rank of
CPn as a symmetric space.

7) Determine the closed geodesics and compute the injectivity radius of
the symmetric space RPn (cf. 1)).



6. Morse Theory and Floer Homology

6.1 Preliminaries: Aims of Morse Theory

Let X be a complete Riemannian manifold, not necessarily of finite dimension
1. We shall consider a smooth function f on X, i.e. f ∈ C∞(X,R) (actually
f ∈ C3(X,R) usually suffices). The essential feature of the theory of Morse
and its generalizations is the relationship between the structure of the critical
set of f ,

C(f) := {x ∈ X : df(x) = 0}
(and the space of trajectories for the gradient flow of f) and the topology of
X.

While some such relations can already be deduced for continuous, not nec-
essarily smooth functions, certain deeper structures and more complete re-
sults only emerge if additional conditions are imposed onto f besides smooth-
ness. Morse theory already yields very interesting results for functions on
finite dimensional, compact Riemannian manifolds. However, it also applies
in many infinite dimensional situations. For example, it can be used to show
the existence of closed geodesics on compact Riemannian manifolds M by
applying it to the energy functional on the space X of curves of Sobolev class
H1,2 in M , as we shall see in § 6.11 below.

Let us first informally discuss the main features and concepts of the theory
at some simple example. We consider a compact Riemannian manifold X
diffeomorphic to the 2-sphere S2, and we study smooth functions on X;
more specifically let us look at two functions f1, f2 whose level set graphs are
exhibited in the following figure,

1
In this textbook, we do not systematically discuss infinite dimensional Riemannian mani-

folds. The essential point is that they are modeled on Hilbert instead of Euclidean spaces. At

certain places, the constructions require a little more care than in the finite dimensional case,

because compactness arguments are no longer available.



294 6. Morse Theory and Floer Homology
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Fig. 6.1.1.

with the vertical axis describing the value of the functions. The idea of Morse
theory is to extract information about the global topology of X from the
critical points of f , i.e. those p ∈ X with

df(p) = 0.

Clearly, their number is not invariant; for f1, we have two critical points,
for f2, four, as indicated in the figure. In order to describe the local ge-
ometry of the function more closely in the vicinity of a critical point, we
assign a so-called Morse index µ(p) to each critical point p as the number
of linearly independent directions on which the second derivative d2f(p) is
negative definite (this requires the assumption that that second derivative is
nondegenerate, i.e. does not have the eigenvalue 0, at all critical points; if
this assumption is satisfied we speak of a Morse function). Equivalently, this
is the dimension of the unstable manifold Wu(p). That unstable manifold is
defined as follows: We look at the negative gradient flow of f , i.e. we consider
the solutions of

x : R →M

ẋ(t) = − grad f(x(t)) for all t ∈ R.

It is at this point that the Riemannian metric of X enters, namely by defining
the gradient of f as the vector field dual to the 1-form df . The flow lines
x(t) are curves of steepest descent for f . For t → ±∞, each flow line x(t)
converges to some critical points p = x(−∞), q = x(∞) of f , recalling that in
our examples we are working on a compact manifold. The unstable manifold
Wu(p) of a critical point p then simply consists of all flow lines x(t) with
x(−∞) = p, i.e. of those flow lines that emanate from p.
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Fig. 6.1.2.

In our examples, we have for the Morse indices of the critical points of f1

µf1(p1) = 2 , µf1(p2) = 0,

and for f2

µf2(p1) = 2 , µf2(p2) = 2 , µf2(p3) = 1 , µf2(p4) = 0 ,

as f1 has a maximum point p1 and a minimum p2 as its only critical points
whereas f2 has two local maxima p1, p2, a saddle point p3, and a minimum p4.
As we see from the examples, the unstable manifold Wu(p) is topologically a
cell (i.e. homeomorphic to an open ball) of dimension µ(p), and the manifold
X is the union of the unstable manifolds of the critical points of the function.
Thus, we get a decomposition of X into cells. In order to see the local effects
of critical points, we can intersect Wu(p) with a small ball around p and
contract the boundary of that intersection to a point. We then obtain a

p

p p

pp

p

f 1 f 121 2

42

3

Fig. 6.1.3.

pointed sphere (Sµ(p), pt.) of dimension µ(p). These local constructions al-
ready yield an important topological invariant, namely the Euler character-
istic χ(X), as the alternating sum of these dimensions,
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χ(X) =
∑

p crit. pt. of f

(−1)µ(p)µ(p).

We are introducing the signs (−1)µ(p) here in order to get some cancellations
between the contributions from the individual critical points. This issue is
handled in more generality by the introduction of the boundary operator ∂.
From the point of view explored by Floer, we consider pairs (p, q) of critical
points with µ(q) = µ(p)−1, i.e. of index difference 1. We then count the num-
ber of trajectories from p to q modulo 2 (or, more generally, with associated
signs as will be discussed later in this chapter):

∂p =
∑

q crit. pt of f
µ(q)=µ(p)−1

(#{flow lines from p to q} mod 2)q.

In this way, we get an operator from C∗(f,Z2), the vector space over Z2

generated by the critical points of f , to itself. The important point then is
to show that

∂ ◦ ∂ = 0.

On this basis, one can define the homology groups

Hk(X, f,Z2) := kernel of ∂ on Ck(f,Z2)/image of ∂ from
Ck+1(f,Z2),

where Ck(f,Z2) is generated by the critical points of Morse index k. (Because
of the relation ∂ ◦∂ = 0, the image of ∂ from Ck+1(f,Z2) is always contained
in the kernel of ∂ on Ck(f,Z2).) We return to our examples: In the figure, we
now only indicate flow lines between critical points of index difference 1.

p p

pp

p

pf1 1 2f 1 2

42

3

Fig. 6.1.4.

For f1, there are no pairs of critical points of index difference 1 at all. Denoting
the restriction of ∂ to Ck(f,Z2) by ∂k, we then have
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ker ∂2 = {p1}
ker ∂0 = {p0},

while ∂1 is the trivial operator as C1(f1,Z2) is 0. All images are likewise
trivial, and so

H2(X, f1,Z2) = Z2

H1(X, f1,Z2) = 0
H0(X, f1,Z2) = Z2

Putting
bk := dimZ2 Hk(X, f,Z2) (Betti numbers),

in particular we recover the Euler characteristic as

χ(X) =
∑

j

(−1)jbj .

Let us now look at f2. Here we have

∂2p1 = ∂2p2 = p3 ,hence ∂2(p1 + p2) = 2p3 = 0
∂1p3 = 2p4 = 0 (since we are computing mod 2)
∂0p4 = 0

Thus
H2(X, f2,Z2) = ker ∂2 = Z2

H1(X, f2,Z2) = ker ∂1/image∂2 = 0
H0(X, f2,Z2) = ker ∂0/image∂1 = Z2.

Thus, the homology groups, and therefore also the Betti numbers are the
same for either function. This is the basic fact of Morse theory, and we also see
that this equality arises from cancellations between critical points achieved
by the boundary operator.

This will be made more rigorous in §§ 6.3 - 6.10.

As already mentioned, there is one other aspect to Morse theory, namely
that it is not restricted to finite dimensional manifolds. While some of the
considerations in this Chapter will apply in a general setting, here we can
only present an application that does not need elaborate features of Morse
theory but only an existence result for unstable critical points in an infinite
dimensional setting. This will be prepared in § 6.2 and carried out in § 6.11.
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6.2 Compactness: The Palais-Smale Condition and the
Existence of Saddle Points

On a compact manifold, any continuous function assumes its minimum. It
may have more than one local minimum, however. If a differentiable func-
tion on a compact manifold has two local minima, then it also has another
critical point which is not a strict local minimum. These rather elementary
results, however, in general cease to hold on noncompact spaces, for example
infinite dimensional ones. The attempt to isolate conditions that permit an
extension of these results to general, not necessarily compact situations is
the starting point of the modern calculus of variations. For the existence of a
minimum, one usually imposes certain generalized convexity conditions while
for the existence of other critical points, one needs the so-called Palais-Smale
condition.

Definition 6.2.1 f ∈ C1(X,R) satisfies condition (PS) if every sequence
(xn)n∈N with

(i) |f(xn)| bounded

(ii) ‖df(xn)‖ → 0 for n→∞
contains a convergent subsequence.

Obviously, (PS) is automatically satisfied if X is compact. It is also sat-
isfied if f is proper, i.e. if for every c ∈ R

{x ∈ X : |f(x)| ≤ c}
is compact. However, (PS) is more general than that and we shall see in the
sequel (see § 6.11 below) that it holds for example for the energy functional
on the space of closed curves of Sobolev class H1,2 on a compact Riemannian
manifold M .

For the sake of illustration, we shall now demonstrate the following result:

Proposition 6.2.1 Suppose f ∈ C1(X,R) satisfies (PS) and has two strict
relative minima x1, x2 ∈ X. Then there exists another critical point x3 of f
(i.e. df(x3) = 0) with

f(x3) = κ := inf
γ∈Γ

max
x∈γ

f(x) > max{f(x1), f(x2)} (6.2.1)

with Γ := {γ ∈ C0([0, 1], X) : γ(0) = x1, γ(1) = x2}, the set of all paths
connecting x1 and x2. (x3 is called a saddle point for f.)
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We assume also that solutions of the negative gradient flow of f ,

ϕ : X × R → X

∂

∂t
ϕ(x, t) = −grad f(ϕ(x, t)) (6.2.2)

ϕ(x, 0) = x

exist for all x ∈ X and 0 ≤ t ≤ ε, for some ε > 0. (grad f is the gradient
of f , see (2.1.13); it is the vector field dual to the 1-form df .)

Proof. Since x1 and x2 are strict relative minima of f,
∃ δ0 > 0∀ δ with 0 < δ ≤ δ0 ∃ ε > 0 ∀x with ‖x− xi‖ = δ :

f(x) ≥ f(xi) + ε for i = 1, 2.

Consequently

∃ ε0 > 0∀ γ ∈ Γ ∃ τ ∈ (0, 1) : f(γ(τ)) ≥ max(f(x1), f(x2)) + ε0.

This implies
κ > max(f(x1), f(x2)). (6.2.3)

We want to show that

fκ := {x ∈ Rn : f(x) = κ}
contains a point x3 with

df(x3) = 0. (6.2.4)

If this is not the case, by (PS) there exist η > 0 and α > 0 with

‖df(x)‖ ≥ α (6.2.5)

whenever κ− η ≤ f(x) ≤ κ+ η.
Namely, otherwise, we find a sequence (xn)n∈N ⊂ X with f(xn) → κ and
df(xn) → 0 as n→∞, hence by (PS) a limit point x3 that satisfies f(x3) =
κ, df(x3) = 0 as f is of class C1.

In particular,
f(x1), f(x2) < κ− η, (6.2.6)

since df(x1) = 0 = df(x2). Consequently we may find arbitrarily small η > 0
such that for all γ ∈ Γ with max f(γ(τ)) ≤ κ+ η :

∀τ ∈ [0, 1] : either f(γ(τ)) ≤ κ− η

or ‖df(γ(τ))‖ ≥ α. (6.2.7)

We let ϕ(x, t) be the solution of (6.2.2) for 0 ≤ t ≤ ε.
We select η > 0 satisfying (6.2.7) and γ ∈ Γ with
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max
τ∈[0,1]

f(γ(τ)) ≤ κ+ η. (6.2.8)

Then

d

dt
f(ϕ(γ(τ), t)) = −〈(df)(ϕ(γ(τ), t), grad f(ϕ(γ(τ), t)〉

= −‖df(ϕ(γ(τ), t))‖2 ≤ 0. (6.2.9)

Therefore
max f(ϕ(γ(τ), t)) ≤ max f(γ(τ)) ≤ κ+ η. (6.2.10)

Since grad f(xi) = 0, i = 1, 2, because x1, x2 are critical points of f, also
ϕ(xi, t) = xi for i = 1, 2 and all t ∈ R, hence

ϕ(γ(·), t) ∈ Γ.

(6.2.9), (6.2.6), (6.2.7), and (6.2.2) then imply

d

dt
f(ϕ(γ(τ), t)) ≤ −α

2

4
whenever f(ϕ(γ(τ), t) > κ− η. (6.2.11)

We may assume that the above η > 0 satisfies

8η
α2
≤ ε.

Then the negative gradient flow exists at least up to t = 8η
α2 . (6.2.10) and

(6.2.11), however, imply that for t0 = 8η
a2 , we have

f(ϕ(γ(τ), t0)) ≤ κ− η for all τ ∈ [0, 1].

Since ϕ(γ(·), t0) ∈ Γ , this contradicts the definition of κ. We conclude that
there has to exist some x3 with f(x3) = κ and df(x3) = 0. �

The issue of the existence of the negative gradient flow for f will be
discussed in the next §. Essentially the same argument as in the proof of
Prop. 6.2.1 will be presented once more in Thm. 6.11.3 below.

Perspectives. The role of the Palais-Smale condition in the calculus of variations
is treated in [142]. A thorough treatment of many further examples can be found in
[234] and [39]. A recent work on Morse homology in an infinite dimensional context
is Abbondandolo, Majer[1].
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6.3 Local Analysis: Nondegeneracy of Critical Points,
Morse Lemma, Stable and Unstable Manifolds

The next condition provides a nontrivial restriction already on compact man-
ifolds.

Definition 6.3.1 f ∈ C2(X,R) is called a Morse function if for every x0 ∈
C(f), the Hessian d2f(x0) is nondegenerate. (This means that the continuous
linear operator

A : Tx0X → T ∗
x0
X

defined by
(Au)(v) = d2f(x0)(u, v) for u, v ∈ Tx0X

is bijective.) Moreover, we let

V − ⊂ Tx0X

be the subspace spanned by eigenvectors of (the bounded, symmetric, bilinear
form) d2f(x0) with negative eigenvalues and call

µ(x0) := dimV −

the Morse index of x0 ∈ C(f). For k ∈ N, we let

Ck(f) := {x ∈ C(f) : µ(x) = k}
be the set of critical points of f of Morse index k.

The Morse index µ(x0) may be infinite. In fact, however, for Morse theory
in the sense of Floer one only needs finite relative Morse indices. Before we can
explain what this means we need to define the stable and unstable manifolds
of the negative gradient flow of f at x0.

The first point to observe here is that the preceding notion of nondegen-
eracy of a critical point does not depend on the choice of coordinates. Indeed,
if we change coordinates via

x = ξ(y), for some local diffeomorphism ξ,

then, computing derivatives now w.r.t. y, and putting y0 = ξ−1(x0),

d2(f ◦ ξ)(y0)(u, v) = (d2f)(ξ(y0))(dξ(y0)u, dξ(y0)v) for any u, v,

if
df(x0) = 0.

Since dξ(y0) is an isomorphism by assumption, we see that

d2(f ◦ ξ)(y0)
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has the same index as
d2f(x0).

The negative gradient flow for f is defined as the solution of

φ : X × R → X

∂

∂t
φ(x, t) = − grad f(φ(x, t)) (6.3.1)

φ(x, 0) = x.

Here, grad f of course is the gradient of f for all x ∈ X, defined with the
help of some Riemannian metric on X, see (2.1.13).

The theorem of Picard-Lindelöf yields the local existence of this flow (see
Lemma 1.6.1), i.e. for every x ∈ X, there exists some ε > 0 such that φ(x, t)
exists for −ε < t < ε. This holds because we assume f ∈ C2(X,R) so that
grad f satisfies a local Lipschitz condition as required for the Picard-Lindelöf

theorem. We shall assume in the sequel that this flow exists globally, i.e. that
φ is defined on all of X × R. In order to assure this, we might for example
assume that d2f(x) has uniformly bounded norm on X.

(6.3.1) is an example of a flow of the type

φ : X × R → X

∂

∂t
φ = V (φ(x, t)), φ(x, 0) = x

for some vector field V on X which we assume bounded for the present
exposition as discussed in 1.6. The preceding system is autonomous in the
sense that V does not depend explicitly on the “time” parameter t (only
implicitly through its dependence on φ). Therefore, the flow satisfies the
group property

φ(x, t1 + t2) = φ(φ(x, t1), t2) for all t1, t2 ∈ R (see Thm. 1.6.1).

In particular, for every x ∈ X, the flow line or orbit γx := {φ(x, t) : t ∈ R}
through x is flow invariant in the sense that for y ∈ γx, t ∈ R

φ(y, t) ∈ γx.

Also, for every t ∈ R, φ(·, t) : X → X is a diffeomorphism of X onto its image
(see Theorem 1.6.1).

As a preparation for our treatment of Morse theory, in the present section
we shall perform a local analysis of the flow (6.3.1) near a critical point x0

of f , i.e. grad f(x0) = 0.

Definition 6.3.2 The stable and unstable manifolds at x0 of the flow φ are
defined as
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W s(x0) :=
{
y ∈ X : lim

t→+∞φ(y, t) = x0

}
Wu(x0) :=

{
y ∈ X : lim

t→−∞φ(y, t) = x0

}
.

Of course, the question arises whether W s(x0) and Wu(x0) are indeed
manifolds.

In order to understand the stable and unstable manifolds of a critical
point, it is useful to transform f locally near a critical point x0 into some
simpler, so-called “normal” form, by comparing f with a local diffeomor-
phism. Namely, we want to find a local diffeomorphism

x = ξ(y),

with
x0 = ξ(0) for simplicity

such that
f(ξ(y)) = f(x0) +

1
2
d2f(x0)(y, y). (6.3.2)

In other words, we want to transform f into a quadratic polynomial. Having
achieved this, we may then study the negative gradient flow in those coordi-
nates w.r.t. the Euclidean metric. It turns out that the qualitative behaviour
of this flow in the vicinity of 0 is the same as the one of the original flow in
the vicinity of x0 = ξ(0).

That such a local transformation is possible is the content of the Morse-
Palais-Lemma:

Lemma 6.3.1 Let B be a Banach space, U an open neighborhood of x0 ∈ B,
f ∈ Ck+2(U,R) for some k ≥ 1, with a nondegenerate critical point at x0.
Then there exist a neighborhood V of 0 ∈ B and a diffeomorphism

ξ : V → ξ(V ) ⊂ U

of class Ck with ξ(0) = x0 satisfying (6.3.2) in V . In particular, nondegen-
erate critical points of a function f of class C3 are isolated.

Proof. We may assume x0 = 0, f(0) = 0 for simplicity of notation.
We want to find a flow

ϕ : V × [0, 1] → B

with

ϕ(y, 0) = y (6.3.3)

f(ϕ(y, 1)) =
1
2
d2f(0)(y, y) for all y ∈ V. (6.3.4)
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ξ(y) := ϕ(y, 1) then has the required property. We shall construct ϕ(y, t) so
that with

η(y, t) := tf(y) +
1
2
(1− t)d2f(0)(y, y),

we have
∂

∂t
η(ϕ(y, t), t) = 0, (6.3.5)

implying

f(ϕ(y, 1)) = η(ϕ(y, 1), 1) = η(ϕ(y, 0), 0) =
1
2
d2f(0)(y, y)

as required. (6.3.5) means

0 = f(ϕ(y, t)) + t df(ϕ(y, t))
∂

∂t
ϕ(y, t) (6.3.6)

−1
2
d2f(0)(ϕ(y, t), ϕ(y, t)) + (1− t)d2f(0)(ϕ(y, t),

∂

∂t
ϕ(y, t)).

Now by Taylor expansion, using df(0) = 0,

f(x) =
∫ 1

0

(1− τ)d2f(τx)(x, x) dτ

df(x) =
∫ 1

0

d2f(τx)x dτ.

Inserting this into (6.3.6), with x = ϕ(y, t), we observe that we have a com-
mon factor ϕ(y, t) in all terms. Thus, abbreviating

T0(x) := −1
2
d2f(0) +

∫ 1

0

(1− τ)d2f(τx) dτ

T1(x, t) := d2f(0) + t

∫ 1

0

(d2f(τx)− d2f(0)) dτ,

(6.3.6) would follow from

0 = T0(ϕ(y, t))ϕ(y, t) + T1(ϕ(y, t), t)
∂

∂t
ϕ(y, t). (6.3.7)

Here, we have deleted the common factor ϕ(y, t), meaning that we now con-
sider e.g. d2f(0) as a linear operator on B.

Since we assume that d2f(0) is nondegenerate, d2f(0) is invertible as a
linear operator, and so then is T1(x, t) for x in some neighborhood W of 0
and all t ∈ [0, 1].

Therefore,
−T1(ϕ(y, t), t)−1 ◦ T0(ϕ(y, t))ϕ(y, t)

exists and is bounded if ϕ(y, t) stays in W . Therefore, a solution of (6.3.7),
i.e. of
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∂

∂t
ϕ(y, t) = −T1(ϕ(y, t)−1 ◦ T0(ϕ(y, t))ϕ(y, t), (6.3.8)

stays in W for all t ∈ [0, 1] if ϕ(y, 0) is contained in some possibly smaller
neighborhood V of 0. The existence of such a solution then is a consequence
of the theorem of Picard-Lindelöf for ODEs in Banach spaces. This completes
the proof. �

Remark. The preceding lemma plays a fundamental role in the classical ex-
positions of Morse theory. The reason is that it allows to describe the change
of topology in the vicinity of a critical point x0 of f of the sublevel sets

fλ := {y ∈ X : f(y) ≤ λ}
as λ decreases from f(x0) + ε to f(x0)− ε, for ε > 0.

The gradient flow w.r.t. the Euclidean metric for f of the form (6.3.2)
now is very easy to describe. Assuming w.l.o.g. f(x0) = 0, we are thus in the
situation of

g(y) =
1
2
B(y, y),

where B(·, ·) is a bounded symmetric quadratic form on a Hilbert space H.
Denoting the scalar product on H by 〈·, ·〉, B corresponds to a selfadjoint
bounded linear operator

L : H → H

via
〈L(u), v〉 = B(u, v)

by the Riesz representation theorem, and the negative gradient flow for g
then is the solution of

∂

∂t
φ(y, t) = −Lφ(y, t)

φ(y, 0) = y.

If v is an eigenvector of L with eigenvalue λ, then

φ(v, t) = e−λtv.

Thus, the flow exponentially contracts the directions corresponding to pos-
itive eigenvalues, and these are thus stable directions, while the ones corre-
sponding to negative eigenvalues are expanded, hence unstable.

Let us describe the possible geometric pictures in two dimensions. If we
have one positive and one negative eigenvalue, we have a so-called saddle,
and the flow lines in the vicinity of our critical point look like:
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Fig. 6.3.1. The horizontal axis is the unstable, the vertical one the stable
manifold.

If we have two negative eigenvalues, hence two unstable directions, we have
a node. If the two eigenvalues are equal, all directions are expanded at the
same speed, and the local picture is

Fig. 6.3.2.

If they are different, we may get the following picture, if the one of largest
absolute value corresponds to the horizontal direction

Fig. 6.3.3.
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The situations of Figures 6.3.2 and 6.3.3 are topologically conjugate, but
not differentiably. However, if we want to preserve conditions involving deriva-
tives like the transversality condition imposed in the next section, we may
only perform differentiable transformations of the local picture. It turns out
that the situation of Figure 6.3.1 is better behaved in that sense.

Namely, the main point of the remainder of this section is to show that the
decomposition into stable and unstable manifolds always has the same quali-
tative features in the differentiable sense as in our model situation of a linear
system of ODEs (although the situation for a general system is conjugate to
the one for the linearized one only in the topological sense, as stated by the
Hartmann-Grobman-Theorem). All these results will depend crucially on the
nondegeneracy condition near a critical point, and the analysis definitely be-
comes much more complicated without such a condition. In particular, even
the qualitative topological features may then cease to be stable against small
perturbations. While many aspects can still be successfully addressed in the
context of the theory of Conley, we shall confine ourselves to the nondegen-
erate case.

By Taylor expansion, the general case may locally be considered as a
perturbation of the linear equation just considered. Namely, we study

∂

∂t
φ(y, t) = −Lφ(y, t) + η(φ(y, t)) (6.3.10)

φ(y, 0) = y,

in some neighborhood U of 0, where η : H → H satisfies

η(0) = 0
‖η(x)− η(y)‖ ≤ δ(ε)‖x− y‖ (6.3.11)

for ‖x‖, ‖y‖ < ε, with δ(ε) a continuous monotonically increasing function of
ε ∈ [0,∞) with δ(0) = 0. The local unstable and stable manifolds of 0 then
are defined as

Wu(0, U) =
{
x ∈ U : φ(x, t) exists and is contained in U for all t ≤ 0,

lim
t→−∞φ(x, t) = 0

}
W s(0, U) =

{
x ∈ U : φ(x, t) exists and is contained in U for all t ≥ 0,

lim
t→+∞φ(x, t) = 0

}
.

We assume that the bounded linear selfadjoint operator L is nondegener-
ate, i.e. that 0 is not contained in the spectrum of L. As L is selfadjoint, the
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spectrum is real. H then is the orthogonal sum of subspaces H+, H− in-
variant under L for which L|H+ has positive, L|H− negative spectrum, and
corresponding projections

P± : H → H±, P+ + P− = Id.

Since L is bounded, we may find constants c0, γ > 0 such that

‖e−LtP+‖ ≤ c0e
−γt

‖e−LtP−‖ ≤ c0e
γt

for t ≥ 0
for t ≤ 0.

(6.3.12)

Let now y(t) = φ(x, t) be a solution of (6.3.10) for t ≥ 0. We have for any
τ ∈ [0,∞)

y(t) = e−L(t−τ)y(τ) +

t∫
τ

e−L(t−s)η(y(s)) ds, (6.3.13)

hence also

P±y(t) = e−L(t−τ)P±y(τ) +

t∫
τ

e−L(t−s)P±η(y(s)) ds. (6.3.14)±

If we assume that y(t) is bounded for t ≥ 0, then by (6.3.12)

lim
τ→∞ e−L(t−τ)P−y(τ) = 0, (6.3.15)

and hence such a solution y(t) that is bounded for t ≥ 0 can be represented
as

y(t) = P+y(t) + P−y(t)

= e−LtP+x+

t∫
0

e−L(t−s)P+η(y(s)) ds

−
∞∫
t

e−L(t−s)P−η(y(s)) ds, with x = y(0)

(6.3.16)

(putting τ = 0 in (6.3.14)+, τ = ∞ in (6.3.14)−). Conversely, any solution of
(6.3.16), bounded for t ≥ 0, satisfies (6.3.13), hence (6.3.10). For a solution
that is bounded for t ≤ 0, we analogously get the representation

y(t) = e−LtP−x−
0∫
t

e−L(t−s)P−η(y(s)) ds+
∫ t

−∞
e−L(t−s)P+η(y(s)) ds.

Theorem 6.3.1 Let φ(y, t) satisfy (6.3.10), with a bounded linear nondegen-
erate selfadjoint operator L and η satisfying (6.3.11). Then we may find a
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neighborhood U of 0 such that W s(0, U) (Wu(0, U)) is a Lipschitz graph over
P+H ∩U (P−H ∩U), tangent to P+H (P−H) at 0. If η is of class Ck in U ,
so are W s(0, U) and Wu(0, U).

Proof. We consider, for x ∈ P+H,

T (y, x)(t) := e−Ltx+

t∫
0

e−L(t−s)P+η(y(s)) ds−
∞∫
t

e−L(t−s))P−η(y(s)) ds.

(6.3.17)
From (6.3.16) we see that we need to find fixed points of T , i.e.

y(t) = T (y, x)(t). (6.3.18)

In order to apply the Banach fixed point theorem, we first need to identify
an appropriate space on which T (·, x) operates as a contraction. For that
purpose, we consider, for 0 < λ < γ, ε > 0, the space

Mλ(ε) :=
{
y(t) : ‖y‖exp,λ := sup

t≥0
eλt‖y(t)‖ ≤ ε

}
. (6.3.19)

Mλ(ε) is a complete normed space. We fix λ, e.g. λ = γ
2 , in the sequel.

Because of (6.3.11), (6.3.12), we have for y ∈Mλ(ε)

‖T (y, x)(t)‖ ≤ c0e
−γt‖x‖+ c0δ(ε)

( t∫
0

e−γ(t−s)‖y(s)‖ ds

+

∞∫
t

eγ(t−s)‖y(s)‖ ds
)

≤ c0e
−γt‖x‖+ c0δ(ε)

(
sup

0≤s≤t
eλs‖y(s)‖

t∫
0

e−γ(t−s)e−λs ds

+ sup
t≤s≤∞

eλs‖y(s)‖
∞∫
t

eγ(t−s)e−λs ds

)
.

(6.3.20)

Now since
t∫
0

e−γ(t−s)e−λs ds = e−γt 1
γ − λ

(
e(γ−λ)t − 1

)
≤ 1
γ − λ

e−λt,

∞∫
t

eγ(t−s)e−λs ds = eγt 1
γ + λ

e−(γ+λ)t =
1

γ + λ
e−λt,
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(6.3.20) implies

‖T (y, x)(t)‖ ≤ c0e
−γt‖x‖+

2c0δ(ε)
γ − λ

e−λt‖y‖exp,λ. (6.3.21)

Similarly, for y1, y2 ∈Mλ(ε)

‖T (y1, x)(t)− T (y2, x)(t)‖ ≤ 4c0δ(ε)
γ − λ

e−λt‖y1 − y2‖exp,λ. (6.3.22)

Because of our assumptions on δ(ε) (see (6.3.11), we may choose ε so small
that

4c0
γ − λ

δ(ε) ≤ 1
2
. (6.3.23)

Then from (6.3.22), for y1, y2 ∈Mλ(ε)

‖T (y1, x)− T (y2, x)‖exp,λ ≤ 1
2
‖y1 − y2‖exp,λ. (6.3.24)

If we assume in addition that

‖x‖ ≤ ε

2c0
, (6.3.25)

then for y ∈Mλ(ε), by (6.3.21)

‖T (y, x)‖exp,λ ≤ ε. (6.3.26)

Thus, if ε satisfies (6.3.23), and ‖x‖ ≤ ε
2c0

, then T (·, x) maps Mλ(ε) into
itself, with a contraction constant 1

2 . Therefore applying the Banach fixed
point theorem, we get a unique solution yx ∈ Mλ(ε) of (6.3.18), for any
x ∈ P+H with ‖x‖ ≤ ε

2c0
.

Obviously, T (0, 0) = 0, and thus y0 = 0. Also, since yx ∈Mλ(ε) is decay-
ing exponentially, we have for any x (with ‖x‖ ≤ ε

2c0
)

lim
t→∞ yx(t) = 0,

i.e.
yx(0) ∈W s(0).

From (6.3.17), we have

yx(t) = e−Ltx+

t∫
0

e−L(t−s)P+η(yx(s)) ds−
∞∫
t

e−L(t−s)P−η(yx(s)) ds.

yx lies in M(ε) and so in particular is bounded for t ≥ 0. Thus, it also satisfies
(6.3.16), i.e.
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yx(t) = e−LtP+yx(0) +

t∫
0

e−L(t−s)P+η(yx(s)) ds−
∞∫
t

e−L(t−s)P−η(yx(s)) ds,

and comparing these two representations, we see that

x = P+yx(0). (6.3.27)

Thus, for any U ⊂ {‖x‖ ≤ ε
2c0
}, we have a map

H+ ∩ U →W s(0)
x → yx(0),

with inverse given by P+, according to (6.3.27). We claim that this map is
a bijection between H+ ∩ U and its image in W s(0). For that purpose, we
observe that as in (6.3.21), we get assuming (6.3.25),

‖yx1(t)− yx2(t)‖ ≤ c0e
−γt‖x1 − x2‖+

1
2
‖yx1 − yx2‖exp,λ,

hence

‖yx1(0)− yx2(0)‖ ≤ ‖yx1 − yx2‖exp,λ ≤ 2c0‖x1 − x2‖. (6.3.28)

We insert the second inequality in (6.328) into the integrals in (6.3.17) and
use (6.3.12) as before to get from (6.3.17)

‖yx1(0)− yx2(0)‖ ≥ ‖x1 − x2‖ − 4c20δ(ε)
γ − λ

‖x1 − x2‖.

If in addition to the above requirement 1
γ c0δ(ε) < 1

4 we also impose the
condition upon ε that

4c20δ(ε)
γ − λ

≤ 1
2
,

the above inequality yields

‖yx1(0)− yx2(0)‖ ≥ 1
2
‖x1 − x2‖. (6.3.29)

Thus, the above map indeed is a bijection between {x ∈ P+H, ‖x‖ ≤ ε
2c0
}

and its image W in W s(0). (6.3.28) also shows that our map x → yx(0) is
Lipschitz, whereas its inverse is Lipschitz by (6.3.29).

In particular, since y0 = 0 as used above, W contains an open neighbor-
hood of 0 in W s(0), hence is of the form W s(0, U) for some open U .

We now verify that W s(0, U) is tangent to P+H at 0. (6.3.11), (6.3.17)
and (6.3.28) (for x1 = x, x2 = 0, recalling y0 = 0)
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‖P−yx(0)‖ = ‖
∞∫
0

eLsP−η(yx(s)) ds‖

≤ c0

∞∫
0

e−γsδ(‖yx(s)‖)‖yx(s)‖ ds

≤ c0

∞∫
0

e−γsδ
(
2c0e−λs‖x‖) 2c0e−λs‖x‖

≤ 2c20
γ − λ

δ(2c0‖x‖)‖x‖.

This implies

‖P−yx(0)‖
‖P+yx(0)‖ =

‖P−yx(0)‖
‖x‖ → 0 as yx(0) → 0 in W s(0, U),

or equivalently x→ 0 in P+H.

This shows that W s(0, U) indeed is tangent to P+H at 0.
The regularity of W s(0, U) follows since T (y, x) in (6.3.17) depends

smoothly on η. (It is easily seen from the proof of the Banach fixed point
theorem that the fact that the contraction factor is < 1 translates smooth-
ness of T as a function of a parameter into the same type of smoothness of
the fixed point as a function of that parameter.)

Obviously, the situation forWu(0, U) is symmetric to the one forW s(0, U).
�

The preceding theorem provides the first step in the local analysis for the
gradient flow in the vicinity of a critical point of the function f . It directly
implies a global result.

Corollary 6.3.1 The stable and unstable manifolds W s(x),Wu(x) of the
negative gradient flow φ for a smooth function f are injectively immersed
smooth manifolds. (If f is of class Ck+2, then W s(x) and Wu(x) are of class
Ck.)

Proof. We have
W s(x) =

⋃
t≤0

φ(·, t)(W s(x,U))

Wu(x) =
⋃
t≥0

φ(·, t)(Wu(x,U))

for any neighborhood U of x. �

Of course, the corollary holds more generally for the flows of the type
(6.3.10) (if we consider only those flow lines φ(·, t) that exist for all t ≤ 0
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resp. t ≥ 0). (The stable and unstable sets then are as smooth as η is.)
The point is that the flow φ(·, t), for any t and any open set U , provides a
diffeomorphism between U and φ(U, t), and the sets φ(U, t) cover the image
of φ(·, ·).

The stable and unstable manifolds W s(0),Wu(0) for the flow (6.3.10) are
invariant under the flow, i.e. if e.g.

x = φ(x, 0) ∈Wu(0),

then also

x(t) = φ(x, t) ∈Wu(0) for all t ∈ R for which it exists.

In 6.4, we shall easily see that because f is decreasing along flow lines, the
stable and unstable manifolds are in fact embedded, see Corollary 6.4.1.

We return to the local situation. The next result says that more generally,
in some neighborhood of our nondegenerate critical point 0, we may find a so-
called stable foliation with leaves Λs(zu) parametrized by zu ∈ Wu(0), such
that where defined, Λs(0) coincides with W s(0) while all leaves are graphs
over W s(0), and if a flow line starts on the leaf Λs(zu) at t = 0, then at
other times t, we find it on Λs(φ(zu, t)), the leaf over the flow line on Wu(0)
starting at zu at t = 0. Also, as t increases, different flow lines starting on
the same leaf approach each other at exponential speed.

The precise result is

Theorem 6.3.2 Suppose that the assumptions of Theorem 6.3.1 hold. There
exist constants c1, λ > 0, and neighborhoods U of 0 in H, V of 0 in P+H
with the following properties:
For each zu ∈Wu(0, U), there is a function

ϕzu
: V → H.

ϕzu
(z+) is as smooth in zu, z+ as η is, for example of class Ck if η belongs

to that class. If
z ∈ Λs(zu) = ϕzu

(V ),

then
φ(z, t) = ϕφ(zu,t)(P+φ(z, t)) (6.3.30)

and
‖φ(z, t)− φ(zu, t)‖ ≤ c1e

−λt (6.3.31)

as long as φ(z, t), φ(zu, t) remain in U .
We thus have a smooth (of class Ck, if η ∈ Ck), so-called stable foliation

which is flow invariant in the sense that the flow maps leaves to leaves. In
particular, Λs(0) is the stable manifold W s(0)∩V , φ(z, t) approaches W s(0)∩
V exponentially for negative t, as long as it stays in U .

Of course, there also exists an unstable foliation with analogous properties.
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Fig. 6.3.4.

Corollary 6.3.2 Let f : X → R be of class Ck+2, k ≥ 1, x a nondegenerate
critical point of f . Then in some neighborhood U of x, there exist two flow-
invariant foliations of class Ck, the stable and the unstable one. The leaves
of these two foliations intersect transversally in single points, and conversely
each point of U is the intersection of precisely one stable and one unstable
leaf.

The Corollary is a direct consequence of the Theorem, and we thus turn
to the proof of Thm. 6.3.2:

Changing η outside a neighborhood U of 0 will not affect the local struc-
ture of the flow lines in that neighborhood. By choosing U sufficiently small
and recalling (6.3.11), we may thus assume that the Lipschitz constant of η
is as small as we like. We apply (6.3.13) to φ(z, t) and φ(zu, t) and get for
τ ≥ 0, putting y(t; z, zu) := φ(z, t)− φ(zu, t),

y(t; z, zu) = e−L(t−τ)y(τ ; z, zu)

+

t∫
τ

e−L(t−s)(η(φ(z, s))− η(φ(zu, s))) ds. (6.3.32)

If this is bounded for t→∞, then (6.3.12) implies, as in (6.3.15),

lim
τ→∞ e−L(t−τ)P−y(t; z, zu) = 0. (6.3.33)

Consequently, as in (6.3.16) we get,

y(t; z, zu) = e−LtP+y(0; z, zu) (6.3.34)

+
∫ t

0

e−L(t−s)P+(η(φ(zu, s) + y(s; z, zu))− η(φ(zu, s))) ds
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−
∞∫
t

e−L(t−s)P−(η(φ(zu, s) + y(s; z, zu))− η(φ(zu, s))) ds.

As in the proof of Thm. 6.3.1, we want to solve this equation by an application
of the Banach fixed point theorem, i.e. by finding a fixed point of the iteration
of

T (y, zu, z+) := e−Ltz+ (6.3.35)

+

t∫
0

e−L(t−s)P+(η(φ(zu, s) + y(s))− η(φ(zu, s))) ds

−
∞∫
t

e−L(t−s)P−(η(φ(zu, s) + y(s))− η(φ(zu, s))) ds,

for z+ ∈ P+H. As in the proof of Thm. 6.3.1, we shall use a space Mλ(ε0)
for some fixed 0 < λ < γ.

Before we proceed to verify the assumptions required for the application
of the fixed point theorem, we wish to describe the meaning of the construc-
tion. Namely, given zu ∈ Wu(0), and the orbit φ(zu, t) starting at zu and
contained in Wu(0), and given z+ ∈ P+H, we wish to find an orbit φ(z, t)
with P+φ(z, 0) = P+z = z+ that exponentially approaches the orbit φ(zu, t)
for t ≥ 0. The fixed point argument will then show that in the vicinity of 0,
we may find a unique such orbit. If we keep zu fixed and let z+ vary in some
neighborhood of 0 in P+H, we get a corresponding family of orbits φ(z, t),
and the points z = φ(z, 0) then constitute the leaf through zu of our folia-
tion. The leaves are disjoint because orbits on the unstable manifold Wu(0)
with different starting points for t = 0 diverge exponentially for positive t.
Thus, any orbit φ(z, t) can approach at most one orbit φ(zu, t) on Wu(0)
exponentially. In order to verify the foliation property, however, we also will
have to show that the leaves cover some neighborhood of 0, i.e. that any flow
line φ(z, t) starting in that neighborhood for t = 0 approaches some flow line
φ(zu, t) in Wu(0) exponentially. This is equivalent to showing that the leaf
through zu depends continuously on zu, and this in turn follows from the
continuous dependence of the fixed point of T (·, zu, z+) on zu.

Precisely as in the proof of Thm. 6.3.1, we get for 0 < λ < γ (say λ = γ
2 ),

with c0, γ as in (6.3.12), ‖z+‖ ≤ ε1, y ∈ Mλ(ε0), i.e. ‖y(t)‖ ≤ e−λtε0, and
with [η]Lip being the Lipschitz constant of η

‖T (y, zu, z+)(t)‖ ≤ c0ε1e
−γt +

2c0ε0
γ − λ

[η]Lipe
−λt (6.3.36)

and

‖T (y1, zu, z+)(t)− T (y2, zu, z+)(t)‖ ≤ 4c0[η]Lip

γ − λ
e−λt‖y1 − y2‖exp,λ. (6.3.37)
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As remarked at the beginning of this proof, we may assume that [η]Lip is
as small as we like. Therefore, by choosing ε1 > 0 sufficiently small, we
may assume from (6.3.36) that T (·, zu, z+) maps Mλ(ε0) into itself, and from
(6.3.37) that it satisfies

‖T (y1, zu, z+)− T (y2, zu, z+)‖exp,λ ≤ 1
2
‖y1 − y2‖exp,λ.

Thus, the Banach fixed point theorem, applied to T (·, zu, z+) on the space
Mλ(ε0), yields a unique fixed point yzu,z+ on this space. We now put

ϕzu
(z1) := yzu,z+

z = yzu,z+(0). (6.3.38)

We then have all the required relations:

P+z = P+yzu,z1(0) = z1 from (6.3.35),

and hence yzu,z+ solves (6.3.34), i.e. is of the form y(t; z, zu) with z from
(6.3.38), and φ(z, t) = y(t; z, zu) + φ(zu, t) is a flow line. Condition (6.3.30)
thus holds at t = 0. Since the construction is equivariant w.r.t. time shifts,
because of the group property

φ(z, t+ τ) = φ(φ(z, t), τ) for all t, τ,

(6.3.30) holds for any t, as long as φ(z, t) stays in our neighborhood U of 0.
The exponential decay of φ(z, t)− φ(zu, t) = y(t; z, zu) follows since we have
constructed our fixed point of T in the space of mappings with precisely that
decay.

Since T is linear in z+, we see as before in the proof of Thm. 6.3.1 that
a smoothness property of η translates into a smoothness property of yzu

as
a function of z+. It remains to show the smoothness of yzu,z+ as a function
of zu. This, however is a direct consequence of the fact that yzu,z+ is a fixed
point of T (·, zu, z+), an operator with a contraction constant < 1 on the
space under consideration (Mλ(ε0)), and so the smooth dependence of T (see
(6.3.35)) on the parameters zu and z+ (which easily follows from estimates
of the type used above) translates into the corresponding smoothness of the
fixed point as a function of the parameters zu, z+.

The foliation property is then clear, because leaves corresponding to
different z′u, z

′′
u ∈ Wu(0, U) cannot intersect as we had otherwise z =

yz′
u,z+(0) = yz′′

u ,z+(0) for some z with z+ = P+z, hence also z′u = φ(z′u, 0) =
φ(z, 0)− yz′

u,z+(0) = φ(z, 0)− yz′′
u ,z+(0) = z′′u.

As the leaves depend smoothly on zu, they approach the stable manifold
W s(0) at the same speed as zu does. More precisely, any orbit φ(zu, t) con-
verges to 0 exponentially for t→ −∞, and the leaf over φ(zu, t) then has to
converge exponentially to the one over 0 which is W s(0).

The last statement easily follows by changing signs appropriately, for ex-
ample by replacing t by −t throughout. �
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Perspectives. The theory of stable and unstable manifolds for a dynamical sys-
tem is classical. Our presentation is based on the one in [49], although we have
streamlined it somewhat by consistently working with function spaces with expo-
nential weights.

6.4 Limits of Trajectories of the Gradient Flow

As always in the chapter, X is a complete Riemannian manifold, with metric
〈·, ·〉, associated norm ‖ · ‖, and distance function d(·, ·). f : X → R is a
C2-function. We consider the negative gradient flow

ẋ(t) = − grad f(x(t))
x(0) = x

for t ∈ R

for x ∈ X.
(6.4.1)

We assume that the norms of the first and second derivative of f are bounded.
Applying the Picard-Lindelöf theorem (see § 1.6), we then infer that our flow
is indeed defined for all t ∈ R. Also, differentiating (6.4.1), we get

ẍ(t)(= ∇ d
dt
ẋ(t)) = −(∇ ∂

∂x
grad f(x(t))) ẋ(t)

= (∇ ∂
∂x

grad f(x(t))) grad f(x(t)).

In particular, the first and second derivative of any flow line is uniformly
bounded. For later use, we quote this fact as:

Lemma 6.4.1 There exists a constant c0 with the property that for any so-
lution x(t) of (6.4.1),

‖ẋ‖C1(R,TX) ≤ c0.

In particular, ẋ(t) is uniformly Lipschitz continuous.

(6.4.1) is a system of so-called autonomous ordinary differential equations,
meaning that the right hand side does not depend explicitly on the “time” t,
but only implicitly through the solution x(t).

In contrast to the previous § where we considered the local behaviour of
this flow near a critical point of f , we shall now analyze the global properties,
and the gradient flow structure will now become more important.

In the sequel, x(t) will always denote a solution of (6.4.1), and we shall
exploit (6.4.1) in the sequel without quoting it explicitly. We shall call each
curve x(t), t ∈ R, a flow line, or an orbit (of the negative gradient flow). We
also put, for simplicity

x(±∞) := lim
t→±∞x(t),

assuming that these limits exist.
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Lemma 6.4.2 The flow lines of (6.4.1) are orthogonal to the level hypersur-
faces f =const.

Proof. This means the following: If for some t ∈ R, V ∈ Tx(t)X is tangent to
the level hypersurface {y : f(y) = f(x(t))}, then

〈V, ẋ(t)〉 = 0.

Now

〈V, ẋ(t)〉 = −〈V, grad f(x(t))〉
= −V (f)(x(t))
= 0

by the definition of grad f, see (2.1.14)
since V is tangent to a hypersurface on which
f is constant.

�

We compute

d

dt
f(x(t)) = df(x(t))ẋ(t) = 〈 grad f(x(t)), ẋ(t)〉 by (2.1.14)

= −‖ẋ(t)‖2. (6.4.2)

As a consequence, we observe

Lemma 6.4.3 f is decreasing along flow lines. In particular, there are no
nonconstant homoclinic orbits, i.e. nonconstant orbits with

x(−∞) = x(∞).

�
Thus, we see that there are only two types of flow lines or orbits, the

“typical” ones diffeomorphic to the real axis (−∞,∞) on which f is strictly
decreasing, and the “exceptional” ones, namely those that are reduced to
single points, the critical points of f . The issue now is to understand the
relationship between the two types.

Another consequence of (6.4.2) is that for t1, t2 ∈ R

f(x(t1))− f(x(t2)) = −
t2∫
t1

d

dt
f(x(t)) dt =

t2∫
t1

‖ẋ(t)‖2

=

t2∫
t1

‖ grad f(x(t))‖2 dt. (6.4.3)

We also have the estimate
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d(x(t1), x(t2)) ≤
t2∫
t1

‖ẋ(t)‖ dt ≤ (t2 − t1)
1
2

⎛⎝ t2∫
t1

‖ẋ(t)‖2 dt
⎞⎠

1
2

by Hölder’s inequality

= (t2 − t1)
1
2 (f(x(t1))− f(x(t2)))

1
2

by (6.4.3).

(6.4.4)

Lemma 6.4.4 For any flow line, we have for t→ ±∞ that grad f(x(t)) → 0
or |f(x(t))| → ∞.

Proof. If e.g. f∞ = limt→∞ f(x(t)) > −∞, then for 0 ≤ t ≤ ∞
f0 := f(x(0)) ≥ f(x(t)) ≥ f∞,

and (6.4.3) implies ∫ ∞

0

‖ẋ(t)‖2 := f0 − f∞ <∞. (6.4.5)

Since ẋ(t) = − grad f(x(t)) is uniformly Lipschitz continuous by Lemma 6.4.1,
(6.4.5) implies that

lim
t→∞ grad f(x(t)) = lim

t→∞ ẋ(t) = 0.

�

We also obtain the following strengthening of Corollary 6.3.1:

Corollary 6.4.1 The stable and unstable manifolds W s(x),Wu(x) of the
negative gradient flow φ for a smooth function f are embedded manifolds.

Proof. The proof is an easy consequence of what we have already derived,
but it may be instructive to see how all those facts are coming together here.

We have already seen in Corollary 6.3.1 that W s(x) andWu(x) are in-
jectively immersed. By Corollary 1.6.1, each point in X is contained in a
unique flow line, but the typical ones of the form (−∞,∞) are not compact,
and so, their closures may contain other points. By Lemma 6.4.4, any such
point is a critical point of f . The local situation near such a critical point
has already been analyzed in Theorem 6.3.1. The only thing that still needs
to be excluded to go from Corollary 6.3.1 to the present statement is that
a flow line x(t) emanating at one critical point x(−∞) returns to that same
point for t→∞. This, however, is exluded by Lemma 6.4.3. �

In the sequel, we shall also make use of
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Lemma 6.4.5 Suppose (xn)n∈N ⊂ X converges to x0. Then for any T >
0, the curves xn(t)|[−T,T ] (with xn(0) = xn) converge in C1 to the curve
x0(t)|[−T,T ].

Proof. This follows from the continuous dependence of solutions of ODEs on
the initial data under the assumption of the Picard-Lindelöf theorem (the
proof of that theorem is based on the Banach fixed point theorem, and the
fixed point produced in that theorem depends continuously on a parameter,
cf. J.Jost, Postmodern Analysis, Springer, 1998, p.129). Thus the curves xn(t)
converge uniformly to x0(t) on any finite interval [−T, T ]. By Lemma 6.4.1,
ẍn(t) are uniformly bounded, and so xn has to converge in C1. �

We now assume for the remainder of this § that f satisfies the Palais-
Smale condition (PS), and that all critical points of f are nondegenerate.

These assumptions are rather strong as they imply

Lemma 6.4.6 f has only finitely many critical points in any bounded region
of X, or, more generally in any region where f is bounded. In particular, in
every bounded interval in R there are only finitely many critical values of f ,
i.e. γ ∈ R for which there exists p ∈ X with df(p) = 0, f(p) = γ.

Proof. Let (pn)n∈N ⊂ X be a sequence of critical points of f , i.e. df(pn) =
0. If they are contained in a bounded region of X, or, more generally, if
f(pn) is bounded, the Palais-Smale condition implies that after selection of a
subsequence, they converge towards some critical point p0. By Thm. 6.3.1, we
may find some neighborhood U of p0 in which the flow has the local normal
form as described there and which in particular contains no other critical
point of f besides p0. This implies that almost all pn have to coincide with
p0, and thus there can only be finitely many of them. �

Our assumptions - (PS) and nondegeneracy of all critical points - also
yield

Lemma 6.4.7 Let x(t) be a flow line for which f(x(t)) is bounded. Then
the limits x(±∞) := limt→±∞ x(t) exist and are critical points of f . x(t)
converges to x(±∞) exponentially as t→ ±∞.

Proof. By Lemma 6.4.4, grad f(x(t)) → 0 for t → ±∞. Analyzing w.l.o.g.
the situation t→ −∞, (PS) implies that we can find a sequence (tn)n∈N ⊂ R,
tn → −∞ for n →∞, for which x(tn) converges to some critical point x−∞
of f . We wish to show that limt→−∞ x(t) exists, and it then has to coincide
with x−∞.

This, however, directly follows from the nondegeneracy condition, since
by Thm. 6.3.1 we may find a neighborhood U of the critical point x−∞



6.4 Limits of Trajectories of the Gradient Flow 321

with the property that any flow line in that neighborhood containing x−∞
as an accumulation point of some sequence x(tn), tn → −∞, is contained
in the unstable manifold of x−∞. Furthermore, as shown in Thm. 6.3.1, the
convergence is exponential. �

Remark. Without assuming that the critical point x(−∞) is nondegenerate,
we still may use (PS) (see Lemma 6.4.8 below) and grad f(x(t)) → 0 for
t → −∞ to see that there exists t0 ∈ R for which U := {x(t) : t ≤ t0} is
precompact and in particular bounded. By Taylor expansion, we have in U

‖ grad f(x)‖ ≤ ‖ grad f(x−∞)‖+ cd(x, x−∞) = cd(x, x−∞)
for some constant c, as grad f(x−∞) = 0.

Thus, for t ≤ tn

d(x(t), x−∞) ≤
t∫

−∞
‖ẋ(s)‖ ds ≤ c

t∫
−∞

d(x(s), x−∞) ds.

The latter integral may be infinite. As soon as it is finite, however, we already
get

d(x(t), x−∞) ≤ c1e
ct for some constant c1,

i.e. exponential convergence of x(t) towards x−∞ as t→ −∞.

We shall also use the following simple estimate

Lemma 6.4.8 Suppose ‖ grad f(x(t))‖ ≥ ε, for t1 ≤ t ≤ t2. Then

d(x(t1), x(t2)) ≤ 1
ε
(f(x(t1))− f(x(t2)).

Proof.

d(x(t1), x(t2)) ≤
t2∫
t1

‖ẋ(t)‖ dt

≤ 1
ε

t2∫
t1

‖ẋ(t)‖2 dt, since ‖ẋ(t)‖ = ‖ grad f(x(t))‖ ≥ ε

=
1
ε
(f(x(t1))− f(x(t2)) by (6.4.3).

�

We now need an additional assumption:
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There exists a flow-invariant compact set Xf ⊂ X containing the critical
points p and q.

What we have in mind here is a certain set of critical points together with
all connecting trajectories between them. We shall see in Thm. 6.4.1 below
that we need to include here all critical points that can arise as limits of flow
lines between any two critical points of the set we wish to consider.

Lemma 6.4.9
Let (xn(t))n∈N be a sequence of flow lines in Xf with

xn(−∞) = p, xn(∞) = q.
Then after selection of a subsequence, xn(t) converges in C1 on any com-

pact interval in R towards some flow line x0(t).

Proof. Let t0 ∈ R. If (for some subsequence)

‖ grad f(xn(t0))‖ → 0,

then by (PS) (γ1 = f(p), γ2 = f(q), noting f(p) ≥ f(x(t)) ≥ f(q) by
Lemma 6.4.3), we may assume that xn(t0) converges, and the convergence of
the flow lines on compact intervals then follows from Lemma 6.4.5. We thus
assume

‖ grad f(xn(t0))‖ ≥ ε for all n and some ε > 0.

Since f(xn(t)) is bounded between f(p) and f(q), Lemma 6.4.4 implies that
we may find tn < t0 with

‖ grad f(xn(tn))‖ = ε

and ‖ grad f(xn(t))‖ ≥ ε for tn ≤ t ≤ t0.

From (6.4.3), we get |tn− t0| ≤ 1
ε2 (f(tn)−f(t0)) ≤ 1

ε2 (f(p)−f(q)). Applying
our compactness assumption on Xf , we may assume that xn(tn) converges.
From Lemma 6.4.5 we then see that xn(t) converges on any compact interval
towards some flow line x0(t). �

In general, xn(t) will not converge uniformly on all of R towards x0(t).
We need an additional assumption as in the next

Lemma 6.4.10 Under the assumption of Lemma 6.4.9, assume

x0(−∞) = p, x0(∞) = q,

i.e. x0(t) has the same limit points as the xn(t). Then the xn(t) converge to
x0(t) in the Sobolev space H1,2(R, X). In fact, this holds already if we only
assume f(x0(−∞)) = f(p), f(x0(∞)) = f(q).

Proof. The essential point is to show that
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lim
t→−∞xn(t) = p, lim

t→∞xn(t) = q, uniformly in n.

Namely in that case, we may apply the local analysis provided by Thm. 6.3.1
uniformly in n to conclude convergence for t ≤ t1 and t ≥ t2 for certain
t1, t2 ∈ R, and on the compact interval [t1, t2], we get convergence by the
preceding lemma.

Because of (PS), we only have to exclude that after selection of a subse-
quence of xn(t), we find a sequence (tn)n∈N ⊂ R converging to ∞ or −∞,
say −∞, with

‖ grad f(xn(tn))‖ ≥ ε for some ε > 0. (6.4.6)

From (6.4.4), we get the uniform estimate

‖ grad f(xn(t1))− grad f(xn(t2))‖ ≤ c(t2 − t1)
1
2 for some constant c.

(6.4.7)
By (6.4.6), (6.4.7), we may find δ > 0 such that for tn − δ ≤ t ≤ tn

‖ grad f(xn(t))‖ ≥ ε

2
,

hence

f(p)− f(xn(tn)) ≥ f(xn(tn − δ))− f(xn(tn)) ≥ δ
ε2

4
by (6.4.3).

On the other hand, by our assumption on x0(t), we may find t0 ∈ R with

f(p)− f(x0(t0)) = δ
ε2

8
. (6.4.8)

If tn ≤ t0, we have

f(p)− f(xn(t0)) ≥ f(p)− f(xn(tn)) ≥ δ
ε2

4
,

and so xn(t0) cannot converge to x0(t0), contrary to our assumption. Thus
(6.4.6) is impossible, and the proof is complete, except for the last remark,
which, however, also directly follows as the only assumption about x0(t) that
we need is (6.4.8). �

We are now ready to demonstrate the following compactness

Theorem 6.4.1 Let p, q be critical points of f , and let Mf
p,q ⊂ Xf be a

space of flow lines x(t)(t ∈ R) for f with x(−∞) = p, x(∞) = q. Here
we assume that Xf is a flow-invariant compact set. Then for any sequence
(xn(t))n∈N ⊂Mf

p,q, after selection of a subsequence, there exist critical points

p = p1, p2, . . . , pk = q,
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flow lines yi ∈ Mf
pi,pi+1

and tn,i ∈ R (i = 1, . . . , k − 1, n ∈ N) such that the
flow lines xn(t + tn,i) converge to yi for n → ∞. In this situation, we say
that the sequence xn(t) converges to the broken trajectory y1#y2# . . .#yk−1.

Proof. By Lemma 6.4.9, xn(t) converges (after selection of a subsequence, as
always) towards some flow line x0(t). x0(t) need not be inMf

p,q, but the limit
points x0(−∞), x0(∞) (which exist by Lemma 6.4.7) must satisfy

f(p) ≥ f(x0(−∞)) ≥ f(x0(∞)) ≥ f(q).

If e.g. f(p) = f(x0(−∞)) then the proof of Lemma 6.4.10 shows that
x0(−∞) = p.

If f(p) > f(x0(−∞)), we choose f(x0(−∞)) < a < f(p) and tn,i with

f(xn(tn, i)) = a.

We apply Lemma 6.4.9 to xn(t+ tn,i) to get a limiting flow line y0(t). Clearly
f(p) ≥ f(y0(−∞)), and we must also have

f(y0(∞)) ≥ f(x0(−∞)),

because otherwise the flow line y0(t) would contain the critical point x0(−∞)
in its interior.

If f(p) > f(y0(−∞)) of f(y0(∞)) > f(x0(−∞)), we repeat the process.
The process must stop after a finite number of such steps, because the critical
points of f are isolated because of (PS) and the nondegeneracy assumption
yielding to the local picture of Thm. 6.3.1 (see Lemma 6.4.6). �

6.5 The Morse-Smale-Floer Condition: Transversality
and Z2-Cohomology

In this §, we shall continue to assume the Palais-Smale condition and the
nondegeneracy of all critical points of our function f : X → R. Here, we
assume that f is of class C3.

The central object of Morse-Floer theory is the space of connecting tra-
jectories between the critical points of a function f . If f is bounded, then by
Lemma 6.4.6, any x ∈ X lies on some such trajectory connecting two critical
points of f . In the general case, one may simply restrict the considerations
in the sequel to the subspace Xf of X of such connecting trajectories, and
one may even consider only some subset of the critical points of f and the
connecting trajectories between them, including those limiting configurations
that arise by Thm. 6.4.1. As in § 6.4, we need to assume that the set of flow-
lines under consideration is contained in a compact flow-invariant set. Thus,
we shall assume X is such a closed space of connecting trajectories.
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X then carries two stratifications Ss and Su, consisting of the stable
resp. unstable manifolds of the critical points of f . Thus, each point lies on
precisely one stratum of Ss, and likewise on one stratum of Su, and each
such stratum is a smooth manifold, by Cor. 6.3.1.

Definition 6.5.1 The pair (X, f) satisfies the Morse-Smale-Floer condition
if all intersections between the strata of Ss and the ones of Su are finite-
dimensional and transversal.

We recall that two submanifolds X1, X2 of X intersect transversally if for
all x ∈ X1 ∩ X2, the tangent space TxX is the linear span of the tangent
spaces TxX1 and TxX2. If the dimension of X is finite, then if X1 and X2

intersect transversally at x, we have

dimX1 + dimX2 = dim(X1 ∩X2) + dimX. (6.5.1)

It easily follows from the implicit function theorem that in the case of a
transversal intersection of smooth manifolds X1, X2, X1 ∩ X2 likewise is a
smooth manifold.

In addition to (PS) and the nondegeneracy of all critical points of f , we
shall assume for the rest of this § that (X, f) satisfies the Morse-Smale-
Floer condition.

Definition 6.5.2 Let p, q be critical points of f . If the unstable manifold
Wu(p) and the stable manifold W s(q) intersect, we say that p is connected
to q by the flow, and we define the relative index of p and q as

µ(p, q) := dim(Wu(p) ∩W s(q)).

µ(p, q) is finite because of the Morse-Smale-Floer condition.
If X is finite dimensional, then the Morse indices µ(p) of all critical points

p of f themselves are finite, and in the situation of Def. 6.5.2, we then have

µ(p, q) = µ(p)− µ(q) (6.5.2)

as one easily deduces from (6.5.1). Returning to the general situation, we
start with the following simple observation

Lemma 6.5.1 Any nonempty intersection Wu(p) ∩W s(q) (p, q ∈ C(f), p 
=
q) is a union of flow lines. In particular, its dimension is at least one.

Proof. If x ∈ Wu(p), then so is the whole flow line x(t) (x(0) = x), and the
same holds for x ∈W s(q). �

p is thus connected to q by the flow if and only if there is a flow line x(t)
with x(−∞) = p and x(∞) = q. Expressed in another way, the intersections



326 6. Morse Theory and Floer Homology

Wu(p) ∩W s(q) are flow invariant. In particular, in the case of a nonempty
such intersection, p and q are both contained in the closure of Wu(p)∩W s(q).

The following lemma is fundamental:

Lemma 6.5.2 Suppose that p is connected to r and r to q by the flow. Then
p is also connected to q by the flow, and

µ(p, q) = µ(p, r) + µ(r, q).

Proof. By assumption, Wu(p) intersects W s(r) transversally in a manifold
of dimension µ(p, r). Since W s(r) is a leaf of the smooth stable foliation of r
in some neighborhood U of r by Thm. 6.3.2, in some possibly smaller neigh-
borhood of r, Wu(p) intersects each leaf of this stable foliation transversally
in some manifold of dimension µ(p, r). Similarly, in the vicinity of r, W s(q)
also intersects each leaf of the unstable foliation of r in some manifold, this
time of dimension µ(r, q). Thus, the following considerations will hold in some
suitable neighborhood of r.

The space of leaves of the stable foliation of r is parametrized by Wu(r),
and we thus get a family of µ(p, r)-dimensional manifolds parametrized by
Wu(r). Likewise, we get a second family of µ(r, q)-dimensional manifolds
parametrized by W s(r). The leaves of the stable and unstable foliations sat-
isfy uniform C1-estimates (in the vicinity of r) by Thm. 6.3.2, because of our
assumption that f is of class C3. The two finite-dimensional families that we
have constructed may also be assumed to satisfy such uniform estimates. The
stable and unstable foliations yield a local product structure in the sense that
each point near r is the intersection of precisely one stable and one unstable
leaf.

If we now have two such foliations with finite-dimensional smooth sub-
families of dimension n1 and n2, say, all satisfying uniform estimates, it then
easily follows by induction on n1 and n2 that the leaves of these two subfami-
lies need to intersect in a submanifold of dimension n1 + n2. The case where
n1 = n2 = 0 can be derived from the implicit function theorem. �

We also have the following converse result

Lemma 6.5.3 In the situation of Thm. 6.4.1, we have

k−1∑
i=1

µ(pi, pi+1) = µ(p, q).

Proof. It suffices to treat the case k = 3 as the general case then will easily
follow by induction. This case, however, easily follows from Lemma 6.5.2 with
p = p1, r = p2, q = p3. �
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We shall now need to make the assumption that the space Xf of con-
necting trajectories that we are considering is compact. (At this moment, we
are considering the space Wu(p) ∩W s(q).)

Lemma 6.5.4 Suppose that p, q (p 
= q) are critical points of f , connected
by the flow, with

µ(p, q) = 1.

Then there exist only finitely many trajectories from p to q.

Proof. For any point x on such a trajectory, we have

f(p) ≥ f(x) ≥ f(q).

We may assume that ε > 0 is so small that on each flow line from p to q,
we find some x with ‖ grad f(x)‖ = ε, because otherwise we would have
a sequence of flow lines (si)i∈N from p to q with supx∈si

‖ grad f(x)‖ → 0
for i → ∞. By (PS) a subsequence would converge to a flow line s (see
Lemma 6.4.5) with grad f(x) ≡ 0 on s. s would thus be constant, in con-
tradiction to Thm. 6.4.1. Thus, if, contrary to our assumption, we have
a sequence (si)i∈N of trajectories from p to q, we select xi ∈ si with
‖ grad f(xi)‖ = ε, use the compactness assumption on the flow-invariant
set containing the si to get a convergent subsequence of the xi, hence also of
the si by Thm. 6.4.1. The limit trajectory s also has to connect p to q, because
our assumption µ(p, q) = 1 and Lemmas 6.5.1 and 6.5.3 rule out that s is a
broken trajectory containing further critical points of f . The Morse-Smale-
Floer condition implies that s is isolated in the one-dimensional manifold
Wu(p) ∩W s(q). This is not compatible with the assumption that there ex-
ists a sequence (si) of different flow lines converging to s. Thus, we conclude
finiteness. �

We can now summarize our results about trajectories:

Theorem 6.5.1 Suppose our general assumptions (f ∈ C3, (PS), nondegen-
eracy of critical points, Morse-Smale-Floer condition) continue to hold. Let
p, q be critical points of f connected by the flow with

µ(p, q) = 2.

Then each component of the space of flow lines from p to q, Mf
p,q := Wu(p)∩

W s(q) either is compact after including p, q (and diffeomorphic to the 2-
sphere), or its boundary (in the sense of Thm. 6.4.1) consists of two different
broken trajectories from p to q.

Conversely each broken trajectory s = s1#s2 from p to q (this means that
there exists a critical point p′ of f with µ(p, p′) = 1 = µ(p′, q), s1(−∞) = p,
s1(∞) = p′ = s2(−∞), s2(∞) = q) is contained in the boundary of precisely
one component of Mf

p,q.
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Note. Let s′1#s′2 and s′′1#s′′2 be broken trajectories contained in the boundary
of the same component of Mf

p,q. It is then possible that s′1 = s′′1 or s′2 = s′′2 ,
but the theorem says that we cannot have both equalities simultaneously.

Proof. If a component M of Mf
p,q is compact then it is a 2−dimensional

manifold that is a smooth family of curves, flow lines from p to q with common
end points p, q, but disjoint interiors. Thus, such a component is diffeomorphic
to S2.

If M is not compact, Thm. 6.4.1 implies the existence of broken trajec-
tories from p to q in the boundary of this component.

Let a be a regular value of f with f(p) > a > f(q). By Lemma 6.4.2, M
intersects the level hypersurface f−1(a) transversally, and M∩f−1(a) thus
is a 1−dimensional manifold. It can thus be compactified by adding one or
two points. By Thm. 6.4.1, these points correspond to broken trajectories
from p to q. We thus need to exclude that M can be compactified by a
single broken trajectory s1#s2. We have s1(−∞) = p, s2(∞) = q, and we
put p′ := s1(∞) = s2(−∞). In view of the local normal form provided by
Thm. 6.3.2, we have the following situation near p′: Mf

p,q is a smooth surface
containing s1 in its interior. Mf

p,q then intersects a smooth 1−dimensional
family of leaves of the stable foliation near p′ in a 1−dimensional manifold.
The family of those stable leaves intersected by Mf

p,q then is parametrized
by a smooth curve in Wu(p′) containing p′ in its interior. It thus contains the
initial pieces of different flow lines originating from p in opposite directions,
and these flow lines are contained in limits of flow lines fromMf

p,q. Therefore,
in order to compactify Mf

p,q in Wu(p′), a single flow line s2 does not suffice.

Fig. 6.5.1.

Finally, if a broken trajectory through some p′ would be a 2−sided limit of
Mf

pq,, this again would not be compatible with the local flow geometry near
p′ as just described. �
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Definition 6.5.3 Let C∗(f,Z2) be the free Abelian group with Z2-coefficients
generated by the set C∗(f) of critical points of f . For p ∈ C∗(f), we put

∂p :=
∑

r∈C∗(f)
µ(p,r)=1

(
#Z2Mf

p,r

)
r

where #Z2Mf
p,r is the number mod 2 of trajectories from p to r (by Lemma

6.5.4 there are only finitely many such trajectories), and we extend this to a
group homomorphism

∂ : C∗(f,Z2) → C∗(f,Z2).

Theorem 6.5.2 We have
∂ ◦ ∂p = 0,

and thus (C∗(f,Z2), ∂) is a chain complex.

Proof. We have

∂ ◦ ∂p =
∑

r∈C∗(f)
µ(p,r)=1

∑
q∈C∗(f)
µ(r,q)=1

#Z2Mf
p,r #Z2Mf

r,qq.

We are thus connecting the broken trajectories from p to q for q ∈ C∗(f)
with µ(p, q) = 2, by Lemma 6.5.1. By Thm. 6.5.1 this number is always even,
and so it vanishes mod 2. This implies ∂ ◦ ∂p = 0 for each p ∈ C∗(f), and
thus the extension to C∗(f,Z2) also satisfies ∂ ◦ ∂ = 0. �

We are now ready for

Definition 6.5.4 Let f be a C3 function satisfying the Morse-Smale-Floer
and Palais-Smale conditions, and assume that we have a compact space X
of trajectories as investigated above. If we are in the situation of an absolute
Morse index, we let Ck(f,Z2) be the group with coefficient in Z2 generated
by the critical points of Morse index k. Otherwise, we choose an arbitrary
grading in a consistent manner, i.e. we require that if p ∈ Ck(f), q ∈ Cl(f),
then

k − l = µ(p, q)

whenever the relative index is defined. We then obtain boundary operators

∂ = ∂k : Ck(f,Z2) → Ck−1(f,Z2),

and we define the associated homology groups as

Hk(X, f,Z2) :=
ker ∂k

image ∂k+1
,
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i.e. two elements α1, α2 ∈ ker ∂k are identified if there exists some β ∈
Ck+1(f,Z2) with

α1 − α2 = ∂β.

Instead of a homology theory, we can also define a Morse-Floer cohomo-
logy theory by dualization. For that purpose, we put

Ck(f,Z2) := Hom (Ck(f,Z2),Z2)

and define coboundary operators

δk : Ck(f,Z2) → Ck+1(f,Z2)

by
δkωk(pk+1) = ωk(∂k+1pk+1)

for ωk ∈ Ck(f,Z2) and pk+1 ∈ Ck(f,Z2).
If there are only finitely many critical points p1,k, ..., pm,k of index k, then

we have a canonical isomorphism

Ck(f,Z2)→ Ck(f,Z2)

pj,k → pk
j with pk

j (pi,k) = δij (= 1 for i = j and 0 otherwise)

and
δkpk

j =
∑

qi,k+1 critical point of f of indexk+1

pj,k(∂qi,k+1)qk+1
i

provided that sum is finite, too. Of course, this cohomology theory and the
coboundary operator δ can also be constructed directly from the function f ,
by looking at the positive instead of the negative gradient flow, i.e. at the
solution curves of

y : R → X

ẏ(t) =grad f(y(t)) for all t
The preceding formalism then goes through in the same manner as before.

Remark. In certain infinite dimensional situations in the calculus of varia-
tions, there may be an analytic difference between the positive and negative
gradient flow. Often, one faces the task of minimizing a certain function
f : X → R that is bounded from below, but not from above, and then also of
finding other critical points of such a function. In such a situation, flow lines
for the negative gradient flow

ẋ(t) = −grad f(x(t))

might be well controlled, simply because f is decreasing on such a flow line,
and therefore bounded, while along the positive gradient flow

ẏ(t) = grad f(y(t)),

f may not be so well controlled, and one may not be able to derive the
asymptotic estimates necessary for the analysis.
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6.6 Orientations and Z-homology

In the present §, we wish to consider the group C∗(f,Z) with integer coeffi-
cients generated by the set C∗(f) of critical points of f and define a boundary
operator

∂ : C∗(f,Z) → C∗(f,Z)

satisfying
∂ ◦ ∂ = 0

as in the Z2-case, in order that (C∗(f,Z), ∂) be a chain complex. We assume
that the general assumptions of § 6.5 (f ∈ C3, (PS), nondegeneracy of critical
points, Morse-Smale-Floer condition) continue to hold.

We shall attempt to define ∂ as in Def. 6.5.3, by counting the number of
connecting trajectories between critical points of relative index 1, but now we
cannot simply take that number mod 2, but we need to introduce a sign for
each such trajectory and add the corresponding signs ±1. In order to define
these signs, we shall introduce orientations.

In order to motivate our subsequent construction, we shall first consider
the classical case where X is a finite dimensional, compact, oriented, dif-
ferentiable manifold. Let f : X → R thus be a Morse function. The index
µ(p) of a critical point p is the number of negative eigenvalues of d2f(p),
counted with multiplicity. The corresponding eigenvectors span the tangent
space V u

p ⊂ TpX of the unstable manifold Wu(p) at p. We choose an arbi-
trary orientation of V u

p , i.e. we select some basis e1, . . . , eµ(p) of V u
p as being

positive. Alternatively, we may represent this orientation by dx1∧. . .∧dxµ(p),
where dx1, . . . , dxµ(p) are the cotangent vectors dual to e1, . . . , eµ(p).

As X is assumed to be oriented, we get an induced orientation of the
tangent space V s

p ⊂ TpX of the stable manifold W s(p) by defining a ba-
sis eµ(p)+1, . . . , en (n = dimX) as positive if e1, . . . , eµ(p), eµ(p)+1, . . . , en is a
positive basis of TpX. In the alternative description, with dxµ(p)+1, . . . , . . . dxn

dual to eµ(p)+1, . . . , en, the orientation is defined by dxµ(p)+1 ∧ . . .∧ dxn pre-
cisely if dx1 ∧ . . . dxµ(p) ∧ dxµ(p)+1 ∧ . . . ∧ dxn yields the orientation of TpX.

Now if q is another critical point of f , of index µ(q) = µ(p)−1, we choose
any regular value a of f with f(q) < a < f(p) and consider the intersection

Wu(p) ∩W s(q) ∩ f−1(a).

The orientation of X also induces an orientation of f−1(a), because f−1(a)
is always transversal to grad f , and so we can consider a basis η2, . . . , ηn of
Tyf

−1(a) as positive if grad f(y), η2, . . . , ηn is a positive basis of TyX.
As we are assuming the Morse-Smale-Floer condition,

Wu(p) ∩W s(q) ∩ f−1(a)

is a finite number of points by Lemma 6.5.4, and since Wu(p),W s(p) and
f−1(a) all are equipped with an orientation, we can assign the sign +1 or
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−1 to any such intersection point depending on whether this intersection is
positive or negative.

These intersection points correspond to the trajectories s of f from p to
q, and we thus obtain a sign

n(s) = ±1

for any such trajectory, and we put

∂p :=
∑

r∈C∗(f)
µ(r)=µ(p)−1

s∈Mf
p,r

n(s)r.

It thus remains to show that with this definition of the boundary operator
∂, we get the relation

∂ ◦ ∂ = 0.

In order to verify this, and also to free ourselves from the assumptions that X
is finite dimensional and oriented and to thus preserve the generality achieved
in the previous §, we shall now consider a relative version.

We let p, q be critical points of f connected by the flow with

µ(p, q) = 2,

and we letM be a component ofMf
p,q = Wu(p)∩W s(q). For our subsequent

analysis, only the second case of Thm. 6.5.1 will be relevant, i.e. where M
has a boundary which then consists of two different broken trajectories from
p to q. It is clear from the analysis of the proof of Thm. 6.5.1 that M is
orientable. In fact, M is homeomorphic to the open disk, and it contains
two transversal one-dimensional foliations, one consisting of the flow lines of
f and the other one of the intersections of M with the level hypersurfaces
f−1(a), f(q) < a < f(p) (as M does not contain any critical points in its
interior, all intersections with level hypersurfaces of f are transversal). We
may thus choose an orientation of M.

Fig. 6.6.1.
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This orientation then also induces orientations of the corner points of the
broken trajectories in the boundary of M in the following sense: Let s =
s1#s2 be such a broken trajectory, with intermediate critical point r =
s1(∞) = s2(−∞). The plane in TrX spanned by ṡ1(∞) := limt→∞ ṡ1(t)
and ṡ2(−∞) := limt→−∞ ṡ2(t) then is a limit of tangent planes of M and
thus gets an induced orientation from M.

This now implies that if we choose an orientation of s1, we get an induced
orientation of s2, by requiring that if v1, v2 are positive tangent vectors of s1
and s2, resp. at r, then v1, v2 induces the orientation of the above plane in
TrX. Likewise, M∩ f−1(a), for f(q) < a < f(p) gets an induced orientation
from the one of M and the one of the flow lines inside M which we always
orient by −grad f . Then the signs n(s1), n(s2) of s1 and s2, resp. are defined
by checking whether s1 resp. s2 intersects these level hypersurfaces f−1(a)
positively or negatively. Alternatively, what amounts to the same is simply
checking whether s1, s2 have the orientation defined by −grad f , or the op-
posite one, and thus, we do not even need the level hypersurfaces f−1(a).

Obviously, the problem now is that the choice of orientation of many
trajectories connecting two critical points p, r of relative index µ(p, r) = 1
depends on the choice of orientation of some such M containing s in its
boundary, and the question is whether conversely, the orientations of these
M can be chosen consistently in the sense that they all induce the same
orientation of a given s. In the case of a finite dimensional, oriented manifold,
this is no problem, because we get induced orientations on all such M from
the orientation of the manifold and choices of orientations on all unstable
manifolds, and these orientations fit together properly. In the general case,
we need to make the global assumption that this is possible:

Definition 6.6.1 The Morse-Smale-Floer flow f is called orientable if we
may define orientations on all trajectories Mf

p,q for critical points p, q with
relative index µ(p, q) = 2 in such a manner that the induced orientations on
trajectories s between critical points of relative index 1 are consistent.

With these preparations, we are ready to prove

Theorem 6.6.1 Assume that the general assumptions (f ∈ C3, (PS)), non-
degeneracy of critical points, Morse-Smale-Floer conditions continue to hold,
and that the flow is orientable in the sense of Def. 6.6.1. For the group
C∗(f,Z) generated by the set C∗(f) of critical points of f , with integer coef-
ficients, the operator

∂ : C∗(f,Z) → C∗(f,Z)
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defined by
∂p :=

∑
r∈C∗(f)
µ(p,r)=1

s∈Mf
p,r

n(s)r

for p ∈ C∗(f) and linearly extended to C∗(f,Z), satisfies

∂ ◦ ∂ = 0.

Thus, C∗((f,Z), ∂) becomes a chain complex, and we may define homology
groups Hk(X, f,Z) in the same manner as in Def. 6.5.4.

Proof. We have

∂ ◦ ∂p =
∑

q∈C∗(f)
µ(r,q)=1

s2∈Mf
r,q

∑
r∈C∗(f)
µ(p,r)=1

s1∈Mf
r,p

n(s2)n(s1)q

=
∑

q∈C∗(f)
µ(p,q)=2

(s1,s2) broken trajectory fromp to q

n(s2)n(s1)q.

By Thm. 6.5.1, these broken trajectories always occur in pairs (s′1, s′2),
(s′′1, s′′2) bounding some component M of Mf

p,q.
It is then geometrically obvious, see Fig. 6.6.1, that

n(s′1)n(s′2) = −n(s′′1)n(s′′2).

Thus, the contributions of the two members of each such pair cancel each
other, and the preceding sum vanishes. �

In the situation of Thm. 6.6.1, we put

bk(X, f) := dimZ Hk(X, f,Z).

We shall see in §§ 6.7, 6.9 that these numbers in fact do not depend on f .
As explained at the end of the preceding §, one may also construct a dual
cohomology theory, with

Ck(f,Z) := Hom (Ck(f,Z),Z)

and coboundary operators

δk : Ck(f,Z) → Ck+1(f,Z)

with
δkωk(pk+1) = ωk(∂k+1pk+1)

for ωk ∈ Ck(f,Z), pk+1 ∈ Ck+1(f,Z).
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6.7 Homotopies

We have constructed a homology theory for a Morse-Smale-Floer function
f on a manifold X, under the preceding assumptions. In order to have a
theory that captures invariants of X, we now ask to what extent the resulting
homology depends on the choice of f . To formulate the question differently,
given two such functions f1, f2, can one construct an isomorphism between
the corresponding homologies? If so, is this isomorphism canonical?

A first geometric approach might be based on the following idea, consid-
ering again the case of a finite dimensional, compact manifold:
Given a critical point p of f1 of Morse index µ, and a critical point q of f2 of
the same Morse index, the unstable manifold of p has dimension µ, and the
stable one of q dimension n−µ if n = dimX. Thus, we expect that generally,
these two manifolds intersect in finitely many points x1, . . . , xk with signs
n(xj) given by the sign of the intersection number, and we might put

φ21(p) =
∑

q∈C∗(f2)
µ

f2 (q)=µ
f1 (p)

∑
x∈W u

f1 (p)∩W s

f2 (q)

n(x)q (6.7.1)

(we introduce additional indices f1,f2 in order to indicate the source of the
objects) to get a map

φ21 : C∗(f1, G) → C∗(f2, G)

extended to coefficients G = Z2 or Z that hopefully commutes with the
boundary operators ∂f1

, ∂f2
in the sense that

φ21 ◦ ∂f1
= ∂f2 ◦ φ21. (6.7.2)

One difficulty is that for such a construction, we need the additional
assumption that the unstable manifolds for f1 intersect the stable ones for
f2 transversally. Even if f1 and f2 are Morse-Smale-Floer functions, this
need not hold, however. For example, one may consider f2 = −f1; then for
any critical point p,

Wu
f1(p) = W s

f2(p)

which is not compatible with transversality.
Of course, one may simply assume that all such intersections are transver-

sal but that would not be compatible with our aim to relate the homology
theories for any pair of Morse-Smale-Floer functions in a canonical manner.
We note, however, that the construction would work in the trivial case where
f2 = f1, because then Wu

f1(p) and W s
f2(p) = W s

f1(p) intersect precisely at
the critical point p itself.

In order to solve this problem, we consider homotopies

F : X × R → R
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with

lim
t→−∞F (x, t) = f1(x), lim

t→∞F (x, t) = f2(x) for all x ∈ X.

In fact, for technical reasons it will be convenient to impose the stronger
requirement that

F (x, t) = f1(x) for t ≤ −R
F (x, t) = f2(x) for t ≥ R

(6.7.3)

for some R > 0.
Given such a function F , we consider the flow

ẋ(t) = −gradF (x(t), t) for t ∈ R

x(0) = x,
(6.7.4)

where grad denotes the gradient w.r.t. the x-variables. In order to avoid
trouble with cases where this gradient is unbounded, one may instead consider
the flow

ẋ(t) =
−1√

1 +
∣∣∂F

∂t

∣∣ |gradF |2
gradF (x(t), t), (6.7.5)

but for the moment, we ignore this point and consider (6.7.4) for simplicity.
If p and q are critical points of f1 and f2, resp., with index µ the strategy

then is to consider the number of flow lines s(t) of (6.7.5) with

s(−∞) = p, s(∞) = q,

equipped with appropriate signs n(s), denote the space of these flow lines by
MF

p,q, and put

φ21(p) =
∑

q∈C∗(f2)
µ(q)=µ(p)

∑
s∈MF

p,q

n(s)q. (6.7.6)

Let us again discuss some trivial examples:
If f1 = f2 and F is the constant homotopy, then clearly

φ21(p) = p,

for every critical point p. If f2 = −f1 and we construct F by

F (x, t) :=

⎧⎪⎨⎪⎩
f1(x) for

−tf1(t) for

−f1(x) for

−∞ < t ≤ −1
−1 ≤ t ≤ 1

1 ≤ t <∞
(6.7.7)

we have
s(t) = s(−t) (6.7.8)

for any flow line. Thus, also
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s(∞) = s(−∞),

and a flow line cannot connect a critical p of f1 of index µf1
with a critical

point q of f2 of index µf2
= n−µf1

, unless p = q and µf2
= n

2 . Consequently,
we seem to have the same difficulty as before. This is not quite so, however,
because we now have the possibility to perturb the homotopy if we wish to
try to avoid such a peculiar behavior. In other words, we try to employ only
generic homotopies.

In order to formulate what we mean by a generic homotopy we recall the
concept of a Morse function. There, we required that the Hessian d2f(x0)
at a critical point is nondegenerate. At least in the finite dimensional case
that we consider at this moment, this condition is generic in the sense that
the Morse functions constitute an open and dense subset of the set of all C2

functions on X. The Morse condition means that at a critical point x0, the
linearization of the equation

ẋ(t) = −grad f(x(t))

has maximal rank. A version of the implicit function theorem then implies
that the linearization of the equation locally already describes the qualitative
features of the original equation. In this sense, we formulate

Definition 6.7.1 The homotopy F satisfying (6.7.3) is called regular if when-
ever

gradF (x0, t) = 0 for all t ∈ R,

the operator

∂

∂t
+ d2F (x0, t) : H1,2(x∗0TX) → L2(x∗0TX)

is surjective.

This is satisfied for a constant homotopy, if f1 is a Morse function, but
not for the homotopy (6.7.7) because in that case only sections satisfying
(6.7.8) are contained in the range of ∂

∂t + d2F (x0, t).
Let us continue with our heuristic considerations:

If f1 is a Morse function as before, ϕ : (−∞, 0] → R+ satisfies ϕ(t) = 1 for
t ≤ −1, ϕ(0) = 0, we consider the flow

ẋ(t) = −ϕ(t)grad f1(x(t)) for −∞ < t ≤ 0,
x(0) = x.

We obtain a solution for every x ∈ X, and as before x(−∞) always is a
critical point of f1. Thus, while all the flow lines emanate at a critical point
for t = −∞, they cover the whole manifold at t = 0. If we now extend ϕ to
(0,∞) by putting

ϕ(t) := ϕ(−t) for t ≥ 0,
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and if we have another Morse function f2 and put

ẋ(t) = −ϕ(t)grad f2(x(t)) for t ≥ 0,

in the same manner, the flow lines will converge to critical points of f2 at
t = ∞. We thus relate the flow asymptotic regimes governed by f1 and f2

through the whole manifold X at an intermediate step. Of course, this only
works under generic conditions, and we may have to deform the flow slightly
to achieve that, but here we rather record the following observation: The
points x(0) for flow lines with x(−∞) = p cover the unstable manifolds of
the critical point p of f1, and likewise the points x(0) for the flow lines with
x(∞) = q for the critical point q of f2 cover the stable manifold of q. Thus
the flow lines with x(−∞) = p, x(∞) = q correspond to the intersection of
the unstable manifold of p (w.r.t. f1) with the stable manifold of q (w.r.t.
f2), and we now have the flexibility to deform the flow if problems arise from
nontransversal intersections.

Let us return once more to the trivial example f1 = f2, and a constant
homotopy F . We count the flow lines not in X, but in X × R. This simply
means that in contrast to the situation in previous §§, we now consider the
flow lines x(·) and x(· + t0), for some fixed t0 ∈ R, as different. Of course,
if the homotopy F is not constant in t, the time shift invariance is broken
anyway, and in a certain sense this is the main reason for looking at the
nonautonomous equation (6.7.4) as opposed to the autonomous one ẋ(t) =
−grad f(x(t)) considered previously. Returning for a moment to our constant
homotopy, if p and q are critical points of indices µ(p) and µ(q) = µ(p)− 1,
resp. , connected by the flow of f1, the flow lines for F cover a two-dimensional
region in X × R. This region is noncompact, and it can be compactified by
adding broken trajectories of the type

s1#s2

where s1 is a flow for f1 from p to q and s2 is the constant flow line for
f1 = f2 from p to q. This looks analogous to the situation considered in
§ 6.5, and in fact with the same methods one shows the appropriate analogue
of Thm. 6.5.1. When it come to orientations, however, there is an important
difference. Namely, in the situation of Fig. 6.7.1 (where we have compactified
R to a bounded interval), the two broken trajectories from p to q in the
boundary of the square should now be given the same orientation if we wish
to maintain the aim that the homotopy given through (6.7.6) commutes with
the boundary operator even in the case of coefficients in Z.
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Fig. 6.7.1.

The considerations presented here only in heuristic terms will be taken up
with somewhat more rigour in § 6.9 below.

6.8 Graph flows

In this §, we shall assume that X is a compact, oriented Riemannian manifold.
A slight variant of the construction of the preceding § would be the following:
Let f1, f2 be two Morse-Smale-Floer functions, as before. In the preceding §,
we have treated the general situation where the unstable manifolds of f1 need
not intersect the stable ones of f2 transversally. The result was that there
was enough flexibility in the choice of homotopy between f1 and f2 so that
that did not matter. In fact, a consequence of that analysis is that we may
always find a sufficiently small perturbation of either one of the two functions
so that such a transversality property holds, without affecting the resulting
algebraic invariants.

Therefore from now on, we shall assume that for all Morse-Smale-Floer
functions f1, f2, . . . occuring in any construction in the sequel, all unstable
manifolds of any one of them intersect all the stable manifolds of all the other
functions transversally. We call this the generalized Morse-Smale-Floer
condition.

Thus, assuming that property, we consider continuous paths

x : R → X

with

ẋ(t) = −grad fi(x(t)), with i = 1 for t < 0, i = 2 for t > 2.

The continuity requirement then means that we are switching at t = 0 in a
continuous manner from the flow for f1 to the one for f2. As we are assuming
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the generalized Morse-Smale-Floer condition, this can be utilized in the man-
ner described in the previous § to equate the homology groups generated by
the critical points of f1 and f2 resp.

This construction admits an important generalization:
Let Γ be a finite oriented graph with n edges, n1 of them parametrized by
(−∞, 0], n2 parametrized by [0,∞), and the remaining ones by [0, 1]. We also
assume that to each edge ei of Γ , there is associated a Morse-Smale-Floer
function fi and that the generalized Morse-Smale-Floer condition holds for
this collection f1, . . . , fn.

Definition 6.8.1 A continuous map x : Γ → X is called a solution of the
graph flow for the collection (f1, . . . , fn) if

ẋ(t) = −grad fi(x(t)) for t ∈ ei. (6.8.1)

Again, the continuity requirement is relevant only at the vertices of Γ as
the flow is automatically smooth in the interior of each edge. If p1, . . . , pn1

are critical points for the functions f1, . . . , fn1 resp. corresponding to the
edges e1, . . . , en1 parametrized on (−∞, 0], pn1+1, . . . , pn1+n2 critical points
corresponding to the edges en1+1, . . . , en1+n2 resp. parametrized on [0,∞),
we let MΓ

p1,...,pn1+n2
be the space of all solutions of (6.8.1) with

lim
t→−∞

t∈ei

x(t) = pi for i = 1, . . . , n1

lim
t→∞
t∈ei

x(t) = pi for i = n1 + 1, . . . , n1 + n2,

i.e. we assume that on each edge ei, i = 1, . . . , n1 + n2, x(t) asymptotically
approaches the critical pi of the function fi.

If X is a compact Riemannian manifold of dimension d, we have

Theorem 6.8.1 Assume, as always in this §, the generalized Morse-Smale-
Floer condition. Then MΓ

p1,...,pn1+n2
is a smooth manifold, for all tuples

(p1, . . . , pn1+n2), where pi is a critical point of fi, with

dimMΓ
p1,...,pn1+n2

=
n1∑
i=1

µ(pi)−
n1+n2∑

j=n1+1

µ(pj)− d(n1 − 1)− ddimH1(Γ,R),

(6.8.2)
where µ(pk) is the Morse index of the critical point pk for the function fk.

Proof. We simply need to count the dimensions of intersections of the relevant
stable and unstable manifolds for the edges modeled on [0,∞) and (−∞, 0]
and the contribution of internal loops. Each unstable manifold corresponding
to a point pi, i = n1 +1, . . . , n1 +n2 has dimension d−µ(pi). If a submanifold
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X1 of X is intersected transversally by another submanifold X2, then the
intersection has dimension d− (d−dimX1)− (d−dimX2), and this accounts
for the first three terms in (6.8.2). If we have an internal loop in Γ , this
reduces the dimension by d, as the following argument shows:
Let Γ be constituted by two e1, e2 with common end points, and let the
associated Morse functions be f1, f2, resp. For fi, i = 1, 2, we consider the
graph of the flow induced by that function, i.e. we associate to each x ∈ X
the point xi(1), where xi is the solution of ẋi(t) = −grad fi(xi(t)), xi(0) = x.
These two graphs for f1 and f2 are then submanifolds of dimension d of
X ×X, and if they intersect transversally, they do so in isolated points, as
dim(X × X) = 2d. Thus, if we start with a d-dimensional family of initial
points, we get a finite number of common end points. �

Again MΓ
p1,...,pn1+n2

is not compact, but can be compactified by flows
with broken trajectories on the noncompact edges of Γ .

The most useful case of Thm. 6.8.1 is the one where the dimension of
MΓ

p1,...,pn1+n2
is 0. In that case, MΓ

p1,...,pn1+n2
consists of a finite number

of continuous maps x : Γ → X solving (6.8.1) that can again be given
appropriate signs. The corresponding sum is denoted by

n(Γ ; p1, . . . pn1+n2).

We then define a map

q(Γ ) :
n1⊗
i=1

C∗(fi,Z) → n1+n2⊗
j=n1+1

C∗(fj ,Z)

(p1 ⊗ . . .⊗ pn1) → n(Γ ; p1, . . . , pn1+n2)(pn1+1 ⊗ . . .⊗ pn1+n2).

With
C∗(fi,Z) := Hom(C∗(fi,Z),Z),

we may consider q(Γ ) as an element of

n1⊗
i=1

C∗(fi,Z)
n1+n2⊗

j=n1+1
C∗(fj ,Z).

With the methods of the previous §, one verifies

Lemma 6.8.1 ∂q = 0.

Consequently, we consider q(Γ ) also as an element of

n1⊗
i=1

H∗(fi,Z)
n1+n2⊗

j=n1+1
H∗(fj ; Z).

Besides the above example where Γ had the edges (−∞, 0] and [0,∞),
there are other examples of topological significance:
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1) Γ = [0,∞). Thus, n1 = 0, n2 = 1, and with p = pn1 = p1,

dimMΓ
p = d− µ(p).

This is 0 precisely if µ(p) = d, i.e. if p is a local maximum. In that
case q(Γ ) ∈ Hd(X; Z) is the so-called fundamental class of X.

2) Γ consisting of two edges modeled on (−∞, 0], and joined by identi-
fying the two right end points 0. Thus n1 = 2, n2 = 0, and

dimMΓ
p1,p2

= µ(p1) + µ(p2)− d,

and this is 0 if µ(p2) = d− µ(p1). With k := µ(p1), thus

q(Γ ) ∈ Hk(X,Z)⊗Hd−k(X,Z)
∼= Hom (Hk(X; Z);Hd−k(X,Z)

is the so-called Poincaré duality isomorphism.
3) Γ consisting of one edge modeled on (−∞, 0], and two ones modeled

on [0,∞), all three identified at the common point 0. Thus n1 =
1, n2 = 2, and

dimMΓ
p1,p2,p3

= µ(p1)− µ(p2)− µ(p3).

Hence, if this is 0,

q(Γ ) ∈ ⊗
j≤k

Hk(K,Z)⊗Hj(X,Z)⊗Hk−j(X,Z)

∼ ⊗
j≤k

Hom (Hj(X,Z)⊗Hk−j(X,Z),Hk(X,Z).

We thus obtain a product

∪ : Hj(X,Z)⊗Hk−j(X,Z) → Hk(X,Z),

the so-called cup product.
4) Γ consisting of one edge (−∞, 0] together with a closed loop based at

0. In that case
dimMΓ

p = µ(p)− d,

which vanishes for µ(p) = d, i.e.

q(Γ ) ∈ Hd(X,Z).

This cohomology class is called the Euler class.
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6.9 Orientations

We are considering solution curves of

ẋ(t) + grad f(x(t)) = 0, (6.9.1)

or more generally of
ẋ(t) + gradF (x(t), t) = 0, (6.9.2)

and we wish to assign a sign to each such solution in a consistent manner.
For that purpose, we linearize those equations. We consider a curve x(t) of

class H1,2(R, X) and a section ϕ(t) of class H1,2 of the tangent bundle of X
along x, i.e. ϕ ∈ H1,2(R, x∗TX). Then, in the case of (6.9.1), the linearization
is

∇ d
ds

(
(expx(t)sϕ(t))• + grad f(expx(t) sϕ(t))

)
|s=0

= ∇ d
dt
ϕ(t) +Dϕ(t)grad f(x(t)) with ∇ d

dt
:= ∇ẋ(t),

∇ the Levi-Civita connection of X,

and likewise, for (6.9.2), we get

∇ d
dt
ϕ(t) +Dϕ(t)gradF (x(t), t).

We shall thus consider the operator

∇ẋ +DgradF : H1,2(x∗TX) → L2(x∗TX)
ϕ → ∇ẋϕ+DϕgradF.

(6.9.3)

This is an operator of the form

∇+A : H1,2(x∗TX)→ L2(x∗TX),

where A is a smooth section of x∗EndTX which is selfadjoint, i.e. for each
t ∈ R, A(t) is a selfadjoint linear operator on Tx(t)X.

We are thus given a vector bundle E on R and an operator

∇+A : H1,2(E) → L2(E),

with A a selfadjoint endomorphism of E. H1,2(E) and L2(E) are Hilbert
spaces, and ∇+A will turn out to be a Fredholm operator if we assume that
A has boundary values A(±∞) at ±∞.

Let L : V → W be a continuous linear operator between Hilbert spaces
V,W , with associated norms ‖ · ‖V , ‖ · ‖W resp. (we shall often omit the
subscripts V,W and simply write ‖ · ‖ in place of ‖ · ‖V or ‖ · ‖W ). L is called
a Fredholm operator iff

(i) V0 := kerL is finite dimensional



344 6. Morse Theory and Floer Homology

(ii) W1 := L(V ), the range of L, is closed and has finite dimensional
complement W0 =: coker L, i.e.

W = W1 ⊕W0.

From (i), we infer that there exists a closed subspace V1 of V with

V = V0 ⊕ V1,

and the restriction of L to V1 is a bijective continuous linear operator L−1 :
V1 →W1.

By the inverse operator theorem,

L−1 : W1 → V1

then is also a bijective continuous linear operator. We put

ind L := dimV0 − dimW0

= dimkerL− dim coker L.

The set of all Fredholm operators from V to W is denoted by F (V,W ).

Lemma 6.9.1 F (V,W ) is open in the space of all continuous linear operators
from V to W , and

ind : F (V,W ) → Z

is continuous, and therefore constant on each component of F (V,W ).

For a proof, see e.g. J.Jost, X. Li-Jost, Calculus of variations, Cambridge
University Press, 1998.

By trivializing E along R, we may simply assume E = Rn, and we thus
consider the operator

d

dt
+A(t) : H1,2(R,Rn) → L2(R,Rn), (6.9.4)

and we assume that A(t) is continuous in t with boundary values

A(±∞) = lim
t→±∞A(t),

and that A(−∞) and A(∞) are nondegenerate. In particular, since these
limits exists, we may assume that

‖A(t)‖ ≤ const.,

independently of t. For a selfadjoint B ∈ Gl(n,R), we denote by

µ(B)

the number of negative eigenvalues, counted with multiplicity.
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Lemma 6.9.2 LA := d
dt + A(t) : H1,2(R,Rn) → L2(R,Rn) is a Fredholm

operator with
ind LA = µ(A(−∞))− µ(A(∞)).

Proof. We may find a continuous map C : R → Gl(n,R) and continuous
functions λ1(t), . . . , λn(t)) such that

C(t)−1A(t)C(t) = diag (λ1(t), . . . , λn(t)), λ1(t) ≤ λ2(t) ≤ . . . ≤ λn(t),

i.e. we may diagonalize the selfadjoint linear operators A(t) in a continuous
manner. By continuously deforming A(t) (using Lemma 6.9.1), we may also
assume that A(t) is asymptotically constant, i.e. there exists T > 0 with

A(t) = A(−∞) for t ≤ −T
A(t) = A(∞) for t ≥ T.

Thus, C(t), λ1(t), . . . , λn(t) are also asymptotically constant. If s(t) is in
H1,2, then it is also continuous, and hence if it solves

d

dt
s(t) +A(t)s(t) = 0,

then it is also of class C1, since d
dts(t) = −A(t)s(t) is continuous. On

(−∞,−T ], it has to be a linear combination of the functions

e−λi(−∞)t,

and on [T,∞), it is a linear combination of

e−λi(∞)t, i = 1, . . . , n.

Since a solution on [−T, T ] is uniquely determined by its values at the bound-
ary points ±T , we conclude that the space of solutions is finite dimensional.
In fact, the requirement that s be in H1,2 only allows linear combinations
of those exponential functions of the above type with λi(−∞) < 0, on
(−∞,−T ), and likewise we get the condition λi(∞) > 0. Thus

dim kerLA = max(µ(A(−∞))− µ(A(∞)), 0)

is finite.
Now let σ ∈ L2(R,Rn) be in the orthogonal complement of the image of

LA, i.e.∫ (
d

dt
s(t) +A(t)s(t)

)
· σ(t) dt = 0 for all s ∈ H1,2(R,Rn),

where the ′′·′′ denotes the Euclidean scalar product in Rn. In particular, this
relation implies that the weak derivative d

dtσ(t) equals −A(t)σ(t), hence is in
L2. Thus σ ∈ H1,2(R,Rn) is a solution of
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d

dt
σ(t)−A(t)σ(t) = 0.

In other words, LA has −L−A as its adjoint operator, which then by the
above argument satisfies

dim kerL−A = max(µ(−A(−∞))− µ(−A(∞)), 0)
= max(µ(A(∞))− µ(A(−∞)), 0).

LA then has as its range the orthogonal complement of the finite dimensional
space kerL−A, which then is closed, and

ind LA = dim kerLA − dim coker LA

= dim kerLA − dim kerL−A

= µ(A(−∞))− µ(A(∞)).

�

Corollary 6.9.1 Let x1, x2 be H1,2 curves in X, Ei vector bundles along
xi, Ai continuous selfadjoint sections of EndEi, i = 1, 2, with x1(∞) =
x2(−∞), E1(∞) = E2(−∞), A1(∞) = A2(−∞). We assume again that
A1(−∞), A1(∞) = A2(−∞), A2(∞) are nondegenerate. We consider diffeo-
morphisms

σ1 : (−∞, 0) → R, σ2 : (0,∞) → R,

with σt(t) = t for |t| ≥ T for some T > 0, i = 1, 2, and consider the curve

x(t) :=

⎧⎪⎨⎪⎩
x1(σ1(t)) for t < 0

x1(∞) = x2(−∞) for t = 0
x2(σ2(t)) for t > 0

with the corresponding bundle E(t) and A(t) glued together from E1, E2,
A1, A2, resp. in the same manner. Then

ind LA = ind LA1 + ind LA2 .

Proof.

ind LA1 + ind LA2 = µ(A1(−∞))− µ(A1(∞)) + µ(A2(−∞))− µ(A2(∞))
= µ(A(−∞))− µ(A(∞))
= ind LA, by Lemma 6.9.2 and construction.

�

We now need to introduce the notion of the determinant of a Fredholm
operator. In order to prepare that definition, we first let V,W be finite di-
mensional vector spaces of dimension m, equipped with inner products, and
put
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Det V := Λm(V ), with Λ0V := R.

Then (Det V )∗ ⊗Det V is canonically isomorphic to R via v∗ ⊗ w → v∗(w).
A linear map

l : V →W

then induces
det l : Det V → Det W,

i.e.
det l ∈ (Det V )∗ ⊗Det W.

The transformation behavior w.r.t. bases e1, . . . , em of V , f1, . . . , fm of W is
given by

det l(e1 ∧ . . . ∧ em) = le1 ∧ . . . ∧ lem =: ∆lf1 ∧ . . . ∧ fm.

We may e.g. use the inner product on W to identify the orthogonal comple-
ment of l(V ) with coker l. The exact sequence

0 → ker l→ V
l→W → coker l→ 0

and the multiplicative properties of det allow the identification

(Det V )∗ ⊗Det W ∼= (Det ker l)∗ ⊗Det (coker l) =: Det l.

This works as follows:
Put V0 = ker l, W0 = coker L (= l(V )⊥), and write V = V0 ⊗ V1, W =
W0 ⊗W1. Then

l1 := l|V1 : V1 →W1,

is an isomorphism, and if e1, . . . , ek is a basis of V0, ek+1, . . . em one of V1,
f1, . . . fk one of W0, and if we take the basis lek+1, . . . , lem of W1, then

(e1 ∧ . . . ek ∧ ek+1 ∧ . . . ∧ em)∗ ⊗ (f1 ∧ . . . ∧ fk ∧ lek+1 ∧ . . . ∧ lem)

is identified with
(e1 ∧ . . . ∧ em)∗ ⊗ (f1 ∧ . . . ∧ fm).

According to the rules of linear algebra, this identification does not depend
on the choices of the basis. In this manner, we obtain a trivial line bundle
over V ∗⊗W , with fiber (Det V )∗⊗Det W ∼= (Det ker l)∗⊗Det coker l over
l. det l then is a section of this line bundle, vanishing precisely at those l that
are not of maximal rank m. On the other hand, if l is of maximal rank, then
(Det ker l)∗⊗Det coker l can be canonically identified with R, and det l with
1 ∈ R, by choosing basis e1, . . . , em of V and the basis le1, . . . lem of W , as
above.

In a more abstract manner, this may also be derived from the above exact
sequence

0 → ker l→ V
l→W → coker l→ 0
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on the basis of the following easy algebraic

Lemma 6.9.3 Let 0 → V1
l1→V2

l2→ . . .
lk−1→ Vk → 0 be an exact sequence of

linear maps between finite dimensional vector spaces. Then there exists a
canonical isomorphism

⊗
i odd

Λmax Vi
∼→ ⊗

i even
Λmax Vi.

One simply uses this Lemma plus the above canonical identification
(Det V )∗ ⊗Det V ∼= R.

Suppose now that V,W are Hilbert spaces, that Y is a connected topolog-
ical space and that ly ∈ F (V,W ) is a family of Fredholm operators depending
continuously on y ∈ Y . Again, we form the determinant line

Det ly := (Det ker ly)∗ ⊗ (Det coker ly)

for each y. We intend to show that these lines (Det ly)y∈Y constitute a line
bundle over Y .

ly : (ker ly)⊥ → (coker ly)⊥

v → lyv

is an isomorphism, and

ind ly = dimker ly − dim coker ly

is independent of y ∈ Y , as Y is connected. For y in a neighborhood of some
y0 ∈ Y , let V ′

y ⊂ V be a continuous family of finite dimensional subspaces
with ker ly ⊂ V ′

y for each y, and put

W ′
y := ly(V ′

y)⊕ coker ly.

Then as above

(Det V ′
y)∗ ⊗Det W ′

y
∼= (Det ker ly)∗ ⊗Det coker ly.

The point now is that this construction is independent of the choice of V ′
y in

the sense that if V ′′
y is another such family, we get a canonical identification

(Det V ′′
y )∗ ⊗Det W ′′

y
∼= (Det V ′

y)∗ ⊗Det W ′
y.

Once we have verified that property, we can piece the local models (Det V ′
y)∗⊗

Det W ′
y for Det ly unambiguously together to get a line bundle with fiber

Det ly over y on Y .
It suffices to treat the case

V ′
y ⊂ V ′′

y ,

and we write
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V ′′
y = V ′

y ⊕ V̄y,

and
W ′′

y = W ′
y ⊕ W̄y.

ly : V̄y → W̄y is an isomorphism, and

det ly : Det V̄y → Det W̄y

yields a nonvanishing section ∆ly of (Det V̄y)∗ ⊗ Det W̄y. We then get the
isomorphism

(Det V ′
y)∗ ⊗Det W ′

y → (Det V ′
y)∗ ⊗Det W ′

y ⊗ (Det V̄y)∗ ⊗Det W̄y

∼= (Det V ′′
y )∗ ⊗ (Det W ′′

y )

sy → sy ⊗∆ly ,

and this isomorphism is canonically determined by ly.
We have thus shown

Theorem 6.9.1 Let (ly)y∈Y ⊂ F (V,W ) be a family of Fredholm operators
between Hilbert spaces V,W depending continuously on y in some connected
topological space Y . Then we may construct a line bundle over Y with fiber

Det ly = (Det ker ly)∗ ⊗ (Det coker ly)

over y, and with a continuous section det ly vanishing precisely at those y ∈ Y
where ker ly 
= 0.

Definition 6.9.1 Let l = (ly)(y∈Y ) ⊂ F (V,W ) be a family of Fredholm
operators between Hilbert spaces V,W depending continuously on y in some
connected topological space Y . An orientation of this family is given by a
nowhere vanishing section of the line bundle Det l of the preceding theorem.

If ker ly = 0 for all y ∈ Y , then of course det ly yields such a section. If
this property does not hold, then such a section may or may not exist.

We now wish to extend Cor. 6.9.1 to the determinant lines of the operators
involved, i.e. we wish to show that

detLA
∼= detLA1 ⊗ detLA2 .

In order to achieve this, we need to refine the glueing somewhat. We again
trivialize a vector bundle E over R, so that E becomes R×Rn. Of course, one
has to check that the subsequent constructions do not depend on the choice
of trivialization.

We again consider the situation of Cor. 6.9.1, and we assume that A1, A2

are asymptotically constant in the sense that they do not depend on t for
|t| ≥ T , for some T > 0. For τ ∈ R, we define the shifted operator Lτ

A1
via
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Lτ
A1
s(t) =

ds

dt
+A1(t− τ)s(t).

As we assume A1 asymptotically constant, Aτ
1(t) := A1(t+τ) does not depend

on t over [−1,∞) for τ sufficiently large. Likewise, A−τ
2 (t) does not depend

on t over (−∞, 1] for τ sufficiently large. We then put

A(t) := A1#τA2(t) :=

{
A1(t+ τ) for t ∈ (−∞, 0]
A2(t− τ) for t ∈ [0,∞)

and obtain a corresponding Fredholm operator

LA1#τ A2 .

Lemma 6.9.4 For τ sufficiently large,

Det LA1#τ A2
∼= Det LA1 ⊗Det LA2 .

Sketch of Proof. We first consider the case where LA1 and LA2 are surjective.
We shall show

dim kerLA ≤ dim kerLA1 + dimkerLA2 (6.9.5)

which in the surjective case, by Cor. 6.9.1 equals

ind LA1 + ind LA2 = ind LA

≤ dim kerLA,

hence equality throughout.
Now if sτ (t) ∈ kerLA1#τ A2 , we have

d

dt
sτ (t) +A(t)sτ (t) = 0, (6.9.6)

and we have
A(t) = A1(∞)(= A2(−∞))

for |t| ≤ τ , for arbitrarily large T , provided τ is sufficiently large. Since A1(∞)
is assumed to be nondegenerate, the operator

d

dt
+A1(∞)

is an isomorphism, and thus, if we have a sequence

(sτn
)n∈N

of solutions of (6.9.6) for τ = τn, with ‖sτn
‖H1,2 ≤ 1, τn →∞, then

sτn
→ 0 on [−T, T ], for any T > 0.
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On the other hand, for t very negative, we get a solution of

d

dt
sτ (t) +A1(−∞)sτ (t) = 0,

or more precisely, sτ (t− τ) will converge to a solution of

d

dt
s(t) +A1(t)s(t) = 0,

i.e. an element of kerLA1 . Likewise sτ (t+ τ) will yield an element of kerLA2 .
This shows (6.9.5).

If LA1 , LA2 are not necessarily surjective, one finds a linear map Λ : Rk →
L2(R,Rn) such that

LAi
+ Λ : H1,2(R,Rn)× Rk → L2(R,Rn)

(s, v) → LAi
s+ Λv

are surjective for i = 1, 2. One then performs the above argument for these
perturbed operators, and observes that the corresponding determinants of
the original and the perturbed operators are isomorphic. �

We now let Y be the space of all pairs (x,A), where x : R → X is a
smooth curve with limits x(±∞) = limt→±∞ x(t) ∈ X, and A is a smooth
section of x∗EndTX for which A(t) is a selfadjoint linear operator on Tx(t)X,
for each t ∈ R, with limits A(±∞) = limt→±∞A(t) that are nondegenerate,
and for each y ∈ (x,A) ∈ Y , we consider the Fredholm operator

L(x,A) := ∇+A : H1,2(x∗TX)→ L2(x∗TX)

Lemma 6.9.5 Suppose X is a finite dimensional orientable Riemannian
manifold. Let (x1, A1), (x1, A2) ∈ Y satisfy x1(±∞) = x2(±∞), A1(±∞) =
A2(±∞). Then the determinant lines Det L(x1,A1) and Det L(x2,A2) can be
identified through a homotopy.

Proof. We choose trivializations σi : x∗i TX → R × Rn (n = dimX) extend-
ing continuously to ±∞, for i = 1, 2. Thus, L(xi,Ai) is transformed into an
operator

LAi
=

d

dt
+Ai(t) : H1,2(R,Rn) → L2(R,Rn)

(with an abuse of notation, namely using the same symbol Ai(t) for an en-
domorphism of Tx(t)X and of Rn = σi(t)(Tx(t)X)). Since X is orientable, we
may assume that

σ1(±∞) = σ2(±∞)

(for a nonorientable X, we might have σ1(−∞) = σ2(−∞), but σ1(∞) =
−σ2(∞), or vice versa, because GL(n,R) has two connected components, but
in the orientable case, we can consistently distinguish these two components



352 6. Morse Theory and Floer Homology

acting on the tangent spaces TxX with the help of the orientations of the
spaces TxX). Thus, the relations A1(±∞) = A2(±∞) are preserved under
these trivializations.

From the proof of Lemma 6.9.2, ind LA1 = ind LA2 , and coker LAi
= 0

or kerLAi
= 0, depending on whether ±µ(Ai(−∞)) ≥ ±µ(Ai(∞)). It then

suffices to consider the first case. Since the space of all adjoint endomorphisms
of Rn can be identified with R

n(n+1)
2 (the space of symmetric (n×n) matrices),

we may find a homotopy between A1 and A2 in this space with fixed endpoints
A1(±∞) = A2(±∞). As a technical matter, we may always assume that
everything is asymptotically constant as in the proof of Lemma 6.9.2, and
that proof then shows that such a homotopy yields an isomorphism between
the kernels of LA1 and LA2 . �

Thus, Fredholm operators with coinciding ends at ±∞ as in Lemma 6.9.5
can be consistently oriented. Expressed differently, we call such operators
equivalent, and we may define an orientation on an equivalence class by
choosing an orientation of one representative and then defining the orien-
tations of the other elements of the class through a homotopic deformation
as in that lemma.

Definition 6.9.2 An assignment of an orientation σ(x,A) to each equiva-
lence class (x,A) is called coherent if it is compatible with glueing, i.e.

σ((x1, A1)#(x2, A2)) = σ(x1, A1)⊗ σ(x2, A2)

(assuming, as always, the conditions required for glueing, i.e. x1(∞) =
x2(−∞), A1(∞) = A2(−∞)).

Theorem 6.9.2 Suppose X is a finite dimensional orientable Riemannian
manifold. Then a coherent orientation exists.

Proof. We first consider an arbitrary constant curve

x(t) ≡ x0 ∈ X, A(t) = A0.

The corresponding Fredholm operator

LA0 =
d

dt
+A0 : H1,2(R, Tx0X) → L2(Tx0X)

then is an isomorphism by the proof of Lemma 6.9.2, or an easy direct argu-
ment. Thus, Det LA0 is identified with R⊗R∗, and we choose the orientation
1 ⊗ 1∗ ∈ R ⊗ R∗. We next choose an arbitrary orientation for each class of
operators L(x,A) different from L(x0,A0) with

x(−∞) = x0, A(−∞) = A0
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(note that the above definition does not require any continuity e.g. in A(∞)).
This then determines orientations for classes of operators L(x,A) with

x(∞) = x0, A(∞) = A0,

because the operator L(x−1,A−1), with x−1(t) := x(−t), A−1(t) := A(−t),
then is in the first class, and

L(x−1,A−1)#L(x,A) is equivalent to L(x0,A0),

and by Lemmas 6.9.4 and 6.9.5

Det L(x−1,A−1) ⊗Det L(x,A) ≡ Det L(x0,A0).

Finally, for an arbitrary class L(x,A), we find (x1, A1) and (x2, A2) with

x1(−∞) = x0,

x2(∞) = x0,

A1(−∞) = x0,

A2(∞) = x0,

x1(∞) = x(−∞),
x2(−∞) = x(∞),

A1(∞) = A(−∞),
A2(−∞) = A(∞).

and the glueing relation

L(x1,A1)#L(x,A)#L(x2,A2) equivalent to L(x0,A0).

The relation of Lemma 6.9.4, i.e.

Det L(x1,A1) ⊗Det L(x,A) ⊗Det L(x2,A2)
∼= Det L(x0,A0)

then fixes the orientation of L(x,A). �

We shall now always assume that X is a compact finite dimensional,
orientable Riemannian manifold. According to Thm. 6.9.2, we may assume
from now on that a coherent orientation on the class of all operators L(x,A)

as above has been chosen.
We now consider a Morse-Smale-Floer function

f : X → R

as before, and we let p, q ∈ X be critical points of f with

µ(p)− µ(q) = 1.

Then for each gradient flow line x(t) with x(−∞) = p, x(∞) = q, i.e.

ẋ(t) + grad f(x(t)) = 0,

the linearization of that operator, i.e.

L := ∇ẋ(t) + d2f(x(t)) : H1,2(x∗TX)→ L2(x∗TX)

is a surjective Fredholm operator with one-dimensional kernel, according to
Lemma 6.9.2 and its proof. However, we can easily find a generator of the
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kernel: as the equation satisfied by x(t) is autonomous, for any τ0 ∈ R,
x(t + τ) likewise is a solution, and therefore ẋ(t) must lie in the kernel of
the linearization. Altogether, ẋ(t) defines an orientation of Det L, called the
canonical orientation.

Definition 6.9.3 We assign a sign n(x(t)) = ±1 to each such trajectory of
the negative gradient flow of f with µ(x(−∞))−µ(x(∞)) = 1 by putting n =
1 precisely if the coherent and the canonical orientation for the corresponding
linearized operator ∇+ d2f coincide.

This choice of sign enables us to take up the discussion of § 6.6 and define
the boundary operator as

∂p =
∑

r∈C∗(f)
µ(r)=µ(p)−1

s∈Mf
p,r

n(s)r,

now with our present choice of sign. Again, the crucial point is to verify the
relation

∂2 = 0.

As in Thm. 6.5.1, based on Thm. 6.3.1, we may again consider a component
M of Mf

p,q (p, q critical points of f with µ(p)− µ(q) = 2), homeomorphic to
the open disk. We get a figure similar to Fig. 6.6.1

Fig. 6.9.1.

On the flow line x(t) from p to q, we have indicated a coherent orientation,
chosen such that e1 corresponds to the negative flow line direction, and e2 cor-
responds to an arbitrarily chosen orientation of the one-dimensional manifold
f−1(a) ∩M, where f(q) < a < f(p), as in § 6.6. The kernel of the associ-
ated Fredholm operators Lx is two-dimensional, and e1 ∧ e2 then induces an
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orientation of Det Lx. The coherence condition then induces corresponding
orientations on the two broken trajectories from p to q, passing through the
critical points r1, r2 resp. In the figure, we have indicated the canonical ori-
entations of the trajectories from p to r1 and r2 and from r1 and r2 to q. Now
if for example the coherent orientations of the two trajectories from p to r1
and r2, resp. both coincide with those canonical orientations, then this will
take place for precisely one of the two trajectories from r1 and r2 resp. to q.
Namely, it is clear now from the figure that the combination of the canoni-
cal orientations on the broken trajectories leads to opposite orientations at
q, which however is not compatible with the coherence condition. From this
simple geometric observation, we infer the relation ∂ ◦ ∂ = 0 as in § 6.6.

We may also take up the discussion of § 6.7 and consider a regular ho-
motopy (as in Def. 6.7.1) F between two Morse functions f1, f2, and the
induced map

φ21 : C∗(f1,Z) → C∗(f2,Z).

In order to verify the relationship

φ21 ◦ ∂f1 = ∂f2 ◦ φ21 (6.9.7)

with the present choice of signs, we proceed as follows. If p1 is a critical point
of f1, p2 one of f2, with

µ(p1) = µ(p2),

and if s : R → X with s(−∞) = p1, s(∞) = p2 satisfies (6.7.4), i.e.

ṡ(t) = −gradF (s(t), t), (6.9.8)

we consider again the linearized Fredholm operator

Ls := ∇+ d2F : H1,2(s∗TX)→ L2(s∗TX).

Since µ(p1) = µ(p2), Lemma 6.9.2 implies

ind Ls = 0.

Since by definition of a regular homotopy, Ls is surjective, we consequently
get

kerLs = 0.

Thus, Det Ls is the trivial line bundle R⊗R∗, and we may orient it by 1⊗1∗,
and we call that orientation again canonical. Thus, we may assign a sign n(s)
to each trajectory from p1 to p2 solving (6.9.8) as before by comparing the
coherent and the canonical orientations. Now in order to verify (6.9.7), we
look at Fig 6.9.2. Here, we have indicated a flow line w.r.t. f1 from p1 to
another critical point r1 of f1 with µ(p1)−µ(r1) = 1, and likewise one w.r.t.
f2 from p2 to r2 with µ(p2) − µ(r2) = 1, both of them equipped with the
canonical orientations as defined above for the relative index 1. Since now the
solution curves of (6.9.8) from p1 to p2, and likewise from r1 to r2 carry the
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orientation of a trivial line bundle, we may choose the coherent orientations
so as to coincide with the canonical ones.

Fig. 6.9.2.

We now compute for a critical point p1 of f1 with µ(p1) = β, and withMF
p1,q1

the space of solutions of (6.9.8) from p1 to p2,

(∂f2 ◦ φ21 − φ21 ◦ ∂f1)(p1)

= ∂f2

⎛⎝ ∑
µ(p2)=β

∑
s∈MF

p1,p2

n(s)p2

⎞⎠− φ21

⎛⎜⎝ ∑
µ(r1)=β−1

∑
s1∈Mf1

p1,r1

n(s1)r1

⎞⎟⎠
=

∑
µ(r2)=β−1

⎛⎜⎝ ∑
µ(p2)=β

∑
s1∈MF

p1,p2

∑
s2∈Mf2

p2,r2

n(s)n(s2)

−
∑

µ(r1)=β−1

∑
s1∈Mf1

p1,r1

∑
s′∈MF

r1,r2

n(s1)n(s′)

⎞⎟⎠ r2.

Again, as in Thm. 6.5.1, trajectories occur in pairs, but the pairs may be of
two different types: within each triple sum, we may have a pair (s(1), s(1)2 )
and (s(2), s(2)2 ), and the two members will carry opposite signs as we are then
in the situation of Fig. 6.9.1. The other type of pair is of the form (s, s2) and
(s1, s′), i.e. one member each from the two triple sums. Here, the two members
carry the same sign, according to the analysis accompanying Fig. 6.9.2, but
since there are opposite signs in front of the two triple sums, we again get a
cancellation.

In conclusion, all contributions in the preceding expression cancel in pairs,
and we obtain

∂f2 ◦ φ21 − φ21 ◦ ∂f1 = 0,
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as desired. We thus obtain

Theorem 6.9.3 Let X be a compact, finite dimensional, orientable Rieman-
nian manifold. Let f1, f2 be Morse-Smale-Floer functions, and let F be a
regular homotopy between them. Then F induces a map

φ21 : C∗(f1,Z) → C∗(f2,Z)

satisfying
∂ ◦ φ21 = φ21 ◦ ∂,

and hence an isomorphism of the corresponding homology groups defined by
f1 and f2, resp. �

Corollary 6.9.1 Under the assumptions of Thm. 6.9.3, the numbers bk(X, f)
defined at the end of § 6.6 do not depend on the choice of a Morse-Smale-
Floer function f and thus define invariants bk(X) of X. �

Definition 6.9.4 The numbers bk(X) are called the Betti numbers of X

Remark. The Betti numbers have been defined through the choice of a
Riemannian metric. In fact, however, they turn out not to depend on that
choice. See the Perspectives for some further discussion.

Perspectives. The relative approach to Morse theory presented in this chapter
was first introduced by Floer in [74]. It was developed in detail by Schwarz[221],
and starting with § 6.4 we have followed here essentially the approach of Schwarz
although in certain places some details are different (in particular, we make a more
systematic use of the constructions of § 6.3), and we cannot penetrate here into all
the aspects worked out in that monograph. An approach to Floer homology from
the theory of hyperbolic dynamical system has been developed in [250]. We also
refer the reader to the bibliography of [221] for an account of earlier contributions
by Thom, Milnor, Smale, and Witten. (Some references can also be found in the
Perspectives on § 6.10.)

In particular, Witten[256], inspired by constructions from supersymmetry, es-
tablished an isomorphism between the cohomology groups derived from a Morse
function and the ones coming from the Hodge theory of harmonic forms as devel-
oped in Chapter 2 of the present work.

In some places, we have attempted to exhibit geometric ideas even if consider-
ations of space did not allow the presentation of all necessary details. This applies
for example to the § 6.8 on graph flows which is based on [22]. As in Schwarz’
monograph, the construction of coherent orientations in § 6.9 is partly adapted
from Floer, Hofer[75]. This in turn is based on the original work of Quillen[204] on
determinants.

The theory as presented here is somewhat incomplete because we did not de-
velop certain important aspects, among which we particularly wish to mention the
following three:
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1) Questions of genericity:
A subset of a Baire topological space is called generic if it contains a count-
able intersection of open and dense sets. In the present context, one equips
the space of (sufficiently smooth) functions on a differentiable manifold X
as well as the space of Riemannian metrics on X with some Ck topology,
for sufficiently large k. Then at least if X is finite dimensional and com-
pact, the set of all functions satisfying the Morse condition as well as the
set of all Riemannian metrics for which a given Morse function satisfies the
Morse-Smale-Floer condition are generic.

2) We have shown (see §§ 6.7, 6.9) that a regular homotopy between two
Morse functions induces an isomorphism between the corresponding ho-
mology theory. It remains to verify that this isomorphism does not depend
on the choice of homotopy and is flow canonical.

3) Independence of the choice of Riemannian metric on X: We recall that by
Lemma 1.5.1, a Riemannian metric on X is given by a symmetric, positive
definite covariant 2-tensor. Therefore, for any two such metrics g0, g1 and
0 ≤ t ≤ 1, gt := tg0 + (1 − t)g1 is a metric as well, and so the space of all
Riemannian metrics on a given differentiable manifold is a convex space, in
particular connected. If we now have a Morse function f , then the gradient
flows w.r.t. two metrics g0, g1 can be connected by a homotopy of metrics.
The above linear interpolation gt may encounter the problem that for some
t, the Morse-Smale-Floer transversality condition may not hold, and so one
needs to consider more general homotopies. Again, for a generic homotopy,
all required transversality conditions are satisfied, and one then conclude
that the homology groups do not depend on the choice of Riemannian met-
ric. Thus, they define invariants of the underlying differentiable manifold.
In fact, they are even invariants of the topological structure of the manifold,
because they satisfy the abstract Eilenberg-Steenrood axioms of homology
theory, and therefore yield the same groups as the singular homology theory
that is defined in purely topological terms.

These points are treated in detail in [221] to which we consequently refer.
As explained in this chapter, we can also use a Morse function to develop a

cohomology theory. The question then arises how this cohomology theory is related
to the de Rham-Hodge cohomology theory developed in Chapter 2. One difference
is that the theory in Chapter 2 is constructed with coefficients R, whereas the
theory in this Chapter uses Z2 and Z as coefficients. One may, however, extend
those coefficients to R as well. Then, in fact, the two theories become isomorphic
on a compact differentiable manifolds, as are all cohomology theories satisfying the
Eilenberg-Stennrod axioms. These axioms are verified for Morse-Floer cohomology
in [221]. The background in algebraic topology can be found in [229]. Witten[256]
derived that isomorphism in a direct manner. For that purpose, Witten considered
the operators

dt := e−tfdetf ,

their formal adjoints
d∗

t = etfd∗e−tf

and the corresponding Laplacian

∆t := dtd
∗
t + d∗

t dt.

For t = 0, ∆0 is the usual Laplacian that was used in chapter 2 in order to develop
Hodge theory and de Rham cohomology, whereas for t → ∞, one has the following
expansion
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∆t = dd∗ + d∗d + t2‖df‖2 + tΣk,j
∂2h

∂xk∂xj

[
i

(
∂

∂xk

)
, dxj

]
where

(
∂

∂xj

)
j=1,...,n

is an orthonormal frame at the point under consideration. This

becomes very large for t → ∞, except at the critical points of f, i.e. where df = 0.
Therefore, the eigenfunctions of ∆t will concentrate near the critical points of f for
t → ∞, and we obtain an interpolation between de Rham cohomology and Morse
cohomology.

An elementary discussion of Morse theory, together with applications to closed
geodesics, can be found in [182].

Finally, as already mentioned, Conley developed a very general critical point
theory that encompasses Morse theory but applies to arbitrary smooth functions
without the requirement of nondegenerate critical points. This theory has found
many important applications, but here we have to limit ourselves to quoting the
references Conley[50], Conley and Zehnder[51]. In another direction, different ap-
proaches to Morse theory on singular (stratified) spaces have been developed by
Goresky and MacPherson[90] and Ludwig[172].

6.10 The Morse Inequalities

The Morse inequalities express relationships between the Morse numbers µi,
defined as the numbers of critical points of a Morse function f of index i, and
the Betti numbers bi of the underlying manifold X. In order to simplify our
exposition, in this §, we assume that X is a compact Riemannian manifold,
and we only consider homology with Z2-coefficients (the reader is invited
to extend the considerations to a more general setting). As before, we also
assume that f : X → R is of class C3 and that all critical points of f are
nondegenerate, and that (X, f) satisfies the Morse-Smale-Floer condition.

As a preparation, we need to consider relative homology groups. Let A
be a compact subset of X, with the property that flow lines can enter, but
not leave A. This means that if

ẋ(t) = −grad f(x(t)) for t ∈ R

and
x(t0) ∈ A for some t0 ∈ R ∪ {−∞},

then also
x(t) ∈ A for all t ≥ t0.

We obtain a new boundary operator ∂A in place of ∂ by taking only those
critical points of f into account that lie in X\A. Thus, for a critical point
p ∈ X\A, we put

∂Ap :=
∑

r∈C∗(f)∩X\A
µ(p,r)=1

(#Z2Mf
p,r) r. (6.10.1)
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By the above condition that flow lines cannot leave A once they hit it, all
flow lines between critical points p, r ∈ X\A are entirely contained in X\A
as well. In particular, as in Thm 6.5.2, we have

∂A · ∂Ap = 0 for all critical points of f in X\A. (6.10.2)

Defining CA
∗ (f,Z2) as the free Abelian group with Z2-coefficients generated

by the critical points of f in X\A, we conclude that

(CA
∗ (f,Z2), ∂A)

is a chain complex. We then obtain associated homology groups

Hk(X,A, f,Z2) :=
ker ∂A

k

image ∂A
k+1

(6.10.3)

as in § 6.5.
We shall actually need a further generalization: Let A ⊂ Y ⊂ X be compact,
and let f : X → R satisfy:
(i) If the flow line x(t), i.e.

ẋ(t) = −grad f(x(t)) for all t,

satisfies
x(t0) ∈ A for some t0 ∈ R ∪ {−∞},

then there is no t > t0 with x(t) ∈ Y \A.
(ii) If the flow line x(t) satisfies

x(t1) ∈ Y, x(t2) ∈ X\
◦
Y , with −∞ ≤ t1 < t2 ≤ ∞,

then there exists t1 ≤ t0 ≤ t2 with

x(t0) ∈ A.

Thus, by (i), flow lines cannot reenter the rest of Y from A, whereas by (ii),
they can leave the interior of Y only through A. If p ∈ Y \A is a critical point
of f , we put

∂Y,Ap :=
∑

r∈C∗(f)∩Y \A
µ(p,r)=1

(#Z2Mf
p,r) r. (6.10.4)

Again, if p and r are critical points in Y \A, then any flow line between them
also has to stay entirely in Y \A, and so as before

∂Y,A ◦ ∂Y,A = 0, (6.10.5)

and we may define the homology groups

Hk(Y,A, f,Z2) :=
ker ∂Y,A

k

image ∂Y,A
k+1

(6.10.6)
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We now apply these constructions in three steps:
1) Let p be a critical point of f with Morse index

µ(p) = k.

We consider the unstable manifold

Wu(p) = {x(·) flow line with x(−∞) = p}. (6.10.7)

As the parametrization of a flow line is only defined up to an additive
constant, we use the following simple device to normalize that con-
stant. It is easy to see, for example by Thm. 6.3.1, that for sufficiently
small ε > 0,Wu(p) intersects the sphere ∂B(p, ε) transversally, and
each flow line in Wu(p) intersects that sphere exactly once. We then
choose the parametrization of the flow lines x(·) in Wu(p) such that
x(0) always is that intersection point with the sphere ∂B(p, ε). Hav-
ing thus fixed the parametrization, for any T ∈ R, we cut all the flow
lines off at time T :

Y T
p := {x(t) : −∞ ≤ t ≤ T, x(·) flow line in Wu(p)} (6.10.8)

and
AT

p := {x(T ) : x(·) flow line in Wu(p)}. (6.10.9)

It is easy to compute the homology H∗(Y T
p , AT

p , f,Z2) : p is the only
critical point of f in Y T

p \AT
p , and so

∂Y T
p ,AT

p p = 0. (6.10.10)

Thus, the kernel of ∂Yp,Ap

k is generated by p. All the other kernels and

images of the ∂
Y T

p ,AT
p

j are trivial and therefore

Hj(Y T
p , AT

p , f,Z2) =
{

Z2 if j = k
0 otherwise , (6.10.11)

for all T ∈ R.
Thus, the groups Hj(Y T

p , AT
p , f,Z2) encode the local information ex-

pressed by the critical points and their indices. No relations between
different critical points are present at this stage. Thus, for this step,
we do not yet need the Morse-Smale-Floer condition.

2) We now wish to let T tend to ∞, i.e. to consider the entire unstable
manifold Wu(p). Wu(p), however, is not compact, and so we need to
compactify it. This can be done on the basis of the results of §§ 6.4,
6.5. Clearly, we need to include all critical points r of f that are end
points of flow lines in Wu(p), i.e.

r = x(∞) for some flow line x(·) in Wu(p).
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In other words, we consider all critical points r to which p is connected
by the flow in the sense of Def. 6.5.2. In particular, for any such r

µ(r) < µ(p),

because of the Morse-Smale-Floer condition, see (6.5.2). Adding those
critical points, however, is not yet enough for compactifying Wu(p).
Namely, we also need to add the unstable manifolds Wu(r) of all those
r. If the critical point q is the asymptotic limit y(∞) of some flow line
y(·) in Wu(r), then, by Lemma 6.5.2, we may also find a flow line x(·)
in Wu(p) with x(∞) = q, and furthermore, as the proof of Lemma
6.5.2 shows, the flow line y(·) is the limit of flow lines x(·) from Wu(p).
Conversely, by Thm. 6.4.1, any limit of flow lines xn(·) from Wu(p),
n ∈ N, is a union of flow lines in the unstable manifolds of critical
points to which p is connected by the flow, using also Lemma 6.5.2
once more. As these results are of independent interest, we summarize
them as

Theorem 6.10.1 Let f ∈ C3(X,R), X a compact Riemann manifold, be a
function with only nondegenerate critical points, satisfying the Morse-Smale-
Floer condition. Let p be a critical point of f with unstable manifold Wu(p).
Then Wu(p) can be compactified by adding all the unstable manifolds Wu(r)
of critical points r for which there exists some flow line from p to r, and
conversely, this is the smallest compactification of Wu(p). �

We now let Y be that compactification of Wu(p), and A := Y \Wu(p),
i.e. the union of the unstable manifolds Wu(r) of critical points r to
which p is connected by the flow. Again, the only critical point of f
in Y \A is p, and so we have as in 1)

Hj(Y,A, f,Z2) =
{

Z2 if j = µ(p)
0 otherwise.

(6.10.12)

The present construction, however, also allows a new geometric in-
terpretation of the boundary operator ∂. For that purpose, we let
C ′

∗(f,Z2) be the free Abelian group with Z2-coefficients generated by
the set C ′

∗(f) of unstable manifolds Wu(p) of critical points p of f ,
and

∂′Wu(p) :=
∑

r∈C∗(f)
µ(r)=µ(p)−1

(#Z2Mf
p,r)W

u(r). (6.10.13)

Thus, if µ(p) = k, the boundary of the k-dimensional manifold Wu(p)
is a union of (k−1)-dimensional manifolds Wu(r). Clearly, ∂′ ◦∂′ = 0
by Thm. 6.5.2, as we have simply replaced all critical points by their
unstable manifolds. This brings us into the realm of classical or stan-
dard homology theories on differentiable manifolds. From that point
of view, the idea of Floer then was to encode all information about
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certain submanifolds of X that generate the homology, namely the
unstable manifolds Wu(p) in the critical points p themselves and the
flow lines between them. The advantage is that this allows a formula-
tion of homology in purely relative terms, and thus greater generality
and enhanced conceptual clarity, as already explained in this chapter.

3) We now generalize the preceding construction by taking unions of
unstable manifolds. For a critical point p of f , we now denote the
above compactification of Wu(p) by Y (p). We consider a space Y that
is the union of some such Y (p), and a subspace A that is the union
of some Y (q) for critical points q ∈ Y . As before, we get induced
homology groups Hk(A),Hk(Y ),Hk(Y,A), omitting f and Z2 from
the notation from now on for simplicity. As explained in 2), we may
consider the elements of these groups as equivalence classes (up to
boundaries) either of collections of critical points of f or of their
unstable manifolds.

We now need to derive some standard facts in homology theory in our
setting. A reader who knows the basics of homology theory may skip the
following until the end of the proof of Lemma 6.10.4.

We recall the notation from algebraic topology that a sequence of linear
maps fj between vector spaces Aj

... Ai+1
fi+1−→ Ai

fi−→ Ai−1
fi−1−→ ...

is called exact if always

ker(fi) = image (fi+1).

We consider the maps

ik : Hk(A) → Hk(Y )
jk : Hk(Y ) → Hk(Y,A)
∂k : Hk(Y,A) → Hk−1(A)

defined as follows:
If π ∈ Ck(A), the free Abelian group with Z2-coefficients generated by the

critical points of f in A, we can consider π also as an element of Ck(Y ), from
the inclusion A ↪→ Y . If π is a boundary in Ck(A), i.e. π = ∂k+1γ for some
γ ∈ Ck+1(A), then by the same token, γ can be considered as an element of
Ck+1(Y ), and so π is a boundary in Ck(Y ) as well.

Therefore, this procedure defines a map ik from Hk(A) to Hk(Y ).
Next, if π ∈ Ck(Y ), we can also consider it as an element of Ck(Y,A), by

forgetting about the part supported on A, and again this defines a map jk in
homology.

Finally, if π ∈ Ck(Y ) with ∂π ∈ Ck−1(A) and thus represents an element
of Hk(Y,A), then we may consider ∂π as an element of Hk−1(A), because
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∂ ◦ ∂π = 0. ∂π is not necessarily trivial in Hk−1(A), because π need not be
supported on A, but ∂π as an element of Hk−1(A) does not change if we
replace π by π + γ for some γ ∈ Ck(A). Thus, ∂π as an element of Hk−1(A)
depends on the homology class of π in Hk(Y,A), and so we obtain the map
∂k : Hk(Y,A) → Hk−1(A).

The proof of the following result is a standard routine in algebraic topol-
ogy:

Lemma 6.10.1 The sequence

... Hk(A) ik−→ Hk(Y )
jk−→ Hk(Y,A) ∂k−→ Hk−1(A) −→ ...

is exact.

Proof. We denote the homology classes of an element γ by [γ].
1) Exactness at Hk(A) :

Suppose [γ] ∈ ker ik, i.e.
ik[γ] = 0.

This means that there exists π ∈ Ck+1(Y ) with

∂π = ik(γ)

Since ik(γ) is supported on A, π represents an element of Hk+1(Y,A), and
so [γ] ∈ image (∂k+1). Conversely, for any such π, ∂π represents the trivial
element in Hk(Y ), and so ik[∂π] = 0, hence [∂π] ∈ ker ik. Thus ik ◦∂k+1 = 0.
2) Exactness at Hk(Y ):
Suppose [π] ∈ ker jk. This means that π is supported on A, and so [π] is in
the image of ik. Conversely, obviously jk ◦ ik = 0.
3) Exactness at Hk(Y,A) :

Let [π] ∈ ker ∂k. Then ∂π = 0, and so π represents an element in
Hk(Y ). Conversely, for any [π] ∈ Hk(Y ), ∂π = 0, and therefore ∂k ◦
jk = 0. �

In the terminology of algebraic topology, a diagram

A2
a−→

f ↓
B2

b−→

A1

↓ g
B1

of linear maps between vector spaces is called commutative if

g ◦ a = b ◦ f.
Let now (Y1, Y2) and (Y2, Y3) be pairs of the type (Y,A) just considered. We
then have the following simple result
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Lemma 6.10.2 The diagram

... −→ Hk(Y2, Y3)

↓ i1,2,3
k

−→ Hk(Y1, Y2)

∂2,3
k−→ Hk−1(Y3)

↓ i2,3
k

∂1,2
k−→ Hk−1(Y2)

i2,3
k−→ Hk−1(Y2)

↓ i1,2
k

i1,2
k−→ Hk−1(Y1)

j2,3
k−→ Hk−1(Y2, Y3) −→ ...

↓ i1,2,3
k−1

j1,2
k−→ Hk−1(Y1, Y2) −→ ... ,

where the vertical arrows come from the inclusions Y3 ↪→ Y2 ↪→ Y1, and where
superscripts indicate the spaces involved, is commutative.

Proof. Easy; for example, when we compute i2,3
k ◦∂2,3

k [π], we have an element
π of Ck(Y2), whose boundary ∂π is supported on Y3, and we consider that
as an element of Ck−1(Y2). If we apply i1,2,3

k to [π], we consider π as an
element of Ck(Y1) with boundary supported on Ck−1(Y2), and ∂1,2

k [π] is that
boundary. Thus i2,3

k ◦ ∂2,3
k = ∂1,2

k ◦ ii,2,3
k . �

Lemma 6.10.3 Let Y3 ⊂ Y2 ⊂ Y1 be as above. Then the sequence

... −→ Hk+1(Y1, Y2)
j2,3
k+1◦∂1,2

k+1−→ Hk(Y2, Y3)
i1,2
k−→ Hk(Y1, Y3)

j1,2
k−→ Hk(Y1, Y2) −→ ...

is exact.
(Here, the map i1,2

k comes from the inclusion Y2 ↪→ Y1, whereas j1,2
k

arises from considering an element of Ck−1(Y1, Y3) also as an element of
Ck−1(Y1, Y2) (since Y3 ⊂ Y2), in the same way as above).

Proof. Again a simple routine:
1) Exactness at Hk(Y2, Y3):
i1,2
k [π] = 0 ⇔ ∃γ ∈ Ck+1(Y1, Y3) : ∂γ = π, and in fact, we may consider γ as

an element of Ck+1(Y1, Y2) as the class of π in Hk(Y2, Y3) is not influenced
by adding ∂ω for some ω ∈ Ck+1(Y2). Thus π is in the image of j2,3

k+1 ◦ ∂1,2
k+1.

2) Exactness at Hk(Y1, Y3):
j1,2
k [π] = 0⇔ ∃γ ∈ Ck+1(Y1, Y2) : ∂γ = π, and so π is trivial in homology up

to an element of Ck(Y2, Y3), and so it is in the image of ii,2k .
3) Exactness at Hk(Y1, Y2):

j2,3
k ◦ ∂1,2

k [π] = 0⇔ ∂kπ vanishes up to an element of Ck−1(Y3)

⇔ π is in the image of j1,2
k .

�

Finally, we need the following algebraic result:

Lemma 6.10.4 Let
... −→ A3

a3−→ A2
a2−→ A1

a1−→ 0
be an exact sequence of linear maps between vector spaces.
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Then for all k ∈ N

dimA1 − dimA2 + dimA3 − ...− (−1)k dimAk + (−1)k dim(ker ak) = 0.
(6.10.14)

Proof. For any linear map � = V →W between vector spaces,
dimV = dim(ker �) + dim(image �).
Since by exactness

dim(image aj) = dim(ker aj−1)

we obtain
dim(Aj) = dim(ker aj) + dim(ker aj−1).

Since dimA1 = dim ker a1, we obtain

dimA1 − dimA2 + dimA3 − ...+ (−1)k dim(ker ak) = 0.

�

We now apply Lemma 6.10.4 to the exact sequence of Lemma 6.10.3. With

bk(X,Y ) := dim(Hk(X,Y ))

νk(Y1, Y2, Y3) = dim(ker j2,3
k+1 ◦ ∂1,2

k ),

we obtain
k∑

i=0

(−1)i(bi(Y1, Y2)− bi(Y1, Y3) + bi(Y2, Y3))

− (−1)kνk(Y1, Y2, Y3) = 0.

Hence

(−1)k−1νk−1(Y1, Y2, Y3) =(−1)kνk(Y1, Y2, Y3)− (−1)kbk(Y1, Y2)

+ (−1)kbk(Y1, Y3)− (−1)kbk(Y2, Y3)
(6.10.15)

We define the following polynomials in t:

P (t,X, Y ) :=
∑
k≥0

bk(X,Y )tk

Q(t, Y1, Y2, Y3) :=
∑
k≥0

νk(Y1, Y2, Y3)tk

Multiplying the preceding equation by (−1)ktk and summing over k, we ob-
tain

Q(t, Y1, Y2, Y3) = −tQ(t, Y1, Y2, Y3)+P (t, Y1, Y2)−P (t, Y1, Y3)+P (t, Y2, Y3).
(6.10.16)
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We now order the critical points p1, ..., pm of the function f in such a manner
that

µ(pi) ≥ µ(pj) whenever i ≤ j.

For any i, we put
Y1 := Y1(i) :=

⋃
k≥i

Y (pk)

Y2 := Y2(i) :=
⋃

k≥i+1

Y (pk)

Y3 := ∅.
Thus Y2 = Y1\W k(pi). The pair (Y1, Y2) may differ from the pair (Y,A) =

(Y (Pi), Y (Pi)\W k(pi)) in so far as both Y1 and Y2 may contain in addition
the same unstable manifolds of some other critical points. Thus, they are of
the form (Y ∪B,A ∪B) for a certain set B. It is, however, obvious that the
previous constructions are not influenced by adding a set B to both pairs,
i.e. we have

Hk(Y ∪B,A ∪B) = Hk(Y,A), for all k,

because all contributions in B cancel. Therefore, we have

Hk(Y1(i), Y2(i)) = Hk(Y (pi), Y (pi)\W k(pi)) =
{

Z2 for k = µ(pi)
0 otherwise.

(6.10.17)
Consequently,

P (t, Y1, Y2) = tµ(pi). (6.10.18)

We now let µ� be the number of critical points of f of Morse index �. Since
the dimension of any unstable manifold is bounded by the dimension of X,
we have µ� = 0 for � > dimX. (6.10.18) implies

dim X∑
i=0

P (t, Y1(i), Y2(i)) =
∑

�

t�µ�. (6.10.19)

From (6.10.16), we obtain for our present choice of the triple (Y1, Y2, Y3)

P (t, Y1(i), Y2(i)) = P (t, Y1(i), ∅)− P (t, Y2(i), ∅)
+(1 + t)(X(t, Y1(i), Y2(i), ∅),

and summing w.r.t. i and using Y1(1) = X, we obtain

dim X∑
i=0

P (t, Y1(i), Y2(i)) = P (t,X, ∅) + (1 + t)Q(t) (6.10.20)

for a polynomial Q(t) with nonnegative coefficients. Inserting (6.10.19) in
(6.10.20) and using the relation
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P (t,X, φ) =
∑

tj dimHj(X)

=
∑

tjbj(X)

(since Hj(X, ∅) = Hj(X))
(see Cor. 6.9.1)

we conclude

Theorem 6.10.2 Let f be a Morse-Smale-Floer function on the compact,
finite dimensional orientable Riemannian manifold X. Let µ� be the number
of critical points of f of Morse index �, and let bk(X) be the k-th Betti number
of X. Then

dim X∑
�=0

t�µ� =
∑

j

tjbj(X) + (1 + t) Q(t) (6.10.21)

for some polynomial Q(t) in t with nonnegative integer coefficients.

We can now deduce the Morse inequalities

Corollary 6.10.1 Let f be a Morse-Smale-Floer function on the compact,
finite dimensional, orientable Riemannian manifold X. Then, with the nota-
tions of Thm. 6.10.2
(i) µk ≥ bk(X) for all k
(ii) µk − µk−1 + µk−2 − ...± µ0 ≥ bk(X)− bk−1(X)...± b0(X)
(iii)

∑
j(−1)jµj =

∑
j(−1)jbj(X) (this expression is called the Euler

characteristic of X).

Proof.
(i) The coefficients of tk on both sides of (6.10.21) have to coincide, and

Q(t) has nonnegative coefficients.
(ii) Let Q(t) =

∑
tiqi. From (6.10.21), we get the relation

k∑
j=0

tjµj =
k∑

j=0

tjbj(X) + (1 + t)
k−1∑
j=0

tiqi + tkqk

for the summands of order ≤ k. We put t = −1. Since qk ≥ 0, we
obtain

k∑
j=0

(−1)j−kµj ≥
k∑

j=0

(−1)j−kbj .

(iii) We put t = −1 in (6.10.21).
�

Let us briefly return to the example discussed in § 6.1 in the light of the
present constructions. We obtain interesting aspects only for the function f2

of § 6.1. The essential feature behind the Morse inequality (i) is that for a
triple (Y1, Y2, Y3) satisfying Y3 ⊂ Y2 ⊂ Y1 as in our above constructions, we
always have
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bk(Y1, Y3) ≤ bk(Y1, Y2) + bk(Y2, Y3). (6.10.22)

In other words, by inserting the intermediate space Y2 between Y1 and Y3,
we may increase certain topological quantities, by inhibiting cancellations
caused by the boundary operator ∂. If, in our example from § 6.1, we take
Y1 = X,Y3 = ∅, we may take any intermediate Y2. If we take Y2 = Y (p2)
(p2 being one of two maximum points), then Y1\Y2 = W k(p1) (p1 the other
maximum), and so

bk(Y1, Y2) =
{ 1 for k = 2

0 otherwise
and

bk(Y2, Y3) =
{ 1 for k = 0

0 otherwise
(we have ∂p2 = p3, ∂p3 = 2p4 = 0 in Y2), and so,

since bk(X) =
{ 1 for k = 0, 2

0 for k = 1
,

we have equality in (6.10.22). If we take Y2 = Y (p3) (p3 the saddle point),
however, we get

bk(Y1, Y2) =
{ 2 for k = 2

0 otherwise
(since ∂p1 = 0 = ∂p2 in (Y1, Y2)) and

bk(Y2, Y3) =
{ 1 for k = 1

0 otherwise

(since ∂p3 = 0, but there are no critical points of index 2 in Y2). Thus, in
the first case, the boundary operator ∂ still achieved a cancellation between
the second maximum and the saddle point while in the second case, this was
prevented by placing p2 and p3 into different sets. Generalizing this insight,
we conclude that the Morse numbers µ� arise from placing all critical points
in different sets and thus gathering only strictly local information while the
Betti numbers b� incorporate all the cancellations induced by the boundary
operator ∂. Thus, the µ� and the b� only coincide if no cancellations at all
take place, as in the example of the function f1 in § 6.1.

Perspectives. In this §, we have interpreted the insights of Morse theory, as
developed by Thom[242], Smale[228], Milnor[183], Franks[76] 199-215, in the light
of Floer’s approach. Schwarz[222] used these constructions to construct an explicit
isomorphism between Morse homology and singular homology.
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6.11 The Palais-Smale Condition and the Existence of
Closed Geodesics

Let M be a compact Riemannian manifold of dimension n, with metric
〈·, ·〉 and associated norm || · || = 〈·, ·〉 1

2 . We wish to define the Sobolev space
Λ0 = H1(S1,M) of closed curves on M with finite energy, parametrized on
the unit circle S1. We first consider H1(I,Rn) := H1,2(I,Rn), where I is
some compact interval [a, b], as the closure of C∞(I,Rn) w.r.t. the Sobolev
H1,2-norm. This norm is induced by the scalar product

(c1, c2) :=

b∫
a

c1(t) · c2(t)dt+

b∫
a

dc1(t)
dt

· dc2(t)
dt

dt, (6.11.1)

where the dot · denotes the Euclidean scalar product on Rn. H1(I,Rn) then
is a Hilbert space.

Since I is 1-dimensional, by Sobolev’s embedding theorem (Theorem
A.1.7), all elements in H1(I,Rn) are continuous curves. Therefore, we can
now define the Sobolev space H1(S1,M) of Sobolev curves in M via locali-
zation with the help of local coordinates:

Definition 6.11.1 The Sobolev space Λ0 = H1(S1,M) is the space of all
those curves c : S1 → M for which for every chart x : U → Rn (U open in
M), (the restriction to any compact interval of)

x ◦ c : c−1(U) → Rn

is contained in the Sobolev space H1,2(c−1(U),Rn).

Remark. The space Λ0 can be given the structure of an infinite dimensional
Riemannian manifold, with charts modeled on the Hilbert space H1,2(I,Rn).
Tangent vectors at c ∈ Λ0 then are given by curves γ ∈ H1(S1, TM), i.e.
Sobolev curves in the tangent bundle of M , with γ(t) ∈ Tc(t)M for all t ∈ S1.
For γ1γ2 ∈ TcΛ0, i.e. tangent vectors at c, their product is defined as

(γ1, γ2) :=
∫

t∈S1

〈Dγ1(t), Dγ2(t)〉dt,

where Dγi(t) is the weak first derivative of γi at t, as defined in A.1. This
then defines the Riemannian metric of Λ0. While this becomes conceptually
very satisfactory, one needs to verify a couple of technical points to make this
completely rigorous. For that reason, we rather continue to work with ad hoc
constructions in local coordinates. In any case, Λ0 assumes the role of the
space X in the general context described in the preceding §§.
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The Sobolev space Λ0 is the natural space on which to define the energy
functional

E(c) =
1
2

∫
S1

||Dc(t)||2dt

for curves c : S1 →M , with Dc denoting the weak first derivative of c.

Definition 6.11.2 (un)n∈N ⊂ Λ0 converges to u ∈ Λ0 in H1,2 iff

1) un converges uniformly to u (un ⇒ u).

2) E(un) → E(u) as n→∞.

Uniform convergence un ⇒ u implies that there exist coordinate charts
fµ : Uµ → Rn (µ = 1, . . . ,m) and a covering of S1 =

m∪
µ=1

Vµ by open sets

such that for sufficiently large n

un(Vµ), u(Vµ) ⊂ Uµ for µ = 1, . . . ,m.

If now ϕ ∈ C∞
0 (Vµ,R

n) for some µ, then for sufficiently small |ε|
fµ(u(t) + εϕ(t)) ⊂ fµ(Uµ) for all t ∈ Vµ,

i.e. we can perform local variations without leaving the coordinate chart. In
this sense we write

u+ εϕ

instead of fµ ◦ u+ εϕ. For such ϕ then

d

dε
E(u+ εϕ)|ε=0 =

1
2
d

dε

∫
gij(u+ εϕ)(u̇i + εϕ̇i)(u̇j + εϕ̇j)dt|ε=0,

where everything is written w.r.t. the local coordinate fµ : Uµ → Rn (“.” of
course denotes a derivative w.r.t. t ∈ S1.)

=
∫

(gij(u)u̇iϕ̇j +
1
2
gij,k(u)u̇iu̇jϕk)dt (using gij = gji) (6.11.1)

If u ∈ H2,2(S1,M), this is

= −
∫

(gij(u)üiϕj + gij,�u̇
�u̇iϕj − 1

2
gij,ku̇

iu̇jϕk)dt (6.11.2)

= −
∫

(üi + Γ i
k�(u)u̇ku̇�)gij(u)ϕjdt as in 1.4.

We observe that ϕ ∈ H1,2 is bounded by Sobolev’s embedding theorem (The-
orem A.1.7) (see also the argument leading to (6.11.5) below) so that also
the second terms in (6.11.1) and (6.11.2) are integrable.

We may put
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‖DE(u)‖ = sup { d

dε
E(u+ εϕ)|ε=0 : (6.11.3)

ϕ ∈ H1,2
0 (Vµ,R

n) for some µ,∫
gij(u)ϕ̇iϕ̇jdt ≤ 1 } .

For second derivatives of E, we may either quote the formula of Theorem
4.1.1 or compute directly in local coordinates

d2

dε2
E(u+ εϕ)|ε=0

=
1
2
d2

dε2

∫
gij(u+ εϕ)(u̇i + εϕ̇i)(u̇j + εϕ̇j)dt

=
∫

(gij(u)ϕ̇iϕ̇j + 2gij,ku̇
iϕ̇jϕk + gij,k�u̇

iu̇jϕkϕ�)dt

which is also bounded for u and ϕ of Sobolev class H1,2.
Suppose now that u ∈ Λ0 satisfies

DE(u) = 0.

This means

0 =
∫

(gij(u)u̇iϕ̇j +
1
2
gij,k(u)u̇iu̇jϕk)dt for all ϕ ∈ H1,2. (6.11.4)

Lemma 6.11.1 Any u ∈ Λ0 with DE(u) = 0 is a closed geodesic (of class
C∞).

Proof. We have to show that u is smooth. Then (6.11.2) is valid, and Theorem
A.1.5 gives

üi + Γ i
k�(u)u̇ku̇� = 0 for i = 1, . . . ,dimM,

thus u is geodesic.
We note that u is continuous so that we can localize in the image. More

precisely, we can always find sufficiently small subsets of S1 whose image
is contained in one coordinate chart. Therefore, we may always write our
formulae in local coordinates. We first want to show

u ∈ H2,1.

For this, we have to find v ∈ L1 with∫
uiη̈i =

∫
viηi

where we always assume that the support of η ∈ C∞
0 (S1,M) is contained in

a small enough subset of S1 so that we may write things in local coordinates
as explained before.
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We put
ϕj(t) := gij(u(t))ηi(t).

Then ∫
uiη̈idt = −

∫
u̇iη̇idt which is valid since u ∈ H1,2

= −
∫

(gij(u(t))u̇iϕ̇j + gij,ku̇
ku̇iϕj)dt

=
∫

(
1
2
gij,k(u)u̇iu̇jϕk − gij,k(u)u̇ku̇iϕj)dt by (6.11.4)

=
∫

(
1
2
gij,kg

k�u̇iu̇j − gij,ku̇
ku̇igj�)η�dt

=
∫

(
1
2
gi�(gjk,� − gj�,k − gk�,j)u̇j u̇kηidt, renaming indices

= −
∫
Γ i

jku̇
j u̇kηidt. (6.11.5)

With vi = −Γ i
jku̇

j u̇k ∈ L1, the desired formula∫
uiη̈i =

∫
viηi for η ∈ C∞

0 (S1,M) with sufficiently small support

then holds, and
u ∈ H2,1.

By the Sobolev embedding theorem (Theorem A.1.7) we conclude

u ∈ H1,q for all q <∞.

(We note that since S1 has no boundary, the embedding theorem holds for
the Hk,p spaces and not just for Hk,p

0 . For the norm estimates, however, one
needs ‖f‖Hk,p(Ω) on the right hand sides in Theorem A.1.7 and Corollary
A.1.7, instead of just ‖Dkf‖Lp .)

In particular, u ∈ H1,4(Ω), hence

Γ i
jk(u)u̇j u̇k ∈ L2.

(6.11.5) then implies
u ∈ H2,2

hence u̇ ∈ C0 by Theorem A.1.2 again.
Now

d

dt
(Γ i

jk(u)u̇j u̇k) = 2Γ i
jku̇

j ük + Γ i
jk,�u̇

�u̇j u̇k (using Γ i
jk = Γ i

kj)

∈ L2,

since ü ∈ L2, u̇ ∈ L∞. Thus
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Γ i
jk(u)u̇j u̇k ∈ H1,2.

Then
u ∈ H3,2,

by (6.11.5) again.
Iterating this argument, we conclude

u ∈ Hk,2

for all k ∈ N, hence
u ∈ C∞

by Corollary A.1.2. �

We now verify a version of the Palais-Smale condition:

Theorem 6.11.1 Any sequence (un)n∈N ⊂ Λ0 with

E(un) ≤ const.
‖DE(un)‖ → 0 as n→ 0

contains a strongly convergent subsequence with a closed geodesic as limit.

Proof. First, by Hölder’s inequality, for every v ∈ Λ0, t1, t2 ∈ S1

d(v(t1), v(t2)) ≤
t2∫
t1

(gij(v)v̇iv̇j)
1
2 dt ≤ ((t2 − t1)

t2∫
t1

gij(v)v̇iv̇jdt)
1
2

≤
√

2|t2 − t1| 12E(v)
1
2 . (6.11.6)

Thus
Λ0 ⊂ C

1
2 (S1,M),

i.e. every H1-curve is Hölder continuous with exponent 1
2 , and the Hölder

1
2 -norm is controlled by

√
2E(v).

The Arzela-Ascoli theorem therefore implies that a sequence with E(un) ≤
const. contains a uniformly convergent subsequence. We call the limit u. u
also has finite energy, actually

E(u) ≤ lim inf
n→∞ E(un).

We could just quote Theorem 8.4.2 below. Alternatively, by uniform conver-
gence everything can be localized in coordinate charts, and lower semiconti-
nuity may then be verified directly. For our purposes it actually suffices at this
point that u has finite energy, and this follows because theH1,2-norm (defined
w.r.t. local coordinates) is lower semicontinuous under L2-convergence.
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We now let (ηµ)µ=1,...,m be a partition of unity subordinate to (Vµ)µ=1,...,m,
our covering of S1 as above.

Then

E(un)− E(u) =
∫ m∑

µ=1

ηµ(gµ
ij(un)u̇i

nu̇
j
n − gµ

ij(u)u̇iu̇j)dt (6.11.7)

where the superscript µ now refers to the coordinate chart fµ : Uµ → Rn.
In the sequel, we shall omit this superscript, however.
By assumption (cf. (6.11.1))∫

(gij(un)u̇i
nϕ̇

j +
1
2
gij,k(un)u̇i

nu̇
j
nϕ

k)dt→ 0 as n→∞

for all ϕ ∈ H1,2.
We use

ϕj = ηµ(uj
n − uj)

(where, of course, the difference is computed in local coordinates fµ).
Then ∫

gij,k(un)u̇i
nu̇

j
nηµ(uk

n − uk)dt

≤ const. · max
t

d(un(t), u(t))E(un)

→ 0

as n→∞ since E(un) ≤ const. and un ⇒ u (after selecting a subsequence).
Consequently from (6.11.1), since ‖DE(un)‖ → 0,∫

(gij(un)u̇i
n(u̇j

n − u̇j)ηµ + gij(un)u̇i
nη̇µ(uj

n − uj))dt→ 0.

The second term again goes to zero by uniform convergence.
We conclude ∫

gij(un)u̇i
n(u̇j

n − u̇j)ηµ → 0 as n→∞. (6.11.8)

Now ∫
(gij(un)u̇i

nu̇
j
n − gij(u)u̇iu̇j)ηµ

=
∫
{(gij(un) u̇i

n(u̇j
n − u̇j) + (gij(un)− gij(u))u̇i

nu̇
j (6.11.9)

+gij(u)(u̇i
n − u̇i)u̇j

}
ηµ .

The first term goes to zero by (6.11.8). The second one goes to zero by uniform
convergence and Hölder’s inequality.
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For the third one, we exploit that (as observed above, after selection of
a subsequence) u̇n converges weakly in L2 to u̇ on Vµ. This implies that the
third term goes to zero as well.

(6.11.9) now implies

E(un) → E(u) as n→∞
(cf. (6.11.7).)

u then satisfies
DE(u) = 0

and is thus geodesic by Lemma 6.11.1. �

As a technical tool, we shall have to consider the negative gradient flow
of E.

Remark. In principle, this is covered by the general scheme of § 6.3, but
since we are working with local coordinates here and not intrinsically, we shall
present the construction in detail. For those readers who are familiar with
ODEs in Hilbert manifolds, the essential point is that the Picard-Lindelöf
theorem applies because the second derivative of E is uniformly bounded
on sets of curves with uniformly bounded energy E. Therefore, the negative
gradient flow for E exists for all positive times, and by the Palais-Smale
condition always converges to a critical point of E, i.e. a closed geodesic.

The gradient of E, ∇E, is defined by the requirement that for any c ∈
Λ0, ∇E(c) is the H1-vector field along c satisfying for all H1-vector fields
along c

(∇E(c), V )H1

= DE(c)(V ) =
∫
S1

〈ċ, V̇ 〉dt. (6.11.10)

Since the space of H1-vector fields along c is a Hilbert space, ∇E(c) exists
by the Riesz representation theorem. (The space of H1-vector fields along an
H1-curve can be defined with the help of local coordinates).

We now want to solve the following differential equation in Λ0 :

d

dt
Φ(t) = −∇E(Φ(t)) (6.11.11)

Φ(0) = c0

where c0 ∈ Λ0 is given and Φ : R+ → Λ0 is to be found.
We first observe

Lemma 6.11.2 Let Φ(t) be a solution of (6.11.11). Then
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d

dt
E(Φ(t)) ≤ 0.

Proof. By the chain rule,

d

dt
E(Φ(t)) = DE(Φ(t))(

d

dt
Φ(t)) (6.11.12)

= −‖∇E(Φ(t))‖2H1 ≤ 0. �

Theorem 6.11.2 For any c0 ∈ Λ0, there exists a solution Φ : R+ → Λ0 of

d

dt
Φ(t) = −∇E(Φ(t)) (6.11.13)

Φ(0) = c0.

Proof. Let

A := {T > 0 : there exists Φ : [0, T ] → Λ0 solving (6.11.13), with Φ(0) = c0}.
(That Φ is a solution on [0, T ] means that there exists some ε > 0 for which
Φ is a solution on [0, T + ε).)

We are going to show that A is open and nonempty on the one hand
and closed on the other hand. Then A = R+, and the result will follow. To
show that A is open and nonempty, we are going to use the theory of ODEs
in Banach spaces. For c ∈ Λ0, we have the following bijection between a
neighborhood U of c in Λ0 and a neighborhood V of 0 in the Hilbert space
of H1-vector fields along c : For ξ ∈ V

ξ(τ) → expc(τ) ξ(τ) (6.11.14)

(By Theorem 1.4.3 and compactness of c, there exists ρ0 > 0 with the prop-
erty that for all τ ∈ S1 expc(τ) maps the ball B(0, ρ0) in Tc(τ)M diffeomor-
phically onto its image in M.)

If Φ solves (6.11.13) on [s, s + ε] we may assume that ε > 0 is so small
that for all t with s ≤ t ≤ s + ε, Φ(t) stays in a neighborhood U of c =
Φ(s) with the above property. This follows because Φ, since differentiable, in
particular is continuous in t. Therefore, (6.11.14) transforms our differential
equation (with its solution Φ(t) having values in U for s ≤ t < s+ ε) into a
differential equation in V, an open subset of a Hilbert space. Since DE, hence
∇E is continuously differentiable, hence Lipschitz continuous, the standard
existence result for ODE (theorem of Cauchy or Picard-Lindelöf) may be
applied to show that given any c ∈ Λ0, there exists ε > 0 and a unique
solution Ψ : [0, ε] → Λ0 of d

dtΨ(t) = −∇E(Ψ(t)) with Ψ(0) = c. If Φ solves
(6.11.13) on [0, t0], then putting c = Φ(t0), we get a solution on [0, t0 + ε],
putting Φ(t) = Ψ(t− t0).
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This shows openness, and also nonemptyness, putting t0 = 0. To show
closedness, suppose Φ : [0, t) → Λ0 solves (6.11.13), and 0 < tn < T, tn → T
for n→∞.

Lemma 6.11.2 implies

E(Φ(tn)) ≤ const. (6.11.15)

Therefore, the curves Φ(tn) are uniformly Hölder continuous (cf. (6.11.6)),
and hence, by the theorem of Arzela-Ascoli, after selection of a subsequence,
they converge uniformly to some cT ∈ Λ0; cT indeed has finite energy because
we may assume that (Φ(tn))n∈N also converges weakly in H1,2 to cT , as in
the proof of Theorem 6.11.1. By the openness argument, consequently we can
solve

d

dt
Φ(t) = −∇E(Φ(t))

Φ(t) = cT

for T ≤ t ≤ T + ε and some ε > 0. Thus, we have found Φ : [0, T + ε) solving
(6.11.13), and closedness follows. �

We shall now display some applications of the Palais-Smale condition
for closed geodesics. The next result holds with the same proof for any C2-
functional on a Hilbert space satisfying (PS) with two strict local minima.

While this result is simply a variant of Prop. 6.2.1 above, we shall present
the proof once more as it will serve as an introduction to the proof of the
theorem of Lyusternik and Fet below.

Theorem 6.11.3 Let c1, c2 be two homotopic closed geodesics on the compact
Riemannian manifold M which are strict local minima for E (or, equivalently,
for the length functional L). Then there exists another closed geodesic c3
homotopic to c1, c2 with

E(c3) = κ := inf
λ∈Λ

max
τ∈[0,1]

E(λ(τ)) > max{E(c1), E(c2)} (6.11.16)

with Λ := Λ(c1, c2) := {λ ∈ C0([0, 1], Λ0) : λ(0) = c1, λ(1) = c2}, the set of
all homotopies between c1 and c2.

Proof. We first claim

∃δ0 > 0∀δ with 0 < δ ≤ δ0 ∃ε > 0∀c with d1(c, ci) = δ :
E(c) ≥ E(ci) + ε for i = 1, 2. (6.11.17)

Indeed, otherwise, for i = 1 or 2,

∀δ0 ∃0 < δ ≤ δ0 ∀n∃γn with d1(γn, ci) = δ,

E(γn) < E(ci) +
1
n
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If ‖DE(γn)‖ → 0, then (γn) is a Palais-Smale sequence and by Theorem
6.11.1 converges (after selection of a subsequence) to some γ0 with
d1(γ0, ci) = δ, E(γ0) = E(ci), contradicting the strict local minimizing prop-
erty of ci.

If ‖DE(γn)‖ ≥ η > 0 for all n, then there exists ρ > 0 with

‖DE(γ)‖ ≥ η

2
whenever d1(γn, γ) ≤ ρ. (6.11.18)

This follows, because ‖D2E‖ is uniformly bounded on E-bounded sets.
(6.11.18) can then be used to derive a contradiction to the local minimiz-

ing property of ci by a gradient flow construction. Such a construction will
be described in detail below. We may thus assume that (6.11.17) is correct.

(6.11.17) implies
κ > max(E(c1), E(c2)). (6.11.19)

We let now Kκ be the set of all closed geodesics, i.e. curves c in Λ0 with
DE(c) = 0, E(c) = κ, homotopic to c1 and c2.

We have to show
Kκ 
= ∅.

We assume on the contrary
Kκ = ∅. (6.11.20)

We claim that there exists η > 0, α > 0 with

‖DE(c)‖ ≥ α (6.11.21)

whenever c is homotopic to c1, c2 and satisfies

κ− η ≤ E(c) ≤ κ+ η. (6.11.22)

Namely, otherwise, there exists a sequence (γn)n∈N of H1-curves homotopic
to c1, c2, with

lim
n→∞E(γn) = κ

lim
n→∞DE(γn) = 0

(γn)n∈N then is a Palais-Smale sequence and converges to a closed geodesic
c3 with E(c3) = κ, contradicting our assumption Kκ = ∅.

Thus (6.11.21) has to hold if κ− η ≤ E(c) ≤ κ+ η.
From Theorem 6.11.2, we know that for any t > 0, there is a map

Λ0 → Λ0

c → Φt(c), where Φt(c) = Φ(t) solves
d
dtΦ(t) = −∇E(Φ(t))
Φ(0) = c.

With the help of this gradient flow, we may now decrease the energy below
the level κ, contradicting (6.11.20). For that purpose,
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let λ ∈ Λ satisfy
max

τ∈[0,1]
E(λ(τ)) ≤ κ+ η. (6.11.22)

Then, as in the proof of Lemma 6.11.2

d

dt
E(Φt(λ(τ))) = −‖∇E(Φt(λ(τ)))‖2 ≤ 0. (6.11.23)

In particular, for t > 0

maxE(Φt(λ(τ))) ≤ maxE(λ(τ)) ≤ κ+ η. (6.11.24)

Since c1 and c2 are closed geodesics, i.e. critical points of E, ∇E(ci) = 0 (i =
1, 2), hence

Φt(ci) = ci for all t ≥ 0.

Therefore
Φt ◦ λ ∈ Λ for t ≥ 0.

(6.11.21), (6.11.23) imply

d

dt
E(Φt(λ(τ))) ≤ −α2 whenever E(Φt(λ(τ))) > κ− η. (6.11.25)

(6.11.22), (6.11.25) imply

E(Φs(λ(τ))) ≤ κ− η

for s ≥ 2η
α2 and all τ ∈ [0, 1], contradicting the definition of κ. Therefore,

(6.11.20) cannot hold, and the theorem is proved. �

As the culmination of this §, we now prove the theorem of Lyusternik
and Fet

Theorem 6.11.4 Each compact Riemannian manifold contains a nontrivial
closed geodesic.

For the proof, we shall need the following result from algebraic topology
which, however, we do not prove here. (A proof may be found e.g. in E.
Spanier, Algebraic topology, McGraw Hill, 1966.)

Lemma 6.11.3 Let M be a compact manifold of dimension n. Then there
exist some i, 1 ≤ i ≤ n, and a continuous map

h : Si →M,

which is not homotopic to a constant map.
In case M is a differentiable manifold, then h can also be chosen to be

differentiable. �
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We now prove Theorem 6.11.4:

We start with a very simple construction that a reader with a little expe-
rience in topology may skip.

Let i be as in Lemma 6.11.3. If i = 1, the result is a consequence of
Theorem 1.4.6. We therefore only consider the case i ≥ 2. h from Lemma
6.11.3 then induces a continuous map H of the (i − 1)-cell Di−1 into the
space of differentiable curves in M, mapping ∂Di−1 to point curves. In order
to see this, we first identify Di−1 with the half equator {x1 ≥ 0, x2 = 0} of the
unit sphere Si in Ri+1 with coordinates (x1, . . . , xi+1). To p ∈ Di−1 ⊂ Si, we
assign that circle cp(t), t ∈ [0, 1], parametrized proportionally to arc length
that starts at p orthogonally to the hyperplane {x2 = 0} into the half sphere
{x2 ≥ 0} with constant values of x3, . . . , xi+1. For p ∈ ∂Di−1, cp then is the
trivial (i.e. constant) circle cp(t) = p. The map H is then given by

H(p)(t) := h ◦ cp(t).
Each q ∈ Si then has a representation of the form q = cp(t) with p ∈ Di−1.
p is uniquely determined, and t as well, unless q ∈ ∂Di−1. A homotopy of H,
i.e. a continuous map

H̃ : Di−1 × [0, 1] → {closed curves in M}
that maps ∂Di−1 × [0, 1] to point curves and satisfies H̃|Di−1×{0} = H, then
induces a homotopy h̃ : Si × [0, 1] →M of h by

h̃(q, s) = h̃(cp(t), s) = H̃(p, s)(t)

(q = cp(t), as just described).
We now come to the core of the proof and consider the space

Λ :={λ : Di−1 → Λ0, λ homotopic to H

as described above, in particular mapping ∂Di−1 to
point curves},

and put
κ := inf

λ∈Λ
max

z∈Di−1
E(λ(z)).

As in the proof of Thm. 6.11.3, we see that there exists a closed geodesic γ
with

E(γ) = κ.

It only remains to show that κ > 0, in order to exclude that γ is a point curve
and trivial. Should κ = 0 hold, however, then for every ε > 0, we would find
some λε ∈ Λ with

max
z∈Di−1

E(λε(z)) < ε.
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All curves λε(z) would then have energy less than ε. We choose ε < ρ2
0
2 .

Then, for every curve cz := λε(z) and each t ∈ [0, 1]

d(cz(0), cz(t))2 ≤ 2E(cz) < ρ2
0.

The shortest connection from cz(0) to cz(t) is uniquely determined; denote it
by qz,t(s), s ∈ [0, 1]. Because of its uniqueness, qz,t depends continuously on
z and t. H̄(z, s)(t) := qz,t(1− s) then defines a homotopy between λε and a
map that maps Di−1 into the space of point curves in M, i.e. into M.

Such a map, however, is homotopic to a constant map, for example since
Di−1 is homotopically equivalent to a point. (The more general maps from
Di−1 considered here into the space of closed curves on M are not necessarily
homotopic to constant maps since we have imposed the additional condition
that ∂Di−1 = Si−2 is mapped into the space of point curves which is a proper
subspace of the space of all closed curves.) This implies that λε is homotopic
to a constant map, hence so are H and h, contradicting the choice of h.
Therefore, κ cannot be zero. �

Perspectives. It has been conjectured that every compact manifold admits
infinitely many geometrically distinct closed geodesics. “Geometrically distinct”
means that geodesics which are multiple coverings of another closed geodesic are
not counted. The loop space, i.e. the space of closed curves on a manifold has a rich
topology, and Morse theoretic constructions yield infinitely many critical points of
the energy function. The difficulty, however, is to show that those correspond to
geometrically distinct geodesics. Besides many advances, most notably by Klingen-
berg[158], the conjecture is not verified in many cases. Among the hardest cases
are Riemannian manifolds diffeomorphic to a sphere Sn. For n = 2, however, in
that case, the existence of infinitely many closed geodesics was shown in work of
Franks[77] and Bangert[13]. For an explicit estimate for the growth of the number
of closed geodesics of length ≤ , see Hingston[119] where also the proof of Franks’
result is simplified.

We would also like to mention the beautiful theorem of Lyusternik and Schnirel-
man that any surface with a Riemannian metric diffeomorphic to S2 contains at
least three embedded closed geodesics (the number 3 is optimal as certain ellipsoids
show). See e.g. Ballmann[10], Grayson[91], Jost[130], as well as Klingenberg[158].

Exercises for Chapter 6

1) Show that if f is a Morse function on the compact manifold X, a < b,
and if f has no critical point p with a ≤ f(p) ≤ b, then the sublevel
set {x ∈ X : f(x) ≤ a} is diffeomorphic to {x ∈ X : f(x) ≤ b}.

2) Compute the Euler characteristic of a torus by constructing a suitable
Morse function.

3) Show that the Euler characteristic of any compact odd-dimensional
differentiable manifold is zero.



Exercises for Chapter 6 383

4) Show that any smooth function f : Sn → R always has an even
number of critical points, provided all of them are nondegenerate.

5) Prove the following theorem of Reeb:
Let M be a compact differentiable manifold, and let f ∈ C3(M,R)
have precisely two critical points, both of them nondegenerate. Then
M is homeomorphic to the sphere Sn(n = dimM).

6) Is it possible, for any compact differentiable manifold M, to find a
smooth function f : M → R with only nondegenerate critical points,
and with µj = bj for all j (notations of Theorem 5.3.1)?
(Hint: Consider RP3 (cf. Chapter 1, Exercise 3 and Chapter 4, Exer-
cise 5) and use Bochner’s theorem 3.5.1, Poincaré duality (Corollary
2.2.2), and Reeb’s theorem (Exercise 5).)

7) State conditions for a complete, but noncompact Riemannian mani-
fold to contain a nontrivial closed geodesic. (Note that such conditions
will depend not only on the topology, but also on the metric as is al-
ready seen for surfaces of revolution in R3.)

8) Let M be a compact Riemannian manifold, p, q ∈ M,p 
= q. Show
that there exist at least two geodesic arcs with endpoints p and q.

9) In 6.2.1, assume that f has two relative minima, not necessarily strict
anymore. Show that again there exists another critical point x3 of f
with f(x3) ≥ max{f(x1), f(x2)}. Furthermore, if κ = inf

γ∈Γ
max
x∈γ

f(x) =

f(x1) = f(x2), show that f has infinitely many critical points.

10) Prove the following statement:
Let γ be a smooth convex closed Jordan curve in the plane R2. Show
that there exists a straight line � in R2 (not necessarily through the
origin, i.e. � = {ax1 + bx2 + c = 0} with fixed coefficients a, b, c)
intersecting γ orthogonally in two points.
(Hint: γ bounds a compact set A in R2 by the Jordan curve theorem.
For every line � in R2, put

LA(�) := length(A ∩ �).
Find a nontrivial critical point �0 for LA (i.e. LA(�0) > 0) on the set
of all lines by a saddle point construction. See also J. Jost, X. Li-Jost,
Calculus of variations, Cambridge Univ. Press, 1998, Chapter I.3)

11) Generalize the result of 10) as follows:
Let M be diffeomorphic to S2, γ a smooth closed Jordan curve in
M. Show that there exists a nontrivial geodesic arc in M meeting γ
orthogonally at both endpoints.
(Hint: For the boundary condition, see exercise 1 of Chapter 4.)
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12) If you know some algebraic topology (relative homotopy groups and a
suitable extension of Lemma 6.11.3, see E. Spanier, Algebraic topol-
ogy, McGraw Hill (1966)), you should be able to show the following
generalization of 11).
Let M0 be a compact (differentiable) submanifold of the compact
Riemannian manifold M. Show that there exists a nontrivial geodesic
arc in M meeting M0 orthogonally at both end points.

13) For p > 1 and a smooth curve c(t) in M, define

Ep(c) :=
1
p

∫
‖ċ‖pdt.

Define more generally a space H1,p(M) of curves with finite value
of Ep. What are the critical points of Ep (derive the Euler-Lagrange
equations)? If M is compact, does Ep satisfy the Palais-Smale condi-
tion?



7. Variational Problems from Quantum Field
Theory

7.1 The Ginzburg-Landau Functional

A prototypical situation for the functionals that we are going to consider is
the following:

M is a compact Riemannian manifold, E a complex vector bundle over
M , i.e. a vector bundle with fiber Cn, equipped with a Hermitian metric 〈·, ·〉.
We consider sections ϕ of E and unitary connections DA = d + A (locally)
on E. Here, “unitary” of course means that A is skew Hermitian w.r.t. 〈·, ·〉.
We denote the curvature of DA = d+A by FA, and we write |ϕ| for 〈ϕ,ϕ〉 1

2 .
We consider Lagrangians of the type

L(ϕ,A) :=
∫
M

(
γ1|FA|2 + γ2|DAϕ|2 + γ3V (ϕ)

) ∗(1) (7.1.1)

Here γ1, γ2, γ3 are positive constants, while V (·) is some “potential”. If V (ϕ)
is quadratic in |ϕ|, e.g.

V (ϕ) = m2|ϕ|2, (7.1.2)

the resulting Euler-Lagrange equations are linear in ϕ,

D∗
ADAϕ+m2ϕ = 0. (7.1.3)

The Euler-Lagrange equations also contain a equation for variations of A,
namely

γ1D
∗
AFA = −1

2
γ2(〈ϕ,DAϕ〉+ 〈DAϕ,ϕ〉) (7.1.4)

(see also the proof of Lemma 7.1.1 below for the derivation of these equa-
tions).

It leads to a richer structure, however, if we allow V (ϕ) to be a polynomial
of higher than quadratic order in |ϕ|. Of particular interest to us will be the
case of a 4th order polynomial, for example

V (ϕ) =
(
σ − |ϕ|2)2 ,

for some σ ∈ R.
We first consider the case where the base manifold is a compact Riemann

surface Σ equipped with a conformal metric, and where the vector bundle is
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a Hermitian line bundle L, i.e. with fiber C, and a Hermitian metric 〈·, ·〉 on
the fibers.

Definition 7.1.1 The Ginzburg-Landau functional for a section ϕ of L and
a unitary connection DA = D +A on L is defined as

L(ϕ,A) :=
∫
Σ

(
|FA|2 + |DAϕ|2 +

1
4
(
σ − |ϕ|2)2) ∗(1) (7.1.5)

(σ ∈ R).
The reason for the factor 1

4 will emerge in a moment. A simple calculation
yields

Lemma 7.1.1 The Euler-Lagrange equations for the Ginzburg-Landau func-
tional are

D∗
ADAϕ =

1
2
(
σ − |ϕ|2)ϕ (7.1.6)

D∗
AFA = −Re〈DAϕ,ϕ〉 (7.1.7)

Proof. The term
∫|FA|2 was handled already in §3.2 when we derived the

Yang-Mills equation. Varying ∫
〈DAϕ,DAϕ〉 (7.1.8)

w.r.t. A yields

d

dt

∫
〈DA+tBϕ,DA+tBϕ〉|t = 0 =

∫
(〈DAϕ,Bϕ〉+ 〈Bϕ,DAϕ〉) .

Thus (7.1.7) readily follows (cf. also (7.1.4) above). Varying (7.1.8) w.r.t. ϕ
yields

d

dt

∫
〈DA(ϕ+ tψ), DA(ϕ+ tψ)〉

|t = 0
=
∫

(〈D∗
ADAϕ,ψ〉+ 〈ψ,D∗

ADAϕ〉) .

Finally, the r.h.s. of (7.1.6) obviously arises from varying∫
1
4
(
σ − |ϕ|2)2

w.r.t. ϕ. �

Remark. (7.1.7) is linear in A. Namely, as explained in §3.2 (cf. (3.2.24)),
for an abelian structure group, D∗

AFA becomes d∗FA, and so (7.1.7) is

d∗
(
∂A0,1 − ∂A1,0

)
= −Re〈(d+A)ϕ,ϕ〉
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(in the notations of (7.1.13) below) which is obviously linear in A (but not
in ϕ).

Since DA is a unitary connection, A is a 1-form with values in u(1),
the Lie algebra of U(1). This Lie algebra will sometimes be identified with
iR. (U(1) is a subgroup of the Lie group Gl(1,C), and u(1) is a subalgebra
of the Lie algebra gl(1,C). The latter can be identified with C. Likewise,
Gl(1,C) can be identified with C∗, the nonvanishing complex numbers, and
U(1) then corresponds to to the complex numbers of the form eiϑ, ϑ ∈ R.
Taking derivatives, u(1) then corresponds to the complex numbers of the form
it, t ∈ R.) Thus, A, A1,0 A0,1, and the curvature FA will then be considered
as imaginary valued forms. This will explain certain factors i appearing in
the sequel.

We should point out that the convention adopted here (which is a conse-
quence of more general conventions used in other places in the present book)
is different from the convention employed in the physics literature, where one
writes a unitary connection as

d− iA

with a real valued A. In other words, our A corresponds to −iA in the physics
literature.

We decompose Ω1, the space of 1-forms on Σ, as

Ω1 = Ω1,0 ⊕Ω0,1, (7.1.10)

with Ω1,0 spanned by 1-forms of the type dz, Ω0,1 by 1-forms of the type dz.
Here, z of course is a local conformal parameter on Σ, and with z = x+ iy,
we have z = x− iy. From the beginning of §8.2, we recall the conventions

dz = dx+ idy dz = dx− idy
∂
∂z = 1

2

(
∂
∂x − i ∂

∂y

)
∂
∂z = 1

2

(
∂
∂x + i ∂

∂y

)
.

If ∂
∂x , ∂

∂y are an orthonormal basis of the tangent space of Σ at the point
under consideration, we get

〈dz, dz〉 = 〈dx+ idy, dx+ idy〉 = 〈dx, dx〉+ i〈dy, dx〉 − i〈dx, dy〉+ 〈dy, dy〉 = 2
〈dz, dz〉 = 2, 〈dz, dz〉 = 0. (7.1.11)

The last relation in (7.1.11) implies that (7.1.10) is an orthogonal decompo-
sition. We may also decompose DA into its (1,0) and (0,1) parts

DA = ∂A + ∂A.

Thus

∂Aϕ ∈ Ω1,0(L), ∂Aϕ ∈ Ω0,1(L) for all sections ϕ of L. (7.1.12)

We also write
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∂A = ∂ +A1,0, ∂A = ∂ +A0,1, (7.1.13)

with
d = ∂ + ∂

being the decomposition of the exterior derivative. Here we have

∂f =
∂f

∂z
dz, ∂f =

∂f

∂z
dz, for functions on Σ.

We write the conformal metric g on Σ in our local coordinates as

ρ2(z)dzdz

Given z0 ∈ Σ, we may assume that

ρ2(z0) = 1, (7.1.14)

simply by replacing our coordinates z by 1
ρ(z0)

z. We may then describe the
action of the ∗ operator of the metric ρ2dzdz at z0 as follows

∗dz = ∗(dx+ idy) = dy − idx = −idz (7.1.15)
∗dz = idz (7.1.16)

We also recall
dz ∧ dz = −2idx ∧ dy, (7.1.17)

hence
∗(dz ∧ dz) = −2i∗(dx ∧ dy) = −2i (7.1.18)

and
∗(1) = dx ∧ dy =

i

2
dz ∧ dz.

We compute

∂A∂Aϕ =
(
∂ +A1,0

) ◦ (∂ +A1,0
)
ϕ

= ∂∂ϕ+A1,0 ∧ ∂ϕ+A1,0 ∧A1,0ϕ+
(
∂A1,0

)
ϕ−A1,0 ∧ ∂ϕ

= 0 (7.1.20)

since ∂∂ = 0 and A1,0 ∧ A1,0 + ∂A1,0 is a (2,0) form which has to vanish as
Σ has complex dimension 1.

Likewise
∂ ∂ = 0 (7.1.21)

Moreover

∂A∂Aϕ = ∂∂ϕ+A1,0 ∧ ∂ϕ+A1,0 ∧A0,1ϕ+
(
∂A0,1

)
ϕ−A0,1 ∧ ∂ϕ

∂A∂Aϕ = ∂∂ϕ+A0,1 ∧ ∂ϕ+A0,1 ∧A1,0ϕ+
(
∂A1,0

)
ϕ−A1,0 ∧ ∂ϕ

= −∂A∂Aϕ+
(
∂A1,0 − ∂A0,1

)
ϕ (7.1.22)

= −∂A∂Aϕ− FAϕ
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i.e.
FA = − (

∂A∂A + ∂A∂A

)
(7.1.23)

Theorem 7.1.1 We have

L(ϕ,A) =
∫
Σ

(
2|∂Aϕ|2 +

(
∗(−iF )− 1

2
(
σ − |ϕ|2))2

)
∗(1) + 2πσdegL

(7.1.24)
with

degL := c1(L)[Σ] (the degree of the line bundle L).

Proof. We compute (writing F in place of FA)∫ (
∗(−iF )− 1

2
(
σ − |ϕ|2))2

∗(1)

=
∫ (

|F |2 +
1
4
(
σ − |ϕ|2)2 − σ∗iF ∗ iF 〈ϕ,ϕ〉

)
∗(1) (7.1.25)

Now ∫
∗iF∗(1) =

∫
iF = 2πc1(L)[Σ] = 2πdegL (7.1.26)

Also∫
〈∗iFϕ, ϕ〉∗(1) =

∫ 〈−i (∂A∂A + ∂A∂A

)
ϕ, ∗ϕ〉 ∗(1), using (7.1.23)

In order to proceed, let z0 ∈ Σ, and choose Riemannian normal coordinates
with center z0. Thus, ρ2(z0) = 1, and the first derivatives of the metric vanish
at z0. Also, we apply a gauge transformation so that A(z0) = 0 (see Lemma
3.2.3). Since we are not going to commute any derivatives any more, no second
derivatives of the metric or first derivatives of A will enter our subsequent
computations at z0, and we may therefore proceed with our computations as
in the Euclidean case. Thus, we have to evaluate∫ 〈

−i ((ϕz)z dz ∧ dz + (ϕz)z dz ∧ dz) ,
i

2
ϕdz ∧ dz

〉
∗ (1)

= −
∫

2 ((ϕz)z · ϕ− (ϕz)z · ϕ) ∗ (1)

(since 〈−idz ∧ dz, idz ∧ dz〉 = −|dz ∧ dz|2 = −4 as 〈·, ·〉 is Hermitian)

= 2
∫

(ϕzϕz − ϕzϕz) ∗ (1)

= −
∫ (
|∂Aϕ|2 −

∣∣∂Aϕ
∣∣2) ∗(1)

(the factor 2 disappears since 〈dz, dz〉 = 〈dz, dz〉 = 2, and in our coordinates
∂ϕ = ϕzdz etc.). Thus we have shown
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−
∫
〈∗iFϕ, ϕ〉∗(1) =

∫ (
|∂Aϕ|2 −

∣∣∂Aϕ
∣∣2) ∗(1) (7.1.27)

Finally, of course
|DAϕ|2 = |∂Aϕ|2 +

∣∣∂Aϕ
∣∣2 (7.1.28)

since the decomposition
Ω1 = Ω1,0 ⊕Ω0,1

is orthogonal. The result then follows from (7.1.25) - (7.1.28). �

Theorem 7.1.1 has the following useful consequence

Corollary 7.1.1 Assume degL ≥ 0. Then the lowest possible value permitted
by the global topology of the bundle for L(ϕ,A) is realised precisely if ϕ and
A satisfy the set of 1st order differential equations

∂Aϕ = 0 (7.1.29)

∗(iF ) =
1
2
(σ − |ϕ|2) (7.1.30)

�

Remark. If degL < 0, then these equations cannot have any solution, because
for any solution, L(ϕ,A) would be negative by (7.1.24) whereas we see from
(7.1.5) that for any ϕ,A, L(ϕ,A) ≥ 0. Thus, in case degL < 0, one has to
consider the selfduality equations arising from the following expression for
the Ginzburg-Landau functional:

L(ϕ,A) =
∫
Σ

(
2|∂Aϕ|2 +

(
∗(−iF )− 1

2
(σ − |ϕ|2)

)2
)
∗(1)− 2πdegL

(7.1.31)
which is derived through the same computations. W.l.o.g., we shall assume
degL ≥ 0 in the sequel.

Integrating (7.1.30) yields the inequality

2πdegL =
∫
iF =

1
2

∫
(σ − |ϕ|2)∗(1) ≤ σ

2
Area (Σ)

with
(

Area (Σ) =
∫
Σ

∗(1)
)

. Thus, a necessary condition for the solvability of

(7.1.30) is

σ ≥ 4πdegL
Area(Σ)

, (7.1.32)

and in fact, we must have strict inequality in (7.1.32) unless ϕ ≡ 0.
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Corollary 7.1.1 constitutes another instance of the phenomenon of self-
duality that we already encountered in §3.2 when we discussed the Yang-
Mills functional on a fourdimensional Riemannian manifold. The equations
(7.1.29), (7.1.30) are also called selfduality equations because the solutions
of these first order equations are precisely those solutions of (7.1.6), (7.1.7)
that realize the lower bound imposed by the topology for the functional and,
if they exist, yield the absolute minima for the functional considered. In
fact, this remark, namely that these equations hold for the absolute min-
ima, makes it clear that any solution of (7.1.29), (7.1.30) automatically also
solves (7.1.6), (7.1.7), as the latter are the Euler-Lagrange equations for the
Ginzburg-Landau functional, and as such have to be satisfied in particular by
minimizers of that functional. Of course, it may also be checked by a direct
computation that solutions of (7.1.29), (7.1.30) also solve (7.1.6), (7.1.7).

The selfduality may be generalized as follows. Instead of L(ϕ,A), we con-
sider for ε > 0

Lε(ϕ,A) :=
∫ {

ε2|FA|2 + |DAϕ|2 +
1

4ε2
(σ − |ϕ|2)2

}
∗(1) (7.1.33)

=
∫ {

2|∂Aϕ|2 +
(
ε∗(iF )− 1

2ε
(σ − |ϕ|2)

)2
}
∗(1) + 2πdegL

which leads to the selfduality equations

∂Aϕ = 0 (7.1.34)

ε2∗(iF ) =
1
2
(σ − |ϕ|2). (7.1.35)

Still more generally, in place of ε, one may consider a function f(z) on Σ, for
example ε

|ϕ(z)| . This leads to the functional

L ε
|ϕ(z)|

(ϕ,A) (7.1.36)

=
∫ {

ε2

|ϕ(z)|2 |FA(z)|2 + |DAϕ(z)|2 +
1

4ε2
(σ − |ϕ|2)2|ϕ(z)|2

}
∗(1)

=
∫ {

2|∂Aϕ|2 +
(

ε

|ϕ(z)| ∗(iF )− 1
2ε

(σ − |ϕ|2)|ϕ|
)2

}
∗(1) + 2πdegL

with the selfduality equations

∂Aϕ = 0 (7.1.37)

ε2∗(iF ) =
1
2
(σ − |ϕ|2)|ϕ|2. (7.1.38)

The functionals Lε and L ε
|ϕ(z)|

are quite important for studying phase tran-
sitions in superconductivity.
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For studying solutions, the following consequence of the maximum prin-
ciple is very useful

Lemma 7.1.2 Let Σ be a compact Riemann surface with a conformal metric,
L as before. For any solution of (7.1.6), hence in particular for any solution
of (7.1.29), we have

|ϕ| ≤ σ on Σ (7.1.39)

Proof. From (7.1.6), we obtain

1
2
∆〈ϕ,ϕ〉 = 〈D∗ADAϕ,ϕ〉 − 〈DAϕ,DAϕ〉

(cf.(3.2.7)) = 1
2 (σ − |ϕ|2)|ϕ|2 − |DAϕ|2.

Let z0 ∈ Σ be a point where |ϕ|2 achieves its maximum. We may assume
A = 0 at z0 (cf. Lemma 3.2.3), hence DAϕ = 0 at z0. If we had |ϕ(z0)| > σ,
then at z0

∆|ϕ|2 < 0

which contradicts the maximum principle. �

Perspectives. It was shown by Taubes[237] that on R2, one may solve the
Ginzburg-Landau equations with any given finite collection prescribed as zero set
for ϕ, with prescribed multiplicities. This result was extended to compact Riemann
surfaces by Bradlow and Garćıa-Prada, and these authors also found generaliza-
tions on higher dimensional Kähler manifolds. References include [29, 30], [84, 85,
86]. We should also mention Hitchin’s penetrating study[120] of the equations

∂Aϕ = 0

FA + [ϕ, ϕ∗] = 0

on a compact Riemann surface.
The limit analysis for ε → 0 of the functional Lε(ϕ, A) and the solutions of the

equations (7.1.34), (7.1.35) on a compact Riemann surface has been carried out by
Hong, Jost, Struwe[122]. The result is that away from the prescribed zero set of
ϕε (the “vortices”), |ϕε| uniformly converges to 1, and DAεϕε and dAε uniformly
converge to 0, whereas the curvature in the limit becomes a sum of delta distribu-
tions concentrated at the vortices. Of course, the number of vortices counted with
multiplicity has to equal the degree of the line bundle L, degL. This result thus
yields a method for degenerating a line bundle on a Riemann surface into a flat
line bundle with degL singular points (counted with multiplicity) and a covariantly
constant section.

Results for the ϕ6 theory on a compact torus can be found in Caffarelli,
Yang[35], Tarantello[236], Ding, Jost, Li, Wang[58]. For the case of S2, see Ding,
Jost, Li, Wang[59]. The general case was solved by Ding, Jost, Li, Peng, Wang[57].
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7.2 The Seiberg-Witten Functional

Let M be a compact, oriented, four dimensional Riemannian manifold with
a spinc structure P̃ c, i.e. a spinc manifold. (As mentioned in §1.8, in the four
dimensional case, there always exists some spinc structure on a given oriented
Riemannian manifold.) As in Definition 1.8.10, the determinant line bundle
of this spinc structure will be denoted by L, and as in Definition 3.4.1 (ii), the
Dirac operator determined by a unitary connection A on L will be denoted by
DA. Finally, we recall the half spin bundle S± defined by the spinc structure,
as remarked after Definition 1.8.10 (we omit the subscript for the dimension,
as the dimension is fixed to be 4 in the present §). By Lemma 3.4.5, DA maps
sections of S± to sections of S∓.

Definition 7.2.1 The Seiberg-Witten functional for a unitary connection A
on L and a section ϕ of S+ is

SW (ϕ,A) :=
∫
M

(
|∇Aϕ|2 + |F+

A |2 +
R

4
|ϕ|2 +

1
8
|ϕ|4

)
∗(1) (7.2.1)

where ∇A is the spinc connection induced by A and the Levi-Civita connec-
tion of M (cf. 3.4.7), F+

A is the selfdual part of the curvature of A, and R is
the scalar curvature of M .

The discussion of the Seiberg-Witten functional will parallel our discus-
sion of the Ginzburg-Landau functional in §7.1. In fact, the structure of SW
is quite similar to the one of L, containing a square norm of the curvature
of the connection A, the square of the norm of the covariant derivation of ϕ,
and a nonlinearity that is a fourth order polynomial in |ϕ|.

Lemma 7.2.1 The Euler-Lagrange equations for the Seiberg-Witten func-
tional are

∇∗
A∇Aϕ = −

(
R

4
+

1
4
|ϕ|2

)
ϕ (7.2.2)

d∗F+
A = −Re〈∇Aϕ,ϕ〉 (7.2.3)

Proof. As the proof of Lemma 7.1.1. �

In order to proceed, we need to associate to s ∈ S+
4 the two-form τ(s)

defined by
τ(s)(v, w) := 〈v · w · s, s〉+ 〈v, w〉|s|2

Lemma 7.2.2
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τ(s) ∈ Λ2,+(iR) (i.e. τ(s) is a selfdual 2-form that
assumes imaginary values),

and
|τ(s)|2 = 2|s|4.

Proof. We first show that τ(s) takes imaginary values. We start with the skew
symmetry.

τ(s)(v, w) = 〈v · w · s, s〉+ 〈v, w〉|s|2 = 〈(−w · v − 2〈v, w〉)s, s〉+ 〈v, w〉|s|2
= −τ(s)(w, v)

Next

τ(s)(v, w) = 〈v · w · s, s〉+ 〈v, w〉|s|2 = 〈s, v · w · s〉+ 〈v, w〉|s|2
= −〈v · s, w · s〉+ 〈v, w〉|s|2 by Corollary 1.8.4

= 〈w · v · s, s〉+ 〈v, w〉|s|2 for the same reason
= τ(s)(w, v)
= −τ(s)(v, w) by skew symmetry

This implies that τ(s)(v, w) is in iR.
For the computation of |τ(s)|2, we recall that the spin representation

Γ : Clc(R4) → C4×4, and the half spin representation that we shall now
denote as Γ+ : Clc,ev(R4) → S+

4
∼= C2. We write s = (s1, s2) ∈ C2 and

obtain from the formulae for Γ (eα, eβ) from §1.8

τ(s)(e1, e2) = i(s1s2 + s2s1) = τ(s)(e3, e4)
τ(s)(e1, e3) = s1s2 − s2s1 = −τ(s)(e2, e4)
τ(s)(e1, e4) = i(s1s1 − s2s2) = τ(s)(e2, e3)

This already implies that τ ∈ Λ2,+.
We may now compute

|τ(s)|2 =
∑
i<j

|τ(s)(ei, ej)|2

= 2
(
(s1s1 − s2s2)2 + (s1s2 + s2s1)2 − (s1s2 − s2s1)2

)
= 2|s|4.

�

In more explicit terms we may write

τ(s) = 〈ej · ek · s, s〉ej ∧ ek

where ej is a frame in T ∗M dual to the frame ej on TM (j = 1, . . . , 4).
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Theorem 7.2.1 The Seiberg-Witten functional (7.2.1) can be expressed as

SW (ϕ,A) =
∫
M

(
|DAϕ|2 +

∣∣∣∣F+
A −

1
4
〈ej · ek · ϕ,ϕ〉ej ∧ ek

∣∣∣∣2
)
∗(1) (7.2.4)

where ej, j = 1, . . . , 4, are 1-forms dual to the tangent vectors ej, j = 1, . . . , 4,
i.e. ej(ek) = δjk.

Proof. We have

|F+
A −

1
4
〈ej · ek · ϕ,ϕ〉ej ∧ ek|2 = |F+

A |2 +
1
16
|〈ej · ek · ϕ,ϕ〉ej ∧ ek|2

− 1
2
〈F+

A , ej ∧ ek〉〈ej · ek · ϕ,ϕ〉 (7.2.5)

By Lemma 7.2.2
1
16
|〈ej · ek · ϕ,ϕ〉ej ∧ ek|2 =

1
8
|ϕ|4 (7.2.6)

Writing F+
A = F+

il e
i ∧ el, we get

−1
2
〈F+

A , ej ∧ ek〉〈ej · ek ·ϕ,ϕ〉 = −1
2
〈F+

jkej · ek ·ϕ,ϕ〉 = −1
2
〈F+

A ϕ,ϕ〉 (7.2.7)

On the other hand, the Weizenböck formula of Theorem 3.4.2 yields, (apply-
ing (3.4.19) to ϕ, taking the scalar product with ϕ, integrating, and using
the self adjointness of DA) that∫

|DAϕ|2 =
∫
|∇Aϕ|2 +

1
4
R|ϕ|2 +

1
2
〈F+

A ϕ,ϕ〉 (7.2.8)

The result follows from (7.2.5) - (7.2.8). �

Corollary 7.2.1 The lowest topologically possible value of the Seiberg-Witten
functional is achieved precisely if ϕ and A are solutions of

DAϕ = 0 (7.2.9)

F+
A =

1
4
〈ej · ek · ϕ,ϕ〉ej ∧ ek (7.2.10)

Definition 7.2.2 The equations (7.2.9) and (7.2.10) are called the Seiberg-
Witten equations.

Thus, we see the mechanism of selfduality at work once more. The absolute
minima of the Seiberg-Witten functional for which the above lower bound is
achieved satisfy not only the the second order equations (7.2.2), (7.2.3), but
also the first order Seiberg-Witten equations (7.2.9), (7.2.10).
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So far our discussion of the Seiberg-Witten functional has been completely
analogous to the one of the Ginzburg-Landau functional, except that so far,
the parameter σ in the latter has had no analogue in the former. However, this
can easily be achieved by choosing a 2-form µ and considering the perturbed
functional

SWµ(ϕ,A) =
∫ (

|DAϕ|2 + |F+
A −

1
4
〈ej · ek · ϕ,ϕ〉ej ∧ ek + µ|2

)
∗(1)

=
∫ (

|∇Aϕ|2 + |F+
A |2 +

R

4
|ϕ|2 + (7.2.11)

|µ− 1
4
〈ej · ek · ϕ,ϕ〉ej ∧ ek|2 + 2〈F+

A , µ〉
)
∗(1)

If we assume that µ is antiselfdual, then

〈F+
A , µ〉 = 0 (7.2.12)

as F+
A by definition is selfdual and the decomposition of the 2-forms on a four

dimensional manifold into selfdual and antiselfdual ones is orthogonal (see
§3.2). Thus, in that case the additional term 〈F+

A , µ〉 in (7.2.11) disappears.
If we assume that µ is a closed selfdual form, then

〈F−
A , µ〉 = 0,

again since the antiselfdual form F−
A is orthogonal to the selfdual forms, and

hence
〈F+

A , µ〉 = 〈FA, µ〉.
Further, since FA represents the first Chern class c1(L) of the determinant
line bundle L (see §3.2), and since µ is assumed to be closed, hence represents
a cohomology class [µ], ∫

M

〈FA, µ〉∗(1) (7.2.13)

does not depend on the connection A (see the discussion of Chern classes in
§3.2), hence represents a topological invariant, denoted by (c1(L) ∧ [µ])[M ].
This expression then plays a rôle that is completely analogous that one of
2πdegL in the discussion of the Ginzburg-Landau functional.

The corresponding first order equations for SWµ are

DAϕ = 0 (7.2.14)

F+
A =

1
4
〈ej · ek · ϕ,ϕ〉ej ∧ ek − µ (7.2.15)

Since, by our conventions, both F+ and 〈ej ·ek ·ϕ,ϕ〉ej ∧ek are imaginary
valued, (7.2.15) may only admit a solution if we assume that µ is imaginary
valued as well. As in the Ginzburg-Landau theory, one may also introduce
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a scaling factor ε > 0 or a scaling function like ε
|ϕ| into the Seiberg-Witten

functional. For example, one may define

SWµ,ε(ϕ,A) =
∫
M

{
|∇Aϕ|2 + ε2|F+

A |2 +
R

4
|ϕ|2 (7.2.16)

+
1
ε2

∣∣µ− 〈ej · ek · ϕ,ϕ〉ej ∧ ek
∣∣2 + 2〈F+

A , µ〉
}
∗(1)

=
∫
M

{
|DAϕ|2 +

∣∣∣∣εF+
A −

1
ε

(
1
4
〈ej · ek · ϕ,ϕ〉ej ∧ ek − µ

)∣∣∣∣2
}
∗(1).

We have a maximum principle similar to Lemma 7.1.2:

Lemma 7.2.2 For any solution ϕ of (7.2.2), hence in particular for any
solution of (7.2.9), on a compact four-dimensional Riemannian manifold, we
have

max
M
|ϕ|2 ≤ max

x∈M
(−R(x), 0) (7.2.17)

Proof. (7.2.2) implies

1
2
∆|ϕ|2 = 〈∇∗

A∇Aϕ,ϕ〉 − |∇Aϕ|2 (cf.(3.2.7))

= −
(
R

4
+

1
4
|ϕ|2

)
|ϕ|2 − |∇Aϕ|2.

Let x0 ∈M be a point where |∇Aϕ|2 achieves its maximum. Then

∆|ϕ(x0)|2 ≥ 0.

Thus,
R(x0) + |ϕ(x0)|2 ≤ 0,

and (7.2.17) follows. �

Corollary 7.2.2 If the compact, oriented, Riemannian Spinc manifold M
has nonnegative scalar curvature, then the only possible solution of the
Seiberg-Witten equations is

ϕ ≡ 0, F+
A ≡ 0.
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Proof. By Corollary 7.2.1, solutions of the Seiberg-Witten equations (7.2.9),
(7.2.10) also solve (7.2.2), (7.2.3). From Lemma 7.2.2 we conclude that in
case R ≥ 0, the only solution of (7.2.2) is

ϕ ≡ 0.

(7.2.10) then yields F+
A ≡ 0. �

In fact, the conclusion of Corollary 7.2.2 may also be obtained directly
from Theorem 7.2.1 as follows: From (7.2.4) is clear that for any solution of
(7.2.9), (7.2.10), we have SW (ϕ,A) = 0. If R ≥ 0, (7.2.1) on the other hand
implies that SW (ϕ,A) = 0 can only hold if all terms in the integral in (7.2.1)
vanish. Hence ϕ ≡ 0, F+

A ≡ 0.

Perspectives. The Seiberg-Witten equations were introduced by Seiberg and
Witten[223, 224]. The mathematical relevance of these equations was first shown
by Witten[257], Taubes[238, 239], Kronheimer and Mrowka[164]. Further references
can be found in the monographs of Salamon[212] and Morgan[187]. The equations
and their applications are also described in several survey articles, among which
we mention Friedrich[80] (see also [81]). All these references have been useful in
assembling the material presented here.

As in the case of other gauge theories like the Yang-Mills theory discussed in
§3.2, the functional and the equations are invariant under the action of a gauge
group. Here the structure group is U(1), and so the Gauge group G consists of
maps from M into U(1) ∼= S1, u ∈ G acts on a pair (ϕ, A) via

u∗(ϕ, A) = (u−1ϕ, u−1du + A).

One has
Du∗A(u−1ϕ) = u−1DAϕ

and
Fu∗A = FA

so that the functional and the equations (including the perturbed ones) remain

invariant under the action of G. For a given spinc structure P̃ c, Riemannian metric
g and imaginary valued selfdual 2-form µ as pertubation, one considers the space
of solutions of (7.2.14), (7.2.15) modulo the action of G. This space is called moduli

space M(M, P̃ c, g, µ) of solutions. One writes the second Betti number b2 of M as

b2 = b+ + b−

where b+ (b−) is the dimension of the subspace of H2(M, R) represented by
(anti)selfdual 2-forms. In Seiberg-Witten theory, it is shown that in case b+ > 0,

the moduli spaces M(M, P̃ c, g, µ) are finite dimensional, smooth, compact, oriented
manifolds, at least for “generic” µ. The compactness here comes from the fact that
solutions satisfy uniform estimates. (Lemma 7.2.2 and estimates for higher deriva-
tives, see e.g. Jost, Peng, Wang[143] for a general presentation) that imply conver-
gence of subsequences of families of solutions. This is different from the situation
in Donaldson’s theory of (anti)selfdual connections on SU(2) bundles where no uni-
form estimates hold. The most useful case seems to be where the moduli space is
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zerodimensional, i.e. where one has a finite number of solutions. The theorem of
Seiberg-Witten says that if b+ > 1 and b+−b− is odd, then the number of solutions
counted with orientation is independent of the choice of the Riemannian metric g

and the pertubation µ and depends only on the spinc structure P̃ c on M . Also,
these moduli spaces are nonempty only for finitely many spinc structures. If (M, g)
in addition has positive scalar curvature, then in fact all Seiberg-Witten invariants
vanish (cf. Corollary 7.2.2). On the other hand, such Seiberg-Witten invariants, i.e.
numbers of solutions counted with orientation, can often be computed from gen-
eral index theorems, i.e. from topological data alone, and when these numbers are
found to be nonzero, this yields an obstruction for certain compact, oriented, dif-
ferentiable 4-manifolds to carry metrics with positive scalar curvature. For results
based on such ideas, see e.g. Le Brun[32]. The Seiberg-Witten theory can be used to
prove, to reprove and to extend many results from Donaldson theory. Kronheimer-
Mrowka[164] and Morgan, Szabó, Taubes[188] used Seiberg-Witten theory to prove
the Thom conjecture, stating that smooth algebraic curves (i.e. compact complex
smooth subvarietes of complex dimension one) in CP2 minimize the genus in their
homology classes.

The Seiberg-Witten equations seem to be particulary useful on symplectic 4-
manifolds (M, ω). Using iω as a perturbation and using the limit ε → 0 for the
parameter ε introduced into the equations above (see (7.2.16)), Taubes[240, 241]
showed that in the limit the zero set of the solution ϕ is a collection of pseudoholo-
morphic curves in the sense of Gromov[99]. Also, the curvature FA will concentrate
along the pseudoholomorphic curves in the limit ε → 0. In this way, one may identify
the invariants defined by Gromov that are very useful in symplectic geometry, but
hard to compute, with the invariants of Seiberg-Witten that can typically be com-
puted from topological index theorems. For a generalization of the Seiberg-Witten
functional with a potential term of 6th order, see Ding, Jost, Li, Peng, Wang[57].

Exercises for Chapter 7

1) Show by a direct computation that (7.1.29), (7.1.30) imply (7.1.6),
(7.1.7).

2) Derive the Euler-Lagrange equations for the functional defined in
(7.2.16).



8. Harmonic Maps

8.1 Definitions

We let M and N be Riemannian manifolds of dimension m and n, resp.
If we use local coordinates, the metric tensor of M will be written as

(γαβ)α,β=1,...,m,

and the one of N as
(gij)i,j=1,...,n.

We shall also use the following notations

(γαβ)α,β=1,...,m = (γαβ)−1
α,β (inverse metric tensor)

γ := det(γαβ)

Γα
βη :=

1
2
γαδ(γβδ,η + γηδ,β − γβη,δ) (Christoffel symbols of M)

and similarly
gij , Γ i

jk.

If f : M → N is a map of class C1, we define its energy density as

e(f)(x) :=
1
2
γαβ(x)gij(f(x))

∂f i(x)
∂xα

∂f j(x)
∂xβ

(8.1.1)

in local coordinates (x1, . . . , xm) on M, (f1, . . . , fn) on N.
The value of e(f)(x) seems to depend on the choices of local coordinates;

we are now going to interpret e(f) intrinsically and see that this is not so.
For this purpose, we consider the differential of f,

df =
∂f i

∂xα
dxα ⊗ ∂

∂f i
,

a section of the bundle T ∗M ⊗ f−1TN.
f−1TN is a bundle over M with metric (gij(f(x))), while T ∗M of course

has metric (γαβ(x)), cf. (1.5.5). Likewise, we have for the Levi-Civita con-
nections:



402 8. Harmonic Maps

∇ ∂
∂xα

∂

∂f i
= ∇ ∂fj

∂xα
∂

∂fj

∂

∂f i
by the chain rule (8.1.2)

=
∂f j

∂xα
Γ k

ij

∂

∂fk

∇ ∂
∂xα

dxβ = −Γ β
αγdx

γ cf. (3.1.20), which follows from

dxβ(
∂

∂xγ
) = δβγ , hence 0 =

∂

∂xα
(dxβ(

∂

∂xγ
)) (8.1.3)

= (∇ ∂
∂xα

dxβ)(
∂

∂xγ
) + dxβ(∇ ∂

∂xα

∂

∂xγ
)

= (∇ ∂
∂xα

dxβ)(
∂

∂xγ
) + Γ β

αγ .

We shall also employ the convention that the metric of a vector bundle
E over M will be denoted as

〈·, ·〉E .
Then, with ∂f

∂xα = ∂fi

∂xα
∂

∂fi ,

e(f) =
1
2
γαβ〈 ∂f

∂xα
,
∂f

∂xβ
〉f−1TN

=
1
2
〈df, df〉T∗M⊗f−1TN . (8.1.4)

〈 ∂f
∂xα ,

∂f
∂xβ 〉f−1TN is the pullback by f of the metric tensor of N, and conse-

quently e(f) is its trace (up to the factor 1
2 ) w.r.t. the metric on T ∗M. We

may also express (8.1.4) as

e(f) =
1
2
‖df‖2, (8.1.5)

where the norm ‖ · ‖ involves the metrics on T ∗M and f−1TN.

Definition 8.1.1 The energy of a C1-map f : M → N is

E(f) :=
∫
M

e(f)dM (8.1.6)

(with dM =
√
γdx1 ∧ . . . ∧ dxm in local coordinates, being the volume form

of M).

Of course, E generalizes the energy of a curve in N, i.e. a map from, say,
S1 to N as considered in chapter 7 and earlier.

Another, even simpler special case is where N = R. We then have the
Dirichlet integral of a function f : M → R
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E(f) =
1
2

∫
M

γαβ(x)
∂f

∂xα

∂f

∂xβ

√
γdx1 . . . dxm.

Our aim in this chapter is to find critical points of E. These will then
be higher dimensional generalizations of closed geodesics on N. One can also
consider them as nonlinear analogues of harmonic functions on M.

Lemma 8.1.1 The Euler-Lagrange equations for E are
1√
γ

∂

∂xα
(
√
γγαβ ∂

∂xβ
f i) + γαβ(x)Γ i

jk(f(x))
∂

∂xα
f j ∂

∂xβ
fk = 0. (8.1.7)

Definition 8.1.2 Solutions of (8.1.7) are called harmonic maps.

Remark. If M = S1 with its metric in standard coordinates, (8.1.7) reduces
to the familiar equation for geodesics.

Proof. Let f be a smooth critical point of E. Then f is in particular con-
tinuous, and we may localize our computations in local coordinates in both
domain and image. In this sense, let a smooth ϕ be given in such local coordi-
nates, with compact support, and consider the variation f+tϕ for sufficiently
small |t|, the sum being taken again in local coordinates. As f is a critical
point of E,

d

dt
E(f + tϕ)|t=0 = 0 (8.1.8)

So far, in fact, it sufficed to suppose f to be of class C1. We now assume f
to be of class C2 so that the equations (8.1.7) are meaningful. (8.1.8) gives

0 =
d

dt

1
2

∫
M

γαβ(x)gij(f(x) + tϕ(x))

(
∂f i

∂xα
+ t

∂ϕi

∂xα
)(
∂f j

∂xβ
+ t

∂ϕj

∂xβ
)
√
γdx1 . . . dxm|t=0

=
∫
M

(γαβ(x)gij(f(x))
∂f i

∂xα

∂ϕj

∂xβ

+
1
2
γαβ(x)gij,k(f(x))

∂f i

∂xα

∂f j

∂xβ
ϕk)
√
γdx1 . . . dxm,

making use of the symmetry gij = gji

= −
∫
M

∂

∂xβ
(
√
γγαβ ∂f

i

∂xα
)gij(f(x))ϕjdx1 . . . dxm

−
∫
M

γαβ(x)
∂f i

∂xα

∂fk

∂xβ
gij,k(f(x))ϕj√γdx1 . . . dxm

+
∫
M

1
2
γαβ(x)gij,k(f(x))

∂f i

∂xβ

∂f j

∂xα
ϕk√γdx1 . . . dxm
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where we may integrate by parts since ϕ has compact support in M. We put
ηi = gijϕ

j , and thus ϕj = gijηi. We then obtain

0 =−
∫
M

1√
γ

∂

∂xβ
(
√
γγαβ ∂f

i

∂xα
)ηi
√
γdx1 . . . dxm

−
∫
M

1
2
γαβg�j(gij,k + gkj,i − gik,j)

∂f i

∂xα

∂fk

∂xβ
η�
√
γdx1 . . . dxm (8.1.9)

using the symmetry γαβ = γβα in the second integral above.
The claim then follows from Theorem A.1.5. �

Later on, the smoothness of critical points of E will be an important and
often difficult issue. For the moment, however, rather than discussing this
question further, we want to interpret (8.1.7) from an intrinsic point of view.

We let ψ be a vector field along f ; this just means that ψ is a section of
f−1TN. In local coordinates

ψ = ψi(x)
∂

∂f i
.

ψ induces a variation of f by

ft(x) := expf(x)(tψ(x)). (8.1.10)

We want to compute
d

dt
E(ft)|t=0.

As an auxiliary computation

dψ = ∇f−1TN
∂

∂xα
(ψi ∂

∂f i
)⊗ dxα (8.1.11)

=
∂ψi

∂xα

∂

∂f i
⊗ dxα + ψiΓ k

ij

∂f j

∂xα

∂

∂fk
⊗ dxα,

writing ∂
∂xα = ∂fj

∂xα
∂

∂fj as above.
We now also have to take derivatives w.r.t. t. Here ∂

∂t is a vector tangent
to M ×R. The Levi-Civita connection on M and the trivial connection on R

yield the Levi-Civita connection on T ∗(M ×R)⊗ f−1TN . Moreover, instead
of ∇N

df( ∂
∂xα ) =

(
f∗∇N

)
∂

∂xα
, we shall simply write ∇ ∂

∂xα
.

∇ ∂
∂t
dft = ∇ ∂

∂t

∂f i
t

∂xα

∂

∂f i
⊗ dxα (cf. (8.1.2)) (8.1.12)

= ∇ ∂
∂xα

(
∂f i

t

∂t

∂

∂f i
)⊗ dxα, since ∂

∂t and ∂
∂xα commute

and ∇ is torsion free
= dψ (cf. (8.1.11))
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since the derivative of expp at 0 ∈ TpM is the identity ((1.4.10)). Then

d

dt
E(ft)|t=0 =

1
2

∫
M

d

dt
〈dft, dft〉dM|t=0

=
∫
M

〈df,∇ ∂
∂t
dft〉dM|t=0

=
∫
M

〈df, dψ〉dM by (8.1.12)

=
∫
M

〈df,∇ ∂
∂xα

(ψ)⊗ dxα〉dM (by (8.1.11))

= −
∫
M

〈∇ ∂
∂xα

df, ψ ⊗ dxα〉dM since ∇ is metric

= −
∫
M

〈 trace∇df, ψ〉dM. (8.1.13)

Thus, intrinsically, the Euler-Lagrange equations for E are

τ(f) := trace∇df = 0. (8.1.14)

τ is called the tension field of f.
Let us also check directly that (8.1.7) and (8.1.14) are equivalent:
We let ∇ denote the Levi-Civita connection in T ∗M ⊗ f−1TN as before.

∇ ∂

∂xβ
(df) = ∇ ∂

∂xβ
(
∂f i

∂xα
dxα ∂

∂f i
)

=
∂

∂xβ
(
∂f i

∂xα
)dxα ∂

∂f i
+ (∇T∗M

∂

∂xβ
dxα)

∂f i

∂xα

∂

∂f i

+ (∇f−1TN
∂

∂xβ

∂

∂f i
)
∂f i

∂xα
dxα

=
∂2f i

∂xα∂xβ
dxα ∂

∂f i
− Γα

βγdx
γ ∂f

i

∂xα

∂

∂f i

+ Γ k
ij

∂

∂fk

∂f j

∂xβ

∂f i

∂xα
dxα . (8.1.15)

We then obtain for the components of τ(f) = trace∇df

τ i(f) = γαβ ∂2f i

∂xα∂xβ
− γαβΓ γ

αβ

∂f i

∂xγ
+ γαβΓ i

jk

∂f j

∂xα

∂fk

∂xβ
. (8.1.16)

This shows that (8.1.7) and (8.1.14) are indeed equivalent, since one easily
computes
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1√
γ

∂

∂xα
(
√
γγαβ ∂

∂xβ
) = γαβ ∂2

∂xα∂xβ
− γαβΓ γ

αβ

∂

∂xγ
. (8.1.17)

The operator

−∆M =
1√
γ

∂

∂xα
(
√
γγαβ ∂

∂xβ
)

is the negative of the Laplace-Beltrami operator of the Riemannian manifold
M, cf. (2.1.12). We recall

∆Mf = −div grad f,

with
grad f = γαβ ∂f

∂xα

∂

∂xβ
(2.1.13)

div (Zα ∂

∂xα
) =

1√
γ

∂

∂xα
(
√
γZα) (2.1.15)

f : M → R is a harmonic function iff

∆Mf = 0.

Besides closed geodesics and harmonic functions, there is another easy exam-
ple of a harmonic map.

The identity map id : M →M of any Riemannian manifold is harmonic.
This follows for example from (8.1.16):

if f(x) = x, then ∂fi

∂xγ = δiγ ,
∂fj

∂xα = δjα,
∂fk

∂xβ = δkβ , and thus τ(f) = 0.
Also:

Corollary 8.1.1 An isometric immersion f : M → N is harmonic if and
only if it represents a minimal submanifold of N.

Proof. From (3.6.25). �

Perspectives. An intrinsic calculus for operators on vector bundles and harmonic
maps is developed in [68], . Some older survey articles on harmonic maps are [67, 69]
and [128], the latter also containing a list of open problems with detailed references.
Some more recent references will be given in the Perspectives on the subsequent §§.

In quantum field theory, harmonic maps occur as solutions to the nonlinear σ-
problem. The supersymmetric version of this problem recently inspired an extension
of the concept of harmonic maps, the so-called Dirac-harmonic maps that couple the
map with a nonlinear spinor field while preserving the essential structural properties
of harmonic maps, see [47, 46].
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8.2 Twodimensional Harmonic Mappings and
Holomorphic Quadratic Differentials

Definition 8.2.1 A Riemann surface is a complex manifold (cf. Definition
1.1.5) of complex dimension 1.

Thus, coordinate charts on a Riemann surface Σ are given by maps

ϕi : Ui → C,

Ui open in Σ, for which the transition functions

ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj)

are holomorphic maps between open subsets of C.
We write coordinates in C as

z = x+ iy .

For a coordinate transformation w = w(z), w = u + iv, we thus have the
Cauchy-Riemann equations ux = vy, uy = −vx, and in particular uxux +
vxvx = uyuy + vyvy, uxuy + vxvy = 0, and we see that a Riemann surface has
a conformal structure in the sense of Definition 3.6.6.

We call z = ϕ(p) for a local chart ϕ a local conformal parameter at p ∈ Σ
and define operators

∂

∂z
:=

1
2
(
∂

∂x
− i

∂

∂y
),

∂

∂z
:=

1
2
(
∂

∂x
+ i

∂

∂y
) (cf. 6.1)

and 1-forms
dz = dx+ idy, dz = dx− idy.

These satisfy

dz(
∂

∂z
) = 1 = dz(

∂

∂z
), dz(

∂

∂z
) = 0 = dz(

∂

∂z
).

A map between Riemann surfaces is called holomorphic or antiholomorphic if
it has this property in local coordinates. This does not depend on the choice
of local coordinates because all coordinate changes are holomorphic.

Definition 8.2.2 A Riemannian metric 〈·, ·〉 on a Riemann surface Σ is
called conformal if in local coordinates it can be written as

ρ2(z)dz ⊗ dz (8.2.1)

(ρ(z) a positive, real valued function).
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This means

〈 ∂
∂z

,
∂

∂z
〉 = 0 = 〈 ∂

∂z
,
∂

∂z
〉, (8.2.2)

〈 ∂
∂z

,
∂

∂z
〉 = ρ2(z). (8.2.3)

If we want to express this in real coordinates, we compute

dz ⊗ dz = dx⊗ dx+ dy ⊗ dy, (8.2.4)

hence
〈 ∂
∂x

,
∂

∂x
〉 = ρ2(z) = 〈 ∂

∂y
,
∂

∂y
〉, 〈 ∂

∂x
,
∂

∂y
〉 = 0. (8.2.5)

In the same manner as Theorem 1.4.1 is proved, a partition of unity argument
gives

Lemma 8.2.1 Every Riemann surface admits a conformal metric. �

Of course, every conformal metric is Hermitian in the sense of Definition
5.1.2, and conversely.

Definition 8.2.3 Let Σ be a Riemann surface, N a Riemannian manifold
with metric 〈·, ·〉N , or gijdf

i⊗df j in local coordinates. A C1-map f : Σ → N
is called conformal, if

〈∂f
∂x

,
∂f

∂x
〉N = 〈∂f

∂y
,
∂f

∂y
〉N , 〈∂f

∂x
,
∂f

∂y
〉N = 0. (8.2.6)

In local coordinates this is of course expressed as

gij(f(z))
∂f i

∂x

∂f j

∂x
= gij(f(z))

∂f i

∂y

∂f j

∂y
, gij(f(z))

∂f i

∂x

∂f j

∂y
= 0. (8.2.7)

For the sequel, it will also be instructive to write this condition in complex
notation, namely

0 = 〈∂f
∂z

,
∂f

∂z
〉N = gjk(f(z))(

∂f j

∂x

∂fk

∂x
− ∂f j

∂y

∂fk

∂y
− 2i

∂f j

∂x

∂fk

∂y
). (8.2.8)

Lemma 8.2.2 Holomorphic or antiholomorphic maps between Riemann sur-
faces are conformal, if the image is equipped with a conformal metric.

The proof is obvious. �

Lemma 8.2.3 Let Σ be a Riemann surface with a conformal metric λ2(z).
Then the Laplace-Beltrami operator is
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∆ = − 4
λ2(z)

∂2

∂z∂z
. (8.2.9)

Proof. Direct computation. �

Lemma 8.2.4 Let Σ be a Riemann surface with conformal metric λ2(z), N
a Riemannian manifold with metric tensor (gij). Then a map f : Σ → N of
class C2 is harmonic iff

∂2f i

∂z∂z
+ Γ i

jk(f(z))
∂f j

∂z

∂fk

∂z
= 0 for i = 1, . . . ,dimN. (8.2.10)

It is a parametric minimal surface iff it is harmonic and conformal.

Proof. One checks directly that (8.2.10) is equivalent to (8.1.7). The second
claim directly follows from the Definition 3.6.7 of a parametric minimal sur-
face. �

Corollary 8.2.1 If Σ is a Riemann surface, N a Riemannian manifold, the
harmonic map equation for maps f : Σ → N is independent of the choice of
conformal metric on Σ. Thus, whether a map is harmonic depends only on
the Riemann surface structure of Σ, but does not need any conformal metric.

Proof. The metric of Σ does not appear in (8.2.10). �

Corollary 8.2.2 Holomorphic or antiholomorphic maps between Riemann
surfaces are harmonic.

Proof. Such maps obviously satisfy (8.2.10). �

More generally

Corollary 8.2.3 If k : Σ1 → Σ2 is a holomorphic or antiholomorphic map
between Riemann surfaces, and f : Σ2 → N is harmonic, then so is f ◦ k.

Proof. Let w be a local conformal parameter on Σ1. Then, if for example k
is holomorphic, and in local coordinates k = z(w), we have

∂z

∂w
= 0,

hence
∂f ◦ k
∂w

=
∂f

∂z

∂z

∂w
,
∂f ◦ k
∂w

=
∂f

∂z

∂z

∂w

and
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∂2f i ◦ k
∂w∂w

+ Γ i
j�

∂f j ◦ k
∂w

∂f � ◦ k
∂w

= (
∂2f i

∂z∂z
+ Γ i

j�

∂f j

∂z

∂f �

∂z
)
∂z

∂w

∂z

∂w
,

and this vanishes if f is harmonic. �

Let Σ,N be as before, λ2(z)dz ⊗ dz a conformal metric on Σ.
The energy of a map f : Σ → N is written as

E(f) =
1
2

∫
Σ

4
λ2(z)

gij
∂f i

∂z

∂f j

∂z

√−1
2

λ2(z)dz ∧ dz (since dx ∧ dy =
1
2
dz ∧ dz)

=
∫
Σ

gij
∂f i

∂z

∂f j

∂z

√−1dz ∧ dz . (8.2.11)

Corollary 8.2.4 The energy of a map from a Riemann surface Σ into a
Riemannian manifold is conformally invariant in the sense that it does not
depend on the choice of a metric on Σ, but only on the Riemann surface
structure. Also, if k : Σ1 → Σ2 is a bijective holomorphic or antiholomorphic
map between Riemann surfaces then for any f : Σ2 → N (of class C1)

E(f ◦ k) = E(f).

�

Note: Even if the image is also a Riemann surface, the energy of f does
depend on the image metric.

Theorem 8.2.1 Let Σ be a Riemann surface, N a Riemannian manifold
with metric 〈·, ·〉N , or (gij)i,j=1,...,dim N in local coordinates. If f : Σ → N is
harmonic, then

ϕ(z)dz2 = 〈∂f
∂z

,
∂f

∂z
〉Ndz2 (8.2.12)

is a holomorphic quadratic differential. (Here, we use the abbreviation

dz2 := dz ⊗ dz,

and ϕ(z)dz2 is a holomorphic quadratic differential, if ϕ(z) is a holomorphic
function. dz2 just expresses the transformation behavior. Thus

ϕ(z)dz2

is a section of T ∗
C
Σ ⊗ T ∗

C
Σ, with T ∗

C
Σ := T ∗Σ ⊗ C.)

Furthermore
ϕ(z)dz2 ≡ 0 ⇐⇒ f conformal.
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Proof. In local coordinates

ϕ(z)dz2 = 〈∂f
∂z

,
∂f

∂z
〉Ndz2 = gij(f(z))

∂f i

∂z

∂f j

∂z
dz2

and we have to show for a harmonic f

∂

∂z
(gij(f(z))

∂f i

∂z

∂f j

∂z
) = 0.

Now

∂

∂z
(gij(f(z))

∂f i

∂z

∂f j

∂z
) = 2gij

∂2f i

∂z∂z

∂f j

∂z
+ gij,k

∂fk

∂z

∂f i

∂z

∂f j

∂z

= 2gij
∂2f i

∂z∂z

∂f j

∂z
+ (g�j,k + g�k,j − gjk,�)

∂fk

∂z

∂f �

∂z

∂f j

∂z

= 2gij
∂f j

∂z
(
∂2f i

∂z∂z
+ Γ i

k�

∂fk

∂z

∂f �

∂z
)

= 0, if f is harmonic.

Finally, ϕ(z)dz2 ≡ 0 is equivalent to the conformality of f, see (8.2.8). �

In intrinsic notation, the proof of Theorem 8.2.1 goes as follows

∂

∂z
<
∂f

∂z
,
∂f

∂z
>N= 2〈∇ ∂

∂z

∂f

∂z
,
∂f

∂z
〉N = 2〈∇ ∂

∂fj
∂fi

∂z

∂f i

∂z

∂

∂f i
,
∂f

∂z
〉N

= 2〈( ∂
2f i

∂z∂z
+ Γ i

jk

∂f j

∂z

∂fk

∂z
)
∂

∂f i
,
∂f

∂z
〉N = 0, since f is harmonic.

We also note from this computation

τ(f) = 4∇ ∂
∂z

∂f

∂z
. (8.2.13)

In real notation, we have of course

ϕ(z)dz2 (8.2.14)

= (〈∂f
∂x

,
∂f

∂x
〉 − 〈∂f

∂y
,
∂f

∂y
〉 − 2i〈∂f

∂x
,
∂f

∂y
〉)(dx2 − dy2 + 2idxdy)

= gjk(f(z))(
∂f j

∂x

∂fk

∂x
− ∂f j

∂y

∂fk

∂y
− 2i

∂f j

∂x

∂fk

∂y
)(dx2 − dy2 + 2idxdy).

The easiest example of a compact Riemann surface is S2 = {(x1, x2, x3) ∈
R3 : x2

1 + x2
2 + x2

3 = 1} with the following two coordinate charts:

f1 : S2\{(0, 0, 1)} → C, f1(x1, x2, x3) =
1

1− x3
(x1 + ix2)
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f2 : S2\{(0, 0,−1)} → C, f2(x1, x2, x3) =
1

1 + x3
(x1 − ix2).

We compute
1

f1(x1, x2, x3)
= f2(x1, x2, x3)

so that f2◦f−1
1 (z) = 1

z and the coordinate transformation f2◦f−1
1 : C\{0} →

C\{0} is holomorphic as required.

Lemma 8.2.4 Every holomorphic quadratic differential on S2 vanishes iden-
tically.

Proof. We put z = f1(x) and write a holomorphic quadratic differential in
the chart f1 as

ϕ(z)dz2, with ϕ : C(= f1(S2\{(0, 0)})) → C holomorphic.

Then with f2(x) = w = 1
z for z 
= 0

ϕ(z)dz2 = ϕ(z(w))(
∂z

∂w
)2dw2 = ϕ(z(w))

1
w4

dw2.

Since we have a holomorphic quadratic differential on S2, this has to be
bounded as w → 0. We conclude that ϕ is a holomorphic function on C with

ϕ(z) → 0 as z →∞,

hence ϕ ≡ 0 by Liouville’s theorem. (One may also apply Lemma 8.3.7 below)
�

Another Proof. In the preceding notations, for λ ∈ C\{0},
z → λz

induces a holomorphic map hλ : S2 → S2, fixing (0, 0, 1) and (0, 0,−1). Since
hλ also depends holomorphically on λ ∈ C\{0},

∂hλ(z)
∂λ |λ=1

= z

represents a holomorphic vector field V (z) on S2.
Now if q is a holomorphic quadratic differential and V1, V2 are holomorphic

vector fields on a Riemann surface Σ, then

q(V1, V2)

is a holomorphic function on Σ. Thus

η(z) := ϕ(z)dz2(V (z), V (z)) = ϕ(z)z2
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represents a holomorphic function on the compact Riemann surface S2 and
therefore is constant (for example by Corollary 2.1.2 and Corollary 8.2.3 or by
an easy application of the maximum principle), hence η ≡ 0, since η(0) = 0,
hence ϕ ≡ 0. �

Corollary 8.2.5 For any Riemannian manifold N, every harmonic map

h : S2 → N

is conformal, i.e. a parametric minimal surface.

Proof. From Theorem 8.2.1 and Lemma 8.2.4. �

We look again at the family hλ = S2 → S2 of holomorphic selfmaps of
S2, given in the chart f1 by

z → λz.

We equip the image S2 with any conformal metric and compute the energy
E w.r.t. this metric. We observe for λ ∈ C\{0}

E(hλ) ≡ const. 
= 0.

Namely, we write hλ = id ◦hλ and apply Corollary 8.2.4 with f = id(= h1),
k = hλ, hence

E(h1) = E(hλ) for all λ ∈ C\{0},
and since hλ 
= const. for λ ∈ C\{0}, this energy cannot vanish. Now if λ→ 0,
hλ converges pointwise on S2\{(0, 0,−1)} to the constant map h0(z) = 0
(again in the chart f1), and

E(h0) = 0.

We thus have found a sequence of holomorphic, hence harmonic (Corollary
8.2.2) maps, hence critical points of E, i.e.

DE(hλ) = 0 for all λ ∈ C\{0}
with

E(hλ) ≡ const. 
= 0

with the property that this sequence converges for λ → 0 pointwise almost
everywhere to a map h0 with

E(h0) 
= lim
λ→0

E(hλ). (8.2.15)

We conclude

Theorem 8.2.2 The energy functional for maps from S2 to S2 (the image
equipped with any conformal metric) cannot satisfy any kind of Palais-Smale
condition. �



414 8. Harmonic Maps

The statement is somewhat vague because we have not yet given a precise
definition of the Palais-Smale condition in the present context. Any mean-
ingful definition, however, should require that a sequence of critical points
(fn)n∈N of E contains a subsequence converging in some sense to be specified
towards a map f with

E(f) = lim
n→∞E(fn).

Definition 8.2.4 A Riemann surface Σ with (smooth) boundary ∂Σ is a
differentiable manifold with boundary and charts with values in C and C+ :=
{z = x+ iy ∈ C, y ≥ 0}, resp., and holomorphic coordinate changes.

Again, in this case
◦
Σ = Σ\∂Σ is a Riemann surface in the sense of

Definition 8.2.1. Also, ∂Σ is a differentiable manifold of real dimension 1.

Example.
D := {z = x+ iy ∈ C : |z| ≤ 1}

with ∂D = {|z| = 1}.

Definition 8.2.5 A holomorphic quadratic differential q on a Riemann sur-
face Σ with boundary ∂Σ is called real on ∂Σ if for all z0 ∈ ∂Σ and
v1, v2 ∈ Tz0∂Σ, i.e. vectors tangent to the boundary

q(v1, v2) ∈ R.

Let z0 ∈ ∂Σ, f : U → C+ a chart defined on a neighborhood of z0, z =
x+ iy ∈ C+. In this chart, we write a holomorphic quadratic differential as

ϕ(z)(dx+ idy)2 = (u+ iv)(dx2 − dy2 + 2idxdy) with u = Reϕ, v = Imϕ

(8.2.16)
= u(dx2 − dy2)− 2vdxdy + i(v(dx2 − dy2) + 2iudxdy).

When applied to a vector tangent to ∂C+ = {y = 0}, dy vanishes. Thus, the
holomorphic quadratic differential is real on ∂Σ if

v = Imϕ = 0

for all such boundary charts.

Lemma 8.2.5 Any holomorphic quadratic differential on D which is real on
∂D vanishes identically.

Proof. A holomorphic function h on an open subset Ω of C+ which takes real
values on ∂C+ can be reflected as a holomorphic function to Ω := {x + iy :
x−iy ∈ Ω} via h(x+iy) := h(x−iy). This is the Schwarz reflection principle.
In the same manner, a holomorphic quadratic differential on an open subset
of C+ which is real on ∂C+ can be reflected across ∂C+. Thus, a holomorphic
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quadratic differential on D which is real on ∂D can be reflected to a holo-
morphic quadratic differential on S2. Namely, since f1(S2\{(0, 0, 1)}) = C

in our above notation, we may consider D as a subset of S2, and we reflect
ϕ(z)dz2 across ∂D as

ϕ(w)dw2 = ϕ(z)dz2 for w =
1
z

= ϕ(
1
w

)
1
w4

dw2.

The result now follows from Lemma 8.2.4. �

Theorem 8.2.3 Let h : D → N be a harmonic map into a Riemannian
manifold with

h|∂D = const.

Then
h = const.

Proof. We denote the metric of N by (gjk). In local coordinates defined on
an open subset of C+, the holomorphic quadratic differential associated to h
(Theorem 8.2.1) is

ϕdz2 = gjk(h(z))(
∂hj

∂x

∂hk

∂x
− ∂hj

∂y

∂hk

∂y
− 2i

∂hj

∂x

∂hk

∂y
)(dx+ idy)2.

Since h|∂D = const., ∂h
∂x = 0 on ∂C+. Thus

Imϕ = 2gjk
∂hj

∂x

∂hk

∂y
= 0 on ∂C+,

and ϕdz2 is real on the boundary. Lemma 8.2.5 implies ϕdz2 ≡ 0. Therefore
h is conformal. Since ∂h

∂x = 0 on ∂C+, then also ∂h
∂y = 0 on ∂C+. Since h

is harmonic and ∂2h
∂x2 = 0 on ∂C+, the harmonic map equation gives also

∂2h
∂y2 = 0 on ∂C+. Iteratively , all derivatives of h vanish on ∂C+. Hence we
can reflect h smoothly as a harmonic and conformal map across ∂C+ via
h(z) = h(z) for z = x+ iy with y < 0. This means that we can reflect h to a
harmonic and conformal map

h : S2 → N

mapping ∂D = {|z| = 1} (considering D as a subset of S2 as above) onto a
single point.

In the sequel, we shall use the abbreviation

uz :=
1
2
(
∂u

∂x
− i

∂u

∂y
), uz :=

1
2
(
∂u

∂x
+ i

∂u

∂y
),
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even for functions u : C → Rd, i.e. with real values, with componentwise
differentiation. Thus, for every z0,

uz(z0) ∈ Cd.

We now need the Hartman-Wintner-Lemma

Lemma 8.2.6 Suppose Ω is a neighborhood of 0 in C, u ∈ C2(Ω,Rd) satisfies

|uzz| ≤ K|uz| (8.2.17)

for some constant K in Ω.
If

lim
z→0

u(z)z−n+1 = 0 (assume the limit exists) (8.2.18)

for some n ∈ N, then
lim
z→0

uz(z)z−n

exists. If (8.2.18) holds for all n ∈ N, then

u ≡ 0. (8.2.19)

Proof. For a compact subregion B of Ω with smooth boundary and g ∈
C1(B,C), we have the integration by parts formula∮

∂B

guzd−→n =
∫

B

(uzgz + uzzg)
dz ∧ dz

2i
, (8.2.20)

where −→n is the exterior normal of B.
We assume now

lim
z→0

uzz
1−k = 0 for some k ∈ N. (8.2.21)

We choose
B := {z ∈ C : ε ≤ |z| ≤ R, |z − w| ≥ ε}

with
0 < 3ε < R < min(dist (0, ∂Ω),

1
4k

)

w ∈ Ω, 2ε < |w| < R− ε

and
g(z) = z−k(z − w)−1.

Then
gz ≡ 0 in B.

(8.2.20) yields
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|z|=R

uzz
−k(z − w)−1|dz| −

∮
|z|=ε

uzz
−k(z − w)−1|dz|

−
∮
|z−w|=ε

uzz
−k(z − w)−1|dz|

=
∫

B

uzzz
−k(z − w)−1 dz ∧ dz

2i
(8.2.22)

We now let ε → 0. Because of (8.2.21), the second integral on the left hand
side of (8.2.22) then tends to 0. The third one tends to

2πuz(w)w−k

by Cauchy’s integral formula. Consequently for 0 < |w| < R

2πuz(w)w−k =
∮
|z|=R

uzz
−k(z − w)−1|dz| −

∫
|z|≤R

uzzz
−k(z − w)−1 dz ∧ dz

2i

and (8.2.17) implies for 0 < |w| < R

2π|uz(w)w−k| ≤
∮
|z|=R

|uzz
−k(z − w)−1||dz|

+K

∫
|z|≤R

|uz||z|−k|z − w|−1 dz ∧ dz
2i

. (8.2.23)

Two auxiliary points:∫
|w|≤R

|z − w|−1 dw ∧ dw
2i

≤
∫
|z−w|≤2R

|z − w|−1 dw ∧ dw
2i

≤ 4πR

1
z − w

1
w − z0

=
1

z − z0
(

1
z − w

+
1

w − z0
) .

We then multiply (8.2.23) by |w − z0|−1 (|z0| < R) and integrate w.r.t. w :

2π
∫
|w|≤R

|uz||w−k||w − z0|−1 dw ∧ dw
2i

(8.2.24)

≤ 8πR
∮
|z|=R

|uzz
−k(z − z0)−1||dz|

+ 8πRK
∫
|z|≤R

|uz||z|−k|z − z0|−1 dz ∧ dz
2i

Hence, renaming some of the variables

(1− 4RK)
∫
|z|≤R

|uz||z|−k|z − w|−1 dz ∧ dz
2i

(8.2.25)

≤ 4R
∮
|z|=R

|uzz
−k(z − w)−1||dz| .
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The right hand side of (8.2.25) remains bounded as w → 0 and consequently
so does the left hand side. Then the right hand side of (8.2.23) remains
bounded as w → 0, and consequently also the left hand side. Therefore

lim
z→0

uz(z)z−k (8.2.26)

exists.
If k < n, this limit then has to vanish because of (8.2.18), and hence

(8.2.21) holds for k + 1 instead of k.
The first assertion now follows by induction on k :
It is trivial for n = 0. For n ≥ 1, (8.2.18) implies (8.2.21) for k = 1. By

induction, we get (8.2.21) for k = n, and hence the limit in (8.2.26) exists
which is the first assertion of the lemma.

For the second assertion, k = n− 1 and w → 0 in (8.2.25) gives

(1− 4RK)
∫
|z|≤R

|uz||z|−n dz ∧ dz
2i

(8.2.27)

≤ 4R
∮
|z|=R

|uz||z|−n|dz|

for all n.
If u 
≡ 0, there exists z0 with |z0| < R and

|uz(z0)| = c 
= 0.

Then the left hand side of (8.2.27) would grow in u at least like c|z0|−n, the
right hand side at most like c′R−n, with c′ = 4R sup|z|=R |uz|. Since |z0| < R,
(8.2.27) then could not hold for all n. This contradiction proves the second
assertion. �

We can now easily conclude the
Proof of Theorem 8.2.3: We may assume of course that in local coordinates

h(∂D) = 0.

In the same local coordinates as in the beginning of the proof, we have noted
above that all derivatives of h vanish on ∂C+. Thus, if e.g. 0 is in the image
of our coordinate chart,

lim
z→0

h(z)z−n = 0 for all n ∈ N.

Since h is harmonic
|hzz| ≤ c0|hz||hz|

≤ K|hz|,
in a neighborhood of 0 since h is smooth.

Lemma 8.2.6 then yields h ≡ 0(= h(∂D)). �
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More generally, Lemma 8.2.6 implies

Corollary 8.2.6 Let Σ be a Riemann surface, N a Riemannian manifold of
dimension d, h : Σ → N harmonic.

Then for each z0 ∈ Σ there exists m ∈ N with the property that in any
local coordinates around h(z0), there exists a ∈ Cd with

hz(z) = a(z − z0)m + 0(|z − z0|m) (8.2.28)

for z near z0.
If hz(z0) = 0,m ≥ 1. In particular, the zeroes of hz are isolated, unless h

is constant.
If h is conformal, i.e.

gjkh
j
zh

k
z = 0,

then
gjk(h(z0))ajak = 0.

Proof. We apply Lemma 8.2.6 with u = h − h(z0). As above, since h is
harmonic and smooth

|hzz| ≤ c0|hz||hz|
≤ K|hz|,

so that (8.2.17) holds. All claims follow easily. �

We want to discuss a consequence of Theorem 8.2.3.
We look at (continuous) maps

f : D → S2

with
f(∂D) a point, say the north pole.

It is an elementary topological result that the homotopy classes of such maps
can be parametrized by their degree, namely up to a constant factor, with
ω := d vol (S2), the volume form of S2 for some Riemannian metric, by∫

D

f∗(ω) (in case f is smooth).

That
∫

D
f∗(ω), for smooth f, depends only on the homotopy class of f is a

consequence of Stokes’ theorem. Also, one easily constructs f : D → S2 for
which this invariant is not zero. Consequently, not every map f : D → S2

with f(∂D) a point is homotopic to a constant map.

Corollary 8.2.7 There exist smooth maps f : D → S2 mapping ∂D onto a
point which are not homotopic to a harmonic map.
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Proof. By Theorem 8.2.3, any such harmonic map is constant, while not every
smooth map as in the statement is homotopic to a constant map. �

Perspectives. The method of holomorphic quadratic differentials associated to
two-dimensional geometric variational problems was introduced by H. Hopf. He
considered the case of closed surfaces of constant mean curvature in R3 (cf. exercise
5)).

The applicability of the Hartman-Wintner Lemma to two-dimensional geometric
variational problems was first discovered by E. Heinz.

The special features of 2-dimensional harmonic maps, tying them to conformal
geometry, extend to the Dirac-harmonic maps introduced in [47, 46].

8.3 The Existence of Harmonic Maps in Two
Dimensions

We start with some simple topological preliminaries.
Let N be a manifold.

Definition 8.3.1 π2(N) = 0 means that every continuous map

ϕ : S2 → N

is homotopic to a constant map.

Lemma 8.3.1 π2(N) = 0

⇐⇒ Any h0, h1 ∈ C0(D,N) with h0|∂D
= h1|∂D

are homotopic.

Proof.
” ⇐ ” Take η : D → S2 bijective on D with η(∂D) = p0. For ϕ : S2 → N

define h0 = ϕ ◦ η, h1 ≡ ϕ(p0).

” ⇒ ” Given h0, h1 we define ϕ : S2 → N by

ϕ(p) := h0(f1(p))
ϕ(p) := h1(f2(p))

if |f1(p)| ≤ 1
if |f2(p)| ≤ 1

where f1, f2 are the coordinate charts of §1.1.
ϕ is continuous since h0|{|z|=1} = h1|{|z|=1} .

If π2(N) = 0, there exists a continuous map

L : S2 × [0, 1] → N

with
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L|S2×{0} = ϕ

L|S2×{1} = const.

We now define a homotopy

H : D × I → N

by

H(z, t) := L(f−1
1 (2z), 2t) for |z| ≤ 1

2
, 0 ≤ t ≤ 1

2

H(z, t) := L(f−1
2 (2z), 2(1− t)) for |z| ≤ 1

2
,
1
2
≤ t ≤ 1

H(z, t) := L(f−1
1 (

z

|z| ), 4t(1− |z|)) for
1
2
≤ |z| ≤ 1, 0 ≤ t ≤ 1

2

H(z, t) := L(f−1
2 (

z

|z| ), 4(1− t)(1− |z|)) for
1
2
≤ |z| ≤ 1,

1
2
≤ t ≤ 1.

Then H is continuous, H|{|z|=1}×{t} = h0|{|z|=1} = h1|{|z|=1} for all t, and

H|D×{0} is homotopic to h0, H|D×{1} to h1. �

Remark. While the proof is formal, the claim of Lemma 8.3.1 should be
geometrically obvious.

The first aim of this section is the proof of

Theorem 8.3.1 Let Σ be a compact Riemann surface, N a compact Rie-
mannian manifold with

π2(N) = 0.

Then any smooth ϕ : Σ → N is homotopic to a harmonic map f : Σ → N. f
can be constructed as a map which minimizes energy in its homotopy class.

We need to establish some auxiliary results before we can start the proof
of Theorem 8.3.1.

We say that a continuous map

h : M → N

between differentiable manifolds is of Sobolev class Hk,p
loc if it is of this class

w.r.t. any coordinate charts on M and N. If M is compact, we can then also
define Sobolev classes Hk,p for continuous maps. For a better discussion of
Sobolev spaces, see §8.4 below.

Lemma 8.3.2 Let N be a Riemannian manifold, B0 ⊂ B1 ⊂ N, B0, B1

closed. Let π : B1 → B0 be of class C1,
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π|B0 = id|B0 (8.3.1)

and

‖Dπ(v)‖ < ‖v‖ for every x ∈ B1\B0, v ∈ TxN, v 
= 0. (8.3.2)

Let M be a Riemannian manifold with boundary ∂M, and let

h ∈ C0 ∩H1,2(M,B1)
h(∂M) ⊂ B0 (8.3.3)

be energy minimizing in the class of all maps from M into B1 with the same
boundary values as h.

Then
h(M) ⊂ B0. (8.3.4)

Proof. Let us assume that

Ω := h−1(B1\B0) 
= ∅.
Since h is continuous, Ω is open, and since h(∂M) ⊂ B0, h cannot be constant
on Ω.

Thus
E(h|Ω) > 0.

But then by (8.3.2), since π ◦ h ∈ H1,2 as π ∈ C1,

E(π ◦ h) < E(h)

contradicting the minimizing property of h (Note that

(π ◦ h)|∂M = h|∂M by (8.3.1) and (8.3.3).)

Therefore Ω is empty. �

Lemma 8.3.3 Let N be a Riemannian manifold, B0 ⊂ B1 ⊂ N, B0, B1

compact. Suppose that every point in B1\B0 can be joined inside B1\B0 to
∂B0 by a unique geodesic normal to ∂B0. Also assume that for any two such
geodesics γ1(t), γ2(t), parametrized by arc length (t ≥ 0) with γi(0) ∈ ∂B0,
i = 1, 2, we have

d(γ1(t), γ2(t)) > d(γ1(0), γ2(0)) for t > 0. (8.3.5)

Then the conclusion of Lemma 8.3.2 holds.

Proof. We define π : B1 → B0 as the identity on B0 and the projection
along normal geodesics onto ∂B0 on B1\B0, i.e. if γ(t), t ≥ 0, is a geodesic
normal to ∂B0 inside B1\B0, with γ(0) ∈ ∂B0, then π(γ(t)) = γ(0). This map
satisfies all the hypotheses of Lemma 8.3.2, except that it is only Lipschitz,
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but not C1. It is not difficult, however, to approximate π by maps of class
C1 satisfying the same hypothesis, and the result then easily follows from
Lemma 8.3.2. �

Lemma 8.3.4 Let N be a Riemannian manifold, p ∈ N, i(p) the injectivity
radius of p, and suppose that the sectional curvature of N is bounded from
above by κ, and let

0 < ρ <
1
3

min(i(p),
π

2
√
κ

). (8.3.6)

Let M be a Riemannian manifold with boundary ∂M, and let h ∈ C0 ∩
H1,2(M,N) with

h(∂M) ⊂ B(p, ρ) = {q ∈ N : d(p, q) ≤ ρ}. (8.3.7)

If h minimizes the energy among all maps with the same boundary values,
then

h(M) ⊂ B(p, ρ). (8.3.8)

Proof. By (8.3.6), we can introduce geodesic polar coordinates (r, ϕ) on
B(p, 3ρ) (0 ≤ r ≤ 3ρ). We now define a map π : N → B(p, ρ), given in
these coordinates by

π(r, ϕ) = (r, ϕ) if r ≤ ρ
π(r, ϕ) = (3

2ρ− 1
2r, ϕ) if ρ ≤ r ≤ 3ρ

π(q) = p if q ∈ N\B(p, 3ρ) .

Thus, π maps concentric spheres of radius ≤ 3ρ onto concentric spheres
of possibly smaller radius. It is clear that on B(p, 3ρ)\B(p, ρ), π is length
decreasing in the r-direction. In order to see that π is also length decreasing
in the ϕ-directions, let γ(s) be a curve given in our coordinates by (r, ϕ(s)),
i.e. a curve in the distance sphere ∂B(p, r). For each fixed s, cs(t) := (t, ϕ(s))
is a radial geodesic with cs(0) = p, cs(r) = γ(s). Thus

Js(t) :=
∂

∂s
cs(t)

is a Jacobi field, and
γ̇(s) = Js(r), 0 = Js(0) (8.3.9)

and

Dπ(γ̇(s)) = Js(r′), where (r′, ϕ) = π(r, ϕ), (8.3.10)
i.e. r′ < ρ < r ≤ 3ρ (8.3.11)

The Rauch comparison theorem (Theorem 4.5.1) implies that (assume γ̇(s) 
=
0)

|Js(r)|
|Js(r′)| ≥

sin(
√
κr)

sin(
√
κr′)

> 1 since r′ < r ≤ 3ρ <
π

2
√
κ
. (8.3.12)
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Consequently by (8.3.9), (8.3.10), (8.3.12)

|Dπ(γ̇(s))| < |γ̇(s)|, if γ̇(s)) 
= 0. (8.3.13)

Therefore, π is also length decreasing in the ϕ-directions.
π is not C1, but only Lipschitz. It can, however, be approximated by

C1-maps with the same length decreasing properties, and Lemma 8.3.2 then
again gives the result. �

We shall also need the Courant-Lebesgue-Lemma.

Lemma 8.3.5 Let N be a Riemannian manifold with distance function d(·, ·),
u ∈ H1,2(D,N)

with
E(u) ≤ K. (8.3.14)

Then
∀x0 ∈ D, δ ∈ (0, 1)∃ ρ ∈ (δ,

√
δ)∀x1, x2 ∈ D with |xi−x0| = ρ (i = 1, 2) :

d(u(x1), u(x2)) ≤ (8πK)
1
2

(log 1
δ )

1
2
. (8.3.15)

Proof. We first recall the following property of an H1,2 function u :
For almost all r > 0, u|∂B(x0,r) is absolutely continuous. (See Lemma A.1.2.)

Then for any such r and x1, x2 ∈ D with |xi − x0| = r, i = 1, 2, we have

d(u(x1), u(x2)) ≤
∫ 2π

0

‖∂u(r, ϕ)
∂ϕ

‖dϕ (8.3.16)

in polar coordinates (r, ϕ) with center x0, w.l.o.g. B(x0, r) ⊂ D; otherwise,
the integration in (8.3.16) is only over those values of ϕ which correspond to
∂B(x0, r) ∩D.

By Hölder’s inequality∫ 2π

0

‖ ∂u
∂ϕ
‖dϕ ≤ (2π)

1
2 (
∫ 2π

0

‖ ∂u
∂ϕ
‖2dϕ)

1
2 . (8.3.17)

The energy of u on B(x0, r) is

E(u|B(x0,r)) =
1
2

∫ 2π

0

∫ r

0

(‖∂u
∂ρ
‖2 +

1
ρ2
‖ ∂u
∂ϕ
‖2)ρdρdϕ.

Consequently, there exists ρ ∈ (δ,
√
δ) with∫ 2π

0

‖∂u(ρ, ϕ)
∂ϕ

‖2dϕ ≤ 2E(u|B(x0,ρ))∫√
δ

δ
1
rdr

≤ 2K
− 1

2 log δ
=

4K
log 1

δ

. (8.3.18)
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The claim follows from (8.3.16), (8.3.17), (8.3.18). �

As an intermediate result for the proof of Theorem 8.3.1, we now show

Theorem 8.3.2 Let N be a complete Riemannian manifold with sectional
curvature ≤ κ and injectivity radius i0 > 0, p ∈ N. Let

0 < r < min(
i0
2
,

π

2
√
κ

). (8.3.19)

Suppose g : ∂D → B(p, r) ⊂ N is continuous and admits an extension
g : D → B(p, r) of finite energy.

Then there exists a harmonic map

h : D → B(p, r) ⊂ N

with
h|∂D = g,

and h minimizes energy among all such maps.
The modulus of continuity of h is controlled by r, κ,E(g), and the modulus

of continuity of g, i.e. given ε > 0, there exists δ > 0 depending on r, κ, g
such that |x1 − x2| < δ implies d(h(x1), h(x2)) < ε. Finally, for any σ > 0,
the modulus of continuity of h on {z : |z| ≤ 1−σ} is controlled by σ, r, κ, and
E(g).

Proof. We choose r′ with

r < r′ < min(
i0
2
,

π

2
√
κ

). (8.3.20)

Using the Rauch comparison theorem as in the proof of Lemma 8.3.4, one
sees that

π : B(p, r′) → B(p, r),

with π|B(p,r) = id, and projecting B(p, r′)\B(p, r) onto ∂B(p, r) along radial
geodesics satisfies the assumptions of Lemma 8.3.3.

As a first and preliminary application we show that any two points p1, p2 ∈
B(p, r) can be joined inside B(p, r) (and not just in N) by a unique shortest
geodesic. For this purpose, we minimize

E(c)

in
{c : [0, 1] → B(p, r′) : c(0) = p1, c(1) = p2}.

As in 1.4, the infimum is realized by some curve c0 with image in B(p, r′).
Because of the distance decreasing properties of π, Lemma 8.3.3 (with
B0 = B(p, r), B1 = (B(p, r′)) implies that the image of c0 is actually con-
tained in the smaller ball B(p, r). Therefore, we may perform arbitrarily small
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variations of c0 without leaving B(p, r′). Therefore, c0 is a critical point of
E, hence geodesic by Lemma 7.2.1. Since p1, p2 ∈ B(p, r), they can be joined
inside B(p, r) by a curve of length ≤ 2r < i0. Therefore, c0 is the unique
shortest geodesic between p1 and p2 by the definition of the injectivity radius
i0. This proves the claim about geodesic arcs. We note that c0 is free from
conjugate points, again by Rauch’s comparison theorem (Theorem 4.5.1).

In order to find the harmonic map, we now minimize the energy in

V := {v ∈ H1,2(D,B(p, r′)), v − g ∈ H1,2
0 (D,B(p, r′))}

(the latter is the weak formulation of the boundary condition). Since B(p, r′)
is covered by a single coordinate system, namely normal coordinates, the
H1,2-property can be defined with the help of these coordinates.

A minimizing sequence has a subsequence converging in L2 by Theorem
A.1.8. We shall see below (Theorem 8.4.2), in order not to interrupt the
present reasoning, that E is lower semicontinuous w.r.t. to L2 convergence.
Therefore, the limit h minimizes energy in V. By Lemma 8.3.3 again, h(D) is
contained in the smaller ball B(p, r), hence a critical point of E because we
may again perform arbitrarily small variations of h without leaving the class
V.

We now want to show that h is continuous and control its modulus of
continuity.

Let q ∈ B(p, r), v1, v2 ∈ TqN with ‖vi‖ = 1, i = 1, 2,

ci(t) = expq(tvi).

By Rauch’s comparison theorem (Theorem 4.5.1) again, as in the proof of
Lemma 8.3.4,

d(c1(t), c2(t)) ≥ d(c1(ε), c2(ε)) (8.3.21)

for
ε ≤ t ≤ π√

κ
− ε .

With
ε0 :=

π√
κ
− 2r,

for any 0 < ε ≤ ε0,

B0 := B(q, ε) ∩B(p, r), B1 := B(p, r)

satisfy the assumptions of Lemma 8.3.3, as any geodesic

c(t) := expq tv, ‖v‖ = 1 (v ∈ TqN, q ∈ B(p, r))

leaves B(p, r) for t ≥ 2r (i.e. c(t) ∈ B(p, r) ⇒ t ≤ 2r; this is a consequence
of (8.3.19) and the resulting uniqueness of geodesics in B(p, r)).

We now apply the Courant-Lebesgue Lemma 8.3.5. Since h is energy
minimizing,
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E(h) ≤ E(g).

For 0 < ε ≤ ε0, we compute δ ∈ (0, 1) with

(
8πE(g)
log 1

δ

)
1
2 ≤ ε. (8.3.22)

For any x0 ∈ D, by Lemma 8.3.5 there exists ρ, δ ≤ ρ ≤ √
δ, with the

property that for any x1, x2 ∈ D with |xi − x0| = ρ (i = 1, 2),

d(h(x1), h(x2)) ≤ ε, (8.3.23)

hence
h(∂B(x0, ρ) ∩D) ⊂ B(q, ε) for some q ∈ N. (8.3.24)

Since g is continuous, there also exists δ′ > 0 with

d(g(y1), g(y2)) ≤ ε (8.3.25)

whenever y1, y2 ∈ ∂D satisfy |y1 − y2| ≤ δ′.
We now require in addition to (8.3.22) that also

√
δ ≤ δ′.

Since h|∂D = g, with ρ as above we then have

h(∂(B(x0, ρ) ∩D)) ⊂ B(q, ε) for some q ∈ N. (8.3.26)

(∂(B(x0, ρ) ∩D) = (∂B(x0, ρ) ∩D) ∪ (∂D ∩B(x0, ρ)).

Lemma 8.3.3 then implies

h(B(x0, ρ) ∩D) ⊂ B(q, ε). (8.3.27)

Likewise, |x0|+ ρ < 1, then ∂(B(x0, ρ) ∩D) = ∂B(x0, ρ) ∩D, and so in this
case, we do not need g to control h on ∂(B(x0, ρ) ∩D).

In particular
h(B(x0, δ) ∩D) ⊂ B(q, ε) (8.3.28)

for any x0 ∈ D and some q ∈ N (depending, of course, on x0). (8.3.28) is the
desired estimate of the modulus of continuity. The proof of smoothness of h
is postponed until after the proof of Theorem 8.3.2 – see Theorem 8.5.1. �

Remark. We actually shall only need the weaker result that there exists
r0 > 0 with the property that for any r ∈ (0, r0), the conclusion of Theorem
8.3.2 holds. As an exercise, the reader should simplify the preceding proof in
order to show this weaker statement. On the other hand, the injectivity radius
i0 in (8.3.19) can easily be replaced by i0(r) := min{i(q) : q ∈ B(p, r)}, where
i(q) is the injectivity radius of q, without affecting the validity of the above
proof. This remark is interesting for complete, but non compact manifolds
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N. In this case, one may have i0 = 0, but one always has i0(r) > 0 for any
r > 0 as N is complete.

Finally, D may be replaced in Theorem 8.3.2 by any compact Riemann
surface Σ with boundary ∂Σ, with only trivial modifications of the proof.

Proof of Theorem 8.3.1: We put

[ϕ] := {v ∈ C0 ∩H1,2(Σ,N) : v is homotopic to ϕ}.
We choose

ρ :=
1
3

min(i0(N),
π

2
√
κ

), (8.3.29)

where i0(N) is the injectivity radius of N, and κ ≥ 0 is an upper bound for
the sectional curvature of N. We choose δ0 < 1 to satisfy

(
8πE(ϕ)
log 1

δ0

)
1
2 ≤ ρ

2
. (8.3.30)

For every δ ∈ (0, δ0), there exists a finite number of points xi ∈ Σ, i =
1, . . . ,m = m(δ), for which the disks B(xi,

δ
2 ) cover Σ. Here, we may define

the disks B(xi,
δ
2 ) w.r.t. any conformal metric on Σ. We may also arrange

things so that around each xi, there exists a coordinate chart fi with image
containing

{z ∈ C : |f(xi)− z| ≤ 1}
and put

B(xi, δ) := {z ∈ C : |f(xi)− z| ≤ δ}.
We let (un)n∈N be an energy minimizing sequence in [ϕ]. By definition of [ϕ],
all un then are continuous. Also, w.l.o.g.,

E(un) ≤ E(ϕ) for all n. (8.3.31)

Lemma 8.3.5 implies, recalling (8.3.30), that for every n ∈ N, there exists
rn,1 ∈ (δ,

√
δ) and pn,1 ∈ N with

un(∂B(x1, rn,1)) ⊂ B(pn,1, ρ). (8.3.32)

On the other hand, if un(∂B(x, r)) ⊂ B(p, ρ) for some x ∈ Σ, r > 0, p ∈ N,
then Theorem 8.3.2 (replacing D by B(x, r)) yields a solution of the Dirichlet
problem

h : B(x, r) → B(p, ρ) harmonic and energy minimizing with
h|∂B(x,r) = un|∂B(x,r) .

(8.3.33)

We replace un on B(x1, rn,1) by the solution of the Dirichlet problem (8.3.33)
for x = x1, r = rn,1. Outside B(x1, rn,1), we leave un unaltered.

We denote the new map by u1
n. Since π2(N) = 0, by Lemma 8.3.1, u1

n is
homotopic to un, hence to ϕ. Thus
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u1
n ∈ [ϕ].

After selection of a subsequence, (rn,1)n∈N converges to some r1 ∈ [δ,
√
δ].

By the interior modulus of continuity estimate of Theorem 8.3.2, the maps
(u1

n) are uniformly continuous on B(x1, δ − η) for any η ∈ (0, δ). Moreover,
by Lemma 8.3.4, u1

n minimizes the energy not only among maps into B(p, ρ),
but among all maps into N with the same boundary values.

Thus
E(u1

n) ≤ E(un). (8.3.34)

Repeating the above argument, we find radii rn,2 ∈ (δ,
√
δ) with

u1
n(∂B(x2, rn,2)) ⊂ B(pn,2, ρ)

for points pn,2 ∈ N. We replace u1
n on B(x2, rn,2) by the solution of the

Dirichlet problem (8.3.33) for x = x2, r = rn,2. Again by selecting a subse-
quence, (rn,2)n∈N converges to some r2 ∈ [δ,

√
δ]. The new maps u2

n are again
homotopic to ϕ, i.e.

u2
n ∈ [ϕ],

because π2(N) = 0.
Since the maps u1

n are equicontinuous on B(x1, δ− η
2 ) whenever 0 < η < δ,

the boundary values for our second replacement are equicontinuous on

∂B(x2, rn,2) ∩B(x1, δ − η

2
).

Therefore, using the estimates of the modulus of continuity in the proof of
Theorem 8.3.2, the maps u2

n are equicontinuous on B(x1, δ−η)∪B(x2, δ−η)
for any η with 0 < η < δ.

By Lemma 8.3.4 and (8.3.34)

E(u2
n) ≤ E(u1

n) ≤ E(un) (8.3.35)

as before.
We repeat the replacement argument on disks centered at x3, . . . , xm.
We obtain a sequence vn := um

n ∈ [ϕ] with

E(vn) ≤ E(un) ≤ E(ϕ) (8.3.36)

which is equicontinuous on every disk B(xi,
δ
2 ), i = 1, . . . ,m, hence on Σ

because these disks cover Σ.
After selection of a subsequence, (vn)n∈N converges uniformly to some

map u which then also is homotopic to ϕ. (vn)n∈N then also converges in L2

to u.
By Theorem 8.4.2 we have the lower semicontinuity

E(u) ≤ lim inf
n→∞ E(vn) (8.3.37)
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Since u ∈ [ϕ] and (un), hence also (vn) by (8.3.36) was a minimizing sequence
for the energy in [ϕ], (8.3.37) implies that u minimizes energy in [ϕ]. In
particular, u is energy minimizing when restricted to small balls. Either from
this observation and Lemma 8.3.4 and Theorem 8.3.2 or alternatively directly
from the construction of u, the modulus of continuity of u is controlled by
the geometry of N, more precisely by i0(N) and κ, and by E(ϕ). Smoothness
of u follows from Theorem 8.5.1. �

With the same argument, one also shows:

Theorem 8.3.3 Let Σ be a compact Riemann surface with boundary ∂Σ,
N a compact Riemannian manifold with π2(N) = 0, ϕ ∈ C0 ∩ H1,2(Σ,N).
Then there exists a harmonic map

u : Σ → N

homotopic to ϕ with
u|∂Σ = ϕ|∂Σ ,

and u can be chosen to minimize energy among all such maps. �

Remark. If one does not assume π2(N) = 0, one still obtains a harmonic
map u : Σ → N with u|∂Σ = ϕ|∂Σ by our reasoning. In that case, however,
u need not be homotopic to ϕ any more. u can be chosen to minimize the
energy among all maps with boundary values given by ϕ.

In the sequel, we shall need the following covering lemma:

Lemma 8.3.6 For any compact Riemannian manifold M, there exists Λ ∈ N

with the following property: whenever we have points x1, . . . , xm ∈ M and
ρ > 0 with

X ⊂
m⋃

i=1

B(xi, ρ)

and
xi /∈ B(xj , ρ) for i 
= j,

then {1, . . . ,m} is the disjoint union of Λ sets I1, . . . , IΛ so that for all � ∈
{1, . . . , Λ} and i1, i2 ∈ I�, i1 
= i2,

B(xi1 , 2ρ) ∩B(xi2 , 2ρ) = ∅.

Proof. We construct I1 : We first put x1
1 := x1 and iteratively seek points

x1
j ∈ {x1, . . . xm} with

4ρ < d(x1
j , x

1
i ) for all i < j,
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until no such point can be found anymore. I1 is the set of points selected so
far. If xk /∈ I1, there exists x1

j ∈ I1 with

d(xk, x
1
j ) ≤ 4ρ.

We construct I� iteratively for � ≥ 2 : We select any xk /∈ ⋃�−1
λ=1 Iλ, put

x�
1 := xk and iteratively seek points x�

j ∈ {x1, . . . , xm}\
⋃�−1

λ=1 Iλ with

4ρ < d(x�
j , x

�
i) for all i < j

until no such point can be found anymore.
If xk /∈ I�, then for each λ ≤ �, we can find some xλ

j(λ) ∈ Iλ with

d(xk, x
λ
j(λ)) ≤ 4ρ.

All these points xλ
j(λ) are distinct, and their mutual distance is bounded from

below by ρ by our assumptions. Therefore, there exists some Λ0 ∈ N such
that there exists at most Λ0 points xλ

j(λ) satisfying the preceding inequality.
The reader should by now have acquired enough familiarity with the local
geometry of Riemannian manifolds to verify the existence of such a Λ0 with
the required properties. The claim follows with Λ := Λ0 + 1. �

Remark. It is easy to see that one may always construct coverings satisfying
the assumption xi /∈ B(xj , ρ) for i 
= j.

We now come to the important phenomenon of splitting off of minimal
2-spheres. Before giving a general theorem below, we first want to isolate the
phenomenon in a simpler situation:

Theorem 8.3.4 Let Σ be a compact Riemann surface, N a compact Rie-
mannian manifold

un : Σ → N

a sequence of harmonic maps with

E(un) ≤ K for some constant K

Then either the maps un are equicontinuous, and hence a subsequence con-
verges uniformly to a harmonic map u : Σ → N, or there exists a nonconstant
conformal harmonic map

v : S2 → N,

i.e. a (parametric) minimal 2-sphere in N.

Proof. Let
λn := sup

z∈Σ
‖dun(z)‖.

We distinguish two cases
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1) sup
n∈N

λn <∞

Then (un)n∈N is equicontinuous, because the derivatives are uniformly
bounded. A priori estimates (see § 8.5) imply that also higher derivatives
of (un) are equibounded. By the Arzela-Ascoli theorem, a subsequence con-
verges uniformly, and by these regularity results the limit is also harmonic.
Alternatively, the limit is continuous and weakly harmonic, hence smooth
and harmonic by Theorem 8.5.1.

2) supλn = ∞
After selection of a subsequence, λn tends monotonically to ∞, and a

sequence (zn)n∈N ⊂ Σ with

‖dun(zn)‖ = sup
z∈Σ

‖dun(z)‖ (= λn)

has a limit point z0.
We choose suitable local coordinates for which

{z : |z − z0| ≤ 2}
is contained in a coordinate chart. All local expressions will be evaluated in
this chart. We put

Dn := {w ∈ C : |w| ≤ λn}
and define

vn : Dn → N

by
vn(w) := un(z0 +

w

λn
).

By definition of λn

sup
w∈Dn

‖dvn(w)‖ = 1.

By conformal invariance of E

E(vn) ≤ K.

As n → ∞, Dn exhausts all of C. By regularity results for harmonic maps
(see § 8.5) after selection of a subsequence, (vn)n∈N converges uniformly on
compact subsets of C to a harmonic map

v : C → N.

Actually, the convergence takes place even in C2, by a priori estimates for
harmonic maps, see § 8.5 and therefore

‖dv(0)‖ = 1,

and v is not constant. Also, E(v) ≤ K.
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The holomorphic quadratic differential defined by v,

gij(v(z))vi
zv

j
zdz

2

((gij) being the metric of N in local coordinates) therefore yields a holomor-
phic function

ψ(z) = gij(v(z))vi
zv

j
z

of class L1, since ∫
C

|ψ| ≤ E(v).

By a variant of Liouville’s theorem, see Lemma 8.3.7 below,

ψ ≡ 0

and it follows that v is conformal (see 8.2). It remains to show that v extends
as a harmonic and conformal map

v : S2 → N

where we consider S2 as C∪{∞}. Thus, one has to show that∞ is a removable
singularity. In 8.4, it will be shown more generally that conformal harmonic
maps of finite energy on a Riemann surface cannot have isolated singularities.

�

Theorem 8.3.5 Let Σ be a compact Riemann surface, possibly with boundary
∂Σ, N a compact Riemannian manifold, ϕ ∈ C0 ∩ H1,2(Σ,N). Then there
exists a harmonic map

u : Σ → N

homotopic to ϕ, with u|∂Σ = ϕ|∂Σ in case ∂Σ 
= ∅, or there exists a nontrivial
conformal harmonic map

v : S2 → N.

i.e. a (parametric) minimal 2-sphere in N.

Proof. We only treat the case ∂Σ = ∅. The case ∂Σ 
= ∅ is handled with easy
modifications of the argument for ∂Σ = ∅.

We let
ρ :=

1
3

min(i(N),
π

2
√
κ

), (8.3.38)

where i(N) is the injectivity radius of N, and κ ≥ 0 is an upper curvature
bound.

We choose a conformal metric on Σ. All distances on Σ will be computed
w.r.t. this metric.

We let

r0 := sup{R > 0 : ∀x ∈ Σ ∃ p ∈ N : ϕ(B(x, 2R)) ⊂ B(p, 3−Λρ)}, (8.3.39)
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where Λ is the integer of Lemma 8.3.6 for M = Σ.
According to Lemma 8.3.6, there exist finite sets I1, . . . , IΛ and points

xi ∈ Σ with

Σ =
Λ⋃

�=1

⋃
i∈I�

B(xi, r0) (8.3.40)

and

B(xi1 , 2r0) ∩B(xi2 , 2r0) = ∅ (8.3.41)
whenever i1, i2 ∈ I�, i1 
= i2, for some �.

We then replace ϕ on every disk B(xi, 2r0) for i ∈ I1 by the solution of the
Dirichlet problem (8.3.33) for x = xi, r = 2r0. This is possible by Theorem
8.3.1. Since the disks B(xi, 2r0) for i ∈ I1 are disjoint by (8.3.41), we can
carry out these replacements simultaneously. We obtain a map

u1
0 : Σ → N

with
E(u1

0) ≤ E(ϕ) (8.3.42)

as in the proof of Theorem 8.3.1.
Since

u1
0(B(xi, 2r0)) ⊂ B(pi, 3−Λρ) (8.3.43)

for every i ∈ I1 and some pi ∈ N by the maximum principle Lemma 8.3.4,
we obtain from the definition of r0 and the triangle inequality

u1
0(B(x, 2r0)) ⊂ B(p, 3−Λ+1ρ) (8.3.44)

for every x ∈ Σ and some p ∈ N (depending on x).
Having constructed u�

0 for 1 ≤ � ≤ Λ− 1, we construct u�+1
0 by replacing

u�
0 on every disk B(xi, 2r0), i ∈ I�+1, by the solution of (8.3.33) for x =
xi, r = 2r0. We obtain

E(u�+1
0 ) ≤ E(u�

0) (8.3.45)

and
u�+1

0 (B(x, 2r0)) ⊂ B(p, 3−Λ+�+1ρ) (8.3.46)

for every x ∈ Σ and some p ∈ N (depending on x).
We thus arrive at a map

u1 := uΛ
0 : Σ → N

with
E(u1) ≤ E(ϕ) (8.3.47)

and
u1(B(x, 2r0)) ⊂ B(p, ρ)

for every x ∈ Σ and some p = p(x) ∈ N.
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Having iteratively constructed un : Σ → N, we construct un+1 by replac-
ing ϕ by un and r0 by

rn = sup{R > 0 : ∀x ∈ Σ ∃ p ∈ N : un(B(x, 2R)) ⊂ B(p, 3−Λρ)}.
The maps (un)n∈N satisfy

E(un) ≤ E(un−1) ≤ E(ϕ) (8.3.48)

We now distinguish two cases

1) s := inf
n∈N

rn > 0

We claim that in this case (un)n∈N converges to a harmonic map u : Σ →
N homotopic to ϕ.

We shall first show that the un are equicontinuous. We note that for every
n, there exist finite sets I1, . . . , IΛ and points xi ∈ Σ (everything depending
on n, except for Λ) with

Σ =
Λ⋃

�=1

⋃
i∈I�

B(xi, rn) (8.3.49)

B(xi1 , 2rn) ∩B(xi2 , 2rn) = ∅ (8.3.50)

whenever i1 
= i2, i1, i2 ∈ I� for some �, by Lemma 8.3.6 again.
By (8.3.49), for every x ∈ Σ, there exists some i ∈ ⋃Λ

�=1 I� with

B(x, s) ⊂ B(xi, 2rn) (8.3.51)

There exists �, 1 ≤ � ≤ Λ, with i ∈ I�. Therefore

u�
n|B(x,s)

is harmonic, since it is even harmonic on the larger disk B(xi, 2rn) (u�
n is

constructed in the manner as u�
0 with un instead of ϕ.)

Given ε with 0 < ε < ρ we consider δ with

0 < δ < min(1, s) (8.3.52)

and (
8πE(ϕ)
log 1

δ2

) 1
2

≤ 3−Λε. (8.3.53)

For every x ∈ Σ, and n ∈ N there exists R1(x) with

δ2 < R1(x) < δ

and some p1 ∈ N with

u�
n(∂B(x,R1(x))) ⊂ B(p1, 3−Λε) (8.3.54)

by Lemma 8.3.5. Here � is chosen as in (8.3.51), i.e. so that i ∈ I� for the i
occuring in (8.3.51).
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Since
u�

n|B(x,R1(x))

is harmonic and energy minimizing from Lemma 8.3.4 and (8.3.54)

u�
n(B(x,R1(x))) ⊂ B(p1, 3−Λε). (8.3.55)

We likewise find R2(x) with

δ3 < R2(x) < δ2

and
u�+1

n (∂B(x,R2(x))) ⊂ B(p2, 3−Λε)

for some p2 ∈ N. u�+1
n need no longer be harmonic on B(x,R2(x)). It is only

piecewise harmonic in case

γ := B(x,R2(x)) ∩
⋃

i∈I�+1

∂B(xi, 2rn) 
= ∅.

Since
u�+1

n (γ) = u�
n(γ) ⊂ B(p1, 3−Λε)

and
u�+1

n (γ ∩ ∂B(x,R2(x))) ⊂ B(p2, 3−Λε),

we obtain
u�+1

n (γ ∪ ∂B(x,R2(x))) ⊂ B(p2, 3−Λ+1ε).

Therefore, the image of the boundary of every subregion of B(x,R2(x)) on
which u�+1

n is harmonic is contained in B(p2, 3−Λ+1ε), and since of course
all maps are energy minimizing on these subregions, Lemma 8.3.4 gives as
usually

u�+1
n (B(x,R2(x))) ⊂ B(p2, 3−Λ+1ε). (8.3.56)

Iterating, we obtain
R(x) > δΛ (8.3.57)

and p = p(x) ∈ N with

un+1(B(x,R(x))) ⊂ B(p, ε) (8.3.58)

(note un+1 = uΛ
n).

This proves equicontinuity, since δ and Λ are independent of u and x.
Therefore, after selection of a subsequence, (un)n∈N converges to some

map u homotopic to ϕ, and by (8.3.48) and lower semicontinuity of E (cf.
Theorem 8.4.2))

E(u) ≤ lim
n→∞E(un) ≤ E(ϕ). (8.3.59)

We want to show that u is harmonic.
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Replacing rn by s, we may assume that the points xi, i ∈ ∪I�, are inde-
pendent of n. (One may assume, by selecting a subsequence, that the points
xi(n) converge to points xi, and also rn → s as n→∞.)

We first claim that with (un)n∈N also (u1
n)n∈N converges to u, and that u

is harmonic on every disk B(xi, s) for i ∈ I1.
Since

E(un+1) = E(uΛ
n) ≤ E(u1

n) ≤ E(un), (8.3.60)
lim

n→∞(E(un)− E(u1
n)) = 0. (8.3.61)

Therefore, on each disk B(xi, s), i ∈ I1, for sufficiently large n the energy
of un deviates only by an arbitrarily small amount from the energy of the
energy minimizing map

u1
n|B(xi,s)

.

Consequently, considering the gradient DE of the energy as in 7.2, we obtain

DE(un|B(xi,s)) → 0 for i ∈ I1 (see (7.2.3) for comparison).

Since the maps un converge uniformly, the same argument as in the proof of
Theorem 7.2.1 shows that

u|B(xi,s) = lim
n→∞un|B(xi,s)

is harmonic (and energy minimizing), and then also

u|B(xi,s) = lim
n→∞u1

n|B(xi,s)
(8.3.62)

(i ∈ I1).
Having iteratively shown that (u�

n)n∈N for some �, 1 ≤ � ≤ Λ−1, converges
to u and that u is harmonic on every disk B(xi, s) for i ∈ I�, we show in the
same manner that (u�+1

n )n∈N likewise converges to u and that u is harmonic
on every disk B(xi, s), i ∈ I�+1.

We conclude that u is harmonic on B(xi, s) for every i ∈ I� and every
� ∈ {1, . . . , Λ}, hence on all of Σ.

2) The second case is
inf
n∈N

rn = 0.

By selecting a subsequence, we may assume that (rn)n∈N is monotonically
decreasing and converges to 0.

By definition of rn, for every u, there exist points y0, y1 ∈ Σ with

d(y0, y1) = 2rn (8.3.63)
d(un(y0), un(y1)) ≥ 3−1ρ =: ρ0 (8.3.64)

We choose local coordinates around y0 and denote the coordinate represen-
tations of y0 and y1 again by y0 and y1 resp.
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For z ∈ C, we put
kn(z) := y0 + rnz

whenever this defines a point in our coordinate chart, and

ũn(z) := un(kn(z)).

We thus have maps
ũn : Ωn → N

with Ωn ⊂ C and Ωn → C as n → ∞ (i.e., in the limit, the domain of
definition of kn becomes the whole complex plane C, since rn → 0). Since kn

is conformal, the maps ũn are piecewise harmonic in the same manner the
maps un are (see Corollary 8.2.3).

The maps ũn now are equicontinuous by the same argument as in case 1
for s = 1 because for every w0 ∈ Ωn (with B(w0, 2) ⊂ Ωn) there exists p ∈ N
with

ũn(B(w0, 2)) ⊂ B(p, 3−1ρ), (8.3.65)

by definition of rn, because kn(B(w0, 2)) is a ball of radius 2rn (w.l.o.g., we
may assume that the chosen metric on Σ coincides with the Euclidean one
on our coordinate chart around y0, as a different metric would only introduce
some fixed factor in our estimates for the ball radii on Σ and Ωn.).

Likewise, as in case 1, after selection of a subsequence the maps (ũn)
converge uniformly on compact subsets to a harmonic map

v : C → N.

Moreover, by Corollary 8.2.4

E(ũn|Ωn
) = E(un|kn(Ωn))

≤ E(un),
≤ E(ϕ),

hence by lower semicontinuity of E (Theorem 8.4.2)

E(v) ≤ lim inf
n→∞ E(ũn) ≤ E(ϕ).

The holomorphic quadratic differential associated to v,

gjk(v(z))vj
zv

k
zdz

2

((gjk) being the metric of N in local coordinates), therefore defines a holo-
morphic function

ψ(z) := gjk(v(z))vj
zv

k
z

of class L1, because ∫
C

|ψ| ≤ 2E(v).
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Since every holomorphic function on C of class L1 vanishes identically (this
follows by applying Lemma 8.3.7 below to the real and imaginary parts of
ψ), we get ψ ≡ 0, and consequently v is conformal (see the discussion in 8.2).

It remains to show that v extends as a harmonic (and then also conformal)
map

v : S2 → N,

i.e. that the singularity at ∞ is removable. This will be achieved in § 8.5. �

Corollary 8.3.1 Let N be a Riemannian manifold with π2(N) 
= 0. Then
there exists a nonconstant conformal harmonic v : S2 → N, i.e. a (paramet-
ric) minimal 2-sphere in N.

Proof. Since π2(N) 
= 0, there exists ϕ : S2 → N which is not homotopic to
a constant map. By Theorem 8.3.5 either ϕ is homotopic to a harmonic map
v : S2 → N which then is also conformal by Corollary 8.2.5, or if the second
alternative of Theorem 8.3.5 holds, there also exists a conformal harmonic
v : S2 → N. �

Lemma 8.3.7 Any harmonic function h defined on all Rn and of class
L1(Rn) is identically zero.

Proof. By the mean value property of harmonic functions on Rn,

|h(x0)| = 1
V ol(B(x0, R))

∣∣∣∣∣∣∣
∫

B(x0,R)

h(x) dx

∣∣∣∣∣∣∣ for any R > 0, x0 ∈ Rn. (8.3.66)

Since ∣∣∣∣∣∣∣
∫

B(x0,R)

h(x) dx

∣∣∣∣∣∣∣ ≤
∫

B(x0,R)

|h(x)| dx ≤ ‖h‖L1(Rn),

the r.h.s. of (8.3.66) tends to 0 as R → ∞. Thus h(x0) = 0. This holds for
any x0 ∈ Rn. �

Perspectives. Theorem 8.3.1 is due to Lemaire[168] and Sacks and Uhlen-
beck[210]. Theorem 8.3.5 is again due to Sacks and Uhlenbeck[210]. Other ap-
proaches to these results were found by Struwe[233], Chang[38] and Jost, see [131].

The method of M. Struwe and K.C. Chang consists in studying the associated
parabolic problem. Thus, given ϕ : Σ → N, one studies solutions of

f : Σ × [0,∞) → N

f(z, 0) = ϕ(τ)

∂f

∂t
(z, t) = τ(f(z, t))
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where the tension field is computed w.r.t. the z variable. One can then show that
a solution can develop at most finitely many singularities. These singularities cor-
respond to the splitting off of minimal 2-spheres. In the limit t → ∞, one obtains
a harmonic map f.

The construction presented here is refined in [131]. There, also various existence
results for unstable harmonic maps are presented. Any type of critical point theory,
e.g. Morse theory, for harmonic maps in two dimensions has to take the splitting
off of minimal 2-spheres into account. In certain instances, however, one may show
that this phenomenon can be excluded. A prototype of such a result is the following

Theorem. Let Σ be a compact Riemann surface with boundary, N a Riemannian
manifold diffeomorphic to S2 (thus, the condition π2(N) = 0 is not satisfied). Let
g : ∂Σ → N nonconstant. Then there exist at least two harmonic maps f1, f2 : Σ →
N with fi|∂Σ = g.

This result is due to Brézis and Coron[31] and Jost[127].
In order to prove this theorem, one first minimizes the energy over all maps

f : Σ → N with f|∂Σ = g and obtains a harmonic u (see the remark after Theorem
8.3.3). By careful comparison constructions one then exhibits another homotopy
class α of maps from Σ to N (not containing u) with

inf{E(f) : f ∈ α} < E(u) + Area (N).

One then shows that if minimizing energy in some homotopy class leads to the
splitting off of a minimal two-sphere, the energy would be lowered by an amount
of at least the energy of that minimal sphere. Since N is diffeomorphic to S2, the
energy of such a minimal sphere would be at least the area of N. Since, however,
u realizes the absolute minimum of energy among all maps with the prescribed
boundary values, the above inequality excludes the splitting off of a minimal 2-
sphere during the minimization of the energy in the class α.

We have described the preceding argument in some detail because it forms
a paradigm for other conformally invariant variational problems (Yang-Mills equa-
tions in four dimensions, constant mean curvature surfaces, Yamabe problem, etc.).
Some further discussion of such limit cases of the Palais-Smale condition may be
found in [234] and in the references given there.

Returning to the critical point theory for two dimensional harmonic maps, we
also mention Ding[56] and the survey article [132] where many further references
can be found.

In this context, we should also discuss the Plateau problem for minimal surfaces.
In its simplest form, we consider a smooth (or, more generally, a rectifiable) closed
Jordan curve γ in R3 and seek a minimal surface with boundary γ. In the parametric
version of the problem, we look for a harmonic and conformal f : D → R3 (D =
unit disk) mapping ∂D monotonically onto γ (a monotonic map between curves is
defined to be a uniform limit of homeomorphisms). In this form, the problem was
solved by J. Douglas and T. Radó. The problem was then extended by Douglas to
configurations of more than one disjoint curves γ1, . . . , γk and/or minimal surfaces
of other topological type. He found a condition (the so-called Douglas condition)
guaranteeing the existence of minimal surfaces of some prescribed topological type.
It was also asked whether one may find unstable minimal surfaces with prescribed
boundary. The most comprehensive critical point theory for minimal surfaces in R3

was developed in Jost and Struwe[144] where also references to earlier contributions
are given.
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The Plateau problem in Riemannian manifolds (instead of just R3) was solved
by C. Morrey[189]. Results pointing into the direction of a general Morse theory
for minimal surfaces in Riemannian manifolds may be found in Jost[131].

There also exists the geometric measure theory approach to minimal surfaces.
Here, one tries to represent a minimal surface not as the image of a map of a
Riemann surface, but directly as a submanifold of the given ambient space. In the
parametric approach, one had to generalize the space of smooth maps to a Sobolev
space, in order to guarantee the existence of limits of minimizing sequences. For
the same reason, in the measure theoretic approach, the space of submanifolds has
to be generalized to the one of currents. A submanifold of dimension k yields a
linear functional on the space of differential forms of degree k by integration, and
so the space of k-currents is defined as a space dual to the one of k-forms. One
may then minimize a generalized version of area, the so-called mass, on the space
of currents. This approach is valid in any dimension and codimension, in contrast
to the parametric one that is restricted to 2 dimensions. If the codimension is 1
and the dimension at most 7, then such a mass minimizing current is regular in
the sense that it represents a smooth submanifold. Otherwise, singularities may
occur. In particular, any smooth Jordan curve in R3 bounds an embedded minimal
surface, see Hardt and Simon[111]. For a general treatment of the concepts and the
approach of geometric measure theory, we recommend Federer[73] and Almgren[6].

Minimal surfaces in Riemannian manifolds have found important geometric
applications. Let us mention a few selected ones.

In the proof of the Bonnet-Myers Theorem (Corollary 4.3.1), we have seen how
information about geodesics and their stability can be used to reach topological con-
sequences for manifolds of positive Ricci curvature. This suggests that information
about the stability of minimal surfaces may likewise be used to obtain restrictions
on the topology of positively curved manifolds. The first instance of an important
application of minimal 2-spheres in the presence of positive curvature is Siu and
Yau[227]. Micallef and Moore[178] showed that minimal 2-spheres can be used to
prove that any compact Riemannian manifold with positive curvature operator (i.e.
R(·, ·) = Ω2(M) → Ω2(M) is a positive operator; this in particular implies positive
sectional curvature) is diffeomorphic to a sphere. Also, the sphere theorem (see
Short survey on curvature and topology, above) was proved under the assumption
of pointwise pinching only (i.e. at each point, the maximal ratio between sectional
curvatures is less than 4).

There are also important applications of minimal surfaces in three-dimensional
topology. The so-called Dehn Lemma, whose first complete proof was given by Pap-
kyriakopoulos, asserts that if S is a differentiably embedded surface in a compact
differentiable three-manifold M and if γ is an embedded curve on S that is ho-
motopically trivial in M (i.e. [γ] = 0 ∈ π1(M)) then γ bounds an embedded disk.
Meeks and Yau[177] showed that in this case, if we equip M with a Riemannian
metric in such a way that S is convex, the solution of the parametric Plateau prob-
lem with boundary γ is embedded. Thus, one obtains an embedded minimal disk
bounded by γ. This represents an analytical proof of Dehn’s Lemma. The important
fact is that we have found a canonical solution of the problem. Assume for example
that some compact group G acts on M, leaving γ invariant. One may then average
the metric of M under the action of G and obtain a new Riemannian metric on
M for which G acts by isometries. Since γ is G-invariant, one may then also find a
G-invariant minimal disk bounded by γ. If one chooses this disk to be area mini-
mizing in its class, one may then show again that it is embedded. This equivariant
version of Dehn’s Lemma of Meeks-Yau then has applications to the classification
of discrete group actions on 3-manifolds, see [14].
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The Poincaré conjecture asserts that any three-dimensional manifold M with
π1(M) = 0 is diffeomorphic to the three-sphere S3. In order to approach this
problem, it would be useful to obtain detailed information about the topology of
possible counterexamples, in order either to construct them or to exclude their
existence. Such counterexamples are called fake spheres. A fake 3-sphere has to
contain a fake 3-ball, i.e. a manifold B with π1(B) = 0 and a 2-sphere as boundary.
Meeks, Simon and Yau[176] proved that any such fake 3-ball can be surrounded by
an embedded minimal 2-sphere which is locally area minimizing (here, again, we
may equip M with any Riemannian metric). Thus, the possible presence of a fake
3-ball leads to a tangible geometric consequence. So far, however, this line has not
been pursued any further, and the Poincaré conjecture is presently approached by
the Ricci curvature flow in the work of Perel’man, as described in the Survey on
Curvature and Topology after Chapter 4.

8.4 Definition and Lower Semicontinuity of the Energy
Integral.

For the analysis of harmonic maps, it is necessary to consider classes of maps
more general than C1. A natural space of maps is L2(M,N). One then needs
to define the energy integral and derive conditions for a map to be a critical
point of that integral.

The idea of defining the energy functional is quite simple and may be
described as follows:

We let, for h > 0
σh : R+ → R

be some nonnegative function with σh(s) = 0 for s ≥ h and∫
B(0,h)

σh(|x|) dx = 1

where B(0, h) is a ball of radius h in Rm (m will be the dimension of our
domain M in the sequel). For x, y ∈M, we put

ηh(x, y) := σh(d(x, y)). (8.4.1)

The typical example we have in mind is

σh(s) =
{

1
ωmhm for 0 ≤ s < h (ωm = volume of the unit ball in Rm)
0 for s < h,

(8.4.2)
and so, ηh(x, ·) is a multiple of the characteristic function of the ball B(x, h),
for every x. That multiple is chosen so that the integral of ηh(x, ·) w.r.t.
the Euclidean volume form dy on B(x, h) is 1, i.e. the one induced from the
Euclidean volume form on TxM via the exponential map expx : TxM →
M . We note that by Theorem 1.4.4, the difference between the Euclidean
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and Riemannian volume forms is of order O(hm+2). The advantage of the
Euclidean volume form is that the normalization does not depend on x so
that ηh becomes symmetric in x and y.

For a map f ∈ L2(M,N) between Riemannian manifolds M and N , we
then define

Eh(f) :=
∫
M

∫
B(x,h)

ηh(x, y)
d2(f(x), f(y))

h2
dvol(y) dvol(x) (8.4.3)

where dvol is the Riemannian volume form on M .

In order to understand the geometric meaning of the functionals Eh, we
observe

Lemma 8.4.1 f : M → N minimizes Eh iff f(x) is a center of mass for the
measure f#(ηh(x, y) dvol (y)) for almost all x ∈M , i.e. if f(x) minimizes

F (p) =
∫

B(x,h)

ηh(x, y)d2(p, f(y))dvol(y)

Proof. If f(x) did not minimize F (p), then∫
B(x,h)

ηh(x, y)d2(f(x), f(y)) dvol(y)

could be decreased by replacing f(x) by some minimizer p. Since ηh(x, y) is
symmetric, that would also decrease Eh(f) if happening on a set of positive
measure. �

It is also instructive to consider the following computation that leads to
a proof of Lemma 8.4.1 in the smooth case. We consider variations

ft(x) = f(x) + tϕ(x)

of f . If f minimizes Eh, then

0 =
d

dt
Eh(ft)|t=0 =

1
h2

d

dt

∫ ∫
ηh(x, y)d2(ft(x), ft(y)) dvol(y) dvol(x)

=
1
h2

∫ ∫
ηh(x, y){∇1d

2(f(x), f(y))(ϕ(x))+

∇2d
2(f(x), f(y))(ϕ(y))} dvol(y) dvol(x)

=
2
h2

∫ ∫
ηh(x, y)∇1d

2(f(x), f(y))ϕ(x) dvol(y) dvol(x)

because of the symmetry of ηh

=
2
h2

∫ ∫
ηh(x, y) exp−1

ϕ(x) f(y)ϕ(x) dvol(y) dvol(x)
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Since this has to hold for all smooth ϕ with compact support,∫
ηh(x, y) exp−1

ϕ(x) f(y) dvol(y) = 0

for all x. Thus f(x) is the center of mass of f#(ηh(x, y) dvol(y)).

We now consider the functionals Eε for h = ε with the kernel ηε defined
by (8.4.1), (8.4.2), and we let ε → 0 and define the energy E as the limit
of the functionals Eε. The functionals Eε increase towards E, and it is not
excluded that E(f) takes the value ∞ for some f ∈ L2(M,N). We shall
see that E coincides with the usual energy functional for those mappings for
which the latter is defined. Also, the functionals Eε are continuous w.r.t. L2-
convergence, and the limit of an increasing sequence of continuous functions
is lower semicontinuous. We shall thus obtain the lower semicontinuity of the
energy w.r.t. L2-convergence.

Actually, the described monotonicity of the sequence Eε as ε → 0 only
holds up to an error term that comes from the geometry of M. It is not hard
to control this error term sufficiently well so that the desired conclusion about
E can still be reached.

Lemma 8.4.2 Eε(f) is continuous on L2(M,N), i.e. if (fν)ν∈N converges
to f in L2(M,N), then

Eε(f) = lim
ν→∞Eε(fν).

Proof. Elementary. �

We estimate for 0 < λ < 1

Eε(f)

=
1

ωmεm+2

∫
M

∫
B(x,ε)

d2(f(x), f(y)) dvol(y) dvol(x)

≤ 1
ωmεm+2

∫
M

∫
B(x,ε)

{
d(f(x), f(x+ λ(y − x)))

+ d(f(x+ λ(y − x)), f(y))
}2

dvol(y) dvol(x)

(by the triangle inequality)

≤ 1
ωmεm+2

∫
M

∫
B(x,ε)

{
1
λ
d2(f(x), f(x+ λ(y − x)))

+
1

1− λ
d2(f(x+ λ(y − x)), f(y))

}
dvol(y) dvol(x)
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(using the inequality (a+b)2 ≤ 1
λa

2 + 1
1−λb

2, valid for any real numbers a, b).

In local coordinates, with metric tensor (gij), we have

dvol(y) = det(gij)
1
2 dy1 . . . dym.

By Corollary 1.4.3, we may assume that ε is so small that Riemannian normal
coordinates may be introduced on B(x, ε). In those coordinates, we have from
Theorem 1.4.4 that

det(gij(y))
1
2 = 1 + 0(ε2) for y ∈ B(x, ε).

Therefore
dvol(y)
dvol(λy)

=
1

λm−1
(1 + 0(ε2)).

We then substitute z = λy and obtain (noting that x has the coordinate
representation 0)∫
B(x,ε)

1
λ
d2(f(0), f(λy)) dvol(y) =

1
λm

(1+0(ε2))
∫

B(x,λε)

d2(f(0), f(z)) dvol(z).

In that manner, we obtain

Eε(f) ≤ 1
ωmεm+2

(1 + 0(ε2))
{∫

M

1
λm

∫
B(x,λε)

d2(f(x), f(z)) dvol(z) dvol(x)

+
∫
M

1
(1− λ)m

∫
B(z,(1−λ)ε)

d2(f(z), f(y)) dvol(y) dvol(z)
}

= (1 + 0(ε2))(λEλε(f) + (1− λ)E(1−λ)ε(f)). (8.4.4)

We put
En(f) := E2−n(f).

Definition 8.4.1 The energy of a map f ∈ L2(M,N) is defined as

E(f) = lim
n→∞En(f) = lim

ε→0
Eε(f) ∈ R ∪ {+∞}. (8.4.5)

We also say that f ∈ L2(M,N) belongs to the Sobolev space H1,2(M,N) if
E(f) <∞.

In order to make contact with more classical definitions of Sobolev spaces,
we start with the following

Definition 8.4.2 A map f : M → N between manifolds is localizable if for
every x0 ∈M there exists a neighborhood U of x0 in M and a domain V of
a coordinate chart in N with the property that
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f(U) ⊂ V.

In the sequel, we shall look at maps which are localizable in the sense of Def-
inition 8.4.2. For such maps, all relevant regularity properties can be studied
in local coordinates. In particular, it can be defined with the help of local
coordinates whether such a map between Riemannian manifolds is of Sobolev
class H1,2(M,N).

We now want to establish the result that for such localizable maps, our
general definition of the energy coincides with the one obtained by local
coordinate representations.

Theorem 8.4.1 For a localizable map f ∈ L2(M,N),

E(f) = d(m)
∫
M

〈df, df〉dvol(x)

whenever the latter expression is defined and finite (where the weak derivative
df is defined with the help of local coordinates), and

E(f) = ∞
otherwise.

Here, d(m) is some factor depending on the dimension of M that can be
safely ignored in the sequel.

In the proof of Theorem 8.4.1, we shall employ the following auxiliary
result:

Lemma 8.4.3 For a localizable f, f ∈ H1,2(M,N) (M,N compact) iff for
all Lipschitz functions � : N → R, l ◦ f ∈ H1,2(M,R).

Proof. We have assumed f to be localizable, and so the H1,2-property may be
tested in local coordinates. Therefore, if the H1,2-property holds for compo-
sition with Lipschitz functions it holds for coordinate functions. Conversely,
if f is in H1,2, then �◦f is also in H1,2 for all Lipschitz functions � by Lemma
A.1.3. �

Proof of Theorem 8.4.1: For f ∈ C1, it is an elementary consequence of
Taylor’s formula that

E(f) = lim
ε→0

Eε(f). (8.4.6)

For f ∈ H1,2 (defined with the help of local coordinates), we choose a se-
quence (fν)ν∈N ⊂ C1 converging to f in H1,2. Given δ > 0, we find ν0 such
that for all ν, µ ≥ ν0



8.4 The Energy Integral and Weakly Harmonic Maps 447

|E(fν)− E(f)| < δ

3
. (8.4.7)

We write

Eε(fν)− Eε(fµ) =
1

ωmεm+2

∫
M

∫
B(x,ε)

(d2(fν(x), fν(y))

− d2(fµ(x), fµ(y))) dvol(y) dvol(x)

=
1

ωmεm+2

∫
M

∫
B(x,ε)

(d(fν(x), fν(y))

− d(fµ(x), fµ(y)))d(fν(x), fν(y)) dvol(y) dvol(x)

+
1

ωmεm+2

∫
M

∫
B(x,ε)

(d(fν(x), fν(y))

− d(fµ(x), fµ(y)))d(fµ(x), fµ(y)) dvol(y)dvol(x) .

Now

d(fν(x), fν(y)) =

1∫
0

D2d(fν(x), fν(x+ t(y − x)))(y − x)dt (8.4.8)

(for almost all y) where D2 denotes the derivative w.r.t. the second variable,
and we use local coordinates on B(x, ε). This derivative exists a.e. by Lemma
A.1.3 since d is Lipschitz.

Consequently

1
ωmεm+2

|
∫
M

∫
B(x,ε)

(d(fν(x), fν(y))

− d(fµ(x), fµ(y)))d(fν(x), fν(y)) dvol(y) dvol(x)|

≤ 1
ωmεm+2

{∫
M

∫
B(x,ε)

1∫
0

|D2(d(fν(x), fν(x+ t(y − x)))

−D2d(fµ(x), fµ(x+ t(y − x)))|2|y − x|2dt dvol(y) dvol(x)
} 1

2

{∫
M

∫
B(x,ε)

d2(fν(x), fν(y)) dvol(y) dvol(x)
} 1

2
, using Hölder’s inequality

≤Eε(fν)
1
2

1

ω
1
2
mε

m
2

{∫
M

∫
B(x,ε)

(

1∫
0

|D2d(fν(x), fν(x+ t(y − x))) (8.4.9)

−D2d(fµ(x), fµ(x+ t(y − x)))|2dt dvol(y) dvol(x)
} 1

2
.
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Since (fν) converges in H1,2, by Lemma 8.4.3 then (D2d(fν(x), fν(·)))ν∈N

converges in L2 for every x. Therefore, given η > 0, there exists ν1 ≥ ν0 so
that for all ν, µ ≥ ν1, the preceding expression is bounded by

ηEε(fν)
1
2

(For M a compact Riemannian manifold, and an integrable function
ϕ:M → R,

∫
M

∫
B(x,ε)

∫ 1

0
ϕ(x + t(y − x))dt dvol(y) dvol(x) behaves like

ωmε
m
∫

M
ϕ(z) dvol(z) as ε→ 0.)

We thus obtain

|Eε(fν)− Eε(fµ)| ≤ η(Eε(fν)
1
2 + Eε(fµ)

1
2 ). (8.4.10)

From (8.4.8), we see that Eε(fν) is controlled by the energy E(fν) and since
the latter is bounded since it converges to E(f), we may assume

Eε(fν) ≤ K for some constant K and all ν.

Hence by a suitable choice of η in (8.4.10), we have for all ν, µ ≥ ν1

|Eε(fν)− Eε(fµ)| < δ

3
. (8.4.11)

We then choose ε > 0 so small that

|Eε(fν1)− E(fν1)| <
δ

3
(8.4.12)

which is possible by (8.4.6). From (8.4.7), (8.4.11), (8.4.12), we conclude

|Eε(f)− E(f)| < δ

for all sufficiently small ε. This is the claim for f ∈ H1,2.
In order to establish the result for general (localizable) f ∈ L2(M,N), we

show that if Eε(f) stays bounded for ε→ 0, then f ∈ H1,2(M,N). For that
purpose, we use the characterization of Lemma 8.4.3.

Let � : N → R be Lipschitz. If Eε(f) is bounded, so then is

Eε(� ◦ f) =
1

ωmεm+2

∫
M

∫
B(x,ε)

|� ◦ f(x)− � ◦ f(y)|2 dvol(y) dvol(x).

Introducing Riemannian polar coordinates (r, ϕ) on B(x, ε) (ε sufficiently
small, cf. Corollary 1.4.3), we compute

Eε(� ◦ f) =
1
ωm

∫
M

∫
B(0,1)

|� ◦ f(x+ εy)− � ◦ f(x)|2
ε2

εm

εm
dy dvol(x),

up to an error term that goes to 0 for ε → 0. Since this is assumed to be
bounded as ε→ 0, for almost all y ∈ B(0, 1), the difference quotients
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∆ε
y(� ◦ f)(x) =

� ◦ f(x+ εy)− � ◦ f(x)
ε

are uniformly bounded in L2. By Lemma A.2.2, we conclude that �◦f ∈ H1,2.
Since this holds for every Lipschitz function �, by Lemma 8.4.3, f ∈ H1,2.
This completes the proof. �

We now want to show the lower semicontinuity of the energy E w.r.t.
L2-convergence.

Theorem 8.4.2 If (fν)ν∈N converges to f in L2(M,N), then

E(f) ≤ lim inf
ν→∞ E(fν).

Proof. We may assume
lim inf
ν→∞ E(fν) <∞,

hence also
E(fν) ≤ K (8.4.13)

for some constant K and all ν. By definition

E(f) = lim
n→∞En(f).

Given δ > 0, there then exists n0 such that for all n ≥ n0

E(f) ≤ En(f) + δ.

By Lemma 8.4.2, En is continuous on L2. Hence there exists ν0 such that for
all ν ≥ ν0

E(f) ≤ En0(fν) + 2δ (8.4.14)
(ν0 depends on δ and n0).

Applying (8.4.4) with λ = 1
2 , we obtain

En(fν) ≤ (1 + 0(2−2n))En+1(fν).

Possibly choosing n0 larger, we obtain for all n ≥ n0

En(fν) ≤ E(fν) + δ (8.4.15)

using (8.4.13).
(8.4.14) and (8.4.5) imply

E(f) ≤ E(fν) + 3δ for all ν ≥ ν0.

Since δ > 0 was arbitrary, the claim follows. �

We now wish to relate the above results to a general concept of varia-
tional convergence, the Γ -convergence in the sense of de Giorgi. In order to
introduce that concept, let Z be a topological space satisfying the first axiom
of countability6; that means that for every x ∈ Z, we may find a sequence
6 this is assumed only for the simplicity of presentation; the concept is meaningful

also for spaces that do not satisfy the first axiom of countability; one has to
replace sequences by filters in that case.
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(Uν)ν∈N of open subsets of Z such that every open set containing x also con-
tains some Uν . In our applications, Z of course will be L2(M,N) or some
subspace of that space.

Let
Fn : Z → R ∪ {±∞}, n ∈ N,

be a sequence of functionals.

Definition 8.4.3 The functional

F : Z → R ∪ {±∞}
is the Γ -limit of (Fn)n∈N, written as

F = Γ − lim
n→N

Fn

if
(i) whenever (xn)n∈N ⊂ Z converges to x ∈ Z,

F (x) ≤ lim inf
n∈∞ Fn(xn)

(ii) for every x ∈ Z, we can find a sequence (xn)n∈N ⊂ Z that converges
to x and satisfies

F (x) = lim
n→∞Fn(xn).

Lemma 8.4.4 E = Γ − limEε w.r.t. L2-convergence.

Proof. By monotonicity (see (8.4.4)), it suffices to show the result for En

instead of Eε.
(i) For every f ∈ L2(M,N), there exists a sequence (fν)ν∈N ⊂ L2(M,N)

E(f) = lim
ν→∞Eν(fν).

According to the definition of E, we may simply take fν = f for all
ν.

(ii) For every sequence (fν)ν∈N ⊂ L2(M,N) converging to f we have

E(f) ≤ lim inf
ν→∞ Eν(fν).

From the definition of E, for any δ > 0 there exists n0 ∈ N such that
for ν ≥ n0

E(f) ≤ Eν(f) + δ.

Using this estimate and that Eν is continuous on L2 by Lemma 8.4.1,
we may find ν0 (depending on δ and n0) such that for ν ≥ ν0

E(f) ≤ En0(fν) + 2δ.
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From (8.4.2) with λ = 1
2 , we get

En(fν) ≤ (1 + c 2−2n)En+1(fν),

for some constant c, depending on the geometry of M .

We may have chosen n0 in the preceding also satisfying∏
n≥n0

(1 + c 2−2n) ≤ 1 + δ.

Then from the preceding estimate

En0(fν) ≤ (1 + δ)Eν(fν) for ν ≥ n0.

Putting the estimates together,

E(f) ≤ (1 + δ)Eν(fν) + 2δ for ν ≥ n0, ν0.

As this holds for any δ > 0,

E(f) ≤ lim inf
ν→∞ Eν(fν).

�

This result is quite useful, because, in view of the next lemma, it tells us
that if for some sequence εn → 0, we can find a minimizer fn for every Eεn

and if this sequence converges to some f , then f automatically minimizes
E. In other words, we can find a minimizer for E by minimizing the simpler
approximating functionals Eε .

Lemma 8.4.5 Let
F = Γ − lim

n→∞Fn

in the above setting. Assume that every Fn is bounded from below, and that
xn minimizes Fn. If xn converges to x ∈ Z, then x minimizes F , and

F (x) = lim
n→∞Fn(xn). (8.4.16)

Proof. Let z ∈ Z.
Since F is the Γ -limit of the Fn, we can find some sequence (zn)n∈N

converging to z with
lim

n→∞Fn(zn) = F (z).

Given ε > 0, we choose n ∈ N so large that

Fn(zn) < F (z) +
ε

2

and also
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Fn(xn) > F (x)− ε

2
(property (i) of Γ -convergence)

Since xn minimizes Fn,
Fn(xn) ≤ Fn(zn).

Altogether
F (x) < F (z) + ε.

Since this holds for every z ∈ Z and every ε > 0, x minimizes F . By Γ -
convergence

F (x) ≤ lim inf
n→∞ Fn(xn),

and we may find a sequence (zn)n∈N converging to x with

F (x) = lim
n→∞Fn(zn).

Since
Fn(xn) ≤ Fn(zn)

because of the minimizing property of xn, (8.4.16) follows. �

Γ -limits are automatically lower semicontinuous, and so, we could have
deduced Theorem 8.4.2 from that general result about Γ -convergence.

Perspectives. The definition and treatment of the energy functional presented
here are taken from Jost[133]. (See also [134].) A similar theory is developed by Ko-
revaar and Schoen[162]. For the usual definition of the Sobolev space H1,2(M, N),
see exercise 8). The concept of Γ -convergence is treated in dal Maso[53] and Jost,
Li-Jost[142].

8.5 Weakly Harmonic Maps. Regularity Questions

Definition 8.5.1 f ∈ H1,2
loc (M,N), M,N being Riemannian manifolds, is a

critical point of the energy integral E if

d

dt
E(expf tψ)|t=0 = 0 (8.5.1)

whenever ψ is a compactly supported bounded section of f−1TN of class
H1,2, i.e. ∫

M

〈dψ, dψ〉dM <∞

(Cf. (8.1.11) for the definition of dψ; all partial derivatives are to be under-
stood as weak derivatives.)
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Lemma 8.5.1 f ∈ H1,2
loc (M,N) is a critical point of E iff∫

M

〈df, dψ〉dM = 0 (8.5.2)

for all ψ as in Definition 8.5.1.

Proof. This follows from the computation of d
dtE(expf tψ) leading to (8.1.13).

�

Definition 8.5.2 A solution of (8.5.2) is called weakly harmonic.

Corollary 8.5.1 The weakly harmonic maps are the critical points of E. �

Lemma 8.5.2 f ∈ H1,2
loc (M,N) is weakly harmonic if in local coordinates∫

M

γαβ ∂f
i

∂xα

∂ηi

∂xβ

√
γdx1 . . . dxm (8.5.3)

= −
∫
M

γαβΓ i
jk(f(x))

∂f j

∂xα

∂fk

∂xβ
ηi
√
γdx1 . . . dxm

for all η ∈ H1,2
0 ∩ L∞ (w.r.t. local coordinates).

Proof. This follows from the proof of Lemma 8.1.1 and the derivation of
(8.1.13). �

Remark.

1) Under coordinate changes g = g(f) in the image, η transforms into η̃
with

η̃j =
∂f i

∂gj
ηi.

With this transformation behaviour, (8.5.3) is invariantly defined.

2) The only variations that we shall need in the sequel are of the form

ψ(x) = s(f(x))ϕ(x) (8.5.4)

where s is a compactly supported smooth section of TN and ϕ is a
compactly supported Lipschitz continuous real valued function. For
such ψ, f ∈ H1,2

loc (M,N) implies ψ ∈ H1,2 by the chain rule.

In particular, for such variations, (8.5.2) and (8.5.3) are meaningful even
if f should not be localizable.
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For the following result, D is the unit disk as usual, and

D∗ := D\{0}
is the punctured unit disk.

Lemma 8.5.3 Suppose f ∈ H1,2(D∗,Rn) satisfies∫
D∗

Df(z)Dϕ(z)dz =
∫
D∗

g(z, f(z), Df(z))ϕ(z)dz (8.5.5)

for all
ϕ ∈ H1,2

0 ∩ L∞(D∗,Rn)

where g fulfills
|g(z, f, p)| ≤ c0 + c1|p|2 (8.5.6)

with constants c0, c1 for all (z, f, p) ∈ D∗ × Rn × R2m. Then also∫
D

Df(z)Dσ(z)dz =
∫
D

g(z, f(z), Df(z))σ(z)dz (8.5.7)

for all σ ∈ H1,2
0 ∩ L∞(D,Rn).

The lemma says that weak solutions of (8.5.5) with finite Dirichlet integral
extend as weak solutions through isolated singularities. Easy examples show
that the assumption of finite Dirichlet integral is essential.

Proof. For k ∈ N, k ≥ 2, we put

λk(r) :=

⎧⎨⎩ 1 for r ≤ ( 1
k )2

log( 1
kr )/ log k for ( 1

k )2 ≤ r ≤ 1
k

0 for r ≥ 1
k

and for σ ∈ H1,2
0 ∩ L∞(D,Rn)

ϕk(z) := (1− λk(|z|))σ(z) ∈ H1,2
0 ∩ L∞(D∗,Rn).

We now observe that

∫
D

|Dλk(|z|)|2dz = 2π

1
k∫

( 1
k )2

(
dλk

dr
)2rdr =

2π
log k

→ 0 as k →∞. (8.5.8)

By (8.5.5),∫
D∗

Df(z)Dϕk(z)dz =
∫
D∗

g(z, f(z), Df(z))ϕk(z)dz. (8.5.9)
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Because of f ∈ H1,2 and (8.5.6),

g(z, f(z), Df(z)) ∈ L1.

Since |ϕk| ≤ |σ| ∈ L∞ and since ϕk converges to σ almost everywhere,
Lebesgue’s theorem on dominated convergence therefore implies that for k →
∞, the right hand of (8.5.9) tends to∫

D

g(z, f(z), Df(z))σ(z)dz.

By (8.5.8), σ ∈ L∞, f ∈ H1,2, and by Hölder’s inequality, for k →∞∫
D

Df(z)D(λk(z))σ(z)dz → 0.

Therefore, the left hand side of (8.5.9) tends to∫
D

Df(z)Dσ(z)dz

for k →∞, and (8.5.7) follows. �

Corollary 8.5.2 Suppose that Σ is a Riemann surface, p ∈ Σ, N a Rieman-
nian manifold, f ∈ H1,2(Σ\{p}, N).

If f is weakly harmonic on Σ\{p}, then f extends as a weakly harmonic
map to Σ.

Proof. A consequence of Lemmata 8.5.2, 8.5.3. �

Remark. Suppose that f : Σ\{p} → N is localizable and of finite energy

E(f,Σ\{p}) =
∫

Σ\{p}

‖df‖2 <∞.

Then we can define the energy of f on Σ as

E(f ;Σ) = E(f ;Σ\{p}).
The proof of Lemma 8.5.5 shows that this is meaningful.

Our first aim is to prove the extension result needed in the proofs of
Thms. 8.3.4 and 8.3.5, namely that a conformal harmonic map C → N of
finite energy extends to a conformal harmonic map on S2 = C∪ {∞}. While
the following results are correct even without the assumption of conformality,
that assumption considerably simplifies the proofs. We divide the proof into
two steps, first continuity and then smoothness. In order to explain the basic
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idea of the continuity proof, we first consider an easy special case, namely
N = Rn. We are thus investigating weak minimal surfaces in Euclidean space:

Definition 8.5.3 A map h ∈ H1,2(Σ,Rn) from a Riemann surface Σ is
called a weak minimal surface if h is weakly harmonic and conformal, i.e.
1) ∫

Σ

(hxϕx + hyϕy)dxdy = 0 (8.5.10)

for all ϕ ∈ H1,2
0 ∩ L∞(Σ,Rn)

(z = x+ iy being a conformal parameter on Σ)

and
2)

hx · hx = hy · hy, hx · hy = 0 almost everywhere. (8.5.11)

We now show

Proposition. Any weak minimal surface h ∈ H1,2
loc (Σ,Rn) is continuous.

Proof. Since the result is local, we may assume Σ = D, that the point where
h has finite Dirichlet integral (energy) on D.

We consider r ∈ (0, 1) and

z0 ∈ Dr := {z ∈ C : |z| < r}
p := h(z0).

We assume that for almost all z ∈ ∂Dr = {|z| = r}
|h(z)− p| > ρ (8.5.12)

(this means that the minimal surface h(Dr) has no boundary inside the ball
B(p, ρ)).

The plan is to show that if r → 0 then also ρ→ 0 for ρ satisfying (8.5.1).
We shall then apply the Courant-Lebesgue lemma to the extent that for
suitable r, if |h(z)−p| is small for one z ∈ ∂Dr then this is so for all z ∈ ∂Dr.
Continuity will then follow from the triangle inequality.

We first consider a general compact Riemann surface S with boundary
∂S and a weak minimal surface h ∈ H1,2(S,Rn) with

|h(z)− p| > ρ for all z ∈ ∂S. (8.5.13)

We let η ∈ C∞(R) satisfy

η(t) ≡ 1 for t ≤ 1
2

η(t) ≡ 0 for t ≥ 1
η′(t) ≤ 0 for all t
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and choose as a test vector

ϕ(z) := η(
|h(z)− p|

ρ
)(h(z)− p)

for 0 < ρ ≤ ρ.
Because of (8.5.13), ϕ has compact support in the interior of S. Therefore,

ϕ is an admissible test vector in (8.5.10), and thus∫
S

(hxϕx + hyϕy)dxdy = 0 (z = x+ iy). (8.5.14)

We now define
Aη(ρ) :=

1
2

∫
S

|Dh|2η( |h− p|
ρ

).

If η is the characteristic function χ(−∞,1) of (−∞, 1), Aη(ρ) is the area of
the minimal surface h(S) inside the ball B(p, ρ). We compute

A′
η(ρ) = − 1

2ρ2

∫
S

|Dh|2|h− p|η′( |h− p|
ρ

) (8.5.15)

and

hxϕx + hyϕy = η(
|h− p|
ρ

)|Dh|2

+ η′(
|h− p|
ρ

)
1

ρ|h− p| {((h− p) · hx)2 + ((h− p) · hy)2} . (8.5.16)

Since the vectors hx and hy are orthogonal and of equal length by the weak
conformality of h, we estimate

((h− p) · hx)2 + ((h− p) · hy)2 ≤ 1
2
(h2

x + h2
y)|h− p|2

=
1
2
|Dh|2|h− p|2 (8.5.17)

The factor 1
2 will be essential, cf. (8.5.18) below and its consequences. Since

η′ ≤ 0, (8.5.16) and (8.5.17) imply

hxϕx + hyϕy ≥ η(
|h− p|
ρ

)|Dh|2 + η′(
|h− p|
ρ

)
|h− p|

2ρ
|Dh|2.

(8.5.14) and (8.5.15) then yield

2Aη(ρ)− ρA′
η(ρ) ≤ 0,

hence
(
Aη(ρ)
ρ2

)′ ≥ 0, (8.5.18)
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and thus for 0 < ρ1 ≤ ρ2 ≤ ρ

Aη(ρ1)
2πρ2

1

≤ Aη(ρ2)
2πρ2

2

. (8.5.19)

We choose a sequence (ηn)n∈N of smooth functions with the above prop-
erties and tending to χ(−∞,1). By Lebesgue’s theorem on dominated conver-
gence, we obtain in the limit with

A(ρ) := Area (h(S) ∩B(p, ρ))

the fundamental monotonicity formula for minimal surfaces which we record
as

Theorem 8.5.1 Let S be a compact Riemann surface with boundary ∂S and
let h ∈ H1,2(S,Rn) be a weak minimal surface, and suppose

h(∂S) ∩B(p, ρ) = ∅. (8.5.20)

Then A(ρ)
2πρ2 is a nondecreasing function of ρ for 0 < ρ ≤ ρ.

The result also holds for 0 < ρ < ∞ if S is a (noncompact) Riemann
surface and h ∈ H1,2

loc (S,Rn) is a proper weak minimal surface. Here, “proper”
means that the preimage of each compact set in Rn is compact in S.

Proof. The compact case has just been described. The claim for noncompact
S follows by exhausting S by compact subsets. The properness of h guarantees
that (8.5.20) is satisfied for sufficiently large compact subsets. �

We want to determine whether A(ρ)
2πρ2 has a limit as ρ→ 0.

Definition 8.5.4 Let T be a surface in a Riemannian manifold N, p ∈ N,
A(T, p, ρ) := Area (T ∩B(p, ρ)). If

lim
ρ→0

A(T, p, ρ)
2πρ2

=: d(T, p)

exists, then this limit is called the density of T at p.

We observe that if T is closed and p 
∈ T, then

d(T, p) = 0.

If h is a smooth minimal surface, then as a consequence of the Hartman-
Wintner-Lemma 8.2.6, we have an asymptotic expansion

hz(z0) = a(z − z0)m

with some a ∈ Cn (a2 = 0 since h defines a minimal surface) at every z0 with
some non-negative integer m, cf. Corollary 8.2.6, and
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m = 0

for almost all z0, because hz has only isolated zeroes.
This easily implies

d(h(S), h(z0)) = m+ 1

and
d(h(S), h(z0)) = 1 for almost all z0.

We now return to the case of a weak minimal surface h : S → Rn.

Lemma 8.5.4 Let h:S → Rn be a weak minimal surface. Then the (lower)
density of h(S) at h(z) is at least 1 whenever

z ∈ S0 :={y ∈ S:h is approximately differentiable at y,

y is a Lebesgue point for |Dh|2, and |Dh(y)|2 
= 0}.
Consequently, for z ∈ S0,

Area (h(S) ∩B(h(z), #)) ≥ 2π#2

whenever
h(∂S) ∩B(h(z), #) = ∅.

Proof. By the monotonicity formula (Theorem 8.5.1), we need to show that

with K� := {x ∈ S: |h(x)− h(z)| ≤ #}

lim
�→0

1
2π#2

∫
K�

|dh(x)|2 dx ≥ 1.

Now, with Kε
� := {x ∈ D�: |h(x)− h(z)−∇h(z)(x− z)| ≤ ε|x− z|}∫

D�

|dh(x)|2 ≥
∫

Kε
�∩S0

|dh(x)|2 =
∫

Kε
�∩S0

|∇h(x)|2,

where∇h denotes the approximate derivative (see § A.1), and we shall control
the latter quantity from below.

The domain of integration here is controlled by a radius in the image. In
order to estimate the integral, however, we shall need to convert that radius
into a radius in the domain.

We put

rε := #(
1√
2
|∇h(z)|+ ε)−1.
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Then, for

x ∈ Bε(z, rε) := {y ∈ B(z, rε): |h(x)− h(z)−∇h(z)(x− z)| ≤ ε|x− z|},
|h(x)− h(z)| ≤ |∇h(z)(x− z)|+ ε|x− z|.

The conformality relations (8.5.11) now imply

|∇h(z)(x− z)|2 ≤ 1
2
|∇h(z)|2|x− z|2.

Thus, we obtain

|h(x)− h(z)| ≤
(

1√
2
|∇h(z)|+ ε

)
|x− z| ≤ #

for x ∈ Bε(z, rε). This implies

Bε(z, rε) ⊂ Kε
� ,

and so, since Kε
� \ (Kε

� ∩ S0) is a null set,

1
2π#2

∫
Kε

�∩S0

|∇h(z)|2 ≥ 2πr2ε
2π#2

|∇h(z)|2,

up to an error term (arising from having Bε(z, rε) in place of B(z, rε)) which,
however, goes to zero as #, and hence also rε tends to 0, because h is approx-
imately differentiable at z.

Inserting the value of rε, and letting first # and then ε tend to 0, we obtain

lim
�→0

1
2π#2

∫
K�

|∇h(z)|2 ≥ 1.

The integrand, here, however, is |∇h(z)|2, i.e. the value at the center z, and
not |∇h(x)|2. Thus, in order to complete the proof, we need to estimate

1
2π#2

∫
Kε

�∩S0

∣∣|∇h(z)|2 − |∇h(x)|2∣∣ dx.
Again, we need to translate the radius in the image into one in the domain,
but this time with an inequality in the opposite direction.

Wlog ε < |∇h(z)|, and so for x ∈ Kε
� ∩ S0

|x− z| ≤ #(|∇h(z)| − ε)−1 =: Rε,

i.e.
Kε

� ∩ S0 ⊂ B(z,Rε).



8.5 Weakly Harmonic Maps. Regularity Questions 461

Therefore,

1
2π#2

∫
Kε

�∩S0

∣∣|∇h(z)|2 − |∇h(x)|2∣∣ dx
≤ 1

(|∇h(z)| − ε)2
1

2πR2
ε

∫
B(z,Rε)∩S0

∣∣|∇h(z)|2 − |∇h(x)|2∣∣ dx.
If we then let #, and hence Rε tend to 0, the last integral also goes to 0
because z is a Lebesgue point for |dh(z)|2. Thus, the proof is complete. �

In order to also include points where h is not approximately differentiable,
or that are not Lebesgue points for |dh(z)|2, we now claim that the lower
density

lim inf
ρ→0

A(h(S), h(z), ρ)
2πρ2

is an upper semicontinuous function of z.
Let ρn → 0 for n→∞.
By the above, we find sequences (zn)n∈N ⊂ S, (εn)n∈N ⊂ R, εn → 0 as

n→∞,
|h(z)− h(zn)| = εnρn.

Then

A(h(S), h(z), ρn)
2πρ2

n

≥ A(h(S), h(zn), (1− εn)ρn)
2πρ2

n

since B(h(zn), (1− εn)ρn) ⊂ B(h(z), ρn)

=
A(h(S), h(zn), (1− εn)ρn)

2π((1− εn)ρn)2
(1− εn)2

≥ d(h(S), h(zn))(1− εn)2

by monotonicity at h(zn),

and upper semicontinuity follows.

We now return to the proof of the Proposition and put S = Dr. The
preceding argument, Lemma 8.5.4 and Theorem 8.5.1 say

1 ≤ A(ρ)
2πρ2

(8.5.21)

for 0 ≤ ρ ≤ ρ, unless ∇h ≡ 0 locally, which, however, represents a trivial
case.
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Since
A(ρ) ≤ 1

2

∫
Dr

|Dh|2, (8.5.22)

and
lim
r→0

∫
Dr

|Dh|2 = 0 monotonically

(it follows by applying Lebesgue’s theorem on dominated convergence to
fχDr

that

lim
r→0

∫
Dr

f = 0

for any integrable f), we conclude from (8.5.21) that

ρ→ 0 as r → 0.

This means, by definition of ρ,

inf
z∈∂Dr

|h(z)− h(z0)| → 0. (8.5.23)

On the other hand, the Courant-Lebesgue-Lemma 8.3.5 says that for any
r0 < 1, there exists r with r0 < r <

√
r0 such that for all z, z′ ∈ ∂Dr

|h(z)− h(z′)| ≤ 2π
1
2

(log 1
r )

1
2
(
∫
Dr0

|Dh|2) 1
2 , (8.5.24)

and the right hand side goes to zero when r0 → 0, hence r → 0.
Let now ε > 0 be given. We then find sufficiently small r > 0 so that first

the right hand side of (8.5.24) is < ε
3 and that for every z0 ∈ Dr, the infimum

in (8.5.23) is also < ε
3 . For z0, z′0 ∈ Dr, let then z and z′, resp., be points in

∂Dr where the infimum in (8.5.23) is attained. The triangle inequality gives
|h(z0)− h(z′0)| < ε, hence continuity. �

We now want to prove continuity of weak minimal surfaces in Riemannian
manifolds.

Definition 8.5.5 A map h ∈ H1,2
loc (Σ,N) from a Riemann surface Σ into

a Riemannian manifold N is called a weak minimal surface if it is weakly
harmonic and conformal, i.e.
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1) ∫
Σ

〈dh, dϕ〉 = 0 (8.5.25)

for all compactly supported bounded H1,2 sections ϕ of h−1TN

(〈·, ·〉 here is the scalar product in T ∗Σ ⊗ h−1TN)

2)

〈hx, hx〉 = 〈hy, hy〉, 〈hx, hy〉 = 0 (8.5.26)
almost everywhere

(〈·, ·〉 is the scalar product in h−1TN)

For 1), cf. Definition 8.5.1 and Lemma 8.5.1.

In contrast to the existence theory, for regularity results we do not need
the compactness of the ambient manifold N. It suffices to have a uniform
control on the geometry of N :

Definition 8.5.6 We say that a Riemannian manifold N is of bounded ge-
ometry if

1) i(N) := inf
p∈N

i(p) > 0, where i denotes the injectivity radius

and

2) Λ := sup
N
|K| <∞, where K denotes the sectional curvature.

Theorem 8.5.2 A weak minimal surface H ∈ H1,2
loc (Σ,N) (Σ a Riemann

surface) in a Riemannian manifold N of bounded geometry is continuous.

Proof. We shall translate the argument of the above Proposition from the
Euclidean case into a Riemannian context. Thus, the strategy of proof will
be the same as before.
Again, it suffices to treat the case Σ = D, h ∈ H1,2(D,N), and to prove
continuity at 0.

We let
0 < ρ0 <

1
2

min(
π

2
√
Λ
, i(N)),

0 < r < 1
z0 ∈ Dr = {|z| < r}, p := h(z0)

We assume that for almost all z ∈ ∂Dr = {|z| = r}
d(h(z), p) > ρ (8.5.27)
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with

0 < ρ ≤ ρ0,

where d(·, ·) denotes the distance function of the metric of N. As before, we
let η ∈ C∞(R) satisfy

η(t) ≡ 1 for t ≤ 1
2

η(t) ≡ 0 for t ≥ 1
η′(t) ≤ 0 for all t,

and again, we later on let η increase to the characteristic function χ(−∞,1).
We now choose as test vector

ϕ(z) := η(
d(h(z), p)

ρ
)(− exp−1

h(z) p) ∈ Th(z)N.

ϕ is bounded, of class H1,2 (namely∫
〈dϕ, dϕ〉 ≤ const.

∫
〈dh, dh〉 <∞,

for example by (8.5.30) below, or directly from the chain rule), and by
(8.5.27), it has compact support in Dr. Therefore, ϕ is an admissible test
vector, and by (8.5.25) ∫

Σ

〈dh, dϕ〉 = 0. (8.5.28)

In order to evaluate (8.5.28), we compute

〈dϕ, dh〉 = 〈∇ ∂
∂x
ϕdx+∇ ∂

∂y
ϕdy, hxdx+ hydy〉

= η(
d(h, p)
ρ

)(〈∇ ∂
∂x

(− exp−1
h p), hx〉

+ 〈∇ ∂
∂y

(− exp−1
h p), hy〉) (8.5.29)

+ η′(
d(h, p)
ρ

)
1

ρd(h, p)
(〈(− exp−1

h p), hx〉2

+ 〈(− exp−1
h p), hy〉2)

(cf. (4.6.6)).
We have to estimate the covariant derivatives of (− exp−1

h p).
For this purpose, let h(s) be a smooth curve in N. In order to control

∇ ∂
∂s

exp−1
h(s) p, we consider the family of geodesics

c(t, s) := exph(s)(t exp−1
h(s) p)

Then
∂

∂t
c(t, s)|t=0 = exp−1

h(s) p
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and thus
∇ ∂

∂s
exp−1

h(s) p = ∇ ∂
∂s

∂

∂t
c(t, s)|t=0

= ∇ ∂
∂t

∂

∂s
c(t, s)|t=0 .

For fixed s, Js(t) := ∂
∂sc(t, s) is a Jacobi field along the geodesic c(·, s) with

Js(0) = h′(s) (:=
∂h

∂s
)

Js(1) = 0 ∈ TpN,

J̇s(0)(:=
∂

∂t
Js(0)) = ∇ ∂

∂s
exp−1

h(s) p

From Corollary 4.5.1, we have the Jacobi field estimate

‖Js(0) + J̇s(0)‖ ≤ 1
2
Λd2(h(s), p)‖Js(0)‖,

hence
‖∇ ∂

∂s
exp−1

h(s) p+ h′(s)‖ ≤ 1
2
Λd2(h(s), p)‖h′(s)‖. (8.5.30)

We shall use (8.5.30) to compare ∇ ∂
∂x

exp−1
h p with hx.

The conformality relations

〈hx, hx〉 = 〈hy, hy〉, 〈hx, hy〉 = 0 almost everywhere

imply

〈 exp−1
h p, hx〉2 + 〈 exp−1

h p, hy〉2 ≤ 1
2
(‖hx‖2 + ‖hy‖2)‖ exp−1

h p‖2

=
1
2
‖dh‖2 · d2(h, p) (8.5.31)

The factor 1
2 will be crucial.

We define

Aη(ρ) :=
1
2

∫
Dr

‖dh‖2η(d(h, p)
ρ

).

Then, because of (8.5.27) and ρ ≤ ρ

A′
η(ρ) = − 1

2ρ2

∫
Dr

‖dh‖2d(h, p)η′(d(h, p)
ρ

).
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From (8.5.29), we get, since η′ ≤ 0, η ≥ 0,

〈dϕ, dh〉 ≥ η(
d(h, p)
ρ

)(〈∇ ∂
∂x

(− exp−1
p h), hx〉

+ 〈∇ ∂
∂y

(− exp−1
p h), hy〉)

+ η′(
d(h, p)
ρ

)
d(h, p)

2ρ
‖dh‖2 by (8.5.31)

≥ η(
d(h, p)
ρ

)‖dh‖2 + η′(
d(h, p)
ρ

)
d(h, p)

2ρ
‖dh‖2

− Λ

2
η(
d(h, p)
ρ

)d2(h, p)‖dh‖2 (by (8.5.30))

and then from (8.5.28)

2Aη(ρ)− ρA′
η(ρ) ≤ Λρ2Aη(ρ). (8.5.32)

This implies

(
Aη(ρ)
ρ2

e
Λ
2 ρ2

)′ ≥ 0,

hence
Aη(ρ1)
2πρ2

1

e
Λ
2 ρ2

1 ≤ Aη(ρ2)
2πρ2

2

e
Λ
2 ρ2

2 (8.5.33)

whenever
0 < ρ1 ≤ ρ2 ≤ ρ.

We again let η approach the characteristic function χ(−∞,1) and obtain with

A(ρ) := Area (h(Dr) ∩B(p, ρ))

the following monotonicity formula

A(ρ1)
2πρ2

1

e
Λ
2 ρ2

1 ≤ A(ρ2)
2πρ2

2

e
Λ
2 ρ2

2 (8.5.34)

whenever 0 < ρ1 ≤ ρ2 ≤ ρ.
Again, if ρ1 → 0, the left hand side of (8.5.34) tends to the density of

the minimal surface h(Dr) at p = h(z0), and this density again is a positive
integer.

Therefore, choosing ρ2 = ρ in (8.5.34)

ρ2 ≤ 1
2π

e
Λ
2 ρ2

∫
Dr

‖dh‖2

≤ 1
2π

e
Λ
2 ρ2

0

∫
Dr

‖dh‖2 since ρ ≤ ρ0. (8.5.35)
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This is impossible, if r ≤ r0 and r0 is chosen so small that∫
Dr0

‖dh‖2 ≤ 2πe−
Λ
2 ρ2

0ρ2. (8.5.36)

Therefore, for such r, (8.5.27) cannot hold. Thus, for 0 < r ≤ r0

essinf
z∈∂Dr

d(h(z), h(z0)) ≤ ρ. (8.5.37)

Also, by the intermediate value theorem, we can find r with 1
2r0 ≤ r ≤ r0

and

d(h(z), h(z′)) ≤ 2π
(log 2)

1
2
(
∫
Dr0

‖dh‖2) 1
2 for all z, z′ ∈ ∂Dr (8.5.38)

(this is an alternative to the use of the Courant-Lebesgue lemma 8.3.5, the
proof is similar).

We then choose r0 so small that in addition to (8.5.36)∫
Dr0

‖dh‖2 < log 2
4π2

ρ2. (8.5.39)

For z0, z
′
0 ∈ Dr,

1
2r0 ≤ r ≤ r0, r satisfying (8.5.28), we find z, z′ ∈ ∂Dr

for which the infimum is attained in (8.5.37) for z0 and z′0, resp. Then from
(8.5.37) and (8.5.38) and the triangle inequality

d(h(z0), h(z′0)) ≤ 3ρ.

Since this holds for all z0, z′0 ∈ Dr, where r is estimated in terms of ρ,
continuity at 0 follows. �

Perspectives. In Theorem 8.5.2, we have shown that weakly harmonic and con-
formal maps of finite energy from a Riemann surface into a Riemannian manifold
(of bounded geometry) are continuous. The conformality of the map is not needed
for this regularity result as was shown by Hélein[114]. A systematic treatment is
given in [115]. The removability of isolated singularities of weakly harmonic maps
was already obtained by Sacks and Uhlenbeck[210]. The proof of the continuity of
weak minimal surface given here partly uses some arguments of Grüter[105].
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8.6 Higher Regularity

In this paragraph, we study continuous solutions f ∈ H1,2(Ω,Rn), Ω open
in Rm, of a system∫

Ω

aαβ(x)Dαf
i(x)Dβϕ

i(x)dx =
∫
Ω

Gi(x, f(x), Df(x))ϕi(x)dx (8.6.1)

for all ϕ ∈ H1,2
0 ∩ L∞(Ω,Rn).

We shall assume the following structure conditions:

(aαβ(x))α,β=1,...,m is symmetric for almost all x, the coefficients
ααβ(x) are measurable

aαβ(x)ξαξβ ≥ λ|ξ|2 for all ξ = (ξ1, . . . , ξm) ∈ Rm and almost all x ∈ Ω
(A1)

with a constant λ > 0.

|aαβ(x)| ≤ K for almost all x ∈ Ω (A2)

with a constant K.
G(x, f, p) = (G1, . . . , Gn) is measurable in x and continuous in f and p.

(This implies that G(x, f(x), Df(x)) is measurable in x for f ∈ H1,1
loc .)

|G(x, f, p)| ≤ c0 + c1|p|2 for all (x, f, p) ∈ Ω × Rn × Rmn (G1)

with constants c0, c1.
Later on, aαβ and Gi will be assumed even differentiable, and so we may

as well assume here that they are continuous instead of just measurable.
If f is a continuous weakly harmonic map, then continuity allows us to

localize the situation not only on the domain, but also in the image, i.e. to
write everything down in fixed local coordinates. The preceding structural
conditions then are satisfied, cf. lemma 8.6.2.

Some notational conventions:
We usually omit the indices in the image; thus e.g.

Dαf ·Dβϕ := Dαf
iDβϕ

i with the standard summation convention.

(Usually, also the dot “·” will be omitted.) Also, we shall always integrate
w.r.t. to the Euclidean volume element dx on Ω, and this will often be omit-
ted.

We start with the following auxiliary result

Lemma 8.6.1 Suppose f ∈ C0 ∩H1,2(Ω,Rn) solves (8.6.1), where the coef-
ficients satisfy (A1), (A2), (G1).

Then for every ε > 0, there exists ρ > 0, depending on ε,m, the structural
constants λ,K, c0, c1, and on the modulus of continuity of f, with
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B(x1,ρ)

|Df |2η2(x)dx ≤ ε

∫
B(x1,ρ)

|Dη|2dx (8.6.2)

whenever B(x1, ρ) ⊂ Ω and η ∈ H1,2
0 (B(x1, ρ),R).

Proof. We choose
ϕ(x) := (f(x)− f(x1))η2(x)

in (8.6.1). We obtain∫
B(x1,ρ)

aαβ(x)DαfDβf η
2 ≤ c2 sup

x∈B(x1,ρ)

|f(x)− f(x1)|
∫

B(x1,ρ)

|Df |2η2

+ c3 sup
x∈B(x1,ρ)

|f(x)− f(x1)|
∫
η2

+ 2
∫

B(x1,ρ)

aαβ(x)DαfDβη (f(x)− f(x1))η

because of (G1)

≤ c2 sup |f(x)− f(x1)|
∫

B(x1,ρ)

|Df |2η2

+ c4 sup |f(x)− f(x1)|ρ2

∫
B(x1,ρ)

|Dη|2

+
1
2

∫
B(x1,ρ)

aαβ(x)DαfDβfη
2

+ 8 sup |f(x)− f(x1)|2
∫
aαβ(x)DαηDβη

where we have used the Poincaré inequality (Corollary A.1.1) for the second
term. The claim follows with (A1), (A2) because we can make
sup

B(x1,ρ)

|f(x) − f(x1)| arbitrarily small by choosing ρ sufficiently small, since

f is continuous. �

In order to proceed, we have to make additional structural assumptions
about the system (8.6.1):

The coefficients aαβ(x) are differentiable and

|Dγa
αβ(x)| ≤ K1 for all α, β, γ = 1, . . . ,m, x ∈ Ω (A3)

with a constant K1.

G = (G1, . . . , Gn) is differentiable with
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|DxG(x, f, p)| ≤ γ0 + γ1|p|3 (G2)
|DfG(x, f, p)| ≤ γ2 + γ3|p|2
|DpG(x, f, p)| ≤ γ4 + γr|p|

In order to show the main idea of the subsequent regularity argument, we
shall first derive a so-called a priori estimate. This means that assuming that
we already have a regular solution, we can estimate its norms.

Lemma 8.6.2 Suppose

f ∈ C0 ∩H1,4 ∩H3,2(B(x0, R),Rn)

is a solution of (8.6.1) with Ω = B(x0, R), where the structural conditions
(A1), (A2), (A3), (G1), (G2) are satisfied.

Then

‖D2f‖L2(B(x0, R
2 )) + ‖Df‖2

L4(B(x0, R
2 ))
≤ C0R

m
2 +C1‖Df‖L2(B(x0,R)) (8.6.3)

where C0 and C1 depend on the structural constants in (A1) - (G2), on m,
and the modulus of continuity of f.

Proof. Since f ∈ H2,2, for ϕ ∈ H1,2
0∫

aαβDαfDβϕ = −
∫
Dβ(aαβDαf)ϕ. (8.6.4)

We now put
ϕ = Dγ(ξ2Dγf)

with ξ ∈ L∞ ∩ h1,2
0 (B(x0, R),R) to be determined later on.

From (8.6.1), (8.6.4)∫
B(x0,R)

Dγ(aαβDαf)Dβ(ξ2Dγf)

= −
∫

B(x0,R)

aαβDαf ·Dβ(Dγ(ξ2Dγf))

= −
∫

B(x0,R)

G(x, f,Df)Dγ(ξ2Dγf)

=
∫

B(x0,R)

Dγ(G(x, f,Df))Dγf · ξ2 .

(8.6.5)
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Now

Dγ(aαβDαf)Dβ(ξ2Dγf)

= aαβDγDαf ·DβDγf · ξ2 + aαβDγDαf ·Dγf ·Dβξ
2

+Dγa
αβ ·Dαf ·DβDγf · ξ2 +Dγa

αβ ·Dαf ·Dγf ·Dβξ
2

(8.6.6)

and from (G2)

|DγG(x, f,Df)||Dγf | ≤ c5|Df |+ c6|Df |4 + c7|Df | · |D2f |
+ c8|Df |2|D2f | (8.6.7)

and from (A1)

|D2f |2 ≤ 1
λ
aαβDγDαf ·DγDβf. (8.6.8)

From (8.6.5) - (8.6.8) we conclude, using also (A2), (A3)∫
B(x0,R)

|D2f |2 · ξ2 ≤ c9

∫
B(x0,R)

|D2f ||Df ||ξDξ|+ c10

∫
B(x0,R)

|D2f ||Df |ξ2

+ c11

∫
B(x0,R)

|Df |2|ξDξ|+ c5

∫
B(x0,R)

ξ2

+ c6

∫
B(x0,R)

|Df |4ξ2 + c8

∫
B(x0,R)

|D2f ||Df |2ξ2

≤ ε1c9

∫
B(x0,R)

|D2f |2ξ2 +
c9
4ε1

∫
B(x0,R)

|Df |2|Dξ|2

+ ε2c10

∫
B(x0,R)

|D2f |2ξ2 +
c10
4ε2

∫
B(x0,R)

|Df |2ξ2

+
c11
2

∫
B(x0,R)

|Df |2|Dξ|2 +
c11
2

∫
B(x0,R)

|Df |2ξ2

+ c5

∫
B(x0,R)

ξ2 + c6

∫
B(x0,R)

|Df |4ξ2

+ ε3c8

∫
B(x0,R)

|D2f |2ξ2

+
c8
4ε3

∫
B(x0,R)

|Df |4ξ2 (8.6.9)

with arbitrary positive ε1, ε2, ε3, where we have used the inequality
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ab ≤ εa2 +
1
4ε
b2 for arbitrary ε > 0, a, b ∈ R . (8.6.10)

We may choose ε1, ε2, ε3 > 0 so small that

ε1c9 + ε2c10 + ε3c8 ≤ 1
2

and obtain ∫
B(x0,R)

|D2f |2ξ2 ≤ c12

∫
B(x0,R)

|Df |2|Dξ|2

+ c13

∫
B(x0,R)

ξ2 + c14

∫
B(x0,R)

|Df |4ξ2 (8.6.11)

For ε > 0, we now choose ρ > 0 as in lemma 8.6.1.
We assume

B(x1, ρ) ⊂ B(x0, R)

and choose ξ ∈ C∞
0 (B(x1, ρ)) with 0 ≤ ξ ≤ 1,

ξ ≡ 1 on B(x1,
ρ

2
)

|Dξ| ≤ 4
ρ

Thus, all preceding integrals need to be evaluated only on B(x1, ρ). We now
write ∫

B(x1,ρ)

|Df |4ξ2 =
∫

B(x1,ρ)

|Df |2(|Df |2 · ξ2)

and apply Lemma 8.6.1 with η = |Df | · ξ and obtain∫
B(x1,ρ)

|Df |4ξ2 ≤ ε

∫
B(x1,ρ)

|D(|Df |ξ2)|2 (8.6.12)

≤ ε

∫
B(x1,ρ)

|D2f |2ξ2 + ε

∫
B(x1,ρ)

|Df |2|Dξ|2

We may choose ε > 0 so small that

εc14 ≤ 1
2
.

(8.6.11) and (8.6.12) give
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B(x1, ρ

2 )

|D2f |2 ≤ c15

∫
B(x1,ρ)

ξ2 + c16

∫
B(x1,ρ)

|Df |2|Dξ|2

≤ c17ρ
m +

c18
ρ2

∫
B(x1,ρ)

|Df |2 . (8.6.13)

Covering B(x0,
R
2 ) by balls B(x1,

ρ
2 ) with B(x1, ρ) ⊂ B(x0, R), we obtain the

desired estimate for ∫
B(x0, R

2 )

|D2f |2.

(8.6.12) and (8.6.13) and the same covering argument then also yield the
estimate for ∫

B(x0, R
2 )

|Df |4. �

However, we cannot apply Lemma 8.6.2 because we do not know yet that
f ∈ H3,2. The point, however, is that the conclusion does not depend on
the H3,2-norm, and a slight modification will give us the desired regularity
result:

Lemma 8.6.3 Suppose that

f ∈ C0 ∩H1,2(B(x0, R),Rn)

is a solution of (8.6.1) with Ω = B(x0, R) and the structural conditions (A1),
(A2), (A3), (G1), (G2). Then

f ∈ H2,2 ∩H1,4(B(x0,
R

2
),Rn),

and the same estimate as in Lemma 8.6.2 holds.

Proof. We just replace certain weak derivatives by difference quotients (cf.
(A.2.1)) in the proof of Lemma 8.6.2. Namely, we put

ϕ := ∆−h
γ (ξ2∆h

γf)

with ξ as above.
Analogously to (8.6.11), we get with ∆h = (∆h

1 , . . . , ∆
h
m)∫

B(x0,R)

|D(∆hf)|2ξ2

≤ c12

∫
B(x0,R)

|∆hf |2|Dξ|2 (8.6.14)

+ c13

∫
B(x0,R)

ξ2 + c14

∫
B(x0,R)

|Df |2|∆hf |2ξ2 .
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But ∫
|∆h

γf |2|Dξ|2 ≤
∫
|Df |2|Dξ|2

(this is similar to Lemma A.2.1).
Using Lemma 8.6.1, we then obtain analogously to (8.6.13)∫

B(x1, ρ
2 )

|D(∆hf)|2ξ2 ≤ c17ρ
n +

c18
ρ2

∫
B(x1,ρ)

|Df |2. (8.6.15)

Lemma A.2.2 then shows that the weak derivative D2f exists and satisfies
the same estimate. Likewise, we get control over the L4-norm of Df. �

Lemma 8.6.4 Let f ∈ C0∩H1,2(B(x0, R),Rn) be a solution of (8.6.1), with
structural conditions (A1), (A2), (A3), (G1), (G2) satisfied. Then

Df ∈ Lp(B(x0,
R

4
)) for every p <∞,

and ∫
B(x0, R

4 )

|Df |p|D2f |2 <∞. (8.6.16)

Remark. As in Lemma 8.6.2, one also gets a-priori estimates, with constants
depending also on p.

Proof. By Lemma 8.6.3, we know already

Df ∈ H1,2 ∩ L4(B(x0,
R

2
)).

We put
w := |Df |2.

We are going to show by induction that for every s ∈ N, s ≥ 2, and R1 <
R
2∫

B(x0,R1)

(ws + ws−2|D2f |2) <∞. (Es)

By Lemma 8.6.3, (E2) holds. We assume (Es) and want to conclude (Es+1).
We put

wL(x) := min(w(x), L) for L > 0.

We observe

DwL(x) = 0 if w(x) > L (8.6.17)

|Dw| ≤ 2|D2f |w 1
2 (8.6.18)

|DwL| ≤ 2|D2f |w 1
2
L from (8.6.17), (8.6.18). (8.6.19)
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Let η ∈ L∞ ∩H1,2
0 (B(x0, R1)). We compute, for x1 ∈ B(x0, R1)∫

B(x0,R1)

η2wswL =
∫

B(x0,R1)

η2Df ·Dfws−1wL by def. of w

=
∫

B(x0,R1)

η2D(f − f(x1)) ·Dfws−1wL (8.6.20)

≤ (2m+ 1) sup
x∈B(x0,R1)∩ supp η

|f(x)− f(x1)|
∫

B(x0,R1)

η2|D2f |ws−1wL

+ 2 sup
x∈B(x0,R1)∩ supp η

|f(x)− f(x1)|
∫

B(x0,R1)

ηDηw
2s−1

2 wL,

integrating by parts and using (8.6.18), (8.6.19).

We now write

η2|D2f |ws−1wL = (η|D2f |w s−2
2 w

1
2
L)(ηw

s
2w

1
2
L)

and
ηDηw

2s−1
2 wL = (ηw

s
2w

1
2
L)(Dηw

s−2
2 w

1
2
L)

and obtain from (8.6.20) (with 2ab ≤ a2 + b2)∫
B(x0,R1)

η2wswL ≤ sup
x∈B(x0,R1)∩ supp η

|f(x)− f(x1)|
{
c19

∫
B(x0,R1)

η2|D2f |2ws−2wL

+ c20

∫
B(x0,R1)

η2wswL + c21

∫
B(x0,R1)

|Dη|2ws−1wL

}
. (8.6.21)

Here, the constants c19 and c20 also depend on s.
Since f is continuous, given ε > 0 there then exists R(ε) with the property

that for 0 < R2 ≤ R(ε) and η ∈ H1,2
0 (B(x1, R2)) (B(x1, R2) ⊂ B(x0, R1))∫

B(x1,R2)

η2wswL ≤ ε

∫
B(x1,R2)

η2|D2f |2ws−2wL + ε

∫
B(x1,R2)

|Dη|2ws−1wL.

(8.6.22)
We now require for η ∈ H1,2

0 (B(x1, R2))

η ≡ 1 on B(x1,
R2

2
),

0 ≤ η ≤ 1,

|Dη| ≤ 2
R2

.

Since f ∈W 2,2 by Lemma 8.6.3, the equation (8.6.1) yields for ψ ∈ H2,2
0
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Dγ(aαβDαf)Dβψ = −

∫
aαβDαfDγDβψ

= −
∫
G(x, f,Df)Dγψ (8.6.23)

=
∫
DγG(x, f,Df)ψ

The resulting equation∫
Dγ(aαβDαf)Dβψ =

∫
DγG(x, f,Df)ψ (8.6.24)

then also holds for ψ ∈ H1,2
0 (instead of H2,2

0 ), because we can approxi-
mate ψ ∈ H1,2

0 by H2,2
0 -functions (actually, even by C∞

0 -functions), and an
easy application of Lebesgue’s theorem on dominated convergence allows the
passage to the limit.

We apply (8.6.24) to

ψ := η2ws−2
M wLDγf

and obtain ∫
B(x1,R2)

Dγ(aαβDαf)(Dβ(η2ws−2
M wLDγf))

=
∫

B(x1,R2)

Dγ(G(x, f,Df))η2ws−2
M wLDγf (8.6.25)

and from this equation and the structural conditions (as in the derivation of
(8.6.9)) ∫

B(x1,R2)

aαβDγDαf ·Dβ(η2ws−2
M wLDγf)

≤ c22

∫
B(x1,R2)

η2|D2f |w 1
2ws−2

M wL

+ c23

∫
B(x1,R2)

ηDηwws−2
M wL (8.6.26)

+ c24

∫
B(x1,R2)

η2w
1
2ws−2

M wL + c25

∫
B(x1,R2)

η2w2ws−2
M wL

+ c26

∫
B(x1,R2)

η2|D2f |wws−2
M wL

where c22 again depends on s.
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Now ∫
η2|D2f |wws−2

M wL ≤
∫
η2|D2f |ws−2wL

≤ δ

∫
η2|D2f |2ws−2wL +

1
4δ

η2wswL, (8.6.27)

and this is bounded because of (Es) and since wL is bounded.
Likewise ∫

η2|D2f |w 1
2ws−2

M wL

≤ δ

∫
η2|D2|2ws−2wL +

1
4δ

∫
η2ws−1wL (8.6.28)

Therefore, all terms on the right hand side of (8.6.26) remain bounded as
M →∞. The same then has to happen for the left hand side of (8.6.26). We
may hence replace wM by w in (8.6.26), and conclude that∫

B(x1,R2)

aαβDαDγf ·Dβ(η2ws−2wLDγf) <∞. (8.6.29)

But this expression equals∫
aαβDαDγf ·DβDγfw

s−2wLη
2

+ (m− 2)
∫
aαβDαDγfDβww

s−3wLDγfη
2

+
∫
aαβDαDγfDβwLw

s−2Dγfη
2

+ 2
∫
aαβDαDγf · ηDβηw

s−2wLDγf

(8.6.30)

Since Dβw = DβDδf · Dδf and DwL = 0 for w > wL, we can rewrite the
second and the third integral in (8.6.30) as

m− 2
2

∫
aαβDαwDβww

s−3wLη
2 +

1
2

∫
aαβDαwLDβwLw

s−2η2 ≥ 0.

(8.6.31)
The fourth integral in (8.6.30) is estimated by

δ

∫
|D2f |2ws−2wLη

2 +
c27
δ

∫
ws−1wL|Dη|2 (8.6.32)

(δ > 0).
Choosing δ > 0 small enough in (8.6.27), (8.6.28), (8.6.32), we obtain

from (8.6.26) - (8.6.32) (recalling 0 ≤ η ≤ 1, |Dη| ≤ 2
R2

)
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B(x1,R2)

|D2f |2η2ws−2wL ≤ 1
λ

∫
B(x1,R2)

aαβDαDγfDβDγfw
s−2wLη

2

≤ c28

∫
B(x1,R2)

wswLη
2 + c29(1 +

1
R2

2

)
∫

B(x1,R2)

ws. (8.6.33)

We then choose ε > 0 in (8.6.22) small enough (and thus determine R(ε)) to
obtain from (8.6.22) and (8.6.33)∫

B(x1,
R2
2 )

(|D2f |2ws−2wL + wswL) ≤ c30(1 +
1
R2

2

)
∫

B(x1,R2)

ws. (8.6.34)

We may then let L→∞ in (8.6.34).
A covering argument then gives for every R1 < R0∫

B(x0,R1)

(ws+1 + ws−1|D2f |2) <∞. (Es+1)

This concludes the induction. �

We obtain

Lemma 8.6.5 Let f ∈ C0∩H1,2
loc (Ω,Rn) be a solution of (8.6.1), with struc-

tural conditions (A1), (A2), (A3), (G1), (G2) satisfied, and furthermore
aαβ ∈ C2(Ω) for all α, β.

Then
f ∈ H3,2

loc (Ω,Rn).

Proof. From (G2),

| d
dx

G(x, f(x), Df(x))| = |Gx +GfDf +GpD
2f |

≤ k0 + k1|Df |3 + k2|D2f |+ k3|Df ||D2f |, (8.6.35)

and this is in L2 by Lemma 8.6.4, 8.6.3.
Consequently, f is a weak solution of an equation

Dβ(aαβ(x)Dαf) = g(x) (8.6.36)

with g ∈ H1,2.
The claim follows from Theorem A.2.1. �

We can now prove

Theorem 8.6.1 A continuous weakly harmonic map f : M → N between
Riemannian manifolds is smooth.
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Proof. As explained before, by continuity, we may localize in domain and im-
age, and we thus treat a continuous weakly harmonic map as a weak solution
of the elliptic system

Dα(γαβ√γDβf
i) = −√γγαβΓ i

jk(f(x))Dαf
jDβf

k =: k(x). (8.6.37)

The structural conditions (A1) - (G2) then are satisfied.
Lemma 8.6.5 implies

f ∈ H3,2
loc .

Now

|D2(
√
γγαβΓ i

jk(f)Dαf
jDβf

k)|
≤ κ0|Df |2 + κ1|Df |4 + κ2|D2f ||Df |2 + κ3|D2f |2 + κ4|Df ||D3f |.

If m := dimM ≤ 3 then Sobolev’s embedding theorem (Theorem A.1.7)
already implies that this is in L2

loc. Hence, the right hand side k of (8.6.37)
is in H2,2

loc and by Theorem A.2.1,

f ∈ H4,2
loc .

In this manner, inductively

f ∈ Hν,2
loc ⇒ k ∈ Hν−1,2

loc ⇒ f ∈ Hν+1,2
loc , (8.6.38)

and Corollary A.1.2 implies f ∈ C∞.
If m = dimM is arbitrary, one either can apply more refined elliptic

regularity results, or alternatively observe that Df satisfies a system with
similar (actually, even better) structural conditions, and so the preceding
results may be applied to Df instead of f. Iteratively, the same is true for
higher derivatives of f, and thus one gets again

Dνf ∈ H3,2
loc

for all ν, i.e.
f ∈ H�,2

loc

for all �, hence f ∈ C∞ by Corollary A.1.2. �

Perspectives. The regularity results and proofs of this paragraph are due La-
dyzhenskaya and Ural’ceva[165] although this is usually not acknowledged in the
western literature on harmonic maps. Their proof has been adapted to harmonic
maps into spheres in [26].
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8.7 Formulae for Harmonic Maps. The Bochner
Technique

A) We first want to derive the formula for the second variation of energy.
For this purpose, let

fst(x) = f(x, s, t)
f : M × (−ε, ε)× (−ε, ε) → N

be a smooth family of maps between Riemannian manifolds of finite energy.
M (but not N) may have nonempty boundary, in which case we require
f(x, s, t) = f(x, 0, 0) for all x ∈ ∂M and all s, t.

We put

V :=
∂fst

∂s |s=t=0
, W :=

∂fst

∂t |s=t=0
.

We want to compute
∂2E(fst)
∂s∂t |s=t=0

.

To simplify notation, we usually write f instead of fst, and also

df =
∂f

∂xα
dxα =

∂f i

∂xα
dxα ⊗ ∂

∂f i
,

a section of T ∗M ⊗ f−1TN.
Then

∂2

∂s∂t
E(fst) =

1
2

∫
M

∂

∂t

∂

∂s
〈df, df〉d vol(M).

We compute the integrand: ∇ will denote the Levi-Civita connection in
f−1TN, and everything will be evaluated at s = t = 0 :
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∂

∂t

∂

∂s

1
2
〈 ∂f
∂xα

dxα,
∂f

∂xβ
dxβ〉T∗M⊗f−1TN

=
∂

∂t
〈∇ ∂

∂s

∂f

∂xα
dxα,

∂f

∂xβ
dxβ〉T∗M⊗f−1TN

since ∇ is metric

=
∂

∂t
〈∇ ∂

∂xα
(
∂f

∂s
)dxα,

∂f

∂xβ
dxβ〉T∗M⊗f−1TN

since ∇ is torsionfree

=〈∇ ∂
∂t
∇ ∂

∂xα
(
∂f

∂s
)dxα,

∂f

∂xβ
dxβ〉T∗M⊗f−1TN

+ 〈∇ ∂
∂xα

(
∂f

∂s
)dxα,∇ ∂

∂xβ
(
∂f

∂t
)dxβ〉T∗M⊗f−1TN

=〈∇ ∂
∂xα
∇ ∂

∂t
(
∂f

∂s
)dxα,

∂f

∂xβ
dxβ〉T∗M⊗f−1TN

+ 〈RN (
∂f

∂t
,
∂f

∂xα
)
∂f

∂s
dxα,

∂f

∂xβ
dxβ〉T∗M⊗f−1TN

+ 〈∇ ∂
∂xα

V dxα,∇ ∂

∂xβ
Wdxβ〉T∗M⊗f−1TN

by definition of the curvature tensor RN of N

=〈∇∇ ∂
∂t

(
∂f

∂s
), df〉T∗M⊗f−1TN

− traceM 〈RN (df, V )W,df〉f−1TN

+ traceM 〈∇V,∇W 〉f−1TN .

Thus

∂2E(fst)
∂s∂t |s=t=0

=
∫
M

〈∇V,∇W 〉f−1TN

−
∫
M

traceM 〈RN (df, V )W,df〉f−1TN (8.7.1)

+
∫
M

〈∇∇ ∂
∂t

(
∂f

∂s
), df〉T∗M⊗f−1TN .
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We want to examine the third term in (8.7.1) more closely:∫
M

〈∇ ∂
∂xα
∇ ∂

∂t

∂f

∂s
dxα,

∂f

∂xβ
dxβ〉T∗M⊗f−1TN

= −
∫
M

〈∇ ∂
∂t

∂f

∂s
dxα,∇ ∂

∂xα

∂f

∂xβ
dxβ〉T∗M⊗f−1TN

since ∇ is metric and integrating by parts

= −
∫
M

〈∇ ∂
∂t

∂f

∂s
, traceM∇df〉f−1TN . (8.7.2)

Theorem 8.7.1 For a smooth family fst : M → N of finite energy maps
between Riemannian manifolds, with fst(x) = f00(x) for all x ∈ ∂M (in
case ∂M 
= ∅) and all s, t, we have for the second variation of energy, with
V = ∂f

∂s |s=0
,W = ∂f

∂t |t=0

∂2E(fst)
∂s∂t |s=t=0

=
∫
M

〈∇V,∇W 〉f−1TN −
∫
M

traceM 〈RN (df, V )W,df〉f−1TN

+
∫
M

〈∇ ∂
∂t

∂f

∂s
, traceM∇df〉f−1TN . (8.7.3)

If f00 is harmonic, or if ∇ ∂
∂t

∂f
∂s ≡ 0 for s = t = 0, then the second variation

depends only on V and W, but not on higher derivatives of f w.r.t. s, t, and

If (V,W ) :=
∂2E(fst)
∂s∂t

=
∫
M

〈∇V,∇W 〉f−1TN

−
∫
M

traceM 〈RN (df, V )W,df〉f−1TN . (8.7.4)

Proof. (8.7.3) follows from (8.7.1), (8.7.2). (8.7.4) holds if either ∇ ∂
∂t

∂f
∂s ≡ 0

or traceM∇df ≡ 0, and the latter is the harmonic map equation (cf. (8.1.14)).
�

We look at the special case where we only have one parameter:

f(x, t) = ft(x), f : M × (−ε, ε) → N,

W :=
∂f

∂t |t=0
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Then

Corollary 8.7.1 Under the assumptions of Theorem 8.7.1,

If (W,W ) =
∂2

∂t2
E(ft)|t=0

=
∫
M

‖∇W‖2f−1TN

−
∫
M

traceM 〈RN (df,W )W,df〉f−1TN , (8.7.5)

if f is harmonic or if f(x, ·) is geodesic for every x.

Proof. If f(x, ·) is geodesic for every x,

∇ ∂
∂t

∂f

∂t
≡ 0.

All assertions follow from Theorem 8.7.1. �

Remark. For geodesics, the second variation of energy was already derived
in Theorem 4.1.1.

Corollary 8.7.2 Under the assumptions of Theorem 8.7.1, if N has non-
positive sectional curvature, then a harmonic map is a stable critical point
of the energy functional in the sense that the second variation of energy is
nonnegative.

Proof. If N has nonpositive sectional curvature,

〈RN (df(Φ),W (x))W (x), df(Φ)〉 ≤ 0

for every x ∈M,Φ ∈ TxM, and every section of W of f−1TN, and the claim
follows from (8.7.5). �

B) We next want to calculate

∆e(f)

=∆
1
2
γαβ(x)gij(f(x))f i

xαf
j
xβ

for a harmonic map f : M → N. (Here f i
xα := ∂fi

∂xα ). The computation may
be carried out in the same manner as at the end of 3.3 and in 3.5. It is
somewhat easier, however, to perform it in local coordinates.

In order to simplify the computation, we introduce normal coordinates at
x and at f(x). Thus
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γαβ = δαβ , gij(f(x)) = δij , (8.7.6)

and
γαβ,δ(x) = 0, gij,k(f(x)) = 0 (8.7.7)

for all indices. Therefore, in our computations, we only have to take second
derivatives of the metric into account; these will yield curvature terms.

We rewrite the harmonic map equation (8.1.7) as

0 = γαβ(x)f i
xαxβ − γαβ(x)Γ η

αβ(x)f i
xη + γαβ(x)Γ i

jk(f(x))f j
xαfk

xβ . (8.7.8)

(Here, the Christoffel symbols of M have Greek indices, those of N Latin
ones.)

We differentiate (8.7.8) at x w.r.t. xε and obtain, recalling (8.7.6), (8.7.7)

f i
xαxαxε =

1
2
(γαη,αε + γαη,αε − γαα,ηε)f i

xη

− 1
2
(gki,�m + g�i,km − gk�,im)fm

xεfk
xαf �

xα . (8.7.9)

Moreover, by (8.7.6), (8.7.7)

γαβ ,εε = −γαβ,εε (8.7.10)

and from the chain rule

−∆gij(f(x)) = gij,k�f
k
xεf �

xε . (8.7.11)

(8.7.9) - (8.7.11) yield

−∆(
1
2
γαβ(x)gij(f(x))f i

xαf
j
xβ )

= f i
xαxεf i

xαxε − 1
2
(γαβ,εε + γεε,αβ − γεα,εβ − γεβ,εα)f i

xαf i
xβ

+
1
2
(gij,k� + gk�,ij − gik,j� − gj�,ik)f i

xαf
j
xαfk

xεf �
xε

= f i
xαxεf i

xαxε +RM
αβf

i
xαf i

xβ −RN
i�jkf

i
xαf

j
xαfk

xεf �
xε (8.7.12)

(cf. (3.3.15)), where
RM

αβ = γδεRM
αδβε = RM

αεβε

is the Ricci tensor of M, and RN
i�jk is the curvature tensor of N.

In invariant notation, if e1, . . . , em is an orthonormal basis of TxM,
(8.7.12) becomes

−∆e(f)(x) =‖∇df‖2 (8.7.13)
+ 〈df(RicM (eα)), df(eα)〉f−1TN

− 〈RN (df(eα), df(eβ))df(eβ), df(eα)〉f−1TN .
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Corollary 8.7.3 Let M be a compact Riemannian manifold with nonneg-
ative Ricci curvature, N a Riemannian manifold with nonpositive sectional
curvature.

Let f : M → N be harmonic.
Then f is totally geodesic7 (i.e. ∇df ≡ 0) and e(f) ≡ const. If the Ricci

curvature of M is (nonnegative, but) not identically zero, then f is constant.
If the sectional curvature of N is negative, then f is either constant or

maps M onto a closed geodesic.

Proof. By Stokes’ theorem, ∫
M

∆e(f) = 0.

Therefore, the integral of the right hand side of (8.7.13) also vanishes. Since
the integrand is the sum of three terms which are all everywhere nonnegative
by assumption, all three terms have to vanish identically.

We first conclude
‖∇df‖ ≡ 0, (8.7.14)

hence ∇df ≡ 0 so that f is totally geodesic.
Secondly,

∆e(f) ≡ 0,

and since harmonic functions on compact Riemannian manifolds are constant
(cf. Corollary 2.1.2),

e(f) ≡ const. (8.7.15)

If for some x ∈M,
RM

αβ(x) is positive definite,

then
RM

αβ(x)f i
xαf i

xβ = 0

implies
df(x) = 0,

hence e(f) ≡ 0, hence
e(f) ≡ 0

by (8.7.15), and f is constant.
If N has negative sectional curvature, then

〈RN (df(eα), df(eβ))df(eβ), df(eα)〉 ≡ 0

implies that df(eα) and df(eβ) are linearly dependent everywhere. Therefore,
f(M) is at most one-dimensional. If the dimension is zero, f is constant, and

7 See Lemma 8.7.1 below
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if the dimension is one, f(M) is a closed geodesic because f is totally geodesic
and M is compact.

(See Lemma 8.7.1 below) �

Remark. The method of proof of Corollary 8.7.3 is another instance of the so-
called Bochner method which is very important in Riemannian and complex
geometry. The prototype of the technique was already given in 3.5.

Lemma 8.7.1 A smooth map f : M → N between Riemannian manifolds is
totally geodesic iff f maps every geodesic of M onto a geodesic of N.

Proof. Let γ(t) be a geodesic in M. Then

∇TN
∂
∂t

∂

∂t
(f ◦ γ(t)) = ∇TN

∂
∂t

(df(
∂γ

∂t
))

= (∇TN
∂
∂t

df ◦ γ)(
∂γ

∂t
) + df(∇TM

∂
∂t

∂γ

∂t
)

= ∇df(
∂γ

∂t
,
∂γ

∂t
), since γ is geodesic.

Thus (f ◦ γ)(t) is geodesic iff ∇df(∂γ
∂t ,

∂γ
∂t ) = 0. �

C) We finally want to derive and exploit a chain rule. If f : M → N
and h : N → Q are smooth maps between Riemannian manifolds,

τ(h ◦ f) = trace ∇d(h ◦ f)

= γαβ∇ ∂
∂xα

∂

∂xβ
(h ◦ f)

= γαβ∇ ∂
∂xα

(
∂h

∂f i

∂f i

∂xβ
)

= γαβ(∇ ∂

∂fj

∂h

∂f i
)
∂f j

∂xα

∂f i

∂xβ
+ γαβ ∂h

∂f i
∇ ∂

∂xα

∂f i

∂xβ

= γαβ∇dh(
∂f

∂xα
,
∂f

∂xβ
) + (dh)(τ(f))

where ∇dh is the Hessian of h (see Definition 3.3.5), and τ(f) is the tension
field of f.

Thus

Lemma 8.7.2 For smooth maps f : M → N,h : N → Q between Rieman-
nian manifolds, the following chain rule holds

τ(h ◦ f) = γαβ∇dh(
∂f

∂xα
,
∂f

∂xβ
) + (dh) ◦ (τ(f)). (8.7.16)

In particular, if f is harmonic
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τ(h ◦ f) = γαβ∇dh(
∂f

∂xα
,
∂f

∂xβ
). (8.7.17)

�

Remark. If Q = R, of course τ = −∆, where ∆ is the Laplace Beltrami
operator.

Definition 8.7.1 g : N → R (N a Riemannian manifold) is called subhar-
monic if

−∆g ≥ 0.

Corollary 8.7.4 If f : M → N is harmonic, and h : N → R is convex, then
h ◦ f is subharmonic, i.e.

−∆(h ◦ f) ≥ 0.

Conversely, if f : M → N is a smooth map such that for all open V ⊂ N
and convex h : V → R, with U := f−1(V ),

h ◦ f is subharmonic,

then f is harmonic.

Proof. (8.7.17) implies the first part. For the second part, if f is not harmonic,
we may find some x0 ∈M with

τ(f)(x0) 
= 0.

We then need to find a convex function h on some neighborhood V of f(x0)
for which

−∆(h ◦ f)(x0) < 0.

If N were Euclidean, we could simply take a linear function h, i.e. ∇dh ≡ 0,
with (grad h)(f(x0)) = −τ(f)(x0).

We then have

−∆(h ◦ f)(x0) = dh ◦ τ(f)(x0)
= 〈(grad h)(f(x0)), τ(f)(x0)〉
= −‖τ(f)(x0)‖2 < 0.

In the Riemannian case, in general, we may not find local functions with
∇dh ≡ 0, but if we consider sufficiently small neighborhoods V , we may find
such functions h0 for which ‖∇dh0‖ is arbitrarily small while we still have
a prescribed gradient (grad h0)(f(x0)) = −τ(f)(x0). This follows from the
definition of the Hessian ∇dh0, see (3.3.47), together with the fact that in
Riemannian coordinates centered at f(x0), Γ i

jk(f(x0)) = 0, see (1.4.12), and
so Γ i

jk can be made arbitrarily small in a sufficiently small neighborhood V
of f(x0).
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Still, h0 is not convex, but since ‖∇dh0‖ is small, it can be made convex
in a small neighborhood V of x0 by adding a small multiple of d2(f(x0), ·),
the squared distance function from f(x0), using (4.6.6). Since that multiple
is small, say ε, the new function

h = h0 + εd2(f(x0), ·)
can still be assumed to satisfy

dh ◦ τ(f)(x0) < γαβ∇dh(
∂f

∂xα
,
∂f

∂xβ
)

i.e.
−∆h ◦ f(x0) < 0.

This completes the proof. �

Corollary 8.7.5 If f : M → N is harmonic and if N has nonpositive sec-
tional curvature, and is simply connected and complete, then for any p ∈ N

−∆d2(f(x), p) ≥ 2‖df(x)‖2

Proof. (8.7.17) and Lemma 4.8.2. �

Corollary 8.7.6 Let M be a compact Riemannian manifold, N a Rieman-
nian manifold, f : M → N harmonic.

If there exists a strictly convex function h on f(M), then f is constant.

Proof. By Corollary 8.7.3, h ◦ f is subharmonic. The following Lemma shows
that h ◦ f then is constant. Since h is strictly convex, (8.7.17) implies f ≡
const. �

Lemma 8.7.3 Let M be a compact Riemannian manifold. Then any subhar-
monic function ϕ is constant.

Proof. By Stokes’ theorem ∫
M

∆ϕ = 0,

so that a subharmonic function is harmonic, hence const. by Corollary 2.1.2.
�

Corollary 8.7.7 If f : M → N is harmonic and h : N → Q is totally
geodesic, then h ◦ f is harmonic.

Proof. (8.7.17). �
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Perspectives. For more special domains, other Bochner type formulae for har-
monic maps have been found. Here, we only want to quote two such formulae.

Siu[225] derived the following formula that is actually valid for any smooth, not
necessarily harmonic map between Kähler manifolds f : M → N

∂∂̄(gij̄ ∂̄f i ∧ ∂f j̄) = Rij̄k�̄∂̄f i ∧ ∂f j̄ ∧ ∂fk ∧ ∂f � − gij̄D
′∂̄f i ∧ D′′∂f j̄ .

Here, (gij̄) is the Kähler metric of N in local holomorphic coordinates (f1, . . . , fn),

Rij̄k�̄ its curvature tensor, Γ i
jk its Christoffel symbols,

D′∂̄f i = ∂∂̄f i + Γ i
jk∂f j ∧ ∂̄fk

D′′∂f j̄ = ∂̄∂f j̄ + Γ j̄

�̄k̄
∂̄f �̄ ∧ ∂f k̄

the covariant derivatives.
The assumption that f is harmonic is needed if one wants to know the sign of

the second term on the right hand side. Namely, in that case

gij̄D
′∂̄f i ∧ D′′∂f j̄ ∧ ωn−2 = qωn

for some nonpositive function q on M, where ω is the Kähler of M. Furthermore,
if the curvature tensor is “strongly seminegative”, then the first term on the right
hand side is a nonnegative multiple of ωn, and integration by parts then gives as in
the proof of Corollary 8.7.3 that under these conditions, a harmonic map f satisfies

D′∂̄f = D′′∂f̄ = 0.

This means that f is pluriharmonic.
If the curvature of N is even “strongly negative” and if the real rank of df

is at least 3 at some point, then Siu showed that f has to be holomorphic or
antiholomorphic. If N is a Riemann surface of negative curvature then the real
dimension of the image is 2, hence rankR df ≤ 2 and Siu’s result does not apply.
Nevertheless, in that case, Jost and Yau[146] showed that the level sets of f still
define a holomorphic foliation of M although f itself need not be holomorphic.

We now want to derive a Bochner type identity for harmonic maps from Ein-
stein manifolds, due to Jost and Yau[148]. In order to simplify the formula and its
derivation, we always use normal coordinates at the point under consideration and
denote (covariant) derivatives by subscripts, e.g.

fα :=
∂

∂xα
f,∇β := ∇ ∂

∂xβ
.

The formula then is

Theorem. Let f : M → N be a harmonic map between Riemannian manifolds,
where M is compact and Einstein. Then for any λ ∈ R

λ

∫
M

〈fαβ , fαβ〉 + 2

∫
M

RM
αβγδ〈fαδ, fβγ〉

= − λ

∫
M

RM
αβ〈fα, fβ〉 −

∫
M

RM
αβγδR

M
ηβγδ〈fα, fη〉

+ λ

∫
M

〈RN (fα, fβ)fβ , fα〉

+

∫
M

RM
αβγδ〈RN (fγ , fδ)fβ , fα〉 .
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Let us give the proof: We start with (8.7.13), i.e.

−1

2
∆〈fα, fα〉 = {〈fαβ , fαβ〉 + RM

αβ〈fα, fβ〉 − 〈RN (fα, fβ)fβ , fα〉} . (1)

We compute

(∇γ∇δ −∇δ∇γ)(fαdxα)

=(−RM
βαγδfβdxα) + RN (fγ , fδ)fαdxα . (2)

From (2),

〈(∇γ∇δ −∇δ∇γ)fαdxα, (∇γ∇δ −∇δ∇γ)fβdxβ〉 (3)

=RM
βαγδR

M
ηαγδ〈fβ , fη〉 + 〈RN (fγ , fδ)fα, RN (fγ , fδ)fα〉

− 2RM
αβγδ〈RN (fγ , fδ)fβ , fα〉 .

Denoting the L2-product on T ∗M ⊗ f∗TN by (·, ·), we get

((∇γ∇δ −∇δ∇γ)fαdxα, (∇γ∇δ −∇δ∇γ)fβdxβ)

= (−RM
βαγδfβdxα, (∇γ∇δ −∇δ∇γ)fηdxη)

+ (RN (fγ , fδ)fαdxα, (∇γ∇δ −∇δ∇γ)fβdxβ)

= 2(−RM
βαγδf

βdxα,∇γ∇δfηdxη) +

∫
M

〈RN (fγ , fδ)fα, RN (fγ , fδ)fα〉

−
∫
M

RM
αβγδ〈RN (fγ , fδ)fβ , fα〉.

Integrating the first term by parts, we get

= 2

∫
M

〈 ∂

∂γ
(RM

βαγδfβ), fαδ〉 +

∫
M

〈RN (fγ , fδ)fα, RN (fγ , fδ)fα〉

−
∫
M

RM
αβγδ〈RN (fγ , fδ)fβ , fα〉.

Now

〈 ∂

∂γ
(RM

βαγδfβ), fαδ〉

=RM
βαγδ〈fβγ , fαδ〉 + RM

βαγδ,γ〈fβ , fαδ〉 .

The 2nd term vanishes for any Einstein metric since

RM
βαγδ,γ = (RM

δγαγ,β − RM
δγβγ,α)

by the Bianchi identity, and this vanishes if the Ricci tensor is parallel.
We obtain for an Einstein metric on M

((∇γ∇δ −∇δ∇γ)fαdxα, (∇γ∇δ −∇δ∇γ)fβdxβ) (4)

= − 2

∫
M

RM
αβγδ〈fαδ, fβγ〉 +

∫
M

〈RN (fγ , fδ)fα, RN (fγ , fδ)fα〉

−
∫
M

RM
αβγδ〈RN (fγ , fδ)fβ , fα〉 .
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From (1), (3), (4) we get the desired formula. For the special case N = R, the
formula is simpler and due to Matsushima[175].

For an application of the formula, see the Perspectives on 8.10.
A general discussion of identities for harmonic maps and applications can be

found in Xin[260].
The characterization of harmonic mappings given in Cor. 8.7.4, i.e. that a

(smooth) map between Riemannian manifolds is harmonic if and only if locally
the composition with all convex functions is subharmonic has been observed by
Ishihara[124].

It might be tempting (and it has been proposed) to use that characterization for
an axiomatic approach to harmonic maps. That, however, would loose the deeper
aspects of harmonic maps based on their variational properties. It will be explained
in the next § that a rather general and satisfactory theory can be developed for
harmonic mappings with values in Riemannian manifolds of nonpositive sectional
curvature based on an abstract variational approach. By way of contrast, a char-
acterization analogous to Cor. 8.7.4 can also be obtained for solutions of other
nonlinear elliptic systems for maps between manifolds that need not have a varia-
tional origin. For example, Jost and Yau[147] considered the system

γαβ̄(
∂2f i

∂zα∂z̄β
+ Γ i

jk
∂f j

∂zα

∂fk

∂z̄β
) = 0

for maps f : X → N where N is a Riemannian manifold as before, but X is
a Hermitian manifold with metric (γαβ̄)α,β=1,···,dimC M . The preceding system is
equivalent to the harmonic map system if the metric (γαβ̄) is a Kähler metric, but
not for a general Hermitian metric, and in fact, in the general case, it need not arise
from a variational integral. Analogous to Cor. 8.7.4, solutions can be characterized
by the property that local compositions with convex functions h : V (⊂ N) → R
satisfy

−γαβ̄ ∂2(h ◦ f)

∂zα∂zβ̄
≥ 0.

However, as examples show, one does not always get the existence of solutions of the
new system in a prescribed homotopy class of maps f : X → N, N of nonpositive
sectional curvature, as in the existence theory for harmonic maps. The reason for
the failure of the existence theory is the lack of variational structure. We refer to
[147] for details.

8.8 Harmonic Maps into Manifolds of Nonpositive
Sectional Curvature: Existence

Let M and N be compact Riemannian manifolds, N of nonpositive sectional
curvature. In this §, we wish to show that any continuous map g : M → N
is homotopic to some - essentially unique - harmonic map. This result will
be deduced from convexity properties of the energy functional E that follow
from the assumption that the target manifold N has nonpositive sectional
curvature. The relevant geometric results have been collected in § 4.8 already.

As an application in § 8.1, we shall derive Preissmann’s theorem about
the fundamental group of compact manifolds of negative sectional curvature.
Further applications will be described in the Perspectives.
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A continuous map
g : M → N

induces a homomorphism

ρ = g� : π1(M,p) → π1(N, g(p))

of fundamental groups (p any point in M). As described in Appendix B, we
may then find a lift

g̃ : M̃ → Ñ

to universal covers that is ρ-equivariant, i.e.

g̃(λx) = ρ(λ)g̃(x)

for all x ∈ M̃, λ ∈ π1(M,p) where the fundamental groups π1(M,p) and
π1(N, g(p)) operate by deck transformations on M̃ and Ñ , resp.

Y := Ñ is a simply connected complete Riemannian manifold of nonposi-
tive sectional curvature. In particular, all the results derived in § 4.8 for such
manifolds apply. We let

d : Y × Y → R

be the distance function induced by the Riemannian metric, as always.
For ρ-equivariant maps

h1, h2 : X := M̃ → Y,

we can define an L2-distance by

d(h1, h2) :=
(∫

d2(h1(x), h2(x)) dvol(M)
) 1

2

,

where the integration is w.r.t. the volume form of the Riemannian metric on
M and over some fundamental domain of M in X = M̃ . The ρ-equivariance
of h1 and h2 implies that this integral does not depend on the choice of
fundamental domain.

We then put

Z := L2
ρ(M,N) :={h : X → Y ρ-equivariant

with d2(h, g̃) <∞}.
Z = L2

ρ(M,N) then is a complete metric space; the completeness is shown
as for the standard spaces of L2-functions (that result is quoted in Theorem
A.1.1 in the Appendix), because Y is complete.

Curves in Z are simply given by families

(ft)t∈[0,1]
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of ρ-equivariant maps ft : X → Y , depending continuously on t. We say that
such a curve is a shortest geodesic if

d(f0, ft) = td(f0, f1)

for all t ∈ [0, 1]. (It is not difficult to show that this property character-
izes shortest geodesics in Riemannian manifolds, and so it is natural to use
this property also in other metric spaces.) It is then easy to describe such
geodesics:

Lemma 8.8.1 For every x ∈ M̃ , let γx : [0, 1] → Ñ be a shortest geodesic
with γx(0) = f0(x), γx(1) = f1(x), chosen equivariantly, i.e. ρ(λ)γx = γλx

for all x, λ. Then the family of maps

ft(x) := γx(t), t ∈ [0, 1]

defines a shortest geodesic in L2
ρ(M,N) between f0 and f1.

Proof.

d2(f0, ft) =
∫
d2(f0(x), ft(x)) dvol(x)

=
∫
t2d2(f0(x), f1(x)) dvol(x)

= t2d2(f0, f1).

because γx defines a shortest
geodesic from f0(x) to f1(x)

�

Thus, if f0 and f1 are ρ-equivariant maps, the geodesic in L2
ρ(M,N) from

f0 to f1 is simply obtained by taking for each x ∈ M̃ the shortest geodesic
from f0(x) to f1(x) and defining maps ft through this family of geodesics.

Corollary 8.8.1 Let c1, c2 : [0, 1] → L2
ρ(M,N) be shortest geodesics. Then

d2(c1(t), c2(t)) is a convex function of t.

Proof. We can use Lemma 8.8.1 to derive this property by integration from
the corresponding property of Ñ that has been demonstrated in Theorem
4.8.2. Namely, by Theorem 4.8.2, for each x ∈ Ñ , if γi,x(t) is the shortest
geodesic from ci(0)(x) to ci(1)(x), i = 1, 2, then

d2(γ1,x(t), γ2,x(t))

is a convex function of t. But then also

d2(c1(t), c2(t)) =
∫
d2(γ1,x(t), γ2,x(t)) dvol(M) by Lemma 8.8.1

is a convex function of t. �
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Similarly, if c: [0, 1] → L2
ρ(M,N) is a shortest geodesic, and z ∈ L2

ρ(M,N),
we have the analogue of (4.8.7)

d2(c(t), z) ≤ td2(c(1), z) + (1− t)d2(c(0), z) (8.8.1)

−t(1− t)d2(c(0), c(1))

for all t ∈ [0, 1].

We now consider the functionals Eε and E defined in § 8.4, but this
time, we define them on the space L2

ρ(M,N), carrying out all corresponding
integrals on a fundamental domain for M in M̃ .

Corollary 8.8.2 Eε and E are convex functionals on L2
ρ(M,N), in the sense

that for any shortest geodesic c : [0, 1] → L2
ρ(M,N),

Eε(c(t)) and E(c(t))

are convex functions of t.

Proof. As explained in Lemma 8.8.1, such a shortest geodesic is given by a
family of ρ-equivariant maps

ft : M̃ → Ñ

such that for each x ∈ M̃, ft(x) is geodesic w.r.t. t.
Applying Theorem 4.8.2 to the geodesics ft(x) and ft(y), we obtain

d2(ft(x), ft(y)) ≤ td2(f1(x), f1(y)) + (1− t)d2(f0(x), f0(y)).

Integrating this inequality w.r.t. x and y as in the definition of Eε(f) (cf.
(8.4.3)) yields the convexity of Eε, and the convexity of E follows by passing
to the limit ε→ 0 as explained in § 8.4. �

We are now ready to start our minimization scheme for the functionals Eε

and E on the space Z = L2
ρ(M,N). In fact, we shall demonstrate a general

result about minimizing convex and lower semicontinuous functionals (recall
Lemma 8.4.1 and Theorem 8.4.2) on Z; in fact, the constructions will be valid
for more general spaces than Z as the only essential property that we shall
use about Z is the convexity property of Corollary 8.8.1.

Definition 8.8.1 Let F : Z → R∪ {∞} be a function. For λ > 0, z ∈ Z, the
Moreau-Yosida approximation Fλ of F is defined as

Fλ(z) := inf
y∈Z

(λF (y) + d2(y, z))
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Lemma 8.8.2 Let F : Z → R∪ {∞} be convex, lower semicontinuous, 
≡ ∞
and bounded from below. For every λ > 0, z ∈ Z, there exists a unique yλ ∈ Z
with

Fλ(z) = λF (yλ) + d2(yλ, z) (8.8.2)

Proof. We take a minimizing sequence (yn)n∈N for Fλ(z). This means that

lim
n→∞(λF (yn) + d2(yn, z)) = Fλ = inf

y∈Z
(λF (y) + d2(y, z)) (8.8.3)

For ym, yn ∈ Z, we take a shortest geodesic γ : [0, 1] → Z with γ(0) =
ym, γ(1) = yn and define the midpoint as

ym,n = γ(
1
2
)

The convexity of F then implies

Fλ ≤ λF (ym,n) + d2(ym,n, z)

≤ 1
2
λF (ym) +

1
2
λF (yn) + d2(ym,n, z) by convexity of F (8.8.4)

≤ 1
2
λF (ym) +

1
2
λF (yn) +

1
2
d2(ym, z) +

1
2
d2(yn, z)− 1

4
d2(ym, yn)

by (8.8.1)

Since, by (8.8.3) (λF (ym) + d2(ym, z)) and (λF (yn) + d2(yn, z)) converge to
Fλ, we conclude that d2(ym, yn) has to tend to 0 as m,n→∞. Thus (yn)n∈N

is a Cauchy sequence in Z, and so it tends towards some limit yλ. Because
F is lower semicontinuous, (8.8.2) then follows from (8.8.3). �

We can now state our abstract existence result:

Theorem 8.8.1 Let F : Z → R ∪ {∞} be a convex, lower semicontinuous
function that is bounded from below and not identically +∞. Let yλ be as
constructed in Lemma 8.8.2 for λ > 0.

If (yλn
)n∈N is bounded for some sequence λn →∞, then (yλ)λ>0 converges

to a minimizer of F as λ→∞.

Proof. Take any z ∈ Z. By definition of yλn
, yλn

minimizes F (y)+ 1
λn
d2(y, z).

Since yλn
is bounded and λn tends to∞, (yλn

)n∈N therefore constitutes a min-
imizing sequence for F . We claim that d2(yλ, z) is a nondecreasing function
of λ. To see this, let 0 < µ < λ.

By definition of yµ

F (yλ) +
1
µ
d2(yλ, z) ≥ F (yµ) +

1
µ
d2(yµ, z).
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This implies

F (yλ)+
1
λ
d2(yλ, z) ≥ F (yµ)+

1
λ
d2(yµ, z)+

(
1
µ
− 1
λ

) (
d2(yµ, z)− d2(yλ, z)

)
.

This is compatible with the definition of yλ only if

d2(yµ, z) ≤ d(yλ, z)

showing the claimed monotonicity property of d2(yλ, z).
Since d2(yλ, z) is bounded on the sequence (λn)n∈N tending to ∞ and

monotonic, it has to be a bounded function of λ > 0. It follows from the
definition of yλ that

F (yλ) = inf{F (y) : d2(y, z) ≤ d2(yλ, z)}.
Since d2(yλ, z) is nondecreasing, this implies that F (yλ) is a nonincreasing
function of λ, and as noted in the beginning, it tends to inf

y∈Z
F (y) for λ→∞.

Let now ε > 0. By the preceding boundedness and monotonicity results, we
may find Λ > 0 such that for λ, µ > Λ

|d2(yλ, z)− d2(yµ, z)| < ε

2
. (8.8.5)

If Λ < µ ≤ λ, we have F (yµ) ≥ F (yλ) as F (yλ) is nonincreasing. If yµ,λ is
the midpoint of yµ and yλ as in the proof of Lemma 8.8.2, we obtain from
the definition of yµ

F (yµ) +
1
µ
d2(yµ, z) ≤F (yλ,µ) +

1
µ
d2(yλ,µ, z)

≤F (yλ,µ) +
1
µ

(d2(yµ, z) +
ε

4
− 1

2
d2(yλ, yµ))

by (8.8.1) and (8.8.5).

Also, by convexity of F , and since F (yµ) ≥ F (yλ), F (yλ,µ) ≤ F (yµ). There-
fore,

d(yλ, yµ) < ε.

Thus, (yλ)λ>0 is a Cauchy family for λ→∞.
Since Z is complete, there then exists a unique y∞ = lim

λ→∞
yλ. Since we

have already seen that

lim
λ→∞

F (yλ) = inf
y∈Z

F (y),

the lower semicontinuity of F implies that

F (y∞) = inf
y∈Z

F (y).

�
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In order to apply Theorem 8.8.1 to show the existence of a minimizer of
E (or, by the same argument, for the functionals Eε), we need to verify that
in our situation the yλ in the statement of Theorem 8.8.1 remain bounded.
This is the content of the proof of

Theorem 8.8.2 Let M and N be compact Riemannian manifolds, N of non-
positive sectional curvature. Then every continuous map g : M → N is ho-
motopic to a minimizer f of the energy E, in the sense that E achieves its
minimum in the class L2

ρ(M,N) of ρ-equivariant maps between the universal
covers M̃ and Ñ , where ρ : π1(M) → π1(N) is the homeomorphism of funda-
mental groups induced by g. (We shall verify subsequently that f is smooth,
and so in particular continuous.)

Proof. We first consider the case where g(M) is simply connected. It is not
difficult to verify that in that case, g is homotopic to a constant map (and
a constant map obviously minimizes the energy). Since that verification is
instructive for the general strategy, we proceed to perform it. Let y0 ∈ g(M).
For each y ∈ g(M), we choose a curve γy from y0 to y. Let cy : [0, 1] → N
be the geodesic from y0 to y homotopic to γy. It is unique because N has
nonpositive sectional curvature (Theorem 4.8.1), and it does not depend on
the choice of γy, because any two curves in g(M) from y0 to y are homotopic
to each other as g(M) is simply connected. We put

gt(x) = cg(x)(t).

gt(x) is continuous w.r.t. t, and also w.r.t. x, because

d2(cy1(t), cy2(t)) ≤ td2(cy1(1), cy2(1)) by Corollary 4.8.3.

Since g0 ≡ y0, g1 = g, gt provides a homotopy between a constant map and
g, as desired.

If g(M) is not simply connected, we choose some closed curve γ in g(M)
that is not homotopically trivial. Let c be a closed geodesic in N that is
homotopic to γ (Theorem 1.4.6). Let g̃ ∈ L2

ρ(M,N) be the lift of g to uni-
versal covers. In order to apply Theorem 8.8.1, we have to exclude that the
L2

ρ(M,N)-maps yλ constructed for z = g̃ in Lemma 8.8.2 become unbounded,
i.e. that the L2

ρ-distance between g̃ and yλ becomes unbounded for λ → ∞.
yλ projects to a map gλ : M → N homotopic to g. Let γλ be a closed curve
in gλ(M) that is homotopic to γ. Let x ∈ M with g(x) ∈ γ, and y0 ∈ c. Let
cλ : [0, 1] → N be the geodesic from y0 to gλ(x) in the homotopy class deter-
mined by a homotopy between g and gλ. Let bλ be the geodesic loop (which
exists by Theorem 1.4.6) from gλ(x) to itself that is homotopic to cλcc

−1
λ .

Thus, b−1
λ cλcc

−1
λ is homotopic to a constant curve. Likewise, let bλ,t be the

geodesic loop based at cλ(t) homotopic to cλ|[0,t]c(cλ|[0,t])−1. By lifting to the
universal cover Ñ , we see that the energy E(bλ,t) becomes the squared dis-
tance between two different lifts of cλ, i.e. two geodesics, and so it is convex
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by Theorem 4.8.2. Since c = bλ,0 is a shortest geodesic, E(bλ,t) is minimal
at t = 0. Thus, assuming d2(g, gλ) → ∞ for λ → ∞, E(bλ,t) either tends to
a constant function, or E(bλ,1) goes to ∞. In the latter case, however, the
lengths of all curves in gλ(M) homotopic in N to c would also go to ∞, and
that would let the energy of gλ tend to ∞ as well, in contradiction to gλ

being a minimizing family for λ→∞ by the proof of Theorem 8.8.1.
If the lengths are constant, i.e. bλ,1 is asymptotically of the same length as

bλ,0 = c, we either find another homotopy class of curves for which the length
goes to ∞ - which is impossible as already argued - or the length remains
constant for all homotopy classes. In that case, however, the construction of
the Moreau-Yosida approximation implies that d2(g, gλ) cannot tend to ∞,
because E is not changed, while d2(g, gλ) is decreased if we move the image
of M closer to c along the curves cλ (”closer” here refers to the lifts to the
universal cover Ñ), i.e. replacing x by cλ(t) for t < 1.

Thus, in any case, d2(g, gλ) stays bounded, and Theorem 8.8.1 yields the
result after all. �

Perspectives. See the Perspectives on § 8.10

8.9 Harmonic Maps into Manifolds of Nonpositive
Sectional Curvature: Regularity

In the preceding §, we have shown the existence of a minimizer of the energy
functional E in a given homotopy class, or more precisely, in the class of L2-
maps that induce the same action by deck transformations on the universal
covers as some given continuous map g. It is the purpose of this § to show the
regularity, i.e. the smoothness of such a minimizer. In fact, we shall present
different regularity proofs with the purpose of showing a more representative
sample of techniques from geometric analysis.

It is clear that a minimizer f of E is a critical point of E in the sense of
Definition 8.7.1. Namely, in § 8.1, we have computed that for a compactly
supported vector field ψ along f and ft(x) = expf(x) tψ(x),

d

dt
E(ft)|t=0 =

∫
〈df, dψ〉.

Thus, in particular, E(ft) is a differentiable function of t, and since f = f0

minimizes E, this derivative at t = 0 has to vanish, for all such ψ.
If k is some smooth function on the image of f , and if ϕ is a smooth

function on M with compact support, we may consider the test vector

(dk) ◦ f(x) · ϕ(x).
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We obtain (referring to § 8.1 for the notation)

0 =
∫
〈df, dψ〉 =

∫
〈df, d(dk)ϕ(x)〉 , with dk being evaluated at f(x)

=
∫
ϕ(x)〈df,∇ ∂

∂xα
(dk)⊗ dxα〉

+
∫
〈dϕ(x), d(k ◦ f)(x)〉 (8.9.1)

=
∫
ϕ(x)∇dk(df, df)(x)

+
∫
〈dϕ(x), d(k ◦ f)(x)〉, recalling (8.1.11) and (3.3.48).

We now take
k(z) =

1
2
d2(z, p),

lifting to universal covers as always.

By Lemma 4.8.2,
∇dk(df, df) ≥ ‖df‖2.

Inserting this into (8.9.1) yields∫
〈dϕ(x), d(k ◦ f)(x)〉 ≤ −

∫
ϕ(x)‖df(x)‖2. (8.9.2)

(8.9.2) means that k ◦ f is a weak subsolution of

−∆(k ◦ f) ≥ ‖df‖2. (8.9.3)

(Cf. Corollary 8.7.5 for the corresponding result in the case where f is a
smooth harmonic map.)

We shall now use this differential inequality to derive the Hölder continuity
of our minimizer f . Theorem 8.6.1 will then imply that f is smooth.

The same argument actually shows that for any smooth convex function
k on the image of f , we have

−∆(k ◦ f) ≥ 0. (8.9.4)

In the sequel, however, the functions k(z) = 1
2d

2(z, p), for various choices of
p, will entirely suffice.

We shall need a version of the Poincaré inequality

Lemma 8.9.1 Let M be a compact Riemannian manifold, Y the universal
covering of a Riemannian manifold of nonpositive curvature. Then there exist
r0 > 0 and a constant c0 <∞ such that for any ball B(x0, r) ⊂M , 0 < r ≤
r0, and any L2-map with finite energy,
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f : B(x0, r) → Y,

the following inequality holds∫
B(x0,r)

d2(f(x), fB) ≤ c0r
2

∫
B(x0,r)

‖df(x)‖2, (8.9.5)

where fB ∈ Y is the center of mass of f , i.e. fB minimizes∫
B(x0,r)

d2(f(x), p)dvol(x) w.r.t. p ∈ Y.

Proof. The factor r2 on the rhs of (8.9.5) comes from a simple scaling argu-
ment; such a scaling argument is possible because for sufficiently small r > 0,
the geometry of the ball deviates to an arbitrary little degree from the one
of a Euclidean ball of the same radius. Thus, we neglect the factor r2 in the
sequel.

If the inequality (8.9.5) then is not valid, we can find a sequence (fn)n∈N

of maps from some such ball B(x0, r) into Y for which∫
d2(fn(x), fn,B) ≥ n

∫
‖dfn(x)‖2 (8.9.6)

Since Y has a compact quotient, we may compose fn with deck transforma-
tions, i.e. isometries of Y , which leave both sides of (8.9.6) invariant, such
that fn,B always stays in some compact region of Y . Thus, we may assume
that the fn,B converge to some p ∈ Y . If the lhs of (8.9.6) happens to be
smaller than one, we may rescale Y , i.e. we consider the chart

expp : TpY → Y

and replace the Riemannian metric gij(z) of Y in this chart by the metric
gij(ρz) for a suitable ρ ≥ 1. This multiplies the distance function d and
the norm ‖ · ‖ by a factor ρ which we can thus adjust to make the lhs of
(8.9.6) equal to 1. The curvature of Y gets multiplied by 1

ρ2 , and as ρ→∞,
the rescaled Riemannian manifold (Y, gij(ρz)) becomes Euclidean, and the
Poincaré inequality reduces to the Euclidean one.

We now turn to the case where the lhs of (8.9.6) is bigger than 1.

For any map g : B(x0, r) → Y , we may perform the following construc-
tion:

gt(x) := exp t(exp−1
gB

g(x)), for 0 ≤ t ≤ 1.

Thus, for any x,
d(gt(x), gB) = td(g(x), gB), (8.9.7)

and since gB is characterized by the property that
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exp−1

gB
(g(x)) dvol(x) = 0,

we see that
gB = gt,B ,

i.e. gB remains the center of mass for the maps gt.

Since Y has nonpositive curvature

d(gt(x), gt(y)) ≤ td(g(x), g(y)) for all x, y, 0 ≤ t ≤ 1, (8.9.8)

by (4.8.8). Therefore also

‖dgt(x)‖2 ≤ t2‖dg(x)‖2, (8.9.9)

whenever this expression is well defined.
For each n ∈ N for which the lhs of (8.9.6) should happen to be bigger

than one, we choose t = tn, 0 ≤ t ≤ 1, such that∫
d2(fn,t(x), fn,t,B) = 1.

Because of (8.9.7) and (8.9.9), we may then replace fn by fn,t without making
(8.9.6) invalid, and so, we may assume wlog∫

d2(fn(x), fn,B) = 1 for all n ∈ N. (8.9.10)

Then ∫
‖dfn(x)‖2 → 0 for n→∞,

and therefore fn has to converge to a constant map f0 ≡ p for some p ∈ Y .
By Rellich’s theorem (see Theorem A.1.8; the standard proof for functions,
see, e.g. J. Jost, Postmodern Analysis, Springer, 1998, p. 265 ff., carries over
to maps with values in Y , because we have constructed in § 4.8 the mollifiers
on which that proof depends)∫

d2(fn(x), fn,B)

converges to ∫
d2(f0(x), f0,B) =

∫
d2(p, p) = 0.

This, however, contradicts (8.9.10). This concludes the proof. �

Let us also present an alternative proof of the Poincaré inequality that
does not use Rellich’s theorem, but rather employs the constructions of § 4.8
directly:
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By (4.8.21),

d(f(x), fB) ≤
∫

B(x0,r)

d(f(x), f(y))dy.

We may work with the Euclidean volume form on dy on B(x0, r) induced by
the exponential map expx0

: Tx0M → M , rather than with the Riemannian
one. Since the two are uniformly equivalent, this will only affect the constant
c0 in the estimate. In other words, we assume that B(x0, r) is a Euclidean
ball

{y ∈ Rm : d(x0, y) = |x0 − y| < r}.
We may also assume that f is differentiable, because a general f may be
approximated by the differentiable mollified maps fh as explained in § 4.8.

Then

d(f(x), f(y)) ≤
|x−y|∫

0

∥∥∥∥ ∂

∂r
f(x+ r

y − x

|y − x| )
∥∥∥∥ dr

(the meaning of ∂f
∂r should be obvious)

and so ∫
d(f(x), f(y))dy ≤ 1

mωm

∫
1

|x− y|m−1
‖df(y)‖dy,

for m = dimM,ωm = volume of the m-dimensional unit sphere.
Therefore∫

d2(f(x), fB)dx ≤
∫ (∫

d(f(x), f(y))dy
)2

dx

≤ 1
m2ω2

m

∫ (∫
1

|x− y|m−1
‖df(y)‖dy

)2

dx

≤ 1
m2ω2

m

∫ (∫
1

|x− y|m−1
‖df(y)‖2dy

)
(∫

1
|x− y|m−1

dy

)
dx

by Hölder’s inequality (Theorem A.1.2)

=
1

m2ω2
m

∫
‖df(y)‖2

(∫
1

|x− y|m−1
dx

)2

dy

by Fubini’s theorem.

Since ∫
B(x0,r)

1
|x− y|m−1

dx ≤ mωmr for all y ∈ B(x0, r),
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we obtain ∫
B(x0,r)

d2(f(x), fB)dx ≤ r2
∫

B(x0,r)

‖df(x)‖2dx

and the constant c0 arises from estimating the Euclidean volume dx against
the Riemannian volume dvol(x). In fact, employing Riemannian normal co-
ordinates at x0, we see that this yields a factor of magnitude (1 + c1r

2). �
In the sequel, we shall assume that the radii R of all balls B(x0, R), x0 ∈

M , are smaller than the injectivity radius of M . We then do not need to
distinguish between such a ball and its lift to the universal cover M̃ . Also,
on such a ball, the negative Laplace-Beltrami operator in local coordinates,

−∆ =
1√
γ

∂

∂xα

(√
γγαβ ∂

∂xβ

)
(notations as in § 8.1)

is of the type considered in A.2, and therefore on such a ball, the Harnack
inequalities stated in Theorem A.2.2 hold.

By the Harnack inequality (Theorem A.2.2(i)), we have for x0 ∈ M,p ∈
Ñ ,m = dimM ,

sup
B(x0,r)

d2(f(x), p) ≤ c2

⎛⎜⎝ 1
rm

∫
B(x0,2r)

d2q(f(x), p) dvol(x)

⎞⎟⎠
1
q

for q > 1,

(8.9.11)
because of the inequality

−∆d2(f(x), p) ≥ 0 (8.9.12)

that follows from (8.9.3).

In order to control the rhs of (8.9.11), we observe that we can control

d(p, fB)

where fB is the center of mass of f on B(x0, 2r), because f is in L2. We
therefore need to estimate∫

B(x0,2r)

d2q(f(x), fB) dvol(x).
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As in the second proof of the Poincaré inequality, we have (replacing again
dvol(x) by the Euclidean volume element dx)∫

d2q(f(x), fB)dx ≤
∫ (∫

d(f(x), f(y))dy
)2q

dx

≤ 1
m2qω2q

m

∫ (∫
1

|x− y|m−1
‖df(y)‖dy

)2q

dx

≤ 1
m2qω2q

m

∫ (∫
1

|x− y|(m−1) 2q
1+q

‖df(y)‖2dy
)

(∫
1

|x− y|(m−1) 2q
1+q

dy

)q

(∫
‖df(y)‖2dy

)q−1

dx

(by Hölder’s inequality (Theorem A.1.2) with exponents p1 = 2,
p2 = 2q, p3 = 2q

q−1 and writing

1
|x− y|m−1

‖df‖

=

{(
1

|x− y|m−1

) q
1+q

}{(
1

|x− y|m−1

) 1
1+q

‖df‖ 1
q

}{
‖df‖1− 1

q

}

=
1

m2qω2q
m

(∫
1

|x− y|(m−1) 2q
1+q

dy

)q+1 (∫
‖df(y)‖2dy

)q

)

by Fubini’s theorem as in the second proof the Poincaré inequality.

Now ∫
1

|x− y|(m−1) 2q
1+q

dy <∞ if
2q

1 + q
<

m

m− 1
,

and if we choose q > 1 satisfying that condition, we can bound d2(f(x), p)
by d2(p, fB) and ∫

B(x0,2r)

‖df(y)‖2dy.

(The first proof of the Poincaré inequality given above can also be strength-
ened to yield the present stronger conclusion, by making use of Kondrachov’s
extension of Rellich’s theorem, see Theorem A.1.8.)

In particular, d2(f(x), p) is bounded on B(x0, r), since f has finite energy.
We record this as

Lemma 8.9.2 Let f : B(x0, 4r) → Y (complete, simply connected, nonposi-
tive sectional curvature) be a map of finite energy, satisfying
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−∆d2(f(x), p) ≥ 0 weakly for all p ∈ Y.

Then f is bounded on B(x0, r).
�

Lemma 8.9.3 Let f : B(x0, 4r) → Y satisfy −∆d2(f(x), p) ≥ 0 weakly for
every p ∈ Y where B(x0, 4r) is a ball in some Riemannian manifold M ,
0 < 2r < i(M) and Y is a manifold of nonpositive sectional curvature, the
universal cover of a compact manifold N . Let 0 < κ1 ≤ κ ≤ κ0, and suppose
that

diam f(B(x0, 2r)) := sup
x1,x2∈B(x0,2r)

d(f(x1), f(x2)) = κ.

There exists ε > 0 depending on the geometry of M and N and on κ0 and
κ1 with the property that if 0 < ε ≤ ε0 and

f(B(x0, 2r))

is covered by k balls B1, . . . , Bk of radius ε, then

f(B(x0, r))

can be covered already by k − 1 of those balls.
�

Proof. Since we may obviously assume that each ball Bi contains some point
f(xi) we have

Bi ⊂ B(pi, 2ε), with pi = f(xi), i = 1, . . . , k. (8.9.13)

If we assume ε ≤ ε0 ≤ κ
16 , the balls

B(pi,
κ

8
), i = 1, . . . , κ,

cover f(B(x0, 2r)). Since its diameter is κ, f(B(x0, 2r)) is contained in some
ball of radius at most 2κ. Because the geometry of Y is uniformly controlled
as Y admits a compact quotient8, there is some integer k1 such that any
such ball of radius ≤ 2κ ≤ 2κ0 contains at most k1 points whose mutual
distance is always at least κ

8 . Therefore, already k1 of the balls B(pi,
κ
4 ) cover

f(B(x0, 2r)), say for i = 1, . . . , k1.

8 actually, what is needed at this point is solely a lower bound on the Ricci curvature
of Y , combined with the assumption that Y has nonpositive sectional curvature,
but we do not pursue this issue here
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Therefore, for at least one of those pi, say for p1,

meas (f−1(B(p1,
κ

4
)) ∩B(x0, r))

≥ 1
k1

meas (B(x0, r))

≥ η

k1
rm (8.9.14)

for some constant η > 0 depending on the geometry of M .9

We consider the auxiliary function

g(x) :=
1
κ2
d2(p1, f(x)).

We put

µ := sup
x∈B(x0,2r)

g(x) ≤ 1
κ2

(diam (f(B(x0, r)))) ≤ 1. (8.9.15)

By the triangle inequality, and since diam (f(B(x0, 2r))) = κ, there also has
to exist some y ∈ B(x0, 2r) with

d(f(y), p1) ≥ κ

2
,

hence
µ ≥ 1

4
.

On f−1(B(p1,
κ
4 )), we have

g(x) ≤ 1
16
.

We consider the auxiliary function

h(x) := µ− g(x) ≥ 0 on B(x0, 2r), (8.9.16)

and
h(x) ≥ 1

8
on f−1(B(p1,

κ

4
)). (8.9.17)

By (8.9.12) and the definition of g and h, we also have

−∆h(x) ≤ 0 weakly in B(x0, 2r).

Because of (8.9.17), we may apply the Harnack inequality Theorem A.2.2 (ii)
to obtain

9 η is controlled from below by an upper bound for the sectional curvature of M ,
but again this is not pursued here
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inf
B(x0,r)

h(x) ≥ δ0
1
rm

∫
B(x0,r)

h(x)dx for some δ0 > 0

≥ δ for some δ > 0, (8.9.18)
by (8.9.17) and (8.9.14).

This inequality now implies that for sufficiently small ε, we cannot have

f(B(x0, r)) ∩B(pi, 2ε) 
= ∅ for all i = 1, . . . , k. (8.9.19)

Namely, the balls B(pi, 2ε) cover f(B(x0, 2r)), and thus, if the supremum is
realized in (8.9.15) for y ∈ B(x0, 2r), i.e.

1
κ2
d2(pi, f(y)) = µ,

we can find some pi with
d(p1, f(y)) ≤ 2ε.

So, if (8.9.19) held, we would have d(f(x1), f(y)) ≤ 4ε for some x1 ∈ B(x0, r),
and thus

inf
B(x0,r)

h(x) ≤ h(x1) = µ− 1
κ2
d2(p1, f(x1))

≤ 16
ε
√
µ

κ
,

which contradicts (8.9.18) for

ε <
δκ1

16
.

Thus, for such an ε, f(B(x0, r)) is disjoint to one of the balls B(pi, 2ε), hence
also to one of the balls Bi, because of (8.9.13). Thus, it can be covered by
the remaining ones. �

Equipped with the preceding Lemma, we may now prove

Theorem 8.9.1 Let B(x1, 12r) be a ball in some Riemannian manifold, 0 <
12r < i(M), Y the universal cover of a compact Riemannian manifold of
nonpositive sectional curvature (and thus complete, simply connected, and
nonpositively curved itself), and let

f : B(x1, 12r) → Y

satisfy
E(f) <∞

and
−∆d2(f(x), p) ≥ 0 weakly

for every p ∈ Y .
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Then f is continuous on B(x1, r).

Here, with the notation of § 8.1 for the metric on the domain M , ∆ is the
Laplace-Beltrami operator

− 1√
γ

∂

∂xα
(
√
γγαβ ∂

∂xβ
)

Proof. By Lemma 8.9.2, f is bounded on B(x1, 3r), hence on B(x0, 2r) for
every x0 ∈ B(x1, r).

Thus,
diam f(B(x0, 2r)) ≤ κ0 (8.9.20)

for some κ0 <∞. Let now 0 < κ1 < κ0. We want to find some ρ > 0 with

diam f(B(x0, ρ)) < κ1. (8.9.21)

Let ε0 = ε0(κ0, κ1) be as in Lemma 8.9.3.
Because of (8.9.20), we can bound the number k0 of balls B1, . . . , Bk0

of radius ε0 in Y that are needed to cover f(B(x0, 2r)). By Lemma 8.9.3,
f(B(x0, r)) can be covered by at most k0 − 1 of them. If

diam f(B(x0, r)) ≥ κ1,

we may apply Lemma 8.9.3 again with r
2 in place of r and k = k0 − 1 and

cover f(B(x0,
r
2 )) by at most k0 − 2 balls. We can repeat this construction

until, for some ν ∈ N,
f(B(x0, 2−νr))

is covered by so few balls of radius ε0 that we must have

diam f(B(x0, 2−νr)) < κ1.

Since this holds for every x0 ∈ B(x1, r) and every κ1 > 0, we see that f is
continuous on B(x1, r). �

We shall now present an alternative (and more general) derivation of
Theorem 8.9.1 not based on Lemma 8.9.3. Of course, the Harnack inequality
will again be used in a crucial manner. The geometry of the domain M will
only enter through the Poincaré inequality (Lemma 8.9.1) (which implies the
Harnack inequality) and the following ball doubling property for the volume
form:

vol(B(x, 2r)) ≤ c0vol(B(x, r)) (8.9.22)

for some constant c0, all x ∈M , and all sufficiently small radii r > 0.
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We shall make use of the following abbreviations:
For v ∈ L∞(B(x0, R)):

v+,R := sup v
B(x0,R)

, v−,R := inf v
B(x0,R)

, vR :=
∫
−

B(x0,R)

vµ(dx)

(as always, sup and inf are the essential supremum and infimum).

Lemma 8.9.4 Let v be a bounded weak subsolution (−∆v ≥ 0) on B(x0, 4R).
There exists a constant δ0, independent of v and R, with

v+,R ≤ (1− δ0)v+,4R + δ0vR.

Proof.

v+,4R − vR =
∫
−

B(x0,R)

(v+,4R − v)

≤
( ∫

−
B(x0,R)

|v+,4R − v|p
) 1

p

since p ≥ 1

≤ c2

( ∫
−

B(x0,2R)

|v+,4R − v|p
) 1

p

by (8.9.22)
≤ c3(v+,4R − v+,R) by Theorem A.2.2(ii) ,

since v+,4R − v is a nonnegative supersolution on B(x0, 4R).

Consequently

v+,R ≤ c3 − 1
c3

v+,4R +
1
c3
vR . �

From Lemma 8.9.4, we derive

Lemma 8.9.5 Let v satisfy the assumptions of Lemma 8.9.4, and suppose
0 < ε < 1

4 . There exists m ∈ N (independent of v and ε) s.t.

v+,εmR ≤ ε2v+,R + (1− ε2)vR,

for some R′ with εmR ≤ R′ ≤ R
4 (R′ may depend on v and ε).
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Proof. Iterating the estimate of Lemma 8.9.4, we get for ν ∈ N

v+,4−νR ≤ (1− δ0)νv+,R + (1− (1− δ0)ν)
ν

Σ
i=1

τiv4−iR

with τi = δ0(1−δ0)
ν−i

1−(1−δ0)ν .

We choose ν so large that

(1− δ0)ν ≤ ε2,

and choose R̄ = 4−jR with j ∈ {1, . . . , ν} such that v4−jR is largest.
Noting that

4−ν ≥ εm

if

m ≥ −(log 4)
log(1− δ0)

,

the result follows. �

Lemma 8.9.6 Under the assumptions of Lemma 8.9.4,

lim
R→0

vR = lim
R→0

v+,R .

Proof. This follows directly from Lemma 8.9.4. �

Lemma 8.9.7 Let f : B(x0, 4R) → Y satisfy (8.9.3). Let p ∈ Y .
Then, with

v(x) := d2(f(x), p), |B(x0, R)| := vol(B(x0, R))

R2

|B(x0, R)|
∫

B(x0,R)

‖df(x)‖2dvol(x) ≤ c5(v+,4R − v+,R) . (8.9.23)

In particular

lim
R→0

R2

|B(x0, R)|
∫

B(x0,R)

‖df(x)‖2dvol(x) = 0 . (8.9.24)

Proof.
v(x) = d2(f(x), p) satisfies (8.9.3), that is,

−∆v ≥ 2‖df‖2.
Let GR(x, y) be the mollified Green function on B(x0, R) relative to

B(x0, 2R), i.e. GR(x0, ·) ∈ H1,2 ∩ C0
0 (B(x0, 2R))
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B(x0,2R)

〈dϕ(x), dGR(x0, x)〉dvol(x) =
∫
−

B(x0,R)

ϕ(x)dvol(x)

for all ϕ ∈ H1,2 with supp ϕ � B(x0, 2R).

We put

wR(x) :=
|B(x0, 2R)|

R2
GR(x0, x).

We then have∫
B(x0,2R)

〈dϕ(x), dwR(x)〉 =
1
R2

∫
B(x0,R)

ϕ(x) (8.9.25)

for all ϕ ∈ H1,2 with supp ϕ � B(x0, 2R).

Furthermore, from the estimates for GR of Corollary A.2.1, we have

0 ≤ wR ≤ γ1 in B(x0, 2R) (8.9.26)
wR ≥ γ2 > 0 in B(x0, R) (8.9.27)

for constants γ1, γ2 that do not depend on R.
We then have with z := v − v+,4R

λ

∫
B(x0,2R)

〈df, df〉(wR)2 ≤
∫

B(x0,2R)

(wR)2(−∆)z

= −
∫

B(x0,2R)

〈d(wR)2, dz〉 since wR ∈ H1,2(B(x0, 2R))

= −2
∫
〈dwR, d(wRz)〉+ 2

∫
z〈dwR, dwR〉

≤ −2
∫
〈dwR, d(wRz)〉 since z ≤ 0 .

From (8.9.25), (8.9.26), (8.9.27), we get∫
B(x0,R)

〈df, df〉 ≤ c4
R2

∫
B(x0,R)

(v+,4R − v)

≤ c4
|B(x0, R)|

R2
(v+,4R − vR)

≤ c5
|B(x0, R)|

R2
(v+,4R − v+,R) by Lemma 8.9.4

�

We are now ready to prove the Hölder continuity of f . For a point x0 in
the domain and a radius R > 0, let
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f̄R := mean value of f on B(x0, R),

(that is, as in Lemma 8.9.1, the minimizer of
∫

B(x0,R)
d2(f(x), p)dvol(x) w.r.t.

p), and

vp(x) := d(f(x), p), with p ∈ Y chosen subsequently.

We apply Lemma 8.9.5 to

vf̄ R
4

= d2(f(x), f̄R
4
)

and choose ε = 1
8 . ε

m ≤ 1
8 and εmR ≤ R′ ≤ R

4 , where m ∈ N does not
depend on ε or R ≤ R0. We therefore obtain

vR′ =
∫
−

B(x0,R′)

d2(f(x), f̄R
4
)dvol(x)

≤ C0

∫
−

B(x0, R
4 )

d2(f(x), f̄R
4
)dvol(x) for some C0 independent of R,

using the ball doubling property (8.9.22)

≤ C1R
2

|B(x0, R)|
∫

B(x0, R
4 )

‖df‖2dvol(x)

by the Poincaré inequality Lemma 8.9.1
≤ C2(vp,+,R − vp,+, R

4
) by Lemma 8.9.7

also using the ball doubling property (8.9.22) once more.

Combining this estimate with Lemma 8.9.5, we get for p in the convex hull
of f(B(x0, ε

mR))

sup
B(x0,εmR)

d2(f, p) ≤ 4 sup
B(x0,εmR)

d2(f, f̄R
4
)

≤ 4ε2 sup
B(x0,R)

d2(f, f̄R
4
)

+ C3(vp,+,R − vp,+, R
4
)

≤ 16ε2 sup
B(x0,R)

d2(f, p)

+ C3(vp,+,R − vp,+,εmR),
since εm ≤ 1

4

We put, for 0 < ρ,

ω(ρ) := sup
B(x0,ρ)

d2(f(x), p) = vp,+,ρ
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and obtain
(1 + C3)ω(εmR) ≤ (

1
64

+ C3)ω(R).

Here, εm is considered as a constant. By iteration, we obtain

ω(ρ) ≤ c
( ρ

R0

)α

ω(R0)

for some c > 0 and some 0 < α < 1.
This holds for any p in the convex hull of f(B(x0, ρ)). In particular, we

may choose
p = f̄ρ.

Since
ω(ρ)

1
2 ≤ osc

B(x0,ρ)
f ≤ 2ω(ρ)

1
2 ,

this implies the Hölder continuity of f . Thus, we have obtained another proof
of Theorem 8.9.1.

Corollary 8.9.1 Let f : M → N be a weakly harmonic map between compact
Riemannian manifolds M and N , with N of nonpositive sectional curvature.

Then f is smooth.

Proof. Let B(x1, 6r) be a ball in M with 0 < 6r < i(M). Since such a ball
is simply connected (being the diffeomorphic image of a ball in Tx1M under
the exponential map expx1

), we may lift f to a map

f : B(x1, 6r) → Y

into the universal cover Y of N . Therefore, we may apply Theorem 8.9.1 to
get the continuity of f . The smoothness then follows from Theorem 8.6.1. �

In the preceding, we have seen how to use the weak version of the differ-
ential inequality

−∆d2(f(x), p) ≥ 2‖df(x)‖2 (see (8.9.3))

to derive the continuity of a weakly harmonic map f with values in a manifold
of nonpositive sectional curvature.

There is another differential inequality for such a harmonic map that can
be used to obtain estimates, namely

−∆‖df(x)‖2 ≥ −σ‖df(x)‖2, (8.9.28)

where −σ is a lower bound for the Ricci curvature of M . This inequality
follows from (8.7.13).
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We shall now display an alternative approach to the regularity result of
Corollary 8.9.1 that is based on some weak analogue of (8.9.28). Our con-
struction will exploit the center of mass properties of the approximating func-
tionals Eε (cf. Lemma 8.4.1) and constructions from § 4.8.

Let f = fε be a minimizer of Eε. (Of course, the existence of a minimizer
for Eε follows by the same method as the one for E, see the proofs of Thms.
8.8.1 and 8.8.2.) By Lemma 8.4.1, for almost every x ∈M,f(x) is the center
of mass of f on the ball B(x, ε). (As before, we lift f to a map f : B(x, ε) → Y
into the universal cover of Y where the center of mass then exists by Theorem
4.8.4)

Let now x1, x2 ∈M with d(x1, x2) < i(M). We define a diffeomorphism

ϕ : B(x1, ε) → B(x2, ε)

as follows: Let
ψ : Tx1M → Tx2M

be the linear map that maps an orthonormal frame at x1 into that orthonor-
mal frame at x2 that is obtained by parallel transport along the shortest
geodesic from x1 to x2. ψ then is a Euclidean isometry.

We put
ϕ := expx2

◦ψ ◦ exp−1
x1
,

and ϕ is almost an isometry in the following sense:
If dν1 and dν2 are the volume forms on B(x1, ε) and B(x2, ε), resp., then

|dν2 − ϕ∗dν1| ≤ cε2 · Euclidean volume form,

for some constant c. This is easily seen by writing the volume forms in normal
coordinates and using Theorem 1.4.4.

Also, if Vi is the volume of B(xi, ε), then

|Vi − ωmε
m| ≤ cε2. 10

We then apply Corollary 4.8.7 to get

d(f(x1), f(x2)) ≤ 1
V1

∫
B(x1,ε)

d(f(y), f(ϕ(y)) dvol(y) (8.9.29)

+
∫

B(x2,ε)

d(f(y), f(x2))|dvol(y)
V2

− ϕ∗ dvol(y)
V1

|.

10c can be controlled by a lower bound on the Ricci curvature of M and an upper
bound for its sectional curvature, but we do not verify this here
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We note that

d(y, ϕ(y)) ≤ d(x1, x2) cosh (
√−λ ε), for all y ∈ B(x1, ε)

if λ ≤ 0 is a lower curvature bound for M ; this follows e.g. from Theorem
4.5.2. Again, at this point, it is only needed that

d(y, ϕ(y)) ≤ d(x1, x2)(1 + cε2)

for some constant c.

We now iterate (8.9.29), i.e. we estimate the quantities d(f(y), f(ϕ(y))
and d(f(y), f(x2)) in the integrals on the rhs by applying (8.9.29) again.
Repeating this a finite number of times, depending on ε, and using the fact
that all errors, i.e. deviations from the Euclidean situation, are quadratic in
ε, we obtain for d(x1, x2) ≤ ε

d(f(x1), f(x2))
ε

≤ c

∫
M

∫
B(x,ε)

d(f(y), f(x))
ε

dvol(y) dvol(x)

for some constant c depending on the geometry of M ,

≤ c′Eε(f)
1
2 by Hölder’s inequality,

for some other constant c′.

This was for d(x1, x2) ≤ ε. If d(x1, x2) ≤ νε for some ν ∈ N, we use the
triangle inequality to obtain

d(f(x1), f(x2)) ≤ c′Eε(f)νε. (8.9.30)

This was for a minimizer f = fε of Eε. As for example in the proof of the
Arzela-Ascoli theorem (see e.g. J. Jost, Postmodern Analysis, Springer, 3rd
ed., 2005, p. 55-56), one uses (8.9.30) to find a sequence εn → 0 for which
the maps fεn

converge uniformly and hence also in L2 towards some f . By
Lemma 8.4.5, f minimizes E, and it satisfies the limit of the above estimates,
i.e.

d(f(x1), f(x2)) ≤ c′E(f)d(x1, x2)

for all x1, x2 ∈ M . By the uniqueness theorem proved below (see Theo-
rem 8.10.2), this estimate then holds for any minimizer of E. We have thus
shown

Theorem 8.9.2 Let M and N be compact Riemannian manifolds N of non-
positive sectional curvature, and let f : M → N minimize the energy in its
homotopy class. Then f is Lipschitz continuous.

�
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Corollary 8.9.2 Under the assumption of Theorem 8.9.2, any minimizer f
of the energy is smooth.

Proof. By Lemma 8.7.2, f is a weak solution of

1√
γ

∂

∂xα

(√
γγαβ ∂f

i

∂xβ

)
= −Γ i

jk(f)
∂f j

∂xα

∂fk

∂xβ
. (8.9.31)

By Theorem 8.9.2, the rhs of (8.9.31) is bounded. By Theorem A.2.3 of the
Appendix, therefore f ∈ C1,α, for some 0 < α < 1. But then the rhs of
(8.9.31) is of class Cα. Applying Theorem A.2.3 once more, yields f ∈ C2,α.
Iterating this argument shows that f is smooth. �

Before concluding this §, we want to show how to use (8.9.28) directly to
get a-priori estimates for harmonic maps. Since we have not been very precise
about the geometric quantities on which the previous estimates derived in our
regularity proof depend, we can also use those a-priori estimates to remedy
that point. These estimates will use the assumption that f is a smooth har-
monic map, and so, they cannot be used to show regularity. Such estimates,
however, can be employed in various existence schemes (as for example in
previous editions of this book).

Theorem 8.9.3 Let f : M → N be a harmonic mapping between Rieman-
nian manifolds, where N is complete, simply connected, and of nonpositive
sectional curvature. If x ∈M,ρ > 0, and B(x, ρ) ⊂M, then

e(f)(x) :=
1
2
‖df(x)‖2 ≤ c0(1 +

1
ρ2

) max
y∈B(x,ρ)

d2(f(x), f(y)), (8.9.32)

where c0 depends only on m = dimM, on Λρ2, where Λ is a bound for the
absolute value of the sectional curvature of M, and on a lower bound for the
Ricci curvature of M.

Proof. We put
r(y) := d(x, y),

q := f(x)

and assume for simplicity m = dimM ≥ 3. (The proof for m = 2 is
similar.) We use Lemma 4.7.2 with m instead of n, x instead of p, and
h(y) = d2(f(y), q). We obtain
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∫
B(x,ρ)

(
1

r(y)m−2
− 1
ρm−2

)(−∆)d2(f(y), ρ)

≤− (m− 2)ωmd
2(f(x), q) +

m− 2
2

Λ

∫
B(x,ρ)

d2(f(y), q)
r(y)m−2

+
m− 2
ρm−1

∫
∂B(x,ρ)

d2(f(y), q)

≤ c1 max
y∈B(x,ρ)

d2(f(y), q), (8.9.33)

with c1 depending on m and Λρ2.
We next let η ∈ C∞

0 (B(x, ρ
2 )) be a cut-off function,

0 ≤ η ≤ 1 on B(x,
ρ

2
)

η(x) = 1

|∇η| ≤ c2
ρ
, |∆η| ≤ c3

ρ2
.

We then apply Lemma 4.7.2 to h(y) = η2(y)e(f)(y) and obtain

(m− 2)ωme(f)(x) ≤
∫

B(x,ρ)

(
1

r(y)m−2
− 1
ρm−2

)∆(η2e(f))(y)

+ 2Λ
∫

B(x,ρ)

(η2e(f))(y)
r(y)m−2

(8.9.34)

Now
∆(η2e(f)) ≤ |∆η2|e(f) + 4η|∇η|‖∇df‖ · ‖df‖+ η2∆e(f)

≤ c3
ρ2
e(f) + η2‖∇df‖2 +

c4
ρ2
e(f)

− η2‖∇df‖2 + c5e(f)

by (8.7.13), since N has nonpositive curvature, where −c5 is a lower bound
for the Ricci curvature of M

≤ c6(1 +
1
ρ2

)e(f). (8.9.35)

From (8.9.34), (8.9.35)

e(f)(x) ≤ c7(1 +
1
ρ2

)
∫

B(x,ρ)

(
1

r(y)m−2
− 1
ρm−2

)e(f)(y) (8.9.36)
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noting 1
rm−2 ≤ const( 1

rm−2 − 1
ρm−2 ) if r ≤ 1

2ρ, where the constant depends
only on m, as well as η(y) = 0 if r(y) ≥ ρ

2 .
We now recall (8.9.3), i.e.

−∆d2(f(y), p) ≥ 4e(f)(y). (8.9.37)

Then (8.9.32) follows from (8.9.36), (8.9.37), (8.9.33). �

From the proof, we also obtain

Theorem 8.9.4 Under the assumptions of Theorem 8.9.2,

e(f)(x) ≤ γ0(1 +
1
ρm

)
∫

B(x,ρ)

e(f)(y) = γ0(1 +
1
ρm

)E(f|B(x,ρ))

where γ0 depends on the same quantities as c0 in Theorem 8.9.2.

Proof. From (8.9.36), with ρ′ instead of ρ and also assuming B(x, ρ′) ⊂ M,
we obtain

e(f)(x) ≤ c7(1 +
1
ρ′2

)
∫

B(x,ρ′)

d2−m(x, y)e(f)(y)dy. (8.9.38)

We put
g1(y, z) := d2−m(y, z)

gk(y, z) :=
∫

B(z,ρ′)

gk−1(y, w)g1(z, w)dw

We observe that
gk(y, z) ≤ cmd

2k−m(y, z).

For example, for k = 2

g2(y, z) =
∫

B(z,ρ′)

d2−m(y, w)d2−m(z, w)dw.

We split this integral into integrals over the regions

I := {w : d(y, w) ≤ 1
2
d(y, z)}

II := {w : d(z, w) ≤ 1
2
d(y, z)}

III := B(z, ρ′)\I ∪ II.
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Then
g2(y, z) ≤

∫
I

+
∫
II

+
∫
III

≤ cmd
4−m(y, z),

as desired. In particular, gk(y, z) is bounded for k ≥ m
2 . We now iterate

(8.9.38); this means that we estimate e(f)(y) in the integral on the right
hand side of (8.9.38) by using (8.9.38) for x instead of y. We need then
B(y, ρ′) ⊂ M, and so we choose ρ′ = ρ

k to guarantee this condition also for
the subsequent steps.

After at most m
2 steps, we obtain the desired estimate. �

Perspectives. The literature on the regularity of harmonic maps has become too
numerous and extensive to be reviewed here. (See, however, the Perspectives on
§ 8.10 for some references.)

Therefore, in this §, I have rather tried to present a representative sample of
techniques from geometric analysis. The proof of Theorem 8.9.1 given here is due to
Lin[169]. I have selected that proof because it employs a fundamental tool, namely
Moser’s Harnack inequalities, in a particularly elegant and geometrically instructive
manner. The alternative proof is taken from Jost[136]; it is the most general and
powerful regularity proof presently known; in particular, in contrast to the preced-
ing proof, it does not utilize a compactness argument in the target. (The telescoping
argument Lemma 8.9.7 is originally due to [87]; the Harnack inequalities for the
mollified Green function can be replaced by a more elementary geometric argu-
ment, see [126].) The proof of Theorem 8.9.2 given here is taken from Jost[135]. I
have selected that proof because it elucidates the interplay between the geometric
meaning of the energy functional and its approximations and the geometric features
of nonpositively curved manifolds. Finally, the proofs of Theorems 8.9.3 and 8.9.4
(variants of results of Eells and Sampson[70]) have been developed here because of
their elementary nature, depending only on the geometry of the distance function
as described in § 4.7.

8.10 Harmonic Maps into Manifolds of Nonpositive
Curvature: Uniqueness and Other Properties

The results of §§ 8.8, 8.9 can be summarized as

Theorem 8.10.1 Let M and N be compact Riemannian manifolds, N of
nonpositive sectional curvature.

Let g : M → N be a continuous map. Then g is homotopic to a smooth
harmonic map f , and f can be obtained by minimizing the energy among
maps homotopic to g.
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The existence result was deduced from a convexity property of the energy
functional E. That convexity also suggests a uniqueness result for minimizers
of E. Here, we shall present a variant of such a reasoning that applies to all
harmonic maps and shows that they are in fact all minimizers of E.

Theorem 8.10.2 Let M be a compact, N a complete Riemannian manifold.
We assume that N has nonpositive curvature. Let f0, f1 : M → N be homo-
topic harmonic maps. Then there exists a family ft : M → N, t ∈ [0, 1], of
harmonic maps connecting them, for which the energy E(ft) is independent
of t, and for which every curve γx(t) := ft(x) is geodesic, and ‖ ∂

∂tγx(t)‖ is
independent of x and t. If N has negative curvature, then f0 and f1 either
are both constant maps, or they both map M onto the same closed geodesic,
or they coincide.

If M is a compact manifold with boundary, and if f0|∂M = f1|∂M , then
again f0 = f1.

Proof. We let
H : M × [0, 1] → N

be a homotopy between f0 and f1, with fixed boundary values if ∂M 
= ∅.
In particular H(x, 0) = f0(x),H(x, 1) = f1(x). We let γx(t) be the geodesic
arc homotopic to the arc H(x, t). By Lemma 4.8.1, γx(t) is unique. Again,
t ∈ [0, 1], and of course γx(t) is parametrized proportionally to arc length,
and we put ft(x) := γx(t).

By Corollary 8.7.1, since N has nonpositive curvature,

d2

dt2
E(ft) =

∫
M

(‖∇ ∂

∂t
γx(t)‖2 (8.10.1)

− traceM < RN (dft,
∂

∂t
γx(t))

∂

∂t
γx(t), dft〉) ≥ 0

Since d
dtE(ft)|t=0 = 0 = d

dtE(ft)|t=1, we obtain

E(ft) ≡ const. (8.10.2)

From (8.10.1) then ∇ ∂
∂tγx(t) ≡ 0; hence ∂

∂tγx(t) is also constant in x. If
∂M 
= ∅, hence ∂

∂tγx(t) = 0 for all x, since this is true for x ∈ ∂M ; hence
f0 = f1 in this case.

One also sees that f0 and f1 and hence by (8.10.2) all maps ft are energy
minimizing in their homotopy class, hence all harmonic. We also get from
(8.10.1), (8.10.2), by the nonpositivity of the curvature of N

〈RN (dft,
∂

∂t
γx(t))

∂

∂t
γx(t), dft〉 ≡ 0.

If N has negative sectional curvature, then either ∂
∂tγx(t) ≡ 0 in which case

again f0 = f1, or rankRdft(x) ≤ 1 for every x, so that ft is constant or maps
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M onto the geodesic γx(t). If ∂M = ∅, the image of M under f0 and f1 in
this case has to be a closed geodesic. �

From Theorem 8.10.1 and Corollary 8.7.3, we obtain

Corollary 8.10.1 Let N be a compact manifold of nonpositive sectional cur-
vature.

Then every map from a compact manifold with positive Ricci curvature
into N is homotopic to a constant map. Every map from a compact manifold
with nonnegative Ricci curvature, in particular from a flat manifold into N is
homotopic to a totally geodesic map. If the sectional curvature of N is even
negative, then any such map is homotopic to a constant map or a map onto
a closed geodesic. �

An implication of Corollary 8.10.1 is that manifolds of positive Ricci cur-
vature are topologically very different from those of nonpositive sectional
curvature.

We shall now prove Preissmann’s Theorem.

Corollary 8.10.2 Let N be a compact Riemannian manifold of negative
sectional curvature. Then every abelian subgroup of the fundamental group is
infinite cyclic, i.e. isomorphic to Z.

Proof. Let α, β ∈ π1(N,x0). Thus α and β are represented by closed loops
with base point x0. If α and β commute, the homotopy between αβ and βα
induces a map g : T 2 → N, where T 2 is a two-dimensional torus, i.e.

α

β

↑ −−−−−−−−−−−→↑

−−−−−−−−−−→

β

α

g : [0, 1] × [0, 1] → N
with g(s, 0) = g(s, 1) = α(s) for all s

g(0, t) = g(1, t) = β(t) for all t,

and in particular g(0, 0) = g(1, 0) = g(0, 1) = g(1, 1) = x0, since α, β have
base point x0.

By Theorem 8.10.1, g is homotopic to a harmonic map

f : T 2 → N.

During the homotopy between g and f, the base point may change, but of
course the two loops corresponding to α and β will always have the same
base point at each step of the homotopy.

Since N has negative sectional curvature, by Corollary 8.7.1, f(T 2) is
contained in a closed geodesic γ, with base point x1 = f(0, 0). Therefore, our
two loops in π1(N,x1) (the ones obtained from α and β through the homotopy
from g to f, i.e. the curves f(0, ·) and f(·, 0)) are both multiples of γ. Thus
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they are contained in a cyclic subgroup of π1(N,x1). This cyclic subgroup
has to be infinite as otherwise γk for some k ∈ N would be homotopic to a
constant loop (representing the trivial element of π1(N,x1)), contradicting
uniqueness of geodesics (Lemma 4.8.1), as γk is a geodesic since γ is, and of
course a constant loop is also geodesic.

Thus, the subgroup of π1(N,x0) generated by α and β is isomorphic to
an infinite cyclic subgroup. This is true for any two commuting elements in
π1(N,x0), and the conclusion follows. �

Perspectives. While the concept of harmonic maps had been introduced earlier
by Bochner[24], the insight that led to the existence theorem 8.10.1, namely that
nonpositive target curvature leads to a useful differential inequality via a Bochner
formula was obtained by Al’ber[4, 5] and Eells and Sampson[70]. Once this had been
noted, one could essentially apply the linear argument of [179] to obtain regularity
and existence of harmonic maps with values in manifolds of nonpositive curvature.
In fact, Al’ber[5] also showed uniqueness (Theorem 8.10.2) and already conceived
the general scheme of applying harmonic maps to the investigation of the topology
of manifolds of nonpositive curvature; in particular, he was the first to derive Preis-
mann’s theorem from a harmonic map identity. Thus, his work is one of the several
instances encountered in this book when mathematicians in the former Soviet Union
obtained results that were not given credit in the Western countries, sometimes from
ignorance, but sometimes also deliberately. Hartman[112] also obtained the unique-
ness result for harmonic maps into manifolds of nonpositive curvature. For the case
of manifolds with boundary, such results were obtained by Hamilton[108]. These
authors used a parabolic method. They considered the so-called heat flow, i.e. the
problem

f : M × [0,∞) → N

∂f

∂t
(x, t) = τ(f(x, t))

(where the tension field τ is taken w.r.t. the x-variable on M)

f(x, 0) = g(x).

They showed that a solution exists for all t > 0, and as t → ∞, f(x, t) converges to
a harmonic map homotopic to g. This needs parabolic analogues of the estimates
of Theorem 8.9.3, Theorem 8.9.4. A detailed and simplified presentation of this
approach is given in [126]. Elliptic methods were first introduced into harmonic
map theory by Hildebrandt, Kaul, and Widman[117, 118].

Hildebrandt-Kaul-Widman[118] were also able to handle positive image curva-
ture. They solved the Dirichlet boundary problem for harmonic maps with values
in a ball B(p, ρ) in some Riemannian manifold N , with ρ < min (i(p), π

2
√

κ
), where

κ ≥ 0 is an upper bound on the sectional curvature of N .
The proof allows an important simplification by a result of Kendall[155]. He

constructed suitable convex functions on such a ball. Such geometric constructions
adapted to positive curvature had earlier allowed Jäger, Kaul[125] to show that the
solution for the harmonic Dirichlet problem in such a ball is unique. See also [126]
for a presentation of these results.

Hildebrandt-Kaul-Widman[118] also discovered that without that convexity
condition on the target ball, critical points of the energy can be discontinuous,
and they found the basic example of a singularity, namely the map
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f : B(0, 1)(⊂ Rn) → Sn−1

x �→ x

|x| .

For n ≥ 3, it has finite energy and is a critical point for the energy.
Schoen and Uhlenbeck[215, 216] and in a somewhat different context also Gi-

aquinta and Giusti[87, 88] then developed a regularity theory for energy minimizing
maps. They discovered that the above example is the prototype of a singularity,
that energy minimizing maps are regular except possibly on set of Hausdorff di-
mension at most dim M − 3 and that singularities can be precluded if there are
no nontrivial energy minimizing harmonic maps from a sphere Sk(k ≥ 2) into the
target. Note that in the above example, for r ≥ 1, f(x

r
) defines a harmonic map

from the sphere Sn−1 into Sn−1. In the general case of a singularity, the same has
to happen at least in the limit r → ∞. For a detailed account of the theory and its
subsequent developments, we recommend Steffen[230].

Returning to nonpositive image curvature, as mentioned above, Al’ber[5] was
the first to observe that harmonic maps can be used to prove Preissmann’s theorem.
Extensions of Preissmann’s theorem, i.e. further restrictions on fundamental groups
of compact manifolds of nonpositive curvature, were found by Yau[262], Gromoll
and Wolf[97], Lawson and Yau[167]. The harmonic map approach to these results
is presented in [129]. Recently, a general theory of harmonic maps between metric
spaces has been developed. A systematic description, together with the appropriate
references, can be found in Jost[137].

We now want to discuss some further results about harmonic maps and their
applications.

The first topic are so-called harmonic coordinates. Let M be an n-dimensional
Riemannian manifold. Local coordinates are diffeomorphisms from an open subset
U of M onto an open subset of Rd. They are called harmonic if the coordinate
functions are harmonic. Harmonic coordinates have been employed in general rela-
tivity. They were introduced into Riemannian geometry by Sabitov and Shefel’[208]
and by de Turck and Kazdan[54] by showing that the metric tensor when written
in harmonic coordinates has the best possible regularity properties. (In particular,
the regularity properties are better than those of normal coordinates.) Explicit es-
timates were developed parallely and independently by Jost and Karcher[141] and
Nikolaev[192]. The precise result of Jost-Karcher is

Theorem. Let p ∈ M. There exists R0 > 0, depending only on the injectivity radius
of p, the dimension n of M, and a bound Λ for the absolute value of the sectional
curvature on B(p, R0) with the property that for any R ≤ R0, there exist harmonic
coordinates on B(p, R) the metric tensor g = (gij) of which satisfies on each ball
B(p, (1 − δ)R) for every 0 < α < 1

|g|C1,α ≤ c(ΛR0, n, α)

δ2
Λ2R2.

(Here, the norm is the usual one of the Hölder space C1,α.) In particular the α-
Hölder norms of the Christoffel-symbols are bounded in terms of ΛR0 and n.

(See also the presentation in [126].) It is easy to construct harmonic functions on
balls B(p, R0). A difficult point, however, is to construct n harmonic functions that
furnish an injective map of maximal rank into Rn. This is the main achievement
of the preceding result. As an application, one obtains C2,α estimates for harmonic
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maps between Riemannian manifolds, depending only on the dimensions, injectiv-
ity radii and curvature bounds of the manifolds involved provided one knows an
estimate for the modulus of continuity of the maps already. (Otherwise, no esti-
mate can hold, see Theorem 8.2.2). These estimates were also the crucial tool for
the proofs of the Gromov compactness theorem (see Short survey on curvature and
topology, above).

We already described in the Perspectives on § 4.8 how to define a notion of a
metric space of nonpositive curvature. Now, by an extension of the construction
presented in § 8.4, one may define an energy integral for maps between metric
spaces as a generalization of the energy integral in the Riemannian case considered
here. Again, it turns out to be expedient not to work with maps between compact
spaces as we did in this §, but rather to lift to their universal covers and con-
sider equivariant maps. Thus, let X and Y be metric spaces with isometry groups
I(X) and I(Y ), resp., Γ a (typically discrete) subgroup of I(X), ρ : Γ → I(Y ) a
homomorphism. We then call f : X → Y ρ-equivariant if

f(γx) = ρ(γ)f(x) for all x ∈ X, γ ∈ Γ.

Of course, if M and N are compact Riemannian manifolds with fundamental groups
π1(M) and π1(N), resp., then these groups operate by deck transformations on the

universal covers X := M̃ , Y := Ñ , and a homotopy class of maps from M to N
defines a homoporphism

ρ : π1(M) → π1(N) ⊂ I(Y ),

and the lift of any map in that homotopy class to the universal covers then has to
be ρ-equivariant. In fact, if N is a so-called κ(π, 1)-space, meaning that all higher
homotopy groups πk(N), k ≥ 2, are trivial (such an N is also called aspherical,
because that means that every continuous map ϕ : Sk → N , k ≥ 2, is homotopic to
a constant map), then conversely the push down of any ρ-equivariant map lies in the
homotopy class defining ρ. This device, namely to work with ρ-equivariant maps,
among other things, has the important advantage that it also naturally applies in
situations where some of the elements γ and ρ(γ) have nontrivial fixed points, i.e.
where the spaces X/Γ and/or Y/ρ(Γ ) may have singularities. The energy of a ρ-
equivariant map then is simply defined by integration over a fundamental region
of Γ in X. Minimizers are called generalized harmonic maps. The key feature of
the assumption of nonpositive curvature then is that it makes the energy integral
a convex functional on spaces of ρ-equivarant, square integrable maps as in § 8.8.

As already indicated, this works in considerable generality, and in fact, such
generality is useful for example in the context of superrigidity discussed below
where certain metric spaces of nonpositive curvature that are quite far from be-
ing manifolds naturally occur. Some of those spaces even are not locally compact
anymore.

A theory of such generalized harmonic mappings has been developed by J.
Jost[133, 134, 135, 137] and independently (but under more restrictive assumptions,
like local compactness) by Korevaar and Schoen[162]. In fact, a key point of the
approach of Jost is that the convexity of the functional can compensate the lack
of local compactness of the target in existence proofs. (Subsequently, Korevaar and
Schoen[163] reproved a special case of those existence results by a variant of the
method of Jost.) Actually, still more generality can be achieved, and new light can
be shed on why nonpositive curvature is the fundamental assumption for harmonic
maps. Namely, a space of ρ-equivariant, square integrable maps into a space of
nonpositive curvature is itself a space of nonpositive curvature (of course, not locally
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compact anymore even if the original target had been locally compact), and the
existence of generalized harmonic maps can then be deduced from an existence
theorem for minima of convex functionals on spaces of nonpositive curvature. In
fact, we have displayed this existence method in § 8.8 in the setting of a Riemannian
target. For a comprehensive treatment, we refer to [137].

We finally want to discuss the applications of harmonic maps to superrigidity
results (see the Perspectives on 5.5).

As explained in the Perspectives on 8.7, Siu derived a Bochner type identity for
harmonic maps between Kähler manifolds. If the image has nonpositive curvature
in a suitable sense, it implies that the product of the Hessian of the map with the
Kähler form of the domain vanishes, or in other words, that the map is plurihar-
monic. A detailed study of the curvature tensors of Hermitian symmetric spaces
(i.e. those that are Kähler) of noncompact type then allowed him to conclude that a
harmonic homotopy equivalence between compact quotients of such spaces is holo-
morphic or antiholomorphic. It then also is a diffeomorphism. If the domain is also
a quotient of a Hermitian symmetric space, one can then show that the map is an
isometry, proving Mostow’s theorem in the Hermitian case. It is interesting to note
that the curvature terms to be investigated here come from the image and not from
the domain. Sampson[213] found a different formula that applies to harmonic maps
from Kählerian to Riemannian manifolds. Corlette[52] showed that the product of
the Hessian of a harmonic map with any parallel form on the domain vanishes if
the image has nonpositive curvature. For quotients of quaternionic hyperbolic space
and the hyperbolic Cayley plane this allowed him to conclude that the Hessian itself
vanishes, i.e. that a harmonic map from such a quotient into a nonpositively curved
manifold is totally geodesic. This again implies a rigidity theorem.

If one wants to derive so-called nonarchimedean superrigidity and arithmeticity
of lattices (see Perspectives on 5.5), one has to study homomorphisms of lattices
into Sl(n, Qp)(Qp = p-adic numbers). It turns out that this group operates on a
so-called Tits building, a certain simplicial metric space with nonpositive curvature
in the sense of Alexandrov. Gromov and Schoen[104] then developed a theory of
harmonic maps from Riemannian manifolds into such spaces. In particular, they
could extend Corlette’s results to the p-adic case and obtain arithmeticity of the
corresponding lattices.

The most general superrigidity results for harmonic maps were obtained by Jost
and Yau[148] and Mok, Siu and Yeung[186]. Since the image of a lattice need not
be a lattice anymore, once more, one has to work with ρ-equivariant maps.

The result then is that any such harmonic map is totally geodesic, i.e. we have

Theorem. Let M̃ = G/K be an irreducible symmetric space of noncompact type,
other than SO0(p, 1)/SO(p) × SO(1), SU(p, 1)/S(U(p) × U(1)).

Let Γ be a discrete cocompact subgroup of G (i.e. a cocompact lattice). Let Ñ be a
complete simply connected Riemannian manifold of nonpositive curvature operator
with isometry group I(Ñ). Let ρ : Γ → I(Ñ) be a homomorphism for which ρ(Γ )

either does not have a fixpoint on the sphere at ∞ of Ñ or if it does, it centralizes
a totally geodesic flat subspace. Then there exists a totally geodesic ρ-equivariant
map,

f : M̃ → Ñ .

(With the method of Mok-Siu-Yeung, the curvature assumption on Ñ can be

weakened; if M̃ = G/K is of rank ≥ 2 then it suffices that Ñ has nonpositive
sectional curvature.)
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The proof follows from a careful choice of the parameter λ in the Bochner
formula of the Perspectives on 8.7 and a detailed study of the curvature tensors of
symmetric spaces.

The corresponding result for SO0(p, 1)/ SO(p)× SO(1) and SU(p, 1)/ S(U(p)×
U(1)) is false, because it would imply that compact quotients have vanishing first
Betti number and there are examples of compact quotients of these spaces for which
this is not the case. In the case of SU(p, 1)/ S(U(p)× U(1)), one gets, however the
existence of a pluriharmonic ρ-equivariant map, essentially a special case of the
result of Siu quoted above.

For Sp(p, 1)/ Sp(p)× Sp(1) and the hyperbolic Cayley plane, the result is Cor-
lette’s theorem quoted above. For Hermitian symmetric spaces, the result is due to
Mok[185, 184].

A consequence of the theorem is

Corollary. Let M̃ = G/K and Γ be as above. Let H be a semisimple noncompact
Lie group with trivial center, ρ : Γ → H a homomorphism with Zariski dense image.
Then ρ extends to a homomorphism from G onto H.

As explained above, this result is due to Margulis for rank (G/K) ≥ 2 and to
Corlette for Sp(p, 1)/ Sp(p)× Sp(1) and the hyperbolic Cayley plane.

Using the constructions of Gromov and Schoen, the result extends to the nonar-
chimedean case to show

Theorem. Let M̃ = G/K and Γ be as above.
Let ρ : Γ → Sl(n, Qp) be a homomorphism, for some n ∈ N and some prime p.

Then ρ(Γ ) is contained in a compact subgroup of Sl(n, Qp).

As explained above, the result is again due to Margulis for rank (G/K) ≥ 2,
and to Gromov-Schoen for quaternionic hyperbolic space and the hyperbolic Cayley
plane.

The harmonic map approach to rigidity is still not complete:
First of all, so far it has been unable to derive Mostow’s rigidity theorem for

quotients of real hyperbolic space. Secondly, the results for spaces that are of fi-
nite volume but not compact (i.e. for nonuniform lattices) are still not complete.
Margulis’ results, for example, also hold in the noncompact case. (For rank 1, rigid-
ity results were shown earlier by G. Prasad.) In the Hermitian symmetric case,
however, this problem was solved by Jost and Zuo[149].

A new and very interesting approach to rigidity that applies particularly well
in the case of real hyperbolic spaces has been developed by Besson, Courtois and
Gallot[20, 21].

One open problem that is quite easy to formulate but as yet unsolved is the
following one of H. Hopf: Let M2m be a compact manifold of even dimension 2m
that admits a Riemannian metric of nonpositive sectional curvature. Is it then true
that the Euler characteristic of M satisfies

(−1)mχ(M2m) ≥ 0

(with strict inequality in the case of negative sectional curvature)? So far, this
has only been demonstrated under additional conditions, e.g. that the curvature
is pinched between two negative constants, see for example Donnelly, Xavier[62],
Bourguignon, Karcher[28], Jost, Xin[145]. If the manifold carries a Kähler metric,
then this conjecture has been verified by Gromov[100], in the case of negative
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sectional curvature, and by Jost, Zuo[150] and Cao, Xavier[37] in the nonpositive
case.

Exercises for Chapter 8

1) Show that every two-dimensional torus carries the structure of a Rie-
mann surface.

2) Determine all harmonic maps between tori.
(Hint: Use the uniqueness theorem and the fact that affine linear maps
between Euclidean spaces are harmonic.)

3) Determine all holomorphic quadratic differentials on a two-dimensional
torus, and all holomorphic quadratic differentials on an annular region
{z ∈ C : r1 ≤ |z| ≤ r2} (0 < r1 < r2) that are real on the boundary.

4) Show that the conclusions of the Hartman-Wintner-Lemma 8.2.6 con-
tinue to hold if (8.2.17) is replaced by

|uzz̄| ≤ K(|uz|+ |u|).

5) We let Σ be a Riemann surface and H : R3 → R be a smooth function.
For a map f : Σ → R3 we consider the equation( ∂2

∂x2
+

∂2

∂y2

)
f = 2H(f(z))fx ∧ fy

where z = κ + iy is a conformal parameter on Σ and ∧ denotes the
standard vector product in R3.

a: Show that, if f is conformal, H(f(z)) is the mean curvature of
the surface f(Σ) at the point f(z).

b: If Σ = S2, show that every solution is conformal.

c: If Σ is the unit disk D and f is a solution which is constant on
∂D, show that it is constant on all of D.

d: Show that for a nonconstant solution, fx and fy have only
isolated zeroes.

e: At those points where fx and fy do not vanish, we define

L :=
〈fxx, fx ∧ fy〉
|fx ∧ fy| ,

M :=
〈fxy, fx ∧ fy〉
|fx ∧ fy| ,

N :=
〈fyy, fx ∧ fy〉
|fx ∧ fy| .
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(using the Euclidean metric of R3).
Show that for a solution with H ≡ const., ϕdz2 := (L − N −
2iM)dz2 is a holomorphic quadratic differential.
Conclude that ϕ, since holomorphic and bounded, extends to
all of Σ as a holomorphic quadratic differential.

f: If H ≡ const. and Σ = S2 show that every solution f(Σ) has
constant and equal principal curvatures at each point. Conclude
that it is a standard sphere of radius 1√

H
i.e. f(Σ) = {x ∈ R3 :

|x− x0|2 = 1
H } for some x0.

(Hint: Use a), b), e) and Lemma 8.2.4.)
Remark: By the uniformization theorem, every two dimensional
Riemannian manifold M diffeomorphic to S2 admits the struc-
ture of a Riemann surface and a conformal diffeomorphism
K : S2 → M. It thus is conformally equivalent to S2. The
exercise then implies that every surface diffeomorphic to S2

and immersed into R3 with constant mean curvature is a stan-
dard “round” sphere. This result, as well as the method of proof
presented here, were discovered by H. Hopf.

6) Prove Theorem 8.3.3, assuming only that N is complete but not ne-
cessarily compact.

7)
a: We call a closed subset A of a Riemannian manifold N convex

if any two points in A can be connected by a geodesic arc in
A. We call A strictly convex if this geodesic arc is contained in
the interior of A with the possible exception of its endpoints.
We call A strongly convex, if its boundary ∂A is a smooth
submanifold (of codimension 1) in N and if all its principal
curvatures w.r.t. the normal vector pointing to the interior of A
are positive. Show that a strongly convex set is strictly convex.

b: Show that a strongly convex subsetA of a complete Riemannian
manifold N has a neighborhood whose closure B1 and B0 := A
satisfy the conclusions of Lemma 8.3.2.

c: Show that Theorem 8.3.1 continues to hold if N is only com-
plete, but not necessarily compact, again with π2(N) = 0, pro-
vided ϕ(Σ) is contained in a compact, strongly convex subset
A of N. In that case, the harmonic f : Σ → N also satisfies
f(Σ) ⊂ A.

8) In this exercise, still another definition of the Sobolev spaceH1,2(M,N)
will be given. The embedding theorem of Nash (see the Perspectives
on 1.4) implies that there exists an isometric embedding

i : N → Rk
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into some Euclidean space.
We then define

H1,2
i (M,N) :=

{
f ∈ H1,2(M,Rk) : f(x) ∈ i(N)

for almost all x ∈M
}
.

Show that
H1,2(M,N) = H1,2

i (M,N).

(Hint: Theorem 8.7.1 implies that H1,2(M,Rk) = H1,2
i (M,Rk) since

every map into Rk is localizable.)
9)

a: For 1 < p <∞ and f ∈ Lp(M,N), we define

Ep,ε(f) :=
1

ωmεm+p

∫
M

∫
B(x,ε)

dp(f(x), f(y))dvol(y)dvol(x)

(with the same notation as in (8.7.1)), and

Ep(f) := lim
ε→0

Ep,ε(f) ∈ R ∪ {∞}

(show that this limit exists). We say that f ∈ Lp(M,N) belongs
to the Sobolev space H1,p(M,N) if Ep(f) < ∞. Characterize
the localizable maps belonging to H1,p(M,N).

b: Show lower semicontinuity of Ep w.r.t. Lp-convergence, i.e. if
(fν)ν∈N converges to f in Lp(M,N), then

Ep(f) ≤ lim inf
ν→∞ Ep(fν).

c: Derive the Euler-Lagrange equations for critical points of Ep.
(The smooth critical points are called p-harmonic maps. The
regularity theory for p-harmonic maps, however, is not as good
as the one for harmonic maps. In general, one only obtains
weakly p-harmonic maps of regularity class C1,α for some α >
0.)

d: Show the existence of a continuous weakly p-harmonic map
(minimizing Ep) under the assumptions of Theorem 8.3.1.

e: Extend the existence theory of § 8.8 to Ep.

10) Derive formula (8.7.13) in an invariant fashion, i.e. without using local
coordinates.

11) Prove the following result that is analogous to Cor. 8.7.4. A smooth
map f : M → N between Riemannian manifolds is totally geodesic
if and only if whenever V is open in N , U = f−1(V ), h : V → R is
convex, then h ◦ f : U → R is convex.
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12) Let M be a compact Riemannian manifold with boundary, N a Rie-
mannian manifold, f : M → N harmonic with f(∂M) = p for some
point p in N. Show that if there exists a strictly convex function h on
f(M) with a minimum at p, then f is constant itself.

13) State and prove a version of the uniqueness theorem 8.10.2 for mini-
mizers of the functionals Eε. Show that, as for the energy functional
E, any critical point of Eε (with values in a space of non-positive
sectional curvature, as always) is a minimizer.



Appendix A: Linear Elliptic Partial
Differential Equations

A.1 Sobolev Spaces

We are going to use the integration theory of Lebesgue. Therefore, we shall
always identify functions which differ only on a set of measure zero. Thus,
when we speak about a function, we actually always mean an equivalence
class of functions under the above identification. In particular, a statement
like “the function f is continuous” is to be interpreted as “f differs from a
continuous function at most on a set of measure zero” or equivalently “the
equivalence class of f contains a continuous function”.

Replacing functions by their equivalence classes is necessary in order to
make the Lp- and Sobolev spaces Banach spaces.

Definition A.1.1 Ω ⊂ Rd open, p ∈ R, p ≥ 1,

Lp(Ω) :=
{
f : Ω → R ∪ {±∞} measurable

and ‖f‖Lp(Ω) :=
(∫

Ω

|f(x)|pdx
) 1

p

<∞
}

L∞(Ω) :=
{
f : Ω → R ∪ {±∞} measurable

and ‖f‖L∞(Ω) := ess sup
x∈Ω

|f(x)| <∞
}
, with

ess sup
x∈Ω

f(x) := inf
{
a ∈ R ∪ {∞} : f(x) ≤ a for almost all x ∈ Ω

}
.

Theorem A.1.1 Lp(Ω) is a Banach space for 1 ≤ p ≤ ∞ (with norm
‖ · ‖Lp(Ω)).

Theorem A.1.2 (Hölder’s inequality). Let p, q ≥ 1, 1
p + 1

q = 1 (q = ∞ for
p = 1 and vice versa), f ∈ Lp(Ω), g ∈ Lq(Ω). Then fg ∈ L1(Ω) and

∫
Ω

|f(x)g(x)|dx ≤
⎛⎝∫

Ω

|f(x)|pdx
⎞⎠ 1

p
⎛⎝∫

Ω

|g(x)|qdx
⎞⎠ 1

q

.
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More generally, for p1, . . . pm ≥ 1, 1
p1

+. . .+ 1
pm

= 1, fi ∈ Lpi(Ω), i = 1, . . . ,m,

∫
|

m∏
i=1

fi(x)|dx ≤
m∏

i=1

(∫
|fi(x)|pi

) 1
pi

Theorem A.1.3 If (fn)n∈N converges to f in Lp(Ω), then a subsequence
converges pointwise almost everywhere to f.

Theorem A.1.4 C∞
0 (Ω) is dense in Lp(Ω) for 1 ≤ p < ∞ (but not for

p = ∞).

Theorem A.1.5 If f ∈ L2(Ω) and
∫
Ω

f(x)ϕ(x)dx = 0 for every ϕ ∈ C∞
0 (Ω),

then f = 0.

Lp
loc(Ω) := {f : Ω → R ∪ {±∞} : f ∈ Lp(Ω′) for ∀Ω′ � Ω}

Definition A.1.2 Let f ∈ L1
loc(Ω). We call v ∈ L1

loc(Ω) the weak derivative
of f in the direction of xi, v = Dif, if∫

Ω

v(x)ϕ(x)dx = −
∫
Ω

f(x)
∂ϕ(x)
∂xi

dx

for all ϕ ∈ C1
0 (Ω). Here x = (x1, . . . , xn) ∈ Rn.

Weak derivatives of higher order are similarly defined (notation Dαf for
a multiindex α).

Definition A.1.3 k ∈ N, 1 ≤ p ≤ ∞. We define the Sobolev spaces and
Sobolev norms as follows:

W k,p(Ω) := {f ∈ Lp(Ω) : ∀α with |α| ≤ k : Dαf ∈ Lp(Ω)}

‖f‖W k,p(Ω) :=

⎛⎝ ∑
|α|≤k

∫
Ω

|Dαf |p
⎞⎠ 1

p

for 1 ≤ p <∞

‖f‖W k,∞(Ω) :=
∑
|α|≤k

ess sup
α∈Ω

|Dαf(x)|

Hk,p
0 (Ω) := closure of C∞

0 (Ω) w.r.t. ‖ · ‖W k,p(Ω)

Hk,p(Ω) := closure of C∞(Ω) w.r.t. ‖ · ‖W k,p(Ω)

Theorem A.1.6 W k,p(Ω) = Hk,p(Ω) for 1 ≤ p < ∞, k ∈ N. W k,p(Ω) is a
Banach space for 1 ≤ p ≤ ∞, k ∈ N.
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Some local properties of Sobolev functions:

Lemma A.1.1 Ω ⊂ Rd open, f ∈ H1,1(Ω), i ∈ {1, . . . , d}. Then for almost
all λ ∈ R, f|{xi=λ} is absolutely continuous.

Let f ∈ L1(Ω), Ω open in Rd. Then for almost all x0 ∈ Ω

lim
r→0

1
|B(x0, r)|

∫
|f(x)− f(x0))| dx = 0

(|B(x0, r)| = ωdr
d denotes the Lebesgue measure of the ball B(x0, r)).

An x0 satisfying this property is called a Lebesgue point. If x0 is a
Lebesgue point, then f is approximately continuous at x0; this means the
following:
For ε > 0, let

Sε := {y ∈ Ω : |f(y)− f(x0)| < ε} .
Then

lim
r→0

|Sε ∩B(xo, r)|
|B(x0, r)| = 1 for all ε > 0.

Similarly, f ∈ H1,1(Ω) is called approximately differentiable at x0 ∈ Ω, with
approximate derivative ∇f(x0), if for

S1
ε := {y ∈ Ω : |f(y)− f(x0)(y − x0)−∇f(x0)| ≤ ε|y − x0|}

lim
r→0

|S1
ε ∩B(x0, r)|
|B(x0, r)| = 1 for all ε > 0.

We then have

Lemma A.1.2 A function f ∈ H1,1(Ω), Ω ⊂ Rd open, is approximately
differentiable almost everywhere, and the weak derivative coincides with the
approximate derivative almost everywhere.

Lemma A.1.3 Ω ⊂ Rd open, � : R → R Lipschitz, f ∈ H1,p(Ω). If � ◦ f ∈
Lp(Ω), then � ◦ f ∈ H1,p(Ω) and for almost all x ∈ Ω,

Di(� ◦ f)(x) = �′(f(x))Dif(x), i = 1, . . . , d.

Theorem A.1.7 (Sobolev embedding theorem). Ω ⊂ Rn open, bounded, f ∈
H1,p

0 (Ω). Then
f ∈ L

np
n−p for p < n

f ∈ C0(Ω) for p > n

More precisely, ∃ constants c = c(n, p) :
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‖f‖
L

np
n−p (Ω)

≤ c‖Df‖Lp(Ω) for p < n

sup
x∈Ω

|f(x)| ≤ c Vol(Ω)
1
n− 1

p ‖Df‖Lp(Ω) for p > n

For n = p, f ∈ Lq(Ω) for all q <∞.

Remark. H1,n(Ω) is not contained in C0(Ω) or L∞(Ω).

Let us consider the following example:

d ≥ 2, Ω =
◦
B(0, 1

e ) ⊂ Rd, f(x) := log log 1
|x| is in H1,d

0 (Ω), but has a
singularity at x = 0 and is unbounded there. Using this example, we may even
produce functions in H1,d with a dense set of singular points. For example,

take Ω =
◦
B(0, 1

2e ) ⊂ Rd, let (pν)ν∈N be a dense sequence of points in Ω and
consider

g(x) :=
∑

ν

2−νf(x− pν).

Corollary A.1.1 (Poincaré inequality). Ω ⊂ Rn open, bounded,

f ∈ H1,2
0 (Ω) ⇒ ‖f‖L2(Ω) ≤ const. vol (Ω)

1
n ‖Df‖L2(Ω).

Corollary A.1.2 Ω ⊂ Rn open, bounded

⇒ Hk,p
0 (Ω) ⊂

{
L

np
n−kp (Ω) for kp < n

Cm(Ω) for 0 ≤ m < k − n
p

In particular, if f ∈ Hk,p
0 (Ω) for all k ∈ N and some fixed p, then f ∈ C∞(Ω).

Theorem A.1.8 (Rellich-Kondrachov compactness theorem). Ω ⊂ Rn open,
bounded. Suppose 1 ≤ q < np

n−p if p < d, and 1 ≤ q < ∞ if p ≥ d. Then
H1,p

0 (Ω) is compactly embedded in Lq(Ω), i.e. if (fn)n∈N ⊂ H1,p
0 (Ω) satisfies

‖fn‖W 1,p(Ω) ≤ const.,

then a subsequence converges in Lq(Ω).

Corollary A.1.3 Ω as before. Then H1,2
0 (Ω) is compactly embedded in

L2(Ω).

Hk,2(Ω) is a Hilbert space, the scalar product is

(f, g)Hk,2(Ω) :=
∑
|α|≤k

∫
Ω

Dαf(x)Dαg(x)dx.

Finally, we recall the concept of weak convergence:
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Let H be a Hilbert space with norm ‖ · ‖ and a product 〈·, ·〉. Then
(vn)n∈N ⊂ H is called weakly convergent to v ∈ H,

vn ⇁ v,

iff
〈vn, w〉 → 〈v, w〉 for all w ∈ H.

Theorem A.1.9 Every bounded sequence (vn)n∈N in H contains a weakly
convergent subsequence, and if the limit is v,

‖v‖ ≤ lim inf
n→∞ ‖vn‖

(where (vn) now is the weakly convergent subsequence).

Example. Let (en) be an orthonormal sequence in an infinite dimensional
Hilbert space. Then en ⇁ 0. In particular, the inequality in Theorem A.1.9
may be strict.

A.2 Existence and Regularity Theory for Solutions of
Linear Elliptic Equations

Ω will always be an open subset of Rm.
For technical purposes, one often has to approximate weak derivatives if

they are not yet known to exist by difference quotients which are supposed
to exist. Thus, let

f ∈ L2(Ω,R),
(e1, . . . , em) an orthonormal basis of Rm

h ∈ R, h 
= 0.

We put

∆h
i f(x) :=

f(x+ hei)− f(x)
h

(if dist(x, ∂Ω) > |h|).

If ϕ ∈ L2(Ω), supp ϕ � Ω, |h| < dist(supp ϕ, ∂Ω), we have∫
Ω

(∆h
i f(x))ϕ(x)dx = −

∫
Ω

f(x)∆−h
i ϕ(x)dx. (A.2.1)

Lemma A.2.1 If f ∈ H1,2(Ω), Ω′ � Ω, |h| < dist(Ω′, ∂Ω), then ∆h
i f ∈

L2(Ω′) and

‖∆h
i f‖L2(Ω′) ≤ ‖Dif‖L2(Ω) for i = 1, . . . ,m.
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Conversely

Lemma A.2.2 If f ∈ L2(Ω) and if for some K <∞
‖∆hn

i f‖L2(Ω′) ≤ K

for some sequence hn → 0 and all Ω′ � Ω with hn < dist(Ω′, ∂Ω), then the
weak derivative Dif exists and

‖Dif‖L2(Ω) ≤ K.

The fundamental elliptic regularity theorems for Sobolev norms may be
proved by approximating weak derivatives by difference quotients.

We now formulate the general regularity theorem.
We consider an operator

Lf(x) :=
∂

∂xα
(aαβ(x)

∂

∂xβ
f(x)) (A.2.2)

for x ∈ Ω, f : Ω → R, Ω ⊂ Rm.
We assume that there exist constants 0 < λ ≤ µ with

λ|ξ|2 ≤ aαβ(x)ξαξβ ≤ µ|ξ|2 (A.2.3)

for all x ∈ Ω, ξ ∈ Rm. We say that L is uniformly elliptic. Let k ∈ L2(Ω).
Then f ∈ H1,2(Ω) is called weak solution of

Lf = k

if ∫
Ω

aαβ(x)Dβf(x)Dαϕ(x)dx = −
∫
Ω

k(x)ϕ(x)dx (A.2.4)

for all ϕ ∈ H1,2
0 (Ω).

Theorem A.2.1 Let f ∈ H1,2(Ω) be a weak solution of (A.2.4). Suppose
k ∈ Hν,2(Ω), aαβ ∈ Cν+1(Ω) (ν ∈ N).

Then
f ∈ Hν+2,2(Ω′)

for every Ω′ � Ω.
If

‖aαβ‖Cν+1(Ω) ≤ Kν ,

then
‖f‖Hν+2,2(Ω′) ≤ c(‖f‖L2(Ω) + ‖k‖Hν,2(Ω)), (A.2.6)

where c depends on m,λ, ν,Kν , and dist(Ω′, ∂Ω).
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The Harnack inequalities of Moser are of fundamental importance for the
theory of elliptic partial differential equations:

Theorem A.2.2 Let L be a uniformly elliptic operator as in (A.2.2),
(A.2.3).
(i) Let u be a weak subsolution, i.e.

Lu ≥ 0 in a ball B(x0, 4R) ⊂ Rm

(
∫
aαβDpuDβϕ ≤ 0 for all ϕ ∈ H1,2

0 (B(x0, 4R))). For p > 1 then

sup
B(x0,R)

u ≤ c1

(
p

p− 1

) 2
p

⎛⎜⎝ 1
ωm(2R)m

∫
B(x0,2R)

(max(u(x), 0)pdx)

⎞⎟⎠
1
p

,

where c1 depends only on m and µ
λ in (A.2.3).

(ii) Let u be a positive supersolution, i.e.

Lu ≤ 0 in a ball B(x0, 4R) ⊂ Rm.

For m ≥ 3 and 0 < p < m
m−2 then⎛⎜⎝ 1

ωm(2R)m

∫
B(x0,2R)

up

⎞⎟⎠
1
p

≤ c2
( m

m−2 − p)2
inf

B(x0,R)
u,

c2 again depending only on m and µ
λ . For m = 2 and 0 < p < ∞,

the same estimate holds when c2
( m

m−2−p)2 is replaced by a constant c3
depending on p and µ

λ .

The Harnack inequality also translates into estimates for the fundamental
solutions of the Laplace-Beltrami operator, and their generalizations, the
Green functions. The Green function G(x0, x) of a ball B ⊂ M (or another
sufficiently regular domain), for x0 in the interior of B, is symmetric in x
and x0, smooth for x 
= x0, becomes singular like 1

(d−2)ωd
d(x, x0)2−d in case

d = dimM ≥ 3 (ωd = volSd−1) (and like 1
ω2

log d(x0, x) for d = 2), vanishes
for x ∈ ∂B, and satisfies

h(x0) =
∫

B

∆h(x)G(x0, x)dvol(x) for allh ∈ C2
0 (B).

A geometric approximation of the Green function (that is exact in the Eu-
clidean case) has been investigated in 4.7. An analytic alternative that allows
to avoid the singularity is the use of the mollified Green function. For simplic-
ity, and because that typically suffices for applications, we only consider the
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case of a ball. The mollified Green function GR(x0, x) on the ball B(x0, R) rel-
ative to the ballB(x0, 2R) of double radius,GR(x0, ·) ∈ H1,2∩C0

0 (B(x0, 2R)),
satisfies∫

B(x0,2R)

∆ϕ(x)GR(x0, x)dvol(x) =
∫

B(x0,2R)

〈dϕ(x), dGR(x0, x)〉dvol(x)

=
∫
−

B(x0,R)

ϕ(x)dvol(x)

for allϕ ∈ H1,2 with supp ϕ � B(x0, 2R).

For purposes of normalization, it is convenient to consider

wR(x) :=
|B(x0, 2R)|

R2
GR(x0, x)

(with |B| := volB).
We then have∫

B(x0,2R)

〈dϕ(x), dwR(x)〉 =
1
R2

∫
B(x0,R)

ϕ(x)

for all ϕ ∈ H1,2 with supp ϕ � B(x0, 2R).

We then have the estimates

Corollary A.2.1

0 ≤ wR ≤ γ1 in B(x0, 2R)
wR ≥ γ2 > 0 in B(x0, R)

for constants γ1, γ2 that do not depend on R.

The estimates of J. Schauder are also very important:

Theorem A.2.3 Let L be as in (A.2.2), (A.2.3), and suppose that the coef-
ficients aαβ(x) are Hölder continuous in Ω, i.e. contained in Cσ(Ω) for some
0 < σ < 1
(i) If u is a weak solution of

Lu = k

and if k is in L∞(Ω), then u is in C1,σ(Ω), and on every Ω0 � Ω,
its C1,σ-norm can be estimated in terms of its L2-norm and the L∞-
norm of k, with a structural constant depending on Ω,Ω0,m, σ, λ, µ
and the Cσ-norm of the aαβ(x).

(ii) If u is a weak solution of
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Lu = k

for k ∈ Cν,σ(Ω), some ν = 0, 1, 2, . . . , 0 < σ < 1, and if the coeffi-
cients aαβ are also in Cν,σ(Ω), then u is in Cν+2,σ(Ω), and a similar
estimate as in (i) holds, this time involving the Cν,σ-norm of k and
the aαβ.

Finally, we quote the maximum principle.

Theorem A.2.4 Let Ω ⊂ Rm (or, more generally, Ω ⊂M,M a Riemannian
manifold) be open and bounded, f ∈ C2(Ω) ∩ C0(Ω̄) with

Lf ≥ 0 in Ω,

L as in (A.2.2), (A.2.3). Then f assumes its maximum on the boundary ∂Ω.

All the preceding results naturally apply to the Laplace-Beltrami operator
on a ball B(x0, r) in a Riemannian manifold M , putting

L = −∆ =
1√
γ

∂

∂xα

(√
γγαβ ∂

∂xβ

)
,

(γαβ)α,β=1,...,m the metric tensor of M in local coordinates, (γαβ) = (γαβ)−1,
γ = det(γαβ).

References for the material in this appendix are: Gilbarg and Trudinger[89],
Jost[140] (German version: [138]) and, with a more elementary presentation,
Jost[139]. The results of Corollary A.2.1 about Green functions are system-
atically derived in [106], and in a more general context in [23]. Some further
points about Sobolev spaces can be found in Ziemer[265].



Appendix B: Fundamental Groups and
Covering Spaces

In this appendix, we briefly list some topological results. We assume that M
is a connected manifold, although the results hold for more general spaces.

A path or curve in M is a continuous map

c : [0, a] →M (a ≥ 0).

A loop is a path with c(0) = c(a), and that point then is called the base point
of the loop. The inverse of a path c is

c−1 : [0, a] →M

c−1(t) := c(a− t) .

If ci : [0, ai] → M are paths (i = 1, 2) with c2(0) = c1(a1), we can define
the product c1 · c2 as the path c : [0, a1 + a2] →M

c(t) =
{
c1(t) for 0 ≤ t ≤ a1

c2(t− a1) for a1 ≤ t ≤ a1 + a2
.

Two paths ci : [0, ai] with c1(0) = c2(0) and c1(a1) = c2(a2) are called
equivalent or homotopic if there exists a continuous function

H : [0, 1]× [0, 1] →M

with
H(t, 0) = c1(

t

a1
),

H(t, 1) = c2(
t

a2
) for all t

H(0, s) = c1(0) = c2(0)
H(1, s) = c1(a1) = c2(a2) for all s .

In particular, c : [0, a] → M is equivalent to c̃ : [0, 1] → M with c̃(t) = c( t
a ),

and so we may assume that all paths are parametrized on the unit interval.
We obtain an equivalence relation on the space of all paths. The equiva-

lence class of c is denoted [c], and it is not hard to verify that [c1c2] and [c−1]
are independent of the choice of representations. Thus, we may define
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[c1 · c2] =: [c1] · [c2]
[c−1] =: [c]−1 .

In particular, the equivalence or homotopy classes of loops with fixed base
point p ∈ M form a group π1(M,p), the fundamental group of M with base
point p.

If p and q are in M and γ : [0, 1] → M satisfies γ(0) = p, γ(1) = q, then
for every loop c with base point q, γ−1cγ is a loop with base point p, and this
induces an isomorphism between π1(M, q) and π1(M,p). We may thus speak
of the fundamental group π1(M) of M without reference to a base point.
M is called simply connected if π1(M) = 0. A continuous map f : M → N
induces a map f# : π1(M,p) → π1(N, f(p)) of fundamental groups.

A continuous map
π : X →M

is called a covering map if each p ∈M has a neighborhood U with the prop-
erty that each connected component of π−1(U) is mapped homeomorphically
onto U. If p ∈ M and H is a subgroup of π1(M,p), there exists a covering
π : X → M with the property that for any x ∈ X with π(x) = p, we have
π∗(π1(X,x)) = H.

If we choose H = {1}, we obtain a simply connected manifold M̃ and a
covering

π : M̃ →M.

M̃ is called the universal covering of M.
If π : X → M is a covering, c : [0, 1] → M a path, x0 ∈ π−1(x(0)), then

there exists a unique path
c̃ : [0, 1] → X

with c̃(0) = x0 and c(t) = π(c̃(t)). c̃ is called the lift of c through x0.
More generally, if M ′ is another manifold, f : M ′ → M is continuous,

p0 ∈M,y0 ∈ f−1(p0), x0 ∈ π−1(p0), there exists a continuous

f̃ : M ′ → X

with f̃(y0) = x0 and f = π ◦ f̃ if and only if f#(π1(M ′, y0)) ⊂ π#(π1(X,x0)).
f̃ is unique if it exists.

Let π : M̃ →M be the universal covering of M. A deck transformation is
a homeomorphism ϕ : M̃ → M̃ with

π = π ◦ ϕ.
Let π(x0) = p0. π1(M,p0) then bijectively corresponds to π−1(p0). More
precisely, x1 ∈ π−1(p0) corresponds to the homotopy class of π(γx1), where
γx1 : [0, 1] → M̃ is any path with γx1(0) = x0, γx1(1) = x1. The deck trans-
formations form a group that acts simply transitively on π−1(p0), and associ-
ating to a deck transformation ϕ(x0) ∈ π−1(p0) then yields an isomorphism
between the group of deck transformations and π1(M,p0).
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If M and N are manifolds with universal coverings M̃ and Ñ , resp., and
if

f : M → N

is a continuous map, we consider the induced homomorphism

ρ := f� : π1(M,p) → π1(N, f(p))

of fundamental groups. If π : M̃ → M is the universal covering, we can lift
f ◦ π : M̃ → N to a map

f̃ : M̃ → Ñ ,

because the above lifting condition is trivially satisfied as π1(M̃) = {1}. f̃
is equivariant w.r.t. the above homomorphism ρ in the sense that for every
λ ∈ π1(M,p), acting as a deck transformation on M̃ , we have

f̃(λx) = ρ(λ)f̃(x) for every x ∈ M̃, (B.1)

where ρ(λ) acts as a deck transformation on Ñ . We say that f̃ is a ρ-
equivariant map between the universal covers M̃ and Ñ .

Conversely, given any homomorphism

ρ : π1(M,p) → π1(N, q)

and any ρ-equivariant map

g : M̃ → Ñ (with g(p) = q),

not necessarily continuous, then g induces a map

g′ : M → N

whose lift to universal covers is g. g′ is continuous if g is.

Finally, if M̃ is the universal cover of a compact Riemannian manifold
M , a so-called fundamental domain F (M) for M in M̃ can be constructed
as follows:

For simplicity of notation, we denote the group π1(M,x0) operating by
deck transformations on M̃ by Γ , and its trivial element by e.

Let d(., .) be the Riemannian distance function on M̃ . We select any
z0 ∈ M̃ . We then put

F (M) := {z ∈ M̃ : d(z, z0) < d(γz, z0) for all γ ∈ Γ, γ 
= e}.
F (M) is open. Since Γ operates by isometries, i.e.

d(λz1, λz2) = d(z1, z2) for all λ ∈ Γ, z1, z2 ∈ M̃,

we may also write

F (M) = {z ∈ M̃ : d(z, z0) < d(z, λz0) for all λ ∈ Γ, λ 
= e}.
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By its definition, F (M) cannot contain any two points that are equivalent
under the operation of Γ . On the other hand, for any z ∈ M̃ , we may find
some µ ∈ Γ such that

µz ∈ F (M).

Thus, the closure of F (M) contains at least one point from every orbit of Γ
in M̃ .

If f : M → R is an integrable function, and if f̃ : M̃ → R is its lift to the
universal cover of M , then∫

M

f(x)dvol(x) =
∫

F (M)

f̃(y)dvol(y).

Examples of fundamental groups:
1) π1(Rn) = {1} for all n.

2) π1(S1) = Z .
A generator is given by

c : [0, 1] → S1 = {(x, y) ∈ R2 : x2 + y2 = 1}
c(t) = (cos 2πt, sin 2πt) .

The universal covering of S1 is R1, and the covering map is likewise
given by

π(t) = (cos 2πt, sin 2πt).

3) π1(Sn) = {1} for n ≥ 2.
4) π1(SO(n)) = Z2 for n ≥ 3.

The preceding results can be found in any reasonable textbook on Alge-
braic Topology, for example in [92] or [231].
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